Research Article

On the System of Coupled Nondegenerate Kirchhoff Equations with Distributed Delay: Global Existence and Exponential Decay

Abdelbaki Choucha,1 Salah Mahmoud Boulaaras2,3, Djamel Ouchenane,4 Salem Alkhalaf,5 Ibrahim Mekawy6,2 and Mohamed Abdalla6,7

1Laboratory of Operator Theory and PDEs: Foundations and Applications, Department of Mathematics, Faculty of Exact Sciences, University of El Oued, El Oued, Algeria
2Department of Mathematics, College of Sciences and Arts, ArRas, Qassim University, Buraydah, Saudi Arabia
3Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Ahmed Benbella, Oran, Algeria
4Laboratory of Pure and Applied Mathematics, Amar Teledji Laghouat University, Algeria
5Department of Computer Sciences, College of Sciences and Arts, ArRas, Qassim University, Saudi Arabia
6Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
7Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

Correspondence should be addressed to Ibrahim Mekawy; im.mekawy@qu.edu.sa

Received 13 January 2021; Revised 6 February 2021; Accepted 10 February 2021; Published 1 March 2021

Academic Editor: Xinguang Zhang

Copyright © 2021 Abdelbaki Choucha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the system of coupled nondegenerate viscoelastic Kirchhoff equations with a distributed delay. By using the energy method and Faedo-Galerkin method, we prove the global existence of solutions. Furthermore, we prove the exponential stability result.

1. Introduction

Let \(\mathcal{H} = \Omega \times (\tau_1, \tau_2) \times (0, \infty) \), in this work, we consider

\[
\begin{align*}
\rho_1 \Delta u - M(|u|^2) \Delta u &+ \int_0^\tau \left[\varphi_1(t-s) \Delta u(x,t-s, \rho_1) - \int_0^\tau \left[\varphi_1(t-s) \Delta u(x,t-s, \rho_1) ds \right] \right] dt + f_1(u, v) = 0, \\
\rho_2 \Delta v - M(|v|^2) \Delta v &+ \int_0^\tau \left[\varphi_2(t-s) \Delta v(x,t-s, \rho_2) - \int_0^\tau \left[\varphi_2(t-s) \Delta v(x,t-s, \rho_2) ds \right] \right] dt + f_2(u, v) = 0,
\end{align*}
\]

where \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \), \(l > 0 \) and \(\Delta \) is the Laplacian operator, and the functions \(\mu_1, \mu_2 : [\tau_1, \tau_2] \rightarrow \mathbb{R} \) are bounded, with \(0 \leq \tau_1 < \tau_2 \), and the relaxation functions are denoted by \(\varphi_1, \varphi_2 \). The function \(M \) is given by

\[
M : \mathbb{R}_+ \rightarrow \mathbb{R}_+, \quad r \mapsto M(r) = a + br^\gamma,
\]

where \(a, b > 0 \), and \(\gamma \geq 1 \), and the functions \(f_1, f_2 \) will be defined later.

(1)
In 1976, Kirchhoff developed an equation describing the vibrations produced by a fixed series at its end, since it is considered a generalization of the d’Alembert equation, and it belongs to the wave equation models. Over time, many researchers and authors addressed these issues and problems with their continuous and rapid development, for example, see [1–4].

As for viscoelasticity, it is possible to delve into the following works for further clarification [3–10].

Also, the time or delay recorded in many natural and physical phenomena, especially problems resulting from vibrations, is an important factor for stability in general. And it has been studied extensively by many authors, including [5–7, 11–21]. Recently, in the presence of the varying delay, Mezouar and Boularrass studied system (1); for more information, see [22]. Based on these works, we in this work expand the results in [22] by adding the term of distributed delay.

We, under appropriate conditions, obtained the global existence of solutions, and we proved the exponential stability result of the system.

And we divided the paper into the following: in the second part, we set out the necessary hypotheses and the main result; in the third part, we prove the global existence of solutions, while in the fourth part, we present our result for exponential stability.

2. Preliminaries

In this section, we set the necessary hypotheses for proving the main result.

We need the following assumptions:

(A1) \(g_i : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), \(i = 1, 2 \) are \(C^1 \) functions satisfying

\[
g(0) > 0, a - \int_0^\infty g_i(s)ds \geq k > 0, i = 1, 2. \tag{5}\]

(A2) \(\exists \xi_i > 0 \) satisfying

\[
g_i(t) \leq -\xi_i g_i(t), i = 1, 2, t \geq 0. \tag{6}\]

(A3) The number \(l \) satisfying \(0 < l \leq \gamma \) and

\[
\begin{cases}
\leq \frac{2}{n-2} & \text{if } n > 2, \\
\gamma & \text{if } n \leq 2.
\end{cases} \tag{7}
\]

(A4)

\[
\begin{cases}
f_1(u, v) = a_1 v + b_1 |v|^{q+1} |v|^{p-1} u, \\
f_2(u, v) = a_1 v + b_2 |v|^{q+1} |v|^{p-1} v,
\end{cases} \tag{8}
\]

where \(a_1 > 0, b_1 = (p + 1)(p + q), b_2 = (q + 1)(p + q) \) such that \(p \) and \(q \) are conjugate \(((1/p) + (1/q) = 1) \), \(p, q < \gamma - (1/2) \) and satisfy

\[
2 \leq p, q \leq \sqrt{\frac{n}{2(n-2)}} \quad \text{if } n > 2, \\
\infty \quad \text{if } n \leq 2. \tag{9}
\]

We set the notations

\[
(g \circ \Psi)(t) := \int_0^t g(t-s)||\Psi(t) - \Psi(s)||^2 ds. \tag{10}
\]

As in [17], we introduce the new variables

\[
\begin{align*}
u_i(x, t - \varphi) &= \mathcal{I}_i(x, \rho, \varphi, t), \\
v_i(x, t - \varphi) &= \mathcal{V}_i(x, \rho, \varphi, t).
\end{align*} \tag{11}
\]

We have

\[
\begin{align*}
\rho \mathcal{I}_i(x, \rho, \varphi, t) + \mathcal{I}_i(x, \rho, \varphi, t) &= 0, \\
u_i(x, t) &= \mathcal{I}_i(x, 0, \varphi, t), \\
\rho \mathcal{V}_i(x, \rho, \varphi, t) + \mathcal{V}_i(x, \rho, \varphi, t) &= 0, \\
v_i(x, t) &= \mathcal{V}_i(x, 0, \varphi, t).
\end{align*} \tag{12}
\]

Consequently, problem (1) is equivalent to

\[
\begin{align*}
|M| u_{tt} - M(|M| u|^2) \Delta u - \Delta u_{tt} + \int_0^t g_1(t-s) \Delta u(s) ds - \int_{r_1}^{r_2} |\mu_1(q)| |\Delta \mathcal{I}_i(x, 1, q, t)| ds + f_1(u, v) &= 0, \\
|M| v_{tt} - M(|M| v|^2) \Delta v - \Delta v_{tt} + \int_0^t g_2(t-s) \Delta v(s) ds - \int_{r_1}^{r_2} |\mu_2(q)| |\Delta \mathcal{V}_i(x, 1, q, t)| ds + f_2(u, v) &= 0,
\end{align*} \tag{13}
\]

\[
\begin{align*}
\rho \mathcal{I}_i(x, \rho, \varphi, t) + \mathcal{I}_i(x, \rho, \varphi, t) &= 0, \\
\rho \mathcal{V}_i(x, \rho, \varphi, t) + \mathcal{V}_i(x, \rho, \varphi, t) &= 0,
\end{align*}
\]
where

\[(x, \rho, s, t) \in \Omega \times (0, 1) \times (\tau_1, \tau_2) \times (0, \infty)\]

with the initial and boundary conditions

\[
\begin{aligned}
(u(x,0), v(x,0)) &= (u_0(x), v_0(x)), \text{ in } \Omega, \\
(u_t(x,0), v_t(x,0)) &= (u_1(x), v_1(x)), \text{ in } \Omega, \\
(u(x,-t), v_t(x,-t)) &= (f_0(x,t), g_0(x,t)), \text{ in } \Omega \times (0, \tau_2), \\
\varphi(x,\rho,0) &= f_0(x,\rho_0), \text{ in } \Omega \times (0, 1) \times (0, \tau_2), \\
\varphi_t(x,\rho,0) &= g_0(x,\rho_0).
\end{aligned}
\]

\[(14)\]

We need the following lemma.

Lemma 1. The energy functional \(E\), given by

\[
E(t) = \frac{1}{1+2} \left(\|u_t\|_{L^2}^2 + \|v_t\|_{L^2}^2 \right) + \frac{b}{2(y+2)} \\
\cdot \left(\|\nabla u\|_{L^{2(y+2)}}^2 + \|\nabla v\|_{L^{2(y+2)}}^2 \right) + \frac{1}{2} \left(a - \int_0^t g_1(s)ds \right) \|\nabla u\|^2 \\
+ \frac{1}{2} \left(g_1^a(t) + \|v_t\|^2 + \frac{1}{2} \left(g_2^a(t) + \|v_t\|^2 \right) \right) \\
+ \frac{1}{2} \left(g_1^b(t) + \|v_t\|^2 + \frac{1}{2} \left(g_2^b(t) + \|v_t\|^2 \right) \right) \\
\cdot \|\nabla \varphi\|^2 + \|\mu_2(\rho)\| \|\nabla \varphi\| dx + a \int_\Omega uv dx \\
+ (p + q) \int_\Omega |u|^p |v|^q dx,
\]

satisfies

\[
E'(t) \leq -\beta \int_{\Omega} \left(|\mu_1(\rho)| \|\nabla \varphi(x,1,q,t)\|^2 + |\mu_2(\rho)| \right) \\
\cdot \|\nabla \varphi(x,1,q,t)\|^2 d\rho + \lambda \left(\|\nabla u_t\|^2 + \|\nabla v_t\|^2 \right) \\
+ \frac{1}{2} \left(g_1^c(t) + \|v_t\|^2 + \frac{1}{2} \left(g_2^c(t) + \|v_t\|^2 \right) \right) \\
\cdot \|v_t\|^2 - \frac{1}{2} g_2(t) \|v_t\|^2 dx,
\]

\[
(17)
\]

\[
where \ \beta = \left((1 - \delta_t)/2 \right > 0, \\
and \ \lambda = \max \left\{ \lambda_1 = \left((\delta_t + 1)/2 \right \} \int_{\Omega} |\mu_1(\rho)| d\rho, \lambda_2 = \left((\delta_t + 1)/2 \right \} \int_{\Omega} |\mu_2(\rho)| d\rho \right\}, \delta_t < 1.
\]

Proof. Multiplying equation (13) by \(u_t, v_t\), and we use (15), one gets

\[
d \frac{dt}{2} \left\{ \frac{1}{1+2} \|u_t\|_{L^2}^2 + b \frac{2}{2(y+1)} \|\nabla u_t\|_{L^{2(y+1)}}^2 + \frac{1}{2} \left(a - \int_0^t g_1(s)ds \right) \|\nabla u\|^2 \\
+ \frac{1}{2} g_1(t) \|\nabla u(t)\|^2 + \int_\Omega u_t \mu_1(\rho) \|\Delta \varphi(x,1,q,t)\| d\rho dx \\
+ \frac{1}{2} g_2(t) \|\nabla v(t)\|^2 + \int_\Omega v_t \mu_2(\rho) \|\Delta \varphi(x,1,q,t)\| d\rho dx \\
+ \frac{1}{2} \int_{\Omega} v_t v_{1}^q dx + b_1 \int_\Omega u_t |u_t|^{p-1} |v_{1}^q| dx + \frac{d \|v_t\|_{L^2}}{dt} \left(\|v_t\|^2 \right) \\
+ \frac{1}{2} \|v_t\|^2 + \frac{1}{2} (g_2^d(t) \|v_t\|^2) - \frac{1}{2} (g_2^f(t) \|v_t\|^2) \\
+ \frac{1}{2} (g_2^g(t) \|v_t\|^2 + \frac{1}{2} (g_2^h(t) \|v_t\|^2)) \right\} \|v_t\|^2 \\
+ \frac{1}{2} \int_\Omega v_t v_{1}^q dx + b_2 \int_\Omega v_t |v_{1}^q| dx.
\]

\[
(18)
\]

And multiplying equation (13) by \(\Delta \varphi |\mu_1(\rho)|\), and integrating the result over \(\Omega \times (0,1) \times (\tau_1, \tau_2)\), one gets

\[
d \frac{dt}{2} \left\{ \int_{\Omega} \int_0^{r_1} \frac{\int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 dx dq dx}{d\rho} \\
+ \frac{1}{2} \int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 dx dq dx \\
+ \frac{1}{2} \int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 dx dq dx \\
+ \frac{1}{2} \int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 dx dq dx \\
+ \frac{1}{2} \int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 dx dq dx \\
+ \frac{1}{2} \int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 dx dq dx \\
+ \frac{1}{2} \int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 dx dq dx
\]

\[
(19)
\]

Similarly, multiplying equation (13) by \(\Delta \varphi |\mu_2(\rho)|\), we find

\[
d \frac{dt}{2} \left\{ \int_{\Omega} \int_0^{r_1} \frac{\int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 d\rho} d\rho \\
+ \frac{1}{2} \int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 d\rho \\
+ \frac{1}{2} \int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 d\rho \\
+ \frac{1}{2} \int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 d\rho \\
+ \frac{1}{2} \int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 d\rho \\
+ \frac{1}{2} \int_\varphi \mu_2(\rho) \|\nabla \varphi\|^2 d\rho \\
+ \frac{1}{2} \int_\varphi \mu_1(\rho) \|\nabla \varphi\|^2 d\rho
\]

\[
(20)
\]
by using the inequalities of Young and Cauchy-Schwartz for $\delta_1 > 0$, we have

$$
\int_\Omega \nabla u_j \cdot \nabla \varphi(x, 1, q, t) \, dq \, dx \\
\leq \frac{\delta_1}{2} \left(\int_{\tau_1}^{\tau_2} |\mu_1(q)| \, dq \right) \|\nabla u_j\|^2 \quad (21)
$$

Similarly, we get

$$
\int_\Omega \nabla v_j \cdot \nabla \varphi(x, 1, q, t) \, dq \, dx \\
\leq \frac{\delta_1}{2} \left(\int_{\tau_1}^{\tau_2} |\mu_2(q)| \, dq \right) \|\nabla v_j\|^2 + \frac{\delta_1}{2} \int_{\tau_1}^{\tau_2} \langle |\mu_2(q)| \rangle \|\nabla \varphi(x, 1, q, t)\|^2 \, dq. \quad (22)
$$

By summing (18)–(20) and using (21) and (22), and choosing δ_1 such that $\delta_1 < 1$, we find (16) and (17). This completes the proof.

3. Global Existence

Theorem 2. Suppose that (5)–(8) hold. Then, given $(u_0, v_0) \in (H^2(\Omega) \cap H_0^1(\Omega))^2$, $(u_1, v_1) \in (H_0^1(\Omega))^2$, and $(f_0, g_0) \in (H^1((\Omega, (0, 1), (\tau_1, \tau_2)))^2$, there exists a weak solution $(u, v, \mathcal{X}, \mathcal{Y})$ of problem (13)–(15) such that

$$(u, v, \mathcal{X}, \mathcal{Y}) \in L^{\infty}(\mathbb{R}_+, \mathcal{H}_j), u_0, v_1$$

$$(u_{n+1}, v_{n+1}) \in L^2(\mathbb{R}_+, H_0^1(\Omega)), u_{n+1}, v_{n+1}$$

where

$$\mathcal{H}_j = (H^2(\Omega) \cap H_0^1(\Omega))^2 \times (H^1((\Omega, (0, 1), (\tau_1, \tau_2)))^2).$$

Proof. Let the Galerkin basis $u_j, v_j, \mathcal{X}_j, \mathcal{Y}_j$ for $n \geq 1$, we set

$$W_n = \text{span}\{u_1, u_2, \ldots, u_n\},$$

$$K_n = \text{span}\{v_1, v_2, \ldots, v_n\}.$$

The sequences $\mathcal{X}_j(x, r, p), \mathcal{Y}_j(x, r, p)$ are defined for $1 \leq j \leq n$ by

$$\mathcal{X}_j(x, 0, p) = u_j(x), \mathcal{Y}_j(x, 0, p) = v_j(x).$$

Then, taking $\mathcal{X}_j(x, 0, p), \mathcal{Y}_j(x, 0, p)$ by over $L^2((0, 1) \times (r_1, r_2))$ and denoting

$$Z_n = \text{span}\{\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n\},$$

$$Y_n = \text{span}\{\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_n\}.\quad (27)$$

Given initial data $u_0, v_0 \in H^2(\Omega) \cap H_0^1(\Omega)$, $u_1, v_1 \in H_0^1(\Omega)$, and $f_0, g_0 \in L^2((\Omega \times (0, 1) \times (\tau_1, \tau_2)))$, we define the approximations

$$u_m = \sum_{j=1}^{n} g_{jm}(t) u_j(x),$$

$$v_m = \sum_{j=1}^{n} h_{jm}(t) v_j(x),$$

$$\mathcal{X}_m = \sum_{j=1}^{n} k_{jm}(t) \mathcal{X}_j(x, r, p),$$

$$\mathcal{Y}_m = \sum_{j=1}^{n} k_{jm}(t) \mathcal{Y}_j(x, r, p).\quad (28)$$

It investigates the following problem:

$$\begin{align*}
\left[u_{mt}, u_{mtt}, v_{mj}, v_{mj} \right] + M \left[\|\nabla u_m(t)\| \right] \left[\nabla u_m, \nabla v_m \right] \\
+ \left[\nabla u_{mtt}, \nabla u_j \right] + \left[f_1(u_m, v_m), u_j \right] \\
- \int_0^t \left[g_1(t-s) \right] \left[\nabla u_{ms} \right], (s), \nabla u_j \right] ds \\
+ \int_{\tau_1}^{\tau_2} \left[|\mu_1(q)| \right] \left[\nabla \mathcal{X}_{m}(x, 1, q, r), \nabla u_j \right] \, dq = 0, \\
\left[v_{mj}, v_{mj} \right] + M \left[\|\nabla v_m(t)\| \right] \left[\nabla v_m, \nabla v_j \right] \\
+ \left[\nabla v_{mtt}, \nabla v_j \right] + \left[f_2(u_m, v_m), v_j \right] \\
- \int_0^t \left[g_2(t-s) \right] \left[\nabla v_{ms} \right], (s), \nabla v_j \right] ds \\
+ \int_{\tau_1}^{\tau_2} \left[|\mu_2(q)| \right] \left[\nabla \mathcal{Y}_{m}(x, 1, q, r), \nabla v_j \right] \, dq = 0,
\end{align*}\quad (29)$$

with initial conditions

$$u_m(0) = u_0^m, \ u_{m0}(0) = u_1^m,$$

$$v_m(0) = v_0^m, \ v_{m0}(0) = v_1^m,$$

$$\mathcal{X}_m(0) = \mathcal{X}_0^m, \ \mathcal{Y}_m(0) = \mathcal{Y}_0^m.\quad (30)$$
which satisfies

\[u_0^{m} \rightarrow u_0, \text{in } H^2(\Omega) \cap H^1_0(\Omega), \]
\[u_1^{m} \rightarrow u_1, \text{in } H^1_0(\Omega), \]
\[v_0^{m} \rightarrow v_0, \text{in } H^2(\Omega) \cap H^1_0(\Omega), \]
\[v_1^{m} \rightarrow v_1, \text{in } H^1_0(\Omega), \]
\[G_0^{m} \rightarrow G_0, \text{in } L^2(\Omega \times (0, 1) \times (\tau_1, \tau_2)), \]
\[Y_0^{m} \rightarrow Y_0, \text{in } L^2(\Omega \times (0, 1) \times (\tau_1, \tau_2)). \]

(31)

Noting that \((l(2(l + 1)) + 1/(2(l + 1)) + 1/2 = 1, by using Hölder's inequality, we get

\[\left(|u_m^{l_1}| u_{m, l} u_{j} \right) = \int_{\Omega} |u_m^{l_1}| u_{m, l} u_{j} \, dx \]
\[\leq \left(\int_{\Omega} |u_m^{l_1}|^{2(l+1)} \, dx \right)^{1/(2(l+1))} \cdot \|u_{m, l}\|_{2(l+1)} \|u_j\|. \]

(32)

As (8) holds, using the embedding of Sobolev, the terms \(|u_m^{l_1}| u_{m, l} u_{j}\) and \(|v_m^{l_1}| v_{m, l} v_{j}\) in (29) make sense (see [22]).

First estimate.

As the sequences \(u_0^{m}, v_0^{m}, u_1^{m}, v_1^{m}, G_0^{m}, (\cdots, 0)\) and \(Y_0^{m}, (\cdots, 0)\) converge and from (17) and Gronwall's lemma, we get \(C_1 > 0\) independent of \(m\) such that

\[E_m(t) + \int_{\tau_1}^{\tau_2} \left(|\mu_1(q)| \|\nabla m_i(x, 1, q, t)\|^2 + |\mu_2(q)| \|\nabla Y_m(x, 1, q, t)\|^2 \right) \, dq \leq C_1, \]

(33)

where

\[E_m(t) = \frac{1}{b} \left(\frac{\|u_m\|^{2_{[1]} + \|v_m\|^{2_{[1]}}}}{2} + \frac{b}{2(\gamma + 2)} \right) \frac{\|\nabla u_m\|^{2_{(\gamma+2)}}}{2} \]
\[+ \|\nabla v_m\|^{2_{(\gamma+2)}} \right) + \frac{1}{2} \left(a - \int_{0}^{t} g_1(s) \, ds \right) \|\nabla u_m\|^2 \]
\[+ \frac{1}{2} \left(a - \int_{0}^{t} g_1(s) \, ds \right) \|\nabla v_m\|^2 + \frac{1}{2} \left(\|\nabla u_m\|^2 + \|\nabla v_m\|^2 \right) \]
\[+ \frac{1}{2} \left(g_1 \nabla v_m \right)(t) + \frac{1}{2} \left(g_1 \nabla v_m \right)(t) \]
\[+ \frac{1}{2} \int_{\tau_1}^{\tau_2} \left(|\mu_1(q)| \|\nabla m_i(x, 1, q, t)\|^2 + |\mu_2(q)| \|\nabla Y_m(x, 1, q, t)\|^2 \right) \, dq \]
\[+ a \int_{\Omega} u_m v_m \, dx + (p + q) \int_{\Omega} |u_m| \|v_m\|^{q+1} \, dx, \]

(34)

using (33) and (8), one gets

\[u_m, v_m \text{ are bounded in } L^\infty_{loc}(\mathbb{R}_+, H^1_0(\Omega)), \]
\[u_{m, l}, v_{m, l} \text{ are bounded in } L^\infty_{loc}(\mathbb{R}_+, H^1_0(\Omega)), \]
\[\mathcal{X}_m(x, \rho, q, t), \mathcal{Y}_m(x, \rho, q, t) \text{ are bounded in } L^\infty_{loc}(\mathbb{R}_+, H^1_0(\Omega)) \times (0, 1) \times (\tau_1, \tau_2). \]

(35)

The second estimate.

We multiply equation (29)_{1,2} by \(g_{j} \nu, h_{j} \nu\); by summing \(j\) from 1 to \(n\), one gets

\[\int_{\Omega} \left| u_{m, l} \right|^2 \, dx + \int_{\Omega} M(\|u_{m, l}(t)\|) \|u_{m, l}\| \, dx \]
\[+ \int_{\Omega} \|\nabla u_{m, l}\|^2 \, dx + \int_{\Omega} f_1(u_m, v_m) u_{m, l} \, dx \]
\[- \int_{\tau_1}^{\tau_2} g_1(t-s) \|u_m(s)\| \nu_{m, l} \, ds \]
\[+ \int_{\tau_1}^{\tau_2} |\mu_1(\rho)| \|\nabla m_i(x, 1, \rho, t)\| \nu_{m, l} \, dx = 0, \]

(36)

By differentiating (29)_{3,4}, we get

\[(q \mathcal{X}_{m, l}(x, \rho, q, t) + \mathcal{X}_{m, l}(x, \rho, q, t), \mathcal{X}_{l}) = 0, \]
\[(q \mathcal{Y}_{m, l}(x, \rho, q, t) + \mathcal{Y}_{m, l}(x, \rho, q, t), \mathcal{Y}_{l}) = 0. \]

(37)

And we multiply (37), by \(\mathcal{X}_{j, l}\) and (37)_{2} by \(\mathcal{Y}_{j, l}\); by summing \(j\) from 1 to \(n\), we have

\[\frac{1}{2} \int_{\Omega} \|\mathcal{X}_{m, l}\|^2 + \frac{1}{2} \int_{\Omega} \|\mathcal{Y}_{m, l}\|^2 = 0, \]

(38)

Integrating the result (38) over \((0, 1)\) with respect to \(\rho\), we obtain

\[\frac{1}{2} \int_{\Omega} \|\mathcal{X}_{m, l}\|^2 \, d\rho + \frac{1}{2} \|\mathcal{X}_m(x, 1, q, t)\|^2 - \frac{1}{2} \|u_{m, l}(x, t)\|^2 = 0, \]
\[\frac{1}{2} \int_{\Omega} \|\mathcal{Y}_{m, l}\|^2 \, d\rho + \frac{1}{2} \|\mathcal{Y}_m(x, 1, q, t)\|^2 - \frac{1}{2} \|v_{m, l}(x, t)\|^2 = 0. \]

(39)
Summing (36) and (39) and using $M(r) \geq a$, we get

\[
\begin{align*}
\int_{\Omega} |u_{m,t}|^2 |u_{m,t}|^2 dx + & \|\nabla u_{m,t}\|^2 \\
+ \frac{1}{2} \frac{d}{dt} \int_{0}^{t} \|\mathcal{X}_{m}(x, 1, \rho, t)\|^2 \\
\leq & \frac{1}{2} \|u_{m,t}\|^2 - \int_{\Omega} a \nabla u_{m} \nabla u_{m,t} dx - \int_{\Omega} f_{1}(u_{m}, \nu_{m}) u_{m,t} dx \\
& + \int_{\Omega} \int_{0}^{t} g_{1}(t-s) \nabla u_{m}(s) \nabla u_{m,t} ds dx \\
& - \int_{\Omega} \int_{0}^{t} |\mu_{1}(q)| \nabla \mathcal{X}_{m}(x, 1, q, t) \nabla u_{m,t} d\rho dx,
\end{align*}
\]

and, by using the inequality of Young, we get

\[
\begin{align*}
\int_{\Omega} a \nabla u_{m} \nabla u_{m,t} dx \\ \\
\leq \eta \|\nabla u_{m,t}\|^2 + \frac{a^2}{4\eta} \|\nabla u_{m}\|^2,
\end{align*}
\]

we have

\[
\begin{align*}
\int_{\Omega} \int_{0}^{t} g_{1}(t-s) \nabla u_{m}(s) \nabla u_{m,t} ds dx \\ \\
\leq \eta \|\nabla u_{m}\|^2 + \frac{(a-k)g_{1}(0)}{4\eta} \int_{0}^{t} \|\nabla u_{m}(s)\|^2 ds,
\end{align*}
\]

Similarly, we get

\[
\begin{align*}
\int_{\Omega} \int_{t_{1}}^{t_{2}} |\mu_{1}(q)| \nabla \mathcal{X}_{m}(x, 1, q, t) \nabla u_{m,t} d\rho dx \\ \\
\leq \eta \lambda_{1} \|\nabla u_{m}\|^2 + \frac{1}{4\eta} \int_{t_{1}}^{t_{2}} |\mu_{1}(q)| \|\nabla \mathcal{X}_{m}(x, 1, q, t)\|^2 d\rho,
\end{align*}
\]

substituting (41)–(45) into (40), and using (17), one gets

\[
\begin{align*}
\int_{\Omega} |u_{m,t}|^2 |u_{m,t}|^2 dx + & \left(1 - \left(\eta(\lambda_{1} + 2) + \frac{(1 + b_{1})C_{s}^{2}}{2}\right)\right) \\
\cdot \|\nabla u_{m,t}\|^2 + & \frac{1}{2} \frac{d}{dt} \int_{0}^{t} \|\mathcal{X}_{m}(x, 1, q, t)\|^2 \\
\leq C_{2} + & \frac{1}{4\eta} (a-k)g_{1}(0)C_{1} T,
\end{align*}
\]

where $C_{2} > 0$ depends on $\eta, a, \alpha, C_{s}, b_{1}, b_{2}, p, q, C_{1}$.

Similarly, we get

\[
\begin{align*}
\int_{\Omega} |v_{m,t}|^2 |v_{m,t}|^2 dx + & \left(1 - \left(\eta(\lambda_{2} + 2) + \frac{(1 + b_{2})C_{s}^{2}}{2}\right)\right) \\
\cdot \|\nabla v_{m,t}\|^2 + & \frac{1}{2} \frac{d}{dt} \int_{0}^{t} \|\mathcal{Y}_{m}(x, 1, q, t)\|^2 \\
\leq C_{2} + & \frac{1}{4\eta} (a-k)g_{2}(0)C_{1} T,
\end{align*}
\]
Integrating (41) over \((0, t)\), we get

\[
\int_0^t \int_\Omega \left(\left| \nabla u_{m(t)}(\sigma) \right| \left| \nabla v_{m(t)}(\sigma) \right| \right)^2 dxd\sigma \\
+ \left(1 - \left\{ \eta(\lambda_1 + 2) + \frac{(1 + b_1)C_2^2}{2} \right\} \right) \\
\cdot \int_0^t \left(\left| \nabla u_{m(t)}(\sigma) \right| \right)^2 d\sigma + \frac{1}{2} \int_0^t \left| \nabla u_{m(t)} \right|^2 dQ \\
+ \frac{1}{2} \int_0^t \left| \nabla u_{m(t)}(x, 1, q, \sigma) \right|^2 d\sigma \\
\leq \left(C_2 + \frac{1}{4\eta} (a - k) g_1(0) C_1 T \right) T,
\]

(47)

At this stage, choosing \(\eta > 0\) such that

\[
1 - \left\{ \eta(\lambda_1 + 2) + \frac{(1 + b_1)C_2^2}{2} \right\} > 0, \text{ for } i = 1, 2,
\]

we find

\[
\int_0^t \left(\left| \nabla u_{m(t)}(\sigma) \right| \right)^2 d\sigma \\
+ \frac{1}{2} \int_0^t \left(\left| \nabla u_{m(t)} \right|^2 \right) dQ \leq C_3.
\]

(49)

We have from (17) and (49) that there exist subsequences \((u_k)\) of \((u_m)\) and \((v_k)\) of \((v_m)\) such that

\[
(u_k, v_k) \rightharpoonup (u, v) \text{ weakly star in } L^{\infty}(0, T, H_0^1(\Omega)),
\]

\[
(u_k, v_k) \rightharpoonup (u, v) \text{ weakly star in } L^{\infty}(0, T, H_0^1(\Omega)),
\]

\[
(u_{m(t)}, v_{m(t)}) \rightharpoonup (u_t, v_t) \text{ weakly star in } L^2(0, T, H_0^1(\Omega)),
\]

\[
(\mathcal{X}, \mathcal{Y}_k) \rightharpoonup (\mathcal{X}, \mathcal{Y}) \text{ weakly star in } L^\infty(0, T, L^2(\Omega \times (0, 1) \times (\tau_1, \tau_2))),
\]

\[
(\mathcal{X}_k, \mathcal{Y}_k) \rightharpoonup (\mathcal{X}_*, \mathcal{Y}_*) \text{ weakly star in } L^\infty(0, T, L^2(\Omega \times (0, 1) \times (\tau_1, \tau_2))).
\]

(50)

We work now with the nonlinear term. From (17), we find

\[
\left\| u_{k(t)} \right\|_{L^2(0, T; L^2(\Omega))}^2 = \int_0^T \left\| u_{k(t)} \right\|_{L^2(\Omega)}^{2(1+1)} dt \\
\leq C_*^{2(1+1)} \int_0^T \left\| u_{k(t)} \right\|_{L^2(\Omega)}^{2(1+1)} dt \leq C_4,
\]

(51)

where \(C_4\) depends only on \(C_*\), \(C_1\), \(T, l\).

And from the theorem of Aubin-Lions (see Lions [23]), we deduce that there exists a subsequence of \((u_k)\), given by \((u_{k(t)})\), such that

\[
u_{k(t)} \rightharpoonup u_t \text{ strongly in } L^2(0, T, L^2(\Omega)),
\]

(52)

we get

\[
u_{k(t)} \to u_t \text{ almost everywhere in } \Omega \times \mathbb{R}_+.
\]

(53)

Hence,

\[
u_{k(t)} \to |u_t|^{|u_t|} u_t \text{ almost everywhere in } \Omega \times \mathbb{R}_+.
\]

(54)

Thus, using (46) and (48) and the Lions lemma, we derive

\[
u_{k(t)} \to |u_t|^{|u_t|} u_t \text{ weakly in } L^2(0, T, L^2(\Omega)).
\]

(55)

Similarly,

\[
u_{k(t)} v_{k(t)} \to |v_t|^{|v_t|} v_t \text{ weakly in } L^2(0, T, L^2(\Omega)),
\]

(56)

\[
(\mathcal{X}_k, \mathcal{Y}_k) \rightharpoonup (\mathcal{X}, \mathcal{Y}) \text{ strongly in } L^2(0, T, L^2(\Omega \times (0, 1) \times (\tau_1, \tau_2))),
\]

which implies

\[
(\mathcal{X}_*, \mathcal{Y}_*) \rightharpoonup (z, y) \text{ almost everywhere in } \Omega \times (0, 1) \times (\tau_1, \tau_2).
\]

(58)

The sequences \((u_k)\) and \((v_k)\) satisfy

\[
f_1(u_k, v_k) \to f_1(u, v) \text{ strongly in } L^2(0, T, L^2(\Omega)),
\]

(59)

We have

\[
\left\| f_1(u_k, v_k) - f_1(u, v) \right\|^2 = \int_\Omega \left| |v_m|^{|v_m|} u_m - |v|^{|v|} u \right|^2 dx.
\]

(60)

Noting that \((l/2p) + (1/2q) + (1/2) = 1\), by applying the generalized Hölder’s and Young’s inequalities, and (8), we get

\[
\left\| f_1(u_k, v_k) - f_1(u, v) \right\|^2 \leq C \left[\left\| \nabla (u_m - u) \right\|^2 + \left\| \nabla (v_m - v) \right\|^2 \right].
\]

(61)
As \((u_k)\) and \((v_k)\) are Cauchy sequences in \(L^\infty(0, T, H^1_0(\Omega))\) (prove it as in [1]), then we get \((59)_1\). Similarly, we get the convergence \((59)_2\).

Multiplying \((29)\) by \(\Psi(t) \in \mathcal{D}(0, T)\) and integrating the result over \((0, T)\), we get

\[
-\frac{1}{I+1} \int_0^T \left(|u_m|^i |u_{mm}, u_i| \right) \Psi^i(t) dt \\
+ \int_0^T \mathcal{M}(\|\nabla u_m(t)\|) (\nabla u_m, \nabla u_i) \Psi^i(t) dt \\
+ \int_0^T (\nabla u_m, \nabla u_i) \Psi^i(t) dt + \int_0^T \left(f_i(u_m, v_m), u_i \right) \Psi^i(t) dt \\
- \int_0^T \int_{\tau_i} g_i(t-s) (\nabla u_m(s), \nabla u_i) \Psi^i(t) ds dt \\
+ \int_0^T \int_{\tau_i} \mu_i(t) (\nabla \mathcal{L}_m(x, 1, \rho, t), \nabla u_i) \Psi^i(t) dq dt = 0,
\]

and

\[
\frac{1}{I+1} \int_0^T \left(|v_m|^i |v_{mm}, v_i| \right) \Psi^i(t) dt \\
+ \int_0^T \mathcal{M}(\|\nabla v_m(t)\|) (\nabla v_m, \nabla v_i) \Psi^i(t) dt \\
+ \int_0^T (\nabla v_m, \nabla v_i) \Psi^i(t) dt + \int_0^T \left(f_i(u_m, v_m), v_i \right) \Psi^i(t) dt \\
- \int_0^T \int_{\tau_i} g_i(t-s) (\nabla v_m(s), \nabla v_i) \Psi^i(t) ds dt \\
+ \int_0^T \int_{\tau_i} \mu_i(t) (\nabla \mathcal{G}_m(x, 1, \rho, t), \nabla v_i) \Psi^i(t) dq dt = 0,
\]

\[
\int_0^T \left(\mathcal{Q} \mathcal{L}_m(x, \rho, t) + \mathcal{Z}_m(x, \rho, t), \mathcal{L}_m \right) \Psi^i(t) dt = 0,
\]

\[
\int_0^T \left(\mathcal{Q} \mathcal{G}_m(x, \rho, t) + \mathcal{Z}_m(x, \rho, t), \mathcal{G}_m \right) \Psi^i(t) dt = 0,
\]

\(\forall j = 1, \ldots, m\). \(\tag{62}\)

We obtain \((62)\) by the convergence of \((50), (54), (56), \) and \((59)\). This completes the proof.

4. Exponential Decay

In this section, the stability result of the system \((13)-(15)\) is proved.

We need the following lemmas.

Lemma 3. The functional

\[
F_i(t) = \frac{1}{I+1} \int_\Omega \left(|u_i|^i |u_i| + |v_i|^i |v_i| \right) \text{d}x \\
+ \int_\Omega (\nabla u_i \nabla v_i, \nabla v_i) \text{d}x,
\]

satisfies

\[
F_i(t) \leq \frac{1}{I+1} \left(\|u_i\|^{i+1}_{I+1} + \|v_i\|^{i+1}_{I+1} \right) \\
+ \left(\frac{I+1}{I+2} \right)^{i+1} \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right)
\]

\[
+ \left(\frac{I+1}{I+2} \right)^{i+1} \left(C_{i+1} + \frac{c}{2} \right) \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right), \tag{64}\]

and

\[
F'_i(t) \leq \frac{1}{I+1} \left(\|u_i\|^{i+1}_{I+1} + \|v_i\|^{i+1}_{I+1} \right) \\
+ \left(\frac{I+1}{I+2} \right)^{i+1} \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right)
\]

\[
+ \left(\frac{I+1}{I+2} \right)^{i+1} \left(C_{i+1} + \frac{c}{2} \right) \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right) + \left(\frac{I+1}{I+2} \right)^{i+1} \left(\frac{\epsilon}{C_0} + \frac{2}{C_0} \right) \left(|u_i|^{i+1}_{I+1} + |v_i|^{i+1}_{I+1} \right)
\]

\[
\cdot \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right) + \frac{C_{i+1}}{4C_0} \left(|\nabla u_i|^{i+1}_{I+1} + |\nabla v_i|^{i+1}_{I+1} \right)^2
\]

\[
+ \frac{C_{i+1}}{4C_0} \left(|\nabla u_i|^{i+1}_{I+1} + |\nabla v_i|^{i+1}_{I+1} \right)^2 \tag{65}\]

Proof.

(1) By applying the inequalities of Young and Poincare', we find

\[
|F_i(t)| \leq \frac{1}{I+1} \left(|u_i|^{i+1}_{I+1} + \left(\frac{I+1}{I+2} \right)^{i+1} \left(\|u_i\|^2 + \|v_i\|^2 \right) \right)
\]

\[
+ \left(\frac{I+1}{I+2} \right)^{i+1} \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right)
\]

\[
+ \left(\frac{I+1}{I+2} \right)^{i+1} \left(C_{i+1} + \frac{c}{2} \right) \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right), \tag{66}\]

and

(2) Direct computation using integration by parts, we get

\[
F_i(t) = \int_\Omega \left(|u_i|^i |u_i| \right) u dx + \frac{1}{I+1} \left(|u_i|^{i+1}_{I+1} + \int_\Omega \left(|v_i|^i |v_i| \right) v dx \\
+ \frac{1}{I+1} \left(\|u_i\|^{i+1}_{I+1} \right) + \|u_i\|^2 \\
- \int_\Omega \left(|\nabla u_i|^{i+1}_{I+1} + \|\nabla u_i\|^2 \right) - \int_\Omega \left(\|\nabla v_i\|^2 \right) \|\nabla v_i\|^2 \\
\cdot \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right) + \left(\frac{I+1}{I+2} \right)^{i+1} \left(\frac{C_{i+1}}{4C_0} + \frac{c}{2} \right) \right)
\]

\[
\cdot \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right)
\]

\[
\cdot \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right) + \left(\frac{I+1}{I+2} \right)^{i+1} \left(\frac{\epsilon}{C_0} + \frac{2}{C_0} \right) \left(|u_i|^{i+1}_{I+1} + |v_i|^{i+1}_{I+1} \right)
\]

\[
\cdot \left(\|\nabla u_i\|^2 + \|\nabla v_i\|^2 \right) + \frac{C_{i+1}}{4C_0} \left(|\nabla u_i|^{i+1}_{I+1} + |\nabla v_i|^{i+1}_{I+1} \right)^2
\]

\[
+ \frac{C_{i+1}}{4C_0} \left(|\nabla u_i|^{i+1}_{I+1} + |\nabla v_i|^{i+1}_{I+1} \right)^2 \tag{65}\]
Lemma 4. The functional

\[
F_2(t) = \int_{\Omega} \left(\Delta u - \frac{1}{l+1} |u|^l u \right) g_1(t-s)(u(t) - u(s)) \, ds \, dx \\
+ \int_{\Omega} \left(\Delta v - \frac{1}{l+1} |v|^l v \right) g_2(t-s)(v(t) - v(s)) \, ds \, dx,
\]

(68)

satisfies

\[
F_2(t) \leq \frac{1}{l+2} \left(\| u \|_{l+2}^2 + \| v \|_{l+2}^2 \right) + \frac{1}{2} \left(\| \nabla u \|^2 + \| \nabla v \|^2 \right)
\]

\[
+ \left(\frac{(l+1)^{-1}}{l+2} (a-k)^{l+2} \right) \| \nabla u \|^{l+1} + \| \nabla v \|^{l+1} \right) + \frac{1}{2} (a-k)
\]

\[
\cdot \left\{ 1 + \frac{(l+1)^{-1}}{l+2} (a-k)^{l+2} \right\} (g_1 \circ \nabla u + g_2 \circ \nabla v),
\]

(69)

and for any \(\varepsilon_2 > 0 \),

\[
F_2'(t) \leq \frac{1}{l+1} \left[\left(1 - \int_0^t g_1(s) \, ds \right) \| u \|_{l+1}^2 + \left(1 - \int_0^t g_2(s) \, ds \right) \| v \|_{l+1}^2 \right]
\]

\[
\cdot \| u \|_{l+1}^2 + \left(2 \varepsilon_2 (a-k)^2 + \frac{\alpha C_2^4}{2} \right) \left(\| u \|^2 + \| v \|^2 \right)
\]

\[
+ \left(a-k \right) \left(\frac{(l+1)^{-1}}{l+2} (g_1(0))^{l+2} \right) \| u \|^2 + \| v \|^2
\]

\[
+ \frac{C_2^4}{2} \left(g_1(0)^{l+2} \right) \| u \|^2 + \| v \|^2
\]

\[
\cdot \left\{ 1 - \frac{(l+1)^{-1}}{l+2} (a-k)^{l+2} \right\} (g_1 \circ \nabla u + g_2 \circ \nabla v),
\]

(70)

Proof.

(1) By using Young’s inequality and the conjugate exponents \(p' = (l+2)/(l+1), \ q' = l+2, \) and Hölder’s inequality, we obtain

\[
\left| \int_{\Omega} \frac{1}{l+1} |u|^l u \int_0^t g_1(t-s)(u(t) - u(s)) \, ds \, dx \right|
\]

\[
\leq \frac{1}{l+2} \left| u \right|_{l+2}^2 + \left(\frac{(l+1)^{-1}}{l+2} \right) \left[(a-k)^{l+2} \right]
\]

\[
\cdot \left(2^{l+1} (a-k) \| u \|^{l+1} + \frac{1}{2} (g_1 \circ \nabla u) \right),
\]

(71)

Similarly, we get

\[
\left| \int_{\Omega} \frac{1}{l+1} |v|^l v \int_0^t g_2(t-s)(v(t) - v(s)) \, ds \, dx \right|
\]

\[
\leq \frac{1}{l+2} \left| v \right|_{l+2}^2 + \left(\frac{(l+1)^{-1}}{l+2} \right) \left[(a-k)^{l+2} \right]
\]

\[
\cdot \left(2^{l+1} (a-k) \| v \|^{l+1} + \frac{1}{2} (g_2 \circ \nabla v) \right),
\]

(72)
Using Young’s, Cauchy-Schwarz, Hölder’s, and Poincaré’s inequalities, and \(k \leq 1 \), we obtain (70).

At this point, let us introduce the functional given by

\[
F_2(t) = \int_{\Omega} \left(\frac{1}{2} \|\nabla v_t\|^2 + \frac{1}{2} (a - k)(g_2 \circ \nabla v_t) \right) dx dt
\]

\[
F_3(t) = \int_{\Omega} \left(\rho e^{-\phi} \left(|\mu_1(\rho)| \|\mathcal{X}\|^2 + |\mu_2(\rho)| \|\mathcal{Y}\|^2 \right) \right) dx dt
\]

\[
F_3(t) = -\eta_1 \int_{\tau_1}^{T} \rho \left(\|\mu_1(\rho)\| \|\mathcal{X}\|^2 + |\mu_2(\rho)| \|\mathcal{Y}\|^2 \right) dx dt
\]

\[
F_3(t) = -\eta_1 \int_{\tau_1}^{T} \rho \left(\|\mu_1(\rho)\| \|\mathcal{X}\|^2 + |\mu_2(\rho)| \|\mathcal{Y}\|^2 \right) dx dt
\]
As $-e^\varphi$ is an increasing function, we have $-e^\varphi \leq -e^{-\varepsilon_1}$, for any $\varphi \in [\tau_1, \tau_2]$.

Then, setting $\eta_1 = e^{-\varepsilon_1}$, we find (78).

Theorem 6. Assume (5)–(8) hold, then $\exists \varepsilon_1, \xi_2 > 0$ such that the energy functional (16) satisfies

$$E(t) \leq \xi_2 e^{-\varepsilon_1 t}, \forall t \geq t_0.$$ \hspace{1cm} (81)

Proof. We define the functional of Lyapunov

$$\mathscr{L}(t) = NE(t) + F_1(t) + N_2 F_2(t) + F_3(t),$$ \hspace{1cm} (82)

where $N, N_2 > 0$.

First, if we let

$$\mathcal{K}(t) = F_1(t) + N_2 F_2(t) + F_3(t),$$ \hspace{1cm} (83)

then, by (64), (69), and (77), we get

$$|\mathcal{K}(t)| \leq c E(t).$$ \hspace{1cm} (84)

Consequently,

$$|\mathcal{K}(t)| = |\mathscr{L}(t) - NE(t)| \leq c E(t),$$ \hspace{1cm} (85)

which yields

$$(N - c) E(t) \leq \mathcal{K}(t) \leq (N + c) E(t).$$ \hspace{1cm} (86)

By derivation (82) and applying (17), (65), (70), (78), and (6), one gets

$$\mathcal{L}'(t) \leq \frac{1}{l+1} \left\{ (1 - h_0) + N_1 \right\} \left\{ \|u_l\|^{\alpha_2}_{\mathcal{L}^2} + \|v_l\|^{\alpha_2}_{\mathcal{L}^2} \right\}$$

$$\left\{ + \left\{ \lambda (1 + N) + N_1 + \varepsilon_2 - h_0 \right\} \left\{ \|\nabla u_l\|^2 + \|\nabla v_l\|^2 \right\} \right.$$

$$\left\{ + \varepsilon_2 M_0 \left\{ (a - k) + \frac{(l + 1)^{-1}}{l + 2} (h_2 C_*)^{\varepsilon_2} 2^{(l+1)} + R_1 \right\} \right.$$

$$\left\{ + N_1 \left\{ \varepsilon_1 (a - k + \lambda - k) + \frac{b_1 + b_2}{2} \right\} C_*^2 \right\}$$

$$\left\{ + \left\{ \frac{2\varepsilon_2 (a - k)^2 + \frac{\alpha C_*^2}{2}}{2} \right\} \left\{ \left\{ \frac{\|\nabla u_l\|^2 + \|\nabla v_l\|^2}{2} \right\}$

$$\left\{ + \left\{ \frac{-1}{\xi^2} \left\{ \frac{M_0}{4\varepsilon_2} \right\} + \left\{ \frac{2\varepsilon_2 + \lambda}{4\varepsilon_2} \right\} \left\{ \frac{\alpha C_*^2}{2} \right\} (a - k) + \frac{N_1}{4\varepsilon_1} \right\} \right.$$

$$\left\{ + \frac{N_1}{2} \left\{ \frac{h_1}{4\varepsilon_2} \left\{ \frac{(l + 1)^{-1}}{l + 2} (h_1)^2 C_*^{\alpha_2} \right\} \right\} \right.$$}

$$\cdot \left\{ \left(g_{1*}^c \nabla u + \left(g_{2*}^c \nabla v \right) \right) - \eta_1 \int_{\tau_1}^{\tau_2} \rho \left\{ \mu_1 (\rho) \right\} \|\nabla X\|^2 \right\}$$

$$\left. + \left\{ \mu_2 (\rho) \right\} \|\nabla Y\|^2 \left\{ dp \right\} - \left\{ \eta_1 + N_1 + \varepsilon_2 \right\} \frac{N_1}{4\varepsilon_1} \right\} \right.$$

$$\left\{ \int_{\tau_1}^{\tau_2} \left\{ \left(\mu_1 (\rho) \right) \|\nabla X(x, \rho, t)\|^2 \right\} dp \right\}$$

$$\left. + \left\{ \mu_2 (\rho) \right\} \|\nabla Y(x, \rho, t)\|^2 \left\{ dp \right\} \right\}.$$

where $h_0 = \min \left\{ \int_0^1 g_1(s) ds \right\}, h_2 = \min \left\{ \int_0^1 g_2(s) ds \right\}, M_0 = \max \left\{ (\|\nabla u_l\|^2), M(\|\nabla v_l\|^2) \right\}, h_1 = \min \left\{ \int_0^1 g_1(0, s) ds \right\}, h_2 = \max \left\{ \int_0^1 g_1(1, s) ds \right\}, h_c = \max \left\{ \xi_1, \xi_2 \right\},$ and $R_1 = \min \left\{ b_1 (C_*^2 (\eta_1 + \varepsilon_2)) + b_2 (C_*^2 (\eta_1 + \varepsilon_2)), C_*^2 (\eta_1 + \varepsilon_2) \right\}$.

At this stage, choosing two fixed numbers $N, N_1, \varepsilon_2 > 0, \lambda > 0, \alpha_1 > 0,$ and

$$h_1 - \lambda (1 + N) - N_1 \geq 0,$$

we choose ε_2 small enough such that

$$\alpha_2 = \eta_1 - 1 + N_1 > 0.$$ \hspace{1cm} (87)

we choose ε_2 small enough that

$$\alpha_3 = N \beta - \varepsilon_2 - \frac{N_1}{4\varepsilon_1} > 0,$$

$$\alpha_4 = \left\{ \frac{-\varepsilon_2 M_0 \left\{ (a - k) + \frac{(l + 1)^{-1}}{l + 2} (h_2 C_*)^{\varepsilon_2} 2^{(l+1)} + R_1 \right\} + N_1 \left\{ k - \varepsilon_1 (a - k + \lambda) - \frac{b_1 + b_2}{2} + \alpha \right\} \frac{C_*^2}{2} \right\} \right.$$

$$\left. - \left\{ \frac{2\varepsilon_2 (a - k)^2 + \frac{\alpha C_*^2}{2}}{2} \right\} \right\} > 0,$$

$$\alpha_5 = \left\{ \frac{\frac{1}{\xi^2} \left\{ \frac{M_0}{4\varepsilon_2} \right\} + \left\{ \frac{2\varepsilon_2 + \lambda}{4\varepsilon_2} \right\} \left\{ \frac{\alpha C_*^2}{2} \right\} (a - k) - \frac{N_1}{4\varepsilon_1} \right\} \right.$$

$$\left. - \left\{ \frac{h_1}{4\varepsilon_2} \left\{ \frac{(l + 1)^{-1}}{l + 2} (h_1)^2 C_*^{\alpha_2} \right\} \right\} \right\} > 0.$$ \hspace{1cm} (89)

Thus, we get

$$\mathcal{L}'(t) \leq \frac{-1}{l+1} \left\{ \varepsilon_1 \right\} \left\{ \frac{\|\nabla u_l\|^{\alpha_2}_{\mathcal{L}^2} + \|v_l\|^{\alpha_2}_{\mathcal{L}^2}}{2} \right\} - \alpha_3 \left\{ \|\nabla u_l\|^2 + \|\nabla v_l\|^2 \right\}$$

$$- \alpha_4 \left\{ \|\nabla u_l\|^2 + \|\nabla v_l\|^2 \right\} - \alpha_5 \left\{ \left(g_{1*}^c \nabla u + \left(g_{2*}^c \nabla v \right) \right) \right\}.$$
for some additional help they provided to him during his studies. Moreover, he thanks them for the hours they spent with him.

The sixth author extend their appreciation to the Deanship of Graduate Studies and Research at King Khalid University for funding this work through General Research Project under Grant No. G.R.P-2/42. In addition, the third author would like to thank all the professors of the mathematics department at the University of Annaba in Algeria, especially his Professors/Scientists Pr. Mohamed Haiour, Pr. Ahmed-Salah Chibi, and Pr. Azzedine Benchetta for the important content of masters and Ph.D. courses in pure and applied mathematics that he received during his studies. Moreover, he thanks them for the additional help they provided to him during office hours in their office about the few concepts/difficulties he had encountered, and he appreciates their talent and dedication for their postgraduate students currently and previously.

\[
- \eta \int_{\Omega} \rho (|\mu_1(\rho)||\mathcal{L}|^2 + |\mu_2(\rho)||\mathcal{Y}|^2) d\rho d\theta \\
+ \alpha \int_{\Omega} (|\mu_1(\rho)||\mathcal{L}(x, 1, \rho, t)||^2 + |\mu_2(\rho)||\mathcal{Y}(x, 1, \rho, t)||^2) d\rho d\theta,
\]

(91)

\[
c_1 E(t) \leq \mathcal{L}(t) \leq c_2 E(t), \forall t \geq 0,
\]

(92)

using (16), estimates (91) and (86), respectively, we get

\[
\mathcal{L}'(t) \leq -k_1 E(t) - k_2 E'(t), \forall t \geq t_0,
\]

(93)

for some \(k_1, k_2, c_1, c_2 > 0\).

By the combination of (93) with (92), we obtain

\[
\mathcal{R}'(t) \leq -\lambda \mathcal{R}(t),
\]

(94)

where

\[
\mathcal{R}(t) = \mathcal{L}(t) + k_2 E(t) \sim E(t).
\]

(95)

Integrating the result (94) over \((t_0, t)\), we find

\[
\mathcal{R}(t) \leq \mathcal{R}(t_0) e^{-\lambda (t-t_0)}, \forall t_0 \geq t.
\]

(96)

It follows from (95) that (81) holds. This completes the proof.

Data Availability

No data were used to support the study.

Conflicts of Interest

This work does not have any conflicts of interest.

Acknowledgments

The sixth author extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No. G.R.P-2/42. In addition, the third author would like to thank all the professors of the mathematics department at the University of Annaba in Algeria, especially his Professors/Scientists Pr. Mohamed Haiour, Pr. Ahmed-Salah Chibi, and Pr. Azzedine Benchetta for the important content of masters and Ph.D. courses in pure and applied mathematics that he received during his studies. Moreover, he thanks them for the additional help they provided to him during office hours in their office about the few concepts/difficulties he had encountered, and he appreciates their talent and dedication for their postgraduate students currently and previously.

References

[1] K. Agre and M. A. Rammaha, “Systems of nonlinear wave equations with damping and source terms,” Differential and Integral Equations, vol. 19, no. 11, pp. 1235–1270, 2006.

[2] G. Fragnelli and C. Pignotti, “Stability of solutions to nonlinear wave equations with switching time delay,” Dynamics of Partial Differential Equations, vol. 13, no. 1, pp. 31–51, 2016.

[3] N. Mezouar and S. Boulaaras, “Global existence of solutions to a viscoelastic non-degenerate Kirchhoff equation,” Applicable Analysis, vol. 99, no. 10, pp. 1724–1748, 2020.

[4] N. Mezouar and S. Boulaaras, “Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 43, no. 1, pp. 725–755, 2020.

[5] A. Choucha, D. Ouchenane, and S. Boulaaras, “Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms,” Journal of Nonlinear Functional Analysis, vol. 2020, no. 1, article 31, 2020.

[6] A. Choucha, S. Boulaaras, D. Ouchenane, and S. Beloul, “General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms,” Mathematical Methods in the Applied Sciences, pp. 1–22, 2020.

[7] A. Choucha, S. Boulaaras, and D. Ouchenane, “Exponential decay of solutions for a viscoelastic coupled Lamé system with logarithmic source and distributed delay terms,” Mathematical Methods in the Applied Sciences, pp. 1–22, 2020.

[8] F. Mesloub and S. Boulaaras, “General decay for a viscoelastic problem with not necessarily decreasing kernel,” Journal of Applied Mathematics and Computing, vol. 58, no. 1-2, pp. 647–665, 2018.

[9] N. Mezouar, M. Abdelli, and A. Rachah, “Existence of global solutions and decay estimates for a viscoelastic Petrovsky equation with a delay term in the non-linear internal feedback,” Electronic Journal of Differential Equations, vol. 58, 2017.

[10] D. Ouchenane, S. Boulaaras, and F. Mesloub, “General decay for a viscoelastic problem with not necessarily decreasing kernel,” Applicable Analysis, pp. 1677–1693, 2018.

[11] T. A. Apalara, “Uniform decay in weakly dissipative Timoshenko system with internal distributed delay feedbacks,” Acta Mathematica Scientia, vol. 36, no. 3, pp. 815–830, 2016.

[12] T. A. Apalara, “Well-posedness and exponential stability for a linear damped Timoshenko system with second sound and internal distributed delay,” Electronic Journal of Differential Equations, vol. 58, pp. 1–15, 2014.

[13] A. Choucha, D. Ouchenane, K. Zennir, and B. Feng, “Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term,” Mathematical Methods in the Applied Sciences, pp. 1–26, 2020.

[14] A. Choucha, D. Ouchenane, and S. Boulaaras, “Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term,” Mathematical Methods in the Applied Sciences, vol. 43, no. 17, pp. 9983–10004, 2020.

[15] H. Wang and Q. Zhu, “Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics,” IEEE Transactions on Automatic Control, vol. 65, no. 10, pp. 4448–4455, 2020.
[16] G. Lui, “Well-posedness and exponential decay of solutions for a transmission problem with distributed delay,” *Electronic Journal of Differential Equations*, vol. 174, pp. 1–13, 2017.

[17] A. S. Nicaise and C. Pignotti, “Stabilization of the wave equation with boundary or internal distributed delay,” *Differential and Integral Equations*, vol. 21, no. 9-10, pp. 935–958, 2008.

[18] Q. Zhu, “Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control,” *IEEE Transactions on Automatic Control*, vol. 64, no. 9, pp. 3764–3771, 2019.

[19] Q. Zhu, “Stability analysis of stochastic delay differential equations with Levy noise,” *Systems & Control Letters*, vol. 118, pp. 62–68, 2018.

[20] R. Song and Q. Zhu, “Stability of linear stochastic delay differential equations with infinite Markovian switchings,” *International Journal of Robust and Nonlinear Control*, vol. 28, no. 3, pp. 825–837, 2018.

[21] X. Yang and Q. Zhu, “New criteria for mean square exponential stability of stochastic systems with variable and distributed delays,” *IET Control Theory & Applications*, vol. 13, no. 1, pp. 116–122, 2019.

[22] N. Mezouar and S. Boulaaras, “Global existence and exponential decay of solutions for generalized coupled non-degenerate Kirchhoff system with a time varying delay term,” *Boundary Value Problems*, vol. 2020, no. 1, Article ID 90, 2020.

[23] J. L. Lions, *Quelques Methodes de Resolution Des Problemes Aux Limites Non Lineaires*, Dunod, Paris, 1969.