Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos)

Shaman Muradrasoli, Nahla Mohamed, Ákos Hornyák, Jan Fohlman, Björn Olsen, Sándor Belák, Jonas Blomberg

Abstract

Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan®) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.

1. Introduction

Coronaviruses (CoVs) are positive single-stranded RNA viruses. They belong to the family Coronaviridae in the order Nidovirales (Cavanagh, 1997). CoVs have the largest known nonsegmented viral RNA genome, 27–32 kb in length and is composed in its 5′-proximal two-thirds of two large open reading frames, ORF1a and ORF1b, encoding the replicase complex (Brian and Baric, 2005). The CoV family traditionally is subdivided into three groups based on serological and genetic properties (Cavanagh et al., 1993; Siddell et al., 1983). Groups 1 and 2 infect a large range of mammalian species whereas group 3 is restricted to birds (Saif, 2004). Classification of the severe acute respiratory syndrome coronavirus (SARS-CoV) in group 2 or as the prototype of a new group 4 is subject to controversy and is complicated by the seeming recombinant origin of its genome (Gorbalenya et al., 2004; Rest and Mindell, 2003; Snijder et al., 2003; Stavrinides and Guttman, 2004). The situation recently became more complicated because bats were found to harbour a wide range of mammalian CoVs (Li et al., 2005; Poon et al., 2005). It is thus likely that bats serve as reservoirs for CoVs in a similar manner as anseriform birds do for influenza A (Webster et al., 1992). CoVs are responsible for a broad spectrum of diseases, including respiratory and enteric pathologies, both in humans and in animals (Saif, 2004). Human CoVs (HCoVs) cause respiratory tract illnesses. However, there is also direct evidence for involvement in enteric (e.g. strain HECoV 4408) (Zhang et al., 1994; Zhu et al., 2006) and suggestive evidence for involvement in neurological disease (Clarke et al., 1979; Flewett et al., 1987; Foley and Leutenegger, 2001; Gerna et al., 1985, 1984; Han et al., 2006; Jacomy et al., 2006; Luby et al., 1999; Resta et al., 1985; Saif, 2004; Schnagl et al., 1990, 1986; Sitbon, 1985; Vabret et al., 2006; Wang et al., 2007; Zhu et al., 2006). HCoV are frequent causes of the common cold; usually a self-limiting upper respiratory tract (URT) illness (Heikkinen...
and Jarvinen, 2003). The prototypic HCoVs, HCoV-229E, and HCoV-Oc43, were identified in the 1960s (Hamre and Procknow, 1966; Vabret et al., 2001). They are members of groups 1 and 2, respectively. Infection with these viruses is thought to be responsible for \(\geq 30\% \) of common cold cases (Fields et al., 2001). Until the discovery of the SARS-CoV, CoVs received relatively little attention as human pathogens beyond their causal role in the common cold. The most recently discovered HCoVs, the SARS-CoV (Peiris et al., 2003), HCoV-NL63 (van der Hoek et al., 2006) and CoV HKU1 (Woo et al., 2005) causes severe respiratory tract infection. Additionally, the knowledge of the pathogenesis of CoVs in wildlife species is also limited. Among the many and highly diverse CoVs found in bats (see above), SARS-like CoVs were identified in horseshoe bats of the genus rhinolophus. Virological and serological studies indicated that masked palm civets (Paguma larvata) were infected with SARS-CoV or a closely related virus (Wang and Eaton, 2007). SARS-CoV thus may have spilled into civets from bats, and then emerged into humans. However, the lack of genomic sequences for many animal CoVs impeded clarification of the origin of SARS-CoV. Sequencing analysis of SARS-CoV revealed that the 5’ end, containing the polymerase gene, is of mammalian origin, and the structural genes (excluding spike glycoprotein) at the 3’ end are of avian origin (Jackwood, 2006). With some exceptions (Pantin-Jackwood et al., 2007; Stackman and Cameron, 1983; Stackman et al., 2005; Swayne et al., 2004; Woo et al., 2009), the spread of CoVs among birds is limited. The BLAST search for similar nucleotide sequences in GenBank. The figure lists the BLAST hits in order of decreasing similarity to the query. The stretches corresponding to the query found by the BLAST search were subjected to analysis with the Visual OMP (VOMP) software, which can predict the degree of interaction (shown as an absolute \(\Delta G \) value) of an oligonucleotide with another. VOMP automatically removes all identical sequences, which meant that some reference sequences were removed from the hit list. For example, the OC43 sequence was removed. It was identical to the human enteric CoV sequence. Remaining reference sequences are shown in bold. All variants of each of the three probes were tested against all BLAST hit sequences. For each probe, the average absolute \(\Delta G \) values, to indicate whether the triple-probe system would be able to detect that target sequence. (c) Differential fluorescence signal obtained with the three separately labeled probes. CoV, either RNA from reference strains, or synthetic target oligonucleotides from published CoV strains, were run in QPCR. Results were colour coded as in (b). For further explanation of strain names, see Table 1. TCoV: Turkey CoV, CoV-cons-synth: synthetic oligonucleotide made from a consensus sequence of the PCR amplifier stretch (see Section 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 1. (a) Alignment of the triple-probes with sequences from reference strains of CoV. Conserved regions are black. The most frequent variants are shown in gray. Variable positions have no background. The three probe sequences with IUPAC ambiguity codes are shown at the bottom. LNA positions are underlined. (b) Predicted hybridization of amplifier stretches from a broad range of coronaviruses to the three probes. An amplifier sequence from the Ottenby duck samples, with an IBV-like sequence (Ottenby 67433, obtained from a mallard. It was not mentioned in Section 2. It was however identical to the Ottenby spring 3 sample in 120 of 130 positions) was used as query in a BLAST search for similar nucleotide sequences in GenBank. The figure lists the BLAST hits in order of decreasing similarity to the query. The stretches corresponding to the query found by the BLAST search were subjected to analysis with the Visual OMP (VOMP) software, which can predict the degree of interaction (shown as an absolute \(\Delta G \) value) of an oligonucleotide with another. VOMP automatically removes all identical sequences, which meant that some reference sequences were removed from the hit list. For example, the OC43 sequence was removed. It was identical to the human enteric CoV sequence. Remaining reference sequences are shown in bold. All variants of each of the three probes were tested against all BLAST hit sequences. For each probe, the average absolute \(\Delta G \) of the three variants predicted to hybridize best to the respective target sequences is shown. The three lines depict the predicted binding of probe I (229E-derived; dark blue), probe II (SARS-derived; red) and probe III (NL63-derived, yellow), respectively. The columns show the average of the predicted probe absolute \(\Delta G \) values, to indicate whether the triple-probe system would be able to detect that target sequence. (c) Differential fluorescence signal obtained with the three separately labeled probes. CoV, either RNA from reference strains, or synthetic target oligonucleotides from published CoV strains, were run in QPCR. Results were colour coded as in (b). For further explanation of strain names, see Table 1. TCoV: Turkey CoV, CoV-cons-synth: synthetic oligonucleotide made from a consensus sequence of the PCR amplifier stretch (see Section 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

2 Materials and methods

2.1 Computer program for identification of conserved portions of variable viral genomes

The program, “ConSort”© (J. Blomberg et al., unpublished), uses alignments of 2-10000 viral sequences made using BLAST, CLUSTALW, MegAlign or MultiAlin. Areas of sequence conserva-
tion were identified, and the degree of representativeness for all sequences in the alignment computed. The program shows first the most common variant for each position, then less common ones in decreasing order. Insertions and deletions are marked especially. A graphical overview of the degree of conservation is also given.

2.2. Primer and probe design and synthesis

A set of previously reported primers were used (Escutenaire et al., 2007). Oligonucleotides were designed with the aim of (i) primers having an approximately equal Tm, (ii) the probes having a higher Tm than the primers, (iii) minimizing primer–primer and primer–probe interactions, while (iv) still operating within a conserved region. All oligonucleotides were checked for homo- and heterospecific annealing as well as self-annealing loops, using a cutoff of −5 kcal/mol for the predicted Gibbs free energy [ΔG] of oligonucleotide interactions. The primer–primer interactions were studied using Oligo Analyzer 3.0 (http://207.32.43.70/biotools/oligocalc/oligocalc.asp), and http://www.idtdna.com/analyzer/Applications/OligoAnalyzer. Primers were purchased from Thermo Hybaid, Interactiva Division (Ulma, Germany). The probes with LNA modified nucleotides were purchased from Eurogentec (Seraing, Belgium).

The primer sequences and their positions in the genome of SARS-CoV were purchased from Eurogentec (Seraing, Belgium). Primers were purchased from Thermo Hybaid, Interactiva Analyzer 3.0 (http://207.32.43.70/biotools/oligocalc/oligocalc.asp), and http://www.idtdna.com/analyzer/Applications/OligoAnalyzer. Primers were purchased from Thermo Hybaid, Interactiva Division (Ulma, Germany). The probes with LNA modified nucleotides were purchased from Eurogentec (Seraing, Belgium).

The primer sequences and their positions in the genome of SARS-CoV: human coronavirus; CCoV: canine coronavirus; FCoV: feline coronavirus; PRCoV: porcine respiratory coronavirus; TGEV: transmissible gastroenteritis virus; PEDV: porcine epidemic diarrhea virus; MHV: murine hepatitis virus; BCoV: bovine coronavirus; IBV: infectious bronchitis virus.

Table 1

Coronavirus species	Strain	Source	Reference	Copies/reaction	Threshold cycle, C_T
Group 1					
HCoV-NL63	NL63	L.van der Hoek	Hamre and Procknow (1966)	2.31 × 10⁶	12.96
HCoV-229E	229E	ATCC	Pratelli et al. (2003a)	8.65 × 10⁵	22.14
CCoV type I	Elmo/02	C.Buonavoglia	Pratelli et al. (2003b)	8.95 × 10⁵	10.74
CCoV type II	144/01	C.Buonavoglia	Evermann et al. (1981)	2.99 × 10⁶	12.54
FCoV type I	FIPVDF2	LiKiss	Boldi et al. (1972)	5.14 × 10⁴	7.87
PEDV	PEDV 7	LiKiss		7.94 × 10⁴	18.50
Group 2					
HCoV-OC43	OC43	ATCC	Kahn and McIntosh (2005)	3.03 × 10⁶	12.52
MHV	MHV-AS9	P.Rottier	Lavi et al. (1984)	2.46 × 10⁴	9.08
BCoV	BQV-4	A.Kheyar	Milane et al. (1997)	9.30 × 10⁴	10.68
BCoV	BQV-3708	A.Kheyar	Kourtesis et al. (2001)	4.21 × 10⁵	15.76
Group 3					
IBV	IBV 927	LiKiss	Adzhar et al. (1995)	4.42 × 10⁴	15.75
IBV	7/91 (793B)	D.Cavanagh	Darbyshire et al. (1979)	1.01 × 10⁴	10.54
IBV	HV-10	D.Cavanagh	Davelaar et al. (1984)	9.14 × 10⁴	10.35
IBV	Gray 390	D.Cavanagh	Fields (1973)	6.01 × 10⁴	26.52
IBV	D207	D.Cavanagh	Cavanagh and Davis (1993)	7.51 × 10⁴	11.03
IBV	Arkansas 99	D.Cavanagh	Shaw et al. (1996)	4.13 × 10⁴	13.87
IBV	UK918/67	D.Cavanagh	Cavanagh and Davis (1993)	4.67 × 10⁴	15.59
IBV	AZRI 5508/95	D.Cavanagh	Cavanagh and Davis (1993)	1.73 × 10⁴	9.65
IBV	B1648	D.Cavanagh	Cavanagh and Davis (1993)	1.96 × 10⁴	17.02
Group 4					
SARS-CoV	FFM-ic	M.Niedrig	Drosten et al. (2003)	4.60 × 10⁵	30.75

HCoV: human coronavirus; CCoV: canine coronavirus; FCoV: feline coronavirus; PRCoV: porcine respiratory coronavirus; TGEV: transmissible gastroenteritis virus; PEDV: porcine epidemic diarrhea virus; MHV: murine hepatitis virus; BCoV: bovine coronavirus; IBV: infectious bronchitis virus.

The predicted Gibbs free energy [ΔG] of oligonucleotide and target interactions was analysed utilizing Visual OMP™ v6.0.6.0 (DNA Software; http://www.DNASoftware.com). The software uses nearest-neighbour thermodynamic theory to simulate hybridization of nucleic acids in solution and provides structural and thermodynamic parameters in intra- or intermolecular situations (SantaLucia, 2007). Data entry included the sequences of the three probes and target (the sequence stretch of CoVs that hybridizes with the probe). The predicted free energy for hybridization of probes with different CoVs as target was obtained for all variants of each probe (i.e. the probes have different degrees of degeneracy; probe I: 8, probe II: 5 and probe III: 6). The following solution conditions were used in Visual OMP to simulate the experiments: assay Tm 50 °C, Na+ 0.5 M, Mg2+ 1.5 mM, 100 nM of probe and 100 nM target. Under the above experimental conditions the average ΔG for each probe variant with its target was plotted (Fig. 1b) (cf. its experimental counterpart, Fig. 1c).

2.3. Collection of coronavirus strains

A collection of CoVs was used to assess the sensitivity of the real-time RT-PCR (Table 1). Twenty-two human and animal strains,
representative of the four CoV groups, including SARS-CoV, were analysed. The following references describe the origin of the collection of CoV strains (Adzhar et al., 1995; Bohl et al., 1972; Cavanagh and Davis, 1993; Darbyshire et al., 1979; Davelaar et al., 1984; Drosten et al., 2003; Evermann et al., 1981; Fields, 1973; Hamre and Procknow, 1966; Kahn and McIntosh, 2005; Kourtesis et al., 2001; Lavi et al., 1984; Milane et al., 1997; Pratelli et al., 2003a, b; Shaw et al., 1996).

2.4. Clinical samples and comparative methods

Nasopharyngeal aspirates were collected from 77 patients admitted to the Uppsala Academic Hospital with an episode of acute respiratory infection. The samples were taken routinely for respiratory virus diagnosis by indirect immunofluorescence (IFA) of influenza A and B, para-influenza 1, 2 and 3 and human respiratory syncytial virus (the respiratory panel kit; cat. nr 3105, Chemicon International Inc., Temecula, CA, USA; or the Influenza A and B kits; cat. nr 5001 and 5002; Chemicon). For comparison, a nested RT-PCR for influenza A and B was used as previously described (Herrmann et al., 2001). Nasopharyngeal secretion samples were collected at the hospital by using a baby feeding tube and an aspiration trap. After suction the feeding tube was rinsed with approximately 2 mL of sterile saline and immediately transported to the lab. Anjuman Hyder, Kåre Bondeson and Björn Herrmann participated in the IFA diagnoses. Fecal samples of 100 mallard ducks (Anas platyrhynchos) were collected (Ottenby Bird Observatory, Sweden) and pooled in 11 pools of autumn 2003 and in 24 pools of spring 2004 and stored at -70°C until RNA extraction.

![Neighbor joining, bootstrap consensus](image)

Fig. 2. Neighbour-joining bootstrap consensus tree, based on the short (179 bp) amplicon stretch. The bootstrap percentage of 500 trees is shown for most branches. The number of informative sites is low in this conserved portion of the RNA polymerase gene. Therefore, the branching pattern cannot be expected to precisely reflect the phylogeny and classification of Coronaviridae. The tree is intended to approximately represent the observed CoV sequences in a context of most similar reference sequences. The major CoV groups, and reference sequences belonging to them, are shown as boxes. Seven CoV positive human samples were sequenced (“Human Uppsala” plus sample number), and aligned with reference sequences. Four of them, which clustered with CoV group 2 strains, are shown in the tree. Sequences from three CoV positive samples were incomplete. Six of seven sequenced amplicons from mallards ("Mallard Ottenby spring/autumn" plus pool number) are also shown (see Suppl. Info, alignment in Fig. S1a and b, and two trees, Fig. S2a and b, made with other techniques, for further information). A more exact classification of the observed sequences will require sequencing of a longer stretch, which was out of scope for this methodological paper.
2.5. Sample processing and RNA extraction

The samples were diluted 1:100 in nuclease-free water. RNA was extracted from 140 μl diluted sample using the QIAamp viral RNA kit (Qiagen, Hilden, Germany) according to the manufacturer's recommendations. RNA was recovered in 60 μl of nuclease-free water and either used immediately or stored at −70°C.

2.6. Real-time QPCR system ("NQPCR")

A one-step real-time RT-PCR, nuclease-based QPCR (NQPCR), was developed based on the TaqMan® principle, using the iScript one-step RT-PCR kit for probes (Bio-Rad, Hercules, USA). The PCR was formed using a previously reported primer set (Escutenaire et al., 2007). All reactions were performed on the Corbett Research Rotor-Gene Real Time Amplification system (RG–3000, Corbett Research, Mortlake, NSW, Australia), with a total reaction volume of 50 μl containing 25 μl 2× RT-PCR reaction mix for probes, 800 nM of each primer and 200 nM of each probe, and 1 μl of iScript reverse transcriptase. The thermal conditions were as follows; reverse transcription at 50°C for 30 min, followed by iScript reverse transcriptase inactivation and activation of the hot-start DNA polymerase at 95°C for 10 min, followed by 5 touchdown steps, in which the annealing temperature was decreased from 56°C, by 2°C every second cycle down to 48°C, followed by 50 cycles of 94°C for 30 s and 60°C 60 s. Fluorescence was measured during the latter period. The pan-CoV SYBRgreen QPCR (Escutenaire et al., 2007) was used as a control, both with the human respiratory, and the avian fecal, samples.

2.7. Sequences of PCR products and phylogenetic analysis

RT-PCR products from the SYBRgreen pan-CoV QPCR and NQPCR were gel purified (QiAquick PCR purification kit; Qiagen Inc.) and sequenced using the fluorescent dye terminator method, ABI PRISM® Big DyeTM Terminator Cycle Sequencing v3.1 Ready Reaction kit (PerkinElmer) and on an ABI PRISM® 310 genetic analyzer according to the manufacturer's recommendations (Applied Biosystems, Foster City, CA, USA). The 179 nucleotide long amplicon sequences from mallard ducks from Ottenby and human nasopharyngeal aspirates from Uppsala were aligned using CLUSTALW Version 1.83 (Suppl. Info, Fig. S1a and b). Neighbour joining bootstrap consensus (Fig. 2) and minimum evolution, bootstrap consensus and maximum parsimony, bootstrap consensus (Suppl. Info, Fig. S2a and b) trees were created from the alignments using Mega 4.1 (Tamura et al., 2007). The reference coronaviral sequences were obtained from GenBank, with the given accession numbers.

2.8. Quantitation standards

Standard curves were generated for quantitation of assays with the help of three kinds of standard: (i) bovine CoV RNA, (ii) bovine CoV CDNA, and (iii) a synthetic CoV consensus oligonucleotide. The bovine CoV RNA is described in Table 1. The bovine CDNA was obtained by reverse transcription from this source. The RNA and DNA concentrations were determined spectrophotometrically using the Nanodrop ND_1000 instrument according to the manufacturer's instructions (Nanodrop, Wilmington, DE).

Standard curves were also generated using a 10-fold dilution series of a synthetic CoV consensus target DNA oligonucleotide ("CORONA_CONSENSUS": TGGATTGATGGTGTTGTATTAAACAATGT- TGTATTACAGAATAGTGGTTCAGAAGGTTCAGTTGTTGACCA- ACCACACATATAAGGACCTTATAGTTTGTGCACTACATAA- GC), where the first underlined sequence corresponds to probe_I, the italicised to probe_II and the second underlined sequence to probe_III. Standards for standard curves were diluted in RNase-free water including 20 ng/μl of yeast tRNA (Ambion, Huntington, United Kingdom).

The concentration interpolated from the standard curves was referred to as “equivalents” per PCR reaction.

3. Results

3.1. Identification of conserved portions in coronaviral genomes by using the ConSort© program

A ConSort© analysis of a CLUSTALW alignment of 32 full-length coronaviral sequences indicated that ORF1b was one of the most conserved portions. During the design of the NQPCR probes, representatives from three CoV groups were used as query in BLAST at the NCBI website to search and align the viral sequences in GenBank, i.e. probe_I: ORF1b of 229E; probe_II: ORF1b of SARS-TOR2; probe_III: ORF1b of NL63 were used as query. The ConSort output from the GenBank search was used for design of probes for QPCR.

3.2. Evaluation of the NQPCR on coronavirus strains

A major problem with nuclease-based TaqMan® QPCR probes is the sensitivity to mismatches. A non-degenerated probe (5′-[FAM]TATTATCAACTGTTATTTG[TAMRA]-3′) was first synthesized. Not unexpectedly, it did not detect all CoV strains. A degenerated probe 5′-[FAM]TAYTAYCABAYAAYRGTBYTATG[TAMRA]-3′ encompassing the whole variation, was then synthesized, with a degeneracy of 768. In our experience, probes with a high degeneracy give very low signals. In order to bring down the degeneracy per probe, three probes were designed. The probes were derived from three CoV groups, as described in Section 2. Probe I and probe_III were overlapping. The probes had a degeneracy of 8, 8 and 6, respectively, and LNA nucleotides were introduced in order to increase the Tm of two of the probes, to achieve approximately same Tm for all three probes. When they were tested singly, they gave high relative signal strength, around 0.5, and detected most, but not all (TGEV, FCoV type I, IBV, CCoV type I, PRCoV, SARS, CoV-NL63, HCoV-OC43, BcoV11 and BcoV22), coronaviral strains. However, a NQPCR with a 1 + 1 + 1 mixture with 200 nM of each FAM-labeled probes_I, II and III gave somewhat lower signal strength (0.3), but detected all coronaviral strains. However, when the three probes were labeled with separate fluorophores, signal strengths varied from 0.25 up to 1. This probe mixture was predicted to bind to most, possibly all, known CoV strains (Fig. 1a and b) and was used in the further experiments. A varying pattern of predicted binding was obtained when reference and divergent target CoV sequences were tested in VOMP. No strain came out completely negative in the analysis (Fig. 1b). The predicted hybridization values were largely corroborated when strains were tested experimentally (Fig. 1c).

Twenty-two human and animal strains representative of the four CoV groups, including SARS-CoV, were analysed and detected. The spectrum of detection of the assay was further verified by amplifying cDNA synthesized from RNA extracted from 10 CoV strains; CCoV, PRCoV, HCoV-229E, IBV 297, FCoV, TGEV, Bcov-22, SARS, IBV, BCoV-11, and HCoV-NL63. All of them were detected by the three-probe NQPCR system (Table 1).

3.3. Analysis of human respiratory samples

RNA from 77 human nasopharyngeal aspirates was analysed by both the NQPCR and the SYBRgreen QPCRs. Both techniques indicated that eight samples contained CoV. The SYBRgreen QPCR products of the eight CoV positive samples were sequenced, and aligned with reference sequences. Four of the seven sequenced amplicons turned out to belong to CoV group 2, being OC43/MHV-like (Fig. 2). One belonged to CoV group 1 and was HCoV-NL63-like.
RNA from 35 pooled duck fecal samples in total representing 100 wild birds, 24 pools from spring and 11 from autumn was analysed by both the NQPCR and the SYBRgreen QPCRs. Of the 35 pools, 5/11 autumn pools (Mallard_Ottenby_Autum 2, 3, 4, 5 and 11) and 2/11 spring pools (Mallard_Ottenby_Spring 3 and 13) were CoV positive by NQPCR. Two of the CoV positive pools (one of the spring and one of the autumn pools) were also positive by SYBRgreen QPCR, but five of the seven CoV positive pools were missed by the SYBRgreen QPCR. The PCR products of the seven CoV positive samples were sequenced (from both forward and reverse strands). The sequencing of one pool came out incomplete. All six fully sequenced amplicons were aligned with reference sequences. They resembled the peafowl CoV, accession number AY641576 and avian infectious bronchitis virus, accession number NC_001451, with sequence identities ranging from 83 to 85% and 84 to 86% (Suppl. Info, Fig. S1a). However, it, and two more was incompletely sequenced. They were not included in the trees.

The sensitivity of the NQPCR was studied further by end-point titration of cDNA from BCoV with 6 observations of each dilution step, into the stochastic zone of 1–10 copies per NQPCR reaction. The cDNA sample was titrated in 10-fold dilution steps down to complete negativity. This sensitivity test result indicated a sensitivity of 1–10 copies per PCR assay, with a clear stochastic zone of positivity (Table 2). The sensitivity of NQPCR was the same regardless of whether separately labeled or commonly FAM-labeled probes were used (data not shown).

The molecular limit of detection of NQPCR was 1–10 DNA copies of synthetic DNA nucleotides from a consensus CoV sequence. Serial 10-fold dilutions, from 10^6 to 10^0, of the synthetic target was prepared in RNase free water including 20 ng/µl of yeast tRNA (Ambion, Huntingdon, United Kingdom) as carrier, to determine the lower limit of detection of the assay. The amplification efficiency of a 10-fold serial dilution of BCoV RNA sample with an unknown concentration down to negativity was also determined. The standard curves displayed a linear relationship for NQPCR for the assay, correlation coefficient (R^2) of 0.99 and efficiency of 93%, and an R^2 of 0.99 and efficiency of 83% (Fig. 3a and b). Thus, the CoV DNA and CoV RNA targets gave similar efficiencies.

![Graph showing amplification and standard curve](image)

Fig. 3. (a) Amplification plot and standard curve, describing sensitivity tests. Primers 11-FW/13-RV were used in combination with FAM-labeled probes I, II and III. The curves represent, from left to right, 10^7–10^0 copies of synthetic corona consensus 130 oligonucleotide, with an efficiency of 0.93 and $R^2 = 0.99$. No signals were obtained in the negative control. (b) Amplification plot and standard curve, describing an amplification efficiency test. Primers 11-FW/13-RV were used in combination with FAM-labeled probes I, II and III, and run on 10-fold serial dilutions of BCoV RNA, with an efficiency of 0.83 and $R^2 = 0.99$. Thus, amplifying from CoV RNA gave a similar, but somewhat lower, efficiency.

Table 2

Dilution	Estimated copy number per PCR reaction			
	100	10	1	0
Dilution 1	107	0	0	0
Dilution 2	95	10	0	0
Dilution 3	119	0	0	0
Dilution 4	67	16	0	0
Dilution 5	63	0	0	0
Dilution 6	109	0	13	0
S.D.	23.27	6.98	5.31	0

Six different tubes were analysed per dilution. The estimated RNA concentration in copies per PCR reaction, in relation to the Threshold cycle (C_T) is shown.

At the estimated concentration of one copy per PCR reaction one of six samples were positive.

Standard deviation.
3.6. Reproducibility of the assay

The reproducibility of the NQPCR was evaluated both inter-assay and intra-assay. The intra-assay variability was assessed using high and low amounts of cDNA from 10 different CoV strains. The 10 samples were run in three replicates in same NQPCR run; the intra-assay variability of number of equivalents derived from interpolation in the standard curve had a standard deviation of 0.54 and a standard error of the mean (S.E.M.) of 10%. Inter-assay variability was determined by testing the same set of cDNA samples in three different runs, giving a standard deviation of 0.45 and a S.E.M. of 8%. Judging from these results, at least 1 G (two standard deviations) is needed to differentiate between the values of two samples.

3.7. RNA extraction and RNA integrity controls

As control for errors occurring after the receipt of samples (post-receipt errors), 11 CoV negative samples from ducks (belonging to the same series as the CoV positive samples) were spiked with a known concentration of IBV. They gave a Ct value of 8.0 S.D. 0.3. When the same amount of IBV sample was added to three samples of phosphate buffered saline, a signal with the same Ct value 8.0 S.D. 0.1 was obtained. Thus, there was no detectable inhibition of the PCR in the CoV negative samples.

To monitor pre-receipt sample quality, all 35 duck fecal pool samples from Ottenby samples were analysed utilizing a histone 3.3 PCR, which is based on evolutionarily conserved target sequences in histone 3.3, and can be run on samples from most vertebrates, including birds (Andersson et al., 2005; Forsman et al., 2005; Muradrasoli et al., 2006). The histone 3.3 PCR was run with (+rt) and without (−rt) the presence of reverse transcriptase. The −rt results signify the presence of eukaryotic (presumably from duck) DNA, whereas the difference between +rt and −rt results signifies the presence of eukaryotic RNA. The −rt reaction frequently came out negative, while the +rt reaction was positive in most samples. This means that histone 3.3 RNA was more abundant than histone 3.3 DNA, which is logical. RNA often occurs in great excess over DNA in eukaryotic cells. The means and standard deviation (mean ± S.D.) of the Ct-value of histone 3.3 PCRs were calculated. The 28 CoV negative, histone 3.3 RNA positive samples yielded an average Ct-value of 37.5 ± 1.6, whereas the seven CoV positive and histone 3.3 RNA positive samples yielded an average Ct-value of 37.2 ± 0.5. Student’s t-test did not detect significantly deviating histone 3.3 +rt and −rt Ct values between CoV positive and CoV negative samples (p-value = 0.758). Moreover, one of seven CoV positive samples, and four of 28 CoV negative samples were histone 3.3 +rt negative. The difference between 1/7 vs. 4/28 is not significant (Fisher’s exact test; 2-tailed; p-value = 1). Thus, there were approximately equal amounts of eukaryotic RNA in the CoV positive and CoV negative duck fecal samples, making it unlikely that the CoV negativity of some samples was due to RNA degradation.

3.8. Comparison of touchdown and non-touchdown NQPCR

Formation of non-specific products might interfere with amplification of the specific target in low-copy-number samples. An advantage of the presented NQPCR is that the initial high annealing temperature reduces amplification of non-specific PCR, and increases the specificity and sensitivity of the assay (Hecker and Roux, 1996; Mohamed et al., 2006). In developing the NQPCR assay, a standard non-touchdown PCR assay was first used. However, to further increase the sensitivity for aberrant targets a touchdown procedure was designed and assessed side by side with the non-touchdown PCR. By amplifying cDNA synthesized from RNA extracted from 10 CoV strains; CCoV, PRCoV, HCoV-229E, IBV 297, FCov, TGEV, BCoV-22, HCoV-229E, SARS, IBV, BCoV-11 and HCoV-NL63 (Bustin, 2004; Mohamed et al., 2006). The amplification efficiency was increased with the touch down procedure compared to the non-touchdown procedure. Non-touchdown had an efficiency of 70% (R² 0.99) while touchdown gave an efficiency of 90% (R² 0.99). Gel electrophoresis analysis of the PCR product indicated a higher yield compared to the non-touchdown procedure.

4. Discussion

CoV came into the searchlight when the SARS pandemic occurred in 2003. The intense researched spurred then has revealed an unexpected variety of CoV in various host species. However, many questions are still unanswered in CoV biology, including important aspects of viral evolution, subpopulations, hosts, variation in pathogenicity and tissue tropism and regarding reservoirs, which are important in viral “survival” and transmission in nature. Bats are now recognised as reservoirs of a broad range of mammalian CoVs (Poon et al., 2005; Wang and Eaton, 2007).Recently, several findings of CoV in wild birds have been reported (Barr et al., 1988; Jonassen et al., 2005; Liu et al., 2005). The results of this report extend these observations. They indicate that birds, another flying vertebrate, can act as reservoirs for avian CoVs. Considering the many unanswered questions regarding this and other aspects of coronaviral epidemiology, there is a need for novel methods, which are broadly detecting the various CoV variants in different hosts and which are also sensitive, simple and specific. Setting up a generic PCR requires an extensive analysis of variability, a time-consuming evaluation of candidate degenerate primers and probes, and a comprehensive collection of samples. In this study, a one-step real-time RT-PCR, was developed targeting a conserved region of the CoV ORF1b used previously in a SYBRgreen QPCR (Escutenaire et al., 2007). The Consort program (Blomberg et al., to be published) was used. The new technique was based on nucleae probe degradation (TaqMan®) chemistry, degenerate primers and a low annealing temperature. The assay enabled detection of 22 CoV reference strains, covering a large portion of Coronavirusae (Table 1). The coverage of the new bat CoVs is demonstrated by using synthetic target sequences of three most deviating HKU-CoV: HKU3-CoV, HKUS-CoV and HKU9-CoV (Fig. 1c). They were all detected by the probe combination.

Non-coronaviral controls were uniformly negative. A major problem with TaqMan® QPCR probes is the sensitivity to mismatches. A nondegenerate probe based on the consensus of the intervening sequence between the primers was first synthesized. It did not detect all coronaviral strains. A degenerate probe encompassing the whole variation, with a degeneracy of 768, was then tested. Not unexpectedly, it gave a very low signal. In our experience (contrary to primers which can work even with a degeneracy of over 100) probes with degeneracy above 10 rarely give sufficient signal strength. In order to bring the number of variants down, the CoV target variation was analysed. It was found possible to spread it onto three overlapping TaqMan® QPCR probes of much lower degeneracy, having 8, 8 and 6 variants each. LNA residues were integrated in two of the probes (Mohrle et al., 2005; Nielsen et al., 2004), to enhance the Tm. The introduction of LNA allowed shortening of them, to focus on a short, relatively conserved, stretch (probe I: 27 nt, 8 LNA, probe II: 17 nt, 6 LNA). Probe IJ could be 28 nt long despite a low degeneracy. As demonstrated here, the probe mixture had a remarkable tolerance to mismatches. The free energy for hybridization was predicted using Visual OMP™. It demonstrated that hybridization between the three probes and a broad range of CoV targets was likely. This was further verified by experimental data that agreed with the result obtained using the Visual OMP™ (Fig. 1b and c). Interestingly, competition between the probes was not an appreciable problem. Although several of the probes some-
times gave a signal, the pattern of positivity indicated which group of CoV that gave rise to the signal. The mismatch tolerance was tested by synthetic target sequences with different degree of mismatch to the probes. Signals from synthetic DNA targets with 1, 2 and 5 mismatches were easily detectable (data not shown). The probes were tested both with the same fluorophore (FAM), and with separate fluorophores. The sensitivity was the same for these alternatives. Although based on a short stretch in the conserved RNA polymerase gene, the latter alternative provided a preliminary identification of the CoV.

PCR efficiency can be affected by numerous factors, inhibition in the sample, secondary structure interference, how well primers and probes fit to their targets, and how optimal the PCR conditions are. It is acknowledged that the efficiency calculation from the slope of a calibration curve often overestimates the PCR efficiency. We therefore determined the amplification efficiency of the NQPCR both for a 10-fold serial dilution of synthetic target and a 10-fold serial dilution of BCoV RNA samples with an unknown concentration down to negativity. Both standard curves displayed a linear relationship for NQPCR, with a correlation coefficient (R^2) of 0.99 and efficiency of 93%, and an R^2 of 0.99 and efficiency of 83%, for the synthetic and natural, imperfectly fitting (BCoV), targets, respectively. This calls for caution regarding quantitative interpretation of C$_T$ values. Differences in efficiency of the PCR could also be due to the fact that RNA-to-cDNA conversion is dependent on template abundance. The possibility that mishandling of samples (RNA losses; pre-receipt errors) and PCR inhibition (post-receipt errors) contributed significantly to the results reported here was made unlikely by two control experiments. Signals from RNA of a highly conserved host housekeeping gene (histone 3.3) were the same in CoV positive and CoV negative duck samples. This is a novel application of a control PCR which was earlier developed in the group (Andersson et al., 2005; Forsman et al., 2005; Muradrasoli et al., 2006). The difference between +rt and –rt signal levels from duck fecal samples were relatively even, indicating a rather constant admixture of eukaryotic RNA in them.

The detection of hCoV-OC43-like and hCoV-NL63 sequences in 8 out of 77 nasopharyngeal specimens of human origin, and duck CoV sequences among seven of the pooled wild bird fecal samples, provides evidence of the efficiency of the technique with clinical and field material. The pan-CoV SYBRgreen QPCR missed five duck samples that the NQPCR detected, since the cutoff (threshold) was set higher because of primer dimer signal. Primer dimers do not give a signal in a nuclease and probe-based (TaqMan®) technique like NQPCR. The NQPCR results from the human nasopharyngeal samples were concordant with those of the pan-CoV SYBRgreen QPCR technique used as a control. The 8 NQPCR CoV positive samples were negative in the respiratory virus IFA, and in a nested influenza A+B PCR (data courtesy of dr Björn Herrmann), both of which do not detect CoVs. The method thus should be suitable for diagnostic purposes.

Stephensen et al. (1999) described initially a set of consensus primers targeting a 251-bp fragment of the ORF1b. These primer sequences were subsequently modified for better reactivity, notably to the then newly identified HCoV-NL63 (Moes et al., 2005). Another generic coronaviral PCR was recently published (Vijgen et al., 2008). Furthermore, (Sampath et al., 2005) reported a recently a broad-range PCR targeting the same conserved region of the ORF1b followed by electrospray ionisation mass spectrometry and base composition analysis for viral identification. Viral diagnostic techniques are undergoing a transition. Immunoassays are still valid for some purposes, but real-time PCR and microarray techniques are becoming more important. The technique presented above is simple, sensitive and is able to detect a wide variety of CoV. The extension of the assay by using three different fluorophores, with one for each of them, is a valuable modification. As expected from the alignment and predicted ΔG values, probe 3 was primarily active in positive avian (IBV-like) samples while probe 2 was positive in a SARS sample (data not shown). Although not studied, probe 3 should primarily detect CoV groups 1 and 2.

5. Conclusions

In conclusion, a QPCR with a novel strategy, which uses a mixture of LNA and non-LNA containing probes with an optimised low number of degenerations, is reported here. To the best of our knowledge, this is the first report describing such a strategy to reduce probe degeneracy while maintaining a broad sequence targeting. It should have a wide applicability. High sensitivity was indicated by titrations of a CoV consensus synthetic target DNA content and viral cDNA. The new NQPCR assay, positive with 22 highly diverse strains of CoV, is a useful tool for demonstrating the role of human and wild bird CoVs in infections of the respiratory and digestive tract. This NQPCR thus proved its suitability also for the discovery of new, or so far unknown variants of CoVs.

Acknowledgements

The financial support from the FORMAS grants 2003-1059 and, 2004-2698, from the Ivar and Elsa Sandberg foundation Research 2003 for new trends for safe food: “Improved detection of enteric viruses in foods and beverages by genetic methods”, and from the Swedish Medical Research Council are gratefully acknowledged. We are grateful to ass. prof. Maria Brytting for critical reading of the manuscript, and to the personnel at Ottenby Bird Observatory for collecting the wild bird samples. This is message no. 56 from the Ottenby Bird Observatory. We are indebted to L. van der Hoek (Academic Medical Center, University of Amsterdam, The Netherlands), C. Buonavoglia (Faculty of Veterinary Medicine, University of Bari, Italy), P. Rottier (Department of Infectious Diseases and Immunology, University of Utrecht, The Netherlands), D. Cavanagh (Institute for Animal Health, Compton, United Kingdom) and A. Kheyar (Armand Frappier Institute, Laval, Canada) for contribution to the collection of CoV strains. The SARS RNA was kindly provided by M. Niedrig, Robert Koch-Institute, Berlin.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jviromet.2009.04.022.

References

Adzhhar, A.B., Shaw, K., Britton, P., Cavanagh, D., 1995. Avian infectious bronchitis virus: differences between 793/8 and other strains. Vet. Rec. 136, 548.
Andersson, A.C., Yun, Z., Sperber, G.O., Larsson, E., Blomberg, J., 2005. ERV3 and related sequences in humans: structure and RNA expression. J. Virol. 79, 9270–9284.
Barr, D.A., Reece, R.L., O’Rourke, D., Button, C., Faragher, J.T., 1988. Isolation of infectious bronchitis virus from a flock of racing pigeons. Aust. Vet. J. 65, 228.
Bohl, E.H., Gupta, R.K., McCloskey, L.W., Saff, L., 1972. Immunology of transmissible gastroenteritis. J. Am. Vet. Med. Assoc. 160, 543–549.
Brian, D.A., Baric, R.S., 2005. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30.
Bustin, S.A., 2004. A–Z of Quantitative PCR. International University Line, California.
Cavanagh, D., 1997. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 142, 629–633.
Cavanagh, D., 2005. Coronavirus in poultry and other birds. Avian Pathol. 34, 439–448.
Cavanagh, D., Brian, D.A., Brinton, M.A., Enjuanes, L., Holmes, K.V., Horzinek, M.C., Lai, M.M., Laude, H., Plagemann, P.G., Siddell, S.G., et al., 1993. The Coronaviridae now comprises two genera, coronavirus and torovirus: report of the Coronaviridae Study Group. Adv. Exp. Med. Biol. 342, 255–257.
Cavanagh, D., Davis, F.J., 1993. Sequence analysis of strains of avian infectious bronchitis coronavirus isolated during the 1960s in the UK. Arch. Virol. 130, 471–476.
Clarke, S.K., Caul, E.O., Eggleston, S.I., 1979. The human enteric coronaviruses. Postgrad. Med. J. 55, 135–142.
Swayne, D.E., Suarez, D.L., Spackman, E., Tumpey, T.M., Beck, J.R., Erdman, D., Rollin, P.E., Ksiazek, T.G., 2004. Domestic poultry and SARS coronavirus, southern China. Emerg. Infect. Dis. 10, 914–916.

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Corbet, S., Freymuth, F., 2006. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin. Infect. Dis. 42, 634–639.

Vabret, A., Mouthon, F., Mourey, T., Gouarin, S., Petitjean, J., Freymuth, F., 2001. Direct diagnosis of human respiratory coronaviruses 229E and OC43 by the polymerase chain reaction. J. Virol. Methods 97, 59–66.

van der Hoek, L., Pyrc, K., Berkhout, B., 2006. Human coronavirus NL63, a new respiratory virus. FEMS Microbiol. Rev. 30, 760–773.

van Elden, L.J., van Loon, A.M., van Alphen, F., Hendriksen, K.A., Hoepelman, A.I., van Kraaij, M.G., Oosterheert, J.J., Schipper, P., Schuurman, R., Nijhuis, M., 2004. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J. Infect. Dis. 189, 652–657.

Vijgen, L., Moes, E., Keyaerts, E., Li, S., Van Ranst, M., 2008. A pancoronavirus RT-PCR assay for detection of all known coronaviruses. Methods Mol. Biol. 454, 3–12.

Wang, L.F., Eaton, B.T., 2007. Bats, civets and the emergence of SARS. Curr. Top. Microbiol. Immunol. 315, 325–344.

Wang, Y., Tu, X., Humphrey, C., McClure, H., Jiang, X., Qin, C., Glass, R.I., Jiang, B., 2007. Detection of viral agents in fecal specimens of monkeys with diarrhea. J. Med. Primatol. 36, 101–107.

Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y., 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179.

Woo, P.C., Lau, S.K., Chan, K.H., Tsoi, H.W., Huang, Y., Wong, B.H., Poon, R.W., Cai, J.J., Luk, W.K., Poon, L.L., Wong, S.S., Guan, Y., Peiris, J.S., Yuen, K.Y., 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–895.

Woo, P.C., Lau, S.K., Lam, C.S., Lai, K.K., Huang, Y., Lee, P., Luk, G.S., Dyrtting, K.C., Chan, K.H., Yuen, K.Y., 2009. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. J. Virol. 83, 908–917.

Yip, S.P., To, S.S., Leung, P.H., Cheung, T.S., Cheng, P.K., Lim, W.W., 2005. Use of dual TaqMan probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clin. Chem. 51, 1885–1888.

Zhang, X.M., Herbst, W., Kousoulas, K.G., Storz, J., 1994. Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. J. Med. Virol. 44, 152–161.

Zhu, H., Liu, Y., Cai, Y., Yu, D., Pu, Y., Harmon, L., Zhang, X., 2006. Toward the development of an infectious cDNA clone of a human enteric coronavirus. Adv. Exp. Med. Biol. 581, 527–530.