Radiomics for liver tumours

Constantin Dreher · Philipp Linde · Judit Boda-Heggemann · Bettina Baessler

Received: 24 February 2020 / Accepted: 20 March 2020 / Published online: 15 April 2020
© The Author(s) 2020

Abstract
Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for a more sophisticated analysis of imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of quantitative imaging data, more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future. This is of special importance in cross-sectional disciplines such as radiology and radiation oncology, with already high and still further increasing use of imaging data in daily clinical practice. Liver targets are generally treated with stereotactic body radiotherapy (SBRT), allowing for local dose escalation while preserving surrounding normal tissue. With the introduction of online target surveillance with implanted markers, 3D-ultrasound on conventional linacs and hybrid magnetic resonance imaging (MRI)-linear accelerators, individualized adaptive radiotherapy is heading towards realization. The use of big data such as radiomics and the integration of artificial intelligence techniques have the potential to further improve image-based treatment planning and structured follow-up, with outcome/toxicity prediction and immediate detection of (oligo)progression. The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients, with a focus on investigations of radiotherapy in patients with liver cancer or oligometastases including multiparametric, quantitative data into (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up.

Keywords
Artificial intelligence · Big data · Magnetic resonance imaging · Computed tomography · Stereotactic body radiation therapy

Introduction

With the introduction of radiomics, both oncologic radiology and radiation oncology have gained a highly promising tool for more sophisticated quantitative tumour analysis. Current research, especially in oncology, increasingly focuses on the integration of quantitative, multiparametric and functional imaging data. In this fast-growing field of research, radiomics may allow for an all-encompassing analysis of quantitative imaging data, far beyond the qualitative evaluation of visible tissue changes. Through use of multiparametric, quantitative imaging data, a more tailored and tumour-specific diagnostic work-up and individualized treatment concepts may be applied for oncologic patients in the future.

The scope of current research in this innovative field is to identify and critically discuss possible application forms of radiomics, which is why this review tries to summarize current knowledge about interdisciplinary integration of radiomics in oncologic patients. This review specifically focusses on investigations on radiotherapy in patients with liver cancer, including the (radio)-oncologic workflow from disease diagnosis, treatment planning, delivery and patient follow-up.
Radiomics includes not only the commonly known quantitative data features derived from the pixel grey-level histogram, i.e. mean, maximum, minimum and median parameters, but also the analysis of imaging data based on computerized mathematical and statistical feature extraction, describing further quantitative characteristics of the segmented regions with regard to tissue heterogeneity, compactity etc. [1]. Radiomic analysis of quantitative imaging parameters may further characterize both tumour and normal tissue and even predict tumour response and toxicity by incorporating these data into statistical or advanced machine learning models [2–5].

There are already some promising data about radiomics clarifying mammographic findings suspicious for cancer [6] or predicting mutational status in glioblastomas [7]. Additionally, there are still few but promising data regarding the use of radiomics in oncologic liver imaging [8]. Morphological and functional characterization of liver tumours with and without contrast-enhanced sequences is the state of the art in oncologic liver imaging. Recent radiomics studies demonstrated for the first time the predictive value for different liver tumours, such as the grade of hepatocellular carcinoma (HCC) or the differential diagnosis of other primary or secondary liver tumours and benign liver lesions [9–13]. Table 1 summarizes these studies.

The present review article aims at summarizing the work which has been done in the field of radiomics in liver imaging until today, with a special focus on relevant topics from the field of radiation therapy. Firstly, it will summarize the current indications for radiotherapy in the liver, before summarizing the current literature covering radiomics for treatment planning in the liver. A short section on radiomics for monitoring and follow-up will then be followed by a summary of radiomics in the imaging of the post-treatment liver. Finally, we will give a short overview about current limitations in the field of radiomics.

Indications for radiotherapy

With the introduction of image guidance and conformal radiotherapy techniques, the treatment of both primary and secondary liver tumours has experienced significant improvement over the past few years, leading to increased local control rates and decreased normal tissue toxicity [14–19].

Recent clinical data indicate that additional local therapy to each metastatic lesion can prolong the overall survival of oligometastatic patients [20–22]. Furthermore, immunotherapy enables new treatment options for several tumour entities, especially in combination with radiotherapy [23].

In patients with oligometastatic disease, especially hepatic metastases exhibit different treatment courses. Patients

Table 1 Radiomics for predictive use

Author	Aims	Imaging modality	Number (training and validation sets, where available)	Conclusion
Lewis et al. [9]	To distinguish hepatocellular carcinoma (HCC) from other primary liver cancers (intrahepatic cholangiocarcinoma [ICC] and combined HCC-ICC) through volumetric quantitative apparent diffusion coefficient (ADC) histogram parameters and LI-RADS categorization	MRI	63	Combination of quantitative ADC histogram parameters and LI-RADS histogram parameters and LI-RADS categorization yielded the best prediction accuracy for distinction of HCC compared to ICC and combined HCC-ICC
Wu et al. [10]	To evaluate the feasibility of using radiomics with precontrast MRI for classifying HCC and hepatic haemangioma (HH)	MRI	369	Radiomics-based assessments could be used to distinguish between HCC and HH on precontrast images, thereby allowing noninvasively efficient identification and minimizing errors from visual inspection
Oyama et al. [11]	To evaluate the accuracy for classification of hepatic tumours	MRI	37 HCCs, 23 metastatic tumours, and 33 HHs	Using texture analysis or topological data analysis allows for classification of the three hepatic tumours with considerable accuracy
Wu et al. [12]	To predict histopathological grading for HCC cases	MRI	170	A computed radiomics signature itself or combined with clinical factors could help to classify the patients into high-grade or low-grade HCC

The columns **Aims** and **Conclusion** are directly based on the original work as cited in the column **Author** (wording partly adapted).

CECT contrast-enhanced computed tomography, *ER* early recurrence, *HCC* hepatocellular carcinoma, *LI-RADS* Liver Imaging Reporting and Data System, *MRI* magnetic resonance imaging, *MVI* microvascular invasion
with up to five lesions are increasingly treated with aggres-
sive metastasis-directed treatment options, improving
survival in some patients, even in case of recurrent liver
metastases [24, 25]. In comparison to other locally ablative
treatment options, resection is anticipated for patients with
isolated liver metastases, although being characterized with
an increased post-procedure morbidity [24, 26].

Consequently, minimally invasive options like transar-
terial chemoembolization (TACE) and radiofrequency/
microwave ablation (RFA/MWA) have been evaluated,
demonstrating good high local control rates and safety
records [27–30]. SBRT as a completely non-invasive pro-
cedure is an evolving alternative, showing similar or even
better clinical outcomes [18, 31]. Unfortunately, to date,
prospective data about the different local ablative treatment
options are lacking. Nevertheless, ongoing technical im-
provements provide promising data, especially in the case
of SBRT of liver metastases, with median overall survival
rates of 31.5 months in colorectal cancer patients [32].

Primary liver cancers are generally intended to be re-
sected. However, in case of inoperability, prospective
studies on SBRT and SBRT with optional TACE in primary
HCC showed promising 18-month and 3-year overall sur-
vival rates of 72% and up to 67%, respectively [33, 34].
SBRT is even feasible in patients with advanced-stage HCC,
with 3-year overall survival (OS) rates of 24.3% and 3-year
local control rates of 78.1% [35]. Furthermore, there is in-
creasing evidence that SBRT may even be superior to TACE
regarding survival and recurrence, and especially after prior
TAE/TACE treatment [36, 37]. In case of SBRT in cholan-
giocellular carcinoma (CCC) patients, 3-year OS rates are
about 21%, with increasing local control rates depending
don delivered dose (biological effective radiation dose [max]
>91 Gy [α/β = 10Gy]) [38].

Although RFA is regarded as the main alternative treat-
ment option in unresectable HCC, retrospective data indi-
cate the possible superiority of SBRT as compared to RFA
with regard to tumours >2 cm [18]. With competing data
being published for the comparison of SBRT and RFA,
prospective trials are needed [39]. If transplantation is indi-
cated, a combination of neoadjuvant SBRT and TACE pro-
vides promising remission and reasonable overall survival
rates [40, 41].

Radiomics for treatment planning

**Target volume definition: automatic segmentation
of target volumes and organs at risk**

The functional capability of the liver to regenerate and pro-
liferate has been used for a long time in liver surgery [42].
When it comes to a healthy liver, 80% of the organ can
be removed. Although the whole liver exhibits a low ra-
diation tolerance, potentially leading to the serious condi-
tion of radiotherapy-induced liver disease (RILD) [43–49],
the regenerative potential and the parallel radiobiological
character of the liver allows for application of high doses
to a defined volume without compromising liver function
[50].

Patients with liver metastases usually have a function-
ally “healthy” liver. Previous oncological treatments like
chemotherapy or immunotherapy can influence liver func-
tion [51, 52]. How these previous therapies influence the in-
dividual radiation tolerance is still unknown and subject to
research. In contrast to liver metastases, most patients with
primary liver tumours have liver cirrhosis, which limits lo-
cal ablative and surgical treatments due to the subsequently
impaired liver function [53, 54]. Current understanding of
the radiation-induced impairment of liver function sees hep-
atic veno-occlusive disease as the pathological hallmark of
liver injury [55], while at the same time, the vulnerability of
(hepato)biliary structures has to be taken into account,
especially for centrally located liver cancer [56, 57].

Tolerance doses/dose constraints for therapy planning in
organs at risk have been investigated for decades, which is
why tolerance doses also rely on data being gained
with different radiotherapy techniques and—most impor-
tantly—with irradiated volumes significantly larger than
the volumes in modern radiotherapy techniques such as
SBRT [58]. Consequently, organs at risk (OAR) constraints
have to be re-evaluated in order to allow for more tailored
treatment concepts and monitoring during treatment on the
basis of clinical and multiparametric quantitative imaging
data. With SBRT being characterized by different bio-
 logical efficacy as compared to standard radiotherapy, dose
escalation may be performed under consideration of dose
constraints based on analyses on clinical toxicity [59–63].

Radiomic analysis and its use during treatment plan-
ning might further contribute to improved dose escalation
schemes and allow for future automation and increased ro-
bustness of target volume delineation. In addition, a more
reliable identification of high-risk regions with possible tu-
mour infiltration (clinical target volume [CTV]) might be
enabled by radiomics, since radiomics extends beyond the
visible tumour infiltration and provides quantitative data on
potential tumour extension [64, 65]. An exemplified work-
flow for the extraction of radiomic features is shown in
Fig. 1.

Radiomic features and clinical parameters have been
combined in a radiomics signature to preoperatively es-
timate early recurrence in patients with HCC [66, 67]. In
addition, several promising studies (Table 2) have been con-
ducted in liver tumours, where microscopic characteristics
could be identified based on radiomics, thus potentially en-
abling the detection of microscopic tumour infiltration of

Radiomics for treatment planning

**Target volume definition: automatic segmentation
of target volumes and organs at risk**

The functional capability of the liver to regenerate and pro-
liferate has been used for a long time in liver surgery [42].
When it comes to a healthy liver, 80% of the organ can
be removed. Although the whole liver exhibits a low ra-
diation tolerance, potentially leading to the serious condi-
tion of radiotherapy-induced liver disease (RILD) [43–49],
the regenerative potential and the parallel radiobiological
character of the liver allows for application of high doses
to a defined volume without compromising liver function
[50].

Patients with liver metastases usually have a function-
ally “healthy” liver. Previous oncological treatments like
chemotherapy or immunotherapy can influence liver func-
tion [51, 52]. How these previous therapies influence the in-
dividual radiation tolerance is still unknown and subject to
research. In contrast to liver metastases, most patients with
primary liver tumours have liver cirrhosis, which limits lo-
cal ablative and surgical treatments due to the subsequently
impaired liver function [53, 54]. Current understanding of
the radiation-induced impairment of liver function sees hep-
atic veno-occlusive disease as the pathological hallmark of
liver injury [55], while at the same time, the vulnerability of
(hepato)biliary structures has to be taken into account,
especially for centrally located liver cancer [56, 57].

Tolerance doses/dose constraints for therapy planning in
organs at risk have been investigated for decades, which is
why tolerance doses also rely on data being gained
with different radiotherapy techniques and—most impor-
tantly—with irradiated volumes significantly larger than
the volumes in modern radiotherapy techniques such as
SBRT [58]. Consequently, organs at risk (OAR) constraints
have to be re-evaluated in order to allow for more tailored
treatment concepts and monitoring during treatment on the
basis of clinical and multiparametric quantitative imaging
data. With SBRT being characterized by different bio-
logical efficacy as compared to standard radiotherapy, dose
escalation may be performed under consideration of dose
constraints based on analyses on clinical toxicity [59–63].

Radiomic analysis and its use during treatment plan-
ning might further contribute to improved dose escalation
schemes and allow for future automation and increased ro-
bustness of target volume delineation. In addition, a more
reliable identification of high-risk regions with possible tu-
mour infiltration (clinical target volume [CTV]) might be
enabled by radiomics, since radiomics extends beyond the
visible tumour infiltration and provides quantitative data on
potential tumour extension [64, 65]. An exemplified work-
flow for the extraction of radiomic features is shown in
Fig. 1.

Radiomic features and clinical parameters have been
combined in a radiomics signature to preoperatively es-
timate early recurrence in patients with HCC [66, 67]. In
addition, several promising studies (Table 2) have been con-
ducted in liver tumours, where microscopic characteristics
could be identified based on radiomics, thus potentially en-
abling the detection of microscopic tumour infiltration of

Fig. 1 Exemplary radiomics workflow for liver imaging. Schematic illustration of the entire patient journey including image acquisition, analysis utilizing radiomics, and the derived patient-specific therapy and prognosis. Symptomatic patients undergo CT (computed tomography) or MR (magnetic resonance) scans. After image segmentation, radiomic features are extracted. High-level statistical modelling involving machine learning is applied for disease classification, patient clustering and individual risk stratification.

healthy liver tissue with the inherent potential of more precise clinical target volume delineation in the future. Furthermore, evidence has been provided about prediction of microvascular invasion of HCC using radiomics on contrast-enhanced CT [68–70]. Using a radiomics approach based on contrast-enhanced T1-weighted MRI in the hepatobiliary phase, T-cell infiltration in the tumour and peritumoural margin could be quantified [71]. Ex-vivo investigations in mice demonstrated the detection of microscopic tumour infiltration locations by the radiomic histogram feature skewness in liver single-photon emission CT (SPECT) imaging [72]. Thus, further specification of regions with a high risk of liver tumour infiltration may be enabled by radiomics in the future [70, 71].

Independently of current research on standardization of dose prescription, target volume definition is increasingly based on functional imaging, such as metabolic imaging with positron-emission tomography (PET) and functional sequences of MRI, including diffusion-weighted imaging (DWI) [73, 74]. PET-imaging allows for quantitative evaluation of metabolic function in the liver tumour and normal liver tissue, thus leading to the possibility of adapted target delineation and dose reduction in the normal liver tissue [75]. In contrast to PET-based image-guided treatment planning, contrast-enhanced MRI (including with liver-specific agents) is already part of daily clinical practice in treatment planning for patients with liver cancer [76].

Contrast-enhanced T1-weighted sequences allow for morphological target delineation, but functional imaging sequences such as DWI provide additional information about perfusion fractions by intravoxel incoherent motion (IVIM), cellularity by the ADC and even tissue complexity by kurtosis evaluation [77–84]. Consequently, research is conducted on incorporation of functional MRI sequences into the daily clinical practice of treatment planning of upper abdominal tumours [85]. Besides this, Liu et al. showed that synthetic CT datasets can be generated from MRI to ensure accurate liver SBRT [86].

Adding to radiomics, the increasingly used deep learning methods are able to learn directly from the data, thus circumventing the need for handcrafting of discriminative imaging features representing the key concept behind radiomics. Recently, automatic CTV segmentation has been shown by using convolutional neural networks (CNN), which appear to be especially useful for image segmentation tasks [87–89]. Deep learning-based auto-contouring of the tumour volume has been shown to be at least as efficient as manual contouring of the OAR for MRI-guided adaptive radiotherapy [90, 91]. Further promising performance for deep learning-based automatic segmentation approaches of the macroscopic gross tumour volume can be found in the ongoing “Liver Tumour Segmentation Challenge (LiTS)” (https://competitions.codalab.org/competitions/17094).

Independent of the images to be integrated into treatment planning, robust image registration (deformable or rigid registration) has to be performed to adjust for differences in image acquisition and organ movement, thus allowing for topographically correct target delineation [92].
Table 2 Auto-planning and predictive use of radiomics

Author	Aims	Imaging modality	Number, (training (T) and validation (V) set, where available)	Conclusion
Chen et al. [71]	To develop a radiomics model based on gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced MRI for pretreatment prediction of immunoscore in HCC	MRI	T: 207, V: 57	MRI-based combined radiomics nomogram shows effectiveness in predicting immunoscore in HCC
Shan et al. [66]	To predict recurrence of HCC (hepatocellular carcinoma) after curative treatment	CECT	T: 156, V: 47	A radiomics model effectively predicts early recurrence (ER) of HCC and is more efficient than conventional imaging features and models
Xu et al. [68]	To predict microvascular invasion (MVI) and clinical outcomes in patients with HCC	CECT	T: 495, V: 145	The computational approach demonstrates good performance for predicting MVI and clinical outcomes
Vivanti et al. [88]	To automatically delineate liver tumours in longitudinal CT studies	CECT	T: 31	The system showed the ability to predict failures and the ability to correct them
Vorontsov et al. [89]	To bring up a semi-automatic tumour segmentation method	CECT	T: 40	The proposed method can deal with highly variable data
Bakr et al. [69]	To predict MVI	CECT	T: 28	RF (Radiomic features) computed with single-phased or combined-phased images were correlated with MVI
Peng et al. [70]	To develop and validate a radiomics nomogram for the preoperative prediction of prognosis in patients with HCC undergoing partial hepatectomy	CECT	T: 304, V: 120	Radiomics nomogram showed excellent performance for the individualized and non-invasive estimation of disease-free survival, which may help clinicians better identify patients with HBV-related HCC who can benefit from the surgery
Zhou et al. [67]	To predict ER of HCC	CECT	T: 215	Radiomics signature was a significant predictor for ER in HCC
Liu et al. [86]	To develop and validate a learning-based method to derive electron density from routine anatomical MRI for potential MRI-based SBRT treatment planning; CT and MRI for CT synthesis	(co-registered) CT and MRI	T: 21	Image similarity and dosimetric agreement between synthetic CT and original CT
Fu et al. [90]	To expedite the contouring process for MRI-guided adaptive radiotherapy (MR-IGART), a convolutional neural network deep-learning model is proposed to accurately segment the liver, kidneys, stomach, bowel and duodenum in 3D MR images	CEMRI	T: 120, V: 10, Test: 10	The proposed method can automatically segment the liver, kidneys, stomach, bowel, and duodenum in 3D MR images with good accuracy
Zhang et al. [91]	To build a knowledge-based model of liver cancer for auto-planning	CECT	T: 70, V: 20	Auto-planning shows availability and effectiveness
Li et al. [65]	CT textural feature analysis for the stratification of single large HCCs >5 cm, and the subsequent determination of patient suitability for liver resection (LR) or transcatheter arterial chemoembolization (TACE)	CECT	T: 130	Texture analysis demonstrated the feasibility of using HCC patient stratification for determining the suitability of LR vs. TACE

The columns Aims and Conclusion directly based on the original work as cited in the column Author (wording partly adapted), CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, MRI magnetic resonance imaging, MVI microvascular invasion
Adaptive radiotherapy: dose painting

The idea of adaptive radiotherapy summarizes the goals of patient-specific and tumour-tailored treatment concepts, allowing for both adapted treatment planning with locally volitional dose escalation in malignancies and reduction of dose exposure in the surrounding normal tissue. This is already possible due to the highly conformal dose application in modern treatment techniques such as image-guided radiation therapy (IGRT) and SBRT. However, daily image guidance with cone beam computed tomography (CBCT) scans and consecutive plan adaptions request a high cost in resources while only providing low-resolution CBCT images. The latest introduction of hybrid MR-guided radiotherapy gadgets might finally allow for online imaging and plan adaption based on high-resolution images, especially with respect to the soft tissue of upper abdominal organs [93]. Furthermore, this also allows for taking into account tumour heterogeneity based on quantitative, functional imaging data, exceeding the purely morphological characteristics and potentially allowing for earlier evaluation of tumour response and local control failure already at the beginning of radiotherapy and in the meantime (Table 3; [91, 94]).

Independent of general outcome analysis, the incorporation of radiomics into treatment planning may further improve the analysis and prediction of normal tissue toxicity, as proposed by the QUANTEC group (Quantitative Analysis of Normal Tissue Effects in the Clinic) [95, 96]. There are already promising data with regard to toxicity after radiotherapy of head and neck and lung cancers [97, 98]. However, regarding toxicity after treatment of liver tumours, there is still little data available and future investigations are needed. Cai et al. demonstrated the prediction of liver failure after hepatectomy in patients with HCC by preoperative radiomics-based nomograms [99]. A predictive nomogram and a CNN including imaging data with high performance for toxicity prediction after liver SBRT are already available [57, 100]. Generally, toxicity analysis in healthy liver tissue should be improved even more, since MRI enables accurate liver function analysis and radiomics analysis allows for accurate staging of liver fibrosis and may prevent and, vice versa, predict RILD [101–104].

Monitoring/follow-up

First promising results regarding the predictive potential of radiomics for local response after radiotherapy and TACE have recently been demonstrated [105–107] and are listed in Table 4. Treatment response of liver metastases after TACE has been determined using a radiomics-based analysis resulting in area under the curve (AUC) in receiver operating characteristics (ROC) of up to 0.83 [105]. Radiomic fea-

Table 3 Radiomics for predicting patient outcome

Author	Aims	Imaging modality	Number, (training (T) and validation (V) set, where available)	Conclusion
Cai et al. [99]	To develop and validate a radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure (PHLF) in patients with HCC	CECT	T: 112 V: 80	A nomogram based on the Radiomics-score, model for end-stage liver disease (MELD), and performance status (PS) can predict PHLF
Ibragimov et al. [100]	To predict toxicity beyond the existing dose/volume histograms	CECT	125	A framework offers clinically accurate tools for hepatobiliary toxicity prediction and automatic identification of anatomical regions that are critical to spare during stereotactic body radiation therapy
Park et al. [101]	To develop and validate a radiomics-based model for staging liver fibrosis	Gadoxetic acid-enhanced hepatobiliary phase MRI	436	Radiomics analysis of gadoxetic acid-enhanced hepatobiliary phase images allows for accurate diagnosis of liver fibrosis
Dogan et al. [94]	To determine the changes in image texture features (delta-radiomics) measured on daily low-field MRI and whether delta-radiomics features could be used to assess treatment response and predict patient outcomes	MRI	10	Dogan et al. demonstrated that three delta-radiomics texture features extracted from low-field MRI during SBRT in liver were able to differentiate between local disease control and local control failure

The columns Aims and Conclusion are directly based on the original work as cited in the column Author (wording partly adapted).

CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, MRI magnetic resonance imaging, MVI microvascular invasion
Table 4 Radiomics for monitoring/follow-up

Author	Aims	Imaging modality	Number, (training (T) and validation (V) set, where available)	Conclusion
Reimer et al.	To determine whether post-treatment MRI-based texture analysis of liver metastases may be suitable for predicting therapy response to transarterial radioembolization (TARE) during follow-up	CEMRI	T: 37 (T) and V: 37 (V)	The model indicates the potential of MRI-based texture analysis at arterial- and venous-phase MRI for the early prediction of progressive disease after TARE
Cozzi et al.	To predict overall survival and local control	Non-contrast CT	T: 138 (T) and V: 138 (V)	Survival could be predicted using a radiomics signature made by a single shape-based feature
Kim et al.	To predict survival (overall and progression-free survival)	CECT	T: 88 (T) and V: 88 (V)	A combination of clinical and radiomic features better predicted survival
Mokrane et al.	To enhance clinicians’ decision-making by diagnosing HCC in cirrhotic patients with indeterminate liver nodules using quantitative imaging features	CECT	T: 178 (T) and V: 178 (V)	Radiomics can be used to non-invasively diagnose HCC in cirrhotic patients with indeterminate liver nodules, which could be used to optimize patient management
Donghui et al.	To identify aggressive behaviour and predict recurrence of HCC after liver transplantation (LT)	CECT	T: 133 (T) and V: 133 (V)	Radiomics signature extracted from CT images may be a potential imaging biomarker for liver cancer invasion and enable accurate prediction of HCC recurrence after LT
Zhao et al.	To investigate the combined predictive performance of qualitative and quantitative MRI features and prognostic immunohistochemical markers for the ER of intrahepatic mass-forming cholangiocarcinoma (IMCC)	CEMRI	T: 47 (T) and V: 47 (V)	The combined model was the superior predictive model of ER

The columns Aims and Conclusion are directly based on the original work as cited in the column Author (wording partly adapted).

CECT contrast-enhanced computed tomography, ER early recurrence, HCC hepatocellular carcinoma, MRI magnetic resonance imaging, MVI microvascular invasion

Features have been integrated into multivariate models predicting local control and overall survival rates after radiotherapy of HCC with an AUC of 0.80 [106]. Furthermore, by combining radiomics features with clinical data, survival prediction might even be improved in patients with HCC [13, 107, 108]. Even in case of cholangiocarcinoma, preoperative MRI was able to predict early recurrence, especially in combination with immunohistochemical markers [109].

Imaging of the post-treatment liver

In addition to a temporary/reversible decline in metabolic function, liver tissue is characterized by distinct macroscopic, microscopic and CT/MR-morphological changes after radiotherapy; exemplary changes are given in Fig. 2. In patients with sufficient baseline liver function prior to radiotherapy, a compensatory hypertrophy of the untreated liver may occur after radiotherapy [110]. Repetitive imaging during and after radiotherapy demonstrated that changes in metabolic liver function are also accompanied by distinct changes in quantitative imaging data of the liver tumour and the normal liver tissue [53, 111–114].

Nevertheless, there are still few data about quantitative imaging encompassing the whole treatment course of liver tumours, especially with respect to normal tissue alterations. Multiparametric imaging might allow for both specification in staging examinations and acceleration by the use of quantitative imaging parameters, potentially replacing extensive amounts of qualitative imaging sequences for visible, mainly qualitative evaluation of the tumour and normal tissue. Sequences such as DWI with quantitative ADC maps are characterized by these possibilities and allow for functional analysis of the tumour response after SBRT [115].

As a consequence, integration of this quantitative data might lead to an improvement of oncologic patient management in future, especially with respect to the large amount of radiological data in image-guided radiation oncology. Investigations in this field emphasize the role of big data in oncology. With regard to radiation oncology, the so-called radiomics concept with computerized algorithm-based parameters may be successfully integrated into daily clini-
Fig. 2 Longitudinal changes of a hepatic metastasis in the right liver lobe after stereotactic radiotherapy (SBRT). MRI sequences: diffusion-weighted imaging (DWI) transverse (a–c), contrast-enhanced T1-weighted sequence (portal-venous phase) transverse (d–f) and coronal (g–i). MRI prior to SBRT (a,d,g), 3 months after SBRT (b,e,h) and 12 months after SBRT (c,f,i). Morphological response of DWI restriction, T1-w hypointensity after SBRT with longitudinal reduction of peritumoral changes of the normal tissue. White arrows highlight the region of interest including the hepatic metastasis in the right liver lobe and the peritumoral changes after SBRT.

Clinical practice, supporting decision-making and improving the workflow of radiation therapy.

Current limitations of radiomics

As reviewed above, radiomics for radiotherapy of liver tumours is highly promising, but we are still in need of further data about its validity and optimal usage for a reliable translation to daily clinical practice. The correct and robust application of radiomics analysis has to be investigated, since the algorithm-based analysis of quantitative date is not standardized within different institutions, or even within single institutions, and can easily be performed differently. Independently of software- and hardware-induced variability [116–121], texture analysis is also hindered by uncertainties in patient immobilization and organ movements, especially with regard to MRI examinations [122, 123]. On top of this, its usage for treatment decisions and treatment planning has to be investigated in prospective trials including ex-vivo, in-vivo volunteer and in-vivo patient examinations allowing for founded conclusions about its usage. Furthermore, the analysis of radiomics necessitates sufficient information technique (IT) infrastructure with high data storage capacity and computational performance in image analysis, which is why the introduction of radiomics analysis in radiation oncology requests an IT structure similar to the one in radiology institutions.

Independent of providing sufficient software and hardware, incorporation of radiomics into radiation oncology also necessitates interdisciplinary teams, including medical doctors (clinical radiation oncologists, clinical radiologists), medical physicists and most importantly, computer scientists. The evaluation of radiomics on the basis of incorporating the imaging data together with clinical and histological data into artificial intelligence techniques, such as deep convolutional neural networks, is of utmost importance.
Conclusion

Due to the introduction of modern radiation treatment techniques such as SBRT and IGRT, radiotherapy is capable of successfully treating both primary and secondary liver tumours, with promising local control rates. With the possibilities of multiparametric, quantitative data, including the deeper radiomics analysis, information exceeding qualitative evaluation of visible changes may be included into oncologic radiology and radiation oncology. Hybrid MR-guided radiotherapy gadgets may summarize these techniques and, together with further evaluations with artificial intelligence, patient-specific and tumour-tailored radiation treatment may become a reality.

As a consequence, prospective multi-institutional trials for liver radiotherapy are needed, with standardized image acquisition integrating radiomics quality scores to improve the research quality and to increase the influence of radiomics, further analysing radiomics’ impact in patients with liver tumours and evaluating the true potential of the predictive models.

Author Contribution All authors were involved in writing and revising the manuscript.

Funding Open Access funding provided by Projekt DEAL.

Conflict of interest C. Dreher, P. Linde, J. Boda-Heggemann and B. Baessler declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Lambin P et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446
2. Bickelhaupt S et al (2017) Prediction of malignancy by a radiomic signature from contrast-agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J Magn Reson Imaging 46(2):604–616
3. Rosenstein BS et al (2014) Radiogenomics: radiobiology enters the era of big data and team science. Int J Radiat Oncol Biol Phys 89(4):709–713
4. Cunliffe A et al (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 91(5):1048–1056
5. Perrin T et al (2018) Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol 43(12):3271–3278
6. Bickelhaupt S et al (2018) Radiomics based on adapted diffusion Kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology 287(3):761–770
7. Li ZC et al (2018) Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma. Cancer Med 7(12):5999–6009
8. Andrea C-G et al (2020) Developments in predictive biomarkers for hepatocellular carcinoma therapy. Expert Rev Anticancer Ther 20(1):63–74
9. Lewis S et al (2019) Volumetric quantitative histogram analysis using diffusion-weighted magnetic resonance imaging to differentiate HCC from other primary liver cancers. Abdom Radiol 44(3):912–922
10. Wu J et al (2019) Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging 19(1):23
11. Oyama A et al (2019) Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach. Sci Rep 9(1):8764
12. Wu M et al (2019) Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol 29(6):2802–2811
13. Guo D et al (2019) Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur J Radiol 117:33–40
14. Gerum S et al (2018) Stereotactic body radiation therapy (SBRT) in patients with hepatocellular carcinoma and oligometastatic liver disease. Radiat Oncol 13(1):100
15. Mahadevan A et al (2018) Stereotactic Body Radiotherapy (SBRT) for liver metastasis—clinical outcomes from the international multi-institutional RSSearch(R) Patient Registry. Radiat Oncol 13(1):26
16. Nabavizadeh N et al (2018) Safety and efficacy of accelerated hypofractionation and stereotactic body radiation therapy for hepatocellular carcinoma patients with varying degrees of hepatic impairment. Int J Radiat Oncol Biol Phys 100(3):577–585
17. Andratschke N et al (2018) The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligometastases in 474 patients with 623 metastases. BMC Cancer 18(1):283
18. Wahl DR et al (2016) Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol 34(5):452–459
19. Klein J et al (2015) Prospective longitudinal assessment of quality of life for liver cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 91(1):16–25
20. Ost P et al (2018) Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol 36(5):446–453
21. Palma DA et al (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393(10185):2051–2058
22. Gomez DR et al (2019) Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J Clin Oncol 37(18):1558–1565
23. Deutsch E et al (2019) Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 20(8):e452–e463

Springer
24. Dupre A et al (2017) Curative-intent treatment of recurrent colorectal liver metastases: a comparison between ablation and resection. Eur J Surg Oncol 43(10):1901–1907
25. Klement RJ et al (2019) The impact of local control on overall survival after stereotactic body radiotherapy for liver and lung metastases from colorectal cancer: a combined analysis of 388 patients with 500 metastases. BMC Cancer 19(1):173
26. Van Cutsem E et al (2006) Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 42(14):2212–2221
27. Rusthoven KE et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 27(10):1572–1578
28. Riemsma RP et al (2013) Transarterial (chemo)embolisation versus no intervention or placebo intervention for liver metastases. Cochrane Database Syst Rev Cd009498:4
29. Cirocchi R et al (2012) Radiofrequency ablation in the treatment of liver metastases from colorectal cancer. Cochrane Database Syst Rev Cd006317:6
30. Levy J et al (2018) Intra-arterial therapies for unresectable and chemorefractory colorectal cancer liver metastases: a systematic review and meta-analysis. HPB 20(10):905–915
31. Franzece C et al (2018) Liver metastases from colorectal cancer: propensity score-based comparison of stereotactic body radiation therapy vs. microwave ablation. J Cancer Res Clin Oncol 144(9):1777–1783
32. Petrelli F et al (2018) Stereotactic body radiotherapy for colorectal cancer liver metastases: a systematic review. Radiother Oncol 129(3):427–434
33. Takeda A et al (2016) Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepato-cellular carcinoma not amenable to resection and radiofrequency ablation. Cancer 122(13):2041–2049
34. Durand-Labrunie J et al (2020) Curative irradiation treatment of hepatocellular carcinoma: a multicenter phase 2 trial. Int J Radiat Oncol Biol Phys 3016(9):34512–34512
35. Lo CH et al (2017) Survival and prognostic factors for patients with advanced hepatocellular carcinoma after stereotactic ablative radiotherapy. PLoS ONE 12(e017793):5
36. Shen P-C et al (2019) Comparison of stereotactic body radiation therapy and transarterial chemoembolization for unresectable medium-sized hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 105(2):307–318
37. Comito TLM, Franzece C, Clerici E, Pedicini V, Poretti D, Solbiati L, Rimassa L, Scorsetti M (2020) PB02-02 SBRT vs TACE in Hepatocellular carcinoma: results from a Phase III trial (NCT02323360). European Association for the Study of the Liver (EASL), Prague
38. Brunner TB et al (2019) Stereotactic body radiotherapy dose and its impact on local control and overall survival of patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother Oncol 132:42–47
39. Rajyaguru DJ et al (2018) Radiofrequency ablation versus stereotactic body radiotherapy for localized hepatocellular carcinoma in nonsurgically managed patients: analysis of the national cancer database. J Clin Oncol 36(6):600–608
40. Honda Y et al (2013) Stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. J Gastroenterol Hepatol 28(3):530–536
41. Jacob R et al (2015) Adjuvant stereotactic body radiotherapy following transarterial chemoembolization in patients with non-resectable hepatocellular carcinoma tumours of \(<= 3\) cm. HPB 17(2):140–149
42. Michalopoulos GK (2010) Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 176(1):2–13
43. Dawson LA, Ten Haken RK (2005) Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 15(4):279–283
44. Jung J et al (2013) Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volume parameters. Radiat Oncol 8:249
45. Cheng JC et al (2002) Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys 54(1):156–162
46. Su TS, Lao R, Liang P, Cheng T, Zhou Y, Huang Y (2018) A prospective cohort study of hepatic toxicity after stereotactic body radiation therapy for hepatocellular carcinoma. Radiother Oncol 129(1):136–142. https://doi.org/10.1016/j.radonc.2018.02.031
47. Gikka E et al (2018) The role of albumin-bilirubin grade and inflammation-based index in patients with hepatocellular carcinoma treated with stereotactic body radiotherapy. Strahlenther Onkol 194(5):403–413
48. Ito K et al (2019) Whole-liver radiotherapy for diffuse liver metastases improves liver enzymes and related factors. Acta Oncol 58(4):512–514
49. Mitten M, Vinogradskiy Y, Moiseenko V, et al (2018) Radiation Dose-Volume Effects for Liver SBRT [published online ahead of print, 2018 Jan 6]. Int J Radiat Oncol Biol Phys 50360–50316(17) 34527–34525. https://doi.org/10.1016/j.ijrobp.2017.12.290
50. McPartlin A et al (2017) Long-term outcomes of phase 1 and 2 studies of SBRT for hepatic colorectal metastases. Int J Radiat Oncol Biol Phys 99(2):388–395
51. Hiwatashi K et al (2016) The evaluation of liver function and survival influence by ICGR15 after chemotherapy for colorectal liver metastases. J Cancer 7(5):595–599
52. Huffman BM et al (2018) Hepatotoxicity after immune checkpoint inhibitor therapy in melanoma: natural progression and management. Am J Clin Oncol 41(8):760–765
53. Dreher C et al (2016) Metabolic liver function after stereotactic body radiation therapy for hepatocellular carcinoma. Acta Oncol 55(7):886–891
54. Tocsa DAS et al (2017) Assessment of hepatic function decline after stereotactic body radiation therapy for primary liver cancer. Pract Radiat Oncol 7(3):173–182
55. DeLeve LD, Shulman HM, McDonald GB (2002) Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 22(1):27–42
56. Osmundson EC et al (2015) Predictors of toxicity associated with stereotactic body radiation therapy to the central hepatobiliary tract. Int J Radiat Oncol Biol Phys 91(5):986–994
57. Tocsa DA et al (2017) Central liver toxicity after SBRT: an expanded analysis and predictive nomogram. Radiother Oncol 122(1):130–136
58. Kooy EJ, Owen D, Das P (2018) Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol 28(4):321–331
59. Hanna GG et al (2018) UK consensus on normal tissue dose constraints for stereotactic radiotherapy. Clin Oncol 30(1):5–14
60. Pan CC et al (2010) Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S94–100
61. Grimm J et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368
62. Méndez Romero A, de Man RA (2016) Stereotactic body radiation therapy for primary and metastatic liver tumors: from technological constraints for stereotactic radiotherapy. Clin Oncol 30(1):5–14
63. Grimm J et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368
64. Méndez Romero A, de Man RA (2016) Stereotactic body radiation therapy for primary and metastatic liver tumors: from technological constraints for stereotactic radiotherapy. Clin Oncol 30(1):5–14
65. Ashbell SO et al (2016) Introduction and clinical overview of the DVH risk map. Semin Radiat Oncol 26(2):89–96
66. Ma S, Xie H, Wang H, et al (2019) MRI-Based Radiomics Signatures for the Preoperative Prediction of Extracapsular Extension of
107. Kim J et al (2018) Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics. AJR Am J Roentgenol 211(5):1026–1034

108. Mokrane F-Z et al (2020) Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur Radiol 30(1):558–570

109. Zhao L et al (2019) Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging 19(1):49–49

110. Ohara K et al (1997) Radiation tolerance of cirrhotic livers in relation to the preserved functional capacity: analysis of patients with hepatocellular carcinoma treated by focused proton beam radiotherapy. Int J Radiat Oncol Biol Phys 38(2):367–372

111. Mastrocostas K et al (2019) Imaging post-stereotactic body radiation therapy responses for hepatocellular carcinoma: typical imaging patterns and pitfalls. Abdom Radiol 44(5):1795–1807

112. Boda-Heggemann J et al (2016) MRI morphologic alterations after liver SBRT: direct dose correlation with intermodal matching. Strahlenther Onkol 192(9):641–648

113. Boda-Heggemann J et al (2018) Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT. Strahlenther Onkol 194(5):414–424

114. Sanuki N et al (2014) Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA. Int J Radiat Oncol Biol Phys 88(2):306–311

115. Sampath S, Rahmanuddin S, Sahoo P, et al (2019) Change in Apparent Diffusion Coefficient Is Associated With Local Failure After Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer: A Prospective Clinical Trial. Int J Radiat Oncol Biol Phys 105(3):659–663. https://doi.org/10.1016/j.ijrobp.2019.06.2536

116. Zwanenburg A, Leger S, Vallières M, Löck S (2016) Image biomarker standardisation initiative. (arXiv:1612.07003 [cs.CV])

117. Zhovannik I et al (2019) Learning from scanners: Bias reduction and feature correction in radiomics. Clinical and Translational Radiation Oncology 19:33–38

118. Zhao B et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428–23428

119. Zhao B et al (2014) Exploring variability in CT characterization of tumors: a preliminary phantom study. Transl Oncol 7(1):88–93

120. Traverso A et al (2018) Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys 102(4):1143–1158

121. Shafiq-Ul-Hassan M et al (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44(3):1050–1062

122. Baessler B, Weiss K, Pinto Dos DS (2019) Robustness and reproducibility of radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 54(4):221–228

123. Um H et al (2019) Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Phys Med Biol 64(16):165011–165011