The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum

Wendelin Schnippenkoetter1, Clive Lo2, Guoquan Liu3, Katherine Dibley1, Wai Lung Chan2, Jodie White4, Ricky Milne1, Alexander Zwart5, Eunjung Kwong1, Beat Keller6, Ian Godwin3, Simon G. Krattinger6 and Evans Lagudah1,7,*

1CSIRO Agriculture and Food, Canberra, ACT, Australia
2School of Biological Sciences, The University of Hong Kong, Hong Kong, China
3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
4Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
5CSIRO Data61, Canberra, ACT, Australia
6Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
7School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia

Summary

The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotrophic Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24–72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose.

Keywords: multiple disease resistance, Lr34, rust, anthracnose, flavonoid phytoalexin.

Introduction

Sorghum (Sorghum bicolor) is ranked as the fifth most commonly cultivated cereal in the world (FAOSTAT, 2016). Some of its useful attributes are tolerance to dry environments, high sugar content, high yields of forage biomass per unit of cultivated area and as a rich source of distinct phytochemicals such as dhurrin, sorgoleone and 3-deoxyanthocyanidins. While sorghum provides a useful resource for industrial purposes, for example the generation of ethanol, fibre and paper, its primary use is still for feed and food especially in the semi-arid tropics. Protecting sorghum from pathogen attack is essential and is depicted by multiple layers of the plants ability to resist pathogen proliferation (Dangl et al., 2013). While most resistance genes tend to be short-lived, certain forms of plant defense genes provide more durable resistance. Studies in wheat with defined races of Puccinia (rust) and Blumenia (mildew) pathogen species have resulted in over 220 catalogued resistance genes, most of which individually provide resistance to a few races of a specific pathogen (McIntosh et al., 2013). However, a small number (e.g. Lr34, Lr46 and Lr67) have been identified that confer adult plant, broad spectrum partial resistance to multiple pathogen species. Most notable among the latter class of resistance genes is the Lr34 multipathogen resistance gene (Dyck and Samborski, 1979; McIntosh, 1992; Singh, 1992; Spielmeyer et al., 2005), which has been successfully deployed in wheat cultivation and provided durable field resistance to rust pathogens for over 100 years (Kolmer et al., 2008). Significantly, the multipathogen resistance conferred by Lr34 was not due to a cluster of resistance genes, but rather by a single gene encoding an ABC transporter (Krattinger et al., 2009; Risk et al., 2012). Lr34 also differs from the other cloned multipathogen resistance gene Lr67, which encodes a sugar transporter from the STP13 lineage of monosaccharide transporters (Moore et al., 2015). The Lr34 resistance allele (Lr34res) differs from the susceptible or wild-type allele,
Results

Transgenic *Lr34res* expression confers resistance to sorghum rust (*Puccinia purpurea*) infection

We introduced the complete wheat genomic sequence of *Lr34res*, encompassing 2.4 kb of native promoter and 1.5 kb native terminator sequence, by stable transformation in the genetic background of sorghum cultivar (cv.) Tx430. Four independent T0 transformants with the full-length *Lr34res* were obtained, of which three independent genotypes were fertile (Lr34-2, Lr34-5 and Lr34-6). Subsequent genomic and phenotypic analyses at T1–T3 generations were carried out on these three independent transgenic lines. Genomic blot analysis showed that the transgene was present in all transgenic lines, with similar patterns to the transgene. Phenotypically, control plants (sib lines without the transgene) and the *Lr34res* single copy line, Lr34-2, were very similar at the seedling stage until the onset of booting. Yellowing in the transgenic lines was observed later in Lr34-2 compared with control plants lacking the transgene (Figure S3). Further quantification of the rusting phenotype that typifies the partial resistance often seen at host–pathogen interactions revealed approximately a 25% reduction in fungal colonization, which is indicative of the slow rusting phenotype that typifies the partial resistance often seen with *Lr34res* in wheat. In contrast, no sporulation was detected on Lr34-5 and Lr34-6 genotypes, even at this late stage.

From previous analysis of the *Sorghum bicolor* genome, two adjacent *Lr34* orthologs, Sb01g016770 and Sb01g016775, were considered to have arisen by gene duplication, of which Sb01g016775 was deduced to be a pseudogene (Krattinger et al., 2013). Sb01g016770 and Sb01g016775 share 71% and 75% identity respectively with the protein sequence of *LR34*. Of the two critical amino acids that distinguish *LR34RES* from *LR34SUS*, Sb01g016775 shared the same phenylalanine and tyrosine residues found in the wild-type variant of *LR34SUS*. We investigated by site directed mutagenesis whether changes to these residues could confer resistance to sorghum rust. Two independent stable transgenic lines of *Sb01g016775* were generated, all of which expressed transcripts carrying the modified gene. Plants infected with *P. purpurea* developed similar levels of sporulation as control plants or sib lines by 14 dpi and failed to exhibit the progressive development of a blotchy bronze/purple leaf coloration in adult plants from about the penultimate leaf development stage onwards (Figure S2). The penultimate leaves of adult plants had high *Lr34res* transcript levels in lines Lr34-5 and Lr34-6, which was 8–13 fold higher than that detected in the single copy Lr34-2 genotype (Figure 1). Thus, the strong leaf coloration phenotypes correlated with *Lr34res* expression.

Sorghum rust pathogenesis on plants infected with *P. purpurea* uredospores at the 5-leaf stage was analysed microscopically at 7 days post-inoculation (dpi) and for sporulation at 12–14 dpi. Microscopic analysis of wheat germ agglutinin–fluorescein isothiocyanate (WGA-FITC) binding to fungal cell walls revealed extensive hyphal development in control plants and sib lines without the *Lr34res* transgene (Figure 2a–c, e). In contrast, hyphal growth from infection sites in all transgenic lines of *Lr34res* was restricted (Figure 2d, f). Macroscopically, uredinia developed on all the non-*Lr34res* plants, whereas no sporulation was detected on *Lr34res* transgenic genotypes (Figures 3a and S3). Further quantification of the sorghum rust fungal biomass on transgenic plants showed the presence of the *Lr34res* transgene reduced fungal colonization by 75%–80% (Figure 3b). Interestingly, by 28–30 dpi, uredinia had developed on the Lr34-2 transgenic line, albeit at low frequency compared to sib lines lacking *Lr34res* (Figure S4). Estimation of fungal biomass at this late period showed approximately a 25% reduction in fungal colonization, which is indicative of the slow rusting phenotype that typifies the partial resistance often seen with *Lr34res* in wheat. In contrast, no sporulation was detected on Lr34-5 and Lr34-6 genotypes, even at this late stage.

![Figure 1](image-url)
Figure 1 *Lr34res* expression levels in adult plants of transgenic sorghum. Lr34-sib negative line, Lr34-2 single copy line, Lr34-5 3 copy line, Lr34-6 7 copy line. Data shown as mean ± SE from three biological replicates.
resistance phenotype that accompanied the introduction of the wheat Lr34res in sorghum (Figure S5).

Pathogen-induced leaf pigmentation, expression of genes involved in the flavonoid phytoalexin synthesis pathway and metabolite analysis

Within the first 2 days following P. purpurea inoculation, reddish brown pigmented spots were observed on leaves of control and transgenic plants. Leaf area coverage and size of pigmented spots were larger in transgenic plants when compared to non-transgenic sibs and the control genotype (Figure S6). Furthermore, the Lr34res multicopy genotypes Lr34-5 and Lr34-6 consistently exhibited more pigmented areas than the single copy Lr34-2 transgenic line. To test whether the magnitude of the pathogen-induced pigmentation was associated with Lr34 expression, transcript levels of Lr34res were quantified over a 48-h period post-inoculation. An increase in the Lr34res transcript occurred within 24-h post-inoculation (hpi) and declined by 48 hpi (Figure 4). More than threefold increased expression occurred in Lr34-5 at 24 hpi compared to Lr34-2, which parallels the extent of pigmentation noted on the leaves. We also examined the expression levels of the S. bicolor orthologous Lr34 gene, Sb01g016775 under mock and rust inoculation in comparison with the introduced Lr34res transgene. Interestingly, Sb01g016775 expression was negatively responsive to P. purpurea inoculation in contrast to the pathogen responsiveness of the wheat Lr34res demonstrated through increased expression (Figure S7).

Pathogen-inducible synthesis of flavanone derived metabolites, some of which have been implicated in plant defense, has previously been described in sorghum (Lo et al., 1996, 1999; Nicholson et al., 1987). Analysis of expression levels of key enzymes involved in 3-deoxyanthocyanidin and flavone biosynthesis (Figures 4b–d, 5) revealed similar trends to effects of the Lr34res transgene. Enzymatic steps encoded by SbFNSII (flavone synthase II, a cytochrome P450 pathogen-inducible gene), SbFNR (flavanone 4-reductase) and SbDFR3 (dihydroflavonol reductase) were elevated in gene expression at 24 hpi and declined at 48 hpi (Figure 4b–d). The high expressing Lr34res lines, typified by Lr34-5 genotype, exhibited over 15-, 75- and 140-fold increases in expression of SbDFR3, SbFNSII and SbFNR, respectively, at the peak period of 24 hpi. By contrast the control sib line showed 5-, 15- and 20-fold increases for SbDFR3, SbFNSII and SbFNR, respectively. Approximately an eightfold elevation of SbDFR3 was detected in the low Lr34res expressing genotype, Lr34-2, over the same period, whereas SbFNSII and SbFNR showed similar quantitative changes in the control line and Lr34-2 (Figure 4b–d). Taken together, the early induction of this group of genes which form part of the pathway in converting naringenin flavanones to 3-deoxyanthocyanidin and flavone biosynthesis (Figure 5) is enhanced by the introduction of the wheat Lr34res gene upon pathogen infection.

We further investigated the production of metabolites that belong to the 3-deoxyanthocyanidin class upon infection using the well-studied C. sublineolum-sorghum pathogen-host interaction. Pathogen-induced formation of purple pigments has

Figure 2 Micrographs of sorghum rust development following WGA-FITC staining at 7 days post-inoculation of fifth leaves. (a) Wild-type Sorghum cultivar Tx430. (b) Sorghum landrace. (c) and (e) Segregate Sib lines Lr34-2 and Lr34-5 respectively not harbouring Lr34res gene – Infection sites (arrows) developing from germinated rust spores on leaf surfaces. (d) and (f) Lr34-2 and Lr34-5 transgenic sorghum respectively – germinated spores and hyphae present on leaf surface but with no infection sites. Micrographs of Lr34-6 negative sib and transgenic lines yielded similar results to that of the negative sib and transgenic lines of Lr34-2 and Lr34-5, respectively.
attributed this colour change to structurally related compounds, 3-deoxyanthocyanidins (luteolinidin and apigeninidin; Dykes and Rooney, 2006). These compounds accumulate within inclusions in the epidermal cells as a defense response to pathogen attack (Snyder and Nicholson, 1990; Snyder et al., 1991). As part of the metabolite analysis we also included the flavone aglycones, luteolin and apigenin, that have also been implicated to differentially accumulate as sorghum phytoalexins in response to pathogen infection (Du et al., 2010). Metabolite analysis was conducted on elongated mesocotyls inoculated with *C. sublineolum* at 48, 72 and 96 hpi. Significantly enhanced levels of luteolinidin were detected in genotypes carrying *Lr34res* at 72 hpi (Figure 6). Differences in metabolite accumulation were not as significant at the other two time points (Figure S8). At 48 hpi, metabolite amounts were still rather low and by 96 hpi, the 3-deoxyanthocyanidins started to be degraded. Methoxyluteolinidin and methoxyapigenidin levels were also significantly higher in most transgenic lines at 72 hpi, but their levels were not as high as luteolinidin. As expected, the flavones (luteolin and apigenin) accumulated at considerably lower levels than luteolinidin, while some elevation of luteolin levels was detected in the high expressing *Lr34res* genotypes, L34-5 and L34-6 (Figure 6). **Figure 3** (a) *P. purpurea* pustule development on control and transgenic sorghum leaves at 14 dpi. (b) Quantification of fungal biomass on corresponding plants in (a). Data shown as mean ± SD. **Transgenic *Lr34res* expression confers resistance to sorghum anthracnose (*C. sublineolum*)**

In addition to the metabolite analysis, we investigated the effect of the *Lr34res* transgene on disease symptoms caused by infection with *C. sublineolum*. Necrotic lesion phenotypes on elongated mesocotyls were examined at 7 dpi. Mild symptoms were characterized by single localized lesions, whereas strong symptoms were associated with multiple or complete lesions along the entire length of the mesocotyl (Figure S9). Strong anthracnose symptoms developed on 65% of the control lines compared with 30% in genotypes carrying the *Lr34res* transgene (Figure 7). Analysis of the total symptoms showed approximately 33% and 26% reduction in disease severity associated with the high and low expressing *Lr34res* lines, respectively (Figure 7). However, mild symptoms occurred twice as much in the single copy transgenic line compared with the higher *Lr34res* expressing genotype.
Effect of the Lr34res transgene on plant vigour

As a general observation, no differences in plant growth vigour were noticed among the control sib lines and Lr34res transgenic lines during the seedling stage and even after the 5-leaf stage when rust inoculations were conducted. However, as the plants approached booting, it was evident that the high expressing Lr34res genotypes (Lr34-5 and Lr34-6) were less vigorous in growth compared to the single copy line (Lr34-2) and sib lines lacking the transgene. To quantify the growth effects and subsequent effect on reproductive development and yield, aspects of panicle morphology and yield were measured. Panicle size tended to be smaller in genotypes with increased Lr34res gene copy number and expression (Figure 8). The mean panicle weight declined by 33% and 67%, respectively, in the single copy and multicopy Lr34res lines, respectively, as compared with the negative sib lacking Lr34res (Figure 9a). The mean peduncle diameter in comparison with the negative sib lacking Lr34res (measured immediately below the node of the basal rachis), was reduced by 1.0 mm in the single copy Lr34res line and 3.2 mm in the multicopy Lr34res genotypes (Figure S10). The grain yield component of 100-seed weight remained unchanged between the control sib and the Lr34-2 line, whereas a reduction of 0.5–1.2 g occurred in the multicopy Lr34res lines (Figure 9).

Discussion

We demonstrate in this study that the ABC transporter encoded by the wheat Lr34res gene functions in sorghum and confers resistance to sorghum-adapted rust and anthracnose causing pathogens, while Lr34res-mediated resistance to rust caused by Puccinia species has previously been confined to species in the Triticeae (Dyck and Samborski, 1982; Rinaldo et al., 2016; Risk et al., 2013), our findings together with the recently reported observations in maize (Sucher et al., 2016) extends the efficacy of Lr34res to the warm season adapted Puccinia species with pathogenesis on Andropogoneae taxa. The successful incorporation of Lr34res-mediated resistance into sorghum suggests that the necessary components required for biosynthesis of the Lr34 putative substrate, and proteins involved in signalling and defense response, are also present in sorghum. This finding is of importance as it opens alternate avenues to explore the genetic dissection of Lr34res-mediated resistance. Indeed, the well characterized features of pathogen-induced pigmentation in

Figure 4 Comparative pathogen-induced gene expression pre-and post-inoculation with P. purpurea. (a) Lr34res. (b) SbFNR. (c) SbDFR3. (d) SbFNSII. Data shown as mean ± SE from three biological replicates.

Figure 5 Flavonoid phytoalexin and anthocyanidin biosynthetic pathway (Kawahigashi et al., 2016; Liu et al., 2010). Genes highlighted in red and products circled were quantified in this study.
sorghum, and associated flavonoid phytoalexin biosynthesis defense response, are avenues that were further investigated in this study.

While most of the pathogen-inducible pigments formed in sorghum have been reported with the _C. sublineolum_ and _Cochliobolus heterostrophus_ pathosystems, we show in this study that _P. purpurea_ infection triggers similar phenotypes as part of the early host response in the sorghum cv. Tx430. Such visible phenotypes in wheat plants with _Lr34res_ or other rust resistance genes at 24–72 hpi are yet to be reported. The correlation of _Lr34res_ expression and strength of pathogen-induced pigmentation suggests that the _Lr34_ transgene interacts with the signalling response, triggering pigmentation. Because the pigments responsible for the pathogen-induced color changes formed in sorghum are derived predominantly from the 3-deoxyanthocyanidin flavonoids luteolinidin and apigeninidin, which accumulate as a site-specific response to fungal infection (Nicholson _et al._, 1987; Snyder and Nicholson, 1990), it is conceivable that the presence of the _Lr34res_ transgene may contribute to their elevated accumulation in infected plants. Accumulation of the 3-deoxyanthocyanidins, in particular luteolinidin, occurs much faster in infected cells of resistant genotypes than susceptible genotypes, implicating early phytoalexin accumulation in preventing disease spread by restricting proliferation of fungal hyphae (Basavaraju _et al._, 2009; Poloni and Schirawski, 2014; Wharton and Julian, 1996). In infected cells, the 3-deoxyanthocyanidins migrate to the site of attempted penetration dependent on nuclear migration, cytoplasmic streaming and intracellular pH to provide an environment for inclusion trafficking and release of the phytoalexins (Nielsen _et al._, 2004).

Exactly how _Lr34res_ fits into this transport process remains to be defined. Notwithstanding, it is noteworthy that at 24 hpi by _P. purpurea_, the strong expressing _Lr34res_ transgenic lines exhibited higher expression levels for _FNR_, _DFR3_ and _FNSII_ genes that form part of the flavonoid phytoalexin biosynthesis pathway. Interestingly, the introduction of _Lr34res_ into barley also resulted in constitutive up-regulation of genes involved in the flavonoid pathway and in the biosynthesis of barley defense compounds, such as _anthranilate synthase_, _anthranilate N-benzoyltransferase_, _agmatine coumaroyl transferase_ and _flavonoid 7-O-methyl transferase_ (Chauhan _et al._, 2015). _Lr34res_ in hexaploid wheat typically provides partial resistance to rusts and mildew in adult plants, although under low-temperature conditions (>10°C) seedling resistance can be detected. In the current study, we show that _Lr34res_ functions in seedlings and obviates the need for low-temperature induction in transgenic sorghum to provide resistance to sorghum rust and anthracnose. This observation corroborates seedling resistance by _Lr34res_ against other pathogens reported in barley, rice, maize and durum wheat. The obvious difference in sorghum to other species being the highly expressed pathogen-inducible purple coloration due to phytoalexin production. Expression levels of _Lr34res_ in hexaploid wheat seedlings are elevated under low

Figure 6 Metabolite analysis of 3-deoxyanthocyanidin and flavone phytoalexins measured in sorghum mesocotyls 72-h post-inoculation with _C. sublineolum_. Data shown as mean ± SD from three biological replicates. *P* < 0.05 (t-test).

Figure 7 Spectrum of infection following _C. sublineolum_ inoculation of mesocotyls of control and transgenic sorghum lines. Data shown as mean ± SD from three biological replicates. *: Significantly different from the corresponding values in Tx430 (t-test, *P*-value <0.05); Total = mild + strong.
temperatures in rust-infected plants (Rinaldo et al., 2016; Risk et al., 2013) and may account for the low temperature-induced resistance. In transgenic sorghum, barley, rice, maize and durum wheat seedlings, it is likely that the expression level of the Lr34RES transgene upon pathogen infection reaches a threshold level that is sufficient to trigger resistance by curbing pathogen proliferation. The leaf tip necrosis/early senescence phenotype of lines carrying Lr34RES suggests a common pathway confers resistance.

Orthologues of the wheat Lr34 gene are present in the sorghum and rice genomes. Targeted changes to the two amino acids in the sorghum LR34 orthologue to mimic the wheat Lr34RES failed to generate a resistance phenotype similar to previous studies with the rice orthologue (Krattinger et al., 2016). Given the amino acid sequence identity of 75% between the wheat and sorghum orthologues of the LR34 ABC transporter, it is possible that other regions of the Lr34RES absent in sorghum are required for resistance function. Additionally, the Lr34RES in transgenic sorghum is up-regulated upon pathogen infection, but the corresponding sorghum Lr34 orthologue showed a weak negative response to pathogen challenge, which may also account for the lack of resistance phenotype associated with the modified sorghum Lr34 RES orthologue. Thus any attempts at further modifications to the sorghum Lr34 orthologue towards engineering resistance will likely require changes beyond the coding region to include pathogen responsive regulatory sequences.

Overexpression of Lr34RES typified by the multicopy transgenic Lr34-5 and Lr34-6 genotypes in this study results in plants with reduced yield components, despite exhibiting immunity against P. purpurea. Conversely, the single copy low-expressing line (Lr34-2) had similar growth vigour as the non-transgenic or sib line control plants and less detrimental effects on reproductive yield. As Lr34-2 showed no rust symptoms 2 weeks post-infection and reduced rust sporulation after 4 weeks, indicative of the characteristic slow rusting response of the Lr34RES, and it holds promise for the use of Lr34 as a transgene for sorghum improvement. It may also be useful to explore high expression of Lr34RES for plant immunity to various pathogens using pathogen-inducible promoters in an attempt to overcome detrimental reproductive yield effects associated with constitutive overexpression in adult plants. Our findings in sorghum that Lr34RES confers resistance to sorghum rust and anthracnose demonstrates that the multipathogen resistance of the wheat Lr34 gene extends to biotrophic and hemibiotrophic adapted pathogens across the Triticeae, Oryzeae and Andropogoneae taxa.

Experimental procedures

Production of transgenic Lr34 sorghum

The genomic construct of Lr34RES under the native promoter and terminator sequences was cloned into plasmid pWGEM-NZf as previously described (Risk et al., 2012) and subsequently transformed into the sorghum inbred line Tx430 via microprojectile-mediated transformation (Liu and Godwin 2012). The presence of the transgene in T0 plants was initially assessed by PCR with Lr34RES-specific primers (Lagudah et al., 2009) and subsequently by genomic blots probed with the Lr34 3′UTR DNA fragment. A genomic construct containing the sorghum Lr34 ortholog...
(Sb01g016775) was generated from an Eegl 16.3 kb DNA fragment from a sorghum BAC clone (CUGI BAC#15620) subcloned into pWGEM-Nzf. Site directed mutagenesis using primers Sb2Quickchange 1F/1R (1F-5′GGAGCATTATTTTTT CATTACATTATGCTAAATGGCATAATC1R- GGATGCGATT TAG CATAAGTAGGGAAATATAAGTCTCCTA) and Sb2Quick- change 2F/2R (2F- CATCAAGTAGATGGCATCCATGAT GATTG CATAAGTAGGGAAATATAAGTCTCCTA) was used to generate the derived subclone Sb01g016775-MPS2S, Y613H as per protocols in Krattinger et al. (2016). Transgenic plants with the genomic construct of Sb01g016775-MPS2S, Y613H were also generated by microprojectile bombardment.

Identification of transformants and Lr34 copy number
Leaf samples (2–3 g) from T1 and T3 plants were ground in liquid nitrogen using pestle and mortars and sand. Frozen leaf material was transferred into 3 mL CTAB extraction buffer (100 mM Tris-HCl pH 8.0, 20 mM EDTA, 1.4M NaCl, 0.5% Na2SO4, 2% CTAB, and 1% β-mercaptoethanol) and processed for DNA isolation in accordance with Collins et al. (1998). About 12 µg of each gDNA sample was subjected to NotI and EcoRV restriction endonuclease digestions to ascertain the presence of full-length Lr34 gene constructs and the copy number of Lr34 in transgenic sorghum lines, respectively. Digested gDNA samples were loaded on 1% agarose gels and run at 60V (at approx. 50 mA) for 18–20 h, capillary transferred onto Hybond-N+ filter using 20xSSC buffer and UV cross-linked. Filter was subjected to 5-h prehybridization in 5× SSC, 50 mM Tris-Cl pH 7.5 using a few drops of 40% glycerol before covering with cover slips. GFP3 fluorescence filters were used on a Leica MZFLIII fluorescence dissecting microscope or a Zeiss Axioimager upright fluorescence microscope to score the presence of P. purpurea infection sites in the sampled leaves.

Microscopy
At 6–8 dpi, fourth or fifth leaf samples were collected and submerged in 1M KOH and incubated for 48 h at 37°C with gentle agitation. The KOH solution was replaced with fresh 1M KOH solution after 18–24 h. The KOH solution was discarded, and the leaf material was washed gently 2–3 times with 50 mM Tris-HCl, allowing material to incubate in the Tris-HCl solution for 10–20 min per wash. 1–2 mL 50 mM Tris-HCl and 10–20 µL 1 mg/mL wheat germ agglutinin conjugated to fluorescein isothiocyanate (WGA-FITC, Sigma-Aldrich, Castle Hill, NSW, Australia) were added, and samples incubated at ambient temperature for an hour before mounting on microscope slides. Stained leaf samples were mounted on slides using a few drops of 40% glycerol before covering with cover slips. GFP3 fluorescence filters were used on a Leica MZFLIII fluorescence dissecting microscope or a Zeiss Axioimager upright fluorescence microscope to score the presence of P. purpurea infection sites in the sampled leaves.

Rust biomass assays
Chitin assays were carried out as described by Ayiffe et al. (2014). Three biological replicates of the 6th leaves were sampled 14 and 28 dpi and weighed. Leaves were cut into 1.5–2.0 cm fragments and submerged in 1M KOH with 0.15 Silwet L-77 in Falcon tubes. Leaf samples are autoclaved at 121°C and 15 psi for 20 min, then washed gently three times in 50 mM Tris-HCl pH 7.5. Plant samples were suspended in 50 mM Tris-HCl pH 7.5 at the rate of 200 mg fresh weight per mL and homogenized by sonication for 1–2 min to form a fine uniform suspension. About 4 × 100 µL of each homogenate was transferred to 4 × 200 µL PCR tubes. About 10 µL of 1 mg/mL WGA-FITC (Sigma-Aldrich) was added to each homogenate in PCR tubes and left at ambient temperature for an hour. Homogenates were washed three times by centrifuging at 250 g for 3–5 min and carefully replacing the supernatants with 50 mM Tris-HCl pH 7.5 using a micropipette. The final washed suspensions were transferred to a 96-well fluorometer microtiter plate. Fluorescence values of each sample were measured in a Wallac Victor 1420 multilabel counter at 485 nm excitation and 535 nm emission wavelengths with a 1.0 s measurement time. Means of the technical replicate fluorescence values were calculated, and the standard errors were ascertained for biological replicates.

Metabolite analysis
Samples of mesocotyl tissue (~200 mg each) from uninfected and C. sublineolum inoculated plants at 48, 72 and 96 hpi were collected, cut into segments, weighed and placed in acidified (0.1%) HPLC-grade methanol. Metabolites were allowed to leach from the tissue at 4°C overnight. The composition of plant extracts was then determined by liquid chromatography-tandem mass spectrometry (LC-MS) in accordance with the protocols as described (Du et al., 2010; Lo et al., 1999). Authentic standards of luteolinidin, apigeninidin, luteolin and apigenin (Sigma) were used for metabolite identification and quantification.

qRT-PCR
The sixth leaf of plantlets were sampled at 0, 24 and 48 hpi, snap-frozen in liquid nitrogen and stored at −80°C. RNA was isolated with the RNaseasy Plant Kit (QIAGEN, Chadstone Centre, VIC,
Australia) according to manufacturer’s instructions. About 1–2 μg RNA samples were subjected to first-strand DNA synthesis in 20 μL reactions using Superscript™ III reverse transcriptase Life Technologies (Mulgrave, VIC, Australia). About 3 μL of 1-in-10 dilutions of first-strand synthesis products were subjected to qPCR reactions using the C1000 Touch™ thermocycler with the CFX96™ Real-Time System (Bio-Rad, Gladesville, NSW, Australia). Reaction conditions included an initial denaturation at 95°C for 3 min; 40 cycles of denaturation at 95°C for 10 s and annealing/elongation at 60°C for 30 s, followed by a melt step range of 65–95°C with increments of 0.5°C. The sorghum actin gene (Pavli et al., 2011) was used as a reference gene for each qRT-PCR experiment, and each qRT-PCR experiment was repeated using the more stable sorghum reference gene PP2A (Reddy et al., 2016). qPCR primers specific for Lr34res, SbL34 (Lr34 orthologue), SbBFNR, SbFNSII and SbDFR3 were used to measure the relative gene expressions at the different post-inoculation time points are listed in Table 1. Experiments included three technical replicates of each of three respective biological replicates. Means of the ΔCq values were calculated, and Standard Errors were determined for the data. Gene expression values were log(base 2)-transformed, and a repeated measures analysis was performed via the linear mixed model software asreml (Butler, 2009) in R (R Core Team, 2015). Means and SE bars in Figure 4 are back-transformed to the scale of the raw expression levels.

Reproductive yield components

Sorghum plants at the T2 generation and four replications were grown to physiological maturity, and intact panicles were harvested and dried at 37°C for 48 h. Individual panicles were weighed for each of the negative and positive Lr34 lines. Peduncle diameters were measured 1 mm above the last node using Vernier calipers. Kernels were separated from the panicles and 100 kernel quantities from transgenic and non-transgenic lines were weighed.

Acknowledgements

The authors wish to acknowledge the Bill and Melinda Gates Foundation for financial support through grant # OPP1060218 and OPP1131636. This work was supported by the Research Grants Council of Hong Kong, China (grant no. 17 123 315).

Conflict of interest

The authors declare no conflict of interest.

References

Ayliffe, M., Periyannan, S.K., Feechan, A., Dry, I., Schumann, U., Lagudah, E. and Pryor, A. (2014) Simple quantification of in planta fungal biomass. In Plant–Pathogen Interactions: Methods and Protocols (Birch, P., Jones, J.T. and Bios, I.J.B., eds), pp. 159–172. Totowa, NJ: Humana Press.

Bandopadhyay, R. (2000) Rust. In Compendium of Sorghum Diseases, 2nd ed. (Frederksen, R.A. and Ovdovy, G.N., eds), pp. 23–24. St Paul: APS.

Basavaraju, P., Shetty, N.P., Shetty, H.S., de Neergaard, E. and Jørgensen, H.J.L. (2009) Infection biology and defence responses in sorghum against Colletotrichum sublineolum. J. Appl. Microbiol. 107, 404–415.

Butler, D. (2009) asreml: asreml() fits the linear mixed model. R Package, version 3.0-1.

Chauhan, H., Boni, R., Bucher, R., Kuhn, B., Buchmann, G., Sucher, J., Selter, L.L. et al. (2015) The wheat resistance gene Lr34 results in the constitutive induction of multiple defense pathways in transgenic barley. Plant J. 84, 202–215.

Collins, N.C., Webb, C.A., Smit, E., Ellis, J.G., Hubert, S.H. and Pryor, A.J. (1998) The isolation and mapping of disease gene resistance analogs in maize. Mol. Plant-Microbe Interact. 11, 968–978.

Dangl, J.L., Horvath, D.M. and Staskawicz, B.J. (2013) Pivoting the plant immune system from dissection to deployment. Science, 341, 746–751.

Dyck, P.L. and Samborski, D.J. (1979) Adult plant resistance in PI250413, an F2 generation of S. multiflorum × S. bicolor (L.)eca. Can. J. Plant Sci. 59, 329–332.

Dyck, P.L. and Samborski, D.J. (1982) The inheritance of resistance to Puccinia recondita in a group of common wheat cultivars. Can. J. Genet. Cytol. 24, 273–283.

Dykes, L. and Rooney, L.W. (2006) Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251.

FAOSTAT. (2016). Crops: FAO Global Statistical Yearbook. http://www.fao.org/faostat/en/#data/QC.

Kawahigashi, H., Kasuga, S., Sawada, Y., Yonemaru, J., Ando, T., Kanamori, H., Wu, J. et al. (2016) The sorghum gene for leaf color changes upon wounding (P) encodes a flavanone 4-reductase in the 3-deoxyanthoxanthin biosynthesis pathway. G3 (Bethesda, Md.) 6, 1439–1447.

Kolmer, J.A., Singh, R.P., Garvin, D.F., Viccars, L., William, H.M., Huerta-Espino, J., Ogbonnaya, F.C. et al. (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci. 48, 1841–1852.

Table 1 Primers used in QPCR gene expression analyses

Gene	Primer	Primer sequence (5′-3′)	Amplicon size (bp)	Reference
SbActin	Forward	CTAGCACGATGAAATCGAGTG	134	Pavli et al. (2011)
	Reverse	GGCAGACTCTGGTGTCTACAG		
SbFP2A	Forward	AAAAAACCGGAAAACCCGACATA	138	Reddy et al. (2016)
	Reverse	TACAGGTCGGGGTCTATGGAAAC		
Lr34res	Forward	GGAGGCAATATTTTTTTCCATCA	242	This paper
	Reverse	ACTGGCAGAAGAACCTTGAACCAC		
SbL34 (Sb01g016775)	Forward	GGAGGCAATATTTTTTCCATCT	247	This paper
	Reverse	TAACTGGCAGAAGAACCTTGAAGG		
Flavone Synthase II (SbFNSII, Sb02g000220)	Forward	CGCAAGACCAAGGTTTCTCT	209	Du et al. (2010)
	Reverse	GCGCGGACGCGCTGATGAGGC		This paper
Dihydroflavonol 4-reductase 3 (SbDFR3; Sb04g004290)	Forward	CGGATGTCGAGATGTTTGA	123	Liu et al. (2010)
	Reverse	GGGCATTAGGTTTGAACCTT		
Flavanone 4-reductase (SbFNR; Sb06g029550)	Forward	GGATGCAAGAGACAGATGGAAGA	287	Kawahigashi et al. (2016)
	Reverse	CGGTATCTCTGGTGCTCTGAAGT		
Wendelin Schnippenkoetter et al.

Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E. et al. (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.

Krattinger, S.G., Jordan, D.R., Mace, E.S., Raghavan, C., Luo, M.C., Keller, B. and Lagudah, E.S. (2013) Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theor. Appl. Genet. 126, 663–672.

Krattinger, S.G., Sucher, J., Selter, L.L., Chauhan, H., Zhou, B., Tang, M., Upadhyaya, N.M. et al. (2016) The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice. Plant Biotechnol. J. 14, 1261–1268.

Lagudah, E.S., Appels, R. and McNeil, D. (1991) The Nor-D3 locus of Triticum tauschii: natural variation and linkage to chromosome 5 markers. Genome, 34, 387–395.

Lagudah, E.S., Krattinger, S.G., Herrera-Foessel, S., Singh, R.P., Huerta-Espino, J., Spielmeyer, W., Brown-Guedira, G. et al. (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor. Appl. Genet. 119, 889–898.

Liu, H., Du, Y., Chu, H., Shih, C.H., Wong, Y.W., Wang, M., Chu, I.K. et al. (2010) Molecular dissection of the pathogen-inducible 3-deoxynojirimycin biosynthesis pathway in sorghum. Plant Cell Physiol. 51, 1173–1185.

Liu, G. and Godwin, I.D. (2012) Highly efficient sorghum transformation. Plant Cell Rep. 31, 999–1007. https://doi.org/10.1007/s00299-011-1218-4

Lo, S.C., Weiergang, I., Bonham, C., HipkisD, J., Wood, K. and Nicholson, R.L. (1996) Phytoalexin accumulation in sorghum: identification of a methyl ether of luteolinidin. Physiol. Mol. Plant Pathol. 41, 179–188.

Lo, S.C., de Verdier, K. and Nicholson, R.L. (1999) Accumulation of 3-deoxynojirimycin phytoalexins and resistance to Colletotrichum sublineolum in sorghum. Physiol. Mol. Plant Pathol. 55, 263–273.

Mcintosh, R.A. (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol. 41, 523–527.

Mcintosh, R.A., Dubcovsky, J., Rogers, W.J., Morris, C., Appels, R. and Xia, X.C. (2013) Catalogue of Gene Symbols for Wheat. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/

Moore, J.W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., Lillemo, M., et al. (2015) Recent evolution of a hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47, 1494–1498.

Nicholson, R.L., Kollipara, S.S., Vincent, J.R., Lillemo, M., Ayliffe, M. and Cadena-Gomez, G. (1987) Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc. Natl Acad. Sci. USA, 84, 5520–5524.

Nelsen, K.A., Gottfredsen, C.H., Buch-Pedersen, M.J., Ammitzbøll, H., Matttsen, O., Duus, J.B. and Nicholson, R.L. (2004) Inclusions of flavonoid 3-deoxynojirimycin in Sorghum bicolor seed have an impact on seed ripening and gene expression. Physiol. Mol. Plant Pathol. 65, 187–196.

Pavi, O.I., Ghikas, D.V., Katsiotis, A. and Skaracis, G.N. (2011) Differential expression of heat shock protein genes in sorghum (Sorghum bicolor L.) genotypes under heat stress. Aust. J. Crop Sci. 5, 511–515.

Poloni, A. and Schirawski, J. (2014) Red card for pathogens: phytoalexins in sorghum and maize. Molecules (Basel, Switzerland), 19, 9114–9133.

R Core Team. (2015) A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. www.R-project.org.

Reddy, P.S., Reddy, D.S., Sivasakthi, K., Bhatnagar-Mathur, P., Vadez, V. and Sharma, K.K. (2016) Evaluation of Sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front. Plant. Sci. 7, 529.

Rinaldo, A., Gilbert, B., Boni, R., Krattinger, S.G., Singh, D., Park, R.F., Lagudah, E. et al. (2016) The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence. Plant Biotechnol. J. doi:10.1111/pbi.12684.

Risk, J.M., Selter, L.L., Krattinger, S.G., Viccarts, L.A., Richardson, T.M., Buesing, G., Herren, G. et al. (2012) Functional variability of the Lr34 durable resistance gene in transgenic wheat. Plant Biotechnol. J. 10, 477–487.

Risk, J.M., Selter, L.L., Chauhan, H., Krattinger, S.G., Kumlehn, J., Hensel, G., Viccarts, L.A. et al. (2013) The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 11, 847–854.

Singh, R.P. (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 82, 835–838.

Snyder, B.A. and Nicholson, R.L. (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science, 248, 1637–1639.

Snyder, B.A., Leite, B., HipkisD, J., Butler, L.G. and Nicholson, R.L. (1991) Accumulation of sorghum phytoalexins induced by Colletotrichum graminicol in the infection site. Physiol. Mol. Plant Pathol. 39, 463–470.

Spielmeyer, W., Mcintosh, R.A., Kolmer, J. and Lagudah, E.S. (2005) Powdery mildew resistance and L34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor. Appl. Genet. 111, 731–735.

Sucher, J., Boni, R., Yang, P., Rogowsky, P., Buchner, H., Kastner, C., Kumlehn, J. et al. (2016) The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol. J. 15, 489–496.

Thakur, R.P. and Mathur, K. (2000) Anthracnose. In Compendium of Sorghum Diseases (Frederiksen, R.A. and Odvody, G.N., eds), 0890542406, pp. 10–12. St. Paul, MN: APS Press.

Wharton, P. and Julian, A. (1996) A cytological study of compatible and incompatible interactions between Sorghum bicolor and Colletotrichum sublineolum. New Phytol. 134, 25–34.

White, J.A., Ryley, M.J., George, D.L., Kong, G.A. and White, S.C. (2012) Yield losses in grain sorghum due to rust infection. Australas. Plant Pathol. 41, 85–91.

White, J.A., Ryley, M.J., George, D.L. and Kong, G.A. (2015) Identification of pathotypes of the sorghum rust pathogen, Puccinia purpurea, in Australia. Australas. Plant Pathol. 44, 1–4.

Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article:

Figure 51 Genomic blot of EcoRV-restricted DNA from transgenic Sorghum.

Figure 52 Lr34 sib and transgenic sorghum penultimate leaves.

Figure 53 Rust sporulation on sorghum leaves 5 and 6 at 15 days post-inoculation with P. purpurea.

Figure 54 (a) Pustule development and (b) fungal biomass on transgenic sorghum leaves one month post-inoculation with P. purpurea.

Figure 55 Rust sporulation at 14 days post-inoculation in Lr34res transgenics and altered variants of Sb01g016775–ΔF525, Y613H.

Figure 56 Pathogen-induced pigmentation 24–72 h post-inoculation (a) Negative sib line. (b) Lr34-2 single copy line. (c) Lr34-5 3 copy line. (d) Lr34-6 7 copy line.

Figure 57 Relative gene expression of sorghum Lr34 ortholog (Sb01g016775) at 0 and 24 h post-inoculation.

Figure 58 Flavonoid metabolites in sorghum mesocotyl after infection with C. sublineolum.

Figure 59 Anthracnose symptoms (arrows and yellow bracket) following mesocotyl infection by C. sublineolum.

Figure 60 Comparison of peduncle diameters of transgenic sorghum lines. Data shown as mean ± SE from 4 to 6 biological replicates.