In silico and in vivo analysis reveal a novel gene in Saccharomyces cerevisiae trehalose metabolism

Joelma F De Mesquita*1, Anita D Panek2 and Pedro S de Araujo1

Address: 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo. Av. Professor Lineu Prestes, 748. Bloco 10 terreo. São Paulo, SP, 05508-000, Brazil and 2Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro. Cidade Universitária, Rio de Janeiro, RJ, 21949-900, Brazil

Email: Joelma F De Mesquita* - jfreire@iq.usp.br; Anita D Panek - anita@iq.ufrj.br; Pedro S de Araujo - psdarauj@usp.br

* Corresponding author

Abstract

Background: The ability to respond rapidly to fluctuations in environmental changes is decisive for cell survival. Under these conditions trehalose has an essential protective function and its concentration increases in response to enhanced expression of trehalose synthase genes, TPS1, TPS2, TPS3 and TSL1. Intriguingly, the NTH1 gene, which encodes neutral trehalase, is highly expressed at the same time. We have previously shown that trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitor. Recently, a comprehensive two-hybrid analysis revealed a 41-kDa protein encoded by the YLR270w ORF, which interacts with NTH1p.

Results: In this work we investigate the correlation of this Trehalase Associated Protein, in trehalase activity regulation. The neutral trehalase activity in the ylr270w mutant strain was about 4-fold higher than in the control strain. After in vitro activation by PKA the ylr270w mutant total trehalase activity increased 3-fold when compared to a control strain. The expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene was evaluated. The mutant strain lacking YLR270w exhibited a 2-fold increase in the NTH1-lacZ basal expression when compared to the wild type strain.

Conclusions: These results strongly indicate a central role for Ylr270p in inhibiting trehalase activity, as well as in the regulation of its expression preventing a wasteful futile cycle of synthesis-degradation of trehalose.

Background

In the yeast Saccharomyces cerevisiae, cytosolic trehalose is mobilized by hydrolysis to glucose catalyzed by neutral trehalase (EC 3.2.1.28), encoded by the NTH1 gene. NTH1p was shown to be post-translationally regulated by two different mechanisms: i) phosphorylation by cAMP dependent protein kinase (PKA) that activates the enzyme [1,2], ii) by an inhibitory protein [3]. Trehalase activity varies during growth on glucose as the result of the phosphorylation state of the enzyme [4]. At the onset of diauxie, activity undergoes a drastic decrease [4], in contrast to the high level of its mRNA [7] and the constant
cAMP concentration in this phase [8]. Activation by PKA reaches a maximum value at the onset of the transition phase of growth on glucose, from fermentative to oxidative metabolism. At this point, almost 80% of the enzyme is in a cryptic non-phosphorylated form [4]. We have previously shown that at this point trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitory protein [3]. Recently, a comprehensive two-hybrid analysis revealed a 41 KDa NTH1p binding protein encoded by YLR270w ORF with unknown function [5,6]. In order to clarify the mechanisms of trehalase down-regulation, the involvement of Ylr270p on trehalase modulation was studied. Here we have evaluated trehalase activation by PKA, as well as the expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene in ylr270w background.

Our in silico analysis of the 5' upstream regions of the YLR270w, TPS1 and NTH1 genes revealed similar elements in their promoters. These data taken together with those found by an extensive data-mining over genomic micro-array databases point toward a coordinated expression of these genes.

Results and discussion

The first property observed for the Ylr270p was its ability to bind to trehalase therefore, we renamed it as Trehalase Associated Protein, Tap [9]. Later, Liu et al. [10] characterized the Ylr270p also as an enzyme with mRNA decapping activity, and introduced another name, yDcpS or DCS1.

DCS1p involvement in trehalase activity regulation was investigated by measuring basal and PKA-activated trehalase activities in both DCS1 and dcs1 cells grown on glucose and harvested at the transition phase leading to diauxie (Figure 1).

During the onset of diauxie (2.0–2.6 mg dry weight/ml) cells lacking the DCS1 gene showed higher levels of trehalase activity than the control cells. This increase was due both to a higher basal activity in dcs1 cells and to a higher total trehalase activity revealed after in vitro activation by PKA. In the control strain, basal trehalase activity corresponded to about 20% of total trehalase, which is in agreement with the results reported for other wild type strains [3,4,9]. However, we found that in the dcs1 mutant this relation was about 50%. This fifty-fifty ratio between cryptic trehalase and basal trehalase is typically found at the exponential or stationary phase of growth when the trehalase inhibitory protein is reported as absent [3]. The trehalase inhibitory protein shows to be a Ca+2/Ca2+ binding protein encoded by YLR270w ORF with unknown function [5,6]. In order to clarify the mechanisms of trehalase down-regulation, the involvement of Ylr270p on trehalase modulation was studied. Here we have evaluated trehalase activation by PKA, as well as the expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene in ylr270w background.

Our in silico analysis of the 5' upstream regions of the YLR270w, TPS1 and NTH1 genes revealed similar elements in their promoters. These data taken together with those found by an extensive data-mining over genomic micro-array databases point toward a coordinated expression of these genes.

Results and discussion

The first property observed for the Ylr270p was its ability to bind to trehalase therefore, we renamed it as Trehalase Associated Protein, Tap [9]. Later, Liu et al. [10] characterized the Ylr270p also as an enzyme with mRNA decapping activity, and introduced another name, yDcpS or DCS1.

DCS1p involvement in trehalase activity regulation was investigated by measuring basal and PKA-activated trehalase activities in both DCS1 and dcs1 cells grown on glucose and harvested at the transition phase leading to diauxie (Figure 1).

During the onset of diauxie (2.0–2.6 mg dry weight/ml) cells lacking the DCS1 gene showed higher levels of trehalase activity than the control cells. This increase was due both to a higher basal activity in dcs1 cells and to a higher total trehalase activity revealed after in vitro activation by PKA. In the control strain, basal trehalase activity corresponded to about 20% of total trehalase, which is in agreement with the results reported for other wild type strains [3,4,9]. However, we found that in the dcs1 mutant this relation was about 50%. This fifty-fifty ratio between cryptic trehalase and basal trehalase is typically found at the exponential or stationary phase of growth when the trehalase inhibitory protein is reported as absent [3].

The trehalase inhibitory protein shows to be a Ca+2/Ca2+ binding protein encoded by YLR270w ORF with unknown function [5,6]. In order to clarify the mechanisms of trehalase down-regulation, the involvement of Ylr270p on trehalase modulation was studied. Here we have evaluated trehalase activation by PKA, as well as the expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene in ylr270w background.

Our in silico analysis of the 5' upstream regions of the YLR270w, TPS1 and NTH1 genes revealed similar elements in their promoters. These data taken together with those found by an extensive data-mining over genomic micro-array databases point toward a coordinated expression of these genes.
Table 1: Effect of ylr270w mutation on the expression of the NTH1-lacZ reporter gene.

Strain	β-Galactosidase activity (Miller units)
Control (YLR270w)	26.3 ± 1.6
Mutant (ylr270w)	71.2 ± 4.8

Saccharomyces cerevisiae control and mutant strains transformed with pNL1 plasmid containing NTH1-lacZ fusion were grown in YNB with glucose as the carbon source as described in Materials and methods. See this same section for a description of plasmid and recipient yeast used. Data are reported as means ± SD of three independent transformants and three independent experiments.

mRNA expression levels were shown to be enhanced suddenly and transiently at the onset of diauxie [7], a condition where the trehalase inhibitory activity was found [3].

To determine whether the elevated total trehalase activity found in the dcs1 mutant corresponded to a change in NTH1 expression, we evaluated NTH1 expression by the activity of the lacZ reporter gene fused to 600 bp of NTH1 promoter region [10].

As shown in table 1, the expression of NTH1-lacZ fusion gene was 2.5-fold higher in dcs1 deleted than in control cells. These results raise the question whether Dcs1p could also be implicated, even in an indirect manner, in the regulation of NTH1 transcription. Indeed, this should be the case since, recently, a homologous Dcs1 in Schizosaccharomyces pombe, was predominantly found in the nucleus albeit characterized as an mRNA binding protein capable of acting as a relatively poor translation inhibitor in this organism [12].

Over the years, an intriguing paradox remained unexplained: the concomitant trehalose accumulation and the enhanced trehalase expression under stress conditions. In fact TPS1, involved in trehalose biosynthesis, NTH1 and DCS1 exhibit a coordinated induction at diauxic growth [7].

These observations led us to investigate the presence of similar regulatory elements in the promoters of the NTH1, TPS1 and DCS1 genes in order to ascertain whether the trehalose/trehalase modulation by Dcs1p transcends the post-diauxic stress.

In our in silico analysis, 700 bp 5’ upstream regions of the NTH1, TPS1 and YLR270w genes were screened using the MatInspector v2.2 [13], FastM [14], TRES (Transcription Regulatory Element Search) [15], and SCPD (Saccharomyces cerevisiae Promoter Database) [16] algorithms searching for transcription factors motifs and consensus sequences annotated on the Transfac 5.0 database [17].

The results in table 2 show the similar elements shared in NTH1, TPS1, and DCS1 promoters. All the putative elements found are involved in stress responses, caused by heat (STRE and HSTE), amino acid starvation (GCN4), and glycolysis/glucogenesis regulation (GCR1). The conserved motifs in these genes could be recognized by common factors and could mean a common regulatory program sharing similar expression profiles.

The approach to investigate the transcription profiles and characterize the DCS1 gene in order to understand its role in the yeast metabolic scenery, was to mine microarrays databases. In these databases we searched for a change in the YLR270w ORF expression using a two-fold variation cutoff. Microarray experiments provide more information than what the authors can interpret alone. This “orphan” information offers clues about gene functions. The YLR270w ORF remained, until now, with an unknown function, and its expression data was never discussed.

To analyze the transcription profiles of DCS1, NTH1, and TPS1 genes under different experimental conditions we used the Yeast Microarray Global Viewer (yMGV) [18], which allows direct comparison of the results from 1347 conditions from 75 different publications.

Heat stress at 37°C/20 minutes [19] led to a 6-fold increase in DCS1 expression in wild type cells in contrast to a 2.0-fold increase in a msn2/msn4 mutant under the same conditions. This result suggests that the STRE element found in the DCS1 promoter region could be functional and mediated by Msn2 and Msn4 transcription factors. NTH1 and TPS1 genes showed similar profiles. These three genes behave similarly also in other stress conditions [20] showing to be co-regulated during changes in oxidation, pH, and osmolarity (figure 2B).

Starvations for amino acids, purines, as well as glucose limitation induce the synthesis of the Gcn4 transcription activator of amino acids biosynthetic genes, in multiple pathways. Computational searches of the yeast genome reveal that the Gcn4 binding site is present at the promoters of numerous genes not directly connected with amino acid biosynthesis [21].

Under nitrogen depletion [19], a significant increase in the expression of DCS1, NTH1, and TPS1 genes can be observed after 8 h of nitrogen starvation. Corroborating these results, it has been demonstrated that these genes are induced up to 3.5-fold in wild type cells in response to starvation for histidine by treatment with 3-aminotriazole (3AT), a competitive inhibitor of His3p [21]. Therefore,
when a \textit{gcn4} mutant strain is treated with 3AT the expression profiles of \textit{DCS1}, \textit{NTH1}, and \textit{TPS1} genes show only an increase of about 1.5 fold. These results reinforce the idea that the GCN4 elements found several times in \textit{GCS1}, \textit{NTH1}, and \textit{TPS1} promoters (see table 2) could be involved in nitrogen limitation stress response in those genes. In addition, the treatment with the alkylating agent, methyl methane sulfonate (MMS), that induces GCN4 translation [21] also induces \textit{DCS1}, \textit{NTH1} and \textit{TPS1} expression [21].

Up to this day neutral trehalase has not been shown to be regulated by classical catabolite repression or derepression factors. However, \textit{NTH1} expression increases around 4.0-fold in \textit{gcr1} mutant strains after glucose addition to cells grown on lactate and glycerol. On the other hand, in the \textit{GCR1} control strain a 0.3-fold decrease was found [22]. The same occurs with \textit{DCS1} and \textit{TPS1} genes [22]. These results bring support for the \textit{GCR1} putative elements found in \textit{DCS1}, \textit{NTH1}, and \textit{TPS1} promoters (table 2).

The yeast \textit{gcr1} mutant grows on non-fermentative carbon sources at the same rate as wild type strains, however it exhibits a severe growth defect when grown in the presence of glucose, even when non-fermentable carbon sources are available [22]. The role of \textit{Gcr1} as an activator is best understood in relation to genes coding for glycolytic enzymes. \textit{Gcr1} is recruited to the UAS elements by Rap1 in order to activate its transcription. No changes were observed in \textit{DCS1}, \textit{NTH1}, and \textit{TPS1} expression in \textit{rap1} mutant [23], what indicates that the \textit{Gcr1} factor regulation for these genes does not depend on Rap1. Therefore, we might speculate that, in the presence of glucose, \textit{Gcr1} activates glycolytic genes with Rap1 and represses trehalose metabolism when either alone or complexed with another factor.

These results point toward trehalase as an alternative gluconeogenic enzyme forming glucose after stress conditions, when trehalose accumulated to protect the cell functions should be consumed as a carbon source in order to allow yeast cells to rapidly resume growth under favorable conditions.

Conclusions

Our results strongly indicate a central role for Dcs1p in inhibiting trehalase activation and preventing a wasteful futile cycle of synthesis and degradation of trehalose.

Table 2: Upstream elements shared in gene promoters of trehalose pathway.

	TAP		NTH1		TPS1	
	Position	Sequence	Position	Sequence	Position	Sequence
STRE	-518	AGGGG	-350	AGGGG	-472	AGGGG
	-342	AGGGG	-359	AGGGG	-305	AGGGG
	-152	AGGGG	-278	AGGGG	-249	AGGGG
	-239	AGGGG				
HSTE	-515	GAATCTCC	-222	GAAAAATCC	-164	TGGACTG
	-480	TTCTTTGAA				
	-470	GAAACATCC				
	-451	GAAAGTCC				
	-358	GAAGATCC				
GCN4	-693	TGACTT	-497	TGAATA	-626	TGATTTT
	-553	TGATTT	-186	TGAGTA	-134	TGATTA
	-496	TGAGTG				
	-487	TGAGTT				
	-414	TGACCTG				
GCR1	-466	CATCC	-635	CATCC	-293	CATCC
	-354	CTTCC	-612	CTTCC		
	-329	CTTCC	-413	CTTCC		
	-122	CTTCC				
ADR1	-515	TCTCC	-650	TCTCC	-635	TCTCC
	-505	TCTCC	-316	TCTCC		

Sequences were taken from the \textit{Saccharomyces cerevisiae} Promoter Database.
These conclusions provide a clear explanation for the above-mentioned paradox and broaden our understanding of metabolic fluxes in yeast cells.

Under stress conditions trehalose is accumulated in order to provide protection for membranes and proteins. During recovery from stress, trehalase is activated. On the other hand, should trehalose be required as a carbon source, activation of trehalase leads it through the gluconeogenic pathway.

Methods

Strains and media

The following *Saccharomyces cerevisiae* congenic strains were used: Y00000 (MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0), Y05179 (MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YLR270w::kanMX4). Source: EUROSCHARF, Institute for Microbiology – Johann Wolfgang Goethe-University, Frankfurt; Marie-Curie-Strasse 9; Building N250 - D-60439 Frankfurt – Germany.

Escherichia coli DH5α was used for plasmid manipulations.

Growth conditions

Yeast cells were grown either in a rich medium (YP) containing 1% yeast extract, 2% peptone or in a mineral medium (YNB, Difco yeast nitrogen base, with the necessary supplements); 2% glucose was used as carbon source. The pNL1 plasmid, a gift from C. Gancedo, was constructed inserting the NTH1 promoter in frame to the lacZ gene in the Yep353 [11].

Enzymatic activity measurements

Yeast extracts were prepared by shaking with glass beads, and protein was determined by the standard method of Stickland [24].

Trehalase activity determination

The assay of basal neutral trehalase was performed in 50 mM maleate buffer pH 6.0, 100 mM trehalose in a total volume of 200 µL. After incubation for 15 min. at 30°C the reaction was stopped in boiling water bath (3 min.). Glucose was determined by the glucose oxidase-peroxidase method. To perform the activation of cryptic trehalase, 50 µL of the activation cocktail containing 2 mM ATP, 20 mM MgCl2, 50 µM cAMP, 50 mM NaF and 5 mM theophylline prepared in 50 mM phosphate buffer, pH 7.5, was added to a suitable sample of the crude extract in a final volume of 100 µL. After incubation at 30°C for 15 min., the reaction was stopped by dilution with 400 µL of ice-cold 50 mM maleate buffer pH 6.0. Blanks were performed with omission of the activation cocktail. Basal trehalase activity is measured in cell free extracts prior to activation. Cryptic activity is the difference between totally activated trehalase and its basal activiy. One unit of trehalase is defined as the amount of enzyme that catalyses the hydrolysis of trehalose under the assay conditions giving rise to 1 µmol of glucose / minute.

β-galactosidase activity determination

For the β-galactosidase assay, cells were harvested and immediately frozen until use. Permeabilized cells were prepared with SDS and chloroform in Z-buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM 2-mercaptoethanol, pH7.0). β-galactosidase activity was determined by measuring 2-nitrophenyl-β-galactopyranoside hydrolysis [25].

Authors’ contributions

JFM carried out the experimental and *in silico* studies, and prepared the draft of the manuscript. ADP and PSA participated in the design of the study, performed the critical
reading of the manuscript and coordination. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by FAPESP (Fundaçao de Amparo à Pesquisa do Estado de São Paulo – contract grant number 96/1405-7) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

1. Van Solingen P and Van der Plaat JB: Partial purification of the protein system controlling the breakdown of trehalose in baker’s yeast. Biochim Biophys Acta 1975, 420:553-560.
2. Ortiz CH, Maia JCC, Tenan MN, Braz-Padrão GR and Panek AD: Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol 1983, 153:644-651.
3. De Mesquita JF, Paschoalin VMF and Panek AD: Modulation of trehalase activity in Saccharomyces cerevisiae by an intrinsic protein. Biochim Biophys Acta 1997, 1334:233-239.
4. Coutinho CC, Silva JT and Panek AD: Trehalase activity and its regulation during growth of Saccharomyces cerevisiae. Biochim Biophys Acta 1992, 1165:251-330.
5. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockšon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Goldwin B, Cronover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fieff S and Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
6. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M and Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001, 98:4569-4574.
7. DeRisi JL, Iyer VR and Brown BO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 280:880-886.
8. François J, Eraso P and Gancedo C: Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 1987, 164:369-373.
9. Souza AC, De Mesquita JF, Panek AD, Silva JT and Paschoalin VMF: Evidence for a modulation of neutral trehalase activity by Ca2+ and cAMP signaling pathways in Saccharomyces cerevisiae. Braz J Med Biol Res 2002, 35:11-16.
10. Liu H, Rodgers ND, Jiao X and Kiledjian M: The scavenger mRNA decapping enzyme Dcp5 is a member of the HIT family of pyrophosphatases. Embry 2002, 21:409-4708.
11. Parrou JL, Teste MA and François JM: Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 1997, 143:1891-1900.
12. Salehi Z, Geffers L, Villena C, Birkenhager R, Puwkina M, Berthetlot K, Ferro M, Gaskell S, Hagan I, Stapley B and McCarthy JEG: A nuclear protein in Schizosaccharomyces pombe with homology to the human tumor suppressor Fhit that is decapping activity. Mol Microbiol 2002, 46:69-62.
13. Quandt K, Frech K, Karas H, Wingender E and Werner T: MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995, 23:4878-4884.
14. Klingenhoff A, Frech K, Quandt K and Werner T: Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity. Bioinformatics 1999, 15:180-186.
15. Katti MV, Sakharkar MK, Ranjeekar PK and Gupta VS: TRES: comparative promoter sequence analysis. Bioinformatics 2000, 16:739-40.
16. Zhu J and Zhang MQ: SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 1999, 15:607-611.
17. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Prüms R, Reuter I and Schachner F: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 2000, 28:316-319.
18. Le Crom S, Devaux F, Jacq C and Marc P: yMGV: helping biologists with yeast microarray data mining. Nucleic Acids Res 2002, 30:76-79.
19. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D and Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Cell 2000, 11:4241-4257.
20. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee T, True HL, Lander ES and Young RA: Remodeling of yeast genome expression in response to environmental changes. Mol Cell 2001, 12:233-237.
21. Natarajan K, Meyer MR, Jackson MJ, Slade D, Roberts C, Hinebush AG and Marton MJ: Transcriptional profiling shows that Gcndp is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell 2001, 21:4347-4368.
22. López MC and Baker HV: Understanding the growth phenotype of the yeast GCRL mutant in terms of global genomic expression patterns. J Bacteriol 2000, 182:4970-4978.
23. Wyrick JJ, Holstege FC, Jennings EG, Causton HC, Shore D, Grunstein M, Lander ES and Young RA: Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 1999, 402:418-21.
24. Strockland KH: The determination of small quantities of bacteria by means of biuret reaction. J Gen Microbiol 1951, 5:698-703.
25. Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor Press, Cold Spring Harbor; 1972:352-355.