Title
Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components.

Permalink
https://escholarship.org/uc/item/0p3654gw

Journal
PLoS genetics, 2(7)

ISSN
1553-7390

Authors
Blower, Michael D
Daigle, Tanya
Kaufman, Thom
et al.

Publication Date
2006-07-01

DOI
10.1371/journal.pgen.0020110

Peer reviewed
Drosophila CENP-A Mutations Cause a BubR1-Dependent Early Mitotic Delay without Normal Localization of Kinetochore Components

Michael D. Blower¹, Tanya Daigle², Thom Kaufman³, Gary H. Karpen¹,4*

1 Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Anesthesiology, University of Washington, Seattle, Washington, United States of America, 3 Department of Biology, Indiana University, Bloomington, Indiana, United States of America, 4 Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America

The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID) display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization.

Citation: Blower MD, Daigle T, Kaufman T, Karpen GH (2006) Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components. PLoS Genet 2(7): e110. DOI: 10.1371/journal.pgen.0020110

Introduction

Proper kinetochore assembly and function is essential for the faithful transmission of chromosomes during both mitosis and meiosis. One critical function of the kinetochore is to serve as the site of the mitotic spindle attachment checkpoint (SAC), which monitors kinetochore microtubule attachment prior to anaphase onset [1,2]. It is hypothesized that the SAC monitors the attachment of kinetochore microtubules during prometaphase and metaphase, and inhibits anaphase progression until all chromosomes have achieved bipolar spindle attachment. The current model for SAC function suggests that unattached kinetochores recruit checkpoint proteins (such as components of the MAD, BUB, and ZW10/ROD protein complexes), and that these proteins are modified by unattached kinetochores to generate a diffusible signal that delays the onset of anaphase. It has recently been demonstrated that defects in SAC function result in organismal lethality and dominant haploinsufficiency defects. Haploinsufficiency for mouse MAD2, BUB3, or RAE1 results in elevated rates of chromosome missegregation, defects in SAC function, and a predisposition to cancer [3–5], demonstrating the fundamental importance of this checkpoint.

The role of kinetochore localization of SAC components in the generation of the anaphase delay [6] has come into question recently with the published disruption of several inner kinetochore proteins. Disruption of Nuf2 or Ndc80/Hecl in human cells results in a mitotic arrest, despite the fact that several outer kinetochore components (including Mad2) are unable to sustain kinetochore localization [7,8]. Similarly, disruption of human or chicken CENP-H or CENP-I (the homolog of Schizosaccharomyces pombe Mis6) arrests cells in mitosis for hours, despite the mislocalization of a variety of outer kinetochore proteins, including some SAC components [9–11]. In contrast, disruptions of components of the SAC result in premature entry into anaphase, rather than mitotic arrest or delay. These results suggest that continuous kinetochore localization of SAC components may not be necessary to signal the cell to delay anaphase onset. However, incomplete depletion of the inner kinetochore proteins could produce partially functional kinetochores in which some outer proteins localized properly, while others were mislocalized [8,11,12]. A partially dysfunctional kinetochore could recruit sufficient amounts of SAC proteins to generate an effective checkpoint signal, consistent with a requirement for SAC component recruitment to kinetochores.

A key component of the inner kinetochore is the centromere-specific histone H3-like protein CENP-A [13]. Several recent studies have demonstrated that CENP-A proteins are present in all eukaryotes, and that these proteins are essential for both cell and organismal viability [14–20]. CENP-A proteins replace both copies of histone H3 in...
Synopsis

Normal inheritance of genetic traits from one cell or organismal generation to the next depends on accurate chromosome replication and segregation. Defective chromosome segregation is associated with birth defects and cancer. The centromere is a single site on the chromosome that is responsible for assembling the kinetochore, which mediates chromosome attachment to the microtubule spindle and all chromosome movements. In addition, the spindle assembly checkpoint (SAC) ensures normal inheritance by delaying entry into anaphase when chromosome–spindle attachments are defective. Previous studies suggested that SAC function required kinetochore localization of key components. This study shows that elimination of a centromere-specific histone (CID) results in an early mitotic delay. Although this delay occurs earlier than the established time of SAC function (at the metaphase–anaphase transition), it depends on the presence of an essential SAC protein (BUBR1). Furthermore, the CID-mediated early mitotic delay occurs in the absence of kinetochore formation or localization of key SAC proteins. These results suggest that the fidelity of kinetochore–microtubule attachment is also monitored early in mitosis, and in the absence of kinetochore formation and localization of SAC components.

cid-Mediated Mitotic Delay Requires SAC

CID Null Mutants Display Embryonic Lethality

In a previous study, we found that anti-CID antibody injections into syncitial embryos resulted in phenotypes expected for kinetochore disruption (failure to congress in prometaphase, metaphase arrest, and anaphase segregation defects), but also produced unusual phenotypes (interphase and prophase arrests). However, it was unclear if these phenotypes were the consequence of loss of CID function, an artifact of antibody binding to CID, or a consequence of the specialized nature of the syncitial nuclear divisions. Therefore, we examined the phenotypic consequences of cid null mutations in Drosophila embryos. The alleles examined were T11–2 (Q51 to stop), T12–1 (Q83 to stop), T21–3 (Q94 to stop), and T22–4 (Q102 to stop) (J. Cecil and T. Kaufman, unpublished observations). All of these alleles are lethal when homozygous, in trans-heterozygous combinations, and over a deficiency for the region (unpublished data); thus, the cid gene is essential for Drosophila development.

To examine the phenotypic consequences of cid disruption, crosses were made between parents heterozygous for a cid mutation and a balancer that contained an ElaV-LacZ fusion construct, which is expressed in the developing nervous system [25]. We collected embryos from these crosses and stained them for CID, LacZ, histone H3 phosphorylation at serine 10 (PH3) [26], and DNA (DAPI). cid null and heterozygous embryos were unambiguously distinguished by the absence or presence (respectively) of ElaV-LacZ expression. cid null mutant embryos died around stage 15 of embryogenesis, and displayed a phenotypic series that correlated with the temporal disappearance of maternal CID protein and the absence of newly synthesized zygotic protein. At embryonic stages 9–10, cid null embryos displayed lagging chromosomes during anaphase and unresolved chromatin bridges during telophase, which were not observed in heterozygous controls (Figure 1A and 1B). These phenotypes are the result of partial loss of CID protein; staining with anti-CID antibodies demonstrated that maternally derived CID is still present in stage 9–10 embryos, albeit at reduced levels (Figure 1A and 1B). Lagging chromosomes and chromatin bridges are entirely consistent with the phenotypes we observed after partial disruption of CID by RNAi or antibody injection [17,27].

In later stages of development (stages 13–15), high levels of CID staining were observed in heterozygous siblings, whereas in cid homozygous mutant embryos, most cells in mitotically active tissues had no visible CID signal (Figure 1C and 1D). The PROD protein binds a satellite DNA near the Chromosomes 2 and 3 centromeres [28], and its localization is not dependent on the presence of CID [17]. Comparison of the levels of CID and PROD staining in homozygous mutant and heterozygous control embryos suggest that approximately 90%–100% of CID was depleted in stage 15 cid mutants (Figure S1, see Materials and Methods). Thus, some cells retain small amounts of maternal CID, and these alleles behave as nulls with respect to functional zygotic protein, as predicted from the early stop codons present in the mutations.

Homozygous cid null embryos displayed few defects associated with gross morphological patterning or development (unpublished data). However, defects were associated with the organization of the developing nervous tissue, consistent with the fact that few other cell types are actively dividing in later stage embryos, and that the most severe defects are also associated with the nervous tissue in other mitotic mutants that die during embryogenesis [29]. These later stage, terminal embryos displayed a high degree of disorganization of the developing nervous tissue, with obvious micronuclei, large presumably polyploid nuclei, very few true metaphase plates, and few anaphases and telophases. The overall nuclear density was much lower in the cid mutants (~1/2 of heterozygous controls), which is also consistent with the aneuploidy that results from failures in chromosome segregation and cell division. These phenotypic characteristics are very similar to a recently described mutation in Drosophila CENP-C [30], suggesting that these defects result from disruption of the inner kinetochore.
CID Disruption Results in an Early Mitotic Delay

The appearance of H3 phospho-serine 10 (PH3), destruction of the mitotic cyclins, and mitotic spindle morphology can be used to discriminate different stages of G2 and mitosis (Figure 2A). Cyclins A and B begin to accumulate in S and G2 phases [31], and PH3 begins to appear in late G2, and is used as a general marker for mitotic index [32]. Subsequently, cyclin A destruction is observed during prophase, cyclin B destruction occurs at the metaphase to anaphase (M:A) transition, and PH3 staining is gradually lost from chromosomes at the end of telophase.

To determine the effects of cid depletion on cell cycle progression, the number of cells in specific stages of mitosis was determined by staining homozygous and heterozygous mutant stage 15 embryos for tubulin, cyclin A, cyclin B, and PH3. Three observations demonstrated that cid mutants were delayed early in mitosis, predominantly in prophase/prometaphase. First, cid mutants displayed a 2.4-fold higher mitotic index (p < 0.01) and a 2-fold higher number of cells positive for cyclin A (p ≤ 0.01) and cyclin B (p ≤ 0.01), in comparison to heterozygous control siblings (Figure 2B and 2C). Second, cid mutants showed a marked increase in the number of cells in prophase and prometaphase, as judged by chromosome and spindle morphology (Figure 2B). Third, very few cells progressed to anaphase in cid mutants, suggesting that cid mutants were delayed prior to the metaphase–anaphase transition (Figure 2B). Thus, complete depletion of CID in embryos results in a mitotic delay, predominantly in prophase and prometaphase.

Inactivation of the DNA Damage Checkpoint Does Not Abrogate the cid-Mediated Mitotic Delay

The mitotic delay observed in homozygous cid mutant embryos suggested that cid depletion and failure to form a kinetochore activated a cell cycle checkpoint. A recent study in Xenopus suggested that DNA damage and repair may be involved in CENP-A assembly at centromeres [33]. Therefore, incomplete kinetochore chromatin assembly or chromosome segregation errors caused by cid mutation could result in DNA damage and activation of the DNA damage checkpoint, which would mediate the early mitotic cell cycle delay. To determine whether DNA damage phenocopies the cid null mutations, we treated cid mutant and heterozygous embryos with doxorubicin, a topoisomerase II inhibitor known to generate dsDNA breaks [34]. We found that doxorubicin treatment dramatically decreased the mitotic index of cid heterozygous embryos (Figure 3A–3C), consistent with previous studies of the effects of DNA damage on cell cycle progression [35]. Doxorubicin treatment had little effect on the mitotic index of cid homozygous mutant embryos, which likely reflects the fact that these cells were already delayed in mitosis at the time of drug addition. Importantly, the

Figure 1. cid Null Embryos Exhibit Multiple Mitotic Phenotypes. CID, PH3, and DAPI staining of cid/CyO and cid/cid embryos at different stages of development were monitored to evaluate mitotic progression and segregation defects. (A) Heterozygous (cid/CyO) stage 9–10 embryos displayed no mitotic defects and robust CID staining at kinetochores (inset). (B) cid null animals (trans-heterozygous for different cid alleles, see Materials and Methods) exhibited lagging chromosomes during anaphase. Some CID staining was still visible at this stage, demonstrating that these phenotypes resulted from partial loss of CID function, due to the presence of maternal CID protein. (C) cid/CyO stage 14–15 embryos show normal mitotic progression and normal CID staining at kinetochores (inset). (D) cid null animals exhibited an elevated mitotic index, lower nuclear density, and little detectable CID staining in some cells at stage 14–15. The strong depletion of CID staining suggests that these phenotypes are the result of complete loss of zygotic cid function. cid null animals have a large number of presumably polyploidy cells (inset) suggesting high levels of aneuploidy due to repeated failures in cell division. Scale bar indicates 15 μm.

DOI: 10.1371/journal.pgen.0020110.g001

Figure 2. cid Null Mutants Exhibit a G2/Prophase Delay. Cell cycle progression was monitored in cid/CyO and cid/cid embryos by staining for PH3, cyclin A, cyclin B, and tubulin. (A) Schematic diagram of the appearance and destruction of various cell cycle regulatory factors and markers. ANA, anaphase; META, metaphase; PRO, prophase; PRO-META, prometaphase; TELO, telophase. (B) cid/cid animals displayed an elevated mitotic index, and an increased number of cells in prophase and prometaphase, compared to cid/CyO controls. A, anaphase; M, metaphase; MI, mitotic index; P, prophase; PM, prometaphase; T, telophase. (C) cid/cid animals had a 2-fold higher number of cyclin A and B positive cells than cid/cid controls. Scale bars indicate 15 μm. DOI: 10.1371/journal.pgen.0020110.g002

 cid-Mediated Mitotic Delay Requires SAC

null animals have a 2-fold higher mitotic index (p < 0.01) and a 2-fold higher number of cells positive for cyclin A (p ≤ 0.01) and cyclin B (p ≤ 0.01), in comparison to heterozygous control siblings (Figure 2B and 2C).
decreased mitotic index in cid heterozygotes demonstrates that a DNA damage-induced cell cycle delay results in a fundamentally different (opposite) phenotype from the increased mitotic index observed in untreated cid null embryos.

We also performed the reciprocal experiment, to determine if an intact DNA damage checkpoint was necessary for the cid-mediated mitotic delay. A central component of the DNA damage response, the MEI-41 ATR kinase [35], was inhibited by treating cid mutant and heterozygous embryos with 2 mM caffeine [34]. We found that caffeine treatment of Drosophila embryos phenocopied mei-41 and grapes maternal affect mutations, and is likely to completely inactivate the DNA damage checkpoint (unpublished data). Inactivation of MEI-41 by caffeine treatment did not suppress the cid-mediated mitotic delay. The mitotic index of cid mutants remained nearly twice that of heterozygous controls, and most of the mitotic cells were found in prophase or prometaphase, with very few cells progressing to later stages of mitosis (Figure 3D–3F). These results demonstrate that inactivation of the DNA damage checkpoint does not abrogate the cid-mediated mitotic delay, and confirms that this delay is not the result of DNA damage induced by cid mutations.

cid Mutant Cells Have an Intact SAC Response to Microtubule Disruption

The other major cell cycle checkpoint that could be responsible for the cell cycle delay observed in cid mutants is the SAC, which monitors kinetochore microtubule attachment and regulates the metaphase to anaphase transition. However, the cid-mediated mitotic delay appears temporally and phenotypically distinct from SAC-mediated cell cycle effects. When the SAC is activated (e.g., by the addition of microtubule polymerization inhibitors), cyclin A is degraded, but not cyclin B [31,36] (compare to Figure 2), and cells arrest in prometaphase/metaphase with condensed but unaligned chromosomes. Finally, the absence of normal kinetochore formation in all cases in which CENP-A proteins have been depleted or mutated [15–20,37] suggests that cid null mutant cells should not have an intact SAC, and that SAC components should not play a role in the cid-mediated mitotic delay.

To directly test for the presence of an SAC response to microtubule disruption in cid mutant animals, we treated stage 15 cid homozygous and heterozygous animals with the microtubule depolymerizing agent colcemid. We found that both homozygous and heterozygous cells were delayed in response to colcemid treatment (Figure 4), consistent with the observation that the Saccharomyces cerevisiae CENP-A homolog Cse4 is not required for SAC function [38]. First, both genotypes exhibited a nearly 2-fold increase in mitotic index (Figure 4B). Second, the increased mitotic index was accompanied by a large increase in the number of cells accumulated in prometaphase/metaphase with condensed but unaligned chromosomes. Finally, the absence of normal kinetochore formation in all cases in which CENP-A proteins have been depleted or mutated [15–20,37] suggests that cid null mutant cells should not have an intact SAC, and that SAC components should not play a role in the cid-mediated mitotic delay.
treatment indicates that cells can eventually overcome the prophase delay, and that prometaphase is likely to be the terminal arrest point, similar to an SAC-mediated cell cycle arrest.

Mutation of the SAC Component bubr1 Partially Suppresses the cid-Mediated Mitotic Delay

To directly examine the role of the SAC in the cid-mediated mitotic delay, we determined if a mutation that inactivates the SAC can restore normal cell cycle progression. cid bubr1 double mutants were generated, and homozygous and heterozygous double mutant embryos were monitored for cell cycle progression by staining for PH3. Surprisingly, bubr1 mutations partially suppressed most of the cell cycle phenotypes associated with cid mutation (Figure 5A and 5B). The mitotic index in cid bubr1 double mutants was nearly the same as observed in heterozygous controls (1.1-fold, p = 0.6), cid bubr1/cid bubr1 compared to cid bubr1/CyO, compared to the 2.4-fold increase observed for cid/cid mutants over controls (see above). The number of cells delayed in prophase and prometaphase also decreased dramatically in cid bubr1 double mutants and was comparable to heterozygous controls, whereas the number of cells in anaphase showed a corresponding increase and was greater than controls. Note that cid bubr1 double mutants had a mitotic index nearly double that of cid single mutants, for reasons that are unclear at this time. We eliminated bias that could arise from this difference by only comparing homozygous double mutants to heterozygous double mutants (see Materials and Methods for a more detailed discussion). We conclude that inactivation of a component of the SAC relieves the cid-mediated mitotic delay, suggesting that at least one component of the SAC is involved in delaying cell cycle progression in the absence of CID.

CENP-C and the SAC Components BUBR1 and ROD Are Unable to Localize to Kinetochores in cid Mutants

It has been proposed that the APC (anaphase-promoting complex) inhibitory signal is generated by the rapid turnover of SAC proteins at unattached kinetochores [39–43]. We previously demonstrated that all tested outer kinetochore proteins (ROD, BUBR1, Cenp-meta, and POLO) fail to localize to kinetochores in CID-depleted tissue culture cells and CID antibody-injected embryos [17]. CENP-A disruptions in Caenorhabditis elegans, mouse, and human cells also result in failure to properly localize kinetochore components, including SAC proteins [15,17–19,37]. Disruption of kinetochore formation and SAC protein localization in cid/cid embryos was determined by staining for inner and outer kinetochore proteins. We found that the inner kinetochore protein CENP-C [30] was absent in most cid/cid cells, and occasionally was mislocalized in a diffuse pattern throughout the cell, consistent with studies in other organisms and with a severe disruption of kinetochore assembly (Figure 6). Consistent with these results, the SAC components ROD and BUBR1 were unable to localize to kinetochores in stage 15 cid null mutants.
animals, whereas BUBR1 and ROD were localized to kinetochores during all stages of mitosis in heterozygous controls (Figure 6). We conclude that cid null mutations delay cells in early mitosis in the absence of sustained kinetochore localization of essential components of the SAC, despite the requirement for at least one of these SAC components (BUBR1).

Discussion

We have shown that null mutations in the Drosophila member of the CENP-A protein family result in embryonic lethality after depletion of maternal CID protein. CID-depleted embryonic cells display an early mitotic delay, consistent with cell cycle defects observed after CID antibody injection [17], suggesting the involvement and activation of a cell cycle checkpoint. This result is similar to a recent knockout of CENP-A in chicken DT-40 cells and a CENP-C mutation in Drosophila, both of which resulted in a mitotic delay in the absence of kinetochore assembly [20,30].

However, these studies did not determine when the delay occurred in mitosis, whether the mitotic delays involved the SAC or the DNA repair checkpoint, or whether similar responses to CENP-A depletion occurred in animals.

We addressed the possible involvement of two known cell cycle checkpoints in the CID-mediated early mitotic delay, specifically the DNA damage and Sacs. A recent study suggested that DNA damage and repair may be involved in CENP-A assembly in Xenopus [33], raising the possibility that elimination of CID alters centromeric chromatin, resulting in DNA damage at the centromere. We addressed this hypothesis in two complementary ways. First, we compared the cid mutant mitotic delay phenotypes to the behavior of cells after inducing general DNA damage with doxorubicin. Induction of DNA damage resulted in a reduced mitotic index, not the increased mitotic index observed in the cid mutant embryos. Second, we disrupted the DNA damage checkpoint in cid mutant embryos using caffeine treatment, which inhibits MEI-41 (ATR), an essential component of the DNA damage response [34,35]. Caffeine treatment did not abrogate the cid-mediated mitotic delay. We conclude that DNA damage does not appear to be the signal that induces the cid-mediated early mitotic delay, and that this delay does not require an intact DNA damage checkpoint.

These results led us to address the possible involvement of the SAC in the CID-mediated early mitotic delay in animals. The SAC monitors microtubule attachments to the kinetochore; if normal bipolar attachments are not formed, activation of the SAC blocks entry into anaphase, resulting in a prometaphase/metaphase arrest [34,35]. The fact that the CID-mediated delay occurred earlier in mitosis than expected for activation of the SAC suggested that this checkpoint might not be involved. However, we observed that cid null mutant cells retained an intact SAC response to microtubule disruption by colcemid, which is similar to the response of Cse4 mutants in Sa. cerevisiae [38]. In addition, mutating an essential SAC component (BUBR1) resulted in abrogation of the CID-mediated delay. Previous studies suggested that kinetochore localization of SAC proteins (e.g. MAD2, BUBR1, ROD, and CENP-E) is absolutely required for SAC function. Nevertheless, we observed that BUBR1 and ROD, and the inner kinetochore protein CENP-C, lacked kinetochore localization in cid mutant embryos. These results suggest that the CID-mediated early mitotic delay involves the SAC, and that BUBR1 is serving a kinetochore-independent role in delaying mitotic progression, as suggested by recent studies in human and yeast cells [12,44,45].

Why Do cid Mutants Display an Early Mitotic Delay That Is BUBR1-Dependent?

Based on the previous observation of interphase/prophase arrest after CID antibody injection into embryos, we proposed that cells monitor kinetochore assembly early in mitosis, in addition to monitoring the presence of bipolar attachments later in mitosis [17]. It is also possible that cid null kinetochores may be able to recruit normal levels of SAC components at early stages of mitosis, but are unable to retain functional levels later in mitosis, as observed for disruption of human Hec1 and Nuf2 and DT-40 CENP-A [7,20].

Alternatively, mitotic arrest may occur in the absence of kinetochore localization of SAC components. Consistent with this hypothesis, the cid-mediated early mitotic delay requires
at least one SAC component (BUBR1), yet occurs without sustained kinetochore localization of multiple, essential components of the SAC (reported here and in [17]). The finding that defects in kinetochore assembly lead to a BUBR1-dependent early mitotic delay is supported by several recent studies. Disruption of chicken CENP-A, CENP-H, or CENP-I, all inner kinetochore proteins, delays cells in mitosis for hours [9–11,20]. These results suggest that the SAC is able to respond to multiple types of signals and inhibit cell cycle progression.

How could SAC components contribute to cell cycle delay early in mitosis, prior to their well-established role in monitoring bipolar attachments in prometaphase/metaphase? Loss of CENP-A proteins blocks kinetochore assembly, which may generate “free” (non-kinetochore localized) SAC complexes capable of inhibiting mitotic progression (Figure 7). Since the active inhibitory complex for the SAC is present throughout the cell cycle [46], the complete absence of kinetochore assembly, or the presence of “free” SAC components, could block cells early in mitosis by chronically activating the SAC. It has recently been shown that both BUBR1 and MAD2 function in a kinetochore-independent manner to regulate the length of mitosis, in addition to monitoring kinetochore-microtubule attachments [12,45]. Furthermore, recent studies in Drosophila have revealed a role for Bub3 in G2 and early mitotic delay in promoting the accumulation of mitotic cyclins [47], suggesting that components can ensure normal mitotic progression by inhibiting the APC in a kinetochore-independent manner. This interpretation is also consistent with recent studies that demonstrate SAC proteins play multiple roles in cell cycle regulation [48–50]. For example, mutations in Drosophila bubr1 have been shown to bypass the SAC, and are also able to suppress mutations that activate both the DNA damage and SAC in early embryos [48,51]. Furthermore, it has recently been demonstrated that SAC components are responsible for mediating a mitotic arrest in response to DNA damage in vertebrate cells [34], and the mitotic arrest in response to spindle malorientation in S. pombe [52]. These results strengthen the conclusion that the SAC can respond to more than bipolar kinetochore microtubule attachment, and suggest multiple roles for SAC components in cell cycle regulation. Therefore, the most likely explanation for the cid-mediated mitotic delay is that inhibitory SAC complexes can be formed in the absence of kinetochore localization (Figure 7).
The role of the kinetochore in cell cycle progression and the functions of SAC components are clearly more complex than previously thought. Future studies should focus on identifying the components and mechanisms responsible for the cid-mediated mitotic delay, and determining if this complex is identical to the standard SAC inhibitory complex.

Materials and Methods

Cytology, cid mutant embryos were collected from interallelic crosses and stained as described using either a formaldehyde or MeOH/EGTA fixation. Trans-heterozygous combinations of the different cid alleles were generated in order to eliminate phenotypic effects of other lethal mutations present on each of the cid mutant chromosomes (unpublished data). Antibodies were obtained for crosses between cid¹⁻² and cid²⁻⁴, although crosses between other alleles produced identical phenotypes. Antibodies used were cyclin A [31], cyclin B [31], LacZ (Sigma, St. Louis, Missouri, United States), tubulin (Sigma), ROD [53], BUBR1 [51], and CID [17].

For quantification of mitotic index and cyclin abundance, all cells within the developing central nervous system were counted from at least five mutant and five control embryos. The ratios presented are the number of PH3- or cyclin-positive cells divided by total cells, in order to normalize for the lower nuclear density present in cid mutant embryos. Quantification of the stages of mitosis was performed by costaining embryos for PH3 and tubulin. The distinction between prophase and prometaphase was made as follows: Prophase was classified as chromosomes with incomplete condensation (i.e., round PH3+ nucleus), in which no individual chromosomes or chromosome arms were visible and DNA was not obviously aligning at the metaphase plate. Prophase tubulin staining showed bright centrosomal signals with little or no obvious microtubules interacting with the chromosomes. Prometaphase was classified as chromosomes with complete condensation (i.e., clearly visible individual chromosomes and chromosome arms) in which the chromosomes were clearly in the process of aligning at the metaphase plate. Tubulin staining showed a focused bipolar microtubule array that was clearly interacting with the chromosomes.

For quantification of CID levels in mitotically active cells in mutant and control embryos (Figure S1), the sum of pixel values for both CID and PROD immunofluorescence from five to seven embryos was obtained using the two-dimensional polygon finding tool in softWoRx (Applied Precision, Issaquah, Washington, United States). The pixel values were summed and presented as a ratio of CID:PROD, to provide a rough estimate of the amount of CID depletion in each embryo. Based on these ratios, 90%–100% of CID was depleted in stage 15 cid^{cid} mutants, relative to heterozygous controls, suggesting retention of a small amount of maternal protein in some cells. For all quantifications, standard deviations were calculated per embryo, and data were compared using the Student t test. Note that the amount of CID depletion in cid homozygotes is likely to be an underestimate (up to 2-fold) with respect to wild-type embryos, since cid mutant homozygotes were used as the quantitation controls.

All images were acquired using a DeltaVision workstation (Applied Precision) and analyzed using softWoRx software, as described previously [17].

Drug treatments. cid mutant and heterozygous embryos were bleach dechorionated and incubated in a 1:1 mixture of Schneider's medium (+10% heat-inactivated FBS) and octane as described in [54]. Colcemid was used at a concentration of 3 μg/ml for 1 h, caffeine was used at a concentration of 2 mM for 2 h, and doxorubicin was used at a concentration of 2 μM for 2 h. After drug treatment, embryos were fixed using formaldehyde and processed for immunofluorescence as described above.

Genetics. The bubr1 allele used was k03113, and was obtained from the Bloomington Stock Center (Bloomington, Indiana, United States). cid bubr1 double mutants were generated by recombination using standard methods. Mutations in cid (entromere identifier CG13329) were recovered in genetics used to isolate new mutant alleles of cns (entromesis) [55]. The cid locus is tightly linked to cns in the 50A region of the right arm of the second chromosome in D. melanogaster.

The genes in this genomic region, proximal to distal, are cns (entromosin CG18329), Cbs (entromosin's beautiful ssster CG4840), arr (arrow CG5912), cbc (crowded by cid CG5970), cid (entromere identifier CG13329), bhc (h-b in a boxer CG6016), and drk (downstream of receptor kinase CG6053). The initial characterization of this region included screening of cDNA libraries and expressed sequence tag (EST) collections to produce transcript profiles for each of these genes, and saturation mutagenesis screens to recover recessive lethal and sterile mutations. Breakpoint-associated mutations, principally deletions, and complementation analyses were used to localize each of the newly recovered mutations to the individual molecularly defined and computationally identified transcription units. Using primers designed from genomic and cDNA sequences the mutant alleles of each locus were sequenced and the genetic localization of the complementation groups confirmed. This screen resulted in the recovery of the four alleles of cid reported in this paper: cid¹⁻², Q51 to stop, cid²⁻⁴, Q83 to stop, cid²⁻⁴, Q94 to stop, and cid²⁻⁴, Q102 to stop.

Examination of cid bubr1 heterozygous mutants. During the course of scoring the mitotic parameters of cid bubr1 double mutants, we noticed that cid bubr1 single mutants had a mitotic index nearly twice as high as cid single mutants alone, which prompted us to investigate these heterozygous mutants further for possible haploinsufficiency effects. We found no incidence of chromosome segregation defects in cid bubr1/Cyo embryos despite their elevated mitotic index. We also examined mitotic tissue of cid bubr1/Cyo third instar larval brains because this tissue allows a more precise karyotypic analysis and could reveal subtle defects not seen in embryonic tissue. We found that cid bubr1/Cyo animals had a higher mitotic index than cid/Cyo animals ([1.10 [n = 315 fields] vs. 0.76 [n = 400 fields]), yet we did not find any evidence for aneuploidy or mitotic defects in any of the mitotic figures examined. We then determined whether cid bubr1 and cid heterozygous animals had a normal response to colcemid treatment by incubating brains with colcemid for 1 h. We found that cid bubr1 and cid heterozygous mutants had a normal response to colcemid treatment (cid/Cyo mitotic index increased from 0.86 to 2.17 [n = 551 fields], and cid bubr1/Cyo mitotic index increased from 1.10 to 2.37 [n = 264 fields]). From this data we conclude that cid and cid bubr1 mutants do not have a haploinsufficient effect on mitosis, and that the flies are unlikely to be oogenesis in the genetic background that lead to the increased mitotic index of cid bubr1 double mutants. To avoid interpretation artifacts that might be caused by this difference, in all cases we only compared data from cid bubr1 homozygotes to cid bubr1 heterozygotes, and cid homozygotes to cid heterozygotes.

Supporting Information

Figure S1. Quantification of the Amount of CID Depletion in cid Mutant Embryos

Stage 15 cid^{cid} and cid/Cyo embryos were stained for CID and PROD. PROD was present in a punctate pattern in both genotypes. Estimation of the amount of CID depletion was performed by comparing the ratio of total CID staining to PROD staining in five different mutant and heterozygous embryos. From this analysis we estimate that 90%–100% of CID protein is depleted in mutant embryos.

Found at DOI: 10.1371/journal.pgen.0020110.sg001 (4.0 MB PDF).

Acknowledgments

We thank the following for providing antibodies: Barbara Mellone (CENP-C), Davi Glover (cyclins A and B), Tibor Torok (PROD), Claudio Sunkel (BUBR1), and Roger Karess (ROD).

Author contributions. MDB and GHK conceived and designed the experiments. MDB and TD performed the experiments. MDB and GHK analyzed the data. MDB and TK contributed reagents/materials/analysis tools. MDB and GHK wrote the paper.

Funding. This research was supported by NIH R01 GM066272 to G.K.

Competing interests. The authors have declared that no competing interests exist.

References

1. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.

2. Rieder CL, Matiazio H (2004) Stuck in division or passing through: What happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7: 657–661.
3. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, et al. (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355–359.

4. Babu JR, Jegnathan KB, Baker DJ, Wu X, Kang-Decki N, et al. (2005) Rac1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 160: 341–353.

5. Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23: 1–27.

6. Rieder CL, Cole RW, Kodjabachian S, Shudler G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130: 941–948.

7. DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED (2002) hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 159: 549–555.

8. Martin-Lluesma S, Stueck VM, Nigg EA (2002) Role of hec1 spindle checkpoint signaling and kinetochore recruitment of Mad1/Man2. Science 297: 2597–2599.

9. Fukagawa T, Kimaki Y, Nishihashi A, Regnier V, Haraguchi T, et al. (2001) CENP-H, a constitutive centromere component, is required for centromere function in C. elegans. EMBO J 20: 4603–4616.

10. Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, et al. (2001) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2: 463–476.

11. Lin P, Hittle JC, Jablonksi SA, Campbell MS, Yoda K, et al. (2003) Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5: 341–345.

12. Meraldi P, Draviam VM, Sorger PK (2004) Timing and checkpoints in the regulation of mitotic progression. Dev Cell 7: 45–50.

13. Smith MM (2002) Centromeres and variant histones: What, where, when and why? Curr Opin Cell Biol 14: 279–285.

14. Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a cell cycle-dependent nuclear protein that binds to DNA. Mol Cell 2: 375–383.

15. Smith MM (2002) Centromeres and variant histones: What, where, when and why? Curr Opin Cell Biol 14: 279–285.

16. Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere for proper chromosome segregation. EMBO J 19: 2027–2039.

17. Heuer JG, Li K, Kaufman TC (1995) The mei-97 rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila melanogaster. Genetics 139: 953–964.

18. Rieder CL, Cole RW, Kodjabachian S, Shudler G (1995) The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 130: 941–948.

19. Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 116: 1299–1306.

20. Moran RJ, Bender CM, Tsuchida M, Keenan R, Leach DB, et al. (1995) The mei-97 rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila melanogaster. Genetics 139: 953–964.

21. Basu J, Bousbaa H, Logarinho E, Li Z, Williams BC, et al. (1999) Mutations in the SDE1 gene encoding a subunit of the Fah2p complex cause male sterility in C. elegans. EMBO J 18: 3483–3494.

22. 35. Hari KL, Santerre A, Sekelsky JJ, McKim KS, Boyd JB et al. (1995) The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82: 813–821.

23. 36. Rieder CL, Cole RW, Rieder CL (2002) DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr Biol 12: 1873–1886.

24. 37. Haraguchi T, Fukagawa T, Zerjal T, Burns E, et al. (2005) CENP-A, a novel centromere protein, is required for centromere function and centromere assembly in D. melanogaster. EMBO J 24: 4563–4577.

25. 38. Torok T, Harvie PD, Buratovich M, Bryant PJ (1997) The product of MAD2 is required for the maintenance of stable kinetochore-microtubule attachment and normal mitotic cell death in human cells. Cell Growth Differ 8: 685–690.

26. 39. Moore LL, Roth MB (2001) HCP-1, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol 153: 1199–1208.

27. 40. Gardner RD, Poddar A, Yellman T, Tavormina P, Montague DO, et al. (2001) The spindle checkpoint of the yeast Saccharomyces cerevisiae requires checkpoint function and maps to the CBF3 domain. Genetics 157: 1493–1502.

28. 41. Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150: 1253–1261.

29. 42. Shah JV, Cleveland DW (1999) Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 100: 997–1000.

30. 43. Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, et al. (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155: 1159–1172.

31. 44. Shaw JC, Botvinick E, Bondy Z, Furnari F, Berns M, et al. (2004) Dynamics of centromere and kinetochore proteins: Implications for checkpoint signaling and silencing. Curr Biol 14: 942–952.

32. 45. Fraschini R, Beretta A, Sironi L, Monacchioni A, Lucchini G, et al. (2001) Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J 20: 6648–6659.

33. 46. Poddar A, Stuckenberg PT, Burke DJ (2005) Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot Cell 4: 867–878.

34. 47. Sudakini V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154: 925–936.

35. 48. Lopes CS, Sampao P, Williams B, Goldberg M, Sunkel CE (2005) The Drosophila Bub3 protein is required for the mitotic checkpoint and for normal accumulation of cyclin D2 and early stages of mitosis. J Cell Sci 118: 187–198.

36. 49. Garner M, van Kreeveld S, Su TT (2001) mei-41 and bub1 block mitosis at two distinct steps in response to incomplete DNA replication in Drosophila embryos. Curr Biol 11: 1595–1599.

37. 50. Garber PM, Rieder CL (2002) Overlapping roles of the spindle assembly and DNA damage checkpoints in the cell-cycle response to altered chromosones. Cell 103: 997–1000.

38. 51. Basu J, Bousbaa H, Logarinho E, Li Z, Williams BC, et al. (1999) Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block anaphase in Drosophila. J Cell Biol 146: 13–28.

39. 52. Tournier S, Gachet Y, Buck V, Hyams JS, Millar JB (2004) Disruption of astral microtubule contact with the cell cortex activates a Bub1, Bub3, and Mad3-dependent checkpoint in fission yeast. Mol Biol Cell 15: 3545–3556.

40. 53. Scantor F, Aguilera I, Saenzes B, Kune N, Blottiere L, et al. (1999) The rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila. J Cell Sci 112: 3757–3768.

41. 54. Su TT, Campbell SD, O’Farrell PH (1999) Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events. Curr Biol 9: 919–922.

42. 55. Heuer JC, Li K, Kaufman TC (1995) The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 121: 3861–3876.