The Trace Theorem, the Luzin N- and Morse–Sard Properties for the Sharp Case of Sobolev–Lorentz Mappings

Mikhail V. Korobkov1,2 · Jan Kristensen3

Received: 7 August 2015 / Published online: 14 October 2017 © The Author(s) 2017

Abstract We prove Luzin N- and Morse–Sard properties for mappings $v : \mathbb{R}^n \to \mathbb{R}^d$ of the Sobolev–Lorentz class $W^{k, p}_{p, 1}$, $p = \frac{k}{k}$ (this is the sharp case that guarantees the continuity of mappings). Our main tool is a new trace theorem for Riesz potentials of Lorentz functions for the limiting case $q = p$. Using these results, we find also some very natural approximation and differentiability properties for functions in $W^{k, p}_{p, 1}$ with exceptional set of small Hausdorff content.

Keywords Sobolev–Lorentz space · Luzin N-property · Morse–Sard theorem · Trace theorem · Riesz potentials · Approximation

Mathematics Subject Classification 58C25 · 26B10 · 46E30

1 Introduction

In this paper, we continue the study of the Luzin N- and Morse–Sard properties for the Sobolev mappings under minimal integrability assumptions initiated in our previous

M. V. Korobkov was partially supported by the Russian Foundations for Basic Research and (Grants No. 14-01-00768 and 15-01-08275) and by the Dynasty Foundation.

Jan Kristensen
kristens@maths.ox.ac.uk

Mikhail V. Korobkov
korob@math.nsc.ru

1 Sobolev Institute of Mathematics, Acad. Koptyuga pr., 4, Novosibirsk, Russia
2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China
3 Mathematical Institute, University of Oxford, Andrew Wiles Building, Oxford OX2 6GG, UK
The Trace Theorem, the Luzin N- and Morse–Sard properties...

papers [11,12,24], see also [22]. Of course, it is in this context very natural to restrict
attention to continuous mappings, and so require from the considered function spaces
that the inclusion \(v \in W^k_p(\mathbb{R}^n, \mathbb{R}^d) \) should guarantee at least the continuity of \(v \). For
values \(k \in \{1, \ldots, n-1\} \) it is well known that \(v \in W^k_p(\mathbb{R}^n, \mathbb{R}^d) \) is continuous for \(p > \frac{n}{k} \) and could be discontinuous for \(p \leq \frac{n}{k} \). So the borderline case is \(p = p_0 = \frac{n}{k} \).

It is well known (see for instance [22]) that \(v \in W^k_{p_0}(\mathbb{R}^n, \mathbb{R}^d) \) is continuous if the
derivatives of \(k \)-th order belong to the Lorentz space \(L^{p_0,1} \), we will denote the space
of such mappings by \(W^k_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d) \). We refer to Sect. 2 for relevant definitions and
notation.

In this paper, we prove the following Luzin N property with respect to Hausdorff
content:

Theorem 1.1 Let \(k \in \{1, \ldots, n\} \), \(q \in [p_0, n] \), and \(v \in W^k_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d) \). Then for
each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any set \(E \subset \mathbb{R}^n \) if \(\mathcal{H}^q(\mathbb{R}^n) \leq \delta \), then
\(\mathcal{H}^q(v(E)) < \varepsilon \). In particular, \(\mathcal{H}^q(v(E)) = 0 \) whenever \(\mathcal{H}^q(E) = 0 \).

Here \(\mathcal{H}^q(\mathbb{R}^n) \) is as usual the \(q \)-dimensional Hausdorff content:

\[
\mathcal{H}^q(E) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam } E_i)^q : E \subset \bigcup_{i=1}^{\infty} E_i \right\}.
\]

Note that the case \(k = 1 \) was considered in the paper [22], and the case \(k > 1, q > p_0 \)
in [24], so we omit them and consider here only the remaining limiting case \(q = p_0 \),
\(k > 1 \).

To study this limiting case, we need a new version of the Sobolev Embedding
Theorem that gives inclusions in Lebesgue spaces with respect to suitably general
positive measures. For \(\beta \in (0, n) \) denote by \(\mathcal{M}^\beta \) the space of all nonnegative Borel
measures \(\mu \) on \(\mathbb{R}^n \) such that

\[
\| \mu \|_\beta = \sup_{I \subset \mathbb{R}^n} \ell(I)^{-\beta} \mu(I) < \infty, \tag{1.1}
\]

where the supremum is taken over all \(n \)-dimensional cubic intervals \(I \subset \mathbb{R}^n \) and \(\ell(I) \)
denotes sidelength. Recall the following classical theorem proved by Adams [2] (see
also [5] and [28, Sect. 4.1]).

Theorem A Let \(\mu \) be a positive Borel measure on \(\mathbb{R}^n \) and \(\alpha > 0 \), \(1 < p < q < \infty \),
\(\alpha p < n \). Then for any \(f \in L_p(\mathbb{R}^n) \) the estimate

\[
\int |I_\alpha f|^q \, d\mu \leq C \| \mu \|_\beta \cdot \| f \|_{L_p}^q \tag{1.2}
\]

holds with \(\beta = (n - \alpha p)^{\frac{q}{p}} \), where \(C \) depends on \(n \), \(p \), \(q \), \(\alpha \) only.

Here

\[
I_\alpha f(x) = \int_{\mathbb{R}^n} f(y) \frac{1}{|y - x|^{n - \alpha}} \, dy
\]
is the Riesz potential of order α. The above estimate (1.2) fails for the limiting case $q = p$. Namely, there exist functions $f \in L_p(\mathbb{R}^n)$ such that $I_\alpha f(x) = +\infty$ on some set of positive $(n - \alpha p)$-Hausdorff measure1, see for instance [23] and also for further background and history on the question [4]. Nevertheless, we prove the following result for this limiting case $q = p$:

Theorem 1.2 Let μ be a positive Borel measure on \mathbb{R}^n and $\alpha > 0$, $1 < p < \infty$, $\alpha p < n$. Then for any $f \in L_{p,1}(\mathbb{R}^n)$ the estimate

$$\|I_\alpha f\|_{L_p(\mu)} \leq C\|\mu\|_\beta^{1/p} \cdot \|f\|_{L_{p,1}},$$

holds with $\beta = n - \alpha p$, where C depends on n, p, α only.

In view of the definition of the Lorentz spaces, it is sufficient to prove the above assertion for the simplest case when f coincides with the indicator function of some compact set:

Theorem 1.3 Let μ be a positive Borel measure on \mathbb{R}^n and $\alpha > 0$, $1 < p < \infty$, $\alpha p < n$. Then for any compact set $E \subset \mathbb{R}^n$ the estimate

$$\|I_\alpha 1_E\|^p_{L_p(\mu)} \leq C\|\mu\|_\beta \text{meas}(E),$$

holds with $\beta = n - \alpha p$, where 1_E is the indicator function of the set E and C depends on n, p, α only.

Note that our proof of the trace theorem is self-contained, is independent of the previous proofs of these type of results, and uses only very natural and elementary arguments.

From the definition of the space $W^k_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d)$ of Sobolev–Lorentz mappings and the classical estimate $|\nabla v| \leq C|\nabla^{k-1} v|$, Theorem 1.2 implies

Theorem 1.4 Let μ be a positive Borel measure on \mathbb{R}^n, $k \in \{1, \ldots, n\}$. Then for any function $v \in W^k_{p_0,1}(\mathbb{R}^n)$ the estimate

$$\int |\nabla v|^{p_0} \, d\mu \leq C\|\mu\|_{p_0} \cdot \|\nabla^k v\|^{p_0}_{L_{p_0,1}},$$

holds, where C depends on n, k only.

From these results, we deduce also some new differentiability and approximation properties of Sobolev–Lorentz mappings $v \in W^k_{p_0,1}(\mathbb{R}^n)$. Namely, for $m \leq n$ the m-order derivatives $\nabla^m v$ are well-defined H^{mp_0}-almost everywhere, a function v is

1 The above estimate (1.2) remains valid for $q = p$ if the measure μ instead of (1.1) satisfies the estimate $\mu(K) \leq C R_{a_p}(K)$ for all compact sets $K \subset \mathbb{R}^n$, here $R_{a,p}$ is the Riesz capacity: $R_{a,p}(K) = \inf \{\|f\|_{L_p} : f \in L_p(\mathbb{R}^n), I_\alpha f(x) \geq 1 \text{ on } K\}$, see [3]. Another geometric criterion for such an estimate (without using of Riesz capacity) was found in [23]. A simpler sufficient condition was found in [19], see also [29, p. 28].
m-times differentiable (in the classical Fréchet–Peano sense) \mathcal{H}^{mp_o}—almost everywhere, and, finally, it coincides with C^m-smooth function on $\mathbb{R}^n \setminus U$, where the open exceptional set U has small $\mathcal{H}_\infty^{mp_o}$-Hausdorff content (see Theorems 3.9, 3.11–3.12). Note that for mappings of the classical Sobolev space $W^k_{p_o}(\mathbb{R}^n)$, the corresponding exceptional set U has small Bessel capacity $B_{k-m,p}(U) < \epsilon$, and, respectively, the gradients $\nabla^m v$ are well defined in \mathbb{R}^n except for some exceptional set of zero Bessel capacity $B_{k-m,p}$ (see, e.g., [9] and Chap. 3 in [36]).

In the last Subsect. 3.5, we discuss Morse–Sard-type theorems for Sobolev–Lorentz mappings. Namely, for an open set $\Omega \subset \mathbb{R}^n$ and a mapping $v \in W^k_{p_o,1,loc}(\Omega, \mathbb{R}^d)$ denote $Z_{v,m} = \{x \in \Omega : v$ is differentiable at x and rank $\nabla v(x) < m\}$. (recall, that by previous results v is differentiable \mathcal{H}^{p_o} a.e.). We state:

Theorem 1.5 If $k, m \in \{1, \ldots, n\}$, Ω is an open subset of \mathbb{R}^n, and $v \in W^k_{p_o,1,loc}(\Omega, \mathbb{R}^d)$, then $\mathcal{H}^{q_o}(v(Z_{v,m})) = 0$.

Here

$$p_o = \frac{n}{k} \quad \text{and} \quad q_o = m - 1 + \frac{n - m + 1}{k} = p_o + (m - 1)(1 - k^{-1}). \quad (1.6)$$

The theorem was proved for C^k-smooth functions by Morse [30] in 1939 for the case $k = n, m = d = q_o = 1$, and subsequently by Sard [32] in 1942 for $k = n - m + 1$, $m = d = q_o$. For arbitrary natural values k, n, m, and C^k-smooth functions, the result was proved almost simultaneously by Dubovitskii [15] in 1967 and Federer [18, Theorem 3.4.3] in 1969.\footnote{Federer announced [17] his result in 1966, this announcement (without any proofs) was sent on 08.02.1966. For the historical details, Dubovitskii sent his paper [15] (with complete proofs) a month earlier, on 10.01.1966.}

The Morse–Sard Theorem for Sobolev spaces $W^k_p(\mathbb{R}^n, \mathbb{R}^m)$ with $p > n$ (i.e., when $W^k_p(\mathbb{R}^n) \hookrightarrow C^{k-1}(\mathbb{R}^n)$) was obtained in [13] (see also [20] for a simple proof), and for Lipschitz and Hölder continuous mappings $C^{k,\lambda}$ — see, e.g., in [7,8], respectively. More facts about history of this issue could be found in our papers [11,12,24], where the above Theorem 1.5 was proved in the Sobolev context $W^k_{p_o}(\mathbb{R}^n)$ for $k, m \in \{2, \ldots, n\}$. For $k = 1$ (i.e., $q_o = n$) it is folklore (see, e.g., [33]), so in the present paper, we need to only consider the case $m = 1, q_o = p_o = \frac{n}{k}$.

Let us remark, in conclusion, that an interesting phenomenon occurs for functions of the Sobolev–Lorentz space $W^k_{p_o,1}(\mathbb{R}^n, \mathbb{R}^d)$. On the one hand, the order of integrability is very sharp—the minimal order, that guarantees a priori only continuity of mappings. On the other hand, these mappings a posteriori have many additional analytical regularity properties: the Luzin N-property, differentiability and approximation properties, and the Morse–Sard property (see above).

For instance, if $k = n - m + 1$, then almost all level sets of mappings $v \in W^k_{p_o,1}(\mathbb{R}^n, \mathbb{R}^m)$ are C^1-smooth manifolds [24]. (The result should be contrasted with the fact that mappings of class $W^k_{p_o,1}(\mathbb{R}^n, \mathbb{R}^m)$ are continuous only and need not to be C^1-smooth in general.) This property recently found some applications in mathematical fluid mechanics (see [25]).
2 Preliminaries

By an \(n\)-dimensional cubic interval, we mean a closed cube in \(\mathbb{R}^n\) with sides parallel to the coordinate axes. If \(Q\) is an \(n\)-dimensional cubic interval, then we write \(\ell(Q)\) for its sidelength.

For a subset \(S\) of \(\mathbb{R}^n\), we write \(L^n(S)\) for its outer Lebesgue measure. The \(m\)-dimensional Hausdorff measure is denoted by \(\mathcal{H}^m\) and the \(m\)-dimensional Hausdorff content by \(\mathcal{H}^m_\infty\). Recall that for any subset \(S\) of \(\mathbb{R}^n\) we have by definition

\[
\mathcal{H}^m(S) = \lim_{\alpha \searrow 0} \mathcal{H}^m_\alpha(S) = \sup_{\alpha > 0} \mathcal{H}^m_\alpha(S),
\]

where for each \(0 < \alpha \leq \infty\),

\[
\mathcal{H}^m_\alpha(S) = \inf \left\{ \sum_{i=1}^\infty (\text{diam } S_i)^m : \text{diam } S_i \leq \alpha, \ S \subset \bigcup_{i=1}^\infty S_i \right\}.
\]

It is well known that \(\mathcal{H}^n(S) = \mathcal{H}^n_\infty(S) \sim L^n(S)\) for sets \(S \subset \mathbb{R}^n\).

To simplify the notation, we write \(\|f\|_{L^p}^p\) instead of \(\|f\|_{L^p(\mathbb{R}^n)}\), etc.

The Sobolev space \(W^k_p(\mathbb{R}^n, \mathbb{R}^d)\) is as usual defined as consisting of those \(\mathbb{R}^d\)-valued functions \(f \in L^p(\mathbb{R}^n)\) whose distributional partial derivatives of orders \(l \leq k\) belong to \(L^p(\mathbb{R}^n)\) (for detailed definitions and differentiability properties of such functions see, e.g., [14, 16, 28, 36]). Denote by \(\nabla^l f\) the vector-valued function consisting of all \(l\)-th order partial derivatives of \(f\) arranged in some fixed order. However, for the case of first-order derivatives \(l = 1\), we shall often think of \(\nabla f(x)\) as the Jacobi matrix of \(f\) at \(x\), thus the \(d \times n\) matrix whose \(r\)-th row is the vector of partial derivatives of the \(r\)-th coordinate function.

We use the norm

\[
\|f\|_{W^k_p} = \|f\|_{L^p} + \|\nabla f\|_{L^p} + \cdots + \|\nabla^k f\|_{L^p},
\]

and unless otherwise specified all norms on the spaces \(\mathbb{R}^s\) \((s \in \mathbb{N})\) will be the usual euclidean norms.

Working with locally integrable functions, we always assume that the precise representatives are chosen. If \(w \in L_{1, \text{loc}}(\Omega)\), then the precise representative \(w^*\) is defined for all \(x \in \Omega\) by

\[
(2.1) \quad w^*(x) = \begin{cases}
\lim_{r \searrow 0} \int_{B(x,r)} w(z) \, dz, & \text{if the limit exists and is finite,} \\
0 & \text{otherwise,}
\end{cases}
\]

where the dashed integral as usual denotes the integral mean,

\[
\int_{B(x,r)} w(z) \, dz = \frac{1}{\mathcal{L}^n(B(x,r))} \int_{B(x,r)} w(z) \, dz,
\]
and \(B(x, r) = \{ y : |y - x| < r \} \) is the open ball of radius \(r \) centered at \(x \). Henceforth, we omit special notation for the precise representative writing simply \(w^* = w \).

We will say that \(x \) is an \(L_p \)-Lebesgue point of \(w \) (and simply a Lebesgue point when \(p = 1 \)), if

\[
\int_{B(x, r)} |w(z) - w(x)|^p \, dz \to 0 \quad \text{as} \quad r \searrow 0.
\]

If \(k < n \), then it is well known that functions from Sobolev spaces \(W^k_p(\mathbb{R}^n) \) are continuous for \(p > \frac{n}{k} \) and could be discontinuous for \(p \leq p_0 = \frac{n}{k} \) (see, e.g., [28, 36]). The Sobolev–Lorentz space \(W^k_{p,q,1}(\mathbb{R}^n) \subset W^k_{p,q}(\mathbb{R}^n) \) is a refinement of the corresponding Sobolev space that for our purposes turns out to be convenient. Among other things functions that are locally in \(W^k_{p,q,1} \) on \(\mathbb{R}^n \) are in particular continuous.

Given a measurable function \(f : \mathbb{R}^n \to \mathbb{R} \), denote by \(f^*_s : (0, \infty) \to \mathbb{R} \) its distribution function

\[
f^*_s(s) := \mathcal{L}^n \{ x \in \mathbb{R}^n : |f(x)| > s \},
\]

and by \(f^* \) the nonincreasing rearrangement of \(f \), defined for \(t > 0 \) by

\[
f^*(t) = \inf \{ s \geq 0 : f^*_s(s) \leq t \}.
\]

Since \(|f|\) and \(f^* \) are equimeasurable, we have for every \(1 \leq p < \infty \),

\[
\left(\int_{\mathbb{R}^n} |f(x)|^p \, dx \right)^{1/p} = \left(\int_0^{+\infty} f^*(t)^p \, dt \right)^{1/p}.
\]

The Lorentz space \(L_{p,q}(\mathbb{R}^n) \) for \(1 \leq p < \infty, 1 \leq q < \infty \) can be defined as the set of all measurable functions \(f : \mathbb{R}^n \to \mathbb{R} \) for which the expression

\[
\| f \|_{L_{p,q}} = \begin{cases}
\left(\frac{q}{p} \int_0^{+\infty} \left(t^{1/p} f^*(t) \right)^q \frac{dt}{t} \right)^{1/q} & \text{if } 1 \leq q < \infty \\
\sup_{t>0} t^{1/p} f^*(t) & \text{if } q = \infty
\end{cases}
\]

is finite. We refer the reader to [27, 35, 36] for information about Lorentz spaces. However, let us remark that in view of the definition of \(\| \cdot \|_{L_{p,q}} \) and the equimeasurability of \(f \) and \(f^* \) we have \(\| f \|_{L_p} = \| f \|_{L_{p,p}} \) so that in particular \(L_{p,p}(\mathbb{R}^n) = L_p(\mathbb{R}^n) \). Further, for a fixed exponent \(p \) and \(q_1 < q_2 \), we have the estimate \(\| f \|_{L_{p,q_2}} \leq \| f \|_{L_{p,q_1}} \), and, consequently, the embedding \(L_{p,q_1}(\mathbb{R}^n) \subset L_{p,q_2}(\mathbb{R}^n) \) (see [27, Theorem 3.8(a)]). Finally, we recall that \(\| \cdot \|_{L_{p,q}} \) is a norm on \(L_{p,q}(\mathbb{R}^n) \) for all \(q \in [1, p] \) and a quasi-norm in the remaining cases \(q \in (p, \infty) \) (see [27, Proposition 3.3]).

Here we shall mainly be concerned with the Lorentz space \(L_{p,1} \), and in this case, one may rewrite the norm as (see for instance [27, Proposition 3.6])
\[\| f \|_{p,1} = \int_0^{+\infty} \left[\mathcal{L}^n(\{x \in \mathbb{R}^n : |f(x)| > t\}) \right]^{\frac{1}{p}} dt. \quad (2.2) \]

We record the following subadditivity property of the Lorentz norm for later use.

Lemma 2.1 (see, e.g., [27, 31]) Suppose that \(1 \leq p < \infty\) and \(E = \bigcup_{j \in \mathbb{N}} E_j\), where \(E_j\) are measurable and mutually disjoint subsets of \(\mathbb{R}^n\). Then for all \(f \in L_{p,1}\) we have

\[\sum_j \| f \cdot 1_{E_j} \|_{p,1}^p \leq \| f \cdot 1_E \|_{p,1}^p, \]

where \(1_E\) denotes the indicator function of the set \(E\).

Denote by \(W_{p,1,1}(\mathbb{R}^n)\) the space of all functions \(v \in W_p(\mathbb{R}^n)\) such that in addition the Lorentz norm \(\| \nabla^k v \|_{L_{p,1}}\) is finite.

For a mapping \(u \in L_1(Q, \mathbb{R}^d), Q \subset \mathbb{R}^n, m \in \mathbb{N}\), define the polynomial \(P_{Q,m}[u]\) of degree at most \(m\) by the following rule:

\[\int_Q y^\alpha (u(y) - P_{Q,m}[u](y)) \, dy = 0 \quad (2.3) \]

for any multi-index \(\alpha = (\alpha_1, \ldots, \alpha_n)\) of length \(|\alpha| = \alpha_1 + \cdots + \alpha_n \leq m\). Denote \(P_Q[u] = P_{Q,k-1}[u]\).

The following well-known bound will be used on several occasions.

Lemma 2.2 Suppose \(v \in W_{p,1,1}(\mathbb{R}^n, \mathbb{R}^d)\) with \(k \in \{1, \ldots, n\}\). Then \(v\) is a continuous mapping and for any \(n\)-dimensional cubic interval \(Q \subset \mathbb{R}^n\) the estimate

\[\sup_{y \in Q} |v(y) - P_Q[v](y)| \leq C \|1_Q \cdot \nabla^k v\|_{L_{p,1}} \quad (2.4) \]

holds, where \(C\) is a constant depending on \(n, d\) only. Moreover, the mapping \(v_Q(y) = v(y) - P_Q[v](y), y \in Q\), can be extended from \(Q\) to the whole of \(\mathbb{R}^n\) such that the extension (denoted again) \(v_Q \in W_{p,1,1}(\mathbb{R}^n, \mathbb{R}^d)\) and

\[\| \nabla^k v_Q \|_{L_{p,1,1}(\mathbb{R}^n)} \leq C_0 \| \nabla^k v \|_{L_{p,1,1}(Q)}, \quad (2.5) \]

where \(C_0\) also depends on \(n, d\) only.

Proof For continuity and the estimate (2.4) see [24, Lemma 1.3]. Because of coordinate invariance of estimate (2.5), it is sufficient to prove the assertions about extension for the case when \(Q\) is a unit cube: \(Q = [0, 1]^n\). Put \(u(y) = v(y) - P_Q[v](y)\) for \(y \in Q\).

By Peetre theorem (see Theorem 6.5 in [27, p. 10]), it is easy to deduce that

\[\| \nabla^m u \|_{L_{p,1}(Q)} \leq C \| \nabla^k u \|_{L_{p,1}(Q)} \quad \forall m = 0, 1, \ldots, k-1. \quad (2.6) \]
Using the standard Extension operator for Sobolev spaces (the well-known finite-order reflection procedure, see, e.g., [28, Sect. 1.1.17]), function \(u \) on the unit cube \(Q = [0, 1]^n \) can be extended to a function \(U \in W^{k}_{p_0,1}(\mathbb{R}^n) \) such that the estimate

\[
\| \nabla^k U \|_{L^p_{p_0,1}(\mathbb{R}^n)} \leq C' \sum_{m=0}^{k} \| \nabla^m u \|_{L^p_{p_0,1}(Q)}
\]

holds. Taking into account the identity \(\nabla^k u \equiv \nabla^k v \) on \(Q \) and (2.6), we obtain the required estimate (2.5).

\[\square \]

Corollary 2.3 (see, e.g., [24]) Suppose \(v \in W^{k}_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d) \) with \(k \in \{1, \ldots, n\} \). Then \(v \) is a continuous mapping and for any \(n \)-dimensional cubic interval \(Q \subset \mathbb{R}^n \) the estimate

\[
diam(v(Q)) \leq C \left(\frac{\| \nabla v \|_{L^1(Q)}}{\ell(Q)^{n-1}} + \| 1_Q \cdot \nabla^k v \|_{L^p_{p_0,1}} \right)
\]

holds.

The above results can easily be adapted to give that \(v \in C_0(\mathbb{R}^n) \), the space of continuous functions on \(\mathbb{R}^n \) that vanish at infinity (see for instance [27, Theorem 5.5]).

Analogously, from previous estimates one could deduce

Corollary 2.4 Suppose \(v \in W^{k}_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d) \) with \(k \in \{1, \ldots, n\} \). Then for all \(m \in \{1, \ldots, k\} \) and for any \(n \)-dimensional cubic interval \(Q \subset \mathbb{R}^n \) the estimate

\[
\sup_{y \in Q} |v(y) - P_{Q,m-1}v(y)| \leq C \left(\frac{\| \nabla^m v \|_{L^p_{p_0,1}(Q)}}{\ell(Q)^{k-m}} + \| 1_Q \cdot \nabla^k v \|_{L^p_{p_0,1}} \right)
\]

holds.

Here, we list some standard facts about the Lorentz spaces.

Theorem 2.5 (Boundedness of the maximal operator, see [27]) Let \(f \in L_{p,q}(\mathbb{R}^n) \), \(1 < p < \infty \), \(1 \leq q < \infty \). Then

\[
\| \mathcal{M} f \|_{L_{p,q}} \leq C \| f \|_{L_{p,q}}.
\]

Here

\[
\mathcal{M} f (x) = \sup_{r>0} r^{-n} \int_{B(x,r)} |f(y)| \, dy
\]

is the usual Hardy–Littlewood maximal function of \(f \).

Corollary 2.6 (Regularization in Lorentz spaces [27]) Let \(1 < p < \infty \), \(1 \leq q < \infty \). Suppose that \(f \in L_{p,q}(\mathbb{R}^n) \) and \(\psi \in C^\infty_0(\mathbb{R}^n) \) is a standard mollifier. Then \(\psi_\delta \ast f \to f \) in \(L_{p,q}(\mathbb{R}^n) \) as \(\delta \to 0 \).
Here and henceforth \(C_0^\infty(\mathbb{R}^n) \) means the space of \(C^\infty \) smooth and compactly supported functions on \(\mathbb{R}^n \).

Corollary 2.7 (Regularization in Sobolev–Lorentz spaces) If \(f \in W^{k,p}_q(\mathbb{R}^n) \), \(1 < p < \infty, 1 \leq q < \infty \), then there exists a sequence of smooth functions \(f_i \in C_0^\infty(\mathbb{R}^n) \) such that \(\|\nabla^m(f - f_i)\|_{L^p(\mathbb{R}^n)} \to 0 \) for \(m = 0, 1, \ldots, k \), \(\|\nabla^k(f - f_i)\|_{L^{p,q}(\mathbb{R}^n)} \to 0 \) as \(i \to \infty \).

Remark 2.8 By Sobolev inequality, under conditions of Corollary 2.7, if, in addition \(1 \leq q \leq p \) and \((k - m)p < n \) for some \(m \in \{0, 1, \ldots, k - 1\} \), then we have also the convergence \(\|\nabla^m(f - f_i)\|_{L^{p}(\mathbb{R}^n)} \to 0 \), where \(p_m = \frac{np}{n-(k-m)p} \) (see, e.g., [27, Sect. 8]).

We need also the following important Adams strong-type estimates for maximal functions.

Theorem 2.9 (see Theorem A, Proposition 1 and its Corollary in [1]) Let \(\beta \in (0, n) \). Then for nonnegative functions \(f \in C_0(\mathbb{R}^n) \) the estimates

\[
\int_0^\infty \mathcal{H}_\infty^\beta \left(\{ x \in \mathbb{R}^n : Mf(x) \geq t \} \right) \, dt \leq C_1 \int_0^\infty \mathcal{H}_\infty^\beta \left(\{ x \in \mathbb{R}^n : f(x) \geq t \} \right) \, dt \\
\leq C_2 \sup \left\{ \int f \, d\mu : \mu \in \mathcal{M}^\beta, \|\mu\|_\beta \leq 1 \right\},
\]

hold, where the constants \(C_1, C_2 \) depend on \(\beta, n \) only.

We need also the following classical fact (cf. with [10]).

Lemma 2.10 (see Lemma 2 in [14]) Let \(u \in W^{m,1}(\mathbb{R}^n) \), \(m \leq n \). Then for any \(n \)-dimensional cubic interval \(Q \subset \mathbb{R}^n \), \(x \in Q \), and for any \(j = 0, 1, \ldots, m - 1 \) the estimate

\[
\left| \nabla^j u(x) - \nabla^j P_{Q,m-1}[u](x) \right| \leq C \ell(Q)^{m-j}(M\nabla^m u)(x)
\]

holds, where the constant \(C \) depends on \(n, m \) only.

3 Proofs of the Main Results

3.1 The Trace Theorem

Theorem 1.3 plays the key role among other results. Its proof splits into a number of lemmas. Fix parameters \(m > 0, 1 < p < \infty, 0 < \alpha p < n \), and a positive Borel measure \(\mu \) on \(\mathbb{R}^n \) satisfying

\[
\mu(B(x, r)) \leq r^{n-\alpha p}
\]

for every ball \(B(x, r) \subset \mathbb{R}^n \). Fix also a compact set \(E \subset \mathbb{R}^n \). Denote by \(I_E \) the corresponding Riesz potential \(I_\alpha(1_E) \).

It is very easy to check by standard calculation that

\[
0 \leq I_E(x) \leq C_0|E|^{\frac{\alpha}{p}},
\]

where \(C_0 \) is a constant depending only on \(n \) and \(\alpha \).
where the constant C_0 depends on n, α only.

Denote also $t_m = 2^m$ (here $m \in \mathbb{Z}$),
\[
E_m = \{ x \in E : I_E(x) \in [t_m, 2t_m] \},
E'_m = \{ x \in E : I_E(x) \leq t_m \},
E''_m = \{ x \in E : I_E(x) > t_m \}.
\]

In this section, we will write $f \lesssim g$, if $f \leq Cg$, where C depends on n, α, p only (really, most of the corresponding constants below up to Lemma 3.6 depends on n, α only).

Lemma 3.1 There exists a positive constant $m_0 \in \mathbb{N}$ depending on n, α only such that for any $m \in \mathbb{Z}$ and $x \in \mathbb{R}^n$ if $I_E(x) \geq tm$, then $I_{E_{m-m_0}}(x) \gtrsim tm$.

Proof The claim follows from the well-known maximum principle: $I_{E_m}(x) \leq 2^{n-\alpha}tm$ for every $m \in \mathbb{Z}$ (see [21, Theorem 5.2]). \square

Lemma 3.2 For any x, $y \in \mathbb{R}^n$ if $I_E(y) \geq t$ and $|x - y| \leq (2t)^{\frac{1}{2}}$ then $I_E(x) \gtrsim t$.

Proof Let $I_E(y) \geq t$ and $|y - x| \leq (2t)^{\frac{1}{2}}$. (3.3)

Denote $r = |y - x|$, $B = B(y, r) = \{ z \in \mathbb{R}^n : |z - y| < r \}$. Then by construction
\[
t \leq I_E(y) = I_{E \cap B}(y) + I_{E \setminus B}(y).
\]

Consider two possible situations.

(I) $I_{E \cap B}(y) \leq \frac{t}{2}$, then $I_{E \setminus B}(y) \geq \frac{t}{2}$. For any $z \in E \setminus B$ we have $|z - y| \geq r = |x - y|$, thus, $|x - z| \leq |x - y| + |z - y| \leq 2|z - y|$, consequently,
\[
I_E(x) \geq I_{E \setminus B}(x) \geq 2^{n-\alpha}I_{E \setminus B}(y) \geq 2^{n-\alpha - 1}t.
\]

(II) $I_{E \cap B}(y) \geq \frac{t}{2}$. Then (3.2) implies $\frac{t}{2} \leq C_0|B \cap E|^{\frac{\alpha}{n}}$. Since $B \cap E \subset B(x, 2r)$, by elementary estimates we have
\[
I_E(x) \geq \frac{|B \cap E|}{(2r)^{n-\alpha}} \geq C' \frac{t^{\frac{n}{\alpha}}}{r^{n-\alpha}} \overset{(3.3)}{\geq} C'' \frac{t^{\frac{n}{\alpha}}}{t^{\frac{n}{\alpha} - 1}} = C_2t.
\]

Denote $F_m = \{ x \in \mathbb{R}^n : I_E(x) \in [t_m, 2t_m] \}$, $\mu_m = \mu(F_m)$, $\mu_m(\cdot) = \mu \upharpoonright F_m$. By construction,
\[
\| I_\alpha(1_E) \|^p_{L^p(\mu)} \sim \sum_{m=-\infty}^{\infty} t_m^p \mu_m.
\]
So our main purpose below is to estimate $t_m \mu_m$. Of course, $t_m \mu_m \leq \int_{\mathbb{R}^n} I_E(x) \, d\mu_m(x)$. By Fubini’s Theorem, we have

$$
\int_{\mathbb{R}^n} I_E(x) \, d\mu_m(x) = \int_0^\infty \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho = \int_0^\infty \rho^{-n+\alpha-1} \left[\int_E \mu_m(B(y, \rho)) \, dy \right] \, d\rho.
$$

(3.7)

Lemma 3.3 The estimate

$$
t_m \mu_m \lesssim \int_0^\infty \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E''_{m-m_0} \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho
$$

(3.8)

holds, where m_0 is a constant from Lemma 3.1.

Proof By Lemma 3.1, $I_{E''_{m-m_0}} \geq C_1 t_m$ on F_m, therefore $t_m \mu_m \leq C \int_{\mathbb{R}^n} I_{E''_{m-m_0}}(x) \, d\mu_m(x)$, and the last inequality implies in conjunction with Fubini’s Theorem (3.7).

□

Lemma 3.4 There exists a constant $m_1 \in \mathbb{N}$ such that

$$
t_m \mu_m \lesssim \int_{t_{m-m_1}^{\frac{1}{\alpha}}} t_{m-m_1}^{\frac{1}{\alpha}} \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E''_{m-m_0} \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho.
$$

(3.9)

Proof Let $m_1 \in \mathbb{N}$, its exact value will be specified below. We have $|E \cap B(x, \rho)| \leq \omega_n \rho^n$, where ω_n is a volume of a unit ball in \mathbb{R}^n. Thus

$$
\int_0^{t_{m-m_1}^{\frac{1}{\alpha}}} \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho \\
\leq \omega_n \mu_m \int_0^{t_{m-m_1}^{\frac{1}{\alpha}}} \rho^{\alpha-1} \, d\rho = \frac{\omega_n}{\alpha} \mu_m t_{m-m_1} = \frac{\omega_n}{\alpha} 2^{-m_1} \mu_m t_m.
$$

So the target estimate (3.9) follows from (3.8) provided that $\frac{1}{\alpha} \omega_n 2^{-m_1}$ is sufficiently small. □

Lemma 3.5 There exists a constant $i_0 \in \mathbb{N}$ such that for all $i \geq m - m_1$ the equality

$$
\int_{t_i^{\frac{1}{\alpha}}}^{t_{i+1}^{\frac{1}{\alpha}}} \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E''_{m-m_0} \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho = \sum_{j=m-m_0}^{i+i_0} \int_{t_j^{\frac{1}{\alpha}}}^{t_{j+1}^{\frac{1}{\alpha}}} \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E_j \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho
$$

(3.10)

holds, where m_0, m_1 are the constants from Lemmas 3.1 and 3.4, respectively.
Proof Let $i \geq m - m_1$,
\[\rho^\alpha \leq t_{i+1}, \tag{3.11} \]
and $x \in F_m = \text{supp } \mu_m$. Then by definitions
\[I_E(x) \leq 2t_m. \tag{3.12} \]
Take any point $y \in E''_{m-m_0} \cap B(x, \rho)$, then by construction $y \in E_j$ for some index $j \geq m - m_0$, in particular, $I_E(y) \geq t_j$. Suppose $j \geq i + 1$. Then (3.11) implies $|x - y|^\alpha \leq t_{i+1} \leq t_j$, therefore, by Lemma 3.2 (applying for $t = t_j$) we have $I_E(x) \geq C_2 t_j$. Thus by (3.12) we obtain $j \leq m + m_2$ for some constant m_2 depending on α, n only.

Finally, we have $j \leq \max(i + 1, m + m_2) \leq \max(i + 1, i + m_1 + m_2)$ finishing the proof of the Lemma. \qed

Lemma 3.6 The estimate
\[t_m \mu_m \lesssim \sum_{j=m-m_0}^{\infty} |E_j| t_j^{1-p} \tag{3.13} \]
holds for all $m \in \mathbb{Z}$, where m_0, i_0 are the constants from Lemmas 3.1 and 3.5, respectively.

Proof We have
\[t_m \mu_m \overset{(3.9)}{\lesssim} \sum_{i=m-m_1}^{\infty} \sum_{j=m-m_0}^{i+i_0} \int_{t_i}^{t_{i+1}} \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E''_{m-m_0} \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho \]
\[\overset{(3.10)}{\lesssim} \sum_{i=m-m_1}^{\infty} \sum_{j=m-m_0}^{i+i_0} \int_{t_i}^{t_{i+1}} \rho^{-n+\alpha-1} \left[\int_{\mathbb{R}^n} |E_j \cap B(x, \rho)| \, d\mu_m(x) \right] \, d\rho \]
\[\text{Fubini} \quad \sum_{i=m-m_1}^{\infty} \sum_{j=m-m_0}^{i+i_0} \int_{t_i}^{t_{i+1}} \rho^{-n+\alpha-1} \left[\int_{E_j} \mu_m[B(y, \rho)] \, dy \right] \, d\rho \]
\[\overset{(3.1)}{\lesssim} \sum_{i=m-m_1}^{\infty} \sum_{j=m-m_0}^{i+i_0} \int_{t_i}^{t_{i+1}} \rho^{-n+\alpha-1+(n-\alpha p)} |E_j| \, d\rho \]
geometric progression
\[\lesssim \sum_{j=m-m_0}^{\infty} |E_j| (t_j)^{1-p} \overset{i \leftrightarrow j}{\lesssim} \sum_{j=m-m_0}^{\infty} |E_j| \sum_{i=j-i_0}^{\infty} (t_i)^{1-p} \]
where the symbol $i \leftrightarrow j$ indicates that the order of summation was changed. \qed

Lemma 3.7 The estimate
\[\sum_{m=-\infty}^{\infty} t_m^p \mu_m \lesssim |E| \tag{3.15} \]
holds.
Proof We have

\[
\sum_{m=-\infty}^{\infty} t_m^p \mu_m \lesssim \sum_{m=-\infty}^{\infty} \sum_{j=m-m_0}^{\infty} |E_j| \left(\frac{t_m}{t_{j-i_0}} \right)^{p-1} \]

where again the symbol \(m \leftrightarrow j \) means that the order of summation was changed. \(\square \)

Combining Lemma 3.7 with the initial estimate (3.6) gives the validity of the Trace Theorem 1.3.

3.2 On Approximation of Sobolev–Lorentz Mappings

Using the established Theorem 1.2 and Adam’s estimate from Theorem 2.9 with \(\beta = n - (k-l)p \), we obtain the following estimates, which are key ingredients in the proof of \(N \)-property.

Corollary 3.8 Let \(p \in (1, \infty), k, l \in \{1, \ldots, n\}, l \leq k, (k-l)p < n \). Then for any function \(f \in W_{p,1}^{k,p}(\mathbb{R}^n) \) the estimates

\[
\|\nabla^l f\|_{L^p(\mu)}^p \leq C \|\mu\|_\beta \|\nabla^k f\|_{L^p_{p,1}}^p \quad \forall \mu \in \mathcal{M}^\beta,
\]

\[
\int_0^\infty \mathcal{H}_\infty^\beta \left(\left\{ x \in \mathbb{R}^n : \mathcal{M}(|\nabla^l f|^p)(x) \geq t \right\} \right) \, dt \leq C \|\nabla^k f\|_{L^p_{p,1}}^p
\]

hold, where \(\beta = n - (k-l)p \) and the constant \(C \) depends on \(n, k, p \) only.

The main result of this subsection is the following

Theorem 3.9 Let \(p \in (1, \infty), k, l \in \{1, \ldots, n\}, l \leq k, (k-l)p < n \). Then for any \(f \in W_{p,1}^{k,p}(\mathbb{R}^n) \) and for each \(\varepsilon > 0 \) there exist an open set \(U \subset \mathbb{R}^n \) and a function \(g \in C^l(\mathbb{R}^n) \) such that

(i) \(\mathcal{H}_\infty^{-(k-l)p}(U) < \varepsilon \);

(ii) each point \(x \in \mathbb{R}^n \setminus U \) is an \(L^p \)-Lebesgue point for \(\nabla^j f \), \(j = 0, \ldots, l \);

(iii) \(f \equiv g, \nabla^j f \equiv \nabla^j g \) on \(\mathbb{R}^n \setminus U \) for \(j = 1, \ldots, l \).

Note that in the analogous theorem for the case of Sobolev mappings \(f \in W_{p}^k(\mathbb{R}^n) \), the assertion (i) should be reformulated as follows:

(i') \(\mathcal{B}_{k-l,p}(U) < \varepsilon \) if \(l < k \), where \(\mathcal{B}_{\alpha,p}(U) \) denotes the Bessel capacity of the set \(U \) (see, e.g., [36, Chap. 3] or [9]).

\(\square \) Springer
Recall that for $1 < p < \infty$ and $0 < n - \alpha p < n$, the smallness of $\mathcal{H}^{n-\alpha p}_\infty(U)$ implies the smallness of $\mathcal{B}_{\alpha, p}(U)$, but the opposite false since $\mathcal{B}_{\alpha, p}(U) = 0$ whenever $\mathcal{H}^{n-\alpha p}_\infty(U) < \infty$. On the other hand, for $1 < p < \infty$ and $0 < n - \alpha p < \beta \leq n$, the smallness of $\mathcal{B}_{\alpha, p}(U)$ implies the smallness of $\mathcal{H}_\infty^\beta(U)$ (see, e.g., [6]). So the usual assertion (i') is essentially weaker than (i).

Proof of Theorem 3.9 Let the assumptions of the Theorem be fulfilled. By Theorem 2.5 and Corollary 2.7, we can choose the sequence of mappings $f_i \in C_0^\infty(\mathbb{R}^n)$ such that

$$\|\nabla^k f - \nabla^k f_i\|_{L^p,1}(\mathbb{R}^n) < 4^{-i}.$$

Denote $\tilde{f}_i = f - f_i$. Then by Corollary 3.8

$$\mathcal{H}^{n-(k-l)p}_\infty\left(\left\{x \in \mathbb{R}^n : M\left(|\nabla^l \tilde{f}_i|^p\right)(x) \geq 2^{-i}\right\}\right) < C 2^{-i}.$$

Then one could repeat almost word by word the proof of [12, Theorem 3.1]. Since there are no essential differences, we omit the detailed calculations here.

\[\Box\]

3.3 On Differentiability Properties of Sobolev–Lorentz Mappings

We start with the following simple technical observation.

Lemma 3.10 (see, e.g., [24, Lemma 4.1]) If $l, k \in \{1, \ldots, n\}$, $l < k$, and $v \in W^{k,1}_p(\mathbb{R}^n, \mathbb{R}^d)$, then for any $\varepsilon > 0$ there exists an open set $U \subset \mathbb{R}^n$ such that $\mathcal{H}_\infty^l(U) < \varepsilon$ and the uniform convergence

$$r^{-l}\|1_{B(x,r)} \cdot \nabla^k v\|_{L^p,1} \to 0 \quad \text{as} \quad r \searrow 0$$

holds for $x \in \mathbb{R}^n \setminus U$.

Proof The proof of the Lemma follows standard arguments, we reproduce it here for reader’s convenience. Fix $\sigma > 0$. Let $\{B_\alpha\}$ be a family of disjoint balls $B_\alpha = B(x_\alpha, r_\alpha)$ such that

$$\|1_{B_\alpha} \cdot \nabla^k v\|_{L^p,1} \geq \sigma r_\alpha^l$$

and $\sup_\alpha r_\alpha < \delta$ for some $\delta > 0$, where δ is chosen small enough to guarantee that $\sup_\alpha \|1_{B_\alpha} \cdot \nabla^k v\|_{L^p,1} < 1$. Then by Lemma 2.1 we have

$$\sum_\alpha r_\alpha^{l_p} \leq \sigma^{-p_p} \sum_\alpha \|1_{B_\alpha} \cdot \nabla^k v\|_{L^p,1}^{p_p} \leq \sigma^{-p_p} \|1_{\bigcup_\alpha B_\alpha} \cdot \nabla^k v\|_{L^p,1}^{p_p}.$$

(3.19)

Since the last term tends to 0 as $\mathcal{L}^n(\bigcup_\alpha B_\alpha) \to 0$, and $\mathcal{L}^n(\bigcup_\alpha B_\alpha) \leq c \delta^{n-lp_p} \sum_\alpha r_\alpha^{l_p}$, we get easily that $\sum_\alpha r_\alpha^{l_p} \to 0$ as $\delta \searrow 0$. Using this fact and some standard covering lemmas, we arrive in a routine manner that for a set

$$A_{\sigma, \delta} := \left\{x \in \mathbb{R}^n : \exists r \in (0, \delta] r^{-l}\|1_{B(x,r)} \cdot \nabla^k v\|_{L^p,1} > \sigma\right\}$$
the convergence
\[\mathcal{H}^{l,p_0}_{\infty}(A_{\sigma,\delta}) \to 0 \quad \text{as} \quad \delta \searrow 0 \]
holds for any fixed \(\sigma > 0 \). The rest part of the proof of the lemma is obvious, so we omit it. \(\square \)

From the last lemma (for \(l = 1 \)), Theorem 3.9 (ii) and estimate (2.7) we obtain the following result:

Theorem 3.11 Let \(k \in \{1, \ldots, n\} \) and \(v \in W^{k}_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d) \). Then there exists a Borel set \(A_v \subset \mathbb{R}^n \) such that \(\mathcal{H}^{p_0}(A_v) = 0 \) and for any \(x \in \mathbb{R}^n \setminus A_v \) the function \(v \) is differentiable (in the classical Fréchet sense) at \(x \), furthermore, the classical derivative coincides with \(\nabla v(x) \) (\(x \) is a Lebesgue point for \(\nabla v \)).

The case \(k = 1, p_0 = n \) is a classical result due to Stein [34] (see also [22]), and for \(k = n, p_0 = 1 \) the result is also proved in [14].

There holds the following extension of Theorem 3.11.

Theorem 3.12 Let \(k, l \in \{1, \ldots, n\}, l \leq k, \) and \(v \in W^{k}_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d) \). Then there exists a Borel set \(A_v \subset \mathbb{R}^n \) such that \(\mathcal{H}^{l,p_0}(A_v) = 0 \) and for any \(x \in \mathbb{R}^n \setminus A_v \) the function \(v \) is \(l \)-times differentiable (in the classical Fréchet–Peano sense) at \(x \), i.e.,

\[\lim_{r \downarrow 0} \sup_{y \in B(x,r) \setminus \{x\}} \frac{|v(y) - T_{v,l,x}(y)|}{|x - y|^l} = 0, \]

where \(T_{v,l,x}(y) \) is the Taylor polynomial of order \(l \) for \(v \) centered at \(x \) (which is well defined \(\mathcal{H}^{l,p_0} \)-a.e. by Theorem 3.9).

Proof We consider only the case \(l < n \); for \(l = n \), the arguments are similar and becomes even simpler. Below we follow methods of [11, proof of Lemma 5.5] and [12, proof of Theorem 3.1]. By Theorem 3.9 of the present paper, there exists a set \(A_l \) such that \(\mathcal{H}^{l,p_0}(A_l) = 0 \) and the derivatives \(\nabla^j v(x) \) are well defined for all \(x \in \mathbb{R}^n \setminus A_l \) and \(j = 0, 1, \ldots, l \). Further, by Lemma 3.10, there exists a sequence of open sets \(U_i \subset \mathbb{R}^n \) such that \(U_i \supset U_{i+1} \), \(\mathcal{H}^{l,p_0}(U_i) < 2^{-i} \) and the uniform convergence

\[r^{-l} \| 1_{B(x,r)} \cdot \nabla^k v \|_{L^{p_0,1}} \to 0 \quad \text{as} \quad r \searrow 0 \]

holds for \(x \in \mathbb{R}^n \setminus U_i \). It means that there exists a function \(\omega_i : (0, +\infty) \to (0, +\infty) \) such that \(\omega_i(r) \to 0 \) as \(r \searrow 0 \) and

\[r^{-l} \| 1_{B(x,r)} \cdot \nabla^k v \|_{L^{p_0,1}} \leq \omega_i(r) \quad \forall x \in \mathbb{R}^n \setminus U_i. \tag{3.20} \]

Take a sequence of mappings \(v_i : \mathbb{R}^n \to \mathbb{R}^d \) from Corollary 2.7, i.e., \(v_i \in C^0_0(\mathbb{R}^n) \) and \(\| \nabla^k (v - v_i) \|_{L^{p_0,1}(\mathbb{R}^n)} < 4^{-i} \). Denote \(\tilde{v}_i = v - v_i \) and

\[B_i = \left\{ x \in \mathbb{R}^n : \mathcal{M}(\| \nabla^l \tilde{v}_i \|_{p_0}^p)(x) \geq 2^{-i}p_0 \right\}, \quad G_i = A_l \cup U_i \cup \left(\bigcup_{j=i}^{\infty} B_j \right). \]
Then by estimate (3.18) we have

$$\mathcal{H}^l_{\infty}(B_i) \leq c2^{-i},$$

(3.21)

therefore,

$$\mathcal{H}^l_{\infty}(G_i) \leq C2^{-i}.$$

(3.22)

By construction,

$$|\nabla^l \bar{v}_j(x)|^{p_0} \leq \mathcal{M}(|\nabla^l \bar{v}_j|^{p_0})(x) \leq 2^{-j p_0}$$

(3.23)

for all \(x \in \mathbb{R}^n \setminus G_i\) and all \(j \geq i\). Moreover, since \(v_j \in C_0^\infty(\mathbb{R}^n)\), there exists constants \(M_j\) such that \(|\nabla^k v_j(x)| \leq M_j \forall x \in \mathbb{R}^n\), this fact and (3.20) implies

$$r^{-l} \|1_{B(x,r)} \cdot \nabla^l \bar{v}_j\|_{L^p,1} \leq \omega_l(r) + M_j r^{n-l} \forall x \in \mathbb{R}^n \setminus G_i.$$

(3.24)

We start by estimating the remainder term \(\bar{v}_j(y) - T_{\bar{v}_j,l,x}(y)\). Fix \(y \in \mathbb{R}^n\), \(x \in \mathbb{R}^n \setminus G_i\), \(j \geq i\), and an \(n\)-dimensional cubic interval \(Q\) such that \(x, y \in Q\), \(|x-y| \sim \ell(Q)\). By construction and Lemma 2.10, for any multi-index \(\alpha\) with \(|\alpha| \leq l\) we have

$$|\partial^\alpha \bar{v}_j(x) - \partial^\alpha P_{Q,l-1}[\bar{v}_j](x)| \leq C \ell(Q)^{|\alpha|}(\mathcal{M} \nabla^l \bar{v}_j)(x) \leq C r^{|\alpha|} 2^{-j},$$

(3.25)

where \(r = |x-y|\). Consequently,

$$|\bar{v}_j(y) - T_{l,\bar{v}_j,x}(y)| \lesssim \left[C 2^{-j r^l + \omega_l(r)r^l + M_j r^n} + \sum_{|\alpha| \leq l} \frac{1}{|\alpha|} (|\partial^\alpha \bar{v}_j(x) - \partial^\alpha P_{Q,l-1}[\bar{v}_j](x)| \cdot (y-x)^\alpha) \right]$$

(3.26)

Finally from the last estimate and equality \(v = \bar{v}_j + v_j\), we have

$$|v(y) - T_{l,v,x}(y)| \leq |\bar{v}_j(y) - T_{l,\bar{v}_j,x}(y)| + |v_j(y) - T_{l,v_j,x}(y)| \leq (C 2^{-j} + \omega_l(r) + M_j r^{n-l}) r^l + \omega_{v_j}(r)r^l = (C 2^{-j} + \omega_l(r) + M_j r^{n-l} + \omega_{v_j}(r)r^l),$$

where \(\omega_l(r) \to 0\) and \(\omega_{v_j}(r) \to 0\) as \(r \to 0\) (the latter holds since \(v_j \in C_0^\infty(\mathbb{R}^n)\)). We emphasize that the last inequality is valid for all \(y \in \mathbb{R}^n\), \(j \geq i\), and \(x \in \mathbb{R}^n \setminus G_i\). Therefore

$$\frac{|v(y) - T_{l,v,x}(y)|}{|x-y|^l} \to 0 \quad \text{as} \quad y \to x$$

uniformly for all \(x \in \mathbb{R}^n \setminus G_i\). This means, that \(v\) is uniformly \(l\)-times differentiable (in the classical Fréchet–Peano sense) at every \(x \in \mathbb{R}^n \setminus G_i\). Then the estimate (3.22) finishes the proof.

\(\square\)
3.4 The Proof of the N-Property

In this subsection, we need to prove the assertion of Theorem 1.1 (Luzin N-property) for $W^{k}_{p_0,1}$-mappings with respect to Hausdorff content $H^{p_0}_{\infty}$ (i.e., when $q = p_0 = \frac{n}{k}$), namely

Theorem 3.13 Let $k \in \{1, \ldots, n\}$, and $v \in W^{k}_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d)$. Then for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any set $E \subset \mathbb{R}^n$ if $H^{p_0}_{\infty}(E) < \delta$, then $H^{p_0}_{\infty}(v(E)) < \varepsilon$. In particular, $H^{p_0}(v(E)) = 0$ whenever $H^{p_0}(E) = 0$.

Recall that for the case $k = 1$ this assertion was proved in [22], and for $k = n$ it was proved in [12], so we omit these cases. Our proof here for the remaining cases follows and expands on the ideas from [12].

For the remainder of this section, we fix $k \in \{2, \ldots, n-1\}$, and a mapping v in $W^{k}_{p_0,1}(\mathbb{R}^n, \mathbb{R}^d)$. To prove Theorem 3.13, we need some preliminary lemmas that we turn to next.

Applying Corollary 3.8 for the case $p = p_0 = \frac{n}{k}, l = 1$, we obtain

$$\|\nabla v\|_{L^{p_0}(\mu)}^{p_0} \leq C \|\mu\|_{p_0} \left\| \nabla^{k} v \right\|_{L^{p_0,1}}^{p_0} \quad \forall \mu \in \mathcal{M}^{p_0},$$

(3.27)

where C depends on n, p_0, d only.

By a dyadic interval, we understand a cubic interval of the form $[k_1 \frac{m}{2^m}, k_1 + 1 \frac{m}{2^m}] \times \cdots \times [k_n \frac{m}{2^m}, k_n + 1 \frac{m}{2^m}]$, where k_i, m are integers. The following assertion is straightforward, and hence we omit its proof here.

Lemma 3.14 For any n-dimensional cubic interval $J \subset \mathbb{R}^n$, there exist dyadic intervals Q_1, \ldots, Q_{2^n} such that $J \subset Q_1 \cup \cdots \cup Q_{2^n}$ and $\ell(Q_1) = \cdots = \ell(Q_{2^n}) \leq 2\ell(J)$.

Let $\{Q_\alpha\}_{\alpha \in \Lambda}$ be a family of n-dimensional dyadic intervals. We say that the family $\{Q_\alpha\}$ is regular, if for any n-dimensional dyadic interval Q the estimate

$$\ell(Q)^{p_0} \geq \sum_{\alpha: Q_\alpha \subset Q} \ell(Q_\alpha)^{p_0}$$

(3.28)

holds. Since dyadic intervals are either nonoverlapping or contained in one another, (3.28) implies that any regular family $\{Q_\alpha\}$ must in particular consist of nonoverlapping intervals.

Lemma 3.15 (see [12, Lemma 2.3]) Let $\{Q_\alpha\}$ be a family of n-dimensional dyadic intervals. Then there exists a regular family $\{J_\beta\}$ of n-dimensional dyadic intervals such that $\bigcup_\alpha Q_\alpha \subset \bigcup_\beta J_\beta$ and

$$\sum_\beta \ell(J_\beta)^{p_0} \leq \sum_\alpha \ell(Q_\alpha)^{p_0}.$$
Lemma 3.16 For each $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon, v) > 0$ such that for any regular family $\{Q_{\alpha}\}$ of n-dimensional dyadic intervals we have if

$$\sum_{\alpha} \ell(Q_{\alpha})^{p_0} < \delta,$$ \hspace{1cm} (3.29)

then

$$\sum_{\alpha} \|1_{Q_{\alpha}} \cdot \nabla^k v\|_{L^{p_0,1}}^{p_0} < \varepsilon$$ \hspace{1cm} (3.30)

and

$$\sum_{\alpha} \frac{1}{\ell(Q_{\alpha})^{n-p_0}} \int_{Q_{\alpha}} |\nabla v|^{p_0} < \varepsilon.$$ \hspace{1cm} (3.31)

Proof Fix $\varepsilon \in (0, 1)$ and let $\{Q_{\alpha}\}$ be a regular family of n-dimensional dyadic intervals satisfying (3.29), where $\delta > 0$ will be specified below.

Let us start by checking (3.30). We have

$$\sum_{\alpha} \|1_{Q_{\alpha}} \cdot \nabla^k v\|_{L^{p_0,1}}^{p_0} \leq \|\bigcup_{\alpha} Q_{\alpha} \cdot \nabla^k v\|_{L^{p_0,1}}^{p_0}.$$ \hspace{1cm} (Lemma 2.1)

Using (2.2), we can rewrite the last estimate as

$$\sum_{\alpha} \|1_{Q_{\alpha}} \cdot \nabla^k v\|_{L^{p_0,1}}^{p_0} \leq \left(\int_0^{+\infty} \left[\mathcal{L}^n (\{ x \in \bigcup_{\alpha} Q_{\alpha} : |\nabla^k v(x)| > t \}) \right] \frac{1}{t^{p_0}} \, dt \right)^{p_0}.$$ \hspace{1cm} (3.32)

Since

$$\int_0^{+\infty} \left[\mathcal{L}^n (\{ x \in \mathbb{R}^n : |\nabla^k v(x)| > t \}) \right] \frac{1}{t^{p_0}} \, dt < \infty,$$

it follows that the integral on the right-hand side of (3.32) tends to zero as $\mathcal{L}^n (\bigcup_{\alpha} Q_{\alpha})$ tends to zero. In particular, it will be less than ε if the condition (3.29) is fulfilled with a sufficiently small δ. Thus (3.30) is established for all $\delta \in (0, \delta_1]$, where $\delta_1 = \delta_1(\varepsilon, v) > 0$.

Next we check (3.31). By virtue of Corollary 2.7, applied coordinate-wise, we can find a decomposition $v = v_0 + v_1$, where $\|\nabla v_0\|_{L^\infty} \leq K = K(\varepsilon, v)$ and

$$\|\nabla^k v_1\|_{L^{p_0,1}} < \varepsilon.$$ \hspace{1cm} (3.33)

Assume that $\delta \in (0, \delta_1]$ and

$$\sum_{\alpha} \ell(Q_{\alpha})^{p_0} < \delta < \frac{1}{K^{p_0+1}} \varepsilon.$$ \hspace{1cm} (3.34)
Define the measure μ by

$$\mu = \left(\sum_{\alpha} \frac{1}{\ell(Q_\alpha)^{n-p_0}} 1_{Q_\alpha} \right) \mathcal{L}^n, \tag{3.35}$$

where 1_{Q_α} denotes the indicator function of the set Q_α.

Claim The estimate

$$\sup_J \left\{ \ell(J)^{-p_0} \mu(J) \right\} \leq 2^{n+p_0} \tag{3.36}$$

holds, where the supremum is taken over all n-dimensional cubic intervals.

Indeed, write for a dyadic interval Q

$$\mu(Q) = \sum_{\alpha: Q_\alpha \subset Q} \ell(Q_\alpha)^{p_0} + \sum_{\alpha: Q_\alpha \not\subset Q} \frac{\ell(Q \cap Q_\alpha)^n}{\ell(Q_\alpha)^{n-p_0}}.$$

By regularity of $\{Q_\alpha\}$ the first sum is bounded above by $\ell(Q)^{p_0}$. If the second sum is nonzero, then there must exist an index α such that $Q_\alpha \not\subset Q$ and $Q_\alpha \supset Q$. But then the first sum is empty and the second sum has only the one term $\ell(Q)^n/\ell(Q_\alpha)^{n-p_0}$, hence is at most $\ell(Q)^{p_0}$. Thus the estimate $\mu(Q) \leq \ell(Q)^{p_0}$ holds for every dyadic Q. The inequality (3.36) in the case of a general cubic interval J follows from the above dyadic case and Lemma 3.14. The proof of the claim is complete.

Now return to (3.31). By properties (3.27), (3.33), and (3.34) (applied to the mapping v_1), we have

$$\sum_{\alpha} \frac{1}{\ell(Q_\alpha)^{n-p_0}} \int_{Q_\alpha} |\nabla v|^p_0 \leq \frac{2^{p_0-1} K^{p_0}}{K^{p_0} + 1} \varepsilon + \sum_{\alpha} \frac{2^{p_0-1}}{\ell(Q_\alpha)^{n-p_0}} \int_{Q_\alpha} |\nabla v_1|^p_0$$

$$\leq C' \left(\varepsilon + \int |\nabla v_1|^p_0 d\mu \right) \leq C'' \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, the proof of Lemma 3.16 is complete.

Proof of Theorem 3.13 Fix $\varepsilon > 0$ and take $\delta = \delta(\varepsilon, v)$ from Lemma 3.16. Then by Corollary 2.3 for any regular family $\{Q_\alpha\}$ of n-dimensional dyadic intervals we have if $\sum_{\alpha} \ell(Q_\alpha)^{p_0} < \delta$, then $\sum_{\alpha} (\text{diam } v(Q_\alpha))^{p_0} < C \varepsilon$. Now we may conclude the proof of Theorem 3.13 by use of Lemmas 3.14 and 3.15. Indeed they allow us to find a $\delta_0 > 0$ such that if for a subset E of \mathbb{R}^n we have $\mathcal{H}^{p_0}_\infty(E) < \delta_0$, then E can be covered by a regular family $\{Q_\alpha\}$ of n-dimensional dyadic intervals with $\sum_{\alpha} \ell(Q_\alpha)^{p_0} < \delta$. □

Remark 3.17 Note that the order of integrability p_0 is sharp: for example, the Luzin N-property fails in general for continuous mappings $v \in W^1_k(\mathbb{R}^n, \mathbb{R}^n)$ (here $k = 1, q = p_0 = n$), see, e.g., [26].

© Springer
3.5 Morse–Sard–Dubovitskii–Federer Theorem for Sobolev Mappings

Let \(k, m \in \{1, \ldots, n\} \) and \(v \in W^{k}_{p_{0},1,\text{loc}}(\Omega, \mathbb{R}^{d}) \), where \(\Omega \) is an open subset of \(\mathbb{R}^{n} \). Then, by Theorem 3.9 (ii), there exists a Borel set \(A_{v} \) such that \(\mathcal{H}^{p_{0}}(A_{v}) = 0 \) and all points of the complement \(\Omega \setminus A_{v} \) are \(L_{p_{0}} \)-Lebesgue points for the gradient \(\nabla v(x) \). Moreover, \(v \) is differentiable (in the classical Fréchet sense) at every point of \(\Omega \setminus A_{v} \).

Denote \(Z_{v,m} = \{ x \in \Omega \setminus A_{v} : \text{rank} \nabla v(x) < m \} \). The purpose of this section is to prove the assertion of Theorem 1.5:

\[
\mathcal{H}^{q_{0}}(v(Z_{v,m})) = 0. \tag{3.37}
\]

The exponents occurring in the theorem are the critical exponents that were defined in (1.6):

\[
p_{0} = \frac{n}{k} \quad \text{and} \quad q_{0} = m - 1 + \frac{n - m + 1}{k}.
\]

By an easy calculation, assumptions \(n \geq m \geq 1, k \geq 1 \) imply

\[
p_{0} \leq q_{0} \leq n. \tag{3.38}
\]

Note that in the double inequality (3.38), we have equality in the first inequality iff \(m = 1 \) or \(k = 1 \), while in the second inequality equality holds if and only if \(k = 1 \). In particular,

\[
p_{0} < q_{0} < n \quad \text{for} \ k, m \in \{2, \ldots, n\}.
\]

By results obtained in the previous papers [11,12,24] (see commentary to the Theorem 1.5 in the Introduction), we need only consider the case

\[
m = 1, \quad q_{0} = p_{0} = \frac{n}{k}.
\]

Before embarking on the detailed proof, let us make some preliminary observations that will enable us to make some convenient additional assumptions. Namely because the result is local we can without loss in generality assume that \(\Omega = \mathbb{R}^{n} \). For the remainder of the section we fix \(k \in \{2, \ldots, n\} \) and a mapping \(v \in W^{k}_{p_{0},1}(\mathbb{R}^{n}, \mathbb{R}^{d}) \). In view of the definition of critical set we have for \(m = 1 \)

\[
Z_{v} = Z_{v,1} = \{ x \in \mathbb{R}^{n} \setminus A_{v} : \nabla v(x) = 0 \}.
\]

The following lemma provides the main step in the proof of Theorem 1.5.

Lemma 3.18 For any \(n \)-dimensional dyadic interval \(Q \subset \mathbb{R}^{n} \) the estimate

\[
\mathcal{H}_{\infty}^{p_{0}}(v(Z_{v} \cap Q)) \leq C \| \nabla^{k} v \|_{L^{p_{0}}(Q)}^{p_{0}} \tag{3.39}
\]

holds, where the constant \(C \) depends on \(n, m, k, d \) only.
Proof By virtue of (2.5) it suffices to prove that
\[
\mathcal{H}^p_\infty (v(Z_v \cap Q)) \leq C \| \nabla^k v_Q \|_{L^p_0,1(\mathbb{R}^n)}^{P_0} \tag{3.40}
\]
for the mapping \(v_Q\) defined in Lemma 2.2, where \(C = C(n, m, k, d)\) is a constant. To establish (3.40), it is possible to repeat almost verbatim the proof of Lemma 3.2 in [24]. One must observe the following minor changes: first \(q_0 = P_0\), and next, instead of Corollary 1.8 from [24] one must use Corollary 3.8 established above. Note that in the present situation the calculations simplify since for \(m = 1\) many of terms from [24, proof of Lemma 3.2] disappear.

Corollary 3.19 For any \(\varepsilon > 0\) there exists \(\delta > 0\) such that for every subset \(E\) of \(\mathbb{R}^n\) we have \(\mathcal{H}^p_\infty (v(Z_v \cap E)) \leq \varepsilon\) provided \(\mathcal{L}^n (E) \leq \delta\). In particular, \(\mathcal{H}^{P_0} (v(Z_v \cap E)) = 0\) whenever \(\mathcal{L}^n (E) = 0\).

Proof Let \(\mathcal{L}^n (E) \leq \delta\), then we can find a family of nonoverlapping \(n\)-dimensional dyadic intervals \(Q_\alpha\) such that \(E \subset \bigcup_\alpha Q_\alpha\) and \(\sum_\alpha \ell^n (Q_\alpha) < C\delta\). Then in view of Lemma 2.1 we have
\[
\sum_\alpha \| \nabla^k v \|_{L^{P_0}_0,1(Q_\alpha)}^{P_0} \leq \| \nabla^k v \|_{L^{P_0}_0,1(\bigcup Q_\alpha)}^{P_0} \tag{3.41}
\]
This estimate together with Lemma 3.18 allow us to conclude the required smallness of
\[
\sum_\alpha \mathcal{H}^{P_0}_\infty (Z_v \cap Q_\alpha) \geq \mathcal{H}^{P_0}_\infty (Z_v \cap E).
\]

Invoking Dubovitskiǐ–Federer’s Theorem (see commentary to the Theorem 1.5 in the Introduction) for the smooth case \(g \in C^k(\mathbb{R}^n, \mathbb{R}^d)\), Theorem 3.9 (iii) (applied to the case \(l = k\)) implies

Corollary 3.20 (see, e.g., [13]) There exists a set \(\tilde{Z}_v\) of \(n\)-dimensional Lebesgue measure zero such that \(\mathcal{H}^{P_0} (v(Z_v \setminus \tilde{Z}_v)) = 0\). In particular, \(\mathcal{H}^{P_0} (v(Z_v)) = \mathcal{H}^{P_0} (v(\tilde{Z}_v))\).

From Corollaries 3.19 and 3.20, we conclude that \(\mathcal{H}^{P_0} (v(Z_v)) = 0\), and this ends the proof of Theorem 1.5.

Acknowledgements We are grateful to Professor Jean Bourgain for very useful interaction on the subject of this paper. The main part of the paper was written during a visit of MVK to the Oxford Centre for Nonlinear PDE in May 2015.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
References

1. Adams, D.R.: A note on Choquet integrals with respect to Hausdorff capacity. In: Janson, S. (ed.) Function Spaces and Applications, Lund 1986, Lecture Notes in Mathematics, pp. 115–124. Springer, New York (1986)
2. Adams, D.R.: A trace inequality for generalized potentials. Stud. Math. 48, 99–105 (1973)
3. Adams, D.R.: On the existence of capacitary strong type estimates in \mathbb{R}^n. Ark. Mat. 14, 125–140 (1976)
4. Adams, D.R.: My love affair with the Sobolev inequality. In: Maz’ya, V. (ed.) Sobolev Spaces in Mathematics I. Sobolev Type Inequalities. International Mathematical Series, Vol. 8, pp. 25–68. Springer, Tamara Rozhkovskaya Publisher, New York (2009). http://www.springer.com/series/6117
5. Adams, D.R.: Morrey spaces. Lecture Notes in Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham (2015)
6. Aikawa, H.: Bessel capacity, Hausdorff content and the tangential boundary behavior of harmonic functions. Hiroshima Math. J. 26(2), 363–384 (1996)
7. Bates, S.M.: Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Am. Math. Soc. 117(1), 279–283 (1993)
8. Bojarski, B., Hajlasz, P., Strzelecki, P.: Sard’s theorem for mappings in Hölder and Sobolev spaces. Manuscr. Math. 118, 383–397 (2005)
9. Bojarski, B., Hajlasz, P., Strzelecki, P.: Improved $C^{k,\lambda}$ approximation of higher order Sobolev functions in norm and capacity. Indiana Univ. Math. J. 51(3), 507–540 (2002)
10. Bojarski, B., Hajlasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106, 77–92 (1993)
11. Bourgain, J., Korobkov, M.V., Kristensen, J.: On the Morse–Sard property and level sets of Sobolev and BV functions. Rev. Mat. Iberoam. 29(1), 1–23 (2013)
12. Bourgain, J., Korobkov, M.V., Kristensen, J.: On the Morse–Sard property and level sets of $W^{n,1}$ Sobolev functions on \mathbb{R}^n. J. fur die Reine Angew. Math. (Crelles J.) 2015(700), 93–112 (2015). https://doi.org/10.1515/crelle-2013-0002. (Online first 2013)
13. De Pascale, L.: The Morse–Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50, 1371–1386 (2001)
14. Dorronsoro, J.R.: Differentiability properties of functions with bounded variation. Indiana Univ. Math. J. 38(4), 1027–1045 (1989)
15. Dubovitski˘ı, A.Y.: On the set of degenerate points, (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 31(1), 27–36 (1967). English Transl.: Math. USSR Izv. 1(1), 25–33 (1967). https://doi.org/10.1070/IM1967v001n01ABEH000545
16. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)
17. Federer, H.: Two theorems in geometric measure theory. Bull. Am. Math. Soc. 72, 719 (1966)
18. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)
19. Fefferman, C.L.: The uncertainty principle. Bull. Am. Math. Soc. (N.S.) 9(2), 129–206 (1983)
20. Figalli, A.: A simple proof of the Morse–Sard theorem in Sobolev spaces. Proc. Am. Math. Soc. 136, 3675–3681 (2008)
21. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions. Academic Press Inc., London (1976)
22. Kauhanen, J., Koskela, P., Maly, J.: On functions with derivatives in a Lorentz space. Manuscr. Math. 100(1), 87–101 (1999)
23. Kerman, R., Sawyer, E.T.: The trace inequality and eigenvalue estimates for Schrödinger operators. Ann. de l’inst. Fourier 36(4), 207–228 (1986)
24. Korobkov, M.V., Kristensen, J.: On the Morse–Sard theorem for the sharp case of Sobolev mappings. Indiana Univ. Math. J. 63(6), 1703–1724 (2014). https://doi.org/10.1512/iumj.2014.63.5431
25. Korobkov, M.V., Pileckas, K., Russo, R.: Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 181(2), 769–807 (2015). https://doi.org/10.4007/annals.2015.181.2.7
26. Maly, J., Martio, O.: Luzin’s condition N and mappings of the class $W^{1,n}$. J. Reine Angew. Math. 458, 19–36 (1995)
27. Maly, J.: Advanced theory of differentiation—Lorentz spaces, (March 2003). http://www.karlin.mff.cuni.cz/~maly/lorentz.pdf
28. Maz’ya, V.G.: Sobolev Spaces. Springer, New York (1985)
29. Maz’ya, V.I.G., Shaposhnikova, T.O.: Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Grundlehren der Mathematischen Wissenschaft, p. 609. Springer, Heidelberg (2009)
30. Morse, A.P.: The behavior of a function on its critical set. Ann. Math. 40, 62–70 (1939)
31. Romanov, A.S.: Absolute continuity of the Sobolev type functions on metric spaces. Sib. Math. J. 49(5), 911–918 (2008)
32. Sard, A.: The measure of the critical values of differentiable maps. Bull. Am. Math. Soc. 48, 883–890 (1942)
33. Saks, S.: Theory of the Integral. Dover Books on Mathematics, New York (2005). (First published in 1937)
34. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)
35. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1971)
36. Ziemer, W.P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics. Springer, New York (1989)