Possible solution to basic problems regarding the coupling constants $G_V$ and $G_A$

V. P. Gudkov

Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208

K. Kubodera

Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208

and CEA/Saclay, Service de Physique Théorique

F-91191, Gif-sur-Yvette Cedex, France

Abstract

The existing experimental evidence on the vector and axial-vector coupling constants, $G_V$ and $G_A$, for neutron $\beta$-decay exhibits two prominent problems: (i) the unitarity for the first row of the CKM matrix seems violated; (ii) one obtains different values of $G_A/G_V$ according to whether one uses as input the neutron lifetime or neutron-decay correlation observables. We show that the in-medium modification of $G_A$ can influence both the inner and outer radiative corrections used in deducing $G_V$ from the super-allowed Fermi transitions and that this effect may resolve the long-standing problems (i) and (ii) simultaneously.

23.40-s, 12.15.Hh, 12.15.Lk

Typeset using REVT\TeX

*permanent address
The vector coupling constant $G_V$ and the axial-vector coupling constant $G_A$ for neutron $\beta$-decay are quantities of primary importance that have been studied extensively. The recent remarkable progress in the determination of $G_V$ and $G_A$ highlights two very notable problems. One problem is concerned with $G_V$ and the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $V_{ud}$. Comparison of $G_V$ with $G_\mu$ obtained from the $\mu$-decay rate gives the empirical value of $V_{ud}$, and the existing data give \[ V_{ud} = 0.9740 \pm 0.0005. \] (1)

Since in the standard model the CKM matrix is unitary, the first row of the CKM matrix must satisfy $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$. However, $V_{ud}$ in Eq.(1) combined with the available information on $V_{us}$ and $V_{ub}$ leads to
\[ |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9972 \pm 0.0013, \] indicating a violation of unitarity at the 98% confidence level [1]. Since this violation, if confirmed, constitutes a clear signal for physics beyond the standard model, and since the contribution of $V_{ud}$ dominates the sum in Eq.(2), it is vitally important to assess the reliability of $V_{ud}$ in Eq.(1).

The second problem concerns $\lambda \equiv G_A/G_V$. The neutron-decay angular distribution experiments give \[ \lambda_A = 1.2601 \pm 0.0025, \] (3)
whereas the neutron lifetime measurements, which have recently greatly improved, give \[ \lambda_\tau = 1.2681 \pm 0.0033. \] (4)
(For the neutron lifetime we use the value $888 \pm 3$ sec which is between the two recommended values $887 \pm 2.0$ sec and $889.2 \pm 2.2$ sec.) The origin of this discrepancy in $\lambda$ is at present unknown, a situation that is rather disturbing.

In this Letter we point out the possibility that the above two problems are related to each other and that they may be solved simultaneously by taking into account certain types
of hadronic effects which have not been considered so far. As is well known, $G_V$ is obtained from the observed $f t$ values for $0^+ \to 0^+$ nuclear $\beta$-decays after applying radiative corrections and isospin-mixing corrections. Although these corrections have been studied in great detail by many authors, we present here a new type of nuclear correction which increases $G_V$, and hence $V_{ud}$ as well, in such a way that the unitarity condition is satisfied. This increase in $G_V$ decreases the value of $\lambda_\tau$ due to the fact that the neutron decay rate is proportional to 

$$G_V^2 + 3G_A^2 = G_V^2(1 + 3\lambda_\tau^2).$$

By contrast, $\lambda_A$ remains unaffected, because it is directly related to the correlation observables in neutron $\beta$-decay and hence has no connection with the $f t$ values of the $0^+ \to 0^+$ transitions. We will argue that our new value of $\lambda_\tau$ is compatible with $\lambda_A$.

In deducing the empirical value of $V_{ud}$ from comparison of the rates of $0^+ \to 0^+$ nuclear $\beta$-decays and the strength of the pure leptonic $\mu$-decay, an accurate estimate of radiative corrections is the most important step (see for example, [1,3–5] and references therein). The benchmark work which constitutes the basis of all the recent analyses is due to Marciano and Sirlin [4], who find the following corrections

$$\Delta O(\alpha) = \frac{\alpha}{2\pi} [g(E_m) + 4 \ln (m_Z/M) + \ln (M/M_A) + 2C + A_g].$$

(5)

The first term, often called the outer correction, represents a spectrum-average effect which depends on the $\beta$-ray end-point energy $E_m$, and its contribution amounts to $\sim 0.01$ [6]. Of the remaining terms (inner corrections), the $4 \ln (m_Z/M)$ term represents the dominant model-independent short-distance contribution ($M =$ proton mass, $m_Z =$ $Z$-boson mass), whereas $\ln (M/M_A) + 2C$ are axial-current induced contributions. $M_A(\sim 1$ GeV) is a low-energy cutoff characterizing the short-distance part of the $\gamma W$ box diagram, while $C$ represents the long-distance correction. Numerically, the contributions of the short-distance and long-distance parts are comparable, each contributing about 0.001 (see, e.g. ref. [9]). Finally, $A_g$ is a perturbative QCD correction, which turns out to be very small. The standard radiative corrections above have been obtained for the weak quark current $\bar{q}\gamma^\mu(1 + \gamma_5)q$. In applying theses results to nucleon and nuclear $\beta$-decays, one needs to translate the quark-
based description to hadronic descriptions, and this step is considered to introduce a certain amount of model dependence.

The fact that the axial current can contribute to the radiative correction of the Fermi transition means that, if one uses the nucleon weak current instead of the quark current, the results will in general depend on $\lambda$, the strength of the axial-current coupling, and that the well-established nuclear-medium dependence of $\lambda$ is capable of affecting the radiative correction. In fact, parts of such effects have been studied in the literature. Several authors \cite{6,7} investigated the two-nucleon contribution to the $C$ term in Eq. (5), while Towner \cite{9} estimated the influence of the in-medium modification of $\lambda$ on the $C$ term. Changes in $C$ due to these effects were reported to be small. The existing work is limited to the $C$ term because in the treatment of Ref. \cite{4}, the $\ln(M/M_A)$ term, representing the short-distance effects, was considered to be independent of hadron/nuclear models, leaving only the $C$ term as a model-dependent contribution. We note, however, that, although the separation of the axial-vector induced corrections into short- and long-distance parts has a clear-cut meaning in the quark picture, there is a possibility that this separation becomes less well defined when one switches (as one must do at some point) to hadronic descriptions.

In this note we estimate the effects of the in-medium modification of $\lambda$, using the nucleonic weak current from the outset, and without invoking separation into short- and long-distance contributions. This means that our calculation in principle incorporates the combined effects of the $\ln(M/M_A)$ and $C$ terms, even though we do not try to make direct contact with the quark-model-based classification used in Eq. (5). As will be demonstrated below, our approach indeed gives rise to a cut-off dependent term which is a function of $\lambda$ and hence can be influenced by nuclear-medium effects. It is important to emphasize, however, that we work here with the nucleonic weak current instead of the quark weak current not because we think the former has more fundamental meaning. Rather, the reason is that the nucleonic current description provides an interesting alternative framework for incorporating the nuclear medium effects.

Our work has some overlap with that of Towner \cite{3} in that the effects of in-medium
modification of $\lambda$ are considered but, as mentioned above, the calculation in [9] was limited to the $C$ term. Obviously, a calculation of the entire $\lambda$-dependent effect (rather than just the $C$ term) is an extremely difficult task. In the present exploratory work, therefore, we present an estimate based on schematic models. Thus, we use the nucleon weak current

$$\bar{u}_p \gamma^\mu (1 + \lambda \gamma_5) u_n,$$

and assume that the nuclear-medium effect can be represented by changing the free space value $\lambda$ into an in-medium value $\lambda^*$. As for electromagnetic interactions we take into account the nucleon charge and magnetic moments and the electron charge. To calculate the loop diagrams, we employ two simplified approaches. In the first approach we use a single common cut-off parameter $\Lambda_0$ instead of form factors at the vertices. In the second approach we use a common form factor $\Lambda^2/(q^2 + \Lambda^2)$, both at the weak and at the electromagnetic vertices, where $q$ is transferred momentum, and $\Lambda$ is the parameter of the same order of magnitude as the nucleon mass $M$.

For each of the two cases, a simple but quite lengthy calculation leads to the following expression for a $\lambda$-dependent contribution to the inner radiative correction:

**Case I:**

$$\Delta_{\text{inner}} \lambda = \frac{\alpha}{2\pi} \left( \frac{1}{\xi_0^2} - \xi \ln \xi \right) + 2\xi \ln \xi + \frac{1}{4\xi^2} \ln \xi - \frac{1}{4\xi} \ln \xi,$$

**Case II:**

$$\Delta_{\text{inner}} = \frac{\alpha}{2\pi} \left( \frac{13}{12} - \xi \ln \xi \right) + \frac{7}{6} + 2\xi \ln \xi + \frac{1}{\xi^2} + \frac{3}{4} \ln \xi - \frac{1}{4\xi^2} \ln \xi.$$
In the above we concentrated on the inner corrections. We now turn our attention to the outer correction, which is defined as an $E_m$-dependent correction. As is well known, if one only retains terms of $O(\alpha)$, ignoring terms of $O(\alpha E/M)$ and $O(\alpha(E/M)\ln(M/E))$ ($E =$ electron energy), then the outer correction becomes model-independent and hence also $\lambda$-independent. The term $\mathcal{F}(E_m)$ in Eq. (6) represents this model-independent contribution. However, at the level of precision we are interested in, it becomes necessary to retain terms of $O(\alpha E/M)$ and $O(\alpha(E/M)\ln(M/E))$, and these terms lead to a $\lambda$-dependent outer correction. We write a generic form of the $\lambda$-dependent outer correction as

$$\Delta_{outer} = \lambda \frac{\alpha}{2\pi} f(E_m).$$

(9)

The explicit forms of $f(E_m)$, which depend on the models used, are very lengthy and will be given elsewhere. We remark that the separation of the radiative corrections into the terms in Eq.(6) is specific to the quark model, and therefore it is not possible to establish termwise correspondence between the terms in Eq.(6) and those in Eqs.(7) - (9).

We denote by $\Delta_\lambda$ the leading-order $\lambda$-dependent radiative correction, which is the sum of the inner correction in Eq. (7) or Eq. (8), and the outer correction in Eq. (9):

$$\Delta_\lambda \equiv \Delta_{inner} + \Delta_{outer} \equiv \lambda \cdot \frac{\alpha}{2\pi} J.$$

(10)

Here $J$ contains information about the nucleon structure including its weak and electromagnetic form factors. Assuming that the cut-off parameters in Eqs.(7)-(9) are controlled by a strong interactions scale ($\Lambda_0 \sim \Lambda \sim M$) and that a characteristic energy of nuclear $\beta$-decay is $E_m \sim 5$ MeV, the value of $J$ turns out to be typically $5 \sim 25$. In the subsequent numerics, we use $J = 15 \pm 10$.

Since we have a general expression (within our schematic model) for the $\lambda$-dependent part of the $O(\alpha)$ radiative corrections, we may use it to study the influences of the in-medium modification of $\lambda$. We expect that, if a description based on the nucleon weak current achieves a sufficient level of precision, then the result corresponding to the case with $\lambda$ fixed at the free nucleon value should essentially reproduce the results of the existing analyses.

6
of the relevant observables based on Eq. (5). Then we may assume that small perturbative
changes in the $\lambda$-dependent radiative correction due to in-medium modification of $\lambda$ can be
estimated with the present schematic model. We use Eq. (10) in this limited context.

We introduce the in-medium renormalization parameter $\rho$ as $\rho \equiv \lambda^*/\lambda$. For a wide range
of the periodic table, a typical value of $\rho$ is $\rho \sim 0.8$ [11]. For our present purpose, we fix
$\rho$ at 0.8. Then, by taking the difference of $\Delta_\lambda$, Eq. (10), between the nuclear and free cases, we obtain

$$\Delta \equiv \Delta_\lambda - \Delta_{\lambda^*} = \lambda (1 - \rho) \frac{\alpha}{2\pi} J.$$  (11)

This leads to a corrected value [4] of the CKM matrix element $V_{ud}$

$$V_{ud} \rightarrow V_{ud} (1 + \Delta/2),$$  (12)

and, since the probability of neutron $\beta$-decay is proportional to the $|V_{ud}|^2$, to a corrected expression for the neutron life time

$$\tau_n = \frac{2(Ft)}{f_R \ln 2 \left(1 + 3\lambda^2\right)}.$$  (13)

Here $F$ and $f_R$ are nuclear and neutron phase space factors [12]. Eqs. (12) and (13) sum-
marize how the medium dependence of $\lambda$ encoded in $\Delta$ can change the deduction of $V_{ud}$
and the analysis of $\tau_n$. For the choice of the values of parameters explained above, we have $\Delta = 0.0044 \pm 0.0029$.

The new formula Eq. (12) changes the value of $V_{ud}$ from $V_{ud} = 0.9740 \pm 0.0005$ to $V_{ud} = 0.9761 \pm 0.0015$. The error for the CKM matrix element has been estimated simply as the sum of the squared errors, one coming from Eq. (1) and the other coming from the allowed range of $J$. The new value of the CKM matrix element in turn leads to

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1.0013 \pm 0.0031$$  (14)

in good agreement with the unitarity condition. Moreover, the use of Eq. (13) with $\Delta = 0.0044 \pm 0.0029$ decreases $\lambda_r$ from the value in Eq. (3) to $\lambda_r = 1.2655 \pm 0.0034$. This new value agrees with $\lambda_A$, Eq. (3) within the error bars.
Thus, we have illustrated the possibility that the inclusion of the effect of the in-medium modification of $G_A$ in the entire radiative correction (not only in the $C$ term) is capable of removing the two outstanding problems regarding the basic coupling constants $G_V$ and $G_A$. Our present treatment is admittedly very schematic and subject to various improvements, and the particular numerical successes reported above are simply indication of the possible effect. However, we believe that our calculation does indicates the importance of the new type of radiative correction considered here and that future analyses of the $0^+ \to 0^+ \beta$-transitions need to include the effects discussed in this article.

ACKNOWLEDGMENTS

The authors are grateful to F. Myhrer and B.M. Preedom for useful discussions. KK wishes to thank J.N. Bahcall and W.C. Haxton, who organized the INT Workshop on Solar Nuclear Fusion, where he was able to learn the latest status of the problems discussed in this paper.

This work is supported in part by the National Science Foundation, USA Grant No. PHYS- 9602000.
REFERENCES

[1] I. S. Towner et al., in Proceedings of the IV International Symposium on Weak and Electromagnetic Interactions in Nuclei, edited by H. Ejiri, T. Kishimoto and T. Sato, Osaka, Japan 12-16 June 1995, p. 313 (World Scientific, Singapure, New Jersey, London, Hong Kong, 1995).

[2] Review of Particle Physics, Phys. Rev. D54, No.1 (1996).

[3] A. Sirlin, Rev. Mod. Phys. 50, 573 (1978).

[4] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986).

[5] J. C. Hardy, I. S. Towner, V. T. Koslowsky, E. Hagberg and H. Schmeing, Nucl. Phys. A509, 429 (1990).

[6] W. Jaus and G. Rasche, Phys. Rev. D41, 166 (1990).

[7] I. S. Towner, Nucl. Phys. A540, 478 (1992).

[8] F. C. Barker, B. A. Brown, W. Jaus and G. Rasche, Nucl. Phys. A540, 501 (1992).

[9] I. S. Towner, Phys. Lett. 333, 13 (1994).

[10] G. D. Alkhazov et al., Pis’ma v ZhETF 38, 144 (1983).

[11] J. C. Hardy and I. S. Towner, J. Phys. 45, C4-417 (1984).

[12] D. H. Wilkinson, Nucl. Phys. A377, 474 (1982).