SYNTHESIS AND ANTICONVULSANT SCREENING OF SOME NOVEL DERIVATIVES OF SUBSTITUTED BENZOFURAN

Mehnaz Kamal 1* and Ashok K Shakya 2

1 Faculty of Pharmacy, Integral University, Lucknow (U. P.), India
2 Faculty of Pharmacy and Medical Sciences, Amman University, Jordan

E-mail of Corresponding Author: mailtomehnaz@gmail.com

Abstract

A series of \(N\)-(2-benzoylbenzofuran-3-yl)-4-(substituted)butanamides (\text{IIIa-f}) were synthesized in good yield and evaluated for anticonvulsant activity and neurotoxic study. The identity of the synthesized compounds was confirmed on the basis of their elemental analysis and spectral data. In anti-MES test compounds \text{IIIb}, \text{IIIc}, \text{IIId} and \text{IIIf} showed potent activity. Compounds \text{IIIa} and \text{IIIe} were less toxic as compared with the standard drug phenytoin.

Keywords: Benzofuran; Butanamides; Anticonvulsant; Neurotoxic study

1. Introduction

Since the past few decades, the literature has been enriched with progressive findings about the synthesis and pharmacological activities of various substituted benzofuran derivatives. During recent years, there has been intense investigation of different classes of benzofuran compounds and many of them were found to be pharmacologically active. The substituted benzofurans have attracted much attention due to their prominent utilization as antimicrobial\(^1\), \(^2\), anti-inflammatory\(^3\),\(^4\), anticonvulsant\(^5\),\(^6\), antitumor\(^7\),\(^8\), Anti-HIV\(^9\), Antidiabetic\(^10\) and antitubercular\(^11\), activity probably resulting from its planar and compact structure.

Benzofurans, heterocyclic compounds of varied biological activities were found to be one of the new classes of anticonvulsant agents as revealed by literature survey\(^5\),\(^6\). In recent years, the field of antiepileptic drug development (ADD) has become quite dynamic, affording many promising research opportunities, and there is a continuing demand for new anticonvulsant agents as it has not been possible to control every kind of seizure with currently available antiepileptic drugs.

The amides are a class of compounds presenting a wide range of biological applications and anticonvulsant activity\(^12\),\(^13\),\(^14\). This prompted us to synthesize and study anticonvulsant activity of compounds incorporating both these moieties i.e., Benzofuran and amides. The compounds were evaluated for their antiepileptic and neurotoxic properties according to the protocols of Antiepileptic Drug Development (ADD) program developed by National Institute of Health (NIH).

2. Materials and methods

2.1 Chemistry: The melting points were determined in open glass capillary using kjeldahl flask containing liquid paraffin and are uncorrected. NMR spectra were recorded on Bruker model DRX-300 NMR spectrometer (chemical shift in ppm) in CDC\(_3\)/DMSO-d\(_6\) using Tetra methyl silane (TMS) as internal reference. Chemical shifts were reported in parts per million (ppm, \(\delta\)) and the signals were described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Elemental analysis (N) was undertaken with a Perkin-Elmer model analyzer, and all analyses were consistent with theoretical values (within 0.4%) unless indicated. The homogeneity of the compounds was checked by thin layer chromatography (TLC) on silica gel G (Qualigens) coated plates by using Cyclohexane: Ethyl acetate (8:2) as solvent system. Iodine chamber and UV lamp were used for the visualization of TLC spots.

\(N\)-(2-benzoylbenzofuran-3-yl)-4-chlorobutanamide (II)

A mixture of 2-Benzoyl-1-benzofuran-3-amines (I) (0.02mol) and 4-chlorobutyryl chloride (5ml) was refluxed on water bath for 30 min. and poured into ice water with stirring. The solid, which separated, was collected and recrystallized from ethanol as colorless needles (II).

\(N\)-(2-benzoylbenzofuran-3-yl)-4-(substituted) butanamides (\text{IIIa-f})
To a solution of N-(2-benzoylbenzofuran-3-yl)-4-chlorobutanamide (II, 1 mmol) in dioxane (10 ml), different amines (2 mmol) was added and stirred at room temperature for 24 hr. The reaction mixture was evaporated to dryness. To the residue, water (25 ml) and chloroform (25 ml) were added and separated with the help of separating funnel. After that organic layer (chloroform) was separated and the residue obtained is IIIa-f.

The spectral data of IIIa-f are given below. The physico-chemical parameters of the synthesized compounds are presented in Table 1.

N-(2-benzoylbenzofuran-3-yl)-4-(furan-2-carbonyl)piperazin-1-yl)butanamide (IIIa)

1H NMR (CDCl$_3$-d$_6$): (δ, ppm) 11.37 (s, 1H, NH), 7.27-8.30 (m, 4H, CH Benzofuran, 5H, Ar-H), 2.35 (t, 2H, COCH$_2$), 1.77 (m, 2H, CH$_2$-CO), 2.47 (t, 2H, CH$_2$-CO), 3.44 (t, 2 and 6 CH$_2$ of piperazine), 3.63 (t, 3 and 5 CH$_2$ of piperazine), 8.09 (d, 1H, 2' CH Pyridinyl), 6.60 (t, 1H, 3' CH Pyridinyl), 7.56 (t, 1H, 4' CH Pyridinyl), 6.70 (d, 1H, 4' CH Pyridinyl)

N-(2-benzoylbenzofuran-3-yl)-4-(4-pyrindin-2-y1)piperazin-1-yl)butanamide (IIIb)

1H NMR (CDCl$_3$-d$_6$): (δ, ppm) 11.38 (s, 1H, NH), 7.28-8.31 (m, 4H, CH Benzofuran, 5H, Ar-H), 2.35 (t, 2H, COCH$_2$), 1.78 (m, 2H, CH$_2$-CO), 2.47 (t, 2H, CH$_2$-CO), 3.44 (t, 2 and 6 CH$_2$ of piperazine), 3.63 (t, 3 and 5 CH$_2$ of piperazine), 8.09 (d, 1H, 2' CH Pyridinyl), 6.60 (t, 1H, 3' CH Pyridinyl), 7.56 (t, 1H, 4' CH Pyridinyl), 6.70 (d, 1H, 4' CH Pyridinyl)

N-(2-benzoylbenzofuran-3-yl)-4-(dipropylamino)butanamide (IIIc)

1H NMR (CDCl$_3$-d$_6$): (δ, ppm) 11.40 (s, 1H, NH), 7.27-8.32 (m, 4H, CH Benzofuran, 5H, Ar-H), 2.35 (t, 2H, COCH$_2$), 1.77 (m, 2H, CH$_2$-CO), 2.47 (t, 2H, CH$_2$-CO), 2.46 (m, 4H, N-CH$_2$ of isopropyl), 1.46 (m, 4H, N-CH$_2$ CH$_3$ of isopropyl), 0.90 (t, 6H, CH$_3$ of isopropyl)

N-(2-benzoylbenzofuran-3-yl)-4-(cyclohexyl(methyl)amino)butanamide (IIId)

1H NMR (CDCl$_3$-d$_6$): (δ, ppm) 11.29 (s, 1H, NH), 7.26-8.31 (m, 4H, CH Benzofuran, 5H, Ar-H), 2.34 (t, 2H, COCH$_2$), 1.77 (m, 2H, CH$_2$-CO), 2.46 (t, 2H, CH$_2$-CO), 2.25 (s, 3H, N-CH$_3$), 2.56 (m, 1H, 1' CH of cyclohexyl), 1.33-1.57 (m, 4H, 2' & 6' CH of cyclohexyl), 1.21-1.11 (m, 4H, 3' & 5' CH of cyclohexyl), 1.47-1.50 (m, 2H, 4' CH of cyclohexyl)

3. Results

The synthesized compounds (IIIa-f) were initially screened at 30, 100 and 300 mg/kg intraperitoneally in mice for anticonvulsant activity (Table 2). All the compounds exhibit anticonvulsant activity. In the MES test compounds IIId, IIIf and IIIe showed activity at 100 mg/kg after 0.5 hr. and 4 hr. On the other hand, compounds IIIa and IIIe showed protection in mice at the dose level of...
100 mg/kg after 0.5 hr. and 4 hr. Compounds IIIa and IIIe were toxic at the dose of 300 mg/kg after 0.5 hr. and 4 hr. Compounds IIIb, IIIc, IIId and IIIf were toxic at the dose of 100 mg/kg after 0.5 hr. and 4 hr. However, compounds IIIa and IIIe were less toxic than Phenytoin (100 mg/kg).

Acknowledgments

The authors are thankful to Integral University, Lucknow for providing facilities to carry out this research. The Authors are also thankful to CDRI, Lucknow for 1H-NMR spectra and elemental analysis.

References

1. Koca M, Sevi S, Kirilmis C, Kazaz C, Ozbek B, Otuk G. Synthesis and antimicrobial activity of some novel derivatives of benzofuran: Part 1. Synthesis and antimicrobial activity of Benzo[12]fur-2-yl-(3-phenyl-3-methylcyclobutyl)-ketoxime derivatives. Eur J Med Chem 2005; 40: 1351-1358.

2. Alper-Hayta S, Arisoy M, Temiz-Arpaci O, Yildiz, I., Aki, E. et al. Synthesis, antimicrobial activity, pharmacophore analysis of some new 2-(substitutedphenyl/benzyl)-5-[2-benzofuryl]carboxamido]benzoxazoles. Eur J Med Chem 2008; xx: 1-11.

3. Dawood KM, Abdel-Gawad H, Rageb EM, Ellithey M, Mohamed HA. Synthesis, anticonvulsant, and anti-inflammatory evaluation of some new benzotriazole and benzofuran-based heterocycles. Bioorg & Med Chem 2006; 14: 3672-3680.

4. Rajak H, Behera CK, Pawar RS, Singour PK, Kharya MD. A novel series of 2,5-disubstituted1,3,4-thiadiazoles as potential anti-convulsant agent. Chin Chem Letters 2010; 21(10): 1149-1152.

5. Patel HJ, Sarra J, Caruso F, Rossi M, Doshi U. Stephani RA. Synthesis and anticonvulsant activity of new N-1',N-3'-disubstituted-2'H,3'H,5'H-spiro-(2-benzofuran-1,4'-imidazolodine)-2',3,5'-triones. Bioorg & Med Chem Letters 2006; 16: 4644-47.

6. Jadhav VB, Kulkarni MV, Rascal VP, Biradar SS, Vinay MD. Synthesis and anti-inflammatory evaluation of methylene bridged benzofuranaryl imidazo[2,1-b][1,3,4]thiadiazoles. Eur J Med Chem 2008; 43: 1721-29.

7. Hayakawa I, Shioya R, Agatsuma T, Furukawa H, Sugano Y. Thienopyridine and benzofuran derivatives as potent anti-tumor agents possessing different structure–activity relationships. Bioorg & Med Chem Letters 2004; 14: 3411–14.

8. Baraldi PG, Romagnoli R, Pavani MG, Nunez MC, Bingham JP, Hartley JA, Benzoyl and Cinnamoyl Nitrogen Mustard Derivatives of Benzothiophene Analogues of the Tallimustine: Synthesis and Antitumour Activity. Bioorg & Med Chem 2002; 10:1611–18.

9. Rida SM, El-Hawah SAM, Fahmy HTY, Hazzaa AA, El-Meligy MMM. Synthesis of Novel Benzofuran and Related Benzimidazole Derivatives for Evaluation of In Vitro Anti-HIV-1, Anticancer and Antimicrobial Activities. Arch Pharm Res 2006; 29(10): 826-33.

10. Reddy KA, Lohray BB, Bhushan V, Bajji AC, Reddy KV, Reddy PR, Krishna, TH, Rao IN, Jajoo HK, Rao NVS, Chakrabarti R, Kumar TD, Rajagopalan R. Novel Antidiabetic and Hypolipidemic Agents. 3. Benzofuran-Containing Thiadizinediones. J Med Chem 1999; 42:1927-40.

11. Manna K, Agarwal YK, Sririvasan KK. Synthesis and biological evaluation of new benzofuranil isoazoles as antitubercular, antibacterial and antifungal agents. Ind J Med Res 2008; 18 (July-Sep.):87-88.

12. Habibuddin M, Pal M, Pal SP. Neuropharmacology of amide derivative of P-GABA. Indian J Exp Biol 1992; 30: 578-82.

13. Usifoh CO, Lambert DM, Wouters J, Scriba GKE. Synthesis and anticonvulsant activity of N,N-phatholyl derivatives of central nervous system inhibitory amino acids. Arch Pharm Med Chem 2001; 334: 323-31.

14. Mendyk A, Salat K, Librowski T, Czarnecki R, Malawaska B. Influence of new γ-aminobutyric acid amide derivatives and its phthalimide precursors on the central nervous system activity in mice. Pol J Pharmacol 2001; 53:689-93.

15. Krall RI, Penry JK, White BG, Kupferberg HJ, Swingard EA. Antiepileptic drug development II. Anticonvulsant drug Screening. Epilepsia 1978;19: 409-28.

16. Kucukguzel I, Kucukguzel SG, Rollas S, Sanis GO, Ozdemir O, Bayrak I, Altug T, Stables JP. 3-(aryl alkyl thio)-4-alkyl/aryl-5-(4-aminophenyl)-4h-1,2,4-triazole derivatives and their anticonvulsant activity. IL Farmaco 2004; 59:893-901.
Where R = 4-(furan-2-carbonyl)piperazin-1-yl, 4-pyridin-2-yl)piperazin-1-yl, dipropylamino, cyclohexyl(methyl)amino, morpholino and dicyclohexyl amino

Scheme 1. Synthetic pathways for compounds IIIa-f.

Table 1. Physico-chemical parameters of the synthesized compounds (IIIa-f).

S. No.	Compound No.	R	Mol. Formula (Mol wt.)	°M.P (°C)	Percentage Yield (%)	°Rf Value	%N Found (Calc.)
1.	IIIa		C_{28}H_{28}N_{4}O_{3}	164-166	72	0.50	8.65 (8.69)
2.	IIIb		C_{28}H_{28}N_{4}O_{3}	118-120	69	0.55	11.96 (11.88)
3.	IIIc		C_{28}H_{28}N_{4}O_{3}	175-177	76	0.58	6.89 (6.95)
4.	IIId		C_{28}H_{28}N_{4}O_{3}	143-145	59	0.56	6.69 (6.62)
5.	IIIe		C_{28}H_{28}N_{4}O_{3}	120-122	66	0.51	7.14 (7.09)
6.	IIIf		C_{31}H_{38}N_{2}O_{3}	187-189	68	0.76	7.87 (7.84)
Melting point of the compounds at their decomposition, Solvent system- Cyclohexane: Ethyl acetate (8:2), Elemental analysis for N was within ±0.4% of the theoretical values.

Table 2: Anticonvulsant and neurotoxicity results of \(N\)-(2-benzoylbenzofuran-3-yl)-4-(substituted) butanamides (IIIa-f)

Compound No.	MES screen	Toxicity screen		
	0.5 hr	4h	0.5 hr	4h
IIIa	100	100	300	300
IIIb	30	30	100	300
IIIc	30	30	100	100
IIId	30	30	100	300
IIIe	100	100	300	300
IIIf	30	30	100	300
Phenytoin	30	30	100	100

Doses of 30, 100 and 300 mg/kg were administered i.p. The figures in the table indicate the minimum dose whereby bioactivity and neurotoxicity was demonstrated in half or more of the mice. The animals were examined 0.5 and 4 hr after injections were made.