How to prevent fracture of NiTi files

Slavoljub Živković, Marijana Popović Bajić, Milica Jovanović-Medojević, Jelena Nešković
University of Belgrade, School of Dentistry, Department for Restorative Dentistry and Endodontology, Belgrade, Serbia

SUMMARY
More certain therapeutic and significantly facilitated solution of everyday endodontic problems are provided by the introduction of NiTi rotary files in endodontic practice and their proper application. However, their widespread use has caused more and more frequent fractures and has become a significant frustrating factor that diminishes their numerous benefits. Torsional stress and cyclic fatigue are the main reasons for the occurrence of a fracture, and the frequency of NiTi file fractures is exactly proportional to the degree of bending of the canal, knowledge of the features of the file, ie. the skill and expertise of the therapist. The most dominant factor for the occurrence of fractures is the dentist who, in addition to manual dexterity, must have a good knowledge of the anatomy of various canal systems and file design in order to make the best choice for each individual case. Properly formed access cavity and knowledge of the working part of NiTi files enable maximum realization of endodontic skills, increased efficiency of intervention and reduced possibility of error during canal instrumentation. The special treatment of NiTi alloy and new solutions related to the design of the working part have significantly increased file flexibility and resistance to cyclic fatigue. Specific design (reduced number of threads, change of conicity, interruption of blade continuity), reduced engagement of file, ie. change of dynamics of movement in the canal (full rotation, reciprocal, eccentric, transaxial), as well as reduced number of processing files, have also significantly influenced the reduction of fracture risks.

The aim of this paper was to analyze the most common reasons for the fracture of NiTi files and emphasize measures and factors that can increase their safe use and reduce complications during canal instrumentation.

Keywords: NiTi files; fractures; file design; motion dynamics

INTRODUCTION
Endodontic treatment has become increasingly safe and effective due to new concepts and methods of “cleaning” and shaping the canal, ie. introduction of new files [1]. More certain therapeutic and significantly facilitated solutions of everyday endodontic problems are provided by the introduction of NiTi rotary files and their proper application [1, 2]. The use of these files, with limited speed and marked flexibility, significantly accelerates canal instrumentation, but unexpected and sudden fractures are still an important frustrating factor that diminishes their numerous benefits [3, 4].

NiTi files have become the standard in endodontic dental treatment over the last two decades and their widespread use has caused more frequent fractures [3, 5, 6]. It has been confirmed that due to rotating, almost all sets of NiTi files are subject to fractures, and that is more common during instrumentation of curved canals [3, 6]. The main reasons for the occurrence of fracture are torsional stress and cyclic fatigue during canal instrumentation [7–10]. Torsional stress occurs due to the friction of the files against the walls of the canal when one part of the file is screwed in the wall, and the other part continues to move, so the fracture occurs due to exceeding the elastic limit [7, 8]. Cyclic fatigue is a consequence of the cumulative effect of bending forces that are repeated in the same place (usually in the area of the curve), so the file is alternately exposed to tensile forces on the outside and compression forces on the inside [9, 10]. It has been confirmed that NiTi files that were previously exposed to torsional stress showed higher resistance to cyclic fatigue, ie. that files of smaller diameter are generally more resistant to cyclic fatigue [11, 12].

Clinical studies have shown the frequency of fractures of NiTi rotary files is 0.13–10%, and 0.25–6% for hand files [13–17]. NiTi file fracture most often occurs during endodontic treatment of molars (77–89%) with a higher risk during treatment of the upper (50-55%) compared to the lower molars (25–30%) [13, 15, 16]. In the upper molars, the fracture most often occurs in the mesiobuccal canal (distal curvature of the mesial root), and the lower molars in the mesial canals due to distal and buccal curvature [13].

The frequency of NiTi file fracture is exactly proportional to the curvature of the canal (7% in straight, 35% in slightly curved and 58% in very curved canals), and most often occurs in the apical segment (41–82.7%), then in the middle third (14.8–32%) and least often in the coronal third (2.5–20%) [13, 17].

In a study that examined the frequency of NiTi file fractures in general dental and specialized endodontic surgeries, 88.8% of dentists reported fractures, which were much more common among endodontists who performed multiple interventions and generally treated more severe cases [18].

Address for correspondence: Slavoljub ŽIVKOVIĆ, University of Belgrade, School of Dental Medicine, Department for Restorative Dentistry and Endodontology, Rankeova 4, 11000 Belgrade; slavzivkovic@gmail.com
The aim of this paper is to assess the most common reasons for the occurrence of NiTi file fractures and emphasize measures and factors that can increase the safety and reduce possible complications during canal instrumentation.

Factors that influence the occurrence of NiTi file fractures

File fractures seriously complicate and compromise endodontic treatment and its prognosis, and therefore require various precautions [13]. Numerous studies have examined factors that can affect the fracture of endodontic files with the main goal of increasing the safety and reducing possible complications during canal instrumentation [3, 6, 9, 10, 11, 14, 17].

Different factors that can be classified into four categories, affect the occurrence of NiTi file fractures: a) factors related to the therapist (skill and expertise); b) anatomical factors (access cavity and canal anatomy); c) factors related to the file (material, design, production process) and d) technical factors of instrumentation (dynamics of file movement, irrigation, reuse, sterilization) [19–22].

In order to eliminate the risk of possible fractures and deformations of NiTi rotary files during canal preparation, dental technology has developed several new strategies in creating and designing their working part (conicity, cross section, working part design), special thermomechanical procedures in alloy preparation, ie different kinetics of file movement in the canal [1, 9, 20, 21, 22].

A dentist is certainly the most important and most dominant factor influencing the appearance of defects and fractures, ie. his knowledge, expertise and clinical training. In addition to manual skills and knowledge of instrumentation techniques, the practitioner must have a good knowledge of the anatomy of different canal systems (number, arrangement, angle and diameter of canal curvature, additional canals), or file design, to make the best choice for each case [3, 16, 18]. Good planning and detailed analysis of the course of endodontic treatment are necessary for success, but also for prevention of possible fractures [16, 17].

The first and certainly the most important step in preventing fractures is the proper formation of the access cavity and adequate opening of the canals. This provides good visualization of endodontic space, facilitates the control of bending and preparation of the complex apical segment of the canal [3, 15, 16, 23]. Properly formed access cavity is the first step in preventing fracture, because it enables easier movement of the files in the canal, significantly minimizes the stress of bending and twisting, and prevents possible fractures when it comes to patients with limited mouth openings. Canal entrance processing (Gates-Gliden) and checking the patency with hand files significantly facilitate rectilinear access to the canals and reduce the cyclic fatigue of the file during movement in the canal [3, 15, 16].

Apical preparation is a special problem due to inaccessibility and inadequate diameter, reduced effect of irrigation solution and frequent existence of apical curvature that makes it difficult to reach the file to the apical narrowing. Therefore, the blade efficiency of the file and the solvent effect of irrigation are reduced in this part of the canal, and the possibility of retention of debris is increased, as well as the frequent formation of “blockage” that can cause fracture of the file [24, 25].

DESIGN OF NITI FILES

Knowledge and understanding of the design of NiTi files enables the practitioner to maximize endodontic skills, increased efficiency and reduced possibility of error during canal instrumentation [3, 26]. Cyclic fatigue and torsional stress are the most common causes of the damage and fractures during canal instrumentation and are a function of the material and design of the working part, i.e. the dynamics of movement [7, 8, 9, 26]. The resistance of files to cyclic fatigue depends on numerous factors, primarily on the metallurgical features of the alloy and production process, file design (cross-sectional design, length, conicity, blade thread depth), preparation technique, irrigation, rotation speed, number of used files and of course canal curvature and dentist training [4, 8, 26, 27].

The first NiTi rotary file was introduced in 1992 (standard conicity of 2%) and was made of conventional NiTi wire (56% Ni, 44% Ti) with a “shape memory” effect (after unloading, it returns to its original shape), and with extremely biocompatible properties and corrosion resistance [1, 4, 8, 16].

A large number of different NiTi sets have been presented during the last decades (more than 160), with the basic goal of increasing their clinical efficiency and safety with innovative file design, new production processes and special treatments of NiTi alloy, ie affecting resistance to torsional loads, cyclic fatigue and flexibility [1, 8, 20]. High flexibility and shape memory are based on the fact that atoms in the alloy exist in two conformational forms (martensite and austenite), which significantly depend on the ambient temperature and stress (tension) during the movement of the files. The elasticity of the alloy increases with the change of phase, ie martensitic transformation into austenitic (in the martensitic phase the file bends with a slight force), and returns to its original shape after the cessation of stress [4, 9, 20, 26].

Files with an austenitic phase are used for instrumenting straight canals, and NiTi files with a higher share of the martensitic phase show greater flexibility and resistance to cyclic fatigue and are used for instrumenting highly bent canals [28]. An important step in improving physical and mechanical properties of NiTi files is the introduction of new design solutions and production technologies of alloys related to thermal and electrochemical treatment of the working part, as well as the procedure of ion implantation and protection of alloy with various nano coatings [1, 3, 20, 28, 29].

Electrochemical surface treatment of NiTi alloys was a key factor for increasing blade efficiency and increased resistance to cyclic fatigue [29], and the introduction of new heat-treated alloys (M-wire, CM-wire, Max-wire) significantly increased flexibility and resistance to torsional...
stresses [4, 9, 30, 31]. The alloy is alternately and under controlled conditions heated and cooled by heat treatment, in order to provide its specific properties related to increased flexibility and greater resistance to cyclic fatigue [9, 28].

Knowledge of the design features of the working part of the NiTi file is one of the most important prerequisites for efficient preparation, but also a significantly lower possibility of fracture [1, 3, 26]. Resistance to cyclic fatigue mostly depends on the size of cross section, conicity, length of the working part, depth of the cutting edges, surface imperfection of the file, rotation speed, etc. [15, 17, 26, 31]. It has been observed that thinner and more flexible files are more resistant to cyclic fatigue and more sensitive to torsional loads, while thicker ones are more sensitive to cyclic fatigue, but can withstand higher torque [17, 26]. Since increased conicity is often the reason for fracture, dental technology has offered shorter files with progressive multiconicity, which significantly reduces the engagement (contact) of the file with the walls, and thus stress and the possibility of screwing, with more efficient cutting and removal of detritus from the canal [7, 8].

The specific cross-section of the file (U, S shape), ie. number and depth of blades are also factors that lead to screwing and possible fractures, so files with shallow blade edges and constant cross section shape are more resistant to fractures [3, 26]. Surface imperfections of the new NiTi files and higher speed also affect the appearance of fractures. Deformations and fractures of the file are four times more frequent at higher speeds (over 350 rpm) compared to slower speeds (160 rpm), as well as at higher torsional load (3N/cm²) compared to 1N/cm² [3, 11, 12].

Reduced engagement of the NiTi file in the canal can be solved by shortening the working part, reducing the number of threads, changing the conicity, interrupting the continuity of the blade, using files in correct order and changing the dynamics of movement [3, 14, 26]. Since the torque is directly proportional to the surface of engaged file in the canal, smaller torque requires higher number of revolutions and sharper blade needs less threads [3, 12, 26, 27].

**Dynamics of movement of NiTi files in the canal**

Frequent fractures of NiTi files in the canal influenced the introduction of new concepts of instrumentation primarily based on the change of movement dynamics, ie. reduction of the number of files for canal treatment [1, 10, 16]. Initially, only full rotation was used to start the NiTi file, and the instrumentation was most often realized with several file sets (initially with 5-6, and later with 3), while in recent years endodontics with single file has become more common, which significantly reduces the risk of fracture [2, 6, 8]. The fear of screwing (and thus fracture) in systems with full rotation influenced the introduction of systems with reciprocal movements that significantly increases the resistance to cyclic fatigue and prolongs life of files. Files with reciprocal movements are mainly represented by a single file that significantly reduces the instrumentation time, but also the stress during canal instrumentation [1, 25, 27].

Research confirms that the system with reciprocal movements is currently the most popular, because it allows greater flexibility and increased file resistance to cyclic fatigue, ie. efficient cleaning and shaping with reduced postoperative sensitivity [1, 13, 32, 33]. Reciprocal movements are based on movements of balanced forces, where rotation counterclockwise (cutting direction) and a much shorter movement in a clockwise direction significantly reduce both torsional stress and cyclic fatigue, and thus the possible screwing of the file [1, 26, 34, 35, 36]. The benefits of these files are shorter processing time, reduced possibility of cross-contamination and reduction of fear of fracture, because only one instrument is used [16, 32, 33, 34].

A system that uses a combination of full rotation and reciprocal movements (Genius system, Ultradent, USA) has been introduced in recent years, with instrumentation performed reciprocally and final instrumentation with full rotation files, which significantly increases resistance to torsional fractures [1, 34].

Some NiTi systems that use individual files rotate eccentrically (asymmetrically) in the canal and thus provide efficient canal cleaning with irregular morphology [1, 35]. Representative of these files is XP ENDO Shaper, a new generation of NiTi files, made of a special alloy (Max-wire), with a unique design of the working part (snake shape), which provides exceptional flexibility and increased resistance to cyclic fatigue. The specific design of the file also enables higher rotation speed (800 rpm), more efficient irrigation and more efficient removal of detritus from inaccessible parts of the canal [1, 35, 36].

The Self Adjusting File (SAF) has a completely different design and movement kinetics than existing NiTi systems. This NiTi file is hollow, mesh and flexible, and during transaxial movement (vibration) it enables more efficient and always fresh irrigation, that is continuously delivered to the canal via a silicone tube. This file has high resistance to fracture, adapts three-dimensionally and cleans the canal system very efficiently [1, 3, 7, 37].

In vitro studies have confirmed that prolonged clinical use of NiTi files reduces their resistance to cyclic fatigue, and therefore a single application is recommended [9, 10]. Sterilization of new or used files also reduces the resistance to cyclic fatigue and affects the occurrence of corrosion due to changes in the surface layer of titanium oxide [16, 20, 38]. The use of different lubrication gels, ie irrigation solution (NaOCl) can also have corrosive effects of NiTi alloy. It has been confirmed that NaOCl in concentration of 1% affects torsional and cyclic resistance after a cumulative exposure of 2.5 h, while longer-term exposure (18 h) also shows clear signs of corrosion [16, 38, 39]. The problem caused by immersion of files in NaOCl solution is related to metallurgical features and the occurrence of galvanic currents (handle and working part are made of two different metals) can accelerate corrosion and reduce fracture resistance [40, 41, 42].

**CONCLUSION**

File fracture during canal instrumentation is a serious iatrogenic complication that compromises endodontic treatment and largely depends on the therapist. Exceptional
skills and expertise are required, as fractures are more common in less experienced practitioners. Preclinical training on extracted molars is mandatory and necessary in order to provide routine and experience with NiTi files, before using them in clinical conditions. The therapist also must be well acquainted with the canal anatomy of the teeth, the number and shape of the canals, the position of the curve and must plan the whole endodontic intervention well. In addition, therapist must clearly and precisely form the access cavity and clearly shape the entrances to the root canals.

The clinician must know the design of NiTi files and material they are made of (type of alloy), and choose files with working parts that will ensure reduced engagement of the file during canal instrumentation. Also, lower speed and less torque should be used during canal instrumentation and proposed protocol must be followed. Thepatency of the canal should be checked with hand instruments and it is obligatory to use lubricants and abundant irrigation with solutions during canal instrumentation.

The therapist must know the dynamics of the file movement and choose a preparation technique that prevents a possible fracture. Reciprocal movements are currently the most efficient, because they significantly reduce stress and the possibility of screwing during canal instrumentation due to the specific dynamics of movement in the canal. Numerous studies have confirmed that the frequency of file fractures is extremely low in clinicians who are well aware of possible fractures.

**REFERENCES**

1. Gavini G, Santos MD, Caldeira CL, Machado MEI, Freire LG, Iglecias EF, et al. Nickel-titanium instruments in endodontics: a concise review of the state of the art. Braz Oral Res. 2018;32(suppl 1):e67. [DOI: 10.1590/1807-3107bor-2018.vol32.0067] [PMID: 30365608]

2. Peters OA. Rotary Instrumentation. An Endodontic Perspective. Endodontics. Colleagues for Excellence. Winter. Chicago, IL: American Association of Endodontists; 2008. p. 1–7.

3. Di Fiore PM. A dozen ways to prevent nickel-titanium rotary instrument fracture. J Am Dent Assoc. 2007;138(2):196–201. [DOI: 10.14219/jada.archive.2007.0136] [PMID: 17227374]

4. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000;33(4):297–310. [DOI: 10.1046/j.1365-2918.2000.00399.x] [PMID: 11307203]

5. Wu J, Lei G, Yan M, Yu Y, Yu J, Zhang C. Instrument separation analysis of multi-used ProTaper Universal rotary system during root canal treatment. J Endod. 2011;37(6):758–63. [DOI: 10.1016/j.joen.2011.02.021] [PMID: 21787484]

6. Alfouzan K, Jamleh A. Fracture of nickel titanium rotary instrument during root canal treatment and re-treatment: a 5-year retrospective study. Int Endod J. 2011;43(7):758–63. [DOI: 10.1111/j.1365-2918.2011.02391.x] [PMID: 21787484]

7. Satrapa B, Nervo CJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. Endod. 2000;26(3):161–5. [DOI: 10.1097/00004770-200003000-00003] [PMID: 10997124]

8. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: a focused review. Int Endod J. 2012;45(2):113–28. [DOI: 10.1111/j.1365-2918.2011.01957.x] [PMID: 21902705]

9. Gutmann L, Gao Y. Alteration in the inherent metallic and surface properties of nickel-titanium root canal instruments to enhance performance, durability and safety: a focused review. Int Endod J. 2012;45(2):113–28. [DOI: 10.1111/j.1365-2918.2011.01957.x] [PMID: 21902705]

10. Satrapa B, Nervo CJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. Endod. 2000;26(3):161–5. [DOI: 10.1097/00004770-200003000-00003] [PMID: 10997124]

11. Cambarini G, Plotino G, Grande NM, Al-Sudani D, De Luca M, Tesarelli L. Mechanical properties of nickel-titanium rotary instru-
fatigue of two instruments. Int Endod J. 2014;47(6):514–9. [DOI: 10.1111/iej.12178] [PMID: 23992374]

28. Zupanc J, Vahdat-Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys - a review. Int Endod J. 2018;51(10):1088–103. [DOI: 10.1111/iej.12924] [PMID: 29574784]

29. Anderson ME, Price JW, Parashos P. Fracture resistance of electropolished nickel-titanium endodontic instruments. J Endod. 2007;33(10):1212–6. [DOI: 10.1016/j.joen.2007.07.007] [PMID: 17889692]

30. Testarelli L, Plotino G, Al-Sudani D, Vincenzi V, Giansiracusa A, Grande NM, et al. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel. J Endod. 2011;37(9):1293–5. [DOI: 10.1016/j.joen.2011.05.023] [PMID: 21846552]

31. Trope M, Serota K. Bio-Minimalism: Trends and Transitions in Endodontics [Internet]. Oral Health Group; May 2, 2017. Available from: https://www.oralhealthgroup.com/features/bio-minimalism-trends-and-transitions-in-endodontics/ [accessed Feb 28 2021]

32. De-Deus G, Silva EJ, Vieira VT, Belladonna FG, Elias CN, Plotino G, et al. Blue Thermomechanical Treatment Optimizes Fatigue Resistance and Flexibility of the Reciproc Files. J Endod. 2017;43(3):462–6. [DOI: 10.1016/j.joen.2016.10.039] [PMID: 28131415]

33. Topçuoğlu HS, Düzgün S, Atkı A, Topçuoğlu G. Laboratory comparison of cyclic fatigue resistance of WaveOne Gold, Reciproc and WaveOne files in canals with a double curvature. Int Endod J. 2017;50(7):713–7. [DOI: 10.1111/iej.12674] [PMID: 27344032]

34. van der Vyver PJ, Jonker C. Reciprocating instruments in endodontics: a review of the literature. SADJ. 2014;69(9):404–9. [PMID: 26571923]

35. Kuzekanani M. Nickel-Titanium Rotary Instruments: Development of the Single-File Systems. J Int Soc Prev Community Dent. 2018;8(5):386–90. [DOI: 10.4103/jispcd.JISPCD_225_18] [PMID: 30430063]

36. Uslu G, Özyürek T, Yılmaz K, Gündoğan M, Plotino G. Apically Extruded Debris during Root Canal Instrumentation with Reciproc Blue, HyFlex EDM, and XP-endo Shaper Nickel-titanium Files. J Endod. 2018;44(5):856–9. [DOI: 10.1016/j.joen.2018.01.018] [PMID: 29550013]

37. Metzger Z. The self-adjusting file (SAF) system: An evidence-based update. J Conserv Dent. 2014;17(5):401–19 [DOI: 10.4103/0972-0707.139820] [PMID: 25298639]

38. Parimoo D, Gupta R, Tomer A, Rohilla S. Single file endodontics: boon or myth? Asian Pac J Health Sci. 2016;3(2):102–5.

39. O’Hoy PY, Messer HH, Palamara JE. The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J. 2003;36(11):724–32. [DOI: 10.1046/j.1365-2591.2003.00709.x] [PMID: 14641435]

40. Peters OA, Roehlike JO, Baumann MA. Effect of immersion in sodium hypochlorite on torque and fatigue resistance of nickel-titanium instruments. J Endod. 2007;33(5):589–93. [DOI: 10.1016/j.joen.2007.01.007] [PMID: 17437879]

41. Smith MS. Sodium hypochlorite’s effect on nickel-titanium rotary instruments and its effect on resistance to fracture [Master Thesis]. Richmond: Virginia Commonwealth University; 2007. p 1–34.

42. Bonaccorso A, Tripi TR, Rondelli G, Condorelli GG, Cantatore G, Schäfer E. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions. J Endod. 2008;34(2):208–11. [DOI: 10.1016/j.joen.2007.11.012] [PMID: 18215684]

Received: 25.03.2021 • Accepted: 27.05.2021
Kako sprečiti frakturu NiTi instrumenata

Slavoljub Živković, Marijana Popović Bajić, Milica Jovanović-Medojević, Jelena Nešković
Univerzitet u Beogradu, Stomatološki fakultet, Klinika za bolesti zuba, Beograd, Srbija

UVOD
Zahvaljujući novim konceptima i metodama „čišćenja” i oblikovanja kanala, odnosno novim instrumentima, endodontska terapija je postala sve sigurnija i efikasnija [1]. Uvođenjem NiTi rotirajućih instrumenata i njihovom pravilnom primenom obezbeđena su izvesna terapijska sigurnost instrumentacije i smanjiti moguće komplikacije tokom obrade kanala.

FAKTORI KOJI UTIČU NA POJAVU FRAKTURA NITI TURPIJA

Frakture instrumentata ozbiljno komplikuju i kompromituju endodontske tretman i njegovu prognozu i zbog toga obavezuju na konstantan oprez preduzimanja brojnih mera preostrožnosti [13]. Brojne studije su istraživale faktore koji mogu uticati na lokom endodontskih turpija sa osnovnim ciljem da se poveća sigurnost instrumentacije i smanjeti moguće komplikacije tokom obrade kanala [3, 6, 9, 10, 11, 14, 17].

Na pojavu frakture NiTi turpija utiču brojni faktori, koji se mogu klasifikovati u četiri kategorije: a) faktori vezani za terapeuta (veština i stručnost); b) anatomski faktori (pristupni segmentu); c) faktori vezani za instrument (material, dizajn, proizvodni proces) i d) tehnički faktori instrumentacije (dinamika kretanja instrumenta, irigacija, ponovna sterilizacija).

Da bi se eliminovalo rizik od mogućih fraktura i deformacija NiTi rotirajućih instrumenata tokom preoperacijske kanala, dentalna tehnologija je razvila nekoliko novih strategija u kreiranju
i dizajniranju njihovog radnog dela (koničnost, poprečni presek, dizajn radnog dela), posebne termomehaničke procedure u pripremi legure, odnosno različitu kinetiku kretanja instrumenta u kanalu [19–22].

Najvažniji i najdominantniji faktor koji utiče na pojavu defekata i fraktura je sigurno stomatolog, odnosno njegovo znanje, stručnost i klinička obučenost. Osim manuelnih veština i poznavanja tehnika instrumentacije, praktičar mora dobro poznavati anatomiju različitih kanalskih sistema (broj, raspored, ugao i prečnik povijenosti kanala, dodatnih kanala), odnosno dizajn turpije kako bi napravio najbolji izbor za svaki pojedinačni slučaj [3, 16, 18]. Dobro planiranje i detaljna analiza toka odontoske intervencije pre njenog otopćivanja su takođe neophodni za uspeh, ali i za sprečavanje eventualnih fraktura [16, 17].

Prvi i sigurno najznačajniji korak u sprečavanju fraktura je pravilno formiranje pristupnog kvadrilata i adekvatna obrada ulaza u kanale. Time se obezbeđuje dobra vizuelizacija endodontskog prostora, olakšava kontrole povijenosti i prepoznavanje kompleksnog apskavnog segmenta kanala [3, 15, 16, 23]. Pravilno formiran pristupni kvadrilat je prvi korak u sprečavanju fraktura jer omogućava olakšano kretanje instrumenta u kanalu, značajno minimalizuje stres na savijanje i uvijanje i sprečava eventualne frakturi kod pacijenata sa ograničenim otvaranjem usta. Obrada ulaza u kanale (Gates-Glidden) i provjeru povijenosti, odnosno broj i dubina sečiva, takođe su faktori koji dovode do fračenja i uklanjanje detritis iz kanala [7, 8].

DIZAJN NI-TI INSTRUMENTA

Poznavanje i razumevanje dizajna Ni-Ti instrumenata omogućava praktičaru maksimalnu realizaciju endodontske veštine, povećanu efikasnost i smanjenju mogućnosti greške tokom obrađe kanala [3, 26]. Ciklički zamor i torziona naporan su najčešći uzroci oštećenja i fraktura izazvani apikalnom perforacijom ili često formiranje “blokade”, koja može uzrokovati frakture koju, koja može uzrokovati frakture [16, 25].

NI-TI LEGURA

Prvi Ni-Ti rotacioni instrument je predstavljen 1992.g. (standardna koničnost 2% i bio je izraden od konvencionalne Ni-Ti žice (56% Ni, 44% Ti) sa efektom „pamćenja oblika“ (posle rastećenja se vraća u prvobitni oblik), sa izrazitim biokompatibilnim osobinama i otpornošću na koroziju [1, 4, 8, 16].

Tokom poslednjih decenija predstavljen je veliki broj različitih setova Ni-Ti (više od 160) sa osnovnim ciljem da se inovativnim dizajnom turpije, novim proizvodnim procesima i posebnim tretmanima Ni-Ti legure poveća njihova klinička efikasnost i sigurnost, odnosno utiče na otpornost na torzio-

DIZAJN NI-TI INSTRUMENTA

Novsao optornost na ciklični zabrani se koriste u obradi praktičara kako bi poveća sprječavanje eventualnih fraktura [19–22].

Apekscna prepoznavanje je poseban problem zbog nepristupanosti i neadekvatnog izgleda dijametra, umanjenog efekta rastvora i značajno manji mogućnost za pojavu frakture [1, 3, 26].

Poznavanje karakteristika dizajna radnog dela Ni-Ti instrumenta je jedan od najvažnijih preduslova za efikasnu preparaciju u obradi Ni-Ti instrumenata, odnosno broj i dubina sečiva, značajno zavisi od veličine poprečnog preseka, dužine, koničnosti i dubine sečivih ivica, a frakture u kanalu [16, 17, 26]. Ovo se izrađuje na izrazitim biokompatibilnim osobinama i otpornošću na koroziju [1, 4, 8, 26].

Osnovno je da su tanji i fleksibilniji instrumenti smanjenja angažovanosti Ni-Ti turpije u kanalu može se rešiti skraćenjem radnog dela, smanjenjem broja navoja, promenom koničnosti, prekidom kontinuiteta sečiva, pravilnim redosledom korišćenja i promenom dinamike kretanja [3, 14, 26]. S obzirom na to da je tork direktno proporcionalan površini angažovanog
instrumenta u kanalu, manji tork zahteva i veći broj obrtaja, a oštrija sečiva manje navoja [3, 12, 26, 27].

DINAMIKA KRETANJA NiTi INSTRUMENTA U KANALU

Često frakture NiTi instrumenta u kanaluticale su na uvode
janje novih koncepata preparacije koji se baziraju pre svega na
promeni dinamika kretanja, odnosno smanjenju broja instru
menata za obradu kanala [1, 10, 16]. Za pokretanje NiTi turpija
je u početku korišćena samo puna rotacija, a preparacija je naj
češće realizovana setovima sa više instrumenata (u početku sa
5-6, a kasnije sa 3), dok je poslednjih godina sve zastupljenja
endodontija jednom turpijom, čime se smanjuje i rizik od preloma [2, 6, 8]. Strah od ušrafljivanja (a time i loma) kod sistema sa punom rotacijom uticao je na uvodenje sistema sa
receptivnim pokretima, čime se smanjuje povećava otpornost
na ciklični zamor i produžava životni vek turpija. Dodatna
prednost je što su turpije sa recipročnim pokretima uglavnom
poredajene jednom turpijom koja smanjuje vreme
preparacije ali i stres tokom obrade kanala [1, 25, 27].

Istraživanja potvrđuju da je sistem sa recipročnim pokretima
trenutno najpopularniji jer omogućava veću fleksibilnost i
povećanu otpornost instrumenata na ciklički zamor, odnosno
efikasno čišćenje i oblikovanje učinak smanjenje ose
tljivost [1, 13, 32, 33]. recipročni pokreti se baziraju na
pokretima balansiranih sila, gde rotacija u smeru suprotnom
dizajn kanala, položaj krivine i dobro isplanirati endodontsku
intervenciju. Osim toga, mora jasno i precizno formirati pristu
menata u rastvor NaOCl vezan je metalurške karakteristike i
pojavu galvanskih struja (drška i radni deo su od dva različita
meta) koje mogu uzboditi koroziju i time smanjiti otpornost
na frakturu [40, 41, 42].

ZAKLJUČAK

Fraktura instrumenta tokom preparacije je ozbiljna jatrogene
komplikacija koja kompromituje endodontski tretman i u
najvećoj meri zavisi od terapeuta. Praktičar mora posede
izuzetnu veštinu i stručnost jer su frakture mnogo češće kod
neiskusnih. Obavezan je i neophodan predklinički trening na
rekstrahovanim molarima kako bi se obezbedili rutina i iskustvo
sa NiTi turpijama, pa tek onda primena u kliničkim uslovima.

Terapeut mora dobro poznavati kanalnu anatomiju zuba, broj
i oblik kanala, položaj krivine i dobro isplanirati endodontsku
intervenciju. Osim toga, mora jasno i precizno formirati pristup
kavitet i jasno predstaviti ulaze u kanale korena.

Kliničar mora poznavati dizajn NiTi instrumenata i materijal
dana od koga je izrađen vsrst legure i izabrati turpije sa radnim
delom koji će obezbediti smanjenje angažovanost instrumenta
tokom preparacije kanala. Treba koristiti manje brzine i manji
stres tokom obrade kanala i pridržavati se predloženog proto
mana sa NiTi turpijama, pa tek onda primena u kliničkim uslovima.

Terapeut mora dobro poznavati dinamiku kretanja instrumenta i
odabrati tehniku preparacije koja prevenira moguću frakturu.

Recipročni pokreti su trenutno najefikasnije jer zbog specifične
dinamike kretanja u kanalu smanjuju stres i mogućnost
usrafljivanja tokom instrumentacije kanala. Hote

Brojne studije su potvrdile da je kod kliničara koji su svesni
mogućih fraktura učestalost preloma niža.

Stomatološki glasnik Srbije. 2021;68(2):86-93 | 93