Gas Turbulent Motions in Galaxy Clusters

I. Zhuravleva

Max Planck Institute for Astrophysics, Karl-Schwarzschild str. 1, 85741, Garching, Germany e-mail: izhur@mpa-garching.mpg.de

Abstract. We discuss various possibilities to constrain ICM turbulence in galaxy clusters using bright X-ray lines. Numerical simulations are used to find the most appropriate description of the 3D velocity field power spectrum (PDS) and to calibrate the relation of observables to this PDS. The impact of the velocity field on the surface brightness distribution and on the spectral shape of strong X-ray lines, modified by the resonant scattering (RS), is evaluated via radiative transfer calculations. We investigate the sensitivity of RS not only to amplitudes of motions, but also to anisotropy and spatial scales. We in particular show that the amplitude of radial motions is most important for RS, while tangential motions only weakly affect the scattering.

Key words. X-rays: galaxies: clusters – Galaxies: clusters: intracluster medium – Line: profiles – Radiative Transfer – Polarization – Methods: numerical

1. Introduction

The dynamical state of the hot gas in galaxy clusters is still little known. It is believed that as clusters merge or as matter accretes along filaments, turbulence should set up in the ICM, energy of which should cascade down to the small scales and dissipate. However resolution of numerical simulations is not yet sufficient to fully resolve this process.

Current observations give us only upper limits on turbulence in clusters by means of direct measurements of line width (Sanders, Fabian & Smith 2002) or by resonant scattering (RS) measurements (Churazov et al. 2004; Werner et al. 2009). In the nearest future Astro-H observatory with its high energy resolution will allow us to measure shifts and width of lines with high accuracy.

Here we discuss a way to relate observables, such as line-of-sight velocity and dispersion, with full 3D velocity PDS. First we consider PDS from simulated galaxy clusters, then we illustrate how to implement calibration and at the end we consider RS as one of the ways to measure and study velocities of gas motions.

2. 3D Velocity Power Spectrum and Observables

Hydrodynamical simulations provide us information about full 3D velocity field in galaxy clusters. Using results of SPH simulations (Dolag et al. 2008) we calculated PDS (Fig. 1) for cluster g676, which has the highest resolution, through the method described by Arevalo et al. (2010) which avoids a problem of non-periodic boundaries in data boxes. One can see (i) a significant deviation of the PDS shape from the canonical Kolmogorov PDS,
Fig. 1. Power spectrum (PDS) of 3D velocity field in galaxy cluster from SPH simulations. PDS are calculated in cubes of 1 Mpc (solid curves), 0.5 Mpc (dotted curves) and 55 kpc (dashed curves) on a side through the variance method described in Arévalo et al. (2010). Kolmogorov PDS is shown with the thin solid line.

(ii) that both shape and amplitude of PDS depend on the size of the cube used for calculation. To some extent this behavior could be attributed to insufficient (and distance dependent) resolution of SPH simulation and to the artificial viscosity.

Since gas motions are predominantly subsonic, the centroid shift and the width of lines, measured with X-ray observatories, contain most essential information on the ICM velocity field (Inogamov & Sunyaev 2003). I.e., we have information about emission measure weighted mean velocity and dispersion along the line of sight. Relations between these observables and the 3D velocity PDS are the following:

$$P_{2D}(k) = \int P_{3D}(\sqrt{k^2 + k_z^2})W^2(k_z)dk_z,$$

$$\sigma^2 = \int P_{3D}(1 - W^2(k_z))dk_zdk_zdk_z,$$

where $P_{2D}(k)$ is a PDS of observed mean velocity, σ is observed velocity dispersion, P_{3D} is a 3D PDS and W is a Fourier transform of $n_e^2(z)$. In Fig. 2 we illustrate the relation σ^2 for simulated galaxy cluster, PDS of which is shown in Fig. 1. One can see that velocity dispersion from “flat+k−22/3” PDS model (flat at low k and twice steeper than Kolmogorov PDS at higher k) fits the observed velocity dispersion very good, which is in agreement with the PDS shown in Fig. 1.

3. Resonant Scattering as a Way to Measure Gas Motions

RS in the brightest X-ray emission lines can cause distortions in the surface brightness distribution, changes in line spectral shapes, variations in the abundance of heavy elements and polarization in lines. The magnitude of these effects is also sensitive to the characteristics of the gas velocity field (Gilfanov, Sunyaev & Churazov 1997), see also review Churazov et al. (2010).

If one accurately measures the line ratios of (optically thick) resonant and (optically thin) non-resonant lines, the velocity amplitudes of gas motions can be found. Werner et al. (2009) obtained high resolution spectra of the elliptical galaxy NGC 4636 using the RGS on the XMM-Newton satellite. The Fe XVII line at 15.01 Å is suppressed (Fig. 3) only in the dense core and not in the surrounding regions.
while the line of Fe XVII at 17.05 Å is optically thin and is not suppressed. Werner et al. (2009) modeled the radial intensity profiles of the optically thick line, accounting for the effect of RS for different values of the characteristic turbulent velocity. Comparing the model to the data, it was found that the isotropic turbulent velocities on spatial scales smaller than ≈ 1 kpc are less than 100 km/s and the turbulent pressure support in the galaxy core is smaller than 5 per cent of the thermal pressure at the 90 per cent confidence level (taking into account only statistical errors).

The relation between the RS effects and the velocity field can be used to test anisotropy and spatial scales of gas motions. Zhuravleva et al. (2010b) showed that RS is the most sensitive to the radial small scale motions (Fig. 4).

RS also gives us a unique opportunity to put constraints on transverse gas motions in galaxy clusters by means of polarization in lines (see Sazonov, Churazov & Sunyaev (2002); Zhuravleva et al. (2010)). Calculated polarization degree is shown in Fig. 5 (Zhuravleva et al. 2010) with and without account for gas motions. For one of the most
massive simulated clusters (g8 in the sample of [Dolag et al. (2008)]) the polarization degree in the 6.7 keV He-like iron line reaches ~ 25 per cent at a distance of ~ 500 kpc from the center if no turbulent motions are present (top panel). Inclusion of gas motions substantially decreases the polarization down to ~ 10 per cent (bottom panel) within the same region.

4. Conclusions and Future Prospects

We presented a convenient way to put constraints on the amplitude and shape of 3D PDS using only observables, i.e. mean velocity and dispersion along the line-of-sight. SPH simulations show that 3D velocity PDS (i) is distance dependent, (ii) deviates significantly from the canonical Kolmogorov PDS. This results should be verified with AMR simulations and simulations with higher resolution.

Line-of-sight velocity and dispersion measurements will be available in the nearest future with Astro-H mission. We discussed RS as one of the ways to study gas motions with Astro-H data, showing that RS is most sensitive to radial small scale gas motions. Moreover future polarimetric mission (e.g. on-board of IXO) will fully exploit RS and allow us to constrain transverse gas motions.

Acknowledgements. I am grateful to my collaborators Eugene Churazov, Rashid Sunyaev, Klaus Dolag, Norbert Werner, Sergey Sazonov and William Forman. I would like to thank the International Max Planck Research School (IMPRS) in Garching.

References

Arévalo P., Churazov E., Zhuravleva I., Hernández-Monteagudo C., Revnivtsev M., 2010, ApJ, submitted
Churazov E., Forman W., Jones C., Sunyaev R., Böhringer H., 2004, MNRAS, 347, 29
Churazov E., Zhuravleva I., Sazonov S., Sunyaev R., 2010, SSRv, 104
Dolag K., Borgani S., Murante G., Springel V., 2009, MNRAS, 399, 497
Gilfanov M. R., Sunyaev R. A., Churazov E. M., 1987, PAZh, 13, 7
Inogamov N. A., Sunyaev R. A., 2003, AstL, 29, 791
Sanders J. S., Fabian A. C., Smith R. K., 2010, MNRAS, in press, arXiv:1008.3500
Sazonov S. Y., Churazov E. M., Sunyaev R. A., 2002, MNRAS, 333, 191
Werner N., Zhuravleva I., Churazov E., Simionescu A., Allen S. W., Forman W., Jones C., Kaastra J. S., 2009, MNRAS, 398, 23
Zhuravleva I. V., Churazov E. M., Sazonov S. Y., Sunyaev R. A., Forman W., Dolag K., 2010a, MNRAS, 403, 129
Zhuravleva I. V., Churazov E. M., Sazonov S. Y., Sunyaev R. A., Dolag K., 2010b, Astronomy Letters, in press