Long time behavior of random walks on the integer lattice

Bartosz Trojan

Received: 1 April 2019 / Accepted: 21 June 2019 / Published online: 2 July 2019
© The Author(s) 2019

Abstract
We consider an irreducible finite range random walk on the $d$-dimensional integer lattice and study asymptotic behavior of its transition function $p(n; x)$ close to the boundary of Cramér’s zone.

Keywords Asymptotic formula · Random walk · Integer lattice · Oscillatory integral

Mathematics Subject Classification 60G50 · 60F05 · 60F99 · 60B10

1 Introduction
In 1921, with the article [11] Pólya pioneered research on the simple random walk on the integer lattice. Using Fourier analysis he proved that $p(n; x)$, the $n$’th step transition function, satisfies

$$\lim_{n \to +\infty} (2n)^d p(2n; x) = 2d^\frac{d}{2} (2\pi)^{-\frac{d}{2}}, \quad \text{if } |x|_1 \equiv 0 \pmod{2},$$

$$\lim_{n \to +\infty} (2n - 1)^d p(2n - 1; x) = 2d^\frac{d}{2} (2\pi)^{-\frac{d}{2}}, \quad \text{if } |x|_1 \equiv 1 \pmod{2},$$

for any $x \in \mathbb{Z}^d$. Essentially, Pólya’s proof shows that (see Spitzer [13, Remark after P7.9])

$$p(n; x) = \begin{cases} 2d^d (2\pi n)^{-\frac{d}{2}} e^{-\frac{d}{2\pi} |x|_2^2} + o(n^{-\frac{d}{2}}), & \text{if } |x|_1 \equiv n \pmod{2}, \\ 0, & \text{otherwise}, \end{cases}$$

1 For $x \in \mathbb{R}^d$ and $p \in (1, \infty)$ we set $|x|_p = (|x_1|^p + \cdots + |x_d|^p)^{1/p}$.

Communicated by A. Constantin.

Bartosz Trojan
btrojan@impan.pl

1 Instytut Matematyczny Polskiej Akademii Nauk, ul. Śniadeckich 8, 00-656 Warsaw, Poland
uniformly with respect to $n \in \mathbb{N}$ and $x \in \mathbb{Z}^d$. As it may be easily seen, the local limit theorem is very inaccurate when $|x|_2$ is larger than $\sqrt{n}$. Further development of the Fourier method allowed to gain better control over the error term for large $|x|_2$ (see Smith [12], Spitzer [13, P7.10], Ney and Spitzer [10, Theorem 2.1]). Namely,

$$p(n; x) = \begin{cases} 2d^d (2\pi n)^{-d/2} e^{-\frac{d}{2n}|x|_2^2} + o\left(n^{-d/2+1}|x|_2^{-2}\right), & \text{if } |x|_1 \equiv n \pmod{2}, \\
0, & \text{otherwise}, \end{cases}$$

uniformly with respect to $x \in \mathbb{Z}^d\setminus\{0\}$. Let us observe that the error in the approximation of $p(n; x)$ is additive and may become large compared to the first term. In many applications, it is desired to have an asymptotic formula for $p(n; x)$ valid on the largest possible region with respect to $n$ and $x$. There are some results in this direction available. In particular, (see Lawler [8, Proposition 1.2.5], Lawler and Limic [9, Theorem 2.3.11]) showed that there is $\rho > 0$ such that for all $n \in \mathbb{N}$ and $x \in \mathbb{Z}^d$, if $|x|_2 \leq \rho n$ then

$$p(n; x) = \begin{cases} d^d (2\pi n)^{-d/2} e^{-\frac{d}{2n}|x|_2^2} \left(2 + O(n^{-1}) + O(n^{-3}|x|_2^4)\right), & \text{if } |x|_1 \equiv n \pmod{2}, \\
0, & \text{otherwise}. \end{cases}$$

Let us emphasize that the above asymptotic formula is valid for random walks having exponential moment. However, applied to the simple random walk gives the asymptotic formula useful only in the region where $|x|_2 = o(n^{3/4})$. Therefore, there arises a natural question:

**Is there an asymptotic formula for $p(n; x)$ which is valid on a larger region than $|x|_2 = o(n^{3/4})$?**

The purpose of this article is to give a positive answer to the posed question. To be more precise, let us first introduce some notation. Let $p$ be the transition function of the irreducible finite range random walk. By $\mathcal{V}$ we denote its support, namely

$$\mathcal{V} = \{v \in \mathbb{Z}^d : p(v) > 0\}.$$

Let $\mathcal{M}$ be the interior of the convex hull of $\mathcal{V}$. For $\delta \in \mathcal{M}$ we set

$$\phi(\delta) = \max \left\{ \langle x, \delta \rangle - \log \kappa(x) : x \in \mathbb{R}^d \right\}, \quad (1)$$

where $\kappa$ is a function on $\mathbb{R}^d$ defined by the formula

$$\kappa(x) = \sum_{v \in \mathcal{V}} p(v) e^{\langle x, v \rangle}.$$

We also need a quadratic form on $\mathbb{R}^d$ given by $B_x(u, u) = D_u^2 \log \kappa(x)$. In Sect. 3 we prove the following theorem.
Theorem A  Let $p$ be a transition function of an irreducible finite range random walk on $\mathbb{Z}^d$. Let $r$ be its period and $X_0, \ldots, X_{r-1}$ the partition of $\mathbb{Z}^d$ into aperiodic classes. There is $\eta \geq 1$ such that for each $j \in \{0, \ldots, r-1\}$, $n \in \mathbb{N}$ and $x \in X_j$, if $n \equiv j \pmod{r}$ then

$$p(n; x) = (2\pi n)^{-\frac{d}{2}} \left( \det B_s \right)^{-\frac{1}{2}} e^{-n\phi(\delta)} \left( r + O(n^{-1} \text{dist}(\delta, \partial M)^{-2\eta}) \right)$$

otherwise $p(n; x) = 0$, where $\delta = \frac{x}{n}$ and $s = \nabla \phi(\delta)$.

Some comments are in order. First, observe that the asymptotic formula (2) is valid in a region excluding only the case when $n \text{dist}(\delta, M)^{2\eta}$ stays bounded. Although the function $\phi$ is positive convex and comparable to $|\cdot|^2_2$, see Claim 1, it cannot be replaced in the asymptotic formula by $|\cdot|^2_2$ without introducing an additional error term, see Remark 1. For processes with continuous time it was observed by Davis in [3] that in order to get an upper bound for the heat kernel on a larger region one has to introduce a non-Gaussian factor. Therefore, Theorem A may be considered as a discrete time counterpart of [3]. Finally, although the quadratic form $B_s$ is explicitly given, the mapping $M \ni \delta \mapsto s(\delta)$ is an implicit function. We want to stress the fact that while $\delta$ approaches the boundary of $M$, the value of $|s|_2$ tends to infinity. In particular, the quadratic form $B_s$ degenerates. For this reason a more convenient form of Theorem A is given in Corollary 3.2.

A positive answer to the posed question is partially given in [2, Theorem 4.1], however thanks to Theorem A we get the control over the error term.

Let us comment about the method of the proof of Theorem A. First, with the help of the Fourier inversion formula, we write $p(n; x)$ as an oscillatory integral. We split the integral into two parts. The first part we analyze by the Laplace method. This is not a straightforward application of it, since the phase function degenerates as $\delta$ approaches the boundary of $M$. To estimate the second part we develop a geometric argument (see Theorem 2.2), which allows us to control the way how the quadratic form $B_s$ degenerates. In fact, Theorem 2.2, is the main observation of the present paper. It can be successfully applied in much wider context. For example, to study finitely supported isotropic random walks on affine buildings (see [14]). The result obtained in this article has already found an application in the study of subordinated random walks (see [1]) which are spread all over $\mathbb{Z}^d$ and do not have second moment. There is also an ongoing project to get the precise asymptotic formula for random walks with internal degrees of freedom extending the one obtained by Krámli and Szász [7] (see also Guivarc’h [4]). Finally, Appendix A contains applications of Theorem 3.1 to triangular and hexagonal lattices. This has to be compared with results recently obtained in [5,6].

1.1 Notation

We use the convention that $C$ stands for a generic positive constant whose value can change from line to line. The set of positive integers is denoted by $\mathbb{N}$. Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. 

 Springer
2 Preliminaries

2.1 Random walks

Let \( p(\cdot, \cdot) \) denote the transition density of a random walk on the \( d \)-dimensional integer lattice. Let \( p(x) = p(0, x) \). For \( n \in \mathbb{N}_0 \) and \( x \in \mathbb{Z}^d \) we set

\[
p(n; x) = \begin{cases} 
\sum_{y \in \mathbb{Z}^d} p(n - 1; y) p(x - y) & \text{if } n \geq 2, \\
p(x) & \text{if } n = 1.
\end{cases}
\]

The support of \( p \) is denoted by \( \mathcal{V} \), i.e.

\[ \mathcal{V} = \{ v \in \mathbb{Z}^d : p(v) > 0 \}. \]

We assume that the set \( \mathcal{V} \) is finite. Let \( \kappa : \mathbb{C}^d \to \mathbb{C} \) be an exponential polynomial defined by

\[
\kappa(z) = \sum_{v \in \mathcal{V}} p(v) e^{\langle z, v \rangle},
\]

where \( \langle \cdot, \cdot \rangle \) is the standard scalar product on \( \mathbb{C}^d \), i.e.,

\[
\langle z, w \rangle = \sum_{j=1}^d z_j w_j.
\]

In particular, \( \mathbb{R}^d \ni \theta \mapsto \kappa(i\theta) \) is the characteristic function of \( p \). We set

\[ \mathcal{U} = \{ \theta \in [-\pi, \pi)^d : |\kappa(i\theta)| = 1 \}. \]

Finally, the interior of the convex hull of \( \mathcal{V} \) in \( \mathbb{R}^d \) is denoted by \( \mathcal{M} \).

In this article, we study the asymptotic behavior of transition functions of irreducible finite range random walks. Let us recall that the random walk is irreducible if for each \( x \in \mathbb{Z}^d \) there is \( n \in \mathbb{N} \) such that \( p(n; x) > 0 \). By \( r \in \mathbb{N} \) we denote the period of \( p \), that is

\[ r = \gcd \{ n \in \mathbb{N} : p(n; 0) > 0 \}. \]

Then the space \( \mathbb{Z}^d \) decomposes into \( r \) disjoint classes

\[ X_j = \{ x \in \mathbb{Z}^d : p(j + kr; x) > 0 \text{ for some } k \geq 0 \} \]

for \( j = 0, \ldots, r - 1 \). We observe that for \( j \in \{0, \ldots, r - 1\} \) and \( x \in X_j \) if \( n \not\equiv j \pmod{r} \) then

\[ p(n; x) = 0. \]
For each \( x \in \mathbb{Z}^d \), by \( m_x \) we denote the smallest \( m \in \mathbb{N} \) such that \( p(m; x) > 0 \), thus \( x/m_x \in \overline{M} \). Notice that there is \( C \geq 1 \) such that for all \( x \in \mathbb{Z}^d \),
\[
C^{-1}|x|_1 \leq m_x \leq C|x|_1.
\] (4)

Indeed, let \( \{e_1, \ldots, e_d\} \) be the standard basis of \( \mathbb{R}^d \). Since
\[
e_j = \sum_{v \in \mathcal{V}} m_{j,v}v, \quad \text{and} \quad -e_j = \sum_{v \in \mathcal{V}} m_{-j,v}v,
\]
for some \( m_{j,v}, m_{-j,v} \in \mathbb{N}_0 \) satisfying
\[
m_{e_j} = \sum_{v \in \mathcal{V}} m_{j,v}, \quad \text{and} \quad m_{-e_j} = \sum_{v \in \mathcal{V}} m_{-j,v},
\]
by setting \( \varepsilon_j = \text{sign} \langle x, e_j \rangle \) we get
\[
x = \sum_{v \in \mathcal{V}} \left( \sum_{j=1}^{d} m_{e_j,v} \langle x, e_j \rangle \right) v.
\]

Hence,
\[
m_x \leq |x|_1 \sum_{j=1}^{d} (m_{e_j} + m_{-e_j}).
\]

which, together with boundedness of \( \overline{M} \), implies (4).

Next, we observe that there is \( K > 0 \) such that for all \( k \geq K \),
\[
p(kr; 0) > 0,
\]
thus for all \( x \in \mathbb{Z}^d \) and \( n \geq Kr + m_x \),
\[
p(n; x) = \begin{cases} 
> 0, & \text{if } n \equiv m_x \pmod{r}, \\
0, & \text{otherwise}.
\end{cases}
\] (5)

Since
\[
\left\{ \frac{e_1}{m_{e_1}}, -\frac{e_1}{m_{-e_1}}, \ldots, \frac{e_d}{m_{e_d}}, -\frac{e_d}{m_{-e_d}} \right\}
\] (6)
do not lay on the same affine hyperplane, the interior of the convex hull of (6) is a non-empty subset of \( \mathcal{M} \).

For each \( x \in \mathbb{R}^d \), by \( B_x \) we denote a quadratic form on \( \mathbb{R}^d \) defined by
\[
B_x(u, u) = D^2_u \log \kappa(x),
\] (7)
where $D_u$ denotes the derivative along a vector $u$, i.e.

$$D_u f(x) = \left. \frac{d}{dt} f(x + tu) \right|_{t=0}.$$  

Since

$$D_u \log \kappa(x) = \sum_{v \in V} p(v) e^{(x,v)} \langle u, v \rangle \kappa(x)$$

and

$$D_u \left( \frac{p(v)e^{(x,v)}}{\kappa(x)} \right) = \frac{p(v)e^{(x,v)}}{\kappa(x)} \langle u, v \rangle - \sum_{v' \in V} \frac{p(v)e^{(x,v')}}{\kappa(x)} \cdot \frac{p(v')e^{(x,v')}}{\kappa(x)} \langle u, v' \rangle,$$

we may write

$$B_x (u,u) = \frac{1}{2} \sum_{v,v'} p(v) e^{(x,v)} \kappa(x) \cdot p(v') e^{(x,v')} \kappa(x) \langle u, v - v' \rangle^2. \quad (8)$$

In particular, if the random walk is irreducible then the quadratic form $B_x$ is positive definite.

**Example 1** Let $p$ be the transition function of the simple random walk on $\mathbb{Z}^d$, i.e.

$$p(e_j) = p(-e_j) = \frac{1}{2d}, \quad \text{for } j = 1, \ldots, d.$$  

Thus

$$V = \{ \pm e_j : j = 1, \ldots, d \}, \quad \text{and} \quad M = \{ x \in \mathbb{R}^d : |x|_1 < 1 \}.$$  

Since

$$\kappa(z) = \frac{1}{2d} \sum_{j=1}^d (e^{z_j} + e^{-z_j}),$$

we get $U = \{ 0, (-\pi, -\pi, \ldots, -\pi) \}$. By a straightforward computation we may find the quadratic form $B_0$,

$$B_0(u,u) = \frac{1}{(2d)^2} \sum_{j=1}^d \sum_{j'=1}^d (u_j + u_{j'})^2 + (u_j - u_{j'})^2 = \frac{1}{d} \langle u, u \rangle.$$

\(\text{Springer}\)
2.2 Function $s$

For the sake of completeness we provide the proof of the following well-known theorem.

**Theorem 2.1** For every $\delta \in \mathcal{M}$ a function $f(\delta, \cdot): \mathbb{R}^d \to \mathbb{R}$ defined by

$$f(\delta, x) = \langle x, \delta \rangle - \log \kappa(x)$$

attains its maximum at the unique point $s \in \mathbb{R}^d$ satisfying $\nabla \log \kappa(s) = \delta$.

**Proof** Without loss of generality, we may assume $\nabla \kappa(0) = 0$. Indeed, otherwise we will consider

$$\tilde{\kappa}(z) = e^{-\langle z, v_0 \rangle} \kappa(z) = \sum_{v \in \tilde{\mathcal{V}}} p(v + v_0) e^{\langle z, v \rangle}$$

where $v_0 = \nabla \kappa(0)$ and $\tilde{\mathcal{V}} = \mathcal{V} - v_0$. Then $\tilde{\mathcal{M}}$, the interior of the convex hull of $\tilde{\mathcal{V}}$, is equal to $\mathcal{M} - v_0$. For $\tilde{\delta} = \delta - v_0$ we have

$$\tilde{f}(\tilde{\delta}, x) = \langle x, \tilde{\delta} - v_0 \rangle - \log \tilde{\kappa}(x) = \langle x, \delta \rangle - \log \kappa(x) = f(\delta, x).$$

We conclude that if $s$ is the unique maximum of $\mathbb{R}^d \ni x \mapsto f(\delta, x)$, then it is also the unique maximum of $\mathbb{R}^d \ni x \mapsto \tilde{f}(\tilde{\delta}, x)$. Because

$$\nabla \log \tilde{\kappa}(x) = \nabla \log \kappa(x) - v_0,$$

we get $\nabla \log \kappa(s) = \tilde{\delta} + v_0 = \delta$, proving the claim.

Fix $\delta \in \mathcal{M}$. Since $\nabla \kappa(0) = 0$, by Taylor’s theorem we have

$$f(\delta, x) = \langle x, \delta \rangle + O(|x|^2)$$

as $|x|_2$ approaches zero. Moreover, for any $x, u \in \mathbb{R}^d$,

$$D_x^2 f(\delta, x) = -B_x(u, u),$$

thus the function $\mathbb{R}^d \ni x \mapsto f(\delta, x)$ is strictly concave.

Let us observe that

$$0 = \nabla \kappa(0) = \sum_{v \in \mathcal{V}} p(v) \cdot v \in \overline{\mathcal{M}}.$$

Since $\mathcal{M}$ is not empty, the set $\mathcal{V}$ cannot be contained in an affine hyperplane, thus $0 \notin \mathcal{M}$. 

 Springer
Now, $\delta \in M$ implies that there are $v_1, \ldots, v_d \in \partial M \cap V$ such that $\delta$ belongs to the convex hull of $\{0, v_1, \ldots, v_d\}$, i.e. there are $t_0, t_1, \ldots, t_d \in [0, 1]$ satisfying

$$\delta = t_0 \cdot 0 + \sum_{j=1}^d t_j \cdot v_j = \sum_{j=1}^d t_j \cdot v_j.$$

Because $\delta \notin \partial M$ we must have $t_0 > 0$, thus $\sum_{j=1}^d t_j < 1$. Hence,

$$\sum_{j=1}^d t_j \log \kappa(x) \geq \sum_{j=1}^d t_j \left( \log p(v_j) + \langle x, v_j \rangle \right) = \sum_{j=1}^d t_j \log p(v_j) + \langle x, \delta \rangle,$$

and we get

$$f(\delta, x) = \langle x, \delta \rangle - \log \kappa(x) \leq \left( \sum_{j=1}^d t_j - 1 \right) \log \kappa(x) - \sum_{j=1}^d t_j \log p(v_j),$$

which implies that

$$\lim_{|x|_2 \to \infty} f(\delta, x) = -\infty,$$

because

$$\lim_{|x|_2 \to \infty} \log \kappa(x) = +\infty,$$

and the proof is finished. \qed

In the rest of the article, given $\delta \in M$ by $s$ we denote the unique solution to

$$\delta = \nabla \log \kappa(s) = \sum_{v \in V} \frac{p(v)}{\kappa(s)} e^{\langle s, v \rangle} \cdot v. \quad (9)$$

Let $\phi : M \to \mathbb{R}$ be defined by

$$\phi(\delta) = \max \{ \langle x, \delta \rangle - \log \kappa(x) : x \in \mathbb{R}^d \},$$

thus, by Theorem 2.1,

$$\phi(\delta) = \langle \delta, s \rangle - \log \kappa(s). \quad (11)$$

By (9), for any $u \in \mathbb{R}^d$,

$$\langle \delta, u \rangle = D_u \log \kappa(s).$$
Hence, for \( u, u' \in \mathbb{R}^d \),

\[
\langle u, u' \rangle = D_u(D_{u'} \log \kappa(s)) = \sum_{j=1}^{d} D_j D_{u'} \log \kappa(s) D_u s_j = B_s(D_u s, u'),
\]
i.e. \( D_u s = B_s^{-1} u \). Therefore, we can compute

\[
\nabla \phi(\delta) = s + \sum_{j=1}^{d} \delta_j \nabla s_j - \sum_{j=1}^{d} D_j \log \kappa(s) \nabla s_j = s,
\]
thus

\[
D^2 u \phi(\delta) = D_u(\langle u, s \rangle) = B_s^{-1}(u, u).
\]

In particular, \( \phi \) is a convex function on \( \mathcal{M} \). Let \( \delta_0 = \nabla \log \kappa(0) \). By Taylor’s theorem, we have

\[
\phi(\delta) = \frac{1}{2} B_0^{-1}(\delta - \delta_0, \delta - \delta_0) + O(|\delta - \delta_0|^3) \tag{12}
\]
as \( \delta \) approaches \( \delta_0 \). We claim that

**Claim 1** \( \text{For all } \delta \in \mathcal{M}, \) \(^2\)

\[
\phi(\delta) \asymp B_0^{-1}(\delta - \delta_0, \delta - \delta_0).
\]

Since \( \phi \) is convex and satisfies (12), it is enough to show that \( \phi \) is bounded from above. Given \( \delta \in \mathcal{M} \), let \( v_0 \in \mathcal{V} \) be any vector satisfying

\[
\langle s, v_0 \rangle = \max \{ \langle s, v \rangle : v \in \mathcal{V} \}.
\]

Because

\[
\langle s, \delta \rangle - \langle s, v_0 \rangle = \sum_{v \in \mathcal{V}} \frac{p(v) e^{\langle s, v \rangle}}{\kappa(s)} \langle s, v - v_0 \rangle \leq 0,
\]
we get

\[
\phi(\delta) = \langle s, \delta \rangle - \log \kappa(s) \leq \langle s, \delta \rangle - \log \left( p(v_0) e^{\langle s, v_0 \rangle} \right)
\]
\[
\leq - \log p(v_0),
\]
proving the claim.

**Example 2** Let \( p \) be the transition density of the simple random walk on \( \mathbb{Z} \). Then \( \mathcal{V} = \{-1, 1\}, \mathcal{U} = [0, -\pi] \) and \( \mathcal{M} = (-1, 1) \). For \( \delta \in \mathcal{M} \), we have

\(^2\) \( A \asymp B \) means that \( cB \leq A \leq CB \), for some constants \( c, C > 0 \).
\[e^s = \sqrt{\frac{1+\delta}{1-\delta}},\]

and

\[
\kappa(s) = \frac{e^s + e^{-s}}{2} = \frac{1}{\sqrt{1-\delta^2}}.
\]

Hence, using (11) we obtain

\[
\phi(\delta) = \frac{1}{2}(1-\delta) \log(1-\delta) + \frac{1}{2}(1+\delta) \log(1+\delta).
\]

In general, there is no explicit formula for the function \(\phi\). By the implicit function theorem, the function \(s\) is real analytic on \(M\). In particular, \(s\) is bounded on any compact subset of \(M\). On the other hand, \(|s| \leq \delta\) approaches infinity when \(\delta\) tends to \(\partial M\). To see this, let us denote by \(F\) a facet of \(M\) such that \(\delta\) approaches \(\partial M \cap F\).

Let \(u\) be an outward unit normal vector to \(M\) at \(F\). Then for each \(v_1 \in F \cap V\) and \(v_2 \in \mathcal{V} \setminus F\) we have

\[
\langle v_1 - \delta, u \rangle = \sum_{v \in V} \frac{p(v)e^{(s,v)}}{\kappa(s)} \langle v_1 - v, u \rangle \\
= \sum_{v \in \mathcal{V} \setminus F} \frac{p(v)e^{(s,v)}}{\kappa(s)} \langle v_1 - v, u \rangle \geq \frac{p(v_2)e^{(s,v_2)}}{\kappa(s)} \langle v_1 - v_2, u \rangle.
\]

Therefore, for any \(v \in \mathcal{V} \setminus F\),

\[
\lim_{\delta \to \partial M \cap F} \frac{e^{(s,v)}}{\kappa(s)} = 0. \tag{13}
\]

The next theorem provides a control over the speed of convergence in (13).

**Theorem 2.2** There are constants \(\eta \geq 1\) and \(C > 0\) such that for all \(\delta \in M\), and \(v \in \mathcal{V}\) we have

\[
\frac{e^{(s,v)}}{\kappa(s)} \geq C \text{dist}(\delta, \partial M)^{\eta}
\]

where \(s = s(\delta)\) satisfies \(\delta = \nabla \log \kappa(s)\).

**Proof** We consider any enumeration of elements of \(\mathcal{V} = \{v_1, \ldots, v_N\}\). Define

\[
\Omega = \{\omega \in \mathcal{S} : \langle \omega, v_i \rangle \geq \langle \omega, v_{i+1} \rangle \text{ for } i = 1, \ldots, N-1\},
\]

where \(\mathcal{S}\) is the unit sphere in \(\mathbb{R}^d\) centered at the origin. Since \(\mathcal{V}\) is finite, it is enough to prove that there are \(C > 0\) and \(\eta \geq 1\) such that for all \(x \in \mathbb{R}^d\), if \(\frac{x}{|x|_2} \in \Omega\) then for all \(v \in \mathcal{V}\),

\[\square\] Springer
\[
e^{(x,v)} \geq C \text{dist}(\delta, \partial \mathcal{M})^\eta,
\]

where

\[
\delta = \sum_{v \in \mathcal{V}} \frac{p(v)e^{(x,v)}}{\kappa(x)} \cdot v.
\]

Without loss of generality, we may assume that \(\Omega \neq \emptyset\). Let \(k\) be the smallest index such that points \(\{v_1, \ldots, v_k\}\) do not lay on the same facet of \(\mathcal{M}\). Let us recall that a set \(\mathcal{F}\) is a facet of \(\mathcal{M}\) if there are \(\lambda \in \mathcal{S}\) and \(c \in \mathbb{R}\) such that for all \(v \in \mathcal{V}\), \(\langle \lambda, v \rangle \leq c\), and

\[
\mathcal{F} = \text{conv}\{v \in \mathcal{V} : \langle \lambda, v \rangle = c\}.
\]

Since \(\{v_1, \ldots, v_k\}\) do not lay on the same facet of \(\mathcal{M}\) and \(\Omega\) is a compact set, there is \(\epsilon > 0\) such that for all \(\omega \in \Omega\) we have

\[
\langle \omega, v_1 \rangle \geq \langle \omega, v_k \rangle + \epsilon.
\]

(14)

Indeed, otherwise, there are \(\omega_n \in \Omega\) such that

\[
\langle \omega_n, v_k \rangle \leq \langle \omega_n, v_1 \rangle \leq \langle \omega_n, v_k \rangle + \frac{1}{n}.
\]

Since \(\Omega\) is compact, there is \(\omega_0 \in \Omega\) such that

\[
\langle \omega_0, v_1 \rangle = \langle \omega_0, v_k \rangle,
\]

and for each \(i \in \{2, \ldots, N\}\),

\[
\langle \omega_0, v_1 \rangle \geq \langle \omega_0, v_i \rangle.
\]

This contradicts that \(\{v_1, \ldots, v_k\}\) do not lay on the same facet of \(\mathcal{M}\).

Let \(\mathcal{F}\) be a facet containing \(\{v_1, \ldots, v_{k-1}\}\) determined by \(\lambda \in \mathcal{S}\) and \(c \in \mathbb{R}\). Let us consider \(x \in \mathbb{R}^d\) such that \(\frac{x}{|x|_2} \in \Omega\) and

\[
\delta = \sum_{v \in \mathcal{V}} \frac{p(v)e^{(x,v)}}{\kappa(x)} \cdot v.
\]

The distance of \(\delta\) to a plane containing the facet \(\mathcal{F}\) is not bigger than \(c - \langle \lambda, \delta \rangle\), thus

\[
\text{dist}(\delta, \partial \mathcal{M}) \leq c - \langle \lambda, \delta \rangle = \sum_{v \in \mathcal{V} \setminus \mathcal{F}} \frac{p(v)e^{(x,v)}}{\kappa(x)} \langle \lambda, v_1 - v \rangle \leq 2 \max\{|v|_2 : v \in \mathcal{V}\} \cdot \frac{e^{(x,v_k)}}{\kappa(x)}.
\]
Since
\[ p(v_1)e^{\langle x, v_1 \rangle} \leq \kappa(x) \leq e^{\langle x, v_1 \rangle}, \]
we obtain
\[ e^{\langle x, v_k - v_1 \rangle} \geq C \text{dist}(\delta, \partial M). \]
In particular, for \(1 \leq j \leq k\), we have
\[ \frac{e^{\langle x, v_j \rangle}}{\kappa(x)} \geq C \text{dist}(\delta, \partial M). \]
If \(j > k\), we can estimate
\[ \frac{e^{\langle x, v_j \rangle}}{\kappa(x)} \geq e^{\langle x, v_k - v_1 \rangle} \frac{(x, v_1 - v_j)/(x, v_1 - v_k)} {\left(1 - e^{-2s} + o(e^{-2s})\right)} \]
which finishes the proof since, by (14),
\[ 1 \leq \frac{(x, v_1 - v_j)}{(x, v_1 - v_k)} \leq e^{-1} |v_1 - v_j|_2, \]
thus it is enough to take
\[ \eta = e^{-1} \max \{|v_1 - v|_2 : v \in \mathcal{V}\}. \]

\[ \Box \]

**Example 3** For \(k \in \mathbb{N}\), let us consider a transition probability,
\[ p(0, -k) = p(0, 0) = p(0, 2) = \frac{1}{3}. \]
Then for \(\delta \in (-k, 2)\) we have
\[ \delta = \frac{2e^{2s} - ke^{-ks}}{e^{2s} + 1 + e^{-ks}} \]
\[ = (2 + o(e^{-2s}))(1 - e^{-2s} + o(e^{-2s})) \]
\[ = 2 - 2e^{-2s} + o(e^{-2s}). \]
Hence,
\[ \lim_{\delta \to 2^-} \frac{e^{-2s}}{2 - \delta} = \frac{1}{2}, \]
and
\[
\lim_{\delta \to 2^-} \frac{e^{-ks}}{(2 - \delta)^{\frac{k}{2}}} = 2^{-\frac{k}{2}}.
\]

### 2.3 Analytic Lemmas

For a multi-index \( \sigma \in \mathbb{N}^d \) we denote by \( X_\sigma \) a multi-set containing \( \sigma(i) \) copies of \( i \). Let \( \Pi_\sigma \) be a set of all partitions of \( X_\sigma \). For the convenience of the reader we recall the following lemma.

**Lemma 2.3** (Faà di Bruno’s formula) There are positive constants \( c_{\pi, \pi} \in \Pi_\sigma \), such that for sufficiently smooth functions \( f : S \to T, F : T \to \mathbb{R}, T \subset \mathbb{R}, S \subset \mathbb{R}^d \), we have

\[
\partial^\sigma F(f(s)) = \sum_{\pi \in \Pi_\sigma} c_{\pi} \frac{d^m}{dt^m} \bigg|_{t=f(s)} F(t) \prod_{j=1}^{m} \partial^B_j f(s)
\]

where \( \pi = \{B_1, \ldots, B_m\} \).

Let us observe that for

\[
F(t) = \frac{1}{2 - t}, \quad \text{and} \quad f(s) = \prod_{j=1}^{d} \frac{1}{1 - s_j},
\]

the function \( F(f(s)) \) is real-analytic in some neighborhood of \( s = 0 \), thus there is \( C > 0 \) such that for every \( \sigma \in \mathbb{N}^d \),

\[
\partial^\sigma F(f(0)) \leq C |\sigma| + 1 \sigma!.
\]

Therefore,

\[
\sum_{\pi \in \Pi_\sigma} c_{\pi} m! \prod_{j=1}^{m} B_j! = \partial^\sigma F(f(0)) \leq C |\sigma| + 1 \sigma!
\]

where for a multi-set \( B \) containing \( \sigma(i) \) copies of \( i \) we set

\[
B! = \prod_{i=1}^{d} \sigma(i)!.
\]

Using Lemma 2.3 one can show

**Lemma 2.4** Let \( \mathcal{V} \subset \mathbb{R}^d \) be a set of finite cardinality. Assume that for each \( v \in \mathcal{V} \), we are given \( a_v \in \mathbb{C} \), and \( b_v > 0 \). Then for \( z = x + i\theta \in \mathbb{C}^d \) such that

\[
|\theta|_2 \leq (2 \cdot \max\{|v|_2 : v \in \mathcal{V}\})^{-1},
\]

\[\square\] Springer
we have
\[ \left| \sum_{v \in V} b_v e^{(z,v)} \right| \geq \frac{1}{\sqrt{2}} \sum_{v \in V} b_v e^{(x,v)}. \] (16)

Moreover, there is \( C > 0 \) such that for all \( \sigma \in \mathbb{N}^d \),
\[ \left| \partial^\sigma \left\{ \frac{\sum_{v \in V} a_v e^{(z,v)}}{\sum_{v \in V} b_v e^{(z,v)}} \right\} \right| \leq C |\sigma| \frac{1}{\sum_{v \in V} b_v e^{(x,v)}}. \] (17)

Proof We start by proving (16). We have
\[
\left| \sum_{v \in V} b_v e^{(z,v)} \right|^2 = \sum_{v,v' \in V} b_v b_{v'} e^{(x,v+v')} \cos \langle \theta, v - v' \rangle \\
\geq \sum_{v,v' \in V} b_v b_{v'} e^{(x,v+v')} \left( 1 - \langle \theta, v - v' \rangle^2 \right) \\
\geq \frac{1}{2} \left( \sum_{v \in V} b_v e^{(x,v)} \right)^2
\]
because \( |\langle \theta, v - v' \rangle| \leq 1 \).

For the proof of (17), it is enough to show
\[ \left| \partial^\sigma \left\{ \frac{1}{\sum_{v \in V} b_v e^{(z,v)}} \right\} \right| \leq C |\sigma|+1 \frac{1}{\sum_{v \in V} b_v e^{(x,v)}}, \] (18)

Indeed, since
\[ \left| \partial^\sigma \left\{ \sum_{v \in V} a_v e^{(z,v)} \right\} \right| \leq \sum_{v \in V} |a_v| \cdot |v^\alpha| e^{(x,v)} \leq C |\sigma| \sum_{v \in V} |a_v| e^{(x,v)}, \] (19)

by (18) and the Leibniz’s rule we obtain (17). To show (18), we use Faà di Bruno’s formula with \( F(t) = 1/t \). By Lemma 2.3 together with estimates (16) and (19) we get
\[
\left| \partial^\sigma \left\{ \frac{1}{\sum_{v \in V} b_v e^{(z,v)}} \right\} \right| \leq \sum_{\pi \in \Pi_\sigma} c_\pi m! \left( \sum_{v \in V} b_v e^{(x,v)} \right)^{-m-1} \prod_{j=1}^m \left| \partial^{B_j} \left\{ \sum_{v \in V} b_v e^{(z,v)} \right\} \right| \\
\leq C |\sigma| \frac{1}{\sum_{v \in V} b_v e^{(x,v)}} \sum_{\pi \in \Pi_\sigma} c_\pi m! \\
\leq C |\sigma|+1 \frac{1}{\sum_{v \in V} b_v e^{(x,v)}},
\]
where in the last inequality we have used (15).
3 Heat kernels

In this section we show the asymptotic behavior of the \( n \)'th step transition density of an irreducible finite range random walk on the integer lattice \( \mathbb{Z}^d \). Before we state and prove the main theorem, let us present the following example.

**Example 4** Let \( p \) be the transition function of the simple random walk on \( \mathbb{Z} \). If \( x \equiv n \, (\text{mod} \, 2) \) then

\[
p(n; x) = \frac{n!}{2^n \left( \frac{n-1}{2} \right)! \left( \frac{n+1}{2} \right)!}.
\]

Let us recall Stirling’s formula

\[
n! = \sqrt{2\pi n} n^{n+\frac{1}{2}} e^{-n} (1 + O(n^{-1})).
\]

Hence, we have

\[
p(n; x) = \frac{1}{\sqrt{2\pi n}} \frac{n^{n+\frac{1}{2}}}{(n-x)^{\frac{n-1}{2}} (n+x)^{\frac{n+1}{2}}} \left( 1 + O((n-x)^{-1}) + O((n+x)^{-1}) \right) \\
= \frac{1}{\sqrt{2\pi n}} (1 - \delta^2)^{-\frac{1}{2}} e^{-n\phi(\delta)} \left( 1 + O(n^{-1} \text{dist}(\delta, \{-1, 1\})^{-1}) \right)
\]

where \( \delta = \frac{x}{n} \) and \( \phi(\delta) = \frac{1}{2} (1 - \delta) \log(1 - \delta) + \frac{1}{2} (1 + \delta) \log(1 + \delta) \).

**Theorem 3.1** Let \( p \) be an irreducible finite range random walk on \( \mathbb{Z}^d \). Let \( r \) be its period and \( X_0, \ldots, X_{r-1} \) the partition of \( \mathbb{Z}^d \) into aperiodic classes. There is \( \eta \geq 1 \) such that for each \( j \in \{0, 1, \ldots, r-1\} \), \( n \in \mathbb{N} \), and \( x \in X_j \), if \( n \equiv j \, (\text{mod} \, r) \) then

\[
p(n; x) = (2\pi n)^{-\frac{d}{2}} (\det B_s)^{-\frac{1}{2}} e^{-n\phi(\delta)} \left( r + O(n^{-1} \text{dist}(\delta, \partial M)^{-2n}) \right),
\]

otherwise \( p(n; x) = 0 \), where \( \delta = \frac{x}{n} \), \( s = \nabla \phi(\delta) \) and

\[
\phi(\delta) = \max \left\{ \langle u, \delta \rangle - \log \kappa(u) : u \in \mathbb{R}^d \right\}.
\]

**Proof** Using the Fourier inversion formula we can write

\[
p(n; x) = \left( \frac{1}{2\pi} \right)^d \int_{\mathcal{D}_d} \kappa(i\theta)^n e^{-i\langle \theta, x \rangle} \, d\theta,
\]

where \( \mathcal{D}_d = [-\pi, \pi)^d \). If \( \theta_0 \in \mathcal{U} \) then \( \kappa(i\theta_0) = e^{it} \) for some \( t \in [-\pi, \pi) \) where \( \mathcal{U} \) is defined in (3). Since \( \kappa(i\theta_0) \) is a convex combination of complex numbers from the unit circle, \( \kappa(i\theta_0) = e^{it} \) if and only if \( e^{i\langle \theta_0, v \rangle} = e^{it} \) for each \( v \in \mathcal{V} \). In particular,

\[
e^{int} p(n; x) = \left( \frac{1}{2\pi} \right)^d \int_{\mathcal{D}_d} \kappa(i\theta + i\theta_0)^n e^{-i\langle \theta, x \rangle} \, d\theta \\
= e^{i\langle \theta_0, x \rangle} p(n; x),
\]
thus, whenever \( p(n; x) > 0 \), we must have
\[
e^{int} = e^{i(\theta_0, x)}.
\]

Hence, by (5),
\[
e^{int} = e^{i(\theta_0, x)} = e^{i(n+r)t},
\]

which implies that \( e^{it} \) is \( r \)’th root of unity. In particular, the set \( \mathcal{U} \) has the cardinality \( r \). Next, we claim that

**Claim 2** For any \( u \in \mathbb{R}^d \),
\[
\int_{\mathcal{D}_d} \kappa(i\theta)^n e^{-i(\theta, x)} \, d\theta = \int_{\mathcal{D}_d} \kappa(u + i\theta)^n e^{-(u+i\theta, x)} \, d\theta.
\]

To see this, we observe that if \( y \in \mathbb{R}^d \) and \( x \neq y \), then we have
\[
\int_{\mathcal{D}_d} e^{i(\theta, y)} e^{-i(\theta, x)} \, d\theta = 0 = \int_{\mathcal{D}_d} e^{(u+i\theta, y)} e^{-(u+i\theta, x)} \, d\theta,
\]

otherwise
\[
\int_{\mathcal{D}_d} e^{i(\theta, x)} e^{-i(\theta, x)} \, d\theta = \prod_{j=1}^d \int_{-\pi}^{\pi} e^{i\theta_j x_j} e^{-i\theta_j x_j} \, d\theta_j = \prod_{j=1}^d \int_{-\pi}^{\pi} e^{(u_j+i\theta_j) x_j} e^{-(u_j+i\theta_j) x_j} \, d\theta_j = \int_{\mathcal{D}_d} e^{(u+i\theta, x)} e^{-(u+i\theta, x)} \, d\theta.
\]

Therefore,
\[
\int_{\mathcal{D}_d} \kappa(i\theta)^n e^{-i(\theta, x)} \, d\theta = \sum_{v_1, \ldots, v_n \in \mathcal{V}} \prod_{j=1}^n p(v_j) \int_{\mathcal{D}_d} e^{i(\theta, \sum_{j=1}^n v_j)} e^{-i(\theta, x)} \, d\theta = \sum_{v_1, \ldots, v_n \in \mathcal{V}} \prod_{j=1}^n p(v_j) \int_{\mathcal{D}_d} e^{(u+i\theta, \sum_{j=1}^n v_j)} e^{-(u+i\theta, x)} \, d\theta = \int_{\mathcal{D}_d} \kappa(u + i\theta)^n e^{-(u+i\theta, x)} \, d\theta.
\]

We notice that if \( p(n; x) > 0 \) then \( \delta = \frac{x}{n} \in \overline{\mathcal{M}} \). Since \( \text{dist}(\delta, \partial \mathcal{M}) > 0 \), by Theorem 2.1, there is the unique \( s = s(\delta) \) such that \( \nabla \log \kappa(s) = \delta \). Hence, by Claim 2, we can write
$$p(n; x) = \left( \frac{1}{2\pi} \right)^d e^{-n\phi(\delta)} \int_{\mathcal{D}_d} \left( \frac{\kappa(s+i\theta)}{\kappa(s)} \right)^n e^{-i\langle \theta, x \rangle} d\theta,$$

because

$$\phi(\delta) = \langle s, \delta \rangle - \log \kappa(s).$$

Let $$\epsilon > 0$$ be small enough to satisfy (25), (27) and (30). We set

$$\mathcal{D}_d^\epsilon = \bigcap_{\theta_0 \in \mathcal{U}} \{ \theta \in [-\pi, \pi]^d : |\theta - \theta_0|_2 \geq \epsilon \}.$$  

Then the integral over $$\mathcal{D}_d^\epsilon$$ is negligible. To see this, we write

$$1 - \left| \frac{\kappa(s+i\theta)}{\kappa(s)} \right|^2 = 1 - \sum_{v, v' \in \mathcal{V}} p(v)e^{(s+i\theta, v)} \cdot \frac{p(v')e^{(s-i\theta, v')}}{\kappa(s)}
= 2 \sum_{v, v' \in \mathcal{V}} \frac{p(v)e^{(s, v)}}{\kappa(s)} \cdot \frac{p(v')e^{(s, v')}}{\kappa(s)} \left( \sin \left( \frac{\theta}{2}, v - v' \right) \right)^2.$$  (22)

Now, we need the following estimate.

**Claim 3** For every $$v_0 \in \mathcal{V}$$, there is $$\xi > 0$$ such that for all $$\theta \in \mathcal{D}_d^\epsilon$$ there is $$v \in \mathcal{V}$$ satisfying

$$\left| \sin \left( \frac{\theta}{2}, v - v_0 \right) \right| \geq \xi.$$  (23)

For the proof, we assume to contrary that for some $$v_0 \in \mathcal{V}$$ and all $$m \in \mathbb{N}$$ there is $$\theta_m \in \mathcal{D}_d^\epsilon$$ such that for all $$v \in \mathcal{V},$$

$$\left| \sin \left( \frac{\theta_m}{2}, v - v_0 \right) \right| \leq \frac{1}{m}.$$  

By compactness of $$\mathcal{D}_d^\epsilon$$, there is a subsequence $$(\theta_{mk} : k \in \mathbb{N})$$ convergent to $$\theta' \in \mathcal{D}_d^\epsilon.$$ Then for all $$v \in \mathcal{V},$$

$$\sin \left( \frac{\theta'}{2}, v - v_0 \right) = 0,$$

and hence

$$\kappa(i\theta') = e^{i\langle \theta', v_0 \rangle}$$

which is impossible since $$\theta' \in \mathcal{D}_d^\epsilon.$$  

In order to apply Claim 3, we select any $$v_0$$ satisfying

$$\langle v_0, s \rangle = \max \{ \langle v, s \rangle : v \in \mathcal{V} \},$$
thus $e^{(s,v_0)} \geq \kappa(s)$. By Claim 3 and (22), for each $\theta \in \mathcal{D}_d$ there is $v \in \mathcal{V}$ such that

$$1 - \left| \frac{\kappa(s + i\theta)}{\kappa(s)} \right|^2 \geq 2p(v_0) \frac{p(v)e^{(s,v)}}{\kappa(s)} \xi^2 \geq 2\xi^2 \min\{p(v')^2 : v' \in \mathcal{V}\} \cdot \frac{e^{(s,v)}}{\kappa(s)}.$$

Although $v$ may depend on $\theta$, by Theorem 2.2, there are $C > 0$ and $\eta \geq 1$ such that for all $\theta \in \mathcal{D}_d$,

$$1 - \left| \frac{\kappa(s + i\theta)}{\kappa(s)} \right|^2 \geq C \text{ dist}(\delta, \partial \mathcal{M})^\eta.$$

Hence,

$$\left| \frac{\kappa(s + i\theta)}{\kappa(s)} \right|^2 \leq 1 - C \text{ dist}(\delta, \partial \mathcal{M})^\eta \leq e^{-C \text{ dist}(\delta, \partial \mathcal{M})^\eta}.$$

Since

$$n \text{ dist}(\delta, \partial \mathcal{M})^\eta = n^{\frac{1}{2}} \left( n \text{ dist}(\delta, \partial \mathcal{M})^{2\eta} \right)^{\frac{1}{2}}$$

we obtain that

$$e^{-Cn \text{ dist}(\delta, \partial \mathcal{M})^\eta} \leq C' n^{-d - 1} \text{ dist}(\delta, \partial \mathcal{M})^{-2\eta},$$

provided $n$ is large enough. We observe that for any $u \in \mathbb{R}^d$,

$$B_s(u, u) = \frac{1}{2} \sum_{v, v' \in \mathcal{V}} \frac{p(v)e^{(x,v)}}{\kappa(x)} \cdot \frac{p(v')e^{(x,v')}}{\kappa(x)} \langle u, v - v' \rangle^2 \leq \frac{1}{\min\{p(v)^2 : v \in \mathcal{V}\}} B_0(u, u),$$

thus for any $u, u' \in \mathbb{R}^d$,

$$B_s(u, u') \leq \frac{1}{\min\{p(v)^2 : v \in \mathcal{V}\}} \sqrt{B_0(u, u) B_0(u', u')},$$

and hence

$$\det B_s \leq C \det B_0.$$
Therefore, we conclude that
\[
\int_{D^d} \left| \frac{\kappa(s + i \theta)}{\kappa(s)} \right|^n d\theta \leq C n^{-\frac{d}{2} - 1} (\det B_s)^{-\frac{1}{2}} \text{dist}(\delta, \partial \mathcal{M})^{-2\eta}.
\]

Next, let us consider the integral over
\[
\bigcup_{\theta_0 \in \mathcal{U}} \left\{ \theta \in [-\pi, \pi]^d : |\theta - \theta_0|_2 < \epsilon \right\}.
\] (24)

By taking \( \epsilon \) satisfying
\[
\epsilon < \min \left\{ \frac{|\theta_0 - \theta_0'|_2}{2} : \theta_0, \theta_0' \in \mathcal{U} \right\},
\] (25)
we guarantee that the sets in (24) are disjoint. Moreover, for any \( \theta_0 \in \mathcal{U} \), by the change of variables and (21) we get
\[
\int_{|\theta - \theta_0|_2 < \epsilon} \left( \frac{\kappa(s + i \theta)}{\kappa(s)} \right)^n e^{-i\langle \theta, x \rangle} d\theta = \int_{|\theta|_2 < \epsilon} \left( \frac{\kappa(s + i \theta + i \theta_0)}{\kappa(s)} \right)^n e^{-i\langle \theta + \theta_0, x \rangle} d\theta
\]
\[
= \int_{|\theta|_2 < \epsilon} \left( \frac{\kappa(s + i \theta)}{\kappa(s)} \right)^n e^{-i\langle \theta, x \rangle} d\theta.
\]

Therefore,
\[
\sum_{\theta_0 \in \mathcal{U}} \int_{|\theta - \theta_0|_2 < \epsilon} \left( \frac{\kappa(s + i \theta)}{\kappa(s)} \right)^n e^{-i\langle \theta, x \rangle} d\theta = r \int_{|\theta|_2 < \epsilon} \left( \frac{\kappa(s + i \theta)}{\kappa(s)} \right)^n e^{-i\langle \theta, x \rangle} d\theta.
\]

Further, by (16), a function \( z \mapsto \text{Log} \kappa(z) \), where \( \text{Log} \) denotes the principal value of the complex logarithm, is an analytic function in a strip \( \mathbb{R}^d + iB \) where
\[
B = \left\{ b \in \mathbb{R}^d : |b|_2 < 2 \cdot \max\{|v|_2 : v \in \mathcal{V}\}^{-1} \right\}.
\]

Since for any \( u \in \mathbb{R}^d \) we have
\[
D_u^2 \text{Log} \kappa(z) = \frac{1}{2} \sum_{v, v' \in \mathcal{V}} \frac{p(v) e^{i\langle z, v \rangle}}{\kappa(z)} \cdot \frac{p(v') e^{i\langle z, v' \rangle}}{\kappa(z)} (u, v - v')^2,
\]
by Lemma 2.4, there is \( C > 0 \) such that for all \( \sigma \in \mathbb{N}^d \) and \( a + ib \in \mathbb{R}^d + iB \),
\[
|\partial^\sigma (D_u^2 \text{Log} \kappa)(a + ib)| \leq C |\sigma|^{1+1} !B_\sigma(u, u).
\] (26)

If
\[
\epsilon < (2 \cdot \max\{|v|_2 : v \in \mathcal{V}\})^{-1},
\] (27)
then for $|\theta|_2 < \epsilon$ we can define

$$
\psi(s, \theta) = \log \kappa(s + i\theta) - \log \kappa(s) - i \langle \theta, \delta \rangle + \frac{1}{2} B_s(\theta, \theta).
$$

Hence,

$$
\int_{|\theta|_2 < \epsilon} e^{-i \langle \theta, x \rangle} \psi(s, \theta) d\theta = \int_{|\theta|_2 < \epsilon} e^{-\frac{1}{2} B_s(\theta, \theta)} e^n \psi(s, \theta) d\theta,
$$

and to finish the proof of theorem it is enough to show

Claim 4

$$
\int_{|\theta|_2 < \epsilon} e^{-\frac{1}{2} B_s(\theta, \theta)} e^n \psi(s, \theta) d\theta = (2\pi n)^{\frac{d}{2}} (\det B_s)^{-\frac{1}{2}} \left(1 + O(n^{-1} \text{dist}(\delta, \partial M)^{-2\eta})\right).
$$

(28)

Using the integral form for the reminder, we get

$$
\psi(s, \theta) = -\frac{i}{2} \int_0^1 (1 - t)^2 D_\theta^3 \log \kappa(s + it\theta) \, dt.
$$

In view of (26), there is $c > 0$ such that for all $s \in \mathbb{R}^d$ and $\theta \in B$,

$$
|\psi(s, \theta)| \leq c |\theta|_2 B_s(\theta, \theta).
$$

(29)

Therefore, by choosing

$$
\epsilon < \left(4 \cdot \sup \left\{ \frac{|\psi(a, b)|}{c |b|_2 B_s(a, b)} : a \in \mathbb{R}^d, b \in B \right\} \right)^{-1},
$$

(30)

if $|\theta|_2 < \epsilon$ then we may estimate

$$
|\psi(s, \theta)| \leq \frac{1}{4} B_s(\theta, \theta).
$$

(31)

Next, we write

$$
e^n \psi(s, \theta) = \left(e^n \psi(s, \theta) - 1 - n \psi(s, \theta)\right) + \left(n \psi(s, \theta) - n^2 D_\theta^3 \psi(s, 0)\right) + n^3 \frac{D_\theta^3 \psi(s, 0)}{3!} + 1,
$$

and we split (28) into four corresponding integrals.
Since for $a \in \mathbb{C}$,

$$|e^a - 1 - a| \leq \frac{|a|^2}{2} e^{|a|},$$

by (29) and (31), the first integrand can be estimated as follows

$$|e^{n \psi(s, \theta)} - 1 - n \psi(s, \theta)| \leq \frac{1}{2} e^{\frac{n}{2} B_s(\theta, \theta)} (n \psi(s, \theta))^2 \leq C e^{\frac{n}{2} B_s(\theta, \theta)} n^2 |\theta|^2 B_s(\theta, \theta)^2.$$

Because

$$|\theta|^2 \leq \| B_s^{-1} \| B_s(\theta, \theta),$$

we obtain

$$\left| \int_{|\theta|_2 < \epsilon} e^{-\frac{n}{2} B_s(\theta, \theta)} (e^{n \psi(s, \theta)} - 1 - n \psi(s, \theta)) \, d\theta \right| \leq C n^2 \| B_s^{-1} \| \int_{|\theta|_2 < \epsilon} e^{-\frac{n}{2} B_s(\theta, \theta)} B_s(\theta, \theta)^3 \, d\theta \leq C n^{-\frac{d}{2} - 1} (\det B_s)^{-\frac{1}{2}} \| B_s^{-1} \|.$$  (32)

Furthermore, by (26),

$$\left| \psi(s, \theta) - \frac{D^3 \psi(s, 0)}{3!} \right| = \left| \frac{1}{3!} \int_0^1 (1 - t)^3 D^4 \theta \log \kappa(s + it \theta) \, dt \right| \leq C |\theta|^2 B_s(\theta, \theta),$$

which together with (32) implies

$$\left| \int_{|\theta|_2 < \epsilon} e^{-\frac{n}{2} B_s(\theta, \theta)} n \left( \psi(s, \theta) - \frac{D^3 \psi(s, 0)}{3!} \right) \, d\theta \right| \leq C n \| B_s^{-1} \| \int_{|\theta|_2 < \epsilon} e^{-\frac{n}{2} B_s(\theta, \theta)} B_s(\theta, \theta)^2 \, d\theta \leq C n^{-\frac{d}{2} - 1} (\det B_s)^{-\frac{1}{2}} \| B_s^{-1} \|.$$  (33)

The third integral is equal zero because the integrand is an odd function. The last one, by (32), we can estimate

$$\left| \int_{|\theta|_2 < \epsilon} e^{-\frac{n}{2} B_s(\theta, \theta)} \, d\theta - \int_{\mathbb{R}^d} e^{-\frac{n}{2} B_s(\theta, \theta)} \, d\theta \right| \leq e^{-\frac{n}{4} \epsilon^2} \| B_s^{-1} \| \int_{\mathbb{R}^d} e^{-\frac{n}{2} B_s(\theta, \theta)} \, d\theta \leq C n^{-\frac{d}{2} - 1} (\det B_s)^{-\frac{1}{2}} \| B_s^{-1} \|.$$  (35)
By putting estimates (33), (34) and (35) together, we obtain
\[ \int_{|\theta|_2 < \varepsilon} e^{-\frac{n}{2} B_s(\theta, \theta)} e^{n\psi(x, \theta)} \, d\theta = n^{-\frac{d}{2}} (\det B_s)^{-\frac{1}{2}} \left( (2\pi)^{\frac{d}{2}} + O(n^{-1} \| B_s^{-1} \|) \right). \]

Finally, by (8) and Theorem 2.2, there is \( C > 0 \) such that for all \( \delta \in \mathcal{M} \) and any \( u \in \mathbb{R}^d \),
\[ B_s(u, u) \geq C \text{dist}(\delta, \partial \mathcal{M})^{2\eta} B_0(u, u). \]  
(36)

Hence,
\[ \left\| B_s^{-1} \right\| = \left( \min\{B_s(u, u) : |u|_2 = 1\} \right)^{-1} \leq C \text{dist}(\delta, \partial \mathcal{M})^{-2\eta}, \]
which concludes the proof of Claim 4. \( \square \)

Although, the asymptotic in Theorem 3.1 is uniform on a large region with respect to \( n \) and \( x \), it depends on the implicit function \( s(\delta) \). By (36), we may estimate
\[ \det B_s \geq C \text{dist}(\delta, \partial \mathcal{M})^{2\eta}. \]

Since \( \mathcal{M} \ni \delta \mapsto s(\delta) \) is real analytic, for each \( \varepsilon > 0 \) there is \( C_\varepsilon > 0 \) such that if \( \text{dist}(\delta, \partial \mathcal{M}) \geq \varepsilon \) then
\[ |s|_1 \leq C_\varepsilon |\delta - \delta_0|_1, \]  
(37)
and
\[ \left| (\det B_s)^{-\frac{1}{2}} - (\det B_0)^{-\frac{1}{2}} \right| \leq C_\varepsilon |\delta - \delta_0|_1, \]
where \( \delta_0 = \sum_{v \in V} p(v) v \). In most applications the following form of the asymptotic of \( p(n; x) \) is sufficient.

**Corollary 3.2** For every \( \varepsilon > 0, j \in \{0, \ldots, r-1\}, n \in \mathbb{N} \) and \( x \in X_j \), if \( n \equiv j \) (mod \( r \)) then
\[ p(n; x) = (2\pi n)^{-\frac{d}{2}} (\det B_0)^{-\frac{1}{2}} e^{-n\phi(\delta)} \left( r + O(|\delta - \delta_0|_1) + O(n^{-1}) \right), \]
otherwise \( p(n; x) = 0 \), provided that \( \text{dist}(\delta, \partial \mathcal{M}) \geq \varepsilon \).

**Remark 1** It is not possible to replace \( \phi(\delta) \) by \( \frac{1}{2} B_0^{-1}(\delta - \delta_0, \delta - \delta_0) \) without introducing an error term of a very different nature. Indeed, by (12),
\[ e^{-n\phi(\delta)} = e^{-\frac{n}{2} B_0^{-1}(\delta - \delta_0, \delta - \delta_0)} \exp O(n|\delta - \delta_0|_1^3). \]
Since \( \delta_0 \in \mathcal{M} \), if \( \delta \) approaches \( \partial \mathcal{M} \) then \( n|\delta - \delta_0|^3 \) cannot be small. Notice that the third power may be replaced by a higher degree if the random walk has vanishing.
moments. In particular, for the simple random walk on $\mathbb{Z}^d$ (see Example 1), for all $\epsilon > 0$, $x \in \mathbb{Z}^d$ and $n \in \mathbb{N}$, if $|x|_1 + n \in 2\mathbb{N}$ then

$$p(n; x) = (2\pi)^{-d} \frac{d^n}{n^d} e^{-\frac{d^n}{2n^2} (2 + O(n|\delta|^4) + O(n^{-1}))}$$

otherwise $p(n; x) = 0$, uniformly with respect to $n$ and $x$ provided that $|x|_1 \leq (1-\epsilon)n$.

**Remark 2** It is relatively easy to obtain a global upper bound: for all $n \in \mathbb{N}$ and $x \in \mathbb{Z}^d$,

$$p(n; x) \leq e^{-n\phi(\delta)}.$$

Indeed, by Claim 2, for $u \in \mathbb{R}^d$, we have

$$p(n; x) = \left( \frac{1}{2\pi} \right)^d \kappa(u)^n e^{-\langle u, x \rangle} \int_{\mathcal{D}_d} \left( \frac{\kappa(u + i\theta)}{\kappa(u)} \right)^n e^{-i\langle \theta, x \rangle} d\theta.$$

Hence, by Theorem 2.1,

$$p(n; x) \leq \min \left\{ \kappa(u)^n e^{-\langle u, x \rangle} : u \in \mathbb{R}^d \right\} \leq e^{-n\phi(\delta)}.$$

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

**Appendix A. Applications**

In this section we apply Corollary 3.2 to the simple random walks on triangular and hexagonal lattices.

**A.1 The triangular lattice**

The triangular lattice consists of the set of points

$$L = \mathbb{Z}\lambda_1 \oplus \mathbb{Z}\lambda_2,$$

where $\lambda_1 = (-1/2, \sqrt{3}/2)$, $\lambda_2 = (1/2, \sqrt{3}/2)$. Let $\tau : L \to \{0, 1, 2\}$ be defined by setting

$$\tau(j\lambda_1 + j'\lambda_2) \equiv j + 2j' \pmod{3}.$$

Each point $x \in L$ has six closest neighbors, namely,

$$x + \lambda_1, \ x - \lambda_1, \ x + \lambda_1 - \lambda_2,$$
Let \( p \) be the transition function of the simple random walk on \( L \). Observe that the mapping

\[
L \ni j \lambda_1 + j' \lambda_2 \mapsto je_1 + j'e_2 \in \mathbb{Z}^2
\]

allows us instead of \( p \) to work with a transition function \( \tilde{p} \) such that

\[
\tilde{p}(e_1) = \tilde{p}(-e_1) = \tilde{p}(e_1 - e_2) = \tilde{p}(e_2) = \tilde{p}(-e_1 + e_2) = \frac{1}{6}.
\]

Then the corresponding set \( M \subset \mathbb{R}^2 \) is the interior of

\[
\text{conv}\{e_1, e_2, e_1 - e_2, -e_1, -e_2, -e_1 + e_2\}.
\]

Moreover, for \( u \in \mathbb{R}^2 \),

\[
\kappa(u) = \frac{1}{6} e^{u_1} + \frac{1}{6} e^{-u_1} + \frac{1}{6} e^{u_2} + \frac{1}{6} e^{-u_2} + \frac{1}{6} e^{u_1 - u_2} + \frac{1}{6} e^{-u_1 + u_2}
\]

\[
= \frac{1}{3} \cosh u_1 + \frac{1}{3} \cosh u_2 + \frac{1}{3} \cosh(u_1 - u_2).
\]

In particular, \( \mathcal{U} = \{0\} \). Next, by using (8) we can compute the quadratic form \( B_0 \),

\[
B_0 = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix},
\]

thus \( \det B_0 = 1/3 \). Finally, by applying Corollary 3.2 to \( \tilde{p} \) we obtain the following precise asymptotic of \( p \): for every \( \epsilon > 0 \) and all \( n \in \mathbb{N} \) and \( x \in L \),

\[
p(n; x) = (2\pi n)^{-1} e^{-n\phi(\delta)} \left( \sqrt{3} + O(|\delta_1|) + O(n^{-1}) \right),
\]

uniformly with respect to \( n \) and \( x \) such that \( \text{dist}(\delta, \partial M) \geq \epsilon \) where for \( x = j\lambda_1 + j'\lambda_2 \) we have set

\[
\delta = \frac{j}{n} e_1 + \frac{j'}{n} e_2.
\]

The asymptotic (38) is valid in the region where \( |x|_1 = o(n) \), which improves on previously known results (see [6, Example 2] and [5, Theorem 2.5 and Section 7.2]).

\( \copyright \) Springer
A.2 The hexagonal lattice

The hexagonal lattice $H$ one may obtain from the triangular lattice by removing all vertices $x \in L$ such that $\tau(x) = 1$. Each vertex $x \in H$ has three neighbors,

$$
\begin{cases}
  x + \lambda_2, & x - \lambda_1, & x - \lambda_2 + \lambda_1, & \text{if } \tau(x) = 0 \\
  x + \lambda_1, & x - \lambda_2, & x - \lambda_1 + \lambda_2, & \text{if } \tau(x) = 2.
\end{cases}
$$

Let $p$ be the transition function of the simple random walk on $H$, i.e. $p(x, y) = 1/3$ if $x$ and $y$ are closest neighbors. Observe that $p$ is irreducible and periodic with period $r = 2$. We have

$$
X_0 = \{x \in H : \tau(x) = 0\}, \quad X_1 = \{x \in H : \tau(x) = 2\}.
$$

Let us consider a new random walk given by a transition function $q$,

$$
q(x, y) = \sum_{u \sim x} p(x, u) p(u, y),
$$

where the sum is taken over $u \in H$ being a common neighbor of $x$ and $y$. It is easy to check that $q(x, x) = 1/3$ and $q(x, y) = 1/9$ where $y$ belongs to the set

$$
\begin{align*}
  &x + \lambda_1 + \lambda_2, & x + 2\lambda_1 - \lambda_2, & x + \lambda_1 - 2\lambda_2, \\
  &x - \lambda_1 - \lambda_2, & x - \lambda_1 + 2\lambda_2, & x - 2\lambda_1 + \lambda_2.
\end{align*}
$$

If $x \in X_0$ then

$$
p(n; 0, x) = \begin{cases}
  q(n/2; 0, x) & \text{if } n \equiv 0 \pmod{2}, \\
  0 & \text{otherwise}.
\end{cases}
$$

If $x \in X_1$ and $n \equiv 1 \pmod{2}$ then

$$
p(n; 0, x) = \frac{1}{3} q((n - 1)/2; 0, x + \lambda_1) + \frac{1}{3} q((n - 1)/2; 0, x - \lambda_2) + \frac{1}{3} q((n - 1)/2; 0, x + \lambda_1 - \lambda_2)
$$

otherwise $p(n; 0, x) = 0$. First, we find the asymptotic of $q$. We notice that $q$ is the transition function of an irreducible random walk on the triangular lattice

$$
L = \mathbb{Z}(\lambda_1 + \lambda_2) \oplus \mathbb{Z}(2\lambda_2 - \lambda_1).
$$

Therefore, under the mapping

$$
L \ni j\lambda_1 + j'\lambda_2 \mapsto \frac{2j + j'}{3} e_1 + \frac{-j + j'}{3} e_2 \in \mathbb{Z}^2,
$$
the transition function \( q \) is mapped onto \( \tilde{q} \) a transition function of a random walk on the integer lattice \( \mathbb{Z}^2 \), where

\[
\tilde{q}(0) = \frac{1}{3},
\]

\[
\tilde{q}(e_1) = \tilde{q}(-e_1) = \tilde{q}(e_2) = \tilde{q}(-e_2) = \tilde{q}(e_1 - e_2) = \tilde{q}(e_2 - e_1) = \frac{1}{9}.
\]

In this case, for \( u \in \mathbb{R}^2 \) we have

\[
\kappa(u) = \frac{1}{3} + \frac{1}{9} e^{u_1} + \frac{1}{9} e^{-u_1} + \frac{1}{9} e^{u_2} + \frac{1}{9} e^{-u_2} + \frac{1}{9} e^{u_1 - u_2} + \frac{1}{9} e^{-u_1 + u_2} = \frac{1}{3} + \frac{2}{9} \cosh u_1 + \frac{2}{9} \cosh u_2 + \frac{2}{9} \cosh(u_1 - u_2).
\]

Again, the set \( M \subset \mathbb{R}^2 \) is the interior of

\[
\text{conv} \{ e_1, e_2, e_1 - e_2, -e_1, -e_2, -e_1 + e_2 \}.
\]

It is easy to check that the quadratic form \( B_0 \) equals to

\[
B_0 = \frac{2}{9} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix},
\]

thus \( \det B_0 = 4/27 \). By Corollary 3.2, for every \( \epsilon > 0 \), all \( n \in \mathbb{N} \) and \( x \in L \),

\[
q(n; x) = (2\pi n)^{-1} e^{-n\phi(\delta)} (3\sqrt{3} + O(\|\delta\|_1) + O(n^{-1}))
\]

uniformly with respect to \( n \) and \( x \) such that \( \text{dist}(\delta, \partial M) \geq \epsilon \) where for \( x = j\lambda_1 + j'\lambda_2 \) we have set

\[
\delta = \frac{2j + j'}{3n} e_1 + \frac{-j + j'}{3n} e_2.
\]

Although, for \( x \in X_1 \), we need to apply (39) for three times with different \( x \), the exponential factors are comparable. Indeed, for \( x \in H \), \( x = j\lambda_1 + j'\lambda_2 \) let \( \delta \) be defined by the formula (40). Fix \( \epsilon > 0 \) and let us consider \( x \in X_1 \) and \( n \in \mathbb{N} \) such that

\[
\text{dist}(\delta, \partial M) \geq \epsilon.
\]

Let \( \tilde{\delta} \) be any element of a set

\[
\delta + \left\{ \frac{2}{3n} e_1 - \frac{1}{3n} e_2, -\frac{1}{3n} e_1 - \frac{1}{3n} e_2, \frac{1}{3n} e_1 - \frac{2}{3n} e_n \right\}.
\]

Observe that

\[
|\delta - \tilde{\delta}|_1 \leq \frac{1}{n}.
\]
Let us denote by \( s \in \mathbb{R}^2 \) the unique solution to \( \nabla \log \kappa(s) = \delta \), then by (10), we can estimate
\[
\phi(\delta) - \phi(\tilde{\delta}) \leq \phi(\delta) - \langle \tilde{\delta}, s \rangle + \log \kappa(s) = \langle \delta - \tilde{\delta}, s \rangle.
\]
Hence, by (37) and (41), we get
\[
\phi(\delta) - \phi(\tilde{\delta}) \leq C \varepsilon n |\delta|_1.
\]
In particular,
\[
e^{-n\phi(\tilde{\delta})} = e^{-n\phi(\delta)} e^{n(\phi(\delta) - \phi(\tilde{\delta}))} = e^{-n\phi(\delta)} (1 + O(|\delta|_1)).
\]
Now, we are ready to apply (39) to obtain the precise asymptotic of \( p \). For every \( \epsilon > 0 \) and all \( x \in H, n \in \mathbb{N}, j \in \{0, 1\} \), if \( x \in X_j \) then
\[
p(n; 0, x) = \begin{cases} (2\pi n)^{-1} e^{-n\phi(\tilde{\delta})} (3\sqrt{3} + O(|\delta|_1) + O(n^{-1})), & \text{if } n \equiv j \pmod{2}, \\ 0, & \text{otherwise}, \end{cases}
\]
uniformly with respect to \( n \) and \( x \) such that \( \text{dist}(\delta, \partial M) \geq \epsilon \).

Let us observe that the above asymptotic is valid on a region where \( |x|_1 = o(n) \), improving on results available in the literature (see [5, Theorem 2.5 and Section 7.3] and [6, Example 3]).

References
1. Bendikov, A., Cygan, W., Trojan, B.: Limit theorems for random walks. Stoch. Proc. Appl. 127, 3268–3290 (2017)
2. Borovkov, A.A., Mogulskii, A.A.: On large and superlarge deviations of sums of independent random vectors under Cramér’s conditions I. Theory Probab. Appl. 51(2), 227–255 (2007)
3. Davis, E.B.: Large deviation for heat kernels on graphs. J. Lond. Math. Soc. 2, 65–72 (1993)
4. Guivarc’h, Y.: Application d’un theoreme limite local a la transience et a la recurrence de marches de markov. In: Gabriel Mokobodzki, G., Pinchon, D. (eds.) Théorie du Potentiel, Orsay 1983, Volume 1096 of Lect. Notes Math., pp. 301–332. Springer, Berlin (1984)
5. Ishiwata, S., Kawabi, H., Kotani, M.: Long time asymptotics of non-symmetric random walks on crystal lattice. J. Funct. Anal. 272, 1553–1624 (2017)
6. Kotani, M., Sunada, T.: Albanese maps and off diagonal long time asymptotics for the heat kernel. Commun. Math. Phys. 209, 633–670 (2000)
7. Krámli, A., Szász, D.: Random walks with internal degrees of freedom. Z. Wahrsch. Verw. Gebiete 63, 85–95 (1983)
8. Lawler, G.F.: Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Basel (1991)
9. Lawler, G.F., Limic, V.: Random Walks: A Modern Introduction. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)
10. Ney, P., Spitzer, F.: Martin boundary for random walk. Trans. Am. Math. Soc 121(1), 116–132 (1966)
11. Pólya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann. 84, 149–160 (1921)
12. Smith, W.L.: A frequency function form of the central limit theorem. Proc. Camb. Philos. Soc. 49, 462–472 (1953)
13. Spitzer, F.: Principles of Random Walk. Graduate Texts in Mathematics. Springer, Berlin (1964)
14. Trojan, B.: Asymptotic behaviour of heat kernels and Green functions on affine buildings. Preprint (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.