High field magnetotransport and specific heat in YbAgCu$_4$

A. Lacerdaa,*, T. Grafa,b, M.F. Hundleyb, M.S. Torikachvilib,c, J.M. Lawrenced, J.D. Thompsonb, D. Gajewskie, P.C. Canfieldf, Z. Fiskb,e

aNational High Magnetic Field Laboratory, Pulse Facility, Los Alamos, NM 87545, USA
bLos Alamos National Laboratory, Los Alamos, NM 87545, USA
cSan Diego State University, Department of Physics, San Diego, CA 92182, USA
dDepartment of Physics, University of California, Irvine, CA 92717, USA
eUniversity of California, San Diego, Department of Physics, La Jolla, CA 92093, USA
fAmes Laboratory, Ames, IA 50011, USA

Abstract

The electrical resistivity (ρ) and magnetoresistance of polycrystalline YbAgCu$_4$ have been measured at temperatures between 25 mK and 300 K, and at magnetic fields (B) up to 18 T. The magnetoresistance ($\rho(B) - \rho(0)/\rho(0)$) is positive at all temperatures below 200 K and reaches its maximum of 60% at 18 T and 25 mK. The field- and temperature-dependent resistivity does not scale in a simple way. The opposite sign of the magnetoresistance at ambient and high pressure can be explained qualitatively by crystal-field effects lifting the degeneracy of the $J = 7/2$ groundstate. The linear coefficient of the specific heat (γ) measured at fields up to 10 T shows a quadratic field dependence. We did not find a linear relation between γ^2 and A, the T^2-coefficient of the temperature-dependent resistivity, with the applied magnetic field as the implicit parameter.

YbAgCu$_4$ is one of the few Yb-based intermetallic compounds with a large linear coefficient of the specific heat $\gamma = 245$ mJ/mol K2 [1]. Its temperature-dependent magnetic susceptibility and specific heat are described well by the Coqblin–Schrieffer model with $J = 7/2$ and a characteristic energy scale $T_0 \approx 160$ K [1,2]. Inelastic neutron scattering [3] finds no evidence for well-defined crystal-field excitations consistent with the susceptibility results. Application of pressure causes a rapid decrease in T_{max}, the temperature at which the resistivity is maximal, and an increase in the T^2-coefficient of the resistivity (A) [4,5], suggesting that $dT_0/dP < 0$. At sufficiently high pressures, it is distinctly possible that T_0 becomes much smaller than the crystal-field splitting of the J-multiplet, the ground state degeneracy is at least partially lifted and spin fluctuations increasingly dominate electrical transport at low temperatures. This possibility could provide a partial explanation for the significantly different magnetoresistive behavior of YbAgCu$_4$ at low and high pressures. At ambient pressure the magnetoresistance is positive for $T < 20$ K and fields < 10 T [4] but for pressures > 70 kbar, the magnetoresistance is strongly negative [5]. To explore in more detail the origin of these opposite behaviors at low and high pressure (at large and small T_0, respectively) the specific heat (C), of YbAgCu$_4$ was measured in fields to 10 T for temperatures $4 K \leq T \leq 10 K$ and the electrical resistivity at fields up to 18 T and temperatures between 25 mK and 300 K.

The preparation of polycrystalline samples has been described previously [5]. The electrical resistivity was measured using a four lead AC resistance bridge (LR-400) operating at 17 Hz. The magnetic field was applied perpendicularly to the current (transverse geometry) and was generated by a 20 T superconducting magnet at the National High Magnetic Field Laboratory, Los Alamos Facility. The specific heat

* Corresponding author.
Fig. 1. (a) Resistivity ρ as a function of temperature T at magnetic fields of 0 (bottom curve), 6, 10, 14 and 18 T (top curve). Inset ρ versus T^2 at the same fields. The lines are linear fits to the data. (b) Magnetoresistance $(\rho(B) - \rho(0))/\rho(0)$ as a function of magnetic field B at different temperatures.

was measured in a small mass calorimeter utilizing a relaxation method.

Fig. 1(a) shows the temperature-dependent resistivity ρ of YbAgCu_4 in magnetic fields from 0 to 18 T. For $T < 15$ K, the curves can be fitted to $\rho(T, B) = \rho_0(B) + A(B)T^2$, which is shown explicitly in the inset of Fig. 1(a). The magnetoresistance $(\rho(B) - \rho(0))/\rho(0)$ is positive for all temperatures <200K and reaches its maximum of 60% at 18 T and 25 mK. The monotonic evolution of the magnetoresistance with increasing temperature is shown in Fig. 1(b). At each temperature $\Delta \rho/\rho(0) \approx B^\alpha$, with $\alpha \approx 1.5$. The data shown in Fig. 1(a) do not scale in any simple way, contrary to what has been found for pressure-induced changes in the resistivity [6]. For example, plots of ρ/ρ_0 versus T/T_o, where ρ_0 and T_o are the resistivity and temperature where $\partial \rho/\partial T$ is a maximum, do not scale, nor does plotting the data in a Kohler-form $\Delta \rho/\rho(0) = f(B/\rho(0))$, or as ρ versus $T\sqrt{\Delta}$.

The specific heat divided by temperature T is plotted in Fig. 2 as a function of T^2 for various applied fields. Solid lines are least square fits to the data and yield the linear coefficients γ, which are shown in Fig. 3 to increase linearly with B^2. With the usual assumption that $\gamma \propto 1/T_o$, this implies that T_o is inversely proportional to B^2. From the linear relation $\gamma \propto \sqrt{A}$ found [7] for several heavy fermion compounds at zero field, A would be expected to increase as B^2. Fig. 3 shows the measured change in A as a function of B^2. Although $A(B)$ increases superlinearly in B^2 for $B \leq 12$ T, at higher fields A varies approximately as B^2. The inset of Fig. 3 clearly demonstrates the absence of a linear correlation between γ and \sqrt{A} for $B \leq 10$ T. This is contrary to what was found [8] when pressure was the implicit variable.

Qualitatively the different field responses of YbAgCu_4 at zero and high pressures can be understood as follows. Okiji and Kawakami [9] have shown for the $J = 5/2$ Coqblin–Schrieffer model that γ increases approximately quadratically with field for $B < 0.4 T_o$ ($B < 95$ T for $T_o = 160$ K). A similar situation is expected to hold for $J = 7/2$, i.e. YbAgCu_4 at ambient pressure. From the assumed relationship between γ and A, therefore it would be expected that A increases with B, as found at ambient pressure. On the other hand, for $J = 1/2$, γ decreases strongly with field

Fig. 2. Specific heat C divided by temperature T as a function of T^2 at different magnetic fields ($0, 2, 4, 6, 8, 10$ T, from bottom to top). The lines are linear least squares fits.
[9,10] and A should also be found decreasing with the field, as observed at high pressures [5]. Although, a change in ground state degeneracy appears to account qualitatively for observations at ambient and high pressure, there remain quantitative questions to be addressed. The 10% increase in γ at 10 T is larger than predicted, at least for $J = 5/2$. The large change in ρ_0 in the applied field, for either ambient or high pressures, lacks a simple explanation, as does the field dependence of A and, more generally, of $\rho(T)$. Additional high field measurements on heavy fermion systems are now in progress to identify to what extent these features are general [11].

Acknowledgements

Work at Los Alamos was performed under the auspices of the U.S. Department of Energy. The National High Magnetic Field Laboratory is supported by the National Science Foundation.

References

[1] C. Rossel et al., Phys. Rev. B 35 (1987) 1914.
[2] M.J. Besnus et al., Physica B 163 (1990) 571.
[3] A. Servering et al., Phys. Rev. B 41 (1990) 1739.
[4] E. Bauer et al., Physica B 206 & 207 (1995) 352.
[5] T. Graf et al., Physica B 206 & 207 (1995) 349.
[6] J.D. Thompson et al., in: Theoretical and Experimental Aspects of Valence Fluctuations, eds. L.S. Gupta and S.K. Malik (Plenum, New York, 1987) p 151.
[7] K. Kadowaki and S.B. Woods, Solid State Commun. 58 (1986) 507.
[8] J.D. Thompson, J.M. Lawrence and Z. Fisk, J. Low Temp. Phys. 95 (1994) 59.
[9] A. Okiji and N. Kawakami, J. Magn. Magn. Mater. 54–57 (1986) 327.
[10] K. Takegahara and T. Kasaya, Physica B 163 (1990) 216.
[11] T. Graf et al., in press.