Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses

Natalia Ortega 1,16, Marta Ribes 1,16, Marta Vidal 1, Rocío Rubio 1, Ruth Aguilar 1, Sarah Williams 1, Diana Barrios 1, Selena Alonso 1, Pablo Hernández-Luis 2,3, Robert A. Mitchell 1, Chenjerai Jairoce 1,4, Angeline Cruz 1, Alfons Jimenez 1,5, Rebeca Santano 1, Susana Méndez 1, Montserrat Lamoglia 1,6, Neus Rosell 1, Anna Llupià 1,7, Laura Puyo 1, Jordi Chi 1, Natalia Rodrigo Melero 8, Daniel Parras 2, Pau Serra 2, Edwards Pradenas 9, Benjamin Trinité 9, Julià Blanco 9,10, Alfredo Mayor 1,4,5, Sonia Barroso 11, Pilar Varela 11, Anna Vilella 1,5, Antoni Trilla 1,5,12, Pere Santamaria 7,13,14, Carlo Carolis 8, Marta Tortajada 11, Luis Izquierdo 1, Ana Angulo 2,3, Pablo Engel 2,3, Alberto L. García-Basteiro 1,4,15, Gemma Moncunill 1,17 & Carlota Dobaño 1,5,17

Unraveling the long-term kinetics of antibodies to SARS-CoV-2 and the individual characteristics influencing it, including the impact of pre-existing antibodies to human coronaviruses causing common cold (HCoVs), is essential to understand protective immunity to COVID-19 and devise effective surveillance strategies. IgM, IgA and IgG levels against six SARS-CoV-2 antigens and the nucleocapsid antigen of the four HCoV (229E, NL63, OC43 and HKU1) were quantified by Luminex, and antibody neutralization capacity was assessed by flow cytometry, in a cohort of health care workers followed up to 7 months (N = 578). Seroprevalence increases over time from 13.5% (month 0) and 15.6% (month 1) to 16.4% (month 6). Levels of antibodies, including those with neutralizing capacity, are stable over time, except IgG to nucleocapsid antigen and IgM levels that wane. After the peak response, anti-spike antibody levels increase from ~150 days post-symptom onset in all individuals (73% for IgG), in the absence of any evidence of re-exposure. IgG and IgA to HCoV are significantly higher in asymptomatic than symptomatic seropositive individuals. Thus, pre-existing cross-reactive HCoVs antibodies could have a protective effect against SARS-CoV-2 infection and COVID-19 disease.
Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has already caused a loss of 3.2 million lives globally (23 June)\(^1\). Since its emergence, a key priority has been the understanding of the kinetics and protective role of the immune response in the population, to assess the degree of exposure in serosurveys and to understand immunity to the virus. This knowledge guides vaccine development, selection of donors for hyperimmune serum-transfusion therapies, and combining antigens with the highest immunogenic and neutralizing capacity to improve surveillance interventions.

Longitudinal studies assessing SARS-CoV-2 antibody kinetics have found that IgA and IgM peak between week 3 and 4 post symptoms onset (POSO) and wane thereafter, with IgA persisting longer than IgM\(^2-7\). IgA and IgM seroreversion were estimated between days 71 and 49, respectively\(^8\), but IgA has also been found to remain detectable 6 months post infection and to be less affected by the decay than IgM\(^9,10\). Several studies have observed relatively stable levels of IgG to the spike (S) protein after neutralizers\(^21\). Studies up-to-date point that neutralizing anti-S proteins, which targets S, responsible for the interaction with the ACE2 receptor in the host cells, are considered the main SARS-CoV-2, those targeting S, responsible for the interaction with the ACE2 receptor in the host cells, are considered the main COVID-19 severity\(^37,38\). Some recent studies have suggested that the association between clinically significant lower odds for COVID-19 intensive care unit admission and death\(^39\), but other studies did not find any association between confirmed prior history of seasonal HCoVs and COVID-19 severity\(^37,38\). Some recent studies have suggested that the pre-existing immunity would not confer cross-protection but, rather, be responsible for an immunological imprinting or ‘original antigenic sin’, a phenomenon well studied for influenza virus infections. This suggests that the immune system privileges recall of existing memory responses -in this case of HCoV-, in detriment of stimulating de novo responses -here to SARS-CoV-2- leading to poor outcomes or severe disease\(^31,32\). The possibility of antibodies to HCoVs acting as antibody-derived enhancement (ADE) has also been reviewed and the most recent evidence shows no clinical, in vitro or animal evidence\(^40,41\). Disentangling the role of pre-existing HCoVs antibodies on anti-SARS-CoV-2 responses may have implications in the deployment of potentially effective vaccines, as well as for the interpretation of serological studies.

At the beginning of the pandemic, healthcare workers (HCW) were considered to be at a higher risk of SARS-CoV-2 infection than the general population, although there is now evidence that seroprevalence is similar when using adequate personal protective equipment. We previously observed 9.3% (95% CI, 7.1–12.0) SARS-CoV-2 seroprevalence in a cohort of 578 HCW from Hospital Clinic in Barcelona (HCB) between March–April 2020\(^42\), and of 14.9% after a month follow-up\(^4\), based on the detection of antibodies to one antigen (receptor binding domain, RBD). IgA, IgM, and IgG levels declined after 3 months with antibody decay rates of 0.12, 0.15, and 0.66 respectively\(^4\).

In the present study, we aimed to characterize the antibody kinetics and neutralization capacity between March and October 2020 at four cross-sectional surveys and estimate the seroprevalence in the same cohort of HCW. For this analysis, we measured IgM, IgG, and IgA isotypes against an expanded panel of six SARS-CoV-2 antigens and tested cross-reactivity with the N antigen of the four endemic HCoVs (HKU1, 229E, OC43 and NL63) to assess its potential impact on COVID-19 protection.

Results

Seroprevalence, seroconversions, and seroreversions. From the initial cohort, 507 individuals participated in a fourth visit (M6) six months after baseline (12.3% lost to follow-up). The mean age was 42.7 years (SD: 11.2) and 72% were female. Full demographic characteristics at baseline (M0), one (M1), and three (M3) month follow-up visits were as described\(^4,42\) (Supplementary Table 1).

Samples collected at M0, M1, and M3 were re-tested with a wider panel of antigens along with M6 samples. The seroprevalence for either IgM and/or IgG and/or IgA was 13.5% at M0, 15.6% at M1, and 16.4% at M6 (Supplementary Table 2). Newly detected SARS-CoV-2 infections increased by 22, 9 by rRT-PCR and 13 by serology, at M6 compared to visit M1. When considering rRT-PCR and serology data, 84 out of 578 participants (14.5%, 95% CI 11.8–17.7%) had evidence of infection at M0 by serology or rRT-PCR, 91/566 (16.1%, 95% CI 13.1–19.4%) at M1 and 91/507 (17.9%, 95% CI 14.7–21.6%) at M6. The cumulative prevalence of infection was 16.8% (95% CI 13.8–20.1%) and 19.6% (95% CI 16.4–23.0%) at M1 and M6, respectively. Unlike seropositive proportions, we had a relatively stable number of undetermined results over time, 48 (8.3%), 52 (9.1%), and 37 (7.3%) participants at baseline, M1 and M6, respectively. Sixty-seven out of the 119 participants (56.3%) with any evidence of infection had a positive rRT-PCR (Supplementary Table 2).

At visits M1 and M3, we mainly observed seroreversions of seropositive individuals at M0 for IgA and IgM to all antigens (30% and 24.5%, respectively). Hardly any participant seroverted from M3 to M6 (Supplementary Table 2). Overall, there were 9 participants who were seronegative and previously had a positive rRT-PCR, 32 to 197 days prior to sample draw. Three of these HCWs were asymptomatic.

Physicians and psychologists had 50% lower odds of infection (OR 0.49, 95% CI 0.27–0.85) than nurses and other auxiliary health professionals (Supplementary Table 3). Age, sex, and other variables were not found to be associated with SARS-CoV-2 infection. Sixty-nine percent of the infections were symptomatic and a single participant required hospitalization in our cohort.

Kinetics of SARS-CoV-2 antibodies up to 7.7 months PSO. Levels of SARS-CoV-2 antigen-specific isotypes (IgM, IgA, IgG) were plotted against time with up to four observations...
with a maximum 7.7 months PSO, in a total of 235 samples from 76 symptomatic participants (Fig. 1). Kinetic curves were very similar when plotted against days since positive rRT-PCR in participants who were asymptomatic or symptomatic (Supplementary Fig. 1).

IgA or IgM peaked within the first month PSO, while IgG peaked around day 50 PSO. SARS-CoV-2 IgG levels were generally steady for 5 antigens (S, S1, S2, and RBD) and for IgA up to 230 days PSO (71% and 69% of the participants remained seropositive six months PSO, respectively), and waned at a clearly slower rate than IgM (34% of the participants remained seropositive) and IgG to N-related antigens (26% of the participants had symptoms for >10 days (Supplementary Fig. 3c). We also identified a trend towards a higher antibody increase index in participants with a shorter duration of symptoms (<10 days) compared to those who had symptoms for >10 days (Supplementary Fig. 3c).

Kinetics of neutralizing antibodies. Plasma neutralizing capacity measured as RBD-ACE2-binding inhibition generally increased between the day of onset of symptoms until day 80 and remained stable thereafter up to 250 days PSO (Fig. 2). We correlated the antibody neutralizing capacity and levels at the different study visits. At the first cross-sectional visit (M0, mean days PSO = 20) levels of all three Ig isotypes against RBD and S antigens positively correlated with neutralization capacity (r_s = 0.19–0.32, p < 0.05), while the correlation between antibody levels against N and RBD-ACE2 neutralization did not reach statistical significance (Fig. 3A). At the fourth cross-sectional visit (M6, mean days PSO = 200), IgM levels to any antigen did not correlate with neutralization percentage, whilst IgG and IgA levels against all six

Fig. 1 Kinetics of SARS-CoV-2 antibody levels since onset of symptoms. Levels (median fluorescence intensity, MFI) of IgA, IgG, and IgM against each antigen (Nucleocapsid full-length protein (N), and its C-terminal domain, the Receptor Binding Domain (RBD), full S protein and its subregions S1 and S2) measured in 235 samples from 76 symptomatic participants collected in up to four time points per participant (paired samples joined by lines). The black solid line represents the fitted curve calculated using the LOESS (locally estimated scatterplot smoothing) method. Shaded areas represent 95% confidence intervals. Dashed line represents the positivity threshold. Participants were grouped based on their antibody levels at M6 compared to the previous visit, individuals were labeled for each isotype-antigen pair as “Decayers” (pink) when the ratio of antibody levels between both visits was <1 and as “Sustainers/Increasers” (light blue) when the ratio was ≥1 and gray when the classification was not applicable.
Cross-reactivities of SARS-CoV-2 with endemic HCoV.

Pre-pandemic plasma samples had some antibody reactivity against SARS-CoV-2 antigens, particularly against N protein, and levels of antibodies against N from SARS-CoV-2 positively correlated with antibodies to HCoV N antigens (to a lesser extent for IgM), indicating cross-reactivity between them (Supplementary Fig. 6). The amino acid pairwise similarities and identities of full-length SARS-CoV-2 N protein and seasonal HCoVs are 36% and 26.4% to 229E, 39.1% and 27% to NL63, 48.1% and 35.7% to OC43 and 47% and 35.2% to HKU1.36

Therefore, we analyzed the antibody levels against HCoV N antigens prior and after SARS-CoV-2 infection in the 33 participants who seroconverted during the study period. While some participants showed stable anti-HCoV N antibody levels, a general upward trend was observed. IgG to 229E significantly increased after SARS-CoV-2 seroconversion. Not all seroconverters had an increase in levels, supporting a back-boost of N HCoV beyond cross-reactivity (Supplementary Fig. 7).

We investigated whether having higher baseline anti-HCoV N antibody levels could be protective against SARS-CoV-2 infection. Overall, we observed a consistent trend towards higher baseline IgG levels to alpha-HCoV 229 (p = 0.06) and NL63 (p = 0.15) in participants who did not seroconvert compared to seroconverters, although these differences did not reach statistical significance (Fig. 4A). We assessed whether having higher anti-HCoV N antibody levels prior to infection could confer protection against COVID-19 symptoms in participants who seroconverted during the study period. Although statistical significance was only reached for IgA against OC43, we observed a common trend towards higher levels of anti-HCoV N IgA and IgG in asymptomatic than symptomatic SARS-CoV-2 seropositive participants (Fig. 4B). Consistently, levels of IgG against NL63 experienced a higher fold-increase after SARS-CoV-2 infection in asymptomatic than symptomatic seroconverters (Fig. 4C), suggesting that a back boost—beyond cross-reactivity—in anti-HCoV antibody levels could confer disease-protective immunity. In line with this finding, seropositive asymptomatic participants had significantly higher IgG levels against all four HCoVs than symptomatic participants in the first visit after SARS-CoV-2 positivity (Fig. 4D). In contrast, anti-SARS-CoV-2 N antibody levels were higher in symptomatic seropositive participants (p < 0.05) (Fig. 4E).

Finally, we tested whether baseline anti-HCoV antibody levels impacted de novo production of antibodies to SARS-CoV-2. To test this hypothesis, the increase in anti-N SARS-CoV-2 antibody levels from baseline to seroconversion for the three isotypes were correlated with the anti-N HCoVs antibody levels at baseline (adding up levels of isotypes). Overall, we observed a statistically significant inverse relationship between anti-HCoV IgG and IgA baseline levels and the increase of SARS-CoV-2 antibodies (r = −0.35, p < 0.05; r = −0.18, p < 0.05; respectively) (Supplementary Fig. 8). This suggests that pre-existing antibodies against the four HCoV N induced a lighter de novo production of antibodies against SARS-CoV-2 N.

Discussion

We report a longitudinal study assessing the antibody response to a wide panel of antigens from SARS-CoV-2 and HCoV, up to 7.7 months after infection, and we show evidence of COVID-19 protection by pre-existing HCoV antibodies. This is important to track the evolution of the immunity in asymptomatic and mild/moderate cases, particularly in an indispensable population like HCW, and to understand why some people may be less affected by COVID-19. A strength of the present study is the availability of sequential sampling within a random cohort including asymptomatic and symptomatic subjects.

Importantly, we observed a trend towards higher levels of antibodies against HCoVs N proteins at baseline in those participants who did not become infected with SARS-CoV-2, suggesting some level of cross-protection against infection. Moreover, asymptomatic SARS-CoV-2 seropositive participants tended to have higher anti-HCoV N IgA and IgG levels prior to seroconversion than symptomatic participants, suggesting cross-protection against disease. In addition, asymptomatic seropositive participants had higher anti-HCoV N IgG levels after infection than symptomatics, pointing towards a disease-protective back-boost of anti-HCoV antibodies. Combined with the observation that higher baseline anti-HCoV N antibody levels correlated with less de novo anti-SARS-CoV-2 N antibody production, we propose a protective effect of previous exposure to HCoVs, which could be the result of a diminished exposure (decreased viral load) due to the suggested protective role of anti-HCoV antibodies. Other studies have reported a lack of anti-disease cross-protection37–39, and some studies have associated...
severe COVID-19 with a back-boosting of antibodies against S2 from betacoronaviruses32, and N and S from OC4331. However, these studies included only hospitalized patients, as opposed to our cohort that included mainly asymptomatic and participants with mild/moderate symptoms. HCoV protective immunity against reinfection has been observed to last around 12 months29. Knowing the duration of HCoV protective immunity to reinfection and disease will be key to the understanding of HCoV’s role on COVID-19 epidemiology and pathology at population level.

We show a cumulative prevalence of SARS-CoV-2 infection of 19.6% (95% CI 16.4–23.0%) after six months of follow-up (October 2020). The cumulative prevalence around May 2020, corresponding to our second visit (M1), recalculated here with a wider antigen panel, was 16.8% (CI 95% 13.8–20.1%), similar to other studies in Spanish HCW that ranged between 10.5 and 45. Around 28% of the total infections detected throughout the follow-up were newly diagnosed after the first visit (M0), which would reveal that infections in the hospital setting mostly happened within the first pandemic wave. No re-infections were reported in our cohort and this could be related to the induction and maintenance of robust neutralizing antibodies along the study period, in contrast with another study in a cohort of healthcare workers (HCW) in Spain31.

Fig. 3 Correlations between antibody levels and RBD-ACE2 neutralization capacity. Spearman’s rank correlation test between levels (median fluorescence intensity, MFI) of IgA, IgG, and IgM against each antigen (Nucleocapsid full-length protein (N), and its C-terminal domain, the Receptor Binding Domain (RBD), full S protein and its subregions S1 and S2) at A baseline visit (M0) and B M6 visit; and plasma neutralization capacity (as a percentage of RBD-ACE2 binding inhibition). Two-sided spearman test was used to calculate the p-values and r_s correlation coefficients are color-coded for each antigen/isotype pair. Colored lines represent the fitted curve calculated using the linear model method. Shaded areas represent 95% confidence intervals.

The table below summarizes the spearman correlations between antibody levels and RBD-ACE2 neutralization capacity for each antigen/isotype pair at baseline (M0) and M6 visits.

Antigen	IgA	IgG	IgM
N			
RBD			
S1			
S2			
N_cterm			

The correlation coefficients are color-coded for each antigen/isotype pair at baseline (M0) and M6 visits.
of 173 primary HCW in which 4 reinfections were reported46. Surprisingly, only 56% of participants with evidence of infection by serology had a positive rRT-PCR, highlighting that almost half of the infections went under-detected, mainly during the baseline visit (only 49% had a previous positive rRT-PCR) and going up to 73% of rRT-PCR detection rate in the following visits. We observed a high seroreversion rate for IgA and IgM at visits M1 and M3, decreasing at visit M6. This finding reinforces the rapid decay below the seropositivity threshold of these two isotypes compared to IgG, for which only 9 participants seroreverted between M1 and M6 visits. Although some reports have pointed to a higher antibody decay in HCW with mild symptoms47, our results show that IgG levels are maintained up to 7.7 months PSO, in line with other studies2,9,14–16. Interestingly, IgA levels were maintained in those individuals who did not serorevert during the first 3 months PSO. Furthermore, IgG to N C-terminal rapidly decreased below the positivity threshold, as seen in other studies2,13–20. However, the vast majority of participants with a
previous infection remained seropositive for S-related antigens. This finding is of special relevance because RBD and S IgG antibody levels have been shown to correlate with neutralizing activity and S is the main target of currently deployed COVID-19 vaccines and most products under development.

Remarkably, we noticed a pronounced increase in S-related IgG levels from day 150 PSO onwards in 34/46 (73.9%) participants. Previous studies that reached 150 days of follow-up have not highlighted this phenomenon

In conclusion, antibody levels and neutralizing capacity are generally maintained up to 7.7 months, and in a substantial number of individuals antibody levels increase after some months PSO. Further studies are needed to elucidate the mechanisms and nature of these increases and their implications for virus shedding and disease progression. Importantly, previous exposure to HCoVs could have a protective effect against SARS-CoV-2 infection and symptoms development, and may explain in part the differential susceptibility to disease in the population. Additional work focusing on prospective cohorts would allow the assessment of mechanisms and confirm causality in anti-HCoV antibodies on SARS-CoV-2 acquisition, disease progression, immune response maintenance, and correlates of protection.

Methods

Study design, population, and setting. We measured the levels of antibodies to SARS-CoV-2 antigens in blood samples of 578 randomly selected HCW from HCB followed up at four visits: baseline—hereby termed "M0"—(month 0, 28 March–9 April 2020, n = 578), "M1" (month 1, 27 April–6 May 2020, n = 566), "M3" (month 3, 28 July–6 August 2020) when only participants with previous evidence of infection were invited (n = 570), and "M6" (month 6, 29 Sept–20 Oct 2020, n = 507) (12.3% lost to follow-up). We collected retrospective data on symptoms through REDCap version 8.8.2 in order to set the beginning of the disease, and the longest period since symptoms onset was 231 days (7.7 months).

The study population included HCW who delivered care and services directly or indirectly to patients, as described

We tested the association between variables with the Chi-square or Fisher exact test for categorical variables, and with the Wilcoxon Sum Rank test for numerical ones.

Neutralizing antibodies. Percentage of inhibition of RBD binding to ACE2 by plasma was analyzed through a flow cytometric-based in vitro assay as detailed in the Supplementary Information. This technique stands for its rapidity and efficiency and sets a potential alternative to the more demanding plaque-reduction neutralization assays. Briefly, a murine stable cell line expressing the ACE2 receptor was incubated with RBD-mFc fusion protein, composed of RBD fused to the Fc region of murine IgG1, previously exposed to the different plasma samples at a dilution 1:50. Cells were stained with anti-mouse IgG-Pe, washed, and analyzed by flow cytometry using standard procedures. One hundred and one samples were tested alongside 20 positive and 20 negative pre-pandemic controls, in duplicates (Supplementary Fig. 9a). We cross-validated the neutralization assay with a validated assay

Statistical data analysis. Prevalence of SARS-CoV-2 antibodies or SARS-CoV-2 infection confirmed by rRT-PCR, and cumulative prevalence of past or current infection (positive SARS-CoV-2 rRT-PCR and/or antibody seropositivity at any timepoint) were calculated as proportions with 95% CI.
continuous variables. Paired Samples Wilcoxon Test was used for paired continuous data. We assessed the relationships between continuous variables using linear regression models and Spearman’s rank correlation test. Locally estimated scatterplot smoothing (LOESS) was used to visualize trends in antibody levels over days PSO or post rRT-PCR diagnosis.

A Venn diagram was created to illustrate the overlap between anti-N full-length protein, anti-in C-termin, anti-RBD, anti-S, anti-S1, anti-S2 in the Sustainer/Intraser groups.

Univariable and multivariable linear regression models were run to assess factors associated with SARS-CoV-2 antibody levels and prevalence. The variables tested were the following: sex and age, presence of COVID19 symptoms (individual symptoms also included—fatigue, cough, dyspnea, and other respiratory symptoms, anosmia or aguesia, sore throat, fever, rhinorrhea, headache, chills, and digestive symptoms-), no. of people living in the household and no. of children, worked in a COVID19 ward, type of job (doctor, nurse, administrative), had daily contact with patients, smoking habits, chronic medication, presence of baseline illness, previous contact with a positive COVID19 case.

We additionally explored the association between the SARS-CoV-2 antibody levels and the percentage of neutralization of RBD at month 6 in a principal components analysis (PCA) that included all isotype/antigen pairs. Before the PCA, we confirmed the adequacy of the analysis by testing the colinearity of the variables with the Kaiser-Meyer-Olkin analysis (>0.5) and the Bartlett’s sphericity test (p < 0.001). The number of factors chosen was based on eigenvalues >1 that explained >75% of the total variance. To investigate the relationships between HCoV levels and a subset of variables with clinical outcomes and SARS-CoV-2 antibody levels, we built multivariable logistic and linear models, respectively, for those participants for whom we had a sample prior to seroconversion.

A P-value of <0.05 was considered statistically significant and 95% CIs were calculated for all estimates. We performed the statistical analysis in R version 4.0.3 (packages tidyverse, corplot, FactoMineR, pls, and MASS).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The antibody levels, neutralization data generated in this study are deposited in the UB repository under this link: https://doi.org/10.34810/data125. The raw identifying data are protected and are not available due to data privacy laws.

Code availability

Code used in the analysis is available at https://doi.org/10.34810/data125.

Received: 3 March 2021; Accepted: 16 July 2021; Published online: 06 August 2021

References

1. WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization. https://covid19.who.int/ (2021).
2. Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. *Science* https://doi.org/10.1126/science.abc4063 (2021).
3. Graham, N. R. et al. Kinetics and isotype assessment of antibodies targeting the spike protein receptor-binding domain of SARS-CoV-2 in COVID-19 patients as a function of age and biological sex. Preprint at medRxiv, https://doi.org/10.1101/2020.07.15.20154443 (2020).
4. Moncunill, G. et al. SARS-CoV-2 Seroprevalence and antibody kinetics among health care workers in a Spanish hospital after 3 months of follow-up. *J. Infect. Dis.* 223, 62–71 (2021).
5. Padovan, A. et al. IgA Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: a longitudinal study. *Clínica Chilena Acta* 507, 164–166 (2020).
6. Seow, J. et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. *Nat Microbiol* 5, 1598–1607, https://doi.org/10.1038/s41564-020-08815-z (2020).
7. Tan, Y. et al. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. *Front. Med.* 14, 746–751 (2020).
8. Iyer, A. S. et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. *Sci. Immunol.* 5, eabc0367 (2020).
9. Figueiredo-Campos, P. et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. *Eur. J. Immunol.* 50, 2025–2040 (2020).
10. Gaebler, C. et al. Evolution of Antibody Immunity to SARS-CoV-2. *Nature* https://doi.org/10.1038/s41586-021-02377-w (2021).
38. Gombar, S. et al. SARS-CoV-2 infection and COVID-19 severity in individuals with prior seasonal coronavirus infection. *Diagn. Microbiol. Infect. Dis.* https://doi.org/10.1016/j.diagmicrobio.2020.12.014.20243741 (2020).

39. Sagar, M. et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. *J. Clin. Invest.* 131, e143380 (2021).

40. Arvin, A. M. et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. *Nature* 584, 353–363 (2020).

41. Lee, W. S., Wheatley, A. K., Kent, S. J. & Dekosky, B. J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. *Nat. Microbiol.* 5, 1185–1191 (2020).

42. Garcia-Basteiro, A. L. et al. Seroprevalence of antibodies against SARS-CoV-2 among healthcare workers in a large Spanish reference hospital. *Nat. Commun.* 11, 3580 (2020).

43. Barallat, J. et al. Seroprevalence of SARS-CoV-2 IgG specific antibodies among healthcare workers in the Northern Metropolitan Area of Barcelona, Spain, after the first pandemic wave. *PLoS ONE* https://doi.org/10.1371/journal.pone.0244348 (2020).

44. Garralda Fernandez, J. et al. Impact of SARS-CoV-2 pandemic among healthcare care workers in a secondary teaching hospital in Spain. *PLoS ONE* 16, e0245001 (2021).

45. Varona J. F. et al. Seroprevalence of SARS-CoV-2 antibodies in over 6000 healthcare workers in Spain. *Int. J. Epidemiol.* https://doi.org/10.1093/ije/dyaa277 (2021).

46. Dobaño, C. et al. Persistence and baseline determinants of seropositivity and infection rates in healthcare workers up to 12.5 months after COVID-19. *BMC Med* 19, 155; https://doi.org/10.1186/s12916-021-02032-2 (2021).

47. Self, W. H. et al. Decline in SARS-CoV-2 antibodies after mild infection among frontline health care personnel in a multistate hospital network — 12 states, April–August 2020. *MMWR* 69, 1762–1766 (2020).

48. Aebi, W. S. et al. Ebola virus antibody decay-stimulation in a high proportion of survivors. *Nature* https://doi.org/10.1038/s41586-020-03146-y (2021).

49. Dobaño, C. et al. Highly sensitive and specific multiplex antibody assays to quantify immunoglobulins M, A and G against SARS-CoV-2 antigens. *J Clin Microbiol.* 59, e01731-20. https://doi.org/10.1128/JCM.01731-20 (2021).

50. Trinqué, B. et al. SARS-CoV-2 infection elicits a rapid neutralizing antibody response that correlates with disease severity. *Sci. Rep.* 11, 2608 (2021).

51. Heberle, H., Meireles, G. V., Silva, F. R. D., Telles, G. P. & Mingham, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. *BMC Bioinformatics* 16 (2015).

Acknowledgements

We thank the participation of healthcare workers who are committed to this study as well as with their professional activity that has a positive impact in the society, even more relevant during the pandemic. We are grateful to Eugénia Chóziz, Pau Castero, Aminta Figuerola-Bomeró, Silvia Folchs, Jochen Hecht, Mikel J. Martínez, Núria Pey, Patricia Sotomayor and Sara Torres who participated in the field and/or laboratory work during previous visits. We also thank Cristina Castellana and the administrative department in ISGlobal, Sergi Sanz, and Sergio Olmos for statistical advice, Jordi Rello for scientific advice, and the nurses from Occupational Health and Preventive Medicine departments (HCB). This work was supported by Institut de Salut Global de Barcelona (ISGlobal) internal funds; in-kind contributions of Hospital Clinic de Barcelona; European Institute of Innovation and Technology (EIT) Health (Grant number 20877), supported by the European Institute of Innovation and Technology, a body of the European Union receiving support from the H2020 Research and Innovation Programme; Fundació Privada Daniel Bravo Andreu through high-throughput equipment provided. We also acknowledge support from the Spanish Ministry of Science and Innovation through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018–000806–S), and support from the Generalitat de Catalunya through the ERCBA Program. P.S. work was supported by 2017-SGR-3380 and MINECO RTI2018-093964-B-100. G.M. was supported by the Departament de Salut, Generalitat de Catalunya (grant number SLT1806/17/00109). L.I.’s work was supported by PID2019-110810RB-I00 grant from the Spanish Ministry of Science & Innovation. Work at IrsiCaixa was partially funded by Grifols, the Departament de Salut of the Generalitat de Catalunya (grant SLD016 to J.B.), the Spanish Health Institute Carlos III (Grant PI17/01518 and PI20/00093 to J.B.), CERCA Programme/Generalitat de Catalunya 2017 SGR 252, and the crowdfunding initiatives #pomocorona, BonPres/Esclat and Correos. E.P. was supported by a doctoral grant from the National Agency for Research and Development of Chile (ANID): 72180406. The funders had no role in study design, data collection, and analysis, the decision to publish, or the preparation of the manuscript.

Author contributions

A.A., A.L.G.B., P.E., G.M., A.M. and C.D. designed the study. A.C., M.L., N.O., M.R., N.R., R.A., D.B., C.D. and S.W. recruited participants, collected data and obtained samples at the clinic. A.J., M.V., R.A., R.R., D.B., R.A.M., L.P., S.A. and C.J. processed the samples, developed and performed the serological assays and analysis. A.A., P.E. and P.H. L. performed the flow cytometry neutralization assay and E.P., B.T. and J.B. the pseudovirus-neutralization assay. R.A., R.S., S.B., A.V., A.L., A.T., P.V. and M.T. contributed to design and the critical interpretation of the results. J.C., L.I., N.R.M., C.C., P.S.E., D.F. and P.Sa. produced the antigens. N.O. and M.R. analyzed the data and R.S. gave support to data analysis. S.M. managed the clinical data. G.M. and C.D. supervised the antibody assays and data analyses. N.O., M.R., G.M. and C.D. wrote the first draft of the paper. All authors approved the final version as submitted to the journal.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-24979-9.

Correspondence and requests for materials should be addressed to G.M. or C.Dño.

Peer review information *Nature Communications* thanks Nicole Schneiderhan-Marra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021
Catalonia (UVic-UCC), Vic, Catalonia, Spain. 11Occupational Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. 12Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain. 13Julia McFarlane Diabetes Research Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. 14Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. 15International Health Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. 16These authors contributed equally: Natalia Ortega, Marta Ribes. 17These authors jointly supervised this work: Gemma Moncunill, Carlota Dobaño. 18email: gemma.moncunill@isglobal.org; carlota.dobano@isglobal.org