Double B-tensors and quasi-double B-tensors

Chaoqian Li, Yaotang Li

*School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, P. R. China 650091

Abstract

In this paper, we propose two new classes of tensors: double B-tensors and quasi-double B-tensors, give some properties of double B-tensors and quasi-double B-tensors, discuss their relationships with B-tensors and positive definite tensors and show that even order symmetric double B-tensors and even order symmetric quasi-double B-tensors are positive definite. These give some checkable sufficient conditions for positive definiteness of tensors.

Keywords: B-tensors, Double B-tensors, Quasi-double B-tensors, Positive definite.

2010 MSC: 47H15, 47H12, 34B10, 47A52, 47J10, 47H09, 15A48, 47H07.

1. Introduction

A real order m dimension n tensor $A = (a_{i_1\ldots i_m})$ consists of n^m real entries:

$$a_{i_1\ldots i_m} \in \mathbb{R},$$

where $i_j \in \mathbb{N} = \{1, 2, \ldots, n\}$ for $j = 1, \ldots, m$ [4, 6, 8, 16, 20]. It is obvious that a matrix is an order 2 tensor. Moreover, a tensor $A = (a_{i_1\ldots i_m})$ is called
symmetric \[17, 20\] if

\[a_{i_1 \ldots i_m} = a_{\pi(i_1 \ldots i_m)}, \forall \pi \in \Pi_m, \]

where \(\Pi_m \) is the permutation group of \(m \) indices. And an order \(m \) dimension \(n \) tensor is called the unit tensor denoted by \(I \) \[4, 32\], if its entries are \(\delta_{i_1 \ldots i_m} \) for \(i_1, \ldots, i_m \in N \), where

\[
\delta_{i_1 \ldots i_m} = \begin{cases} 1, & \text{if } i_1 = \cdots = i_m, \\ 0, & \text{otherwise}. \end{cases}
\]

For a tensor \(\mathcal{A} \) of order \(m \) dimension \(n \), if there is a nonzero vector \(x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n \) and a number \(\lambda \in \mathbb{R} \) such that

\[\mathcal{A}x^{m-1} = \lambda x^{[m-1]}, \]

where

\[
(Ax^{m-1})_i = \sum_{i_2, \ldots, i_m \in N} a_{i_1 \ldots i_m} x_{i_2} \cdots x_{i_m}
\]

and \(x^{[m-1]} = (x_1^{m-1}, \ldots, x_n^{m-1})^T \), then \(\lambda \) is called an H-eigenvalue of \(\mathcal{A} \) and \(x \) is called an H-eigenvector of \(\mathcal{A} \) \[20\].

As a natural extension of \(B \)-matrices \[18, 19\], \(B \)-tensors is introduced by Song and Qi \[28\].

Definition 1. \[28\] Let \(\mathcal{B} = (b_{i_1 \ldots i_m}) \) be a real tensor of order \(m \) dimension \(n \). \(\mathcal{B} \) is called a \(B \)-tensor if for all \(i \in N \)

\[
\sum_{i_2, \ldots, i_m \in N} b_{i_1 \ldots i_m} > 0
\]

and

\[
\frac{1}{n^{m-1}} \left(\sum_{i_2, \ldots, i_m \in N} b_{i_1 \ldots i_m} \right) > b_{i_{j_2} \ldots i_{j_m}}, \text{ for } j_2, \ldots, j_m \in N, \delta_{i_{j_2} \ldots i_{j_m}} = 0.
\]

By Definition 1 Song and Qi \[28\] gave the following property of \(B \)-tensors.

Proposition 1. \[28, Proposition 3\] Let \(\mathcal{B} = (b_{i_1 \ldots i_m}) \) be a real tensor of order \(m \) dimension \(n \). Then \(\mathcal{B} \) is a \(B \)-tensor if and only if for each \(i \in N \),

\[
\sum_{i_2, \ldots, i_m \in N} b_{i_1 \ldots i_m} > n^{m-1} \beta_i(\mathcal{B}),
\]

(1)
where

$$\beta_i(B) = \max_{j_2, \ldots, j_m \in N, \delta_{i_2 \ldots j_m} = 0} \{0, b_{i_2 \ldots j_m}\}.$$

It is easy to see that Inequality (1) is equivalent to

$$b_{i_2 \ldots i} - \beta_i(B) > \Delta_i(B),$$

(2)

where

$$\Delta_i(B) = \sum_{i_2 \ldots i_m \in N, \delta_{i_2 \ldots i_m} = 0} (\beta_i(B) - b_{i_2 \ldots i_m}).$$

(3)

Hence, we by Inequality (2) obtain another property for B-tensors.

Proposition 2. Let $B = (b_{i_1 \ldots i_m})$ be a real tensor of order m dimension n. Then B is a B-tensor if and only if for each $i \in N$, Inequality (2) holds.

B-tensors are linked with positive definite tensors and M-tensors, which are useful in automatical control, magnetic resonance imaging and spectral hypergraph theory [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 23, 24, 25, 26, 28, 30, 31, 33].

Definition 2. [27, 28] Let $A = (a_{i_1 \ldots i_m})$ be a real tensor of order m dimension n. A is called positive definite if for any nonzero vector x in \mathbb{R}^n,

$$Ax^m > 0,$$

and positive semi-definite if for any vector x in \mathbb{R}^n,

$$Ax^m \geq 0,$$

where $Ax^m = \sum_{i_1, i_2, \ldots, i_m \in N} a_{i_1 i_2 \ldots i_m} x_{i_1} \cdots x_{i_m}$.

One of the most important properties of B-tensors is listed as follows.

Theorem 1. [27] Let $B = (a_{i_1 \ldots i_m})$ be a real tensor of order m dimension n. If B is an even order symmetric B-tensor, then B is positive definite.
The definition of DB-matrix is a generalization of the B-matrix [10]. Here we call a matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ a DB-matrix if for any $i, j \in N$, $i \neq j$,

$$(a_{ii} - \beta_i(A)) (a_{jj} - \beta_j(A)) > \sum_{k \neq i} (\beta_i(A) - a_{ik}) \sum_{k \neq j} (\beta_j(A) - a_{jk}).$$

A natural question is that can we extend the class of DB-matrices to tensors with order $m \geq 3$ such that it has the property like that in Theorem 1, that is, whether or not an even order symmetric tensor $A = (a_{i_1...i_m})$ satisfying

$$(a_{i...i} - \beta_i(A)) (a_{j...j} - \beta_j(A)) > \Delta_i(A) \Delta_j(A),$$

is positive definite? We see an example firstly for discussing the question.

Consider the symmetric tensor $A = (a_{ijkl})$ of order 4 dimension 2 defined as follows:

$$a_{1111} = a_{2222} = 2, a_{1222} = a_{2122} = a_{2212} = a_{2221} = -1,$$

and other $a_{ijkl} = 0$. By calculation, we have $\beta_1(A) = \beta_2(A) = 0$, and

$$a_{1111}a_{2222} = 4 > 3 = \sum_{\delta_{1ijkl}=0} (-a_{1ijkl}) \sum_{\delta_{2ijkl}=0} (-a_{2ijkl}),$$

which satisfies Inequality (1). However, A is not positive definite. In fact, for any entrywise positive vector $x = (x_1, x_2)^T$. If $Ax^4 > 0$, that is,

$$\begin{cases}
a_{1111}x_1^4 + \sum_{j,k,l \in \{1,2\}, \delta_{1ijkl}=0} a_{1ijkl}x_1x_jx_kx_l > 0, \\
a_{2222}x_2^4 + \sum_{j,k,l \in \{1,2\}, \delta_{2ijkl}=0} a_{2ijkl}x_2x_jx_kx_l > 0,
\end{cases}$$

equivalently,

$$\begin{cases}
2x_1^4 - x_1x_2^3 > 0, \\
2x_1^4 - 3x_1^3x_2 > 0,
\end{cases}$$

then

$$\begin{cases}
2x_1 > x_2, \\
x_2 > \frac{3}{2} x_1,
\end{cases}$$

which implies

$$2x_1^3 > x_2^3 > \frac{27}{8} x_1^3.$$
This is a contradiction. Hence, for any vector \(x = (x_1, x_2)^T > 0 \), \(Ax^4 > 0 \) doesn’t hold. Hence \(A \) is not positive definite by Definition 2.

The example shows that Inequality (11) doesn’t guarantee the positive definiteness of tensor \(A \). In this paper, we introduce two new classes of tensors by adding other conditions: double \(B \)-tensors and quasi-double \(B \)-tensors as generalizations of \(B \)-tensors, and prove that an even order symmetric (quasi-)double \(B \)-tensor is positive definite.

2. Double \(B \)-tensor and quasi-double \(B \)-tensor

Now, we present the definitions of double \(B \)-tensors and quasi-double \(B \)-tensors.

Definition 3. Let \(B = (b_{i_1 \ldots i_m}) \) be a real tensor of order \(m \) dimension \(n \) with \(b_{i \ldots i} > \beta_i(B) \) for all \(i \in N \). \(B \) is called a double \(B \)-tensor if \(B \) satisfies

(I) for any \(i \in N \),

\[
 b_{i \ldots i} - \beta_i(B) \geq \Delta_i(B),
\]

where \(\Delta_i(B) \) is defined as (3);

(II) for all \(i, j \in N, i \neq j \), Inequality (II) holds.

Definition 4. Let \(B = (b_{i_1 \ldots i_m}) \) be a real tensor of order \(m \) dimension \(n \) with \(b_{i \ldots i} > \beta_i(B) \) for all \(i \in N \). \(B \) is called a quasi-double \(B \)-tensor if for all \(i, j \in N, i \neq j \),

\[
 (b_{i \ldots i} - \beta_i(B)) (b_{j \ldots j} - \beta_j(B) - \Delta_j^i(B)) > (\beta_j(B) - b_{ji \ldots i}) \Delta_i(B),
\]

where

\[
 \Delta_j^i(B) = \Delta_j(B) - (\beta_j(B) - b_{ji \ldots i}) = \sum_{\delta_{jj_2 \ldots j_m} = 0, \delta_{jj_2 \ldots j_m} = 0} (\beta_j(B) - b_{jj_2 \ldots j_m}).
\]

We now give some properties of double \(B \)-tensors and quasi-double \(B \)-tensors.

Proposition 3. Let \(B = (b_{i_1 \ldots i_m}) \) be a real tensor of order \(m \) dimension \(n \). (I) If \(B \) is a double \(B \)-tensor, then there is at most one \(i \in N \) such that

\[
 b_{i \ldots i} - \beta_i(B) = \Delta_i(B).
\]

(II) If \(B \) is a quasi-double double \(B \)-tensor, then there is at most one \(i \in N \) such that

\[
 b_{i \ldots i} - \beta_i(B) \leq \Delta_i(B).
\]
Proof. We only prove that (II) holds, and (I) is proved similarly. Suppose that there are i_0 and j_0 such that
\[b_{i_0} - \beta_{i_0}(\mathcal{B}) \leq \Delta_{i_0}(\mathcal{B}), \]
and
\[b_{j_0} - \beta_{j_0}(\mathcal{B}) \leq \Delta_{j_0}(\mathcal{B}), \]
equivalently
\[b_{j_0} - \beta_{j_0}(\mathcal{B}) - \Delta_{i_0}(\mathcal{B}) \leq \beta_{j_0}(\mathcal{B}) - b_{i_0}. \]
If $b_{j_0} - \beta_{j_0}(\mathcal{B}) - \Delta_{i_0}(\mathcal{B}) < 0$, then
\[(b_{i_0} - \beta_{i_0}(\mathcal{B})) (b_{j_0} - \beta_{j_0}(\mathcal{B}) - \Delta_{i_0}(\mathcal{B})) \leq (\beta_{j_0}(\mathcal{B}) - b_{i_0}) \Delta_{i_0}(\mathcal{B}), \]
otherwise, $b_{j_0} - \beta_{j_0}(\mathcal{B}) - \Delta_{i_0}(\mathcal{B}) \geq 0$, which also leads to Inequality (6). This contradicts to the definition of quasi-double double \mathcal{B}-tensors. The conclusion follows. \[\square \]

The relationships of \mathcal{B}-tensors, double \mathcal{B}-tensors and quasi-double \mathcal{B}-tensors are given as follows.

Proposition 4. Let $\mathcal{B} = (b_{i_1...i_m})$ be a tensor of order m dimension n. If \mathcal{B} is a \mathcal{B}-tensor, then \mathcal{B} is a double \mathcal{B}-tensor and a quasi-double \mathcal{B}-tensor. Furthermore, if \mathcal{B} is a double \mathcal{B}-tensor, then \mathcal{B} is a quasi-double \mathcal{B}-tensor.

Proof. If \mathcal{B} is a \mathcal{B}-tensor, then by Proposition 2 for any $i \in \mathbb{N}$,
\[b_{i_1...i} - \beta_i(\mathcal{B}) > \Delta_i(\mathcal{B}), \]
that is,
\[b_{i_1...i} - \beta_i(\mathcal{B}) - \Delta_i(\mathcal{B}) > \beta_i(\mathcal{B}) - b_{i_1...i}, \]
for $k \neq i$. Obviously, Inequality (0) holds for any $i \neq j$. This implies that \mathcal{B} is a double \mathcal{B}-tensor. On the other hand, note that for $i, j \in \mathbb{N}$, $j \neq i$,
\[b_{i_1...i} - \beta_i(\mathcal{B}) > \Delta_i(\mathcal{B}), \]
and
\[b_{i_1...i} - \beta_i(\mathcal{B}) - \Delta_i(\mathcal{B}) > \beta_i(\mathcal{B}) - b_{i_1...i}. \]
It is easy to see that Inequality (5) holds, i.e., \mathcal{B} is a quasi-double B-tensor by Definition 4.

Furthermore, if \mathcal{B} is a double B-tensor, then there is at most one $k \in N$ such that $b_{i\ldots i} - \beta_i(\mathcal{B}) = \Delta_i(\mathcal{B})$. If there is not $k \in N$ such that $b_{k\ldots k} - \beta_k(\mathcal{B}) = \Delta_k(\mathcal{B})$, then \mathcal{B} is a B-tensor, consequently, \mathcal{B} is a quasi-double B-tensor. If there is only one $k \in N$ such that $b_{k\ldots k} - \beta_k(\mathcal{B}) = \Delta_k(\mathcal{B})$, then we have for any $j \neq k$:

$$b_{j\ldots j} - \beta_j(\mathcal{B}) \geq \Delta_j(\mathcal{B}).$$

Note that for any $j \in N$, $j \neq k$,

$$b_{k\ldots k} - \beta_k(\mathcal{B}) = \Delta_k(\mathcal{B}), \quad b_{k\ldots k} - \Delta_{i}^k(B) = \beta_k(B) - b_{k\ldots k},$$

and

$$b_{j\ldots j} - \beta_j(\mathcal{B}) \geq \Delta_j(\mathcal{B}), \quad b_{j\ldots j} - \Delta_j^k(B) = \beta_j(B) - b_{j\ldots j}.$$

This implies that Inequality (5) holds, i.e., \mathcal{B} is a quasi-double B-tensor. □

Remark 1. (I) It is not difficult to see that the class of B-tensors is a proper subclass of double B-tensors and quasi-double B-tensors, that is,

$$\{B - tensors\} \subset \{double\ B - tensors\}$$

and

$$\{B - tensors\} \subset \{quasi - double\ B - tensors\}.$$

(II) The class of double B-tensors is a proper subclass of quasi-double B-tensors. Consider the tensor $\mathcal{A} = (a_{ijk})$ of order 3 dimension 2 defined as follows:

$$\mathcal{A} = [A(1,\cdot,\cdot), A(2,\cdot,\cdot)],$$

where

$$A(1,\cdot,\cdot) = \begin{pmatrix} 2 & 0 \\ 0 & -0.3 \end{pmatrix}, \quad A(2,\cdot,\cdot) = \begin{pmatrix} -1 & -0.3 \\ -1.5 & 2 \end{pmatrix}.$$

By calculation, $\beta_1(\mathcal{A}) = \beta_2(\mathcal{A}) = 0$, and $a_{222} = 2 < 2.8 = \sum_{\delta_{2jk}=0} (-a_{2jk})$. Hence \mathcal{A} is not a double B-tensor. Since

$$a_{111} \left(a_{222} - \Delta_2^1(\mathcal{A})\right) = 0.4 > 0.3 = (-b_{211}) \Delta_1(\mathcal{B})$$

...
and
\[a_{222} (a_{111} - \Delta_2(A)) = 4 > 0.84 = (-a_{122})\Delta_2(A), \]
then \(A \) is a quasi-double \(B \)-tensor. Hence, the class of double \(B \)-tensors is a proper subclass of quasi-double \(B \)-tensors. By (I), we have
\[
\{B - tensors\} \subset \{double B - tensors\} \subset \{quasi - double B - tensors\}.
\]

As is well known, a \(B \)-matrix is a \(P \)-matrix [19, 19]. This is not true for higher order tensors, that is, a \(B \)-tensor may not be a \(P \)-tensor. In [28], Song and Qi proved that a symmetric tensor is a \(P \)-tensor if and only if it is positive definite.

Definition 5. [28] A real tensor \(A = (a_{i_1 \cdots i_m}) \) of order \(m \) dimension \(n \) is called a \(P \)-tensor if for any nonzero \(x \) in \(\mathbb{R}^n \),
\[
\max_{i \in \mathbb{N}} x_i (Ax^{m-1})_i > 0.
\]

It is pointed out in [27, 28] that an odd order \(B \)-tensor may not be a \(P \)-tensor. Furthermore, Yuna and You [33] gave an example to show that an even order nonsymmetric \(B \)-tensor may not be a \(P \)-tensor. Hence, by Proposition 4, we conclude that an odd order (quasi-)double \(B \)-tensor may not be a \(P \)-tensor, and an even order nonsymmetric (quasi-)double \(B \)-tensor may not be a \(P \)-tensor. On the other hand, it is pointed out in [27] that an even order symmetric \(B \)-tensor is a \(P \)-tensor. A natural question is that whether or not an even order symmetric (quasi-)double \(B \)-tensor is a \(P \)-tensor? In the following section, we will answer this question by discussing the positive definiteness of (quasi-)double \(B \)-tensors.

3. Positive definiteness

Now, we discuss the positive definiteness of (quasi-)double \(B \)-tensors. Before that some definitions are given.

Definition 6. [6, 8, 34] Let \(A = (a_{i_1 \cdots i_m}) \) be a real tensor of order \(m \) dimension \(n \). \(A \) is called a \(Z \)-tensor if all of the off-diagonal entries of \(A \) are non-positive;
Definition 7. Let $\mathbf{A} = (a_{i_1 \ldots i_m})$ be a tensor of order m dimension $n \geq 2$. \mathbf{A} is called a doubly strictly diagonally dominant tensor (DSDD) if

(I) when $m = 2$, \mathbf{A} satisfies
\[
|a_{i \ldots i}| |a_{j \ldots j}| > r_i(\mathbf{A}) r_j(\mathbf{A}), \text{ for any } i, j \in N, \ i \neq j, \tag{7}
\]

(II) when $m > 2$, \mathbf{A} satisfies $|a_{i \ldots i}| \geq r_i(\mathbf{A})$ for any $i \in N$ and Inequality (7) holds.

Note here that when $m > 2$, the similar condition that $|a_{i \ldots i}| \geq r_i(\mathbf{A})$ for any $i \in N$, is necessary for DSDD tensors to have the properties of doubly strictly diagonally dominant matrices; for details, see [16, 17].

Definition 8. Let $\mathbf{A} = (a_{i_1 \ldots i_m})$ be a tensor of order m dimension $n \geq 2$. \mathbf{A} is called a quasi-doubly strictly diagonally dominant tensor (Q-DSDD) if for $i, j \in N, j \neq i$,
\[
|a_{i \ldots i}| (|a_{j \ldots j}| - r_j(\mathbf{A})) > r_i(\mathbf{A}) |a_{ji \ldots i}|, \tag{8}
\]

where
\[
r_j^i(\mathbf{A}) = \sum_{j_2 \ldots j_m \in N, \delta_{j_2 \ldots j_m} = 0} |a_{jj_2 \ldots j_m}| = \sum_{j_2 \ldots j_m \in N, \delta_{j_2 \ldots j_m} = 0} |a_{jj_2 \ldots j_m}| - |a_{ji \ldots i}| = r_j(\mathbf{A}) - |a_{ji \ldots i}|.
\]

The relationships between (Q-)DSDD tensors and (quasi-)double B-tensors are established as follows.

Proposition 5. Let $\mathbf{B} = (b_{i_1 \ldots i_m})$ be a Z-tensor of order m dimension n. Then

(I) \mathbf{B} is a double B-tensor if and only if \mathbf{B} is a DSDD tensor.

(II) \mathbf{B} is a quasi-double B-tensor if and only if \mathbf{B} is a Q-DSDD tensor.

Proof. We only prove that (II) holds, (I) can be obtained similarly. Since \mathbf{B} be a Z-tensor, all of its off-diagonal entries are non-positive. Thus, we have that for any $i \in N$, $\beta_i(\mathbf{B}) = 0$,
\[
|b_{ii_2 \ldots i_m}| = -b_{ii_2 \ldots i_m}, \text{ for all } i_2, \ldots, i_m \in N, \delta_{ii_2 \ldots i_m} = 0,
\]

\[
r_i(\mathbf{B}) = \Delta_i(\mathbf{B}) = \sum_{i_2 \ldots i_m \in N, \delta_{ii_2 \ldots i_m} = 0} (\beta_i(\mathbf{B}) - b_{ii_2 \ldots i_m}),
\]
and

\[r_j^i(B) = \Delta_j^i(B) = \sum_{\delta_{jj_2\cdots j_m} = 0, \delta_{ij_2\cdots j_m} = 0} (\beta_j^i(B) - b_{jj_2\cdots j_m}), \text{ for } j \neq i. \]

which implies that Inequality (5) is equivalent to Inequality (8). The conclusion follows.

In [16], Li et al. gave some sufficient conditions for positive definiteness of tensors.

Lemma 2. [16, Theorem 11] Let \(A = (a_{i_1\cdots i_m}) \) be an even order real symmetric tensor of order \(m \) dimension \(n > 2 \) with \(a_{k\cdots k} > 0 \) for all \(k \in \mathbb{N} \). If \(A \) satisfies the condition (II) in Definition 7, then \(A \) is positive definite.

Lemma 3. [16, Theorem 13] Let \(A = (a_{i_1\cdots i_m}) \) be an even order real symmetric tensor of order \(m \) dimension \(n > 2 \) with \(a_{k\cdots k} > 0 \) for all \(k \in \mathbb{N} \). If there is an index \(i \in \mathbb{N} \) such that for all \(j \in \mathbb{N}, j \neq i \), such that Inequality (8) holds and \(|a_{i\cdots i}| \geq r_i(A) \), then \(A \) is positive definite.

By Lemmas 2 and 3, we can easily obtain the following result.

Theorem 4. An even order real symmetric (Q-)DSDD tensor is positive definite.

Now according to Theorem 4 we research the positive definiteness of symmetric (quasi-)double \(B \)-tensors. Before that we give the definition of partially all one tensors, which proposed by Qi and Song [27]. Suppose that \(A \) is a symmetric tensor of order \(m \) dimension \(n \), and has a principal sub-tensor \(A'_J \) with \(J \in \mathbb{N} \) and \(|J| = r_1 \leq r \leq n \) such that all the entries of \(A'_J \) are one, and all the other entries of \(A \) are zero, then \(A \) is called a partially all one tensor, and denoted by \(\varepsilon'_J \). If \(J = \mathbb{N} \), then we denote \(\varepsilon'_J \) simply by \(\varepsilon \) and call it an all one tensor. And an even order partially all one tensor is positive semi-definite; for details, see [27].

Theorem 5. Let \(B = (b_{i_1\cdots i_m}) \) be a symmetric quasi-double \(B \)-tensor of order \(m \) dimension \(n \). Then either \(B \) is a Q-DSDD symmetric \(Z \)-tensor itself, or we have

\[B = M + \sum_{k=1}^{s} h_k \varepsilon_{\hat{J}_k}, \tag{9} \]

where \(M \) is a Q-DSDD symmetric \(Z \)-tensor, \(s \) is a positive integer, \(h_k > 0 \) and \(\hat{J}_k \subseteq \mathbb{N} \), for \(k = 1, 2, \cdots, s \). Furthermore, If \(m \) is even, then \(B \) is positive definite, consequently, \(B \) is a \(P \)-tensor.
Proof. Let $\hat{J}(\mathcal{B}) = \{i \in N : \text{there is at least one positive off-diagonal entry in the } i\text{th row of } \mathcal{B}\}$. Obviously, $\hat{J}(\mathcal{B}) \subseteq N$. If $\hat{J}(\mathcal{B}) = \emptyset$, then \mathcal{B} is a Z-tensor. The conclusion follows in the case.

Now we suppose that $\hat{J}(\mathcal{B}) \neq \emptyset$, let $\mathcal{B}_1 = \mathcal{B} = (b^{(1)}_{i_1 \cdots i_m})$, and let $d^{(1)}_i$ be be the value of the largest off-diagonal entry in the ith row of \mathcal{B}_1, that is,

$$d^{(1)}_i = \max_{b^{(1)}_{i_2 \cdots i_m} \neq 0} b^{(1)}_{i_1 \cdots i_m}.$$

Furthermore, let $\hat{J}_1 = \hat{J}(\mathcal{B}_1)$, $h_1 = \min_{i \in \hat{J}_1} d^{(1)}_i$ and

$$J_1 = \{i \in \hat{J}_1 : d^{(1)}_i = h_1\}.$$

Then $J_1 \subseteq \hat{J}_1$ and $h_1 > 0$.

Consider $\mathcal{B}_2 = \mathcal{B}_1 - h_1 \varepsilon^{\hat{J}_1} = (b^{(2)}_{i_1 \cdots i_m})$. Obviously, \mathcal{B}_2 is also symmetric by the definition of $\varepsilon^{\hat{J}_1}$. Note that

$$b^{(2)}_{i_1 \cdots i_m} = \begin{cases} b^{(1)}_{i_1 \cdots i_m} - h_1, & i_1, i_2, \ldots, i_m \in \hat{J}_1 \\ b^{(1)}_{i_1 \cdots i_m}, & \text{otherwise}, \end{cases}$$

for $i \in J_1$,

$$\beta_i(\mathcal{B}_2) = \beta_i(\mathcal{B}_1) - h_1 = 0,$$ \quad (11)

and that for $i \in \hat{J}_1 \setminus J_1$,

$$\beta_i(\mathcal{B}_2) = \beta_i(\mathcal{B}_1) - h_1 > 0.$$

(12)

Combining (10), (11), (12) with the fact that for each $j \notin \hat{J}_1$, $\beta_i(\mathcal{B}_2) = \beta_i(\mathcal{B}_1)$, we easily obtain by Definition 1 that \mathcal{B}_2 is still a symmetric quasi-double B-tensor.

Now replace \mathcal{B}_1 by \mathcal{B}_2, and repeat this process. Let $\hat{J}(\mathcal{B}_2) = \{i \in N : \text{there is at least one positive off-diagonal entry in the } i\text{th row of } \mathcal{B}_2\}$. Then $\hat{J}(\mathcal{B}_2) = \hat{J}_1 \setminus J_1$. Repeat this process until $\hat{J}(\mathcal{B}_{s+1}) = \emptyset$. Let $\mathcal{M} = \mathcal{B}_{s+1}$.

Then (9) holds.

Furthermore, if m is even, then \mathcal{B} a symmetric quasi-double B-tensor of even order. If \mathcal{B} itself is a Q-DSDD symmetric Z-tensor, then it is positive definite by Lemma 3. Otherwise, (9) holds with $s > 0$. Let $x \in \mathbb{R}^n$. Then by (9) and that fact that \mathcal{M} is positive definite, we have

$$\mathcal{B} x^m = \mathcal{M} x^m + \sum_{k=1}^{s} h_k \varepsilon^{\hat{J}_k} x^m = \mathcal{M} x^m + \sum_{k=1}^{s} h_k ||x|_{\hat{J}_k}|_m^m \geq \mathcal{M} x^m > 0.$$
This implies that \(B \) is positive definite. Note that a symmetric tensor is a \(P \)-tensor if and only it is positive definite \([28]\), therefore \(B \) is a \(P \)-tensor. The proof is completed. \(\Box \)

Similar to the proof of Theorem 5, by Lemma 2 we easily have that an even order symmetric double \(B \)-tensor is positive definite and a \(P \)-tensor.

Theorem 6. Let \(B = (b_{i_1 \cdots i_m}) \) be a symmetric double \(B \)-tensor of order \(m \) dimension \(n \). Then either \(B \) is a DSDD symmetric \(Z \)-tensor itself, or we have

\[
B = \mathcal{M} + \sum_{k=1}^{s} h_k \mathcal{J}_k,
\]

(13)

where \(\mathcal{M} \) is a DSDD symmetric \(Z \)-tensor, \(s \) is a positive integer, \(h_k > 0 \) and \(\mathcal{J}_k \subseteq N \), for \(k = 1, 2, \cdots, s \). Furthermore, If \(m \) is even, then \(B \) is positive definite, consequently, \(B \) is a \(P \)-tensor.

Since an even order real symmetric tensor is positive definite if and only if all of its H-eigenvalues are positive \([20]\), by Theorems 5 and 6 we have the following results.

Corollary 1. All the H-eigenvalues of an even order symmetric double \(B \)-tensor are positive.

Corollary 2. All the H-eigenvalues of an even order symmetric quasi-double \(B \)-tensor are positive.

4. Conclusions

In this paper, we give two generalizations of \(B \)-tensors: double \(B \)-tensors and quasi-double \(B \)-tensors, and prove that an even order symmetric (quasi-)double \(B \)-tensor is positive definite.

On the other hand, we could consider the problem that whether an even order symmetric tensor is positive semi-definite by weakening the condition of Definition 4 as follows.

Definition 9. Let \(B = (b_{i_1 \cdots i_m}) \) be a tensor of order \(m \) dimension \(n \). \(B \) is a quasi-double \(B_0 \)-tensor if and only if for all \(i, j \in N \) \(i \neq j \),

\[
(b_{i_1 \cdots i} - \beta_i(B)) (b_{j_1 \cdots j} - \beta_j(B) - \Delta_j^i(B)) \geq (\beta_j(B) - b_{j_1 \cdots j}) \Delta_i(B).
\]

(14)
However, it can’t be proved by using the technique in this paper that an even order symmetric quasi-double B_0-tensor is positive semi-definite. We here only give the following conjecture.

Conjecture 1. An even order symmetric quasi-double B_0-tensor is positive semi-definite.

Acknowledgements

The authors would like to thank Professor L. Qi for his many valuable comments and suggestions.

References

[1] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM Press, Philadelphia, 1994.

[2] N.K. Bose, A.R. Modaress, General procedure for multivariable polynomial positivity with control applications, IEEE Trans. Automat. Control AC21 (1976) 596-601.

[3] Y. Chen, Y. Dai, D. Han, W. Sun, Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming, SIAM J. Imaging Sci. 6 (2013) 1531-1552.

[4] K. C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for non-negative tensors, Commun. Math. Sci. 6 (2008) 507-520.

[5] Lj. Cvetković, H-matrix theory vs. eigenvalue localization, Numer Algor. 42 (2006) 229-245.

[6] W. Ding, L. Qi, Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra Appl. 439 (2013) 3264-3278.

[7] M.A. Hasan, A.A. Hasan, A procedure for the positive definiteness of forms of even-order, IEEE Trans. Automat. Control 41 (1996) 615-617.

[8] J. He, T.Z. Huang, Inequalities for0 M-tensors, J. Inequal. Appl. 2014 (2014) 114.
[9] S. Hu, Z. Huang, H. Ni, L. Qi, Positive definiteness of diffusion kurtosis imaging, Inverse Probl. Imaging 6 (2012) 57-75.

[10] S. Hu, L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim. 24 (2012) 564-579.

[11] S. Hu, L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph, Discrete Appl. Math. 169 (2014) 140-151.

[12] S. Hu, L. Qi, J. Shao, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl. 439 (2013) 2980-2998.

[13] S. Hu, L. Qi, J. Xie, The largest Laplacian and signless Laplacian eigenvalues of a uniform hypergraph, arXiv:1304.1315, April 2013.

[14] E.I. Jury, M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems, IEEE Trans. Automat. Control AC26 (1981) 444-451.

[15] W.H. Ku, Explicit criterion for the positive definiteness of a general quartic form, IEEE Trans. Automat. Control AC10 (1965) 372-373.

[16] C.Q. Li, F. Wang, J.X. Zhao, Y. Zhu, Y.T. Li, Criterions for the positive definiteness of real supersymmetric tensors, Journal of Computational and Applied Mathematics 255 (2014) 1-14.

[17] C.Q. Li, Y.T. Li, X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl. 21 (2014) 39-50.

[18] J.M. Peña, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl. 22 (2001) 1027-1037.

[19] J.M. Peña, On an alternative to Gerschgorin circles and ovals of Cassini, Numer. Math. 95 (2003) 337-345.

[20] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324.

[21] L. Qi, H^+-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci. 12 (2014) 1045-1064.
[22] L. Qi, Hankel tensors: Associated Hankel matrices and Vandermonde decomposition, Communications in Mathematical Sciences 13 (2015) 113-125.

[23] L. Qi, J. Shao, Q. Wang, Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues, Linear Algebra Appl. 443 (2014) 215-227.

[24] L. Qi, C. Xu, Y. Xu, Nonnegative tensor factorization, completely positive tensors and an Hierarchical elimination algorithm, to appear in: SIAM Journal on Matrix Analysis and Applications.

[25] L. Qi, G. Yu, E.X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci. 3 (2010) 416-433.

[26] L. Qi, G. Yu, Y. Xu, Nonnegative diffusion orientation distribution function, J. Math. Imaging Vision 45 (2013) 103-113.

[27] L. Qi, Y.S. Song, An even order symmetric B tensor is positive definite, Linear Algebra and its Applications 457 (2014) 303-312.

[28] Y. Song and L. Qi, Properties of some classes of structured tensors, to appear in: Journal of Optimization: Theory and Applications.

[29] R.S. Varga, Geršgorin and his circles, Springer-Verlag, Berlin, 2004.

[30] F. Wang, L. Qi, Comments on Explicit criterion for the positive definiteness of a general quartic form, IEEE Trans. Automat. Control 50 (2005) 416-418.

[31] F. Wang, The tensor eigenvalue methods for the positive definiteness identification problem, Doctor Thesis, The Hong Kong Polytechnic University 2006.

[32] Y. Yang, Q. Yang, Further results for Perron-Frobenius Theorem for nonnegative tensors, SIAM. J. Matrix Anal. Appl. 31 (2010) 2517-2530.

[33] P. Yuan, L. You, Some remarks on P, P_0, B and B_0 tensors, to appear in: Linear Algebra and Its Applications.

[34] L. Zhang, L. Qi, G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl. 35 (2014) 437-452.