Warm–hot baryons comprise 5–10 per cent of filaments in the cosmic web

Dominique Eckert1,2, Mathilde Jauzac1,4, Huan Yuan, Shan5, Jean–Paul Kneib5,6, Thomas Erben7, Holger Israel3, Eric Jullo8, Matthias Klein7, Richard Massey3, Johan Richard8 & Céline Tchernin1

Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe’s total energy content1. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two2,3. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10^9–10^7 kelvin, known as the warm–hot intergalactic medium3–6. There have been previous claims of the detection of warm–hot baryons along the line of sight to distant blazars7–10 and of hot gas between interacting clusters11–14. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm–hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10^7 kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster15 were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5–10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster’s gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

Abell 2744 is a massive galaxy cluster (containing a total mass of 1.8×10^{15} solar masses inside a radius of 1.3 Mpc; ref. 16) at a redshift of 0.306 (refs 17, 18). In its central regions, the cluster exhibits a complex distribution of dark and luminous matter, as inferred from X-ray and gravitational lensing analyses16,18,19. Spectroscopic observations indicate large variations in the line-of-sight velocity of different regions17,18. Together, these observations reveal that the cluster is currently experiencing a merger of at least four individual components, supporting the hypothesis that Abell 2744 may be an active node of the cosmic web.

In December 2014, we obtained a 110 ks observation of the cluster by the XMM-Newton X-ray observatory, covering the core and its surroundings out to a radius of $\sim 4 h_{70}^{-1}$ Mpc, where $h_{70} = H_0/(70 \text{ km s}^{-1} \text{ Mpc}^{-1})$. We extracted a surface-brightness image of the observation, subtracting a model for the instrumental background and accounting for variation of the telescope efficiency across the field of view. Figure 1 shows the resulting surface-brightness image in the 0.5–1.2 keV band obtained by combining the data from the three detectors of the European Photon Imaging Camera (EPIC) on board XMM-Newton. X-ray point sources were masked and the data were adaptively smoothed to highlight the diffuse emission. The high sensitivity achieved during this observation, thanks to a minimal number of solar flares, allowed us to identify several previously unreported features. Near the virial radius of the cluster ($\sim 2 h_{70}^{-1}$ Mpc) and beyond, several high-significance ($>6 \sigma$) regions of diffuse emission are detected and appear to be connected to the cluster core. To confirm this connection, we extracted the X-ray emissivity profile of the cluster by masking the regions of excess emission, and compared the resulting profile with the emissivity profile in the sectors encompassing the filamentary structures (see Extended Data Fig. 1). Although the emissivity of the cluster falls below the detectable level at $\sim 2 h_{70}^{-1}$ Mpc from the cluster centre, we observe significant emission in sectors extending continuously to the edge of the XMM-Newton field of view, that is, roughly at $4 h_{70}^{-1}$ Mpc in projection from the core. This shows that the detected features are very extended and not caused either by the superposition of unresolved point sources or by individual group-scale haloes. These structures are not visible at higher energies (2–7 keV), in contrast to the cluster core. This suggests that the gas observed in the structures is cooler than that of the central regions.

To identify the structures detected in X-rays, we used a collection of published spectroscopic redshifts within the XMM-Newton field of view. Spectroscopic redshifts are available for 1,500 galaxies in the field17,18. We selected galaxies with velocities falling within $\pm 5,000\text{ km s}^{-1}$ of the cluster mean to capture the cluster and its

1Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, 1290 Versoix, Switzerland. 2InAF – IASF Milano, Via E. Bassini 15, 20133 Milano, Italy. 3Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK. 4Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa. 5Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland. 6Laboratoire Astronomique de Marseille Provence, CNRS, UMR 7326, 13388 Marseille, France. 7Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany. 8CRAL, Observatoire de Lyon, Université Lyon 1, 9 Avenue Ch. André, F-69561 Saint Genis Laval Cedex, France.
accretion region in their entirety. In Fig. 2 we show the XMM-Newton brightness image together with the position of selected cluster members and galaxy density contours. Concentrations of cluster galaxies are found coincident with the four hot-gas filamentary structures labelled E, S, SW and NW in Fig. 1. Conversely, structure N corresponds to a background galaxy concentration at redshift \(z \approx 0.45 \), whereas the galaxies associated with the SE substructure exhibit a substantial velocity difference of \(-8,000 \, \text{km s}^{-1}\) compared to the cluster core. This velocity difference corresponds to a large projected distance from the cluster, which indicates that, although it is part of the same superstructure, this system is probably not interacting with the main cluster. We therefore consider the association of the SE structure with the Abell 2744 complex as tentative and ignore it for the remainder of the analysis. As a result, we only associate structures E, S, SW and NW with the accretion flow towards Abell 2744. Structures S+ SW and NW have already been identified as galaxy filaments on the basis of the galaxy distribution\(^{19,20}\). The average redshift of the galaxies in the E, S and NW structures is consistent with that of the main cluster (see Table 1), indicating that these filamentary structures are oriented close to the plane of the sky.

To map the distribution of total mass around the cluster, we measured the weak and strong gravitational lensing of background galaxies visible in wide-field optical images from ground-based telescopes and in ultra-deep Hubble Space Telescope (HST) imaging of the cluster core\(^{21}\). Our identification of cluster member galaxies utilizes a photometric galaxy catalogue based on Canada–France–Hawaii Telescope (CFHT) data in the i' optical wavelength band and deep, archival data from the Wide-Field Imager (WFI) on the ESO 2.2-m telescope in the B, V and R bands. We selected cluster members and background galaxies using their colours in the BVRi wavelength bands\(^{22}\), and used the shear signal measured from a combination of HST and CFHT images to identify the weak lensing signal. We found that all the substructures identified by XMM-Newton coincide with peaks in the matter distribution, as shown in Fig. 3. We then used the weak lensing information to infer an estimate of the mass of the structures detected in X-rays. The total mass within the identified substructures is given in Table 1. Given that dark matter dominates the total mass budget, we conclude that the structures reported here correspond to overdensities in both the baryon and dark-matter distribution.

Wide-field galaxy redshift surveys have shown that the large-scale distribution of matter in the Universe is not homogeneous\(^{23,24}\). Instead, matter tends to fall together under the action of gravity into filamentary structures, forming the cosmic web\(^{23,25}\). Galaxy clusters, the largest gravitationally-bound structures in the Universe, form at its nodes, where the matter density is the highest. We therefore associate the structures discovered here with intergalactic filaments and conclude that Abell 2744 is an active node of the cosmic web.

We estimated the plasma temperature in all the filaments highlighted in Fig. 1 by extracting their X-ray spectra and fitting them with a thin-plasma emission model. The gas in the structures has a typical density\(^{15,26}\) of a few times \(10^{-4}\) particles per cm\(^3\), corresponding to overdensities of \(\sim 200\) compared to the mean baryon density\(^{26}\). Approximating

Table 1 | Properties of the filaments discovered in this study

Region	\(<z> \)	\(T (10^4 \text{ K}) \)	\(M_{\text{gas}} (\text{h}^{-2} M_\odot) \)	SNR X-ray	\(M_{\text{tot}} (\text{h}^{-2} M_\odot) \)	SNR lensing	\(f_{\text{gas}} \)
E	0.308	15 ± 2	(3.8 ± 0.6) \times 10^{12}	15.4	(7.9 ± 2.8) \times 10^{13}	3.1	0.05 ± 0.02
S	0.303	16 ± 2	(7.1 ± 0.8) \times 10^{12}	22.6	(9.5 ± 2.4) \times 10^{13}	6.8	0.07 ± 0.02
SW	0.305	8 ± 2	(2.0 ± 0.4) \times 10^{12}	9.6	(4.8 ± 1.7) \times 10^{13}	3.1	0.04 ± 0.02
NW1	0.305	25 ± 4	(5.7 ± 0.3) \times 10^{12}	25.3	(9.5 ± 2.7) \times 10^{13}	5.2	0.06 ± 0.02
NW2	0.305	19 ± 2	(1.9 ± 0.1) \times 10^{13}	25.9	(1.2 ± 0.3) \times 10^{14}	3.3	0.15 ± 0.04

X-ray and lensing properties of the regions defined in Extended Data Fig. 2. Note that because of the uncertainty in the geometry of the filaments, the provided gas mass (\(M_{\text{gas}}\)), total mass (\(M_{\text{tot}}\)) and gas fraction (\(f_{\text{gas}}\)) should be considered as indicative. The masses reported here were obtained by combining strong and weak lensing. A comparison with weak-lensing-only measurements is provided in Extended Data Table 2. SNR, signal to noise ratio. \(M_\odot\), solar mass.
the geometry of the filaments as segments of cylinders, we estimate the total gas mass enclosed within the filaments to be considerable
\((\sim 4 \times 10^{13}\) solar masses). Given the mass within the filaments obtained from weak lensing, we estimate a gas fraction between 5% and 15% for the various substructures, depending on the adopted mass reconstruction method (see Table 1), which represents a large fraction of the Universe’s baryon fraction of 15% (ref. 1). The plasma temperature is in the range \((10 – 20) \times 10^6\) K for the various filaments (see Table 1). This is substantially less than the virial temperature of the cluster core \((\sim 10^8\) K), which indicates that the plasma has not yet virialized within the main dark-matter halo. These gas temperatures and densities correspond to those expected for the hottest and densest parts of the warm–hot intergalactic medium (WHIM)\(^3,4,27,28\). Numerical simulations predict that the bulk of the gas permeating intergalactic filaments should have temperatures in the range \(10^{5.5} – 10^{6.5}\) K, but the gas in the vicinity of the cluster may have undergone substantial heating caused by adiabatic compression and shock heating. Note also that the temperatures measured here may be overestimated, given that X-ray telescopes are sensitive preferentially to the hottest phase of the expected gas distribution. Overall, these properties support the picture in which a large fraction of the Universe’s baryons are located in the filaments of the cosmic web.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 7 May; accepted 1 October 2015.

1. Planck Collaboration XIII. Planck 2015 results. XIII. Cosmological parameters. Preprint at http://arXiv.org/abs/1502.01589 (2015).
2. Fukugita, M., Hogan, C. J. & Peebles, P. J. E. The cosmic baryon budget. *Astrophys. J.* **503**, 518–530 (1998).
3. Chen, R. & Ostriker, J. P. Where are the baryons? *Astrophys. J.* **514**, 1–6 (1999).
4. Davé, R. et al. Baryons in the warm-hot intergalactic medium. *Astrophys. J.* **552**, 473–483 (2001).
5. Shull, J. M., Smith, B. D. & Danforth, C. W. The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing. *Astrophys. J.* **759**, 23 (2012).
6. Branchini, E. et al. Studying the warm hot intergalactic medium with gamma-ray bursts. *Astrophys. J.* **697**, 328–344 (2009).
7. Fang, T., Canizares, C. R. & Yao, Y. Confirming the detection of an intergalactic X-ray absorber toward PKS 2159–304. *Astrophys. J.* **670**, 992–999 (2007).
8. Buote, D. A. et al. X-ray absorption by WHIM in the Sculptor Wall. *Astrophys. J.* **695**, 1351–1356 (2009).
9. Zappacosta, L. et al. Studying the WHIM content of large-scale structures along the line of sight to H 2356–309. *Astrophys. J.* **717**, 74–84 (2010).
10. Nicastro, F. et al. Chandra view of the warm-hot intergalactic medium toward 1ES 1553+113: absorption-line detections and identifications. I. *Astrophys. J.* **769**, 90 (2013).
11. Kallt, A. & Böhringer, H. Detection of filamentary X-ray structure in the core of the Shapley supercluster. *Astrophys. J.* **341**, 23–28 (1999).
12. Scharf, C., Donahue, M., Voit, G. M., Rosati, P. & Postman, M. Evidence for X-ray emission from a large-scale filament of galaxies? *Astrophys. J.* **528**, L73–L76 (2000).
13. Zappacosta, L. et al. Warm-hot intergalactic baryons revealed. *Astron. Astrophys.* **394**, 7–15 (2002).
14. Werner, N. et al. Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223. *Astron. Astrophys.* **482**, L29–L33 (2008).
15. Ibaraki, Y., Ota, N., Akamatsu, H., Zhang, Y.-Y. & Finoguenov, A. Suzaku study of gas properties along filaments of A2744. *Astron. Astrophys.* **562**, A11 (2014).
16. Merten, J. et al. Creations of cosmic structure in the complex galaxy cluster merger Abell 2744. *Mon. Not. R. Astron. Soc.* **417**, 333–347 (2011).
17. Bosch, W., Girardi, M., Spoalter, M. & Barrera, R. Internal dynamics of the radio halo cluster Abell 2744. *Astron. Astrophys.* **499**, 461–474 (2006).
18. Owens, M. S. et al. The dissection of Abell 2744: a rich cluster growing through major and minor mergers. *Astrophys. J.* **728**, 27 (2011).
19. Kempner, J. C. & David, L. P. A Chandrab view of the merger in Abell 2744. *Mon. Not. R. Astron. Soc.* **349**, 385–392 (2004).
20. Braglia, F., Pierini, D. & Böhringer, H. Flaming, bright galaxies along the filaments of A 2744. *Astron. Astrophys.* **470**, 425–429 (2007).
21. Jouacz, M. et al. Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using 180 multiple images. *Mon. Not. R. Astron. Soc.* **452**, 1437–1446 (2015).
22. Israel, H. et al. The 400d Galaxy Cluster Survey weak lensing programme. I. MMT/Megacam analysis of CLO030+2618 at z = 0.50. *Astron. Astrophys.* **520**, A58 (2010).
23. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. *Nature* **380**, 603–606 (1996).
24. Yess, C. & Shandarin, S. F. Universality of the network and bubble topology in cosmological gravitational simulations. *Astrophys. J.* **465**, 2–13 (1996).
25. Springel, V., Frenk, C. S. & White, S. D. M. The large-scale structure of the Universe. *Nature* **440**, 1137–1144 (2006).
26. Takei, Y. et al. Warm-hot intergalactic medium associated with the Coma Cluster. *Astrophys. J.* **655**, 831–842 (2007).
27. Dolag, K., Meneghetti, M., Moscardini, L., Rasia, E. & Bonaldi, A. Simulating the physical properties of dark matter and gas inside the cosmic web. *Mon. Not. R. Astron. Soc.* **370**, 656–672 (2006).
28. Gheller, C., Vazza, F., Favre, J. & Brüggen, M. Properties of cosmological filaments extracted from Eulerian simulations. *Mon. Not. R. Astron. Soc.* **453**, 1164–1185 (2015).

Acknowledgements Work reported here is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. D.E. thanks F. Vazza, S. Paltani and S. Molendi for discussions. We thank H. Ebeling, M. Limousin, B. Clément, H. Atek, D. Harvey, E. Egami, M. Rexroth and P. Natarajan for help with writing the XMM-Newton proposal. M.J., H. and R.M. acknowledge support from the UK Science and Technology Facilities Council (grant numbers ST/L000075X/1, ST/H005234/1), the Leverhulme trust (grant number PLP-2011-003) and the Royal Society. J.-P.K. acknowledges support from the ERC advanced grant LIDA and from CNRS. H.Y.S. acknowledges support by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme, and NSF of China under grant 11103011. T.E. was supported by the Deutsche Forschungsgemeinschaft through the Transregional Collaborative Research Centre TR 33 ’The Dark Universe’. E.J. was supported by CNES. J.R. acknowledges support from the ERC starting grant CALENS.

Author Contributions D.E.: lead author, X-ray analysis. M.J.: weak and strong lensing analysis. H.Y.S.: CFHT weak lensing analysis. J.-P.K.: principal investigator of the XMM-Newton observation, strong and weak lensing analysis and identification of the red cluster sequence in the photometric data. T.E.: WFI and CFHT data reduction. H.I.: WFI and CFHT data reduction. E.J.: weak and strong lensing modelling techniques. M.K.: WFI and CFHT data reduction. R.M.: weak lensing analysis. J.R.: strong lensing analysis. C.T.: X-ray analysis.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to D.E. (Dominique.Eckert@unige.ch).
METHODS

Imaging X-ray analysis. Abell 2744 was observed by XMM-Newton in late 2014 for a total observing time of 110 ks (PI: J.-P. K.; OBSID: 074385). At the redshift of Abell 2744 (z = 0.306), the size of the XMM-Newton field of view corresponds to 8h_70^{-1} Mpc. We processed the data using the XMM-Newton Scientific Analysis System (XMMSAS) v14.0. We excluded flaring periods from the event files by creating a light curve for each instrument separately and filtering out the time periods for which the observed count rate exceeded the mean by more than 2σ.

The observation was very mildly affected by soft-proton flares, allowing us to reach a flare-free observing time of 96 ks, 97 ks and 87 ks for EPIC detectors MOS1, MOS2 and pn, respectively.

We extracted raw images in the 0.5–1.2 keV band for all three EPIC detectors using the Extended Source Analysis Software (ESAS) package29. This energy band maximizes the source-to-background ratio and avoids the bright Al and Si background emission lines, while maintaining a large effective area since the collecting power of the XMM-Newton telescopes peaks at 1 keV. Exposure maps for each instrument were created, taking into account the variations of the vignetting across the field of view.

A model image of the non-X-ray background (NXB) was computed using a collection of closed-field observations, and was adjusted to each individual observation by comparing the count rates in the corner of the field of view. X-ray point sources were detected using the XMMSAS tool ewavelet and masked during the analysis. Additionally, we used the existing Chandra observations of the cluster18,19 to detect point sources down to fainter X-ray fluxes (∼5 × 10^{-16} erg cm^{-2} s^{-1}) and mask the corresponding areas. Such a flux threshold for point-source removal corresponds to a resolved fraction of 80% of the cosmic X-ray background28, which is associated with a cosmic variance of about 5%. This ensures that the extended features reported here are indeed caused by diffuse emission.

We computed surface-brightness images by subtracting the NXB from the raw images and dividing them by the exposure maps. To maximize the signal-to-noise ratio (SNR), we then combined the surface-brightness images of the three EPIC detectors by weighting each detector by its relative effective area. The resulting image was then adaptively smoothed using the XMMSAS tool asmode, requiring an SNR of 5 for all features above the local background. The total XMM-Newton/EPIC image of Abell 2744 is shown in Fig. 1.

To confirm the presence of the filamentary structures shown in Fig. 1, we compared the surface brightness of the regions inside and outside the filaments. We used the PROFFIT code30 to extract the surface brightness profile from the surface-brightness peak by masking the sectors corresponding with the filaments, and we compared the masked profile with the surface brightness profile in the direction of the filament, that is, in the sectors including the filaments (position angles 10°–70°, 150°–180° and 260°–300°) for the NW, E and S filaments, respectively, where 0° is the W direction; see Extended Data Fig. 2). In Extended Data Fig. 1 we show the corresponding surface-brightness profiles. When masking the filaments, no statistically significant cluster emission is detected beyond 7 arcmin (~2h_70^{-1} Mpc); in the direction of the filaments, a flat surface brightness is observed out to the edge of the field of view (~4h_70^{-1} Mpc). The small variations in the amplitude of the surface-brightness profiles indicates that the emission is due to filamentary structures and not to variations in the source distribution. The overall signal-to-noise ratio (SNR) in the filaments has already been noted in Suzuki observations of the cluster15, the poor angular resolution and narrow field of view of Suzuki were however insufficient to separate the filaments from the field and resolve point sources.

For comparison, we extracted radial profiles of galaxy density from spectroscopically-confirmed members18 in exactly the same sectors. The resulting profiles are shown in Extended Data Fig. 3. We find that beyond the cluster’s virial radius the galaxy density is consistently larger in the regions containing the filaments compared to the perpendicular directions, which highlights the association between the structures detected in X-rays and the local galaxy distribution.

Spectral analysis. We performed a spectral analysis of each filament as defined in Extended Data Fig. 2 together with their best-fit model. Since it is the brightest and most extended, the NW filament was split into two regions (labelled NW1 and NW2) to study the variation of the spectral parameters along a single filament. The resulting parameters are provided in Table 1. To estimate the gas mass within each filamentary structure, we modelled the emission region as a cylinder with length and diameter given by the major and minor axes of the defined ellipses, respectively. We converted the measured normalization into an X-ray temperature, and computed the average gas density assuming constant density in each structure.

We estimated the gas mass by integrating the resulting gas density over the volume (see Table 1). We note that given the large uncertainties in the 3D geometry of the filaments, the recovered gas densities and masses should be considered as indicative. Indeed, we tested the effect of adopting different geometries (spheres, ellipsoids) on the recovered gas mass and gas density, and found that the results obtained with the geometries vary by ~30%.

To assess the level of systematic uncertainties in our spectral measurements, we used the spectrum of the SW region, as it is the weakest and thus is the most prone to systematic uncertainties, and let the various sky background and NXB parameters vary within their allowed ranges. We then applied a Markov chain Monte Carlo (MCMC) algorithm to sample the likelihood distribution. The posterior distribution for the measured parameters are then marginalized over the systematic uncertainties associated with the variation of the background components. Through this approach, we found a typical systematic uncertainty of ~20% on the gas temperature and <5% on the emission measure. These values provide an upper bound to the level of systematic uncertainties in the other regions since the intensity of the source relative to the background is higher than for the analysis carried out here.

Analysis of ESO and CFHT optical data. We used the colours of galaxies in archival imaging of the Abell 2744 field to identify members of the cluster and its associated filaments. We constructed a photometric catalogue from observations obtained in the B, V and R filters using the WFI instrument at the ESO 2.2-m telescope at La Silla Observatory, combined with i-band data obtained with MegaCam/MegaPrime at the CFHT. For the WFI BVR filters, we were able to use existing co-added images (B: 9,200 s; V: 8,700 s, R: 21,000 s) from a weak lensing follow-up of clusters performed in the Sumy气血–Zeldovich (SZ) effect. Observations spanning three campaigns between September 2000 and October 2011 were bias-subtracted and flat-fielded using the THELI processing pipeline38,39. THELI also includes astrometric, relative and absolute photometric calibration. Finally, the CFHT i-band data obtained in July 2009 were reduced using the CFHT-specific THELI
adaptation developed and applied for the CFHTLenS project40. For all filters, the co-added images were post-processed, and saturated stars and otherwise unreliable image areas were masked out41. Source catalogues were distilled from the co-added images using the weak lensing pipeline from ref. 22. Because of the different field-of-view of the cameras involved (34′×34′ for WFI versus 60′×60′ for CFHT Megacam), it proved useful to adopt the following strategy: we measured source photometry in all three WFI passbands in one go, making use of the double detection mode in SEXTRACTOR35, with the deep R-band data as the detection image. In order to obtain consistent magnitudes, photometric quantities were measured after having matched the seeing in the other filters to the poorest seeing among them. A separate detection run was performed for the CFHT i’-data. The output catalogues were merged, identifying as the same object sources detected in WFI and CFHT within 0.5 arcsec of each other, yielding a common photometric catalogue containing 37 WFI galaxies per square arcmin. Objects were categorized as stars or galaxies based on their apparent size and magnitude.

Lensing analysis of HST and CFHT data. Lensing constraints from the HST field of view. The strong lensing constraints used to model the inner core of Abell 2744 consist of a set of 51 multiply-imaged systems (159 images13). The weak lensing catalogue for the HST field of view was built following the methods described in ref. 43, and the details of the Abell 2744 weak-lensing catalogue will be given elsewhere (M.J. et al., manuscript in preparation). Here we give a brief summary of the different steps.

The weak lensing analysis is based on shape measurements in the Advanced Camera for Surveys (ACS)/F814W band. Following a method developed for the analysis of data obtained for the COSMOS survey44, the SEXTRACTOR photometry package45 was used for the detection of the sources. The resulting catalogue was then cleaned by removing spurious sources, duplicate detections, and any sources in the vicinity of stars or saturated pixels. Finally, to overcome the pattern-dependent correlations introduced by the drizzling process between neighbouring pixels, we simply scaled up the noise level in each pixel46 by the same constant FA ≈ 0.316 (ref. 45).

Since only galaxies behind the cluster are gravitationally lensed, the presence of cluster members dilutes the observed shear and reduces the statistical significance of all quantities derived from it. Therefore, the identification and removal of the contaminating unlensed galaxies is crucial. Thanks to the HST data in three bands (F814W, F606W and F435W), we identified the foreground galaxies and cluster members using a colour–colour diagram47. The measure of galaxy shapes was done using the Rhodes–Refregier–Groth (RRG) method48, adapted to multi-epoch images like the one coming from the HSTFF data of Abell 274449. Finally, galaxies with ill-determined shape parameters were excluded, since these galaxies do not contribute substantially to the shear signal51,43.

Lensing constraints from the CFHT field of view. We employed the popular Kaiser–Squires–Broadhurst (KSB) method for galaxy shear measurement48. We modelled the observed galaxy shape as a convolution of the (sheared) galaxy with the point spread function (PSF), which is itself modelled as a circular profile convolved with a small anisotropy. For the PSF modelling, we identified stars in the size–magnitude and μ_{max}–magnitude planes, where μ_{max} is the peak surface brightness. We then measured the Gaussian-weighted shape moments of the stars, and constructed their ellipticity. In addition to cuts in μ_{max} and magnitude, we also excluded noisy outliers with SNR < 100 or absolute ellipticity more than 2σ away from the mean local value, and we iteratively removed objects very different from neighbouring stars. Having obtained our clean sample of stars, a second-order polynomial model in x and y was used to model the PSF across the field of view. The ellipticity of the PSF changes from its core to its wings. We measured the PSF shape using weight functions of different sizes and, when correcting each galaxy, used the weight function of the same size to measure the shapes of both the PSF and the galaxies. Background galaxies were selected with the magnitude cuts 20 < i < 26, size cuts 1.5 × $\mu_{\text{max}} < 50$ pixels (where γ is the half-light radius and γ_{eff} is the size of the largest star), SNR > 10 and SEXTRACTOR flag FLAGS = 0. After masking and catalogue cuts, the galaxy number density is ~10 galaxies per square arcmin. We then measured the shapes of all the selected galaxies. Our implementation of KSB is based on the KSB90 pipeline49. Details of the calibration and systematic effects are shown and discussed elsewhere50. If the PSF anisotropy is small, the shear γ can be recovered to first order from the observed ellipticity ϵ_{obs} of each galaxy via

$$\gamma = P \cdot \epsilon_{\text{obs}} - P^{\text{PSF}} \epsilon$$

where asterisks indicate quantities that should be measured from the PSF model interpolated to the position of the galaxy, P^{PSF} is the smear polarizability, and P, is the correction to the shear polarizability that includes smearing with the isotropic component of the PSF. The ellipticities were constructed from a combination of each object’s weighted quadrupole moments, and the other quantities involve higher-order shape moments. All definitions are taken from ref. 50. Note that we approximate the matrix P by a scalar equal to half its trace. Since measurements of σ_v for individual galaxies are noisy, we fit it as a function of galaxy size and magnitude, which are more robustly observable galaxy properties49.

The weight of the shear contribution from each galaxy is defined as

$$w = \frac{P^2}{\sigma^2_{\text{err}} + P^2}$$

where σ_{err} is the error for an individual galaxy obtained via the formula in Appendix A of ref. 51, and $\sigma_v \approx 0.3$ is the dispersion of the intrinsic ellipticities of galaxies. With the help of the shear catalogue, we then estimated the total mass within the filaments. As the weak lensing effect is not very sensitive to the mass profile, we assumed a dual pseudo isothermal elliptical (dPfIE) profile centred on the X-ray position to measure the total mass of the filament candidates using the parametric model-fitting algorithm LENSTOOL52. As the weak lensing effect is not very sensitive to the mass profile, we also tested the accuracy of the derived masses by fitting again the shear profile with an elliptical Navarro–Frenk–White (NFW) profile with a concentration $c \approx 1$. The measured masses are consistent within the uncertainties.

Lensing mass model. The mass model built for this analysis used strong and weak lensing constraints, combining parametric and non-parametric approaches to model the global mass distribution53. The details of the mass modelling will be given elsewhere (M.J. et al., manuscript in preparation). We kept the parametric model built for the strong lensing analysis of Abell 2744 fixed to their best-fit values, and we modelled the surrounding mass distribution using a multi-scale grid drawn from a prior light distribution of the cluster using the WFI multi-band photometric catalogue. The nodes of the grid model were parameterized using Radial Basis Functions (RBFs)54. This allowed us to appropriately weight the strong lensing constraints without taking them twice into account55.

The strong lensing parametric model was composed of two cluster-scale haloes. The multi-scale grid was composed of 10,282 RBFs, for which only the amplitude was left free while fitting. To the 733 cluster members identified in the HST fields of view, we added 1,457 cluster members identified using a standard colour–magnitude selection using B, V and R bands coming from WFI observations to identify the red-sequence galaxies of the cluster. Galaxy-scale haloes were modelled as RBFs, using dPfIE potentials. The resulting mass map is shown by the white contours in Fig. 3.

We sampled the parameter space in LENSTOOL using the Bayesys Library implemented in LENSTOOL55. The objective function is a standard likelihood function in which noise is assumed to be Gaussian. LENSTOOL returns a large number of MCMC samples, from which we estimate mean values and uncertainties in the mass density field. In Extended Data Fig. 5 we show the radial surface mass density profile for the cluster average compared to the sectors encompassing the filaments (same as for Extended Data Fig. 1). An excess lensing signal is observed in the direction of the filaments compared to the radial average. The masses obtained using this technique are given in Table 1. In Extended Data Table 2 we show the masses and SNRs obtained using this method (hybrid LENSTOOL) and the direct inversion method described above (KSB) for the various filaments. The results of the two methods agree within the uncertainties. The differences observed between one method and the other allow us to quantitatively level the systematic uncertainties associated with the lensing reconstruction using the existing data.

Sample size. No statistical methods were used to predetermine sample size.

Code availability. The PROFFIT code for X-ray surface brightness analysis is available at http://www.isdc.unige.ch/~decker/newsite/Proffit.html. The THELI data reduction scheme for CFHT and ESO/WFI data can be downloaded at https://www.astro.uni-bonn.de/theli/. The gravitational lensing code LENSTOOL can be found at http://projes.lam.fr/projects/lenstool/wiki. The KSB90 code used for weak lensing is available at http://www.roe.ac.uk/~heymans/KSB90/Home.html.

29. Snowden, S. L., Mushotzky, R. F., Kurtz, K. D. & Davis, D. S. A catalog of galaxy clusters observed by XMM-Newton. Astron. Astrophys. 478, 615–658 (2008).

30. Moretti, A., Campagna, S., Lazzati, D. & Tagliaferri, G. The resolved fraction of the cosmic X-ray background. Astrophys. J. 588, 696–703 (2003).

31. Eckert, D., Moleni, S. & Paltani, S. The cool-core bias in X-ray galaxy cluster models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 556, L91–L95 (2001).

32. Eckert, D. et al. The stripping of a galaxy group diving into the massive cluster A2142. Astron. Astrophys. 570, A119 (2014).

33. Smith, R. K., Brinkhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like ions. Astrophys. J. 696, L79 (2011).

34. Leccardi, A. & Moleni, S. Radial metallicity profiles for a large sample of galaxy clusters observed with XMM-Newton. Astron. Astrophys. 487, 461–466 (2008).
35. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).
36. De Luca, A. & Molendi, S. The 2-8 keV cosmic X-ray background spectrum as observed with XMM-Newton. Astron. Astrophys. 419, 837–848 (2004).
37. McCammon, D. et al. A high spectral resolution observation of the soft X-ray diffuse background with thermal detectors. Astrophys. J. 576, 188–203 (2002).
38. Erben, T. et al. GaBoDS: The Garching-Bonn Deep Survey. IV. Methods for the image reduction of multi-chip cameras demonstrated on data from the ESO Wide-Field Imager. Astron. Nachr. 326, 432–464 (2005).
39. Schirmer, M. THELI: convenient reduction of optical, near-infrared, and mid-infrared imaging data. Astrophys. J. Suppl. Ser. 209, 21 (2013).
40. Dietrich, J. P. et al. BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters. I. Cluster catalog construction. Astron. Astrophys. 470, 821–834 (2007).
41. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).
42. Jauzac, M. et al. A weak lensing mass reconstruction of the large-scale filament feeding the massive galaxy cluster MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 426, 3369–3384 (2012).
43. Leauthaud, A. et al. Weak gravitational lensing with COSMOS: galaxy selection and shape measurements. Astrophys. J. Suppl. Ser. 172, 219–238 (2007).
44. Casertano, S. et al. WFC3 observations of the Hubble Deep Field South. Astron. J. 120, 2747–2824 (2000).
45. Rhodes, J., Refregier, A. & Groth, E. J. Weak lensing measurements: a revisited method and application to Hubble Space Telescope images. Astrophys. J. 536, 79–100 (2000).
46. Kaiser, N., Squires, G. & Broadhurst, T. A method for weak lensing observations. Astrophys. J. 449, 460–475 (1995).
47. Shan, H. et al. Weak lensing measurement of galaxy clusters in the CFHTLS-Wide Survey. Astrophys. J. 748, 56 (2012).
48. Jauzac, M. et al. Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1-2403. Mon. Not. R. Astron. Soc. 446, 4132–4147 (2015).
49. Jullo, E., Pires, S., Jauzac, M. & Kneib, J.-P. Weak lensing galaxy cluster field reconstruction. Mon. Not. R. Astron. Soc. 437, 3969–3979 (2014).
Extended Data Figure 1 | Radial X-ray emissivity profiles in the filaments and in the cluster. Shown are XMM-Newton/EPIC surface-brightness profiles (S_X); black, obtained by masking the filaments; colours, surface brightness in the sectors NW (northwest, position angle 10°–70°), E (east, 150°–180°) and S (south, 260°–300°). Uncertainties (error bars) are given at the 1σ level.
Extended Data Figure 2 | Regions used for the analysis of the thermodynamic properties of the filaments. The 0.5–2 keV surface brightness level is colour coded (bar at right; units are erg s$^{-1}$ cm$^{-2}$ arcmin$^{-2}$); right ascension and declination are in degrees. Spectra were extracted from the regions indicated as E, S, SW, NW1 and NW2 by the white ellipses. The green circles show the regions labelled as Offset1–4 used to estimate the local background components (see Extended Data Table 1). The dashed cyan sectors show the regions used to extract the radial profiles along the filaments for Extended Data Figs 1, 3 and 5. The grey ellipses show background/foreground structures masked during the analysis (see text).
Extended Data Figure 3 | Radial galaxy density profiles in the filaments and in the cluster. Galaxy density profiles (N_{gal}) using spectroscopically confirmed cluster members in sectors encompassing the filaments (same as Extended Data Fig. 1) are compared to the galaxy density of the cluster obtained by masking the filaments (black). Uncertainties (error bars) are given at the 1σ level.
Extended Data Figure 4 | X-ray spectra of the filaments. a–f, XMM-Newton/EPIC-pn spectra for the regions shown in Extended Data Fig. 2. The background region (a) refers to Offset1. The fitting procedure was performed jointly on all EPIC instruments; however, only the pn spectra are shown here for clarity. The coloured lines show fitted contributions from the source (red), the NXB (blue), the CXB (green), the Galactic halo (cyan), and the local hot bubble (magenta).
Extended Data Figure 5 | Radial mass profiles in the filaments and in the cluster. Shown are surface mass density profiles obtained from combined strong and weak lensing. The black curve shows the cluster average, compared to the profiles obtained in the direction of the filaments (same as Extended Data Fig. 1).
Extended Data Table 1 | Properties of the X-ray background in the Abell 2744 region

Region	CXB	Halo kT	Halo Norm	LB Norm
Offset 1	$(6.26 \pm 0.56) \times 10^{-7}$	0.297 ± 0.024	$(4.45 \pm 0.60) \times 10^{-7}$	$(1.89 \pm 0.25) \times 10^{-6}$
Offset 2	$(7.03 \pm 0.71) \times 10^{-7}$	0.368 ± 0.095	$(2.31 \pm 0.91) \times 10^{-7}$	$(2.36 \pm 0.36) \times 10^{-6}$
Offset 3	$(6.92 \pm 0.78) \times 10^{-7}$	0.311 ± 0.034	$(5.05 \pm 0.88) \times 10^{-7}$	$(2.14 \pm 0.36) \times 10^{-6}$
Offset 4	$(7.65 \pm 0.71) \times 10^{-7}$	0.283 ± 0.036	$(3.52 \pm 0.82) \times 10^{-7}$	$(2.40 \pm 0.28) \times 10^{-6}$

Comparison of X-ray background parameters per square arcminute obtained in regions Offset 1, 2, 3 and 4 (see Extended Data Fig. 1). CXB, cosmic X-ray background, in photons keV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 keV; Halo kT, in keV; Halo Norm, halo normalization, LB Norm, local bubble normalization, both as $\int n_{e} n_{h} dV \times 10^{-14}/4\pi d_{A}^{2} (1 + z)^2$, where d_{A} indicates the angular diameter distance at redshift z. © 2015 Macmillan Publishers Limited. All rights reserved
Extended Data Table 2 | Mass of the filaments

Region	\(M_{\text{HLT}} \) \([h_{70}^{-1}M_\odot]\)	S/N	\(M_{\text{KSB}} \) \([h_{70}^{-1}M_\odot]\)	S/N
E	\((7.9 \pm 2.8) \times 10^{13}\)	3.1	\((4.4 \pm 3.1) \times 10^{13}\)	2.1
S	\((9.5 \pm 2.4) \times 10^{13}\)	6.8	\((4.0 \pm 2.4) \times 10^{13}\)	2.3
SW	\((4.8 \pm 1.7) \times 10^{13}\)	3.1	\((2.2 \pm 1.6) \times 10^{13}\)	2.8
NW1	\((9.5 \pm 2.7) \times 10^{13}\)	5.2	\((6.9 \pm 3.0) \times 10^{13}\)	2.2
NW2	\((1.2 \pm 0.3) \times 10^{14}\)	3.3	\((2.2 \pm 1.0) \times 10^{14}\)	2.6

Comparison of weak-lensing masses for the filaments for the two methods used here: the grid-based multi-scale approach (hybrid LENSTOOL HLT, giving \(M_{\text{HLT}} \)) and the direct inversion method (KSB, giving \(M_{\text{KSB}} \)).