Factors Related to Health Behaviors in Persons with Hypertension, Myanmar

Honey Oo
Department of Community Health Nursing, University of Nursing, Lanmadaw P.O. 11131, Yangon, Myanmar, honeyoo140@gmail.com

Somnuk Sakunhongsophon
Ramathibodi School of Nursing, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Sangthong Terathongkum
Ramathibodi School of Nursing, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Follow this and additional works at: https://scholarhub.ui.ac.id/mjhr

Recommended Citation
Oo H, Sakunhongsophon S, Terathongkum S. Factors Related to Health Behaviors in Persons with Hypertension, Myanmar. Makara J Health Res. 2018;22.
Factors Related to Health Behaviors in Persons with Hypertension, Myanmar

Honey Oo1,2*, Somnuk Sakunhongsophon2, Sangthong Terathongkum2

1. Department of Community Health Nursing, University of Nursing, Lammadaw, Yangon 11131, Myanmar
2. Ramathibodi School of Nursing, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

*E-mail: honeyoo140@gmail.com

Abstract

Background: The aim of this study was to describe the relationships between personal and environmental factors and health behaviors in persons with hypertension. Methods: This was a cross-sectional study carried out using a convenient sample of individuals with hypertension from three community health centers in Yangon, Myanmar. Data were collected using a standardized interviewer-administered questionnaire consisting of six sections: demographic characteristics, Self-efficacy to manage Hypertension Scale, Health Behavior Questionnaire, Barriers to Health Promoting Activities Scale, Hypertension Knowledge Questionnaire, and Social Support Questionnaire. The data were analyzed using descriptive statistics, Chi-square, and Pearson’s correlation coefficient. Results: Participants had a high level of perceived self-efficacy (42.13 ± 7.58), a low level of perceived barriers (35.32 ± 19.63), a poor social support (49.64 ± 8.51), a good level of hypertension knowledge (10.63 ± 1.90) and a moderate level of health behaviors (70.59 ± 12.39). Health behaviors had significant relationship with income, social support, hypertension knowledge and perceived barriers (r = -0.28, p = 0.004; r = 0.23, p = 0.019; r = 0.27, p = 0.006; r = -0.21, p = 0.034), respectively. Conclusions: These findings suggest that health behaviors in persons with hypertension can be improved using hypertension knowledge, social support, and decrease in perceived barriers.

Keywords: health behaviors, hypertension, Myanmar

Introduction

Hypertension is a major health problem globally. In 2015, 1.13 billion people worldwide (> 18 years of age) had high blood pressure and it is predicted to increase to around 1.56 billion in 2025.1 It causes 7.5 million deaths in people around the world.2 Therefore, the Seventh Report of the Joint National Committee (JNC 7) recommended that combined use of medication and health behavior modification or as an adjuvant therapy is the gold standard of treatment. Health behaviors modification not only reduces blood pressure approximately 2-20 mmHg but also improves efficacy of antihypertensive medications.3 Health behaviors in persons with hypertension comprise of dietary approach to stop hypertension or DASH consumption including salt intake reduction, physical activities at least 30 to 40 minutes per day, weight management,5 moderation of alcohol consumption,6 smoking cessation,6 stop betel quid chewing,7 and stress management.8

Myanmar, one of the countries in the South-East Asia region had prevalence rate of hypertension equals 22% in 20149 and 30% in 2016.10 It was elevated in both rural and urban areas9,11 resulting in mortality rate of 26.26 per 100,000 population.12 In addition, it was in the top ten leading causes of death in Myanmar.12 Previous studies found that persons with hypertension had lower physical activities in urban areas than rural areas, ate high salty diet, such as salted fish paste (ngapi in local language) because it was affordable and easy for Burmese cooking in their houses.10,11 Moreover, they had less than 5 servings of fruit and vegetable intake per day,13 alcohol consumption,14 smoking behaviors,10,13 overweight,14,15 and stressful situation.15 Therefore, almost 7 in 10 persons with hypertension had uncontrolled blood pressure though they took anti-hypertensive medication regularly.15 While a number of studies10,11,13-15 had identified risk factors and health behaviors in individuals with hypertension, it is still necessary to identify factors relating to health behaviors in order to develop nursing intervention program for blood pressure control.

Hypertension control is not only individual level but also a community level because health behaviors results from ethnic/racial, demographic, social, cultural, geographical, and environmental dimensions.16,17 In addition, health behavior is the result of interacting between personal and environmental factors.18 Personal factors can be
both physical and cognitive factors including personal characteristics, knowledge, perceived self-efficacy and perceived barriers. Social support as environmental factor is necessary for adopting a behavior and increasing perceived self-efficacy, therefore, it needs to be considered in behavior change. 19 In order to understand health behaviors using social cognitive theory, evidence-based studies have identified that personal factors such as personal characteristics (e.g. age, gender, education, occupation, income), hypertension knowledge, perceived self-efficacy, perceived barriers, and environmental factor such as social support were significantly related to health behaviors in persons with hypertension. 19, 20 Thus, the aim of this study was to describe the relationships between personal and environmental factors and health behaviors in persons with hypertension.

Methods

Study Design. This was a descriptive cross-sectional survey of individuals with hypertension, carried out between December 2017 and February 2018 in Yangon, Myanmar. The study was carried out in three community health centers in Thaketa Township, Yangon, Myanmar. The health centers offer primary health care services to an estimated 220,347 population in the Township.

Participants. Participants were persons diagnosed with hypertension for at least six months with or without comorbidity or any complications, and were registered in cardiovascular clinics of the three community health centers in the Thaketa Township, Yangon, Myanmar. Other inclusion criteria include: the participants should be ≥18 years old (without cognitive impairment if age 60 years old and above), able to read and write in Myanmar language and willingness to participate in the study. The minimum sample size required for this study was calculated using the G*Power program. Assuming a bivariate correlation with power of 0.8, absolute sampling error of 0.05 and a medium effect size of 0.28 based on a previous study by Lee and colleagues. 20 The minimum sample size was estimated to be 97. Considering an attrition rate of 10%, 21 therefore, this study planned to recruit a total of 108 participants.

Procedures. The researcher asked permission from Township Medical Officer (TMO) and Township Health Nurse (THN) after receiving ethical approval letters from the Institutional Review Board, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand (ID 11-60-74) and Ethic and Research Committee of University of Nursing (Yangon), in Myanmar. The researcher coordinated with Township Health Nurse and community authorized persons to select the sample and make appointment with potential participants in order to collect the data in their home. All potential participants were approached and if they refused to participate and did not meet inclusive criteria, another subject was selected. The researcher explained information sheet and received informed consent form. It took 30-45 mins for each participant to complete the interview.

Demographic Questionnaire. It was developed by the researcher comprising age, gender, marital status, religion, education, occupation, individual’s income per month, duration of hypertension, medication, comorbidities, and betel chewing habit.

Six-item Cognitive Impairment Test. It was developed by Katzman and colleagues in 1983 22 was used to screen cognitive deficit of the potential participants aged 60 years and older. It has 6 questions and an inverse scoring method was used. The score ranges from 0 to 28 and the interpretation of score was; “0-7” = normal, “8-9” = mildly cognitive impairment, and “10-28” = significantly cognitive impairment. The participants were allowed to answer within 2 minutes. In this study, the potential participants were interviewed in Myanmar language and those who got 0-7 score were recruited.

Self-efficacy to manage Hypertension Scale. It was developed by Warren- Findlow and colleagues in 2012. 23 The Cronbach’s alpha coefficient of original instrument was 0.81. It includes 5 items and the responses are ranged from 1 (not confident at all) to 10 (totally confident). The possible score was 5-50. A mean score was calculated and classified into three levels by using Bloom’s criteria; poor (5-19), moderate (20-34), and (35-50) high. The original English version was translated to Myanmar version. Then, contents validity tested by three expert nurses equal to 1 and Cronbach’s Alpha coefficient was 0.90 and 0.78 in the main study.

Health Behavior Questionnaire. Health behaviors of persons with hypertension was measured by Health Behavior Questionnaire which was adopted from Health Promoting Behavior Questionnaire of Nepal and his colleagues in 2015. 24 The content validity of the original instrument was .70 and the Cronbach’s alpha coefficient was 0.95. It consists of 26 items with four-point Likert-scale ranged from “1” = never to “4” = routinely. The possible score ranged from 26-104. A higher score near to the highest score was determined as greater health behaviors performance and classified as (26-52) low health behaviors, (53-78) moderate health behaviors, and (79-104) high health behaviors. 24 The questionnaire was translated from English into Myanmar version. Contents validity tested by three expert nurses equal to 0.98, Cronbach’s Alpha coefficient was 0.79 and 0.80 in the main study.

Barriers to Health Promoting Activities Scale (BHPAS). Perceived barriers was measured by BHPAS. 25 The validity and reliability with internal
consistency reliability was 0.82, and test-retest reliability was 0.75. It includes 18 items with four-point Likert-scale from “1”= never to “4”= routinely. The possible score ranges from 18-72. Higher score indicates the greater perceived barriers and classified as: (18-35) low perceived barriers, (36-54) moderate perceived barriers, and (55-72) high perceived barriers. The questionnaire was translated into Myanmar version and was validated by three expert nurses. The scale level CVI was 0.96 and Cronbach’s Alpha coefficient was 0.81 and 0.82 in the main study.

Social Support Questionnaire. Social support was measured by Social Support Questionnaire. The original version was developed to examine the factors related to care seeking behaviors regarding hypertension in Myanmar. It includes 5 questions for each sources (media, family members, friends and peers, community leaders and religious leaders and health care persons). It comprises of 25 items with four-point Likert-scale from “1”= to “4”= always. The possible score ranges from 25-75. Higher score indicates greater social support. The interpretation of score was: (<50) poor social support, and (≥50) good social support. Contents validity tested by three expert nurses equal to 1 and Cronbach’s Alpha coefficient was 0.88 and 0.89 in the main study.

Hypertension Knowledge Questionnaire. Hypertension knowledge was measured by Hypertension Knowledge Questionnaire. It includes 13 items of knowledge about the complications of hypertension and behavior modification. Each item was scored as “Yes”, “No”, and “Don’t know”. A score of “1” was given for correct answer and “0” was given for incorrect and don’t know answer. The score ranged from 0-13. The Cronbach’s alpha coefficient was 0.85. The high score means good level of knowledge and interpreted as; (< 7) poor knowledge, and (≥7) good knowledge. Contents validity tested by three expert nurses equal to 1 and Cronbach’s Alpha coefficient was 0.7 and 0.72 in the main study.

Ethical Considerations. The study had been approved by ethical review committee for human research, Faculty of Medicine Ramathibodi hospital, Mahidol University, Thailand, and Ethnic and Research Committee of University of Nursing (Yangon), Myanmar. The researcher explained the objectives, expected risk and benefits of the study and the informed consent form was obtained from each participant before data collection. Participants can withdraw from the study any time without any impact on care. All data was kept confidential and presented in terms of overall outcomes.

Data Analysis. Data were analyzed using SPSS 21.0 (Statistical Package of Social Sciences) software program. The data were checked for completeness, and outliers. Descriptive statistics such as frequency, percentage, mean (M), median, and standard deviation (SD) were used to describe demographic characteristics, independent variables (age, gender, income, occupation, education, hypertension knowledge, perceived self-efficacy, perceived barriers and perceived social support) and the dependent variable (health behaviors). Pearson’s correlation coefficient was used for age, income, perceived self-efficacy, perceived barriers, social support, hypertension knowledge, and health behaviors. Chi-square test was used to examine the relationships between two categorical variables such as gender, occupation, education, and health behaviors. Significance of each test was determined at p < 0.05.

Results
After data were cleaned by checking for completeness, and outliers, 104 participants completed the survey. The age of participants >60 years ranged from 21 to 80 years with average age of 53.27 years, (SD = 10.99). Among them, 67 (64.4%) participants were between 41-60 years, 76 (73.1%) participants were females, 84 (80.8%) participants were Buddhist, 65 (62.5%) participants were married, 39 (37.5%) participants had middle school education and 39 (37.5%) participants did their own businesses or housewives. Average individual monthly income was 61 USD. Moreover, 50% were taking calcium channel blockers, 60.6% suffered comorbidities and 37.50% of participants had habit of betel quit chewing. Average duration of hypertension was 6.71 years (SD=4.50) (Table 1).

Also, the participants had a high level of perceived self-efficacy (42.13 ± 7.58), a low level of perceived barriers (35.32 ± 19.63), a poor social support (49.64 ± 8.51), a good level of hypertension knowledge (10.63±1.90) and a moderate level of health behaviors (70.59 ± 12.39) as in Table 2. Health behaviors had significant relationship with income, social support, hypertension knowledge and perceived barriers (r = -0.28, p = 0.004; r = 0.23, p = 0.019; r = 0.27, p = 0.006; r = -0.21, p = 0.034), respectively (Table 3). However, age, gender, education, occupation, and perceived self-efficacy were not correlated with health behaviors (Table 3 and 4).

Discussion
Age had no relationship with health behaviors. It could be explained that health behaviors in all ages of persons with hypertension had moderate level and need to be improved. The finding was consistent with previous studies in Myanmar. In contrast, there was a negative relationship between age and health behaviors in elderly Korean women with hypertension and positive relationship between age and health behaviors in adult Korea-American with hypertension.
Gender had no relationship with health behaviors. Although no significant relationship was found, female (28.95%) had a better health behavior than male (14.29%). It might be partially due to alcohol drinking and smoking were prohibited in female according to Myanmar culture, and Buddhist religion.11 Despite of this fact, the finding indicated that overall health behaviors in both male and female had low and moderate level and need to be improved. It was consistent with some previous studies in elderly persons with hypertension in Thailand29 and China.30 However, many previous studies in Myanmar, and Korea found a relationship between gender and health behaviors in adult persons with hypertension.20,28

Table 1. Demographic characteristics of persons with hypertension

Characteristics	N (%)
Age	
<41 years	14 (13.5)
41-60 years	66 (64.4)
>60 years	23 (22.1)
Gender	
Female	76 (73.1)
Male	28 (26.9)
Religious	
Buddhist	84 (80.8)
Islam	19 (18.3)
Christian	1 (1.0)
Marital Status	
Married	65 (62.5)
Divorced/Widowed/Separate	32 (30.8)
Single	7 (6.7)
Education	
No education	5 (4.8)
Primary school	26 (25.0)
Middle school	39 (37.5)
High school	27 (26.0)
Certificate/ Bachelor degree	7 (6.7)
Occupation	
Government staff	8 (7.7)
Own-business	39 (37.5)
Employee	3 (2.9)
Agriculturist	10 (9.6)
Housewife	39 (37.5)
Retired	5 (4.8)
Co-morbidity	
No	41 (39.4)
Yes (can answer more than one)	63 (60.6)
Diabetes	23 (22.1)
Heart disease	16 (15.4)
Hypercholesterolemia	11 (10.6)
Others (arthritis, gout)	13 (12.5)
Medications (can answer more than one)	
Calcium channel blocker	52 (50.0)
Beta-blocker	31 (27.9)
Hydrochlorothiazide	2 (1.9)
Others (for examples; Alpha blockers, Vasodilators, etc.)	21 (20.2)
Betel chewing	
No	65 (62.5)
Yes	39 (37.5)
Table 2: Perceived self-efficacy, perceived barriers, social support and health behaviors of participants

Variables	Possible score	Range	Mean ± SD	Interpretation
Perceived self-efficacy	5-50	18-50	42.13 ± 7.58	High
Perceived barriers	18-72	18-65	35.32 ± 10.63	Low
Social support	25-75	34-71	49.64 ± 8.51	Poor
Hypertension knowledge	0-13	4-13	10.63 ± 1.90	Good
Health Behaviors	26-104	38-104	70.59 ± 12.39	Moderate

Table 3: Pearson’s product moment correlation coefficient between health behaviors and related factors

Variables	1	2	3	4	5	6	7
Age	1	-.22*	.19	-.12	.16	-.01	.13
Income	-.22*	1	.09	.09	-.12	.12	-.28**
Perceived self-efficacy	.19*	.09	1	-.09	-.12	.44**	.13
Perceived barriers	-.12	.09	-.09	1	-.22*	.08	-.21*
Hypertension knowledge	.16	-.12	-.12	-.22*	1	-.11	.27**
Social support	-.01	.12	.44**	-.08	-.11	1	.23*
Health behaviors	.13	-.28**	.13	-.21*	.27**	.23*	1

**p < 0.01, *p < 0.05

Table 4: Relationships between gender, occupation, education and health behaviors in persons with hypertension

Variables	Healthy Behaviors N (%)	p	
Gender	Low and Moderate (25-78)	High (79-104)	
Male	24 (85.71)	4 (14.29)	0.13
Female	54 (71.05)	22 (28.95)	
Education			0.09
Low education	56 (80.00)	14 (20.00)	
High education	22 (64.71)	12 (35.29)	
Occupation			0.65
Employed	46 (76.67)	14 (23.33)	
Unemployed	32 (72.73)	12 (27.27)	

Education had no relationship with health behaviors which was consistent with a previous study. According to health capital framework, education causes persons to access more knowledge about the effect of unhealthy behaviors and leads to alter these behaviors. Therefore, more educated persons had better health behaviors because they could use a limited set of healthcare resources and could select different kinds of resources compared to less educated persons. On the other hand, a relationship was found between education and health behaviors in Chinese and Thai older adults with hypertension. The reasons for diverse finding might be due to different inputs of persons such as nature and quality of learning, hours in school, different curriculum, and learning at different ages.

Occupation was not related with health behaviors in this study. The finding was similar to the results of many previous studies. However, a study revealed that occupation had a relationship with hypertension health behaviors in persons with hypertension. One explanation for different findings might be due to competing scales of occupation such as level of skill, manual or professional occupation, and combined use of education and income in the study.

Income had a negative relationship with health behaviors. The result indicated that the participants with higher income had poor health behaviors. The reason might be due to urbanization, westernized lifestyle, and economic development that increase unhealthy behaviors such as smoking, alcohol consumption, unhealthy food habits, and physical inactivity in Myanmar. In contrast, a study had a positive relationship between income and taking medication behavior in persons with hypertension. It was found that low-income persons were less likely to adhere anti-hypertensive drug in a tertiary hospital in Myanmar because of high cost of medication. Some
studies found that there was no relationship between income and health behaviors.28,30

Hypertension knowledge was related to health behaviors. Based on Social Cognitive Theory,18 knowledge is an understanding of health behaviors and the information necessary to perform behaviors. If the persons had inadequate hypertension knowledge, they would not change to better health behaviors. Therefore, it is a precondition and a crucial factor for behavior change. Similarly, hypertension knowledge was associated with self-care behaviors37 in persons with hypertension. On the other hand, some studies found that hypertension knowledge was not related to health behaviors of persons with hypertension in Korea19,20 and Myanmar.28,36 Therefore, although knowledge is a foundation for behavior change, it needs to combine with perception to adopt new behaviors and sustain the behaviors.18

Perceived self-efficacy was not related to health behaviors. Previous study18 argued that perceived self-efficacy is a core determinant in health behavior and it leads to motivation, overcome the barriers and sustain the behaviors. Moreover, perceived self-efficacy is behavior specific and it might be different from one behavior to another.28 Therefore, it might be due to the researcher did not identify participants’ confidence level for each health behavior in this study. Similarly, there was no relationship between perceived self-efficacy and anti-hypertensive treatment adherence in Yangon region.36 Previous research25 found that perceived self-efficacy was related to five health behaviors including taking medication, nutrition, physical activity, smoking cessation, and weight management strategies but not alcohol limitation or cessation. In contrast, a number of previous studies found a relationship between perceived self-efficacy and health behaviors in persons with hypertension in China.30 Bhutan,24 and Korea.19,20 According to Social Cognitive Theory18 and evidence-based studies,23,36 more researches are warranted to identify the relationship between perceived self-efficacy and each health behavior with more rigorously designed, and larger sample.

There was a negative relationship between perceived barriers and health behaviors. According to Social Cognitive Theory,18 barriers are factors that can cause obstacles in performing health behaviors and they can be both cognitive and physical factors. If the persons perceive more barriers, they are less likely to engage health behaviors. It was consistent with many previous studies that found a relationship between perceived barriers and anti-hypertensive treatment adherence in Myanmar and in China.39 Moreover, there was relation-ship between perceived barriers and health behaviors in Bhutanese persons with hypertension,24 and in African American persons with hypertension.40 A significant positive relationship was observed between social support and health behaviors. Social support as environmental factor is necessary for adopting a behavior and increasing perceived self-efficacy.18 Therefore, social support needs to be considered in behavior change. This was consistent with a number of previous studies which found that social support had a relationship with health behaviors.19,24,26 However, some studies indicated that there was no relationship between social support and self-care behaviors.20,28

This study had some limitations. First, convenience sampling method might lead the researchers select participants who may be more willing to participate in the study. As this study was done in one urban area of Myanmar, the findings might not be generalizable to all hypertension population in Myanmar. Second, as the researcher interviewed by using structured questionnaires, some participants could not understand well in some parts of questionnaires, for example, Self-efficacy to manage hypertension scale. Third, the instruments in the present study were too much and it took about 45 mins to administer the study instrument, therefore, the participants might bored and/or be in hurry to answer the questions which might affect the study findings.

Conclusions

The study recommended to conduct nursing intervention studies guided by Social Cognitive Theory aimed to promote hypertension knowledge, social support, and decreasing perceived barriers in persons with hypertension. In addition, there were 37.5% of betel chewing persons with hypertension and health education program should highlight the effect of betel chewing on hypertension and develop program for stopping betel quid chewing. The future research should be replicated in other geographical areas in order to generalize the findings. A predictive design study to identify the causal relationship of health behaviors is recommended.

Acknowledgments

I would like to express special thanks to Mahidol Partial Scholarship Program and Ramathibodi School of Nursing, Mahidol University.

Funding

None.

Conflict of Interest Statement

None declared.

References

1. Angeli F, Reboli G, Verdecchia P. The 2014 hypertension guidelines: Implications for patients and practitioners in Asia. Heart Asia. 2015;7:21-5.
2. World Health Organization. A Global Brief on Hypertension: Silent killer. Global Public Health Crisis: World Health Day 2013. Geneva, Switzerland: World Health Organization; 2013.

3. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. J Am Med Assoc. 2003;289:2560-71.

4. Appel LJ. The effects of dietary factors on blood pressure. Cardiology Clin. 2017;35:197-212.

5. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Miller NH, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk. Circulation. 2014;129:S76-99.

6. Herding D, Kucharska W, Kara T, Somers VK, Narkiewicz K. Smoking is associated with chronic sympathetic activation in hypertension. Blood Pressure. 2010;19:152-5.

7. Heck JE, Marcotte EL, Argos M, Parvez F, Ahmed A, Islam T, et al. Betel quid chewing in rural Bangladesh: Prevalence, predictors and relationship to blood pressure. Int J Epidemiol. 2011;41:462-71.

8. Bai Z, Chang J, Chen C, Li P, Yang K, Chi I. Investigating the effect of transcendental meditation on blood pressure: A systematic review and meta-analysis. J Human Hypertension. 2015;29:653-62.

9. Himashree G, Mohan L, Singh Y. Yoga practice improves physiological and biochemical status at high altitudes: A prospective case-control study. Alternat Therapies Health Med. 2016;22:53-9.

10. Naing C, Aung K. Prevalence and risk factors of hypertension in Myanmar: A systematic review and meta-analysis. Medicine. 2014;93:e100.

11. Bjortness MB, Het AS, Meyer HE, Hitke MMT, Zaw KK, Oo WM, et al. Prevalence and determinants of hypertension in Myanmar - A nationwide cross-sectional study. BioMed Central Public Health. 2016;16:590.

12. Health Profile Myanmar [Internet]. 2017 [cited June 19, 2018]. Available from: http://www.worldlifeexpectancy.com/country-health-profile/myanmar.

13. Nwe N, Zaw KK, Hlaing S. Care-seeking behavior and detection of target organ involvement among hypertensive patients in Yangon region (2014-2015). J Myanmar Health Sci Res. 2016;28.

14. Het AS, Bjortness MB, Oo WM, Kjøllesdal MK, Sherpa LY, Zaw KK, et al. Changes in prevalence, awareness, treatment and control of hypertension from 2004 to 2014 among 25-74-year-old citizens in the Yangon Region, Myanmar. BMC Public Health. 2017;17:847.

15. Htun YM, Win KS, Naung Y, Soe K. Prevalence, awareness and risk factors of hypertension in Hmawbi Cantonment Area, Yangon Region, Myanmar. South East Asia J Public Health. 2016;6:20-6.

16. Chen M-L, Hu J. Health disparities in Chinese Americans with hypertension: A review. Int J Nursing Sci. 2014;1:318-22.

17. Shamsi A, Nayeri ND, Esmaeili M. Living with hypertension: A qualitative research. Int J Comm Based Nursing Midwifery. 2017;5:219.

18. Bandura A. Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, N.J.: Prentice-Hall; 1986.

19. Yang S-O, Jeong GH, Kim S-J, Lee SH. Correlates of self-care behaviors among low-income elderly women with hypertension in South Korea. J Obstet Gynecol Neonatal Nursing. 2014;43:97-106.

20. Lee J-E, Han H-R, Song H, Kim J, Kim KB, Ryu JP, et al. Correlates of self-care behaviors for managing hypertension among Korean Americans: A questionnaire survey. Int J Nursing Studies. 2010;47:411-7.

21. Gray JR, Grove SK, Burns N. The Practice of Nursing Research - E-Book: Appraisal, Synthesis, and Generation of Evidence: Elsevier Health Sciences; 2013.

22. Katzman R, Brown T, Fuld P, Peck A, Schechter R, Schimmel H. Validation of a short Orientation-Memory-Concentration Test of cognitive impairment. Am J Psychiatry. 1983;140:734-9.

23. Warren-Findlow J, Seymour RB, Huber LRB. The association between self-efficacy and hypertension self-care activities among African American adults. J Comm Health Nursing. 2012;37:15-24.

24. Nepal HK, Kunongkeat W, Masingboon K. Factors related to health promoting behaviors among hypertensive patients in Bhutan [master dissertation]. Chonburi, Thailand: Burapha University; 2015.

25. Becker H, Stuibbergen A, Sands D. Development of a scale to measure barriers to health promotion activities among persons with disabilities. Am J Health Promot. 1991;5:449-54.

26. Kyi-Thanh-Swe, Tanasugarm C, Siri S. Care Seeking Behavior Regarding Hypertension in Magway Township, Myanmar [disseration]. Bangkok, Thailand: Mahidol University; 2016.

27. Thida-Aye-Lwin, Powwatana A. Factors Related to Self-care Practice in Hypertensive Patients in Yangon, Myanmar: Mahidol University; 2009.

28. Myo-Thiri-Zaw, Silawan T, Rawiworrakul T. Self-care Practice Among Patients with Hypertension in Kyauktan Township, Yangon Division, Myanmar. Thailand: Mahidol University; 2014.

29. Jaiyunguyen U, Suwonnaroo P, Priyatruk P, Moopayak K. Factors influencing health-promoting behaviors of older people with hypertension. Mae Fah Luang University International Conference; 2012.

30. Li S, Zhang L. Health behavior of hypertensive elderly patients and influencing factors. Aging Clin Exp Res. 2013;25:275-81.

31. Grossman M. On the concept of health capital and the demand for health. J Political Econ. 1972;80:223-55.

32. Cesar R, Dursun B, Mocan N. The impact of education on health and health behavior in a middle-income, low-education country: National Bureau of Economic Research; 2014.

33. Steptoe A, McMunn A. Health behaviour patterns in relation to hypertension: The English longitudinal study of ageing. J Hypertension. 2009;27:224-30.

34. Morefield B, Ribar DC, Ruhm CJ. Occupational status and health transitions. BE J Econ Analysis Policy. 2012;11.

35. Ministry of Health. Health in Myanmar (2014). The Republic of the Union of Myanmar: Ministry of Health; 2014.

36. Wai-Phyo-Han, Hong SA, Tiraphat S. Adherence to Anti-hypertensive Treatment in Essential Hypertensive Patients in Yangon, Myanmar: A mixed method study. Thailand: Mahidol University; 2015.
37. Warren-Findlow J, Seymour RB, Shenk D. Intergenerational transmission of chronic illness self-care: Results from the caring for hypertension in African American families study. The Gerontologist. 2011;51:64-75.

38. Leventhal H, Weinman J, Leventhal EA, Phillips LA. Health psychology: The search for pathways between behavior and health. Ann Rev Psychol. 2008;59:477-505.

39. Yue Z, Li C, Weilin Q, Bin W. Application of the Health Belief Model to improve the understanding of antihypertensive medication adherence among Chinese patients. Patient Edu Counseling. 2015;98:669-73.

40. Robinson TD. Hypertension Beliefs and Behaviors of African Americans in Selected Cleveland Public Housing: Kent State University; 2012.