Supporting Information

for

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

Ali Javed, Felix Steinke, Stephan Wöhlbrandt, Hana Bunzen, Norbert Stock and Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443. doi:10.3762/bjnano.13.36

Supplementary data
Figure S1: Linker molecule \(\text{(H}_2\text{O}_3\text{PCH}_2)_2\text{-NCH}_2\text{-C}_6\text{H}_4\text{-SO}_3\text{H} \) \((\text{H}_5\text{L}) \)

Figure S2: Exemplary Nyquist plots at various applied potentials for (a) \([\text{Mg(H}_2\text{O)}_2(\text{H}_3\text{L})]\cdot\text{H}_2\text{O} \) (22 °C, 70% r.h.) and (b) \([\text{Pb}_2(\text{HL})]\cdot\text{H}_2\text{O} \) (22 °C, 90% r.h.).

Figure S3: Powder XRD patterns of (a) \([\text{Mg(H}_2\text{O)}_2(\text{H}_3\text{L})]\cdot\text{H}_2\text{O} \) and (b) \([\text{Pb}_2(\text{HL})]\cdot\text{H}_2\text{O} \). All measurements were performed at 25 °C and 90% relative humidity (r.h.). No significant change is observed after activation of the samples (i.e., exposure to 80 °C for 24 h).
Figure S: Powder XRD patterns of (a) [Mg(H₂O)₂(H₃L)]·H₂O and (b) [Pb₂(HL)]·H₂O at variable temperature and humidity.

Figure S5: Equivalent circuit models used: (a) Activated [Mg(H₂O)₂(H₃L)]·H₂O and for activated/non-activated [Pb₂(HL)]·H₂O, (b) non-activated [Mg(H₂O)₂(H₃L)]·H₂O.

Table S1: Some proton-conducting coordination networks containing sulfonate groups [1,2]

sample name	conditions	σ (S/cm)	E_a (eV)
{[Zn(bpeH)(5-sip)(H₂O)]·(H₂O)}ₙ	65 °C, 95% r.h.	2.5×10^{-6}	0.54
{[Cu(py)(5-Hsip)(H₂O)]ₙ·(H₂O)}₂ₙ	65 °C, 95% r.h.	3.5×10^{-5}	0.35
{[Cu(bpee)₀.₅(5-sip)(H₂O)]ₙ·(H₂O)₄(bpeeH₂)₀.₅}ₙ	65 °C, 95% r.h.	9.9×10^{-8}	0.40
{[Cu(bpy)(5-Hsip)(H₂O)]·(H₂O)}₂ₙ	65 °C, 95% r.h.	5.8×10^{-6}	0.43
{[Cu(bpy)(5-H2sip)(H₂O)]ₙ·(H₂O)}ₙ	65 °C, 95% r.h.	1.4×10^{-6}	0.45
{[Cu₂(bpy)(5-sip)(H₂O)]·(H₂O)}₂ₙ	80 °C, 95% r.h.	9.4×10^{-3}	0.64
Cu₄(5-sip)₃(OH)₂(DMF)₂	95 °C, 95% r.h.	7.4×10^{-4}	1.32
UiO-66(SO₃H)₂	80 °C, 90% r.h.	8.4×10^{-2}	0.32
MIL-101-SO₃H	70 °C, 90% r.h.	4.3×10^{-5}	0.27
References

1. Liu, R.; Wang, D.-Y.; Shi, J.-R.; Li, G. *Coord. Chem. Rev.* **2021**, *431*, 213747. doi:10.1016/j.ccr.2020.213747

2. Lim, D.-W.; Kitagawa, H. *Chem. Rev.* **2020**, *120*, 8416. doi:10.1021/acs.chemrev.9b00842