Structure of the O-Antigen and the Lipid A from the Lipopolysaccharide of *Fusobacterium nucleatum* ATCC 51191

Pilar Garcia-Vello, Flaviana Di Lorenzo, Dimitra Lamprinaki, Anna Notaro, Immacolata Speciale, Antonio Molinaro, Nathalie Juge, and Cristina De Castro*
Author Contributions

P.G.-V. Formal analysis:Lead; Investigation:Lead; Writing – original draft:Lead
F.D. Investigation:Equal; Writing – original draft:Equal
D.L. Resources:Supporting
A.N. Investigation:Supporting
I.S. Investigation:Supporting
A.M. Conceptualization:Supporting; Investigation:Supporting; Supervision:Supporting; Writing – review & editing:-Supporting
N.J. Resources:Supporting; Writing – review & editing:Supporting
C.D. Conceptualization:Lead; Investigation:Lead; Supervision:Lead; Writing – review & editing:Lead
Figure S1. Electrophoresis analysis of bacterial LPS. A. *E. coli* O111:B4 LPS (8 µg). B. *F. nucleatum* ATCC 51191 LPS (8 µg) C. BlueEye protein standard. The samples were run on a 12% SDS-PAGE and visualized by silver staining.

Figure S2. GC-MS profile of *F. nucleatum* ATCC 51191 LPS A. acetylated methyl glycosides. B. lipid compositional analysis. i: impurities; 16:1 and 18:0 are impurities or cell derived fatty acids.
Figure S3: Chromatogram profile of *F. nucleatum* ATCC 51191 O-antigen purification on a Sephacryl S200 column. The O-antigen corresponds to the second (highest) peak of the chromatogram.

Figure S4: 1H NMR spectrum of the O-antigen of *F. nucleatum* ATCC 51191 showing the lack of signals around 8 ppm and therefore the absence of a formyl group (600 MHz, 25 °C, 550 μL of D$_2$O, neutral pH).
Figure S5. Negative-ion MALDI MS/MS spectrum of precursor ion at m/z 1801.1 of the lipid A of *F. nucleatum* ATCC 51191. This is a representative ion peak of the cluster ascribed to hexa-acylated lipid A species decorated by two phosphates. The main fragments’ assignment is indicated in the spectrum. The proposed structure is reported in the inset. The loss of C\(_{12}\)H\(_{24}\)O (184 mass units) and C\(_{14}\)H\(_{28}\)O (212 mass units) is also indicated and was due to a rearrangement typically occurring on primary acyl chains only when their 3-OH group is free, thus contributing to the establishment of the location of the secondary acyl substitution.

Table S1. The main MALDI-TOF MS ion peaks *F. nucleatum* ATCC 51191 lipid A. The table reports the predicted mass and the proposed interpretation of the substituting fatty acids and phosphates on the *F. nucleatum* ATCC 51191 lipid A backbone. See Figure 6 for full spectrum.

Predicted mass (Da)	Observed ion peaks (m/z)	Acyl substitution	Proposed fatty acid/phosphate composition
1364.96	1364.68	Tetra-acyl	HexN\(\text{P}^\bullet\)\{14:0(3-OH)\}\{16:0(3-OH)\}; (14:0)
1444.92	1444.69	Tetra-acyl	HexN\(\text{P}^\bullet\)\{14:0(3-OH)\}\{16:0(3-OH)\}; (14:0)
1581.15	1580.86	Penta-acyl	HexN\(\text{P}^\bullet\)\{14:0(3-OH)\}\{16:0(3-OH)\}; (14:0)
1671.11	1670.87	Penta-acyl	HexN\(\text{P}^\bullet\)\{14:0(3-OH)\}\{16:0(3-OH)\}; (14:0)
1801.35	1801.15	Hexa-acyl	HexN\(\text{P}^\bullet\)\{14:0(3-OH)\}\{16:0(3-OH)\}; (14:0)
1881.31	1881.15	Hexa-acyl	HexN\(\text{P}^\bullet\)\{14:0(3-OH)\}\{16:0(3-OH)\}; (14:0)