Complete plastomes of three endemic Mexican pine species (Pinus subsection Australes)

Xitlali Aguirre-Dugua and David S. Gernandt

Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico

ABSTRACT
We assembled the plastomes of Pinus greggii, P. jaliscana and P. oocarpa from 100 bp paired-end Illumina reads. We combined de novo (comparing Velvet and SPAdes) with reference-guided assembly and a final step of gap filling. SPAdes performed better than Velvet based on scaffold number (180 vs. 263) and mean length (1886 vs. 560 bp), and number of gaps (2 vs. 4). Annotations were automatically transferred from P. taeda NC_021440 and carefully revised by hand. Phylogenetic analysis with additional plastomes revealed very short branch lengths, supporting a rapid diversification within Australes and close relatedness among pines from Western Mexico.

Understanding diversification processes in Pinus has proven a difficult task due to their large genome with highly repetitive elements (ca. 23 Gbp; Neale et al. 2014), large effective population sizes, weak reproductive barriers and the recent origin of many of its species. Published data based on plastome sequences have revealed limited amounts of diversity and haplotype sharing among closely related species, suggesting incomplete lineage sorting, gene flow or both (e.g. Hernández-León et al. 2013; Willyard et al. 2016). Plastome-scale datasets are therefore necessary for more accurate phylogenetic hypotheses, analysis of phylogeographical structure and the estimation of gene-flow patterns.

The Mexican pines Pinus greggii Engelm. ex Parl., P. jaliscana Pérez de la Rosa and P. oocarpa Schiede belong to subsection Australes, a group comprising approximately 30 species from North and Central America and the Antilles (Gernandt et al. 2005), hypothesized to have undergone a recent radiation (Willyard et al. 2007). A partial plastome sequence has been published for P. greggii (Parks et al. 2012), whereas only five plastid DNA markers are available for P. jaliscana and P. oocarpa (Hernández-León et al. 2013). Detailed phylogenetic relationships among these endemic and recently diverged species have therefore not been addressed. These species are characterized by contrasting ecological and geographical features, from wide to restricted distribution ranges, and from temperate to subtropical environments. Pinus greggii is considered Vulnerable and P. jaliscana is considered Near Threatened by the International Union for the Conservation of Nature (IUCN 2016) (Supplementary Material 1).

Seeds used in this study were collected within the natural distribution range of each species and voucher specimens were deposited in the Herbario Nacional de México (Supplementary Material 2). Total genomic DNA was extracted from megagametophyte (haploid tissue of maternal origin found in the seed) using a Wizard Genomic DNA Purification kit (Promega, Madison, WI). DNA samples were stored at the Laboratorio Sistématica Molecular Botánica (Instituto de Biología, UNAM, Mexico). Genomic libraries were prepared with 800 ng of DNA, sheared and size-selected to 250 bp (MYcroarray, Ann Arbor, MI). Libraries were sequenced in an Illumina Hi-Seq 2500 with 100 bp paired ends. The pipeline was developed in P. greggii for comparing the two de novo short-read assemblers, Velvet ver. 1.2.10 (Zerbino and Birney 2008) and SPAdes ver. 3.6.2 (Bankevich et al. 2012), and then replicated in P. jaliscana and P. oocarpa using SPAdes only. FASTQ files were processed in Geneious 9.2.6 (Kearse et al. 2012), removing duplicate reads and trimming low-quality bases.

In the first stage of the pipeline, plastome reads were filtered using the Geneious 9.2.6 mapper tool using P. taeda NC_021440 as the reference (Liu et al. 2013). Filtered reads were independently assembled de novo using Velvet ver. 1.2.10 and SPAdes ver. 3.6.2. For each independent assembly, de novo contigs were mapped over NC_021440 using the Geneious Mapper tool with the highest sensitivity option and five iterations for fine tuning. The consensus sequence was generated and segments without any mapped contigs were annotated and filled with P. taeda reference sequence to produce a first chimeric draft plastome. In a second stage, the entire read dataset was assembled over the chimeric
plastome. Ambiguous calls produced by the assembly of different reads to positions already covered by de novo contigs were resolved by selecting the nucleotide displayed by the de novo contig. Regions previously filled with P. taeda sequence that displayed a poor mapping of reads leading to low coverage (<30×) and/or ambiguous calls were considered gaps. The consensus sequence for this second draft of the plastome was then obtained. In the third stage of the pipeline, we ran the gap filling software Seal (Paulino et al. 2015) for finishing the genome. For details on the parameters used for each step, see Supplementary Material 4.

We compared the two resulting assemblies and retained the sequence based on SPAdes as the best version of the P. greggii plastome based on number and length of de novo contigs (Stage 1) and the number of gaps to be filled during Stages 2 and 3 (Table 1). This result agrees with assays performed on prokaryotic genomes (Magoc et al. 2013).

The final plastome was annotated by automated transfer of annotations from P. taeda NC_021440 based on a 98% similarity criterion (with Geneious vers. 9.2.6). Open reading frames (ORFs) were identified and annotations of type ‘gene’ and ‘CDS’ were amended to fit the corresponding ORF when necessary. The inverted repeat regions (IRa, IRb) were transferred from P. thunbergii NC_001631 (Wakasugi et al. 1994). Plastome annotation was optimized manually by comparing our plastome to P. taeda NC_021440, P. massoniana NC_021439 (Huang et al. 2012), P. thunbergii NC_001631, P. tabuliformis NC_028531 (Peng and Yu 2015) and P. strobos NC_026302 (Zhu et al. 2016), all aligned using the MAFFT ver. 7.222 (Katoh et al. 2002) plugin included in Geneious, with automatic algorithm selection and default values. Manually edited annotations included chl (lacking a start codon), trnG-GCA (corrected to trnD-GUC), rps4 (small version excluded), trnL-UAA (orientation corrected), psal, psbA, rpl16, ycf1, ycf2, ycf12, trnN and trnL (manually added). Additional details on the manual annotation are found in Supplementary Material 5.

The final P. greggii plastome sequence comprised 114 genes, 73 coding DNA sequences (CDS), 4 ribosomal RNAs (rRNA) and 36 transfer RNAs (tRNA) genes.

The P. greggii whole plastome sequence reported here is 274 bp longer than P. greggii partial plastome JN854198 published by Parks et al. (2012), which has 120,227 bp (plus 370 bp as Ns). Main differences of our sequence when compared to JN854198 include 2 insertions (291 bp in ycf1, 55 bp in trnN-chl) and 2 deletions (99 bp in rrn16, 356 in cemA-ycf4 characterized by a high proportion of ambiguities).

Improvements made on the P. greggii plastome can be attributed to methodological differences. For example, Parks et al. (2012) used illumina 60 to 80 bp single-end lengths vs. 100 bp paired ends here. Plastome JN854198 was based on a 5× coverage for conserved positions and a minimum of 20× for SNPs, while our sequence had a coverage of 146×.

Phylogenetic relationships based on P. greggii, P. jaliscana and P. oocarpa plastomes (GenBank: KY963967, KY963968 and KY963969) were investigated by aligning them to 17 plastomes from Pinus subsection Australes (Parks et al. 2012) and 2 plastomes from section Pinus as an outgroup (Wakasugi et al. 1994; Fang et al. 2016), using MAFFT as previously described. A maximum-likelihood tree was built using
RAxML-HPC ver. 8 (Stamatakis 2006) on XSEDE (Miller et al. 2010) with a general time reversible + gamma (GTR + G) nucleotide substitution model and a random stepwise addition parsimony starting tree. Support values were based on 300 rapid bootstrap replicates.

The alignment revealed an 805 bp psbA sequence inserted within the trnK-UUU-matK region of *P. taeda* NC_021440 (already identified as poorly resolved and considered as a gap during our assembly), which is exclusive of this plastome. Whether this insertion is a characteristic of this species or an inaccuracy remains to be determined. Genes *ycf1* and *ycf2*, despite large differences in size between species (5157–5742 bp and 6090–6210 bp, respectively), were correctly aligned. This is in accordance with previous results showing that these genes harbour a great amount of variability at large and intermediate phylogenetic scales (Parks et al. 2012; Hernández-León et al. 2013).

Phylogenetic analysis supports the existence of a monophyletic Oocarpae (egg-cone pines from Mexico and Central America) and Attenuatae (California closed-cone pines; Figure 1). Within Oocarpae, *P. greggii* (north-eastern Mexico) grouped more closely to *P. leiophylla* and *P. chihuahuana* (central and north-western Mexico, respectively). *Pinus jaliscana* (central western Mexico) and *P. oocarpa* (NW Mexico to Nicaragua) were closely related to *P. lawsonii*, *P. pringlei* (SW Mexico) and *P. lumholtzii* (NW Mexico) in general agreement with Hernández-León et al. (2013). Yet, very short internal branch lengths and low bootstrap values hindered a precise determination of sister relationships, suggesting a very recent radiation of Western Mexican pines within Australes. Notoriously, our analysis revealed *P. patula* (eastern Mexico) as sister to all the other Mexican species, in contrast to the pattern reported by Parks et al. (2012) where it is sister to the *P. greggii* clade. However, current available Australes plastomes from Parks et al. (2012) display a high number of ambiguities (from 120 in *P. lawsonii* to 29,040 in *P. attenuata*), which means that internal branch lengths and phylogenetic relationships should be interpreted cautiously. Future investigations based on fully resolved plastome sequences shall help in building a more detailed understanding of pine evolution in Mexico, which represents the centre of diversity of the genus (Farjon and Filer 2013).

Disclosure statement

The authors declare no conflict of interest and are responsible for the content and writing of the paper.

Geolocation information

Sierra Madre Oriental and Trans-Mexican Volcanic Belt of Mexico

21.052°N, 99.172°W

20.357°N, 105.259°W

20.882°N, 98.587°W

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnologia (Conacyt, Mexico) [project CB-221694 and postdoctoral grant 22737 (to X.A.D.)].

ORCID

Xitlali Aguirre-Dugua http://orcid.org/0000-0002-0224-8523

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pjotrekska AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477.

Fang MF, Wang YJ, Xu YM, Dong WL, Wang RN, Deng TT, Li ZH. 2016. The complete chloroplast genome of the Taiwan red pine *Pinus taiwanensis* (Pinaceae). Mitochondrial DNA A DNA Mapp Seq Anal. 27:2732–2733.

Farjon A, Filer D. 2013. An Atlas of the World’s conifers. Boston: Brill.

Gernandt DS, Geada L, Ortiz Garcia S, Liston A. 2005. Phylogeny and classification of *Pinus*. Taxon. 54:29–42.

Hernández-León S, Gernandt DS, Pérez de la Rosa JA, Jardón-Barbolla L. 2013. Phylogenetic relationships and species delimitation in *Pinus* section *Trifoliae* inferred from plastid DNA. PLoS One. 8.e70501.
Huang SW, Liu TY, Zhou F, Liu CX, Luo M, Cai YL, Wang XN, Chen JH. 2012. *Pinus massoniana* chloroplast, complete genome. NCBI Reference Sequence: NC_021439.1; [accessed 2017 Aug 13]. https://www.ncbi.nlm.nih.gov/nuccore/NC_021439.1

IUCN. 2016. The IUCN Red List of Threatened Species. Version 2016-3; [accessed 2017 Aug 13]. http://www.iucnredlist.org.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647.

Liu TY, Huang SW, Li QF, Wang JB, Liu CX, Ning HG, Zhou HB, Chen JH. 2013. *Pinus taeda* chloroplast complete genome. NCBI reference sequence: NC_021440; [accessed 2017 Aug 13]. https://www.ncbi.nlm.nih.gov/nuccore/NC_021440.1

Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL. 2013. GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics. 29:1718–1725.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE); Nov 14; New Orleans, LA; p. 1–8.

Neale DB, Storr M, Stevens KA, Puiu D, Crepeau MW, Cardeno C, Korabiine M, Holtz-Morris AE, Liechty JD, et al. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15:R59.

Parks M, Cronn R, Liston A. 2012. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from *Pinus L.* (Pinaceae). BMC Evol Biol. 12:100.

Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I. 2015. Sealer: a scalable gap-closing application for finishing draft genomes. BMC Bioinformatics. 16:230.

Peng S, Yu Z. 2015. *Pinus tabuliformis* voucher PTAB20150818V5 chloroplast, complete genome. NCBI Reference Sequence: NC_028531.1; [accessed 2017 Aug 13]. https://www.ncbi.nlm.nih.gov/nuccore/NC_028531.1

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688–2690.

Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M. 1994. Loss of all *ndh* genes as determined by sequencing the entire chloroplast genome of the black pine *Pinus thunbergii*. Proc Natl Acad Sci USA. 91:9794–9798.

Willyard A, Germandt DS, Potter K, Hipkiss V, Marquardt P, Mahalovich MF, Langer SK, Telewski FW, Cooper B, Douglas C, et al. 2016. *Pinus ponderosa*: a checkered past obscured four species. Am J Bot. 104:161–181.

Willyard A, Syring J, Germandt DS, Liston A, Cronn R. 2007. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for *Pinus*. Mol Biol Evol. 24:90–101.

Zerbino DR, Birney E. 2008. Velvet: algorithms for *de novo* short read assembly using de Bruijn graphs. Genome Res. 18:821–829.

Zhu A, Guo W, Gupta S, Fan W, Mower JP. 2016. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209:1747.