Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at $\sqrt{s_{_{\text{NN}}}} = 200$ GeV: Jet-quenching and the response of partonic matter

A. Adare, S. Afanasiev, C. Aidala, N.N. Ajitanand, Y. Akiba, H. Al-Bataineh, A. Alexander, A. Al-Jamel, K. Aoki, A. Alper, B. Averdieck, T.C. Awes, A. Azmoun, V. Babintsev, G. Baksay, L. Baksay, A. Baldissner, K.N. Barish, P.D. Barnes, B. Bassalleck, S. Bathe, S. Batsoulis, V. Baulis, F. Bauer, A. Bazilevsky, S. Belikov, R. Bennett, Y. Berdnikov, A.A. Bickler, M.T. Bjornadal, J.G. Bossevain, H. Borel, K. Boyle, M.L. Brooks, D.S. Brown, D. Bucher, H. Buesching, V. Bunazhnov, G. Bunea, J.M. Burward-Hoy, S. Butsky, S. Campbell, J.-S. Chai, B.S. Chang, J.-L. Charvet, S. Chernichenko, J. Chiba, C.Y. Chi, M. Chiu, I.J. Choi, T. Chuijo, P. Chun, A. Churyum, V. Cianciolo, C.R. Cleven, Y. Cobigo, B.A.Cole, M.P. Comets, P. Constantini, M. Csanád, T. Csörgő, T. Dahms, K. Das, G. David, M.B. Deaton, K. Dehmlot, H. Delagrange, A. Denisov, D. d'Enterria, A. Deshpande, E.J. Desmond, O. Dietzsch, A. Dion, M. Donadelli, J.L. Drachenberg, O. Draper, A. Drees, A.K. Dubey, A. Durum, V. Dzhordzhadze, Y.V. Efremenkov, J. Egemiir, F. Ellingshaus, W.S. Emann, A. Enokizono, H. En'yo, B. Espagnon, S. Esumi, K.O. Eyser, D.E. Fields, M. Finger, F. Fleuret, S.L. Fokin, B. Forestier, Z. Fraenkel, J.E. Franz, A. Franz, A.D. Frawley, K. Fujii, Y. Fukao, S.-Y. Fung, T. Fuwa, S. Gador, I. Garishvili, F. Gastineau, M. Germain, A. Glenn, H. Gong, M. Gonin, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S.V. Green, M. Grosse Perdekamp, T. Gunji, H.-A. Gustafsson, T. Hachiya, A. Hadij, C. Haegemann, J.S. Hagerty, M.N. Haghighi, R. Han, H. Harada, E.P. Hartouni, K. Haruna, M. Harvey, E. Haslum, K. Hasuoka, R. Hayano, M. Heffner, T.K. Hemmick, T. Hester, J.M. Heuser, X. He, H. Hiejiama, J.C. Hill, H. Hamagaki, M. Hohlmann, V. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornback, M.G. Hur, T. Ichihara, K. Imai, M. Inaba, Y. Inoue, D. Isenhower, L. Isenhower, M. Ishihara, T. Isobe, M. Issah, A. Isupov, 2.B. Jacak, J. Jia, J. Jinnouchi, B.M. Johnson, K.S. Joo, D. Jouan, F. Kajihara, S. Kametani, N. Kamihara, J. Kamin, M. Kaneta, J.H. Kang, H. Kanou, T. Kagawishi, D. Kawall, A.V. Kazantsev, S. Kelly, A. Khanzadeev, J. Kikuchi, D.H. Kim, D.J. Kim, E. Kim, Y.-S. Kim, 23. Kinne, A. Kiss, E. Kistenev, A. Kiyomichi, J. Klay, C. Klein-Boesing, L. Kochenda, V. Kochetkov, B. Komkov, M. Konno, D. Kotchetkov, A. Koslov, A. Král’, A. Kravitz, P.J. Kroon, J. Kubart, 2. G. Kunde, M. Kurikara, K. Kurita, M.J. Kweon, Y. Kwon, G.S. Kyle, R. Lacey, Y.-S. Lai, J.G. Lajoie, A. Lebedev, Y. Le Bordeix, S. Leckey, D.M. Lee, J. Lee, M.J. Leitch, M.A.L. Leite, B. Lenzi, H. Lim, T. Liška, A. Litvinenko, M.X. Liu, X. Li, X.H. Li, B. Love, 2. Lynch, C.F. Maguire, Y.I. Makdisi, A. Malakhov, M.D. Malik, V.I. Manko, Y. Mao, L. Mašek, H. Masui, M. Matsubara, 2.M.C. McCain, M. McCumber, P.L. McGaughey, 31. S. Miaké, P. Mikes, K. Miki, T.E. Miller, A. Milov, S. Mioduszewski, G. Mishra, M. Misra, J.T. Mitchell, M. Mitrnovski, A. Morreale, D.P. Morrison, J.M. Moss, T.V. Moukhinova, D. Mukhopadhyay, J. Murata, 45. N. Nagamiya, Y. Nagata, J.L. Nagle, M. Naglis, I. Nakagawa, Y. Nakamiya, T. Nakamura, K. Nakano, J.M. Newby, M. Nguyen, B.E. Norman, A.S. Nyanin, J. Nystrand, E.O’Brien, S.X. Oda, C.A. Ogilvie, H. Ohnishi, I.D. Ojha, H. Okada, K. Okawa, M. Oka, O.O. Omiwade, A. Oskarsson, I. Otterlund, M. Ouchida, K. Ozawa, R. Pak, D. Pal, A.P.T. Palounek, V. Pantuev, V. Papavassiliou, W.J. Park, S.F. Pate, H. Pei, J.C. Peng, H. Pereira, V. Peresoukou, C. Pinkenburg, R.P. Pisani, M.L. Purschke, K. Purwar, H. Qu, J. Rak, J. Raab, J. Rakotozafindrabe, I. Ravinovich, K.F. Read, S. Rembecz, M. Reuter, K. Reygers, V. Riabov, Y. Riabov, G. Roche, A. Romana, M. Rosati, S.S.E. Rosendahl, P. Rosnet, P. Rukoyatkin, V.L. Rykov, S.S. Ryu, B. Sahlmueller, N. Saito, T. Sakaguchi, S. Sakai, H. Sakata, V. Samsonov, H.D. Sato, S. Sato, S. Sawada, J. Seccio, R. Seidl, V. Semenov, R. Seto, D. Sharma, T.K. Shea, I. Shein, A. Shevel, T.A. Shibata, K. Shigaki, M. Shimizu, T. Shoji, S. Shoji, A. Sickles, C.L. Silva, D. Silvermyr, C. Silvestre, K.S. Sim, C.P. Singh, V. Singh, S. Skuttik, M. Slunečka, W.C. Smith, A. Soldatov, R.A. Soloz, E.W. Sondeheim, S.P. Sorensen, I.V. Sourikova, F. Staley, 2.P.W. Stankus, E. Stenlund, M. Stepanov, A. Ster, S.P. Stoll, T. Sugitate, C. Suire, A. Surić, 2007
J.P. Sullivan, J. Sziklai, T. Tabaru, S. Takagi, E.M. Takagui, A. Taketani, K. Tanaka, Y. Tanaka, K. Tanida, M.J. Tannenbaum, A. Tarapov, P. Tarján, T.L. Thomas, M. Togawa, A. Toia, J. Tojo, L. Tomášek, H. Torii, R.S. Towell, V.-N. Tram, I. Tserurya, Y. Tsuchimoto, S.K. Tuli, H. Tydesjö, N. Týrín, C. Vale, H. Valer, H.W. van Hecke, J. Velkovská, R. Vertesi, A.A. Vinogradov, M. Virius, E. Vznudin, M. Wagner, D. Walker, X.R. Wang, Y. Watanabe, J. Wessels, S.N. White, N. Willis, D. Winter, C.L. Woody, M. Wysocki, W. Xie, Y. Yamaguchi, Z. Yasín, J. Ying, S. Yokkaichi, G.R. Young, I. Younus, I.E. Yushmanov, W.A. Zajc, L. Zolin (PHENIX Collaboration)

1 Abilene Christian University, Abilene, TX 79699, U.S.
2 Department of Physics, Banaras Hindu University, Varanasi 221005, India
3 Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.
4 University of California - Riverside, Riverside, CA 92521, U.S.
5 Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic
6 China Institute of Atomic Energy (CIAE), Beijing, People's Republic of China
7 Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
8 University of Colorado, Boulder, CO 80309, U.S.
9 Columbia University, New York, NY 10027 and Nevis Laboratories, Irvington, NY 10533, U.S.
10 Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic
11 Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France
12 Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary
13 ELTE, Eötvös Loránd University, H - 1117 Budapest, Pázmány P. s. 1/A, Hungary
14 Florida Institute of Technology, Melbourne, FL 32901, U.S.
16 Georgia State University, Atlanta, GA 30303, U.S.
17 Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
18 IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia
19 Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic
20 Institute of Nuclear Research, 411980 Dubna, Moscow Region, Russia
21 Iowa State University, Ames, IA 50011, U.S.
22 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
23 KAERI, Cyclotron Application Laboratory, Seoul, South Korea
24 KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
26 Korea University, Seoul, 136-701, Korea
27 Russian Research Center “Kurchatov Institute”, Moscow, Russia
28 Kyoto University, Kyoto 606-8502, Japan
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France
30 Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.
31 Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.
32 LPC, Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubière Cedex, France
33 Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
34 Institut für Kernphysik, University of Muenster, D-48149 Muenster, Germany
36 Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
37 University of New Mexico, Albuquerque, NM 87131, U.S.
38 New Mexico State University, Las Cruces, NM 88003, U.S.
39 Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.
40 IPN-Orsay, Université Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France
41 Peking University, Beijing, People's Republic of China
42 PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
43 RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
44 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.
45 Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
46 Saint Petersburg State Polytechnic University, St. Petersburg, Russia
47 Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil
48 System Electronics Laboratory, Seoul National University, Seoul, South Korea
49 Chemistry Department, Stony Brook University, Stony Brook, SUNY, NY 11794-3400, U.S.
50 Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY 11794, U.S.
51 SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722 - 44307, Nantes, France
Azimuthal angle ($\Delta \phi$) correlations are presented for charged hadrons from dijets for $0.4 < p_T < 10$ GeV/c in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to $p+p$ data suggest that the away-side can be divided into a partially suppressed “head” region centered at $\Delta \phi \sim \pi$, and an enhanced “shoulder” region centered at $\Delta \phi \sim \pi \pm 1.1$. The p_T spectrum for the “head” region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the “shoulder” region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the “shoulder” region contains the medium response to energetic jets.

PACS numbers: 25.75.Dw

High transverse momentum (p_T) partons are valuable probes of the high energy density matter created at the Relativistic Heavy-Ion Collider (RHIC). These partons lose a large fraction of their energy in the matter prior to forming hadrons, a phenomenon known as jet-quenching. Such energy loss is predicted to lead to strong suppression of both single- and correlated away-side dihadron yields at high p_T [1], consistent with experimental findings [2, 3]. The exact mechanism for energy loss is not yet understood. Recent results of dihadron azimuthal angle ($\Delta \phi$) correlations have indicated strong modification of the away-side jet [3, 4, 5, 6]. For high p_T hadron pairs, such modification is manifested by a partially suppressed away-side peak at $\Delta \phi \sim \pi$ [3]. This has been interpreted as evidence for the fragmentation of jets that survive their passage through the medium.

For intermediate p_T charged hadron pairs, the away-side jet was observed to peak at $\Delta \phi \sim \pi \pm 1.1$ [3, 4], suggesting that the energy lost by high p_T partons is transported to lower p_T hadrons at angles away from $\Delta \phi \sim \pi$. The proposed mechanisms for such energy transport include medium deflection of hard [7] or shower partons [8, large-angle gluon radiation [9, 10], Cherenkov gluon radiation [11], and “Mach Shock” medium excitations [12].

In this letter we present a detailed “mapping” of the p_T and centrality dependence of away-side jet shapes and yields. These measurements (1) allow a detailed investigation of the jet distributions centered around $\Delta \phi \sim \pi \pm 1.1$ and $\Delta \phi \sim \pi$, (2) provide new insight on the interplay between jet quenching and the response of the medium to the lost energy, and (3) provide new constraints for distinguishing the competing mechanisms for energy transport.

The results presented here are based on minimum-bias (MB) Au+Au and $p+p$ datasets as well as a “photon” level-1 triggered (PT) $p+p$ dataset [13] collected with the PHENIX detector [14] at $\sqrt{s_{NN}}=200$ GeV, during the 2004-2005 RHIC running periods. The collision vertex z was required to be within $|z| < 30\text{cm}$ of the nominal crossing point. The event centrality was determined via the method in Ref. [14]. A total of 840 million Au+Au events were analyzed. Charged particles were reconstructed in the two central arms of PHENIX, each covering -0.35 to 0.35 in pseudo-rapidity and 90° in azimuth. The tracking system consists of the drift chambers and two layers of multi-wire proportional chambers with pad readout (PC1 and PC3), achieving a momentum resolution of $0.7\% \oplus 1.1\% p$ (GeV/c) [2].

Dihadron azimuthal angle correlations are obtained by correlating “trigger” (type A) hadrons with “partner” (type B) hadrons. The MB and PT $p+p$ datasets are used for trigger $p_T < 5$ GeV/c and $p_T > 5$ GeV/c, respectively. To reduce background from decays and conversions, tracks are required to have a matching hit within a ±2.3σ window in PC3. For $p_T > 4$ GeV/c, additional matching hit at the electromagnetic calorimeter (EMC) was required to suppress background tracks that randomly associate with the PC3 [2]. For triggers with $p_T > 5$ GeV/c, a p_T-dependent energy cut in the EMC and a tight ±1.5σ matching cut at the PC3 were applied to reduce the background to < 10% [15]. This energy cut greatly reduces PT trigger bias effects. The PT $p+p$ results are consistent with the MB $p+p$ data for trigger $p_T > 5$ GeV/c.

The jet associated partner yield per trigger, $Y_{jet}(\Delta \phi)$, is obtained from the $\Delta \phi$ correlations as [4, 13]:

$$Y_{jet} = \left[N^p(\Delta \phi) \right] \left[N^m(\Delta \phi) - b_0 \left(1 + 2v^A \nu^B \cos 2\Delta \phi \right) \right] \left[N_A \varepsilon_B \right] \int d\Delta \phi N_m^{\Delta \phi}(\Delta \phi) \frac{2\pi N_A \varepsilon_B}{2\pi N_A \varepsilon_B} \tag{1}$$

where N_A is the number of triggers, ε_B is the single particle efficiency for partners in the full azimuth and $|\eta| < 0.35$: $N^p(\Delta \phi)$ and $N^m(\Delta \phi)$ are pair distributions.
from the same- and mixed-events, respectively. Mixed-event pairs are obtained by selecting partners from different events with similar centrality and vertex. The \(\varepsilon_B \) values include detector acceptance and reconstruction efficiency, with an uncertainty of \(\sim 10\% \) \(^2\). The harmonic term, \(2v_2^A v_2^B \cos 2\Delta \phi \), reflects the elliptic flow modulation of the combinatoric pairs in Au+Au collisions \(^4\). Values for \(v_2^A \) and \(v_2^B \) for each centrality class are measured via the reaction plane (RP) method \(^7\) using the Beam-Beam Counters at \(3 < |\eta| < 4 \). The systematic errors on \(v_2 \) are dominated by the RP resolution, and are estimated to be \(\sim 6\% \) for central and mid-central collisions, and \(\sim 10\% \) for the peripheral collisions \(^4\).

To fix the value of \(b_0 \), we followed the subtraction procedure of Refs. \(^4\), \(^18\) and assumed that \(Y_{\text{jet}} \) has zero yield at its minimum \(\Delta \phi_{\text{min}} \) (ZYAM). To estimate the possible over-subtraction at \(\Delta \phi_{\text{min}} \), we calculate \(b_0 \) values independently by fitting \(Y_{\text{jet}}(\Delta \phi) \) to a function consisting of one near-side and two symmetric away-side Gaussians. The fitting procedure is similar to that used in \(^3\), except that a region around \(\pi \) (\(|\Delta \phi - \pi| < 1 \)) is excluded to avoid “punch-through” jets around \(\pi \) (see Fig.1). This fits accounts for the overlap of the near- and away-side Gaussians at \(\Delta \phi_{\text{min}} \), and thus gives systematically lower \(b_0 \) values than that for ZYAM. We assign the differences as one-sided systematic errors on \(b_0 \). This over-subtraction error is only significant in central collisions and at \(p_T^{A,B} < 3 \text{ GeV}/c \).

The per-trigger yield distributions for \(p + p \) and 0-20% central Au+Au collisions are compared in Fig.1 for various combinations of trigger and partner \(p_T \) ranges \((p_T^{A} \otimes p_T^{B}) \) as indicated. The \(p + p \) data show essentially Gaussian away-side peaks centered at \(\Delta \phi \sim \pi \) for all \(p_T^A \) and \(p_T^B \). In contrast, the Au+Au data show substantial shape modifications dependent on \(p_T^A \) and \(p_T^B \). For a fixed value of \(p_T^A \), Figs.1(a)-(d) reveal a striking evolution from a broad, roughly flat peak to a local minimum at \(\Delta \phi \sim \pi \) with side-peaks at \(\Delta \phi \sim \pi \pm 1.1 \). Interestingly, the location of the side-peaks in \(\Delta \phi \) is roughly constant with increasing \(p_T^B \) (see also Fig.2). Such \(p_T \) independence is compatible with the away-side jet modification expected from a medium-induced “Mach Shock” \(^{12}\) but disfavors models which incorporate large angle gluon radiation \(^9, 10\), Cherenkov gluon radiation \(^11\) or deflected jets \(^7\) \(^5\).

For relatively high values of \(p_T^A \otimes p_T^B \), Figs.1(e)-(h) show that the away-side jet shape for Au+Au gradually becomes peaked as for \(p + p \), albeit suppressed. This “reappearance” of the away-side peak seems due to a reduction of the yield centered at \(\Delta \phi \sim \pi \pm 1.1 \) relative to that at \(\Delta \phi \sim \pi \), rather than a merging of the peaks centered at \(\Delta \phi \sim \pi \pm 1.1 \). This is consistent with the dominance of dijet fragmentation at large \(p_T^A \otimes p_T^B \), possibly due to jets that “punch-through” the medium \(^{19}\), or those emitted tangentially to the medium’s surface \(^{20}\).

The evolution of the away-side jet shape with \(p_T \) (cf. Fig.1) suggests separate contributions from a medium-induced component centered at \(\Delta \phi \sim \pi \pm 1.1 \) and a fragmentation component centered at \(\Delta \phi \sim \pi \). A model independent study of these contributions can be made by dividing the away-side jet function into equal-sized “head” \((|\Delta \phi - \pi| < \pi/6, \text{HR}) \) and “shoulder” \((\pi/6 < |\Delta \phi - \pi| < \pi/2, \text{SR}) \) regions, as indicated in Fig.1(c). We characterize the relative amplitudes of these two regions with the ratio, \(R_{\text{HS}} \),

\[
R_{\text{HS}} = \frac{\int_{\Delta \phi_{\text{HR}}} d\Delta \phi Y_{\text{jet}}(\Delta \phi) \phi^{\Delta \phi_{\text{HR}}}}{\int_{\Delta \phi_{\text{SR}}} d\Delta \phi Y_{\text{jet}}(\Delta \phi) \phi^{\Delta \phi_{\text{SR}}}} \tag{2}
\]

Since \(N_A \) in Eq.1 cancels in the ratio, \(R_{\text{HS}} \) is a pure pair variable and is symmetric w.r.t \(p_T^A \) and \(p_T^B \): \(R_{\text{HS}}(p_T^A, p_T^B) = R_{\text{HS}}(p_T^B, p_T^A) \). For concave and convex shapes, one expects \(R_{\text{HS}} < 1 \) and \(R_{\text{HS}} > 1 \), respectively.

Figure 2 summarizes the \(p_T^B \) dependence of \(R_{\text{HS}} \) for both \(p + p \) and central Au+Au collisions in four \(p_T^A \) bins. The ratios for \(p + p \) are always above one and increase with \(p_T^B^2 \). This reflects the narrowing of a peaked jet shape with increasing \(p_T^B \) \(^{13}\). In contrast, the ratios for Au+Au show a non-monotonic dependence on \(p_T^{A,B} \). They evolve from \(R_{\text{HS}} \sim 1 \) for \(p_T^A, p_T^B \lesssim 1 \text{ GeV}/c \) through \(R_{\text{HS}} < 1 \) for \(1 < p_T^{A,B} \lesssim 4 \text{ GeV}/c \) followed by \(R_{\text{HS}} > 1 \) for \(p_T^{A,B} \gtrsim 5 \text{ GeV}/c \). These trends reflect the competition between medium-induced modification and jet fragmentation, and suggest that the latter dominates at \(p_T^{A,B} \gtrsim 5 \text{ GeV}/c \). The results shown in Fig.1 indicate that, relative to \(p + p \), the Au+Au yield is suppressed in
the HR but is enhanced in the SR. We quantify this suppression/enhancement via I_{AA}, the ratio of jet yield Y_{jet} between Au+Au and $p+p$ collisions over a $\Delta \phi$ region, W, $I_{AA}^{W} = \frac{\int_{\Delta \phi \in W} d\Delta \phi Y_{jet}^{Au+Au}}{\int_{\Delta \phi \in W} d\Delta \phi Y_{jet}^{p+p}}$.

Figure 3 shows I_{AA} as a function of p_T for the HR and the HR+SR, respectively, in four p_T bins. For triggers of $2 < p_T^A < 3$ GeV/c, I_{AA} for HR+SR exceeds one at low p_T^B, but falls and crosses one at ~ 3.5 GeV/c. A similar trend is observed for the higher p_T triggers, but the enhancement (at low p_T^B) is smaller and the suppression (at high p_T^B) is stronger. The I_{AA} values in HR are lower relative to HR+SR for all p_T^A,B. For the low p_T triggers, the suppression sets in around $1 < p_T^B < 3$ GeV/c, followed by a fall-off for $p_T^B > 4$ GeV/c. For higher p_T triggers, a constant level of $\sim 0.2 - 0.3$ is observed above ~ 2 GeV/c similar to the suppression level of inclusive hadrons [2]. These results provide clear evidence for significant yield enhancement in the SR and suppression in the HR. The data suggest that the SR reflects the dissipative processes that redistribute the energy lost in the medium: The suppression for the HR is consistent with jet quenching. However, we note that the I_{AA} values for the HR are upper limit estimates for the jet fragmentation component. This is because the HR yield includes possible contributions from the tails of the SR, as well as from bremsstrahlung gluon radiations [8].

To further explore the interplay between the HR and the SR, we focus on the intermediate p_T region, $1 < p_T^B < 5$ GeV/c, where the medium-induced component dominates the away-side yield. We characterize the inverse local slope of the partner yield in this p_T range via a truncated mean $p_T^A \cdot \langle p_T^B \rangle \equiv \langle p_T^B \rangle |_{1 < p_T^B < 5}$ GeV/c - 1 GeV/c. $\langle p_T^B \rangle$ is calculated from the jet yields used to make I_{AA} in Fig. 3. Fig. 4 shows the $\langle p_T^B \rangle$ values for the HR, SR and a near-side region ($|\Delta \phi | < \pi/3$, NR), as a function of the number of participating nucleons, N_{part}. The $\langle p_T^B \rangle$ values for NR have a weak centrality dependence. Their overall levels for $N_{part} > 100$ are $0.533 \pm 0.024, 0.605 \pm 0.032$ and 0.698 ± 0.040 GeV/c for the p_T^A ranges 2-3, 3-4 and 4-5 GeV/c, respectively [21]. This finding is consistent with the dominance of jet fragmentation on the near-side, i.e. a harder spectrum for partner hadrons is expected for higher p_T trigger hadrons.

A very weak centrality dependence is observed for the SR for $N_{part} \gtrsim 100$. In this case, the values for $\langle p_T^B \rangle$ are lower (≈ 0.45 GeV/c) and do not depend on p_T^A. They are, however, larger than the values measured for inclusive charged hadrons (0.38 GeV/c shown by solid lines) [2]. The relatively sharp increase in $\langle p_T^B \rangle$ for $N_{part} \lesssim 100$ may reflect a significant jet fragmentation contribution in peripheral collisions. In contrast, the $\langle p_T^B \rangle$ values for the HR show a gradual decrease with N_{part}, starting close to that for the near-side jet, and approaches the value for the inclusive spectrum for $N_{part} \gtrsim 150$.

The different patterns observed for the yields in the HR and SR suggest a different origin for these yields. The suppression of the HR yield and the softening of its spectrum are consistent with a depletion of yield due to jet quenching. The observed HR yield could be comprised of contributions from “punch-through” jets, radiated gluons and feed-in from the SR. By contrast, the enhancement of the SR yield for $p_T^A,B < 4$ GeV/c suggests a remnant of the lost energy from quenched jets. However, the very weak dependence on p_T and centrality (for $N_{part} \gtrsim 100$) for its peak location and mean p_T may re-
consistent with jet quenching. The latter exhibits the regions of $\Delta \phi$ gives strong evidence for two distinct contributions from sus N angle and jet spectra slope would depend on the diation [11] models, since both the deflection/radiation

tions for "Mach Shock" in a near-ideal hydrodynamical medium [12, 22], and thus they can be used to constrain medium transport properties such as speed of sound and viscosity to entropy ratio.

In conclusion, we have observed strong medium modification of away-side shapes and yields for jet-induced pairs in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. The detailed dependence of these results on p_T and centrality independent shape and mean p_T, possibly reflecting an intrinsic property of the medium response to energetic jets. These results provide strong constraints on competing mechanisms for the energy transport.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Department of Energy and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FFAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSFOTKA- MTA, and US-Israel BSF.

FIG. 4: Truncated mean $\langle p_T \rangle$ in $1 < p_T < 5$ GeV/c versus N_{part} for the near-side (diamonds), away-side shoulder (circles) and head (squares) regions for Au+Au (filled) and p+p (open) for three trigger p_T bins. Solid lines represent measured values for inclusive charged hadrons [2]. Error bars represent the statistical errors. Shaded bars represent the sum of N_{part}-correlated elliptic flow and ZYAM error.

reflect an intrinsic property of the response of the medium to the energetic jets. These observations are inconsistent with simple deflected jet [7, 8] and Cherenkov gluon radiation [11] models, since both the deflection/radiation angle and jet spectra slope would depend on the p_T^A or p_T^B. However, these results are consistent with expectations for "Mach Shock" in a near-ideal hydrodynamical medium [12, 22], and thus they can be used to constrain medium transport properties such as speed of sound and viscosity to entropy ratio.

In conclusion, we have observed strong medium modification of away-side shapes and yields for jet-induced pairs in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. The detailed dependence of these results on p_T and centrality independent shape and mean p_T, possibly reflecting an intrinsic property of the medium response to energetic jets. These results provide strong constraints on competing mechanisms for the energy transport.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Department of Energy and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FFAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSFOTKA- MTA, and US-Israel BSF.

* PHENIX Spokesperson: jacak@skipper.physics.sunysb.edu
† Deceased

[1] M. Gyulassy, I. Vitev, X. N. Wang and B. W. Zhang, nucl-th/0302077
[2] S. S. Adler et al. Phys. Rev. C 69, 034910 (2004)
[3] J. Adams et al. Phys. Rev. Lett. 97, 162301 (2006)
[4] S. S. Adler et al. Phys. Rev. Lett. 97, 052301 (2006)
[5] A. Adare et al. nucl-ex/0611019
[6] J. Adams et al. Phys. Rev. Lett. 95, 152301 (2005)
[7] C. Chiu and R. Hwa, Phys. Rev. C 74, 064909 (2006)
[8] N. Armesto, C. A. Salgado and U. A. Wiedemann, Phys. Rev. Lett. 93, 242301 (2004)
[9] I. Vitev, Phys. Lett. B 630, 78 (2005)
[10] A. D. Polosa and C. A. Salgado, Phys. Rev. C 75, 041901 (2007)
[11] I. M. Dremin, JETP Lett. 30 (1979) 140; V. Koch, A. Majumder and X. N. Wang, Phys. Rev. Lett. 96, 172302 (2006)
[12] J. Casalderrey-Solana, E. V. Shuryak and D. Teaney, J. Phys. Conf. Ser. 27, 22 (2005); hep-ph/0602183
[13] A. Adare et al. Phys. Rev. Lett. 97, 252002 (2006)
[14] K. Adcox et al. Nucl. Instrum. Meth. A 499, 469 (2003).
[15] S. S. Adler et al. Phys. Rev. C 73, 054903 (2006)
[16] S. S. Adler et al. Phys. Rev. Lett. 95, 202301 (2005)
[17] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 182301 (2003)
[18] N. N. Ajitanand et al., Phys. Rev. C 72, 011902 (2005)
[19] T. Renk and K. J. Eskola, hep-ph/0610059
[20] C. Loizides, Eur. Phys. J. C 49, 339 (2007)
[21] Values at $N_{\text{part}} > 100$ are slightly lower than in $p+p$, possibly due to a contribution from a near-side "ridge" [2] in PHENIX η acceptance.
[22] T. Renk and J. Ruppert, Phys. Rev. C 73, 011901 (2006)