Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study

The COVID-19 RISK and Treatments (CORIST) Collaboration

Original article

1. Introduction

The aminoguanidine hydroxychloroquine (HCQ) has been extensively used in the treatment of malaria and is currently widely used to treat autoimmune diseases like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and anti-phospholipid syndrome (APS), due to its immunomodulatory and anti-thrombotic properties [1]. More recently, a promising role of HCQ has been suggested in viral infections [2], since it directly inhibits viral entry and spread in several in vitro and in vivo models. Due to these properties, HCQ has been used in Ebola virus disease [3,4], human immunodeficiency virus (HIV) infection [5], SARS-CoV-1 infection and the Middle East Respiratory Syndrome (MERS) [6,7] and gained worldwide attention as a possible therapy in COVID-19 patients [8].

HCQ might inhibit the intracellular glycosylation of ACE 2, the receptor used by the SARS-CoV-2 virus to enter the cells, resulting in a reduced ligand recognition and internalization of the virus [7] and exerting a possible protective role in SARS-CoV-2 infection. Moreover, due to its immunomodulatory, anti-inflammatory and anti-thrombotic effects, HCQ could also modulate the severity of the disease. However, the exact mechanism for the potential benefit in COVID-19 is largely speculative [9] and might be counterbalanced by adverse effects, mainly cardiovascular [10,11], so that the net balance of this drug’s use remains to be established.

The American Food and Drug Administration (FDA) allowed Chloroquine (CQ) phosphate and HCQ to be provided to certain hospitalized patients because these drugs may possibly help patients with severe COVID-19 [12]. The European Medicines Agency (EMA) authorized the use of CQ and HCQ for COVID-19 in clinical trials or as emergency use [13], while the Italian Drug Agency (AIFA) stated in this emergency phase that therapeutic use of HCQ might be considered in COVID-19 patients, both in those with mild presentation managed at home and in...
hospitalized patients [14]. In clinical practice, HCQ rather than chloroquine has been used because of its more potent antiviral properties and better safety profile [15].

However, in the light of a recent publication [16], that was later retracted [17], and the lack of safety and efficacy of HCQ in the treatment for COVID-19 patients the Executive Group of the Solidarity Trial decided to implement a temporary pause of the HCQ arm within the trial as a precaution, while the safety data is being reviewed [18]. Similarly, the Italian drug Agency AIFA decided to suspend the authorization to use HCQ for COVID-19 treatment outside clinical trials [19].

Recent reviews of clinical trials or observational studies [20–24] have reported insufficient and often conflicting evidence on the benefits and harms of using HCQ to treat COVID-19 and concluded that such, it was impossible to determine the balance of benefits to harm. Until now, although several trials had been started on the use of CQ and HCQ in COVID-19, only few of them have been published [25] on small numbers of patients or on surrogate endpoints or in exposed subjects for prophylaxis use [26].

While waiting the results from ongoing randomized clinical trials (RCT) to define the efficacy in preventing hard endpoints of this treatment so widely used during the emergency phase of the COVID-19 pandemic, powered retrospective observational studies performed in different geographical and disease conditions may still be useful to shed light on this debate. Two retrospective observational studies, both conducted in the New York metropolitan region, did not report any significant association between HCQ use and rates of intubation or death [27,28].

No data are presently available from large cohorts of patients in Italy, which represents one of the most affected countries in terms of total deaths for COVID-19 in the world [29]. We undertook a multicenter Italian collaboration [30] to investigate the relationship between underlying risk factors and COVID-19 outcomes, and to evaluate the association between different drug therapy and disease severity and/or mortality.

We report here the results obtained in 3,451 hospitalized COVID-19 patients receiving or not HCQ treatment.

2. Material and methods

2.1. Setting

This national retrospective observational study was conceived, coordinated and analysed within the CORIST Project (ClinicalTrials.gov ID: NCT04318418, 30). The study was approved by the institutional ethics board of the Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, and of all recruiting centres. Data for the present analyses were provided by 33 hospitals distributed throughout Italy (listed in the supplementary file). Acceptance to participate in the project or to provide data for the present analysis was not related to the use of CQ/HCQ. Each hospital provided data from hospitalized patients who had a positive test result for the SARS-CoV-2 virus at any time during their hospitalization from February 19 to May 23, 2020. The follow-up continued through May 29, 2020.

2.2. Data sources

We developed a cohort comprising 3,971 patients with laboratory-confirmed SARS-CoV-2 infection in an in-patient setting. The SARS-CoV-2 status was declared based on laboratory results (polymerase chain reaction on nasopharyngeal swab) from each participating hospital. Clinical data were abstracted at one-time point from electronic medical records or charts, and were collected using either a centrally designed electronic worksheet or a centralized web-based database. Collected data included patients' demographics, laboratory test results, medication administration, historical and current medication lists, historical and current diagnoses, and clinical notes. In addition, specific information on the most severe manifestation of COVID-19 occurring during hospitalization was retrospectively captured. Maximum clinical severity observed was classified as mild pneumonia; or severe pneumonia; or acute respiratory distress syndrome (ARDS) [31]. Specifically, we obtained the following information for each patient: hospital; date of admission and date of discharge or death; age; sex; the first recorded inpatient laboratory tests at the entry (creatinine, C-reactive protein); past and current diagnoses (myocardial infarction, heart failure, diabetes, hypertension, respiratory disease and cancer) and current drug therapies for COVID-19 – HCQ, lopinavir/ritonavir or darunavir/cockistab, remdesivir, tocilizumab or sarilumab, corticosteroids, heparin, and for comorbidities (insulin, anti-hypertensive treatments, aldosterone receptor antagonists, diuretics, statins, sacubitril/valsartan). A diagnosis of pre-existing cardiovascular disease was based on history of myocardial infarction or heart failure. Chronic kidney disease was classified as: stage 1: kidney damage with normal or increased glomerular filtration rate (GFR) (>90 mL/min/1.73 m²); stage 2: mild reduction in GFR (60-89 mL/min/1.73 m²); stage 3a: moderate reduction in GFR (45-59 mL/min/1.73 m²); stage 3b: moderate reduction in GFR (30-44 mL/min/1.73 m²); stage 4: severe reduction in GFR (15-29 mL/min/1.73 m²); stage 5: kidney failure (GFR <15 mL/min/1.73 m² or dialysis). For statistical analysis, stages 3a and 3b and stages 4 and 5 were combined. GFR was calculated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-Epi) equation. Patients were defined as receiving HCQ if they were receiving it at admission to hospital or received it during the follow-up period. According to the AIFA guidance [14], HCQ was administered at dose of 400 mg x 2/day or x4/day the first day, and 200 mg x 2/day from the second day onwards for at least 5 to a maximum of 10 days, according to the clinical evolution of the disease.

2.3. Statistical analysis

The study index date was defined as the date of hospital admission. Index dates ranged from February 19, 2020 to May 23, 2020. The study end point was the time from study index to death. The number of patients who either died, or had been discharged alive, or were still admitted to hospital as of May 29, 2020, were recorded, and hospital length of stay was determined. Patients alive had their data censored on the date of discharge or as the date of the respective clinical data collection. Data were censored at 35 days of follow up in n=330 (8.3%) patients with a follow up greater than 35 days.

Of the initial cohort of 3,971 patients, 350 patients were excluded from the analysis because they had at least one missing data at baseline or lost to follow up on HCQ use (n=94), other drug therapies for COVID-19 (n=265), time to event (n=59), outcome (death/alive, n=8), COVID-19 severity (n=4), age (n=4 with missing data and n=2 with age<18 years) or sex (n=2). Of the remaining 3,621 patients, 170 patients died or were discharged within 24 hours after presentation, and were also excluded from the analysis.

At the end, the analysed cohort consisted of n=3,451 patients. In patients not included in the analysis (n=520), as unique difference with the analysed group, the prevalence of diabetics (19.9% vs 14.8%, P=0.0066) and, to a less extent, of men (62.3% vs 58.3%, P=0.081) was higher. Out of 3,541 patients, 295 (8.5%) had at least a missing value for covariates. Distribution of missing values was as follows: n=178 for C-reactive protein; n=69 for GFR; n=74 for history of ischemic disease; n=64 for history of chronic pulmonary disease; n=51 for diabetes; n=51 for hypertension and n=56 for cancer. We used multiple imputation techniques (SAS PROC MI, n=10 imputed datasets; and PROC MIANALYZE) to maximize data availability. As sensitivity analysis, we also conducted a case-complete analysis on 3,156 patients.

Cox proportional-hazards regression models were used to estimate the association between HCQ use and death. Since multiple imputation was applied, the final standard error was obtained using the Rubin’s rule based on the robust variance estimator in Cox regression [32]. The proportional hazards assumption was assessed using weighed Schoenfield
feld residuals, and no violation was identified. To account for the non-randomized HCQ administration and to reduce the effects of confound- ing, the propensity-score method was used. The individual propensities for receiving HCQ treatment were assessed with the use of a multivari- able logistic-regression model that included age, sex, diabetes, hyperten- sion, history of ischemic heart disease, chronic pulmonary disease, GFR, C-reactive protein, hospitals clustering and use of other drug therapies for COVID-19 (lopinavir/ritonavir or darunavir/cobicistat, remdesivir, corticosteroids, tocilizumab or sarilumab). Associations between HCQ treatment and death was then appraised by multivariable Cox regres- sion models with the use of propensity-score and further controlling for hospitals clustering as random effect (frailty model). The use of a frailty model was chosen as suggested in [33]. The primary analysis used inverse probability by treatment weighting; the predicted proba- bilities from the propensity-score model was used to calculate the sta- bilized inverse-probability-weighting weight [34]. Stabilized weights were normalized so that they added up the actual sample size. Sec- ondary analyses used propensity-score stratification (n=5 strata) or multivariable Cox regression analysis or multivariable logistic regression analyses comparing death versus alive patients, or accounted for hos- pitals clustering via stratification or by robust sandwich estimator. Pre- established subgroup analyses were conducted according to age or sex of patients, degree of COVID-19 severity experienced during the hospit- al stay, C-reactive protein at basal or other drug therapies for COVID-19. Hospitals were clustered according to their geographical distribu- tion, as illustrated in Table 1. To quantify the potential for an un- measured confounder to render apparent statistically significant hazard ratio non-significant, the E-value was calculated [35]. Analyses were performed with the aid of the SAS version 9.4 statistical software for Windows.

3. Results

We included in the final current analyses 3,451 patients who were hospitalized with confirmed SARS-CoV-2 infection at 33 clinical centres across Italy and either died, had been discharged, or were still in hospital as of May 29, 2020. Of these patients, 2,634 (76.3%, range among hospitals 53.2% to 93.6%) received HCQ. Timing of the first dose of HCQ after presentation to the hospital was 1 day for the large majority of centres, and 2 to 3 days for the others. HCQ was administered in all centres at the dose of 400 mg/day (in one centre however it was used at the dose of 600 mg/day and in another at the dose of 600 mg/day but only in patients younger than 85 years). Duration of treatment ranged from 5 to 15 days (with 10 days as the modal value). The drug used was HCQ in all hospitals.

Baseline characteristics according to HCQ use are shown in Table 1. Patients receiving HCQ were more likely younger, men and had higher levels of C-reactive protein and less likely had ischemic heart disease, cancer or stages 3a or greater chronic kidney disease (Table 1). Patients receiving HCQ more likely received another drug for COVID-19 treat- ment (78.4%; lopinavir/ritonavir or darunavir/cobicistat, remdesivir, tocilizumab or sarilumab, corticosteroids), in comparison with non-HCQ patients (46.3%; P<0.0001; Table 1).

The unadjusted differences and differences adjusted by propensity scores between HCQ-treated and non-HCQ treated patients for each vari- able included in the propensity score are shown in Fig. 1. All the pre- treatment differences disappeared after adjustment by propensity score weighting. The C-statistic of the propensity-score model was 0.74.

3.1. Primary outcome

Out of 3,628 patients, 576 died (16.7%), 2,390 were discharged alive (69.3%) and 485 (14.1%) were still at the hospital. The median follow-up was 14 days (interquartile range 8 to 22; range 2 to 35; 55,388 person-days). Death rate (per 1,000 person-days) was 8.9 in HCQ and 15.7 in non-HCQ patients (Table 2). At univariable analysis, hazard ra- tio for mortality was 0.56 (95%CI: 0.47 to 0.67). In the primary multivariable analysis with inverse probability weighting according to the propensity score, HCQ use was associated with a 30% (95%CI: 16% to 41%) reduction in death risk (Fig. 2, Table 2, E-value=1.67). Secondary multivariable analyses yielded very similar results (Table 2), as well as case-complete analyses restricted to the 3,156 patients without missing data (Table 2). Considering secondary multivariable analyses overall, HR for mortality associated with HCQ ranged between 0.64 to 0.70, according to type of analyses. Control of hospitals clustering with dif- ferent approaches also yielded similar results for the primary analysis (HR=0.71, 95%CI: 0.59 to 0.85 when hospitals clustering was stratified for and HR=0.69, 95%CI: 0.54 to 0.88 with the robust sandwich esti- mator).

Subgroup analyses are presented in Table 3. HCQ use remained con- sistently associated with reduced mortality in almost all subgroups. The inverse association of HCQ with inpatient mortality is slightly more evi- dent in women, elderly and in patients who experienced a higher degree of COVID-19 severity. It was absent in-patient with C-reactive protein <10 mg/L and clearly confined to patients with elevated C-reactive protein (Table 3).

4. Discussion

In a large cohort of 3,451 patients hospitalized for COVID-19 in 33 clinical centers all over Italy, covering almost completely the period of the hospitalization for COVID-19, the use of HCQ was associated with a significant better survival. In-hospital crude death rate was 8.9 per 1,000 person-day for patients receiving HCQ and 15.7 for those who did not. After adjustment for known possible confounders, we observed a 30% reduction in the risk of death in patients receiving HCQ therapy as compared with those who did not.

Our findings provide clinical evidence in support of guidelines by Italian and several international Societies suggesting to use HCQ ther- apy in patients with COVID-19. However, the observed associations should be considered with caution, as the observational design of our study does not allow to fully excluding the possibility of residual con- founders. Large randomized clinical trials in well-defined geographical and socio-economic conditions and in well-characterized COVID-19 pa- tients, should evaluate the role of HCQ before any firm conclusion can be reached regarding a potential benefit of this drug in patients with COVID-19.

Over 76% of patients received HCQ either alone or in combina- tion with other drugs. They were more likely to be younger, men and with higher levels of C reactive protein at entry, while less likely had pre-existing comorbidities such as ischemic heart disease, cancer and severe chronic kidney disease, as compared to patients not receiv- ing the drug. We adjusted our analyses for possible confounders, in- cluding age, sex, diabetes, hypertension, history of ischemic heart dis- ease, chronic pulmonary disease, chronic kidney disease, C-reactive pro- tein and additional treatments for COVID-19, and took into account possible differences across centres by either adjustment or stratifica- tion. To minimize bias due to the observational design, we used dif- ferent analytical approaches aiming at creating an overall balance be- tween comparison groups. Finally, we tried to limit bias due to missing data by using a multiple imputation approach, but in no case, the result was changed. Despite all these precautions, we recognize the possibility, however, of residual unmeasured confounders affecting results.

Systematic reviews of small clinical trials had reported contrast- ing results that were however scarcely reliable because of poor de- signs [20–25]. The HCQ doses tested in a Chinese randomized clin- ical trial [25] were approximately double as compared to that used in our study (1200 mg vs 800 mg as loading dose, 800 mg vs 400 mg as maintenance dose) for twice the time (14-21 days versus 7- 10 days). National guidelines in Italy suggest to use HCQ 200 mg
Table 1

General characteristics of COVID-19 patients at baseline, according to hydroxychloroquine use.

Characteristic	Hydroxychloroquine	P-value unadjusted*	
	No (N=817)	Yes (N=2,634)	
Age-median (IQR-yr.)	73 (58-83)	66 (55-77)	<.0001
Gender- no (%)			<.0001
Women	361 (44.2%)	940 (36.7%)	
Men	456 (55.8%)	1,694 (64.3%)	
Diabetes- no (%)			0.71
No	633 (77.5%)	2,090 (79.3%)	
Yes	162 (19.9%)	515 (19.6%)	
missing data	22 (2.7%)	29 (1.1%)	
Hypertension - no (%)			0.31
No	378 (46.3%)	1,294 (49.1%)	
Yes	416 (50.9%)	1,312 (49.8%)	
Ischemic heart disease- no (%)			<.0001
No	610 (74.7%)	2,190 (83.1%)	
Yes	179 (21.9%)	398 (15.1%)	
Chronic pulmonary disease- no (%)			0.21
No	666 (81.5%)	2,225 (84.5%)	
Yes	127 (15.5%)	369 (14.0%)	
Cancer- no (%)			0.036
No	694 (84.9%)	2,338 (88.8%)	
Yes	101 (12.4%)	262 (9.9%)	
CKD stage-- no (%)			<.0001
Stage 1	241 (29.5%)	970 (36.8%)	
Stage 2	281 (34.4%)	991 (37.0%)	
Stage 3a or stage 3b	180 (22.0%)	487 (18.5%)	
Stage 4 or stage 5	89 (10.9%)	143 (5.4%)	
missing data	26 (3.2%)	43 (1.6%)	
C Reactive Protein- no (%)			0.0003
<1 mg/L	104 (12.7%)	256 (9.7%)	
1-3 mg/L	120 (15.7%)	301 (11.4%)	
>3 mg/L	549 (67.2%)	1,943 (73.8%)	
missing data	44 (5.4%)	134 (5.1%)	
Lopinavir or Darunavir use			<.0001
No	621 (76.0%)	1,203 (36.7%)	
Yes	196 (24.0%)	1,431 (46.3%)	
Tocilizumab or Sarilumab use			<.0001
No	755 (92.4%)	2,160 (82.0%)	
Yes	62 (7.6%)	474 (18.0%)	
Remdesivir use			0.0015
No	808 (98.9%)	2,551 (96.9%)	
Yes	9 (1.1%)	83 (3.1%)	
Corticosteroids use			<.0001
No	596 (73.0%)	1,655 (62.8%)	
Yes	221 (27.0%)	979 (37.2%)	
Clusters of hospitals			<.0001
Northern regions (except Milan) (n)	169 (20.7%)	616 (23.4%)	
Milan (m)	161 (19.7%)	525 (19.9%)	
Center regions (except Rome) (c))	303 (37.1%)	747 (28.4%)	
Rome (r)	94 (11.5%)	390 (14.8%)	
Southern regions (s)	90 (11.0%)	356 (13.5%)	

(n) include hospitals of Novara, Monza, Varese, Pavia, Cremona and Padova; (m) include Humanitas Clinical and Research Hospital, Centro Cardiologico Monzino, and hospitals of San Donato Milanese (Milano) and Cisneslo Balsamo (Milano); (c) include hospitals of Modena, Ravenna, Forlì, Firenze, Pisa, Chiari and Pescara; (r) include National Institute for Infectious Diseases “L. Spallanzani” and Università Cattolica del Sacro Cuore; (s) include hospital of Napoli, Pozzilli (Ischia), Acquisiva delle Fonti (Bari), Foggia, Taranto, Catanzaro, Catania and Palermo. *Chi-square test. **Stage 1: Kidney damage with normal or increased glomerular filtration rate (GFR) (>90 mL/min/1.73 m²); Stage 2: Mild reduction in GFR (60-89 mL/min/1.73 m²); Stage 3b: Moderate reduction in GFR (45-59 mL/min/1.73 m²); Stage 3c: Moderate reduction in GFR (30-44 mL/min/1.73 m²); Stage 4: Severe reduction in GFR (15-29 mL/min/1.73 m²); Stage 5: Kidney failure (GFR < 15 mL/min/1.73 m² or dialysis).

281 twice daily for at least 5-7 days in patients over 70 years and/or
282 with co-morbidities (chronic obstructive pulmonary disease, diabetes,
283 cardiovascular disease) even with mild respiratory symptoms or with
284 radiographically documented pneumonia or in severe patients [36].
285 The lower doses of HCQ used in our centers, as suggested by Italian
286 official guidelines [19,36], may have been both more effective and
287 safer. Two recently published large observational studies, both from large
288 hospitals in New York City, showed no association between HCQ use
289 and in-hospital mortality [27,28], and deserve specific discussion. In the
Table 2
Incidence rates and hazard ratios for death in COVID-19 patients, according to hydroxychloroquine use.

Hydroxychloroquine	Death (N=576)	Patient at risk (N=3,451)	Person-days	Death Rate (x1,000 person-days)
No- no. (%)	190 (23.3%)	817 (100%)	12,084	15.7
Yes- no. (%)	396 (17.4%)	2,634 (100%)	43,304	8.9
Hazard ratio for death (HCQ versus non HCQ)	HR (95% CI)			
Crude analysis	0.56 (0.47 to 0.67)			
Multivariable analysis*	0.70 (0.58 to 0.85)			
Propensity score analysis, inverse probability weighting** (primary analysis)	0.70 (0.59 to 0.84)			
Propensity score analysis, stratification (n=5 strata)**	0.67 (0.56 to 0.81)			
Odds ratio for death (HCQ versus non HCQ)	OR (95% CI)			
Propensity score analysis, inverse probability weighting**	0.67 (0.54 to 0.82)			
Case Complete Analysis (N=3,156)	HR (95% CI)			
Hydroxychloroquine	Death (N=510)	Patient at risk (N=3,156)	Person-days	Death Rate (x1,000 person-days)
---------------------	---------------	--------------------------	-------------	---------------------------------
No- no. (%)	170 (22.9%)	741 (100%)	11,050	15.4
Yes- no. (%)	340 (14.1%)	2,415 (100%)	39,274	8.7
Hazard ratio for death (HCQ versus non HCQ)	HR (95% CI)			
Crude analysis	0.56 (0.46 to 0.67)			
Multivariable analysis*	0.71 (0.59 to 0.86)			
Propensity score analysis, inverse probability weighting**	0.64 (0.53 to 0.76)			
Propensity score analysis, stratification (n=5 strata)**	0.68 (0.56 to 0.82)			
Odds ratio for death (HCQ versus non HCQ)	OR (95% CI)			
Propensity score analysis, inverse probability weighting**	0.67 (0.54 to 0.82)			

Abbreviations: HR, hazard ratio; CI, confidence intervals. *Controlling for age, sex, diabetes, hypertension, history of ischemic heart disease, chronic pulmonary disease, chronic kidney disease, C-reactive protein, lopinavir/ritonavir or darunavir/cobicistat, tocilizumab or sarilumab, remdesivir or corticosteroids use as fixed effects and hospitals clustering as random effect. **Including hospitals clustering as random effect covariate.

Study of Geleris et al. [27], the percentage use of HCQ was lower than in Italy; moreover, in both US studies [27,28] the drug was more frequently administered to patients with previous illnesses and a more severe presentation of the disease. Our cohort included milder pneumonia patients than the US population, due to between-country differences in indications to the drug for the beginning of therapy (e.g., mild pneumonia in Italy versus only severe pneumonia and ARDS in the US). Concomitant use of other drugs for COVID-19 was very low in one study [27] and was not reported in the other study [28]. In our cohort, patients receiving HCQ were more likely treated with another drug for COVID-19 treatmen...
In conclusion, the mortality rate for COVID-19 patients in Italy was 30% compared to 10% in the rest of Europe. This higher mortality rate was associated with increased exposure to SARS-CoV-2 in Italy, a larger hospital clustering effect, and a higher burden of certain comorbidities. The addition of HCQ to SARS-CoV-2 treatments, including corticosteroids, antivirals, or immunosuppressives, did not significantly impact mortality in our study, which is consistent with previous studies. Further research is needed to elucidate the role of HCQ and other treatments in reducing COVID-19 mortality. In the meantime, the use of HCQ should be considered cautiously, particularly when used in combination with other treatments.

Table 3

Subgroups	No. death/patient at risk	No. death/patient at risk	HR (95% CI)*
Women	80/361	116/940	0.63 (0.46 to 0.86)
Men	110/456	270/1,694	0.74 (0.50 to 0.93)
Age <70 years	118/460	293/1,092	0.68 (0.56 to 0.83)
Age ≥70 years	120/394	347/2,034	0.80 (0.62 to 1.03)
Highest degree of COVID-19 severity experienced at hospital			
Mild pneumonia or less	28/424	40/1,358	0.70 (0.41 to 1.18)
Severe pneumonia	80/253	172/764	0.76 (0.58 to 0.99)
Acute respiratory distress syndrome	82/140	174/512	0.69 (0.52 to 0.90)
Use of other COVID-19 treatments*			
No	101/439	64/570	0.63 (0.45 to 0.88)
Yes	89/378	322/2,064	0.77 (0.61 to 0.99)
C-Reactive Protein at baseline**			
<10 mg/L	56/412	125/1,138	1.23 (0.86 to 1.77)
>10 mg/L	123/361	241/1,362	0.59 (0.47 to 0.73)

Abbreviations: HR, hazard ratios; CI, confidence intervals; *Propensity score analysis, inverse probability weighting, including hospital clustering as random effect covariate; multiple imputed analysis.

Fig. 2. Survival curves according to hydroxychloroquine use. The curves are adjusted by propensity score analysis (inverse probability for treatment weighting) and hospital index as random effect, and are generated using the first imputed dataset. The other imputed datasets are similar and thus omitted.
A major strength of this study is the large, unselected patient sample from 33 hospitals, covering the entire Italian territory. Patient sampling covered all the overt epidemic period in Italy. Several statistical approaches were used to overcome biases due to the observational nature of the investigation.

This study has however, several recognized limitations. The study population pertains to Italy, and the results obtained may not be applicable to other populations with a possibly different geographical and socio-economic conditions and natural history of COVID-19. Due to the retrospective nature of the study, some parameters were not available in all patients, and all in-hospital medications might have been not fully recorded. Moreover, although guidelines on the use of HCQ in COVID-19 patients had been published in Italy since the first phase of the pandemic, individual centers could have deviated from recommendations and used different doses or treatment schemes. We have no information on the HCQ doses used individually nor on their possible association with azithromycin. Moreover, adverse events possibly related to drug therapy were not collected, thus we cannot exclude bias due to therapy interruption because of side effects; we do not know whether some deaths could have been due to cardiovascular complications of HCQ. However, recent data on Italian wards showed that COVID-19 patients receiving HCQ and azithromycin had a QTc-interval longer than before therapy, but did not experience, during their hospital stay, any arrhythmic complications, such as syncope or life-threatening ventricular arrhythmias [42], a finding also reported by the RCT mentioned above (39).

Finally, the possibility of unmeasured residual confounding cannot be completely ruled-out. However, the E-value for the lower boundary of the confidence interval of our main result is 1.67, indicating that the confidence interval could be moved to include the null by a strong unmeasured confounder associated with both HCQ treatment and death with a risk ratio of 1.67-fold for each, above and beyond all the measured confounders. Weaker confounders, however, could not do so.

5. Conclusions

Our study, including a large real life sample of patients hospitalized with COVID-19 all over Italy, shows that HCQ use (200 mg twice/day) was associated with a 30% reduction of overall in-hospital mortality. In the absence of clear-cut results from controlled, randomized clinical trials, our data do not discourage the use of HCQ in inpatients with COVID-19. Given the observational design of our study, however, these results should be transferred with caution to clinical practice.
The Authors alone are responsible for the views expressed in this Article. They do not necessarily represent the views, decisions, or policies of the Institutions with which they are affiliated.

Appendix 1

Augusto Di Castelnuovo², Simonetta Costanzo², Andrea Antonini², Nausicaa Berselli³, Lorenzo Blandi³, Raffaele Bruno³, Roberto Cauda¹,4, Giovanni Guaraldi⁴, Lorenzo Menicanti⁴, Ilaria Myê⁵, Giustino Parruti⁵, Giuseppe Patti⁵, Stefano Perlini⁵,6, Francesca Santillì³, Carlo Signorelli⁵, Enrico Spinoni⁵,6, Giùlio G. Stefaníni⁴, Alessandra Vergori⁵, Walter Ageno⁵, Antonella Agodi⁵, Luca Aiello⁵, Piergiuseppe Agostoni⁵,7,8, Samir Al Moghazí⁴, Marianna Auzzu⁴, Filippo Accueìa⁴, Greta Barbierì⁵,6, Alessandro Bartoloni⁵,6, Marialaura Bonaccio⁴, Paolo Bonfanti⁵,6, Francesco Caucìarìo⁵,6, Lucia Caìa⁵, Francesca Cannàa⁵, Laura Carrozzi⁵,6, Antonio Càsio⁴,6, Arturo Cìcullo⁵, Antonella Cìngolìni⁴,6, Francesco Cipòllone⁴, Claudia Colombi⁵, Francesca Crosàa⁵,6, Chiàri Dal Pra⁷,8, Gian Battista Danza⁷,8, Damiùano D’Ardes⁷,9, Kateleen de Gaòta Donàtò⁷, Paola Del Giàcomo⁷, Francesca Di Gennària⁵,6, Giuseppe Di Tàno⁷,8, Giàmpiero D’Offìzìi⁷,8, Tommaso Filòppini⁵, Francesco Maria Fusco⁵, Ivan Gentìle⁵, Alessànder Giallìusi³, Giancarlo Gìni³, Elìvra Grandone³, Leonardo Grisàì³, Gabriella Guàrnìeri⁴,6, Silvia Lamonìca⁵, Francesco Landì³, Armando Leonì³, Francesca Lòcìa⁴,6, Giùlia Macìaggi⁴,6, Silvia Maccìaggi⁴, Alessandro Madaro⁵,6, Riccardo Mappì³,7, Riccardo Maràngà³,7,8, Lorenzo Màrza⁴,6, Giùlio Maresca⁵,6, Claudia Marottìa⁵,6, Franco Mastroìnì⁵,6, Maria Mazzítelli⁵,6, Alessandro Mengòzzi⁵,6, Francesco Menichètti⁵,6, Marianna Meschìaria⁵,6, Filippo Minùtòlo⁵,6, Arturo Montimèri⁵,6, Ròberta Mussínì³,6, Cristina Mussína³,6, Maria Musò⁴,6, Annà Odone⁵,6, Marco Orliviëa⁵,6, Emanuélà Pasì³,6, Francesca Pètri³,6, BiagÌò Pinchérà³,6, Francesca Salína®³,6, Giòvanni Sanègnìa³,6, Carlo Sanègnìa³, Francesco Salínàrò⁵, Vincenzo Sangiovañìa³,6, Carlo Sanègnìa³, Laura Scorzoliìnì³,7,8, Raffàèlla Sgaràglià³,6, Paola Giùstäna Sìmeòne³,6, Michele Spinìcì³,6, Enrico Maria Trecàrihi³,6, Amedeo Venzèìa³,6, Giovanni Verònìesi³,6, Roberto Vèttò³,6, Andrea Vianèllo³,6, Marco Vincètì³,6, Laura Vòccàientì³,6, Raffælè Dè Caterïna³,6, Lia Ciaçòvìle³,6

1Mediterranea Cardiocentro, Napoli. Italy ²Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli (IS). Italy ³UOC Immunodeficienze Virali, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS. Roma. Italy 4Section of Public Health, Department of Biomedical, Metabolic and Nuclear Sciences, University of Modena and Reggio Emilia, Modena. Italy 5IRCCS Policlinico San Donato, San Donato Milanese. Italy 6Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia. Italy 7Department of Clinical, Surgical, Diagnostic, and Paediatric Sciences, University of Pavia, Pavia. Italy 8 Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma. Italy 9University Cattolica del Sacro Cuore - Dipartimento di Sicurezza e Bioetica Sede di Roma, Roma. Italy 10Infectious Disease Unit, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, Modena. Italy 11Humanitas Clinical and Research Hospital IRCCS, Rozzano-Milano. Italy 12Department of Infectious Disease, Azienda Sanitaria Locale (AUSL) di Pescara, Pescara. Italy 13University of Eastern Piedmont, Maggiore della Carità Hospital, Novara. Italy 14Emergency Department, IRCCS Policlinico San Matteo Foundation, Pavia. Italy 15Department of Internal Medicine, University of Pavia, Pavia. Italy 16Department of Medicine and Aging, Clinica Medica, “SS. Annunziata” Hospital and University of Chieti, Chieti. Italy 17School of Medicine, Vita-Salute San Raffaele University, Milano. Italy 18HIV/AIDS Department, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Roma. Italy 19Department of Medicine and Surgery, University of Insubria, Varese. Italy 20Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania; AOU Policlinico-Vittorio Emanuele, Catania. Italy 21Anesthesia and Rianimazione. Dipartimento di Chirurgia Generale Ospedale Morgagni-Pierantoni, Forli. Italy 22Centro Card

Acknowledgments

We thank the participating clinical centres included in this cohort. This Article is dedicated to all the patients who suffered or died, often in solitude, due to COVID-19; their tragic fate gave us moral strength to initiate and complete this research.
Supplementary materials

Supplementary materials associated with this article can be found, in the online version, at doi:10.1101/j.ejim.2020.08.019.

References

[1] Shukla AM, Wagle Shukla A. Expanding horizons for clinical applications of chloroquine, hydroxychloroquine, and related structural analogues. Drugs Context 2019;8:9:1-10. Published 2019 Nov 25. doi:10.1177/2050312319109379.

[2] Savarino A, Boelaert JR, Cassone A, Majori G, Caude R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003;3(11):722-7. doi:10.1016/S1473-3099(03)00806-1.

[3] Dowell SD, Bosworth A, Watson R, et al. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol 2015;96(12):3484-92. doi:10.1099/vir00003009.

[4] Akpovere H. Chloroquine could be used for the treatment of flaviviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 2016;34(4):191-6. doi:10.1007/s00520-016-2243-7.

[5] Savarino A, Shytaj IL. Chloroquine and beyond: exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology 2015;12:51 Published 2015 Jun 18. doi:10.1186/s12977-015-0178-0.

[6] de Wilde AH, Jochems D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014;58(8):4875-84. doi:10.1128/AAC.03011-14.

[7] Devaux CA, Rollain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine in coronavirus infections. Antimicrob Agents Chemother 2010;54(2):560-3. doi:10.1128/AAC.01629-09.

[8] Quiroz Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminouquinolines (chloroquine/hydroxychloroqu) against Sars-Cov-2 infection of human lung in vitro. Int J Antimicrob Agents 2020; Mar 12. doi:10.1016/j.ijantimicag.2020.105938.

[9] Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005;2:69. Published 2005 Aug 22. doi:10.1186/1743-4220-2-69.

[10] Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimbellmann P, Gold HS. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020 May 1. doi:10.1001/jamacardio.2020.1834.

[11] Saleh M, Gabriels J, Chang D, et al. The effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 Infection. Circ Arrhythm Electrophysiol. 2020;29; doi:10.1161/CIRCEP.120.008662.

[12] Food and Drug Administration (FDA) Fact sheet for health care providers: emergency use authorization (EUA) of hydroxychloroquine sulfate supplied from the strategic national stockpile for treatment of COVID-19 in certain hospitalized patients. Posted April 2020;27. Available at: https://www.fda.gov/media/130637/download (Accessed May 31, 2020).

[13] European Medicines Agency. Covid-19: chloroquine and hydroxychloroquine only to be used in clinical trials or emergency use programmes. Available at: https://www.ema.europa.eu/en/news/chloroquine-hydroxychloroquine-only-used-clinical-trials-emergency-use-programmes (Accessed June, 26, 2020).

[14] Agenzia Italiana del Farmaco (AIFA). Idrosolichronia nella terapia dei pazienti adulti con COVID-19. Available at: https://www.agenziafarmaco.gov.it/documents/21234/386864443/d9844c9c-2f7b-6437-4502/093496e9-0090 (Accessed June, 26, 2020).

[15] Yao X, Fu Z, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory Syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020 Mar 9. class2. doi:10.1093/cid/ciaa237.

[16] Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020, published online May 22. doi:10.1016/S0140-6736(20)31810-6.

[17] Mehta MR, Ruschitzka F, Patel AN. Retraction-Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis [retraction of: Lancet 2020 May 22;]. Lancet 2020;395(10240):1820. doi:10.1016/S0140-6736(20)31246-4.

[18] World Health Organization. Hydroxychloroquine and Chloroquine for COVID-19. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments (Accessed June, 26, 2020).

[19] Agenzia Italiana del Farmaco (AIFA). AIFA sospende l’autorizzazione all’uso di idrosolichronia nella terapia del COVID-19 in Italia. AIFA del 08/02/2021. (Accessed May 31, 2020).

[20] Chopra B, Kauer WA, Hremenyuk J. A rapid systematic review of clinical trials utilizing chloroquine and hydroxychloroquine as a treatment for COVID-19. Acad Emerg Med 2020 May 2. doi:10.1111/acem.14005.

[21] Cortegiani A, Egsgaard I, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020;57:279-83. doi:10.1016/j.jcc.2020.03.005.

[22] Shah S, Das S, Jain A, Misra DP, Negi VS. A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease 19 (COVID-19). Int J Rheum Dis 2020;23(6):13-19. doi:10.1111/1756-185X.13842.

[23] Das S, Bhowmick S, Tiwari S, Sen S. An updated systematic review of the therapeutic role of hydroxychloroquine in coronavirus disease 19 (COVID-19) [published online ahead of print, 2020 May 28]. Clin Drug Investig. 2020. doi:10.2147/CID.100261-020-0027-1.0027-1.

[24] Hernandez AV, Roman YM, Pasupuleti V, Barboza JJ, White CM. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review [published online ahead of print, 2020 May 27]. Ann Intern Med. 2020; Jul 13. doi:10.7326/M20-2496. doi:10.7326/M20-2496.

[25] Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 2020 May 14;369:m1849. doi:10.1136/bmj.m1849.

[26] Boulware DR, Pulen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19 [published online ahead of print, 2020 Jun 3]. N Engl J Med. 2020;382(21):2063-74. doi:10.1056/NEJMoa200638.

[27] Grant K, Law J, Power M, et al. A observational cohort study of hydroxychloroquine in hospitalised patients with covid-19. N Engl J Med 2020;382(25):2411-18. doi:10.1056/NEJMoa2102410.

[28] Rosenberg ES, Dufton EM, Udo T, et al. Association of treatment with hydroxychloroquine and chloroquine with in-hospital mortality in patients with COVID-19 in New York State [published online ahead of print, 2020 May 11]. JAMA. 2020;323(24):2493-502. doi:10.1001/jama.2020.8630.

[29] COVID-19 Coronavirus pandemic worldometers. [https://www.worldometers.info/coronavirus/#countries (Accessed June, 26, 2020).]
[30] Di Castelnuovo A, De Caterina R, de Gaetano G, Iacoviello L. Controversial relationship between renin-angiotensin system inhibitors and severity of COVID-19: announcing a large multicentre case-control study in Italy [published online ahead of print, 2020 May 8]. Hypertension. 2020. doi:10.1161/HYPERTENSIONAHA.120.1557010.1161/HYPERTENSIONAHA.120.155470.

[31] Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, 28 January 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/330893/WHO-nCoV-Clinical-2020.3-eng.pdf?sequence=1&isAllowed=y (Accessed June 26, 2020).

[32] Rubin DB. Multiple imputation for nonresponse in surveys. New York: John Wiley; 1987.

[33] Glidden DV, Vittinghoff E. Modelling clustered survival data from multicentre clinical trials. Stat Med 2004;23(3):369–88. doi:10.1002/sim.1599.

[34] Garrido MM, Kelley AS, Paris J, et al. Methods for constructing and assessing propensity scores. Health Serv Res 2014;49(5):1791–20. doi:10.1111/1475-6773.12182.

[35] VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the e-value. Ann Intern Med 2017;167(4):268-74. doi:10.7326/M16-2607.

[36] Società Italiana di Malattie Infettive e Tropicali (SIMIT). Vademecum per la cura delle persone con malattia da COVID-19. Available at: http://www.simit.org/medias/1569-covid19-vademecum-13-03-202.pdf, (Accessed June 26, 2020).

[37] McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in covid-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020;19(6):102537. doi:10.1016/j.autrev.2020.102537.

[38] Thachil J. The versatile heparin in COVID-19. J Thromb Haemost 2020;18(5):1020–2. doi:10.1111/jth.14821.

[39] Horby P, Matham M, Linsell L, et al. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: preliminary results from a multicentre, randomized, controlled trial. medRxiv 2020:07.15.20151852 https://doi.org/10.1101/2020.07.15.201518522020.

[40] Arshad S, Kilgore P, Chaudhry ZS, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis 2020;97:396–403. doi:10.1016/j.ijid.2020.06.099.

[41] Lagier JC, Million M, Gautret P, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis [published online ahead of print, 2020 Jun 25]. Travel Med Infect Dis. 2020;36:101791. doi:10.1016/j.tmmd.2020.101791.

[42] Cipriani A, Zorzi A, Cecatto D, et al. Arrhythmic profile and 24-hour QT interval variability in COVID-19 patients treated with hydroxychloroquine and azithromycin [published online ahead of print, 2020 May 19]. Int J Cardiol. 2020;3222:3-3. doi:10.1016/j.ijcard.2020.05.036.