Time since menopause and skeletal muscle estrogen receptors, PGC-1α, and AMPK

Young-Min Park, PhD,1 Rocio I. Pereira, MD,2,4 Christopher B. Erickson, BS,1 Tracy A. Swibas, MS,1 Choung hun Kang, PhD,5 and Rachael E. Van Pelt, PhD1,2

Abstract
Objective: Short-term administration of estradiol (E2) improves insulin-stimulated glucose disposal rate in early postmenopausal (EPM) women compared with a reduction in late postmenopausal (LPM) women. The underlying mechanisms by which E2 action on glucose disposal rate reversed from beneficial early to harmful late in menopause is unknown, but might include adverse changes in estrogen receptors (ERs) or other biomarkers of cellular energy metabolism with age or duration of estrogen deficiency.

Methods: We retrospectively analyzed skeletal muscle samples from 27 postmenopausal women who were 6 years or less past menopause (EPM; n = 13) or at least 10 years past menopause (LPM; n = 14). Fasted skeletal muscle (vastus lateralis) samples were collected after 1 week administration of transdermal E2 or placebo, in random cross-over design.

Results: Compared with EPM, LPM had reduced skeletal muscle ERα and ERβ nuclear protein. Short-term E2 treatment did not change nuclear ERα or ERβ, but decreased cytosolic ERα, so the proportion of ERα in the nucleus compared with the cytosol tended to increase. There was a group-by-treatment interaction (P < 0.05) for nuclear proliferator-activated receptor γ co-activator 1-α and phosphorylated adenosine monophosphate-activated protein kinase, such that E2 increased these proteins in EPM, but decreased these proteins in LPM.

Conclusions: These preliminary studies of skeletal muscle from early and late postmenopausal women treated with E2 suggest there may be declines in skeletal muscle ER and changes in the E2-mediated regulation of cellular energy homeostasis with increasing time since menopause.

Key Words: AMPK – Estradiol – Estrogen receptors – Menopause – PGC-1α – Skeletal muscle.
(eg, diminished oxidative metabolism, increased reactive oxygen species) and reduced insulin-mediated glucose uptake.16 Preliminary evidence suggests that the relative expression of \(\text{ER}_\alpha\) to \(\text{ER}_\beta\) in various tissues might be shifted after ovariectomy in animals or menopause in humans.13,17 However, it is not yet known whether \(\text{ER}_\alpha\) or \(\text{ER}_\beta\) (content or function) in human tissues changes with increasing time since menopause (ie, duration of estrogen deficiency). If so, this would be expected to impact the metabolic actions of \(E_2\) that are mediated through its receptor.

In addition to the classical genomic effects of estrogens acting through nuclear ER, estrogens may further impact bioenergetic pathways associated with insulin action through rapid nongenomic mechanisms (ie, extranuclear ER). For example, \(E_2\) has been shown to rapidly (within minutes) increase adenosine monophosphate-activated protein kinase (AMPK) in rat soleus.18 Moreover ER-mediated transcription can occur through ligand-independent mechanisms (eg, phosphorylation of ER by Akt).19 Thus, the relative abundance of extranuclear ER, irrespective of available ligand (eg, \(E_2\)), is important for tissue metabolic function.20 However, to our knowledge, no studies have reported age or menopause-related changes in nuclear/extranuclear ER protein in human skeletal muscle.

As a follow-up to our initial studies, the aim of these secondary studies was to determine whether late, compared with early, postmenopausal women had changes in skeletal muscle ER (nuclear and cytosolic fractions) that might explain the adverse effect of \(E_2\) on glucose disposal that we previously observed.5 We further assessed the impact of \(E_2\) on master regulators of cellular bioenergetic pathways (AMPK and peroxisome proliferator-activated receptor \(\gamma\) co-activator 1-\(\alpha\) [PGC-1\(\alpha\)]) that might be expected to contribute to changes in \(E_2\) action on glucose disposal with time since menopause.

METHODS

Participants

The present study retrospectively analyzed muscle samples from a subset of women enrolled in a previous study5: 13 EPM women (\(\leq 6\) years of menopause) and 14 LPM women (\(\geq 10\) years past menopause). Detailed inclusion and exclusion criteria were previously reported.5 In brief, women were healthy, sedentary to moderately active, nonobese (body mass index [BMI] <30 kg/m\(^2\)), postmenopausal women (age 45-70 years) who had never used any formulation of estrogen-based HT. All participants provided informed consent before enrollment. The protocol was approved by the Colorado Multiple Institutional Review Board.

Study design

At the screening visit, body composition, oral glucose tolerance, and physical activity were assessed. All participants completed two treatment conditions (1 week of transdermal placebo [PL] or \(E_2\)) in random order with a washout period of 6 ± 2 weeks between study visits. Under both conditions, fasted skeletal muscle was collected before measurement of insulin-mediated GDR by hyperinsulinemic-euglycemic clamp.

Body composition assessment

Total fat mass (FM) and fat-free mass (FFM) were measured by a dual x-ray absorptiometry (DXA; Hologic Discovery W, software version 11.2) as previously described.21

Glucose tolerance and insulin sensitivity

At the screening visit, a 2-hour 75 g oral glucose tolerance test (OGTT) was administered in the morning after an overnight fast as previously described.5 Glucose tolerance was assessed by area under the curve (AUC) over the 2-hour period using the trapezoidal method. On two separate occasions, women underwent a hyperinsulinemic-euglycemic clamp to assess whole insulin sensitivity as previously described.5 Briefly, insulin-mediated GDR was determined from the steady-state glucose infusion rate needed to maintain euglycemia (90 mg/dL) during an insulin infusion rate of 40 \(\mu\)U/m\(^2\)/min. Glucose and insulin samples collected during the OGTT and clamp visits were stored at \(-80\) °C and analyzed in batch by the University of Colorado Anschutz Medical Campus (UC-AMC) Clinical Translational Research Center (CTRC) Laboratory. Plasma glucose concentration was determined enzymatically (Beckman Coulter, Inc.); insulin concentration was assessed using radioimmunoassay (EMD Millipore).

Three-day dietary lead-in period

All participants were required to maintain their current body weight within \(\pm 2\) kg before enrollment and throughout testing. To make the macronutrient intake among the participants in the days before the testing day consistent, a standardized diet was given by the UC-AMC CTRC metabolic kitchen 3 days before each testing day as previously described.5

Estradiol treatment

The clamp visit was repeated on two occasions after 1 week of transdermal \(E_2\) (0.15 mg) and 1 week of matching transdermal PL treatment in a randomized, blinded, cross-over design. Patches were changed out mid-week and the second set removed after the biopsy and clamp procedures.

Human muscle biopsy

On the morning before each clamp, skeletal muscle samples were percutaneously obtained from the vastus lateralis. After sanitizing and draping the skin in a sterile manner, 1% lidocaine (with no epinephrine) was injected under the skin. An approximately 0.75 cm incision was made in the skin and fascia over the belly of the vastus lateralis. Approximately 100 mg of muscle tissue was removed using a 5-mm Bergstrom side-cut biopsy needle with suction applied. Muscle tissues were immediately flash frozen with liquid \(N_2\).
Cellular protein fractionation

The method for cellular protein fractionation was modified from previous studies. Approximately 30 mg skeletal muscle was pulverized and homogenized using a tissue homogenizer (Bullet blender, Next Advance, Averill, NY) in cold Buffer A containing 20 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid), 50 mM sodium fluoride, 100 mM NaCl, 1 mM ethylenediamine tetraacetic acid (EDTA), 1 mM ethyleneglycol tetraacetic acid (EGTA), 1 mM dithiothreitol (DTT), 1 mM sodium orthovanadate, 2 mM 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF), 20 μg/mL leupeptin, 20 μg/mL aprotinin, 20 μg/mL antipain, 10 mM iodoacetamide, 5 mM p-chloromercuri phenylsulfonate (pCMBS), and 6 μL/mL phoshatase inhibitor cocktail 2 and 3; and centrifuged at 500 g for 5 minutes. Supernatant (cytosol/membrane fraction) was stored at -80°C. Crude nuclei (pellet) were resuspended and sonicated in cold buffer B (buffer A + 25% glycerol, 0.1% sodium dodecyl sulfate [SDS], and 400 mM NaCl), and incubated at room temperature for 15 minutes. After a centrifugation at 3,000 g for 4°C for 5 minutes, supernatant (nuclear fraction) was obtained and stored at -80°C for further analyses.

SDS-PAGE western blot

Protein concentrations in nuclear and cytosol/membrane fraction in skeletal muscle were determined using the Pierce BCA protein assay kit (Thermo Scientific, Rockford, IL). Samples containing the protein homogenates (30 μg of protein) and laemmlı buffer were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and transferred onto polyvinylidene difluoride (PVDF) membranes by electroblotting. After blocking in 5% non-fat milk, membranes were probed with primary antibodies (1:200-1,000 concentrations in 5% bovine serum albumin). ERα, ERβ, and PGC-1α antibodies were obtained from Cell Signaling (cs8644, Beverly, MA), R&D Systems (mab7106, Minneapolis, MN), and EMD Millipore (st1202, Temecula, CA), respectively. Oxidative phosphorylation (OxPho) proteins, and AMPKα, respectively. Empty well (loading buffer only) was used as a negative control for those proteins. (A) Lanes 1 and 3: nuclear fraction, lanes 2 and 4: cytosolic fraction. α-Tubulin was used as a cytosolic marker; no bands were detected in nuclear fraction. AMPK, adenosine monophosphate-activated protein kinase; ER, estrogen receptor; PGC-1α, proliferator-activated receptor γ co-activator 1-α.

Statistical analysis

The present study utilized a two-group (EPM vs LPM) repeated-measure (PL vs E2) general linear model to test for main effects of menopausal group or E2 treatment and group-by-treatment interactions. When a significant group-by-treatment interaction existed, least significant difference post-hoc test was used for pair-wise comparisons. Bivariate Pearson’s correlations were performed to determine the association between protein expressions. Baseline group differences (LPM vs EPM) were assessed using χ tests. All data were analyzed using IBM SPSS Statistics version 22.0. P < 0.05 was considered statistically significant and data are reported as means ± SEM unless otherwise specified.

RESULTS

Participant characteristics

Compared with EPM women, LPM women were on average 7 years older and 9 more years past menopause (Table 1). The EPM and LPM groups included: non-Hispanic White (n = 11 and 11, respectively), non-Hispanic Black (n = 1 and 1), Hispanic (n = 1 and 1), and Asian (n = 0 and 1). LPM women were leaner (less total FM and FFM) compared with EPM women, but percent fat did not differ between groups. All women had normal fasting and postchallenge glucose and insulin concentrations. Circulating E2 concentrations were not different between EPM and LPM women at baseline (16 ± 17 vs 10 ± 6 pg/mL) or in response to 1 week of 0.15 mg transdermal E2 (180 ± 102 vs 149 ± 56 pg/mL). Although our...

PARK ET AL

TABLE 1. Participant characteristics

	EPM (n = 13)	LPM (n = 14)
Age, y	55 ± 3	62 ± 3*
Time since menopause, y	3 ± 1	12 ± 2*
Weight, kg	69.4 ± 7.8	60.8 ± 6.1*
BMI, kg/m²	26.0 ± 2.5	23.6 ± 3.0*
Total fat mass, kg	25.2 ± 5.4	20.9 ± 5.3*
Fat-free mass, kg	44.2 ± 4.4	39.8 ± 2.8*
%Fat, kg/kg	36.1 ± 4.7	34.1 ± 5.8
Fasting glucose, mg/dL	92.1 ± 5.7	89.1 ± 12.6
Fasting insulin, µU/mL	13.2 ± 4.0	11.4 ± 4.0
OGTT glucose AUC (×10⁶)	1.3 ± 0.2	1.4 ± 0.4
OGTT insulin AUC (×10⁶)	7.5 ± 3.9	6.4 ± 2.5
GDR (mg/kg FFM/min)	0.2 ± 0.8	−0.5 ± 1.5*

Mean ± SD.

ΔGDR, estradiol-mediated change in glucose disposal rate during clamp; AUC, area under the curve; BMI, body mass index; EPM, early (<5 years) postmenopausal; FFM, fat-free mass; LPM, late (≥10 years) postmenopausal; OGTT, 2-hour oral glucose tolerance test.

*P < 0.05 group difference.

**P = 0.14.

Estrogen receptors

Nuclear protein contents of ERα and ERβ were lower in LPM compared with EPM women (group main effect, P < 0.05 in both ER α and β; Fig. 2A and B). E2 treatment decreased cytosolic ERα protein in both groups (treatment main effect, P < 0.05; Fig. 2C). Cytosolic ERβ protein was lower in LPM than EPM women (group main effect, P < 0.01; Fig. 2D). There was a nonsignificant trend for the ratio of ERα nuclear/cytosolic protein to increase after E2 treatment in both groups (treatment main effect, P = 0.072), and this ratio tended to be lower in LPM compared with EPM women (group main effect, P = 0.069; Fig. 2E). There were no group differences or treatment effects in the ratio of ERβ nuclear/cytosolic protein (Fig. 2F) or in the ratio of ERα/ERβ protein within the nuclear and cytosolic fractions (data not shown).

Markers of cellular bioenergetics

A significant group–by-treatment interaction was found in PGC-1α nuclear protein, such that E2 treatment increased nuclear PGC-1α by 22% in EPM women, but decreased it by 23% in LPM women (interaction, P < 0.05; Fig. 3A). There was a nonsignificant trend for E2 to reduce cytosolic PGC-1α protein in both groups (treatment main effect, P = 0.10; Fig. 3C), so the ratio of nuclear/cytosolic PGC-1α protein was increased (treatment main effect, P < 0.05; Fig. 3E). OxPhos complex V protein expression was lower in LPM compared with EPM women (group main effect, P < 0.01; Fig. 3B), whereas no significant differences were found in OxPhos complex IV and II protein expression between groups (Fig. 3D and F). The nuclear/cytosolic ratio of PGC-1α protein expression was correlated with the nuclear/cytosolic ratio of ERα protein expression (r = 0.718, P < 0.001; Fig. 4A), but not with the nuclear/cytosolic ratio of ERβ protein expression (r = 0.265, P = 0.10; Fig. 4B). No associations were found between ERα/ERβ, PGC-1α, or OxPhos complex proteins and GDR (data not shown).

In EPM women, transdermal E2 treatment increased phosphorylation of AMPK by 14% at the activation site Thr172 (pAMPK Thr172 protein), but decreased it 10% in LPM women (group–by-treatment interaction, P < 0.05; Fig. 5A). No significant differences were found between groups in phosphorylation of AMPK at the inhibition site Ser485-491 (pAMPK Ser485-491; Fig. 5B). pAMPK Thr172 protein content was significantly associated with GDR (r = 0.216, P < 0.05; Fig. 5C), but not with the nuclear/cytosolic ratio of ERα protein (r = −0.005, P = 0.95; Fig. 5D).

DISCUSSION

These studies are the first to demonstrate that skeletal muscle ERα and ERβ proteins are lower in LPM compared with EPM women. These data suggest that the beneficial effect of E2 on GDR early in menopause compared with the harmful effect late in menopause that we previously observed were not explained by changes in the balance of ERα to ERβ in skeletal muscle. Although declines in ER content with time since menopause could contribute to a reduced E2 action late in menopause, it does not account for the reversal in E2 action from early to late menopause. Instead, nuclear PGC-1α and AMPK activation (pAMPK Thr172) were increased in EPM women, but decreased in LPM women. These new data suggest there may be adverse changes in E2-mediated effects on master regulators of cellular energy homeostasis (nuclear PGC-1α and AMPK activation) with increasing time since menopause.

Muscle estrogen receptors and time since menopause

Estrogens exert many of their biologic actions through ERα and ERβ. ERα appears to be particularly important to metabolic health given that global knockout of this receptor subtype, but not ERβ, leads to a metabolic syndrome phenotype in rodents. If aging or prolonged duration of estrogen deficiency leads to loss of ERα or possibly the balance of ERα to ERβ, this would have important implications to the metabolic action of E2 in women with increasing time since menopause. However, to our knowledge, the effects of age or duration of estrogen deficiency on ER in human skeletal muscle have not been studied previously. Cross-sectional comparisons of adipose tissue ER mRNA expression in premenopausal versus postmenopausal women have been inconsistent, reporting either no group differences or greater ERβ, but not ERα, in postmenopausal compared with premenopausal women. These data are in contrast to the present study, in which we found reduced skeletal muscle nuclear ERα and ERβ protein in late compared with early postmenopausal women. One week of transdermal E2 did not alter muscle nuclear ERα or ERβ protein. Our studies are in contrast to previous studies due to differences in the tissues...
studied (muscle vs adipose); method of measure (protein vs mRNA); and menopausal groups studied (early/late vs pre/post). Our data are the first to suggest there may be declines in skeletal muscle ER protein (both \(\alpha\) and \(\beta\) subunits) with increasing time since menopause.

Estrogens, estrogen receptors, and insulin sensitivity

In rodent and nonhuman primates, glucose tolerance and insulin-mediated glucose disposal are impaired after ovariectomy and restored with estrogen,\(^7,8,24,25\) demonstrating exogenous estrogens have favorable effects on systemic insulin action shortly after loss of ovarian function. Consistent with this, our well-controlled human physiology studies demonstrated improved systemic insulin-stimulated glucose disposal after both short-term conjugated estrogens and \(E_2\) administration in early postmenopausal women.\(^4,26\) Evidence suggests \(E_2\)-mediated changes in glucose uptake are through \(ER\alpha\) signaling.\(^13,27\) Expression of \(ER\alpha\) is high in insulin-sensitive tissues and \(ER\alpha\) (but not \(ER\beta\)) knockout animals have impaired glucose tolerance, insulin-mediated glucose disposal, hepatic glucose production, and insulin signaling.\(^14,15\) However, in the present study, the amount of \(ER\alpha\) and \(ER\beta\) in skeletal muscle was not related to \(E_2\)-mediated changes in whole body glucose disposal. Thus, loss of \(ER\alpha\) and \(ER\beta\) in skeletal muscle was not related to \(E_2\)-mediated changes in whole body glucose disposal. Thus, loss of \(ER\alpha\) (or the balance of \(ER\alpha/ER\beta\)) with time since menopause did not appear to account for the reversal in \(E_2\) action from early to late menopause that we previously observed.\(^5\)

Localization of estrogen receptors and PGC-1\(\alpha\)

While most \(ER\alpha\) is found in the nucleus, a small proportion resides in the cytoplasm and translocates to the nucleus after binding to ligand (eg, \(E_2\)).\(^28\) In the present study, the ratio of

FIG. 2. Skeletal muscle estrogen receptor (ER) protein. (A) \(ER\alpha\) protein in nuclear fraction; (B) \(ER\beta\) protein in nuclear fraction; (C) \(ER\alpha\) protein in cytosolic fraction; (D) \(ER\beta\) protein in cytosolic fraction; (E) ratio of \(ER\alpha\) nucleus/cytosol protein; and (F) ratio of \(ER\beta\) nucleus/cytosol protein. Values are means ± SE (n = 12-13 per group). Group = group main effect, early postmenopausal women (EPM; ≤6 years) versus late postmenopausal women (LPM; ≥10 years); treatment = treatment main effect, estradiol (\(E_2\)) versus placebo (PL). AU, arbitrary unit.
ERα in the nucleus relative to the cytosol tended to increase in response to E2 in both early and late postmenopausal women. This ratio of nuclear/cytosolic ERα was highly related to the ratio of nuclear/cytosolic PGC-1α, suggesting colocalization. PGC-1α is a well-known inducible transcription coactivator that acts as a key regulator of energy metabolism. Thus, as a coactivator for ERα, PGC-1α may be an important convergence point for ERα signaling and cellular energy homeostasis.

Muscle estrogen receptors and mitochondrial markers

A growing body of evidence suggests that reduced mitochondrial content and function in skeletal muscle contributes to insulin resistance and increased risk for diabetes. Impairment in skeletal muscle mitochondrial content and oxidation after ovariectomy in rodents further suggest a role for estrogens. Importantly, recent studies of muscle-specific ERα knockout (αMERKO) mice demonstrated a role for skeletal muscle ERα on mitochondrial function and metabolic homeostasis. The impaired glucose homeostasis observed in the αMERKO mice was paralleled by abnormal mitochondrial morphology, impaired mitochondrial fission dynamics, and overexpression of reactive oxygen species in skeletal muscle. To our knowledge, no studies have evaluated the relation between skeletal muscle ERα and mitochondrial function in humans. In the present study, E2-mediated localization of ERα and PGC-1α from the cytosol to the nucleus was strongly correlated. However, the different E2-mediated
changes in PGC-1α and AMPK across menopausal groups (increases early, decreases late) were not accompanied by corresponding E2-mediated changes in ER across groups. There were also no E2-mediated changes in mitochondrial oxidative phosphorylation complex proteins. Thus, the E2-mediated effects on PGC-1α may not result in changes in mitochondrial content, though future studies directly assessing mitochondrial respiration are needed to confirm this.

Estrogen and muscle AMPK
Like PGC-1α, evidence implicates AMPK as a master regulator of many cellular pathways including insulin action and oxidative metabolism.36,37 In rodents, ovariectomy is accompanied by reduced skeletal muscle AMPK activity, and restored by E2 treatment.38 Moreover, acute (10 minutes) E2 stimulation of rat soleus muscle in vitro increased AMPK.18 This latter observation is consistent with a rapid nongenomic action of E2 on AMPK-mediated pathways. In

FIG. 4. Relation between nuclear/cytosol PGC-1α and estrogen receptor (ER). (A) Association between nuclear/cytosolic PGC-1α and nuclear/cytosolic ERα; and (B) association between nuclear/cytosolic PGC-1α and nuclear/cytosolic ERβ. (*) Denotes a significant (P < 0.05) correlation. AU, arbitrary unit; EPM, early postmenopausal women; E2, estradiol; PGC-1α, proliferator-activated receptor γ co-activator 1-α; PL, placebo; LPM, late postmenopausal women.
the present study, a marker of AMPK activation (phosphorylated AMPK Thr172) was increased in early, but decreased in LPM women after short-term (1 week) E2 treatment. This reversal in E2 action on AMPK activation from early to late menopause was consistent with our previously observed reversal in E2 action on insulin-mediated glucose disposal. Moreover, in the present study, skeletal muscle AMPK activation was correlated with whole body glucose disposal. On the contrary, AMPK activation was not correlated with ERα protein in skeletal muscle, consistent with the possibility that the effect of E2 on AMPK was through a nongenomic (ER-independent) mechanism. These data are in contrast to the observations that phosphorylation of AMPK in murine skeletal muscle is increased in response to ERα-selective agonists and decreased in ERα knockouts. Additional studies in human tissue are needed to resolve these discrepant findings.

Potential limitations

There are limitations to the current studies that should be considered. First, these were secondary analyses of tissues collected as part of a larger trial which was powered to detect group differences in E2-mediated change in GDR. This ancillary study was not statistically powered a priori for any of the outcomes reported herein and as such results should be interpreted with caution and reproduced when possible. A second important limitation of the current study was lack of additional biopsies collected during the clamp (ie, in the insulin-stimulated condition). This would have allowed for further assessment of changes in insulin-signaling pathways with time since menopause and in response to E2 treatment. There were no group differences in basal expression of insulin signaling intermediates (IRS1, Akt, AS160) or glucose transport (GLUT4) protein under control or E2-treated conditions (data not shown), but future studies are needed to determine whether E2 impacts these signaling molecules during insulin stimulation. Third, we cannot tease out the respective effects of age and duration of estrogen deficiency on group differences in ER. In addition to being 9 years further past menopause, LPM women were on average 7 years older than EPM women. None of the women had used any type of HT in the past, so their years since menopause will be needed to further elucidate the mechanism of E2 action on cellular bioenergetics in EPM women.

EPM women; 1 week of transdermal E2 administration did not alter ER protein. Short-term E2 administration increased nuclear PGC-1α and AMPK activation in early postmenopausal women compared with a decrease in LPM women. Taken together, these novel preliminary data in skeletal muscle collected from EPM and LPM women treated with E2 suggest there may be declines in skeletal muscle ER and a reversal in the E2-mediated regulation of cellular energy homeostasis with increasing time since menopause. Additional well-controlled human physiology studies are needed to further elucidate the mechanism of E2 action on cellular bioenergetics in EPM women.

Acknowledgments:
The authors wish to thank the staffs of the University of Colorado Anschutz Medical Campus (UC-AMC) Clinical Translational Research Center (CTRC), and Energy Balance Core of the Colorado Nutrition and Obesity Research Unit (NORC) for their assistance in conducting this study. The authors would also like to thank the members of their research group for carrying out the day-to-day activities of the project and the study volunteers for their time and efforts.

REFERENCES

1. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404-2411.
2. Santen RJ, Alired DC, Ardin SP, et al. Postmenopausal hormone therapy: an Endocrine Society scientific statement. J Clin Endocrinol Metab 2010;95(suppl 1):s1-66.
3. Salpeter SR, Walsh JM, Orniston TM, Gheyser E, Buckley NS, Salpeter EE. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diab Obesity Metab 2006;8:538-554.
4. Van Pelt RE, Gozansky WS, Schwartz RS, Kohut WM. Intravenous estrogens increase insulin clearance and action in postmenopausal women. Am J Physiol Endocrinol Metab 2003;285:E311-E317.
5. Pereira RJ, Casey BA, Swibas TA, Erickson CB, Wolfe P, Van Pelt RE. Timing of estradiol treatment after menopause may determine benefit or harm to insulin action. J Clin Endocrinol Metab 2015;100:4456-4462.
6. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchic glucose metabolism in non-insulin-dependent (type II) diabetes mellitus. J Clin Investig 1985;76:149-155.
7. Campbell SE, Febrario MA. Effect of the ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. Am J Physiol Endocrinol Metab 2002;282:1139-1146.
8. Kumagai S, Holmang A, Bjorntorp P. The effects of oestrogen and progesterone on insulin sensitivity in female rats. Acta Physiol Scand 1993;149:91-97.
9. Duretton MN, Leneveu MC, Giudicelli Y, Pequeru Y. Evidence for functional estrogen receptors alpha and beta in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol 2004;286:C655-C661.
10. Wend K, Wend P, Krum SA. Tissue-specific effects of loss of estrogen during menopause and aging. Front Endocrinol 2012;3:19.
11. Barros RP, Machado UF, Gustafsson JA. Estrogen receptors: new players in diabetes mellitus. Trends Mol Oncol Med 2006;12:425-431.
12. Barros RP, Machado UF, Warner M, Gustafsson JA. Muscle GLUT4 regulation by estrogen receptors ERbeta and ERalpha. Proc Natl Acad Sci USA 2006;103:1605-1608.
13. Hevener AL, Clegg DJ, Mauvais-Jarvis F. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome. Molec Cell Endocrinol 2015;418(pt 3):306-321.
14. Byzgolova G, Gao H, Ahren B, et al. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia 2006;49:588-597.
15. Ribas V, Nguyen MT, Henstridge DC, et al. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalpha-deficient mice. Am J Physiol Endocrinol Metab 2010;298:E304-E319.
16. Ribas V, Drew BG, Zhou Z, et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med 2016; 8:334ra54.

17. McInnes KJ, Andersson TC, Simonyte K, et al. Association of 11beta-hydroxysteroid dehydrogenase type 1 expression and activity with estrogen receptor beta in adipose tissue from postmenopausal women. Menopause 2012;19:1347-1352.

18. Rogers NH, Witczak CA, Hirshman MF, Goodyear LJ, Greenberg AS. Estradiol stimulates Akt, AMP-activated protein kinase (AMPK) and TBC1D1/4, but not glucose uptake in rat soleus. Biochem Biophys Res Commun 2009;382:646-650.

19. Lannigan DA. Estrogen receptor phosphorylation. Steroids 2003;68:1-9.

20. Liu S, Le May C, Wong WP, et al. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 2009;58:2292-2302.

21. Van Pelt RE, Evans EM, Schechtman KB, Ehsani AA, Kohrt WM. Contributions of total and regional fat mass to risk for cardiovascular disease in older women. Am J Physiol Endocrinol Metabol 2002;282:E1023-E1028.

22. Pedersen SB, Bruun JM, Hube F, Kristensen K, Hauner H, Richelsen B. Demonstration of estrogen receptor subtypes alpha and beta in human adipose tissue: influences of adipose cell differentiation and fat depot localization. Molec Cell Endocrinol 2001;182:27-37.

23. Shin JH, Hur JY, Seo HS, et al. The ratio of estrogen receptor alpha to estrogen receptor beta in adipose tissue is associated with leptin production and obesity. Steroids 2007;72:592-599.

24. Cefalu WT, Wagner JD, Bell-Farrow AD, et al. The effects of hormonal replacement therapy on insulin sensitivity in surgically postmenopausal cynomolgus monkeys (Macaca fascicularis). Am J Obstet Gynecol 1998;178:896-901.

25. Wagner JD, Thomas MJ, Williams JK, Zhang L, Greaves KA, Cefalu WT. Insulin sensitivity and cardiovascular risk factors in ovariectomized monkeys with estradiol alone or combined with nomegestrol acetate. J Clin Endocrinol Metab 1998;83:896-901.

26. Van Pelt RE, Schwartz RS, Kohrt WM. Insulin secretion and clearance after subcutaneous estradiol administration in postmenopausal women. J Clin Endocrinol Metab 2008;93:484-490.

27. Barros RP, Gustafsson JA. Estrogen receptors and the metabolic network. Cell Metab 2011;14:289-299.

28. Kocanova S, Mazaheri M, Caze-Sutra S, Bystricky K. Ligands specify estrogen receptor alpha nuclear localization and degradation. BMC Cell Biol 2010;11:98.

29. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999;98:115-124.

30. Liang H, Ward WT. PGC-1alpha: a key regulator of energy metabolism [Review]. Adv Physiol Educ 2006;30:145-151.

31. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005;1:361-370.

32. Tcherepanova I, Puigserver P, Norris JD, Spiegelman BM, McDonnell DP. Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J Biol Chem 2000;275:16302-16308.

33. Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005;54:8-14.

34. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51:2944-2950.

35. Cavalcanti-de-Albuquerque JP, Salvador IC, Martins EL, et al. Role of estrogen on skeletal muscle mitochondrial function in ovariectomized rats: a time course study in different fiber types. J Appl Physiol (1985) 2014;116:779-789.

36. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011;25:1895-1908.

37. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis [Review]. Essays Biochem 2010;47:69-84.

38. Kim JY, Jo KJ, Kim OS, et al. Parenteral 17beta-estradiol decreases fasting blood glucose levels in non-obese mice with short-term ovariectomy. Life Sci 2010;87:358-366.

39. Gorres BK, Bomhoff GL, Morris JK, Geiger PC. In vivo stimulation of oestrogen receptor alpha increases insulin-stimulated skeletal muscle glucose uptake. J Physiol 2011;589(pt 8):2041-2054.