Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
Europe. From articles with healthy that are not older than 20 years	Armengol et al.[3]	Spain, Guadalquivir Valley, in the period 1994-1996, Children between 6 and 10 years old without symptoms from 20 villages	1.6 (1,917)	Only specify coprological analysis and Graham method
	Sagebiel et al.[2]	Germany, Berlin, Kids in kindergarten, response rate 59 %	1.5 (202)	Microscopically examination of stools does not specify concentration or staining methods
	Schlosser et al.[9]	France, two groups: Group one sewage workers and group two food-handlers	2.1 (363) from group two	Two concentration techniques merthiolate-iodine-formalin and Bailenger’s method
Europe. From articles with patients that are older than 20 years	Cerva and Kliment[4]	Czech republic, Prague hospital, symptomatic patients with suspected intestinal parasitosis	5.7 (10,418)	Faust’s flotation-concentration method and wet smears stained with ferric haematoxylin after Heidenhain
Chin and Gerken[9]	Great Britain, London, two groups: Group one homosexual attending the department of genitourinary medicine and group two controls medical students and laboratory technicians	21.7 (83) and 0 (43) from group one and two, respectively	Formol-ether concentration	
Jokipi et al.[8]	Finland, two groups: Group one healthy homosexual volunteers and group two healthy students, employees of a government office and hospital or laboratory personnel serving as controls	29.9 (190) and 1.2 (172) from group one and two, respectively	Fresh stools: Diluted in warm Locke’s solution and examined to detect trophozoites, iodine staining and formalin ether concentration	
Portus and Prats[7]	Spain, Barcelona, Stool samples from patients at hospital that was submitted for parasitic investigation	4.5 (650)	Sapero and Lawless (MIFD) and with the biphasic concentration method of Blagg et al. (MIFC)	
Schlosser et al.[3]	France, two groups: Group one sewage workers and group two food-handlers	5.1 (126) from group one	Two concentration techniques merthiolate-iodine-formalin and Bailenger’s method	
Soriano et al.[8]	Saharawi children hosted in Spain	8.9 (270)	Direct smear, Ritchie concentration, Kinyoun’s modified staining and trichrome staining	
Sterba et al.[9]	Czechoslovakia, South Bohemia, agricultural workers, from 1975 to 1982	0.8 (1750)	NA	
Stirchler and Peter[10]	Switzerland, Jura, schoolchildren 7 to 16 years	1.5 (134)	MIF-stool-samples	
Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
North America. From articles with healthy that are not older than 20 years	Aimpun and Hsieh[11]	Belize, Toledo district, 5 villages	0.30 (672)	Formalin-ethyl-acetate concentration
Faulkner et al.[32]	Mexico, state of Tamaulipas, children	5.3 (438)	Centrifugal flotation with saturated zinc sulfate and Sheathers sucrose solutions, fecal smears stained with trichrome	
Kurup and Hunjan[13]	Saint Lucia, rural villages, school children aged 0-19 years, response rate 100 %	2.1 (554)	Parasep concentration and Kato-Katz	
Mendoza et al.[24]	Cuba, San Miguel del Padron municipality, from children in day-care centers, three fecal samples from each	23.9 (456)	Direct and Ritchie’s concentration	
North America. From articles with patients that are older than 20 years	Acuna-Soto et al.[33]	Mexico, state of Chiapas, in the village of Navenchauc, random sample of 48 households	50.2 (201)	Formalin-ethyl acetate sedimentation, lugol
Barrett et al.[34]	Jamaica, children with HIV/AIDS in children’s homes, two fecal examined from each child	2.4 (42)	NA	
Bruckner[17]	USA, Los Angeles, patients, large part had Spanish surnames, two groups: Group one from Olive view Medical center and group two from Harbor General hospital	13.0 (1,350) and 8.5 (493) from group one and two, respectively	Formol-ether concentration, Gomori’s Trichrome	
Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
-----------------	-----------	--------------------------------	---------------------------------------	---------
	Church et al. [18]	USA, Rocky Mountain region, patients experiencing gastrointestinal discomfort	1.5 (2,604)	ParaPak, Formalin vial processed by filtered centrifugation stained with Lugol’s iodine, confirmation stool in Zn-PVA vials stained with trichrome
	Church et al. [19]	Canada, Calgary, gay men with a majority HIV positive, it is not clear if it is the whole group that the prevalence is specified from	41 (58)	Specified as standard methods
	Edouard et al. [20]	Martinique, samples examined at Fort de France University Hospital, patients, not unique samples	1.25 (4,684)	NA
	Elliott et al. [21]	USA, Texas Gulf Coast, samples send for parasitological investigation	0.5 (1,626)	Direct smear with saline and stained with D’Antoni’s iodine, then by a smear from a concentrate prepared by the zinc-sulfate flotation method. Some samples also concentrated by formol-ether and ethyl-acetate
	Haddad and Agrawal [22]	USA, New Orleans, foreign seamen with abdominal symptoms	5 (99)	NA
	Kabani et al. [23]	Canada, Calgary, patients at childrens hospital	0.39 (1,532)	Formalin-ethyl acetate concentration, hematoxylin/Kinyoun stain and unstained
	Kappus et al. [24]	USA, specimens examined for intestinal parasites by the state diagnostic laboratories in 1987	4.2 (216,275)	NA
	Peters et al. [25]	USA, Chicago, 3 hospitals (1, 2 and 3) Patients from hospital 1 and 2 was primarily homosexual men. Symptomatic	39 (61), 31.6 (418) and 9 (418) attending hospital 1, 2 and 3, respectively	Iodine stain direct and after formalin ethyl acetate concentration
	Ramirez-Miranda et al. [26]	Mexico, IBS patients	3.2 (62)	NA
	Ribes et al. [27]	USA, Kentucky, patients suffering from diarrhea submitting samples for ova and parasite examination	0.95 (315)	Formalin-ethyl acetate concentration, Kinyoun modified acid-fast- and trichrome stain
	Robinson et al. [28]	Jamaica, healthy food handlers, two groups: Group one HTLV-1 positive and group two HTLV-1 negative	8.1 (99) and 8.8 (113) from group one and two, respectively	Ritchie formalin-ether concentration
	Rojas et al. [29]	Cuba	10.3 (5,850)	Direct, Willis’ brine flotation and Kato-Katz thick smear
	Tsaihong et al. [30]	USA, New York city, homosexual men with gastrointestinal illness, three groups: Group one AIDS patients, anti HIV positive and anti HIV negative	5.2 (77), 15.3 (111) and 13.9 (72) from group one, two and three, respectively	Filtered and concentrated by centrifugation, saline wet mount, iodine wet mount and trichrome stain
	Ungar et al. [31]	USA, Migrant farmworkers working on the Delmarva Peninsula	6.8 (339)	Formaldehyde-ether technique
	Wilkins and Horner [32]	USA Texas and Northern Mexico Chihuahua, clinical patients	9.5 (273)	NA
	Yamamoto-Furusho and Torijano-Carrera [33]	Mexico, patients with ulcerative colitis	9 (215)	Trichrome stain on polyvinyl alcohol preserved samples other formalin-ethyl acetate concentration examined no stain described

Contd...
Countries	Region	Study Group	% Prevalence (No. of Samples Examined)	Methods
Brazil, Southeast Piaui state			13.6 (265)	Spontaneous sedimentation
Brazil, Maxakali indigenous villages in Minas Gerais, three stools collected on alternate days			10.3 (1947)	Formalin ethyl-acetate based concentration (TF-test® kit)
Brazil, State of Minas Gerais, Sucking babies (4-12 months), at nursery, 6 slides for each sample			1.76 (56)	Hoffman, Pons and Janer’s method, lugol stain
Colombia, Cali, children, at least two samples examined			60 (63)	Direct and after concentration does not specify which, Kato-Katz and Ziehl-Neelsen
Brazil, Catanduva, children from day care center 7 – 78 months			2.3 (133)	NA
Argentina, Cordoba, children 6 months to 21 years old			7.3 (150)	Direct and after Willis and Ritchie concentration methods
Brazil, Sao Paolo, Children from a daycare center, two groups: Group one exhibiting diarrhea and group two non diarrheal			2 (50) from group two	Hoffman-Pons-Janer centrifugal flotation in zinc sulfate and Baermann-Moraes
Brazil, northern Espirito Santo, quilombola community			4.9 (82)	Spontaneous sedimentation, stained with Lugol and examined in triplicates
Peru, communities located along the banks of Lake Titicaca, adults and children			39.6 (91)	Direct examination, Kato technique, spontaneous sedimentation, Lumbreras rapid sedimentation
Peru, Lima, children, two groups: Group one diagnosed with Tuberculosis and group two healthy			18.5 (189) from group two	Direct smear and spontaneous sedimentation methods
Venezuela, State of Zulia, food handlers			41.2 (119)	Wet mount, Ritchie concentration, Modified Ziehl-Neelsen staining
Peru, Alto Maranon area in the amazon jungle, schoolchildren 6-15 years old			23.9 (1049)	Direct microscopy and lugol stain, Telemans’s and Kinnyouns technique
Brazil, Sao Paulo, inhabitants of five farms			2.3 (222)	Formalin-ether concentration, Lugol stain
Brazil, Sao Paulo, children			20.8 (120)	Direct exam, Kato-Katz, Lutz-Hoffman spontaneous sedimentation, Rugai, Mattos and Brisola, thermal migration and Zinc sulfate flotation
Venezuela, Barinas state, children younger than 15 years old			38.9 (262)	Direct wet mount, Ritchie (formalin-ether) concentration and Kato Katz thick smear
Brazil, Minas Gerais, children, Three fecal samples collected from each			2.5 (160)	Modified Baermann, Lutz, lugols iodine stain of six slides for each sample and read by two investigators
Chile, Calbuco county, rural county, one sample per individual			16.4 (256)	NA
Argentina, children			1.8 (113)	Modified Telemann, lugol staining
Venezuela, Sucre state, inhabitants of cities neighboring different rivers that was also investigated for the presence of parasites			17.8 (426)	Direct, physiological saline solution and modified Ritchie concentration, stained with lugol, modified Kinyoun and trichrome
Brazil, Sao Paulo, first grade school children			4.8 (146)	NA

Contd...
Supplementary Table 1: Contd...

Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
South America. From articles with patients or that are older than 20 years				
Amancio et al.[65]	Brazil, Botucatu, HIV/AIDS patients, three fecal samples collected on alternate days	1.9 (105)	Formalin ethyl-acetate based concentration (TF-test® kit) and stained with Lugol’s solution	
Bouree et al.[66]	Peru, 4 native villages from the tribe Cashibo in Amazonia	46 (165)	NA	
Cancrini et al.[67]	Bolivia, Camiri, Gutierrez and Boyuibe areas, healthy individuals	2.1 (381)	NA	
Carvalho-Costa et al.[68]	Brazil, Rio de Janeiro, children with acute diarrhea	0.5 (213)	Not all methods performed on all samples but included, Direct examination and examination after Ritchie and safranin-methylene blue staining	
Castro et al.[41]	Brazil, Sao Paolo, Children from a daycare center, two groups: Group one exhibiting diarrhea and group two non diarrheal	6 (50) from group one	Hoffman-Pons-Janer centrifugal flotation in zinc sulfate and Baermann-Moraes	
Cho et al.[69]	Ecuador, Guayas province, Palmar, mestizo population, collected from patients	5.5 (325)	Direct smear stained with lugol	
Cimerman et al.[70]	Brazil, AIDS patients	3.5 (200)	Processed according to Hoffman, Faust and Rugai	
Franke et al.[44]	Peru, Lima, children, two groups: Group one diagnosed with Tuberculosis and group two healthy	21.2 (189) from group one	Direct smear and spontaneous sedimentation methods	
Garibaldi et al.[71]	Chile, Putaendo chronic patients from the psychiatric hospital	50.5 (229)	NA	
Goldin et al.[72]	Chile, Santiago nursery and primary school children	43 (722)	Formol-ether concentration	
Guignard et al.[73]	Argentina, orphaned and homeless children living in substitute homes	34.6 (396)	Concentrated with Telemann method, stained with Kinyoun’s stain, Lugol and trichomic.	
Kulik et al.[74]	Brazil, two groups: Group one hemodialysis patients and group two attenders of local public health center	16.3 (86) and 1.4 (146) from group one and two, respectively	Faust, Lutz and Rugai methods	

Contd...
Supplementary Table 1: Contd...

Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
Characteristics		Asia. From articles with healthy that are not older than 20 years		
Reference		Country, region and study group	% prevalence (no. of samples examined)	Methods
Maia et al.[75]	Brazil, Amazonas state, children 0-10 years presenting at outpatient clinics in Manaus	17.9 (451)	NA	
Merlano et al.[76]	Columbia, Atlantico, patients	20.3 (423)	NaCl parasite-concentration compared with wet mount	
Moura et al.[77]	Brazil, Rio de Janeiro, aids patients	18.2 (95)	Four methods: Faust, Kato-Katz, Baermann-Moraes and Baxby	
Navarrete and Torres[78]	Chile, province of Valdivia, coastal area, primary school children	34.4 (219)	NA	
Rivero-Rodriguez et al.[79]	Venezuela, patients with HIV/AIDS	3.9 (56)	Direct, formol-ether, Kinyoun- and fast Gram-Chromotrope stain	
Silva et al.[80]	Brazil, Sao Paulo, neoplastic patients	3.3 (30)	Lutz, and Rugai, in triplicate	
Torres et al.[81]	Columbia, Cartagena and Sincelejo, children and infants with acute diarrhea	19.7 (970)	NA	
Amin[82]	Saudi Arabia, Jeddah, healthy food handlers	0.4 (250)	NA	
Azian et al.[83]	Malaysia, Pahang, aborigine community	10.8 (130)	Samples fixed in polyvinyl alcohol, Trichrome staining	
Ben-Shimol et al.[84]	Israel, Southern Israel, children, samples collected over 5 year period, not unique samples, but did not include samples collected within 30 days of last sample	0.0065 (45,978)	Sedimentation based concentration. Stained with and without lugol	
Börekci and Uzel[85]	Turkey, Mersin, Children living in social service child care centre	2.8 (106)	Formol-ether-acetate, native lugol, Kinyoun’s acid fast staining	
Cengiz et al.[86]	Turkey, Van, Children attending primary school	0.3 (395)	Native-lugol, flotation and trichrome staining	
Danchaivijitr et al.[87]	Thailand, food handlers working at hospital, examined twice: 1st time in 2002 and 2nd time in 2004 after education on hand hygiene and treatment of positive cases	4.1 (121) and 1.6 (129) from 1st and 2nd examination, respectively	Identified by microscopy (does not specify how)	
Daryani et al.[88]	Iran, Sari, schoolchildren	1.5 (1,100) added both mono- and polyparasitism where E. nana is included	Direct and after formol-ether concentration staining with Ziehl-Neelsen and trichrome	
Degerli et al.[89]	Turkey, Alahaci village primary school children in Sivas, examined twice at six months intervals	1st examination 4.2 (189) and 2nd examination 0 (175)	NA	
Supplementary Table 1: Contd...

Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
	Guducuoğlu et al.[98]	Turkey, Van province, 1st and 2nd grade students	0.5 (195)	NA
	Hamamcı et al.[97]	Turkey, Kayseri-Hacilar region, Children attending primary school	1.8 (328)	Native-lugol
	Kia et al.[99]	Iran, Mazandaran province, rural inhabitants, collected randomly	0.7 (855)	Formalin-ethyl-acetate concentration
	Kitvatanachai and Rhongbutrsri[99]	Thailand, Lak Hok subdistrict, government schools aged 7-12 years, fecal samples requested from 1253 students received 202	7.9 (202)	Direct examination and after modified formalin-ether concentration technique
	Koshak and Zakai[100]	Saudi-Arabia, pre-employment workers and their families	16.4 (292)	Formalin ether, iodine stain
	Kurtoglu et al.[101]	Turkey, Van province, food sector workers	0.27 (739)	NA
	Lee et al.[102]	Philippines, Legaspi city, children and adolescents	9.4 (64)	Formalin-ether sedimentation
	Lu and Sung[103]	Immigrant population in northeastern Taiwan tested for residence approval, from four countries: China, Indonesia, Vietnam and The Philippines	0.7 (144), 1.4 (276), 0.9 (114) and 1.3 (396) from the different countries, respectively	Melvin and Brookes method
	Ngrenngarmert et al.[104]	Thailand, Nakhon Prathom province, school children 7-12 years	1.0 (1,920)	Formalin-ethyl acetate
	Oyofo et al.[105]	Indonesia, Jakarta, two groups: Group one patients with diarrhea and group two controls not having diarrhea	0 (51) from group two	Formalin-ether concentration
	Prownebon et al.[106]	Thailand, Pathum Thani province, children 1-6 years old, two groups: Group one children at orphanage and group two hill-tribe children	2.2 (137) and 0.7 (145) from group one and two, respectively	Simple smear and formalin-ether concentration
	Sagnuankiat et al.[107]	Thailand, Samut Sakhon province, immigrant children at daycare centers	3.5 (372)	Direct smear with normal saline 1 % iodine solution
	Saksirisampant et al.[108]	Thailand, Pathum Thani province, children in an orphanage (0-7 years)	3.7 (106)	Simple smear preparation and formalin-ether concentration
	Saksirisampant et al.[109]	Thailand, Chiang Mai Province, school children 3-19 from the Karen Hill-Tribe	4.8 (542)	Formalin-ether concentration
	Saksirisampant et al.[110]	Thailand, central region, children attending primary school 3-12 years	0.48 (1,037)	Formalin-ether concentration
	Tungtrongchitr et al.[111]	Thailand, two groups: group one IBS patients and group two controls without IBS	0 (25) from group two	Direct smear with saline solution and iodine, trichrome, modified trichrome and acid-fast staining
	Tungtrongchitr et al.[112]	Thailand, Ubon Ratchathani Province, rural communities	0.2 (479)	Direct smear and modified Kato thick smear
	Waikagul et al.[113]	Thailand, Nan-province, children from primary schools	2.5 (1,010)	Formalin-ether concentration
	Warunee et al.[114]	Thailand, Nakhon Prathom province, schoolchildren 7-12 years old	1.0 (1,920)	Formalin-ethyl acetate concentration
	Wilairatana et al.[115]	Thailand, laborers going abroad for work, asymptomatic	2.5 (362)	Formalin-ether concentration
	Wongjindanon et al.[116]	Thailand, two groups: group one volunteers any age from Surin province (rural) and group two healthy schoolchildren between 5-7 years old from Samut Sakhon province (sub-urban)	0 (3,358) and 0.76 (656) from group one and two, respectively	Group one simple smear and group two saline sedimentation, stained with iodine, all samples were examined in duplicates
	Yaicharoen et al.[117]	Thailand, Bangkok, asymptomatic participants, two groups: Group one participants examined in 1999 and group two participants examined in 2004	0.27 (1,147) and 0.65 (1,083) from group one and two, respectively	Direct smear

Contd...
Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
Asia. From articles with patients or that are older than 20 years	Yaicharoen et al.[118]	Thailand, Nakhon Pathom province, children attending public schools	2.2 (814)	Cultured in Jones medium (48 h), formalin ethyl acetate concentration
	Akao et al.[119]	Japan, Ishikawa, foreign workers from Indonesia and the Philippines	5.6 (198)	NA
	Akhlaghi et al.[120]	Iran, patients referred to three hospitals in Tehran during, random selection of 1000 samples	3.2 (1,000)	Direct smear, formol-ethyl acetate, Ziehl-Neelsen
	Arslan et al.[121]	Turkey, 2-6 years old children with gastrointestinal symptoms	4.3 (138)	Centrifugal formalin ether, zinc-sulphate flotation and modified acid fast techniques, Lugols stain
	Azami et al.[122]	Iran, renal transplant recipients	8.7 (150)	Direct smear, formalin-ether sedimentation, Sheather’s flotation and modified Ziehl-Neelsen staining
	Carney et al.[123]	Indonesia, Central and South Sulawesi, remote areas	1 (1,156)	NA
	Carney et al.[124]	Philippines, North Bohol, rural areas, volunteers	7.1 (1,694)	Direct and after formalin-ether concentration
	Carney et al.[125]	Philippines, Bukidnon province, volunteers	3.9 (831)	Direct and after formalin-ether concentration
	Carney et al.[126]	Philippines, Oriental Mindoro, volunteers	4.1 (1,058)	Direct and after formalin-ether concentration
	Chiu et al.[127]	Taiwan, Nantou county, Village suspected of Taenia solium outbreak	2.6 (417)	Direct smear and formalin-ether sedimentation
	Choi et al.[128]	Korea, clinical samples	0.26 (782)	Formalin-ether concentration
	Kim et al.[129]	South Korea, inhabitants in the upper stream of Taechong Dam, located on the Kumgang river	0.3 (743)	Formalin-ether concentration
	Cross et al.[130]	Borneo, West Kalimantan, 8 villages, based on number of stool samples examined	6 (2,101)	NA
	Cross et al.[131]	Indonesia, North Sumatra, 5 villages, based on number of stool samples examined	8 (2,066)	NA
	Cross et al.[132]	Philippines, North Samar Province, persons living in 8 barrios, based on number of stool samples examined	6 (1,394)	NA
	Cross et al.[133]	Indonesia, Irian Jaya (West Irian), based on number of stool samples examined	8 (114)	NA
	Dogan et al.[134]	Turkey, children with diarrhea	2.2 (225)	Formalin-ether sedimentation
	Goo et al.[135]	Korea, Yondo, remote island, single stool samples	0.8 (1,011)	Formalin-ether centrifugal sedimentation
	Hong et al.[136]	Korea, Jeonlanam Do province, 4 urban and 7 rural areas	2.5 (4,116)	Formalin-ether sedimentation, Lugol’s iodine stain
	Hong[137]	Korea, soldiers, from 1983-1985	1.7 (2,643)	Formalin-ether concentration
	Iqbal et al.[138]	Kuwait, patients in two groups: group one with gastrointestinal symptoms and group two with complaints other than gastrointestinal symptoms	15 (3,549) and 0.2 (500) from group one and two, respectively	A single fecal sample concentrated with formalin based method (EPC concentrator). Wet examinations with physiologial saline and with iodine
	Kim et al.[139]	Korea and Vietnam, single specimens examined twice, four groups: Group one Vietnamese, group two US armed forces, group three Korean troops in South Vietnam and group four Korean home patients at 1st army hospital in Korea	0.14 (717), 6.1 (1,933), 3.9 (433) and 1.8 (114) from group one, two, three and four, respectively	Iodine stain, different concentration techniques
	Kim et al.[140]	Korea	10.0 (2250)	Direct, zinc sulfate flotation and formalin-ether sedimentation
	Kim et al.[141]	Korea, Gyeong-gi Do and Jeonra Bug Do	2.7 (2735)	Formalin-ether sedimentation

Contd...
Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
	Kim et al. [142]	Korea, patients attending Samsung medical center, 7 years 2000-2006	1.2 (12,163), 1.2 (14,194), 1.8 (12,377), 2.0 (9,945), 2.2 (9,685), 1.7 (10,110) and 2.1 (9,599) from the consecutive years, respectively	NA
	Kim et al. [143]	Korea, all samples submitted to Samsung medical center for parasitological investigation, 10 years 2003 - 2012	2.6 (26,452), 2.1 (43,603), 1.4 (44,514), 1.5 (43,347), 1.4 (43,921), 1.5 (56,849), 1.5 (57,607), 1.0 (56,301), 1.0 (57,272) and 0.97 (56,946) from the consecutive years, respectively	Formalin-ether sedimentation
	Lee et al. [144]	Southeast asia, aircrew personal, mainly males	2.6 (557)	NA
	Lee et al. [145]	Korea, Seoul Paik hospital, 9 years 1984 - 1992	0.8 (5,353), 0.5 (4,919), 0.4 (4,795), 0.6 (5,438), 0.9 (5,795), 0.7 (6,895), 0.6 (6,615), 0.7 (7,200) and 1.7 (5,522) from the consecutive years, respectively	Formalin-ether sedimentation and/or direct smear
	Lee et al. [146]	Korea, handicapped at an institution	21.4 (112)	Formalin-ether sedimentation
	Mangali et al. [147]	Indonesia, south Sulawesi, Campalagian district, 3 coastal and 2 inland villages	12.5 (380)	Formalin ether concentration
	Nasiri et al. [148]	Iran, Karaj, refugees	0.05 (13,915)	Formalin-ethyl acetate sedimentation and trichrome stain
	Niyyati et al. [149]	Iran, Tehran, people referred to Kashani hospital	0.97 (205)	Direct examination and formalin-ether concentration
	Oyofo et al. [150]	Indonesia, Jakarta, two groups: Group one patients with diarrhea and group two controls not having diarrhea	0.5 (389) from group one	Melvin and Brookes method
	Purnomo et al. [151]	Indonesia, West Flores, Karakuak	1 (198)	NA
	Sahin et al. [152]	Turkey, wrestlers of the national team at training camp in Kayseri, majority had gastrointestinal complaints	11.1 (18)	NA
	Sharif et al. [153]	Iran, Mazandaran province, children who are intellectually disabled, Three fecal samples collected	3.9 (362)	Direct wet mount, formol-ether concentration, Ziehl-Neelsen and trichrome staining
	Shokri et al. [154]	Iran, mentally retarded	2.3 (133)	Direct smear, formalin-ether concentration and stained with Trichrome and Ziehl-Neelsen
	Stafford and Joesoef [155]	Indonesia, Sumatra, Aceh province, Bireuen and Takengon, volunteers	7 (348)	Direct and formalin-ether concentration
	Stafford et al. [156]	Indonesia, Gorontalo North Sulawesi, indigenous mountain people primarily moslems	5 (156)	Direct and formalin-ether concentration
	Stafford et al. [157]	Indonesia, Bali	7 (270)	Direct and formalin-ether concentration
	Subbannayya et al. [158]	India, Karnataka, south Kanara district, apparently healthy people	0.10 (1,020)	Direct smear with saline and D’Antoni’s iodine, Zinc sulfate concentration and culture in modified Boek and Drbolhav medium
	Supanaranond et al. [159]	Thailand, Volunteers in cholera vaccine trial	3.5 (171)	NA

Contd...
Supplementary Table 1: Contd...

Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
Methods				
Fresh, lugol and trichrome stain	Poulsen and Stensvold: Endolimax nana: An inconspicuous companion			
Formal-ether centrifugation				
Modified Ritchie technique				
Turkey, samples send to parasitological laboratory at Erciyes University between 2000-2004	Yazar et al.[163]	Turkey, samples send to parasitological laboratory at Erciyes University between 2000-2004	1.4 (34883)	Flotation/sedimentation methods, native-Lugol stain
Flotation/sedimentation				
Direct wet smear, Sheather’s sugar flotation, and stained with Lugol’s iodine	Raso et al.[166]	Cote d’Ivoire, schoolchildren	82.6 (4,042)	Formol-ether and modified Ziehl-Neelsen technique
Direct wet smear, Sheather’s sugar flotation and stained with Lugol’s iodine	Graczyk et al.[163]	Zambia, school-age children, half of the stools diarrheic	64.3 (93)	Formol-ether concentration
Formol-ether and modified Ziehl-Neelsen technique	Ikeh et al.[164]	Nigeria, single stool specimens, Two groups: one volunteers in rural village and two randomly selected urban dwellers. Study groups unique in being adults where samples are not sent to diagnostic facilities due to diarrhea	16.2 (111) and 18.3 (93) from group one and two, respectively	
Formol-ether and modified Ziehl-Neelsen technique	Ouattara et al.[165]	Western Cote d’Ivoire, rural area, pupils 6-16 years at 57 different schools	83.8 (4,466)	Formol-ether concentration
Formol-ether concentration	Chunge et al.[167]	Kenya, Kiambu District, Nderu, rural community, 4 cross-sectional surveys, 2nd, 3rd and 4th based on selected group from the 1st study. Endolimax was more commonly encountered in formed stools	85.3 (1,375)	
Formol-ether concentration	El Shazly et al.[166]	Egypt, patients	6.9 (3,180)	
Direct wet smear, Sheather’s sugar flotation, Potassium hydroxide concentration, Giemsa’s Trichrome stain, and modified Kinyoun’s acid-fast stain	Goldsmid et al.[169]	Rhodesia (Zambia and Zimbabwe), institution with cases of amoebic dysentery had been recorded	12.8 (180)	Water centrifugation (strained stool emulsified in tap water) and formol-ether concentration
Direct wet smear, Sheather’s sugar flotation, Potassium hydroxide concentration, Giemsa’s Trichrome stain, and modified Kinyoun’s acid-fast stain	Hunter et al.[170]	Zambia, two groups, one patients with AIDS and two controls adults recruited from a township near Lusaka (only 1 complaining of diarrhea)	11 (90) and 19 (105) from group one and two, respectively	Formol-ether concentration
NA	Kasssem et al.[171]	Libya, Sirt, children and neonates admitted to Ibn-Sina hospital, examined 2001-2002	13.7 (350)	
Saline and iodine preparation from fresh stool samples, later formalin-ether concentration	Ogunba[172]	Nigeria, Ibadan, two groups: one patients at University College Hospital in Ibadan collected from 1967-1977 and two healthy Nigerians in the indigenous areas of Ibadan mainly children also teachers, food sellers and parents of the children	3.1 (360,000) and 4.6 (4,021) from group one and two, respectively	
Formal-ether centrifugation	Okafor and Azubike[173]	Nigeria, villagers from rural areas reporting at the parasitological laboratory	0.3 (300)	
Modified Ritchie technique	Pampiglione et al.[174]	Tanzania, Pemba island, collected from healthy population chosen at random	4.3 (392)	

Contd...
Supplementary Table 1: Contd...

Characteristics	Reference	Country, region and study group	% prevalence (no. of samples examined)	Methods
Australia. From patients or that are older than 20 years	Pampiglione et al.[179]	Sao Tome and Principe, collected from healthy population chosen at random Northeast Zaire, Azande	7.0 (1,050)	Modified Ritchie technique
	Prinz et al.[174]	Country, region and study group	1.3 (165)	NA
	Ashford and Atkinson[177]	Papua New Guinea, Asaro Valley, sing-out sampling, points at sampling bias associated with this method	41 (995)	Wet mount and iodine stained, gomori trichrome and saffranin and methylene blue
	Sawangaroen et al.[179]	Australia, Brisbane, non-hospital patients with diarrhoea	1.2 (260)	Methods
	Stark et al.[179]	Australia, Sydney, Three groups all patients with diarrhea: one homosexual men with HIV, two homosexual men without HIV and three heterosexual men	10 (618), 12 (628) and 0.8 (622) from group one, two and three, respectively	One fecal sample from each, formalin-ethyl acetate concentration, iron-hematoxylin stain

SUPPLEMENTARY REFERENCES

1. Pérez Armengol C, Ariza Astolfi C, Ubeda Ontiveros JM, Guevara Benítez DC, de Rojas Alvarez M, Lozano Serrano C. [Epidemiology of children’s intestinal parasitism in the Guadalquivir Valley, Spain]. Rev Esp Salud Publica 1997;71:547-52.

2. Sagebiel D, Weitzel T, Stark K, Leitmeyer K. Giardiasis in kindergartens: Prevalence study in Berlin, Germany, 2006. Parasitol Res 2009;103:681-7.

3. Schlosser O, Grall D, Laurenceau MN. Intestinal parasite carriage in workers exposed to sewage. Eur J Epidemiol 1999;15:261-5.

4. Cerva L, Kliment V. Contribution to the problem of the so-called nonpathogenic amoebae in the intestine of man. Folia Parasitol (Praha) 1978;25:367-70.

5. Chin AT, Gerkens A. Carriage of intestinal protozoal cysts in homosexuals. Br J Vener Dis 1984;60:103-5.

6. Jokipii L, Sargeant PG, Jokipii AM. Coincidence of deficient delayed hypersensitivity and intestinal protozoa in homosexual men. Scand J Infect Dis 1989;21:563-71.

7. Portús M, Prats G. [Contribution to the knowledge of intestinal protozoal infection in the hospital population of Barcelona (author's transl)]. Med Clin (Barc) 1981;76:203-5.

8. Soriano JM, Domènech G, Martínez MC, Mañes J, Soriano F. Intestinal parasitic infections in hospitalized children. Trop Biomed. 2011;28:557-62.

9. Stèrba J, Ditrich O, Prokopic J, Kadlick K. Gastrointestinal parasitoses discovered in agricultural workers in South Bohemia, Czechoslovakia. Folia Parasitol (Praha) 1989;35:169-73.

10. Stürchler D, Peter R. [Parasitic disease in schoolchildren in a village in Swiss Jura]. Soz Praventivmed 1981;26:317-9.

11. Aimpun P, Hshiieh P. Survey for intestinal parasites in Belize, Central America. Southeast Asian J Trop Med Public Health 2004;35:506-11.

12. Faulkner CT, Garcia BB, Logan MH, New JC, Patton S. Prevalence of endoparasitic infection in children and its relation with cholera prevention efforts in Mexico. Rev Panam Salud Publica 2003;14:31-41.

13. Kurup R, Hunjan GS. Epidemiology and control of Schistosomiasis and other intestinal parasitic infections among school children in three rural villages of south Saint Lucia. J Vector Borne Dis 2010;47:228-34.

14. Mendoza D, Núñez FA, Escobedo A, Pelayo L, Fernández M, Torres D, et al. [Intestinal parasitic infections in 4 child day-care centers located in San Miguel del Padrón municipality, Havana City, 1998]. Rev Cubana Med Trop 2001;53:189-93.

15. Acuna-Soto R, Samuelson J, De Girolami P, Zarate L, Millan-Velasco F, Schoolnick G, et al. Application of the polymerase chain reaction to the epidemiology of pathogenic and nonpathogenic Entamoeba histolytica. Am J Trop Med Hyg 1993;48:58-70.

16. Barrett DM, Steel-Duncan J, Christie CD, Eldemire-Shearer D, Lindo JF. Absence of opportunistic parasitic infestations in children living with HIV/AIDS in children's homes in Jamaica: pilot investigations. West Indian Med J 2008;57:253-6.

17. Bruckner DA, Garcia LS, Voje M. Intestinal parasites in Los Angeles, California. Am J Med Technol 1979;45:1020-2.

18. Church C, Neill A, Schotthoefer AM. Intestinal infections in humans in the Rocky Mountain region, United States. J Parasitol 2010;96:194-6.

19. Church DL, Sutherland JR, Gill MJ, Visser ND, Kelly JK. Absence of an association between enteric parasites in the manifestations and pathogenesis of HIV enteropathy in gay men. The GI/HIV Study Group. Scand J Infect Dis 1992;24:567-75.

20. Edouard A, Edouard S, Desbois N, Plumelle Y, Rat C, Calès-Quist D, et al. [Evolution in the prevalence of intestinal parasitosis in the Fort de France University Hospital (Martinique)]. Presse Med 2004;33:707-9.

21. Elliott S, Long EG, Truant AL, Smith JH. Parasitic infections encountered on the Texas Gulf Coast. Tex Med 1981;77:45-6.

22. Haddad CG, Agrawal N. Gastrointestinal parasitic infection: an overlooked entity. South Med J 1982;75:778-9. PubMed PMID: 7089641.

23. Kabani A, Cadrain G, Trevenen C, Jadavji T, Church DL. Practice guidelines for ordering stool ova and parasite testing in a pediatric population. The Alberta Children's Hospital. Am J Clin Pathol 1995;104:272-8.

24. Kappus KK, Juranek DD, Roberts JM. Results of testing for intestinal parasites by state diagnostic laboratories, United States, 1987. MMWR CDC Surveill Summ 1991;40:25-45.

25. Peters C, Köck F, Chitrom A, Sable R, Janda W. High Carriage of Endolimax-nana In Diarrheal Specimens From Homosexual Men. Letters in Applied Microbiology 1987;3:63-6.
26. Ramírez-Miranda ME, Jiménez-González DE, Rodríguez-Campa ME, González-Angulo A, Hernández-Castellanos R, Sura Arroyo-Escalante A, et al. [Irritable bowel syndrome: frequency and phylogenetic relationship of Blastocystis sp. from Mexican patients]. Rev Gastroenterol Mex 2011;76:309-15.

27. Ribes JA, Seabolt JP, Overman SB. Point prevalence of Cryptosporidium, Cyclospora, and Isospora infections in patients being evaluated for diarrhea. Am J Clin Pathol 2004;122:28-32.

28. Robinson RD, Murphy EL, Wilks RJ, Neva FA, Terry SI, Hanchard B, et al. Gastrointestinal parasitic infection in healthy Jamaican carriers of HTLV-I. J Trop Med Hyg 1991;94:411-5.

29. Rojas CL, Angel Núñez CF, Aguiar PH, Silva Ayçaguer CL, Alvarez D, Martínez R, et al. [Second national survey of intestinal parasitic infections in Cuba, 2009]. Rev Cubana Med Trop 2012;64:15-21.

30. Tsaihong JC, Liou MY, Ma PC. Enteric parasites and environmental sanitation in under ‑aged from six to ten years old in a daycare center, Southeastern Brazil. Rev Inst Med Trop Sao Paulo 2013;55:275-82.

31. Ungr BL, Iscoe E, Cutler J, Bartlett JG. Intestinal parasites in a migrant farmworker population. Arch Intern Med 1986;146:153-5.

32. Wilkins R, Horner N. Human Intestinal Parasitosis In Northern Chihuahua, Mexico. Texas Journal of Science 1991;43:81-9.

33. Yamamoto-Furusho JK, Torijano-Carrera E. Intestinal protozoa infections among patients with ulcerative colitis: Prevalence and impact on clinical disease course. Digestion 2010;82:18-23.

34. Acurero E, Avila A, Rangel L, Calchi M, Grimaldos R, Cotiz M. Intestinal Protozoa in School Children at Public and Private Institutions in the Maracaibo Municipality, State of Zulia, Kasmara 2013:41-50.

35. Alves JR, Macedo HW, Ramos AN, Ferreira LF, Gonçalves ML, Araújo A. [Intestinal parasites infection in a semiarid area of Northeast Brazil: Preliminary findings differ from expected prevalence rates]. Cad Saude Publica 2003;19:667-70.

36. Assis EM, Oliveira RC, Moreira LE, Pena JL, Rodrigues LC, Machado-Coelho GL. [Prevalence of intestinal parasitic infection in the Maxakali indigenous community in Minas Gerais, Brazil, 2009]. Cad Saude Publica 2013;29:681-90.

37. Herbert-Ferreira M, Costa-Cruz JM. [Intestinal parasites in children aged 4-12 months attending day-care centers of Federal University-Uberlândia-MG]. J Pediatr (Rio J) 1995;71:219-22.

38. Bermúdez A, Flórez O, Bolaños MV, Medina JJ, Salcedo-Cifuentes M. [Enteroparasitism, hygiene and environmental sanitation in under-aged from six indigenous communities, Cali-Colombia]. Rev Salud Publica (Bogota) 2013;15:1-11.

39. Biscogli T, Romera J, Candiado A, Santos J, Candiado E, Binotto A. Nutritional status and enteroparasitosis prevalence among children enrolled in a day care center. Rev Paul Pediatr; 2009. p. 289-95.

40. Bracciaforte R, Díaz M, Pivetta V, Burstein V, Varengo H, Orsilles M. Enteroparasites in children and adolescents of a periurban community in the province of Cordoba. Acta Bioquimica Clinica Latinoamericana 2010;44:353-8.

41. Castro ED, Germín MC, Mascarenhas JD, Gabbay YB, de Lima IC, Lobo PoS, et al. Enteropathogens detected in a daycare center, Southeastern Brazil: bacteria, virus, and parasite research. Rev Inst Med Trop Sao Paulo. 2015;57:27-32.

42. Damazio SM, Lima MeS, Soares AR, Souza MA. Intestinal parasites in a quilombola community of the Northern State of Espírito Santo, Brazil. Rev Inst Med Trop Sao Paulo 2013;55:275-82.

43. Maco Flores V, Marcos Raymundo LA, Terashima Iwashita A, Samalvides Cuba F, Goutuzzo Herencia E. [Distribution of entero-parasitic infections in the Peruvian Highland; Study carried out in six rural communities of the department of Puno, Peru]. Rev Gastroenterol Peru 2002;22:304-9.

44. Franke MF, Del Castillo H, Pereda Y, Lecca L, Fuertes J, Cárdenas L, et al. Parasite infection and tuberculosis disease among children: A case-control study. Am J Trop Med Hyg 2014;90:279-82.

45. Freites A, Colmenares D, Pérez M, García M, Díaz de Suárez O. [Cryptosporidium sp infections and other intestinal parasites in food handlers from Zulia state, Venezuela]. Invest Clin 2009;50:13-21.

46. Ibanez H, Jara C, Guerra M, Díaz L. Prevalencia del enteroparasitismo en escolares de comunidades nativas del alto Maranon, Amazonas, Peru Rev Peru Med Exp Salud Publica; 2004. p. 126-33.

47. Kobayashi J, Hasegawa H, Forli AA, Nishimura NF, Yamanaka A, Shimabukuro T, et al. Prevalence of intestinal parasitic infection in five farms in Holambra, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo. 1995;37:13-8.

48. Korkes F, Kumagai FU, Belfort RN, Szejnfeld D, Abud TG, Kleinman A, et al. Relationship between intestinal parasitic infection in children and soil contamination in an urban slum. J Trop Pediatr 2009;55:42-5.

49. Laugart E, Garcia F, Nunez C, Pena M, Fundora I, Medina R. Aspects on children epidemiology of intestinal parasites in Végon Nutrias, Venezuela. Revista Cubana de Higiene y Epidemiologia; 2012. p. 330-9.

50. Machado E, Santos D, Costa-Cruz J. Enteroparasites and commensals among children in four peripheral districts of Uberlandia, State of Minas Gerais. Revista Da Sociedade Brasileira De Medicina Tropical 2008;41:581-5.

51. Mercado R, Otto JP, Musleh M, Pérez M. [Human infection by intestinal protozoa and helminths in Calbuco County, X Region, Chile, 1997]. Bol Chil Parasitol 1997;52:36-8.

52. Milano AM, Oscherov EB, Palladino AC, Bar AR. [Children enteroparasitosis in north east Argentine urban area]. Medicina (B Aires) 2007;67:238-42.

53. Mora L, Martínez I, Figuera L, Segura M, Del Valle G. [Protozoans in superficial waters and faecal samples of individuals of rural populations of the Montes municipality, Sucre state, Venezuela]. Invest Clin 2010;51:457-66.

54. Moura EC, Bragazza LM, Coelho MF, Aun SM. [Prevalence of intestinal parasitosis in schoolchildren]. J Pediatr (Rio J) 1997;73:406-10.

55. Munoz-Antoli C, Pavon A, Marcilla A, Toledo R, Esteban J. Prevalence and risk factors related to intestinal parasites among children in Department of Rio San Juan, Nicaragua. Transactions of the Royal Society of Tropical Medicine and Hygiene 2014;108:774-82.

56. Nascimento SA, Moitinho MaL. Blastocystis hominis and other intestinal parasites in a community of Pitanga City, Paraná State, Brazil. Rev Inst Med Trop Sao Paulo 2005;47:213-7.
57. Rios L, Cutolo S, Giatti L, Castro M, Rocha A, Toledo R, et al. Prevalence of intestinal parasites and social-environmental aspects in an indigenous community in the lauarrete district, municipality of Sao Gabriel da Cachoeira (AM), Brasil. Saudé Soc Sao Paulo; 2007. p. 76-86.

58. Rivero-Rodríguez Z, Chourio-Lozano G, Díaz I, Cheng R, Rucson G. [Intestinal parasites in school children at a public institution in Maracaibo municipality, Venezuela]. Invest Clin 2000;41:37-57.

59. Saldívar SR, Silvério AS, Philippi ST, Torres DM, Mangini AC, Dias RM, et al. Ascaris-Trichuris association and malnutrition in Brazilian children. Paediatr Perinat Epidemiol 1999;13:89-98.

60. Santos SA, Merlini LS. [Prevalence of enteroparasitosis in the population of Maria Helena, Paraná State]. Cien Saude Colet 2010;15:899-905.

61. Silva L, da Silva E, da Silva R. Parasitological diagnosis of horticulturist in monitoring parasitic contamination in rural environments. Bioscience Journal 2010;26:648-52.

62. Tabares L, Gonzalez L. Prevalence of intestinal parasites in children under 12 years of age, hygienic habits, characteristics of the houses and presence of bacteria in the drinking water of a locality of Sabaneta, Columbia. Iatreia 2008;21:253-9.

63. Takizawa M, Falavigna DL, Gomes ML. Enteroparasitosis and their ethnographic relationship to food handlers in a tourist and economic center in Paraná, Southern Brazil. Rev Inst Med Trop Sao Paulo 2009;51:31-5.

64. Tashimi N, Simees M, Leite C, Fluminhan A, Nogueira M. Ascaris lumbricoides in children from a daycare center in the region of presidente prudente, Sao Paulo, Brazil Rev Inst Med trop S Paulo; 2009. p. 19-24.

65. Amancio F, Pascotto V, Souza L, Calvi S, Pereira P. Intestinal parasitic infections in HIV/AIDS patients: Epidemiological, nutritional and immunological aspects. Journal of Venomous Animals and Toxins Including Tropical Diseases 2012;18:225-35.

66. Bourée P, David P, Basset D, Coco O, Beauvais B, David-Julien MC, et al. [Epidemiologic survey of intestinal parasitoses in Peruvian Amazonia]. Bull Soc Pathol Exot Filiales 1984;79:690-8.

67. Cancrini G, Bartoloni A, Nuñez L, Paradisi F. Intestinal parasitic infections in the Camiri, Gutierrez and Boyuibe areas, Santa Cruz Department, Bolivia. Parasitologia 1988;30:263-9.

68. Carvalho-Costa FA, Gonçalves AQ, Lassance SL, Saldívar SR, Ferreira AF. [Prevalence of Blastocystis hominis in stool samples from children with acute diarrhea on the Colombian northern coast]. Int Microbiol 2003;6:27-32.

69. Cho SY, Kim JH, Park SH. Status of intestinal parasitic infections in inhabitants of Palmar, Guayas Province, Ecuador. Kisaengchunghak Chapchi 1990;28:109-13.

70. Cimerman S, Cimerman B, Lewi DS. Prevalence of Blastocystis and other intestinal parasites in hemodialysis patients. Braz J Infect Dis 2008;12:338-41.

71. Da Silva L, da Silva R, Fernandes N, de Oliveira J. Parasitic And Intestinal Commensals In The Neoplastic Patients Undergoing Chemotherapy. Bioscience Journal 2011;27:170-7.

72. Torres P, Miranda JC, Flores L, Riquelme J, Franjola R, Pérez J, et al. [Blastocystosis and other intestinal protozoan infections in human riverside communities of the Valdivia River basin, Chile]. Rev Inst Med Trop Sao Paulo 1992;34:557-64.

73. Urbina D, Arzuza O, Young G, Castro R, Puello M. Rotavirus type A and other enteric pathogens in stool samples from children with acute diarrhea in the Colombian northern coast. Int Microbiol 2003;6:27-32.

74. Villalobos R. [Prevalence of intestinal microsporidia and other intestinal parasites in hiv positive patients from Maracaibo, Venezuela]. Biomedica 2013;33:338-43.

75. Vidal S, Toloza L, Cancino B. [Evolution of the prevalence the enteroparasitoses in Talca-Chile]. Rev Chilena Infectol 2010;27:336-40.

76. Abdel-Dayem M, Al Zou’bi R, Rani RB, Amr ZS. Microbiological and parasitological investigation among food handlers in hotels in the Dead Sea area, Jordan; J Microbiol Immunol Infect 2014;47:377-80.

77. Akdemir C, Helvaci R. [Evaluation of parasitological laboratory results of a group of people older than 15 years of age in Kutahya]. Türkiye Parazitol Derg 2007;31:37-40.

78. Amin AM. Blastocystis hominis among apparently healthy food handlers in Jeddah, Saudi Arabia. J Egypt Soc Parasitol 1997;27:817-23.
91. Taş Cengiz Z, Ciçek M, Akbayram S, Yilmaz H. [Intestinal parasites detected in Süphan Primary schoolchildren in Van]. Türkiye Parazitol Derg 2009;33:294-7.

92. Taş Cengiz Z, Akbayram S, Ciçek M, Yilmaz H. [Intestinal parasitoses detected in primary schoolchildren in the Van province]. Türkiye Parazitol Derg 2009;33:289-93.

93. Danchaivijitr S, Rongrungruang Y, Kachintorn U, Tchasathit V, Pakavoravuthi S, Kachintorn K. Prevalence and effectiveness of an education program on intestinal pathogens in food handlers. J Med Assoc Thai 2005;88 Suppl 10:S31-5.

94. Daryani A, Sharif M, Nasrolahei M, Khalillian A, Mohammadi A, Barzegar G. Epidemiological survey of the prevalence of intestinal parasites among schoolchildren in Sari, northern Iran. Trans R Soc Trop Med Hyg 2012;106:455-9.

95. Değerli S, Celiksoz A, Aslan A, Acıöz M, Ozcelik S. [Comparison of the results of examination of fecal samples from students at six months intervals in the Alahaci village primary school in Sivas]. Türkiye Parazitol Derg. 2006;30:305-7.

96. Gündücioğlu H, Parlak M, Ciçek M, Yaman G, Oztürk O, Çikman A, et al. [Investigation of intestinal parasites in students of Mustafa Cengiz primary school in Van]. Türkiye Parazitol Derg 2010;34:172-5.

97. Hamamci B, Cetinkaya U, Delice S, Erçal BD, Güçüyetmez S, Yazar S. [Investigation of intestinal parasites among primary school students in Kayseri-Hacilar]. Türkiye Parazitol Derg 2011;35:96-9.

98. Kia E, Hosseinim M, Nilforoushan M, Meamar A, Rezaei M. Study of intestinal protozoan parasites in rural inhabitants of Mazandaran Province, northern Iran. Iranian Journal of Parasitology 2008;3:21-5.

99. Kittavanachai S, Rhongbutsi P. Intestinal parasitic infections in suburban government schools, Lak Hok subdistrict. Muang Pathum Thani, Thailand. Asian Pac J Trop Med 2013;6:699-702.

100. Koshak EA, Zakai HA. A spectrum of pathogenic and non-pathogenic intestinal parasites in pre-employment medical check-up for workers and their families. J Family Community Med 2003;10:47-53.

101. Kurtoğlu MG, Körkoca H, Ciçek M, Cengiz ZT. [Prevalence of intestinal parasites among workers in food sector in Van region]. Türkiye Parazitol Derg 2007;31:309-12.

102. Lee KJ, Ahn YK, Yong TS. A small-scale survey of intestinal parasite infections among children and adolescents in Legaspi city, the Philippines. Korean J Parasitol 2000;38:183-5.

103. Lu CT, Sung YJ. Epidemiology of Blastocystis hominis and other intestinal parasites among the immigrant population in northeastern Taiwan by routine physical examination for residence approval. J Microbiol Immunol Infect 2009;42:505-9.

104. Ngrenngarmert W, Lamom C, Pasuralertsakul S, Yaichareon R, Wongjindanon N, Sripochang S, et al. Intestinal parasitic infections among school children in Thailand. Tropical Biomedicine 2007;24:83-8.

105. Oyofo BA, Subekti D, Tjaniadi P, Machpud N, Komalarini S, Setiawan B, et al. Enteropathogens associated with acute diarrhoea in community and hospital patients in Jakarta, Indonesia; FEMS Immunol Med Microbiol 2002;34:139-46.

106. Prownebon J, Charupoonphol P, Saksirisampant P, Limvorapitak T, Seepongpun U, Saksirisampant W. Intestinal parasitic infections: high prevalence of Giardia intestinalis in children living in an orphanage compared with hill-tribe children as detected by microscopy and ELISA. Asian Biomedicine 2013;7:855-63.

107. Sagnuanakiat S, Wanichsuwan M, Bhunnachet E, Jungarat N, Panraka K, Komalalimsa C, et al. Health Status of Immigrant Children and Environmental Survey of Child Daycare Centers in Samut Sakhon Province, Thailand; J Immigr Minor Health 2014.

108. Saksirisampant W, Nuchprayoon S, Wiwanitkit V, Yenthamak S, Amapasiri A. Intestinal parasitic infections among children in an orphanage in Pathum Thani province. J Med Assoc Thai 2003;86 Suppl 2:S263-70.

109. Saksirisampant W, Prownebon J, Kammamee P, Thaisom S, Yenthamak S, Nuchprayoon S. Prevalence of parasitism among students of the Karen hill-tribe in Mae Chane district, Chiang Mai province, Thailand; J Med Assoc Thai 2004;87 Suppl 2:S278-83.

110. Saksirisampant W, Prownebon J, Kulkumthorn M, Yenthamak S, Janpla S, Nuchprayoon S. Prevalence of intestinal parasitic infections among school children in the central region of Thailand; J Med Assoc Thai 2006;89:1928-33.

111. Tungtrongchitr A, Manatsathit S, Kositchaiwat C, Ongrotchanakun J, Munkong N, Chinarut P, et al. Blastocystis hominis infection in irritable bowel syndrome patients. Southeast Asian J Trop Med Public Health 2004;35:705-10.

112. Tungtrongchitr A, Chiworaporn C, Praeavanich R, Radomyos P, Boitano JJJ. The potential usefulness of the modified Kato thick smear technique in the detection of intestinal sarcocystosis during field surveys. Southeast Asian J Trop Med Public Health 2007;38:232-8.

113. Waikagul J, Krudosod S, Radomyos P, Chalemrut K, Jonsuksuntigul P, et al. Comparison of the results of examination of fecal samples from students at six months intervals in the Van region. Turkiye Parazitol Derg 2011;35:96-9.

114. Warunee N, Choomanee L, Sataporn P, Rapeeporn P, Nattapong W, Sompong S, et al. Intestinal parasitic infections among school children in Thailand Trop Biomed 2007;24:83-8.

115. Wilairatana P, Radomyos P, Radomyos S, Yenamala P, Chinta P, et al. Intestinal sarcocystosis in Thai laborers; Southeast Asian J Trop Med Public Health. 2002;33:218-23.

116. Wongjindanon N, Suksrichavalit T, Subsutti W, Nutthapong C, Sompong S, et al. Prevalence of intestinal parasitic infections among children in the Mersin City Social Service Child Care Centre. Turkiye Parazitol Derg 2009;33:63-72.
province, Thailand; Trop Biomed 2006;23:117-22.
119. Akao N, Ohyama T, Ohkawa T, Kondo K, Hirokawa Y, Ito S, et al. [A survey of intestinal parasites of the foreign laborers (Indonesians and Filipinos) in Ishikawa Prefecture]. Kansenshogakai Zasshi. 1992;66:1256-61.
120. Akhlaghi L, Shamseddin J, Meamar A, Razmjou E, Oormazdli H. Frequency of Intestinal Parasites in Tehran. Iranian Journal of Parasitology. 2009;4:44-7.
121. Arslan MO, Sari B, Kulu B, Mor N. [The prevalence of intestinal parasites in children brought to the Kars Maternal and Children's Hospital with complaints of gastrointestinal symptoms]. Turkkiye Parazitol Derg 2008;32:253-6.
122. Azami M, Sharifi M, Hejazi SH, Tazhibi M. Intestinal parasitic infections in renal transplant recipients. Braz J Infect Dis 2010;14:15-8.
123. Carney WP, Van Peenen PF, See R, Hagestein E, Lima B. Parasites of man in remote areas of Central and South Sulawesi, Indonesia; Southeast Asian J Trop Med Public Health 1977;8:380-9.
124. Carney WP, Banzon T, De Veyra V, Daña E, Cross JH. Intestinal parasites of man in Northern Bohol, Philippines, with emphasis on schistosomiasis. Southeast Asian J Trop Med Public Health 1980;11:473-9.
125. Carney WP, de Veyra Vu, Cala EM, Cross JH. Intestinal parasites of man in Bukidnon, Philippines, with emphasis on schistosomiasis. Southeast Asian J Trop Med Public Health 1981;12:24-9.
126. Carney WP, Banzon T, de Veyra V, Papasin MC, Cross JH. Intestinal parasites of man in Oriental Mindoro, Philippines, with emphasis on schistosomiasis. Southeast Asian J Trop Med Public Health 1981;12:12-8.
127. Chiu JK, Chiu PC, Tseng PT. Prevalence of intestinal parasitic infections among inhabitants of Tan-nan village, Nantou County, Taiwan. Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi 1979;12:155-9.
128. Choi SC, Lee SY, Song HO, Ryu JS, Ahn MH. Parasitic infections based on 320 clinical samples submitted to Hanyang University, Korea (2004-2011). Korean J Parasitol 2014;52:215-20.
129. Kim CH, Park CH, Kim HJ, Chun HB, Min HK, Koh TY, et al. Prevalence of Intestinal Parasites In Korea. Kisaengchungak Chapchi 1971;9:25-38.
130. Kim SC, Kim JH, Lee JT. [Epidemiological Studies On The Incidences Of Intestinal Parasites. Of Korean Forces In South Vietnam: II. A Comparative Study On The Incidences Of Intestinal Parasites. Kisaengchungak Chapchi 1970:8:30-5.
131. Kim CH, Park CH, Kim HJ, Chun HB, Min HK, Koh TY, et al. [Prevalence Of Intestinal Parasites In Korea]. Kisaengchungak Chapchi 1979:2:10-6.
132. Lee SK, Shin BM, Chung NS, Chai JY, Lee SH. [Second report on intestinal parasites among the patients of Seoul Paik Hospital (1984-1992)]. Korean J Parasitol 1994;32:27-33.
133. Lee J, Park GM, Lee DH, Park SJ, Yong T. Intestinal parasite infection at an institution for the handicapped in Korea. Korean J Parasitol 2000;38:179-81.
134. Mangali A, Sasabone P, Syafruddin, Abadi K, Hasegawa H, Toma T, et al. Intestinal parasitic infections in Campaglian district, south Sulawesi, Indonesia. Southeast Asian J Trop Med Public Health 1993;24:313-20.
135. Nasiri V, Esmailnina K, Karim G, Nasir M, Akhavan O. Intestinal parasitic infections among inhabitants of Karaj City, Tehran province, Iran in 2006-2008. Korean J Parasitol 2009;47:265-8.
136. Niyiyati M, Rezaeian M, Zahabian F, Hajarzadeh R, Kia E. A Survey On Intestinal Parasitic Infections In Patients Referred To A Hospital In Tehran. Pakistan Journal of Medical Sciences 2009;25:87-90.
137. Purnomo, Partono F, Soewarta A. Human intestinal parasites in Karakauk, West Flores, Indonesia and the effect of treatment with mebendazole and pyrantel pamoate. Southeast Asian J Trop Med Public Health. 1980;11:324-31.
138. Sahin I, Kiliç H, Ozcan M, Orhan R. [A copro-parasitological study on the wrestlers of the national team]. Mikrobiyol Bul 1984;18:114-8.
139. Sharif M, Daryani A, Asgarian F, Nasrolahi M. Intestinal parasitic infections among intellectual disability children in rehabilitation centers of northern Iran. Res Dev Disabil 2010;31:924-8.
140. Shokri A, Sarasiabi KS, Teshnizi SH, Mahmoodi H. Prevalence of Strongyloides stercoralis and other intestinal parasitic infections among mentally retarded
residents in central institution of southern Iran. Asian Pac J Trop Biomed 2012;2:86-91.

154. Stafford EE, Joesoef A. Intestinal and blood parasites of man in Bireuen and Takengon, Aceh Province, Sumatra, Indonesia. Southeast Asian J Trop Med Public Health. 1976;7:518-22.

155. Stafford EE, Masri S, Sorensen K. Parasitological survey in Gorontalo North Sulawesi, Indonesia. Southeast Asian J Trop Med Public Health 1976;7:405-10.

156. Stafford EE, Sudomo M, Masri S, Brown RJ. Human parasites in Bali, Indonesia. Southeast Asian J Trop Med Public Health 1980;11:319-23.

157. Subbannayya K, Babu MH, Kumar A, Rao TS, Shivananda PG. Entamoeba histolytica and other parasitic infections in south Kanara district, Karnataka; J Commun Dis. 1989;21:207-13.

158. Supanaranond W, Migasena S, Pitisuttitham P. Suntharasamai P. Health status of Thai volunteers in a cholera vaccine trial. J Med Assoc Thai 1990;73:548-51.

159. Tanyuksel M, Yilmaz H, Ulukangil M, Araz E, Cicek M, Koru O, et al. Comparison of two methods (microscopy and enzyme-linked immunosorbent assay) for the diagnosis of amebiasis. Exp Parasitol 2005;110:322-6.

160. Yaman O, Yazar S, Ozcan H, Getinkaya U, Gozken C, Ateş S, et al. Distribution of intestinal parasites in patients presenting at the parasitology laboratory of the medical school of Erciyes University between the years of 2005 and 2008. Turk J Parasitol 2008;32:266-70.

161. Yazar S, Yaman O, Gozken C, Sahin I. Distribution of intestinal parasites among patients who presented at the Department of Parasitology of the Erciyes University Medical School. Turk J Parasitol 2005;29:261-3.

162. Yosefi F, Randar M, Alavi S, Samany A. A study on Prevalence of Gastrointestinal Parasitic Infections in HIV (+) Patients Referred to Alvaz Razi Hospital in 2008-2009. Fundishapur Journal of Microbiology 2012;3:424-6.

163. Graczyk TK, Shiff CK, Tamang L, Munsaka F, Beitin AM, Yosefi F, Randar M, Alavi S, Samany A. A study on intestinal parasites in Zambian school-age children. Parasitol Res 2005;93:38-43.

164. Ikeh EI, Ohadofin MO, Brindeiro B, Baugherb C, Frost F, Vanderjagt D, et al. Intestinal parasitism in Magama Gumau rural village and Jos township in north central Nigeria. Niger Postgrad Med J 2007;14:290-5.

165. Ouattara M, Silué KD, Nguesan AN, Yapi A, Barbara M, Raso G, et al. Prevalence and polyparasitism of intestinal protozoa and spatial distribution of Entamoeba histolytica, E. dispar and Giardia intestinalis from pupils in the rural zone of Man in Côte d’Ivoire. Sante 2008;18:215-22.

166. Raso G, Utzinger J, Silué KD, Ouattara M, Yapi A, Toty A, et al. Disparities in parasitic infections, perceived ill health and access to care among poorer and less poor schoolchildren of rural Côte d’Ivoire. Trop Med Int Health 2005;10:42-57.

167. Chunge RN, Karumba PN, Nagelkerke N, Kaleli N, Wangwe M, Mutiso N, et al. Intestinal parasites in a rural community in Kenya: cross-sectional surveys with emphasis on prevalence, incidence, duration of infection, and polyparasitism. East Afr Med J 1991;68:112-23.

168. El Shazly AM, Awad SE, Sultan DM, Sadek GS, Khalil HH, Morsy TA. Intestinal parasites in Dakahlia governorate, with different techniques in diagnosing protozoa. J Egypt Soc Parasitol 2006;36:1023-34.

169. Goldsmid JM, Rogers S, Mahomed K. Observations on the intestinal protozoa infecting man in Rhodesia. S Afr Med J 1976;50:1547-50.

170. Hunter G, Bagshawe AF, Baboo KS, Luke R, Prociv P. Intestinal parasites in Zambian patients with AIDS. Trans R Soc Trop Med Hyg 1992;86:543-5.

171. Kasssem HH, Zaed HA, Sadaga GA. Intestinal parasitic infection among children and neonatus admitted to Ibn-Sina Hospital, Sirt, Libya; J Egypt Soc Parasitol 2007;37:371-80.

172. Ogumma BO. The prevalence of human intestinal protozoa in Ibadan, Nigeria. J Trop Med Hyg. 1977:80:187-91.

173. Okafor CN, Azubike CN. Studies in intestinal parasitic disease agents in stools of people in a rural area of Nigeria. West Afr J Med 1992;11:106-11.

174. Pampiglione S, Visconti S, Stefanini A. [Human intestinal parasites in Subsaharan Africa. III. Embia Island (Zanzibar-Tanzania)]. Parasitologia 1987;29:27-35.

175. Pampiglione S, Visconti S, Pezzino G. [Human intestinal parasites in Subsaharan Africa. II. Sao Tomé and Principe]. Parasitologia 1987;29:15-25.

176. Prinz A, Hrnirrainer-Wilflng C, Renoldner K. [Parasitological results of a medicoo-archeological research-work at the Azande in northeast-Zaire (author's transl)]. Wien Med Wochenschr 1979;129:674-8.

177. Ashford RW, Atkinson EA. Epidemiology of Blastocystis hominis infection in Papua New Guinea: Age-prevalence and associations with other parasites. Ann Trop Med Parasitol 1992:86:129-36.

178. Sawangjaroen N, Luke R, Prociv P. Diagnosis by faecal culture of Dientamoeba fragilis infections in Australian patients with diarrhoea. Trans R Soc Trop Med Hyg 1993;87:163-5.

179. Stark D, Fotedar R, van Hal S, Marriott D, Whelan P, McClure R. Effect of different techniques in diagnosing protozoa. J Egyptian Parasitol Soc 1994;44:209-15.