Lawrence Berkeley National Laboratory
Recent Work

Title
Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis.

Permalink
https://escholarship.org/uc/item/7t6092r7

Journal
mBio, 7(4)

ISSN
2150-7511

Authors
Hiras, Jennifer
Wu, Yu-Wei
Deng, Kai
et al.

Publication Date
2016-08-23

DOI
10.1128/mBio.01106-16

Peer reviewed
Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

Jennifer Hiras, Yu-Wei Wu, Kai Deng, Carrie D. Nicora, Joshua T. Aldrich, Dario Frey, Sebastian Kolinko, Errol W. Robinson, Jon M. Jacobs, Paul D. Adams, Trent R. Northen, Blake A. Simmons, Steven W. Singer

Joint BioEnergy Institute, Emeryville, California, USA; Biosciences Directorate, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Biological and Materials Science Center, Sandia National Laboratories, Livermore, California, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA; Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA; Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany

ABSTRACT Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacterium Thermobispora bispora that were highly abundant in the most active consortium. Among the cellulases from T. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite of T. bispora hydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered.

APPLICATION Cellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose generated communities whose soluble enzymes exhibit differential abilities to hydrolyze crystalline cellulose. Comparative proteomics of these communities identified a protein of glycoside hydrolase family 12 (GH12), a family of proteins previously observed to primarily hydrolyze soluble substrates, as a candidate that accounted for some of the differences in hydrolytic activities. Heterologous expression confirmed that the GH12 protein identified by proteomics was active on crystalline cellulose and hydrolyzed cellulose by a random mechanism, in contrast to most cellulases that act on the crystalline polymer in a processive mechanism.

Received 20 June 2016 Accepted 21 July 2016 Published 23 August 2016

Citation Hiras J, Wu Y-W, Deng K, Nicora CD, Aldrich JT, Frey D, Kolinko S, Robinson EW, Jacobs JM, Adams PD, Northen TR, Simmons BA, Singer SW. 2016. Comparative community proteomics demonstrates the unexpected importance of actinobacterial glycoside hydrolase family 12 protein for crystalline cellulose hydrolysis. mBio 7(4):e01106-16. doi:10.1128/mBio.01106-16.

Editor Sang Yup Lee, Korea Advanced Institute of Science and Technology

Copyright © 2016 Hiras et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Steven W. Singer, SWSinger@lbl.gov.

The enzymatic hydrolysis of cellulose is a critical activity in the natural cycling of carbon and the biochemical conversion of plant biomass to fuels and chemicals (1). Plant-derived cellulose is often in crystalline form, which is recalcitrant to hydrolysis (2). Microorganisms, predominantly filamentous fungi and bacteria, have evolved families of glycoside hydrolases that are able to hydrolyze crystalline cellulose. Exoglucanases, predominantly from glycoside hydrolase families 7 and 48 (GH7 and GH48, respectively), produce cellobiose at the reducing end of the cellulose chain (3). Exoglucanases from the GH6 family primarily produce cellobiose from the nonreducing end of the chain. Processive endoglucanases, predominantly from GH families 5, 6, and 9, also hydrolyze crystalline cellulose to produce cellobiose (4). A ubiquitous feature of both the exoglucanases and processive endoglucanases is the presence of a carbohydrate-binding domain linked to the catalytic domain, which has been shown to improve the efficiency of the catalytic domain (5). Model cellulolytic organisms with free enzymes have different complements of these enzymes. For example, Trichoderma reesei (syn. Hypocrea jecorina) expresses GH7 and GH6 exoglucanases for crystalline cellulose hydrolysis (6), while Thermobifida fusca, a thermophilic actinobacterium, produces a processive endoglucanase (GH9) and exo-
GH12 genes in the genomes of cellulolytic bacteria from Thermus thermophilus (4). This observation and the prevalence of GH12 proteins in the genomes of thermophilic bacterial communities adapted to microcrystalline cellulose substrates (12, 13) have been reported to have limited hydrolytic activity on insoluble cellulose (11). Bacterial GH12 proteins characterized as endoglucanases (20, 21) were demonstrated to have high rates of cellulose depolymerization like compost communities with abundant populations closely related to the cellulolytic actinobacterium Thermobispora bispora (14). The genome of the T. bispora type strain (ATCC 43833) contains a number of cellulose genes (coding for the GH48, GH6_endoglucanase, GH6_exoglucanase, and GH12 proteins); however, its ability to grow on cellulose substrates appears to be limited (15, 19). In contrast, another T. bispora strain, NRRL 15568, which was identified by morphology and which has not been genomically sequenced, was reported to readily grow on cellulose substrates at 60°C and produce both exoglucanases and endoglucanases (20, 21). Here we report that the cultivation of thermophilic cellulolytic microbial communities adapted from compost produced a consortium dominated by a population closely related to the T. bispora type strain. The unexpected importance of the T. bispora GH12 protein for hydrolysis of crystalline cellulose was demonstrated by combining comparative community proteomics and biochemical measurements.

RESULTS

Divergent cellulase activities in culture supernatants. Duplicate cellulolytic cultures of green waste compost communities were cultivated to test the reproducibility of community formation compared to previous adaptation experiments (22). In contrast to previous replicated adaptation experiments, measurement of cellulase activities during early development of these enrichments demonstrated large differences between culture lineages. One lineage (passages 2A and 3A) had hydrolytic activities on carboxymethyl cellulose (CMC) and p-nitrophenyl-D-cellobioside (pNPC) activities that were 4- to 20-fold higher than those of the second lineage (passages 2B and 3B) (Table 1); in contrast, activities on p-nitrophenyl-D-glucanopyranoside (pNPG) were higher in the 2B and 3B supernatants. Saccharification of crystalline cellulose with culture supernatants indicated that the supernatant from one consortium (2A), possessed 20-fold greater activity than the succeeding culture in the lineage (3A), and supernatants from the B lineage had no measurable saccharification activity (Fig. 1). Metagenomic sequencing was performed to determine the community composition and genomic potential of the community members. Coassembly and binning of assembled contigs from the four metagenomic data sets indicated that the A lineage was dominated (>80% abundance) by a population closely related to cellulolytic actinobacterium Thermobispora bispora (>99% amino acid identity) (Fig. 2A; see Tables S1 and S2 in the supplemental material). The B lineage had variable community structures with abundant populations closely related to Thermobispora.

![Glucose and Cellulbiose](Image)
lus composti and Caldibacillus debilis). Comparison of the population genome of T. bispora recovered from the cellulose cultivations with the genome of T. bispora ATCC 43833 indicated that the two strains were very similar: the average number of mismatches is 1 bp, and the average number of indels is 0.01 bp per gene.

Comparative supernatant proteomics. Comparative mass spectrometry-based proteomic analysis of the four supernatants using iTRAQ quantification was performed to identify the proteins responsible for the large differences in saccharification activity between the supernatants. For lineage A (cultures 2A and 3A), T. bispora proteins were the most abundant proteins (49.4% in 2A
Expression and characterization of T. bispora cellulases. To test the activity of the GH12 protein in comparison to those of the other T. bispora hydrolytic cellulases, the abundant T. bispora cellulases (GH6_exo, GH12, GH48, and GH6_endo proteins) identified in the proteomics experiment were expressed in *Escherichia coli* as 8×His proteins and purified by Ni affinity chromatography. The GH12 protein exhibited higher activity than the other cellulases on crystalline cellulose, with the GH12 protein possessing ~2.5-fold-higher levels of activity in the release of cellobiose from Avicel in comparison to the GH6_exo and the GH48 proteins (Fig. 4; see Fig. S2 in the supplemental material). Mixtures of these proteins (GH12, GH6_exo, and GH48 proteins and GH12, GH6_exo, GH48, and GH6_endo proteins) demonstrated synergistic activity, exhibiting ~2-fold levels of cellobiose release from Avicel compared to adding the activity of each protein individually.

Product distributions of the cellulose hydrolysis were compared for the GH12, GH6_exo, and GH48 proteins, the most active cellulases on Avicel, using nanostructure-initiator mass spectrometry (NIMS) by posthydrolysis tagging of sugar products using oxime chemistry (23). This technique has provided rapid analysis of the products of glycoside hydrolases, allowing multiplexed comparisons of polysaccharide hydrolysis by glycoside hydrolases (24). Initial rates and products of hydrolysis were measured, and phosphoric acid-swollen cellulose (PASC) and filter paper were added to broaden the substrate profile of these glycoside hydrolases. The NIMS results demonstrated that initial hydrolysis by GH12 protein of the cellulose substrates after 8 h produced cellobiose and glucose in an ~2:1 ratio (Fig. 5). An independent experiment indicated that the GH12 protein rapidly hydrolyzed cellotriose (~50% hydrolysis in 1 h), consistent with the observed cellobiose/glucose ratio. Cellulose hydrolysis by the GH6_exo and GH48 proteins predominantly produced cellobiose, with glucose and cellobiose observed as minor products, suggesting that they function as cellobiohydrolases (see Fig. S3 and S4 in the supplemental material). In contrast, the NIMS results suggested that the GH12 protein hydrolyzed the insoluble substrates by a random mechanism and was not a processive enzyme. This observation was supported by a processivity assay that compared the ratio of the soluble and insoluble reducing ends in filter paper hydrolysis by the GH12 protein. The ratio of soluble to insoluble reducing ends was 56:44, which corresponded to a processivity ratio of 1.3.

![Heat map representing the proteomic abundances of the T. bispora cellulases (the GH12, GH6_exo, GH48, GH6_endo, and AA10 proteins) as measured by LC-MS/MS-based iTRAQ quantification. Lighter colors indicate lower log proteomic abundances of each cellulase in four different samples, and darker colors indicate higher log abundances.](image)
DISCUSSION

This study demonstrates that linking enzymatic assays with comparative community proteomics of related microbial consortia can uncover new activities, even of community members closely related to cultivated bacteria like Thermobispora bispora. Most comparative community proteomic studies have emphasized the differential presence of proteins when comparing cultivation and environmental conditions (25, 26), while this study adds comparative activity measurements of the proteins produced by consortia as well as heterologous expression of targeted proteins to test the hypotheses generated by the differential proteomics analysis.

Though it is likely that multiple proteins contributed to the increased saccharification activity in the 2A supernatant, the importance of the Thermobispora bispora GH12 family for crystalline cellulose hydrolysis was highlighted by comparative proteomics and supported by biochemical measurements of the individual proteins.

The genesis of this study was to test the reproducibility of community adaptation to growth on microcrystalline cellulose. A previous set of adaptation experiments on microcrystalline cellulose and wheat arabinoxylan demonstrated that community structures were largely reproduced after two passages of the communities inoculated with a compost sample (22). These community structures were mostly made of members of the Firmicutes and Bacteroidetes, and this structure was also observed in the B lineage of the adaptations in this study. All of these communities had relatively low levels of cellulase activities, as measured by the 3,5-dinitrosalicylic acid (DNS)-based endoglucanase activities with carboxymethyl cellulose as the substrate. In all adaptations, a population closely related to Thermobispora bispora was present at low abundance (<5%). In contrast, the Thermobispora bispora population was >80% in the two passages in the A lineage, and its glycoside hydrolase enzymes were the most abundant GH proteins as measured by proteomics. Therefore, community formation appears not to be reproducible, and different community structures may arise from the same inoculum. This observation is consistent with the existence of founder effects in the formation of microbial communities that may affect their overall structure (27).

The behavior of the Thermobispora bispora population in the A lineage of...
the cellulolytic consortia resembles the *T. bispora* strain described by Eveleigh (NRRL 15568), which grew at 60°C and secreted large amounts of exoglucanases and endoglucanases (20). Attempts to obtain an isolate from the *T. bispora* population from the A lineage were not successful, as were attempts to revive a freeze-dried culture of NRRL 15568. The behavior of the *T. bispora* A lineage population is not consistent with the *T. bispora* type strain (ATCC 43833), as this strain has an optimal growth temperature at 45°C and high levels of cellulases are not produced during cultivation on microcrystalline cellulose (MCC) (15, 19). Comparison of the genome population of the *T. bispora* from the A lineage with the genome of the *T. bispora* type strain indicated that they were >99% identical at the amino acid level. These results suggest that even though the genomes of the different strains of *T. bispora* are very similar, subtle changes in genomic content and cultivation conditions may be responsible for high levels of cellulase secretion by *T. bispora* growing at 60°C.

While *Actinobacteria* are found in environments with high rates of biomass decomposition and broadly possess the metabolic potential for crystalline cellulose hydrolysis, detailed biochemical and systems biological studies of cellulose hydrolysis have only been performed on a few model systems. The most comprehensively studied cellulolytic actinobacterium is *Thermobifida fusca*, for which detailed biochemical studies have demonstrated that the most important enzymes for crystalline cellulose hydrolysis are a processive GH9 endoglucanase and two exocellulases, the GH48 and GH6 proteins. The GH9 and GH48 enzymes act in synergy to hydrolyze the reducing ends of the cellulase chain, while the GH6 enzyme hydrolyzes the nonreducing ends (7). *T. fusca* has no GH12 protein encoded in its genome. Transcriptomic and proteomic measurements of the response of *Streptomyces* sp. strain Sirex AA-E, isolated from a pine-boring wood wasp, to crystalline cellulose demonstrated that a GH6 protein and GH48 protein were the most abundant proteins secreted (16). Additionally, the third most abundant protein was a lytic polysaccharide monoxygenase (AA10), an oxidative enzyme that has been demonstrated to work in synergy with the glycoside hydrolyses to depolymerize crystalline cellulose. *T. fusca* also has a highly expressed AA10 protein that may have enhanced the hydrolytic activity of the GH9, GH48, and GH6 proteins on crystalline cellulose. The GH12 protein was not prominent in the *Streptomyces* sp. strain Sirex AA-E secretome; however, a related cellulolytic *Streptomyces* strain, DpondAA-B6, possessed a GH12 protein that was 6.2% of the total extracellular proteome of the DpondAA-B6 strain grown on crystalline cellulose (28). An extensive survey of sequenced *Streptomyces* species demonstrated that GH12 proteins were present in the genomes of all of the members of cellulolytic clades, suggesting they play an essential role in cellulose depolymerization (29).

Acidothermus cellulolyticus, a thermophilic actinobacterium, produced multiple thermostable endoglucanases and β-glucosidases, of which the *A. cellulolyticus* GH5 protein (E1) is the most comprehensively studied (30, 31). Genomic analysis of *A. cellulolyticus* demonstrated that the majority of the cellulase genes were in a gene cluster that contained genes coding for GH5, GH6, GH12, GH48, and GH74 proteins (32). Many of these *A. cellulolyticus* cellulases contain multiple carbohydrate-binding modules of families 2 and 3 (CBM2 and -3, respectively), and the cluster contains two GH12 catalytic domains: one domain with a CBM2 domain, similar to the *T. bispora* protein, and a second domain found in a multidomain protein with a GH6 protein and two CBMs. The precise roles of the *A. cellulolyticus* cellulases in cellulose hydrolysis have not been completely elucidated. The work with the *T. bispora* cellulases described here and the characterization of the *A. cellulolyticus* GH12 CBM2 described in the introduction suggest that the GH12 catalytic domains may have a larger role in crystalline cellulose hydrolysis than has been envisioned.

The observation of random hydrolytic activity by the *T. bispora* GH12 protein is consistent with a mechanism where the GH12 protein randomly cleaves cellulose chains in the crystalline material and the GH48 and GH6 cellobiohydrolases cleave the exposed cellulose chains at the reducing and nonreducing ends, which may account for the synergistic increase in activity when these GH proteins are mixed. The abundant AA10 protein may oxidize highly crystalline cellulose regions, facilitating hydrolysis by the GH proteins (33). This model is different from the classical endoglucanase-exoglucanase synergy model, in which the endoglucanases hydrolyzed amorphous regions, which exposes crystalline regions for hydrolysis by exoglucanases (34, 35). These results suggest that the GH12 protein may have an underappreciated role in the crystalline cellulose hydrolysis, and more comprehensive biochemical and systems biological studies of cellulolytic *Actinobacteria* may further refine its role and importance.

MATERIALS AND METHODS

Sample collection and enrichment of thermophilic consortia. Compost samples were collected from a free municipal green waste composting program in Berkeley, CA (37°52′08.0″N 122°18′46.1″W), referred to here as Berkeley Green Waste (BGW) compost. The green waste consisted of yard trimmings and discarded food waste from an end-stage compost pile. Samples were transported to the lab at room temperature and stored at 4°C until inoculation. The adaptation of thermophilic consortia to purified substrates was described previously (36). Briefly, microcrystalline cellulose (0.5% wt/vol; Sigma, St. Louis, MO) was the sole supplemented carbon and energy source in 50 ml of M9 medium augmented with vitamins and buffered with 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) at a final pH of 6.5 (37). Approximately 0.5 g of the BGW compost material was inoculated into the initial enrichments. Two biological replicates, referred to as A and B, were incubated in parallel at 60°C under aerobic conditions at 200 rpm. The enrichments were serially passed through three sets of liquid cultures (10% [vol/vol] inoculum), referred to as passages.

Measurement of protein concentration and glycoside hydrolase activity. At the end of each serial passage, DNA was isolated from cell pellets with the FastDNA spin kit for soil and the FastPrep instrument (MP Biomedicals, Santa Ana, CA). Protein concentrations were determined by bicinchoninic (BCA) assay (Pierce BCA protein assay kit; Thermo Scientific, Rockford, IL) methods, using a 96-well plate (200-μl reaction volume) with bovine serum albumin as the standard. Cellulase activity assays were conducted as previously described (38). Briefly, endoglucanase and xylanase activities were assessed by the 3,5-dinitrosalicylic acid (DNS) method, using carboxymethyl cellulose and birchwood xylan as the substrates, respectively, with either glucose or xylose as the standard (39). The enzyme reaction volume was 80 μl followed by 80 μl of DNS solution to measure released reducing sugars. One unit of cellulase or xylanase activity was defined as the amount of crude protein releasing a micromole of reducing sugar per minute per milliliter of supernatant volume. Cellobiohydrolase (pNPC), β-1,4-glucosidase (pNPG), and β-1,5-xylanase (pNPX) activities were determined using their respective p-nitrophenyl sugar substrates. The p-nitrophenyl substrate (90 μl) was incubated with 10 μl of diluted enzyme, incubated for 30 min, and quenched with 50 μl of 2% cold sodium bicarbonate. The absorbance of released p-nitrophenol was measured at 410 nm. Activities using p-nitrophenyl substrates were cal-
culated as micromoles of p-nitrophenol released per minute per milligram of crude protein.

Analysis of metagenomic data sets. Sequencing of the metagenomes was carried out by the Joint Genome Institute as previously described (40). The sequencing reads of four metagenomic data sets, including lineage A passage 2 (2A), lineage A passage 3 (3A), lineage B passage 2 (2B), and lineage B passage 3 (3B), were coassembled using SPAdes 3.6 (41). The coassembled scaffolds were then binned using MaxBin 2.0 (40, 42). A customized Perl script was implemented to remove redundant genomic regions in the binned genomes. Briefly, this script will first self-BLAST each of the binned genomes using BLASTN, detecting distinct regions that were overlapped by >1,000 bp with identity of >95% and leave only one copy of the overlapped regions on the longest scaffold. To analyze the genetic content of the binned genome that was most closely related to Thermobispora bispora, genes were predicted from the recovered genome using Prodigal (43) and compared against the T. bispora DSM 43833 genome downloaded from NCBI (accession ID NC_014165.1) using BLASTX with an E value set to 1e-50.

Growth conditions and protein expression. Genes encoding the T. bispora hydrolytic cellulase sequences from enrichment cultures were synthesized by GenScript (Piscataway, NJ). Sequences contain a His tag terminator and were codon optimized for expression in E. coli, and the signal peptides were removed. Genes were provided in the entry vector pEop5 and were cloned using Golden Gate assembly (49) into E. coli DH10B. All reagents were purchased from New England Biolabs (Ipswich, MA). Briefly, the desired gene was digested out of the entry vector, ligated into a new destination vector, and transformed into an E. coli expression strain. Digestion was completed by incubating the gene plus entry vector (0.1 μg) with destination vector (50 ng pE-FB-E, 1× BSA, 1 mM ATP, 1× CutSmart buffer, and BsaI HP restriction enzyme with up to 10 μl of water at 37°C for 1 h. Next, T4 ligase (1 μl) was added to the digested product, and the mixture was incubated with 25 cycles of 37°C for 3 min and 16°C for 4 min, 50°C for 10 min, and 80°C for 10 min and then cooled to 4°C.

The product was then transformed into chemically competent E. coli DH10B cells for storage and again into chemically competent E. coli N debt Express for heterologous expression of proteins. Starter cultures (50 ml) of E. coli N debt Express-harboring plasmids were grown overnight in LB medium containing 25 μg/ml kanamycin at 37°C and shaken at 200 rpm in rotary shakers. Expression was performed in Terrific Broth with 2% glucose, 25 μg/ml kanamycin, and 2 mM MgSO4. Starter cultures were used to inoculate 1 liter of expression medium in a 2-liter baffled Erlenmeyer flask and incubated at 18°C while shaking (200 rpm) and induced with 500 μM isopropyl-β-D-1-thiogalactopyranoside (IPTG). Following induction, cultures were again incubated at 18°C. At 22 h, cultures were divided and centrifuged at 15,000 × g for 30 min. Cell pellets were resuspended in 25 ml 30 mM HEPES plus 150 mM NaCl plus 20 mM imidazole (pH 7.4) and homogenized with an EmulsiFlex-C3 instrument (Avestin, Inc., Ontario, Canada). Lysates were collected via centrifugation at 75,000 × g for 30 min and 0.45-μm-pore filtered to remove large particles.
prior to purification. Polyhistidine-tagged proteins were purified on Ni-nitrotriacetic acid (NTA) resin (Thermo Scientific, Rockford, IL) and stored at 4°C until ready for use. The proteins were >90% pure as visualized by SDS-PAGE.

Saccharification with purified proteins on biomass. Saccharifications using purified proteins were conducted on 2% (wt/vol) Avicel. Each mixture was prepared in 50 mM MES (pH 6.0) with 40 mg total protein per g glucan in biomass to a final volume of 100 μl in a 96-well microtiter plate. Saccharifications were carried out 60°C in a shaker for 72 h. Samples were harvested and analyzed by HPLC as described above.

NIMS assay. Time course reactions were set up by incubating 25 μl enzyme solution of the GH12, GH6exo, and GH48 proteins (60 mg/g glucan) in a volume of 500 μl 100 mM NaOAc (pH 5.5) and 5 mg Avicel or phosphoric acid-swollen cellulose (PASC) (50). One Whatman no. 1 filter paper disc (GE Healthcare, Pittsburgh, PA), which was produced with a hole puncher and averaged ~3.5 mg, was added to each reaction mixture. The reaction mixtures were incubated at 60°C for 8 h, and 2-μl aliquots were removed at the indicated time points and analyzed by NIMS as previously described with 13C-labeled glucose as a standard (24). The processivity measurement was performed with Whatman no. 1 filter paper as previously described (51).

Accession number(s). The four metagenomes can be accessed at the JGI IMG website (http://img.jgi.doe.gov/) with IMG genome ID 3300001232 (passage 2A), 3300005157 (passage 3A), 3300009096 (passage 2B), and 3300005137 (passage 3B). The gene sequences and plasmid constructs for the T. bispora glycosidase hydrolyses GH12 (IPUB_007416), GH6exo (IPUB_007418), GH48 (IPUB_007420), and GH6endo (IPUB_007422) are available from the public version of the JBEI Registry (http://www.addgene.org) and are physically available from the authors and/or Addgene (http://www.addgene.org) upon request. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium (52) (http://www.proteomexchange.org/) via the PRIDE partner repository with the data set identifier PXD004204.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl?doi=10.1128/mBio.01106-16/-/DCSupplemental.

Figure S1, PDF file, 0.1 MB.
Figure S2, PDF file, 0.02 MB.
Figure S3, PDF file, 0.1 MB.
Figure S4, PDF file, 0.1 MB.
Table S1, PDF file, 0.04 MB.
Table S2, PDF file, 0.1 MB.
Table S3, PDF file, 0.1 MB.
Table S4, PDF file, 0.1 MB.
Table S5, PDF file, 0.03 MB.

ACKNOWLEDGMENTS
This work was performed as part of the DOE Joint BioEnergy Institute supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Metagenomic sequencing was conducted by the Joint Genome Institute, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Work was performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy Office of Biological and Environmental Research National Scientific User facility located at Pacific Northwest National Laboratory in Richland, WA. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract no. DE-AC05-76RL01830. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The authors do not have any conflicts of interest to declare.

FUNDING INFORMATION
This work, including the efforts of Jennifer Hiras, Yu-Wei Wu, Kai Deng, Dario Frey, Sebastian Kolinko, Paul Adams, Trent Northen, Blake Simmons, and Steven Singer, was funded by Department of Energy Office of Biological and Environmental Research (DE-AC02-05CH11231). This work, including the efforts of Carrie Nicora, Joshua Aldrich, Jon Jacobs, and Errol Robinson, was funded by Department of Energy Office of Biological and Environmental Research (DE-AC05-76RL01830).

REFERENCES
1. Blanch HW, Adams PD, Andrews-Cramer KM, Frommer WB, Simmons BA, Keasling JD. 2008. Addressing the need for alternative transportation fuels: the Joint BioEnergy Institute. ACS Chem Biol 3:17–20. http://dx.doi.org/10.1021/cb700267w.
2. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002.
3. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Exteba AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119. http://dx.doi.org/10.1016/j.cjbp.2015.10.018.
4. Wilson DB. 2011. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14:259–263. http://dx.doi.org/10.1016/j.mib.2011.04.004.
5. Oliveira C, Carvalho V, Domingues L, Gama FM. 2015. Recombinant CBM-fusion technology—applications overview. Biotechnology Adv 33:358–369. http://dx.doi.org/10.1016/j.biotechadv.2015.02.006.
6. Payne CM, Knott BC, Mayes HB, Hansson H, Hammel ME, Sandgren M, Ståhlberg J, Beckham GT. 2015. Fungal cellulases. Chem Rev 115:1308–1448. http://dx.doi.org/10.1021/cr500351c.
7. Wilson DB, Kostylev M. 2012. Cellulase processivity. Methods Mol Biol 908:93–99. http://dx.doi.org/10.1007/978-1-61779-615-9_9.
8. Brunecyk R, Alahubta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MW, Lunin VV, Hammel ME, Bomble YJ. 2013. Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516. http://dx.doi.org/10.1126/science.1244273.
9. Damasio AR, Rubio MV, Oliveira LC, Segato F, Dias BA, Citadini AP, Paixão DA, Squina FM. 2014. Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnol Bioeng 111:1494–1505. http://dx.doi.org/10.1002/bit.25209.
10. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD. 2010. Rapid optimization of enzyme mixtures for detoxification of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:22. http://dx.doi.org/10.1186/1754-6833-3-22.
11. Cohen R, Suzuki MR, Hammel KE. 2005. Processive endogucanase active in crystalline cellulose hydrolysis by the brown rot basidioymycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2421–2417. http://dx.doi.org/10.1128/AEM.71.5.2421-2417.2005.
12. Crennell SJ, Hreggvidsson GO, Nordberg Karlsson E. 2002. The structure of Rhodotorula marinus Cel12A, a highly thermostable family 12 endogucanase, at 1.8-angstrom resolution. J Mol Biol 320:883–897. http://dx.doi.org/10.1006/jmbi.2002-00446-1.
13. Sulzenbacher G, Shareck F, Morosoli R, Dupont C, Davies GJ. 1997. The Streptomyces lividans family 12 endogucanase: construction of the catalytic core, expression, and X-ray structure at 1.75-A resolution. Biochemistry 36:16032–16039. http://dx.doi.org/10.1021/bi972407v.
14. Wang J, Gao G, Li Y, Yang L, Liang Y, Jin H, Han W, Feng Y, Zhang Z. 2015. Cloning, expression, and characterization of a thermophilic endogucanase, AcCel12B from Acidothermus cellulolyticus 11B. Int J Mol Sci 16:2580–2595. http://dx.doi.org/10.3390/ijms16102580.
15. Anderson I, Abt B, Lykidis A, Klenk H-P, Kyripides N, Ivanova N. 2012. Genomics of aerobic cellulose utilization systems in Actinobacteria. PLoS One 7:e39531. http://dx.doi.org/10.1371/journal.pone.0039531.
16. Takasuka TE, Book AJ, Levin GW, Currie CR, Fox BG. 2013. Aerobic deconstruction of cellulose by biologically active recombinant Streptomyces. Sci Rep 3:1030. http://dx.doi.org/10.1038/srep01030.
17. Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M. 2010. Bacterial diversity at different stages of the composting process. BMC Microbiol 10:94. http://dx.doi.org/10.1186/1471-2180-10-94.
18. Liolios K, Sikorski J, Jando M, Lapidus A, Copeland A, Glavina T, Del Río, Nolan M, Lucas S, Tice H, Cheng JE, Han C, Wykeh T, Goodwin L, Pitluck
with the cellobiohydrolase. Biochem J 171:61–72. http://dx.doi.org/10.1042/bj1710061.

16. Eichert SA, Joshua C, Sathitsuksanoh N, Singh S, Simmons BA, Singer SW. 2014. Substrate-specific development of thermophilic bacterial consortia by using chemically pretreated switchgrass. Appl Environ Microbiol 80:423–432. http://dx.doi.org/10.1128/AEM.02795-14.

17. Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholz P, Simmons BA, Singer SW. 2011. Glycolide hydrolysis activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812. http://dx.doi.org/10.1128/AEM.00322-11.

18. McClendon SD, Bath T, Petzold CJ, Adams PD, Simmons BA, Singer SW. 2012. Thermaeasaurantianus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54. http://dx.doi.org/10.1186/1754-6834-5-54.

19. Xiao Z, Storms R, Tsang A. 2005. Microplate-based carbohydrate-luciferase assay for endoglucanase activity. Anal Biochem 342:176–178. http://dx.doi.org/10.1016/j.ab.2005.01.052.

20. Yu EW, Tang YH, Tringe SG, Simmons BA, Singer SW. 2014. MaxiBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26. http://dx.doi.org/10.1186/2049-2618-2-26.

21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Yasysh N, Tealer G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/ cmb.2012.0021.

22. Yu EW, Simmons BA, Singer SW. 2016. MaxiBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607. http://dx.doi.org/10.1093/bioinformatics/btw636.

23. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser IJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. http://dx.doi.org/10.1186/1471-2105-11-119.

24. Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1001925.

25. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. dabCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W44–W451. http://dx.doi.org/10.1093/nar/gks479.

26. Dhaeseleer P, Gladden J, Allgaier M, Chain PS, Tringe SG, Malfatti SA, Aldrich JT, Nicora CD, Robinson EW, Paša-Tolić I, Hugenholz P, Simmons BA, Singer SW. 2013. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS One 8:e76845. http://dx.doi.org/10.1371/journal.pone.0076845.

27. Liberton M, Saha R, Jacobs JM, Nguyen AY, Gritsenko MA, Smith RD, Koppenaal DW, Pakrasi HB. 2016. Global proteomic analysis reveals an exclusive role of thylakoid membranes in bioenergetics of a model cyanobacterium. Mol Cell Proteomics 15:2021–2032. http://dx.doi.org/10.1074/mcp.M115.057240.

28. Kim S, Gupta N, Pevzner PA. 2008. Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res 7:3354–3363. http://dx.doi.org/10.1021/pr0801244.

29. Engler C, Kundzia R, Marilondon S. 2008. A one pot, one step, precise cloning method with high throughput capability. PLoS One 3:e3647. http://dx.doi.org/10.1371/journal.pone.0003647.

30. Zhang Y-P, Cui J, Lynd LR, Kuang LR. 2006. A transition from cellulose swelling to cellulose dissolution by α-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:664–668. http://dx.doi.org/10.1021/bm050799c.

31. Irwin DC, Spezio M, Walker LP, Wilson DB. 1993. Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnology Bioeng 42:1002–1013. http://dx.doi.org/10.1002/bit.26042811.

32. Viccaino J, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz P, Xanarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus H, Albar JP, Martinez-Bartolomé S, Apeilewe R, Omenn GS, Martens L, Jones AR, Hermjakob H. 2014. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226. http://dx.doi.org/10.1038/nbt.2839.