High mitochondrial content is associated with breast cancer aggressiveness

PATRICK LEBOK1*, KATHARINA SCHÜTT1*, MARTINA KLUTH1, ISABELL WITZEL2, LINN WÖLBER2, PETER PALUCHOWSKIC1, LUIGI TERRACCIANO4, CHRISTIAN WILKE5, UWE HEILENKÖTTER5, VOLKMAR MÜLLER2, BARBARA SCHMALFELDT2, RONALD SIMON1, GUIDO SAUTER1, INGO VON LEFFERN7, TILL KRECH8, RAINER HORST KRECH8, FRANK JACOBSEN1 and EIKE BURANDT1

1 Institute of Pathology and 2 Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg; 3 Department of Gynecology, Regio Clinic Pinneberg, D-25421 Pinneberg, Germany; 4 Department of Pathology, Basel University Clinics, 4031 Basel, Switzerland; 5 Department of Gynecology, Regio Clinic Elmshorn, D-25337 Elmshorn; 6 Department of Gynecology, Clinical Centre Itzehoe, D-25524 Itzehoe; 7 Department of Gynecology, Albertinen Clinic Schnelsen, D-22457 Hamburg; 8 Institute of Pathology, Clinical Centre Osnabrück, D-49076 Osnabrück, Germany

Received January 13, 2020; Accepted June 23, 2021

DOI: 10.3892/mco.2021.2365

Abstract. Mitochondria are relevant for cancer initiation and progression. Antibodies against mitochondrially encoded cytochrome c oxidase II (MTCO2), targeting a mitochondria specific epitope, can be used to quantitate the mitochondria content of tumor cells. The present study evaluated the impact of the cellular mitochondrial content on the prognosis of patients with breast cancer using immunohistochemical analysis on 2,197 arrayed breast cancer specimens. Results were compared with histological tumor parameters, patient overall survival, tumor cell proliferation using Ki67 labeling index (Ki67LI) and various other molecular features. Tumor cells exhibited stronger MTCO2 expression than normal breast epithelial cells. MTCO2 immunostaining was largely absent in normal breast epithelium, but was observed in 71.9% of 1,797 analyzable cancer specimens, including 34.6% tumors with weak expression, 22.3% with moderate expression and 15.0% with strong expression. High MTCO2 expression was significantly associated with advanced tumor stage, high Bloom-Richardson-Elston/Nottingham (BRE) grade, nodal metastasis and shorter overall survival (P<0.0001 each). In multivariate analysis, MTCO2 expression did not provide prognostic information independent of BRE grade, pathological tumor and pathological lymph node status. Additionally, significant associations were observed for high MTCO2 expression and various molecular features, including high Ki67LI, amplifications of HER2, MYC, CCND1 and MDM2, deletions of PTEN, 8p21 and 9p, low estrogen receptor expression (P<0.0001 each) and progesterone receptor expression (P<0.0001). The present study demonstrated that high MTCO2 expression was strongly associated with a poor prognosis and unfavorable phenotypical and molecular tumor features in patients with breast cancer. This suggests that the mitochondrial content may have a pivotal role in breast cancer progression.

Introduction

Breast cancer, the most common malignancy in women (1), is treated by surgical removal of the cancer. In addition, adjuvant systemic therapy is given depending on the perceived aggressiveness of the removed cancer. Currently the established prognostic parameter include histological grade, tumor size, presence of lymph node metastasis, tumor cell proliferation (Ki67 labeling index; Ki67LI) as well as hormonal receptor and HER2 status (2-4) (Ki67) (5). In many patients, supplementary molecular parameters are analyzed (6-8). These molecular classifiers are built on multiplexed analysis of the mRNAs of 21-70 genes (9-11).

The rising interest in mitochondrial function and dysfunction on cancer development has been reviewed by Davis and Williams and Hsu et al (12,13). The loss of proliferation control in cancer cells may result in cellular...
masses that extend beyond the capacity of the supporting vasculature, leading to oxygen and nutrient deprivation. Hence, tumor cells must adapt to overcome these restrictions. Mitochondria are key organelles for energy production in normal and neoplastic cells. Quantity and activity of mitochondria are essential for tumor growth (reviewed in refs. 12-16). Mutations in mitochondrial genes or aberrant mitochondrial content have been described to occur in various cancer types (17-20). An increased mitochondria quantity has earlier been linked to aggressive tumor phenotype and poor prognosis in lung (21), colorectal (22,23), prostate (24), gastric (25), cervical (18), and ovarian cancer (26). In glioma, however, high mitochondria content was linked to favorable prognosis (27). In one study, on 76 breast carcinomas, a prognostic impact of the mitochondria count was also suggested (28). Focused on these reports, we assumed that the cellular mitochondria content of breast cancer cells might potentially be clinically relevant in breast cancer.

The mitochondrial encoded cytochrome c oxidase II (MTCO2) monoclonal antibody recognizes a 60 kDa non-glycosylated protein subunit of cytochrome c oxidase in mitochondria found in human cells and has been used to reveal the mitochondrial content of tumor cells in previous studies (24,28,29). We tested the clinical relevance of the cellular mitochondria content in breast cancer on a pre-existing breast cancer tissue microarray (TMA) containing more than 2,000 cancers. The data show that a ‘mitochondrion-rich phenotype’ represents a strong and independent predictor of patient prognosis in breast cancer.

Materials and methods

Patients. A total of 2,197 human breast cancer samples from paraffin-embedded tissue specimens fixed in 4% neutral buffered formalin were used (30). The breast cancer samples were consecutively collected between 1984 and 2000 and follow-up data were retrospectively collected. The median patient's age was 63 (range, 25-101) years. Overall survival data were available from 1,982 patients (713 patients with and 1,508 without event). The mean follow-up time was 63 months (range, 1-176 months). The TMA was produced as a TMA was produced as an adhesive coated plate containing more than 2,000 cancers. The data show that a ‘mitochondrion-rich phenotype’ represents a strong and independent predictor of patient prognosis in breast cancer.

Results

Technical issues. A total of 1,797 (81.8%) of the 2,197 arrayed tumor samples were interpretable in our TMA analysis. Non-informative cases (400 spots; 18.2%) were due to missing tissue samples or the absence of unequivocal cancer tissue in the TMA spot.

MTCO2 immunostaining in normal breast tissue and breast cancer. There were 20 normal breast tissue samples included in our TMA. Normal breast tissues showed negative to moderate MTCO2 staining in luminal cells under the chosen experimental conditions. In cancer, MTCO2 immunostaining was considered weak in 34.6%, moderate in 22.3% and strong in 15.0% of tumors. A total of 506 (28.2%) showed no detectable MTCO2 staining and were categorized as negative. Characteristic images of MTCO2 immunostainings are shown in Fig. 1. The intensity of MTCO2 immunostaining varied between histological breast cancer subtypes (Table I). Strong MTCO2 staining was significantly more common in medullary (27.9%), papillary (16.0%) and cancers of no special type (NST; 16.6%) than in lobular (6.9%) or tubular carcinomas (4.9%). Strong MTCO2 staining was also commonly seen in some of the rare breast cancer subtypes such as in 3 of 13 carcinomas with apocrine differentiation, 17 of 61 carcinomas with medullary features and 2 of 12 glycogen-rich clear cell type carcinomas (Table S1).

Association with tumor phenotype and molecular features. High levels of MTCO2 immunostaining were significantly associated with high pT stage, high BRE grade, estrogen and progesterone receptor negativity as well as HER2 overexpression or amplification (P<0.0001 each, Tables I and II). This was also seen for NST carcinomas (P<0.01, Table I). Further analyses with previously described frequent and prognostic relevant molecular features of breast cancers such as HER2 (35), and c-MYC amplification (32) as well as deletions of 8p21 (34), 9p21 (33), and 10q23 (36) showed...
significant associations with high MTCO2 staining intensity (Table II).

Association with tumor cell proliferation. Data on tumor cell proliferation as evaluated by the Ki67LI were available from a previous study with the same TMA (30). The mean Ki67LI increased from 19.62±0.66 in MTCO2 negative cancers to 37.75±0.93 in cancers with strong MTCO2 staining (P<0.0001). This statistically significant relationship was also seen in tumor subsets with identical pT or pN stage, lobular and medullary carcinoma, BRE grade and HER2 status as well as 8p and PTEN deletion. All data are summarized in Table III.

Prognostic significance of MTCO2 expression. Survival data were available for 1,806 cancers with interpretable IHC results. The rate of surviving patients continuously decreased with increasing levels of MTCO2 immunostaining (P=0.0001; Fig. 2). The association between strong MTCO2 immunostaining and poor prognosis was also seen in the subgroup of NST cancers (P<0.0001; Fig. 2) and in the nodal positive subset (P<0.0001; Fig. 2) and to a much lesser extent...
Table II. Association between MTCO2 staining and molecular alterations.

Molecular alterations	N	Negative, %	Weak, %	Moderate, %	Strong, %	P-value
HER2 normal	1,141	29.2	36.3	21.2	13.3	<0.0001
HER2 amplified	239	15.5	32.6	30.1	21.8	
MYC normal	1,232	26.9	34.9	23.1	15.1	<0.0001
MYC amplified	64	7.8	29.7	28.1	34.4	
8p21 normal	578	27.7	39.1	20.9	12.3	<0.0001
8p21 deletion	553	17.0	27.7	29.5	25.9	
9p21 normal	835	25.0	33.1	24.4	17.5	0.0182
9p21 deletion	150	16.7	28.0	32.0	23.3	
10q23 normal	904	25.0	35.0	22.9	17.1	<0.0001
10q23 deletion	216	11.6	26.4	36.1	25.9	

MTCO2, mitochondrially encoded cytochrome c oxidase II.

Figure 1. Representative images of MTCO2 staining in breast cancer tissues. (A) Normal breast tissue, (B) negative staining in breast cancer tissue, (C) weak staining in breast cancer tissue, (D) moderate staining in breast cancer tissue and (E) strong staining in breast cancer tissue. Scale bar, 100 µm. MTCO2, mitochondrially encoded cytochrome c oxidase II.
Table III. Association between MTCO2 staining and Ki67LI.

Cases	MTCO2 staining	N	Ki67LI	P-value
All cases	Negative	428	19.6±0.7	<0.0001
	Weak	523	27.0±0.6	
	Moderate	338	33.0±0.8	
	Strong	216	37.8±0.9	
No special type	Negative	264	20.7±0.8	<0.0001
	Weak	383	27.8±0.7	
	Moderate	253	33.3±0.9	
	Strong	168	38.0±1.1	
Lobular cancer	Negative	92	16.2±1.2	<0.0001
	Weak	66	20.3±1.4	
	Moderate	24	28.4±2.3	
	Strong	15	26.9±2.9	
Medullary cancer	Negative	9	29.9±5.2	0.0109
	Weak	15	43.7±4.1	
	Moderate	16	50.2±3.9	
	Strong	15	50.9±4.0	
HER2 amplified	Negative	32	26.7±2.3	<0.0001
	Weak	67	34.2±1.6	
	Moderate	64	40.3±1.6	
	Strong	43	41.3±1.9	
MYC amplified	Negative	4	28.5±7.4	0.3927
	Weak	19	38.3±3.4	
	Moderate	17	41.6±3.6	
	Strong	21	41.6±3.2	
8p deletion	Negative	86	24.8±1.5	<0.0001
	Weak	135	30.2±1.2	
	Moderate	145	35.3±1.2	
	Strong	116	40.3±1.3	
PTEN deletion	Negative	24	30.6±3.2	0.0118
	Weak	55	37.7±2.1	
	Moderate	75	41.7±1.8	
	Strong	44	42.2±2.3	
pT1	Negative	192	19.0±0.9	<0.0001
	Weak	200	23.8±0.9	
	Moderate	90	29.9±1.3	
	Strong	31	37.8±2.3	
pT2	Negative	170	19.9±1.1	<0.0001
	Weak	238	29.6±0.9	
	Moderate	179	35.3±1.1	
	Strong	127	37.9±1.3	
pT3	Negative	23	18.2±3.1	<0.0001
	Weak	27	31.2±2.9	
	Moderate	22	30.1±3.2	
	Strong	16	43.8±3.7	
pT4	Negative	41	21.9±2.2	<0.0001
	Weak	57	25.3±1.7	
	Moderate	44	31.9±1.9	
	Strong	41	34.9±2.1	
BRE G1	Negative	150	15.5±0.8	<0.0001
	Weak	127	19.5±0.9	
	Moderate	45	21.4±1.5	
	Strong	25	26.4±1.9	
BRE G2	Negative	170	18.8±0.9	<0.0001
	Weak	208	23.7±0.8	
	Moderate	134	28.9±0.1	
	Strong	63	31.4±1.4	
also in nodal negative NST cancers (P=0.0418; Fig. 2). Multivariate analysis for NST cancers including pT stage, nodal status, and BRE grade did not identify MTCO2 immunostaining as an independent prognosticator of survival, however (Table IV).

Discussion

Our study shows that high mitochondria content is significantly linked to disadvantageous tumor phenotype and bad prognosis in breast cancer.
Mitochondria (Mt) are abundant organelles in every cell, and their quantity is regulated by mitochondrial biogenesis and programmed cell death (mitophagy) (48-50). The transcription factor c-Myc is best known for its critical role in cell cycle regulation, cell growth, metabolism, and apoptosis (41-43). However, c-Myc also targets more than 400 different mitochondrial genes (38-41,44). Studies have demonstrated that an elevated or reduced c-Myc protein quantity leads to an increased/diminished mitochondrial mass (45,46). This couples c-Myc's role of a key activator of cell cycle activity with mitochondrial biogenesis. As such, c-Myc increases cellular biosynthetic and respiratory capacity by upregulating mitochondrial metabolism to complement its effects on stimulating cell cycle progression to coordinate rapid cell growth (45,47).

A critical role of high mitochondrion count for cell proliferation in breast cancer is supported by our data showing a striking link between MTCO2 expression and a high Ki67LI which was also visible in the vast majority of groups defined by identical morphological or molecular features. The prominent association found between c-Myc amplification and high MTCO2 expression fits well with the key role of c-Myc as an activator of mitochondrial biogenesis in cancer (38-40). The transcription factor c-Myc is best known for its critical role in cell cycle regulation, cell growth, metabolism, and apoptosis (41-43). However, c-Myc also targets more than 400 different mitochondrial genes (38-41,44). Studies have demonstrated that an elevated or reduced c-Myc protein quantity leads to an increased/diminished mitochondrial mass (45,46). This couples c-Myc's role of a key activator of cell cycle activity with mitochondrial biogenesis. As such, c-Myc increases cellular biosynthetic and respiratory capacity by upregulating mitochondrial metabolism to complement its effects on stimulating cell cycle progression to coordinate rapid cell growth (45,47).

A critical role of high mitochondrion count for cell proliferation in breast cancer is supported by our data showing a striking link between MTCO2 expression and a high Ki67LI which was also visible in the vast majority of groups defined by identical morphological or molecular features.

The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway is a major inducer of mitophagy. It is triggered by mitochondrial membrane depolarization, a signal of mitochondrial dysfunction that results from lack of reducing equivalents, hypoxia and impaired electron transport [reviewed in (48)]. The conspicuous relationship between PTEN deletion and high MTCO2 staining in our study may thus indicate that high mitochondria quantities may also be caused by reduced mitophagy. Although clearance of damaged mitochondria via mitophagy is viewed to be also critical for cellular fitness since dysfunctional mitochondria can impair the electron transport chain function, reduced mitophagy can thus indicate that high mitochondria quantities may also be associated with mitochondrially encoded cytochrome c oxidase II (2). The higher level of MTCO2 immunostaining is highly specific for the mitochondrial DNA encoded second subunit of cytochrome c oxidase and can thus be used to quantitate the mitochondria content by IHC (29). Although mitochondria are present in every normal and neoplastic human cell, 28.2% of our tumors had a negative staining result. This was due to our approach to define experimental conditions, which distinguish cancers with low and high mitochondria quantities. The higher level of MTCO2 immunostaining in breast cancers as compared to normal breast tissues fits with the concept that neoplastic transformation goes along with higher cellular activity requiring more active mitochondria. That a striking further increase of MTCO2 immunostaining was detected with rising tumor grade and stage, demonstrates that elevated numbers of mitochondria are also supporting cancer progression. This is consistent with increasing energy requirement and a rearranged metabolism during tumor progression. Our data fit well with findings in multiple other cancer types, including lung (21), colorectal (22,23), prostate (24), gastric (25), cervical (18), and ovarian cancer (26), where a similar link between high levels of MTCO2 with adverse tumor phenotype and bad prognosis was shown.

In this study, a ubiquitously expressed protein was quantitated by IHC. The TMA approach is optimal for the identification of subtle staining differences of proteins that are abundantly present in cancer, such as mitochondrial components, because TMAs enable maximal experimental standardization at all levels. In our study, more than 1,700 breast cancers were analyzed the same day for maximal standardization. Moreover, all TMA sections were cut on one day immediately before staining in order to avoid unequal decay of a tissues reactivity to antibody binding (37). Finally, one pathologist interpreted all immunostainings in one continuous session to enable maximal standardization of staining interpretation. In earlier studies, this breast cancer TMA enabled us to validate the prognostic impact of several well-established prognostic biomarkers, such as HER2 alterations, estrogen and progesterone receptor expression (30), high Ki67LI, nuclear p53 accumulation (30), and PTEN deletion (34). These earlier data demonstrate the utility of our patient cohort to identify prognostic biomarkers.

The molecular database that has been collected during earlier studies for our set of cancers offers the advantage that biomarkers of interest can always be compared with preexisting data. For the purpose of this study, we had selected HER2 amplification as well as estrogen and progesterone receptor expression because of their central role in breast cancer. The strong link between MTCO2 expression and these important features further illustrates the importance of the mitochondria quantity in breast cancer. Our analyses also included Ki67LI as another pivotal parameter for cellular activity and various further chromosomal deletions and amplifications because of the role of some of them for regulating mitochondrial homeostasis.

Mitochondrial homeostasis is critical for cancer. A sufficiently high production of mitochondria is required to suffice the needs for energy production and cell metabolism. The prominent association found between c-Myc amplification and high MTCO2 expression fits well with the key role of c-Myc as an activator of mitochondrial biogenesis in cancer (38-40). The transcription factor c-Myc is best known for its critical role in cell cycle regulation, cell growth, metabolism, and apoptosis (41-43). However, c-Myc also targets more than 400 different mitochondrial genes (38-41,44). Studies have demonstrated that an elevated or reduced c-Myc protein quantity leads to an increased/diminished mitochondrial mass (45,46). This couples c-Myc's role of a key activator of cell cycle activity with mitochondrial biogenesis. As such, c-Myc increases cellular biosynthetic and respiratory capacity by upregulating mitochondrial metabolism to complement its effects on stimulating cell cycle progression to coordinate rapid cell growth (45,47).

A critical role of high mitochondrion count for cell proliferation in breast cancer is supported by our data showing a striking link between MTCO2 expression and a high Ki67LI which was also visible in the vast majority of groups defined by identical morphological or molecular features.

The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway is a major inducer of mitophagy. It is triggered by mitochondrial membrane depolarization, a signal of mitochondrial dysfunction that results from lack of reducing equivalents, hypoxia and impaired electron transport [reviewed in (48)]. The conspicuous relationship between PTEN deletion and high MTCO2 staining in our study may thus indicate that high mitochondria quantities may also be caused by reduced mitophagy. Although clearance of damaged mitochondria via mitophagy is viewed to be also critical for cellular fitness since dysfunctional mitochondria can impair the electron transport chain function, reduced mitophagy can also promote cancer reviewed in ref. 49. Mitophagy-deficient Parkin null mice develop spontaneous hepatic tumors (50).
Decreased mitophagy may allow for a permissive threshold of dysfunctional mitochondria to persist, generating increased tumor-promoting free oxygen radicals reviewed in ref. 49).

Cytochrome oxidase subunit 2 is a key enzyme of the respiratory chain, catalyzing electron transfer from NADH and succinate to molecular oxygen (51). It has no direct tumor related function but serves as a marker for the cellular mitochondria content. Increased mitochondria content in cancer cells often occurs as a result of the elevated metabolism and energy needs of expanding tumor cell populations (52). Although the mitochondrial content provided no additional prognostic information in multivariate analysis, the marked prognostic relevance of MTCO2 immunostaining found in this study may still suggest ‘mitochondria content’ as a biomarker with potential clinical utility. Molecular analyses are frequently done in breast cancer to better assess patient prognosis and to determine whether adjuvant chemotherapy should be applied (6-8). Most currently used tests are analyzing RNAs of multiple genes forming a prognostic score (9-11,53). RNA based tests share the disadvantage, however, that the analyzed RNA always represents a mixture of cancer cells and a variable fraction of non-neoplastic inflammatory and stromal cells. Now that multiplex fluorescent-based quantitative IHC becomes increasingly available, it is well possible that RNA based test will sooner or later be replaced by IHC based multi-gene tests. MTCO2 might be a candidate for being part of such a test, also because of the general biologic importance of mitochondria, which are also the target of several anti-cancer drugs under development reviewed in refs. 54-57).

It is a limitation of our study that MTCO2 IHC data highlight relevant associations between cancer phenotype and genotype but do not provide mechanistic insights into the putative cancer biological role of MTCO2. Further studies on the tumor relevant aspects of mitochondrial density and MTCO2 protein function are required to better understand the prognostic role of MTCO2 in breast cancer.

In summary, our findings identify MTCO2 immunostaining as a powerful prognostic biomarker in breast cancer. MTCO2 measurement, most likely in combination with other antibodies might be of clinical utility in breast cancer prognosis assessment.

Acknowledgements

The authors would like to thank Ms. Inge Brandt and Ms. Sünje Seekamp from the Institute of Pathology of University Medical Center Hamburg-Eppendorf (Hamburg, Germany) for excellent technical assistance.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

All authors contributed to the conception and design of the study. PL, KS, MK, IW, PP, LT, CW, UM, BS, IvL, TK, RHK and FJ prepared the material, and collected and analyzed the data. PL, EB, RS, MK and GS wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. RS, MK and GS confirmed the authenticity of all the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The usage of archived diagnostic leftover tissues for manufacturing the tissue microarrays and their analysis for research purposes, as well as patient data analysis, has been approved by local laws (HmbKHG, §12) and by the local ethics committee (Ethics Commission of the Ärztekammer Hamburg, Hamburg, Germany; approval no. WF-049/09). Informed consent was waived by the ethics committee due to the retrospective nature of the study. All work has been carried out in compliance with the Declaration of Helsinki.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin 70: 7-30, 2020.
2. Leong AS and Raymond WA: Prognostic parameters in breast cancer. Pathology 21: 169-175, 1989.
3. Taneja P, Maglic D, Kai F, Zhu S, Kendig RD, Fry EA and Inoue K: Classical and novel prognostic markers for breast cancer and their clinical significance. Clin Med Insights Oncol 4: 15-34, 2010.
4. Soliman NA and Yussif SM: Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med 13: 496-504, 2016.
5. Cao SS and Lu CT: Recent perspectives of breast cancer prognosis and predictive factors. Oncol Lett 12: 3674-3678, 2016.
6. Gioliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumen cranz PW, Leitch AM, Saha S, McCAll LM and Morrow M: Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. JAMA 305: 569-575, 2011.
7. McVeigh TP, Hughes LM, Miller N, Sheehan M, Keane M, Sweeney KJ and Kerin MJ: The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral centre. Eur J Cancer 50: 2763-2770, 2014.
8. Naai Y and Noguchi S: Multi-gene classifiers for prediction of recurrence in breast cancer patients. Breast Cancer 23: 12-18, 2016.
9. Hornberger J, Cosler LE and Lyman GH: Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11: 313-324, 2005.
10. Cobleigh MA, Tabesh B, Bitterman P, Baker J, Cronin M, Liu ML, Borchik R, Mosquera JM, Walker MG and Shak S: Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res 11: 8623-8631, 2005.
11. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530-536, 2002.
12. Davis RE and Willliams M: Mitochondrial function and dysfunction: An update. J Pharmacol Exp Ther 342: 598-607, 2012.
High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene 24: 1455-1460, 2005.

Wauters P, Kvasnička A and Gozdzik-Zozefiak A: Alterations in mtDNA: A qualitative and quantitative study associated with cervical cancer development. Gynecol Oncol 129: 193-198, 2013.

Gao JY, Song BR, Peng JJ and Lu YM: Correlation between mitochondrial TRAP-1 expression and lymph node metastasis in colorectal cancer. World J Gastroenterol 18: 5965-5971, 2012.

Qian XL, Li YQ, Gu F, Liu FF, Li WD, Zhang XM and Fu L: Overexpression of ubiquitous mitochondrial creatine kinase (uMKC) accelerates tumor growth by inhibiting apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients. Biomed Res Int 2016: 67-70, 2016.

Sotgia F and Lisanti MP: Mitochondrial biomarkers predict survival and progression in non-small cell lung cancer (NSCLC) patients: Use as companion diagnostics. Oncotarget 8: 68095-68107, 2017.

Ambrosini-Spaltro A, Salvi F, Betts CM, Frezza GP, Pientemurah PR, Baldini M, Baldini M and Viale G: Oncogenic modifications in rectal adenocarcinomas after radio and chemotherapy. Virchows Arch 448: 442-448, 2006.

Luo H, Yu S, Zhu X, Qiao W and Zhang JH: High copy number of mitochondrial DNA predicts poor prognosis in patients with advanced stage colon cancer. Int J Biol Markers 31: e382-e388, 2016.

Grupp K, Kedrzejewska K, Tsurulakis MC, Koo C, Wilczak W, Adam M, Quaas A, Sauter G, Simon R, Izbicki JR, et al: High mitochondrial content is associated with prostate cancer disease progression. Mol Cancer 12: 145, 2013.

Sotgia F and Lisanti MP: Mitochondrial biomarkers predict tumor progression and poor overall survival in gastric cancers: Companion diagnostics for personalized medicine. Oncotarget 8: 67117-67128, 2017.

Hu B and Guo Y: Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance. Biochem Biophys Res Commun 509: 373-378, 2019.

Zhang Y, Yu Q, Gao K, Yang Q, Shi B, Hou P and Ji M: High copy number of mitochondrial DNA (mtDNA) predicts good prognosis in glioma patients. Am J Cancer Res 5: 1207-1216, 2015.

Ragazzi M, di Biase D, Formenti S, Artioli D, Galvani M and Eusebi V: Oncocytic carcinoma of the breast: Frequency, morphology and follow-up. Hum Pathol 42: 166-175, 2011.

Williams SL, Valton I, Rustin P and Taamman JW: Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J Biol Chem 279: 7462-7469, 2004.

Ruiz C, Seibt S, Al Kurya A, Siraj AK, Mirlekar M, Schraml P, Maurer R, Spichkin H, Torhorst J, Popovska S, et al: Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer 118: 2190-2194, 2006.

Mirlacher M and Simon R: Identifying recipient block TMA technique. Methods Mol Biol 664: 37-44, 2010.

Al-Kurya A, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, Spichkin H, Maurer R, Mirlekar M, Kühni O, et al: Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res 64: 3834-3840, 2004.

Lebok P, Roming M, Kloth M, Koop C, Ozden C, Taskin B, Hussein K, Lebeau A, Witzel I, et al: p16 overexpression and p53 deletion are linked to unfavorable tumor phenotype in breast cancer. Oncotarget 7: 81322-81331, 2016.

Lebok P, Mittenzewi A, Kö M, Özden C, Taskin B, Hussein K, Möller K, Hartmann A, Lebeau A, Witzel I, et al: p53 deletion is strongly linked to poor prognosis in breast cancer. Cancer Biol Ther 16: 1080-1087, 2015.

Yan M, Schwaederle M, Arguello D, Mills SZ, Gatalica Z and Kurzrock R: p16 expression status in invasive breast cancers: Review of results from 37,992 patients. Cancer Metastasis Rev 34: 157-164, 2015.

Lebok P, Kopperschmidt V, Kluth M, Hube-Magg C, Özden C, B T, Hussein K, Mittenzewi A, Lebeau A, Witzel I, et al: Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer 15: 963-910, 2015.

Simon R, Mirlacher M and Sauter G: Immunohistochemical analysis of tissue microarrays. Methods Mol Biol 664: 113-126, 2010.

Nieminen AI, Partanen JI, Hau A and Klefstrom J: c-Myc primed mitophagy determines cellular sensitivity to TRAIL-induced apoptosis. EMBO J 33: 10657-10672, 2014.

Desbiens KM, Deschesnes RG, Labrie MM, Desfosses Y, Lambert H, Landry J and Bellmann K: c-Myc potentiates the mitochondrial pathway of apoptosis by acting upstream of apoptosis-regulating kinase 1 (Ask1) in the p38 signalling pathway. Biochem J 471(1): F1-16, 2014.

Kleefstrom J, Vershure E and Evan G: c-Myc augments the apoptotic activity of cytosolic death receptor signaling proteins by engaging the mitochondrial apoptotic pathway. J Biol Chem 277: 43224-43232, 2002.

Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC and Li F: The c-Myc target gene network. Semin Cancer Biol 16: 253-264, 2006.

Amati B, Frank SR, Donjerkovic D and Taubert S: Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim Biophys Acta 1471: M135-M145, 2000.

Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D and Zeller K: Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253: 63-77, 1999.

Wonsey DR, Zeller KI and Dang CV: The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Mol Cell Biol 25: 6225-6234, 2005.

Graves JA, Wang Y, Sims-Lucas S, Cherok E, Rothermund K, Branca MF, Elster J, Beer-Stolz D, Van Houten B, Vockley J and Prochownik EV: Mitochondrial structure, function and dynamics are temporally controlled by c-Myc. PLoS One 7: e37699, 2012.

Miller DM, Thomas SD, Islam A, Muendh D and Sedoris K: c-Myc and cancer metabolism. Clin Cancer Res 18: 5546-5553, 2012.

Leites EP and Morais VA: Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochim Biophys Acta Com 500: 45-50, 2018.

Panigrahi DP, Praharaik DP, Bhol CS, Mahapatra KK, Patra S, Behera BP, Mishra SR and Bhutia SK: The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol 26: 45-58, 2015.

Wang H, Ni HM, Chao X, Ma X, Rodriguez YA, Chavan H, Wang S, Krishnamurthy P, Dobrowsky R, Xu DX, et al: Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol 22: 101481, 2019.

Rak M, Bénit P, Chrétien D, Bouchereau J, Schmitt M, El-Khoury R, Tzagoloff A and Rustin P: Mitochondrial cytochrome c oxidase deficiency. Clin Sci (Lond) 130: 393-407, 2016.

Gundamaraju R, Lu W and Manikam R: Revisiting Mitochondria and cancer metabolism. Clin Cancer Res 18: 5546-5553, 2012.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.