Polyethylene Oxidation in Total Hip Arthroplasty: Evolution and New Advances

Enrique Gómez-Barrena*,1, Francisco Medel2 and José Antonio Puértolas3

1 Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
2 Materials Science and Technology Department-Instituto Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Spain
3 Materials Science and Technology Department-I3A, Instituto Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Spain

Abstract: Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs.

As THR results have been challenged by wear, oxidation, and liner fracture, relevant research on the material properties in the past decade has led to the development and clinical introduction of highly crosslinked polyethylenes (HXLPE). More stress on the bearing (more active, overweighted, younger patients), and more variability in the implantation technique in different small and large Hospitals may further compromise the clinical performance for many patients. The long-term in vivo performance of these materials remains to be proven. Clinical and retrieval studies after more than 5 years of in vivo use with HXLPE in THR are reviewed and consistently show a substantial decrease in wear rate. Moreover, a second generation of improved polyethylenes is backed by in vitro data and awaits more clinical experience to confirm the experimental improvements. Also, new antioxidant, free radical scavengers, candidates and the reinforcement of polyethylene through composites are currently under basic research.

Oxidation of polyethylene is today significantly reduced by present formulations, and this forgiving, affordable, and well-known material is still reliable to meet today’s higher requirements in total hip replacement.

Keywords: UHMWPE, HXLPE, cross-linked polyethylene, polyethylene, oxidation, total hip arthroplasty.

INTRODUCTION

Polyethylene is a well-known material to orthopaedic surgeons since Sir John Charnley popularized it in his hip LFA (low friction arthroplasty) [1]. The rationale under the use of this polymer has been extensively reviewed [2], with clear advantages over other polymers used in early total hip arthroplasty (THA) designs, such as Teflon (polytetrafluoroethylene, PTFE) and Delrin (polyacetal). Polyethylene and ultra high molecular weight polyethylene (UHMWPE), became the most popular and standard material in THA friction pairs since the 1960’s until the 1990’s. Early alternative solutions based on metal-on-metal (MOM) or ceramic-on-ceramic (COC) articulations showed significant pitfalls in many designs [3, 4]. The standardized solution of UHMWPE for the acetabulum was at the time inexpenisively processed by machining components out of extruded UHMWPE bars, followed by gamma irradiation sterilization of large batches to doses ranging from 25 to 40 KGy. It is worth observing that UHMWPE is a semicrystalline polymer constituted by a crystalline phase (the crystals, observed in the transmission electron microscopy –TEM- images as lamellae) and an amorphous phase (the disordered state) that allows some rearrangement of the crystals under mechanical stresses [5]. This characteristic semicrystalline structure of UHMWPE is illustrated in Fig. (1). The material had a significantly large molecular weight (ultra-high), meaning long polymer chains that were further reinforced by covalent molecular bridges, also known as cross-links, originated upon gamma irradiation.

In the 1980’s and early 1990’s, long-term survivorship of polyethylene cups was compromised by osteolysis and aseptic loosening. After significant research, wear particle production was found the triggering mechanism. Cement particles were first considered as the causative agent, the so called “cement disease”, but when the osteolysis also prevailed in uncemented designs, polyethylene particles were apparent as the main pathogenetic factor, particularly those in the submicron range. Aseptic loosening and osteolysis resulted in significant concern about polyethylene quality and wear resistance in the Orthopaedic community, and extensive research was devoted to clarify what caused the polyethylene failure and how to prevent it. Unimplanted polyethylene components from the shelf were analyzed to investigate the material prior to in vivo use, and subsurface white bands of high density material (Fig. 2) were...
found in components with long shelf life [6, 7]. Retrieval studies
of long-term failures of polyethylene cups showed that
polyethylene was not homogeneous. Occasional subsurface
white bands and fusion defects in the bulk material were
frequently identified in acetabular polyethylene components.
Further analysis to correlated these findings with wear and
performance [8], but while consolidating defects were found
more frequently in early-retrieved cups without affecting
survivorship, subsurface defects were found responsible for
material loss at the articulating surface. Fourier transformed
infra red (FTIR) analysis of the material from the surface to the
bulk [9] confirmed that oxidized polyethylene was the
constituent of this white band defects. Mechanical analysis of
this material showed a comparatively brittle behavior with
respect to non-oxidized polyethylene, as well as distinct fracture
modes [10].

Fig. (1). UHMWPE is a semicrystalline polymer with crystalline
and amorphous regions. Crystals appear as ribbon-like lamellae and
amorphous regions as gray areas in Transmission Electron
Micrographs.

From these and other findings, it was concluded that
oxidation of the polyethylene component concentrated in the
subsurface in long shelf aged implants and was deleterious
for the performance of the joint.

CAUSES AND AVOIDANCE OF OXIDATION IN
CONVENTIONAL POLYETHYLENE

Oxidation of irradiated polyethylene is unavoidable as
soon as the polymer is in contact with air or in vivo fluids.
Eventually, several groups and particularly Costa et al. [9, 11]
characterized the oxidation in failed and never implanted
polyethylene components. The oxidation in never implanted
components was more intense with longer times on the shelf
before implantation [6, 7], and chemical studies confirmed
that irradiation (gamma irradiation was the standard
procedure of sterilization) in the presence of oxygen led to
chain scission of the polyethylene long chain and free radical
generation at the crystal surfaces [12]. In view of the
semicrystalline structure of the material that determines
many mechanical properties, any change in the
microstructure may significantly alter the mechanical
behavior of the material [5].

Fig. (2). After long shelf life (5 years) of a gamma irradiated in air
conventional polyethylene component, a subsurface white band is
clearly detected.

The oxidative degradation of the material progressed in
the presence of oxygen after the irradiation process within
the permeable package, while the component was sitting on
the shelf. To eliminate oxygen out of the system is not an
easy task, but the first reaction of the Orthopaedic
community was to standardize barrier packaging to avoid
oxygen permeability, and thus perform gamma irradiation
sterilization either in vacuum or in the presence of inert
gases (typically, nitrogen, and argon), and to recommend the
avoidance of implantation 5 years after manufacture and
irradiation [13]. Other non-penetrating sterilization methods,
such as ethylene oxide or gas plasma, were reconsidered and
reincorporated to the process, although ethylene oxide was
originally discontinued because of the cumbersomeness of
its method. Irradiation was discovered as a valuable
technique not only for efficient sterilization, but also for
crosslinking of the polyethylene chains.

Although the previous efforts generally succeeded in
avoiding shelf aging, there has been growing evidence of the
occurrence of in vivo oxidation of polyethylene components,
not only after gamma sterilization in air, but also following
gamma sterilization in nitrogen [13, 14]. Furthermore, in vivo oxidized polyethylene retrievals (Fig. 3) display a
characteristic regional pattern, with regions protected by
metal parts (bearing surface and backside) reaching lower
oxidation than more exposed areas (rim) [13-16]. The
unavoidable occurrence of in vivo oxidation in gamma
sterilized polyethylene components stems from post-
irradiation induced free radicals, which, upon oxygen
availability, initiate the oxidation cycle and the associated
physical changes.

NEW POLYETHYLENES TO DECREASE WEAR

The development of first-generation highly crosslinked
polyethylene formulations were intended to provide medical
grade UHMWPEs with an extremely high wear resistance
and good oxidative stability. Thus, high doses of gamma or
electron beam radiation are employed to promote an elevated

crosslink density (i.e., covalent bonds) into UHMWPE, which, in turn, is responsible for a notable increase in wear resistance. In first-generation highly crosslinked polyethylenes, two different approaches were adopted to achieve oxidation resistance. First, annealing, involved a single thermal treatment below the melting temperature of UHMWPE so that crystallinity and mechanical properties were preserved [17]. However, the commercial highly crosslinked polyethylene obtained by gamma irradiation, annealing and finally gamma inert sterilization contained residual free radicals with the potential to oxidize in vivo [15]. The second approach was based on post-irradiation remelting of the polymer above the crystalline transition. This strategy allowed for elimination of free radicals up to undetectable levels, but at the expense of crystallinity changes and diminished mechanical properties [17, 18].

IN VIVO AND RETRIEVAL STUDIES ON HXLPEs

From a wear perspective, radiographic and retrieval studies have confirmed a significantly reduced femoral head penetration for both annealed and remelted HXLPE in the first decade of implantation [19-30]. Table 1 offers a summary the significant papers. Not only clinical mid-term follow-up studies clearly show this wear rate decrease, but more precise methods such as roentgen stereogrammetry analysis (RSA) confirms this important finding in three-dimensional evaluation of cups in randomized studies (Table 2).

Regarding the clinical failure modes, the revision rates of acetabular liners of both first-generation HXLPE formulations due to loosening, instability and infection remain comparable to those of conventional gamma inert

Table 1. Summary of Significant Clinical Studies Confirming a Wear Rate Decrease with 1st Generation HXLPE in the Mid-Term Follow-Up

Study	Design and Follow-up	HXLPE	HEAD	Follow-Up	Mean Wear Rate mm/yr (After Bedding-In)	Wear Rate Decrease
Dorr *et al.* JBJS A 2005	Prospective, cohorts 37 hips/37	Durasul 95 kGy, remelted	28 mm CrCo	5 years	0.029 vs 0.065	45%
D’Antonio *et al.* CORR 2005	Retrospective, comparative 56 hips/53	Crossfire 105 kGy, annealed	28 mm CrCo	Mean 5 yr (min 4)	0.036 vs 0.131	72%
Engh *et al.* J Arthr 2006	Prospective, randomized 208 hips	Marathon 50 kGy, remelted	28 mm CrCo	5.7 yr (4.1-7.2)	0.01 vs 0.19	95%
Olyslaegers *et al.* J Arthr 2008	Case-control with historical 60 hips/20	Longevity 100 kGy, remelted	28 mm CrCo	XLPE 5.06 yr (52-69 mo), Std PE 5.1 yr (55-79)	0.05 vs 0.101	50%
Garcia-Rey *et al.* J BJS-B 2008	Prospective, randomized 45 hips/45	Durasul 95 kGy, remelted	28 mm CrCo	66.3 mo (60-92)	0.006 vs 0.038	84.3%
Geerdink *et al.* CORR 2009	Randomized, double blind 17 hips/23	Duration 30 kGy, annealed	28 mm CrCo	Mean 8yr (7-9)	0.088 vs 0.142	38%
of rim damage secondary to of retrieved annealed HXLPE acetabular liners, the incidence loading [30]. Furthermore, according to a consecutive series circumstances, that is recurrent dislocations, trauma or edge been observed under relatively unusual clinical subsurface cracking and even partial fracture of the rim have articulating areas [19, 30, 31]. Thus, delamination, (Fig. oxidations and retrievals studies have confirmed that annealed highly sterilized liners after a decade of service [19]. Recent retrievals studies have confirmed that annealed highly crosslinked polyethylene acetabular liners oxidize in vivo (Fig. 3) and that, in some cases, exhibit damage at non-articulating areas [19, 30, 31]. Thus, delamination, subsurface cracking and even partial fracture of the rim have been observed under relatively unusual clinical circumstances, that is recurrent dislocations, trauma or edge loading [30]. Furthermore, according to a consecutive series of retrieved annealed HXLPE acetabular liners, the incidence of rim damage secondary to in vivo oxidation and mechanical loading appears to be as low as 5% [30]. Although remelted HXLPE acetabular liner retrievals exhibit near-zero oxidation levels after a decade of in vivo exposure, rapid crack initiation and rim fracture cases have also been reported because of the combination of decreased mechanical strength [32-34]. Nevertheless, the incidence of rim fracture in remelted retrievals appears to be as low as that of retrieved annealed liners [19]. Very recently, the hypothesized complete oxidative stability of remelted HXLPE components has been questioned in view of the increasing trend of oxidation with implantation time observed in retrievals and elevated oxidation measured after ex vivo aging studies [19, 35].

PRESENT AND FUTURE SOLUTIONS TO OXIDATION

The clinical performance of first-generation HXLPE will need further research to confirm the benefits of the reduction in femoral head penetration and the clinical relevance, if any, of in vivo oxidation and crack initiation in the long-term, during the second decade of implantation. Currently, second-generation HXLPEs represent a promising alternative to first-generation HXLPEs as they take advantage of alternative stabilization strategies, such as natural antioxidants (vitamin E), mechanical annealing, or sequential irradiation and annealing processes [36-41].

In the sequentially annealed material, experimental studies proved that 4.9 mm thickness maintains a similar wear rate than thicker components, thus confirming thin components are not disadvantageous under this formulation [42], and support larger heads without more damage near impingement [43].

As for the vitamin E stabilized material, different formulations are produced either when the antioxidant is blended with the polyethylene at the time of consolidation, or if vitamin E diffuses through the consolidated polymer in the mechanism of doping. A gradient distribution of antioxidant is typically associated with the diffusion method, but polyethylene oxidation is controlled by vitamin E, as shown after 36 months of artificial aging [44], and the post-irradiation oxidation decreases with increasing vitamin E concentrations [45]. On the other hand, the vitamin E blended formulation (< 0.1 % of vitamin E in weight) has been shown to maintain the mechanical properties of polyethylene [46].

Other antioxidant strategies are under development, using different free radical scavengers, such as nitroxide-TEPO (2,2,6,6-Tetramethylpiperidine-1-oxyl) [47], HPAO (hindered phenol antioxidant) [48], or anthocyanin extracts [49]. Last but not least nanoscale modifications are also being studied to reinforce the polyethylene, namely composite reinforcement by multiwalled carbon nanotubes [50], or grafting with 2-methacryloyloxyethyl phosphorylcholine polymer [51] among others. Needless to say that the ongoing refinement into the polyethylene basic science and proposals will not stand until full developments are ready, and experimental and clinical data prove the concept and solidity of new polyethylene formulations. The oxidative resistance and mechanical performance of this last generation HXLPE are

Study	Design	HXLPE	Head	Follow-Up	Conclusions
Bragdon et al. J Arthrop 2007	Non-consecutive, non-randomized 30 hips	Longevity 100 kGy, remelted	28mmCrCo (16 hips) vs 36mmCrCo (14 hips)	3 years EFOR'T 09: 7-10yr	No diff 3D between 28 and 36mm
Röehl et al. Acta Orthop 2007	Retrospective, comparative 56 hips/53	Crossfire 105 kGy, annealed	28 mm CrCo	XLPE 6 yr, Std 5 yr	No wear rate progression at 6yr re oxidation
Digas et al. Acta Orthop 2007 (cem)	Prospective, randomized 56 hips	Durasul 95 kGy, remelted	28 mm CrCo	5 years	0.001 vs 0.06mm/yr (3D) (98% decrease)
Digas et al. Acta Orthop 2007 (hybr)	Prospective, randomized contralat control 32 hips/32	Longevity 100 kGy, remelted	28 mm CrCo	5 years	0.00 vs 0.057mm/yr(3D) (99-100% decrease)
Glyn-Jones et al. J Arthrop 2008	Prospective, double-blind, rand, controlled 26 hips/25	Longevity 100 kGy, remelted	28 mm CrCo	2 years	0.06 mm/yr vs 0.10 (3D) (40% decrease)

Table 2. Clinical Studies with 3D Analysis of Wear Rate with 1st Generation HXLPE
promising based on in vitro testing of the most advanced products, such as sequential annealing and vitamin E blended or diffused polyethylenes, but their impact in the clinical practice needs to be established.

REFERENCES

[1] Charnley J. Arthroplasty of the hip. A new operation. Lancet 1961; i(7187): 1129-32.
[2] Li S, Burstein AH. Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J Bone Joint Surg Am 1994; 76(7): 1080-90.
[3] Cuckler JM. The rationale for metal-on-metal total hip arthroplasty. Clin Orthop Relat Res 2005; 441: 132-6.
[4] García-Cimbrello E, Martínez-Sayanes JM, Minuesa A, Munuera L, Mittelmeier ceramic-ceramic prosthesis after 10 years. J Arthroplasty 1996; 11(7): 773-81.
[5] Medel FJ, García-Alvarez F, Gomez-Barrena E, Puertolas JA. Microstructure changes of extruded ultra high molecular weight polyethylene after gamma irradiation and shelf-aging. Polymer Degrad Stab 2005; 88(3): 435-43.
[6] Li S, Chang JD, Barrena EG, Furman BD, Wright TM, Salvati E. Nonconsolidated polyethylene particles and oxidation in Charnley acetabular cups. Clin Orthop Relat Res 1995; 319: 54-63.
[7] Currier BH, Currier JH, Collier JP, Mayor MB, Scott RD. Shelf life and in vivo duration. Impacts on performance of tibial bearings. Clin Orthop Relat Res 1997; 342: 111-22.
[8] Gomez-Barrena E, Li S, Furman BS, Masri BA, Wright TM, Salvati EA. Role of polyethylene oxidation and consolidation defects in cup performance. Clin Orthop Relat Res 1998; 352: 105-17.
[9] Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinano P. Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials 1998; 19(7-9): 659-68.
[10] Puertolas JA, Larrea A, Gomez-Barrena E. Fracture behavior of UHMWPE in non-implanted, shelf-aged knee prostheses after gamma irradiation in air. Biomaterials 2001; 22(15): 2107-14.
[11] Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinano P. In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials 1998; 19(15): 1371-85.
[12] Premnath V, Harris WH, Jasty M, Merrill EW. Gamma sterilization of UHMWPE articular implants: An analysis of the oxidation problem. Biomaterials 1996; 17(18): 1741-53.
[13] Medel FJ, Kurtz SM, Hozack WJ, et al. Gamma inert sterilization: a solution to polyethylene oxidation? J Bone Joint Surg 2009; 91(4): 839-49.
[14] Currier BH, Currier JH, Mayor MB, Lyford KA, Van Citters DW. Evaluation of oxidation and fatigue damage of retrieved crosslinked polyethylene acetabular cups. J Bone Joint Surg Am 2007; 89A(9): 2023-9.
[15] Duffy GP, Wannamoe KK, Rowell SL, Muratoglu OK. Fracture of a cross-linked polyethylene liner due to impingement. J Arthroplasty 2009; 24(1): 158-159.
[16] Acosta M, Arellano MP, Gómez-Barrena E, Puertolas JA. In vivo degradation of polyethylene liniers after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[17] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[18] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 453: 47-57.
[19] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[20] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[21] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[22] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[23] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[24] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[25] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[26] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[27] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[28] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[29] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[30] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[31] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[32] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[33] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[34] Kurtz SM, Rimnac CM, Hozack WJ, et al. In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am 2005; 87A(4): 815-23.
[35] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[36] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[37] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
[38] Medel FJ, Pena P, Cegonino J, Gomez-Barrena E, Puertolas JA. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylene. J Biomed Mater Res B Appl Biomater 2007; 83B(2): 380-90.
crosslinked acetabular liners. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009; pp. 2336.

[43] Kelly NH, Rajadhyaksha AD, Wright TM, Maher SA, Westrich GH. The effect of liner thickness on the wear of highly cross-linked polyethylene acetabular components under “near-impingement” conditions. 55th Annual Meeting of the Orthopaedic Research Society; 2009; Las Vegas, NV 2009; p. 2315.

[44] Rowell SL, Oral E, Muratoglu OK. Three-Year Real-Time Aging of Vitamin E-diffused, Radiation Cross-linked UHMWPE. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009; p. 21.

[45] Costa L, Bracco PM, Carpentieri I, V.; B, Brach del Prever EM. On post-irradiation oxidation of Vitamin E-stabilized UHMWPE. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009; p. 461.

[46] Yau S-S, Le K-P, Wang A. Doping Vitamin E by Diffusion Deteriorates Properties of Crosslinked UHMWPE: Verified by Experiments. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009; p. 458.

[47] Chumakov MC, Silverman J, Al-Sheikhly M. The Novel Scavenging of Free Radicals in UHMWPE with TEMPO, a Nitroxide Antioxidant. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009; p. 453.

[48] King R, Narayan VS, Ernsberger C, Hanes M. Characterization of Gamma-Irradiated UHMWPE Stabilized with a Hindered-Phenol Antioxidant. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009.

[49] He S, Le K-P, Blitz JW, Yau S-S, Korduba LA, A. W. Anthocyanin doped UHMWPE: oxidation, wear and mechanical properties. 55th Annual Meeting of the Orthopaedic Research Society; Las Vegas, NV 2009; pp. 451.

[50] Martinez-Morlanes MJ, Castell P, Martinez V, et al. Reinforced ultra-high molecular weight composite by carbon nanotube and gamma irradiation. 4th UHMWPE for arthroplasty: From powder to debris; Torino, Italy 2009.

[51] Kyomoto M, Moro T, Miyaji F, et al. High-density brush-like structure mimicking cartilage gives high durability to cross-linked polyethylene. 4th International Meeting UHMWPE for arthroplasty: From powder to debris; Torino, Italy 2009.