THE KÄHLER-RICCI FLOW WITH
POSITIVE BISECTIONAL CURVATURE\(^1\)

D.H. Phong\(^*\), Jian Song\(^**\), Jacob Sturm\(^†\) and Ben Weinkove\(^‡\)

Abstract

We show that the Kähler-Ricci flow on a manifold with positive first Chern class converges to a Kähler-Einstein metric assuming positive bisectional curvature and certain stability conditions.

1 Introduction

Let \(X\) be a compact Kähler manifold of complex dimension \(n\) with \(c_1(X) > 0\). The Frankel conjecture, proved by Mori [Mor] and Siu-Yau [SY], states that if \(X\) admits a Kähler metric of positive bisectional curvature then it is biholomorphic to \(\mathbb{P}^n\). There has been much interest in obtaining a proof of this using the Kähler-Ricci flow:

\[
\frac{\partial}{\partial t} g_{kj} = g_{kj} - R_{kj}.
\] (1.1)

By a result of Goldberg-Kobayashi [GK], this amounts to solving the following well-known ‘folklore’ problem: without using the existence of a Kähler-Einstein metric, show that if a Kähler metric has positive bisectional curvature then the Kähler-Ricci flow deforms it to a Kähler-Einstein metric.

We mention now some work related to this problem. The case \(n = 1\) was settled by Hamilton [H1], Chow [Cho] (see also Chen-Lu-Tian [CLT]). Bando [B] and Mok [Mok] showed that, in every dimension, the positivity of the bisectional curvature is preserved along the Kähler-Ricci flow. Chen-Tian [CT] used the Moser-Trudinger inequalities [T1, TZ1] (see also [PSSW1]) to show that if there exists a Kähler-Einstein metric then, starting at a metric with positive bisectional curvature, the flow converges to it. Perelman later showed, without any curvature conditions, that the flow converges to a Kähler-Einstein metric when one exists, and this was extended to Kähler-Ricci solitons by Tian-Zhu [P2, TZ2]. Using an injectivity radius estimate of Perelman [P1], Cao-Chen-Zhu [CCZ] showed that if the bisectional curvature is nonnegative then the Riemann curvature tensor is bounded along the flow. Chen [Che] showed, using the Frankel conjecture together with

\(^1\)Research supported in part by National Science Foundation grants DMS-02-45371, DMS-06-04805, DMS-05-14003, and DMS-05-04285.
the flow, that an irreducible Kähler manifold with positive orthogonal bisectional curvature is biholomorphic to \mathbb{P}^n.

In [PS3], it was shown that the folklore problem can be reduced to establishing various stability conditions. In this paper we succeed in making further progress along these lines. We consider the following three conditions:

(A) The Mabuchi K-energy is bounded below on $\pi c_1(X)$;

(A') The Futaki invariant of X is zero;

(B) Let J be the complex structure of X, viewed as a tensor. Then the C^∞ closure of the orbit of J under the diffeomorphism group of X does not contain any complex structure J_∞ with the property that the space of holomorphic vector fields with respect to J_∞ has dimension strictly higher than the dimension of the space of holomorphic vector fields with respect to J.

Conditions (A) and (A') and their relations to stability have been studied intensely in the last two decades, and for the definitions we refer the reader to the literature (see [PS1], for example). Condition (B) was introduced in [PS3]. It was shown there that if the curvatures along the Kähler-Ricci flow are uniformly bounded, and if (A) and (B) hold then the Kähler-Ricci flow converges exponentially fast to a Kähler-Einstein metric. Note that the Riemann curvature tensor is bounded along the flow if the bisectional curvature is nonnegative or, in the case of two complex dimensions, if we have the weaker condition of nonnegative Ricci curvature with traceless curvature operator 2-nonnegative [PS2].

Our first result is as follows:

Theorem 1 Suppose there exists a Kähler metric g_0 on X with nonnegative bisectional curvature which is positive at one point. Assume condition (A) holds. Then the Kähler-Ricci flow starting at g_0 converges exponentially fast in C^∞ to a Kähler-Einstein metric.

Now, at least a priori, the algebraic condition (A') is much weaker than (A). Here, we strengthen the result of [PS3] by replacing (A) by condition (A').

Theorem 2 Suppose that the Riemann curvature tensor is uniformly bounded along the Kähler-Ricci flow and that conditions (A') and (B) hold. Then the Kähler-Ricci flow converges exponentially fast in C^∞ to a Kähler-Einstein metric.

If $n \leq 2$ we have:

Theorem 3 Assume X has complex dimension 1 or 2, g_0 has nonnegative bisectional curvature and condition (A') holds. Then the Kähler-Ricci flow starting at g_0 converges exponentially fast in C^∞ to a Kähler-Einstein metric.
This result for $n = 1$ has already been established by different methods as mentioned above. Theorem 3 now shows that the folklore problem in complex dimension 2 can be reduced to a condition on the finite dimensional space of holomorphic vector fields.

We remark that there are already proofs of Theorems 1 and 3 which first show the existence of a Kähler-Einstein metric and then apply the results of [CT], [P2]. Indeed, Chen [Che] proved Theorem 1 by showing that the bisectional curvature along the flow approaches that of the Fubini-Study metric, concluding that the manifold is \mathbb{P}^n, and then applying [CT]. A proof of Theorem 3 can be obtained by combining [P2] with the result that, in complex dimension 2, the vanishing of the Futaki invariant implies the existence of a Kähler-Einstein metric [T1]. We note that our proofs use primarily flow methods and in particular avoid showing first the existence of a Kähler-Einstein metric.

A key step in the proofs of Theorems 1, 2 and 3 is to obtain a uniform lower bound for the first positive eigenvalue λ of the $\bar{\partial} j \bar{\partial}$ operator on $T^{1,0}$ vector fields. The idea of considering this eigenvalue along the Kähler-Ricci flow was introduced in [PS3] and examined further in [PSSW2]. In Section 2 we show that certain curvature conditions imply the desired bound for λ. In Sections 3, 4 and 5, we give the proofs of Theorems 1, 2 and 3 respectively. Finally, in Section 6 we describe how the Deligne pairing can be used to show that the Futaki invariant vanishes in the case $n = 1$.

2 Lower bounds for the $\bar{\partial}$ operator

For a solution $g(t)$ of the Kähler-Ricci flow (1.1), we define the Ricci potential u by $\frac{d}{dt} g_{kj} = g_{kj} - R_{kj} = \partial_j \partial_k u$, where we normalize u by imposing the condition $\int_X e^{-u} \omega^n = \int_X \omega^n$. Here, $\omega = \sqrt{-1} g_{kj} dz^j \wedge dz^k \in \pi c_1(X)$ is the Kähler form of $g(t)$.

In the following, we will make use of the estimates of Perelman [P2] (see [ST]):

(i) For a uniform $C > 0$, we have $\|u\|_{C^0} + \|\nabla u\|_{C^0} + \|R\|_{C^0} \leq C$.

(ii) Let $\rho > 0$ be given. Then for all $x \in X$ and all r with $0 < r \leq \rho$ we have

$$\int_{B_r(x)} \omega^n > C' r^{2n}, \quad (2.1)$$

for a uniform constant $C' > 0$, where $B_r(x)$ is the geodesic ball of radius r centered at x with respect to $g(t)$.

(iii) The diameter of $(X, g(t))$ is uniformly bounded.

Define two time dependent inner products on $T^{1,0}$ by

$$\langle V, W \rangle_u = \int_X g_{kj} V^j \bar{W}^k e^{-u} \omega^n \quad \text{and} \quad \langle V, W \rangle_0 = \int_X g_{kj} V^j \bar{W}^k \omega^n. \quad (2.2)$$
Since u is uniformly bounded the corresponding norms $\| \cdot \|_u$ and $\| \cdot \|_0$ are equivalent. Let $\bar{\lambda} = \bar{\lambda}(t)$ and $\lambda = \lambda(t)$ respectively be the smallest positive eigenvalues of the operators $\bar{L} = -g^{i\bar{j}} \nabla_i \nabla_{\bar{j}} + g^{i\bar{j}} u \nabla_i u \nabla_{\bar{j}}$ and $L = -g^{i\bar{j}} \nabla_i \nabla_{\bar{j}}$ acting on $T^{1,0}$ vector fields. Denote by η the space of holomorphic vector fields on X. Then $\bar{\lambda}$ is the largest number satisfying
\[
\int_X |D_i V^k|^2 e^{-u} \omega^n \geq \bar{\lambda} \int_X |V^k|^2 e^{-u} \omega^n \tag{2.3}
\]
for all V with the property: $\langle V, \xi \rangle_u = 0$ for all $\xi \in \eta$. Similarly, λ is the largest number satisfying
\[
\int_X |D_i V^k|^2 \omega^n \geq \lambda \int_X |V^k|^2 \omega^n \tag{2.4}
\]
for all V with the property: $\langle V, \xi \rangle_0 = 0$ for all $\xi \in \eta$. The following lemma shows that $\bar{\lambda}$ and λ are uniformly equivalent.

Lemma 1 There exist uniform positive constants A_1 and A_2 such that
\[
A_1 \bar{\lambda} \leq \lambda \leq A_2 \bar{\lambda}. \tag{2.5}
\]

Proof of Lemma 1: Let $V \in T^{1,0}$ be a smooth vector field such that $\langle V, \xi \rangle_u = 0$ for all $\xi \in \eta$. Write
\[
V = W + \xi_0 \quad \text{with} \quad \xi_0 \in \eta \quad \text{and} \quad \langle W, \xi \rangle_u = 0 \quad \text{for all} \quad \xi \in \eta. \tag{2.6}
\]
Then
\[
0 = \langle V, \xi_0 \rangle_0 = \langle W, \xi_0 \rangle_0 + \langle \xi_0, \xi_0 \rangle_0, \tag{2.7}
\]
and the Cauchy-Schwarz inequality implies
\[
\langle \xi_0, \xi_0 \rangle_0^2 \leq \langle W, W \rangle_0 \langle \xi_0, \xi_0 \rangle_0. \tag{2.8}
\]
Hence there exist $c_1, c_2 > 0$ such that
\[
c_1 \langle \xi_0, \xi_0 \rangle_u \leq \langle \xi_0, \xi_0 \rangle_0 \leq \langle W, W \rangle_0 \leq c_2 \langle W, W \rangle_u. \tag{2.9}
\]
Thus
\[
\int_X |\nabla_i V|^2 \omega^n \geq c_3 \int_X |\nabla_i V|^2 e^{-u} \omega^n = c_3 \int |\nabla W|^2 e^{-u} \omega^n \geq c_3 \bar{\lambda} \int_X |W|^2 e^{-u} \omega^n
\]
\[
= \frac{c_3 \bar{\lambda}}{2} \langle W, W \rangle_u + \frac{c_3 \bar{\lambda}}{2} \langle W, W \rangle_u \geq \frac{c_3 \bar{\lambda}}{2} \langle W, W \rangle_u + \frac{c_3 \bar{\lambda}}{2 c_2} \langle \xi_0, \xi_0 \rangle_u \geq c_4 \bar{\lambda} \langle V, V \rangle_0, \tag{2.10}
\]
and it follows that $\lambda \geq c_4 \bar{\lambda}$, giving the first inequality. The second inequality follows similarly. Q.E.D.

We recall some notions of positivity. A tensor T_{jik} is Griffiths nonnegative if
\[
T_{jik} \bar{V}^j V^i \bar{W}^j W^k \geq 0 \tag{2.11}
\]
for all vectors $V, W \in T^{1,0}$. For brevity we write $T^{j ik}_{j ik} \geq G r_0$. The condition of nonnegative bisectional curvature means $R^{j ik}_{j ik} \geq G r_0$. We say that a tensor $T^{j ik}_{j ik}$ is Nakano nonnegative if
\[T^{j ik}_{j ik} \bar{\zeta}^{j ik} \zeta^{j ik} \geq 0, \quad (2.12) \]
for all tensors $\zeta \in T^{1,0} \otimes T^{1,0}$, and we write $T^{j ik}_{j ik} \geq N a_0$ for short.

Next, we show that under a positive curvature condition, the eigenvalue λ can be bounded below away from zero.

Lemma 2 Suppose that a Kähler metric g satisfies
\[g R^{j ik}_{j ik} + R^{j ik}_{j ik} - c g^{j ik}_{j ik} \geq N a_0, \quad (2.13) \]
for some constant $c > 0$. Then $\lambda \geq c$.

Proof of Lemma 2: Recall the commutation formulae:
\[(\nabla_i \nabla_l - \nabla_l \nabla_i) V^k = g^{km} R_{lmp}^{j iq} V^p \quad (2.14) \]
\[(\nabla_i \nabla_l - \nabla_l \nabla_i) a^j = g^{mj} R_{ljk}^{j il} a^l, \quad (2.15) \]
for a $T^{1,0}$ vector field V and a $(0,1)$ form a. Let V be an eigenvector of the operator L with eigenvalue λ. Then
\[- g^l \nabla_l \nabla_i V^k = \lambda V^k. \quad (2.16) \]
Apply ∇l to obtain
\[- g^l \nabla_l \nabla_i \nabla_j V^k = \lambda \nabla_l V^k. \quad (2.17) \]
Using the commutation formulae we have
\[- g^l \nabla_l \nabla_l \nabla_j V^k + g^l g^{km} R_{lmp}^{j il} \nabla_j V^p + g^l g^{mj} R_{ljk}^{j il} \nabla_l V^k = \lambda \nabla_l V^k. \quad (2.18) \]
Multiply by $g^l g^{ik} \nabla_l \nabla_i \nabla_j V^k$ to obtain
\[- g^l g^{ik} \nabla_l \nabla_l \nabla_l \nabla_j V^k + g^l g^{km} R_{lmp}^{j il} \nabla_j V^p + g^l g^{mj} R_{ljk}^{j il} \nabla_l V^k \]
\[= \lambda g^l g^{ik} \nabla_l \nabla_i \nabla_j V^k. \quad (2.19) \]
From (2.13), after integrating by parts:
\[\lambda \int_X |\nabla_l V^k|^2 \omega^n \geq c \int_X |\nabla_j V^k|^2 \omega^n + \int_X |\nabla_l \nabla_j V^k|^2 \omega^n, \quad (2.20) \]
and hence $\lambda \geq c$. Q.E.D.

Next, we show, under a slightly different curvature assumption, that the eigenvalue $\tilde{\lambda}$ can be bounded below.
Lemma 3 Suppose that a Kähler metric g satisfies
\begin{equation}
R_{ji} + (1 - c)g_{ji}g_{lk} \geq_{Na} 0,
\end{equation}
for some constant $c > 0$. Then $\tilde{\lambda} \geq c$.

Proof of Lemma 3: Let V be an eigenvector of \tilde{L} with eigenvalue $\tilde{\lambda}$. Then
\begin{equation}
-g^i \nabla_i \nabla_j V^k + g_j^i \nabla_i V^k u = \tilde{\lambda} V^k.
\end{equation}
Applying ∇_l as before, using the commutation formulae and the definition of u we have
\begin{align}
&-g^i \nabla_i \nabla_l V^k + g^i \nabla_i g^{jm} R_{jmpl} \nabla_p V^k + g^i \nabla_i g^{jm} R_{mkl} \nabla_l V^k \\
&+ g^i \nabla_i \nabla_l V^k \nabla_i u + \nabla_l V^k - g^i \nabla_i V^k = \tilde{\lambda} \nabla_l V^k.
\end{align}
Multiplying by $g^l g_{ik} \nabla_i V^k$ to obtain
\begin{align}
&-g^i g_k \nabla_r \nabla_r V^k \nabla_i \nabla_l V^k + (R_{ijkl} + g_{ik} g_{lj}) \nabla_i \nabla_l V^k \\
&+ g^i g_k \nabla_r \nabla_r V^k \nabla_i u = \tilde{\lambda} g^i g_k \nabla_i \nabla_l V^k.
\end{align}
Integrating against $e^{-u} \omega^n$ we obtain
\begin{align}
\tilde{\lambda} \int_X |\nabla_i V^k|^2 e^{-u} \omega^n &\geq c \int_X |\nabla_l V^k|^2 e^{-u} \omega^n + \int_X |\nabla_i \nabla_l V^k|^2 e^{-u} \omega^n, \\
\text{and hence } \tilde{\lambda} &\geq c. \text{ Q.E.D.}
\end{align}

3 Proof of Theorem 1

For the proof of Theorem 1, we will need a number of lemmas.

Lemma 4 Suppose the Mabuchi K-energy is bounded below on $\pi c_1(X)$ and the bisectional curvature of g_0 is nonnegative. Then along the Kähler-Ricci flow
\begin{equation}
\|R_{\overline{F}_j} - g_{\overline{F}_j}\|_{C^0} \to 0,
\end{equation}
as $t \to \infty$.

Proof of Lemma 4: By the results of Bando [B] and Mok [Mok], the nonnegativity of the bisectional curvature is preserved along the Kähler-Ricci flow. It follows that the bisectional curvatures, and hence the full curvature tensor of $g = g(t)$ is uniformly bounded along the flow. The covariant derivatives of the curvature are also uniformly bounded along the flow. From [PS3], the lower boundedness of the Mabuchi K-energy implies
\begin{equation}
\int_X |R_{\overline{F}_j} - g_{\overline{F}_j}|^2 \omega^n = \int_X |R - n|^2 \omega^n \to 0,
\end{equation}
with n the number of dimensions of the manifold.
as \(t \to \infty \). Assume for a contradiction that there is a sequence of points \(x_i \) and times \(t_i \to \infty \) with \(|R_{kj} - g_{kj}|(x_i, t_i) \geq \varepsilon > 0\). Then by Perelman’s non-collapsing result and the bound on the derivative of the Ricci curvature we obtain for uniform constants \(r > 0 \) and \(c > 0 \),

\[
\int_{B_r(x_i)} |R_{kj} - g_{kj}|^2 \omega^n \geq cr^{2n},
\]

at each time \(t_i \). This contradicts (3.1). Q.E.D.

We will use the following result from [Che] (Theorem 1.5), which is proved using the maximum principle.

Lemma 5 Suppose there exist constants \(c_0 > 0 \) and \(\nu > 1/2 \) such that the following holds. There is a Kähler metric \(g_0 \) satisfying

\[
R_{jik}^0 - c_0((g_0)^{-1}(g_0)_{jk} + (g_0)^{-1}_k(g_0)^{jk}) \geq Gr^0 0,
\]

and the solution of the Kähler-Ricci flow \(g = g(t) \) starting at \(g_0 \) satisfies

\[
R_{ji}^t \geq \nu g_{tr},
\]

at all times. Then, along the Kähler-Ricci flow, \(g = g(t) \) satisfies

\[
R_{jik}^t - c_t((g_{rj}g_{rk} + g_{rk}g_{rk}) \geq Gr^0 0,
\]

for \(c_t > 0 \) with \(\lim_{t \to \infty} c_t = (2\nu - 1)/(n + 1) > 0 \).

We will also need the following lemma:

Lemma 6 Suppose that the curvature of a Kähler metric \(g \) satisfies

\[
R_{jik}^t - cg_{rj}g_{rk} \geq Gr^0 0,
\]

for some constant \(c > 0 \). Then

\[
R_{jik}^t + R_{jk}g_{rk} - ncg_{rj}g_{rk} \geq Na^0 0.
\]

Proof of Lemma 6: This result is an application of the argument of [D], Proposition 10.14. It requires Lemma 10.15 from [D]:

Lemma 7 Let \(q \geq 3 \) be an integer and let \(x^\lambda, y^\lambda \) for \(1 \leq \lambda \leq n \) be complex numbers. Let \(U^n_q \) be the set of \(n \)-tuples of \(q \)th roots of unity and define complex numbers

\[
x'(\sigma) = \sum_{\lambda=1}^{n} x^\lambda \sigma \lambda, \quad y'(\sigma) = \sum_{\lambda=1}^{n} y^\lambda \sigma \lambda, \quad \text{for each } \sigma = (\sigma_1, \ldots, \sigma_n) \in U^n_q.
\]

Then for every pair \((\alpha, \beta)\) with \(1 \leq \alpha, \beta \leq n \), the following holds:

\[
q^{-n} \sum_{\sigma \in U^n_q} x'(\sigma) y'(\sigma) \sigma_\alpha \bar{\sigma}_\beta = \begin{cases} x^\alpha y^\beta, & \text{if } \alpha \neq \beta \\ \sum_{\lambda=1}^{n} x^\lambda y^\lambda, & \text{if } \alpha = \beta. \end{cases}
\]
Proof of Theorem 1: Although this lemma is already contained in [D], we give the short proof here for the sake of completeness. We only require the following elementary claim: the coefficient of $x^\lambda \delta^\mu$ in the left hand side of (3.8) is $q^{-n} \sum_{\sigma \in U_q^n} \sigma_\alpha \delta_\beta \sigma_\lambda \sigma_\mu$, and this is equal to 1 if $\{\alpha, \mu\} = \{\beta, \lambda\}$ and 0 otherwise. Indeed, for the second alternative, assume without loss of generality that $\alpha \notin \{\beta, \lambda\}$ and then observe that

$$\sum_{\sigma \in U_q^n} \sigma_\alpha \delta_\beta \sigma_\lambda \sigma_\mu = \begin{cases} e^{2\pi i / q} \sum_{\sigma \in U_q^n} \sigma_\alpha \delta_\beta \sigma_\lambda \sigma_\mu, & \alpha \neq \mu \\ e^{4\pi i / q} \sum_{\sigma \in U_q^n} \sigma_\alpha \delta_\beta \sigma_\lambda \sigma_\mu, & \alpha = \mu. \end{cases} \quad (3.9)$$

For (3.9), replace σ by the element of U_q^n obtained by multiplying the α component of σ by $e^{2\pi i / q}$. Q.E.D.

We may assume without loss of generality that we are calculating at a point where $g_{ji} = \delta_{ji}$. Fix $\zeta \in T^{1,0} \otimes T^{1,0}$. We need to show

$$(R_{ji} + R_{ji} - n c g_{ji}) \bar{\zeta}^{j} \zeta^{ik} \geq 0. \quad (3.10)$$

Let $V_\sigma = V_\sigma^i \partial / \partial z^i$ be the vector with components $V_\sigma^i = \sum_{\lambda=1}^n \zeta^{i} \bar{\sigma}_\lambda \in \mathbb{C}$. Let $W_\sigma = W_\sigma^k \partial / \partial z^k$ be the vector with components $W_\sigma^k = \sigma_k \in \mathbb{C}$. Then, by assumption,

$$0 \leq \sum_{i,j,k,l} (R_{ji} + R_{ji} - n c g_{ji}) q^{-n} \sum_{\sigma \in U_q^n} V_\sigma^j V_\sigma^i W_\sigma^l W_\sigma^k$$

$$= \sum_{i,j,k,l} R_{ji} q^{-n} \sum_{\sigma \in U_q^n} V_\sigma^j V_\sigma^i \bar{\sigma}_k + \sum_{i,j,k,l} R_{ji} q^{-n} \sum_{\sigma \in U_q^n} V_\sigma^j V_\sigma^i \bar{\sigma}_k$$

$$= \sum_{i,j,k,l} R_{ji} \bar{\zeta}^{j} \zeta^{ik} + \sum_{i,j,k} (R_{ji} - n c g_{ji}) \bar{\zeta}^{j} \zeta^{ik}, \quad (3.11)$$

where we have made use of Lemma 7. Hence

$$(R_{ji} + R_{ji} - n c g_{ji}) \bar{\zeta}^{j} \zeta^{ik}$$

$$= \sum_{k} \sum_{i,j,k} R_{ji} \zeta^{j} \zeta^{ik} + \sum_{k} \sum_{i,j,k} R_{ji} \bar{\zeta}^{j} \zeta^{ik} + \sum_{i,j,k} (R_{ji} - n c g_{ji}) \bar{\zeta}^{j} \zeta^{ik} \geq 0, \quad (3.12)$$

since the first term is nonnegative by the assumption. Q.E.D.

We can now prove Theorem 1.

Proof of Theorem 1: If the initial metric has nonnegative bisectional curvature which is positive at one point then the bisectional curvature along the flow immediately becomes positive everywhere [B, Mok]. From Lemma 4 we see that for some $T > 0$ and $\nu > 1/2$ we have $R_{ji} \geq \nu g_{ji}$ when $t \geq T$. Without loss of generality then, we may assume that for $t \geq 0$ the metric has positive bisectional curvature and $R_{ji} \geq \nu g_{ji}$. From Lemmas 5, 6 and 2 we see that the eigenvalue λ is uniformly bounded away from zero. Since the Mabuchi K-energy is bounded below it follows from Theorem 2 of [PSSW2] (or, since the curvature is bounded, the results of [PS3]) that the Kähler-Ricci flow converges exponentially fast to a Kähler-Einstein metric. Q.E.D.
4 Proof of Theorem 2

Before we give the proof of Theorem 2, we recall the definition of a Kähler-Ricci soliton. We say that a metric \(g \) with Kähler form \(\omega \in \pi c_1(X) \) is a Kähler-Ricci soliton if

\[
g_{kj} - R_{kj} = \partial_j \partial_k u
\]

(4.1)

for a smooth function \(u \) with \(\nabla \nabla u = 0 \), or in other words if \(\nabla^j u \) is a holomorphic vector field. If \(g \) is a Kähler-Ricci soliton then \(g(t) = \Psi(t)^* g \) is a solution to the Kähler-Ricci flow, where \(\Psi(t) \) is the 1-parameter subgroup of holomorphic automorphisms generated by the vector field \(\text{Re}(\nabla^j u) \). Sometimes, by abuse of notation, we also call \(g(t) \) a Kähler-Ricci soliton.

Now we recall from [PS3] that for a solution \(g(t) \) of the Kähler-Ricci flow, the function \(Y(t) = \int_X |\nabla u|^2 \omega^n \) satisfies

\[
\dot{Y}(t) \leq -2\lambda(t)Y(t) - 2\lambda(t)\text{Fut}(\pi_t(\nabla^j u)) - Z(t),
\]

(4.2)

where

\[
Z(t) = \int_X |\nabla u|^2 (R - n) + \int_X \nabla^j u \nabla^k u (R_{kj} - g_{kj}) \omega^n,
\]

(4.3)

and \(\text{Fut}(\pi_t(\nabla^j u)) \) is the Futaki invariant of the orthogonal projection \(\pi_t \) with respect to \(\langle \ , \ \rangle_0 \) of the vector field \(\nabla^j u \) to the space \(\eta \) of holomorphic vector fields. We have the following lemma.

Lemma 8 If \(g(t) \) is a Kähler-Ricci soliton then \(\dot{Y}(t) = Z(t) = 0 \) for all \(t \geq 0 \).

Proof of Lemma 8: Since \(Y \) is unchanged by automorphisms it follows that \(\dot{Y}(t) = 0 \). Compute

\[
\int_X \nabla^j u \nabla^k u (R_{kj} - g_{kj}) \omega^n = -\int_X \nabla^j u \nabla^k u (\partial_j \partial_k u) \omega^n
\]

\[
= \int_X (\nabla_j \nabla^j u)(\nabla^k u \nabla_k u) \omega^n = \int_X (n - R)|\nabla u|^2 \omega^n,
\]

(4.4)

and hence \(Z(t) = 0 \). Q.E.D.

We will make use of the following result.

Theorem 4 Suppose condition \((A') \) holds and that along the Kähler-Ricci flow we have \(Y(t) \to 0 \) as \(t \to \infty \) and \(\lambda(t) \geq c \) for some uniform constant \(c > 0 \). Then the Kähler-Ricci flow converges exponentially fast in \(C^\infty \) to a Kähler-Einstein metric.

Proof of Theorem 4: This follows from the arguments of Lemma 5 and Lemma 6 of [PSSW2]. Indeed, one can easily check that the argument of Lemma 5 of [PSSW2] shows that under the assumptions of Theorem 4, \(\| R(t) - n \|_{C^0} \) converges exponentially fast to
zero. Now apply Lemma 6 of [PSSW2] which states that if \(\int_0^\infty \| R(t) - n \|_{C^0} dt < \infty \) then the Kähler-Ricci flow converges exponentially fast in \(C^\infty \) to a Kähler-Einstein metric. Q.E.D.

We can now give the proof of Theorem 2.

Proof of Theorem 2: It is shown in [PS3] that if the Riemann curvature tensor is uniformly bounded along the flow and condition (B) holds then there is a uniform lower bound of \(\lambda(t) \) away from zero. If \(Y(t) \to 0 \) as \(t \to \infty \) then the required result will follow immediately from Theorem 4. We assume for a contradiction that there is a constant \(\varepsilon > 0 \) and a sequence of times \(t_j \to \infty \) such that \(Y(t_j) \geq \varepsilon \) for all \(j \).

Since we have uniformly bounded curvature, diameter and injectivity radius along the flow we can apply Hamilton’s compactness theorem [H2] to obtain (after passing to a subsequence) diffeomorphisms \(F_j : \tilde{X} \to X \) such that \(F_j^* g(t_j + t) \) converges to a solution \(\tilde{g}(t) \) of the Kähler-Ricci flow on \(\tilde{X} \) which is the same manifold as \(X \), but with possibly a different complex structure \(\tilde{J} \) (see [PS3]). The convergence of the metrics and their derivatives is uniform on compact subsets of \(\tilde{X} \times [0, \infty) \). Moreover, \(\tilde{g} \) is a Kähler-Ricci soliton.

This last assertion follows from a theorem in [ST], but for our particular case, we can give here a direct argument for the convenience of the reader. Given a solution \(g(t) \) of the Kähler-Ricci flow one can make a change of variable \(\tau = -\log(1 - 2s) \) and define a new metric \(h = h(s) \) by \(h(s) = (1 - 2s)g(t(s)) \). Then \(h \) satisfies, in real coordinates, \(\frac{\partial}{\partial s} h_{ij} = -2R_{ij} \) for \(s \in [0, 1/2] \). Perelman [P1] showed that the functional

\[
\mu(h, \tau) = \inf \{(2\tau)^{-n} \int_X (2\tau(R + |\nabla f|^2) + f - 2n)e^{-f}\omega^n \mid (2\tau)^{-n} \int_X e^{-f}\omega^n = \int_X \omega^n \},
\]

where the metric quantities are those of \(h \), satisfies \(\frac{d}{d\tau} \mu(h(s), 1/2 - s) \geq 0 \). By Perelman’s estimates for the scalar curvature and Ricci potential, \(\mu \) is uniformly bounded from above. Since \(\mu \) is invariant under diffeomorphisms, it follows that the solution of the Ricci flow \(\tilde{h}(s) \) corresponding to the limit solution \(\tilde{g}(t) \) has \(\mu(\tilde{h}(s), 1/2 - s) \) constant in \(s \). Hence (see for example [KL], section 12) \(\tilde{h} \) satisfies \(\tilde{R}_{ij} + \tilde{\nabla}_i \tilde{\nabla}_j f - \frac{1}{1 - 2s} \tilde{h}_{ij} = 0 \) for some \(f = f(s) \) and it follows that \(\tilde{g} \) is a Kähler-Ricci soliton, as required.

Now from (4.2),

\[
\dot{Y}(t_j + t) \leq -2\lambda Y(t_j + t) - Z(t_j + t). \tag{4.5}
\]

Since \(\lim_{j \to \infty} Y(t_j + t) \to \tilde{Y}(t) \), \(\lim_{j \to \infty} Z(t_j + t) = \tilde{Z}(t) \) uniformly for \(t \) in any compact interval, we have

\[
\dot{\tilde{Y}}(t) \leq -2\lambda \tilde{Y}(t) - \tilde{Z}(t). \tag{4.6}
\]

But Lemma 8 says that \(\dot{\tilde{Y}}(t) = \tilde{Z}(t) = 0 \) so we get \(\tilde{Y}(t) = 0 \). This contradicts the assumption that \(Y(t_j) \geq \varepsilon \) for all \(j \) and completes the proof of Theorem 2. Q.E.D.
5 Proof of Theorem 3

We now consider the case when \(n \leq 2 \) and the Futaki invariant of \(X \) vanishes. The key lemma that makes use of one or two complex dimensions is as follows:

Lemma 9 Suppose \(X \) has complex dimension \(n \leq 2 \). Then

\[R_{j\bar{k}l} \geq_{Gr} 0 \iff R_{j\bar{k}l} \geq_{Na} 0. \]

Proof of Lemma 9: The case \(n = 1 \) is trivial. Assume \(n = 2 \) and that \(g \) has nonnegative bisectional curvature. We require \(R_{j\bar{k}l} \xi^{j} \bar{\zeta}^{l} \geq 0 \) for all \(\zeta \). Note that we only need the inequality for symmetric \(\zeta \) since if we set \(\nu^{j} = (\zeta^{ik} + \zeta^{ki})/2 \) then by the symmetry of the curvature tensor,

\[R_{j\bar{k}l} \xi^{j} \bar{\zeta}^{l} = R_{j\bar{k}l} \nu^{j} \nu^{l}. \quad (5.1) \]

We assume then that \(\zeta \) is symmetric and of rank 2 (if \(\zeta \) has rank 1 the result follows easily). Make a linear change of complex coordinates so that \(\zeta \) is the identity. Denote these new coordinates by \(z^1, z^2 \). Then

\[R_{j\bar{k}l} \xi^{j} \bar{\zeta}^{l} = R_{11} + R_{12} + R_{21} + R_{22}. \quad (5.2) \]

We will show that the right hand side is nonnegative. Write \(X = \partial / \partial z^1 \) and \(Y = \partial / \partial z^2 \).

Remark Note that positive bisectional curvature in dimension 2 is not equivalent to positive curvature in the Nakano sense. Indeed, a Kähler manifold with \(n \geq 2 \) can never have positive Nakano curvature because \(R_{j\bar{k}l} \xi^{j} \bar{\zeta}^{l} = 0 \) for every skew-symmetric \(\zeta \).

Proof of Theorem 3: From Lemma 9 and Lemma 3 we see that \(\tilde{\lambda}(t) \geq 1 \) and so, by Lemma 1, \(\lambda(t) \) is uniformly bounded below away from zero along the flow. We can now argue in the same way as in the proof of Theorem 2. Q.E.D.

6 The Futaki invariant

Suppose \(X \) admits a Kähler metric of positive bisectional curvature. Then, by the Frankel conjecture, \(X \) has a Kähler-Einstein metric and hence the Futaki invariant of \(X \) vanishes.
In order to solve the folklore problem, one would like to prove the vanishing of the Futaki invariant without using the existence of a Kähler-Einstein metric. In this section, we indicate how this can be done in the case $n = 1$, using the Deligne pairing.

Proposition 1 If $n = 1$, the Futaki invariant of X vanishes.

Proof of Proposition 1. Let K be the canonical bundle of the Fano manifold X. We claim that the natural homomorphism

$$\text{Aut}^0(X) \to \text{Aut}(\langle K, K \rangle)$$

(6.1)

is trivial, where \langle , \rangle denotes the Deligne pairing. Given this, the Futaki invariant vanishes by Theorem 1 of [PS1].

We now prove the claim. Let $V \frac{\partial}{\partial z}$ be a holomorphic vector field on X. The Poincaré-Hopf Theorem [Mi] implies that V has two zeros (here we are using the topological classification of surfaces). Denote these zeros by p and q, and assume for the moment that $p \neq q$. Let $\Omega = \frac{1}{V} \Omega$. Then Ω is a meromorphic 1-form on X with simple poles at p and q. After multiplying V by a non-zero scalar, we may assume that the residue at p is 1, and the residue at q is -1. Fix $z_0 \in X$ with $z_0 \neq p, q$ and let

$$f(z) = \exp \left(\int_{z_0}^{z} \Omega \right).$$

(6.2)

Then f is meromorphic, $f(p) = 0$ and $f(q) = \infty$. Moreover, if ρ_t is the 1-parameter family of biholomorphic maps generated by $\text{Im}(V)$, then $f \circ \rho_t = e^{-it/2} f$.

Now let $\Omega_0 = \frac{1}{f} \Omega$ and $\Omega_1 = f \Omega$. Then the divisor of Ω_0 is $-2p$ and the divisor of Ω_1 is $-2q$. In particular, the divisors are disjoint so the Deligne pairing $\langle \Omega_0, \Omega_1 \rangle$ is well-defined. Recall that if f is a meromorphic function, and if Ω_0, Ω_1 are meromorphic differential forms such that the divisors of Ω_0, Ω_1 and $f \Omega_1$ are pairwise disjoint, then

$$\langle \Omega_0, f \Omega_1 \rangle = f(\text{div}(\Omega_0)) \langle \Omega_0, \Omega_1 \rangle.$$

(6.3)

Thus we obtain

$$\langle \rho_t^* \Omega_0, \rho_t^* \Omega_1 \rangle = \langle e^{it/2} \Omega_0, e^{-it/2} \Omega_1 \rangle = \langle \Omega_0, \Omega_1 \rangle.$$

(6.4)

If V has a double zero at the point q, then we let $p \in X$ with $p \neq q$, and define $h(z) = \int_{p}^{z} \Omega_1$ where $\Omega_1 = \frac{1}{V} \Omega$. Then h vanishes at p and has a simple pole at q while Ω_1 has a double pole at q. Let $\Omega_0 = \frac{1}{h} \Omega_1$. Then Ω_0 has a double pole at p. Let ρ_t be the 1-parameter family of biholomorphic maps generated by $\text{Im}(V)$. Then

$$\langle \rho_t^* \Omega_0, \rho_t^* \Omega_1 \rangle = \langle F_t \Omega_0, \Omega_1 \rangle,$$

(6.5)

for some meromorphic function $F_t(z)$. A simple calculation shows that $F_t(q) = 1$ and thus $\langle F_t \Omega_0, \Omega_1 \rangle = \langle \Omega_0, \Omega_1 \rangle$. Q.E.D.
References

[B] Bando, S. On three-dimensional compact Kähler manifolds of nonnegative bisectional curvature, J. Differential Geom. 19 (1984), 284–297

[CCZ] Cao, H.D., Chen, B.L. and Zhu, X.P. Ricci flow on compact Kähler manifolds of positive bisectional curvature, C. R. Math. Acad. Sci. Paris 337 (2003), no. 12, 781–784

[Che] Chen, X. On Kähler manifolds with positive orthogonal bisectional curvature, preprint, arXiv: math.DG/0606229

[CLT] Chen, X., Lu, P. and Tian, G. A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3391–3393

[CT] Chen, X. and Tian, G. Ricci flow on Kähler-Einstein manifolds, Duke Math. J. 131 (2006), no. 1, 17–73

[Cho] Chow, B. The Ricci flow on the 2-sphere, J. Differential Geom. 33 (1991), 325–334

[D] Demailly, J.-P. Multiplier ideal sheaves and analytic methods in algebraic geometry, Lecture notes, School on Vanishing Theorems and Effective Results in Algebraic Geometry, 2000

[GK] Goldberg, S. and Kobayashi, S. Holomorphic bisectional curvature, J. Differential Geom. 1 (1967), 225–233

[H1] Hamilton, R.S. The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237–262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988

[H2] Hamilton, R.S. A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), 545–572

[KL] Kleiner, B. and Lott, J. Notes on Perelman’s papers, preprint, arXiv: math.DG/0605667

[Mi] Milnor, J. Topology from the differentiable viewpoint, The University Press of Virginia, Charlottesville, Va. 1965

[Mok] Mok, N. The Uniformization Theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), 179–214

[Mor] Mori, S. Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606
[P1] Perelman, G. *The entropy formula for the Ricci flow and its geometric applications*, preprint, arXiv: math.DG/0211159

[P2] Perelman, G. unpublished work on the Kähler-Ricci flow

[PSSW1] Phong, D.H., Song, J., Sturm, J. and Weinkove, B. *The Moser-Trudinger inequality on Kähler-Einstein manifolds*, arXiv: math.DG/0604076, to appear in Amer. J. Math.

[PSSW2] Phong, D.H., Song, J., Sturm, J. and Weinkove, B. *The Kähler-Ricci flow and the operator on vector fields*, preprint, arXiv: 0705.4048 [math.DG]

[PS1] Phong, D.H. and Sturm, J. *The Futaki invariant and the Mabuchi energy of a complete intersection*, Comm. Anal. Geom. 12 (2004), no. 1-2, 321–343

[PS2] Phong, D.H. and Sturm, J. *On the Kähler-Ricci flow on complex surfaces*. Pure Appl. Math. Q. 1 (2005), no. 2, 405–413

[PS3] Phong, D.H. and Sturm, J. *On stability and the convergence of the Kähler-Ricci flow*, J. Differential Geom. 72 (2006), no. 1, 149–168

[ST] Sesum, N. and Tian, G. *Bounding scalar curvature and diameter along the Kähler-Ricci flow (after Perelman) and some applications*, preprint

[SY] Siu, Y.-T. and Yau, S.-T. *Compact Kähler manifolds of positive bisectional curvature*, Invent. Math. 59 (1980), no. 2, 189–204

[T1] Tian, G. *On Calabi’s conjecture for complex surfaces with positive first Chern class*, Invent. Math. 101 (1990), no. 1, 101–172

[T2] Tian, G. *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math. 130 (1997), 1–37

[TZ1] Tian, G. and Zhu, X. *A nonlinear inequality of Moser-Trudinger type*, Calc. Var. 10 (2000), 349–354

[TZ2] Tian, G. and Zhu, X. *Convergence of Kähler-Ricci flow*, J. Amer. Math. Soc. 20 (2007), no. 3, 675–699

* Department of Mathematics
 Columbia University, New York, NY 10027

** Department of Mathematics
 Johns Hopkins University, Baltimore, MD 21218
† Department of Mathematics
Rutgers University, Newark, NJ 07102

‡ Department of Mathematics
Harvard University, Cambridge, MA 02138