Unilateral multiple variations of renal, phrenic, suprarenal, inferior mesenteric and gonadal arteries

Kosuri Kalyan Chakravarthi

Department of Anatomy, Santhiram Medical College, NH-18, Nandyal, Kurnool District, Andhra Pradesh, India

Address for correspondence: Mr. Kosuri Kalyan Chakravarthi, Department of Anatomy, Santhiram Medical College, NH-18, Nandyal - 518 501, Kurnool District, Andhra Pradesh, India. E-mail: kalyankosuric@gmail.com

Abstract

Knowledge of the branching pattern of the abdominal aorta is clinically important for any abdominal surgeon operating on parts of the gut or neighboring structures. Variations of these vessels may influence urological, renal transplantation and laparoscopic surgeries. We present an unreported case of multiple variations of branching pattern of abdominal aorta. It includes double renal arteries for the left kidney, a common trunk with right and left phrenic, right and left superior suprarenal and left middle suprarenal arteries, and a common trunk originating 2.5 cm above the bifurcation of the abdominal aorta gave off inferior mesenteric, accessory renal artery to the left kidney and left testicular arteries in the middle-aged normal male cadaver. The embryogenesis of such multiple variations of branches of the abdominal aorta is not clear, but the anatomic consequences may have important clinical implications. Knowledge of these variations is important for urologists, radiologists and surgeons in general.

KEYWORDS: Gonadal arteries, mesenteric, phrenic arteries, renal arteries, suprarenal arteries

INTRODUCTION

Renal arteries are a pair of lateral branches from the abdominal aorta; generally originate from the abdominal aorta, just below the superior mesenteric artery in the level of L1 and L2 vertebrae. Normally, each kidney receives one renal artery. Variations in the number of renal arteries and their position with respect to the renal veins are common; and so are the variations of the suprarenal arteries. Accessory renal arteries may originate from the aorta or from other vessels, a single renal artery may be present in only 33% of normal subjects.

The superior, middle and inferior suprarenal arteries are normally branches of phrenic, abdominal aorta and renal arteries. The inferior phrenic arteries constitute a pair of important vessels, supplying multiple organs including the diaphragm, adrenal glands, esophagus, stomach, liver, inferior vena cava, and retroperitoneum. The majority (80-90%) of inferior phrenic arteries originate as separate vessels with near equal frequency from either the abdominal aorta or the celiac trunk. Testicular artery is the paired branch of the abdominal aorta, it can exhibit a wide range of origin variations. The gonadal arteries (testicular in males and ovarian in females) may arise from other arteries such as the renal, suprarenal or lumbar arteries. The artery may be found duplicated, tripled or quadrupled.

Here we describe an unreported case of multiple variations of branches of abdominal aorta. The objective of this case report is to bring awareness to clinicians about the variations of branches of abdominal aorta. This report may also be useful to clinicians performing invasive techniques.

CASE REPORT

During routine dissection for the undergraduate students in the Department of Anatomy, Santhiram Medical College, Nandyal, of a middle-aged male cadaver, we encountered unilateral anomalous branching pattern of abdominal aorta.

OBSERVATION

We observed following multiple anomalous branching pattern of abdominal aorta:

- Double renal arteries for the left kidney
- A common trunk which later gave off right and left phrenic, right and left superior suprarenal and left middle supra renal arteries
- A common trunk aroused 2.5 cm above the bifurcation of the abdominal aorta gave off inferior mesenteric, accessory renal to the left kidney and left testicular arteries [Figure 1].
DISCUSSION

Khamanarong et al.[4] dissected 267 cadavers (534 kidneys) for establishing the incidence and characteristics of variations in renal arteries among Thai nationals. They found double renal arteries in 93 kidneys (17.43%). Bordei et al.[5] analyzed 272 kidneys for a study of renal vascularization and identified 54 (20%) double renal arteries. In the present case anomalous double renal arteries were observed on the left side. Such variations may be due to the deficiency in the development of mesonephric arteries.

The inferior phrenic may arise from the renal, left gastric, superior mesenteric, suprarenal; or rarely from the hepatic artery.[6-8] Shivaram et al.[9] reported anomalous origin of the inferior phrenic arteries from the celiac trunk. Variations in the origin of suprarenal arteries have been reported before.[10] Middle suprarenal artery is the most variable among the three suprarenal arteries. In the present case we found anomalous origin of common trunk for right and left inferior phrenic, right and left superior suprarenal and left middle suprarenal arteries. Such anomalies are important for surgical and radiological interventions of retroperitoneal organs of upper abdomen to avoid complications.

There are different reports in the literature on the presence of accessory renal arteries on the right or left sides. Accessory renal arteries rarely originate from the external iliac, lumbar, spermatic, ovarian, inferior mesenteric, superior suprarenal, inferior phrenic, right colic, subcostal, contralateral renal, splenic and the thoracic aorta.[11] Variations in the origin of testicular arteries are common and are frequently reported. Ravery et al.[12] reported anomalous origin of the testicular artery from the inferior polar artery of the kidney and its surgical importance. Armstrong et al.[13] reported common origin of inferior mesenteric and accessory renal artery. But in this case we found an extremely rare anomalous origin of common trunk for inferior mesenteric, accessory renal artery to the left kidney and left gonadal artery [Figure 1]. Such variations have not been reported in literature to the best of our knowledge. Therefore, awareness of the possible existence of such variations of inferior mesenteric, testicular and accessory renal arteries is of great importance during surgical procedures in this region.

CONCLUSION

An awareness of renal, suprarenal, mesenteric and testicular vascular variations is important for both surgeons and radiologists. Knowledge of the variations in renal arterial supply has assumed increased importance for renal transplantation, the implantation of vascular stents, assessment of renovascular hypertension, vascular reconstruction, and reconstructive surgery for abdominal aortic aneurysms.

REFERENCES

1. Jeffery RF. Unusual origin of renal arteries. Radiol 1972; 102:309-10.
2. Anson BJ, McVay CB. The topographical positions and the mutual relations of the visceral branches of the abdominal aorta. A study of 100 consecutive cadavers. Anat Rec., 1936; 67:7-15.
3. Bergman RA, Cassell MD, Sahinoglu K, Heidger PM. Human doubled renal and testicular arteries. Ann Anat 1992; 174:315-3.
4. Khamanarong K, Prachaney P, Utraravichien A, Tongun T, Sripaoraya K. Anatomy of renal arterial supply. Clin Anat 2004; 17 (4):334-6.
5. Bordei F, Sapte E, Iliescu D. Double renal arteries originating from the aorta. Surg Radiol Anat 2004; 26 (6):474-9.
6. Lin PH, Chalk EL. Embryology, anatomy and surgical exposure of the abdominal blood vessels. Surg Clin Am 2000; 80:417-33.
7. Nebesar RA, Kombith OL, Pollard JJ, Mihels NA. Celiac and superior mesenteric arteries: A correlation of angiograms and dissections. Boston Little Brown Co., 1969; P 1-178.
8. Pick JW, Anson BJ. Inferior phrenic artery: Origin and suprarenal branches. Anat Rec 1940; 78:413-7.
9. Shivarama CH, Bhat Shivarama, Shetty RK, Avadhani R. Multiple variations of branches of abdominal aorta: A case study. Nitte University Journal of Health Science 2012; 2: 48-50.
10. Harrison CB, Kaplan JJ, Scherz HC, Packer MG, Jones J. Microvascular auto transplantation of the intra-abdominal testis. J Urol 1990; 144:506–7.
11. Van Baalen JM, Van Bockel HJ. Thoracic origin of the right renal artery. J Vasc Surg 1994; 19:762-3.
12. Ravery V, Cussenot O, Desgrandchamps F, Teillac P, Martin-Bouyer Y. Variations in arterial blood supply and the risk of hemorrhage during percutaneous treatment of lesions of the pelviureteral

Figure 1: Multiple variations in the branching pattern of the abdominal aorta. 1-Two renal arteries; 2-Left middle supra-renal artery; 3-Left superior supra-renal artery; 4-Right superior supra-renal; 5-Left inferior phrenic artery; 6-Right inferior phrenic artery; 7-Right supra-renal gland; 8-Left supra-renal gland; 9-Diaphragm; 10-Abdominal aorta; 11-Common trunk; 12-Inferior mesenteric artery; 13-Common branch which later divides in to two branches; 14-Left accessory renal artery; 15-Left gonadal artery; 16-Left kidney; 17-Superior mesenteric artery; 18-Coeliac trunk
junction obstruction: Report of a case of testicular artery arising from an inferior polar renal artery. Surg Radiol Anat 1993; 15:355-9.
13. Armstrong BG, Hunt TH, Price CW, Resnick MI. Common origin of inferior mesenteric and accessory renal artery. Urology 1979; 14: 298-9.

How to cite this article: Chakravarthi KK. Unilateral multiple variations of renal, phrenic, suprarenal, inferior mesenteric and gonadal arteries. J Nat Sc Biol Med 2014;5:173-5.

Source of Support: Nil. Conflict of Interest: None declared.

A rare case of Kartagener’s syndrome

Abstract
A young boy presented with cough and intermittent breathlessness for 3 months. He used to suffer from frequent cough and cold since childhood. Clinical examination revealed bilateral coarse basal crepitations and rhonchi. His apex beat was on right 5th intercostal space in mid-clavicular line. Investigation revealed situs inversus, bi-lateral bronchiectasis, and chronic sinusi tis. His semen analysis revealed the complete absence of sperm. The Saccharin test revealed impaired nasal ciliary movement. Considering all the finding, he was diagnosed as a case of Kartagener’s syndrome. We are reporting this case because of its rarity and rare presence of aspermia in Kartagener’s syndrome.

Key words: Aspermia, bronchiectasis, dextrocardia, Kartagener’s syndrome, sinusitis

Sudipta Pandit, Sabyasachi Choudhury, Anirban Das, Sumitra Basuthakur, Sibes Kumar Das
Department of Chest Medicine, Medical College, Kolkata, West Bengal, India
Address for correspondence: Dr. Sudipta Pandit, 239, R.N.Chakraborty Road, Subhasgram, Kolkata - 700 147, West Bengal, India. E-mail: drsudiptapandit@gmail.com

INTRODUCTION
Kartagener’s syndrome (KS) is an important as well as rare subgroup of primary ciliary dyskinesia (PCD). In KS, defective ciliary movement results in sinusitis, bronchiectasis, and dextrocardia. During the embryonic stage, organ position is determined by uniform ciliary beating but in KS, due to ciliary dysmotility heart along with the other organs fail to move on to the left side, resulting in dextrocardia and situs inversus. These patients usually present with repeated lower respiratory infection in childhood leading to bronchiectasis and infertility in adulthood. Utmost care is needed during surgery in KS. Here, we are reporting a case of KS, who presented to us with cough and breathlessness.

CASE REPORT
A 16-year-old boy presented with 3 months dry cough with intermittent breathlessness. He had no fever or chest pain or hemoptysis. Cough and breathlessness were not associated with any postural or diurnal variation. He used to suffer from frequent cough and cold since childhood. No family history of asthma or atopy was present. Clinical examination revealed normal physical development with mild pallor and digital clubbing. His apex beat was palpable on the right 5th intercostal space in mid-clavicular line on palpation otherwise inspection and percussion findings were normal. Chest auscultation revealed bi-lateral polyphonic rhonchi and basal coarse crepitations with clearly audible heart sounds on the right side. Cardio-vascular examination revealed right-sided 1st heart sound without any murmur. Other system examinations were normal.

Chest X-ray revealed dextrocardia with normal lung field [Figure 1]. Sputum smear examination for acid fast bacillus was negative and aerobic culture showed growth of Staphylococcus aureus. A high-resolution computerized tomography (HRCT) scan of thorax revealed bronchiectasis in lingul [Figure 2]. X-ray of paranasal sinuses revealed bi-lateral maxillary sinusitis with the absence of both