Comprehensive Benefit Evaluation of Electricity Substitution Projects Based on AHP-Grey Relational Degree Model

Yongqi Yang*, Long Zhao, Wanlei Xue, Chenhui Li and Nan Xu
Economic and Technology Research Institute, State Grid Shandong Electric Power Company, Jinan, China

*Corresponding author e-mail: yangyongqincepu@163.com

Abstract. Electricity substitution has become a critical way to further promote the new energy consumption. This paper has established an AHP-Grey relational degree model to analyze the comprehensive benefit brought by electricity substitution projects. The index system of this model focuses on the carbon emission reduction and pollution emission reduction brought by electricity substitution projects through promoting new energy consumption. An example analysis was carried out to prove the practicability of the model and its result.

1. Introduction
Electricity is the key secondary energy to transform the new energy into an energy form, which users can use it directly. Along with the rapid development of UHV transmission network construction, a large amount of new energy can be transformed at generation side and transmitted from west China to east China. At the same time, electricity substitution at demand side is now in progress to further promote the consumption of new energy. However, how to select optimal project among electricity substitution projects and to achieve the maximum comprehensive benefit has become an urgent problem recently.

As concluded from domestic and foreign literatures, there is less research in the comprehensive benefit evaluation of electricity substitution projects. This paper has built a evaluation model based on AHP and grey relational degree theory to calculate the comprehensive benefit of several electricity substitution projects. An example analysis was carried out to verify the practicability and rationality of the model and method.

2. Index system establishment
The index system should be established according to the following principles:

 Authenticity. Index system should be established in accordance with the actual operation situation and the project’s internal and external environment. Field research result and literature review results should be taken into consideration as well.

 Comparability. Indexes should be able to perform horizontal comparison and vertical comparison. Horizontal comparison means index data can be compared among different companies, vertical comparison means index data can be compared among the different time periods within on company.
Operability. The difficulty during data collection and its integrity should be taken into consideration when establishing the index system in order to provide convenience for the comprehensive benefit calculation.

The index system should be separated into 3 categories, including finance, marketing and social benefit. This separation was made according to national policy, business operation and project situation. The energy efficiency and net present value rate is determined to be the core index. The comprehensive benefit evaluation index system is shown in Table 1.

Table 1. Comprehensive benefit evaluation index

Categories	Indexes	Codes
Core index	Energy efficiency/Net present value rate	X₀
Finance	Internal rate of return	X₁
	Payback period	X₂
Marketing	Market share	X₃
	Customer satisfaction rate	X₄
	Users’ energy utilization	X₅
	Energy demand forecast accuracy	X₆
Social Benefits	Dust pollution rate	X₇
	SOx pollution rate	X₈
	NOx pollution rate	X₉
	COx pollution rate	X₁₀
	Wind curtailment	X₁₁
	Solar energy curtailment	X₁₂

3. Comprehensive benefit evaluation model

3.1. The AHP weighting method

The AHP weighting method is calculated as follows:

1) X represents the comprehensive benefit, which includes \(X = \{X₁, X₂, ..., X₃\} \), and their weight is \(W = \{W₁, W₂, ..., W₃\} \). \(j \) represents decision indexes and its number is \(m \), \(k \) represents evaluation objectives and its number is \(n \). The rest indexes can be done in the same manner.

2) AHP’s scale meaning Definition.

3) Judgement matrix establishment through pairwise comparison.

4) Weight calculation.

5) Consistency check.

3.2. The grey relational degree model

After the AHP weighting calculation, the grey relational degree model can be built using index data matrix:

\[
A = \begin{pmatrix}
X_{11} & X_{12} & \ldots & X_{1n} \\
X_{21} & X_{22} & \ldots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{m1} & X_{m2} & \ldots & X_{mn}
\end{pmatrix} \tag{1}
\]

The model can be calculated as follows:

1) Core index data collecting and form the core index data vector:

\[
X₀ = (X₀₁, X₀₂, ..., X₀ₙ)
\tag{2}
\]

2) Index data normalization:
The normalization process in this paper was carried out using averaging method to remove the dimensional difference between indexes:

\[X'_{jk} = \frac{X_{jk}}{\frac{1}{m} \sum_{j=1}^{m} X_{jk}} \quad (3) \]

3) D-value calculation
D-value calculation between every index and core index:

\[|X'_{j0} - X'_{jk}| \]

Maximum and minimum D-value calculation:

\[\min_{j=1}^{m} \min_{k=1}^{n} |X'_{j0} - X'_{jk}| \quad (5) \]

\[\max_{j=1}^{m} \max_{k=1}^{n} |X'_{j0} - X'_{jk}| \quad (6) \]

4) Grey relational degree calculation
The grey relational degree coefficient between every index and core index should be calculated using formula (7):

\[\theta_{jk} = \frac{\min_{j} \min_{k} |X'_{j0} - X'_{jk}| + \lambda \max_{j} \max_{k} |X'_{j0} - X'_{jk}|}{|X'_{j0} - X'_{jk}| + \lambda \max_{j} \max_{k} |X'_{j0} - X'_{jk}|} \quad (7) \]

\(\lambda \) represents distinguishing coefficient, of which data range is (0,1). In this paper, we decide the value of \(\lambda \) is 0.5.

The average value of grey relational degree coefficient should be calculated using formula (8) and obtain the grey relational degree of each index:

\[E = \frac{1}{n} \sum_{j=1}^{n} \theta_{jk} \quad (8) \]

4. Example analysis

Table 2. Data
Indexes
Energy efficiency/\%
Net present value rate
Internal rate of return/\%
Payback period/year
Market share/\%
Customer satisfaction rate/\%
Users’ energy utilization/\%
Energy demand forecast accuracy/\%
Dust pollution rate/(g/kWh)
SOx pollution rate/(g/kWh)
NOx pollution rate/(g/kWh)
COx pollution rate/(g/kWh)
Wind curtailment/\%
Solar energy curtailment/\%
The model established in this paper will be used in the electricity substitution projects in North China. The data is shown in Table 2.

The weight of indexes can be obtained through AHP method, as it’s shown in Table 3.

Table 3. Weight of indexes

Indexes	Weight
Internal rate of return	0.06
Payback period	0.04
Market share	0.05
Customer satisfaction rate	0.07
Users’ energy utilization	0.05
Energy demand forecast accuracy	0.11
Dust pollution rate	0.05
SOx pollution rate	0.11
NOx pollution rate	0.11
COx pollution rate	0.11
Wind curtailment	0.12
Solar energy curtailment	0.12

After the normalization process, the D-value of different indexes can be obtained through the calculation of formula (4). In this paper, we selected 2 core indexes (energy efficiency and net present value rate), hence the grey relation degree of the 2 core indexes is demonstrated in Table 4.

Table 4. Grey relation indexes

Projects	Energy efficiency	Net present value rate				
	A	B	C	A	B	C
Indexes						
Internal rate of return	0.850	0.843	0.861	1.981	1.976	1.988
Payback period	0.897	0.903	0.891	1.952	1.960	1.946
Market share	0.876	0.865	0.879	1.927	1.914	1.931
Customer satisfaction rate	0.825	0.836	0.828	1.863	1.877	1.867
Users’ energy utilization	0.872	0.875	0.873	1.922	1.926	1.923
Energy demand forecast accuracy	0.752	0.760	0.752	1.764	1.776	1.764
Dust pollution rate	0.866	0.913	0.844	1.828	1.914	1.790
SOx pollution rate	0.745	0.754	0.764	1.755	1.768	1.781
NOx pollution rate	0.720	0.784	0.762	1.719	1.809	1.778
COx pollution rate	0.710	0.776	0.780	1.705	1.799	1.804
Wind curtailment	0.726	0.745	0.741	1.728	1.756	1.750
Solar energy curtailment	0.718	0.751	0.744	1.717	1.764	1.753

Using formula (8), the grey relation degree of every index is calculated and shown in Table 5.
Table 5. Grey relation degree calculation results

Indexes	Energy efficiency	Net present value rate	Average
Internal rate of return	0.851	1.982	1.417
Payback period	0.897	1.952	1.425
Market share	0.874	1.924	1.399
Customer satisfaction rate	0.830	1.869	1.350
Users’ energy utilization	0.874	1.924	1.399
Energy demand forecast accuracy	0.754	1.768	1.261
Dust pollution rate	0.874	1.844	1.359
SOx pollution rate	0.754	1.768	1.261
NOx pollution rate	0.755	1.769	1.262
COx pollution rate	0.756	1.769	1.263
Wind curtailment	0.738	1.745	1.242
Solar energy curtailment	0.738	1.745	1.242

As the result shows, the grey relation degree of payback period, internal rate of return, market share and users’ energy utilization is higher than other indexes. In addition, grey relation degree of payback period payback period is 1.425, which is the highest among those. The result of the rest of indexes remains between (1.242, 1.359). Therefore, reducing cost and improving the income of each project is the key method to promote the comprehensive benefit of electricity substitution projects. Besides, advanced technologies should be applied to improve market share and users’ energy utilization.

5. Conclusion

Electricity substitution projects are able to transform several new energy into electricity, which is able to be used by the users directly. Hence electricity substitution is becoming a critical way to further improve new energy consumption.

This paper has built an AHP-Grey relational degree model to analyze the comprehensive benefit of electricity substitution projects. The rationality and applicability of present model was proved by example analysis. As the result shows, the payback period, internal rate of return, market share and users’ energy utilization are key factors which should be further improved when designing the project schemes.

References

[1] Yang Y, Zeng M, Xue S, Wang J and Li Y 2018 Coordination between clean energy generation and thermal power generation under the policy of “direct power-purchase for large users” in China Resour. Conserv. Recy. 129 402-419.
[2] Xie W, Sheng P and Guo X 2015 Coal, oil, or clean energy: Which contributes most to the low energy efficiency in China? Util. Policy. 35 67-71.
[3] Jevgenijs S, Gaurav S, Fu Z 2017 Sustainability of solar electricity: The role of endogenous resource substitution and cross-sectoral responses Resour Energy Econ. 49 218-232.
[4] Guangzhi Y, Li Z and Maosheng D 2018 Impacts of carbon pricing and renewable electricity subsidy on direct cost of electricity generation: A case study of China's provincial power sector J Clean Prod. 20 375-387.
[5] Christian B, Magnus F and Frank S 2014 Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge Appl Energ. 113 404-413.
[6] Gnanavelbabu A, Arunagiri P 2018 Ranking of MUDA using AHP and Fuzzy AHP algorithm Materials Today: Proceedings. 5(S) 13406-13412.
[7] Guidong S, Xin G, Xiao Y and Zheng Z 2018 Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition Expert Syst Appl 92 521-532.
[8] Aslantas K, Ekici E, Ciçek A 2018 Optimization of process parameters for micro milling of Ti-6Al-4V alloy using Taguchi-based gray relational analysis Measurement 128 419-427.