Core–shell titanium@silica nanoparticles impregnating in poly (itaconic acid)/poly (N-isopropylacrylamide) microgel for multifunctional cellulosic fabrics

Amina L. Mohamed · Ahmed G. Hassabo

Received: 30 November 2021 / Accepted: 24 January 2022 / Published online: 3 February 2022
© The Author(s) 2022

Abstract
A novel method for multi-finishing cellulosic fabrics is based on the consolidation of a thin layer of active material containing micro-gels, titanium nanoparticles and silica. The titanium@silica core–shell particles were synthesized and characterized for their morphological, structural, and compositional properties using X-ray diffraction and scanning electron microscopy. The nanoparticles are approximately 250 nm in size and have a spherical shape. A microgel/titanium@silica nanoparticles composite was prepared mixing with the gel produced from copolymerizing N-isopropyl acrylamide with itaconic acid and then it was characterized. The prepared gel is characterized to be pH and temperature-sensitive. Pad dry cure from the emulsion was used to applied the prepared gel with and without titanium nanoparticles to the cellulosic fabric. Fabric treated with a gel containing and without titanium nanoparticles was tested for antibacterial properties, ultraviolet protection, temperature, and pH sensitivity. According to the evaluation, treated fabric with titanium nanoparticles has better antibacterial, ultraviolet protection, and is more sensitive to pH and temperature than treated fabric without titanium nanoparticles, and both treated fabrics outperform the untreated one.

Keywords Titanium@silica nanoparticles · PNIPAAm/PIA · Cellulosic based materials · Antibacterial activity · pH – Temperature thermos-sensitive

Introduction
Cellulose is one of the natural organic polymers. Cellulosic fabrics have been functionalized to add properties such as flame retardancy [1–7], water/oil repellence [8–11], antimicrobial [12–17], metal adsorption [18–22], gloss properties [23], rodent repellence [24], anti-UV protection [10, 25], Stimuli-responsiveness to temperature, and pH [13, 26], heat storage, [27–30] via a variety of methods, including polymeric material deposition and/or infiltration [31–37], and nano-coating methods [4, 20, 21, 37–41].

Because of the common and easy-to-control temperature changes, thermo responsive hydrogels are one of the most researched polymer architectures. The hydrogel transmission respond intelligently to temperature variation [42]. Hydrophobic and hydrophilic elements are frequently present in temperature-sensitive hydrogels, and the thermal response phenomena result from the delicate balance of the hydrophobic and hydrophilic parts [43, 44].

Temperature-sensitive component based on different monomer such as (N-isopropyl acrylamide; NIPAA), pH-sensitive (diethylaminoethyl methacrylate; DEAEMA) were produced as the hydrogen components utilised in the sample [17, 45]. As a hydrophobic component, such as copolymerisation of methyl methacrylate with acryloyl phenylalanine, [46] poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate), [47] has been synthesised as a pH sensitive component, with hydrophobic increases in mechanically stable gels [42, 48]. A poly(NIPAAm-co-BMA-co-DEAEMA) and Poly(acrylamide-co-DEAEMA) are shown to affect pH dependent inflation by the temperature [49]. Unconnected analogues of the gel were investigated on the Lower Critical Solution Temperature (LCST) to understand how ionisation
impacts temperature-dependent swelling of the ionizable component [44, 50].

The most thoroughly investigated thermo-responsive polymer is poly(N-isopropylacrylamide) (PNIPAAm) exhibiting a volume-phase transition (e.g., side chain dehydration) in response to modest temperature fluctuations, especially in dyeing quantities [51]. Because of the extremely complicated polarity of the molecule, the transition between coil and globule takes place at a temperature of around 32 °C, named as a lower critical solution temperature (LCST) [52, 53]. Under the LCST the amide group links water molecules into an extended structure by hydrogen bonding (i.e., hydrates), which decomposed through destroying the hydrogen bonding of the LCST, and causing expelling water and precipitating polymer (i.e., its chains dehydrate to form a shrunken structure) [43, 44, 54].

Hydrogels that respond to external stimuli (pH, temperature, light, mechanical, magnetic, or electrical field) are referred to as "stimuli-responsive hydrogels" [55–59]. The sensitivity to temperature and pH are the properties that have received the most attention [60–62]. These polymers also inhibit both Gram-positive and Gram-negative bacteria effectively [63, 64]. In addition presence of metal oxides nanoparticle such as TiO₂, ZnO and SiO₂ are preferable to enhance the ultraviolet blockers and self-cleaning agents [65, 66].

Itaconic acid (ITA) is an unsaturated dicarboxylic acid. It is widely used in a variety of industries, including resin synthesis, textile dyeing, and finishing, biomedical fields, and papermaking [67, 68]. Choi was the first to report on the use of ITA as a cross-linking agent for cotton [69]. Cotton fabric was treated with maleic acid (MA) and itaconic acid (ITA) in the presence of free radical initiator potassium persulfate (K₂S₂O₈) and esterification catalyst sodium hypophosphate (NaH₂PO₂, 98%), sodium hypophosphate monohydrate (SHP, NaH₂PO₂·H₂O, 99%). Isopropyl alcohol ((CH₃)₂CHOH, 99.5%), ammonium persulphate ((NH₄)₂S₂O₈, 98%), sodium hypophosphate monohydrate (SHP, NaH₂PO₂·H₂O, 99%). Isopropyl alcohol ((CH₃)₂CHOH, 99.5%), ammonium solution (NH₄OH, 25%), butane tetracarboxylic acid (BTCA, [-CH(CO₂ H)CH₂ CO₂ H]₂, 99%), itaconic acid (IA, HO₂ CCH₂ C(= CH₂)CO₂ H, 99%), and titanium (IV) isopro- poxide (Ti(OCH₃)₄, 97%) were purchased from Acros, as were. All chemicals are used exactly as they are received, with no further purification.

Preparation

Preparation of TiO₂@SiO₂ nano-composites

In isopropyl alcohol, three different ratios of titanium (IV) isopropoxide Ti(OCH₃)₄ (3, 6, or 9) were added dropwise and stirred at pH 9. A corresponding ratio of tetraethoxysilane (3, 6, or 9, (12 ml) in 30 ml isopropyl alcohol) in isopropyl alcohol was added to these solutions and mechanically stirred for 30 min at 450 rpm to obtain a net volume of mixed oxides. Increasing the pH up to 9 of the solution with a drop-wise addition of 3 ml of ammonia solution resulted in the formation of the mixed oxide gel, which was then stirred for an additional 24 h. The residue was then washed three times with water and dried in the oven for 24 h. The precipitate was calcined for 3 h at 800 °C to remove organic residue and stabilize the materials (see Fig. 1) [73].

Preparation of PNIPAAm/PIA microgel

Five grams of dry NIPAAm were placed in a 10% w/w aqueous IA solution and rested at 4 °C for 24 h to achieve equilibrium swelling. The swollen NIPAAm microspheres was then transferred to a closed round flask contain a cross-linker (GPTMS) for the polymerization process. After 30 min of nitrogen gas passing through the mixture, the temperature was raised to 70 °C. The mixture was treated
with ammonium persulphate. The polymerization process then continued for another 30 min. The grafted PNIPAAm microspheres with PIA were washed with excess water after polymerization to remove any unreacted IA. Finally, the product was vacuum-dried to achieve a constant weight. Titration of the extract against NaOH (0.1 N) to the phenolphthalein endpoint was used to determine the IA content of the PNIPAAm/PIA copolymer microspheres. The suggesting mechanism for preparation of PNIPAAm/PIA microgel was illustrated in Fig. 2.

Incorporation of microgels into cotton

The pad-dry-cure method was used to apply the prepared gel to cotton fabric. After stirring for 15 min, prepared gel (10 g/l) with and without TiO$_2$@SiO$_2$ nanoparticles were suspended in water, and stirred for 15 min. The pre-treated cotton fabric with butane tetracarboxylic acid (BTCA; 5 g/l) and sodium hypophosphite (SHP; 5 g/l) were then immersed in the prepared solution for 3 min before being padded with an 80 percent wet pickup, dried at 100 °C for 5 min, and cured at 130 °C for 3 min. The suggesting mechanism for reaction between PNIPAAm/PIATiO$_2$@SiO$_2$ with cellulosic fabric Fig. 3. The treated fabrics were washed and dried at room temperature using the same procedure as for the pre-treatment method.

The actual pickup and add-on of the prepared gel transferred to the treated and untreated fabrics were weighed and calculated using the equations below:
% Pickup = \frac{W_2 - W_1}{W_1} \times 100 \%
Add – on = \frac{W_3 - W_1}{W_1} \times 100
\%
where W_1 is the dry fabric weight before padding, W_2 is the wet fabric weight after padding, and W_3 is the dry fabric weight after curing.

Fig. 2 Suggesting mechanism for preparation of PNIPAAm/PIA microgel

Fig. 3 Suggesting mechanism for reaction between PNIPAAm/PIATiO_2@SiO_2 with cellulosic fabric
Characterization

The FT-IR spectra were captured using a JASCO FT-IR spectrometer (ATR). Scanning Electron Microscopy (HITASHI S–3000 microscope) was used to examine the morphological behavior of the treated samples. A JEOL JEM-1200 EX transmission electron microscope operating at 120 kV was used to capture TEM images of prepared nanoparticles and microgels. The laser particle size analyzer ZetaPAL/90 plus was used to further characterize the size and potential of the synthesized microgels (Brookhaven Instruments).

The dry crease recovery angle (CRA) was determined using the AATCC Test Method 66 – 2014 [74]. A SE 1700 Surface Roughness Measuring Device and ASTM Test Method D 7127 – 13 were used to measure fabric roughness [75]. Tensile strength and elongation at a break were determined using ASTM Test Method D 5035–2011 [76]. The given results were calculated using the average of three measurements.

The UV-protection factor (UPF) for untreated and treated samples of cotton fabric was determined by the Australian/New Zealand standard (AS/NZS 4366–1996). Using a UV spectrophotometer, the UV-protecting factor (UPF) of the treated fabrics was studied by absorption spectroscopy [77].

The UV-protection factor (UPF) for untreated and treated samples of cotton fabric was determined by the Australian/New Zealand standard (AS/NZS 4366–1996). Using a UV spectrophotometer, the UV-protecting factor (UPF) of the treated fabrics was studied by absorption spectroscopy [77].

The measurement of the control reference was as air. The efficiency of UV (UPF) treated fabric was determined by calculating the absorption, transmission, and reflection of UV. The UPF value was determined using the following equation from the transmission spectra of the fabric samples within the range 280–400 nm [15, 37, 61, 72, 78].

\[
UPF = \frac{\int_{\lambda_1}^{\lambda_2} E(\lambda) \times S(\lambda) \times \Delta(\lambda) \, d\lambda}{\int_{\lambda_1}^{\lambda_2} E(\lambda) \times S(\lambda) \times T(\lambda) \times \Delta(\lambda) \, d\lambda}
\]

The control relation was calculated as the air where \(\lambda_1\) and \(\lambda_2\) were equivalent to 280 and 400 nm respectively, \(E(\lambda)\) being the relative erythemal spectral effectiveness, \(S(\lambda)\) being the solar spectral irradiance in W.m\(^{-2}\).nm\(^{-1}\) (\(\lambda\)) and \(T(\lambda)\) being the spectral transmission of the sample obtained from UV spectrophotometric experiments and \(\Delta(\lambda)\) is the difference between measurable wavelengths.

Because these gels will be used in the textile industry, their antibacterial activity was tested against both gram-positive and gram-negative bacteria (S. aureus and E. coli). As a result, the samples were tested for antimicrobial activity by measuring the diameter of the inhibition zone (IZD) using the agar diffusion technique modified by Bershteein et al. [79, 80].

![FT-IR sand spectra of TiO\(_2@\)SiO\(_2\) prepared at different TiO\(_2\):SiO\(_2\) ratios; TS1, TS2, and TS3 for 3:9, 6:6, and 9:3, respectively](image)

Fig. 4 FT-IR sand spectra of TiO\(_2@\)SiO\(_2\) prepared at different TiO\(_2\):SiO\(_2\) ratios; TS1, TS2, and TS3 for 3:9, 6:6, and 9:3, respectively
45 ml of previously sterilized media was poured to make nutrient agar. A cork borer was used to make holes in treated fabrics (0.9 mm). Each plate was seeded with 0.5 ml of suspension (24 h old) and allowed to solidify and dissolved in sterilized water to obtain a bacterial suspension with a concentration of 100 mg/ml. A portion of each tested bacteria’s 100 μl was added to a petri dish containing treated fabrics. The test plates are incubated for 24 h at 37 °C. The diameter of the inhibition zone (IZD) was measured in millimeters.

Rheological property measurements were carried on a Carri-Med-CSL 100 Rheometer (TA Instruments Ltd., Surry, England) equipped with parallel plate geometry, small amplitude oscillatory rheological experiments were performed (20 mm, diameter).

Textural measurements for the gel paste were measured at a TA-XT2i Texture Analyzer (Stable Micro Systems, England) with an aluminum plate probe was used to measure the freshly created gel (5.0 mm dia.). The following compression mode parameters were set: Pretest speed was 2.0 mm/s, test speed was 1.0 mm/s, and posttest speed was 2.0 mm/s, with a trigger force of 15 g at a distance of 50% of the starting sample. The test yielded a force time curve, which was used to calculate the textural findings. The maximal compressive force that exhibits significant resistance to deformation is characterised as hardness (g force). The maximal force required to overcome the attraction forces between the surface of the sample and the surface of the probe with which the sample comes into contact is known as stickiness (g force). The negative force area after the initial compression, which represents the work required to draw the compressing plunger away from the sample, was used to determine adhesiveness [81].

Result and discussion

Characterization of silica-coated TiO₂ nanoparticles (TiO₂@SiO₂)

FTIR analysis of TiO₂/SiO₂ particles

The FT-IR spectra of the sol–gel TiO₂@SiO₂ nanocomposite are shown in Fig. 4. The peaks in the spectra at 3396 and 1599 cm⁻¹ are caused by the stretching and bending vibration of the -OH group. The weak peak at 3396 cm⁻¹ for TS3 (which contain more TiO₂ nanoparticles) is observed as a result of the decrease the intensity of hydroxyl group which consumed in the chemical reaction between formed nanoparticles to produce the core shell particles and also in calcination process. This decreasing was also confirm the suggesting mechanism. Furthermore, the asymmetric Si–O–Si stretching vibration is represented by the strong observed band at 1079 cm⁻¹. This peak was increased as the ratio increased from TS1 to TS3 as result of the chemical

![Fig. 5 XRD pattern of TiO₂@SiO₂](image)

© Springer
reaction [82]. The peak at 465 cm\(^{-1}\) represents the stretching vibration of Ti–O, while the peak at 949 cm\(^{-1}\) represents the overlapping vibrations from Si–OH and Si–O–Ti bonds [83]. These findings indicate that a TiO\(_2\)@SiO\(_2\) nanocomposite was created by combining TiO\(_2\) nanoparticles with SiO\(_2\) nanoparticles.

XRD analysis of TiO\(_2\)/SiO\(_2\) particles

Figure 5 depicts the results of XRD studies on titanium-modified silica nanoparticles. TiO\(_2\)@SiO\(_2\) nanoparticles exhibited multiple diffraction peaks that can be attributed to TiO\(_2\)’s anatase phase (JCPDS File No. 21–1272) at 25.31; 31.4; 35.2; 38.3, 56.6, and 62.8 which are typical for anatase TiO\(_2\) and SiO\(_2\) structure [84]. Furthermore, the TS nanocomposite particles’ crystallite type was pure anatase. These findings are consistent with those of Venkateshet al. [85]. The results confirmed the transformation of the TiO\(_2\) shell from amorphous to anatase phase. The peaks were recognised using 2Theta, confirming that at 2Theta = 25.31°, an anatase structure of SiO\(_2\) was created. The peaks recorded for TiO\(_2\) particle reflection were extremely close to those previously reported [86]. The d-spacing values of 3.4, 2.3, 1.8, 1.68, and 1.65, as well as their relative intensities at 2Theta locations 31.4, 35.2, 38.3, 56.6, and 62.8, correspond to Anatase data [86].

TEM of TiO\(_2\)@SiO\(_2\) nanoparticles

Figure 6 shows TEM images of prepared core/shell TiO\(_2\)@SiO\(_2\) nanoparticles at various Ti and Si salt concentrations. The TEM images clearly show that the as-prepared TiO\(_2\)@SiO\(_2\) nanocomposite (Fig. 6a) at the TiO\(_2\)::SiO\(_2\) (3:9) ratio has a definite shape with the smallest size compared to the other TiO\(_2\)::SiO\(_2\) concentrations of 6:6 and 9:3. Figure 6a also shows that the TiO\(_2\) nanoparticles were surrounded by SiO\(_2\) nanoparticles, forming the so-called core shell. The distance between two crystal lattices is indicated by the TEM magnification of Fig. 6.
Particle size distribution of \(\text{TiO}_2\@\text{SiO}_2\)

The particle size distribution of \(\text{SiO}_2\) nanoparticles modified with \(\text{TiO}_2\) nanoparticles is shown in Fig. 7. Particles of \(\text{TiO}_2\@\text{SiO}_2\) with a lower \(\text{TiO}_2\) concentration have a smaller particle size and particle distribution index (PDI) than \(\text{SiO}_2\) particles modified with a high \(\text{TiO}_2\) concentration. Understandably, nano-particulate systems with lower PDI are more transparent. In conclusion, the \(\text{SiO}_2:\text{TiO}_2\) concentration of 3:9 is more suitable for further characterization and application in terms of particle size and distribution particle size.

Zeta potential of \(\text{TiO}_2\@\text{SiO}_2\) nano-composite

The zeta potential (surface charge) measurements are an indirect measure of their physical stability because they

Fig. 7 Particle size analyzer, polydispersity, and histogram of \(\text{TiO}_2\@\text{SiO}_2\) nanoparticles prepared using different ratios of \(\text{TiO}_2:\text{SiO}_2\): a) 3:9, b) 6:6, c) 9:3
measure the electric charge at the surface. Figure 8 depicts the zeta potential of a TiO$_2$@SiO$_2$ nanocomposite prepared at a TiO$_2$:SiO$_2$ (3:9) ratio. It is worth noting that the zeta potential value is -31.3 mV. The obtained negative values for TiO$_2$:SiO$_2$ (3:9) Zeta potential can be explained by a negatively charged surface created by a large number of hydroxyl groups available in SiO$_2$ molecules.

The higher value of zeta potentials implies that the nanoparticle may show good stability in aqueous solutions. There is a specific zeta potential value ($\approx \pm 30$ mV) that determines the stability of nanoparticles because of the presence of high electrostatic repulsive forces between the nanoparticles exhibiting this value.

Characterization of microgels

Figure 9 depicts the swollen size distribution of PNIPAAm/PIA microspheres. This graph confirmed that approximately 65 percent of the particles were in the 150–250 nm range.

The grafting of PIA into the PNIPAAm network was investigated using FT-IR spectroscopy. The FT-IR spectra of pure PNIPAAm microspheres and PNIPAAm/PIA graft copolymeric microspheres are shown in Fig. 10. Figure 10 shows pure PNIPAAm microspheres with a characteristic amide I band at 1640 cm$^{-1}$ (C=O stretching) and an amide II band at 1564 cm$^{-1}$ (N–H bending). In addition, only one N–H stretching band, typical of secondary amides, can be seen at 3435 cm$^{-1}$ in the PNIPAAm spectrum. The FT-IR spectrum of the graft copolymer with IA (Fig. 10) shows a stretching band at 1720 cm$^{-1}$ for the carbonyl group (C = O) of acid. This indicates that the modification of PNIPAAm was successful.

The effect of temperature on the diameter of PNIPAAm/PIA microgel was studied at pH 6.5 and confirmed that the particles are swollen at room temperature with a diameter of around 230 µm, but have an average size of 50 µm at 40 °C. Figure 11 shows that increasing the temperature from 25 to
40 °C gradually reduced the PNIPAAm/PIA microgel size, which was observed at 40 °C.

The effect of pH on the size of PNIPAAm/PIA microgels was investigated using dynamic light scattering at 20 °C (Fig. 11). At high pH (pH 10), the PNIPAAm/PIA microgel was swollen and had a size of 140 µm. When the pH is reduced, the PNIPAAm/PIA microgel size gradually decreases, eventually reaching 50 µm. As a result of the pH sensitivity, PNIPAAm/PIA microgels swell in basic medium and deswell in acid medium with fine size.

Figure 12 depicts the textural properties of the PNIPAAm/PIA microgel at various concentrations (10, 15, 20, 25, and 30% w/w). It was discovered that increasing the gel's concentration resulted in a significant increase in the gel's hardness, stickiness, and adhesiveness. The deformability of swollen granules is known to be a major factor contributing to gel strength [87]. These findings indicate that the less mobile state was associated with granular remnants and that the increase in texture properties of the PNIPAAm/PIA micro-particles can be attributed to granule swelling. According to reports, the structure and composition were major factors influencing the rheological behaviour [88].

Figure 12 depicts the flow properties of the PNIPAAm/PIA microgel at various concentrations and temperatures. The samples exhibited Newtonian behaviour with low shear viscosity at temperatures greater than 30 °C and low
concentration. The effective concentration of the microgel is small due to the disruption of microgel hydrogen bonds, which causes a minor amount of swelling in a constant viscosity-shear rate relationship [89].

Furthermore, at temperatures below 30 °C and high concentrations, an increase in the effective concentration occupied by the particles is caused by an increase in osmotic pressure in the polymeric network. Furthermore, as the inter-particle distance between swollen particles decreased, so did the interaction forces, resulting in the observed shear-thinning behavior. When shear force was applied to the microgel dispersion, the particles tended to flow and align themselves in the shear direction. Any increase in shear force indicates that more particles are aligned in the shear direction.
Evaluation of treated cotton fabrics

The pad-dry-cure method was used to treat cotton fabrics with prepared microgel. At 160 °C, the hydroxyl groups on cellulose and the amine groups from the prepared microgel undergo the esterification and amidation with the carboxyl groups from BTCA, respectively.

Scanning electron microscope

The morphological behavior of treated and untreated cotton fabrics with prepared microgel containing core–shell nanoparticles is depicted in Fig. 13. The surface has changed, and the nanoparticles appear to be embedded in the cross-linker coated film. Furthermore, the entire cotton fiber surface is coated with a thin film, and the nanoparticles are visible as clusters on the fiber surface.

Evaluation of the antibacterial properties

Table 1 shows the results of a study on the effect of treated fabrics on two bacteria, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). When compared to untreated cotton fabric and treated cotton fabric with prepared microgel, treated cotton fabric with TiO₂NPs demonstrated strong antibacterial activity against both tested bacteria.

The antimicrobial activity of the produced gel was influenced by modified silicon and TiO₂NPs, which affect the mode of interaction with the bacteria’s cytoplasmic membrane [90].

Evaluation of the mechanical and physical properties

Table 1 compares the mechanical and physical properties of treated cotton fabrics to those of untreated cotton fabrics. The results show that the treated fabrics have a significant decrease in tensile strength and elongation at break. Furthermore, the treatment causes a slight increase in roughness values. This is due to microgel and TiO₂NPs being deposited on the surface of cotton fabrics. Furthermore, the application of the produced film to the cotton surface resulted in an improvement in the crease recovery angle (CRA) of all treated fabrics.

Fig. 13 SEM image of untreated and treated fabric. a) untreated fabric, b) treated fabric with PNIPAAm/PIA, c) treated fabric with PNIPAAm/PIA/TiO₂@SiO₂
Evaluation of the UPF factor

The UV-protective properties of treated fabrics were investigated. The control reference was assumed to be air. The UV absorption, transmission, and reflection of treated fabric were measured to demonstrate its protective properties. The samples were measured four times and the average was calculated. Using the following equation, the ultraviolet protection factor (UPF) was calculated from the transmission data.

\[
UPF = \frac{\int_{\lambda_1}^{\lambda_2} E(\lambda) \times S(\lambda) \times \Delta(\lambda)}{\int_{\lambda_1}^{\lambda_2} E(\lambda) \times S(\lambda) \times T(\lambda) \times \Delta(\lambda)}
\]

The UPF values for both untreated and treated samples with produced microgel with/without TiO₂NPs were reported in Table 1 before and after washing. The UV-protection values of treated fabric with produced microgel and TiO₂@SiO₂ were higher than those of untreated and treated fabric with produced microgel but no TiO₂@SiO₂. According to [91], the UPF of a UV-protected garment should be at least 40–50. As a result, fabric treated with prepared microgel and TiO₂@SiO₂ provides excellent UV protection. Furthermore, the UPF values of the treated fabric did not decrease significantly after washing, confirming the treatment’s durability even after washing.

CRA: Crease recovery angle.

Estimation of the temperature and pH sensitivity of treated fabrics

The temperature and pH sensitivity of treated fabrics was investigated by measuring water uptake of treated fabrics with PNIPAAm/PIA in the presence and absence of TiO₂@SiO₂ nanoparticles at various temperatures (24–40 °C) and pH (3, 7, and 10) (see Fig. 14). Water uptake values for untreated fabrics ranged from 95 to 100% for each measured pH and total tested temperature.

The pH sensitivity of treated cotton fabrics is studied, and it is discovered that water uptake decreases steadily from 24 to 33 °C. Furthermore, as the temperature rises, the water uptake remains constant. Furthermore, when compared to untreated fabric, the treated one has a significant response of around 10%.

PNIPAAm/PIA with and without TiO₂@SiO₂ microparticles are slightly collapsed at lower pH. As a result, at 24 °C, pH 3 has a lower water uptake than pH 7 and pH 10. In any case, at 30 °C, PNIPAAm/PIA with and without TiO₂@SiO₂ microparticles are in the collapsed state, so the measured water uptake over 30 °C is nearly the same for each of the three measured pH.

Sample	Antibacterial activities	Mechanical and physical properties							
Untreated	S. aureus	E. coli							
Before washing	0	0	0	0	0	0	0	0	0
After washing	0	0	0	0	0	0	0	0	0
Treated with microgel	18.2	18.4	18.5	16.3	16.3	16.3	16.3	16.3	16.3
Before washing	16.5	16.7	16.8	16.9	17.0	17.1	17.2	17.3	17.4
After washing	16.5	16.7	16.8	16.9	17.0	17.1	17.2	17.3	17.4
Treated with TiO₂@SiO₂	22.3	22.5	22.6	20.3	20.4	20.4	20.5	20.6	20.7
Before washing	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21.0	21.1
After washing	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21.0	21.1

Table 1: UPF, antibacterial activities, mechanical and physical properties for both untreated and treated cotton fabrics.
The temperature sensitivity at all pH mediums was studied, and it was discovered that increasing the temperature causes the nanoparticle to shrink and expel water, owing to the network of prepared microgel that prevents water molecules from migrating.

When compared to the untreated fabric, it is clear that the loss percent of water uptake is lower due to the collapsing state of the prepared microgel, which is due to the prepared microgel imparting a hydrophobicity property and thus increasing the fabric’s hydrophobicity properties.

It is fascinating to note that when the surface changing framework is collapsed, the water uptake is consistently lower than when it is untreated. This perception confirms that once the transition temperature is reached, the surface adjusting framework becomes hydrophobic, giving the treated fabric increased hydrophobicity.

When the temperature is raised, poly-NIPAAm collapses, resulting in a sharp change in polymer adaptation due to the harmony of hydrogen bonding and hydrophobic accumulation of isopropyl groups [92].

As a result, groups of bound water exist along the chain. When the polymer chain is heated, the hydrogen bonds are broken and the polymers become dehydrated overall, causing the chain to abruptly collapse due to the hydrophobic cooperation among the isopropyl groups. Furthermore, because of its hydrophilic nature, which is influenced by the pH of the medium, the incorporation of PIA with a high concentration of hydrophilic groups (carboxyl groups) into the PNIPAAm network is approved.

Conclusion

A polyitaconic acid-based microgel has been synthesized and characterized. TiO$_2$@SiO$_2$ nano-composites were synthesized using titanium (IV) isopropoxide Ti(OC$_3$H$_7$)$_4$ and tetraethoxysilane and characterized via different techniques such as particle size, zeta potential, FT-IR, XRD, and TEM. The results confirmed that the TiO$_2$ nanoparticles were surrounded by SiO$_2$ nanoparticles, which formed the so-called core–shell, with lower PDI and being uniformly distributed with a zeta potential value of -31.3 mv. A different technique was used to prepare and characterize the PIA/PNIPAAm microgel such as size and distribution. The TEM image and particle size show that the microgel particles have a porous and smaller structure. The effect of temperature on diameter was studied at different pH levels and confirmed that at high pH, the microgel behaves similarly to cellulosic material, whereas at low pH, the acid medium attacks the microgel backbone and becomes soluble. The rheological properties of the PIA/PNIPAAm microgel were also determined, and it was confirmed that at low microgel concentration and high temperature, Newtonian behavior with low shear viscosity was provided.

Finally, the prepared microgel was incorporated into the cotton fabric using the pad-dry-cure method, and the treated fabrics had a thin film coating the entire surface fiber surface and nano titanium clusters on the fiber surface. Further investigation for the treated fabrics was going on for its antibacterial activities against both gram-positive and
gram-negative bacteria (S. aureus and E. coli), and it is provided that treated fabrics with prepared microgel have an excellent bacterial reduction. Furthermore, the water uptake behavior of untreated and treated fabrics was investigated, and it was confirmed that treated cotton fabrics have a hydrophobicity property.

Acknowledgements This project was supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No. 5473). Furthermore, the authors are gratefully grateful to acknowledge the Faculty of Applied Arts, Benha University. Thankful are also acknowledged to the Central Labs Services (CLS) and Center of Excellence for Innovative Textiles Technology (CEITT) in Textile Research and Technology Institute (TRTI), National Research Centre (NRC) for the facilities provided.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Declarations

Conflict of interest We confirm that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Waly A, Marie MM, Abou-Zeid NY, El-Sheikh MA, Mohamed AL (2008) Flame retarding, easy care finishing and dyeing of cellulosic textiles in one bath. Egypt J Text Polym Sci Technol 12:101–131
2. Mohamed AL, Hassabo AG (2015) Flame retardant of cellulosic materials and their composites, in: P.M. Visakh, Y. Arao (Eds.), Flame retardants, Springer International Publishingpp. 247–314
3. Waly A, Marie MM, Abou-Zeid NY, El-Sheikh MA, Mohamed AL (2012) Processes of dyeing, finishing and flame retardancy of cellulosic textiles in the presence of reactive tertiary amines. RJTA 16:66–84. https://doi.org/10.1108/RJTA-16-03-2012-B007
4. Mohamed AL, El-Sheikh MA, Waly A (2014) Enhancement of flame retardancy and water repellency properties of cotton fabrics using silanol based nano composites. Carbohydr Polym 102:727–737. https://doi.org/10.1016/j.carbpol.2013.10.097
5. Hassabo AG, Mohamed AL, Shaarawy S, Hebeish A (2018) Novel micro-composites based on phosphorylated biopolymer/ polyethylenimine/clay mixture for cotton multi-functionalities performance. Biosci Res 15:2568–2582
6. Hassabo AG, Mohamed AL (2019) Novel flame retardant and antibacterial agent containing mgo nps, phosphorus, nitrogen and silicon units for functionalise cotton fabrics. Biointerface Res Appl Chem 9: 4272 - 4278. https://doi.org/10.33263/BRIAC95.272278
7. Mohamed AL, Hassabo AG (2019) Review of silicon-based materials for cellulosic fabrics with functional applications. J Text Color Polym Sci 16: 139–157. https://doi.org/10.21608/jtcps.2019.18580.1030
8. Ibraheem NA, El-Sayed ZM, Fahmy HM, Hassabo AG, Aboshasha MH (2013) Perfume finishing of cotton / polyester fabric crosslinked with dmdheu in presence of some softeners. RJTA 17:58–63. https://doi.org/10.1108/RJTA-17-04-2013-B007
9. Mohamed AL, Hassabo AG, Nada AA, Abou-Zeid NY (2017) Properties of cellulosic fabrics treated by water-repellent emulsions. Indian J Fibre Text Res 42:223–229
10. Zayed M, Ohman H, Ghazal H, Hassabo AG (2021) Psidium guajava leaf extract as reducing agent for synthesis of zinc oxide nanoparticles and its application to impart multifunctional properties for cellulosic fabrics. Biointerface Res Appl Chem 11: 13535 - 13556. https://doi.org/10.33263/BRIAC11.1353513556
11. Khattab TA, Mohamed AL, Hassabo AG (2020) Development of durable superhydrophobic cotton fabrics coated with silicone/stearic acid using different cross-linkers. Mater Chem Phys 249. https://doi.org/10.1016/j.matchemphys.2020.122981
12. Nada AA, Hassabo AG, Awad HM, Fayad W, Shaffie NM, Sleem AA, Zeid NYA (2015) Biomaterials based on essential fatty acids and carbohydrates for chronic wounds. JAPS 5:13–21
13. Mohamed AL, El-Naggar ME, Shaheen TI, Hassabo AG (2016) Novel nano polymeric system containing biosynthesized core shell silver/silica nanoparticles for functionalization of cellulosic based material. Microsys Technol 22:979–992. https://doi.org/10.1007/s00542-015-2776-0
14. Hassabo AG, Nada AA, Ibrahim HM, Abou-Zeid NY (2015) Impregnation of silver nanoparticles into polysaccharide substrates and their properties. Carbohydr Polym 122:343–350. https://doi.org/10.1016/j.carbpol.2014.03.009
15. Mohamed AL, Hassabo AG, Shaarawy S, Hebeish A (2017) Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate. Carbohydr Polym 178:251–259. https://doi.org/10.1016/j.carbpol.2017.09.024
16. Hassabo AG, Shaarawy S, Mohamed AL, Hebeish A (2020) Multifarious cellulosic through innovation of highly sustainable composites based on moringa and other natural precursors. Int J Biol Macromol 165:141–155. https://doi.org/10.1016/j.ijbiomac.2020.09.125
17. Mohamed AL, Hassabo AG (2021) Cellulosic fabric treated with hyperbranched polyethyleneimine derivatives for improving antibaterial, dyeing, ph and thermo-responsive performance. Int J Biol Macromol 170:479–489. https://doi.org/10.1016/j.ijbiomac.2020.12.198
18. Raj K, Kardam A, Arora J, Srivastava S, Srivastava MM (2013) Adsorption behavior of dyes from aqueous solution using agricultural waste: Modeling approach. Clean Technol Environ Policy 15:73–80. https://doi.org/10.1007/s10098-012-0480-7
19. Singh K, Arora J, Sinha TJ, Srivastava S (2014) Functionalization of nanocystalline cellulose for decontamination of cr(iii) and cr(vi) from aqueous system: Computational modeling approach. Clean Technol Environ Policy 16:1179–1191. https://doi.org/10.1007/s10098-014-0717-8
20. El-Zawahry MM, Abdelghaffar F, Abdelghaffar RA, Hassabo AG (2016) Equilibrium and kinetic models on the adsorption of reactive black 5 from aqueous solution using eichhornia crassipes/chitosan composite. Carbohydr Polym 136:507–515. https://doi.org/10.1016/j.carbpol.2015.09.071

© Springer
21. Hassabo AG, Mohamed AL (2016) Multiamine modified chitosan for removal metal ions from their aqueous solution BioTechnology: An Indian Journal 12:59–69

22. El-Zawahry MM, Hassabo AG, Abdelghaffar F, Abdelghaffar RA, Hakeim OA (2021) Preparation and use of aqueous solutions magnetic chitosan / nanocellulose aerogels for the sorption of reactive black 5. Bio Interface Res Appl Chem 11: 12380 - 12402. https://doi.org/10.33263/BRIAC11.1238012402

23. Hassabo AG, Schachschal S, Cheng C, Pich A, Popescu C, Möller M (2014) Poly (vinylcaprolactam)-based microgels to improve gloss properties of different natural fibres. RTA 18:50–63

24. Nada AA, Hassabo AG, Mohamed AL, Mounier MM, Abou Zeid NY (2016) Liposomal microencapsulation of rodent-repelling agents onto jute burlaps: Assessment of cytotoxicity and rat behavioral test. JAPS 6:142–150. https://doi.org/10.7324/JAPS.2016.60822

25. Kamal MS, Mahmoud E, Hassabo AG, Eid MM (2020) Effect of some construction factors of bi-layer knitted fabrics produced for sports wear on resisting ultraviolet radiation. Egypt J Chem 63:4369-4378. http://doi.org/10.21608/ejchem.2020.25922.2514

26. Mohamed AL (2017) Silan/biopolymer microgels for functionalization of cotton fabric: Antibacterial and dual responsive ph and temperature. JAPS 7:77–88. https://doi.org/10.7324/JAPS.2017.70713

27. Hassabo AG (2014) New approaches to improving thermal regulating property of cellulosic fabric. Carbohydr Polym 101:912–919. https://doi.org/10.1016/j.carbpol.2013.10.006

28. Hassabo AG, Mohamed AL, Wang H, Popescu C, Möller M (2015) Metal salts rented in silica microcapsules as inorganic phase change materials for textile usage. Inorganic Chemistry: An Indian Journal 10:59–65

29. Hassabo AG, Mohamed AL (2017) Enhancement the thermoregulating property of cellulosic fabric using encapsulated paraffins in modified pectin. Carbohydr Polym 165:421–428. https://doi.org/10.1016/j.carbpol.2017.02.074

30. Hassabo AG, Mohamed AL (2019) Enhancement of thermoregulating textile materials using phase change material (pcm). Evolution in Polymer Technology Journal 2: 180009 (1–11)

31. Abou-Shosha MH, Nasar FA, Haggag K, El-Sayed Z, Hassabo AG (2009) Utilization of some fatty acid/peg condensates as emulsifiers in kerosene paste pigment printing. RTA 13:65–77. https://doi.org/10.1108/RTA-13-01-2009-B007

32. Mohamed AL, El-Naggar ME, Hassabo AG (2021) Preparation of hybrid nano-particles to enhance the electrical conductivity and performance properties of cotton fabrics. J Market Res 12:542–554. https://doi.org/10.1016/j.jmr.2021.02.035

33. Waly AI, Abou-Zeid NY, Marie MM, El-Sheikh MA, Mohamed AL (2009) Special finishing of cotton to impart flame-retardancy, easy care finishing and antimicrobial properties. RTA 13:10–26

34. Mohamed AL, Er-Rafik M, Moller M (2013) Suitability of confocal raman microscopy for monitoring the penetration of pdms compounds into cotton fibres. Carbohydr Polym 96:305–313. https://doi.org/10.1016/j.carbpol.2013.03.087

35. Mohamed AL, Er-Rafik M, Moller M (2013) Supercritical carbon dioxide assisted silicon based finishing of cellulosic fabric: A novel approach. Carbohydr Polym 98:1095–1107. https://doi.org/10.1016/j.carbpol.2013.06.027

36. Abolenna A, Shaarawy S, Hassabo AG (2018) Polyacotic acid/functional amine/azo dye composite as a novel hyper-branched polymer for cotton fabric functionalization. Colloids Surf B Biointer 172:545–554. https://doi.org/10.1016/j.colsurfb.2018.09.012

37. Hassabo AG, El-Naggar ME, Mohamed AL, Hebeish AA (2019) Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr Polym 210:144–156. https://doi.org/10.1016/j.carbpol.2019.01.066

38. Hassabo AG (2011) Synthesis and deposition of functional nanomaterials on natural fibres RWTH Aachen University, Germany, p. 154

39. Hassabo AG, Mendrek A, Popescu C, Keul H, Möller M (2014) Deposition of functionalized polyethyleneimine-dye onto cotton and wool fibres. RTA 18:36–49. https://doi.org/10.1108/RTA-18-01-2014-B006

40. Hassabo AG, Eberich M, Popescu C, Keul H (2015) Functional polyethers for fixing pigments on cotton and wool fibres. Res Rev Polym 6:118–131

41. Elshemy NS, Hassabo AG, Mahmoud ZM, Haggag K (2016) Novel synthesis of nano-emulsion butyl methacrylate/acyric acid via micro-emulsion polymerization and ultrasonic waves. J Text Appar Technol Manag 10:1–16

42. Jocic D, Tourrette A, Glampedaki P, Warmoeskerken MMCG (2009) Application of temperature and ph responsive microhydrgel for functional finishing of cotton fabric. Mater Technol 24:14–23

43. Jocić D, Tourrette A, Lavrič PK (2010) Biopolymer-based stimulus-responsive polymeric systems for functional finishing of textiles, in: M. Elnashar (Ed.), Biopolymers, Sciyopp. 37–60

44. Niu Y, Chen KC, He T, Yu W, Huang S, Xu K (2014) Scaffolds from block polyurethanes based on poly(vinylsion-caprolactone) (pvc) and poly (ethylene glycol) (peg) for peripheral nerve regeneration. Biomaterials 35:4266–4277. https://doi.org/10.1016/j. biomaterials.2014.02.013

45. Gann MJM, Higginbotham CL, Geever LM, Nugent MJD (2009) The synthesis of novel ph-sensitive poly (vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. Int J Pharm 372:154–161. https://doi.org/10.1016/j.ijpharm.2009.01.008

46. Reddy PRS, Rao KSVK, Rao KM, Reddy NS, Eswaramma S (2015) Ph sensitive poly(methyl methacrylate-co-acryloyl phenylalanine) nanogels and their silver nanocomposites for biomedical applications. J Drug Deliv Sci Technol 29:181–188. https://doi.org/10.1016/j.jddst.2015.07.002

47. Emileh A, Vachehghani-Farahani E, Imani M (2007) Swelling behavior, mechanical properties and network parameters of ph and temperature-sensitive hydrogels of poly(2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Eur Polym J 43:1986–1995. https://doi.org/10.1016/j.eurpolymj.2007.02.002

48. Feil H, Bae YH, Feijen J, Kim SW (1992) Mutual influence of ph and temperature onswelling of ionizable and thermosensitivehydrogels. Macromolecules 25:5528–5530. https://doi.org/10.1021/ma00046a063

49. Mukherjee D, Azamthulla M, Santhosh S, Dath G, Ghosh A, Nathalia R, Anbu J, Teja BV, Muzammil KM, Mukherjee D, Azamthulla MD, Santhosh S, Dath G, Ghosh A, Nathalia R, Anbu J, Tejad BV, Muzammila KM (2018) Development and characterization of chitosan-based hydrogels as wound dressing materials. J Drug Deliv Sci Technol 46:498–510. https://doi.org/10.1016/j.jddst.2018.06.008

50. Mondal S, Hu JL (2007) Water vapor permeability of cotton fabrics coated with shape memory polyurethane. Carbohydr Polym 67:282–287. https://doi.org/10.1016/j.carbpol.2006.05.030

51. Pan YV, Wesley RA, Luginbuhl R, Dento DD, Ratner BD (2001) Plasma polymerized n-isopropylacrylamide: Synthesis and
characterization of a smart thermally responsive coating. Bio-
macromol 2:32–36. https://doi.org/10.1021/bm0000642
52. Chen Y, Kang S, Yu J, Wang Y, Zhu J, Hu Z (2019) Tough robust
dual responsive nanocomposite hydrogel as controlled drug delivery
carrier of aspirin. J Mech Behav Biomed Mater 92:179–187.
https://doi.org/10.1016/j.jmbbm.2019.01.017
53. Okada Y, Tanaka F (2005) Cooperative hydration, chain collapse,
and flat lcst behavior in aqueous poly(n-isopropylacrylamide)
solutions. Macromolecules 38:4465–4471. https://doi.org/10.
1021/ma0502497
54. Bashari A, Hemmatinejad N, Pourjavadi A (2013) Applications of
stimuli responsive hydrogels: A textile engineering approach. J
Text Inst 104:1145–1155. https://doi.org/10.1080/003578078.
708787
55. Bonina P, Petrova T, Manolova N (2004) Ph-sensitive hydrogels
composed of chitosan and polyacrylamide – preparation and
properties. J Bioact Compat Polym 19:101–116. https://doi.
org/10.1177/0746964204260173
56. Guo J, Li L, Ti Y, Yiu J (2007) Synthesis and properties of a
novel ph sensitive poly(n-vinyl-pyrrolidone-co-sulfadiazine)
hydrogel. Express Polym Lett 1:166–172. https://doi.org/10.
3144/expresspolylett.2007.26
57. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and
recent advances in stimuli-responsive materials. Prog Polym Sci
35:278–301
58. Santos JR, Alves NM, Mano JF (2010) New thermo-responsive
hydrogels based on poly (n-isopropylacrylamide)/hyaluronic acid
semi-interpenetrated polymer networks: Swelling properties and
drug release studies. J Bioact Compat Polym 25:169–184
59. Hamdy DM, Hassabo AG (2022) Ph and temperature thermosensi-
tive for modification of cotton fabric (a review). Biointerface Res
Appl Chem 12:2216–2228. https://doi.org/10.33263/BRIAC122.
22162228
60. Harirharian D, Peppas NA (1996) Characterization, dynamic swelling
behaviour and solute transport in cationic networks with applica-
tions to the development of swelling-controlled release systems.
Polymer 37:149–161. https://doi.org/10.1016/0032-8839(96)
81610-7
61. El-Neggar ME, Hassabo AG, Mohamed AL, Shaheen TI (2017)
Surface modification of sio2 coated ZnO nanoparticles for multi-
tifunctional cotton fabrics. J Colloid Interface Sci 498:413–422.
https://doi.org/10.1016/j.jcis.2017.03.080
62. Mohamed AL, El-Neggar ME, Shaheen TI, Hassabo AG (2017)
Laminating of chemically modified silan based nanosols for
advanced functionalization of cotton textiles. Int J Biol Macromol
95:429–437. https://doi.org/10.1016/j.ijbiomac.2016.10.082
63. El-Sayed E, Hassabo AG (2021) Recent advances in the applica-
tion of plasma in textile finishing. J Text Color Polym Sci 18:
33–43. https://doi.org/10.21608/jtcs.2021.67798.1050
64. Kamel MY, Hassabo AG (2021) Anti-microbial finishing for natu-
rural textile fabrics. J Text Color Polym Sci 18:83–95. http://doi.
org/10.21608/jtcs.2021.72333.1054
65. Yousef MY, Hassabo AG (2021) Environmentally friendly inor-
ganic materials for anti-flammable cotton fabrics. J Text Color
Polym Sci 18:97–110. https://doi.org/10.21608/jtcs.2021.73914.
1058
66. Diaa M, Hassan AG (2022) Self-cleaning properties of cellulose
fabrics (a review). Biointerface Res Appl Chem 12:1847-1855.
https://doi.org/10.33263/BRIAC122.18471855
67. Tate BE (2000) Iaconic acid and derivatives, in: M. Grayson, E.
Eckroth (Eds.), Kirk-othmer encyclopedia of chemical technology,
John Wiley & Sons, Inc., New York, USA
68. Peng H, Yang CQ, Wang X, Wang S (2012) The combination of
iaconic acid and sodium hypophosphite as a new cross-linking
system for cotton. Ind Eng Chem Res 51:11301–11311. https://
doi.org/10.1021/ie3005644
69. Choi H-M (1992) Nonformaldehyde polymerization-crosslinking
treatment of cotton fabrics for improved strength retention. Text
Res J 62:614–618. https://doi.org/10.1177/00451759206201010
70. Abidi N, Hequet E, Tarimala S (2007) Functionalization of cotton
fabric with vinyltrimethoxysilane. Text Res J 77:668–674. https://
doi.org/10.1177/004517507080621
71. Mahligt B, Haufe H, Böttcher H (2005) Functionalisation of tex-
tiles by inorganic sol-gel coatings. J Mater Chem 15:4385–4398.
https://doi.org/10.1039/b505177k
72. Mohamed AL, Hassabo AG (2018) Composite material based on
pullulan/silane/ZnO-nps as ph, thermo-sensitive and antibacterial
agent for cellulose fabrics. Adv Nat Sci Nanosci Nanotechnol 9:
045005 (1–9). https://doi.org/10.1088/2043-6254/aaee0
73. Mustapha S, Ndamitoso MM, Abdulkareem AS, Tijani JO,
Shuaib DT, Ajala AO, Mohammed AK (2020) Application of TiO2
and ZnO nanoparticles immobilized on clay in wastewater
treatment: A review App Water Sci 10. https://doi.org/10.1007/
s13201-019-1138-y
74. AATCC Test Method (66–2014) (2017) Wrinkle recovery of fab-
ric: Recovery angle method, Technical Manual Method American
Association of Textile Chemists and Colorists, pp. 113–116
75. ASTM Standard Test Method (D7127–13), 2018 Standard test
method for measurement of surface roughness of abrasive blast
cleaned metal surfaces using a portable stylus instrument ASTM
International, West Conshohocken, PA https://doi.org/10.1520/
d7127-13
76. ASTM Standard Test Method (D5035–2011 (Reapproved 2019)
(2019) Standard test method for breaking force and elongation
of textile fabrics (strip method), ASTM International
77. Australian/New Zealand Standard AS/NZS 4399:1996 (1996) Sun
protective clothing—evaluation and classification
78. Ibrahim NA, Refaie R, Yousef MA, Farouk A (2005) Proper
finishing treatments for sun protective cotton containing fabrics.
J Appl Polym Sci 97:1024–1032. https://doi.org/10.1002/app.21840
79. Bershtein EM, Vasil’eva NG, Poliaik MS (1983) Standardization
of the nutrient medium for determining the biological activity of
a number of antibiotics by the diffusion-in-agar method. Antibiotiki
28:250–254
80. Ibrahim NA, Nada AA, Hassabo AG, Eid BM, Noor El-Deen AM,
Abou-Zeid NY (2017) Effect of different capping agents on physi-
occhemical and antimicrobial properties of ZnO nanoparticles. Chem
Phys 71:1365–1375. https://doi.org/10.1007/s11096-017-0132-9
81. Lu S, Chen J-J, Chen Y-K, Lii C-y, Lai P, Chen H-H (2011) Water
mobility, rheological and textural properties of rice starch gel. J
Cereal Sci 53:31–36. https://doi.org/10.1016/j.csc.2010.08.006
82. Yu J, Zhao X, Yu JC, Zhong G, Han J, Zhao Q (2001) The grain
size and surface hydroxyl content of super-hydrophilic TiO2/sio2
composite nanometer thin films. J Mater Sci 36:527–537. https://
doi.org/10.1023/A:1017943231410
83. Arun Kumar D, Merline Shyla J, Xavier FP (2012) Synthesis
and characterization of TiO2/sio2 composite nanomter thin films.
J Mater Sci Lett 31:1782. https://doi.org/10.1007/s10952-012-0855
84. Ijadpanah-Saravy H, Safari M, Khodadadi-Darban A, Rezaei A
(2014) Synthesis of titanium dioxide nanoparticles for photocata-
lytic degradation of cyanide in wastewater. Anal Lett 47:1772–
1782. https://doi.org/10.1080/000327719.2014.880170
85. Venkatesh R, Balachandran K, Sivaraj R (2012) Synthesis and
characterization of nano TiO2-sio2: PVA composite—a novel route.
Int Nano Lett 2:1–5
86. Ibrahim NA, Nada AA, Eid BM, Al-Moghazy M, Hassabo AG,
Abou-Zeid NY (2018) Nano-structured metal oxides: Synthesis,
characterization and application for multifunctional cotton fabric.

Advances in Natural Sciences: Nanoscience and Nanotechnology
9:035014. https://doi.org/10.1088/2043-6254/aadc2c
87. Lii CY, Shao YY, Taeng KH (1995) Gelation mechanism and rheological properties of rice starch. Cereal Chem 72:393–400
88. Lii CY, Lai MF, Tsai ML (1996) Studies of starch gelatinization and retrogradation with dynamic rheometry. - the influence of starch granular structure and composition. Zywnosc Technologia Jackie (Food Technology Quality) 2:27–53
89. Daly E, Saunders BR (2000) A study of the effect of electrolyte on the swelling and stability of poly(n-isopropylacrylamide) microgel dispersions. Langmuir 16:5546–5552. https://doi.org/10.1021/la991292o
90. Ikeda T, Hirayama H, Suzuki K, Yamaguchi H, Tazuke S (1986) Biologically active polycations, 6. Polymeric pyridinium salts with well-defined main chain structure. Die Makromolekulare Chemie 187:333–340. https://doi.org/10.1002/macp.1986.021870212
91. Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010) Functionalization of polyester fabrics with alginites and TiO2 nanoparticles. Carbohydr Polym 79:526–532. https://doi.org/10.1016/j.carbpol.2009.08.036
92. Kawaguchi T, Kojima Y, Osa M, Yoshizaki T (2008) Cloud points in aqueous poly(n-isopropylacrylamide) solutions. Polymer J 40:455–459. https://doi.org/10.1295/polymj.PJ2007227

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.