THE GRAHAM CONJECTURE IMPLIES THE ERDŐS-TURÁN CONJECTURE

LIANGPAN LI

Abstract. Erdős and Turán once conjectured that any set \(A \subset \mathbb{N} \) with \(\sum_{a \in A} 1/a = \infty \) should contain infinitely many progressions of arbitrary length \(k \geq 3 \). For the two-dimensional case Graham conjectured that if \(B \subset \mathbb{N} \times \mathbb{N} \) satisfies
\[
\sum_{(x,y) \in B} \frac{1}{x^2 + y^2} = \infty,
\]
then for any \(s \geq 2 \), \(B \) contains an \(s \times s \) axes-parallel grid. In this paper it is shown that if the Graham conjecture is true for some \(s \geq 2 \), then the Erdős-Turán conjecture is true for \(k = 2s - 1 \).

1. Introduction

One famous conjecture of Erdős and Turán [2] asserts that any set \(A \subset \mathbb{N} \) with \(\sum_{a \in A} 1/a = \infty \) should contain infinitely many progressions of arbitrary length \(k \geq 3 \). There are two important progresses towards this direction due to Szemerédi [7] and Green and Tao [5] respectively, which assert that if \(A \) has positive upper density or \(A \) is the set of the prime numbers, then \(A \) contains infinitely many progressions of arbitrary length.

If one considers the similar question in the two-dimensional plane, Graham [4] conjectured that if \(B \subset \mathbb{N} \times \mathbb{N} \) satisfies
\[
\sum_{(x,y) \in B} \frac{1}{x^2 + y^2} = \infty,
\]
then \(B \) contains the four vertices of an axes-parallel square. More generally, for any \(s \geq 2 \) it should be true that \(B \) contains an \(s \times s \) axes-parallel grid. Furstenberg and Katznelson [3] proved the two-dimensional Szemerédi theorem, that is, any set \(B \subset \mathbb{N} \times \mathbb{N} \) with positive upper density contains an \(s \times s \) axes-parallel grid. In another words, such a set \(B \) contains any finite pattern.

The purpose of this paper is to show that if the Graham conjecture is true, then the Erdős-Turán conjecture is also true.

2. The Graham conjecture implies the Erdős-Turán conjecture

Suppose that the Erdős-Turán conjecture is false for \(k = 3 \). Then there exists a set
\[
A = \{a_1 < a_2 < a_3 < \cdots \} \subset \mathbb{N}
\]
with \(\sum_{n \in \mathbb{N}} 1/a_n = \infty \) such that \(A \) contains no arithmetic progression of length 3. Define a set \(B \subset \mathbb{N} \times \mathbb{N} \) by

\[
B = \left\{ (a_n + m, m) : n \in \mathbb{N}, m \in \mathbb{N} \right\}.
\]

Then

\[
\sum_{(x,y) \in B} \frac{1}{x^2 + y^2} = \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} \frac{1}{(a_n + m)^2 + m^2}
\geq \sum_{n \in \mathbb{N}} \sum_{m=1}^{a_n} \frac{1}{(a_n + m)^2 + m^2}
\geq \sum_{n \in \mathbb{N}} \frac{a_n}{(a_n + a_n)^2 + a_n^2}
= \sum_{n \in \mathbb{N}} \frac{1}{5a_n}
= \infty.
\]

In the sequel we indicate that \(B \) contains no square and argue it by contradiction. This would mean that the Graham conjecture is false for \(s = 2 \). Suppose that for some \(n, m, l \in \mathbb{N} \), \(B \) contains a square of the following form:

\[
(a_n + m, m + l), \quad (a_n + m + l, m + l),
\]
\[
(a_n + m, m), \quad (a_n + m + l, m).
\]

It follows easily from the construction of \(B \) that \(a_n - l, a_n, a_n + l \in A \), which yields a contradiction since \(A \) contains no arithmetic progression of length 3 according to the initial assumption.

Similarly, if the Graham conjecture is true for some \(s \geq 2 \), then the Erdős-Turán conjecture is true for \(k = 2s - 1 \). The interested reader can easily provide a proof.

3. Concluding Remarks

Let \(r(k, N) \) be the maximal cardinality of a subset \(A \) of \(\{1, 2, \ldots, N\} \) which is free of \(k \)-term arithmetic progressions. Behrend [1] and Rankin [6] had shown that

\[
r(k, N) \geq N \cdot \exp(-c(\log N)^{1/(k-1)}).
\]

Similarly, let \(\bar{r}(s, N) \) be the maximal cardinality of a subset \(B \) of \(\{1, 2, \ldots, N\}^2 \) which is free of \(s \times s \) axes-parallel grids. For any set \(A \subset \{1, 2, \ldots, N\} \), define

\[
\Theta(A) = \{(a + m, m) : a \in A, m = 1, 2, \ldots, N\} \subset \{1, 2, \ldots, 2N\}^2.
\]

Following the discussion in Section 2, one can easily deduce that if \(A \) is free of \(2s-1 \) term of arithmetic progression, then \(\Theta(A) \) is free of \(s \times s \) axes-parallel grid. Hence

\[
\bar{r}(s, 2N) \geq r(2s - 1, N) \cdot N
\geq N^2 \exp(-c(\log N)^{1/(2s-2)}).
\]

We end this paper with a question. Does the Erdős-Turán conjecture imply the Graham conjecture?
References

[1] F.A. Behrend, On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Aca. Sci. 32 (1946), 331–332.
[2] P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.
[3] H. Furstenberg and Y. Katznelson, An ergodic Szemeredi theorem for commuting transformation, J. d‘Analyse Math. 34 (1979), 275–291.
[4] R. Graham, Conjecture 8.4.6 in Discrete and Computational Geometry (J.E. Goodman and J. O’Rourke, eds), CRC Press, Boca Raton, NY, p.11.
[5] B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, to appear in Ann. of Math.
[6] R.A. Rankin, Sets of integers containing not more than a given number of terms in arithmetic progression, Proc. Roy. Soc. Edinburgh Sect A. 65 (1960/61), 332–344.
[7] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 299–345.

Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China
E-mail address: liliangpan@sjtu.edu.cn