Facile green synthesis of Fe$_3$O$_4$ nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue

A. V. Ramesha, Dhammasoth Rama Devib, Satish Mohan Botsaa and K. Basavaiaha

aDepartment of Inorganic & Analytical Chemistry, Andhra University, Visakhapatnam, India; bA.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India

ABSTRACT

We report a facile and green route for the synthesis of superparamagnetic magnetite nanoparticles (Fe$_3$O$_4$ NPs) using aqueous leaf extract of *Zanthoxylum armatum* DC, for efficient adsorption of organic pollutant, methylene blue (MB). The phytochemicals present in the aqueous leaf extract *Zanthoxylum armatum* DC. are not only responsible for the formation of Fe$_3$O$_4$ NPs, but also act as capping agent for Fe$_3$O$_4$ NPs. The formation of Fe$_3$O$_4$ NPs was confirmed by a range of spectroscopy and microscopy techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer. The spectroscopic results indicated the successful formation of Fe$_3$O$_4$ NPs. FE-SEM and TEM images revealed the spherical shape with particle size of 17 nm. Fe$_3$O$_4$ NPs showed superparamagnetism. Green synthesized Fe$_3$O$_4$ NPs shows enhanced adsorption efficiency toward MB from contaminated water. The kinetic data of adsorption fitted very well with the pseudo-second order. The adsorption isotherm data fitted well to Langmuir isotherm and it was found to be 10.4712 mg/g adsorption capacity and it implies that the chemisorptions of MB on to Fe$_3$O$_4$ NPs.

1. Introduction

During the past decade, there has been increasing concern about the organic pollutants, heavy metals and pathogens in an aquatic environment due to their wide distribution and potential adverse health effects [1]. Especially, the presence of toxic organic dyes in water effluent, even at parts per billion (ppb) levels, is extremely harmful and undesirable. Various treatment approaches for removing organic dyes from contaminated water are available, such as adsorption, bioremediation, precipitation, membrane filtration, reverse osmosis, and photocatalysis [2]. However, these methods have proved to be ineffective for removal of dyes from water effluents due to high chemical stability of dyes, high cost and low efficiency of these processes. Among these chemical and physical methods, the adsorption method is more versatile and efficient, and has been successfully used for removal of dyes from contaminated water due to its simplicity of design, wide adaptability, convenience and ease of operation. Especially, nano-adsorbents offer the possibility of efficient removal of organic dyes owing to smaller size and higher adsorptive surface area. From the past few years, there have been an increased investigations based on iron oxide nanoparticles such as magnetite nanoparticles (Fe$_3$O$_4$ NPs), maghemite (γ-Fe$_2$O$_3$ NPs), etc., for the removal of organic and inorganic contaminants. Among all magnetic nanoparticles, Fe$_3$O$_4$ NPs have emerged as potential candidate for technological applications such as magnetic fluids, high-density magnetic storage, environmental remediation, cancer therapy, MRI contrast enhancement, drug delivery, tissue repair engineering, antibacterial, catalysis, lithium-ion battery due to their small size, biocompatibility, low toxicity and high saturation magnetism [1–7].

Numerous methods have been reported for synthesis of Fe$_3$O$_4$ NPs such as co-precipitation, thermal decomposition of organic iron precursor, sol-gel method, Polyol method, surfactant- or polymer-assisted precipitation including reverse micelle, co-polymer templates-assisted synthesis, solvothermal synthesis and hydrothermal synthesis [8–18]. All these synthetic methods have employed the chemicals such as sodium borohydride, dimethyl formamide, hydrazine and carbon monoxide as reducing agents and also they are highly reactive and have both biological and environmental negative effects. Therefore, it is highly desirable to prepare Fe$_3$O$_4$ NPs via green synthesis approach using non-toxic, environmentally benign materials, which offers numerous benefits of eco-friendliness and compatibility for pharmaceutical, biotechnological and biological applications [19]. More recently, plant-mediated green synthesis of nanoparticles has attracted much attention due to cost effective, environmentally friendly alternative to chemical and physical methods. There are successful reports for plant-mediated synthesis of Fe$_3$O$_4$ NPs using various plant extracts such as seed extract of *Grape proanthocyanidin* [20].
leaf extract of *Tridax procumbens* [21], seaweed of *Kappaphycus alvarezii* [22], *Carica papaya* [23], peel extract of *plantain* [24], and seaweed of *Sargassumummatum* [25]. However, no literature reports are available for the synthesis of Fe$_3$O$_4$ NPs using aqueous leaf extract of *Zanthoxylum armatum* DC. The plant *Zanthoxylum armatum* DC. belongs to rutaceae family and is extensively used in traditional medicinal practices of the Khasi tribe in North-Eastern India and in neighboring regions including South-East Asia. The *Zanthoxylum armatum* DC. is an important medicinal plant used for anti-helminthic, controlling hyperglycaemia and also used for treatment of cholera, tonic for fever, remedy for skin diseases, diseases of the mouth and teeth; and possesses antioxidant, antidiabetic, antifungal and antimicrobial activities [26,27].

In this paper, for the first time, we report a simple and environmentally friendly method for the preparation of Fe$_3$O$_4$ NPs using the aqueous leaf extract of *Zanthoxylum armatum* DC. for the adsorption of organic dye, methylene blue (MB). The synthesized Fe$_3$O$_4$ NPs have been characterized by using UV–visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Furthermore, as synthesized Fe$_3$O$_4$ NPs were investigated for removal of organic dye, MB, from contaminated water. Finally, to find the optimum adsorption conditions of Fe$_3$O$_4$ NPs for removal of MB dye, adsorption isotherms and kinetic studies were extensively investigated.

2. Experimental

2.1. Materials

Iron(II)sulfate-hepta-hydrate (FeSO$_4$·7H$_2$O), iron(III) chloride-hexa-hydrate (FeCl$_3$·6H$_2$O), ammonia (NH$_3$) solution and MB were purchased from Merck (Mumbai, India) and used without further purification. The leaves of *Zanthoxylum armatum* DC. were collected from forest of Chintapalli, Andhra Pradesh, India, in May 2015. Botanical aspects of collected plant materials were identified and authenticated by plant taxonomist Dr. S.B. Padal, Associate Professor, Department of Botany, Andhra University, Visakhapatnam, India. Milli-Q water (Visakhapatnam, India) was used throughout the synthesis process.

2.2. Preparation of plant extract

The fresh leaves of *Zanthoxylum armatum* DC. were washed thoroughly with water and followed by Milli-Q water to remove the dust particles and then shade dried for 15 days to remove the moisture. Then the dried leaves were cut into small pieces and powdered using blender. 5 g of powder was transferred to an Erlenmeyer flask containing 100 ml of Milli-Q water, and boiled for 20 min at 60°C. Then, the resultant extract was filtered by Whatman No. 1 filter paper and the filtrate was stored at 4°C for further use.

2.3. Synthesis of Fe$_3$O$_4$ NPs

Fe$_3$O$_4$ NPs were synthesized based on co-precipitation method in the presence of aqueous leaf extract of *Zanthoxylum armatum* DC. as a reducing and capping agent. In a typical procedure, 2:1 molar ratio of FeCl$_3$·6H$_2$O (0.11 g) and FeSO$_4$·7H$_2$O (0.556 g), respectively, were mixed with 85 mL Milli-Q water with the assistance of ultrasonication in 250 mL Erlenmeyer flask. Then, the reaction was allowed for 60 min at 80°C with constant stirring under nitrogen atmosphere. After that, 10 mL of 5% aqueous extract of *Zanthoxylum armatum* DC. leaf was quickly added into the reaction mixture. After 30 min of refluxing, 5 mL of 25% NH$_3$ was added drop wise to the reaction mixture to adjust the pH to 10. Then black precipitate, Fe$_3$O$_4$ NPs, was obtained and filtered by using bar magnet. The product was washed with Milli-Q water for three times and once with ethanol and dried in the vacuum at room temperature for further use.

2.4. Characterization

UV–vis spectra of synthesized Fe$_3$O$_4$ NPs were recorded by Shimadzu (2450 – SHIMADZU Corporation, Tokyo, Japan) spectrometer. By using SHIMADZU-IR PRESTIGE-2 Spectrometer, FTIR spectra were recorded in the range of 400–4000 cm$^{-1}$. The powder XRD patterns were recorded by PANalyticalXpert pro diffractometer at 0.02 degree/s scan rate with Cu-ka$_1$ radiation (1.5406 Å, 45 kV, 40 mA). The morphologies of the samples were characterized using FE-SEM (Zeiss Ultra-60, Carl Zeiss Promenade, Jena, Germany) equipped with X-ray energy dispersive spectroscopy (EDS). TEM images were obtained (TEM model FEI Technai 20 U Twin, ThermoFischer Scientific, Hillsboro, OR, USA) at an accelerating voltages of 120 and 200 kV. In order to study the magnetic behavior of Fe$_3$O$_4$ NPs at room temperature, magnetization measurements were recorded using vibrating sample magnetometer (VSM Lakeshore 665, LakeShore CRYOTRONICS, East Lakeshore Drive, USA).

2.5. Batch mode adsorption studies

The absorption behavior of MB at various pHs was studied by measuring the absorbance of MB solutions at 664 nm in primary experiments. To attain maximum
adsorption efficiency, various parameters affecting the MB dye removal were studied and optimized. The adsorption efficiency of synthesized Fe$_3$O$_4$ NPs were investigated at room temperature (300 K) using MB as a model water pollutant. Typically, 50 mg of Fe$_3$O$_4$ NPs was mixed with 50 mL of known concentration of dye solution. The solution pH was adjusted by HCl (0.1 M) or NaOH (0.1 M). The flasks were stirred for the specified time period and sample from each flask were withdrawn at the desired time of reaction. After the adsorption experiment, Fe$_3$O$_4$ NPs were recovered by an external magnet. The residual dye concentration was determined by UV–vis spectrophotometer by measuring the absorbance at a wavelength of maximum ($\lambda_{\text{max}} = 664$ nm) absorbance of MB. The following equation was applied to calculate the dye removal efficiency:

$$\text{Dye removal efficiency} \% = \frac{C_0 - C_r}{C_0} \times 100$$ \hspace{1cm} (1)

where C_0 and C_r are the initial and residual concentrations of the dye in the solution (mg L$^{-1}$), respectively.

The amount of adsorbed MB (q) was expressed in mg of dye per gram of synthesized Fe$_3$O$_4$ NPs, as shown by Eq. (2):

$$q = \frac{(C_0 - C) \times V}{m}$$ \hspace{1cm} (2)

where q is adsorption capacity of MB in (mg/g) at time t, C_0 represents the initial MB concentration in mg/L, C is the concentration of MB in solution after adsorption in mg/L, V is the volume of the aqueous solution in L, and m is the mass of synthesized Fe$_3$O$_4$ NPs in grams. The mechanism of adsorption and kinetics were correlated by adsorption isotherms and kinetic models, respectively.

3. Result and discussion

3.1. Characterization

Phytochemical qualitative analysis of aqueous leaf extract of Zanthoxylum aramatum DC. was listed in Table S1. The aqueous leaf extract of Zanthoxylum aramatum DC. contains phenolic, tannins, alkaloids, flavonoid, terpenoids, and their glucosides and benzeneoids, fatty acids, amino acids, lignins, coumarins and sterols [28–34], which are responsible for synthesis and capping of Fe$_3$O$_4$ NPs. The UV–vis absorption spectra of synthesized Fe$_3$O$_4$ NPs and aqueous leaf extract of Zanthoxylum aramatum DC. were depicted in Figure 1. The aqueous leaf extract of Zanthoxylum aramatum DC. has a strong absorption bands at 260 and 335 nm, which are attributed to the presence of alkaloids, phenolic acid, flavonoid, tannins, terpenoids and carbohydrates in aqueous extract. The characteristic absorption band at 370 nm indicates the formation of Fe$_3$O$_4$ NPs [35,36] which is primarily due to the absorption and scattering of light by Fe$_3$O$_4$ NPs. Moreover, the absence of the Zanthoxylum aramatum DC. leaf extract peak at 260 and 335 nm in the Fe$_3$O$_4$ NPs spectrum, clearly indicates alkaloids, phenolic acid, flavonoid, tannins, terpenoids and carbohydrates phytochemicals acting as reducing...
and capping agent for the synthesis of Fe₃O₄ NPs. The FTIR spectra of aqueous leaf extract of *Zanthoxylum armatum* DC. and Fe₃O₄ NPs were presented in Figure 2. The FTIR spectrum of the aqueous leaf extract of *Zanthoxylum armatum* DC. exhibited characteristic bands at 3417, 2925, 1631, 1441, 1243, 1105 and 617 cm⁻¹. The bands at 3417, 2925, 1631 and 1441 cm⁻¹ are ascribed to the presence of O–H group of phenolic compound, C–H group of alkane, C=O group of carboxylic acids, and C=C group of aromatic compound, respectively. In case of Fe₃O₄ NPs (Figure 2 (b)), the characteristic band due to O–H group of phenol shifted from 3417 to 3408 cm⁻¹ indicating that O–H group of phenol acts as reducing agent in the formation of Fe₃O₄ NPs. The band due to C=O group of carboxylic acid (1631–1626 cm⁻¹), the bands associated to C=C group of aromatic compounds (1441–1401 cm⁻¹) and also C=O stretching frequency of phenolic group (1105–1130 cm⁻¹) were shifted compared to aqueous leaf extract of *Zanthoxylum armatum* DC. indicating that the carboxylic group (−COOH) present in leaf extract acts as capping agent for Fe₃O₄ NPs. The strong additional band at 587 cm⁻¹ was observed for Fe₃O₄ NPs which is ascribed to the stretching vibration of Fe–O [36]. FTIR spectrum indicates that the phytoconstituents present in aqueous leaf extract of *Zanthoxylum armatum* DC. were efficiently acting as reducing and capping agent for the formation of Fe₃O₄ NPs [28].

The phase purity and crystalline nature of Fe₃O₄ NPs were confirmed using powder XRD. The XRD patterns of as prepared Fe₃O₄ NPs using aqueous leaf extract of *Zanthoxylum armatum* DC. were shown in Figure 3. The Bragg reflection peaks were observed at 2θ values of 30.3°, 35.7°, 43.3°, 53.7°, 57.3°, 62.9° and 74.4° which could be indexed to (220), (311), (400), (422), (511), (440) and (533) planes. From Figure 3, we have found that the XRD patterns of the synthesized Fe₃O₄ NPs and pure Fe₃O₄ NPs of the Joint Committee on Powder Diffraction Standards (JCPDS No. 19-0629) exactly matched. Although the main XRD peaks of γ-Fe₂O₃ NPs (maghemite nanoparticles) (JCPDS No. 39-1346) are similar to the synthesized Fe₂O₃ NPs ones, the notable γ-Fe₂O₃ peaks ranging from 20° to 30° are absent in XRD pattern of as synthesized Fe₂O₃ NPs. Hence it was confirmed that the prepared Fe₃O₄ NPs have pure Fe₂O₃ inverse cubic spinel phase.

The intense reflection at (311) plane in contrast to the other planes may specify the growth direction of the Fe₂O₃ NPs. The average crystallite sizes of the Fe₃O₄ NPs was calculated from the full width at half-maximum (FWHM = 0.466) of the (311) reflection by the Debye–Scherrer’s equation [37].

\[
D = \frac{\lambda k}{\beta \cos \theta}
\]

where \(D\) is particle diameter size, \(k\) is a constant equals 1, \(\lambda\) is wavelength of X-ray source (0.1541 nm), \(\beta\) is the FWHM and \(\theta\) is the diffraction angle corresponding to the lattice plane. The average crystallite size of Fe₃O₄ NPs according to Scherrer equation with the width of (311) plane is found to be 20.7 nm.

Morphology of as synthesized Fe₃O₄ NPs was investigated by FE-SEM and TEM. The representative FE-SEM images of Fe₃O₄ NPs synthesized using aqueous leaf extract of *Zanthoxylum armatum* DC. are depicted in Figure 4. FE-SEM images of Fe₃O₄ NPs clearly reveal spherical shape. Figure 4(d) show the EDS spectrum of Fe₃O₄ NPs synthesized using *Zanthoxylum armatum* DC. leaf extract and it shows Fe, C and O elemental composition. The presence of carbon shows Fe₂O₄ NPs was capped by the
phyto-constituents of aqueous leaf extract of Zanthoxylum armatum DC.

TEM images of synthesized Fe$_3$O$_4$ NPs using aqueous leaf extract of Zanthoxylum armatum DC. are presented in Figure 5. TEM images clearly reveal the spherical shape of Fe$_3$O$_4$ NPs. Average particle size of synthesized Fe$_3$O$_4$ NPs measured by image J software (National Institute of Health, Bethesda, MD, USA) was 17 nm by taking more than 200 magnetite nanoparticles. The selected area electron diffraction pattern of the Fe$_3$O$_4$ NPs shows (Figure 5(c)) the ring-like diffraction pattern indicating the polycrystalline nature of Fe$_3$O$_4$ NPs.

Magnetic behavior of synthesized Fe$_3$O$_4$ NPs was investigated by a VSM at room temperature. The magnetization curve of the synthesized Fe$_3$O$_4$ NPs is presented in Figure 6. The magnetization curve reveals that the sigmoidal shape without hysteresis loop demonstration of superparamagnetic behavior with the saturation magnetization (Ms) value 128 emu/g at room temperature [36]. The higher saturation magnetization is correlated with the previous literature [38]. The magnetization of synthesized Fe$_3$O$_4$ NPs is strong enough that they can be easily concentrated and separated by applying a small magnet from the solution.
3.2. Plausible mechanism for synthesis of Fe₃O₄ NPs using aqueous leaf extract of Zanthoxylum armatum DC

A possible formation mechanism of Fe₃O₄ NPs by using aqueous leaf extract of Zanthoxylum armatum DC. is presented in Figure 7. The reaction mixture consists of aqueous leaf extract of Zanthoxylum armatum DC., ferric chloride (FeCl₃·6H₂O) and ferrous chloride (FeCl₂·4H₂O) in one aqueous phase. The aqueous leaf extract of Zanthoxylum armatum DC. contains alkaloids, phenolic acid, flavonoid, tannins, terpenoids and carbohydrates. It is reported that the gallic acid is a major phytochemical present in aqueous leaf extract of Zanthoxylum armatum DC. [28]. Moreover, the FTIR results also (Figure 2) supported the presence of carboxylic group in aqueous leaf extract and C=O of carboxylic group (gallic acid) in leaf extract form complex with Fe³⁺ and Fe²⁺. As the reaction was carried out at 80° C, OH⁻ of NH₄OH would be involved in the reaction and thus, a competition between of COO⁻…Fe³⁺ and COO⁻…Fe²⁺ bonds and the formation of HO⁻…Fe³⁺ and OH⁻…Fe²⁺ bonds would occur; thereby, resulting in the formation of ferric hydroxide [Fe(OH)₃] and ferrous hydroxide [Fe(OH)₂]. Finally, Fe₃O₄ NPs were formed by dehydration (–H₂O) from ferric hydroxide and ferrous hydroxide in the reaction mixture.

Figure 5. Representative TEM images with (a) 200 nm resolution, (b–d) 100 nm resolution, (e) selected area electron diffraction patterns and (f) size distribution histogram of Fe₃O₄ NPs synthesized using aqueous leaf extract of Zanthoxylum armatum DC.
3.3. Adsorption studies

The UV–vis absorption spectra of unadsorbed MB in the solution at time “t” after the adsorption by Zanthoxylum armatum DC. synthesized Fe₃O₄ NPs is shown in Figure 8. When the adsorption was progressed, 71% MB (5 mg L⁻¹) dye removal efficiency was obtained at the end of 180 min. The adsorption after 180 min was not brought further adsorption of MB and which ascribed to adsorption equilibrium was attained at the end of 180 min. Figure 9(a,b) depicts that at the adsorption equilibrium (180 min), adsorption of Fe₃O₄ NPs for MB [at 300 K, pH 11] was found to be 71%, 62.1%, and 48.4% for the concentration of 5 mg L⁻¹, 10 mg L⁻¹, and 15 mg L⁻¹ MB, respectively.

3.3.1. Adsorption kinetics

Adsorption kinetics gives the valuable information for designing adsorption process for practical application. Hence, in this study, the adsorption kinetics of MB on synthesized Fe₃O₄ NPs was conducted at different concentration of MB. Figure 9(a,b) shows that the adsorption rate of MB on to synthesized Fe₃O₄ NPs at different initial concentrations of 5, 10, and 15 mg L⁻¹ of MB (at pH 11 and 300 K). The dye removal efficiency is highly dependent on the initial dye concentration. The time variation plot
specifies that the removal of dye is rapid in preliminary stages but when it approaches equilibrium, it slows down gradually. This may be due to the availability of vacant surface sites during the initial stage of adsorption, and after a certain time period the vacant sites get occupied by dye molecules which create a repulsive force between the adsorbate (MB dye) on the adsorbent surface. When the initial dye concentration increased from 5 to 15 mg/L at 300 K and pH 11, the adsorption capacity increased from 3.5524 to 7.2587 mg/g while the removal percentage of dye decreased from 71% to 48%. At a low dye concentration there will be more unoccupied surface sites on the adsorbent, and when the initial dye concentration increases, there will be insufficient sites for the adsorption of dye molecules, thus decreasing the dye removal efficiency [39]. In contrast, the increase in initial dye concentration will cause an increase in the loading capacity of the adsorbent and this may be due to the high-driving force for mass transfer at a

Figure 9. (a) The percent (%) of dye adsorption removal and (b) the amount of MB dye adsorbed (q in mg L$^{-1}$) at various concentration of MB onto Fe$_3$O$_4$ NPs.

Figure 10. (a) Pseudo-first-order, (b) pseudo-second-order kinetics plots, (c) Freundlich and (d) Langmuir adsorption isotherm plots of MB adsorption to synthesized Fe$_3$O$_4$ NPs.
As shown in Figure 9(b), the adsorption process is rapid in the first 30 min and gradually reached to equilibrium at the end of 180 min. The kinetics of adsorption of MB on synthesized Fe$_3$O$_4$ NPs was investigated by pseudo-first-order [41] Eq. (4) and the pseudo-second-order Eq. (5) kinetic models. The pseudo-first-order kinetic model is described by the equation:

$$\log(q_e - q_t) = \log q_e - (k_1/2.303) \times t$$ \hspace{1cm} (4)

where k_1 (min$^{-1}$) is the pseudo-first-order rate constant of adsorption, and q_t (mg/g) and q_e (mg/g) are the amount of the MB adsorbed at time t and at equilibrium, respectively. k_1 (min$^{-1}$) was determined from the slope of the plot of $\log(q_e - q_t)$ vs t (Figure 10(a)) and it was obtained that the correlation coefficient value (R^2) is 0.9660. Moreover, to validate the kinetic of adsorption of MB pseudo-second-order kinetic model was also investigated.

$$\frac{-t}{q_t} = \frac{1}{k_2 q_e^2} + \left(\frac{1}{q_e}\right) \times t$$ \hspace{1cm} (5)

where k_2 (g/mg min$^{-1}$) is the pseudo-second-order rate constant, and q_t (mg/g) and q_e (mg/g) are the amount of the MB adsorbed at time t and at equilibrium, respectively. The values of q_e and k_2 can be calculated from the slope and intercept of a plot of t/q_t vs t (Figure 10(b)). For this plot, correlation coefficient value (R^2) was found to be 0.9849. It is concluded that the adsorption of MB on synthesized Fe$_3$O$_4$ NPs was found to be pseudo-second-order kinetic model; this implies that the adsorption process will more likely proceed through electrostatic interaction of MB and surface of synthesized Fe$_3$O$_4$ NPs, and this process is called as chemisorption process [42].

3.3.2. Adsorption isotherm

Adsorption isotherm analyses are used to investigate the plausible adsorption mechanism and determine the maximum adsorption capacity of synthesized Fe$_3$O$_4$ NPs. The equilibrium adsorption isotherm parameters of MB on synthesized Fe$_3$O$_4$ NPs were analyzed using Langmuir and Freundlich isotherm models [43,44]. The Langmuir equation can be expressed as (Eq. 6):

$$\frac{C_e}{q_e} = \frac{C_0}{Q_0} + \frac{1}{Q_0 b_L}$$ \hspace{1cm} (6)

where q_e (mg/g) is the equilibrium adsorption capacity of MB on the adsorbent, C_e (mg/L) is the equilibrium concentration of MB in the solution, Q_0 (mg/g) is the maximum capacity of adsorbent, and b (L/mg) is the equilibrium constant relating to the enthalpy of process. Figure 10(c) shows that the experimental data well-fitted to the Langmuir adsorption isotherm and it was found to be 10.4712 mg/g maximum adsorption capacity. As shown in ESI Table 7, the correlation coefficient (R^2) and equilibrium constant (b_L) values were found to be 0.9932 and 0.3416, respectively. Besides, dimension-less factor (R_L) of the Langmuir adsorption isotherm parameter was calculated using Eq. (7). In this study, the R_L value obtained was 0.3693, which is in between 0 and 1. This indicates that the adsorption of MB on Fe$_3$O$_4$ NPs is thermodynamically favorable.

$$R_L = \frac{1}{(1+b_L \times C_0)}$$ \hspace{1cm} (7)

where C_0 (mg/g) is initial MB concentration and b_L (L/mg) is the Langmuir constant. For unfavorable sorption, $R_L > 1$; for favorable sorption, $0 < R_L < 1$; for irreversible sorption $R_L < 0$; and for linear sorption, $R_L < 1$.

The Freundlich isotherm (Eq. 7) can be expressed as:

$$\log q_e = \log k_f + 1/n \log C_e$$ \hspace{1cm} (8)

where q_e (mg/g) is the equilibrium adsorption capacity of MB on the synthesized Fe$_3$O$_4$ NPs; k_f (mg/g) and $1/n$ are Freundlich constants representing the adsorption capacity (adsorption coefficient) at unit equilibrium concentration and adsorption intensity, respectively. The value of Freundlich constant "$n"$ is 2.6781. For this adsorption, $n > 1$ indicating that MB favorably adsorbed on synthesized Fe$_3$O$_4$ NPs. However, as shown in ESI Table 7, the correlation coefficient values of Langmuir model ($R^2 = 0.9932$) were much closer to unity than Freundlich model ($R^2 = 0.9492$), which indicates that the experimental data best fit with the Langmuir isotherm. The monolayer adsorption maximum adsorption capacity (Q_0) of synthesized Fe$_3$O$_4$ NPs was found to be 10.4712 mg/g. This figure indicates that Zanthoxylum armatum DC. extract-assisted synthesized Fe$_3$O$_4$ NP has comparative adsorption efficiency toward organic dyes (ESI, Tables 4 and 8).

4. Conclusion

In conclusion, the Fe$_3$O$_4$ NPs was successfully synthesized using aqueous leaf extract of Zanthoxylum armatum DC. via green route method. The phytochemical present in aqueous leaf extract of Zanthoxylum armatum DC. can act as reducing and capping agent for the formation of Fe$_3$O$_4$ NPs. The spherical morphology was observed for Fe$_3$O$_4$ NPs with average particle size of 17 nm. The room temperature magnetization curve reveals superparamagnetic behavior of Fe$_3$O$_4$ NPs. Furthermore, the obtained Fe$_3$O$_4$ NPs has been used as an efficient adsorbent for the removal of MB. The adsorption
kinetics of Fe$_3$O$_4$ NPs toward MB followed a pseudo-second-order model, suggesting chemisorptions process. The adsorption mechanism best fit to Langmuir model which indicates the formation of a monolayer covering of the adsorbate at the outer surface of the Fe$_3$O$_4$ NPs.

Acknowledgment

The author is grateful to UGC-SERO, Hyderabad for awarding teacher fellowship under FDP, XII plan of UGC, New Delhi. Authors also acknowledge to UGC, India (Fund No. 540/18/DRS-1/2016(SAP-1)) and DST-FIST, India (5R/FIST/CSI-241/2012C) for characterization facility.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary can be accessed here.

References

[1] Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011;4:550–562.

[2] Mayo JT, Yavuz C, Yeant S, et al. The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater. 2007;8:71–75.

[3] Wang P, Shi Q, Liang H, et al. Enhanced environmental mobility of carbon nanotubes in the presence of hemic acid and their removal from aqueous solution. Small. 2008;4:2166–2170.

[4] Wang P, Shi Q, Shi Y, et al. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J Am Chem Soc. 2009;131:182–188.

[5] Hu A, Yee GT, Lin W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J Am Chem Soc. 2005;127(36):12486–12487.

[6] Dálaigh CÓ, Dálaigh CÓ, Corr SA, et al. A magnetic-nanoparticle-supported 4-N,N-dialkyaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Angew Chem Int Ed Engl. 2007;119:4407–4410.

[7] Yamaguchi K, Koike T, Kotani M, et al. Synthetic scope and mechanistic studies of Ru$_2$(OH)$_4$/Al$_2$O$_3$-catalyzed heterogeneous hydrogen-transfer reactions. Chem Eur J. 2005;1:6574–6582.

[8] Zhou ZH, Wang J, Liu X, et al. Synthesis of Fe$_3$O$_4$ nanoparticles from emulsions. J Mater Chem. 2001;11:1704–1709.

[9] Lin H, Watanabe Y, Kimura M, et al. Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix. J Appl Polym Sci. 2003;87:1239–1247.

[10] Wang W-W, Zhu Y-J, Ruan M-L. Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res. 2006;9:419–426.

[11] Khodabakhshi A, Amin MM, Mozaffari M. Synthesis of magnetite nanoparticles and evaluation of its efficiency for arsenic removal from simulated industrial wastewater. Iran J Environ Health Sci Eng. 2011;8(3):189–200.

[12] Mizukoshi Y, Shuto T, Masashashi N, et al. Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sono-chemically generated oxidants. Ultrasyn Soc. 2009;16:525–531.

[13] Zhang L, He R, Gu H-C. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci. 2006;253:2611–2617.

[14] Ahmadi S, Chia C-H, Zakaria S, et al. Synthesis of Fe$_3$O$_4$ nanocrystals using hydrothermal approach. J Magn Magn Mater. 2012;324:4147–4150.

[15] Xuan S, Chen M, Hao L, et al. Preparation and characterization of microsized FeCO$_3$, Fe$_3$O$_4$ and Fe$_3$O$_4$ with ellipsoidal morphology. J Magn Magn Mater. 2008;320:164–170.

[16] Zhang W, Shen F, Hong R. Solvothermal synthesis of magnetic Fe$_3$O$_4$ microparticles via self-assembly of Fe$_3$O$_4$ nanoparticles. Particulometry. 2011;9:179–186.

[17] Maitly D, Chandrasekharan P, Yang C-T, et al. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. Nanomedicine. 2010;5:1571–1584.

[18] Belachew N, Rama Devi D, Basavaiah K. Facile green synthesis of 1-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. J Mol Liq. 2016;224:713–720.

[19] Kharissova OV, Dias HVR, Kharios BI, et al. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–248.

[20] Narayanam S, Sathy BN, Mony U, et al. Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces. 2011;4:251–260.

[21] Ramesh C, Kumar KTM, Latha N, et al. Green Synthesis of Cr$_2$O$_3$ nanoparticles using tridad procumbens leaf extract and its antibacterial activity on Escherichia coli. Curr Nanosci. 2012;8:603–607.

[22] Basavegowda N, Mishra K, Lee YR. Sonochemically synthesized ferromagnetic Fe$_3$O$_4$ nanoparticles as a recyclable catalyst for the preparation of pyrrole [3,4-c] quinolone-1,3-dione derivatives. RSC Adv. 2014;4:61660–61666.

[23] Latha N, Gowri M. Biosynthesis and characterisation of Fe$_3$O$_4$ nanoparticles using Curcuma longa leaves extract. Int J Sci Res. 2014;3(11):1551–1556.

[24] Venkatwarlu S, Subba Rao Y, Balaji T, et al. Biogenic synthesis of Fe$_3$O$_4$ magnetic nanoparticles using plantain peel extract. Mater Lett. 2013;100:241–244.

[25] Mahdavi M, Namvar F, Ahmad M, et al. Green bio-synthesis and characterization of magnetic iron oxide (Fe$_3$O$_4$) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18:5954–5964.

[26] Hynniweta SR, Kumar Y. Herbal medicine among the Khasi traditional healers and village folk in Meghalaya. Ind J Trad Know. 2010;9(1):38–44.

[27] Alam F, Saqib QU. Pharmacognostic study and development of quality control parameters for fruit, bark and leaf of Zanthoxylum armatum (Rutaceae). Anc Sci Life. 2015;34:147.
[29] Muhammad Ibrar B, Ibrar BM. Chemical composition and biological screening of essential oils of *Zanthoxylum armatum* DC leaves. J Clin Toxicol. 2013;3:172.

[30] Mohan M, Seth R, Singh P, et al. Variation in chemical constituents from the different parts of *Zanthoxylum armatum* DC. essential oils from Uttarakhand Himalaya (India). Pearl J Lib Inf Sci. 2012;4:236.

[31] Ibrar M, Muhammad N, Tahir L. Antimicrobial evaluation, determination of total phenolic and flavonoid contents in *Zanthoxylum armatum* DC. J Med Plants Res. 2011;6(11):2105–2110.

[32] Singh TD, Meitei HT, Sharma AL, et al. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of *Zanthoxylum armatum* DC. Biol Res. 2015;48:46.

[33] Bisht M, Mishra D, Sah M, et al. Biological activities of the essential oil of *Zanthoxylum armatum* DC. leaves. Nat Prod J. 2014;4:229–232.

[34] Barkatullah B. Evaluation of *Zanthoxylum armatum* DC for in-vitro and in-vivo pharmacological screening. Afr J Pharm Pharmacol. 2011;5:1718–1723.

[35] Ahmad S, Riaz U, Kaushik A, et al. Soft template synthesis of super paramagnetic Fe3O4 nanoparticles a novel technique. J Inorg Organomet Polym Mater. 2009;19:355–360.

[36] Cornell RM, Schwertmann U. The iron oxides: structures, properties, reactions, occurrences and uses. Weinheim: Wiley-VCH; 2003.

[37] Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978–982.

[38] Hou Y, Yu J, Gao S. Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. Electr J Mater Chem. 2003;13:1983.

[39] Salleh MAM, Mahmoud DK, Wan WA, et al. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination. 2011;280:1–13.

[40] Bulut Y, Aydin H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination. 2006;194:259–267.

[41] Lagergren S. About theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskaps-Akademiens Handlingar. 1898;24:1–39.

[42] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–465.

[43] Langmuir I. The constitution and fundamental properties of solids and liquids. Part I Solids J Am Chem Soc. 1916;38:2221–2295.

[44] Freundlich HMF. Over the adsorption in solution. J Phys Chem. 1906;57:385–470.