Solar abundances and granulation effects

E. Caffau¹, H.-G. Ludwig²,¹, and M. Steffen³

¹ GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, Place Jules Janssen, 92190 Meudon, France
² CIFIST Marie Curie Excellence Team
³ Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract. The solar abundances have undergone a major downward revision in the last decade, reputedly as a result of employing 3D hydrodynamical simulations to model the inhomogeneous structure of the solar photosphere. The very low oxygen abundance advocated by Asplund et al. (2004), \(A(O) = 8.66 \), together with the downward revision of the carbon and nitrogen abundances, has created serious problems for solar models to explain the helioseismic measurements.

In an effort to contribute to the dispute we have re-derived photospheric abundances of several elements independently of previous analysis. We applied a state-of-the-art 3D (COSBOLD) hydrodynamical simulation of the solar granulation as well as different 1D model atmospheres for the line by line spectroscopic abundance determinations. The analysis is based on both standard disc-centre and disc-integrated spectral atlases; for oxygen we acquired in addition spectra at different heliocentric angles. The derived abundances are the result of equivalent width and/or line profile fitting of the available atomic lines. We discuss the different granulation effects on solar abundances and compare our results with previous investigations. According to our investigations hydrodynamical models are important in the solar abundance determination, but are not responsible for the recent downward revision in the literature of the solar metallicity.

Key words. Sun: abundances – Stars: abundances – Hydrodynamics

1. Introduction

In this work we would like to face the most common questions we are confronted with in the analysis of the photospheric solar abundances:

– “Are 3D models important in the abundances determination?”
– “Are 3D models responsible for the downward revision of the solar metallicity?”

Send offprint requests to: E. Caffau

Our answer to the first question is yes. As we know from previous investigations (Caffau & Ludwig 2007), 3D solar metallicity models do not experience the over-cooling in the external layers, not detected in 1D models, that metal-poor 3D models show. One could then expect that 3D models are not fundamental for the solar abundance determinations. If for some elements (P, Eu, Hf) the granulation effects are in fact negligible, this is not the case for others, such as Fe, Th, and also oxygen. On top of that one should not forget that 1D models require some input parameters (mixing-length parame-
Our photospheric solar abundance analysis was performed by using 3D-CO\(^3\)BOLD solar models (Freytag et al. 2002, 2003; Wedemeyer et al. 2004). The results here reported mostly rely on a solar model covering 1.2 h of solar time, with a box size of 5.6 \(\times\) 5.6 \(\times\) 2.3 Mm\(^3\), a resolution of 140 \(\times\) 140 \(\times\) 150, 12 opacity bins based on opacities stemming from the MARCS stellar atmosphere package (Gustafsson et al. 2007, 2003). The model spans a range in optical depth of about \(-6.7 < \log \tau_{\text{Ross}} < 5.5\). For details see Caffau et al. (2008b).

We are here interested in the granulation effect on abundances, and for this reason we selected two 1D models that share the micro-physics with CO\(^3\)BOLD:

- (3D), a 1D model obtained by temporal and horizontal average over surfaces of equal (Rosseland) optical depth of the 3D model;
- \(\Delta\lambda_{\text{3D}}\), a 1D, plane parallel model, which employs the same micro-physics as CO\(^3\)BOLD.

For the photospheric solar abundance determinations, as observed spectra, we considered the data described in Caffau et al.

Table 1. Averaged 3D corrections in the case of \(\xi_{\text{micro}} = 1.0 \text{ km s}^{-1}\) and \(\alpha_{\text{MLT}} = 1.0\).

El	N ion	Spec	CO\(^3\)BOLD	\(\Delta\lambda_{\text{3D}}\) (3D)	\(\Delta\lambda_{\text{3D}}\) (3D-LTE)	role of 3D	Ref.
Li	1 Li \(\text{I}\)	F/F	1.03 ± 0.03	-0.03	-0.03	3D-NLTE	
C	43 C \(\text{I}\)	F/F	8.50 ± 0.06	+0.02	-0.01	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
N	12 N \(\text{I}\)	I	7.86 ± 0.12	-0.05	+0.01	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
O	10 O \(\text{I}\)	F/F	8.76 ± 0.07	+0.05	+0.01	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
P	5 P \(\text{I}\)	F/F	5.46 ± 0.04	+0.03	+0.01	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
S	6 S \(\text{I}\)	F	7.16 ± 0.05	+0.04	+0.01	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
Fe	38 Fe \(\text{I}\)	I	7.45 ± 0.06	+0.11	+0.03	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
Fe	15 Fe \(\text{II}\)	F/F	7.52 ± 0.06	+0.08	+0.05	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
Eu	5 Eu \(\text{I}\)	F/F	0.52 ± 0.03	+0.01	+0.02	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
Hf	4 Hf \(\text{I}\)	F/F	0.87 ± 0.04	+0.02	+0.01	\(\xi_{\text{micro}}\)	\(\alpha_{\text{MLT}}\)
Th	1 Th \(\text{I}\)	F/F	0.08 ± 0.03	-0.10	-0.10	Line asymmetry	\(\alpha_{\text{MLT}}\)

Table 2. Influence of the microturbulence on the 3D corrections.

\(\xi_{\text{micro}}\)	\(\Delta\lambda_{\text{3D}}\) (3D)	\(\langle A(Y)_{\text{3D}} \rangle - \langle A(Y)_{\text{3D-LTE}} \rangle\) [dex]
0.6	+0.036	-
0.9	-	+0.037
1.2	+0.130	-
1.5	-	+0.139
Table 3. Photospheric solar abundances.

EL	N	CO3BOLD	AG89	GS98	AGS05	AGSS09
Li	1	1.03 ± 0.03	1.16 ± 0.10	1.10 ± 0.10	1.05 ± 0.10	1.05 ± 0.10
C	43	8.50 ± 0.06	8.56 ± 0.04	8.52 ± 0.06	8.39 ± 0.05	8.43 ± 0.05
N	12	7.86 ± 0.12	8.05 ± 0.04	7.92 ± 0.06	7.78 ± 0.06	7.83 ± 0.05
O	10	8.76 ± 0.07	8.93 ± 0.035	8.83 ± 0.06	8.66 ± 0.05	8.69 ± 0.05
P	5	5.46 ± 0.04	5.45 ± 0.04	5.45 ± 0.04	5.36 ± 0.04	5.41 ± 0.03
S	9	7.16 ± 0.05	7.21 ± 0.06	7.33 ± 0.11	7.14 ± 0.05	7.12 ± 0.03
K	6	5.11 ± 0.09	5.12 ± 0.13	5.12 ± 0.13	5.08 ± 0.07	5.03 ± 0.09
Fe	15	7.52 ± 0.06	7.67 ± 0.03	7.50 ± 0.05	7.45 ± 0.05	7.50 ± 0.04
Eu	5	0.52 ± 0.03	0.51 ± 0.08	0.51 ± 0.08	0.52 ± 0.06	0.52 ± 0.04
Hf	4	0.87 ± 0.04	0.88 ± 0.08	0.88 ± 0.08	0.88 ± 0.08	0.85 ± 0.04
Os	3	1.36 ± 0.19	1.45 ± 0.10	1.45 ± 0.10	1.45 ± 0.10	1.40 ± 0.08
Th	1	0.08 ± 0.03	0.12 ± 0.06	0.09 ± 0.02	0.06 ± 0.05	0.02 ± 0.10
Z		0.0153	0.0189	0.0171	0.0122	0.0134
Z/X		0.0209	0.0267	0.0234	0.0165	0.0183

Note: AG89=Anders & Grevesse (1989), GS98=Grevesse & Sauval (1998), AGS05=Asplund et al. (2005), and AGSS09=Asplund et al. (2009).

(2008b) and spectra of solar intensity spectra for nine heliocentric angles observed at Kitt Peak with the McMath-Pierce Solar Telescope by W. Livingston.

3. 3D corrections and solar abundances

As we did in our previous work (Caffau & Ludwig 2007), we define two 3D corrections as: $A(Y)_{3D} - A(Y)_{1D_{LHD}}$, $A(Y)_{3D} - A(Y)_{1D_{LHD}}$ with Y the generic element and $A(Y) = \log \frac{N}{N_0} + 12$. The first 3D correction takes into consideration the effects of convection on the 3D temperature structure, the latter one the effects of fluctuations around the mean stratification.

For the elements so far analysed we can say that the effects of granulation on the abundance analysis are not very large, but for the Sun, due to the high quality spectra and to the high precision request in the abundance determination, they are not negligible. In Table 1 the average, over all lines as well as disc-centre and disc-integrated when available, values are given. For all the elements considered, the granulation effects due to fluctuations around the mean stratification are small, being the highest of +0.05 for Fe II. $A(Y)_{3D} - A(Y)_{1D_{LHD}}$ on average is larger in absolute value, and can be as large as 0.1 dex (see iron).

Both 3D corrections are function of the microturbulence of the 1D models, and the first one of the mixing-length parameter as well.

We changed the microturbulence in a reasonable range for disc-centre and disc-integrated for 15 Fe II lines with 0.8 pm<EW<8.8 pm. The results are in Table 2. In Fig. 1 this behaviour is shown, for each Fe II line, in the disc-integrated case.

The choice of the mixing-length parameter for the 1D$_{LHD}$ model influences mainly the lines formed deep in the photosphere, meaning atomic lines of high lower level energy. We considered 12 N I lines with 10.3 eV < E_{low} < 11.8 eV, and changing α_{MLT} of $+1.0$ with respect to the reference value of 1.0, we obtained changes on $A(N)_{1D_{LHD}}$ of -0.09 dex, which translate in analogous changes in the 3D correction.

The solar abundances we derived with the CO3BOLD model are listed in Table 3 and compared to other solar abundances compilations. The majority of the disagreement one can see in the table are due to improvements in the atomic data. The solar metallicity has been
computed using the CO5BOLD bases abundances, when available, and the solar abundances from Lodders et al. (2009) for all other elements.

4. Conclusions

In the light of our work we think that the use of 3D models in the solar abundance determination is useful. This is for the following reasons:

- no constraint is necessary on α_{MLT} and ξ_{micro};
- a difference of few hundreds of dex in the abundance, negligible for the majority of the stellar analysis, is important in the solar context.

Acknowledgements. The authors E.C. and H.-G.L. acknowledge financial support from EU contract MEXT-CT-2004-014265 (CIFIST).

References

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, ASP Conf. Ser. 336: Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, 336, 25
Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kifelman, D. 2004, A&A, 417, 751
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. 2009, to be published in Annual Review Physisc
Caffau, E., Faraggiana, R., Bonifacio, P., Ludwig, H.-G., & Steffen, M. 2007a, A&A, 470, 699
Caffau, E., & Ludwig, H.-G. 2007, A&A, 467, L11
Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T. R., Bonifacio, P., Cayrel, R., Freytag, B., & Plez, B. 2008b, A&A, 488, 1031
Caffau, E., Maiorca, E., Bonifacio, P., Faraggiana, R., Steffen, M., Ludwig, H.-G., Kamp, I., & Busso, M. 2009, A&A, 498, 877
Caffau, E., Sbordone, L., Ludwig, H.-G., Bonifacio, P., Steffen, M., & Behara, N. T. 2008a, A&A, 483, 591
Caffau, E., Steffen, M., Sbordone, L., Ludwig, H.-G., & Bonifacio, P. 2007b, A&A, 473, L9
Freytag, B., Steffen, M., & Dorch, B. 2002, Astronomische Nachrichten, 323, 213
Freytag, B., Steffen, M., Wedemeyer-Böhm, S., & Ludwig, H.-G. 2003, CO5BOLD User Manual, http://www.astro.uu.se/~bf/co5bold_main.html
Grevesse, N., & Sauval, A. J. 1998, Space Science Reviews, 85, 161
Gustafsson, B., Edvardsson, B., Eriksson, K., Mizuno-Wiedner, M., Jørgensen, U. G., & Plez, B. 2003, Stellar Atmosphere Modeling, 288, 331
Gustafsson, B., Heiter, U., & Edvardsson, B. 2007, IAU Symposium, 241, 47
Lodders, K., Palme, H., & Gail, H. P. 2009, Landolt-Bornstein, New Series, Astronomy and Astrophysics, Springer Verlag, Berlin, in press, arXiv:0901.1149
Mucciarelli, A., Caffau, E., Freytag, B., Ludwig, H.-G., & Bonifacio, P. 2008, A&A, 484, 841
Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G., & Holweger, H. 2004, A&A, 414, 1121