Article

Optimal Multi-Objective Power Scheduling of a Residential Microgrid Considering Renewable Sources and Demand Response Technique

Mahmoud M. Gamil 1,2,*\(^{1}\), Soichirou Ueda 1, Akito Nakadomari 1, Keifa Vamba Konneh 1, Tomonobu Senjyu 1, Ashraf M. Hemeida 3 and Mohammed Elsayed Lotfy 2

1 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of The Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami 903-0213, Okinawa, Japan
2 Department of Electrical Power and Machines, Zagazig University, Zagazig 44519, Egypt
3 Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt
* Correspondence: k208682@cs.u-ryukyu.ac.jp

Abstract: Microgrid optimization is one of the most promising solutions to power system issues and new city electrification. This paper presents a strategy for optimal power scheduling of a residential microgrid depending on renewable generating sources and hydrogen power. Five scenarios of the microgrid are introduced to show the effect of using biomass energy and a seawater electrolyzer on microgrid cost and CO\(_2\) emissions. Time of use demand response is applied to reshape the electric load demand and decrease the dependence on grid power. The obtained results from the multi-objective optimization verify that biomass has a significant role in minimizing the cost and CO\(_2\) emissions; the cost is decreased by 37.9% when comparing scenarios with and without biomass. Besides, the FC integration with seawater electrolyzer and tanks reduces the microgrid emissions by around 40%.

Keywords: microgrid sizing; time of use; demand response; seawater electrolyzer; biomass; fuel cell

1. Introduction

1.1. Greenhouse Gas Emissions

The growth of devastating greenhouse gas emissions acts as one of the main challenges to the human race [1]. Global carbon emissions in 2014 exceeded 1.6 times their levels in the 1990s [2]. GHGs aided in the significant rise in global temperature, posing a threat to human health and many economies [3]. Following the Kyoto Protocol, several countries have taken measures to cut GHG emissions, especially CO\(_2\) emissions. GHGs half reduction by 2050 is a global target to face temperature increase [4]. In the power system sector, transferring to renewable sources is the best solution to achieve a significant reduction in GHG emissions [5].

1.2. Renewable Energy

Renewable power is generated from continuously rejuvenated energy flows such as wind, solar, geothermal heat, tidal, etc. [6]. Renewable energy sources are anticipated to provide 80% of global energy needs [7]. Globally, renewable energy capacity today stands at 2195 GW. The RES sector offered around 10.3 million jobs (directly and indirectly), with investments of over USD 280 billion [8]. A total of 145 countries have implemented programs to promote sustainable energy technologies during the last few decades. Biomass is a sustainable resource that may supplement other renewable energy sources. When combined with carbon capture, it creates no emissions [9]. Gasification is a reasonable method of generating electricity from biomass [10]. The growing popularity of renewable energy sources is helping to develop new microgrids.
1.3. Microgrid

Microgrids might be a viable solution to the current energy problems. A microgrid is made up of a group of dispersed electric sources and interconnected loads. Their operational modes are classified as isolated or grid-connected modes. Isolated microgrids are small power networks that produce and manage their own electricity needs. Grid connectivity improves system dependability and allows electricity trading with other grids [11,12]. Hydrogen technology is currently preferred in microgrids to store electric power. Electrolyzers normally produce hydrogen while power is available, while fuel cells generate energy from hydrogen during periods of low power [13]. The seawater electrolysis process produces chemical substances with hydrogen such as NaClO. It can be sold and manufactured to create revenue for the system. NaClO is used in drinking water disinfection, bleaching, and removing stains from clothing [14].

1.4. Motivations

The appropriate microgrid’s sizing has a major role in minimizing overall system costs, lowering CO\textsubscript{2} emissions, and promoting community development. Investment in the power system sector is an essential target to reduce the burden on the economy and encourage business in the energy sector. Microgrid productivity can be boosted through power trading and hydrogen technology. CO\textsubscript{2} emissions from power generation cannot be reduced without a reliance on renewable energy. Energy management technologies are strongly encouraged as a means of improving microgrid dependability and lowering microgrid costs [15].

1.5. Demand Response

Demand response programs support power system operators with cost-effective and energy-saving alternatives [16]. They represent customers’ adjustments to their energy consumption in response to changes in energy prices or incentive payments intended to limit power use at periods when the system’s stability is endangered [17]; they also help in reshaping load patterns. DR techniques are divided into price-based and incentive-based programs. In the price-based type, prices control electricity consumption by increasing peak-load hour tariffs while lowering them during off-peak hours. Consumers are rewarded for lowering their load during significant times via incentive-based demand response (DR) programs [18].

1.6. Related Literature

Many researchers have discussed the optimal design and operation of hybrid microgrids, considering renewable sources and demand response techniques. The appropriate power scheduling is greatly influenced by the desired sizing objectives. Cagnano et al. [19] outlined various control mechanisms required to achieve cost-effective, efficient, and secure operation of microgrids and reviewed the present primary design behaviors. A comprehensive literature assessment of existing microgrid-sizing methodologies was discussed in reference [20]. Cost-based and non-cost-based strategies are the two main sizing methodologies. For optimum energy cost and power supply probability, the Grasshopper Optimization Algorithm (GOA) was utilized for optimal microgrid sizing in [21]. In selecting the best size of microgrid, the net cost, renewable portion, energy cost, grid pricing rates, and greenhouse gas emissions were considered in [22]. Ref. [23] employed an evolutionary technique for optimum sizing of distributed energy sources to reduce the capital and yearly operating expenses. In ref. [24], HRES cost and different load values were considered for optimal microgrid sizing using the improved hybrid optimization genetic algorithm. Microgrid reliability was improved by connecting microgrids to the electric grid. Ref. [25] introduced a strategy for designing grid-connected microgrids that enhances their dependability while also serving the load at a low cost. For effective energy management of a grid-connected microgrid that depends on renewable energy, ref. [26] utilized the modified bat algorithm (MBA). MFABC+, MFABC, particle swarm algorithms, and HOMER software.
were utilized for optimal microgrid sizing in [27]. Ref. [28] used a multi-objective feasibility enhanced particle swarm optimization algorithm to reduce the microgrids’ operational costs and increase the renewable power use. Ref. [29] proposed optimal microgrid allocation based on renewable energy sources, demand response schemes, storage systems, and EV charging stations. Ref. [30] introduced optimal energy scheduling of grid-connected microgrids considering renewable sources uncertainty. Authors in [31] introduced two-step scheduling for microgrids using Monte Carlo and particle swarm optimization, considering sources’ uncertainty by grouping sources into basic load and frequency-modulated sources. Ref. [32] proposed an optimal energy management system for DC-microgrid composed of four nanogrids with a single energy storage system (ESS). Ref. [33] used genetic optimization to develop a novel multi-control scheme that maximized the power from renewable sources while minimizing total harmonic distortion. The results were compared with other optimization techniques. Power trading can enhance the system’s profit while lowering the total system cost via system sizing and optimization [34]. Ref. [35] demonstrated the impact of renewable sources on CO$_2$ level reduction. Biomass energy has proven itself as a suitable alternative energy source in electric power production. It is now considered a renewable energy source [36]. It has zero emissions when the CO$_2$ capture technique is employed [9]. Biomass gasification is a cheap solution for off-grid rural communities to produce electricity [10]. Ref. [37] researched biomass energy challenges as well as its large-scale employment. Ref. [38] studied the energy productivity of rice straw as a biomass fuel; it explored the burning of rice straw for energy and the issues associated with it. Ref. [39] discussed the latest microgrid control and power management studies. Ref. [40] presented different strategies for managing extra microgrid power with cost and emissions reduction as goals through selling surplus power to the grid, energy storage systems, and extra electricity conversion to hydrogen. The production of electricity from fuel cells via hydrogen production from seawater is regarded as the most abundant energy resource [41]. Hydrogen created from seawater in the morning can be used in fuel cells at night in microgrids that rely on PV [42]. Ref. [43] highlighted the need to reduce peak electricity demand.

Grid-purchased electricity and fuel costs can be reduced by employing DR schemes [44]. Ref. [45] studied the demand response objectives and classifications for facing electric power sector challenges. Demand response programs provide a cheap alternative to infrastructure upgrades in residential microgrids [46]. The restrictions and aims of demand response for diverse systems are described in [47]. Three types of demand response were compared in [48]; time-of-use demand response presents an effective and feasible technique to deal with peak load period problems. The barriers of participation in demand response were discussed in [49]. Ref. [50] used single- and multi-period load models to estimate emergency and time-of-use demand response programs based on load elasticity principles. The elasticity principal was used in ref 5 to address demand response [51]. With the help of thermostatically controlled and price-responsive loads, ref. [52] employed deep reinforcement learning algorithms to manage the energy of a grid-connected microgrid.

1.7. Paper Contribution

Regarding the previous literature, this paper’s contributions are outlined as follows:

- Multi-objective optimal power scheduling of a residential microgrid considering revenues and productivity maximization of the microgrid using seawater electrolyzer and biomass generation.
- The effects of load shifting techniques on reducing maximum demand and the grid’s power consumption, microgrid configuration, and emissions.
- Introducing a comparison between different configurations for system design to demonstrate the feasibility and productivity of the used technologies.
1.8. Paper Construction

The remainder of the paper is organized as follows: Section 2 describes the system, and Section 3 clarifies demand response techniques. Objective functions are explained in Section 4, and constraints are discussed in Section 5. The optimization technique is discussed in Section 6. Simulation results and discussion are introduced in Section 7. Section 8 contains the conclusion and future work.

2. Microgrid Modeling

Optimal power scheduling is essential in the establishment process of microgrids to reduce the cost, emissions, loss of power supply, and the number of required system components. The system being studied is a residential microgrid in the northern part of Egypt. The proposed microgrid aims to meet all of its energy requirements with minimum cost and the least possible CO\textsubscript{2} emissions. Five case studies are discussed in this research to show the feasible system configuration. Figure 1 shows the available power generation units for all studied systems. The operation of each case study is demonstrated in Figure 2. Multi-objective genetic algorithm is utilized for the microgrid optimization with the help of MATLAB software.

Figure 1. The schematic diagram of all the studied microgrid configurations.
2.1. Photovoltaic (PV) Modeling

PV transforms solar energy into electricity [53]. PV power is determined by solar radiation. Equation (1) describes the PV output power. This research uses Egyptian solar radiation data for the simulation; Egypt is considered one of the countries that has a wealth of solar power with a sunlight period of around 3500 to 4500 h/year [54].

\[P_{pv}(t) = \eta_{pv} \times S_{pv} \times \frac{G(t)}{G_{Stc}} \]

(1)

where η_{pv}, S_{pv}, $I_d(t)$, and $I_{d,Stc}$ are the PV’s efficiency, the rated capacity, the incident solar radiation, and solar radiation at the stc, respectively [55].

2.2. Fuel Cell (FC) Modeling

Fuel cell (FC) uses hydrogen to generate DC power. It normally consists of an electrolyte and two terminals (anode and cathode). The chemical processes inside FC are described in the equations below [56].

\[H_2 \rightarrow 2H^+ + 2e^- \]

(2)

\[0.5O_2 + 2e^- \rightarrow O^2- \]

(3)

\[2H^+ + \frac{1}{2}O_2^2- \rightarrow H_2O + \text{heat} \]

(4)

The capital cost and operating and maintenance costs of the fuel cell are described in the following equations:

\[Cap_{FC} = \alpha_{FC} \times S_{FC} \]

(5)
$$OM_{FC} = \beta_{FC} \times S_{FC} \times \sum_{j=1}^{N} \left(\frac{1 + \mu_{FC}}{1 + i_r} \right)^j$$

where Cap_{FC}, κ_{FC}, S_{FC}, OM_{FC}, β_{FC}, μ_{FC}, i_r, and N are the capital cost of FC, the investment cost of FC, FC capacity, operating and maintenance cost, the annual operating and maintenance cost, the escalation rate, interest rate, and project lifetime, respectively.

2.3. Sea Water Electrolyzer Modeling

Water covers approximately 75% of the earth’s surface. This water is mostly salty. Electrolysis of seawater can be utilized to create hydrogen as well as useful chemical substances [57]. The chemical reactions inside the electrolyzer are described by the following equations [58,59]:

$$NaCl + H_2O \rightarrow NaClO + H_2$$

$$2Na^+ + 2H_2O + 2e^- \rightarrow 2NaOH + H_2$$

$$2NaOH + Cl_2 \rightarrow 2NaClO + H_2$$

The overall equation during the electrolysis process is

$$NaCl + H_2O \rightarrow NaClO + H_2$$

The most appropriate method of hydrogen storage is pressurized gas storage. This requires a compressor and a storage tank [60].

2.4. Electric Utility

The utility grid serves as a backup when the generated power is not enough to supply the microgrid’s load. It also adds selling power availability to the grid in case of excess generation.

The exported and imported powers at a given time can be described using the equations below:

$$P_{grp} : P_{grid}(t) > 0 \text{ in case of importing power}$$

$$P_{grs} : P_{grid}(t) < 0 \text{ in case of exporting power}$$

The net grid cost is

$$C_{grid} = C_p | P_{grp} | - C_S | P_{grs} |$$

where C_{grid}, C_p, P_{grp}, C_S, and P_{grs} are the grid cost, unit power purchasing price, purchased power, unit power selling price, and the sold power, respectively [61,62].

2.5. Biomass Modeling

Biomass gasification is the process of converting solid biowaste into a combustible gas mixture. It can be used as a source of heat or as a fuel in internal combustion engines to produce mechanical or electric power. The calorific value of biomass and the amount of biomass determine its power [63]:

$$P_{bio} = \frac{Total \ biomass \ available \ (Ton/yr) \times 1000 \times CV_{bm} \times \eta_{bm}}{365 \times 860 \times Operating \ h/day}$$

The operating and maintaining cost of a biogas system is divided into two components (fixed and variable costs), which vary based on the anticipated power and the amount of fuel used:

$$OM_{bg, npv} = \theta_{1bg} \times P_{bio} \sum_{j=1}^{N} \left(\frac{1 + \mu_{bg}}{1 + i_r} \right)^j + \theta_{2bg} \times PW_{bg} \sum_{j=1}^{N} \left(\frac{1 + \mu_{bg}}{1 + i_r} \right)^j$$
Equation (16) shows the amount of biogas fuel cost:

\[
F_{bg, npv} = \theta_3bg \times BF_{yr} \times \sum_{j=1}^{N} \left(\frac{1 + \mu bg}{1 + i_r} \right)^{j}
\]

Equations (17) and (18) explain the capital and salvage cost values of the biomass unit:

\[
C_{bg} = \gamma_{bg} \times P_{bio}
\]

\[
SV_{bg, npv} = \lambda_{bg} \times P_{bio} \times \left(\frac{1 + \delta}{1 + i_r} \right)^N
\]

where \(CV_{bm}, \eta_{bm}, \theta_1bg, P_{bio}, \) and \(i_r \) are the biomass calorific valve, the overall conversion efficiency, the annual fixed operation and maintenance cost (USD/kW/year), the power produced by biogas generator, and the interest rate, respectively. \(\mu bg, \theta bg, PW_{bg}, \) and \(\theta_3bg \) are the escalation rate, the variable operation and maintenance cost (USD/kWh), the annual working power of biogas generator (kWh/year), and the biomass fuel cost (USD/ton), respectively [64].

3. Demand Response

Demand response is an energy management approach that shifts energy usage from peak hours to other periods. This research studied time-of-use demand response as a time-based type.

3.1. Time-of-Use (ToU) Demand Response

In time-of-use demand response, peak load periods have higher prices, whereas off-peak hours have reduced prices according to predefined prices. In this work, price elasticity models are employed to structure the TOU demand response.

Elasticity Model

The change in load demand as a result of price swings is the price elasticity of electrical demand \(El \) [65].

\[
El = \frac{\rho_o}{d_o} \times \frac{\partial d}{\partial \rho}
\]

where \(\rho, d_o, \rho_o, \) and \(d \) are the electricity price, the initial load demand, the nominal price, and the load demand, respectively.

The cross elasticity \(El(i, j) \) illustrates how demand varies over time as a result of price changes at different time periods [66].

\[
El(i, j) = \frac{\rho_{o}(j)}{d_{o}(i)} \times \frac{\partial d(i)}{\partial \rho(j)}
\]

The customer benefits are depicted as [67]

\[
S = B(d(i)) - d(i) \times \rho(i)
\]

where \(B(d(i)) \) denotes the revenue earned by the usage of electrical energy as follows [68]:

\[
B(d(i)) = B_o(i) + \rho_o(i)[d(i) - d_o(i)]\{1 + \frac{d(i) - d_o(i)}{2El(i) \times d_o(i)}\}
\]

Demand response advantages are boosted by setting $\frac{\partial S}{\partial d(i)}$ to zero. As a result, the following is the consumer usage:

$$d(i) = d_o(i) \{1 + El(i) \times \frac{\rho(i) - \rho_o(i)}{\rho_o(i)}\} \tag{23}$$

when the cross elasticity is taken into consideration, the load demand is expressed as follows:

$$d(i) = d_o(i) + \sum_{i=1, i \neq j}^{24} El(i, j) \times \frac{d_o(i)}{\rho_o(j)} \times [\rho(j) - \rho_o(j)] \tag{24}$$

The final load demand that fulfills the maximum gains of the customer’s usage during a 24 h period is demonstrated in the following equation [68]:

$$d(i) = d_o(i) \{1 + El(i) \times \frac{\rho(i) - \rho_o(i)}{\rho_o(i)} + \sum_{i=1, i \neq j}^{24} El(i, j) \times \frac{\rho(i) - \rho_o(j)}{\rho_o(j)}\} \tag{25}$$

The self and cross elasticities are set on the basis of prices and demand to represent the flexibility to change the load patterns by shifting a portion of load from one period to another. The values of self and cross elasticities are mentioned in Table 1 [50].

| Table 1. Self and cross elasticity values. |
|--|---|---|---|
| Peak | Off-Peak | Low |
| Peak | -0.1 | 0.016 | 0.012 |
| Off-Peak | 0.008 | -0.1 | 0.01 |
| Low | 0.006 | 0.008 | -0.1 |

4. Objective Function

This study introduces technical, economic, and environmental objectives for power scheduling of a residential microgrid, including PV, WG, and plug-in-electric vehicles. The first objective is the minimization of load-generation mismatch. The second objective is the minimization of total system cost. The third objective is CO$_2$ emissions minimization. The following equations show the proposed objective functions.

$$F_1 = \min : (LoPS) = \min : |P_l(t) - \sum P_{gw}(t)| \tag{26}$$

$$F_2 = \min : (\text{cost}) = \min : \left(\sum C_{pv} + C_{FC} + C_{electrolyzer} + C_{grid} + C_{Bio} - C_{Revenues}\right) \tag{27}$$

$$F_3 = \min : ((\text{CO}_2\text{emissions}) \tag{28}$$

where $P_{gw}, C_{pv}, C_{FC}, C_{electrolyzer}, C_{grid}, C_{Bio},$ and $C_{Revenues}$ are the total generated power, PV cost, fuel cell cost, electrolyzer cost, grid cost, total biomass cost, and system’s revenue, respectively.

5. Constraints

Power balance constraints:

$$P_{pv}(t) + P_{FC}(t) + P_{bio} + P_{grid_buy}(t) - P_{grid_sell}(t) - P_{electrolyzer} = P_l(t) \tag{29}$$

Limits constraints:

$$0 < P_{pv} < P_{pv_max} \tag{30}$$

$$0 < P_{FC} < P_{FC_max} \tag{31}$$
\[P_{\text{g},\text{max}} < P_{\text{grid}} < P_{\text{grp},\text{max}} \]
(32)

\[P_{\text{bio},\text{min}} < P_{\text{bio}} < P_{\text{bio},\text{max}} \]
(33)

\[H_{2,\text{tank},\text{min}} \leq H_{2,\text{tank}} \leq H_{2,\text{tank},\text{max}} \]
(34)

6. Multi-Objective Genetic Algorithm (MOGA)

The multi-objective genetic algorithm is a meta-heuristic mechanism motivated by the natural selection technique, which is a part of larger classes of evolutionary algorithms. Genetic algorithms are widely used and biologically inspired by developers to produce high-quality optimization and search prospects, such as mutation, crossover, and selection.

MOGA utilizes a weighted sum of various objective functions in the selection stage and merges them into a scalar fitness function. The design characteristics of the various objective functions weights are not specified and are randomly changed through each selection. Thus, the search orientation in this algorithm is not fixed.

At each generation over the process of MOGA, an empirical series of Pareto optimal solutions are stored and updated. Furthermore, a certain number of solutions are picked at random from the series. Those solutions are considered elite individuals. The elite mechanism has the benefit of preserving the diversity of each population [69].

The block diagram of the proposed MOGA algorithm is shown in Figure 3 and described below:

- Stage 1 (Initialization): generate an initial population.
- Stage 2 (Evaluation): calculate the values of the objective functions for the created population.
- Stage 3 (Selection): use random weights to determine each population’s fitness value; then, pick a pair of strings from the existing population.
- Stage 4 (Crossover and Mutation): a crossover strategy is implemented for each chosen pair to produce a new population via the crossover process; after that, the mutation process is carried out.
- Stage 5 (Elitist): delete some strings of created strings haphazardly and substitute them with elite strings picked at random from temporary Pareto optimal solutions.
- Stage 6 (Termination): if the stopping requirement is not satisfied, go to Stage 2.
- Stage 7 (Optimal Solution): the MOGA suggests the preferable options.

![Figure 3. MOGA operation flow chart.](image-url)
7. Results and Discussion

Microgrid sizing and optimization are important issues for power system developers. The system configuration could differ depending on the available technology and the design objectives or targets. In this study, five case studies are introduced. In all scenarios, solar power has the first priority to produce the required electrical energy. The first scenario consists of PV, FC, seawater electrolyzer, tank, and public grid. The second scenario introduces biomass power to the first scenario but without the dependence on public grid. The third scenario has the availability of biomass and grid-connection with FC and seawater electrolyzer to guarantee full system reliability. Scenario 4 is like the system of the first scenario but without sea water electrolyzer. Scenario 5 is the simplest one, with PV and the public grid as the only power sources. The simulation parameters are shown in Appendix A. The load and generation of each power unit for all studied case studies are displayed in Figures 4–8.
Figure 6. Load-generation mismatch of case 3.

Figure 7. Load-generation mismatch of case 4.

Figure 8. Load-generation mismatch of case 5.
The simulation results for the five scenarios confirm the following features:

- By taking scenario 5 as a reference case study because it is the simplest system configuration with the minimum number of generating units, the FC integration with seawater electrolyzer and tanks reduces the system emissions by around 40% and slightly increases the cost by USD 0.093 million.

- If the microgrid that uses FC does not produce its own H₂, its cost is increased due to the cost of purchasing H₂. As seen from scenario 4’s results, its cost is greater than scenario 1’s cost by USD 0.246 million; the CO₂ emissions are also higher by 150.6 kg/day.

- Relying on biomass has a great impact on cost and emissions. If biomass energy is used instead of depending on public grid power, the cost is decreased by 37.9%, as noticed by comparing scenarios 1 and 2. If both biomass power and electric utility are utilized in a hybrid microgrid as in scenario 3, the system has the lowest total cost of USD 1.186 million due to selling power back to the grid. Systems with biomass have zero emissions as they replace grid power use.

- The grid power share is decreased by using biomass energy and FC; it reached zero by integrating biomass energy units. It decreased by 6% and 10% when comparing scenario 5 with scenarios 4 and 1.

- Scenario 5 is the worst system configuration; it emits the highest emissions of 954.095 kg of CO₂ per day. Scenario 4 has the highest system cost and a great amount of CO₂ emissions, with roughly about 722.356 kg/day.

- By comparing the systems that have storage tanks (1, 2, and 3), scenario 1 has the largest storage tank capacity as it has the largest fuel cell capacity of 184 kW with a power share percentage of more than 10%, as clarified in Figure 9. Scenario 2 has the largest EL capacity of 701 kW as it produces more chemical substances and hydrogen to increase revenue and decrease the system cost, as there is no revenue from the grid in this scenario.

 Figure 9 demonstrates the contribution of the kWh energy production share of each generating unit.

![Figure 9. kWh energy share.](image-url)

- In all the studied scenarios, the PV capacity ranges from 830 kW to 1000 kW. It provides more than 70% of the required power; the remaining percentage comes from the public grid, biomass, or stored energy in FC.

- The incorporation of biomass power decreases the dependence of FC; it reduces the FC energy share by around 50% by comparing scenario 1 and scenario 2.
• In scenario 3, the grid-connectivity is considered as a revenue tool to sell extra power back to the grid. It is regarded as a semi-grid-connected microgrid. Using seawater electrolyzers ensures the generation of the system’s required H_2.

• In scenario 3, the integration of biomass with EL and tank reduces the dependence on fuel cell; the capacity of the fuel cell is reduced to 30 kW.

• Systems with seawater electrolyzers have the lowest CO$_2$ emissions. They reach 571.752 kg/day for systems without biomass energy.

• The electrolyzing process is regarded not only as a means of producing hydrogen but also as a means of increasing system income. System productivity can be increased by selling extra power back to the public grid and selling NACLO and extra H_2 produced from the electrolyzing process.

• Scenario 1 has a total system cost of USD 3.672 million with 571.752 kg of CO$_2$ emissions per day. By introducing biomass, both the emissions and the cost are enhanced. The cost is reduced by USD 1.394 million in scenario 2 and by USD 2.486 million in scenario 3 when compared with scenario 1.

Table 2 demonstrates the obtained results for all the studied scenario without DR programs.

Case	Cost (million USD)	CO$_2$ emissions (kg/day)	PV capacity (kW)	FC capacity (kW)	EL capacity (kW)	Tank capacity (kg)	Maximum grid power (kW)	Biomass capacity (kW)
1	3.672	571.752	986.553	184	294	147.5	229.810	0
2	2.278	0	830.866	66	701	22	0	288.972
3	1.186	0	901.435	30	336	10	0	306.861
4	3.918	722.356	995.850	97	0	0	273.310	0
5	3.579	954.095	1000	0	0	0	321.810	0

• All systems create revenues of more than USD 4 million. Scenarios 1 and 2 have the highest revenues of USD 4.47 million and USD 4.34 million, respectively.

• The revenues from selling extra power back to the grid are decreased by introducing biomass to the system, in addition to the increase in selling chemical products and hydrogen produced from the seawater electrolyzer, as in scenario 3.

• Without seawater electrolyzers, the revenues are only from selling power back to the public grid or nearby microgrids.

Table 3 shows the systems’ revenue for each scenario. Figure 10 displays the amount of revenue from selling power back to the grid and revenues from selling chemical products and hydrogen that are produced through the electrolysis process.

![Figure 10. Systems’ revenues.](image-url)
Table 3. Revenues.

	Case 1	Case 2	Case 3	Case 4	Case 5
Grid revenue	2.104	0	1.469	4.232	4.253
Electrolyzing process revenue	2.366	4.182	2.875	0	0

- Demand response programs reshape the load patterns by shifting a portion of off-peak load, which is usually at night, to other periods. Biomass unit capacity is reduced by applying demand response as it is always used at night; it is reduced by 12.5% and 12.9% for scenarios 2 and 3.
- By applying demand response schemes, the load curve is modified; the peak load is reduced by 10.88%, as seen in Figure 11.

![Figure 11. Load demand with and without demand response.](image)

Table 4 shows the scenarios’ configuration, cost, and emissions with their participation in ToU-DR schemes.

Table 4. Results of systems with DR.

	Case 1	Case 2	Case 3	Case 4	Case 5
Cost (million USD)	3.331	2.001	1.388	3.562	3.247
CO₂ emissions (kg/day)	508.094	0	0	701.593	882.276
PV capacity (kW)	980.965	932.368	874.959	963.199	993.292
FC capacity (kW)	177	68	39	74	0
EL capacity (kW)	285	783	168	0	0
Tank capacity (kg)	147	23	83	0	0
Maximum grid power (kW)	198.297	0	0	249.797	286.797
Biomass capacity (kW)	0	252.934	267.413	0	0
8. Conclusions

Microgrid size optimization plays a critical role in lowering total system costs by avoiding needless investment in unused generation. This study introduces a power scheduling methodology for a grid-connected microgrid considering PV, biomass power, fuel cell, and seawater electrolyzer. CO₂ emissions reduction, cost, and avoiding power outages are the main targets in the multi-objective scheduling process. The seawater electrolysis process is not only beneficial for producing hydrogen; it also serves as an income source for the system by selling the produced chemical compounds throughout the process. Time-of-use demand response is employed in this study to modify the load demand distribution and maximize the utilization of renewable energy sources. The research findings confirm that ToU-DR reduces the maximum load demand by 10.88%. They also confirm that CO₂ emissions can be reduced to zero by introducing biomass and also reduced by 40% by integrating FC and seawater electrolyzers. Biomass has the ability to decrease the microgrid cost by USD 1.39 million, if it replaces the grid power. Moreover, the hybrid microgrid of biomass, grid, PV, FC with seawater electrolyzer, and hydrogen tank is the most economical configuration. Furthermore, microgrid productivity is increased by selling both extra power and produced chemical products; it reaches over USD 4.1 million in most studied scenarios. Studying the integration of other renewable sources such as wind generators and integrating electric vehicles into the studied system through vehicles-to-grid schemes with a deep analysis of the sensitivity to parameter fluctuations is the proposed future work to increase microgrid productivity and reduce GHG emissions.

Author Contributions: Conceptualization, M.M.G. and K.V.K.; Data curation, M.M.G. and K.V.K.; Formal analysis, M.M.G. and T.S.; Investigation, M.M.G., A.N. and A.M.H.; Methodology, M.M.G., T.S. and A.M.H.; Project administration, M.M.G. and M.E.L.; Resources, M.M.G., K.V.K. and M.E.L.; Software, M.M.G., S.U. and M.E.L.; Supervision, T.S.; Validation, M.M.G. and A.M.H.; Visualization, M.M.G. and A.N.; Writing—original draft, M.M.G.; Writing—review & editing, M.M.G. and T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Abbreviation	Description
GHGS	Greenhouse gas emissions
ESS	Energy storage system
HRES	Hybrid renewable energy systems
MBA	Modified bat algorithm
GOA	Grasshopper optimization
DR	Demand response
PV	Photovoltaic
\(\eta_{pv} \)	The PV’s efficiency
\(S_{pv} \)	The PV’s rated capacity
\(G(t) \)	The incident solar radiation
\(G_{Stc} \)	Solar radiation at the stc
\(Cap_{FC} \)	The capital cost of FC
\(\alpha_{FC} \)	The investment cost of FC
\(S_{FC} \)	FC capacity
\(OM_{FC} \)	Operating and maintenance cost of FC
\(\beta_{FC} \)	The annual operating and maintenance cost
\(\mu_{FC} \) The escalation rate
\(i_r \) Interest rate
\(N \) The project lifetime
\(C_{grid} \) The grid cost
\(C_p \) Unit power purchasing price
\(P_{grp} \) Purchased power
\(C_S \) Unit power selling price
\(P_{grs} \) The sold power
\(C_{V_{bm}} \) The biomass calorific value
\(\eta_{bm} \) The biogas overall conversion efficiency
\(\theta_{1_{bg}} \) The annual fixed operation and maintenance cost of biogas generator (USD/kW/year)
\(P_{bio} \) The power produced by biogas generator
\(i_r \) The interest rate
\(\mu_{bg} \) The escalation rate
\(\theta_{2_{bg}} \) The variable operation and maintenance cost of biogas generator (USD/kWh)
\(P_{W_{bg}} \) The annual working power of biogas generator (kWh/year)
\(\theta_{3_{bg}} \) The biomass fuel cost (USD/ton)
\(BF_{yr} \) The annual required biomass fuel (ton/year)
\(\gamma_{bg} \) The initial cost of biogas system (USD/kW)
\(\lambda_{bg} \) The resale price of the system (USD/kW)
\(\delta \) The inflation rate
FC Fuel cell
ToU Time of use
El Price elasticity of electrical demand
\(\rho \) The electricity price
\(d_0 \) The initial load demand
\(\rho_o \) The nominal price
\(d \) The load demand
\(El(i,j) \) The cross elasticity
\(B(d(i)) \) The customer benefits
\(P_{gn} \) The total generated power
\(C_{PV} \) PV cost
\(C_{FC} \) Fuel cell cost
\(C_{electrolyzer} \) Electrolyzer cost
\(C_{grid} \) Grid cost
\(C_{Bio} \) Total biomass cost
\(C_{Revenues} \) System’s revenue
LoPS Loss of power supply probability
\(P_{l}(t) \) Load power
\(P_{PV}(t) \) PV power
\(P_{FC}(t) \) FC power
\(P_{bio} \) Biomass power
\(P_{grid_buy}(t) \) Grid’s purchased power
\(P_{grid_sell}(t) \) Grid’s sold power
\(P_{electrolyzer} \) Electrolyzer power
\(P_{grid}(t) \) Grid power
Appendix A

Table A1. Simulation Parameters.

Component and Economic Specification	
Discount rate (r)	5%
Escalation rate	7%
PV Module	
Investment cost	1690 USD/kW
Maintenance	26 USD/kW/yr
(PV) reduction factor	84%
lifetime	25 years
Biomass generator	
Capital cost	4500 USD/kW
Operating and Maintenance	0.03 USD/kWh
Feedstock cost	0.02 USD/kWh
Calorific value (\(\eta_{bm}\))	14.5 MJ kg\(^{-1}\)
Electrical conversion efficiency	0.3
Fuel cell	
Capital cost	2000 USD/kW
Operating and Maintenance	100 USD/kW/yr
Replacement cost	1500 USD/kW
Efficiency	0.5
H\(_2\) to kW	0.6 kWh/Nm\(^3\)
Electrolyzer	
Capital cost	1500 USD/kW
Operating and Maintenance	15 USD/kW/yr
Replacement cost	1500 USD/kW
Efficiency	0.9
kW to H\(_2\)	0.09 Nm\(^3\)/kWh
Final hydrogen pressure	20 MPa
Tank	
Capital cost	500 USD/kg
Operating and Maintenance	5 USD/kg/yr

References

1. Amagai, K.; Takarada, T.; Funatsu, M.; Nezu, K. Development of low-CO2-emission vehicles and utilization of local renewable energy for the vitalization of rural areas in Japan. *IATSS Res.* 2014, 37, 81–88. [CrossRef]

2. Deng, X.; Lv, T. Power system planning with increasing variable renewable energy: A review of optimization models. *J. Clean. Prod.* 2020, 246, 118962. [CrossRef]

3. Dong, Y.; Shimada, K. Evolution from the renewable portfolio standards to feed-in tariff for the deployment of renewable energy in Japan. *Renew. Energy* 2017, 107, 590–596. [CrossRef]

4. Yao, S.; Zhang, S.; Zhang, X. Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. *J. Clean. Prod.* 2019, 235, 1338–1352. [CrossRef]

5. Esteban, M.; Zhang, Q.; Utama, A. Estimation of the energy storage requirement of a future 100% renewable energy system in Japan. *Energy Policy* 2012, 47, 22–31. [CrossRef]

6. Twidell, J.; Weir, T. *Renewable Energy Resources*; Routledge: London, UK, 2015.

7. Panwar, N.; Kaushik, S.; Kothari, S. Role of renewable energy sources in environmental protection: A review. *Renew. Sustain. Energy Rev.* 2011, 15, 1513–1524. [CrossRef]

8. Ullah, S.; Haidar, A.M.; Hoole, P.; Zen, H.; Ahfock, T. The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. *J. Clean. Prod.* 2020, 273, 122777. [CrossRef]

9. Lehtveer, M.; Fridahl, M. Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences. *Energy* 2020, 213, 118786. [CrossRef]

10. Jimenez, O.; Curbelo, A.; Suarez, Y. Biomass based gasifier for providing electricity and thermal energy to off-grid locations in Cuba. Conceptual design. *Energy Sustain. Dev.* 2012, 16, 98–102. [CrossRef]
11. Stadler, M.; Cardoso, G.; Mashayekh, S.; Forget, T.; DeForest, N.; Agarwal, A.; Schönbein, A. Value streams in microgrids: A literature review. *Appl. Energy* **2016**, *162*, 980–989. [CrossRef]

12. Masrur, H.; Senjyu, T.; Islam, M.R.; Kouzani, A.Z.; Mahmud, M.P. Resilience-oriented dispatch of microgrids considering grid interruptions. *IEEE Trans. Appl. Supercord.* **2021**, *31*, 1–5. [CrossRef]

13. Siwal, S.S.; Thakur, S.; Zhang, Q.; Thakur, V.K. Electrocatalysts for electrooxidation of direct alcohol fuel cell: Chemistry and applications. *Mater. Today Chem.* **2019**, *14*, 100182. [CrossRef]

14. Asokan, K.; Subramanian, K. Design of a tank electrolyser for in-situ generation of NaClO. In *Proceedings of the World Congress on Engineering and Computer Science*, San Francisco, CA, USA, 20–22 October 2009; Volume 1, pp. 139–142.

15. Gad, Y.; Diab, H.; Abdelalslam, M.; Galal, Y. Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique. *Energies* **2020**, *13*, 5000. [CrossRef]

16. Talaat, M.; Alsayyari, A.S.; Alblawi, A.; Hatata, A. Hybrid-cloud-based data processing for power system monitoring in smart grids. *Sustain. Cities Soc.* **2020**, *55*, 102049. [CrossRef]

17. Balijepalli, V.M.; Pradhan, V.; Khaparde, S.A.; Shereef, R. Review of demand response under smart grid paradigm. In *Proceedings of the ISGT2011-India, Kollam, India, 1–3 December 2011*; pp. 236–243.

18. Gao, J.; Ma, Z.; Guo, F. The influence of demand response on wind-integrated power system considering participation of the demand side. *Energy* **2019**, *178*, 723–738. [CrossRef]

19. Logenthiran, T.; Srinivasan, D. Optimal selection and sizing of distributed energy resources for distributed power systems. *J. Renew. Sustain. Energy* **2012**, *4*, 053119. [CrossRef]

20. Saiprasad, N.; Kalam, A.; Zayegh, A. Triple bottom line analysis and optimum sizing of renewable energy using improved hybrid optimization employing the genetic algorithm: A case study from India. *Energies* **2019**, *12*, 349. [CrossRef]

21. Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. *Sol. Energy* **2019**, *188*, 685–696. [CrossRef]

22. Nurunnabi, M.; Roy, N.K.; Pota, H.R. Optimal sizing of grid-tied hybrid renewable energy systems considering inverter to PV ratio—A case study. *J. Renew. Sustain. Energy* **2019**, *11*, 013505. [CrossRef]

23. Luo, L.; Abdulkareem, S.S.; Rezvani, A.; Miveh, M.R.; Samad, S.; Aljojo, N.; Pazhoohesh, M. Optimal scheduling of a renewable based microgrid considering photovoltaic system and battery energy storage under uncertainty. *J. Energy Storage* **2020**, *28*, 101306. [CrossRef]

24. Singh, S.; Slowik, A.; Kanwar, N.; Meena, N.K. Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm. *Energies* **2021**, *14*, 190. [CrossRef]

25. Li, S.; Shi, L.; Yao, Z. multi-objective optimal scheduling of microgrid considering distributed generation uncertainty. In *Proceedings of the 10th Renewable Power Generation Conference (RPG 2021)*, Online, 14–15 October 2021; pp. 35–43.

26. Barik, A.K.; Das, D.C. Integrated resource planning in sustainable energy-based distributed microgrids. *Sustain. Energy Technol. Assess.* **2021**, *48*, 101622. [CrossRef]

27. Chen, H.; Gao, L.; Zhang, Z. Multi-objective optimal scheduling of a microgrid with uncertainties of renewable power generation considering user satisfaction. *Int. J. Electr. Power Energy Syst.* **2021**, *131*, 107142. [CrossRef]

28. Yang, M.; Cui, Y.; Wang, J. Multi-Objective optimal scheduling of island microgrids considering the uncertainty of renewable energy output. *Int. J. Electr. Power Energy Syst.* **2023**, *144*, 108619. [CrossRef]

29. Zakir, M.; Arshad, A.; Sher, H.A.; Lehtonen, M. An Optimal Power Management System Based on Load Demand and Resources Availability for PV Fed DC-Microgrid with Power-Sharing among Multiple Microgrids. In *Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)*, Espoo, Finland, 18–21 October 2021; pp. 1–5.

30. Sibtain, D.; Murtaza, A.F.; Ahmed, N.; Sher, H.A.; Gulzar, M.M. Multi control adaptive fractional order PID control approach for PV/wind connected grid system. *Int. Trans. Electr. Energy Syst.* **2021**, *31*, e12809. [CrossRef]

31. Sediqi, M.M.; Howlader, H.O.R.; Ibrahim, A.M.; Danish, M.S.S.; Sabory, N.R.; Senjyu, T. Development of renewable energy resources in Afghanistan for economically optimized cross-border electricity trading. *Aims Energy* **2017**, *5*, 691–717. [CrossRef]

32. Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. *Renew. Energy* **2019**, *131*, 208–216. [CrossRef]

33. Liu, Z.; Xu, A.; Long, B. Energy from combustion of rice straw: Status and challenges to China. *Energy Power Eng.* **2011**, *3*, 325. [CrossRef]
39. Elmouatamid, A.; Ouladsine, R.; Bakhouya, M.; El Kamoun, N.; Khaidar, M.; Zine-Dine, K. Review of Control and Energy Management Approaches in Micro-Grid Systems. Energies 2021, 14, 168. [CrossRef]
40. Tabar, V.S.; Abbasi, V. Energy management in microgrid with considering high penetration of renewable resources and surplus power generation problem. Energy 2019, 189, 116264. [CrossRef]
41. Fukuzumi, S.; Lee, Y.M.; Nam, W. Fuel production from seawater and fuel cells using seawater. ChemSusChem 2017, 10, 4264–4276. [CrossRef][PubMed]
42. Sirisiriwat, A.; Pinom, W. Feasibility study of seawater electrolysis for photovoltaic/fuel cell hybrid power system for the coastal areas in Thailand. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: London, UK, 2017; Volume 241, p. 012041.
43. Morris, P.; Vine, D.; Buys, L. Residential consumer perspectives of effective peak electricity demand reduction interventions as an approach for low carbon communities. AlMS Energy 2016, 4, 536–556. [CrossRef]
44. Harsh, P.; Das, D. Energy management in microgrid using incentive-based demand response and reconfigured network considering uncertainties in renewable energy sources. Sustain. Energy Technol. Assess. 2021, 46, 101225. [CrossRef]
45. Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 2019, 103, 308–319. [CrossRef]
46. Davarzani, S.; Pisica, I.; Taylor, G.A.; Munisami, K.J. Residential Demand Response Strategies and Applications in Active Distribution Network Management. Renew. Sustain. Energy Rev. 2020, 138, 110567. [CrossRef]
47. Patnam, B.S.K.; Pindoriya, N.M. Demand response in consumer-Centric electricity market: Mathematical models and optimization problems. Electr. Power Syst. Res. 2020, 193, 106923. [CrossRef]
48. Yan, X.; Ozturk, Y.; Hu, Z.; Song, Y. A review on price-driven residential demand response. Renew. Sustain. Energy Rev. 2018, 86, 411–419. [CrossRef]
49. Cardoso, C.A.; Torriti, J.; Lorincz, M. Making demand side response happen: A review of barriers in commercial and public organisations. Energy Res. Soc. Sci. 2020, 64, 101443. [CrossRef]
50. Aalami, H.; Yousefi, G.; Moghadam, M.P. Demand response model considering EDRP and TOU programs. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6.
51. Jalili, H.; Sheikh-El-Eslami, M.K.; Moghadam, M.P.; Siano, P. Modeling of demand response programs based on market elasticity concept. J. Ambient Intell. Humaniz. Comput. 2019, 10, 2265–2276. [CrossRef]
52. Nakabi, T.A.; Toivanen, P. Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustain. Energy Grids Netw. 2021, 25, 100413. [CrossRef]
53. El Mentaly, L.; Amghar, A.; Salsah, H. The prediction of the maximum power of PV modules associated with a static converter under different environmental conditions. Mater. Today Proc. 2020, 24, 125–129. [CrossRef]
54. International Renewable Energy Agency. Renewable Energy Outlook: Egypt; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018.
55. Gamil, M.M.; Senjyu, T.; Takahashi, H.; Hemeida, A.M.; Krishna, N.; Lotfy, M.E. Optimal multi-objective sizing of a residential microgrid in Egypt with different ToU demand response percentages. Sustain. Cities Soc. 2021, 75, 103293. [CrossRef]
56. Guiatolini, S.V.M.; Yahyaoui, I.; Fardin, J.F.; Encarnação, L.F.; Tadeo, F. A review of fuel cell and energy cogeneration technologies. In Proceedings of the 2018 9th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 20–22 March 2018; pp. 1–6.
57. Abdel-Aal, H.; Zohdy, K.; Kareem, M.A. Hydrogen production using sea water electrolysis. Open Fuel Cells J. 2010, 3, 1–7. [CrossRef]
58. Donado, K.; Navarro, L.; Quintero M., C.G.; Pardo, M. HYRES: A multi-objective optimization tool for proper configuration of renewable hybrid energy systems. Energies 2019, 13, 26. [CrossRef]
59. Casson, L.W.; Bess, J.W. On-Site Sodium Hypochlorite Generation; Water Environment Federation: Alexandria, VA, USA, 2006; pp. 6335–6352.
60. Amos, W.A. Costs of Storing and Transporting Hydrogen; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1999.
61. Li, Z.; Xu, Y. Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Appl. Energy 2018, 210, 974–986. [CrossRef]
62. Hossain, M.A.; Pota, H.R.; Squartini, S.; Abdou, A.F. Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renew. Energy 2019, 136, 746–757. [CrossRef]
63. Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers. Manag. 2016, 128, 178–190. [CrossRef]
64. Heydari, A.; Askarzadeh, A. Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept. Appl. Energy 2016, 165, 601–611. [CrossRef]
65. Kirschen, D.; Strbac, G. Fundamentals of Power System Economics; John Wiley & Sons Ltd.: Chichester, UK, 2004.
66. Kiptoo, M.K.; Adewuyi, O.B.; Lotfy, M.E.; Senjyu, T.; Mandal, P.; Abdel-Akher, M. Multi-objective optimal capacity planning for 100% renewable energy-based microgrid incorporating cost of demand-side flexibility management. Appl. Sci. 2019, 9, 3855. [CrossRef]
67. Aalami, H.; Moghadam, M.P.; Yousefi, G. Demand response modeling considering interruptible/curtailable loads and capacity market programs. Appl. Energy 2010, 87, 243–250. [CrossRef]
68. Conteh, A.; Lotfy, M.E.; Adewuyi, O.B.; Mandal, P.; Takahashi, H.; Senju, T. Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets. *Sustainability* **2020**, *12*, 2653. [CrossRef]

69. Murata, T.; Ishibuchi, H. MOGA: Multi-objective genetic algorithms. In Proceedings of the IEEE International Conference on Evolutionary Computation, Perth, Australia, 29 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 289–294.