Charge Radius of Neutron-deficient ^{54}Ni and Symmetry Energy Constraints Using the Difference in Mirror Pair Charge Radii

Skyy V. Pineda,1,2 Kristian König,1 Dominic M. Rossi,3,4 B. Alex Brown,1,5 Anthony Incorvati,1,5 Jeremy Lantis,1,2 Kei Minamisono,1,5 Wilfried Nörtershäuser,3 Jorge Pickarewicz,6 Robert Powel,1,5 and Felix Sommer3

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
3Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
4GSI Helmholtzzentrum für Schwerionenforschung mbH, Planckstr. 1, 64291 Darmstadt, Germany
5Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
6Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Dated: June 22, 2021)

The nuclear root-mean-square charge radius of ^{54}Ni was determined with collinear laser spectroscopy to be $R(54\text{Ni}) = 3.737(3)$ fm. In conjunction with the known radius of the mirror nucleus ^{54}Fe, the difference of the charge radii was extracted as $\Delta R_{ch} = 0.049(4)$ fm. Based on the correlation between ΔR_{ch} and the slope of the symmetry energy at nuclear saturation density (L), we deduced $20 \leq L \leq 70$ MeV. The present result is consistent with the L from the binary neutron star merger GW170817, favoring a soft neutron matter EOS, and barely consistent with the PREX-2 result within 1σ error bands. Our result indicates the neutron-skin thickness of ^{48}Ca as $0.15 - 0.19$ fm.

Introduction — Knowledge of the slope of the symmetry energy L in the nuclear equation of state (EOS) is critical for the extrapolation to the higher densities [1] that are required to predict the properties of both super-heavy nuclei and neutron stars [2–4]. In the case of neutron stars, the “softness” or “stiffness” of the EOS has a direct link to the neutron star radius [5]. Note that a stiff EOS indicates that the pressure increases rapidly with increasing density. Conceptually, the symmetry energy is closely related to the difference between the energy per nucleon of pure neutron matter and symmetric nuclear matter. Given that symmetric nuclear matter saturates, L is proportional to the pressure of pure neutron matter at nuclear saturation density ρ_0 [6]. Different parameterizations of Skyrme energy density functionals show dramatic variations in the stiffness of the EOS [1], therefore making the extrapolations to higher densities uncertain. The stiffness of the EOS in the vicinity of ρ_0 is controlled by L, and although L cannot be directly determined through experiment, the neutron skin thickness ΔR_{np} of neutron rich nuclei is strongly correlated to L [7,8], which may then be used to set boundaries on its value [6].

The lead radius experiments PREX-1 [9] and PREX-2 [10] provide a direct probe of neutron densities via parity violating electron scattering. Given that the weak charge of the neutron is much larger than that of the proton, it paves an electroweak avenue to constrain the density dependence of the symmetry energy. Other electromagnetic methods involve a correlation between the electric dipole polarizability and the ΔR_{np} [11,12]. Such measurements have been performed in ^{208}Pb [13,14], ^{48}Ca [15], and in radioactive ^{69}Ni [16]. Besides terrestrial experiments, the binary neutron star merger GW170817 has placed important constraints on the EOS through the analysis of the tidal polarizability (or deformability) [17]. Various studies have aimed to translate the measurements on the neutron star merger into constraints on the EOS of dense neutron matter. However, whether the EOS is soft or stiff—which in turn translates into smaller or larger neutron star radii, respectively—is still under debate [17,20].

Another purely electromagnetic method to constrain L has been introduced in [6], where the ΔR_{np} is deduced from the difference in charge radii between a mirror pair. Assuming perfect charge symmetry, the neutron radius of a given nucleus should be equal to the proton radius of the corresponding mirror nucleus. The ΔR_{np} can then be obtained from the difference ΔR_{ch} of the root-mean-square (rms) charge radii R_{ch} of mirror nuclei ^{54}Ni [27] as $\Delta R_{np} = R_{ch}(\frac{A}{2}X_N) - R_{ch}(\frac{A}{2}Y_Z) = \Delta R_{ch}$, where $A = N + Z$ is the mass number, and N and Z are the neutron and proton number, respectively. In reality, however, the charge symmetry is broken by the Coulomb interaction that pushes protons out relative to neutrons, leading to a weaker correlation between ΔR_{np} and ΔR_{ch}. It turns out that ΔR_{ch} is strongly correlated with $|N - Z| \times L$ even when $|N - Z|$ is small. On the other hand, ΔR_{np} depends on both $|N - Z| \times L$ and the symmetry energy with the L dependence dominating at large $|N - Z|$ [6]. Such experiments provide a clean and largely model independent complement to the parity violating asymmetry experiments. In the present study, the mirror charge radii formalism is applied to the ^{54}Ni–^{54}Fe pair. The rms charge radius of ^{54}Ni was determined for the first time and then combined with the known radius of stable ^{54}Fe [28]. Although this pair has a smaller $|N - Z| = 2$ relative to our previous measurement on the ^{36}Ca–^{36}S mirror pair [29], the precise determination of the charge radius of ^{54}Ni provides a meaningful constraint on L, with input from modern nuclear models.
solid line is the fit to the data. The asymmetry parameter and the Lorentz width of the Voigt function were fixed to those obtained from the reference measurements on 58Ni and 60Ni. A typical spectrum of 60Ni is shown in Fig. (right) as an example of a stable isotope measurement.

The isotope shifts defined as $\delta\nu^{A,A'} = \nu^A - \nu^{A'}$ were extracted and summarized in Table I. The uncertainty is dominated by the statistical uncertainty of the 54Ni resonance centroid (7.5 MHz). A discussion of the systematic uncertainty contributions is detailed in [39]. From the obtained isotope shifts, the differential mean square (ms) charge radius was extracted as $\delta(\nu^2)^{A,A'} = (\delta\nu^{A,A'} - \mu^{A,A'} K_\alpha) / F + \mu^{A,A'} \alpha$ [42] with the offset parameter α, the field-shift factor F, the offset-dependent mass-shift factor K_α, and $\mu^{A,A'} = (m_A - m_A') / ((m_A + m_e) (m_A' + m_e))$, where m_A and m_A' are the nuclear masses, and m_e is the electron mass. The F and K_α were separately determined [31] by the King-fit analysis [33] using re-measured isotope-shifts of the stable isotopes, and are listed in Tab. I for 58Ni and 60Ni as reference isotopes. Here, the offset parameter α was chosen to remove the correlation between the field- and mass-shift parameters in the linear regression. The obtained differential ms and the rms charge radii are also listed in Tab. I. The differential ms charge radii were used together with the known rms charge radii for reference isotopes to determine the rms charge radius of 54Ni as $R^{(54)Ni} = \{(R^{(54)Ni})^2 + \delta(\nu^2)^{54,A'})^{1/2}$. The rms charge radii of 58Ni, 60Ni, and 54Fe were evaluated by combining tabulated values [28] for the Barrett radii $R_{k\alpha}$ from muonic spectroscopy and for the ratio of the radial moments V_2 from electron scattering, which yields the model-independent rms charge radii $R_{ch} = R_{k\alpha}/V_2$

Experimental Results

The observed resonance line of 54Ni is shown in Fig. (left). A Voigt function with an exponential low-energy tail to describe the asymmetry caused by inelastic collisions with the sodium vapor [34] was used to fit the 54Ni spectrum, and the fit result is shown as a solid line. The asymmetry parameter and the Lorentz width of the Voigt function were fixed to those obtained from the reference measurements on 58Ni and 60Ni. A typical spectrum of 60Ni is shown in Fig. (right) as an example of a stable isotope measurement.

The isotope shifts defined as $\delta\nu^{A,A'} = \nu^A - \nu^{A'}$ were extracted and summarized in Table I. The uncertainty is dominated by the statistical uncertainty of the 54Ni resonance centroid (7.5 MHz). A discussion of the systematic uncertainty contributions is detailed in [39]. From the obtained isotope shifts, the differential mean square (ms) charge radius was extracted as $\delta(\nu^2)^{A,A'} = (\delta\nu^{A,A'} - \mu^{A,A'} K_\alpha) / F + \mu^{A,A'} \alpha$ [42] with the offset parameter α, the field-shift factor F, the offset-dependent mass-shift factor K_α, and $\mu^{A,A'} = (m_A - m_A') / ((m_A + m_e) (m_A' + m_e))$, where m_A and m_A' are the nuclear masses, and m_e is the electron mass. The F and K_α were separately determined [31] by the King-fit analysis [33] using re-measured isotope-shifts of the stable isotopes, and are listed in Tab. I for 58Ni and 60Ni as reference isotopes. Here, the offset parameter α was chosen to remove the correlation between the field- and mass-shift parameters in the linear regression. The obtained differential ms and the rms charge radii are also listed in Tab. I. The differential ms charge radii were used together with the known rms charge radii for reference isotopes to determine the rms charge radius of 54Ni as $R^{(54)Ni} = \{(R^{(54)Ni})^2 + \delta(\nu^2)^{54,A'})^{1/2}$. The rms charge radii of 58Ni, 60Ni, and 54Fe were evaluated by combining tabulated values [28] for the Barrett radii $R_{k\alpha}$ from muonic spectroscopy and for the ratio of the radial moments V_2 from electron scattering, which yields the model-independent rms charge radii $R_{ch} = R_{k\alpha}/V_2$

Table I. Isotope shift, atomic parameters, differential ms and rms charge radii of 54Ni for $A' = 58$ and $A' = 60$ as the reference isotope are summarized.

A'	$A' = 58$	$A' = 60$
$\Delta\nu^{A,A'}$ / MHz	-1140.4 (8.2)	-1910.7 (7.9)
α / u fm2	417	388
K_α / GHz/u	929.8 (2.2)	954.0 (3.5)
F / MHz/fm2	-767 (70)	-804 (66)
$\delta(\nu^2)^{54,A'}$ / fm2	-0.235 (29)	-0.522 (20)
$R^{(54)Ni}$ / fm	3.738 (4)	3.737 (3)
as 3.7698 (16) fm, 3.8059 (17) fm and 3.6880 (17) fm, respectively. With the rms charge radii of 54Fe the difference in mirror charge radii was determined to be

$$
\Delta R_{ch} = R_{\alpha}^{(54)\text{Ni}} - R_{\beta}^{(54)\text{Fe}} = 0.049 \text{ (4) fm,}
$$

Theoretical radii — Predictions were made for the difference in charge radii of 54Ni and 54Fe using the 48 Skyrme energy-density functionals (EDF) [1] and the covariant density-functional (CODF) theory where a correlation between ΔR_{ch} and L was also observed [27].

For the $A = 36$ mirror pair [29], it was found that the Skyrme results are sensitive to the isoscalar (IS) or the isoscalar plus isovector (IS+IV) forms of the spin-orbit potential. However, the present $A = 54$ pair turns out to be insensitive to the forms. The IS results is about 0.003 fm larger in ΔR_{ch}, which is negligible, and therefore we adapted the standard IS+IV form in this paper.

The Skyrme [1] and CODF [14] calculations include the relativistic spin-orbit (RSO) correction to the charge radius [15], and were performed for spherical nuclei. It is known that the quadrupole correlations increase the rms radii when the saturation condition of isoscalar nuclear matter is taken into account [16]. In the present work, the quadrupole correlations were taken into account as a correction, which is discussed in the following.

The Bohr Hamiltonian starts with an expansion of the nuclear surface in terms of its multipole degrees of freedom

$$
R(\theta, \phi) = R_0 \left[1 + \sum_{\lambda, \mu} \alpha_{\lambda, \mu} Y_{\lambda, \mu}(\theta, \phi) \right],
$$

where R_0 is the radius of the nucleus when it has the spherical equilibrium shape, and $Y_{\lambda, \mu}$ is the spherical harmonic. The integrals of Eq. (1) involve $\beta^2 = \sum_{\lambda > 2} \sum_{\mu} | \alpha_{\lambda, \mu} |^2$. To order β^2, the volume integral of Eq. (1) is

$$
I_0 = \{ R_0^3 (4\pi + 3\alpha_0 \sqrt{4\pi} + 3\beta^2) \}/3.
$$

Proton ($q = p$), neutron ($q = n$) and matter ($q = m$) distributions are distinguished by using R_{0q}, α_q and β_q. For the matter density, if we impose the condition of saturation (that the average interior density remains constant), then the volume must be conserved, $I_0 = 4\pi R_{ch}^3/3$. This condition can be imposed by having

$$
\alpha_{0m} = -\frac{\beta_{2m}^2}{4\pi}.
$$

To order β^2, the r^2 integral is

$$
I_2 = \{ R_0^3 (4\pi + 5\alpha_0 \sqrt{4\pi} + 10\beta^2) \}/5.
$$

With the condition of volume conservation from Eq. (2), the matter ms radius is

$$
\langle r^2 \rangle_m = \frac{I_2}{I_0} = \left[1 + 5 \frac{\beta_{2m}^2}{4\pi} \right],
$$

where $\langle r^2 \rangle_{0m} = 3R_{ch}^2/5$ is the ms radius with no deformation. If $\beta_p = \beta_n = \beta_m$, then we can use Eq. (3) for protons. But if $\beta_p \neq \beta_n$, one must make some assumptions about the α_0 term. If we take $\alpha_{0p} = \alpha_{0n} = \alpha_{0m}$ for the volume correction, then

$$
\langle r^2 \rangle_p = \langle r^2 \rangle_{0p} \left[1 + \frac{2\alpha_{0p}}{\sqrt{4\pi}} + \frac{7}{4\pi} \beta_{2p}^2 \right] = \langle r^2 \rangle_{0p} \left[1 - \frac{2}{4\pi} \beta_{2p}^2 + \frac{7}{4\pi} \beta_{2p}^2 \right].
$$

For $\lambda = 2$, the β_p are related to the $B(E2, \lambda)_{pp}$ for $0^+ \rightarrow 2^+$ (in units of e^2) by

$$
\beta_p = 4\pi \sqrt{B(E2, \lambda)_{pp}}/(5\alpha_0 \langle r^2 \rangle_{0p}),
$$

where $\alpha_q = Z$ for protons. For β_n and β_m we have equivalent expressions involving neutrons with $\alpha_q = N$ and matter with $\alpha_q = A$. The calculated $B(E2, \lambda)_{pp}$ can be compared to electromagnetic experimental results, whereas $B(E2, \lambda)_m$ and $B(E2, \lambda)_m$ are much less well known from hadronic scattering experiments. The $B(E2, \lambda)_m$ was calculated from the full-basis configuration interaction calculations in the fp shell-model space with the GFRX1A Hamiltonian [27]. The basic quantities calculated are the model-space matrix elements denoted by A_q. The full matrix element $M_q = \sqrt{B(E2, \lambda)_{pp}}$ was obtained with “effective charges” δ_{ov} that arise from $2\hbar\omega$ admixtures of core nucleons (c) induced by the valence (fp) nucleons (v) as $M_p = A_p(1 + \delta_{pv}) + A_n\delta_{vn}$ and $M_n = A_n(1 + \delta_{nv}) + A_p\delta_{vp}$. Here $M_m = M_p + M_n$. We take the approximation that $\delta_{pp} = \delta_{nn}$ and $\delta_{pn} = \delta_{np}$. The isoscalar effective charge was evaluated using the data in [38] as $\delta_0 = \delta_{pp} + \delta_{nn} \approx 1.00$. Comparing the fp model-space calculations to data for mirror transitions in $A = 51$ [40] found $\delta_1 \approx -0.60$. Therefore, $\delta_{pp} = 0.80$ and $\delta_{nn} = 0.20$ were used. For the A_0 the radial matrix elements are calculated with harmonic-oscillator radial wavefunctions with $\hbar\omega = 45A^{-1/3} - 25A^{-2/3}$ [50].

For 54Fe we obtain $B(E2, \lambda)_{pp} = 619 e^2 fm^4$ compared to the experimental value of 640(13) $e^2 fm^4$ [21]. The value for 54Ni is $B(E2, \lambda)_{pp} = 467 e^2 fm^4$ compared to an experimental value of $<800 e^2 fm^4$ [21]. There is additional $E2$ strength up to about 4 MeV in excitation energy in the calculations and in experiment [21].

Use of the collective model for the radius change can be justified by treating the lowest 2^+ state as a member of the ground-state band. The results for $(\beta_p, \beta_n, \beta_m)$ are $(0.185, 0.149, 0.166)$ for 54Fe and $(0.149, 0.185, 0.166)$ for 54Ni. The deformation increase in the rms radius is 0.026 fm for 54Fe and 0.014 fm for 54Ni.

Discussion — The resulting quadrupole correction factor for ΔR_{ch} is -0.012 fm, which is added to the Skyrme and CODF calculations performed in the spherical basis. If we were to include the higher 2^+ states in 54Ni the quadrupole correction factor would be -0.012 fm. The results are shown in Fig. 2 by the colored points. The color indicates the neutron skin of 208Pb: 0.12 fm (red), 0.16 fm (orange), 0.20 fm (green), and 0.24 fm (blue) for Skyrme calculations. Also results of the CODF calculations are shown in crosses. The quadrupole correlations are explicitly contained in the CHFB+B+DCH calculations using the D1S Hamiltonian.
This work PREX-2 GW170817

FIG. 2. ΔR_{ch} as a function of L at ρ_0. The experimental result is shown as a horizontal gray band. The solid circles are results of Skyrme EDF and the crosses are for the CODF calculations. The upper figure shows comparison with the GW170817 and the PREX-2.

given in [52, 53]. However, their $B(E2, \uparrow)p$ values of 1310 and 1575 e² fm⁴ for 54Ni and 54Fe, respectively, are very different from the fp model-space calculations and experiment.

The Skyrme and CODF calculations show consistent agreement in the correlation between ΔR_{ch} and L. In comparison to these calculations, the experimental one-sigma error band shown in Fig. 2 in gray implies a value of L in the range of 20-70 MeV. In the top panel of Fig. 2 we compare the present result with the range for L of 11-65 MeV deduced from GW170817 [54], to which our result is consistent, suggesting a relatively soft neutron matter EOS. The present result is also compared against the recent PREX-2 result of $\Delta R_{np} = 0.283 (71) \text{ fm}$ [10] that implies $L = 106 (37) \text{ MeV}$ [55]. Our result is barely consistent within 1σ error bands with the PREX-2, which indicates rather stiff EOS. It is noted that our previous results on the mirror pair 36Ca-36S indicates the range of $L = 5-70 \text{ MeV}$ [29], which is consistent with the present results. This implies that the theoretical model dependence is well under control. However, the $A = 36$ result does not include the quadrupole correlation. It is expected to be small, and once the experimental $B(E2)$ for the $A = 36$ pair become available, the range from the $A = 36$ will be updated.

Finally the correlation between ΔR_{ch} and $\Delta R_{np}(^{48}\text{Ca})$ is shown in Fig. 3. Our ΔR_{ch} restricts the $\Delta R_{np}(^{48}\text{Ca})$ to the interval of $0.15-0.19 \text{ fm}$. The connection to ^{48}Ca is timely given that the Calcium Radius EXperiment (CREX) has been completed [56], where experimental error of about $\pm 0.02 \text{ fm}$ is expected, which is comparable to the error obtained here. It is of particular interest whether CREX will confirm the soft EOS or reveal a larger ΔR_{np} as the PREX-2.

Summary — The ΔR_{ch} between mirror nuclei 54Ni-54Fe was evaluated, and compared with the Skyrme EDFs and the CODF theories. The ΔR_{ch} and L correlation implies a range of $L = 20-70 \text{ MeV}$, and is consistent with the L from GW170817 and our previous result in the 36Ca-36S pair, suggesting a soft neutron matter EOS. Our result is barely consistent within 1σ error bands with the PREX-2 that indicates a stiff EOS. The present ΔR_{ch} also predicts the $\Delta R_{np}(^{48}\text{Ca})$ as $0.15-0.19 \text{ fm}$. More data on the mirror charge radii in different mass regions is required to properly assess the model dependence and to set tighter limits on the L.

Acknowledgements This work is support in part by the National Science Foundation grant No. PHY-15-65546 and by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award DE-FG02-92ER40750, and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 279384907 - SFB 1245. We thank Nathalie Pillet for providing the CHFB+5DCH calculation results for 54Ni and 54Fe.

* pineda@frib.msu.edu
minamison@nscl.msu.edu

[1] B. Alex Brown, Neutron radii in nuclei and the neutron equation of state, Physical Review Letters 85, 5296 (2000).

[2] C. J. Horowitz and J. Piekarewicz, Neutron star structure and the neutron radius of ^{208}Pb, Phys. Rev. Lett. 86, 5647 (2001).

[3] A. W. Steiner, J. M. Lattimer, and E. F. Brown, The neutron star mass-radius relation and the equation of state of dense matter, Astrophysics 765, L5 (2013).

[4] D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Homma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, H. Sakurai, Y. Shiga, P.-A. Söderström, T. Sumikama, H. Suzuki, R. Taniguchi, Y. Utsumi, J. J. Valiente-Dobón, and K. Yoneda, Nature 502, 207 (2013).

[5] J. M. Lattimer and M. Prakash, Neutron Star Observations: Progosis for Equation of State Constraints, Phys. Rept. 442, 109 (2007).

[6] B. A. Brown, Mirror charge radii and the neutron equation of state, Physical Review Letters 119, 122502 (2017).

[7] X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Neutron skin of ^{208}Pb, nuclear symmetry energy, and the parity radius experiment, Phys. Rev. Lett. 106, 252501 (2011).

[8] P.-G. Reinhard and W. Nazarewicz, Nuclear charge and mirror radii of nuclei: Trend analysis in skyrme density-functional-theory approach, Physical Review C 93, 051303(R) (2016).

[9] S. Abrahamyan et al. (PREX Collaboration), Measurement of the neutron radius of ^{208}Pb through parity violation in electron scattering, Physical Review Letters 108, 112502 (2012).

[10] D. Adhikari et al., Accurate determination of the neutron skin thickness of ^{208}Pb through parity-violation in electron scattering, Phys. Rev. Lett. 126, 172502 (2021).

[11] P.-G. Reinhard and W. Nazarewicz, Information content of a new observable: The case of the nuclear neutron skin, Phys. Rev. C 81, 051303(R) (2010).

[12] J. Piekarewicz, Pygmy resonances and neutron skins, Physical Review C 83, 034319 (2011).

[13] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, et al., Complete electric dipole response and the neutron skin in ^{208}Pb, Phys. Rev. Lett. 107, 062502 (2011).

[14] X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz, Electric dipole polarizability in ^{208}Pb: Insights from the droplet model, Physical Review C 88, 024316 (2013).

[15] J. Birkhan et al., Electric dipole polarizability of ^{48}Ca and implications for the neutron skin, Phys. Rev. Lett. 118, 252501 (2017).

[16] D. M. Rossi, P. Údrich, F. Aksouh, H. Alvarez-Pol, T. Aumann, J. Benlliure, M. Böhmer, K. Boretzky, E. Casarejos, M. Chartier, A. Chatiillon, D. Cortina-Gil, U. Datta Pramanik, H. Emling, O. Ershova, B. Fernandez-Dominguez, H. Geissel, M. Gorska, M. Heil, H. T. Johannson, A. Junghans, A. Kelic-Heil, O. Kiselev, A. Klimkiewicz, J. V. Kratz, R. Krücken, N. Kurz, M. Labiche, T. Le Bleis, R. Lemmon, Y. A. Litvinov, K. Mahata, P. Maierbeck, A. Miovesyan, T. Nilsson, C. Nociforo, R. Palit, S. Paschalis, R. Plag, R. Reifarth, D. Savran, H. Scheit, H. Simon, K. Sümmerer, A. Wagner, W. Waluś, H. Weick, and M. Winkler, Measurement of the dipole polarizability of the unstable neutron-rich nucleus ^{68}Ni, Physical Review Letters 111, 242503 (2013).

[17] B. P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration), GW170817: Measurements of neutron star radii and equation of state, Physical Review Letters 121, 161101 (2018).

[18] B. P. Abbott et al. (The LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of gravitational waves from a binary neutron star inspiral, Physical Review Letters 119, 161101 (2017).

[19] F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Neutron skins and neutron stars in the multi-messenger era, Phys. Rev. Lett. 120, 172702 (2018).

[20] I. Tews, J. Margueron, and S. Reddy, Critical examination of constraints on the equation of state of dense matter obtained from GW170817, Phys. Rev. C 98, 045804 (2018).

[21] M. Tsang, W. Lynch, P. Danielewicz, and C. Tsang, Symmetry energy constraints from GW170817 and laboratory experiments, Physics Letters B 795, 533 (2019).

[22] Y. Zhang, M. Liu, C.-J. Xia, Z. Li, and S. K. Biewal, Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars, Physical Review C 101, 034303 (2020).

[23] H. Shen, F. Ji, J. Hu, and K. Sumiyoshi, Effects of symmetry energy on the equation of state for simulations of core-collapse supernovae and neutron-star mergers, The Astrophysical Journal 891 (2020).

[24] J. Hu, S. Bao, Y. Zhang, K. Nakazato, K. Sumiyoshi, and H. Shen, .

[25] Y. Li, H. Chen, D. Wen, and J. Zhang, Constraining the nuclear symmetry energy and properties of the neutron star from GW170817 by bayesian analysis, The European Physical Journal A 57, 1 (2021).

[26] J. Esteve et al. (SrRIT Collaboration), Probing the symmetry energy with the spectral pion ratio, Phys. Rev. Lett. 126, 162701 (2021).

[27] J. Yang and J. Piekarewicz, Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin, Phys. Rev. C 97, 014314 (2018).

[28] H. K. Fricke, G., Nuclear Charge Radii (Springer, Berlin Heidelberg, 2004).

[29] B. A. Brown, K. Minamisono, J. Piekarewicz, H. Hergert, D. Garand, A. Klose, K. König, J. D. Lantis, Y. Liu, B. Maaß, A. J. Miller, W. Nörtershäuser, S. V. Pineda, R. C. Powel, D. M. Rossi, F. Sommer, C. Sumithrarachchi, A. Teigelhöfer, J. Watkins, and R. Wirth, Implications of the ^{36}Ca-^{38}S and ^{38}Ca-^{36}Ar difference in mirror charge radii on the neutron matter equation of state, Physical Review Research 2, 022035(R) (2020).

[30] C. Sumithrarachchi, D. Morrissey, S. Schwarz, K. Lund, G. Bollen, R. Ringle, G. Savard, and A. Villari, Beam thermalization in a large gas catcher, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 463, 305 (2020).

[31] K. Minamisono, P. F. Mantica, A. Klose, S. Vinnikova, A. Schneider, B. Johnson, and B. R. Barquest, Commissioning of the collinear laser spectroscopy system in the becola facility at nscl, Nuclear Instruments and Methods
in Physics Research A 709, 85 (2013)
[32] D. M. Rossi, K. Minamisono, B. R. Barquest, G. Bollen, K. Cooper, M. Davis, K. Hammerton, M. Hughes, P. F. Mantica, D. J. Morrisey, R. Ringle, J. A. Rodríguez, C. A. Ryder, S. Schwarz, R. Strum, C. Sumithrarachchi, D. Tarazona, and S. Zhao, A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams, Review of Scientific Instruments 85, 093503 (2014)
[33] B. R. Barquest, G. Bollen, P. F. Mantica, K. Minamisono, R. Ringle, and S. Schwarz, Rf beam cooler and buncher for collinear laser spectroscopy of rare isotopes, Nucl. Instrum. Methods Phys. Res. A 866, 18 (2017)
[34] A. Klose, Tests of atomic charge-exchange cells for collinear laser spectroscopy, Spectrometers, Detectors and Associated Equipment 678, 114 (2012)
[35] C. Ryder, K. Minamisono, H. Asberry, B. Isherwood, P. Mantica, A. Miller, D. Rossi, and R. Strum, Population distribution subsequent to charge exchange of 29.85 kev n1+ on sodium vapor, Spectrochimica Acta Part B: Atomic Spectroscopy 113, 16 (2015)
[36] B. Maaß, K. König, J. Kramer, A. J. Miller, K. Minamisono, W. Nörtershäuser, and F. Sommer, A 4π fluorescence detection region for collinear laser spectroscopy, arXiv:2007.02658 [physics.ins-det]
[37] P. Campbell, H. L. Thayer, J. Billowes, P. Dendooven, K. T. Flanagan, D. H. Forest, J. A. R. Griffith, J. Huikari, A. Jokinen, R. Moore, A. Nieminen, G. Tungate, S. Zemlyanoi, and J. Åystö, Laser spectroscopy of cooled zirconium fission fragments, Physical Review Letters 89, 082501 (2002)
[38] A. Nieminen, P. Campbell, J. Billowes, D. H. Forest, J. A. R. Griffith, J. Huikari, A. Jokinen, I. D. Moore, R. Moore, G. Tungate, and J. Åystö, On-line ion cooling and bunching for collinear laser spectroscopy, Physical Review Letters 88, 094801 (2002)
[39] K. König, K. Minamisono, J. Lantis, S. Pineda, and R. Powel, Beam energy determination via collinear laser spectroscopy, Physical Review A 103, 032806 (2021)
[40] R. Powel, Appl. Phys. B in press (2021).
[41] K. König, F. Sommer, J. Lantis, K. Minamisono, W. Nörtershäuser, S. Pineda, and R. Powel, Isotope-shift measurements and king-fit analysis in nickel isotopes, Physical Review C 103, 054305 (2021)
[42] M. Hammen, W. Nörtershäuser, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budinčević, B. Cheal, K. T. Flanagan, N. Frömmgen, G. Georgiev, C. Geppert, M. Kowalska, K. Kreim, A. Krieger, W. Nazarewicz, R. Neugart, G. Neyens, J. Papuga, P.-G. Reinhard, M. M. Rajabali, S. Schmidt, and D. T. Yordanov, From calcium to cadmium: Testing the pairing functional through charge radii measurements of $^{100−130}$Cd, Physical Review Letters 121, 102501 (2018)
[43] W. H. King, Isotope Shifts in Atomic Spectra, 1st edn. (Springer Science+Business Media, New York, 1984).
[44] J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, and G. F. Bertsch, Structure of even-even nuclei using a mapped collective hamiltonian and the d1s gogny interaction, Phys. Rev. C 81, 014303 (2010)
[45] C. J. Horowitz and J. Piekarewicz, Impact of spin-orbit currents on the electroweak skin of neutron-rich nuclei, Physical Review C 86, 045503 (2012)
[46] G. F. Bertsch, 55, 245 (2019).
[47] M. Honma, T. Otsuka, B. Brown, and T. Mizusaki, Shell-model description of neutron-rich pf-shell nuclei with a new effective interaction gxp1, Euro. Phys. J. A 25 (1), 499 (2005)
[48] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, New effective interaction for pf-shell nuclei and its implications for the stability of the $N=Z=28$ closed core, Physical Review C 69, 034335 (2004)
[49] R. du Rietz, J. Ekman, D. Rudolph, C. Fahlander, A. Dewald, O. Möller, B. Saha, M. Axiotis, M. A. Bentley, C. Chandler, G. de Angelis, F. DellaVedova, A. Gadea, G. Hammond, S. M. Lenzi, N. Marginian, D. R. Napoli, M. Nespolo, C. Rusu, and D. Tonev, Effective charges in the fp shell, Physical Review Letters 93, 222501 (2004)
[50] J. Blomqvist and A. Molinari, Collective 0+ vibrations in even spherical nuclei with tensor forces, Nucl. Phys. A 106, 545 (1968)
[51] K. L. Yurkewicz, D. Bazin, B. A. Brown, C. M. Campbell, J. A. Church, D. C. Dinca, A. Debarboulo, J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, and G. F. Bertsch, Structure of neutron-rich pf-shell nuclei with a new effective interaction gxp1, Euro. Phys. J. A 25 (1), 499 (2005)
[52] J. Decharge and D. Gogny, Hartree-fock-bogolyubov calculations with the d1 effective interaction on spherical nuclei, Physical Review C 21, 1568 (1980)
[53] J.-F. Berger, M. Girod, and D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission, Comput. Phys. Commun. 63, 365 (1991)
[54] C. A. Raithel and F. Özel, Measurement of the nuclear symmetry energy parameters from gravitational-wave events, Astrophys. J. 885, 121 (2019)
[55] B. T. Reed, F. J. Fatuleyev, C. J. Horowitz, and J. Piekarewicz, Implications of PREX-II on the equation of state of neutron-rich matter, Physical Review Letters 126, 172503 (2021)
[56] CREX: Parity violating measurement of the weak charge distribution of 48Ca, Hallaweb.jlab.org/pparity/prex/crex2013_v7.pdf.