Three-dimensional human skin models to understand Staphylococcus aureus skin colonization and infection

Lauren Popov¹, Joanna Kovalski², Guido Grandi³, Fabio Bagnoli³ and Manuel R. Amieva¹,4*

1 Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
2 Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
3 Novartis Vaccines, Siena, Italy
4 Pediatrics, Stanford University School of Medicine, Stanford, CA, USA

Staphylococcus aureus is both a major bacterial pathogen as well as a common member of the human skin microbiota. Due to its widespread prevalence as an asymptomatic skin colonizer and its importance as a source of skin and soft tissue infections, an improved understanding of how S. aureus interacts with, grows within, and breaches the stratified layers of the epidermis is of critical importance. Three-dimensional organotypic human skin culture models are informative and tractable experimental systems for future investigations of the interactions between S. aureus and the multi-faceted skin tissue. We propose that S. aureus virulence factors, primarily appreciated for their role in pathogenesis of invasive infections, play alternative roles in promoting asymptomatic bacterial growth within the skin. Experimental manipulations of these cultures will provide insight into the many poorly understood molecular interactions occurring at the interface between S. aureus and stratified human skin tissue.

Keywords: Staphylococcus aureus, MRSA, skin, colonization, organ culture
and superficially into the outer ear pinna (23). This model has been used to examine the immune response to a superficial *S. aureus* skin infection (23). With this notable exception, nearly all of the existing *S. aureus* animal skin models require severe mechanical disruption of the skin to facilitate bacterial growth, such as the subcutaneous foot pad model, the scalpel wound model, or the subcutaneous skin abscess model (24–27). While these models are extremely useful for studying pathogenesis, they neither facilitate observation of the replicative niche of *S. aureus* within an intact tissue, nor address how the transition of *S. aureus* from an asymptomatic colonization state to a more invasive soft tissue or systemic infection might occur.

Due to the need for a physiologically relevant *in vitro* model system to dissect the interactions of *S. aureus* with intact human skin, we have modified an existing 3D organotypic human skin tissue model to examine the processes of staphylococcal skin colonization and infection (28, 29). An appreciation of the inherent limitations of 2D cultures for understanding skin biology has motivated the development of many tools to study stratified human skin tissue over the past several decades (30–32). Only recently, microbiologists have begun to capitalize on these advancements and utilize 3D organotypic human skin models to examine the specific interactions between the human skin and clinically relevant viral, bacterial, and fungal species (31, 33–36).

Established models for studying stratified human skin fall into two main categories, namely *ex vivo* human skin explant cultures and regenerated 3D organotypic models derived from primary cells and/or human cell lines. All 3D skin models are relatively labor and time intensive when compared to traditional 2D skin models using keratinocyte-derived cell lines. *Ex vivo* human skin explants, typically acquired from neonatal foreskin, surgical, or cadaveric tissues, can be maintained in cell culture media directly or on supports in an air–liquid interface and remain viable in culture for up to 2 weeks. Skin explants have the advantage of containing all resident cell types of the epidermis and dermis as well as skin appendages; however, there are limited options for experimental manipulation of host genetics as well as restricted availability of such tissue samples. Organotypic 3D skin models (sometimes referred to as reconstructed skin models) are generally comprised of primary or immortalized human keratinocytes, grown on an air–liquid interface on an extracellular support matrix, which can be seeded with fibroblasts (32, 37, 38). Other relevant cell types have been incorporated into organotypic skin models including melanocytes, Langerhans cells, as well as endothelial and nervous cells [reviewed in Ref. (30)]. Organotypic 3D stratified human skin cultures comprised of immortalized human cell lines such as the widely studied HaCaT cell line do not reflect the intrinsic genetic variability of cultures cultivated using primary keratinocytes, leading some to argue that models built using the former cells are more reproducible (32). On the other hand, HaCaT 3D organotypic cultures exhibit differentiation and stratification deficiencies when compared to primary keratinocyte 3D organotypic skin cultures (39–41).

In the 3D organotypic human epidermal tissue model we have modified to study *S. aureus* colonization and infection, primary human keratinocytes and fibroblasts are isolated from fresh discarded neonatal foreskin specimens (28, 29). Fibroblasts are seeded into pieces of devitalized human dermal tissue derived from cadaveric donors to provide the underlying support matrix. Keratinocytes are then seeded on top of the fibroblast-populated dermis and grow at the air–liquid interface (*Figure 1B*). After several days of growth, the keratinocytes fully differentiate, generating a basement membrane and all of the stratified epidermal layers, including the outermost squames of the stratum corneum (*Figure 1A*). The resulting 3D human organotypic tissues are composed entirely of human protein and cells, and unlike murine skin these human organotypic tissues recapitulate the thickness and most of the cellular architecture of the human epidermis and underlying dermis. A limitation of this model is the high genetic variability of skin cultures due to the use of primary cells from heterogeneous donors. Another feature of the model that needs to be improved in the future is the absence of cell types other than keratinocytes and fibroblasts, and skin appendages such as hair follicles and apocrine and eccrine sweat glands.

Epicutaneous infections of these 3D human skin cultures with *S. aureus* USA300 constitutively expressing GFP allow us to follow the bacteria during the colonization process over time. Overnight colonies of bacterial cultures grown on agar plates are re-suspended in Hanks buffer, and the inoculum is applied to the air interface of the skin culture using a pipette tip. At various times after infection, the skin cultures are harvested into paraformaldehyde fixative and further processed for cryosectioning. Using confocal microscopy to generate 3D images of infected skin tissue, we can examine the bacterial skin interface both from a “top-down” view (*Figures 2B,D*) as well as by looking at cross-sectional slices (*Figure 2C*). We have tested whether the bacteria are capable of growing on the regenerated human epidermis without exogenous addition of nutrients or media. By starting with a very small inoculum so that mainly single bacteria adhere to the corneocyte surface, we can follow the fate of the microbes over time and determine whether they grow and their preferential replication niche. By 2 days post-infection, the bacteria have expanded to form microcolonies localized at different levels within the stratum corneum of the epidermis (*Figure 2*, compare *Figures 2A,B* to later stages of growth in *Figures 2C,D*). Experiments done with antibiotics added to the basal media reveal this bacterial growth depends on direct interactions with the keratinocytes and not from contact with the cell culture media in the basolateral compartment of the skin cultures (data not shown).

This model system will allow us to query multiple poorly understood aspects of the interactions between *S. aureus* and skin tissue. For example, we can more precisely identify the replicative niche of *S. aureus* within the skin. Does a deeper, quiescent reservoir population of bacteria seed a more rapidly expanding population of surface associated bacteria in the stratum corneum? In addition to examining the location of bacterial attachment and growth during colonization, we can use this experimental system to observe a more pathogenic bacterial invasion of the epidermis. By modulating the maturity of the skin cultures at the time of infection, we can create conditions where bacteria are interacting with nucleated keratinocytes localized to more basal layers of the epidermis.

Unlike human or porcine skin explant models, a key advantage of an *in vitro* 3D epidermal organotypic system is that it allows the study of skin colonization and infection processes by...
experimentally controlling both the skin tissue as well as the bacteria (42–44). In this model, the contribution of specific host keratinocyte factors to generate an effective epidermal barrier or to provide critical innate immune responses can be examined. Human keratinocytes treated with RNAi against a gene of interest prior to seeding the dermis generate skin tissue, which is stably knocked-down for a particular gene of interest (28, 29). By then infecting these “custom knocked-down” skin tissues, in the future we can examine how tissues deficient in a particular structural or innate immune product may alter the replicative niche of S. aureus.

Specifically, this approach could prove useful to assess the role of the host protein filagrin in staphylococcal infections of skin cultures (45). A better understanding of staphylococcal interactions with filagrin-depleted skin is relevant due to the contribution of filagrin to the pathology of atopic dermatitis, a dermatological disease where the same epidermal tissue is co-infected with wild type S. aureus (WT) and isogenic mutant S. aureus strains. Each strain can be tracked via unique fluorophores, allowing observation of the fate of WT and mutant populations within the same stratified human tissue over time.

Examining the immune response to S. aureus cutaneous colonization and infections is an important potential application of a 3D human skin culture system. The bi-dimensional nature of traditional S. aureus infections of immune cell cultures in vitro...
FIGURE 2 | *Staphylococcus aureus* adherence, growth, and localization can be observed within 3D organotypic human epidermal tissues. (A) 3D confocal microscopy reconstruction of an infected (*T* = 1 h) 5-day-old 3D organotypic human epidermal tissue. *S. aureus* USA300 GFP-expressing bacteria (in green) are visible attached to the surface squames; filamentous actin is red, and nuclei are blue. Scale bar in all panels corresponds to 10 µm. (B) Top-down view of bacterial inoculum in (A), visualized immediately after infection. (C) Cross-sectional view of an 8-day-old 3D organotypic human epidermal tissue, infected with *S. aureus* USA300 GFP for 2 days. Bacteria (in green) are visible throughout the squames in the stratum corneum (loricrin in white). Filamentous actin is red and nuclei are in blue. (D) After 2 days of growth on the organotypic epidermal tissue, *S. aureus* USA300 GFP has started to form visible microcolonies within the squames in the stratum corneum in this top-down view (loricrin in white). Inset depicts a cross-sectional view located along the vertical line with arrows revealing a large staphylococcal microcolony.

forces direct interactions between the bacteria and immune cells, which are not likely to represent the most physiologically relevant way in which an immune cell would encounter *S. aureus*. By incorporating relevant immune cell types such as Langerhans cells or neutrophils into the 3D skin culture system, future investigations could examine how *S. aureus* and immune cells interact with one another in stratified human epidermal tissue. Other investigators have successfully incorporated “Langerhans-like” immune cells into similar 3D dermatological skin cultures, although to our knowledge, these models have not yet been infected for use in microbiology studies (56–58). Additionally, treatment with antibodies directed against *S. aureus* or addition of recombinant cytokines in the basolateral media of the skin cultures could allow examining impact of immune response to *S. aureus* in the localized cutaneous setting. As more *S. aureus* vaccines move forward into clinical trials, it remains totally unknown how an efficacious antibody response to vaccination may impact *S. aureus* colonization burden (59). Studies using a 3D organotypic human epidermal tissue model will prove valuable in assessing how immunization against *S. aureus* might alter bacterial population behavior on the epidermis or protect against invasive epidermal infections.

In order to better understand staphylococcal colonization and the transition to invasive infections, we must study *S. aureus* in its natural habitat: the human stratified squamous keratinized epithelium. Our group and others have begun to use organotypic 3D human skin equivalent cultures to experimentally probe *S. aureus* colonization and infections (36, 60). It is our hope that moving toward more physiologically relevant model systems, which capture the complex biology of the skin, will allow us to better understand the critical interface between our most important tissue barrier and *S. aureus*.

REFERENCES

1. McCaig LF, McDonald LC, Mandal S, Jernigan DB. *Staphylococcus aureus*-associated skin and soft tissue infections in ambulatory care. *Emerg Infect Dis* (2006) 12:1715–23. doi:10.3201/eid1211.060190

2. Moran GI, Amii RN, Abrahamian FM, Talan DAD. Methicillin-resistant *Staphylococcus aureus* in community-acquired skin infections. *Emerg Infect Dis* (2005) 11:928–30. doi:10.3201/eid1106.040641
Kugelberg E, Cove JHI. Staphylococcal resistance revisited: community-acquired methicillin-resistant Staphylococcus aureus—an emerging problem for the management of skin and soft tissue infections. Curr Opin Infect Dis (2003) 16:103–24. doi:10.1097/01.qcd.00001432.20030400.00007

Grice EA, Segre JHI. The skin microbiome. Nat Rev Microbiol 2011 9:244–53. doi:10.1038/nrmicro2537

Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Environ Microbiol (1975) 30:381–95.

Kluytmans JJ, van Belkum AA, Verbrugh HA. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev (1997) 10:505–20.

Eriksson NH, Epskamp FF, Rosdahl VT, Jensen KK. Carriage of Staphylococcus aureus in random 104 healthy persons during a 19-month period. Bull Entomol Res (1995) 85:51–60.

Noble WC, Valkenburg HA, Wolters CHC. Carriage of Staphylococcus aureus in random samples of a normal population. J Hyg (Lond) (1967) 65:567–73. doi:10.1017/S002217170004699X

Peacock SJ, Justice AA, Griffiths DD, de Silva GD, Kantanzou MN, Crook DD, et al. Determinants of acquisition and carriage of Staphylococcus aureus in infancy. J Clin Microbiol (2003) 41:5718–25. doi:10.1128/JCM.41.12.5718-5723.2005

Schechter-Perkins EM, Mitchell PM, Murray KA, Rubin-Smith JE, Weir S, Gupta K. Prevalence and predictors of nasal and extranasal staphylococcal colonization in patients presenting to the emergency department. Ann Emerg Med (2011) 57:492–9. doi:10.1016/j.annemergmed.2010.11.024

Yang ES, Tan JJ, Eells SS, Rieg GG, Tagudar GG, Miller LGL. Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect (2010) 16:625–31. doi:10.1111/j.1469-0691.2009.02836.x

McKinnell JA, Huang SS, Eells SJ, Rieg GG, Tagudar GG, Miller LGL. Body site colonization and nasal extranasal carriage in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect (2010) 16:625–31. doi:10.1111/j.1469-0691.2009.02836.x

Welsh JB, Rouphael NG, Smith AL, Greer KE, Emslie A, et al. Colonization status and nasal carriage of methicillin-resistant Staphylococcus aureus in patients with community-acquired pneumonia. Clin Infect Dis (2013) 56:2459–64. doi:10.1093/acid /aac.55.5.2459

Hogk I, Rupp S, Burger-Kentischer A. 3D tissue model for herpes simplex virus infection. Methods Mol Biol (2013) 1064:239–51. doi:10.1007/978-1-62703-601-6_17

Schaller M, Schackert K, Korting HC, Januschke E, Hube B. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J Invest Dermatol (2000) 114:712–7. doi:10.1046/j.1523-1747.2000.00935.x

Soong G, Chau J, Parker D, Prince A. Staphylococcus aureus activation of caspase 1/calcium signaling mediates invasion through human keratinocytes. J Invest (2012) 205:571–9. doi:10.1038/tfnids.2012444

Gangatikar P, Paulet-Fifield S, Li A, Rossi R, Kaur P. Establishment of 3D organotypic cultures using human neonatal epithelial cells. Nat Protoc (2007) 2:178–86. doi:10.1038/nprot.2006.448

Krisha S, Miller LS. Host-pathogen interactions between the skin and Staphylococcus aureus. Curr Opin Microbiol (2012) 15:28–35. doi:10.1016/j.mib.2011.11.003

O’Brien LM, Walsh EI, Massey RC, Peacock SJ, Foster TJT. Staphylococcus aureus clumping factor B promotes adherence to human type I cytokine receptor 10: implications for nasal colonization. Cell Microbiol (2002) 4:759–70. doi:10.1046/j.1462-5882.2002.00231.x

Orsunko CC, Hahn BL, Sohlgne P. Clearance of experimental cutaneous Staphylococcus aureus infections in mice. Arch Dermatol Res (2010) 302(5):375–82. doi:10.1007/s00420-010-1030-y

Kanzaki H, Morishita Y, Akiyama H, Arata J. Adhesion of Staphylococcus aureus to horary layer: role of fibrinogen. J Dermatol Sci (1996) 12:132–9. doi:10.1016/0923-1819(95)00472-6

Abe Y, Akiyama H, Arata J. Furuncle-like lesions in mouse experimental skin infections with Staphylococcus aureus. J Dermatol (1993) 20:198–202.

Kugelberg E, Norstrom T, Petersen TK, Duvold T, Andersson DJ, Hughes D. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother (2005) 49:3435–41. doi:10.1128/AAC.49.8.3435-3441.2005

Prabhakara R, Foreman O, De Pascalis R, Lee GM, Plaut RD, Kim SY, et al. An epicutaneous model of community-acquired Staphylococcus aureus skin infections. Infect Immun (2013) 81:1906–15. doi:10.1128/IAI.01304-12

Nippe N, Varga G, Holzinger D, Loelhr B. Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response. J Invest Dermatol (2010) 131(1):125–32. doi:10.1038/jid.2010.282

Cho JS, Zussman J, Donegan NP, Garcia NC, Uslan DZ, et al. Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. J Invest Dermatol (2011) 131:907–15. doi:10.1038/jid.2010.417

Kobayashi SD, Malachova N, Whitney AR, Braughton KR, Gardner DJ, Long D, et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis (2011) 204:937–41. doi:10.1093/infdis/jir141

Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, et al. Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med (2011) 17:1310–4. doi:10.1038/nm.2451

Ridky TW, Chow JM, Wong DJ, Khvari PA. Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia. Nat Med (2010) 16:450–5. doi:10.1038/nm.2265

Kretz MM, Spraduwitz ZZ, Chu CC, Webster DE, Zehnder AA, Qu K, et al. Control of somatic tissue differentiation by the non-coding RNA TINCR. Nature (2013) 493:231–5. doi:10.1038/nature11661

Aubeuf C, Fradette I, Lequeux G, Germain L, Kinikoglou B, Bechetelle N, et al. Evolution of three-dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol (2009) 19:107–13. doi:10.1016/j.ejder.2008.05753

Grober F, Holeier M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering – in vivo and in vitro applications. Adv Drug Deliv Rev (2011) 63:352–66. doi:10.1016/j.addr.2011.01.005

Lebonvallet N, Jeaunain C, Danoux L, Bille P, Pauly G, Misery L. The evolution and use of skin explants: potential and limitations for dermatological research. Eur J Dermatol (2010) 20:671–84. doi:10.1016/j.ejder.2010.1054

de Breij A, Haema EM, Rietveld M, Ghalbouri EL, A van den Broek PJ, Dijkshoorn L, et al. Three-dimensional human skin equivalent as a tool to study Acinetobacter baumannii colonization. Antimicrob Agents Chemother (2012) 56:2459–64. doi:10.1128/AAC.05975-11

Popov et al. Models of Staphylococcus aureus skin colonization
in situ hybridization. *Am J Rhinol Allergy* (2009) 23:461–5. doi:10.2300/ajra.2009.23.3367
44. Ohnemus U, Kohrmeyer K, Housdek P, Rohde H, Władykowski E, Vidal S, et al. Regulation of epidermal tight junctions (TJ) during infection with exfoliative toxin-negative *Staphylococcus* strains. *J Invest Dermatol* (2008) 128:906–16. doi:10.1038/sj.jid.5701070
45. McGrath JA, Uitto J. The filaggrin story: novel insights into skin-barrier function and disease. *Trends Mol Med* (2008) 14:8–9. doi:10.1016/j.molmed.2007.10.006
46. Hauser CC, Woethrich BB, Matter LL, Wilhelm JA, Schopfer KK. *Staphylococcus aureus* skin colonization in atopic dermatitis patients. *Dermatologia* (1985) 170:35–9. doi:10.1159/000249514
47. Leung DY, Bieber T. Atopic dermatitis. *Lancet* (2003) 361:10–10. doi:10.1016/S0140-6736(03)12193-9
48. Leyden JJ, Marples RR, Kligman AM. *Staphylococcus aureus* in the lesions of atopic dermatitis. *Br J Dermatol* (1974) 90:525–30. doi:10.1111/j.1365-2133.1974.tb06447.x
49. Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, et al. Knock-down of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. *J Invest Dermatol* (2010) 130:2286–94. doi:10.1038/jid.2010.115
50. Amagai MM, Stanley JR. Desmoglein as a target in skin disease and beyond. *J Invest Dermatol* (2012) 132:776–84. doi:10.1038/jid.2011.390
51. Bukowski MM, Władyka BB, Dubin GG. Exfoliative toxins of *Staphylococcus aureus*. *Toxins (Basel)* (2010) 2:1148–65. doi:10.3390/toxins2051148
52. Ganesh VK, Barbu EM, Devinanayagam CG, Le BB, Anderson AS, Matsuka TV, et al. Structural and biochemical characterization of *Staphylococcus aureus* clumping factor B–ligand interactions. *J Biol Chem* (2011) 286:25963–72. doi:10.1074/jbc.M110.217414
53. Mialjlovic HH, Loughman AA, Brennan MM, Cox DD, Foster TJT. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by *Staphylococcus aureus* clumping factor B. *Infect Immun* (2007) 75:3335–43. doi:10.1128/IAI.01993-06
54. Walsh EJ, O’Brien LM, Liang XX, Hook MM, Foster TJT. Clumping factor B, a fibrinogen-binding MSCR/AMM (microbial surface components recognizing adhesive matrix molecules) adhesin of *Staphylococcus aureus*, also binds to the tail region of type I cytokeratin 10. *J Biol Chem* (2004) 279:50691–9. doi:10.1074/jbc.M408715200
55. Wilke GA, Wardenburg JB. Role of a disintegrin and metalloprotease 10 in *Staphylococcus aureus* alpha-hemolysin-mediated cellular injury. *Proc Natl Acad Sci U S A* (2010) 107:13473–8. doi:10.1073/pnas.1001815107
56. Ouwehand A, Spietsma SW, Waaijman T, Schepers RI, de Gruijl TD, Gibbs S. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. *J Leukoc Biol* (2011) 90:1027–33. doi:10.1189/jlb.0610374
57. Derruette-Dambuyant C, Black A, Bechetolle N, Bouez C, Maréchal S, Auxendar C, et al. Evolutionary skin reconstructions: from the dermal collagen-glycosaminoglycan-chitosane substrate to an immunocompetent reconstructed skin. *Biomed Mater Eng* (2006) 16:585–94.
58. Laubach V, Zöller N, Rossberg M, Gorg K, Kippenberger S, Bereiter-Hahn J, et al. Integration of Langerhans-like cells into a human skin equivalent. *Arch Dermatol Res* (2010) 303:135–9. doi:10.1007/s00403-010-1092-x
59. van Belkum AA. *Staphylococcus* colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. *Curr Opin Infect Dis* (2006) 19:339–44. doi:10.1097/01.qco.0000235159.40184.61
60. Quinn GA, Tarwater PM, Cole AM. Subversion of interleukin-1-mediated host defence by a nasal carrier strain of *Staphylococcus aureus*. *Immunology* (2009) 128:e222–9. doi:10.1111/j.1365-2567.2008.02952.x

Conflict of Interest Statement: Fabio Bagnoli and Guido Grandi are employees of Novartis Vaccines and Diagnostics.

Received: 07 November 2013; accepted: 23 January 2014; published online: 06 February 2014.

Citation: Popov I, Kovalski J, Grandi G, Bagnoli F and Amienia MR. (2014) Three-dimensional human skin models to understand *Staphylococcus aureus* skin colonization and infection. *Front. Immunol.* 5:41. doi: 10.3389/fimmu.2014.00041

This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology.

Copyright © 2014 Popov, Kovalski, Grandi, Bagnoli and Amienia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.