Role of Abnormal Nitric Oxide Systems in Salt-Sensitive Hypertension

R. Davis Manning, Jr., Lufei Hu, Dunyong Y. Tan, and Shumei Meng

A large percentage of human hypertensive patients are salt sensitive, referring to the dependence of hypertension on sodium intake, but the cause of the salt sensitivity is not known. Although several mechanisms may contribute to salt-sensitive hypertension, the nitric oxide (NO) system appears to play a major role. Studies in humans and Dahl salt-sensitive (S) rats indicate that NO production is decreased during hypertension. Intravenous L-arginine infusion in Dahl S rats increases NO production and prevents salt-sensitive hypertension. In the Dahl salt-resistant (R) rat, NO production by both inducible NO synthase (iNOS) and neuronal NOS (nNOS) help to prevent salt-sensitive hypertension. Experimental evidence is summarized, indicating that the Dahl S rat has a deficient production of NO by nNOS, although NO production by iNOS appears to moderately decrease salt sensitivity. Other evidence about the importance of NO in salt-sensitive hypertension is reviewed, including the role of the renal NO system.

Key Words: Mean arterial pressure, Dahl rats, inducible nitric oxide synthase, neuronal nitric oxide synthase, pressure natriuresis.
is decreased in the Dahl S rat. Therefore, although several mechanisms may contribute to salt sensitivity in the Dahl rat, the NO system seems to play a major role.

Role of NO and NOS Isoforms in Salt-Sensitive Hypertension

Decreased NO Production Can Cause Salt-Sensitive Hypertension

A recent study in humans showed that agonist-induced release of NO was lower in salt-sensitive essential hypertensives compared to salt-resistant essential hypertensives. Because NO aids the kidney in the excretion of sodium, a decrease in NO could cause sodium retention. Administration of nonpressor doses of $N0$-nitro-L-arginine methyl ester (L-NAME) caused decreases in urinary sodium excretion in dogs. Studies in our laboratory and in others have shown that in Sprague-Dawley and Dahl R rats elevated sodium intake normally increases UNOx, an index of NO production, and enhances the renal hemodynamic response to NO synthesis inhibition. However, this increase in NO production during increased sodium intake is blunted in the Dahl S rat, and therefore, decrements in NO in these rats could lead to sodium retention and thus salt-sensitive hypertension.

L-Arginine Administration Can Prevent Salt-Sensitive Hypertension

Chen and Sanders and Hu and Manning have shown that salt-sensitive hypertension in the Dahl S/Rapp rats was completely prevented by parental and oral administration of L-arginine but not d-arginine. Their data also suggested that an increase in dietary sodium chloride increased NO production in salt-resistant (R) rats but not in S rats by using NG-monomethyl-L-arginine (L-NMMA) as a probe to estimate the NO production. Patel et al. reported that long-term L-arginine administration normalized short-term pressure natriuresis in anesthetized S rats. These studies supported the idea that salt-sensitive hypertension might be a state of deficient NO production. However, the NO production measurements in these studies were made indirectly using L-NMMA as a probe or from anesthetized rats over a short period. To determine whether L-arginine administration in S rats will prevent any hypertensive shift in the long-term pressure natriuresis relationship by increasing NO production, a study was designed in our laboratory to determine the role of NO in the development of hypertension and the regulation of long-term pressure natriuresis relationship in salt-induced hypertension. We examined the antihypertensive effects of continuous intravenous infusion of the NO precursor L-arginine in R and S rats that received low, normal, and high sodium intakes, sequentially. Mean arterial pressure was continuously monitored 21 h a day through indwelling arterial catheters over a 16-day period. In addition, UNOx were measured to quantitate the whole body NO production in response to the changes in sodium intake.

The top panel of Fig. 1 shows the mean arterial pressure (MAP) response to low, normal, or high sodium intake in control S and R rats without any L-arginine infused. The bottom panel shows S and R rats that were infused intravenously with 4 mg/kg/min of L-arginine. In Dahl S rats in this study, UNOx was significantly lower in S high sodium rats compared to R high sodium rats, and the L-arginine infusion increased UNOx in S high sodium rats to a value not different from R high sodium rats.

The top panel of Fig. 2 shows the salt-loading pressure natriuresis relationship in control S and R rats without any L-arginine infused, and MAP of the S rats was salt sensitive. The bottom panel shows S and R rats that were infused intravenously with 4 mg/kg/min of L-arginine, and the increases in salt sensitivity in the S rats was prevented. These data suggest that a deficiency in production of NO in Dahl S rats contributes to their high salt sensitivity.
Decreased Renal NO Production Can Cause Salt-Sensitive Hypertension

That renal NO production is important in the regulation of arterial pressure and renal hemodynamics has been shown by several investigators. Acute infusion of the NO synthesis inhibitor L-NAME directly into the renal artery of dogs caused renal vasoconstriction, and long-term renal artery infusion of L-NAME caused hypertension. The renal production of NO depends on one or more of the isoforms of NO synthase (NOS), which are neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). These NOS isoforms are located throughout all three parenchymal zones in the kidney. There are several isoforms of iNOS including macrophage (mac), vascular smooth muscle (vsm), and hepatic isoforms, and the kidney contains vsmNOS, located in blood vessels, and macNOS, located along the tubules. Selective inhibition of iNOS or nNOS in the renal medulla of Sprague-Dawley (SD) rats for 6 days caused hypertension during high sodium intake, but not during normal sodium intake. Also, NO synthesis inhibition decreases renal blood flow more in rats on high sodium intake than on low sodium intake. Therefore, specific isoforms of NOS in the kidney can have profound effects on renal function and salt sensitivity. However, the mechanisms by which the renal NOSs accomplish these changes are not completely understood.

Role of iNOS in Salt-Sensitive Hypertension

Both biochemical and functional studies suggest that renal iNOS may play an important role in salt-sensitive hypertension. Messenger RNA (mRNA) for iNOS has been found in renal tubular and vascular segments. The highest level of iNOS mRNA has been found in the medullary thick ascending limb and the inner medullary collecting duct suggesting that a decrease in medullary iNOS expression could lead to increased sodium reabsorption and salt-sensitive hypertension. Recently, molecular genetic linkage analysis showed that the locus for iNOS, but not eNOS, cosegregates with blood pressure in S rats. However, cosegregation of arterial pressure with a candidate gene is not proof of cause and effect; therefore, experimental studies are needed to determine whether iNOS plays an important role in the salt sensitivity of S rats.

One recent study suggested that iNOS may play a role in salt-sensitive hypertension. Chen and Sanders found that the blood pressure-lowering effect of L-arginine in the S rat on high sodium chloride intake was prevented by infusion of dexamethasone, which is believed to inhibit induction of iNOS activity. However, dexamethasone is not a selective inhibitor of iNOS, and the role of iNOS cannot be determined by measuring changes in UNOx, as nitrate and nitrite in the urine originate from both renal and extrarenal sources and can come from any of the isoforms.

Mattson and Higgins recently showed that medullary iNOS protein concentration increased markedly during high sodium intake in SD rats. In another study, unilaterally nephrectomized SD rats maintained on high sodium diet received a 6-day intravenous infusion of aminoguanidine, a selective inhibitor of iNOS, and mean arterial pressure increased 11 mm Hg; NOS activity in the renal medulla decreased 49%, but cerebellum NOS (presumably nNOS) was not affected. These experiments support a role for renal medullary iNOS in the control of arterial pressure, possibly through renal tubular effects in the SD rat and a similar role of iNOS may exist in the Dahl rat.

A recent study was performed in our laboratory to determine the role of iNOS in Dahl salt-sensitive hypertension. Dahl R and S rats, equipped with indwelling arterial and venous catheters, were subjected to high (20.6 mmol/day) sodium intake, and selective iNOS inhibition was achieved with intravenous aminoguanidine at 12.3 mg/kg/h. As seen in Fig. 3, after 5 days of aminoguanidine, MAP increased to 121 ± 3% control in the R-high sodium aminoguanidine rats compared to 98 ± 1% control (P < .05) in the R-high sodium alone rats, and S-high sodium rats increased their arterial pressure to 123 ± 3% control compared to 110 ± 2% control (P < .05) in S-high sodium alone rats. Therefore, iNOS inhibition in the S rat...
moderately increased salt sensitivity. Aminoguanidine caused no significant changes in renal hemodynamics, urinary sodium or water excretion, plasma renin activity, or cerebellar calcium-dependent NOS activity.

Another NOS inhibitor that selectively inhibits iNOS is of 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT), and it has a K_I of 4.2 nmol/L, which is similar to that of aminoguanidine, and is up to 40 times more selective for iNOS than for nNOS or eNOS. A recent study with an AMT infusion of 300 nmol/h in Dahl R rats showed that after 5 days of infusion of AMT and high sodium intake, systolic pressure increased 20%, and the MAP in R rats on high sodium and aminoguanidine in the present study increased 21%. The AMT infusion probably did not inhibit eNOS, as the dilatory responses of mesenteric arteries to methacholine were unchanged. Therefore, our study and the AMT study appear to have selectively blocked iNOS. The data suggest that nitric oxide produced by iNOS normally helps to prevent salt-sensitive hypertension in the Dahl R rat and decreases salt sensitivity in the Dahl S rat.

Role of nNOS in Salt-Sensitive Hypertension

Several laboratories using techniques including immunohistochemistry, reverse transcription polymerase chain reaction in microdissected renal vessels and tubules, and in situ hybridization have demonstrated the presence of nNOS protein and mRNA in the inner and outer medullary collecting ducts, glomerulus, macula densa, vasa recta, arcuate artery, and renal nerves. Functionally, nNOS blunts the tubuloglomerular feedback response of the afferent arteriole and mediates the macula densa control of renin secretion. However, the effect of sodium intake on nNOS synthesis and expression in different renal parenchymal zones is controversial. Messenger RNA for nNOS has been shown to increase in the renal cortex during low sodium intake. Yet, other investigators showed that nNOS protein increased markedly in the inner medulla during increased sodium intake. In support of the latter finding, renal medullary infusion of 7-nitroindazole (7NI), a selective inhibitor of nNOS, decreased medullary nNOS activity by 37% and increased arterial pressure over a 6-day period in SD rats on high sodium intake but not on normal sodium intake. This suggests that medullary nNOS may enhance renal sodium excretion and thus help to prevent salt-loading hypertension.

The role of nNOS regulation of the sodium sensitivity of arterial pressure and the mechanisms that contribute to these changes in salt-sensitive hypertension in Dahl rats have not been well understood and was the focus of a recent study in our laboratory. Dahl R and S rats/Rapp strain of 7 to 8 weeks of age with indwelling arterial and venous catheters were subjected to high (20.6 mmol/day) sodium intake beginning 2 days before the start of the control period. Measurements were made during a 5-day control period followed by a 5-day period of nNOS inhibition with intravenous 7NI (1.67 mg/kg/h) or vehicle infusion. As seen in Fig. 4, after 5 days of 7NI, MAP increased to 120% of control in the R-high sodium, 7NI rats compared to 98% of control ($P < .05$) in the R-high sodium alone rats. The data demonstrate that the highly salt-resistant Dahl R rat became salt sensitive during nNOS inhibition with 7NI. However, the arterial pressure of the S rat was not affected by 7NI. This suggests that NO produced by nNOS in the Dahl R rat normally helps to prevent salt-sensitive hypertension and that low functional levels of nNOS in the S rat may contribute to its salt sensitivity.

The Regulation of NOS Isoforms During Increased Sodium Intake

The mechanisms by which NO production is stimulated with increased sodium intake are not clear, and few studies have been performed on the changes in NOS isoforms in the kidney during changes in dietary sodium intake. Increasing sodium intake in SD rats caused large increases in

![FIG. 3. Mean arterial pressure responses in Dahl salt-resistant and salt-sensitive rats. Inducible nitric oxide synthase (iNOS) inhibition was achieved with aminoguanidine. *P < .05 when comparing salt-resistant high sodium, aminoguanidine rats with salt-resistant high sodium rats at the same experimental time. The same statistics apply to salt-sensitive rats. The arterial pressure on day 10 in the salt-sensitive high sodium alone rats was 40 mm Hg higher than the control pressure of the salt-sensitive low sodium alone group demonstrating the salt sensitivity of the salt-sensitive rats. Data is redrawn from a previous publication (Ref. 40).](https://academic.oup.com/ajh/article-abstract/14/S3/68S/205757)
eNOS, iNOS, and nNOS protein, particularly in the renal inner medulla. During increased sodium intake in SD rats, eNOS and iNOS mRNA were unchanged in the cortex, and nNOS mRNA decreased in the cortex but was unchanged in the inner medulla. The eNOS and iNOS mRNA levels in the inner medulla were not reported in this study. During high sodium intake for 4 weeks, renal nNOS activity decreased, and eNOS and iNOS activities did not change in the Dahl Iwai salt-sensitive rat compared to the R rat. However, this study analyzed NOS activity in the whole kidney; therefore, changes in the medulla may have been overlooked using this approach. Another factor complicating interpretation of the above study is that a recent study has shown that 3 weeks of high sodium intake in S rats caused moderate renal damage including vascular and glomerular damage, both of which could affect NO production. The role of the renal NOS isoforms have not been elucidated.

Conclusion

Although several mechanisms may contribute to salt-sensitive hypertension, the NO system appears to play a major role. Studies in humans and experimental animals indicate that NO production is decreased during hypertension. That this decrease in NO is important in salt-sensitive hypertension was confirmed by studies showing that L-arginine administration increased NO production and prevented hypertension in Dahl S rats during high sodium intake. In the Dahl R rat NO production by both iNOS and nNOS help to prevent salt-sensitive hypertension. In the Dahl S rat, there may be a deficient production of NO by nNOS, and NO production by iNOS moderately decreases salt sensitivity.

References

1. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE: Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990;323:22–27.
2. Linder L, Kliowsk W, Bühler FR, Luscher TF: Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo blunted response in essential hypertension. Circulation 1990;81:1762–1767.
3. Valiance P, Collier J, Monaco S: Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989;2:997–1000.
4. Ghiadoni L, Virdis A, Teddei S, Gonzales J, Salazar J: Defective nitric oxide pathway in salt-sensitive essential hypertensive patients. Am J Hypertens 1997;10:20A (abstract).
5. Kelm M, Preik M, Hafner DJ, Strauer BE: Evidence for a multifactorial process involved in the impaired flow response to nitric oxide in hypertensive patients with endothelial dysfunction. Hypertension 1996;27:346–353.
6. Chen PY, Sanders PW: L-Arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 1991;88:1559–1567.
7. Hu L, Manning RD Jr: Role of nitric oxide in regulation of long-term pressure-natriuresis relationship in Dahl rats. Am J Physiol 1995;268:H2375–2383.
8. Reaven GM, Tiversky J, Chung AH: Abnormalities of carbohydrate and lipid metabolites in Dahl rats. Hypertension 1991;18:630–635.
9. Tobian L, Lange J, Iwai J, Hiller K, Johnson MA, Goossens P: Prevention with thiazide of NaCl-induced hypertension in Dahl “S” rats. Evidence for a Na-retaining humoral agent in “S” rats. Hypertension 1979;1:316–323.
10. Chen PY, St John PL, Kirk KA, Abrahamson DR, Sanders PW: Hypertensive nephrosclerosis in the Dahl/Rapp rat: initial sites of injury and effect of dietary L-arginine supplementation. Lab Invest 1993;68:174–184.
11. Luscher TF, Raji L, Vanhoutte PM: Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension 1987;9:157–163.
12. Luscher TF, Raji L, Vanhoutte PM: Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in salt-induced hypertension of the rat. Hypertension 1987;9:III193–III197.
13. Dahl HK, Heine M, Thompson K: Genetic influence of renal homografts on the blood pressure of rats from different strains. Proc Soc Exp Biol Med 1972;140:852–856.
14. Dahl HK, Heine M, Thompson K: Genetic influence of the kidneys on blood pressure: evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res 1974;34:94–101.
15. Dahl HK, Heine M: Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 1975;36:692–696.
16. Morgan DA, DiBona GF, Mark AL: Effects of interstrain renal transplantation on NaCl-induced hypertension in Dahl rats. Hypertension 1990;15:436–442.
17. Ma Y-H, Schwartzman ML, Roman RJ: Altered renal P-450 metabolism of arachidonic acid in Dahl salt-sensitive rats. Am J Physiol 1994;267:R579–R589.
18. Cicila GT, Rapp JP, Wang JM, St. Lezin E, Ng SC, Kurtz TW: Linkage of 11 beta-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nature Genet 1993;3:346–353.
19. Salazar FJ, Alberola A, Pinilla JM, Romero JC, Quesada T: Salt-induced increase in arterial pressure during nitric oxide synthesis inhibition. Hypertension 1993;22:49–55.
20. Tolins JP, Shultz PJ: Endogenous nitric oxide synthesis determines sensitivity to thepressor effect of salt. Kidney Int 1994;46:230–236.
21. Manning RD Jr, Hu L, Reckelhoff JF: Role of nitric oxide in arterial pressure and renal adaptations to long-term changes in sodium intake. Am J Physiol 1997;272:F1162–F1169.
22. Deng X, Welch WJ, Wilcox CS: Renal vasoconstriction during inhibition of NO synthase: effects of dietary salt. Kidney Int 1994;46:639–646.
23. Patel A, Layne S, Watts D, Kirchner KA: L-arginine administration normalizes pressure natriuresis in hypertensive Dahl rats. Hypertension 1993;22:863–869.
24. Chen PY, Sanders PW: Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats. Hypertension 1993;22:812–818.
25. Granger JP, Alberola AM, Salazar FJ, Nakamura T: Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs. J Cardiovasc Pharmacol 1992;20(suppl 12):S160–S162.
26. Schnackenberg C, Tucker B, Pigg K, Granger J: Role of nitric oxide in modulating the chronic renal and arterial pressure responses to angiotensin II. Am J Hypertens 1997;10:226–229.
27. Mattson DL, Maeda CY, Bachman TD, Cowley AW Jr: Inducible nitric oxide synthase and blood pressure. Hypertension 1998;31:15–20.
28. Beierwaltes WH: Macula densa stimulation of renin is reversed by selective inhibition of neuronal nitric oxide synthase. Am J Physiol 1997;272:R1359–R1364.
29. Mattson DL, Bellehumeur TG: Neural nitric oxide synthase in the renal medulla and blood pressure regulation. Hypertension 1996;28:297–303.
30. Bloch KD, Wolfram JR, Brown DM, Roberts JD Jr, Zapol DG, Lepore JJ, Filippov G, Thomas JE, Jacob HJ, Bloch DB: Three members of the nitric oxide synthase II gene family (NOS2A, NOS2B, and NOS2C) colocalize to human chromosome 17. Genomics 1995;27:526–530.
31. Mohaupt MG, Elzie JL, Ahn KY, Clapp WL, Wilcox CS, Kone BC: Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int 1994;46:653–665.
32. Stooß BA, García NH, Garvin JL: Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol 1995;6:89–94.
33. Ahn KY, Mohaupt MG, Madsen KM, Kone BC: In situ hybridization localization of mRNA encoding inducible nitric oxide synthase in rat kidney. Am J Physiol Renal, Fluid Electrolyte Physiol 1994;267:F748–F757.
34. Deng AY, Rapp JP: Locus for the inductible, but not a constitutive, nitric oxide synthase cosegregates with blood pressure in the Dahl salt-sensitive rat. J Clin Invest 1995;95:2170–2177.
35. Deng AY, Rapp JP: Absence of linkage for “endothelial” nitric oxide synthase locus to blood pressure in Dahl rats. Hypertension 1997;29:49–52.
36. Cowley AW Jr: Genetic and nongenetic determinants of salt sensitivity and blood pressure. Am J Clin Nutr 1997;65(suppl):587S–593S.
37. Hom GI, Grant SK, Wolfe G, Bach TJ, MacIntyre DE, Hutchinson NI: Lipopolysaccharide-induced hypotension and vascular hyporeactivity in the rat: tissue analysis of nitric oxide synthase mRNA and protein expression in the presence and absence of dexamethasone, Nα-monomethyl-L-arginine or indomethacin. J Pharmacol Exp Ther 1995;272:452–459.
38. Mattson DL, Higgins D: Influence of dietary sodium intake on renal medullary nitric oxide synthase. Hypertension 1996;27:688–692.
39. Corbett JA, McDaniel ML: Selective inhibition of inducible nitric oxide synthase by aminoguanidine. Methods Enzymol 1996;268:398–408.
40. Tan DY, Meng S, Cason GW, Manning RD Jr: Mechanisms of salt-sensitive hypertension: role of inducible nitric oxide synthase. Am J Physiol 2000;279:R2297–R2303.
41. Rudd MA, Trolliet M, Hope S, Scribner AW, Daumerie G, Toolan G, Cloutier T, Loscalzo J: Salt-induced hypertension in Dahl salt-resistant and salt-sensitive rats with NOS II inhibition. Am J Hypertens 1999;277:H732–H739.
42. Bachmann S, Bosse HM, Mundel P: Topography of nitric oxide synthase by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 1995;268:F885–F898.
43. Terada Y, Tomita K, Nonoguchi H, Marumo F: Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. J Clin Invest 1992;90:659–665.
44. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HHHW: Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA: 1992;89:11993–11997.
45. Beierwaltes WH: Selective neuronal nitric oxide synthase inhibition blocks furosemide-stimulated renin secretion in vivo. Am J Physiol Renal, Fluid Electrolyte Physiol 1995;269:F134–F139.
46. Wilcox CS, Welch WJ: TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension. Kidney Int 1996;49(suppl 55):S9–S13.
47. Singh I, Grams M, Wang WH, Yang T, Killen P, Smart A, Schnarr J, Briggs J: Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Physiol 1996;270:F1027–F1037.
48. Tan DY, Meng S, Manning RD Jr: Role of neuronal nitric oxide synthase in Dahl salt-sensitive hypertension. Hypertension 1999;33:456–461.
49. Ikeda Y, Saito K, Kim J-I, Yokoyama M: Nitric oxide synthase isofrom activities in kidney of Dahl salt-sensitive rats. Hypertension 1995;26:1030–1034.