ORIGINAL ARTICLE

STUDY OF ESTIMATION OF STATURE BY THE LENGTH OF FEMUR
Pankaj Kumar¹, Kashif Shahnawaz², Gaurav Varma³

HOW TO CITE THIS ARTICLE:
Pankaj Kumar, Kashif Shahnawaz, Gaurav Varma. "Study of Estimation of Stature by the Length of Femur". Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 12, March 24; Page: 3166-3172, DOI: 10.14260/jemds/2014/2261

ABSTRACT: BACKGROUND: In the field of Forensic Medicine, one of the most useful pieces of information to be obtained from human skeleton remains, whatever their age is the living stature of the individual for the identification of a person. Status estimation by the length of femur plays an important role in the identification of a decomposed body. AIMS: Study was done to estimate the stature of an individual by the length of femur. MATERIALS AND METHODS: The study was conducted in the department of Forensic Medicine of Patna Medical College, Patna, during the period of Dec-13 to Jan-14. A total of 80 cases (40 rural males and 40 rural females), were studied. RESULTS: The results of present study showed that there was a definite relationship between the length of femur and cadaveric length. It was also clear from this study that prediction of stature is also influenced by sex and racial factor. CONCLUSION: The present work indicates that all the segments of femur have a definite relation with the cadaveric length, but out of four different segments, segment-2 is preferable over segment-3, 4 and 1 in the order of relativity as the segment-3 over preferably segment-4 and segment-1 as indicated by the index of determination.
KEYWORDS: Stature, Femur, Cadaver.

INTRODUCTION: The term "Stature" stands for the natural height of a person. Stature is the most important characteristic of a person which helps in identification. Status estimation by the length of femur plays an important role in the identification of decomposed body, whose muscular and anatomical structure has lost. It also helps in the estimation of age, sex, race, time since death of a person. There are various ways to estimate stature from bones, but the most easiest and reliable method is by regression analysis. Regression formulae derived from the major long bones are generally considered to be more accurate than those utilizing other bones such as the skull, or hand and foot bones. Long bones that makeup the greatest proportion of stature, that is, the femur and tibia, are also more accurate than the humerus and ulna. Other skeletal elements that have been used to estimate stature include the clavicle. Kate and Majumdar, successfully estimated stature from length of femur and humerus by regression method and autometry in an Indian sample. Rother et al, conducted a study on the estimation of stature from fragments of the femur and devised some regression formulae. Mysorekar et al, also estimated stature on the basis of lower end of femur and upper end of radius. Bone and stature of an individual is influenced by age, sex, race, geographical climate, nutrition and genetic factors. Hence, the correlation factors of one region will not hold good for the other, as this necessitates the researches to be done on regional basis.

MATERIALS AND METHODS: The present study has been carried out in the department of Forensic Medicine, Patna Medical College, Patna during the period December-2013 to
January-2014. The cadavers studied in the present work are those were received in the department for medico-legal post-mortem. Privacy of the cadavers was maintained and prior consent was also taken from their relatives. Confidentiality and ethical issues were also taken into consideration. A pre-designed printed proforma were used for collecting data, such as- sex, age, dental formula, socio-economic status, anybody disease or deformity, rigor-mortis, different measurements like cadaveric length (in mm), measurement of femur in dry state (in mm), measurement of different segments of femur (in mm), etc. Materials used for stature estimation were osteometric board, caliper, Tape, lukewarm water, acetone, soapy water, x-ray machine, ultraviolet lamp, brush, and standard post-mortem table. Each dead body was assigned with a particular number. A total of 80 cases have been studied, among which 40 were rural males and 40 were rural females. The different segments of the femur were observed on the osteometric board in the position, in which the femur was measured for its maximum length.

Calculations related to Stature prediction.

The steps were taken to develop data for prediction of cadaveric length and the entire series of calculation has been broadly divided into two sets.

A - from maximum length of femur as a whole.
B - from segment and combination of segments of femur.

For detailed statistical calculations an advance generation computer was programmed to find out the relationship between length of femur and cadaveric length and the relationship between various segments of femur and cadaveric length. The computer was programmed to go for a stepwise regression analysis, using the matrix of simple correlation co-efficient, and any combination of one or more independent variables have been selected for analysis from input.

\[Y = B_0 + B_1X_1 \]
\[Y = B'_0 + B'_1X_1 + B'_2X_2 \]
\[Y = B''_0 + B''_2X_2 + B''_3X_3 \]

At each step, those independent variables not included in the regression were inspected to find the one that will give the greatest reduction in the variation of Y. This variable was then tested for significance, i.e., the computed F-ratio of the variable was compared to the supplied critical F-value (confidence limit). If the computed value was greater than the critical value for measuring the length of femur, osteometry is the method of choice. In each case, the maximum length of the femur was measured and for this the bone was placed on a standard osteometric board with its posterior surface facing upwards. The bone was adjusted along the parallel axis of the board in such a manner that the most superior point of the bone touched the upper block of the osteometric board and the lower sliding block touched the most dependent point of the medial condyle and at this stage, the reading were taken on the scales fitted on both the sides of the osteometric board. The readings were taken only when scales on both the sides showed similar reading and this was done to ensure that the lower block was really parallel to the upper block and thus giving the maximum length of the bone. For measuring the different segments, first of all the following points were marked on the bones.
a) The most proximal point on the head.
b) The midpoint of lesser trochanter.
c) The most proximal extension of the popliteal surface, at the point where the medial and lateral supracondylar lines becomes parallel below the linea-aspera.
d) The most proximal point of the intercondylar fossa.
e) The most distal point of the medial condyle.

The bone was divided into four segments with the help of these points.

Segment 1 – Between points a and b
Segment 2 – Between points b and c
Segment 3 – Between points c and d
Segment 4 – Between points d and e
(Where whole bone length = from point a to e)

The variable was considered significant, and was added to the regression solution. After each new variable were added, those variables already in the regression were inspected to see if any of them can now be deleted, because their contribution to the reduction in the variation of Y is no longer significant. Those variables which have a computed F-ratio less than the critical value were considered insignificant and were deleted from the regression solution. The process was continued until no more variables could be added or deleted. Thus, the final regression solution contained only those variables that were statistically significant.

RESULTS: In the present study, following standard procedure mentioned earlier, the cadaveric length, length of the femur, and length of its different established segments have been measured in millimeters. A sum total of 80 cases (40 rural male, and 40 rural female) have been studied. The age group taken into consideration is of 18 to 55 yrs. and although the difference between the length of the femur of right and left side is insignificant (steele 70), but even then to maintain uniformity the femur of right side only have been taken into consideration. The least square curve fit and regression as applicable have been worked out for calculation of cadaveric length from a length of femur and its segment (s) and these calculations have been made for two sexes and two social groups separately. In the present study, while remaining agreeable to the view of the earlier workers but to maintain the uniformity followed so far as the size of the body is concerned, the bones of right side only have been taken into consideration. Trotter & Gleser (1952)\(^14\) calculated regression formula for stature estimation from the average of the bone of both sides from individual and later on in 1958, in another project they considered the bones of both the sides separately and the resulting recursion formula later being combined. Genoves (1967)\(^15\), Steele & Mc Kern (1969)\(^16\), Lal S (1978)\(^17\) analyzed the combined samples of bones from the right and left side of the body without attaching any significance to the sides. They were of the view that the differences between the bones of two sides were insignificant. Chandra et al (1966)\(^18\) divided the whole femur into four segments a-b, b-c, c-d, and d-e, with the help of five bony points-

- a. most proximal point on the head
 - b. most distal point on the circumference of the head
c. most proximal point on the lesser trochanter
d. base of the adductor tubercle, and
e. most distal point at the medial condyle, in an attempt to reconstruct the femur length from its segments.

The value of index of determination for segment-1 of femur in the rural male group with either curve is not more than 0.63 and so it is not much good with either curve, but on the other hand the value of this index for segment-2 of femur is round about 0.89 with every curve which in turn indicates that with this segment prediction of stature can be made with reasonable degree of accuracy in 89% of the cases. In the present study the index of determination for the length of femur with curve no. 1 is 0.612 in the rural female and the value of two constants i.e. A & B are 700.005 and 2.00829 respectively. For the rural males the value of index of determination with curve no-1 is 0.901, and the value of constants, i.e. A & B are 626.1124 and 2.29316 respectively.

The present work indicates that all the segments of the femur have definite relation with the cadaveric length, but out of four different segments, segment-2 is preferable over segment-3, 4 and 1 in the order of relativity as the segment-3 over preferably segment-4 and segment-1 as indicated by the index of determination. This in turn supports the established view expressed by earlier worker Lal S 1978[17] and others that longer is the segment length, better is the correlation with the stature. In the present work, when segments of femur and the cadaveric length, when taken into consideration using stepwise multiple linear regression mathematically, it appears quite contradictory that while segment-1 does not find any room when all segments are considered together for determination of cadaveric length, it is possible if segment-1 is having counter affect against segment-2, 3 and 4. In case of individual segment versus cadaveric length segment-1 has index of determination around 0.65 which is very much close to index of determination of segment-4. Still, segment-1 has to leave to four equations, while segment-4 remains there, and this is because of counter effects exerted by segment-1 on the other segments. The relative significance is the most significant followed by segment-3 and 4. Similar amount of change on segment-2 will cause more variation in cadaveric length compared to segment-3 and 4.

DISCUSSION: In the present study the femur of only one side i.e. right side has been studied and the femora were measured in dry state devoid of articular cartilages. The maximum length of the femur was taken into consideration by keeping the posterior surface of the femur facing upwards. While measuring with the help of osteometric board and in the similar position the different segments of femur have also been measured with the help of five fixed bony points selected on the femur. In the present work the least square fit and regression equation as applicable have been employed for prediction of stature from the complete femur, its specified segments, and combination of segment. After completion of present work, the following facts have emerged and they are as follows:

i. There is a definite relation between the length of femur and cadaveric length.
ii. The prediction of stature is influenced by racial factor.
iii. The prediction of a stature is influenced by sex also, and so better prediction can be achieved only when the data developed for a particular sex is applied that particular sex group only.
iv. Out of all the segments of femur the segment-2 has been found to be the most significant followed by segment-3 & 4 and so the prediction of stature from segment will be better if segment-2 is applied, will be further better if it is applied in combination with segment-3 & 4. The segment-1 does not hold good for the prediction of stature.

v. Using least square curve fit:

\[Y = A + (B^* \times x) \]

where \(Y \) is the cadaveric length, \(X \) is the length of femur, and \(A \) & \(B \) are constants.

Segments	Subjects	Index of Determination	A	B
Segment-1	Rural Female	0.651	1015.844	7.305556
	Rural Male	0.638	819.3549	10.62506
Segment-2	Rural Female	0.867	107.2212	5.795232
	Rural Male	0.803	459.9157	4.575497
Segment-3	Rural Female	0.791	1267.62	3.992856
	Rural Male			
Segment-4	Rural Female	0.602	1710.162	12.30545
	Rural Male	0.711	1082.476	15.51705

Rural Male (Confidence level 0.68):

Cadaveric length = 6.864634 x Segment-2 + 2.696712 x groups, namely rural male, rural female and so curve no-1 finds better position over other curves and statistical value in this connection for determination of stature from complete femur bones are as follows:

Index of Determination:

Index of Determination	A	B	
Rural Female	0.612	700.005	2.008291
Rural Male	0.901	668.095	2.210383

vi) Using least square curve fit the curve no-1 usually holds good for all the four different specified segment of femur in both the racial groups and in both the sexes, and various statistical values with curve no-1, are as follows which can be used for prediction of cadaveric length, directly from the particular segment of the femur.

Curve no-1: \[Y = A + (B^* \times x) \]

where \(Y = \) cadaveric length, \(X = \) length of segment-1 or segment-2 or segment-3 or segment-4, as applicable.

For reconstruction of cadaveric length from determination of different segments of femur the following regression equation are as follows:

Segment – 3 + 1.137435 x Segment – 4 + 885.500673 ± 26.734 mm

Rural Female (Confidence level 0.68):

Cadaveric length = 3.929261 x Segment-2 + 3.523732 x Segment-3 + 1.223041 x Segment-4 + 350.141037 ± 23.419 mm
ORIGINAL ARTICLE

The application of above said data, the prediction of the cadaveric length and to convert that into living stature a deduction of 20 mm is to be made from the estimate and a further correction for the effect of aging estimate has to be made following the formula of Trotter & Gleser.

0.06 (age in year-30) cms.

After completion of the present work, we reached on this conclusion that:
1) Males are larger & stronger in comparison to female.
2) Height loss in cm = 0.06 (age in yr.- 30) cm due to aging, due to different life style of person
3) Maximum living stature obtained during 18 to 30 yrs. of age.
4) Regression Formula is more efficient in comparison to others and Multiplication Factor obtained for femur in Bihar = 3.78 for males and 3.74 for females.

REFERENCES:
1. Iscan MY. Global forensic anthropology in the 21st century (Editorial). Forensic Sci Int, 2001;117: 1-6.
2. Iscan MY. Forensic anthropology of sex and body size (Editorial). Forensic Sci Int, 2005; 147: 107-112.
3. Introna F, Divella G, Petrachi S. Determinants of height in life using multiple regression of skull parameters. Boll Soc Ital Biol Sper 1993. 69: 153-160.
4. Chiba M, Terazawa K. Estimation of stature from somatometry of skull. Forensic Sci Int 1998. 97: 87-92.
5. Musgrave J.H, Harneja N.K. The estimation of adult stature from metacarpal bone length. Am J Phys Anthropol 1978. 48: 113-119.
6. Meadows L, Jantz R.L. Estimation of stature from metacarpal lengths. J Forensic Sci 1992. 37, 147-154.
7. Holland T.D. Estimation of adult stature from the calcaneous and talus. Am J Phys Anthropol 1995. 96: 315-320.
8. Byers S.N, Akoshima K, Curran B. Determination of adult stature from metatarsal length. Am J Phys Anthropol 1989. 79: 275-279.9.
9. Lundy J.K, Feldesman M.R. Revised equations for estimating living stature from long bones of the South African Negro. S Afr J Sci 1987. 83: 54-55.
10. Jit, Singh S. Estimation of stature from clavicles. Indian J Med Res 1956. 44: 137-155.
11. Kate B.R, Majumdar R.D. Stature estimation from femur and humerus by regression and autometry. Acta. Anat.(1976); 94; 311-320.
12. Rother P, John W, Hunger H, Kurp K. Determination of body height from fragments of the femur. Gegenbaurs Morphol Jahrb, 1980; 126(6): 873-883.
13. Mysorekar VR, Nandedkar AN, Sarma TC. Estimation of stature from parts of ulna and tibia. Med. Sci. Law, 1984; 24: 113-116.
14. Trotter M, Gleser G.C. Estimation of stature from long bones of American whites and Negroes. Am. J. Phys. Anthropol 1952. 10(4): 463-514.
15. Genoves. S. Proportionality of the long bones and their relation to stature among Mesoamericans. Am. J. Phys. Anthropol 1967. 26(1): 67-77.
16. Steele D.G, Mc. Kern. T.W. A method for assessment of maximum long bone length and living stature from fragmentary long bones. Am J Phys Anthropol 1969. 31(2): 215-227.
17. Lal CS, Lala JK. Estimation of height from tibial and ulna length in North Bihar. Journal of Indian Medical Association 1972. 58: 120.
18. Chandra A, Dass, Ramji, Khanna J.K. Reconstruction of the total length of femur from its fragments. A preliminary report. J. Anat. Soc. India 1966. 15: 92-95.

AUTHORS:
1. Pankaj Kumar
2. Kashif Shahnawaz
3. Gaurav Varma

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Forensic Medicine, MGMMC, Kishanganj, Bihar.
2. Assistant Professor, Department of Community Medicine, MGMMC, Kishanganj, Bihar.
3. Associate Professor, Department of Community Medicine, MGMMC, Kishanganj, Bihar.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Kashif Shahnawaz,
Manhar Road, Chhoti Quazipura,
Dist - Darbhanga, Bihar, PIN – 846004.
E-mail: kashif.shahnawaz98@gmail.com

Date of Submission: 13/02/2014.
Date of Peer Review: 14/02/2014.
Date of Acceptance: 01/03/2014.
Date of Publishing: 24/03/2014.