Psoriasis is a chronic inflammatory disease of the skin which is characterized by the presence of erythematous scaly plaques [1]. The prevalence of psoriasis is 2-3% worldwide [2]. Psoriasis has a negative impact on the patient’s health and quality of life, is associated with serious medical comorbidities, and affects the quality of life of family members [3, 4].

While the exact cause of psoriasis is unknown, genetic and environmental factors play an important role in its development [5].

The environmental factors that appear to influence the course of and the susceptibility to psoriasis include chronic infections, stress, low humidity, drugs (beta-blockers, lithium, antimalarial agents, and interferon), smoking, and obesity [6].

The role of genetics in the pathogenesis of the disease is well documented in family and twin studies [7]. Genetic factors have been well studied in candidate-driven gene-specific studies and in genomewide association studies (GWAS). The genome regions most strongly associated with the development of the disease are associated with the immune system. Interleukin 23 receptor (IL23R), IL12B, and the human leukocyte antigen Cw6 (HLA-Cw6) of the major histocompatibility complex have been strongly associated with psoriasis [8]. Several studies have described the important role of single-nucleotide polymorphisms (SNPs) in the promoter region of the tumour necrosis factor gene (TNFα) [8].

Discovery of such consistent associations has enabled the development of new, more effective drugs with various targets, such as the p40 subunit of IL-12/23 (ustekinumab) and TNFα (infliximab, adalimumab, and etanercept) [1].
Other biological drugs are in phase III trials and include those targeting IL17 (ixekizumab and secukinumab) and the IL17 receptor (anti-IL17R) (brodalumab), all of which are administered subcutaneously [9]. Phase II clinical trials have demonstrated the efficacy and safety of inhibitors of Janus kinase (JAK) (tofacitinib) and phosphodiesterase 4 (PDE4) (apremilast) [3, 10–13], which are administered orally and may be less expensive than biological drugs.

Although these new drugs have improved tolerability and response to treatment, researchers must increase their knowledge of psoriasis in order to find additional options for oral treatment that are safer, more effective, and free of serious side effects. The influence of genetic polymorphisms on the response to biological drugs has been demonstrated in psoriasis [14, 15]; therefore, advances in pharmacogenetics would enable us to tailor treatment.

In this paper, we describe SNPs in genes associated with psoriasis and those associated with the immune response. We also review current knowledge on biological drugs and the impact of polymorphisms on the response to treatment of psoriasis.

2. Genetics of Psoriasis

The immune system plays a key role in psoriasis. Macrophage activation triggers an immune response that releases TNFα, IL1β, IL12, and IL23 [8]. Psoriasis has been associated with genes involved in the immune response, namely, TNFα, IL12B, and IL23R [8]. However, there has also been associated with genes not involved in immune pathways, such as the early differentiation keratinization markers involucrin (IVL) and small proline-rich protein (SPRR). These genes are involved in atypical epidermal cellular organization and differentiation [16] and are upregulated in psoriasis [17]. A review of the genes and SNPs associated with psoriasis and the immune system is presented in Table 1.

T helper 17 (Th17) lymphocytes release IL22 and IL17 (Figure 1), which are highly expressed in psoriatic skin [18]. These lymphocytes also produce IL2, IFNγ, and TNFα (Figure 1) [3]. The proinflammatory cytokine TNFα plays a key role in the pathogenesis of psoriasis [19, 20]. Polymorphisms in the TNFα gene may alter the release of this cytokine in healthy subjects [21]. A study performed in Caucasian patients with early-onset psoriasis showed a strong association with TNFα polymorphisms (rs1800629 and rs361525) (Table 1) [19]. In this sense, a meta-analysis of 18 published case-control studies showed that when the GA + AA genotype was compared with the GG genotype, the risk of psoriasis increased for rs361525 and decreased for rs1800629 in TNFα gene (Table 1) [22]. Kaluza et al. (2000) observed a decrease in TNFα production in peripheral blood mononuclear cells (47 cases and 43 controls) stimulated with mitogens in psoriatic patients who were A allele carriers of rs361525 (TNFα gene) compared to controls [23]. Moreover, the authors found an association between the A allele in rs361525 in the TNFα gene and increased production of TNFα and early onset of psoriasis (Table 1) [24]. A study performed in an Egyptian population (46 cases and 96 controls) revealed an association between SNPs in TNFα (GG allele in rs1800629) and psoriasis (P < 0.05) (Table 1) [25]. However, no significant differences were found in rs1800629 and rs361525 in this gene in Korean patients with psoriasis (n = 103) and controls (n = 125) [26].

Reich et al. (1999) analyzed rs361525 and rs1800629 in TNFα gene in patients with type I psoriasis (onset before 40 years; n = 100) and type II psoriasis (onset beyond 40 years; n = 51) and in healthy controls (n = 123) (Table 1) [27]. The results showed that the rs361525 A allele was more frequent and the rs1800629 A allele was less frequent in patients with type I psoriasis than in controls (P = 0.0012 and P = 0.041, resp.), although no differences were found between these polymorphisms and type II psoriasis [27]. Nedoszytko et al. (2007) analyzed 166 patients with psoriasis (134 with type I and 32 with type II) and 65 healthy controls [28] and found similar results to those of Reich et al. [27], with a higher prevalence of the A allele in rs361525 and lower frequency of the A allele in rs1800629 (TNFα gene) in Caucasian patients than in controls (Table 1) [28]. A previous study performed in 99 Caucasian patients (64 with type I psoriasis and 35 with type II psoriasis) showed decreased frequency of the GG genotype and increased frequency of the GA genotype of rs361525 (TNFα gene) in patients with type I psoriasis compared with controls (n = 123) (Table 1) [29]. Therefore, the GG genotype in this SNP is associated with a lower risk of type I disease [29].

The inflammatory response in psoriasis is characterized by production of TNFα, as seen above, and production of IL1β (Figure 1) [24]. In fact, this proinflammatory cytokine is overexpressed in psoriatic lesions [30]. An in vitro study in peripheral blood mononuclear cells (231 cases and 345 controls) revealed an association between the CC genotype in rs16944 in the IL1β gene with increased production of IL1RA in response to lipopolysaccharide and IL10 and late-onset psoriasis (over 40 years) (Table 1) [24]. Johansen et al. (2010) observed that expression of IL1β was decreased 4 days after treatment with adalimumab (a human monoclonal antibody against TNFα) [30].

IL23 regulates and stimulates the activation, differentiation, and survival of Th17 lymphocytes (Figure 1) [31, 32] and is highly expressed in psoriatic lesions [18]. IL12 induces the production of IFNγ by Th1 (Figure 1) [33]. The p40 subunit of IL23 and IL12 is the therapeutic target of ustekinumab, a highly effective biological drug, thus suggesting that IL12 and IL23 play an important role in psoriasis [33–35]. Polymorphisms in IL23R and IL12B have been associated with susceptibility to psoriasis in both Caucasian [36, 37] and Asian patients [38, 39].

In Caucasians, a GWAS (1446 cases and 1432 controls) showed the combination of rs3212227 and rs6887695 in IL12B as a risk haplotype in psoriasis (Table 1) [37]. The authors also found an association between rs11209026 in the IL23R gene and psoriasis [37]. Capon et al. (2007) performed a study of 318 cases and 288 controls and found significant differences between the groups for rs3212227 in IL12B (P = 0.036) (Table 1) [40]. A subsequent GWAS with 1810 cases and 2522 controls found an association between SNPs in IL23R (rs7530511 and rs11209026) and IL12B (rs6887695 and rs3212227) and predisposition to psoriasis in Caucasian patients with early-onset psoriasis [19, 20]. Polymorphisms for oral treatment that are safer, more effective, and free of serious side effects. The influence of genetic polymorphisms on the response to biological drugs has been demonstrated in psoriasis [14, 15]; therefore, advances in pharmacogenetics would enable us to tailor treatment.

In this paper, we describe SNPs in genes associated with psoriasis and those associated with the immune response. We also review current knowledge on biological drugs and the impact of polymorphisms on the response to treatment of psoriasis.
patients (Table 1) [36]. Smith et al. (2008) found similar results, associating these four SNPs with psoriasis [41], and Liu et al. (2008) identified an association between psoriasis and IL23R (rs11209026) and IL12B (rs6887695) (Table 1) [42]. H¨uffmeier et al. (2009) analyzed the same four SNPs in 114 patients and found a strong association between rs11209026 (IL23R) and rs3212227 (IL12B) and psoriasis (Table 1) [43]. Another recent study also associated rs11209026 in IL23R gene with psoriasis (Table 1) [2]. Other IL12B and IL23R susceptibility loci identified in GWAS in Caucasian patients include rs2201841 and rs2066808 (IL23R) and rs2082412 and rs2546890 (IL12B) (Table 1) [44, 45].

The SNPs rs11209026 in IL23R gene and rs3212227 in IL12B gene have also been studied in Japanese patients (143 cases and 100 controls), and the A allele (rs3212227) was more frequent in patients with psoriasis than in healthy subjects (Table 1) [46]. In a GWAS performed in a Thai cohort (206 cases and 144 controls), a marginally significant association was found between rs753051 (IL23R gene) and psoriasis (Table 1) [38]; rs3212227 (IL23R) was also associated with the disease [38]. However, the authors did not find an association with rs6887695 in IL12 gene [38]. A GWAS performed in a Chinese population (217 cases and 288 controls) identified other polymorphisms associated with psoriasis in IL23R (A allele rs1465817-A allele rs1343152 haplotype) and IL12B (rs6887695) (Table 1). The SNP in IL12B was replicated with 578 cases and 1422 controls, and the authors found a positive association with psoriasis [39].

Nair et al. (2009) found strong associations between psoriasis and other genes: IL13, which is involved in Th2 lymphocyte modulation (rs20541); TNFα interactin protein 3 (TNFAIP3) (rs610604, rs6920220, rs10499194, and rs5029939 [47, 48]) and TNIP1, which regulate the activity of nuclear factor kappa B (NF-κB) [33]; IL1RN, which inhibits the activity of IL1; and HLA-C (rs12191877), which is involved in inflammatory responses [44] (Table 1). In addition, rs610604 (TNFAIP3) and rs17728338 (TNIP1), but not rs2066808 (IL23R) and rs397211 (IL1RN), were associated with psoriasis in a case-control study (Table 1) [2].

Ellinghaus et al. (2010) studied the TNF receptor-associated factor 3 interacting protein gene (TRAF3IP2) and identified an association between 2 SNPs and psoriasis (rs13210247 and rs33980500) (Table 1) [45]. This association was confirmed by H¨uffmeier et al. (2010) in 2040 German patients with psoriasis vulgaris [49]. TRAF3IP2 encodes a protein that interacts with NF-κB/REL (v-rel reticuloendotheliosis viral oncogene) complexes and modulates IL17 pathways [45]. In another GWAS, rs240993 (TRAF3IP2 gene) was associated with psoriasis in Caucasian patients (Table 1)
Table 1: Single-nucleotide polymorphisms (SNPs) in genes associated with psoriasis.

Gene	Role in immune system	SNP	MAF**	Minor allele	Population	References
IL23R	Encodes a subunit of the receptor required for IL23A signaling. This protein associates constitutively with JAK2 and binds to transcription activator STAT3	rs7530511	0.125	T	Caucasian, Japanese, Chinese	[33, 34, 36–38, 41]
		rs2201841	0.275	C	Caucasian	[44, 45]
		rs1209026	0.067	A	Caucasian	[2, 33, 34, 36, 37, 41–43]
		rs1465817	0.279	A	Chinese	[39]
		rs1343152	0.357	C	Chinese	[39]
		rs2066808	0.092	C	Caucasian	[44]
IL10	Encodes a cytokine produced by monocytes and lymphocytes that downregulates the expression of Th1 cytokines and blocks NF-xB activity. It enhances B-cell survival, proliferation, and antibody production and regulates the JAK-STAT signaling pathway	rs1800896	0.467	A	Caucasian, Egyptian	[25, 60]
TNFα	Encodes a proinflammatory cytokine produced by macrophages. TNFα is implicated in multiple roles such as cell proliferation, differentiation, and apoptosis	rs1800629	0.217	A	Caucasian, Egyptian, Korean	[19–22, 25–29]
		rs361525	0.131	A	Caucasian	[19, 20, 22–24, 26–29]
		rs799724	0.158	A	Caucasian	[14]
IL12B	IL12B is a cytokine expressed by activated macrophages that serves as an essential inducer of Th1 cell development	rs6887695	0.217	T	Caucasian, Chinese	[33, 36, 37, 39, 41, 42]
		rs3212227	0.225	C	Caucasian, Japanese	[33, 36–38, 40–43, 46, 103]
		rs2082412	0.225	A	Caucasian	[44]
		rs2546890	0.438	G	Caucasian	[45]
GBP6	Interferon induces GBP that hydrolyzes GTP to both GDP and GMP	rs928655	0.288	G	Caucasian	[42]
IL6	Encodes a cytokine that induces inflammatory responses through IL6Ra and maturation of B cells	rs1800795	0.467	G	Egyptian	[25]
IL13	Encodes a cytokine produced by activated Th2 that is involved in maturation and differentiation of B cells. IL13 downregulates macrophage activity and inhibits the production of proinflammatory cytokines and chemokines	rs20541	0.233	T	Caucasian	[2, 44, 61]
		rs848	0.242	T	Caucasian	[61]
		rs1800925	0.196	T	Caucasian	[61]
TNFAIP3	TNF induces the expression of TNFAIP3, which inhibits NF-xB activation and TNF-mediated apoptosis. TNFAIP3 is involved in cytokine-mediated immune and inflammatory responses	rs610604	0.408	C	Caucasian	[2, 15, 44]
		rs6920220	0.175	A	Caucasian	[33, 44, 47]
		rs10499194	0.175	T	Caucasian	[33, 44, 47]
		rs5029939	0.042	G	Caucasian	[44, 47, 48]
		rs2230926	0.027	G	Caucasian	[15]
TNIP1	Encodes TNFAIP3 interacting protein 1, which plays a role in the regulation of NF-xB activation	rs17728338	0.075	A	Caucasian	[2, 44]
ILIRN	ILIRN inhibits IL1 and modulates immune and inflammatory responses	rs397211	0.164	G	Caucasian	[44]
HLA-C	HLA class I molecules play a central role in the immune system by presenting peptides derived from endoplasmic reticulum lumen	rs1219877	0.125	T	Caucasian, Chinese	[44, 45, 51]
		rs10484554	0.135	T	Caucasian, Chinese	[2, 42, 104]
		rs1265181	0.258	C	Chinese	[35, 104]
		rs3134792	0.111	G	Caucasian	[105]
Gene	Role in immune system	SNP	MAF**	Minor allele	Population	References
----------	---	----------------------------	--------	--------------	------------	------------
NF-κBIA	Encodes a member of the NF-κB inhibitor family, which interacts with REL dimers to inhibit NF-κB/REL complexes, which are involved in inflammatory responses	rs2145623	0.290	C	Caucasian	[45]
		rs8016947	0.465	T	Caucasian	[50]
APOE	APOE plays a role in the proliferation of T lymphocytes and protects against some infections in patients with psoriasis [73]	rs429358	0.078	APOE*4	Caucasian	[75]
		rs7412	—	—	Caucasian	[75]
VDR	Encodes the nuclear hormone receptor for vitamin D3, which regulates immune response pathways	rs4516035	0.381	C	Caucasian	[76]
IFNγ	Encodes a soluble cytokine with antiviral, immunoregulatory, and antitumor properties, and it is a potent activator of macrophages	rs243056l	—	—	Caucasian	[54]
IL2	Encodes a cytokine that is important for the proliferation of T and B lymphocytes	rs2069762	—	—	Korean	[53]
IL4	IL4 is a pleiotropic cytokine involved in the modulation of Th2 immune responses. IL4 receptor also binds to IL13, which may contribute to many overlapping functions of this cytokine and IL13	rs2243250	0.137	T	Korean	[53]
IL15	Encodes a cytokine that regulates T-cell and natural killer activation and proliferation. IL15 also induces the activation of JAK kinases, as well as the phosphorylation and activation of STAT3, STAT5, and STAT6	rs285726l	0.431	G	Chinese	[69]
		rs1051961	0.102	A	Chinese	[69]
		rs1057972	—	—	Chinese	[69]
TNFRSF1B	TNFRSF1B is a TNFα receptor that mediates the recruitment of antiapoptotic proteins	rs106622	0.239	G	Caucasian, Japanese	[14]*
MCP1	MCP1 encodes a cytokine characterized by two cysteines separated by a single amino acid that displays chemotactic activity for monocytes and basophils	rs1024611	0.305	G	Caucasian	[71]
CTLA4	Encodes a protein which inhibits T cells	rs3087243	0.460	A	Caucasian	[81]**
		rs231775	0.389	G	Caucasian	[81]**
DEFB4	DEFB4 is a member of a family of microbicidal and cytotoxic peptides made by neutrophils	rs2740091	—	—	Caucasian	[56]
		rs2737532	—	—	Caucasian	[56]
STAT4	In response to cytokines, the STAT proteins are phosphorylated and translocate to the cell nucleus, where they act as transcription activators. STAT transduces IL2, IL23, and IFN type I signals in T lymphocytes and regulates the differentiation of Th cells	rs5754865	0.230	T	Caucasian	[72]
IL18	IL18 stimulates production of IFNγ in Th1	rs187238	—	—	Japanese	[58]
IL9	IL9 is a member of the IL10 cytokine subfamily with a role in inflammatory responses	rs2243188	0.230	A	Caucasian	[64, 68]
		rs2243158	0.085	C	Caucasian	[64]
IL20	Encodes a cytokine structurally related to IL10 and transduces its signal through STAT3 in keratinocytes	rs1713239	0.177	G	Chinese	[65]
		rs2981572	—	—	Caucasian	[64, 66, 68]
IL20RA	Encodes a receptor for IL20, a cytokine that may be involved in epidermal function	rs1342642	0.314	A	Caucasian	[67]
		rs184860	—	—	Caucasian	[67]
		rs167846	0.246	T	Caucasian	[67]
		rs167849	0.285	A	Caucasian	[67]
ERAPI	Encodes an aminopeptidase involved in trimming HLA class I-binding precursors so that they can be presented on HLA class I	rs515823	0.093	A	Chinese	[52]
		rs27524	0.332	A	Caucasian	[50]
IL1B	Encodes a cytokine produced by activated macrophages which plays an important role in the inflammatory response	rs69444	0.358	A	Caucasian	[24]
Table 1: Continued.

Gene	Role in immune system	SNP	MAF**	Minor allele	Population	References
TRAF3IP2	Encodes a protein that interacts with TRAF proteins and plays a central role in innate immunity in response to pathogens, inflammatory signals, and stress	rs13210247	0.080	G	Caucasian	[45, 49]
		rs33980500	—	—	Caucasian	[45, 49]
		rs3196377	0.053	A	Caucasian	[49]
		rs3190932	0.058	A	Caucasian	[49]
		rs240993	0.250	T	Caucasian	[50]
IL28RA	Encodes a receptor complex that interacts with IL28A, IL28B, and IL29. The expression of these cytokines can be induced by viral infection	rs4649203	0.239	G	Caucasian	[50]
TYK2	Encodes a member of the JAK protein family that promote cytokine signals by phosphorylating receptor subunits. TYK2 is a component of IFN I and II signaling pathways and may play a role in antiviral immunity	rs2720356	0.124	C	Caucasian	[50]
IFIHI	Encodes a protein that mediates induction of IFN response to viral RNA [83]	rs17716942	0.195	C	Caucasian	[50]
	Encodes a protein that plays a role in skin barrier function [83]	rs4085613	0.403	T	Caucasian	[50]
		rs4845454	0.403	C	Caucasian	[50]
		rs1886734	0.407	A	Caucasian	[50]
		rs4112788	0.403	A	Caucasian	[50]
		rs6701216	0.137	T	Caucasian	[42]
		rs4112788	0.417	T	Chinese	[85]
LCE	Encodes a protein that is involved in T-cell activation [83]	rs2235617	0.432	G	Caucasian	[50]
ZNF313	Encodes a protein that is involved in T-cell activation [83]	rs495337	0.430	A	Caucasian	[105]

*Data from NCBI web page [57]; ** MAF: minor allele frequency for Caucasian population (data from HapMap web page [106] and Alfred [107]). IL: interleukin; R: receptor; JAK: Janus kinase; STAT: signal transducer and activator of transcription; Th1: type 1 helper T lymphocyte; TNF: tumor necrosis factor; GBP: guanylate-binding protein; GTP: guanosine triphosphate; GDP: guanosine diphosphate; GMP: guanosine monophosphate; TNFAIP: TNF-alpha interacting protein; TNIP1: TNFAIP3 interacting protein; IL1RN: interleukin 1 receptor antagonist; HLA: human leukocyte antigen; NF-kB: nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha; REL: v-rel reticuloendotheliosis viral oncogene; APOE: apolipoprotein E; VDR: vitamin D receptor; TNFRSF1: tumor necrosis factor receptor superfamily; MCP: monocyte chemokine protein; CTLA4: cytotoxic T lymphocyte-associated protein 4; DEFB4: defensin beta 4A; IFN: interferon; ERAP: endoplasmic reticulum aminopeptidase; TRAF3IP: TRAF3 (TNF receptor-associated factor 3) interacting protein; IRAK: interleukin-1 receptor-associated kinase; TYK: tyrosine kinase; IFIH1: interferon induced with helicase C domain 1; LCE: late cornified envelope; RNF114: ring finger protein 114; "association between psoriasis and response to anti-TNF treatment; " haplotype GG of rs3087243-rs23775 associated with psoriasis.
psoriasis, mainly in the late-onset group (Table 1) [53]. As for INF (2009) performed a GWAS (1359 cases and 1400 controls) to oppose psoriasis (78 cases versus 74 controls) (Table 1) [54]. A study performed in 114 psoriasis patients and 281 controls from Korea showed that rs2069762 (G allele) in the tyrosine kinase 2 gene (TYK2) (Table 1) [50]. These authors also found an association between HLA-C and the endoplasmic reticulum aminopeptidase gene (ERAP1) (rs27524) [50]. In a Chinese population, another SNP in ERAP1 (rs151823) was associated with early-onset psoriasis (less than 40 years) (GWAS, 8312 cases and 12919 controls) (Table 1) [52]. In a case-control study performed in patients with psoriasis (n = 1050; controls n = 1497), the SNPs rs8016947 (NF-κBIA), rs4649203 (IL28RA), rs12720356 (TYR2), and rs27524 (ERAP1) were not associated with the disease [2].

Activation of Th1 lymphocytes was associated with the production of cytokines such as IL2 and INFγ [3, 18] (Figure 1). In a Korean population (114 patients and 281 controls), the rs2069762 (G allele in IL2) conferred a risk of psoriasis, mainly in the late-onset group (Table 1) [53]. As for INFγ, rs2430561 has been associated with susceptibility to psoriasis (78 cases versus 74 controls) (Table 1) [34]. Furthermore, production of IFNγ was increased by DEFB4 (defensin beta 4A), a microbiocidal and cytotoxic peptide [55]. A significant association was found between rs2740091 and rs2737532 in DEFB4 and predisposition to psoriasis in Caucasian patients (498 cases and 577 controls) (Table 1) [56]. IL18 also stimulates IFNγ production [57], and the presence of polymorphisms in the IL18 gene (rs187238) was associated with susceptibility to psoriasis in Japanese patients (Table 1) [58].

Th2 lymphocytes release IL4, IL6, IL10, and IL13 [3] (Figure 1). A study performed in 114 psoriasis patients and 281 controls from Korea showed that rs2069762 (G allele) in IL2 conferred a risk of developing the disease, mainly in late-onset psoriasis (Table 1) [53]. Moreover, the cytokines IL6 and IL10 seem to be important in the development of psoriasis [59]. In an Egyptian population (46 cases and 96 controls), an association was established between psoriasis and SNPs in IL6 (CC genotype in rs1800795) and IL10 (GG genotype in rs1800896) (Table 1) [25]. In addition, Craven et al. (2001) found differences in rs1800896 (IL10) genotype frequencies between patients with late-onset disease (n = 84) and controls (Table 1) [60]. However, results for the associations between rs1800896 in IL10 gene and psoriasis are controversial, since several studies did not find any differences between cases and controls for this SNP [27, 59]. IL13 is involved in the differentiation and maturation of B cells and differentiation and function of Th17 lymphocytes [33]. Julia et al. (2012) found an association between rs20541 in IL13 and psoriasis (Table 1) [2]. Moreover, the CCG haplotype of rs800925-rs20541-rs848 in IL13 was associated with susceptibility to psoriasis in a study performed in 1446 cases and 1432 controls (Table 1) [61]. In contrast, Duffin et al. (2009) found these associations with psoriatic arthritis, but not with psoriasis [62], and other authors found that rs20541 and rs1809925 in IL13 gene were involved in psoriatic arthritis but not in psoriasis [63].

Other cytokines and chemokines associated with psoriasis include IL19, IL20, IL15, and MCP1 (monocyte chemoattractant protein). Minor alleles of rs2243188 and rs2243158 in IL19 have a protective effect in patients with the disease (Table 1) [64]. In a case-control study (340 cases and 199 controls), the G allele in rs1713239 (IL20) was associated with psoriasis in a Chinese population (Table 1) [65]. Kingo et al. (2004) found an association between G allele carriers of rs2981572 (IL20) and predisposition to psoriasis in Caucasian patients (Table 1) [66]. Polymorphisms in the IL20 receptor (IL20RA) have also been associated with psoriasis (Table 1) [67]. Of note, the haplotype in IL19 and IL20 exhibited a susceptibility factor for the development of psoriasis [68]. IL15 induces the activation of the Janus kinase/signal transducer transcription activation factor (JAK/STAT) pathway and may trigger an immune response in psoriatic lesions [57, 69]. Polymorphisms in IL15 (rs2857261, rs10519613, and rs1057972) have been associated with psoriasis in a Chinese population (Table 1) [69]. However, in a Caucasian population, no clear association was found between rs1057972 and rs10519613 in IL15 gene and psoriasis [70].

MCP1 is a CC-type chemokine that plays a role in the recruitment of monocytes and T lymphocytes in inflammation [71]. Wang et al. (2008) found high serum levels of MCP1 in patients with psoriasis compared with controls [71]. The SNP rs10224611 (GG or AG genotype) in the MCP1 gene may confer susceptibility to psoriasis (507 cases and 530 controls) (Table 1) [71].

Other genes associated with psoriasis include signal transducer and activator of transcription 4 (STAT4), apolipoprotein E (APOE), vitamin D receptor (VDR), and cytotoxic T lymphocyte-associated protein 4 (CTLA4). Zervou et al. (2009) found a weak association between the T allele in rs757486 (STAT4) and predisposition to psoriasis (Table 1) [72]. APOE may play a role in psoriasis by modifying the proliferation of mitogen-activated T lymphocytes and ensuring protection against some infections (Figure 1) [73]. Other authors have reported the APOE-ε4 allele to be a risk factor for the development of severe form of psoriasis [74]. In addition, 2 SNPs in the APOE gene (rs429358 and rs7412) have been associated with chronic plaque psoriasis and guttate psoriasis (Table 1) [75].

Several authors have demonstrated the role of VDR in the pathogenesis of psoriasis [76, 77]. Rucevic et al. (2009) described possible effects of VDR polymorphisms on the immune system, namely, immunomodulation, stimulation of cellular differentiation, and inhibition of proliferation [78]. The TaqI polymorphism (allele T) in VDR was associated with familial psoriasis in a Turkish population [79]. In addition, the A allele in rs451635 (VDR gene) was protective against susceptibility to nonfamilial psoriasis (Table 1) [76]. In contrast, Zuel-Fakkar et al. (2011) did not find any association between the polymorphisms Apal and TaqI in VDR and psoriasis [77].
3. Pharmacogenetics of Biological Drugs

3.1. Biological Drugs. The use of agents that block the action of TNFα (infliximab, etanercept, and adalimumab) has shown clear benefits in the treatment of patients with inflammatory diseases such as psoriasis [87]. TNFα induces the production of proinflammatory cytokines such as IL1 and IL6 (Figure 1), which in turn limits leukocyte migration and expression of adhesion molecules by endothelial cells and leukocytes. Neutralization of the biological activity of TNFα leads to an overall reduction in inflammation. Although anti-TNFα therapy is safe and well tolerated, some adverse events have been reported [88].

Advances in knowledge of the metabolic pathways involved in the pathogenesis of psoriasis and related diseases have led to the search for new therapeutic targets and the development of new biological drugs [10]. Such is the case of ustekinumab, a novel human immunoglobulin IgGx monoclonal antibody that binds strongly to the p40 subunit shared by IL12 and IL23 (Figure 1). This drug was designed to block the inflammatory cascade of Th1 and Th17 lymphocytes, since the altered behavior of keratinocytes in psoriasis probably results in deregulation of these pathways (Figure 1) [89]. In general, ustekinumab was well tolerated [90].

As mentioned above, psoriasis is mediated by the Th1/Th17 response. New biological therapies—both anti-IL17 agents (ixekizumab and secukinumab) [91, 92] and anti-IL17R agents (brodalumab) [93]—are being developed for the treatment of moderate-to-severe plaque psoriasis (Figure 1). Anti-IL17 drugs are now in phase III trials and may become new alternatives to ustekinumab and anti-TNF therapy [9]. Findings for anti-IL17 and anti-IL17R drugs illustrate the importance of the role of IL17 in the pathogenesis of psoriasis [18, 94].

3.2. Other Treatments of Psoriasis in the Future. Biological drugs are well tolerated and improve the PASI-75 (Psoriasis Area and Severity Index reduction ≥75%) score at week 12 [88, 92, 93, 95, 96]. Their main disadvantages are that injectable administration may cause rejection in some patients. Orally administered alternatives—tofacitinib and apremilast—are being developed (Figure 1).

Tofacitinib is a small JAK1/3 inhibitor molecule that was developed to treat psoriasis and other inflammatory diseases (Figure 1) [97]. The JAK family plays a key role in signal transduction from cytokine receptor in lymphocytes to STAT, which is involved in immune responses (Figure 1) [10, 98].

Apremilast is a PDE4 inhibitor that increases levels of cyclic adenosine monophosphate (cAMP) (Figure 1), which activates the protein kinase A and modulates the cytokines involved in the immune response of psoriasis (decreases TNFα, IL23, and IFNγ and increases IL10) [3]. PDE4 inhibitors cause anti-inflammatory activities [99], such as modulation of the synthesis and release of cytokines and chemokines from immune system cells. Stimulation with TNFα and IL1β can release several mediators: IL8, elastase-1, macrophage inflammatory protein 1-α (MIP1α/CCL3), MCP1, and chemokine regulated on activation, normal T cells expressed and secreted (RANTES/CCL5) (Figure 1) [99]. PDE4 inhibitors also suppress the production of inflammatory mediators by Th1 (IL2, IFNγ), Th2 (IL4), and macrophages (TNFα) but increase IL10 synthesis (Figure 1) [99]. Phase II studies have shown an acceptable tolerability and safety profile [100]. Phase III clinical trials of apremilast are ongoing.

Below, we review a selection of pharmacogenetics studies evaluating the efficacy and safety profile of biological drugs.

3.3. Pharmacogenetics. Only two studies have reported the effect of polymorphisms on the response to drugs used to treat psoriasis. In the first, Tejasvi et al. (2012) evaluated associations between two SNPs in TNFAIP3 (rs2230926 and rs610604) and the response to TNF therapy in a cohort from Michigan (n = 433 patients) and a cohort from Toronto (n = 199 patients), both comprising patients with psoriasis and psoriatic arthritis [15]. The SNP rs610604 in TNFAIP3 gene had previously been associated with predisposition to psoriasis and psoriatic arthritis [101]. The authors showed...
Weinberg equilibrium indicates a real association between TNF drugs showed significant differences (Table 1). The T-G haplotype of rs2230926-rs610604 (TNFAIP3) was also associated with the response to anti-TNF in this cohort (Table 1). The authors did not find significant differences between rs610604 in TNFAIP3 gene and adalimumab or infliximab analyzed individually or between the SNPs studied and the response to anti-TNF drugs in the Toronto cohort. The study presented the differences in the results between the two cohorts, stating that the reduced size of the Toronto cohort was a limitation of the study [15].

The other study was performed in 80 Greek psoriatic patients (43 women and 37 men) treated with adalimumab, infliximab, and etanercept. The authors analyzed five polymorphisms in three genes: TNFa (rs361525, rs1800629, rs1799724), TNFRSF1A (rs767455), and TNFRSF1B (rs1061622) [14]. Genotyping data revealed an association with response to treatment after 6 months; the patients who achieved a reduction in the PASI score >75% were classified as responders and those with a reduction of ≤50% were classified as nonresponders [14].

Vasilopoulos et al. [14] found an association between a polymorphism in TNFa (CC genotype for rs1799724; \(P = 0.027 \)) and in TNFRSF1B (TT genotype for rs1061622; \(P = 0.019 \)) and a better response to anti-TNF treatment (Table 1). The statistical analysis of each agent separately revealed an association between these genotypes and a positive response to etanercept after 6 months of therapy (\(P = 0.002 \) and \(P = 0.001 \), resp.). However, these SNPs were not associated with a good response to infliximab or adalimumab. The authors explained these differences by the mode of action of biological drugs (etanercept binds to soluble TNFa, and adalimumab and infliximab bind to transmembrane TNFa). The tests of association between the haplotype rs1799724-rs1061622 (TNFa-TNFRSF1B genes) and the response to anti-TNF drugs showed significant differences (\(P < 0.05 \)) for CT, CG, and TG. It is important to note that Vasilopoulos et al. excluded rs361525 (TNFa), rs1800629 (TNFa), and rs767455 (TNFRSF1A) from the statistical analysis because of a deviation from the Hardy-Weinberg equilibrium [14]. Nevertheless, other authors have reported that a deviation in Hardy-Weinberg equilibrium indicates a real association between genotype and disease [102].

Before treatment of psoriasis can be personalized, more studies should investigate the polymorphisms presented in this review, as well as other polymorphisms and their possible association with drugs used in the treatment of psoriasis. One recent review reported a role for SNPs in psoriasis-related autoimmune diseases (psoriatic arthritis, rheumatoid arthritis, and Crohn’s disease) that could play a role in the response to anti-TNF drugs [8].

4. Conclusions

Our review focused only on those polymorphisms associated with the immune system and psoriasis. Current knowledge is limited, and many other SNPs not associated with immune system may be implicated in the development of psoriasis. Larger studies are necessary to obtain a better understanding of this complex disease, the pathways involved in its pathogenesis, and its pharmacogenetic implications in order to develop more effective and safer drugs that can be administered on a personalized basis.

Conflict of Interests

Esteban Daudén has the following conflict of interests: Advisory Board member, consultant, grants, research support, participation in clinical trials, honorarium for speaking, research support, with the following pharmaceutical companies: AbbVie (Abbott), Amgen, Astellas, Centocor Ortho Biotech Inc., Galderma, Glaxo, Janssen-Cilag, Leo Pharma, Novartis, Pfizer, MSD, and Celgene.

Acknowledgments

The authors are grateful to Instituto de Salud Carlos III (FIS PI10/01740) and Fundación Teófilo Hernando for funding this study and to Mr. Thomas O’Boyle for editorial assistance.

References

[1] M. Yamamoto, Y. Imai, Y. Sakaguchi, T. Haneda, and K. Yamashita, “Serum cytokines correlated with the disease severity of generalized pustular psoriasis,” Disease Markers, vol. 34, no. 3, pp. 153–161, 2013.
[2] A. Julia, R. Tortosa, and J. M. Hernanz, “Risk variants for psoriasis vulgaris in a large case-control collection and association with clinical subphenotypes,” Human Molecular Genetics, vol. 21, no. 20, pp. 4549–4557, 2012.
[3] P. Schafer, “Apremilast mechanism of action and application to psoriasis and psoriatic arthritis,” Biochemical Pharmacology, vol. 83, no. 12, pp. 1583–1590, 2012.
[4] E. Dauden, E. Herrera, and L. Puig, “Validation of a new tool to assess health-related quality of life in psoriasis: the PSO-LIFE questionnaire,” Health and Quality of Life Outcomes, vol. 10, p. 56, 2012.
[5] P. Zhang, M. Zhao, and G. Liang, “Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris,” Journal of Autoimmunity, 2013.
[6] V. Chandran and S. P. Raychaudhuri, “Geopidemiology and environmental factors of psoriasis and psoriatic arthritis,” Journal of Autoimmunity, vol. 34, no. 3, pp. J314–J321, 2010.
[7] V. Chandran, “Genetics of psoriasis and psoriatic arthritis,” Indian Journal of Dermatology, vol. 55, no. 2, pp. 151–156, 2010.
[8] R. Prieto-Perez, T. Cabaleiro, E. Dauden, and F. Abad-Santos, “Gene polymorphisms that can predict response to anti-TNF therapy in patients with psoriasis and related autoimmune diseases,” Pharmacogenomics Journal, 2013.
[9] S. P. Raychaudhuri, “Role of IL-17 in psoriasis and psoriatic arthritis,” Clinical Reviews in Allergy & Immunology, vol. 44, no. 2, pp. 183–193, 2012.
[10] K. Ortiz-Ibanez, M. M. Alsina, and C. Munoz-Santos, “Tofacitinib and other kinase inhibitors in the treatment of psoriasis,” Actas Dermo-Sifiliograficas, vol. 104, no. 4, pp. 304–310, 2013.
[11] R. Vafadari, W. Weimar, and C. C. Baan, "Phosphospecific flow cytometry for pharmacodynamic drug monitoring: analysis of
the JAK-STAT signaling pathway,” *Clinica Chimica Acta*, vol. 413, no. 17-18, pp. 1398–1405, 2012.

[12] K. West, “CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders,” *Current Opinion in Investigational Drugs*, vol. 10, no. 5, pp. 491–504, 2009.

[13] D. Wojciechowski and F. Vincenti, “Targeting JAK3 in kidney transplantation: current status and future options,” *Current Opinion in Organ Transplantation*, vol. 16, no. 6, pp. 614–619, 2011.

[14] Y. Vasilopoulos, M. Manolika, E. Zafiriou et al., “Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the greek population,” *Molecular Diagnosis and Therapy*, vol. 16, no. 1, pp. 29–34, 2012.

[15] T. Tejasvi, P. E. Stuart, V. Chandran et al., “TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis,” *Journal of Investigative Dermatology*, vol. 132, no. 3, pp. 593–600, 2012.

[16] J. K. Kulski, W. Kenworthy, M. Bellgard et al., “Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals,” *Journal of Molecular Medicine*, vol. 83, no. 12, pp. 964–975, 2005.

[17] H. Iizuka, H. Takahashi, M. Honma, and A. Ishida-Yamamoto, “Unique keratinization process in psoriasis: late differentiation markers are abolished because of the premature cell death,” *Journal of Dermatology*, vol. 31, no. 4, pp. 271–276, 2004.

[18] J. G. Krueger, S. Fretzin, M. Suarez-Farinas et al., “IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis,” *Journal of Allergy and Clinical Immunology*, vol. 130, no. 1, pp. 145–154, 2012.

[19] T. Hohler, A. Kruger, P. M. Schneider et al., “A TNF-α promoter polymorphism is associated with juvenile on-set psoriasis and psoriatic arthritis,” *Journal of Investigative Dermatology*, vol. 109, no. 4, pp. 562–565, 1997.

[20] R. Mössner, K. Kingo, A. Kleensang et al., “Association of TNF-238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris,” *Journal of Investigative Dermatology*, vol. 124, no. 1, pp. 282–284, 2005.

[21] E. Louis, D. Franchimont, A. Piron et al., “Tumour necrosis factor (TNF) gene polymorphism influences TNF-α production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans,” *Clinical and Experimental Immunology*, vol. 113, no. 3, pp. 401–406, 1998.

[22] C. Li, G. Wang, Y. Gao, L. Liu, and T. Gao, “TNF-α gene promoter –238G>A and –308G>A polymorphisms alter risk of psoriasis vulgaris: a meta-analysis,” *Journal of Investigative Dermatology*, vol. 127, no. 8, pp. 1886–1892, 2007.

[23] W. Kaluza, E. Reuss, S. Grossmann et al., “Different transcriptional activity and in vitro TNF-α production in psoriasis patients carrying the TNF-α 238A promoter polymorphism,” *Journal of Investigative Dermatology*, vol. 114, no. 6, pp. 1180–1183, 2000.

[24] K. Reich, R. Mössner, I. R. König, G. Westphal, A. Ziegler, and C. Neumann, “Promoter polymorphisms of the genes encoding tumor necrosis factor-α and interleukin-1β are associated with different subtypes of psoriasis characterized by early and late disease onset,” *Journal of Investigative Dermatology*, vol. 118, no. 1, pp. 155–163, 2002.

[25] A. Settin, H. Hassan, R. El-Baz, and T. Hassan, “Association of cytokine gene polymorphisms with psoriasis in cases from the Nile Delta of Egypt,” *Acta Dermato-venereologica Alpina, Pannonica et Adriatica*, vol. 18, no. 3, pp. 105–112, 2009.

[26] T.-G. Kim, C.-W. Pyo, S.-S. Hur et al., “Polymorphisms of tumor necrosis factor (TNF) α and β genes in Korean patients with psoriasis,” *Archives of Dermatological Research*, vol. 295, no. 1, pp. 8–13, 2003.

[27] K. Reich, G. Westphal, T. Schulz et al., “Combined analysis of polymorphisms of the tumor necrosis factor-α and interleukin-10 promoter regions and polymorphic xenobiotic metabolizing enzymes in psoriasis,” *Journal of Investigative Dermatology*, vol. 113, no. 2, pp. 214–220, 1999.

[28] B. Nedoszytko, A. Szczerek-Dobosz, M. Zablota, J. Glei, K. Rębała, and J. Roszkiewicz, “Associations of promoter region polymorphisms in the tumour necrosis factor-α gene and early-onset psoriasis vulgaris in a northern Polish population,” *British Journal of Dermatology*, vol. 157, no. 1, pp. 165–167, 2007.

[29] A. I. Arias, B. Giles, T. H. Eiermann, W. Sterry, and J. P. Pandey, “Tumor necrosis factor-alpha gene polymorphism in psoriasis,” *Experimental and Clinical Immunogenetics*, vol. 14, no. 2, pp. 118–122, 1997.

[30] C. Johansen, H. Vinter, L. Søegaard-Madsen et al., “ Preference inhibition of the mRNA expression of p38 mitogen-activated protein kinase regulated cytokines in psoriatic skin by anti-TNFα therapy,” *British Journal of Dermatology*, vol. 163, no. 6, pp. 1194–1204, 2010.

[31] É. Toussirot, “The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases,” *Inflammation and Allergy*, vol. 11, no. 2, pp. 159–168, 2012.

[32] M. Kurzeja, L. Rudnicka, and M. Olszewsa, “New interleukin-23 pathway inhibitors in dermatology: ustekinumab, briakinumab, and secukinumab,” *American Journal of Clinical Dermatology*, vol. 12, no. 2, pp. 113–125, 2011.

[33] Y. Li and A. B. Begovich, “Unraveling the genetics of complex diseases: susceptibility genes for rheumatoid arthritis and psoriasis,” *Seminars in Immunology*, vol. 21, no. 6, pp. 318–327, 2009.

[34] V. E. Garcia, M. Chang, R. Brandon et al., “Detailed genetic characterization of the interleukin-23 receptor in psoriasis,” *Genes and Immunity*, vol. 9, no. 6, pp. 546–555, 2008.

[35] X.-J. Zhang, “Enlightenment from genome-wide association study to genetics of psoriasis,” *Journal of Zhejiang University*, vol. 38, no. 4, pp. 333–337, 2009.

[36] R. P. Nair, A. Ruether, P. E. Stuart et al., “Polymorphisms of the IL12B and IL23R genes are associated with psoriasis,” *Journal of Investigative Dermatology*, vol. 128, no. 7, pp. 1653–1661, 2008.

[37] M. Cargill, S. J. Schrodi, M. Chang et al., “A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes,” *American Journal of Human Genetics*, vol. 80, no. 2, pp. 273–290, 2007.

[38] R. P. Nair, P. E. Stuart, P. Kullavanijaya et al., “Genetic evidence for involvement of the IL23 pathway in Thai psoriasis,” *Archives of Dermatological Research*, vol. 302, no. 2, pp. 139–143, 2010.

[39] Y. Wu, Z. Lu, Y. Chen, F. Xue, X. Chen, and J. Zheng, “Replication of association between interleukin-23 receptor (IL-23R) and its ligand (IL-12B) polymorphisms and psoriasis in the Chinese Han population,” *Human Immunology*, vol. 71, no. 12, pp. 1255–1258, 2010.

[40] F. Capon, P. Di Meglio, J. Szaub et al., “Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis,” *Human Genetics*, vol. 122, no. 2, pp. 201–206, 2007.
[41] R. L. Smith, R. B. Warren, S. Eyre et al., “Polymorphisms in the IL-12β and IL-23R genes are associated with psoriasis of early onset in a UK cohort,” Journal of Investigative Dermatology, vol. 128, no. 5, pp. 1325–1327, 2008.

[42] Y. Liu, C. Helms, W. Liao et al., “A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci,” PLoS Genetics, vol. 4, no. 3, Article ID e1000404, 2008.

[43] U. Hüffmeier, J. Lascorz, B. Böhm et al., “Genetic variants of the IL-23R pathway: association with psoriatic arthritis and psoriasis vulgaris, but no specific risk factor for arthritis,” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 355–358, 2009.

[44] R. P. Nair, K. C. Duffin, C. Helms et al., “Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways,” Nature Genetics, vol. 41, no. 2, pp. 199–204, 2009.

[45] E. Ellinghaus, D. Ellinghaus, P. E. Stuart et al., “Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2,” Nature Genetics, vol. 42, no. 11, pp. 991–995, 2010.

[46] Y. Tsunemi, H. Saeki, K. Nakamura et al., “Interleukin-12 p40 gene (IL12B) 3′-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris,” Journal of Dermatological Science, vol. 30, no. 2, pp. 161–166, 2002.

[47] S. L. Musone, K. E. Taylor, J. Nithitham et al., “Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases,” Genes and Immunity, vol. 12, no. 3, pp. 176–182, 2011.

[48] J. P. Lodolce, L. E. Kolodziej, L. Rhee et al., “African-derived genetic polymorphisms in TNFAIP3 mediate risk for autoimmunity,” Journal of Immunology, vol. 184, no. 12, pp. 7001–7009, 2010.

[49] U. Hüffmeier, S. Uebel, A. B. Ekici et al., “Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis,” Nature Genetics, vol. 42, no. 11, pp. 996–999, 2010.

[50] A. Strange, F. Capon, C. C. A. Spencer et al., “A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1,” Nature Genetics, vol. 42, no. 11, pp. 985–990, 2010.

[51] B.-J. Feng, L.-D. Sun, R. Soltani-Arabshahi et al., “Multiple loci within the major histocompatibility complex confer risk of psoriasis,” PLoS Genetics, vol. 5, no. 8, Article ID e1000606, 2009.

[52] L. D. Sun, H. Cheng, and Z. X. Wang, “Association analyses identify six new psoriasis susceptibility loci in the Chinese population,” Nature Genetics, vol. 42, no. 11, pp. 1005–1009, 2010.

[53] Y.-K. Kim, C.-W. Pyo, H.-B. Choi, S.-Y. Kim, T.-Y. Kim, and T.-G. Kim, “Associations of IL-2 and IL-4 gene polymorphisms with psoriasis in the Korean population,” Journal of Dermatological Science, vol. 48, no. 2, pp. 133–139, 2007.

[54] W. Baran, J. C. Szepietowski, G. Mazur, and E. Baran, “IFN-γ promoter gene polymorphism in psoriasis vulgaris,” Biomarkers, vol. 13, no. 1, pp. 52–58, 2008.

[55] N. Kanda, N. Masahiro, Y. Tada, T. Ishikawa, S. Sato, and S. Watanabe, “Human β-defensin-2 enhances IFN-γ and IL-10 production and suppresses IL-17 production in T cells,” Journal of Leukocyte Biology, vol. 89, no. 6, pp. 935–944, 2011.

[56] E. J. Hollo, U. Hüffmeier, P. L. J. M. Zeeuwen et al., “Psoriasis is associated with increased β-defensin genomic copy number,” Nature Genetics, vol. 40, no. 1, pp. 23–25, 2008.

[57] Web page National Center for Biotechnology Information (NCBI), 2013, http://www.ncbi.nlm.nih.gov/gene.
[73] A. Karpouzis, R. Caridha, G. Tripsianis, C. Michailidis, G. Martinis, and S. V. Veletza, “Apolipoprotein e gene polymorphism in psoriasis,” *Archives of Dermatological Research*, vol. 301, no. 6, pp. 405–410, 2009.

[74] P. Coto-Segura, E. Coto, V. Alvarez et al., “Apolipoprotein e4 allele is associated with psoriasis severity,” *Archives of Dermatological Research*, vol. 302, no. 2, pp. 145–149, 2010.

[75] E. Campalani, M. H. Allen, D. Fairhurst et al., “Apolipoprotein E gene polymorphisms are associated with psoriasis but do not determine disease response to acitretin,” *British Journal of Dermatology*, vol. 154, no. 2, pp. 343–352, 2011.

[76] J. A. Halsall, J. E. Osborne, J. H. Pringle, and P. E. Hutchinson, “Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D responsiveness and non-familial susceptibility in psoriasis,” *Pharmacogenetics and Genomics*, vol. 15, no. 5, pp. 349–355, 2005.

[77] N. M. Zuel-Fakkar, M. M. Kamel, M. Z. Mahran, and A. A. Shehab, “A study of Apal and TaqI genotypes of the vitamin D receptor in Egyptian patients with psoriasis,” *Clinical and Experimental Dermatology*, vol. 36, no. 4, pp. 355–359, 2011.

[78] I. Rucevic, V. Barisic-Drusko, L. Glavas-Obrovac, and M. Stefanic, “Vitamin D endocrine system and psoriasis vulgaris—review of the literature,” *Acta Dermatovenerologica Croatica*, vol. 17, no. 3, pp. 187–192, 2009.

[79] D. Dayangac-Erden, A. Karaduman, and H. Erdem-Yurter, “Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients,” *Archives of Dermatological Research*, vol. 299, no. 10, pp. 487–491, 2007.

[80] W. Łuszczek, W. Kubicka, M. Jasek et al., “CTLA-4 gene polymorphisms and natural soluble CTLA-4 protein in psoriasis vulgaris,” *International Journal of Immunogenetics*, vol. 33, no. 3, pp. 217–224, 2006.

[81] W. Łuszczek, E. Majorczyk, P. Nockowski et al., “Distribution of the CTLA-4 single nucleotide polymorphisms CT60G>A and +49A>G in psoriasis vulgaris patients and control individuals from a Polish Caucasian population,” *International Journal of Immunogenetics*, vol. 35, no. 1, pp. 51–55, 2008.

[82] Y.-K. Kim, C.-W. Pyo, S.-S. Hur, T.-Y. Kim, and T.-G. Kim, “No associations of CTLA-4 and ICAM-1 polymorphisms with psoriasis in the Korean population,” *Journal of Dermatological Science*, vol. 33, no. 1, pp. 75–77, 2003.

[83] H. L. Hébert, F. R. Ali, J. Bowes, C. E. M. Griffiths, A. Barton, and R. B. Warren, “Genetic susceptibility to psoriasis and psoriatic arthritis: implications for therapy,” *British Journal of Dermatology*, vol. 166, no. 3, pp. 474–482, 2012.

[84] J. Bowes, E. Flynn, P. Ho et al., “Variants in linkage disequilibrium with the late cornified envelope gene cluster deletion are associated with susceptibility to psoriatic arthritis,” *Annals of the Rheumatic Diseases*, vol. 69, no. 12, pp. 2199–2203, 2010.

[85] X.-J. Zhang, W. Huang, S. Yang et al., “Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21,” *Nature Genetics*, vol. 41, no. 2, pp. 205–210, 2009.

[86] E. Docampo, E. Giardina, E. Riveira-Muñoz et al., “Deletion of LCE3C and LCE3B is a susceptibility factor for psoriatic arthritis: a study in Spanish and Italian populations and meta-analysis,” *Arthritis and Rheumatism*, vol. 63, no. 7, pp. 1860–1865, 2011.

[87] L. H. Kirck and J. Q. Del Rosso, “Anti-TNF agents for the treatment of psoriasis,” *Journal of Drugs in Dermatology*, vol. 8, no. 6, pp. 546–559, 2009.

[88] R. K. Sivamani, G. Correa, Y. Ono, M. P. Bowen, S. P. Raychaudhuri, and E. Maverakis, “Biological therapy of psoriasis,” *Indian Journal of Dermatology*, vol. 55, no. 2, pp. 161–170, 2010.

[89] S. Brand, “Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease,” *Gut*, vol. 58, no. 8, pp. 1152–1167, 2009.

[90] M. Gandhi, E. Alwawi, and K. B. Gordon, “Anti-p40 Antibodies Ustekinumab and Briakinumab: blockade of Interleukin-12 and Interleukin-23 in the Treatment of Psoriasis,” *Seminars in Cutaneous Medicine and Surgery*, vol. 29, no. 1, pp. 48–52, 2010.

[91] J. J. Wu, “Anti-interleukin-17 monoclonal antibody ixekizumab in psoriasis,” *New England Journal of Medicine*, vol. 367, no. 3, pp. 274–275.

[92] P. Rich, B. Sigurgeirsson, D. Thaci et al., “Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study,” *British Journal of Dermatology*, vol. 168, no. 2, pp. 402–411, 2013.

[93] K. A. Papp, C. Leonardi, A. Menter et al., “Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis,” *New England Journal of Medicine*, vol. 366, no. 13, pp. 1181–1189, 2012.

[94] D. D. Patel, D. M. Lee, F. Kolbinger, and C. Antoni, “Effect of IL-17A blockade with secukinumab in autoimmune diseases,” *Annals of the Rheumatic Diseases*, 2012.

[95] C. Leonardi, R. Matheson, C. Zachariae et al., “Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis,” *New England Journal of Medicine*, vol. 366, no. 13, pp. 1190–1191, 2012.

[96] K. A. Papp, R. G. Langley, B. Sigurgeirsson et al., “Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study,” *British Journal of Dermatology*, vol. 168, no. 2, pp. 412–421, 2013.

[97] W. C. Ports, S. Khan, S. Lan et al., “A randomised Phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis,” *British Journal of Dermatology*, 2013.

[98] C. J. Menet, L. V. Rompaey, and R. Genee, “Advances in the discovery of selective JAK inhibitors,” *Progress in Medicinal Chemistry*, vol. 52, pp. 153–223, 2013.

[99] M. J. Sanz, J. Cortijo, and E. J. Morcillo, “PDE4 inhibitors as new anti-inflammatory drugs: effects on cell trafficking and cell adhesion molecules expression,” *Pharmacology and Therapeutics*, vol. 106, no. 3, pp. 269–297, 2005.

[100] K. Papp, J. C. Cather, L. Rosoph et al., “Efficacy of apremilast in the treatment of moderate to severe psoriasis: a randomised controlled trial,” *Lancet*, vol. 380, no. 9843, pp. 738–746, 2012.

[101] J. Bowes and A. Barton, “The genetics of psoriatic arthritis: lessons from genome-wide association studies,” *Discovery Medicine*, vol. 10, no. 52, pp. 177–183, 2010.

[102] E. Sorrigue and S. Morcillo, “¿Qué hacer cuando en los estudios de epidemiología biomolecular la distribución genotípica no se ajusta al equilibrio de Hardy-Weinberg?” *Endocrinología y Nutrición*, vol. 54, no. 3, pp. 169–173, 2007.

[103] H.-F. Zheng, X.-B. Zuo, W.-S. Lu et al., “Variants in MHC, LCE and IL12B have epistatic effects on psoriasis risk in Chinese population,” *Journal of Dermatological Science*, vol. 61, no. 2, pp. 124–128, 2011.
[104] H.-F. Zheng, C. Zhang, L.-D. Sun et al., “A single nucleotide polymorphism of MHC region is associated with subphenotypes of Psoriasis in Chinese population,” *Journal of Dermatological Science*, vol. 59, no. 1, pp. 50–52, 2010.

[105] F. Capon, M.-J. Bijlmakers, N. Wolf et al., “Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene,” *Human Molecular Genetics*, vol. 17, no. 13, pp. 1938–1945, 2008.

[106] Web page Hapmap, 2013, http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r3_B36/#search.

[107] Web page Alfred, 2013, http://alfred.med.yale.edu/.