INFINITESIMAL HECKE ALGEBRAS OF \mathfrak{so}_N

ALEXANDER TSYMBALIUK

Abstract. In this article we classify all infinitesimal Hecke algebras of $\mathfrak{g} = \mathfrak{so}_N$. We establish isomorphism of their universal versions and the W-algebras of \mathfrak{so}_{N+2m+1} with a 1-block nilpotent element of the Jordan type $(1, \ldots, 1, 2m + 1)$. This should be considered as a continuation of [LT], where the analogous results were obtained for the cases of $\mathfrak{g} = \mathfrak{gl}_n, \mathfrak{sp}_{2n}$.

Introduction

In this paper we consider infinitesimal Hecke algebras of \mathfrak{so}_N. Although their theory runs along similar lines as for the cases of \mathfrak{gl}_N and \mathfrak{sp}_{2N}, they have not been investigated before.

We obtain the classification result in Theorem 1.6 (compare to [EGG, Theorem 4.2]), compute the Poisson center of the corresponding Poisson algebras in Theorem 4.2 (compare to [DT, Theorems 5.1 and 7.1]), compute the first non-trivial central element in Theorem 6.1 (compare to [DT, Theorem 3.1]) and derive the isomorphism with the corresponding W-algebras in Theorems 5.3, 5.4 (compare to [LT, Theorems 2.2 and 3.1]).

Together with [LT], this covers all basic cases of the infinitesimal Hecke algebras on the one side and the classical W-algebras with a 1-block nilpotent element, on the other. However, we would like to emphasize that the theory of infinitesimal/continuous Hecke algebras is much more complicated in general and has not been developed yet.

This paper is organized as follows:

- In Section 1, we recall the definitions of the continuous and infinitesimal Hecke algebras of type $(\mathfrak{g}, \mathfrak{V})$ (respectively $(\mathfrak{g}, \mathfrak{V})$). We formulate Theorems 1.4 and 1.6 which classify all such algebras for the cases of $(\mathfrak{so}_N, \mathfrak{V}_N)$ and $(\mathfrak{so}_N, \mathfrak{V}_N)$, respectively.
- In Section 2, we prove Theorem 1.4.
- In Section 3, we prove Theorem 1.6 by computing explicitly the corresponding integral.
- In Section 4, we compute the Poisson center of the classical analogue $H^\mathfrak{v}_\mathfrak{z}(\mathfrak{so}_N, \mathfrak{V}_N)$.
- In Section 5, we introduce the universal length m infinitesimal Hecke algebras $H_m(\mathfrak{so}_N, \mathfrak{V}_N)$. Theorem 5.3 (and its Poisson counterpart Theorem 5.4) establish an abstract isomorphism between algebras $H_m(\mathfrak{so}_N, \mathfrak{V}_N)$ and the W-algebras $U(\mathfrak{so}_{N+2m+1}, e_m)$.
- In Section 6, we find a non-trivial central element of $H^\mathfrak{v}_\mathfrak{z}(\mathfrak{so}_N, \mathfrak{V}_N)$, called the Casimir element of $H^\mathfrak{v}_\mathfrak{z}(\mathfrak{so}_N, \mathfrak{V}_N)$. This can be used to establish the isomorphism of Theorem 5.3 explicitly.

Acknowledgments.

The author is grateful to P. Etingof and I. Losev for numerous stimulating discussions. Special thanks are due to S. Sam for explaining the result of Claim 2.3 as well as its proof. Finally, the author is grateful to D. Ding for his comments on the first version of the paper.

1 We assume that $N \geq 3$.
1. Basic definitions

1.1. Continuous Hecke algebras.

We recall the definition of the continuous Hecke algebras of \((G, V)\), following \[EGG\].

Given a reductive algebraic group \(G\), its algebraic representation \(V\) and a skew-symmetric \(G\)-equivariant \(\mathbb{C}\)-linear map \(\kappa : V \times V \to \mathcal{O}(G)^*\), we set

\[\mathcal{H}_\kappa(G, V) := \mathcal{O}(G)^* \times TV/([x, y] - \kappa(x, y))\ x, y \in V.\]

Consider an algebra filtration on \(\mathcal{H}_\kappa(G, V)\) by setting \(\text{deg}(V) = 1\) and \(\text{deg}(\mathcal{O}(G)^*) = 0\).

Definition 1.1. \[EGG\] We say that \(\mathcal{H}_\kappa(G, V)\) satisfies the PBW property if the natural surjective map \(\mathcal{O}(G)^* \times SV \to \mathcal{H}_\kappa(G, V)\) is an isomorphism, where \(S\) denotes the symmetric algebra. We call these \(\mathcal{H}_\kappa(G, V)\) the continuous Hecke algebras of \((G, V)\).

According to \[EGG\] Theorem 2.4, \(\mathcal{H}_\kappa(G, V)\) satisfies the PBW property if and only if \(\kappa\) satisfies the Jacobi identity:

\[(z - z^g)\kappa(x, y) + (y - y^g)\kappa(z, x) + (x - x^g)\kappa(y, z) = 0, \quad \forall x, y, z \in V.\]

Define the closed subscheme \(\Phi \subset G\) by the equation \(\wedge^3(1 - g \mid V) = 0\). The set of closed points of \(\Phi\) is the set \(S\) of elements of \(G\) such that \(\text{rk}(1 - g \mid V) \leq 2\). We have:

Proposition 1.2. \[EGG\] Proposition 2.8 If the PBW property holds for \(\mathcal{H}_\kappa(G, V)\), then \(\kappa(x, y)\) is supported on the scheme \(\Phi\) for all \(x, y \in V\).

The classification of all \(\kappa\) which satisfy \((\dagger)\) was obtained in \[EGG\] for the following cases:

- for the pairs \((G, \mathfrak{g} \oplus \mathfrak{h}^*)\) with \(\mathfrak{h}\) being an irreducible faithful \(G\)-representation of real or complex type (see \[EGG\] Theorem 3.5]),
- for the pair \((\text{Sp}_{2n}, V_{2n})\) (see \[EGG\] Theorem 3.14)).

For general continuous Hecke algebras, such a classification is not known at the moment. However, a particular family of those was established in \[EGG\] Theorem 2.13:

Proposition 1.3. For any \(\tau \in (\mathcal{O}(\text{Ker} \rho)^* \otimes \wedge^2 V^*)^G\) and \(v \in (\mathcal{O}(\Phi)^* \otimes \wedge^2 V^*)^G\), the pairing \(\kappa_{\tau,v}(x, y) := \tau(x, y) + v(1 - g) (1 - g)\) satisfies the Jacobi identity.

Our first result is a full classification of all \(\kappa\) satisfying \((\dagger)\) for the case of \((\text{SO}_N, V_N)\), which is similar to the aforementioned classification for \((\text{Sp}_{2n}, V_{2n})\). However, it turns out that \(\Phi\) is not reduced in this case and so we need a more detailed argument.

Theorem 1.4. The PBW property holds for \(\mathcal{H}_\kappa(\text{SO}_N, V_N)\) if and only if there exists an \(\text{SO}_N\)-equivariant distribution \(c \in \mathcal{O}(S)^*\), such that \(\kappa(x, y) = ((g - g^{-1})x, y)c\) for all \(x, y \in V_N\).

The proof of this theorem is presented in Section 2.

1.2. Infinitesimal Hecke algebras.

For any triple \((\mathfrak{g}, V, \kappa)\) of a Lie algebra \(\mathfrak{g}\), its representation \(V\) and a \(\mathfrak{g}\)-equivariant \(\mathbb{C}\)-bilinear pairing \(\kappa : \wedge^2 V \to U(\mathfrak{g})\), we define

\[H_\kappa(\mathfrak{g}, V) := U(\mathfrak{g}) \times TV/([x, y] - \kappa(x, y))\ x, y \in V.\]

Endow this algebra with a filtration by setting \(\text{deg}(V) = 1\), \(\text{deg}(\mathfrak{g}) = 0\).

Definition 1.5. \[EGG\] Section 4 We call this algebra the infinitesimal Hecke algebra of \((\mathfrak{g}, V)\) if it satisfies the PBW property, that is the natural surjective map \(U(\mathfrak{g}) \times SV \to \text{gr} H_\kappa(\mathfrak{g}, V)\) is an isomorphism.
Any such algebra gives rise to a continuous Hecke algebra

\[H_\kappa(g,V) := \mathcal{O}(G)^* \otimes_{U(g)} H_\kappa(g,V), \]

where \(U(g) \) is identified with a subalgebra \(\mathcal{O}(G)_{1_G} \subset \mathcal{O}(G)^* \), consisting of all algebraic distributions set-theoretically supported at \(1_G \in G \).

In particular, having a full classification of the continuous Hecke algebras of type \((G,V)\) yields a corresponding classification for \((\text{Lie}(G),V)\). Such classifications were determined explicitly for the cases of \((g,V) = (\mathfrak{gl}_n,V_\bullet \oplus V_\bullet^*)\) in [EGG] Theorem 4.2.

To formulate our classification of infinitesimal Hecke algebras \(H_\kappa(\mathfrak{so}_N,V_N) \), we define:

\[\gamma_{2j+1}(x,y) \in \mathfrak{so}_N \simeq \mathbb{C}[\mathfrak{so}_N] \]

by

\[(x,A(1 + \tau^2 A^2)^{-1}) \det(1 + \tau^2 A^2)^{-1/2} = \sum_{j \geq 0} \gamma_{2j+1}(x,y)(A)^{2j}, \quad A \in \mathfrak{so}_N, \]

\[r_{2j+1}(x,y) \in U(\mathfrak{so}_N) \] to be the symmetrization of \(\gamma_{2j+1}(x,y) \in \mathfrak{so}_N \).

The following theorem will be proved in Section 3:

Theorem 1.6. The PBW property holds for \(H_\kappa(\mathfrak{so}_N,V_N) \) if and only if \(\kappa = \sum_{j=0}^{k} \zeta_j r_{2j+1} \) for some non-negative integer \(k \) and parameters \(\zeta_0, \ldots, \zeta_k \in \mathbb{C} \).

This classification is very similar to the analogous results for the pairs \((\mathfrak{gl}_n,V_\bullet \oplus V_\bullet^*)\) and \((\mathfrak{sp}_{2n},V_{2n})\). We denote the corresponding algebra by \(H_\kappa(\mathfrak{so}_N,V_N) \) for \(\kappa \) of the above form.

Remark 1.7. (a) For \(\zeta_0 \neq 0 \) we have \(H_{\zeta_0}(\mathfrak{so}_N,V_N) \simeq U(\mathfrak{so}_{N+1}) \). Thus, for an arbitrary \(\zeta \) we can regard \(H_{\zeta}(\mathfrak{so}_N,V_N) \) as a deformation of \(U(\mathfrak{so}_{N+1}) \).

(b) This theorem does not hold for \(N = 2 \), since only half of the infinitesimal Hecke algebras are of the form given in the theorem (algebras \(H_\kappa(\mathfrak{so}_2,V_2) \) are the same as \(H_\kappa(\mathfrak{gl}_1,V_1 \oplus V_1^*) \)).

1.3. \(W \)-algebras.

Here we recall the definitions of finite \(W \)-algebras following [GG] (see also [LT] Section 1.6]).

Let \(g \) be a finite dimensional simple Lie algebra over \(\mathbb{C} \) and \(e \in g \) be a nonzero nilpotent element. We identify \(g \) with \(g^* \) via the Killing form \((\ ,\)\). Let \(\chi \) be the element of \(g^* \) corresponding to \(e \) and \(\mathfrak{z}_\chi \) be the stabilizer of \(\chi \) in \(g \) (which is the same as the centralizer of \(e \) in \(g \)). Fix an \(sl_2 \)-triple \((e,h,f)\) in \(g \). Then \(\mathfrak{z}_\chi \) is ad\((h)\)-stable and the eigenvalues of ad\((h)\) on \(\mathfrak{z}_\chi \) are nonnegative integers. Consider the ad\((h)\)-weight grading on \(g = \bigoplus_{\xi \in \mathfrak{z}} g(\xi) \), that is, \(g(\xi) := \{ \xi \in g \mid [h,\xi] = \xi \} \). Equip \(g(-1) \) with the symplectic form \(\omega_\chi(\xi,\eta) := \langle \chi, [\xi,\eta] \rangle \). Fix a Lagrangian subspace \(l \subset g(-1) \) and set \(m := \bigoplus_{\xi \in l} g(\xi) \oplus l \subset g \). \(m' := \{ \xi - \langle \chi,\xi \rangle \xi \mid \xi \in m \} \subset U(g) \).

Definition 1.8. [PI], [GG] The \(W \)-algebra associated with \(e \) (and \(l \)) is the algebra \(U(g,e) := (U(g)/U(g)m')^{ad_m} \) with multiplication induced from \(U(g) \).

Let \(\{ F^* \} \) denote the PBW filtration on \(U(g) \), while \(U(g)(i) := \{ x \in U(g) \mid [h,x] = ix \} \). Define \(F_k U(g) = \sum_{i+j+k} (F^*_i U(g) \cap U(g)(i)) \) and equip \(U(g,e) \) with the induced filtration, denoted \(\{ F^*_e \} \) and referred to as the Kazhdan filtration.

One of the key results of [GG],[PI] is a description of the associated graded algebra \(gr_{F^*_e} U(g,e) \). Recall that the affine subspace \(S_e := \chi + (g/[g,f])^* \subset g^* \) is called the Slodowy slice. As an affine subspace of \(g \), the Slodowy slice \(S_e \) coincides with \(e + c \), where \(c = \ker(g(0)) \). So we can identify \(\mathbb{C}[S_e] \cong \mathbb{C}[c] \) with the symmetric algebra \(S闪烁\). According to [GG] Section 3, algebra \(\mathbb{C}[S_e] \) inherits a Poisson structure from \(\mathbb{C}[g^*] \) and is also graded with \(\deg(\chi \cap g(i)) = i + 2 \).

Theorem 1.9. [GG] Theorem 4.1 The filtered algebra \(U(g,e) \) does not depend on the choice of \(l \) (up to a distinguished isomorphism) and \(gr_{F^*_e} U(g,e) \cong \mathbb{C}[S_e] \) as graded Poisson algebras.
Lemma 2.1. For all \(x, y, z \in V_N \) and the result follows. Thus we can assume

\[h(x, y, z; g) := (z - a^g)(x^g - x'^{g-1}) + (y - y^g)(z^g - z'^{g-1}) + (x - x^g)(y^g - y'^{g-1}), \]

Proof. For any \(g \in S \) we have \(V = V^g \oplus (V^g)^\perp \), where \(V^g := \text{Ker}(1 - g) \) is a codimension \(\leq 2 \) subspace of \(V \). If one of the vectors \(x, y, z \) belongs to \(V^g \), then all the three summands are zero and the result follows. Thus we can assume \(x, y, z \in (V^g)^\perp \). Since \(\text{dim}((V^g)^\perp) \leq 2 \) they must be linearly dependent; without loss of generality we can assume \(z = \alpha x + \beta y, \ \alpha, \beta \in \mathbb{C} \). Then

\[h(x, y, z; g) = \alpha \left((x - x^g)(x^g - x'^{g-1}) + (y - y^g)(y^g - y'^{g-1}) + (x - x^g)(y^g - y'^{g-1}) \right) + \beta \left((y - y^g)(x^g - x'^{g-1}) + (y - y^g)(y^g - y'^{g-1}) + (x - x^g)(y^g - y'^{g-1}) \right). \]

Since \(x^g - x'^{g-1} = (x^g, x) - (x, x^g) = 0 \) and \(y^g - y'^{g-1} = -(y^g - y'^{g-1}) \), the first sum is zero. Analogously, the second sum is zero. The result follows.

Since \(c \) is scheme-theoretically supported at \(S \) and \(h(x, y, z; g) = 0 \) for all \(x, y, z \in V_N, g \in S \), we get \(h(x, y, z; g)c = 0 \), which implies \((\dagger)\).

Lemma 2.2. (a) The space \((\wedge^2 V^*_N \otimes \mathcal{O}(\Phi)^*)^{SO_N}\) is either zero or one-dimensional,

(b) If \((\wedge^2 V^*_N \otimes \mathcal{O}(\Phi)^*)^{SO_N} \neq 0\), then there exists \(\kappa' \in (\wedge^2 V^*_N \otimes \mathcal{O}(\Phi)^*)^{SO_N} \), not satisfying \((\dagger)\).

The following fact was communicated to us by Steven Sam:

Claim 2.3. As a \(\mathfrak{g}l_N \)-representation we have \(E \simeq \wedge^4 V_N \).

Let us first deduce Lemma 2.2 from this Claim.

\(^2 \) So that any element of \((\wedge^2 V^*_N \otimes \mathcal{O}(\Phi)^*)^{SO_N} \) satisfying \((\dagger)\) should be in the image of \(\phi \).
Proof of Lemma 2.2.

(a) The following facts are well-known (see [FH Section 19]):
- \(\wedge^4 V_N \simeq \wedge^{N-4} V_N \) as \(\mathfrak{so}_N \)-modules (since \(V_N \simeq V_N^* \) via the pairing),
- the \(\mathfrak{so}_{2n+1} \)-representations \(\{ \wedge^k V_{2n+1} \}_{k=0}^n \) are irreducible and pairwise non-isomorphic,
- the \(\mathfrak{so}_{2n} \)-representation \(\wedge^4 V_{2n} \) decomposes as \(\wedge^4 V_{2n} \simeq \wedge^6 V_{2n} \oplus \wedge^2 V_{2n} \oplus \wedge^3 V_{2n} \), and \(\mathfrak{so}_{2n} \)-representations \(\{ \wedge^0 V_{2n}, \ldots, \wedge^{n-1} V_{2n}, \wedge^n V_{2n}, \wedge^{2n} V_{2n} \} \) are irreducible and pairwise non-isomorphic.

Combining these facts with Claim 2.3, we get \((\wedge^2 V_{2n+1} \otimes E^*)^{SO_{2n+1}} = 0 \), while
\[
\dim((\wedge^2 V_{2n}^* \otimes E^*)^{SO_{2n}}) = \begin{cases} 1, & n = 3 \\ 0, & n \neq 3 \end{cases}.
\]

(b) For \(N = 6 \), any nonzero element of \((\wedge^2 V_6^* \otimes E^*)^{SO_6} \) corresponds to the composition
\[
\wedge^2 V_6 \xrightarrow{\varphi} \wedge^4 V_6 \simeq E.
\]

Let \(M_4 \subset \mathbb{C}[X]_2 \) be a subspace spanned by the Pfaffians of all \(4 \times 4 \) principal minors. This subspace is \(\mathfrak{gl}_6 \)-invariant and \(M_4 \simeq \wedge^4 V_6 \) as \(\mathfrak{gl}_6 \)-representations. Claim 2.3 and simplicity of the spectrum of the \(\mathfrak{gl}_6 \)-module \(\mathbb{C}[so_6] \) imply \(M_4 \subset \operatorname{Rad}(I) \), \(M_4 \cap I = 0 \), so that \(M_4 \) corresponds to the copy of \(\wedge^4 V_6 \subset \operatorname{Rad}(I)/I \) from Claim 2.3.

Choose an orthonormal basis \(\{ y_i \}_{i=1}^6 \) of \(V_6 \), so that any element \(A \in \mathfrak{so}_6 \) is skew-symmetric with respect to it. We denote the corresponding Pfaffian by \(\text{Pf}_{i:j} \) (with a correctly chosen sign).

We define \(\kappa'(y_i \otimes y_j) \in U(so_6) \) as a symmetrization of \(\text{Pf}_{i:j} \). Identifying \(U(so_6) \) with \(so_6 \)-modules, we easily see that \(\kappa' : \wedge^2 V_6 \to U(so_6) \) is \(so_6 \)-invariant. Moreover, \(\psi(\kappa') \neq 0 \).

However, \(\kappa' \) does not satisfy the Jacobi identity. Indeed, let us define \(\hat{\kappa}' : V_6 \otimes V_6 \to U(so_6) \) by \(\hat{\kappa}'(y_i \otimes y_j) = \text{Pf}_{i:j} \). Then for any three different indices \(i, j, k \), the corresponding expressions \(\{ P_{i:j,k}, x_k \}, \{ P_{j:k,i}, x_i \}, \{ P_{k:i,j}, x_j \} \) coincide up to a sign and are nonzero. So their sum is also non-zero, implying that \((\hat{1}) \) fails for \(\kappa' \).

This completes the proof of the lemma.

- **Proof of Claim 2.3 [due to Steven Sam]**

 Step 1: Description of \(\operatorname{Rad}(I) \).

 Let us define \(\text{Pf}_{ijkl} \in \mathbb{C}[X]_2 \) to be the Pfaffians of the principal \(4 \times 4 \) minors corresponding to rows/columns \#\(i, j, k, l \). Since the corresponding determinants vanish on \(S \), we get \(\text{Pf}_{ijkl} \in \operatorname{Rad}(I) \). A beautiful classical result states that those elements generate \(\operatorname{Rad}(I) \), in fact:

 Theorem 2.4. [W Theorem 6.4.1(b)] *The ideal \(\operatorname{Rad}(I) \) is generated by all \(\{ \text{Pf}_{ijkl} \} \).*

 Step 2: Decomposition of \(\mathbb{C}[X] \) as a \(\mathfrak{gl}_N \)-module.

 Let \(I \) be the set of all length \(\leq N \) Young diagrams \(\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots \geq 0) \). It is known that this set parameterizes all irreducible finite dimensional polynomial \(\mathfrak{gl}_N \)-representations. For \(\lambda \in I \), we denote the corresponding irreducible \(\mathfrak{gl}_N \)-representation by \(L_\lambda \). Let us define \(I^e \) as a subset of \(I \), consisting of all Young diagrams with even columns.

 The following result describes the decomposition of \(\mathbb{C}[so_N] \) into irreducibles:

 Theorem 2.5. [AR] *As \(\mathfrak{gl}_N \)-modules \(\mathbb{C}[so_N] \simeq S(\wedge^2 V_N) \simeq \bigoplus_{\lambda \in I^e} L_\lambda. \)

 For any \(\lambda \in I^e \), let \(J_\lambda \subset \mathbb{C}[X] \) be the ideal generated by \(L_\lambda \subset \mathbb{C}[X] \), while \(I^e_\lambda \subset I^e \) is a subset of the diagrams containing \(\lambda \). The arguments of [AR] (this is also proved in [D] Theorem 5.1) imply that \(J_\lambda \simeq \bigoplus_{\mu \in I^e_\lambda} L_\mu \) as \(\mathfrak{gl}_N \)-modules.

3 To make a compatible choice of signs, define \(\text{Pf}_{i:j} \) as the derivative of the total Pfaffian \(\text{Pf} \) along \(E_{ij} - E_{ji} \).
Step 3: \(\text{Rad}(I) \) and \(I \) as \(\mathfrak{gl}_N \)-representations.

Since the space \(M_4 \subset \mathbb{C}[X] \), spanned by \(\text{Pf}_{ijkl} \), is \(\mathfrak{gl}_N \)-invariant and is isomorphic to \(\wedge^4 V_N \), the results of the previous step imply that as a \(\mathfrak{gl}_N \)-module \(\text{Rad}(I) \simeq \bigoplus_{\mu \in I^e_{(1^4)}} L_\mu \).

Let us now describe the subspace \(N_3 \subset \mathbb{C}[\mathfrak{so}_N]_{3} \), spanned by the determinants of all \(3 \times 3 \) minors. This subspace is \(\mathfrak{gl}_N \)-invariant. Actually we have:

Lemma 2.6. As a \(\mathfrak{gl}_N \)-representation \(N_3 \simeq L_{(2,2,1,1)} \oplus L_{(3,3)} \).

Proof. According to Step 1, we have \(\mathbb{C}[\mathfrak{so}_N]_3 \simeq L_{(3^6)} \oplus L_{(2,2,1,1)} \oplus L_{(3,3)} \). Since the space of \(3 \times 3 \) minors identically vanishes when \(N = 2 \), and the Schur functor \((3,3) \) does not, it rules \(L_{(3,3)} \) out. Also, the space of \(3 \times 3 \) minors is nonzero for \(N = 4 \), while the Schur functor \((1^6) \) vanishes, so \(N_3 \not\simeq L_{(1^6)} \). Since partition (\(1^6 \)) corresponds to the subspace \(M_6 \subset \mathbb{C}[\mathfrak{so}_N] \) of \(6 \times 6 \) Pfaffians, it suffices to prove that \(M_6 \subset N_3 \). The latter is sufficient to verify for \(N = 6 \), that is, the Pfaffian Pf of a \(6 \times 6 \) matrix is a linear combination of its \(3 \times 3 \) determinants.

Let \(\det_{ij}^{\mu\nu} \) be the determinant of the \(3 \times 3 \) minor, obtained by intersecting rows \#\(i,j,k \) and columns \#\(p,q,s \). The following identity is straightforward:

\[
-4 \text{Pf} = -\det_{123}^{456} + \det_{124}^{356} - \det_{125}^{346} + \det_{126}^{345} - \det_{134}^{256} + \det_{135}^{246} - \det_{136}^{245} - \det_{145}^{236} + \det_{146}^{235} - \det_{156}^{234}.
\]

This completes the proof of the lemma. \(\square \)

The results of Step 2 imply that \(\text{Rad}(I) \simeq \bigoplus_{\mu \in I^e_{(2^2,1^2)}} L_\mu \) as \(\mathfrak{gl}_N \)-modules.

The claim follows now from the aforementioned descriptions of \(\mathfrak{gl}_N \)-modules \(\mathbb{C}[\mathfrak{so}_N]_I, \text{Rad}(I) \). This completes the proof of the claim and hence of the theorem as well. \(\blacksquare \)

3. Proof of Theorem 1.6

Let us introduce some notations:

- \(K := \text{SO}_N(\mathbb{R}) \) (the maximal compact subgroup of \(G = \text{SO}_N(\mathbb{C}) \)),
- \(s_\theta = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & \cdots & 0 \\ \sin \theta & \cos \theta & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{pmatrix} \in K, \quad \theta \in [-\pi, \pi] \),
- \(S_\theta := \{ g s_\theta g^{-1} | g \in K \} \subset K \),
- \(S_\mathbb{R} := S \cap K = \bigcup_{\theta \in [0,\pi]} S_\theta \), so that \(S_\mathbb{R}/K \) gets identified with \(S^1/\mathbb{Z}_2 \).

According to Theorem 1.4, there exists a \(\mathbb{Z}_2 \)-invariant \(c \in \mathbb{O}(S^1)^* \), which is a linear combination of the delta-function \(\delta_0 \) (at 0 in \(S^1 \)) and its even derivatives \(\delta_0^{(2k)} \), such that

\[
\kappa(x,y) = \int_{-\pi}^{\pi} c(\theta) \left(\int_{S_\theta} ((g^{-1}g)x,y) \, dg \right) \, d\theta, \quad \forall x,y \in V_N.
\]

4 The conceptual proof of this fact is as follows. Note that determinants of \(3 \times 3 \) minors of \(A \in \mathfrak{so}_6 \) are just the matrix elements of \(\wedge^3 A \), and it acts on \(\wedge^3 V_6 = \wedge^3 V_6 \oplus \wedge^3 V_6 \). It is straightforward to see that the trace of \(\wedge^3 A \) on \(\wedge^3 V_6 \) is nonzero. This provides a cubic invariant for \(\mathfrak{so}_6 \), which is unique up to scaling (multiple of Pf).

5 Note that \(S_\theta \) and \(S_{-\theta} \) coincide for \(N \geq 3 \). That explains why \(\theta \in [0,\pi] \) instead of \(x \in [-\pi, \pi] \).

6 Here we integrate over the whole circle \(S^1 \) instead of \(S^1/\mathbb{Z}_2 \), but we require \(c(\theta) = c(-\theta) \).
For \(g \in S_\mathbb{R} \) we define a 2-dimensional subspace \(V_g \subset V_N \) by \(V_g := \text{Im}(1 - g) \). To evaluate
the above integral, choose length 1 orthogonal vectors \(p, q \in V_g \), such that the restriction of \(g \)
to \(V_g \) is given by the matrix
\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]
in the basis \(\{p, q\} \).

Let us define \(J_{p,q} := q \otimes p' - p \otimes q' \in \mathfrak{s}_\mathfrak{o}_N(\mathbb{R}) \). Then we have:

\((g - g^{-1})x, y = 2 \sin \theta \cdot (x, J_{p,q}y) \),

\(g = \exp(\theta J_{p,q}) \), since
\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
= \exp \left(\theta \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right)
\]

As a result, we get
\[
\kappa(x, y) = \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} (x, J_{p,q}y) \left(\int_{-\pi}^{\pi} 2c(\theta) \sin \theta \cdot e^{\theta J_{p,q}} d\theta \right) dq dp,
\]
where \(S^{N-1} \) is the unit sphere in \(\mathbb{R}^N \) centered at the origin and \(S^{N-2}(p) \) is the unit sphere in \(\mathbb{R}^{N-1}(p) \subset \mathbb{R}^N \), the hyperplane orthogonal to the line passing through \(p \) and the origin.

Since \(c(\theta) \) is an arbitrary linear combination of the delta-function and its even derivatives, the above integral is a linear combination of the integrals:
\[
\int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} (x, J_{p,q}y) \cdot J_{p,q}^{2k+1} dq dp, \quad k \geq 0.
\]

This is a standard integral (see \cite{EGG}, Section 4.2) for the analogous calculations. Identifying \(U(\mathfrak{s}_\mathfrak{o}_N) \) with \(S(\mathfrak{s}_\mathfrak{o}_N) \) via the symmetrization map, it suffices to compute the integral
\[
I_{m;x,y}(A) = \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} (x, J_{p,q}y) \cdot \text{tr}(AJ_{p,q})^m dq dp, \quad A \in \mathfrak{s}_\mathfrak{o}_N(\mathbb{R}).
\]

To compute this expression, we introduce
\[
F_m(A) := \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} \text{tr}(AJ_{p,q})^{m+1} dq dp = \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} (2(Aq,p))^{m+1} dq dp,
\]
so that the former integral can be expressed in the following way:
\[
dF_m(A)(x \otimes y - y \otimes x') = -2(m + 1)I_{m;x,y}(A).
\]

Now we compute \(F_m(A) \). First, note that
\[
G_m(A, \zeta) := \int_{p \in \mathbb{R}^N} \int_{q \in \mathbb{R}^{N-1}(p)} (2(Aq,p))^{m+1} e^{-\zeta(p,p) - \zeta(q,q)} dq dp = \int_0^\infty \int_0^\infty e^{-\zeta r_1^2 - \zeta r_2^2} \int_{|p| = r_1} \int_{|q| = r_2} (2(Aq,p))^{m+1} dq dp dr_2 dr_1 = \int_0^\infty \int_0^\infty e^{-\zeta r_1^2 - \zeta r_2^2} r_1^{m+N-1} r_2^{m+N-1} dr_2 dr_1 \cdot F_m(A) = K_{m+N}(\zeta)K_{m+N-1}(\zeta)F_m(A),
\]
where
\[
K_l(\zeta) = \int_0^\infty e^{-\zeta r^l} dr = \begin{cases}
\frac{k!}{2^{k+1-l} \sqrt{\pi}} & l = 2k + 1 \\
\frac{(2k+1)!! \sqrt{\pi}}{2^{k+1} \zeta^{k+1/2}} & l = 2k
\end{cases}
\]
As a result, we get
\[
G_m(A, \zeta) = \frac{\sqrt{\pi}(m + N - 1)!}{2^{m+N+1} \zeta^{m+N+1/2}} F_m(A).
\]

\footnote{Generally speaking, the integration should be taken over the Grassmannian \(G_2(\mathbb{R}^N) \). However, it is easier to integrate over the Stiefel manifold \(V_2(\mathbb{R}^N) \), which is a principal \(O(2) \)-bundle over \(G_2(\mathbb{R}^N) \).}
On the other hand, we have:

\[
\sum_{m=-1}^{\infty} \frac{1}{(m+1)!} G_m(A, \zeta) = \int_{p \in \mathbb{R}^N} \int_{q \in \mathbb{R}^{N-1}(p)} e^{2(Aq,p)} e^{-\zeta(p,p)} \zeta(q,q) \, dq \, dp =
\]

\[
\int_{p \in \mathbb{R}^N} e^{-\zeta(p,p)} \int_{q \in \mathbb{R}^{N-1}(p)} e^{-2(Ap,p) - \zeta(q,q)} \, dq \, dp = \int_{p \in \mathbb{R}^N} e^{-\zeta(p,p) + \zeta(Ap,Ap)} \, dq \, dp \cdot (\pi/\zeta)^{N-1} =
\]

\[
(\pi/\zeta)^{N-1} \int_{p \in \mathbb{R}^N} e^{(i(\zeta - \frac{\pi}{2} A^2))} \, dp = \pi^{N-1} / \zeta^{N-2} \det(1 + \zeta A^2)^{-1/2} = \pi^{N-1} / \zeta^{N-2} \det(1 + \zeta^{-2} A^2)^{-1/2}.
\]

Hence, \(F_m(A) \) is equal to a constant times the coefficient of \(\tau^{m+1} \) in \(\det(1 + \tau^2 A^2)^{-1/2} \), expanded as a power series in \(\tau \). Differentiating \(\det(1 + \tau^2 A^2)^{-1/2} \) along \(B \in \mathfrak{so}_N \), we get

\[
\frac{\partial}{\partial B} \left(\det(1 + \tau^2 A^2)^{-1/2} \right) = -\frac{\tau^2 \text{tr}(BA(1 + \tau^2 A^2)^{-1})}{\det(1 + \tau^2 A^2)^{1/2}}.
\]

Setting \(B = x \otimes y^t - y \otimes x^t \) gives \(2\tau^2(x, A(1 + \tau^2 A^2)^{-1}y) \det(1 + \tau^2 A^2)^{-1/2} \), as desired.

4. POISSON CENTER OF ALGEBRAS \(H_{\zeta}^{cl}(\mathfrak{so}_N) \)

Following [DT], we introduce the Poisson algebras \(H_{\zeta}^{cl}(\mathfrak{so}_N, V_N) \), where \(\zeta = (\zeta_0, \ldots, \zeta_k) \) is a deformation parameter. As algebras these are \(S(\mathfrak{so}_N \oplus V_N) \) with a Poisson bracket \(\{\cdot, \cdot\} \) modeled after the commutator \([\cdot, \cdot]\) from the definition of \(H_{\zeta}(\mathfrak{so}_N, V_N) \), that is \(\{x, y\} = \sum_j \zeta_j \gamma_{2j+1}(x, y) \).

We prefer the following short formula for \(\{\cdot, \cdot\} : V_N \times V_N \to \mathbb{C}[\mathfrak{so}_N] \cong S(\mathfrak{so}_N) \):

\[
(*) \{x, y\} = \text{Res}_{z=0} \zeta(z^{-2})(x, A(1+z^2 A^2)^{-1}y) \det(1+z^2 A^2)^{-1/2} z^{-1} \, dz, \quad \forall \ x, y \in V_N, A \in \mathfrak{so}_N,
\]

where \(\zeta(z) \) is the generating function of the deformation parameters: \(\zeta(z) := \sum_{i \geq 0} \zeta_i z^i \).

In fact, we can view algebras \(H_{\zeta}(\mathfrak{so}_N, V_N) \) as quantizations of the algebras \(H_{\zeta}^{cl}(\mathfrak{so}_N, V_N) \). The latter algebras still carry some important information. In particular, our Corollary [4] is needed to carry out the argument of Theorem 5.4. The main result of this section is a computation of the Poisson center of \(H_{\zeta}(\mathfrak{so}_N, V_N) \).

First, let us recall the corresponding result in the non-deformed case (\(\zeta = 0 \)), when the corresponding algebra is just \(S(\mathfrak{so}_N \times V_N) \) with a Lie Poisson bracket. In order to state the result, we need some more notations:

- for \(A \in \mathfrak{gl}_N \) we define \(p_i(A) \) via \(\det(I_N + tA) = \sum_{j=0}^N t^j p_j(A) \),
- define \(b_i(A) = I_N, b_k(A) = \sum_{j=0}^k (-1)^j p_j(A) A^{k-j} \), \(k > 0 \),
- define \(a_N := \mathfrak{so}_N \times V_N \), we identify \(a_N^* \) with \(a_N \) via the natural pairing,
- define \(\psi_k : a_N^* \to V_B \) by \(\psi_k(A, v) = (v, b_{2k}(A)v) \), where \(A \in \mathfrak{so}_N, v \in V_N, k \geq 0 \),
- in the case \(N = 2n+1 \), \(\psi_n \) is actually the square of a polynomial function \(\tilde{\psi}_n \), which can be realized explicitly as the Pfaffian of the matrix \(\begin{pmatrix} A & v \\ -v^t & 0 \end{pmatrix} \in \mathfrak{so}_{2n+2} \),
- identifying \(\mathbb{C}[a_N^*] \cong S(a_N) \), let \(\tau_k \in S(a_N) \) (respectively \(\tilde{\tau}_{n+1} \in S(a_{2n+1}) \)) be the elements corresponding to \(\psi_{k-1} \) (respectively \(\tilde{\psi}_{n} \)).

The following result is due to [R] Sections 3.7, 3.8:
We choose a basis
For that choice of
Similarly to the cases of \(\mathfrak{gl}_n, \mathfrak{sp}_{2n}\), this theorem has a straightforward generalization to the case of a nontrivial deformation \(\zeta\). In fact, for any deformation parameter \(\zeta = (\zeta_0, \ldots, \zeta_k)\) there exist \(c_j \in \mathfrak{z}_{\text{Pois}}(\mathfrak{so}_N)\), such that the Poisson center \(\mathfrak{z}_{\text{Pois}}(H^\zeta_N(\mathfrak{so}_N, V_N))\) is still a polynomial algebra in \(\left\lfloor \frac{n+1}{2} \right\rfloor\) generators \(\{\tau_j + c_j\}_{j=1}^{n}\) (and also \(\hat{\tau}_{n+1}\) for \(N = 2n + 1\)).

This is established in the following theorem:

Theorem 4.2. Define \(c_i \in \mathbb{C}[\mathfrak{so}_N]^\text{SO}_N \simeq \mathfrak{z}_{\text{Pois}}(\mathfrak{so}_N)\) via
\[
c(t) := \text{Res}_{z=0} \frac{\zeta(z^{-2})}{\det(1 + t^2 A^2)^{1/2}} \frac{1}{\det(1 + z^2 A^2)^{1/2}} \frac{dz}{1 - t^2 z^2},
\]

\((a) \mathfrak{z}_{\text{Pois}}(H^\zeta_N(\mathfrak{so}_{2n}, V_{2n}))\) is a polynomial algebra in free generators \(\{\tau_1 + c_1, \ldots, \tau_n + c_n\}\),
\((b) \mathfrak{z}_{\text{Pois}}(H^\zeta_N(\mathfrak{so}_{2n+1}, V_{2n+1}))\) is a polynomial algebra in free generators \(\{\tau_1 + c_1, \ldots, \tau_n + c_n, \hat{\tau}_{n+1}\}\).

This result is analogous to [DT, Theorems 5.1 and 7.1] and its proof utilizes the same ideas.

Let us introduce some more notations before proceeding to the proof:

- We choose a basis \(\{x_i\}_{i=1}^N\) of \(V_N\) in such a way, that \((x_i, x_j) = \delta_{N+1-i,j}\).
- \(J = (J_{ij})_{i,j=1}^N\) is the corresponding anti-diagonal symmetric matrix, so that \(J_{ij} = \delta_{N+1-i,j}\).
- For that choice of \(J\), we have \(A = (a_{ij}) \in \mathfrak{so}_N\) if and only if \(a_{ij} = -a_{N+1-j,N+1-i}\), \(\forall i,j\).
- Let \(\mathfrak{h}_N\) denote the Cartan subalgebra of \(\mathfrak{so}_N\) consisting of the diagonal matrices.
- Define \(c(i,j) := E_{i,j} - E_{N+1-j,N+1-i} \in \mathfrak{so}_N\), \(i,j \leq N\) (in particular, \(c(i,N+1-i) = 0\) \(\forall i\)).
- We set \(c_i := c(i,i), 1 \leq i \leq N := \left\lfloor \frac{N}{2} \right\rfloor\), so that \(\{c_i\}_{i=1}^N\) form a basis of \(\mathfrak{h}_N\).
- Define symmetric polynomials \(\sigma_i \in \mathbb{C}[z_1, \ldots, z_i]^{\mathfrak{h}_N}\) via \(\prod_{i=1}^l (1 + t^2 z_i) = \sum_{i=0}^l t^i \sigma_i(z_1, \ldots, z_i)\).

Proof of Theorem 4.2.

First, it suffices to prove that elements \(\tau_i + c_i\) (and \(\hat{\tau}_{n+1}\) for \(N = 2n + 1\)) are Poisson central. In this case they are lifts of the central generators of the deformed algebra and the statement follows from Proposition 4.1.1 by a deformation argument.

Since \(\{\tau_i, \mathfrak{so}_N\} = 0\) in the case \(\zeta = 0\), we still have \(\{\tau_i, \mathfrak{so}_N\} = 0\) for any \(\zeta\). This implies \(\{\tau_i + c_i, \mathfrak{so}_N\} = 0\) as \(c_i \in \mathfrak{z}_{\text{Pois}}(\mathfrak{so}_N)\). As a result we just need to verify
\[
(2) \quad \{c_i, x_q\} = \{\tau_i, x_q\}, \quad \forall 1 \leq q \leq N.
\]

Recalling \(\psi(A, v) = (v, b_{2s}(A)v) = \sum_{k,l} x_k x_l b_{2s}(A)_{N+1-k,l}\), we get:
\[
\{\tau_{s+1}, x_q\} = \sum_{k,l} \left\{b_{2s}(A)_{N+1-k,l}, x_q\right\} x_k x_l + \sum_{k,l} b_{2s}(A)_{N+1-k,l} \{x_k, x_q\} x_l + \sum_{k,l} b_{2s}(A)_{N+1-k,l} x_k \{x_l, x_q\}.
\]

The first summand is zero due to Proposition 4.1.1. On the other hand, \(AJ + JA^t = 0\) implies \((A^2)_{N+1-k,l} = (A^2)_{N+1-l,k}\) and \(p_{2j+1}(A) = 0\) for all \(j \geq 0\). Hence:
\[
b_{2s}(A) = A^{2s} + p_2(A) A^{2s-2} + p_4(A) A^{2s-4} + \ldots + p_{2s}(A), \quad b_{2s}(A)_{n+1-k,l} = b_{2s}(A)_{n+1-l,k}.
\]

Combining this with \(c_{s+1, x_q} = \sum_{p \neq N+1-q} \frac{\partial c_{s+1}}{\partial c_{(p,q)}} x_p\), we see that (2) is equivalent to:
\[
(3) \quad \frac{\partial c_{s+1}}{\partial c_{(p,q)}} = -2 \sum_{l} b_{2s}(A)_{N+1-p,l} \text{Res}_{z=0} \frac{\zeta(z^{-2})}{\det(1 + z^2 A^2)^{1/2}} \frac{(x_l, A(1 + z^2 A^2)^{-1} x_q) dz}{z}, \quad \forall p, q \leq N.
\]

Because both sides of (3) are \(\text{SO}_N\)-invariant, it suffices to verify (3) for \(A = \mathfrak{h}_N\), that is for:

- \(A = \text{diag}(\lambda_1, \ldots, \lambda_n, -\lambda_n, \ldots, -\lambda_1)\) in the case \(N = 2n\),
\(A = \text{diag}(\lambda_1, \ldots, \lambda_n, 0, -\lambda_n, \ldots, -\lambda_1) \) in the case \(N = 2n + 1 \).

For \(p \neq q \) both sides of (3) are zero. For \(p = q \leq n \), the only nonzero summand on the right hand side of (3) is the one corresponding to \(i = N + 1 - q \). In this case:

\[
b_{2s}(A)_{N+1-q,N+1-q} = \lambda_q^{2s} - \sigma_1(\lambda_1^2, \ldots, \lambda_n^2)\lambda_q^{2s-2} + \ldots + (-1)^s \sigma_s(\lambda_1^2, \ldots, \lambda_n^2) = (-1)^s \frac{\partial \sigma_{s+1}(\lambda_1^2, \ldots, \lambda_n^2)}{\partial \lambda_q^2},
\]

while \((x_{N+1-q}, A(1 + z^2A^2)^{-1}x_q) = \frac{\lambda_q}{1 + z^2\lambda_q^2}\) and \(\det(1 + z^2A^2)^{1/2} = \prod_{i=1}^{n}(1 + z^2\lambda_i^2)\).

For \(p = q \geq \lceil \frac{N+1}{2} \rceil \), we get the same equalities with \(\lambda_i \leftrightarrow -\lambda_i \). As a result (3) is equivalent to:

\[
\frac{\partial c_{s+1}(\lambda_1, \ldots, \lambda_n)}{\partial \lambda_q^2} = (-1)^{s+1} \frac{\partial \sigma_{s+1}(\lambda_1^2, \ldots, \lambda_n^2)}{\partial \lambda_q^2} \text{Res}_{z=0} \frac{\zeta(z)}{(1 + z^2\lambda_q^2)\prod_{i=1}^{n}(1 + z^2\lambda_i^2)}.
\]

We thus need to verify the following identities for \(c(t) \):

\[
\frac{\partial c(t)}{\partial \lambda_q^2} = \frac{\partial}{\partial \lambda_q^2} \left[(1 + t^2\lambda_q^2) \text{Res}_{z=0} \frac{\zeta(z)}{(1 + z^2\lambda_q^2)\prod_{i=1}^{n}(1 + z^2\lambda_i^2)} \right].
\]

It is straightforward to check that

\[\text{Res}_{z=0} \frac{\zeta(z)}{\prod_{i=1}^{n}(1 + z^2\lambda_i^2)} \frac{z^{-1}dz}{1 - t^2z^2} = c(t)(A)\]

satisfies these equations.

This proves that \(\tau_i + c_i \in \mathfrak{Pois}(H^c_\zeta(\mathfrak{so}_N, V_N)) \) for all \(1 \leq i \leq n \). For \(N = 2n + 1 \), we also get a Poisson-central element \(\tau_{n+1} + c_{n+1} \). Since \(c_{n+1} = 0 \), we have

\[\tau_{n+1}^2 = \tau_{n+1} \in \mathfrak{Pois}(H^c_\zeta(\mathfrak{so}_{2n+1}, V_{2n+1})) \Rightarrow \tau_{n+1} \in \mathfrak{Pois}(H^c_\zeta(\mathfrak{so}_{2n+1}, V_{2n+1})).\]

This completes the proof of the theorem. \(\blacksquare \)

Definition 4.3. The element \(\tau_i' = \tau_i + c_i \) is called the Poisson Casimir element of \(H^c_\zeta(\mathfrak{so}_N, V_N) \).

As a straightforward consequence of Theorem 4.2 we get:

Corollary 4.4. We have \(\tau_i' = \tau_i + \sum_{j=0}^{k}(-1)^{j+1} \zeta_j \text{tr} S^{2j+2} A \).

5. The Key Isomorphism

Let us first introduce the notion of the universal infinitesimal Hecke algebra of \((\mathfrak{so}_N, V_N) \):

Definition 5.1. Define the universal length \(m \) infinitesimal Hecke algebra \(H_m(\mathfrak{so}_N, V_N) \) as

\[H_m(\mathfrak{so}_N, V_N) := U(\mathfrak{so}_N) \otimes T(V_N)[\zeta_0, \ldots, \zeta_{m-1}]/([A, x] - A(x), [x, y] - \sum_{j=0}^{m-1} \zeta_j r_{2j+1}(x, y) - r_{2m+1}(x, y)),\]

where \(A \in \mathfrak{so}_N \), \(x, y \in V_N \) and \(\{\zeta_i\}_{i=0}^{m-1} \) are central. The filtration is induced from the grading on \(T(\mathfrak{so}_N \oplus V_N)[\zeta_0, \ldots, \zeta_{m-1}] \) with \(\text{deg}(\mathfrak{so}_N) = 2 \), \(\text{deg}(V_N) = 2m + 2 \) and \(\text{deg}(\zeta_i) = 4(m - i) \).

The algebra \(H_m(\mathfrak{so}_N, V_N) \) is free over \(\mathbb{C}[\zeta_0, \ldots, \zeta_{m-1}] \) and \(H_m(\mathfrak{so}_N, V_N)/(\zeta_i - c_i)_{i=0}^{m-1} \) is the usual infinitesimal Hecke algebra \(H_{c_\zeta}(\mathfrak{so}_N, V_N) \) for \(c_\zeta = c_0\tau_1 + \ldots + c_{m-1}\tau_{2m-1} + r_{2m+1} \).

Remark 5.2. For an \(\mathfrak{so}_N \)-equivariant pairing \(\eta : \wedge^2 V_N \rightarrow U(\mathfrak{so}_N)[\zeta_0, \ldots, \zeta_{m-1}] \), such that \(\text{deg}(\eta(x, y)) \leq 4m + 2 \), the algebra \(U(\mathfrak{so}_N) \otimes T(V_N)[\zeta_0, \ldots, \zeta_{m-1}]/([A, x] - A(x), [x, y] - \eta(x, y)) \) satisfies a PBW property if and only if \(\eta(x, y) = \sum_{i=0}^{m} \eta_i r_{2i+1}(x, y) \) with \(\eta_i \in \mathbb{C}[\zeta_0, \ldots, \zeta_{m-1}] \) degree \(\leq 4(m - i) \) polynomials (this is completely analogous to our Theorem 7.6).
The main goal of this section it to establish an abstract isomorphism between the algebras $H_m(\mathfrak{so}_N, V_N)$ and the W-algebras $U(\mathfrak{so}_{N+2m+1}, e_m)$, where $e_m \in \mathfrak{so}_{N+2m+1}$ is a nilpotent element of the Jordan type $(1^N, 2m+1)$. We will make a particular choice of such element e_m.

- $e_m := \sum_{j=1}^m E_{N+j, N+j+1} - \sum_{j=1}^m E_{N+m+j, N+m+j+1}$.

Recall the Lie algebra inclusion $\iota : q \to U(\mathfrak{g}, e)$ from [LT, Section 1.6], where $q := \mathfrak{z}_\mathfrak{g}(e, h, f)$.

For $(q, e) = (\mathfrak{so}_{N+2m+1}, e_m)$, we have $q \simeq \mathfrak{so}_N$. We will also denote the corresponding centralizer of $e_m \in \mathfrak{so}_{N+2m+1}$ and the Slodowy slice by $\mathfrak{z}_{N,m}$ and $S_{N,m}$, respectively.

Theorem 5.3. For $m \geq 1$, there is a unique isomorphism $\bar{\Theta} : H_m(\mathfrak{so}_N, V_N) \sim U(\mathfrak{so}_{N+2m+1}, e_m)$ of filtered algebras, such that $\bar{\Theta} |_{\mathfrak{so}_N} = \iota |_{\mathfrak{so}_N}$.

We will only sketch the proof as most arguments are the same as in [LT, Theorem 2.2].

Sketch of the proof of Theorem 5.3.
As a vector space, $\mathfrak{z}_{N,m} \cong \mathfrak{so}_N \oplus V_N \oplus \mathbb{C}^m$, where $\mathfrak{so}_N \cong q = \mathfrak{z}_{N,m}(0)$, $V_N \subset \mathfrak{z}_{N,m}(2m)$ and \mathbb{C}^m has a basis $\{\xi_0, \ldots, \xi_{2m-1}\}$ with $\xi_i \in \mathfrak{z}_{N,m}(4m - 4i - 2)$. Here $\xi_{m-j} = e_{ij}^{2m-1} \in \mathfrak{so}_N$ for $1 \leq j \leq m$, V_N is embedded via $x_i \mapsto E_{i,N+m+1} - E_{N+1,i}$, while \mathfrak{so}_N is embedded as a top-left $N \times N$ block of \mathfrak{so}_{N+2m+1}.

One of the key ingredients in the proof of [LT, Theorem 2.2] was an additional \mathbb{Z}-grading Gr on the corresponding W-algebras. In both cases of $(q, e) = (\mathfrak{sl}_{n+m}, e_m), (\mathfrak{sp}_{2n+2m}, e_m)$ such a grading was induced from the weight-decomposition with respect to $\text{ad}(h), h \in q$.

If $N = 2n$ same argument works for $q = \mathfrak{so}_{N+2m+1}$ as well. Namely, consider $h \in q \simeq \mathfrak{so}_{2n}$ to be the diagonal matrix $I_n^e := \text{diag}(1, \ldots, 1, -1, \ldots, -1)$. The operator $\text{ad}(i(I_n^e))$ acts on $\mathfrak{z}_{N,m}$ with zero eigenvalues on \mathbb{C}^m, with even eigenvalues on \mathfrak{so}_N and with eigenvalues $\{\pm 1\}$ on V_N.

However, there is no appropriate $h \in q$ in the case of $N = 2n + 1$. Instead, such a grading originates from the adjoint action of an element

$$g_0 := (-1, \ldots, -1, 1, \ldots, 1) \in O(N + 2m + 1).$$

This element defines a \mathbb{Z}_2-grading on $U(\mathfrak{so}_{N+2m+1})$, which naturally descends to a \mathbb{Z}_2-grading Gr on the W-algebra $U(\mathfrak{so}_{N+2m+1}, e_m)$. The induced \mathbb{Z}_2-grading Gr' on $U(\mathfrak{so}_{N+2m+1}, e_m)$ satisfies the desired properties, that is, $\deg(\mathbb{C}^m) = 0$, $\deg(\mathfrak{so}_N) = 2$, $\deg(V_N) = 1$.

As a result, the algebra $U(\mathfrak{so}_{N+2m+1}, e_m)$ is equipped with a Kazhdan filtration and a \mathbb{Z}_2-grading Gr. The rest of the proof proceeds in the same way as in [LT]. The only remaining fact to verify is the corresponding isomorphism at the Poisson level, which is Theorem 5.4.

Let us introduce some more notations:
- Let $\bar{i} : \mathfrak{so}_N \oplus V_N \oplus \mathbb{C}^m \sim \mathfrak{z}_{N,m}$ denote the isomorphism from the proof of Theorem 5.3.
- Let $H_m(\mathfrak{so}_N, V_N)$ be the Poisson counterpart of $H_m(\mathfrak{so}_N, V_N)$ (compare to algebras $H_m^cl(\mathfrak{so}_N, V_N)$).
- Define $P_j \in \mathbb{C}[\mathfrak{so}_{N+2m+1}]$ by $\text{det}(I_N^e + 2m + 1 + tA) = \sum_{j=0}^{N+2m+1} P_j(A)t^j$.
- Define $\{\Theta_i\}_{i=0}^{m-1} \in \mathfrak{z}_{N,m} \cong \mathfrak{c}[S_{N,m}]$ by $\Theta_i := P_{2(m-i)}|_{S_{N,m}}$.

The following result can be considered as a Poisson version of Theorem 5.3.

Theorem 5.4. The formulas

$$\bar{\Theta}^cl(A) = \bar{i}(A), \quad \bar{\Theta}^cl(y) = (-1)^m \frac{1}{2} \cdot \bar{i}(y), \quad \bar{\Theta}^cl(\xi_k) = (-1)^{m-k} \bar{\Theta}_{k}$$

8 In this section, we view \mathfrak{so}_N as corresponding to the pair $(V_N, (\cdot, \cdot))$, where (\cdot, \cdot) is represented by the symmetric matrix $J^{(1)} = (J^{(1)}_{ij})$ with $J^{(1)}_{ij} = \delta_{i,j}^l, J^{(1)}_{i,N+k+l} = 0, J^{(1)}_{N+k,N+i} = \delta_{k,l}^{2m+2}, \forall i, j \leq N, k, l \leq 2m+1$.

9 Actually, as exhibited by the case of \mathfrak{sp}_{2n+2m}, it suffices to have a \mathbb{Z}_2-grading.
The right hand side of (5) can be written as

\[H_m^{cl}(\mathfrak{so}_N, V_N) \cong S(3N, m) \cong \mathbb{C}[S_{N,m}] \] of Poisson algebras.

The proof of this theorem proceeds along the same lines as for \(\mathfrak{sp}_{2N} \) (see [11], Theorem 3.1). The only ingredient needed is Corollary 1.3.

6. Casimir element

In this section we construct the first nontrivial central element of the algebras \(H_\zeta(\mathfrak{so}_N, V_N) \).

In the non-deformed case (for \(\zeta = 0 \)) we have \(t_1 := (v, v) \in Z(H_0(\mathfrak{so}_N, V_N)) \). Similarly to Corollary 1.3 this element can be deformed to a central element of \(H_\zeta(\mathfrak{so}_N, V_N) \) by adding an element of \(Z(U(\mathfrak{so}_N)) \).

In order to formulate the result, we introduce some more notations:
- Define \(\omega_s := \frac{\pi^{1/2} s (s + 1)}{2^s s!} \) and \(\mu_s := \pi^{s-1/2} (s + 1)! \omega_s^{-1} \), \(\nu_s := -\frac{\mu}{s + 1} \).
- Define a sequence \(\{\zeta^m_j\}_{j=0}^m \) of parameters recursively via \(\zeta^m_j := 2\nu_{2j+1} \sum_{l=1}^{m+1-j} (-1)^{j+l+1} \binom{2j+2l}{2l} a_{j+l-1} \).
- Define a sequence of parameters \(\{a_j\}_{j=0}^m \) recursively via \(a_j := 2\nu_{2j+1} \sum_{l=1}^{m+1-j} (-1)^{j+l+1} \binom{2j+2l}{2l} a_{j+l-1} \).
- Define a polynomial \(g(z) := \sum_{j=1}^{m+1} a_j z^j \).
- Define \(A(z)(x, y) := (x, A(1 + z^2 A^2)^{-1} y) \) and \(B(z) := \det(1 + z^2 A^2)^{-1/2} \).
- Let \([z^m]f(z) \) denote the coefficient of \(z^m \) in the series \(f(z) \).
- Define \(C \in Z(U(\mathfrak{so}_N)) \) as the symmetrization of \(\text{Res}_{z=0} g(z^2) \det(1 + z^2 A^2)^{-1/2} z^{-1} dz \).

Then we have:

Theorem 6.1. The element \(t_1 := t_1 + C \) is a central element of \(H_\zeta(\mathfrak{so}_N, V_N) \).

Definition 6.2. We call \(t_1 = t_1 + C \) the Casimir element of \(H_\zeta(\mathfrak{so}_N, V_N) \).

Remark 6.3. The same formula provides a central element of the algebra \(H_m(\mathfrak{so}_N, V_N) \), where \(C \in Z(U(\mathfrak{so}_N))(\zeta_0, \ldots, \zeta_{m-1}) \).

One can use the above Theorem to establish explicitly the isomorphism \(\Theta \) of Theorem 5.3 in the same way as this has been achieved in [11] Section 4.6 for the \(\mathfrak{gl}_n \) case.

Proof of Theorem [6.1]

We need to prove that \(t_1 \) commutes both with \(\mathfrak{so}_N \) and \(V_N \). The former is obvious:

\[[t_1, \mathfrak{so}_N] = 0 \in H_0(\mathfrak{so}_N, V_N) \Rightarrow [t_1, \mathfrak{so}_N] = 0 \in H_\zeta(\mathfrak{so}_N, V_N) \Rightarrow [t_1, \mathfrak{so}_N] = 0 \in H_\zeta(\mathfrak{so}_N, V_N). \]

Let us now verify \([t_1 + C, x] = 0 \) for any \(x \in V_N \).

Identifying \(U(\mathfrak{so}_N) \) with \(S(\mathfrak{so}_N) \) via the symmetrization map and recalling (*) we get:

\[\left[\sum_i x_i^2, x \right] = \sum_i x_i \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} (x_i, J_{p,q} x) \left(\int_{-\pi}^\pi \frac{2c(\theta)}{\cos \theta \cdot v} d\theta \right) \right] dq dp + \sum_i \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} \left(\int_{-\pi}^\pi \frac{2c(\theta)}{\cos \theta \cdot v} d\theta \right) (x_i, J_{p,q} x) x_{i} dq dp. \]

Since \(x_i (x_i, J_{p,q} x) = J_{p,q} x \) and \(v e^{th_\zeta} = e^{th_\zeta}(\cos \theta \cdot v - \sin \theta \cdot J_{p,q} v) \), \(\forall v \in V_N \):

\[(5) \quad [t_1, x] = \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} \left(\int_{-\pi}^\pi \frac{2c(\theta)}{\cos \theta \cdot v} d\theta \right) \left((x, J_{p,q} x)(\sin \theta \cdot x + (1 + \cos \theta) \cdot J_{p,q} x) \right) dq dp. \]

The right hand side of (5) can be written as \([x, C'] \), where

\[C' := \int_{p \in S^{N-1}} \int_{q \in S^{N-2}(p)} \left(\int_{-\pi}^\pi c(\theta)(-2 - 2 \cos \theta)e^{th_\zeta} \right) dq dp. \]
Thus, it suffices to prove $C' = C$.

The following has been established during the proof of Theorem 1.6

$$\int_{p \in S_{N-1}} \int_{q \in S_{N-2}(p)} J_{p,q}^s dq dp = F_{s-1} = \mu_{s-1}[z^s]B(z),$$

(6)

$$\int_{p \in S_{N-1}} \int_{q \in S_{N-2}(p)} (x, J_{p,q})J_{p,q}^s dq dp = I_{s, x, y} = \nu_s[z^{s-1}]A(z)(x, y).$$

(7)

Let $c(\theta) = c_0 \delta_0 + c_2 \delta_0'' + c_4 \delta_0^{(4)} + \ldots$ be the distribution from (11), where $\delta_k^{(k)}$ is the k-th derivative of the delta-function. Since

$$\int_{-\pi}^{\pi} 2c(\theta) \sin \theta \delta_j d\theta = 2 \sum_{j \geq 1} c_j \sum_{l=1}^{\lfloor j/2 \rfloor} (-1)^{l+1} \binom{j}{2l-1} J_{p,q}^{j-2l+1},$$

formulas (11) and (7) imply

$$[x, y] = \text{Res}_{z=0} \zeta(z^{-2})A(z)(x, y)z^{-1}dz,$$

where $\zeta(z^{-2}) = \sum_{j \geq 0} \bar{\zeta}(z^{-2})^j$ and $\bar{\zeta} = 2\nu_{2j+1} \sum_{l \geq 1} (-1)^{l+1} \binom{2j+2l}{2l-1} c_{2j+2l}$.

Comparing with $[x, y] = \text{Res}_{z=0} \zeta(z^{-2})A(z)(x, y)z^{-1}dz$, we get $\zeta(z^{-2}) = \zeta(z^{-2})$ and so $c_{2s+2} = a_s$, where $a_{s, r} := 0$. On the other hand,

$$\int_{-\pi}^{\pi} c(\theta)(-2 \cos \theta - 2)c_j \delta_j d\theta = 2 \sum_{j \geq 0} c_j \left(-2J_{p,q}^j + \sum_{l=1}^{\lfloor j/2 \rfloor} (-1)^{l+1} \binom{j}{2l} J_{p,q}^{j-2l} \right).$$

Combining this equality with (11), we find:

$$C' = \text{Res}_{z=0} g(z^{-2})B(z)z^{-1}dz = C.$$

This completes the proof of the theorem. \square

References

[AF] S. Abeasis and A. Del Fra Young diagrams and ideals of pfaffians, Adv. Math. 35 (1980), 158–178.
[D] A. Daszkiewicz On the invariant ideals of the symmetric algebra $S(V \oplus \Lambda^2 V)$, J. Algebra 125 (1989), 444–473.
[DT] F. Ding and A. Tsybaliuk Representations of infinitesimal Cherednik algebras, arXiv/1210.4833.
[EGG] P. Etingof, W.L. Gan and V. Ginzburg Continuous Hecke algebras, arXiv/0501192, Transform. Groups 10 (2005), no. 3-4, 423–447.
[FH] W. Fulton and J. Harris Representation Theory: A First Course, Springer, New York (1991).
[GG] W.L. Gan and V. Ginzburg Quantization of Slodowy slices, arXiv/0105225, IMRN 5 (2002), 243–255.
[LT] I. Losev and A. Tsybaliuk Infinitesimal Cherednik algebras as W-algebras, arXiv/1305.0873.
[P1] A. Premet Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.
[P2] A. Premet Enveloping algebras of Slodowy slices and the Joseph ideal, arXiv/0505434, J. Eur. Math. Soc. 9 (2007), no. 3, 487–543.
[R] M. Rais Les invariants polynômes de la représentation coadjointe de groupes inhomogènes, arXiv/0903.5146.
[W] J. Weyman Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, no. 149, Cambridge University Press (2003).

Independent University of Moscow, 11 Bol’shoy Vlas’evskiy per., Moscow 119002, Russia
Current address: Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
E-mail address: sasha_ts@mit.edu