Heavy Baryon Spectroscopy in the Relativistic Quark Model

Rudolf N. Faustov * and Vladimir O. Galkin

Institute of Cybernetics and Informatics in Education, FRC CSC RAS, Vavilov Street 40, 119333 Moscow, Russia; galkin@ccas.ru
* Correspondence: faustov@ccas.ru

Received: 23 December 2019; Accepted: 13 February 2020; Published: 16 March 2020

Abstract: Masses of heavy baryons are calculated in the framework of the relativistic quark-diquark picture and QCD. The obtained results are in good agreement with available experimental data including recent measurements by the LHCb Collaboration. Possible quantum numbers of excited heavy baryon states are discussed.

Keywords: heavy baryons; mass spectra; relativistic quark model

1. Introduction

Recently, significant experimental progress has been achieved in studying heavy baryon spectroscopy. Many new heavy baryon states have been observed. The main contribution was made by the LHCb Collaboration. Thus, last year the amplitude analysis of the decay $\Lambda_c(2880)^+$ with the preferred spin $J = 5/2$; — the new state $\Lambda_c(2860)^+$ with quantum numbers $J^P = 3/2^+$, its parity was measured relative to that of the $\Lambda_c(2880)^+$; — the $\Lambda_c(2940)^+$ with the most likely spin-parity assignment $J^P = 3/2^-$, but other solutions with spins from 1/2 to 7/2 were not excluded. Then five new, narrow excited Ω_c states decaying to $\Xi_c^+ K^-$ were observed [2] — the $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$, and $\Omega_c(3119)^0$. These states were later confirmed by Belle [3]. Soon the discovery of the long-awaited doubly charmed baryon Ξ_{cc}^{++} was reported [4,5]. In 2018, the new $\Xi_{bc}(6227)^-$ resonance was observed as a peak in both the $\Lambda_b(6146)$ and $\Lambda_b(6152)$ were found in the $\Lambda_b(6146)\pi^+$ and $\Lambda_b(6152)\pi^+$ system [8].

In this paper, we compare these new data with the predictions of the relativistic quark-diquark model of heavy baryons [9–12].

2. Relativistic Quark-Diquark Model of Heavy Baryons

Our approach is based on the relativistic quark-diquark picture and the quasipotential equation. The interaction of two quarks in a diquark and the quark-diquark interaction in a baryon are described by the diquark wave function Ψ_d of the bound quark-quark state and by the baryon wave function Ψ_B of the bound quark-diquark state respectively. These wave functions satisfy the relativistic quasipotential equation of the Schrödinger type [9,10]

$$\left(\frac{p^2(M)}{2\mu_R} - \frac{p^2}{2\mu_R} \right) \Psi_{d,B} = \int \frac{d^3q}{(2\pi)^3} V(p,q;M)\Psi_{d,B}(q),$$

(1)
where μ_R is the relativistic reduced mass, $b^2(M)$ is the center-of-mass relative momentum squared on the mass shell, p, q are the off-mass-shell relative momenta, and M is the bound state mass (diquark or baryon).

The kernel $V(p, q; M)$ in Equation (1) is the quasipotential operator of the quark-quark or quark-diquark interaction, which is constructed with the help of the off-mass-shell scattering amplitude, projected onto the positive energy states. We assume that the effective interaction is the sum of the usual one-gluon exchange term and the mixture of long-range vector and scalar linear confining potentials, where the vector confining potential contains the Pauli term. The vertex of the diquark-gluon interaction takes into account the diquark internal structure and effectively smears the Coulomb-like interaction. The corresponding form factor is expressed as an overlap integral of the diquark wave functions. Explicit expressions for the quasipotentials of the quark-quark interaction in a diquark and quark-diquark interaction in a baryon can be found in Reference [11]. All parameters of the model were fixed previously from considerations of meson properties and are kept fixed in the baryon spectrum calculations.

The quark-diquark picture of heavy baryons reduces a very complicated relativistic three-body problem to a significantly simpler two step two-body calculation. First we determine the properties of diquarks. We consider a diquark to be a composite (qq') system. Thus diquark in our approach is not a point-like object. Its interaction with gluons is smeared by the form factor expressed through the overlap integral of diquark wave functions. These form factors enter the diquark-gluon interaction and effectively take diquark structure into account [11,12]. Note that the ground state diquark composed from quarks with different flavours can be both in scalar and axial vector state, while the ground state diquarks composed from quarks of the same flavour can be only in the axial vector state due to the Pauli principle. Solving the quasipotential equation numerically we calculate the masses, determine the diquark wave functions and use them for evaluation of the diquark form factors. Only ground-state scalar and axial vector diquarks are considered for heavy baryons. While both ground-state as well as orbital and radial excitations of heavy diquarks are necessary for doubly heavy baryons, since the lowest excitations of such baryons originate from the excitations of the doubly heavy diquark.

Next we calculate the masses of heavy baryons in the quark–diquark picture [11,12]. The heavy baryon is considered as a bound state of a heavy-quark and light-diquark. All excitations are assumed to occur between heavy quark and light diquark. On the other hand, the doubly heavy baryon is considered as a bound state of a light-quark and heavy-diquark. Both excitations in the quark-diquark system and excitations of the heavy diquark are taken into account. It is important to note that such approach predicts significantly less excited states of baryons compared to a genuine three-quark picture. We do not expand the potential of the quark–diquark interaction either in $p/m_{q,Q}$ or in p/m_d and treat both diquark and quark fully relativistically.

3. Masses of Heavy Baryons

The calculated masses of heavy baryons are given in Tables 1–5. In the first column we show the baryon total isospin I, spin J and parity P. The second column lists the quark-diquark state. The next three columns refer to the charm and the last three columns to the bottom baryons. There we first give our prediction for the mass, then available experimental data [13]—baryon status and measured mass. For the status of the state we use the Particle Data Group (PDG) [13] star notations. With the number of the stars it ranges from * meaning “Evidence of existence is poor”, to **** meaning “Existence is certain, and properties are at least fairly explored”. The combined experimental error values are taken form PDGLive. The charm and bottom baryon states recently discovered by the LHCb Collaboration [1,2,4–7] are marked as new.

Note that the orbitally excited states of heavy baryons ($\Sigma_{Q}, \Xi_{Q}, \Omega_{Q}$) containing the axial vector diquark and having the same total angular momentum J and parity P but different light diquark total momentum $j = L + S_d$ mix due to the presence of the spin-orbit (LS_Q) and tensor interactions [11].
Two mixed states for each $J = L \pm \frac{1}{2}$ and $P = (-1)^L$ emerge. Thus there are two nP states for $J^P = \frac{1}{2}^-$ and for $J^P = \frac{3}{2}^-$, two states nD for $J^P = \frac{3}{2}^+$ and for $J^P = \frac{5}{2}^+$ in Tables 2, 4 and 5.

Table 1. Masses of the Λ_Q ($Q = c, b$) heavy baryons (in MeV).

$I(J^P)$	Qd State	$Q = c$	$Q = b$				
		M	M_{\exp}	M	M_{\exp}		
$0(\frac{1}{2}^+)$	1S	2286	***	2286.46(14)	5620	***	5619.51(23)
	2S	2769	*	2766.6(2.4)?	6089		6089
	3S	3130	6645				
	4S	3347	6756				
	5S	3715	7015				
	6S	3973	7256				
$0(\frac{1}{2}^-)$	1P	2598	***	2592.25(28)	5930	***	5912.11(26)
	2P	2983	***	2944.8(\frac{1}{3})?	6326		6326
	3P	3303	6645				
	4P	3588	6917				
	5P	3852	7157				
$0(\frac{3}{2}^-)$	1P	2627	***	2628.1(6)	5942	***	5919.81(23)
	2P	3005	6333				
	3P	3322	6651				
	4P	3606	6922				
	5P	3869	7171				
$0(\frac{3}{2}^+)$	1D	2874	new	2856.1(2.3)	6190	new	6146.17(43)
	2D	3189	6526				
	3D	3480	6811				
	4D	3747	7060				
$0(\frac{5}{2}^-)$	1F	2880	***	2881.75(35)	6196	new	6152.51(38)
	2F	3209	6531				
	3F	3500	6814				
	4F	3767	7063				
$0(\frac{5}{2}^+)$	1G	3097	6408				
	2G	3375	6705				
$0(\frac{7}{2}^-)$	1H	3078	6411				
	2H	3393	6708				
$0(\frac{7}{2}^+)$	1G	3284	6599				
	2G	3564	6868				
$0(\frac{9}{2}^-)$	1H	3444	6767				
$0(\frac{11}{2}^-)$	1H	3460	6766				
Table 2. Masses of the Σ_Q ($Q = c, b$) heavy baryons (in MeV).

$I(J^P)$	Qd State	$Q = c$	Status	M^exp	$Q = b$	Status	M^exp
1($\frac{1}{2}^+$)	1S	2443	****	2453.76(18)	5808	***	5807.8(2.7)
	2S	2901					
	3S	3271					
	4S	3581					
	5S	3861					
1($\frac{3}{2}^+$)	1S	2519	***	2518.0(5)	5834	***	5829.0(3.4)
	2S	2936	***	2939.3(1.4)	?	6226	6583
	3S	3293					
	4S	3598					
	5S	3873					
1($\frac{1}{2}^-$)	1P	2799	***	2802.4(1.4)	6101		
	2P	3172			6440		
	3P	3488			6756		
	4P	3770			7024		
	1P	2773	*	2766.6(2.4)?	6087		
	2P	3151			6423		
	3P	3469			6736		
	4P	3753			7003		
1($\frac{3}{2}^-$)	1P	2789			6084		
	2P	3161			6421		
	3P	3475			6732		
	4P	3757			6999		
1($\frac{1}{2}^+$)	1D	3041			6311		
	2D	3370			6636		
1($\frac{3}{2}^+$)	1D	3043			6326		
	2D	3366			6647		
	1D	3040			6285		
	2D	3364			6612		
1($\frac{5}{2}^+$)	1D	3038			6284		
	2D	3365			6612		
	1D	3023			6270		
	2D	3349			6598		
1($\frac{7}{2}^+$)	1D	3013			6260		
	2D	3342			6590		
Table 3. Masses of the Ξ_Q ($Q = c, b$) heavy baryons with the scalar diquark (in MeV).

$I(J^P)$	Qd State	M	Status	M^{\exp}	M	Status	M^{\exp}
$\frac{1}{2}(1^+)$	1S	2476	***	2470.88($^{34}_{60}$)	5803	***	5790.5(2.7)
2S	2959	6266					
3S	3323	6601					
4S	3632	6913					
5S	3909	7165					
$\frac{1}{2}(\frac{1}{2}^+)$	1P	2792	***	2792.8(1.2)	6120		
2P	3179	6496					
3P	3500	6805					
4P	3785	7068					
5P	4048	7302					
$\frac{1}{2}(\frac{3}{2}^-)$	1P	2819	***	2820.22(32)	6130		
2P	3201	6502					
3P	3519	6810					
4P	3804	7073					
5P	4066	7306					
$\frac{1}{2}(\frac{3}{2}^+)$	1P	3059	***	3055.9(0.4)	6366		
2P	3388	6690					
3P	3678	6966					
4P	3945	7208					
$\frac{1}{2}(\frac{5}{2}^-)$	1P	3076	*	3079.9(1.4)	6373		
2P	3407	6696					
3P	3699	6970					
4P	3965	7212					

From Tables 1 and 2 we see that the $\Lambda_c(2765)$ (or $\Sigma_c(2765)$), if it is indeed the Λ_c state, can be interpreted in our model as the first radial (2S) excitation of the Λ_c. If instead it is the Σ_c state, then it can be identified as its first orbital excitation (1P) with $J^P = \frac{3}{2}^-$ (see Table 2). The $\Lambda_c(2880)$ baryon corresponds to the second orbital excitation (1D) with $J^P = \frac{5}{2}^+$ in accord with the LHCb analysis [1]. The other charmed baryon, denoted as $\Lambda_c(2940)$, probably has $I = 0$, since it was discovered in the pD^0 mass spectrum and not observed in pD^+ channel, but $I = 1$ is not ruled out [13]. If it is really the Λ_c state, then it could be both an orbitally and radially excited (2P) state with $J^P = \frac{1}{2}^-$, whose mass is predicted to be about 40 MeV heavier. A better agreement with experiment (within few MeV) is achieved, if the $\Lambda_c(2940)$ is interpreted as the first radial excitation (2S) of the Σ_c with $J^P = \frac{3}{2}^-$. The $\Sigma_c(2800)$ can be identified with one of the first orbital (1P) excitations of the Σ_c with $J^P = \frac{1}{2}^-$ or $\frac{3}{2}^-$, which have very close masses compatible with experimental value within errors (see Table 2). The new state $\Lambda_c(2860)$ with quantum numbers $\frac{3}{2}^+$ [1] can be well interpreted as second orbital excitation (1D state). In the bottom sector the $\Lambda_b(5912)$ and $\Lambda_b(5920)$ correspond to the first orbitally excited (1P) states with $J^P = \frac{1}{2}^-$ and $\frac{3}{2}^-$, respectively. The new $\Sigma_b(6097)$ state [7] can be the first orbital excitation (1P) with quantum numbers $J^P = \frac{3}{2}^-$, while $\Lambda_b(6146)$ and $\Lambda_b(6152)$ can be 1D states with $J^P = \frac{3}{2}^+$ and $J^P = \frac{3}{2}^+$, respectively.
Table 4. Masses of the $\Xi_Q (Q = c, b)$ heavy baryons with the axial vector diquark (in MeV).

$I(J^P)$	Qd State	$Q = c$	Status	M^{\exp}	$Q = b$	Status	M^{\exp}
$\frac{1}{2}(1^+)$	1S	2579	***	2577.9(2.9)	5936	***	5935.02(5)
2S	2983			2971.4(3.3)	6329		
3S	3377			6687			
4S	3695			6978			
5S	3978			7229			
$\frac{1}{2}(3^+)$	1S	2649	***	2645.9(0.5)	5963	***	5955.33(13)
2S	3026			6342			
3S	3396			6695			
4S	3709			6984			
5S	3989			7234			
$\frac{1}{2}(1^-)$	1P	2936	*	2931(6)	6233		
2P	3313			6611			
3P	3630			6915			
4P	3912			7174			
1P	2854			6227	new	6226.9(2.1)	
2P	3267			6604			
3P	3598			6906			
4P	3887			7164			
$\frac{1}{2}(3^-)$	1P	2935	*	2931(6)	6234		
2P	3311			6605			
3P	3628			6905			
4P	3911			7163			
1P	2912			6224	new	6226.9(2.1)	
2P	3293			6598			
3P	3613			6900			
4P	3898			7159			
$\frac{1}{2}(5^-)$	1P	2929	*	2931(6)	6226	new	6226.9(2.1)
2P	3303			6596			
3P	3619			6897			
4P	3902			7156			
$\frac{1}{2}(1^+)$	1D	3163			6447		
2D	3505			6767			
$\frac{1}{2}(3^+)$	1D	3167			6459		
2D	3506			6775			
1D	3160			6431			
$\frac{3}{2}(1^+)$	1D	3166			6432		
2D	3504			6751			
1D	3153			6420			
$\frac{3}{2}(5^+)$	2D	3493			6740		
$\frac{7}{2}(1^+)$	1D	3147	*	3122.9(1.3)	6414		
$\frac{7}{2}(1^+)$	2D	3486			6736		
Table 5. Masses of the $\Omega_Q (Q = c, b)$ heavy baryons (in MeV).

$I(J^P)$	Qd State	$Q = c$	$Q = b$		
		M	Status		
		M^{exp}			
		M	Status		
		M^{exp}			
$0(\frac{1}{2}^+)$	1S	2698	***	6064	***
	2S	3088	new	3090.2(2)	6450
	3S	3489		6804	
	4S	3814		7091	
	5S	4102		7338	
$0(\frac{3}{2}^+)$	1S	2768	***	6088	
	2S	3123	new	3119.1(2)	6461
	3S	3510		6811	
	4S	3830		7096	
	5S	4114		7343	
$0(\frac{1}{2}^-)$	1P	3055		6339	
	2P	3435		6710	
	3P	3754		7009	
	4P	4037		7265	
	1P	2966		6330	
	2P	3384		6706	
	3P	3717		7003	
	4P	4009		7257	
$0(\frac{3}{2}^-)$	1P	3054	new	3065.6(2)	6340
	2P	3433		6705	
	3P	3752		7002	
	4P	4036		7258	
	1P	3029	new	3000.4(2)	6331
	2P	3415		6699	
	3P	3737		6998	
	4P	4023		7250	
$0(\frac{5}{2}^-)$	1P	3051	new	3050.2(2)	6334
	2P	3427		6700	
	3P	3744		6996	
	4P	4028		7251	
$0(\frac{1}{2}^-)$	1D	3287		6540	
$0(\frac{3}{2}^-)$	1D	3298		6549	
	2D	3627		6863	
	1D	3282		6530	
$0(\frac{3}{2}^-)$	2D	3613		6846	
$0(\frac{5}{2}^-)$	1D	3297		6529	
$0(\frac{3}{2}^-)$	2D	3626		6846	
	1D	3286		6520	
$0(\frac{5}{2}^-)$	2D	3614		6837	
$0(\frac{7}{2}^-)$	1D	3283		6517	
$0(\frac{7}{2}^-)$	2D	3611		6834	
$0(\frac{3}{2}^-)$	1F	3533		6763	

In the Ξ_Q baryon sector, as we see from Tables 3 and 4, the $\Xi_c(2790)$ and $\Xi_c(2815)$ can be assigned to the first orbital (1P) excitations of the Ξ_c containing a scalar diquark with $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$, respectively. On the other hand, the charmed baryon $\Xi_c(2930)$ can be considered as either the $J^P = \frac{1}{2}^-$, $J^P = \frac{3}{2}^-$ or $J^P = \frac{5}{2}^-$ state (all these states are predicted to have close masses) corresponding to
the first orbital (1P) excitations of the Ξ'_c with an axial vector diquark. While the $\Xi_c(2980)$ can be viewed as the first radial (2S) excitation with $J^P = \frac{1}{2}^+$ of the Ξ'_c. The $\Xi_c(3055)$ and $\Xi_c(3080)$ baryons can be interpreted as a second orbital (1D) excitations of the Ξ_c containing a scalar diquark with $J^P = \frac{3}{2}^+$ and $J^P = \frac{5}{2}^+$, and the $\Xi_c(3123)$ can be viewed as the corresponding (1D) excitation of the Ξ'_c with $J^P = \frac{7}{2}^+$. The recently observed excited bottom baryon $\Xi_b(6227)^-$ [6] can be one of the first radially excited states (1P) of the Ξ'_c baryon with the axial vector diquark and quantum numbers $J^P = \frac{1}{2}^-, \frac{3}{2}^-, \frac{5}{2}^-$ which are predicted to have very close masses.

Masses of the Ω_c and Ω_b baryons are given in Table 5. The ground state (1S) masses were predicted [9,10] before experimental discovery and agree well with measured values. Recently the LHCb observed [2] five new, narrow excited Ω_c are also in accord with our predictions. Three lighter states $\Omega_c(3000)^0, \Omega_c(3050)^0$ and $\Omega_c(3066)^0$ are well described as first orbital (1P) excitations with $J^P = \frac{3}{2}^-, \frac{5}{2}^-$ and $\frac{3}{2}^-$, respectively. These states are expected to be narrow. The remaining 1P states with $\frac{1}{2}^-$ are expected to be broad and thus can escape detection. The small peak in the low end of $\Xi'_c K^-$ mass distribution (see Figure 1) can correspond to $\frac{1}{2}^-$ state with the predicted mass 2966 MeV (see Table 5). The remaining two heavier states $\Omega_c(3090)^0$ and $\Omega_c(3119)^0$ are naturally described as first radial (2S) excitations with quantum numbers $\frac{1}{2}^+$ and $\frac{3}{2}^+$, respectively. Their predicted masses coincide with the measured ones within a few MeV. The proposed assignment of spins and parities of excited Ω_c states observed by the LHCb Collaboration is given in Figure 1. In Table 6 we compare different quark model (QM), QCD sum rules (QCD SR), lattice QCD predictions and available experimental data for the masses of the Ω_c states.

Table 6. Comparison of theoretical predictions for the masses of the Ω_c states (in MeV).

State $nL J^P$	Our [11]	QM [14]	QM [15]	Lattice	Lattice	QCD SR	PDG+LHCb
1S, $\frac{1}{2}^+$	2698	2718	2695	2648(28)	2695(28)	2685(123)	2695.2(1.7)
2S, $\frac{1}{2}^+$	3088	3152	3100	3294(73)	3066(138)	3090.2(6)	
1S, $\frac{3}{2}^+$	2768	2776	2767	2709(32)	2781(25)	2769(89)	2765.9(2.0)
2S, $\frac{3}{2}^+$	3123	3190	3126	3355(92)	3119(114)	3119.1(1.0)	
1P, $\frac{1}{2}^-$	2966	2977	3028	2995(46)	3015(45)		
1P, $\frac{3}{2}^-$	3055	2990	3011				
1P, $\frac{5}{2}^-$	3054	2986	2976	3016(69)		3065.6(6)	
1P, $\frac{7}{2}^-$	3029	2994	2993		3000(4)		
1P, $\frac{9}{2}^-$	3051	3014	2947		3050.2(5)		

![Figure 1. Proposed assignment of spins and parities of excited Ω_c states observed by LHCb Collaboration.](image-url)
4. Doubly Heavy Baryons

Mass spectra of doubly heavy baryons were calculated in the light-quark–heavy-diquark picture in Reference [12]. The light quark was treated completely relativistically, while the expansion in the inverse heavy quark mass was used. Table 7 shows the Ξ_{cc} mass spectrum. Excitations inside doubly heavy diquark and light-quark–heavy-diquark bound systems are taken into account. We use the notations \((n_d L_q n_l)J^P\), where we first show the radial quantum number of the diquark \((n_d = 1,2,3 \ldots)\) and its orbital momentum by a capital letter \((L = S, P, D \ldots)\), then the radial quantum number of the light quark \((n_q = 1,2,3 \ldots)\) and its orbital momentum by a lowercase letter \((l = s, p, d \ldots)\), and at the end the total angular momentum \(J\) and parity \(P\) of the baryon. In Table 8 we compare different theoretical predictions for the ground state masses of the doubly heavy baryons. Our prediction (2002) for the mass of the Ξ_{cc} baryon [12] excellently agrees with its mass recently measured (2017) by the LHCb Collaboration [4,5]:

\[
M^{\text{exp}}(\Xi_{cc}^{++}) = 3621.40 \pm 0.55 \pm 0.23 \pm 0.30 \text{ MeV}.
\]

Table 7. Mass spectrum of Ξ_{cc} baryons (in MeV).

State \((n_d L_q n_l)J^P\)	Mass \([19]\)	Our	State \((n_d L_q n_l)J^P\)	Mass \([19]\)
\((1S1s)\frac{1}{2}^+\)	3620 3478 3660 3690	3510 3676	3838 3702	
\((1S1s)\frac{3}{2}^+\)	3727 3610 3740	3548 3753	3959 3834	
\((1S1p)\frac{1}{2}^-\)	4053 3927 3860	3719 3812		
\((1S1p)\frac{3}{2}^-\)	4101 4039 3826	3746 3876		
\((2S1s)\frac{1}{2}^-\)	4136 4052 3826	4027 3944		
\((2S1s)\frac{3}{2}^-\)	4155 4047 3727	4197 4104		
\((3S1s)\frac{1}{2}^-\)	4196 4034 3620	4154 4072		

Table 8. Mass spectrum of ground states of doubly heavy baryons (in MeV). \(\{QQ\}\) denotes the diquark in the axial vector state and \([QQ]\) denotes diquark in the scalar state.

Baryon	Quark Content	\(J^P\)	Mass \([12]\)	\([19]\)	\([20]\)	\([21]\)	\([22]\)	\([14]\)	\([23]\)
Ξ_{cc}	\{cc\}q \(\frac{1}{2}^+\)	3620 3478 3660 3690	3510 3676	3838 3702					
Ξ_{cc}^*	\{cc\}q \(\frac{3}{2}^+\)	3727 3610 3740	3548 3753	3959 3834					
Ω_{cc}	\{cc\}s \(\frac{1}{2}^-\)	3778 3590 3740 3860	3719 3812						
Ω_{cc}^*	\{cc\}s \(\frac{3}{2}^-\)	3872 3690 3826	3746 3876						
Ξ_{bb}	\{bb\}q \(\frac{1}{2}^+\)	10202 10093 10340 10160	10130 10340	10162(12)					
Ξ_{bb}^*	\{bb\}q \(\frac{3}{2}^+\)	10237 10133 10370	10144 10367	10184(12)					
Ω_{bb}	\{bb\}s \(\frac{1}{2}^-\)	10359 10180 10370 10340	10422 10454						
Ω_{bb}^*	\{bb\}s \(\frac{3}{2}^-\)	10389 10200 10400	10432 10486						
Ξ_{cb}	\{cb\}q \(\frac{1}{2}^+\)	6933 6820 7040 6960	6792 7011	6914(13)					
Ξ_{cb}^*	\{cb\}q \(\frac{3}{2}^+\)	6963 6850 6990	6825 7047	6933(12)					
Ξ_{cb}	\{cb\}q \(\frac{1}{2}^-\)	6980 6900 7060	6827 7074	6969(14)					
Ω_{cb}	\{cb\}s \(\frac{1}{2}^-\)	7088 6910 7090 7130	6999 7136						
Ω_{cb}^*	\{cb\}s \(\frac{3}{2}^-\)	7116 6930 7060	7022 7165						

5. Conclusions

Recent observations of excited charm and bottom baryons confirm predictions of the relativistic quark–diquark model of heavy baryons [9–11]. The new state Λ_{c}(2860) is in accordance with the
predicted 1D- state with \(J^P = \frac{3}{2}^+ \). The experimentally preferred quantum numbers \(J^P = \frac{5}{2}^+ \) of \(\Lambda_c(2880) \) agree with our assignment of this state to 1D- state with \(J^P = \frac{5}{2}^+ \). The \(\Lambda_b(5912) \) and \(\Lambda_b(5920) \) are well described as the first orbitally excited (1P) states with \(J^P = \frac{1}{2}^- \) and \(\frac{3}{2}^- \), respectively. The new \(\Sigma_c(6097) \) state can be the first orbital excitation (1P) with quantum numbers \(J^P = \frac{3}{2}^- \). The recently observed excited bottom baryon \(\Xi_b(6227)^{-} \) can be one of the first radially excited states (1P) of the \(\Xi_b \) baryon with the axial vector diquark and quantum numbers \(J^P = \frac{1}{2}^- \) which are predicted to have very close masses. Observation of five new narrow \(\Omega_c \) states in the mass range 3000-3200 MeV agrees with our prediction of orbitally excited 1P-states and radially excited 2S-states in this mass region: \(\Omega_c(3000) \), \(\Omega_c(3066) \), \(\Omega_c(3050) \) can be 1P-states with \(J^P = \frac{3}{2}^- \), \(\frac{5}{2}^- \) while \(\Omega_c(3090) \) and \(\Omega_c(3119) \) states are most likely the first radially excited 2S states with \(J^P = \frac{1}{2}^+ \), \(\frac{3}{2}^+ \).

In the doubly heavy baryon sector, the mass of the recently observed \(\Xi_b^{++} \) baryon is in excellent agreement with our prediction made more than 15 years ago [12]. Masses of ground state doubly charm baryons are predicted to be in 3.5–3.9 GeV range. Masses of ground state doubly bottom baryons are predicted to be in the 10.1–10.5 GeV range. Masses of ground state bottom-charm baryons are predicted to have very close masses. Observation of five new narrow \(\Omega_c \) states in the mass range 3000-3200 MeV agrees with our prediction of orbitally excited 1P-states and radially excited 2S-states in this mass region: \(\Omega_c(3000) \), \(\Omega_c(3066) \), \(\Omega_c(3050) \) can be 1P-states with \(J^P = \frac{3}{2}^- \), \(\frac{5}{2}^- \) while \(\Omega_c(3090) \) and \(\Omega_c(3119) \) states are most likely the first radially excited 2S states with \(J^P = \frac{1}{2}^+ \), \(\frac{3}{2}^+ \).

Author Contributions: Investigation, R.N.F. and V.O.G., Writing—original draft, R.N.F. and V.O.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of Russian Federation.

Acknowledgments: The authors are grateful to D. Ebert, J. Körner and M. Ivanov for valuable discussions. We thank the organizers of the Helmholtz International Summer School “Quantum Field Theory at the Limits: From Strong Fields to Heavy Quarks” for the invitation to participate in such a pleasant and productive meeting.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aaij, R.; et al.; [LHCb Collaboration]. Study of the \(D^0 \pi \) amplitude in \(\Lambda_c^0 \to D^0 \pi^+ \pi^- \) decays. JHEP 2017, 1705, 030.
2. Aaij, R.; et al.; [LHCb Collaboration]. Observation of five new narrow \(\Omega_c^0 \) states decaying to \(\Xi_b^- K^- \). Phys. Rev. Lett. 2017, 118, 182001. [CrossRef] [PubMed]
3. Yelton, J.; et al.; [Belle Collaboration]. Observation of Excited \(\Omega_c \) Charmed Baryons in \(e^+ e^- \) Collisions. Phys. Rev. D 2018, 97, 051102. [CrossRef]
4. Aaij, R.; et al.; [LHCb Collaboration]. Observation of the doubly charmed baryon \(\Xi_b^{++} \). Phys. Rev. Lett. 2017, 119, 112001. [CrossRef] [PubMed]
5. Aaij, R.; et al.; [LHCb Collaboration]. Precision measurement of the \(\Xi_b^{++} \) mass. JHEP 2020, 2002, 049. [CrossRef]
6. Aaij, R.; et al.; [LHCb Collaboration]. Observation of a new \(\Xi_b^- \) resonance. Phys. Rev. Lett. 2018, 121, 072002. [CrossRef]
7. Aaij, R.; et al.; [LHCb Collaboration]. Observation of two resonances in the \(\Lambda_c^0 \pi^\pm \) systems and precise measurement of \(\Sigma_c^{++} \) and \(\Sigma_c^{++} \) properties. Phys. Rev. Lett. 2019, 122, 012001. [CrossRef]
8. Aaij, R.; et al.; [LHCb Collaboration]. Observation of New Resonances in the \(\Lambda_c^0 \pi^+ \pi^- \) System. Phys. Rev. Lett. 2019, 123, 152001. [CrossRef] [PubMed]
9. Ebert, D.; Faustov, R.N.; Galkin, V.O. Masses of heavy baryons in the relativistic quark model. Phys. Rev. D 2005, 72, 034026. [CrossRef]
10. Ebert, D.; Faustov, R.N.; Galkin, V.O. Masses of excited heavy baryons in the relativistic quark model. Phys. Lett. B 2008, 659, 612. [CrossRef]
11. Ebert, D.; Faustov, R.N.; Galkin, V.O. Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture. Phys. Rev. D 2011, 84, 014025. [CrossRef]
12. Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P. Mass spectra of doubly heavy baryons in the relativistic quark model. Phys. Rev. D 2002, 66, 014008. [CrossRef]
13. Tanabashi, M.; et al.; [Particle Data Group]. Review of particle physics. Phys. Rev. D 2018, 98, 030001. [CrossRef]
14. Roberts, W.M.; Pervin, M. Heavy baryons in a quark model. Int. J. Mod. Phys. A 2008, 23, 2817. [CrossRef]
15. Shah, Z.; Thakkar, K.; Rai, A.K.; Vinodkumar, P.C. Mass spectra and Regge trajectories of Λ^+_c, Σ^0_c, Ξ^0_c and Ω^0_c baryons. Chin. Phys. C 2016, 40, 123102. [CrossRef]
16. Pérez-Rubio, P.; Collins, S.; Bali, G.S. Charmed baryon spectroscopy and light flavor symmetry from lattice QCD. Phys. Rev. D 2015, 92, 034504. [CrossRef]
17. Chen, Y.C.; et al.; [TWQCD Collaboration]. Lattice QCD with $N_f = 2 + 1 + 1$ domain-wall quarks. Phys. Lett. B 2017, 767, 193.
18. Agaev, S.S.; Azizi, K.H.; Sundu, H. Interpretation of the new Ω^0_c states via their mass and width. Eur. Phys. J. C 2017, 77, 395. [CrossRef]
19. Gershtein, S.S.; Kiselev, V.V.; Likhoded, A.K.; Onishchenko, A.I. Spectroscopy of doubly heavy baryons. Phys. Rev. D 2000, 62, 054021. [CrossRef]
20. Roncaglia, R.; Lichtenberg, D.B.; Predazzi, E. Predicting the masses of baryons containing one or two heavy quarks. Phys. Rev. D 1995, 52, 1722. [CrossRef]
21. Narodetski, I.M.; Trusov, M.A. The Heavy baryons in the nonperturbative string approach. Phys. Atom. Nucl. 2002, 65, 917. [CrossRef]
22. Martynenko, A.P. Ground-state triply and doubly heavy baryons in a relativistic three-quark model. Phys. Lett. B 2008, 663, 317. [CrossRef]
23. Karliner, M.; Rosner, J.L. Baryons with two heavy quarks: Masses, production, decays, and detection. Phys. Rev. D 2014, 90, 094007. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).