Nuclear pasta in hot dense matter and its implications for neutrino scattering

Alessandro Roggero
Institute for Nuclear Theory, University of Washington, Seattle, WA 98195
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Jérôme Margueron
Institute for Nuclear Theory, University of Washington, Seattle, WA 98195
Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, Université de Lyon,
Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France

Luke F Roberts
National Superconducting Laboratory & Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824, USA

Sanjay Reddy
Institute for Nuclear Theory, University of Washington, Seattle, WA 98195

(Dated: October 30, 2017)

We find that the abundance of large clusters of nucleons in neutron-rich matter at sub-nuclear density is greatly reduced by finite temperature effects when matter is close to beta-equilibrium. Large nuclei and exotic non-spherical nuclear configurations called pasta, favored in the vicinity of the transition to uniform matter at \(T = 0 \), dissolve at relatively low temperature. For matter close to beta-equilibrium we find that the pasta melting temperature is \(T_{\beta_m} \approx 4 \pm 1 \text{ MeV} \) for realistic equations of state. The mechanism for pasta dissolution is discussed, and in general \(T_{\beta_m} \) is shown to be sensitive to the proton fraction. We find that coherent neutrino scattering from nuclei and pasta makes a modest contribution to the opacity under the conditions encountered in supernovae and neutron star mergers. Implications for neutrino signals from galactic supernovae are briefly discussed.

I. INTRODUCTION

The properties of hot dense matter encountered in core-collapse supernovae, newly born neutron stars called proto-neutron stars, and in neutron star mergers is expected to play a key role in shaping their observable photon, neutrino and gravitational wave emission. In supernovae, state of the art simulations indicate that neutrino transport at high density influences the supernova mechanism \[1\] \[2\], the long term neutrino emission detectable in terrestrial neutrino detectors \[3\] \[4\], and heavy element nucleosynthesis \[7\] \[8\].

The presence of heterogeneous matter at high density is expected to modify the neutrino scattering rates because the size of structures encountered in such matter can be comparable to the neutrino wavelength, and neutrinos would couple coherently to the net weak charge contained within them. A familiar example is neutrino-molecule coherent scattering, known to play an important role in trapping neutrinos during core-collapse \[12\]. Additionally, heterogeneous phases are favored near first-order phase transitions in neutron stars at high density \[13\], and coherent neutrino scattering in such matter can greatly increase the opacity \[14\]. Coherent neutrino scattering from the nuclear pasta phase where large spherical and non-spherical nuclei coexist with a dense nucleon gas for densities between \(10^{13} - 10^{14} \text{ g/cm}^3 \) has also been studied \[15\] \[16\].

Recently, the enhanced neutrino opacity in the high density heterogenous pasta phase was incorporated in simulations of proto-neutron star evolution and found to have a significant impact on the temporal structure of the neutrino luminosity \[17\]. Motivated by this interesting finding, we perform calculations of matter at finite temperature to address if heterogeneous nuclear pasta is present under the typical thermodynamic conditions encountered in proto-neutron stars, and study its influence on the neutrino scattering rates. We find that the heterogeneous pasta phase dissolves at relatively low temperature for the small values of the electron fraction characteristic of dense matter in beta-equilibrium. Consequently, the enhancement of neutrino scattering rates due to coherent scattering is relatively modest and significantly smaller than those employed in \[17\]. In addition, we find that Coulomb correlations between clusters suppresses scattering of neutrinos with wavelengths larger than the inter-cluster distance in agreement with earlier work \[18\] \[19\]. Interestingly, we also find that at lower temperatures when large nuclei can be present there could be a net reduction of the neutrino opacity as nucleons get locked up inside nuclei.

The material is organized as follows. In \[11\] we discuss...
the basic nuclear physics of phase coexistence and show that the simplified Gibbs construction for two-phase equilibrium provides a useful bounds on the phase boundaries between homogeneous and heterogeneous matter. This allows us to provide an upper limit on the critical temperature above which pasta dissolves to form a uniform nucleon liquid, and its dependence on the nuclear equation of state is discussed. Implications for neutrino transport in proto-neutron stars are discussed in [43] and our conclusions are presented in [44].

II. HOT MATTER AT SUB-NUCLEAR DENSITY AND THE DISSOLUTION OF PASTA

The structure of matter at sub-nuclear density and at zero temperature is fairly well understood. With increasing density, nuclei become neutron-rich due to the rapid increase in the electron Fermi energy. Neutrons drip out of nuclei when the density exceeds $\rho_{\text{drip}} \approx 4 \times 10^{13}$ g/cm3, and non-spherical or pasta nuclei are likely when the density exceeds $\rho_{\text{pasta}} \approx 10^{13}$ g/cm3 [20]. Several studies using different many-body methods and underlying nuclear interactions have all yielded similar qualitative behavior [20,22].

There also exist some calculations at finite temperature which indicate that at the highest densities nuclei and pasta persist up to $T \approx 10 - 15$ MeV when the electron (or proton) fraction $Y_e \lesssim 0.1$ [23,24]. In what follows we shall derive an upper bound on the temperature for the dissolution of nuclei and pasta for beta-equilibrated matter at densities in the range $\rho \approx 10^{12} - 10^{14}$ g/cm3. We consider beta-equilibrium matter because the outer regions of a proto-neutron star, which may contain nuclear pasta, are able to deleptonize rapidly and therefore reach beta-equilibrium on a short time scale.

First, we identify the thermodynamic conditions favorable for the existence of nuclear pasta. Since surface and Coulomb energies act to disfavor the heterogeneous state, and shell effects are relatively small at the temperatures of interest, the liquid-gas phase coexistence region predicted by the Gibbs construction, where these effects are ignored, will likely enclose the phase coexistence region predicted when such finite size effects are included. This simple observation allows us to provide a useful upper bound on the melting temperature by examining the two-phase Gibbs construction for bulk matter.

For nuclei or pasta to coexist with a gas of nucleons, the high density liquid phase inside these structures have to be in equilibrium with the low density gas outside. Denoting the pressure, and the neutron and proton chemical potentials of the high density liquid phase as P^l, and μ_n^l and μ_p^l, respectively, Gibbs equilibrium requires $P^h = P^l$, $\mu_n^h = \mu_n^l$ and $\mu_p^h = \mu_p^l$, where P^l, μ_n^l and μ_p^l, are the corresponding pressure and chemical potentials in the low density gas phase. To find the coexistence region in the phase diagram an equation of state which specifies how the energy density of bulk nucleonic matter $\varepsilon_{\text{nuc}}(n_n,n_p,T)$ depends on the neutron and proton densities, and the temperature is needed. In practice we work in the proton-canonical ensemble where μ_n is fixed and n_p is the extensive variable [25]. We have however checked that our results are independent of the statistical ensemble.

At a fixed temperature, phase coexistence is possible when there exists two pairs of nucleon densities, denoted by n_n^l,n_n^h and n_p^l,n_p^h, that can satisfy the Gibbs equilibrium criteria. These pairs can be depicted as two points on a two-dimensional plot where the axes are neutron and proton densities. In Fig. 1 these points are calculated for the model SLy4 and appear on the solid-black curve. For a pair of points in Gibbs equilibrium, a Gibbs construction can be used to find the state of matter at intermediate densities. Therefore, a pair of points that satisfy Gibbs equilibrium define a curve through neutron-proton density space given by

\begin{align}
 n_n &= un_n^h + (1 - u)n_n^l,

n_p &= un_p^h + (1 - u)n_p^l,
\end{align}

where u is fraction of the volume that is occupied by the high-density liquid phase. The purple curves represent these curves for pairs of select Gibbs equilibrium points. For example, in the middle panel of Fig. 1 the pair of end points defined by the intersection labeled l and h specify the neutron and proton densities of the low and high density phases, n_n^l,n_p^l and n_n^h,n_p^h, respectively. Clearly, Y_c varies along any Gibbs construction curve, so a constant Y_c curve crosses the Gibbs constructions of many Gibbs equilibrium pairs in the mixed-phase region. In Fig. 1 the yellow dashed lines show curves of constant Y_c and the Gibbs equilibrium at a specific Y_c is defined.
by its intersection with the magenta curve. The solid-blue curve denotes the β-equilibrium path, along which $\mu_n - \mu_p = \mu_e$. Gibbs equilibrium is possible along the β-equilibrium path when solid-blue curve lies within the coexistence region. Once again, it can be seen that the β-equilibrium curve moves across many Gibbs equilibrium pairs as it traverses the coexistence region. The β-equilibrium path for the homogeneous phase is also shown as the dashed-blue curve for reference. The spindleal region where matter is unstable to small density perturbations is the region enclosed by the green curve, and the critical points associated with the first-order transition are denoted by the red dots.

Several insights about the role of finite temperature can be gleaned from examining the progression of the phase coexistence region with temperature seen in the three panels in Fig. 1.

- With increasing temperature the extent of the phase coexistence region shrinks, and its intersection with the path of β-equilibrium decreases. Above the critical temperature, T_m^β (≈ 9 MeV for the model chosen) there is no intersection and phase coexistence in β-equilibrium is not possible.

- In contrast, out of β-equilibrium for moderate values of $Y_e > 0.2$ there exists a range of ambient conditions that extends to higher temperature where Gibbs equilibrium is possible. Nonetheless, with increasing temperature the area enclosed by the solid-black coexistence curve shrinks and its intersection with lines of constant Y_e is reduced. Eventually, above the critical temperature denoted by $T_{max}^Y \approx 12 - 15$ MeV there is no intersection and phase coexistence is absent.

- Co-existence in β-equilibrium ends near the critical point. With increasing temperature, phase coexistence ends by making a transition to the uniform low-density gas phase. This feature, called retrograde condensation [20], implies that the path along beta-equilibrium will favor fewer nuclei with increasing density.

- For moderate values of $Y_e > 0.2$ phase co-existence ends by transiting to the high-density liquid phase and large nuclei persist to higher temperature.

- With increasing temperature, the density contrast between the high and low density phases associated with Gibbs equilibrium is reduced.

The impact of retrograde condensation on the volume fraction of the high-density liquid phase is seen more clearly in Fig. 2. At low temperatures, u begins close to zero at low densities and increases to one at high densities, implying that it exits the coexistence region in the high-density phase. But above a critical temperature, u reaches a maximum of less than one and turns over, implying the β-equilibrium path exits the coexistence region in the low-density gas phase. The fact that the maximum volume fraction occupied by the high-density phase, which corresponds to nuclei or pasta structures, is rather small at temperatures high enough for retrograde condensation can significantly impact the contribution of coherent scattering to the neutrino opacity of β-equilibrium matter. Since non-spherical shapes or pasta nuclei are favored for $u \gtrsim 1/8$ (for a pedagogic discussion of pasta nuclei see Ref. [20]) we include the horizontal dashed line at $u = 1/8$ to help extract the critical temperature T_m^β above which pasta nuclei no longer appear (note that $T_m^\beta < T_{max}^\beta$). From panel (a) of Fig. 2 we see that T_m^β is between 5 and 6 MeV (for SLy4 EOS). In contrast for matter at fixed $Y_e = 0.2$, shown in panel (b), pasta nuclei persist to higher temperatures until phase coexistence ends at T_{max}^Y

We can understand the physical mechanism for retrograde condensation at larger temperatures by examining the evolution of the proton fraction in the gas phase. Global charge neutrality requires the volume fraction of the high density phase to be

$$ u = \frac{n_e}{n_p} \frac{n_p^h}{n_p} , $$

where the electron density n_e is assumed to be uniform because the Debye screening length is large compared to the typical size of electrically neutral Wigner-Seitz cells. In the beta-equilibrium mixed phase the lowest energy level for protons in the low density gas phase $E_p^l > \mu_p$ and at $T = 0$ the proton density there denoted by $n_p^l = 0$. At $T = 0$ the volume fraction $u = n_e/n_p^h$ increases rapidly with increasing density because n_e increases and n_p^h decreases. At finite temperature $n_p^l > 0$ because proton states in the gas can be thermally populated. This is illustrated in Fig. 3 where the occupied energy levels of protons in both the low and high density phases are shown at zero and finite temperature.

The thermal population of protons in the gas

$$ n_p^l \approx 2 \left(\frac{m_p T}{2\pi} \right)^{3/2} e^{-\Delta E_p/T} $$

![FIG. 2. Volume fraction of the high density phase in heterogeneous matter for SLy4 Skyrme interaction. (a) for the β-equilibrium path, (b) for the constant $Y_e = 0.2$ path.](image-url)
where $\Delta E_p = E_p - \mu_p$, becomes significant when $T \simeq \Delta E_p$ and increases exponentially with temperature. In contrast, the density of protons in the high density phase still remains significantly larger and does not change appreciably with temperature because of their high degeneracy.

The typical evolution of $\Delta E_p/T$ is shown in panel (a) of Fig. 4 for the SLy4 EOS. Except close to the transition density, $\Delta E_p/T \gg 1$ leads to significant suppression of the proton density in the gas phase. In the vicinity of the transition density $\Delta E_p/T$ decreases rapidly and from Eq. (3), the proton fraction in the gas increases exponentially. The number densities of the charged particles as function of the average baryon density are shown in panel (b). Since electric charge neutrality in the uniform phase requires $n_e = n_p = n_p^{\text{eq}}$, the point at which n_e and n_p^{eq} first intersect defines the low density boundary of the coexistence region. In the vicinity of this point, nonuniform matter is predominantly composed of the gas phase. The high density boundary is defined by the intersection of the n_e and n_p^{th} at low temperature, or by the second intersection of the n_e and n_p^{th} at high temperature as expected for retrograde condensation. These features are also readily discernible from Fig. 2 where the evolution of the volume fraction of the high density phase with density is shown for various temperatures.

As expected from the preceding discussion and Eq. (2), for matter in β-equilibrium where Y_e is small, the volume fraction u will decrease with density for $T \gtrsim \Delta E_p$. When this criterion is met, the density of protons in the low density gas phase will become comparable to the electron density, and eventually as ΔE_p decreases with density the volume fraction $u \to 0$.

We now turn to study the model dependence of the critical temperatures denoted by T_m, T_{max}^0, and T_{max}^β discussed earlier. We first select a subset of model Skyrme and relativistic mean field EOSs which predict the energy per particle of neutron matter at $n_0 = 0.06$ and 0.10 fm$^{-3}$ that are compatible with QMC [27] or MBPT [25], which are based on two and three body chiral EFT potentials. The pasta melting temperature T_m^0 for these models are shown in panel (a) of Fig. 5. The names of the EOS are shown vertically above the predictions and the EOS are ordered according to the slope of the symmetry energy at nuclear saturation density denoted by L_{sym}. The average prediction is $T_m^0 = 5.0 \pm 2$ MeV and decreases with L_{sym} (the anti-correlation coefficient is -0.81) and the dispersion reflects the additional dependence on the EOS parameters. In panel (b) of Fig. 5, we show the highest average density of the coexistence region associated with T_m^0 and $T_{\text{max}}^\beta = 0.4$ for the EOSs in panel (a) and find that they are clearly anti-correlated with L_{sym}.

The striking feature here is that the pasta melting temperature in β-equilibrium is much lower than the maximal temperature of the phase coexistence, and that the maximal temperature T_{max}^β even at a modest value of $Y_e = 0.2$ is about a factor of two higher than T_m^0. For typical values of L_{sym} around 50–60 MeV, the melting temperature is estimated to be $T_m^0 \simeq 4 \pm 1$ MeV. Since
our analysis neglects finite size effects such as surface, Coulomb and shell effects we believe that this is an upper limit on the melting temperature.

III. NEUTRINO SCATTERING

Coherent neutrino scattering from nuclei and pasta can be estimated using the two-phase Gibbs construction discussed in the preceding section if their typical size is known. The nuclear size is set by the competition between the surface and Coulomb energies, the mass number and charge of the energetically favored nuclei can be calculated by specifying the surface tension [29]. Shell effects can also play a role but we can expect their impact to be less important at the temperatures of interest, and we neglect them in the following analysis. Further, although we should expect a distribution of nuclei at finite temperature, to obtain a simple first estimate we shall assume that the distribution is dominated by a single nucleus. In this case, the radius of the favored nucleus is

$$r_A = \frac{3\sigma}{4\pi e^2 (n_0^h)^2 f_3(u)}$$

with

$$f_3(u) = \frac{2 - 3u^{1/3} + u}{5},$$

where σ is the surface tension between the low and high density phases, and $f_3(u)$ is the geometrical factor associated with the Coulomb energy of the Wigner-Seitz cell in $d = 3$ dimensions [29]. The surface tension is a function of the density, Y_e and T. We use the ansatz from Ref. [30] (see also Ref. [31]) and parameters obtained for the SLy4 interaction. Note that this simple ansatz neglects the influence of the protons in the low density gas phase on the surface tension [32].

For the purpose of calculating coherent neutrino scattering, we shall, for simplicity, assume that nuclei are spherical for all values of u. This is reasonable because angle averaged coherent scattering rates from rod-like and slab-like structures have been calculated earlier and found to be comparable or smaller than those from spherical nuclei of similar size [33]. Further, as noted earlier, close to β-equilibrium the pasta region is relatively small even for $T < T_m^3$, and absent for $T > T_m^3$.

The differential coherent elastic scattering rate from the nuclei in the heterogeneous phase is given by

$$\frac{d\Gamma_{coh}}{d\cos \theta} = \frac{G_F^2 E^2}{8\pi} n_A \left(1 + \cos \theta\right) S(q) N_w^2 F_A^2(q)$$

where the total weak charge of a nucleus is defined as

$$N_w = \frac{4\pi}{3} r_A^3 (n^h_n - n^l_n),$$

and $n_A = 3u/(4\pi r_A^3)$ is the density of nuclei. We have neglected the proton contribution in the vector response because of their weak charge $\simeq 1 - 4\sin^2 \theta_W \simeq 0$, and subtracted the density of neutrons from the low density phase because neutrons only scatter off the density contrast. The static structure factor $S(q)$ accounts for correlations between nuclei due to long-range Coulomb interactions (weakly screened by electrons) that tends to suppress scattering at small momentum transfer

$$q = E_\nu \sqrt{2(1 - \cos \theta)} \lesssim 1/a$$

where $a = (3/4\pi n_A)^{1/3} = r_A/u^{1/3}$ is the average distance between nuclei. Scattering with high momentum transfer with $q \gtrsim 1/r_A$ is suppressed by the form factor of the nucleus $F_A(q)$ which we take to be that of a sphere of constant density and radius r_A. More realistic choices such as the Helm form factor [34], have a negligible impact on our results.

In a one component plasma, $S(q)$ depends on a and the Coulomb coupling parameter $\Gamma = Z^2 e^2/ak_B T$ where Z is the ion charge, $e^2 = 1/137$ and $k_B T$ is the thermal energy. In our simple model for the heterogenous state where we assume a single spherical nucleus captures the essential physics

$$Z \approx 26 \left(\frac{\sigma}{\sigma_0}\right) \left(\frac{n_0}{2n_n^h}\right) \left(\frac{f_3(0)}{f_3(u)}\right),$$

where $\sigma_0 \approx 1.2$ MeV/fm2 is the surface tension of symmetric nuclei in vacuum, $n_0 \approx 0.16$ fm$^{-3}$ is the nuclear saturation density. Typically we find $Z \approx 50$ at the density for which we expect an appreciable fraction of large nuclei or pasta, and $\Gamma \gg 1$. For large Γ the static structure factor $S(q) \ll 1$ unless $qa \gg 1$, and for $\Gamma > 10$ the interference of amplitudes for neutrino scattering off different clusters is strong and destructive at small $qa < 2-3$. At intermediate $qa \approx 4-5$, constructive interference can enhance scattering, and for $qa \gg 5$ where interference is negligible $S(q) \approx 1$. In this work we employ $S(q)$ obtained from recent fits to accurate MD simulations of one-component plasmas [35] to properly account for screening for Γ in the range 1–150. We note that for $T > 2$ MeV, $\Gamma < 150$ even at the highest density, and crystallization is not favored and its reasonable to work with $S(q)$ obtained for the liquid state.

The neutrino scattering rate from non-relativistic nucleons in the gas phase is given by

$$\frac{d\Gamma_{\nu}}{d\cos \theta} = \frac{G_F^2 E^2}{8\pi} \sum_{ij} \left[(1 + \cos \theta) C^i_C^j C_{\alpha}^i C_{\beta}^j S_{\nu}^{ij}(q) \right] + (3 - \cos \theta) C^i_C^j C_{\alpha}^i C_{\beta}^j S_{\nu}^{ij}(q),$$

where the labels i and j can be either neutrons or protons, C_i^a and C_j^a are their corresponding vector and axial vector charges. In the long-wavelength limit, which is adequate to describe low energy neutrino scattering, the static structure factors (unnormalized) can be related to thermodynamic functions,

$$S_{\nu}^{ij} = T \left(\frac{\partial^2 P}{\partial \mu_i \partial \mu_j}\right)_T$$

where P is the pressure of the gas phase and μ_i is the chemical potential of either neutrons or protons, and the
axial or spin response

\[S^{ij}_{\alpha} = T \left(\frac{\partial^2 P}{\partial \delta_i \partial \delta_j} \right) , \]

(10)

where \(\delta_i \) is the chemical potential associated with the spin density of species \(i \). When interactions between nucleons can be neglected, the structure functions greatly simplify and are given by

\[S^{ij}_v = S^{ij}_h = \delta^{ij} S_{\text{gas}}(\mu_i, T) , \]

(11)

where

\[S_{\text{gas}}(\mu_i, T) = \int \frac{d^3 p}{(2\pi)^3} \frac{e^{\beta(p^2/2m_i - \mu_i)}}{(1 + e^{\beta(p^2/2m_i - \mu_i)})^2} , \]

(12)

where \(\sigma_{\text{tran}} = \int d\cos \theta \left(1 - \cos \theta \right) d\Omega / d\cos \theta \) is the elastic transport cross section per unit volume for neutrinos. \(R \) is analogous to the parameter \(\xi \) introduced in [17], and quantifies the change in neutrino scattering rates in heterogeneous phase, where both coherent scattering from nuclei (\(\sigma_{\text{coh}}^{\text{tran}} \)) and scattering from free nucleons in the gas phase contribute. The term \(\langle S_{\text{cl}}(E_{\nu}) \rangle \) in the cross section from clusters indicates angle averaging of the corrections due to correlations and nuclear form factors,

\[\langle S_{\text{cl}}(E_{\nu}) \rangle = \frac{3}{4} \int_{-1}^{1} d\cos \theta (1 - \cos \theta)(1 + \cos \theta) S(q) F_A^2(q) \]

(14)

and is a function of \(E_{\nu} \) through \(q = E_{\nu} \sqrt{2(1 - \cos \theta)} \). We note that neglecting both the correlations in the gas and the protons has a small impact of \(\lesssim 10\% \) on the ratio. However, a strong suppression of the nucleon axial response due to spin correlations would reduce the opacity of the homogeneous phase, and favor larger \(R \).

The results for the ratio of cross section \(R \) are displayed in Fig. 6. The left panels show results at fixed proton fraction \(Y_p = 0.4 \), on the right panel results for matter in \(\beta \)-equilibrium are shown. In both cases, with the exception of the black dashed line, neutrinos are assumed to be thermal and their energy \(E_{\nu} = 3T \). The energy dependence of the cross sections is shown in Fig. 7. The strong suppression of coherent scattering at low energy is clearly visible, and the dot on each curve corresponding to \(E_{\nu} = 3T \) shows that Coulomb correlation suppresses scattering for neutrino energies of interest. The Coulomb parameter \(\Gamma \) for the plots in Fig. 7 range from \(\Gamma_{\text{min}} = 4/6 \) for \(n_B = 0.01 \text{ fm}^{-3} \) and \(T = 10 \text{ MeV} \) to \(\Gamma_{\text{max}} = 150/74 \) for \(u = 1/8 \) and \(T = 1 \text{ MeV} \) at fixed proton fraction (beta-equilibrium). The value of \(\Gamma \) at select points is shown in Table I. At the lowest temperature of \(T = 1 \text{ MeV} \) and large proton fraction \(Y_p = 0.4 \), our simple ansatz in Eq. [17] predicts a large \(Z > 60 \) and \(\Gamma > 200 \). At these very low temperatures, it would be appropriate to use \(S(q) \) from simulations of the solid phase. However, here we adopt the approximate treatment suggested in earlier studies [19] where they circumvent the problem by limiting the value of the Coulomb coupling to \(\Gamma_{\text{max}} \), and is indicated by an asterisk in Table I. These low temperature conditions are encountered only at late times in the proto-neutron
star phase when the neutrino luminosity is greatly reduced and undetectable even for close by supernovae in detectors such SuperKamiokande where energy threshold is about 5 MeV. Additionally, shell effects can be important in the determination of Z at low temperature and smaller values of Z \(\approx 40 - 50 \) are obtained at \(T = 0 \) \(\left[21 \right] \left[22 \right] \). Nonetheless, we included these low temperature results, which despite the approximations mentioned, provide useful insights about trends and allow for comparison with earlier work.

From Figs. 6 and 7 we can draw the following conclusions:

- At low temperature when large nuclei are present and persist up to high density, the opacity to high energy neutrinos with \(E_\nu \gtrsim 4/a \) where \(a \) the distance between nuclei is enhanced, but coherent scattering is greatly reduced for low energy thermal neutrinos due to Coulomb correlations between nucleli. We find a net reduction in the scattering rates in the heterogeneous phase because a large fraction of free nucleons are tied up inside nuclei. In the homogeneous phase these nucleons make a significant contribution to neutrino scattering because they couple to the axial current.

- In \(\beta \)-equilibrium coherent scattering makes a relatively small contribution to the total neutrino opacity for all temperatures of interest. At low temperature, when nuclei and pasta are present, Coulomb correlations reduce coherent scattering, and at high temperature, pasta and large nuclei melt. We find that scattering off nucleons in the gas phase dominates unless nuclear correlations can greatly suppress the spin response of dilute nuclear matter.

- Large opacity due to coherent scattering reported in Ref. \(\left[17 \right] \) arose because the neutrino energy was chosen to be large to ensure that the suppression due to Coulomb correlations was mild, and it was assumed that pasta nuclei would survive up to \(T \approx 10 \) MeV in matter close to \(\beta \)-equilibrium.

- Fig. 7 illustrates that the heterogenous phases can act as a low-pass filter for neutrinos. In the diffusive regime the strong energy dependence of the neutrino cross-sections would imply non-linear thermal evolution where cooling would accelerate rapidly with decreasing temperature.

These results have significant implications for the impact of coherent pasta scattering on proto-neutron star cooling. In Ref. \(\left[17 \right] \), it was shown that if coherent scattering from nuclear pasta increases the neutrino opacity relative to that of a homogeneous gas, pasta formation in the outer layers of the proto-neutron star can trap neutrino energy for the first few seconds after a successful core collapse supernova explosion. This heat trapping causes the temperature of the outer layers of the proto-neutron to increase until they reach the pasta melting temperature. This heats up the entire region over which neutrinos decouple from matter, increasing the average energy of neutrinos escaping from the proto-neutron star. Additionally, the energy that is trapped initially gets out at later times. Both of these effects contributed to a more detectable late-time neutrino signal. A pasta melting temperature of 10 MeV was used in their parameterized simulations, but it was suggested that reducing the melting temperature of the pasta could reduce the impact of the pasta on the neutrino signal.

Here, we have found that the pasta melting temperature for \(\beta \)-equilibrated matter is \(T_m^{\beta} \approx 4 \pm 1 \) MeV and that the presence of a high-density phase can reduce the neutrino opacity. First, this implies that even if coherent scattering from nuclear pasta increased the neutrino opacity, the impact of pasta on the proto-neutron star neutrino signal would be smaller than the impact predicted by Ref. \(\left[17 \right] \), since nuclear pasta would be present for a shorter portion of proto-neutron star cooling. The reduced critical temperature would also cause a smaller perturbation in the temperature gradient near the neutrino sphere, which would reduce the enhancement of the neutrino luminosity even when the pasta is present. Second, we predict that correlations among high-density structures act to reduce the neutrino opacity for neutrinos with energies \(\lesssim 4/a \), which is an energy scale that is often significantly above the thermal energy. Therefore, the presence of pasta may allow the majority of thermal neutrinos to escape more easily and potentially speed up

Table I. Values of Coulomb coupling \(\Gamma \) for Fig. 7

\(T \) (in MeV)	\(\rho = 0.01 \) Ye = 0.4	\(u = 1/8 \) Ye = 0.4	\(\beta = 0.01 \) Ye = 0.4	\(\beta = 1 \) Ye = 0.4
1	1.59	135	72.7	74.0
4	69.8	138.8	14.2	4.0
6	35.1	75.4	6.3	–
10	4.0	17.4	–	–
neutrino cooling, thereby reducing the late-time neutrino detection rate from a nearby supernova.

IV. CONCLUSIONS

In this paper, we have analyzed the properties of the hot nuclear pasta phase and have shown the large qualitative differences between matter in β-equilibrium and at modest electron fraction $Y_e > 0.2$. In beta-equilibrium, we find that pasta melts or dissolves at relatively low temperature, reducing drastically the volume fraction occupied by the large nuclei. With increasing temperature protons leak out of nuclei, enter the gas phase and alter the nature of the transition to bulk matter. Here, nuclei dissolve with increasing density in a phenomenon referred to as retrograde condensation. We have introduced a new temperature, the pasta melting temperature T_m, above which the volume fraction of nuclei cannot exceed $1/8$. In β-equilibrium the melting temperature $T_{m}^{\beta} \approx 4 \pm 1$ MeV for EOS with $L_{sym} = 50 - 60$ MeV and compatible with EFT predictions in neutron matter. The melting temperature T_{m}^{β} was found to decrease with increasing L_{sym}. For matter with $Y_e > 0.2$ large nuclei and pasta persist to higher temperatures $T_m \approx 15$ MeV and retrograde condensation is absent.

In the second part of our paper, we have analyzed the impact of the coherent scattering off nuclear clusters on the neutrino opacities, for thermodynamical conditions corresponding to core-collapse supernovae or neutron star mergers. We found that both the retrograde condensation and the Coulomb correlations in the static structure factor contribute to reduce the impact of coherent scattering on neutrino opacities. For matter far out of beta-equilibrium where heavy nuclei and pasta persist to high temperatures, Coulomb correlations between clusters greatly reduce the coherent scattering rates at high density. Here, rather than an increase, we found a net reduction in the opacity for thermal neutrinos when clusters are present. This may be important at very early times post bounce during the supernova when matter with large Y_e is encountered briefly during the period when lepton number is trapped. On longer timescales characteristic of proto-neutron star evolution, beta-equilibrium favors much smaller values of Y_e, and for $T < T_{m}^{\beta}$ only a moderate increase by less than 20% is found for thermal neutrinos, at variance with the factor 5 reported in Ref. [17]. We find such an increase only for high energy non-thermal neutrinos, for which correlations between nuclei enhance the scattering rates.

While we believe the physical effects mentioned above are robust, additional work is warranted to obtain more quantitative predictions. Hartree-Fock calculations, such as those being reported in Ref. [13, 14] which self-consistently include the surface tension, Coulomb, and shell effects, would provide improved estimates for T_{m}^{β} to better constrain the temperature range in which pasta is present. It will also be desirable to go beyond the single-nucleus approximation in calculating the ion structure factor, and include in addition non-spherical shapes. Ultimately, these modifications to the neutrino opacities need to be incorporated self-consistently with the underlying equation of state in proto-neutron star and supernova simulations to assess if the presence of nuclear clusters at sub-nuclear density can influence supernova observables. Nonetheless, it seems likely that retrograde condensation and ion-correlations will together disfavor the large changes to the temporal structure of the neutrino signal predicted in Ref. [17].

V. ACKNOWLEDGEMENTS

We would like to thank C. Horowitz and W. Newton for discussions. SR was supported by DOE Grant No. DE-FG02-00ER41132. AR was supported by NSF Grant No. AST-1333607 and by DOE Grant No. DE-AC52-06NA25396. LR was supported by the DOE Office of Science under Award No. de-sc0017955. JM was partially supported by the IN2P3 Master Project MAC.

[1] A. Burrows, Reviews of Modern Physics 85, 245 (2013).
[2] H.-T. Janka, Annual Review of Nuclear and Particle Science 62, 407 (2012).
[3] A. Burrows and J. M. Lattimer, Astrophys.J. 307, 178 (1986).
[4] J. A. Pons, S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Miralles, The Astrophysical Journal 513, 780 (1999).
[5] T. Fischer, I. Sagert, G. Pagliara, M. Hempel, J. Schaffner-Bielich, T. Rauscher, F.-K. Thielemann, R. Käppeli, G. Martinez-Pinedo, and M. Liebendörfer, The Astrophysical Journal Supplement Series 194, 39 (2011).
[6] L. F. Roberts and S. Reddy, “Neutrino signatures from young neutron stars,” in Handbook of Supernovae, edited by A. W. Alsabti and P. Murdin (Springer International Publishing, Cham, 2016) pp. 1–31.
[7] L. Hüdepohl et al., Physi. Rev. Lett. 104, 251101 (2010).
[8] T. Fischer, G. Martinez-Pinedo, M. Hempel, and M. Liebendörfer, Phys. Rev. D 85, 083003 (2012).
[9] L. F. Roberts, G. Shen, V. Cirigliano, J. A. Pons, S. Reddy, and E. W. Woolsey, Phys. Rev. Lett. 108, 061103 (2012).
[10] G. Martinez-Pinedo, T. Fischer, A. Lohs, and L. Huther, Phys. Rev. Lett. 109, 251104 (2012).
[11] S. Wanajo, Astro. J. Lett. 770, L22 (2013).
[12] D. Z. Freedman, Phys. Rev. D9, 1389 (1974).
[13] N. K. Glendenning, Phys. Rev. D46, 1274 (1992).
[14] S. Reddy, G. Bertsch, and M. Prakash, Phys. Lett. B475, 1 (2000).
[15] C. J. Horowitz, M. A. Perez-Garcia, and J. Piekarewicz, Phys. Rev. C69, 045804 (2004).
[16] H. Sonoda, G. Watanabe, K. Sato, T. Takiwaki, K. Yasuoka, and T. Ebisuizaki, Phys. Rev. C 75, 042801 (2007).

[17] C. J. Horowitz, D. K. Berry, M. E. Caplan, T. Fischer, Z. Lin, W. G. Newton, E. O’Connor, and L. F. Roberts, arXiv:1611.10226 [astro-ph.HE].

[18] N. Itoh, Progress of Theoretical Physics 54, 1580 (1975).

[19] N. Itoh, R. Asahara, N. Tomizawa, S. Wanajo, and S. Nozawa, The Astrophysical Journal 611, 1041 (2004).

[20] C. J. Pethick and D. G. Ravenhall, Ann. Rev. Nucl. Part. Sci. 45, 429 (1995).

[21] F. Douchin and P. Haensel, Astronomy and Astrophysics 380, 151 (2001).

[22] J. M. Pearson, N. Chamel, S. Goriely, and C. Ducoin, Physical Review C 85, 065803 (2012).

[23] W. G. Newton and J. R. Stone, Phys. Rev. C 79, 055801 (2009).

[24] S. S. Avancini, D. P. Menezes, M. D. Alloy, J. R. Marinelli, M. M. W. Moraes, and C. Providência, Phys. Rev. C 78, 015802 (2008).

[25] C. Ducoin, P. Chomaz, and F. Gulminelli, Nuclear Physics A 771, 68 (2006).

[26] H. Muller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).

[27] I. Tews, S. Gandolfi, A. Gezerlis, and A. Schwenk, Phys. Rev. C 93, 024305 (2016).

[28] C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C 93, 054314 (2016).

[29] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).

[30] A. da Silva Schneider, L. F. Roberts, and C. D. Ott, arXiv:1707.01527 [astro-ph.HE].

[31] J. Lattimer, C. Pethick, D. Ravenhall, and D. Lamb, Nuclear Physics A 432, 646 (1985).

[32] F. Aymard, F. Gulminelli, and J. Margueron, Physical Review C 89, 065807 (2014).

[33] P. Alcain and C. Dorso, Nuclear Physics A 961, 183 (2017).

[34] R. H. Helm, Phys. Rev. 104, 1466 (1956).

[35] N. Desbiens, P. Arnault, and J. Cl´erouin, Physics of Plasmas 23, 092120 (2016).

[36] N. Iwamoto and C. J. Pethick, Phys. Rev. D 25, 313 (1982).

[37] A. Burrows and R. F. Sawyer, Phys. Rev. C 58, 554 (1998).

[38] S. Reddy, M. Prakash, J. M. Lattimer, and J. A. Pons, Phys. Rev. C 59, 2888 (1999).

[39] C. J. Horowitz and A. Schwenk, Phys. Lett. B 642, 326 (2006).

[40] C. J. Horowitz, O. L. Caballero, Z. Lin, E. O’Connor, and A. Schwenk, Phys. Rev. C 95, 025801 (2017).

[41] C. J. Horowitz, Phys. Rev. D 55, 4577 (1997).

[42] M. Onsi, A. K. Dutta, H. Chatri, S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 77, 065805 (2008).

[43] W. G. Newton and J. R. Stone, Phys. Rev. C 79, 055801 (2009).

[44] B. Schuetrumpf, C. Zhang, and W. Nazarewicz, in Nuclear Particle Correlations and Cluster Physics, edited by W.-U. Schroder (2017) pp. 135–153.