A requirement for FcγR in antibody-mediated bacterial toxin neutralization

Nareen Abboud,1 Siu-Kei Chow,1 Carolyn Saylor,1 Alena Janda,1 Jeffery V. Ravetch,4 Matthew D. Scharff,2,3 and Arturo Casadevall1,2

1Department of Microbiology and Immunology, 2Department of Medicine, Division of Infectious Diseases, and 3Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
4Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065

One important function of humoral immunity is toxin neutralization. The current view posits that neutralization results from antibody-mediated interference with the binding of toxins to their targets, a phenomenon viewed as dependent only on antibody specificity. To investigate the role of antibody constant region function in toxin neutralization, we generated IgG2a and IgG2b variants of the Bacillus anthracis protective antigen–binding IgG1 monoclonal antibody (mAb) 19D9. These antibodies express identical variable regions and display the same specificity. The efficacy of antibody–mediated neutralization was IgG2a > IgG2b > IgG1, and neutralization activity required competent Fcγ receptor (FcγR). The IgG2a mAb prevented lethal toxin cell killing and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase cleavage more efficiently than the IgG1 mAb. Passive immunization with IgG1 and IgG2a mAb protected wild-type mice, but not FcγR-deficient mice, against B. anthracis infection. These results establish that constant region isotype influences toxin neutralization efficacy of certain antibodies through a mechanism that requires engagement of FcγR. These findings highlight a new parameter for evaluating vaccine responses and the possibility of harnessing optimal FcγR interactions in the design of passive immunization strategies.

© 2010 Abboud et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
was more effective in the presence of competent receptor function (Verma et al., 2009) and that a neutralizing mAb lost efficacy in hosts with blocked FcRs (Vitale et al., 2006). In contrast, a subset of mAbs to anthrax toxin was suggested to potentiate toxin activity through their interaction with FcRs (Mohamed et al., 2004). These observations hint at a complex role for FcR in antibody-mediated toxin neutralization.

Four different classes of FcRs for IgG have been defined on murine and human immune effector cells, including the high-affinity FcγRI and the low-affinity FcγRII and FcγRIII (for review see Nimmerjahn and Ravetch, 2006). In mice, these receptors are categorized into two groups: the activating receptors FcγRI, FcγRII, and FcγRIIV and the inhibitory receptor FcγRIIB. Antibody-antigen binding events lead to effector functions that mediate antibody-dependent cytotoxicity or complement activation by FcR engagement on macrophages, dendritic cells, natural killer cells, neutrophils, and other cell types. Receptor assembly and signal transduction for all activating FcγRs in mice is mediated by the γ chain (Ra et al., 1989; Kurosaki et al., 1991). Deletion of the γ chain leads to loss of the ability to phagocytose antibody-coated particles, despite retaining the ability to bind (Takai et al., 1994).

In this paper, we report that IgG1, IgG2a, and IgG2b mAbs derived from one B cell precursor, sharing identical variable regions, differ in toxin neutralization capacity. In addition, none of the IgG subclasses was effective in altering lethal toxin (LeTx) cytotoxicity in FcγRIIR−/− mice (Fig. 1 A), and IgG1 binding was inhibited similarly by the addition of IgG2a or IgG2b (Fig. 1 B). Furthermore, reactivity of the three IgG subclasses with a panel of mutated peptide mimetics that represented the epitope revealed similar binding (unpublished data). To further highlight that the constant regions did not affect fine specificity of the antibodies, we performed plasmon resonance analysis of IgG subclass binding to PA, which revealed that the dissociation constants (Kds) of IgG1, IgG2a, and IgG2b were 0.109, 0.149, and 0.108 µM, respectively, using the Langmuir fitting model to analyze the data. Similar results were obtained if the plasmon resonance data were analyzed by the two-state reaction-fitting model. These Kd values are essentially identical and were considered to be within the experimental error of the method.

Protective efficacy of 19D9 IgG1, IgG2a, and IgG2b mAbs on LeTx-mediated macrophage cytotoxicity

The cellular intoxication process is initiated by PA binding to cell surface receptors known as TEM8 (tumor endothelial marker 8; Bradley et al., 2001) and CMG2 (human capillary...
morphogenesis protein 2; Scobie et al., 2003). After cleavage at its N-terminal domain by a furin-like protease and heptamerization, the heptamer–receptor complex then acts as a docking platform that subsequently translocates the enzymatic components LF and EF into the cytosol via acidified endosomes (Gordon et al., 1988; Abrami et al., 2003, 2004). LF is a zinc metalloprotease that has a very specific and limited set of substrates (Klimpel et al., 1994) and specifically cleaves the N terminal of mitogen-activated protein kinase kinases (MAPKKs) or ERK (extracellular signal-regulated kinase; Duesbery et al., 1998; Vitale et al., 1998). Although the anthrax toxin receptors are present in high concentrations on numerous cell types, macrophages are considered key cells in the toxin pathogenic effects because macrophage depletion can protect mice against toxin infusion (Welkos et al., 1986). Consequently, we focused on macrophages when evaluating the cytotoxic effects of LeTx and the efficacy of antibody-mediated protection. As reported previously (Abboud et al., 2009), the 19D9 IgG1 mAb protected macrophages from LeTx-mediated cytotoxicity. However, when the activity of 19D9 IgG2a and 19D9 IgG2b was compared with the parent IgG1, it was apparent that isotype switching had generated more effective neutralizing antibodies such that their relative efficacy was IgG2a > IgG2b > IgG1 (Fig. 2 A). To examine the concentration-dependent effects of LeTx in the presence of a constant amount of mAb (10 µg/ml), RAW 264.7 macrophages were treated with varying concentrations of LF and PA as indicated (Fig. 2, B and C). In the presence of a constant PA concentration (100 ng/ml), the IgG1 mAb half-maximal blockade of cell death was observed at a LF concentration of 6.25 ng/ml, whereas in the presence of nonlimiting concentrations of LF the half-maximal blockade of cell death was measured at a PA concentration of 25 ng/ml. Overall, RAW 264.7 macrophages were protected against LeTx in the presence of IgG2a mAb. The latter was able to protect cells at all concentrations of PA and LF, further distinguishing the enhanced efficacy of this isotype relative to IgG1.

Protective efficacy of 19D9 IgG1, IgG2a, and IgG2b mAbs requires FcRs

The observations on antibody-mediated LeTx neutralization made with RAW 264.7 macrophage-like cells were repeated with macrophages from C57BL/6 mice to ascertain their relevance with primary cells. Furthermore, we used additional measures of toxicity by analyzing MAPKK cleavage, which is performed by LF once it is internalized with the result that three MPKK signaling pathways are disrupted (Duesbery et al., 1998; Chopra et al., 2003). LeTx uptake and subsequent MAPKK cleavage also occur in cells that are resistant to LeTx killing (Duesbery et al., 1998; Schaeffer and Weber, 1999), suggesting that cells differ in their response to MAPKK cleavage (Moayeri et al., 2004; Bonuccelli et al., 2005). To determine whether BMMs from C57BL/6 mice were killed by LeTx, these cells were treated with or without LeTx (100 ng/ml PA and 100 ng/ml LF) and analyzed for cell viability at various time intervals after LeTx exposure. Consistent with previous results (Muehlbauer et al., 2007), C57BL/6-derived BMMs were killed within 72 h of LeTx treatment (unpublished data). Next, we tested LeTx susceptibility of C57BL/6-derived BMMs in the presence of mAb. Consistent with our data, IgG2a mAb exhibited increased neutralization activity as compared with IgG1 and IgG2b mAbs (P < 0.01; Fig. 3 A). Our findings indicate that antibody-mediated protection against anthrax toxin is dependent on the isotype of the antibody.

To determine whether FcγRs played a role in antibody-mediated LeTx neutralization, we compared the ability of antibody to protect BMMs derived from FeRγ−/− and
it is possible to compete IgG immune complexes with sufficient soluble IgG, where this inhibitory capacity is a function of the relative affinities of soluble IgG and the IgG immune complex for the FcR, as well as of the concentrations of both ligands (Furriel et al., 1992). As expected, macrophages were not protected when all three activating FcRs were blocked. Similarly, simultaneous blockade of both FcγRI and FcγRIV and FcγRII substantially decreased the protective activity of IgG2a (Fig. 3 D). Monolayers treated with only the mAb to FcγRIV rendered the cells less susceptible to LeTx cytotoxicity, suggesting that the IgG2a–PA complex was taken up via FcγRI or FcγRII. The expression pattern of all four FcγRs was

Figure 3. LeTx-neutralizing activity of IgG1, IgG2a, and IgG2b mAbs is dependent on FcγR interactions. (A and B) BMMs from C57BL/6 (A) and FcγR−/−/RIIB−/− (B) mice were plated in 96-well plates at a density of 8 x 10^4 cells per well in maintenance medium supplemented with FCS, 2 h before treatment with LeTx (100 ng/ml PA and 100 ng/ml LF). The indicated concentrations of mAb were added at the same time with LeTx. After 72 h, cell death was assayed with MTT (3,4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide; controls were cells treated with LeTx only or with media alone). Representative data are shown from three independent experiments. Significance was determined by a Student’s t test. (C) BMMs from C57BL/6 mice were plated as described in A and B, and the indicated dilutions of each mAb were used to neutralize LeTx in the presence of anti-FcγRII/III (mAb 2.4G2). (D) RAW264.7 macrophages were treated with toxin, as described in A and B, and 10 µg/ml IgG2a mAb in the presence of blocking mAb to FcγRIII (2.4G2), FcγRIV (9E9), and/or a competitor inhibitor to block FcγRI (IgG2a Std.). (E) RAW264.7 macrophages were gated and analyzed by flow cytometric analysis for FcγRI, FcγRII, FcγRIII, and FcγRIV expression with specific antibodies. Histograms shaded in gray represent the specific FcγR, and histograms shaded in black indicates unstained cells used as a control. (F and G) C57BL/6 and FcγR−/−/RIIB−/− were treated with 100 ng/ml LeTx and 10 µg/ml mAb. MEK-3 cleavage was determined by Western blotting with anti-MEK-3. Data shown are representative of three independent experiments. Means and standard deviations of triplicates are shown from one representative experiment out of three (A and D).
determined and FcγRI, FcγRII, FcγRIII, and FcγRIV expression was detected on RAW macrophages (Fig. 3 E).

To determine whether mAb interfered with the uptake or proteolytic activity of LF, we treated C57BL/6 and FcRγ^−/−/RIIB^−/− macrophages with LeTx and analyzed the amount of MAPK/ERK kinase (MEK)3 found in lysates of cells after various treatments by immunoblot (Fig. 3 G). The two groups were normalized based on the media-only condition, and Fig. 3 F illustrates that toxin leads to a 99 and 78% decrease of MEK-3 expression in wild-type and FcRγ^−/−/RIIB^−/−, respectively. In addition, mAb 19D9 IgG1 was less able to indirectly inhibit the LF-mediated rapid cleavage and degradation of MEK-3 in C57BL/6 cells than the IgG2a mAb (1–2 h), as demonstrated by the loss of uncleaved proteins and more cleaved MEK-3. In wild-type macrophages, IgG2a rescued 67% of the protein expression and was ~10-fold more effective than that in IgG1. As measured by the MTT assay (Fig. 4 A), the decrease in cell death coincided with the decrease in MEK cleavage by IgG2a. Collectively, our findings confirm that IgG2a is more effective at toxin neutralization relative to IgG1 using MEK cleavage as the readout for protection.

In FcRγ^−/−/RIIB^−/−, IgG1 and IgG2a rescued 22.7 and 33.2% of the MEK-3 expression, respectively, whereas IgG2a was ~1.5-fold more effective than IgG1. MEK-3 cleavage was evident within 1 h of treatment with LeTx, illustrating that mAb failed to inhibit the internalization of the PA–LF toxin complex and ultimate LF-mediated proteolytic inactivation of MAPKs. These results were consistent with the MTT results and show that activating FcγRs play a critical and necessary role in antibody-mediated toxin neutralization, such that neutralization requires both mAb binding to the toxin and activation of macrophages through engagement of the FcγRs.

Protective efficacy of 19D9 IgG1 and IgG2a mAbs on infected FcRγ^−/−/RIIB^−/− mice

To ascertain whether the in vitro observations translated into in vivo effects, we evaluated the efficacy of the IgG1 and IgG2a isotype in protecting against B. anthracis on wild-type FcRγ^−/−/RIIB^−/− mice and FcRγ^−/− mice infected with B. anthracis Sterne. Consistent with the in vitro results, the administration of both IgG1 and IgG2a reduced mortality in wild-type mice, with IgG2a being the more potent of the two, but neither reduced mortality in FcRγ^−/−/RIIB^−/− or FcRγ^−/− mice (P < 0.001; Fig. 4).

Uptake of IgG2a-PA by BMMS

We examined the uptake of PA bound to IgG2a by BMMS from wild-type and FcRγ^−/−/RIIB^−/− mice using fluorescent microscopy. Cells were cooled to 4°C and labeled with low concentrations of IgG2a and PA. Cells were washed to remove unbound IgG2a-PA. Internalization was then initiated by incubation at 37°C for varying time intervals and the cells were then fixed. PA colocalized with IgG2a in wild-type BMMS (Fig. 5, D–F). IgG2a-PA were initially located on the cell surface and, with time, there was an increase in the amount of IgG2a-PA found in the cell interior such that the majority was intracellular after 15 min. As expected, BMMS lacking FcRs were unable to efficiently internalize IgG2a bound to PA. In these mice, there was very little colocalization of IgG2a with PA, which is most likely a result of PA binding and entering through its receptors TEM8 or CMG2 (Fig. 5, J–L).

Interfering with actin and preventing phagocytosis does not eliminate antibody-mediated protection

Cross-linking of FcRs by multivalent ligands can initiate both phagocytosis and endocytosis; therefore, we sought to define if a phagocytic event was involved when these receptors are cross-linked by IgG-PA. Hence, we tested whether cells treated with low concentrations of IgG2a and PA. Cells were washed to remove unbound IgG2a-PA. Internalization was then initiated by incubation at 37°C for varying time intervals and the cells were then fixed. PA colocalized with IgG2a in wild-type BMMS (Fig. 5, D–F). IgG2a-PA were initially located on the cell surface and, with time, there was an increase in the amount of IgG2a-PA found in the cell interior such that the majority was intracellular after 15 min. As expected, BMMS lacking FcRs were unable to efficiently internalize IgG2a bound to PA. In these mice, there was very little colocalization of IgG2a with PA, which is most likely a result of PA binding and entering through its receptors TEM8 or CMG2 (Fig. 5, J–L).
more effective at reducing LeTx cytotoxic effects than the parent IgG1 mAb. This result revealed that isotype was pertinent for protecting against toxin and that the efficacy of a mAb can be enhanced by changing its constant region. For this antibody set, the V region amino sequences were identical and their serological behavior for peptides containing the epitope and for PA in plasmon resonance analysis was essentially indistinguishable, indicating conservation of fine specificity and affinity with isotype change. Hence, the V region identical set of isotype-switched variants behaves differently than two other mAbs where isotype change affects specificity (Torres and Casadevall, 2008) and suggests that this phenomenon is probably associated with only certain V region combinations. Consequently, we can ascribe differences in this antibody set to differences in the Fc region and its interaction with FcR.

Antibody responses to PA in the mouse are predominantly IgG1. Thus, the predominant natural isotype response to PA is not the most effective toxin neutralizing isotype. The major FcRs engaged by IgG1, IgG2a, and IgG2b on macrophages are different, suggesting at least one explanation for the differences in efficacy observed for the three isotypes. The details of these interactions have been extensively studied in the murine system (for review see Nimmerjahn and Ravetch, 2006). The high-affinity FcRγI exclusively binds IgG2a and the low-affinity FcRγIII binds IgG1, IgG2a, and IgG2b (Ravetch and Kinet, 1991; Hulett et al., 1994). FcRγIV binds IgG2a and IgG2b with intermediate affinity but does not interact with IgG1 or IgG3 antibody isotypes (Nimmerjahn et al., 2005). Our results imply that FcRγI, FcRγIII, and FcRγIV can each play a role in FcRγ-dependent neutralization. Furthermore, our data does exclude the possibility that FcRγIIIB can contribute to this neutralization. It is noteworthy that for viral infections the IgG2a subclass plays a dominant role in antibody-mediated protection (Baldridge and Buchmeier, 1992; Markine-Goriaynoff et al., 2002). In this paper, we also illustrate that the IgG2a subclass is prominent in enhanced protection to experimental anthrax.
and not mice deficient in FcγRs illustrates that binding to PA is a necessary, but not sufficient, condition for complete protection. Western blot results showed that the mAbs indeed prevented LF-mediated MEK-3 cleavage in wild-type cells, yet the opposite was observed in the FcRγ−/−/RIIB−/− cells, which in turn illustrates that without FcγR engagement, mAbs are not able to prevent the LeTx-mediated cytotoxicity. Thus, the interaction of the Fc portion of the mAb with FcγR reduced LeTx cytotoxicity by eliminating PA on the cell surface, thereby decreasing the PA bound to the cell and the LF internalized into the cell cytosol.

Upon engagement of FcγRs, the mode of internalization of immune complexes is determined by the size of the bound complexes (Daëron, 1997). Small immune complexes are internalized by receptor-mediated endocytosis, whereas internalization of large opsonized particles occurs via phagocytosis (Mellman et al., 1984; Aderem and Underhill, 1999). The molecular mechanisms underlying FcγR-mediated phagocytosis and endocytosis differ markedly. Endocytosis requires assembly of clathrin at the site of receptor clustering, yet phagocytosis involves formation of an actin phagocytic cup and is blocked by inhibitors such as cytochalasin D (Koval et al., 1998). In our experiments, inhibition of actin polymerization by cytochalasin D did not interfere with the protective activity of IgG mAbs, suggesting that the IgG–PA complex was taken up via FcγR-mediated endocytosis. However, the pretreatment of FcγR significantly enhanced antibody-mediated protection of cells. Although the mechanism for this effect was not studied in detail, possible explanations include up-regulation of FcR to the cell surface, which consequently contributed to the antibody-dependent clearance of toxin. Alternatively, FcγR engagement with consequent signal transduction activation could alter the metabolism of the macrophage–like cell to reduce its susceptibility to LeTx. Although we could not prove a role for clathrin in the internalization of IgG2a–PA complexes because inhibiting assembly of clathrin would also interfere with toxin entry that occurs via a clathrin–dependent pathway, it is nevertheless likely that clathrin–mediated endocytosis is responsible for internalizing the bound complexes. Confocal microscopy revealed that cross-linking of surface-bound IgG2a–PA caused relocation of the receptor–ligand complex to an intracytoplasmic compartment within wild-type cells, with essentially complete internalization occurring within 15 min. We have also shown that this redistribution is affected in cells deficient in FcγR, revealing that it is necessary for FcγR to bind and mediate endocytosis of IgG2a–PA complex.

The results of this study established that protective antitoxin antibodies can be made more protective by switching their constant regions to other isotypes and that toxin neutralization is FcγR dependent, at least for a subset to toxin-binding antibodies which includes those used in this study. These observations establish an important precedent because they suggest new options and complexity for antibody–mediated neutralization. For example, our results suggest that there may be optimal combinations of antibody specificity, constant region usage, and FcR type that would differ depending on the particular antibody and toxin pair. Nevertheless, important questions remain regarding the precise mechanism for toxin neutralization after FcγR engagement. In this regard, we hypothesize that mAb binding to PA and FcγRs may result in an immune complex that is endocytosed and sorted to lysosomes for degradation. The inability to clear toxin infection in mice deficient in FcγRs may reflect defective endocytosis and/or loss in functional effects on signal transduction pathways mediated by activating FcRs. The differences in efficacy between IgG1, IgG2a, and IgG2b strongly suggest a difference in Fc-mediated effector functions. Consequently, isotype selection and response are important considerations when designing passive antibody therapies and evaluating the response to toxin-neutralizing vaccines.
MATERIALS AND METHODS

B. anthracis strains. *B. anthracis* Sterne strain 34F2 (pXO1 positive, pXO2 negative) was obtained from A. Hoffmaster (Centers for Disease Control and Prevention, Atlanta, GA). Bacterial cultures were grown from frozen stocks in brain heart infusion broth (BD) at 37°C for 18 h (mid- to late-logarithmic phase) with shaking. Before experiments with the bacterial strain, the cells were washed. Recombinant PA and LF were obtained from Wadsworth Center (New York State Department of Health, Albany, NY).

Macrophages and hybridomas. Hybridoma cell lines were grown in DME (H-21; Invitrogen) supplemented with 10% (vol/vol) FCS, 5% National Cancer Tissue Culture 109 (BioWhittaker), 1% nonessential amino acids (Invitrogen), and 1% penicillin. J774A.1 and RAW 264.7 macrophages (American Type Culture Collection) were maintained in DME and RPMI media, respectively, supplemented with 10% FCS and 1% penicillin (Mediatech). Murne BMMs were isolated by flushing femoral and tibial bones of C57BL/6, FcγRv chain knockout (FcγRv−/−), and FcγRv chain/FcγRII double knockout (FcγRv−/−/FcγRII−/−) mice. Cells were differentiated into macrophages (BMMs) by incubation for 6 d in DME supplemented with 1% penicillin, 100 µg/ml streptomycin, 10 mM Hepes, 2.0 mM L-glutamine, 0.05 mM 2-mercaptoethanol, 1% v/v of nonessential amino acids, 10% FCS, and 20% conditioned medium from a confluent culture of L929 fibroblasts as a source of L-Ser-1 (LCCM). After removal of nonadherent cells, macrophages were recovered by washing plates with cold PBS plus 5 mM EDTA. BMMs were maintained in DME supplemented with 2 mM L-glutamine, 0.05 mM 2-mercaptoethanol, 1% nonessential amino acids, 10 mM Hepes, 1% penicillin, 100 µg/ml streptomycin, 10% FCS, and 10% L929 preconditioned media.

Reagents. Caspase inhibitors BOC-D-FMK and BOC-D-CMK (EMD) were reconstituted in DMSO and used at a concentration of 40 µM. Rat anti–mouse CD16/CD32 mAb clone 2.4G2 (FcγRII) and FcγRII blocking mAb was obtained from BD. mAb 9E9, which specifically blocks FcγRIV, has been previously described (Kaneo et al., 2006). Cytochalasin D was obtained from Sigma-Aldrich.

Ab purification. The 19D9 IgG1 was generated from mice immunized with a galactosylmannan-PA conjugate made for other studies (De Jesus et al., 2009). For in vitro studies, antibodies were purified by protein G chromatography (Thermo Fisher Scientific) and sterilized by filtering through a 0.2-mm-pore-size membrane (Sigma-Aldrich).

Isolation of isotype-switched variants. IgG2a and IgG2b isotype switch variants of mAb 19D9 were identified using the ELISA spot assay and isolated by the sib selection technique. The assays were performed as previously described (Kaneko et al., 2006). Cytochalasin D was added to coat polystyrene plates and blocked with 2% BSA in TBS at 4°C. The plates were washed and incubated with 1 mg/ml 5-bromo-4-chloro-3-indoyl phosphate (Amresco) in AMP buffer (0.2 mg/ml Cl₂, 0.01% Triton X-405, and 9.6% 2-amino-2-methyl-1-propanol, pH 9.8). Plates were washed and rinsed with distilled H₂O. The spots were counted with a dissecting microscope and the median frequencies of switching were calculated.

**Cells for analysis or selection were centrifuged and washed once with FACS buffer supplemented with 1× PBS, 1% FCS, and 1 mM EDTA in sterile water. Cells were resuspended at 2.5 × 10⁷ cells/200 µl. Isotype-specific FITC-conjugated goat anti–mouse antibody was added and allowed to react for 30 min at 4°C. Cells were resuspended at 5 × 10⁷ cells/ml for analysis and sorting. Fluorescence cell sorting was performed using a FACSArri (BD) equipped with four lasers and coherent sapphire with a 100-nm quartz nozzle. FITC-labeled detection reagents were excited by the 488-nm spectral line of a 100-mW diode-pumped solid-state laser. FITC–positive cells were collected using a 525-nm band pass filter. For acquisition and statistical analysis, 6.1.1 Diva software (BD) was used. Live cells were gated using the forward and side scatter parameters. Background fluorescence was determined using unlabeled cells as a control. Cells sorted for bulk enrichment were collected directly into a 12 × 75 mm Falcon tube (BD) containing 1 ml of culture medium supplemented with 20% FCS. Cells were centrifuged and resuspended in 1 ml of culture medium and then grown in a single well of a 24-well plate.

**Cell subcloning was performed using soft agar–containing 0.3–0.4% SeaPlaque agarose (FMCoBioproducts). First, 4 ml IMDM cloning medium (IMDM with 20% FCS) containing 0.4% SeaPlaque agarose was introduced into a 60-mm culture plate (BD). After solidification at 4°C for 10 min, 1 ml of the same medium containing 1,000 cells was laid over the top of the soft agar and put at 4°C for 10 min. Cells were grown at 37°C for 5–7 d. Clones were randomly picked and placed into a 96-well plate.

RNA and RT-PCR. Cells (5–10 × 10⁶) were lysed with 1 ml Trizol reagent (Invitrogen) and RNA extracted according to the manufacturer’s instructions. About 1 µg of total RNA was reverse transcribed in a 20-µl reaction using the Superscript II kit (Invitrogen). Universal 5’ (sense) variable region and specific 3’ (antisense) constant region primers were used in a PCR reaction to generate cDNA encoding the variable domains of mAbs. The primers are as follows: 3’McHv1, 5’AGACCTATGGGCGTGCCTTTTGTTCGCCG–3’; 3’McHv3, 5’GACATTGGGAGACTGACTCTC–3’; 3’McKv1, 5’TGGATACTAGTGGTGCACAGTCAGC–3’; 5’Vκun, 5’TGGAGTGCAGTGGGACGCTACT–3’; 5’Vλun, 5’GACATTGCTATGGCACCAGTCT–3’. PCR products were cloned and the heavy and light chain of the 19D9 IgG2a and IgG2b switch variants were sequenced to confirm that they were identical to those of the parent IgG1.

Peptide synthesis. To map the functional linear epitopes of PA, biotinylated soluble peptides representing the entire length of PA were synthesized as 15-mers, overlapping by 10 residues (total of 145 peptides) according to the manufacturer’s instructions. About 1 µg of total RNA was reverse transcribed in a 20-µl reaction using the Superscript II kit (Invitrogen). Universal 5’ (sense) variable region and specific 3’ (antisense) constant region primers were used in a PCR reaction to generate cDNA encoding the variable domains of mAbs. The primers are as follows: 3’McHv1, 5’AGACCTATGGGCGTGCCTTTTGTTCGCCG–3’; 3’McHv3, 5’GACATTGGGAGACTGACTCTC–3’; 3’McKv1, 5’TGGATACTAGTGGTGCACAGTCAGC–3’; 5’Vκun, 5’TGGAGTGCAGTGGGACGCTACT–3’; 5’Vλun, 5’GACATTGCTATGGCACCAGTCT–3’. PCR products were cloned and the heavy and light chain of the 19D9 IgG2a and IgG2b switch variants were sequenced to confirm that they were identical to those of the parent IgG1.

ELISAs for PA and peptides. Antibody binding to PA and PA-derived peptides was studied by ELISAs. In brief, the wells in polystyrene plates (Costar) were coated overnight with 1 µg/ml of recombinant PA in PBS. The plates were then blocked with 2% BSA/PBS and incubated for 1 h at 37°C. After the wells were washed with 0.1% Tween 20 in PBS (PBST), serial dilutions of purified MAbs were added and incubated at 37°C for 1 h. After washing, bound antibodies were detected with isotype-specific alkaline phosphate–conjugated goat anti–mouse reagent (SouthernBiotech). The plates were then washed and developed by adding substrate and determining absorbance at 405 nm.

For the peptide ELISAs, polystyrene plates were coated with 5 µg/ml streptavidin (100 µl/well) and kept overnight at 37°C. Then, plates were blocked with 2% BSA in PBS (200 µl/well) for 1 h at 37°C and washed with 0.1% PBST. Subsequently, 5 µg/ml biotinylated peptides were added and incubated at room temperature for 1 h. After three washes with PBST, mAb...
was added at a 1:100 dilution in blocking buffer and incubated for 2 h. The plates were again washed with PBST. Alkaline phosphatase–conjugated goat isotype-specific antibody was diluted 1:1,000 in blocking buffer, added to the plates, and incubated for 1 h at 37°C. After another wash, alkaline phosphatase substrate was added to each well, color was allowed to develop for 20 min, and the absorbance at 405 nm was measured. These experiments were performed at least three times for each mAb. The background of each individual serum or mAb was determined in parallel, using streptavidin-coated peptide-free wells. The cut-off value used for binding was an absorbance three times the mean background value.

Competition ELISAs. mAb–mAb competition ELISAs were used to investigate the specificity of PA mAbs as previously described (Casadevall et al., 1992). In brief, we developed separate assays with different combinations of a variable amount of one mAb mixed with a constant amount of a second different isotype mAb and allowed them to bind to PA immobilized in a poly-styrene plate. Binding of the mAbs was detected by isotype-specific alkaline phosphatase–conjugated goat anti–mouse reagent. In all instances, incubations were done at 37°C for 1 h and absorbances were measured at 405 nm.

Biacore analysis. Surface plasmon resonance (SPR) analysis was performed using a Biacore 3000 instrument. The 19D9 IgG1 mAb and its IgG2a and IgG2b switch variants in 10 mM 2-(N-morpholino)ethanesulfonic acid (Sigma-Aldrich), pH 6.0, were immobilized on a CMS chip using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide N-hydroxy-succinimide chemistry. The mAb solutions were added as a 5 µg/ml solution until an amount equivalent to 1,000 response units was obtained. Reombinant PA (3.9–1,000 nM) in 0.2 mM K2HPO4/KH2PO4, pH 7.4, 130 mM KCl, and 0.005% Tween 20 was used at a flow rate of 5, 10, and 20 µl/min. A solution of 50 mM NaOH was used as the regeneration buffer between runs. Data were analyzed using BIAevaluation software (version 3.2, Biacore) to yield the KD using the Langmuir and two-state reaction fitting models.

Cell viability assays. Cell viability was analyzed by MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide) assay as described previously (Abboud and Casadevall, 2008). In brief, 6–8 × 10⁴ cells/well were plated in 96-well plates. In the case of FeRγ, cross-linking assay, culture plates were coated with IgG1 mAb 18B7 diluted with PBS to 20 µg/ml, and then cells were plated. Plates were incubated at 37°C for 2 h or 4°C overnight. For all assays, cells were treated with LeTx (100 ng/ml PA and 100 ng/ml LF) in the presence or absence of mAb. After LeTx treatment, MTT solution (5 mg/ml MTT in PBS) was added directly to wells at different time points and incubated at 37°C for 4 h. The reaction was terminated by the addition of the extraction buffer (12% SDS and 45% DMF) and incubated overnight. Absorbance was measured at 570 nm.

Western blotting was performed on cell lysates. For collection of cell lysates, 5 × 10⁶ cells were plated in 24-well plates in 500 µl of media, followed by treatment with LeTx in the presence or absence of mAb. At the indicated time points, culture medium was removed and the cells lysed in the wells with RIPA buffer (Boston BioProducts) supplemented with a cocktail of protease inhibitors (Roche). Lysates were then mixed with SDS buffer and denatured at 100°C for 3 min. Equivalent amounts of protein were separated on precast SDS-Tris HCl polyacrylamide gels (Bio-Rad Laboratories) and transferred to nitrocellulose membrane (0.20-µm pore size) by electrophoretic transfer. Membranes were probed with anti–MEK-3 polyclonal antibody (Santa Cruz Biotechnology, Inc.) and allowed to bind to PA immobilized in a poly-styrene plate. Binding of the mAbs was detected by isotype-specific alkaline phosphatase–conjugated goat anti–mouse reagent. In all instances, incubations were done at 37°C for 1 h and absorbances were measured at 405 nm.

Statistics. The statistical significance of differences in antibody LeTx neutralization was determined using the Student’s t test and differences were considered significant at P < 0.01 (Prism software 5.0; GraphPad Software, Inc.). Survival rate was analyzed with Kaplan-Meier estimates, and the statistical significance of differences in antibody B. anthracis Sterne toxin neutralization was determined using the log-rank test and P < 0.05 was considered significant. SPSS version 11.0 for Windows (SPSS Inc.) was used for statistical analysis.

We thank Lee Jacobson for help with MTT assays. We thank the staff of the Analytical Imaging Facility of Albert Einstein College of Medicine for technical assistance with confocal microscopy.

REFERENCES

Abboud, N., and A. Casadevall. 2008. Immunogenicity of *Bazillus anthracis* protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. *Clin. Vaccine Immunol.* 15:1115–1123. doi:10.1128/CVI.00015-08

Abboud, N., M. De Jesus, A. Nakouzi, R.J. Cordero, M. Pujato, A. Fiser, J. Rivera, and A. Casadevall. 2009. Identification of linear epitopes in *Bazillus anthracis* protective antigen bound by neutralizing antibodies. *J. Biol. Chem.* 284:25077–25086. doi:10.1074/jbc.M109.022061

Abrami, L., S. Liu, P. Cosson, S.H. Leppla, and F.G. van der Goot. 2003. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. *J. Cell Biol.* 160:321–328. doi:10.1083/jcb.200211018

Abrami, L., M. Lindsay, R.G. Parton, S.H. Leppla, and F.G. van der Goot. 2004. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. *J. Cell Biol.* 166:645–651. doi:10.1083/jcb.200312072

Aderem, A., and D.M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. *Annu. Rev. Immunol.* 17:503–623. doi:10.1146/annurev.immunol.17.1.593

Baldridge, J.R., and M.J. Buchmeier. 1992. Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. *J. Virol.* 66:4252–4257.
Bonuccelli, G., F. Sotgia, P.G. Frank, T.M. Williams, C.J. de Almeida, H.B. Tannert, P.E. Becker, K.A. Hotchkiss, B.I. Terman, B. Rollman, et al. 2005. ATR/TEM is highly expressed in epithelial cells lining *Bacillus anthracis* three sites of entry: implications for the pathogenesis of anthrax infection. *Am. J. Physiol. Cell Physiol.* 288:C1402–C1410. doi:10.1152/ajpcell.00825.2004

Bradley, K.A., J. Mogridge, M. Mourez, R.J. Collier, and J.A. Young. 2001. Identification of the cellular receptor for anthrax toxin. *Nature.* 414:225–229. doi:10.1038/35101999

Casadevall, A., J. Mukherjee, and M.D. Scharff. 1992. Monoclonal antibody based ELISAs for *Cryptococcus neoformans* polysaccharide. *J. Immunol. Methods.* 154:27–35. doi:10.1016/0165-2328(92)90029-G

Chopra, A.P., S.A. Boone, X. Liang, and N.S. Duesbery. 2003. Anthrax lethal factor proteolysis and inactivation of MAPK kinase. *J. Biol. Chem.* 278:9402–9406. doi:10.1074/jbc.M211262200

Daeron, M. 1997. Fc receptor biology. *Annu. Rev. Immunol.* 15:203–234. doi:10.1146/annurev.immunol.15.1.203

De Jesus, M., A.M. Nicola, M.L. Rodrigues, G. Janbon, and A. Casadevall. 2009. Capsular localization of the *Cryptococcus neoformans* polysaccharide component *glycosyltransferase.* *Eukaryot. Cell* 8:96–103. doi:10.1128/EC.00331-08

Duesbery, N.S., C.P. Webb, S.H. Leppla, V.M. Gordon, K.R. Klimpel, T.D. Copeland, N.G. Ahn, M.K. Oskarson, K. Fukasawa, K.D. Paull, and G.F. Vande Woude. 1998. Proteolytic inactivation of MAPK kinase by anthrax lethal factor. *Science.* 280:734–737. doi:10.1126/science.280.5364.734

Furriel, R.P., Y.M. Luciano, and B. Mantovani. 2005. Precipitated immune complexes like those in humans, high affinity, and ability to neutralize the protective antigen (PA) of *Bacillus anthracis* by binding to the segment of PA between residues 686 and 694. *Antimicrob. Agents Chemother.* 49:3414–3420. doi:10.1128/AAC.49.8.3414-3420.2005

Little, S.F., B.E. Ivins, P.F. Fellows, and A.M. Friedlander. 1997. Passive protection by polyclonal antibodies against *Bacillus anthracis* infection in guinea pigs. *Infect. Immun.* 65:517–5175.

Mabry, R., M. Rani, R. Geiger, G.B. Hubbard, R. Carrion Jr., K. Brasky, J.L. Patterson, G. Georgiou, and B.L. Iverson. 2005. Passive protection against anthrax by using a high-affinity antitoxin antibody fragment lacking an Fc region. *Infect. Immun.* 73:8362–8368. doi:10.1128/IAI.73.12.8362-8368.2005

Markine-Goraynov, D., X. Hultenhov, C.L. Cambiasso, P. Monteyne, T. Briet, M.D. Gonzalez, P. Couhei, and J.P. Coutelier. 2002. Natural killer cell activation after infection with lactate dehydrogenase-elevating virus. *J. Gen. Virol.* 83:2709–2716.

Maynard, J.A., C.B. Maassen, S.H. Leppla, K. Brasky, J.L. Patterson, B.L. Iverson, and G. Georgiou. 2002. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. *Nat. Biotechnol.* 20:597–601. doi:10.1038/nbt0602-597

Mellman, I., H. Plutner, and P. Uckonon. 1984. Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: possible role of a prelysosomal compartment. *J. Cell Biol.* 98:1163–1169. doi:10.1083/jcb.98.4.1163

Moayeri, M., N.W. Martinez, J. Wiggins, H.A. Young, and S.H. Leppla. 2004. Mouse susceptibility to anthrax lethal toxin is influenced by genetic factors in addition to those controlling macrophage sensitivity. *Infect. Immun.* 72:4439–4447. doi:10.1128/IAI.72.8.4439-4447.2004

Mohamed, N., J. Li, C.S. Ferreira, S.F. Little, A.M. Friedlander, G.L. Spitalny, and L.S. Casey. 2004. Enhancement of anthrax lethal toxin cytotoxicity: a subset of monoclonal antibodies against protective antigen increases lethal toxin-mediated killing of murine macrophages. *Infect. Immun.* 72:3276–3283. doi:10.1128/IAI.72.6.3276-3283.2004

Muehlbauer, S.M., T.H. Evering, G. Bonuccelli, R.C. Squires, A.W. Ashton, S.A. Porcelli, M.P. Lisanti, and J. Brojatsch. 2007. Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis. *Cell Cycle.* 6:758–766.

Nimmerjahn, F., and J.V. Ravetch. 2006. Fcgamma receptors: old friends and new family members. *Immunity.* 24:19–28. doi:10.1016/j.immuni.2005.11.010

Nimmerjahn, F., P. Brulhus, K. Horinuchi, and J.V. Ravetch. 2005. FcgammaRIv: a novel FcR with distinct IgG subclass specificity. *Immunity.* 23:41–51. doi:10.1016/j.immuni.2005.05.010

Ra, C., M.H. Jouvain, U. Blank, and J.P. Kinet. 1989. A macrophage Fc gamma receptor and the mast cell receptor for IgE share an identical subunit. *Nature.* 341:752–754. doi:10.1038/341752a0

Ravetch, J.V. 1997. Fc receptors. *Curr. Opin. Immunol.* 9:121–125. doi:10.1016/S0952-7915(97)80168-9

Ravetch, J.V., and J.P. Kinet. 1991. Fc receptors. *Annu. Rev. Immunol.* 9:457–492.

Reuvens, S., M.D. White, Y.Y. Adar, Y. Kafri, Z. Abboun, Y. Gozes, D. Kobiler, A. Shafferman, and B. Velan. 2001. Search for correlates of protective immunity conferred by anthrax vaccine. *Infect. Immun.* 69:2888–2893. doi:10.1128/IAI.69.8.2888-2893.2001

Rivera, J., A. Nakouzi, N. Abboud, E. Revskaya, D. Goldman, R.J. Collier, E. Dadachova, and A. Casadevall. 2006. A monoclonal antibody to *Bacillus anthracis* protective antigen defines a neutralizing epitope in domain 1. *Infect. Immun.* 74:419–4156. doi:10.1128/IAI.00150-06

Schaeffer, H.J., and M.J. Weber. 1995. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. *Mol. Cell. Biol.* 15:2433–2444.

Scobie, H.M., G.J. Rainey, K.A. Bradley, and J.A. Young. 2003. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. *Proc. Natl. Acad. Sci. USA.* 100:5170–5174. doi:10.1073/pnas.043109810

Spira, G., and M.D. Scharff. 1992. Identification of rare immunoglobulin light chain switch variants using the ELISA spot assay. *J. Immunol. Methods.* 148:121–129. doi:10.1016/0022-1759(92)91065-E

Spira, G., A. Bargellesi, J.L. Teillaud, and M.D. Scharff. 1984. The identification of monoclonal class switch variants by sib selection and an ELISA assay. Proc. Natl. Acad. Sci. U.S.A. 81:5170–5173. doi:10.1073/pnas.81.11.5170

T decade needed for mAb-mediated toxin neutralization | Abboud et al. | JEM
Takai, T., M. Li, D. Sylvestre, R. Clynes, and J.V. Ravetch. 1994. FeR
gamma chain deletion results in pleiotrophic effector cell defects. Cell.
76:519–529. doi:10.1016/0092-8674(94)90115-5

Torres, M., and A. Casadevall. 2008. The immunoglobulin constant re-
gion contributes to affinity and specificity. Trends Immunol. 29:91–97.
doi:10.1016/j.it.2007.11.004

Verma, A., M.M. Ngundi, B.D. Meade, R. De Pascalis, K.L. Elkins, and
D.L. Burns. 2009. Analysis of the Fc gamma receptor-dependent com-
ponent of neutralization measured by anthrax toxin neutralization assays.
Clin. Vaccine Immunol. 16:1405–1412. doi:10.1128/CVI.00194-09

Vitale, G., R. Pellizzari, C. Recchi, G. Napolitani, M. Mock, and C.
Montecucco. 1998. Anthrax lethal factor cleaves the N-terminus of
MAPKs and induces tyrosine/threonine phosphorylation of MAPKs in
cultured macrophages. Biochem. Biophys. Res. Commun. 248:706–711.
doi:10.1006/bbrc.1998.9040

Vitale, L., D. Blanet, I. Lowy, T. O’Neill, J. Goldstein, S.F. Little, G.P.
Andrews, G. Dorrough, R.K. Taylor, and T. Keler. 2006. Prophylaxis
and therapy of inhalational anthrax by a novel monoclonal antibody
to protective antigen that mimics vaccine-induced immunity. Infect.
Immun. 74:5840–5847. doi:10.1128/IAI.00712-06

von Behring, E., and S. Kitasato. 1991. [The mechanism of diphtheria im-
munity and tetanus immunity in animals. 1890]. Mol. Immunol. 28:1317:
1319–1320. doi:10.1016/0161-5890(91)90032-F

Wang, J.Y., and M.H. Roehrl. 2005. Anthrax vaccine design: strategies to
achieve comprehensive protection against spore, bacillus, and toxin.
Med. Immunol. 4:4. doi:10.1186/1476-9433-4-4

Welkos, S.L., T.J. Keener, and P.H. Gibbs. 1986. Differences in susceptibil-
ity of inbred mice to Bacillus anthracis. Infect. Immun. 51:795–800.

Wild, M.A., H. Xin, T. Maruyama, M.J. Nolan, P.M. Calvey, J.D.
Malone, M.R. Wallace, and K.S. Bowdish. 2003. Human antibodies
from immunized donors are protective against anthrax toxin in vivo.
Nat. Biotechnol. 21:1305–1306. doi:10.1038/nbt891

Wirthmueller, U., T. Kurosaki, M.S. Murakami, and J.V. Ravetch.
1992. Signal transduction by Fc gamma RIII (CD16) is mediated
through the gamma chain. J. Exp. Med. 175:1381–1390. doi:10
.1084/jem.175.5.1381