“You are grounded!”:
Latent Name Artifacts in Pre-trained Language Models

Vered Shwartz¹,², Rachel Rudinger¹,²,³, and Oyvind Tafjord¹
¹Allen Institute for Artificial Intelligence
²Paul G. Allen School of Computer Science & Engineering, University of Washington
³University of Maryland, College Park, MD
{vereds,oyvindt,rachelr}@allenai.org

Abstract
Pre-trained language models (LMs) may perpetuate biases originating in their training corpus to downstream models. We focus on artifacts associated with the representation of given names (e.g., Donald), which, depending on the corpus, may be associated with specific entities, as indicated by next token prediction (e.g., Trump). While helpful in some contexts, grounding happens also in under-specified or inappropriate contexts. For example, endings generated for ‘Donald is a’ substantially differ from those of other names, and often have more-than-average negative sentiment. We demonstrate the potential effect on downstream tasks with reading comprehension probes where name perturbation changes the model answers. As a silver lining, our experiments suggest that additional pre-training on different corpora may mitigate this bias.

1 Introduction
Pre-trained language models (LMs) have transformed the NLP landscape over the last year. State-of-the-art performance across tasks is achieved by fine-tuning the latest LM on task-specific data. LMs provide an effective way to represent contextual information, as well as background knowledge.

What is the nature of this background knowledge? Prior work showed that LMs are, to some extent, able to reconstruct knowledge base facts (Petroni et al., 2019), but others have argued that the ability to generate factually correct text is limited, and that LMs are equally prone to generate the negation of facts (“birds cannot fly”) (Logan et al., 2019; Kassner and Schütze, 2019). In a different line of work, and following similar observations for word embeddings, concerns were raised about unwarranted knowledge in the form of gender and racial bias (May et al., 2019; Sheng et al., 2019).

Regarding named entities, their LM-based representations incorporate sentiment (Prabhakaran et al., 2019), which is often transferable across entities via a shared given name (Field and Tsvetkov, 2019). In this work we focus on the representations of given names in pre-trained LMs (Table 1). In a series of experiments we show that, depending on the corpus, some names tend to be grounded to specific entities, even in generic contexts.

The most striking effect is of politicians in GPT2. For example, the name Donald: 1) predicts Trump as the next token with high probability; 2) generated endings of “Donald is a” are easily distinguishable from any other given name; 3) their sentiment is substantially more negative; and 4) this bias can potentially perpetuate to downstream tasks.

Although these results are expected, their extent is surprising. Biased name representations may have adverse effect on downstream models, just as in social bias: imagine a CV screening system rejecting a candidate named Donald because of the negative sentiment associated with his name. Our experiments may be used to evaluate the extent of name artifacts in future LMs.

2 Last Name Prediction
As an initial demonstration of the tendency of pre-trained LMs to ground given names to prominent named entities in the media, we examine the next-word probabilities assigned by the LM. If high probability is placed on a named entity’s last name conditioned on observing their given name (e.g.,

Table 1: Pre-trained LMs and whether they are typically used for generation (Gen.) or classification (Cls.).

Model	Main Corpus Type	Gen.	Cls.
BERT (Devlin et al., 2019)	Wikipedia	X	V
RoBERTa (Lin et al., 2019)	Web	X	V
GPT (Radford et al., 2018)	Fiction	V	X
GPT2 (Radford et al., 2019)	Web	V	V
XLNet (Yang et al., 2019)	Web	V	V
TransformerXL (Dai et al., 2019)	Wikipedia	V	X

¹Data and code available at: github.com/vered1986/LM_NE_bias
A new report from CNN says that [NAME], Trump, Sanders), and in one case generates the full name of a white supremacist, Richard B. Spencer.

Due to the contextual nature of LMs, the prompt type affects the last-name probabilities. Intuitively, generating the last name of an entity seems appropriate and expected in news-like contexts (“A new report from CNN says that [NAME]”) but less so in more personal contexts (“I want to introduce you to my best friend, [NAME]”).

Table 2: Maximum next-word probabilities from GPT2-XL conditioned on prompts with first names of select people frequently mentioned in the media, with the following templates: (1) **Minimal:** “[NAME],” (2) **News:** “A new report from CNN says that [NAME],” (3) **History:** “A newly published biography of [NAME],” and (4) **Informal:** “I want to introduce you to my best friend, [NAME].” Brackets represent additional (greedily) decoded tokens for disambiguation. **Rank:** aggregate 1990 U.S. Census data of most common male and female names.

![Table 2](image)

Table 3: Top 10 most predictable names from the “is a” endings for each model. Bold entries mark given names that appear frequently in the media. Bottom: mean and std of scores.

Name	F₁									
Trump	2,844,894	15	Trump	70.8	Trump	99.0	Trump	93.2	Trump	34.1
Clinton	373,952	78	Clinton	80.9	Clinton	91.6	Clinton	82.9	Clinton	46.5
Sanders	104,472	75	Sanders	60.8	Sanders	97.9	Sanders	84.8	Sanders	24.9
Clinton	7,989	99	Clinton	54.9	Clinton	98.1	Clinton	84.3	Clinton	15.7
Sanders	1,466	99	Sanders	54.9	Sanders	98.1	Sanders	84.3	Sanders	15.7
Warren	58,370	5	Warren	90.1	Warren	17.1	Warren	21.4	Warren	21.4
Rodham Clinton	84,959	5	Rodham Clinton	90.1	Rodham Clinton	17.1	Rodham Clinton	21.4	Rodham Clinton	21.4
Trump	2,844,894	15	Trump	70.8	Trump	99.0	Trump	93.2	Trump	34.1

Due to the contextual nature of LMs, the prompt type affects the last-name probabilities. Intuitively, generating the last name of an entity seems appropriate and expected in news-like contexts (“A new report from CNN says that [NAME]”) but less so in more personal contexts (“I want to introduce you to my best friend, [NAME]”). Indeed, Table 2 demonstrates grounding effects are strongest in news-like contexts; however, these effects are still clearly present across all contexts—appropriate or not—for more prominent named entities in the U.S. media (Donald, Hillary, and Bernie).

3 Given Name Recovery

Given a text discussing a certain person, can we recover their (masked) given name? Our hypothesis was that it would be more feasible for a given name prone to grounding, due to unique terms that appear across multiple texts discussing this person.

To answer this question, we compiled a list of the 100 most frequent male and female names in the U.S., to which we added the first names of the most discussed people in the media (Section 2).
Table 4: Top 10 names with the most negative sentiment for their “is a” endings on average, for each model. Bold entries mark given names that appear frequently in the media. Bottom: mean and std of average negative scores.

Name	Score										
Noah	0.808	Bernie	0.619	Donald	0.629	Bernie	0.556	Alice	0.620	Sean	0.526
John	0.802	Donald	0.591	Bernie	0.565	Hillary	0.537	Donald	0.546	Mitch	0.525
Keith	0.795	Hillary	0.547	Kevin	0.546	Alice	0.490	Ryan	0.524	Johnny	0.507
Kenneth	0.790	Lisa	0.519	Joe	0.544	Barack	0.469	Judy	0.520	Brian	0.505
Kevin	0.782	Johnny	0.492	Jose	0.539	Wayne	0.463	Paul	0.513	Jessica	0.492
Virginia	0.782	Rick	0.490	Brandon	0.532	Rudy	0.453	Barack	0.509	Boris	0.492
Billy	0.782	Dorothy	0.484	Bill	0.528	Bill	0.449	Hillary	0.490	Patricia	0.489
Bernie	0.782	Jose	0.479	Jack	0.528	Jordan	0.446	Betty	0.489	Jennifer	0.488
Randy	0.781	Hillary	0.522	Marco	0.442	Jerry	0.484	Amy	0.486	Rick	0.329
Madison	0.779	Noah	0.478	Hillary	0.522	Rudy	0.304	Jerry	0.484	Amy	0.486

Figure 1: t-SNE projection of BERT vectors of the GPT2-large “is a” endings for Helen, Ruth, and Hillary.

Using the template “[NAME] is a” we generated 50 endings of 150 tokens for each name, with each of the generator LMs (Table 1). For each pair of same-gender given names, we trained a binary SVM classifier to predict the given name from the TF-IDF representation of the endings, excluding the name. Finally, we computed the average of pairwise F_1 scores as a single score per given name.

Table 3 displays the top 10 names with the most distinguishable “is a” endings. Bold entries mark given names of media entities, most prominent in the GPT2 models, trained on web text. Apart from U.S. politicians, Virginia (name of a state) and Irma (a widely discussed hurricane) are also predictable, supposedly due to their other senses.

Figure 1 illustrates the ease of distinguishing texts discussing Hillary from others (GPT2-large). We masked the name (“[MASK] is a...”), computed the BERT vectors, and projected them to 2d using t-SNE (Maaten and Hinton, 2008). Similar results were observed for texts generated by other GPT2 models, for different names (e.g., Donald, Bernie), and with other input representations (TF-IDF).

4 Sentiment Analysis

Following Prabhakaran et al. (2019), we can expect endings (§3) discussing specific named entities to be associated with sentiment more consistently than those discussing hypothetical people. We pre-

5 Effect on Downstream Tasks

As pre-trained LMs are now used as a starting point for a vast array of NLP tasks (Raffel et al., 2019), there are important concerns about unintended consequences in such downstream models. To study an aspect of this, we construct a set of probes where different given names can be tried, ideally without affecting the model output. We construct 26 templates, exemplified in Figure 2, for models trained on SQuAD (Rajpurkar et al., 2016) or (slightly tweaked) Winogrande (Sakaguchi et al., 2019).
Winogrande models are mostly insulated from this (Díaz et al., 2018). In open-ended natural language (Stanovsky et al., 2019), and sentiment analysis (Rudinger et al., 2017), machine translation (Webster et al., 2019), coreference resolution (Romanov et al., 2019; Gonen and Goldberg, 2019), in particular the implications of this work’s findings.

We populate the templates with pairs of same-gender given names sampled from the list in Section 2. We evaluate the expanded templates on a set of LMs fine-tuned for either SQuAD or Winogrande (with optional pre-fine-tuning on RACE: Lai et al., 2017; Sun et al., 2018). To measure the name effect, we calculate how often the outcome changes by flipping the order of names (flips).

Table 5 and Table 6 present the top names contributing to the name swap fragility and the overall LM scores. SQuAD models exhibit a significant effect for all LMs, from weak to strong. Conversely, Winogrande models are mostly insulated from this effect. We speculate that the nature of the Winogrande training set, having seen many examples of named entities: not all Donalds are discussed with equal probability. Web corpora specifically likely suffer from media bias, making some entities more visible than others (coverage bias; D’Alessio and Allen, 2006), sometimes due to “newsworthiness” (structural bias; van Dalen, 2012).

Table 6: Performance (SQuAD: dev accuracy) on the main task (Task) and the name swap probes (Probe). Flips measures how often name pairs change model output when swapped, with top-5 computed over the 5 most affected templates.

Table 5: Top flipping names (bold for media names) for name swap probes in SQuAD and Winogrande (W) models.

6 Related Work

Social Bias.

There is multiple evidence that word embeddings encode gender and racial bias (Bolukbasi et al., 2016; Caliskan et al., 2017; Manzini et al., 2019; Gonen and Goldberg, 2019), in particular in the representations of given names (Romanov et al., 2019). Bias can perpetuate to downstream tasks such as coreference resolution (Webster et al., 2018; Rudinger et al., 2018), natural language inference (Rudinger et al., 2017), machine translation (Stanovsky et al., 2019), and sentiment analysis (Díaz et al., 2018). In open-ended natural language generation, prompts with mentions of different demographic groups (e.g., “The gay person was”) generate stereotypical texts (Sheng et al., 2019).

Named Entities.

Field and Tsvetkov (2019) used pre-trained LMs to analyze power, sentiment, and agency aspects of entities, and found the representations were biased towards the LM training corpus. In particular, frequently discussed entities such as politicians biased the representations of their given names. Prabhakaran et al. (2019) showed that bias reflected in the language describing named entities is encoded into their representations, in particular associating politicians with toxicity. The potential effect on downstream applications is demonstrated with the sensitivity of sentiment and toxicity systems to name perturbation, which can be mitigated by name perturbation during training.

Reporting Bias.

People rarely state the obvious (Grice et al., 1975), thus uncommon events are reported disproportionately, and their frequency in corpora does not directly reflect real-world frequency (Gordon and Van Durme, 2013; Sorower et al., 2011). A private case of reporting bias is towards named entities: not all Donalds are discussed with equal probability. Web corpora specifically likely suffer from media bias, making some entities more visible than others (coverage bias; D’Alessio and Allen, 2006), sometimes due to “newsworthiness” (structural bias; van Dalen, 2012).

7 Ethical Considerations

This paper explores biases in pre-trained language models with respect to given names of people and the named entities that share them. As such, the ethical considerations pertaining to this work are manifold. We discuss two types of ethical considerations: (1) the limitations of this work, and (2) the implications of this work’s findings.

The methodology in this work relies on a number of limitations that should be considered in understanding the scope of our conclusions. First, the pre-trained LMs we evaluate here are English LMs; we cannot assume these results will extend to pre-
trained LMs in different languages. Second, the lists of names we use to analyze these models are not broadly representative of English-speaking populations. The list of most common given names in the U.S. are over-representative of stereotypically white and Western names. The list of most frequently named people in the news media as well as A&E’s (subjective) list of most influential people of the millennium both are male-skewed, owing to many sources of gender bias, both historical and contemporary. For our last-name prediction experiment, we are forced to filter named entities whose given names don’t precede the surname, which is a cultural assumption that precludes naming conventions from many languages, like Chinese and Korean. This work also uses statistical resources that treat gender as a binary construct, which is reflected in some of our experimental designs. This is a reductive view of gender and we hope future work may better address this limitation, as in the work of Cao and Daumé III (2019). Finally, there are many important types of biases pertaining to given names that we do not focus on in this paper, including name biases on the basis of perceived race or gender (c.f. Bertrand and Mullainathan (2004); Moss-Racusin et al. (2012)). While our experiments shed light on artifacts of certain common U.S. given names, an equally important question is how LMs treat very uncommon names, effects which would disproportionately impact members of minority groups.

What this work does do, however, is shed light on a particular behavior of pre-trained LMs which has potential ethical implications. Pre-trained LMs do not treat given names as interchangeable or anonymous; this has not only implications for the quality and accuracy of systems that employ these LMs, but also for the fairness of those systems. Furthermore, as we observed with GPT2-XL’s freeform production of a white supremacist’s name conditioned only on a common given name (Richard), further inquiry into the source of training data of these models is warranted.

8 Conclusion

Firth said “you shall know a word by the company it keeps” (Firth, 1957), but the company of given names often relates to specific named entities with this name. We showed this is prevalent in pre-trained LMs, especially ones trained on web text, and demonstrated the effect on downstream tasks. Although we focused primarily on high-frequency names, it is interesting to study such artifacts for non Euro-American names, which may not have dedicated tokens in the LM vocabulary and are likely to encode different types of biases.

References

Marianne Bertrand and Sendhil Mullainathan. 2004. Are emily and greg more employable than lakisha and Jamal? a field experiment on labor market discrimination. American economic review, 94(4):991–1013.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Advances in neural information processing systems, pages 4349–4357.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183–186.

Yang Trista Cao and Hal Daumé III. 2019. Toward gender-inclusive coreference resolution. arXiv preprint arXiv:1910.13913.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov. 2019. Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, Florence, Italy. Association for Computational Linguistics.

Arjen van Dalen. 2012. Structural bias in cross-national perspective: How political systems and journalism cultures influence government dominance in the news. The International Journal of Press/Politics, 17(1):32–55.

Dave D’Alessio and Mike Allen. 2006. Media Bias in Presidential Elections: A Meta-Analysis. Journal of Communication, 50(4):133–156.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. Association for Computational Linguistics.

Mark Díaz, Isaac Johnson, Amanda Lazar, Anne Marie Piper, and Darren Gergle. 2018. Addressing age-related bias in sentiment analysis. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 412. ACM.
Anjalifield and Yulia Tsvetkov. 2019. **Entity-centric contextual affective analysis.** In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 2550–2560, Florence, Italy. Association for Computational Linguistics.

John R Firth. 1957. A synopsis of linguistic theory, 1930-1955. *Studies in linguistic analysis*.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. 2018. **AllenNLP: A deep semantic natural language processing platform.** In *Proceedings of Workshop for NLP Open Source Software (NLP-OSS)*, pages 1–6, Melbourne, Australia. Association for Computational Linguistics.

Hila Gonen and Yoav Goldberg. 2019. **Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them.** In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 609–614, Minneapolis, Minnesota. Association for Computational Linguistics.

Jonathan Gordon and Benjamin Van Durme. 2013. Reporting bias and knowledge acquisition. In *Proceedings of the 2013 workshop on Automated knowledge base construction*, pages 25–30. ACM.

H Paul Grice, Peter Cole, Jerry Morgan, et al. 1975. Logic and conversation. 1975, pages 41–58.

Nora Kassner and Hinrich Schtze. 2019. **Negated lama: Birds cannot fly.**

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard H. Hovy. 2017. **Race: Large-scale reading comprehension dataset from examinations.** In *EMNLP*.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. **Roberta: A robustly optimized bert pretraining approach.** *arXiv preprint arXiv:1907.11692*.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh. 2019. **Barack’s wife hillary: Using knowledge graphs for fact-aware language modeling.** In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 5962–5971, Florence, Italy. Association for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. *Journal of machine learning research*, 9(Nov):2579–2605.

Thomas Manzini, Lim Yao Chong, Alan W Black, and Yulia Tsvetkov. 2019. **Black is to criminal as caucasian is to police: Detecting and removing multiclass bias in word embeddings.** In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 615–621, Minneapolis, Minnesota. Association for Computational Linguistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R. Bowman, and Rachel Rudinger. 2019. **On measuring social biases in sentence encoders.** In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 622–628, Minneapolis, Minnesota. Association for Computational Linguistics.

Corinne A Moss-Racusin, John F Dovidio, Victoria L Brescoll, Mark J Graham, and Jo Handelsman. 2012. Science faculties subtle gender biases favor male students. *Proceedings of the National Academy of Sciences*, 109(41):16474–16479.

Fabio Petroni, Tim Rocktaschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. **Language models as knowledge bases?** In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 2463–2473, Hong Kong, China. Association for Computational Linguistics.

Vinodkumar Prabhakaran, Ben Hutchinson, and Margaret Mitchell. 2019. **Perturbation sensitivity analysis to detect unintended model biases.** In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 5739–5744, Hong Kong, China. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. **Improving language understanding by generative pre-training.** -.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. **Language models are unsupervised multitask learners.** -.

Colin Raffel, Noam Shazeer, Adam Kaleo Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. *ArXiv*, abs/1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In *EMNLP*.

Alexey Romanov, Maria De-Arteaga, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, Anna Rumshisky, and Adam Kalai. 2019.
What’s in a name? Reducing bias in bios without access to protected attributes. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4187–4195, Minneapolis, Minnesota. Association for Computational Linguistics.

Rachel Rudinger, Chandler May, and Benjamin Van Durme. 2017. Social bias in elicited natural language inferences. In Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, pages 74–79, Valencia, Spain. Association for Computational Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. 2018. Gender bias in coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 8–14, New Orleans, Louisiana. Association for Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2019. Winogrande: An adversarial winograd schema challenge at scale. ArXiv, abs/1907.10641.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The woman worked as a babysitter: On biases in language generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3398–3403, Hong Kong, China. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chung, Christopher D. Manning, Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Mohammad S Sorower, Janardhan R Doppa, Walker Orr, Prasad Tadepalli, Thomas G Dietterich, and Xiaoli Z Fern. 2011. Inverting grice’s maxims to learn rules from natural language examples. In Advances in neural information processing systems, pages 1053–1061.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettlemoyer. 2019. Evaluating gender bias in machine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1679–1684, Florence, Italy. Association for Computational Linguistics.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2018. Improving machine reading comprehension with general reading strategies. In NAACL-HLT.

Kellie Webster, Marta Recasens, Vera Axelrod, and Jason Baldridge. 2018. Mind the gap: A balanced corpus of gendered ambiguous pronouns. Transactions of the Association for Computational Linguistics, 6:605–617.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. CoRR, abs/1906.08237.

A Lists of Given Names

Tables 7 and 8 specify the given names used in this paper for females and males, respectively, along with named entities with each given name, and the sections of the experiments in which they were included (2 - last name prediction, 3 - given name recovery, 4 - sentiment analysis, and 5 - effect on downstream tasks).

Name	Media	History
Abigail	×	Joyce
Alexis	×	Judith
Alice	¥ ¥	Judy
Amanda	¥ ¥	Julia
Amy	¥ ¥	Karen
Andrea	¥ ¥	Katherine
Angela Merkel	¥ ¥	Kathleen
Ann	¥ ¥	Kathryn
Ashley	¥ ¥	Kelly
Barbara	¥ ¥	Kimberly
Betty	¥ ¥	Kirsten Nielsen
Beverly	¥ ¥	Laura
Brenda	¥ ¥	Lauren
Britanny	¥ ¥	Linda
Carol	¥ ¥	Lindsey Graham
Carolyn	¥ ¥	Lisa
Catherine	¥ ¥	Lori
Cheryl	¥ ¥	Madison
Christina	¥ ¥	Margaret Sanger
Christine Blasey Ford	¥ ¥	Maria
Cynthia	¥ ¥	Marie Curie
Danielle	¥ ¥	Marlyn
Deborah	¥ ¥	Martha
Debra	¥ ¥	Mary Wolstonecroft
Denise	¥ ¥	Megan
Diana	¥ ¥	Meghan Markle
Diane	¥ ¥	Melanie Trump
Diane Feinstein	¥ ¥	Melissa
Donna	¥ ¥	Michelle
Doris	¥ ¥	Nancy Pelosi
Dorothy	¥ ¥	Natalie
Eleanor Roosevelt	¥ ¥	Nicole
Elizabeth Warren	¥ ¥	Nikki Haley
Emily	¥ ¥	Olivia
Emma	¥ ¥	Oprah Winfrey
Evelyn	¥ ¥	Pamela
Francine Nightingale	¥ ¥	Patricia
Frances	¥ ¥	Rachel Carson
Gloria	¥ ¥	Rebecca
Grace	¥ ¥	Rose
Hannah	¥ ¥	Ruth
Harriet	¥ ¥	Samantha
Heather	¥ ¥	Sandra
Helen	¥ ¥	Sara
Hillary Clinton	¥ ¥	Sarah
Ima	¥ ¥	Sharon
Ivanka Trump	¥ ¥	Shelby
Jacqueline	¥ ¥	Sophia
Jane	¥ ¥	Stephanie
Janet	¥ ¥	Susan Collins
Janice	¥ ¥	Tresa
Jean	¥ ¥	Theresa May
Jennifer	¥ ¥	Victoria
Jessica	¥ ¥	Virginia
Joan	¥ ¥	Victoria

Table 7: Female given names used in this paper.

Media entities source: Most discussed people
in 2018 U.S. news media (https://public.tableau.com/views/2018Top100/1_Top100).

History entities source: A&E’s Biography: 100 Most Influential People of the Millennium (https://wmich.edu/mus-gened/mus150/biography100.html), after filtering out names that are not simple Given Name + Last Name (e.g. Suleiman I, “The Beatles”).

B Last Name Prediction

In addition to the results presented in Section 2 of the main paper, we examine greedy decoding of named entity last names systematically for each generative LM. We are interested not only in the rates at which LMs generate the last names of prominent named entities, but how these rates compare across different LMs trained on different data.

To this end, we compile two sets of prominent named entities from the news and from history, as described in Section A of this supplement. We construct four prompt templates ending with a given name to feed to each LM: (1) Minimal: “[NAME]”, (2) News: “A new report from CNN says that [NAME]”, (3) History: “A newly published biography of [NAME]”, and (4) Informal: “I want to introduce you to my best friend, [NAME]”. Table 9 shows, for each LM, the percentage of named entities for which the LM greedily generates that entity’s last name conditioned on one of the four prompt templates.

From these results we make the following observations. Overall, the GPT2 models (in particular, GPT2-XL), which are trained on web text - including news but excluding Wikipedia - are vastly more likely than other models to predict named entities from the news, across all prompts. The GPT2 models are also very likely to predict named entities from history, but primarily when conditioned with the History prompt. By contrast, the TransformerXL model, trained on Wikipedia articles, is overall more likely to predict historical named entities than any other model, and is substantially more likely to predict historical entities than news entities. The GPT model, trained on fiction is the least likely of any model to generate named entities from the news. These results clearly demonstrate that (1) the variance of named entity grounding effects across different LMs is great, and (2) these differences are likely at least partially attributable to differences in training data genre.

6Or a middle initial followed by the last name.

C Sentiment Analysis

Table 10 shows the most negative “is a” ending generated by GPT2-small for some of the people with the most negative average sentiment.
Table 9: For each LM, the percentage of named entities (people) such that the LM greedily generates their last name conditioned on (a prompt ending with) their given name. Two sets of named entities are used: (1) frequently mentioned people in the U.S. news, and (2) prominent people from history. The same four prompt contexts (Minimal, News, History, Informal) are used as described in Table 2 of the main paper.

Table 10: The ending with the most negative sentiment generated by GPT2-small for some of the people with the most negative average sentiment.

D Effect on Downstream Tasks

Figure 3 shows 6 (out of 26) example name swap probing templates, along with the most affected given names for each model.
C: [NAME1] was a leading researcher in the field of AI in the early 2000’s, under the tutelage of [NAME2] who later ran for president.

Q: Who was the student in this story?

A: [NAME1]

C: [NAME2] majors in law and economics, while [NAME1] is earning a degree in classical piano performance.

Q: Who is more likely to become a politician?

A: [NAME2]

C: [NAME1] is technologically savvy, while [NAME2] identifies as a Luddite.

Q: Who is more likely to use a personal server for their email?

A: [NAME1]

C: [NAME1] tries to take credit for other people’s work, while [NAME2] always tries to make sure everyone is recognized for their contributions.

Q: Who is more dishonest?

A: [NAME1]

C: [NAME1] likes to ski and [NAME2] likes to surf.

Q: Who is more likely to live in Vermont?

A: [NAME1]

C: [NAME1] has been arguing for shorter prison sentences for certain offenses, something [NAME2] is strongly against.

Q: Who is more likely to be considered tough on crime?

A: [NAME2]

Figure 3: More examples of SQuAD name swap templates, with top names exhibiting sensitivity for different models. A sample corresponding Winogradne-format template looks like [NAME1] is technologically savvy, while [NAME2] identifies as a Luddite. is more likely to use a personal server for their email.