Myocarditis

Jay W. Mason, Sanjeev Trehan, and Dale G. Renlund

Key Points

- Viruses are the most common cause of myocarditis in economically advanced countries.
- Enteroviruses and adenoviruses are the most common etiologic agents.
- Viral myocarditis is a triphasic process. Phase 1 is the period of active viral replication in the myocardium during which the symptoms of myocardial damage range from none to cardiogenic shock. If the disease process continues, it enters phase 2, which is characterized by autoimmunity triggered by viral and myocardial proteins. Heart failure often appears for the first time in phase 2. Phase 3, dilated cardiomyopathy, is the end result in some patients. Diagnostic procedures and treatment should be tailored to the phase of disease.
- Viral myocarditis is a significant cause of dilated cardiomyopathy, as proved by the frequent presence of viral genomic material in the myocardium, and by improvement in ventricular function by immunomodulatory therapy.
- Myocarditis of any etiology usually presents with heart failure, but the second most common presentation is ventricular arrhythmia. As a result, myocarditis is one of the most common causes of sudden death in young people and others without preexisting structural heart disease.
- Myocarditis can be definitively diagnosed by endomyocardial biopsy. However, it is clear that existing criteria for the histologic diagnosis need to be refined, and that a variety of molecular markers in the myocardium and the circulation can be used to establish the diagnosis.
- Treatment of myocarditis has been generally disappointing. Accurate staging of the disease will undoubtedly improve treatment in the future. It is clear that immunosuppression and immunomodulation are effective in some patients, especially during phase 2, but may not be as useful in phases 1 and 3. Since myocarditis is often self-limited, bridging and recovery therapy with circulatory assistance may be effective. Prevention by immunization or receptor blocking strategies is under development.

• Giant cell myocarditis is an unusually fulminant form of the disease that progresses rapidly to heart failure or sudden death. Rapid onset of disease in young people, especially those with other autoimmune manifestations, accompanied by heart failure or ventricular arrhythmias, suggests giant cell myocarditis.

• Peripartum cardiomyopathy in economically developed countries is usually the result of myocarditis.

The difficulty of diagnosing and treating myocarditis was recognized by Senac in 1772: “The inflammation of the heart is difficult to diagnose and when we have diagnosed it, can we then treat it better?” After Sobernheim in 1837 defined myocarditis as any inflammation or degeneration of the heart, the term myocarditis was used for nonvalvular myocardial diseases, including ischemic and hypertensive cardiomyopathies. Nearly a century later, White suggested that the term myocarditis be restricted to “true inflammation of the myocardium.” The last half-century has seen the development of endomyocardial biopsy techniques, histologic criteria, and serologic methods to diagnose myocarditis. As our knowledge of the immunopathologic mechanisms evolves, new therapeutic strategies are developing.

The World Health Organization/International Society and Federation of Cardiology Task Force on Cardiomyopathies classified cardiomyopathies whenever possible by etiologic/pathogenetic factors. This classification recognizes chronic viral, postinfectious autoimmune, and primary autoimmune forms of dilated cardiomyopathy (DCM). The classification states that “myocarditis is diagnosed by established histological, immunological and immunohistochemical criteria.” The Dallas criteria provide consensus-derived histologic criteria: “an inflammatory infiltrate of the myocardium with necrosis and/or degeneration of adjacent myocytes not typical of ischemic damage associated with coronary artery disease.” However, many have speculated that less pronounced histologic abnormalities may be present and that additional molecular, immunologic, and immunohistochemical diagnostic criteria can be used productively. Myocarditis, irrespective of the etiopathologic factors, remains an...
inflammatory cardiomyopathy associated with cardiac dysfunction.

Etiology and Epidemiology

A wide variety of infectious and noninfectious causes are associated with myocarditis [Tables 59.1 to 59.3]. Several epidemiologic observations linking these agents with myocarditis have been corroborated by serologic, polymerase chain reaction [PCR], or in situ hybridization methods. The incidence of infectious myocarditis in the general population is largely unknown. In a prospective study over several years, in a predefined subpopulation, an incidence of 0.02% was found. These cases were confirmed by myocardial enzyme leak and characteristic electrocardiographic [ECG] changes. The ECG abnormalities suggesting asymptomatic myocardial involvement, in the absence of enzyme release, have been noted in 1.2% of military conscripts during the course of other acute infectious diseases. During an epidemic of influenza A, the incidence rose to 7.7%. In a prospective trial of 2310 consecutive patients admitted to a large infectious disease hospital in Sweden, 8% showed ECG abnormalities suggestive of myocarditis. Approximately 5% of a virus-infected population may experience symptoms or findings suggestive of cardiac involvement. The incidence of myocarditis associated with nonviral infections is even more difficult to estimate. Although the list of possible etiologic agents is large, the enteroviruses, specifically coxsackievirus B, over decades have been the most commonly identified etiologic agents of inflammatory cardiomyopathy. Among healthy active adults, at least 50% have detectable serum antibodies indicating prior infection with coxsackievirus B. The World Health Organization has surveyed viral infections related to cardiovascular disease globally. In a 10-year period from 1975 to 1985, coxsackievirus B had the highest incidence of cardiovascular disease (34.6 cases per 1000 population), followed by influenza B (17.4 cases), influenza A (11.7 cases), coxsackievirus A (9.1 cases), and cytomegalovirus (CMV) [8.0 cases].

The predominance of enteroviruses among myocarditis-associated agents has been substantiated by several laboratory and clinical studies. Using serologic methods, Vikertors and associates reported that nearly 50% of consecutively studied myocarditis patients had enterovirus immunoglobulin IgM. Frisk and coworkers found a similar incidence of coxsackievirus B IgM antibodies by reverse
radio immunoassay. Other agents such as adenoviruses, Epstein-Barr virus, Mycoplasma, and Chlamydia have also been associated with myocarditis. Martin and colleagues21 demonstrated specific viral genome sequences in endomyocardial biopsies in 26 of 38 children (68\%) with acute myocarditis: adenovirus in 15 patients, enterovirus in eight, herpes simplex in two, and CMV in one patient. The control group did not demonstrate any viral genome sequences.

Just as the incidence of specific viral infections varies over time, so should the relative proportion of agents responsible for myocarditis. In a recent study, Bowles and colleagues22 supported the observation by Martin and coworkers21 that adenovirus is the most common agent associated with myocarditis in children, but they also found that adenoviruses predominated over enteroviruses in adults. Figure 59.1 shows the dominant role of adenoviruses and enteroviruses in myocarditis. Note that parvovirus was detected in young people. Parvovirus B-19 has recently been identified as a cause of myocarditis and, in some regions, it has been found in adults as well as children.23–27 These differences between previous and newer studies are due, at least in part, to geographical and temporal variation in the incidence of specific viral infections.

Cytomegalovirus is a recognized cause of acute infectious myocarditis, although it is rare in healthy individuals.28,29 Maisch and associates30 demonstrated, using in situ hybridization techniques, CMV-specific nucleotide sequences in 15\% of patients with acute myopericarditis. Certainly in transplant recipients, CMV infection is fairly common and has been reported to affect the transplanted heart.31,32 Hepatitis C virus infection is frequently noted in patients with DCM,33 and hepatitis C virus RNA has also been recovered from lymphocytes infiltrating the myocardium in chronic active myocarditis.34 Matsumori and colleagues35,36 found a high incidence of hepatitis C viral genomic material in a wide variety of cardiac disorders in Japan.

Bacterial Myocarditis

Myocarditis is a well-recognized complication of Corynebacterium diphtheriae infection, although this is now rare in the Western world.37 Myocardial dysfunction is also seen in association with Salmonella septicemia, although it is rarely clinically severe.38,39 Myocardial dysfunction is primarily related to the toxemia of the severe infection, which is also observed in meningococcal and nonrheumatic streptococcal infections.

Perhaps the best-recognized bacterial agent thought to be responsible for myocarditis is the β-hemolytic streptococcus

TABLE 59.3. Uncommon noninfectious causes of myocarditis

Drugs	Toxins
Toxic myocarditis	Arsenic
Amphetamines	Carbon monoxide
Arsenic	Copper
Chloroquine	Kerosene
Emetine	Iron
5-fluourouracil	Lead
Interferon-α	Mercury
Lithium	Phosphorus
Paracetamol	Scorpion stings
Thyroid hormone	Snake venom
Hypersensitivity myocarditis	Spider bites
Acetazolamide	Wasp stings
Allopurinol	
Amphotericin B	Systemic Diseases
Carbamazepine	Arteritis [giant cell, Takayasu’s]
Cephalothin	β-thalassemia major
Chlorthalidone	Churg-Strauss vasculitis
Clozapine	Cryoglobulinemia
Colchicine	Dermatomyositis
Diclofenac	Diabetes mellitus
Ephedrine	Hashimoto’s thyroiditis
Diphenhydramine	Mixed connective tissue disease
Furosemide	Myasthenia gravis
Indomethacin	Parierteritis nodosa
Isoniazid	Pernicious anemia
Methyleneoxyamphetamine	Pheochromocytoma
Lidocaine	Polymyositis
Methysergide	Rheumatoid arthritis
Octreolastate	Scleroderma
Montelukast	Sjögren’s syndrome
Oxyphenbutazone	Thymoma
Para-aminosalicyclic acid	Wegener’s granulomatosis
Phenindione	Other
Phenylbutazone	Eosinophilic myocarditis
Phenytoin	Generic
Procainamide	Granulomatous myocarditis
Pyribenzamine	Head trauma
Ranitidine	Hypothermia
Reserpine	Hyperpyrexia
Spironolactone	Ionizing radiation
Tetanus vaccine	Mononuclear myocarditis
Smallpox vaccine	
Streptomyacin	
Tetracycline	
Trimethoprim	

\[
\text{FIGURE 59.1. Incidence of detection of specific viral genomic material in human cardiac tissue by polymerase chain reaction (PCR).}
\]
that causes rheumatic fever. Fortunately, rheumatic fever is seen in the Western world with only a low frequency of sporadic cases in regional clusters. The incidence in the United States is less than 2 per 100,000, but in the developing world, rheumatic heart disease continues to be the leading cause of cardiac hospitalization in the 5- to 25-year-old age group. Although the inflammatory component of rheumatic carditis is largely restricted to the valves, it has been believed to cause myocardial dysfunction.

Myocarditis is a well-documented complication of Borrelia burgdorferi infection (Lyme disease) and is reported in up to 8% of cases. Cardiac involvement is often characterized by the development of atrioventricular [AV] block and rarely progresses to left ventricular dysfunction and cardiomegaly. Mycoplasma pneumoniae infection has also been associated with myocarditis. Lewes and coworkers demonstrated asymptomatic myocardial involvement as documented by ECG changes in a third of the cases with acute Mycoplasma infection. Six percent of military conscripts with clinical myocarditis were found to have active M. pneumoniae infection. Chlamydia infections have also been associated with myocarditis, especially among small children, often having fatal outcomes. C. pneumoniae infection has also been noted in a few cases of mild myocarditis and has been found with respiratory infection associated with myocarditis, resulting in sudden death in a young athlete. Chlamydia psittaci infection may be associated with myocarditis in 5% to 15% of those affected, usually with minimal clinical signs or symptoms. Pericarditis is more frequent and likely to cause cardiac morbidity with ornithosis.

Other Causative Infectious Agents

Rickettsial infections, like Rocky Mountain spotted fever and scrub typhus, are frequently accompanied by myocardial involvement, although vasculitis is more prominent with these infections. Q fever may also be associated with myocarditis. Trypanosoma cruzi is a well-recognized cause of myocarditis and cardiomyopathy in South America (Chagas’ disease). Toxoplasma gondii poses a significant problem among cardiac transplant recipients because a large number of the recipients lack antibodies against this agent, which may cause myocarditis. Toxoplasmosis also poses a major threat to patients with AIDS. Myocarditis has frequently been seen in human immunodeficiency virus (HIV)-infected populations with or without concomitant Toxoplasma infection. In two autopsy studies of patients with AIDS, myocarditis was found in almost half of the cases; in another study, 54% of 102 prospectively studied patients with AIDS had echocardiographic evidence of myocardial dysfunction. Myocarditis may also occur in patients with AIDS as a result of T-cell restitution after antiviral therapy.

Myocarditis can also be seen with parasitic infections such as Trichinella spiralis, which has an affinity for striated muscle, including the heart.

Other Noninfectious Causes

Noninfectious causes of myocarditis include drug-induced hypersensitivity, direct toxicity of specific pharmaceutical agents, and systemic collagen vascular disorders. Eosinophilic myocarditis and giant cell myocarditis are distinct forms of inflammatory myocarditis of uncertain etiology.

Microorganisms are rarely isolated or demonstrated in heart muscle; hence, identification of a specific infectious etiologic agent depends on recognition of its systemic manifestations. Once specific noninfectious and nonviral infectious agents are excluded, myocarditis is often assumed to be of viral etiology. Although definitive serologic evidence of viral infection can be obtained in many patients, it is absent in the majority of patients with presumed myocarditis. A significant number of cases of myocarditis is due to autoimmune phenomena either induced by a viral infection or resulting from systemic autoimmune disease. Since the establishment of definitive etiologic diagnoses is ambiguous, the terms viral myocarditis, idiopathic myocarditis, lymphocytic myocarditis, autoimmune myocarditis, and interstitial myocarditis are frequently used interchangeably.

Pathophysiology of Viral Myocarditis

The pathophysiologic mechanisms of myocarditis in humans are not fully understood. Clearly, multiple mechanisms exist, including direct infection by viruses, bacteria, and other organisms; noninfectious causes, such as toxins and drug hypersensitivity, and parainfectious etiologies, resulting from the immune response to infection. Most cases of overt heart failure due to myocarditis in North America, Europe, and Japan are thought to arise from the latter type of mechanism, during and after viral infection of the heart. A triphasic disease process is observed [Fig. 59.2A]. In the first phase, active viral infection of the myocardium results in a variable
extent of muscle damage, which often may not be clinically apparent. Phase 2 develops in an unknown proportion of infected individuals after partial or complete resolution of active infection and is characterized by further myocardial damage, both by ongoing immune activation and by newly developed autoimmune activity. A small proportion of patients develops dilated cardiomyopathy, the third phase of disease, resulting from the cumulative damage caused by infection, immunity, and autoimmunity. During this phase, a considerable body of evidence suggests that the immune and autoimmune processes persist, in part as a result of viral persistence. Figure 59.2B depicts the three roles virus may play in bringing about dilatation and chronic heart failure. After the initial injury that occurs during active viral replication, latent, nonreplicating viruses can still alter myocyte function through viral genomic expression. Even if the virus is completely eliminated and the immune response ceases, through the various mechanisms of adverse remodeling, the cardiomyopathy may progress inexorably.

Animal Models

The most widely accepted models for the study of human myocarditis are those of enteroviral myocarditis induced by coxsackievirus B3 (CVB3) and the encephalomyocarditis virus. Induction of chronic murine myocarditis by CVB3 requires the virus to have a cardiovirulence capacity and murine strains of certain genetic background. Infection of syngeneic weanling mice with CVB3 results in brief cardiac infection lasting about a week, beyond which the virus cannot be cultured. However, viral RNA persists for several months after the initial infection. Several mechanisms have been hypothesized to explain the initiation of chronic inflammatory response in myocytes by the viral infection:

1. Dysregulatory processes that stimulate inflammation and result in myocyte destruction may be provoked by persistent infection of the cell by the replicating virus or even remnant virions.
2. The virus-induced myocyte injury releases or exposes hitherto hidden or cryptic antigens to immune cells, leading to autoimmune effector molecule synthesis and maintained inflammatory response.
3. The CVB3 virion or other viral proteins share epitopes with internal or plasma membrane proteins of normal cells (molecular mimicry) and stimulate immune responses that participate in autoimmune reactions.

These three mechanisms are not mutually exclusive and all may be simultaneously operative. The CVB3 and CVB4 share epitopes with human cardiac myocyte sarcolemmal proteins, human and mouse cardiac myosins, streptococcal M protein, adenine nucleotide translocator protein, and other proteins on normal mouse myocytes and fibroblasts. A large number of target epitopes have been proposed, including the β-adrenergic receptor, laminin, branched chain ketoacid dehydrogenase, and heat shock protein 60. Although antibodies to these antigens are frequently identified in association with myocarditis, the clinical significance and causal relationship are yet unresolved.

Cytotoxic lymphocytes (CTLs) from mice with CVB3-induced myocarditis possess the ability in vitro to recognize and kill neonatal myocytes, fibroblasts, and endothelial cells infected with the same strain of the virus, suggesting that the recognition of a novel tissue antigen is induced by the infection. Cross-reactive, concurrent recognition of unrelated cardiac epitopes also occurs because CTLs also lyse uninfected myocytes in vitro. The production of perforin, a pore-forming protein, has been proposed as one of the mechanisms for the cytolysis induced by lymphocytes. Perforins, when inserted into myocyte membrane, induce a lethal augmentation in cell permeability that results in cellular edema and death. Perforin-independent mechanisms have also been proposed, including a Fas (CD95/Apo-1)–based inositol-1,4,5-triphosphate–mediated cytolysis that can be demonstrated in perforin-deficient gene-knockout mice. Coxsackievirus-infected mice also develop additional immune sensitization to cardiac heavy chain myosin, possibly owing to the release of the sequestered myosin antigens from the virus-damaged cells. Immunization of mice with the heavy chain myosin and an adjuvant produces a histologically similar picture to CVB3-induced myocarditis. Adoptive transfer of splenocytes can also produce experimental autoimmune myocarditis after myocardial infarction in syngeneic rats. The sensitized lymphocytes when transferred to normal rats cause cardiac-specific cellular infiltration with accompanying myocyte necrosis. The genetic susceptibility, kinetics, and cellular composition of the infiltrates in these models are similar and suggest the role of endogenous antigens as an epitope for the inflammatory response.

Role of Cellular Immunity

The pathways and cellular participants in the immunopathogenesis of experimental viral myocarditis are well recognized. The replicating viral particles can be readily identified in cardiac myocytes within a few hours of inoculation of CVB3 into mice. The viral particles reach a numerical peak in 3 to 4 days, and usually at 7 to 10 days, they are no longer detectable. The inflammatory infiltrate is detectable by day 5 and reaches a plateau by days 7 to 10. The early inflammatory infiltrate consists of lymphocytes, macrophages, neutrophils, natural killer cells, and the associated cytokines and humoral effectors. The natural killer cells are the first to appear and are detected in the activated state in 3 to 4 days. These cells are capable of lysing virus-infected cells in vitro. The T lymphocytes and macrophages follow the natural killer cells in the temporal sequence and become the predominant cells infiltrating the myocardium in 7 to 10 days. Although CVB3 replicates readily in myocytes in vitro, the cells are resistant to lysis in comparison with other cultured cell lines. Direct myocarditis appears to play a minimal role in cell lines derived from normal mice.

The immunodeficient severe combined immunodeficiency (SCID) mouse model has provided valuable insight into the early immune activity in response to the viral infection. The SCID mice lack mature T- and B-lymphocyte function and develop extensive myocardial necrosis with pleomorphic infiltrates, rapid viral proliferation, and profound virus-associated myocarditis when inoculated with CVB3. The macrophage and natural killer cell activity is
responses on recognition of the foreign peptide by the antigen-I molecules provide peptide-binding sites that evoke effector mice.163 Recent observations suggest that co-stimulatory lymphocyte depletion and specific immunosuppression using questered due to the injury.161,162 Even non viral antigens on sion of “neoantigens” either induced by the virus or unse-

The infected myocyte can still remain a target for the CTLs, even if the viral antigens are cleared, owing to expression of “neoantigens” either induced by the virus or unse-questered due to the injury.162 Even nonviral antigens on infected myocytes can react with CTLs, such as those induced by actinomycin D,162 and new glycoproteins have been identified on the surface of CVB3-infected cells that can be recognized by CTLs from other syngeneic-infected mice.163 Recent observations suggest that co-stimulatory molecules B7-1, B7-2, and CD-40 may be expressed on myocytes in patients with myocarditis and may make the myocytes into antigen-presenting cells for CTLs and natural killer cells, thereby playing an important role in the direct myocardial damage by these lytic cells.164

Role of Humoral Immunity

Another mechanism for ongoing myocyte damage is the antibody-mediated autoimmune response. Since the major- ity of the proteins identified as cardiac autoantigens are intracellular, it is unclear how these antibodies could harm normal intact myocytes. Several mechanisms are proposed. One suggests that after the antibody response is initiated, the circulating antibodies to intracellular antigens cross-react with the cytosolic sarcolemmal calcium ion channel protein, and binding of these channels can physiologically alter the metabolism and contractile function of the myocyte.165

Another theory holds that CTLs and antibodies target uninfected myocytes by recognition of self-antigens that were previously sequestered from immune surveillance. The processing and presentation of the self-immunogenic peptides complexed with the MHC is a prerequisite for this hypothesis. Normal human cardiac myocytes do not express detectable levels of MHC class II antigens, and their constitutive expression of MHC class I molecules remains controversional.166 A significant increase in the expression of MHC class I and class II antigens by the myocytes has been demon- strated in association with myocardial inflammation, such as that seen with viral myocarditis or transplant rejection.167-169 The increased MHC expression has also been demon- strated in endomyocardial biopsy specimens from patients with idiopathic DCM and myocarditis,170-172 and immune regulatory dysfunction may have a genetic predisposition.173 There is also evidence for aberrant expression of intracellular antigens, such as adenine nucleotide translocator (ANT) and branched-chain α-keto acid dehydrogenase (BCKD), on the surface of the myocytes.172

The formation of antiidiotypic antibodies is an additional mechanism of immune regulation in which an antibody is formed to the idiotypic determinants (antigen recognition site) of the primary antibody. The antiidiotypic antibody may cross-react with unoccupied viral receptor sites on uninfected myocytes. This phenomenon has been reported with the reovirus, polyomavirus, and coxsackievirus B models of myocarditis.174-176 The passive transfer of antiidiotypic B cells from a CVB3 myocarditic mouse to a syngeneic mouse can cause non viral myocarditis.177

Role of Cytokines

The presence of a complex, cytokine-rich microenvironment is suggested by the heterogeneous inflammatory cell populations in the hearts of infected mice. The cytokines perform myriad immunomodulatory functions, including regulation of antibody production, preservation of self-tolerance,178,179 conscription of ancillary cells in the inflammatory milieu,180,181 and maintenance of clonal expansion of CTLs.182,183 Certain cytokines regulate the collagenogen and collagenolytic activity of fibroblasts.184 Although mounting evidence supports the negative inotropic effects or the blunting of catecholamine response in myocytes exposed to various cytokines, there is no direct evidence to suggest that the cytokines are directly responsible for myocarditis.185 In an in vitro model, Barry185 demonstrated that high concentrations of interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and IL-4 have no effect on myocyte survival over 24 hours, whereas the CTLs from a mixed lym- phocyte reaction cause virtually 100% killing.
Gulick and colleagues demonstrated that cultured neonatal myocytes, when exposed to macrophage-derived IL-1 and TNF-α, have reduced levels of cyclic adenosine monophosphate and have a reduced inotropic response to catecholamines. The mechanism for decreased responsiveness to catecholamines is believed to be modulated by increases in nitric oxide production mediated by increased inducible nitric oxide synthase (iNOS) activity, and the blunting of the catecholamine response can be inhibited by the L-arginine analogue L-arginine monomethyl-l-arginine (l-NMMA). The decreased contractile response of cardiac myocytes to β-adrenergic agonists following induction of iNOS also requires the presence of insulin and the co-induction of enzymes responsible for the production of tetrahydrobiopterin, a cofactor for nitric oxide synthase. The role of iNOS remains controversial because increased expression of iNOS mRNA and that of other proinflammatory cytokines is evident and is associated with contractile dysfunction. There is evidence to support the idea that iNOS induction is crucial for the host response to CVB3 infection, and iNOS-deficient mice have significantly increased viral loads with extensive myocardial damage. Inhibition of iNOS through suppression of nuclear factor (NF)-κB induction has recently been shown to prevent encephalomyocarditis virus myocarditis.

Other investigators have suggested that inflammatory cytokines may have direct negative inotropic effects, independent of the responsiveness to the β-adrenergic agonists. High doses of IL-2 during chemotherapy have been reported to result in depression of myocardial function. Exposure of cardiac myocytes to endotoxin results in increased nitric oxide production and direct depression of contractility owing to increased levels of cyclic guanosine monophosphate. Further, TNF-α may induce direct negative inotropic effects by decreasing the Ca2+ transient, with no change in the l-type Ca2+ current and independent of nitric oxide synthesis. Although the extent to which cytokines cause direct negative inotropic effects or attenuation of endogenous β-adrenergic agonist activity remains unclear, they do produce myocyte dysfunction and cardiac decompensation. Transgenic mice with overexpression of TNF-α develop biventricular dilation and cardiac failure, resulting in premature death. Pathologic specimens from these mice reveal globular dilated hearts and transmural myocarditis with myocyte apoptosis.

Increased levels of intracellular adhesion molecule (ICAM-1), IL-1α, IL-1β, TNF-α, and macrophage-stimulating factor have been demonstrated in patients with myocarditis and idiopathic DCM. Furthermore, the susceptibility of mice in the CVB3 myocarditis model can be increased by pretreatment with these cytokines. Transforming growth factor-β is identifiable by immunohistochemistry in the prenecrotic regions of infiltrates in the murine myocardium and decreases when the macrophages and fibroblasts migrate to the necrotic foci. These growth factors may be responsible for recruitment of the immunologic effectors and may directly affect cardiac function. An intriguing feature of cytokine activity remains their possible role in the secondary development of myocyte hypertrophy and interstitial fibrosis, characteristic of dilated cardiomyopathy. Among animals with different forms of viral myocarditis associated with similar intensity of initial myocyte necrosis, only those animals with persistent inflammation develop interstitial fibrosis, reflected by fibroblast proliferation and an increase in the extracellular matrix. Myocardial fibrosis correlates well with the presence of T lymphocytes and macrophages, which in their activated state release fibrogenic cytokines such as fibroblast growth factor and transforming growth factor-β.

Matrix metalloproteinases (MMPs), and their inhibitors, are thought to play a critical role in the process of myocardial remodeling. Some of the cytokines elaborated during the course of viral myocarditis, such as TNF-α, disturb the balance between MMPs and their inhibitors by increasing MMP, leading to failure of collagen cross-linking and worsened ventricular function. This pathophysiology may present opportunities for prevention of the development of dilated cardiomyopathy resulting from myocarditis.

FIGURE 59.3. Detailed pathophysiologic mechanisms of myocarditis in humans.
Significance of Animal Models

Lymphocytic myocarditis models in animals have conclusively demonstrated the association of viral infection and myocarditis. This association clearly exists in humans, but the proportion of cases that can be accounted for by viral infection is not known. The myocardial damage in murine models of viral myocarditis occurs in two distinct phases: an early phase of direct viral cytopathy in which virus-specific T-lymphocyte- and antibody-mediated cytopathy predominate; and a late or chronic phase in which the persistent viral genome, reactive CTLs, autoantibodies, cytokines, and microvascular damage mediate myocyte damage and dysfunction. The hypothetical mechanisms of virus-induced autoimmune heart disease are presented in Figures 59.2 to 59.4.

The recognition that immune responses to specific viruses are consequential in the development of myocyte injury has led to exhaustive research to exploit the possibility of designing immunomodulatory and antiviral therapies. The pretreatment of mice with inactivated virus vaccine prevents the manifestations of encephalomyocarditis virus myocarditis. The administration of antiviral therapies reduces the viral load and attenuates the histologic findings of myocarditis. The antiviral response can be augmented by IFN-α or the exogenous administration of IL-6. Recombinant murine IFN-γ has also been demonstrated to improve the prognosis of acute murine myocarditis caused by encephalomyocarditis virus by suppressing replication.

The murine model has also been the subject of intensive study with clinically applied immunosuppressants, such as corticosteroids, nonsteroidal antiinflammatory agents, and cyclophosphamide, all of which have demonstrated deleterious effects when given in the acute viremic phase. Cyclosporine, when administered in the early viremic phase, worsens myocardial injury but, in the late immune phase, has a beneficial effect. Similar results have been reported with tacrolimus, and survival improves significantly when immunosuppressants such as cyclosporine, azathioprine, and 15-deoxyspergualin are used in adjunct to immunomodulators, such as IFN-α. Antibodies to TNF-α have been demonstrated to improve survival and reduce myocardial injury. Cytokine inhibitors have had promising results in animal models, but human clinical trials have been inconsistent. Vesnarinone, a phosphodiesterase III inhibitor, has demonstrated beneficial hemodynamic effects and inhibits the production of TNF-α and favorably modulates induction of iNOS. Amlodipine has also been shown to increase survival of mice with viral myocarditis by inhibiting expression of iNOS and production of nitric oxide in vivo and in vitro.

Clinical Features and Approach to Diagnosis

Clinical Presentation

The diversity of immunopathogenetic mechanisms and variability in the severity of observed disease in the murine model are only a preview to the potpourri of clinical manifestations of myocarditis in humans. The presentation of unexplained progressive cardiac dysfunction or ventricular arrhythmias should lead to the suspicion of myocarditis, especially when routine cardiac diagnostic studies do not reveal an etiology. The history of an antecedent viral infection or prodrome is often sought but seldom reported and rarely confirmed by convalescent serologies. The presence of mild elevation of creatine kinase MB isoenzyme (CK-MB) or troponin, leukocytosis, or ECG changes may further underscore the possibility of myocarditis.

Most patients with myocarditis likely remain asymptomatic and never seek medical attention. The high frequency of exposure to cardiotropic viruses and the observation of a fairly high incidence of ECG abnormalities in apparently healthy individuals support this speculation. The incidence of myocarditis in an autopsy series following traumatic deaths in previously healthy individuals has been reported at 2.2%. Others have reported incidences ranging from 0.11% to as high as 5% in unselected autopsy series. These studies may suggest that at any given time, a significant percentage of the asymptomatic general population has myocarditis.

The most common presentation of myocarditis is an acute febrile syndrome associated with pericardial and sys-
temic complaints. Cardiotoxic viruses may cause pericardial inflammation, and patients often present with a syndrome of myopericarditis. Chest pain is the most common symptom and is secondary to pericarditis or myocardial injury. A dramatic presentation of myocardiitis is one indistinguishable from an acute myocardial infarction, complete with chest pain, ECG features suggesting acute ischemic injury, enzymatic evidence of myocardial damage, and echocardiographic or ventriculographic regional wall motion abnormalities, but on endomyocardial biopsy myocarditis is confirmed. Most patients presenting with this acute syndrome completely recover, although there are isolated instances where progressive myocyte loss and cardiac failure or sudden arrhythmic death is reported. The segmental wall motion abnormalities result from virus-mediated injury, although local coronary arteritis and vasospasm have been suggested as possible culprits.

Symptoms of right and left ventricular failure and even cardiogenic shock are frequently found in patients with biopsy-proven myocarditis, since it is these symptoms that lead to medical attention. However, the true incidence of heart failure in patients with myocarditis is probably much lower. In patients presenting with recent-onset heart failure and biopsy-proven myocarditis, 50% to 60% have had an antecedent flu-like illness.

Neonatal myocarditis is often a fulminating syndrome consisting of fever, tachycardia, tachypnea, cyanosis, and rapid progression to circulatory collapse. Mortality rates are the highest in this subpopulation, approaching 50%. Children are known to present with syncope due to heart block. Other atrial arrhythmias described with myocarditis include sinoatrial block, atrial standstill, AV block, intraatrial conduction abnormalities, atrial tachycardia, flutter, and fibrillation. Histologic evidence of possible myocarditis has been described in up to two thirds of patients with lone atrial fibrillation. Complete heart block has also been described in certain viral infections, such as Epstein-Barr virus or mumps, and also with rickettsias. Myocarditis may also manifest as myocardial thickening and fibrosis presenting as diastolic dysfunction or restrictive cardiomyopathy, and asymmetric septal thickening resembling hypertrophic cardiomyopathy. Lieberman and coworkers proposed a clinicopathologic description of myocarditis based on the initial manifestations, endomyocardial biopsy, and recovery (fulminant, acute, chronic active, or chronic persistent myocarditis).

Ventricular Arrhythmias

Ventricular arrhythmias are frequently encountered in patients with myocarditis, ranging from innocuous premature ventricular contractions to malignant and incessant ventricular tachycardia, and myocarditis is often incriminated in otherwise unexplained ventricular arrhythmias and sudden death. Myocarditis has been documented as a cause of ventricular repolarization abnormalities in athletes with or without arrhythmias. Ventricular arrhythmias may also be precursors to sudden cardiac death in young athletes with occult myocarditis. In autopsy series, myocarditis accounts for 10% to 25% of sudden deaths in young, healthy people. In a population-based retrospective study from Turin, Italy, an incidence of only 0.53% was reported among 17,162 autopsies performed over three decades, but the application of standardized systematic histologic examination and criteria tends to give a higher incidence, in the range of 5%, among autopsies performed at a general hospital. Wesslen and associates reported signs of active, healing, or healed myocarditis in 12 of 16 cases of sudden death in young Swedes. Among high-performance athletes, sudden death due to undiagnosed myocarditis often stirs media attention. Myocarditis has also been anecdotally implicated in sudden infant death syndrome. Ventricular arrhythmias are frequently the initial and most prominent presentation of giant cell myocarditis.

Ventricular arrhythmias and sudden death are common in all forms of myocardial failure, but specific immune-mediated effects on myocyte electrophysiology could also account for a portion of these arrhythmias. Binah summarized a number of the mechanisms recognized by work in his laboratory and in others. As noted above, perforin elaborated by CTLs is capable of forming membrane channels that pass charged ions, resulting in action potential shortening and diastolic oscillations. In addition, Fas ligand can lengthen the action potential and induce afterpotentials, in part through inhibiting Ito and augmenting Ical.

Physical Examination

The physical findings in acute myocarditis are dependent on the extent of myocardial or pericardial involvement, inciting agent (cardiotoxic virus), and other factors. Fever occurs occasionally, and in the Myocarditis Treatment Trial (MTT), it was noted in 18% of patients with myocarditis. Sinus tachycardia may frequently accompany the febrile state but is often out of proportion to the fever and is more likely adrenergically mediated, owing to the hemodynamic alterations of the failing heart. Significant ventricular dysfunction may also be associated with hypotension, gallops, murmurs of regurgitation, rales, jugular venous distention, hepatomegaly, ascites, pleural effusions, and peripheral edema. Pericardial involvement may result in a friction rub. The physical findings are not specific for myocarditis.

Laboratory Findings

Patients with myocarditis frequently have serologic evidence of an inflammatory state with elevation of nonspecific markers of inflammation, such as erythrocyte sedimentation rate, C-reactive protein, and leukocyte counts. A fourfold increase in virus-specific IgG titers in the convalescent period is considered reliable evidence of recent infection and is found in 20% of patients with myocarditis. In the MTT, more than half of the patients with biopsy-proven myocarditis had an elevated sedimentation rate. Other markers noted to be elevated in myocarditis include TNF-α, ICAM-1, vascular cell adhesion molecule-1, interleukins, and soluble Fas. Unfortunately, these markers are not specific for myocarditis.

Myocarditis, although associated with myocyte damage and necrosis, results in CK-MB elevation in only 12% of
patients with biopsy-proven myocarditis.279 More recently, Lauer and colleagues280 reported on CK-MB elevation in only one of five patients with histologic evidence of myocarditis, but cardiac troponin T (cTnT), which is extremely specific for myocardial damage, was elevated in all five. Additionally, cTnT was elevated in 28 patients, of whom 26 had immune-histologic evidence of myocarditis. Thus, cTnT elevation appears to be highly predictive for myocarditis.280 In an analysis of stored sera on 88 patients from the MTT,276 cardiac troponin I (cTnI) was elevated in 34% of patients (18 of 53) with myocarditis, compared with 11% (4 of 35) without myocarditis. In contrast, CK-MB values were elevated in only 5.7% of patients (3 of 53) with myocarditis. Further, the cTnI elevations correlated with less than 1 month’s duration of heart failure symptoms.276

Antibodies to cardiac antigens can be detected in the serum of patients with myocarditis.126,281,282 Anti-α-myosin IgG antibodies may have promise as a diagnostic tool, and, along with other antibodies, probably play a functional role.283,284 The clinical efficacy of IgG immunoadsorption285,286 in DCM supports this notion [see also Fig. 59.6].

Electrocardiography, Echocardiography Cardiac Scintigraphy, and Cardiovascular Magnetic Resonance

Historically, acute myocarditis was diagnosed with the constellation of clinical symptoms, physical signs, and ECG abnormalities. Although no particular feature on the electrocardiogram is pathognomonic of acute myocarditis, sinus tachycardia, repolarization abnormalities, conduction abnormalities, and arrhythmias are common findings. In a series of 45 patients with biopsy-proven myocarditis, Morgera and associates287 noted an abnormal QRS duration in 45%; abnormal Q waves in 18%; left bundle branch block (LBBB) and right bundle branch block (RBBB) patterns in 18% and 13%, respectively; ST elevation in 16%; T-wave inversions in 16%; and advanced AV block in 16%. In patients presenting earlier in the course of the disease, with symptoms of less than 1 month’s duration, 31% had advanced AV block and 47% had ST elevation with T-wave inversions. The latter finding has been noted to portend a poorer prognosis. Other predictors of poor outcome include LBBB, RBBB, and other conduction abnormalities, which seem to suggest active, severe, and extensive myocarditis.288 Patients may present with sustained ventricular tachycardia, and continuous ECG monitoring of patients with myocarditis often reveals complex ventricular ectopy and nonsustained ventricular tachycardia.245,249

Echocardiography is useful in assessing the extent of left ventricular systolic dysfunction, which may range from mild segmental hypokinesis to severe global hypokinesis or akinesia associated with severe congestive heart failure (CHF).290 Patients presenting with chest pain or arrhythmias without CHF often have normal echocardiograms. The ventricular dimensions may remain normal or may be only mildly enlarged. There may be an increase in left ventricular sphericity and right ventricular elongation and an increase in wall thickness and left ventricular mass with the interstitial edema and compensatory hypertrophy.241,291 Restrictive filling patterns in the left ventricle identifying diastolic dysfunction have been reported consistently in biopsy-proven myocarditis.241 Mural thrombi in diffusely hypokinetic ventricles have been reported frequently.292 Hyperrefractile myocardium and other qualitative and quantitative analyses of myocardial texture have been described to assess the degree of active myocardial inflammation.293 Pericardial effusion is a helpful echocardiographic finding, reported in 10% of patients with myocarditis, though hemodynamic compromise with cardiac tamponade is infrequent.293 Urbansen and associates294 recently demonstrated that cardiac tissue velocity imaging by ultrasound is more sensitive than magnetic resonance imaging (MRI) in some cases in detecting myocarditis with subtle ventricular functional impairment. Imaging of leukocyte-mediated inflammation through ultrasound fracture of phagocytosed microbubbles shows promise as a means for detecting many forms of myocardial inflammation, although the method remains to be fully evaluated in humans.295

Cardiac scintigraphy has been proposed as a convenient, noninvasive test with high sensitivity to diagnose active myocarditis. Gallium-67 imaging, which identifies areas of increased inflammation, has been studied in clinical settings and noted to have sensitivity and specificity of 83% and 86%, respectively, with a negative predictive value of 98% for the diagnosis of myocarditis.296 Indium-111 anti-myosin monoclonal antibodies have been extensively studied to identify areas of myocyte damage in acute myocarditis.297,298 This technique has extremely high sensitivity and often detects myocarditis that, on endomyocardial biopsy, is not seen by routine histologic assessment but is detected by immunohistochemistry.299 Dec and coworkers300 studied 74 patients with DCM with radiolabeled anti-myosin antibody and endomyocardial biopsy. Thirty-nine patients had abnormal anti-myosin scans, but only 11 of 39 had evidence of myocarditis (predictive value of 33%). However, functional improvement was more likely in anti-myosin scan–positive patients irrespective of the biopsy. The left ventricular ejection fraction (LVEF) improved significantly in both concordant-positive (scan and biopsy both positive) and discordant-positive (scan positive, biopsy negative) patients, but it did not markedly improve in the negative scan and negative biopsy subset. The investigators proposed that discordant-positive scans represented patients with myocarditis in whom there may have been a sampling error on biopsy, hence the reason for missing the diagnosis.300 Anastasiou-Nana’s group301 in Athens reported that a combination of minimal or no left ventricular dilatation and a positive indium-111 anti-myosin monoclonal antibody scan is highly specific for myocarditis. Other nuclear techniques, such as technetium-99m Tc-MIBI single photon emission computed tomography (SPECT) imaging,302 may also be useful in detecting myocarditis.

Contrast media–enhanced cardiovascular MRI in patients with myocarditis has also been demonstrated to be an excellent tool in visualizing the location, activity, and extent of inflammation.303 Early in myocarditis (day 3), the enhancement on MRI signals is accentuated and focal, whereas later (day 84), this seems to be attenuated and more diffuse.304 Furthermore, the severity of change correlates with prognosis.305 Myocardial phosphorus-31 magnetic resonance spectroscopy has been utilized in assessing abnormalities in
cardiac high-energy phosphate metabolism in patients with DCM and allograft rejection, but its role in the diagnosis of active myocarditis remains to be elucidated.336

Endomyocardial Biopsy and Cardiac Catheterization

The antemortem diagnosis of myocarditis was made feasible by the development of the endomyocardial biopsy technique. Myocardial samples could be obtained via a transvascular approach with minimal discomfort to the patient and a low complication rate. Whereas other approaches for acquiring myocardial tissue included percutaneous biopsy and mediastinotomy,807.808 these were fraught with complications, precluding their acceptance into clinical practice. The safe and successful transvascular endomyocardial biopsy first described by Sakakibara and Konno306 was readily accepted for surveillance of cardiac allograft rejection in transplant recipients. The use of endomyocardial biopsy for the diagnosis and management of myocarditis was first reported in 1980.337 Subsequently, many reports70,225,243,258–264,269,311–329 documented myocarditis in patients presenting with unexplained heart failure or ventricular arrhythmias (Table 59.4).

Investigators	Year	Biopsies (n)	Myocarditis n (%)
Mason et al.310	1980	400	7 [2]
Baandrup and Olsen329	1981	201	8 [4]
Fenoglio et al.311	1983	135	34 [25]
Rose et al.313	1984	76	0 [0]
Daly et al.314	1984	69	12 [17]
Parillo et al.315	1984	74	19 [26]
Regitz et al.316	1985	150	41 [27]
Cassling et al.317	1985	80	6 [7]
Salvi et al.318	1985	74	13 [18]
Dec et al.319	1985	27	18 [67]
Mortensen et al.320	1985	65	12 [18]
Hammond et al.370	1987	79	14 [18]
Meany et al.321	1987	123	40 [32]
Chow et al.322	1988	90	4 [4]
Maisch et al.331	1988	123	10 [8]
Hobbs et al.324	1989	148	31 [21]
Popma et al.325	1989	61	8 [13]
Vasiljevic et al.326	1990	85	10 [12]
Lieberman et al.343	1991	348	60 [17]
Herskowitz et al.325	1993	534	38 [26]
Kuhl et al.327	1996	170	9 [5]
Arbustini et al.328	1997	601	26 [4]
Frustaci et al.30	2003	478	80 [16]

In unexplained ventricular arrhythmias and sudden death*

Investigators	Year	Biopsies (n)	Myocarditis n (%)
Strain et al.358	1983	18	3 [17]
Sugrue et al.359	1984	12	1 [8]
Take et al.369	1985	241*	21 [9]
Phillips et al.360	1986	19	8 [42]
Hosenpud et al.360	1986	12	4 [33]
Yoshizato et al.361	1990	8	2 [25]
Sekiguchi et al.362	1992	43	9 [21]
Wiles et al.363	1992	33	3 [9]
Thongtang et al.364	1993	53	18 [36]
Frustaci et al.365	1994	17	7 [41]
Frustaci et al.365	2003	136	28 [21]
Doolan et al.366	2004	193*	23 [12]
Eckart et al.367	2004	126*	13 [10]

*Autopsy studies included.

In unexplained heart failure

The Dallas criteria with the use of newer techniques of PCR and in situ hybridization. As discussed earlier,6–11 there is a need for validation of new histologic and nonhistologic criteria for diagnosis of this disease to improve upon the Dallas histologic criteria.

Coronary arteriography is usually normal, although in animal models, coronary vasculitis has been reported. The one major exception is Kawasaki disease, in which coronary artery aneurysms are frequently seen in association with myocarditis.835 Ventriculograms may demonstrate global or regional ventricular dysfunction, associated valvular regurgitation, and mural thrombi.836 Localized ventricular aneurysms with normal global systolic function have also been reported.837
The hemodynamic profiles of patients with acute myocarditis are representative of the extent of myocardial and pericardial involvement. In patients with significant ventricular dysfunction, elevated filling pressures with depressed cardiac output and stroke work indices are seen. A restrictive hemodynamic profile can be seen and must be differentiated from that seen with postviral constrictive pericarditis.

Natural History of Myocarditis

The true natural history of myocarditis is largely unknown because the great majority of cases is perhaps subclinical and resolves without any significant residual cardiac dysfunction. Clinically apparent myocardial dysfunction as seen with acute coxsackievirus B infections also resolves without any adverse sequelae in most cases. It has been estimated that only 12% of patients with clinically suspected acute myocarditis will proceed to develop DCM, but the true incidence is unknown. The murine myocarditis models frequently develop a pathologic process indistinguishable from that of the human form of idiopathic DCM.

The direct link among viral infection, myocarditis, and DCM has not been conclusively proven. Isolation of infectious virus from the heart has been achieved in only a few cases of acute fulminant myocarditis in neonates and infants. Given the hypothesis that DCM may develop after viral infection has been eradicated, the presence of virus in the myocardium is neither sufficient nor necessary to link virally mediated myocarditis with DCM. The indirect evidence of viral etiology of DCM relies on (1) progression of viral myocarditis to DCM in experimental animal models, (2) apparent progression of myocarditis in some patients to DCM, (3) increased enteroviral antibody titers in patients with DCM, (4) presence of viral genomic material in the myocardial tissue of patients with DCM, and (5) improvement of ventricular function in subjects with DCM receiving immunomodulatory treatments. The major limitations are as follows: the relevance of disease in mice to humans is suspect, most cases of DCM are not preceded by documented myocarditis, and epidemiologic serologic evidence is incomplete. Whereas coxsackievirus B IgM antibodies are detected with greater frequency in patients with DCM than in normal controls, the frequency is similar to matched community controls and household contacts. Enterviral genomic sequences are detected in the myocardium of 8% to 70% of patients with active myocarditis and in 0% to 45% of patients with DCM, but in data derived from most published studies, the average detection frequencies are 25% for active myocarditis, 15% for DCM, and not significantly different from 15% among healthy controls. In a meta-analysis of the association of enteroviruses with human heart disease, Baboonian and Treasure concluded that although the causative role of enteroviruses in acute myocarditis, particularly in children, was supported by an overall odds ratio of 4.4 (confidence interval [CI], 2.4 to 8.2), and the association of DCM was suggested by an overall odds ratio of 3.8 (CI, 2.1 to 4.6), six of 17 studies did not demonstrate an increased presence of viral remnants. The same investigators demonstrated more recently that PCR positivity is not found in minimally affected first-degree relatives of patients with familial DCM, suggesting that in this group, genetic predisposition to viral myocarditis does not underlie the inherited predisposition to development of DCM. In recent studies, other investigators have found strong evidence for a viral link, while others have found no viral vestiges in the myocardium of patients with end-stage heart failure.

Regional variation in the etiology of DCM may be responsible in part for the reported differences in PCR positivity.

Responsiveness of patients with DCM to immunomodulatory interventions provides an interesting line of evidence supporting a viral/immune etiology of DCM. One would expect immune suppression to be an effective treatment in DCM if postviral and other forms of autoimmunity play a causative role in the disease. Efficacy of such interventions has been reported in carefully selected patients.

Although the link between myocarditis and DCM is unclear, certain prognostic factors are identifiable. The presence of an abnormal QRS complex on ECG correlates with more severe left ventricular damage and is an independent predictor of survival. Left atrial enlargement, atrial fibrillation, and LBBB are also associated with increased mortality. Higher baseline LVEF is positively associated with survival, whereas intensity of conventional therapy at baseline is negatively associated with survival. The presence of right ventricular dysfunction, as evidenced by abnormal right ventricular systolic shortening on echocardiography, was shown to be the most important predictor of death or need for cardiac transplantation in a group of 23 patients with biopsy-proven myocarditis who were followed long-term. In addition, a net increase in LVEF [between initial and final ejection fraction] was associated with improved survival, whereas baseline ejection fraction was not predictive of outcome. The presence and degree of left ventricular regional wall motion abnormalities did not affect the clinical course.

Light microscopic findings on biopsy have not been found to predict outcome in myocarditis. However, the extent of myocardial inflammation was a predictor of outcome after surgical ventricular remodeling for heart failure. Higher baseline serum antibodies to cardiac IgG by indirect immunofluorescence was associated with a better LVEF and a smaller left ventricular end-diastolic dimension.

Treatment

General Supportive Measures

General supportive measures for patients with myocarditis include a low-sodium diet, discontinuation of ethanol, and fluid restriction, especially in the presence of heart failure. Patients with myopericarditis may need analgesics for pain control. Recommendations for the limitation of physical activity are based on the murine model of CVB3 myocarditis, in which forced exercise during the acute phase of illness was associated with higher titers of infectious virus, increased inflammatory and necrotic lesions, and mortality. Ibuprofen, indomethacin, and salicylates administered to mice after inoculation with CVB3 also resulted in increased viral titers, increased histologic severity of myocarditis, and increased mortality. This led to the suggestion that even nonsteroidal antiinflammatory drugs should be avoided in
patients with active acute myocarditis. The American College of Cardiology Task Force on myopericardial diseases recommends a convalescent period of approximately 6 months after the onset of clinical manifestations before a return to competitive sports.353

Conventional Therapy

The management of patients with presumed or confirmed myocarditis is primarily directed toward treatment of CHF, arrhythmias, and symptoms from pericardial disease. Diuretics, vasodilators, and digoxin should be administered to patients with mild- to- moderate systolic dysfunction. Inotropic therapy and mechanical support with intraaortic balloon pump or ventricular-assist devices may be required for patients in refractory cardiogenic shock. Cardiac transplantation is reserved for those patients who do not improve despite the measures described previously.

Although there are multiple studies on the use of angiotensin-converting enzyme inhibitors (ACEIs) in heart failure,354 the utility of ACEIs in myocarditis has been studied only in the murine model. Early treatment with captopril in a CVB3 myocarditis model resulted in less inflammatory infiltrate, myocardial necrosis, and calcification. Heart weight, heart/ body weight ratio, and liver congestion diminished. Even with delayed therapy, a reduction in left ventricular mass and liver congestion was evident.355 The ACEIs exert a potent vasodilator response, improve pump function, prevent ventricular remodeling, and may have antiarrhythmic properties. Hence, all patients with systolic dysfunction, including those with myocarditis, should be placed on maximally tolerated doses of ACEIs.

The use of beta-blockers in patients with mild- to- moderate heart failure due to DCM has been reported to be beneficial.356 but once again, no trials in humans with myocarditis have been performed. Metoprolol-treated mice in an acute CVB3 murine myocarditis model have increased viral effects with improved histologic scores, reduced heart weight and volume, and liver congestion.357 It appears that in the acute setting, beta-blockers should be avoided, and in the chronic heart failure stage, the nonselective beta-blockers may be beneficial.

Antiarrhythmic therapy may be needed for control of ventricular and supraventricular dysrhythmias. Although the data from clinical trials of antiarrhythmic therapy in heart failure have not shown a primary mortality benefit, patients with active myocarditis were excluded in these trials. Since immunosuppression is probably not helpful in myocarditis358 and no other specific therapy is available, one might consider treating the arrhythmias in the usual fashion, but there appears to be a rationale for making the diagnosis of myocarditis in patients who do not have profound ventricular dysfunction along with their arrhythmia. First, the majority of patients with myocarditis have a spontaneous resolution. Second, current antiarrhythmic therapy of ventricular tachyarrhythmias is exacting, involving electrophysiologic studies and use of potentially toxic drugs or implantable defibrillators. The benefit of making the diagno-

s of myocarditis is that the patient may require only short-term protection while the underlying process resolves, which can be provided by using amiodarone or other antiarrhythmic drugs under inpatient monitoring. If myocarditis resolves, antiarrhythmic therapy can be withdrawn. Patients whose arrhythmias fail to improve despite histologic resolution of myocarditis, or who survived cardiac arrest, may be candidates for aggressive electrophysiologic approaches and implantable defibrillators.244 Temporary and permanent pacemakers may be required in patients presenting with conduction system abnormalities.

Immunosuppressive and Immunomodulatory Therapy

Clinical trials of immunosuppressive therapy were first reported in children with clinical evidence of myocarditis, prior to the introduction of endomyocardial biopsy. In two series, in a total of eight children presenting with acute onset of severe CHF, rapid improvement and survival were noted with adrenocorticotropic hormone or hydrocortisone treatment.358,359 Mason and associates350 reported 10 patients with biopsy-proven myocarditis, half of whom improved with azathioprine and prednisone. Gagliardi and coworkers360 followed 20 children with biopsy-proven myocarditis who were treated with cyclosporine and prednisone. At 1 year, 10 of 20 patients still had histologic evidence of myocarditis. No patient died or required transplantation. However, there was no control group. The data supporting an immunologic basis of myocarditis resulted in multiple treatment trials using immunosuppressants (Table 59.5). The average proportion of patients showing improvement with a variety of immunosuppressants was 54%.361 A large number of the trials predated the development of the Dallas criteria; thus, the histologic definition of myocarditis was not uniform. Immunosuppressive regimens were arbitrary, and the lack of control groups made interpretation of these trials arduous. It was unclear whether immunosuppression was beneficial in those patients with myocarditis, as they can improve spontaneously. Further, the infectious complications of immunosuppression were frequently seen and occasionally reported.310,362

The conflicting results from these nonrandomized observations led to the MTT.274 In a multicenter, prospective, randomized design, the MTT enrolled patients with heart failure of recent onset (<2 years), left ventricular dysfunction [LVEF

Table 59.5. Selected nonrandomized trials of immunosuppressive treatment in myocarditis

Investigators	Year	Patient treated (n)	Treatment	Improved n (%)
Mason et al.	1980	8	P + [A, P]	4 (50)
Fenoglio et al.	1983	18	P, [A, P]	7 (39)
Daly et al.	1984	1	P	0
Dec et al.	1985	9	A + P	4 (44)
Mortenson et al.	1985	12	A + P, CyA	8 (67)
Hobbs et al.	1989	34	A + P, P, CyA	25 (74)

A, azathioprine; P, prednisone; CyA, cyclosporine.
and no immunosuppressant treatment. All patients received 24 weeks, and the primary end point was comparison of the azathioprine group was subsequently eliminated owing to conventional therapy for heart failure. The prednisone and cyclosporine, prednisone and azathioprine, and several immune parameters was performed.

At both 28 and 52 weeks, no difference in LVEF was observed in immunosuppressive-treated patients compared with untreated patients. At 1 and 5 years, there was no difference in survival or need for cardiac transplantation between groups [Fig. 59.5]. On multivariate analysis, better baseline LVEF, less intensive conventional therapy, and shorter illness duration were independent predictors of improvement in LVEF during follow-up. Analysis of immunologic variables [cardiac IgG, circulating IgG, natural killer and macrophage activity, helper T-cell level] suggested an association between better outcome and a more robust immune response. A higher level of cardiac IgG was associated with a higher LVEF and a smaller left ventricular size. The mortality rate for the entire trial was 20% at 1 year and 56% at 4.3 years. The results of the MTT were important for diagnostic management because the authors recommended that in patients with unexplained CHF, the performance of endomyocardial biopsy for the sole purpose of instituting immunosuppressive therapy was not warranted.

Nonetheless, certain subgroups may benefit from immunosuppressant therapy, including those with GCM, hypersensitivity myocarditis, or cardiac sarcoidosis. Using a multicenter database, Cooper and colleagues reviewed 63 patients with GCM. The rate of death or cardiac transplantation was 89%. Median survival was 5.5 months from symptom onset to death or transplantation. The median survival in patients treated with corticosteroids was 3.8 months versus 3.0 months in untreated patients. However, patients treated with corticosteroids and azathioprine had an average survival of 11.5 months. Cyclosporine in combination with corticosteroids, corticosteroids and azathioprine, and corticosteroids, azathioprine, and orthoclone OKT3 survived an average of 12.6 months. The uncontrolled nature of this report decreases the reliability of its conclusions.

Patients with myocarditis associated with a known immune-mediated disease, such as systemic lupus erythematosus, may benefit from immunosuppressive therapy. Other potential indications for a trial of immunosuppressant therapy include failure of myocarditis to resolve, progressive left ventricular dysfunction despite conventional therapy, continued active myocarditis on biopsy, or fulminant myocarditis that does not improve within 24 to 72 hours of full hemodynamic support, including mechanical assistance, and persistent ventricular tachycardia or fibrillation.

Smaller studies have used differing immunosuppressant regimens. Kühl and Schultheis treated 31 patients with biopsies classified as immunohistologically positive (more than two cells per high-power field and expression of adhesion molecules), negative Dallas criteria, and left ventricular dysfunction. Patients were treated with conventional therapy for 3 months, followed by gradual tapering of methylprednisolone doses over 24 weeks (following biopsy and LVEF response). Therapy was associated with an improvement in ejection fraction in 64% and improved New York Heart Association [NYHA] functional class in 77%. Four patients (12%) had no change in ejection fraction despite improvement in inflammatory infiltrates. However, study conclusions are limited by the absence of a control group.

Drucker and coworkers retrospectively reviewed 46 children with congestive cardiomyopathy and Dallas criteria of borderline or definite myocarditis. Twenty-one patients were treated with intravenous IgG (2g/kg over 24 hours) and were compared to 25 historical controls. Overall survival was not improved, although there was a trend toward improvement in 1-year survival rates in the treated group. In the intravenous IgG group, the left ventricular function was improved and persisted after adjustment for age, biopsy status, and use of ACEIs and inotropes.

In a comparative study of IFN-α, thymomodulin, and conventional therapy in patients with biopsy-proven myocarditis or idiopathic DCM, an improvement in the active treatment groups was reported for ejection fraction (at rest and during exercise), maximal exercise time, functional class, and ECG abnormalities. In 10 patients with CHF, NYHA class III or IV, with symptoms of less than 6 months’ duration, intravenous IgG resulted in an improvement in LVEF and a functional improvement to NYHA class I or II at 1 year of follow-up, in all nine patients who survived, regardless of biopsy results.

Perhaps strategies with alternative immunosuppressive regimens and different diagnostic criteria will be more successful in demonstrating the utility of immunosuppressants. The ESETCID is a prospective multicenter, placebo-controlled, double-blind study intended to address the natural course of myocarditis, myopericarditis, pericarditis, and
with follow-up for 24 months. The duration of blinded therapy is 6 months, and prednisolone and azathioprine for myocarditis without viral or autoimmune activity. Immunosuppressive drug therapy, intravenous IgG, TNF-α, and immunoadsorption are the forms of immunomodulation discussed above that have been used in humans [Fig. 59.6]. Immunoadsorption has been applied primarily in dilated cardiomyopathy, but may hold promise in myocarditis, perhaps especially in phase 2 [Fig. 59.2A] of lymphocytic myocarditis. Manipulation of cytokines, chemokines, and other factors that regulate proinflammatory and antiinflammatory processes should receive attention in the development and assessment of new immunomodulatory therapies.

Device Therapy

Myocarditis has emerged as a special indication for device therapy in recent years. Circulatory-assist devices are especially attractive in myocarditis because the disease is usually self-limited. As a result, a relatively short period of circulatory assistance may allow time for the myocardium to recover and the injurious infectious, immune, and autoimmune processes to dissipate. This concept has been successfully tested in patients with severe heart failure due to myocarditis.

Implanted cardioverter-defibrillator devices have been used to treat ventricular tachyarrhythmias commonly associated with myocarditis. While such therapy may be lifesaving, consideration should always be given to antiarrhythmic drug therapy with protracted monitoring so as to avoid device implantation if possible. Those patients with myocarditis who have survived cardiac arrest are candidates for implantable defibrillator devices.

Cardiac Transplantation

In a small series (n = 12) composed predominantly of female patients (75%), the outcome of patients with active lymphocytic myocarditis confirmed by histologic examination of the explanted heart was significantly worse than in controls undergoing transplantation for other diagnoses. This concern has not been validated in the analysis of outcome of 14,055 cardiac transplant recipients in the registry of the International Society for Heart and Lung Transplantation. One-year actuarial survival in all groups transplanted (idiopathic DCM, myocarditis, peripartum cardiomyopathy, versus other diagnoses) was 80%. Nonetheless, myocarditis may recur in the transplanted heart.

Prevention

Prevention of myocarditis is an important developing strategy given the likelihood that a substantial proportion of cases of DCM worldwide are the result of preceding or ongoing myocarditis. Several strategies have been considered, including immunization against the most common cardiotropic viruses, and functional disablement of the Coxsackie-adenovirus sarcolemmal receptor and early induction of immune tolerance. While immunization seems to have the greatest potential, scientific, medical, geographic, and political impediments are formidable.

Other Variants of Infectious Myocarditis

Human Immunodeficiency Virus and Myocarditis

The advances in treatment strategies for HIV-infected patients have successfully resulted in prolonged survival times, and noninfectious complications of AIDS, such as dementia and heart disease, have become increasingly prevalent. Early in the history of the AIDS epidemic, reports emerged of a rapidly fatal DCM affecting HIV-infected patients. Since the early reports, several clinical and echocardiographic series have suggested that a subgroup of HIV-infected patients are predisposed to the development of progressive heart disease. In a prospective echocardiographic survey of 296 HIV-infected adults over a period of 4 years, 44 patients were found to have significant cardiac dysfunction. Dilated cardiomyopathy occurred in 13 of 44 and was strongly associated with a CD4 count of less than 100/mm³ and poorer survival. It has been estimated...
that clinically significant cardiac disease occurs in 6% to 7% of HIV-seropositive individuals.392

An interesting hypothesis to explain the high frequency of dilated heart muscle disease is the presence of myocarditis in HIV-infected patients with left ventricular dysfunction. Reilly and colleagues393 reported in an autopsy series of 58 consecutive AIDS patients a significantly higher incidence of myocarditis in those with clinically apparent cardiac disease or DCM. There have been other reports of higher prevalence of myocarditis in an endomyocardial biopsy series of HIV-seropositive patients compared with those without risk factors for HIV who were biopsied for suspected myocarditis.394

Human immunodeficiency virus–related myocarditis has unique and atypical immunopathogenic features. It is characterized by increased CD8 T lymphocytes and sole induction of MHC class I, perhaps as a part of the systemic depletion of CD4 T cells. The myocarditis may not be readily apparent on histology owing to the accompanying lymphopenia, and special immunohistology and histochemistry techniques may need to be employed.395 Although in situ hybridization techniques have demonstrated HIV-1 transcripts in cardiac myocytes, interstitial dendritic cells, and endothelial cells, the pathologic significance of this finding is still unclear because patients with evident transcripts may or may not have clinical disease. Also, it is not evident that myocyte injury is a result of direct cytotoxicity of the virus, transcripts, cytokines, or other cardiotropic viruses.396 A large number of HIV-seropositive patients with left ventricular dysfunction also manifest evidence of nonpermissive or latent infection of myocytes with CMV immediate-early (CMV IE-2) genes. Although evidence for classic intranuclear inclusions of active lytic CMV infection is rarely found, there is increasing speculation that the latent viral infection may be responsible for enhanced MHC expression and provide a stimulus for ongoing immune injury, as seen with most models of myocarditis.397

A role for direct cytokine-mediated cardiac injury has also been proposed in HIV-infected populations with myocardial dysfunction. Both TNF-\(\alpha\) and IL-6, known to be elevated in HIV infection, directly inhibit cardiac contractility in vitro,398 and the former has been implicated in causing myocardial dysfunction. Increased catecholamines may be responsible for microvascular spasm and chronic ischemic dysfunction.

The clinical management of patients with HIV-related myocarditis and cardiomyopathy is targeted toward improving congestive symptoms, afterload reduction, and digitalis. 4 Myocarditis is not known, rare complication of smallpox vaccination during the eradication effort in the 1950s and 1960s. Its incidence varied with the vaccinia strain used to produce the vaccine, and with the method used to detect myocarditis. The true incidence is not known. Current vaccination programs use the original New York City Board of Health strain of vaccinia (Dryvax) and new vaccines. While the occurrence of myocarditis in the United States’s current military Dryvax vaccination program appears to be higher (0.01%, or about one in 10,000)399 than historical estimates, its incidence after new vaccines has not been determined. Previously vaccinated individuals have a much lower risk of developing myocarditis. Full functional and symptomatic recovery occurs in most patients. While involvement of eosinophils has been noted,400 the mechanisms responsible for postvaccination myocarditis are not known.

Nonviral Infectious Myocarditis

Bacterial Myocarditis

Bacterial infection of the myocardium occurs frequently in association with infective endocarditis, usually in the form of myocardial abscesses adjacent to the valve ring (see Chapter 4). Myocardial involvement has also been reported in association with a wide range of bacterial pathogens in the absence of endocarditis.401–408 With most of these agents, myocardial involvement is uncommon and occurs principally in the setting of overwhelming systemic infection.

Streptococcus

Cardiac involvement after streptococcal infection is usually manifested as acute rheumatic fever, which develops 2 to 3 weeks after onset of pharyngitis and has a distinctive histologic appearance (see Chapter 4). Streptococcal pharyngitis may also be associated with a nonrheumatic form of myocarditis that occurs concurrently with the febrile illness.409–412 The most common clinical manifestations are chest pain and marked ST-segment and T-wave abnormalities on the electrocardiogram, which correlate with segmental wall motion abnormalities observed with echocardiography.409 Cardiomegaly and CHF are uncommon. Histologic examination reveals lymphocytic infiltrates and myocyte necrosis in the absence of Aschoff bodies, similar to the findings in viral or idiopathic myocarditis.412 Bacteria are not present in the myocardium, and it is hypothesized that inflammation is caused by streptococcal exotoxins in a manner similar to that in diphtheritic myocarditis.

Diphtheria

Although vaccination has virtually eliminated diphtheria in most Western nations, it remains an important public health problem in many underdeveloped countries,413 and may be the most common etiology of myocarditis worldwide. Infection with \(C.\ diphtheriae\) is usually confined to the respiratory mucosa. Systemic manifestations are due to secretion of a potent exotoxin. The ECG abnormalities suggesting myocardial involvement are present in a high proportion of patients,414 but clinical evidence of cardiac dysfunction occurs in only 10% to 25% of cases. Nevertheless, cardiac involvement is the most common cause of death in fatal infections.415 Disturbances of AV conduction, including
bundle branch blocks and complete AV block, are observed frequently in affected patients and are associated with a mortality rate of 60% to 90%. Patients may also present with progressive cardiac dilatation and CHF. Histologic study reveals diffuse mononuclear cell infiltrates associated with myocyte necrosis. Corticosteroid therapy does not appear to be effective in the prevention or treatment of diphtheritic myocarditis, although only one prospective trial has been performed. One report suggested that administration of carnitine may decrease the incidence and severity of cardiac involvement.

Spirochetal Myocardial Disease

Lyme Disease
Lyme disease is caused by the spirochetal organism *B. burgdorferi*, which is transmitted to humans by certain species of deer ticks in endemic areas of North America, Europe, and Asia. The acute phase of the illness is characterized by fever, myalgia, lymphadenopathy, and a characteristic rash known as *erythema chronicum migrans*. The organism persists in many tissues, and chronic manifestations include arthritis and a variety of neurologic syndromes. Manifestations of cardiac involvement develop in 4% to 10% of patients at an average of 4.8 weeks (range, 4 days to 7 months) after the acute illness. Disturbances of AV conduction are the most common manifestations, occurring in 87% of cases, with complete or high-grade block in more than 50%. The AV block is usually supraventricular, with a narrow complex escape rhythm. Temporary transvenous pacing is required frequently, but AV block almost always resolves within 7 to 10 days. Endomyocardial biopsy may reveal lymphocytic infiltrates with associated myocyte necrosis, and spirochetes may be identified in biopsy specimens. Lyme carditis occasionally develops in patients without a preceding rash or other symptoms of acute Lyme disease.

Therapy with a 2 to 3 week course of antibiotics (doxycycline, amoxicillin or cefuroxime) is recommended for patients with Lyme carditis. Antibiotic therapy has proved effective in the prevention and treatment of chronic arthritis and neurologic syndromes, but its use in cardiac disease has not been tested prospectively. Evidence of diffuse myocardial involvement is common, including evolving ST-segment and T-wave abnormalities on the electrocardiogram, reversible abnormalities of left ventricular wall motion, and diffuse myocardial uptake on gallium scan. One fatal case of pancarditis has been reported, but frank heart failure is uncommon.

A high incidence of positive serologies for *B. burgdorferi* was reported in European patients with chronic DCM, and in two patients the organism was cultured from myocardial biopsies. It has been suggested that unrecognized Lyme carditis may be responsible for a small but significant proportion of cases of idiopathic DCM.

Fungal Myocarditis

Although previously uncommon, the incidence of fungal infections of the heart has increased markedly since the early 1970s. This increased incidence is due to several factors, including the increasing use of antibiotics, immunosuppressive agents for transplantation, and chemotherapy, as well as the increasing application of cardiac surgery and the increasing prevalence of intravenous drug abuse.

Candida Infection

The most common fungal organisms causing cardiac infection are *Candida* species. *Candida* endocarditis occurs most frequently after thoracic surgery and in intravenous drug abusers. Immunocompromised patients, on the other hand, are more likely to develop *Candida* myocarditis without involvement of the valves or endocardium, usually in the setting of disseminated systemic infection. Autopsy studies reveal extensive myocardial involvement in 10% to 63% of patients who die of systemic candidiasis.

Histologically, *Candida* myocarditis consists of focal abscesses (usually microscopic, although gross nodules may be present) interspersed with areas of normal myocardium. Clinical manifestations typically include nonspecific ECG abnormalities, disturbances of AV conduction, including complete heart block, and tachyarrhythmias. Cardiomegaly and CHF are rare. Myocardial involvement is usually not recognized antemortem.

Aspergillus Infection

Myocardial involvement is present in 22% of patients with disseminated aspergillosis, and myocardial invasion is almost always present in patients with Aspergillus endocarditis. As in other tissues, histology is characterized by microscopic and macroscopic abscess formation. Extensive vascular invasion by fungal hyphae results in thrombosis and coagulation necrosis. Although Aspergillus endocarditis has been treated successfully, myocarditis is uniformly fatal.

Actinomyces Infection

Cardiac involvement in actinomycosis occurs in only 2% of cases and usually develops by direct extension from a contiguous focus of pulmonary or mediastinal infection. Hematogenous seeding of the myocardium occurs occasionally. Myocardial involvement is characterized by necrotizing abscess formation with masses of mycelial bodies and characteristic sulfur granules. In many cases, cardiac symptoms are absent, but patients may present with chest pain characteristic of pericarditis, pericardial tamponade, or CHF.

Other Mycoses

Myocardial involvement has rarely been reported in immunocompromised patients with disseminated coccidioidomycosis and cryptococcosis. Cardiac involvement is usually not clinically apparent antemortem, although death due to progressive CHF has been reported. Cardiac involvement with blastomycosis and histoplasmosis is extremely uncommon and usually results from direct extension from a contiguous intrathoracic focus.

Leptospirosis and Relapsing Fever

Evidence of severe myocarditis is present at autopsy in a high proportion of fatal cases of leptospirosis and relapsing fever. Nonspecific ECG abnormalities are common in these diseases, but clinical evidence of left ventricular dysfunction is rare.
Rickettsial Myocarditis

Rocky Mountain spotted fever caused by infection with Rickettsia rickettsii is characterized by a diffuse vasculitis, and in fatal cases, death is usually due to vascular collapse. Vasculitis of the coronary vessels may also be present, and lymphocytic infiltrates with myocyte necrosis are present in approximately 50% of fatal cases. Although cardiac dilation and cardiogenic pulmonary edema occur infrequently, echocardiography demonstrates systolic left ventricular dysfunction in the majority of patients. Clinical evidence of myocarditis has been reported in association with scrub typhus due to Rickettsia tsutsugamushi, whereas Q fever (Coxiella burnetii) usually causes endocarditis in its chronic form.

Protozoal Myocarditis

American Trypanosomiasis (Chagas’ Disease)

It is estimated that 10 to 18 million people in South and Central America are infected with T. cruzi, and Chagas’ cardiomyopathy resulting from this infection is the most common cause of CHF and cardiac death in these endemic areas. The parasite is transferred to humans by triatomine insects known as reduviid bugs. The clinical course of infection is characterized by an acute phase, an indeterminate or latent phase of variable duration, and a chronic phase.

After inoculation, parasites are disseminated throughout the body, with the highest concentrations appearing in striated and cardiac muscle and autonomic ganglia. A lesion may appear at the point of entry, and an acute illness develops, characterized by fever, myalgia, edema of the face and lower extremities, hepatomegaly, and generalized lymphadenopathy. Because of the nonspecific nature of the symptoms, the acute phase of the disease is usually unrecognized.

Rarely, acute inflammatory myocarditis develops during the acute phase, with ECG abnormalities, cardiomegaly, and CHF. Histologic examination in these cases demonstrates inflammatory infiltrates adjacent to myocytes containing large numbers of intracellular parasites. These findings suggest that cardiac manifestations during the acute phase of the illness may be due to direct lysis of myocytes by parasites.

The acute illness resolves over a period of weeks to months, and patients enter the indeterminate phase. These patients are asymptomatic, with low-level parasitemia, and antibodies to T. cruzi are present. Although the electrocardiogram is normal, echocardiography and left ventricular cineangiography demonstrate focal wall motion abnormalities in a high proportion of cases, most commonly involving the left ventricular apex and posterior wall. Endomyocardial biopsy is frequently normal but may reveal hypertrophy, fibrosis, and inflammatory infiltrates in up to 37% of patients without clinical manifestations.

Manifestations of chronic Chagas’ disease develop in 30% to 70% of infected patients after a highly variable period, which may be as long as 50 years. Involvement of autonomic ganglia may cause megacolon or megaesophagus, but the heart is the organ most commonly affected. Histology is characterized by focal areas of inflammation or fibrosis interspersed with areas of normal myocardium. Endomyocardial biopsy reveals myocarditis in approximately 60% of patients. This process frequently involves the specialized conducting tissue, and therefore disturbances of AV conduction, especially RBBB with or without associated left anterior fascicular block, are present in up to 60% of patients. Complete heart block may require permanent transvenous pacing. Ventricular arrhythmias are also frequent, and the initial manifestation of the disease may be sudden death due to ventricular tachyarrhythmia or complete heart block. Decreased ventricular function is present in almost all patients with chronic Chagas’ disease, and in its most advanced form, Chagas’ disease presents as a congestive cardiomyopathy with four-chamber dilatation. A characteristic apical aneurysm is usually present. Left ventricular thrombus is frequently observed, and systemic embolization is common. This advanced form of the disease is usually fatal within a few years.

Diagnosis of chronic Chagas’ cardiomyopathy is dependent on detection of circulating antibodies to T. cruzi by one of several serologic methods. Parasites are usually not detected in the myocardium, but low-level parasitemia can be demonstrated by hemoculture or xenodiagnosis, using uninfected reduviid bugs allowed to ingest the patient’s blood.

The pathogenic mechanisms leading to myocardial injury, in some patients occurring many years after the initial infection, are poorly understood. The presence of inflammatory infiltrates in the absence of detectable parasites suggests the possibility of autoimmune injury, as postulated for viral and idiopathic myocarditis. Support for this hypothesis includes the demonstration of antibodies to T. cruzi as well as antiidiotype antibodies that cross-react with myocyte antigens. Histologic studies demonstrate loss of autonomic ganglia, and physiologic studies are suggestive of marked autonomic dysfunction.

Withdrawal of parasympathetic tone may lead to excess sympathetic stimulation, which can cause cardiomyopathy. Histologic studies also demonstrate abnormalities of the microvascular bed, and in vitro experiments demonstrate altered endothelial cell function and increased platelet-endothelial cell adhesion. All three reports suggest that progressive focal myocardial disease is the result of ischemia due to obstruction of the microvascular bed.

Treatment of chronic Chagas’ cardiomyopathy is supportive, with the use of standard therapy for CHF. Dynamic cardiomyoplasty has resulted in symptomatic improvement in some patients. The role for left ventricular reduction or cardiomyoplasty has resulted in symptomatic improvement in some patients. The role for left ventricular reduction or cardiomyoplasty has resulted in symptomatic improvement in some patients. Antiarhythmic therapy may be indicated for sustained ventricular tachyarrhythmias, and a permanent pacemaker should be implanted in patients with high-degree AV block.

Two antiparasitic drugs are available for the treatment of American trypanosomiasis. Both nifurtimox and benznidazole decrease the level and duration of parasitemia and decrease mortality in patients with acute Chagas’ disease. Low-level parasitemia persists in most treated patients, however, and it is unclear whether therapy in the acute phase decreases the incidence of subsequent progression to chronic Chagas’ disease. Whereas earlier studies with these drugs have not been shown to decrease progression from latent phase to chronic disease or to decrease symptoms or improve
cardiac function in patients with chronic disease, the recent studies with itraconazole and allopurinol have shown partial success with parasitologic cure and normalization of ECG changes in nearly half the patients. In a randomized, placebo-controlled trial of benzimidazole, there was successful negative seroconversion of 55% of patients with early chronic disease as manifested by seropositivity for T. cruzi-specific antibodies after treatment for 60 days. Immunosuppressive therapy in patients with malignancies or after organ transplantation has been associated with reactivation causing acute Chagas’ disease. Reactivation of Chagas’ disease in this setting has usually responded promptly to therapy.

African Trypanosomiasis

African trypanosomiasis is caused by Trypanosoma gambiense or T. rhodanese and characteristically presents with progressive somnolence owing to central nervous system involvement. Autopsy studies demonstrate a pancytopenia involving the malarial and valvular endocardium as well as the myocardium in up to 50% of fatal cases. The conduction system and autonomic ganglia may also be involved. Nonspecific abnormalities are often present on the electrocardiogram, but other clinical manifestations of the frequent cardiac involvement are apparently uncommon.

Toxoplasmosis

Patients with acute infection by T. gondii are usually asymptomatic, but they may have a transient syndrome of fever and lymphadenopathy. The infection usually persists in a latent phase, with cysts deposited predominantly in the brain and myocardium. Immunosuppression after chemotherapy, in transplant recipients, and in patients with AIDS may be associated with disseminated infection characterized by severe encephalitis and myocarditis. Myocarditis after transplantation occurs frequently in seronegative donors. Endomyocardial biopsy demonstrates intracellular Toxoplasma pseudocysts and a mixed interstitial infiltrate, frequently including eosinophils (Fig. 59.7D). Toxoplasma myocarditis can be successfully prevented by a 6-week course of pyrimethamine imitated after early transplantation or treated with pyrimethamine and sulfadiazine.

Metazoal Myocardial Infection

Cardiac involvement in metazoal infections is uncommon. Up to 2% of patients with echinococcosis have cardiac cysts. These patients may present with pericardial or atypical chest pain, CHF owing to inflow or outflow obstruction, ventricular arrhythmias, or pulmonary hypertension owing to diffuse pulmonary embolization of scolices. The diagnosis is usually documented by two-dimensional echocardiography, and surgical excision is indicated, when possible, even in asymptomatic patients.

Trichinosis, caused by the parasite T. spiralis, is usually a benign syndrome characterized by fever, myositis, and eosinophilia. Mild, asymptomatic myocardial involvement is probably common, as suggested by frequent ECG abnormalities and pericardial effusion noted by echocardiography. Rarely, a severe myocarditis develops, which is the apparent cause of death in most fatal cases. Eosinophils are prominent in the interstitial infiltrate. T. spiralis does not become encysted in the heart, and larvae are seldom identified in the myocardium. Myocardial injury is thought to be immune mediated, and therapy with corticosteroids is generally recommended, although prospective trials have not been performed owing to the infrequent occurrence of this syndrome.

Kawasaki Disease

The mucocutaneous lymph node syndrome or Kawasaki disease occurs predominantly in children under the age of 10 years and is most prevalent in Japan. It has been recognized worldwide, and in the United States and the developed world, it has replaced rheumatic fever as the most common cause of acquired heart disease in children. It is widely believed to have an infectious etiology, but no agent has yet been identified. Its diagnosis is based on recognition of clinical features of the illness, which include remittent high-spiking fever with distinctive conjunctival injection, anterior uveitis, strawberry tongue with erythema, dryness, fissuring and peeling of the lips and mouth, erythematous truncal rash, redness of palms and soles with periangual desquamation, and cervical lymphadenopathy. The principal cardiovascular manifestation of the disease is a multisystem arteritis with frequent involvement of the coronary arteries. Coronary arteritis leads to aneurysm formation and thrombosis. The most common cause of death is myocardial infarction due to aneurysm rupture or coronary occlusion. Myocardium obtained by endomyocardial biopsy or at autopsy reveals histologic evidence of myocarditis in a high proportion of patients. Segmental wall motion abnormalities and nonspecific ECG changes are frequently present in the absence of coronary aneurysms. These findings have been attributed to myocarditis, but they might also reflect ischemia due to small vessel arteritis. Congestive heart failure in the absence of infarction is uncommon. Intravenous gamma-globulin and high-dose aspirin are effective in the prevention of coronary aneurysms and thrombosis, but their effect on myocarditis is not known.

Noninfectious Myocarditis

Giant Cell Myocarditis

Giant cell myocarditis is a rare but frequently fatal disorder. It is defined histologically by extensive but patchy myocytic necrosis with areas of intense multicellular inflammatory infiltration that includes histiocytes, lymphocytes, and the characteristic multinucleated giant cells. There has been a great deal of controversy as to whether GCM and cardiac sarcoidosis are distinct pathologic entities because multinucleated giant cells in GCM seldom organize to form granulomas. Litovskoy and associates showed that GCM is characterized by myocytic destruction mediated by cytotoxic T cells, macrophagic giant cells, and eosinophils. In contrast, cardiac sarcoid is an interstitial granulomatous disease without myocytic necrosis. Although the etiology of GCM is unknown, it has been associated with a medley of autoimmune disorders and
perhaps is immunologically mediated. Thymomas, systemic lupus, rheumatoid arthritis, Wegener’s granulomatosis, ulcerative colitis, chronic hepatitis, myasthenia gravis, myositis, pernicious anemia, Takayasu’s arteritis, and lymphomas have been associated with GCM. The clinical presentation of GCM may mimic lymphocytic myocarditis, although arrhythmias and heart failure are usually more severe and rapidly progressive. Frequently, patients with GCM present with conduction system abnormalities, ventricular tachycardia, or even sudden cardiac death. Giant cell myocarditis has also been reported to present as asymmetric septal hypertrophy.

The role of immunosuppressive therapy for GCM is unknown, but at least anecdotal and registry reports suggest possible benefit of cyclosporine and prednisone with or without azathioprine. Cardiac transplantation remains the last therapeutic resort for these patients, although there is risk of recurrent disease, which seems to be associated with abatement of immunosuppressive therapy after transplantation and may represent atypical rejection in the allograft. It usually resolves with intensification of the immunosuppressive regimen.

Eosinophilic Myocarditis

Löffler first described the association of eosinophils with cardiac disease, and reported “endocarditis parietalis fibroplastica” in association with eosinophilia. The endocardial disease with eosinophilia is well recognized and extensively reviewed elsewhere. Myocardial involvement is rare and frequently fatal; hence, diagnosis is often made postmortem. Endomyocardial biopsy is essential to the antemortem diagnosis of eosinophilic myocarditis. Myocarditis is believed to represent a more fulminant and necrotic form of the endocardial disease.

Eosinophils have the ability to secrete highly toxic cationic proteins into areas of inflammation and to produce harmful oxygen radicals and potent lipid mediators, leading to myocyte necrosis as seen in proximity to degranulating eosinophils. Animal experiments have confirmed that exposure of myocytes to eosinophil granule proteins is lethal.
Cardiac Sarcoidosis

Sarcoidosis is a multiorgan, noncaseating granulomatous disorder of unknown etiology. Histologically, it may involve the lung, lymph nodes, skin, liver, spleen, parotid glands, and heart. Right heart failure owing to pulmonary manifestations of pulmonary hypertension and pulmonary fibrosis is the predominant cardiac finding. Asymptomatic cardiac involvement is common, with a quarter of the patients having sarcoid granulomas in the heart at autopsy. Characteristically, the noncaseating granulomas infiltrate the ventricular walls and become fibrotic. They may involve the conduction system, although there is no definite predilection for specialized tissues. There may be transmural involvement with fibrous replacement of portions of the myocardium and aneurysm formation. The fibrous transition of granulomas may result in early diastolic dysfunction, but as the disease progresses and with extensive involvement, systolic impairment occurs. Whereas cardiac involvement in sarcoidosis commonly occurs as part of the systemic affliction, isolated cardiac sarcoidosis in the absence of systemic disease has been described.

The clinical presentation of cardiac sarcoidosis is variable and may depend on the amount of myocardium replaced with granulomas and the amount and location of scar tissue. Rhythm abnormalities and conduction disorders predominate, although asymptomatic patients with mildly restrictive filling patterns may elude medical attention. Patients with CHF may show clinical features of restrictive cardiomyopathy or DCM. Papillary dysfunction with mitral regurgitation and pericardial involvement with effusive-constrictive disease have also been described. Radionuclide myocardial imaging with thallium 201 and gallium 67 is helpful in identifying patients with myocardial involvement. Magnetic resonance imaging has also been proposed as a diagnostic modality. Histologic diagnosis with endomyocardial biopsy is corroborative, but a negative biopsy does not rule out the possibility, owing to sampling error.

The combination of bilateral hilar adenopathy and myocardial disease suggests cardiac sarcoidosis in a young person. Corticosteroids are indicated when myocardial involvement, conduction abnormalities, and ventricular arrhythmias are present. Patients with scintigraphic uptake of gallium 67 may be more responsive to corticosteroid therapy.
Summary

Myocarditis is a focal or diffuse inflammation of the myocardium, which has multiple infectious and noninfectious etiologies. Autoimmunity, triggered most often by viral infections, is a prominent pathophysiologic mechanism of myocarditis. Overt and clinically inapparent myocarditis is an important cause of dilated cardiomyopathy. Virus-induced lymphocytic myocarditis progresses through three stages: active viral infection, autoimmunity, and dilated cardiomyopathy. Myocarditis is no longer a diagnosis of exclusion; histology, histochemistry, DNA and RNA detection, tissue and circulating antibody detection, and a variety of imaging techniques can be used together or, in some cases, independently to make the diagnosis and to establish the disease stage. Treatment of myocarditis must be tailored to the phase of disease. Many new therapies based on knowledge of the molecular pathophysiology of myocarditis are under development.

References

1. Senac JB. Traite' de la structure du Coeur, de Son Action et de Ses Maladies. 1772.
2. Sobernehim JF. Praktisch Diagnostik der Inneren Kronkheiten mit Vorzuegli der Ruecksicht und pathologische Anatomie. Berlin: Hirschwald, 1837.
3. White PD. Heart Disease. New York: Macmillan, 1931.
4. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 1996;93:841–842.
5. Aretz HT, Billingham ME, Edwards WD, et al. Myocarditis, a histopathologic definition and classification. Am J Cardiovasc Pathol 1987;13–14.
6. Mason JW, O'Connell JB. Clinical merit of endomyocardial biopsy. Circulation 1989;79:971–979.
7. Maisch B, Hufnagel G, Schonian U, Hengstenberg C. The European Study of Epidemiology and Treatment of Cardiac Inflammatory Disease (ESECTID). Eur Heart J 1995;16(Suppl O):173–175.
8. Wojnicz R, Nowalany-Kozielska E, Wodniecki J, et al. Immunohistological diagnostic of myocarditis. Potential role of sarcolemmal induction of the MHC and ICAM-1 in the detection of autoimmune mediated myocyte injury. Eur Heart J 1998;19:1564–1572.
9. Hrobon P, Kuntz KM, Hare JM. Should endomyocardial biopsy be performed for detection of myocarditis? A decision analytic approach. J Heart Lung Transplant 1998;17:479–486.
10. Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G, Maseri A. Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation 2003;107:857–863.
11. Pauschinger M, Chandrasekharan K, Noutsias M, Kuhl U, Schwimbeck LF, Schultheiss HP. Viral heart disease: molecular diagnosis, clinical diagnosis, and treatment strategies. Med Microbiol Immunol [Berl] 2004;193(2–3):65–69.
12. Karjalainen J, Heikkila J, Nieminen MS, et al. Etiology of mild acute infectious myocarditis. Relation to clinical features. Acta Med Scand 1983;213(1):65–73.
13. Sahi T, Karjalainen J, Viitasalo MT, Other A. Myocarditis in connection with viral infections in Finnish conscripts. Ann Med Milit Finn 1982;57:198–203.
14. Karjalainen J, Nieminen MS, Heikkila J. Influenza A1 myocarditis in conscripts. Acta Med Scand 1980;207(1–2):27–30.
15. Bengtsson E. Electrocardiographic studies in patients with abnormalities in serial examinations with standard leads during acute infectious diseases. I. Occurrence of abnormalities in the ST-T complex of chest leads in resting electrocardiograms suggestive of localized myocardial lesions. Acta Med Scand 1957;159(5):395–410.
16. Waterson AP. Virological investigations in congestive cardiomyopathy. Postgrad Med 1978;54(633):505–509.
17. Kitaura Y. Virological study of idiopathic cardiomyopathy: serological study of virus antibodies and immunofluorescent study of myocardial biopsies. Jpn Circ J 1981;45(3):279–294.
18. Crist NR, Reid D. Epidemiology of viral infections of the heart. In: Banatvala JE, ed. Viral Infections of the Heart. London: Hodder and Stoughton, 1993:23–31.
19. Vikerfors T, Stjerna A, Oleno P, Malmcrona R, Magnus L. Acute myocarditis. Serologic diagnosis, clinical findings and follow-up. Acta Med Scand 1988;223(1):45–52.
20. Frisk G, Torfason EG, Diderholm H. Reverse radioimmunoassays of IgM and IgG antibodies to Coxsackie B viruses in patients with acute myopericarditis. J Med Virol 1984;14(3):191–200.
21. Martin AB, Webber S, Fricker FJ, et al. Acute myocarditis. Rapid diagnosis by PCR in children. Circulation 1994;90(1):330–339.
22. Bowles NE, Ni J, Kearney DL, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 2003;42(3):466–472.
23. Bultmann BD, Klingel K, Sotlar K, et al. Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol 2003;34(1):92–95.
24. Pankuweit S, Moll R, Baandrup U, Portig I, Hufnagel G, Maisch B. Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 2003;34(5):497–503.
25. Klein RM, Jiang H, Niederacher D, et al. Frequency and quantity of the parvovirus B19 genome in endomyocardial biopsies from patients with suspected myocarditis or idiopathic left ventricular dysfunction. Z Kardiol 2004;93(4):300–309.
26. Kuhl U, Pauschinger M, Noutsias M, et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 2005;111(7):887–893.
27. Tschoppe C, Bock CT, Kasner M, et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation 2005;111(7):879–886.
28. Wilson RS, Morris TH, Rees JR. Cytomegalovirus myocarditis. Br Heart J 1972;34(8):865–868.
29. Wink K, Schmitz H. Cytomegalovirus myocarditis. Am Heart J 1980;100(5):667–672.
30. Maisch B, Schonian U, Crombach M, et al. Cytomegalovirus associated inflammatory heart muscle disease. Scand J Infect Dis Suppl 1993;88:135–148.
31. Partanen J, Nieminen MS, Krogerus L, et al. Cytomegalovirus myocarditis in transplanted heart verified by endomyocardial biopsy. Clin Cardiol 1991;14(10):847–849.
32. Wreghtt T, Cary N. Virus infections in heart transplant recipients and evidence for involvement of the heart. In: Banatvala JE, ed. Viral Infections of the Heart. London: Hodder and Stoughton, 1993:240–250.
33. Matsumori A, Matoba Y, Sasayama S. Dilated cardiomyopathy associated with hepatitis C virus infection. Circulation 1995;92(2):2519–2525.
34. Okabe M, Fukuda K, Arakawa K, Kikuchi M. Chronic variant of myocarditis associated with hepatitis C virus infection. Circulation 1997;96(1):22–24.
35. Matsumori A, Ohashi N, Hasegawa K, et al. Hepatitis C virus infection and heart diseases: a multicenter study in Japan. Jpn Circ J 1998;62(5):389–391.

36. Matsumori A, Yutani C, Ikeda Y, Kawai S, Sasayama S. Hepatitis C virus from the hearts of patients with myocarditis and cardiomyopathy. Lab Invest 2000;80(7):1137–1142.

37. Havaldar PV. Diphtheria in the eighties: experience in a south Indian district hospital. J Indian Med Assoc 1992;90(6):155–156.

38. Burt CR, Proudfoot JC, Roberts M, Horowitz RH. Fatal myocarditis secondary to Salmonella septicaemia in a young adult. J Emerg Med Jun 1990;8(3):295–297.

39. Baysal K, Sancağ B, Oztürk E, Uysal S, Gurses N. Cardiac involvement due to Salmonella typhi infections in children. Ann Trop Paediatr 1998;18(1):23–25.

40. Ledford DK. Immunologic aspects of vasculitis and cardiovascular disease. IAMA 1997,278(22):1962–1971.

41. McAlister HF, Klementowicz PT, Andrews C, Fisher JD, Feld M, Furman S. Lyme carditis: an important cause of reversible heart block. Ann Intern Med 1989;110(5):339–345.

42. Lewes D, Rainbow DJ, Lane WF. Symptomatic myocarditis and myalgia in viral and Mycoplasma pneumoniae infections. Br Heart J 1974;36(9):924–932.

43. Karjalainen J. A loud third heart sound and asymptomatic myocarditis during Mycoplasma pneumoniae infection. Eur Heart J 1988;10(10):1060–1063.

44. Odeh M, Oliven A. Chlamydial infections of the heart. Eur J Cardiovasc Pathol 2000;9(5):287–291.

45. Fryden A, Kihlstrom E, Maller R, Persson K, Romanus V, Ansehn S. A clinical and epidemiological study of "ornithosis" caused by Chlamydia psittaci and Chlamydia pneumoniae (strain TWAR). Scand J Infect Dis 1989;21(6):681–691.

46. Page SR, Stewart JT, Bernstein JJ. A progressive pericardial effusion caused by psittacosis. Br Heart J 1988;60(1):87–89.

47. Garty BZ, Offer I, Livni E, Danon YL. Erythema multiforme and hypersensitivity myocarditis caused by ampicillin. Ann Pharmacother 1994;28(6):730–731.

48. Schmeer N, Krauss H, Werth D, Others A. Serodiagnosis of Lyme carditis associated with clozapine treatment. Aust N Z J Psychiatry 2000;34(5):880.

49. Wreghitt TG, Hakim M, Furman S. Lyme carditis: an important cause of reversible myocarditis. JAMA 1997;278(22):1962–1971.

50. Schmeer N, Krauss H, Werth D, Others A. Serodiagnosis of Lyme carditis associated with clozapine treatment. Aust N Z J Psychiatry 2000;34(5):880.

51. Page SR, Stewart JT, Bernstein JJ. A progressive pericardial effusion caused by psittacosis. Br Heart J 1988;60(1):87–89.

52. Mavrikis M, Torpin LA. Cardiac involvement is a constant finding in acute Chagas' disease: a clinical, parasitological and histopathological study. Mem Inst Oswaldo Cruz 1978;73(4):547–553.

53. Havaldar PV. Diphtheria in the eighties: experience in a south Indian district hospital. J Indian Med Assoc 1992;90(6):155–156.

54. Anderson DW, Virmani R, Reilly JM, et al. Prevalent myocarditis and heart and lung transplant recipients. J Clin Pathol 1989;42(2):194–199.

55. Schmeer N, Krauss H, Werth D, Others A. Serodiagnosis of Q-fever by enzyme-linked immunosorbent assay (ELISA). Zentralbl Bakteriol Mikrobiol Hyg 1987;267:57.

56. Schmeer N, Krauss H, Werth D, Others A. Serodiagnosis of Q-fever by enzyme-linked immunosorbent assay (ELISA). Zentralbl Bakteriol Mikrobiol Hyg 1987;267:57.

57. Compton SJ, Celum CL, Lee C, et al. Trichinosis with ventilatory failure and persistent myocarditis. Clin Infect Dis 1993;16(4):500–504.

58. Agnholt J, Sorensen HT, Rasmussen SN, Gotzsche CO, Halkier P. Cardiac hypersensitivity to 5-aminosalicylic acid. Lancet 1989;1(8647):1135.

59. Beghetti M, Wilson GJ, Bohn D, Benson L. Hypersensitivity myocarditis caused by an allergic reaction to ecfalor. J Pediatr 1998;132(1):172–173.

60. Bezahler GH. Fatal methyldopa-associated granulomatous hepatitis and myocarditis. Am J Med Sci 1982;283(1):41–45.

61. Burke AP, Saenger J, Mullick F, Virmani R. Hypersensitivity myocarditis. Arch Pathol Lab Med 1991;115(8):764–769.

62. Daniels PR, Berry GJ, Tazelaar HD, Cooper LT. Giant cell myocarditis as a manifestation of drug hypersensitivity. Cardiovasc Pathol 2000;9(5):287–291.

63. Degner DB, Bleich S, Grohmann R, Bandelow B, Rether E. Myocarditis associated with clozapine treatment. Aust N Z J Psychiatry 2000;34(5):880.

64. Fenske DJ, McAllister HA Jr, Mullick FG. Drug related myocarditis. I. Hypersensitivity myocarditis. Hum Pathol 1981;12(10):900–907.

65. Garty BZ, Offer I, Livni E, Danon YL. Erythema multiforme and hypersensitivity myocarditis caused by ampicillin. Ann Pharmacother 1994;28(6):730–731.

66. Geitz MA, Subramanian R, Logemann T, Ballantyne F. Acute necrotizing eosinophilic myocarditis as a manifestation of severe hypersensitivity myocarditis. Antemortem diagnosis and successful treatment. Ann Intern Med 1991;115(3):201–202.

67. Gravanis MB, Hertzler GL, Franch RH, et al. Hypersensitivity myocarditis in heart transplant candidates. J Heart Lung Transplant 1991;10(5 Pt 1):688–697.

68. Hagg S, Spigset O, Bate A, Soderstrom TC. Myocarditis related to clozapine treatment. J Clin Psychopharmacol 2001;21(4):382–388.

69. Kilian JG, Kerr K, Lawrence C, Celermajer DS. Myocarditis and cardiomyopathy associated with clozapine. Lancet 1999;354(9133):1841–1845.

70. Kirpikov VC, Deshpande SM, Joshi PP. Reversible myocarditis in a patient receiving clozapine. Indian Heart J 2001;53(6):779–781.

71. Kounis NG, Zavras GM, Sourfas GD, Kitroup M. Hypersensitivity myocarditis. Ann Allergy 1989;62(2):71–74.

72. Kurt TL. Hypersensitivity myocarditis with ephedra use. J Toxicol Clin Toxicol 2000;38(3):351.

73. Nariman S. Adverse reactions to drugs used in the treatment of tuberculosis. Adverse Drug React Acute Poisoning Rev 1994;20(4):354–358.

74. Markus CK, Chow LH, Wycoff DM, McManus BM. Pet food-derived penicillin residue as a potential cause of hypersensitivity myocarditis and sudden death. Am J Cardiol 1989;63(15):1154–1156.

75. Morrow PL, Hardin NJ, Bonadies J. Hypersensitivity myocarditis and hepatitis associated with imipramine and its metabolite, desipramine. J Forensic Sci 1989;34(4):1016–1020.

76. Mullick FG, McAllister HA. Myocarditis associated with methyldopa therapy. IAMA 1977,237(16):1699–1701.

77. Nariman S. Adverse reactions to drugs used in the treatment of tuberculosis. Adverse Drug React Acute Poisoning Rev 1988,7(4):207–227.

78. Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 1993;20(4 suppl 3):1–15.

79. Taliercio CP, Olney BA, Lie JT. Myocarditis related to drug hypersensitivity. Clin Proc 1985,60(7):463–468.

80. Zaacks SM, Klein L, Tan CD, Rodriguez ER, Leikin JB. Hypersensitivity myocarditis associated with ephedra use. J Toxicol Clin Toxicol 1999;37(4):485–489.

81. Ansari A, Maron BJ, Bernston DG. Drug-induced toxic myocarditis. Tex Heart Inst J 2003,30(1):76–79.
81. Conen D, Leuppi J, Bubendorf L, Ronssdorf A, Tamm M, Hauser T. Montelukast and Churg-Strauss syndrome. Swiss Med Wkly 2004;134(25–26):377–380.
82. Dilber E, Karagöz T, Aytemir K, et al. Acute myocarditis associated with tetanus vaccination. Clin Proc 2003;78(11):1431–1433.
83. Martini M, Diaz-Rubio E, Furio V, Blazquez J, Almenar J, Misset B, Escudier B, Leclercq B, Rivara D, Rougier P, Nitenberg T. Montelukast and Churg-Strauss syndrome. Swiss Med Wkly 2003;133(31–32):377–380.
84. Patel AL, Shaikh WA, Patel HL, et al. Kerosene poisoning—associated with clozapine. J Clin Psychopharmacol 2005;25(1):32–41.
85. Fagan E, Forbes A, Williams R. Toxic myocarditis in paracetamol overdose. Br Med J [Clin Res Ed] 1988;296(6614):63–64.
86. Botsch E, Escudier B, Leclercq B, Rivara D, Rougier P, Nitenberg T. Acute myocardiototoxicity during 5-fluorouracil therapy. Intensive Care Med 1990;16(3):210–211.
87. Martin M, Diaz-Rubio E, Furio V, Blazquez J, Almenar J, Farina J. Lethal cardiac toxicity after cisplatin and 5-fluorouracil chemotherapy. Report of a case with necropsy study. Am J Clin Oncol 1989;12(3):229–234.
88. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Am Heart J 1985;110(6):1257–1265.
89. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
90. Bacon PA, Gibson DG. Cardiac involvement in rheumatoid arthritis. An echocardiographic study. Ann Rheum Dis 1974;33(1):20–24.
91. Botstein GR, LeRoy EC. Primary heart disease in systemic sclerosis (scleroderma): advances in clinical and pathologic features, pathogenesis, and new therapeutic approaches. Am Heart J 1981;102(3):913–919.
92. Dalakas MC. Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 1991;325(21):1487–1498.
93. Oka M, Raasakka T. Cardiac involvement in polymyositis. Scand J Rheumatol 1978;7(4):203–208.
94. Neumann DA, Rose NR, Chapman NM, Tracy S. Cardiac persistence of cardioviral RNA detected by polymerase chain reaction in a murine model of dilated cardiomyopathy. Circulation 1992;86(2):522–530.
95. Wessely R, Klingel K, Santana LF, et al. Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J Clin Invest 1998;102(7):1444–1453.
96. Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death. Circulation 1999;99(8):1091–1100.
97. Gauntt C, Higdon A, Bowers D, Maull E, Wood J, Crawley R. What lessons can be learned from animal model studies in viral heart disease? Scand J Infect Dis Suppl 1993;88:49–65.
98. Herskowitz A, Wolfrag LM, Rose NR, Beisel KW. Coxsackievirus B3 murine myocarditis: a pathologic spectrum of myocarditis in genetically defined inbred strains. J Am Coll Cardiol 1987;9(6):1311–1319.
99. Lu J, Liu P, Penn L, et al. Persistence of viral genome into late stages of murine myocarditis detected by polymerase chain reaction. Circulation 1992;86(2):522–530.
100. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
101. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
102. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
103. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
104. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
105. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
106. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
107. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
108. Mandell BF. Cardiovascular involvement in systemic lupus erythematosus. Semin Arthritis Rheum 1987;17(2):126–141.
Maisch B, Bauer E, Ciri M, Kochsiek K. Cytolytic cross-reactive antibodies directed against the cardiac membrane and viral proteins in coxsackievirus B3 and B4 myocarditis. Characterization and pathogenetic relevance. Circulation 1993;87(suppl IV):IV 49–65.

Cunningham MW, Antone SM, Gulizia JM, McManus BM, Fischetti VA, Gauntt CJ. Cytotoxic and viral neutralizing antibodies crossreact with streptococcal M protein, enteroviruses, and human cardiac myosin. Proc Natl Acad Sci USA 1992;89(4):1320–1324.

Gauntt CJ, Higdon AL, Arizpe HM, et al. Epitopes shared between coxsackievirus B3 (CVB3) and normal heart tissue contribute to CVB3–induced murine myocarditis. Clin Immunol Immunopathol 1993;68(2):129–134.

Schwimmbeck PL, Schwimmbeck NK, Schultheiss HP, Strauer BE. Mapping of antigenic determinants of the adenine-nucleotide translocator and CoxSackie B3 virus with synthetic peptides: use for the diagnosis of viral heart disease. Clin Immunol Immunopathol 1993;68(2):135–140.

Weller AH, Simpson K, Herzum M, Van Houten N, Huber SA. CoxSackie virus B3–induced myocarditis: virus receptor antibodies modulate myocarditis. J Immunol 1989;143(6):1843–1850.

Limas CJ, Goldenberg IP, Limas C. Autoantibodies against beta-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ Res 1989;64(1):97–103.

Wolff PG, Kuhl U, Schultheiss HP. Laminin distribution and autoantibodies to laminin in dilated cardiomyopathy and myocarditis. Am J Pathol 1989;113(6):1561–1567.

Ansari A, Herskowitz A, Danner D. Identification of mitochondrial antigens in human dilated cardiomyopathy. J Biol Chem 1992;267(20):1303–1309.

Latif N, Baker CS, Dunn MJ, Rose ML, Brady P, Yacoub MH. Frequency and specificity of anti-entroviruses in patients with dilated cardiomyopathy detected using SDS-PAGE and western blotting. J Am Coll Cardiol 1993;22(5):1378–1384.

Huber SA, Job LP, Woodruff JF. Lysis of infected myofibers by coxsackievirus B-3–immune T lymphocytes. Am J Pathol 1990;98(3):681–694.

Huber SA, Lodge PA. CoxSackievirus B-3 myocarditis in Bab/lc mice. Evidence for autoimmunity to myocyte antigens. Am J Pathol 1984;116(1):21–29.

Seko Y, Shinkai Y, Kawasaki A, et al. Expression of perforin in infiltrating cells in murine hearts with acute myocarditis caused by coxsackievirus B3. Circulation 1991;84:788–795.

Selzen B, Shilkruft M, Less H, et al. Fas (CD95/Apo-l)-mediated damage to ventricular myocytes induced by cytotoxic T lymphocytes from perforin-deficient mice: a major role for inositol 1,4,5-trisphosphate. Circ Res 1998;82(4):438–450.

Maiel S, Cesario D, Baird S, Rehman I, Haghighi P, Carter S. Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ Res 1998;82(4):458–463.

Neu N, Rose NR, Beisel KW, Herskowitz A, Guri-Glass G, Craig SW. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 1987;139(11):3630–3636.

Adesanya CO, Goldberg AH, Phear WP, Thorp KA, Young NA, Abelmann WH. Heart muscle performance after experimental viral myocarditis. J Clin Invest 1976;57(3):569–575.

Woodruff JF, Woodruff JF. Involvement of T lymphocytes in the pathogenesis of CoxSackie virus B3 heart disease. J Immunol 1974;113(6):1726–1734.

Woodruff JF. The influence of quantitated post-weaning undernutrition on coxsackievirus B3 infection of adult mice. II. Alteration of host defense mechanisms. J Infect Dis 1970, 121(2):164–181.

Entman ML, Youker K, Shoji T, et al. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18–ICAM-1 adherence. J Clin Invest 1992;90(4):1335–1345.

Godeny EK, Gauntt CJ. Murine natural killer cells limit coxsackievirus B3 replication. J Immunol 1987;139(3):913–918.

Godeny EK, Gauntt CJ. In situ immune autoradiographic identification of cells in heart tissues of mice with coxsackievirus B3–induced myocarditis. Am J Pathol 1987;129(2):267–276.

Huber S. Viral and immune mechanisms in cardiac disease. In: Spyr CJF, ed. Immunology and Molecular Biology of Cardiovascular Disease. Boston: MTP Press, 1987:143–159.

Chow LH, Beisel KW, McManus BM. Enteroviral infection of atrial myocytes from perforin-deficient mice: a major role for inositol 1,4,5-trisphosphate. Circ Res 1990;67(2):360–367.

Kilbourne ED, Wilson CB, Perrier D. The induction of gross myocardial lesions by a CoxSackie (pleurodynia) virus and cortisone. J Clin Invest 1956;35(4):362–370.

Wong CY, Woodruff JF, Woodruff JF. Generation of cytotoxic T lymphocytes during coxsackievirus B3 infection. II. Characterization of effector cells and demonstration cytotoxicity against viral-infected myofibers. J Immunol 1977;118(4):1165–1169.

Hufnagel G, Chapman N, Tracy S. A non-cardioviral strain of coxsackievirus B3 causes myocarditis in mice with severe combined immunodeficiency syndrome. Eur Heart J 1995;16(suppl O):18–19.

Modlin JF. CoxSackieviruses, echoviruses, and newer enteroviruses. In: Mandell G, Douglas R, Bennett J, eds. Principles and Practice of Infectious Diseases. New York: Churchill Livingstone, 1990.

Lodge PA, Herzum M, Olszewski J, Huber SA. CoxSackievirus B-3 myocarditis. Acute and chronic forms of the disease caused by different immunopathogenic mechanisms. Am J Pathol 1987;128(3):455–463.

Seko Y, Tsuchimochi H, Nakamura T, et al. Expression of major histocompatibility complex class I antigen in murine ventricular myocytes infected with CoxSackievirus B3. Circ Res 1990;67(2):360–367.

Germain RN. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994;76(2):287–299.

Monrad ES, Matsumori A, Murphy JC, Fox JG, Crumpacker CS, Abelmann WH. Therapy with cyclosporine in experimental murine myocarditis with encephalomyocarditis virus. Circulation 1986;73(5):1058–1064.

O’Connell JB, Reap EA, Robinson JA. The effects of cyclosporine on acute murine CoxSackie B3 myocarditis. Circulation 1986;73(5):352–359.

Estrin M, Smith C, Huber S. CoxSackievirus B-3 myocarditis. T-cell autoimmunity to heart antigens is resistant to cyclosporin-A treatment. Am J Pathol 1986;125(2):244–251.

Klingel K, Hohenadl C, Canu A, et al. Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci USA 1992;89:314–318.

Wilson FM, Miranda QR, Chason JL, Lerner AM. Residual pathologic changes following murine CoxSackie A and B myocarditis. Am J Pathol 1969;55(2):253–265.

Huber SA, Heintz N, Tracy R. CoxSackievirus B-3–induced myocarditis. Virus and actinomycin D treatment of myocytes
induces novel antigens recognized by cytolytic T lymphocytes. J Immunol 1988;141(9):3214–3219.

163. Lutton CW, Gauntt CJ. Coxsackievirus B3 infection alters plasma membrane of neonatal skin fibroblasts. J Virol 1986; 60(1):294–296.

164. Seko Y, Takahashi N, Ishiyama S, et al. Expression of costimulatory molecules B7–1, B7–2, and CD40 in the heart of patients with acute myocarditis and dilated cardiomypathy. Circulation 1998;97(7):637–639.

165. Morad M, Davies NW, Ulrich G, Schultheiss HP. Antibodies against ADP-ATP carrier enhance Ca_{2+} current in isolated cardiac myocytes. Am J Physiol 1988;255(4 pt 2):H960–964.

166. Rose ML, Coles MI, Griffin RJ, Pomerance A, Yacoub MH. Expression of class I and class II major histocompatibility antigens in normal and transplanted human heart. Transplantation 1986;41(6):776–780.

167. Herskowitz A, Ahmed-Ansari A, Neumann DA, et al. Induction of major histocompatibility complex antigens within the myocardium of patients with active myocarditis: a nonhistologic marker of myocarditis. J Am Coll Cardiol 1990;15(3):624–632.

168. Ahmed-Ansari A, Tadros TS, Knopf WD, et al. Major histocompatibility complex class I and class II expression by myocytes in cardiac biopsies posttransplantation. Transplantation 1984;45(5):972–978.

169. Hammond EH, Menlove RL, Yowell RL, Anderson JL. Vascular HLA-DR expression correlates with pathologic changes suggestive of ischemia in idiopathic dilated cardiomypathy. Clin Immunol Immunopathol 1987;39(2):197–203.

170. Hammond EH, Menlove RL, Anderson JL. Predictive value of immunofluorescence and electron microscopic evaluation of endomyocardial biopsies in the diagnosis and prognosis of myocarditis and idiopathic dilated cardiomypathy. Am Heart J 1987;114(5):1055–1065.

171. Wang YC, Herskowitz A, Gu LB, et al. Influence of cytokines and immunosuppressive drugs on major histocompatibility complex class I/II expression by human cardiac myocytes in vitro. Hum Immunol 1991;31(2):123–133.

172. Ansari AA, Wang YC, Danner DJ, et al. Abnormal expression of histocompatibility and mitochondrial antigens by cardiac tissue from patients with myocarditis and dilated cardiomypathy. Am J Pathol 1991;139(2):337–354.

173. Carlquist JF, Menlove RL, Murray MB, O’Connell JB, Anderson JL. HLA class II (DR and DQ) antigen associations in idiopathic dilated cardiomypathy. Validation study and meta-analysis of published HLA association studies. Circulation 1991;83(2):515–522.

174. Marrriott SJ, Roeder DJ, Consiglio RA. Anti-idiotypic antibodies to a polyomavirus monoclonal antibody recognize cell surface components of mouse kidney cells and prevent polyomavirus infection. J Virol 1987;61(9):2747–2753.

175. Erlanger BF, Cleveland WL, Wassermann NH, et al. Autoanti-idiotyp: a basis for autoimmunity and a strategy for anti-receptor antibodies. Immunol Rev 1986;94:23–37.

176. Weremeichik H, Muraska A, Herzum M, Weller A, Huber SA. Naturally occurring anti-idiotypic antibodies—mechanisms for autoimmunity and immunoregulation? Eur Heart J 1991; 12(suppl D):154–157.

177. Paque RE, Miller R. Anti-idiotypype-pulsed B cells in the induction and expression of autoimmune myocarditis. Clin Immunol Immunopathol 1993;68(2):111–117.

178. Neumann DA, Lane JR, Allen GS, Herskowitz A, Rose NR. Viral myocarditis leading to cardiomypathy: do cytokines contribute to pathogenesis? Clin Immunol Immunopathol 1993;68(2):181–190.

179. Kroemer G, Martinez C. Cytokines and autoimmune disease. Clin Immunol Immunopathol 1991;61(3):275–295.

180. Entman ML, Youker K, Shappell SB, et al. Neutrophil adherence to isolated adult canine myocytes. Evidence for a CD18-dependent mechanism. J Clin Invest 1990;85(5):1497–1506.

181. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 1989;84(4):1045–1049.

182. Smith KA. Interleukin-2: inception, impact, and implications. Science 1988;240(4856):1169–1176.

183. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990;59:783–836.

184. Postlethwaite AE, Kang AH. Induction of fibroblast proliferation by human mononuclear leukocyte-derived proteins. Arthritis Rheum 1983;26(1):22–27.

185. Barry WH. Mechanisms of immune-mediated myocyte injury. Circulation 1994;89(5):2421–2432.

186. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 1989;86(17):6753–6757.

187. Balligand JL, Ungureanu D, Kelly RA, et al. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993;91(5):2314–2319.

188. Smith TW, Balligand JL, Kaye DM, et al. The role of the NO pathway in the control of cardiac function. J Card Fail 1996;2(4 suppl):S141–147.

189. Freeman GL, Colston JT, Zahaloga M, Chandrasekar B. Contractile depression and expression of proinflammatory cytokines and iNOS in viral myocarditis. Am J Physiol 1998;274(1 pt 2):H249–258.

190. Zaragoza C, Ocampo C, Saura M, et al. The role of inducible nitric oxide synthase in the host response to Coxsackievirus myocarditis. Proc Natl Acad Sci USA 1998;95(5):2469–2474.

191. Matsumori A, Nunokawa Y, Yamaki A, et al. Suppression of cytokines and nitric oxide production, and protection against lethal endotoxemia and viral myocarditis by a new NF-kappaB inhibitor. Eur J Heart Fail 2004;6(2):137–144.

192. Brady AJ, Poole-Wilson PA, Harding SE, Warren JB. Nitric oxide and cytokines within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 1992;263(6 pt 2):H1963–1966.

193. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993;92(5):2303–2312.

194. Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1998;97:1375–1381.

195. Toyozaki T, Saito T, Takano H, et al. Increased serum levels of circulating intercellular adhesion molecule-1 in patients with myocarditis. Cardiology 1996;87(3):189–193.

196. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasaya S. Increased circulating cytokines in patients with myocarditis and cardiomypathy. Br Heart J 1994;72:561–566.

197. Huber SA, Polgar J, Schultheiss P, Schwimmbeck P. Augmentation of pathogenesis of coxsackievirus B3 infections in mice by exogenous administration of interleukin-1 and interleukin-2. J Virol 1994;68:195–206.

198. Ishido S, Sakaue M, Asaka K, Maeda S. Detection of transforming growth factor-b1 in Coxsackie B3 virus-induced murine myocarditis. Acta Histochem Cytchem 1995;28:137–142.

199. Herskowitz A, Neumann DA, Ansari AA. Concepts of autoimmunity applied to idiopathic dilated cardiomypathy. J Am Coll Cardiol 1993;22(5):1385–1388.

200. Leslie KO, Schwarz J, Simpson JC, Huber SA. Progressive interstitial collagen deposition in Coxsackievirus B3–induced murine myocarditis. Am J Pathol 1990;136(3):683–693.
201. Pauschinger M, Chandrasekharan K, Schultheiss HP. Myocardial remodeling in viral heart disease: Possible interactions between inflammatory mediators and MMP-TIMP system. Heart Fail Rev 2004;9(1):21–31.

202. Matsumori A, Crumpacker CS, Abelmann WH. Prevention of encephalomyocarditis virus myocarditis in mice by inactivated virus vaccine. In: Sekiguchi M, Olsen EGJ, Goodwin JF, eds. Myocarditis and Related Disorders. Tokyo: Springer-Verlag, 1995:228–229.

203. Matsumori A, Wang H, Abelmann WH, Crumpacker CS. Prevention of viral myocarditis with recombinant human leukocyte interferon alpha A/D in a murine model. J Am Coll Cardiol 1987;9:1320–1325.

204. Matsumori A, Crumpacker CS, Abelmann WH. Ribavirin treatment of murine coxsackievirus B3 myocarditis with analysis of lymphocyte subsets. J Am Coll Cardiol 1988;12:1334–1341.

205. Kishimoto C, Crumpacker CS, Abelmann WH. Prevention of viral myocarditis with recombinant human leukocyte interferon alpha A/D in a murine model. J Am Coll Cardiol 1987;9:1320–1325.

206. Tomioka N, Kishimoto C, Matsumori A, Kawai C, Costanzo-Nordin MR, Reap EA, O'Connell JB, Robinson JA, Prednisolone on acute viral myocarditis in mice. J Am Coll Cardiol 1989;13(4):848–856.

207. Yamamoto N, Shibamori M, Ogura M, Seko Y, Kikuchi M. Effects of intranasal administration of recombinant murine interferon-gamma on murine acute myocarditis caused by encephalomyocarditis virus. Circulation 1998;97(10):1017–1023.

208. Tomioka N, Kishimoto C, Matsumori A, Kawai C. Effects of prednisolone on acute viral myocarditis in mice. J Am Coll Cardiol 1986;7(4):868–872.

209. Costanzo-Nordin MR, Reap EA, O'Connell JB, Robinson JA, Scanlon PJ. A nonsteroid anti-inflammatory drug exacerbates Coxsackie B3 murine myocarditis. J Am Coll Cardiol 1985;6(5):1078–1082.

210. Rezkalla S, Khatib G, Khatib R. Coxsackievirus B3 murine myocarditis: deleterious effects of nonsteroidal anti-inflammatory agents. J Lab Clin Med 1986;107(4):393–395.

211. Kishimoto C, Thorp KA, Abelmann WH. Immunosuppression with high doses of cyclophosphamide reduces the severity of myocarditis but increases the mortality in murine Coxsackie virus B3 myocarditis. Circulation 1990;82(3):982–989.

212. Rezkalla S, Kloner RA, Khatib R. Effect of delayed captopril therapy on left ventricular mass and myonecrosis in mice. J Am Coll Cardiol 1990;16(11):2203–2208.

213. McManus BM, Han L, Caruso R, Stratta RJ, Wilson JE. Effect of FK 506 on myocarditis in the enteroviral murine model. Transplant Proc 1991;23(6):3365–3367.

214. Kanda T, Nagaoka H, Kaneko K, et al. Synergistic effects of tacrolimus and human interferon-alpha A/D in murine viral myocarditis. J Pharmacol Exp Ther 1995;274(1):487–493.

215. Yamada T, Matsumori A, Sasayama S. Therapeutic effect of anti-tumor necrosis factor-alpha on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 1994;89:846–851.

216. Matsui S, Matsumori A, Matoba Y, Uchida A, Sasayama S. Treatment of virus-induced myocardial injury with a novel immunomodulating agent, vesnarinone. Suppression of natural killer cell activity and tumor necrosis factor-alpha production. J Clin Invest 1994;94(3):1212–1217.

217. Matsumori A. The use of cytokine inhibitors. A new therapeutic insight into heart failure. Int J Cardiol 1997;62(suppl 1):S3–12.

218. Stevens PJ, Ground KE. Occurrence and significance of myocarditis in trauma. Aerosp Med 1970;41(7):776–780.

219. Gore I, Saphir O. Myocarditis. A classification of 1402 cases. Am Heart J 1947;34:827.

220. Okada R, Wakafuji S. Myocarditis in autopsy. In: Sekiguchi M, Olsen EGJ, Goodwin JF, eds. Myocarditis and Related Disorders. Berlin: Springer-Verlag, 1985:23–29.

221. Gardiner AJ, Short D. Four faces of acute myocarditis. Br Heart J 1973;35(4):443–442.

222. Dec GW Jr, Waldman H, Southern J, Fallon JT, Hutter AM Jr, Palacios I. Viral myocarditis mimicking acute myocardial infarction. J Am Coll Cardiol 1992;20(1):85–89.

223. Costanzo-Nordin MR, O'Connell JB, Subramanian R, Robinson JA, Scanlon PJ. Myocarditis confirmed by biopsy presenting as acute myocardial infarction. Br Heart J 1985;53(1):25–29.

224. Safritz JE, Schwartz DJ, Southworth W, et al. Coxsackie viral myocarditis causing transmural right and left ventricular infarction without coronary narrowing. Am J Cardiol 1983;52(5):644, 646–647.

225. Herskowitz A, Campbell S, Deckers J, et al. Demographic features and prevalence of idiopathic myocarditis in patients undergoing endomyocardial biopsy. Am J Cardiol 1993;71(11):982–986.

226. Burch GE, Shewey LL. Viral coronary arteritis and myocarditis infarction. Am Heart J 1976;92(1):11–14.

227. Ferguson DW, Farwell AP, Bradley WA, Rollings RC. Coronary artery vasospasm complicating acute myocarditis. A rare association. West J Med 1988;148(6):664–669.

228. Friedman RA, F. DD. Myocarditis. In: Feig RD, Cherry JD, eds. Textbook of Pediatric Infectious Diseases. Philadelphia: WB Saunders, 1987:393–413.

229. Onouchi Z, Haba S, Kiyosawa N, Shimaizu S, Hamaka K, Kusunoki T. Stokes-Adams attacks due to acute nonspecific myocarditis in childhood. Jpn Heart J 1980;21(3):307–315.

230. Frustaci A, Cameli S, Zepplini P. Biopsy evidence of atrial mycarditis in an athlete developing transient sinoatrial disease. Chest 1995;108(5):1460–1462.

231. Talwar KK, Radhakrishnan S, Chopra P. Myocarditis manifesting as persistent atrial standstill. Int J Cardiol 1988;20(2):283–286.

232. Straumannis JP, Wiles HB, Case CL. Resolution of atrial standstill in a child with myocarditis. Pacing Clin Electrophysiol 1993;16(11):2196–2201.

233. Nakazato Y, Nakata Y, Hisaoka T, Sumiyoshi M, Ogura S, Yamaguchi H. Clinical and electrophysiological characteristics of atrial standstill. Pacing Clin Electrophysiol 1995;18(6):1244–1254.

234. Liao PK, Seward JB, Hagler DJ, Driscoll DJ. Acute myocarditis associated with transient marked myocardial thickening and complete atrioventricular block. Clin Cardiol 1984;7(6):356–362.

235. Shah SS, Hellenbrand WE, Gallagher PG. Atrial flutter complicating neonatal Coxsackie B2 myocarditis. Pediatr Cardiol 1998;19(2):185–186.

236. Frustaci A, Chimenti C, Bellocci F, Moranghe E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 1997;96(4):1180–1184.

237. Reitman MJ, Zirin HJ, DeAngelis CJ. Complete heart block in patients undergoing endomyocardial biopsy. Am J Cardiol 1993;71(11):982–986.

238. Arvan S, Manalo E. Sudden increase in left ventricular mass secondary to acute myocarditis. Am Heart J 1988;116(1 pt 1):200–202.

239. James KB, Lee K, Thomas JD, et al. Left ventricular diastolic dysfunction in lymphocytic myocarditis as assessed by Doppler echocardiography. Am J Cardiol 1994;73(4):282–285.
ditis: pathogenetic and clinical significance. Eur J Heart Fail 2002;4(4):411–417.
284. Lauer B, Schannwell M, Kuhl U, Strauer BE, Schultheiss HP. Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol 2000;35(1):11–18.
285. Muller J, Wallukat G, Dandel M, et al. Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation 2000;101(4):385–391.
286. Felix SB, Staadt A, Dorfle WV, et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J Am Coll Cardiol 2000;35(6):1590–1598.
287. Morgera T, Di Lenarda A, Dreas L, et al. Electrocardiography of myocarditis revisited: clinical and prognostic significance of electrocardiographic changes. Am Heart J 1992;124(2):455–467.
288. Take M, Sekiguchi M, Hiroe M, Hirosawa K. Long-term follow-up of electrocardiographic findings in patients with acute myocarditis proven by endomyocardial biopsy. Jpn Circ J 1982;46(11):1227–1234.
289. Vignola PA, Aonuma K, Swayne PS, et al. Lymphocytic myocarditis presenting as unexplained ventricular arrhythmias: diagnosis with endomyocardial biopsy and response to immunosuppression. J Am Coll Cardiol 1984;4(4):812–819.
290. Nieminen MS, Heikkila J, Karjalainen J. Echocardiography in chronic myocarditis. J Am Coll Cardiol 2000;35(1):11–18.
291. Mendes LA, Dec GW, Picard MH, Palacios IF, Newell J, Daviddoff R. Right ventricular dysfunction: an independent predictor of adverse outcome in patients with myocarditis. Am Heart J 1994;128(2):301–307.
292. Kojima J, Miyazaki S, Fujiwara H, Kumada T, Kawai C. Recurrence of electrocardiographic findings in patients with acute myocarditis. Jpn Circ J 1985;49(10):1265–1271.
293. Pinamonti B, Alberti E, Cigalotto A, et al. Echocardiographic findings in myocarditis. Am J Cardiol 1988;62(4):285–291.
294. Urausan A, Kindermann M, Bohm M, Kindermann W. Images of inflammatory myocarditis and myocardial scars. Circulation 1988;78(1):58–62.
295. Yasuda T, Palacios IF, Dec GW, et al. Indium-111 monoclonal angioimmunoglobulin antibody imaging in the diagnosis of acute myocarditis. Circulation 1987;76:306–311.
296. Lindner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 1999;100(2):531–538.
297. O’Connell JB, Henkin RE, Robinson JA, Subramanian R, Scanlon PJ, Gunnar RM. Gallium-67 imaging in patients with dilated cardiomyopathy and biopsy-proven myocarditis. Circulation 2003;108(4):216–222.
298. Khaw BA, Narula J. Non-invasive detection of myocyte necrosis in myocarditis and dilated cardiomyopathy with radiolabelled antimyosin. Eur Heart J 1995;16(suppl O):119–123.
299. Lauer B, Kuhl U, Souvatzoglu M. Correlation of antimyosin autoantibodies and electrocardiographic findings in the endomyocardial biopsy in patients with clinically suspected myocarditis. J Am Coll Cardiol 1998;31:110A[abstr].
300. Dec GW, Palacios I, Yasuda T, et al. Antimyosin antibody imaging: its role in the diagnosis of myocarditis. J Am Coll Cardiol 1999;34(16):97–104.
301. Margari ZJ, Anastasiou-Nana MI, Terrovitis J, et al. Indium-111 monoclonal antimyosin cardiac scintigraphy in suspected acute myocarditis: evolution and diagnostic impact. Int J Cardiol 2003;90(2–3):239–245.
302. Sun Y, Ma P, Bax JJ, et al. 99mTc-MIBI myocardial perfusion imaging in myocarditis. Nucl Med Commun 2003;24(7):779–783.
303. Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 2004;109(10):1250–1258.
304. Friedrich MG, Strohm O, Schulz-Menger J, Marcinia H, Luft FC, Dietz R. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 1998;97(18):1802–1809.
305. Wagner A, Schulz-Menger J, Dietz R, Friedrich MG. Long-term follow-up of patients paragraph sign with acute myocarditis by magnetic paragraph sign resonance imaging. Magna 2003;16(17–20).
306. Neubauer S, Horn M, Pabst T, et al. Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated heart muscle disease. Eur Heart J 1995;16(suppl O):115–118.
307. Shirley EK, Hawk WA, Mukerji D, Effler DB. Pericardial myocardial biopsy of the left ventricle. Experience in 198 patients. Circulation 1972;46(11):112–122.
308. Sutton GC, Driscoll JF, Gunnar RM, Tobin JR, Jr. Exploratory Mediastinotomy in Primary Myocardial Disease. Prog Cardiovasc Dis 1964;57:83–97.
309. Sakakibara S, Konno S. Endomyocardial biopsy. Jpn Heart J 1962;3:537–543.
310. Mason JW, Billingham ME, Ricci DR. Treatment of acute inflammatory myocarditis assisted by endomyocardial biopsy. Am J Cardiol 1980;45(5):1037–1044.
311. Baandrup U, Florio RA, Roters F, Olsen EG. Electron microscopic investigation of endomyocardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients. Circulation 1981;63(6):1289–1298.
312. Fenoglio JJ Jr, Ursell PC, Kellogg CF, Drusen RE, Weiss MB. Diagnosis and classification of myocarditis by endomyocardial biopsy. N Engl J Med 1983;308(1):12–18.
313. Rose AG, Fraser RC, Beck W. Absence of evidence of myocarditis in endomyocardial biopsy specimens from patients with dilated [congestive] cardiomyopathy. S Afr Med J 1984;66(23):871–874.
314. Daly K, Richardson PJ, Olsen EG, et al. Acute myocarditis. Role of histological and virological examination in the diagnosis and assessment of immunosuppressive treatment. Br Heart J 1984;51(1):30–35.
315. Parrillo JE, Aretz HT, Palacios I, Fallon JT, Block PC. The results of transvenous endomyocardial biopsy can frequently be used to diagnose myocardial diseases in patients with idiopathic heart failure. Endomyocardial biopsies in 100 consecutive patients revealed a substantial incidence of myocarditis. Circulation 1984;69(1):193–198.
316. Regitz V, Olsen EG, Rudolph W. [Histologically detectable myocarditis in patients with impaired left ventricular function]. Herz 1985;10(1):27–35.
317. Cassling RS, Linder J, Sears TD, et al. Quantitative evaluation of inflammation in biopsy specimens from idiopathically failing or irritable hearts: experience in 80 pediatric and adult patients. Am Heart J 1985;110(4):713–720.
318. Salvi A, Silvestri F, Gori D, Klugmann S, Tanganelli P, Camerini F. [Endomyocardial biopsy: experience with 156 patients]. G Ital Cardiol 1985;15(3):251–259.
319. Dec GW, Palacios IF, Fallon JT, et al. Active myocarditis in the spectrum of acute dilated cardiomyopathies: Clinical features, histologic correlates and clinical outcome. N Engl J Med 1985;312:885–890.
320. Mortensen SA, Baandrup U, Buck J. Immunosuppressive therapy of biopsy proven myocarditis: experiences with corticosteroids and cyclosporin. In J Immunotherapy 1985;1:35–45.
321. Meany BT, Quigley PJ, Olsen EGJ. Recent experience in the diagnosis of myocarditis. Eur Heart J 1987;8:17–18.
380. Henke A, Jarasch N, Wutzler P. Vaccination procedures against coxsackievirus B3 in mice: protective effects of capsid protein in mice against viral challenge. Vaccine 2005;23(14):1672–1679.

381. Liu P, Aitken K, Kong YY, et al. The tyrosine kinase p56lck is essential in coxsackievirus B3–mediated heart disease [In Process Citation]. Nat Med 2000;6(4):429–434.

382. Liu P, Opavsky MA. Viral myocarditis: receptors that bridge the cardiovascular with the immune system? Circ Res 2000;86(3):253–254.

383. Liu P, Aitken K, Kong YY, et al. The tyrosine kinase p56lck is essential in coxsackievirus B3–mediated heart disease [In Process Citation]. Nat Med 2000;6(4):429–434.

384. Benbrik E, Chariot P, Bonavaud S, et al. Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. J Neurol Sci 1997;149(1):19–25.

385. Cassimatis DC, Atwood JE, Engler RM, Linz PE, Grabenstein JD, Vernalis MN. Smallpox vaccination and myopericarditis: a clinical review. J Am Coll Cardiol 2004;43(9):1503–1510.

386. Eckart RE, Love SS, Atwood JE, et al. Incidence and follow-up of inflammatory cardiac complications after smallpox vaccination. J Am Coll Cardiol 2004;44(1):201–205.
401. Murphy JG, Wright RS, Bruce GK, et al. Eosinophilic lymphocytic myocarditis after smallpox vaccination. Lancet 2003;362(9393):1378–1380.

402. Shalit M, Braverman AJ, Eliakim M. Congestive heart failure in the course of typhoid fever. J Infect 1982;4[1]:81–84.

403. Brasier AR, Macklis JD, Vaughan D, Warner L, Kirshenbaum JM. Myopericarditis as an initial presentation of meningococcaemia. Unusual manifestation of infection with serotype W135. Am J Med 1987;82[3 spec. No.]:641–644.

404. Gross D, Willens H, Zeldis SM. Myocarditis in legionnaires’ disease. Chest 1981;79[2]:232–234.

405. McCue MJ, Moore EE. Myocarditis with microabscess formation caused by Listeria monocytogenes associated with myocardial infarct. Hum Pathol 1979;10[4]:469–472.

406. Le Van D, Arnold K. Typhoid fever with myocarditis. Am J Trop Med Hyg 1974;23[2]:218–221.

407. Ringel RE, Brenner JL, Rennels MB, et al. Serologic evidence for Chlamydia trachomatis myocarditis. Pediatrics 1982;70[1]:54–56.

408. Chen SC, Tsai CC, Nouri S. Carditis associated with Mycoplasma pneumoniae infection. Am J Dis Child 1986;140[5]:471–472.

409. Karjalainen J. Streptococcal tonsillitis and acute nonrheumatic myopericarditis. Chest 1989;95[2]:359–363.

410. Caraco J, Arnon R, Raz I. Atrioventricular block complicating streptococcal tonsillitis. Am J Med 1989;95[6]:1338–1339.

411. Murphy JG, Wright RS, Bruce GK, et al. Eosinophilic activation in acute streptococcal tonsillitis. Br Heart J 1988;59[3]:389–390.

412. Gore I, Saphir O. Myocarditis associated with acute nasopharyngitis and acute tonsillitis. Am Heart J 1947;34:831.

413. MacGregor RR. Corynebacterium diphtheriae. In: Mandell GL, Douglas RG, Bennett JE, eds. Principles and Practice of Infectious Diseases. New York: Churchill Livingstone, 1990:1574–1581.

414. Morgan BC. Cardiac complications of diphtheria. Pediatrics 1963;32:549–557.

415. Burch GE, Sun SC, Sohal RS, Chu KC, Colocolor HL. Diphtheritic myocarditis. A histochemical and electron microscopic study. Am J Cardiol 1968;21[2]:261–268.

416. Thysyakorn U, Wongvanich J, Kumpeng V. Failure of corticosteroid therapy to prevent diphtheritic myocarditis or neuritis. Pediatr Infect Dis 1984;3[2]:126–128.

417. Ramos AC, Elias PR, Barrucand L, Da Silva JA. The protective effect of carditine in human diphtheric myocarditis. Pediatr Res 1984;18[9]:815–819.

418. Duray PH. Clinical pathologic correlations of Lyme disease. Rev Infect Dis 1989;11[suppl 6]:SI487–1493.

419. Wormser GP. Early Lyme disease. N Engl J Med 2006;354:2794–2801.

420. Olson LJ, Okafor EC, Clements IP. Cardiac involvement in Lyme disease: manifestations and management. Clin Proc 1986;61[9]:745–749.

421. Reznick JW, Braunstein DB, Walsh RL, et al. Lyme carditis. Electrophysiological and histopathologic study. Am J Med 1986;81[5]:923–927.

422. Kimball SA, Janson PA, LaRaia PJ. Complete heart block as the sole presentation of Lyme disease. Arch Intern Med 1989;149[8]:1897–1898.

423. Stanek G, Klein J, Bittner R, Glogar D. Isolation of Borrelia burgdorferi from the myocardium of a patient with longstanding cardiomypathy. N Engl J Med 1990;322[4]:249–252.

424. Lafont A, Wolff M, Marche C, Clair B, Regnier B. Overwhelming myocarditis due to Cryptococcus neoformans in an AIDS patient. Lancet 1987;2[8568]:1145–1146.

425. Lewis W, Lipsick J, Cammarosano C. Cryptococcal myocarditis in acquired immune deficiency syndrome. Am J Cardiol 1985;55[9]:1240.

426. Farrar WE. Leptospira species [leptospirosis]. In: Mandell GL, ed. Principles and Practice of Infectious Diseases. New York: Churchill Livingstone, 1990:1813–1816.

427. Atkinson JB, Connor DH, Robinowitz M, McAllister HA, Virmani R. Cardiac fungal infections: review of autopsy findings in 60 patients. Hum Pathol 1984;15[10]:935–942.

428. Franklin WG, Simon AB, Sodeman TM. Candida myocarditis without valvulitis. Am J Cardiol 1976;38[7]:924–928.

429. Ihde DC, Roberts WC, Marr KC, et al. Cardiac candidiasis in cancer patients. Cancer 1978;41[6]:2364–2371.

430. Farrar WE. Leptospira species (leptospirosis). In: Mandell GL, Douglas RG, Bennett JE, eds. Principles and Practice of Infectious Diseases. New York: Churchill Livingstone, 1990:1813–1816.

431. Schwartz DA. Aspergillus panarteritis following bone marrow transplantation for chronic myelogenous leukemia. Chest 1989;95[6]:1338–1339.

432. Williams AH. Aspergillus myocarditis. Am J Clin Pathol 1974;61[2]:247–256.

433. Cole FH Jr, Jarrett CL. Primary actinomycosis of the pericardium. South Med J 1982;75[8]:1028–1029.

434. Slutzker AD, Claypool WD. Pericardial actinomycosis with cardiac tamponade from a contiguous thoracic lesion. Thorax 1989;44[5]:442–443.

435. Dutton WP, Inclan AP. Cardiac actinomycosis. Dis Chest 1968;54[5]:463–467.

436. Varthian AP, Coudron PE, Markowitz SM. Disseminated coccidioidomycosis. Unusual manifestations in a cardiac transplantation patient. Am J Med 1987;83[5]:949–952.

437. Lafont A, Wolff M, Marche C, Clair B, Regnier B. Overwhelming myocarditis due to Cryptococcus neoformans in an AIDS patient. Lancet 1987;2[8568]:1145–1146.

438. Lewis W, Lipsick J, Cammarosano C. Cryptococcal myocarditis in acquired immune deficiency syndrome. Ann Intern Med 1985;55[9]:1240.

439. Hagar JM, Rahimtoola SH. Chagas’ heart disease in the United States. N Engl J Med 1991;325[11]:763–768.

440. Bradford WD, Hackett DB. Myocardial involvement in Rocky Mountain spotted fever. Arch Pathol Lab Med 1978;102[7]:357–359.

441. Marin-Garcia J, Gooch WM 3rd, Coury DL. Cardiac manifestations of Rocky Mountain spotted fever. Pediatrics 1981;67[3]:358–361.

442. Lankford HV, Glauser FL. Cardiopulmonary dynamics in a severe case of Rocky Mountain spotted fever. Arch Intern Med 1980;140[10]:1357–1359.

443. Marin-Garcia J, Barrett FF. Myocardial function in Rocky Mountain spotted fever: echocardiographic assessment. Am J Cardiol 1983;51[2]:341–343.

444. Feltes TF, Wilcox WD, Feldman WE, Lipskis DJ, Carter SL, Bugg GW. M-mode echocardiographic abnormalities in Rocky Mountain spotted fever. South Med J 1984;77[9]:1130–1132.

445. Dias JCP. The indeterminate form of human chronic Chagas’ disease: a clinical epidemiological review. Rev Soc Bras Med Trop 1988;22:147.

446. Kirchhoff LV. Trypanosoma species (American trypanosomiasis Chagas’ disease): biology of trypanosomes. In: Mandell GL, Douglas RG, Bennett JE, eds. Principles and Practice of Infectious Diseases. New York: Churchill Livingstone, 1990:1813–1816.

447. Teixeira IB, Tanowitz HB, Wittner M, Bilezikian JP. Pathophysiological insights into the cardiomypathy of Chagas’ disease. Circulation 1990;82[6]:1900–1909.

448. Molina HA, Kierszenbaum F. Eosinophil activation in acute and chronic chagasic myocardial lesions and deposition of toxic eosinophil granule proteins on heart myofibers. J Parasitol 1989;75[1]:129–132.

449. Palacios-Pru E, Carrasco H, Scorzca C, Espinoza R. Ultrastructural characteristics of different stages of human chagasic myocarditis. Am J Trop Med Hyg 1989;41[1]:29–40.
Ariza A, Lopez MD, Mate JL, Curos A, Villagrasa M, Navas-Sio C, Go S, Kamiya T, et al. Gallium-67 myocardial imaging for the detection of myocarditis in the acute phase of Kawasaki disease (mucocutaneous lymph node syndrome): the usefulness of single photon emission computed tomography. Br Heart J 1987;58(4):385–392.

Ino T, Akimoto K, Nishimoto K, et al. Myocarditis in Kawasaki disease. Am Heart J 1989;117(6):1400–1401.

Furusho K, Kamiya T, Nakano H, et al. High-dose intravenous gammaglobulin for Kawasaki disease. Lancet 1984;2(8411):1055–1058.

Theaker JM, Gatter KC, Heryet A, Evans DJ, McGee JO. Giant cell myocarditis: evidence for the macrophage origin of the giant cells. J Clin Pathol 1985;38(2):160–164.

Humbert P, Favre R, Fellman D, Bassand JP, Dupond JL. Giant cell myocarditis: an autoimmune disease? Am Heart J 1988;115(2):485–487.

Roberts WC, McAllister HA Jr, Ferrans VJ. Sarcoïdosis of the heart. A clinico-pathologic study of 35 necropsy patients [group 1] and review of 78 previously described necropsy patients [group 11]. Am J Med 1977;63(1):86–108.

Johansen A. Isolated myocarditis versus myocardial sarcoïdosis. A contribution to the discussion regarding points of resemblance between these and a report of three illustrative cases. Acta Pathol Microbiol Scand 1964;67(1):15–26.

Litovsky SH, Burke AP, Virmani R. Giant cell myocarditis: an entity distinct from sarcoïdosis characterized by multiphasic myocyte destruction by cytotoxic T cells and histiocytic giant cells. Mod Pathol 1996;9(12):1126–1134.

Kilgallen CM, Jackson E, Bankoff M, Salomon RN, Surks HK. A case of giant cell myocarditis and malignant thymoma: a postmortem diagnosis by needle biopsy. Clin Cardiol 1998;21(1):48–51.

Leib ML, Odel JG, Cooney MJ. Orbital polymyositis and giant cell myocarditis. Ophthalmology 1994;101(5):950–954.

Weidhae A, Grone HJ, Unterberg C, Schuff-Werner P, Wiegand V. Severe granulomatous giant cell myocarditis in Wegener’s granulomatosis. Klin Wochenschr 1983;61(11):471–477.

Olsen EG, Spry CJ. Relation between eosinophilia and endomyocardial disease. Prog Cardiovasc Dis 1985;27(4):241–254.

Nakayama Y, Kohriyama T, Yamamoto S, et al. Electron-microscopic and immunohistochemical studies on endomyocardial biopsies from a patient with eosinophilic endomyocardial disease. Heart Vessels Suppl 1985;1:250–255.

Tai PC, Hayes DJ, Clark JB, Spry CJ. Toxic effects of human eosinophil products on isolated rat heart cells in vitro. Biochem J 15 1982;204(1):75–80.

Terasaki F, Hayashi T, Hirota Y, et al. Evolution to dilated cardiomyopathy from acute eosinophilic pancarditis in Churg-Strauss syndrome. Heart Vessels 1997;12(1):43–48.

Schuchter LM, Hendricks CB, Holland KH, et al. Eosinophilic myocarditis associated with high-dose interleukin-2 therapy. Am J Med 1990;88(4):439–440.

Galusto L, Enríquez-Sarano M, Reeder GS, et al. Eosinophilic myocarditis manifesting as myocardial infarction: early diagnosis and successful treatment Clin Proc 1997;72(7):603–610.

Newman LS, Rose CS, Maier LA. Sarcoïdosis. N Engl J Med 1997;336(17):1224–1234.

Rizzato G, Pezzano A, Sala G, et al. Right heart impairment in sarcoïdosis: haemodynamic and echocardiographic study. Eur J Respir Dis 1982;69(2):121–128.

Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoïd: a clinicopathologic study of 84 unselected patients with systemic sarcoïdosis. Circulation 1978;58(6):1204–1211.

Jain A, Starek PJ, Delany DL. Ventricular tachycardia and ventricular aneurysm due to unrecognized sarcoïdosis. Clin Cardiol 1990;13(10):738–740.

Bolhe W, Schaefer HE. Predominant myocardial sarcoïdosis. Pathol Res Pract 1994;190(2):212–217, discussion 217–219.

Yazaki Y, Isobe M, Hiramitsu S, et al. Comparison of clinical features and prognosis of cardiac sarcoïdosis and idiopathic dilated cardiomyopathy. Am J Cardiol 1998;82(4):537–540.

Bohle W, Schaefer HE. Predominant myocardial sarcoïdosis. Pathol Res Pract 1994;190(2):212–217, discussion 217–219.

Sharma OP, Maheshwari A, Thaker K. Myocardial sarcoïdosis. Chest 1993;103(1):253–258.
535. Hirose Y, Ishida Y, Hayashida K, et al. Myocardial involvement in patients with sarcoidosis. An analysis of 75 patients. Clin Nucl Med 1994;19(6):522–526.

536. Chandra M, Silverman ME, Oshinski J, Pettigrew R. Diagnosis of cardiac sarcoidosis aided by MRI. Chest 1996;110(2):562–565.

537. Eliasch H, Juhlin-Dannfelt A, Sjogren I, Terent A. Magnetic resonance imaging as an aid to the diagnosis and treatment evaluation of suspected myocardial sarcoidosis in a fighter pilot. Aviat Space Environ Med 1995;66(10):1010–1013.

538. Shammas RL, Movahed A. Sarcoidosis of the heart. Clin Cardiol 1995;16(6):462–472.

539. Okayama K, Kurata C, Tawarahara K, Wakabayashi Y, Chida K, Sato A. Diagnostic and prognostic value of myocardial scintigraphy with thallium-201 and gallium-67 in cardiac sarcoidosis. Chest 1995;107(2):330–334.

540. Bajaj AK, Kopelman HA, Echt DS. Cardiac sarcoidosis with sudden death: treatment with the automatic implantable cardioverter defibrillator. Am Heart J 1988;116(2 pt 1):557–560.

541. Lampert MB, Hibbard J, Weinert L, Briller J, Lindheimer M, Lang RM. Peripartum heart failure associated with prolonged tocolytic therapy. Am J Obstet Gynecol 1993;168(2):493–495.

542. Farber PA, Glasgow LA. Viral myocarditis during pregnancy: encephalomyocarditis virus infection in mice. Am Heart J 1970;80(1):96–102.

543. Takatsu T, Kitamura Y, Morita H. Viral myocarditis and cardiomyopathy. In: Olsen EGJ, ed. Cardiomyopathy. Tokyo: University of Tokyo Press, 1978:34–35.

544. Elkayam U, Akhter MW, Singh H, et al. Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation. Circulation 2005;111(16):2050–2055.

545. O’Connell JB, Costanzo-Nordin MR, Subramanian R, et al. Peripartum cardiomyopathy: clinical, hemodynamic, histologic and prognostic characteristics. J Am Coll Cardiol 1986;8(1):52–56.