VLP: A Survey on Vision-Language Pre-training

Feilong Chen1,2†, Duzhen Zhang1,3†, Minglun Han1,3†, Xiuyi Chen1,3, Jing Shi1, Shuang Xu1 and Bo Xu1,2,3

1Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
2School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
3School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.

†These authors contributed equally to this work.

Abstract

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

Keywords: Vision and language, Pre-training, Transformers
1 Introduction

Making machines respond in ways similar to humans has been a relentless goal of AI researchers. To enable machines to perceive and think, researchers propose a series of related tasks, such as face recognition, reading comprehension, and human-machine dialogue, to train and evaluate the intelligence of machines in a particular aspect. Specifically, domain experts manually construct standard datasets and then train and evaluate relevant models on them. However, due to the limitations of related technologies, it is often necessary to train on a large amount of labelled data to obtain a better and more capable model. The recent emergence of pre-training models based on the Transformer structure [1] has alleviated this problem. They are first pre-trained via self-supervised learning that typically exploits auxiliary tasks (pre-training objectives) to mine supervision signals from large-scale unlabelled data to train the model, thereby learning universal representations. Then they can achieve surprising effectiveness by fine-tuning with only a tiny amount of manually-labelled data on downstream tasks. Since the advent of BERT [2] in natural language processing (NLP), various pre-training models have sprung up in the uni-modal field, such as Vision Transformer (ViT) [3] in computer vision (CV) and Wave2Vec [4] in speech. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch.

Similar to the uni-modal field, there is also a problem of less high-quality labelled data in the multi-modal field. The natural question is, can the above pre-training method be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. In this paper, we focus on mainstream vision-language pre-training (VLP), including image-text and video-text pre-training. VLP mainly learns the semantic correspondence between different modalities by pre-training on large-scale data. For example, in image-text pre-training, we expect the model to associate “dog” in text with what “dog” looks like in images. In video-text pre-training, we expect the model to map objects/actions in the text to objects/actions in the video. To achieve this goal, the VLP objects and model architecture need to be cleverly designed to allow the model to mine the associations between different modalities.

To give readers a better global grasp of VLP, we first comprehensively review its recent advances and focus on five significant aspects:

- **Feature extraction.** This section includes the preprocessing and representation methods of image, video, and text in VLP models (see Section 2).
- **Model architecture.** We introduce the architecture of the VLP models from two different perspectives: Single-stream versus Dual-stream from multi-modal fusion perspective, and Encoder-only versus Encoder-decoder from the overall architectural design perspective (see Section 3).
• **Pre-training objectives.** Pre-training objectives are the core of VLP, mainly used to guide the model to learn vision-language associated information. We summarize typical and characteristic pre-training objectives divided into completion, matching, temporal, and particular types (see Section 4).

• **Pre-training datasets.** Data is critical for VLP. We briefly introduce mainstream corpora for VLP and their specific sizes (see Section 5).

• **Downstream tasks.** Various tasks require a cooperative knowledge of both vision and language. We divide them into five categories: classification, regression, retrieval, generation, and other tasks. We also discuss the basic details and goals of these tasks (see Section 6).

Then we summarize the specific state-of-the-art (SOTA) VLP models in detail (see Section 7). Finally, We conclude the paper and have broad discussions on new frontiers in VLP (see Section 8).

To the best of our knowledge, this is the first survey on VLP. We hope that our survey can help researchers better understand this field and inspire them to design better models.

2 Feature Extraction

This section describes how VLP models preprocess and represent an image, video and text to obtain counterpart features.

2.1 Feature Extraction

2.1.1 Image Feature Extraction

OD-based Region Features (OD-RFs).

Most previous work on VLP utilizes pre-trained object detectors to extract visual features. The most commonly used object detection model is Faster R-CNN with bottom-up attention [5]. It is designed to identify objects belonging to certain classes and localize them with bounding boxes. By using the Faster R-CNN, VLP models obtain the OD-based Region feature embedding $V = [o_1, o_2, \ldots, o_k]$ of an image with k selected regions. Each region feature o_i is a 2048-d Region-of-Interest (RoI) feature with its bounding box. The bounding box is defined by the coordinates of the bottom-left and top-right corners of the region. VLP models use bounding boxes to construct 5-d vectors, and the vector is embedded into a high-dimensional representation (2048-d) named visual geometry embedding. The OD-RFs are obtained by adding the OD-based Region feature embedding with its visual geometry embedding. Although ODFs have brought impressive performance, extracting region features can be time-consuming. To relieve this problem, the pre-trained object detectors are usually frozen during pre-training, which can limit the capacity of VLP models.
(2) **CNN-based Grid Features (CNN-GFs).**

VLP models extract visual features by utilizing convolutional neural networks (CNNs) to obtain the grid features. On the one hand, VLP models can train the CNNs end-to-end by using the grid features directly. On the other hand, VLP models can also first discretize grid features using a learned vision dictionary, then feed them into the cross-modal module.

(3) **ViT-based Patch Features (ViT-PFs).**

Inspired by ViT, VLP models reshape the image $I_i \in \mathbb{R}^{H \times W \times C}$ into a sequence of flattened 2D patches $I_p \in \mathbb{R}^{N \times (P^2 \cdot C)}$, where (H, W) is the resolution of the original image, C is the number of channels, (P, P) is the resolution of each image patch, and $N = HW/P^2$ is the resulting number of patches, which also serves as the effective input sequence length for the Transformer. An input image I_i is encoded into a sequence of embeddings: $\{v_{cls}, v_1, ..., v_N\}$, where v_{cls} is the embedding of the $[CLS]$ token.

2.1.2 Video Feature Extraction

A video clip is denoted as M frames (images). VLP models extract the frame features by using the method mentioned above. The two most commonly used features are CNN-GFs and ViT-PFs. For CNN-GFs, VLP models first use ResNet pre-trained on ImageNet and SlowFast pre-trained on Kinetics to extract 2D and 3D visual features for each video frame. These features are concatenated as visual features and fed through a fully-connected (FC) layer to be projected into the same lower-dimensional space as token embeddings. For ViT-PFs, a video clip $V_i \in \mathbb{R}^{M \times H \times W \times C}$ consisting of M frames of resolution $H \times W$, where $M = 1$ for images. Following the protocol in ViT and Timesformer, the input video clip is divided into $M \times N$ non-overlapping spatio-temporal patches of size $P \times P$, where $N = HW/P^2$.

2.1.3 Text Feature Extraction

For the textual features, following BERT, VLP models first segment the input sentence into a sequence of subwords. And then, insert a start-of-sequence token and an end-of-sequence token at the beginning and the end of the sequence to generate the input text sequence. Text input representations are computed via summing the corresponding word embedding, text position embedding, and text type embedding.

2.2 Feature Representation

To make full use of uni-modal pre-trained models, VLP models can send the visual or text features to a transformer encoder. Specifically, VLP models utilize the standard transformer encoder with random initialization to generate the visual or textual representation. In addition, VLP models can utilize a pre-trained visual transformer to encode the ViT-PFs, such as ViT and DeiT [6].
VLP: A Survey on Vision-Language Pre-training

3 Model Architecture

In this section, we introduce the architecture of the VLP models from two different perspectives: (1) Single-stream versus Dual-stream from multi-modal fusion perspective, and (2) Encoder-only versus Encoder-decoder from the overall architectural design perspective.

3.1 Single-stream versus Dual-stream

Single-stream Architecture.

The single-stream architecture refers to that the text and visual features are concatenated together, then fed into a single transformer block as shown in Figure 1 (a). The single-stream structure utilizes merged attention to fuse multimodal inputs. The single-stream architecture is more parameter-efficient, as the same set of parameters is used for both modalities.

Dual-stream Architecture.

The dual-stream architecture refers to that the text and visual features are not concatenated together but sent to two different transformer blocks independently, as shown in Figure 1 (b). These two transformer blocks do not share parameters. To achieve higher performance, cross-attention (as shown by the dotted line in Figure 1 (b)) are used to enable cross-modal interaction. To achieve higher efficiency, there can also be no cross-attention between the visual transformer and textual transformer blocks.

3.2 Encoder-only versus Encoder-decoder

Many VLP models adopt the encoder-only architecture, where the cross-modal representations are directly fed into an output layer to generate the final
outputs. In contrast, other VLP models advocate using a transformer encoder-decoder architecture, where the cross-modal representations are first fed into a decoder and then to an output layer.

4 Pre-training Objectives

This section introduces how we pre-train VLP models by using different pre-training objectives, which are crucial for learning the universal representation of vision-language. We summarize the pre-training objectives into four categories: completion, matching, temporal, and particular types.

- **Completion** is to reconstruct the masked element by leverage the unmasked remainders to understand the modality. (see section 4.1, 4.2 and 4.3).
- **Matching** is to unify the vision and language into a shared hidden space to generate universal vision-language representation (see Section 4.4, 4.5 and 4.6).
- **Temporal** is to learn good representation by reorder the disrupted input sequence (see Section 4.7)
- **Particular** types consists of other pre-training objects, such as visual question answering and visual captioning (see Section 4.8).

Now we introduce the most used pre-training objectives.

4.1 Masked Language Modeling

Masked language modeling (MLM), which was first proposed by Talylor [7] in the literature, is widely known because the BERT model adapted it as a novel pre-training task. MLM in VLP models is similar to MLM in pre-training language models (PLMs) but predicts the masked textual tokens not only by the rest of the textual tokens but also by the visual tokens. Empirically, VLP models following BERT randomly mask each textual input token with probability 15% and replace the masked one by using a special token [MASK] 80% of the time, a random textual token 10% of the time and the original token 10% of the time to perform masking. The formal definition is as follows:

\[
\mathcal{L}_{MLM} = -E_{(v, w) \sim D} \log P(w_m | w_{\setminus m}, v),
\]

where \(v\) denotes the vision, \(w\) denotes the textual tokens, \(w_m\) denotes the masked textual tokens, \(w_{\setminus m}\) denotes the remained textual tokens and \(D\) denotes the training dataset.

4.2 Prefix Language Modeling

Prefix Language Modeling (PrefixLM) is unified of masked language model and language modeling (LM). PrefixLM is proposed to facilitate the model with solid generation capability that enables text-induced zero-shot generalization without finetuning. PrefixLM differs from the standard LM such
that it enables bi-directional attention on the prefix sequence and only conducts autoregressive factorization on the remaining tokens. PrefixLM under the sequence-to-sequence (seq2seq) framework not only enjoys the bidirectional contextualized representation as in MLM but also can perform text generation similar to LM. The formal definition is as follows:

$$\mathcal{L}_{\text{PrefixLM}} = -E_{(v, w) \sim D} \log P(w_{\geq T_p}|w_{\leq T_p}, v),$$ (2)

where T_p denotes the length of the prefix sequence.

4.3 Masked Vision Modeling

Like MLM, masked vision modeling (MVM) samples vision (image or video) regions or patches and usually masks their visual features with a probability of 15%. VLP models need to reconstruct the masked visual features given the remaining visual features and all the textual features. The masked visual features are set to zeros. Because visual features are high-dimensional and continuous, VLP models propose two variants for MVM.

(1) Masked Features Regression

learns to regress the model output of masked features to its original visual features. VLP models convert the model output of the masked features to a vector of the same dimension as the original visual features first and apply L2 regression between the original visual features and the vector. The formal definition is as follows:

$$\mathcal{L}_{\text{MVM}} = E_{(v, w) \sim D} f(v_m|v\backslash m, w),$$ (3)

$$f(v_m|v\backslash m, w) = \sum_{i=1}^{K} ||h(v^i_m) - O(v^i_m)||_2^2,$$ (4)

where $h(v^i_m)$ denotes the predicted vision representation and $O(v^i_m)$ denotes the original vision representation.

(2) Masked Feature Classification

learns to predict the object semantic class for the masked features. VLP models first feed the output of the masked features into an FC layer to predict the scores of object class, which further goes through a softmax function to be transformed into a prediction normalized distribution. Note that there is no ground-truth label. There are two kinds of methods to train VLP models. One is that VLP models take the most likely object class from the object detection model as the hard label (w.p. 0 or 1), assuming the detected object class is the ground-truth label for the masked features and apply cross-entropy loss to minimize the gap between the prediction and pseudo class. The other is that VLP models utilize soft label as supervision signal, which is the raw output.
from the detector (i.e., a distribution of object classes) and minimize the KL divergence between two distributions. The formal definition is as follows:

$$L_{MVM} = E_{(v, w) \sim D}\{f(v_m | v_m, w)\}. \quad (5)$$

We use the object detection output from Faster R-CNN, and take the detected object category as the label of the masked region:

$$f_1(v_m | v_m, w) = \sum_{i=1}^{K} CE(c(v_i^m) - g_1(v_i^m)),$$ \quad (6)

where $g_1(v_i^m)$ the detected detected object category and K denotes the number of vision regions.

We avoid this assumption by using soft label as supervision signal, which is the raw output from the detector:

$$f_2(v_m | v_m, w) = \sum_{i=1}^{K} D_{KL} (\hat{c}(v_i^m) - g_2(v_i^m)).$$ \quad (7)

where $g_1(v_i^m)$ the detected detected object category distribution.

4.4 Vision-Language Matching

Vision-Language Matching (VLM) is the most commonly used pre-training objective to align vision and language. In the single-stream VLP models, they use the representation of the special token [CLS] as the fused representation of both modalities. In the dual-stream VLP models, they concatenate the visual representation of the special visual token [CLS$_V$] and the textual representation of the special textual token [CLS$_T$] as the fused representation of both modalities. VLP models feed the fused representation of both modalities to an FC layer and a sigmoid function to predict a score between 0 and 1, where 0 indicates the vision and language are mismatched, and 1 indicates the vision and language are matched. During training, VLP models sample positive or negative pairs from the dataset at each step. The negative pair is created by replacing the vision or text in a paired sample with randomly selected from other samples.

4.5 Vision-Language Contrastive Learning

Vision-Language Contrastive Learning (VLC) predicts the matched vision-language pairs from $N \times N$ possible vision-language pairs given a batch of N vision-language pairs. Note that there are $N^2 - N$ negative vision-language pairs within a training batch. VLP models use the visual representation of the special visual token [CLS$_V$] and the textual representation of the special textual token [CLS$_T$] to denote the aggregated representation of the vision and language, respectively. VLP models compute the softmax-normalized vision
(image or video)-to-text similarity and text-to-vision similarity and leverage cross-entropy losses over vision-to-text and text-to-vision similarities to update themselves. The similarity is often implemented by dot products. The formal definitions are as follows:

\[
p_{v2t}^m(I) = \frac{\exp(s(I, T_m) / \tau)}{\sum_{m=1}^{M} \exp(s(I, T_m) / \tau)}, \quad (8)
\]

\[
p_{t2v}^m(T) = \frac{\exp(s(T, I_m) / \tau)}{\sum_{m=1}^{M} \exp(s(T, I_m) / \tau)}, \quad (9)
\]

\[
\mathcal{L}_{VLC} = \frac{1}{2} \mathbb{E}_{(I,T) \sim D} [CE(y_{v2t}^t, p_{v2t}^t(I)) + CE(y_{t2v}^t, p_{t2v}^t(T))], \quad (10)
\]

where \(I, T\) denotes the images and texts, \(s(cot)\) denotes the similarity function and \(\tau\) denotes temperature coefficient. \(y_{v2t}^t\) and \(y_{t2v}^t\) denote the labels of vision2text retrieval and text2vision retrieval.

4.6 Word-Region Alignment

Word-Region Alignment (WRA) [8] is an unsupervised pre-training objective to align vision regions (vision patches) and words. VLP models utilize Optimal Transport to learn the alignment between vision and language. Empirically, VLP models use the IPOT algorithm to approximate the OT distance since the exact minimization is computationally intractable. After solving minimization, the OT distance serves as the WRA loss to train VLP models. The formal definition is as follows:

\[
\mathcal{L}_{WRA} = \min_{T \in II(a, b)} \sum_{i=1}^{T} \sum_{j=1}^{K} T_{ij} \cdot c(w_i, v_j), \quad (11)
\]

where \(c(w_i, v_j)\) is the cost function evaluating the distance between \(w_i\) and \(v_j\). \(T \in II(a, b) = \{ T \in \mathbb{R}^{T \times K} | T_{1m} = a, T^\top 1_n = b \}\), \(a\) and \(b\) Dirac function coefficients centered on \(w_i\) and \(v_j\).

4.7 Frame Order Modeling

To better model the timing of the video, VLP models randomly disrupt the order of some input frames and then predict the actual position of each frame. Frame Order Modeling (FOM) [9] is modeled as a classification task in practice.

4.8 Particular Pre-training Objects

VLP models also sometimes use the training objects of some downstream tasks, such as visual question answering (VQA) and visual captioning (VC), as pre-training objectives. As for VQA, VLP models take the fused representation mentioned above, apply an FC layer, and use the transformed representation to predict the classification over predefined answer candidates. In addition to VLP models tackling the task as classification over predefined answer candidates,
VLP models also can directly generate answers in their original text format. As for VC, to reconstruct the input sentence to endow VLP models with the generation capability, VLP models employ an auto-regressive decoder to generate a corresponding textual description of the image or video.

Note that due to space limitations, we only introduce some popular pre-training objectives. We omit some specific pre-training objectives such as grounding referring expression (GRE), image-conditioned denoising autoencoding (IDA) [10], text-conditioned image feature generation (TIFG) [10], object detection (OD) [11] and aligned Kaleido patch modeling (AKPM) [12]. Moreover, we put masked action prediction into the category of MVM.

5 Pre-training Datasets

Pre-training datasets are significant for the success of cross-modal representation learning. The quality and the size of pre-training datasets sometimes overwhelm the importance of training strategies and algorithms. Hence, a detailed description of several widely used pre-training datasets is necessary. Table 1 shows statistics of some popular pre-training datasets for VLP.

Since VLP includes image-language pre-training and video-language pre-training, we roughly divide pre-training datasets into two main categories. In later sections, we provide more details about representative pre-training datasets for each category. It is worth noting that no matter which category pre-training datasets belong, they differ in size and sources across different researches. In most works, the pre-training datasets for VLP are constructed by combining public datasets across different cross-modal tasks or scenarios. However, other works, such as VideoBERT [29], ImageBERT [22], ALIGN [24],

Dataset	# Images	# Image-text Pairs	Duration (hrs)	# Clips	# Videos
SBU [13]	875K	875K	-	-	-
FLKR [14]	29K	145K	-	-	-
COCO [15]	113K	567K	-	-	-
VG [16]	108K	5.4M	-	-	-
VGQA [16]	108K	1.8M	-	-	-
VQA [17]	83K	444K	-	-	-
Matterport3D [18]	104K	104K	-	-	-
FashionGen [19]	260K	260K	-	-	-
CC3M [20]	3M	3M	-	-	-
GQA [21]	82K	1M	-	-	-
LAIT [22]	10M	10M	-	-	-
CC12M [23]	12M	12M	-	-	-
ALIGN [24]	1.8B	1.8B	-	-	-
Kinetics400 [25]	-	-	817	306K	306K
TVQA [26]	-	-	461	22K	925
HT100M [27]	-	-	134K	136M	1.2M
WebVid2M [28]	-	-	13K	2.5M	2.5M

Note that due to space limitations, we only introduce some popular pre-training objectives. We omit some specific pre-training objectives such as grounding referring expression (GRE), image-conditioned denoising autoencoding (IDA) [10], text-conditioned image feature generation (TIFG) [10], object detection (OD) [11] and aligned Kaleido patch modeling (AKPM) [12]. Moreover, we put masked action prediction into the category of MVM.
and CLIP [30], conduct pre-training with self-constructed datasets. These self-constructed datasets are usually larger than most public datasets but might contain more noise.

5.1 Datasets for Image-language Pre-training

For image-language pre-training, the most widely used data form is image-text pairs. Most image-language pre-training datasets consist of a large number of image-caption pairs. SBU[13] and Flickr30k[14] are collected from Flickr and labelled with human-generated annotations. COCO[15] consists of many images with five human-generated captions, filtered with special procedures to guarantee the quality of images and annotations. CC3M[20] and CC12M[23] are constructed by crawling images and their alt-text HTML attributes from the Internet and annotating these pictures with filtered descriptions. Due to looser filtering strategies, CC12M contains more noise than CC3M. Another data source is the visual question answering task. Many image-language datasets are organized as structured data in the context of visual question answering. The representative large-scale dataset is Visual Genome (VG)[16]. VG contains rich information in its structured data form. Its region-level descriptions and question-answer pairs are frequently used in the study of image-language pre-training. Besides VG, VQA[17] and GQA[21] are also popular datasets of visual question-answer pairs. Compared with VGA, GQA further alleviates the systematic biases.

Datasets mentioned above are suitable for most applications and scenarios. There are also some datasets designed for special cases. Matterport3D[18] consists of RGB-D images of building-scale scenes, annotated with labels for classification and segmentation. Fashion-Gen[19] contains fashion images paired with item descriptions generated by professional stylists.

5.2 Datasets for Video-language Pre-training

Compared with image-language pre-training datasets, video-language pre-training datasets are usually more time-consuming and difficult to collect and process. These inconveniences restrict the development of the community and the scale of pre-training. Datasets for video-language pre-training cover many different scenarios and sources. Most of them, such as Kinetics-400[25], HowTo100M[27] and WebVid-2M[28], are collected from the Internet and processed with different procedures. These kinds of videos are usually accompanied by subtitles, thus providing weak or strong alignments between video clips and text. Although those subtitles sometimes might be too weak to align different modalities, they still provide useful information, especially for pre-training on large-scale datasets. Another source of video-text pairs is television programs. TVQA[26] is a video-language pre-training dataset generated from television shows. These television shows are collected and converted to a dataset comprised of many dialogues for understanding the videos and recognizing semantic concepts in videos.
Considering the diversity of the formation and sources of these datasets, researchers apply different annotation and processing procedures for them. For example, Kinetics-400 [25] consists of many action-related videos annotated with action classes. For other datasets [26, 27, 28], the accompanying captions/subtitles of video clips or the class of concepts in videos are usually processed and used as annotations.

6 Downstream Tasks

A diverse range of tasks requires a cooperative knowledge of vision and language. In this section, we introduce the fundamental details and goals of such tasks and divide them into five categories: classification, regression, retrieval, generation and other tasks, where classification, regression, and retrieval tasks are also known as understanding tasks as shown in Figure 2.

6.1 Classification Tasks

Visual Question Answering (VQA) [31].

Giving a visual input (image or video), VQA represents the task of correctly providing an answer to a question. It is usually regarded as a classification task where the model predicts the most suitable answer from a pool of choices. To obtain accurate performance, it is important to infer logical entailments from images (or videos) based on the question posed.

Visual Reasoning and Compositional Question Answering (GQA) [21].

GQA is an upgraded version of VQA and aims to advance research on the visual reasoning of natural scenes. The images, questions, and answers in its dataset have matching semantic representations. The advantage of this structured representation is that the distribution of answers can be more uniform, and we can analyze the model’s performance from more dimensions. Compared with the single evaluation metric (e.g., accuracy) of traditional VQA, GQA includes multi-dimensional evaluation metrics: consistency, validity, plausibility, distribution, and grounding.
Video-Language Inference (VLI) [9].

Given a video clip with aligned subtitles as a premise, paired with a natural language hypothesis based on the video content, a model needs to infer whether the hypothesis is entailed or contradicted by the given video clip.

Visual Entailment (VE) [32].

In the VE task, image is the premise, and text is the hypothesis. Its goal is to predict whether the text is “Entailment Image”. There are three labels, Entailment, Neutral, and Contradiction.

Visual Commonsense Reasoning (VCR) [33].

VCR is the task of inferring commonsense information and cognitive understanding by a machine when it sees an image. It exists in the form of multiple-choice questions. For a question posed about the image, there are several alternative answers. The model must choose an answer from several answers and then select the reason for choosing this answer from several alternative reasons. Thus, VCR can be divided into two tasks, including question answering (selecting the best answer from a pool of expected answers to the question) and answer justification (providing the rationale behind the given answer). You can follow VCR’s leaderboard\(^1\) to track VLP’s latest ideas.

Natural Language for Visual Reasoning (NLVR) [34].

NLVR is a subtask of the broader VCR category, limited to the classification paradigm. The input of the NLVR task is two images and a text description, and the output is whether the corresponding relationship between the images and the text description is consistent (two labels: true or false). It is typically different from VQA due to longer text sequences covering various linguistic phenomena.

Grounding Referring Expressions (GRE) [35].

The GRE task aims to localize certain regions (e.g., objects and persons) in an image given a referring expression, where the main challenge is to comprehend and align various types of information from visual and textual domain, such as visual attributes, locations and interactions with surrounding regions. Specifically, the model can output a score for each region, and the region with the highest score is used as the prediction region.

Category Recognition (CR) [12].

CR refers to identifying the category and sub-category of a product, such as \{HOODIES, SWEATERS\}, \{TROUSERS, PANTS\}, which are vital attributes for describing a product, and are useful in lots of real-life applications.

\(^1\)https://visualcommonsense.com/leaderboard/
6.2 Regression Tasks

Multi-modal Sentiment Analysis (MSA) \cite{36}.

MSA is aimed to detect sentiments in videos by leveraging multi-modal signals (e.g., vision, language, etc.). It is to predict the affective orientation of an utterance as a continuous intensity variable.

6.3 Retrieval Tasks

Vision-Language Retrieval (VLR) \cite{37}.

VLR involves understanding both vision (image or video) and language domains with appropriate matching strategies. It includes two subtasks, vision-to-text, and text-to-vision retrieval, where vision-to-text retrieval is to fetch the top-most relevant text description from a larger pool of descriptions as per the vision and vice versa. VLR is widely used in domain-specific searches, multiple search engines, and context-based vision retrieval design systems.

6.4 Generation Tasks

Visual Captioning (VC) \cite{38}.

VC aims to generate semantically and syntactically appropriate text descriptions for a given visual (image or video) input. Generating relevant and explanatory captions for a visual input requires not only a rich knowledge of language, but also a consistent understanding of scenes, entities, and their interactions appear in the visual input.

Novel Object Captioning at Scale (NoCaps) \cite{39}.

NoCaps extends the VC task to test a model’s capability of describing novel objects from the Open Images dataset, which are unseen in the training corpus.

Visual Dialogue (VD) \cite{40}.

The specific task in VD is the following: given an image, a dialog history consisting of a sequence of question-answer pairs, and a natural language follow-up question, the goal for the task is to respond the question in free-form natural language (e.g., generate an answer). VD is the visual analogue of the Turing Test.

6.5 Other Tasks

Multi-modal Machine Translation (MMT) \cite{41}.

MMT is a two-fold task of translation and text generation, translating text from one language to another with additional information from other modalities, e.g., image. The additional visual features aim to remove ambiguities that may arise in straightforward text machine translation and help retain the context of the text descriptions. The multi-modal representation space facilitates
robust latent representations to complement the inherent semantic information preserved by visual and linguistic embeddings, respectively.

Vision-Language Navigation (VLN) [42].

VLN is a grounding language task of an agent’s locomotion as it sees and explores the real-world dynamics based on linguistic instructions. Like generation tasks, it is typically seen as the task of sequence-to-sequence transcoding. However, VLN has unique characteristics. It usually has longer sequences, and the dynamics of the problem are quite different since it is a real-time evolving task. Its main challenge lies in understanding the environment and making confident decisions during exploring.

Optical Character Recognition (OCR) [43].

OCR generally refers to extract handwritten or printed text from images (such as street signs and photos of products) as well as documents (articles, bills, invoices, financial reports, etc.), which includes two parts: text detection (similar to regression) and text recognition (similar to classification).

In addition, there are some video-related downstream tasks for evaluating the video-text pre-training models, including action classification (AC), action segmentation (AS), and action step Localization (ASL).

7 SOTA VLP models

Image-Text VLP models.

VisualBERT [44], known as the first image-text pre-training model, uses the visual features extracted by Faster R-CNN, concatenates the visual features and textual embeddings, and then fed the concatenated features to a single transformer initialed by BERT. Many VLP models [48, 49, 8, 22] follow the similar feature extraction and architecture as VisualBERT while adjusting the pre-training objectives and pre-training datasets. Recently, VLMO [72] leverages patch embeddings for image and word embeddings for text and feeds the concatenated embeddings into a single transformer with modality experts and achieves an impressive performance. METER [73] explores how to use a uni-modal pre-trained model and proposes a dual-stream architecture model to handle the multimodal fusion, which achieves the SOTA performance on many downstream tasks. The summary of mainstream image-text VLP models is shown in Table 2.

Video-Text VLP models.

VideoBERT [29], known as the first video-text pre-training model, extends the BERT model to process videos and texts simultaneously. VideoBERT uses the pre-trained ConvNet and S3D [83] to extract video features and concatenate them with textual word embeddings to feed into a transformer initialed with BERT. ConvNet and S3D are frozen when training the VideoBERT, which indicates the approach is not end-to-end. Recently, inspired by ViT,
Model	Domain	Vision FE	Language FE	Multimodal Fusion	Decoder	PT Objectives	PT Datasets	Downstream Tasks	
VisualBERT	Image	OD-RFs	Emb	Single-stream	No	MLM+VML	COCO	GRE+NLVR+VCR+VQA	
VILBERT	Image	OD-RFs	Emb	Dual-stream	No	MLM+VML+MVM	COCO+VG	VLR+NLVR+VE+VQA	
LXMER	Image	OD-RFs+Xformer	Xformer	Dual-stream	No	MLM+VML+MVM+MQA	COCO+VG+VQA+GQA+VGQA	GQA+NLVR+VQA	
H2T2	Image	CNN-GFs	Emb	Single-stream	No	MLM+VLM	CCM+SHU	VLR	
UniMoL-VL	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM	CCM+SHU	VLR	
VL-BERT	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM	CCM+SHU	VLR	
VIL	Image	OD-RFs	Emb	Dual-stream	Yes	MLM+VLM	CCM+VQA	VLR	
UNITER	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM	CCM+VQA	VLR	
12-IA	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM+MRA	COCO+VG+SHU+CCM	GRE+VLR+NLVR+VCR+VE+VQA	
VQA-DachBERT	Image	OD-RFs	Emb	Dual-stream	No	MLM+VML+MVM	CCM+VQA	VQA+NLVR+VQA	
ImageBERT	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM	CCM+VQA	VQA+NLVR+VQA	
PREVALENT	Image	CNN-GFs+Xformer	Xformer	Single-stream	No	MLM+VML+MVM	CCM+VQA	VQA+NLVR+VQA	
XGPT	Image	OD-RFs	Emb	Dual-stream	Yes	MLM+VQA+VC+TFG	CCM+VQA	VQA+NLVR+VQA	
InterBERT	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM	CCM+VQA	VQA+NLVR+VQA	
Pre-BERT	Image	CNN-GFs	Emb	Single-stream	No	MLM+VML	CCM+VQA	VQA+NLVR+VQA	
OSCAR	Image	OD-RFs	Emb	Single-stream	No	MLM+VML	COCO+VG	VQA+NLVR+VQA	
VLN-BERT	Image	OD-RFs	Emb	Single-stream	No	MLM+VML	CCM+VQA	VQA+NLVR+VQA	
FashionBERT	Image	Xformer	Xformer	Single-stream	No	MLM+VML+MVM	MTL	GRE+VLR+NLVR+VCR+VE+VQA	
VILLA	Image	OD-RFs+Xformer	Xformer	Single-stream	No	MLM+VML+MVM	CCM+VQA	VQA	
ERNE-VIL	Image	OD-RFs	Emb	Single-stream	No	MLM+VML	CCM+VQA	VQA	
RVL-BERT	Image	OD-RFs	Emb	Single-stream	No	MLM+VML	CCM+VQA	VQA	
VαιVL	Image	OD-RFs	Emb	Single-stream	No	MLM+VML	CCM+VQA	VQA	
VL-T5	Image	OD-RFs	Emb	Single-stream	No	MLM+VML+MVM+MRA	COCO+VG+VQA+GQA+VGQA	GQA+VL+VLR+VCR+VE+VQA	
VILT	Image	VIT-PPs	Emb	Single-stream	No	MLM+VML+VQA+GRC+VC	COCO+VG+VQA+GQA+VGQA	GQA+VL+VCR+VE+VQA	
ALIGN	Image	CNN-GFs	Xformer	Dual-stream	No	MLM+VML	CCM+VQA	VQA	
Kakaio-BERT	Image	CNN-GFs	Emb	Single-stream	No	MLM+VML+AKP	FashionGen	CR+VQA	
MDETR	Image	Xformer	Xformer	Single-stream	Yes	OD+MLM+VLC	OOO+VG+FLKR+GQA	GQA	
SOTO	Image	CNN-GFs	Emb	Single-stream	No	MLM+VML+MVM	COCO+VG	VQA+NLVR+VQA	
E2E-VLP	Image	CNN-GFs	Emb	Single-stream	Yes	OD+MLM+VLC	OOO+VG+FLKR+GQA	VQA+NLVR+VQA	
VisaulPassing	Image	Xformer	Xformer	Single-stream	Yes	OD+MLM+VLC	OOO+VG+FLKR+GQA	VQA+NLVR+VQA	
CLIR-VIL	Image	CNN-GFs	Emb	Single-stream	No	MLM+VML+MVM	COCO+VG	VQA+NLVR+VQA	
ALBEP	Image	Xformer	Xformer	Single-stream	No	MLM+VLM+VLC	COCO+VG+VQA+GQA+VGQA	VQA+NLVR+VQA	
SanaVLm	Image	CNN-GFs	Emb	Single-stream	Yes	PhedLM	ALBEP	VQA+NLVR+VQA	
MURAL	Image	CNN-GFs	Xformer	Dual-stream	No	MLM+VLM+VLC	COCO+VG+CCM+SHU	VL+NLVR+VQA	
VLMO	Image	VIT-PPs	Emb	Single-stream	No	MLM+VLM+VLC	COCO+VG+CCM+SHU	VL+NLVR+VQA	
METER	Image	Xformer	Xformer	Dual-stream	No	MLM+VLM	COCO+VG+CCM+SHU	VL+NLVR+VQA	
X-VML	Image	Xformer	Xformer	Single-stream	No	MLM+VLM+VQ	COCO+VG+CCM+SHU	VL+NLVR+VQA	
TCT	Image	Xformer	Xformer	Single-stream	No	MLM+VLM+TC	COCO+VG+CCM+SHU	VL+NLVR+VQA	
Model	Domain	Vision FE	Language FE	Multimodal Fusion	Decoder	PT	Objectives	PT Datasets	Downstream Tasks
---------------	--------	-----------	-------------	-------------------	---------	----	------------	-------------	-----------------
VideoBERT [29]	Video	CNN-GFs+Xformer	Xformer	Single-stream	No	MLM+VLM+MVM	MLM+VLM+MVM+POM	HT100M-TV	WebVid2M+CC3M+VLR
U3VL [7]	Video	CNN-GFs	Xformer	Single-stream	Yes	MLM+VLM+MVM	MLM+VLM+MVM+POM	HT100M	TV+CC3M+VQA+VLR
HERO [4]	Video	OD-RF+Xformer	Xformer	Dual-stream	No	No	MLM+VLM+MVM	HT100M	VQA+VLR
MINE-BERT [7]	Video	CNN-GFs+Xformer	Xformer	Single-stream	Yes	No	MLM+VLM+MVM	HT100M	VQA+VLR
CLIP [40]	Image/Video	VT-PF	VT-PF	No	No	MLM+VLM+MVM	MLM+VLM+MVM+POM	W0A42M+CC2M+VQA	VLR+VQA+VQA+VLR
Region-Trimmed [80]	Video	VT-PF	VT-PF	No	No	MLM+VLM+MVM	MLM+VLM+MVM+POM	W0A42M+CC2M+VQA	VLR+VQA+VQA+VLR
CLIP[Video] [81]	Video	VT-PF	VT-PF	No	No	MLM+VLM+MVM	MLM+VLM+MVM+POM	W0A42M+CC2M+VQA	VLR+VQA+VQA+VLR
CLIP4Clip [81] and CLIP2Video [82] first process video clips into frames and get patch embeddings according to the method of ViT processing images for each frame. CLIP4clip and CLIP2Video optimize themselves in an end-to-end manner and achieve SOTA performance. The summary of mainstream video-text VLP models is shown in Table 3.

8 Conclusion and New Frontiers

In this paper, we provide the first VLP survey. We review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks and summarize the specific SOTA VLP models in detail. We hope our survey can help researchers understand VLP better and inspire new works to advance this field. In the future, based on existing works, VLP can be further developed from the following aspects:

Incorporating Acoustic Information.

Most previous works on multi-modal pre-training emphasize the joint modeling of language and vision but ignore the information buried in audios. Although the semantic information in audios might intersect with language, audios could provide extra emotion information, acoustic boundary information, etc. Moreover, pre-training with audios makes the model capable of downstream tasks with acoustic inputs. Until now, joint modeling and representation across text, vision, and audio is still an open problem left for further investigation. Several cutting-edge works have shed light on the future of this research field. Unlike previous VLP models, VATT [84] takes the raw audio as input and learns the multi-modal representations with the noise contrastive estimation (NCE). Differing from VATT, OPT [85] learns the cross-modal representations across text, image, and audio jointly with various multi-level masking strategies, and it is also capable of generating text and images. Some other works, such as AudioCLIP [86] and MERLOT Reserve [87], also shows their unique approaches to learn the cross-modal representations over three modalities.

Knowledgeable and Cognitive Learning.

Although the existing VLP models have achieved remarkable performance, their essence is to fit large-scale multimodal datasets. Making VLP models more knowledgeable is important for future VLP. For input vision and text, there is rich related external common sense world knowledge and illustrative situational knowledge [88], which can be used to augment the input and accelerate the model training and inference. The solution to this problem requires unified cognitive model architectures, knowledge-guided pre-training objectives, and the support of interacting with new knowledge.
Prompt Tuning.
Currently, fine-tuning is the dominant method to transfer the knowledge of VLP to downstream tasks. However, as the scale of the model increases, each downstream task has its fine-tuning parameters leading to parameter inefficiency. Moreover, the diverse downstream tasks also make the design of the pre-training and fine-tuning stages cumbersome, leading to a gap between them. Recently, prompt tuning is getting more and more attention in NLP. By designing discrete or continuous prompts and using MLM for specific downstream tasks, these models could: 1) reduce the computational cost on fine-tuning the enormous amounts of parameters; 2) bridge the gap between pre-training and fine-tuning. Prompt tuning is a promising way to stimulate the linguistic and world knowledge distributed in PLMs. In the next step, it can be improved and transferred to multi-modal scenarios, breaking the traditional paradigm and solving the pain points of VLP [89].

Model Compression and Acceleration.
Model compression and acceleration is an essential approach to improve the efficiency of VLP models. In this case, large models are compressed to small ones to meet the need for faster inference and deployment on various real-life scenarios such as resource-constrained devices. In general PLMs, model compression and acceleration is a hot topic, and specific methods include parameter sharing [90], model pruning [91], knowledge distillation [92] and model quantization [93]. Recently, knowledge distillation has been used to compress VLP models [94], but other methods such as pruning and quantization of VLP models remain to be explored. Furthermore, a data-efficient VLP paradigm is constructed [95]. However, only a few efforts are currently focused on improving the efficiency of VLP models, leaving much room for exploration.

Out-of-domain Pretraining.
Despite the significant progress achieved by VLP models, part of their success can be traced back to the introduction of in-domain pretraining datasets, used in both pretraining and downstream tasks. The out-of-domain pretraining will be an essential research direction, that is, VLP models transfer the learned knowledge and representation into downstream tasks with unknown data distributions. To mitigate the distribution biases between pretraining and fine-tuning, DeVLBert [96] is proposed to perform intervention-based learning. It borrows the idea of the backdoor adjustment from the research area of causality and designs several neural-network based structures for Bert-style out-of-domain pretraining.

Advanced Model Architecture.
Nowadays, the transformer-based architectures make great progress in VLP. Is such a structure the optimal structure for VLP? We note that the recently popular diffusion model [97] for image generation has succeeded greatly. Some researchers [98] also extend the diffusion model to controllable text generation.
So whether the diffusion model can be used in VLP? It may be a question worth exploring in the future.

References

[1] Vaswani, A., Shazeer, N., et al.: Attention is all you need. NeurIPS 30 (2017)
[2] Devlin, J., Chang, M., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)
[3] Dosovitskiy, A., Beyer, L., et al.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In: ICLR (2020)
[4] Schneider, S., Baevski, A., et al.: Wav2Vec: Unsupervised Pre-Training for Speech Recognition. In: Interspeech, pp. 3465–3469 (2019)
[5] Anderson, P., He, X., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR, pp. 6077–6086 (2018)
[6] Touvron, H., Cord, M., et al.: Training data-efficient image transformers & distillation through attention. In: ICML, vol. 139, pp. 10347–10357 (2021)
[7] Taylor, W.L.: “Cloze procedure”: A new tool for measuring readability. Journalism quarterly 30(4), 415–433 (1953)
[8] Chen, Y.-C., Li, L., et al.: UNITER: Universal image-text representation learning. In: ECCV (2020)
[9] Li, L., Chen, Y.-C., et al.: HERO: Hierarchical encoder for video+language omni-representation pre-training. In: EMNLP, pp. 2046–2065 (2020)
[10] Xia, Q., Huang, H., et al.: Xgpt: Cross-modal generative pre-training for image captioning. In: NLPCC, pp. 786–797 (2020). Springer
[11] Kamath, A., Singh, M., et al.: MDETR-modulated detection for end-to-end multi-modal understanding. In: ICCV, pp. 1780–1790 (2021)
[12] Zhuge, M., Gao, D., et al.: Kaleido-BERT: Vision-language pre-training on fashion domain. In: CVPR, pp. 12647–12657 (2021)
[13] Ordonez, V., Kulkarni, G., et al.: Im2text: Describing images using 1 million captioned photographs. NeurIPS 24 (2011)
[14] Young, P., Lai, A., et al.: From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL 2, 67–78 (2014)
[15] Lin, T.-Y., Maire, M., et al.: Microsoft COCO: Common objects in context. In: ECCV, pp. 740–755 (2014)
[16] Krishna, R., Zhu, Y., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. IJCV 123(1), 32–73 (2017)
[17] Goyal, Y., Khot, T., et al.: Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In: CVPR, pp.
REFERENCES

6904–6913 (2017)

[18] Chang, A., Dai, A., et al.: Matterport3d: Learning from rgb-d data in indoor environments. In: 3DV, pp. 667–676 (2017)

[19] Rostamzadeh, N., Hosseini, S., et al.: Fashion-gen: The generative fashion dataset and challenge. arXiv preprint arXiv:1806.08317 (2018)

[20] Sharma, P., Ding, N., et al.: Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL, pp. 2556–2565 (2018)

[21] Hudson, D.A., Manning, C.D.: Gqa: A new dataset for real-world visual reasoning and compositional question answering. In: CVPR, pp. 6700–6709 (2019)

[22] Qi, D., Su, L., et al.: ImageBERT: Cross-modal pre-training with large-scale weak-supervised image-text data. arXiv preprint arXiv:2001.07966 (2020)

[23] Changpinyo, S., Sharma, P., et al.: Conceptual 12m: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: CVPR, pp. 3558–3568 (2021)

[24] Jia, C., Yang, Y., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML, pp. 4904–4916 (2021)

[25] Kay, W., Carreira, J., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

[26] Lei, J., Yu, L., et al.: TVQA: Localized, Compositional Video Question Answering. In: EMNLP, pp. 1369–1379 (2018)

[27] Miech, A., Zhukov, D., et al.: HowTo100M: Learning a text-video embedding by watching hundred million narrated video clips. In: ICCV, pp. 2630–2640 (2019)

[28] Bain, M., Nagrani, A., et al.: Frozen in time: A joint video and image encoder for end-to-end retrieval. In: ICCV, pp. 1728–1738 (2021)

[29] Sun, C., Myers, A., et al.: VideoBERT: A joint model for video and language representation learning. In: ICCV, pp. 7464–7473 (2019)

[30] Radford, A., Kim, J.W., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021)

[31] Antol, S., Agrawal, A., et al.: Vqa: Visual question answering. In: ICCV, pp. 2425–2433 (2015)

[32] Xie, N., Lai, F., et al.: Visual entailment: A novel task for fine-grained image understanding. arXiv preprint arXiv:1901.06706 (2019)

[33] Zellers, R., Bisk, Y., et al.: From recognition to cognition: Visual commonsense reasoning. In: CVPR, pp. 6720–6731 (2019)

[34] Suhr, A., Lewis, M., et al.: A corpus of natural language for visual reasoning. In: ACL, pp. 217–223 (2017)

[35] Liu, X., Wang, Z., et al.: Improving referring expression grounding with cross-modal attention-guided erasing. In: CVPR, pp. 1950–1959 (2019)

[36] Jiming, L., Peixiang, Z., et al.: Summary of Multi-modal Sentiment Analysis Technology. Journal of Frontiers of Computer Science & Technology
22 REFERENCES

[37] Wang, K., Yin, Q., et al.: A comprehensive survey on cross-modal retrieval. arXiv preprint arXiv:1607.06215 (2016)

[38] Xu, K., Ba, J., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: ICML, pp. 2048–2057 (2015)

[39] Agrawal, H., Desai, K., et al.: Nocaps: Novel object captioning at scale. In: ICCV, pp. 8948–8957 (2019)

[40] Das, A., Kottur, S., et al.: Visual dialog. In: CVPR, pp. 326–335 (2017)

[41] Specia, L., Frank, S., et al.: A shared task on multimodal machine translation and crosslingual image description. In: WMT, pp. 543–553 (2016)

[42] Gu, J., Stefani, E., et al.: Vision-and-Language Navigation: A Survey of Tasks, Methods, and Future Directions. In: ACL, pp. 7606–7623 (2022)

[43] Mori, S., Nishida, H., et al.: Optical Character Recognition. John Wiley & Sons, Inc., ?? (1999)

[44] Li, L.H., Yatskar, M., et al.: VisualBERT: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557 (2019)

[45] Lu, J., Batra, D., et al.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: NeurIPS, pp. 13–23 (2019)

[46] Tan, H., Bansal, M.: LXMERT: Learning cross-modality encoder representations from transformers. In: EMNLP, pp. 5100–5111 (2019)

[47] Alberti, C., Ling, J., et al.: Fusion of detected objects in text for visual question answering. In: EMNLP, pp. 2131–2140 (2019)

[48] Li, G., Duan, N., et al.: Unicoder-vl: A universal encoder for vision and language by cross-modal pre-training. In: AAAI, pp. 11336–11344 (2020)

[49] Su, W., Zhu, X., et al.: VL-BERT: Pre-training of Generic Visual-Linguistic Representations. In: ICLR (2019)

[50] Zhou, L., Palangi, H., et al.: Unified vision-language pre-training for image captioning and vqa. In: AAAI, pp. 13041–13049 (2020)

[51] Lu, J., Goswami, V., et al.: 12-in-1: Multi-task vision and language representation learning. In: CVPR, pp. 10437–10446 (2020)

[52] Murahari, V., Batra, D., et al.: Large-scale pretraining for visual dialog: A simple state-of-the-art baseline. In: ECCV, pp. 336–352 (2020). Springer

[53] Hao, W., Li, C., et al.: Towards learning a generic agent for vision-and-language navigation via pre-training. In: CVPR, pp. 13137–13146 (2020)

[54] Lin, J., Yang, A., et al.: InterBERT: Vision-and-language interaction for multi-modal pretraining. arXiv preprint arXiv:2003.13198 (2020)

[55] Huang, Z., Zeng, Z., et al.: Pixel-BERT: Aligning image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849 (2020)

[56] Li, X., Yin, X., et al.: Oscar: Object-semantics aligned pre-training for vision-language tasks. In: ECCV (2020). https://arxiv.org/pdf/2004.06165

[57] Hong, Y., Wu, Q., et al.: VLN-BERT: A recurrent vision-and-language bert for navigation. In: CVPR, pp. 1643–1653 (2021)
[58] Gao, D., Jin, L., Chen, B., et al.: FashionBERT: Text and image matching with adaptive loss for cross-modal retrieval. In: SIGIR, pp. 2251–2260 (2020)
[59] Gan, Z., Chen, Y.-C., et al.: Large-scale adversarial training for vision-and-language representation learning. NeurIPS 33, 6616–6628 (2020)
[60] Yu, F., Tang, J., et al.: Ernie-vil: Knowledge enhanced vision-language representations through scene graph. AAAI (2020)
[61] Chiou, M.-J., Zimmermann, R., et al.: Visual relationship detection with visual-linguistic knowledge from multimodal representations. IEEE Access 9, 50441–50451 (2021)
[62] Zhang, P., Li, X., et al.: VinVL: Revisiting visual representations in vision-language models. In: CVPR (2021)
[63] Cho, J., Lei, J., et al.: Unifying vision-and-language tasks via text generation. In: ICML (2021)
[64] Kim, W., Son, B., et al.: ViLT: Vision-and-language transformer without convolution or region supervision. arXiv preprint arXiv:2102.03334 (2021)
[65] Huang, Z., Zeng, Z., et al.: Seeing out of the box: End-to-end pre-training for vision-language representation learning. In: CVPR, pp. 12976–12985 (2021)
[66] Xu, H., Yan, M., et al.: E2E-VLP: End-to-end vision-language pre-training enhanced by visual learning. In: ACL, pp. 503–513 (2021)
[67] Xue, H., Huang, Y.a.: Probing inter-modality: Visual parsing with self-attention for vision-language pre-training. arXiv preprint arXiv:2106.13488 (2021)
[68] Shen, S., Li, L.H., et al.: How much can clip benefit vision-and-language tasks? arXiv preprint arXiv:2107.06383 (2021)
[69] Li, J., Selvaraju, R.R., et al.: Align before fuse: Vision and language representation learning with momentum distillation. arXiv preprint arXiv:2107.07651 (2021)
[70] Wang, Z., Yu, J., et al.: SimVLM: Simple visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904 (2021)
[71] Jain, A., Guo, M., et al.: MURAL: multimodal, multitask retrieval across languages. arXiv preprint arXiv:2109.05125 (2021)
[72] Wang, W., Bao, H., et al.: VLMo: Unified vision-language pre-training with mixture-of-modality-experts. arXiv (2021) https://arxiv.org/abs/2111.02358 [cs.CV]
[73] Dou, Z.-Y., Xu, Y., et al.: An Empirical Study of Training End-to-End Vision-and-Language Transformers. arXiv preprint arXiv:2111.02387 (2021)
[74] Zeng, Y., Zhang, X., Li, H.: Multi-grained vision language pre-training: Aligning texts with visual concepts. arXiv preprint arXiv:2111.08276 (2021)
[75] Yang, J., Duan, J., Tran, S., Xu, Y., Chanda, S., Chen, L., Zeng, B., Chilimbi, T., Huang, J.: Vision-language pre-training with triple
24 REFERENCES

contrastive learning. arXiv preprint arXiv:2202.10401 (2022)
[76] Sun, C., Baradel, F., et al.: Learning video representations using contrastive bidirectional transformer. arXiv preprint arXiv:1906.05743 (2019)
[77] Luo, H., Ji, L., et al.: UniVL: A unified video and language pre-training model for multimodal understanding and generation. arXiv preprint arXiv:2002.06353 (2020)
[78] Urooj, A., Mazaheri, A., et al.: MMFT-BERT: Multimodal fusion transformer with bert encodings for visual question answering. In: Findings of EMNLP 2020, pp. 4648–4660 (2020)
[79] Zhu, L., Yang, Y.: ActBERT: Learning global-local video-text representations. In: CVPR, pp. 8746–8755 (2020)
[80] Yan, R., Shou, M.Z., et al.: Video-Text Pre-training with Learned Regions. arXiv preprint arXiv:2112.01194 (2021)
[81] Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., Li, T.: Clip4clip: An empirical study of clip for end to end video clip retrieval. arXiv preprint arXiv:2104.08860 (2021)
[82] Fang, H., Xiong, P., Xu, L., Chen, Y.: Clip2video: Mastering video-text retrieval via image clip. arXiv preprint arXiv:2106.11097 (2021)
[83] Xie, S., Sun, C., et al.: Rethinking spatiotemporal feature learning for video understanding. arXiv preprint arXiv:1712.04851 1(2), 5 (2017)
[84] Akbari, H., Yuan, L., et al.: VATT: Transformers for multimodal self-supervised learning from raw video, audio and text. NeurIPS 34 (2021)
[85] Liu, J., Zhu, X., et al.: OPT: Omni-perception pre-trainer for cross-modal understanding and generation. arXiv preprint arXiv:2107.00249 (2021)
[86] Guzhov, A., Raue, F., et al.: AudioCLIP: Extending clip to image, text and audio. arXiv preprint arXiv:2106.13043 (2021)
[87] Zellers, R., Lu, J., et al.: MERLOT Reserve: Neural Script Knowledge through Vision and Language and Sound. arXiv preprint arXiv:2201.02639 (2022)
[88] Chen, K., Huang, Q., et al.: KB-VLP: Knowledge Based Vision and Language Pretraining. In: ICML (2021)
[89] Tsimpoukelli, M., Menick, J., et al.: Multimodal few-shot learning with frozen language models. NeurIPS 34 (2021)
[90] Lan, Z., Chen, M., et al.: ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In: ICLR (2019)
[91] Fan, A., Grave, E., et al.: Reducing Transformer Depth on Demand with Structured Dropout. In: ICLR (2019)
[92] Sanh, V., Debut, L., et al.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter (2019)
[93] Zafrir, O., Boudoukh, G., et al.: Q8bert: Quantized 8bit bert. In: EMC2-NIPS, pp. 36–39 (2019)
[94] Fang, Z., Wang, J., et al.: Compressing visual-linguistic model via knowledge distillation. In: CVPR, pp. 1428–1438 (2021)
[95] Li, Y., Liang, F., et al.: Supervision Exists Everywhere: A Data Efficient
Contrastive Language-Image Pre-training Paradigm. In: ICLR (2021)

[96] Zhang, S., Jiang, T., et al.: Devlbert: Learning deconfounded visio-linguistic representations. In: ACM MM, pp. 4373–4382 (2020)

[97] Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S.K.S., Ayan, B.K., Mahdavi, S.S., Lopes, R.G., et al.: Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487 (2022)

[98] Li, X.L., Thickstun, J., Gulrajani, I., Liang, P., Hashimoto, T.B.: Diffusion-lm improves controllable text generation. arXiv preprint arXiv:2205.14217 (2022)

Feilong Chen received the B.Sc. degree in computer sciences from Hefei University of Technology, China in 2018. He is a Ph.D. candidate in both the Institute of Automation Chinese Academy of Sciences and the University of Chinese Academy of Sciences. His current interests include theoretical research on vision-language pre-training, multi-modal question answering and dialog.

E-mail: chenfeilong2018@ia.ac.cn
Duzhen Zhang received the B.Sc. degree in software engineering from Shandong University, China in 2019. He is a Ph.D. candidate in both the Institute of Automation Chinese Academy of Sciences and the University of Chinese Academy of Sciences. His current interests include theoretical research on reinforcement learning, natural language processing, and Spiking Neural Networks.

E-mail: zhangduzhen2019@ia.ac.cn

Minglun Han received the B.Sc. degree in electronic and information engineering from Harbin Institute of Technology at Weihai, China in 2018. He is a Ph.D. candidate in both the Institute of Automation, Chinese Academy of Sciences and the University of Chinese Academy of Sciences. His current research interests include speech recognition, speech synthesis, speech chain.

E-mail: hanminglun2018@ia.ac.cn

Xiuyi Chen received his Ph.D. degree (2022) in Pattern Recognition and Intelligent System from Institute of Automation, Chinese Academy of Sciences,
advised by Prof. Bo Xu. Previously, he received the B.Sc. degree (2017) in Department of Control Science and Engineering from JiLin University. His current interests include Cross-modal Retrieval, Multimodal Learning, Dialogue System, Knowledge-Grounded Generation and Speech Separation.

E-mail: chenxiuyi2017@ia.ac.cn

Jing Shi is a research assistant in the Institute of Automation, Chinese Academy of Sciences, where he received his Ph.D. degree (2021) in the major of Pattern Recognition and Intelligent System, advised by Prof. Bo Xu. Previously, he received the B.Sc. degree (2012) in School of Instrumentation and Optoelectronic Engineering from Beihang University. His current interests include Cross-modal Modeling, Multimodal Learning, Dialogue System, Speech Recognition and Speech Separation.

E-mail: shijing2014@ia.ac.cn

Shuang Xu is a professor in Institute of Automation, Chinese Academy of Science. Her main research interests include natural language processing and understanding, human-AI hybrid intelligence.
Bo Xu is a professor, the director of the Institute of Automation Chinese Academy of Sciences, and also deputy director of the Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences. His main research interests include brain-inspired intelligence, brain-inspired cognitive models, natural language processing and understanding, brain-inspired robotics.

E-mail: xubo@ia.ac.cn (Corresponding author)