Magnesium Serum Concentrations in Patients with Dementia Vs. Controls; A Systematic Review and Meta-Analysis

Keywords: Dementia; Magnesium; Serum magnesium; Systematic review; Meta-analysis

Abstract

Background: The role of magnesium in the pathogenesis of dementia and other degenerative disorders has focused attention in recent years. There have been several studies reporting favorable effects of magnesium in the treatment of various degenerative illnesses. In contrast, other research found that low and high serum magnesium levels were associated with an increased risk of Alzheimer’s disease and mixed dementia. These contrasting results render the role of magnesium levels in dementia unclear. Our objective was to investigate the possible association between dementia and hypomagnesaemia.

Methods: We conducted a systematic review and meta-analysis of all articles, in any language, reporting on serum magnesium concentrations either in plasma or serum of patients with dementia, compared to patients without dementia. Studies reporting on proportion of hypomagnesaemia patients and not mean levels were excluded.

Results: Seven studies were accepted for the meta-analysis, reporting on 2932 dementia cases and 42920 controls. All types of dementia were reported. There was a significant heterogeneity in the results, and the difference in Mg2+ concentrations between patients with dementia and controls was not significant (mean difference -10.68 micromole/L [95% confidence interval -30.62 and +9.27]. There were no significant differences in the measured levels of the different types of dementia.

Conclusions: Our study, based on large numbers of dementia patients and controls, suggests that low serum magnesium concentrations are not associated with increased risk of dementia. This may be explained by poor correlation between serum and tissue distribution of magnesium and by the fact that less than one percent of total body magnesium circulates in the blood.

Introduction

The role of magnesium in the pathogenesis of dementia and other degenerative disorders has focused increased attention in recent years [1–2]. There have been two main hypotheses for the role of magnesium in dementia:

1) A direct effect of neuronal magnesium on regulation of the ionotropic glutamatergic receptor N-methyl-D-aspartate (NMDA). It has been demonstrated that ionized magnesium leads to closure of cation channels which have been opened by glutamate on NMDA receptors [3]. Low magnesium levels were found to be decreased in various tissues of patients with Alzheimer’s disease in clinical, experimental, and autopsy studies [4]. A reduction in the frequency of intracellular magnesium deposits in neurons of Alzheimer’s patients was reported. Decrease in magnesium and glutamic acid have been shown in the hippocampal tissue of Alzheimer’s disease patients [5]. There is evidence that glutamate release and intake are chronically disturbed in Alzheimer’s disease, and glutamate levels are possibly increased in the synaptic cleft, with resultant calcium influx to postsynaptic neurons and activation of the calcium-related enzyme system. This leads to production of free radicals, protein destruction, lipid peroxidation, and neuron death with DNA destruction [4].

Increasing volume of research has explored the connection between magnesium and the role of NMDA receptors in degenerative brain disorders. NMDA receptors have a critical role in the central nervous system, including neuronal development, plasticity and neurodegeneration [1, 3]. These receptors lead to channels which are permeable to calcium, sodium and potassium ions and voltage-gated channels blocked by magnesium ions. Transient glutamate release from the presynaptic region occurs during normal learning and memory process. This release causes depolarization on the postsynaptic membrane, after which ionized magnesium (Mg2+) leaves voltage gated channels on NMDARs, and Ca2+ influx inside the neuron occurs. Increase in Ca2+ levels inside the neuron initiates a signal transmission process and this facilitates memory and learning. At the end of stimulation, Mg2+ stops Ca2+ influx inside the neuron by closing channels on the NMDA receptors [1, 3].

There have been several studies suggesting favorable effects of magnesium in the treatment of various degenerative illnesses. Improvement in memory was reported with nutritional magnesium in the synaptic cleft, with resultant calcium influx to postsynaptic neurons and activation of the calcium-related enzyme system. This leads to production of free radicals, protein destruction, lipid peroxidation, and neuron death with DNA destruction [4].

Increase in volume of research has explored the connection between magnesium and the role of NMDA receptors in degenerative brain disorders. NMDA receptors have a critical role in the central nervous system, including neuronal development, plasticity and neurodegeneration [1, 3]. These receptors lead to channels which are permeable to calcium, sodium and potassium ions and voltage-gated channels blocked by magnesium ions. Transient glutamate release from the presynaptic region occurs during normal learning and memory process. This release causes depolarization on the postsynaptic membrane, after which ionized magnesium (Mg2+) leaves voltage gated channels on NMDARs, and Ca2+ influx inside the neuron occurs. Increase in Ca2+ levels inside the neuron initiates a signal transmission process and this facilitates memory and learning. At the end of stimulation, Mg2+ stops Ca2+ influx inside the neuron by closing channels on the NMDA receptors [1, 3].

Increasing volume of research has explored the connection between magnesium and the role of NMDA receptors in degenerative brain disorders. NMDA receptors have a critical role in the central nervous system, including neuronal development, plasticity and neurodegeneration [1, 3]. These receptors lead to channels which are permeable to calcium, sodium and potassium ions and voltage-gated channels blocked by magnesium ions. Transient glutamate release from the presynaptic region occurs during normal learning and memory process. This release causes depolarization on the postsynaptic membrane, after which ionized magnesium (Mg2+) leaves voltage gated channels on NMDARs, and Ca2+ influx inside the neuron occurs. Increase in Ca2+ levels inside the neuron initiates a signal transmission process and this facilitates memory and learning. At the end of stimulation, Mg2+ stops Ca2+ influx inside the neuron by closing channels on the NMDA receptors [1, 3].

There have been several studies suggesting favorable effects of magnesium in the treatment of various degenerative illnesses. Improvement in memory was reported with nutritional magnesium in the synaptic cleft, with resultant calcium influx to postsynaptic neurons and activation of the calcium-related enzyme system. This leads to production of free radicals, protein destruction, lipid peroxidation, and neuron death with DNA destruction [4].

Citation: Ben-Zaken S, Kaplan Y, Koren G. Magnesium Serum Concentrations in Patients with Dementia Vs. Controls; A Systematic Review and Meta-Analysis. J Parkinson’s Dis Alzheimer’s Dis. 2021;8(1): 3.
of Alzheimer’s disease and mixed dementia [8]. These contrasting results render the role of magnesium levels in dementia unclear.

For that end, our objective was to conduct a systematic review and meta-analysis in order to verify whether dementia and Alzheimer disease are associated with lower serum magnesium concentrations.

**Materials and Methods**

We conducted a search for all articles, in any language, reporting on serum magnesium concentrations in patients with dementia, compared to control groups of patients without dementia. We searched PubMed, Medline, Embase, Google and Google Scholar from inception to August 1, 2020. We included original papers and excluded case reports, letters to the editor, reviews and animal studies, or any paper where there was no comparison of magnesium levels to control group of subjects without dementia.

We reviewed the papers for demographics and details on diagnosis and measured magnesium levels. We included papers that reported means of magnesium levels. Papers that reported only proportions of patients with hypomagnesemia but without specific mean levels were excluded.

Data were extracted from eligible studies which reported mean and SD of magnesium levels in patients with dementia and their respective control groups. Data were combined by using a random effects model with RevMan 3.3 (Review Manager 3.3; Cochrane Collaboration, Oxford, UK) and the effect size was represented by the mean difference (MD) since the unit of the outcome was similar in all included trials [9]. Heterogeneity was assessed utilizing the Q and I-square statistic. An I square value between 25%-50% signifies low heterogeneity, between 50%-75% moderate and >75% signifies high heterogeneity. A funnel plot was not used to evaluate publication bias since the number of included studies was below 10, which yields a low power detecting asymmetry with good accuracy [10]

**Results**

We identified 214 potentially eligible titles. During title and abstract review 12 full text studies were reviewed, and 7 studies described in 6 peer review papers were accepted for the meta-analysis [11-15] as Vural et al described 2 separate populations in a single paper [14] (Table 1). All types of dementia were included (Alzheimer’s, Vascular, Mixed). The determinations of Mg2+ levels were made mostly after a period of hospitalization. Dietary supplement with magnesium was not detailed in most studies.

The studies (n=7), conducted between 1990 and 2020, compared serum or plasma magnesium levels between patients with dementia and controls. They included 2932 dementia patients and 42900 controls. Ratio between women and men was 1.278. There were no differences in mean magnesium levels related to patient age. There was a significant heterogeneity in the results, and the difference in Mg2+ concentrations between patients with dementia and controls was not significant (mean difference -10.68 micromole/L (95% confidence interval -30.62 +9.27). (Table 1). Most studies did not report on medications received by the patient, that may affect magnesium levels.

In 5 of the studies we could compare magnesium levels among Alzheimer patients versus controls. The results were heterogeneous.

In 3 studies magnesium levels were slightly lower among Alzheimer patients in 1.2% (Vural [14]), 2 % (Barbagallo [4]) and 5.9% (Cillier [12]). In one study (Borella [11]) the results were equal (0%), while in one study (Gustaw [15]) the magnesium results were substantially higher among Alzheimer patients (33%).

**Discussion**

There is an ongoing controversy and uncertainty whether hypomagnesemia causes or is a contributing factor in dementia [1, 4-6]. In addition to measurement of serum magnesium, the literature has identified several studies comparing magnesium levels in mononuclear cells [35.36+/-3.56 micromoles/g in dementia and 33.97+/- 5.16 among young controls, and 37.07+/- 4.5 among older controls] [11] and in polymorphonuclear cells [25.54+/-3.71micromole/g in dementia, 26.03+/- 5.37 in young and 22.35+/- 3.47 in older controls] [11].

Andrasi and colleagues compared magnesium levels in 3 brain samples of patients with dementia (540-625 mcg/g dry weight) vs. 3 controls (628-680) [16], and Hozumi compared cerebrospinal fluid (2.064+/- 0.18 mg/dL in dementia and 2.065 +/- 0.18 among controls) [17].

In a previous systematic review Verones and colleagues identified an additional paper comparing magnesium levels in CSF, as well as hair magnesium [18]. In their review they included four articles comparing serum magnesium in 190 Alzheimer patients and 189 controls, not showing significant differences. It was possible that this lack of difference might have been the result of small sample size and a resultant limited statistical power. Our present analysis has

---

**Table 1:** Forest plot of the association of dementia with lower concentrations of serum magnesium

| Study or subgroup | Dementia | Control |
|-------------------|----------|---------|
| Borrela et al.1990 | Mean[ Micromol/L] 760 | SD[ Micromol/L] 50 | Total 760 | Mean[ Micromol/L] 760 | SD[ Micromol/L] 60 | Total 760 | weight 16.1% |
| Cillier et al. 2007 | 926 | 127 | 37 | 915 | 134 | 34 | 7.8% |
| Vurval et al.2010(male subjects) | 785 | 80 | 23 | 871 | 131 | 24 | 7.6% |
| Gustraw- Rothenberger et al. 2010 | 998 | 238 | 30 | 780 | 102 | 29 | 4.0% |
| Vurval et al.2010(female subjects) | 780 | 86 | 27 | 879 | 131 | 26 | 8.0% |
| Barbagallo etal2011 | 955 | 15 | 35 | 975 | 15 | 65 | 27.9% |
| Ben Zaken et al. 2020 | 848.3 | 73 | 2761 | 848.7 | 73 | 42698 | 28.5% |
| Total (95% CI) | 2932 | 42900 | 100.0% |

Heterogeneity: Tau^2 = 361.31; Chi^2 = 70 df = 6 (P < 0.00001); I^2 = 92%
Test for overall effect: Z =105 (P = 0.29)
identified 7 reports with tenfold more dementia subjects and 220-fold more controls. Our results, failing to show significant changes in serum magnesium with very large numbers of subjects and controls corroborate the much smaller sample size in Veronese study.

Of potential importance, Veronese’ study also compared small numbers of studies comparing cerebrospinal fluid levels (n=2) and hair concentrations (n=2) showing significantly lower levels in Alzheimer patients vs. controls [18].

Using serum magnesium as a biological marker of magnesium status has inherent shortcomings, as it does not reflect intracellular or total body magnesium status [19-20]. Indeed, Veronese et al did find lower levels of magnesium in CSF and hair of dementia patients [18], and brain levels do not appear to be lower [16].

In contrast to these observational studies, there is evidence that higher self-reported dietary intake of magnesium had been associated with a decreased risk of dementia [7].

Several limitations of this study must be acknowledged. For obvious reasons serum magnesium is much more available than tissue magnesium; however the lack of strong correlation between serum magnesium and tissue magnesium makes it difficult to interpret serum magnesium. The heterogeneity of the reported serum magnesium among the different studies may reflect inconsistencies in time of measurement of magnesium (e.g. upon admission to hospital vs. in the community, in dietary supplementation and inclusion/exclusion of drugs affecting magnesium levels.

Our study, based on large numbers of dementia patients and controls, suggests that low serum magnesium concentrations are not associated with increased likelihood of dementia. Hence, serum magnesium should be used with caution to predict the status and activity of dementia in patients. More studies are needed in order to identify biological markers of magnesium disposition in dementia, particularly on the direct comparison of different types of dementia.

References
1. Kirkland AE, Sarlo GL, Holton KF (2018) The Role of magnesium in neurological disorders. Nutrients 10: 730.
2. Uwitonze AM, Razzaque MS (2018) Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc 118: 161-169.
3. Vyklicky V, Korinek M, Smejkalova T (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63: 191-203.
4. Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ (2011) Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease. Magnes Res 24: 115-121.
5. Durlach J (1990) Magnesium depletion and pathogenesis of Alzheimer’s disease. Magnes Res 3: 217-218.
6. Ozturk S, Ciller AE (2006) Magnesium supplementation in the treatment of dementia patients. Med Hypotheses 67: 1223-1225.
7. Ozawa M, Ninomiya T, Ohara T, Hirakawa Y, Doi Y, et al. (2012) Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: the Hisayama Study. J Am Geriatr Soc 60: 1515-1520.
8. Kieboom BCT, Licher S, Wolters FJ, Ikrak MK, Hoon EJ, et al. (2017) Serum magnesium is associated with the risk of dementia. Neurology 89: 1716-1722.
9. Higgins JP, Thompson SG, Deeks JJ, Altman DG et al. (2003) Measuring inconsistency in meta-analysis. 327:557-560.
10. Lau J, Ioanidis JP, Terrin N, Schmid CH, Olkin I, et al. (2006) The case of the misleading funnel plot. BMJ 333: 597-600.
11. Borella P, Giardino A, Neri M, Andermarker E, et al. (1990) Magnesium and potassium status in elderly subjects with and without dementia of Alzheimer type. Mages Res 3: 283-289.
12. Ciller AE, Oztürk S (2007) Serum Magnesium Level and Clinical Deterioration in Alzheimer’s Disease. Gerontontology 53: 419-422.
13. Ben Zaken S, Radomyslanky Z, Koren G. Association Between Serum Magnesium Levels and Alzheimer’s Disease or Mixed Dementia Patients: A Population-Based Retrospective Controlled Study J Alzheimer’s Dis Rep 4: 399-404.
14. Vural H, Demirin H, Kara Y, Eren I, Delibas N, et al. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer disease. J Trace Elem Med Biol 24: 169-173.
15. Gustaw-Rothenberg K, Kowalczik K, Strzyacka-Zimmer M (2010) Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia Geriatr Gerontol Int 10: 161-166.
16. Andreasi E, Palf N, Molnar Z, Kiesel S, et al. Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimer Dis 7: 273–284.
17. Hozumi I, Kohmura A, Kimura A, Hasegawa T, Honda A et al. (2010) High levels of copper, zinc and magnesium in the cerebrospinal fluid of patients with Fahr’s disease. Case Rep Neurol 7: 46-51.
18. Veronese N, Zurlo A, Solmi M, Luchini C, Trevisan C, et al. (2016) Magnesium status in Alzheimer disease: A systematic review. Am J Alzheimer dis 31: 208-213.
19. Noronha JL, Matuchak GM (2002) Magnesium in critical illness: metabolism, assessment and treatment. Int Care Med 28: 667-669.
20. Razzaque MS, Uwitonze AM (2018) Role of magnesium in vitamin A activation and function. J Am Osteopath Assoc 118: 181-189.