Abstract
Edible plants are used as valuable sources of food and medicine to prevent nutritional imbalance, illness, and maintenance of human health. This review covers botanical descriptions, phytochemicals studies, traditional comprehensions, dietary values, and biological activities of ten vegetable plants and eight fruit plants of Tripura, India. The book “The Flora of Tripura State” helps to choose the plant species of Tripura, India and PubMed, NCBI, Google scholar databases have been used to describe the plant species briefly. Literature reveals that all the selected edible plants contain bio-active constituents (alkaloids, phenols, flavonoids, tannins, terpenoids, glycosides, etc.) and give dynamic biological activities. All the plants have a high nutritional value. This review believes it will provide significant advances in the prevention of malnutrition and chronic diseases.

Keywords: Biological Activities, Edible Medicinal Plants, Nutritional Values, Phytochemicals, Tripura

1. Introduction
Edible plants are essential in our diet and have ethnomedicinal values without any toxicity. They are the primary sources of food and highly beneficial for the nourishment of health and the prevention of diseases. Terpenoids, limonoids, phytoestrogens, carotenoids, polyphenols, glucosinolates, flavonoids, isoflavonoids, and anthocyanidins are active phytochemicals present in fruits, seeds, herbs, and vegetables. In different stages of life cycles, these phytochemicals provide various health beneficial activities. Edible plants provide energy, proteins, necessary fats, vitamins, and minerals, to develop and for proper functions of life. A large variety of nutrients is essential for our daily diet for well-being. The pleasure of a healthy diet can also be one of the unique ethnic preferences of life. Concerns protein malnutrition is a paramount general health issue in emerging countries. Essential nutrients being roots and tubers are mostly stiff. Nutritive fiber shows a dynamic role in diminishing the hazards of various illnesses.

The Himalayas extends over eight Northeast states (Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, and Tripura) of India. It comprises over 16% of the country’s geographical area. Tripura lies between 22°56’ – 24°32’ N latitudes and 90°09’ – 92° 20’ E longitudes. The average temperature of Tripura is 27°C during summer and 8°C during winter. The average rainfall is about 2400 mm. Although the biodynamic geographical diversity of Tripura, many bioactive plants are grown naturally. Some of these plant parts consumed directly by local peoples for their dietary benefits because these edible plants cannot produce toxic effects on human body. This review covers general descriptions of plant, phytochemicals study, traditional comprehension, nutritional values, and biological activities of eighteen edible plants of Tripura, Northeast India.
2. Method for Plant Choosing and Elaboration

The plant species of Tripura, India have been chosen from the book “The Flora of Tripura State”. The selected is based on two categories i) vegetable plants and ii) fruit plants. PubMed, NCBI, Google scholar databases have been used to describe the chosen plant species.

3. Vegetable Group’s Plants

3.1 Elephant Foot Yam (Amorphophallus paeoniifolius)

Amorphophallus paeoniifolius (Figure 1A) is a stout herbaceous plant well known as elephant foot yam. It is a potential humid tuber crop of the Araceae family that widely grows in a shady region or swampy areas of northeast India during June-August. A dark brown corn is an edible part. The taxonomical classification of Amorphophallus paeoniifolius is represented in Table 1.

Table 1. Taxonomical classification of Amorphophallus paeoniifolius

Kingdom	Phylanae
Phylum	Tracheophyta
Class	Liliopsida
Order	Arales
Family	Araceae
Genus	Amorphophallus
Species	A. Paeoniifolius

Qualitative analysis of the methanolic extract and 70% of hydro-alcoholic extract of corm of Amorphophallus paeoniifolius have shown the presence of alkaloids, steroids, flavonoids, and phenols. Traditionally corms are used as an astringent, liver tonic, thermogenic, irradiation, pain killer, anti-inflammatory, anti-haemorrhoidal, hemostatic, linctus, relieve flatulence, stimulate appetite, anthelmintic, aphrodisiac, emmenagogue, rejuvenating tonic. The corm of Amorphophallus paeoniifolius is highly nutritional food. Nutritional values per 100 g of corm consists 11.53 g protein, 3.52 g fat, 70.75 g carbohydrate, 14.32 g crude fiber, 359.08 Kcal energy, 3.81 mg potassium, 11.92 mg magnesium, 2.31 mg Zinc, and 34.02 mg iron respectively. Different solvents extract (petroleum ether, methanolic extract, chloroform extract, pet-ether extract) of Amorphophallus paeoniifolius have shown analgesic, anti-inflammatory, CNS depressant, antimicrobial, anthelmintic, hepatoprotective, antioxidant, and anti-tumor activities.

3.2 Taro (Colocasia esculenta)

Colocasia esculenta (Figure 1B) is a tropical herbaceous perennial plant belonging to Araceae. It is cultivated primarily during the rainy season for its edible corms, most commonly known as taro, and other consumable parts are leaf and stem. It is believed to be one of the earliest cultivated plants. This plant is found in entire northeastern India. Taxonomical classification of Colocasia esculenta is represented in Table 2.

Table 2. Taxonomical classification of Colocasia esculenta

Kingdom	Plantae
Phylum	Tracheophyta
Class	Liliopsida
Order	Arales
Family	Araceae
Genus	Colocasia
Species	C. esculenta

Phytochemicals estimate different edible parts (leaf, stem, and taro) of Colocasia esculenta have shown the presence of phenols, flavonoids, terpenoids, and steroids. The documented record of ethnobotanists, various edible parts of Colocasia esculenta, is used to diminish the menace of obesity, heart attack, diabetes, and iron level maintenance. Nutritional values per 100 g of corm consist of 2.5 g protein, 0.2 g fat, 19 g carbohydrate, 3.4 g crude fiber, 85 Kcal energy, 32 mg calcium, 64 mg phosphorus, 514 mg, potassium, 7 mg sodium, and 0.8 mg iron, and 10 mg Vit. C respectively. Nutritional values per 100 g of the leaf consist of 4.4 g protein, 1.8 g fat, 12.2 g carbohydrate, 0.6 g crude fiber, 69 Kcal energy, 268 mg calcium, 78 mg phosphorus, 1237 mg, potassium, 11 mg sodium, and 4.3 mg iron, 20385 IU Vit. A and 142 mg Vit. C respectively. Corm and leaf of Colocasia esculenta possess anti-microbial, anti-oxidant, and anti-diabetic activities.

3.3 Bengal Arum (Typhonium trilobatum)

Typhonium trilobatum (Figure 1C) is a leafy vegetable evergreen perennial herb of height 0.85m tall. This herb mainly grows between May to July on plain grassland. Taxonomical classification of Typhonium trilobatum is represented in Table 3.
Typhonium trilobatum contains alkaloids, phenols, flavonoids, and steroids. Beta-sitosterol is one of the essential sterols isolated from Typhonium trilobatum1,19. In India, China, Bangladesh, leaves and tubers are consumed as food and frequently prescribed to the patient suffering from piles, rheumatism, constipation, hemorrhoids, trauma, and injury1. Nutritional values per 100 g of the leaf consist of 2.81 g protein, 0.66 g fat, 2.94 g carbohydrate, 2.44 g crude fiber, 28.94 Kcal energy, 22.59 mg calcium, 0.03 mg sodium, and 58.40 mg iron, and 108.08 mg Vit. C respectively20.

Typhonium trilobatum has multiple pharmacological activities, including anti-inflammatory, analgesic, wound healing, anti-bacterial, anti-fungal, anti-diarrheal, larvicidal, anti-oxidant, anti-diabetic and anti-depressant4.

3.4 Dolichos Bean (Lablab purpureus)

Lablab purpureus (Figure 1D) is generally known as Dolichos bean, Hyacinth bean, or Field bean. It exists only as a whole antique food amongst cultivated plants. It is a bushy, semi-erect, perennial herb, having no affinity to ascend. This plant grows during the winter season. Taxonomical classification of Lablab purpureus is represented in Table 421.

Table 3. Taxonomical classification of Typhonium trilobatum

Kingdom	Plantae
Phylum	Tracheophyta
Class	Liliopsida
Order	Alismatales
Family	Araceae
Genus	Typhonium
Species	\textit{T. trilobatum}

Table 5. Taxonomical classification of Melocanna baccifera

Kingdom	Plantae
Phylum	Tracheophyta
Class	Liliopsida
Order	Poales
Family	Poaceae
Genus	Melocanna
Species	\textit{M. baccifera}

The mature seeds of Lablab purpureus contained cyanogenic glycosides, oxalates, phytates, tannins and saponins. Seeds were used to stimulate stomach, treatment of cholera, diarrhea, colic, rheumatism, and sunstroke22. Seeds of Lablab purpureus contain high nutritional values. In 100 g of fresh seeds gives 23.90 g of protein, 1.69 g of fat, 60.74 g of carbohydrate, and 344 Kcal of total energy. Grains also contain the right amount of minerals such as 1235 mg potassium, 21 mg sodium, 1.335 mg copper, 130 mg calcium, 283 mg Magnesium, and 5.10 mg iron in 100 g of sample. Niacin (1.610 mg/100 g) and thiamin (1.130 mg/100 g) are two essential vitamins present in seeds23. Seeds of Lablab purpureus possess anti-inflammatory, antioxidant, antibacterial and cytotoxicity activities Seeds of Lablab purpureus shows anti-inflammatory, antioxidant, antibacterial and cytotoxicity activities24.

3.5 Clumping Bamboo (Melocanna baccifera)

Melocanna baccifera (Figure 1E), an evergreen arborescent, non-clump forming, is a single bamboo species naturally distributed in a hilly area of northeast India like Tripura, Assam, and Meghalaya. Its local Bengali name is “Muli”, and its English name is “Clumping bamboo”. Edible parts are young shoots and are harvested during the rainy season. Culms are considered mature when it is two years old. Taxonomical classification of Melocanna baccifera is represented in Table 525.

4-Oxabicyclo[3.2.2]nona-1(7), 5, 8-triene, and verbacine are the two important phytochemicals present in the leaves and fruits of Melocanna baccifera. Fruit also contains ferulic acid as a phenolic compound26. The record of ethnobotanist, peoples of northeast India consumes the young shoots of Melocanna baccifera27. Per 100 gram of young shoot of Melocanna baccifera contained 43.35 g carbohydrate, 3.9 g protein, 1.77 g fat, and 204.93 kcal energy. Shoot of Melocanna baccifera possess anti-oxidant activities28.
3.6 Miracle Tree (Moringa oleifera)

Moringa oleifera (Figure 1F) native to northeast India grows in the tropical and subtropical part of lower Himalayan regions. It is a small, elegant, broadleaf tree with sparse foliage. The flowering period starts in January and lasts over March. The leaves, flowers, and immature pods (called long green pods), are eatable portions. *Moringa oleifera*, is also known as ‘the miracle tree’ due to its remarkable curing abilities for many chronic diseases. The taxonomical classification of *Moringa oleifera* is described in Table 6.

Different edible parts of *Moringa oleifera* contained alkaloids, flavonoids, saponins, and saponines. *Moringa oleifera* leaves are used to reduce cholesterol and body weight, infertility in women, lower blood pressure, reduce jaundice, menstrual relief, cure diabetes, and constipation. Flowers were used to curing thyroid problems; roots were used to minimize spinal cord pain; seeds powder was used to kill intestinal worms, and pods were used to lower blood sugar levels. The three common edible parts (leaves, flowers, and long green pods) of *Moringa oleifera* contained the right amounts of nutritional compositions. Nutritional values per 100 g of leaves consist of 6.7 g protein, 1.7 g fat, 12.5 g carbohydrate, 0.9 g crude fiber, 92 Kcal energy, 259 mg potassium, 70mg phosphorus, 440 mg calcium, 0.85 mg iron, 220 mg of Vit. C and 300 IU Vit. A. Nutritional values per 100 g of flowers consists 0.42 g protein, 0.88 g fat, 0.67 g carbohydrate, 0.14 g crude fiber, 17.95 Kcal energy, 671 mg potassium, 19.66 mg phosphorus, 32.34 mg calcium, 48.11 mg iron, 7.6 mg of Vit. C and 333 IU Vit. A. Nutritional contents per 100 g of long green pods consists 2.5 g protein, 0.1 g fat, 3.7 g carbohydrate, 4.8 g crude fiber, 26 Kcal energy, 259 mg potassium, 110 mg phosphorus, 30 mg calcium, 5.3 mg iron, 120 mg of Vit. C and 184 IU Vit. A. Different edible parts of *Moringa oleifera* possess hypolipidemic, anti-peroxidative, cardioprotective, antioxidant, anti-inflammatory, anti-nociceptive, anti-microbial, hepatoprotective, anti-hyperglycemic, down-regulation of nuclear factor-kappa B and anti-atherosclerotic activities.

3.7 Turkey Berry (Solanum torvum)

Solanum torvum (Figure 1G) commonly known as Turkey berry. It is a bushy, erect, and spiny perennial plant. The fruit is the edible part of this plant. The flowering season of this plant is from May to July. The taxonomical classification of *Solanum torvum* is described in Table 7.

Table 6. Taxonomical classification of *Moringa oleifera*

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Capparales
Family	Moringaceae
Genus	Moringa
Species	M. oleifera

Table 7. Taxonomical classification of *Solanum torvum*

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Solanales
Family	Solanaceae
Genus	Solanum
Species	S. torvum

Sun-dried *S. torvum* fruits contain alkaloids, flavonoids, saponins, tannins, glycosides, and fixed oils. Others phytochemicals present in *S. torvum* is neochlorogenin 6-O-β-D-quinovo-pyranoside, neochlorogenin 6-O-β-D-xylpyranosyl-(1→3)-β-D-quinovopyranoside, neochlorogenin 6-Oα-L-rhamnopyranosyl-(1→3)-β-D-quinovopyranoside, sola-genin 6-O-β-D-quinovopyranoside, solagenin 6-O-α-L-rhamnopyranosyl-(1→3)-β-D-quinovopyranoside, isoquercetin, rutin, kaempferol and quercetin. Traditionally it is used to control bacterial and fungal diseases. Nutritional values per 100 g fruits of *Solanum torvum* consists 2.32 g protein, 0.28 g fat, 7.04 g carbohydrate, 3.99 g crude fiber, 39.96 Kcal energy, 2.6 mg copper, 19.5 mg magnesium, 211.6 mg calcium, and 76.9 mg iron, and 2.68 mg Vit. C. Biological activities of the fruit of *S. torvum* are anti-oxidant, anti-fungal, anti-bacterial, anti-ulcer, antihypertensive and metabolic correction, nephron-protective, cardioprotective, and anti-diabetic.

3.8 Sesame (Sesamum indicum)

Sesame (*Sesamum indicum*) (Figure 1H) is an herbaceous annual plant. The primary flowering season is in July month. Oilseeds of sesame are traditional healthy food, generally used to improve nutritional status. The taxonomical classification of *Sesamum indicum* is represented in Table 8.
Sesamum indicum seed contains alkaloids, phenols, flavonoids, saponins, anthraquinones, terpenoids, and steroids. Traditionally the seed oil is used in cookery, as a stimulant, nutrient, aphrodisiac, diuretic, and in the remedy of dry cough, asthma, lung diseases, inflammation, ulcers, urinary diseases, and migraine. Nutritional values per 100 g of seeds consists 17.73 g protein, 49.67 g fat, 23.45 g carbohydrate, 11.8 g crude fiber, 573 Kcal energy, 7.75 mg zinc, 468 mg potassium, 4.08 mg copper, 11 mg sodium, 975 mg calcium, 2.46 mg magnesium, and 6.73 g carbohydrate, and 27 kcal energy. 100 g of flowers contains 1 mg calcium, 84 g iron, 12 mg magnesium, 30 mg phosphorus, 184 mg potassium, 15 mg sodium, 73 mg Vitamin C, 0.083 mg thiamine, and 0.081 mg riboflavin. Leaves and flower of Sesbania grandiflora give anti-microbial activity, decreased serum cholesterol levels, wound healing activity, and anti-ulcer activity.

3.9 Vegetable Hummingbird (Sesbania grandiflora)

Sesbania grandiflora (Figure 1I) is a fast-growing perennial, deciduous, or evergreen legume tree that raises to 8-15 m high and 25–30 cm in diameter. The roots of the tree are usually heavily nodulated with large nodules. Leaves and white-yellowish color flowers are the edible portions. This plant is widespread in most humid tropical regions of Northeast India. The taxonomical classification of Sesbania grandiflora is represented in Table 9.

Table 8. Taxonomical classification of Sesamum indicum

Kingdom	Plantae
Phylum	Tracheophyta
Class	Dicotyledonae
Order	Scrophulariales
Family	Padaliaceae
Genus	Sesamum
Species	S. indicum

Leaves of Sesbania grandiflora contain alkaloids, flavonoids, glycosides, tannin, anthraquinone, steroid, and terpenoid. Traditionally the mixture of fresh leaves juices and coconut milk is used topically for skin diseases. 100 g of fresh leaves contain 8 g protein, 1 g fat, 12 g carbohydrate, 2 g crude fiber, and 93 kcal energy. The same quantity of leaves contains 1130 mg calcium, 80 mg phosphorus, and 4 mg iron. 100 g of the fresh flower contains a size of 1.28 g protein, a size of 0.04 g fat, 6.73 g carbohydrate, and 27 kcal energy. 100 g of flowers contains 18 mg calcium, 84 g iron, 12 mg magnesium, 30 mg phosphorus, 184 mg potassium, 15 mg sodium, 73 mg Vitamin C, 0.083 mg thiamine, and 0.081 mg riboflavin.

3.10 Stink Bean (Parkia speciosa)

Parkia speciosa (Figure 1J) or stink bean is a plant that is abundantly found in the tropical regions of lower parts of the Himalaya. Up to 15–40 m tall and 50–100 cm in diameter. Leaves are bipinnate, 2–6 cm elongated stems with the gland of 7–15 mm aloft stalk base. Pods are bulky, 35–55 cm in length and 3–5 cm broad. Seeds are the edible parts of this plant. Taxonomical classification of Parkia speciosa is described in Table 10.

Table 9. Taxonomical classification of Sesbania grandiflora

Kingdom	Plantae
Phylum	Tracheophyta
Class	Monoliliopsida
Order	Fabales
Family	Fabaceae
Genus	Sesbania
Species	S. grandiflora

Seeds of Parkia speciosa consist of alkaloid, terpenoid, phenolic, flavonoid, and tannin. In the seeds, identified terpenoid was β-sitosterol, stigmasterol, lupeol, campesterol, and squalene. Seeds of Parkia speciosa are used traditionally to treat diabetes, high blood pressure, and kidney complications. Per 100 g of fresh seeds, contains 6.0 g protein, 1.6 g fat, 13.2 g carbohydrate, 1.7g crude fiber, and 91.0 kcal energy. A same amount of seeds contains 108.0 mg calcium, 2.2 mg iron, 115.0 mg phosphorus, 341.0 mg potassium, 29.0 mg magnesium, 19.3 mg vitamin c, 4.15 mg α-Tocopherol, and 0.28 mg thiamin. Parkia speciosa gives anti-oxidant, hypoglycemic, anti-tumor, and anti-mutagenicity, anti-microbial activities.
4. Fruit Group’s Plants

4.1 Banana (Musa paradisiaca)

Musa paradisiaca (Banana) (Figure 2A) is one of the well-known herbaceous flowering plants. Banana is one of the majors and economically important fruit crop in India. The entire lower parts of Himalaya are rich in banana plantation because of the suitable range of temperature (15-350C), humidity (75-85%), and loamy soil type. The primary harvesting season of banana is from September to April. Fruit, stem, and flower are edible parts of banana. The taxonomical classification of *Musa paradisiaca* is described in Table 1143.

Table 11. Taxonomical classification of Musa paradisiaca

Kingdom	Plantae
Phylum	Tracheophyta
Class	Liliopsida
Order	Zingiberales
Family	Musaceae
Genus	Musa
Species	*M. paradisiaca*

Banana fruits, stem, and flowers contain alkaloids, phenols, flavonoids (quercetin), tannins, glycosides (a phenylpropanoid glycoside analogs), saponins, and volatile oils, respectively44,45. Flowers are used in dysentery, diabetes, and menorrhagia. Stems juice is used for treating diarrhea, dysentery, cholera, otalgia, and hemoptysis. Fruit (unripe) is used for diarrhea, dysentery, intestinal lesions in ulcerative colitis, diabetes, in sprue, uremia, nephritis, gout, hypertension, and cardiac diseases. Nutritional values per 100 g of flowers consist of 1.6 g protein, 0.6 g fat, 9.9 g carbohydrate, 5.7 g crude fiber, 51 Kcal energy, 553.3 mg potassium, 73.3 mg phosphorus, 56 mg calcium, 56.4 mg iron, and 1.07 mg of Vit. E. Nutritional values per 100 g of raw stem consist of 1 g protein, 0 g fat, 2 g carbohydrate, 2 g crude fiber, 13 Kcal energy, 137 mg phosphorus, 1335 mg calcium, and 3.31 mg iron. Dietary contents per 100 g of ripe fruit consist of 1.09 g protein, 0.33 g fat, 2.842 g carbohydrate, 260 g crude fiber, 89 Kcal energy, 358 mg potassium, 22 mg phosphorus, 5 mg calcium, and 0.26 mg iron, 64 mg Vit. A, 9.7 mg Vit. C and 0.10 mg Vit. E.46–48. Banana is a low cost, highly economical fruit in India. Biological activities of edible parts of banana are minimizing diabetes and anemia, boost lactation, decrease free radical activity, curing menses complications, and reduce anxiety.45

4.2 Pineapple (Ananas comosus)

Ananas comosus (Figure 2B) is the accepted name for the commonly known pineapple fruit. It is an herbaceous perennial plant. The adult plant will grow 1 m - 1.5 m tall and inscribed in the general shape of a spinning top. This plant mostly grows in tropical forests, and the primary fruiting season is from April to May. In northeast India, pineapple is favorite for the fruit lovers in its fresh as well as processed forms like jam, jelly, and squashes. The taxonomical classification of *Ananas comosus* is described in Table 1249.
Phytochemical analysis for pineapple fruit juice shows the existence of phenols, flavonoids, steroids, tannins, saponins, alkaloids, and volatile and non-volatile compounds. The valuable phenols were gallic acid, catechin, epicatechin, ferulic acid, caffeic acid, sinapic acid, ellagic acid, and vanillin. Identified major flavonoid and isoflavone compounds of pineapple fruit were rutin, isoquercetin, and genistin. Identified primary non-volatile organic acids were malic acid, quinic acid, and citric acid. Major volatile compounds were methyl-3-(methylthio) propionate, ethyl-3-(methylthio) propionate, 3-hydroxy-2-butanone, furaneol, ethyl-2-methyl butanoate, hexanoic acid, nonanoic acid, decanoic acid, β-guaiene. Khamptis tribe of Arunachal Pradesh, India, used burnt fruit for the treatment of urinary tract ailments (Khongsai et al. 2011). Bamileke, communities in the Douala region of Cameroon, used *Ananas comosus* fruit to relieve yellow fever, obesity, prevention against cancer, Vit. C maintenance and leaves were used to relieve cough and jaundice. Fresh juices of pineapple are rich sources of minerals, vitamins, and energy. Nutritional values per 100 g of fruit juice consist 0.54 g protein, 0.12 g fat, 13.52 g carbohydrate, 1.40 g crude fiber, 50 Kcal energy, 109 mg potassium, 1 mg sodium, 0.110 mg copper, 13 mg calcium, and 0.29 mg iron, 0.500 mg niacin, 58 IU Vit. A and 47.8 mg Vit. E. Biological activities of pineapple fruit extracts possess anti-bacterial, anti-viral, anti-fungal, anti-parasitic, anti-inflammatory, anti-oxidant, anti-rheumatic, and anti-diarrheal.

Table 12. Taxonomical classification of *Ananas comosus*

Kingdom	Plantae
Phylum	Tracheophyta
Class	Lilopsida
Order	Bromeliiales
Family	Bromeliaceae
Genus	Ananas
Species	*A. comosus*

Table 13. Taxonomical classification of *Artocarpus heterophyllus*

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Urticales
Family	Moraceae
Genus	Artocarpus
Species	*A. heterophyllus*

Artocarpus heterophyllus contains morin, dihydromorin, cynomacurin, artocarpin, isoartocarpin, cyloartocarpin, artocarpesin, oxydihydroartocarpesin, artocarpetin A, artocarpetin B, norartocarpetin, cycloartinol and artocarpanone. The plant also comprises fatty acids, ellagic acid, and some essential amino acids like arginine, cystine, histidine, leucine, lysine, methionine, threonine, tryptophan, etc. heteroflavanones A and B were isolated from the root bark. The fresh fruits are worthwhile in astringent and carminative. The mature fruits are syrupy, cooling, purgative, aphrodisiac, and available as a brain tonic. The seeds are diuretic and obstipation. The wood is nervine, anti-diabetic, tranquilizing, and is helpful in seizures. Nutritional values per 100 g of jackfruit juice consist of 1.72 g protein, 0.64 g fat, 23.5 g carbohydrate, 1.5 g crude fiber, 95 Kcal energy, 303 mg potassium, 3 mg sodium, 34 mg calcium, and 0.60 mg iron, 0.920 mg niacin, 110 IU Vit. A, 1.37 mg Vit. C and 0.34 mg it. E. Nutritional values per 100 g of jackfruit seeds consist of 7 g protein, 1 g fat, 38 g carbohydrate, 1.5 g crude fiber, 184 Kcal energy, 30mg potassium, 30mg sodium, 0.02 mg calcium, and 1.5mg iron, 10 IU Vit. A and 11 mg Vit. C. The principle biological properties of jackfruit are anti-ulcer and cardiovascular, improving digestion, anti-oxidant, skin diseases, anti-cancer, and anti-aging activities. A jackfruit seeds starch is used to reduce stomach sickness. Roasted seeds possess aphrodisiac properties.

4.3 Jackfruit (*Artocarpus heterophyllus*)

Jackfruit or *Artocarpus heterophyllus* (Figure 2C) is a tropical evergreen perennial plant of height up to 20 m. Fruits bear from June to August. Fruit and seed are the main edible parts of jackfruit. The Taxonomical classification of *Artocarpus heterophyllus* is represented in Table 13.

4.4 Gaub Tree (*Diospyros malabarica*)

Diospyros malabarica (Figure 2D) is a perennial, blossoming bush that is inherent in the Indian subcontinent. It is slow developing, well-branched, and has an extended crown and a long, cylindrical trunk that raises about 70 cm in diameter. It extends a height of about 37 m. The leaves are sparkly olive, and the flowers are white or green. This plant is grown in the lowland rainforests zone of lower Himalayan reason. A flowering
season is from January to February. Ripe fruits are the edible part of this plant. The taxonomical classification of *Diospiros malabarica* is represented in Table 14.

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Ericales
Family	Ebenaceae
Genus	Diospyros
Species	*D. malabarica*

Leaves contain β-sitosterol, betulin, oleanolic acid and myricyl alcohol. Fruits contain new lupine-type triterpenes - peregrinol and bark consist of saponin, betulinic acid. Traditionally the fruits are used as bitter, acrid, cooling, digestive, carminative. Per 100 g of eatable part of fruits contains 1.36 g protein, 0.17 g fat, 20.34 g carbohydrate, 1.59 g crude fiber, and 88.36 kcal energy. Per 100 g of fruits contains 0.07 mg copper, 0.46 mg manganese, and 0.08 mg zinc.

Ethyl acetate extract of seeds of *Annona reticulata* consists of cis-/trans-isorumisolenin, annoreticuin, annoreticuin-9-one, cis-/trans-bullatacinone, bullatacin, cis-trans-murisolinone, and squamocin. Annoretarin A, a new triterpenoid, was chemically investigated from the leaves (Chavan et al. 2014). Raw fruit peel extracts contain alkaloids, cholesterol, coumarins, flavonoids, phenols, and saponins. Traditionally the unripe fruit is used for dysentery and diarrhea. Leaves are used to prepare tea for relieving colic. A decoction of the leaves is used mostly in reducing malaria and syphilis. The roots used to reduce epilepsy. Per 100 g of eatable part of fruits contains 1.98 g protein, 0.10 g fat, 27.49 g carbohydrate, 1.59 g crude fiber, and 118.84 kcal energy. Per 100 g of fruits contains 0.15 mg copper, 0.02 mg iron, 0.01 mg manganese, and 0.21 mg zinc. The fruits also contained a good amount of vitamin C (37.40 mg/100 g).

4.6 Sugar Apple (*Annona squamosa*)

Annona squamosa (Figure 2F) is a pint-sized, semi-evergreen tree that is 3-7 m tall and widely unfold crown or unevenly distribute branches. Leaves are single, 6-17 x 3-6 cm, lanceolate or oblong-lanceolate. Flowers are greenish-yellow, fragrant, on slender hairy stalks. The accumulated fruit is formed together by various pistils of a flower, which are lightly joined together. The taxonomical classification of *Annona squamosa* is described in Table 16.

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliosida
Order	Magnoliales
Family	Annonaceae
Genus	Annona
Species	*A. squamosa*

The fruit pulp of *Annona squamosa* contains alkaloids, tannins, flavonoids, saponins, terpenoids, glycosides, and steroids. The fruit also contains Annonaceous acetogenins, cyclopeptides. Traditionally the leaf, bark, and unripe fruit were used for diarrhea and dysentery.
Per 100 g of eatable part of fruits contains 5.44 g protein, 0.067 g fat, 20.41 g carbohydrate, 2.78 g crude fiber, and 92.90 kcal energy. Per 100 g of fruits pulp contains 602.5 mg calcium, 9.500 mg copper, 48.08 mg iron, 5.569 mg manganese, and 28.68 mg zinc.

4.7 Indian Jujube (Ziziphus jujuba)

It is a tiny deciduous tree or shrub of 5–12 meters (16–39 ft) height, generally with much thorny brushwood. The leaves are glossy-green, ovate-acute, 2–7 centimeters. February to March is the flowering reason of *Ziziphus jujuba* (Figure 2G). The fruits were mature between 2 and 3 months after flowering. The taxonomical classification of *Ziziphus jujaba* is described in Table 17.71

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Rosales
Family	Rhamnaceae
Genus	Ziziphus
Species	*Z. jujaba*

Fruit of *Z. jujaba* contains phenolic acids, flavonoids, anthocyanins, and proanthocyanidin. Identified phenolic acids were p-coumaric acid, cinnamic acid, caffeic acid, chlorogenic acid, ferulic acid, gallic acid, and vanillic acid. Determined flavonoids were quercetin, rutin, quercetin-3-galactoside, quercetin-3-rutinoside, kaempferol-glucosyl-rhamnoside, quercetin-3-robobioside, epicatechin, catechin, and procyanidin B2.72 Fruits are used traditionally as cooling, digestible, tonic, aphrodisiac, and laxative and remove bilioussness, burning sensations, thirst, and vomiting. The leaves are antipyretic and reduce obesity. The folk practitioners avail the fresh leaves with cumin to cure the urinary disorder. The bark of the tree is used for the remedy of dysentery and diarrhea. New roots are used to treat throat hoarseness.73 Per 100 g of fresh fruits, contain 1.20 g protein, 0.20 g lipid, 20.23 g carbohydrate, 1.7 g crude fiber, and 79 kcal energy. A similar amount of fruits contains 21 mg calcium, 0.48 mg iron, 23 mg phosphorus, 250 mg potassium, 3 mg sodium, 10 mg magnesium, 69.0 mg vitamin C, and 40 IU vitamin A. *Ziziphus jujaba* possesses anti-cancer, anti-inflammatory, anti-obesity, immunostimulating, anti-oxidant, and hepatoprotective properties.72

4.8 Pummelo (Citrus maxima)

Citrus maxima (Figure 2H) is a tree of 5-15 m height, with a somewhat crooked trunk 10–30 cm thick, low branches, asymmetrical, and extending. Leaves are compound, appearing dull, having one leaflet. Flowers are fragrant, borne singly, and fruit ranges tightly curved to oblate or pear-form. Early April is the flowering season of this plant. The taxonomical classification of *Citrus maxima* is described in Table 18.74

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Sapindales
Family	Rutaceae
Genus	Citrus
Species	*C. maxima*

Citrus maxima contain alkaloids, phenols, flavonoids, monoterpenes, and sesquiterpenes. 5-hydroxyacronycin, acrigine A, atalafoline, baiyumine A and B, buntanine, buntanamine, grandisine I and II, pumiline, honyumine, natsucrin, prenylcitpressine, citropone A & B, and glycocitrine I identified alkaloids were existing in the roots and the bark of the plant. Acacetin, rutin, tangeretin, cosmosiin, diosmetin, diosmin, eriocitrin, hespeidin, and naringin were identified flavonoids. Identified steroids: were β-Sitosterol, campesterol, daucosterol, stigmasterol. Leaves are used for the treatment of epilepsy, chorea, and convulsive cough and given for hemorrhage disease. Flowers are used for the treatment of tranquilizer in nervous affection, and fruits are used to treat leprosy, hiccough, mental aberration, and cardiotonic.74 Per 100 g of fresh fruits, contain 0.76 g protein, 0.04 g fat, 9.62 g carbohydrate, 1 g crude fiber, and 38 kcal energy.
similar amount of fruits contains 0.11 mg iron, 17 mg phosphorus, 216 mg potassium, 1 mg sodium, 10 mg magnesium, 61 mg vitamin C, 0.034 mg thiamine, 0.027 mg riboflavin, and 0.22 mg niacin75. \textit{Citrus maxima} give anti-oxidant, anti-inflammatory, anti-diabetic, anti-tumor, hepatoprotective, anti-bacterial, and CNS stimulant activities74.

Figure 2. (A) \textit{Musa paradisiac}, (B) \textit{Ananas comosus}, (C) \textit{Artocarpus heterophyllus}, (D) \textit{Diospiros malabarica}, (E) \textit{Annona reticulate}, (F) \textit{Annona squamosal}, (G) \textit{Ziziphus jujube}, (H) \textit{Citrus maxima}.

5. Results from Literature Survey

5.1 Plants of Vegetable Group

The literature survey observed that ten vegetable plants have medicinal values and nutritional importance (Table 19). These ten vegetable plants have contained alkaloids, phenols, flavonoids, tannins, terpenoids, glycosides, etc.

Botanical name and family	Edible parts	Energy content per 100 g	Biological activities	Citations
\textit{Amorphophallus paeoniifolius} (Araceae)	Corm	359.08 Kcal	Anti-inflammatory, CNS depressant, anti-microbial, antihelmintic, hepatoprotective, anti-oxidant,	[8,9]
\textit{Colocasia esculenta} (Araceae)	Corm	85 Kcal	Anti-microbial, anti-oxidant, and anti-diabetic activities	[10-18]
	Leaf	69 Kcal		
\textit{Typhonium trilobatum} (Araceae)	Leaf	28.94 Kcal	Anti-inflammatory, analgesic, wound healing, anti-bacterial, anti-fungal, anti-diarrheal, and anti-diarrheal.	[1,19,20]
\textit{Lablab purpureus} (Fabaceae)	Seed	344 Kcal	Anti-inflammatory, anti-oxidant, anti-bacterial and cytotoxicity activities	[21-24]
\textit{Melocanna baccifera} (Poaceae)	Shoot	204.93 kcal	Anti-oxidant activity	[25,28]
\textit{Moringa oleifera} (Moringaceae)	Leaf	92 Kcal	Hypolipidemic, anti-peroxidative, cardioprotective, anti-oxidant, anti-inflammatory, anti-nociceptive, anti-microbial, hepatoprotective, anti-hyperglycemic and anti-atherosclerotic activities	[29–31]
	Flower	17.95 Kcal		
	Green pod	26 Kcal		
\textit{Solanum torvum} (Solanaceae)	Fruit	39.96 Kcal	Anti-oxidant, anti-fungal, anti-bacterial, anti-ulcer, anti-hypertensive and metabolic correction	[32–33]
\textit{Sesamum indicum} (Padaliaceae)	Seed	573 Kcal	Regulates cholesterol, neurological role, and blood pressure	[34–36]
5.2 Plants of Fruit Group
The literature survey observed that eight fruit plants have medicinal values and nutritional importance (Table 20). These eight fruit plants have also contained bioactive compounds. The important bioactive compounds are alkaloids, phenols, flavonoids, tannins, terpenoids, glycosides, etc.

Botanical name and family	Edible parts	Energy content per 100 g	Biological activities	Citations
Musa paradisiaca (Musaceae)	Flower	51 Kcal	Anti-diabetic, anti-oxidant, anti-hypertension activities	[43–48]
	Stem	13 Kcal		
	Fruit	89 Kcal		
Ananas comosus (Bromeliaceae)	Fruit	50 Kcal	Anti-bacterial, anti-viral, antifungal, antiparasitic, anti-inflammatory, anti-oxidant, anti-rheumatic, and anti-diarrheal	[49–56]
Artocarpus heterophyllus (Moraceae)	Fruit	95 Kcal	Anti-ulcer and cardiovascular, improving digestion, anti-oxidant, skin diseases	[57–60]
Diospyros malabarica (Ebenaceae)	Fruit	88.36 kcal	Anti-bacterial, anti-fungal, hepatoprotective, and anti-oxidant activities	[61–63]
Annona reticulate (Annonaceae)	Fruit	118.84 kcal	Anti-oxidant activity, anti-diabetic, and anti-cancer properties	[64, 65]
Annona squamosa (Annonaceae)	Fruit	92.90 kcal	Anti-diabetic and hypolipidemic, anti-oxidant, anti-inflammatory, analgesic, anti-hypertensive activities	[66–70]
Ziziphus jujuba	Fruit	79 kcal	Anti-cancer, anti-inflammatory, anti-obesity, immunostimulating, anti-oxidant, and hepatoprotective properties	[71–73]
Citrus maxima (Rutaceae)	Fruit	38 kcal	Anti-oxidant, anti-inflammatory, anti-diabetic, anti-tumor, hepatoprotective, anti-bacterial, and CNS stimulant activities	[74,75]

5. Discussion
Edible medicinal plants are food-based plants that fulfill the dietary supplement and minimize chronic diseases. The acute toxicity studies observed that edible medicinal plant parts do not show any toxic effects at a maximum doses. Phytochemicals are biologically active, naturally occurring secondary plant metabolites. The traditional medicinal knowledge and biological activity of the plant species depended on the presence of different phytochemicals. The literature revealed that eighteen edible medicinal plants have contained common phytochemicals like alkaloids, phenolic, flavonoids, terpenoids, tannin, glycosides and gave various traditional medicinal values and biological activities represented in the Tables 19 and 20. Nutritional assessment refers to the contents of micronutrients and macronutrients of the food samples and the impact on the body. Most of the Indian peoples have suffering malnutrition (especially scurvy, rickets, beriberi, etc.) for deficiency of nutrients. If Indian peoples take periodically various seasonal vegetables and food in their...
diet, then it can be easily minimizing the malnutrition deficiencies.83 Energy content on food is a vital property. The energy level (Table 19 & 20) depends on the total amount of carbohydrate, protein, and fat present in the food samples84. Traditional medicinal knowledge of plant species is essential for herbal drug development. It is a way to save the cultural therapeutic wisdom from the different ethnic communities of India85. In this review it was noticed that all the edible plant parts have traditional values.

6. Conclusion

In this review, we have focused on eighteen edible plants in Tripura, India for their nutraceutical values. Consumable parts of selected plants showed the right amount of proximate composition, minerals, and vitamins. These edible plant parts also diminish the possible causes like high blood pressure, diabetes, cardiovascular diseases, and may help to prevent cancer. This review helps natural product researchers to find out the new floras of Tripura with their biological and nutritional importance.

7. Conflict of Interest

The authors declare no conflict of interest.

8. Acknowledgement

The authors are grateful for the e-resources provided by Tripura University (A Central University), Suryamaninagar, Tripura, India-799022.

9. Funding Sources

Indian Council of Medical Research (ICMR) (No. 3/1/2/125/2019-(Nut) and All India Council for Technical Education (AICTE) (No. 8-114/RIFD/RPS-NER/Policy-1/2018-19) providing financial support.

10. References

1. Manna K, Debnath B, Das M, Marwein SA. Comprehensive review on pharmacognostical investigation and pharmacology of \textit{Typhonium trilobatum}. Nat Prod J. 2016; 6:172–8. https://doi.org/10.2174/2210315506666160810145157

2. Prakash D, Gupta C, Sharma G. Importance of phytochemicals in nutraceuticals. J Chin Med Res. 2012; 1:70–8.

3. Shikov AN, Tsitsilin AN, Pozharitskaya ON, Makarov VG, Heinrich M. Traditional and current food use of wild plants listed in the Russian Pharmacopoeia. Front Pharmacol. 2017; 8:841. https://doi.org/10.3389/fphar.2017.00841

4. Aberoumand A. Protein, fat, calories, minerals, phytic acid and phenolic in some plant foods based diet. J Food Processing Techno. 2011; 2:1–4. https://doi.org/10.4172/2157-7110.1000114

5. Mehra A, Bajpai O, Joshi H. Diversity, utilization and sacred values of ethno-medicinal plants of Kumaun Himalaya. Trop. Plant Res. 2014; 1:80–6.

6. Joshi R, Satyal P, Setzer W. Himalayan aromatic medicinal plants: A review of their ethnomedical, volatile phytochemistry, and biological activities. Medicines. 2016; 3:6. https://doi.org/10.3390/medicines3010006

7. Deb DB. The flora of Tripura State. New Delhi: Today and Tomorrow's Printers and Publishers.1981–1983; 1(2).

8. Dey YN, Ota S, Srikanth N, Jamal M, WanjariM. A phytopharmacological review on an important medicinal plant- \textit{Amorphophallus paeoniifolius}. Ayu. 2012; 33:27–32. https://doi.org/10.4103/0974-8520.100303

9. Srivastava S, Verma D, Srivastava A, Tiwari SS, Dixit B, Singh RS, Rawat AK. Phytochemical and nutritional evaluation of \textit{Amorphophallus campanulatus} (Roxb.) Blume Corm J Nutr Food Sci. 2014; 4:1–6. https://doi.org/10.4172/2155-9600.1000274

10. Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. \textit{Colocasia esculenta}: A potent indigenous plant. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011; 1:90-96. https://doi.org/10.4103/2231-0738.84188

11. Nakade D, Mahesh S, Kiran N, Vinayak S. Phytochemical screening and antibacterial activity of western region wild leaf of \textit{Colocasia esculenta}. IntResBJiolSci. 2013; 2:18–21.

12. Alcantara MA, Hurtada WA, Dizon EI. The nutritional value and phytochemical components of taro [\textit{Colocasia esculenta} (L.) Schott] powder and its selected processed foods. Food SciNutr. 2013. https://doi.org/10.4172/2155-9600.1000207

13. Ogukwe CE, Amaechi PC, Enenebeaku CK. Studies on the flowers and stems of two cocoyam varieties: \textit{Xanthosoma sagittifolium} and \textit{Colocasia esculenta}. Nat Prod Res Chem. 2017; 5(3).
14. Oktavianingsih L, Suharyanto E, Daryono BS, Purnomo P. Traditional usages of Taro (Colocasia spp.) by ethnic communities in Borneo. Biosaintifika: Journal of Biology and Biology Education. 2017; 9:248–56. https://doi.org/10.15294/biosaintifika.v9i2.9956

15. Kaushal P, Kumar V, Sharma HK. Utilization of taro (Colocasia esculenta): A review. J Food Sci Technol. 2015; 52:27–40. https://doi.org/10.1007/s13197-013-0933-y

16. Kumawat NS, Chaudhari SP, Wani NS, Deshmukh TA, Patil VR. Antidiabetic activity of ethanol extract of Colocasia esculenta leaves in alloxan induced diabetic rats. Int J Pharmtech Res. 2010; 2:1246–9.

17. Gonçalves RF, Silva AM, Silva AM, Valentão P, Ferreres F, Gil-Izquierdo A, et al. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chem. 2013; 141:3480–5. https://doi.org/10.1016/j.foodchem.2013.06.009

18. Lee S, Najiah M, Wee W. In vitro antimicrobial activities of Colocasia esculenta extract against Vibrio spp.-short communication. Agricultura. 2010; 7:5–7.

19. Shahriar M, Tithi NA, Akhter R, Kamal S, Narjish SN, Bhuiyan MA. Phytochemical and pharmacological investigation of the crude extract of Typhonium trilobatum (L.) Schott World J Pharm Res. 2015; 4:167–88.

20. Banerjee S, Adak K, Adak MM, Ghosh S, Chatterjee A. Effect of some antinutritional factors on the bioavailability of minerals along with the study of chemical constituents & antioxidant property in Typhonium trilobatum and Spinacia oleracea. Chem Sci Rev Lett. 2015; 4:429–39.

21. Lablab purpureus (hyacinth bean). [Cited 2019 Jul 08]. Available from: https://www.cabi.org/isc/datasheet/30003

22. Al-Snafi, AE. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)-A review. IOSR J Pharm. 2017; 7:22–30. https://doi.org/10.9790/3013-0702012230

23. Hossain S, Ahmed R, Bhowmick S, Al Mamun A, Hashimoto M. Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: Implicates to both protein and essential fatty acid supplementation. SpringerPlus. 2016; 5:1–10. https://doi.org/10.1186/s40064-016-3587-1

24. Momín MA, Habib MR, Hasan MR, Nayem J, Uddin N, Rana MS. Anti-inflammatory, antioxidant and cytotoxicity potential of ethanolic extract of two Bangladeshi Bean Lablab Purpureus (L.) sweet white and purple. Int J PharmSciRes. 2012; 3:776–81.

25. Satya S, Bal LM, Singhal P, Naik SN. Bamboo shoot processing: Food quality and safety aspect (a review). Trends Food Sci Tech. 2010; 21:181–9. https://doi.org/10.1016/j.tifs.2009.11.002

26. Govindan B, Johnson AJ, Nair SN, Gopakumar B, Mallampalli KSR, Venkataraman R, et al. Nutritional properties of the largest bamboo fruit Melocanna baccifera and its ecological significance. Sci Rep. 2016; 6. https://doi.org/10.1038/srep26135

27. Das MC, Nath AJ, Das AK. Indigenous traditional knowledge in conservation and management of Bamboos of Barak valley, Assam. J Tradit. Folk Med. 2016; 2:185–92.

28. Manna K, Debnath B. Phytochemicals, nutritional properties and anti-oxidant activity in young shoots of Melocanna baccifera, a traditional vegetable of Northeast India. J Food Agric Environ. 2020; 18(1):7–13.

29. Thapa K, Poudel M, Adhikari P. Moringa oleifera: A review article on nutritional properties and its prospect in the context of Nepal. ActaSci Agric. 2019; 3:47–54. https://doi.org/10.31080/ASAG.2019.03.0683

30. Elangovan M, Dhanarajans MS, Rajalakshmi A, Jayachitra A, Pardhasaradhi M, Narasimharao B. Analysis of phytochemicals, antibacterial and antioxidant activities of Moringa oleifera Lam. leaf extract-an in vitro study. Int J Drug Dev Res. 2014; 6:173–80.

31. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Hum Well. 2016; 5:49–56. https://doi.org/10.1016/j.fshw.2016.04.001

32. Jaiswal BS. Solanum torvum: A review of its traditional uses, phytochemistry and pharmacology. Int J Pharma Bio Sci. 2012; 3:104–11.

33. Akoto O, Borquaye LS, Howard AS, KonwurukN. Nutritional and mineral composition of the fruits of Solanum torvum from Ghana. Int J Food Sci Technol. 2015; 1:222–6.

34. Mukta N, Neeta PM. A Review on sesame-an ethno medicinally significant oil crop. Int J Life Sci Pharma Res. 2017; 7 (2):L58–63.
35. Sesame seeds nutrition facts [Internet]. [Cited 2019 August 05]. Available from: https://www.nutrition-and-you.com/sesame-seeds.html

36. Prasad MNN, Sanjay KR, Prasad DS, Vijay N, Kothari R, Swamy SN. A review on nutritional and nutraceutical properties of sesame. J Nut Food Sci. 2012; 2:2. https://doi.org/10.4172/2155-9600.1000127

37. Agati (Sesbania grandiflora) [Internet]. [Cited 2019 August 06]. Available from: https://www.feedipedia.org/node/254

38. Reji AF, Alphonse NR. Phytochemical study on Sesbania grandiflora. J Chem Pharm Res. 2013; 5:196–201.

39. Balamurugan S, Vijayakumar S, Prabhu S, Yabesh JM. Traditional plants used for the treatment of gynaecological disorders in Vedaranyam taluk, South India- An ethnomedicinal survey. J Tradit Complement Med. 2018; 8:308–23. https://doi.org/10.1016/j.jtcme.2017.06.009

40. Sesbania grandiflora - Agathi - Benefits, Nutrition [Internet]. [Cited 2019 August 06]. Available from: https://www.medhyaherbals.com/sesbania-grandiflora/

41. All about Agathi (Sesbania grandiflora) [Internet]. [Cited 2019 Aug 07]. Available from: http://theindianvegan.blogspot.com/2014/01/all-about-agathi-sesbania-grandiflora.html

42. Kamisah Y, Othman F, Qodriyah HM, Jaarin V. Parkia speciosa hassk: A potential phytomedicine. Evid-Based Complementary Altern Med. 2013. https://doi.org/10.1155/2013/790928

43. Debnath B, Mannu K. Phytochemicals and nutrient profiles, anti-oxidant activity study of three edible parts (Flower, Fruit and Stem) of Musa paradisiaca. CurrBiotechnol. 2019; 8(1). https://doi.org/10.2174/2211550108666190315161848

44. Onyenekwe PC, Okereke OE, Owolola SO. Phytochemical screening and effect of Musa paradisiaca stem extrude on rat haematological parameters. Curr Res J Biol Sci. 2013; 5:26–9. https://doi.org/10.19026/crjbs.5.5468

45. Imam MZ, Akter S. Musa paradisiaca L. and Musa sapientum L. A phytochemical and pharmacological review. J ApplPharm.Sci. 2011; 1:14–20.

46. Bananas 101: Nutrition Facts and Health Benefits [Internet]. [Cited2019 August 19].Available from: https://www.healthline.com/nutrition/foods/bananas

47. Calories in raw banana stem [Internet]. [Cited 2019 Jul 14].Available from: https://www.myfitnesspal.com/food/calories/raw-banana-stem-392353092

48. Health benefit of banana flower [Internet]. [Cited 2019 Jul 04]. Available from: https://www.healthbenefitstimes.com/health-benefits-of-banana-flower/

49. Toyin YM, OlakunleAT, Adewunmi A.M. 15-toxicity and beneficial effects of some african plants on the reproductive system. Toxicological Survey of African Medicinal Plants; 2014. p. 445–92. https://doi.org/10.1016/B978-0-12-800018-2.00015-7

50. Praveena JD,Estherlydia D. Comparative study of phytochemical screening and antioxidant capacities of vinegar made from peel and fruit of pineapple (Ananas comosus L.). Int J Pharma Bio Sci. 2014; 5:394–403.

51. Hassan A, Othman Z, Siriphanich J. 10 - Pineapple (Ananas comosus L. Merr.). Postharvest Biology and Technology of Tropical and Subtropical Fruits; 2011. p. 194–218. https://doi.org/10.1533/9780857092618.194

52. Sopie E, Tanoh H, Kouakou L, Yatty J, Kouamé P, Mérollon J. Phenolic profiles of pineapple fruits (Ananas comosus L. Merrill) Influence of the origin of suckers. Aust J Basic and Appl Sci. 2011; 5:1372–8.

53. Sun GM, Zhang XM, Soler A, Marie-Alphonsine PA. Marie-Alphonsine. Nutritional composition of pineapple (Ananas comosus L. Merrill) Influence of the origin of suckers. Aust J Basic and Appl Sci. 2011; 5:1372–8.

54. Emmanuel MM, Didier DS. Traditional knowledge on medicinal plants use by ethnic communities in Douala, Cameroon. Eur J Med Plant. 2012; 2:159. https://doi.org/10.9734/EJMP/2012/878

55. Pineapple nutrition facts [Internet]. [Cited 2019 August 04]. Available from: https://www.nutrition-and-you.com/pineapple.html

56. Lawal D. Medicinal, pharmacological and phytochemical potentials of Annona comosus Linn. Peel – A review. BAJOPAS. 2013; 6:101-104. https://doi.org/10.4314/bajopas.v6i1.21

57. Ranasinghe RASN, Maduwanthi SDT, Marapana RAUJ. Nutritional and health benefits of Jackfruit
(Artocarpus heterophyllus Lam.): A Review. Int J Food Sci. 2019. https://doi.org/10.1155/2019/4327183

58. Jackfruit nutrition facts [Internet]. [Cited 2019 August 04]. Available from: https://www.nutrition-and-you.com/jackfruit.html

59. Nutrition in boiled jackfruit seeds [Internet]. [Cited 2019 August 05]. Available from: https://www.livestrong.com/article/546837-nutrition-in-boiled-jackfruit-seeds/

60. Swami SB, Thakor NJ, Haldankar PM, Kalse SB. Jackfruit and its many functional components as related to human health: A review. Compr Rev Food Sci F. 2012; 11:565–76. https://doi.org/10.1111/j.1541-4337.2012.00210.x

61. Diospyros malabarica- (Desr.) Kostel [Internet]. [Cited 2019 August 07]. Available from: https://pfaf.org/user/Plant.aspx?LatinName=Diospyros+malabarica

62. Kaushik V, Saini V, Pandurangan A, Khosa RL, Parcha V. A review of Phytochemical and biological studies of Diospyros malabarica. Int J Appl Pharm Sci. 2013; 2:167–9.

63. Najib MA, Jahan S, Islam MZ, Khan TA, Saha BK. Nutritional evaluation and heavy metals content of selected tropical fruits in Bangladesh. Int Food Res J. 2014; 21:609–15.

64. Chavan SS, Shamkuwar PB, Damale MG, Pawar DP. A comprehensive review on Annona reticulata. Int J Pharm SciRes. 2014; 5:45.

65. Chen J, Chen Y, Li X. Beneficial aspects of custard apple (Annonasquamosa L.) seeds. 2011; 439–45. https://doi.org/10.1016/B978-0-12-375688-6.10052-0

66. Annona squamosa (sugar apple) [Internet]. [Cited 2019 August 08]. Available from: https://www.cabi.org/isc/datasheet/5820

67. Biba VS, Lakshmi S, Dhanya GS, Remani P. Phytochemical analysis of Annona squamosa seed extracts. Int J Appl Pharm Sci Res. 2013; 3:29–31.

68. Ma C, Chen Y, Chen J, Li X, Chen Y. A Review on Annona squamosa L.: Phytochemicals and biological activities. Am J Chin Med. 2017; 45:933–64. https://doi.org/10.1142/S0192415X17500501

69. Bhardwaj A, Satpathy G, Gupta PK. Preliminary screening of nutraceutical potential of Annona squamosa, an underutilized exotic fruit of India and its use as a valuable source in functional foods. J Pharmacogn Phytochem. 2014; 3:172–80.

70. Sugar-apples, (sweetsop), raw [Internet]. [Cited 2019 August 08]. Available from: https://nutritiondata.self.com/facts/fruits-and-fruit-juices/2069/2

71. Jujube [Internet]. [Cited 2019 August 09]. Available from: https://en.wikipedia.org/wiki/Jujube

72. Gao QH, Wu CS, Wang M. The jujube (Ziziphus jujuba Mill.) fruit: A review of current knowledge of fruit composition and health benefits. J Agric Food Chem. 2013; 61:3351–63. https://doi.org/10.1021/jf4007032

73. Gobadi A, Amini-Behbahani F, Yousefi A, Shirazi MT, Behnoud N. Medicinal and nutritional properties of Ziziphus jujube mill. in traditional Persian medicine and modern phytotherapy. Crescent J Medical Biol Sci. 2019; 6:146–50.

74. Vijayakshmi P, Radha R. An overview: Citrus maxima. J Phytopharmacol. 2015; 4:263–7.

75. Pomelo [Internet]. Available from: https://en.wikipedia.org/wiki/Pomelo.

76. Debnath B, Singh WS, Manna K. A phytopharma cological review on Ananas comosus. AdvTradit Med (ADTM). 2021. https://doi.org/10.1007/s13596-021-00563-w

77. Saxena P, Panjwani D. Cardioprotective potential of hydro-alcoholic fruit extract of Ananas comosus against isoproterenol induced myocardial infraction in Wistar Albino rats. J Acute Dis. 2014; 3:228–34. https://doi.org/10.1016/S2221-6189(14)60051-2

78. Ali K, Ashraf A, Biswas, NN. Analgesic, anti-inflammatary and antidiarrheal activities of ethanolic leaf extract of Typhonium trilobatum L. Schott. Asian Pac J Trop Biomed.2012; 2:722–6. https://doi.org/10.1016/S2221-1691(12)60217-2

79. Lobo VC, Phatak A, Chandra N. Acute toxicity studies of some Indian medicinal plants. Pharmacogn Journal. 2010; 2(8):207–10. https://doi.org/10.1016/S0975-3575(10)80094-X

80. Debnath B, Manna K. Phytochemicals and nutrient profiles, anti-oxidant activity study of three edible parts (flower, fruit and stem) of Musa paradisiaca (flower, fruit and stem) of Musa paradisiaca. CurrBiotecnol. 2019; 8(1):32–41. https://doi.org/10.2174/22155010866190315161848

81. Mujeeb F, Baijai P, Pathak N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Bio Med Res Int. 2014;2014. https://doi.org/10.1155/2014/497606
82. Harinarayan CV, Akhila H. Modern India and the tale of twin nutrient deficiency-calcium and vitamin D-nutrition trend data 50 Years-retrospect, introspect, and prospect. Front Endocrinol. 2019; 10:493. https://doi.org/10.3389/fendo.2019.00493

83. Agrahar-Murugkar D, Pal PP. Intake of nutrients and food sources of nutrients among the Khasi tribal women of India. Nutrition. 2004; 20(3):268–73. https://doi.org/10.1016/j.nut.2003.11.008

84. Shimelis EA, Rakshit SK. Proximate composition and physico-chemical properties of improved dry bean (*Phaseolus vulgaris* L.) varieties grown in Ethiopia. LWT-Food Sci. Technol. 2005; 38(4):331–8. https://doi.org/10.1016/j.lwt.2004.07.002

85. Kunwar RM, Mahat L, Acharya RP, Bussmann RW. Medicinal plants, traditional medicine, markets and management in far-west Nepal. J Ethnobiol Ethnomedicine. 2013; 9(1):1. https://doi.org/10.1186/1746-4269-9-24