Simulation Optimization and Parametric Study of a Grid Connected Solar Power Plant for Commercial Rooftop as well as on Utility Scale

Devesh Tripathi1 and Pankaj Kumar Mishra1
Krishna Engineering College, Loni, Ghaziabad, Uttar Pradesh, India1

Abstract: As the nonrenewable energy sources is about to end, future of human energy needs is in renewable energy (solar, wind, hydro etc). Solar energy are using all over the globe at micro as well as utility scale. A wide variety of tools exist for the analysis and dimensioning of both Grid connected and stand-alone photovoltaic systems. System designers and installers use simpler tools for sizing the PV system. Mostly scientists and engineers typically use more involved simulation tools for optimization. In present study design, optimization of a grid connected solar power plant at commercial rooftop as well as on utility scale in INDIA is to be discussed. Design, simulation, Optimization is going on simulation facility like PVSYST.

Keywords: PVSYST, panel, tilt, field type.

I. INTRODUCTION

Renewable energy is the future of human. Due to the high consumption and the reducing availability of fossil fuel resource renewable energy (solar, wind, hydro etc) is subject to great interest over decades. Solar energy is an emerging renewable energy source using all over the globe at micro as well as utility scale. The power of sun intercepted by earth is greater than the present consumption rate on earth of all energy sources. So solar energy can provide solutions of all the present and future problems related to electricity. Solar power is the conversion of sunlight into electricity, either directly using photovoltaic (PV), or indirectly using concentrated solar power (CSP). Photovoltaic’s convert light into an electric current using the photovoltaic. A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic system that has its electricity generating solar panels mounted on the rooftop of a residential or commercial building or structure. A photovoltaic (PV) system consists of a PV array, battery and elements for power conditioning. The PV system converts solar energy into dc power. If ac loads are used means, the system requires inverter to convert dc into ac.

There are two types in PV system such as grid connected and standalone. Grid connected photovoltaic systems feed electricity directly to the electrical network, operating parallel to the conventional energy source. Grid-connected systems generate clean electricity near the point of use, without the transmission and distribution losses or the need for the batteries. Its performance depends on the local climate, orientation and inclination of the PV array, and inverter performance. Whereas, a stand-alone system involves no interaction with a utility grid, the generated power is directly connected to the load. In case the PV array does not directly supply a load, a storage device is needed. Mostly this is a battery, the battery bank stores energy when the power supplied by the PV modules exceeds load demand and releases it back when the PV supply is insufficient. This standalone PV power generation will be used in the home for the electrification purpose. A wide variety of tools exist for the analysis and dimensioning of both Grid connected and stand-alone photovoltaic systems. System designers and installers use simpler tools for sizing the PV system. Mostly scientists and engineers typically use more involved simulation tools for optimization. Software tools related to photovoltaic systems can be classified into pre-feasibility analysis, sizing, and simulation.

PVsyst is a dedicated PC software package for PV systems. The software was developed by the University of Geneva. It integrates pre-feasibility, sizing and simulation support for PV systems. After defined the location and loads, the user selects the different components from a product database and the software automatically calculates the size of the system. In present study design, optimization and cost analysis of a solar power plant at residential, commercial rooftop as well as on utility scale in INDIA is to be discussed. Design, simulation, Optimization and cost analysis is going on simulation facility like PVSYST.

II. LITERATURE REVIEW AND PROBLEM FORMULATION

Various investigations have done on residential, commercial rooftop, Chen Zhang 2011 Designed technical shelter for storing electronic and technical equipments has high indoor heat dissipation rate, and cooling load exists almost all year around. Both experimental measurements and computer simulation are carried out to analyze the indoor. T.M. Ifakharet al 2012 shown grid connected
systems generate clean electricity near the point of use, without the transmission and distribution losses or the need for the batteries. Stand-alone system involves no interaction with a utility grid. Climate and energy performance of technical shelter in different conditions. C.P. Kandalama et al 2013 presented the simulation of a grid-connected solar photovoltaic system with the use of the computer software package Pvsyst and their performance was evaluated. Sangeetha S 2014 has investigated the sizing of the solar power plant in standalone mode of operation. Based on the load survey and the utilization factor, the capacity of the plant is determined for battery sizing and PV sizing. PVSYST and C programming are used for the sizing of the solar PV power plant. Sébastin Jacques Et al 2014 described a new, highly modular simulation tool named “PVLab” and developed by the GREMAN laboratory. It is designed to assist the designer in the sizing of PV (photovoltaic) installations. Jaydeep V. Ramoliya et al 2015 presented the simulation of a grid-connected solar photovoltaic system using the computer software package Pvsyst and their performance was evaluated. Jones K. Chacko 2015 investigated the major factors which affect the performance of the solar PV module three different arrangements of solar PV modules are taken on a standalone system and compared different panel arrangement that will minimize the floor area and maximize power generation through tracking the sun. By literature review it is clear that a comparative study of residential and utility scale PV system needed for efficient use of PV systems. Cost comparison will also give a better insight to efficient use a PV system.

III. RESEARCH METHODOLOGY

It is a computational study using Pvsyst software facility. PVSyst is simulation software able to simulate both stand alone and grid connected PV systems. Location of system is taken Delhi ncr region. Validation will conduct on the basis of previous investigation.

GRID CONNECTED SOLAR PV SYSTEM - A grid connected solar PV power plant is installing by compare the energy production, economic feasibility of some of the places in NORTH INDIA in DELHI using PVsyst Software. Proposed model of the grid connected PV system shown in figure. Tuticorin site is used for validation.

IV. VALIDATION

Geographical Location and Meteorology

Meteo data

Plane tilt and Azimuth

Horizon
Module and Inverter

V. VALIDATION RESULTS

Electricity injected into grid
PV plant on New Delhi Location:

- Electricity Production at New Delhi:

System Parameter

Geographical Site
- New Delhi, India
- Country: India

Situation
- Time defined as: 8:00 AM to 7:00 PM
- Latitude: 28.6 N
- Longitude: 77.2 E
- Altitude: 219 m

Metro data
- Solar plant: 20.5 kWh/day
- Solar panel efficiency: 15%
- Solar panel output: 1500 W
- Solar panel type: Monocrystalline

Simulation parameters
- Collector Plane Orientation: Tilt: 0°, Azimuth: 0°
- Models used:
 - Inverter: 24 kVA

Results:

Performance Ratio

Month	GridPr	GridPres	Egridprabhu	Egridpresent
January	143.2	137.8	137.8	137.8
February	137.3	148.6	137.8	137.8
March	188.2	203.0	197.2	189.2
April	200.5	213.4	207.7	198.9
May	222.1	210.3	216.0	201.0
June	159.5	160.3	157.135	157.032
July	161.4	165.5	159.9	159.893
August	158.9	161.0	156.0	156.087
September	170.6	171.5	170.3	168.917
October	164.5	168.2	166.7	165.896
November	125.8	134.7	129.067	128.039
December	115.1	137.4	122.76	121.801

GridRaw	T Amb	GridInc	GridDC	EAray	E_Grid	E_Sol	E_Raw	E_RawPR
145.0	18.5	152.5	152.5	152.5	152.5	152.5	152.5	152.5

- Normalized productions (per installed kWp): Nominal power 1000 kWp
Comparison b/w Thiruvanantpuram and New Delhi

- Energy production per year at new Delhi location is 1707 Mwh.
- Energy production per year at Thiruvanantpuram location is 1707 Mwh.

Grid connected Plant at Delhi location; Location and Orientation

System Parameters	Results	
PV Array Characteristics		
Project: Grid-Connected Project at New Delhi		
Geographical Site	New Delhi	Country: India
Situation	Latitude: 28.6°N, Longitude: 77.2°E	
Time defined as	Legal Time, Zone UT+5.5	
Albedo	0.20	
Meteorological data	New Delhi, Meteonorm 7.1 station - Synthetic	
Collector Plane Orientation	Tilt: 5°, Azimuth: 0°	
Models used	Transp., Perez, Diffuse, Perez, Meteonorm	
Horizon	Free horizon	
Production	Normalized production (per installed kWp): Nominal power: 10.00 kWp	
PR	Tilt, Performance Ratio (PR)	
Balance and main results		
Main system parameters		
PV Field Orientation	Tilt: 5°, Azimuth: 0°	
PV modules	Mono 230 Wp 48 cells	
PV array	In series 10 modules, In parallel 4 strings	
Total number of PV modules	40	
Array global power	Nominal (STC): 10.00 kWp, At operating cond.: 0.87 Mwp (SOC)	
Array operating characteristics (50°C)	U mp: 27.1 V, I mp: 3.3 A	
Total area	Module area: 851.1 m², Cell area: 36.9 m²	
Effects of Tilt and Location		
Inverter	41 kWp inverter with 28PPT	
Characteristics	Operating Voltage: 125-530 V, Unit Nom. Power: 4.3 kWac	
Inverter pack	Nb. of inverters: 4, 28PPT 50%, Total Power: 8.4 kWac	
System Production	Energy production: 16.32 kWh/year, Performance Ratio: 79.6%	

Copyright to IARJSET

DOI 10.17148/IARJSET.2017.4214
VI. RESULTS

Production for different Tilt
Tilt is taken 5, 10, 15, 20, 25 and 30 degree

Effect of plane type
Si-MONO Type Plane

Geographical Site: New Delhi
Country: India

- Latitude: 28.917°N
- Longitude: 77.21°E
- Time zone: UTC+5.5
- Elevation: 210 m
- Albedo: 0.20

- Meteo data: New Delhi - MeteoNorm 7.1 station - Synthetic

- Collector Plane-Orientation: Tilt: 30°
- Azimuth: 0°

- Simulation parameters
 - Models used:
 - Transportation: Perez
 - Diffuse: Perez
 - Meteor: Meteonorm
 - Horizon: Free Horizon

- PV Array Characteristics
 - PV module: Si-MONO
 - Mono 250 Wp 60 cells
 - Inverter Model: 4.2 kWac inverter with 2 MPPT

- Array Configuration:
 - In series: 10 modules
 - In parallel: 4 strings

- Total number of PV modules: 40
- Unit Nom. Power: 250 Wp

- Array global power: 10.00 kWac
- Operating cond. 3.87 kWp (50°C)

- Array operating characteristics (50°C)
 - Ump: 271 V
 - Iimp: 33 A
 - Total area: 65.1 m²
 - Cell area: 53.8 m²

Inverter
- Model: 4.2 kWac inverter with 2 MPPT
- Manufacturer: Generic
- Operating Voltage: 105–95 V
- Unit Nom. Power: 4.2 kWac
- Inverter pack:
 - No. of inverters: 4
 - MPPT 50 %
 - Total Power: 8.4 kWac

- PV Array losses factors
 - Thermal Loss factor: Uc (const)
 - 20.0 W/kWm
 - Uv (watts): 0.00 W/kWm

- Wiring Chomic Losses
 - Global array res. 141.6 kOhm
 - Loss Fraction: 1.5 % at STC

- Module Quality Loss
 - Loss Fraction: 0.6 %

- Module Mismatch Losses
 - Loss Fraction: 1.0 % at MPP

- Incidence effect, ASHRAE parameterization
 - IAM = 1 - be (loss - 1) / be Param
 - be = 0.05

Balances and main results

Month	T-Ambient °C	Global H and E kWh/m²	Global E kWh/m²	Diffuse E kWh/m²	Direct E kWh/m²	GHI kWh/m²	GD kWh/m²	BE kWh/m²	Be kWh/m²	GHI %	GHI %	Diffuse %	Direct %	Diffuse %	Direct %
Jan	110.0	13.33	119.8	124.8	124.4	124.4	124.4	123.9	13.44	1.30	1.30	1.30	1.30	1.30	1.30
Feb	127.3	17.24	164.4	171.5	171.5	171.5	171.5	171.5	1.34	1.34	1.34	1.34	1.34	1.34	1.34
Mar	192.2	23.29	204.4	195.5	195.5	195.5	195.5	195.5	1.39	1.39	1.39	1.39	1.39	1.39	1.39
Apr	280.5	29.32	213.9	208.2	208.2	208.2	208.2	208.2	1.55	1.55	1.55	1.55	1.55	1.55	1.55
May	333.3	32.61	253.6	245.1	245.1	245.1	245.1	245.1	1.77	1.77	1.77	1.77	1.77	1.77	1.77
Jun	195.5	32.14	194.1	187.9	187.9	187.9	187.9	187.9	1.45	1.45	1.45	1.45	1.45	1.45	1.45
July	196.4	71.42	165.2	153.4	153.4	153.4	153.4	153.4	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Aug	159.9	39.36	161.8	150.3	150.3	150.3	150.3	150.3	1.71	1.71	1.71	1.71	1.71	1.71	1.71
Sept	170.5	29.05	186.3	173.0	173.0	173.0	173.0	173.0	1.42	1.42	1.42	1.42	1.42	1.42	1.42
Oct	196.4	25.49	120.9	170.3	170.3	170.3	170.3	170.3	1.47	1.47	1.47	1.47	1.47	1.47	1.47
Nov	126.5	19.15	111.9	145.6	145.6	145.6	145.6	145.6	1.29	1.29	1.29	1.29	1.29	1.29	1.29
Dec	115.1	16.65	137.7	134.4	134.4	134.4	134.4	134.4	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Results

Si-Poly type

A-Si:H single type
Results of plane type

Effect of Type of field
Fixed plane type field

Geographical Site: New Delhi
Country: India
Situation: Time defined as
Metro data: New Delhi

Results of plane type

Effect of Type of field
Fixed plane type field

Geographical Site: New Delhi
Country: India
Situation: Time defined as
Metro data: New Delhi
Sessional tilt type field

dailies and main results

Month	Global	T. Amb.	Global	T. Amb.	Direct	Diffuse	Total
Jan.	191.2	13.20	191.2	13.20	151.2	40.0	191.2
Feb.	187.0	13.00	187.0	13.00	143.0	44.0	187.0
March	199.2	23.20	201.2	23.20	179.2	22.0	199.2
April	218.8	28.20	218.8	28.20	200.8	18.0	218.8
May	222.5	32.00	222.5	32.00	187.5	35.0	222.5
June	168.2	20.14	168.2	20.14	138.2	30.0	168.2
July	166.0	21.62	166.0	21.62	136.0	30.0	166.0
August	118.9	26.38	118.9	26.38	98.9	20.0	118.9
September	171.9	26.38	171.9	26.38	131.9	30.0	171.9
October	154.2	28.42	154.2	28.42	124.2	20.0	154.2
November	126.3	18.32	126.3	18.32	96.3	20.0	126.3
December	111.4	18.32	111.4	18.32	81.4	20.0	111.4
Year	1757.5	00.05	1757.5	00.05	1387.5	370.0	1757.5

Normalized production per installed kWp: Nominal power 10.00 kWp

Month	Gen. Loss	Array	Indirect	Prod. Out.	Total
Jan.	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
Feb.	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
March	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
April	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
May	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
June	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
July	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
August	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
September	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
October	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
November	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
December	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	
Year	0.11 KWh/KWp	0.10 KWh/KWp	0.01 KWh/KWp	0.22 KWh/KWp	

VII. CONCLUSION

Computational method is a effective one for analysis and design of a solar panel power plant. In present study analysis is done for grid connected solar system, a parametric analysis is presented in this study. Energy production from a grid connected solar panel system is increased with increasing tilt angle. Sessional tilt will give large production of energy in comparison to fixed type and shading type.

REFERENCES

[1] Elieser Tarigan, Djuwari, Fitri Dwi Kartikasari. Techno-Economic simulation of a Grid-Connected PV system Design as specifically applied to Residential in Surabaya, Indonesia. Energy Procedia 2015;65: 90-99.
[2] Deepali Sharma, Anula Khare. Comparative Analysis of Solar PV modules. International Journal on Emerging Technologies 2014;5(2) 22-26.
[3] Jones K. Chacko, Prof. K. J Thomas. Analysis of Different Solar Panel Arrangements using PVSYST . International Journal of Engineering Research and Technology 2015;Volume 4,Issue 4. ISSN:2278-0181.
[4] Parvathy Suresh, Jaimol Thomas, Anu A.G. Performance analysis of a stand-alone PV systems using PVsyst. Proceedings of second IRF second International Conference on 10 August 2014, Cochin, India, ISBN: 978-93-842-09-43-8.
[5] C.P. Kandasamy, P. Prabu, K.Nirubha. Solar potential Assessment using PVsyst Software. International conference on Green Computing, Communication and conservation of Energy(ICGCCE) 2013, 978-1-4673-6126-2/13
[6] Maharaja .K, Sangeetha .S, Mareeswari. K. Sizing of Solar PV Power Plant in Stand-Alone Operation. International Journal of Engineering Research and Technology 2014; Volume 3,Issue 6.ISSN:2278-0181.
[7] http://www.pvsyst.com/images/pdf/PVsys_Tutorials.pdf
[8] Petros J Axopoulous, Emmanouil D Fylladitakis, Konstantinos Gkarakis. Accuracy Analysis of Software for the estimation and planning of photovoltaic installations. International Journal of energy and environmental engineering 2014; 5;1.