Workplace exposure to wood dust and the prevalence of wood-specific sensitization

V. Schlünssen¹, T. Sigsgaard¹, M. Raulf-Heimsoth² and S. Kespohl²

¹Department of Public Health, Unit of Environmental and Occupational Medicine, Aarhus, Denmark, ²Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Institute of the Ruhr-University Bochum, Germany

Key words
wood dust allergy – occupational exposure – list of wood allergens – sensitization prevalence – pine wood allergy – beech wood allergy – western red cedar wood allergy – obeche wood allergy

Workplace exposure to wood dust and the prevalence of wood-specific sensitization

Wood is processed worldwide, and occupational exposure to wood dust is affecting millions of workers. Studies have identified wood dust as a risk factor for non-malignant respiratory diseases consistent with both an allergic and a non-allergic origin. This paper summarizes our current knowledge on the importance of specific sensitization among subjects occupationally exposed to wood dust. Specific sensitization to wood dust exists, but is probably of minor importance for most wood species. In order to move the research field forward increased focus on more standardized tools for specific IgE (sIgE) diagnostics is needed and more specific tools are necessary to identify clinical relevant cases of wood dust sensitization. Moreover epidemiological studies on the occurrence of sIgE-mediated sensitization in different populations of woodworkers are needed.

Background

Approximately 3.6 million workers in the European Union are exposed to wood dust on a regular basis [60]. Wood dust is classified as a human carcinogen [54], but beside the carcinogenic effect, a number of epidemiological studies have identified wood dust as a risk factor for asthma or asthma symptoms [24, 13, 31, 91, 93, 56], nasal impairment [3, 51, 90], and acute or chronic impairment of lung function [51, 74, 72, 57] all diseases consistent with both an allergic and a non-allergic origin.

Worldwide 12,000 tree species exist, and more than 1000 of these are used for commercial purposes [54]. The major part (about 95 weigh percent) of wood is composed of cellulose, hemicellulose and lignin. The remaining 5% are numerous others high and low molecular weight organic and inorganic compounds, including proteins, which can be extracted (“wood extractives”). Examples for low molecular compounds are terpenes, terpene derivates like abietic acid, phenolic compounds, tannins, stilbenes, flavonoids, and glycosides, many with known sensitising and irritative properties [45, 107]. Specific IgE reactivity demonstrated by immunoblots with sIgE binding to single proteins from e.g. pine [95] and locust wood dust [63] have been described. One major wood allergen, Trip s 1 in obeche wood is identified [64] until now.

This paper summarizes our current knowledge on the importance of wood specific sensitization among subjects occupationally exposed to wood dust.

How common is specific sensitization against wood dust in general?

Case reports and clinical evaluations

Case reports describing clinically verified asthma or rhinitis, where sIgE-mediated sensitization to wood dust is the suspected mechanism have frequently been published. Table 1 summarize wood species able to induce sIgE-mediated allergic symptoms or sensitization in exposed subjects. Most of these studies were based on single cases or clinical evaluations of asthma or rhinitis in occupationally exposed woodworkers. Altogether more than forty wood species with the ability to induce sIgE-mediated allergic

Received
January 5, 2012; accepted in revised form March 13, 2012

Correspondence to
Vivi Schlünssen, MD, PhD
Department of Public Health, unit of Environmental and Occupational Medicine, Aarhus University, Bartholins Allé 2, bg 1260
8000 Aarhus C, Dänemark
vs@mil.au.dk
symptoms have been identified. Numerous wood types are able to induce skin diseases like allergic or toxic contact dermatitis. For type IV mediated allergic contact dermatitis mostly secondary wood substances and not proteins are responsible.

Clinical observations in patients referred to occupational departments [59, 76, 61] indicate, that wood dust induced sIgE-mediated allergy is of importance – i.e. more than 20% of the referred patients from the wood industry are reported to be sensitized to different kinds of wood dust measured by SPT or intra-cutaneous test e.g. obeche, birch, ash, oak and beech.

Epidemiological studies

A few epidemiological studies have evaluated the prevalence of sIgE-mediated sensitization to wood dust among woodworkers.

Among 268 Swedish wood furniture workers [104] it was seen from testing of symptomatic and non-symptomatic subgroups that 13% (3 out of 23) with nasal hypersensitivity symptoms had a positive SPT to oak, beech, mahogany, birch or teak, whereas 7% (1 out of 14) from the non-symptomatic group had a positive SPT to at least one wood dust extract. Based on numbers, tested in a subgroup, the authors concluded, that 2% of wood furniture workers had wood dust allergy.

Carosso et al. [20] found at least one positive SPT for various wood dust extracts (including walnut, obeche, douglas fir, mansonia, chestnut, poplar and oak) among nine out of 20 exposed subjects with bronchial hyperresponsiveness and asthma symptoms, whereas among 70 exposed subjects without asthma symptoms, only three had a positive SPT. None of 53 unexposed controls were sensitized.

A Swedish study [2] among 130 woodwork teachers and 112 other teachers found no difference with regard to sIgE for wood dust (positive in two reference subjects (birch and pine) and one woodwork teacher (alder)), despite an increased frequency of self-reported wheezing among teachers exposed to wood dust.

A recent study among 101 carpentry apprentices found 9% sensitized (SPT) to various kinds of wood extracts (14 types of wood, not specified). All apprentices with specific sensitization to wood dust were also sensitized to common aeroallergens and had rhinitis [19].

In a large Canadian study 1,205 Canadian sawmill workers had SPT performed for various types of wood extracts [29]. This study found 2.7% (3 out of 111) pine-exposed workers sensitized, whereas the numbers for fir/spruce sensitization were 5% (47 out of 876 fir/spruce exposed), and 7% for birch sensitization (6 out of 87) for birch exposed subjects, respectively. No unequivocal relationship between exposure to specific types of wood and prevalence of specific sensitization was seen.

Specific sensitization against pine wood

Pine wood, for example Pinus radiata and Pinus sylvestris, is processed worldwide in the wood industry, and more epidemiological studies have elucidated an increased frequency of asthma symptoms, decreased lung function, and increased bronchial responsiveness among pine workers [31, 32, 92, 70] compared to low or unexposed workers. Results from the earlier mentioned Swedish [2] and Canadian [29] studies suggest sIgE against pine wood in less than 5% of the woodworkers.

From a Danish cross-sectional study among 2,033 wood furniture workers - predominantly exposed to pine - and 474 non-exposed reference workers, a subsample comprising 365 woodworkers and 88 reference workers were clinically investigated, among others for specific sensitization to pine (Pinus sylvestris). Among the woodworkers 3% had increased sIgE, 5% a positive SPT, and 6% a positive histamine release test for pine. The frequency of pine sensitization was similar among the non-exposed controls, but pine sensitization was associated with respiratory symptoms, strongest for sIgE [95, 93]. In a cross-sectional study in the same region seven years later [89] the prevalence of pine sensitization among woodworkers was 2% and the prevalence of wood dust sensitization was dose-dependently associated to the current level of wood
Table 1. Wood species described to induce sIgE-mediated allergic symptoms.

Woods	Species	Symptoms	Reference
Abiruana	Pouteria bullata / caimito	OA	Booth 1976 [14]
Alder	Alnus glutinosa	OA	Ahman 1995 [2]
Angelim Pedra	Hymenolobium petreaeum	OA	Alday, 2005 [6]
Antiaris	Antiaris africana	OA	Higuero 2001 [50]
Ash	Fraxinus excelsior	OA	Fernández-Rivas [36]
			Oertmann 1993 [76]
			Spiewak 1994 [96]
Beech	Fagus sylvatica	OA, OR	Hernandez 1999 [46]
			Kespol 2010 [66]
			Oertmann 1993 [76]
			Kersten 1994 [61]
			Spiewak 1994 [96]
			Wilhelmsson 1984 [104]
Bethabara, Ipe	Tabebuia spec.	OA	Yacoub 2005 [109]
			Algranti 2005 [8]
Birch	Betula spec.	OA, OR	Wilhelmsson 1984 [104]
			Ahman 1996 [3]
			Ahman 1996 [4]
Cabreuva	Myrcarüis fastogoatris	OA, OR, EAA	Paia 2010 [79]
			Baur 2000 [12]
			Innocenti 1991 [53]
Cedar of Lebanon	Cedra libani	RS	Greenberg 1972 [43]
Cedar eastern white	Thuja occidentalis	OA	Cartier 1986 [21]
			Malo 1994 [69]
Cedar western red	Thuja plicata	OA	Chan-Yeung 1992 [26]
			Lam 1983 [67]
			Côté 1990 [30]
			Pickering 1972 [81]
Cedrorana	Cedrelinga catenaformis Ducke	OA, OR	Eire 2006 [35]
Cherry	Prunus avium	Allergy	Abendroth 1992 [1]
			Kersten 1994 [61]
			Obata 2000 [75]
Cocobolla / Palisander	Dalbergia retusa	RS	Eaton 1973 [34]
	Dalbergia spec.	OA	Godnic-Cvar 1990 [42]
Falcata wood	Albizia falcataeria	OA	Tomioka 2006 [97]
Fernanbouc	Caesalpinia echinata	RS	Hausen 1990 [45]
Fir	Abies spec.	OA	Kespol 2011 [62]
			Kersten 1994 [61]
Gaboon	Aucoumea spec.	OA	Kersten 1994 [61]
Imbuia	Phoebe porosa	OA	Jeelhoy 1996 [58]
			Pitt 1985 [82]
Iroko, Kambala	Chlorophora excelsa	OA	Kersten 1994 [61]
			Ricciardi 2003 [88]
			Pickering 1972 [81]
			Azofra 1989 [10]
Jatoba wood	Hymenaea courbaril	OA	Quicre 2004 [85]
Kejaat wood	Pterocarpus angolensis	OA	Ordman 1949 [77]
Limba	Terminalia superba	OA	Oertmann 1993 [76]
			Kersten 1994 [61]
			Wirtz 1997 [106]
Lobust wood	Robinia pseudoacacia L.	OA	Kespol 2006 [63]
Mahagoni african	Khaya anthotica	OA	Oertmann 1993 [76]
Mahahoni american	Swietenia mahagoni	OA	Kersten 1994 [61]
Macore	Tieghemella heckelii	OA	Oertmann 1993 [76]
			Kersten 1994 [61]
Meranti	Shorea pauciflora	OA	Vandenplas 1996 [99]
			Kersten 1994 [61]
Mukali	Aningeria robusta	OA	Garcés 1995 [41]
dust exposure. No relation was observed between wood dust sensitization \textit{per se} and respiratory symptoms. Pine wood sensitized workers showed a high prevalence of sensitization (73%) to cross-reactive carbohydrate determinants (CCD) [66]. Specifying sIgE-epitopes in regard of binding to proteins or glycans it was demonstrated that sera from workers reporting allergic symptoms recognized predominantly proteinogenic sIgE-epitopes on wood allergens. Woodworkers without allergic symptoms but with sIgE to wood allergens had primarily sIgE-epitopes to glycogenic structures [89, 66].

The list of relevant wood allergens was generated as update of following sources: van Kampen V et al. [100]. Sastre J and Quirce S. Sensitizing Agents Inducers of Occupational Asthma and Hypersensitivity Pneumonitis. http://eaaci.net/sections-a-igs/ig-on-occupational-allergy/allergen-list.html, Wirtz C et al. [105]. http://www.Allergome.org – wood allergens on Allergome database December 2011. OA: occupational asthma, OR: occupational rhinitis, RS: not sIgE-mediated respiratory symptoms, EAA: extrinsic allergic alveolitis, sIgE: specific IgE.
“Specific sensitization against beech wood”

Results from the earlier mentioned Swedish [2] study suggest a low prevalence of beech wood sensitization (no increased sIgE among 130 woodworkers).

Another study has specifically investigated the prevalence of beech wood sensitization in the Danish wood furniture study [89, 66]. The prevalence of beech wood sensitization among current woodworkers was 3.1%. No differences in sensitization rates were found between wood dust exposed workers and unexposed references [66], but the prevalence of wood dust sensitization was dose-dependently associated to the current level of wood dust exposure. No relation was observed between wood dust sensitization per se and respiratory symptoms. However, increased ORs were calculated for sIgE sensitization to beech based on proteinogenic epitopes and respiratory symptoms, although ORs were not significantly different.

“Specific sensitization against western red cedar wood”

Western red cedar (WRC) is a well-documented cause of occupational asthma, with sensitization prevalence among exposed workers between 4 and 13% [24, 55, 15, 28]. Occupational asthma caused by WRC has been studied extensively because it affects a vast number of woodworkers in e.g. North America and Japan. The diagnosis was confirmed in clinical investigation, often with specific bronchial provocation tests, and the aetiological agent has been identified as the low molecular weight (LMW) agent plicatic acid [21, 25]. In a single study, increased sIgE to WRC was documented among 44% (8 out of 18) with a positive specific provocation test for plicatic acid [98], but further studies have shown sIgE-mediated sensitization to be of minor importance for the aetiology of WCR asthma [101, 39, 40, 22]. So far, studies failed to clarify which specific immunologic mechanism(s) is responsible, but T-lymphocytes responding to conjugated plicatic acid seems to be present in patients with WRC asthma [38].

“Specific sensitization against obeche wood”

Dust from obeche wood (Triplochiton scleroxylon), which has a higher protein content [64] compared to e.g. pine dust is suspected to be a strong sIgE-mediated sensitizer, but has not been evaluated in epidemiological studies. Several case reports on allergic asthma have been published [18, 5, 103, 64, 37, 84, 87, 76, 61, 48]. Furthermore, Quirce at al. [84] revealed positive SPT and increased sIgE among five out of five carpenters with respiratory symptoms, and revealed similar sIgE-binding patterns of obeche extract with SDS-PAGE blot. In a small study, seven out of ten symptomatic woodworkers were sensitized and a 38 kDa class I chitinase obeche wood allergen, Trip s 1, was identified [64]. Based on allergen homology, cross-reactivity to latex allergens [102] and tamarillo fruit [103] was observed. In contrast to other wood dust sensitization, obeche wood-sensitized subjects were at risk of getting allergic symptoms also by inhalation or ingestion of non-wooden material in non-occupational settings based on Trip s 1-homolog allergens (e.g. with hevein domains). Obeche wood seemed to be a sensitizer with pronounced allergenic potency. To evaluate the airborne exposure of woodworkers to obeche wood allergens a quantification assay was developed [65]. The assay is able to quantify allergen concentrations from 30 to 300 ng/ml. Hence exposure to airborne obeche wood allergen could be monitored in wood processing companies. Interestingly, the study demonstrated that obeche wood entities like obeche wood from Cameroon (called ayous) had less allergen content compared to obeche wood from Ghana (called wawa). Further analysis showed that the reduced allergen content in ayous wood could be ascribed to a reduced amount of major obeche wood allergen Trip s 1. This emphasises the importance of using the content of wood dust allergens, and not only the concentration of airborne wood dust, in estimated dose-response relations.

In a clinical evaluation from Finland on occupational rhinitis [59] five out of nine patients with rhinitis verified by nasal challenge had a positive SPT for obeche wood.
Discussion

It seems reasonable, that many wood species are capable of inducing sIgE-mediated sensitization via inhalation of wood dust. On the other hand it is obvious, that most of our current knowledge is based on case histories or clinical evaluations of patient series. A recently published meta-analysis [80] on wood dust exposure and asthma showed that the relative risk of asthma among exposed woodworkers was significantly higher than among the general population but the underlying pathological mechanisms are not fully elucidated, yet. There are toxic and/or lyrical effects as observed for abietic acid [9] involved as well as irritative effects for terpenes [70] and immunological, sIgE-mediated effects for obeche wood allergen Trip s 1 [64]. The few epidemiological studies in the area suggest sIgE-mediated sensitization to be present, but not common, at least not for frequently used wood types in the temperate zones, for example pine, spruce and beech. Obeche wood as well as other tropical woods might be an exception and are suspected to have a strong allergenic potential, but this has to be further investigated in epidemiological studies among exposed workers.

The epidemiological findings are not directly in line with clinical case series on wood dust-related asthma or rhinitis that reported more than 20% of the cases are sensitized to wood dust. For example, Kanerva et al. [59] found 13 out of 30 subjects with rhinitis caused by wood dust confirmed in nasal provocation tests to be positive to at least one skin prick test to wood dust. The clinical cases represent a highly selected group of workers, which may explain the difference in prevalence in the epidemiological studies and the case series. Another explanation might be the type of wood dust.

Different wood species have different toxicological and allergenic potential due to the different chemical composition including protein content, e.g. pine wood has in general a low but variable protein content [95, 66], whereas the protein content in obeche wood is substantially higher [65]. Western red cedar has a high content of plicatic acid compared to other types of wood [27]. Tropical woods in general have a higher content of volatile and non-volatile compounds compared to wood types from other climate zones [44, 107].

Another limitation hampering epidemiological studies is the very heterogeneous way in which wood dust extracts are prepared and utilised. No standardised commercial available extracts are available, and most studies use in-house preparations of extracts for SPT and for detection of sIgE, making direct comparisons between studies difficult. Furthermore different methods for determination of sIgE are applied.

A recent publication has demonstrated, that sIgE to CCDs is very frequent, at least for pine and beech dust [66]. The results of this study also suggested that sIgE epitopes to glycogenic structures were of less clinical relevance compared to proteinogenic sIgE epitopes, and the authors recommend the application of CCD tools to assess the relevance of individual wood sensitization, which has not been done in any other studies so far.

From our knowledge no study has investigated the association between the airborne allergen concentration level and the prevalence of specific sensitization among woodworkers, and only one study has explored the association between the airborne wood dust concentration level and the prevalence of sIgE [89]. This study demonstrated a clear positive dose-dependent relation indicating that the level of exposure among woodworkers has an impact on the sensitization rate, which has also been seen in other industries, e.g. bakers [52] and lab animal workers [73].

Cross-reactivity among plant allergens has been suggested to be of importance between different types of wood (e.g. obeche and ramin [48]) between pollen and wood dust (e.g. spindle tree wood dust and mugwort pollen [47]), and finally between wood dust and other plant material, revealed for natural rubber latex and both obeche [102] and jelutong wood [108]. As described in Kespohl et al. [66] no cross reactivity was seen between beech wood and beech pollen. At the same time a high correlation between pine dust and pine pollen was revealed, possible due to common CCDs. Taken together cross reactivity indeed exist, but sensitization to pollen do not in general explain the specific sensitization reactions seen against wood dust. Furthermore specific reaction
against certain types of wood dust cannot solely be explained by cross reactivity.

In conclusion, specific sensitization to wood dust exists, but is probably of minor importance for most wood species. In order to move forward increased focus on more standardized tools for sIgE diagnostics is wanted and CCD-tools are needed to clarify the clinical relevant cases of wood dust sensitization. More epidemiological studies on the occurrence of sIgE in different populations of woodworkers are also highly needed.

References

[1] Abendroth RR, Kalveram CM, Kalveram KJ. Wood dust allergy: clinical findings, diagnosis, prognosis, new trends in protection at work. Allergologie. 1992; 15: 300-303.

[2] Åhman M, van Hage-Hamsten M, Johansson SGO. IgE-mediated allergy to wood dusts probably does not explain the high prevalence of respiratory symptoms among Swedish woodwork teachers. Allergy. 1995; 50: 559-562. CrossRef PubMed

[3] Åhman M, Holmström M, Cynkier I, Söderman E. Work related impairment of nasal function in Swedish woodwork teachers. Occup Environ Med. 1996; 53: 112-117. CrossRef PubMed

[4] Åhman M, Söderman E. Serial nasal peak expiratory flow measurements in woodwork teachers. Int Arch Occup Environ Health. 1996; 68: 177-182. CrossRef PubMed

[5] Airaksinen LK, Tuomi TO, Tappuranen MO, Laurerma AI, Toskala EM. Inhalation challenge test in the diagnosis of occupational rhinitis. Am J Rhinol. 2008; 22: 38-46. CrossRef PubMed

[6] Alday E, Gómez M, Ojeda P, Caballero ML, Monroy I. IgE-mediated asthma associated with a unique allergen from Angelim pedra (Hymenolobium petraeum) wood. J Allergy Clin Immunol. 2005; 115: 634-636. CrossRef PubMed

[7] Aldunate MT, Acero S, Garcia BE, Echeçepia S, Olañuel JM, Tabar AI. Occupational asthma (OA) by sensitization to oak wood. Allergy. 1998; 53: 219.

[8] Algranti E, Mendonça EM, Ali SA, Kokron CM, Raile V. Occupational asthma caused by lpe (Tabebuia spp) dust. J Investig Allergol Clin Immunol. 2005; 15: 81-83. PubMed

[9] Ayars GH, Altman LC, Frazier CE, Chi EY. The toxicity of constituents of cedar and pine woods to pulmonary epithelium. J Allergy Clin Immunol. 1989; 83: 610-618. CrossRef PubMed

[10] Azofra J, Olañuel JM. Occupational asthma caused by iroko wood. Allergy. 1889; 44: 156-158. CrossRef PubMed

[11] Basomba A, Borchers E, Almodovar A, de Rojas DH. Occupational rhinitis and asthma caused by inhalation of Balfouridendron riedelianum (Pau Marfim) wood dust. Allergy. 1991; 46: 316-318. CrossRef PubMed

[12] Baur X, Gahzn G, Chen Z. Extrinsic allergic alveolitis caused by cabreuva wood dust. J Allergy Clin Immunol. 2000; 106: 780-781. CrossRef PubMed

[13] Bohadana AR, Massin N, Wild P, Toamain JP, Engel S, Goutet P. Symptoms, airway responsiveness, and exposure to dust in beech and oak wood workers. Occup Environ Med. 2000; 57: 268-273. CrossRef PubMed

[14] Booth BH, LeFoldt RH, Moffitt EM. Wood dust hypersensitivity. J Allergy Clin Immunol. 1976; 57: 352-357. CrossRef PubMed

[15] Brooks SM, Edwards JJJ Jr, Apol A, Edwards FH. An epidemiologic study of workers exposed to western red cedar and other wood dusts. Chest. 1981; 80 (Suppl): 30-32. CrossRef PubMed

[16] Bush RK, Clayton D. Asthma due to Central American walnut (Juglans olanchna) dust. Clin Allergy. 1983; 13: 389-394. CrossRef PubMed

[17] Bush RK, Yunginger JW, Reed CE. Asthma due to African zebrawood (Microberlinia) dust. Am Rev Respir Dis. 1978; 117: 601-603. PubMed

[18] Campo P, Aranda A, Palacin A, Montañez MI, Diaz-Perales A, Blanco M. Occupational asthma caused by IgE-mediated sensitization to multiple woods. J Allergy Clin Immunol. 2012; 129: 254-6.e1, 2. CrossRef PubMed

[19] Campo P, Aranda A, Rondon C, Dohia I, Diaz-Perales A, Canto G, Lisbona FJ, Pineda F, Blanca M. Work-related sensitization and respiratory symptoms in carpentry apprentices exposed to wood dust and disocyanates. Ann Allergy Asthma Immunol. 2010; 105: 24-30. CrossRef PubMed

[20] Caruso S, Ruffino C, Bugiani M. Respiratory diseases in wood workers. Br J Ind Med. 1987; 44: 53-56. PubMed

[21] Cartier A, Chan H, Malo JL, Pineau L, Tse KS, Chan-Yeung M. Occupational asthma caused by eastern white cedar (Thuja occidentalis) with demonstration that plicatic acid is present in this wood dust and is the causal agent. J Allergy Clin Immunol. 1986; 77: 639-645. CrossRef PubMed

[22] Chan-Yeung M. Mechanism of occupational asthma due to western red cedar (Thuja plicata). Am J Ind Med. 1994; 25: 13-18. CrossRef PubMed

[23] Chan-Yeung M, Ahboud R. Occupational asthma due to California red wood (Sequoia sempervirens) dust. Am Rev Respir Dis. 1976; 114: 1027-1031. PubMed

[24] Chan-Yeung M, Ashley MJ, Corey P, Willson G, Dorken E, Gryzbowksi S. A respiratory survey of cedar mill workers. I. Prevalence of symptoms and pulmonary function abnormalities. J Occup Med. 1978; 20: 323-327. PubMed

[25] Chan-Yeung M, Barton GM, MacLean L, Gryzbowksi S. Occupational asthma and rhinitis due to Western red cedar (Thuja plicata). Am Rev Respir Dis. 1973; 108: 1094-1102. PubMed

[26] Chan-Yeung M, Desjardins A. Bronchial hypersensitivity and level of exposure in occupational asthma due to western red cedar (Thuja plicata). Serial observations before and after development of symptoms. Am Rev Respir Dis. 1992; 146: 1606-1609. CrossRef PubMed

[27] Chan-Yeung M, Malo J L. Western Red Cedar and Other Wood Dusts. In: Bernstein IL, Chan-Yeung M, Malo JL, Bernstein DI, Editors. Asthma...
in the Workplace. 1 ed. New York, NY: Taylor and Francis Group; 2006; 505-524.

[28] Chan-Yeung M, Vedal S, Kiss J, MacLean L, Enarson D, Tse KS. Symptoms, pulmonary function, and bronchial hyperreactivity in western red cedar workers compared with those in office workers. Am Rev Respir Dis. 1984; 130: 1038-1041. PubMed

[29] Cormier Y, Méralaux A, Duchaine C. Respiratory health impact of working in sawmills in eastern Canada. Arch Environ Health. 2000; 55: 424-430. CrossRef PubMed

[30] Côté J, Kennedy S, Chan-Yeung M. Sensitivity and specificity of PC20 and peak expiratory flow rate in cedar asthma. J Allergy Clin Immunol. 1990; 85: 592-598. CrossRef PubMed

[31] Douwes J, McLean D, Slater T, Pearce N. Asthma and other respiratory symptoms in New Zealand pine processing sawmill workers. Am J Ind Med. 2001; 39: 608-615. CrossRef PubMed

[32] Douwes J, McLean D, Slater T, Tranier N, Cheng S, Pearce N. Pine dust, atopy and lung function: A cross-sectional study in sawmill workers. Eur Respir J. 2006; 28: 791-798. CrossRef PubMed

[33] Dutkiewicz J, Szkors C, Dutkiewicz E, Matuszcz A, Sitkowska J, Kryśinska-Trzycz E. Response of sawmill workers to work-related airborne allergens. Ann Agric Environ Med. 2001; 8: 81-90. PubMed

[34] Eaton KK. Respiratory allergy to exotic wood dust. Clin Allergy. 1973; 3: 307-310. CrossRef PubMed

[35] Eire MA, Pineda F, Losada SV, de la Cuesta CG, Villalba MM. Occupational rhinitis and asthma due to cedroarana (Cedrelinga catenaeformis Duclue) wood dust allergy. J Investig Allergol Clin Immunol. 2006; 16: 385-387. PubMed

[36] Fernández-Rivas M, Pérez-Carral C, Senent CJ. Occupational asthma and rhinitis caused by ash (Fraxinus excelsior) wood dust. Allergy. 1997; 52: 196-199. PubMed

[37] Ferrer A, Marañón F, Casanovas M, Fernández-Caldas E. Asthma from inhalation of Triplochiton sclerocarya (Samba) wood dust. J Investig Allergol Clin Immunol. 2001; 11: 199-203. PubMed

[38] Frew A, Chung JH, Chan H, Quince S, Noort Ijno K, Keown P. Chan-Yeung M. T-lymphocyte responses to plicatic acid-human serum albumin conjugate in occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1998; 101: 841-847. CrossRef PubMed

[39] Frew A, Chan H, Dryden P, Salari H, Lam S, Chan-Yeung M. Immunologic studies of the mechanisms of occupational asthma caused by western red cedar. J Allergy Clin Immunol. 1993; 92: 466-478. CrossRef PubMed

[40] Frew AJ, Chan H, Lam S, Chan-Yeung M. Bronchial inflammation in occupational asthma due to western red cedar. Am J Respir Crit Care Med. 1995; 151: 340-344. CrossRef PubMed

[41] García Sotillos MM, Blanco Carmona JG, Juste Picón S, Rodríguez Gastón P, Pérez Gómez R, Alonso Gil L. Occupational asthma and contact urticaria caused by mucali wood dust (Angeringa robusta). J Investig Allergol Clin Immunol. 1995; 5: 113-114. PubMed

[42] Godinić-Cvar J, Gomzi M. Case report of occupational asthma due to palisander wood dust and bronchoprovocation challenge by inhalation of pure wood dust from a capsule. Am J Ind Med. 1990; 18: 541-545. CrossRef PubMed

[43] Greenberg M. Respiratory symptoms following brief exposure to Cedar of Lebanon (Cedra libani) dust. Clin Allergy. 1972; 2: 219-224. CrossRef PubMed

[44] Hausen B. M. Woods injurious to human health. A manual. Berlin: Walter de Gruyter; 1981.

[45] Hausen BM, Herrmann B. [Bowmaker’s disease: an occupational disease in the manufacture of bows for string instruments]. Dtsh Med Wochenschr. 1990; 115: 169-173. CrossRef PubMed

[46] Hernández M, Sánchez-Hernandez MC, Moreno V, Guardia P, Delgado J, Marañón F, Fernández-Caldas E, Conde J. Occupational rhinitis caused by beech wood dust. Allergy. 1999; 54: 405-406. CrossRef PubMed

[47] Herold DA, Wahli R, Maasch HJ, Hausen BM, Kunkel G. Occupational wood-dust sensitivity from Euonymus europaeus (spindle tree) and investigation of cross reactivity between E.e. wood and Artemisia vulgaris pollen (mugwort). Allergy. 1991; 46: 186-190. CrossRef PubMed

[48] Hinojosa M, Losada E, Moneo I, Dominguez J, Carrillo T, Sanchez-Cano M. Occupational asthma caused by African maple (Obeche) and Rammin: evidence of cross reactivity between two woods. Clin Allergy. 1986; 16: 145-153. CrossRef PubMed

[49] Hinojosa M, Moneo I, Dominguez J, Delgado E, Losada E, Alcover R. Asthma caused by African maple (Triplochiton sclerocarya) wood dust. J Allergy Clin Immunol. 1984; 74: 782-786. CrossRef PubMed

[50] Higueru NC, Zabala BB, Villamaza YG, Gómez CM, de Gregorio AM, Sanchez CS. Occupational asthma caused by IgE-mediated reactivity to Anti-ar in wood dust. J Allergy Clin Immunol. 2001; 107: 554-556. CrossRef PubMed

[51] Holness DL, Sass-Kortusak AM, Pilger CW, Nethercott JR. Respiratory function and exposure-eff relationships in wood dust-exposed and control workers. J Occup Med. 1985; 27: 501-506. PubMed

[52] Houba R, Heederik D, Dooes G. Wheat sensitization and work-related symptoms in the baking industry are preventable. An epidemiologic study. Am J Respir Crit Care Med. 1998; 158: 1499-1503. CrossRef PubMed

[53] Innocenti A, Romeo R, Mariano A. Asthma and systemic toxic reaction due to cabeveua (Myrocarpus fastigiatus Fr. All.) wood dust. Med Lav. 1991; 82: 446-450. PubMed

[54] International agency for research on cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 62. Wood dust and formaldehyde. Lyon: international agency for research on cancer; 1995.

[55] Ishizaki T, Shida T, Miyamoto T, Matsumura Y, Mizuno K. Occupational asthma from western red cedar dust (Thuja plicata) in furniture factory workers. J Occup Med. 1973; 15: 580-585. PubMed

[56] Jacobsen G, Schlünsen V. Schaumburg I, Sigsgaard T. Increased incidence of respiratory symptoms among female woodworkers exposed to dry
Workplace exposure to wood dust and the prevalence of wood-specific sensitization

[57] Jacobsen G, Schlüssen V, Schaumburg I, Taudorf E, Sigsgaard T. Longitudinal lung function decline and wood dust exposure in the furniture industry. Eur Respir J. 2009; 33: 334-342. CrossRef PubMed

[59] Jeebhy MF, Prescott R, Potter PC, Ehrlich RI. Occupational asthma caused by imbuia wood dust [case report]. J Allergy Clin Immunol. 1996; 97: 1025-1027. CrossRef PubMed

[60] Kanerva L, Vahteri E. Occupational allergic rhinitis in Finland. Int Arch Occup Environ Health. 1993; 64: 565-568. CrossRef PubMed

[62] Kauppinen T, Vincent R, Liukkonen T, Grzegyk M, Kauppinen A, Welling I, Arezes P, Black N, Bochmann F, Campbell F, Costa M, Elsigan G, Goerens R, Kikemenis A, Kromhout H, Miguel S, Miravelli D, McEweny R, Pesch B, Plato N, et al. Occupational exposure to inhalable wood dust in the member states of the European Union. Ann Occup Hyg. 2006; 50: 549-561. 10.1093/annhyg/me013 PubMed

[63] Kersten S, von Wahl D, Wagner M, Lang C. Allergische Atemwegserkrankungen in der holzverarbeitenden Industrie. Allergologie. 1994; 17: 55-60.

[64] Kespohl S, Kotschy-Lang T, Oertmann C, Paffrath M, Ruckert M, Merget M. Detection of novel occupational wood allergens in locust wood dust (Robinia pseudacacia L.). J Allergy Clin Immunol. 2006; 118: 522-524. CrossRef PubMed

[65] Kespohl S, Sander I, Merget R, Petersen A, Meyer HE, Sickmann A, Brunting T, Raufl-Heimsoth M. Identification of an oboche (Triplochiton scleroxyylon) wood allergen as a class I chitinase. Allergy. 2005; 60: 808-814. CrossRef PubMed

[66] Kespohl S, Sander I, Schulze J, Poppe M, Brüning T, Raufl-Heimsoth M. Development of an oboche wood allergen quantification assay for the assessment of allergen exposure in workplaces. Scand J Work Environ Health. 2008; 34: 387-395. CrossRef PubMed

[68] Malo JL, Cartier A, Desjardins A, Van de Weyer R, Vandenplas O. Occupational asthma caused by oak wood dust. Chest. 1995; 108: 856-858. CrossRef PubMed

[69] Malo JL, Cartier A, L’Archeveque J, Trudeau C, Courteau JP, Bherer L. Prevalence of occupational asthma among workers exposed to eastern white cedar. Am J Respir Crit Care Med. 1994; 150: 1697-1701. CrossRef PubMed

[70] Malmborg PO, Rask-Andersen A, Larsson KA, Sjernberg N, Sundblad BM, Eriksson K. Increased bronchial responsiveness in workers sawing Scots pine. Am J Respir Crit Care Med. 1996; 153: 948-952. CrossRef PubMed

[71] Malmström K, Savolainen J, Terho EO. Allergic alveolitis from pine sawdust. Allergy. 1999; 54: 532-533. CrossRef PubMed

[72] Mandryk J, Alwis KU, Hocking AD. Work-related symptoms and dose-response relationships for personal exposures and pulmonary function among woodworkers. Am J Ind Med. 1999; 35: 481-490. CrossRef PubMed

[73] Nieuwenhuijsen MJ, Paiva C, Gordon S, Heederik D, Vena¨les KM, Cullinan P, Newman-Taylor AJ. Exposure-response relations among laboratory animal workers exposed to rats. Occup Environ Med. 2003; 60: 104-108. CrossRef PubMed

[74] Noerstrojtio HK. Dimich-Ward H, Peelen S, Dittrick M, Kennedy SM, Chan-Yeung M. Western red cedar dust exposure and lung function: a dose-response relationship. Am J Respir Crit Care Med. 1996; 154: 968-973. CrossRef PubMed

[75] Obata H, Dittrick M, Chan H, Chan-Yeung M. Occupational asthma due to exposure to African cherry (Makore) wood dust. Intern Med. 2000; 39: 947-949. CrossRef PubMed

[76] Oertmann C, Bergmann KC. Atemwegserkrankungen bei Arbeitern im Holzgewerbe. Allergologie. 1993; 16: 334-340.

[77] Ordman D. Wood dust as an inhalant allergen; bronchial asthma caused by kejaat wood, Pierocarpus angolensis. S Afr Med J. 1949; 23: 973-975. PubMed

[78] Paggiaro PL, Cantaluppi R, Filieri M, Loi AM, Parlati A, Toma G, Baschieri L. Bronchial asthma due to inhaled wood dust: Tanganyika aningré. Clin Allergy. 1981; 11: 605-610. CrossRef PubMed

[79] Palma G, Pignatti P, Perfetti L, Avanzini MA, Calcagno G, Preziosi D, Moscato G. Occupational rhinitis and asthma due to cabreuva wood dust. Ann Allergy Asthma Immunol. 2010; 104: 268-269. CrossRef PubMed

[80] Pérez-Ríos M, Ruano-Ravina A, Elamin M, Takkouche B. A meta-analysis on wood dust exposure and risk of asthma. Allergy. 2010; 65: 467-473. CrossRef PubMed

[81] Pickering CA, Batton JC, Pepsy J. Asthma due to inhaled wood dusts, Western red cedar and Iroko. Clin Allergy. 1972; 2: 213-218. CrossRef PubMed

[82] Pitt ML, Solomons K, Polakov R. Hypersensitivity among woodworkers in South Africa. S Afr Med J. 1985; 67: 62. CrossRef PubMed

[83] Pontier JP, Popin E, Kopfenschmitt-Kuhler MC, Bessot JC, Pauil G. [Allergy from tropical abachi wood]. Rev Pneumol Clin. 2002; 58: 282-285. PubMed

[84] Quirce S, Hinojosa M, Marañón F, Ferrer A, Fernández-Calugas E, Sastre J. Identification of obeche wood (Triplochiton scleroxyylon) allergens associated with occupational asthma. J Allergy Clin Immunol. 2000; 106: 400-401. CrossRef PubMed

[85] Quirce S, Parra A, Antón E, Fernández-Nieto M, Jerez J, Sastre J. Occupational asthma caused by
Schnellssen, Sigsgaard, Raulf-Heimsoth and Kespohl 110

[86] Raghuprasad PK, Brooks SM, Litwin A, Edwards JJ, Bernstein IL, Gallagher J, Quillaja bark (soap-bark) – induced asthma. J Allergy Clin Immunol. 1980; 65: 285-287. CrossRef PubMed

[87] Reijula K, Kujala V, Latvala J. Sauna builder’s asthma caused by obeche (Triplochiton scleroxylon) dust. Thorax. 1994; 49: 622-623. CrossRef PubMed

[88] Ricciardi L, Fedele R, Saitta S, Tigano V, Mazzeo L, Fogliani O, Barber D, Isola S. Occupational asthma due to exposure to iroko wood dust. Ann Allergy Asthma Immunol. 2003; 91: 393-397. CrossRef PubMed

[89] Schlünssen V, Kespohl S, Jacobsen G, Raufl-Heimsoth M, Schaumburg I, Sigsgaard T. Immunoglobulin E-mediated sensitization to pine and beech dust in relation to wood dust exposure levels and respiratory symptoms in the furniture industry. Scand J Work Environ Health. 2011; 37: 159-167. CrossRef PubMed

[90] Schlünssen V, Schaumburg I, Andersen NT, Sigsgaard T, Pedersen OF. Nasal patency is related to dust exposure in woodworkers. Occup Environ Med. 2002; 59: 23-29. CrossRef PubMed

[91] Schlünssen V, Schaumburg I, Heederik D, Taudorf E, Sigsgaard T. Indices of asthma among atopic and non-atopic woodworkers. Occup Environ Med. 2004; 61: 504-511. CrossRef PubMed

[92] Schlünssen V, Sigsgaard T, Schaumburg I, Kromhout H. Cross-shift changes in FEV1 in relation to wood dust exposure: the implications of different exposure assessment methods. Occup Environ Med. 2004; 61: 824-830. CrossRef PubMed

[93] Schlünssen V, Skovsted TA, Schaumburg I, Skov P, Sigsgaard T. Wood dust sensitization among Danish woodworkers. Am J Ind Med. 2004; 46: 408-409. CrossRef PubMed

[94] Skovsted TA, Schlünssen V, Schaumburg I, Wang P, Skov PS. Hypersensitivity to wood dust. Allergy. 2000; 55: 1089-1090. CrossRef PubMed

[95] Skovsted TA, Schlünssen V, Schaumburg I, Wang P, Stau-Olsen P, Skov PS. Only few workers exposed to wood dust are detected with specific IgE against pine wood. Allergy. 2003; 58: 772-779. CrossRef PubMed

[96] Spiewak R, Bozek A, Masłowski T, Brewczyński PZ. Occupational asthma due to wood dust exposure (ash, oak, beech and pine) – a case study. Ann Agric Environ Med. 1994; 1: 73-76.

[97] Tomioka K, Kumagai S, Kameda M, Kataoka Y. A case of occupational asthma induced by falcata wood (Albizia falcata). J Occup Health. 2006; 48: 392-395. CrossRef PubMed

[98] Tse KS, Chan H, Chan-Yeung M. Specific IgE antibodies in workers with occupational asthma due to western red cedar. Clin Allergy. 1982; 12: 249-258. CrossRef PubMed

[99] Vandenplas O, Delvèche JP, Jamart J, Van de Weyer R. Increase in non-specific bronchial hyperresponsiveness as an early marker of bronchial response to occupational agents during specific inhalation challenges. Thorax. 1996; 51: 472-478. CrossRef PubMed

[100] van Kampen V, Merget R, Baur X. Occupational airway sensitizers: an overview on the respective literature. Am J Ind Med. 2000; 38: 164-218. CrossRef PubMed

[101] Vedal S, Chan-Yeung M, Enarson DA, Chan H, Dorken E, Tse KS. Plicatic acid-specific IgE and nonspecific bronchial hyperresponsiveness in western red-cedar workers. J Allergy Clin Immunol. 1986; 78: 1103-1109. CrossRef PubMed

[102] Venturini M, Gastaminza G, Kespohl S, Bernedo N, Garmandia M, Raufl-Heimsoth M, Muñoz D, Anzotegeu LJ. Cross-reactivity between obeche wood (Triplochiton scleroxylon) and natural rubber latex. Allergy. 2004; 59: 225-228. CrossRef PubMed

[103] Vidal C, González-Quintela A, Rodriguez V, Armisén M, Liñares T, Fernández-Caldas E. Anaphylaxis to Cyphomandra betacea Sendt (tamarillo) in an obeche wood (Triplochiton scleroxylon) – allergic patient. Ann Allergy Asthma Immunol. 2006; 96: 870-873. CrossRef PubMed

[104] Wilhelmsson B, Jernudd J, Rippe E, Holmberg K. Nasal hypersensitivity in wood furniture workers. An allergological and immunological investigation with special reference to mould and wood. Allergy. 1984; 39: 586-595. CrossRef PubMed

[105] Wirtz C, Chen Z, Raufl-Heimsoth M, van Kampen V, Papenfuss F, Baur X. Atemwegssensibilisierung durch Holzstaub. Zbl Arbeitsmed. 1997; 47: 336-342.

[106] Wirtz C, Korn M, Chen Z, Raufl Heimsoth M, van Kampen V, Baur X. Asthmaanfälle durch Abachi- und Limbaholz (Fallbericht). Arbeitsmed Sozialmed Umweltmed. 1997; 12: 257-260.

[107] Woods B, Calnan CD. Toxic woods. Br J Dermatol. 1976; 94 (Suppl): 1-97. CrossRef PubMed

[108] Wrangsjö K, Lundberg M, Meding B, Ahman M, Karlberg AT, van Hage-Hamsten M. Cross-reacting allergens in natural rubber latex and jelutong. Allergy. 1999; 54: 1331-1332. CrossRef PubMed

[109] Yacoub MR, Lemière C, Labrecque M, Malo JL. Occupational asthma due to bethabara wood dust. Allergy. 2005; 60: 1544-1545. CrossRef PubMed