On the origin of the polytropic behavior in space plasmas

George Livadiotis
Southwest Research Institute, USA
glivadiotis@swri.edu

Abstract. The paper addresses the connection between the polytropic behavior – the specific power-law relationship among the thermal plasma moments – and the functional form of the distribution of particle velocities and energies. Surprisingly, the polytropic behavior requires the statistical mechanics of the plasma particles to turn to the framework of kappa distributions. While it was already known that kappa distributions can lead to the polytropic relationship, the new result shows that the reverse derivation is also true; thus, the polytropic behavior has the role of a mechanism generating kappa distributions. Therefore, when observations confirm the existence of a polytropic behavior in plasma particles, then the framework of kappa distributions for describing particle velocities and energies can be indirectly confirmed.

1. Introduction

Space plasmas are collisionless and weakly coupled particle systems, characterized by a collective behavior that induces correlations among their particles. The distributions of particle velocities and energies are frequently described by a specific type of non-Maxwellian distributions, the so-called, kappa distributions (e.g., see the book of kappa distributions [1]). These distributions generalize the Maxwell-Boltzmann distribution that applies in ideal systems characterized by no correlations among their particles.

Kappa distributions were first introduced to describe magnetospheric electron data, by Olbert and its Ph.D. students and colleagues [2-4]; Binsack (1966) [2] was the first to publish the usage of kappa distributions, but he acknowledged that the kappa function was actually “introduced by Prof. Olbert of MIT in his studies of IMP-1.” Since then, single types of kappa distributions are frequently used to model the space plasma populations (e.g., [5-7]); however, more complicated models of kappa distributions have been employed to describe rare features (e.g., anisotropy, superposition) (e.g., [8-10]). A kappa distribution is primarily formulated to describe a Hamiltonian, i.e., the particle kinetic and potential energy ([11,12]; [1], Chapter 3).

Various mechanisms responsible to generate kappa distributions in space plasmas have been examined and verified. Some examples are: macroscopic extensivity of entropy [13], thermodynamics [14], superstatistics [15-18], effect of shock waves [19], weak turbulence [20], turbulence with a diffusion coefficient inversely proportional to velocity [21], effect of pickup ions [22], pump acceleration mechanism [23], polytropic behavior [24-26]; (see also: [1], Chapters 5,6,8,10,15,16). Also, common processes, characteristic of space plasmas, such as the Debye shielding and magnetic coupling, have an important role in the generation of kappa distributions in plasmas [27]. In general, long-range interactions or other causes of local particle correlations implicate the particle system in the statistical framework of kappa distributions [28]. Such an example is the state of a charged test particle in a constant temperature heat bath of a second species of charged particles, modeled by [29]. The time dependence of the distribution function of the test particle is given by a Fokker-Planck
equation for Coulomb collisions and wave-particle interactions; the stationary state of this equation can be described by kappa distributions (for certain choices of the involved parameters). (For more examples, see: [30-37].)

The kappa distributions have become increasingly widespread across the physics of space plasma processes, describing particles in the heliosphere, from the solar wind and planetary magnetospheres to the heliosheath and beyond, the interstellar and intergalactic plasmas: *inner heliosphere*, including solar wind (e.g., [13,20,26,38-48]), solar spectra (e.g., [49,50]), solar corona (e.g., [51-54]), solar energetic particles (e.g., [55,56]), corotating interaction regions (e.g., [57]), and solar flares related (e.g., [58,33,21,59]); *planetary magnetospheres*, including magnetosheath (e.g., [60,61]), magnetopause (e.g., [62]), magnetotail (e.g., [63]), ring current (e.g., [64]), plasma sheet (e.g., [65-67]), magnetospheric substorms (e.g., [68]), Aurora (e.g., [69]), magnetospheres of giant planets, such as Jovian (e.g., [70-73]), Saturnian (e.g., [74-76]), Uranian (e.g., [77]), Neptunian (e.g., [78]), magnetospheres of planetary moons, such as Io (e.g., [79]) and Enceladus (e.g., [80]), cometary magnetospheres (e.g., [81,82]); *outer heliosphere and the inner heliosheath* (e.g., [83-91,22,92-97,13]); (iv) *beyond the heliosphere*, including HII regions (e.g., [98]), planetary nebula (e.g., [99,100]), and supernova magnetospheres (e.g., [101]); and in cosmological scales (e.g., [102]). The kappa distributions have also been applied in general plasma-related analyses (e.g., [103-115,92,116-121]).

A breakthrough in the field came with the connection of kappa distributions with statistical mechanics and thermodynamics, accomplished by the following findings: (1) kappa distributions maximize entropy under the constraints of canonical ensemble [122]; (2) particle systems exchanging heat and reaching thermodynamic equilibrium are stabilized always into a kappa distribution [14]; and (3) polytropes - Systems characterized by a polytropic behavior - are uniquely consistent to kappa distributions and their statistical formalism [24]. The latter is the topic presented in this paper, that is, the equivalence between the polytropic behavior and the formalism of kappa distributions.

2. General profiles of thermal observables

The phase-space distribution function of plasma particles is constructed by considering the distribution of particle energy, \(p(E) \), and substituting the Hamiltonian function instead of the energy, \(f(\vec{r}, \vec{u}) = p[H(\vec{r}, \vec{u})] \). We consider the 1-particle Hamiltonian function, \(H(\vec{r}, \vec{u}) = \varepsilon_k(\vec{u}) + \Phi(\vec{r}) \), for an ideal-gas type of plasma, where the inter-particle dynamical terms are negligible and the potential energy depends only on the position vector. The kinetic energy is expressed in the reference frame of the co-moving system, i.e., \(\varepsilon_k(\vec{u}) = \frac{1}{2} m \cdot (\vec{u} - \vec{u}_0)^2 \), with \(\vec{u}_0 \) noting the bulk plasma velocity.

The integration of \(f(\vec{r}, \vec{u}) \) over both the positions and velocities gives the normalization of the probability distribution,

\[
1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) d\vec{r} d\vec{u}.
\]

(1)

The velocity distribution comes from the integration of \(f(\vec{r}, \vec{u}) \) over the positions \(\vec{r} \), while the positional distribution is derived from the integration over the velocities \(\vec{u} \) (Figure 1).
The statistical moments of velocity space are defined in the co-moving system. The global moments are given by:

\[\mu_m = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \, d\vec{u} \, \left[\vec{u} - \vec{u}_m \right]^m \, d\vec{r}, \quad (2) \]

while the unnormalized and normalized local moments are defined by:

\[\bar{\mu}_m(\vec{r}) = \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \left[\vec{u} - \vec{u}_m \right]^m \, d\vec{u}, \quad (3) \]

and

\[\mu_m(\vec{r}) = \frac{\int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \left[\vec{u} - \vec{u}_m \right]^m \, d\vec{u}}{\int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \, d\vec{u}}. \quad (4) \]

The density profile is proportional to the positional distribution, that is, the unnormalized local distribution for \(m=0 \), \(f(\vec{r}) = \bar{\rho}_0(\vec{r}) \). The proportionality constant, \(n_\infty \), provides the density at a position where the effect of the potential energy is negligible; here, we consider that \(\vec{r}_\infty \to 0 \). Hence,

\[n(\vec{r}) = n_\infty \cdot f(\vec{r}) = n_\infty \cdot \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \, d\vec{u}. \quad (5) \]

The global temperature \(T \) is defined by the global 2nd moment, \(\mu_2 \),

\[\frac{1}{2} d k u T \equiv \left\langle \varepsilon_k \right\rangle_{(\vec{r}, \vec{u})} = \frac{1}{2} m \mu_2 = \frac{1}{2} m \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \, d\vec{u} \left[\vec{u} - \vec{u}_m \right]^2 \, d\vec{r}, \quad (6) \]

(Note: The notions \(\left\langle X \right\rangle_{(\vec{r}, \vec{u})} \), \(\left\langle X \right\rangle_{\vec{r}} \), and \(\left\langle X \right\rangle_{\vec{u}} \) mean averaging the argument \(X(\vec{r}, \vec{u}) \) over the whole phase space, the positional space, and the velocity space, respectively.)

The temperature profile \(T(\vec{r}) \) is given by the normalized local 2nd moment, \(\mu_2(\vec{r}) \), i.e.,

\[\frac{1}{2} d k u T(\vec{r}) \equiv \left\langle \varepsilon_k \right\rangle_{\vec{r}} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}) \varepsilon_k(\vec{u}) \, d\vec{u} \, d\vec{r} = \int_{-\infty}^{\infty} n(\vec{r}) f(\vec{r}, \vec{u}) \varepsilon_k(\vec{u}) \, d\vec{u} \, d\vec{r}. \quad (7) \]

Therefore, the thermal pressure is given by

\[p(\vec{r}) = n(\vec{r}) k u T(\vec{r}) = \frac{2}{d_k} \int_{-\infty}^{\infty} n(\vec{r}) f(\vec{r}, \vec{u}) \varepsilon_k(\vec{u}) \, d\vec{u}. \quad (8) \]

It is worth noting that the average temperature profile coincides with the global temperature.
3. Profiles of thermal observables in the case of kappa distributions

The specific relationship, \(p = g(n) \), constructed by the graph curve between the pressure \(p(\vec{r}) \) and density \(n(\vec{r}) \) for all the positions \(\vec{r} \), defines the generalized polytropic behavior of the space plasma.

Next, we will examine how this relationship is reduced to a power-law in the case of kappa distributions.

The kappa phase-space distribution function \([1,11,12,123,124]\) gives the probability distribution of a particle having its position and velocity in the infinitesimal intervals \([\vec{r}, \vec{r} + d\vec{r}]\) and \([\vec{u}, \vec{u} + d\vec{u}]\), respectively,

\[
\begin{align*}
 f(\vec{r}, \vec{u} ; \kappa, T) & \propto \left[1 + \frac{1}{\kappa} \cdot \frac{H(\vec{r}, \vec{u}) - \langle H \rangle_{(\vec{r}, \vec{u})}}{k_B T} \right]^{-\kappa-1} \\
 & = \left[1 + \frac{1}{\kappa} \cdot \frac{\varepsilon_k(\vec{u}) + \Phi(\vec{r}) - \langle \varepsilon_k \rangle_{(\vec{r}, \vec{u})} - \langle \Phi \rangle_{(\vec{r}, \vec{u})}}{k_B T} \right]^{-\kappa-1},
\end{align*}
\]

which can be rewritten as:

\[
\begin{align*}
 f(\vec{r}, \vec{u}) & \propto \left[1 + \frac{1}{\kappa} \cdot \frac{\langle H \rangle_{(\vec{r}, \vec{u})} + \frac{1}{\kappa} \cdot \frac{H(\vec{r}, \vec{u})}{k_B T}}{k_B T} \right]^{-\kappa-1} \\
 & \propto \left[1 + \frac{1}{\kappa - \frac{1}{k_B T}} \cdot \frac{H(\vec{r}, \vec{u})}{k_B T} \right]^{-\kappa-1} \approx \left[1 + \frac{1}{\kappa - \frac{1}{k_B T}} \cdot \frac{H(\vec{r}, \vec{u})}{k_B T} \right]^{-\kappa-1}.
\end{align*}
\]

The mean Hamiltonian defines the total degrees of freedom or dimensionality, \(d \), summing the kinetic and potential degrees of freedom,

\[
\frac{1}{\kappa} d = \frac{\langle H \rangle_{(\vec{r}, \vec{u})}}{k_B T} = \frac{1}{\kappa} d_k + \frac{1}{\kappa} d_\phi,
\]

where the potential degrees of freedom are defined similar to the kinetic ones,

\[
\frac{1}{\kappa} d_k = \frac{\langle \varepsilon_k \rangle_{(\vec{r}, \vec{u})}}{k_B T}, \quad \frac{1}{\kappa} d_\phi = \frac{\langle \Phi \rangle_{(\vec{r}, \vec{u})}}{k_B T}.
\]

(Note that \(d_\phi \) can be either positive or negative.)

The kappa index depends on the dimensionality as \(\kappa = \kappa(d) = \text{constant} + \frac{1}{\kappa} d \), so that the difference \(\kappa(d) - \frac{1}{\kappa} d \) remains invariant under changes of the dimensionality \(d \). Hence, the invariant kappa index \(\kappa_0 \) is defined by \(\kappa_0 = \kappa - \frac{1}{\kappa} d \); hence, \(\kappa(d) = \kappa_0 + \frac{1}{\kappa} d \). The physical meaning of the thermodynamic parameter kappa is better carried by its invariant value \(\kappa_0 \), because this is independent of the degrees of freedom \([1,10,11,12,28]\).

Throughout this analysis, we use the notion of the invariant kappa index \(\kappa_0 \), but the typical 3-dimensional index can be easily retrieved, \(\kappa_3 = \kappa_0 + \frac{1}{\kappa} d \). Then, the phase-space distribution \((11)\) is rewritten as,
The integration of the phase space kappa distribution over the positions leads to the standard kappa distribution of velocities. This is true for quite a large set of potential energy forms, which they can be analytically expressed and expanded (at a position \(r_0 \)), so that \(\Phi(\vec{r}) \approx \Phi(\vec{r}_0) + \frac{1}{2} k \cdot |\vec{r} - \vec{r}_0|^2 \) (e.g., [123]).

If we integrate the phase space kappa distribution over the velocity space, then we derive the positional kappa distribution:

\[
f(\vec{r}; \kappa_0, T) \propto \left[1 + \frac{1}{\kappa_0} \frac{e_k(\vec{u}) + \Phi(\vec{r})}{k_B T} \right]^{-\kappa_0^{-1} - \frac{1}{2} d_0},
\]

where the density profile is proportional to the positional probability distribution, i.e.,

\[
n(\vec{r}) = n_\infty \left[1 + \frac{1}{\kappa_0} \frac{\Phi(\vec{r})}{k_BT} \right]^{-\kappa_0^{-1} - \frac{1}{2} d_0}.
\]

Again, the density \(n_\infty \) refers to the position where the potential energy becomes zero or practically negligible.

The temperature profile is determined by the local mean kinetic energy,

\[
\frac{1}{2} d_k k_B T(\vec{r}) \equiv \left\langle \epsilon_k(\vec{u}) \right\rangle_u = \frac{\int_{-\infty}^{\infty} f(\vec{r}, \vec{u}; \kappa_0, T) e_k(\vec{u}) d\vec{u}}{\int_{-\infty}^{\infty} f(\vec{r}, \vec{u}; \kappa_0, T) d\vec{u}},
\]

hence,

\[
T(\vec{r}) = T_\infty \cdot \left[1 + \frac{1}{\kappa_0} \frac{\Phi(\vec{r})}{k_BT} \right], \quad \text{with} \ T_\infty = T \cdot \frac{\kappa_0}{\kappa_0 + \frac{1}{2} d_0}.
\]

Then, the thermal pressure, \(p(\vec{r}) = n(\vec{r}) k_B T(\vec{r}) \), becomes

\[
p(\vec{r}) = p_\infty \cdot \left[1 + \frac{1}{\kappa_0} \frac{\Phi(\vec{r})}{k_BT} \right]^{-\kappa_0^{-1} - \frac{1}{2} d_0}, \quad \text{with} \ p_\infty = n_\infty k_B T_\infty.
\]

The polytropic behavior is defined by the power-law relationship between thermal observables:

\[
p(\vec{r}) \propto n(\vec{r})^{\gamma} \Leftrightarrow n(\vec{r}) \propto T(\vec{r})^{\gamma - 1},
\]

where the exponent \(\gamma \) denotes the polytropic index (e.g., [24-26,123,125-128]):

\[
\gamma = 1 + \frac{1}{\nu} \Leftrightarrow \nu = 1 / (\gamma - 1).
\]

(Note that both the exponents \(\gamma \) and \(\nu \) have been called as the polytropic index.)

In the classical case of Maxwell-Boltzmann distributions, the integration of the exponential of Hamiltonian over the velocity space gives the exponential distribution of the potential energy,

\[
f(\vec{r}; \kappa_0 \to \infty, T) = \int_{-\infty}^{\infty} f(\vec{r}, \vec{u}; \kappa_0 \to \infty, T) d\vec{u} \propto e^{-\frac{e_k(\vec{u}) + \Phi(\vec{r})}{k_B T}},
\]

and

\[
\frac{1}{2} d_k k_B T(\vec{r}) = \int_{-\infty}^{\infty} e^{-\frac{e_k(\vec{u}) + \Phi(\vec{r})}{k_BT}} \epsilon_k(\vec{u}) d\vec{u} = \int_{-\infty}^{\infty} e^{-\frac{e_k(\vec{u})}{k_BT}} \epsilon_k(\vec{u}) d\vec{u} = \frac{1}{2} d_k T,
\]

thus, we obtain

\[
n(\vec{r}) = n_\infty \cdot e^{-\frac{\Phi(\vec{r})}{k_BT}}, \quad T(\vec{r}) = T, \quad p(\vec{r}) = n_\infty k_B T \cdot e^{-\frac{\Phi(\vec{r})}{k_BT}}.
\]
Therefore, in the case of Maxwell-Boltzmann distributions, we obtain \(p(\vec{r}) \propto n(\vec{r}) \), hence \(\gamma = 1 \) (or \(\nu \rightarrow \pm \infty \)), corresponding to a single thermodynamic process, the isothermal one.

In the case of kappa distributions, we obtain

\[
p(\vec{r}) \propto n(\vec{r})^{(k_0 + \frac{d}{e} + 1)},
\]

leading to the relationship between kappa and polytropic indices:

\[
\gamma = \frac{k_0 + \frac{1}{2} d}{k_0 + \frac{1}{2} d + 1}
\]

from which we can verify that the classical case of Maxwell-Boltzmann that corresponds to kappa index \(k_0 \rightarrow \infty \), leads to the isothermal case, i.e., \(\gamma = 1 \) or \(\nu = \pm \infty \).

4. Connection between kappa distributions and polytropic behavior

In the previous section, we have seen how the kappa distributions can lead to the polytropic behavior. Here, we will show that the opposite statement is also true. Namely, stationary velocity and/or energy distributions associated with polytropic behavior are always connected with the framework of kappa distributions. This recently shown result [24,123,127] is briefly presented below.

The Navier-Stokes momentum equation in a conservative external field \(F \) is

\[
m \cdot n \left[\frac{\partial \vec{u}}{\partial \vec{r}} + (\vec{u} \cdot \nabla) \vec{u} \right] = -\nabla p + n \cdot \vec{F} + \nabla \cdot \nabla \Phi .
\]

Furthermore, considering: (i) the viscosity tensor \(\mathbf{R} \) can be neglected; (ii) the velocity vector field is independent of the position vector, i.e., the convective acceleration term vanishes, \((\vec{u} \cdot \nabla) \vec{u} = 0 \); and (iii) the velocity field is stationary, \(\frac{\partial \vec{u}}{\partial t} = 0 \), then, the Navier-Stokes momentum equation above is reduced to the Euler’s equation:

\[
\nabla p(\vec{r}) = n(\vec{r}) \cdot \vec{F} = -n(\vec{r}) \cdot \nabla \Phi(\vec{r}) .
\]

It is trivial to show that both Maxwell-Boltzmann and kappa distributions are consistent with the polytropic relationship and the Euler’s equation. Then, we may ask: \textit{What is the most general distribution function of particle velocities/energies, consistent with an inviscid and polytropic particle flow under a conservative field?}

In order to answer this question, we use the polytropic relationship, \(n \propto T^\nu \), and express the density, temperature, and pressure, as arbitrary functions \(f, f^\nu, \) and \(f^{\nu+1} \), respectively, of the ratio \(\Phi(\vec{r})/(k_u T) \):

\[
n(\vec{r}) = n_\infty \cdot f \left[\frac{\Phi(\vec{r})}{k_u T} \right]^\nu , \quad T(\vec{r}) = T_\infty \cdot f \left[\frac{\Phi(\vec{r})}{k_u T} \right] , \quad p(\vec{r}) = p_\infty \cdot f ^{\nu+1} \left[\frac{\Phi(\vec{r})}{k_u T} \right] ^{\nu+1} ,
\]

and setting that \(f(0)=1 \). Then, we substitute \(n(\vec{r}) \) and \(p(\vec{r}) \) in Euler’s equation, Eq.(28), and we find:

\[
\left[1 + (\nu + 1) \frac{T_\infty}{T} \cdot f ^{\nu} \left[\frac{\Phi(\vec{r})}{k_u T} \right] \right] \cdot n(\vec{r}) \cdot \nabla \Phi(\vec{r}) = 0 ,
\]

leading to

\[
f ^{\nu} \left[\frac{\Phi(\vec{r})}{k_u T} \right] = -\frac{1}{(\nu + 1) \frac{T}{T_\infty}} = \text{constant} \equiv 1/C ,
\]

and given that \(f(0)=1 \), Eq.(31) is solved to

\[
f \left[\frac{\Phi(\vec{r})}{k_u T} \right] = 1 + \frac{1}{-(\nu + 1) \frac{T}{T_\infty}} \left[\frac{\Phi(\vec{r})}{k_u T} \right] , \quad \text{or}
\]

\[
f ^{\nu} \left[\frac{\Phi(\vec{r})}{k_u T} \right] = 1 + \frac{1}{-(\nu + 1) \frac{T}{T_\infty}} \left[\frac{\Phi(\vec{r})}{k_u T} \right] ,
\]
\[
\Phi(\vec{r}) = \frac{k_B T}{\rho} \left(1 + C \frac{\Phi(\vec{r})}{k_B T} \right), \quad \text{with} \quad C = -(v + 1) \frac{T}{T_c}.
\]

Hence, we find:
\[
n(\vec{r}) = n_c \left[1 + C \frac{\Phi(\vec{r})}{k_B T} \right]^v, \quad T(\vec{r}) = T_c \left[1 + C \frac{\Phi(\vec{r})}{k_B T} \right], \quad p(\vec{r}) = p_c \left[1 + C \frac{\Phi(\vec{r})}{k_B T} \right]^{v+1}.
\]

Now let’s find the constant \(C \). Averaging the temperature profile over the whole positional space is the global temperature, \(\left\langle T(\vec{r}) \right\rangle = T \), and using the definition of the potential degrees of freedom, \(\frac{1}{2} d_{\Phi} = \left(\Phi(\vec{r}) \right)_c / (k_B T) \), we find:
\[
C = -(v + 1) \frac{T}{T_c} = -(v + 1 + \frac{1}{2} d_{\Phi}).
\]

Finally, we observe that the constant \(C \) coincides with the kappa index \(\kappa_0 \) and the formulation of the thermal observables with that of kappa distributions (Figure 2). (For more details, see: [24].)

Figure 2.
Equivalence between the thermal observables derived from (left) polytropic behavior and (right) kappa distributions. (For more details, see: [24].)

5. Application: The adiabatic process

As it was shown in Section 5, the classical Maxwell-Boltzmann statistical framework does not describe the adiabatic or any other polytropic thermodynamic process besides the isothermal one. On the other hand, the adiabatic process is consistent with the framework of kappa distributions specifically for the kappa index given by:
\[
\kappa_0 = -\frac{1}{2} d_{K} - \frac{1}{2} d_{\Phi} - 1 \iff \text{adiabatic process}.
\]

This relationship can be fulfilled in the cases of (i) positive potential energies and negative kappa indices (e.g., see: negative kappa distributions in [11]), and (ii) negative potential energies (e.g., \(\Phi(\vec{r}) = \pm \frac{k}{b} |\vec{r}|^b \) with negative exponent \(-b<0\) and either positive or negative kappa indices. In Table, we present several examples of power-law potential energies and the corresponding kappa indices that may lead to the adiabatic process.
6. Conclusions
Classical collisional particle systems residing in thermal equilibrium have their particle velocity/energy distribution function stabilized into a Maxwell-Boltzmann distribution. On the contrary, space and astrophysical plasmas are exotic collisionless particle systems residing in stationary states characterized by the so-called kappa distribution function. Kappa distributions have become increasingly widespread across the physics of space plasma processes, describing particles in the heliosphere, from the solar wind and planetary magnetospheres to the heliosheath and beyond, the interstellar and intergalactic plasmas. A breakthrough in the field came with the connection of kappa distributions with statistical mechanics and thermodynamics: kappa distributions (i) maximize the entropy of nonextensive statistical mechanics under the constraints of canonical ensemble, (ii) characterize particle systems exchanging heat with each other eventually stabilized at thermal equilibrium, and (iii) constitute the unique description of particle energies consistent with polytropic behavior; while the classical Maxwell-Boltzmann statistical framework cannot describe the adiabatic or any other polytropic thermodynamic process besides the isothermal, the kappa distributions can describe the adiabatic and any other thermodynamic process for specific kappa indices.

References
[1] Livadiotis, G. 2017 Kappa distribution: Theory & Applications in plasmas Netherlands, UK, US: Elsevier.
[2] Binsack, J. H. 1966 Plasma studies with the IMP-2 satellite, Ph.D. Thesis, MIT.
[3] Olbert, S. 1968 Summary of experimental results from M.I.T. detector on IMP-1, in Physics of the Magnetosphere, R. L. Carovillano, J. F. McClay, and H. R. Radoski (Eds), New York: Springer, 641.
[4] Vasyl’iūnas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839–2884.
[5] Dialynas, K., S. M. Krimigis, D. G. Mitchell, D. C. Hamilton, N. Krupp, and P. C. Brandt 2009 Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. J. Geophys. Res. 114, A01212.
[6] Livadiotis, G., McComas, D.J, Dayeh, M.A., Funsten, H.O. and Schwadron, N.A. 2011 First sky map of the inner heliosheath temperature using IBEX spectra. Astrophys. J. 734, 1.
[7] Livadiotis, G. 2015 Statistical background and properties of kappa distributions in space plasmas. J. Geophys. Res. 120, 1607–1619.
[8] Wilson III, L. B., Chen, L.-J., Wang, S., Schwartz, S.J., Turner, D.L., Stevens, M.L., Kasper, J.C., Osmoe, A., Caprioli, D., Bale, S.D., Pulupa, M.P., Salem, C.S., and Goodrich, K. A. 2019 Electron energy partition across interplanetary shocks. I. Methodology and data product. Astrophys. J. Suppl. Ser. 243, 8.
[9] Lazar, M., V. Pierrard, R. Schlickeiser and S. Poedts 2012 Modeling space plasma dynamics with anisotropic Kappa distributions, Astrophys. Space Sci. 33, 97-107.
[10] Livadiotis, G. and McComas, D.J. 2013 Understanding kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev. 75, 183–214.
[11] Livadiotis, G. 2015 Kappa distribution in the presence of a potential energy. J. Geophys. Res. 120, 880.
[12] Livadiotis, G. 2015 Kappa and q indices: Dependence on the degrees of freedom. Entropy 17, 2062.
Livadiotis, G. 2018 Derivation of the entropic formula for the statistical mechanics of space plasmas. *Nonlin. Processes Geophys.* **25**, 77–88.

Livadiotis, G. 2018 Thermodynamic origin of kappa distributions. *Europhys. Lett.* **122**, 50001.

Beck, C., Cohen. E. G. D. 2003 Superstatistics. *Physica A* **322**, 267.

Schwadron, N., Dayeh, M., Desai, M., Fahr, H., Jokipii, J. R., Lee, M.A. 2010 Superposition of stochastic processes and the resulting particle distributions. *Astrophys. J.* **713**, 1386.

Hanel, R., Thurner, S., Gell-Mann, M. 2011 Generalized entropies and the transformation group of superstatistics. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 6390.

Livadiotis, G., Assas., L., Dennis, B., Elaydi, S., Kwessi, E. 2016 Kappa function as a unifying framework for discrete population modeling. *Nat. Res. Mod.* **29**, 130–144.

Zank, G.P., Li, G., Florinski, V., Hu, Q., Lario, D., Smith, C.W. 2006 Particle acceleration at perpendicular shock waves: Model and observations. *J. Geophys. Res.* **111**, A06108.

Yoon, P.H. 2014 Electron kappa distribution and quasi-thermal noise. *J. Geophys. Res.* **119**, 7074.

Bian, N., Emslie, G.A., Stackhouse, D.J., Kontar, E.P. 2014 The formation of a kappa-distribution accelerated electron populations in solar flares. *Astrophys. J.* **796**, 142.

Livadiotis, G., McComas, D.J. 2011 The influence of pick-up ions on space plasma distributions. *Astrophys. J.* **738**, 64.

Fisk, L.A., Gloeckler, G. 2014 The case for a common spectrum of particles accelerated in the heliosphere: Observations and theory. *J. Geophys. Res.* **119**, 8733.

Livadiotis, G. 2019 On the origin of polytropic behavior in space and astrophysical plasmas. *Astrophys. J.* **874**, 10.

Livadiotis, G. 2016 Superposition of polytropes in the inner heliosheath. *Astrophys. J. Suppl. Ser.* **223**, 13.

Livadiotis, G. 2018 Using kappa distributions to identify the potential energy. *J. Geophys. Res.* **123**, 1050–1060.

Livadiotis, G., Desai, M.I., and Wilson III, L.B. 2018 Generation of kappa distributions in solar wind at 1 AU. *Astrophys. J.* **853**, 142.

Livadiotis, G., and McComas, D.J. 2011 Invariant kappa distribution in space plasmas out of equilibrium. *Astrophys. J.* **741**, 88.

Shizgal, B.D. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy. *Phys. Rev. E* **2018**, 97, 052144.

Livadiotis, G. On the simplification of statistical mechanics for space plasmas, *Entropy* **2017**, 19, 285

Gurnett, D. A.; Bhattacharjee, A. Introduction to Plasma Physics with Space and Laboratory Applications; Cambridge University Press: UK, 2005.

Livadiotis, G.; McComas, D.J. Electrostatic shielding in plasmas and the physical meaning of the Debye length. *J. Plasma Phys.* **2014**, 80, 341-378.

Livadiotis, G.; McComas, D.J. Evidence of large scale phase space quantization in plasmas. *Entropy* **2013**, 15, 1118-1132.

Livadiotis, G., and McComas, D.J. 2014 Large-scale quantization from local correlations in space plasmas. *J. Geophys. Res.* **119**, 3247–3258.

Beck, C., Schlögl, F. 1993 *Thermodynamics of Chaotic Systems*; Cambridge University Press: UK.

Tsallis, C., Mendes, R.S., and Plastino, A.R. 1998 The role of constraints within generalized nonextensive statistics. *Physica A* **261**, 534–554.

Tsallis, C. 2009 *Introduction to Nonextensive Statistical Mechanics*; Springer; USA.

Maksimovic, M., Pierrard V., and Lemaire, J. 1997 A kinetic model of the solar wind with Kappa distributions in the corona. *Astron. Astrophys.* **324**, 725-734.

Pierrard, V., Maksimovic, M., Lemaire, J. 1999 Electron velocity distribution function from the solar wind to the corona. *J. Geophys. Res.* **104**, 17021-17032.

Mann, G., Classen, H. T., Kepler, E., Roelof, E.C. 2002 On electron acceleration at CIR related shock waves. *Astron. Astrophys.* **391**, 749–756.

Marsch, E. 2006 Kinetic physics of the solar corona and solar wind. *Living Rev. Sol. Phys.* **3**, 1.

Zouganelis, I. 2008 Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP
radio measurements in the solar wind. *J. Geophys. Res.* **113**, A08111.

[43] Števark, S., Maksimovic, M., Travniek, P.M., Marsch, E., Fazakerley, A.N., Scime, E.E. 2009 Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations. *J. Geophys. Res.* **114**, A05104.

[44] Leitner, M., Farrugia, C.J., Voros, Z. 2011 Change of solar wind quasi-invariant in solar cycle 23—Analysis of PDFs. *J. Atm. Sol.-Terr. Phys.* **73**, 290-293.

[45] Livadiotis, G., and McComas, D.J. 2013 Fitting method based on correlation maximization: Applications in Astrophysics. *J. Geophys. Res.* **118**, 2863-2875.

[46] Pierrard, V., and Pieters, M. 2015 Coronal heating and solar wind acceleration for electrons, protons, and minor ions, obtained from kinetic models based on kappa distributions. *J. Geophys. Res.* **119**, 9441.

[47] Pavlos, G.P., Malandraki, O.E., Pavlos, E.G., Iliopoulos, A.C., Karakatsanis, L.P. 2016 Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach. *Physica A* **464**, 149–181.

[48] Nicolaou, G., Livadiotis, G., Owen, C.J., Verscharen, D., Wicks, R.T. 2018 Determining the kappa distributions of space plasmas from observations in a limited energy range. *Astrophys. J.* **864**, 3.

[49] Dzifcaková, E., Dudík, J. 2013 H to Zn ionization equilibrium for the non-Maxwellian electron κ-distributions: Updated calculations. *Astrophys. J. Suppl. Ser.* **206**, 6.

[50] Dzifcaková, E., Dudík, J., Kotr, P., Fárník, F., Zemanová, A. 2015 KAPPA: A package for synthesis of optically thin spectra for the non-Maxwellian κ-distributions based on the Chianti database. *Astrophys. J. Suppl. Ser.* **217**, 14.

[51] Owocki, S.P., and Scudder, J.D. 1983 The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona. *Astrophys. J.* **270**, 758-768.

[52] Vocks, C., Mann, G., and Rausche, G. 2008 Formation of suprathermal electron distributions in the quiet solar corona. *Astron. Astrophys.****480**, 527–536.

[53] Lee, E., Williams, D.R., and Lapenta, G. 2013 Spectroscopic indication of suprathermal ions in the solar corona, arXiv:1305.2939v.

[54] Cranmer, S.R. 2014 Suprathermal electrons in the solar corona: Can nonlocal transport explain heliospheric charge states? *Astrophys. J. Lett.* **791**, L31.

[55] Xiao, F., Shen, C., Wang, Y., Zheng, H., and Whang, S. 2008 Energetic electron distributions fitted with a kappa-type function at geosynchronous orbit. *J. Geophys. Res.* **113**, A05203.

[56] Laming, J.M., Moses, J. D., Ko, Y.-K., Ng, C.K., Rakowski, C.E., and Tylka, A.J. 2013 On the remote detection of suprathermal ions in the solar corona and their role as seeds for solar energetic particle production. *Astrophys. J.* **770**, 73.

[57] Chotoo, K., et al. 2000 The suprathermal seed population for corotating interaction region ions at 1AU deduced from composition and spectra of H+, He++, and He+ observed by Wind. *J. Geophys. Res.* **105**, 23107–23122.

[58] Mann, G., Warmuth, A., and Aurass, H. 2009 Generation of highly energetic electrons at reconnection outflow shocks during solar flares. *Astron. Astrophys.* **494**, 669-675.

[59] Jeffrey, N.L.S., Fletcher, L., and Labrosse, N. 2016 First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion. *Astron. Astrophys.* **590**, A99.

[60] Formisano, V., Moreno, G., Palmiotto, F., and Hedgcock, P.C. 1973 Solar Wind Interaction with the Earth’s Magnetic Field I. Magnetosheath. *J. Geophys. Res.* **78**, 3714-3730.

[61] Ogasawara, K., Angelopoulos, V., Dayeh, M.A., Fuselier, S.A., Livadiotis, G., McComas, D.J., and McFadden, J.P. 2013 Characterizing the dayside magnetosheath using ENAs: IBEX and THEMIS observations. *J. Geophys. Res.* **118**, 3126-3137.

[62] Ogasawara, K., Dayeh, M.A., Funsten, H.O., Fuselier, S.A., Livadiotis, G., and McComas, D.J. 2015 Interplanetary magnetic field dependence of the suprathermal energetic neutral atoms originated in subsolar magnetopause. *J. Geophys. Res.* **120**, 964-972.

[63] Grabbe, C. 2000 Generation of broadband electrostatic waves in Earth's magnetotail. *Phys. Rev. Lett.* **84**, 3614.

[64] Pisarenko, N.F., Budnik, E.Yu., Ermolaev, Yu.I., Kirpichev, I.P., Lutsenko, V.N., Morozova, E.I., and Antonova, E.E. 2002 The ion differential spectra in outer boundary of the ring current: November 17, 1995 case study. *J. Atm. Solar-Terr. Phys.* **64**, 573 – 583.
[65] Christon, S.P. 1987 A comparison of the Mercury and earth magnetospheres: electron measurements and substorm time scales. *Icarus* **71**, 448-471.

[66] Wang, C.-P., Lyons, L.R., Chen, M.W., Wolf, R.A., and Toffoletto, F.R. 2003 Modeling the inner plasma sheet protons and magnetic field under enhanced convection. *J. Geophys. Res.* **108**, 1074.

[67] Kletzing, C.A., Scudder, J.D., Dors, E.E., and Curto, C. 2003 Auroral source region: Plasma properties of the high latitude plasma sheet. *J. Geophys. Res.* **108**, 1360.

[68] Hapgood, M., Perry, C., Davies, J., and Denton, M. 2011 The role of suprathermal particle measurements in CrossScale studies of collisionless plasma processes. *Planet. Space Sci.* **59**, 618–629.

[69] Ogasawara, K., Livadiotis, G., Grubbs, G.A., Jahn, J.-M., Michell, R., Samara, M., Sharber, J.R., and Winningham, J.D. 2017 Properties of suprathermal electrons associated with discrete auroral arcs. *Geophys. Res. Lett.* **44**, 3475–3484.

[70] Collier, M.R., and Hamilton, D.C. 1995 The relationship between kappa and temperature in the energetic ion spectra at Jupiter. *Geophys. Res. Lett.* **22**, 303-306.

[71] Mauk, B.H., Mitchell, D.G., McIntire, R.W., Paranicas, C.P., Roelof, E.C., Williams, D.J., Krimigis, S.M., and Lagg, A. 2004 Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. *J. Geophys. Res.* **109**, A09S12.

[72] Nicolaou, G., McComas, D.J., Bagenal, F., Elliott, H.A., and Wilson, R.J. 2015 Plasma properties in the deep Jovian magnetotail. *Plan. Space Sci.* **119**, 222-232.

[73] Kim, T.K., Ebert, R.W., Valek, P.W., Allegri, F., McComas, D.J., Bagenal, F., Chae, K., Livadiotis, G., Loeffler, C.E., Pollock, C., Ranquist, D.A., Thomsen, M.F., Wilson, R.J., Clark, G., Kollmann, P., Mauk, B. H., Bolton, S., Levin, S., and Nicolaou, G. 2019 Method to derive ion properties from Juno JADE including abundance estimates for O+ and S^{2+}. *J. Geophys. Res.*, In Press.

[74] Livi, R., Goldstein, J., Burch, J. L., Crary, F., Rymer, A.M., Mitchell, D.G., Persoon, A.M. 2014 Multi-instrument analysis of plasma parameters in Saturn’s equatorial, inner magnetosphere using corrections for spacecraft potential and penetrating background radiation. *J. Geophys. Res.* **119**, 483–1483.

[75] Dialynas, K., Roussos, E., Regoli, L., Paranicas, C. P., Krimigis, S. M., Kane, M., Mitchell, D.G., Hamilton, D.C., Krupp, N., and Carbary, J.F., 2018 Energetic ion moments and polytropic index in Saturn's magnetosphere using Cassini/MIMI measurements: A simple model based on κ-distribution functions, *J. Geophys. Res.* **123**, 8066-8086.

[76] Mauk, B.H., Krimigis, S.M., Keath, E.P., Cheng, A.F., Armstrong, T.P., Lanzerotti, L.J., Gloeckler, G., and Hamilton, D.C. 1987 The hot plasma and radiation environment of the Uranian magnetosphere. *J. Geophys. Res.* **92**, 15283.

[77] Krimigis, S.M., et al. 1989 Hot plasma and energetic particles in Neptune’s magnetosphere. *Science* **246**, 1483.

[78] Moncuquet, M., Bagenal, F., and Meyer-Vernet, N. 2002 Latitudinal structure of the outer Io plasma torus. *J. Geophys. Res.* **108**, 1260.

[79] Doolan, S., McGrath, M. A., Johnson, R. E., Richardson, J. D., Vasyliunas, V. M., and Eviant, A. 2002 Saturn: Search for a missing water source. *Geophys. Res. Lett.* **29**, 2172.

[80] Broiles, T.W., Livadiotis, G., Burch, J.L., Chae, K., Clark, G., Cravens, T.E., Davidson, R., Eriksson, A., Frahm, R.A., Fuselier, S.A., Goldstein, J., Goldstein, R., Henri, P., Madanian, H., Mandt, K.E., Mokashi, P., Pollock, C., Rahmati, A., Samara, M., Schwartz, S.J. 2016 Characterizing cometary electrons with kappa distributions. *J. Geophys. Res.* **121**, 7407-7422.

[81] Broiles, T.W., Burch, J.L., Chae, K., Clark, G., Cravens, T.E., Eriksson, A., Fuselier, S.A., Frahm, R.A., Gasc, S., Goldstein, R., Henri, P., Koenders, C., Livadiotis, G., Mandt, K.E., Mokashi, P., Nemeth, Z., Rubin, M., and Samara, M. 2016 Statistical analysis of suprathermal electron drivers at N7P/ Churyumov-Gerasimenko, *MNRAS* **462**, S312-S322.

[82] Decker, R.B., and Krimigis, S.M. 2003 Voyager observations of low-energy ions during solar cycle 23. *Adv. Space Res.* **32**, 597–602.

[83] Decker, R.B., et al. 2005 Voyager 1 in the foreshock, termination shock, and heliosheath, *Science* **309**, 2020–2024.
[85] Heerikhuisen, J., Pogorelov, N.V., Florinski, V., Zank, G.P., and le Roux, J.A. 2008 The effects of a k-distribution in the heliosheath on the global heliosphere and ENA flux at 1 AU. Astrophys. J. 682, 679-689.

[86] Heerikhuisen, J., Zirnstein, E., and Pogorelov, N. 2015 k-distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen. J. Geophys. Res. 120, 1516–1525.

[87] Zank, G.P., Heerikhuisen, J., Pogorelov, N.V., Burrows, R., and McComas, D.J. 2010 Microstructure of the heliospheric termination shock: implications for energetic neutral atom observations. Astrophys. J. 708, 1092.

[88] Elliott, H.A., McComas, D.J., Zirnstein, E.J., Randol, B. M., Delamere, P. A., Livadiotis, G., Bagenal, F., Barnes, N.P., Stern, S.A., Young, L.A., Olkin, C. B., Spencer, J., Weaver, H. A., Ennico, K., Gladstone, R., and Smith, C.W. 2019 Slowing of the solar wind in the outer heliosphere. Astrophys. J., In Press.

[89] Livadiotis, G., McComas, D.J., Schwadron, N.A., Funsten, H.O., and Fuselier, S. A. 2013 Pressure of the proton plasma in the inner heliosheath. Astrophys. J. 762, 134.

[90] Livadiotis, G., and McComas, D.J. 2010 Exploring transitions of space plasmas out of equilibrium. Astrophys. J. 714, 971.

[91] Livadiotis, G., and McComas, D.J. 2012 Non-equilibrium thermodynamic processes: Space plasmas and the inner heliosheath. Astrophys. J. 749, 11.

[92] Livadiotis, G. 2014 Lagrangian temperature: Derivation and physical meaning for systems described by kappa distributions. Entropy 16, 4290-4308.

[93] Nicholls, D.C., Dopita, M.A., and Sutherland, R.S. 2012 Resolving the Electron Temperature Discrepancies in H II Regions and Planetary Nebulae: κ-distributed Electrons, Astrophys. J. 752, 148.

[94] Nicholls, D.C., Dopita, M.A., Sutherland, R.S., Kewley, L.J., and Palay, E. 2013 Measuring nebular temperatures: the effect of new collision strengths with equilibrium and κ-distributed electron energies. Astrophys. J. Supp. 207, 21.

[95] Zhang, Y., Liu, X.-W., and Zhang B. 2014 H-I free-bound emission of planetary nebulae with large abundance discrepancies: Two-component models vs. κ-distributed electrons. Astrophys. J. 780, 93.

[96] Raymond, J.C., Winkler, P.F., Blair, W.P., Lee, J.-J., and Park, S. 2010 Non-Maxwellian Hα profiles in Tycho's supernova remnant. Astrophys. J. 712, 901.
“Mathematical and physical aspects of Kappa velocity distribution” [Phys. Plasmas 14, 110702 (2007)]. Phys. Plasmas 16, 094701.

[107] Livadiotis, G. 2009 Approach on Tsallis statistical interpretation of hydrogen-atom by adopting the generalized radial distribution function. J. Math. Chem. 45, 930-939.

[108] Tribeche, M., Mayout, S., and Amour, R. 2009 Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma. Phys. Plasmas 16, 043706.

[109] Baluku, T. K., Hellberg, M.A., Kourakis, I., and Saini, N. S. 2010 Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys. Plasmas 17, 053702.

[110] Le Roux, J.A., Webb, G.M., Shalchi, A., and Zank, G.P. 2010 A generalized nonlinear guiding center theory for the collisionless anomalous perpendicular diffusion of cosmic rays. Astrophys. J. 716, 671-692.

[111] Livadiotis, G., and McComas, D.J. 2010 Measure of the departure of the q-metastable stationary states from equilibrium. Phys. Scr. 82, 035003.

[112] Esfami, P., Mottaghizadeh, M., and Pakzad, H.R. 2011 Nonplanar dust acoustic solitary waves in dusty plasmas with ions and electrons following a q-nonextensive distribution. Phys. Plasmas 18, 102303.

[113] Kourakis, I., Sultana, S., and Hellberg, M.A. 2012 Dynamical characteristics of solitary waves, shocks and envelope modes in kappa-distributed non-thermal plasmas: an overview. Plasma Phys. Control. Fusion 54, 124001.

[114] Randol, B.M., and Christian, E.R. 2016 Coupling of charged particles via Coulombic interactions: Numerical simulations and resultant kappa-like velocity space distribution functions. J. Geophys. Res. 121, 1907–1919.

[115] Varotsos, P.A., Sarlis, N.V., and Skordas, E.S. 2014 Study of the temporal correlations in the magnitude time series before major earthquakes in Japan. J. Geophys. Res. 119, 9192–9206.

[116] Viñas, A.F., Moya, P.S., Navarro, R.E., Valdivia, J.A., Araneda, J.A., and Muñoz, V. 2015 Electromagnetic fluctuations of the whistler-cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma. J. Geophys. Res. 120, 3307-3317.

[117] Nicolaou, G., and Livadiotis, G. 2016 Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions. Astrophys. Space Sci. 361, 359.

[118] Livadiotis, G. 2016 Non-Euclidean-normed Statistical Mechanics. Physica A 445, 240–255.

[119] Oka, M., Birn, J., Battaglia, M., Chaston, C.C., Hatch, S.M., Livadiotis, G., Imada, S., Miyoshi, Y., Kuhar, M., Effenberger, F., Eriksson, E., Khotyaintsev, Y.V., and Retino, A. 2018 Electron power-law spectra in solar and space plasmas. Space Sci. Rev. 214, 82.

[120] Varotsos, P., Sarlis, N., and Skordas, E.S. 2018 Tsallis entropy index q and the complexity measure of seismicity in natural time under time reversal before the M9 Tohoku Earthquake in 2011. Entropy 20, 757.

[121] Milovanov A.V., and Zelenyi, L. M. 2000 Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions. Nonlin. Processes Geophys. 7, 211–221.

[122] Livadiotis, G., and McComas, D.J. 2009 Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105.

[123] Livadiotis, G. 2019 Theoretical aspects of Hamiltonian kappa distributions. Phys. Scr. 94, 105009.

[124] Livadiotis, G., 2018 Thermal Doppler broadening of spectral emissions by space plasma particles. Astrophys. J. Suppl. Ser. 239, 25.

[125] Nicolaou, G., Livadiotis, G., and Moussas, X. 2014 Long term variability of the polytropic Index of solar wind protons at ~1AU. Sol. Phys. 289, 1371-1378.

[126] Livadiotis, G., and Desai, M.I. 2016 Plasma-field coupling at small length scales in solar wind near 1 au. Astrophys. J. 829, 88.

[127] Livadiotis, G., 2019 On the generalized formulation of Debye shielding in plasmas. Phys Plasmas 26, 050701.

[128] Livadiotis, G. 2018 Long-term independence of solar wind polytropic index to plasma flow speed. Entropy 20, 799.

Acknowledgments
The work was supported in part by the project NNX17AB74G of NASA’s HGI Program.