Line identification in soft X-ray spectra of stellar coronae by comparison with the hottest white dwarf’s photosphere: Procyon, α Cen A+B, and H 1504+65

K. Werner¹ and J.J. Drake²

¹ Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
² Harvard-Smithsonian Center for Astrophysics, MS 3, 60 Garden Street, Cambridge, MA 02138, USA

Received xxx / Accepted xxx

Abstract. H 1504+65 is a young white dwarf with an effective temperature of 200 000 K and is the hottest post-AGB star ever analysed with detailed model atmospheres. Chandra LETG+HRC-S spectra have revealed the richest X-ray absorption line spectrum recorded from a stellar photosphere to date. The line forming regions in this extremely hot photosphere produce many transitions in absorption that are also observed in emission in cool star coronae. We have performed a detailed comparison of Chandra spectra of H 1504+65 with those of Procyon and α Cen A and B. State of the art non-LTE model spectra for the hot white dwarf have enabled us to identify a wealth of absorption lines from highly ionized O, Ne and Mg. In turn, these features have allowed us to identify coronal lines whose origins were hitherto unknown.

Key words. stars: atmospheres – stars: coronae – X-rays: stars – stars: individual Procyon – stars: individual α Cen – stars: individual H 1504+65

1. Introduction

High-resolution X-ray spectroscopy performed with Chandra and XMM-Newton allows very detailed studies of coronae about cool stars. While many individual emission lines were detected for the first time in stellar spectra by the Extreme Ultraviolet Explorer Satellite (EUVE; see, e.g., Drake et al. 1995), the resolving power of $\lambda/\Delta\lambda \sim 200$ of the EUVE spectrographs was a quite modest compared with that of present day X-ray observatories. In particular, the unprecedented resolution capabilities of the Chandra X-ray Observatory Low Energy Transmission Grating Spectrograph (LETG) in the 30-170 Å range ($\lambda/\Delta\lambda \sim 1000$) that overlaps with the EUVE Short Wavelength spectrometer (70-170 Å), have revealed many more weak spectral lines.

The 25-70 Å region is a relatively uncharted part of the soft X-ray spectrum. Prior to Chandra, only a small handful of astrophysical observations had been made at anything approaching high spectral resolution in this range: these were of the solar corona using photographic spectrometers (Widing & Sandlin 1968; Freeman & Jones 1970; Schweizer & Schmidtke 1971; Behringer et al. 1972; Acton et al. 1985) a channel electron photomultiplier (Malinovsky & Heroux 1973) and a Geiger-Müller counter (Manson 1972). While these works resulted in identifications for many of the bright spectral lines, a large fraction of the forest of weaker features remains unidentified. Identification of these features is desirable because they could be used as spectroscopic diagnostics, because they potentially contribute to the flux of diagnostic lines currently employed, and because they contribute to the overall plasma radiative loss.

Two nearby stars that have illuminated the forest of lines in the 30-170 Å range are α Cen (G2V+K1V) and Procyon (F5IV). All three stars exhibit classical solar-like X-ray emitting coronae. Indeed, analogues of the relatively X-ray faint Sun are difficult to observe because they become unreachable with current instrumentation beyond a few parsecs, and α Cen and Procyon represent the nearest and brightest coronal sources with solar-like activity. Only a small fraction of the multitude of lines between 30-170 Å seen in their Chandra LETG spectra could be identified based on current radiative loss models (Raassen et al. 2002, 2003). Drake et al. (in prep.) have estimated that these models underestimate the true line flux in the range 30-70 Å in these stars by factors of up to 5 or so.

The “missing lines” are predominantly transitions involving $n = 2$ ground states in abundant elements such as Ne, Mg, Si, S and Ar—the analogous transitions to the Fe “L-shell” lines between ~ 8-18 Å, together with Fe $n = 3$ (the “M-shell”) transitions (Drake 1996, Drake et al. 1997, Jordan 1996). Some of these lines have been identified based on Electron Beam Ion Trap experiments (Beiersdorfer et al. 1999, Lepson et al. 2002, 2003). In the present paper we approach this problem from a new perspective, namely through a Chandra observa-
tion of the photosphere of the hottest white dwarf (WD) known, H 1504+65, and its quantitative analysis by means of detailed non-LTE model atmospheres.

H 1504+65 has an effective temperature of 200 000 K. It belongs to the PG1159 spectral class, which are hot, hydrogen-deficient (pre-) white dwarfs. Their surface chemistry (typical abundances: He = 33%, C = 48%, O = 17%, Ne = 2%, mass fractions) suggests that they exhibit matter from the helium-buffer layer between the H- and He-burning shells in the progenitor AGB star (Werner 2001). This is likely because the PG1159 stars have suffered a late He-shell flash, a phenomenon that drives the fast evolutionary rates of such famous stars like FG Sge and Sakurai’s object. H 1504+65 is in fact a peculiar member of this class, because it is also helium-deficient. Its atmosphere is mainly composed of carbon and oxygen plus neon and magnesium (C = 48%, O = 48%, Ne = 2%, Mg = 2%, mass fractions). H 1504+65 is a unique object, considering its high \(T_{\text{eff}} \) and chemical surface composition, and we have speculated that it represents the naked C/O core of a former red giant (Werner et al. 2004, W04).

\textbf{Chandra LETG+HRC-S} spectra from H 1504+65 have revealed the richest X-ray absorption line spectrum recorded from a stellar photosphere to date. We have recently performed a detailed analysis of this spectrum (W04) and we use in the paper in hand the photospheric spectrum of H 1504+65 together with an appropriate model atmosphere to identify a number of emission lines in the coronae of \(\alpha \) Cen A, \(\alpha \) Cen B, and Procyon. The difference in particle densities in the WD photosphere and in the coronae amounts to many orders of magnitude (roughly \(n_e = 10^{13} - 10^{18} \text{ cm}^{-3} \), respectively), however, the temperature in the line forming regions of the WD (up to 300 000 K) is comparable to the low-temperature component of multi-temperature fits to coronae, required to account for the lines of low-ionization stages (e.g., \(630 000 \text{ K} \) for Procyon; Raassen et al. 2002). As a consequence, numerous lines from O vi, Ne vi-vii and Mg vi-vii are visible in the soft X-ray spectra of both, the cool star coronae (in emission) and the hot WD photosphere (in absorption). Lines from higher ionization stages are formed in the high-temperature regions of the coronae (T of the order 1–2.5 million K for the stars studied in this paper), hence, their respective absorption line counterparts cannot be formed in the WD photosphere.

In the following, we first introduce briefly the characteristics of the objects studied here. We describe our model atmosphere calculation for the hot WD, concentrating on the atomic data employed. We then perform a detailed comparison of the absorption and emission line spectra and suggest a number of new line identifications for the cool star coronae.

\section{2. Observations}

H 1504+65 was observed with the \textit{Chandra} LETG+HRC-S on September 27, 2000, with an integration time of approximately 25 ks. Flux was detected in the range 60 \(\text{Å} \)–160 \(\text{Å} \). The spectrum is that of a hot photosphere, characterized by a continuum with a large number of absorption lines from highly ionized species: O vi-vi, Ne vi-vi, and Mg v-vi. It rolls off at long wavelengths due to ISM absorption. The maximum flux is detected near 110 \(\text{Å} \). Between 105 \(\text{Å} \) and 100 \(\text{Å} \) the flux drops because of photospheric absorption from the O vi edge caused by the first excited atomic level. The edge is not sharp because of a converging line series and pressure ionization. Below 100 \(\text{Å} \) the flux decreases, representing the Wien tail of the photospheric flux distribution. The complete spectrum with detailed line identifications was presented in W04.

The \(\alpha \) Cen A and B observation has been described in detail by Raassen et al. (2002) and we describe it here only in brief. \(\alpha \) Cen was observed with the LETG+HRC-S on December 25, 1999 with an exposure time of 81.5 ks, including dead time corrections to account for telemetry saturation during intervals of high background. The observation was designed such that the two stars were maximally separated in the cross-dispersion axis, with the dispersion axis positioned nearly perpendicular to the axis of the binary. At the time of the observation, the stars were separated by 16” on the sky. The spectra were extracted

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Comparison of \textit{Chandra} X-ray spectra of H 1504+65 and Procyon. Lines from Mg vii and Ne vii are in absorption in H 1504+65 and in emission in Procyon. Top: photosphere model for H 1504+65 with line identifications for Mg vii and Ne vii. Middle: Degraded model spectrum (i.e. folded with a 0.05 \(\text{Å} \) FWHM Gaussian) plotted over H 1504+65 observation. Bottom: Procyon spectrum with line identifications from Raassen et al. (2002). \textit{Chandra} spectra were smoothed with a 0.03 \(\text{Å} \) boxcar.}
\end{figure}
we use here a photospheric spectrum from a line blanketed non-LTE model atmosphere constructed for H 1504+65 by W04. Model parameters are: $T_{\text{eff}}=200,000 \text{ K}$, $\log g=8$ [cm s$^{-2}$], and C=48%, O=48%, Ne=2%, Mg=2%, (mass fractions). Details of model assumptions and calculations can be found in that reference and we restrict ourselves here to those characteristics which are of immediate relevance in our context. This primarily concerns the NLTE model atoms for neon and magnesium. They comprise 88 and 122 NLTE levels, connected with 312 and 310 radiative line transitions, respectively, in the ionization stages IV-IX. The final synthetic spectrum was computed considering fine structure splitting of levels and multiplets assuming relative LTE populations for levels within a particular term. We have tried to use the best available data for level energies and line wavelengths, compiling them from several sources. For the lines discussed here (Table 1), we used the following databases:

(i) National Institute of Standards and Technology (NIST)1
(ii) CHIANTI database (Young et al. 2003)2
(iii) Kelly Atomic Line Database3

However, in order to assemble the complete model atoms, other sources were essential, too:

(iv) Opacity Project (OP, Seaton et al. 1994) TOPbase4
(v) University of Kentucky Atomic Line List5

4. Comparison of H 1504+65 with α Cen A, α Cen B, and Procyon

We have performed a detailed comparison of the H 1504+65 photospheric absorption line spectrum with the coronal emission line spectra of α Cen A, α Cen B, and Procyon. We have

1. http://physics.nist.gov/
2. http://wwwsolar.nrl.navy.mil/chianti.html
3. http://cfa-www.harvard.edu/amdata/ampdata/kelly/kelly.html
4. http://legacy.gsfc.nasa.gov/topbase/home.html
5. http://www.pa.uky.edu/~peter/atomic/
Table 1. List of X-ray multiplets in the wavelength range 69–151 Å observed in both the H 1504+65 photosphere or its model and in the coronae of either α Cen A (“A”), α Cen B (“B”), or Procyon (“P”), as suggested in this paper. In the last column, we note earlier line identifications in either solar spectra (SA=Acton et al. 1985; SB=Behring et al. 1972; SF=Freeman & Jones 1970; SM=Manson 1972; SMH=Malinovsky & Heroux 1973; SW=Widing & Sandlin 1968) or stellar spectra (D=Drake et al. 1995; R=Raassen et al. 2002, 2003). The letter “u” is appended in the case of the feature having been observed but not identified. “N” denotes a new identification suggested in this paper. “F” in combination with other letters means that at least one component of the multiplet is newly identified here. Expressions in brackets denote doubtful cases. The column “Source” gives the reference to the level energies of the transition. After each transition we have marked, if the lower level is a ground state ("G") or a metastable state ("M").

\(\lambda \) (H 1504+65 model)	Seen in	Ion	Transition	Source	Remark
69.41, .47, .57	A,B,P	Mg vii	2p \(^2P^o \) – 3p \(^2D^o \)	G Nst	N,SMu, blend with blue wing of Si vii 69.63 Å
74.27, .32, .34, .37, .41, .43	A,B,P	Mg vii	2p^3 P^o – 3d \(^4D^o \)	M Nst	N,SMu, broad emission feature
74.78, .81, .87	A,B	Ne vii	2p^3 P^o – 4p \(^2D^o \)	M Nst	N,SMu,SMu, blend with Mg vii 74.86 Å
74.86, 75.03, .04	A,B,P	Mg vii	2p^2 P^o – 3d \(^2D^o \)	G Nst	SA,SB,SM,SMH,SW,R, blend with Fe xx 74.85 noted by R, and Ne vii 74.87 Å
(78.34), 78.41, 78.52	A,B,P	Mg vii	2p^3 P^o – 3p \(^3P^o \)	G Kelly	N,SMu
80.23, .25	A,B,P	Mg vii	2p^2 D^o – 3d \(^2D^o \)	M Nst	N,SMu,R
80.95, 81.02, .14	A,B,P	Mg vii	2p^3 P^o – 3p \(^1S^o \)	M Nst	N,SMu,SMu
81.37	(A,B),P	Ne vii	2p \(^1P^o \) – 4p \(^1P^o \)	M Nst	N
81.73, .79, .84, .87, .94, .98	A,B,P	Mg vii	2p^2 P^o – 3s \(^3P^o \)	M Nst	N,SMu,SMu, blend with Fe vii 74.85 noted by R
82.17, .20, .27	A,B,\(P \)	Ne vii	2p \(^3P^o \) – 4d \(^1D^o \)	M Nst	N
(82.60), .82	A,B,P	Mg vii	2p^2 P^o – 3s \(^3S^o \)	M Nst	(SBu,SMu),SM,R, blend with Fe xx 82.84 Å
83.51, .56, .59, .64, .71, .76	A,B,P	Mg vii	2p^3 P^o – 3d \(^3P^o \)	G Kelly	N,SMu,SMu,SMH,SM,D,R, blend emission feature; poss. Si VI contribution noted by R
83.91, .96, .99, 84.02, .09, .11	A,B,P	Mg vii	2p^2 P^o – 3d \(^3P^o \)	G Kelly	N,SMu,SMu,SMH,SMH,R, blend emission feature
(84.19, .23), .30	A	Ne vii	2p \(^3P^o \) – 4s \(^3S^o \)	M Nst	N,SMu,SMu,SMu,R
85.41	A,B,P	Mg vii	2p^2 P^o – 3d \(^1P^o \)	M Nst	N
86.82	A,B,P	Ne vii	2p^2 P^o – 4d \(^1P^o \)	M Nst	N,SMu,SMu,SMu,R, blend with Fe xii 86.77, Mg vii 86.84 Å
90.84, .85, 87.02	A,B,P	Mg vii	2p^2 P^o – 3s \(^3P^o \)	Nst	N,SMu,SMu,R
87.46	A	Ne vii	2s^2 \(^1S^o \) – 3s \(^1P^o \)	G Nst	N
87.72	A	Mg vii	2p^2 \(^1P^o \) – 3d \(^1P^o \)	M Nst	N
88.08, 88.12	A,B,P	Ne vii	2s^2 \(^1S^o \) – 3p \(^2P^o \)	M Nst	N,SMu,SMu,SMH,SM,D,R
88.68	(A),B,P	Mg vii	2p^2 \(^1P^o \) – 3d \(^1P^o \)	M Nst	N,SMu,SMu
89.64, .65	A,\(P \)	Mg vii	2p^2 \(^1P^o \) – 4s \(^1S^o \)	M Nst	N,SMu,SMu,SMu,R
91.56	P	Ne vii	2p \(^1P^o \) – 4s \(^1S^o \)	M Nst	N,SMu,SMu,SMu,R
92.13, .32	A,B,P	Mg vii	2p^2 \(^1P^o \) – 3s \(^3P^o \)	M Nst	N,SMu,SMu,SMu,R
92.85	P	Ne vii	2p^2 \(^1P^o \) – 3d \(^1P^o \)	M Nst	N,SMu,SMu,SMu,R
(93.89), 94.07, .10, (.27)	A,B,P	Mg vii	2p \(^3P^o \) – 3s \(^3P^o \)	M Nst	N,SMu,SMu,SMu, blend with Fe xii 94.012 Å
94.04, (.17), .24	A,B,P	Mg vii	2p^3 \(^3P^o \) – 3s \(^3P^o \)	M Nst	N,SMu,SMu,SMu, blend with Fe xii 94.012 Å

Also used the model spectrum of H 1504+65 for this purpose. It turns out that not all lines predicted by the model, particularly the weaker ones, are readily identified in H 1504+65, which is at least in part due to the S/N of the Chandra spectrum. Another reason is heavy blending by lines from ion group elements, which are not considered in the model used here. It was shown that identification of weak lines suffers from iron and nickel line blends, which is a problem because the accurate positions of the majority of lines from Fe-group elements in the soft X-ray domain is unknown (WO4). The use of our synthetic spectrum in addition to the H 1504+65 spectrum helps considerably to identify lines in the coronal spectra.

Table 1 summarizes the results of our comparison. Lines from 65 multiplets of O vi, Ne vii-viii, and Mg vii-viii are identified in both, H 1504+65 (or its model) and in at least one of the considered coronae. Many of these had already been identified in earlier solar work (Widing & Sandlin 1968; Freeman & Jones 1970; Behring et al. 1972; Manson 1972; Malinovsky & Heroux 1973; Acton et al. 1985) and by Raassen et al. (2002, 2003), but the majority represents new identifications. Table 1 also denotes lines or features seen in earlier solar spectra but
which were unidentified in the earlier work. The identifications presented here can then also be applied (either wholly or in part, allowing for blends) to these solar spectra. Many, but not all, of the tabulated lines have lower levels which are either ionic ground states or metastable states (labeled G or M, respectively). As an example how the spectra compare, we show in Fig. 1 the spectra of Procyon and H 1504+65 in a wavelength region where a bunch of lines from two Mg vii and one Ne vii multiplet is located. All three multiplets, or at least some components of them, were identified by Raassen et al. (2002) in Procyon. They are also clearly seen as absorption features in the H 1504+65 spectrum. Over this, we have plotted the model spectrum, degraded to the Chandra spectral resolution, which can qualitatively reproduce the observed line features. Placed at the top of this Figure we show the original, non-degraded spectral resolution, which can qualitatively reproduce the observed line features. Placed at the top of this Figure we show the original, non-degraded model spectrum, showing the diverse structure of the multiplets, whose components are not entirely resolved in Chandra spectra, neither of H 1504+65 nor of Procyon.

Figure 2 shows a detail from the spectra of Procyon and α Cen A compared to H 1504+65 in another wavelength inter-

λ/Å (H 1504+65 model)	Seen in	Ion	Transition	Source	Remark
94.26, 279.30, 31, 36, 39	B	Ne vii	2p2 3P0 – 3p2 3P	M	Bashkin, N, Smu
95.03, .04	B	Mg vii	2p3 3D0 – 3s3 3D	Kelly	N
95.26, .38, .42, .49, .56, .65	(A,B,P)	Mg vii	2p3 3P0 – 3s3 3P	G	Kelly, N, Sbu, Sfu, Smu, blend with Fe x 95.338 Å noted by R; Mg vi 95.42 Å
(95.38, .42, .48)	(A,B,P)	Mg vi	2p4 3S0 – 3d 4P	G	Kelly, Sbu, Sfu, Smu, blend with Mg vi 95.26–65 Å
95.75, .81, .89, .90, .91, 96.0	A,B,P	Ne vii	2p3 3P0 – 3s 3D	M	Bashkin, N, Smu, broad emission, blend with Si vi 96.02 Å noted by R
96.08, .09	(A,B,P)	Mg vi	2p3 3P0 – 3d3 3D	M	Kelly, N, Sbu, Smu, blend with Fe x 96.12 Å noted by R
97.50	A,B,P	Ne vii	2s2 3S0 – 3p3 3P	G	Kelly, Sb, Sm, Smh, R
98.11, .26	A,B,P	Ne vii	2p3 3P0 – 3d 3F	Nsf	Sm, Smh, Sw, D, R
98.50, .51	B	Mg vii	2p3 3P0 – 3d3 3P	M	Kelly, N, Sbu, Smu
99.69	B	O vi	2s – 6p	G	Kelly, N, Smu
100.70, .90	A	Mg vi	2p3 3P0 – 3d3 3F	M	Kelly, N, Sbu
101.49, .55	B	Mg vii	2p3 3P0 – 3d3P	M	Kelly, N, Sbu, Smu
102.91, 103.08	A,B,P	Ne vii	2p2 3P0 – 3s3 3S	Nsf	Smh, Smh, Sw, D, R
103.09	(A,B,P)	Ne vii	2p2 3P0 – 3p 3D	Kelly	N, Sbu, blend with Ne vii 103.08 Å
104.81	B,P	O vi	2s – 5p	G	Kelly, N, Smu, R
105.17	A,B	Mg vii	2p3 3P0 – 3d 3S	Kelly	N, Smu, blend with Fe ix 105.21 Å noted by R
106.03, .08, .19	P	Ne vii	2p3 3P0 – 3d 3D	M	Kelly, N, Sm, Sw, D, R
(111.10, .16), .26	A,B,P	Ne vii	2p3 3P0 – 3p 3D	G	Kelly, N, Sbu, Smu, blend with Ca x 111.20 poss. Mg vi contribution noted by R
(111.15	(A),B,P	Ne vii	2p3 3P0 – 3p 3D	G	Kelly, N, blend with Ca x 111.20, Ne vii 111.16 Å poss. Mg vi contribution noted by R
111.55, .75, .86	B,A,P	Mg vii	2p3 3P0 – 3s3 3P	G	Kelly, Sb, R
(115.33), 39, (.52)	A,B,P	Ne vii	2p3 3P0 – 3s3 3P	M	Kelly, N
115.82, .83	B	O vi	2s – 4p	G	Kelly, Sb, Sm, Ru
115.96	B	Ne vii	2p3 3P0 – 3d 3D	M	Kelly, N
(116.35), .42	B	O vi	2p – 5p	G	Kelly, N
116.69	B	Ne vii	2p3 3P0 – 3d 3D	G	Kelly, N
116.97, 117.22	A	Mg vii	2p3 3P0 – 3s 3D	M	Kelly, N, Smu, poss. Mg vi contribution noted by R
(117.33), .40	B	O vi	2p – 5s	G	Kelly, N
(117.43), .66, (.78)	P	Mg vii	2p3 3P0 – 3s 3P	Kelly, N, Ru	
(117.52), .64, (.81)	P	Mg vii	2p3 3P0 – 3s 3P	Kelly, N, Ru	
120.20, .27, .33, .35, .42, .48	P	Ne vii	2p3 3P0 – 3s 3P	Kelly, N, blend with O vii 120.33 Å noted by R	
122.49, .69	B,P	Ne vii	2p3 3P0 – 3p 3D	G	Kelly, N, Sbu, Smu, Smh, D, R
123.59	P	Mg vii	2p3 3P0 – 3s 3P	Kelly, N, Sbu, Smu, Smh, D, R	
127.67	B,P	Ne vii	2p3 3P0 – 3s 3P	G	Kelly, N, Sbu, Smu, Smh, D, R
129.78, .87	A,B,P	O vi	2p – 4d	G	Kelly, N, Sbu, Smu, Smh, D, R
130.31, .64	B	Mg vii	2p3 3P0 – 3s 3P	G	Kelly, N, Sbu, Smu, Smh, D, R
130.94, 131.09, .30	A,B,P	Mg vii	2p3 3P0 – 3s 3P	Kelly, N, Sbu, blend with Fe vii 130.94, 131.24 Å noted by R	
132.22, .31	A,B	O vi	2p – 4s	G	Kelly, N
150.09, .12	B,P	O vi	2p – 3s	G	Kelly, Smh, Sb, D, R
val. It displays some new line identifications in the coronal spectra, see for example the 87.46 Å resonance line of Ne vii in α Cen A. The strongest emissions in α Cen A stem from two Ne vii and Mg vii doublets, identified already in Raassen et al. (2003). But note that the Mg vii 86.84 Å component is blended with the possibly stronger, newly identified Ne vii 86.82 Å line.

Some of the newly identified lines do blend with other lines used for coronal diagnostics. The emissivity of the Fe vii lines at 130.94 Å and 132.24 Å in Procyon was computed by Raassen et al. (2002) using a three-temperature model. They stress that these line strengths are strongly underestimated, by factors 6 and 4 compared to the observation. The result of their differential emission measure (DEM) model underestimates the emissivity even more (factors 9 and 6). This can at least partially be explained by the fact that two components of a Mg vii triplet (at 130.94 Å and 131.30 Å) can contribute to the Fe vii line emissivities. A similar explanation may hold for the Fe xi 105.20 Å line, which also appeared too weak in their model. It is blended with a Mg vi singlet at 105.17 Å.

Another example is the Mg vii 74.86 Å line observed in α Cen A and α Cen B. Raassen et al. (2003) find that the line fluxes from their models are too small by about 40%. We think that the missing flux is contributed by a blend with a new neon line located at almost the same wavelength, Ne vii 74.87 Å. Detailed emission measure modeling, which is beyond the scope of this paper, is needed to quantify these suggestions. Other blends with previously identified emission lines in the coronae of Procyon and α Cen are indicated in Table 1.

5. Summary

We have performed a detailed comparison of Chandra soft X-ray spectra from the photosphere of the hottest known white dwarf, H 1504+65, with the corona spectra of α Cen A, α Cen B, and Procyon. With the help of a detailed model spectrum for H 1504+65 we have found that a large number of lines from multiplets of O, Ne, and Mg are present in both the photospheric absorption line spectrum and the coronal emission line spectra. In the coronal spectra we have newly identified lines from about 40 multiplets of O vi, Ne vi-vii, and Mg vi-viii. Some of these lines are blends with previously known lines, which are in use for diagnostic purposes, hence, their contribution to the line flux must be considered in detailed spectral analyses.

Acknowledgements. Analysis of X-ray data in Tübingen is supported by the DLR under grant 50 OR 0201. JJD was supported by NASA contract NAS8-39073 to the Chandra X-ray Center.

References

Acton, L. W., Bruner, M. E., Brown, W. A., et al. 1985, ApJ, 291, 865
Behring, W. E., Cohen, L., & Feldman, U. 1972, ApJ, 175, 493
Beiersdorfer, P., Lepson, J. K., Brown, G. V., et al. 1999, ApJL, 519, 185
Drake, J. J. 1996, in Cool Stars; Stellar Systems; and the Sun: 9, ed. R. Pallavicini, A.K. Dupree, ASP Conference Series, 109, 203
Drake, J. J., Laming, J. M., & Widing, K. G. 1995, ApJ, 443, 393
Drake, J. J., Laming, J. M., & Widing, K. G. 1997, ApJ, 478, 403
Freeman, F. F. & Jones, B. B. 1970, Sol.Phys., 15, 288
Jordan, C. 1996, in Astrophysics in the Extreme Ultraviolet, IAU Coll. 152, ed. S. Bowyer, R.F. Malina, Dordrecht: Kluwer Academic Publ., p. 81
Lepp, J. K., Beiersdorfer, P., Brown, G. V., et al. 2002, ApJ, 578, 648
Lepp, J. K., Beiersdorfer, P., Behar, E., & Kahn, S. M. 2003, ApJ, 590, 604
Malinovsky, L. & Heroux, M. 1973, ApJ, 181, 1009
Manson, J. E. 1972, Sol.Phys., 7, 107
Raassen, A. J. J., Mewe, R., Audard, M., et al. 2002, A&A 389, 228
Raassen, A. J. J., Ness, J.-U., Mewe, R., et al. 2003, A&A 400, 671
Seaton, M. J., Yan, Y., Mihalas, D., & Pradhan, A. K. 1994, MNRAS, 266, 805
Schweizer, W. & Schmidtke, G. 1971, ApJL, 199, 27
Werner, K. 2001, in Low Mass Wolf-Rayet Stars: Origin and Evolution, ed. T. Blöcker, L.B.F.M. Waters, A.A. Zijlstra, Ap&SS, 275, 27
Werner, K., Rauch, T., Barstow, M. A., & Kruk, J. W. 2004, A&A, 421, 1169
Widing, K. G. & Sandlin, G. D. 1968, ApJ, 152, 545
Young, P. R., Del Zanna, G., Landi, E., et al. 2003, ApJS, 144, 135