Prognostic factors for ovarian metastases in colorectal cancer patients

Chao Chen
Zhejiang University School of Medicine Second Affiliated Hospital

Da Wang
Zhejiang University School of Medicine Second Affiliated Hospital

Xiaoxu Ge
Zhejiang University School of Medicine Second Affiliated Hospital

Jian Wang
Zhejiang University School of Medicine Second Affiliated Hospital

Yuhuai Huang
Zhejiang University School of Medicine Second Affiliated Hospital

Tianyi Ling
Zhejiang University School of Medicine Second Affiliated Hospital

Tian Jin
Zhejiang University School of Medicine Second Affiliated Hospital

Jinhua Yang
Changxing County People's Hospital

Fengping Wang
Changxing County People's Hospital

Weihong Wu
Changxing County People's Hospital

Lifeng Sun

https://orcid.org/0000-0003-4324-8818

Research

Keywords: Ovarian metastases, Prognosis Factors, Cytoreductive surgery, Scoring system

DOI: https://doi.org/10.21203/rs.3.rs-251461/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose: The aim of this study was to analyze prognostic factors for ovarian metastases (OM) in colorectal cancer (CRC) using data from a Chinese center. In addition, the study aimed at developing a new clinical scoring system for prognosis of OS of CRC patients after surgery.

Patients and methods: Data of CRC patients with OM were collected from a single Chinese institution (n = 67). Kaplan-Meier analysis was used to evaluate cumulative survival of patients. Factors associated with prognosis of overall survival (OS) were explored using Cox’s proportional hazard regression models. A scoring system for determine effectiveness of prognosis was developed.

Results: Median OS values for patients with or without surgery were 22 and 7 months, respectively. Size of OM, number of OM, Peritoneal Metastasis (PM), Peritoneal Cancer Index (PCI), completeness of cytoreduction (CC) were associated with OS of patients through univariate analysis. Multivariate analysis using a Cox regression model showed that only CC was an independent predictor for OS. Three variables, (the size of OM >15cm, PCI \geq 10, and carcinoembryonic antigen (CEA) >40 ng/mL) assigned one point each were used to develop a risk score. The resulting score was used for prognosis of OS.

Conclusion: Surgical treatment of metastatic sites is effective and safe for CRC patients with OM. CC-0 is recommended for improved prognosis. The scoring system developed in this study is effective for prediction of OS of patients after surgery.

Introduction

Colorectal cancer (CRC) is the third most common cancer type in both males and females and the second leading cause of cancer-related death worldwide [1]. Previous studies report that the incidence of ovarian metastasis (OM) in female CRC and in female metastatic CRC are 1.6% ~ 7.2% and 5~10%, respectively [2]. Approximately 0.6% ~ 4.1% of patients with CRC develop synchronous OM, whereas 0.4% ~ 5.1% of CRC patients develop metachronous OM during disease progression [3–5]. OM mostly affects young women and develops rapidly. Therefore, patients show symptoms in the later stage. Notably, OM relatively chemoresistant compared with primary tumors and other metastases [6, 7]. OM are considered end-stage disease and patients receiving palliative chemotherapy have extremely low survival rates (median OS of 10.0 months) [2, 8].

Cytoreductive surgery (CRS) is referred as a therapeutic strategy due to limitations associated with chemotherapy [6, 9, 10]. CRS has revolutionized treatment of OM in CRC patients. Patients achieve notable survival benefits (median OS of 36 to 43 months) after undergoing surgical cytoreduction compared with systemic chemotherapy [2]. However, to the best of our knowledge, recurrence and distant metastasis still exist after detection and currently, few studies report on the risk stratification and selection of patients who may benefit from surgical oophorectomy. Therefore, it is necessary to develop a clinical criterion for selecting patients to undergo surgical oophorectomy.
Data used in this study were retrieved from a single Chinese center. Data were used evaluate prognostic factors for CRC patients with OM. In addition, a clinical scoring system was developed using pre- and intra-operative factors to predict survival of CRC patients. The findings of this study will provide information and treatment strategies for clinicians, and serve as a basis for further research.

Material And Methods

Ethics and patients

CRC patients (n = 67) presenting with OM from January 2010 to July 2019 were included in this study.

The study was approved by the Institutional Review Board of the Second Affiliated Hospital of Zhejiang University School of Medicine.
The study was conducted according to the Declaration of Helsinki.
All patients included in the study provided signed informed consent.

Inclusion and exclusion criteria

Patients were enrolled into the study according to the following criteria: 1. diagnosis of CRC with synchronous or metachronous OM; 2. Eastern Cooperative Group (ECOG) performance status 0 or 1, and no extra-abdominal disease on radiological investigation; 3. Extent of OM evaluated either via contrast-enhanced computed tomography (CT) or magnetic resonance imaging of the ovaries, and treatment was discussed by the multidisciplinary cancer treatment team (MDT). Exclusion criteria were as follows: 1. Follow-up time < 12 months from the date of diagnosing OM; 2. Extra-abdominal metastasis.

CRS/HIPEC

Completeness of cytoreduction (CC) was classified as one of four grades (CC-0, -1, -2, and -3) based on the size of residual tumors after CRS. CRS was performed to remove all macroscopic OM or leave lesions < 2.5 mm (CC-0/1), which was considered optimal cytoreduction. Extent of disease was assessed using peritoneal cancer index (PCI) score, as described by Sugarbaker [11].

Clinical follow-up

A follow-up was carried out for all patients in the outpatient unit approximately two weeks after treatment, and at least every 3 months for 2 years, then every six months after the first 2 years. Carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199) and carbohydrate antigen 125 (CA125) markers, and CT scans of the abdomen, pelvis, and thorax, were assessed at each follow-up visit.

Statistical analysis

Overall survival (OS) was defined as period between the date patients were diagnosed with OM to the last known date of follow-up or date of death. Cumulative survival was evaluated by Kaplan-Meier analysis.
Differences in survival curves between groups of patients were assessed using the log-rank test. Multivariate analyses were performed using Cox's proportional hazard regression models to identify factors associated with OS. Details of surgical oophorectomy were analyzed for 54 patients because 13 patients didn't undergo surgery or underwent surgery in a different hospital. A two-sided P value < 0.05 was considered statistically significant. All analyses were performed in SPSS for windows (version 25.0).

Results

Clinicopathologic features

A total of 67 CRC patients diagnosed with OM between January 2010 to June 2019 in our cancer center were included in this study. Mean patient age was 49.1 years old and 73.1% of the patients were more than 60 years old. 53.7% of patients presented with simultaneous OM and most primary cancers with OM were in the left colon cancer (n = 41, 61.2%). Extra-ovarian metastasis occurred in 47 patients and in 35 cases with PM. Adenocarcinoma cancer accounted for 76.1% and patients diagnosed with OM in our center mainly presented with T4 and N1 stage tumors (65.7% and 34.3%, respectively). A total of 27 patients underwent initial surgery for primary tumor in a different center and surgery for OM was not performed or performed in other hospital for 13 patients; therefore surgery details were not available for these cases. Therefore, we analyzed surgery data for patients who underwent surgery in our hospital. A total of 32 patients (59.3%) presented with perineural invasion and 22 patients (40.7%) presented with tumor deposits. Most cases (79.6%) presented with lymph node invasion, and the number of lymph nodes invaded was ≥ 4 in 19 patients (35.2%). More than 50% patients presented with PCI ≤ 10 and underwent CC-0/1 in our center. Demographic and histologic data of patients are summarized in Table 1.
Table 1
Demographic characteristics of patients.

Variables	All patients (n = 67)	Patients underwent surgery in our center (n = 54)
	Value, N (%)	Variables
Age (year) ≥ 60	49 (73.1%)	HIPEC
Age (year) < 60	18 (26.9%)	No
		Yes
Primary cancer	41 (61.2%)	Tumor Deposits
Left Colon cancer	24 (35.8%)	None
Right colon cancer	2 (3.0%)	Present
Unknown	2 (3.0%)	Unknown
Pathological type	51 (76.1%)	Primary Tumor Size
Adenocarcinoma	16 (23.9%)	< 5cm
Non- Adenocarcinoma	51 (76.1%)	≥ 5cm
Unknown	3 (4.5%)	Unknown
Grade	6 (9.0%)	Perineural invasion
Grade I	40 (59.7%)	None
Grade II	18 (26.9%)	Present
Grade III	3 (4.5%)	Unknown
T stage	14 (20.9%)	Scope Reg LN Sur
T0-3	44 (65.7%)	None
T4	9 (13.4%)	Present
Tx	9 (13.4%)	Unknown
N stage	15 (22.4%)	Scope Reg LN Sur (Number)
N0	23 (34.3%)	< 4
N1	19 (28.4%)	≥ 4
N2	10 (14.9%)	Unknown
Nx	10 (14.9%)	Unknown
All patients (n = 67)	Patients underwent surgery in our center (n = 54)	
---	--	
Primary Tumor Size	Metastatic Tumor Size	
< 5cm	≤ 15cm	
	≥ 15cm	
≥ 5cm	Unknown	
Unknown	30 (44.8%)	
	15 (22.4%)	
	22 (32.8%)	
Time of OM	Time of OM	
synchronous	synchronous	
metachronous	metachronous	
	36 (53.7%)	
	31 (46.3%)	
Number of OM	Number of OM	
Unilateral	21 (38.9%)	
Bilateral	31 (57.4%)	
Unknown	2 (3.7%)	
Parenchymatous organ metastasis	Parenchymatous organ metastasis	
none	none	
OM + PM	OM + PM	
OM + PM + others	OM + PM + others	
OM + others	OM + others	
	18 (33.3%)	
	14 (25.9%)	
	17 (31.5%)	
	5 (9.3%)	
Peritoneal Metastasis	Peritoneal Metastasis	
No	No	
Yes	Yes	
	32 (59.3%)	
	22 (40.7%)	
CA125	CA125	
≤ 40 kU/L	≤ 40 kU/L	
> 40 kU/L	> 40 kU/L	
unknown	unknown	
	20 (37.0%)	
	25 (46.3%)	
	9 (16.7%)	
CEA	CEA	
≤ 30 mg/L	≤ 30 mg/L	
> 30 mg/L	> 30 mg/L	
unknown	unknown	
	32 (59.3%)	
	15 (27.8%)	
	7 (13.0%)	
All patients (n = 67)	Patients underwent surgery in our center (n = 54)	
----------------------	--	
CA199		
≤ 60 kU/L	31 (57.4%)	
> 60 kU/L	16 (29.6%)	
unknown	7 (13.0%)	
PCI		
≤ 10	29 (53.7%)	
> 10	25 (46.3%)	
CC		
0–1	37 (68.5%)	
>1	17 (31.5%)	

Survival outcomes

Median follow-up time was 68 (range, 1 to 85) months from the date of OM diagnosis. Median OS for all patients was 22 months, with overall 1- and 3-year survival rates of 66.7% and 30.4%, respectively. A total of 4 patients rejected surgery after OM diagnosis. Median OS for the 4 patients was 7 months compared with 22 months of patients who underwent CRS (Fig. 2).

Analysis of predictors using Kaplan-Meier method showed that size of OM (P = 0.018), presence of PM (P = 0.016), PCI (P = 0.003) and CC score (P < 0.001) were significantly associated with OS (Table 2). However, vascular invasion, perineural invasion, CEA, CA125 or the number of lymph node invasion was not correlated with survival time. Within addition, demographic and histologic data, including age, T stage, N stage, grade, pathological subtype and primary cancer site were not significantly correlated with survival time (Supplement Table 1). Factors with P value less 0.1 were used for multivariable analysis, and only incomplete cytoreduction was identified as an independent predictor for poor OS (CC > 1; HR, 3.782, 95% CI, 1.873 to 7.637; P < 0.001) (Table 2, Fig. 3).
Table 2
Univariate analysis and multivariate analysis of factors associated with OS using a cox regression model for patients underwent CRS in our center.

Variables	Univariate analysis					Multivariate analysis		
	95%CI	P value	95%CI	P value		95%CI	P value	
Tumor Deposits								
None	1.131(0.589–2.172)	P = 0.711	0.589	P = 0.169				
Present	0.355(0.081–1.556)							
Unknown								
Perineural invasion								
None	1.233(0.613–2.480)	P = 0.556	0.613	P = 0.107				
Present	0.375(0.114–1.234)							
Unknown								
Scope Reg LN Sur								
None	1.785(0.781–4.079)	P = 0.169	0.781	P = 0.414				
Present	0.515(0.105–2.535)							
Unknown								
Scope Reg LN Sur (Number)								
< 4	1.536(0.792–2.978)	P = 0.204	0.792	P = 0.216				
≥ 4	0.394(0.090–1.724)							
Unknown								
HIPEC	0.868(0.479–1.573)	P = 0.641	0.479					

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis	Multivariate analysis		
	95%CI	P value	95%CI	P value
Metastatic Tumor Size				
<=15cm	2.536(1.174–5.480)	P = 0.018		
>15cm	0.711(0.167–3.024)	P = 0.644		
Unknown				
Number of OM	1.956(0.965–3.967)	P = 0.063		
Unilateral	1.779(0.394–8.021)	P = 0.454		
Bilateral				
Unknown				
PM	2.295(1.170–4.503)	P = 0.016		
No				
Yes				
PCI	2.807(1.421–5.544)	P = 0.003		
<=10				
>10				
CA125	1.212(0.603–2.436)	P = 0.589		
<=40 kU/L	1.012(0.411–2.491)	P = 0.979		
>40 kU/L				
unknown				
CEA	0.899(0.437–1.852)	P = 0.773		
<=30 mg/L	0.728(0.276–1.920)	P = 0.521		
>30 mg/L				
unknown				

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis	Multivariate analysis		
	95%CI	P value	95%CI	P value
CA199 ≤ 60 kU/L	0.837(0.397–1.765)	P = 0.641	7.412(2.170–25.317)	P = 0.001
> 60 kU/L unknown	0.713(0.271–1.876)	P = 0.494	4.827(2.235–10.422)	P < 0.001
CC 0	7.412(2.170–25.317)	P = 0.001	143.854(8.430–2454.725)	P = 0.001
1	4.827(2.235–10.422)	P < 0.001	4.827(2.235–10.422)	P < 0.001
2	143.854(8.430–2454.725)	P = 0.001	143.854(8.430–2454.725)	P = 0.001
3	3.782(1.873–7.637)	P < 0.001	3.782(1.873–7.637)	P < 0.001
CC 0–1	3.782(1.873–7.637)	P < 0.001	3.782(1.873–7.637)	P < 0.001
>1				

All patients (n = 67)

Variables	Value, N (%)	Variables	Value, N (%)
Age (year)	49 (73.1%)	HIPEC	32 (59.3%)
≥ 60	18 (26.9%)	No	22 (40.7%)
< 60		Yes	
Primary cancer	41 (61.2%)	Tumor Deposits	29 (53.7%)
Left Colon cancer	24 (35.8%)	None	10 (18.5%)
Right colon cancer	2 (3.0%)	Present	5 (9.3%)
Unknown	2 (3.0%)	Unknown	

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis					Multivariate analysis
	95%CI	P value		95%CI	P value	
Pathological type						
Adenocarcinoma	51 (76.1%)	Primary Tumor Size	29 (53.7%)			
Non-Adenocarcinoma	16 (23.9%)	< 5cm	14 (35.9%)			
		≥ 5cm	11 (20.4%)			
		Unknown				
Grade	6 (9.0%)	Perineural invasion	17 (31.5%)			
Grade I	40 (59.7%)	None	30 (55.6%)			
Grade II	18 (26.9%)	Present	7 (13.0%)			
Grade III	3 (4.5%)	Unknown				
T stage	14 (20.9%)	Scope Reg LN Sur	13 (24.1%)			
T0-3	44 (65.7%)	None	36 (66.7%)			
T4	9 (13.4%)	Present	5 (9.3%)			
Tx		Unknown				
N stage	15 (22.4%)	Scope Reg LN Sur (Number)	32 (59.3%)			
N0	23 (34.3%)	< 4	17 (31.5%)			
N1	19 (28.4%)	≥ 4	5 (9.3%)			
N2	10 (14.9%)	Unknown				
Nx						
Primary Tumor Size	30 (44.8%)	Metastatic Tumor Size	37 (68.5%)			
< 5cm	15 (22.4%)	≤ 15cm	14 (25.9%)			
≥ 5cm	22 (32.8%)	> 15cm	3 (5.6%)			
Unknown		Unknown				

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis	Multivariate analysis		
	95%CI	P value	95%CI	P value
Time of OM synchronous	36 (53.7%)	Time of OM synchronous	31 (57.4%)	
metachronous	31 (46.3%)	metachronous	23 (42.6%)	
Number of OM				
Unilateral	21 (38.9%)			
Bilateral	31 (57.4%)			
Unknown	2 (3.7%)			
Parenchymatous organ metastasis				
none	18 (33.3%)			
OM + PM	14 (25.9%)			
OM + PM + others	17 (31.5%)			
OM + others	5 (9.3%)			
Peritoneal Metastasis				
No	32 (59.3%)			
Yes	22 (40.7%)			
CA125				
≤ 40 kU/L	20 (37.0%)			
> 40 kU/L	25 (46.3%)			
unknown	9 (16.7%)			
CEA				
≤ 30 mg/L	32 (59.3%)			
> 30 mg/L	15 (27.8%)			
unknown	7 (13.0%)			

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis		Multivariate analysis	
	95%CI	P value	95%CI	P value
CA199				
≤ 60 kU/L	31 (57.4%)		16 (29.6%)	
> 60 kU/L	7 (13.0%)			
unknown				
PCI				
≤ 10	29 (53.7%)		25 (46.3%)	
> 10				
CC				
0–1	37 (68.5%)		17 (31.5%)	
> 1				

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis	Multivariate analysis		
	95%CI	P value	95%CI	P value
Scope Reg LN Sur (Number)				
< 4	1.536(0.792–2.978)	P = 0.204		
≥ 4	0.394(0.090–1.724)	P = 0.216		
Unknown				
HIPEC	0.868(0.479–1.573)	P = 0.641		
No				
Yes				
Metastatic Tumor Size				
<=15cm	2.536(1.174–5.480)	P = 0.018		
>15cm	0.711(0.167–3.024)	P = 0.644		
Unknown				
Number of OM				
Unilateral	1.956(0.965–3.967)	P = 0.063		
Bilateral	1.779(0.394–8.021)	P = 0.454		
Unknown				
PM	2.295(1.170–4.503)	P = 0.016		
No				
Yes				
PCI	2.807(1.421–5.544)	P = 0.003		
≤ 10				
> 10				

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.
Variables	Univariate analysis	Multivariate analysis		
	95%CI	P value	95%CI	P value
CA125				
≤ 40 kU/L	1.212(0.603–2.436)	P = 0.589		
> 40 kU/L	1.012(0.411–2.491)	P = 0.979		
unknown				
CEA				
≤ 30 mg/L	0.899(0.437–1.852)	P = 0.773		
> 30 mg/L	0.728(0.276–1.920)	P = 0.521		
unknown				
CA199				
≤ 60 kU/L	0.837(0.397–1.765)	P = 0.641		
> 60 kU/L	0.713(0.271–1.876)	P = 0.494		
unknown				
CC				
0	7.412(2.170–25.317)	P = 0.001	7.412(2.170–25.317)	P = 0.001
1	4.827(2.235–10.422)	P < 0.001	4.827(2.235–10.422)	P < 0.001
2	143.854(8.430–2454.725)	P = 0.001	143.854(8.430–2454.725)	P = 0.001
3				
CC				
0–1	3.782(1.873–7.637)	P < 0.001	3.782(1.873–7.637)	P < 0.001
>1				

Note:

Abbreviations: N: number; CEA: carcinoembryonic antigen; Scope Reg LN Sur: Regional Lymph Node Surgery in surgery.

A new clinical risk score for selecting suitable OM

A new clinical risk score was developed using significant indicators for OS in Kaplan-Meier method including PCI and size of OM. CEA which is important for CRC was also included. Although progression of disease at the level of CC was an independent predictor of prognosis as shown by multivariate analysis, not all patients received surgery. Furthermore, addition of this factor into the risk score model
did not improve its prognostic value, therefore it was omitted from the final model. The score for the corresponding indicators HR value was rounded up to the integer value.

Clinical risk score of all patients was calculated using complete data. The new clinical risk score in patients was calculated with the actual distribution from 0 to 7 points, and a median of 3 points and a mode of 3 points (Fig. 4A). Patients were divided into < 3 groups and acuity grouping for subsequent analysis using Cut-off value of 3 points. A score < 3 patients resulted in a high CC-0 ratio (88.2%), and most patients with a score ≥ 3 points did not reach tumor removal stage (Fig. 4B). A high score was positively correlated with poor overall survival. Patients who scored < 3 (low risk) had 1, 3, and 5-year survival of 76.5%, 44.6%, and 37.2%, respectively and median survival of 36 months. Patients who scored ≥ 3 (high risk) had a 3-year survival of 16.5% with no survivors beyond 5 years and median survival of 12 months (Fig. 4C).

Discussion

Previous studies have explored factors associated with prognosis of CRC patients with OM. However, this is the first study to develop a new clinical risk score to help in pre-operative or intra-operative decision making. OM affects young women, develops rapidly, and is relatively chemoresistant therefore, there is a need to develop effective treatment of OM patients[6]. Previous studies have reported controversial results on CRS for CRC patients with OM. Some surgeons recommend CRS as it improves CRC patient survival[12]. However, some studies report that CRS approach is ineffective[13]. In this study, median OS for CRC patients with OM group who underwent surgery was 22 months, compared with median OS of 10 months for patients receiving palliative treatment reported by Lee et al [8]. Previous studies report that CRS affects long-term prognosis and recurrence of patients with CRC [14–19] and similar results were reported in our study. CRC patients with OM who achieved CC-0 showed a median OS of 36 months, whereas patients who did not achieve CC-0 showed a median OS of 3 months. Multivariate analysis showed that incomplete cytoreduction is an independent risk factor for OS. However, HIPEC was not associated with OS of CRC patients in our study, which can be attributed to the small sample size. The results of the current study show that CRS should be performed on CRC patients as it is a safe, feasible, and effective for treatment of diverse advanced tumors.

The findings of this study show that complete resection of ovarian metastasis is positively correlated with a better prognosis. However, CRC patients with OM to undergo surgery should be selected carefully. Preoperative assessment of suitable patients for aggressive treatment mode can reduce switching operation rate, incomplete tumor surgery rate and perioperative mortality. Currently, there is no unified standard but some considerations include: informed consent and will of patient; ECOG < 2; no serious complications; acceptable quality of life; asymptomatic; lack of tumor progression during chemotherapy; absence of extravasation; resectable liver metastases <= 3; intestinal stenosis <= 1; no widespread intestinal disease; no biliary or ureteral obstruction; stomach liver toughening with involvement < 5 cm; no mesenteric root or pancreatic infiltration; possibility of completing CC0-1; PCI ≤ 20, however, prognosis of patients are different. Several prognostic scoring system have been reported as references for CRC.
patients with PM, including Colorectal Peritoneal Score [20], Peritoneal Surface Disease Severity Score (PSDSS) [21] and Colorectal Peritoneal Metastases Prognostic Surgical Score [22, 23]. Pelz et al. developed a PSDSS based on clinical symptoms, PCI and histology to serve as a prognostic tool for overall survival for clinicians and researchers. Simkens et al. evaluated peritoneal surface disease PSDSS and suggested COMPASS, including age, PCI, locoregional lymph node status and signet ring cell histology. However, no other single factor examined reliably differentiated suitable patients to undergo surgery from CRC patients with OM who met an early demise. Therefore, we sought to develop a scoring system using multiple factors to provide information on pre-operative or intra-operative decision making. The alternative system uses 3 variables including PCI, size of OM and CEA > 30ng/mL. In order to maximize clinical utility only variables known pre-operatively and/or intra-operatively were included. Therefore, although completeness of OM resection was prognostic factor for survival as shown by multivariate analysis, CC was not used in building our predictive model. All three factors in the final scoring model were weighted based on comparable hazard ratios (2.295, 2.536, and 0.899 for PCI, size of OM and CEA > 30ng/mL, respectively).

A group of patients (risk score ≥ 3) who performed poorly after resection were identified using this proposed risk scoring system. These outcomes were consistent with modern chemotherapy outcomes (median OS = 12). The findings show that higher score is correlated with poor prognosis. High clinical risk score was associated with significant decrease in proportion of CC-0 patients, whereas the proportion of CC-3 or CC-4 patients was significantly increased. These findings imply that CC-3 or CC-4 patients should not undergo resection. In contrast, patients with < 3 points showed comparable survival to patients with surgery.

Prognostic factors were analyzed and a new clinical risk score for CRC patients with OM was developed using data from our center, however, our study had some limitations. First, this was a retrospective study, therefore it had potential bias. Second, we used a sample size comprising 67 CRC patients with OM. These limitations could be ameliorated by recruitment of more patients for inclusion in a future prospective study. Studies including more samples should be carried out to assess effectiveness of treatments and explore effective prognostic factors for CRC patients with OM.

Conclusion

In summary, surgery is an effective and safe treatment approach for CRC patients with OM. In addition, surgery of the metastatic site should be recommended for CRC patients with OM to achieve CC-0. OM should not be considered an absolute contraindication to curative resection, however appropriate selection is important. The proposed scoring system provides a basis for identification of a subset of patients who do not benefit from resection.

Declarations

Ethical approval and consent to participate:
This study was reviewed and approved by Institutional Review Board of the Second Affiliated Hospital of Zhejiang University School of Medicine.

Informed consents were obtained from all participants in the study.

Consent to publication:

Informed consents were obtained from all authors in the study.

Availability of data and material

All data generated or analyzed during this study are included in this published article.

Competing interests

Authors declare that they have no conflicts of interest.

Funding

The study was funded by National Natural Science Foundation of China (No. 81472819, No. 81672342), the Zhejiang Provincial Key R&D Program of China (No. 2019C03018), the Zhejiang Provincial Natural Science Foundation of China (No. LY20H160038, LQ17H160008), the Fundamental Research Funds for the Central Universities (No. 2019QNA7028, No. 2019FZJD009).

Authors’ contributions

Study concepts: Lifeng Sun, Chao Chen, Da Wang; Data acquisition: Yuhuai Huang, Xiaoxu Ge, Jinhua Yang, Fengping Wang, Tian Jin; Manuscript preparation: Chao Chen, Xiaoxu Ge, Weihong Wu; Manuscript editing: Jian Wang, Linian Ling; Manuscript review: Lifeng Sun.

Acknowledgments

Our special acknowledgments to Mr. Bo Liu for helping us with editing.

References
1. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 2020, 70:7-30.

2. Ganesh K, Shah RH, Vakiani E, Nash GM, Skottowe HP, Yaeger R, Cercek A, Lincoln A, Tran C, Segal NH, et al: Clinical and genetic determinants of ovarian metastases from colorectal cancer. Cancer 2017, 123:1134-1143.

3. Byun JH, Ahn JB, Kim SY, Kang JH, Zang DY, Kang SY, Kang MJ, Shim BY, Baek SK, Kim BS, et al: The impact of primary tumor location in patients with metastatic colorectal cancer: a Korean Cancer Study Group CO12-04 study. Korean J Intern Med 2019, 34:165-177.

4. Segelman J, Flöter-Rådestad A, Hellborg H, Sjövall A, Martling A: Epidemiology and prognosis of ovarian metastases in colorectal cancer. Br J Surg 2010, 97:1704-1709.

5. Fujiwara A, Noura S, Ohue M, Shingai T, Yamada T, Miyashiro I, Ohigashi H, Yano M, Ishikawa O, Kamiura S, Tomita Y: Significance of the resection of ovarian metastasis from colorectal cancers. J Surg Oncol 2010, 102:582-587.

6. Sekine K, Hamaguchi T, Shoji H, Takashima A, Honma Y, Iwasa S, Kato K, Takahashi K, Kato T, Kanemitsu Y, Boku N: Retrospective Analyses of Systemic Chemotherapy and Cytoreductive Surgery for Patients with Ovarian Metastases from Colorectal Cancer: A Single-Center Experience. Oncology 2018, 95:220-228.

7. Ojo J, De Silva S, Han E, Lin P, Wakabayashi M, Nelson R, Lai LL: Krukenberg tumors from colorectal cancer: presentation, treatment and outcomes. Am Surg 2011, 77:1381-1385.

8. Lee SJ, Lee J, Lim HY, Kang WK, Choi CH, Lee JW, Kim TJ, Kim BG, Bae DS, Cho YB, et al: Survival benefit from ovarian metastatectomy in colorectal cancer patients with ovarian metastasis: a retrospective analysis. Cancer Chemother Pharmacol 2010, 66:229-235.

9. Bignell MB, Mehta AM, Alves S, Chandrakumaran K, Dayal SP, Mohamed F, Cecil TD, Moran BJ: Impact of ovarian metastases on survival in patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal malignancy originating from appendiceal and colorectal cancer. Colorectal Dis 2018, 20:704-710.

10. Kim WY, Kim TJ, Kim SE, Lee JW, Lee JH, Kim BG, Bae DS: The role of cytoreductive surgery for non-genital tract metastatic tumors to the ovaries. Eur J Obstet Gynecol Reprod Biol 2010, 149:97-101.

11. Jacquet P, Sugarbaker PH: Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res 1996, 82:359-374.

12. Al-Busaidi IS, Bailey T, Dobbs B, Eglinton TW, Wakeman CJ, Frizelle FA: Complete resection of colorectal cancer with ovarian metastases combined with chemotherapy is associated with improved survival. ANZ journal of surgery 2019, 89:1091-1096.

13. Mrad K, Morice P, Fabre A, Pautier P, Lhomme C, Duvillard P, Sabourin JC: Krukenberg tumor: a clinicopathological study of 15 cases. Ann Pathol 2000, 20:202-206.

14. Di Giorgio A, De Iaco P, De Simone M, Garofalo A, Scambia G, Pinna AD, Verdecchia GM, Ansaloni L, Macri A, Cappellini P, et al: Cytoreduction (Peritonectomy Procedures) Combined with Hyperthermic
Intraperitoneal Chemotherapy (HIPEC) in Advanced Ovarian Cancer: Retrospective Italian Multicenter Observational Study of 511 Cases. *Ann Surg Oncol* 2017, **24**:914-922.

15. Elias D, Honore C, Dumont F, Ducreux M, Boige V, Malka D, Burtin P, Dromain C, Goere D: Results of systematic second-look surgery plus HIPEC in asymptomatic patients presenting a high risk of developing colorectal peritoneal carcinomatosis. *Ann Surg* 2011, **254**:289-293.

16. Jimenez W, Sardi A, Nieroda C, Sittig M, Milovanov V, Nunez M, Aydin N, Gushchin V: Predictive and prognostic survival factors in peritoneal carcinomatosis from appendiceal cancer after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. *Ann Surg Oncol* 2014, **21**:4218-4225.

17. Kim DW, Park DG, Song S, Jee YS: Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy as Treatment Options for Peritoneal Metastasis of Advanced Gastric Cancer. *Journal of Gastric Cancer* 2018, **18**:296-304.

18. Lieu CH, Lambert LA, Wolff RA, Eng C, Zhang N, Wen S, Rafeeq S, Taggart M, Fournier K, Royal R, et al: Systemic chemotherapy and surgical cytoreduction for poorly differentiated and signet ring cell adenocarcinomas of the appendix. *Ann Oncol* 2012, **23**:652-658.

19. Solomon D, DeNicola N, Feingold D, Liu PH, Aycart S, Golas BJ, Sarpel U, Labow DM, Magge DR: Signet ring cell features with peritoneal carcinomatosis in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy are associated with poor overall survival. *J Surg Oncol* 2019.

20. Cashin PH, Graf W, Nygren P, Mahteme H: Patient selection for cytoreductive surgery in colorectal peritoneal carcinomatosis using serum tumor markers: an observational cohort study. *Ann Surg Oncol* 2012, **256**:1078-1083.

21. Chua TC, Morris DL, Esquivel J: Impact of the peritoneal surface disease severity score on survival in patients with colorectal cancer peritoneal carcinomatosis undergoing complete cytoreduction and hyperthermic intraperitoneal chemotherapy. *Ann Surg Oncol* 2010, **17**:1330-1336.

22. Simkens GA, van Oudheusden TR, Nieboer D, Steyerberg EW, Rutten HJ, Luyer MD, Nienhuijs SW, de Hingh IH: Development of a Prognostic Nomogram for Patients with Peritoneally Metastasized Colorectal Cancer Treated with Cytoreductive Surgery and HIPEC. *Ann Surg Oncol* 2016, **23**:4214-4221.

23. Demey K, Wolthuis A, de Buck van Overstraeten A, Fieuws S, Vandecaveye V, Van Cutsem E, D’Hoore A: External Validation of the Prognostic Nomogram (COMPASS) for Patients with Peritoneal Carcinomatosis of Colorectal Cancer. *Ann Surg Oncol* 2017, **24**:3604-3608.

Tables

Table 1
Variables	Value, N (%)	Variables	Value, N (%)
All patients (n=67)		Patients underwent surgery in our center (n=54)	
Age (year)		HIPEC	
≥60	49 (73.1%)	No	32 (59.3%)
<60	18 (26.9%)	Yes	22 (40.7%)
Primary cancer		Tumor Deposits	
Left Colon cancer	41 (61.2%)	None	29 (53.7%)
Right colon cancer	24 (35.8%)	Present	10 (18.5%)
Unknown	2 (3.0%)	Unknown	5 (9.3%)
Pathological type		Primary Tumor Size	
Adenocarcinoma	51 (76.1%)	<5cm	29 (53.7%)
Non- Adenocarcinoma	16 (23.9%)	≥5cm	14 (35.9%)
		Unknown	11 (20.4%)
Grade		Perineural invasion	
Grade I	6 (9.0%)	None	17 (31.5%)
Grade II	40 (59.7%)	Present	30 (55.6%)
Grade III	18 (26.9%)	Unknown	7 (13.0%)
Unknown	3 (4.5%)	Scope Reg LN Sur	
T stage		Scope Reg LN Sur (Number)	
T0-3	14 (20.9%)	None	13 (24.1%)
T4	44 (65.7%)	Present	36 (66.7%)
Tx	9 (13.4%)	Unknown	5 (9.3%)
N stage		Primary Tumor Size	
N0	15 (22.4%)	≤15cm	37 (68.5%)
N1	23 (34.3%)	≥15cm	14 (25.9%)
N2	19 (28.4%)	Unknown	5 (9.3%)
Nx	10 (14.9%)	Metastatic Tumor Size	
<5cm	30 (44.8%)	≤15cm	37 (68.5%)
≥5cm	15 (22.4%)	>15cm	14 (25.9%)
Unknown	22 (32.8%)	Unknown	3 (5.6%)
Time of OM		Time of OM	
synchronous	36 (53.7%)	synchronous	31 (57.4%)
metachronous	31 (46.3%)	metachronous	23 (42.6%)
Number of OM		Number of OM	
Unilateral	21 (38.9%)	Unilateral	21 (38.9%)
Bilateral	31 (57.4%)	Bilateral	31 (57.4%)
----------------------	----------------		
Parenchymatous organ metastasis			
none	18 (33.3%)		
OM+PM	14 (25.9%)		
OM+PM+others	17 (31.5%)		
OM+others	5 (9.3%)		
Peritoneal Metastasis			
No	32 (59.3%)		
Yes	22 (40.7%)		
CA125			
≤ 40 kU/L	20 (37.0%)		
>40 kU/L	25 (46.3%)		
unknown	9 (16.7%)		
CEA			
≤30 mg/L	32 (59.3%)		
>30 mg/L	15 (27.8%)		
unknown	7 (13.0%)		
CA199			
≤60 kU/L	31 (57.4%)		
>60 kU/L	16 (29.6%)		
unknown	7 (13.0%)		
PCI			
≤10	29 (53.7%)		
>10	25 (46.3%)		
CC			
0-1	37 (68.5%)		
>1	17 (31.5%)		

Table 2
Variables	Univariate analysis	Multivariate analysis		
	95%CI	P value	95%CI	P value
Tumor Deposits				
None				
Present	1.131(0.589-2.172)	0.711		
Unknown	0.355(0.081-1.556)	0.169		
Perineural invasion				
None				
Present	1.233(0.613-2.480)	0.556		
Unknown	0.375(0.114-1.234)	0.107		
Scope Reg LN Sur				
None				
Present	1.785(0.781-4.079)	0.169		
Unknown	0.515(0.105-2.535)	0.414		
Scope Reg LN Sur (Number)				
<4				
≥4	1.536(0.792-2.978)	0.204		
Unknown	0.394(0.090-1.724)	0.216		
HIPEC				
No				
Yes	0.868(0.479-1.573)	0.641		
Metastatic Tumor Size				
≤15cm				
>15cm	2.536(1.174-5.480)	0.018		
Unknown	0.711(0.167-3.024)	0.644		
Number of OM				
Unilateral				
Bilateral	1.956(0.965-3.967)	0.063		
Unknown	1.779(0.394-8.021)	0.454		
PM				
No				
Yes	2.295(1.170-4.503)	0.016		
PCI				
≤10				
>10	2.807(1.421-5.544)	0.003		

CA125
Parameter	Value	Lower Confidence Limit	Upper Confidence Limit	P Value
CEA	≤ 40 kU/L	1.212 (0.603-2.436)	P = 0.589	
	>40 kU/L	1.012 (0.411-2.491)	P = 0.979	
	unknown	1.012 (0.411-2.491)	P = 0.979	
CEA	≤30 mg/L	0.899 (0.437-1.852)	P = 0.773	
	>30 mg/L	0.728 (0.276-1.920)	P = 0.521	
	unknown	0.728 (0.276-1.920)	P = 0.521	
CA199	≤60 kU/L	0.837 (0.397-1.765)	P = 0.641	
	>60 kU/L	0.713 (0.271-1.876)	P = 0.494	
	unknown	0.713 (0.271-1.876)	P = 0.494	
CC	0	7.412 (2.170-25.317)	P = 0.001	
	1	7.412 (2.170-25.317)	P = 0.001	
	2	4.827 (2.235-10.422)	P < 0.001	
	3	143.854 (8.430-2454.725)	P = 0.001	
CC	0-1	3.782 (1.873-7.637)	P < 0.001	
	>1	3.782 (1.873-7.637)	P < 0.001	
		3.782 (1.873-7.637)	P < 0.001	