Discrepancies in the bilateral intradermal test and serum tests in atopic horses

Catharina M. M. van Damme*, Jan van den Broek† and Marianne M. Sloet van Oldruitenborgh-Oosterbaan‡

*Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, Utrecht NL, 3584 CM, The Netherlands
†Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht NL, 3584 CM, The Netherlands
‡Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, Utrecht NL, 3584 CM, The Netherlands

Correspondence: Marianne M. Sloet van Oldruitenborgh-Oosterbaan, Department Clinical Sciences, Yalelaan 112, 3584 CM Utrecht, The Netherlands. E-mail: m.sloet@uu.nl

Accepted 31 March 2020

Sources of Funding: The authors want to thank ArtuVet for providing the allergens for the intradermal test and for conducting the serum testing for allergen-specific IgE, both free of charge.

Conflict of Interest: No conflicts of interest have been declared.

Background – In equine atopic patients intradermal testing (IDT) and immunoglobulin (Ig)E serology are used frequently. There is little evidence regarding the reproducibility of the IDT and IgE serology in horses.

Objectives – To compare the results of a simultaneously performed IDT on the left and right side of the neck in atopic horses, and to compare these results with allergen-specific IgE serology.

Animals – Ten equine patients from a university hospital population with chronic urticaria and/or pruritus.

Methods and materials – The IDT was performed using 16 allergens and the results were evaluated after 30 min, 1, 4 and 24 h. Thirteen allergens also were analysed in duplicate with two monoclonal allergen-specific IgE enzyme-linked immunosorbent assays (ELISA).

Results – Good agreement (Kappa > 0.6) between left and right IDT was found only for Dermatophagoides farinae, Lepidoglyphus destructor, birch pollen mixture and perennial rye at 30 min, birch pollen mixture at 1 h, and Acarus siro and nettie and common mugwort mixture at 4 h. The bilateral comparison of the other allergens and even the same allergens at other time points showed little or no concordance between left and right IDT. The interlaboratory comparison between both ELISAs, and the comparison between the ELISAs and IDT, showed a good agreement for two of 13 allergens: D. farinae and Dermatophagoides pteronyssinus.

Conclusions and clinical importance – Based on these preliminary data, IDT and IgE serological test results should be interpreted with great care and further studies are needed to indicate the clinical relevance of these findings.

Introduction

Equine atopic dermatitis (AD) is considered to be an immunoglobulin (Ig)E-mediated hypersensitivity reaction triggered by environmental allergens such as pollens of trees, weeds and grasses, fungal spores, and house dust and storage mites.1,2 The disease is characterized clinically by seasonal or nonseasonal pruritus, and/or chronic, recurrent urticaria, and, sometimes, respiratory disorders.3 In atopic horses, the face, pinnae, ventral thorax, abdomen, inguinal region and limbs are reported to be the most affected cutaneous regions.1,2 Equine AD is diagnosed by combination of a compatible history, clinical signs, and the exclusion of infectious or other noninfectious causes of pruritus or urticaria.1 Unlike canine AD, the equine condition may not always be chronic and life-long.3

The commonly accepted, and preferred, method of identifying allergens in atopic horses is an intradermal test (IDT).1,4 Healthy (disease-free) horses as well as atopic horses could react positively to the allergens used in an IDT. This might relate to insufficient data in regard to the allergen-specific threshold concentrations.5–7 However, atopic horses show positive reactions more frequently in IDT than healthy horses.5 Serological IgE assays are considered less reliable or even completely unreliable for identifying allergens.1,8 Studies in horses have shown either a high variability between different serological assays8 or only slight agreement between the IDT and the IgE serology.9 Nevertheless, IDT in combination with an allergen-specific IgE serological assay is frequently used by veterinary surgeons to select allergens to define avoidance strategies or to construct allergen-specific immunotherapy (ASIT); in studies ASIT is reported to have a success rate of 64–84%.3,10,11

Atopic dermatitis can be hard to manage effectively solely with symptomatic medication and, therefore, it can be the cause of serious welfare compromise and impaired athletic performance.1,12 The objectives of the present study were to determine the reproducibility of the IDT by performing a simultaneous bilateral intradermal test, and to determine the concordance between the intradermal test results and two serological IgE enzyme-linked immunosorbent assays...
Discrepancies in skin and serum tests in horses

Methods and materials
All procedures were approved by the Ethical Committee of the Utrecht University (10801-2016-1). All owners signed a written consent for approval of the study.

Animals and inclusion criteria
A total of 10 horses (two mares, seven geldings and one stallion) with a history of chronic pruritus and/or chronic, recurrent urticaria were enrolled onto the study. All horses (six Dutch warmblood horses, one Icelandic horse, one Haflinger, one Welsh cob and one cross-breed), with a mean age of 13 years, were referral patients. Atopic dermatitis was diagnosed by excluding ectoparasite infestations and microbial infections, along with signalement. All horses showed clinical signs especially during the winter season except for one case diagnosed with insect bite hypersensitivity. Any medications that could influence the results of the IDT or IgE serology, including systemic and topical glucocorticoids were withdrawn for ≥14 days before the study.

Allergens for the intradermal test
A total of 16 aluminum-precipitated allergens or allergen mixtures were used for the IDT. These included the grasses, trees, weeds, fungal spores and mites commonly found in the region. Extracts from all allergens were delivered as 3 mL glass vials in an aqueous solution with 0.4% phenol (ArtuVet Animal Health B.V.; Lelystad, the Netherlands). The concentration of the allergens used was 1,000 protein nitrogen units (PNU) for pollen and maize antigen, 100 PNU for mite antigen and 100 µg/mL for fungal spore antigen. All allergens were registered for intracutaneous use in dogs. Allergens were stored in the original vials at 4°C. All allergens and controls were transferred to room temperature 10 min before the test. A positive control solution of 1:1,000 w/v dilution of histamine was used and as a negative control an isotonic phosphate buffered solution with 0.4% phenol was used (ArtuVet Animal Health B.V.).

Intradermal testing
All IDTs were conducted in the winter season. During the 24 h test, nine horses were stabilized at the premises of Utrecht University and one horse was tested at home. Ten minutes before the IDT was carried out, jugular blood samples were collected into 5 mL vacutainer serum tubes. Three anxious horses were lightly sedated during the IDT. Jugular blood samples were numbered randomly and shipped to two diagnostic laboratories, Laboratory A (LA) and LB. Two duplicate serum samples were sent to each laboratory for ELISA testing to show intrasay variability. The ELISA was performed blinded to the IDT results. Both laboratories used an ELISA technique for their assay: LA used a monoclonal antibody cocktail-based ELISA (macELISA) for detection of allergen-specific IgE (Aller-g-Complete, Greer laboratories; Lenoir, NC, USA)13 and LB used an ELISA based on a specific single monoclonal anti-IgE antibody (smELISA) which was generated using equine recombinant IgE.14 Semi-quantitative allergen-specific IgE levels reported by the laboratories were interpreted according to the EAU (ELISA Absorbance Unit) for LA and optical density (OD) for LB. A positive result was defined as >300 EAU in LA and >200 OD in LB.

Allergen-specific IgE serology
Serum from each horse was separated by centrifugation for 10 min at 1,000g and four samples per horse were stored at −70°C. Samples were numbered randomly and shipped to two diagnostic laboratories, Laboratory A (LA) and LB. Two duplicate serum samples were sent to each laboratory for ELISA testing to show intrasay variability. The ELISA was performed blinded to the IDT results. Both laboratories used an ELISA technique for their assay: LA used a monoclonal antibody cocktail-based ELISA (macELISA) for detection of allergen-specific IgE (Allergen-Complete, Greer laboratories; Lenoir, NC, USA)13 and LB used an ELISA based on a specific single monoclonal anti-IgE antibody (smELISA) which was generated using equine recombinant IgE.14 Semi-quantitative allergen-specific IgE levels reported by the laboratories were interpreted according to the EAU (ELISA Absorbance Unit) for LA and optical density (OD) for LB. A positive result was defined as >300 EAU in LA and >200 OD in LB.

Statistical analysis
All statistical analyses were performed with Prism v8.2.0 for Windows (GraphPad Software; San Diego, CA, USA, www.graphpad.com). All data were checked for normality with a normal probability plot. The Spearman rank correlation test (instead of the Pearson rank correlation test) was used when a nonlinear relationship was expected.

For intrainvasive analysis of the bilateral IDT at each time point, Spearman rank correlation and Cohen’s kappa test of concordance were used.15,16 To calculate the Spearman rank correlation, the original wheat diameters were divided by the mean diameter of the negative and positive control of the same side. For the kappa test, the combination of wheat diameter and turgidity was assessed. For interlaboratory comparison of the two ELISAs, both Pearson rank correlation test and the kappa test of concordance were used. The average of both duplicate ELISAs was transformed logarithmically before calculating the Pearson rank correlation. Average

© 2020 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the European Society of Veterinary Dermatology and the American College of Veterinary Dermatology, 31, 390–e104.
duplicate ELISA values >300 EAU in LA and >200 OD in LB were regarded as positive in the kappa test of concordance.

In order to quantify the agreement between the IDT (30 min, 1 and 4 h) and the two ELISAs, Spearman rank correlation and the kappa test of concordance were used. For the Spearman rank correlation, first, the average values of the duplicate IDT were calculated and corrected with the mean diameter of the negative and the positive control. Secondly, the average values of the duplicates of the logarithmically transformed data of macELISA and smELISA were calculated. Consecutively, the average values of duplicate IDT and duplicate ELISAs were compared using the Spearman rank correlation test. For the kappa test of concordance between duplicate IDT and ELISAs, average duplicate ELISA values >300 EAU in LA and >200 OD in LB were regarded as positive. Average duplicate IDT values greater than the average diameter of the negative and the positive control were regarded as positive.

A correlation coefficient \(r > 0.8 \) and a \(P \)-value < 0.001 were considered indicative of a good correlation. Kappa values \((\kappa)\) of positive and negative results were calculated by using the formula

\[
\kappa = \frac{\sum e - \sum ef}{N - \sum ef},
\]

where \(\sum e \) is the sum of the agreements occurring by chance and \(N \) is the number of horses being compared. Values of \(\kappa \) were interpreted as follows; \(\leq 0.20 \), poor; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, good; and 0.81–1.00, excellent (in accordance with a previous published study).17

Results

Positive and negative controls

All horses showed a positive response to histamine on both sides of the neck at 30 min, with a mean difference between right and left of 1 mm. At 1 h the positive control still was clearly visible and the mean decreased by 1 mm. A broad range in the positive control diameter was seen after 4 h even in the same horse as illustrated in Table 1. Almost all positive controls were 0 mm at 24 h, except in one horse where the positive control was 12 mm on the left side only. The mean diameter of the negative control was <4 mm at all time points.

Bilateral IDT results

A total of 320 IDT allergen injections were administered. Considering all four time points, these produced a total of 140 positive reactions. Of all positive reactions, 37% were positive on both sides (52 injection sites) and 63% were positive on one side only (88 injection sites). The overall difference in wheal diameter between left and right sides is displayed in Table 2.

No correlation in wheal diameter between the left- and right-side IDT was found for almost all allergens at all time points except for *Dermatophagoides farinae* at 1 h (Table 3). Good to excellent agreement \((\kappa) \) between positive and negative reactions at 30 min was found for four of 16 allergens: *Lepidoglyphus destructor*, *D. farinae*, perennial rye and birch pollen mixture. At 1 h, good agreement \((\kappa) \) was found for one of 16 allergens (birch pollen mixture); at 4 h, good \(\kappa \) was found for two of 16 allergens (*Acarus siro* and the common mugwort and nettle mixture). At 24 h after the intradermal injections, no bilateral positive reactions were noticed. When considering all time points, the highest numbers of bilateral positive reactions were noticed for *D. farinae* (five of 10 horses) followed by perennial rye (three of 10 horses) and *Dermatophagoides pteronyssinus*, birch pollen mixture and pellitory-of-the-wall (two of 10 horses).

Intra- and interlaboratory analysis of macELISA and smELISA

The intra- and interlaboratory correlation and \(\kappa \) of macELISA (LA) and smELISA (LB) are illustrated in Table 4. To assess intralaboratory test variability, two serum samples from the same horse were analysed in duplicate in LA and LB.

In LA a good intralaboratory correlation in EAU of 11 of 14 allergens was found, except for perennial rye, timothy grass and fungal spores. Good to excellent intralaboratory agreement in \(\kappa \) between positive and negative results in LA was found for nine of 14 allergens. For three allergens (*Tyrophagus putrescentiae*, timothy grass and fungal spores) it was not possible to calculate the \(\kappa \) agreement due to complete negative results of the duplicate blood samples.

In LB a good intralaboratory correlation in OD for six of 14 allergens was found. A difference in intralaboratory correlation in LB was found for *L. destructor*, *Acarus siro*, perennial rye, timothy grass, birch pollen mixture, pellitory-of-the-wall, English plantain and fungal spores. Good to excellent intralaboratory agreement in \(\kappa \) in LB was found for five of 14 allergens. For nine of 14 allergens it was not possible to calculate the \(\kappa \) agreement due to complete negative results of the duplicate blood samples.

The interlaboratory analysis between the macELISA and smELISA showed both a good correlation and an excellent \(\kappa \) for two of 13 allergens: *D. farinae* and *D. pteronyssinus* (Table 4). As far as negative and positive results were concerned, intralaboratory differences of LA were 2.9%, intralaboratory differences of LB were 1.4%, and interlaboratory differences between macELISA and smELISA were 8.6%.

Interassay analysis of IDT versus macELISA and smELISA

No correlation was found between the macELISA and IDT and smELISA and IDT at all time points for all allergens. Good to excellent \(\kappa \) agreement of the positive and negative outcomes of macELISA versus IDT was found for *D. farinae* (30 min and 1 h IDT), *D. pteronyssinus* (30 min, 1 and 4 h IDT) and perennial rye (4 h IDT). Good to excellent \(\kappa \) agreement of smELISA versus IDT was

Table 1. Range, mean and standard deviation (SD) (mm) of wheal size of the positive and negative controls

Time point	Positive control range	Positive control mean SD	Negative control range	Negative control mean SD	
30 min	14–18	16	2	0–10	4
1 h	12–18	15	2	0–10	3
4 h	0–18	10	6	0	2
24 h	0–12	1	3	0	0

© 2020 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the European Society of Veterinary Dermatology, 31, 390–e104.
Discrepancies in skin and serum tests in horses

Table 2. Summary of duplicate intradermal test results

Time point	Bilateral different results	Bilateral positive results		
	Number of positive reactions (n)	Mean difference in mm (range)	Number of positive reactions (n)	Mean difference in mm (range)
30 min	23	6.6 (1–18)	10	3.4 (1–7)
1 h	40	6.2 (0–14)	12	2.0 (1–5)
4 h	24	4.3 (0–20)	30	2.8 (0–15)
24 h	1	10 (10)	0	-

Bilateral different results: the right side showed a positive reaction and the left side showed a negative reaction or vice versa.

Bilateral positive results: both sides showed a positive reaction.

Table 3. Duplicate intradermal test results at 30 min, 1 and 4 h. Spearman rank correlation for comparison of the wheal diameters and Kappa (κ) for comparison of positive and negative results

Allergens	30 min (wheal diameters)	4 h (wheal diameters)			
	Intraassay r	Intraassay Κ	Intraassay r	Intraassay Κ	
Mites					
Tyrophagus putrescentiae	0.22	0.18	0.08	0.61	
Lepidoglyphus destructor	0.26	0.35	0.2	0.27	
Acarus siro	0.03	0.61	0.35	0.5	
Dermatophagoides farinae	0.55	0.91	0.91	0.5	
Dermatophagoides pteronyssinus	0.60	0.35	0.4	0.5	
Grasses					
Lolium perenne (perennial rye)	0.33	0.71	0.35	0.5	
Phleum pratense (timothy grass)	0.05	0.38	0.22	0.46	
Poa pratensis (Kentucky blue grass)	0.24	0.21	0.35	0.4	
Trees					
Birch, alder and hazel mixture	0.30	0.27	0.6**	0.41	
Weeds					
Parietaria officinalis (pellitory-of-the-wall)	0.21	0.19	0.2	0.12	
Chenopodium album (lamb’s quarters)	0.56	0.51	0.3	0.32	
Plantago lanceolate (English plantain)	0.22	0.031	0.43	0.7	
A combination of Artemisia vulgaris & Urtica dioica (nettles)	0.09	-0.18	-0.2	-0.09	
Rumex acetosella (sheep sorrel)	0.40	0.09	-0.2	-0.20	
Fungal spores	A combination of Alternaria alternata, Aspergillus fumigatus and Cladosporium herbarum	0.48	neg	0.18	0.46
Grain	Zea mays (maize)	0.17	-0.2	0.34	-0.20

*Good correlation (> 0.8, P < 0.001);
**κ ≥ 0.6; neg, all negative.

Table 4. Intra- and interlaboratory comparison of immunoglobulin (Ig)E serological results of Laboratory A (LA: monoclonal antibody cocktail-based enzyme-linked immunosorbent assay[ELISA]) and Laboratory B (LB: single monoclonal ELISA)

Allergens	LA intrasay correlation (r)	LA intrasay Κ	LB intrasay correlation (r)	LB intrasay Κ	LA/LB intrasay correlation (r)	LA/LB intrasay Κ
Mites	0.94*	neg	0.85*	1**	-0.79	0
Lepidoglyphus destructor	0.83*	0	0.05	neg	-0.09	neg
Acarus siro	0.93*	1**	0.72	0.6**	-0.82	-0.1
Dermatophagoides farinae	0.98*	0.7**	0.97*	1**	0.89*	1**
Dermatophagoides pteronyssinus	0.99*	1**	0.94*	1**	0.96*	1**
Grasses						
Lolium perenne (perennial rye)	-0.15	1**	0.86	neg	0	0
Phleum pratense (timothy grass)	0.57	neg	0.71	neg	-0.19	neg
Poa pratensis (Kentucky blue grass)	0.93*	0	n.m.	n.m.	n.m.	n.m.
Trees						
Birch, alder and hazel mixture	0.98*	1**	0.66	neg	0	0
Weeds						
Parietaria officinalis (pellitory-of-the-wall)	0.94*	1**	0.09	neg	-0.5	0
Chenopodium album (lamb’s quarters)	0.98*	1**	0.89*	neg	0.19	0
Plantago lanceolate (English plantain)	0.98*	0.6**	0.15	neg	0.21	0
Artemisia vulgaris (common mugwort)	0.94*	1**	0.95*	neg	-0.53	0
Rumex acetosella (sheep sorrel)	n.m.	n.m.	0.91*	1**	n.m.	n.m.
Fungal spores	A combination of Alternaria alternata, Aspergillus fumigatus and Cladosporium herbarum	0.46	neg	-0.01	-0.30	neg

Pearson rank correlation for comparison of numerical values [ELISA Absorbance Units (EAU) and optical density (OD)], and Kappa (κ) for comparison of positive and negative results.

*Good correlation (> 0.8, P < 0.001);
**κ ≥ 0.6; n.m., allergen not measured; neg, all negative.

© 2020 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the European Society of Veterinary Dermatology and the American College of Veterinary Dermatology, 31, 390–e104.
found for *D. farinae* (30 min and 1 h IDT) and *D. pteronyssinus* (30 min, 1 and 4 h IDT). Interassay correlation between IDT at 30 min and macELISA and smELISA are illustrated in Table 5.

Discussion

To the best of the authors’ knowledge, this is the first study assessing the agreement between IDT performed on the left side and right side in atopic horses. As our study was exploratory, only a small number of horses were included and, therefore, the results should be interpreted with caution. However, the outcome of the bilateral IDT was surprising considering the extent of the differences between the left and right sides at the same time points. Previous studies in horses have shown that the repeatability of the IDT (20 min after injection) was poor when the IDT was performed with an interval of four to five months in the same horse.19 Furthermore, multiple studies over the years have shown that even healthy horses can react differently with intradermal tests, which is one of the reasons why the determination of thresholds for allergens is so difficult in horses.5,18 Two of the tested grasses and all five weeds, indicating that two of these allergens overlap with the allergens showing a good correlation in atopic people.21 Based on our results, only the IDT results of *D. pteronyssinus* human studies, it is known that the repeatability of a skin test is high in symptomatic allergic individuals.21 Because all these horses were ridden, they would most likely have been in contact with the *D. farinae* antigen.22

Table 5. Comparison of the intradermal test at 30 min and IgE serology results of Laboratory A [LA: monoclonal antibody cocktail-based enzyme-linked immunosorbent assay (ELISA)] and Laboratory B [LB: single monoclonal ELISA]

Allergens	LA/IDT Interassay correlation (r)	LA/IDT Interassay κ	LB/IDT Interassay correlation (r)	LB/IDT Interassay κ
Mites				
Tyrophagus putrescensiae	0.09	neg	0.03	0
Lepidoglyphus destructor	−0.02	0	−0.18	0
Acarus siro	0.15	0	−0.25	0
Dermatophagoides farinae	0.59	0.6**	0.66	0.6**
Dermatophagoides pteronyssinus	0.63	0.6**	0.47	0.6**
Grasses				
Lolium perenne (perennial rye)	0.10	−0.1	−0.1	0
Phleum pratense (timothy grass)	0.33	neg	−0.28	neg
Poa pratensis (Kentucky blue grass)	0.20	neg	n.m.	n.m.
Trees				
Betula (birch)	0.35	−0.1	−0.12	0
Weeds				
Parthenaria officinalis (pellitory-of-the-wall)	0.23	−0.1	−0.32	0
Chenopodium album (lamb’s quarters)	−0.15	−0.1	−0.56	0
Plantago lanceolate (English plantain)	0.21	0	0.33	neg
Artemisia vulgaris (common mugwort)	−0.04	−0.1	0.2	0
Rumex acetosella (sheep sorrel)	n.m.	n.m.	−0.32	0
Fungal spore				
Alternaria alternata	0.21	neg	0.06	neg

Spearman rank correlation for comparison of numerical values and Kappa (κ) for comparison of positive and negative results.

* Good correlation (r > 0.8, P < 0.001).
* *κ* ≥ 0.6; n.m., allergen not measured; neg, all negative.

have varied. It was attempted to minimize this by filling each syringe with a specified volume for each allergen. Technical errors also were minimized by always using the same batch, the same type of syringe and needle, and by ensuring that all injections were administered by the same experienced investigator.

Randomization of the allergens per injection site was not performed. However, the investigator administering and reading the IDT was blinded to the specific allergens per injection site. Therefore, interpretation biases were assumed to be minimal.

Three anxious horses were lightly sedated with detomidine hydrochloride and this sedation might have influenced the IDT outcome. However, previous studies confirmed clear positive IDT reactions to histamine and allergens in horses sedated with detomidine hydrochloride.23 In atopic dogs, the use of α2-adrenergic agonists during IDT is, also, regarded as a good sedative for facilitating intradermal testing with minimal to no effect on the outcome of the IDT.24 Especially because the sedated horses showed clear bilateral positive reactions to histamine and showed positive reactions to allergens in the IDT, it was concluded that the influence of sedation was, at most, minimal.

A lack of knowledge regarding the correct threshold concentrations of the used allergens in horses in this study could explain false positive or false negative responses to the IDT. However, to the best of the authors’ knowledge, threshold concentrations are not established in Europe. In Australia, however, one study suggested the use of >1,000 PNU/mL for pollen and fungal spore allergens.19 Pollen allergen extracts of 1,000 PNU/mL were used in this study and no bilateral positive reactions were identified at 30 min and 1 h for two of the tested grasses and all five weeds, indicating that for these allergens irritant reactions might not play a role in our study. Recommended threshold concentrations for IDT allergen solutions of dust mites in horses are variable.19,23 In the present study we used the recommended allergen concentration for atopic dogs for the
dust and storage mites owing to a lack of conclusive evidence for the best concentration of mite allergen extract in horses. This concentration might be too high, although if that was the case, bilaterally different results would not have been expected.

The in-laboratory variability of the macELISA and smELISA was evaluated by sending duplicate blood samples to each laboratory. The macELISA showed a good correlation and k for the majority of the allergens and can, therefore, be regarded as an ELISA with a good in-laboratory reproducibility. The smELISA showed a good correlation for the minority of the allergens. In particular, although nine of 14 allergens showed a negative OD (OD < 200) in combination with a low correlation, it might be possible that the smELISA only shows a rather high variability with OD < 200. Larger studies are indicated to support this hypothesis. However, in atopic dogs, it is already known that another IgE serological test, the FcRI-based ELISA, showed prominent variability with low OD values around the cut-off point. 25

The interlaboratory variability correlation of the macELISA and smELISA was good for only two of 13 allergens: D. farinae and D. pteronyssinus. In atopic horses, an interlaboratory comparison of these two commercially available tests has never been performed before as far as the authors are aware. Due mainly to time and financial constraints, some equine practitioners prefer to use only the serological IgE assay to identify allergens for immunotherapy. Based on our report, the result of an in vitro serological IgE assay is highly dependent on the specific test chosen and therefore immunotherapy recommendations also will show undesirable high variability for storage mites, grass, tree and weed pollen, and fungal spores.

This study described a high interassay variability between the IDT and macELISA IgE serology and IDT and smELISA IgE serology, for storage mites, grass, weed and tree pollen. Previous studies in horses, investigating the agreement between IDT and serological IgE tests, have already shown little or no concordance between the tests beyond chance for the majority of allergens. 8,9 As an example, one study reported as in this report, no agreement for birch pollen, perennial rye, T. putrescentiae, A. siro, English plantain, Kentucky blue grass, common mugwort and fungal spores, when comparing IgE serology with the IDT in horses with skin hypersensitivities. 9 Another study compared three different serological IgE tests with the IDT and found that none of their in vitro assays of allergen-specific IgE showed good correlation with the IDT, although the FcRI-based ELISA showed a significantly better correlation than the other two serological IgE serological tests. 9 Retrospectively, it would have been of value to include the FcRI-based ELISA in our interlaboratory analysis to assess if this test showed a better interlaboratory correlation between the macELISA and smELISA and between the results of the IDT; another study reported a specificity > 89% for both house dust mites in atopic dogs in a comparison of the IDT and a FcRI-based ELISA. 26

To summarize, the results presented herein demonstrate that in atopic horses the results of a bilateral intradermal test showed rather high variability. In addition, high variability was also demonstrated between the two investigated in vitro IgE serological tests and, moreover, between the IgE serological tests and the IDT at all time points. Some veterinarians dealing with equine cases use the IDT, mostly in combination with an in vitro IgE serological test, to identify allergens for avoidance or to compose ASIT in horses already clinically diagnosed as atopic. As always, evaluation of results should be performed in association with the history, clinical signs, exposure to allergens and elimination of other causes of pruritus. However, the noted high variability in both the IDT and the macELISA and smELISA could highly influence ASIT recommendations. In conclusion, our results show that there is a need for better reliability of both IDT and IgE serological tests. Randomized, independent, large-scale, peer-reviewed studies are needed to assess the variability of the IDT and in vitro equine IgE serological tests to provide evidence-based guidelines for equine intradermal and IgE serological testing in atopic horses.

References

1. Scott DW, Miller WH. Equine Dermatology, 2nd edition. Maryland Heights, MO: Saunders Elsevier, 2011: 263-313.
2. Marsella R, De Benedetto A. Atopic dermatosis in animals and people: an update and comparative review. Vet Sci 2017; 4: 37.
3. Loeffler A, Herrick D, Allen S et al. Long-term management of horses with atopic dermatitis in southeastern England: a retrospective questionnaire study of owners’ perceptions. Vet Dermatol 2018; 29: 526-e176.
4. Fadok VA. Update on equine allergies. Vet Clin North Am Equine Pract 2013; 29: 541–550.
5. Jose-Cunilleras E, Kohn CW, Hillier A et al. Intradermal testing in healthy horses and horses with chronic obstructive pulmonary disease, recurrent urticaria, or allergic dermatitis. J Am Vet Med Assoc 2001; 219: 1,115–1,121.
6. Lebis C, Bourdeau P, Marzin-Keller F. Intradermal skin tests in equine dermatology: a study of 83 horses. Equine Vet J 2002; 34: 666-671.
7. Lorch G, Hillier A, Kwokha KW et al. Results of intradermal tests in horses without atopy and horses with atopic dermatitis or recurrent urticaria. Am J Vet Res 2001; 62: 1,051–1,059.
8. Lorch G, Hillier A, Kwokha KW et al. Comparison of immediate intradermal test reactivity with serum IgE quantitation by use of a radioallergosorbent test and two ELISA in horses with and without atopy. Am J Vet Med Assoc 2001; 218: 1,314–1,322.
9. Morgan EE, Miller WH, Wagner B. A comparison of intradermal testing and detection of allergen-specific immunoglobulin E in serum by enzyme-linked immunosorbent assay in horses affected with skin hypersensitivity. Vet Immunol Immunopathol 2007; 120: 160–167.
10. Stepnick CT, Outerbridge CA, White SD et al. Equine atopic skin disease and response to allergen-specific immunotherapy: a retrospective study at the University of California-Davis (1991–2008). Vet Dermatol 2012; 23: 29-e7.
11. Radwanski NE, Morris DO, Boston RC et al. Longitudinal evaluation of immunological responses to allergen-specific immunotherapy in horses with IgE associated dermatological disease, a pilot study. Vet Dermatol 2019; 30: 255–e78.
12. Marsella R. Equine allergy therapy: update on the treatment of allergic disease, recurrent urticaria, or allergic dermatitis. Vet Dermatol 2019; 30: 255–e78.
13. Lee KW, Blankenship KD, McCurry ZM et al. Performance characteristics of a monoclonal antibody cocktail-based ELISA for detection of allergen-specific IgE in dogs and comparison with a high affinity IgE receptor-based ELISA. Vet Dermatol 2009; 20: 157–164.

© 2020 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the European Society of Veterinary Dermatology and the American College of Veterinary Dermatology, 31, 390-e104. 395
14. Wilson AD, Harwood L, Torstensdottir S et al. Production of monoclonal antibodies specific for native equine IgE and their application to monitor total serum IgE responses in Icelandic and non-Icelandic horses with insect bite dermal hypersensitivity. Vet Immunol Immunopathol 2006; 112: 156–170.
15. Dohoo IR, Martin W, Stryhn H. Veterinary Epidemiologic Research. Charlotte, Nova Scotia: AVC Inc., 2003: 616–623.
16. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anest Analg 2018; 126: 1,763–1,768.
17. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005; 37: 360–363.
18. Sloet van Oldruitenborgh-Oosterbaan MM, Noli C, Van De Knaap M et al. Intradermal allergy testing in normal horses. In: Advances in Veterinary Dermatology, volume 3. Kwochka KW, von Tschcharner C eds., Butterworth-Heinemann, Oxford, 1998: 564–565 (abstract).
19. Baxter CG, Vogelnest LJ. Determination of threshold concentrations of multiple allergenic extracts for equine intradermal testing using normal horses in three seasons. Vet Dermatol 2008; 19: 305–313.
20. Lane MJ, Pucheu-Haston CM, Kearney MT et al. Determination of irritant threshold concentrations of multiple tree, grass, weed and mould allergens for intradermal testing of horses residing in the southern USA. Vet Dermatol 2017; 28: 604–e147.
21. Bodtger U, Jacobsen CR, Poulsen LK et al. Long-term repeatability of the skin prick test is high when supported by history or allergen-sensitivity tests: a prospective clinical study. Allergy 2003; 58: 1,180–1,186.
22. Wallace JC, Vogelnest LJ. Evaluation of the presence of house dust mites in horse rugs. Vet Dermatol 2010; 21: 602–607.
23. Roberts HA, Hurcombe SD, Hillier A et al. Equine intradermal test threshold concentrations for house dust mite and storage mite allergens and identification of stable acari fauna. Vet Dermatol 2014; 25: 124–126.
24. Hillier A, DeBoer DJ. The ACVD task force on canine atopic dermatitis (XVII): intradermal testing. Vet Immunol Immunopathol 2001; 81: 289–304.
25. Thom N, Favrot C, Failing K et al. Intra- and inter-laboratory variability of allergen-specific IgE levels in atopic dogs in three different laboratories using the Fc-epsilon receptor testing. Vet Immunol Immunopathol 2010; 133: 183–189.
26. Foster AP, Littlewood JD, Webb P et al. Comparison of intradermal and serum testing for allergen-specific IgE using a Fc epsilon RIalpha-based assay in atopic dogs in the UK. Vet Immunol Immunopathol 2003; 93: 51–60.

Résumé
Contexte – Chez les chevaux atopiques, les tests intradermiques (IDR) et la sérologie immunoglobuline (IgE) sont souvent utilisés. Il y a peu de preuve concernant la reproductibilité des IDR et de la sérologie IgE chez le cheval.
Objectifs – Comparer les résultats d’IDR réalisés simultanément sur les faces droite et gauche du cou de chevaux atopiques et comparer ces résultats avec une sérologie IgE spécifique d’allergènes.
Sujets – Dix chevaux d’un hôpital universitaire avec urticaria chronique et/ou prurit.
Matériels et méthodes – Les IDR ont été réalisés avec 16 allergènes et les résultats ont été évalués après 30 min, 1, 4 et 24h. Treize allergènes ont aussi été analysés en duplicata avec deux tests ELISA IgE monoclonaux spécifiques d’allergènes.
Résultats – Une bonne concordance (Kappa > 0,6) entre les IDR droit et gauche a été trouvée pour Dermatophagoides farinae, Lepidoglyphus destructor, le pollen de bouleau et le seigle vivace à 30 min, le mélange de pollen de bouleau à 1h, et Acarus siro, l’ortie et l’armoise à 4 h. La comparaison bilatérale des autres allergènes et aussi, des mêmes allergènes à d’autres moments ont montré peu ou pas de concordance entre les IDR droit et gauche. La comparaison inter laboratoire entre les deux tests ELISA et la comparaison entre les ELISA et les IDR, a montré une bonne concordance pour deux des 13 allergènes : D. farinae et Dermatophagoides pteronyssinus.
Conclusions et importance clinique – A partir de ces données prélminaires, les IDR et les tests sérologiques d’IgE devraient être interprétés avec précaution et des études supplémentaires sont nécessaires pour indiquer la signification clinique de ces données.

Resumen
Introducción – en pacientes atópicos equinos, las pruebas intradérmicas (IDT) y la serología de inmunoglobulina (IgE) se usan con frecuencia. Hay poca evidencia con respecto a la reproducibilidad de IDT y serología de IgE en caballos.
Objetivos – comparar los resultados de una IDT realizada simultáneamente en el lado izquierdo y derecho del cuello en caballos atópicos, y comparar estos resultados con la serología de IgE específica para alérgenos.
Animales – diez pacientes equinos de una población de un hospital universitario con urticaria crónica y/o prurito.
Métodos y materiales – la IDT se realizó con 16 alérgenos y los resultados se evaluaron después de 30 min, 1, 4 y 24h. También se analizaron trece alérgenos por duplicado en pruebas con dos anticuerpos monoclonales para IgE específicos de alergeno inmunoadsorbidos y ligados a enzima (ELISA).
Resultados – se observó buena concordancia (Kappa> 0,6) entre IDT izquierda y derecha solo para Dermatophagoides farinae, Lepidoglyphus destructor, mezcla de polen de abedul y centeno perenne a los 30 min, mezcla de polen de abedul a 1 h, y Acarus siro y mezcla de ortiga y ajenjo común a las 4 h. La comparación bilateral de los otros alérgenos e incluso de los mismos alérgenos en otros puntos temporales mostró poca o ninguna concordancia entre la IDT izquierda y derecha. La comparación entre laboratorios entre ambos ELISA, y la comparación entre los ELISA y la IDT, mostró una buena correlación para dos de los 13 alérgenos: D. farinae y Dermatophagoides pteronyssinus.

© 2020 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the European Society of Veterinary Dermatology and the American College of Veterinary Dermatology, 31, 390–e104.
Discrepancies in skin and serum tests in horses

Conclusiones e importancia clínica – en base a estos datos preliminares, los resultados de las pruebas serológicas IDT e IgE deben interpretarse con gran cuidado y se necesitan más estudios para indicar la relevancia clínica de estos hallazgos.

Zusammenfassung
Hintergrund – Bei Pferdepatienten mit Atopie wird häufig der Intradermaltest (IDT) und die Immunglobulin (Ig) E Serologie eingesetzt. Es gibt nur wenig Evidenz in Bezug auf die Reproduzierbarkeit des IDT und der IgE Serologie bei Pferden.
Ziele – Ein Vergleich der Ergebnisse simultan durchgeführter IDTs an der linken und an der rechten Seite des Nackens von atopischen Pferden, sowie ein Vergleich dieser Ergebnisse mit der Allergen-spezifischen IgE Serologie.
Tiere – Es wurden 10 Pferde der Population einer Universitätseinhaltung mit monoklonalen Allergen-spezifischen IgE mittels Enzyme-linked-immunosorbent Assays (ELISA) analysiert.
Ergebnisse – Es wurde nur eine gute Übereinstimmung (Kappa > 0.6) zwischen linkem und rechtem IDT bei Dermatophagoides farinae, Lepidoglyphus destructor, Birkenpollenmix und ganzjährigem Roggen nach 30 Minuten, Birkenpollenmix nach 1 h und Acaerus siro und Nessel sowie Gemeinbeiß-Mix nach 4 h gefunden. Der bilaterale Vergleich der anderen Allergene und selbst dieselben Allergene zu anderen Zeitpunkten zeigte geringe oder keine Übereinstimmung. Die Inter-Labor Vergleich zwischen den ELISAs und dem IDT zeigte eine gute Übereinstimmung für zwei der 3 Allergene: D. farinae und Dermatophagoides pteronyssinus.

Schlussfolgerungen und klinische Bedeutung – Die Ergebnisse des IDT und der IgE Serologie sollten, basierend auf diesen vorläufigen Daten, mit großer Sorgfalt interpretiert werden und es sind weitere Studien nötig, um die klinische Relevanz dieser Ergebnisse zu zeigen.

要約
背景 – アトピー馬では皮内検査（IDT）および免疫グロブリン（Ig）E血清学が頻繁に使用される。馬におけるIDTおよびIgE血清学の再現性に関する証拠はほとんどない。
目的 – 本研究の目的は、アトピー馬の首の左右で同時に行われたIDT結果を比較し、これらの結果をアレルゲン特異的IgE血清学と比較することであった。
被験動物 – 慢性蕁麻疹およびまたは蕁麻疹を有する大学病院の16頭の馬。
材料と方法 – IDTは1, 4, 16, 24時間後に評価された。13種類のアレルゲンと、2つのモノクローナルアレルゲン特異的IgE酵素免疫測定法（ELISA）によって2重に解析した。
結果 – 左右IDT間の良好な一致（カッパ> 0.6）は、30分後のDermatophagoides farinae, Lepidoglyphus destructor, シラカバ花粉混合物および多年生ライフで、1時間後のシラカバ花粉混合物、そして4時間後のアシストコタダ、イクサおよびヨモギ混合物で認められた。他のアレルゲンと他の時点での同じアレルゲンの両側間比較では、左右のIDT間にはほとんどまたはまったく一致が見られなかった。両ELISA間の実験室間比較、そしてELISAおよびIDT間の比較は、13種類のアレルゲンのうち2つ（D. farinaeおよびDermatophagoides pteronyssinus）について良好な一致を示した。
結論と臨床の重要性 – これらの予備データに基づいて、IDTおよびIgE血清学的検査結果を細心の注意を払って解釈されるべきであり、これらの発見の臨床的関連性を示すためにさらなる研究が必要である。

要旨
背景 – 皮内試験(IDT)と免疫球蛋白(Ig)E血清学試験は皮膚科において重要な役割を果たし、特にアレルギー性疾患の診断に不可欠である。過去のIDTとIgE血清学試験の結果は、特に臨床的に重要である。
目的 – 当研究の目的は、IDTとIgE血清学試験の再現性を確認し、これらの結果をアレルゲン特異的IgE酵素免疫測定法（ELISA）によって2重に解析した。
材料と方法 – IDTは1, 4, 16, 24時間後に評価された。13種類のアレルゲンと、2つのモノクローナルアレルゲン特異的IgE酵素免疫測定法（ELISA）によって2重に解析した。
結果 – IDT間の良好な一致（カッパ> 0.6）は、30分後のDermatophagoides farinae, Lepidoglyphus destructor, シラカバ花粉混合物および多年生ライフで、1時間後のシラカバ花粉混合物、そして4時間後のアシストコタダ、イクサおよびヨモギ混合物で認められた。他のアレルゲンと他の時点での同じアレルゲンの両側間比較では、左右のIDT間にはほとんどまたはまったく一致が見られなかった。両ELISA間の実験室間比較、そしてELISAおよびIDT間の比較は、13種類のアレルゲンのうち2つ（D. farinaeおよびDermatophagoides pteronyssinus）について良好な一致を示した。
結論と臨床的意義 – これらの予備データに基づいて、IDTおよびIgE血清学的検査結果を細心の注意を払って解釈されるべきであり、これらの発見の臨床的関連性を示すためにさらなる研究が必要である。

Resumo
Contexto – Em pacientes equinos atópicos, os testes intradermico (IDT) e sorológico (pesquisa de IgE)
são utilizados com frequência. Há poucas evidências sobre a concordância do IDT e da sorologia em cavalos.

Objetivos – Comparar os resultados de IDT realizado simultaneamente no lado esquerdo e direito do pescoço em cavalos atópicos e comparar esses resultados com a sorologia para IgE alérgenos-específica.

Animais – Dez pacientes equinos oriundos da população de um hospital universitário apresentando urticária crônica e/ou prurido.

Métodos e materiais – O IDT foi realizado utilizando 16 alérgenos e os resultados foram avaliados após 30 min, 1, 4 e 24 h. Treze alérgenos foram também analisados em duplicata por dois ensaios de imunoenzimáticos com anticorpos IgE alérgenos-específicas monoclonais (ELISA).

Resultados – Observou-se boa concordância (Kappa> 0,6) entre IDT esquerda e direita apenas para *Dermatophagoides farinae*, *Lepidoglyphus destructor*, mix de pólen de bétula e centeio perene aos 30 min, mix de pólen de bétula até 1 h, e *Acarus siro* e urtiga e mix de artemísia às 4 h. A comparação bilateral dos outros alérgenos e até dos mesmos alérgenos em outros tempos experimentais mostrou pouca ou nenhuma concordância entre o IDT esquerdo e direito. A comparação interlaboratorial entre os dois ELISA, e a comparação entre os ELISA e o IDT, mostrou uma boa concordância para dois dos 13 alérgenos: *D. farinae* e *Dermatophagoides pteronyssinus*.

Conclusões e importância clínica – Com base nesses dados preliminares, os resultados dos testes sorológico e IDT devem ser interpretados com muito cuidado e são necessários mais estudos para indicar a relevância clínica desses achados.

© 2020 The Authors. *Veterinary Dermatology* published by John Wiley & Sons Ltd on behalf of the European Society of Veterinary Dermatology and the American College of Veterinary Dermatology, 31, 390–e104.