Immunological Drivers in Graves’ Disease: NK Cells as a Master Switcher

Daniela Gallo 1†, Eliana Piantanida 1*, Matteo Gallazzi 2†, Luigi Bartalena 1, Maria Laura Tanda 1, Antonino Bruno 3 and Lorenzo Mortara 2*

1 Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, Varese, Italy, 2 Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy, 3 IRCCS MultiMedica, Milan, Italy

Graves’ disease (GD) is a common autoimmune cause of hyperthyroidism, which is eventually related to the generation of IgG antibodies stimulating the thyrotropin receptor. Clinical manifestations of the disease reflect hyperstimulation of the gland, causing thyrocyte hyperplasia (goiter) and excessive thyroid hormone synthesis (hyperthyroidism).

The above clinical manifestations are preceded by still partially unraveled pathogenic actions governed by the induction of aberrant phenotype/functions of immune cells. In this review article we investigated the potential contribution of natural killer (NK) cells, based on literature analysis, to discuss the bidirectional interplay with thyroid hormones (TH) in GD progression. We analyzed cellular and molecular NK-cell associated mechanisms potentially impacting on GD, in a view of identification of the main NK-cell subset with highest immunoregulatory role.

Keywords: natural killer cells, Graves’ disease, autoimmunity, hyperthyroidism, inflammation

The autoimmune thyroid disorder, known as Graves’ disease (GD), is the most frequent cause of hyperthyroidism in iodine sufficient areas (1). Production of autoantibodies against the TSH-receptor (TRAb) represents the ultimate step for disease progression (2). Therefore, identification of the major drivers involved in triggering and progression of the disease, still represents an unmet need (1). There is a large consensus that identification of all potential factors involved in the pathogenesis of GD might favor the development of a more efficient treatment strategy, as well as of prevention approaches (3). This would be of paramount importance in view of the current lack of an effective pharmacological therapy for GD (4–6).

Natural killer (NK) cells, whose has been initially defined in virus clearance and defense against tumors, represent a highly heterogenous cell population. More recently, they have been shown to be involved in autoimmune disorders with both pathogenic and regulatory roles (7). While it is widely accepted that abnormalities in the adaptive immune response underpin autoreactivity and autoimmune diseases, it is also clear that other effector cells within the innate immunity compartment can act as relevant players. The major aim of this narrative review was to discuss the potential involvement of NK cells in the pathogenesis of Graves’ disease and to speculate on potential future treatment/prevention strategies, based on NK cells as a target and/or as a tool for therapy.
CURRENT UNDERSTANDING OF THE PATHOGENESIS OF GRAVES’ DISEASE

Although GD can occur at any age and in both genders, it is more frequently observed in women in the 4–5th decade of life (1). The ultimate event is the continuous activation of the TSH-R on thyroid follicular cells by TRAb (8, 9). This dysregulated and continuous thyroid stimulation causes hyperthyroidism and, frequently, thyroid enlargement (goiter) (10, 11). As for other autoimmune disorders, GD likely results from the breakdown in the immune tolerance mechanisms, both at systemic (peripheral blood) and local (tissue) levels (8, 9). Failure of T regulatory (T reg) cell activity, proliferation of autoreactive T and B cells, and enhanced presentation of TSH-R (due to increased HLA-D affinity for TSH-R, more immunogenic TSH-R haplotype, or increased exposure of TSH-R peptide) drive the development of the disease (12, 13). Interestingly, TRAb has been detected in serum only shortly before diagnosis of GD (8).

Studies of dizygotic and monozygotic twins showed that genetic predisposition plays a relevant role in the development of GD (14, 15). Genetic risk factors for GD include multiple susceptibility genes, such as some HLA haplotypes (e.g., HLA DRBI*3, DQA1*5, DQB1*2), polymorphisms of genes involved in T and B cells regulation [Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), CD40, Protein tyrosine phosphatase non-receptor type 22 (PTPN22), the B cell survival factor (BAFF), Fas-ligand or CD95 and CD3γ], T reg cell functions (FOXP3), and polymorphisms of genes encoding for thyroid peptides (variants of thyroglobulin or TSH-R) (12, 16–21). Recently, a single polymorphism in tumor necrosis factor α (TNFα) gene (rs1800629) was correlated with an increased risk to develop GD (22). GD is a heterogeneous disease, resulting from the combination of various and different gene polymorphisms, actually detectable by pooled genome wide association study (21–25). This would explain the weak overall size effect for genetic markers in genome-wide association studies (16, 21). Precipitating factors, probably inducing epigenetic changes include sex hormones, pregnancy, cigarette smoking, stress, infection, iodine, and other potential environmental factors (17, 26–33).

GD has been historically considered a T helper (Th2)-skewed disorder (34). This was supported by the starring role of B cells and by the features of Th cells infiltrating the thyroid gland, which are T cell clones specific for the TSH-R and mainly harbor Th2 cytokines (34, 35). More recently, Nagayama et al. demonstrated that the induction of immune shifting toward a Th2 phenotype in a GD mouse model was associated with a decrease, rather than an increase, in TRAb synthesis (36). This indirectly suggested a Th1 priority role in the induction of GD (35). In keeping with these findings, several studies showed that thyrostat treatment with antithyroid drugs progressively induced transition from Th1 to Th2 predominance (37). As elegantly demonstrated by Rapaport and McLachlan, the fact that TRAb antibodies belong to the subclass of IgG, might explain the Th1-Th2 cytokine bias (38). Indeed, different IgG subclasses might coexist in several diseases and could additionally contribute to the pathogenic mechanisms (35–43). While early stage of the humoral immune response involves Th1 cytokines (e.g., IFN [interferon] γ), the prolonged immunization depends on IgG4 antibodies, driven by Th2 cytokines (e.g., interleukin [IL]-4) (39, 40). During a first phase, antigen presenting cells (APCs) and B cells-derived cytokines (IFNγ and TNFα) stimulate thyrocytes to secrete several chemokines, including C-X-C chemokine 10 that can recruit Th cells. Th cells interact with B cells to produce antibodies (1). Finally, intrathyroidal Th2 cells inhibit Th1 responses through the secretion of IL-10, IL-5, and IL-4 (38–46), thus preventing destruction of the thyroid gland, at variance with Hashimoto’s thyroiditis. At this stage, thyroid gland might be protected from destruction both by inhibition of macrophages (from Th2 cytokines) and by upregulation of anti-apoptotic mechanisms (BCL-XL/downregulation of Fas-Fas-ligand interaction (44, 45). Concomitantly, the increased Th2 response leads to an increased production of antibodies.

NATURAL KILLER CELLS AND THEIR ROLE IN AUTOIMMUNITY

NK cells are large granular lymphocytes (LGL), recently classified as a subset of innate lymphoid cells (47). They are classically distinguished from the other mononuclear cells due to the expression of CD56, a molecule mediating homotypic adhesion, and null expression of CD3 (48). Additionally, based on the density of CD16 expression (a low-affinity receptor for the Fc portion of immunoglobulin G) and CD56 surface markers, NK cells could be further distinguished in two major subsets: CD56brightCD16dim/− and CD56dimCD16+ cells (49–51). According to a well-supported theory, NK cell precursors leave the bone marrow, transit through peripheral blood and reach the lymph nodes, where, under the influence of cytokines produced by stromal matrix, they differentiate into CD56+CD16− (49–53). Maturation process is characterized by the down-regulation of CD56 and the acquisition of CD16 markers, as well as of “killer cell immunoglobulin-like receptors” (KIRs), getting the features of CD56dimCD16+ cells (50, 52–54). Therefore, CD56dimCD16+ NKS show high potential of cytotoxicity, due to the high content of cytolytic granules (containing perforin and granzyme), the high expression of KIRs, ILT2 (immunoglobulin-like transcript 2), and CD16 itself (51, 53). Conversely, CD56brightCD16dim/− are more immature cells, characterized by poor cytotoxic ability, high expression of inhibitory receptors (such as NKG2A), high ability to proliferate in response to IL-2 and elevated production of several cytokines, such as IFNγ, TNFα, granulocyte–macrophage colony-stimulating factor, IL-10 and IL-13, depending on the conditions of stimulation (51, 55–58). It is the balance between inhibitory and activating signals, deriving from non-rearranged surface receptors, to dictate whether or not NK cells will kill target cells, engaged during their “patrolling” action (Figure 1A). Inhibitory receptors such as NKG2A, CD161, and inhibitory KIRs prevented the killing of normal cells, through the recognition of “self” molecules belonging to MHC class I. Thus, according to the “missing self-hypothesis,” NK cells recognize and attack target cells presenting low or aberrant MHC class I molecules (59). Furthermore, activating receptors, such
as the natural cytotoxic receptors (NKp44, NKp46, NKp30), CD69, activating C-type lectin-like receptors (as the natural killer group 2D receptor) and activating KIRs recognize ligands induced on stressed cells (infected/overactive/transformed cells) and stimulate NK cells activation.

With the advent of the single cell technologies, coupled with RNA sequencing, it has been observed that NK cell heterogeneity, in term of subsets, is more complex (according to the different surface antigens and cytokine milieu) (60). This is not only a gene-restricted but also an environmental (re)-directed process (61–64). Modeling T cell classification, in humans, NK cells could be divided at least in two sets: “NK1,” characterized by the production of IFNγ and the regulatory “NK2” cells (65, 66). The polarization to NK2 phenotype depends on high IL4 levels and is characterized by the high production of “type 2” cytokines (i.g., IL-5, IL-10, and IL-13), the high expression of cytokines receptors and of NKG2A surface marker.

Considering their role in defense against viruses and that viral triggers are often involved in the initiation of several immune disorders, NK cells have been investigated for their role in autoimmunity (65–68). Indeed, CD56bright NK cells may orchestrate the overall immune process, influencing both innate and adaptive immune cells, through the integration of signals from numerous activating and inhibitory receptors. Due to the high plasticity and interaction with other immune and stromal cells, CD56bright NK cells acquire a regulatory role (65–69). In this context, a third subset, called “NK reg” has therefore been suggested and defined, according to surface inducible or constitutive markers such as CD117 (65–73). However, the available studies provided conflicting results, since, under some circumstances, NKS play a protective role, while in others they have been blamed to be pathogenic (7, 62, 68, 69). Likely, their action is correlated to the type of cell becoming the target of attack. In case of whether acquired or inherited dysfunctions, NK cells might participate into the destruction of non-transformed, healthy cells as the first step of the autoimmune process. Conversely, if targets are autoreactive T cells, dendritic cells (DC) or pro-inflammatory macrophages, NKS might act as regulators, dampening the inflammatory process (65, 69–73). Interestingly, NK cell regulatory activity has been demonstrated in several autoimmune diseases, such as multiple sclerosis (MS), experimental colitis or encephalitis (EE) and arthritis (RA), by different strategies such as cytokine release, interaction with ligands of the receptors NKG2D, NKG2A, NKp46 or perforin-mediated T cell death (63, 72, 73). In a mouse model, Ehlers and co-workers demonstrated that high levels of IL-18, which are found in Th1-skewed autoimmune process, induced the expression of CD117 on NKs which, in turn, became able to suppress CD8+ T cells (73). In other experiments, CD56bright NK suppressed autologous CD4+ T cells proliferation through the expression of NKp30 and NKp46, granzyme B releasing and immunosuppressive molecule adenosine (72, 73). In experimental models of autoimmune EE, the inhibitory role of NKS on the T effectors proliferation, as well as a direct cytotoxic effect on autoreactive specific T cells, were shown (74). Likewise,

![Figure 1](https://placehold.it/150x150)

FIGURE 1 | The role of natural killer cells in the pathogenesis of Graves’ disease. (A) Enumeration of activating/inhibitory receptors and cytokines receptors, whose signals determined NK cells activity in health and disease. CD, cluster of differentiation; CD16, Fc receptor; CD244, non MHC binding receptor acting as costimulatory ligand for NK cells; CD69, early expressed after NK cell activation; CD96, interacts with nectin and nectin-like proteins; CD117, recognizes the human NKR-P1A antigen; KIR, killer cell immunoglobulin like receptor; LAG1 and LAG3, lymphocyte activation gene 1 and 3; NKp30, NKp44, NKp46, the natural cytotoxic receptors (NCR); NKG2A and NKG2D, natural killer group 2A and 2D; TIM2, T-cell immunoglobulin and mucin-containing domain; IL (interleukin)-21/18/15/10/12/4/2 R (receptor); TGF-bR, TGF beta receptor family; PD1, programmed cell death protein 1; TIM2, T-cell immunoglobulin and mucin-containing domain 2; (B) Several factors including microenvironment, cytokines milieu, epigenetic background and hyperthyroidism itself might impair NK protective activity. DC, dendritic cells; NK, natural killer cells.
Takahashi et al. demonstrated, in MS patients, that CD56^{bright} NK could favor clinical remission, by suppressing the production of IFNγ, by specific autoreactive T effectors and secreting IL-5 (57, 69, 75). Laroni et al. observed that CD56^{bright} NK cells had reduced ability to kill T-cells in MS patients, compared to healthy controls, possibly due to an increased expression of NKG2A (69, 76). Thus, impaired cytotoxicity or the inability to secrete cytolytic granules have been correlated to the escape of proinflammatory cells (both T and B lymphocytes, DC and macrophages) from regulatory mechanisms of controls (77). In other cases, such as RA, loss of NK tolerance (due to decreased inhibitory signals or inappropriate stimulation of activating signals) might favor the development of autoimmune diseases. Different mechanisms have been blamed, such as the presence of antilymphocyte antibodies (78). In other disorders, such as myasthenia gravis and EE, NK cells seem to facilitate initiation and progression of autoimmunity (67, 68). Besides differences in the strains and models used, several factors may influence the specific, and even contradictory, actions of NK cells. Their ability to adapt to different stimuli and different anatomical localization may play an important role. Microenvironment itself may influence NK functions, such as migration and tissue retentions, as it emerged in the complex interaction with DC, influenced by density, maturation state and phenotype of this population (68). Epigenetic modifications strongly influence NK cells all along their life, from development to regulation and differentiation of effector functions (79–81). Epigenetic remodeling, acquired through immunological experiences, might modulate NK functions (61). For instance, gene expression of several genes (including KIRs) is regulated by DNA methylation (hypomethylation or hypermethylation) of their promoters. The interindividural genetic variability in the receptor repertoire, especially of the highly polymorphic KIR gene, influence the recognition of target cells (80). KIRs polymorphisms might influence the engagement with HLA molecules and, as counterpart, functional interaction between co-inherited KIRs (especially inhibitory KIRs) and HLA progressively influence NK education (81). Besides KIRs, other receptors such as NKG2A are involved in NK education (61).

THE LINK BETWEEN LEUKOCYTES AND THYROID HORMONES

A possible link between THs and the immune system was already suggested more than 40 years ago, by the discovery that Staphylococcus-stimulated lymphocytes might de novo synthesize a TSH-like substance (immunoreactive TSH, i-TSH), similar to the pituitary-released form and possibly involved in autoimmune thyroid disorders (AITD) (82). Further experiments progressively demonstrated that bone marrow hematopoietic cells, lymphocytes, DC and even intestinal epithelial cells, could synthesize TSH (83). The role of extra-pituitary TSH remains to be clarified. It was speculated that, as pituitary TSH, i-TSH might stimulate the synthesis of TH, which, in turn, might influence the immune system (indirect effect). Several papers showed that immune cells harbor essential elements required for THs metabolism and action. For example, both neutrophils and DC express T3 (the active form of TH) transporters (MCT10 in human) and type 2 and 3 deiodinases (involved in THs synthesis) (84–86). Indeed, it has been widely demonstrated that THs interact with hematopoietic cells (85–90) at different levels. T3 might affect target immune cells by binding both to nuclear receptors (thyroid hormones receptors TRα and TRβ) and membrane receptors (86–90). For example, TH and especially T3 can influence maturation of DCs (84, 85). DC phenotype was studied in thyroidectomized patients before and after levothyroxine supplementation, showing that THs induce an increase in DCs number and influence their functions (91). A research group from Cordoba demonstrated that T3 induce DCs activation through Akt and NF-kB pathways, driving the immune response toward a Th1 phenotype (92, 93). Further support to the regulatory role of TH came from experiments showed that daily administration of T4 was followed by the complete restoration of the immune competence in thyroidectomized mice (94). Furthermore, T4 treatment in mice enhanced the NKs cytotoxic activity against classical target cells, amplifying their responsiveness to cytokines and modulating NK metabolic properties (95). Some years later, Provinciali et al. demonstrated that, after T4 pre-treatment, the peak of NK cytotoxic activity was achieved using half the optimal IFNγ concentration (96). Additional experiments strengthen the hypothesis of a paracrine TSH-pathway (97–99). TSH-R is expressed on myeloid and lymphoid cells (100, 101). By its stimulation, TSH (both the immune and the pituitary released forms) may act as a cytokine-like regulatory molecule and induce the secretion of several cytokines, such as TNFα (102, 103). *In vitro* studies showed that TSH, combined to classical cytokines (as IL-2, IL-12, IL-1β), acts as co-stimulus improving lymphocytes and NKs proliferative response to even low dose of mitogens (103, 104). Todd et al. demonstrated that TSH was able to enhance the expression of MHC class II in thyroid cells treated with IFNγ (105). Accordingly, Dorshkind et al. demonstrated that THs induce the synthesis of cytokines and the expression of IL-2 receptor in NK cells (106). Indeed, while both T3 and FT4 boosted the IFNγ response in mice (107, 108), T4 amplified both IFNγ and IL-2 (96).

Based on the bidirectional relationship between TH and the immune system (96), Kmiec et al. postulated that in the elderly the reduction of TH with aging might be involved in the impairment of NK activity by T3 administration; they found a direct correlation between serum T3 levels and NK activity, in spite of conserved proportion of circulating NK cells (109, 110). Indeed, NK cell activity was selectively improved by T3 administration in those subjects having T3 levels in the slower range.

NATURAL KILLER CELLS AND GRAVES’ DISEASE

From a mutual perspective, thyroid function might orchestrate the immune response and, conversely, dysfunction of the immune system might favor the development of thyroid...
TABLE 1 | Summary of studies investigating the role of natural killer cells in Graves’ disease.

References	Subjects	Study objects	Methods	Outcome
Amino et al. (111)	GD (16 untreated GD + 11 hyperGD under ATD + 3 euGD under ATD + 4 remission GD) vs. 43 controls vs. 14 HT	K lymphs	Peripheral blood samples	↓ K lymphs in hyperGD than controls ↓ plaque forming K lymphs in hyperGD than controls No differences in K lymphs comparing euGD to controls.
Iwatani et al. (112)	GD (12 hyperGD + 5 euGD) vs. HT (17 euHT + 4 hypoHT) vs. 55 controls	LGL	Peripheral blood samples	LGL ↓ FT4, FT3 in hyperGD ↓ LGL in hyperGD compared to other groups
Stein-Streilein et al. (113)	Mice fed with T4 vs. hypothryroid (due to ATD) vs. euthyroid mice	NK release of lytic factors	Blood, spleen and lung samples after 2 and 6 w	Lytic molecules release in thyrotoxic mice
Papic et al. (114)	22 untreated GD vs. 18 hypothyrooxenic for T4 treatment	cNK number and activity	Peripheral blood samples	↓ cytotoxicity in hyperthyroidism (both groups) ↓ ability of IL-2 chance to enhance NK activity in GD
Wang et al. (115)	GD (33 untreated GD + 19 euGD under ATD + 6 euGD after ATD withdrawal) vs. 43 controls	cNK number, cytotoxicity	Peripheral blood samples	No differences in cNK number in GD compared to controls. ↓ cytotoxicity in untreated GD or during ATD treatment vs. euGD
Pedersen et al. (116)	20 untreated GD vs. 11 HT vs. 10 non-toxic goiter vs. 22 controls	cNK number, cytotoxicity	Co-culture with IL-2, IFN, indomethacin	Release assay for NK cytotoxicity against K562 No differences in cNK number and activity in AITD vs. controls
Lee et al. (117)	18 untreated GD vs. 18 controls	cNK cytotoxicity	Co-culture with T4	Release assay for NK cytotoxicity against K562 No differences in cNK activity in GD vs. controls ↑ cytotoxicity with T4 in controls but not in GD
Hidaka et al. (118)	25 untreated GD vs. 18 HT vs. 22 postpartum AITD vs. 61 controls	cNK cytotoxicity	Peripheral blood samples	Release assay for NK cytotoxicity against K562 ↑ cytotoxicity in GD vs. other groups
Aust et al. (119)	10 GD	tNK and cNK number	Thyroid tissues and peripheral blood samples	≤NK↑ AbTPO
Wenzel et al. (120)	40 GD vs. 26 HT vs. 32 controls	cNK cytotoxicity	Peripheral blood samples	Release assay for NK cytotoxicity against K562 ↓ cytotoxicity in untreated/under ATD GD vs. controls
Solerte et al. (121)	13 untreated GD vs. 11 hypoHT vs. 15 controls	Functional studies	cNK were incubated with IL-2, TGF-β and DHEAS	Release assay for NK cytotoxicity against K562 ↓ cytotoxicity induced by IL2 e TGF-β in GD and HT ↓ spontaneous and IL2 induced TNFα release
Dastrauch et al. (63)	8 untreated GD vs. 176 controls	KIR genes and related HLA polymorphisms	Peripheral blood samples	PCR-SSP No evident correlations
Zhang et al. (122)	28 untreated GD vs. 23 controls	Functional and phenotypic studies	Peripheral blood samples	↓ cytotoxicity in GD vs. controls ↓ NKG2D⁺, NKG2C⁺, NKp30⁺, NKG2A⁺ in GD vs. controls ↓ IFNγ in GD vs. controls NKG2A⁺ NK ↑ TRAb NKG2D⁺ NK ↓ TTH

AITD, autoimmune thyroid disorders; ATD, antithyroid drugs; cNK, circulating NK cells; eu, euthyroidism; d, days; HT, Hashimoto’s thyroiditis; IFN-γ, interferon γ; K lymphs, killer lymphocytes; LGL, large granular lymphocytes; NKG2 A/C/D, natural killer group 2D, belonging to C-type lectin like receptors; PCR-SSP, polymerase chain reaction sequence-specific primer directed method; tNK, tissue (intrathyroidal) NK cells; TH, thyroid hormones; w, weeks; ↑ enhance; ↓ depress; ↑↑ direct correlation; ↓↓ inverse correlation.

disorders. Several studies investigated the potential contribution of NKS in the development and/or progression of GD, but results are still inconclusive and sometimes conflicting. Table 1 reports the available data on this issue (111–123). Researchers from Osaka University observed that the total percentage of LGL, including NK-like cells, was decreased in untreated GD patients compared to euthyroid GD patients on antithyroid drug therapy and to controls; in addition, the proportion of LGL was inversely correlated to T4 and T3 levels (110–112, 123). Thus, while normal THs levels are crucial to maintain an adequate
activity of the immune system, supraphysiological THs levels exerted a detrimental effect, mimicking starvation, and increased cortisol secretion (121, 124–126). Immunocomplexes able to suppress NK cell activity, as in other autoimmune disorders (e.g., RA), were considered as a possible cause of this phenomenon (76, 127). According to a different hypothesis, the decrease of NK cells might be the primary immunological abnormality in the pathogenesis of GD (111, 127).

Solerte et al. reported that both spontaneous and IL-2/IFNβ-modulated NK cells cytotoxicity (NKCC), as well as spontaneous and IL-2 induced TNFα release were decreased in NK cells from 13 GD patients compared to 15 controls (121). Both cytokines secretion and cytotoxicity were promptly normalized by co-incubating NKS with DHEAS (dehydroepiandrosterone sulfate), supporting the concept of a concomitant effect of other endocrine axes (121, 128, 129). Studies from the University of Miami comparing thyrotoxic mice (due to levothyroxine treatment) to euthyroid or hypothyroid (due to antithyroid drug treatment) comparing thyrotoxic mice (due to levothyroxine treatment) to euthyroid or hypothyroid (due to antithyroid drug treatment) control mice observed a reduced secretion of cytolytic granules (113). Similar results were obtained from the same group in humans (see Table 1) (114), with a reduction in cytotoxicity, studied by release assay for NK cell cytotoxicity against K562 tumor target cells.

Considering that NK cell activity is affected by age (130), a study compared NKCC inAITD patients with age and gender-matched healthy controls, demonstrating an impaired NK cell activity in AITD (120). As previously outlined, the integration of activating and inhibitory signals from NK surface regulates NK cells effector functions, such as cytokine secretion and NKCC. In a study of 28 newly onset GD patients, Zhang et al. observed a reduction of NK cells expressing both activating (NKG2D, NKG2C, Nkp30) and inhibitory receptors (NKG2A) compared to matched healthy controls (122). Additionally, NKG2A+ NKS were inversely related to TRAb levels, while NKG2D+ NKS were inversely related to serum free T4 levels (122), supporting the role of dysfunctional NK cells. Figure 1B illustrates the hypothesis that in case of dysfunctional impairment, NK cells lose their ability to protect from the development of GD. Other studies (115, 117, 119, 120, 122, 131, 132), with some exceptions (116, 118) generally agreed on the impairment of NK activity in GD and reported that restoration of euthyroidism by antithyroid drug treatment (especially propylthiouracil) could improve NK functionality (133, 134).

CONCLUSION AND FUTURE PERSPECTIVES

It is now clear the immune system, both the innate and the adaptive components, are crucial host-related orchestrators of disorder induction/insurgence and progression. Alterations of immune cell phenotype and functions, as a consequence of chronic inflammation, are shared features between cancers, cardiovascular, neurological, and autoimmune diseases. In the new era of immunotherapy, most of the efforts are addressed to cancer, as supported by the vast literature and clinical trials (135). This rapidly developing field suggests the same attention should be dedicated also to autoimmunity, that still requires a better understanding of the cellular and molecular events occurring during autoimmune disorders, including GD. Unveiling these mechanisms and events is required to identify new immunological cellular biomarkers, trace disease progression, and design new targeted therapeutic strategies for autoimmunity. In this scenario, re-education/manipulation of NK cells appear as a promising strategy, as confirmed by the growing interest in CAR-NK cells (136).

AUTHOR CONTRIBUTIONS

DG, LM, EP, and AB conceived the manuscript. All the authors took part in manuscript writing and editing. EP, LB, LM, and AB supervised the final version of the manuscript.

FUNDING

This work was partly supported by University of Insubria intramural grant FAR 2019 and MIUR Funding for Basic Research Activities FFABR 2017 to LM and by grants from the Ministry of Education, University and Research (MIUR, Roma) to LB and from the University of Insubria to LB and AB. AB has received funding from AIRC under MIAF 2019-ID 22818-PI. AB is supported by Italian Ministry of Health Ricerca Corrente-IRCCS MultiMedica. DG was supported by a University of Insubria Ph.D. scholarship in Experimental and Translational Medicine, whereas MG was a recipient of Ph.D. course in Life Sciences and Biotechnology at the University of Insubria.

REFERENCES

1. Smith TJ, Hegedüs L. Graves’ disease. *N Engl J Med*. (2016) 375:1552–65. doi: 10.1056/NEJMra1510030
2. Davies TF, Latif R. Editorial: TSH receptor and autoimmunity. *Front Endocrinol*. (2019) 10:19. doi: 10.3389/fendo.2019.00019
3. Tanda ML, Piantanida E, Lai A, Lombardi V, Dalle Mule I, Liparulo L, et al. Thyroid autoimmunity and environment. *Horm Metab Res*. (2009) 41:436–42. doi: 10.1055/s-0029-1215568
4. Masiello E, Veronesi G, Gallo D, Premoli P, Bianconi E, Rosetti S, et al. Antithyroid drug treatment for Graves’ disease: baseline predictive models of relapse after treatment for a patient-tailored management.

J Endocrinol Invest. (2018) 41:1425–32. doi: 10.1007/s40618-018-0918-9
5. Piantanida E, Lai A, Sassi L, Gallo D, Sprefico E, Tanda ML, et al. Outcome prediction of treatment of Graves’ hyperthyroidism with antithyroid drugs. *Horm Metab Res*. (2015) 47:767–72. doi: 10.1055/s-0035-1557579
6. Bartalena I, Piantanida E, Tanda ML. Can a patient-tailored treatment approach for Graves’ disease reduce mortality? *Lancet Diabetes Endocrinol*. (2019) 7:245–6. doi: 10.1016/S2213-8587(19)30057-9
7. Zitti B, Bryceson, YT. Natural killer cells in inflammation and autoimmunity. *Cytokine Growth Factor Rev*. (2018) 42:37–46. doi: 10.1016/j.cytogfr.2018.08.001
8. Morshed SA, Latif R, Davies TF. Delineating the autoimmune mechanisms in Graves’ disease. *Immunol. Res.* (2012) 54:191–203. doi: 10.1007/s12026-012-8312-8

9. Antonelli A, Fallahi P, Elia G, Ragusa F, Paparo SR, Ruffilli I, et al. Graves’ disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. *Best Pract Res Clin Endocrinol Metab.* (2020). 34:101388. doi: 10.1016/j.bepm.2020.101388

10. Bartalena L, Masiello E, Magri F, Veronesi G, Bianconi E, Zerbini F, et al. The phenotype of newly diagnosed Graves’ disease in Italy in recent years is milder than in the past: results of a large observational longitudinal study. *J Endocrinol Invest.* (2016) 39:1445–51. doi: 10.1007/s12026-016-0156-7

11. Valente WA, Vitti P, Rotella CM, Vaughan MM, Aloj SM, Grollmann et al. Antibodies that promote thyroid growth. A distinct population of thyroid stimulating autoantibodies. *N Engl J Med.* (1983) 309:1028–34. doi: 10.1056/NEJM19831027091705

12. McLachlan S, Rapoport, B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. *Endocr Rev.* (2014) 35:59–151. doi: 10.1210/er.2013-1055

13. Chen Z, Wang Y, Ding X, Zhang M, He M, Zhao Y, et al. The modifying autoantigen in Graves’ disease. *Front Physiol*. (2018) 9:734–9. doi: 10.3389/fphys.2018.00734

14. Truja T, Kutz A, Fischli S, Meier C, Mueller B, Recher M, et al. Antibodies that promote thyroid growth. A distinct population of thyroid stimulating autoantibodies. *N Engl J Med.* (1983) 309:1028–34. doi: 10.1056/NEJM19831027091705

15. McLachlan S, Rapoport, B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. *Endocr Rev.* (2014) 35:59–151. doi: 10.1210/er.2013-1055

16. Vejrazkova D, Vcelak J, Vaclavikova E, VanKova M, Zajickova K, Duskova et al. Graves’ disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. *Best Pract Res Clin Endocrinol Metab.* (2020). 34:101388. doi: 10.1016/j.bepm.2020.101388

17. Gallo et al. NK Cells in Graves’ Disease
47. Sciumé G. Innate lymphocytes: development, homeostasis, and disease. *Cytokine Growth Factor Rev.* (2018) 42:1–4. doi: 10.1016/j.cytogfr.2018.08.002

48. Crinier A, Narni-Mancinelli E, Ugolini S, Vivier, E. Snapshot: natural killer cells. *Cell.* (2020) 180:1280.e1. doi: 10.1016/j.cell.2020.02.029

49. Cicchicki F, Graywacz B, Miller JS. Human NK cell development: one road or many? *Front Immunol.* (2019) 10:2078. doi: 10.3389/fimmu.2019.02078

50. Chan A, Hong DL, Atzberger A, Briquemont B, Isereart G, Ollert M, et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. *J Immunol.* (2007) 179:89–94. doi: 10.4049/jimmunol.179.1.89

51. Sivori S, Vacca P, Del Zotto G, Munari E, Migliari MC, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, translational applications. *Cell Mol Immunol.* (2019) 16:430–41. doi: 10.1088/1473-023X-16-5-430

52. Romagnani S, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, et al. CD56bright/CD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. *J Immunol.* (2008) 179:4947–55. doi: 10.4049/jimmunol.179.8.4947

53. Bozzano F, Perrone C, Moretta L, De Maria A. NK cell precursors in human bone marrow in health and inflammation. *Front Immunol.* (2019) 10:2045. doi: 10.3389/fimmu.2019.02045

54. Moretta L. Dissecting CD56dim human NK cells. *Blood.* (2010) 116:3689–91. doi: 10.1182/blood-2010-09-303057

55. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. *Immunology.* (2009) 126:458–65. doi: 10.1111/j.1365-2567.2008.03027.x

56. Michel T, Poli A, Cuapio A, Briquemont T, Isereart G, Ollert M, et al. Human CD56bright NK cells: an update. *J Immunol.* (2016) 196:2923–31. doi: 10.4049/jimmunol.1502570

57. Morandi F, Horenstein AL, Chillemi A, Quarona V, Chiesa S, Michel T, et al. CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. *J Immunol.* (2018) 179:89–94. doi: 10.4049/jimmunol.179.8.4947

58. Varchetta S, Oliviero B, Mavilio D, Mondelli MU. Different combinations of cytokines and activating receptor stimuli are required for human natural killer cell functional diversity. *Cytokine.* (2016) 84:1–7. doi: 10.1016/j.cyto.2016.03.002

59. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating receptors of natural killer cells. *Adv Immunol.* (2004) 29:1–51. doi: 10.1016/j.cytogfr.2018.08.002

60. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. *Curr Opin Immunol.* (2017) 47:820–33. doi: 10.1016/j.immuni.2017.10.008

61. Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human circulating and tissue-resident CD56(bright) natural killer cell populations. *Front Immunol.* (2016) 7:262. doi: 10.3389/fimmu.2016.00262

62. Wang HC, Drago J, Zhou Q, Klein JR. An intrinsic thyrotropin-mediated pathway of TNF production by bone marrow cells. *Blood.* (2003) 101:119–23. doi: 10.1182/blood-2002-02-0544

63. Schenk A, Bloch W, Zimmer P. Natural killer cells—an epigenetic perspective of development and regulation. *Int J Mol Sci.* (2016) 17:326. doi: 10.3390/ijms17030326

64. Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. *Front Immunol.* (2018) 9:2324. doi: 10.3389/fimmu.2018.02324

65. Dastmalchi R, Farazmand A, Noshad S, Mozafari S, Mahmoudi M, Esteghamati A, et al. Polymorphism of killer cell immunoglobulin-like receptors (KIR) and their HLA ligands in Graves’ disease. *J Mol Biol.* (2014) 41:5367–74. doi: 10.1016/j.sisc.2014.03-048-y

66. Li C, Mu R, Lu XY, He J, Jia RL, Li ZG. Antilymphocyte antibodies in systemic lupus erythematosus: association with disease activity and lymphopenia. *J Immunol Res.* (2014) 2014:67212. doi: 10.1155/2014/672126

67. Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. *Front Immunol.* (2018) 9:2324. doi: 10.3389/fimmu.2018.02324

68. Dastmalchi R, Farazmand A, Noshad S, Mozafari S, Mahmoudi M, Esteghamati A, et al. Polymorphism of killer cell immunoglobulin-like receptors (KIR) and their HLA ligands in Graves’ disease. *J Mol Biol.* (2014) 41:5367–74. doi: 10.1016/j.sisc.2014.03-048-y

69. Schenk A, Bloch W, Zimmer P. Natural killer cells—an epigenetic perspective of development and regulation. *Int J Mol Sci.* (2016) 17:326. doi: 10.3390/ijms17030326

70. Smith EM, Phan M, Kruger TE, Coppenhaver DH, Blalock JE. Human lymphocyte production of immunoregulatory thyrotropin. *Proc Natl Acad Sci USA.* (1982) 80:6010–13. doi: 10.1073/pnas.80.19.6010

71. Wang HC, Drago J, Zhou Q, Klein JR. An intrinsic thyrotropin-mediated pathway of TNF production by bone marrow cells. *Blood.* (2003) 101:119–23. doi: 10.1182/blood-2002-02-0544

72. Mooij P, Simons PJ, de Haan-Meulman M, de Wit HJ, Drexhage HA. Effect of thyroid hormones and other iodinated compounds on the transition of monocyes into veiled/dendritic cells: role of granulocyte-macrophage colony-stimulating factor, tumour-necrosis factor-alpha and interleukin-6. *J Endocrinol.* (1994) 140:303–12. doi: 10.1677/joe.0.1400503

73. Montesinos MDM, Pellizas CG. Thyroid hormone action on innate immunity. *Front Endocrinol.* (2019) 10:486. doi: 10.3389/fendo.2019.00486

74. van der Spek AH, Fliers E, Boelen A. Thyroid hormone metabolism in innate immune cells. *J Endocrinol.* (2017) 232:R67–R81. doi: 10.1530/JEO-16-0462

75. De Vito P, Incerpi S, Pedersen JZ, Luly P, Davis FR, Davis PJ. Thyroid hormones as modulators of immune activities at cellular level. *Thyroid.* (2011) 8:879–90. doi: 10.1089/thy.2010.0429

76. Angelin-Duclos C, Domengot C, Kolbus A, Beug H, Jurdic P, Samarat J. Thyroid hormone T3 acting through the thyroid hormone α receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. *Development.* (2005) 132:925–34. doi: 10.1242/dev.016468

77. Pallinger E, Kovacs P, Csaba G. Presence of hormones (triiodothyronine, serotonin and histamine) in the immune cells of newborn rats. *Cell Biol Int.* (2005) 29:826–30. doi: 10.1016/j.cellbi.2005.05.010
90. Csaba G, Kovacs P, Pallinger E. Effect of the inhibition of triiodothyronine (T3) production by thiamazole on the T3 and serotonin content of immune cells. Life Sci. (2011) 76:2043–52. doi: 10.1016/j.lfs.2004.07.031

91. Dedecius M, Stasiak M, Breszinski J, Selmaj K, Lewinski A. Thyroid hormones influence human dendritic cells’ phenotype, function, subsets distribution. Thyroid. (2010) 21:533–40. doi: 10.1089/thy.2010.0183

92. Mascalzone I, Montesinos, M, Mdel M, Alamo VA, Sperreguy S, Nicola JP, et al. Nuclear factor (NF)-kappa B-dependent thyroid hormone receptor beta expression controls dendritic cell function via Akt signaling. J Biol Chem. (2010) 285:9569–82. doi: 10.1074/jbc.M109.071241

93. Mascalzone I, Montesinos, M, Sperreguy S, Cervi L, Irregeri JM, et al. Control of dendritic cell maturation and function by triiodothyronine. Faseb J. (2008) 22:1032–42. doi: 10.1096/fj.07-8652com

94. Fabris N. Immunodepression in thyroid-deprived animals. J Clin Exp Immunol. (1973) 15:601–11.

95. Sharma SD, Sasi V, Profitt MR. Enhancement of mouse natural killer cell activity by thyroxine. Cell Immunol. (1982) 73:83–97.

96. Provinciali M, Muzzioli M, Fabris N. Thyroxine-dependent modulation of natural killer activity. J Exp Pathol. (1987) 6:17–22.

97. Klein JR, Wang HC. Characterization of a novel set of resident intrathroidal bone marrow-derived hematopoietic cells: potential for immune-endocrine interactions in thyroid homeostasis. J Exp Biol. (2004) 207:55–65. doi: 10.1242/eb.007010

98. Kruger TE, Blalock JE. Cellular requirements for thyrotropin enhancement of in vitro antibody production. J Immunol. (1986) 137:197–200.

99. Kruger TE, Smith EM, Harbour DV, Blalock JE. Thyrotropin: an endogenous regulator of the in vitro immune response. J Immunol. (1989) 142:744–7.

100. Bagariack EU, Klein JR. The thyrotropin (thyroid stimulating hormone) receptor is expressed on murine dendritic cells and on a subset of CD43RB high lymph node T cells: functional role of thyroid stimulating hormone during immune activation. J Immunol. (2000) 164:6158–65. doi: 10.4049/jimmunol.164.12.6158

101. Landucci E, Laurino A, Cinci L, Gencarelli M, Raimondi L. Thyroid stimulating hormone, thyroid hormone metabolites and mast cells: a less explored issue. Front Cell Neurosci. (2019) 13:79. doi: 10.3389/fncel.2019.00079

102. Coutelier JP, Kehrl JH, Bellur SS, Kohn LD, Notkins AL, Prabhakar BS. Defect of a subpopulation of natural killer immune cells in Graves’ disease. Thyroid Defect of natural killer cells as an underlying immunological abnormality in childhood systemic lupus erythematosus. J Rheumatol. (1996) 23:171–7.

103. Stein-Streilein J, Zakarija M, McKenzie JM. Immune reactions in patients with Graves’ disease and Hashimoto’s thyroiditis. Thyroid. (1998) 8:1019–22. doi: 10.1097/0989.yh.8.1019

104. Solerte S, Precerutti S, Gazzaruso C, Locatelli E, Zamboni M, Schifino N, et al. Decrease of immunoglobulin G-Fc receptor-bearing T lymphocytes in Graves’ disease and Hashimoto’s thyroiditis: normalizing effect of dehydroepiandrosterone sulfate. Eur J Endocrinol. (2005) 152:703–12. doi: 10.1530/eje.1.01906

105. Zhang Y, Ly G, Lou X, Peng D, Xu Q, Yang X, et al. NKG2A expression and impaired function of NK cells in patients with new onset of Graves’ disease. Int Immunopharmacol. (2015) 24:133–9. doi: 10.1016/j.intimp.2014.09.020

106. Mori H, Amino N, Iwatai Y, Kaneda T, Nasu M, Mitsuoka N, et al. Decrease of immunoglobulin G-Fc receptor-bearing T lymphocytes in Graves’ disease. J Clin End Metab. (1988) 34:132–7. doi: 10.3803/EnM.2019.34.2.132

107. Yabuhara A, Yang FC, Nakazawa T, Iwasaki Y, Mori T, Koike K. A killing defect of natural killer cells as an underlying immunological abnormality in childhood systemic lupus erythematosus. J Rheumatol. (1996) 23:171–7.

108. Gallacher TF, Hellman L, Finkielstein J, Yoshida K, Weitzman ED, Rofford HD, et al. Hyperthyroidism and cortisol secretion in man. J Clin End Metab. (1972) 34:919–27. doi: 10.1210/jcem-34-6-919

109. Johnson E, Kamilari T, Calogero A, Gold P, Chrousos G. Experimentally-induced hyperthyroidism is associated with activation of the rat hypothalamic-pituitary-adrenal axis. Eur J Endocrinol. (2005) 153:177–85. doi: 10.1530/eje.1.01923

110. Finkielstein JW, Royar RM, Hellman L. Growth hormone secretion in hyperthyroidism. J Clin End Metab. (1974) 38:634–7. doi: 10.1210/jcem-38-4-634

111. Amino N, Mori H, Iwatai Y, Asari S, Izumiguchi Y, Kumahara Y, et al. Control of dendritic cell maturation and function by triiodothyronine. Eur J Endocrinol. (2010) 21:533–40. doi: 10.1089/thy.2010.0183

112. Amino N, Mori H, Iwatai Y, Asari S, Izumiguchi Y, Peripheral K lymphocytes in autoimmune thyroid disease: decrease in Graves’ disease and increase in Hashimoto’s disease. J Clin End Metab. (1982) 54:587–91. doi: 10.1210/jcem-54-3-587
132. Magnusson L, Barcenilla H, Pihl M, Bensing S, Carlsson PO, Casas R, et al. Mass cytometry studies of patients with autoimmune endocrine diseases reveal distinct disease-specific alterations in immune cell subsets. Front Immunol. (2020) 11:288. doi: 10.3389/fimmu.2020.00288

133. Rojano J, Sasián S, Gavilán I, Aguilar M, Escobar L, Girón JA. Serial analysis of the effects of methimazole or radical therapy on circulating CD16/56 subpopulations in Graves’ disease. Eur J Endocrinol. (1998) 139:314–16. doi: 10.1530/eje.01390314

134. McGregor AM, Petersen MM, McLachlan SM, Rooke P, Smith BR, Hall R. Carbimazole and autoimmune response in Graves’ disease. N Engl J Med. (1980) 302:–7. doi: 10.1056/NEJM198008073030603

135. Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing natural killer cells in the tumor microenvironment—the next generation of immunotherapy? Front Immunol. (2020) 11:275. doi: 10.3389/fimmu.2020.00275

136. Malaer JD, Marrufo AM, Mathew PA. 2B4 (CD244, SLAMF4) and CSI (CD319, SLAMF7) in systemic lupus erythematosus and cancer. Clin Immunol. (2019) 204:50–6. doi: 10.1016/j.clim.2018.10.009

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.