No significant role for beta tubulin mutations and mismatch repair defects in ovarian cancer resistance to paclitaxel/cisplatin

Bárbara Mesquita¹, Isabel Veiga¹, Deolinda Pereira², Ana Tavares³, Isabel M Pinto³, Carla Pinto¹, Manuel R Teixeira¹ and Sérgio Castedo*¹

Address: ¹Department of Genetics, Portuguese Oncology Institute, 4200-072 Porto, Portugal, ²Department of Medical Oncology, Portuguese Oncology Institute, 4200-072 Porto, Portugal and ³Department of Pathology, Portuguese Oncology Institute, 4200-072 Porto, Portugal

Email: Bárbara Mesquita - barbara-mesquita@portugalmail.pt; Isabel Veiga - isabelveiga@hotmail.com; Deolinda Pereira - dpereira@ipoporto.min-saude.pt; Ana Tavares - genetica@ipoporto.min-saude.pt; Isabel M Pinto - implaboratorio@mail.telepac.pt; Carla Pinto - carlapinto@portugalmail.pt; Manuel R Teixeira - mteixeir@ipoporto.min-saude.pt; Sérgio Castedo* - genetica@ipoporto.min-saude.pt

* Corresponding author

Abstract

Background: The mechanisms of chemoresistance in ovarian cancer patients remain largely to be elucidated. Paclitaxel/cisplatin combination is the standard chemotherapeutic treatment for this disease, although some patients do not respond to therapy. Our goals were to investigate whether TUBB mutations and mismatch repair defects underlie paclitaxel and cisplatin resistance.

Methods: Thirty-four patients with primary ovarian carcinomas (26 serous and eight clear cell carcinomas) treated with paclitaxel/cisplatin were analysed. TUBB exon 4 was analysed by nested PCR after a first round PCR using intronic primers. Microsatellite analysis was performed with the quasimonomorphic markers BAT 26 and BAT 34.

Results: Twenty-two of the 34 ovarian cancers (64.7%) presented residual tumour after surgery, seven of which (7/22; 31.8%) were shown to be chemoresistant (five serous and two clear cell tumours). Sequence analysis did not find any mutation in TUBB exon 4. Microsatellite instability was not detected in any of the ovarian carcinomas.

Conclusion: We conclude that TUBB exon 4 mutations and mismatch repair defects do not play a significant role in paclitaxel/cisplatin resistance.

Background

Ovarian cancer is the fourth most common cancer in women [1]. The standard treatment for ovarian cancer is cytoreductive surgery followed by combination systemic chemotherapy [2]. Since the middle 90's, the combination paclitaxel/cisplatin became the standard chemotherapeutic treatment for poor prognosis ovarian cancer [3]. Nevertheless, some patients are resistant to this chemo-therapeutic treatment, making it important to clarify the underlying mechanisms of resistance [4].

Paclitaxel binds to microtubules and causes kinetic suppression (stabilisation) of microtubule dynamics, promoting their polymerisation and cell cycle arrest in mitosis (anitmitotic activity), which probably leads to apoptosis [5,6]. Microtubules are composed of a dimeric
protein, tubulin, with alpha (α) and beta (β) tubulin heterodimers in dynamic equilibrium. The β-tubulin gene (TUBB), mapped to 6p21.3 [7], is composed of four exons and encodes a 445-aminoacid protein with GTPase function to which paclitaxel preferentially binds [8]. Cisplatin is activated intracellularly and establishes inter- and intra-strand DNA adducts that block replication and translation. The fate of cells after cisplatin exposure depends both on the extent of DNA damage and the cellular response to it, and apoptosis can be induced as a consequence [5,9]. Although the specific mechanism that triggers apoptosis is not totally clear, some evidence suggests that this process can be mediated by the DNA mismatch repair system (MMR) [5,9].

Drug resistance is considered a multifactorial process, but the detailed mechanisms are still unknown. Recently, point mutations in the β-tubulin gene, predominantly in exon 4, were associated with resistance to paclitaxel [10-12]. Resistance to cisplatin was linked with anomalies in the DNA MMR system resulting in microsatellite instability (MSI) [13-16]. In order to evaluate the relevance of these mechanisms to ovarian cancer chemoresistance, we screened TUBB exon 4 for mutations and performed MSI analysis in 34 ovarian carcinomas treated with paclitaxel/cisplatin and evaluated patients’ response to chemotherapy.

Methods

Patient data

Thirty-four primary ovarian carcinoma patients, of serous (26 cases) or clear cell (eight cases) histological types (invasive or borderline), consecutively admitted at the Portuguese Oncology Institute – Porto and treated with the adjuvant chemotherapy scheme paclitaxel/cisplatin, were analysed. Patients previously treated with other chemotherapeutic regimens or radiotherapy were excluded from the study.

Evaluation of treatment responses was done by an oncologist using computerized tomography or magnetic resonance and CA125 quantification, according to international guidelines [17]. Investigators performing laboratory analysis were not aware of chemotherapy response or resistance until the study was completed.

DNA extraction

Genomic DNA was extracted from chemo-naïve, paraffin embedded tumours, after dissection. Tissue blocks were sectioned, mounted on glass slides, deparaffinised, and stained with haematoxylin and eosin. Tumour areas were identified under the microscope on each slide and marked. Areas with at least 70% of cancer cells were identified on tissue sections. Selected paraffin blocks were sectioned (5µm sections) and mounted in microscope slides. Marked tumour areas were selected with a sterile razor blade. Three sections of tissue were incubated in a solution of 10 mM Tris-HCl buffer (pH 8.0), 2.5 mM MgCl₂, 50 mM KCl, 0.5% (p/v) Tween 20, and 1 mg/mL proteinase K for 48 hours at 55°C.

TUBB exon 4 sequencing

For polymerase chain reaction (PCR) assays, different sets of oligonucleotides were designed to amplify specific regions of TUBB exon 4 that code for the GTP and paclitaxel binding sites. To assure that the amplicon was not a pseudogene, the following intronic primer set was used in the first round PCR: 5’AAG-GAG-ATA-CAT-CCC-AGG-GAA-TT3’ and 5’AAG-GTA-TTC-ATG-ATG-CCA-AAC-TT3’. After checking for first round PCR product in an agarose gel, a 1:10 dilution was used for nested PCRs with the following primers: set 1, 5’AGA-GAG-CTG-TCA-CTG-CTT-G3’ and 5’AAG-GTA-TTC-ATG-ATG-CCA-AAC-TT3’; set 2, 5’GCT-CTG-GAA-TGG-GCA-CTT-G3’ and 5’CCG-TAG-GTT-GTG-GTG-CAT-G3’; set 3, 5’CGG-GGA-TCT-GAA-CCA-CCT-T3’ and 5’GAG-TGT-CAC-GGC-CTG-GAG-T3’. The PCR products were separated by electrophoresis in agarose gels stained with ethidium bromide and analysed in a transilluminator. All DNA samples were analysed in an automatic DNA sequencer ABI PRISM 310™ Genetic Analyser. The sequences were compared with the genomic sequence GenBank AF070600.

MSI evaluation

For microsatellite analysis, tumour DNA was amplified with primers for two quasimonomorphic markers BAT 26 (5’GAG-TGT-CAC-GGC-CTG-TT3’; 5’AAC-CAT-TCA-ACA-TTT-TTA-ACC-C3’) and BAT 34 (5’ACC-CTG-GAG- CAG-TTC-ATG-TTC3’; 5’AAC-AAA-GCC-AGA-CCC-AGT-T3’) [18-20]. Fragments were analysed in an ABI PRISM 310™ Genetic Analyser.

Results

Twenty-two of the 34 ovarian cancers (64.7%) presented residual tumour after surgery, seven of which (7/22; 31.8%) were shown to be chemoresistant (five serous and two clear cell tumours) (Table 1).

Amplicons of 700 bp were observed for all cases after amplification with the intronic primers (data not shown). Nested PCR with primer sets 1–3 specific for TUBB exon 4 resulted in amplicons with 129, 254, and 201 bp, respectively (Figure 1). Sequencing analysis of all 34 cases showed no TUBB exon 4 mutations (Figure 2).

Microsatellite analysis with markers BAT 26 and BAT 34 (Figure 3) showed the normal pattern in all cases, so no evidence for microsatellite instability was detected in this series.
Discussion

Tumour resistance to chemotherapy or disease relapses resistant to further treatment after an initial response are common events in current cytotoxic cancer treatment regimens [5]. With regard to ovarian cancer chemotherapy, the current major challenge is to understand why histologically similar tumours behave so differently when treated with the same chemotherapeutic regimen. The action of a drug potentially depends on several mechanisms, namely, metabolism, access into the tumour microenvironment, intracellular uptake, interaction with the target, and subsequent signalling events [5]. It is therefore important to study the different molecular mechanisms that can be involved in chemotherapy resistance.

The rationale for studying the relationship between TUBB gene mutations with paclitaxel resistance came from the studies of Giannakakou et al and Gonzalez-Garay et al [10,11], who found TUBB mutations in ovarian cancer cell lines and in hamster cells, respectively. Subsequently, Monzó et al [12] reported TUBB mutations in 16 out of 36 (44.4%) paclitaxel resistant tumour samples from patients with advanced non-small cell lung cancer and proposed that TUBB mutations could represent a possible mechanism of paclitaxel resistance in that tumour type.

However, our findings in the present study argue against a significant role of TUBB gene mutations in paclitaxel resistance in ovarian cancer. In keeping with our results,

Table 1: Clinical, pathological and genetic data of 34 ovarian cancer patients.

Patient	Histological type	Stage	Grade	Residual tumour	Treatment response	Exon 4 TUBB mutation	MSI status
1	Serous III	I	1	> 2 cm	CR	Not present	Stable
2	Serous III	II	2	< 2 cm	CR	Not present	Stable
3	Serous III	II	3	> 2 cm	CR	Not present	Stable
4	Serous III	III	1	> 2 cm	WR	Not present	Stable
5	Serous III	III	2	> 2 cm	CR	Not present	Stable
6	Serous III	III	2	< 2 cm	CR	Not present	Stable
7	Serous III	III	3	> 2 cm	CR	Not present	Stable
8	Serous III	III	3	> 2 cm	CR	Not present	Stable
9	Serous III	III	3	> 2 cm	CR	Not present	Stable
10	Serous III	III	3	> 2 cm	CR	Not present	Stable
11	Serous III	III	3	> 2 cm	CR	Not present	Stable
12	Serous III	III	3	> 2 cm	WR	Not present	Stable
13	Serous III	III	3	> 2 cm	WR	Not present	Stable
14	Serous IV	IV	3	> 2 cm	PR	Not present	Stable
15	Serous IV	IV	3	> 2 cm	CR	Not present	Stable
16	Serous IV	IV	3	> 2 cm	WR	Not present	Stable
17	Serous IV	IV	3	> 2 cm	WR	Not present	Stable
18	Serous IV	IV	3	< 2 cm	CR	Not present	Stable
19	Serous I	I	1	Absent	-	Not present	Stable
20	Serous II	II	3	Absent	-	Not present	Stable
21	Serous III	III	1	Absent	-	Not present	Stable
22	Serous III	III	3	Absent	-	Not present	Stable
23	Serous III	III	1	Absent	-	Not present	Stable
24	Serous II B	B	Absent	-	Not present	Stable	
25	Serous II B	B	Absent	-	Not present	Stable	
26	Serous III B	III	3	Absent	-	Not present	Stable
27	Clear cell I	I	3	< 2 cm	CR	Not present	Stable
28	Clear cell I	II	3	> 2 cm	WR	Not present	Stable
29	Clear cell III	III	3	> 2 cm	PR	Not present	Stable
30	Clear cell IV	IV	3	> 2 cm	WR	Not present	Stable
31	Clear cell I	I	3	Absent	-	Not present	Stable
32	Clear cell I	I	3	Absent	-	Not present	Stable
33	Clear cell II	II	3	Absent	-	Not present	Stable
34	Clear cell III	III	3	Absent	-	Not present	Stable

B: borderline tumours; CR: complete response; PR: partial response; WR: without response. The stage classification was according to the Federation Internationale de Gynecologie [21] and grading was defined as well differentiated (1), moderately differentiated (2), and poorly differentiated (3).
Sale et al [22] and Lamendola et al [23] did not detect TUBB gene mutations in ovarian cancer samples. Similar findings have recently been obtained for several other tumour types, namely, lung [24], breast [25,26], and gastric cancer [27]. Taken together, our and several other investigations concur that TUBB exon 4 mutations are not an important mechanism underlying paclitaxel resistance. To explain the early findings of Monzó et al [12], which were not reproduced by other authors, including the present study, Kelley et al [24] suggested that the primers used by Monzó et al [12] did not allow to discriminate TUBB from its pseudogenes [24]. Furthermore, the first studies reporting TUBB gene mutations were made in hamster cells [11] and in ovarian cancer cell lines [10] after selection by paclitaxel exposure, something that makes difficult a direct extrapolation of these findings to human tumours.

We have also evaluated the MSI status of the 34 ovarian carcinomas with quasimonomorphic BAT 26 and BAT 34 markers, but did not find any microsatellite unstable tumours. Some authors have described an association between cisplatin resistance and MMR system anomalies in ovarian adenocarcinomas [28-30], as well as in colon cancer cell lines [31-33]. Additionally, other studies found MSI in ovarian cancer, namely, in serous and clear cell histological types [34-40]. However, the frequency of MSI identified in those studies was quite low (0–14.3%), which is in agreement with our findings. To completely rule out any relationship between deficient mismatch repair and cisplatin resistance, one would have to analyse more microsatellite markers in a larger series of tumours paired with normal DNA.

Conclusion

We conclude that, contrarily to earlier suggestions, TUBB exon 4 mutations and MMR defects are not major mechanisms underlying paclitaxel and/or cisplatin resistance in ovarian cancer. Further investigation on alternative mechanisms of resistance to these drugs is warranted. Possible mechanisms to paclitaxel resistance are P-glycoprotein overexpression [5,41], differential β-tubulin isotype expression [5,42,43], and apoptosis deregulation [5,44-46]. Decrease in intracellular cisplatin level, increase of tolerance or repair of DNA lesions, and alterations in the
apoptotic cascade have also been related with cisplatin resistance [5,47]. These studies are necessary to predict individual response of patients to these chemotherapeutic agents.

Competing interests
The author(s) declare that they have no competing interests.

Authors' contributions
BM carried out the molecular genetic studies and drafted the manuscript. IV participated in the design of the study and coordination. DP was responsible for clinical surveillance. AS was responsible for paraffin slides. IMP was responsible for the histopathologic analysis. CP carried out the molecular genetic studies and drafted the manuscript. SC conceived the study and participated in its design and coordination.

Acknowledgements
We thank the Portuguese Health Ministry for the financial support (Project nr. 191/99). B. Mesquita was a fellow of Fundação para Ciência e Tecnologia. We thank Mariano Monzó and collaborators for useful discussions during this work.

References
1. Parkin DM, Bray FI, Devesa SS: Cancer burden in the year 2000: the global picture. *Eur J Cancer* 2001, 37:54-66.
2. Crown J, O'Leary M: The taxanes: an update. *Lancet* 2000, 355:1176-1178.
3. Picart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonese E, Stuert G, Kaye S, Vargote I, Blom R, Grisham R, Atkinson RJ, Swenerton KD, Trope C, Nardi M, Kaern J, Tumolo S, Kim HH, Fojt T, Oefner PJ, Skib IC: Conservation of the class I β-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. *Cancer Lett* 2002, 121:215-225.
4. Alberola V, Lorenzo JC, Nunez L, Ro JY, Martin C: β-Tubulin and paclitaxel resistance. *J Biol Chem* 1999, 274:23875-23882.
5. Vaux C, Bignon YJ: Quoi de neuf sur la signification des instabilités microsatellitaires dans les pathologies tumorales humaines? *Bull Cancer* 1997, 84:1561-1057.
6. Fink D, Aebi S, Howell SB: The role of DNA mismatch repair in drug resistance. *Clin Cancer Res* 1998, 4:1-6.
7. Lage H, Dietel M: Involvement of the DNA mismatch repair system in antineoplastic drug resistance. *J Cancer Res Clin Oncol* 1999, 125:156-165.
8. Soignet SL, Spriggs DR: General principles of chemotherapy. In *Handbook of Gynecologic Oncology* Edited by: Barakat RR, Bevers MW, Gershenson DM, London; Martin Dunitz; 2001:243-263.
9. Haas M, Cannistra SA, Howell SB: The role of DNA mismatch repair in platinum sensitivity in antineoplastic drug resistance. *Int J Cancer* 1995, 64:434-440.
10. Vaux C, Bignon YJ: Quoi de neuf sur la signification des instabilités microsatellitaires dans les pathologies tumorales humaines? *Bull Cancer* 1997, 84:1561-1057.
11. Fink D, Aebi S, Howell SB: The role of DNA mismatch repair in drug resistance. *Clin Cancer Res* 1998, 4:1-6.
12. Lage H, Dietel M: Involvement of the DNA mismatch repair system in antineoplastic drug resistance. *J Cancer Res Clin Oncol* 1999, 125:156-165.
13. Soignet SL, Spriggs DR: General principles of chemotherapy. In *Handbook of Gynecologic Oncology* Edited by: Barakat RR, Bevers MW, Gershenson DM, London; Martin Dunitz; 2001:243-263.
36. Arzimanoglou II, Lallas T, Osborne M, Barber H, Gilbert F: Microsatellite instability differences between familial and sporadic ovarian cancers. Carcinogenesis 1996, 17:1799-1804.
37. Haas C, Diebold J, Hirschmann A, Rohrbach H, Schid S, Lohra U: Microsatellite analysis in serous tumors of the ovary. Int J Gynecol Pathol 1999, 18:158-162.
38. Geisler JP, Gooheart MJ, Sood AK, Holmes RJ, Hatterman-Zogg MA, Buller RE: Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer 2003, 98:2199-2206.
39. Cai KQ, Albarracin C, Rosen D, Zhong R, Zheng W, Luthra R, Broadus R, Liu J: Microsatellite instability and alteration of the expression of the hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum Pathol 2004, 35:552-559.
40. Singer G, Kallinowski T, Hartmann A, Dietmaier W, Wild PJ, Schraml P, Sauter G: Different types of microsatellite instability in ovarian carcinoma. Int J Cancer 2004, 112:643-646.
41. Parekh H, Wiesen K, Simpkins H: Acquisition of taxol resistance via P-glycoprotein and non-P-glycoprotein-mediated mechanisms in human ovarian carcinoma cells. Biochem Pharmacol 1997, 53:461-470.
42. Ranganathan S, Benetatos CA, Colarusso PJ, Docter DW, Hudes GR: Altered β-tubulin isotype expression in paclitaxel resistant human prostate carcinoma cells. Brit J Cancer 1998, 77:562-566.
43. Kavallaris M, Burkhart CA, Hoorwitz SB: Antisense oligonucleotides to class III β-tubulin sensitize drug-resistant cells to Taxol. Brit J Cancer 1999, 80:1020-1025.
44. Haldar S, Basu A, Croce CM: Bcl2 is the guardian of microtubule integrity. Cancer Res 1997, 57:229-233.
45. Liu JR, Fletcher B, Page C, Hu C, Nunez G, Baker V: Bcl-xL is expressed in ovarian carcinoma and modulates chemotherapy-induced apoptosis. Gynecol Oncol 1998, 70:398-403.
46. Tai YT, Lee S, Niloff E, Weisman C, Strobel T, Cannistra SH: BAX protein expression and clinical outcome in epithelial ovarian cancer. J Clin Oncol 1998, 16:2583-2590.
47. Perego P, Romanelli S, Careneini N, Magnus I, Leone R, Bonetti A, Paolichic A, Zunino F: Ovarian cancer cisplatin-resistant cell lines: multiple changes including collateral sensitivity to taxol. Ann Oncol 1998, 9:423-430.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2407/5/101/prepub