ON THE SEMISIMPLICITY OF THE CYCLOTOMIC BRAUER ALGEBRAS, II

HEBING RUI AND JIE XU

Abstract. In this paper, we give a necessary and sufficient condition for the semisimplicity of cyclotomic Brauer algebras \(B_{m,n}(\delta) \) of types \(G(m,1,n) \) with \(m \geq 2 \). This generalizes [11, 1.2–1.3] and [12, 2.5] on Brauer algebras.

Dedicated to Professor Gordon James on the occasion of his 60th birthday

1. Introduction

The cyclotomic Brauer algebras \(B_{m,n}(\delta) \) have been introduced by Hæring-Oldenburg in [10] as classical limits of cyclotomic Birman-Murakami-Wenzl algebras. When \(m = 1 \), they are Brauer algebras \(B_n(\delta) \) [2].

The main purpose of this paper is to give a necessary and sufficient condition for the semisimplicity of \(B_{m,n}(\delta) \) under the assumption \(m \geq 2 \). For \(m = 1 \), such a criterion has been given in [11, 1.2-1.3] and [12, 2.5].

Unless otherwise stated, we assume that \(F \) is a splitting field of \(x^m - 1 \), which contains \(\delta_i, 1 \leq i \leq m \). By assumption, there are \(u_i \in F \) such that \(x^m - 1 = \prod_{i=1}^m (x - u_i) \). Define

\[
e = \begin{cases} +\infty, & \text{if } \text{char } F = 0, \\ \text{char } F, & \text{if } \text{char } F > 0. \end{cases}
\]

(1.1)

Following [12], we define \(\tilde{Z}_{m,n} = \{ ma \mid a \in \tilde{Z}_{m,n} \} \), where \(\tilde{Z}_{m,n} \) is given as follows:

1. \(\tilde{Z}_{2,n} = \tilde{Z}_{1,n} = \{ k \in \mathbb{Z} \mid 3 - n \leq k \leq n - 3 \} \cup \{ 2k - 3 \mid 3 \leq k \leq n, k \in \mathbb{Z} \} \).
2. \(\tilde{Z}_{m,n} = \tilde{Z}_{1,n} \cup \{ 2 - n, n - 2 \} \) if \(m \geq 3 \) and \(n \geq 2 \).

Suppose that \(x_1, x_2, \ldots, x_m \) are indeterminates over \(F \). If \(F \) contains \(\xi \), a primitive \(m \)-th root of unity, then we define

\[
\tau_i = \sum_{j=1}^m x_j \xi^{ji}, \quad 0 \leq i \leq m - 1.
\]

(1.2)

Note that \(F \) contains \(\xi \) if \(e \mid m \) [8, 8.2]. The following is the main result of this paper.

Theorem A. Fix two positive integers \(m, n \) with \(m > 1 \). Let \(\mathcal{B}_{m,n}(\delta) \) be a cyclotomic Brauer algebra over \(F \).

(a) Suppose \(n \geq 2 \). If \(\delta_i \neq 0 \) for some \(i \), \(0 \leq i \leq m - 1 \), then \(\mathcal{B}_{m,n}(\delta) \) is (split) semisimple if and only if

The first author was supported by NSFC No. 10331030 and NCET.
(1) \(e \nmid m \cdot n! \),

(2) \(\varepsilon_{i,0} m - \delta_i \not\in \mathbb{Z}_{m,n}, \ 0 \leq i \leq m - 1 \), where \(\varepsilon_{i,0} \) is the Kronecker function.

(b) Suppose \(n \geq 2 \). If \(\delta_i = 0, \ 0 \leq i \leq m - 1 \), then \(\mathcal{B}_{m,n}(0) \) is not (split) semisimple.

(c) \(\mathcal{B}_{m,1}(\delta) \) is (split) semisimple if and only if \(e \nmid m \).

In what follows, we write \(\delta_j = \delta_i \) if \(i, j \in \mathbb{Z} \) and \(i \equiv j \mod m \).

Let \(\mathcal{H}_{i,k} \) be the hyperplane in \(F^m \), which is determined by the linear function \(\varepsilon_{i,0} m - \xi_i = k, \ 0 \leq i \leq m - 1 \) and \(k \in \mathbb{Z}_{m,n} \). Condition (2) in Theorem A(a) is equivalent to the fact that \((\delta_0, \delta_1, \ldots, \delta_{m-1}) \not\in \bigcup_{0 \leq i \leq m-1, k \in \mathbb{Z}_{m,n}} \mathcal{H}_{i,k} \). When \(m = 1 \), \(\mathcal{H}_{i,k} \) collapses to a point in 1-dimensional \(F \)-space. This result has been proved in [11, 1.2-1.3] and [12, 2.5]. We remark that certain sufficient conditions for semisimplicity of complex Brauer algebras have been given in [3, 4, 14].

Our proof depends on Graham-Lehrer’s theory on cellular algebras [6] and Doran-Wales-Hanlon’s work [4, 3.3-3.4] on Brauer algebras. Let’s explain the idea as follows.

In [6], Graham and Lehrer have introduced the notion of cellular algebra which is defined over a poset \(\Lambda \). Such an algebra has a nice basis, called a cellular basis. For each \(\lambda \in \Lambda \), one can define \(\Delta(\lambda) \), called a cell module. Graham and Lehrer have shown that there is a symmetric, associative bilinear form \(\phi_\lambda \) defined on \(\Delta(\lambda) \). It has been proved in [6, 3.8] that a cellular algebra is (split) semisimple if and only if \(\phi_\lambda \) is non-degenerate for any \(\lambda \in \Lambda \). It is well known that a cellular algebra is split semisimple if and only if it is semisimple. Therefore, one can determine whether a cellular algebra is semisimple by deciding whether all \(\phi_\lambda \) are non-degenerate.

In [6], Graham-Lehrer have proved that a Brauer algebra \(\mathcal{B}_n(\delta) \) over a commutative ring is a cellular algebra over the poset \(\Lambda \) which consists of all pairs \((f, \lambda)\), with \(0 \leq f \leq \lfloor n/2 \rfloor \) and \(\lambda \) being a partition of \(n-2f \). Here \(\lfloor n/2 \rfloor \) is the maximal integer which is less than \(n/2 \). Therefore, one can study the semisimplicity of \(\mathcal{B}_n(\delta) \) by deciding whether \(\phi_{f,\lambda} \) is non-degenerate or not for any \((f, \lambda) \in \Lambda \). Unfortunately, it is difficult to determine whether \(\phi_{f,\lambda} \) is degenerate or not for a fixed \((f, \lambda) \).

In [11], the first author has proved that the semisimplicity of \(\mathcal{B}_n(\delta) \) is completely determined by \(\phi_{f,\lambda} \) for all partitions \(\lambda \) of \(n-2f \) with \(f = 0, 1 \). Using [4, 3.3-3.4], he has decided whether such \(\phi_{f,\lambda} \)'s are degenerate or not in [11]. This gives a complete solution of the problem of semisimplicity of \(\mathcal{B}_n(\delta) \) over an arbitrary field. This method will be used to study the semisimplicity of \(\mathcal{B}_{m,n}(\delta) \) in the current paper.

The contents of this paper are organized as follows. In section 2, we state some results on cyclotomic Brauer algebras, and complex reflection group \(W_{m,n} \). In section 3, we describe explicitly the zero divisors of the discriminants for certain cell modules. Theorem A will be proved in section 4.

Acknowledgement: We thank the referee for his/her helpful comments.
2. Cyclotomic Brauer algebras

Let R be a commutative ring which contains the identity 1_R and $\delta_i, 1 \leq i \leq m$. The cyclotomic Brauer algebra $\mathcal{B}_{m,n}(\delta)$ with parameters $\delta_i, 1 \leq i \leq m$, is the associative R-algebra which is free as R-module with basis which consists of all labelled Brauer diagrams [10]. $\mathcal{B}_{m,n}(\delta)$ can also be defined as the R-algebra generated by $\{s_i, e_i, t_j \mid 1 \leq i < n \text{ and } 1 \leq j \leq n\}$ subject to the relations

- $s_i^2 = 1$, for $1 \leq i < n$.
- $s_is_j = s_js_i$ if $|i-j| > 1$.
- $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$, for $1 \leq i < n - 1$.
- $s_i t_j = t_j s_i$, if $j \neq i, i + 1$.
- $e_i^2 = \delta_i e_i$, for $1 \leq i < n$.
- $s_i e_j = e_j s_i$ if $|i-j| > 1$.
- $e_i e_j = e_j e_i$, if $|i-j| > 1$.
- $e_i t_j = t_j e_i$, if $j \neq i, i + 1$.
- $t_i t_j = t_j t_i$, for $1 \leq i, j \leq n$.
- $s_i t_i = t_i s_i$, for $1 \leq i < n$.
- $t_i^m = 1$, for $1 \leq i \leq n$.

One can prove that the two definitions of $\mathcal{B}_{m,n}(\delta)$ are equivalent by the arguments similar to those for Brauer algebras in [9].

The following result can be proved easily by checking the defining relations of $\mathcal{B}_{m,n}(\delta)$.

Lemma 2.1. Let $\mathcal{B}_{m,n}(\delta)$ be a cyclotomic Brauer algebra over R. There is an R-linear anti-involution $*: \mathcal{B}_{m,n}(\delta) \rightarrow \mathcal{B}_{m,n}(\delta)$ such that $h^* = h$ for all $h \in \{e_i, s_i, t_j \mid 1 \leq i < n, 1 \leq j \leq n\}$.

Recall that F is a splitting field of $x^m - 1$. In the remaining part of this section, we assume $e \not| m \cdot n!$. By [8, 8.2], F contains ξ, a primitive m-th root of unity.

We will decompose an $FW_{m,n}$-module in Proposition 2.5 where $W_{m,n}$ is the complex reflection group of type $G(m,1,n)$. Note that $W_{m,n}$ is generated by s_i, t_i satisfying the relations

- $s_i^2 = t_i^m = 1$ for $1 \leq i \leq n - 1$.
- $s_is_js_i = s_js_is_j$, if $|i-j| = 1$.
- $s_is_j = s_js_i$, if $|i-j| > 1$.
- $s_it_i = t_is_i$ if $1 < i \leq n - 1$.
- $s_is_it_t = t_is_it_is_i$.

The order of $W_{m,n}$ is $m^n \cdot n!$. By Maschke’s theorem, the group algebra $FW_{m,n}$ is (split) semisimple.

Let $\Lambda_m^+(n)$ be the set of m-partitions of n. When $m = 1$, we use $\Lambda^+(n)$ instead of $\Lambda_1^+(n)$. For any $\lambda \in \Lambda_m^+(n)$, let S^λ be the classical Specht module with respect to λ (see [5, 2.1]).
For any \(\lambda \in \Lambda^+(n) \), let \(\mu = (\mu_1, \mu_2, \cdots) \) with \(\mu_i = \# \{ j \mid \lambda_j \geq i \} \). Then \(\mu \), which will be denoted by \(\lambda' \), is called the dual partition of \(\lambda \). If \(\lambda = (\lambda^{(1)}, \lambda^{(2)}, \cdots, \lambda^{(m)}) \in \Lambda^+_m(n) \), we write \(\lambda' = (\lambda^{(m)}, \lambda^{(m-1)}, \cdots, \lambda^{(1)}) \) and call \(\lambda' \) the dual partition of \(\lambda \).

Remark 2.2. All modules considered in this paper are left modules. I.e. \(S^\lambda = FW_{m,n} y_{\lambda'} x_{\lambda} \) if we keep the notation in [5]. In [13], we have assumed \(u_i = \xi^i, 1 \leq i \leq m \). In this paper, we keep this assumption in order to use results in [13] directly.

Since \(FW_{m,n} \) is the Ariki-Koike algebra with \(q = 1 \) and \(x_1^m - 1 = \prod_{i=1}^m (x_1 - u_i) \), the following result is a special case of the result in [5].

Lemma 2.3. The set \(\{ S^\lambda \mid \lambda \in \Lambda^+_m(n) \} \) is a complete set of pairwise non-isomorphic irreducible \(FW_{m,n} \)-modules.

Definition 2.4. Let \(m \) be a positive integer. If \(m \) is even, we define \(\varphi_m(2) = \{ \eta \mid \frac{m+1}{2} \leq i \leq m \} \), where \[
\eta_i = \begin{cases}
(0, \cdots, 0, 2), & \text{if } i = m, \\
(0, \cdots, 0, \frac{1}{\varpi_{m-i}}, 0, \cdots, 0), & \text{if } i = \frac{m}{2}, \\
(0, \cdots, 0, \frac{1}{(m-1)-th}, 0, \cdots, 0, 1-th, 0, \cdots, 0), & \text{if } \frac{m}{2} < i \leq m - 1.
\end{cases}
\]

If \(m \) is odd, we define \(\varphi_m(2) = \{ \eta \mid \frac{m+1}{2} \leq i \leq m \} \), where \[
\eta_i = \begin{cases}
(0, \cdots, 0, 2), & \text{if } i = m, \\
(0, \cdots, 0, \frac{1}{(m-1)-th}, 0, \cdots, 0, 1-th, 0, \cdots, 0), & \text{if } \frac{m+1}{2} \leq i \leq m - 1.
\end{cases}
\]

Proposition 2.5. Let \(\mathbb{Z}_m \wr B_1 \) be the subgroup of \(W_{m,2} \) generated by \(s_1, t_1 t_2 \). As \(FW_{m,2} \)-modules, \(\text{Ind}^{W_{m,2}}_{\mathbb{Z}_m \wr B_1} 1 \cong \bigoplus_{\eta \in \varphi_m(2)} S^n_\eta \).

Proof. Since \(\{ 1, t_1, \cdots, t_1^{m-1} \} \) is a complete set of left coset representatives of \(\mathbb{Z}_m \wr B_1 \) in \(W_{m,2} \), \(\{ t_1 \sum_{i=0}^{m-1} (t_1 t_2)^i (1 + s_1) \mid 0 \leq k \leq m - 1 \} \) is an \(F \)-basis of \(\text{Ind}^{W_{m,2}}_{\mathbb{Z}_m \wr B_1} 1 \). By assumption, \(F \) contains a primitive \(m \)-th root of unity, say \(\xi \). Since we are assuming that \(u_i = \xi^i, 1 \leq i \leq m \), \(\text{Ind}^{W_{m,2}}_{\mathbb{Z}_m \wr B_1} 1 \) has a basis \(\{ w_i \mid 1 \leq i \leq m \} \), where \[
w_i = \prod_{j \neq i, 1 \leq j \leq m} (t_1 - u_j) \sum_{l=0}^{m-1} (t_1 t_2)^l (1 + s_1).
\]

Since \(\prod_{j=1}^m (t_1 - \xi^i) = 0 \), \[
w_i = \prod_{j \neq i} (t_1 - u_j) \prod_{1 \leq j \leq m-1} (u_i t_2 - u_j) (1 + s_1).
\]

By rescaling the above elements, \(\{ v_i \mid 1 \leq i \leq m \} \) is a basis of \(\text{Ind}^{W_{m,2}}_{\mathbb{Z}_m \wr B_1} 1 \), where \[
v_i = \prod_{j \neq i} (t_1 - u_j) \prod_{j \neq m-i} (t_2 - u_j) (1 + s_1).
\]

We have:

- \(F v_m \) is an \(FW_{m,2} \)-module with \(s_1 v_m = t_1 v_m = v_m \). By [5, 2.1], \(F v_m \cong S^n_\eta \).
• Suppose 2 \nmid m. If \(\frac{m+1}{2} \leq i \leq m-1 \), then \(\xi^i \neq \xi^{m-i} \). The subspace
\(Fv_i \oplus Fv_{m-i} \) is an \(FW_{m,2} \)-module such that
\(t_1 v_j = u_j v_j \) for \(j = i, m-i \), and
\(s_1 v_i = v_{m-i} \). Therefore,
\(Fv_i \oplus Fv_{m-i} \cong S^0 \), \(\frac{m+1}{2} \leq i \leq m-1 \).

• Suppose \(2 \mid m \). If \(\frac{m}{2} < i \leq m-1 \), then
\(Fv_i \oplus Fv_{m-i} \) is an \(FW_{m,2} \)-module such that
\(t_1 v_j = u_j v_j \) for \(j = i, m-i \), and
\(s_1 v_i = v_{m-i} \). Therefore,
\(Fv_i \oplus Fv_{m-i} \cong S^0 \), \(\frac{m}{2} < i \leq m-1 \).

• Suppose \(i = \frac{m}{2} \). Then \(Fv_i \) is an \(FW_{m,2} \)-module such that
\(s_1 v_i = v_i \) and
\(t_1 v_i = u_i v_i \). Therefore, \(Fv_i \cong S^0 \).

Consequently, \(\text{Ind}_{\mathbb{Z}}^{Z_m(\mathbb{Q})} 1 \cong \bigoplus_{\gamma \in \mathbb{Z}_m(\mathbb{Q})} S^0 \) no matter whether \(m \) is even or odd. \(\square \)

Remark 2.6. Proposition 2.5 is a special case of [13, (4.4)]. The decomposition given there involves certain \(m \)-partitions \(\eta \). In fact, we have to put more restrictions on \(\eta \). The reason is that \(\sum_{i=0}^{m-1} t_i w_{i,\alpha} \) may be equal to zero for general \(\alpha \) (Here, we keep the notation in [13]). Therefore, the first equality in [13, (4.3)] is not true in general. If we denote by \(c_\eta \) the multiplicity of \(S^0 \) in \(\text{Ind}_{\mathbb{Z}}^{Z_m(\mathbb{Q})} 1 \), [13, (4.1), 6.2] are still true although we do not know the explicit description of \(c_\eta \). Proposition 2.5 gives us the explicit information for \(\eta \) and \(c_\eta \) when \(k = 1 \).

In the remaining part of this section, we recall the result in [13], which says that
\(\mathcal{B}_{m,n}(\delta) \) is a cellular algebra in the sense of [6]. We also prove Theorem 2.9 which will play the key role in the proof of Theorem 3.

Recall that a dotted Brauer diagram \(D \) with \(k \) horizontal arcs is determined by a pair of labelled \((n,k) \)-parenthesis diagrams \(\alpha, \beta \) and \(w \in W_{m,n-2k} \), and vice versa [13]. In this situation, we write \(D = \alpha \otimes w \otimes \beta \) if

- \(\alpha \) (resp. \(\beta \)) is the top (resp. bottom) row of \(D \).
- \(w \) corresponds to the dotted Brauer diagram (or braid diagram) which is obtained from \(D \) by removing the horizontal arcs at top and bottom rows of \(D \).

We denote by \(P(n,k) \) the set of all labelled \((n,k) \)-parenthesis diagrams.

Suppose \(\lambda \in \Lambda_m^+(n) \). A \(\lambda \)-tableau is a bijection \(t = (t_1, \ldots, t_{m-1}, t_m) : (Y(\lambda^{(1)}), \ldots, Y(\lambda^{(m-1)}), Y(\lambda^{(m)})) \to \{1, 2, \ldots, n\} \). If the entries in each \(t_i \), \(1 \leq i \leq m \) increase from left to right in each row and from top to bottom in each column, then \(t \) is called a standard \(\lambda \)-tableau. Let \(T^s(\lambda) \) be the set of all standard \(\lambda \)-tableaux. Let \(\{y_{st}^\lambda \mid \lambda \in \Lambda_m^+(n), s, t \in T^s(\lambda)\} \) be the Murphy basis for \(FW_{m,n} \) [5, 2.8]. Define

\[
C^{(k,\lambda)}_{(\alpha, \beta), (\gamma, \delta)} = \alpha \otimes y_{st}^\lambda \otimes \beta, \quad \alpha, \beta \in P(n,k), s, t \in T^s(\lambda)
\]

Recall that \(R \) is a commutative ring containing the identity \(1 \) and \(\delta_1, \ldots, \delta_m \).

Theorem 2.8. [13, 5.11] Suppose \(R \) contains \(u_1, \ldots, u_m \) such that \(x^m - 1 = (x - u_1)(x - u_2) \cdots (x - u_m) \). Let \(\Lambda = \{(f, \lambda) \mid 0 \leq f \leq \lfloor n/2 \rfloor, \lambda \in \Lambda_m^+(m - 2f)\} \). Then

\[
\{C^{(k,\lambda)}_{(\alpha, \beta), (\gamma, \delta)} \mid \alpha, \beta \in P(n,k), s, t \in T^s(\lambda), (k, \lambda) \in \Lambda\}
\]
is a cellular basis of $R_{m,n}(\delta)$. The R-linear anti-involution defined on $R_{m,n}(\delta)$ is that defined in Lemma 2.7.

Following [6, 2.1], we have the cell modules for $R_{m,n}(\delta)$ with respect to the cellular basis provided in Theorem 2.8. Let $\Delta(k, \lambda)$ be the cell module for $R_{m,n}(\delta)$ with respect to $(k, \lambda) \in \Lambda$. Let $\Delta(\lambda)$ be the cell module for $FW_{m,n}$ with respect to the cellular basis \{\eta^\lambda_m | \lambda \in \Lambda^+_{m,n} \}.

It has been proved in [5, 2.7] that $\Delta(\lambda) \cong S^{\lambda'}$, where λ' is the dual partition of λ. By [6, 2.1], $\Delta(k, \lambda)$ is spanned by $\alpha \otimes v_j \otimes a_0 \mod R_{m,n}(\delta)^{> (k, \lambda)}$, where v_j ranges over the basis elements of $S^{\lambda'}$.

Suppose $\lambda \in \Lambda^+_{m,n}(n)$ and $\mu \in \Lambda^+_{m,n}(n-1)$. If there is a pair (i,j) such that $\lambda_i^{(j)} = \mu_i^{(j)} + 1$ and $\lambda_{i+1}^{(k)} = \mu_{i+1}^{(k)}$ for any $(k,l) \neq (i,j)$, then we write $\mu \rightarrow \lambda$ and say that μ is obtained from λ by removing a box. In this situation, we also say that λ can be obtained from μ by adding a box.

Theorem 2.9. Let $R_{m,n}(\delta)$ be a cyclotomic Brauer algebra over F. If $\mu \in \Lambda^+_{m,n}(n-2)$ and $\lambda \in \Lambda^+_{m,n}(n)$, then either $[\Delta(1,\mu') : \Delta(\lambda')] = 0$ or $[\Delta(1,\mu') : \Delta(\lambda')] = 1$. Furthermore, $[\Delta(1,\mu') : \Delta(\lambda')] = 1$ if one of the following conditions holds true.

1. $\lambda^{(j)} = \mu^{(j)}$, $j \neq m$ and two boxes in the skew Young diagram $Y(\lambda^{(m)}/\mu^{(m)})$ are not in the same column.
2. Suppose that m is odd. There is an i with $\frac{m+1}{2} \leq i < m$ such that $\mu^{(i)} \rightarrow \lambda^{(i)}$ and $\mu^{(m-i)} \rightarrow \lambda^{(m-i)}$, and $\lambda^{(j)} = \mu^{(j)}$ for $j \neq i, m-i$.
3. Suppose that m is even. There is an i with $\frac{m}{2} < i < m$ such that $\mu^{(i)} \rightarrow \lambda^{(i)}$ and $\mu^{(m-i)} \rightarrow \lambda^{(m-i)}$, and $\lambda^{(j)} = \mu^{(j)}$ for $j \neq i, m-i$.
4. Suppose that m is even. $\lambda^{(j)} = \mu^{(j)}$, $j \neq m/2$ and two boxes in the skew Young diagram $Y(\lambda^{(m)/\mu^{(m)})}$ are not in the same column.

Proof. Since we are assuming that F is a splitting field of x^{m-1} such that $e \upharpoonright m \cdot n$, both $FW_{m,n}$ and FS_k are (split) semisimple for $k \leq n$.

For $\lambda \in \Lambda^+(n_1 + n_2), \mu \in \Lambda^+(n_1), \eta \in \Lambda^+(n_2)$, let $L_{\eta,\mu}^{\lambda}$ be the corresponding Littlewood-Richardson coefficient for symmetric groups. If $\lambda \in \Lambda^+_{m,n}(n), \mu \in \Lambda^+_{m,n}(n-2)$ and $\eta \in \Lambda^+_{m,n}(2)$, the Littlewood-Richardson coefficient $L_{\eta,\mu}^{\lambda}$ for complex reflection groups is $\prod_{i=1}^m L_{\eta^{(i)},\mu^{(i)}}^{\lambda^{(i)}}$ [3, §4]. Let c_{η} be the multiplicity of S^η in $\text{Ind}_{BF_{m+2}}^{FW_{m+2}} W_{m+2}$. By [13, 6.2], $[\Delta(1,\mu') : \Delta(\lambda')] = m_{\mu,\lambda}$, where $m_{\mu,\lambda} = \sum_{\eta \in \varphi_{m}(2)} c_{\eta} L_{\eta,\mu}^{\lambda}$. Note that $L_{\eta,\mu}^{\lambda} \neq 0$ if and only if $L_{\eta^{(i)},\mu^{(i)}}^{\lambda^{(i)}} \neq 0$ for $1 \leq i \leq m$. Consequently, if $L_{\eta,\mu}^{\lambda} \neq 0$ for $\eta \in \varphi_{m}(2)$, then there is a unique $\eta \in \varphi_{m}(2)$. Suppose λ and μ are partitions. It is known that two boxes in the skew Young diagram $Y(\lambda/\mu)$ are not in the same column if $L_{\eta,\mu}^{\lambda} \neq 0$ (see, e.g. [4, §3]). In this situation, $L_{(2),\mu}^{\lambda} = 1$, and $\lambda \supset \mu$. We use classical branching rule for symmetric groups if either $\eta \notin \{\eta_m, \eta_{m+2}\}, 2 \mid m$ or $\eta \notin \eta_m, 2 \upharpoonright m$. In any case, we have $m_{\mu,\lambda} = 1$, if one of the conditions in (1)-(4) holds true. \qed

Definition 2.10. Suppose $\mu \in \Lambda^+_{m,n}(n-2)$ and $\lambda \in \Lambda^+_{m,n}(n)$. λ is called μ-admissible if one of the conditions in Theorem 2.9 (1)-(4) holds true. Let $\mathcal{A}(\mu)$ be the set of all μ-admissible m-partitions.
3. Zero divisors of certain discriminants

In this section, we assume \(\delta_i \in F \) for \(1 \leq i \leq m \), where \(F \) is a splitting field of \(x^m - 1 \) and \(e \nmid m \cdot n! \). The main purpose of this section is to prove Theorem 3.9, which will give all zero divisors of the discriminants of the Gram matrices \(G_{1, \mu'} \) with respect to the cell modules \(\Delta(1, \mu') \), \(\mu \in \Lambda^+_{m}(n - 2) \).

Recall that \(P(n, k) \) is the set of labelled parenthesis Brauer diagrams with \(k \) horizontal arcs. In what follows, we assume \(\alpha_0 = \text{top}(e_{n-1}) \in P(n, 1) \), the top row of \(e_{n-1} \). Define \(M_1 \) and \(M_2 \) by setting

- \(M_1 = \{ \alpha \otimes w \otimes \alpha_0 \mid \alpha \in P(n, 1), w \in W_{m, n-2} \} \).
- \(M_2 = \{ \alpha \otimes w \otimes \beta \mid \alpha, \beta \in P(n, k), w \in W_{m, n-2k}, 2 \leq k \leq [\frac{n}{2}] \} \).

We consider the quotient \(F \)-subspace \(V = V_1/V_2 \), where \(V_1 \) (resp. \(V_2 \)) is spanned by \(M_1 \cup M_2 \) (resp. \(M_2 \)). For convenience, we use \(\alpha \otimes w \otimes \alpha_0 \) instead of \(\alpha \otimes w \otimes \alpha_0 + V_2 \).

Recall that any dotted Brauer diagram can be written as \(\alpha \otimes w \otimes \beta \) where \(\alpha, \beta \in P(n, k) \) and \(w \in W_{m, n-2k} \). Let \(\tilde{\alpha} \in P(n, k) \) be such that

a) \(\alpha \) and \(\tilde{\alpha} \) have the same horizontal arcs.

b) There are \(m - i \) dots on a horizontal arc in \(\tilde{\alpha} \) if and only if there are \(i \) dots on the corresponding horizontal arc in \(\alpha \).

Define an \(R \)-linear isomorphism \(\iota : \mathcal{B}_{m,n}(\delta) \to \mathcal{B}_{m,n}(\delta) \) by declaring that

\[
\iota(\alpha \otimes w \otimes \beta) = \tilde{\beta} \otimes w^{-1} \otimes \tilde{\alpha}.
\]

We remark that \(\iota \) is not an algebraic (anti-)homomorphism since \(\iota(e_i^t e_i) = \delta_k e_i \neq \delta_{m-k} e_i \) in general. However, by straightforward computation, we have

\[
\iota(w(\alpha \otimes w_1 \otimes \beta)) = \iota(\alpha \otimes w_1 \otimes \beta)w^{-1},
\]

for any \(\alpha, \beta \in P(n, k), w \in W_{m,n}, w_1 \in W_{m,n-2k} \).

Following [7], we have the following definition.

Definition 3.3. Suppose \(\alpha_0 \otimes w \otimes \alpha_0 \in V \) for \(i = 1, 2 \). Let \(\langle \alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0 \rangle \) be the coefficient of \(e_{n-1} \) in the expression of \(\iota(\alpha_1 \otimes w_1 \otimes \alpha_0) \cdot (\alpha_2 \otimes w_2 \otimes \alpha_0) \), where \(\iota \) is defined in (3.1). Let \(G_{m,n}(\delta) \) be the \(f \times f \)-matrix with \(f = \dim V \) such that the entry in \((\alpha_1 \otimes w_1 \otimes \alpha_0) \)-th row, \((\alpha_2 \otimes w_2 \otimes \alpha_0) \)-th column is \(\langle \alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0 \rangle \).

If either \(h_1 \in M_2 \) or \(h_2 \in M_2 \), then \(\iota(h_1)h_2 \in V_2 \). Since \(e_{n-1} \not\in V_2 \), \(\langle h_1, h_2 \rangle = 0 \). Hence, \(\langle , , \rangle : V \times V \to F \) is a well-defined \(F \)-bilinear form on \(V \).

The following lemma can be verified easily.

Lemma 3.4. \(G_{m,n}(\delta) = (g_{ij}) \) is an \(f \times f \) matrix such that \(g_{ii} = \delta_0, 1 \leq i \leq f \) and \(g_{ij} \in \{ 0, \delta_1, \cdots, \delta_{m-1} \} \) if \(i \neq j \).

Lemma 3.5. \(G_{m,n}(\delta) : V \to V \) is a left \(FW_{m,n} \)-homomorphism and a right \(FW_{m,n-2} \) homomorphism

Proof. We consider \(G_{m,n}(\delta) \) as the \(F \)-linear endomorphism on \(V \) such that

\[
G_{m,n}(\delta)(\alpha_1 \otimes w_1 \otimes \alpha_0) = \sum_{\alpha \in P(n,1), w \in W_{m,n-2}} \langle \alpha \otimes w \otimes \alpha_0, \alpha_1 \otimes w_1 \otimes \alpha_0 \rangle \alpha \otimes w \otimes \alpha_0.
\]
By (3.2),
\[\langle w(\alpha_1 \otimes w_1 \otimes \alpha_0), w(\alpha_2 \otimes w_2 \otimes \alpha_0) \rangle = \langle \alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0 \rangle. \]

In other words, \(G_{m,n}(\delta) : V \to V \) is a left \(FW_{m,n} \)-homomorphism.

On the other hand, since \((\alpha_1 \otimes w_1 \otimes \alpha_0) y = \alpha_1 \otimes w_1 y \otimes \alpha_0 \) for any \(y \in W_{m,n-2} \), \(e_{n-1} \) appears in \(y^{-1}(\alpha_0 \otimes w_1 \otimes \alpha_0)y \) with non-zero coefficient if and only if \(w_1 = 1 \).

Therefore,
\[\langle (\alpha_1 \otimes w_1 \otimes \alpha_0)y, (\alpha_2 \otimes w_2 \otimes \alpha_0)y \rangle = \langle \alpha_1 \otimes w_1 \otimes \alpha_0, \alpha_2 \otimes w_2 \otimes \alpha_0 \rangle. \]

Consequently, \(G_{m,n}(\delta) : V \to V \) is a right \(FW_{m,n-2} \)-homomorphism. \(\square \)

Since we are assuming that \(F \) is a splitting field of \(x^m - 1 \) and \(e \nmid m \cdot n! \), \(FW_{m,k} \) is (split) semisimple for any \(k, 1 \leq k \leq n \). Assume that \(\lambda \in \Lambda_m^+(k) \). The classical Specht module \(S^\lambda \) is a direct summand of \(FW_{m,k} \). Consequently, \(\Delta(1, \lambda') \) can be realized as a submodule of \(V \), which is spanned by \(\alpha \otimes v_j \otimes \alpha_0 \) (mod \(V_2 \)), where \(v_j \) ranges over the basis elements of \(S^\lambda \). Note that \(G_{m,n}(\delta) \) is a right \(FW_{m,n-2} \)-module. For any \(\lambda \in \Lambda_m^+(n - 2) \), the restriction of \(G_{m,n}(\delta) \) on \(\Delta(1, \lambda') \) induces a linear endomorphism on \(\Delta(1, \lambda') \).

Definition 3.6. For \(\mu \in \Lambda_m^+(n - 2) \), define \(g_{\mu} = \prod_{\lambda \in \mathcal{P}(\mu)} g_{\lambda, \mu} \), where
\[
(3.7) \quad g_{\lambda, \mu} = (\delta_0 - m + m \sum_{p \in Y(\lambda/\mu)} c(p)) \prod_{i=1}^{m-1} (\delta_i + m \sum_{p \in Y(\lambda/\mu)} c(p)).
\]

It follows from [6, 2.3] that there is an invariant symmetric bilinear form defined on each cell module \(\Delta(k, \lambda) \). Via such a bilinear form, one can define a Gram matrix \(G_{k,\lambda} \). Let \(\mathcal{G}_{k,\lambda} \) be the determinant of \(G_{k,\lambda} \). The following result follows from [6, 3.8] and Theorem 2.8 immediately.

Lemma 3.8. \(\mathcal{G}_{m,n}(\delta) \) is (split) semisimple over \(F \) if and only if \(\det \mathcal{G}_{k,\lambda} \neq 0 \) for all \((k, \lambda) \in \Lambda \).

In general, it is difficult to compute \(\det \mathcal{G}_{k,\lambda} \). Assume \(\delta_i \neq 0 \) for some \(1 \leq i \leq m \). The following result describes all the zero divisors of \(\det \mathcal{G}_{1,\lambda}, \lambda \in \Lambda_m^+(n - 2) \). Fortunately, it completely determines \(\mathcal{B}_{m,n}(\delta) \) being (split) semisimple.

Theorem 3.9. Suppose \(\delta_i \neq 0 \) for some \(i, 1 \leq i \leq m \). \(\det \mathcal{G}_{1,\mu'} = 0 \) if and only if \(g_{\mu} = 0 \).

Proof. (\(\Rightarrow \)) If \(\det \mathcal{G}_{1,\mu'} = 0 \), then we can find an irreducible \(\mathcal{B}_{m,n}(\delta) \)-module \(M \subset \text{Rad} \mathcal{G}_{1,\mu'} \), where \(\text{Rad} \mathcal{G}_{1,\mu'} = \{ v \in \Delta(1, \mu') | \mathcal{G}_{1,\mu'}(v) = 0 \} \). It follows from [6, 2.6, 3.4] that any irreducible module of a cellular algebra must be the simple head of a cell module, say \(\Delta(k, \lambda') \). Hence, there is a non-zero homomorphism from \(\Delta(k, \lambda') \) to \(\Delta(1, \mu') \) with \((k, \lambda') < (1, \mu') \). Therefore, either \(k = 1 \) or \(k = 0 \).
Assume that $k = 1$. We use [13, 7.4] \footnote{[13, 7.4] is for $\mathcal{B}_{m,n}(\delta)$ over the complex field. However, it is still true if we use F, a splitting field of $x^m - 1$ with $e \mid m \cdot n!$, instead of C. See [13, 8.8].} to get a non-zero homomorphism from $\Delta(0, \lambda')$ to $\Delta(0, \mu')$. Notice that, as $FW_{m,n}$-modules, $\Delta(0, \lambda') \cong S^\lambda$. Since $FW_{m,n}$ is (split) semisimple, we have $\lambda = \mu$, a contradiction since $(1, \lambda') < (1, \mu')$.

If $k = 0$, then there is a non-zero $\mathcal{B}_{m,n}(\delta)$-homomorphism from $\Delta(0, \lambda')$ to $\Delta(1, \mu')$, forcing $\lambda \in \mathcal{A}(\mu)$. By [13, 8.6, 8.8], $g_{\lambda, \mu} = 0$. We have $g_{\mu, \mu} = 0$ as required.

(\Leftarrow) Suppose $g_{\mu, \mu} = 0$. Then there is a $\lambda \in \mathcal{A}(\mu)$ such that $g_{\lambda, \mu} = 0$. Since $\lambda \in \mathcal{A}(\mu)$, by Theorem 2.9, $[\Delta(1, \mu') : S^\lambda] = 1$. Hence, there is a unique $FW_{m,n}$-submodule M of $\Delta(1, \mu')$ which is isomorphic to S^λ. Recall that $G_{m,n}(\delta)|_{\Delta(1, \mu')}$ is a linear endomorphism on $\Delta(1, \mu')$. For simplicity, we use $G_{m,n}(\delta)$ instead of $G_{m,n}(\delta)|_{\Delta(1, \mu')}$ if there is no confusion.

Since $G_{m,n}(\delta)$ is an $FW_{m,n}$-homomorphism, and $[\Delta(1, \mu') : S^\lambda] = 1$, $G_{m,n}(\delta)(M) \subset M$. By Schur’s Lemma, $G_{m,n}(\delta)|_M = f(\delta)I$, where I is the identity matrix and $f(\delta) := f(\delta_0, \delta_1, \cdots, \delta_{m-1})$ is a polynomial in δ_i, $0 \leq i \leq m - 1$.

Take a basis of M and extend it to get a basis of V via the elements $\alpha \otimes w \otimes \alpha_0$. Then $G_{m,n}(\delta)$ is conjugate to
\[
\begin{pmatrix}
 f(\delta)I & 0 \\
 0 & B
\end{pmatrix},
\]
where any entry in the diagonal of B is δ_0, and the term of the entry of B elsewhere does not contain δ_0. Since the degree of δ_0 in det $G_{m,n}(\delta)$ is dim V (see Lemma 3.2), the degree of δ_0 in $f(\delta)$ must be 1. In particular, $f(\delta)$ is not a constant number. Take the parameters $\delta_0, \delta_1, \cdots, \delta_{m-1}$ such that $f(\delta) = 0$. Then $G_{m,n}(\delta)|_M = 0$.

We claim $e_{n-1}v = 0$ for any $v \in M$. Write $v = \sum_{a^s} a_{a^s} \cdot w \otimes \alpha_0$, where there are s dots at the left endpoint of the unique arc in α^s. We divide $P(n, 1)$ into three disjoint subsets P_1, P_2, P_3 as follows. Recall that a point in α^s is called a fixed point if it is an endpoint of a horizontal arc of α^s. Otherwise, it is called a free point.

- P_1 consists of all $\alpha^s \in P(n, 1)$ such that $(n - 1, n)$ is a unique arc of α^s. Then $e_{n-1}(\alpha^s \otimes w \otimes \alpha_0) = 0$.
- P_2 consists of all $\alpha^s \in P(n, 1)$ such that both $n - 1$ and n are free points in α. Then $e_{n-1} \alpha^s \otimes w \otimes \alpha_0 = 0$.
- P_3 consists of all $\alpha^s \in P(n, 1)$ such that either $n - 1$ or n is a fixed point.

Let i be the left endpoint of the unique arc in α^s. By assumption, there are s dots at the endpoint i. We define $w_{\alpha^s} \in \mathfrak{S}_{n-2}$ by setting
\[
w_{\alpha^s} = \begin{pmatrix}
i & i + 1 & i + 2 & \cdots & n - 3 & n - 2
 n - 2 & i & i + 1 & \cdots & n - 4 & n - 3
\end{pmatrix}
\]
Define $y_{\alpha^s} := t^i_{\alpha^s}w_{\alpha^s}$. Then $e_{n-1} \cdot (\alpha^s \otimes 1 \otimes \alpha_0) = \alpha_0 \otimes y_{\alpha^s} \otimes \alpha_0$. Therefore, the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $e_{n-1}v$ is $\sum_{\alpha^s \in P_2} a_{\alpha^s, y_{\alpha^s}, w_1} + \sum_{s=0}^{m-1} \delta_s a_{\alpha^s, w_1}$.

\[\]
On the other hand, by direct computation, the coefficient of $\alpha_0 \otimes w_1 \otimes w_0$ in $G_{m,n}(\delta)v$ is $\sum_{\alpha^* \in P(n,1)\cup \{0\},w \in W_{m,n-2}} a_{\alpha^*,w}\langle \alpha_0 \otimes w_1 \otimes \alpha_0, \alpha^* \otimes w \otimes \alpha_0 \rangle$. We have

$$\langle \alpha_0 \otimes w_1 \otimes \alpha_0, \alpha^* \otimes w \otimes \alpha_0 \rangle = \begin{cases} \delta_s, & \text{if } \alpha^* \in P_1, w = w_1, \\ 0, & \text{if } \alpha^* \in P_1, w \neq w_1, \\ 0, & \text{if } \alpha^* \in P_2, \\ 1, & \text{if } \alpha^* \in P_3 \text{ and } w = y_0^{-1}w_1, \\ 0, & \text{if } \alpha^* \in P_3 \text{ and } w \neq y_0^{-1}w_1. \end{cases}$$

Since $G_{m,n}(\delta)v = 0$, the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $G_{m,n}(\delta)v$ is zero. Therefore,

$$\sum_{\alpha^* \in P(n,1)\cup \{0\},w \in W_{m,n-2}} a_{\alpha^*,w}\langle \alpha_0 \otimes w_1 \otimes \alpha_0, \alpha^* \otimes w \otimes \alpha_0 \rangle = \sum_{\alpha^* \in P_3} a_{\alpha^*,y_0^{-1}w_1} + \sum_{s=0}^{m-1} \delta_s a_{\alpha^*,w_1} = 0,$$

forcing the coefficient of $\alpha_0 \otimes w_1 \otimes \alpha_0$ in $e_{n-1}v$ to be zero for all $w_1 \in W_{m,n-2}$. This completes the proof of the claim.

Therefore, as $\mathcal{B}_{m,n}(\delta)$-module, $M \cong \Delta(0, \lambda')$. We obtain a non-zero $\mathcal{B}_{m,n}(\delta)$-homomorphism from $\Delta(0, \lambda')$ to $\Delta(1, \mu')$. In particular, $\det G_{1,\mu'} = 0$. By [13, 8.6, 8.8] the parameters δ_i’s must satisfy the equation $g_{\lambda,\mu} = 0$, the condition we have assumed.

\[\square\]

4. Proof of Theorem [A]

In this section, we prove Theorem [A] the main result of this paper. Unless otherwise stated, we assume that F is a splitting field of $x^m - 1$, which contains $\delta_i, 1 \leq i \leq m$. Assume $m > 1$.

Proposition 4.1. Suppose $n \geq 2$. If $0 \neq \delta_i \in F$ for some i, $1 \leq i \leq m$, then $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple if and only if $e \nmid m \cdot n$! and $\det G_{i,\lambda} \neq 0$ for any $\lambda \in \Lambda^+(k-2)$, $2 \leq k \leq n$.

Proof. (\Leftarrow) Suppose that $\mathcal{B}_{m,n}(\delta)$ is not (split) semisimple. There is a $(k, \lambda) \in \Lambda$ such that $\det G_{k,\mu} = 0$. Since $FW_{m,n}$ is (split) semisimple, $k \neq 0$.

Take an irreducible submodule $M \subset \text{Rad} \Delta(k, \mu)$. By [6, 2.6, 3.4], M must be isomorphic to the simple head of a cell module, say $\Delta(l, \lambda)$, such that $(l, \lambda) < (k, \mu)$. Furthermore, it results in a non-trivial homomorphism from $\Delta(l, \lambda)$ to $\Delta(k, \mu)$.

If $l = k$, we use [13, 7.4] to get $\Delta(0, \lambda) \cong \Delta(0, \mu)$. As $FW_{m,n-2k}$-modules, $\Delta(0, \lambda) \cong \Lambda'$. Since $FW_{m,n-2k}$ is (split) semisimple, $\lambda = \mu$, which contradicts $(l, \lambda) < (k, \mu)$.

Suppose $l < k$. By [13, 7.4, 7.7], there is a non-trivial homomorphism from $\Delta(0, \tilde{\lambda})$ to $\Delta(1, \tilde{\mu})$ for some $\tilde{\mu} \in \Lambda^+(p-2)$ with $p \leq n$. By assumption, $\det G_{i,\tilde{\mu}} \neq 0$. Hence, $\Delta(1, \tilde{\mu}) = D^{(1,\tilde{\mu})} \cong \Delta(0, \tilde{\lambda})$. By [6, 3.4], $(0, \tilde{\lambda}) = (1, \tilde{\mu})$, a contradiction.

(\Rightarrow) If $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple, then [6, 3.8] implies that $\det G_{k,\lambda} \neq 0$ for all $0 \leq k \leq \lfloor \frac{m}{2} \rfloor$. Therefore, $FW_{m,n}$ is (split) semisimple, forcing $e \nmid m \cdot n$.

\[\frac{m}{2}\]

2 under our assumption, the group algebra $FW_{m,n}$ is (split) semisimple. Since the proof of [13, 8.6, 8.8] depends only on the fact that $\mathcal{C}W_{m,n}$ is (split) semisimple, we can apply these results here.
Suppose $\det G_1,\mu' = 0$ for some $\mu' \in \Lambda_m^+(k-2)$. Then $k < n$. By Theorem 3.9 there is a μ-admissible m-partition λ such that $g_{\lambda,\mu} = 0$. Equivalently, there is a non-zero $\mathcal{B}_{m,n}(\delta)$-homomorphism from $\Delta(0,\lambda')$ to $\Delta(1,\mu')$.

Since we are assuming that $m \geq 2$, we can find an $i, 1 \leq i \leq m$, such that $\lambda^{(i)} = \mu^{(i)}$. We can add l boxes to $\lambda^{(i)}$ so as to get another partition $\tilde{\lambda}^{(i)} = \tilde{\mu}^{(i)}$. In this situation, $g_{\lambda,\tilde{\mu}} = g_{\lambda,\mu}$, where λ (resp. $\tilde{\mu}$) can be obtained from λ (resp. μ) by using $\tilde{\lambda}^{(i)}$ instead of $\lambda^{(i)}$ (resp. $\mu^{(i)}$). By definition, $\lambda \in \mathcal{A}(\tilde{\mu})$. If we take l such that $|\lambda| + l = n$, then $\Delta(0,\tilde{\lambda}')$ and $\Delta(1,\tilde{\mu}')$ are $\mathcal{B}_{m,n}(\delta)$-modules. By Theorem 3.9 $\det G_1,\tilde{\mu}' = 0$. However, since $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple, $\det G_1,\tilde{\mu}' \neq 0$, a contradiction. □

Corollary 4.2. Let $\mathcal{B}_{m,n}(\delta)$ be a cyclotomic Brauer algebra over F, where F contains a non-zero δ_i for some $i, 1 \leq i \leq m$. $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple if only if $\det G_{k,\lambda} \neq 0$ for all $0 \leq k \leq \left\lceil \frac{n-1}{2} \right\rceil$. In particular, $\det G_{k,\lambda} \neq 0$ with $k = 0, 1$ and $\lambda \in \Lambda_m^+(n-2k)$.

Proof. Suppose $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple. It follows from [6, 3.8] that $\det G_{k,\lambda} \neq 0$ for all $0 \leq k \leq \left\lceil \frac{n-1}{2} \right\rceil$. In particular, $\det G_{k,\lambda} \neq 0$ with $k = 0, 1$ and $\lambda \in \Lambda_m^+(n-2k)$.

Conversely, if $\det G_{k,\lambda} \neq 0$ for all $\lambda \in \Lambda_m^+(n)$, then $FW_{m,n}$ is (split) semisimple. Suppose that $\mathcal{B}_{m,n}(\delta)$ is not (split) semisimple. By Proposition 4.1 there is a $\mu \in \Lambda_m^+(k-2)$ with $k < n$ such that $\det G_{1,\mu} = 0$. From the proof of Proposition 4.1 we can find a $\tilde{\mu} \in \Lambda_m^+(n-2)$ such that $\det G_{1,\tilde{\mu}} = 0$. This contradicts our assumption. □

Corollary 4.2 has been stated as a question in [13, p220]. We remark that corollary 4.2 is not true if $m = 1$. In fact, the first author has proved that a Brauer algebra is (split) semisimple over F if and only if $e \nmid n$! and $\det G_{1,\lambda} \neq 0$ for all $\lambda \in \Lambda^+(k-2), 2 \leq k \leq n$. By [4, 3.3-3.4], Corollary 4.2 is not true if $m = 1$.

Definition 4.3. Suppose that $m, n \in \mathbb{N}$ with $n \geq 2$. For $m \geq 2$, define $\rho_{m,n} = \{ ma | a \in \tilde{\rho}_{m,n} \}$, where

$$\tilde{\rho}_{m,n} = \{ k \in \mathbb{Z} | k = \sum_{p \in Y(\lambda/\mu)} c(p) \mid \mu \in \Lambda_m^+(n-2), \lambda \in \mathcal{A}(\mu) \}.$$

If $m = 1$, we define

$$\tilde{\rho}_{m,n} = \{ r \in \mathbb{Z} | r = \sum_{p \in Y(\lambda/\mu)} c(p) \mid \mu \in \Lambda^+(k-2), \lambda \in \Lambda^+(k), 2 \leq k \leq n \},$$

where two boxes in $Y(\lambda/\mu)$ are not in the same column.

At the end of this paper, we will prove $\tilde{\rho}_{m,n} = \tilde{Z}_{m,n}$. Hence, $\rho_{m,n} = Z_{m,n}$.

Theorem 4.4. Let $\mathcal{B}_{m,n}(\delta)$ be a cyclotomic Brauer algebra over F, where F contains a non-zero δ_i for some $i, 1 \leq i \leq m$. Suppose $n \geq 2$. $\mathcal{B}_{m,n}(\delta)$ is (split) semisimple if and only if

1. $e \nmid m \cdot n!$,
2. $\varepsilon_i 0 m = \varepsilon_i 0 n, 0 \leq i \leq m - 1$, where ε_i is the Kronecker function.
Proof. The result follows from Theorem 3.9 and Corollary 4.2

In the remaining part of this section, we deal with the case \(\delta_i = 0\) for all \(1 \leq i \leq m\). First, we discuss \(B_{m,2}(0)\).

We want to compute \(\det G_{1,\lambda}\) with \(\lambda = ((1), 0, \cdots, 0)\). Note that we have assumed \(u_i = \xi_i, 1 \leq i \leq m\). In this situation, \(y_{\lambda, W_{\lambda}} x_{\lambda} = \gamma(t_1) = \prod_{i=1}^{m-1} (t_1 - \xi_i)\).

Write \(v_1^{(0)} = \text{top}(e_1), v_2^{(0)} = \text{top}(s_1 e_2)\) and \(v_3^{(0)} = \text{top}(e_2)\). Let \(v_i^{(k)}\) be obtained from \(v_i^{(0)}\) by putting \(k\) dots at the left endpoint of the unique horizontal arc in \(v_i^{(0)}\). Then \(\Delta(1, \lambda)\) can be considered as a free \(F\)-module with basis \(\{v_i^{(k)} \otimes g(t_1) \otimes v_j^{(0)} | 1 \leq i \leq 3, 0 \leq k \leq m - 1\}\). Let \(a = \prod_{i=1}^{m-1} (1 - \xi_i)\). The Gram matrix with respect to this basis is

\[
G_{1,\lambda} = \begin{pmatrix} 0 & A & A \\ A & 0 & A \\ A & A & 0 \end{pmatrix},
\]

where \(A = (a_{ij})\) is the \(m \times m\) matrix with \(a_{ij} = a, 1 \leq i, j \leq m\). Since we are assuming that \(m > 1\), \(\det G_{1,\lambda} = 0\). In other words, \(\text{Rad} \Delta(1, \lambda) \neq 0\). Take an irreducible submodule \(D\) of \(\text{Rad} \Delta(1, \lambda)\). Note that any irreducible module must be the simple head of a cell module, say \(\Delta(1, \lambda)\). Therefore, there is a non-trivial homomorphism from \(\Delta(k, \mu)\) to \(\Delta(1, \lambda)\). By [6, 2.6], \((k, \mu) < (1, \lambda)\). This proves the following lemma.

Lemma 4.5. Suppose \(\lambda = ((1), 0, \cdots, 0)\). There is a cell module \(\Delta(k, \mu)\) of \(B_{m,2}(0)\) with \((k, \mu) < (1, \lambda)\) such that there is a non-trivial homomorphism from \(\Delta(k, \mu)\) to \(\Delta(1, \lambda)\).

Let \(J_{m,n}(0)\) be the left ideal of \(B_{m,n}(0)\) spanned by the dotted Brauer diagrams \(D\) such that \{(n-1,n)\} is a horizontal arc at the bottom row of \(D\). It is clear that \(J_{m,n}(0) = \text{Rad} B_{m,n}(0) e_{n-1} \).

Following [13], let \(I_{m,n}^{\geq l} \) (resp. \(I_{m,n}^{> l}\)) be the vector space generated by \((n,l)\)-dotted Brauer diagrams with \(l \geq k\) (resp. \(l > k\)). Let \(J_{m,n}(0) = I_{m,n}^{\geq k}/I_{m,n}^{> k}\). Then \(J_{m,n}(0)\) is a \(B_{m,n}(0)\)-module. Let \(I_{m,n}(\alpha)\) be the subspace of \(I_{m,n}^{\geq k}(0)\) generated by \(\{\alpha \otimes w \otimes \beta_0 | \alpha \in P(n,k), w \in W_{n-2k}\}\), where \(\beta_0 = \text{top}(e_{n-2k+1} \cdots e_{n-3} e_{n-1})\). Let \(B_{m,n}(0)\)-mod be the category of the left \(B_{m,n}(0)\)-modules. Let

\[
G : B_{m,n-2}(0)\text{-mod} \longrightarrow B_{m,n}(0)\text{-mod}
\]

be the tensor functor defined by declaring that \(G(M) = J_{m,n}(0) \otimes B_{m,n-2}(0) M\), for any \(B_{m,n-2}(0)\)-mod \(M\).

Proposition 4.6. Suppose \(\lambda \in \Lambda_m^+(n-2k)\).

(a) The functor \(G\) sends non-zero \(B_{m,n-2}(0)\)-homomorphisms to non-zero ones.

(b) \(G(\Delta(k-1, \lambda)) = \Delta(k, \lambda)\).

Proof. Suppose \(\phi : M_1 \rightarrow M_2\) is a \(B_{m,n-2}(0)\)-module homomorphism. Write \(\phi_\lambda = G(\phi)\). For any \(D_1 \in B_{m,n}(0), D \in J_{m,n}(0)\) and \(m \in M_1\),

\[
\phi_\lambda(D_1 (D \otimes m)) = \phi_\lambda(D_1 D \otimes m) = (D_1 D) \otimes \phi(m) = D_1(D \otimes \phi(m)) = D_1 \phi_\lambda(D \otimes m)
\]
Therefore, ϕ_\ast is a $\mathcal{B}_{m,n}(0)$-homomorphism. For any $\mathcal{B}_{m,n-2}(0)$-module M, define an F-linear map $\alpha: J_{m,n}(0) \otimes \mathcal{B}_{m,n-2}(0) \to M$ by setting $\alpha(D \otimes m) = (e_{n-1}D)0_m$, where $(e_{n-1}D)_0$ is obtained from $e_{n-1}D$ by removing the horizontal arcs $\{n-1, n\}$ at the top and bottom rows of $e_{n-1}D$.

Suppose $D^* = s_{m-2e_{n-1}} \in J_{m,n}(0)$. Then $\alpha(D^* \otimes m) = m$. If $\phi \neq 0$, then there is an $m_1 \in M_1$ such that $\phi(m_1) = m_2 \neq 0$. Consequently, $\alpha(D^* \otimes m_2) = m_2 \neq 0$. We have $\phi_\ast \neq 0$ since $\phi_\ast(D^* \otimes m_1) = D^* \otimes m_2 \neq 0$. This completes the proof of (a).

(b) can be proved similarly as [13, 7.2]. We include a proof as follows. First, we claim as $(\mathcal{B}_{m,n}(0), W_{m,n-2\cdot k})$-modules

$$I^k_{m,n}(0) \cong J_{m,n}(0) \otimes \mathcal{B}_{m,n-2}(0) \otimes^{k-1'} \mathcal{B}_{m,n-2k}(0).$$

For the simplification in exposition and notation, we omit $\mathcal{B}_{m,n-2}(0)$ in what follows.

Suppose $D_1 \otimes D_2 \in J_{m,n}(0) \otimes I^k_{m,n-2}(0)$. Let $e_{i,j} = \alpha \otimes 1 \otimes \alpha$, where $\alpha \in P(n,1)$ contains a unique horizontal arc $\{i, j\}$. Define $e_{i,j}^s := t^s_i e_{i,j} t^s_j$. We claim that there is a dotted Brauer diagram D'_1 in $I^k_{m,n}(0)$ such that $D_1 \otimes D_2 = D'_1 \otimes e_{i,j}^s \ldots e_{i-k+1,j-k+1} D_2$, where $e_{i,j}^s \in \mathcal{B}_{m,n-2}(0)$, $1 \leq l \leq k-1$.

In fact, if the bottom row of D_1 contains a horizontal arc $\{i, j\}$, which is different from $\{n-1, n\}$ and if there are t dots at the left endpoint i of $\{i, j\}$, then we can find another horizontal arc $\{i', j'\}$ at the top row of D_1 such that there are s dots at the left endpoint i' of $\{i', j'\}$. Using vertical arcs $\{i, i'\}$ and $\{j, j'\}$ instead of the horizontal arcs $\{i, j\}$ and $\{i', j'\}$ in D_1, we get another dotted Brauer diagram D'_1. We have $D_1 = D'_1 e_{i,j}^s$. Note that the number of horizontal arcs in $top(D'_1)$ is $k-1$ if the number of horizontal arcs in $top(D_1)$ is k. Using this method repeatedly, we have $D_1 \otimes D_2 = D'_1 \otimes e_{i_1,j_1}^s \ldots e_{i_k,j_k}^s D_2$.

Since $D_2 \in I^{k-1}_{m,n-2}(0)$, the number of the horizontal arcs in the top row of the composite of $e_{i_1,j_1}^s \ldots e_{i_{k-1},j_{k-1}}^s$ and D_2 is at least $k-1$. If it is bigger than k, then $e_{i_1,j_1}^s \ldots e_{i_{k-1},j_{k-1}}^s D_2 = 0$ in $I^{k-1}_{m,n-2}(0)$. If one loop occurs in the composite of $e_{i_1,j_1}^s \ldots e_{i_{k-1},j_{k-1}}^s$ and D_2, $e_{i_1,j_1}^s \ldots e_{i_{k-1},j_{k-1}}^s D_2 = 0$ since $\delta_1 = 0$, $0 \leq i \leq m-1$. We have $D_1 \otimes D_2 = 0$. In the remaining case, $e_{i_1,j_1}^s \ldots e_{i_{k-1},j_{k-1}}^s D_2$ is $w \cdot e_n e_{n-5} \ldots e_{n-2 k+1}$ for some $w \in W_{m,n-2}$. Note that $e_n w = w e_{n-1}$.

$$D_1 \otimes D_2 = D'_1 \otimes e_{i_1,j_1}^s \ldots e_{i_{k-1},j_{k-1}}^s D_2 = D'_1 w \otimes e_n e_{n-5} \ldots e_{n-2 k+1}.$$

Since $\{n-1, n\}$ is the unique horizontal arc at the bottom row of D'_1, $D'_1 w = w_1 e_{n-1}$ for some $w_1 \in W_{m,n}$. Hence, $D_1 \otimes D_2 = w_1 e_{n-1} \otimes e_n e_{n-5} \ldots e_{n-2 k+1}$. We can identify $D_1 \otimes D_2$ with $w_1 e_{n-1} e_{n-3} \ldots e_{n-2 k+1} \in I^{k'}_{m,n}(0)$ and vice versa. This proves $dim_F U_0 = dim_F I^{k'}_{m,n}(0)$, where $U_0 = J_{m,n}(0) \otimes \mathcal{B}_{m,n-2}(0) \otimes I^{k-1'}_{m,n-2}(0)$.

On the other hand, for any $\alpha \in I^{k-1'}_{m,n-2}(0)$, let α_2^0 be obtained from α_2 by adding two vertical arcs $\{n-1, n-1\}$ and $\{n, n\}$. The F-linear map $\phi: U_0 \to I^{k'}_{m,n}(0)$ sending $\alpha_1 \otimes \alpha_2$ to $\alpha_1 \cdot \alpha_2^0$ is surjective. Since $dim_F U_0 = dim_F I^{k'}_{m,n}(0)$, it must be injective. By the definition of the product of two dotted Brauer diagrams in [13],
In this situation, \(n \) any integer between 0 and \(m, n \). Therefore, the second equality in (1) follows.

Suppose \(m, n \) are not in the same column. By [12, 2.4], we can verify that \(\rho_{m,n} = \tilde{\rho}_{m,n} \) is not (split) semisimple over \(F \).

Proposition 4.9. Suppose \(m, n \in \mathbb{N} \) with \(n \geq 2 \).

1. \(\tilde{\rho}_{2,n} = \tilde{\rho}_{1,n} = \{ k \in \mathbb{Z} \mid 3 - n \leq k \leq n - 3 \} \cup \{ 2k - 3 \mid 3 \leq k \leq n, k \in \mathbb{Z} \} \).

2. \(\tilde{\rho}_{m,n} = \tilde{\rho}_{1,n} \cup \{ 2 - n, n - 2 \} \) if \(m \geq 3 \).

Proof. First, we assume \(m = 2 \). If \(\mu \in \Lambda^+(n-2) \) and \(\lambda \in \mathcal{A}(\mu) \), then either \(\lambda^{(1)} = \mu^{(1)} \), \(\lambda^{(2)} \in \mathcal{A}(\mu^{(2)}) \) or \(\lambda^{(2)} = \mu^{(2)} \), \(\lambda^{(1)} \in \mathcal{A}(\mu^{(1)}) \). We can assume \(\lambda^{(1)} \in \mathcal{A}(\mu^{(1)}) \) without loss of generality. Suppose \(|\mu^{(1)}| = k \). Then \(k \) can be any integer between 0 and \(n - 2 \). If \(r = \sum_{p \in Y(\lambda/\mu)} c(p) \), then \(r \in \tilde{\rho}_{1,n} \), forcing \(\tilde{\rho}_{2,n} \subset \tilde{\rho}_{1,n} \). Identifying \(\lambda \in \Lambda^+(k) \) with bipartition \((\lambda, n-k) \), we have \(\tilde{\rho}_{2,n} \supset \tilde{\rho}_{1,n} \).

This proves the first equality in (1). Following [11], we define

\[
\mathcal{Z}(n) = \left\{ r \in \mathbb{Z} \mid r = 1 - \sum_{p \in Y(\lambda/\mu)} c(p), \lambda \in \Lambda^+(k), \mu \in \Lambda^+(k-2), 2 \leq k \leq n \right\},
\]

where two boxes in \(Y(\lambda/\mu) \) are not in the same column. By [12, 2.4],

\[
\mathcal{Z}(n) = \{ i \in \mathbb{Z} \mid 4 - 2n \leq i \leq n - 2 \} \setminus \{ i \in \mathbb{Z} \mid 4 - 2n < i < 3 - n, 2 \nu i \}.
\]

Therefore, the second equality in (1) follows.

Suppose \(m \geq 3 \). If \(\mu \) and \(\lambda \) satisfy one of the conditions in Theorem 2.8 (1) and Theorem 2.8 (4), then \(\sum_{p \in Y(\lambda/\mu)} c(p) \in \tilde{\rho}_{1,n} \). If \(\mu \) and \(\lambda \) satisfy the conditions (2) or (3) in Theorem 2.8, then there is an \(i \), such that \(\mu^{(i)} \rightarrow \lambda^{(i)} \) and \(\mu^{(m-i)} \rightarrow \lambda^{(m-i)} \).

In this situation, \(\sum_{p \in Y(\lambda/\mu)} c(p) \in \mathfrak{I}_a + \mathfrak{I}_b \) with \(|\mu^{(i)}| = a \) and \(|\mu^{(m-i)}| = b \), where

- \(\mathfrak{I}_a = \{ \sum_{p \in Y(\lambda/\mu)} c(p) \mid \mu \in \Lambda^+(\alpha), \mu \rightarrow \lambda \} \), and
- \(\mathfrak{I}_a + \mathfrak{I}_b = \{ i \mid i = x + y, x \in \mathfrak{I}_a, y \in \mathfrak{I}_b \} \).
Note that we can choose a suitable μ such that $a + b = i$ for all $i, 0 \leq i \leq n - 2$. We claim

$$\mathcal{I}_n = \begin{cases} \{0\}, & \text{if } a = 0, \\ \{i \in \mathbb{Z} \mid -a \leq i \leq a\} \setminus \{0\}, & \text{if } a = 1, 2, \\ \{i \in \mathbb{Z} \mid -a \leq i \leq a\}, & \text{otherwise} \end{cases} \tag{1}$$

In fact, one can verify the above result directly when $a \in \{0, 1, 2, 3\}$.

Suppose $\mu \in \Lambda^+(k + 1)$ and $\mu \rightarrow \lambda$. If λ has at least two removable nodes, then we can find a box q which is a removable node for both λ and μ. Let $\tilde{\lambda}$ (resp. $\tilde{\mu}$) be obtained from λ (resp. μ) by removing q. Then

$$\sum_{p \in Y(\lambda/\mu)} c(p) = \sum_{p \in Y(\lambda/\bar{\mu})} c(p) \in \mathcal{I}_k = \{ -k \leq i \leq k \}, \tag{2}$$

the last equality follows from the induction assumption.

If λ has a unique removable node, then $\lambda = (\lambda_1, \cdots, \lambda_r)$ with $\lambda_i = \lambda_j$, $1 \leq i, j \leq r$. We have $\sum_{p \in Y(\lambda/\mu)} c(p) = \lambda_1 - r$. Note that $-1 - k \leq \lambda_1 - r \leq k + 1$. In any case, we have $\mathcal{I}_{k+1} \subset \{i \in \mathbb{Z} \mid -1 - k \leq i \leq k + 1 \}$.

Conversely, by the induction assumption, we can write $i = \sum_{p \in Y(\lambda/\mu)} c(p)$, for some $\lambda \in \Lambda^+(k + 1)$ and $\mu \rightarrow \lambda$ if $-k \leq i \leq k$. Since any Young diagram of a partition has at least two addable nodes, we can choose an addable node q for both λ and μ such that q and λ/μ are not in the same row. In other words, $i \in \mathcal{I}_{k+1}$.

We have

$$\sum_{p \in Y(\lambda/\mu)} c(p) = -(k+1) \text{ if } \lambda = (1, \cdots, 1) \in \Lambda^+(k+2) \text{ and } \mu = (1, \cdots, 1) \in \Lambda^+(k+1).$$

$$\sum_{p \in Y(\lambda/\mu)} c(p) = k + 1 \text{ if } \lambda = (k + 2) \text{ and } \mu = (k + 1).$$

Consequently, $\mathcal{I}_{k+1} \supset \{i \in \mathbb{Z} \mid -k - 1 \leq i \leq k + 1 \}$. This completes the proof of the claim. Therefore,

$$\bigcup_{0 \leq a + b \leq n - 2} T_a + T_b = \{i \in \mathbb{Z} \mid 2 - n \leq i \leq n - 2 \}. \tag{3}$$

Note that $i \in \mathcal{I}_{n+1}$ if $3 - n \leq i \leq n - 3$. (2) follows immediately. \hfill \square

Proof of Theorem A(a) and (c): Theorem A(a) follows from Theorem 4.4 and Proposition 4.9. Theorem A(c) follows from Maschke’s theorem.

References

[1] S. Ariki and K. Koike, A Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr S_n$ and the construction of its irreducible representations, Adv. Math. 106 (1994), 216-243.

[2] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 854-872.

[3] W. Brown, The semisimplicity of ω^n, Ann. of Math. 63 (1956), 324-335.

[4] W. Doran, D. Wales and P. Hanlon, On the semisimplicity of the Brauer centralizer algebras, J. Algebra 211 (1999), 647-685.

[5] J. Du and H. Rui, Specht modules for Ariki-Koike algebras, Comm. Algebra 29 (2001), 4710-4719.

[6] J. Graham and G. Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34.

[7] P. Hanlon and D. Wales, Computing the discriminants of Brauer’s centralizer algebras, Math. Comp. 54 (1990), 771-796.

[8] T. Hungerford, Algebra, GTM73.

[9] H. R. Morton and A. J. Wassermann, A basis for the Birman-Murakami-Wenzl algebra, unpublished paper, (2000).
[10] Reinhard Haering-Oldenburg, *Cyclotomic Birman-Murakami-Wenzl algebras*, J. Pure Appl. Algebra 161 (2001), no. 1-2, 113–144.

[11] H. Rui, *A criterion on the Semisimple Brauer algebras*, J. Comb. Theory (Ser. A) 111 (2005), 78–88.

[12] H. Rui and M. Si, *A criterion on the semisimple Brauer algebras, II*, J. Comb. Theory, Ser. A, (113) (2006), 1199-1203.

[13] H. Rui and W. Yu, *On the semi-simplicity of the cyclotomic Brauer algebras*, J. Algebra, 277, (2005), 187-221.

[14] H. Wenzl, *On the structure of Brauer’s centralizer algebras*, Ann. of Math. 128 (1988), 173-193.

Department of Mathematics, East China Normal University, 200062 Shanghai, P.R. China.

E-mail address: hbrui@math.ecnu.edu.cn

Department of Mathematics, East China Normal University, 200062 Shanghai, P.R. China.

E-mail address: 52060601009@student.ecnu.edu.cn