

1. Introduction

In the late 20th century Hamilton introduced the Ricci flow. More specifically, given a one-parameter family of metrics \(g(t) \) on a Riemannian manifold \(M^n \), defined on an interval \(\mathbb{I} \subset \mathbb{R} \), denoting by \(\text{Ric}_{g(t)} \) the Ricci tensor of the metric \(g(t) \), the equation of Ricci flow is

\[
\frac{\partial}{\partial t} g(t) = -2\text{Ric}_{g(t)}.
\]

In [9] Hamilton proved that for any smooth metric \(g_0 \) on a compact Riemannian manifold \(M^n \), there exists a unique solution \(g(t) \) to the equation (1.1) defined on some interval \([0, \varepsilon) \), \(\varepsilon > 0 \), with \(g(0) = g_0 \). For the complete non-compact case, Wan-Xiong Shi proved in [14] the existence of a complete solution of (1.1) under the condition that the sectional curvatures of \((M^n, g_0) \) are bounded.

A Ricci soliton is a Ricci flow \((M^n, g(t)) \), \(0 \leq t < T \leq +\infty \), with the property that for each \(t \in [0, T) \), there exists a diffeomorphism \(\varphi_t : M^n \to M^n \) and a constant \(\sigma(t) \) such that

\[
\sigma(t) \varphi_t^* g_0 = g(t).
\]

One way to generate Ricci solitons is as follows. Consider a Riemannian manifold \((M^n, g_0) \) with a vector field \(X \) and a constant \(\lambda \), satisfying

\[
\text{Ric}_{g_0} + \frac{1}{2} \mathcal{L}_X g_0 = \lambda g_0,
\]

where \(\mathcal{L}_X g_0 \) denotes the Lie derivative of \(g_0 \) with respect to \(X \). Let’s set \(T := \infty \), if \(\lambda \leq 0 \), and \(T := -\frac{1}{2\lambda} \) if \(\lambda > 0 \). Then, we define a function \(\sigma(t) = -2\lambda t + 1, t \in [0, T), \) and a vector field \(Y \in \mathfrak{X}(M^n) \) by \(Y(x) = \frac{\lambda^2}{2} x, x \in M^n \), and finally, just let \(\varphi_t \) be the one-parameter family of diffeomorphisms generated by \(Y \). This characterization allows some authors to consider the equation (1.2) as the definition of Ricci soliton. For more details on Ricci flow, we refer the reader to [8].

Following the same line of defining Ricci soliton, it is natural to analyze the following situation: Let \((M^n, g_0) \) be a complete Riemannian manifold and \(g(t) \) be a solution of (1.1) defined on an interval \([0, \varepsilon), \varepsilon > 0\), such that \(\varphi_t \) is a one-parameter family of diffeomorphisms of \(M^n \), with \(\varphi_0 = id_M \) and \(g(t)(x) = \tau(x, t) \varphi_t^* g_0(x) \) for every \(x \in M^n \), where \(\tau(x, t) \) is a positive smooth function on \(M^n \times [0, \varepsilon) \). So we have

\[
\frac{\partial}{\partial t} g(t)(x) = \frac{\partial}{\partial t} \tau(x, t) \varphi_t^* g_0(x) + \tau(x, t) \varphi_t^* \mathcal{L}_{\varphi_t^* \tau}(x, t) g_0(x).
\]
When $t = 0$, the above equation becomes

$$\text{Ric}_0 + \frac{h}{2} \mathcal{L}_X g_0 = \lambda g_0,$$

where $h(x) = \tau(x, 0)$, $\lambda(x) = -\frac{1}{2} \frac{\partial}{\partial t} \tau(x, 0)$ and $X = \frac{\partial}{\partial t} \varphi(x, 0)$, which motivates the following

Definition 1. An h-almost Ricci soliton is a complete Riemannian manifold (M^n, g) with a vector field $X \in \mathfrak{X}(M^n)$, a soliton function $\lambda : M \to \mathbb{R}$ and a positive function $h : M^n \to \mathbb{R}^+$ satisfying the equation:

\begin{equation}
\text{Ric}_g + \frac{h}{2} \mathcal{L}_X g = \lambda g.
\end{equation}

For convenience’s sake we denote by (M^n, g, X, h, λ) an h-almost Ricci soliton. When $\mathcal{L}_X g = \nabla u^2 g$ for some smooth function $u : M \to \mathbb{R}$, we call $(M^n, g, \nabla u, h, \lambda)$ an h-almost gradient Ricci soliton with potential function u. In this case, the fundamental equation (1.3) can be rewritten as

\begin{equation}
\text{Ric} + h \nabla^2 u = \lambda g,
\end{equation}

where $\nabla^2 u$ denotes the Hessian of u.

Let’s say that an h-almost Ricci soliton is expanding, steady or shrinking if λ is respectively negative, zero or positive. If λ has no definite sign, we say that it is undefined. When X is a homothetic conformal vector field, that is, $\mathcal{L}_X g = c g$ for some constant c, (M^n, g, X, h, λ) is said to be trivial. Otherwise it is nontrivial. Observe that the traditional Ricci soliton is a 1-almost Ricci soliton with constant λ. Moreover, 1-almost Ricci soliton is just the almost Ricci soliton, whose geometry was first studied in [13] where the authors proved some existence results for almost gradient Ricci solitons. Later, some structural equations for the almost Ricci solitons were presented in [8] which resulted in several studies on the geometry of almost Ricci solitons (Cf. [13]).

In [10] Maschler studied the equation (1.4) free of our motivation, allowing that the function h is not necessarily positive, and he referred to equation (1.4) as Ricci-Hessian equation. Furthermore, we note that the Ricci-Hessian equation is related to a new class of Riemannian metrics introduced by Catino [7] which are natural generalizations of the Einstein metrics. More precisely, he called a Riemannian manifold (M^n, g) with $n \geq 2$, a generalized quasi-Einstein manifold, if there are smooth functions f, λ and μ on M satisfying

\begin{equation}
\text{Ric} + \nabla^2 f - \mu d f \otimes d f = \lambda g.
\end{equation}

When $\mu = \frac{1}{m}$, where m is a positive integer, the above generalized quasi-Einstein manifold is called a generalized m-quasi-Einstein manifold (Cf. [4]) and simply m-quasi-Einstein manifold when λ is constant. Jeffrey Case, Yu-Jen Shu and Guofang Wei have shown that m-quasi-Einstein manifolds are directly related to the warped product Einstein manifolds and that any compact m-quasi-Einstein manifold with scalar curvature is trivial which means that f is a constant (Cf. [6]). However, Barros and Ribeiro [4] presented a family of nontrivial generalized m-quasi-Einstein metrics on a Euclidean unit sphere $\mathbb{S}^n(1)$ that are rigid in the class of constant scalar curvature (see [2]). Namely, they showed that a nontrivial compact generalized m-quasi-Einstein metric $(M^n, g, \nabla f, \lambda, m)$, $n \geq 3$, with constant scalar curvature is isometric to a standard Euclidean sphere $\mathbb{S}^n(\tau)$, and up to constant, $f = -m \ln(\tau - \frac{h}{m})$ where $\tau \in (\frac{h}{m}, +\infty)$ is a real number and h_v is the height function with respect to a fixed unit vector $v \in \mathbb{R}^{n+1}$, which is part of the family presented in [4].

In this note, we will prove that h-almost Ricci solitons are rigid in the class of compact manifolds with constant scalar curvature. Namely, we have the following result.
Theorem 1. A compact nontrivial h-almost Ricci soliton (M^n, g, X, h, λ) with $n \geq 3$ and constant scalar curvature is isometric to a standard sphere $S^n(r)$. Moreover, it is gradient and the potential function is an eigenfunction corresponding to the first eigenvalue of $S^n(r)$.

2. Preliminaries and a Proof of Theorem 1

Firstly, let us list a lemma which is crucial for the proof of our result. Recall that the divergence of a $(1, r)$-tensor T on a Riemannian manifold (M^n, g) is the $(0, r)$-tensor given by

$$
(\text{div} T)(v_1, \ldots, v_r)(p) = \text{tr} (w \to (\nabla_w T)(v_1, \ldots, v_r)(p)),
$$

where $p \in M^n$ and $(v_1, \ldots, v_r) \in T_p M \times \cdots \times T_p M$. If T is a $(0, 2)$-tensor on M^n, one can associate with T a unique $(1, 1)$-tensor, also denoted by T, according to

$$
g(T(Z), Y) = T(Z, Y),
$$

for all $Y, Z \in \mathfrak{X}(M)$.

Lemma 1. \cite{2} Let T be a symmetric $(0, 2)$-tensor on a Riemannian manifold (M^n, g). Then we have

$$
(\text{div} T(\varphi Z)) = \varphi(\text{div} T)(Z) + \varphi(\nabla_Z T) + T(\nabla \varphi, Z),
$$

for each $Z \in \mathfrak{X}(M)$ and any smooth function φ on M^n.

Returning to \cite{1} with $\mu = -\frac{1}{m}$ and $f \neq \text{const.}$ we consider a non-constant function $u = e^{\frac{f}{m}}$. It is easy to see that

$$
\nabla u = \frac{1}{m} e^{\frac{f}{m}} \nabla f
$$

and

$$
\frac{m}{u} \nabla^2 u = \nabla^2 f + \frac{1}{m} df \otimes df.
$$

Consequently, the equation \cite{1} can be rewritten as

$$
\text{Ric} + \frac{m}{u} \nabla^2 u = \lambda g.
$$

Therefore, every generalized quasi-Einstein manifold, with $\mu = -\frac{1}{m}$, is an h-almost gradient Ricci soliton. In particular, interchanging m by $-m$ in the calculations of \cite{2, 3} we conclude that all generalized m-quasi-Einstein metrics satisfy the Ricci-Hessian equation.

Now we consider $(\mathbb{M}^{n}(c), g_0)$, a simply connected Riemannian manifold of constant sectional curvature $c \in \{-1, 1\}$. Let us denote by \mathbb{R}_p^{n+1}, $\nu \in \{0, 1\}$, the vector space \mathbb{R}^{n+1} endowed with the inner product \langle , \rangle given by the standard way:

$$
\langle v, w \rangle = \sum_{i=1}^{n} v_i w_i + (-1)^{\nu} v_{n+1} w_{n+1},
$$

where $v = (v_1, \ldots, v_{n+1})$ and $w = (w_1, \ldots, w_{n+1})$ are elements of \mathbb{R}^{n+1}. With this setting the standard sphere $(S^n(1), g_0)$ is defined by

$$
S^n(1) = \{ p \in \mathbb{R}_0^{n+1}; \langle p, p \rangle = 1 \}
$$

while the standard hyperbolic space $(\mathbb{H}^n(-1), g_0)$ is given by

$$
\mathbb{H}^n(-1) = \{ p \in \mathbb{R}_1^{n+1}; \langle p, p \rangle = -1, p_{n+1} \geq 1 \},
$$

which is a spacelike hypersurface of \mathbb{R}_1^{n+1}, i.e., the inner product \langle , \rangle restricted to $\mathbb{H}^n(-1)$ is a Riemannian metric g_0. Following the same idea of \cite{4} we have:
Example 1. Let \(h_v \) be a height function with respect to a fixed unit vector \(v \in \mathbb{R}^{n+1} \). The quadruple \((M^n, c), g_0, \nabla u, \frac{m}{n+1}, \lambda)\), where \(u = e^{|x|^2} \), \(f = m \ln(\tau + |x|^2) \), \(\tau \) is a real number such that \(f \) is a non constant real function and \(\lambda = c(n-1) + \frac{mc^2}{n\tau - ch_v} \), is a nontrivial structure of \(h \)-almost gradient Ricci soliton on \(M^n(c) \).

In fact, since \(df = -\frac{mc}{n\tau - ch_v} dh_v \) and \(\nabla^2 h_v = -ch_v g_0 \) we have

\[
\nabla^2 f = \nabla df = -\frac{mc}{n\tau - ch_v} \nabla dh_v - d\left(\frac{mc}{n\tau - ch_v}\right) \otimes dh_v
\]

\[
= -\frac{mc}{n\tau - ch_v} \nabla^2 h_v - \frac{mc^2}{(n\tau - ch_v)^2} dh_v \otimes dh_v
\]

\[
= \frac{mc^2}{n\tau - ch_v} h_v g_0 - \frac{mc^2}{(n\tau - ch_v)^2} dh_v \otimes dh_v.
\]

Hence,

\[
\frac{m}{u} \nabla^2 u = \nabla^2 f + \frac{1}{m} df \otimes df = \frac{mc^2}{n\tau - ch_v} h_v g_0.
\]

Since \(\text{Ric} = c(n-1)g_0 \), we have

\[
\text{Ric} + \frac{m}{u} \nabla^2 u = (c(n-1) + \frac{mc^2}{n\tau - ch_v} h_v)g_0.
\]

As we had stated.

Analogously, consider \(u = e^{\frac{|x|^2}{\tau}} \), where \(f(x) = m \ln(\tau + |x|^2) \) and \(\tau \) is a real number such that \(f \) is a non constant real function and let \(g_0 \) be the canonical metric on \(\mathbb{R}^n \). Then for \(\lambda(x) = \frac{2m}{\tau + |x|^2} \), \((\mathbb{R}^n, g_0, \nabla u, \frac{m}{u}, \lambda)\) is a nontrivial \(h \)-almost gradient Ricci soliton on \((\mathbb{R}^n, g_0)\), where \(x_1, \ldots, x_n \) are the canonical coordinates in \(\mathbb{R}^n \).

Example 2. Suppose that \((\mathbb{F}, \langle \rangle)\) is an \((n-1)(n \geq 3)\)-dimensional complete Einstein manifold with \(\text{Ric}_{\langle \rangle} = -(n-2)\langle \rangle, l \geq 0 \). Let \(k \) be a negative constant and define \(f : \mathbb{R} \to \mathbb{R}^+ \) by

\[
f(t) = \frac{A}{\sqrt{-k}} \sinh(\sqrt{-k} t) + \sqrt{\frac{A^2 + l}{-k}} \cosh(\sqrt{-k} t),
\]

where \(A \neq 0 \) is a constant. Let \(M^n = \mathbb{R} \times \mathbb{F} \) denote the \(f \)-warped product of \(\mathbb{R} \) and \((\mathbb{F}, \langle \rangle)\). Namely, the \(n \)-dimensional, smooth product manifold \(M^n = \mathbb{R} \times \mathbb{F} \) is endowed with the metric

\[
g = dt \otimes dt + f(t)^2 \langle \rangle,
\]

where \(t \) is a global parameter of \(\mathbb{R} \). It follows from Lemma 1.1 in [13] that \((M^n, g)\) is Einstein with \(\text{Ric}_g = (n-1)kg \). Since \((M^n, g)\) is complete and \(k < 0 \), there is a function \(u \) on \((M^n, g)\) without critical points satisfying \(\nabla^2 u + ku = 0 \) (see Theorem D in [11]). So, for each smooth function \(h : \mathbb{R} \to \mathbb{R}^+ \), if \(\lambda = (n-1)k - hku \), then \((M^n, g, \nabla u, h, \lambda)\) is a nontrivial structure of \(h \)-almost gradient Ricci soliton on \((M^n, g)\).

Now we are ready to prove the main result of this note.
2.1. A Proof of Theorem 1.

Proof. For a symmetric \((0, 2)\)-tensor \(T\) on \((M^n, g)\), we denote by \(\hat{T}\) the traceless tensor associated with \(T\), that is, \(\hat{T} = T - \frac{tr(T)}{n}g\). Let \(\text{Ric}\) and \(R\) be the Ricci tensor and the scalar curvature of \(M^n\), respectively. Instead of using the constancy assumption on \(R\), we shall prove our Theorem 1 under the weaker condition that \(\langle X, \nabla R \rangle \leq 0\) on \(M^n\). Setting \(S = \frac{1}{2} \mathcal{L}_X g\), we have from (1.3) that

\[
\hat{\text{Ric}} = -h \hat{S},
\]

where \(h\) is the scalar curvature of \(M^n\). Taking \(T = \hat{\text{Ric}}, \varphi = 1\) and \(Z = X\) in Lemma 1, we obtain

\[
\text{div}(\hat{\text{Ric}}(X)) = (\text{div} \hat{\text{Ric}})(X) + \langle \nabla X, \hat{\text{Ric}} \rangle.
\]

It follows from the second contracted Bianchi identity that

\[
(\text{div} \hat{\text{Ric}})(X) = \frac{n - 2}{2n} \langle \nabla R, X \rangle.
\]

By a straightforward computation we infer

\[
\langle \nabla X, \hat{\text{Ric}} \rangle = \langle \hat{\text{Ric}}, \hat{\nabla S} \rangle = -h |\hat{S}|^2.
\]

Combining (2.10) and (2.12), we have

\[
\text{div}(\hat{\text{Ric}}(X)) = \frac{n - 2}{2n} \langle \nabla R, X \rangle - h |\hat{S}|^2.
\]

Integrating on \(M^n\), we know that \(\hat{S} = 0\). Hence \(X\) is a nonhomothetic conformal vector field and from (2.9) \(M^n\) is Einstein. Let us set

\[
\mathcal{L}_X g = 2\rho g,
\]

where, by (1.3)

\[
\rho = \frac{\text{div} X}{n} = \frac{1}{n} \left(\lambda - \frac{R}{n} \right).
\]

Moreover, the conformal factor \(\rho\) satisfies the following equation (see for example p.28 in [16]):

\[
\nabla^2 \rho = -\frac{R}{n(n - 1)} \rho g.
\]

Since \(\rho\) is not a constant, we conclude that

\[
R = \frac{\int_{M^n} n(n - 1) |\nabla \rho|^2 dM}{\int_{M^n} \rho^2 dM} > 0.
\]

Consequently, \(M^n\) is isometric to a sphere \(S^n(r)\), where \(r = \sqrt{n(n - 1)/R}\) is the radius of the sphere (Cf. [12]). It then follows that \(\rho\) is an eigenfunction corresponding to the first eigenvalue \(\lambda_1 = R/(n - 1)\) of the sphere \(S^n(r)\). Setting

\[
u = -\frac{n(n - 1)}{R} \rho,
\]

we obtain

\[
\frac{1}{2} \mathcal{L}_\nabla u g = \nabla^2 u = -\frac{n(n - 1)}{R} \nabla^2 \rho = \rho g = \frac{1}{2} \mathcal{L}_X g.
\]

This completes the proof of Theorem 1. \(\square\)
3. The case noncompact

The proof of Theorem 1 shows that any condition that renders $\tilde{S} = 0$ in the equation (2.13) will entail that the manifold is Einstein and the vector field X is conformal, with conformal factor satisfying (2.16). This allows us to get the following result.

Theorem 2. Let (M^n, g, X, h, λ) be a nontrivial noncompact h-almost Ricci soliton, with $n \geq 3$. Suppose that $\mathcal{L}_X R \leq 0$ and $|\text{Ric}(X)|$ lies in $L^1(M^n)$. Then (M^n, g) is a Einstein manifold with non positive scalar curvature R and X is a nonhomothetic conformal vector field. Moreover:

1. If $R = 0$, then (M^n, g) is isometric to the Euclidean space (\mathbb{R}^n, g_0).
2. If $R < 0$, then $\mathcal{L}_X g = \mathcal{L}_{\nabla u} g$ with potential function u given by (2.17) and M^n is isometric to a hyperbolic space provided that u has only one critical point, or a pseudo-hyperbolic space provided that u has no critical point.

Proof. Suppose that $\mathcal{L}_X R \leq 0$. Then, the equation (2.13) gives that $\text{div}(\text{Ric}(X)) \leq 0$. Since $|\text{Ric}(\nabla u)|$ lies in $L^1(M^n)$ we can use Proposition 1 of [3] to deduce that $\text{div}(\text{Ric}(X)) = 0$. Thus, M^n is Einstein and X is a nonhomothetic conformal vector field. Moreover, we can assume that the equations (2.13)-(2.16) hold. Furthermore, we have $R \leq 0$, since M^n is noncompact. Moreover:

1. If $R = 0$, we conclude from item (ii) of Theorem G in [11] that (M^n, g) is isometric to the n-dimensional Euclidean space (\mathbb{R}^n, g_0).
2. If $R < 0$, we can replace X by ∇u, where u is given by (2.17). In particular, we obtain a complete classification by using Theorem 2 of [15] or Theorem G of [11] and analyzing the critical point of the potential function u. In short, for $R = n(n-1)k$, (M^n, g) is isometric to the hyperbolic space $(\mathbb{H}^n, -(1/k)g_0) = \mathbb{R} \times_f \mathbb{R}^{n-1}$, $f(t) = e^{\pm \sqrt{t}}$, provided that the potential function u has only one critical point, or a pseudo-hyperbolic space, that is, a warped product $\mathbb{R} \times_f \mathbb{F}$, where f is a solution of $f'' + kf = 0$, and \mathbb{F} is a complete Einstein manifold, provided that u has no critical point. Finally, we mention that any of the above two cases can occur. The first one is contained in Example [1] and the second one is Example [2].

References

[1] Barros, A.; Gomes, J.N.; Ribeiro Jr, E. A note on rigidity of the almost Ricci soliton. Arch. der Math. 100 (2013) 481-490.
[2] Barros, A.; Gomes, J. N. A compact gradient generalized quasi-Einstein metric with constant scalar curvature. J. Math Anal. Appl. (Print) 401 (2013) 702-705.
[3] Barros, A.; Ribeiro Jr., E. Some characterizations for compact almost Ricci solitons. Proc. of the Amer. Math. Soc. 140 (2012) 1033-1040.
[4] Barros, A.; Ribeiro Jr., E. Characterizations and integral formulae for generalized quasi-Einstein metrics. Bull. of theBrazilian Math. Soc. 45 (2014) 325-341.
[5] Caminha, A., Camargo, F. and Souza, P. Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. 41 (2010) 339-353.
[6] Case, J.; Shu, Y.; Wei, G. Rigidity of quasi-Einstein metrics. Diff. Geom. Appl. 29 (2011) 93-100.
[7] Catino, G. Generalized quasi-Einstein manifolds with harmonic weyl tensor. Math. Z. 271 (2012) 751-756.
[8] Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci flow. Graduate Studies in Mathematics, 77 (2006).
[9] Hamilton, R.S. Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17 (2) (1982) 255-306.
[10] Maschler, G. Special Kähler-Ricci potentials and Ricci solitons. Ann. Global Anal. Geom. 34 (2008) 367-380.
[11] Masahiko, K. On a Differential Equation Characterizing a Riemannian Structure of a Manifold. Tokyo J. Math. 6 (1) (1983) 143-151.
[12] Obata, M. Certain conditions for a Riemannian manifold isometric with a sphere. J. Math. Soc. Japan, 14 (1962) 333-340.
[13] Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A. Ricci almost solitons. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 10 (2011) 757-799.
[14] Shi, W.-X. Deforming the metric on complete Riemannian manifolds. J. Diff. Geom. 30 (1) (1989) 223-301.
[15] Tashiro, Y. Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117 (1965) 251-275.
[16] Yano, K. Integral formulas in Riemannian geometry. Marcel Dekker, Inc., New York, 1970.

1Departamento de Matemática-UnB, 70910-900-Brasilia-DF, Brasilia
E-mail address: wang@mat.unb.br
URL: http://www.mat.unb.br

2Departamento de Matemática-UFAM, 69077-000-Manaus-AM, Brasil
E-mail address: jnvgomes@gmail.com
URL: http://www.ufam.edu.br

3Departamento de Matemática-UnB, 70910-900-Brasilia-DF, Brasilia
E-mail address: xia@mat.unb.br
URL: http://www.mat.unb.br