Knockdown of IncRNA ENST00000609755.1 Confers Protection Against Early oxLDL-Induced Coronary Heart Disease

Yi Sun †, Shuna Huang †, Chunyu Wan †, Qishuang Ruan †, Xiaoxu Xie †, Donghong Wei †, Guobo Li †, Shaowei Lin *, Huangyuan Li * and Siying Wu *

† School of Public Health, Fujian Medical University, Fuzhou, China, † Department of Clinical Research and Translation Center Office, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China, * Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, China

Background: This study investigated the association between long non-coding RNAs (lncRNAs) and coronary heart disease (CHD) and further elucidated the potential biological roles of lncRNAs in CHD pathogenesis.

Methods: A case-control study (590 patients and 590 controls) was conducted from February 2017 and March 2019 in Fuzhou, China. Environmental factors were investigated using questionnaires and physical examinations. Five representative lncRNAs were screened using lncRNA microarray (peripheral blood in 5 cases and 5 controls) and further verified by quantitative real-time polymerase chain reaction (peripheral blood leukocyte in 100 cases and 100 controls). Oxidized low-density lipoprotein (oxLDL) was used to induce a human coronary artery endothelial cell (HCAECs) injury model, and loss of function was used to elucidate the role of lncRNA ENST00000609755.1 (Inc-MICALL2-2) in oxLDL-induced HCAECs injury.

Results: A total of 320 lncRNAs were found dysregulated in CHD patients (fold change > 2, p < 0.05). The results of a discovery microarray, population verification and HCAEC experiments suggested the Inc-MICALL2-2 is upregulated in CHD subjects and in an oxLDL-induced HCAECs injury model. Conversely, Inc-MICALL2-2 inhibition in vitro attenuated the effects of oxLDL on HCAECs morphology, proliferation, and apoptosis.

Conclusion: Elevated expression of Inc-MICALL2-2 is an independent risk factor for CHD, and knockdown subsequently confers protection against early pathological processes of oxLDL-induced CHD.

Keywords: coronary heart disease, long non-coding RNA, environmental factors, oxidized low-density lipoprotein, human coronary artery endothelial cells
INTRODUCTION

Coronary heart disease (CHD) is an ischemic heart disease and leading cause of death globally (1). There remains a need for increased understanding of the pathogenesis of CHD and the identification of new targets for the early diagnosis and therapy of CHD patients. Currently, it is recognized that family history of CHD, tobacco and alcohol consumption, sedentary lifestyle, obesity, anxiety, and depression are all environmental risk factors for CHD (2–5). However, these external factors can only partially explain the etiology of CHD. In addition to environmental and genetic predisposing factors, mounting evidence has shown that epigenetic alteration may play pivotal roles in the progression of CHD (6, 7).

Long non-coding RNAs (lncRNAs) are non-coding RNAs that are >200 nucleotides in length and widely distributed in the nucleus and cytoplasm (8). Approximately 321 lncRNAs have been identified in the mouse myocardium, the profile of which has demonstrated significant changes during development compared to the quiescent adult stage (9). It has been experimentally demonstrated that many of these lncRNAs particularly play a role in the regulation of pluripotency and the activation of cardiac-specific genes (10). The proximity of lncRNAs to known vascular disease-susceptibility loci helped to identify lncRNAs such as ANRIL and MIAT, subsequently shown to be associated with CHD risk (11) and myocardial infarction (12), respectively. Further, microarray approaches have identified thousands of abnormally expressed lncRNAs during human or animal models of cardiomyopathy (13). Despite the deep implications of lncRNAs in cardiovascular disease, their precise roles and mechanisms are not yet understood, especially in CHD.

Recent studies have reported that lncRNAs play a critical role in regulation of diverse cellular processes, such as vascular endothelial cells (VECs) dysfunction, vascular smooth muscle cell (VSMCs) proliferation, and lipid metabolism (14–16). VECs remodeling is considered a pivotal first step in the pathogenesis of CHD (17). Evidence for the role of lncRNAs in VECs remodeling comes from the finding that VECs under hypoxic stress upregulate the lncRNA MALAT1, which suggest an angiogenic effect in ischemia (14). In another study, investigators report that the lncRNA TGFβ2-OT1 regulates various miRNA targets which participate in autophagy and induce pro-inflammatory cytokines of VECs (18). Oxidized low density lipoprotein (oxLDL) can disrupt the growth and survival of human coronary artery endothelial cells (HCAECs) through a malondialdehyde dependent pathway involving methylation of the PGF2 promoter and repression of PGF2 transcript (19). This oxLDL-induced VECs dysfunction can occur at concentrations as low as 50–150 μg/ml (20–22). Using this model in human umbilical vein endothelial cells, investigators have profiled thousands of abnormally expressed lncRNA, including fold changes as high as ∼87-fold upregulated and ∼28-fold downregulated (23). In this study, we choose HCAECs as the tool cells, the main considerations are: (1) Coronary artery endothelial injury is the early stage of the development of CHD. (2) HCAECs are widely used as tool cells to explore oxidative damage including endothelial dysfunction caused by ox-LDL (24–26). (3) The primary HCAECs ox-LDL injury model used in this manuscript is closer to the pathological conditions of CHD.

In this study we hypothesize that lncRNAs can affect the pathogenesis of CHD by regulating the biological function of VECs. To explore this hypothesis and the underlying molecular roles of target lncRNAs, a discovery microarray was executed in a small cohort of CHD and non-CHD patient samples. The lncRNA ENST00000609755.1 (lnc-MICALL2-2) was identified and validated as a potential target in CHD patients. Subsequently, HCAECs were exposed to oxLDL in vitro as a preliminary injury model for the exploration of the biological roles of lnc-MICALL2-2 during the controlled, early pathogenesis of CHD. This investigation lays groundwork for the further examination of a novel lncRNA that is abnormally regulated and biologically relevant in CHD.

MATERIALS AND METHODS

Study Population and Environmental Factors

A total of 590 CHD patients and 590 controls were enrolled between February 2017 and March 2019 from the First Affiliated Hospital of Fujian Medical University and Fujian Medical University Union Hospital, China. The included CHD patients met the following criteria: (a) must present cardiac catheterization-confirmed stenosis (≥50%) in >1 major coronary artery; or (b) have a documented history of myocardial infarction; or (c) have a documented history of coronary revascularization (either by PCI or CABG); or (d) be enrolled during the stable stage after acute myocardial infarction; or (e) present confirmed ST-segment elevation/depression in electrocardiogram readings. This study excluded subjects with congenital heart disease, valvular disease, cardiomyopathy, somatization disorder, renal or hepatic disease, or those with insufficient comprehension of the Mandarin language. Control subjects presented a medical history devoid of cardiovascular diseases and were matched with CHD cases according to age, gender, marital status, and education level. Control subjects were enrolled during routine physical health examinations at the hospital and had not undergone cardiac catheterization. The current study was approved by the Biomedical Research Ethics Committee of Fujian Medical University. All enrolled patients provided written informed consent, and the study protocol conformed to the ethical guidelines of the Declaration of Helsinki (1975).

Following enrollment, face-to-face interviews were performed to collect environmental exposure history. Sessions were conducted by trained interviewers according to a standardized questionnaire.
lists the primers used for qRT-PCR, Supplementary Table 2 (βSYBR Cycler 480 real-time PCR system (Roche, Switzerland) with the Eraser (lncRNAs). Before performing lncRNA detection, all transcribed using a PrimeScript RT Reagent Kit with gDNA of 1.80–2.00. One percentage of formaldehyde denaturing gel total RNA was of high purity with OD260/280 in the range by using TRIzol reagent (Invitrogen, California, USA). All expression levels were calculated using the 2^{-\Delta\Delta CT} method of atherosclerosis, as it disrupts the growth and survival of HCAECs (19). OxLDL (Dalian Meilun Biotechnology, Dalian, China) was oxidized using CuSO4 (oxidant) in PBS. Oxidation is terminated by adding excess EDTA-Na2. Each lot was analyzed on agarose gel electrophoresis for migration vs. LDL. This lot of oxLDL migrated 2.0-fold further than the native LDL and its purity reached more than 98%. To determine the appropriate concentration and exposure length for oxLDL in the treatment of HCAECs, the density of HCAECs in normal logarithmic growth phase was adjusted to 2 × 10^5 cells/ml and cultured in 96-well plates (3 plates, 12 holes per plate) during 3rd passage. HCAECs were incubated with different concentrations of oxLDL (0, 50, 100, and 150 µg /ml) for 24, 48, and 72 h, respectively.

siRNA Transfection
Prior to transfection, HCAECs were seeded at a density of 5.0 × 10^5 cells/ml, and 200 µL serum-free Opti-MEM was added into six-well plates. siRNA (Gemma Gene, Shanghai, China) was added at a final concentration of 50 nM. Three Inc-MICALL2-2-targeting siRNA (siRNA-1, siRNA-2 and siRNA-3, Supplementary Table 3), were transfected into HCAECs with LipofectamineTM 2000 (Invitrogen, Shanghai, China) according to the manufacturer's instructions. Knockdown was confirmed by assessing the expression of the IncRNA with qRT-PCR. After transfection with the interference fragment, the cells were treated with oxLDL (100 µg/ml) and incubated for 48 h at 37°C and 5% CO2 saturated humidity. The experimental groups were comprised of the following: (1) Normal HCAECs (untreated); (2) HCAECs treated with siRNA (siRNA group); (3) HCAECs treated with oxLDL (oxLDL group); and (4) HCAECs treated with oxLDL + siRNA (oxLDL + siRNA group) and three replicates were performed for each group.

Transmission Electron Microscopy
HCAEC is processed as described above for 48 h in 6-well plates and processed for electron microscopy as follows: (1) The media were removed and the cells were fixed in 2.5% glutaraldehyde for 3–4 h at room temperature. (2) Rinse with 0.1 M phosphate buffer (PH7.4) 3 times for 15 min each time. (3) 1% osmium acid in PBS. Oxidation is terminated by adding excess EDTA-Na2. Each lot was analyzed on agarose gel electrophoresis for migration vs. LDL. This lot of oxLDL migrated 2.0-fold further than the native LDL and its purity reached more than 98%. To determine the appropriate concentration and exposure length for oxLDL in the treatment of HCAECs, the density of HCAECs in normal logarithmic growth phase was adjusted to 2 × 10^5 cells/ml and cultured in 96-well plates (3 plates, 12 holes per plate) during 3rd passage. HCAECs were incubated with different concentrations of oxLDL (0, 50, 100, and 150 µg /ml) for 24, 48, and 72 h, respectively.

siRNA Transfection
Prior to transfection, HCAECs were seeded at a density of 5.0 × 10^5 cells/ml, and 200 µL serum-free Opti-MEM was added into six-well plates. siRNA (Gemma Gene, Shanghai, China) was added at a final concentration of 50 nM. Three Inc-MICALL2-2-targeting siRNA (siRNA-1, siRNA-2 and siRNA-3, Supplementary Table 3), were transfected into HCAECs with LipofectamineTM 2000 (Invitrogen, Shanghai, China) according to the manufacturer's instructions. Knockdown was confirmed by assessing the expression of the IncRNA with qRT-PCR. After transfection with the interference fragment, the cells were treated with oxLDL (100 µg/ml) and incubated for 48 h at 37°C and 5% CO2 saturated humidity. The experimental groups were comprised of the following: (1) Normal HCAECs (untreated); (2) HCAECs treated with siRNA (siRNA group); (3) HCAECs treated with oxLDL (oxLDL group); and (4) HCAECs treated with oxLDL + siRNA (oxLDL + siRNA group) and three replicates were performed for each group.

Transmission Electron Microscopy
HCAEC is processed as described above for 48 h in 6-well plates and processed for electron microscopy as follows: (1) The media were removed and the cells were fixed in 2.5% glutaraldehyde for 3–4 h at room temperature. (2) Rinse with 0.1 M phosphate buffer (PH7.4) 3 times for 15 min each time. (3) 1% osmium acid in PBS. Oxidation is terminated by adding excess EDTA-Na2. Each lot was analyzed on agarose gel electrophoresis for migration vs. LDL. This lot of oxLDL migrated 2.0-fold further than the native LDL and its purity reached more than 98%. To determine the appropriate concentration and exposure length for oxLDL in the treatment of HCAECs, the density of HCAECs in normal logarithmic growth phase was adjusted to 2 × 10^5 cells/ml and cultured in 96-well plates (3 plates, 12 holes per plate) during 3rd passage. HCAECs were incubated with different concentrations of oxLDL (0, 50, 100, and 150 µg /ml) for 24, 48, and 72 h, respectively.
embedding agent = 1:1 mixed solution infiltrated overnight. Pure 812 embedding agent penetrated overnight. (3) Embedding: polymerize at 60°C for 48 h. Ultrathin sections (70–80 nm thick) were prepared and stained with uranium acetate and lead citrate. Cells were observed and imaged with a transmission electron microscope (HITACHI, HT7700-SS, Japan).

Lactate Dehydrogenase (LDH) Release Assay

Supernatant of homogenized cells was used to measure LDH activity using a LDH kit (Built Bioengineering Institute, Nanjing, China) as suggested by the manufacturer. Absorbance of the solution was measured at 450 nm using a microplate reader (Thermo Scientific, MULTISKAN MK3, Beijing, China). And three replicates were performed for each group. Protein concentrations were calculated by standard controls provided in the kit.

HCAECs Proliferation Assay

A total of 10 µl of Cell Counting Kit-8 (CCK8, Beyotime, Shanghai, China) solution was added to each well of cultured HCAECs, and the cells were incubated for 4 h at 37°C. Absorbance (optical density) was measured at 450 nm and the optical density was used to represent relative cell viability. Each group was represented by three parallel wells and runs were repeated three times for each group.

HCAECs Apoptosis Assay

Apoptosis assay was performed using AnnexinV-APC-7-AAD Apoptosis Detection Kit (Kaikey Biological, Nanjing, China). Briefly, cells were collected after the indicated treatment, washed twice with cold phosphate-buffered saline, and treated with 500 µl binding buffer, 5 µl Annexin V-APC and 5 µl 7-AAD, followed by incubation at room temperature for 15 min in the dark. The number of cells on the machine was 10,000, and the sample was loaded at a low speed. According to the experimental cell conditions, the 7-AAD voltage was around 300, and the APC voltage was around 700. Cells were analyzed by flow cytometry to assess apoptosis (Beckman, CytoFLEX, Shanghai, China). Three runs were repeated for each group.

Statistical Analyses

Distribution differences were examined by \(\chi^2 \)-test for categorical variables or two-tailed Student’s \(t \)-test for normally distributed data. LncRNA expression data were presented as mean ± standard deviation (SD). Univariate and multivariate unconditional logistic regression analyses were conducted to show the associations between environmental factors and risk of CHD. Statistically significant variables in univariate analysis were selected for further multivariate analysis. Statistically significant variables in multivariate analysis have been used as confounding factors in adjustments for the associations between lncRNAs and CHD. All tests were two-sided, and \(p < 0.05 \) was considered statistically significant. All statistical analyses were performed using SPSS 25.0 software.

RESULT

Study Population Demographics and Environmental Correlates

The CHD and non-CHD subjects consisted of 590 subjects each. No significant group differences were observed in age, gender, marital status, or education level (\(p > 0.05 \), Table 1), indicating the adequacy of frequency matching. Multivariate analysis revealed that patients in the CHD group were significantly more likely to have a family history of CHD [odds ratio (OR): 1.732; 95% confidence interval (CI): 1.174–2.557], a high-salt diet (OR: 1.543; 95% CI: 1.153–2.066), smoke tobacco (defined as at least 100 cigarettes during their
lifetime) (OR: 2.487; 95% CI: 1.883–3.285), work in a light-intensity environment (classified by intensity, duration, and frequency of the participant’s physical activity at work) vs. a moderate-intensity environment (OR: 1.573; 95% CI: 1.175–2.104), suffer from self-rated moderate to severe anxiety (OR: 2.802; 95% CI: 1.013–7.749) and have a BMI ≥ 24.0 (OR: 1.511; 95% CI: 1.166–1.985, Supplementary Table 4). Detailed criteria for environmental risk factors of CHD are found in Supplementary Methods.

Identification and Validation of Peripheral Blood Lymphocytes Dysregulated IncRNAs

Microarray analyses revealed abnormal IncRNAs expression in the CHD cases provided for initial IncRNA identification (Figure 1A). The results of volcano plot and scatter plot indicated that a total of 88 and 232 IncRNAs were significantly up-regulated and significantly down-regulated in the CHD cases, respectively (FC >2, p < 0.05, Figures 1B,C). We chose 5 novel IncRNA candidates by conscientiously reviewing more stringent parameters (FC, p-value), variations between replicates and our previous study (28) (Supplementary Table 5 and Supplementary Figure 1A). A larger population peripheral blood lymphocytes sample was subsequently used to validate the relative downregulation of IncRNA ENST00000565648.1 (Inc-USP7-1) in CHD subjects compared with non-CHD subjects, as well as the relative upregulation of Inc-MICALL2-2 (p < 0.05, Figure 2). These results agree with the findings of the microarray assay. After adjusting for environmental factors (age, gender, marital status, and education level, family history of CHD, high-salt diet, smoking, labor intensity, and BMI), Inc-USP7-1 and Inc-MICALL2-2 remained abnormally expressed in CHD patients compared to non-CHD controls (Table 2). On the other hand, no significant differences were observed between groups in the expression of IncRNAs ENST00000450016.1 (LINC01952), ENST00000623391 (MIR99AHG), and ENST00000529247.1 (Inc-TIGD5-3) (p > 0.05, Figure 2).

Evaluation of the IncRNA Profiles of HCAECs Treated With oxLDL

In vitro HCAECs experiments were further performed to better understand the role that these abnormally regulated IncRNAs may play in the etiology of CHD. First, almost all cells cultured were positive for the marker vWF, indicating that the culture of HCAECs yielded VECs with relatively high purity (Figure 3A). The application of oxLDL further revealed that HCAECs viability decreased in tandem with increasing concentrations of oxLDL. This phenomenon was true at exposures of 24, 48, and 72 h (Figure 3B). In contrast, no difference in the expression of the Inc-USP7-1 was observed between untreated HCAECs and oxLDL-treated HCAECs (p > 0.05). However, the expression of the Inc-MICALL2-2 was significantly upregulated in HCAECs treated with just 50 µg/ml oxLDL for 24 h compared to untreated controls. Interestingly, this effect was not observed at higher concentrations. The upregulation of the IncRNA was also observed at 50–100 µg/ml oxLDL at 48 h (Figure 3C, p < 0.05), though not in the 150 µg/ml oxLDL treated group. No differences in expression were apparent at any oxLDL dose after 72 h incubation. Based on these findings, the Inc-MICALL2-2 was selected for follow-up study, at a concentration of 100 µg/ml oxLDL for 48 h. This concentration and exposure was also of particular interest considering related studies (31).

Knockdown of Inc-MICALL2-2 in oxLDL-Induced HCAECs Injury

Due to the results of the IncRNA profile of oxLDL-induced HCAECs, which indicated the upregulation of Inc-MICALL2-2, the biological functions of the IncRNA was examined by knockdown with siRNA-3 (Figure 4A), which achieved an expression inhibition of ~50%. Consistent with prior results, cells treated with oxLDL observed a marked upregulation of the expression of the Inc-MICALL2-2. However, cells treated with siRNA-3 and oxLDL simultaneously saw normalization of the expression of the IncRNA compared with untreated cells (p < 0.05, Figure 4B).

Electron microscopy results revealed that untreated HCAECs nuclei were complete, with intact organelles presenting minimal autophagy. On the other hand, after treatment with 100 µg/mloxLDL, HCAECs showed nuclear lysis, organelle damage and severe autophagy (Figure 4C), demonstrated decreased LDH activity (Figure 4D), increased proliferation (Figure 4E), and decreased apoptosis (Figures 4F,G) in the oxLDL + siRNA group, illustrating that inhibition of Inc-MICALL2-2 attenuated the molecular markers of oxLDL injury in HCAECs.

DISCUSSION

CHD remains one of the leading causes of hospitalization and death worldwide, accounting for 64% of all cardiac deaths in 2009 (32). While the standard CHD medications (statins, anti-platelets, ACE inhibitors, beta blockers, etc.) greatly reduce the risk of complications arising from CHD, side-effects can greatly reduce quality of life (33). Evidence has shown that environmental factors, genomes, and epigenetics play crucial roles in it etiology (27). In this study, we confirmed that the elevated expression of Inc-MICALL2-2 is an independent risk factor for CHD after adjustment for environmental factors, and knockdown subsequently confers protection against early pathological processes of oxLDL-induced CHD.

The frequency of environmental characteristics observed in the CHD disease group recruited in this study were consistent with known CHD risk factors (family history, tobacco, moderate to severe anxiety, sedentary work environment, above average BMI) (34–38). This along with strict inclusion/exclusion criteria provided confidence that the group enrolled was representative of general CHD populations and provided evidence that controls were characteristically distinct from the disease group. Additionally, demographic profiling ensured that potentially confounding factors such as age, sex, or education level were equilibrated among the CHD and control groups. Though carried out in a relatively minute population of CHD patients, the discovery microarray reliably identified 320 differentially expressed IncRNAs in the disease group, providing a large...
pool of candidates for further study. After filtering the 320 lncRNAs, five were selected for validation due to fold change thresholds and predicted biological roles. Existing studies have shown that CHD is a chronic inflammatory disease. Inflammatory response plays an important role in the formation and development of atherosclerotic plaques and plaque rupture,
and is one of the pathogenesis of CHD. The vascular inflammatory response involves complex interaction between leukocytes, endothelial cells (ECs), VSMCs, and extracellular matrix. Vascular injury is associated with increased expression of adhesion molecules by ECs and recruitment of leukocytes, growth factors, and cytokines (39). It has also been found that changes in the proportion of leukocytes in the blood in disease states can confound the aberrantly expressed signals observed in mixed-cell blood samples (40). Therefore, in this study, only comparative representative peripheral blood leukocytes were selected for lncRNA detection. Of these five, however, only two were consistent with the discovery array results. The Inc-USP7-1 was downregulated in CHD patients while Inc-MICALL2-2 was upregulated, even after adjusting for environmental factors. The implications of these findings were that these lncRNAs are strong candidates for CHD etiology and/or progression in CHD cohorts. In turn, these may be useful for diagnostic or therapeutic approaches in the future, though this work is novel and preliminary. In this study, results supported the hypothesis that novel lncRNAs are abnormally regulated in CHD patients. These findings are also consistent with the role of lncRNAs in VECs development and dysfunction (9, 14).

Oxidized lipid metabolites can activate platelet cascades and trigger thromboinflammatory factor release. Specifically, oxLDL binding of scavenger receptors on platelets can lead to production of reactive oxygen species, macrophage activation, and apoptosis. Further, platelet activation can induce chemokines which can promote inflammation and a pro-thrombotic microenvironment (41). While the dominant use of oxLDL in vitro has been used to establish models of atherosclerosis, considerable evidence has shown the successful induction of preatherosclerotic HCAECs dysfunction, death, and pathological neovascularization, even at low concentrations (42). Additional evidence for the involvement of oxLDL injury in CHD comes from the identification of serum oxLDL as a risk factor during early stage CHD in humans (43). Similarly, high serum levels of oxLDL receptor 1 have been associated with adverse events in patients with stable CHD (44) and in persons with high-calculated CHD risk prior to adverse events (45). Collectively, evidence substantiates the role of oxLDL challenge in the pathological transformation of VECs during the early etiology of CHD. In this study, it was further found that knockdown of the expression of Inc-MICALL2-2 in vitro attenuated the VECs damage caused by oxLDL, providing preliminary evidence for the role of a novel epigenetic target in the etiology of oxLDL-mediated CHD. Results from microarray assessments, population validation, and in vitro manipulation suggest that Inc-MICALL2-2 is not only a correlate of CHD development, but likely an influential factor in the etiology of the disease. In our previous bioinformatics analysis, Inc-MICALL2-2-related target genes were closely related to cell adherens junction, cadherin binding involved in cell adhesion, and focal adhesion signaling pathway is one of the top 10 highest signaling pathways (28), which is strongly associated with CHD (46).

VECs dysfunction is considered an early pathological process of CHD (17). Many findings have suggested that induction with different concentrations of ox-LDL (30–200 µg/ml) can cause inflammatory injury in HCAECs and produce an atherosclerotic phenotype, accompanied by increased expression levels of related inflammatory factors such as interleukin 6 (IL-6), IL-8 and tumor necrosis factor alpha (TNF-a) (26, 47, 48). Previous studies have shown that lncRNAs can be directly involved in the differentiation and proliferation of VECs or affect the VECs involved in immune regulation (49, 50). Notably, in this study inhibition of the Inc-MICALL2-2 significantly increased cell viability compared to normal cultured cells. Further, knockdown of Inc-MICALL2-2 in cells undergoing oxLDL challenge demonstrated improved viability, indicating that inhibition of the lncRNA not only increases HCAECs viability in general but attenuates the effect of oxLDL challenge on cell proliferation. This is in line with previous reports of the effects of oxLDL on HCAECs, which was in that study found to be mediated by the transcriptional repression of FGF2 (19). In addition, inhibition of Inc-MICALL2-2 attenuated oxLDL-induced HCAECs injury and apoptosis, particularly, nuclear lysis, organelle injury, and autophagy. There are many studies on the involvement of lncRNAs in the regulation of ox-LDL-induced apoptosis, and changes in their expression levels can affect the expression of related genes, which are involved in the regulation of the apoptotic process (26, 51, 52). It is foreseeable that the Inc-MICALL2-2 may similarly act on molecular targets that positively regulate oxLDL-induced cell death factors in HCAECs, though this remains to be thoroughly tested.

With mounting support for the use of many lncRNAs as molecular markers and therapeutic targets (53). Our study results showed that low expression of Inc-MICALL2-2 enhanced HCAECs proliferation and suppressed HCAECs apoptosis in an oxLDL-induced model of early CHD, which suggested that the knockdown of Inc-MICALL2-2 may become a future therapeutic approach for oxLDL-related CHD. LncRNAs typically exert their biological functions through interactions with regulatory proteins, miRNAs or other cellular factors (54–57). In our previous population-based research work, preliminary verification of Inc-MICALL2-2 potential ceRNA regulatory network in CHD. Although corresponding functional studies are still lacking, the results of this study further confirm that Inc-MICALL2-2 is indeed closely related to CHD, and deserves in-depth study (28). In addition, the LNCipedia database provides evidence that Inc-MICALL2-2 is

TABLE 2 | Multivariable logistic regression analyses for the association between lncRNAs and CHD.

Variable	Model-1^a OR (95% CI)	Model-2^b OR (95% CI)
Inc-USP7-1	0.543 (0.332–0.890)	0.513 (0.295–0.891)
Inc-MICALL2-2	1.374 (1.080–1.747)	1.489 (1.077–2.057)

CHD, coronary heart disease; OR, odds ratio; CI, confidence interval.

^aModel-1: adjusted for age, gender, marital status, and education level.

^bModel-2: adjusted for family history of CHD, high-salt diet, smoking, labor intensity, BMI, and the variables in Model-1.
FIGURE 3 | The expression levels of differentially expressed lncRNAs in HCAECs. (A) Purification identification of HCAECs by vWF, vWF factor (red) and cellular localization (blue) double staining (×200 times) of HCAECs. (B) Cell viabilities were compared after culturing at different concentrations of oxLDL for 24, 48, and 72 h (n = 3/group). (C) Comparison of the expression levels of differentially expressed lncRNAs after cell culture at different concentrations of oxLDL for 24, 48, and 72 h (n = 3/group). Values are expressed as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 vs. normal HCAECs; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. 50 µg/ml oxLDL; k-kp < 0.01, k-k-kp < 0.001 vs. 100 µg/ml oxLDL in panels b and c. Data are expressed as means ± SD, one-way ANOVA was used for all comparisons.
FIGURE 4 | The function of knockdown of lnc-MICALL2-2 in oxLDL-induced HCAECs injury. (A) Lnc-MICALL2-2 interference fragment screening. *p < 0.05, **p < 0.01, ***p < 0.001 vs. normal HCAECs; ##p < 0.01 vs. HCAECs treated with siRNA-1; &p < 0.05 vs. HCAECs treated with siRNA-2 (n = 3/group).

(Continued)
not conserved in non-human species. This is consistent with the low conservation of IncRNA sequence, but the relatively high species specificity and tissue specificity (58).

Some limitations of this study include limited biological samples collected for microarray discovery. However, validation was performed in a relatively larger subset of participants, wherein two biologically relevant candidates were identified. Another limitation of this study was that the novel investigation of the IncRNA was performed in a cell model of HCAECs due to the preliminary nature of the investigation. In the future, it would be nice to see additional experiments beyond Figure 4 characterizing roles of Inc-MICALL2-2 on endothelial phenotypes or oxLDL-induced endothelial dysfunction, including the function of IncRNAs changes in other cell types such as macrophages or VSMCs. For example, are there changes in gene expression of inflammatory cytokines (e.g., TNF alpha) or adhesion molecules (e.g., ICAM-1, VCAM-1) when treating HCAECs with oxLDL or Inc-MICALL2-2 siRNA treatment? Finally, due to the exploratory nature of the study, an inhibitory technique that demonstrated partial repression of the IncRNA was selected for the investigation of the biological roles in an oxLDL model. In the future, targeted inhibition should be carried out in a dose-wise manner, allowing the investigation of the IncRNA at a full range (i.e. complete silencing, 25% expression, etc.) of expression levels.

In summary, elevated expression of Inc-MICALL2-2 is an independent risk factor for CHD, and knockdown subsequently confers protection against early pathological processes of oxLDL-induced CHD. This work presents novel evidence that Inc-MICALL2-2 may play a role in the etiology CHD. These findings lay a preliminary groundwork for a more detailed understanding of the molecular mechanisms of Inc-MICALL2-2 in the future.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at NCBI [accession: GSE169256].

REFERENCES

1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. (2018) 392:1736–88. doi: 10.1016/S0140-6736(18)32203-7
2. Huang S, Xie X, Sun Y, Zhang T, Cai Y, Xu X, et al. Development of a nomogram that predicts the risk for coronary atherosclerotic heart disease. Aging. (2020) 12:9427–39. doi: 10.18632/aging.103216
3. Fan AZ, Ruan WJ, Chou SP. Re-examining the relationship between alcohol consumption and coronary heart disease with a new lens. Prev Med. (2019) 118:336–43. doi: 10.1016/j.ypmed.2018.11.022
4. Aggio D, Papachristou E, Papacosta O, Lennon LT, Ash S, Whincup P, et al. Trajectories of physical activity from midlife to old age and associations with subsequent cardiovascular disease and all-cause mortality.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Biomedical Research Ethics Committee of Fujian Medical University. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

SW, HL, and SL contributed to the study design and helped to revised the manuscript. YS, SH, CW, and QR involved in writing and review of the manuscript. SH and SL conducted statistical analysis. YS, CW, XX, DW, and GL contributed to data collection and laboratory test. All authors contributed to critical revision of the final manuscript and approved the final version of the manuscript. The financial support and study supervision were provided by SW, HL, and SL.

FUNDING

This research was funded by Joint Funds for the Innovation of Science and Technology, Fujian Province (2018Y9089), the Natural Science Foundation of Fujian Province (2019J01315), Professor Development Fund Project of Fujian Medical University (JS15002), and Open Project of Fujian Key Laboratory of Environmental Factors and Cancer (GWSZD-201802).

ACKNOWLEDGMENTS

The authors thank the participants and participating physicians from First Affiliated Hospital of Fujian Medical University and Fujian Medical University Union Hospital, China, as the staff that made this research possible.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2021.650212/full#supplementary-material
13. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases.

12. Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A. Identification of dynamically regulated long non-coding RNAs. Proc Natl Acad Sci USA. (2014) 111:12264–9. doi: 10.1073/pnas.1410622111

10. Dorn GW 2nd, Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn DD, et al. Dissecting the roles of microRNAs in cardiovascular disease. J Cell Physiol. (2011) 226:891–5. doi: 10.1002/j cp.22728

25. Wang J, Tillin T, Hughes AD, Chaturvedi N. Associations between long noncoding RNAs and environmental risk factors with coronary heart disease. BMC Cardiovasc Disord. (2019) 19:223. doi: 10.1186/s12872-019-1191-3

22. Han QA, Yan C, Wang L, Li G, Xu Y, Xia X. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-γ pathway. Mol Nutr Food Res. (2016) 60:1933–43. doi: 10.1002/mnfr.201500827

24. Xu M, Qi Q, Men L, Wang S, Li M, Xiao M, et al. Berberine protects Kawasaki disease-induced human coronary artery endothelial cells dysfunction by inhibiting of oxidative and endoplasmic reticulum stress. Vascul Pharmacol. (2012) 57:106660. doi: 10.1016/j.vaspharm.2012.10.006

23. Singh KK, Matkar PN, Pan Y, Quan A, Gupta V, Teoh H, et al. Endothelial long non-coding RNAs regulated by oxidized LDL. Mol Cell Biochem. (2017) 431:139–49. doi: 10.1007/s11010-017-2984-2

21. Che J, Liang B, Zhang Y, Wang Y, Tang J, Shi G. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells. Cardiovasc Pathol. (2017) 31:57–62. doi: 10.1016/j.carpath.2017.08.001

20. Ou HC, Lee WJ, Lee IT, Chiu TH, Tsai KL, Lin CY, et al. Ginkgo biloba extract attenuates ox-LDL-induced oxidative fatal damage in endothelial cells. J Appl Physiol. (2009) 107:1674–85. doi: 10.1152/japplphysiol.91415.2008

19. Yang TC, Chen YJ, Chang SF, Chen CH, Chang PY, Lu SC. Malondialdehyde mediates oxidized LDL-induced coronary toxicity through the Akt-FGFR2 pathway via DNA methylation. J Biomed Sci. (2014) 21:11. doi: 10.1186/1340-2594-21-11

18. Huang S, Lu W, Ge D, Meng N, Li Y, Su L, et al. A new microRNA signal mediator of ox-LDL-induced coronary toxicity through the Akt-FGFR2 pathway. J Cell Biochem. (2019) 120:112470–8. doi: 10.1002/jcb.28728

17. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med. (2012) 366:54–63. doi: 10.1056/NEJMra1112570

16. Zhang L, Zhou C, Qin Q, Liu Z, Li P. IncRNA LEFI-AS1 regulates the migration and proliferation of vascular smooth muscle cells by targeting miR-135b-5p. J Physiol. (2021) 4:250. doi: 10.1113/jphysiol.2021.423070

15. Sun Y, Chen R, Lin S, Xie X, Ye H, Zheng F, et al. Association of circulating RNAs and environmental risk factors with coronary heart disease. BMC Cardiovasc Disord. (2019) 19:223. doi: 10.1186/s12872-019-1191-3

14. Zhu Y, Yang T, Duan J, Mu N, Zhang T. MALAT1/miR-15b-5p/MAPK 1 pathway in cardiovascular disease: performance as a biomarker. FASEB J. (2020) 34:4403–14. doi: 10.1096/fj.201903078

13. Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. (2006) 51:1087–99. doi: 10.1007/s10038-006-0070-9

12. Ichii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. (2006) 51:1087–99. doi: 10.1007/s10038-006-0070-9

11. Chen HH, Almontashiri NA, Antoine D, Stewart AF. Functional genomicsof the 9p21.3 locus for atherosclerosis: clarity or confusion?. Curr Cardiol Rep. (2014) 16:502. doi: 10.1007/s11886-014-0502-7

10. Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn DD, et al. Dissecting the roles of microRNAs in cardiovascular disease. J Cell Physiol. (2011) 226:891–5. doi: 10.1002/j cp.22728

9. Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn DD, et al. Dissecting the roles of microRNAs in cardiovascular disease. J Cell Physiol. (2011) 226:891–5. doi: 10.1002/j cp.22728

8. Das S, Reddy MA, Natarajan R. Role of epigenetic mechanisms regulated by enhancers and long noncoding RNAs in cardiovascular disease. Curr Opin Cardiol. (2020) 35:234–41. doi: 10.1097/HCO.0000000000001728

7. Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bár C, Lu D, Xiao K, et al. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. FASEB J. (2020) 34:4403–14. doi: 10.1096/fj.201903078

6. Huan T, Rong J, Tanrioverdi K, Meng Q, Bhattacharya A, McManus DD, et al. Dissecting the roles of microRNAs in coronary heart disease via integrative genomic analyses. Arterioscler Thromb Vasc Biol. (2015) 35:1011–21. doi: 10.1161/ATVBAHA.114.305176

5. Pogosova N, Kotseva K, De Bacquer D, von Känel R, De Smedt D, Bruthans J, et al. Psychosocial risk factors in relation to other cardiovascular risk factors in coronary heart disease: results from the EUROASPIRE IV survey. A registry from the European Society of Cardiology. Eur J Prev Cardiol. (2017) 24:1371–80. doi: 10.1177/204748317711334

4. Zhu Y, Yang T, Duan J, Mu N, Zhang T. MALAT1/miR-15b-5p/MAPK 1 pathway in cardiovascular disease: performance as a biomarker. FASEB J. (2020) 34:4403–14. doi: 10.1096/fj.201903078

3. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Curr Opin Cardiol. (2020) 35:234–41. doi: 10.1097/HCO.0000000000001728

2. Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn DD, et al. Dissecting the roles of microRNAs in cardiovascular disease. J Cell Physiol. (2011) 226:891–5. doi: 10.1002/j cp.22728

1. Shu H, Zhao Y, Wang Y, Li G, Lu X, Xiao J, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. (2006) 51:1087–99. doi: 10.1007/s10038-006-0070-9

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 May 2021 | Volume 8 | Article 650212

Sun et al. | IncoRNA ENST00000609755.1 in CHD
42. Valente AJ, Irpinen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. *Free Radic Biol Med.* (2014) 70:117–28. doi: 10.1016/j.freeradbiomed.2014.02.014

43. Zhang Q, Ai Y, Dong H, Wang J, Xu L. Circulating oxidized low-density lipoprotein is a strong risk factor for the early stage of coronary heart disease. *IUBMB Life.* (2019) 71:277–82. doi: 10.1002/iub.1966

44. Holvoet P. Oxidized LDL and coronary heart disease. *Acta Cardiol.* (2004) 59:479–84. doi: 10.2143/AC.59.5.2005219

45. Shai I, Pischon T, Li CY, Xiong XY, Wu XL. LncRNA MALAT1 promotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. *Cytogenet Genome Res.* (2020) 16:8513–9. doi: 10.3892/mmr.2017.7623

46. Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology. *Circ Res.* (2012) 111:1349–62. doi: 10.1161/CIRCRESAHA.112.268953

47. Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, et al. MiR-216a: a link between endothelial dysfunction and autophagy. *Cell Death Dis.* (2014) 5:e1029. doi: 10.1038/cddis.2013.556

48. Zhou T, Chen X. Long intergenic noncoding RNA p21 mediates oxidized LDL-induced apoptosis and expression of LOX-1 in human coronary artery endothelial cells. *Mol Med Rep.* (2017) 16:8513–9. doi: 10.3892/mmr.2017.7623

49. Esmaeili M, Keshani M, Vakilian M, Esmaeili M, Peymani M, Seyyed Forootan F, et al. Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways. *Gene.* (2020) 753:144796. doi: 10.1016/j.gene.2020.144796

50. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, therapeutic approaches. *Physiol Rev.* (2016) 96:1297–325. doi: 10.1152/physrev.00041.2015

51. Kaye M, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. *Nature.* (2014) 505:344–52. doi: 10.1038/nature12986

52. Zhou T, Chen X. Long intergenic noncoding RNA p21 mediates oxidized LDL-induced apoptosis and expression of LOX-1 in human coronary artery endothelial cells. *Mol Med Rep.* (2017) 16:8513–9. doi: 10.3892/mmr.2017.7623

53. Esmaeili M, Keshani M, Vakilian M, Esmaeili M, Peymani M, Seyyed Forootan F, et al. Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways. *Gene.* (2020) 753:144796. doi: 10.1016/j.gene.2020.144796

54. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, therapeutic approaches. *Physiol Rev.* (2016) 96:1297–325. doi: 10.1152/physrev.00041.2015

55. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. *Nature.* (2014) 505:344–52. doi: 10.1038/nature12986

56. Jing S, Tian J, Zhang Y, Chen X, Zheng S. Identification of a new pseudogenes/LncRNAs-hsa-miR-26b-3p-COL12A1 competing endogenous RNA network associated with prognosis of pancreatic cancer using bioinformatics analysis. *Aging.* (2020) 12:19107–28. doi: 10.18632/aging.103709

57. Chen X, Wang J, Xie F, Mou T, Zhong P, Hua H, et al. Long noncoding RNA LINC01559 promotes pancreatic cancer progression by acting as a competing endogenous RNA of miR-1343-3p to upregulate RAI1 expression. *Aging.* (2020) 12:14452–66. doi: 10.18632/aging.103487

58. Raut SK, Khullar M. The big entity of new RNA world: long non-coding RNAs in microvascular complications of diabetes. *Front Endocrinol.* (2018) 9:300. doi: 10.3389/fendo.2018.00300

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Sun, Huang, Wan, Ruan, Xie, Wei, Li, Lin, and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.