Human Microglia Transplanted in Rat Focal Ischemia Brain Induce Neuroprotection and Behavioral Improvement

Dashdemberel Narantuya¹, Atsushi Nagai², Abdullah Md. Sheikh², Junichi Masuda², Shotai Kobayashi³, Shuhei Yamaguchi¹, Seung U. Kim⁴,⁵*

¹ Department of Neurology, Shimane University School of Medicine, Izumo, Japan, ² Department of Laboratory Medicine, Shimane University School of Medicine, Izumo, Japan, ³ Shimane University School of Medicine, Shimane University Hospital, Izumo, Japan, ⁴ Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada, ⁵ Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea

Abstract

Background and Purpose: Microglia are resident immunocomponent and phagocytic cells of central nervous system (CNS), which produce various cytokines and growth factors in response to injury and thereby regulate disease pathology. The purpose of this study is to investigate the effects of microglial transplantation on focal cerebral ischemia model in rat.

Methods: Transient middle cerebral artery occlusion (MCAO) in rats was induced by the intraluminal filament technique. HMO6 cells, human microglial cell line, were transplanted intravenously at 48 hours after MCAO. Functional tests were performed and the infarct volume was measured at 7 and 14 days after MCAO. Migration and cell survival of transplanted microglial cells and host glial reaction in the brain were studied by immunohistochemistry. Gene expression of neurotrophic factors, cytokines and chemokines in transplanted cells and host rat glia cells was determined by laser capture microdissection (LCM) and quantitative real time-PCR.

Results: HMO6 human microglial cells transplantation group demonstrated significant functional recovery compared with control group. At 7 and 14 days after MCAO, infarct volume was significantly reduced in the HMO group. In the HMO6 group, number of apoptotic cells was time-dependently reduced in the infarct core and penumbra. In addition, number of host rat microglia/macrophages and reactive astrocytes was significantly decreased at 7 and 14 days after MCAO in the penumbra. Gene expression of various neurotrophic factors (GDNF, BDNF, VEGF and BMP7) and anti-inflammatory cytokines (IL4 and IL5) was up-regulated in transplanted HMO6 cells of brain tissue compared with those in culture. The expression of GDNF and VEGF in astrocytes in penumbra was significantly up-regulated in the HMO6 group.

Conclusions: Our results indicate that transplantation of HMO6 human microglial cells reduces ischemic deficits and apoptotic events in stroke animals. The results were mediated by modulation of gliosis and neuroinflammation, and neuroprotection provided by neurotrophic factors of endogenous and transplanted cells-origin.

Introduction

Microglia are immunocompetent cells of central nervous system (CNS), which are activated in response to injury and diseases, and adopt a phagocytic and cytokine secreting phenotype [1–4]. Microglia are activated following in cerebral ischemia and express a variety of proinflammatory cytokines including interleukin -1β (IL-1β), interleukin -6 (IL-6) and tumor necrosis factor -α (TNF-α), which induce in neuroinflammation and neurotoxicity [5–8]. It also take part in neuroinflammation through chemokines, such as monocyte chemotactic protein-1 (MCP-1) and macrophage inflammatory protein -1α (MIP -1α), production and recruitment to circulating immune cells [9–11]. Conversely, microglia is known to produce neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), potentially provide trophic support to neurons in distress [12–14]. These reports suggest that the phenotypic expression of microglia, whether it is to be neuroprotective or neurodegenerative, depends on the cue it receives during a particular disease process.

Regenerative medicine using stem cell-based cell therapy has recently emerged as a therapeutic tool in various disease settings [15]. Various cell types including neural stem cells, mesenchymal stem cells (MSCs) and immortalized stem cell lines have been used for stem cell based therapy in experimental settings, as well as...
clinical research of stroke in an anticipation that it may improve the
disease pathology. Indeed, several recent reports have implicated
the beneficial effects of cell-transplantation including neural stem
cells, MSCs and genetically engineered stem cell line [16,17].

Since microglia are able to act neuroprotectively in the CNS in
injury or disease, we hypothesized that microglial transplantation
could provide neuroprotection of neurons under cerebral ischemic
condition. We have previously generated an immortalized cell-line of
human microglia, HMO6, which carries morphologic and phenotypic expression characteristic of primary human microglia [18,19].

To test our hypothesis, we intravenously transplanted HMO6
human microglia cells in rat model of transient ischemia, and
evaluated histopathological, molecular and functional recovery in
these ischemia model animals.

Materials and Methods

Cell culture

A human microglial cell line, HMO6, was established by
isolating microglia from human fetal telencephalon tissue and
immortalizing it using a retroviral vector encoding v-myc [19].
HMO6 cells were cultured in medium consisted of Dulbecco’s
modified Eagle medium (DMEM; Nissui, Tokyo, Japan) supple-
mented with 5% fetal bovine serum, L-glutamine, amphotericin B
gentamicin. After 24, 48, 60 and 72 h of growth, cells were
exposed briefly to trypsin and then collected by centrifugation.
HMO6 cells at final concentration of 3×10⁶ cells per 100 μl
DMEM were prepared for transplantation.

Middle cerebral artery occlusion (MCAO) model

All experimental protocol and procedures were approved by the
Ethical Committee of the Shimane University School of Medicine.

Adult male Sprague-Dawley rats (n = 60; 7–8 weeks old; CLEA
Japan, Tokyo, Japan) weighting 250 to 300 g were employed in our
experiments. Briefly, rats initially anesthetized with 4% halothane
and maintained with 1–2% halothane in 70% N₂O and 30% O₂
mixture using a face mask. Transient MCAO was induced using a
previously described method of intraluminal vascular occlusion
[20]. The right common carotid artery, external carotid artery and
internal carotid artery were exposed via a ventral midline incision.
A 4-0 monofilament nylon suture (Nescosuture, Tokyo, Japan),
with its tip rounded by coated with silicon (Xantopren L blue,
Heraeus Kulzer, Hanau, Germany) was inserted from the right
external carotid artery into of the internal carotid artery to block
the origin of the right middle cerebral artery. At 90 minutes after
MCAO, occluded animals were re-anesthetized with halothane
and nylon monofilament was removed, and the end of the external
carotid artery was tied. The rats were allowed to recovery from
anesthesia and returned to the cages.

Transplantation of HMO6 cells

In the study, MCAO rats were randomly divided into two
experimental groups: Transplantation (n = 30) and control (n = 30)
groups. Forty eight hour after MCAO animals were anesthetized
and HMO6 cells (3×10⁶ cells/rat) were injected through jugular
vein. In control MCAO animals, phosphate-buffered saline (PBS)
alone was injected. No immunosuppressant such as cyclosporine A
was utilized in the study as well as previous studies since
cyclosporine A reduces glial response and exerts neuroprotection
in experimental stroke.

Functional tests

Functional tests were performed at 1, 4, 7, 10 and 14 days after
MCAO by the modified neurological severity scores (mNSS).

mNSS was used to grade the various aspects of neurological
functions, which was adopted from a previous report, with some
modification [21]. The modified NSS (mNSS; Table 1) is a
composite of motor (i.e., muscle status and abnormal movement),
sensory (i.e., visual, tactile, and proprioceptive), beam balance, and
reflex tests, in which meticulous sensory examination for vision,
touch, and proprioceptive sensation was performed. The total
score for the test was 22 points. Increasing score indicates the
severity of injury. In a preliminary examination, rats with 12–16
points of mNSS had a stable stroke volume. Hence, we used rats
with 12–16 points for further examination.

triphenyltetrazolium chloride (TTC) staining and
evaluation of infarct volume

Rats (8 rats in each group; n = 16) were decapitated under deep
anesthesia with an overdose of diethyl ether at 7 and 14 days after
MCAO. The brain was immediately removed and sectioned into 2
mm thick slices from the frontal pole to the cerebellum. These

| Table 1. Modified NSS. |
|------------------------|
| **Motor Tests**        | **Points** |
| Raising rat by the tail | 3         |
| 1 Flexion of forelimb  | -         |
| 1 Flexion of hindlimb  | -         |
| 1 Head moved >10 to vertical axis within 30 s | 3 |
| Placing rat on the floor (normal = 0; maximum = 3) | 3 |
| 0 Normal walk          | -         |
| 1 Inability to walk straight | - |
| 2 Circling toward the paretic side | - |
| 3 Fall down to the paretic side | - |

| **Sensory tests**      | **Points** |
| Beam balance tests (normal = 0; maximum = 6) | 6 |
| 0 Balances with steady posture | - |
| 1 Grasps side of beam | - |
| 2 Hugs the beam and one limb falls down from the beam | - |
| 3 Hugs the beam and two limbs fall down from the beam, or spins on beam (>60 s) | - |
| 4 Attempts to balance on the beam but falls off (>10 s) | - |
| 5 Attempts to balance on the beam but falls off (>20 s) | - |
| 6 Falls off: No attempt to balance or hang on to the beam (<20 s) | - |
| Reflexes absent and abnormal movements | 1 |
| 1 Pinna reflex (head shake when touching the auditory meatus) | 1 |
| 1 Corneal reflex (eye blink when lightly touching the cornea with cotton) | 1 |
| 1 Startle reflex (motor response to a brief noise from snapping a clipboard paper) | 1 |
| 1 Seizures, myoclonus, myodystony | 1 |
| Maximum points          | 22        |

One point is awarded for inability to perform the tasks or for the lack of a tested reflex.
sections were stained with 2% 2–3–5 TTC (Sigma) in normal saline at 37°C for 30 minutes, after which sections rinsed 0.9% saline solution for photography. TTC stained sections per animal were photographed using digital high definition microscope (Keyence VH-7000, Osaka, Japan). The six areas of infarction between each adjoining slice were measured using NIH image software, and then infarct volumes (mm³) were determined by integrating the appropriate area with the section interval thickness.

Histological and immunohistochemical assessment
Experimental animals, two groups of 4 each (total n = 32) at 3, 5, 7 and 14 days after MCAO, were re-anesthetized and rat organs were fixed by transcardial perfusion with saline, followed by 4% paraformaldehyde (PFA) in 0.1mol/L phosphate buffer (PB, pH 7.4) and 10% sucrose. The rat tissues (brain, liver, spleen, lung, kidney) were immersed in 20% sucrose for 48 hours and then embedded in TissueTek OCT compound and frozen on dry ice. The brain tissues were cut equally spaced (thickness 2 mm) coronal blocks, followed by sections sliced into 10 μm in a cryostat. To investigate the histological changes in the brain tissue, haematoxylin and eosine (H.E.) staining was performed.

For immunostaining, brain sections were incubated with mouse monoclonal antibody specific to Human nuclei (1:100; MAB1291, Chemicon, Temecula, CA) to evaluate the migration of transplanted HMO6 cells. Double immunohistochemical staining was performed to identify glial cells accumulation with polyclonal rabbit anti-GFAP antibody (1:100; Dako, Carpinteria, CA) and monoclonal mouse anti - ED1 antibody (1:100; Serotec, Oxford, UK). Sections were then incubated for 1 hour at room temperature with secondary antibodies, Texas red-conjugated goat anti-rabbit IgG (1:100,Chemicon) and FITC-conjugated goat anti-mouse IgG (1:100; Chemicon). All sections were stained with Hoechst 33258 (10 mg/ml, Sigma) as a nuclei staining. After staining, sections were mounted with ultramount (Dako) and visualized with a fluorescence microscope system (Nikon, ECLIPSE, E600, Tokyo, Japan). ED1 is specific for mouse/rat microglia/macrophages and not for human.

The terminal deoxynucleotidyl transferase (TdT) - mediated dUTP-biotin nick – end labeling (TUNEL) method was used to assess apoptotic cell death. Brain sections were stained by In Situ Cell Death Detection Kit (Roche Diagnostics, Mannheim, Germany). After quenching endogenous peroxidase activity with 0.3% H₂O₂ in PBS, slides were placed in TdT. A dark brown color indicating DNA breaks developed after incubation with 3, 3’-diaminobenzidine (DAB, Vector Lab, Burlingame, CA).

Laser capture microdissection (LCM)
Tissue preparation and staining: The animals, two groups of 6 each (total n = 12) at 5 days after MCAO, were deeply anesthetized, decapitated and the brains were quickly removed. The brain sections were snap frozen with liquid nitrogen and stored at −80°C for further use. Ten-μm brain cryosections were prepared, fixed in 75% ethanol for 30s. For detection of HMO6 cells, sections were incubated with anti-human nuclei, for detection of rat glial cells, incubated with anti-GFAP and anti-ED1 antibody for 1 hour followed by secondary antibody for 30 minutes. During immunostaining, RNase inhibitor was added to all reagents, and aqueous reagents were prepared in with diethylpyrocarbonate (DEPC) treated distilled water.

Immunostaining-positive cells for human nuclei, GFAP or ED1 were respectively isolated from ischemic hemispheres of MCAO occluded rats by LCM system (Arcturus, Mountain View, CA), which was equipped with an inverted base microscope system (Olympus, Tokyo, Japan). Microdissections of rat brain sections were performed under 10x objective and target cells were collected from each rat brain on an LCM Cap (CapSure Macro Caps, Arcturus; Mountain View, CA). Following cells collection, total RNA was isolated with the PicoPure RNA isolation kit (Arcturus; CA) according to the manufacturer’s instructions.

Real time PCR
Total RNA of HMO6 cell culture was isolated from confluent HMO6 using RNA STAT reagent (TELTEST) according to the manufacturer’s instructions. Briefly, confluent HMO6 cells of 60-mm cell culture dishes were lysed and extracted with chloroform, and the aqueous phase was transferred to a fresh tube. Total RNA was precipitated with 2-propanol, washed once with 70% ethanol, and re-suspended in a suitable volume of DEPC-treated water. The total RNA concentration was determined by measuring the OD values of the samples at 260 nm.

To prepare first strand cDNA, mRNA was reserve transcribed with reverse transcriptase enzyme (ReverTraAce, Toyobo, Osaka, Japan) in a total 20 μl reaction mixture. To analyze mRNA level, real time PCR was performed with SYBR PCR Master Mix (power SYBR green, Applied Biosystems, CA) and an ABI Prism 7000 Sequence Detector system (Applied Biosystems, CA). The list of primer sequences is provided in Table 2. After normalization with GAPDH mRNA, the target gene mRNA level in a sample was quantified by relative quantification method.

Statistical Analysis
Data were expressed as mean ± standard error of the mean (S.E.M). Experimental data were analyzed by analysis of variance and means with ANOVA followed by Fisher’s PLSD test for the difference between means. A values of P<0.05 and P<0.01 were considered statistically significant.

Results
Neurological functional recovery
We investigated whether transplanted human microglial cell, HMO6 improves neurological deficits after MCAO in rat. The mNSS scores at 1 and 4 days were not significant different between control group and HMO6 transplantation group. However, neurological functional recovery was significantly found at 7, 10 and 14 days after MCAO in the HMO6 transplantation group compared with the control group (Figure 1A).

Measurement of Infarct volume and histological changes
Histological analysis of ischemic lesions indicated that at 7 days after MCAO the mean infarct volume was 163±17 mm³ in the control group and 91±16 mm³ in the HMO6 transplanted group (44% reduction in infarct volume), and at 14 days after MCAO the infarct volume was 214±29 mm³ in the control and 127±20 mm³ in the HMO6 group (41% reduction in infarct volume) (Figure 1B). There were significant reductions in infarct volumes following transplantation of HMO6 human microglia in MCAO animals at 7 and 14 days after MCAO. Tissue damage with disarrangement and vacuoles and cell infiltration in infarct core and penumbra were higher in control groups compared to those in transplanted groups during the time course (Figure 1C and 1D).

Apoptotic cells
Number of apoptotic cells was counted in the ischemic core and the penumbra at 3, 5, 7 and 14 days after MCAO in brain sections processed for TUNEL staining. Number of apoptotic cells at 3 and
5 days in the core (Figure 2E) and the ischemic penumbra (Figure 2J) were not significant different between the HMO6 transplantation group and the control group.

At 7 days after MCAO, the number of apoptotic cells within the ischemic core was $70.9 \pm 6.6$ cells/field in the control group and $30.4 \pm 7.6$ cells/field in the HMO6 transplantation group respectively (41% reduction in number of apoptotic cells) (Figure 2E). At 14 days after MCAO, the number of apoptotic cells within the ischemic core was $45.7 \pm 6.6$ in the control (Figure 2F) and $8.2 \pm 1.4$ in the HMO6 group respectively (82% reduction in number of apoptotic cells) (Figure 2H and 2E).

At 7 days after MCAO, the number of apoptotic cells within the penumbra was $59.1 \pm 7.9$ cells/field in the control group and $14.7 \pm 3.1$ cells/field in the HMO6 transplantation group respectively (75% reduction in number of apoptotic cells) (Figure 2J). At 14 days after MCAO, the number of apoptotic cells within the penumbra was $20.9 \pm 2.1$ in the control (Figure 2G) and $1.9 \pm 0.4$ in the HMO6 group respectively (91% reduction in number of apoptotic cells) (Figure 2I and 2J).

**Migration of HMO6 human microglial cells**

At 3, 5, 7 and 14 days after MCAO, migration of HMO6 cells into brain was examined by human nuclei (HuN) staining. In the brain, HuN-positive HMO6 cells were found in survive infarct core and penumbra in the ipsilateral hemisphere, while in the contralateral hemisphere HMO6 cells were not found. A peak of HMO6 cell migration was found at 5 days after MCAO (Figure 3A and 3B) as compared with 3, 7 and 14 days (Figure 3C and 3D). Migration declined after the 7 day after MCAO and only a small number of HMO6 cells was detected at 14 days after MCAO (Figure 3E). HMO6 cells were also transplanted in healthy rats to find out whether they enter into normal brains. However, HuN-positive cells were detected only in optic chiasma.

Since HMO6 cells were transplanted intravenously, migration and localization of HMO6 cells in other parts of body were determined. The presence of HuN-positive cells was found in the spleen, lung, liver and kidney at 3, 5, 7 and 14 days. HMO6 cell migration in the spleen was significantly higher at 5 days (Figure 3F and 3J) as compared with 7 days and 14 days (Figure 3H and 3I).
transplanted rat (D) at 7 days after MCAO. Bar = 100 μm. H.E. staining of the penumbra lesion in a control rat (C) and a

mean image software. Data of mNSS and infarct volume is expressed as the

transplantation and control groups based on TTC staining and NIH

was calculated at 7 and 14 days after MCAO in the HMO6

functional recovery at 7, 10 and 14 days after MCAO. (B) Infarct volume

rizes the results of motor, sensory, reflex, and balance tests. Number of ED1-positive cells was smaller in the penumbra as compared with the ischemic core (Figure 4I and 4J). In the ischemic core, number of round-shaped ED1 positive cells at 7 and 14 days after MCAO was significantly decreased in the HMO6 transplantation group as compared with control group. At 7 days after MCAO, the number of ED1-positive cells was 70.9±5.9 cells/field in the control group (Figure 4B) and 33.1±1.9 cells/field in the HMO6 group respectively (50% reduction in number of apoptotic cells) (Figure 4D).

In the penumbra at 7 days after MCAO, number of ED1-positive cells was 68.2±4.4 cells/field in the control group (Figure 4K) and 29.1±4.7 cells/field in the HMO6 transplantation group respectively (57% reduction in number of ED1 cells) (Figure 4K). At 14 days after MCAO, the number of ED1-positive cells was 59.1±2.5 cells/field in the control (Figure 4K) and 23.7±1.1 cells/field in the HMO6 group respectively (60% reduction in number of ED1 cells) (Figure 4K).

At 7 days after MCAO, number of GFAP-positive cells was 34.3±4.5 cells/field in the control group (Figure 4E and 4L) and 48.2±1.5 cells/field in the HMO6 transplantation group respectively (43% reduction in number of GFAP cells) (Figure 4G and 4L). At 14 days after MCAO, the number of GFAP-positive cells was 70.1±7.1 cells/field in the control (Figure 4F and 4L) and 30.2±1.7 cells/field in the HMO6 group respectively (57% reduction in number of GFAP cells) (Figure 4H and 4L).

Gene expression of neurotrophic factors, cytokines and chemokines in HMO6 cells in culture and brain tissue

Gene expression of neurotrophic factors, cytokines and chemokines was determined in HMO6 cells in culture and the brain by real time-PCR (Figure 5). The results showed that expression of b-FGF and IL-6 in HMO6 cells were high, while expression of GDNF, BDNF, CNTF, IL-5, IL-6, IFN-γ, fractalkine and MCP-1 was low and expression of VEGF, BMP-7, IL-1β, IL-4 in HMO6 cells was not detected and under un-stimulated in vitro culture conditions.

To study the actual gene expression in transplanted HMO6 cells in the brain, HMO6 cells from brain tissue at 5 days after MCAO were isolated by the use of LCM and gene expression of neurotrophic factors, cytokines and chemokines was investigated in rat glial cells. There were no significant differences between transplanted group and control group in expression of neurotrophic factors, cytokines and chemokines in rat microglia and astrocytes of brain tissue.

Effect of HMO6 transplantation on glial cell accumulation

Effect of HMO6 transplantation on glial reaction in the ischemic core and the penumbra from brain tissue with the LCM at 5 days after MCAO by real-time PCR.

Gene expression of neurotrophic factors, cytokines and chemokines in rat microglia and astrocytes of brain tissue

To determine the effect of the HMO6 transplantation on host brain microglia and astrocyte, gene expression of neurotrophic factors, cytokines and chemokines was investigated in rat glial cells of the penumbra from brain tissue with the LCM at 5 days after MCAO by real-time PCR.

There were no significant differences between transplanted group and control group in expression of neurotrophic factors,
cytokines and chemokines in rat microglia/macrophages (Figure 6A). The expressions of GDNF and VEGF in astrocytes of penumbra were significantly up-regulated in the transplantation group as compared with the control group. Expressions of BDNF, IL-1β, IL-4, IL-6, TNF-α, TGF-β, IL-β, MCP-1 and MIP-1α were higher in astrocytes of transplanted brain than those in astrocytes of control brain, though not significantly different (Figure 6B).

Discussion

The major findings of the present study are that intravenous transplantation of human microglial cells significantly improved the ischemia-induced functional and morphological changes in the ipsilateral hemisphere after t-MCAO.

Previous studies have reported that intravenous transplantation of neural stem cells (NSCs), MSCs and human umbilical cord
blood cells (HUCBC) significantly improves neurological deficits after experimental stroke [15,17,21,22], which raised the possibility of cell therapy for ischemic stroke. Most of stem cells/precursor cells are believed to enter into brain through disrupted blood-brain barrier and migrate to the ipsilateral hemisphere, especially to the ischemic border zone expressed as penumbra [15,23], which is also supported by our data that HMO6 cells transplanted in healthy rats did not enter the brains except optic chiasma. HMO6 human microglial cells transplanted in MCAO rats also were found in penumbra, however, the cell density was higher along infarct core. As expression of cytokines and chemokines are upregulated in the penumbra, transplanted microglial cells carrying respective receptors are thought to be chemo-attracted and recruited and migrate along the infarct core [9,24]. Tissue damage in the infarct core and penumbra was not induced by HMO cell transplantation and migration, rather an improvement of histological tissue architecture was observed. On the contrary, migrated HMO6 cells almost disappeared from the brain 14 d after MCAO. Fate of HMO6 cells localized in the lesion should be determined in the further study.

In the rodent MCAO studies, TUNEL-positive cells in the ischemic lesion peaked at about one week after MCAO and were continuously seen for several weeks [25,26]. Previous reports have indicated that systemically transplanted stem cells reach the ischemic lesion and have a neuroprotective effect to reduce apoptotic neuronal cell death in host neurons and that reduction of stroke volume began after the event. Neuroprotective effect to reduce the number of apoptotic cells was found at 7 days after MCAO in the present study and then, infarct volume of both PBS control and HMO transplantation groups continued to increase up to two weeks as seen in previous studies [27,28]. The reason remains elusive, but various factors including apoptotic signal pathway, necrosis and repair process might affect it. Transplantation of bone marrow stromal cells and GDNF-gene modified NSCs reduced the number of TUNEL-positive cells, caspase-3-positive cells and also neuronal degeneration from the acute phase to several months after MCAO [25,29,30], which was consistent with microglial transplantation in this study.

Brain injury following focal cerebral ischemia triggers activation of microglia and astrogliosis and induction of released free

Figure 4. ED1 and GFAP positive cells in the penumbra. Immunohistochemical reactions to ED1 (A-D: FITC) and GFAP (E-H: Texas red) were shown at 7 (A, C, E and G) and 14 (B, D, F and H) days after MCAO. Double staining with anti-ED1 and anti-GFAP antibodies was detected in the penumbra of the HMO6 transplantation group (I) and control group (J) at 7 days after MCAO. Histograms show the density of ED1-positive microglia/macrophages (K) and GFAP-positive astrocytes (L) in the HMO6 transplantation and control groups of 7 and 14 days after MCAO. Number of positive cells is expressed as the mean ± SEM. Bar = 20 μm, ** P<0.01 compared to the control group.

doi:10.1371/journal.pone.0011746.g004
Figure 5. Gene expression in HMO6 cell in vitro and in vivo. Gene expression of neurotrophic factors, cytokines and chemokines in the HMO6 cell of culture (open bars) and brain tissue (solid bars) was analyzed by quantitative real-time PCR. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reaction standard. Gene expression was determined in culture HMO6 cells under normal condition. HMO6 cells of brain tissue were isolated from infarct core and penumbra at 5 days after MCAO by laser capture microdissection (LCM). Values represent mean ± SEM from three experiments. DOI:10.1371/journal.pone.0011746.g005

Figure 6. Gene expression in rat glial cells. Gene expression of neurotrophic factors, cytokines and chemokines in rat ED1-positive microglia/macrophages (A) and GFAP-positive astrocytes (B) was analyzed by quantitative real-time PCR. ED1- and GFAP-positive cells were isolated from penumbra of the HMO6 transplantation and control groups at 5 days after MCAO by laser capture microdissection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reaction standard. Expression levels of each factor were calculated in the transplantation and control groups. Values represent mean ± SEM from three experiments. **P<0.01 compared to the control group. DOI:10.1371/journal.pone.0011746.g006

Radicals, inflammatory cytokines and proteases [31,32,33,34]. The activated microglia releasing reactive oxygen species, nitric oxide, chemokines and inflammatory cytokines [35,36] leading to accumulation and activation of more blood born and resident immune cells. Moreover, these microglial inflammatory products are highly neurotoxic. The study in cerebral ischemic model demonstrated that the application of immunosuppressant (FK506) reduced delayed neuronal death by glial/microglial inhibition [37]. In the present study, significantly fewer number of host rat ED1-positive microglia/macrophage was detected in the infarct core and penumbra in HMO6 human microglia-transplanted brains. It appears that transplantation of HMO6 human microglia in the ischemic brain induces reduction in host glial activation that leads to abated neurotoxicity. In addition, transplanted HMO6 human microglia showed increase expression of several neurotrophic factors and Th2 type cytokines, which might be involved in glial inhibition and also protection of host neurons. In the transplanted brain, the number of GFAP-positive astrocytes in the penumbra was lower indicating curtailed astrogliosis in the lesion site. Recently, it is proposed that astrocytes contribute to delayed neuronal death by release of cytotoxic cytokines after ischemia [38,39]. The present results of abated astrogliosis and the reduction in the number of TUNEL-positive cells in the penumbra are in good agreement with these studies.

In the HMO6-transplanted group, reduced infarct volume and reduction in the number of glial cells in penumbra were observed from 7 days after MCAO and onward. It appears that the transplanted HMO6 human microglial cells attenuate glial reaction of host glial cells, which leads to reduce infarct volume, by increased expression of neurotrophic factors, cytokines and chemokines. It is interesting to note that several neurotrophic factors such as GDNF, BDNF, BMP-7,CNTF and VEGF were upregulated in the transplanted HMO6 human microglial cells as compared to HMO6 cells in culture. Increased expression of these trophic factors in transplanted HMO6 cells might have resulted from inducing signals at the microenvironment of the ischemic brain. In the present results, anti-inflammatory cytokines such as IL-4 and IL-10 were also increased although IL-1β, a proinflammatory cytokine and MCP-1, a chemokine, were also increased. These results indicate that the gene expression in the transplanted HMO6 human microglial cells was dramatically changed in the microenvironment of ischemic brain lesion site.

Previous reports demonstrated that transplantation of gene-modified human MSCs overexpressing GDNF, BDNF or VEGF after cerebral ischemia reduce infarct volume and ameliorate neurological deficits [40,41,42]. High levels of GDNF, BDNF and VEGF were found in transplanted HMO6 cells in ischemic lesion site and responsible for retraction of behavior and neuroprotection. BMP-7, a trophic factor expressed by HMO6 cells, is a member of transforming growth factor-β superfamily, the receptors are found in neuron and astrocytes [43] and known to promote neuroregenerative effect in stroke rats [44]. Since BMP7 was highly expressed in HMO6 cells in penumbra, it is one of the neuroprotective factors secreted by the transplanted HMO6 human microglial cells in the ischemic brain.

Previous studies have demonstrated that the brain transplantation of human neural stem cells overexpressing VEGF or GDNF in cerebral hemorrhage stroke animal models promoted functional recovery and neuronal protection [45,46]. The transplantation of bone marrow stromal cells also promoted expression of VEGF in host brain, and enhance angiogenesis and functional repair in the ischemia brain [47]. The present study showed that the transplantation of HMO6 cells in the ischemic brain induced a significant up-regulation in expression of GDNF and VEGF in
ischemic penumbra. The upregulated GDNF and VEGF in the rat brain might be one of cause for neuronal recovery because those factors can support neuronal survival and attenuate neuronal apoptotic death [48,49].

In conclusion, the present study demonstrated that the intravenous transplantation of human microglia migrate to ischemic area, and provide neuroprotection via producing neurotrophic factors and cytokines and reducing endogenous glial response. Selective accumulation of transplanted microglia in lesion core and penumbral area indicate that that microglia could be an effective vehicle for transfer of therapeutic genes for gene therapy in neurological diseases including cerebral ischemic disease.

Author Contributions
Conceived and designed the experiments: AN SK SY. Performed the experiments: DN AN AS. Analyzed the data: DN AN AS. Contributed reagents/materials/analysis tools: AN JM SY. Wrote the paper: AN AS SY SUK.

References
1. Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22: 219–240.
2. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81: 302–313.
3. Lee YH, Nagai A, Kim SU (2002) Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69: 94–103.
4. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. J Neurosci Res 40: 195–218.
5. Block F, Peters M, Nolden-Koch M (2000) Expression of IL-6 in the ischemic penumbra. Neuroreport 11: 963–967.
6. Butina M, Appel K, Sauter A, Gebicke-Haerter PJ, Bodecke HW (1996) Expression of tumor necrosis factor alpha after focal cerebral ischemia in the rat. Neurosci Lett 197: 1–16.
7. Clausen BH, Lambertsen KL, Meldgaard M, Finsen B (2005) A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-beta mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience 132: 879–892.
8. Tomimoto H, Akiguchi I, Wakita H, Kinoshita A, Ikemoto A, et al. (1996) Glial expression of cytokines in the brains of cerebrovascular disease patients. Acta Neuroophthalmol 92: 201–207.
9. Minami M, Satoh M (2003) Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci 74: 321–327.
10. Miyamoto Y, Kim SU (1999) Cytokine-induced production of macrophage inflammatory protein-MIP-1alpha in cultured human astrocytes. J Neurosci Res 55: 245–251.
11. Takami S, Nishikawa H, Minami M, Nishiyori A, Sato M, et al. (1997) Induction of macrophage inflammatory protein MIP-1alpha mRNA on glial cells after focal cerebral ischemia in the rat. Neurosci Lett 227: 173–176.
12. Elakes B, DiCicco-Bloom EM, Black B (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 16: 2508–2521.
13. Miwa T, Furukawa S, Nakajima K, Furukawa Y, Kolsaka S (1997) Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J Neurosci Res 50: 1023–1029.
14. Nakajima K, Kolsaka S (1993) Functional roles of microglia in the brain. Neurosci Res 17: 187–203.
15. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87: 2183–2200.
16. Chen J, Li Y, Wang L, Zhang Z, Lu D, et al. (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32: 1005–1011.
17. Lee HJ, Kim KS, Kim EF, Choi HB, Lee KH, et al. (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25: 1209–1212.
18. Nagai A, Mishima S, Ishita Y, Ishikura H, Harada T, et al. (2005) Immortalized human microglial cell line: phenotypic expression. J Neurosci Res 81: 342–353.
19. Nagai A, Nakajima E, Hatori K, Choi HR, McLarnon JG, et al. (2001) Generation and characterization of immortalized human microglial cell lines: expression of cytokines and chemokines. Neurobiol Dis 8: 1057–1068.
20. Shin H, Choop M, Zhang ZG, Garcia JH (1992) The effect of hypothermia on transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 12: 621–628.
21. Shin H, Choop M, Zhang ZG, Garcia JH, Choi HR, McLarnon JG, et al. (2001) Generation of immortalized human microglial cell line: phenotypic expression. J Neurosci Res 81: 342–353.
22. Chen J, Sanberg PR, Li Y, Wang L, Lu M, et al. (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32: 2682–2688.
23. Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, et al. (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2: e1272.
24. Chen J, Choop M, Chen J, Wang L, Gautham SG, et al. (2000) Intracerebral transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20: 1311–1319.
45. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells overexpressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2: e136.

46. Lee HJ, Park IH, Kim HJ, Kim SU (2009) Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 16: 1066–1076.

47. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, et al. (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92: 692–699.

48. Kilic U, Kilic E, Dietz GP, Bahr M (2003) Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke 34: 1304–1310.

49. Sun Y, Jin K, Xie L, Childs J, Mao XO, et al. (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111: 1843–1851.