The relationship between seasonal influenza and telephone triage for fever: A population-based study in Osaka, Japan

CURRENT STATUS: POSTED

Yusuke Katayama orion13@hp-emerg.med.osaka-u.ac.jp
Osaka University Graduate School of Medicine
Corresponding Author
ORCiD: 0000-0003-2585-4259

Kosuke Kiyohara
Otsuma Joshi Daigaku Kasei Gakubu Daigakuin Kaseigaku Kenkyuka

Tetsuhisa Kitamura
Osaka University Graduate School of Medicine

Kenichiro Ishida
Osaka National Hospital

Tomoya Hirose
Osaka Police Hospital

Tasuku Matsuyama
Kyoto Prefectural University of Medicine

Takeyuki Kiguchi
Kyoto University

Takeshi Shimazu
Osaka University Graduate School of Medicine

DOI: 10.21203/rs.2.13249/v1

SUBJECT AREAS
Health Economics & Outcomes Research Health Policy

KEYWORDS
seasonal influenza, ILI, telephone triage, syndromic surveillance
Abstract

Background: Replacing traditional surveillance with syndromic surveillance is one of the major interests in public health. However, it is unclear whether the number of influenza patients is associated with the number of telephone triages in Japan. Methods: This retrospective, observational study was conducted over the six-year period between January 2012 to December 2017. We used the dataset of a telephone triage service in Osaka, Japan and the data on influenza patients published from the Information Center of Infectious Disease in Osaka prefecture. Using a linear regression model, we calculated Spearman’s rank-order coefficient and R^2 of the regression model to assess the relationship between the number of telephone triages for fever and the number of influenza patients in Osaka. Furthermore, we calculated Spearman’s rank-order coefficient and R^2 between the predicted weekly number of influenza patients from the linear regression model and the actual weekly number of influenza patients for each season (January-March, April-June, July-September, October-December). Results: There were 465,971 patients with influenza, and the number of telephone triages for fever was 420,928 among 1,065,628 total telephone triages during the study period. Our analysis showed that the Spearman rank-order coefficient was 0.932 and R^2 and adjusted R^2 were 0.869 and 0.842, respectively. The highest Spearman rank-order coefficient was 0.896 (P <0.001) and R^2 was 0.803 in January-March (P <0.001). Conclusion: In this population, we revealed a positive relationship between the number of influenza patients and the number of telephone triages for fever, especially in January-March.

Introduction

Seasonal influenza is a pandemic occurring every year that sometimes causes elderly people and infants to die. If seasonal influenza spreads, it not only harms people’s health
but also causes social and economic damage due to absence from work. Replacing traditional surveillance with syndromic surveillance is one of the major interests in public health. Several syndromic surveillance models with absenteeism records [1-3], drug sales including over-the-counter drugs [4,5], and visits to the emergency department [6,7] have been reported previously. There is also a model to predict the influenza epidemic from search engine data on the Internet [8,9]. In Japan, according the Infectious Disease Control Law, patients diagnosed as having influenza are reported by the medical institution to the local health center, and the Department of Public Health of each local government officially announces the aggregate results of influenza. However, because this traditional surveillance takes time, a timelier surveillance system is needed to prevent an epidemic of influenza.

In Osaka prefecture, telephone triage service has been provided to the residents since 2012. The triage nurse uses software to determine the urgency of the client for each symptom and provides necessary services such as ambulance dispatch and guidance of medical institutions based on the result. Therefore, the number of telephone triages by symptom can be calculated in real time with this software.

If there is a relationship between the number of telephone triages for fever and the number of influenza patients, it may be possible for the software to predict an epidemic of influenza based on the number of telephone triages. The aim of this study was to clarify the relationship between the number of telephone triages for fever and the number of influenza patients in Osaka, Japan.

Methods

Study design, population and setting

This study was a retrospective, observational study conducted over a study period of six years from January 2012 to December 2017. Osaka prefecture is the largest urban area in
western Japan, with an area of 1905.14 km\(^2\) and 2.3 million elderly people over 65 years old among the population of 8.8 million people [10]. We included the cases of calls for the telephone triage service and the cases for which the triage nurse performed telephone triage using software in this study. This study was approved by the ethics committee of Osaka University Graduate School of Medicine (approval number: 16070). The requirement for informed consent was waved because the telephone triage data were anonymized. This article was written based on the STROBE statement to assess the reporting of cohort and cross-sectional studies [11].

Outpatient surveillance of influenza-like illness in Japan

The surveillance program for infectious diseases in Japan, which was begun in 1981 and forms the basis for influenza surveillance of outpatients [12,13], was revised and updated to its current format following the revision of the Infectious Disease Control Law in 2014 [12-15]. The system requires mandatory reporting of nationally notifiable diseases and sentinel surveillance systems for various types of infectious diseases [16]. Influenza is included in the sentinel surveillance system. The numbers of influenza patients from 5000 medical institutions across Japan are reported weekly to local health centers. Sentinel sites were chosen on the basis of their geographic distribution, whether a clinic or hospital, and population densities. These sentinel sites report influenza-like illness according to the following criteria: (1) sudden onset of illness, (2) fever >38°C, (3) symptoms of upper respiratory inflammation, and (4) systemic symptoms such as general fatigue. A case meets the reporting criteria if the patient meets all four of the above symptoms or has at least one of the four symptoms along with a positive rapid diagnostic test.\(^16\) Information on the age group and sex of the patients is reported every week by the sentinel sites and is then transferred from the local health centers to each prefectural
government’s Department of Public Health, which aggregates it into a prefectural report. The report is then received by the National Institute of Infectious Diseases in Tokyo, which is affiliated to the Ministry of Health, Labour and Welfare. Within Osaka, 300 medical institutions report influenza patients to 10 local health centers [17].

Telephone triage service in Osaka, Japan

As with the telephone triage service in Tokyo, that in Osaka prefecture is also a public service [18] and can be freely used by anyone. A triage nurse at the service uses software with a protocol for telephone triage in Japan and determines the urgency of the client. There are 97 different protocols of telephone triage for chief complaints in Japan, and the urgency of the client is determined by selecting the signs and symptoms related to each chief complaint. As with telephone triage service in the departments of veteran affairs in the United States [19], Canada and United Kingdom [20-22], the telephone service in Osaka provides the client necessary services such as ambulance dispatch and guidance of medical institutions based on the result of the urgency [23]. The software records the sex and age group of the client, the time when the telephone triage was started and ended, the chief complaint and selected signs and symptoms, the urgency of the client and whether an ambulance was dispatched.

Endpoint

The main endpoint was the weekly number of influenza patients in Osaka. These data were acquired from data on the website of the Osaka Institute of Public Health [17].

Statistical analysis

Using a linear regression model, we calculated the R^2 of the regression model to assess the relationship between the number of telephone triages and the number of influenza patients in Osaka. The covariates in the linear regression model were the weekly number of telephone triages for fever and the week number. We defined the week number as a
binary variable, with the week including January 1st as "week number = 1". Next, according to the season (January-March, April-June, July-September, October-December), we calculated the Spearman’s correlation coefficient, R^2, between the predicted weekly number of influenza patients from the linear regression model and the weekly number of influenza patients for each season. Statistical significance was defined as $P<0.05$, and statistical analysis was performed by SPSS version 23.0J (IBM Crop., Armonk, NY).

Results

Among a total of 1,065,628 telephone triages performed during study period, there were 465,971 influenza patients, and the number of telephone triages for fever was 420,928. Table 1 shows the characteristics of telephone triage in Osaka from 2012 to 2017. The age group with the highest number of telephone triages was that of 0-9 years old, for which the number of telephone triages was 542,890 (50.9%). The number of telephone triages was 511,267 (48.0%) for males and 553,000 (51.9%) for females. The greatest number of people who called for telephone triage were from the patient’s family, comprising 791,302 (74.3%) people. The number of telephone triages was 103,471 in 2012, and it had increased to 224,461 triages in 2017. The most common chief complaint during telephone triage was abnormal vital signs such as “no response” and “no breathing”, which comprised 407,754 (38.2%) triages. The number of telephone triages for fever was 101,572 (9.5%).

Figure 1 shows the weekly number of influenza patients, the weekly number of telephone triages for fever and the predicted number of influenza patients from the linear regression model. The red line indicates the weekly number of influenza patients, the yellow line the weekly number of telephone triages for fever and the blue line the predicted number of influenza patients from the linear regression model. The R^2 of this linear regression model
was 0.869, and the adjusted R^2 was 0.842.

Figure 2 shows the scatter plot of the predicted number of influenza patients from the linear regression model and the weekly number of influenza patients by each season. The season with the highest Spearman’s correlation coefficient ($R = 0.896$) was in winter: January-March ($P<0.001$), followed in order by October-December ($R = 0.584, P<0.001$), April-June ($R = 0.540, P<0.001$), and July-September ($R = -0.151, P = 0.188$).

Discussion

We revealed a positive relationship between the number of telephone triages for fever and the number of influenza patients in a large metropolitan area of Japan in this study. We also found a difference in the contribution rate of the linear regression model depending on the target period. Furthermore, although the predicted number of influenza patients from the linear regression model correlated well with the weekly number of influenza patients in January-March and October-December when influenza was prevalent, there was no correlation in July-September when influenza was not prevalent. The contribution rate of this linear regression model using telephone triage data was very high in this study. The prediction of an influenza epidemic using this linear regression model could potentially allow an official announcement to be made earlier than with the previous aggregate calculation from the public service, and this may lead to the prevention of a pandemic of influenza.

A number of studies have predicted the number of patients with influenza-like disease and respiratory disease using telephone triage data and the number of patients visiting the emergency room [3,6,19-21,24-27]. Perry and colleagues compared the prediction performance of the number of patients with respiratory disease visiting the emergency room using N4SID (numerical methods for subspace state space identification), EWMA
(exponentially weighted moving average), FOS (fast orthogonal search), and a regression model [7]. As a result, they revealed that the FOS model had better prediction accuracy than the regression model if the population was large, but the regression model had the highest prediction accuracy in areas with less population. Lucero-Obusan et al. also reported in a study of the Department of Veteran Affairs in the United States that telephone triage data and influenza-related indicators were significantly correlated [19].

In this study, we used a linear regression model in which the number of telephone triages for fever and seasonality as defined by the week number were input as covariates. Influenza is a seasonal disease that mainly spreads from autumn to winter, and fever is one of the main symptoms of influenza. If influenza is prevalent among people, the number of telephone triages for fever increases at a constant rate, which leads to the high contribution rate of this regression model. In addition, this study was conducted in an area with 8.8 million people over six years, and the validity of this regression model was also very high.

In this regression model, the predicted number of influenza patients and the actual number of influenza patients were most correlated in January-March but were also correlated in October-December and April-June. However, there was no correlation in July-September when seasonal influenza is hardly prevalent in Japan. Because seasonal influenza is prevalent in winter, this result indicated that this regression model of influenza with telephone triage data is useful for predicting a pandemic of seasonal influenza in winter.

Limitations

There are some limitations in this study. First, the report of influenza is a fixed-point observation based on the Infectious Disease Control Law, and influenza surveillance is not a survey of all cases. Second, the criteria for reporting influenza patients in Japan includes
patients diagnosed as having influenza by clinical symptoms [28]. In Japan, the diagnosis of influenza is mostly performed using a diagnostic kit. However, as some patients with influenza were diagnosed by their clinical symptoms, there might be a small number of non-influenza patients among the reported number of influenza patients. Third, as about half of the subjects of this study were children, there might be selection bias compared to the actual population structure of Japan [10]. Finally, this study was an observational study, and there may be some unknown confounding factors.

Conclusions

In this study, we revealed a positive relationship between the number of influenza patients and the number of telephone triages for fever in a large metropolitan area in Japan. Especially, the actual number of influenza patients and the predicted number of influenza cases using this regression model correlated well in January-March.

Declarations

Acknowledgements

The authors thank the Osaka Metropolitan Fire Department. This article was supported by the Clinical Investigator’s Research Project in the Osaka University Graduate School of Medicine.

Author’s contributions

YK, KK and TM performed statistical analysis of the collected data. YK, T. Kitamura, TH, KI, TM, T. Kiguchi and TS interpreted the data. YK, T. Kitamura, KK and TS prepared the manuscript. All authors read and approved this version of the manuscript for submission.

Founding

This study was supported by the JR-West Relief Foundation (2018-2019).

Availability of data and materials
The data that support the findings of this study are available from Osaka Municipal Fire Department, but the availability of these data is restricted.

Ethics approval and consent to participate

This study was approved by the ethics committees of the Osaka Graduate School of Medicine, and the requirement to obtain patients’ consent to participate was waived because the data were anonymized.

Consent for publication

Not applicable

Competing of interests

The authors declare that they have no competing interests.

References

1. Kara EO, Elliot AJ, Bagnall H, et al. Absenteeism in schools during the 2009 influenza A(H1N1) pandemic: a useful tool for early detection of influenza activity in the community? *Epidemiol Infect*. 2012;140(7):1328-1336.

2. Fan Y, Yang M, Jiang H, et al. Estimating the effectiveness of early control measures through school absenteeism surveillance in observed outbreaks at rural schools in Hubei, China. *PloS One*. 2014;9(9):e106856.

3. Ma T, Englund H, Bjelkmar P, Wallensten A, Hulth A. Syndromic surveillance of influenza activity in Sweden: an evaluation of three tools. *Epidemiol Infect*. 2015;143(11):2390-2398.

4. Vergu E, Grais RF, Sarter H, et al. Medication sales and syndromic surveillance, France. *Emerg Infect Dis*. 2006;12(3):416-421.

5. Sočan M, Erčulj V, Lajovic J. Early detection of influenza-like illness through medication sales. *Cent Eur J Public Health*. 2012;20(2):156-162.

6. Hall G, Krahn T, Van Dijk A, et al. Emergency department surveillance as a proxy for
the prediction of circulating respiratory viral disease in Eastern Ontario. *Can J Infect Dis Med Microbiol*. 2013;24(3):150-154.

7. Perry AG, Moore KM, Levesque LE, Pickett CW, Korenberg MJ. A comparison of methods for forecasting emergency department visits for respiratory illness using telehealth Ontario calls. *Can J Public Health*. 2010;101(6):464-469.

8. Hulth A, Rydevik G, Linde A. Web queries as a source for syndromic surveillance. *PloS One*. 2009;4(2):e4378.

9. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. *Nature*. 2009;457(7232):1012-1014.

10. The Census of Japan in 2015. http://www.pref.osaka.lg.jp/attach/1891/00210094/27jinkoutoukihon.pdf. Accessed 23.6.19.

11. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *J Clin Epidemiol*. 2008;61(4):344-349.

12. Nakamura Y, Sugawara T, Kawanohara H, Ohkusa Y, Kamei M, Oishi K. Evaluation of estimated number of influenza patients from national sentinel surveillance using the national database of electronic medical claims. *Jpn J Infect Dis*. 2015;68(1):27-29.

13. Murakami Y, Hashimoto S, Kawado M, et al. Estimated number of patients with influenza A(H1)pdm09, or other viral types, from 2010 to 2014 in Japan. *PloS One*. 2016;11(1):e0146520.

14. Okabe N, Yamashita K, Taniguchi K, Inouye S. Influenza surveillance system of Japan and acute encephalitis and encephalopathy in the influenza season. *Pediatr Int*. 2000;42(2):187-191.
15. Shimada T, Sunagawa T, Taniguchi K, et al. Description of hospitalized cases of influenza A(H1N1)pdm09 infection on the basis of the national hospitalized-case surveillance, 2009-2010, Japan. *Jpn J Infect Dis.* 2015;68(2):151-158.

16. The guidelines for National Epidemiological Surveillance of Infectious diseases: influenza. https://www.mhlw.go.jp/stf/shingi/2r9852000002oeqs-att/2r9852000002oetv.pdf. Accessed 23.6.19.

17. The Information Center of Infectious Disease in Osaka Prefecture. http://www.iph.pref.osaka.jp/infection/surv19/surv24t.html. Accessed 23.6.19.

18. Sakurai A, Morimura N, Takeda M, et al. A retrospective quality assessment of the 7119 call triage system in Tokyo - telephone triage for non-ambulance cases. *J Telemed Telecare.* 2014;20(5):233-238.

19. Lucero-Obusan C, Winston CA, Schirmer PL, Oda G, Holodniy M. Enhanced influenza surveillance using telephone triage and electronic syndromic surveillance in the Department of Veterans Affairs, 2011-2015. *Public Health Rep.* 2017;132(1_suppl):16s-22s.

20. Cooper D, Chinemana F. NHS Direct derived data: an exciting new opportunity or an epidemiological headache? *J Public Health (Oxf).* 2004;26(2):158-160.

21. Moore K. Real-time syndrome surveillance in Ontario, Canada: the potential use of emergency departments and Telehealth. *Eur J Emerg Med.* 2004;11(1):3-11.

22. van-Dijk A, Aramini J, Edge G, Moore KM. Real-time surveillance for respiratory disease outbreaks, Ontario, Canada. *Emerg Infect Dis.* 2009;15(5):799-801.

23. Telephone triage service in Osaka. https://www.city.osaka.lg.jp/shobo/page/0000052526.html. Accessed 28.6.19.

24. Espino JU, Hogan WR, Wagner MM. Telephone triage: a timely data source for surveillance of influenza-like diseases. AMIA Annual Symposium Proceedings, AMIA
Symposium. 2003:215-219.

25. Moore KM, Edgar BL, McGuinness D. Implementation of an automated, real-time public health surveillance system linking emergency departments and health units: rationale and methodology. *CJEM*. 2008;10(2):114-119.

26. van Dijk A, McGuinness D, Rolland E, Moore KM. Can Telehealth Ontario respiratory call volume be used as a proxy for emergency department respiratory visit surveillance by public health? *CJEM*. 2008;10(1):18-24.

27. Yih WK, Teates KS, Abrams A, et al. Telephone triage service data for detection of influenza-like illness. *PloS One*. 2009;4(4):e5260.

28. Zaraket H, Saito R. Japanese surveillance systems and treatment for influenza. *Curr Treat Options Infect Dis*. 2016;8(4):311-328.

Figures
Figure 1

The weekly number of influenza patients, the weekly number of telephone triages for fever and the predicted number of influenza patients from the linear regression model.

Figure 2-A Winter: January to March

Figure 2-B Spring: April to June
Figure 2-C Summer: July to September

Figure 2-D Autumn: October to December
Figure 2

The scatter plot of the predicted number of influenza patients from the linear regression model and the weekly number of influenza patients by each season

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Table 1 Baseline Characteristics_EDITED.xlsx