Molecular characterization of nontuberculous Mycobacteria in a tuberculosis and HIV reference unit in the State of Amazonas, Brazil

Ana Carolina de Oliveira de Lima[1],[2] , Karen Barros Schmid[3] , Hilda Ferreira de Melo[4] , Rafaella Christine Athayde[4] , Rossiclea Lins Monte[4] , Isabela Neves de Almeida[5] , Silvana Spíndola de Miranda[6] , Afrânio Kritski[7] , Maria Lucia Rossetti[8] and Marcelo Cordeiros-Santos[2],[4]

[1]. Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil.
[2]. Universidade do Estado do Amazonas, Manaus, Programa de Pós-Graduação em Medicina Tropical, AM, Brasil.
[3]. Secretaria de Estado da Saúde do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil.
[4]. Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.
[5]. Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG, Brasil.
[6]. Universidade Federal de Minas Gerais, Departamento de Clínica Médica/Pneumologia/Tisologia, Faculdade de Medicina, Belo Horizonte, MG, Brasil.
[7]. Universidade Federal do Rio de Janeiro, Programa Acadêmico de Tuberculose, Escola de Medicina, Rio de Janeiro, RJ, Brasil.
[8]. Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Molecular e Celular, Canoas, RS, Brasil.

ABSTRACT

Background: In recent years, the prevalence of nontuberculous mycobacterial (NTM) infections has increased in different regions of the world. The American Thoracic Society (ATS) recommends standardized identification criteria, reinforcing the need for faster and less complicated clinical and laboratory techniques.

Methods: In this retrospective study, NTM species isolated from pulmonary, extrapulmonary, and disseminated samples from patients treated at a TB/HIV reference unit in the State of Amazonas from 2011 to 2014 were identified through a combination of molecular techniques.

Results: To identify the molecular technique, 50 cryopreserved NTM cultures were recovered and subcultivated in culture medium. The potentially pathogenic NTM species identified were *M. avium*, *M. intracellulare*, *M. kansasii*, *M. chelonae*, *M. abscessus*, *M. fortuitum*, and *M. peregrinum*. Results of GenoType® showed moderate agreement with those of genomic sequencing (kappa = 0.60), whereas the results obtained by the PRA-hsp65 technique disagreed with the results obtained by sequencing (kappa = 0.49).

Conclusions: Our findings highlight that GenoType CM is a good method for the identification of NTM, as well as the need for the application of standardized criteria, such as those set forth by the ATS.

Keywords: HIV infections. Molecular diagnostic technique. Nontuberculous mycobacteria. Prevalence.
INTRODUCTION

In recent years, the prevalence of infections caused by nontuberculous mycobacteria (NTM) has increased in different regions of the world1-2.

One of the most common occupations in the northern region of Brazil is fishing, and recent studies have highlighted fishermen and other individuals exposed to fish as a population with a greater risk of developing skin infections caused by \textit{Mycobacterium marinum}3-4. In Manaus, an outbreak of postoperative NTM infection was related to the water supplied to the surgical center5.

Furthermore, people infected with HIV are more prone to diseases caused by NTM6. Thus, surveillance of these infections is of utmost importance, and correct diagnosis to differentiate between cases of colonization and disease requires well-defined clinical, radiological, and laboratory criteria.

The diagnosis of diseases caused by NTM is still a major challenge due to the non-specific clinical symptoms, possible transitory colonization, or contamination. In addition to the possibility of infection, whether associated or not, to mycobacteria of the \textit{Mycobacterium tuberculosis} complex, which all present similar signs and symptoms7-9.

Recent guidelines updated the treatment for pulmonary disease caused by NTM, developed in conjunction with the American Thoracic Society (ATS), European Respiratory Society (ERS), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), and Infectious Diseases Society of America (IDSA), suggest that more than one isolated culture (≥2) of NTM, revealing the same species of NTM or isolated subspecies10, is necessary to confirm the disease.

In addition, it is recommended that isolates be subjected to drug sensitivity tests (DST). In species of the \textit{Mycobacterium avium} complex (MAC), mutations in the 23S rRNA gene confer resistance to macrolides and mutations in the 16S rRNA gene confer resistance to amikacin and/or related aminoglycosides. Species such as \textit{M. kansasii} and \textit{M. abscessus} are resistant to macrolides and amikacin, with rifampicin and clarithromycin being the principal drugs tested for the \textit{M. kansasii} species11. These findings reinforce the need for swifter and less cumbersome techniques to identify NTM species in clinical and laboratory routines to guarantee adequate medical treatment.

In this context, the present study aimed to identify isolated NTMs in patients who received medical care in a TB/HIV reference unit in the state of Amazonas, using a combination of molecular techniques.

METHODS

Study design

This retrospective cohort study was conducted from 2011 to 2014 at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), a TB/HIV reference center in the city of Manaus, Amazonas state, in the northern region of Brazil.

This study was carried out using two methods: 1) Analysis of the clinical and sociodemographic data of the patients, and 2) Molecular characterization of NMT.

Data analysis

Clinical and laboratory data of the patients were searched using the online medical records system, I-Doctor, made available at FMT-HVD, and the Notifiable Diseases Information System (SINAN, in Portuguese). Data analysis was conducted using a databank constructed with the Microsoft Excel computer program (Office 2016), in which the information contained in the clinical and laboratory records (sex, age, HIV, viral load, lymphocyte count, antiretroviral therapy used (ART), biological sample, result of the mycobacterial culture, and prescribed medicines) was recorded. Biological samples were classified as pulmonary, extrapulmonary, or disseminated. Phlegm and gastric juices were classified as pulmonary in origin, while cerebrospinal fluid, urine, tracheal, and abscess secretions, and skin and organ biopsies were classified as extrapulmonary in origin. Blood and bone marrow samples were classified as having a disseminated origin.

For the molecular characterization of NTM, patients whose clinical samples presented positive culture results for NTM and negative culture results for \textit{M. tuberculosis} Complex (MTC) were included.

The separation of MTC was conducted through microscopic and macroscopic analyses of the culture and growth inhibition in a Löwenstein-Jensen (Becton Dickinson12) culture medium containing p-nitrobenzoic acid (LJ-PNB) and niacin (Becton Dickinson12) (Supplementary Material 1).

Extraction of the genomic DNA

To conduct the molecular tests, this study used DNA from the NTM cultures that were cryopreserved at -70°C and subcultivated in Ogawa Kudoh (OK - Laborclin13) solid medium. Subcultivation of the cryopreserved strains was performed to verify the viability of the strain and to identify possible contaminants12.

Cryopreserved NTM cultures were recovered and subcultivated in culture medium.

In order to exclude MTC, the macroscopic characteristics of the colonies were considered, such as the presence of growth and/or the presence of contamination in the culture medium, the morphology and pigmentation of the colonies, and the microscopic features of the colony stained by the Ziehl-Neelsen method. The formation of the cord and the presence of contamination by other bacteria and fungi were also evaluated. In the analysis of the subcultivations, 10.7% (6/56) presented contaminants and the absence of mycobacterial growth, and were not included in the molecular tests.

After this screening step, the genomic DNA of \textit{Mycobacteria} was extracted using the cetyltrimethylammonium bromide (CTAB; SIGMA-Aldrich-Merk14) method. It was performed briefly after bacterial inactivation by heating for 30 min at 80 °C, followed by the enzymatic reaction by applying lysozyme (SIGMA-Aldrich-Merk15) (10 mg/mL) and proteinase K (SIGMA-Aldrich-Merk16) (10 mg/mL) solution. The DNA was purified by adding CTAB and was precipitated by using alcohol solutions of chloroform/isoamyl alcohol. The DNA was purified by adding CTAB and precipitated by using alcohol solutions of chloroform/isoamyl alcohol (24:1), isopropanol, and 70% ethanol11.

GenoType® Mycobacterium CM-AS – Genotype

The GenoType® Mycobacterium CM-AS Mobius Life Science17 (Genotype) trial was conducted according to the manufacturer’s instructions. The complete procedure was divided into three steps:

1. Extraction of the genomic DNA.
2. Amplification of the target DNA.
3. Hybridization by real-time PCR.
TABLE 1: Main clinical and laboratory characteristics of patients with isolates of NonTuberculous Mycobacteria.

	N	Percentage/IQR
Positive HIV Serology	84/224	37.5%
Negative HIV Serology	3/224	1.3%
Lymphocyte Count CD4 ≥100	29/84	34.5%
ART use	16/84	19.1%
No information of ART use	68/84	80.9%
Viral charge	17490.5	1.899-63.3360
Lymphocyte Count CD4	244	74.5-383.5

Legend: IQR: Interquartile Range; ART: Anti-retroviral therapy; HIV: Human Immunodeficiency Virus; N: number of patients.

Molecular identification by Polymerase Chain Reaction Restriction Analysis of the hsp65 gene- PRA-hsp65 (Supplementary Material 2).

Results

Analysis of Clinical Characteristics of patients with NTM

Among the 224 patients with NTM, 66% were men, with a median age of 35 years. HIV serology results were obtained for 87 (38.8%) patients, of whom 84 (37.5%) presented an HIV-positive serology and 3 (1.3%) presented an HIV-negative serology. The sociodemographic, clinical, and laboratory data are described in Table 1, and the NTM species identified according to the anatomic site and HIV serology results are described in Table 2.
TABLE 2: Species distribution by anatomical site of identified Nontuberculous Mycobacteria and Human Immunodeficiency Virus serology (N=50).

Identification	Pulmonary (n = 44)	Extrapulmonary/Disseminated (n = 6)	HIV				
	Sputum	Blood	Bone Marrow	Secretion	HIV+ (n=38)	HIV- (n=3)	NA (n=9)
M. gordonae	15 (30%)				10 (20%)	1 (2%)	4 (8%)
Mycobacterium sp.	10 (20%)		1 (2%)	1 (2%)	11 (22%)		1 (2%)
M. fortuitum	9 (18%)			1 (2%)	7 (14%)	1 (2%)	2 (4%)
M. avium/intracellulare	4 (8%)	2 (4%)			5 (10%)	1 (2%)	-
M. abscessus	3 (6%)			1 (2%)	2 (4%)		2 (4%)
M. kanssii	2 (4%)				2 (4%)		-
M. mucogenicum	1 (2%)				1 (2%)		-

Legend: HIV: Human Immunodeficiency Virus; NA: No Available; a: Genomic sequencing technique.

With regard to the treatment of NTM, evolution data were obtained for 14/50 (28%) patients, among which nine were treated with anti-tuberculosis drugs (rifampicin + isoniazid + pyrazinamide + ethambutol) and five were treated with a specific scheme for NTM, including the drugs clarithromycin, ciprofloxacin, and amikacin. A greater frequency of NTMs was observed in HIV-positive patients undergoing treatment, with the identified species being M. fortuitum, M. gordonae, M. abscessus, and M. avium/intracellulare.

Molecular Identification of the NTMs

In this study, molecular identification tests were carried out in 22.3% (50/224) of patients. The distribution of the species identified by GenoType, PRA-hsp65, and genomic sequencing is shown in Table 3. The prevalent NTM species identified by biochemical tests were also confirmed using molecular techniques: M. gordonae, M. fortuitum, Mycobacterium sp, M. avium/intracellulare, M. abscessus and M. kanssii.

No NTM species were identified in 32% (16/50) of the samples using the PRA-hsp65 technique, in 16% (8/50) of samples using the GenoType method, and in 24% (12/50) of samples after genomic sequencing.

In the agreement analysis between the molecular techniques, a moderate agreement was observed between PRA-hsp65 and GenoType (kappa = 0.65) and between GenoType and genomic sequencing (kappa = 0.60), whereas low agreement was observed between PRA hsp65 and genomic sequencing (kappa = 0.49). The kappa’s score considered in this study was in accordance with Landis and Koch (1977), with <0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and > 0.80 being poor, weak, moderate, good, and very good, respectively. (Table 4).

DISCUSSION

In this study, many NTM species were isolated mainly from pulmonary clinical samples, highlighting the necessity to evaluate molecular test results with clinical information to determine...
potential cases of infection in patients with HIV. In addition, species implicated in pulmonary disease were also identified: *M. avium* and *M. abscessus*. With regard to the potentially pathogenic NTM species, the findings of this study are similar to that of clinical practice and other studies carried out worldwide, with the most common species being *M. avium*, *M. intracellulare*, *M. kansasii*, *M. chelonae*, *M. abscessus*, *M. fortuitum*, and *M. peregrinum*.

Although nearly half of the bacterial species isolated in humans worldwide belong to MAC, the distribution of the strains, incidence, and prevalence can vary according to geographic region. In Australia, nearly 71% of the isolates belonged to MAC; whereas in North America and South America, this percentage was about 52% and 31% respectively. In a recent study, in Iran, 48.4% of the isolates were *M. fortuitum*, illustrating the importance of epidemiological surveillance and disease control through techniques for the identification of NTM species.

Among the NTM identified in this study, *M. gordonae* was the most frequent, both in the general population of this study and in people with HIV. This result differs from most studies conducted in Brazil, wherein the NTMs *M. kansasii* and those belonging to MAC tend to be more common.

This finding highlights the importance of using the criteria proposed by the American Thoracic Society (ATS) to differentiate colonization from contamination, as well as to conduct regional studies and monitor the true epidemiological situation of the infections caused by NTMs, especially due to the fact that such infections are often not properly reported in Brazil, with the exception of postoperative infections caused by rapid growth mycobacteria.

Another important aspect of the discussion based on these results is the need to carry out molecular tests, mainly the sequencing of genes such as the *rpoB* gene, with good accuracy, for the diagnosis and epidemiological surveillance of NTM.

One relevant aspect of this study was the anti-TB treatment. Risk factors associated with an increase in the probability of receiving anti-TB treatment among people with HIV were examined. A study that evaluated the activity of new therapeutic alternatives for the treatment of NTM using d-cycloserine, clarithromycin, and combinations of both antibiotics against clinical isolates of *M. abscessus* and *M. fortuitum* highlighted the importance of accurate laboratory diagnosis and rapid methods to differentiate these mycobacteria from MAC, especially in lung samples.

Another important aspect with respect to the frequency of NTM in patients with HIV in this study was the fact that 16% of the NTMs isolated in these patients were identified as *Mycobacterium* sp, which highlights the need to validate the rapid laboratory methods, preferably molecular methods, which can identify NTM.

The variation in agreement between the results obtained by PRA-*hsp65*, GenoType, and sequencing methods illustrates the challenge for precise identification of these mycobacteria sp. as well as the importance of conducting genomic sequencing to validate the use of molecular methods. In this context, GenoType presented a moderate agreement when compared to sequencing, which indicated that this method can be used in clinical practice to optimize the identification of NTMs.

In the analysis of discordant results, the results obtained by the PRA-*hsp65* technique differed from those obtained by genomic sequencing. In the present study, it was not possible to identify NTM species in 32% (16/50) of strains using the PRA-*hsp65* technique. Although further studies should be conducted to confirm these results, these results indicate that the recommendations set forth by the Brazilian Ministry of Health regarding the use of the PRA-*hsp65* technique to analyze NTMs in laboratory surveillance and routines should be reviewed. Moreover, this technique is cumbersome and costly; some NTMs can present a shared genetic profile, thus overlapping the results, and the same species can present more than one restriction profile or profiles that have not yet been described in the literature.

Nevertheless, this retrospective study had some limitations, such as limited clinical data and the difficulty in recovering a greater number of NTM isolates to conduct the genomic study, in addition to the identification of nine cases treated improperly for TB due to the incorrect identification of the NTM species. Another limitation of this study is that neither was it possible to apply the ATS clinical criteria, nor was it possible to obtain a second clinical sample to conduct the cultivation and identification of the same NTM.

This study identified species of MAC and *M. kansasii* species, generally considered pathogenic, in phlegm samples (Table 2). In cases of positive culture for MAC, it becomes impossible to identify the disease in patients that present a single positive culture of phlegm; however, for *M. kansasii*, a single positive culture may provide sufficient evidence to begin treatment.

In conclusion, our findings highlight GenoType CM as a good method for the identification of NTM, as well as the need for the application of standardized criteria, such as those set forth by the ATS, under routine clinical and laboratory conditions to differentiate infection by NTM from colonization, as well as the need to monitor the prevalence of these mycobacterial species, especially in people with HIV, to avoid inadequate treatment and subsequent drug resistance.

ACKNOWLEDGMENTS

The authors wish to thank the Amazonas State Research Support Foundation, the University of the State of Amazonas and The Brazilian Tuberculosis Network Research (REDE-TB).
REFERENCES

1. Yamamichi T, Horio H, Asakawa A, Okui M, Harada M. Clinico-bacteriological analysis for video-assisted thoracoscopic biopsy of non-tuberculous mycobacteria. J Thorac Dis. 2019;11(7):2715-21.

2. Chan ED, Iseman MD. Underlying host risk factors for nontuberculous mycobacterial lung disease. Semin Respir Crit Care Med. 2013;34(1):110-23.

3. Fusco da Costa AR, Lopes ML, Sousa MS, Suffys PN, Sales LHM, Lima KVB. Pulmonary nontuberculous mycobacterial infections in the State of Para, an endemic region for tuberculosis in North of Brazil. In: AMAL, Amer. Pulmonary Infection. Croatia: InTech, 2012;3:7-54.

4. Fusco da Costa AR, Falkingham JO, Lopes ML, Barretto AR, Felicio JS, Sales LH, et al. Occurrence of nontuberculous mycobacterial pulmonary infection in an endemic area of tuberculosis. PLoS Negl Trop Dis. 2013;7(7):e2340.

5. Restrepo AV, Salem JL, Ogusku MM, Gomes LF, Fraiji NA. Pesquisa de Micobactérias Ambientais em água de torneira, luvas e soluções utilizadas em procedimentos cirúrgicos no Hospital Universitário Getúlio Vargas - Manaus/AM. Acta Amaz. 2009;39(4):889-900.

6. Ministério da Saúde (MS). Boletim Epidemiológico TB-HIV 2019. [Internet]. Secretaria de Vigilância em Saúde. [updated 2019; cited 2021 Oct 22]. Available from: http://www.aids.gov.br/pt-br/pub/2019/boletim-epidemiologico-tb-hiv 2019.

7. Marras TK, Chedore P, Ying AM, Jamieson F. Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997–2003. Thorax. 2007;62(8):661-6.

8. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Fred Gordin, et al. An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases Medical Section of the American Lung Association. Am J Respir Crit Care Med. 2007;175(4):367-416.

9. Donohue MJ, Mistry JH, Donohue JM, Connell KO, King D, Byran J, et al. Increased Frequency of Nontuberculous Mycobacteria Detection at Potable Water Taps within the United States. Environ Sci Technol. 2015;49(10):6127–33.

10. Charles LD, Jonathan MI, Christoph L, Emmanuelle C, Richard JW, Claire A, et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA clinical Practice Guideline. Eur Respir J. 2020;56(1):2000535.

11. Woods GL, Brown-Elliott BA, Conville PS, et al. Teste de Susceptibilidade de Mícobactérias, Nocardiae e Outros Actinomicetos Aeróbicos. 2ª ed. Instituto de Padrões Clínicos e Laboratoriais, Wayne (PA); 2011.

12. Ministério da Saúde (MS). Secretaria de Vigilância em Saúde. Manual de recomendações para o controle da tuberculose no Brasil. MS Brasil; 2011. 284.

13. van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol. 1991;29(11):2578-2586.

14. Hain Lifesciences. GenoType® Mycobacterium CM/AS Manual. 2015.

15. Selvaraju SB, Khan IU, Yadav JS. A new method for species identification and differentiation of Mycobacterium chelonae complex based on amplified hsp65 restriction analysis (AHSPRA). Mol Cell Probes. 2005;19(2):93-99.

16. Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003;41(12): 5699-5708.

17. Applied Biosystems. BigDye®XTerminator™ Purification Kit. PROTOCOL SUMMARY. 2006.

18. Gopalaswamy R, Shanmugam S, Mondal R, Subbian S. Of tuberculosis and non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci.2020;27:74.

19. Puga FG, Pocente RHC, Chimara E, Bollela VR. HIV-negative pulmonary disease caused by nontuberculous mycobacteria in Southern Brazil: clinical and microbiological characterization. J Thorac Dis.2018;10(3):1903-1911.

20. Ueki SY, Martins MC, Telles MA, Virgilio MC, Giampaglia CMS, Chimara E, et al. Nontuberculous mycobacteria: species diversity in São Paulo state, Brazil. J Bras Patol Med Lab.2005;41(1):1-8.

21. Pedro Hda S, Pereira MI, Goloni MRA, Ueki SYM, Chimara E. Nontuberculous mycobacteria isolated in São José do Rio Preto, Brazil between 1996 and 2005. J Bras Pneumol. 2008;34(11):950-55.

22. Hoefsloot W, van Ingen J, Andrejach K, Angeby K, Bauriaud R, Bemeret P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604-13.

23. Khozravi AD, Mirsaeidi M, Farahani A, Tabanede MR, Mohajeri P, Saeed Shoja S, et al. Prevalence of nontuberculous mycobacteria and high efficacy of D-cycloserine and its synergistic effect with clarithromycin against Mycobacterium fortuitum and Mycobacterium abscessus. Infect Drug Resist. 2018;11:2521-32.

24. ANVISA. Agência Nacional de Vigilância Sanitária. Nota Técnica Conjunta Nº 01/2009. [Internet] Infecções por Micobactérias de Crescimento Rápido: Fluxo de Notificações, Diagnósticos Clínico, Microbiológicos e Tratamento [updated 2009; cited 2021 Oct 22]. Brasília, 2009. Available from: https://www.ribeiraopeiro.sp.gov.br/files/ssaude/pdf/ci-notatecnica-conjunta-012009-svms-anvisa.pdf.

25. Dastranj M, Farahani A, Shahraki AH, Atashi S, Mohajeri P. Molecular identification and distribution of non-tuberculous mycobacteria isolated from clinical specimens by PCR-sequencing method in West of Iran. Clin Respir J. 2018;12(3):996-1002.

26. Mohajeri P, Yazdani L, Shahraki AH, Alvandi A, Atashi S, Farahani A, et al. Verification of frequency in species of nontuberculous mycobacteria in Kermanshah drinking water supplies using the PCR-sequencing method. Microb Drug Resist. 2017;23(3):359-64.

27. Agizew T, Boyd R, Mathebula U, Mathoma A, Basotli J, Serumola C, et al. Outcomes of HIV-positive patients with non-tuberculous mycobacteria positive culture who received anti-tuberculous treatment in Botswana: Implications of using diagnostic algorithms without non-tuberculous mycobacteria. PLoS One. 2020;15(6):e023464.

28. Yang M, Huh HJ, Kwon HJ, Kim J, Song DJ, Koh W, et al. Comparative evaluation of the AdvanSure Mycobacteria GenoBlot assay and the GenoType Mycobacterium CM/AS assay for the identification of non-tuberculous mycobacteria. J Med Microbiol. 2016;65(12):1422-8.

29. Lee AS, Jelfs P, Sintchenko V, Gilbert GL. Identification of non-tuberculous mycobacteria. J Med Microbiol. 2016;65(12):1422-8.

30. van der Woude B, van den Brande T, Goossens H, van Embden JD, Prantera C, van Soolingen D, et al. Microbiological criteria in non-tuberculous mycobacterial infections - a comparative analysis of epidemiology, diagnosis and treatment. Int J Tuberc Lung Dis. 2016;20(7):934-40.

31. Jankovic M, Sabol I, Zmak L, Jankovic VK, Jakopovic M, Obrovac KVB. Pulmonary nontuberculous mycobacterial infections in the endemic area of tuberculosis. PLoS Negl Trop Dis. 2019;13(7):e00498.

32. Chan ED, Iseman MD. Underlying host risk factors for nontuberculous mycobacterial lung disease. Semin Respir Crit Care Med. 2013;34(1):110-23.