Article

Certain new subclasses of m-fold symmetric bi-pseudo-starlike functions using Q-derivative operator

Timilehin Gideon Shaba
Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.; shabatimilehin@gmail.com
Communicated by: Absar ul Haq
Received: 17 September 2020; Accepted: 21 February 2021; Published: 28 February 2021.

Abstract: In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with q-derivative operator; both f and f^{-1} are m-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients $|\rho_{m+1}|$ and $|\rho_{2m+1}|$ are found in this study. Also certain special cases are indicated.

Keywords: m-fold symmetric bi-univalent functions, analytic functions, univalent function.

MSC: 30C45.

1. **Introduction**

Let \mathcal{A} be the family of holomorphic functions, normalized by the conditions $f(0) = f'(0) - 1 = 0$ which is of the form

$$f(z) = z + \rho_2 z^2 + \rho_3 z^3 + \cdots$$

(1)

in the open unit disk $\Omega = \{z; z \in \mathbb{C} \text{ and } |z| < 1\}$. We denote by \mathcal{G} the subclass of functions in \mathcal{A} which are univalent in Ω (for more details see [1]).

The Keobe-One Quarter Theorem [1] state that the image of Ω under all univalent function $f \in \mathcal{A}$ contains a disk of radius $\frac{1}{4}$. Hence all univalent function $f \in \mathcal{A}$ has an inverse f^{-1} satisfy $f^{-1}(f(z))$ and $f(f^{-1}(v)) = v$ ($|v| < r_0(f)$, $r_0(f) \geq \frac{1}{4}$), where

$$g(v) = f^{-1}(v) = v - \rho_2 v^2 + (2\rho_2^2 - \rho_3)v^3 - (5\rho_2^3 - 5\rho_2\rho_3 + \rho_4)v^4 + \cdots$$

(2)

A function $f \in \mathcal{A}$ denoted by Σ is said to be bi-univalent in Ω if both $f^{-1}(z)$ ans $f(z)$ are univalent in Ω (see for details [2–11]).

A domain Ψ is said to be m-fold symmetric if a rotation of Ψ about the origin through an angle $2\pi/m$ carries Ψ on itself. Therefore, a function $f(z)$ holomorphic in Ω is said to be m-fold symmetric if

$$f(e^{2\pi i/m}z) = e^{2\pi i}f(z).$$

A function is said to be m-fold symmetric if it has the following normalized form

$$f(z) = z + \sum_{\phi=1}^{\infty} \rho_{m\phi+1} z^{m\phi+1} \quad (z \in \Omega, \ m \in \mathbb{N} = \{1, 2, 3, \cdots \}).$$

(3)

Let \mathcal{S}_m the class of m-fold symmetric univalent functions in Ω, that are normalized by (3), in which, the functions in the class \mathcal{S} are one-fold symmetric. Similar to the concept of m-fold symmetric univalent functions, we introduced the concept of m-fold symmetric bi-univalent functions which is denoted by Σ_m. Each of the function $f \in \Sigma$ produces m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$.

Open J. Math. Anal. 2021, 5(1), 42-50; doi:10.30538/psrp-oma2021.0081
https://pisrt.org/psr-press/journals/oma
The normalized form of \(f(z) \) is given as in (3) and the series expansion for \(f^{-1}(z) \), which has been investigated by Srivastava et al., [12], is given below:

\[
g(v) = f^{-1}(v) = v - \rho_{m+1}v^{m+1} + \left[(m+1)\rho_m^2 - \rho_{2m+1} \right] v^{2m+1} - \left[\frac{1}{2}(m+1)(3m+2)\rho_{m+1}^3 - (3m+2)\rho_{m+1}\rho_{2m+1} + \rho_{3m+1} \right].
\]

(4)

Some of the examples of \(m \)-fold symmetric bi-univalent functions are

\[
\left\{ \frac{z^m}{1 - z^m} \right\}^k,
\]

\[
[-\log(1 - z^m)]^k,
\]

and

\[
\left\{ \frac{1}{2} \log \left(\frac{1 + z^m}{1 - z^m} \right)^k \right\}.
\]

For more details on \(m \)-fold symmetric analytic bi-univalent functions (see [5,12–17]).

Jackson [18,19] introduced the \(q \)-derivative operator \(D_q \) of a function as follows;

\[
D_q f(z) = \frac{f(qz) - f(z)}{(q - 1)z}.
\]

(5)

and \(D_q f(0) = f'(0) \). In case of \(g(z) = z^k \) for \(k \) is a positive integer, the \(q \)-derivative of \(f(z) \) is given by

\[
D_q z^k = \frac{z^k - (zq)^k}{(q - 1)z} = [k]_q z^{k-1}.
\]

As \(q \rightarrow 1^- \) and \(k \in \mathbb{N} \), we get

\[
[k]_q = \frac{1 - q^k}{1 - q} = 1 + q + \cdots + q^k \rightarrow k,
\]

(6)

where \((z \neq 0, q \neq 0) \). For more details on the concepts of \(q \)-derivative (see [5,20–27]).

Definition 1. [28] Let \(f(z) \in \mathcal{A} \), \(0 \leq \chi < 1 \) and \(\sigma \geq 1 \) is real. Then \(f(z) \in L_{\nu}(\chi) \) of \(\sigma \)-pseudostarlike function of order \(\chi \) in \(\Omega \) if and only if

\[
\Re \left(\frac{z[f'(z)]^\nu}{f(z)} \right) > \chi.
\]

(7)

Babalola [28] verified that, all pseudostarlike function are Bazilevic of type \(\left(1 - \frac{1}{\sigma} \right) \), order \(\chi^2 \) and univalent in \(\Omega \).

Lemma 1. [1] Let the function \(\omega \in \mathcal{P} \) be given by the following series \(\omega(z) = 1 + \omega_1 z + \omega_2 z^2 + \cdots \) \((z \in \Omega) \). The sharp estimate given by \(|\omega_n| \leq 2 \) \((n \in \mathbb{N}) \) holds true.

In [29] Girgaonkar et al., introduced a new subclasses of holomorphic and bi-univalent functions as follows:

Definition 2. A function \(f(z) \) given by (1) is said to be in the class \(\mathcal{M}_L(\chi) \) \((0 < \chi \leq 1, (z, v) \in \Omega) \) if \(f \in \mathcal{E} \), \(|\arg(f'(z))| < \frac{\chi \pi}{2} \) and \(|\arg(g'(v))| < \frac{\chi \pi}{2} \), where \(g(v) \) is given by (2).
Theorem 1. A function $f(z)$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}(\psi)$ ($0 \leq \psi < 1, (z, v) \in \Omega$) if $\theta \in \Sigma$, $\Re[(f'(z))^\psi] > \psi$ and $\Re[(g'(v))^\psi] > \psi$, where $g(v)$ is given by (2).

In this current research, we introduced two new subclasses denoted by $\mathcal{M}_{\Sigma}^{q}(\chi)$ and $\mathcal{M}_{\Sigma}^{q}(\psi)$ of the function class Σ and obtain estimates coefficient $|\rho_{m+1}|$ and $|\rho_{2m+1}|$ for functions in these two new subclasses.

2. Main Results

Definition 3. A function $f(z)$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}^{q}(\chi)$ ($m \in \mathcal{N}, 0 < q < 1, \sigma \geq 1, 0 < \chi \leq 1, (z, v) \in \Omega$) if

$$f \in \Sigma \quad \text{and} \quad |\arg(D_qf(z))^\chi| < \frac{\chi \pi}{2},$$

and

$$|\arg(D_qg(v))^\chi| < \frac{\chi \pi}{2},$$

where $g(v)$ is given by (2).

Remark 1. We have the class $\lim_{q \to 1-1} \mathcal{M}_{\Sigma}^{q}(\chi) = \mathcal{M}_{\Sigma}^{q}(\psi)$ which was introduced and studied by Girgaonkar et al., [29].

Remark 2. We have the class $\lim_{q \to 1-1} \mathcal{M}_{\Sigma}^{q}(\chi) = \mathcal{M}_{\Sigma}^{q}(\psi)$ which was introduced and studied by Srivastava et al., [11].

Theorem 1. Let $f(z) \in \mathcal{M}_{\Sigma}^{q}(\chi)$, ($m \in \mathcal{N}, 0 < q < 1, \sigma \geq 1, 0 < \chi \leq 1, (z, v) \in \Omega$) be given (3). Then

$$|\rho_{m+1}| \leq \frac{2\chi}{\sqrt{(m+1)\sigma \chi^[2m+1]_q - (\chi - \sigma)\sigma [m+1]^2_q}},$$

and

$$|\rho_{2m+1}| \leq \frac{2\chi}{\sigma [2m+1]_q} + \frac{2(m+1)\chi^2}{\sigma^2 [m+1]^2_q},$$

Proof. Using inequalities (1) and (9), we get

$$(D_qf(z))^\chi = [\tau(z)]^\chi,$$

and

$$(D_qg(v))^\chi = [\zeta(v)]^\chi,$$

respectively, where $\tau(z)$ and $\zeta(v)$ in \mathcal{P} are given by the following series

$$\tau(z) = 1 + \tau_{m} z^m + \tau_{2m} z^{2m} + \tau_{3m} z^{3m} + \cdots,$$

and

$$\zeta(v) = 1 + \zeta_{m} v^m + \zeta_{2m} v^{2m} + \zeta_{3m} v^{3m} + \cdots.$$

Clearly,

$$[\tau(z)]^\chi = 1 + \chi \tau_{m} z^m + \left(\chi \tau_{2m} + \frac{\chi(\chi - 1)}{2} \tau_{3m}^2 z^m \right) z^{2m} + \cdots,$$

and

$$[\zeta(v)]^\chi = 1 + \chi \zeta_{m} v^m + \left(\chi \zeta_{2m} + \frac{\chi(\chi - 1)}{2} \zeta_{3m}^2 v^m \right) v^{2m} + \cdots.$$

Also

$$(D_qf(z))^\chi = 1 + \sigma [m+1]_q \rho_{m+1} z^m + \left(\sigma [2m+1]_q \rho_{2m+1} + \frac{\sigma(\sigma - 1)}{2} [m+1]_q \rho_{m+1}^2 \right) z^{2m} + \cdots,$$
From (16) and (18), we obtain

\[(D_q \xi(v))'' = 1 - \sigma[m + 1]q\rho_{m+1}v^m - \sigma[2m + 1]q\rho_{2m+1}v^{2m} \]
\[+ \left(\sigma(m + 1)[2m + 1]q\rho_{m+1}^2 + \frac{\sigma(\sigma - 1)}{2}[m + 1]q\rho_{m+1}^2 \right) v^{2m} + \ldots \]

Comparing the coefficients in (12) and (13), we have

\[\sigma[m + 1]q\rho_{m+1} = \chi \tau_m, \quad \sigma[2m + 1]q\rho_{2m+1} + \frac{\sigma(\sigma - 1)}{2}[m + 1]q\rho_{m+1}^2 = \chi \tau_{2m} + \frac{\chi(\chi - 1)}{2} \zeta_m, \]
\[-\sigma[m + 1]q\rho_{m+1} = \chi \xi_m, \quad -\sigma[2m + 1]q\rho_{2m+1} + \left(\sigma(m + 1)[2m + 1]q + \frac{\sigma(\sigma - 1)}{2}[m + 1]q \right) \rho_{m+1}^2 = \chi \xi_{2m} + \frac{\chi(\chi - 1)}{2} \xi_m. \]

From (16) and (18), we obtain

\[\tau_m = -\zeta_m, \]

and

\[2\sigma[m + 1]q\rho_{m+1}^2 = \chi^2 (\tau_m^2 + \zeta_m^2). \]

Further from (17), (19) and (21), we obtain that

\[\sigma(\sigma - 1)\chi[m + 1]q\rho_{m+1}^2 + (m + 1)\sigma\chi[2m + 1]q\rho_{m+1}^2 = (\chi - 1)\sigma^2[m + 1]q\rho_{m+1}^2 = \chi^2(\tau_{2m} + \xi_{2m}). \]

Therefore, we have

\[\rho_{m+1}^2 = \frac{\chi^2(\tau_{2m} + \xi_{2m})}{\sigma[m + 1]q^2(\zeta - \chi) + (m + 1)\sigma\chi[2m + 1]q}. \]

By applying Lemma 1 for the coefficients \(\tau_{2m} \) and \(\xi_{2m} \), then we have

\[|\rho_{m+1}| \leq \frac{2\chi}{\sqrt{(m + 1)\sigma\chi[2m + 1]q} - (\chi - \sigma)\sigma[m + 1]q}. \]

Also, to find the bound on \(|\rho_{2m+1}| \), using the relation (19) and (17), we obtain

\[2\sigma[2m + 1]q\rho_{2m+1} - (m + 1)\sigma[2m + 1]q\rho_{m+1}^2 = \chi(\tau_{2m} - \xi_{2m}) + \frac{\chi(\chi - 1)}{2}(\tau_m^2 - \xi_m). \]

It follows from (20), (21) and (23),

\[\rho_{2m+1} = \frac{(m + 1)\chi^2\tau_m^2}{2\sigma^2[2m + 1]q} + \frac{\chi(\tau_{2m} - \xi_{2m})}{2\sigma[2m + 1]q}. \]

Applying Lemma 1 for the coefficients \(\tau_m, \tau_{2m}, \xi_m, \xi_{2m} \), then we have

\[|\rho_{2m+1}| \leq \frac{2\chi}{\sigma[2m + 1]q} + \frac{2(m + 1)\chi^2}{\sigma^2[m + 1]q}. \]

□

Choosing \(q \to 1^{-1} \) in Theorem 1, we get the following result:

Corollary 1. Let \(f(z) \in \mathcal{M}_{\Sigma_m}(\chi), (m \in \mathcal{N}, \sigma \geq 1, 0 < \chi \leq 1, (z, v) \in \Omega) \) be given (3). Then

\[|\rho_{m+1}| \leq \frac{2\chi}{\sqrt{(m + 1)[\sigma\chi m + \sigma^2 m + \sigma^2]}}, \]

where \(\chi \) is defined in (3).
and

\[|\rho_{m+1}| \leq \frac{2\chi}{\sigma(2m+1)} + \frac{2\chi^2}{\sigma^2(m+1)}. \]

(26)

Choosing \(m = 1 \) (one-fold case) in Theorem 1, we get the following result:

Corollary 2. Let \(f(z) \in \mathcal{M}_\Sigma^q(\chi), (0 < q < 1, \sigma \geq 1, 0 < \chi \leq 1, (z, v) \in \Omega) \) be given (1). Then

\[|\rho_2| \leq \frac{2\chi}{\sqrt{2\sigma\chi[3]_q - (\chi - \sigma)\sigma[2]_q^2}}, \]

(27)

and

\[|\rho_3| \leq \frac{2\chi}{\sigma[3]_q} + \frac{4\chi^2}{\sigma[2]_q^2}. \]

(28)

Choosing \(q \longrightarrow 1^{-1} \) in Corollary 2, we get the following result:

Corollary 3. [29] Let \(f(z) \in \mathcal{M}_\Sigma^q(\chi), (\sigma \geq 1, 0 < \chi \leq 1, (z, v) \in \Omega) \) be given (1). Then

\[|\rho_2| \leq \frac{2\chi}{\sqrt{2\sigma(2\sigma + \chi)}}, \]

(29)

and

\[|\rho_3| \leq \frac{\chi(2\sigma + 3\chi)}{3\sigma^2}. \]

(30)

Remark 3. For one-fold case, we have \(\lim_{q \longrightarrow 1^{-1}} \mathcal{M}_\Sigma^1(\chi) = \mathcal{M}_\Sigma(\chi) \), and we can get the results of Srivastava et al., [11].

Definition 5. A function \(f(z) \) given by (3) is said to be in the class \(\mathcal{M}_{\Sigma,m}^{q,\sigma}(\psi) \) \((m \in \mathbb{N}, 0 < q < 1, \sigma \geq 1, 0 \leq \psi < 1, (z, v) \in \Omega) \) if

\[f \in \Sigma \quad \text{and} \quad \mathbb{R}[(D_q f(z))^\sigma] > \psi, \]

(31)

and

\[\mathbb{R}[(D_q g(v))^\sigma] > \psi, \]

(32)

where \(g(v) \) is given by (2).

Remark 4. We have the class \(\lim_{q \longrightarrow 1^{-1}} \mathcal{M}_\Sigma^1(\psi) = \mathcal{M}_\Sigma^1(\chi) \) which was introduced and studied by Girgaonkar et al., [29].

Remark 5. We have the class \(\lim_{q \longrightarrow 1^{-1}} \mathcal{M}_\Sigma^1(\psi) = \mathcal{M}_\Sigma(\chi) \) which was introduced and studied by Srivastava et al., [11].

Theorem 2. Let \(f(z) \in \mathcal{M}_{\Sigma,m}^{q,\sigma}(\psi), (m \in \mathbb{N}, 0 < q < 1, \sigma \geq 1, 0 \leq \psi < 1, (z, v) \in \Omega) \) be given (3). Then

\[|\rho_{m+1}| \leq \min \left\{ \frac{2(1 - \psi)}{\sigma[m + 1]_q}, \frac{1 - \psi}{\sigma(\sigma - 1)[m + 1]_q^2 + (m + 1)\sigma[2m + 1]_q} \right\}, \]

(33)

and

\[|\rho_{2m+1}| \leq \frac{2(m + 1)(1 - \psi)}{\sigma(\sigma - 1)[m + 1]_q^2 + (m + 1)\sigma[2m + 1]_q} + \frac{2(1 - \psi)}{\sigma[2m + 1]_q}. \]

(34)

Proof. Using inequalities (31) and (32), we get

\[(D_q f(z))^\sigma = \psi + (1 - \psi)\tau(z), \]

(35)
and

\[(D_q \psi (v))'' = \psi + (1 - \psi) \zeta (v),\] \hspace{1cm} (36)

here \(\tau (z)\) and \(\zeta (v)\) in \(\mathcal{P}\) are given by the following series

\[\tau (z) = 1 + \tau_m z^m + \tau_{2m} z^{2m} + \tau_{3m} z^{3m} + \cdots,\]

and

\[\zeta (v) = 1 + \zeta_m v^m + \zeta_{2m} v^{2m} + \zeta_{3m} v^{3m} + \cdots.\]

Clearly,

\[\psi + (1 - \psi) \tau (z) = 1 + (1 - \psi) \tau_m z^m + (1 - \psi) \tau_{2m} z^{2m} + \cdots,\]

and

\[\psi + (1 - \psi) \zeta (v) = 1 + (1 - \psi) \zeta_m v^m + (1 - \psi) \zeta_{2m} v^{2m} + \cdots.\]

Also

\[(D_q f (z))'' = 1 + \sigma [m + 1] q \rho_{m+1} z^m + \left(\sigma [2m + 1] q \rho_{2m+1} + \frac{\sigma (\sigma - 1)}{2} [m + 1] q \rho_{m+1}^2 \right) z^{2m} + \cdots,\]

and

\[(D_q \psi (v))'' = 1 - \sigma [m + 1] q \rho_{m+1} v^m - \sigma [2m + 1] q \rho_{2m+1} v^{2m} + \left(\sigma (m + 1) [2m + 1] q \rho_{m+1}^2 + \frac{\sigma (\sigma - 1)}{2} [m + 1] q \rho_{m+1}^2 \right) v^{2m} + \cdots.\]

Now comparing the coefficients in (35) and (36), we get

\[\sigma [m + 1] q \rho_{m+1} = (1 - \psi) \tau_m,\] \hspace{1cm} (37)

\[\sigma [2m + 1] q \rho_{2m+1} + \frac{\sigma (\sigma - 1)}{2} [m + 1] q \rho_{m+1}^2 = (1 - \psi) \tau_{2m},\] \hspace{1cm} (38)

\[-\sigma [m + 1] q \rho_{m+1} = (1 - \psi) \zeta_m,\] \hspace{1cm} (39)

\[-\sigma [2m + 1] q \rho_{2m+1} + \left(\sigma (m + 1) [2m + 1] q \rho_{m+1}^2 + \frac{\sigma (\sigma - 1)}{2} [m + 1] q \rho_{m+1}^2 \right) \rho_{m+1}^2 = (1 - \psi) \zeta_{2m}.\] \hspace{1cm} (40)

From (37) and (39), we obtain

\[\tau_m = -\zeta_m,\] \hspace{1cm} (41)

and

\[2\sigma [m + 1] q \rho_{m+1}^2 = (1 - \psi)^2 (\tau_m^2 + \zeta_m^2).\] \hspace{1cm} (42)

Also, from (38) and (40), we get

\[\sigma (\sigma - 1) \chi [m + 1] q \rho_{m+1}^2 + (m + 1) \sigma [2m + 1] q \rho_{m+1}^2 = (1 - \psi) (\tau_{2m} + \zeta_{2m}).\] \hspace{1cm} (43)

Applying the Lemma 1 for the coefficients \(\tau_m, \tau_{2m}, \zeta_m, \zeta_{2m}\), we find that

\[|\rho_{m+1}| \leq 2 \sqrt{\frac{(1 - \psi)}{\sigma (\sigma - 1) [m + 1] q + (m + 1) \sigma [2m + 1] q}}.\]

Also, to find the bound on \(|\rho_{2m+1}|\), using the relation (40) and (38), we obtain

\[-(m + 1) \sigma [2m + 1] q \rho_{m+1}^2 + 2\sigma [2m + 1] q \rho_{2m+1}^2 = (1 - \psi) (\tau_{2m} - \zeta_{2m}),\] \hspace{1cm} (44)
Corollary 5. \(\rho_{2m+1} = \frac{(1 - \psi)(\tau_{2m} - \zeta_{2m})}{2\sigma[2m + 1]q} + \frac{(m + 1)}{2}\rho_{m+1}^2. \) (45)

By substituting the value of \(\rho_{m+1}^2 \) from (42), we have

\[
\rho_{2m+1} = \frac{(1 - \psi)(\tau_{2m} - \zeta_{2m})}{2\sigma[2m + 1]q} + \frac{(m + 1)(1 - \psi)^2(\tau_{m}^2 + \zeta_{m}^2)}{4\sigma^2[2m + 1]^2}. \] (46)

Applying the Lemma 1 for the coefficients \(\tau_{m}, \tau_{2m}, \zeta_{m}, \zeta_{2m}, \) we get

\[|\rho_{2m+1}| \leq \frac{2(1 - \psi)}{\sigma[2m + 1]q} + \frac{2(m + 1)(1 - \psi)^2}{2\sigma^2[2m + 1]^2}. \]

Also, by using (43) and (45), and applying Lemma 1 we obtain

\[|\rho_{2m+1}| \leq \frac{2(m + 1)(1 - \psi)}{\sigma(\sigma - 1)[m + 1]^2 + (m + 1)\sigma[2m + 1]} + \frac{2(1 - \psi)}{\sigma[2m + 1]}. \]

This complete the proof. □

Choosing \(q \rightarrow 1^{-1} \) in Theorem 2, we get the following result:

Corollary 4. Let \(f(z) \in \mathcal{M}_{\Sigma,m}^c(\psi), \) \((m \in \mathcal{N}, \sigma \geq 1, 0 \leq \psi < 1, (z, v) \in \Omega) \) be given (3). Then

\[
|\rho_{m+1}| \leq \left\{ \begin{array}{ll}
2 \sqrt{\frac{1 - \psi}{\sigma(\sigma - 1)[m + 1] + (m + 1)\sigma[2m + 1]}} & 0 \leq \psi \leq \frac{m}{1 + 2m}, \\
\frac{2}{\sigma[2m + 1]} & \frac{m}{1 + 2m} \leq \psi < 1,
\end{array} \right.
\]

and

\[
|\rho_{2m+1}| \leq \frac{2(m + 1)(1 - \psi)}{\sigma(\sigma - 1)[m + 1]^2 + (m + 1)\sigma[2m + 1]} + \frac{2(1 - \psi)}{\sigma[2m + 1]}. \]

For one fold case, Corollary 4, yields the following Corollary:

Corollary 5. Let \(f(z) \in \mathcal{M}_{\Sigma}^c(\psi), \) \((\sigma \geq 1, 0 \leq \psi < 1, (z, v) \in \Omega) \) be given (1). Then

\[
|\rho_{2}| \leq \left\{ \begin{array}{ll}
\sqrt{\frac{2(1 - \psi)}{\sigma(2\sigma + 1)}} & 0 \leq \psi \leq \frac{1}{3}, \\
\frac{1 - \psi}{\sigma} & \frac{1}{3} \leq \psi < 1,
\end{array} \right.
\]

and

\[
|\rho_{3}| \leq \frac{(1 - \psi)(2\sigma - 3\psi + 3)}{3\sigma^2}. \]

Remark 6. Corollary 5 gives above is the improvement of the estimates for coefficients on \(|\rho_{2}| \) and \(|\rho_{3}| \) investigated by Girgaonkar et al., [29].

Corollary 6. [29] Let \(f(z) \in \mathcal{M}_{\Sigma}^c(\psi), \) \((\sigma \geq 1, 0 \leq \psi < 1, (z, v) \in \Omega) \) be given (1). Then

\[
|\rho_{2}| \leq \sqrt{\frac{2(1 - \psi)}{\sigma(2\sigma + 1)}}.
\]

and

\[
|\rho_{3}| \leq \frac{(1 - \psi)(2\sigma - 3\psi + 3)}{3\sigma^2}.
\]

Taking \(\sigma = 1 \) in Corollary 7, we get the following result:
Corollary 7. \[11\] Let \(f(z) \in \mathcal{M}_{\sigma}^{\psi} \), \((\sigma \geq 1, 0 \leq \psi < 1, (z, \nu) \in \Omega)\) be given (1). Then

\[|\rho_2| \leq \sqrt{\frac{2(1-\psi)}{3}}, \]

and

\[|\rho_3| \leq \frac{(1-\psi)(5-3\psi)}{3}. \]

3. Conclusion

In this present paper, two new subclasses indicated by \(\mathcal{M}_{\Sigma,m}^{\chi} \) and \(\mathcal{M}_{\Sigma,m}^{\psi} \) of function class of \(E_m \) was obtained and worked on. Also, the estimates coefficients for \(|p_{m+1}| \) and \(|p_{2m+1}| \) of functions in these classes are determined.

Conflicts of Interest: “The author declares no conflict of interest.”

References

[1] Duren, P. L. (2001). Univalent Functions (Vol. 259). Springer, New York, NY, USA.
[2] Brannan, D. A., & Taha, T. S. (1988). On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications (pp. 53-60). Pergamon.
[3] Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9), 1569-1573.
[4] Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18(1), 63-68.
[5] Sakar, F. M.,& G"uney, M. O. (2018). Coefficient estimates for certain subclasses of \(m \)-mold symmetric bi-univalent functions defined by the \(q \)-derivative operator. Konuralp Journal of Mathematics, 6(2), 279-285.
[6] Patil, A. B., & Naik, U. H. (2018). Bounds on initial coefficients for a new subclass of bi-univalent functions. New Trends in Mathematical Sciences, 6(1), 85-90.
[7] Shaba, T.G., Ibrahim, A. A., & Jimoh, A. A. (2020). On a new subclass of bi-pseudo-starlike functions defined by frasin differential operator. Advances in Mathematics: Scientific Journal, 9(7) (2020), 4829-4841.
[8] Shaba, T.G. (2020). On some new subclass of bi-univalent functions associated with the Opoola differential operator. Open Journal of Mathematical Analysis, 4(2), 74-79.
[9] Shaba, T. G. (2020). Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator. Turkish Journal of Inequalities,4(2), 50-58.
[10] Shaba, T. G. (2020). Certain new subclasses of analytic and bi-univalent \(m \)-fold symmetric functions using salagean operator. Asia Pacific Journal of Mathematics, 7(29), 7-29.
[11] Srivastava, H. M., Mishra, A. K., & Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10), 1188-1192.
[12] Srivastava, H. M., Sivasubramaniam, S., & Sivakumar, R. (2014). Initial coefficient bounds for a subclass of \(m \)-fold symmetric bi-univalent functions. Tbilisi Mathematical Journal, 7(2), 1-10.
[13] Akg"ul, A., & Campus, U. (2017). On the coefficient estimates of analytic and bi-univalent \(m \)-fold symmetric functions. Mathematica Aeterna, 7(3), 253-260.
[14] Altinkaya, S., & Yal"cin, S. (2018). On some subclasses of \(m \)-fold symmetric bi-univalent functions. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(1), 29-36.
[15] Bulut, S. (2016). Coefficient estimates for general subclasses of \(m \)-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40(6), 1386-1397.
[16] Hamidi, S. G., & Jahangiri, J. M. (2014). Unpredictability of the coefficients of \(m \)-fold symmetric bi-starlike functions. International Journal of Mathematics, 25(07), 1450064.
[17] Eker, S. S. (2016). Coefficient bounds for subclasses of \(m \)-fold symmetric bi-univalent functions. Turkish Journal of Mathematics, 40(3), 641-646.
[18] Jackson, D. O., Fukuda, T., Dunn, O., & Majors, E. (1910). On \(q \)-definite integrals. Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
[19] Jackson, F. H. (1909). XL-on \(q \)-functions and a certain difference operator. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 46(2), 253-281.
[20] Akg"ul, A. (2018, January). Finding initial coefficients for a class of bi-univalent functions given by \(q \)-derivative. In AIP Conference Proceedings (Vol. 1926, No. 1, p. 020001). AIP Publishing LLC.
[21] Aldweby, H., & Darus, M. (2013). A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. *ISRN Mathematical Analysis*, 2013, Article ID 382312.

[22] Aldweby, H., & Darus, M. (2017). Coefficient estimates for initial taylor-maclaurin coefficients for a subclass of analytic and bi-univalent functions associated with q-derivative operator. *Recent Trends in Pure and Applied Mathematics*, 2017, 109-117.

[23] Aral, A., Gupta, V., & Agarwal, R. P. (2013). *Applications of q-calculus in operator theory* (p. 262). New York: Springer.

[24] Bulut, S. (2017). Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator. *Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics*, 66(1), 108-114.

[25] Mohammed, A., & Darus, M. (2013). A generalized operator involving the q-hypergeometric function. *Matematicki Vesnik*, 65(254), 454-465.

[26] Seoudy, T. M., & Aouf, M. K. (2014). Convolution properties for certain classes of analytic functions defined by q-derivative operator, *Abstract and Applied Analysis*, 2014, Article ID 846719.

[27] Seoudy, T. M., & Aouf, M. K. (2016). Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. *Journal of Mathematical Inequalities*, 10(1), 135-145.

[28] Babalola, K.O.(2013). On λ-pseudo-starlike function. *Journal of Classical Analysis*, 3, 137-147.

[29] Girgaonkar, V. B., Joshi, S. B., & Yadav, P. P. (2017). Certain special subclasses of analytic function associated with bi-univalent functions. *Palestine Journal of Mathematics*, 6(2), 617-623.

© 2021 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).