Artemisia and Artemisia-based products for COVID-19 management: current state and future perspective

Joshua Iseoluwa Orege1,9 · Sherif Babatunde Adeyemi2,3 · Bashir Bolaji Tiamiyu3,4,9 · Toluwanimi Oluwadara Akinyemi5,6,9 · Yusuf Ajibola Ibrahim7 · Odunola Blessing Orege8

Received: 9 December 2020 / Accepted: 8 April 2021 / Published online: 5 May 2021
© Institute of Korean Medicine, Kyung Hee University 2021

Abstract
The search for a potent anti-coronavirus therapy for severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) remains an overwhelming task since the outbreak of COVID-19. It is more evident that most of the existing antiviral and immune-boosting drugs are non-promising and ineffective for the treatment of coronavirus infected patients while the safety of a few drugs/vaccines that have demonstrated high potential remains unclear. With daily records of confirmed infectious cases across the world, it is crucial to emphasize the need for repurposed therapies with a validated ethnomedicinal base focused on well-known active medicines with traceable biochemical, pharmacological and safety profiles for viral infection management. In the present study, recent literature on Artemisia and Artemisia-based products for the management of COVID-19 are reviewed. Artemisia-based products have demonstrated a broad spectrum of biological ability including antiviral properties. Besides its antiviral activity, Artemisia annua have shown to contain appreciable amounts of minerals such as zinc, gallium and selenium among others.

Graphic abstract

Keywords COVID-19 · SARS-CoV-2 · Artemisia · Artemisia derivatives · Clinical trials · Anti-inflammation

Abbreviations

Abbreviation	Description	SARS-CoV	Severe acute respiratory syndrome coronavirus
hACE2	Human Angiotensin-converting enzyme 2	IL-2	Interleukin-2
SARS-CoV-2	Severe acute respiratory syndrome coronavirus-2	IL-6	Interleukin-6
COVID-19	Coronavirus disease-2019	IL-8	Interleukin-8
		TNF-α	Tumour necrosis factor-alpha
		CD8	Cluster of differentiation antigen 8
		CD4	Cluster of differentiation antigen 8

Joshua Iseoluwa Orege
joshua.orege@dicp.ac.cn

Extended author information available on the last page of the article
Introduction

A viable alternative therapy in the management of COVID-19 is phytomedicine. The use of traditional medicine has a long history in nature. Since antiquity, plant resources have contributed immensely to health and medicine. The various secondary metabolites they possess have made them medically useful. Herbal medicine is predominantly utilized in countries like China, India, Egypt and many others on the African continent for the treatment of several (mild and severe) ailments and infectious diseases, including coronavirus infections (Jin et al. 2020; Yang et al. 2020). The novel coronavirus (SARS-CoV-2) is an etiological agent of COVID-19 (WHO 2020c). Although the statistics of the disease-related morbidity and mortality have reduced, there remain several infectious cases across the world aside from other existing asymptomatic cases (WHO 2020a, 2020b).

To date, there is yet no effective, approved therapy or vaccine for the treatment of the COVID-19. This, therefore, stresses the need to find an effective and safe approach for the management of infected patients. Most notably, the aurora of natural product-based drug discovery is emerging and boosting body immunity with validated ethnomedicine remains an innovative therapeutic strategy (Tong and Deng 2020).

The emergence of Artemisia annua (A. annua) and its derivatives as effective therapy against malaria pathogen, Plasmodium falciparum, has led to transverse researches exploring newer and diverse pharmaceutical potentials of A. annua extracts and its artemisinin derivatives (Liu et al. 2019; Zyad et al. 2018). Notably, the outbreak of COVID-19 pandemic, its global human-to-human transmission curve, and the resultant mortality rate have beamed attention on the viability, safety, and efficacy of Artemisia and its derivatives as a potential therapeutic drug for the treatment of SARS-COV-2.

Very recently, some African countries have reportedly claimed that the anecdotal use of an extract of A. annua is efficacious for COVID-19 management, albeit with no scientific evidence demonstrated. In ethnobotanical practice, the whole plant is commonly used for treating malaria, cough, and cold (Nigam et al. 2019). A practice that could likely be based on the recommendation of artemisinin as a component of ACT (artemisinin-combination based therapies) for malaria by the World Health Organization (WHO 2015). In a recent study, Boukhatem and Setzer (2020) reviewed the antiviral potentials of some aromatic herbs, medicinal plant-derived essential oils, and phytochemicals including Artemisia against various coronaviruses. The isolated pure compounds are known for their immune-modulating and pro-inflammatory host response enhancing properties. It should be noted that Artemisia plants contain several essential oils and bioactive chemical components (Martínez et al. 2012), which broadens their biological activity beyond antimalarial function. While they are widely spread across various continents (particularly in Asia and Africa), they possess an appreciable amount of nutritional values and several health benefits (Brisibe et al. 2009; Nigam et al. 2019).

Remarkably, the broad range of bioactive components in A. annua forms a frontline basis of its adoption as an antiviral drug and therapeutic option against coronavirus infection. Interestingly, it has a high accumulation of minerals (Table 1) as reported by Poisson-Benatouil (2020) including potassium, essential amino acids and low sodium content (Ferreira; Iqbal Hussain and Khattak 2011). Also, there have been some indications to repurpose Artemisinin, a sesquiterpene lactone derivative of Artemisia (Fig. 1a) as well as other semi-synthetic derivatives (principally Arteether, Arteether and Artesunate) (Fig. 1b) to stem the debilitating effect of COVID-19. Consequently, a detailed review is significantly needed to give an overview of the anti-coronavirus

Mineral	Functions
Zinc	Stimulates and boosts adaptive immune system against coronavirus, increases CD4 level and type 1 T helper cells, inhibits the activity of SARS-CoV-2 enzyme (papain-like protease), improves the production of interferon-α involved in innate immunity, acts as an antioxidant, involves in the metabolism of proline by inhibiting its intracellular transport, inhibits nitric acid production
Gallium	Reduces the production of interleukin-6, TNF-α, and other forms of cytokines responsible for inflammatory reactions
Selenium	Lowers interleukin-8, regulates the concentration of interleukin-2 and stimulates CD4 lymphocytes

Source: Poisson-Benatouil (2020)
Artemisia and Artemisia-based products for COVID-19 management: current state and future

Fig. 1 Schematic representation of isolation of (a) Artemisinin from *Artemisia annua* and (b) some Artemisinin derivatives

Compound	Chemical Formula
Dihydroartemisinin (Artenimol)	C_{12}H_{20}O_{12}
Artemiside	C_{12}H_{21}NO_{4}S
Artemisitene	C_{16}H_{20}O_{5}
Arteether	C_{17}H_{26}O_{5}
Beta-Artemether	C_{16}H_{26}O_{5}
Artesunate	C_{19}H_{26}O_{9}
Artemisone	C_{18}H_{31}NO_{6}S
Compound 17	C_{18}H_{13}Cl_{2}N_{2}O_{2}

effect exhibited by *Artemisia* and *Artemisia*-based products as well as to motivate further research on the drugs especially as it has been projected that COVID-19 infection may remain for several years. This paper therefore reviews recent literature on the biochemical, pharmacological and safety profiles of *Artemisia* and *Artemisia*-based products in the management of COVID-19.

Research methodology

This review presents an overview of scientific contributions on *Artemisia* and *Artemisia*-based products in the management of COVID-19 including clinical trials and safety information. Scientific articles and reports on *Artemisia* and *Artemisia*-based products for the management of SARS-CoV-2 were carefully accessed from online databases such as Google Scholar, PubMed, NCBI, Researchgate COVID-19, ScienceDirect, SciFinder, Web of Science and other scientific databases on COVID-19 such as WHO situation reports on COVID, US National Library of Medicine and Chinese clinical trial registry were also accessed using the keywords; Artemisia, Arteni, SARS-CoV-2, COVID-19. Also, Chem-Draw Ultra 8.0 (Cambridge Soft, 100 Cambridge Park Drive, Cambridge MA 02140) was used for drawing chemical structures.
Origin and bioavailability of Artemisia

The genus Artemisia commonly known as Sagebrush, wormwood, and Sagewort belongs to the largest flowering plants family Asteraceae. This genus is represented by small herbs and shrubs of vascular plants, annual or perennial, with a strong and pleasant aromatic smell, and consists of about 500 species distributed across Africa, Asia, Australia, Europe, Central and South America with 186 species (82 of them endemics) in China. They can survive in the temperate climates of both hemispheres, usually in dry or semi-arid and wetland habitats, while exhibiting various life forms (Martín et al. 2003; Wright 2001; Yu and Zhong 2001). Also, they are largely cosmopolitan, inhabiting from sea level, and often landscape dominating. It is distributed across all continents except in Antarctica (Fig. 2), where no member of the Asteraceae exists (Funk et al. 2005).

Records suggest that the genus Artemisia L. originated from Asia in the temperate, Arid and semi-arid regions during the Cenozoic era (about 66 mya). The centre of diversity was reported to be within the temperate regions of Eurasia and North America by Ling (1982). However, the greatest centre of diversity lies around the temperate areas of Asia with about 38% of the total species population. In Asia, the centre of origin for Artemisia L. was most probably in the mountain regions of north-western Asia, and diversification and development in the genus were possibly at a peak in the Cenozoic (Wang 2004). Artemisia species have a global widespread within the Asian continent leading in terms of diversity with about 82 of them endemic to China, 50 in Japan, about 35 in Iran (Table 2).

The genus is ecologically and economically significant with an age-long practice for different ethnobotanical usage such as medicinal herbs, source of food in different parts of the world, herbage for feeding livestock, and habitat (in steppe communities). The plant genus has a well-documented medicinal use with drugs like artemisinin, originally from A. annua, and presently isolated in the aerial part of about 12 species [such as A. bushriences], widely used as drugs and other pharmacological activities (Mannan et al. 2010; Martínez et al. 2012). They also possess notable economic status as aromatic and medicinal plants with ethnopharmacological properties owing to the different biological activities, including antimalarial, anti-inflammatory, immune-modulating and antioxidant activity (Khlifi et al. 2013; Kim et al. 2015; Woerdenbag et al. 1990).

Essential oils in Artemisia

Essential oils are compounds usually networked or multiplexed with volatile molecules such as terpenes and aromatic components that are phenol derivatives. They have a broad spectrum of bioactivity due to the presence of several active ingredients or secondary metabolites with varying modes of action, which make them play vital roles in nature, ranging from antibacterial, antiviral, antifungal, etc. (Dhifi et al. 2016). Artemisia species are an excellent source of essential oils such as pinene, thuyl alcohol, cadinene, phellandrene,

Table 2 The distribution of Artemisia species in Asia and Europe

S. no	Country	Continent	Number of species	References
1	China	Asia	186	Hu (1965)
2	Japan	Asia	50	Kitamura (1939), Kitamura (1940)
3	Iran	Asia	35	Naghavi et al. (2014)
4	Pakistan	Asia	25	Ghafoor (2002)
5	Russia	Europe	174	Poljakov (1961)
6	Turkey	Europe	21	Kürsat et al. (2015)
thujone, etc. and have been reported to achieve remarkable success for several biological activities including, analgesic, anti-coccidial, anti-diabetic, antifungal, antiviral, anti-herpes virus, and lots more (Kumar and Kumari 2018; Martínez et al. 2012).

Anti-viral and immune-stimulatory potentials of Artemisia and Artemisia-based Products against SARS-CoV-2

Artemisia spp. had earlier been reported to consist of essential phytochemicals that contribute to its inhibitory role against viruses (Bora and Sharma 2010). Before the outbreak of COVID-19, some ethnopharmacological studies on Artemisia derivatives revolved around their retroviral properties (Efferth 2018; Jana et al. 2017; Laila et al. 2019; Lubbe et al. 2012), capacity to minimize the replication of herpes viruses (Efferth et al. 2008; Milbradt et al. 2009; Naesens et al. 2006; Nagamune et al. 2007) and inhibition of hepatitis B and C viruses (Dai et al. 2016; Paeshuyse et al. 2006; Qi et al. 2013; Romero et al. 2005), etc. Noteworthily, the bioactive constituents present in A. annua have demonstrated activity against several viruses such as bovine viral diarrhoea (Romero et al. 2006), Epstein-Barr Virus, and Hepatitis B Virus (Haq et al. 2020). Earlier, some authors reported the use of A. annua against SARS coronavirus which appeared in 2002 Lin et al. (2003). The presence of flavonoids, quercetin, and di-cafeoylquinic acid in the plant inhibits the activity of MERS-CoV-3 CLPro, an enzyme that is similarly produced by SARS-CoV-2 (Jo et al. 2019, 2020). Interestingly, in a Vero cell-based, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay for virus-induced cytopathic effect (CPE) screening analysis of medicinal plant extracts with antiviral potentials against SAR-CoV-2 (Sehailia and Chemat 2020). The study further revealed that the formed complexes interfered and remained stable on the SARS-CoV-2 Spike protein receptor site. Besides the antiviral activity, Artemisia contains a high concentration of zinc, which is reported to be effective for the immunomodulation effect of host response and increase in CD4 level (Honscheid et al. 2009). It should be noted that the antioxidant ability of Artemisia enhances immune defense.

Clinical interventional studies of Artemisia and Artemisia–based products as mono- or combined therapy in the face of COVID-19

From a safety point of view, hundreds of phytochemicals present in A. annua have been revealed to be below recommended toxicity limits (Duke 1992; Lutgen 2019; Yang et al. 2010). Some antiviral agents including repurposed off-label drugs such as CQ, HCQ, Redmesivir, etc. have been in the spotlight as frontline therapies for COVID-19 (Bolarin et al. 2020). However, some of them have demonstrated cardiotoxicity concerns among many other after-administration side-effects (Yang et al. 2010). Notably, Artemisinin has been reported to possess a better and lower toxicity profile compared with CQ and HCQ (Cheong et al. 2020). As such, clinicians can have minimal worries should higher dosage application become necessary. Also, its flexibility as a combination therapy with other drugs suggests its potential usage for the treatment of patients with cases of co-infections.

As of 19th of October 2020, only nine treatment intervention trials on Artemisia spp. and Artemisia products have been registered worldwide for COVID-19 (using Artemisinin, Artesunate, and COVID-19 as search notes) (ClinicalTrials.gov 2020). Six of these were registered in the United States National Library of Medicine while the other three appeared in the Chinese clinical trial registry (ChiCTR 2020), of which one is suspended (ChiCTR2000030082). Up to date, there exists only a randomized, double-blinded, placebo-controlled, parallel, multi-arm, multi-centre and phase II clinical trial (but not yet recruiting) on Artemisia annua herbal medicine (NCT04530617), which is hypothesized to give improved clinical outcomes in high-risk COVID-19 infected patients when introduced as an early intervention. The intervention of the study includes; tea 225 mg/1350 mg
Table 3 Registered clinical trial interventions using *Artemisia* spp. and *Artemisia* derivatives in mono- or combination therapy for COVID-19 treatment

Clinical trials ID	Number of enrolment	Intervention/age	Control	Method/study type	Status (phase)	Study completion date	Location
ChiCTR2000033049	160	Artemisinin-pipequine tablets/ 18–65 years old	N/A	Single arm/interventional study	Ongoing (Phase 4)	19 May–31 December, China 2020	
ChiCTR2000032915	240 (120 intervention and control group each)	Artemisinin-pipequine tablets/2–65 years old	Symptomatic treatment with non-viral drugs	Randomized, parallel/interventional study	Ongoing (Phase 4)	7 May–31 December, China 2020	
ChiCTR2000030082	40 (20 in intervention and control group each)	Dihydroartemisinin piperazine tablets (each containing 40 mg dihydroartemisinin and 320 mg piperazine)2 tablets bid for 7 days /18–80 years old	α-Interferon (5 million U bid atomization) + arbidol (0.2 tid) 7 days	Randomized, parallel/interventional study	Suspended (Phase 4)	23 February–30 April, China 2020	
NCT04530617	360	tea 225 mg/1350 mg per day. Oral, one 8 oz brewed tea (two bags) three times a day, Day 1–14/18 years and other	placebo	Randomized, parallel, multicentre, multi-arm /interventional study	Ongoing (Phase 2)	September 2020–February 2021 Mexico	
NCT04387240	22	Artesunate 100 mg once daily for 5 days/18–60 years old	placebo	Double blinded controlled, randomized, parallel/interventional study	Ongoing (Phase 2)	June–December 2020 Saudi Arabia	
NCT04475107	76	Pyronaridine (180 mg)-Artesunate (80 mg)/19 year old and older	placebo	Multi-center, randomized, double-blinded, parallel/interventional study	Ongoing (Phase 2)	July–February, 2021 Korea, Republic of	
Clinical trials ID	Number of enrolment	Intervention/age	Control	Method/study type	Status (phase)	Study completion date	Location
-------------------	---------------------	-----------------	---------	------------------	---------------	----------------------	-------------------
NCT04532931	250	Arm 1: Standard of care + 2 tablets (200/540 mg artemesunate/amodiaquine) daily for 3 days Arm 2: (i) Weight 45 to ≤ 65 kg - Standard of care + 3 tablets (540/180 mg pyronaridined-artesunate) daily for 3 days (ii) Weight ≥ 65 kg – Standard of care + 4 tablets (720/240 mg pyronaridined-artesunate) daily for 3 days/18–65 years old	Standard of care (Paracetamol)–2 tablets (1000 mg) to be taken 6 hourly as needed	Single center, randomized, multi-arm, open-label, parallel/interventional study	Ongoing (Phase 2)	September 3–January 2020 South Africa	
NCT04382040	50	ArtemiC (a medical spray comprised of Artemisinin (6 mg/ml), Curcumin (20 mg/ml), Frankincense (= Boswellia) (15 mg/ml) and vitamin C (60 mg/ml) in micellar formulation) sprayed orally twice a day for the first 2 days in the treatment period/ 18 years old and older	placebo	Randomized, parallel/interventional study	Completed (Phase 2)	May 8–July 31 2020 Israel	
Clinical trials ID	Number of enrolment	Intervention/age	Control	Method/study type	Status (phase)	Study completion date	Location
-------------------	---------------------	------------------	---------	-------------------------	-------------------	----------------------	-------------------
NCT04502342	20 (10 in each group)	i. Cospherunate (50 mg Artesunate/125 mg Amodiaquine) at the rate of 2 tablets orally twice daily for 6 days and Azythromycine 250 mg orally at the rate of 2 tablets the first day, then one tablet for 5 days					
ii. Cospherunate (50 mg Artesunate/125 mg Amodiaquine) at the rate of 2 tablets orally twice daily for 6 days and Phytomedicine tablet 350 mg at the rate of 2 tablets orally twice daily for 6 days, and Azythromycine 250 mg orally at the rate of 2 tablets the first day, then one tablet for 5 days/18 years and older | N/A | Randomized, open-label | Ongoing (Phase 2) | June 1–September 30, Guinea 2020 | Guinea |

Source: ClinicalTrials.gov (2020)
per day. Oral, one 8 oz brewed tea (two bags) three times a day, Day 1–14. The investigations are focused on evaluating the safety and efficacies on morbidity of COVID-19 patients (adults with mild symptoms) in decreasing the course of the disease and viral load in symptomatic stable positive swab COVID-19 patients (ClinicalTrials.gov 2020). More clinical interventional studies need to be conducted to further provide therapeutic protocols to substantiate the safety and efficacy of Artemisia and Artemisia products. The potential management of outpatients with COVID-19 and high-risk factors such as cardiovascular diseases needs to be ascertained using Artemisia and its products. Furthermore, clinical validation of the use of Artemisia either in monotherapeutic form or as combination therapies with existing drugs, particularly with repurposed drugs of debatable safety profiles is vital. The registered clinical trial interventions using Artemisia annua and Artemisia-based products in mono or combination therapy for COVID-19 treatment are presented in Table 3.

Mechanistic action of Artemisia and Artemisia-based products on SARS-CoV-2

At present, the use of herbal medicine remains debatable worldwide; it is supposedly believed that they are associated with complications and adverse effects (Wang et al. 2020b). Their acceptability for COVID-19 management is based on the understanding of their mechanism of action (which is derived from experimental and predicted targets of their active chemical ingredients) and clinical profiles. These two important conditions are largely predicated on the knowledge and clinical profiling of the activities of the chemical ingredients isolated from the plant as described by Jiang et al. (2020), which are, therefore, useful for the following: One, molecular docking and target binding studies in target assessment (Huang et al. 2020). Two, multiomics studies for finding clinically-relevant target (Wang et al. 2020b). Three, facilitating molecular and disease network analysis concerning the experimental and predicted targets for understanding the network pharmacology (Yang et al. 2020). Four, facilitating the statistical frequency of appearance analysis of literature-reported chemical ingredients and mechanisms for focusing on the high confidence mechanisms (Huang et al. 2020).

Generally, the mode of action of active ingredients from natural products against coronaviruses is through suppressing virus infection which in turn reduces the viral load (Jassim and Naji 2003). Specifically, the mode of action of A. annua on Spike protein of the SARS-CoV-2 is not clearly understood. Nevertheless, it has been reported to be by inhibiting the enzymatic activity of chymotrypsin-like protease (3CLpro) (Law et al. 2020). A. annua stimulates adaptive immunity by generating CD8 and CD4 lymphocytes responsible for the production of antibodies targeting SARS-CoV-2 and down-regulating the production of pro-inflammatory cytokines prostaglandin E2 (PGE2), TNF-α, interleukin-6 (IL-6), interleukin-10 (IL-10), thus increasing CD4 count and CD4/CD8 ratio (Poisson-Benatouil 2020). Cytokine storms decrease the number of Treg cell in COVID-19 infected patients, and leads to functionally exhausted CD8 and CD4 lymphocytes which ultimately affects human immune systems and cause severe respiratory failure (De Biasi et al. 2020).

Conclusion and perspective

The antiviral activity of Artemisia and its derivatives against SARS-CoV-2 have been extensively reviewed. Besides its antiviral activity, Artemisia is a super accumulator of zinc and has a well-known toxicological profile (Honscheid et al. 2009). Understanding the safety and efficacy when administered either as a monotherapy or combination therapy, mechanism of action, formulation and active dosage for COVID-19 drug development is required. We, therefore, recommend sufficient clinical interventional controlled-evidences to elucidate the most effective scheme of administration before integrating both Artemisia herbal medicine and Artemisia products into medicinal practice. Combined administration of Artemisia herbs or other Artemisia products with other antiviral or repurposed drugs should be conducted with stringent adherence to health protocols and clinical guidelines under the supervision of a medical practitioner to understand the drug-drug interaction and assess their effect on pro-inflammatory cytokines and hACE2 receptor.

Acknowledgements We acknowledge the painstaking efforts of all reviewers toward the enhanced improvement of this work.

Authors’ contributions Joshua Iseoluwa Orege conceptualized and designed the research idea and was involved in the review of the literature with Sherif Babatunde Adeyemti, Bashir Bolaji Tiamiyu, Toluwanimi Oluwadara Akinyemi, Yusuf Ajibola Ibrahim, Odunola Blessing Orege. All authors contributed to the drafting of the manuscript and the review of the final version of the manuscript. All authors contributed to the final version and approved the final manuscript.

Declarations

Ethical statement This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest Joshua Iseoluwa Orege, Sherif Babatunde Adeyemi, Bashir Bolaji Tiamiyu, Toluwanimi Oluwadara Akinyemi, Yusuf...
Ajibola Ibrahim, Oduola Blessing Orege declare that they have no conflict of interest.

References

Bolarin JA et al (2020) Therapeutic drugs for SARS-CoV-2 treatment: current state and perspective. Int Immunopharmacol 90:107228. https://doi.org/10.1016/j.intimp.2020.107228

Bora KS, Sharma A (2010) Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J Ethnopharmacol 129:403–409

Boukhatem MN, Setzer WN (2020) Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plants 9:800. https://doi.org/10.3390/plants9060800

Brisibe EA et al (2009) Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L. Food Chem 115:1240–1246

Cheong DH, Tan WD, Wong WF, Tran T (2020) Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmaco Res. https://doi.org/10.1007/s11095-020-10490-1

Chinese Clinical Trials Registry (2020) http://www.chictr.org.cn/searchprojen.aspx?title=&officialname=&subjectid=&secondaryid=&applier=&studyleader=ðicalcommitteesanction=&sponsors=&studyaim=COVID-19&studyaimcode=&studytype=0&studystage=0&studystudy=0&minstudysubject=&plaintime=&maxstudysubject=&amanetstatus=0&gender=0&agreeterm=®status=0&country=0&province=0&city=0&institution=0&institutionlevel=0&measure=0&intercode=0&sourcespend=0&createyear=0&kissuploaddrl=0&whetherpublic=1&btngo=btn&verifycode=0&page=1. Accessed 20/10/2020

COVID19 Clinical Trials (2020) https://clinicaltrials.gov/. Accessed 15 August 2020

Dai R, Xiao X, Peng F, Li M, Gong G (2016) Artesunate, an anti-malarial drug, has a potential to inhibit HCV replication. Virus Genes 52:22–28

De Biasi S et al (2020) Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 11:1–17

Dhiwi W, Bellili S, Bahloul N, Mnif W (2016) Essential oils' chemical characterization and investigation of some biological activities: a critical review. Medicines. 3:25

Duke JA (1992) Database of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton

Effert H (2018) Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotechnol Adv 36:1730–1737. https://doi.org/10.1016/j.biotechadv.2018.01.001

Effert H, Romero MR, Wolf DG, Stumminger T, Marin J, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

Ferreira JP (2007) Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L. J Agric Food Chem 55:1686–1694

Funk VA et al (2005) Everywhere but antarctica: using a superette to understand the diversity and distribution of the compositae. Biol Skr 55:343–374

Ghafoor A (2002) Flora of Pakistan. asteraceae (1) Anthemidaceae vol 207. Missouri Botanical Garden, USA, Department of Botany, University of Karachi, Karachi-Pakistan

Haq FU et al (2020) Artemisia annua: trials are needed for COVID-19. Phytother Res

Honscheid A, Rink L, Haase H (2009) T-lymphocytes: a target for stimulatory and inhibitory effects of zinc ions. Endocr Metab Immune Disorders Drug Targets (Formerly Current Drug Targets-Immune, Endocrine and Metabolic Disorders) 9:132–144

Hu S-y (1965) The compositae of China Taiwan Museum. Q J 18:1–136

Huang F et al. (2020) A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol Res 104929

IqbalHussain FAK, Khattak MUR (2011) Evaluation of inorganic profile of selected medicinal plants of Khyber Pakhtunkhwa Pakistan. World Appl Sci J 12:1464–1468

Jana S, Iram S, Thomas J, Hayat MQ, Pannecoeque C, Dehaen W (2017) Application of the triazolization reaction to afford dihydroartemisinin derivatives with anti-HIV activity. Molecules 22:303

Jassim SAA, Najari MS (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95:412–427

Jiang S, Cui Q, Ni B, Chen Y, Tan Y, Chen W, Chen YZ (2020) Databases for facilitating mechanistic investigations of traditional Chinese medicines against COVID-19. Pharmacol Res 159:104989

Jin Y-H et al (2020) A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 7:4

Jo S, Kim H, Kim S, Shin DH, Kim MS (2019) Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Design 94:2023–2030

Jo S, Kim S, Shin DH, Kim M-S (2020) Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 35:145–151

Khlifi D, Sghaier RM, Amouri S, Laouini D, Hamdi M, Bouajila J (2013) Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. Korean J Chem Physiol 55:202–208

Kim W-S et al (2015) Anti-inflammatory, antioxidant and antimicrobial effects of Artemisia extracts from Artemisia annua L. Korean J Pharmacol Pharmacol 19:21

Kitamura S (1939) A classification of Artemisia. Acta Phytotax Geobot 8:62–66

Kitamura S (1940) Compositae Japonicae. Pars secunda Mem Coll Sci Kyoto Univ 15:258–446

Kumar S, Kumari R (2018) Artemisia: a medicinally Important Genus. J Complement Med Alt Healthcare 7:557523. https://doi.org/10.1080/198001JCMHA.2018.07.557523

Kurçat M, Clevlek Ş, Türköglû İ, Tabur S, Gür N, (2015) A new species of subgenus Seriphidium of Artemisia L. (Asteraceae) from Turkey. Turk J Bot 39:88–95

Laila U et al (2019) Role of medicinal plants in HIV/AIDS therapy. Clin Exp Pharmacol Physiol 46:1063–1073. https://doi.org/10.1111/1440-1681.13151

Law S, Leung AW, Xu C (2020) Is the traditional Chinese herb “Artemisia annua” possible to fight against COVID-19? Integr Med Res 9

Li S-Y et al (2005) Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir Res 67:18–23

Lin L, Han Y, Yang Z (2003) Clinical observation on 103 patients of severe acute respiratory syndrome treated by integrative traditional Chinese and Western Medicine. Chin J Integr Trad Western Med 23:409–413

Ling Y (1982) On the system of the genus Artemisia and the relationship with its allies. Bull Lab North East For Inst 2:1–60

Liu X, Cao J, Huang G, Zhao Q, Shen J (2019) Biological activities of artemisinin derivatives beyond malaria. Curr Top Med Chem 19:205–222. https://doi.org/10.2174/156802661966619012214427

Springer
Artiumis and Artumiia-based products for COVID-19 management: current state and future…

Lubben P (2019) No toxicity detected for Artemisia annua or afra

Lubbe A, Seibert I, Klimkait T, Van der Kooy F (2012) Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. J Ethnopharmacol 141:854–859

Lutgen P (2019) No toxicity detected for Artemisia annua or afra

Review published online on August 5, 2019 on http://Malar iaworld.org

Mannan A, Ahmed I, Arshad W, Asim MF, Qureshi RA, Hussain I, Mirza B (2010) Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malar J 9:310. https://doi.org/10.1186/1475-2875-9-310

Martín J, Torrell M, Korobkov AA, Vallès J (2003) Palynological features as a systematic marker in Artemisia L. and related genera (Asteraceae, Anthemideae)-II: implications for Subtribe Artemisinae delimitation. Plant Biol 5:85–93. https://doi.org/10.1055/s-2003-37979

Martínez MJA, Del Olmo LMB, Ticona LA, Benito PB (2012) The Artemisia L. genus: a review of bioactive sesquiterpene lactones. Studies in natural products chemistry, vol 37. Elsevier, Amsterdam, pp 43–65

Milbradt J, Auerochs S, Korn K, Marschall M (2009) Sensitivity of human herpesvirus 6 and other human herpesviruses to the broad-spectrum antiflu drug arsunate. J Clin Virol 46:24–28

Nagas N, Bonnafoy P, Agut H, De Clercq E (2006) Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts. J Clin Virol 37:S69–S75

Nagamune K, Moreno SN, Sibley LD (2007) Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis. Antimicrob Agents Chemother 51:3816–3823

Naghavi MR, Alacimoghadam F, Ghafouri H (2014) Artemisia species from Iran as valuable resources for medicinal uses. World Acad Sci Eng Technol 11:1058–1064

Nigam M et al (2019) Bioactive compounds and health benefits of Artemisia species. Nat Prod Commun 14:1–17. https://doi.org/10.1177/1934578x19850354

No toxicity detected for Artemisia annua or afra (2019) www.malar iaworld.org

Obeid S et al (2013) Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS ONE 8:e81783

Paeshuyse J et al (2016) Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem Biophys Res Commun 348:139–144

Poisson-Benatouil C (2020) Action of Artemisia annua on adaptive immunity in COVID-19 infections. A concept note. pp 22. Available from:https://lavie-rebel. org/action-del-artemisia-anna-sur-lang=en. Accessed 19 Sept 2020

Poljakov PP (1961) Systematic studies in the genus Artemisia L. Trudy Ins Bot Akad Nauk Kazakh SSR Alma Acta 11:134–177

Qi F et al (2013) Traditional Chinese medicine and related active compounds: a review of their role on hepatitis B virus infection. Drug Discov Ther 7:212–224

Qian RS, Li Z, Yu J, Ma DJ (1982) The immunologic and antiviral effect of qinghaosu. J Trad Chin Med 2:271–276

Romero MR, Efert T, Serrano MA, Castaño B, Macias RI, Briz O, Marin JJ (2005) Effect of artemisinin/artsunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antiv Res 68:75–83

Romero MR, Serrano MA, Vallejo T, Alvarez M, Marin JJ (2006) Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhea virus (BVDV). Planta Med 72:1169–1174

Sehaila M, Chemat S (2020) Antimalarial-antimycin derivatives and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artemisinol for COVID-19. J Biomol Struct Dyn. https://doi.org/10.1080/20739112.2020.1796809

Tong Y, Deng Z (2020) An aurora of natural products-based drug discovery is coming. Synth Syst Biotechnol 5:92–96. https://doi.org/10.1080/j.synthbio.2020.05.003

Wang W-M (2004) On the origin and development of Artemisia (Asteraceae) in the geological past. Bot J Linn Soc 145:331–336. https://doi.org/doi:10.1111/j.1095-8339.2004.00287.x

Wang X et al (2020a) Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Antivir Res 179:104810

Wang Y, Zeng X, Zhao Y, Chen W, Chen YZ (2020b) The pros and cons of traditional Chinese medicines in the treatment of COVID-19. Pharmaco Res 157:104873. https://doi.org/10.1016/j.phrs.2020.104873

WHO (2015) Guidelines for the treatment of malaria, 3rd edn. World Health Organization, Geneva

WHO (2020a) Coronavirus disease 2019 (COVID-19): situation report, 72. In 2020a. World Health Organization, Geneva

WHO (2020b) WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization. https://covid19.who.int/

WHO Director-General’s Remark at the media briefing on 2019 n-CoV on 11 February 2020 (2020c). https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-n-cov-on-11-february-2020. Accessed 31 March 2021.

Woroenbag HJ, Lught CB, Pras N (1990) Artemisia annua L.: a source of novel antimalarial drugs. Pharm Weekbl 12:169–181

Wright CW (2001) Artemisia. Medicinal and Aromatic Plant—industrial profile. CRC Press, London

Yang B, Zhou S, Li C, Wang Y (2010) Toxicity and side effects of artemisiae annuae CQ-189. J Chin Mater Med 35:204–207

Yang R et al (2020) Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): in silico and experimental study. Pharmacol Res 157:104820

Yu H, Zhong S (2001) Artemisia species in traditional Chinese medicine and the discovery of artemisinin. CRC Press, Boca Raton

Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA (2018) More hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1796809

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
3 Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
4 Wuhan Botanical Garden, Chinese Academy of Sciences, Moshan, Wuchang, Wuhan 430074, China
5 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
6 Esep-Le Berger Universite, Cotonou, Republic of Benin
7 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
8 Department of Chemistry, University of Ibadan, Ibadan, Oyo State, Nigeria
9 University of Chinese Academy of Sciences, Beijing 100049, China