The physiological roles of tau and A: implications for Alzheimer’s disease pathology and therapeutics

Citation for published version:
Kent, S, Spires-Jones, T & Durrant, C 2020, 'The physiological roles of tau and A: implications for Alzheimer’s disease pathology and therapeutics', Acta Neuropathologica. https://doi.org/10.1007/s00401-020-02196-w

Digital Object Identifier (DOI):
10.1007/s00401-020-02196-w

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Acta Neuropathologica

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics

Sarah A. Kent1 · Tara L. Spires-Jones2 · Claire S. Durrant2

Abstract

Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer’s disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood–brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.

Keywords Synapse · Myelination · Vasculature · Memory · Therapeutics · Microtubule dynamics

Abbreviations

Aβ Amyloid beta
AD Alzheimer’s disease
AICD Aβ intracellular domain
AMP Antimicrobial peptide
APP Amyloid precursor protein
ARIA Amyloid-related imaging abnormalities
ASD Autism spectrum disorder

BACE1 Beta-site amyloid precursor protein cleaving enzyme 1
BBB Blood–brain barrier
BDNF Brain-derived neurotrophic factor
CAA Cerebral amyloid angiopathy
CBD Corticobasal degeneration
CCI Controlled cortical impact
CNS Central nervous system
CSF Cerebrospinal fluid
EAE Experimental autoimmune encephalomyelitis
FTD Frontotemporal dementia
FTD-P17 Frontotemporal dementia with parkinsonism 17
HSV Herpes simplex virus
iPSC Induced pluripotent stem cell
LTD Long-term depression
LTP Long-term potentiation
MAP Microtubule-associated protein
MAPT Microtubule-associated protein tau
MBP Myelin basic protein
MS Multiple sclerosis
MWM Morris Water Maze
NFTs Neurofibrillar tangles
Effects of tau hyperphosphorylation and aggregation [9]. As protein (MAP) [276], attention has been drawn to the toxic whilst tau was discovered as a microtubule-associated pro-
cognitive and electrophysiological deficits [270]. Similarly, causes synapse damage [106, 132, 274] and can induce
in AD pathogenesis [136, 171, 241]. Accumulation of Aβ
of NFTs and extracellular plaques, respectively, research
2050, representing a tremendous global, socio-economic
impact of a shift towards an ageing population [57, 229].
ity is not yet known whether this trend will counteract the
attributable to better management of modifiable risk factors,
tia incidence may be declining in the population, potentially
all dementia cases [5]. Whilst there is evidence that demen-
tia incidence may be declining in the population, potentially
increasingly apparent that the involvement of “pathologi-
cal” proteins in AD is complex and nuanced [241]. There is
mounting evidence that these proteins may serve a number
of crucial physiological functions that could be disrupted in
the development of AD pathology or by Aβ- or tau-lowering
therapeutics.

In this review, we discuss the emerging evidence for key
physiological roles of tau and Aβ. The toxic roles of these
proteins have been extensively reviewed elsewhere [94, 155,
241], and thus, we aim to highlight possible loss of function
phenotypes in disease, as well as identify potentially detri-
mental side effects of tau- (Table 1) or Aβ (Table 2)-lower-
ing therapeutics if not appropriately targeted. This will be
especially important when considering treatment of the adult
nervous system, where the lack of developmental compensa-
tion may reveal phenotypes masked in constitutive knock-
outs. We propose that balancing the consideration of both
physiological and pathological roles of tau and Aβ will be
essential for the design of safe and effective AD therapeutics.

Introduction

Alzheimer’s disease (AD) is a terminal neurodegenera-
tive disorder associated with severe progressive dementia
[155]. The disease is characterised by key neuropathological hallmarksof chronic inflammation, synapse loss, neuronal
death and the diagnostic accumulation of insoluble protein aggregates, intracellular neurofibrillary tangles (NFTs), and extracellular amyloid plaques [28, 155, 258]. The disease begins as a primary disorder of short-term memory, learning, and spatial navigation, due to early degeneration of the temporal lobe [174]. In the end stages, however, the spread of pathology throughout the brain results in multimodal deficits, including loss of verbal and motor control [174]. Unfortunately, AD is a common disorder, affecting over 50 million individuals worldwide and representing 60–80% of all dementia cases [5]. Whilst there is evidence that dementia incidence may be declining in the population, potentially attributable to better management of modifiable risk factors, it is not yet known whether this trend will counteract the impact of a shift towards an ageing population [57, 229].

As the population ages, and the risk of developing dementia increases, AD cases are currently set to triple by the year 2050, representing a tremendous global, socio-economic challenge [5]. As existing treatments only target symptoms and do not slow (let alone halt or reverse) the progression of the disease, the need to develop a disease-modifying therapeutic has never been more urgent [155].

Since the identification of microtubule-associated protein tau (MAPT) and amyloid beta (Aβ) as the components of NFTs and extracellular plaques, respectively, research has primarily focused on the toxic roles these proteins play in AD pathogenesis [136, 171, 241]. Accumulation of Aβ causes synapse damage [106, 132, 274] and can induce cognitive and electrophysiological deficits [270]. Similarly, whilst tau was discovered as a microtubule-associated protein (MAP) [276], attention has been drawn to the toxic effects of tau hyperphosphorylation and aggregation [9]. As such, therapeutic development has focused heavily on target-
ging these proteins through preventing their aggregation, inhibiting their production, or promoting their clearance [155]. Despite promising results in pre-clinical studies, no clinical trials have produced meaningful benefits for patients, with trials being halted due to adverse side effects such as liver toxicity, encephalitis, vasogenic oedema, and even exacerbation of cognitive decline [203, 286]. It is becoming increasingly apparent that the involvement of “pathologi-
cal” proteins in AD is complex and nuanced [241]. There is
mounting evidence that these proteins may serve a number
of crucial physiological functions that could be disrupted in
the development of AD pathology or by Aβ- or tau-lowering
therapeutics.

The origin of Aβ and tau

Aβ biogenesis

Amyloid precursor protein (APP) is encoded by the APP gene on chromosome 21 [84, 125, 257]. Aβ is produced by the sequential cleavage of APP by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) [265] and γ-secretase [55], which have recently been shown to form a multiprotease complex to maximise cleavage efficiency [151] (Fig. 1a). BACE1 cleaves APP at Asp1 or Glu11 of the Aβ sequence [265], after which the catalytic component of γ-secretase (presenilin) sequentially trims the resulting carboxy-terminal fragment at ε-, ζ-, and γ-cleavage sites, releasing the Aβ intracellular domain (AICD) and Aβ (between 37 and 49 amino acids in length) [292]. Mutations in presenilin, or environmental factors, consistently decrease the pro-
cessivity of γ-secretase, resulting in fewer cuts per APP mol-
ecule and consequently the release of longer Aβ peptides [42]. This amyloidogenic (or β) cleavage of APP is in direct competition with an alternative α-cleavage pathway, where α-secretase bisects APP in the middle of the putative Aβ protein, thus preventing Aβ production [70]. Under physiological conditions, Aβ1-40 (~90% of total Aβ) and Aβ1-42

PD Parkinson’s disease
PNS Peripheral nervous system
PSD Postsynaptic density
PS1 Presenilin-1
PSP Progressive supranuclear palsy
rDNA Ribosomal DNA
ROS Reactive oxygen species
SCI Spinal cord injury
TBI Traumatic brain injury
TGN Trans-Golgi network
TTL6 Tubulin tyrosine ligase-like 6
3R Tau with 3 microtubule-binding domains
4R Tau with 4 microtubule-binding domains
| Role | Experimental paradigm | Adverse effects | References |
|------|-----------------------|-----------------|------------|
| **Microtubules** | Tau knockdown | ↓ In labile microtubule mass, ↑ in the stable domain | Qiang et al. [213] |
| Regulation of microtubule dynamics | Tau knockdown | ↓ Neuronal outgrowth | Liu et al. [150] |
| | Tau knockdown | Impaired repulsive response of the growth cone | Biswas and Kalil, [22], Li et al. [147] |
| | Tau knockdown | Disruption to axonal extension | Caceres and Kosik [36] |
| | Tau knockdown/knockout | Delayed neuronal maturation | Caceres et al. [37], Dawson et al. [54] |
| | Tau knockout | ↓ Microtubule density in small caliber axons | Harada et al. [96] |
| No tau added to microtubules in vitro (compared to tau presence) | | ↑ EB1 binding to microtubule ends, ↑ catastrophe frequency | Ramirez-Rios et al. [217] |
| **Regulation of axonal transport** | 4R tau knockdown | ↑ Velocity of mitochondrial axonal transport | Beevers et al. [15] |
| **Protection of microtubules from cleavage** | Tau knockdown | Katanin-mediated cleavage, loss of microtubules and ↓ axon length | Qiang et al. [214] |
| | Tau knockdown | ↑ Neuronal branching | Yu et al. [287] |
| **Synaptic Activity** | Tau knockout | Age-dependent cognitive deficits in contextual fear conditioning, Y-maze, Morris Water Maze and reversal learning tests | Ahmed et al. [3], Lei et al. [146], Ma et al. [164], Regan et al. [218] |
| LTP, LTD and memory | Tau knockout | Severe LTP deficit | Ahmed et al. [3] |
| | Tau knockout | LTD deficits | Kimura et al. [128], Regan et al. [218] |
| Acute tau knockdown using shRNA | ↓ Dendritic spine density, loss of synaptic proteins and significant spatial memory impairments (no compensatory MAP upregulation) | Velazquez et al. [266] |
| **Regulation of neuronal hyperexcitability** | Tau knockout | Hyperpolarised neuronal membrane potential | Pallas-Bazarra et al. [197] |
| | Tau knockout | Impaired basal neurotransmission when crossed with APP transgenic mouse | Puzzo et al. [209] |
| **Neurogenesis and synaptogenesis** | Acute tau knockdown using shRNA | ↓ In baseline spine numbers, pro-synaptic response to BDNF blocked | Chen et al. [44] |
| | Acute tau knockdown using shRNA | ↓ Apical and basal dendrite density | Velazquez et al. [266] |
| | Tau knockout | Failed normal migration of new-born granule neurons in the dentate gyrus | Fuster-Matanzo et al. [78], Sapir et al. [227] |
| | Tau knockout | ↓ Dendritic length, disrupted PSD and mossy fiber terminal formation | Pallas-Bazarra et al. [197] |
| | Tau knockout | Impaired neurogenesis | Hong et al. [107] |
| | Tau knockout | Delayed neuronal maturation | Dawson et al. [54] |
| | Tau knockout | Transcriptional repression of neuronal genes | de Barreda et al. [11] |
| | Tau knockout | Hyperactivity | Biundo et al. [23], Ikegami et al. [114] |
| **Behaviour** | Tau knockout | ↑ Rearing behaviour | Lei et al. [146] |
| **Hyperactivity** | Tau knockout | ↑ Anxiety in open field arenas | Gonçalves et al. [86] |
| **Anxiety** | Tau knockout | ↑ Wakefulness and disruption to normal circadian activities | Arnes et al. [8], Cantero et al. [41] |
| Role | Experimental paradigm | Adverse effects | References |
|------|-----------------------|----------------|------------|
| **Motor function** | Tau knockout | FTD-P17-like motor dysfunction | Lei et al. [145] |
| | Tau knockout | Changes in gait, ↓ locomotion and muscle weakness | Lei et al. [145, 146], Ikegami et al. [114] |
| | Tau knockout | Loss of dopaminergic neurons | Lei et al. [145], Ma et al. [164] |
| | Tau knockout, tau 4R knockout, acute tau knockdown using shRNA | Significant impairment in balance beam or rotarod performance | Lei et al. [145, 146], Morris et al. [186], Lopes et al. [157], Ikegami et al. [114], Ma et al. [164], Gumucio et al. [93], Velazquez et al. [266] |
| **Myelination** | Tau knockdown using siRNA | ↓ Oligodendrocyte process outgrowth, ↓ myelin basic protein expression, ↓ contact with axons | Seiberlich et al. [230] |
| Regulation of myelination | Tau knockdown using siRNA | ↓ Recovery after sciatic nerve damage, defective myelin debris clearance, impaired Schwann cell migration and differentiation | Yi et al. [285] |
| | Tau knockout | Age-dependent degeneration of myelinated fibers, ↓ nerve conduction and progressive hypomyelination, resulting in motor and nociceptive impairments | Lopes et al. [157], Sotiropoulos et al. [237] |
| | Tau knockout | Worse clinical outcome after experimental autoimmune encephalomyelitis (EAE) | Weinger et al. [277] |
| | Expression of an inducible, truncated tau | Demyelination and development of gait abnormalities | LoPresti [160] |
| **Response to injury** | Tau knockout | ↓ Recovery after sciatic nerve damage | Yi et al. [285] |
| Promotion of recovery | Tau knockout | Worse outcome after EAE | Weinger et al. [277] |
| **Mitochondrial activity** | Tau knockout | ↓ Mitochondrial mobility and ↑ number of abnormal mitochondria | Sapir et al. [227] |
| Mitochondrial mobility and health | Tau knockout | Age-dependent iron accumulation associated with neurodegeneration, cognitive deficits and parkinsonian-like motor deficits, deficits rescued by treatment with the iron chelator clioquinol | Lei et al. [144, 145] |
| Iron | Tau knockout | ↑ Iron accumulation in the brain, ↓ cellular efflux of iron | Lei et al. [143] |
| Regulation of iron homeostasis | Lithium-mediated tau reduction | ↑ Iron accumulation in the brain, ↓ cellular efflux of iron | Lei et al. [143] |
| **Nuclear activity** | Tau knockout | Extensive heat shock damage (DNA breaks) in neurons | Sultan et al. [246] |
| Protection of DNA from damage | Tau knockout | ↑ DNA fragmentation under physiological conditions and high susceptibility to DNA breakage after hyperthermic stress | Violet et al. [267] |
| | Tau knockout | Delayed repair of double-strand breaks after heat shock | Violet et al. [267] |
| Maintenance of chromosomal stability | Knockout of one or both copies of tau | Marked ↑ in aneuploidy | Granic et al. [88], Rossi et al. [222] |
| | Tau knockout | Disrupted pericentromeric heterochromatin | Maina et al. [165], Mansuroglu et al. [169] |
| Regulation of transcription | Tau knockout using shRNA | ↓ mRNA and protein levels of VGLUT1 | Siano et al. [234] |
(5–10% of total Aβ) are the most abundant isoforms in humans [184]. Aβ1-40 is produced exclusively within the trans-Golgi network (TGN) and then packaged into secretory vesicles, whilst Aβ1-42 can be made in either the TGN or the endoplasmic reticulum [91]. Aβ monomers readily assemble to form higher order structures, from low-molecular-weight oligomers, to protofibrils and eventually to fibrils containing β-sheets (Fig. 1b), with longer isoforms of Aβ showing the greatest propensity to oligomerise and aggregate [34]. Increased production of Aβ1-42, at the expense of Aβ1-40 generation, is a common feature of both familial [42] and sporadic AD [101], with the increased aggregation of this peptide believed to be responsible for driving neurotoxicity [34].

**Tau production**

Tau is encoded by the MAPT (microtubule-associated protein tau) gene on chromosome 17 [189], which generates a total of 6 tau protein isoforms through alternative splicing of exons 2, 3, and 10 in the central nervous system (CNS) [94] (Fig. 2a). Inclusion of exon 10 produces tau with 4 microtubule-binding domains (4R), whilst omission of exon 10 excludes microtubule-binding domain R2 (3R). Similarly, tau can include (2N or 1N) or exclude (0N) amino-terminal inserts through regulation of exons 2 and 3. In the peripheral nervous system (PNS), exons 4A, 6, and 8 can also be transcribed, resulting in the production of larger tau proteins [75]. Tau expression is developmentally regulated, with only 0N3R tau being expressed in the foetal brain, whilst all isoforms are expressed in adult humans [94]. However, adult mice and rats show almost exclusive expression of 4R tau [94]. In humans, there are two principle genetic haplotypes at the MAPT locus; H1, which is directly orientated (~75% of the Caucasian population), and H2, which has an inverted sequence (~25% of the Caucasian population) [269]. Interestingly, the H2 haplotype appears to be almost exclusively Caucasian in origin, with Central Asian populations having H2 allele frequencies of ~5% and African, East Asian, and Native American populations effectively lacking H2 expression [71]. Possession of the H1 versus H2 haplotype subtly alters the tau isoform expression profile [269].

Tau can undergo a vast array of post-translational modifications including phosphorylation, acetylation, ubiquitination, sumoylation, methylation, glycation, glycosylation, polyamination, nitration, isomerisation, and oxidation (reviewed in [94]). Tau monomers can aggregate to form oligomers and higher order fibrils (Fig. 2b). However, whilst Aβ can largely self-assemble, tau phosphorylation is believed to be important for its aggregation [9].
| Role                                    | Experimental paradigm                          | Adverse effects                                                                 | References                                      |
|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|
| **Synaptic activity**                   | *APP* or *BACE1* knockout                      | Cognitive deficits induced and impaired LTP                                       | Dawson et al. [53], Laird et al. [139], Lombardo et al. [154], Wang et al. [272, 273] |
| LTP                                     | Treatment with anti-Aβ antibody 4G8            | LTP formation prevented                                                          | Morley et al. [185], Puzzo et al. [210]         |
|                                         | Infusion of anti-Aβ antibody 4G8 or siRNA to *APP* | Short-term memory abolished in contextual fear conditioning or the Morris Water Maze | Garcia-Osta and Alberini [81], Morley et al. [185], Puzzo et al. [210] |
|                                         | *BACE1* inhibitor treatment (wild-type mice)   | Suppression of LTP, impaired cognitive performance                                | Filser et al. [74]                             |
| Regulation of neuronal hyperexcitability | *APP* or *BACE1* knockout                      | Hypersensitivity to spontaneous and induced seizures                             | Hitt et al. [103], Hu et al. [112], Kobayashi et al. [130], Steinbach et al. [243] |
| Neurogenesis and synaptogenesis          | *APP* knockout                                 | ↓ Neuronal branching and synapse formation                                        | Southam et al. [239]                            |
|                                         | *APP* knockout                                 | Loss of synaptic proteins                                                         | Dawson et al. [53], Seabrook et al. [228]       |
|                                         | *BACE1* knockout                               | Hearing impairment linked to aberrant synaptic organisation in the cochlea        | Dierich et al. [60]                             |
|                                         | *BACE1* inhibitor treatment (wild-type mice)   | ↓ Spine density, ↓ spine formation                                               | Filser et al. [74]                             |
| Myelination                             | *BACE1* knockout                               | Impaired remyelination of peripheral nerves after injury                         | Hu et al. [109, 111]                            |
| Regulation of myelination               | *BACE1* knockout                               | In retinal vascular density                                                      | Cai et al. [38]                                 |
| Role in blood vessels                   | *BACE1* knockout                               | Shorter hindbrain vessels, fewer cerebrovascular branches                       | Luna et al. [163]                               |
| Promotion of angiogenesis               | *APP*-deficiency or *BACE1* inhibitor treatment | ↑ Angiogenesis and vascularisation                                               | Cameron et al. [40]                             |
| “Vascular plug”                         | γ-secretase inhibitor treatment                | Microhaemorrhages and brain oedema (“Amyloid-Related Imaging Abnormalities” (ARIA)) | Penninkilampi et al. [203], Sperling et al. [240] |
|                                         | *Aβ* targeting drugs (active or passive *Aβ* immunisation) in human clinical trials | ARIA-like cerebral microbleeds                                                    | Blockx et al. [24], Joseph-Mathurin et al. [121] |
|                                         | *Aβ* immunisation (animal models)              | Mortality after ischaemic injury, deficits in reactive blood flow                | Koike et al. [133]                              |
|                                         | *APP* or *BACE1* knockout                      |                                                                                   |                                                  |
| Response to injury                      | *BACE1* knockout                               | Impaired remyelination after sciatic nerve lesion                                 | Hu et al. [109, 111]                            |
| Promotion of recovery                   | *BACE1* knockout                               | Worse functional outcome after spinal cord injury                                 | Pajoohesh-Ganjii et al. [195]                   |
|                                         | *BACE1* knockout                               | Worse outcome after controlled cortical impact (rescued by *Aβ* application)     | Mannix et al. [167, 168]                        |
|                                         | *BACE1* or *APP* knockout                      | ↑ Risk of mortality following cerebral ischaemia                                  | Koike et al. [133]                              |
| Antimicrobial activity                  | *APP* knockout                                 | ↑ Mortality after infection                                                       | Kumar et al. [138]                              |
|                                         | *Aβ*-targeting therapies                       | ↑ Incidence of infections                                                         | Gogosztya et al. [87]                           |
| Iron homeostasis                        | *APP* knockout                                 | ↑ Neuronal iron retention in vitro, ↑ vulnerability to oxidative damage from dietary iron in vivo | Duce et al. [63]                                |
Aβ and tau are expressed throughout the body

Tau and the key proteins required to produce Aβ [APP, BACE1, and components of γ-secretase (presenilin-1)] are expressed in a variety of tissues throughout the body (as reported by The Human Protein Atlas [262] (Fig. 3)). Whilst tau is predominantly found in brain and peripheral nerves, tau protein expression has been detected in diverse locations including salivary glands, breast tissue, cardiac myocytes, skeletal muscle, the pancreas, and kidneys [296]. Similarly, in addition to the brain, the key components of the Aβ-processing pathway [APP, BACE1, and presenilin-1 (PS1)] are co-expressed in the pancreas, appendix, gastrointestinal tract, and both male and female reproductive organs [297–299]. It is likely, therefore, that both Aβ and tau will serve functions beyond the CNS.

Aβ and tau are evolutionarily conserved

Both tau and Aβ show remarkable evolutionary conservatism. An Aβ-like sequence has been reported in sea
anemones, demonstrating that such peptides have been in existence from 540 to 630 million years ago [259]. The human Aβ sequence is over 95% homologous to that in other mammals, and over 90% in birds, reptiles, and amphibians [259]. Similarly, evidence of a MAPT-like gene has been found in lampreys, hagfish, and sharks, pinpointing an origin over 550 million years ago [247]. Such evolutionary conservation raises the possibility that these proteins are involved in key biological functions. Identifying these functions will provide a greater understanding of the pathogenesis of AD, as well as informing how Aβ- or tau-targeting treatments could impact physiology.

Regulation of microtubules: the primary physiological role of tau?

Tau binds to and regulates the structure of microtubules

Since the discovery of tau in 1975 [276], a plethora of research has focused on the role of tau at microtubules (reviewed in [10]). Microtubule deficits are common in AD and related disorders, with studies reporting axonal transport deficits [1], and defective microtubule assembly [115]. Tau binds tubulin via its microtubule-binding domains [141], with a single tau molecule crosslinking multiple tubulin dimers [6]. Original studies found that tau stabilises microtubules [62], reducing the frequency of catastrophes (sudden microtubule disintegration) [208]. Early studies found that tau reduces the concentration of tubulin required for polymerisation [276]. A mechanism for this process has recently been proposed, where conditions of macro-molecular crowding induce tau to form liquid-like drops [102]. Tubulin partitions into these drops, effectively raising its concentration to drive nucleation of microtubule formation [102]. Crucially, tau from AD post-mortem brain tissue fails to stimulate microtubule formation [115] and hyperphosphorylation of tau [115, 192], mutations within microtubule-binding sites [83], or C-terminal truncation [192], all greatly reduce tau’s microtubule-binding capacity. These findings have contributed to the established dogma that disease-associated hyperphosphorylation of tau promotes its dissociation from microtubules, reducing microtubule stability [9]. Whilst pseudo-phosphorylation of tau results in a fivefold decrease in the association rate of binding to microtubules, this surprisingly does not impact tau’s dissociation rate, raising the question of whether tau hyperphosphorylation occurs prior to, or following, microtubule detachment in disease [192]. In support of the latter hypothesis, inducing microtubule catastrophe via stathmin application results in unphosphorylated tau falling off the microtubule and subsequently being phosphorylated in the cytoplasm [181]. Thus, the role of microtubule-associated tau appears to be more complex than originally thought, with recent studies demonstrating its diverse, subtle, and sometimes contradictory functions.

Beyond microtubule stability: tau as a regulator of microtubule dynamics

Tau is preferentially expressed within the axon and there is agreement that tau concentration increases towards the distal, labile end [213]. As such, a role for regulating microtubule dynamics has been proposed. Indeed, tau knockdown in primary neurons results in a substantial drop in the labile microtubule mass with a corresponding increase in the stable domain [213]. Tau knockdown reduces neuronal outgrowth [150], impairs the repulsive response of the growth cone [22, 147], disrupts axonal extension [36], delays neuronal maturation [37, 54], and reduces microtubule density [96]. Tau also recruits end-binding proteins (EBs) to the stable microtubule bundle, preventing them from tracking to microtubule ends where they increase catastrophe frequency [217]. However, not all tau depletion studies report deficits in microtubule dynamics [261], with compensatory increases in other
MAPs potentially masking relevant functions [164, 266]. Indeed, *MAPT* and *MAP1B* double knockouts have a high mortality rate, showing a synergistic disruption to growth cone dynamics, axonal elongation, and neuronal migration, resulting in defective axonal tract and neuronal layer formation [252]. Interestingly, an individual with frontotemporal dementia (FTD) was found to have a partial deletion of the *MAPT* gene, resulting in the production of truncated tau lacking the first microtubule-binding repeat [224]. This truncated tau exhibited dramatic reduction in microtubule-binding capability, but acquired the ability to sequester MAP1B, potentially mediating both loss-of-function and gain-of-function disruption to microtubule dynamics, similar to double knockout mice [224].

**Tau regulates axonal transport**

Many studies have sought to determine whether tau regulates axonal transport. Knockdown of 4R tau in human induced pluripotent stem cell (iPSC)-derived neurons increases the velocity of mitochondrial transport [15]. Additionally, young P301L knockin mice, which exhibit reduced tau-microtubule binding, show enhanced anterograde transport [1, 83]. It is hypothesised that tau may compete with motor proteins for tubulin-binding sites, and overexpression of tau has been reported to cause “traffic jams” [242] and induce kinesin dissociation from microtubules [61, 65, 233, 255]. Tau fibrils or oligomers can also inhibit axonal transport [124] and *MAPT*−/− neurons are resistant to Aβ-induced axonal transport deficits [268]. Recent work has demonstrated a potential mechanism for this under physiological conditions, with two studies describing “island” regions of concentrated tau protein along the axon [233, 255]. Upon reaching the island boundaries, kinesin-1 motor proteins dissociate instantaneously from the microtubules, whilst dynein slowly moves through [233, 255]. Such differential regulation of motor proteins could allow tau to regulate axonal transport and cargo delivery, processes that may be disrupted in disease. However, other studies report that neither tau knockout nor overexpression alters axonal transport dynamics [288]. A “kiss-and-hop” binding of tau to tubulin has been proposed as a mechanism, whereby tau remains associated with microtubules without clogging motor protein binding sites [118].

**Tau protects microtubules from cleavage**

An emerging role of tau is protecting microtubules from the microtubule-severing protein katanin [214, 233, 255, 287]. Recently described “tau islands” block katanin-tubulin binding, preventing breakdown of the microtubule lattice at these sites [233, 255]. Indeed, tau knockdown [214], or expression of pseudo-hyperphosphorylated tau [245], results in katanin-mediated cleavage, loss of microtubules, and reduced axon length in vitro. Tau depletion also increases neuronal

---

**Fig. 3** Tissue-level protein expression of APP [297], BACE1 [298], and presenilin-1 [299] (indicating potential for Aβ production) and tau (MAPT) [296] according to the Human Protein Atlas [262]. Created with https://biorender.com/
branching [287], raising the hypothesis that the preferential expression of tau in the axon may maintain a non-branched structure, in contrast to highly branched dendrites, which show low tau expression [287]. Pathological tau mislocalisation may, therefore, render axonal microtubules vulnerable to inappropriate cleavage [233]. Interestingly, Aβ-induced tau mis-sorting permits recruitment of tubulin tyrosine ligase-like 6 (TTLL6) to dendritic microtubules, promoting spastin-mediated cleavage [289]. Tau location, therefore, appears vital for regulating its physiological versus pathological functions. Indeed, dendritic mis-sorting of tau also promotes aberrant clustering of Fyn, a key step in Aβ-mediated synaptotoxicity and spine collapse [116].

**The future of therapeutics targeting microtubule (dys)function**

Whilst microtubule-stabilising drugs, such as Taxol and Epothilone D, showed pre-clinical promise, replication of this success in humans is not yet forthcoming [286]. Forty five years of exploration of tau at the microtubule has transformed understanding from tau being a simple “stabiliser”, to reveal a diverse array of physiological and pathological functions [10]. With development of tau-targeting therapies becoming increasingly common, careful maintenance of physiological tau at the axon, whilst also preventing mis-sorting and pathological aggregation, will likely be crucial for therapeutic success. Interestingly, a recent study reported that Aβ-mediated dendritic simplification requires microtubule stabilisation by unphosphorylated dendritic tau [85]. This finding raises concerns that reducing tau phosphorylation, a common goal of tau-targeting treatments, may negatively impact neuronal connectivity in some circumstances, highlighting the complexity of untangling physiological from pathological modifications. Therefore, focus on other physiological functions of tau or Aβ may reveal more promising therapeutic targets.

**Physiological roles at the synapse**

Synapse loss is the strongest pathological correlate of cognitive decline in AD [56, 258], so protecting these vital structures is a key therapeutic goal. Tau and Aβ are prime suspects for causing synaptic damage, with toxic species reported to accumulate at synapses [132, 250], disrupt key synaptic machinery [293], induce spine collapse [274], and target synapses for microglia-mediated pruning [52, 106]. Whilst toxic tau and Aβ are undoubtedly involved in AD pathology, there is growing evidence that these proteins play key physiological roles at the synapse that could be lost, or hijacked, to contribute to disease. Potential loss-of-function at the synapse should be carefully considered when designing tau- or Aβ-targeting therapeutics to avoid exacerbating, or introducing new, synaptic pathology.

**Physiological concentrations of Aβ enhance LTP**

Studies of synapse function often use long-term potentiation (LTP), an indicator of synaptic strengthening, and long-term depression (LTD), an indicator of synaptic weakening, as electrophysiological correlates of learning and memory [14]. Pathological concentrations of Aβ applied to hippocampal slices disrupt LTP [270], but physiological concentrations may, in fact, be required for this process [210] (Fig. 4). A biphasic, or hormetic, role of soluble Aβ in regulating LTP has been proposed, whereby low (picomolar) concentrations of Aβ enhance LTP, whilst high (nanomolar) concentrations suppress LTP [92, 99, 185, 210, 211]. Such experiments highlight a potential role for endogenous Aβ in regulating memory formation. Indeed, the extracellular concentration of Aβ increases after neuronal stimulation [123, 253] and interstitial fluid Aβ concentration positively correlates with neuronal activity in human brain [29]. Interestingly, both APP knockout [53] and BACE1 knockout [139, 154, 272, 273] in vivo induce cognitive deficits and impair LTP. Wild-type mice given BACE1 inhibitors also show a dose-dependent suppression of LTP and impaired cognitive performance [74]. Treatment of wild-type slices with the anti-Aβ antibody

---

Fig. 4 Schematic representation of the hormetic responses to tau and Aβ concentration. There is an optimal concentration of tau or Aβ for a number of physiological functions. Too little protein (or loss of function modifications) or too much protein (or gain of function modifications) can both disrupt normal function. Effectively rescuing loss of function or preventing gain of function to maintain optimal physiological conditions should be the ultimate goal of therapeutics. Created with https://biorender.com/
4G8 prevents LTP formation [185, 210] with LTP restored by application of picomolar oligomeric Aβ\(_{1-42}\) [210]. In vivo, hippocampal infusion of 4G8 [81, 185, 210] or siRNA to APP [185, 210] abolishes short-term memory in contextual fear conditioning [81, 185, 210] or the Morris Water Maze (MWM) [210]. Infusion of picomolar Aβ rescues this effect [81, 210], whilst Aβ-infusion into naive mice enhances reference and contextual fear memory [81, 210, 211].

A potential hornerotic role of Aβ raises the possibility that physiological, learning-mediated Aβ production throughout life could eventually result in accumulation of Aβ to a toxic level, especially if clearance mechanisms fail. Indeed, in humans, brain regions in the default mode network that show high levels of neuronal activity in young adults closely correlate with regions most heavily burdened by amyloid in AD later in life [32].

**Tau in LTP, LTD, and memory**

Like Aβ, tau expression and secretion also increases following neuronal activity [131, 207], and studies in \(MAPT^{−/−}\) mice have sought to explore the role of tau in synaptic function. Phenotypes of \(MAPT^{−/−}\) mice vary, with findings differing depending on the model used, genetic background [146], cleanliness of the animal unit [186], diet [164], and the age of the animals when studied. Some studies do not report cognitive or synaptic deficits in \(MAPT^{−/−}\) mice [113, 146, 186, 254], and reports that there is compensatory upregulation of other MAPs highlight that developmental compensation could mask relevant effects [164]. Ma et al. found that 8-month old \(MAPT^{−/−}\) mice had no cognitive deficits, but displayed significant MAP1A upregulation. At 19 months old, however, compensatory MAP levels fell, and extensive synaptic loss and cognitive deficits became apparent [164]. A recent study showed that acute tau knockdown in adult mice using viral shRNA resulted in reduced spine density, loss of synaptic proteins, and significant spatial memory impairments in the absence of compensatory MAP upregulation [266]. Despite potential compensatory confounds, different groups have reported age-dependent cognitive deficits in \(MAPT^{−/−}\) mice in contextual fear conditioning [3], Y-maze [146], MWM [164], and reversal learning tests [218]. Whilst one study found a severe LTP deficit in tau knockouts [3], LTD deficits are more commonly reported [128, 218]. Tau’s role in LTD appears to depend on its phosphorylation at serine 396 permitting AMPA receptor internalisation [218]. Crucially, a number of studies have reported human genetic cases of FTD [199, 294] or intellectual disability [172, 232, 263] in which tau levels are drastically reduced compared to age-matched controls. Reduced soluble tau has also been reported in normal ageing [187], Parkinson’s disease (PD) [145], and AD [137, 191] (potentially due to sequestration of tau into NFTs). Together, this raises the possibility that loss of normal tau function may be partly responsible for cognitive and synaptic deficits in disease. Tau-targeting therapeutics should, therefore, be carefully managed to avoid disrupting physiological tau at the synapse.

**Regulating neuronal hyperexcitability: could tau and Aβ act at opposite ends of the spectrum?**

A common feature of many neurodegenerative and neurodevelopmental disorders is the prevalence of seizures. Up to 22% of individuals with AD experience at least one seizure [178], whilst epilepsy is diagnosed in around 20% of individuals with autism spectrum disorder (ASD) [18]. Tau appears to be important for permitting seizure activity, and there is strong evidence that \(MAPT^{−/−}\) mice [148], or mice treated with tau antisense oligonucleotides [59] are resistant to pentylentetrazol-induced seizures. Crossing \(MAPT^{−/−}\) mice with genetic models of epilepsy [105], AD [219] and ASD [249] can rescue hyperexcitability and spontaneous epileptiform activity. As such, a role for tau in promoting or regulating neuronal excitability seems likely. It has recently been shown that hyperexcitation increases tau translation [131] and that tau translocation to the nucleus regulates the expression of the glutamatergic transporter protein, VGLUT1 [234]. Interestingly, \(MAPT^{−/−}\) neurons lack extrasynaptic NMDA currents that, whilst their physiological role is under debate, mediate excitotoxicity under a number of conditions [196]. Tau deficiency may also impact basal synaptic activity; one study reported that tau knockout neurons were hyperpolarised compared to wild-type cells [197], and a recent study found that tau knockout impaired basal neurotransmission in APP transgenic mice [209]. Lowering of tau levels could, therefore, be beneficial under conditions of hyperexcitability, but this must be carefully balanced against the risk of depressing normal neuronal activity.

When considering the impact of Aβ on neuronal excitability, there are seemingly contradictory findings, potentially explainable through the aforementioned hornerotic role of Aβ (Fig. 4). Whilst low levels of Aβ can increase dendritic spine density [194], increase the number of docked vesicles [92], enhance glutamate release, promote excitotoxicity, and disrupt calcium homeostasis (particularly in early stages of disease) [7, 35, 225], Aβ production after synaptic activity could also act via negative feedback to prevent hyperactivity [123]. Indeed, Aβ can induce spine collapse and synapse loss [231, 274], increase the proportion of silent neurons [35], and disrupt neurotransmitter release via depletion of presynaptic PIP\(_2\) [99]. However, untangling the specific role of Aβ versus APP, alternative APP-processing products or BACE1...
has proven difficult. Both APP−/− [243] and BACE1−/− [103, 112, 130] mice fail to produce Aβ and show hypersensitivity to spontaneous and induced seizures. BACE1, however, cleaves a variety of proteins important for normal neuronal function, including seizure protein 6 [206]. Notably, conditional BACE1 knockout in adult mice does not induce epileptiform activity [264], suggesting BACE1 or Aβ may play independent roles in the developing versus adult brain. To add further complexity, overexpression of APP, not Aβ, is responsible for hypersynchronous activity in some AD mouse models [26]. Therefore, clarification of the roles of Aβ, APP, and BACE1 will be essential to ensure balanced synaptic activity when therapeutically targeting amyloid dysregulation.

**Neurogenesis, synaptogenesis, and structural plasticity**

The formation of new neurons and synapses is an important process both throughout development and in the adult nervous system. Early studies found that low concentrations of Aβ promote the survival of primary neurons [278] and have a neurogenic effect on neural progenitor cells [158]. Aβ42 also stimulates neurogenesis of subventricular zone precursors in vivo, raising the hypothesis that the early over-stimulation of neurogenesis in AD may result in depletion of the stem cell pool and a decline in basal neurogenesis later in life [238]. Despite showing neurogenic properties, Aβ is often considered an antagonist to the formation of new synapses. Indeed, high concentrations of oligomeric Aβ can induce spine collapse [7, 231, 274], and synapse loss has been found to correlate with increased intraneuronal APP [295], plaque-proximal extracellular Aβ [132, 295], and accumulation of intraneuronal Aβ [97, 253]. However, long exposure to picomolar Aβ has also been found to increase the spine density in slice cultures [194]. Similarly, APP knockout in hippocampal neurons reduces neuronal branching and synapse formation [239], and APP−/− mice show a profound loss of synaptic proteins [53, 228], although loss of sAPPα (a non-amyloidoic product of APP cleavage) may be a key contributor to this phenotype (reviewed in [47]). BACE1 has also been shown to play a role in normal synapse development, with BACE1−/− mice showing a developmental hearing impairment caused by aberrant synaptic organisation in the cochlea [60]. Interestingly, adult wild-type mice treated with BACE1 inhibitors also show a reduction in dendritic spine density and formation [74], whilst BACE1 inhibitor treatment of APP/PS1 mice (which produce excess Aβ) slowed the rate of synapse loss around plaques [204]. Taken together, it once again seems likely that there is an optimal concentration of Aβ to maintain synapses, which must be considered when therapeutically targeting Aβ (Fig. 4).

**Regulating behaviour**

**Tau, hyperactivity, anxiety, and sleep**

In addition to cognitive deficits, MAPT−/− mice show evidence of hyperactivity, as measured by spontaneous locomotion in an open field test [23, 114], and substantially increased rearing behaviour [148]. MAPT−/− mice also spend significantly less time in the open arms of elevated Z-mazes and keep to the periphery of open field arenas, indicative of increased anxiety [86]. Tau may also help to regulate circadian behaviours, with MAPT−/− mice [41] or Drosophila [8], showing major abnormalities in the sleep–wake cycle, including increased wakefulness and disruption to normal circadian activities. Sleep disturbances are commonly reported in ageing and neurodegenerative disorders [281], so understanding how tau alterations impact sleep may be clinically relevant. Interestingly, tauopathy models often show disturbed sleep patterns [122] and hyperactivity [122, 205] phenotypes, raising the possibility that tau mutations...
could, for these behaviours, mimic the effect of tau depletion through loss of function.

Tau and the motor system

Another common feature of MAPT−/− mice is the appearance of FTD-P17-like motor dysfunction, suggesting that tau loss of function could be partly responsible for Parkinsonism in these individuals [145]. Notably, soluble tau levels in the substantia nigra of the brains of individuals with PD are 44% lower than those observed in age-matched controls, indicating that loss of normal tau may contribute to motor deficits [145]. In mouse studies, a number of groups have reported significant impairment in balance beam or rotarod performance in tau knockouts [114, 145, 146, 157, 164, 186], mice lacking 4R tau [93], and mice treated with tau-shRNA [266]. Additionally, changes in gait [146], reduced locomotion [145, 146], and muscle weakness [114] have been recorded, and many MAPT−/− models also show loss of dopaminergic neurons [145, 146, 164]. Interestingly, treatment of MAPT−/− mice with L-DOPA rescued motor phenotypes in some models [145, 146], but another study reported a dopamine-independent motor deficit [186]. A recent study postulated that the age-dependent motor deficits observed in their MAPT−/− model were due to hypomyelination and degeneration of the sciatic nerve (discussed below), raising further questions about the effect of tau loss of function in the peripheral versus central nervous systems [157]. Interestingly, motor deficits are common in tau-overexpressing transgenic mice [4, 77], and it has been reported that whilst modest overexpression of FTD-P17 mutant tau can improve motor performance in young animals, this progresses to severe paraparesis in later life [183]. In humans, the MAPT H1/H1 genotype is also associated with increased risk of neurodegenerative diseases affecting the motor system, such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) [108]. Taken together, it seems likely that, in addition to mutations potentially disrupting physiological roles of tau, changes in tau concentration may have a hormetic effect on motor function (Fig. 4). Whilst individuals with AD can develop motor symptoms [155], this is not considered the primary deficit, indicative that the location of tau changes within the brain (e.g., hippocampus versus substantia nigra or motor cortex) and peripheral nervous system is likely an important determinant of symptoms.

Regulation of myelination

Tau is important for normal myelination

Whilst many studies focus on neuronal damage, white matter hyperintensities (evidence of demyelination) are commonly reported in the early stages of AD and other tauopathies and correlate with tau burden [173]. A recent study describes human familial globular glial tauopathy, linked to MAPT mutations, that result in extensive tau deposits in oligodendrocytes [73]. Affected individuals show severe demyelination, defective myelin synthesis, and concomitant axonal damage [73]. Coiled bodies of tau in oligodendrocytes and demyelination are also common features of other primary tauopathies such as PSP and CBD [291]. Mouse models of tauopathy frequently demonstrate deficits in myelination, with evidence of filamentous tau inclusions developing in oligodendrocytes [149], resulting in defective myelination of the perforant path [117], spinal cord [149], and sciatic nerve [179]. Tauopathy-induced myelination deficits coincide with increased nerve conduction latency [117], cognitive decline [117], and motor impairments [179]. The mechanism by which tau pathology leads to deficits in myelination has yet to be fully elucidated, but there is evidence that this could represent a loss of normal tau function. Tau is found within oligodendrocytes and Schwann cells under physiological conditions and is upregulated during developmental myelination [159]. siRNA-mediated knockdown of tau impairs oligodendrocyte process outgrowth, reduces myelin basic protein (MBP) expression, and impairs contact with axons in myelinating co-cultures [230]. Oligodendrocyte process outgrowth depends on the recruitment of tau and tubulin to activated Fyn-kinase rafts, with disruption of tau-microtubule binding reducing oligodendrocyte process number and length [129]. Expression of an inducible, truncated tau (which retains the Fyn-binding domain but lacks microtubule-binding capability) in oligodendrocytes induced demyelination and gait abnormalities in mice [160]. MAPT−/− mice also show age-dependent degeneration of myelinated fibers, reduced nerve conduction, and progressive hypomyelination [157, 237], resulting in motor [157] and nociceptive [237] impairments. Tau knockdown also restricts recovery after sciatic nerve damage, with mice showing defective myelin debris clearance and severely impaired Schwann cell migration and differentiation [285]. Similarly, MAPT−/− mice showed a worse clinical outcome after experimental autoimmune encephalomyelitis (EAE) (a model of demyelinating disease) [277]. Taken together, it seems likely that tau plays a key role in forming, maintaining, and repairing myelin, potentially via the regulation of microtubule dynamics [129]. Tau hyperphosphorylation may disrupt this key function in disease, contributing to...
the commonly observed white matter pathology. Whether myelination deficits will become a problem for tau-targeting therapeutics remains to be seen, but caution may be required to ensure normal oligodendrocyte and Schwann cell function is maintained.

**Aβ and its cleavage enzymes may regulate myelination**

A recent study reports that low concentrations of Aβ oligomers can enhance oligodendrocyte survival in vitro [215]. Aβ peptides also induced translation of MBP, promoted oligodendrocyte differentiation, and improved remyelination in demyelinated cerebellar slices [215]. BACE1−/− mice show delayed myelination and reduced myelin thickness in the PNS and CNS [110, 280], as well as impaired remyelination of peripheral nerves after injury [109, 111]. However, BACE1−/− phenotypes may be Aβ-independent, relying instead on the cleavage of neuregulins [109], highlighting a potential off-target effect of lowering Aβ through BACE1 inhibition. Interestingly, BACE1, neuregulin-1, and Aβ expression increase during myelin repair following ischaemic stroke, suggesting a potential role in the myelin repair process [190]. However, oligomeric Aβ1-42 can also reduce oligodendrocyte number and induce motor deficits when injected intracerebroventricularly in mice [290]. Interestingly, a recent study has found that the secreted metalloprotease ADAMTS4, located exclusively in oligodendrocytes in adult mice, is responsible for the production of highly amyloidogenic, N-truncated, Aβ4-xx peptides [271]. Further studies will, therefore, be required to elucidate the role of Aβ peptides and their cleavage enzymes in oligodendrocytes, and to determine whether Aβ-targeting therapies will be beneficial or detrimental in resolving white matter pathology in disease. Once again, it seems likely that a balance between preventing toxicity and maintaining physiological functions will be required.

**Aβ regulates vasculature**

**Angiogenesis and Aβ: a question of balance?**

There is mounting evidence that Aβ plays important roles in regulating vasculature. Studies in post-mortem human brains have found evidence for increased angiogenesis in AD [21, 58], with one study finding that vascular density in the hippocampus positively correlated with Aβ load [58]. Conversely, other studies have reported reduced vasculatisation in AD brains [76]. Studies in AD mice found evidence for a dual-staged response to rising Aβ, with young animals showing increased vascular density compared to wild-type littermates, with reversal of the trend in old mice [21]. In vitro, Aβ can inhibit endothelial cell capillary formation in a dose-dependent manner and stimulates capillary degeneration at high concentrations [201]. At low concentrations, however, Aβ has been found to promote endothelial cell proliferation [27], induce formation of capillary-like structures [27], and increase vessel density in brain slice cultures [64]. In vivo studies using chick [27] or zebrafish embryos [40] and adult zebrafish retinas [51] find that Aβ peptides increase capillary density and induce formation of sprouting tip cells. BACE1−/− mice also show a significant reduction in retinal vascular density [38] and APP-deficient zebrafish, or zebrafish treated with a BACE1 inhibitor, have shorter hindbrain vessels with fewer cerebrovascular branches [163]. Crucially, application of human Aβ rescued the vascular phenotype in both APP-deficient and BACE1 inhibitor-treated zebrafish [163], highlighting a primary role of endogenous Aβ in maintaining normal capillary density.

Whilst low levels of Aβ seem important for maintaining physiological vascularisation, increasing levels of Aβ in early AD have been shown to promote pathological angiogenesis, resulting in excessive vascularisation and disturbance to normal blood flow [21, 58, 64]. Excessive cleavage of APP, or direct inhibitory action of Aβ, may overwhelm or inhibit the activity of γ-secretase, thus reducing its availability to cleave Notch proteins, known angiogenesis inhibitors [27, 64]. Indeed, γ-secretase inhibitor treatment increases angiogenesis and vascularisation in a range of model systems [40]. Lowering Aβ levels, through immunisation against Aβ [20] or BACE1 inhibition [64], restores normal vascular patterns in AD models. Indeed, a meta-analysis of clinical trials reports that people with AD receiving immunisations against Aβ1-42 show a significant reduction of endothelial cells and vascular density [20]. In another example of hormesis, either too little or too much Aβ may result in pathological alterations to capillary density (Fig. 4). Carefully controlling Aβ concentration will be important to restore and maintain physiological angiogenesis in AD.

**Aβ as a “vascular plug”**

Clinical trials targeting Aβ have unintentionally provided evidence for a further role of Aβ in the vascular system: repairing leaks in the blood–brain barrier (BBB) [30]. A side effect of a number of active or passive anti-Aβ immunotherapies has been the appearance of microhaemorrhages and brain oedema [203]. This pattern of pathology, visible by MRI, has been termed “Amyloid-Related Imaging Abnormalities” (ARIA) and has become synonymous with Aβ immunisation [240]. A meta-analysis of 14 Aβ-targeting clinical trials reported a fivefold increase in the incidence of ARIA in treated versus placebo AD groups, with many trials showing a dose-dependent effect and increased incidence in APOE4 carriers [203]. Aβ immunisation in AD mouse
models [24] and aged mouse lemurs [121] can also induce ARIA-like cerebral microbleeds.

At present, it is not fully understood why removal of Aβ causes haemorrhages. Deposition of amyloid in blood vessels [cerebral amyloid angiopathy (CAA)] is a common feature of AD [166]. One possibility is that sudden removal of amyloid from blood vessels could compromise vascular integrity, as amyloid may have completely replaced the vessel wall in some instances (grade 2 CAA) [166]. Alternatively, a number of groups have proposed a relationship between Aβ and blood clotting. Platelets are the primary source of Aβ within the blood [43] and Aβ can induce aggregation of platelets [69]. It has been postulated that Aβ could play a physiological role as a vascular sealant, which could become overactivated with age and disease [30]. The expression of APP and Aβ rises in response to haemorrhagic damage, such as induction of microhaemorrhages [80] and chronic hypertension [33]. APP−/− or BACE−/− mice also show increased mortality after ischaemic injury, with severe deficits in reactive blood flow compared to wild-type controls [133]. Taken together, these findings add weight to the hypothesis that Aβ could serve a crucial role in vascular responses to injury, potentially explaining the appearance of ARIA after Aβ-immunotherapy. Conversely, high levels of Aβ can increase BBB permeability, potentially via reducing levels of tight junction proteins [127]. Interestingly, increasing BBB permeability promoted clearance of Aβ from the brain and improved cognition in a mouse model of AD, indicative of a physiological negative feedback mechanism [127]. Once again, this demonstrates the delicate balance between Aβ acting to support physiological versus pathological processes that must be considered to design safe, effective therapeutics.

Response to injury

**Tau and Aβ increase after injury: a protective or pathological response?**

Increasing evidence demonstrates that the levels of both tau and Aβ proteins increase following stroke [190], spinal cord injury (SCI) [195, 212] and traumatic brain injury (TBI) [282]. TBI promotes tau aggregation and spreading [67], with levels of tau pathology detected via PET correlating with poor long-term neuropsychiatric outcomes [251]. Whilst increases in tau often correlate with poorer outcome after injury [251], increased soluble Aβ has been shown to correlate with improved neurological status in individuals with a TBI [29]. Similarly, the formation of Aβ deposits in demyelinating lesions in people with multiple sclerosis (MS) has been proposed as a potentially protective response to axonal injury [89]. This raises the question of whether increases in tau and Aβ after injury serve to promote recovery, or whether they are involved in a detrimental pathological cascade.

**Aβ may promote recovery after brain injury**

Attempts to clarify the function of increased Aβ after injury have produced conflicting results and it is often difficult to separate specific effects of Aβ from functions of APP, which is known to be upregulated in axons after injury and may have protective functions [100]. Whilst some groups found that BACE1 knockout or inhibition improves recovery after sciatic nerve injury [72] or TBI [153], others report that BACE1−/− mice have impaired remyelination after sciatic nerve lesion [109, 111] and worse functional outcome after SCI [195] or TBI [168]. Interestingly, both BACE1−/− and APP−/− mice have an increased risk of mortality following cerebral ischaemia, indicating that this is likely a consequence of Aβ loss [133]. Mannix et al. found that following controlled cortical impact (CCI), functional outcome is worse in BACE1−/− mice compared to wild-type mice [168]. A follow-up study demonstrated that motor function (but not spatial memory or histopathology) could be improved by administration of Aβ1-40 to BACE1−/− mice after CCI, demonstrating a potential role for Aβ in recovery [167]. In the same study, administration of Aβ to injured wild-type animals worsened outcome, demonstrating a hormetic role for Aβ [167] (Fig. 4). Grant et al. also showed that peripheral administration of Aβ could reduce paralysis and demyelination in a mouse model of EAE, providing further evidence of a role for Aβ in promoting recovery after injury [89].

The effect of tau depends on the type of injury induced

Studies exploring the role of tau after injury have also been contradictory. MAPT−/− mice suffer worse functional outcome after sciatic nerve injury [285] and EAE [277], reminiscent of tau regulating physiological myelination (discussed earlier). Several studies, however, report that MAPT−/− mice are resistant to some functional and cognitive deficits after TBI, although this depends on whether the injury was repetitive [45] and whether short-term or long-term outcomes were measured [256]. A study by Bi et al. found that following experimental stroke, MAPT−/− mice were protected from neurological deficits and excitotoxic brain damage [19]. The authors suggested a mechanism for this effect whereby tau normally mediates excitotoxic Ras/ERK signalling by regulating SynGAP1 postsynaptic compartmentalisation [19]. Whilst further
experiments are required in a range of injury models, it seems likely that the positive versus negative effects of targeting tau will depend largely on the type of damage induced and the normal recovery mechanisms required. An apparent role for tau in myelin repair may mean that individuals with AD who have a history of MS, for example, could be at risk of worse outcome after receiving tau-lowering therapies. Similarly, Aβ-lowering therapies may increase the risk of brain damage in individuals who go on to suffer a TBI, which may be a risk in individuals who frequently suffer falls [260]. Therefore, patient history could be key in assessing the risk for negative outcomes associated with comorbidities, prior to the administration of tau- or Aβ-targeting therapeutics.

**Mitochondria and oxidative stress**

**Mitochondrial dysfunction is a key component of AD pathology**

Mitochondrial dysfunction is an early and important pathogenic feature of AD [98], and both tau and Aβ have been shown to separately and synergistically affect mitochondrial function [66]. Whilst most studies have examined the pathological effects of tau and Aβ on mitochondria, there is some evidence that these proteins may also have physiological roles.

**Aβ and tau deposition: cause of, or response to, oxidative damage?**

Many studies have found an association between mitochondrial Aβ deposition and oxidative stress [66, 193]. However, the directionality of the observed events, i.e., whether Aβ accumulation is a cause of, or response to, oxidative stress, has proven difficult to ascertain. Somewhat counterintuitively, whilst oxidative stress is an early feature of AD, oxidative damage decreases alongside increased Aβ deposition during AD progression [193]. Notably, neurons containing an NFT show a 40–56% decrease in oxidised nucleosides compared to non-tangle-bearing neurons [193], leading to the proposal that Aβ and tau may have antioxidant properties [235]. Interestingly, a gene called saitohin, located in the intron downstream of exon 9 within the MAPT gene, interacts with peroxiredoxin 6, an antioxidant enzyme that protects cells from oxidative damage [79]. Whilst further research is required to explore the interaction of saitohin with tau, it seems likely that gene-level changes to MAPT may also impact the function of saitohin. Therefore, caution may be required when utilising tau- or Aβ-targeting therapies, to avoid potential exacerbation of oxidative damage.

**Tau as a regulator of mitochondrial mobility and health?**

Tau has also been proposed to regulate mitochondrial function. Sapir et al. found that tau knockdown reduced mitochondrial mobility and increased the number of abnormal mitochondria [227]. A recent study reports that tau localises to the outer mitochondrial membrane under physiological conditions, proposing a role for tau in regulating mitochondrial association, and calcium transfer, with the endoplasmic reticulum [48]. However, overexpression of tau can also impair mitochondrial transport [65] and mouse models of tauopathy demonstrate deficits in mitochondrial distribution [135]. These seemingly contradictory results require further exploration and it seems likely that tau expression levels, post-translational modifications, developmental stage, and potential compensation from other MAPs will all impact whether tau serves a physiological or pathological role at the mitochondria.

**Aβ may function as an antimicrobial peptide**

**The antimicrobial protection/infection hypotheses of AD**

In 2002, Robinson and Bishop proposed that Aβ is normally produced to “bind toxic solutes” with the formation of amyloid plaques being “an efficient means of presenting these toxins to phagocytes” [220]. Since then, a number of groups have built upon the idea of amyloidosis as an innate immune response and have proposed that increased Aβ deposition, caused by continuous activation of this pathway through recurrent, chronic infection, may lead to the development of AD [182].

**Aβ rises after infection and is associated with pathogens in the CNS**

A number of studies have shown that infection with a range of pathogens, including Herpes simplex virus-1 (HSV-1), Chlamydia pneumoniae and Borrelia burgdorferi, can increase production and deposition of Aβ in vitro and in vivo, where microbial DNA can be found associated with amyloid plaques (reviewed in [87]). Interestingly, a post-mortem study of individuals who had died from HIV/AIDS found that over half of them possessed extensive
accumulation of Aβ in the brain, despite their young age (average age of death was 43 years old) [90]. Interestingly, treatment of HSV-1-infected cell cultures with the antiviral agent Acyclovir lowers intracellular Aβ accumulation and normalises BACE1 expression, leading to the proposal that antiviral therapies may be beneficial for the treatment of AD [162]. It is important to note, however, that human studies linking infections and AD are mostly correlational in nature. Whilst there is considerable evidence for a role of neuroinflammation in the progression of AD [106], it is in nature. Whilst there is considerable evidence for a role of neuroinflammation in the progression of AD [106], it is possible that the increase in microbes in the AD brain is a response to rather than a cause of AD pathology. Breakdown of the BBB is common during neurodegenerative disease [248], and this could permit invasion of microbes circulating in the periphery, especially viruses, such as HSV, that are endemic in the population [283].

Aβ has antimicrobial activity

The increased expression of Aβ after infection is proposed to be an innate immune response, and there is evidence that Aβ can act as an antimicrobial peptide (AMP) (reviewed in [87]). Soscia et al. found that Aβ exhibits antimicrobial action of equal or greater potency than LL-37 (a human antimicrobial peptide) against eight common microbes [236]. Application of Aβ also decreases the infectivity of HSV-1 [162] in cell lines, and reduces the growth of Candida albicans, Gram-negative, and Gram-positive bacteria [138, 236] in culture. In vivo, Kumar et al. found that Aβ over-expression significantly increases survival in 5xFAD mice infected with S. Typhimurium, and in C. elegans infected with C. albicans and S. Typhimurium [138]. The authors suggest that Aβ acts as an AMP by agglutinating and trapping microbes via the binding of its heparin-binding domain to carbohydrates in microbe cell walls [138]. Alternatively, Aβ may form cation channels in cell membranes, inducing cell death via calcium dyshomeostasis [126]. Interestingly, APP−/− mice show a trend for increased mortality after infection [138] and a common side effect of Aβ-targeting therapies in clinical trials has been increased incidence of infections [87], although BBB disruption caused by removal of vascular amyloid could also explain this increased vulnerability [240].

Regulation of iron homeostasis

Iron homeostasis may be disrupted in neurodegenerative disorders

A number of groups have postulated that iron dyshomeostasis could contribute to AD and other neurodegenerative diseases [140], with iron accumulation resulting in cellular oxidative damage, dysfunction, and death via ferroptosis, an iron-dependent form of regulated necrosis [140]. It remains unknown whether iron dyshomeostasis is a cause, or consequence, of neurodegenerative pathology, but there is evidence that tau and APP may play physiological roles in regulating cellular iron transport.

Tau and APP play a role in physiological iron transport

Whilst the role of Aβ in regulating iron homeostasis is unclear, APP has been proposed to have iron-export ferroxidase activity and interacts with, and stabilises, a major iron transport protein, ferroportin [16, 63]. Indeed, APP−/− neurons retain more iron [63] and APP−/− mice show vulnerability to oxidative damage from dietary iron [63] and exhibit exaggerated age-dependent iron accumulation in the brain and liver [16]. Tau may also regulate iron transport, likely through mediating transport of APP to ferroportin [145]. Lei et al. found that MAPT−/− mice exhibit age-dependent iron accumulation associated with neurodegeneration, cognitive deficits, and parkinsonian-like motor deficits [145]. These deficits were rescued by treatment of aged MAPT−/− mice with the iron chelator clioquinol [144]. Interestingly, they also found that tau levels were reduced by ~40% in the substantia nigra of individuals with PD [145], and the authors hypothesise that loss of tau may contribute to the extensive iron accumulation reported in this brain region in PD. The same group reported that lithium-mediated reduction of tau in wild-type mice, or primary cortical neurons, results in iron accumulation in the brain and reduced cellular iron efflux [143]. Taken together, the effects of tau-lowering therapeutics on iron homeostasis should be carefully considered when targeting tau in AD. As iron chelation has been shown to be beneficial in a MAPT−/− mouse model [144], potentially detrimental side effects may be avoided by a combinatorial approach targeting both tau and iron dyshomeostasis.

The role of tau and Aβ in the nucleus

Tau is located at the nucleus and interacts with oligonucleotides

Whilst the majority of tau protein is located in the cytoplasm, there is clear evidence for nuclear association of tau in cell lines [156, 165, 234], primary neurons [11], and in mouse [267] and human [68, 216] brain tissue. Nuclear tau is mostly unphosphorylated [246] and is often localised to the nucleolar border, co-localising with constitutive heterochromatin [169] and ribosomal DNA (rDNA) [226]. In vitro, tau readily binds RNA [31] and DNA [39, 275]. Tau binds the minor groove of DNA, in a manner analogous to histones,
via its proline-rich domain and microtubule-binding domain R2 [39, 275]. Tau’s ability to bind nucleic acids is disrupted by hyperphosphorylation [161], raising the possibility that such changes during disease may result in loss of function.

**Tau protects DNA from damage**

Neurons continuously face the harmful effects of oxidative stress and evidence points to a key role for tau in preventing DNA damage and promoting repair [267]. Cellular stress, induced by heat shock or reactive oxygen species (ROS), results in dephosphorylation of tau, translocation to the nucleus [246, 267] and increases the capacity for tau to bind DNA [246]. In vitro, tau protects DNA from thermal denaturation, DNase digestion, and ROS-mediated damage [39, 275]. Hyperphosphorylation prevents tau from binding DNA, resulting in DNA breakage and deficient repair under experimental stress conditions [161]. Whilst primary neuronal cultures from wild-type mice are resistant to hyperthermic conditions, DNA breaks caused by extensive heat shock become evident in tau-deficient neurons, damage which can be rescued by overexpression of human tau targeted to the nucleus [246]. In vivo, MAPT−/− mice show increased DNA fragmentation under physiological conditions and are highly susceptible to DNA breakage after hyperthermic stress [267]. MAPT−/− mice also show delayed repair of double-strand breaks after heat shock which was especially evident in the CA1 hippocampal subfield [267]. Caution may, therefore, be required to ensure that tau-lowering therapies do not increase neuronal susceptibility to DNA damage.

**Tau maintains chromosomal stability**

Cells from individuals with MAPT mutations consistently show chromosomal aberrations, including breakages, gaps, aneuploidies, and translocations [222]. Interestingly, knocking out one or both copies of tau in murine splenocytes resulted in a marked increase in aneuploidy, indicating that MAPT mutations could induce dysfunction via loss of function, potentially through disruption of the mitotic spindle [88]. In MAPT−/− neurons, hallmarks of normal pericentromeric heterochromatin (clustering of H3K9me3 and HP1α) are also disrupted [165, 169], indicating a role for tau in maintaining nucleolar integrity. Pericentromeric chromatin was also found to be disrupted in AD post-mortem brain tissue, further supporting a role for tau loss of function in disease [169].

**Tau as a regulator of transcription**

In addition to maintaining genomic integrity, tau may also regulate transcription of genes involved in neuronal function. A recent paper reported that shRNA knockdown of tau in neurons greatly reduced both mRNA and protein levels of VGLUT1 [234]. Overexpressing wild-type tau, or forcing tau translocation to the nucleus, resulted in increased VGLUT1 transcription [234]. Remarkably, this effect was abolished when attempted with P301L-mutant tau, indicating a potential loss-of-function effect of this FTD-associated mutation. Tau has also been implicated in repressing transcription of a number of genes implicated in neuronal function [17], with tau depletion, resulting in upregulation of proteins such as BAF-57 (involved in neuron-specific gene repression) [11]. Additionally, tau knockdown alters rDNA transcription, although whether tau normally promotes [226] or represses [165] this process, and the implications for neuronal function, is still under debate. Overall, tau plays many roles at the nucleus and there is evidence for disruption of these functions in disease. Preserving the physiological functions of tau at the nucleus may, therefore, provide therapeutic benefit in tauopathies.

**Aβ at the nucleus - a caution for tau-lowering therapeutics?**

Whilst the APP-processing product AICD is frequently associated with the nucleus (reviewed in [47]), a nuclear role for Aβ has been less forthcoming. Exogenously applied, or transfected, Aβ can translocate to the nucleus in vitro and is found at the nucleus in adult wild-type or APP/PS1 mice [12]. Some studies have suggested that Aβ1-42 can regulate transcription, including upregulation of APP and insulin-like growth factor receptors [12, 13]. However, most studies focus on the pathological roles of Aβ in the nucleus including inducing DNA breaks [244] and increasing chromosome mis-segregation by disrupting physiological tau function [88]. The fact that Aβ induces DNA damage provides an interesting link between potential Aβ and tau pathology in disease. Perhaps, increasing Aβ-mediated DNA damage results in reactionary alterations to tau that become overwhelmed in time. With this in mind, tau-lowering therapeutics without additional targeting of Aβ may need to be carefully considered to prevent additional DNA damage resulting from the removal of physiological protection.

**Aβ and tau may function as tumour suppressors**

**Do individuals with AD have reduced incidence of cancer?**

An increasing number of studies have reported a striking inverse association between AD and many types of cancer (reviewed in [30]), with one study reporting that the risk...
of developing cancer was 50% lower in individuals with AD [188]. This effect is not thought to be simply due to individuals with cancer dying earlier in life, as there is no such inverse correlation with other age-related disorders such as vascular dementia [221]. Of note, a recent paper by Rossi et al. showed that individuals with FTD possessing an MAPT mutation have an increased risk of developing cancer [223]. Together, such findings warrant exploration of whether tau and Aβ could function physiologically as tumour suppressors.

### Aβ can act as a tumour suppressor

Aβ has been proposed to act as a tumour suppressor under a number of experimental conditions [30]. Studies demonstrate that Aβ can suppress tumour growth [201] and inhibit cancer cell proliferation [202], with Aβ dimers/trimers being stronger tumour inhibitors than pentadecamers [202]. AD transgenic mice overexpressing Aβ also demonstrate reduced growth rate of implanted glioma tumours, with the authors proposing that high levels of Aβ could inhibit neangiogenesis within the tumour mass [200]. Brothers et al. suggest that Aβ could also indirectly suppress tumour formation through intercepting oncogenic viruses, or via scavenging free metal ions, restricting availability of micronutrients required for cell proliferation [30]. It is worth noting that the majority of studies investigating Aβ as a potential tumour suppressor have used supraphysiological concentrations in their models. Therefore, it is difficult to discern whether Aβ has a role in tumour suppression at physiological concentrations in humans. A recent study found significantly decreased BACE1 expression in invasive ductal carcinoma, indicating that reduced levels of Aβ could potentially increase the proliferation rate of this aggressive tumour [284]. Counter-intuitively, increased levels of APP have been found in a number of cancers, with worse outcomes associated with higher APP levels (reviewed in [198]). Further research is, therefore, required to elucidate the contribution of Aβ and its processing pathways to cancer pathogenesis and the potential impacts of Aβ-targeting therapies on cancer risk.

### Loss of tau function may increase tumour incidence

As microtubules are crucial components of the mitotic spindle and regulate the cell cycle [82], it seems plausible that tau could play a role in tumourigenesis. Gargini et al. showed that tau expression levels vary in different cancer types and high tau expression levels correlate with increased patient survival [82]. Another study found that MAPT knockdown enhanced cell growth and invasion and suggested that tau may be a tumour-suppressive protein in clear cell renal cell carcinoma [95]. The finding that MAPT mutations increase the risk of developing cancer suggests that tau mutations may result in loss of a tumour-suppressive function [223]. On the other hand, increased MAPT expression correlates with poor prognosis and taxane (a microtubule-stabilising drug) resistance in gastric cancer [180]. It appears that tau may have different effects depending on the cancer type being studied, highlighting the heterogeneous nature of cancer and the need for further research. As with Aβ, any potential for increased risk of cancer must be carefully assessed when designing tau-targeting therapeutics for AD.

### Glucose metabolism

#### Dysregulation of insulin signalling in AD

Diabetes is a well-established risk factor for developing AD [152]. Insulin receptors are densely expressed in the hippocampus, frontal cortex, and entorhinal cortex [49], with insulin playing key roles in a number of crucial CNS processes such as synaptogenesis, synaptic remodelling [46], and regulation of memory [175]. The link between impaired insulin signalling and cognitive decline has been demonstrated in humans and animal models [25, 49]. Indeed, impaired brain glucose metabolism is an early characteristic of AD, with one study reporting that up to 81% of individuals with AD had either type 2 diabetes or impaired fasting glucose, an indicator of prediabetes [119]. Whilst direct connections between glucose metabolism, tau, and Aβ have been made, it is important to highlight that the association between AD and diabetes could be, at least in part, due to diabetes-related blood vessel damage given the strong epidemiological links between many vascular risk factors and AD [152, 176].

#### Tau regulates normal glucose metabolism

Marciniak et al. reported that MAPT−/− mice exhibit insulin resistance in the hippocampus, suggesting that tau plays a normal role in the cellular response to insulin, a function that may be lost in AD [170]. The authors propose a mechanism, whereby tau normally interacts with PTEN, a phosphatase that inhibits insulin signalling, reducing its activity [170]. Tau is expressed in the pancreas [296], and MAPT−/− mice have been shown to develop pancreatic β cell dysfunction and glucose intolerance [279]. A recent imaging study in humans found that Aβ affected tau-glucose metabolism associations [2]. This study reported that during normal ageing, small increases in tau are associated with increased glucose metabolism, but large accumulations of hyperphosphorylated tau associated with Aβ deposition correlated instead with hypometabolism, suggestive of a hormetic function for tau (Fig. 4), or Aβ-mediated dysregulation of normal tau function [2]. Interestingly, data from genome-wide...
association studies have shown that the MAPT H1 haplotype is associated with increased glucose intolerance in humans [170]. Taken together, tau likely plays a role in the regulation of homeostatic glucose metabolism. How this changes during disease, for example by loss of function caused by Aβ accumulation, or the potential effects of tau-targeting therapies on insulin signalling, requires further exploration.

**Aβ-processing enzymes regulate insulin signalling**

Whilst Aβ has been proposed to dysregulate insulin signalling [25], there is mounting evidence that its cleavage enzyme, BACE1, which is strongly expressed in the pancreas [298], plays crucial physiological roles in glucose homeostasis. Indeed, BACE1<sup>−/−</sup> mice show impaired insulin expression in the pancreas [104] and siRNA-mediated BACE1 knockdown significantly reduces insulin mRNA and protein in insulinoma cells [104]. However, another study reports that BACE1<sup>−/−</sup> mice have enhanced insulin sensitivity [177]. Notably, hyperglycaemia increases BACE1-mediated production of Aβ [142], indicative of a potentially vicious cycle between amyloid and glucose dysregulation. This also highlights the likely contribution of diseases such as diabetes mellitus to AD development and emphasises the potential of nutritional intervention strategies as a means of treating and preventing AD.

**Conclusion**

From molecular interactions with DNA to influencing complex behaviour, the physiological roles of tau (Fig. 5) and Aβ (Fig. 6) are multifaceted, dynamic, and at times, contradictory. This review emphasises the complexity of untangling physiology from pathology, as well as the wide-reaching implications, for both the brain and body, that can be induced by subtle protein alterations. Whilst the range of functions which we discuss are diverse, common themes emerge:

- The functions of tau and Aβ are influenced by their location. Shifts within the cell, expression in different cells or locations within the body, can alter the roles that these proteins play, whether they are beneficial or harmful, and how therapeutic treatments will influence function.
- Different isoforms, aggregation status, and post-translational modifications can dramatically alter the function of tau and Aβ.
- The concentrations of tau and Aβ are crucial for regulating physiological versus pathological function. This “horneric nature”, where too much or too little protein causes functional deficits, raises the likelihood of a “therapeutic sweet spot” where the physiologically optimal...
concentrations lie, outside of which may result in damage (Fig. 4).

• AD is likely a combination of both gain- and loss-of-function phenotypes. Physiological responses can become hijacked to become toxic, detrimental functions can appear, or normal functions can be lost during disease-related changes.

• Contradictory findings are common in the literature. The potential for developmental compensation in constitutive knockouts, as well as experimental differences in factors such as age, sex, and environment, will all impact outcome. Future studies testing multiple timepoints, acute versus constitutive knockdown, different genetic backgrounds, mixed-sex cohorts, and increasing comparisons between animal and human tissue will greatly clarify genuine phenotypes from experimental artefacts.

Acknowledgements

Sarah Kent is a Translational Neuroscience PhD student funded by Wellcome (108890/Z/15/Z). Tara Spires-Jones receives funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 681181), the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK, and industrial collaborative partners (none of whom had any influence over the current paper). Claire Durrant is funded by ARUK Race Against Dementia-Dyson fellowship (RADF2019A-001).

Author contributions

SAK wrote and edited the manuscript and designed the figures. TLS-J wrote and edited the manuscript. CSD planned, wrote and edited the manuscript, and designed the figures.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adalbert R, Milde S, Durrant C, Ando K, Stygelbout V, Yilmaz Z et al (2018) Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiol Aging 68:68–75. https://doi.org/10.1016/j.neurobiolaging.2018.03.033
2. Adams NJ, Lockhart SN, Li L, Jagust WJ (2019) Relationships between tau and glucose metabolism reflect alzheimer’s disease pathology in cognitively normal older adults. Cereb Cortex N Y NY 29:1997–2009. https://doi.org/10.1093/cercor/bby078

3. Ahmed T, Van der Jeugd A, Blum D, Galas M-C, D’Hooge R, Buee L et al (2014) Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 35:2474–2478. https://doi.org/10.1016/j.neurobiolaging.2014.05.005

4. Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human p301s tau protein. J Neurosci 22:9340–9351. https://doi.org/10.1523/JNEUROSCI.22-21-09340.2002

5. Alzheimer’s Association (2019) 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15:321–387. https://doi.org/10.1016/j.jalz.2019.01.010

6. Amos LA (2004) Microtubule structure and its stabilisation. Org Biomol Chem 2:2153–2160. https://doi.org/10.1039/B403634D

7. Arbel-Ornath M, Hudry E, Hashimoto T, Takeda S, Kuchihhotla KV et al (2017) Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 12:27. https://doi.org/10.1186/s13024-017-0169-9

8. Arnes M, Alaniz ME, Caram JM, Caddie CJ, Lopez G, Jagust WJ et al (2019) Role of tau protein in remodeling of circuionic neuronal circuits and sleep. Front Aging Neurosci 11:320. https://doi.org/10.3389/fnagi.2019.00320

9. Ballatore C, Lee VM-Y, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672. https://doi.org/10.1038/nrn2194

10. Barucker C, Zajdeli O, Martinho M, Lasorsa A, Zimpeck H, Mocellin V et al (2019) Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00204

11. de Barreda EG, Dawson HN, Vitek MP, Avila J (2010) Tau deficiency leads to the upregulation of BAF-57, a protein involved in neuron-specific gene expression. FEBS Lett 584:2265–2270. https://doi.org/10.1016/j.febslet.2010.03.032

12. Barucker C, Harmeyer A, Weiske J, Fauler B, Albring KF, Diefenbacher K et al (2014) Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription. J Biol Chem 289:20182–20191. https://doi.org/10.1074/jbc.M114.564690

13. Barucker C, Sommer A, Beckmann G, Eravci M, Harmeyer A, Schipke CG et al (2015) Alzheimer amyloid peptide Aβ42 regulates gene expression of transcription and growth factors. J Alzheimers Dis JAD 44:613–624. https://doi.org/10.3233/JAD-141902

14. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399. https://doi.org/10.1016/0959-4388(94)90101-5

15. Beevers JE, Lai MC, Collins E, Booth HDE, Zambon F, Park TJ, Stocchetti N et al (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224. https://doi.org/10.1126/science.1161591

16. Belaidi AA, Gunn AP, Wong BX, Ayton S, Appukuttan AT, Roberts BR et al (2018) Marked age-related changes in brain iron homeostasis in amyloid protein precursor knockout mice. Neurother J Am Soc Exp Neurother 15:1055–1062. https://doi.org/10.1007/s13311-018-0656-x

17. Benelli-Mokrani H, Mansuroglu Z, Chauderlier A, Albaud B, Gentien D, Sommer S et al (2018) Genome-wide identification of genic and intergenic neuronal DNA regions bound by Tau protein under physiological and stress conditions. Nucleic Acids Res 46:11405–11422. https://doi.org/10.1093/nar/gky929

18. Besag FM (2017) Epilepsy in patients with autism: links, risks and treatment challenges. Neuropsychiatr Dis Treat 14:1–10. https://doi.org/10.2147/NDT.S120509

19. Bi M, Gladbach A, van Eersel J, Ittner A, Pribyla M, van Hummel A et al (2017) Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 8:473. https://doi.org/10.1038/s41467-016-00618-0

20. Biron KE, Dickstein DL, Gopal R, Fengifier F, Jefferies WA (2013) Cessation of neangiogenesis in alzheimer’s disease follows amyloid-beta immunization. Sci Rep 3:1354. https://doi.org/10.1038/srep01354

21. Biron KE, Dickstein DL, Gopal R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS ONE 6:e23789. https://doi.org/10.1371/journal.pone.0023789

22. Biswas S, Kalil K (2018) The microtubule-associated protein tau mediates the organization of microtubules and their dynamic exploration of actin-rich lamellipodia and filopodia of cortical growth cones. J Neurosci 38:291–307. https://doi.org/10.1523/JNEUROSCI.2281-17.2017

23. Biundo F, Prete DD, Zhang H, Arancio O, D’Adamio L (2018) A role for tau in learning, memory and synaptic plasticity. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-21596-3

24. Blockx I, Einstein S, Guns P-J, Van Audekerke J, Guggielmetti C, Zago W et al (2016) Monitoring blood-brain barrier integrity following amyloid-β immunotherapy using gadolinium-enhanced mri in a pdapp mouse model. J Alzheimers Dis JAD 54:723–735. https://doi.org/10.3233/JAD-160023

25. Bomfim TR, Forny-Germano L, Sahlter LB, Brito-Moreira J, Houzel J-C, Decker H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J Clin Invest 122:1339–1353. https://doi.org/10.1172/JCI75256

26. Born HA, Kim J-Y, Savjani RR, Dap D, Baghaini YA, Guo Q et al (2014) Genetic suppression of transgenic APP rescues hypersynchronous network activity in a mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 34:3826–3840. https://doi.org/10.1523/JNEUROSCI.5171-13.2014

27. Boscolo E, Folim M, Nico B, Grandi C, Mangieri D, Longo V et al (2007) β-amyloid angiogenic activity in vitro and in vivo. Int J Mol Med 19:581–587. https://doi.org/10.3892/ijmm.19.4.581

28. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259. https://doi.org/10.1007/BF00308809

29. Brody DL, Magnoni S, Schwette KE, Spinner ML, Esparza TJ, Stocchetti N et al (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224. https://doi.org/10.1126/science.1161591

30. Brothers HM, Gosztyla ML, Robinson SR (2018) The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s Disease. Front Neurosci. https://doi.org/10.3389/fnagi.2018.00118

31. Bryan JB, Nagele BW, Doenges KH (1975) Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc Natl Acad Sci USA 72:3570–3574

32. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci Off J Soc Neurosci 25:7709–7717. https://doi.org/10.1523/JNEUROSCI.2177-05.2005

33. Bueche Cz, Hawkes C, Garz C, Vielhaber S, Attems J, Knight RT et al (2014) Hypertension drives parenchymal β-amyloid
accumulation in the brain parenchyma. Ann Clin Transl Neurol 1:124–129. https://doi.org/10.1002/acn.3.27

34. Burdick D, Sooreshan B, Kwon M, Kosmoski J, Knauer M, Henschcn A et al (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554

35. Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B et al (2012) Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 109:8740–8745. https://doi.org/10.1073/pnas.1207111109

36. Caceres A, Kosik KS (1991) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cultured neurons. Nature 343:461–463. https://doi.org/10.1038/343461a0

37. Caceres A, Potrebic S, Kosik KS (1991) The effect of tau antisense oligonucleotides on neurite formation of cultured cerebellar macroneurons. J Neurosci Off J Soc Neurosci 11:1515–1523

38. Cai J, Qi X, Kociok N, Skosyrski S, Emilio A, Ruan Q et al (2012) δ-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med 4:980–991. https://doi.org/10.1002/emmm.201101084

39. Camero S, Benitez MJ, Barrantes A, Ayuso JM, Cuadros R, Avila J et al (2014) Tau protein provides DNA with thermodynamic and structural features which are similar to those found in histone-DNA complex. J Alzheimers Dis JAD 39:649–660. https://doi.org/10.3233/JAD-131415

40. Camero SJ, Galvin C, Alkam T, Sidhu H, Ellison J, Luna S et al (2012) Alzheimer’s-related peptide amyloid-β plays a conserved role in angiogenesis. PLoS ONE 7:e39598. https://doi.org/10.1371/journal.pone.0039598

41. Cantero JL, Hita-Yañez E, Moreno-Lopez B, Portillo F, Avila J (2010) Tau protein role in sleep-wake cycle. J Alzheimers Dis JAD 21:411–421. https://doi.org/10.3233/JAD-2010-100285

42. Chávez-Gutierréz L, Bammen L, Benilova I, Vandersteen A, Benurwar M, Borgers M et al (2012) The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J 31:2261–2274. https://doi.org/10.1038/emboj.2012.79

43. Chen M, Inestrosa NC, Ross GS, Fernandez HL (1995) Platelets are the primary source of amyloid beta-peptide in human blood. Biochim Biophys Res Commun 213:96–103. https://doi.org/10.1006/bbrc.1995.2103

44. Chen Q, Zhou Z, Zhang L, Wang Y, Zhang Y, Zhong M et al (2012) Tau protein is involved in morphological plasticity in hippocampal neurons in response to BDNF. Neurochem Int 60:233–242. https://doi.org/10.1016/j.neuint.2011.12.013

45. Cheng JS, Craft R, Yu G-Q, Ho K, Wang X, Mohan G et al (2014) Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice. PLoS ONE 9:e115765. https://doi.org/10.1371/journal.pone.0115765

46. Chiu S-L, Chen C-M, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58:708–719. https://doi.org/10.1016/j.neuron.2008.04.014

47. Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. Neuronomol Med 12:1–12. https://doi.org/10.1007/s12017-009-8104-x

48. Cieri D, Micchetti P, Lalloz F, D’Onofrio B, Berto P, Grinzato A et al (2018) Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. Biochim Biophys Acta BBA 1864:3247–3256. https://doi.org/10.1016/j.bbadis.2018.07.011

49. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment. Arch Neurol 69:29–38. https://doi.org/10.1001/archneurol.2011.233

50. Criado-Marrero M, Sabbagh JJ, Jones MR, Chaput D, Dickey CA, Blair LJ (2020) Hippocampal neurogenesis is enhanced in adult tau deficient mice. Cells. https://doi.org/10.3390/cells9010210

51. Cunyong K, Huffmire D, Ethell DW, Cameron DJ (2013) Amyloid-β increases capillary bed density in the adult zebrafish retina. Invest Ophthalmol Vis Sci 54:1516–1521. https://doi.org/10.1167/iovs.12-10821

52. Davies C, Spires-Jones TL (2018) Complementing tau: new data show that the complement system is involved in degeneration in tauopathies. Neuron 100:1267–1269. https://doi.org/10.1016/j.neuron.2018.12.003

53. Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G et al (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90:1–13. https://doi.org/10.1016/s0306-4522(98)00410-2

54. Dawson HN, Ferreira A, Oyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114:1179–1187

55. De Strooper B, Aynaudt W, Cuppers P, Saftig P, Crasstsaerts K, Mumm JS et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522. https://doi.org/10.1038/19083

56. DeKosky ST, Schell SW (1990) Synapse loss in frontal cortex biopises in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

57. Derby CA, Katz MJ, Lipton RB, Hall CB (2017) Trends in dementia incidence in a birth cohort analysis of the Einstein Aging Study. JAMA Neurol 74:1345–1351. https://doi.org/10.1001/jamaneurol.2017.1964

58. Desai BS, Schneider JA, Li J-L, Carvey PM, Hendey B (2009) Evidence of angiogenic vessels in Alzheimer’s disease. J Neurotransm Vienna Austria 116:587–597. https://doi.org/10.1007/s00702-009-0226-9

59. DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR et al (2013) Antisense reduction of tau in adult mice protects against seizures. J Neurosci 33:12887–12897. https://doi.org/10.1523/JNEUROSCI.2107-13.2013

60. Dierich M, Hartmann S, Dietrich N, Moeser P, Brede F, Johnsson Chacko L et al (2019) β-Secretase BACE1 is required for normal cochlear function. J Neurosci 39:9013–9027. https://doi.org/10.1523/JNEUROSCI.0028-19.2019

61. Dixit R, Ross JL, Goldman YE, Holzbaur ELF (2008) Differential regulation of dynnein and kinesin motor proteins by tau. Science 319:1086–1089. https://doi.org/10.1126/science.1152993

62. DUCHSEL DN, Hyman AA, Cobb MH, Kirschner MW (1992) Mutation of the dynamin instability of tubulin assembly by a microtubule-associated protein tau. Mol Biol Cell 3:1141–1154

63. Duce JA, Tsatsanis A, Catter MA, James SA, Robb E, Wilt K et al (2010) Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867. https://doi.org/10.1016/j.cell.2010.08.014

64. Durrant CS, Kerscher K, Sheppard O, Coleman MP, Ozen I (2020) Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis 11:1–15. https://doi.org/10.1038/s41419-020-2288-4

65. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow EM et al (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s Disease. J Cell Biol 143:777–794
66. Eckert A, Schmitt K, Götz J (2011) Mitochondrial dysfunction: the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res Ther 3:15. doi: 10.1186/alzr74

67. Edwards G, Zhao J, Dash PK, Soto C, Moreno-Gonzalez I (2019) Traumatic brain injury induces tau aggregation and spreading. J Neurotrauma 37:80–92. https://doi.org/10.1089/neu.2018.6348

68. Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli RN et al (2018) Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 99:925–940. e7. doi: 10.1016/j.neuron.2018.07.039

69. Elskalani O, Khan I, Morici M, Matthysen C, Sabale M, Martin RN et al (2018) Oligomeric and fibrillary amyloid beta 42 induce platelet aggregation partially through GPVI. Platelets 29:415–420. https://doi.org/10.1080/09537104.2017.1401057

70. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T et al (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248:1122–1124. doi: 10.1126/science.2111583

71. Evans W, Fung HC, Steele J, Eerola J, Tienari P, Pittman A et al (2004) The tau h2 haplotype is almost exclusively Caucasian in origin. Neurosci Lett 369:183–185. doi: 10.1016/j.neulet.2004.05.119

72. Farah MH, Pan BH, Hoffman PN, Ferraris D, Tsukamoto T, Nguyen T et al (2011) Reduced BACE1 activity enhances clearance of myelin debris and regeneration of axons in the injured peripheral nervous system. J Neurosci 31:5744–5754. https://doi.org/10.1523/JNEUROSCI.6810-10.2011

73. Ferrer I, Andrés-Benito P, Zelaya MV, Aguirre MEE, Carmona M, Ausín K et al (2020) Familial glioblastoma glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypic mixed neuronal and glial tauopathy. Acta Neuropathol (Berl) 139:735–771. https://doi.org/10.1007/s00401-019-02122-9

74. Filser S, Osvesjan SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C et al (2015) Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 77:729–739. https://doi.org/10.1016/j.biopsych.2014.10.013

75. Fischer I, Baas PW (2020) Resurrecting the mysteries of big tau. Trends Neurosci 43:493–504. https://doi.org/10.1016/j.tins.2020.07.007

76. Fischer VV, Siddiqi A, Yusufaly Y (1990) Altered angioarchitecture in selected areas of brains with Alzheimer’s disease. Acta Neuropathol (Berl) 79:672–679. https://doi.org/10.1007/bf00294246

77. Frank S, Clavaguera F, Tolnay M (2007) Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol (Berl) 115:39–53. https://doi.org/10.1007/s00401-007-0291-9

78. Fuster-Matanzo A, de Barreda EG, Dawson HN, Vitek MP, Avila J, Hernández F (2009) Function of tau protein in adult newborn neurons. FEBS Lett 583:3063–3068. https://doi.org/10.1016/j.febslet.2009.08.017

79. Gao L, Tse S-W, Conrad C, Andreasis A (2005) Saitohin, which is nested in the tau locus and confers allele-specific susceptibility to several neurodegenerative diseases, interacts with peroxiredoxin 6. J Biol Chem 280:39268–39272. https://doi.org/10.1074/jbc.M506116200

80. Garcia-Alloza M, Gregory J, Kuchibhotla KV, Fine S, Wei Y, Ayata C et al (2011) Cerebrovascular lesions induce transient β-amyloid deposition. Brain J Neurol 134:3697–3707. https://doi.org/10.1093/brain/awr300

81. Garcia-Osta A, Alberini CM (2009) Amyloid beta mediates memory formation. Learn Mem 16:267–272. https://doi.org/10.1101/lm.1310209

82. Gargini R, Segura-Collar B, Sánchez-Gómez P (2019) Novel functions of the neurodegenerative-related gene tau in cancer. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00231

83. Gilley J, Seeereream A, Ando K, Mosely S, Andrews S, Kerschensteiner M et al (2012) Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse. Neurobiol Aging 33:621.e1–621.e15. https://doi.org/10.1016/j.neurobiolaging.2011.02.014

84. Golgabder D, Lerman MF, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235:877–880. https://doi.org/10.1126/science.3810169

85. Golovayashkina N, Penazzi L, Battalore C, Smith AB, Bakota L, Brandt R (2015) Region-specific dendritic simplification induced by Aβ, mediated by tau via dysregulation of microtubule dynamics: a mechanistic distinct event from other neurodegenerative processes. Mol Neurodegener 10:60. https://doi.org/10.1186/s13024-015-0049-0

86. Gonzáles RA, Wijesekara N, Fraser PE, De Felice FG (2020) Behavioral Abnormalities in Knockout and Humanized Tau Mice. Front Endocrinol. https://doi.org/10.3389/fendo.2020.00124

87. Gosztyla ML, Brothers HM, Robinson SR (2018) Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence. J Alzheimers Dis JAD 62:1495–1506. https://doi.org/10.3233/JAD-171133

88. Graham A, Padmanabhan J, Norden M, Potter H (2010) Alzheimer Aβ peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP. Mol Biol Cell 21:511–520. https://doi.org/10.1091/mbc.E09-10-0850

89. Grant JL, Ghosn EEB, Axtell RC, Herges K, Kuipers HF, Woodling NS et al (2012) Reversal of paralysis and reduced inflammation from peripheral administration of β-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis. Sci Transl Med 4:145ra105. https://doi.org/10.1126/scitranslmed.3004145

90. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS Lond Engl 19:407–411. https://doi.org/10.1097/01.aids.0000161770.06158.5c

91. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F et al (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci 96:742–747. https://doi.org/10.1073/pnas.96.2.742

92. Gulisano W, Melone M, Ripoli C, Tropea MR, Puma DDL, Giunta S et al (2019) Neuromodulatory action of picomolar extracellular α42 oligomers on presynaptic and postsynaptic mechanisms underlying synaptic function and memory. J Neurosci 39:5986–6000. https://doi.org/10.1523/JNEUROSCI.0163-19.2019

93. Gumucio A, Lannfelt L, Nilsson LN (2013) Lack of exon 10 in the murine tau gene results in mild sensorimotor defects with aging. BMC Neurosci 14:148. https://doi.org/10.1186/1471-2202-14-148

94. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol (Berl) 133:665–704. https://doi.org/10.1007/s00401-017-1707-9

95. Han X, Sekino Y, Babasaki T, Goto K, Inoue S, Hayashi T et al (2020) Microtubule-associated protein tau (MAPT) is a promising independent prognostic marker and tumor suppressive protein in clear cell renal cell carcinoma. Urol Oncol 38:605.e9–605.e17. https://doi.org/10.1016/j.urolonc.2020.02.010

96. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T et al (1994) Altered microtubule organization in small-calibre
axons of mice lacking tau protein. Nature 369:488–491. https://doi.org/10.1038/369488a0
97. Harwell CS, Coleman MP (2016) Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegener 11:44. https://doi.org/10.1186/s13245-016-0110-7
98. Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Müller WE (2006) Mitochondrial dysfunction in sporadic and genetic Alzheimer’s disease. Exp Gerontol 41:668–673. https://doi.org/10.1016/j.exger.2006.03.012
99. He Y, Wei M, Wu Y, Qin H, Li W, Ma X et al (2019) Amyloid β oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate. Nat Commun 10:1193. https://doi.org/10.1038/s41467-019-09114-z
100. Heftter D, Draguhn A (2017) APP as a protective factor in acute neuronal insults. Front Mol Neurosci. 2017:0022
101. Hellström-Lindahl E, Viitanen M, Marutle A (2009) Comparison of Aβ levels in the brain of familial and sporadic Alzheimer’s disease. Neurochem Int 55:243–252. https://doi.org/10.1016/j.neuint.2009.03.007
102. Hernández-Vega A, Braun M, Scharrell L, Jahnel M, Wegmann et al (2017) Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep 20:2304–2312. https://doi.org/10.1016/j.celrep.2017.08.042
103. Hoffmeister A, Tuennemann J, Sommerer I, Mössner J, Rittger A, Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397. https://doi.org/10.1016/j.cell.2010.06.036
104. Hoffmeister A, Tuennemann J, Sommerer I, Mössner J, Rittger A, Schleinitz D et al (2013) Genetic and biochemical evidence for a functional role of BACE1 in the regulation of insulin mRNA expression. Obesity 21:E626–E633. https://doi.org/10.1002/oby.20482
105. Holth JK, Bomben VC, Reed JG, Inoue T, Younkin L, Younkin SG et al (2013) Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J Neurosci Off J Soc Neurosci 33:1651–1659. https://doi.org/10.1523/JNEUROSCI.3191-12.2013
106. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. https://doi.org/10.1126/science.aad8373
107. Hong X-P, Peng C-X, Wei W, Tian Q, Liu Y-H, Yao X-Q et al (2010) Essential role of tau phosphorylation in adult hippocampal neurogenesis. Hippocampus 20:1339–1349. https://doi.org/10.1002/hipo.20712
108. Houlden H, Baker M, Morris HR, MacDonald N, Pickering-Brown S et al (2001) Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 56:1702–1706. https://doi.org/10.1212/wnl.56.12.1702
109. Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB et al (2008) Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J 22:2970–2980. https://doi.org/10.1096/fasebj.08-106666
110. Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD et al (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525. https://doi.org/10.1038/nn1797
111. Hu X, Hu J, Dai L, Trapp B, Yan R (2015) Axonal and schwann cell BACE1 is equally required for remyelination of peripheral nerves. J Neurosci 35:3806–3814. https://doi.org/10.1523/JNEUROSCI.5207-14.2015
112. Hu X, Zhou X, He W, Yang J, Xiong W, Wong P et al (2010) BACE1 deficiency causes altered neuronal activity and neurodegeneration. J Neurosci 30:8819–8829. https://doi.org/10.1523/JNEUROSCI.1334-10.2010
113. van Hummel A, Blau M, Ippati S, van der Hoven J, Volkerling A, Lee WS et al (2016) No overt deficits in aged tau-deficient C57Bl/6. Mapttm1(EGFP)Kit GFP knockout mice. PLoS ONE 11:e0163236. https://doi.org/10.1371/journal.pone.0163236
114. Ikegami S, Harada A, Hirokawa N (2000) Muscle weakness, hyperactivity, and impairment in fear conditioning in tau-deficient mice. Neurosci Lett 279:129–132. https://doi.org/10.1016/s0304-3900(99)00964-7
115. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet Lond Engl 2:421–426. https://doi.org/10.1016/s0140-6736(86)92134-3
116. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Essential role of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397. https://doi.org/10.1016/j.cell.2010.06.036
117. Jackson J, Bianco G, Rosa AO, Cowan K, Bond P, Anichtchik O et al (2018) White matter tauopathy: transient functional loss and novel myelin remodeling. Glia 66:813–827. https://doi.org/10.1002/glia.23286
118. Janning D, Igaev M, Sündermann F, Brühmann J, Beutel O, Heinisch JJ et al (2014) Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol Biol Cell 25:3541–3551. https://doi.org/10.1091/mbc.E14-06-1099
119. Janse J, Laerdke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481. https://doi.org/10.2337/diabetes.53.2.474
120. Joseph M, Anglada-Huget M, Paesler K, Mandelkow E, Mandellkow E-M (2017) Anti-aggregant tau mutant promotes neurogenesis. Mol Neurodegener 12:88. https://doi.org/10.1186/s13024-017-0230-8
121. Joseph-Mathurin N, Dorieux O, Trouche SG, Boutajangout A, Kraska A, Fontès P et al (2013) Amyloid beta immunization worsens iron deposits in the choroid plexus and cerebral microbleeds. Neurobiol Aging 34:2613–2622. https://doi.org/10.1016/j.neurobiolaging.2013.05.013
122. Jul P, Bolbracht C, de Jong IEM, Helboe L, Elvang AB, Pedersen JT (2016) Hyperactivity with agitative-like behavior in a mouse tauopathy model. J Alzheimers Dis JAD 49:783–795. https://doi.org/10.3233/JAD-150292
123. Kamenez F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Ivatsubo T et al (2003) APP processing and synaptic function. Neuron 37:925–937. https://doi.org/10.1016/s0896-9277(03)00124-7
124. Kanaan NM, Morfini GA, LaPointe NE, Pigino GF, Patterson KR, Song Y et al (2011) Pathogenic forms of tau inhibit kinase- and calcium-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci Off J Soc Neurosci 31:9858–9868. https://doi.org/10.1523/JNEUROSCI.0560-11.2011
125. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH et al (1987) The precursor of Alzheimer’s disease amyloid Aβ protein resembles a cell-surface receptor. Nature 325:733–736. https://doi.org/10.1038/325733a0
126. Kawahara M (2010) Neurototoxicity of β-amyloid protein: oligomerization, channel formation, and calcium dyshomeostasis. Curr Pharm Des 16:2779–2789. https://doi.org/10.2174/138161210793176545
127. Keaney J, Walsh DM, O’Malley T, Hudson N, Croisile DE, Loftus T et al (2015) Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci Adv 1:e1500472. https://doi.org/10.1126/sciadv.1500472
128. Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S et al (2014) Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond B Biol Sci 369:20130144. https://doi.org/10.1098/rstb.2013.0144

129. Klein C, Kramer E-M, Cardine A-M, Schraven B, Brandt R, Trotter J (2002) Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J Neurosci Off J Soc Neurosci 22:698–707

130. Kobayashi D, Zeller M, Cole T, Buttini M, McConlogue L, Sinha S et al (2008) BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiol Aging 29:861–873. https://doi.org/10.1016/j.neurobiolaging.2007.01.002

131. Kobayashi S, Tanaka T, Soeda Y, Takashima A (2019) Enhanced tau protein translation by hyper-excitation. Front Aging Neurosci 11:322. https://doi.org/10.3389/fnagi.2019.00322

132. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M et al (2009) Oligomeric amyloid associates with postsynaptic densities and correlates with excitatory synaptic loss near senile plaques. Proc Natl Acad Sci 106:4012–4017. https://doi.org/10.1073/pnas.0811698106

133. Koike MA, Lin AJ, Pham J, Nguyen E, Yeh JJ, Rahimian R et al (2012) APP knockout mice experience acute mortality as the result of ischemia. PLoS ONE 7:e42665. https://doi.org/10.1371/journal.pone.0042665

134. Komuro Y, Xu G, Bhaskar K, Lamb BT (2015) Human tau expression reduces adult neurogenesis in a mouse model of tauopathy. Neurobiol Aging 36:2034–2042. https://doi.org/10.1016/j.neurobiolaging.2015.03.002

135. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke J et al (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179:2071–2082. https://doi.org/10.1016/j.ajpath.2011.07.004

136. Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048

137. Ksixak-Reding H, Binder LI, Yen SH (1988) Immunochemical and biochemical characterization of tau proteins in normal and Alzheimer’s disease brains with Alz 50 and Tau-1. J Biol Chem 263:7948–7953

138. Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker J et al (2017) Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 22:396–406. https://doi.org/10.1038/mp.2016.96

139. Lin W-L, Zehr C, Lewis J, Hutton M, Yen S-H, Dickson DW (2005) Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau. J Neu rocytol 34:397–410. https://doi.org/10.1007/s10686-006-8726-0

140. Liu CA, Lee G, Jay DG (1999) Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskel 43:232–242. https://doi.org/10.1002/(SICI)1097-0169(1999033)43:3<232::AID-CM6>3.0.CO;2-7

141. Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ (2019) A cellular complex of BACE1 and y-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol 218:644–663. https://doi.org/10.1083/jcb.201806205

142. Livingstone G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D et al (2017) Dementia prevention, intervention, and care. The Lancet 390:2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

143. Looke DJ, Pocivavsek A, Moussa CE-H, Thompson R, Matsuoka Y et al (2009) Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 15:377–379. https://doi.org/10.1016/j.nm.2019.09.001

144. López-Toledano MA, Shelanski ML (2004) Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci Off J Soc Neurosci 24:5439–5444. https://doi.org/10.1523/JNEUROSCI.0974-04.2004

145. López-Toledano MA, Shelanski ML (2004) Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci Off J Soc Neurosci 24:5439–5444. https://doi.org/10.1523/JNEUROSCI.0974-04.2004

146. LoPresti P (2002) Regulation and differential expression of tau mRNA isoforms as oligodendrocytes mature in vivo: implications for myelination. Glia 37:250–257. https://doi.org/10.1002/glia.10035
160. LoPresti P (2015) Inducible expression of a truncated form of tau in oligodendrocytes elicits gait abnormalities and a decrease in myelin: implications for selective CNS degenerative diseases. Neurochem Res 40:2188–2199. https://doi.org/10.1007/s11064-015-1707-x

161. Lu Y, He H-J, Zhou J, Miao J-Y, Lu J, He Y-G et al (2013) Hyperphosphorylation results in tau dysfunction in DNA folding and protection. J Alzheimer’s Dis 37:551–563. https://doi.org/10.3233/JAD-130602

162. Lukiw WJ, Cui JG, Yuan LY, Bhattacharjee PS, Corkern M, Clement C et al (2010) Acyclovir or AcP42 peptides attenuate HSV-1-induced miRNA-146a levels in human primary brain cells. NeuroReport 21:922–927. https://doi.org/10.1097/WNR.0b013e32833da51a

163. Luna S, Cameron DJ, Ethell DW (2013) Amyloid-β and APP deficiencies cause severe cerebrovascular deficits: important work for an old villain. PLoS ONE 8:e75052. https://doi.org/10.1371/journal.pone.0075052

164. Ma Q-L, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M et al (2014) Loss of MAP function leads to hippocampal synaptic loss and deficits in the morris water maze with aging. J Neurosci 34:7124–7136. https://doi.org/10.1523/JNEUROSCI.3439-13.2014

165. Maina MB, Bailey LJ, Waghi S, Biasetti L, Pollack SJ, Quinn JP et al (2018) The involvement of tau in nuclear leakage and transcription and the status response. Acta Neuropathol Commun 6:70. https://doi.org/10.1186/s40478-016-0565-6

166. Mains DM, Davidson YS, Robinson AC, Allen N, Hashimoto T, Richardson A et al (2018) Patterns and severity of vascular amyloid in Alzheimer’s disease associated with duplications and missense mutations in APP gene. Down syndrome and sporadic Alzheimer’s disease. Acta Neuropathol (Berl) 136:569–587. https://doi.org/10.1007/s00401-018-1866-3

167. Mannix RC, Zhang J, Berglass J, Qui J, Whalen MJ (2013) Beneficial effect of amyloid beta after controlled cortical impact. Brain Inj 27:743–748. https://doi.org/10.3109/02699052.2013.771797

168. Mannix RC, Zhang J, Park J, Lee C, Whalen MJ (2011) Deterimental effect of genetic inhibition of B-site APP-cleaving enzyme 1 on functional outcome after controlled cortical impact in young adult mice. J Neurotrauma 28:1855–1861. https://doi.org/10.1089/neu.2011.1759

169. Mansuroglu Z, Benelli-Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A et al (2016) Loss of Tau protein affects the structure, transcription and repair of neuronal perinuclear heterochromatin. Sci Rep 6:33047. https://doi.org/10.1038/srep33047

170. Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J et al (2017) Tau deletion promotes brain insulin resistance. J Exp Med 214:2257–2269. https://doi.org/10.1084/jem.20161731

171. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249. https://doi.org/10.1073/pnas.82.12.4245

172. Mazzon G, Menichelli A, Fabretto A, Cattaruzza T, Manganotti P (2018) A new MAPT deletion in a case of speech apraxia affecting the structure, transcription and repair of neuronal perinuclear centromeric heterochromatin. Sci Rep 6:33047. https://doi.org/10.1038/srep33047

173. Mercan Y, He H-J, Zhou J, Miao J-Y, Lu J, He Y-G et al (2013) Inducible expression of a truncated form of HSV-1-induced miRNA-146a levels in human primary brain cells. NeuroReport 21:922–927. https://doi.org/10.1097/WNR.0b013e32833da51a

174. McKeon PJ, Hunter AJ, Hamilton DL, Gallagher J, McNeilly AD, Burgess LA et al (2012) Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice. Biochem J 441:285–296. https://doi.org/10.1042/BJ20110512

175. Mendez M, Lim G (2003) Seizures in elderly patients with dementia: epidemiology and management. Drugs Aging 20:791–803. https://doi.org/10.2165/00002512-200320110-00001

176. Merchán-Rubira J, Sebastián-Serrano Á, Díaz-Hernández M, Avila J, Hernández F (2019) Peripheral nervous system effects in the PS19 tau transgenic mouse model of tauopathy. Neurosci Lett 698:204–208. https://doi.org/10.1016/j.neulet.2019.01.031

177. Miyasaka T, Sadanaga N, Yoshikawa Y, Ishikawa K, Hashimoto M, Tanaka F et al (2006) Reduced tau expression in gastric cancer can identify candidates for successful Paclitaxel treatment. Br J Cancer 94:1894–1897. https://doi.org/10.1038/sj.bjc.6603182

178. Mora H, Takio K, Ogawara M, Selkoe DJ (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer’s disease. J Biol Chem 267:17082–17086

179. Morley JE, Farr SA, Banks WA, Johnson SN, Yamada KA, Xu L (2010) A physiological role for amyloid-beta protein: enhancement of learning and memory. J Alzheimers Dis 19:441–449. https://doi.org/10.3233/JAD-2009-1230

180. Morris M, Hamito P, Adame A, Devidze N, Masliah E, Mucke L (2013) Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 34:1523–1529. https://doi.org/10.1016/j.neurobiolaging.2012.12.003

181. Mukatova-Ladinska EB, Harrington CR, Roth M, Wischik CM (1996) Alterations in tau protein metabolism during normal aging. Dement Baseline Switz 7:95–103. https://doi.org/10.1159/000106861

182. Muscito M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Cattaruzza T et al (2013) Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 81:322–328. https://doi.org/10.1212/WNL.0b013e318292c9b4

183. Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Cattaruzza T et al (2013) Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 81:322–328. https://doi.org/10.1212/WNL.0b013e318292c9b4

184. Moir RD, Lathe R, Tanzi RE (2018) The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 14:1602–1614. https://doi.org/10.1016/j.jalz.2018.06.3040

185. Morgan D, Munireddy S, Alamed J, DeLeon J, Diamond DM, Bickford P et al (2008) Apparent behavioral benefits of tau overexpression in P301L tau transgenic mice. J Alzheimers Dis JAD 15:605–614

186. Morley JE, Farr SA, Banks WA, Johnson SN, Yamada KA, Xu L (2010) A physiological role for amyloid-beta protein: enhancement of learning and memory. J Alzheimers Dis 19:441–449. https://doi.org/10.3233/JAD-2009-1230

187. Morley JE, Farr SA, Banks WA, Johnson SN, Yamada KA, Xu L (2010) A physiological role for amyloid-beta protein: enhancement of learning and memory. J Alzheimers Dis 19:441–449. https://doi.org/10.3233/JAD-2009-1230

188. Moir RD, Lathe R, Tanzi RE (2018) The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 14:1602–1614. https://doi.org/10.1016/j.jalz.2018.06.3040

189. Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Cattaruzza T et al (2013) Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 81:322–328. https://doi.org/10.1212/WNL.0b013e318292c9b4

190. Nguyen T-VV, Hayes M, Zbesko JC, Frye JB, Congrove NR, Belichenko NP et al (2018) Alzheimer’s disease amyloid and...
tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia. Acta Neuropathol Commun 6:100. https://doi.org/10.1186/s40478-018-0603-4

191. Nieto A, de Garcia EM, Avila J (1989) Altered levels of microtubule proteins in brains of Alzheimer’s disease patients. Acta Neuropathol (Berl) 78:47–51. https://doi.org/10.1007/BF00687401

192. Pajouhesh-Ganjai A, Burns MP, Pal-Ghosh S, Talvadkar G, Hokenbury NG, Stepp MA et al (2014) Inhibition of amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res 1560:73–82. https://doi.org/10.1016/j.brainres.2014.02.049

193. Pandey P, Sliker B, Peters HL, Tuli A, Herskovitz J, Smits K et al (2010) Impaired orthotopic glioma growth and vascularization in transgenic mouse models of Alzheimer’s disease. J Neurosci 30:11251–11258. https://doi.org/10.1523/JNEUROSCI.5392-05.2006

194. Ortiz-Sanz C, Gaminde-Blasco A, Valero J, Bakero I, Avila J et al (2019) Tau is required for the function of extrasynaptic NMDA receptors. Sci Rep. https://doi.org/10.1038/s41598-019-45547-8

195. Papegaey A, Eddarkaoui S, Deramecourt V, Fernandez-Gomez J et al (2016) Novel function of tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. EMBO J 35:1417–1436. https://doi.org/10.15252/embj.201593518

196. Palla-Bazarrar N, Draffin J, Cuadros R, Antonio Esteban J, Avila J (2019) Tau is required for the function of extrasynaptic NMDA receptors. Sci Rep. https://doi.org/10.1038/s41598-019-45547-8

197. Palla-Bazarrar N, Jurado-Arjona J, Navarrete M, Esteban JA, Hernández F, Ávila J et al (2016) Novel function of tau in regulating the effects of external stimuli on adult hippocampal neurogenesis. EMBO J 35:1417–1436. https://doi.org/10.15252/embj.201593518

198. Pandey P, Sliker B, Peters HL, Tuli A, Herskovitz J, Smits K et al (2016) Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 7:19430–19444. https://doi.org/10.18632/oncotarget.7103

199. Papagea A, Eddarkaoui S, Deramecourt V, Fernandez-Gomez J, Pantano P, Obriot H et al (2016) Inhibition of angiogenesis by Abeta peptides. Angiogenesis 17:399–405. https://doi.org/10.1007/s10456-016-9345-0

200. Paris D, Ganey N, Banasiak M, Laporte V, Patel N, Mullan M et al (2016) Amyloid precursor protein secretases reduces recovery after spinal cord injury. Brain Res 1560:73–82. https://doi.org/10.1016/j.brainres.2014.02.049

201. Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S et al (2004) Inhibition of angiogenesis by Abeta peptides. Angiogenesis 7:75–85. https://doi.org/10.1023/B:AGEN.0000037335.17717.bf

202. Pavliukeviciene B, Zentelyte A, Jankunec M, Valiuliene G, Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S et al (2004) Inhibition of angiogenesis by Abeta peptides. Angiogenesis 7:75–85. https://doi.org/10.1023/B:AGEN.0000037335.17717.bf

203. Pavliukeviciene B, Zentelyte A, Jankunec M, Valiuliene G, Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S et al (2004) Inhibition of angiogenesis by Abeta peptides. Angiogenesis 7:75–85. https://doi.org/10.1023/B:AGEN.0000037335.17717.bf

204. Peters F, Salihoglu H, Rodrigues E, Herzog E, Blume T, Fülscher G et al (2018) BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology. Acta Neuropathol (Berl) 135:695–710. https://doi.org/10.1007/s00404-017-1804-9

205. Pickett EK, Herrmann AG, McQueen J, Abt K, Dando O, Tulloch J et al (2019) Amyloid beta and tau cooperate to cause reversible behavioral and transcriptional deficits in a model of Alzheimer’s disease. Cell Rep 29:3592–3604.e5. https://doi.org/10.1016/j.celrep.2019.11.044

206. Pigoni M, Wanngren J, Kuhn P-H, Munro KM, Gunnens J, Takeshima H et al (2016) Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Mol Neurodegener 11:67. https://doi.org/10.1186/s13049-016-0134-7

207. Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP (2013) Physiological role of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389–394. https://doi.org/10.1038/embor.2013.15

208. Pozzel E, Elie A, Delarocche J, Stoppin-Mellet V, Bosc C, Serre L et al (2018) Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Mol Biol Cell 29:154–165. https://doi.org/10.1091/mbc.E17-06-0429

209. Puzzo D, Argyrousi EK, Staniszewska A, Zhang H, Calcagno E, Zuccarello E et al (2020) Tau is not necessary for amyloid-beta-induced synaptic and memory impairments. J Clin Invest. https://doi.org/10.1172/JCI137040

210. Puzzo D, Privitera L, Fa M, Staniszewska A, Hashimoto G, Aziz F et al (2011) Endogenous amyloid-β is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69:819–830. https://doi.org/10.1002/ana.22313

211. Puzzo D, Privitera L, Lenzki E, Fa M, Staniszewska A, Palmeri A et al (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci Off J Soc Neurosci 28:14537–14545. https://doi.org/10.1523/JNEUROSCI.2692-08.2008

212. Qi Z, Wang G, Xia P, Hou T, Zhou H, Wang T et al (2016) Effects of microtubule-associated protein tau expression on neural stem cell migration after spinal cord injury. Neural Regen Res 11:332–337. https://doi.org/10.4103/1673-5374.177744

213. Qiang L, Sun X, Austin TO, Muralidharan H, Jean DC, Liu M et al (2018) Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr Biol 28:2181–2189.e4. https://doi.org/10.1016/j.cub.2018.05.045

214. Qiang L, Yu W, Andreadis A, Luo M, Baas PW (2006) Tau protects microtubules in the axon from severing by katanin. J Neurosci 26:3120–3129. https://doi.org/10.1523/JNEUROSCI.3592-05.2006

215. Quintela-López T, Ortiz-Sanz C, Serrano-Regal MP, Gaminde-Blasco A, Valero J, Baleriola J et al (2019) Abeta oligomers promote oligendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling. Cell Death Dis 10:1–16. https://doi.org/10.1038/s41419-019-1636-8

216. Rady RM, Zinkowski RP, Binder LI (1995) Presence of tau in isolated nuclei from human brain. Neurobiol Aging 16:479–486. https://doi.org/10.1016/0197-4580(95)00023-8

217. Ramírez-Rios S, Denarier E, Prezel E, Vinit A, Stoppin-Mellet V, Devred F et al (2016) Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation-dependent mechanism. Mol Biol Cell 27:2924–2934. https://doi.org/10.1091/mbc.E16-01-0029

218. Regan P, Piers T, Yi J-H, Kim D-H, Huh S, Park SJ et al (2015) Tau phosphorylation at serine 396 residue is required for hippocampal Fyn kinase signaling. Cell Death Dis 10:1–16. https://doi.org/10.1038/s41419-019-1636-8

219. Roberson ED, Scearce-Levie K, Kalop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754. https://doi.org/10.1126/science.1141736
220. Robinson SR, Bishop GM (2002) Aβ as a bioflocculant: implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol Aging 23:1051–1072. https://doi.org/10.1016/S0197-4580(01)00342-6

221. Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP et al (2010) Cancer linked to Alzheimer disease but not vascular dementia. Neurology 74:106–112. https://doi.org/10.1212/WNL.0b013e3181c91873

222. Rossi G, Conconi D, Panzeri E, Redaelli S, Piccoli E, Paolletta L et al (2013) Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome. J Alzheimers Dis JAD 33:969–982. https://doi.org/10.3233/JAD-2012-121633

223. Rossi G, Redaelli V, Contiero P, Fabiano S, Tagliabue G, Perego P et al (2018) Tau mutations serve as a novel risk factor for cancer. Cancer Res 78:3731–3739. https://doi.org/10.1158/0008-5472.CAN-17-3175

224. Rovelet-Lecrux A, Lecourtis M, Thomas-Anterion C, Ber IL, Brice A, Fribourg T et al (2009) Partial deletion of the MAPT gene: A novel mechanism of FTDP-17. Hum Mutat 30:E591–E602. https://doi.org/10.1002/humu.20979

225. Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alfragrías P (2012) Amyloid-β Acts as a regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2. PLoS ONE 7:e43201. https://doi.org/10.1371/journal.pone.0043201

226. Samra EB, Buhagiar-Labarchède G, Machon C, Guitton J, Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alfragrías P (2012) A role for Tau protein in maintaining ribosomal DNA stability and cytidine deaminase-deficient cell survival. Nat Commun 8:1–14. https://doi.org/10.1038/ncomms7063-1

227. Sapir T, Frotscher M, Levy T, Mandelkow E-M, Reiner O (2012) Tau’s role in the developing brain: implications for intellectual disability. Hum Mol Genet 21:1681–1692. https://doi.org/10.1093/hmg/ddr603

228. Seabrook GR, Smith DW, Bowery BJ, Easter A, Reynolds T, Fitzjohn SM et al (1999) Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology 38:349–359. https://doi.org/10.1016/s0028-3908(98)00204-4

229. Seblová D, Quiroga ML, Sors F, Johnell K, Lövdén M, De Leon AP et al (2018) Thirty-year trends in dementia: a nationwide population study of Swedish inpatient records. Clin Epidemiol 10:1679–1693. https://doi.org/10.2147/CLEP.S179555

230. Seiberlich V, Bauer NG, Schwarz L, Frenich-Constant C, Goldbaum O, Richter-Landsberg C (2015) Downregulation of the microtubule associated protein tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. Glia 63:1621–1635. https://doi.org/10.1002/glia.22832

231. Shankar GM, Bloodgood TL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875. https://doi.org/10.1523/JNEUROSCI.4970-06.2007

232. Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S et al (2006) Microdilution encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 38:1032–1037. https://doi.org/10.1038/ng1858

233. Siahana V, Krattenmacher J, Hyman AA, Diez S, Hernández-Vega A et al (2019) Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat Cell Biol 21:1086–1092. https://doi.org/10.1038/s41556-019-0374-6

234. Siano G, Varisco M, Ciauzza MC, Quercioli V, Mainardi M, Ippolito C et al (2019) Tau modulates VGlut1 expression. J Mol Biol 431:873–884. https://doi.org/10.1016/j.jmb.2019.01.023

235. Smith MA, Casadesus G, Joseph JA, Perry G (2002) Amyloid-beta and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic Biol Med 33:1194–1199. https://doi.org/10.1016/s0891-5849(02)01021-3

236. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingersoll M, Hyman B et al (2010) The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE. https://doi.org/10.1371/journal.pone.0009505

237. Sotiropoulos I, Lopes AT, Pinto V, Lopes S, Carlos S, Duarte-Silva S et al (2014) Selective impact of Tau loss on nociceptive primary afferents and pain sensation. Exp Neurol 261:486–493. https://doi.org/10.1016/j.expneurol.2014.07.008

238. Sotihibundhu A, Li Q-X, Thangnipon W, Coulson EJ (2009) Abeta(1–42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiol Aging 30:1975–1985. https://doi.org/10.1016/j.neurobiaging.2008.02.004

239. Southam KA, Stennard F, Pavez C, Small DH (2019) Knockout of Amyloid β Protein Precursor (APP) expression alters synapticogenesis, neurite branching and axonal morphology of hippocampal neurons. Neurochem Res 44:1346–1355. https://doi.org/10.1007/s11064-018-2512-0

240. Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC et al (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249. https://doi.org/10.1016/S1474-4422(12)70015-7

241. Spires-Jones TL, Attems J, Thal DR (2017) Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol (Berl) 134:187–205. https://doi.org/10.1007/s00401-017-1709-7

242. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063. https://doi.org/10.1083/jcb.200108057

243. Steinbach JP, Müller U, Leist M, ZW, Nicotera P, Aguzzi A (1998) Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death Differ 5:858–866. https://doi.org/10.1038/sj.cdd.4400391

244. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K et al (2013) Physiological brain activity causes DNA double strand breaks in neurons — exacerbation by amyloid-β. Nat Neurosci 16:613–621. https://doi.org/10.1038/nn.3356

245. Sudho H, Baas PW (2011) Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet 20:763–778. https://doi.org/10.1093/hmg/ddq521

246. Sultan A, Nesselian F, Violet M, Bégard S, Loyens A, Talahari S et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575. https://doi.org/10.1074/jbc.M110.199976

247. Sündermann F, Fernandez M-P, Morgan RO (2016) An evolutionary roadmap to the microtubule-associated protein MAP Tau. BMC Genom. https://doi.org/10.1186/s12864-016-2590-9

248. Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood–brain barrier breakdown in Alzheimer’s disease and other neurodegenerative disorders. Nat Rev Neuro 14:133–150. https://doi.org/10.1038/nrn4821

249. Tai C, Chang C-W, Yu G-Q, Lopez I, Yu X, Yang X et al (2020) Tau reduction prevents key features of autism in mouse models. Neuron. https://doi.org/10.1016/j.neuron.2020.01.038

250. Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system.
system. Am J Pathol 181:1426–1435. https://doi.org/10.1016/j.ajpath.2012.06.033

251. Takahata K, Kimura Y, Sahara N, Koga S, Shimada H, Ichmise M et al (2019) PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain J Neurol 142:3265–3279. https://doi.org/10.1093/brain/awz238

252. Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150:989–1000. https://doi.org/10.1083/jcb.150.5.989

253. Tampellini D, Rahman N, Gallo EF, Huang Z, Dumont M, Takei Y, Teng J, Harada A, Hirokawa N (2000) Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 150:989–1000. https://doi.org/10.1083/jcb.150.5.989

254. Tai DCS, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM et al (2018) Defects in tau dynamics in growing axons of adult conditional BACE1 knockout mice. PLoS ONE 9:e92279. https://doi.org/10.1371/journal.pone.0092279

255. Tan DCS, Yao S, Ittner A, Bertz J, Ke YD, Ittner LM et al (2018) Generation of a new tau knockout (tau Δex1) line using CRISPR/Cas9 genome editing in mice. J Alzheimer Dis 62:571–578. https://doi.org/10.3233/JAD-171058

256. Tan R, Lam AJ, Tan T, Han J, Nowakowski DW, Vershinin M et al (2019) Microtubules gate tau condensation to spatially regulate microtubule functions. Nat Cell Biol 21:1078–1085. https://doi.org/10.1038/s41556-019-0375-5

257. Tan XL, Zheng P, Wright DK, Sun M, Brady RD, Liu S et al (2020) The genetic ablation of tau improves long-term, but not short-term, functional outcomes after experimental traumatic brain injury in mice. Brain Inj 34:131–139. https://doi.org/10.3233/BI-192915

258. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML et al (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884. https://doi.org/10.1126/science.2949367

259. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. https://doi.org/10.1002/ana.410300410

260. Thompson JT, McCormick WC, Kagan SH (2006) Traumatic brain injury in older adults: epidemiology, outcomes, and future implications. J Am Geriatr Soc 54:1590–1595. https://doi.org/10.1111/j.1532-5415.2006.00894.x

261. Tint I, Slaughter T, Fischer I, Black MM (1998) Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons. J Neurosci Off J Soc Neurosci 18:8660–8673

262. Uhlein M, Fagerberg L, Hallström BM, Lindskog C, Ösvold P, Mardonglu A et al (2015) Tissue-based map of the human proteome. Science. https://doi.org/10.1126/science.1260419

263. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendizábal EA, Denis P et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741. https://doi.org/10.1126/science.286.5440.735

264. Vassar R, Ferreira E, Tran A, Turner EC, Bellile R, Branca C et al (2018) Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits. Aging Cell 17:e12775. https://doi.org/10.1111/ace.12775

265. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendizábal EA, Denis P et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741. https://doi.org/10.1126/science.286.5440.735

266. Velazquez R, Ferreira E, Tran A, Turner EC, Bellile R, Branca C et al (2018) Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits. Aging Cell 17:e12775. https://doi.org/10.1111/ace.12775

267. Wang H, Song L, Laird F, Wong PC, Lee H-K (2014) Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice. PLoS ONE 9:e92279. https://doi.org/10.1371/journal.pone.0092279

268. Wang H, Song L, Laird F, Wong PC, Lee H-K (2014) BACE1 knockouts display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to ca3 synapses in the hippocampus. J Neurosci 28:8677–8681. https://doi.org/10.1523/JNEUROSCI.2440-08.2008

269. Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R (2010) Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 13:190–196. https://doi.org/10.1038/nn.2476

270. Wei Y, Qu M-H, Wang X-S, Chen L, Wang D-L, Liu Y et al (2008) Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation. PLoS ONE 3:540. https://doi.org/10.1371/journal.pone.000540

271. Weingartner MA, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

272. Weigler D, Davies P, Acker CM, Brosnan CF, Tsierson V, Bayewitz A et al (2012) Mice devoid of Tau have increased susceptibility to neuronal damage in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Neurophilp Exp Neurol 71:422–433. https://doi.org/10.1097/NEN.0b013e3182540d2e

273. Willem M, Selkoe DJ, Cotman CW (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243:1488–1490. https://doi.org/10.1126/science.2928783

274. Wijesekara N, Gonçalves RA, Ahrens R, De Felice FG, Fraser PE et al (2014) A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8:84. https://doi.org/10.3389/fncel.2014.00084

275. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Ritter A et al (2014) A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8:84. https://doi.org/10.3389/fncel.2014.00084

276. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Ritter A et al (2014) A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8:84. https://doi.org/10.3389/fncel.2014.00084

277. Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Ritter A et al (2014) A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8:84. https://doi.org/10.3389/fncel.2014.00084
281. Wu Y-H, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8:623–636. https://doi.org/10.1016/j.sleep.2006.11.010

282. Wu Z, Wang Z-H, Liu X, Zhang Z, Gu X, Yu SP et al (2020) Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer’s disease pathology. Prog Neurobiol 185:101730. https://doi.org/10.1016/j.pneurobio.2019.101730

283. Xu F, Schillinger JA, Sternberg MR, Johnson RE, Lee FK, Nahmias AJ et al (2002) Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988–1994. J Infect Dis 185:1019–1024. https://doi.org/10.1086/340041

284. Yaghoobi H, Azizi H, Banitalebi-Dekordi M, Mohammad Rezaei F, Arsang-Jnag S, Taheri M et al (2019) Beta-secretase 1 (BACE1) is down-regulated in invasive ductal carcinoma of breast. Rep Biochem Mol Biol 8:200–207

285. Yu S, Liu Q, Wang X, Qian T, Wang H, Zha G et al (2019) Tau modulates Schwann cell proliferation, migration and differentiation following peripheral nerve injury. J Cell Sci. https://doi.org/10.1242/jcs.222059

286. Yi S, Liu Q, Wang X, Qian T, Wang H, Zha G et al (2019) Tau modulates Schwann cell proliferation, migration and differentiation following peripheral nerve injury. J Cell Sci. https://doi.org/10.1242/jcs.222059

287. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E et al (2013) Amyloid-beta oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. Embo J 32:2920–2937. https://doi.org/10.1038/emboj.2013.207

288. Zeng M, Zhang J, Zhang W, Yao Z (2018) Demyelination takes place prior to neuronal damage following intracerebroventricular injection of amyloid beta oligomer. Neuropsychiatry 8:1770–1785. https://doi.org/10.4172/Neuropsychiatry.1000519

289. Zhang Y, Walter R, Ng P, Luong PN, Dutt S, Heuer H et al (2016) Progression of microstructural degeneration in progressive supranuclear palsy and corticobasal syndrome: a longitudinal diffusion tensor imaging study. PLoS ONE. https://doi.org/10.1371/journal.pone.0157218

290. Zhao G, Cui M-Z, Mao G, Dong Y, Tan J, Sun L et al (2005) gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem 280:37689–37697. https://doi.org/10.1074/jbc.M507993200

291. Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ et al (2017) Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun 8:15295. https://doi.org/10.1038/ncomms15295

292. Zhukareva V, Sundarraj S, Mann D, Skog M, Blennow K, Clark CM et al (2003) Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathol (Berl) 105:469–476. https://doi.org/10.1007/s00401-002-0668-8

293. Zou C, Montagna E, Shi Y, Peters F, Blazquez-Llorca L, Shi S et al (2015) Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol (Berl) 129:909–920. https://doi.org/10.1007/s00401-015-1421-4

294. Tissue expression of MAPT-Summary-The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000186868-MAPT/tissue. Accessed 23 Jun 2020.

295. Tissue expression of APP-Summary-The Human Protein Atlas. https://www.proteinatlas.org/ENSG0000142192-APP/tissue. Accessed 23 Jun 2020.

296. Tissue expression of BACE1-Summary-The Human Protein Atlas. https://www.proteinatlas.org/ENSG0000186318-BACE1/tissue. Accessed 23 Jun 2020.

297. Tissue expression of PSEN1-Summary-The Human Protein Atlas. https://www.proteinatlas.org/ENSG0000080815-PSEN1/tissue. Accessed 23 Jun 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.