Hydro-implantation versus Visco-implantation of Intraocular Lenses and Fluid Load Effect on Corneal Endothelial Cells after Uneventful Phacoemulsification

Mohamed Mohamed-Aly Ibrahim1, Omar Hassan Salama2, Mahmoud Sofy3, Sanaa Ahmed Mohamed4, Ahmed Gomaa Elmahdy1*1

1Department of Ophthalmology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt; 2Department of Ophthalmology, Al-Zahraa Hospital, Al-Azhar University, Cairo, Egypt

Abstract

Aim: The purpose of the study was to study the effect of implantation method and fluid load (aspiration time, aspiration volume) on corneal endothelium in uneventful phacoemulsification surgeries.

Methods: This study was a prospective and interventional study involved 77 eyes, 50–81 years, divided into three groups according to implantation method (on saline, Healon, or Methylcellulose). Specular microscope analysis of corneal endothelial parameters: Cell density (CD), central corneal thickness (CCT), coefficient of variation (CV), and Hexagonality (HEX) were done before and 3 months after surgery.

Results: A total of 77 eyes with cataracts were studied, and there was a significant increase in CCT and CV with a decrease in CD and HEX in all three groups. On comparing the same parameters between the three groups, there were insignificant differences regarding CCT and HEX changes. Although there was a significant change in CD, the highest loss was in the Healon group (median −0.138), followed by the saline group (median −0.118), and the lowest was in the Methyl group (median −0.075). There was a significant change in CV, showing the highest increase in the Healon group (median 0.16129) followed by the saline group (median 0.13307) and the lowest in the Methyl group (median 0.1266). There was a non-significant change in all corneal parameters among cases in each group with different aspiration volumes and times.

Conclusion: Endothelial cell loss was lowest with Methyl followed by saline, and highest with Healon implantation. Fluidics had an insignificant effect in the three groups. Saline implantation was comparable to Healon, with an insignificant difference in CD loss.

Introduction

The corneal endothelium is the cornea’s most posterior layer. It is a monolayer of uniformly shaped, polygonal squamous cells that are distributed uniformly throughout the cornea. The neural crest is formed during embryonic development [1, 2].

The loss of corneal endothelial cells, which do not divide, is only made up for by the remaining cells’ migration, expansion, and growing heterogeneity [3, 4].

Corneal endothelial cells provide an anatomical and physiological barrier between the anterior chamber and the corneal stroma. They maintain a 3.5–6 μL/h active fluid transfer from the stroma into the anterior chamber, regulating stromal hydration [5].

Corneal endothelial cells (CECs) are responsible for maintaining the cornea’s transparency, and endothelial dysfunction leads to visually disabling corneal edema. Modern phacoemulsification technologies have improved fluidics and decreased surge. In addition, modulation of parameters, such as interrupted phaco power, vacuum adjustments, and aspiration flow rates, have improved the safety and predictability of phaco surgeries [6], [7], [8], [9], [10].

Through its barrier and pump mechanisms, the corneal endothelium controls the outflow of aqueous humor (AH) to the stroma to maintain corneal transparency. However, due to their inactivity during the G1 phase of the cell cycle, corneal endothelial cells (CEC) are thought to have a restricted ability for regeneration in living organisms [11].

Investigations attributed the damage in the endothelium during phaco surgeries to many factors, including instruments, lens fragments, or an intraocular lens touching the endothelium [12], [13], [14]. Many studies and trials aimed at reducing corneal endothelial cell loss [15], [16], [17].

It is plausible to assume that individuals’ inherent hereditary characteristics, including CEC migration capacity, anterior segment configuration, and surgery-related parameters, may influence surgical results [3].
The amount of US energy and fluid flow within the anterior chamber is thought to influence the amount of damage to the corneal endothelium in the hands of skilled surgeons experienced in performing phacoemulsification [18].

While some surgeons like to use a high vacuum and flow rate to avoid the high amount of US energy generated in the eye and accelerate surgery, other surgeons use low parameters to reduce the traumatic effect of fluid turbulence [19].

Baradaran-Rafii et al. [20] compared low-vacuum and high-vacuum groups (200 mm Hg; flow rate of 20 cc/min and 400 mm Hg; flow rate of 40 cc/min, respectively). They found that the loss of endothelial cells was related to ultrasound energy rather than vacuum levels [20].

To the best of our knowledge, there is still a lack of peer-reviewed studies on the post-operative impact of fluidic load or quantity and method of IOL implantation on anterior segment structures. Therefore, we conducted a study to determine whether the implantation method or the amount of fluid load during phacoemulsification or had an impact on central corneal thickness (CCT) or corneal endothelial cell density (ECD).

Subjects and Methods

Ethical considerations

This study followed the instructions of the Al-Azhar Medical Research Ethical Committee and the Helsinki Declaration. All patients were counseled, and all subjects signed informed consent.

Study subjects

Patients with cataracts planned to do phacoemulsification and intraocular lens (IOL) implantation who agreed to be included in this study.

Patients had their preparations, examinations, and operations and followed up at Al-Azhar University Hospitals, Cairo, Egypt.

Inclusion criteria

Age-related cataract (nucleus grade I and II), clear cornea with no opacities, normal intraocular pressure, no retinal pathologies, normal appearance of the optic nerve head, and peri-papillary area were included in the study.

Exclusion criteria

Congenital cataracts, complicated cataracts, hard cataracts (Grades III and IV), known glaucomatous patients, history of intraocular or refractive surgery, previous eye trauma, history of uveitis, or chronic ocular medications were excluded from the study. Patients with operative or post-operative complications and those who failed to continue follow-up were also rolled out.

Assessment

Visual acuity assessment, slitlamp examination including biomicroscopy, examination of the pupil, and fundus examination were done for all subjects. IOP measurements using Goldmann applanation tonometer. All patients had a specular microscopic evaluation of the corneal endothelium, including central corneal thickness (CCT) [in um], cell density (CD) [cell/mm^2], coefficient of variation in cell size (CV), and percentage of hexagonal cells (HEX). We used a non-contact specular microscope (Topcon® SP1-P, Tokyo, Japan) to examine the central corneal endothelium. Panorama mode allowed three images from the central cornea to be captured, and then combined to perform a wide analysis of the central corneal endothelium. A single examiner took all measurements under dim illumination 1 day before surgery, 3 months after surgery.

Surgical procedures

Pupils were dilated (using a combination of tropicamide 1% and phenylephrine HCl 2.5% eye drops) before surgery. The same surgeon did all surgeries with local anesthesia (M. Ibrahim). A 2.8-mm superior clear corneal stab incision was then followed by viscoelastic filling of the anterior chamber. First, about 6.0 mm capsulorhexis was first fashioned, then phacoemulsification (INFINITI _vision system; Alcon, Novartis). Next, a mono-focal, foldable, hydrophilic, biconvex, and acrylic IOL (OculoFlex®, Eye Pharma, India) were implanted in the bag either using saline delivered by irrigation cannula or a viscoelastic: Either Methylcellulose (Optiflex®, hydroxypropyl Methylcellulose USP, 2.0% w/v, Moss Vision Inc, UK) or Healon (Optiflex®, Sodium hyaluronate EP 10mg/ml, Moss Vision Inc, UK). Finally, the corneal wound was sealed by hydration. The mean surgical time was 12.7 ± 2.8 min (range 8−17 min). Patients were then prescribed antibiotic (gatifloxacin 0.3%) and steroid (prednisolone acetate 1%) eye drops q.i.d for 4 weeks.

Statistical analysis

Statistical analysis was done by IBM SPSS statistics (V. 26.0, IBM Corp., USA, 2019) [21]. Data were explained as median and percentiles for quantitative, non-parametric data, in addition to both number and percentage for categorized data [22].
The following tests were used:

1. Wilcoxon Rank Sum test for comparison between two independent groups for non-parametric data.
2. Wilcoxon signed-rank test comparing two dependent groups for non-parametric data.
3. Kruskal Wallis test for comparison between more than two patient groups for non-parametric data.
4. Ranked spearman correlation test for correlation between non-parametric data.

The error probability at 0.05 was considered significant, while at 0.01 and 0.001 were considered highly significant.

Results

There was a highly significant increase in CCT and coefficient of variation and a decrease in CD and Hexagonality among cases in all three groups (Tables 1-3).

On comparing the same parameters between the three groups, there was no significant difference regarding changes in CCT and hexagonality. In contrast, there was a highly significant change in cell density (CD), showing the highest loss in Healon group (median −0.1388) followed by the saline group (median −0.1185) and lowest in the methyl group (median −0.0754). In addition, there was a significant change in the coefficient of variation (CV), showing the highest increase in Healon group (median 0.16129) followed by the Saline group (median 0.13307) and lowest in the Methyl group (median 0.1266) (Table 4).

There was a highly significant difference in aspiration volume among the 3 groups showing the highest increase in the Saline group (median 0.17), followed by Healon group (median 0.15) and lowest in the methyl group (median 0.12). The rest of the parameters showed non-significant change (Table 5).

As we required more fluid volume for the Saline and methyl groups, we evaluated the effect of fluid load on the cornea: There was a non-significant change in all corneal parameters among cases in each group with different aspiration volumes and time (Tables 6-8). In addition, though the Saline group showed higher US time, both US time and torsion time had a non-significant effect on the cornea (Table 9).

On comparing Saline implantation to methyl implantation, there was a significantly more loss of endothelial cells and a highly significant aspiration volume with Saline (Table 10). On comparing Saline implantation to Healon implantation, there was a non-significant difference in loss of endothelial cells and still a highly significant aspiration volume with Saline (Table 11). In comparing methyl implantation to Healon implantation, there was a significant increase in CCT, a highly significant loss of endothelial cells with Healon, and a non-significant change in aspiration volume between the two groups (Table 12).

Implantation on saline causes significantly more endothelial cell loss than on Methyl and non-significant loss compared to Healon. Conversely, implantation on Healon causes more significant cell loss than Methyl (Tables 11 and 12).

Discussion

Damage to the corneal endothelium can result from many factors, including anything that touches the
back of the cornea, such as phaco tip, lens debris, and IOLs. It was shown that dispersive viscoelastic has more effective protection and barrier effect from air bubbles than cohesive viscoelastic. Dispersive viscoelastic and mainly viscoat® are used because of the ability to remain in the anterior chamber even when exposed to irrigation–aspiration forces that can effectively remove cohesive OVDs. Viscoat® was shown to protect against air bubble damage during phacoemulsification because of its ability to remain on the corneal endothelium during this procedure [23], [24], [25], [26], [27], [28].

Theoretically, the ideal viscoelastic material should be easily removable from the anterior chamber by the end of surgery to prevent the possible post-operative spike of intraocular pressure and inflammation, which carries the risk of more endothelial cell damage [29].

Holzer et al. compared 5 viscoelastic: Healon5 (sodium hyaluronate 2.3%), HealonGV (sodium hyaluronate 1.4%), OcuCoat, and Celoftal (hydroxypropyl Methylcellulose 2.0%), and Viscosafe® (sodium hyaluronate 3.0%–chondroitin sulfate 4.0%), in 81 eyes and found that endothelial cell loss occurred in all five types, with the lowest in the Healon5 group, with no significant difference in IOP in all groups [30].

The authors described the hydro-implantation technique where they used OVD only during capsulorhexis and not in any other stage of cataract surgery. They compared the advantages and disadvantages of this technique [31], [32]. These studies found that OVD in cataract surgery was not indispensable.

Tak described the technique for hydro-implantation for inserting a foldable IOL without OVD. In his study, he compared hydro-implantation with visco-implantation and described that the depth of the anterior chamber and capsular bag were similar. There was no difference in corneal edema on the 1st post-operative day. A significantly less time was required for implantation of the lens in the hydro-implantation group (40–60s) compared to the visco-implantation group (2.4 to 4 min) [32].

In our study, we studied a total of 77 eyes with cataracts, aged 50–81 years, divided into three groups according to implantation method (Saline, Healon, or

| Table 3: Endothelial parameters in Healon group (Wilcoxon signed-rank test) |
|-------------------|-----------------|--------|---------|---------|--------|---------|
| Items | n | Median | 25 percentiles | 75 percentiles | Z | p | Significance |
| CCT | Pre-operative | 33 | 520 | 489 | 533.5 | 0.000001 | HS |
| CD | Post-operative | 33 | 532 | 502 | 558.5 | 0.000004 | HS |
| CV | Pre-operative | 33 | 2765 | 2557.5 | 3039 | 0.000020 | HS |
| CV | Post-operative | 33 | 2133 | 2041.5 | 2555.5 | 0.000001 | HS |
| HEX | Pre-operative | 33 | 36 | 31 | 39 | 0.000001 | HS |
| HEX | Post-operative | 33 | 40 | 38.5 | 42.5 | 0.000001 | HS |
| CV dC | Pre-operative | 33 | 35 | 28.5 | 37.5 | 0.000001 | HS |
| CV dC | Post-operative | 33 | 31 | 29 | 31 | 0.000001 | HS |
| CCT dC | | | | | | | |

| Table 4: Comparing different groups for age and endothelial parameters (Kruskal–Wallis test) |
|-------------------|-----------------|--------|---------|--------|---------|
| Items | Group | n | Median | 25 percentiles | 75 percentiles | H | p | Significance |
| Age | Saline | 24 | 60.5 | 53.5 | 67 | 0.35 | 0.48 | NS |
| CD | Healon | 20 | 59 | 54 | 67.5 | 0.005 | 0.787 | NS |
| CD | Methyl | 33 | 60 | 53 | 65 | 0.12 | 0.704 | NS |
| CCT pre-operative | Saline | 24 | 24 | 488 | 542.25 | 0.08 | 0.208 | NS |
| CCT pre-operative | Healon | 20 | 513 | 482.5 | 559 | 0.02 | 0.935 | NS |
| CCT pre-operative | Methyl | 33 | 520 | 489 | 533.5 | 0.01 | 0.935 | NS |
| CCT post-operative| Saline | 24 | 537 | 509.5 | 562 | 0.01 | 0.935 | NS |
| CCT post-operative| Healon | 20 | 532 | 496.25 | 566 | 0.01 | 0.935 | NS |
| CCT post-operative| Methyl | 33 | 532 | 502 | 558.5 | 0.01 | 0.935 | NS |
| CV pre-operative | Saline | 24 | 2957.5 | 2708 | 3131.5 | 0.01 | 0.935 | NS |
| CV pre-operative | Healon | 20 | 2976.5 | 2511 | 2970.75 | 0.01 | 0.935 | NS |
| CV pre-operative | Methyl | 33 | 2765 | 2575.7 | 3039 | 0.01 | 0.935 | NS |
| CV post-operative | Saline | 24 | 2540 | 2396 | 2783.25 | 0.01 | 0.935 | NS |
| CV post-operative | Healon | 20 | 2447.5 | 2281 | 2752.25 | 0.01 | 0.935 | NS |
| CV post-operative | Methyl | 33 | 2333 | 2041.5 | 2565.5 | 0.01 | 0.935 | NS |
| CV dC | Saline | 24 | 35 | 33.25 | 36.75 | 0.01 | 0.935 | NS |
| CV dC | Healon | 20 | 40 | 38.5 | 42.5 | 0.01 | 0.935 | NS |
| CV dC | Methyl | 33 | 40 | 38.5 | 42.5 | 0.01 | 0.935 | NS |
| HEX pre-operative | Saline | 24 | 33 | 28.25 | 36.75 | 0.01 | 0.935 | NS |
| HEX pre-operative | Healon | 20 | 35.5 | 33.25 | 41.5 | 0.01 | 0.935 | NS |
| HEX pre-operative | Methyl | 33 | 35 | 28.5 | 37.5 | 0.01 | 0.935 | NS |
| HEX post-operative| Saline | 24 | 29 | 22.25 | 31.75 | 0.01 | 0.935 | NS |
| HEX post-operative| Healon | 20 | 30 | 28 | 33.75 | 0.01 | 0.935 | NS |
| HEX post-operative| Methyl | 33 | 29 | 26 | 31 | 0.01 | 0.935 | NS |
| HEX dC | Saline | 24 | 24 | 31.25 | 38 | 0.01 | 0.935 | NS |
| HEX dC | Healon | 20 | 30 | 28 | 33.75 | 0.01 | 0.935 | NS |
| HEX dC | Methyl | 33 | 35 | 31 | 38 | 0.01 | 0.935 | NS |

[CCT: Central corneal thickness, CD: Cell density, CV: Coefficient of variation, dC: Delta change, H: Test value, HEX: Hexagonality, HS: Highly significant, n: Number of cases, NS: Non-significant, S: Significant.
Methylcellulose). All patients underwent uneventful phacoemulsification with IOL implantation in the bag. In addition, all patients had a full eye examination and specular microscopic analysis of corneal endothelial parameters (CD, CV, HEX, and CCT) before and 3 months after surgery. This was in accordance with the Oxford Cataract Treatment and Evaluation Team, which suggested that endothelial cell count should be performed at least 90 days postoperatively after stabilization of cell reorganization and loss. They reached this result after examining and following up on more than 300 eyes following cataract surgery for 4 years [33].

Table 6: Correlating changes in endothelial parameters for fluidic parameters in saline group (ranked spearman correlation test)

Items	Group	n	Median	25 percentiles	75 percentiles	H	p	Significance
Aspiration volume	Saline	24	120.5	163	156.25	13.994	0.001	HS
Aspiration time	Saline	24	6.025	4.3725	7.2175	2.977	0.226	NS
	Methyl	20	5.135	4.11	6.0125	0.015	0.75	
	Healon	33	3.215	3.215	6.175			
US time	Saline	24	1.4	0.3	7.575	4.585	0.01	S
	Methyl	20	0.15	0.2	0.75			
	Healon	33	0.8	0.2	1.7			
Torsional time	Saline	24	90.65	73.325	152.475	2.547	0.28	NS
	Methyl	20	73.3	61.825	97.45			
	Healon	33	72.8	43.15	127.3			
Total US time	Saline	24	98.9	74.575	153.225	3.223	0.2	NS
	Methyl	20	73.6	62.425	98.075			
	Healon	33	73.8	43.7	128.6			

Table 7: Correlating changes in endothelial parameters for fluidic parameters in methyl group (ranked spearman correlation test)

Items	Aspiration volume	Aspiration time	
	Group	r	p
Age	0.054	0.822	NS
CCT pre-operative	0.048	0.823	NS
CCT post-operative	0.057	0.791	NS
CD pre-operative	0.175	0.406	NS
CD post-operative	0.137	0.523	NS
CV pre-operative	0.121	0.574	NS
CV post-operative	0.124	0.564	NS
CV pre-operative	0.186	0.384	NS
CV post-operative	0.154	0.472	NS
CV post-operative	0.075	0.729	NS
CV post-operative	-0.034	0.875	NS

Table 8: Correlating changes in endothelial parameters for fluidic parameters in Healon group (ranked spearman correlation test)

Items	Aspiration volume	Aspiration time	
	Group	r	p
Age	0.218	0.223	NS
CCT pre-operative	-0.234	0.19	NS
CCT post-operative	-0.224	0.211	NS
CD pre-operative	-0.08	0.66	NS
CD post-operative	-0.179	0.319	NS
CV pre-operative	-0.194	0.28	NS
CV post-operative	-0.08	0.734	NS
CV pre-operative	0.203	0.257	NS
CV post-operative	0.097	0.593	NS
CV post-operative	-0.175	0.311	NS
CV post-operative	-0.116	0.521	NS
CV post-operative	-0.214	0.232	NS
CV post-operative	-0.021	0.63	NS

No statistically significant difference was noted in IOP between the two groups, except for the 1st 24 h post-operatively, where the visco-implantation group showed higher IOP than the hydro-implantation one (p = 0.035). Total surgery time was shorter in Group 1 compared to Group 2 because of the time needed for I/A of Visco in Group 1 (p < 0.001). Better fixation of the globe during IOL implantation was another suggested advantage of hydro-implantation due to fixation by I/A. It is also safer in toric IOLs, where surgeons will not aspirate Visco from behind IOLs with less chance for rotation. No statistically significant differences in CCT and CD between both groups at each visit [34]. This was different from our results, but we did not include cases of pseudoxefoliation syndrome in our study.
We did not notice a difference in AC stability in all groups nor recorded AC reactions. Lee et al. [35] compared implantation on BSS to implantation on OVD and found no significant difference regarding endothelial cell loss, central corneal thickness, the incidence of anterior chamber reaction, myopic shift, and posterior capsule opacification. They suggested that implantation on BSS will be more useful in vitrectomized eyes with capsule opacification. One possible advantage of hydro-implantation is the lens and the posterior capsule is capsular block syndrome [36], [37]. Sim et al. [38] used IOL side rocking (judders technique) for Visco removal from behind IOL to avoid the risk of posterior capsular tear [38].

One possible advantage of hydro-implantation is good IOL optic apposition to the posterior capsule, which increases the barrier effect to the central migration of lens epithelial cells [39].

Studeny et al. [31] compared the safety of implanting a single-piece, foldable intraocular lens compared to saline due to AC fluctuations, intra-operative miosis, and zonular instability resulting from lack of vitreous support [35].

Table 9: Correlating changes in endothelial parameters for phacoemulsification parameters in saline group (ranked Superman correlation test)

Items	US time	T	p	Significance	Torsonal time	T	p	Significance	Total US time	T	p	Significance
Age	0.243	0.253	NS	0.943	NS	0.043	NS	0.38	0.087	NS		
Age	0.012	0.955	NS	0.008	0.969	NS	0.006	0.756	NS			
Age	0.033	0.878	NS	0.004	0.986	NS	0.006	0.751	NS			
Age	0.111	0.607	NS	0.015	0.945	NS	0.006	0.781	NS			
Age	0.016	0.358	NS	0.027	0.2	NS	0.292	0.166	NS			
Age	0.12	0.576	NS	0.013	0.599	NS	0.146	0.496	NS			
Age	0.0347	0.597	NS	0.031	0.542	NS	0.154	0.472	NS			
Age	0.0302	0.345	NS	0.038	0.599	NS	0.0080	0.969	NS			
Age	0.111	0.606	NS	0.128	0.553	NS	0.231	0.277	NS			
Age	0.0759	0.292	NS	0.037	0.042	S	0.389	0.006	NS			
Age	0.0656	0.0655	NS	0.041	0.0655	S	0.35	0.111	NS			
Age	0.159	0.459	NS	0.064	0.765	NS	0.107	0.062	NS			

CCT: Central corneal thickness, CD: Cell density, CV: Coefficient of variation, dC: Delta change, r: Test value, HEX: Hexagonality, n: Number of cases, NS: Non-significant, S: Significant, Z: Test value.

Table 10: Comparing saline and methyl groups for endothelial changes and fluidics (wilcoxon rank sum test)

Items	Group	n	Median	25 percentiles	75 percentiles	Z	p	Significance	
CCT dC	Saline	24	0.03688	0.01467	0.04533	0.00887	-1.226	0.22	NS
CD dC	Saline	24	-0.1185	-0.1607	-0.0952	-2.216	0.027	S	
CV dC	Methyl	20	-0.0754	-0.1374	-0.0456	0.142	0.887	NS	
CV dC	Methyl	20	0.1266	0.08108	0.2	0.142	0.887	NS	
CV dC	Methyl	20	-0.0135	-0.0193	-0.0118	0.142	0.887	NS	
CV dC	Methyl	20	0.1266	0.08108	0.2	0.142	0.887	NS	
Aspiration volume	Saline	24	120.5	103	158.25	-3.395	0.001	HS	
Aspiration volume	Methyl	20	78.25	68	92.75	-1.155	0.248	NS	
Aspiration volume	Methyl	20	5.135	4.11	6.0125	0.02111	0.34	Torsional time	

CCT: Central corneal thickness, CD: Cell density, CV: Coefficient of variation, dC: Delta change, r: Test value, HEX: Hexagonality, n: Number of cases, NS: Non-significant, S: Significant, Z: Test value.

Table 11: Comparing saline and Healon groups for endothelial changes and fluidics (wilcoxon rank sum test)

Items	Group	n	Median	25 percentiles	75 percentiles	Z	p	Significance	
CCT dC	Saline	24	0.03688	0.01467	0.04533	0.00887	-0.095	0.487	NS
CD dC	Healon	33	0.03644	0.02615	0.03532	0.00887	-0.095	0.487	NS
CV dC	Saline	24	-0.1185	-0.1607	-0.0952	-2.216	0.027	S	
CV dC	Healon	33	-0.1388	-0.1766	-0.1028	-2.264	0.024	S	
CV dC	Healon	33	0.16129	0.10811	0.24621	0.142	0.887	NS	
CV dC	Healon	33	-0.1315	-0.2143	-0.0882	-0.073	0.942	NS	
Aspiration volume	Saline	24	120.5	103	158.25	-3.395	0.001	HS	
Aspiration volume	Healon	33	76	50	116	-1.155	0.248	NS	
Aspiration volume	Healon	33	5.1	3.215	6.175	-1.155	0.248	NS	

CCT: Central corneal thickness, CD: Cell density, CV: Coefficient of variation, dC: Delta change, r: Test value, HEX: Hexagonality, n: Number of cases, NS: Non-significant, S: Significant, Z: Test value.

Table 12: Comparing methyl and Healon groups for endothelial changes and fluidics (Wilcoxon rank sum test)

Items	Group	n	Median	25 percentiles	75 percentiles	Z	p	Significance
CCT dC	Methyl	20	0.02111	0.01517	0.04245	-2.064	0.039	S
CD dC	Methyl	20	-0.0754	-0.1374	-0.0456	-2.216	0.027	S
CV dC	Healon	33	-0.1388	-0.1766	-0.1028	-2.264	0.024	S
CV dC	Methyl	20	0.16129	0.10811	0.24621	0.142	0.887	NS
CV dC	Methyl	20	-0.1539	-0.1963	-0.1028	-2.264	0.024	S
Aspiration volume	Methyl	20	76	68	92.75	-2.064	0.039	S
Aspiration volume	Healon	33	76	50	116	-1.155	0.248	NS
Aspiration volume	Healon	33	5.1	3.215	6.175	-1.155	0.248	NS

CCT: Central corneal thickness, CD: Cell density, CV: Coefficient of variation, dC: Delta change, r: Test value, HEX: Hexagonality, n: Number of cases, NS: Non-significant, S: Significant, Z: Test value.
(IOL) using BSS versus OVD in 200 eyes and reported a non-significant difference in endothelial cell loss at 1 and 6 months. In addition, they reported no increase in operative or post-operative complications in using BSS compared to standard OVD use [31].

This suggests that methyl implantation is safer for those with compromised corneal endothelium, while in healthy corneas, hydroimplantation (more economical and faster) is equivalent to Healon implantation.

Conclusion

Corneal endothelial cell loss is lowest with implantation on methylcellulose, followed by implantation on saline, and highest on using Healon. Fluidics has an insignificant effect in the three groups. When comparing Saline implantation to Healon implantation, there was a non-significant difference in the loss of endothelial cells. Therefore, saline can be used as effectively as Healon in implanting IOLs with less lens rotation. Hydro implantation is equivalent to Healon implantation but still more traumatic to corneal endothelium than methyl implantation.

References

1. Borroni D, Gadhi K, Wojcik G, Pennisi F, Vallabh NA, Galeone A, et al. The influence of speed during stripping in descemet membrane endothelial keratoplasty tissue preparation. Cornea. 2020;39(9):1086-90. https://doi.org/10.1097/ICO.0000000000002338 PMid:32301812

2. Kiss B, Findl O, Menapace R, Petternel V, Wirtitsch M, Romano V, et al. Corneal endothelial cell protection with a dispersive viscoelastic material and an irrigating solution during phacoemulsification: Low-cost versus expensive combination. J Cataract Refract Surg. 2003;29(4):733-40. https://doi.org/10.1016/s0886-3350(02)01745-5 PMid:12686241

3. Borroni D, de Lossada CR, Parekh M, Gadhi K, Bonzano C, Romano V, et al. Tips, tricks, and guides in descemet membrane endothelial keratoplasty learning curve. J Ophthalmol. 2021;2021:1819454. https://doi.org/10.1155/2021/1819454 PMid:34447591

4. Hwang HB, Lyu B, Yim HB, Lee NY. Endothelial cell loss after phacoemulsification according to different anterior chamber depths. J Ophthalmol. 2015;2015:210716. https://doi.org/10.1155/2015/210716 PMid:26417452

5. Teichmann J, Valtink M, Nitschke M, Gramm S, Funk RH, Engelmann K, et al. Tissue engineering of the corneal endothelium: A review of carrier materials. J Funct Biomater. 2013;4(4):178-208. https://doi.org/10.3390/jfb4040178 PMid:24956190

6. Fine IH, Packer M, Hoffman RS. New phacoemulsification technologies. J Cataract Refract Surg. 2002;28(6):1054-60. https://doi.org/10.1016/s0886-3350(02)01399-8 PMid:12036654

7. Mackool RJ, Brint SF. AquaLase: A new technology for cataract extraction. Curr Opin Ophthalmol. 2004;15(1):40-3. https://doi.org/10.1097/00055735-200402000-00008 PMid:14743018

8. Rose AD, Kanade V. Thermal imaging study comparing phacoemulsification with the sovereign with whitestar system to the legacy with advancec and neonoxon system. Am J Ophthalmol. 2006;141(2):322-6. https://doi.org/10.1016/j.ajo.2005.09.023 PMid:16458688

9. Ward MS, Georgescu D, Olson RJ. Effect of bottle height and aspiration rate on postocclusion surge in infiniti and millennium peristaltic phacoemulsification machines. J Cataract Refract Surg. 2008;34(8):1400-2. https://doi.org/10.1016/j.jcrs.2008.04.042 PMid:18655995

10. Wade M, Isom R, Georgescu D, Olson RJ. Efficacy of cruise control in controlling postocclusion surge with legacy and millennium venturi phacoemulsification machines. J Cataract Refract Surg. 2007;33(6):1071-5. https://doi.org/10.1016/j.jcrs.2007.02.028 PMid:17531704

11. Rocha-de-Lossada C, Rachwani-Anil R, Borroni D, Sanchez-Gonzalez JM, Esteves-Marques R, Soler-Ferrandez FL, et al. New horizons in the treatment of corneal endothelial dysfunction. J Ophthalmol. 2021;2021:6644114. https://doi.org/10.1155/2021/6644114 PMid:34306743

12. Praveen MR, Koul A, Vasavada AR, Pandita D, Dixit NV, Dahodwala FF. DisCoVisc versus the soft-shell technique using viscoat and provisc in phacoemulsification: Randomized controlled clinical trial. J Cataract Refract Surg. 2008;34(7):1145-51. https://doi.org/10.1016/j.jcrs.2008.03.019 PMid:18571083

13. Polack FM, Sugar A. The phacoemulsification procedure. II. Corneal endothelial changes. Invest Ophthalmol. 1970;15(6):458-69. PMid:931690

14. Binder PS, Sternberg H, Wickman M, Worthen DM. Corneal endothelial damage associated with phacoemulsification. Am J Ophthalmol. 1976;82(1):48-54. https://doi.org/10.1016/0002-9394(76)90663-2 PMid:937457

15. Diaz-Valle D, Sánchez JM, Castillo A, Sayagués O, Moriche M. Endothelial damage with cataract surgery techniques. J Cataract Refract Surg. 1998;24(7):951-5. https://doi.org/10.1016/s0886-3350(98)80049-7 PMid:9682116

16. Ventura AS, Wälti R, Böhnke M. Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol. 2001;85(1):18-20. https://doi.org/10.1136/bjo.85.1.18 PMid:1113705

17. Vargas LG, Holzer MP, Solomon KD, Sandoval HP, Auffarth GU, et al. Predictors of corneal endothelial dysfunction and dysfunction. J Cataract Refract Surg. 2007;33(4):622-8. PMid:17947569

18. Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996;22(8):1079-84. https://doi.org/10.1016/s0886-3350(96)80128-8
19. Verges C, Cazal J, Lavin C. Surgical strategies in patients with cataract and glaucoma. Curr Opin Ophthalmol. 2005;16(1):44-52. https://doi.org/10.1097/00055735-200502000-00008

20. Baradaran-Rafii A, Rahmati-Kamel M, Eslami M, Kiavash V, Karimian F. Effect of hydrodynamic parameters on corneal endothelial cell loss after phacoemulsification. J Cataract Refract Surg. 2009;35(4):732-7. https://doi.org/10.1016/j.jcrs.2008.12.017

21. Agha M, Abbas M, Haroun S, Mowafy A. Dual inoculation of Bradyrhizobium and Enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Not Bota Horti Agro Cluj-Nap. 2021;49(3):12461. https://doi.org/10.15835/nbha49312461

22. Maksoud M, Bekhit M, El-Sherif D, Sofy A, Sofy M. Gamma radiation induced synthesis of a novel chitosan/silver/Mn ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. Int J Biolo Macromol. 2022;194,306-316. https://doi.org/10.1083/jn.9813350(98)80017-5

23. Craig MT, Olson RJ, Mamalis N, Olson RJ. Air bubble endothelial damage during phacoemulsification in human eye bank eyes: The protective effects of healon and viscoat. J Cataract Refract Surg. 1990;10(5):597-602. https://doi.org/10.1016/s0886-3350(10)80777-8

24. Monson MC, Tamura M, Mamalis N, Olson RJ, Olson RJ. Protective effects of healon and occultoag at air bubble endothelial damage during ultrasonic agitation of the anterior chamber. J Cataract Refract Surg. 1991;17(7):613-6. https://doi.org/10.1016/s0886-3350(10)80777-8

25. Arshinoff SA, Jafari M. New classification of ophthalmic viscosurgical devices–2005. J Cataract Refract Surg. 2005;31(11):2167-71. https://doi.org/10.1016/j.jcrs.2005.08.056

26. Petroll WM, Jafari M, Lane SS, Jester J, Cavanagh HD. Quantitative assessment of ophthalmic viscosurgical device retention using in vivo confocal microscopy. J Cataract Refract Surg. 2005;31(12):2363-8. https://doi.org/10.1016/j.jcrs.2005.05.032

27. Bissen-Miyajima H. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification. J Cataract Refract Surg. 2006;32(6):1026-31. https://doi.org/10.1016/j.jcrs.2006.02.039

28. Storr-Paulsen A, Nerregaard JC, Fark G, Tårnhøj J. The influence of viscoelastic substances on the corneal endothelial cell population during cataract surgery: A prospective study of cohesive and dispersive viscoelastics. Acta Ophthalmol Scand. 2007;85(2):183-7. https://doi.org/10.1111/j.1600-0420.2006.00794.x

29. Beiko GH. Endothelial cell loss after phacoemulsification with healon5Sv. I-Visc phaco. Can J Ophthalmol. 2003;38(1):52-6. https://doi.org/10.1016/s0008-4182(03)80009-1

30. Holzer MP, Tetz MR, Auffarth GU, Welt R, Völcker HE. Effect of healon5 and 4 other viscoelastic substances on intraocular pressure and endothelium after cataract surgery. J Cataract Refract Surg. 2001;27(2):213-8. https://doi.org/10.1016/s0886-3350(00)00568-x

31. Stüdeny P, Hyndrak M, Kacerovsky M, Mojzis P, Sivekova D, Kuchymka P. Safety of hydroimplantation: A foldable intraocular lens implantation without the use of an ophthalmic viscosurgical device. Eur J Ophthalmol. 2014;24(6):850-6. https://doi.org/10.5310/ej.20040491

32. Tak H. Hydroimplantation: Foldable intraocular lens implantation without an ophthalmic viscosurgical device. J Cataract Refract Surg. 2010;36(3):377-9. https://doi.org/10.1016/j.jcrs.2009.10.042

33. Landesz M, Worst JG, Sierstersma JV, van Rij G. Correction of high myopia with the worst myopia claw intraocular lens. Vol. 11. In: Correction of High Myopia with the Worst Myopia Claw Intraocular Lens. Thorofare, NJ: SLACK Incorporated; 1995. p. 16-67.

34. Oğürel T, Oğürel R, Onaran Z, Örnek K. Safety of hydroimplantation in cataract surgery in patients with pseudoexfoliation syndrome. Int J Ophthalmol. 2017;10(5):723-7. https://doi.org/10.18240/ijo.2017.05.10

35. Lee HY, Choy YJ, Park JS. Comparison of OVD and BSS for maintaining the anterior chamber during IOL implantation. Korean J Ophthalmol. 2011;25(1):15-21. https://doi.org/10.3341/jko.2011.25.1.15

36. Miyake K, Ota I, Ichihashi S, Miyake S, Tanaka Y, Terasaki H. New classification of capsular block syndrome. J Cataract Refract Surg. 1998;24(9):1230-4. https://doi.org/10.1016/s0886-3350(98)80017-5

37. Sugiuira T, Miyauchi S, Eguchi S, Obata H, Nanba H, Fujino Y, et al. Analysis of liquid accumulated in the distended capsular bag in early postoperative capsular block syndrome. J Cataract Refract Surg. 2000;26(3):420-5. https://doi.org/10.1016/s0886-3350(99)00430-7

38. Sim BW, Amjadi S, Singh R, Bhardwaj G, Dubey R, Francis IC. Assessment of adequate removal of ophthalmic viscoelastic device with irrigation/aspiration by quantifying intraocular lens ‘judders’. Clin Exp Ophthalmol. 2013;41(5):450-4. https://doi.org/10.1111/ceo.12024

39. Apple DJ, Peng Q, Visessook N, Werner L, Pandey SK, Escobar-Gomez M, et al. Eradication of posterior capsule opacification: Documentation of a marked decrease in Nd: YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology. 2020;127(4S):S28-42. https://doi.org/10.1016/j.ophtha.2020.01.026

PMid:23208284