Genotoxic and antigenotoxic potential of the Lagenandra toxicaria Dalz. rhizome methanol extract using Allium cepa assay.

AKARSHA B
Mangalore University

KRISHNAKUMAR GULIMANE (kkgtaxo13@gmail.com)
Mangalore University https://orcid.org/0000-0002-1460-0299

Research Article

Keywords: Lagenandra toxicaria, Allium cepa assay, Genotoxicity, Antigenotoxicity, DNA integrity

DOI: https://doi.org/10.21203/rs.3.rs-179342/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

This study is the first ever approach to evaluate the possible genotoxic effect of the *Lagenandra toxicaria* rhizome methanol extract and its antigenotoxic potency against 3% H$_2$O$_2$ induced genetic damage on *Allium cepa* root tip model. The assay revealed a significant decrease in mitotic index (MI) and an increase in the percentage of clastogenicity in a time and dose-dependent manner in the roots exposed to *Lagenandra toxicaria* extract at 0.2 mg/ml, 0.5 mg/ml, 1 mg/ml, 5 mg/ml and 10 mg/ml concentration for 1, 2 and 4 hour. The ultra structures of cell surface and biochemical changes of the cells were assessed in four hour treated roots using Field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR). The higher dose of 10 mg/ml treated roots showed an evident morphological as well as biochemical changes compared to the control. The agarose gel electrophoresis showed the loss of DNA integrity in the roots that were treated with 10 mg/ml extract for four hours, where as the control showed comparatively intact DNA bands. The in situ histochemical staining by Schiff’s reagent and nitrobluetetrasolium (NBT) confirmed the increased lipid peroxidation and free radical generation in four hour treated samples. Subsequently, the possible antigenotoxic potential of the plant extract was explored at its lower doses using H$_2$O$_2$ standard assays. The H$_2$O$_2$ treatment induced nuclear lesions in 93.45 ± 2.33% cells and it was seen to be reduced significantly (50.99 ± 7.59 % and 37.13 ± 2.66 %) after the treatment with lower concentration of 0.01 mg/ml and 0.02 mg/ml extract respectively. This suggest that the *Lagenandra toxicaria* rhizome methanol extract acts as antigenotoxic agent at lower doses but at higher doses the extract induces clastogenic effects and thus acts like a janus-faced compound.

1. Introduction

Plants are the major source of traditional medicine, practised since prehistoric times. Each plant has its own chemical constituents and secondary metabolites. In Ayurveda more than 700 plant-based medicines were discussed for promoting the healthy life [26]. Traditional healers use numerous plant based remedies to treat various diseases, of which very few have been scientifically established for their mode of action. The plant based therapeutic modalities are safer and also cost effective than the synthetic drugs. The plant of interest in the present study, *Lagenandra toxicaria* is a herb of the family Araceae. It is endemic to southern India and commonly seen in semi-aquatic regions. The rhizome of the plant is used in the traditional system to treat bilious complaints and also in renal and cardiac ailments. The plant is recognized to be diuretic, carminative and used as tonic [33]. The major storage protein in the members of Araceae is lectin [41] which is used in the development of anticancer therapeutics as it can bind to the cancer cell membranes and/or receptors causing the cell to undergo apoptosis [7]. The rhizome oil is known for its insecticidal activity and the plant juice is known to enhance wound healing. The antibacterial activities of the plant against human pathogens have also been explored [21, 39]. But studies on the genotoxicity of the plant were not carried out. The present study aims to evaluate the genotoxic and antigenotoxic potential of the plant *Lagenandra toxicaria* using *Allium cepa* root tip assay. *Allium cepa* root tip assay is a well known model of genotoxicity studies. Also, it is less expensive,
sensitive and a widely used study model. The larger chromosome of *Allium cepa* which are easily observable under light microscope is an added advantage of this model. Earlier studies report that the effects of genotoxic agents on *Allium cepa* cells and animal cells are similar and comparable [3, 12]. The genotoxic and anti-genotoxic effects of the plant extract has been studied at different doses and different time intervals to establish whether the effect is time and dose dependent. It also enables us to explore the mechanisms through which the extract is acting on the root tips. Induction of oxidative stress is one of the common ways by which a compound causes DNA damage and chromosomal aberrations leading to the cellular damage and apoptosis [11, 31]. Various genotoxic and antigenotoxic bioassays were employed in the present study to unravel these aspects of the plant extracts.

2. Materials And Methods

2.1 Reagents

DNA isolation kit was obtained from Himedia Ltd. Mumbai, India. Schiff's, TTC, NBT, FC reagent, Na$_2$CO$_3$, H$_2$O$_2$ and Galic acid reagents were obtained from Nice Pvt.Ltd. Kerala. Other chemicals used were all of analytical grade.

2.2 Plant collection and extraction

The *Lagenandra toxicaria* rhizomes were collected from the markanja village of Sullia taluk, Dakshina kannada district, Karnataka, India (12°34'38.7"N, 75°29'54.8"E). The plant was identified taxonomically and herbarium (AK 08) was deposited in the department of Applied Botany Mangalore University. The rhizomes were cleaned, washed under running tap water, chopped into small pieces and dried in shade. Dried samples were finely powdered using lab mill. The powdered samples were subjected to methanol extraction in a soxhlet apparatus at 60°C [8]. The obtained extracts were concentrated in rotary evaporator and dried in lyophilizer. The extract stock solution of 1 mg/ml and 10 mg/ml were prepared in 1 % DMSO and used for further analysis.

2.3 Genotoxicity test

Healthy onion bulbs were collected. The outer old scales were peeled and the old roots were scraped off. These bulbs were placed on a coupling jar containing double distilled water and kept in dark for 3-4 days to allow the growth of fresh roots. The onion bulbs (n=6) with well developed roots were picked at their peak mitotic period, and were treated with extracts at concentrations (0.2, 0.5, 1, 5, and 10 mg/ml in 1% DMSO) for 1, 2 and 4 hours. The 1% DMSO and water was used as controls, and the 3% H$_2$O$_2$ served as the positive control for the genotoxicity [27, 37]. After the treatment, root tips of each treatment were excised, washed with distilled water and transferred to a cool mixture (4-10°C) of ethanol and glacial acetic acid (3:1) fixative and incubated for one hour. These root tips were hydrolyzed with the 1N HCl for about 15 minutes at 55-60°C, then stained with acetocarmine for 5-10 minutes and placed on a microscope slide, root tip region was isolated (M region), covered with a coverslip, squashed and observed under 40x objective lens of the (Olympus CH20i) microscope [29, 43].
The cells were observed for mitotic aberrations in the randomly selected microscopic fields. About 700-800 cells were counted for each treatment and the MI and the cellular aberrations were examined.

The mitotic index was calculated using the formula

See formula 1 in the supplementary files.

The percentage of chromosomal aberration was determined as the ratio of the number of aberrant cells to the total number of observed cells. i.e:

See formula 2 in the supplementary files.

2.3.1 Testing of DNA damage

The DNA was isolated from the treated root tip samples using Himedia plant genomic DNA Miniprep kit MB507-20PR, following the manufacturer’s instructions. The isolated DNA samples were loaded into a 2% agarose gel and subjected to electrophoretic separation at 50V and visualised by ethidium bromide staining. The gel pictures were documented using the UVCI-1100 ms major science system, Major science manufacturer, 19959 Sea Gull Way, Saratoga, U.S.A. [14, 15, 28].

2.3.2 Quantitative analysis of total polyphenol content and flavanoids

The quantitative estimation of the polyphenols (n=3) was done using FC reagent spectrometric method [19]. Galic acid was taken as the standard. Absorbance was measured at 735nm. Total flavonoid content (n=3) was estimated using aluminium chloride spectrometric method [10]. Quercitine was taken as the standard and absorbance was measured at 415nm.

2.3.3 Examination of in situ lipid peroxidation

After the treatment (n=6) with various concentration of the extract (0.2, 0.5, 1, 5, and 10 mg/ml), 1% DMSO and 3%H2O2, the roots were incubated in schiff’s reagent for two hours. Then the roots were washed with 0.5% (w/v) K2S2O5 (prepared in 0.05M HCl) solution for 20 minutes, leading to the visualisation of the Malondialdehyde which is a possible product of the lipid peroxidation [5, 37].

2.3.4 Viability test using TTC

The cell viability of the extract treated roots (n=6) was assessed using the 0.5% of 2, 3, 5-Triphenyl tetrazolium chloride (TTC) in phosphate buffer following the procedure of [36]. The images were captured using canon power shot SX400 IS camera

2.3.5 Measurement of superoxide anion radical (O•−)
Measurement of superoxide anion radical was carried out for the root tip (n=6) treated with 0.2, 0.5, 1, 5, and 10 mg/ml of the extract for four hours. 1% DMSO served as a negative control and 3% H$_2$O$_2$ was the positive control. The treated roots were kept in 0.1% nitroblue tetrazolium (in 50Mm phosphate buffer pH 7.4) and placed under light until the blue colored farmazone precipitate appears. The roots were then washed with 95% alcohol [40, 23].

2.3.6 FT-IR analysis of treated root tips

From the onion root tips (n=6) subjected to various treatments, root tips of each treatment were dried in an oven for 15 hours at 60°C and the dried samples were finely powdered. The powder was analyzed by FTIR to know the possible differences in the characteristic signal of the biochemical components of the different root samples [30, 37].

2.3.7 Root ultrastructure studies using Field emission scanning electron microscopy (FESEM)

The root tips treated with 1% DMSO (control) and different concentrations of methanol extracts like 1 mg/ml, 5 mg/ml, and 10 mg/ml were excised washed with PBS and then fixed in 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1M sodium phosphate buffer (pH 7.2) for 12h at 4°C with intermittent stirring. Roots were dehydrated using ethanol series (10%, 20%, 30%, 50% and 70%). Dehydrated roots were gold sputter coated and observed under FSEM at 5KV voltage following the procedure of Ahmed et al. (2017), Shahid, et al. (2018) and shetty et al. (2017).

2.4 Examination of antigenotoxicity activity of *Lagenandra toxicaria* methanol extract

The onion roots were grown as mentioned previously. The healthy bulbs (n=6) with sufficient number of roots were treated with the 3% H$_2$O$_2$ for 1 hour. Then the roots were incubated with different concentrations of the plant extract (0.04, 0.02, 0.01, 0.005 and 0.0025 mg/ml) for 24 hours to analyze the possible antigenotoxic potential of the extract. The roots treated with the 3%H$_2$O$_2$ served as the control. The squash was made and observed under the microscope as mentioned previously.

The antigenotoxicity potency of the plant extract was calculated using the following formula

\[
\text{Inhibitory activity (\%)} = \frac{A-B}{A-C} \times 100
\]

A=Number of aberrant cells induced by hydrogen peroxide

B=Number of aberrant cells observed after treating hydrogen peroxide treated roots with plant extract

C=Number of aberrant cells observed in 1% DMSO control group

The group treated with one percent DMSO was taken as a negative control. The group treated with 3% H$_2$O$_2$ and one percent DMSO was considered as a positive control. The lipid peroxidation of the treated root was evaluated using Schiff's reagent.
2.5 Statistical analysis

The results are presented as mean ± SD. The data was analyzed and compared with one way ANOVA followed by Newman-Keuls multiple comparison tests (PRISM GraphPad, version 5.0; GraphPad software Inc., San Diego, CA).

3. Results

3.1 Genotoxicity of the plant extract

There was a significant decrease in the root mitotic index (MI) in the roots treated with the extract at the time points 1 hour, 2 hours and 4 hours in all concentrations used. The lowest dose of the extract used, i.e., 0.2 mg/ml brought a significant decrease (p < 0.05) in the MI at 2 and 4 hours (Fig. 1) But there was no significant effect upon its 1 hour treatment. The other concentrations such as 0.5 mg/ml, 1 mg/ml, 5 mg/ml and 10 mg/ml induced significant decrease in the MI in a time and concentration dependent manner (Fig. 1) The MI observed for the normal control water 1, 2 and 4 hour was 94.45 ± 0.99, 96.72 ± 1.69 and 96.56 ± 1.09 respectively, negative control 1% DMSO for 1, 2 and 4 hours was 94.13 ± 2.48 ,96.46 ± 1.41, and 97.57 ± 0.57 respectively and the MI of the 0.2 mg/ml extract treated root tips was 92.05 ± 2.57, 83.62 ± 3.26, and 64.38 ± 3.94 respectively for 1, 2 and 4 hours. Whereas, the 0.5 mg/ml had the MI of 83.13 ± 3.51, 64.45 ± 4.49 and 51.25 ± 3.68. The 1 mg/ml treatment displayed a MI of 74.00 ± 3.09, 46.33 ± 2.74, 39.32 ± 2.70 for 1, 2 and 4 hours. The 5 mg/ml and the 10 mg/ml concentrations also followed the similar pattern as the previous lower doses displaying a significant decrease in the root MI in a time and dose dependent manner. I.e., 75.44 ± 1.76, 40.06 ± 2.54, 31.31 ± 2.81 and 73.56 ± 0.45, 29.52 ± 5.52, 14.34 ± 1.82 respectively for 1, 2 and 4 hours.

The various cellular/chromosomal abnormalities such as chromosomal breaks, bridges, sticky metaphase, disturbed anaphase, multinucleated cells, lesions etc., were counted for each treatment and expressed in percentage in Table.1 and Fig. 2. The relevant photographs are given in Fig. 3. Figure 4 shows images of the normal cell cycle stages.

3.1.1 Plant extract induced DNA damage, in-situ lipid peroxidation and accumulated free radical.

The genomic DNA damage analysis was carried out to examine the possible mechanism of the plant extract induced genotoxicity. The isolated DNA from the negative control (1% DMSO), positive control (3% H₂O₂) and 0.2, 0.5, 1, 5, and 10 mg/ml treated root samples for one hour and four hours were subjected to electrophoretic separation. (Fig. 5) An evident DNA damage was seen in the four hour treated roots at 5 mg/ml and 10 mg/ml. whereas only a slight DNA damage was seen in the roots treated with 10 mg/ml extract for one hour.
The *in situ* histochemical localisation of the lipid peroxides were observed by the Schiff’s staining of the treated roots. Roots treated for four hours for all extract concentrations developed a prominent pink colour whereas roots treated for one hour showed relatively less colour (Fig. 6) The accumulation of reactive oxygen species in the extract treated roots were visualised by NBT staining. A characteristic blue colour was observed in the four hour treatment which increased with the increase in the dosage of treatment (Fig. 7).

3.1.2 Polyphenol and flavanoid estimation

The *Lagenandra toxicaria* methanol extract had 64.89 ± 1.8147mg GAE/g of polyphenol content and 39.09 ± 1.975 mg QE/g flavonoid.

3.1.3 SEM analysis

Root surface ultrastructure after the four hour treatment with the extract and the control 1% DMSO was observed under scanning electron microscope. The SEM images revealed a high degree of alterations in the surface morphology at the higher doses, root surface tissue shows fissures and cells were crumbled (5 mg/ml and 10 mg/ml) in comparison with the control. (20 µM and 10 µM scale) (Fig. 8)

3.1.4 TTC cell viability test

The cell viability of the plant extract treated samples were checked and compared with the controls (normal control: water, negative Control: 1% DMSO and positive control: 3% H$_2$O$_2$). The one hour and two hours of treatment of the root tip with different concentrations of the extract showed no effect on the cell viability and were all stained pink as in the negative control (Fig. 9). But the 10mg/ml treatment for 4 hours resulted in a moderate loss of cell viability showing less staining in comparison with the negative control (Fig. 9).

3.1.5 FTIR analysis

Both the extract treated and control samples were subjected FTIR spectroscopy to examine the possible changes in the biochemical components of the roots. The obtained spectral peaks were assigned to their characteristic organic molecules and the changes in the peak positions due to the chemical shift were noted. The Peaks at 1033 cm$^{-1}$ and 1244 cm$^{-1}$ were due to symmetric and asymmetric stretching of P = O. The 1545 cm$^{-1}$ and 1633 cm$^{-1}$ positioned peaks were because of the amide II and amide I of the beta sheets and alpha helix of the secondary structure of proteins respectively. 1735 cm$^{-1}$ placed peak is due to ester C = O stretching. 2926 cm$^{-1}$ placed peak is due to the C-H asymmetric stretch of the methyl group of lipids and a broad peak at 3302 cm$^{-1}$ was assigned to the N-H stretching of proteins (Fig. 10).

3.2 The antigenotoxicity potential of the plant extract
The *Lagenandra toxicaria* plant extract showed a potential antigenotoxic activity. Genotoxicity was induced using 3% H$_2$O$_2$ in the root tips. Roots treated with 3% H$_2$O$_2$ for one hour showed a higher clastogenicity of 93.45 ± 2.33. Whereas the control roots (water and 1% DMSO) showed only 4.66 ± 1.48 and 5.07 ± 1.78 clastogenicity respectively. The post treatment of the 3% H$_2$O$_2$ treated roots with the 0.01mg/ml and 0.02 mg/ml plant extract for 24 hour significantly decreased the clastogenic effects of the H$_2$O$_2$ treatment. The 0.005 mg/ml, 0.01 mg/ml and 0.02 mg/ml treatments showed a decreased clastogenicity with increased percentage of inhibition in a dose dependent manner i.e 10.73 ± 6.66, 43.31 ± 13.56 and 63.28 ± 7.77 respectively. The post treatment of 0.0025 mg/ml extract did not show any evident percentage inhibition and the higher concentration of 0.04 mg/ml treatment for 24 hour resulted in the total disruption of the root tip cells and hence they could not be counted (Fig. 11 and Table 2). The 3% H$_2$O$_2$ induced cellular abnormalities were observed to be restored after the treatment with the plant extract at 0.01 and 0.02 mg/ml (Fig. 12). Lipid peroxidation test was done using Schiff’s reagent and it showed a pink color in 3% hydrogen peroxide-treated roots. Whereas the color intensity decreased in 0.01 mg/ml and 0.02 mg/ml post treated roots indicating the decreased lipid peroxidation. But the 0.04 mg/ml post treatment resulted in the enhanced pink colour indicating that at the higher concentrations the extract itself acts like a pro-oxidant (Fig. 13).
Table 2
Percentage of the nuclear lesions in antigenotoxicity study.

Treatment	Total cells Mean ± SD (n = 6)	Total number of nuclear lesions Mean ± SD (n = 6)	Percentage of nuclear lesions Mean ± SD (n = 6)	Percentage of inhibition Mean ± SD (n = 6)
Water control	192.33 ± 3.51	9 ± 3	4.66 ± 1.48	
Negative control (1% DMSO)	203 ± 5.29	10 ± 3.79	5.07 ± 1.78	
3% H₂O₂ + 1% DMSO	200 ± 15.62	187 ± 10.01	93.45 ± 2.33	
3% H₂O₂ + 2.5mg/L	202 ± 13.08	184 ± 10.69	91.28 ± 0.73	4.41 ± 3.76^a
3% H₂O₂ + 5mg/L	218 ± 29.05	180 ± 25.01	82.09 ± 0.69	10.73 ± 6.66^a
3% H₂O₂ + 10mg/L	215 ± 13.89	110 ± 24.01	50.99 ± 7.59	43.31 ± 13.56^b
3% H₂O₂ + 20mg/L	201 ± 23.64	75 ± 13.75	37.13 ± 2.66	63.28 ± 7.77^c

4. Discussion

The plant system is known to be an efficient bioindicator of various genomic alterations such as chromosomal aberrations, sister chromatid exchange and DNA strand breaks induced by any genotoxic agent. Currently, the genotoxicity and antigenotoxicity assay is widely used for the evaluation of any harmful effects of environmental pollutants and synthetic drugs [20, 22, 37 & 38]. Thorough screening of any plant extract for its possible genotoxic and anti-genotoxic potential is important as these extracts with genome modifying capabilities can make way for the emergence of new drugs and therapeutic approaches to treat diseases such as cancer. In this study, we analysed the genotoxic and antigenotoxic potential of the extracts of <i>Lagenandra toxicaria</i> using a well established plant model namely <i>Allium cepa</i> bioassay. The onion roots possess relatively large-sized cells which are mitotically active having monocentric chromosomes (2n = 16) that stain well with aceto-orcein. The mutagenic responses across plants, mammals and humans are similar and hence the results obtained in this model can be extrapolated to higher organisms [12].
4.1 Genotoxicity assay

A genotoxic compound can alter the DNA of an organism thereby changing the structure and function of its chromosome. These alterations in turn can disturb the cell cycles affecting their MI. MI is an accepted measure of cytotoxicity. A decrease in MI can be a measure of the level of cytotoxicity of the compound. A decrease in the MI below 50% (in comparison with the negative control) is known to be sublethal for the organism where as a decrease below 22% cause lethal effect on the test organism [32, 27]. In this study, the MI of the roots decreased significantly in all concentrations of the extract except for the lowest dose at lower incubation period (0.2 mg/ml for 1 hour). A decrease in MI at higher concentrations like 10 mg/ml of the plant extract is comparable to the decreased MI caused by H$_2$O$_2$. The decrease in MI suggest the anti-proliferative activities of the plant extract and this could be due to DNA replication failure at the S phase or the cell cycle arrest at the G2 phase or reduction in the synthesis of ATP and nucleoproteins preventing the cell from proceeding to the mitosis [25, 35]. The chromosomal aberrations like sticky metaphase, chromosomal bridges, clumped chromosome, multipolar anaphase and nuclear lesions were also increased in a time and dose dependent manner (Table 1 & Fig. 3). According to Rajeshwari et al. (2015) such chromosomal aberrations were due to the depolymerization of spindle fibers resulting in shifting of poles. A toxicity of an irreversible type can cause these chromosomal stickiness and the formation of chromatin bridges are usually the product of an unequal chromatin exchange during the translocation processes leading to a structural chromosomal aberration [44, 27]. Earlier studies suggest that naturally occurring bioactive compounds like flavanoids, polyphenols, alkaloids and tannins when present in abundance act as prooxidants and damage the DNA and hinder the cell proliferation mechanism [17]. This oxidative stress can also cause lipid peroxidation, leading to tissue damage. The lipid peroxidation can alter the cell membrane dynamics causing cell injury both in plants and animals. Lipid peroxidation in both plants and animals generates a small molecular weight compound known as the melandialdehyde (MDA) [13, 16]. These aldehyde moieties present on the cell surface can be detected by the schiff’s reagent [42]. Hence in situ histochemical localization of the MDA was carried out in the roots treated with the plant extracts for different time intervals. The test revealed that the four hour treatment of the plant extracts induced high degree of lipid peroxidation in a dose dependent manner.
Treatment	Time (h)	Total cells ± Mean ± SD (n = 6)	% Clastogenicity ± Mean ± SD (n = 6)
Water control	1	190.67 ± 6.43	4.18 ± 1.35
	2	201 ± 7.549	2.82 ± 0.32
	4	189.33 ± 8.50	4.40 ± 1.12
Negative control (1% DMSO)	1	196 ± 23.39	5.01 ± 1.54
	2	220 ± 26.29	3.32 ± 1.40
	4	178 ± 17.44	4.85 ± 0.56
0.2mg/ml	1	190 ± 11.53	23.67 ± 4.86
	2	216 ± 18.36	24.91 ± 3.43
	4	209 ± 23.58	33 ± 4.17
0.5mg/ml	1	184 ± 18.52	25.11 ± 4.41
	2	214 ± 13.89	39.72 ± 5.69
	4	180 ± 16.82	41.99 ± 8.33
1mg/ml	1	192 ± 30	39.64 ± 7.95
	2	208 ± 17.44	46.27 ± 2.15
	4	199 ± 12.17	49.3 ± 1.78
5mg/ml	1	207 ± 19	38.75 ± 5.38
	2	233 ± 26.06	50.38 ± 1.05
	4	220 ± 13.08	61.67 ± 3.98
10mg/ml	1	191 ± 9.17	46.28 ± 1.75
	2	208 ± 13.11	61.31 ± 2.53
	4	206 ± 12.77	71.01 ± 0.73
Positive control (3%H₂O₂)	1	180 ± 17.44	93.35 ± 2.45
	2	213 ± 6.08	92.77 ± 1.54
	4	178 ± 19.08	97.89 ± 0.88
The effect of plant extracts on the (total genomic) DNA integrity was assessed by agarose gel electrophoresis. This revealed that the four hour incubation of onion roots with the plant extracts adversely affected the DNA integrity in a dose dependent manner. And the maximum loss of DNA integrity was observed in 10mg/ml treatment for four hours. These increased DNA damage and lipid peroxidation is attributed to the free radical generation due to the presence of higher concentration of plant polyphenols, flavanoids and tanin etc., [2, 18]. In agreement with the previous studies [40, 23] the NBT free radical assay also suggested that the free radicals were generated in a dose dependent manner (Fig. 7). Later, the treated and the control roots were subjected to SEM analysis to study the possible alterations in the surface morphology of the roots. The roots treated with higher doses of extract for longer duration showed a characteristic morphological difference in comparison to the control groups (Fig. 8). Each type of chemical bond that is present in a cellular macromolecule exhibits its own vibrational properties. And under the influence of oxidative stress these characteristic vibrational modes of a biomolecule will be altered. These alterations in the cellular macromolecules can be analysed by the FTIR technique. The current study employed the FTIR method to check the possible differences in the nature of bio-molecules among the control and the treated samples. The various peaks obtained for different macromolecules were observed at same wave numbers as mentioned in the previous reports (Fig. 10) [30, 37] The peak appeared at the 1633 cm⁻¹ in control samples represents the α-helices and β sheets that constitutes the secondary structures of the proteins, and that peak was shifted slightly to 1631 cm⁻¹ among the treated groups. This chemical shift suggests the altered α-helices and β sheets among the treated samples and also shifting of peaks in treated groups compared with the control group at 1033 cm⁻¹ and 1244 cm⁻¹ indicate damage in the phosphate backbone (Fig. 10).

4.2 Antigenotixic/genoprotective effects of *Lagenandra toxicaria*

At higher doses the plant extracts induce genotoxicity but it is also a well established fact that these same compounds at a lower concentration can act as an anti-genotoxic agent that protect the DNA from oxidative damage and keep the cell intact [4, 6]. Hence it is important to note that these two contradictory outcomes are the results of difference in the compound concentration. Therefore, it is reasonable to analyse a plant extract for its antigenotoxic potential at a lower dose. The present study showed that the *Lagenandra toxicaria* plant extract did have antigenotoxic potential at its lower doses (0.01 mg/ml & 0.02 mg/ml) as it displays the chemoprotective activity against the H₂O₂ induced cytological anamolies, mainly the nuclear lesions (Fig. 12). The free radicals generated as a result of H₂O₂ treatment will target the proteins, lipids and carbohydrates and further lead to damage and dysfunction of the cell membranes, enzymes and genetic material. The treatment with 3% H₂O₂ exerts a high oxidative stress leading to the high percentage of nuclear lesions [27]. However, the counter treatment of the H₂O₂ treated root tips with lower doses (0.02 mg/ml) of plant extracts were seen to affectively reverse the actions of H₂O₂ as evident by the decrease in the percentage of nuclear lesions from 93.45 ± 2.33 to 37.13 ± 2.66 (Table 2). The compounds with such bimodal activities having genotoxic effect at higher doses and genoprotective properties at lower doses are referred to as ‘Janus-faced compounds’ [37]. The crude
extracts are complex mixtures of phytochemicals which work mostly synergistically either as a geno-
protective or genotoxic substance. At lower concentration polyphenols, flavanoids, tannins and alkaloids
shows antigenotoxic property [27, 37, 24]. The observed decrease in the H_2O_2 induced genotoxicity after
the extract modulatory treatment is probably due to the presence of antioxidants in the extract that
counters the actions of free radicals. This could also be due to the lower concentration of polyphenols in
lower dose treated groups. The presence of polyphenols can be one of the factors that contribute to the
antigenotoxic potential of the extract. A study on *Escherichia coli* has found that the polyphenols like the
vanillin, cinnamaldehyde, coumarin and tannic acid are involved in the regulation of DNA replication and
repair systems after the free radical attack. Another possible explanation for the action of extract is that it
can induce the expression of the DNA repair related gene such as the DNA glicosylases which can
alkylate the DNA bases and activate the DNA repair systems [9, 27].

5. Conclusion

Our experimental data confirmed the genotoxic and antigenotoxic properties of *Lagenandra toxicaria*
rhizome methanol extract. It is found that the plant extract induced the cell clastogenicity and
genotoxicity in a time and dose dependent manner. Auto oxidation of polyphenols will trigger oxidative
stress and free radical generation depending on different conditions. These phenolic compounds are
known for their potential to form complexes with the metal ions such as copper, zinc and iron that are the
possible source of hydroxyl radical genesis. These could be the reason for the genotoxic potential of the
extract at higher doses. But at lower concentrations, the extracts seem to be geno-protective as shown by
the anti-genotoxicity studies. Also the decreased levels of lipid peroxidation of the 3%H$_2$O$_2$ treated roots
after the subsequent treatment with the extract unfolds the potential of these extract to be a promising
genoprotective agent at lower doses. The study presents preliminary data on the potential of the
Lagenandra toxicaria plant extract as genotoxic and genoprotective agent and further studies are will
unravel the molecular mechanims that underlie these observed phenomenon. However, at higher
concentrations the plant extract has proved to be genotoxic.

Declarations

Conflicts of interest

Authors declare there are no conflicts of interests.

Acknowledgement

This work was supported by Directorate of minorities Karnataka Ph.D fellowship (DOM/FELLOWSHIP/CR-
2/2017-18).

I thank full to Mangalore university DST-PURSE and USIC.

References
1. Ahmed, B., Dwivedi, S., Abdin, M. Z., Azam, A., Al-Shaeri, M., Khan, M. S., Saquib Q., Al-Khedhairy AA., Musarrat, J., 2017. Mitochondrial and chromosomal damage induced by oxidative stress in Zn 2+ ions, ZnO-bulk and ZnO-NPs treated Allium cepa roots. Scientific reports 7, 40685.

2. Azqueta, A., & Collins, A. (2016). Polyphenols and DNA damage: A mixed blessing. Nutrients, 8(12), 785.

3. Bonciu, E., Firbas, P., Fontanetti, C. S., Wusheng, J., Karaismailoğlu, M. C., Liu, D. & Schiff, S. (2018). An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3), 191-209.

4. Cao, J., Jiang, L. P., Liu, Y., Yang, G., Yao, X. F., Zhong, L. F., 2007. Curcumin-induced genotoxicity and antigenotoxicity in HepG2 cells. Toxicon 49, 1219-1222.

5. Chandel, S., Kaur, S., Singh, H. P., Batish, D. R., Kohli, R. K., 2017. Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa Journal of Microscopy and Ultrastructure 5, 225-229.

6. Choi, E. J., Chee, K. M., & Lee, B. H. (2003). Anti-and prooxidant effects of chronic quercetin administration in rats. European Journal of Pharmacology, 482(1-3), 281-285.

7. De Mejia, E. G., Prisecaru, V. I., 2005. Lectins as bioactive plant proteins: a potential in cancer treatment. Critical reviews in food science and nutrition 45, 425-445.

8. Devi, H. P., & Mazumder, P. B. (2016). Methanolic extract of Curcuma caesia Roxb. prevents the toxicity caused by cyclophosphamide to bone marrow cells, liver and kidney of mice. Pharmacognosy research, 8(1), 43.

9. Ferguson, L. R., 2001. Role of plant polyphenols in genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 475, 89-111.

10. Figueirôa Ede O., Nascimento da Silva, L. C., de Melo, C. M., Neves, J. K., da Silva, N. H., Pereira, V. R., Correia, M. T., 2013. Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from Eugenia uniflora and Eugenia malaccensis L.: correlation with polyphenol and flavanoid content. The Scientific World Journal, 125027

11. Finkel, T., Holbrook, N. J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.

12. Fiskejö, G., 1988. The Allium test—an alternative in environmental studies: the relative toxicity of metal ions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 197, 243-260.

13. Gawel, S., Wardas, M., Niedworok, E., Wardas, P., 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie 57, 453-455.

14. Ghosh, I., Mukherjee, A., Mukherjee, A., 2017. In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 32, 371-387.

15. Ghosh, M., Bandyopadhyay, M., Mukherjee, A., 2010. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81, 1253-1262.
16. Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., Chandra, A., 2010. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum). Acta Physiologiae Plantarum 32, 979-986.
17. Joubert, E., Winterton, P., Britz, T. J., Gelderblom, W. C., 2005. Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis). Journal of Agricultural and Food Chemistry 53, 10260-10267.
18. Kaur, G., Singh, H. P., Batish, D. R., Kohli, R. K., 2014. Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. Ecotoxicology 23, 1292-1304.
19. Khanal, S., Shakya, N., Thapa, K., Pant, D. R., 2015. Phytochemical investigation of crude methanol extracts of different species of Swertia from Nepal. BMC research notes 8, 821.
20. Kumari, M., Mukherjee, A., Chandrasekaran, N., 2009. Genotoxicity of silver nanoparticles in Allium cepa. Science of the total environment 407, 5243-5246.
21. Kurdekar, R. R., Hegde, G. R., Hegde, G., Hebbar, S. S., 2012. Antimicrobial screening of Medicinal plants against human Pathogens-A Comparative account of two different methods of Extraction. International Journal of Drug Development & Research 4, 82-89.
22. Leme, D. M., Marin-Morales, M. A., 2008. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water—a case study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 650, 80-86.
23. Mangalampalli, B., Dumala, N., Grover, P., 2018. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. Journal of Environmental Sciences 66, 125-137.
24. Mateus, P. G., Wolf, V. G., Borges, M. S., & Ximenes, V. F. (2018). Quercetin: prooxidant effect and apoptosis in cancer. In Studies in natural products chemistry (Vol. 58, pp. 265-288). Elsevier.
25. Özkara, A., Akyıl, D., Eren, Y., Erdoğmuş, S. F., 2015. Potential cytotoxic effect of Anilofos by using Allium cepa Cytotechnology 67, 783-791.
26. Parasuraman, S., Thing, G. S., Dhanaraj, S. A., 2014. Polyherbal formulation: Concept of ayurveda. Pharmacognosy reviews 8, 73-80.
27. Prajitha, V., Thoppil, J. E., 2016. Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus using Allium cepa assay. South African Journal of Botany 102, 18-25.
28. Qin, R., Wang, C., Chen, D., Björn, L. O., Li, S., 2015. Copper-induced root growth inhibition of Allium cepa agrogarum L. involves disturbances in cell division and DNA damage. Environmental toxicology and chemistry 34, 1045-1055.
29. Rani, G., Kaur, K., Wadhwa, R., Kaul, S. C., & Nagpal, A. (2005). Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha. Food and chemical toxicology, 43(1), 95-98.
30. Rajeshwari, A., Kavitha, S., Alex, S. A., Kumar, D., Mukherjee, A., Chandrasekaran, N., Mukherjee, A., 2015. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environmental Science and Pollution Research 22, 11057-11066.
31. Reuter, S., Gupta, S. C., Chaturvedi, M. M., Aggarwal, B. B., 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine 49, 1603-1616.
32. Rosculete, C. A., Bonciu, E., Rosculete, E., Olaru, L. A., 2018. Determination of the Environmental Pollution Potential of Some Herbicides by the Assessment of Cytotoxic and Genotoxic Effects on Allium cepa. International journal of environmental research and public health 16, 75.
33. Selvakumari, P. A. S., 2014. Pharmacognostical standardisation of Lagenandra toxicaria Malaysian Journal of Science 33, 163-175.
34. Shahid, M., Ahmed, B., Zaidi, A., & Khan, M. S. (2018). Toxicity of fungicides to Pisum sativum: a study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. RSC advances, 8(67), 38483-38498.
35. Sharma, S., Sharma, S., Vig, A. P., 2018. Antigenotoxic potential of plant leaf extracts of Parkinsonia aculeata using Allium cepa assay. Plant physiology and biochemistry 130, 314-323.
36. Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y., Liu, Y., 2012. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum): a morphological study. Nanotoxicology 6, 241-248.
37. Shetty, A., Venkatesh, T., Suresh, P. S., Tsutsumi, R., 2017. Exploration of acute genotoxic effects and antigenotoxic potential of gambogic acid using Allium cepa Plant physiology and biochemistry, 118, 643-652.
38. Silveira, G. L., Lima, M. G. F., Reis, G. B., Palmieri, M. J., Andrade-Vieria, L. F., 2017. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa and Lactuca sativa L. Chemosphere 178, 359-367.
39. Sivarajan, V. V., Balachandran, I., 1994. Ayurvedic Drugs and their Plant Sources Oxford and IBH Publishing Co. Pvt. Ltd, 374-376.
40. Soltys, D., Rudzińska-Langwald, A., Kurek, W., Gniazdowska, A., Sliwinska, E., & Bogatek, R., 2011. Cyanamide mode of action during inhibition of onion (Allium cepa) root growth involves disturbances in cell division and cytoskeleton formation. Planta 234, 609-621.
41. Van, E. D., Goossens, K., Smeets, K., Van, F. L., Verhaert, P., Peumans, W. J., 1995. The major tuber storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum Plant physiology 107, 1147-1158.
42. Wu, L., Yi, H., Yi, M., 2009. Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays. Journal of hazardous materials 176, 952-956.
43. Yuet Ping, K., Darah, I., Yusuf, U. K., Yeng, C., & Sasidharan, S. (2012). Genotoxicity of Euphorbia hirta: an Allium cepa assay. Molecules, 17(7), 7782-7791.
44. Zhang, H., Jiang, Z., Qin, R., Zhang, H., Zou, J., Jiang, W., Liu, D., 2014. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC plant biology 14, 264.