SATURATED ACTIONS BY FINITE DIMENSIONAL HOPF ∗-ALGEBRAS ON C*-ALGEBRAS

JA A JEONG† AND GI HYUN PARK‡

Abstract. If a finite group action α on a unital C*-algebra M is saturated, the canonical conditional expectation $E : M \to M^\alpha$ onto the fixed point algebra is known to be of index finite type with $\text{Index}(E) = |G|$ in the sense of Watatani. More generally if a finite dimensional Hopf ∗-algebra A acts on M and the action is saturated, the same is true with $\text{Index}(E) = \dim(A)$.

In this paper we prove that the converse is true. Especially in case M is a commutative C*-algebra $C(X)$ and α is a finite group action, we give an equivalent condition in order that the expectation $E : C(X) \to C(X)^\alpha$ is of index finite type, from which we obtain that α is saturated if and only if G acts freely on X. Actions by compact groups are also considered to show that the gauge action γ on a graph C*-algebra $C^*(E)$ associated with a locally finite directed graph E is saturated.

1. Introduction

It is known [17] that if α is an action by a compact group G on a C*-algebra M, the fixed point algebra M^α is isomorphic to a hereditary subalgebra $e(M \times_\alpha G)e$ of the crossed product $M \times_\alpha G$ for a projection e in the multiplier algebra of $M \times_\alpha G$. If $e(M \times_\alpha G)e$ is full in $M \times_\alpha G$ (that is, $e(M \times_\alpha G)e$ generates $M \times_\alpha G$ as a closed two-sided ideal), the action α is said to be saturated (the notion of saturated action was introduced by Rieffel [14, Chap.7]). Every action α with a simple crossed product $M \times_\alpha G$ is obviously saturated.

On the other hand, an action of a finite dimensional Hopf ∗-algebra A on a unital C*-algebra M is considered in [18] and it is shown that if the action is saturated, the canonical conditional expectation $E : M \to M^A$ onto the fixed point algebra M^A is of index finite type in the sense of Watatani [19] and $\text{Index}(E) = (\dim A)/1$.

The main purpose of the present paper is to prove that the converse is also true. We see from our result that for an action α by a finite group G, α is saturated if and only if the canonical expectation $E : M \to M^\alpha$ is of index-finite type with index $\text{Index}(E) = |G|$.

Besides, we consider actions by compact groups to study the saturation property of a gauge action γ on a C*-algebra $C^*(E)$ associated with a locally finite directed graph E with no sinks or sources. This paper is organized as follows.

In section 2, we review the C*-basic construction from [19] and finite dimensional Hopf ∗-algebras from [18] setting up our notations. Then we prove in section 3 that if A is a finite dimensional Hopf ∗-algebra acting on a unital C*-algebra M such that $E : M \to M^A$ is of index finite type with $\text{Index}(E) = (\dim A)/1$, then the action is saturated (Theorem 3.3).

In section 4, we deal with the crossed product $M \times_\alpha G$ by a finite group in detail and give other equivalent conditions in order that α be saturated. From the

Research supported by KRF-ABRL-R14(2003-2008)† and Hanshin University Research Grant‡.

1
conditions one easily see that an action with the Rokhlin property \[7\] is always saturated. Also we shall show that if \(M\) has the cancellation, an action with the tracial Rokhlin property \[12\] on \(M\) is saturated.

Note that even for an action \(\alpha\) by the finite group \(\mathbb{Z}_2\), the expectation \(E : M \to M^\alpha\) may not be of index finite type in general \[19\], Example 2.8.4. For a commutative \(C^*\)-algebra \(C(X)\) and a finite group action \(\alpha\), we give a necessary and sufficient condition that \(E : C(X) \to C(X)^\alpha\) is of index finite type (Theorem 4.10) and provide a formula for \(\text{Index}(E)\). Then as a corollary we obtain that \(\alpha\) is saturated if and only if \(G\) acts freely on \(X\).

In section 5, we consider a compact group action \(\alpha\) and investigate the ideal \(\mathcal{J}_\alpha\) of \(M \times_\alpha G\) generated by the hereditary subalgebra \(e(M \times_\alpha G)e\). Then we apply the result on \(\mathcal{J}_\alpha\) to the gauge action on a graph \(C^*\)-algebra in section 6. As a generalization of the Cuntz-Krieger algebras \[5\], the class of graph \(C^*\)-algebras \(C^*(E)\) associated with directed graphs \(E\) has been studied in various directions by considerably many authors (for example see the bibliography in the book \[13\] by Raeburn). In \[9\], Kumjian and Pask show among others that if \(\gamma\) is the gauge action on \(C^*(E)\), then \(C^*(E)^\gamma\) is stably isomorphic to the crossed product \(C^*(E) \times_\gamma \mathbb{T}\), which was done by hiring the notions of skew product of graphs and groupoid \(C^*\)-algebras. In Theorem 6.3 we shall directly show that the gauge action is actually saturated (this implies that \(C^*(E)^\gamma\) and \(C^*(E) \times_\gamma \mathbb{T}\) are stably isomorphic).

2. Preliminaries

Watatani’s index theory for \(C^*\)-algebras. In \[19\], Watatani developed the index theory for \(C^*\)-algebras, and here we briefly review the basic construction \(C^*(B, e_A)\). Let \(B\) be a \(C^*\)-algebra and \(A\) its \(C^*\)-subalgebra containing the unit of \(B\). Let \(E : B \to A\) be a faithful conditional expectation. If there exist finitely many elements \(\{v_i\}_{i=1}^n\) in \(B\) satisfying the following

\[
b = \sum_i E(bv_i)v_i^* = \sum_i v_iE(v_i^*b), \quad \text{for every } b \in B,
\]

\(E\) is said to be of \textit{index-finite type} and \(\{v_i, v_i^*\}_{i=1}^n\) is called a \textit{quasi-basis} for \(E\). The positive element \(\sum_i v_i v_i^*\) is the \textit{index} of \(E\), \(\text{Index}(E)\), which is known to be an element in the center of \(B\) and does not depend on the choice of quasi-bases for \(E\) (\[19\], Proposition 1.2.8). Let \(B\) be the completion of the pre-Hilbert module \(\mathcal{B}_0 = \{\eta(b) \mid b \in B\}\) over \(A\) with an \(A\)-valued inner product

\[
\langle \eta(x), \eta(y) \rangle = E(x^*y), \quad \eta(x), \eta(y) \in \mathcal{B}_0.
\]

Let \(\mathcal{L}_A(B)\) be the \(C^*\)-algebra of all (right) \(A\)-module homomorphisms on \(B\) with adjoints. For \(T \in \mathcal{L}_A(B)\), the norm \(\|T\| = \sup\{\|Tx\| : \|x\| = 1\}\) is always bounded. Each \(b \in B\) is regarded as an operator \(L_b\) in \(\mathcal{L}_A(B)\) defined by \(L_b(\eta(x)) = \eta(bx)\) for \(\eta(x) \in \mathcal{B}_0\). By \(e_A : B \to B\) we denote the projection in \(\mathcal{L}_A(B)\) such that \(e_A(\eta(x)) = \eta(E(x))\), \(\eta(x) \in \mathcal{B}_0\). Then the \(C^*\)-basic construction \(C^*(B, e_A)\) is the \(C^*\)-subalgebra of \(\mathcal{L}_A(B)\) in which the linear span of elements \(L_b e_A L_b^*\) (\(b, b' \in B\)) is dense.

Finite dimensional Hopf \(*\)-algebras. As in \[18\], a finite dimensional Hopf \(*\)-algebra is a finite matrix pseudogroup of \[20\]. We review from \[18\] the definition and some basic properties of a finite dimensional Hopf \(*\)-algebra which we need in the following section.
Definition 2.1. (\[18\] Proposition 2.1) A finite dimensional C^*-algebra is called a finite dimensional Hopf $*$-algebra if there exist three linear maps,

$$\Delta : A \to A \otimes A, \quad \epsilon : A \to \mathbb{C}, \quad S : A \to A$$

which satisfy the following properties

(i) Δ (comultiplication) and ϵ (counit) are $*$-homomorphisms, and S (antipode) is a $*$-preserving antilinear antimultiplicative involution,

(ii) $\Delta(1) = 1 \otimes 1, \quad \epsilon(1) = 1, \quad S(1) = 1$,

(iii) $(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$,

(iv) $(\epsilon \otimes \text{id})\Delta = \Delta(\epsilon \otimes \text{id})$,

(v) $m(S \otimes \text{id})(\Delta(a)) = \epsilon(a)1 = m(\text{id} \otimes S)(\Delta(a))$ for $a \in A$, where $m : A \otimes A \to A$ is the multiplication.

Proposition 2.2. (\[18\], \[20\]) Let A be a finite dimensional Hopf $*$-algebra. Then the following properties hold.

(i) For $a \in A$, with the notation $\Delta(a) = \sum_i a_i^L \otimes a_i^R$, we have

$$\sum_i \epsilon(a_i^L)a_i^R = a = \sum_i \epsilon(a_i^R)a_i^L,$$

$$\sum_i a_i^L S(a_i^R) = \epsilon(a)1 = \sum_i S(a_i^L)a_i^R,$$

$$\sum_i a_i^R S(a_i^L) = \epsilon(a)1 = \sum_i S(a_i^R)a_i^L.$$

(ii) There is a unique normalized trace (called the Haar trace) τ on A such that

$$\sum_i \tau(a_i^L)a_i^R = \tau(a)1 = \sum_i \tau(a_i^R)a_i^L, \quad a \in A.$$

(iii) There exists a minimal central projection $e \in A$ (called the distinguished projection) such that $ae = \epsilon(a)e$, $a \in A$. We have

$$\epsilon(a) = 1, \quad S(e) = e, \quad \text{and} \quad \tau(e) = (\dim A)^{-1}.$$

3. Actions by finite dimensional Hopf $*$-algebras

Throughout this section A will be a finite dimensional Hopf $*$-algebra. An action of A on a unital C^*-algebra M is a bilinear map $\cdot : A \times M \to M$ such that for $a, b \in A, x, y \in M$,

$$1 \cdot x = x,$$

$$a \cdot 1 = \epsilon(a)1,$$

$$ab \cdot x = a \cdot (b \cdot x),$$

$$a \cdot xy = \sum_i (a_i^L \cdot x)(a_i^R \cdot y),$$

$$(a \cdot x)^* = S(a^*) \cdot x^*.$$
Then the crossed product $M \rtimes A$ is the algebraic tensor product $M \otimes A$ as a vector space with the following multiplication and $*$-operation:

$$((x \otimes a)(y \otimes b)) := \sum_j x(a^L_j \cdot y) \otimes a^R_j b,$$

$$(x \otimes a)^* := \sum_i (a^L_i)^* \cdot x^* \otimes (a^R_i)^*.$$

Identifying $a \in A$ with $1 \otimes a$ and $x \in M$ with $x \otimes 1$, we see [18] that $M \rtimes A = \text{span}\{xa \mid x \in M, a \in A\}$.

For the definition of saturated action of A on M, refer to section 4 of [18].

Proposition 3.1. ([18]) Let $M^A = \{x \in M \mid a \cdot x = \epsilon(a)x, \text{ for all } a \in A\}$ be the fixed point algebra for the action of A on a unital C*-algebra M.

(i) The action is saturated if and only if $M \rtimes A = \text{span}\{xey \mid x, y \in M\}$, where $e \in A$ is the distinguished projection.

(ii) The map $E : M \rightarrow M^A$, $E(x) = e \cdot x$, is a faithful conditional expectation onto the fixed point algebra such that

$$E((a \cdot x)y) = E(x(S(a) \cdot y)), \quad a \in A, \ x, y \in M.$$

(iii) The linear map $F : M \rtimes A \rightarrow M$, $F(xa) = \tau(a)x$, is a faithful conditional expectation onto M.

Recall that $M_0 := M$ is an M^A-valued inner product module by

$$\langle \eta(x), \eta(y) \rangle_{M^A} = E(x^*y)$$

(here we use the convention in [19] for the inner product as in section 2). Since every norm bounded M^A-module map on M_0 extends uniquely to the Hilbert M^A-module M, we may identify the $*$-algebra $\text{End}(M_0)$ (in [18]) of norm bounded right M^A-module endomorphisms of M_0 having an adjoint with the C*-algebra $L_{M^A}(M)$ explained in section 2.

Remark 3.2. ([19] Proposition 1.3.3]) If $E : M \rightarrow M^A$ is of index-finite type, then

$$C^*(M, e_{M^A}) = \text{span}\{L_x e_{M^A} L_y \mid x, y \in M\} = L_{M^A}(M).$$

In fact, we see from the proof of [19] Proposition 2.1.5] that $C^*(M, e_{M^A})$ contains the unit of $L_{M^A}(M)$. Thus the ideal $\text{span}\{L_x e_{M^A} L_y \mid x, y \in M\}$ which is dense in $C^*(M, e_{M^A})$ must contain the unit of $L_{M^A}(M)$.

Theorem 3.3. Let A be a finite dimensional Hopf $*$-algebra acting on a unital C*-algebra M. Then the following are equivalent:

(i) The action is saturated.

(ii) $E : M \rightarrow M^A$ is of index finite type with $\text{Index}(E) = (\dim A)1$.

Proof. (i)⇒ (ii) is shown in [18] Proposition 4.5.

(ii)⇒ (i). By Remark 3.2, \(C^*(M, e_M) = \text{span} \{ L_x e_M A L_y \mid x, y \in M \} \). Consider a map \(\phi : C^*(M, e_M) \to \mathbb{M} \times A \) given by

\[\phi \left(\sum_i L_x e_M A L_y_i \right) = \sum_i x_i e y_i. \]

To see that \(\phi \) is well defined, let \(\sum_i L_x e_M A L_y_i = 0 \). Then for each \(z \in M \),

\[(\sum_i L_x e_M A L_y_i)(\eta(z)) = \sum_i \eta(x_i E(y_i z)) = \eta(\sum_i x_i (e \cdot (y_i z))) = 0, \]

hence by the injectivity of \(\eta \) \((10) \), \(\sum_i x_i (e \cdot (y_i z)) = 0 \) in \(M \). Since \((a \cdot x)e = axe \) for \(a \in A, a \in M \) (see (7) of [18]), we thus have

\[\sum_i x_i (e \cdot (y_i z))e = \sum_i (x_i e y_i)ze = 0 \]

in \(\mathbb{M} \times A \) for every \(z \in M \), which then implies that

\[(\sum_i x_i e y_i)(ze z') = 0, \quad z, z' \in M. \]

Particularly, \((\sum_i x_i e y_i)(\sum_i x_i e y_i)^* = 0 \), so that \(\sum_i x_i e y_i = 0 \) (in \(\mathbb{M} \times A \)). Thus \(\phi \) is well defined. It is tedious to show that \(\phi \) is a *-homomorphism such that the range of \(\phi(C^*(M, e_M)) = \mathbb{M} e M \) is an ideal of \(\mathbb{M} \times A \); if \(x, y, z \in M \) and \(a \in A \), then

\[(za)(xy) = (z(a \cdot x))ey \in \mathbb{M} e M. \]

Hence it suffices to show that \(\phi(1) = 1 \). If \(\{(u_i, u_i^*)\}_{i=1}^n \) is a quasi-basis for \(E \), then

\[\sum_i L_{u_i} e_M A L_{u_i}^* \eta(z) = \sum_i \eta(u_i E(u_i^* z)) = \eta(z), \quad z \in M, \]

which means that \(\sum_i L_{u_i} e_M A L_{u_i}^* = 1 \in \mathcal{L} M(A) \). Therefore by Proposition 2.2(iii) and Proposition 3.1(iii)

\[F(\phi(1)) = F(\sum_{i=1}^n u_i e u_i^*) = \sum_i \tau(e') u_i u_i^* = \frac{1}{\text{dim} A} \sum_i u_i u_i^* = 1. \]

Since \(\phi \) is a *-homomorphism, \(\phi(1) \) is a projection in \(\mathbb{M} \times A \) such that \(F(1 - \phi(1)) = 0 \). But \(F \) is faithful, and \(\phi(1) = 1 \) follows. \(\square \)

4. Actions by finite groups

Throughout this section \(G \) will denote a finite group. As is well known the group \(C^* \)-algebra \(C^*(G) \) generated by the unitaries \(\{ \lambda_g \mid g \in G \} \) is a finite dimensional Hopf *-algebra with

\[\Delta(\lambda_g) = \lambda_g \otimes \lambda_g, \quad \epsilon(\lambda_g) = 1, \quad S(\lambda_g) = \lambda_{g^{-1}} \text{ for } \lambda_g \in C^*(G). \]

The Haar trace \(\tau \) is given by \(\tau(\lambda_g) = \delta_{1,g} \), where \(\delta \) is the identity of \(G \), and the distinguished projection is \(e = \frac{1}{|G|} \sum_{g \in G} \lambda_g. \)

Let \(\alpha \) be an action of \(G \) on a unital \(C^* \)-algebra \(M \). Then it is easy to see that \(\lambda_g \cdot x := \alpha_g(x) \) for \(g \in G, x \in M \),
defines an action of $C^*(G)$ on M. Furthermore $M \rtimes C^*(G)$ is nothing but the usual crossed product $M \rtimes \alpha G = \text{span}\{x\lambda_g \mid x \in M, \ g \in G\}$, and the expectations $E : M \to M^\alpha(= M^{C^*(G)})$, $F : M \rtimes \alpha G \to M$ of Proposition 4.1 are given by

$$E(x) = \frac{1}{|G|} \sum_g \alpha_g(x) \quad \text{and} \quad F(\sum_g x_g \lambda_g) = x_e \ (x, x_g \in M, \ g \in G).$$

Note that for each $(i) = (i)$, we will see in Proposition 5.4 that $\sum \lambda_g$ defines an action of \mathbb{A} because ϵ is a projection in \mathbb{A}:

$$E \eta \lambda_g = \| F(\sum_h x_h \lambda_h) \lambda_{g^{-1}} \| \leq \| \sum_h x_h \lambda_h \| \leq \| \sum_h x_h \lambda_h \|.$$

If J_α denotes the closed ideal of $M \rtimes \alpha G$ generated by the distinguished projection e, then Proposition 3.3(i) says that α is saturated if and only if $J_\alpha = M \times \alpha G$. We will see in Proposition 5.3 that

$$J_\alpha = \text{span}\{ \sum_g x\alpha_g(y) \lambda_g \mid x, y \in M \} = \text{span}\{ \sum_g x\alpha_g(x^*) \lambda_g \mid x \in M \}.$$

The $*$-homomorphism $\varphi : C^*(M, e_{M^\alpha}) \to M \rtimes \alpha G$ we discussed in the proof of Theorem 3.3 can be rewritten as follows.

$$\varphi(L_x e_{M^\alpha} L_y) = \frac{1}{|G|} \sum_g x\alpha_g(y) \lambda_g, \ x, y \in M$$

because $\varphi(L_x e_{M^\alpha} L_y) = xey$ and $e = \frac{1}{|G|} \sum_g \lambda_g$. If $\{(u_i, u_i^*)\}$ is a quasi-basis for E, we see from $\sum_i L_{u_i} e_{M^\alpha} L_{u_i^*} = 1$ and (4) that

$$\varphi(1) = \sum_i u_i e_{u_i^*} = \frac{1}{|G|} \sum_g \left(\sum_i u_i \alpha_g(u_i^*) \lambda_g \right)$$

is a projection in $M \rtimes \alpha G$. Recall that $\varphi(1) = 1$ holds if α is saturated.

Theorem 4.1. Let M be a unital C^*-algebra and α be an action of a finite group G on M. Then the following are equivalent:

(i) α is saturated, that is, $J_\alpha = M \times \alpha G$.

(ii) $E : M \to M^\alpha$ is of index finite type with $\text{Index}(E) = |G|$.

(iii) $E : M \to M^\alpha$ is of index finite type with $\text{Index}(E) = |G|$ and

$$\sum_i u_i \alpha_g(u_i^*) = 0, \ g \neq e$$

for a quasi-basis $\{(u_i, u_i^*)\}$ for E.

(iv) There exist $\{b^g_j \in M \mid g \in G, \ 1 \leq j \leq m\}$ for some $m \geq 1$ such that

(a) $\alpha_g(b^g_j) = b^g_j$, for $j = 1, \ldots, m$ and $g, h \in G$.

(b) $\sum_j b^g_j(b^g_j)^* = \delta_{gh}$.

(v) For every $\varepsilon > 0$, there exist $\{b^g_j \in M \mid g \in G, \ 1 \leq j \leq m\}$ for some $m \geq 1$ such that

(a) $\sum_j \| \alpha_g(b^g_j) - b^g_j \| < \varepsilon$,

(b) $\| \sum_j b^g_j(b^g_j)^* - \delta_{gh} \| < \varepsilon$.

Proof. (i) \iff (ii) follows from Theorem 3.3.

(i) \implies (iii). If $\{(u_i, u_i^*)\}$ is a quasi-basis for E, we have from (5) that $\sum_i u_i \alpha_g(u_i^*) = 0$ for $g \neq e$ since $\varphi(1) = 1$.

(iii) \implies (ii). Obvious.
(i) \implies (iv). Suppose \(J_\alpha = M \times_\alpha G \). By (3) there exist \(m \in \mathbb{N} \) and \(b_j \in M \), \(1 \leq j \leq m \), such that
\[
\sum_g \left(\sum_j b_j \alpha_g(b_j^*) \right) \lambda_g = 1.
\]
Thus
\[
\sum_j b_j b_j^* = 1 \quad \text{and} \quad \sum_j b_j \alpha_g(b_j^*) = 0 \quad \text{for} \ g \neq \iota.
\]
Set \(b_j^g := \alpha_g(b_j) \). Then
\[
\alpha_g(b_j^g) = \alpha_g(\alpha_h(b_j)) = \alpha_{gh}(b_j) = b_{gh}^j,
\]
\[
\sum_j b_j^g(b_j^*)^g = \sum_j \alpha_g(b_j) \alpha_h(b_j^*) = \alpha_g \left(\sum_j b_j \alpha_{-1h}(b_j^*) \right) = \delta_{gh} \text{ by (2)}. \tag{7}
\]
(iv) \implies (v). Obvious.
(v) \implies (i). Let \(\varepsilon > 0 \) and let \(\{b_j^g \in M \mid g \in G, \ 1 \leq j \leq m\} \) satisfy (a) and (b) of (v). Note that (b) implies \(||b_j^g|| < 1 + \varepsilon \) for \(g \in G, \ 1 \leq j \leq m \). Indeed from \(|| \sum_j b_j^g(b_j^*)^g - 1 || \leq || \sum_j b_j^g(b_j^*)^g - 1 || < \varepsilon \), we have \(||b_j^g||^2 \leq || \sum_j b_j^g(b_j^*)^g || < 1 + \varepsilon \). Then
\[
|| \sum_{h,j} (\sum_g b_h^g \alpha_g((b_h^g)^*) \lambda_g) - |G| ||
= || \sum_g (\sum_{h,j} b_h^g \alpha_g((b_h^g)^*) \lambda_g) - |G| ||
= || \sum_{h,j} \sum_g b_h^g \alpha_g((b_h^g)^*) \lambda_g - |G| ||
\leq \sum_{h,j} || \sum_g b_h^g \alpha_g((b_h^g)^*) \lambda_g - |G| || + \sum_{g \neq \iota} \sum_{h,j} || \sum_j b_j^g \alpha_g((b_j^g)^*) ||
\leq \sum_g \sum_{h,j} || \sum_j b_j^g \alpha_g((b_j^g)^*) - 1 || + \sum_{g \neq \iota} \sum_j \sum_{h,j} || \sum_j b_j^g \alpha_g((b_j^g)^*) ||
< \varepsilon |G| + \sum_{g \neq \iota} \sum_{j} \sum_{h} || \sum_j b_j^g \alpha_g((b_j^g)^*) - (b_j^g)^* || + \sum_{g \neq \iota} \sum_{j} \sum_{h} || b_j^g \alpha_g((b_j^g)^*) ||
< \varepsilon \left(|G| + |G|^2 \max_{g,j} ||b_j^g|| + |G|^2 \right)
< \varepsilon \left(|G| + |G|^2 (1 + \varepsilon) + |G|^2 \right).
\]
Since \(\sum_{h,j} \sum_g b_h^g \alpha_g((b_h^g)^*) \lambda_g \in J_\alpha \) and \(\varepsilon \) can be chosen to be arbitrarily small, we conclude that \(J_\alpha = M \times_\alpha G \). \(\Box \)

Example 4.2. Let \(w = \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} \) be a unitary with \(w^n = 1 \) and define an automorphism \(\alpha \) on \(M_2(\mathbb{C}) \) by \(\alpha(a) = wav^*, \ a \in M_2(\mathbb{C}) \). We will show that \(\alpha \) is saturated if and only if \(z_2 = -z_1 \). For this, recall from (5) that \(\alpha \) is saturated if and only if there exist \(x_j \in M_2(\mathbb{C}) \), \(1 \leq i \leq m \), satisfying
\[
\sum_{k=0}^{n-1} \sum_{j=1}^{m} x_j \alpha^k(x_j^*) \lambda_k = 1_{M_2(\mathbb{C})} \tag{8}
\]
Hence, particularly for \(k = 0, 1 \), we have
\[
\sum_j x_j x_j^* = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \sum_j x_j \alpha(x_j^*) = \sum_j x_j w x_j^* w^* = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

With \(x_j = \begin{pmatrix} a_j & b_j \\ c_j & d_j \end{pmatrix} \) and \(z_i = e^{i \theta_i}, i = 1, 2 \), this means
\[
\sum_j \left(\begin{array}{cc}
|a_j|^2 + |b_j|^2 & a_j \bar{c}_j + b_j \bar{d}_j \\
|c_j|^2 + |d_j|^2 & a_j c_j + b_j d_j
\end{array} \right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
\]
\[
\sum_j \left(\begin{array}{cc}
|a_j|^2 + e^{i(\theta_2-\theta_1)} |b_j|^2 & e^{i(\theta_1-\theta_2)} a_j \bar{c}_j + b_j \bar{d}_j \\
|c_j|^2 + e^{i(\theta_2-\theta_1)} |d_j|^2 & e^{i(\theta_1-\theta_2)} a_j c_j + |d_j|^2
\end{array} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \quad (9)
\]

Therefore, by comparing (1,1) entries of each matrices, it follows that if \(\alpha \) is saturated, then there exist positive real numbers \(a = \sum_j |a_j|^2 > 0, b = \sum_j |b_j|^2 > 0 \) such that
\[
a + b = 1 \quad \text{and} \quad a + e^{i(\theta_2-\theta_1)} b = 0. \quad (10)
\]

Note that \(b \neq 0 \) since \(b = 0 \) implies \(a = 0 \) from \(\sum_j (|a_j|^2 + e^{i(\theta_2-\theta_1)} |b_j|^2) = 0 \) in (9). There are three possible cases for \(\theta_1, \theta_2 \) as follows.

(i) If \(\theta_2 - \theta_1 \equiv 0 (\mod 2\pi) \), that is, \(\alpha \) is trivial, then (10) is not possible.

(ii) If \(\theta_2 - \theta_1 \equiv \pi (\mod 2\pi) \), then
\[
x_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad x_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}
\]
satisfy (9) with \(m = 2 \). Thus \(\alpha \) is saturated.

(iii) If \(\theta_2 - \theta_1 \neq 0, \pi (\mod 2\pi) \), then (10) is not possible for any \(a, b > 0 \). Hence \(\alpha \) is not saturated.

Remark 4.3. Let \(\alpha, \beta \in \text{Aut}(M) \) satisfy \(\alpha^n = \beta^n = \text{id}_M \) for some \(n \geq 1 \). If there is a unitary \(u \in M \) such that \(\beta = \text{Ad}(u) \circ \alpha \), then \(\alpha \) and \(\beta \) are said to be exterior equivalent, and if this is the case the crossed products are isomorphic, \(M \times_\alpha G \cong M \times_\beta G \), [13] p.45. Example 4.2 says that the property of being saturated may not be preserved under exterior equivalence. Also the case (iii) of Example 4.2 above with \(w = \text{diag}(\lambda, \lambda), \lambda = e^{\frac{2\pi i}{3}} \) (hence \(\theta_1 - \theta_2 = \frac{2\pi }{3} \neq \frac{\pi }{2} \equiv \pi (\mod 2\pi) \)), shows that \(\text{Index}(E) < |G| \) is possible even when \(E \) is of index-finite type. In fact, if \(u_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(u_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), then \(\{(u_i, u_i^*)\}_{i=1}^2 \) forms a quasi-basis for \(E \), but \(\text{Index}(E) = 2 < |Z_3| \).

Remark 4.4. Recall that the Rokhlin property and the tracial Rokhlin property (weaker than the Rokhlin property) are defined as follows and considered intensively in [11] and [12], respectively:

(a) [7] \(\alpha \) is said to have the \textbf{Rokhlin property} if for every finite set \(F \subset M \), every \(\varepsilon > 0 \), there are mutually orthogonal projections \(\{e_g \, | \, g \in G\} \) in \(M \) such that

(i) \(\|\alpha_g(e_h) - e_{gh}\| < \varepsilon \) for \(g, h \in G \).

(ii) \(\|e_g x - xe_g\| < \varepsilon \) for \(g \in G \) and all \(x \in F \).

(iii) \(\sum_{g \in G} e_g = 1 \).
Proof. Suppose there is a unitary \(g \in M \). Then

\[
\alpha(g) = \sum_{g \in G} e_g \quad \text{for each } g
\]

exist a family of projections \(\{ e_g \}_{g \in G} \) in \(M \) such that

(i) \(\| \alpha(g) e_h - e_{gh} \| < \varepsilon \) for \(g, h \in G \).

(ii) \(\| e_g x - xe_g \| < \varepsilon \) for \(g \in G \) and all \(x \in F \).

(iii) With \(e = \sum_{g \in G} e_g \), the projection \(1 - e \) is Murray-von Neumann equivalent to a projection in the hereditary subalgebra of \(M \) generated by \(x \).

The following proposition is actually observed in [12, Lemma 1.13], and we put a proof for reader’s convenience.

Proposition 4.5. Let \(M \) be a unital \(C^* \)-algebra and \(\alpha \) be an action of a discrete group \(G \) on \(M \). Suppose that for every \(\varepsilon > 0 \) and every finite subset \(F \subset M \), there exist a family of projections \(\{ e_g \}_{g \in G} \) such that

1. \(\| \alpha(g) e_h - e_{gh} \| < \varepsilon \).
2. \(\| e_g x - xe_g \| < \varepsilon \) for each \(x \in F \).

Then \(\alpha \) is an outer action.

Proof. Suppose there is a unitary \(u \in M \) such that \(\alpha(g)(x) = uxu^* \) for every \(x \in M \) \((g \neq i)\). Put \(F = \{ u \} \) and \(0 < \varepsilon < 1/4 \). Then there exist mutually orthogonal projections \(\{ e_g \}_{g \in G} \) such that \(\| \alpha(g) e_h - e_{gh} \| < \varepsilon \) for every finite subset \(F \subset M \). Thus \(\| e_g u - ue_g u^* \| < \varepsilon \) for each \(x \in F \). Then \(\| \alpha(g) e_i - ue_g u^* \| = 0 \). But

\[
\| \alpha(g) e_i - ue_i u^* \| = \| \alpha(g) e_i - e_g + e_g - e_i - e_i u^* \|
\geq \| e_g - e_i \| - \| \alpha(g) e_i - e_g \| - \| e_i - e_i u \|
\geq 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}
\]

which is a contradiction.

Remark 4.6. If \(M \rtimes \alpha G \) is simple, \(\alpha \) is obviously saturated, and this is the case if \(G \) is a finite group, \(M \) is \(\alpha \)-simple, and \(\mathbb{T}(\alpha_g) \neq \{ 1 \} \) for all \(g \neq i \) (8 Theorem 3.1). In particular, \(M \) is saturated if \(M \) is simple and \(\alpha \) is outer.

But for a nonsimple \(M \), this may not hold. In fact, if \(\alpha \) is an outer action of \(\mathbb{Z}_n \) on \(M \) and \(u \) is a unitary in \(M \) with \(u^n = 1 \) such that the action \(Ad(u) \) on \(M \) is not saturated (as in Example 4.2), then the action \(\alpha \oplus Ad(u) \) on \(M \oplus M \) is outer but not saturated.

Now we show that if \(\alpha \) satisfies the Rokhlin property (or satisfies the tracial Rokhlin property and \(M \) has cancellation) then \(\alpha \) is saturated. For this we first review the cancellation property of \(C^* \)-algebras. For projections \(p, q \) in a \(C^* \)-algebra, we write \(p \perp q \) if \(pq = 0 \), and \(p \sim q \) if they are Murray-von Neumann equivalent.

Definition 4.7. A unital \(C^* \)-algebra \(M \) has the cancellation if, whenever \(p, q, r \) are projections in \(M_n(M) \) for some \(n \), with \(p \perp r, q \perp r, \) and \((p + r) \sim (q + r) \), then \(p \sim q \).
Proposition 4.9. Let α be an action of a finite group G on a unital C^*-algebra M. Then α is saturated if one of the following holds.

(i) α has the Rokhlin property.

(ii) α has the tracial Rokhlin property and M has the cancellation.

Proof. (i) For an $\epsilon > 0$, there exist mutually orthogonal projections $\{e_g\}_g$ such that $\sum_g e_g = 1$ and $\|\alpha_g(e_h) - e_{gh}\| < \epsilon$. Then, with $m = 1$, the elements $b^h := e_g$ satisfy (v) of Theorem 4.1.

(ii) Now suppose α has the tracial Rokhlin property and M has the cancellation. We shall show that J_α contains the unit of $M \times_\alpha G$. Let $0 < \epsilon < 1$. For each $g \in G$, choose mutually orthogonal projections $\{e^g_h\}_{h \in G}$ such that

$$\|\alpha_k(e^g_h) - e^g_{kh}\| < \frac{\epsilon}{2|G|^2},$$

and put $e^g := \sum_{h \in G} e^g_h$. If $e^g = 1$, for some g, then $b^h := e^g_h$ ($h \in G$) will satisfy (v) of Theorem 4.1 as in (i). If $e^g \neq 1$ for every $g \in G$, then by the tracial Rokhlin property of α there exist mutually orthogonal projections $\{f^g_h\}_{h \in G}$ in M such that

$$\|\alpha_k(f^g_h) - f^g_{kh}\| < \frac{\epsilon}{2|G|^2}$$

and

$$(1 - \sum_{h \in G} f^g_h) \sim (e^g)' < e^g$$

for a subprojection $(e^g)'$ of e^g. Put $f^g := \sum_{h} f^g_h$. Then since M has cancellation, it follows that $f^g \sim (1 - (e^g))' > (1 - e^g)$. Let $v_g \in M$ be a partial isometry satisfying

$$v_g^* v_g = f^g, \quad v_g v_g^* = 1 - (e^g)' ,$$

and set

$$x_g := \frac{1}{|G|} \sum_{k,h} \left((e^k_h \alpha_g(e^k_h) + (1 - e^k)v_k f^k_h \alpha_g(f^k_h \alpha_{g^{-1}}(v^*_k))) \right), \quad g \in G.$$

Now we show that the element $x := \sum_g x_g \lambda_g \in J_\alpha$ satisfies $\|x - 1\| < \epsilon$. In fact, for $g \neq 1$,

$$\|x_g\| \leq \frac{1}{|G|} \sum_{k,h} \| (e^k_h \alpha_g(e^k_h) + (1 - e^k)v_k f^k_h \alpha_g(f^k_h \alpha_{g^{-1}}(v^*_k))) \|

\leq \frac{1}{|G|} \sum_{k,h} (\|e^k_h \alpha_g(e^k_h)\| + \|f^k_h \alpha_g(f^k_h)\|)

\leq \frac{1}{|G|} \sum_{k,h} (\|e^k_h \alpha_g(e^k_h) - e_{gh}\| + \|e^k_h e_{gh}\| + \|f^k_h \alpha_g(f^k_h - f^k_{gh})\| + \|f^k_h f^k_{gh}\|)

\leq \frac{1}{|G|} \sum_{k,h} \left(\frac{\epsilon}{2|G|^2} + \frac{\epsilon}{2|G|^2} \right) = \frac{\epsilon}{|G|}.
and
\[x_\iota = \frac{1}{|G|} \left(\sum_k e^k + \sum_k (1 - e^k) v_k f^k v_k^* \right) \]
\[= \frac{1}{|G|} \left(\sum_k e^k + \sum_k (1 - e^k)(1 - (e^k)'(1 - e^k)) \right) \]
\[= 1. \]

For the rest of this section we consider a finite group action on a commutative
\(C^* \)-algebra \(C(X) \). If \(G \) acts on a compact Hausdorff space \(X \), it induces an action,
say \(\alpha \), on \(C(X) \) by
\[\alpha_g(f)(x) = f(g^{-1}x), \quad f \in C(X). \]
For each \(x \in X \), let \(G_x = \{ g \in G : gx = x \} \) be the isotropy group of \(x \) and for a
subgroup \(H \) of \(G \) (\(H < G \)), put
\[X_H = \{ x \in X : G_x = H \}. \]
It is readily seen that \(X_H \) and \(X_{H'} \) are disjoint if \(H \neq H' \), and \(X \) is partitioned as
\[X = \bigcup_{H < G} X_H. \]

Theorem 4.10. Let \(X \) be a compact Hausdorff space and \(G \) a finite group acting
on \(X \). If \(\alpha \) is the induced action of \(G \) on \(C(X) \), the following are equivalent:
(i) \(E : C(X) \to C(X)^\alpha \) is of index finite type.
(ii) \(X_H \) is closed for each \(H < G \).
Moreover, if this is case the index of \(E \) is \(\text{Index}(E) = \sum_{H < G} \frac{|G|}{|H|} \chi_{X_H} \), where \(\chi_{X_H} \)
is the characteristic function on \(X_H \).

Proof. (i) \(\implies \) (ii). If \(E \) is of index-finite type and \(\{ (u_i, u_i^*) \}_{i=1}^k \) is a quasi-basis for
\(E \), then
\[\sum_i u_i E(u_i^* f) = f, \]
that is,
\[\frac{1}{|G|} \sum_i u_i(x) \left(\sum_{g \in G} u_i^*(g^{-1}x) f(g^{-1}x) \right) = f(x), \quad (11) \]
for \(f \in C(X) \) and \(x \in X \). For each \(x \in X \), choose a continuous function \(f_x \in C(X) \)
satisfying \(f_x|_{Gx \setminus \{ x \}} = 0 \) and \(f_x(x) = 1 \). Then (11) with \(f_x \) in place of \(f \) gives
\[\frac{1}{|G|} \sum_i u_i(x) \left(\sum_{g \in G} u_i^*(g^{-1}x) f_x(g^{-1}x) \right) = f_x(x), \quad (12) \]
and so we have
\[\frac{|G_x|}{|G|} \sum_i u_i(x) u_i^*(x) = 1. \quad (13) \]
To show that each X_H is closed, let $\{x_n \in X_H : n = 1, 2, \ldots\}$ be a sequence of elements in X_H with limit $x \in X_H$. Then (11) gives

$$f_x(x_n) = \frac{1}{|G|} \sum_i u_i(x_n) \left(\sum_{g \in G} u_i^*(g^{-1}x_n)f_x(g^{-1}x_n) \right)$$

$$= \frac{1}{|G|} \sum_i u_i(x_n) \left(\sum_{g \in H} u_i^*(g^{-1}x_n)f_x(g^{-1}x_n) + \sum_{g \not\in H} u_i^*(g^{-1}x_n)f_x(g^{-1}x_n) \right)$$

$$= \frac{1}{|G|} \sum_i u_i(x_n) \left(|H|u_i^*(x_n)f_x(x_n) + \sum_{g \not\in H} u_i^*(g^{-1}x_n)f_x(g^{-1}x_n) \right).$$

Taking the limit as $n \to \infty$, we have

$$f_x(x) = \frac{1}{|G|} \sum_i u_i(x) \left(|H|u_i^*(x)f_x(x) + \sum_{g \not\in H} u_i^*(g^{-1}x)f_x(g^{-1}x) \right)$$

$$= \frac{1}{|G|} \sum_i u_i(x) \left(|H|u_i^*(x)f_x(x) + |H' \setminus H|u_i^*(x)f_x(x) \right)$$

$$= \frac{|H| + |H' \setminus H|}{|G|} \sum_i u_i(x)u_i^*(x)f_x(x).$$

Therefore, comparing with (13), we obtain

$$|H'| = |H| + |H' \setminus H|$$

since $G_x = H'$ and $f_x(x) = 1$. Hence

$$H \subset H'. $$

On the other hand, since $G_{x_n} = H$, again by (13), \(\frac{|H|}{|G|} \sum_i u_i(x_n)u_i^*(x_n) = 1 \) with the limit \(\frac{|H|}{|G|} \sum_i u_i(x)u_i^*(x) = 1 \) as $n \to \infty$. But also \(\frac{|H'|}{|G|} \sum_i u_i(x)u_i^*(x) = 1 \) by (13), and thus $|H| = |H'|$. Consequently we have

$$H = H'$$

because $H \subset H'$. This shows that X_H is closed.

(ii) \implies (i). Assume that X_H is closed for every subgroup H of G. Then X_H is open since there are only finitely many such subsets. Let $\mathcal{U}_H = \{U_{H,i_H} : i_H = 1, 2, \ldots, n_H\}$ be an open covering of X_H such that

$$x \in U_{H,i_H} \implies g^{-1}x \not\in U_{H,i_H} \text{ or } g^{-1}x \not\in X_H \text{ whenever } g^{-1}x \neq x.$$

Let $\{v_{H,i_H}\}$ be a partition of unity subordinate to \mathcal{U}_H. We understand that the domain of v_{H,i_H} is X by assigning 0 to $x \not\in X_H$. Let $u_{H,i_H} = \sqrt{v_{H,i_H}}$.

We claim that

$$\left\{ \left(\frac{G}{H} u_{H,i_H}, \sqrt{\frac{|G|}{|H|} u_{H,i_H}^*} \right) : H < G, i_H = 1, 2, \ldots, n_H \right\}$$

(14)
is a quasi-basis for E. For $f \in C(X)$ and $x \in X$, let $F < G$ and $1 \leq j \leq n_F$ be such that $x \in X_F$ and $x \in U_{F,j}$. Then

$$\sum_{H < G} \sum_{i_H = 1}^{n_H} \left(\frac{|G|}{|H|} u_{H,i_H} E \left(\frac{|G|}{|H|} u_{H,i_H}^* f \right) \right)(x)$$

$$= \frac{1}{|G|} \sum_{H < G} \sum_{i_H = 1}^{n_H} \left(\sqrt{\frac{|G|}{|H|}} u_{H,i_H}(x) \sum_{g \in G} \sqrt{\frac{|G|}{|H|}} u_{H,i_H}^*(g^{-1}x)f(g^{-1}x) \right)$$

$$= \sum_{i_F = 1}^{n_F} \frac{1}{|F|} u_{F,i_F}(x) \left(\sum_{g \in G} u_{F,i_F}^*(g^{-1}x)f(g^{-1}x) \right)$$

$$= \frac{1}{|F|} \sum_{i_F = 1}^{n_F} u_{F,i_F}(x) \left(\sum_{g \in G} u_{F,i_F}^*(g^{-1}x)f(g^{-1}x) \right)$$

$$= \frac{1}{|F|} \sum_{i_F = 1}^{n_F} u_{F,i_F}(x)|F|u_{F,i_F}^*(x)f(x)$$

$$= \sum_{i_F = 1}^{n_F} v_{F,i_F}(x)f(x)$$

$$= f(x),$$

as claimed.

Recall that an action G on X is free if $gx \neq x$ for $g \in G$, $g \neq 1$, and $x \in X$.

Corollary 4.11. Let X be a compact Hausdorff space and G a finite group acting on X. If α is the induced action on $C(X)$, the following are equivalent.

(i) G acts freely on X.

(ii) $E : C(X) \to C(X)^\alpha$ is of index-finite type with $\text{Index}(E) = |G|$.

(iii) α is saturated.

Proof. (i) \implies (ii) is proved in [19, Proposition 2.8.1].

To show (ii) \implies (i), let E be of index-finite type with $\text{Index}(E) = |G|$. Then from Theorem 4.10, we have

$$|G| = \text{Index}(E) = \sum_{H < G} \frac{|G|}{|H|} \chi_{X_H},$$

which implies that $H = \{e\}$ is the only subgroup of G such that $X_H \neq \emptyset$. Hence $X = X_{\{e\}}$, that is, G acts freely on X. (ii) \iff (iii) comes from Theorem 4.1. □

5. Saturated actions by compact groups

Notation 5.1. Let M be a C^*-algebra and α be an action of a compact group G on M. For $x, y \in M$, define continuous functions $f_{x,y}, f_{x,1}, f_{1,y} \in C(G, M)$ from G to
M as follows:

\[f_{x,y}(t) = x \alpha_t(y), \]

\[f_{x,1}(t) = x, \quad f_{1,y}(t) = \alpha_t(y) \quad \text{for } t \in G. \]

Then it is easily checked that $f_{x,y} = f_{x,1} \ast f_{1,y}$ and $f_{x,y}^* = f_{y^*,x^*}$.

Recall that $C(G, M)$ is a dense $*$-subalgebra of $M \times_\alpha G$ with the multiplication and involution defined by

\[f \ast g(t) = \int_G f(s) \alpha_s(g(s^{-1}t))ds, \]

\[f^*(t) = \alpha_t(f(t^{-1})^*), \]

where dg is the normalized Haar measure ([13, 7.7], [6, 8.3.1]). Hence if G is a finite group, $f_{x,y}$ can be written as

\[f_{x,y} = \frac{1}{|G|} \sum_g x \alpha_g(y) \lambda_g. \]

If $	ilde{M}$ denotes the smallest unitization of M (so $	ilde{M} = M$ if M is unital), the function $e : G \to \tilde{M}$, $e(s) = 1$, for every $s \in G$ is a projection of the multiplier algebra of $M \times_\alpha G$ ([17]).

Proposition 5.2. ([17]) Let α be an action of a compact group G on a C^*-algebra M. Then identifying $x \in M^\alpha$ and the constant function in $C(G, M)$ with the value x everywhere we see that

\[x \mapsto f_{x,1} : M^\alpha \to e(M \times_\alpha G)e \]

is an isomorphism of M^α onto the hereditary subalgebra $e(M \times_\alpha G)e$ of the crossed product $M \times_\alpha G$.

The notion of saturated action is introduced by Rieffel for a compact group action on a C^*-algebra, and we adopt the following equivalent condition as the definition.

Definition 5.3. (Rieffel, see [14, 7.1.9 Lemma]) Let M be a C^*-algebra and α be an action of compact group G on M. α is said to be saturated if the linear span of $\{f_{a,b} \mid a, b \in M\}$ is dense in $M \times_\alpha G$ (see Notation 5.1). We denote

\[J_\alpha = \overline{\text{span}} \{f_{a,b} \mid a, b \in M\}. \]

Proposition 5.4. Let α be an action of a compact group G on a C^*-algebra M. Then J_α is the ideal of $M \times_\alpha G$ generated by the hereditary subalgebra $e(M \times_\alpha G)e$. Moreover $J_\alpha = \overline{\text{span}} \{f_{a,a^*} \in C(G, M) \mid a \in M\}$.

Proof. We first show that J_α is an ideal of $M \times_\alpha G$. Let $x \in C(G, M)$ and $a, b \in M$. Then $x \ast f_{a,b} \in J_\alpha$. Indeed,

\[(x \ast f_{a,b})(t) = \int x(s) \alpha_s(f_{a,b}(s^{-1}t))ds \]

\[= \int x(s) \alpha_s(a) \alpha_t(b)ds \]

\[= (\int x(s) \alpha_s(a)ds) \alpha_t(b), \]
hence \(x * f_{a,b} = f_{c,b} \in \mathcal{J}_\alpha \), where \(c = \int x(s)\alpha_s(a)\,ds \in M \). Also \(f_{a,b}^* = f_{b^*,a^*} \) implies that \(\mathcal{J}_\alpha = \mathcal{J}_{\alpha}^* \) is an ideal of \(\mathcal{M} \times G \).

Let \(\mathcal{J} := (\mathcal{M} \times G) e(\mathcal{M} \times G) \) be the closed ideal generated by \(e(\mathcal{M} \times G) e \). Now we show that \(\mathcal{J}_\alpha \subset \mathcal{J} \). From

\[
(f_{a,b} * e)(t) = \int f_{a,b}(s)\alpha_s(e(s^{-1}t))\,ds = \int a\alpha_s(b)\,ds = a \int \alpha_s(b)\,ds,
\]

we have \(f_{a,b} * e = f_{aE(b),1} \), where \(E(b) = \int \alpha_s(b)\,ds \in M^\alpha \). Hence for \(a, b, c, \) and \(d \) in \(M \), we have

\[
f_{a,b} * e * f_{c,d} = (f_{a,b} * e) * (f_{c,d}^{} * e)^* = f_{aE(b),1}^{} * (f_{dE(c^{}),1}^{} * e)^*
\]

\[
= f_{aE(b),1}^{} * f_{1,E(c^{}),d}^{}
= f_{aE(b),E(c^{}),d}^{}
\]

which means that \(f_{x,y} \in \mathcal{J} \) for any \(a, d \in M \) and \(x, y \in M^\alpha \). Since \(M^\alpha \) contains an approximate identity for \(M \), it follows that \(f_{a,b} \in \mathcal{J} \) for \(a, b \in A \).

For the converse inclusion \(\mathcal{J} \subset \mathcal{J}_\alpha \), note that if \(x \in C(G, M) \), then \((x * e)(t) = \int x(s)\,ds \) for \(t \in G \). With notations \(x' = \int x(s)\,ds \) and \(x'' := \int \alpha_s(x(s^{-1}))\,ds \in M \), we see that

\[
(x * e * y)(t) = \int (x * e)(s)\alpha_s(y(s^{-1}t))\,ds
\]

\[
= x' \int \alpha_s(y(s^{-1}t))\,ds
\]

\[
= x' \alpha_t(\int \alpha_s(y(s^{-1}))\,ds)
\]

\[
= x' \alpha_t(y'')
\]

\[
= f_{x',y''}(t)
\]

belongs to \(\mathcal{J}_\alpha \) for \(x, y \in C(G, M) \).

Finally the following polarization identity proves the last assertion.

\[
a\alpha_t(b) = \frac{1}{4} \sum_{k=0}^{3} i^k(b + i^ka^*)^* \alpha_t(b + i^ka^*).
\]
orthogonal projections such that
\[s_e^* s_e = p_{r(e)} \quad \text{and} \quad p_v = \sum_{s(e)=v} s_e s_e^* \] if \(s^{-1}(v) \neq \emptyset \).

It is now well known that there exists a C*-algebra \(C^*(E) \) generated by a universal CK \(E \)-family \(\{ s_e, p_v \mid e \in E, v \in E^0 \} \), in this case we simply write \(C^*(E) = C^*(s_e, p_v) \). For the definition and basic properties of graph C*-algebras, see, for example, \([1, 2, 10, 11, 15] \) among others. If \(\alpha = \alpha_1 \alpha_2 \cdots \alpha_{|\alpha|} (\alpha_i \in E^1) \) is a finite path, by \(s_\alpha \) we denote the partial isometry \(s_{\alpha_1} s_{\alpha_2} \cdots s_{\alpha_{|\alpha|}} \) (\(s_v = s_v^* = p_v \), for \(v \in E^0 \)).

We will consider only locally finite graphs and it is helpful to note the following properties of graph C*-algebras.

Remark 6.1.

(i) Let \(C^*(E) = C^*(s_e, p_v) \) be the graph C*-algebra associated with a row finite graph \(E \), and let \(\alpha, \beta \in E^* \) be finite paths in \(E \). Then
\[
s_\alpha^* s_\beta = \begin{cases} s_{\mu}, & \text{if } \alpha = \beta \mu \\ s_\nu, & \text{if } \beta = \alpha \nu \\ 0, & \text{otherwise.} \end{cases}
\]

Therefore \(C^*(E) = \operatorname{span}\{s_\alpha^* s_\beta \mid \alpha, \beta \in E^*\} \).

(ii) Note that \(s_\alpha^* s_\beta = 0 \) for \(\alpha, \beta \in E^* \) with \(r(\alpha) \neq r(\beta) \).

(iii) If \(\alpha, \beta, \mu, \) and \(\nu \) in \(E^n \) are the paths of same length,
\[
(s_\alpha^* s_\beta)(s_\mu^* s_\nu) = \delta_{\beta,\mu} s_\alpha^* s_\nu.
\]

Thus for each \(n \in \mathbb{N} \) and a vertex \(v \) in a locally finite graph \(E \), we see that \(\operatorname{span}\{s_\alpha^* s_\beta \mid \alpha, \beta \in E^n \text{ and } r(\alpha) = r(\beta) = v\} \)

is a *-algebra which is isomorphic to the full matrix algebra \(M_m = (M_m(\mathbb{C})) \), where \(m = \left| \{ \alpha \in E^n \mid r(\alpha) = v \} \right| \).

Recall that the gauge action \(\gamma \) of \(\mathbb{T} \) on \(C^*(E) = C^*(s_e, p_v) \) is given by
\[
\gamma_z(s_e) = z s_e, \quad \gamma_z(p_v) = p_v, \quad z \in \mathbb{T}.
\]

\(\gamma \) is well defined by the universal property of the CK \(E \)-family \(\{ s_e, p_v \} \). Since
\[
\int_{\mathbb{T}} \gamma_z(s_\alpha^* s_\beta)dz = \int_{\mathbb{T}} z^{||\alpha|-|\beta||}(s_\alpha^* s_\beta)dz = 0, \quad |\alpha| \neq |\beta|,
\]
one sees that
\[
C^*(E)^\gamma = \operatorname{span}\{s_\alpha^* s_\beta \mid \alpha, \beta \in E^*, |\alpha| = |\beta|\}.
\]

If \(Z \) denotes the following graph:

\[
Z : \quad \cdots \quad \bullet \cdots \bullet \cdots \bullet \cdots \bullet \cdots \cdot \cdots 2 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2
\]

then \(C^*(Z) \) is isomorphic to the C*-algebra \(K \) of compact operators on an infinite dimensional separable Hilbert space, hence \(C^*(Z) \) is itself a simple AF algebra. But \(C^*(Z)^\gamma \) coincides with the commutative subalgebra \(\operatorname{span}\{s_\alpha^* s_\alpha \mid \alpha \in Z^*\} \) which is far from being simple, and thus we know that the simplicity of \(C^*(E) \) does not imply that of \(C^*(E)^\gamma \) in general.
In [3], the Cartesian product of two graphs E and F is defined to be the graph $E \times F = (E^0 \times F^0, E^1 \times F^1, r, s)$, where $r(e, f) = (r(e), r(f))$ and $s(e, f) = (s(e), s(f))$. Since the graph $Z \times E$ has no loops for any row-finite graph E, we know that $C^*(E)^\gamma$ is an AF algebra (13) by the following proposition.

Proposition 6.2. ([9]) Let E be a row finite graph with no sources. Then the following hold:

(a) $C^*(E)^\gamma$ is stably isomorphic to $C^*(E) \times_\gamma \mathbb{T}$.

(b) $C^*(E) \times_\gamma \mathbb{T} \cong C^*(Z \times E)$.

Now we show that a gauge action is saturated. For this, note that the linear span of the continuous functions of the form

$$t \mapsto f(tx), \quad f \in C(G), \quad x \in A$$

is dense in $C(G, A)$ [13, 7.6.1]. Hence by Remark 6.1(i), one sees that

$$C^*(E) \times_\gamma \mathbb{T} = \text{span}\{z^n s_\alpha s_\beta^* | \alpha, \beta \in E^* \ n \in \mathbb{Z}\}. \quad (15)$$

Theorem 6.3. Let E be a locally finite graph with no sinks and no sources. Then the gauge action γ on $C^*(E)$ is saturated.

Proof. We show that $J_\gamma = C^*(E) \times_\gamma \mathbb{T}$. By (15) it suffices to see that

$$z^n s_\alpha s_\beta^* \in J_\gamma \quad \text{for all } \alpha, \beta \in E^*, \ n \geq 0$$

(because $z^{-n}s_\alpha s_\beta^* = (z^n s_\beta s_\alpha^*)^*$ for $n \geq 0$).

Now fix $\alpha, \beta \in E^*$ and $n \geq 0$. Put $l = n - (|\alpha| - |\beta|)$. There are two cases.

(i) $l \geq 0$: One can choose a path μ such that $|\mu| = l$ and $r(\mu) = s(\alpha)$. Then

$$z^n s_\alpha s_\beta^* = z^{|l+|\alpha|-|\beta|} s_\mu s_\alpha s_\beta^* s_\mu^* s_\mu = s_\mu^* g_z(s_\mu s_\beta s_\alpha^*) = f_{s_\mu^* s_\mu, s_\beta s_\alpha^*}(z),$$

where the function $f_{s_\mu^* s_\mu, s_\beta s_\alpha^*}$ belongs to J_γ.

(ii) $l < 0$: Choose a path ν with $|\nu| = |\beta| + n$ and $r(\nu) = r(\alpha)$. With $a = s_\alpha s_\mu^*$, $b = s_\nu s_\beta^*$, we have $f_{a, b} \in J_\gamma$ and

$$z^n s_\alpha s_\beta^* = s_\alpha s_\mu^* g_z(s_\mu s_\beta s_\alpha^*) = f_{a, b}(z).$$

\square

Acknowledgements. The first author would like to thank Hiroyuki Osaka and Tamotsu Teruya for valuable discussions.

References

[1] T. Bates, J. H. Hong, I. Raeburn and W. Szymanski, *The ideal structure of the C^*-algebras of infinite graphs*, Illinois J. Math., 46(2002), 1159–1176.

[2] T. Bates, D. Pask, I. Raeburn, and W. Szymanski, *The C^*-algebras of row-finite graphs*, New York J. Math. 6(2000), 307–324.

[3] T. Bates and D. Pask, *Flow equivalence of graph algebras*, Ergod. Th. & Dynam. Sys. 24(2004), 367–382.

[4] B. Blakadar, *Operator Algebras, Theory of C^*-algebras and von Neumann algebras*, Encyclopedia of mathematical sciences 122, Springer, 2006.

[5] J. Cuntz and W. Krieger, *A class of C^*-algebras and topological Markov chains*, Invent. Math. 56(1980), 251–268.

[6] P. A. Fillmore, *A user’s guide to operator algebras*, Canadian Math. Soc. Series of Monographs and Adv. Texts, John Wiley & Sons, Inc. 1996.
Keywords: Finite dimensional Hopf $*$-algebra; saturated action; conditional expectation of index-finite type.

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul, 151–747, Korea
E-mail address: jajeong@snu.ac.kr

Department of Mathematics, Hanshin University, Osan, 447–791, Korea
E-mail address: ghpark@hanshin.ac.kr