Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilizing TaPYL4 receptor in wheat

Ying Liu1,†, Tai-Fei Yu1,†, Yi-Tong Li1,†, Lei Zheng1, Zhi-Wei Lu1, Yong-Bin Zhou1, Jun Chen1, Ming Chen1, Jin-Peng Zhang1, Guo-Zhong Sun1, Xin-You Cao2, Yong-Wei Liu3, You-Zhi Ma1,* and Zhao-Shi Xu1,4*

1Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
2National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
3Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China.
4National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.

† These authors contributed equally to this work.
* Corresponding author: xuzhaoshi@caas.cn; mayouzhi@caas.cn / +86-10-82106773

Article acceptance date: 10 June 2022

This PDF file includes:
Methods S1 Details of drought experiments
Figures S1 to S16
Tables S1 to S8
Methods S1 Details of drought experiments

For drought treatments in the seedling stage, the size of the small red basin used was uniform, with a diameter of 12 cm, depth of 10.5 cm, and edge height of 2.5 cm. A total of 2,628 g of nutrient soil was fully mixed with 3 L of tap water. Then, 230 g of moist soil was put into each small red basin. The soil was pressed evenly until it was flush along the bottom edge of the basin. Each pot was dotted with 18 wheat (Triticum aestivum) seeds, with 1/6/11 seeds arranged in a circle and then covered to the top edge of the basin with equal amounts of soil. Wheat plants were grown in the greenhouse and no extra water was added during growth. Follow-up photos were taken at 6, 13, 15, and 16 days after planting. Soil water contents (%) [SWC% = 100*(soil fresh weight-Soil dry weight)/Soil dry weight] were measured at 6, 10, 12, 13, 15, 16, and 18 days after planting and at 3 days after rehydration (Table S2). Proline content was sampled at 12 days after planting and malondialdehyde (MDA) content was sampled at 15 days after planting. Rehydration started on the 18th day. Photos were taken after three days of rehydration and the survival rate and fresh weight of shoots were recorded. Drought treatment was performed with at least four replicates and physiological indexes were measured with three replicates of each line. Each experiment was repeated at least three times.

For drought treatment at the jointing stage in greenhouse conditions, the size of the white basin and dosages of soil and water used were uniform. The basin diameter was 21.5 cm, the depth was 17 cm, and the edge height was 4.5 cm. Each pot was dotted with six wheat seeds and provided 1 L of water every five days before drought treatments. As a drought stress treatment, water supply was withheld for 15 days at the jointing stage until the young leaves were wilt and old leaves were dry. The plants of each pot were then rewatered with 2 L of water every five days until fully grown and then photographed. Finally, agronomic traits of spikelet number, tiller number, panicle length, plant height, grain number per plant, grain weight per plant, thousand grain weight, grain width and grain length were determined. Three traits, grain number per plant, grain length, and grain width, were measured using an automatic seed counting and analyzing instrument (Model SC-G, Wanshen Ltd). Drought treatment was performed with at least three replicates and agronomic traits were measured for 15 plants per line. Statistical analysis using one-way ANOVA with multiple comparisons
revealed the significant differences compared with WT (*p < 0.05, **p < 0.01).

For drought treatment in the field, the seeds of TaMPK3-RNAi (i-1 and i-3), WT, and TaMPK3-overexpressing (OE-2 and OE-11) lines were planted at the experimental station (40°13’52”N, 116°33’52”E) of the Institute of Crop Sciences, CAAS, Beijing. Rainfall data in the region is listed in Tables S3 and 4. Soil moisture content data in the field was calculated (Table S5). For the field experiment, TaMPK3 transgenic plants and WT were sown at the end of February and then mulched until mid-March and harvested the following July. In the watered treatment, an additional instance of irrigation was applied during the jointing and filling stages. In the drought treatment, no additional irrigation was applied from sowing to harvest. In order to prevent the impact of rainfall during the drought treatment after flowering, we expanded the area in advance to keep out rain according to the weather forecast. Other crop management was consistent with local cultivation practices for wheat varieties in the field. The major agronomic traits of plant height, the tiller number, the effective tiller number, the grain number per plant, the panicle length, the spikelet number, the grain length, the grain width, and the thousand grain weight of TaMPK3-RNAi, WT, and TaMPK3-overexpressing wheat lines under drought stress and well-watered condition in the field were collected. Statistical analysis using one-way ANOVA with multiple comparisons revealed the significant differences compared with WT (*p < 0.05, **p < 0.01). The agronomic traits of the transgenic wheat and WT were investigated for 10 plants per line in each experiment.
Fig. S1 Alignment and domain analysis of MPK3. Amino acid sequences from multiple genomic copies, along with the accessions reported in Table S7, of identified MPKs were aligned in DNAMAN under default settings. The PK domain was marked with a line segment below the alignment sequences and the ‘MAP kinase’ signature (specific to MPKs), contained in the PK domain, was marked with an orange rectangle. Straight lines were used to exhibit the positions of different feature sequences. Highlighted sequences with red straight lines were the ATP binding signature, the catalytic C-loop, the activation T-loop, CD domain, and EF-hand CBP. Sequence deviations from the conserved MPK motifs of plant MPKs were marked in red font in feature sequences.
Fig. S2 Molecular phylogenetic analysis of plant MPK3 genes. TraesCS4D02G198600 was used as a direct query in Ensembl (http://plants.ensembl.org/index.html) to search for homologous genes in typical monocots (pink) and dicots (blue). The full-length amino acid sequences of MPK3 of each species were aligned in MEGA5 by Clustal W under default settings, using MPK3 homologue of *Sphagnum fallax* (Sphfalx0169s0005, the gene ID in Phytozome) as an outgroup. The resulting alignments in meg format were submitted to MEGA5 to generate a Maximum Likelihood bootstrapped tree based on the Jones-Taylor-Thornton (JTT) matrix-based model. A discrete Gamma distribution was used
to model evolutionary rate differences among sites. To identify the species of origin for each MPK3, the name of the protein was replaced with the corresponding species name. The bootstrap consensus tree inferred from 500 replicates was taken to represent the evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) were shown next to the branches. Related sequence information is listed in Table S7.
Fig. S3 Amino acid sequence alignment of TaPYLs. The accessions of these amino acid sequences except TaPYL9 (A0A3B6RID7) are listed in Table S1. Identified TaPYLs were aligned in DNAMAN under default settings.
Fig. S4 The subcellular location of nine TaPYLs. Localization of TaPYL proteins under normal conditions. Images were observed under a confocal laser scanning microscope (LSM700, Zeiss). Scale bars = 10 μm.
Fig. S5 MPK3-PYL module exists widely in monocots and dicots. (a) BiFC assays in tobacco (*Nicotiana benthamiana*) showing that TaMPK3-nYFP interacted with TaPYL4-cYFP, AtMPK3-nYFP interacted with AtPYL4-cYFP, GmMPK3-nYFP interacted with GmPYL4-cYFP, and OsMPK3-nYFP interacted with OsPYL9-cYFP. Scale bars = 50 μm. (b) LCI assays demonstrating that AtMPK3-nLUC interacted with AtPYL4-cLUC, GmMPK3-nLUC interacted with GmPYL4-cLUC, and OsMPK3-nLUC interacted with OsPYL4-cLUC in tobacco.
Fig. S6 Overexpression and RNAi of TaMPK3 in wheat (Triticum aestivum). (a) Relative expression level of 16 TaMPK3-overexpressing lines using qPCR assays. Three independent TaMPK3-overexpressing lines (OE-2, OE-6, and OE-11) with the highest expression level were selected for functional study. The expression of β-actin was analyzed as an internal control. Each data point was the mean (±SD) of three experiments. (b) Relative expression level of 15 TaMPK3-RNAi lines using qPCR assays. Statistical analysis using one-way ANOVA with multiple comparisons revealed the significant differences compared with WT (*p < 0.05, **p < 0.01). Three independent TaMPK3-RNAi lines (i-1, i-3, and i-10) with the lowest expression level were selected for research. The expression of β-actin was analyzed as an internal control. Each data point was the mean (±SD) of three experiments. (c-d) Sketches of T-DNA insertion sites of the selected transgenic lines in the wheat genome detected by mhiTAIL-PCR. The mhiTAIL-PCR products purified from agarose gels were cloned into pEASY®-Blunt Zero Cloning vector (TransGen, Catalog no. CB501-01), then six monoclonal colonies were selected for sequencing with universal primers (M13F and M13R). The T-DNA insertions are shown as colored triangles and the flanking genomic sequences are in lower-case letters. The numbers at the bottom indicate T-DNA insertion sites (bp) and the positions of the wheat genome.
Fig. S7 Wheat (*Triticum aestivum*) plants overexpressing *TaMPK3* showed reduced ABA sensitivity. (a-c) Phenotypes of *TaMPK3*-overexpressing (OE-2, OE-6, and OE-11) and WT wheat plants under control and different concentrations of ABA treatments after soaking. Photographs were taken after 2 days of incubation in the greenhouse. (d) Bar graphs of seedling shoot length under control and ABA treatments were analyzed. Each treatment had at least three independent replicates and each replicate contained eight plants. Each data point is the mean (±SD) of 15 seedlings. Statistical analysis using one-way ANOVA with multiple comparisons revealed the significant differences compared with WT (*p* < 0.05, **p** < 0.01).
Fig. S8 The impact of ABA treatment on the interaction between TaMPK3 or TaMPK3K65R and TaPYL4. (a-b) LCI assays demonstrating that TaPYL4-cLUC directly interacted with TaMPK3-nLUC (a) and TaMPK3K65R-nLUC (b) in tobacco (\textit{Nicotiana benthamiana}) and ABA diminished the interaction. YB2-nLUC and YA16-cLUC was used as positive control (c). The dotted circles represent the injection areas. Three biological replications were performed with similar results. Each data point was the mean relative luciferase activity (±SD) of three leaves. Statistical analysis using Student’s \textit{t}-test revealed the significant differences (**p < 0.01) between control and 10 μM ABA treatments.
The S/TP site analysis of TaPYLs. (a) The S/TP site in TaPYLs was marked with a purple square. The accessions of these amino acid sequences except TaPYL9 (A0A3B6RID7) are listed in Table S1. (b) Three TaPYL4 identified from A, B, and D sub-genomes were aligned in Geneious under default settings. The S/TP site in TaPYL4 was marked with a purple square. The mutated serine site of TaPYL4 was marked with an orange square.
Fig. S10 The interaction between different mutant combination of TaMPK3 and TaPYL4. LCI assays demonstrating that TaMPK3^{K65R}-nLUC interacted with TaPYL4-cLUC, TaMPK3^{D191G/E195A}-nLUC interacted with TaPYL4-cLUC, TaMPK3-nLUC interacted with TaPYL4^{M1}-cLUC, and TaMPK3-nLUC interacted with TaPYL4^{M2}-cLUC in tobacco (*Nicotiana benthamiana*). TaPYL4^{M1} stands for TaPYL4^{S58A}, TaPYL4^{M2} stands for TaPYL4^{T3A/T177A}.

TaMPK3^{K65R} nLUC + TaPYL4 cLUC	TaMPK3^{D191G/E195A} nLUC + TaPYL4 cLUC	TaMPK3 nLUC + TaPYL4^{M1} cLUC	TaMPK3 nLUC + TaPYL4^{M2} cLUC	TaMPK3 nLUC + TaPYL4^{S58A} cLUC	TaMPK3 nLUC + TaPYL4^{T3A/T177A} cLUC
Fig. S11 ABA and PEG induced the accumulation of TaMPK3 at both transcriptional and protein levels. (a-b) The expression profile of TaMPK3 in different wheat (*Triticum aestivum*) tissues (a) and under control, ABA, and PEG6000 treatments for the indicated growth stages (b). Transcript levels were quantified by qPCR assays. The expression of β-actin was analyzed as internal control. Each data point is the mean (±SD) of three replicates. Related primers are listed in Table S1. (c-e) Protein level of TaMPK3 in 7-day-old wheat seedlings after control (c), ABA (d), and PEG6000 (e) treatments for the indicated times. Total proteins were extracted and subjected to immunoblot analysis with p44/42 MAPK (Erk1/2) antibody (CST, Catalog no. 4695S). Rubisco was used as a loading control.
Fig. S12 The specificity of anti-Erk1/2 on TaMPK3 protein.

TaMPK3-OE, TaMPK3-RNAi, and WT was the total protein of TaMPK3-overexpressing, RNAi and Fielder wheat (*Triticum aestivum*) plants, respectively. The purified TaMPK3-MBP protein was used as positive control. Rubisco was used as a loading control.
Fig. S13 The responses of TaMPK3 and TaPYL4 during drought and/or post-drought recovery stage. (a-b) The phenotypes of wheat (*Triticum aestivum*) suffering different degrees of drought stress. Ten-day-old wild-type (WT) wheat seedlings were provided different degrees of drought stress: control (CK) with ~225% of soil water content; drought condition I (D1) with ~68% of the soil water content; drought condition II (D2) with ~47% of the soil water content; drought condition III (D3) with ~31% of soil water content; and subsequently rehydrated (RH) for 0.5 h, 1 h, 2 h, and 4 h with ~400% of the soil water content. Total RNA and protein were extracted from each sample. Each data point was the mean (±SD) of six biological replicates. Statistical analysis using Student’s *t*-test revealed the significant differences of soil water content (**)p < 0.01) between CK and different drought conditions. (c-e) The relative expression level of TaMPK3 under different degrees of
drought stress (c), subsequently rehydrated for the indicated times after D2 (d), and subsequently rehydrated for the indicated times after D3 (e). Each data point was the mean (±SD) of three biological replicates. Statistical analysis using Student’s t-test revealed the significant differences of TaMPK3 expression (*p < 0.05, **p < 0.01) between CK and different sampling points. (f) In vitro cell-free protein degradation assays, showing degradation of 10 μg TaPYL4-GST after 0.5 h in 50 μg protein extracts from WT wheat plants under CK and rehydrated for 0.5 h, 1 h, 2 h, and 4 h after D3. Immunoblots were probed with anti-GST antibody. Rubisco was used as a loading control. Input indicated 50% of TaPYL4 in degradation reaction. (g) The protein level of TaMPK3 in 50 μg protein extracts from WT wheat plants under CK and rehydrated for 0.5 h, 1 h, 2 h, and 4 h after D3. Immunoblots were probed with anti-Erk1/2 antibody.
Fig. S14 The agronomic traits of TaMPK3-RNAi, WT, and TaMPK3-overexpressing wheat (Triticum aestivum) in greenhouse under watered condition. (a) The phenotypic analysis of TaMPK3-RNAi (i-1, i-3, and i-10), WT, and TaMPK3-overexpressing (OE-2, OE-6, and OE-11) wheat plants under watered condition in greenhouse. (b-j) The spikelet number (b); the tiller number (c); the panicle length (d); the plant height (e); the grain number per plant (f); the grain weight per plant (g); the thousand grain weight (h); the grain width (i); and the grain length (j) of TaMPK3-RNAi, WT, and TaMPK3-overexpressing wheat lines under watered condition in greenhouse. Each treatment had four independent replicates and each replicate contained six plants. Each data point was the mean (±SD) of 10 independent samples. Statistical analysis using one-way ANOVA with multiple comparisons revealed the significant differences compared with WT (**p < 0.01).
Fig. S15 The agronomic traits of *TaMPK3*-RNAi, WT, and *TaMPK3*-overexpressing wheat (*Triticum aestivum*) in the field under watered condition. (a-b) The phenotypes (a) and the seeds (b) of *TaMPK3*-RNAi (i-1 and i-3), WT, and *TaMPK3*-overexpressing (OE-2 and OE-11) wheat plants under watered conditions. (c-j) Plant height (c); grain length (d); grain width (e); thousand grain weight (f); effective tiller number (g); spikelet number (h); panicle length (i); and spikelet density (j) of *TaMPK3*-RNAi, WT, and *TaMPK3*-overexpressing wheat lines under watered conditions. Each treatment had three independent replicates and each replicate contained 15 plants. Each data point was the mean (±SD) of 10 independent samples. Statistical analysis using one-way ANOVA with multiple comparisons revealed the significant differences compared with WT (**p < 0.01).
Fig. S16 TaMPK3 interacted with TaCaM. (a) The interactions between TaMPK3-nYFP and TaCaM-cYFP using BiFC assays in wheat (*Triticum aestivum*) mesophyll protoplasts. Scale bars = 10 μm. (b) LCI assays demonstrating that TaMPK3-nLUC directly interacted with TaCaM-cLUC in tobacco (*Nicotiana benthamiana*).
Primer name	Primer sequence	Application	UniProtKB ID
TaPYL1-F	TGCTCCAAGCCTCTCTCTCG	PCR	A0A3B5YX52
TaPYL1-R	CAGCACCTCAGAATCACACC	PCR	
TaPYL2-F	AGAGGAAGACATGGAGGCC	PCR	
TaPYL2-R	GAGAAACCAGAAGCATGAACTCAC	PCR	A0A3B6EHC1
TaPYL3-F	CCAACCCCCATCAAGGAC	PCR	
TaPYL3-R	GGGCGAAGAAAAACACAGAA	PCR	A0A3B6TMH9
TaPYL4-F	TTACTCCCAAACCCACCCA	PCR	
TaPYL4-R	GCCGAAAAGAAACAGAAGGTA	PCR	A0A3B6D9V8
TaPYL5-F	CTTCTTCACAGCGAAAATCAG	PCR	
TaPYL5-R	AGATTCCAGAACCACACCTTT	PCR	A0A077RWR8
TaPYL6-F	GTCCATCTACCCAGTACAGC	PCR	
TaPYL6-R	CACAAGGAGTCAGGAAACAAATAAG	PCR	A0A3B5ZX84
TaPYL7-F	ACACGGCAGAAGAAAAAGC	PCR	
TaPYL7-R	GAGACCCAATGGGAGGAAA	PCR	A0A3B6HSL7
TaPYL8-F	CGATTAGCCCAACCCAGC	PCR	
TaPYL8-R	ACAAGTCCCTGCCCGTGA	PCR	A0A3B5ZSS4
TaMPK3-F	CTCACACTCCTCACCGTGGC	PCR	
TaMPK3-R	GAAATCATACATTGAGGGTAAC TA	PCR	A0A3B6JLL7
AtPYL4-F	GAAAGGCCAGCAGCACCACACT	PCR	O80920
AtPYL4-R	CAACGCACAAAGACTCATCAG	PCR	
AtMPK3-F	CTCACAGTATCTACTCTCAGACCT	PCR	Q39023
AtMPK3-R	AGACAAACTCAGCGACGAG	PCR	
GmMPK3-F	CCTCTTCCTCCACTTCTCC	PCR	
GmMPK3-R	CTTGTACGTGTTCTCGTGGT	PCR	
GmPYL4-F	TGCCCACCTCTTGCAA	PCR	
GmPYL4-R	AGAACAGAACCCATACC	PCR	
OsMPK3-F	CTCTAGCTTTGCTGGTCTCTC	PCR	K7MTN5
OsMPK3-R	AGTTCAACACCTCCTTATTCG	PCR	Q10N20
OsPYL9-F	CGCACCACAAAGCAAAG	PCR	
OsPYL9-R	GGCCTCAAAGGAGGACACA	PCR	Q6EN42
mLAD1	GCTACAGATGGACTGCTGAGTGCACCTG(G/C/A) N (G/C/A) NNGGAA	Tail-PCR	
mLAD2	GCTCAGATGGACTGCTGAGTGCACCTG(G/C/T) N (G/C/T) NNCCTT	Tail-PCR	
mLAD3	GCTCAGATGGACTGCTGAGTGCACCTG(G/T/A) N (G/T/A) NNCACC	Tail-PCR	
mLAD4	GCTCAGATGGACTGCTGAGTGCACCTG(G/T/A) N (G/T/A) NNTTGG	Tail-PCR	
mAC0	GAGCTCAGATGGACTGCTGAGTGCACCTG(G/C/T) N (G/C/T) NNCCTT	Tail-PCR	
mAC1	CGATGGACTGCTGAGTGCACCTG(G/C/T) N (G/C/T) NNCCTT	Tail-PCR	
RB-0a	TAAATGCGCTTTGACACATCCTCCCTC (160 bp from RB)	Tail-PCR	
RB-1a	CGATGGACTGCTGAGTGCACCTGCTGTAATAGCAGGAAGGACGC	Tail-PCR	
RB-2a	AGTGGCGCAGCTGAAATGGCGAATG (80 bp from RB)	Tail-PCR	
Primer Name	Sequence	Source	
-------------	----------	--------	
LB-0a	ATGACGTGGTTTCTGGCAGCTGGACTT (334 bp from LB)	Tail-PCR	
LB-1a	CGATGGACTGCTGAGTGGCACCTGGTCTGCTGCCGTCACCAGAGTTT (281 bp from LB)	Tail-PCR	
LB-2a	TCCAGTACTAAAATCCAGATCCCCGAA (97 bp from LB)	Tail-PCR	
RT-TaPP2C1-F	TGTGCCGCGATTCTTCAGCTTG	qPCR	
RT-TaPP2C1-R	CCCCCATCTGCTGAATCTCCTCACC	qPCR	
RT-TaPP2C2-F	GGAAGATGAGCGGTGCCAGGATTGA	qPCR	
RT-TaPP2C2-R	CAACCTGGCTACGTCCTTGATTTGACA	qPCR	
RT-TaPP2C6-F	ACGAGTGCTGATCCCGAGCCAG	qPCR	
RT-TaPP2C6-R	GGAGATGGTTGCTCGAAGGTCTTTT	qPCR	
RT-TaDHN3-F	CATTTCGAGCCACCGAGA	qPCR	
RT-TaDHN3-R	GGGCCACCACGGAGGTTT	qPCR	
RT-TaPOD21-F	CGGTGCTGACGCTGAACCTT	qPCR	
RT-TaPOD21-R	CCACGTACTGAGTTGCGCA	qPCR	
RT-TaActin-F	CCTCTCTGCGCCAATCGT	qPCR	
RT-TaActin-R	TCACCGAGCGGAATCTT	qPCR	
RT-TaMPK3-F	AGATGGTGCAATCGAGAGA	qPCR	
RT-TaMPK3-R	GCCTACTATGTTTCTCGTGTCG	qPCR	
Table S2 Soil water content (%) during the drought treatments at the seedling stage

	i-1	i-3	i-10	WT	OE-2	OE-6	OE-11
6 d	206.34±0.85	201.94±4.08	206.51±2.14	205.51±4.64	203.45±1.48	203.95±0.59	206.94±1.01
10 d	146.76±2.60	145.55±3.57	143.44±1.74	153.49±7.59	141.33±6.43*	141.01±9.55*	150.40±9.96
12 d	76.22±0.39	75.23±1.02	75.11±1.45	76.34±0.61	67.97±0.79**	70.18±1.37**	68.10±0.59**
13 d	59.28±0.59	60.59±0.41**	59.04±0.80	59.48±0.51	52.65±0.54***	51.10±0.66**	51.67±0.35**
15 d	50.49±0.60	51.80±0.39**	50.30±0.63	50.61±0.44	43.81±0.58**	42.33±0.71**	42.85±0.40**
16 d	41.52±0.43	42.91±0.36**	41.52±0.52	41.77±0.42	35.11±0.44**	33.66±0.50**	33.91±0.28**
18 d	29.12±0.47	30.20±0.32**	28.90±0.61	29.14±0.34	23.23±0.41**	21.96±0.49**	22.32±0.39**
3 d	381.02±1.30	375.81±3.01	380.94±3.28	379.23±6.91	376.41±2.32	377.15±0.83	381.35±0.99

* Each data was the mean (±SD) of six independent samples. Statistical analysis using one-way ANOVA with multiple comparisons revealed the significant differences compared with WT (*p < 0.05, **p < 0.01).

Table S3 Annual rainfall data from 2010-2020 at the experimental station (40°13’52’’N, 116°33’52’’E) of the Institute of Crop Sciences, CAAS, Beijing

Year	Rainfall (mm)	Station name	Station number
2010	666.75	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2011	788.67	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2012	773.43	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2013	661.92	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2014	524.51	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2015	483.36	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2016	735.08	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2017	710.44	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	672.34	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	490.47	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	528.57	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
Table S4 Monthly rainfall data from 2018-2020 at the experimental station (40°13’52”N, 116°33’52”E) of the Institute of Crop Sciences, CAAS, Beijing

Year	Month	Rainfall (mm)	Station name	Station number
2020	01	5.08	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	02	37.59	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	03	12.45	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	04	12.7	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	05	49.53	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	06	33.78	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	07	109.22	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	08	167.64	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	09	72.64	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	10	0.0	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	11	27.94	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2020	12	0.0	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	01	0.0	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	02	2.29	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	03	2.54	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	04	43.18	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	05	84.84	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	06	12.19	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	07	105.16	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	08	70.36	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	09	116.08	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	10	26.16	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	11	21.84	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2019	12	5.84	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	01	0.0	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	02	0.0	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	03	7.87	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	04	54.86	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	05	12.7	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	06	45.21	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	07	364.74	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	08	136.65	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	09	40.64	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	10	8.38	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	11	0.76	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
2018	12	0.51	BEIJING CAPITAL INTERNATIONAL AIRPORT, CH	54511099999
Table S5 Soil water content (%) in the field

Soil depth	10-20 cm	20-40 cm
Well-watered condition	27.16±1.41	35.63±2.13
Drought condition	10.23±0.91	13.96±1.08

Each data was the mean (±SD) of six independent samples.

Table S6 The list of the interacting candidates of TaPYL4

Gene ID	Homologs	Name	Species	Description	Identity
TraesCS1A02G151000	LOC_Os10g33270	OsCYN	Oryza sativa	Similar to Cyanate lyase (CYN)	85.35
TraesCS1A02G409900	LOC_Os01g46950	null	Oryza sativa	Glycoside hydrolase-type carbohydrate-binding, subgroup domain containing protein	79.167
TraesCS1D02G150300	-	-	-	Death-associated protein kinase 1	-
TraesCS2A02G090000	LOC_Os07g49150	TBPOs-2	Oryza sativa	Similar to 26S proteasome subunit 4-like protein (26S proteasome subunit AtRPT2a)	97.773
TraesCS2A02G212200	LOC_Os02g02820	TDR	Oryza sativa	Basic helix-loop-helix (bHLH) transcription factor, Tapetum development and degeneration	27.734
TraesCS2A02G499400	LOC_Os04g56480	LML1	Oryza sativa	Similar to OSIGBa0132E09-OSIGBa0108L24.21 protein	89.683
TraesCS2A02G523300	LOC_Os04g54810	null	Oryza sativa	Similar to OSIGBa0147H17.8 protein	87.649
TraesCS2B02G392900	LOC_Os04g44440	OsTCP17	Oryza sativa	Similar to Auxin-induced basic helix-loop-helix transcription factor	75.463
TraesCS2B02G416900	LOC_Os04g48416	OsSub45	Oryza sativa	Similar to OSIGBa0147H17.8 protein	87.143
TraesCS2D02G112900	LOC_Os07g47620	OsUsp1	Oryza sativa	Rossmann-like alpha/beta/alpha sandwich fold domain containing protein	68.519
TraesCS2D02G417000	LOC_Os04g52540	OsAGO2	Oryza sativa	Argonaute and Dicer protein, PAZ domain containing protein	74.803
TraesCS3B02G297300	LOC_Os01g49290	RACK1	Oryza sativa	Protein containing the WD-40 repeat, Innate immunun	90.991
TraesCS3D02G264000	LOC_Os01g49290	RACK1	Oryza sativa	Protein containing the WD-40 repeat, Innate immunun	90.991
TraesCS3D02G417500	LOC_Os01g68770	-	Oryza sativa	Similar to Selenium binding protein	93.79
TraesCS4A02G326100	LOC_Os03g63520	null	Oryza sativa	Der1-like domain containing protein	95.618
TraesCS4B02G143200	LOC_Os11g47670	null	Oryza sativa	Thaumatin, pathogenesis-related family protein	68.367
TraesCS4D02G107400	LOC_Os11g07020	Aldo	Oryza	Fructose-bisphosphate aldolase, chloroplast	93.041
Accession	Gene ID	Description			
-----------------	------------------	--			
TraesCS4D02G198600	AT3G45640	MPK3, Arabidopsis, Mitogen-activated protein kinase 3			
TraesCS5A02G319800	LOC_Os09g36190	Oryza sativa, Similar to Glycosyltransferase QUASIMODO1 (EC 2.4.1.-)			
TraesCS5B02G012100	LOC_Os03g14450	Oryza sativa, Similar to Enolase 2 (EC 4.2.1.11)			
TraesCS5B02G509500	AT1G56070	LOS1, Arabidopsis, Ribosomal protein S5/Elongation factor G/III/V family protein			
TraesCS6A02G213700	LOC_Os04g40950	Oryza sativa, Similar to Glyceraldehyde-3-phosphate dehydrogenase, cytosolic 3 (EC 1.2.1.12)			
TraesCS6D02G196300	LOC_Os04g40950	Oryza sativa, Similar to Glyceraldehyde-3-phosphate dehydrogenase, cytosolic 3 (EC 1.2.1.12)			
TraesCS7A02G164000	LOC_Os06g10230	Oryza sativa, Receptor-like kinase, Heat tolerance			
TraesCS7A02G338500	LOC_Os05g25770	Oryza sativa, WRKY transcription factor, Benzothiadiazole (BTH)-inducible blast resistance			
TraesCS7B02G193700	LOC_Os06g22070	Oryza sativa, Mitochondrial glycoprotein family protein			
TraesCS7B02G208700	LOC_Os08g04180	Oryza sativa, Similar to Tryptophan synthase beta chain 1 (EC 4.2.1.20)			
TraesCS7D02G054600	LOC_Os06g03780	Oryza sativa, WD40 repeat-like domain containing protein			
TraesCS7D02G264000	LOC_Os09g33520	Oryza sativa, Conserved hypothetical protein			
Species	Target % identity	Gene Name	Gene ID_Ensembl	Transcript ID_Ensembl	Location
---------------------------	-------------------	-----------	----------------------------------	-----------------------	--------------------------
Aegilops tauschii	77.47%	AetMPK3	AET4Gv20512600	AET4Gv20512600.2	4D:352,872,512-352,875,62
Arabidopsis thaliana	72.16%	ATMKP3	AT3G45640	AT3G45640.1	3:16,756,571-16,758,874:1
Beta vulgaris	69.55%	-	BVRB_9g207340	KMT02155	9:13,111,614-13,116,118:-1
Brachypodium distachyon	98.37%	BdMPK3	BRADI_1g65810v3	KQK22200	1:64,962,458-64,965,083:1
Brassica oleracea	72.43%	-	Bo3g130040	Bo3g130040.1	C3:47,472,433-47,473,965:1
Brassica rapa	74.77%	-	Bra038281	Bra038281.1-P	A06:11,393,911-11,395,465
Cucumis sativus	74.86%	-	Csa_1G479630	KGN65657	1:17,309,108-17,313,066:1
Glycine max	74.93%	GmMPK3	GLYMA_12G073000	KRH24954	12:5,388,370-5,391,780:-1
Hordeum vulgare	99.19%	HvMPK3	HORVU4Hr1G057200	HORVU4Hr1G057200.4	chr4H:480,892,997-480,895
Oryza sativa Indica Group	91.60%	OsMPK3	BGIOSGA010959	BGIOSGA010959-TA	3:10,741,695-10,743,976:-1
Oryza sativa Japonica Group	91.33%	Os03g0285800	Os03t0285800-01	Os03t0285800-01	3:9,847,723-9,850,384:-1
Phaseolus vulgaris	74.12%	-	PHAVU_011G071400	ESW04159	11:6,384,955-6,388,514:1
Setaria italica	90.67%	SiMPK3	SETIT_036218mg	KQK91364	IX:49,447,133-49,452,474:1
Solanum lycopersicum	71.58%	-	Solvc06g005170.3	Solvc06g005170.3	6:191,876-195,121:1
Solanum tuberosum	71.58%	StMPK3	PGSC0003DMG4000	PGSC0003DMT4000	6:7,463,480-7,467,923:1
Sorghum bicolor	91.18%	SbMPK3	SORB1_3001G410100	KXG39626	1:69,359,089-69,363,908:1
Triticum dicoccoides	83.33%	-	TRIDC4AG014520	TRIDC4AG014520.1	4A:120,373,811-120,376,46
Triticum dicoccoides	99.73%	-	TRIDC4BG036510	TRIDC4BG036510.1	4B:433,198,487-433,201,52
Triticum turidum	96.04%	-	TRITD4Av1G049530	TRITD4Av1G049530.4	4A:118,767,870-118,770,32
Triticum turidum	92.23%	-	TRITD4Bv1G124550	TRITD4Bv1G124550.2	4B:436,012,842-436,015,17
Triticum urartu	86.82%	TuMPK3	TRIUR3_20327	TRIUR3_20327-T1	scaffold11819:175,440-178,036:-1
Zea mays	90.11%	ZmMPK3	Zm00001d047758	Zm00001d047758_T0	9:141,026,557-141,029,745:1
Triticum aestivum	99.73%	4A	TraesCS4A02G10640	TraesCS4A02G10640.0	4A:120604688-120608133:-1
Triticum aestivum	99.73%	4B	TraesCS4B02G19780	TraesCS4B02G19780.0	4B:426767061-426769719:1
Triticum aestivum	99.73%	4A	TraesCS4A02G10640	TraesCS4A02G10640.0	4A:120604688-120608133:-1
Triticum aestivum	99.73%	4B	TraesCS4B02G19780	TraesCS4B02G19780.0	4B:426767061-426769719:1
Table S8 The promoter of TaMPK3 gene

TaMPK3_4A_promoter	TaMPK3_4B_promoter	TaMPK3_4D_promoter	Function	Sequence
A-box	A-box	A-box	cis-acting regulatory element	CCGTCC
ABRE	-	ABRE	cis-acting element involved in the abscisic acid responsiveness	ACGTG or GCCGCGTGGC
-	-	AC-I	-	(T/C)(T/C)(T/C)ACC(T/C)A CC
ARE	ARE	ARE	cis-acting regulatory element essential for the anaerobic induction	AAACCA
-	as-1	-	-	TGACG
AT-TATA-box	AT-TATA-box	AT-TATA-box	part of a conserved DNA module involved in light responsiveness	ATTAAT
Box 4	-	-	common cis-acting element in promoter and enhancer regions	CAAAT or TGCCAA or CCAAT
CAAT-box	CAAT-box	CAAT-box	cis-acting regulatory element related to meristem expression	GCCACT
CAT-box	-	-	-	CCAACGG
CCAAT-box	CCAAT-box	CCAAT-box	MYBHv1 binding site	CCGTCC
CCGTCC-box	CCGTCC-box	CCGTCC-box	-	CCGTCC
circadian	-	circadian	cis-acting regulatory element involved in circadian control	CAAAGATATC
-	CGTCA-motif	CGTCA-motif	cis-acting regulatory element involved in the MeJA-responsiveness	CGTCA
DRE core	DRE core	DRE core	-	GCCGAC
G-Box	-	-	cis-acting regulatory element involved in light responsiveness	CACGTT
G-box	G-box	G-box	cis-acting regulatory element involved in light responsiveness	CACGAC or CACGTC
GC-motif	-	-	enhancer-like element involved in anoxic specific inducibility	CCCCCC
MBS	-	-	MYB binding site involved in drought-inducibility	CAACTG
-	GT1-motif	GT1-motif	light responsive element	GGTAAA
-	JERE	-	-	AGACCGCC
MYB	MYB	MYB	-	CAACCA
MYB	MYB	MYB	-	CCGTTG
recognition site	recognition site	recognition site	-	CAACACAG
Myb-binding site	Myb-binding site	Myb-binding site	-	TAACTG or CACTG
Myb	-	-	-	TAACTG
-	MYB-like	MYB-like	-	TAACCA
MYC	MYC	MYC	CATTTG	
Sp1	Sp1	Sp1	light responsive element	GGGCGG
-	P-box	-	gibberellin-responsive element	CTTTTG
STRE	STRE	STRE	-	AGGG
TATA-box	TATA-box	TATA-box	core promoter element around -30 of transcription start	
TATC-box	-	-	cis-acting element involved in gibberellin-responsiveness	TATCCCA
-	TCCC-motif	-	part of a light responsive element	TCTCCCT
TC-rich	TC-rich	TC-rich	cis-acting element involved in defense and stress responsiveness	ATTCTCTAAC
TCT-motif	TCT-motif	TCT-motif	part of a light responsive element	TCTTAC
TGA-element	-	-	auxin-responsive element	AACGAC
-	TGACG-motif	TGACG-motif	cis-acting regulatory element involved in the MeJA-responsiveness	TGACG
W box	W box	W box	-	TTGACC