Effects of various nitrogen regimes on the ability of rapeseed (Brassica napus L.) to suppress littleseed canarygrass (Phalaris minor Retz.)

Gaofeng Xu
Yunnan Academy of Agricultural Sciences https://orcid.org/0000-0003-4110-6306

Shicai Shen
Yunnan Academy of Agricultural Sciences

Yun Zhang
Yunnan Academy of Agricultural Sciences

David Roy Clements
Trinity Western University

Shaosong Yang
Yunnan Academy of Agricultural Sciences

Liyao Dong (✉ dly@njau.edu.cn)
Fudou Zhang
Yunnan Academy of Agricultural Sciences

Research article

Keywords: Rapeseed, Littleseed canarygrass, Nitrogen regimes, Control efficacy, Competitive crops, Photosynthetic characteristics

Posted Date: August 18th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-38850/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Littleseed canarygrass (*Phalaris minor* Retz.) is one of the most troublesome invasive weeds infesting winter crops in Yunnan Province, China. Our previous study found that rapeseed (*Bassica napus* L.) was a logical candidate crop to control littleseed canarygrass in agroecosystems. Nitrogen (N) could impact plant community composition by altering competitive interactions, however, the effects of different N regimes on weed control efficacy of rapeseed were unknown. Here, we report the effects of different N regimes on the control efficacy of littleseed canarygrass by rapeseed and their competitive effects and photosynthetic characteristics.

Results: The results showed that the rapeseed yield and its control efficacy on littleseed canarygrass were significantly affected (P<0.05) under different N regimes, and the control efficacy of littleseed canarygrass by rapeseed increased first and then decreased with the increase of basal nitrogen rates, while increasing topdressing N rates increased control efficacy of littleseed canarygrass by rapeseed only. In fact, yield and weed control efficacy of rapeseed was most ideal when both basal and top-dressing N was 90 kg·ha⁻¹. We also found that N significantly impacted the competitive ability of rapeseed to littleseed canarygrass and rapeseed had a highest competitive ability when both basal and top-dressing N was 90 kg·ha⁻¹. With the increase of basal nitrogen rates, competitive balance index (CB) of rapeseed increased first and then decreased, but which gradually increased with increasing of topdressing N rates. Our research also showed level and period of N application had a significant effect (P<0.01) on the photosynthetic rate (Pn) and chlorophyll content (Chl) of both rapeseed and littleseed canarygrass. Under the same N application regime, the Pn and Chl of littleseed canarygrass were higher than that of rapeseed in December, while the Pn and Chl of rapeseed was higher than that of littleseed canarygrass in February. Our study indicated that photosynthetic characteristics of rapeseed and littleseed canarygrass in different growth stages differ in their sensitivity to N regimes, creating a dynamic competitive relationship.

Conclusions: Together, our results demonstrated that rational application of fertilizer N could help rapeseed produce higher yields and greater weed control efficacy, suggesting that future modeling or experimental studies on utilizing crops to control invasive weeds should carefully consider both timing and placement of N.

Background

Invasive weeds in agro-ecosystem reduce the yield of crops, seriously affected the export trade of agricultural products, and have even threatened ecosystem safety and human health [1,2]. In order to meet these challenges, in addition to control by herbicides or mechanical methods, environmental friendly approaches have been explored extensively and applied in the past several decades. Ecological control using high value species (e.g., crop species grown locally, native species and/or cash crops) has emerged as a viable option for management of invasive alien plant species [3–5]. Compared with mechanical or chemical control methods, ecological control has generally been considered safer, economical, ecologically-friendly, and sustainable [6]. However, due to increasing demand for food, nitrogen (N) application to croplands has been on the increase [7], which may affect ecological control efficacy. Some studies have shown that increasing N
application rates affect growth and control efficacy of native species on invasive weeds [8–10]. For example, increased N application was found to increase the invasiveness of the plant, *Ambrosia artemisiifolia*, as well as its ability to be suppressed by competition with native species [8]. Given N is an indispensable nutrient for agricultural production, studies on the effects of various N regimes on the ecological control efficacy of native plant for managing invasive weeds are critical for future management of invasive weeds in agroecosystems.

Littleseed canarygrass (*Phalaris minor* Retz.), an annual weed native to the Mediterranean region [11,12], is one of the most harmful weeds of winter crops in the world. This weed has spread across Eurasia, South and North America, East and South of Africa and Australia [12,13]. This weed came to China from Mexico via the introduction of wheat in the 1970s and is presently among the most destructive invasive plants in temperate field cropping systems of Yunnan Province, Southwest China [14 –16]. Numerous methods have been developed to manage this weed, but the most effective control is generally achieved using herbicides [17–19]. Environmental issues stemming from the use of herbicides, along with the frequent occurrence of herbicide resistance, provide a good rationale for the implementation of alternative control measures [20]. As a promising alternative to traditional control methods, the use of rapeseed to control the invasive weed *P. minor* has recently been reported in China [21].

Rapeseed ranks second among almost all oilseed crops worldwide and is the first-ranked oilseed crop in Yunnan Province [22]. Rapeseed competes strongly with weeds and also exhibits allelopathic activity, facilitating ecological control of weeds in farmland by rapeseed [16, 21]. For example, one study found that *Alopecurus japonicus* Steud., *Myosolon aquaticum* (L.) Mocnch. and *Lapsana apogonoides* Maxim were significantly inhibited by rapeseed in farmland [23]. Our previous field surveys found population densities of littleseed canarygrass in rapeseed fields were significantly lower than that in other fields [17]. Subsequent studies examined the effects of rapeseed on littleseed canarygrass growth and reproduction [16]. In mixed culture, rapeseed exhibited greater competitive ability than littleseed canarygrass, and the total biomass, branch, panicles numbers and seed numbers of littleseed canarygrass were suppressed significantly by rapeseed [16,21]. As one of the key factors affecting crops, weeds and their interactions, N fertilizer has been widely applied in farmland to increase rapeseed yield. However, the effects of various N regimes on the efficacy of rapeseed in controlling littleseed canarygrass are not known.

Building on our previous studies [15,16,17,21], the current research examined the influence of various N application rates on control efficacy of rapeseed and littleseed canarygrass in a field experiment in Yunnan Province, China. Our overall goals were to elucidate the control mechanisms of rapeseed to littleseed canarygrass under different N regimes and explore more sustainable management methods for littleseed canarygrass in agro-ecosystem. Specifically, our objectives were to: (1) Evaluate impacts of different N regimes on rapeseed yield and its weed control efficacy; and (2) Measure competitive effects and photosynthetic characteristics of rapeseed and littleseed canarygrass under different N regimes.

Results
The impacts of littleseed canarygrass on the growth and yield of rapeseed under various nitrogen regimes

The results showed that the aboveground biomass and yield of rapeseed in all mixed culture treatments were significantly lower (P<0.05) than that in all monoculture treatments under the same N application rate. Effects of littleseed canarygrass on the growth and yield of rapeseed were significantly different (P<0.05) under various N regimes. In monoculture, the aboveground biomass and yield of rapeseed increased with increasing N application rates. In mixed culture, the biomass and yield of rapeseed increased first and then significantly decreased with increasing basal N application rates, but the biomass and yield of rapeseed increased with increasing topdressing N application rates. Under different N regimes, littleseed canarygrass could reduce rapeseed yield by 22.95% – 54.60%, and the basal nitrogen application rates of BN3 have the greatest impact on the yield loss (over 50%) of rapeseed.

Table 1. Impacts of littleseed canarygrass on the growth and yield of rapeseed under various nitrogen regimes

Treatments	Total aboveground biomass of rapeseed (g plant⁻¹)	Rapeseed yield (Kg ha⁻¹)	Yield reduction rates of rapeseed (%)			
	Monoculture	Mixed culture	Monoculture	Mixed culture		
BN₁						
A	B	Monoculture	Mixed culture	Monoculture	Mixed culture	
TN₁	57.1±0.45I(a)	36.6±0.73G(b)	1405.3±40.1I(a)	891.5±29.6G(b)	36.34±3.16B	
TN₂	65.4±0.91H(a)	46.4±0.77F(b)	1678.5±23.5H(a)	1101.5±17.2F(b)	34.35±1.16B	
TN₃	72.7±0.54G(a)	54.1±0.97E(b)	1843.5±16.4G(a)	1228.8±26.2E(b)	33.30±2.04B	
BN₂						
A	B	Monoculture	Mixed culture	Monoculture	Mixed culture	
TN₁	78.9±1.25F(a)	59.6±0.59D(b)	2256.3±19.9F(a)	1651.3±32.5C(b)	26.79±1.71C	
TN₂	87.1±0.46E(a)	70.7±0.94B(b)	2471.4±18.2E(a)	1874.8±18.5B(b)	24.15±0.30C	
TN₃	92.6±0.97D(a)	76.9±0.81A(b)	2623.3±33.4D(a)	2021.3±35.5A(b)	22.95±0.91C	
BN₃						
A	B	Monoculture	Mixed culture	Monoculture	Mixed culture	
TN₁	96.8±0.70C(a)	52.9±0.78E(b)	2768.1±21.8C(a)	1256.2±23.9E(b)	54.60±1.22A	
TN₂	102.9±1.09B(a)	63.4±0.99C(b)	2864.2±13.7B(a)	1318.1±33.8E(b)	53.97±1.28A	
TN₃	109.7±1.0A(a)	75.6±1.04A(b)	3024.4±42.7A(a)	1434.2±38.8D(b)	52.57±1.25A	

Data are expressed as means ± standard error. A means basal nitrogen levels; B means topdressing nitrogen levels. The upper case letters indicate that the comparison of rapeseed yield or aboveground biomass under different nitrogen application rates treatments; different upper case letters represent significant differences at \(p < 0.05 \). The lower case letters in brackets indicate that the comparison of rapeseed yield or aboveground biomass between monoculture and mixed culture treatments at the same nitrogen condition; different lower case letters represent significant differences at \(p < 0.05 \).
The inhibitory effects of rapeseed on littleseed canarygrass under various nitrogen regimes

The aboveground biomass and seed number of littleseed canarygrass were significant inhibited (P<0.05) by rapeseed under various N regimes (Table 2). In monoculture, the aboveground biomass and seed number of littleseed canarygrass increased with increasing N application rates. In mixed culture, the seed number was significantly decreased by the presence of rapeseed but seed production significantly increased with increasing basal N application rates. Seed production by littleseed canarygrass decreased with increasing topdressing N application rates, however. Aboveground biomass of littleseed canarygrass did not differ between BN1 and BN2 treatments, but under the basal N application rate BN3, aboveground biomasses of littleseed canarygrass were significantly higher than for lower basal N rates (Table 2). Rapeseed exhibited high control efficacy on littleseed canarygrass at low basal N rates but significantly decreased with increasing basal N application rates.

Table 2. Effects of various nitrogen regimes on rapeseed control littleseed canarygrass

Treatments	Total aboveground biomass of littleseed canarygrass (g plant⁻¹)	Seed number of littleseed canarygrass	Control efficacy (%)		
	Monoculture	Mix culture	Monoculture	Mix culture	
A	B				
BN1	TN1 33.6±0.79I(a)	17.4±0.71C(b)	4171.3±35.6I(a)	2094.3±40.5D(b)	49.8±0.73F
	TN2 36.9±0.60H(a)	18.5±0.63C(b)	4491.3±34.4H(a)	1952.8±41.8E(b)	56.5±1.18E
	TN3 41.0±0.64G(a)	19.7±0.75C(b)	4808.5±66.4G(a)	1864.5±67.1E(b)	61.2±0.88D
BN2	TN1 43.7±0.78F(a)	17.6±0.88C(b)	5227.8±74.4F(a)	1732.8±27.7F(b)	66.9±0.63C
	TN2 47.0±0.61E(a)	18.8±0.60C(b)	5557.3±92.5E(a)	1301.0±29.5G(b)	76.6±0.56B
	TN3 49.4±0.76D(a)	19.3±0.92C(b)	5989.8±103.4D(a)	1211.5±33.9G(b)	79.8±0.63A
BN3	TN1 53.7±0.53C(a)	35.3±1.06B(b)	6223.3±82.1C(a)	3314.8±34.9C(b)	46.7±0.73G
	TN2 59.0±0.72B(a)	38.7±0.63A(b)	6558.1±66.1B(a)	3623.1±30.18B(b)	45.2±0.35G
	TN3 62.3±0.69A(a)	40.8±0.86A(b)	6979.5±133.9A(a)	3852.5±52.0A(b)	44.8±1.06G

Data are expressed as means ± standard error. A means basal nitrogen levels; B means topdressing nitrogen levels. The upper case letters indicate that the comparison of aboveground biomass, seed number or control efficacy of littleseed canarygrass among different nitrogen fertilization treatments under the same planting mode (monoculture or mixed culture); different upper case letters represent significant differences at p < 0.05. The lower case letters in brackets indicate that the comparison of aboveground biomass or number of seed...
between monoculture and mixed culture treatments under the same nitrogen condition; different lower case letters represent significant differences at $p < 0.05$.

Competitive Interactions of rapeseed and littleseed canarygrass

The RY of rapeseed and littleseed canarygrass was significantly less ($P < 0.05$) than 1.0 in mixed culture, showing that the intraspecific competition between the two plants was less than their interspecific competition under different nutrient levels (Table 3). The CB index of rapeseed was significantly greater than zero in mixed culture (except at basal N level of BN$_3$).

Under the same topdressing condition, with increasing basal N application rates, the RY and CB index of rapeseed first increased and then decreased, and the RY of littleseed canarygrass first decreased and then increased. However, with increasing topdressing N application rate, the RY and CB index of rapeseed increased, the RY of littleseed canarygrass declined.

Table 3. Relative yield (RY) and competitive balance (CB) index of rapeseed and littleseed canarygrass in mixed culture.

A	B	Rapeseed RY	Littleseed canarygrass RY	CB index for rapeseed
BN$_1$	TN$_1$	0.641±0.016d**	0.517±0.009b**	0.216±0.008e**
	TN$_2$	0.709±0.002c**	0.501±0.012bc**	0.348±0.015d**
	TN$_3$	0.744±0.008b**	0.479±0.014c**	0.440±0.019c**
BN$_2$	TN$_1$	0.756±0.005b**	0.401±0.013d**	0.635±0.037b**
	TN$_2$	0.812±0.009a**	0.399±0.008d**	0.710±0.009a**
	TN$_3$	0.831±0.004a**	0.391±0.013d**	0.755±0.031a**
BN$_3$	TN$_1$	0.547±0.007e**	0.658±0.014a**	-0.186±0.012h**
	TN$_2$	0.616±0.007d**	0.655±0.006a**	-0.061±0.005g**
	TN$_3$	0.690±0.016c**	0.654±0.008a**	0.052±0.016f**

Data are expressed as means ± standard error. A means basal nitrogen levels; B means topdressing nitrogen levels. The different letters within same row mean significant differences at $P < 0.05$. The t-test was used to compare each value with 1.0 and 0; * and ** indicate significant differences at 0.05 and 0.01 levels, respectively.

Photosynthetic characteristics
In December, net photosynthesis rate (Pn) and chlorophyll content (Chl) of littleseed canarygrass were significantly higher than that of rapeseed (P<0.05) in either monoculture or mixed culture. With the increasing N application rates, the Pn and Chl of littleseed canarygrass increased; but Pn and Chl of rapeseed first increased and then decreased in the mixed culture treatment. Although the Pn and Chl of rapeseed or littleseed canarygrass in mixed culture were lower than these parameters in monoculture, there were no significant difference for either species (except at N level of BN3) (Figure 1A, C).

In February, the Pn and Chl of rapeseed were significantly higher than that of littleseed canarygrass (P<0.05) in either monoculture or mixed culture (except the basal N application rate of BN3). In monoculture treatments, the Pn and Chl for both rapeseed and littleseed canarygrass gradually increased with increasing N application rates. In mixed cultured treatments, with the increase of basal N application rates, Pn and Chl of rapeseed significantly increased first and then significantly decreased, whereas Pn and Chl of littleseed canarygrass gradually increased. However, Pn and Chl for both rapeseed and littleseed canarygrass gradually increased with the increase of topdressing N application rates (Figure 1B, D).

Discussion

Our previous studies found that rapeseed could been used to control littleseed canarygrass in agro-ecosystems [17]. It was generally believed that increasing N rates could improve rapeseed yield and enhance the economic benefits [24]. However, different N applications may change the interactions between rapeseed and littleseed canarygrass [16], influencing control efficacy of rapeseed on weeds. Our field experiments examined the effects of different N application rates and periods on control efficacy of rapeseed on littleseed canarygrass. We found that the basal N application rates significantly affected the efficacy of control of littleseed canarygrass by rapeseed. Our study also showed that although weed control efficacy significantly improved with increasing topdressing N application rates, the magnitude of this impact was much lower compared to basal N application rates. Our results suggested that weed control efficiency of rapeseed was significantly affected by N application levels, with basal N levels played a leading role.

Utilizing crops to control invasive weeds are regarded as an environmentally friendly approach to the management of invasive weeds in agro-ecosystems [6,25]. At the same time, due to the high demand for food, it is important to develop weed control methods to sustain crop yield. N is essential for plant growth and development and is widely used to improve crop vigor and productivity in agro-ecosystems [26]. Our data indicated that invasive plant littleseed canarygrass resulted in a significant yield loss of rapeseed under different N application rates. We found that increased topdressing N rates could decreased rapeseed yield loss in mixed culture, but the yield losses in rapeseed were even more influenced by basal N levels. For basal N application rates of BN3 (150 kg·ha⁻¹), the yield loss of rape was more than 50%. However, the yield loss of rape was less than 30% when the base fertilizer was BN2 (90 kg·ha⁻¹). Together, these results indicated that rational N application may reduce the yield loss of rapeseed and could be successfully manipulated in favor of rapeseed.

Competitiveness of crops plays an important role in determining the likelihood of success in the control of invasive weeds [4,5,21]. It is generally believed that increased N levels can improve the competitiveness and
plant growth of both crops and invasives[8,9], but the relative effects vary depending on the particular species and other conditions. Our current study showed that the competitive ability of rapeseed varied widely with different N application regimes. We found increased topdressing N rates improved competitive ability of rapeseed. The competition ability of rapeseed was significantly greater for BN$_2$, (90 kg·ha$^{-1}$) than BN$_1$ (30 kg·ha$^{-1}$), but the basal N levels of BN$_3$ (150 kg·ha$^{-1}$) was only slightly greater than at BN$_1$. Thus the N level and type of fertilization must be regulated carefully to favor rapeseed over littleseed canarygrass.

As an essential nutrient element for plant growth, N is integral plant photosynthesis [27]. Higher rates of photosynthesis can lead to increased growth rates, biomass accumulation and overall production [28]. Our current study showed that net photosynthesis rate (Pn) and chlorophyll content (Chl) of littleseed canarygrass were significantly higher than that of rapeseed (P<0.05) in December. At that point in the season, the Pn and Chl of littleseed canarygrass increased with increased N whereas by comparison rapeseed Pn and Chl did not respond as well to the highest fertilizer levels. However, in February, the Pn and Chl of rapeseed were significantly higher than that of littleseed canarygrass (P<0.05). Our date indicated that in the seedling stage, N demand of littleseed canarygrass was stronger than that of rapeseed, with the result that higher or lower N levels at the seedling stage made rapeseed an inferior competitor; but in the reproductive stage, increasing topdressing improved the competitive ability of rapeseed.

Differences in nutrient requirements of plants at different growth stages is a common phenomenon [29]. If carefully matched to N demands at various plant growth stages, fertilizer availability could also be manipulated to provide ecological management of invasive alien plants. In our study we found that the net photosynthesis rate (Pn) of rape at seedling stage is weaker than that of littleseed canarygrass, while it is stronger at propagation stage. Our finding of a relatively low net photosynthesis rate (Pn) of rapeseed at the seedling stage, the efficacy of rapeseed in controlling littleseed canarygrass could be improved by timing the fertilizer application appropriately. By using fertilization strategically, N could be applied to deliberately improve the competitive ability of rapeseed over invasive plants like littleseed canarygrass.

Control indices are useful to developing clear measures for evaluating invasive plant control efficacy [30]. Our work was the first study to examine rapeseed yield and littleseed canarygrass weed seed number to evaluate the effect of N regime on their competitive relationship. Our measure of invasive plant control efficacy involved pitting yield of the crop (rapeseed) against the seed production of the weed (littleseed canarygrass), where yield is the measure of crop success and weed seed is essential for the establishment and spread of weed populations. Also key to our approach was showing how the two plants competed at different densities using a De Wit replacement series experiments [25] using biomass to develop an index to evaluate plant interspecific competition [31] as well as yield measures.

With invasive weeds continuing to threaten food safety and agro-ecosystem sustainability, ecological control using crops or native species may provide safe, economical, and environmentally sustainable solutions for invasive weed management [24,31]. Therefore, choosing crop species with strong competitiveness, high economic value and suitable for large-scale planting have always been the core issues of this study [5]. However, the interspecific competition of plants is dynamic. Environmental changes may affect the interspecific relationship between alternative crops and invasive weeds, and affect their control effect on
invasive weeds. N fertilizer is an indispensable means of enhancing agricultural production. While the application of N fertilizer improves the crop yield, it is important to also account for the impact of N on interspecific relationship of crops and weeds. Our finding that rapeseed competition with littleseed canarygrass at various N levels is complex whereby at some N levels at particular times in the season, the competitiveness of rapeseed is diminished relative to that of littleseed canarygrass. This suggests that future modeling or experimental studies utilizing crops to control invasive weeds should consider N regimes.

Conclusion

Our results demonstrated that rational application of fertilizer N allowed rapeseed to produce strong yields and provide high efficacy in the control of littleseed canarygrass. We found that interspecific competition and photosynthetic characteristics of rapeseed and littleseed canarygrass could be significantly affected by different nutrient regimes. Littleseed canarygrass growth was more sensitive to basal N application than topdressing applications. Rapeseed had the strongest competitive ability for basalic and topdressing N rates both of 90kg·ha$^{-1}$. Our study also indicated that photosynthetic characteristics of rapeseed and littleseed canarygrass at different growth stages varied in their sensitivity to varying N regimes, which showed that optimal nutrient regimes may provide a strategic tool for the ecological control of littleseed canarygrass. Finally, we recommend that future modeling or experimental studies on utilizing crops to control invasive weeds in agroecosystems should simultaneously consider several aspects of N application change and both crops and weeds.

Methods

Study Species

Littleseed canarygrass (*Phalaris minor* Retz.) is widely distributed in subtropical and temperate regions in Yunnan Province, Southwest China [14,17]. Since 2013, littleseed canarygrass seeds have been collected from wheat fields in Songming County of Yunnan Province and propagated in the glasshouse of the Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, China. The average weight of 1000 seeds was 1.49 ± 0.05 g and the germination rate was 91.8%, as tested before the experimentation.

Rapeseed (*Brassica napus* L.) is a dominant oil crop in subtropical and temperate regions of Yunnan Province [22]. Our previous studies showed that rapeseed variety Yunyou No. 2 had strong competitive ability and could be used to control littleseed canarygrass in agroecosystems [24]. In this experiment, the seeds of Yunyou No. 2 were obtained from the Food Research Institute, Yunnan Academy of Agricultural Sciences (YAAS)

Experiment design and data collection

We conducted a field experiment from September, 2018 to April, 2019 at the Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming China (25°12′–25°39′ N,
102°76′–102°89′ E) in the same field as Xu et al. [17]. This area is characterized by a subtropical and temperate monsoon climate. Rainfall averages 1000–1300 mm per year and the annual mean temperature is 14.1°C [17]. The soil type of test site is yellow-brown, with a total N content of 1.32g·kg\(^{-1}\), Olsen P content of 29.5 mg·kg\(^{-1}\), and available K content of 86.4 mg·kg\(^{-1}\), respectively.

The experiment was a split-plot design with basal N fertilization rates as the whole-plot factor (four replications for each N application rate treatment), topdressing N fertilization rates and plant ratios were split-plot factors, utilizing a de Wit replacement series method [32]. The rapeseed and littleseed canarygrass were sown on 24 September 2018 in the greenhouse. On 27 October 2018, similar-sized seedlings of both species were transplanted into 9 m\(^2\) plots (3 m × 3 m) and subjected to different N fertilization treatments. Three basal N fertilization rates (30 (BN\(_1\)), 90 (BN\(_2\)) and 150 (BN\(_3\)) kg·ha\(^{-1}\)) were applied in the form of urea at pre-plant (26 October 2018), and three topdressing N fertilization rates (30 (TN\(_1\)), 60 (TN\(_2\)) and 90 (TN\(_3\)) kg·ha\(^{-1}\)) were also applied in the form of urea at bolting stage (26 January 2019). In each plot, the amount of other fertilizers used in the whole growth period was the same, P\(_2\)O\(_5\) 90 kg·ha\(^{-1}\), K\(_2\)O 120 kg·ha\(^{-1}\), B 1.6 kg·ha\(^{-1}\), respectively.

We utilized a de Wit replacement series incorporating three ratios of rapeseed and littleseed canarygrass densities and nine different N regimes in replicated 9 m\(^2\) plots. A combination of three ratios (1:0 (180:0 plants), 1:1 (90:90 plants) and 0:1 (0:180 plants)) of rapeseed and \(P.\) \textit{minor} were studied at nine N fertilization rates (BN\(_1\)TN\(_1\), BN\(_1\)TN\(_2\), BN\(_1\)TN\(_3\), BN\(_2\)TN\(_1\), BN\(_2\)TN\(_2\), BN\(_2\)TN\(_3\), BN\(_3\)TN\(_1\), BN\(_3\)TN\(_2\), BN\(_3\)TN\(_3\)). A total of 180 plants were grown at three ratios of rapeseed and \(P.\) \textit{minor} while maintaining a constant planting density of 20 plants m\(^{-2}\) (0.25 m × 0.20 m space) in each plot. All plants were distributed uniformly within the plot. All plots were arranged in a complete randomized block design with four replicates per ratio and per nutrient level (total n = 4 replicates × 3 ratios × 9 nutrient levels = 108). A 1.0 m border was constructed between plots and each plot was fenced with 0.5 m high glass panels to prevent the plants from climbing beyond the plots.

The net photosynthetic rate (Pn) measurements on leaves for rapeseed and littleseed canarygrass conducted using a Portable Photosynthesis System (LI-COR Biosciences LI–6400XT, Lincoln, Nebraska, USA), between 10:00 am and 16:30 pm, with a 6400–02 LED source and 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) photosynthetically active radiation [33]. During sampling, CO\(_2\) concentration in surrounding air, air temperature and relative humidity (RH) in the chamber were measured. In December 2018, two months after transplanting, 40 fully expanded leaves (flag leaf and the top second leaf) of each species were randomly sampled from each plot and immediately scanned using an LI–6400XT [34]. Then, the leaves were cleaned for chlorophyll content determination. We cut 0.1g pieces from fresh leaves avoiding the main vein, and soaked the leaf fragments in 25 ml 95% ethanol at room temperature for 48 h. The detector was set at 665 nm in order to calculate the total chlorophyll content (Chl) [28]. In February 2019, four months after transplanting, twenty plants of each species were selected randomly and forty fully expanded sun leaves (flag leaf and the top second leaf) of each species were sampled for net photosynthetic rate and chlorophyll content, following the same method as above. Plants were manually uprooted and then cut at ground level for determination of aboveground biomass. Fresh plants were heated for 30 min at 105 °C to halt metabolic processes, and then dried at 80 °C in a forced-draft oven until reaching a constant weight before weighing. Rapeseed yield and littleseed
canarygrass seed number were determined in a 2m² area in each plot; rapeseed yield was adjusted to a moisture content of 10.0%.

Data analyses

To evaluate the effect of littleseed canarygrass on rapeseed yield under various N regimes, the yield losses of rapeseed were determined from rapeseed yield comparing monoculture versus mixed culture according to the formula: the yield reduction rate of rapeseed(%) = (1 – yield in mixed culture / yield in monoculture)×100%. To evaluate the ability of rapeseed to control littleseed canarygrass under various N regimes, control efficacy of littleseed canarygrass was determined from seed number comparing monoculture versus mixed culture according to the formula: the control efficacy of littleseed canarygrass (%) = (1 – seed number in mixed culture / seed number in monoculture)×100%.

Relative yield (RY) per plant [35] and competitive balance index (CB) [36] were calculated from the final aboveground biomass obtained for each species in each plot. Relative yield per plant of species a or b in a mixed culture with species b or a was calculated as $R_Y^a = Y_{ab}/Y_a$ or $R_Y^b = Y_{ba}/Y_b$. Competitive balance index was calculated as $C_B^a = \ln (R_Y^a/R_Y^b)$, where Y_{ab} is the yield for species a growing with species b (g/individual), Y_{ba} is the yield for species b growing with species a, Y_a is the yield for species a growing in pure culture (g/individual), and Y_b is the yield for species b growing in pure culture. Values of R_Y^ab measure the average performance of individuals in mixed cultures compared to that of individuals in pure cultures. An R_Y^ab of 1.00 indicates species a and b are both equal in terms of intraspecific competition and interspecific competition. An R_Y^ab greater than 1.00 means intraspecific competition for species a and b is higher than interspecific competition, and an R_Y^ab of less than 1.00 implies intraspecific competition of species a and b is less than interspecific competition [37]. Values of C_B^a greater than 0 indicate that species a is more competitive than species b [38].

The rapeseed yield and its yield reduction rate, seed number of littleseed canarygrass and its control efficacy, aboveground biomass, physiological (Pn) and chlorophyll content of rapeseed and this weed were analyzed by analysis of variance (one-way ANOVA) using IBM SPSS 23.0 software (Armonk, New York, USA). The F and partial eta squared statistics were calculated considering density ratio and N level with their interaction as factors at a 5% level of significance. Relative yield from each mixed culture were compared to the value of 1.00 using t-tests (P = 0.05), and values of CB for deviation from 0 using a paired t-test.

Declarations

Acknowledgments

We thank those at our study ranches for their hospitality and property access. In particular, we wish to thank Yuhua Zhang from the Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences for her great field support.
Authors’ Contributions

L. Y. D. and F. D. Z. conceived and designed the experiments; G. F. X., S. C. S., S. S. Y., and Y. Z. performed the experiments; G. F. X. and S. C. S. analyzed the data and wrote draft; D. R. C. edited the manuscript for style; L. Y. D. and F. D. Z. commented on manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by the Applied Basic Research Foundation of Yunnan Province (2017FB055), the Yunnan Provincal Key Fund Program (2018FA024), the Middle-aged and Young Academic Leader Training Foundation of Yunnan Province (2018HB054), the Ten Thousand Talent Program (Young Top-notch Talent) of Yunnan Province (2019–2023), the National Natural Science Foundation of China (31960569), the Special Foundation for Applied Basic Research of Yunnan Academy of Agricultural Sciences (YJM201802), the State Scholarship Fund of China Scholarship Council (201808530029), the Program for the Innovative Research Team of Yunnan Province (2020–2022), and the Key Research and Development Program of Yunnan Province (2019IB007).

Availability of data and materials

The datasets used and/or analysed during the present research are accessible from the Corresponding author on reasonable request.

Ethics approval and consent to participate

All aspects of the study comply with institutional, national, and international guidelines. All experiments were conducted on non-regulated organisms. The study site was rented by Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences and no permits were required to take samples.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript and in the decision to publish the results.

Author details
References

1. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M. Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol. 2013; 28: 58– https://doi.org/10.1016/j.tree.2012.07.013.

2. Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kühn I, Kumschick S, Marková Z, Mrugala A, Nentwig W, Pergl J, Pyšek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Vilà M, Wilson JRU, Winter M, Genovesi P, Bacher S. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 2014; 12(5): e1001850. https://doi.org/10.1371/journal.pbio.1001850.

3. Sher AA, Marshall DL, Taylor JP. Establishment patterns of native Populus and Salix in the presence of invasive nonnative Tamarix. Eco Appl. 2002; 12: 760–772. https://doi.org/10.1890/1051-0761(2002)012[0760:EPONPA]2.0.CO;2

4. Li WH, Luo JN, Tian XS, Chow WS, Sun ZY, Zhang TJ, Peng SL, Peng CL. A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them. Sci Rep. 2015; 5: 11004. https://doi.org/10.1038/srep11004.

5. Shen SC, Xu GF, Clements DR, Jin GM, Chen AD, Zhang FD, Hisashi KN. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients. BMC Ecol. 2015; 15: 1. https://doi.org/10.1186/s12898-014-0033-5.

6. Richardson DM, Pyšek P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 2006; 30: 409–431, doi:10.1191/0309133306pp490pr.

7. Meng QF, Yue SC, Hou P, Cui Z, Chen, XP. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: A Review. Pedosphere. 2016; 26(2):137-147. doi:10.1016/S1002-0160(15)60030-3.

8. Wang JP, Dong LJ, Sang WG. Effects of different nitrogen regimes on competition between Ambrosia artemisiifolia, an invasive species, and two native species, Artemisia annua and Artemisia mongolica. Biodiversity Science. 2012; 20(1): 3-11. doi: 10.3724/SP.J.1003.2012.09077.

9. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM. Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecol. 1990; 71: 478–491. doi: 10.2307/1940302.
10. Brooks ML. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol. 2003; 40: 344-353. http://www.jstor.org/stable/3506007.

11. Gonzalez-Andujar JL, Saavedra M. Spatial distribution of annual grass weed populations in winter cereals. Crop Prot. 2003; 22: 629–633. doi:10.1016/S0261-2194(02)00247-8.

12. Singh S, Kirkwood RC, Marshall G. Biology and control of *Phalaris minor* Retz. (littleseed canarygrass) in wheat. Crop Prot. 1999; 18: 1–16, doi:10.1016/S0261-2194(98)00090-8.

13. Rajender SC, Ramesh KS. Multiple herbicide resistance in littleseed canarygrass (*Phalaris minor*): A threat to wheat production in India. Weed Biol Manag. 2008; 8: 112–123. doi:10.1111/j.1445-6664.2008.00283.x.

14. Shen SC, Zhang FD, Xu GF, Li TL, Wu D, Zhang Y. Occurrence and infestation of invasive weed in crop field in Yunnan. *Southwest China J. Agric. Sci.* 2012; 25:554–561.

15. Xu GF, Zhang FD, Li TL, Shen SC, Zhang YH. Influence of environmental factors on seed germination of *Phalaris paradoxa* and *Phalaris minor*. Acta Bot Boreali-Occident Sin. 2011; 31: 1458–1465. doi: 10.1093/mp/ssq070.

16. Xu GF, Zhang Y, Shen SC, Zhang FD, Li TL, Jin GM. Effect of crop species and mixed ratios on morphological plasticity and competitiveness of *Phalaris minor* Retz. J. Eco-Agric. 2013; 21: 1507–1514.

17. Xu GF, Zhang FD, Li TL, Shan QL, Zhang YH, Wu D. Biological characteristics, influence on growth of wheat and its economical threshold of *Phalaris paradoxa* L. and *Phalaris minor* Retz. Sci Agric Sin. 2010; 43: 4409–4417.

18. Khawar J, Muhammad F, Mubshir H, Hafeezur R, Muhammad AA. Wild oat (*Avena fatua* L.) and canary grass (*Phalaris minor* Ritz.) management through allelopathy. J. Plant Prot. Res. 2010;50: 41–44.

19. Tang DS, Yang XY, Li YC, Xiao WX, Gu XJ, Jin DJ, Li R, Fu Y. Investigation on the occurrence, damage and control of the invasive weed *Phalaris* spp. in Yunnan Province. Plant Prot. 2018; 44: 167–169.

20. Travlos IS, Chachalis D. Glyphosate-resistant hairy fleabane (*Conyza bonariensis*) is reported in Greece. *Weed Technol.* 2010; 24: 569–573. doi:10.1614/WT-D-09-00080.1.

21. Xu GF, Shen SC, Zhang YH, Clements DR, Yang SS, Li J, Dong LY, Zhang FD. Designing cropping systems to improve the management of the invasive weed *Phalaris minor* Agronomy. 2019: 9,809:1-12. doi:10.3390/agronomy9120809.

22. Zhang MH, Liu L, Fu MN. Studies on utilization of Yunnan germplasm resources in rapeseed. Journal of Anhui Agri Sci. 2012; 40(35): 17056-17057.

23. Lou QF, Zhang DY, Huang JZ, Wang QY, Liu TL, Zhu YL. Influence of nitrogen on competition between three weed species and bird rape. Journal of Nanjing Agri Uni. 2000; 23(1): 23-26.

24. Liu B, Tao R, Lu JW, Li XK, Cong RH, Wu LS. On-farm trials of site-specific N management for maximum winter oilseed rape (*Brassica napus*) yield. Journal of Plant Nutrition. 2017, 40(9):1300-1311. doi:10.1080/01904167.2016.1264599

25. Shen SC, Xu GF, Li DY, Jin GM, Liu SF, Clements DR, Yang YS, Rao J, Chen AD, Zhang FD, Zhu XC. *Ipomoea batatas* (sweet potato), a promising replacement control crop for the invasive alien plant
Ageratina adenophora (Asteraceae) in China. Manag Biol Invasions. 2019; 10: 559–572. https://doi.org/10.3391/mbi.2019.10.3.10

26. Shivega WG, Aldrich-Wolfe L. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability. AoB Plants. 2017; 9: https://doi.org/10.1093/aobpla/plx004.

27. Jung JK, Lee SU, Kozukue N, Levin CE, Friedman M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batatas) plants and in home processed roots. J Food Compos Anal. 2011; 24: 29–37. https://doi.org/10.1016/j.jfca.2010.03.025.

28. Schjoerring JK, Bock JG, Gammelvind L, Jensen CR, Mogensen VO. Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (Brassica napus L.) as affected by rate of nitrogen application and irrigation. Plant Soil. 1995; 177:255-264. doi:10.1007/bf00010132.

29. Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv Ecol Res. 1992; 23: 187–261. https://doi.org/10.1016/S0065-2504(08)60148-8.

30. Wang JP, Dong LJ, Sang WG. Effects of different nitrogen regimes on competition between Ambrosia artemisiifolia, an invasive species, and two native species, Artemisia annua and Artemisia mongolica. Biodiv Sci. 2012; 20: 3–11. http://www.biodiversity-science.net/CN/10.3724/SP.J.1003.2012.09077

31. Weigelt A, Jolliffe P. Indices of plant competition. J Eco. 2003; 91: 707–720. https://doi.org/10.1046/j.1365-2745.2003.00805.x

32. de Wit CT. On competition. Versl Landbouwk Onderzoek. 1960; 66: 1–82. http://edepot.wur.nl/187113

33. Field C, Mooney HA. The photosynthesis–nitrogen relationship in wild plants on the economy of plant form and function; Givnish TJ, Ed.; Cambridge University Press: Cambridge, UK, 1986; pp. 25–55.

34. Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW. Plant Physiological Ecology: Field Methods and Instrumentation; Chapman & Hall: London, UK, 1989.

35. Fowler N. Competition and coexistence in a North Carolina grassland: III. mixtures of component species. J Ecol. 1982; 70: 77–92. https://www.jstor.org/stable/2259865.

36. Shen SC, Xu GF, Li DY, Jin GM, Liu SF, Clements DR, Yang YS, Rao J, Chen AD, Zhang FD, Zhu XC. Ipomoea batatas (sweet potato), a promising replacement control crop for the invasive alien plant Ageratina adenophora (Asteraceae) in China. Manag Biol Invasions. 2019; 10: 559–572. https://doi.org/10.3391/mbi.2019.10.3.10.

37. Wilson JB. Shoot competition and root competition. J Appl Ecol. 1988; 25: 279–296. https://www.jstor.org/stable/2403626.

38. Fowler N. Competition and coexistence in a North Carolina grassland: III. mixtures of component species. J Ecol. 1982; 70:77–92. https://www.jstor.org/stable/2259865.
Figure 1

The effects of different nitrogen regimes on net photosynthetic rate (Pn) of rapeseed and littleseed canarygrass in December (A) and February (B); and the effects on chlorophyll content of them in December (C) and February (D). Bars are means ± standard error, different letters represent significant differences at p<0.05.