Cycles in G-orbits in G^C-flag manifolds

A. Huckleberry* & B. Ntatin†

Abstract

There is a natural duality between orbits γ of a real form G of a complex semisimple group G^C on a homogeneous rational manifold $Z = G^C/P$ and those κ of the complexification K^C of any of its maximal compact subgroups K: (γ, κ) is a dual pair if $\gamma \cap \kappa$ is a K-orbit. The cycle space $C(\gamma)$ is defined to be the connected component containing the identity of the interior of $\{g : g(\kappa) \cap \gamma \text{ is non-empty and compact}\}$. Using methods which were recently developed for the case of open G-orbits, geometric properties of cycles are proved, and it is shown that $C(\gamma)$ is contained in a domain defined by incidence geometry. In the non-Hermitian case this is a key ingredient for proving that $C(\gamma)$ is a certain explicitly computable universal domain.

0 Introduction and Notation

Let G be a non-compact semi-simple Lie group without compact factors which is embedded in its complexification G^C and let $Z = G^C/Q$ be a G^C-flag manifold, i.e., a compact, homogeneous, algebraic G^C-manifold. Denote by K a maximal compact subgroup of G; in particular G/K is a negatively curved Riemannian symmetric space. In the sequel we will assume that G is simple. The necessary adjustments for the semi-simple case are straight-forward.

Let $Orb_G(Z)$ (resp. $Orb_G(K^C)$) denote the set of G-orbits (resp. K^C-orbits) in Z. It is known that these sets are finite ([W1]). If $\kappa \in Orb_G(K^C)$ and $\gamma \in Orb_G(Z)$, then (κ, γ) is said to be a dual pair if $\kappa \cap \gamma$ is non-empty and compact.

If γ is an open G-orbit, then κ being dual to γ is equivalent to $\kappa \subset \gamma$. In ([W1]) it is shown that every open G-orbit contains a unique compact K^C-orbit, i.e., duality at the level of open G-orbits. This is extended in ([M], see also [BL] and [MUV]) to the case of all orbits: For every $\gamma \in Orb_G(Z)$ there exists a unique $\kappa \in Orb_G(K^C)$ such that (γ, κ) is a dual pair and vice versa. Furthermore, if (γ, κ) is a dual pair then the intersection $\kappa \cap \gamma$ is transversal at each of its points and consists of exactly one K-orbit.

To motivate the notion of a cycle in this case, let us begin with the case of an open G-orbit D. The dual orbit κ defines a point in the cycle

*Research partially supported by Schwerpunkt "Global methods in complex geometry" and SFB-237 of the Deutsche Forschungsgemeinschaft.

†Supported by a stipend of the Deutsche Akademische Austauschdienst.
space $C^i(D)$, where $q := \text{dim}\, \kappa$. The connected component $\Omega_W(D)$ of \{\(g \in G^C : g(\kappa) \subset D\)\} can be regarded as a family of cycles by the procedure of associating g to the cycle $g(\kappa)$. Clearly $\Omega_W(D)$ is invariant by the action of K^C on G^C on the right and therefore we often regard it as being in the affine homogenous space $\Omega := G^C/K^C$.

The cycle space $C(\gamma)$ associated to a lower-dimensional orbit is defined analogously, at least when one has duality in mind: $C(\gamma)$ is the connected component containing the identity of the interior of the set

\[\{g \in G^C : g(\kappa) \cap \gamma \text{ is non-empty and compact}\}. \]

Since the intersection $\kappa \cap \gamma$ is transversal, it is clear that $C(\gamma)$ is non-empty.

Here, in a result that we state at the outset, it is shown that this is in fact a reasonable set. The following is proved in §2.

Proposition 1. If $g \in C(\gamma)$, then $g(\ell(\kappa)) \cap \ell(\gamma) := M_g$ is a compact subset of $g(\kappa) \cap \gamma$. This intersection is transversal at each of its points and the manifold M_g is homotopic in γ to $M = M_e$. If $g \in bd(C(\gamma))$, then either $g(\kappa) \cap \gamma$ is non-compact or empty. In particular, if \{\(g_n\)\} is a divergent sequence in $C(\gamma)$, then there exists $z_n \in g(\kappa) \cap \gamma$ with \{\(z_n\)\} divergent in γ.

In the sequel we take this to be the meaning of the cycle space $C(\gamma)$ and regard the manifolds M_g as cycles. Just as in the case of open orbits, we often regard $C(\gamma)$ as a G-invariant domain in Ω.

Our main result is the complete characterization of the cycle spaces $C(\gamma)$ in the case where G is non-Hermitian, where our contribution is in the case of the non-open orbits. For a given group G these cycle spaces are all naturally biholomorphically isomorphic to a fixed domain which, when realized in Ω, is denoted by Ω_{AG} (see Thm. 9).

This domain was discussed in (C) in the context of differential geometry. If $G \times_K \mathfrak{p}$ is the tangent bundle of the Riemannian symmetric space $M = G/K$, then Ω_{AG} is identified by the polar coordinates map $P : TM \rightarrow \Omega$, $[(g, \xi)] \mapsto g\exp(i\xi)$, with the maximal neighborhood of the 0-section on which P is a local diffeomorphism. It was considered in (AG) from the point of view of neighborhoods of M in Ω on which G acts properly. It is known to be a Stein domain and its complex geometry is closely related to the Riemannian geometry of the symmetric space M (BHH).

In terms of roots, if $\mathfrak{g} = \mathfrak{k} + \mathfrak{a} + \mathfrak{n}$ is an Iwasawa-decomposition, Φ is a system of roots on \mathfrak{a} and ω_{AG} is the connected component containing $0 \in \mathfrak{a}$ of the set which is obtained by removing from \mathfrak{a} the union affine hyperplanes

\[\bigcup_{\alpha \in \Phi} \{\xi \in \mathfrak{a} : \alpha(\xi) = \frac{\pi}{2}\}. \]

Then $\Omega_{AG} = G\exp(i\omega_{AG}).x_0$, where $x_0 \in G^C/K^C$ is the base point.

Using a certain triality and related incidence varieties (HW1) along with G-invariant theoretic properties and the Kobayashi hyperbolicity of Ω_{AG}
(H, FH), it has been recently shown that, with a few well-known Hermitian exceptions where $\Omega_W(D)$ is the associated bounded symmetric domain, the cycle domain $\Omega_W(D)$ of an open orbit is naturally identifiable with Ω_{AG}.

Our work here makes use of the methods and results of these papers along with a result of (GM) which, together with knowledge of the intersection of the cycle domains for the open orbits in G^C/B, implies the inclusion $\Omega_{AG} \subset C(\gamma)$ for all $\gamma \in Orb_Z(G)$.

For a survey of these and other basic properties of Ω_{AG} see (HW1).

1 Basic triality

Here B denotes a Borel subgroup of G^C which contains the factor AN of an Iwasawa decomposition $G = KAN$. As usual the closure S of a B-orbit O in Z is referred to as a Schubert variety. Let $Y := S \setminus O$.

Since the set of Schubert varieties S generates the homology of Z, for every $\kappa \in Orb_Z(K^C)$ the set

$$S_\kappa := \{ S \in S : S \cap \text{cl}(\kappa) \neq \emptyset \}$$

is non-empty. The following is a slightly refined version of Thm. 3.1 of (HW1).

Theorem 2. Let (κ, γ) be a dual pair and $S \in S_\kappa$. Then

1. $S \cap \text{cl}(\kappa) \subset \kappa \cap \gamma$
2. The intersection $S \cap \gamma$ is open in S and consists of finitely many AN-orbits each of which is open in S and closed in γ.
3. If $z_0 \in S \cap \gamma$, then $\Sigma := (AN).z_0$ intersects κ in exactly one point and that intersection is transversal in Z.

The only refinement is that, instead of $\Sigma \cap \kappa$ being finite, we now show that it consists of just one point. This is implicit in (HW1) (see §5 in that paper). Let us repeat the relevant details.

Let $\alpha : K.z_0 \times (AN).z_0 \rightarrow G.z_0$ be defined by multiplication, $(k, an) \mapsto kan$. As was shown in (HW1) α is a diffeomorphism onto a number of components of $G.z_0$. However, since the orbit $M := K.z_0$ is a strong deformation retract of γ, it follows that $G.z_0 / K.z_0$ is connected and consequently α is surjective. Thus $|\Sigma \cap \kappa| = 1$ is proved just as in Cor. 5.2 of (HW1). □

Given γ, κ, an Iwasawa-decomposition $G = KAN$, a Borel subgroup B of G^C which contains AN, a B Schubert variety $S \in S_\kappa$ and an intersection point $z_0 \in \kappa \cap S$ as above, we refer to $\Sigma = AN.z_0$ as the associated Schubert slice. Note that G-conjugation yields a G_p-invariant family of Schubert slices Σ at every point $p \in \gamma$.

It should also be noted that in the case that $\gamma = \gamma_{\ell}$ is closed, Σ is just the associated B-fixed point.
2 Cycle transversality

Our main goal here is to prove Prop. 1. The first step is to show that if $g(\kappa) \cap \gamma$ is compact, the intersection of the variety $g(c_\ell(\kappa))$ with every Schubert slice Σ has optimal transversality properties.

Lemma 3. For all $g \in G^C$ with $g(\kappa) \cap \gamma$ compact the number of points in the intersection $g(\kappa) \cap \Sigma$ is bounded by the intersection number $S.c_\ell(\kappa)$.

Proof. Since Σ can be regarded as a domain in $O \cong \mathbb{C}^n$ and $g(\kappa) \cap \gamma$ is compact, it follows from the maximum principle that $g(\kappa) \cap \Sigma$ is finite and of course it is then bounded by the intersection number $S.c_\ell(\kappa)$.

It should be underlined that, since $|g(\kappa) \cap \Sigma|$ is finite, it is semi-continuous in the sense that it can only increase as g moves away from g_0.

Let

$$I := \{ g \in G^C : |g(\kappa) \cap \Sigma| = 1 \text{ for all } \Sigma \}$$

Here for all Σ means for all choices of the maximal compact group K and all Iwasawa factors AN, i.e., all Schubert slices which arise by G-conjugation of those Σ which are connected components of $S \cap \gamma$ for a fixed $S \in S_n$.

We now consider the open set $I \cap C(\gamma)$.

Lemma 4. If $g \in \text{bd}(C(\gamma) \cap I)$, then either $g(\kappa) \cap \gamma$ is empty or non-compact. In particular, $C(\gamma) \subset I$.

Proof. We may assume that $g \notin I$, because if $g \in I$ and $g(\kappa) \cap \gamma$ is compact, then both conditions hold in an open neighborhood of g and consequently $g \in C(\gamma)$.

We assume that $g(\kappa) \cap \gamma$ is compact and reach a contradiction. For this let M be the limiting set of the sequence of manifolds $M_n := g_n(\kappa) \cap \gamma$.

Since $C(\gamma)$ is by definition connected and M_n is connected, it follows that M is a connected closed set.

Since $g(\kappa) \cap \gamma$ is compact, it follows that $M \cap \gamma$ is compact and is therefore closed in M. On the other hand $M \cap \text{bd}(\gamma)$ is closed in M and consequently $M \cap \gamma$ is also open in M. By the semicontinuity of the intersection number and the fact that $g \notin I$, $M \cap \Sigma_0 = \emptyset$ for some Schubert slice Σ_0. In particular, since $|M_n \cap \Sigma_0| = 1$ for all n, $M \notin \gamma$. Since M is connected, it follows that $M \cap \gamma = \emptyset$.

But $g(\kappa) \cap \gamma$ is non-empty. So there exists $p \in \gamma$ and an open neighborhood $U(p)$ so that $g_n(\kappa) \cap U = \emptyset$, but $p \in g(\kappa)$. On the other hand, if Σ is a Schubert slice at p, and p were isolated in $g(\kappa) \cap \Sigma$, it would follow that $g_n(\kappa) \cap U \cap \Sigma$ is non-empty for n sufficiently large.

Proof of Proposition Observe that if $g \in C(\gamma)$ and $g(c_\ell(\kappa)) \cap \gamma$ contained an additional point $p \in \text{bd}(\gamma)$ or in $\text{bd}(\kappa)$, then for $h \in C(\gamma)$ chosen appropriately, in particular small, we would find some Σ_0 which
contains \(h(p) \) as well as another point in \(M_{hg} \). This is contrary to the fact that \(C(\gamma) \subset I \) and that this intersection contains exactly one point.

The transversality of the intersection and the properties of \(M_{g} \) are also immediate consequences of \(C(\gamma) \) being connected and contained in \(I \).

If \(g \in \text{bd}(C(\gamma)) \), then, again since \(C(\gamma) \subset I \), by Lemma \(4 \) \(g(\kappa) \cap \gamma \) is either empty or non-compact. \(\square \)

3 Description of the cycle spaces

3.1 Lifting cycle spaces

The above transversality results are only useful in the case when \(\gamma \) is not closed. Here we prove a Lifting Lemma which will be used to understand the cycle space \(C(\gamma_{cl}) \) of the closed orbit. For this let \(Z = G^c/P \) as usual, let \(\tilde{Z} = G^{c}/\tilde{P} \) be defined by a parabolic group \(\tilde{P} \) which is contained in \(P \) and \(\pi: \tilde{Z} \to Z \) is the natural projection.

Proposition 5. If \((\gamma, \kappa) \) is a dual pair of orbits in \(Z \) with \(z_0 \in \gamma \cap \kappa \) and \(\tilde{z}_0 \) is in a closed \(G_{z_0} \)-orbit in the fiber \(F := \pi^{-1}(z_0) \), then \(\tilde{\gamma} := G\cdot z_0 \) and \(\tilde{\kappa} := \tilde{K}\cdot \tilde{z}_0 \) define a dual pair \((\tilde{\gamma}, \tilde{\kappa}) \) in \(\tilde{Z} \). Furthermore, the mapping \(\pi|\tilde{\gamma}: \tilde{\gamma} \to \gamma \) is proper.

Proof. Since \(K_{z_0} \) is a maximal compact subgroup of \(G_{z_0} \), it acts transitively on the compact orbit \(G_{z_0}\cdot \tilde{z}_0 \). Consequently \(\tilde{\gamma} \cap F = K\cdot \tilde{z}_0 \) and, since \(\gamma \cap \kappa = K\cdot z_0 \), it follows that \(\tilde{\gamma} \cap \tilde{\kappa} = K\cdot \tilde{z}_0 \).

The properness of \(\pi|\tilde{\gamma} \) follows immediately from the fact that it is a homogeneous fibration with compact fiber. \(\square \)

In the following result we maintain the above notation.

Proposition 6. If \(\gamma \) is not closed, then \(C(\gamma) \subset C(\tilde{\gamma}) \)

Proof. Let \(\{g_n\} \) be a sequence in \(C(\tilde{\gamma}) \) which converges to \(g \in \text{bd}(C(\tilde{\gamma})) \).

By Prop. 4 there is a sequence \(\tilde{z}_n \) in \(g_n(\tilde{\kappa}) \cap \tilde{\gamma} \) which diverges in \(\tilde{\gamma} \). Since \(\pi|\tilde{\gamma} \) is proper, the corresponding sequence \(z_n \) in \(C(\gamma) \) is also divergent.

Now either \(g_n \notin C(\gamma) \) infinitely often, in which case \(g \notin C(\gamma) \) or we may assume that \(\{g_n\} \subset C(\gamma) \). In the latter case, since \(z_n \in g_n(\kappa) \cap \gamma \) is divergent in \(\gamma \) it likewise follows that \(g \notin C(\gamma) \).

Hence \(\text{bd}(C(\tilde{\gamma})) \cap C(\gamma) = \emptyset \) and the desired result follows. \(\square \)

Finally, let \(\gamma \) be such that \(\text{cl}(\gamma) = \gamma \cup \gamma_{cl} \) and \(\tilde{\gamma} \) be as above. If \(g_n \in C(\gamma) \) converges to \(g \in \text{bd}(C(\gamma)) \), then, again by Prop. 4, it follows that \(g(\text{cl}(\kappa)) \cap \gamma_{cl} \neq \emptyset \). Consequently, \(C(\gamma_{cl}) \subset C(\gamma) \).

Thus, in the notation above, we have the following consequence.

Corollary 7. \(C(\gamma_{cl}) \subset C(\gamma) \subset C(\tilde{\gamma}) \)
3.2 Proof of the main theorem

Let us first consider the case where γ is not closed and let $S \in S_\kappa$ as above. Since $\kappa \cap S \cap \gamma$ already realizes the intersection number $S.c(\kappa)$, it follows that $g(c(\kappa)) \cap Y = \emptyset$ for all $g \in C(\gamma)$.

From now on we regard the homogeneous space $\Omega = G^C / K^C$ as a family of q-dimensional cycles, $q := \dim C(\kappa)$, via the identification of $g \in C(\gamma)$ with the cycle $g(c(\kappa))$.

Since $Y := S \setminus O$ can be given the structure of a very ample divisor in S, it follows that incidence variety of all q-dimensional cycles C with $C \cap Y \neq \emptyset$ contains a complex hypersurface which pulls back to a complex hypersurface $H \subset \Omega$ ([BK],[BM]).

By the method of ([BK]), for $f \in \Gamma(S,\mathcal{O}(\ast Y))$ an appropriately chosen meromorphic function with poles along Y, the trace-transform $Tr(f)$ has a non-empty polar set P which is the union of a certain number of components of H. Apriori it is possible that there are cycles $g \in C(\gamma)$ with $c(g(\kappa)) \cap Y \neq \emptyset$, but with $|c(g(\kappa)) \cap \Sigma| = S.c(g(\kappa))$. These would necessarily have positive-dimensional intersection with S and the non-discrete components would lie in $S \setminus \Sigma$.

However, this phenomenon occurs on a lower-dimensional subvariety in Ω, and such cycles are limits of generic cycles which intersect S only in points of Σ and of course at only finitely many points which are bounded away from Y. Thus the value of $Tr(f)$ at $g(c(g(\kappa)))$ is finite and therefore such cycles are not in P. As a consequence $P \cap C(\gamma) = \emptyset$ and we redefine H to be P in the sequel.

Proposition 8. If γ is not closed, then there exists a Borel subgroup B which contains a factor AN of an Iwasawa-decomposition $G = KAN$ and a B-invariant hypersurface H in Ω so that $\Omega_{AG} \subset C(\gamma) \subset \Omega_H$.

Proof. From the characterization of cycle spaces of the open G-orbits ([HW],[FH]) it follows in particular that the intersection of all such cycle spaces for the open orbits in G^C / B is Ω_{AG} (This intersection property also follows in most cases from the results in [GM]). By Prop. 8.1 of ([GM]) it then follows that

$$\Omega_{AG} \subset C(\gamma).$$

In the case of a non-closed orbit we have the B-invariant hypersurface H in the complement of $C(\gamma)$ and, since $C(\gamma)$ is G-invariant and contains the base point in Ω_{AG} it follows that it is contained in the connected component of

$$\Omega \setminus \left(\bigcup_{k \in K} k(H) \right)$$

which by definition is Ω_H. \hfill \Box

Theorem 9. If G is not of Hermitian type, then

$$C(\gamma) = \Omega_{AG}$$

for all $\gamma \in Orb_Z(G)$.
Proof. Since G is non-Hermitian, Ω_H is Kobayashi hyperbolic (see \cite{H}, \cite{FH}) and the main theorem of \cite{FH} can therefore be applied: A G-invariant, Stein, Kobayashi hyperbolic domain containing Ω_{AG} is Ω_{AG} itself. Thus $\Omega_{AG} = \Omega_H$ and the result for non-closed orbits follows from Prop. 8.

By Cor. 7 it then follows that $C(\gamma_{c,\ell}) \subset \Omega_{AG}$. But, if $\tilde{Z} = G^C/B$, it is clearly the case that $C(\gamma_{c,\ell}) \subset C(\gamma_{c,\ell})$ and it is known that $C(\gamma_{c,\ell}) = \Omega_{AG}$ (\cite{B}, \cite{H}, see also \cite{FH}). Thus, $C(\gamma_{c,\ell}) \supset \Omega_{AG}$ and the result is proved for closed orbits as well.

It should be remarked that we actually only use the Kobayashi hyperbolicity of Ω_H and that one might expect the following result in the Hermitian case: If Ω_H is not Kobayashi hyperbolic, then $C(\gamma)$ can be identified with the bounded Hermitian symmetric space associated with G.

Note added in proof. With a few added details which we note here, we also handle the Hermitian case. For this assume that G is of Hermitian type and let P be a complex subgroup of G^C which properly contains K^C. Then $X := G^C/P$ is a compact Hermitian symmetric space. There are only two choices for P and the (open) G-orbit of the neutral point in X is the bounded Hermitian symmetric domain B or its conjugate \bar{B}.

Proposition 10. If G is of Hermitian type, then either

$$C(\gamma) = \Omega_{AG} = B \times \bar{B}$$

or the base dual cycle $c\ell(\kappa)$ is P-invariant and $C(\gamma)$ is either B or \bar{B}, depending on the choice of sign.

Proof. In the Hermitian case it is known that Ω_{AG} agrees with $B \times \bar{B}$ in its natural embedding in G^C/K^C (\cite{BHH}).

Let $\pi : G^C/K^C \to G^C/P =: X$, where P is one of the two choices mentioned above, and let B be an Iwasawa-Borel subgroup of G^C which is being used for the incidence geometry. If the B-invariant hypersurface H in G^C/K^C of \cite{X} is not a lift $H = \pi^{-1}(H_0)$, then Ω_H is Kobayashi hyperbolic and therefore $\Omega_H = \Omega_{AG}$ (\cite{FH}). Thus, just as in the non-Hermitian case, the desired result follows from Prop. 8.

In order to complete the proof, we assume that H is a lift, but that $c\ell(\kappa)$ is not P-invariant, and reach a contradiction.

Let $x_0 \in \gamma$ be a base point with $\kappa = K^C.x_0$. Since κ is not P-invariant, $c\ell(P.x_0)$ contains $c\ell(\kappa)$ as a proper algebraic subvariety. Now the intersection $\kappa \cap \gamma$ is transversal in Z. Thus every component of $P.x_0 \cap \mathcal{O}$ is positive-dimensional. Since $\mathcal{O} = \mathbb{C}^{m(\mathcal{O})}$ is affine, every such component has at least one point of Y in its closure.

Thus for B an arbitrarily small neighborhood of the identity in G^C there exists $p \in P$ and $g \in B$ with $g.p.x_0 \in Y$, and consequently $g.p.K^C \in \Omega_H$.

But H was assumed to be a lift. This is equivalent to Ω_H being a lift, i.e., at the group level Ω_H is invariant under the action of P defined by right-multiplication. Hence $g.K^C$ is also in Ω_H. However, g can be chosen
arbitrarily near the identity, contrary to $C(\gamma)$ being an open neighborhood of the neutral point in G^C/K^C.

Acknowledgement. We would like to thank the referee for his constructive remarks; in particular, for underlining the fact that the set of $g \in G^C$ with $g(\kappa) \cap \gamma$ non-empty and compact could theoretically be rather bad, e.g., not open.

References

[AG] Akhiezer, D. and Gindikin, S.: On the Stein extensions of real symmetric spaces, Math. Annalen 286 (1990), 1–12.

[B] Barchini, L.: Stein extensions of real symmetric spaces and the geometry of the flag manifold (to appear)

[BK] Barlet, D. and Kozairz, V.: Fonctions holomorphes sur l’espace des cycles: la méthode d'intersection, Math. Research Letters 7 (2000), 537–550.

[BM] Barlet, D. and Magnusson, J.: Intégration de classes de cohomologie méromorphes et diviseurs d’incidence. Ann. Sci. École Norm. Sup. 31 (1998), 811–842.

[BL] Bremigan, R. and Lorch, J.: Orbit duality for flag manifolds, Manuscripta Math. 109 (2002), 233–261.

[BHH] Burns, D., Halverscheid, S. and Hind, R.: The geometry of Grauert tubes and complexification of symmetric spaces (to appear in Duke Math. J.)

[C] Crittenden, R. J.: Minimum and conjugate points in symmetric spaces, Canad. J. Math. 14 (1962), 320–328.

[FH] Fels, G. and Huckleberry, A.: Characterization of cycle domains via Kobayashi hyperbolicity, (AG/0204341)

[GM] Gindikin, S. and Matsuki, T.: Stein extensions of riemannian symmetric spaces and dualities of orbits on flag manifolds, MSRI Preprint 2001–028.

[H] Huckleberry, A.: On certain domains in cycle spaces of flag manifolds, Math. Annalen 323 (2002), 797–810.

[HW1] Huckleberry, A. and Wolf, J. A.: Schubert varieties and cycle spaces (AG/0204033, to appear in Duke Math. J.)

[HW2] Huckleberry, A. and Wolf, J. A.: Cycles Spaces of Flag Domains: A Complex Geometric Viewpoint (RT/0210445)

[M] Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. of Math. Soc. Japan 31 n.2(1979)331-357

[MUV] I. Mirković, K. Uzawa and K. Vilonen, Matsuki correspondence for sheaves, Invent. Math. 109 (1992), 231–245.
[W1] Wolf, J. A.: The action of a real semisimple Lie group on a complex manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.

AH and BN:
Fakultät für Mathematik
Ruhr-Universität Bochum
D-44780 Bochum, Germany

ahuck@cplx.ruhr-uni-bochum.de
ntatin@cplx.ruhr-uni-bochum.de