Complete chloroplast genome sequence of Amomum villosum

Dong-Mei Li, Chao-Yi Zhao, Gen-Fa Zhu and Ye-Chun Xu

Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China

ABSTRACT

The first complete chloroplast genome of *Amomum villosum* (Zingiberaceae) was reported in this study. The *A. villosum* genome was 163,608 bp in length, and comprised a pair of inverted repeat (IR) regions of 29,820 bp each, a large single-copy (LSC) region of 88,680 bp, and a small single-copy (SSC) region of 15,288 bp. It encoded 141 genes, including 87 protein-coding genes (79 PCG species), 46 tRNA genes (28 tRNA species), and 8 rRNA genes (4 rRNA species). The overall AT content was 63.92%. Phylogenetic analysis showed that *A. villosum* was closely related to two species *Amomum kravanh* and *Amomum compactum* within the genus *Amomum* in family Zingiberaceae.

CONTACT Dong-Mei Li

ARTICLE HISTORY

Received 27 June 2019
Accepted 10 July 2019

KEYWORDS

Amomum villosum; Zingiberaceae; *Amomum*; chloroplast genome; phylogenetic analysis

Amomum villosum is one species of the genus *Amomum* (Zingiberaceae), which distributes predominantly in Fujian, Guangdong, Guangxi and Yunan provinces in China (Wu and Larsen 2000). *Amomum villosum* plants are 1–3 m tall; rhizomes procumbent above ground, clothed with brown, scale-like sheaths; leaves sessile or subsessile; leaf sheath with netlike, depressed squares (Wu and Larsen 2000). Fruits of this species own high medicinal value (Wu et al. 2016). Morphological classification of *Amomum* species is difficult owing to the morphological similarity of vegetative parts among species in genus *Amomum* (Wu and Larsen 2000). Within genus *Amomum*, only two complete chloroplast genomes for species *Amomum kravanh* and *Amomum compactum* have been reported so far (Wu et al. 2017), hindering molecular species identification of *Amomum* species based on chloroplast genomes. Nevertheless, no complete chloroplast genome of *A. villosum* has been reported.

Amomum villosum was collected from Banna, Yunnan province, and stored at the resource garden of environmental horticulture research institute (specimen accession no. Av2020). Guangdong Academy of Agricultural Sciences, Guangzhou, China. Total chloroplast DNA was extracted from about 100 g of fresh leaves of *A. villosum* using the sucrose gradient centrifugation method (Li et al. 2012). Chloroplast DNA (accession no. AvDNA2017) was stored at −80°C in Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Library construction was done using Illumina (Illumina, CA, USA) and PacBio (Novogene, Beijing, China) sequencing, respectively. The Illumina and PacBio sequencing data were deposited in the NCBI sequence read archive under accession numbers SRR8185318 and SRR8184508, respectively. After trimming, 80.8 M clean data of 150 bp paired-end reads and 0.48 M clean data of 8–10 kb subreads were generated. The chloroplast genome of *A. villosum* was assembled and annotated by using the reported methods (Li, Wu, et al. 2019). The annotated complete chloroplast genome sequence of *A. villosum* was submitted to the GenBank (accession no. MK262730).

The complete chloroplast genome of *A. villosum* was 163,608 bp in length, and comprised a pair of inverted repeat (IR) regions of 29,820 bp each, a large single-copy (LSC) region of 88,680 bp and a small single-copy (SSC) region of 15,288 bp. It was predicted to contain a total of 141 genes, including 87 protein-coding genes (79 PCG species), 46 tRNA genes (28 tRNA species), and 8 rRNA genes (4 rRNA species). Twenty species genes occurred in double copies, including eight PCG species (ndhB, rpl2, rpl23, rps7, rps12, rps19, ycf1, and ycf2), eight tRNA species (trnH-GUG, trnL-CAA, trnL-GAU, trnA-UGC, trnR-ACG, and trnN-GUU) and all four rRNA species (rrn4.5, rm5, rm16, and rm23). All these 20 species genes were located in the IR regions. The ycf1 gene crossed the bounders of SSC-IRa and SSC-IRb regions, respectively, while the rps12 gene was located its first exon in the LSC region and other two exons in the IRs regions. In addition, 10 PCG genes (atpF, ndhA, ndhB, rpoC1, petB, petD, rpl2, rpl16, rps12, and rps16) and 6 tRNA genes (trnK-UUU, trnG-GCC, trnL-UAA, trnV-UAC, trnL-GAU, and trnA-UGC) had a single intron, while two other genes (ycf3 and ctpP) possessed two introns. The nucleotide composition was asymmetric (31.68% A, 18.30% C, 17.78% G, 32.25% T) with an
overall AT content of 63.92%. The AT contents of the LSC, SSC, and IR regions were 66.30%, 69.94%, and 58.85%, respectively.

To obtain its phylogenetic position within family Zingiberaceae, a phylogenetic tree was constructed by using single nucleotide polymorphisms (SNPs) arrays from available 15 species chloroplast genomes using maximum-likelihood method. The bootstrap values were based on 1000 replicates and are indicated next to the branches. Accession numbers: Alpinia zerumbet JX088668, Alpinia oxyphylla NC_035895.1, Curcuma flaviflora KR967361, Curcuma roscoea NC_022928.1, Curcuma longa MK262732, Kaempferia galanga MK209001, Kaempferia elegans MK209002, Zingiber spectabile JX088661, Amomum kravanh NC_036935.1, Amomum compactum NC_036992.1, Stahlianthus involucratus MK262725, Costus pulverulentus KF601573, Costus viridis MK262733, and Canna indica KF601570.

Figure 1. Phylogenetic tree constructed with single nucleotide polymorphisms arrays from 15 species chloroplast genomes using maximum-likelihood method. The bootstrap values were based on 1000 replicates and are indicated next to the branches. Accession numbers: Alpinia zerumbet JX088668, Alpinia oxyphylla NC_035895.1, Curcuma flaviflora KR967361, Curcuma roscoea NC_022928.1, Curcuma longa MK262732, Kaempferia galanga MK209001, Kaempferia elegans MK209002, Zingiber spectabile JX088661, Amomum kravanh NC_036935.1, Amomum compactum NC_036992.1, Stahlianthus involucratus MK262725, Costus pulverulentus KF601573, Costus viridis MK262733, and Canna indica KF601570.

two species A. kravanh and A. compactum within the genus Amomum in family Zingiberaceae with available SNPs.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was financially supported by Guangzhou Municipal Science and Technology Project (201607010101), National Natural Science Foundation of China (31501788), Guangdong Science and Technology Project (2015A020209078) and the Construction, Conservation and Evaluation of Flower Germplasm Resources (Garden) Subproject of Construction, Conservation and Evaluation of Crop Germplasm Resources (Garden) Project in Guangdong Province.

References
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874.
Li DM, Wu W, Liu XF, Zhao CY. 2019. Characterization and phylogenetic analysis of the complete chloroplast genome sequence of Costus viridis (Costaceae). Mitochondrial DNA Part B. 4:1118–1120.
Li DM, Zhao CY, Liu XF. 2019. Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: molecular structures and comparative analysis. Molecules. 24:474.
Li X, Hu Z, Lin X, Li Q, Gao H, Luo G, Chen S. 2012. High-throughput pyrosequencing of the complete chloroplast genome of Magnolia officinalis and its application in species identification. Yao Xue Xue Bao. 47:124–130.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.
Vu D, Larsen K. 2000. Zingiberaceae vol 24. Flora of China. Beijing (China): Science Press. p. 322–377.
Wu D, Liu N, Ye Y. 2016. The Zingiberaceous resources in China. Wuhan (China): Huazhong university of science and technology university press. p. 60.
Wu M, Li Q, Hu Z, Li X, Chen S. 2017. The complete Amomum kravanh chloroplast genome sequence and phylogenetic analysis of the comelinids. Molecules. 22:1875.