Review Article

A review through therapeutic attributes of Ayurvedic formulation mashi

Ameya Joshi a, Akshay Baheti a,*, Manish Wania a, Ranjeet Nimbalkar b

a School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
b Anubandha Health Care, Tilak Road, Pune, India

Abstract

Mashi is a black colored powder formulation obtained after combustion of the plant or animal drug. It is prepared by bahirdhum padhati (outside) or anterdhum padhati (in the close vessel). In this dosage form, bulk of raw material is reduced to a greater extent by the application of a certain quantum of energy. Due to this treatment, hidden chemical constituents become prominent and/or a new chemical moiety is formed which is therapeutically active. This formulation is cost-effective and easy to prepare. This review article aims to highlight the different mashi formulations mentioned in Ayurvedic text and also incorporate the formulation not mentioned in the Ayurvedic text but used by Ayurvedic practitioners. The objective was to introduce researchers to the simple yet excellent formulation mashi which should be studied in detail to establish its identity, purity, and therapeutic activity.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Institute of Transdisciplinary Health Sciences and Technology and World Ayurveda Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mashi is an important dosage form of medicine in Ayurveda. The term ‘mashi kalpana’ is often used to signify a partially burned or roasted black colored powder formulation of a plant (Kalpana refers to the ideology behind the method of manufacture/process).

Whenever any herbal or animal product is heated slowly, it undergoes combustion, when the specific temperature is attained. The smoke appears at the beginning of the process and the material starts blackening. Then, the typical odor of combustion is identified. Ultimately, when the whole material turns black and the smoke is completely removed, the process of formation of mashi is assumed to be completed. This material is made into a fine powder, which should be perfectly black like charcoal powder.

If we further heat the mashi after this stage, it gets converted into a white or grey colored ash and is said to have lost its 'Sen-driyata' (organic content). This form is unpalatable for the body and is referred to as the drug’s ‘carbon form’. Mashi has a wide range of applications with some articles even claiming that it can even be used for water purification. Bhasmikaran process is different from the mashi kalpana process. Bhasmikaran involves shodhana (purification), marana (powdering), chalana (stirring), dhvana (washing), galana (filtering), putana (heating), and bhavana (coating) with the herbal extract. The selection of these steps depends on the specific metal or mineral; whereas, in mashi preparation, the substance is cleaned and heated either in an open vessel or closed vessel as per the Ayurvedic literature.

2. Types of mashi

2.1. Based on method

Broadly, there are two methods of preparation of mashi formulation. These methods are called ‘padhati’ which stands for a ‘traditional method for preparing the medicine’.

2.1.1. Bahirdhum Padhati Mashi (BPM)

In this method, the solid mixture to-be-burned is kept in an open vessel (so the name ‘Bahirdhum’, where ‘Bahir’ means ‘outside’) as shown in Fig. 1A. Combustion is carried out at a slow temperature.
pace, at a temperature of 140–150 °C with continuous agitation. The vessel used for burning is made up of iron or is earthen.

2.1.2. Anerdhum Padhati Mashi (APM)

In the APM method, the plant/animal material is packed between two ‘Sharav Samputs’ (earthen pots) Fig. 1B. The two pots are joined with each other using Fuller’s earth (multani mitti). This assembly is then subjected to the process of puta Puta is a pit here; two earthen pot containing the material to be heated by placing the earthen pot on heaps of cow dung cakes and setting them on fire. Once the cow dung cakes are burnt completely, the assembly is left to cool, after which, the pots are retrieved and mashi gets collected.

2.2. Based on material

Mashi can be prepared from plant material as well as animal material.

2.2.1. Plant mashi

As plant mashi formulations are available from plant material, which in turn is available more freely and can be extracted more efficiently, a good amount of research has been done on these mashi formulations. Another reason for this is that the plants can be easily cultivated, and hence, collecting a large number of materials for testing and/or manufacturing mashi never really threatens the species’s survival. These mashi formulations can be made by both BPM and APM (see Table 1).

2.2.2. Animal mashi

These mashi formulations are derived from endangered animal species; nevertheless, their usage is strongly forbidden, and little to no study into their efficacy has been conducted. Since ancient times, animals, their parts, and their products have constituted part of the inventory of medicinal substances used in various cultures. In India, nearly 15–20 percent of Ayurvedic medicine is based on animal-derived substances. There are references to nearly 380 types of animal substances in Charaka Samhita [1]. Mostly, animal by-products are used in traditional health care systems without any animal loss; however, there are some mashi formulations which are prepared from animal body parts or whole animal such as Hastidant mashi is made up of elephant ivory, Kurmakapal mashi is made up of tortoise shell, Chatuspapad mashi is prepared from horns, bones or hooves of animals. As such mashi is made from animal parts that damage animals, strong rules are in place to ensure that no one exploits or kills them. The APM method is commonly used to produce this mashi (see Table 2).

3. Mashi prepared from plant material

3.1. Ashwagandha mashi

Ashwagandha (Withania somnifera L) is popular for its rejuvenation properties. The active constituents in Ashwagandha are withaferin-A, alkaloids, glycowithanolides, and sitoindosides VII-X. It is a member of the family Solanaceae. Mashi using Ashwagandha can be prepared by both the methods, APM and BPM. First, the roots of the plant are converted into powder form. Then, the powder is heated to prepare the mashi. It was found that the mashi had a notable presence of alkaloids, carbohydrates, saponin glycosides, and steroid glycosides, with significantly higher concentrations in ethanolic extracts than that of aqueous extracts. There was no loss of inorganic content (due to thermal degradation) in both the mashi; however, the mashi prepared by APM method had more alkali metal content and also had siliceous sand impurities. Ashwagandha mashi can be used as an adaptogen to develop pain resistance as well as an immunity booster [2].

Name of mashi kalpana	Source of raw material	Method of preparation	Use
Ashwagandha mashi	Ashwagandha roots	APM and BPM	Adaptogenic, immunity booster
Triphala mashi	Fruits of amala, baheda and hirda	APM and BPM	Antioxidants, adaptogens, chemopreventives and anti hypercholesterolemic
Amalaki mashi	Amala fruit	APM and BPM	Anti-ulcer
Vibhatisyaidai mashi	Bahera fruit	BPM	Ophthalmic diseases, anti-ulcer
Coconut husk mashi	Coconut husk	APM and BPM	Diuretic, antimicrobial, antinociceptive antiemetic
Latakaranaj mashi	Caesalpinia bondoc seeds	APM	Treatment of polycystic ovarian syndrome
Udumber mashi	Ficus glomerata bark	APM	Hiccup
Tailwak mashi	Terminalia arjuna bark	APM	Hiccup
3.2. Triphala mashi

‘Triphala’ stands for three fruits. It is one of the most studied Ayurvedic drug and holds a prestigious place in Ayurveda and is also called ‘an innovative medicine of the centuries’ or ‘a panacea for multiple pathological conditions’ or ‘the sanctifying medicine to human domain’. It is used as a constituent in more than 200 formulations in the Indian system of medicine. This mashi is prepared by burning the mixed, dried powders of fruits of three plants namely Emblica officinalis, Terminalia belerica, and Terminalia chebula. It is a polyherbal preparation that can be prepared by the BPM as well as APM. The pharmacognostic profiles of the mashi at different temperatures reported that only mashi prepared above the temperature of 400 °C are acceptable, as a proper black mass is produced only at or above that temperature. Biradar et al. conducted studies to conclude that the most optimum temperature for preparing Triphala mashi is 450 °C [3]. Triphala formulations have been reported as excellent antioxidants, adaptogens, chemopreventive, and anti-hypercholesterolemics [4,5].

E. officinalis is also known as Indian gooseberry or more popularly, ‘amla’. It is a member of the family Euphorbiaceae. T. belerica and T. chebula are called ‘Bahera’ (Bastard myrobalan) and ‘haritaki’ (Chebulic myrobalan) respectively. The fruits of T. chebula can be used in any stage of their development, meaning when they have a yellow color or black color. Both amla and haritaki have adaptogenic properties. Triphala is often referred to as a ‘Rasayana’ in Ayurveda, which means that for day-to-day consumption, its powder is to be ingested as a mixture of ghee and honey. It is said to have the potential to regenerate organs that have become weakened. Apart from that, a wide array of medicinal applications of Triphala formulations have been reported [6–8] of which the research work relevant to Triphala mashi has been discussed.

Triphala powder contains gallic acid, methyl gallate, chebulagic acid, chebulinic acid, chebulaic acid, corilagin, belleric acid, beta-sitosterol, syringic acid, silybin, rutin, rhamnose, kaempferol, glucuron, ellagic acid, phyllembic acid, queretin, phyllantidine, sorbitol, and ascorbic acid [9]. Triphala mashi has been reported to contain tannins, saponins, gallic acid derivatives and ascorbic acid and has a pronounced concentration of gallic acid [10,11].

The antimicrobial activity of Triphala mashi on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae using the agar diffusion method was tested and the acute oral toxicity of the mashi was also determined using Swiss albino mice species. The Triphala mashi was produced using BPM. It was found that both aqueous and ethanolic extracts of Triphala mashi exhibited antimicrobial activity of broad-spectrum, while the aqueous extract showed slightly higher activity and the extracts showed dose-dependent activity. The zone of inhibition for E. coli and S. aureus was more than the standard drug. No acute oral toxicity was observed. There was mortality in the mice for the dose of 5000 mg/kg. The antimicrobial activity is largely attributed to the presence of tannins (gallic acid) and hydroxylated phenolics (like pyrogallol) in the Triphala mashi. The aqueous extract of the mashi also contained saponins. Hence, it acts synergistically to enhance the antimicrobial activity of tannins and phenols [12].

Biradar et al. studied the anti-diarrhoeal activity of Triphala mashi on Swiss albino mice species. The mashi was prepared using BPM. Diarrhea was induced in the mice using castor oil. It was observed that both, the ethanol and aqueous extracts of Triphala and Triphala mashi produced a significant reduction in the severity and frequency of diarrhea produced by castor oil in the mice, with the ethanolic extracts having a significantly better result, along with highest first defecation time [13].

Sinha et al. studied the physicochemical properties such as total ash value, acid insoluble ash value, water-soluble ash value, loss on drying, pH and performed a chromatographic study. The antimicrobial activity of Triphala mashi was determined by the agar gel diffusion method. The minimum inhibitory concentration of Triphala mashi was compared with that of standard antibiotics ciprofloxacin (against test organism, S. aureus and E. coli). Triphala mashi showed a broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria. Triphala mashi can be used along with honey to treat soft chancres [14].

Triphala churna can prevent/delay the onset of endotoxin-induced uveitis in rats due to its saponin content, as saponins are natural anti-inflammatory compounds. As saponins are also present in the mashi, it can be said that Triphala mashi would have a similar anti-inflammatory effect. Triphala churna also has anticancer activity and gallic acid is one of the constituents contributing to this activity [15]. Since Triphala mashi also contains gallic acid, it may show anti-cancer activity. As radioprotective, hepatoprotective, anti-arthritic, chemopreventive, anti-aging, and anti-mutagenic properties are also associated with gallic acid derivatives, Triphala mashi should be able to provide these benefits to an appreciable degree as well. As Triphala mashi shows antimicrobial activity, it would also contribute towards combating oral pathogens and hence, have applications in the dental industry. However further research needs to be done to support the same.

3.3. Amalaki mashi

It is prepared by BPM as well as APM. It is rich in vitamin C, tannic acid, and gallic acid [9]. This mashi is supposed to have application in the ethnomedical system to treat disorders like hyperacidity and abdominal distension. It is also the main ingredient of ‘Charcosal’, one of the propriety medicines of ‘Ayurveda Rasa Shala’ an Ayurvedic manufacturer, Pune India.

APM and BPM amalaki mashi was evaluated for anti-ulcer activity. An ulcer was induced in Wistar albino rats using ethanol and ranitidine was used as standard. Parameters such as gastric pH, shape, and size of the ulcers were recorded and histopathology of the stomach was performed. Amalaki mashi prepared by BPM method was found more effective than standard drug ranitidine in treating ulcers. This means that amalaki mashi can be used orally to treat/prevent ulceration of stomach mucosa. The mashi formulation
should be preferably prepared by the BPM method rather than the APM method. Chances are that heating in the presence of air allows the elimination of certain compounds in the amalaki mashi that would otherwise hinder the anti-ulcer activity or cause gastric irritation themselves. Further research needs to be done to confirm this.

3.4. Vibheetakyadi mashi

This mashi is prepared from T. belerica (Vibheetaki or Bahera). It contains gallic acid, tannic acid, rhamnose and very little amount of ascorbic acid. It is one of the ingredient of Vibheetakyadi mashi Anjana (’Anjana’ means ‘paste’). It contains Vibheetakyadi mashi along with rock salt (saundhava), black salt (souvachara lavara), sodium salts of chloride and sulfate, and ferric sulfate. Honey was added to make a paste. An open-label clinical trial with 30 patients was performed for a month for the treatment of ophthalmic disease. Statistically significant results were obtained. It was observed that the formulation can be used to delay the onset of Pterygium and relieves symptoms in people already with the disease. This may be due to the presence of tannins. The mechanism of killing is most likely similar to human teeth. It is a dentine matrix, wrapped around the opioid receptors. The reaction time of the APM-treated mice during the tail-flick test was also considerably higher. This proves that coconut husk mashi prepared by the BPM method has a good antiinocceptive activity [20].

Several studies have been carried out to evaluate the antioxidant activity of both APM and BPM of coconut husk. DPPH assay and H2O2 scavenging activity of the formulations was carried out. Ascorbic acid was used as a reference. It was observed that the mashi prepared by BPM had an antioxidant activity comparable to that of ascorbic acid. It can be used as a antioxidant, analgesic, anti-helminthic, and diuretic agent [19–21].

3.6. Latakaranj mashi

Latakaranj (Caesalpinia bondoc L.) is a perennial medicinal plant found in the tropical regions of India. Its seeds are typically used to prepare mashi. The mashi can be prepared by BPM. The medicinally important chemical constituents of the seeds of this plant are homoisoavonoids, hematoxylin, starch, acetylgallic acid, acetylgallic acid, and 2-glucosylxyloxy-4-methoxy benzene propanoic acid [22,23]. This mashi is used by females during their puberty, for the treatment of various problems that they face. It is also mentioned that Latakaranj mashi can be used to reduce pain during Kastartha (painful menstruation) and also to treat polycystic ovarian syndrome.

3.7. Toor dal mashi (Pigeon peas mashi)

This mashi provides patients with the benefits of pigeon pea or as it is popularly called, Toor (Cajanus cajan), without the chances of having an excess accumulation of pitta in the body, which may cause problems like gases, acid reflux, and indigestion. This mashi is used by Ayurvedic practitioners and it has no textual reference available. The important constituents of pigeon pea are flavonoids, isoflavones, flavonoids, anthocyanin, flavanone, isoflavonone, chalcone [24]. It is prepared by BPM and research work regarding its therapeutic potential is yet to be conducted.

3.8. Udambard mashi

It is prepared from the bark of Udambara (Ficus glomerata). Bark contain kamferol, glycoside, sterols and ellagic acid [25]. It is cut into small pieces and burnt to black in APM method. It is supposed to be taken internally and helps during hiccups. It is supposed to be taken with honey. No research work supporting this is available.

3.9. Tailwak mashi

It is prepared from the bark of the Arjun tree or Tilwak tree (Terminalia arjuna). The bark of Arjun tree contains sterol, lactones, flavonoids, phenolic compounds, tannins and glycosides [26]. Since this mashi formulation comes from a plant of genus Terminalia, we can expect this mashi to have medicinal properties similar to that of Triphala mashi or Vibheetakyadi mashi. However, research work would be required to confirm this.

4. Mashi prepared from animal material

4.1. Hastidant mashi

The word ‘Hastidant’ literally stands for ‘elephant’s teeth’ or tusks. This mashi is prepared by burning elephant’s tusks in Sharav by the APM method. The tusks are made up of ivory, which is very similar to human teeth. It is a dentine matrix, wrapped around the
4.3. Sarpa mashi
during pregnancy [29,30]. It is used to treat hiccups, asthma, and morning sickness.

Many sources make enormous claims regarding the potency of this mashi in hair regeneration, when applied at any location topically. It is used to treat ‘Indralupta’, which are essentially a set of diseases wherein, hair loss occurs due to vitiligo. It is also used for hair loss, hair fall, greying of hair, and other hair-related conditions. Its external application should be done by preparing a paste with sesame oil. It is one of the constituents of ‘Romasanjanan lepa’, a product used to treat alopecia areata, an autoimmune hair loss disease.

Romasanjanan lepa is a lepa (a topical dosage form), made out of karanja (a plant that is often used as a biofuel), kasisa (an iron-containing mineral drug), kapitha (also called as ‘wood-apple’, an Ayurvedic plant), hastidant mashi and narikela taila (coconut oil). The formulation is reported to relieve scalp dryness and redness. The prospective randomized non-comparative clinical trial was conducted and it was observed that Romasanjanan lepa’s topical application resulted in hair regrowth of 51.83% in the 30 patients over 18 months and a scalp hair loss reduction of 46.27% [28].

4.2. Mayurpiccha mashi

The word ‘Mayurpiccha’ stands for a peacock’s feather in Sanskrit. Hence, this mashi is prepared by heating the feathers of Indian peafowls (Pavo cristatus) by APM or by a separate method, known as ghee flame method (by simply heating in ghee flame).

The preparation of this mashi by APM is a complex process. After the initial mashi is obtained by APM, it is triturated with a decoction of Butea monosperma flower (Palash tree), then the resultant uniform mixture is converted into pellets and passed through the process of gajaputa again. The same procedure is repeated with the juices of medicinal herbs like Leucas cephalotes spreng (Dronapuspi) and Senna tova (Chakramarda).

No animal is harmed in the preparation of this mashi, as the fallen peacock feathers are abundantly available. It is often called as ‘Mayurpiccha Bhasma’. It is reported that this mashi contained saponins and flavonoids. The mashi is prepared by APM and has a 1% moisture content and is more stable than the mashi prepared by the ghee flame method (which has 4% moisture content). Its pH was neutral and mashi prepared by both the methods was rich in electrolytes like Cu, Fe, Zn, Na, K, Mg, etc. Apart from these, no tests regarding the therapeutic potential have been conducted for this mashi. Even though no research work related to the mechanism of action and efficacy of use for this mashi is available, it is the most widely used animal source mashi. This mashi is consumed internally and widely popular amongst Ayurvedic medicine practitioners. The knowledge about its chemical constituents is yet to be obtained. It is used to treat hiccups, asthma, and morning sickness during pregnancy [29,30].

4.3. Sarpa mashi

This mashi is prepared from black cobra. The dead cobra is collected and burned to produce mashi. ‘Sarpa’ stands for snake or serpent in Sanskrit. It must be noted that the head, tail, and intestine of the snake are to be removed before preparing the mashi. It is also called ‘Krishnasarpa mashi’. The mashi is prepared by APM and is supposed to be consumed internally or applied externally with bhishitak taila. The shredded skin of the snake can also be used to prepare mashi and it is used to treat leucodema disease and a paste made from the mashi can be used to treat vitiligo. It is also used externally to induce labour when pregnancy is unnaturally delayed [31].

4.4. Kurmakapal mashi

The word ‘Kurma’ stands for ‘tortoise’ and this mashi is prepared by burning the shell (exoskeleton) of a tortoise using APM. The shell contains calcium, phosphorous, proteins [32]. It is supposed to be applied externally to treat baldness; however, no research work related to this mashi is available as it not permissible to allow tortoise hunting since their various species and phyla can go extinct with extensive poaching.

4.5. Keshanjana or kesh mashi

This mashi is prepared by using hair from human beings, by APM. The collected hair samples have to be rubbed with goghrita (clarified fat from cows) before subjecting to gajaputa; however, the amount of fat to be used is unspecified. Mixing with clarified fat is done to ensure uniform heating and avoid charring. This mashi is allegedly useful during dry eye syndrome (Shushkakshippaka). Dhi-man et al. prepared Keshanjana and an ointment of Keshanjana with petrolatum as a base. Kesh mashi (prepared using goghrita) and the petrolatum ointment were used on test subjects. Both the formulations were compared with standard medication of dry eye syndrome i.e., CMC tear supplement. Both the preparations (Kesh mashi and Kesh mashi ointment) were subjected to a study on rabbits. The study was to test ocular surface corrosion and toxicity. For this study, the OECD 405 guidelines were followed. Clinical trials on 120 patients were performed and they were randomly divided into four groups (30 members each) and studied for 1 month. Group which was given 1 drop of Kesh mashi showed the most statistically significant results. Although the Kesh mashi ointment and Kesh mashi had the same efficacy, the Kesh mashi addressed the objective parameters of the patients the best [33].

4.6. Chatuspaad mashi

This mashi comes from chatuspaad (four-leg animal) [31]. The parts of the animal that can be used for preparing this mashi are skin, hooves (khura), horns (shrunga), and bones (asthi), after the animal’s death. The chemical constitution of the mashi would also obviously depend on the type of animal and the part used. Like most animal origin mashi, it is also used for hair regrowth; however, no research to support that claim has been done.

4.7. Meshadi mashi

It is made from the fleece (hair) of sheep (which are vernacularly referred to as ‘Meshi’). The hair of sheep and cows are burned by APM and it is used for hiccups [31].

4.8. Svaavida mashi

This mashi is made from porcupine quills, by collecting them, cutting them, and then burning them in Sharav by APM. The quills are said to have antibiotic properties. No research work is available to support this claim. This mashi is supposed to be consumed internally along with sugar syrup or honey as a vehicle [31].

5. Effect of heat treatment

Mashi is a dosage form in which the bulk of raw material is reduced to a greater extent by the application of a certain quantum of energy. Due to this treatment, hidden chemical constituents become prominent and/or a new chemical moiety is formed which is therapeutically active.
In this process, both the organic and inorganic constituents are retained in the formulation. When the combustion starts, most of the organic biomolecules like proteins and long-chain carbohydrates (celluloses, lignin in plants, and glycogens in animal tissue) begin to break down into their respective monomeric units. Lipids also react to the heat by releasing their constituent fatty acids which in turn are converted into free radicals which speed up the breakdown of other biomolecules.

As the biomolecules begin to break down, their constituent atoms get released in the surrounding air in the forms of oxides of carbon, nitrogen, sulfur, etc and the typical, non-specific smell of combustion begins to spread. With time, a bulk of the mass of animal/plant tissue used gets reduced (the reduction depends on the type of method used to prepare the mashi and also on how accurately the procedure is followed). Towards the end of the heating, the powdery material begins to resemble carbon black or charcoal and is said to have a ‘Sendriyavat’. This quality essentially corresponds to the material/ash still having organic ingredients of interest. The organic ingredient in the mashi is also said to be in a slightly more activated state. Only thermostable ingredients stay back and heat-sensitive compounds decompose [18–20].

6. Standardization of mashi

A monograph of each mashi is required as it will help to standardize the mashi. Presently, no official data is available for the standardization of mashi and researchers are required to establish the parameters. The identity and purity of mashi can be done by following standardization parameters [34]:

1. Morphological evaluation: Colour, odour, and taste
2. Physical evaluation: Loss on drying, total ash value, acid insoluble ash value, water soluble ash value, extractable values and fluorescence study
3. Chemical evaluation: Preliminary phytochemical study, qualitative and quantitative analysis of inorganic radicals, determination of organic contents, Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray diffraction (PXRD), Differential Scanning Calorimetry (DSC), and Atomic Absorption Spectroscopy

7. Conclusion

The preliminary aim of this article was to clear the various misconceptions regarding the mashi formulation and provide clarity regarding its various available forms, the efficacy of their uses, and the prospects where more attention needs to be paid by researchers. Amongst animal source-based mashi formulations, Mayurpiccha mashi and Kesh mashi are the most widely used. A good amount of work is done on Kesh mashi and more work is required on Mayurpiccha mashi. The use of other mashi formulations made from animal sources, like Hastidant mashi is highly discouraged as it will more or less promote the poaching of the corresponding endangered animal species and greatly threatens biodiversity. Furthermore, no research work regarding the efficacy of the same is available. Mashi is a simple but very unique formulation. More research is required to identify the presence of constituents in mashi, isolation of constituents, and evaluation of its pharmacological activity.

Source(s) of funding
None.

Conflict of interest
None.

Author contributions
Ameya Joshi: Writing- review and draft preparation, Akshay Baheti: Draft preparation and editing, Manish Wani: Data collection, Ranjeet Nimbalkar: Data collection.

References

[1] Unnikrishnan PM. Animals in Ayurveda. Amruth 1998;13(1):1–15.
[2] Barke SA, Wayal SR, Abhyankar MM, Patil RV. Preparation and pharmacognostic evaluation of Ashwagandha Mashi. J Pharmacog Phytochem 2018;7(3): 2499–505.
[3] Biradar YS, Sharma P, Khandelwal KR. Preparation, method of optimization and physicochemical evaluation of traditional formulation, Tripatha Mashi. Indian J Tradit Knowl 2007;6(2):292–7.
[4] Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res 1999;13(4):275–91.
[5] Baliga MS, Meera S, Mathai B, Rai MP, Pawar V, Palatty PL. Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review. Chin J Integr Med 2012;18(S2):946–54.
[6] Baliga MS, Shirake M, Shivashankara KR, Palatty PL, Haniadka R. Chapter 16. The health benefits of Indian traditional ayurvedic rasayana (Anti-aging) drugs: a review. In: Watson RR, editor. Foods and dietary supplements in the prevention and treatment of disease in older adults. San Diego: Academic Press; 2013. p.151–161.
[7] Baliga MS, Shirake M, Rai MP, Saldhana E, Pais S, Jayachander D, et al. Chapter 14. Use of the ayurvedic drug triphala in medical conditions affecting older adults. In: Watson RR, editor. Foods and dietary supplements in the prevention and treatment of disease in older adults. San Diego: Academic Press; 2013. p.135–42.
[8] Peterson CT, Dennison K, Chopra D. Therapeutic uses of triphala in ayurvedic medicine. J Alternative Compl Med 2017;23(8):607–14.
[9] Bhatnagar S, Rani A, Kumari R. Therapeutic potential of triphala against human diseases. Int J Pharmaceut Sci Rev Res 2015;31(2):5:13.
[10] Meena AK, Narasimhajy, Vishviji D, Singh A, Rekha P, Kumar V, et al. Determination of gallic acid in ayurvedic polysubstance formulation triphala churana and its ingredients by HPLC and HFTLC. J Res Pharm Technol 2018;11(9):3243–9.
[11] Vazirian Khanavi M, Amanzadeh Y, Hajimehdipoor H. Quantification of gallic acid in fruits of three medicinal plants. Iran J Pharm Res (IJPR) 2011;10(2):233–6.
[12] Biradar YS, Jagatap S, Khandelwal KR, Singhana SS. Exploring of antimicrobial activity of triphala mashi—an ayurvedic formulation. Evid base Compl Alternative Med 2008;5(1):107–13.
[13] Biradar Y, Dahiya R, Sharma A, Dhalwal K, Bodhanikar S, Khandelwal K. Evaluation of anti-diarrhoeal property and acute toxicity of triphala mashi, an ayurvedic formulation. J Herb Pharmacother 2007;7:203–12.
[14] Sinha R, Jeewesh KB. Physico-chemical properties and antimicrobial activity of triphala mashi. UK J Pharm Biosci 2018;6(5):33–40.
[15] Anjali U, Antherjanam K. A pre and post test study to evaluate the efficacy of Vibhheetakadyani mashi Anjana in the management of skulama (Pterygium). Int J Adv Res 2019;7(9):756–61.
[16] Baheti A, Khandelwal KR, Baheti SA. In vitro evaluation of anthelmintic activity of anterdhum padhati mashi and bahirdhum padhati mashi of green Cocos nucifera Linn.(palmae) husk. Phcog J 2009;1(4):279–81.
[17] Baheti A, Khandelwal K, Ingale S, Baheti S. Chronic diuretic effect of the Bahirdhum Padhati Mashi (BPM) of unripe Cocos nucifera husk in normal rats. Phcog J 2008;4(5):215–7.
[18] Baheti A, Khandelwal K, Ingale SP, Soni R, Baheti SA. Analgesic activity of bahirdhum padhati mashi (bpm) of green Cocos nucifera (palmae) husk. Pharmacologonline 2009;1:445–8.
[19] Rath BS, Baheti AM, Khandelwal KR, Parakh SR, Bodhanikar SL. Diuretic activity of coconut husk Mashi — an Ayurvedic formulation. Indian J Tradit Knowl 2006;5(4):471–3.
[20] Baheti AM, Khandelwal KR, Choudhari VP, Wani MS, Choudhari GB, Baheti SA. Preparation, characterization and determination of antioxidant activity of anterdhum padhati mashi (APM) and bahirdhum padhati mashi (BPM) of Cocos nucifera husk. Indom J Pharm Res 2017;7(5):828–8636.
[21] Baheti AM, Khandelwal KR, Kumbhar P, Baheti SA. Anticoccipitive activity of Anterdhum Padhati Mashi (APM) of unripe Cocos nucifera (palmae) husk. Pharmacologonline 2019;1:445–8.
[22] Ata A, Gale E, Samarasakerewa R. Bioactive chemical constituents of Caesalpinia bonduc (Fabaceae). Phytochemistry Letters 2009;2:106–9.
[23] Sushruta Samhita. Ayurvedatatvasandipika; Hindi commentary by amnika dutt shastri; chaukhamba Sanskrit sansthan edition reprint. Sushruta Chikista Shans. 2009 [Chapter I] sloka No 101.
[24] Nix A, Paull CA, Colgrave M. The flavonoid profile of pigeonpea, Cajanus cajan: a review. Springer Plus 2015;4(125):1–6.
[25] Yadav RK, Nandy BC, Maity S, Sarkar S, Saha S. Phytochemistry, pharmacology, toxicology, and clinical trial of Ficus racemosa. Pharmacogn Rev 2015;9(17): 73–80.

[26] Mandal S, Patra A, Samanta A. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed 2013;3(12):960–6.

[27] Agivesha, Charaka, dridhabala, Charaka Samhita chikitsasthana. In: Vaidya Jadavaji Trikamji Acharya. reprint edition. Varanasi: Chaukhambha Orientalia; 2011. Hikkashwasa Chikitsa Adhyaya, 16/12.

[28] Panchpor A, Inamdar M. Review on mashi kalpana. World J Pharm Res 2020;9(13):621–9.

[29] Kotrannavar V, Sarashetty R, Kanthi V. Physico-chemical analysis of Mayurapuccha Bhasma prepared by two methods. Ancient Sci Life 2012;32(1):45–8.

[30] Dhiman KS, Shukla VJ, Bhalodia NR, Sharma VR. Quality control evaluation of Keshamasi, Keshanjana and Keshamasi eye ointment. Ayu 2014;35(1):58–62.

[31] Hussain G. Masi kalpana: a novel dosage form. J Pharm Sci Innov 2015;4(3): 154–5.

[32] Ellen K, Geraldine K, Petra K, Marcus C. Chemical composition of turtles and tortoises. J Nutr 2006;136(7):2053S–4S.

[33] Vidyaha Rekha U, Anita M, Bhuminathan S, Sadhana K. An update on Triphala: a potential anticancer ayurvedic herb to battle cancer. Drug Invent Today 2020;13(1):163–8.

[34] Sumbul S, Ahmad MA, Asif M, Akhtar M, Saud I. Physicochemical and phytochemical standardization of berries of Myrtus communis Linn. J Pharm Bioallied Sci 2012;4(4):322–6.