Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi

Annick Barre 1, Yves Bourne 2, Els J. M. Van Damme 3* and Pierre Rougé 1,*

1 UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maréchaux, 31062 Toulouse, France; annick.barre@univ-tlse3.fr
2 Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France; yves.bourne@afmb.univ-mrs.fr
3 Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; ElsJM.VanDamme@UGent.be
* Correspondence: pierre.rouge@free.fr; Tel.: +33-069-552-0851

Received: 11 December 2018; Accepted: 31 December 2018; Published: 10 January 2019

Abstract: To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the “broad sugar-binding specificity” toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure–function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.

Keywords: lectin; plant; fungi; mannose-binding specificity; structure; function; use as tools

1. Introduction

Protein-carbohydrate interactions are part of the most efficient signaling pathways occurring inside living organisms or between living organisms and their environment. Lectins or Carbohydrate-Binding Agents (CBAs) are proteins that have specialized in the specific recognition of carbohydrates during the evolution of all living organisms. The large family of carbohydrate-binding proteins contains a large variety of carbohydrate-binding domains (CBDs), each with one or more carbohydrate-binding sites (CBSs) which specifically recognize simple or more complex sugars. Depending on the lectin, the carbohydrate-binding domains belong to distinct structural scaffolds usually organized in homo- or hetero-dimeric or tetrameric structures [1]. According to the nature and the organization of their domains, plant and fungal lectins have been classified in two groups of lectins, (1) lectins exclusively composed of carbohydrate-binding domains and (2) chimerolectins composed of a carbohydrate-binding domain linked to another domain(s) devoid of any carbohydrate-binding
properties [1]. With respect to their binding properties, plant and fungal lectins can be subdivided in different groups, such as for example Man-specific lectins, Gal/GalNAc-specific lectins, and Fuc-specific lectins [2]. However, the binding of lectins towards simple sugars is probably not really relevant. It is more realistic to assume that lectins will interact with the more complex N-glycan chains that decorate the cell surface of all living organisms [3]. In addition, the idea has progressively emerged that, besides lectins which are abundantly distributed in storage tissues like seeds and bulbs and play a defensive/protective role, other less abundant lectins participate in more discrete carbohydrate recognition processes equally necessary for the proper functioning of the living organisms [4]. In this respect, the discovery of Nictaba, a lectin localized in the nucleus of tobacco (Nicotiana tabacum) cells, represents a milestone in our vision of the function devoted to plant and fungal lectins in vivo [5].

Owing to the huge amount of structural and functional data that have been accumulated for several decades these carbohydrate-binding proteins from plants and fungi have become a tool to decipher the structure–function relationships inherently associated to protein macromolecules. In this respect, lectins involved in the specific recognition of mannosyl residues, the so-called mannose-binding lectins, represent an important group of functional proteins taking into account the widespread distribution of mannose-containing N-glycans of the N-acetyllactosamine type and high-mannose type. The present review aims to present an exhaustive overview that summarizes all published informations related to the structure–function relationships of mannose-specific lectins from plants and fungi, and their possible applications as analytical and therapeutic tools for biomedical research.

2. Diversity of Mannose-Binding Lectins in Higher Plants

To date, lectins with a mannosyl-binding specificity have been identified in many different plant families, including monocotyledonous as well as dicotyledonous species (Table 1). Among the monocot families, research has focused on the Liliaceae and Amaryllidaceae [6], whereas the Fabaceae family occupies a predominant position in the dicot group [6]. Following to the pioneering work of Agrawal & Goldstein [7], who reported that concanavalin A (Con A), the lectin from Jack bean (Canavalia ensiformis) seeds, was easily retained by simple filtration through a column containing cross-linked dextran gel (Sephadex, Pharmacia) and subsequent desorption by the addition of glucose or mannose to the eluting buffer, both Con A and many other mannose-specific lectins (Table 1) were easily purified using a single affinity chromatography step. Mannose-specific lectins were also successfully isolated from different algae, mushrooms and lower plant species [8]. Moreover, some mannose-specific lectins from red algae specifically recognize the core (α1-6)-fucosylated N-glycans of cancer cells and can be used as biomarkers for the detection of cancer glycoforms [9]. In this respect, they resemble LcA from Lens culinaris, PsA from Pisum sativum and LoL-I from Lathyrus ochrus, which show strong binding to core-fucosylated mono- and bi-antennary N-glycans [10,11].
Table 1. Overview of plant, algae and fungi lectins with a mannosyl-binding specificity (β-sandwich: βs, β-prism: βp, n.d.: not determined).

Plant, Alga, Mushroom Family	Plant, Alga, Mushroom Species	Lectin	Structural Scaffold	Oligomer	Ref.
Pteridophyta	Phlebodium aureum	PAL	β barrel	2	[12]
Gymnosperms	Araucaria brasiliensis	Lectin 1	n.d.	10	[13]
		Lectin 2	n.d.	6	
	Gingko biloba	Gnk2	α β	1	[14]
	Cytherea revoluta	CRLL	β-prism	2	
Fabaceae	Bowringia mildbraedii	BMA	β-sandwich	2/4	[17]
	Canavalia boliviensis	ConBo	βs	4	[19]
	Conavalia brasiliensis	ConBr	βs	4	[22]
	Conavalia ensiformis	ConA	βs	4	[23]
	Conavalia gladiata	CGL	βs	4	[24]
	Conavalia grandiflora	ConGF	βs	4	[25]
	Conavalia maritima	ConM	βs	4	[26]
	Conavalia villosa	ConV	βs	4	[27]
	Centrolobium microchaete	CML	βs	4	[28]
	Centrolobium tomentosum	CTL	βs	4	[29]
	Cladrastis lutea	CLAI,II	βs	4	[30]
	Cymbosema roseum	CRLL	βs	4	[33]
	Dioecia grandiflora	DGL	βs	4	[34,35]
	Dioecia guianensis	Dguia	βs	4	[36]
	Dioecia lasiocarpa	DLL	βs	4	[37]
	Dioecia lasiophylla	DlyL	βs	4	[38]
	Dioecia reflexa	DrfL	βs	4	[39]
	Dioecia rostrata	DRL	βs	4	[40]
	Dioecia sclerocarpa	DSL	βs	4	[41]
	Dioecia violacea	DVL	βs	4	[42]
	Dioecia virginata	DvirL	βs	4	[43]
	Dioecia wilsonii	DwL	βs	4	[44]
	Lathyrus aphaera	LaphL	βs	2	[45]
	Lathyrus articulatus	LarL	βs	2	[45]
Table 1. Cont.

Plant, Alga, Mushroom Family	Plant, Alga, Mushroom Species	Lectin	Structural Scaffold	Oligomer	Ref.
Lathyrus cicera	LcL	βs	2	[45]	
Lathyrus hirsutus	LhL	βs	2	[46]	
Lathyrus nissolia	LnL	βs	1	[47]	
Lathyrus ochrus	LoL	βs	2	[48]	
Lathyrus odoratus	LodL	βs	2	[49]	
Lathyrus sativus	LsL	βs	2	[50]	
Lathyrus sphaericus	LsphL	βs	1	[51]	
Lathyrus sylvestris	LslL	βs	2	[52]	
Lathyrus tingitanus	LtL	βs	2	[46]	
Lens culinaris	LcA	βs	2	[53]	
Millettia dielsiana	MDL	βs	2	[54]	
Onobrychis vicifolia	♯s	n.d.		[55]	
P. arvense	PAL	♯s	2	[56]	
P. sativum	PsA	♯s	2	[57]	
Pterocarpus angolensis	PAL	♯s	2	[58]	
Sophora flavescens	SFL	♯s	2	[59]	
Trigonella foemungraecum	♯s	n.d.		[60]	
Vicia cracca	♯s	2		[61]	
Vicia ervilia	♯s	4		[62]	
Vicia faba	♯s	2		[63]	
Vicia sativa	VfA	♯s	2	[64]	

Mimosaceae

| Parkia biglobosa | PBL | βs | 2 | [65] |
| Parkia platycephala | PPL | βs | 2 | [66] |

Dalbergieae

| Platypodium elegans | nPELa | βs | 2 | [67] |
| Platymiscium floribundum | PFL | βs | 2 | [68] |

Fagaceae

| Castanea crenata | CCA | βs | 6/8 | [69] |

Moraceae

Artocarpus heterophyllus	ArtinM	β-prism	4	[70,71]
Artocarpus incisa	Frutapin	βp	4	[72]
Artocarpus integer	CMB	βp	4	[73,74]
Artocarpus integristofolia	articarpin	βp	4	[75,76]
Morus nigra	Moniga-M	βp	4	[80]
Plant, Alga, Mushroom Family	Plant, Alga, Mushroom Species	Lectin	Structural Scaffold	Oligomer	Ref.
Asteraceae	*Helianthus tuberosus*	Heltuba	βp	8	[81]
Brassicaceae	*Arabidopsis thaliana*	PP2-A1	βp	n.d.	[82]
Ranonculaceae	*Clematis montana*	CML	βp	2	[83]
Aloeae	*Aloe arborescens*	ALOE	βp	4	[84]
Araceae	*Arisaema lobatum*	ALA	n.d.	2+2	[85]
	Arisaema heterophyllum	AHA	βp		[86]
	Arum maculatum	AMA	βp	2+2	[87]
	Colocasia esculenta	CEA, tarin	βp	2+2	[88]
	Dieffenbachia seguina	Calsepa	βp	2+2	[89]
	Lysichiton camtschacensis	Pinellia ternata	βp	2+2	[90]
	Remusatia vivipara	RVL	βp	2+2	[91]
	Typhonium divaricatum	TDL	βp	2+2	[92]
	Xanthosoma sagittifolium	XSL	βp	2+2	[93]
	Zantedeschia aethiopica	ZAA	βp	n.d.	[94]
Asparagaceae	*Ophiopogon japonicus*	OJL	βp	n.d.	[95]
	Polygonatum cyrtomena	PCL	βp	4	[96]
	Polygonatum multiflorum	PMA	βp	4	[97]
Convolvulaceae	*Polygonatum odoratum*	POL	βp	4	[98]
	Calystegia sepium	Calsepa	βp	2	[99]
	Ipomoea batatas	ipomoelin	βp	4	[100]
Alliaceae	*Allium altaicum*	AALTA	βp	2	[101]
	Allium ascalonicum	AAA	βp	2	[102]
	Allium cepa	ACA	βp	2	[103]
	Allium porrum	APA	βp	2	[103]
	Allium sativum	ASA-I/II	βp	2	[104]
	Allium tuberosum	ATA	βp	2	[105]
	Allium ursinum	AUA-I/II	βp	2	[106]

Table 1. Cont.
Plant, Alga, Mushroom Family	Plant, Alga, Mushroom Species	Lectin	Structural Scaffold	Oligomer	Ref.
Amaryllidaceae	*Amaryllis vittata*	AVA	βp	n.d.	[107]
	Clivia miniata	CMA	βs	2	[108]
	Crinum asiaticum	CAA	βp	n.d.	[109]
	Galanthus nivalis	GNA	βp	4	[110]
	Hippeastrum hybrid	HHA	βp	2	[111]
	Leucojum vernum	LVL	βp	n.d.	[112]
	Zephyranthes candida	ZCA	βp	4	[113]
	Zephyranthes grandiflora	ZGA	βp	4	[114]
	Lycoris aurea	LAA	βp	2	[115]
	Lycoris radiata	LRA	βp	2	[116]
	Lycoris aurea	LAA	βp	1	[117]
	Lycoris radiata	LRA	βp	1	[118]
	Dioscorea batatas	DB1	βp	2	[119,120]
	Dioscorea bulbifera	DBL	βp	4	[121]
Iridaceae	*Crocus sativus*	CSL	βp	n.d.	[117]
	Crocus vernus	CVA	βp	1	[118]
	Aspidistra elatior	AEL	n.d.	2	[122]
	Narcissus pseudonarcissus	NPA	βp	2,4	[111]
	Narcissus tazetta	NTL	βp	2	[123]
	Narcissus tazetta	NTA	βp	n.d.	[124]
	Tulipa hybrid	TxLCI	βp	4	[125]
	Smilax glabra	SGM2	βp	3	[126]
Liliaceae	*Scilla campanulata*	SCAMAN	βp	2	[127]
	Musa acuminata	BanLec	βp	2	[128]
	Musa paradisiaca	LNL	βp	2	[129]
	Pandanus amaryllifolius	pandanin	βp	n.d.	[130]
Orchidaceae	*Cymbidium hybridum*	CHA	βp	2	[131]
	Dendrobium officinale	DOA2	βp	n.d.	[132]
	Epipactis helvorum	EHMBP	βp	2	[131]
	Gastrodia elata	gastrodianine	βp	2	[133]
	Liparis noversa	LNL	βp	2	[95]
	Listera ovata	LNL	βp	2	[131]

Table 1. Cont.
Plant, Alga, Mushroom Family	Plant, Alga, Mushroom Species	Lectin	Structural Scaffold	Oligomer	Ref.
Poaceae	Oryza sativa	Orysata	βp	2	[134]
Red algae	Bryothamnion seaforthii	BSL	n.d.	1	[135]
	Bryothamnion triquetrum	BTL	n.d.	1,2	[136]
	Euchema denticulatum	EDA	n.d.	1	[137]
	Eucheuma serra	ESA	n.d.	1	[138]
	Griffithsia sp.	griffithsin	n.d.	2	[139,140]
	Hypnea cervicornis	HCA	n.d.	1	[141]
	Hypnea japonica	HJA	n.d.	1	[9]
	Hypnea musciformis	HMA	n.d.	1	[142]
	Kappaphycus altavenezii	KAA-2	n.d.	1	[143]
	Kappaphycus striatum	KSA	n.d.	1	[144]
Green algae	Boodlea coacta	BCA	β-prism	1	[145]
	Halimeda renschii	HRL40-1/2	n.d.	4	[146]
Hydnangiaceae	Laccaria bicolor	tectonin 2	β-propeller	n.d.	[147,148]
Trichocomaceae	Penicillium chrysogenum	PeCL	n.d.	n.d.	[149]
Saccharomycetaceae	Saccharomyces cerevisiae	Flo5A	β-sandwich	2	[150]
	Saccharomyces pasteurianus	Flo1p	βs	4	[151]
Schizosaccharo-mycetaceae	Schizosaccharomyces ponbe	glucosidase	βs	2	[152]
Hygrophoraceae	Hygrophorus russula	HRL	n.d.	4	[153]
Marasmiaceae	Marasmius oreades	MOA	β-prism	2	[154]
Pteridaceae	Ceratopteris richardi	cyanovirin	CVN-fold	1	[155]
Sordariaceae	Neurospora crassa	cyanovirin	CVN-fold	1	[155]
Tuberaeae	Tuber borchii	cyanovirin	CVN-fold	1	[155]

Table 1. Cont.
3. Structural Organization of the Plant, Algal and Fungal Mannose-Binding Lectins

3.1. Structure of Mannose-Specific Plant Lectins

Mannose-specific lectins from plants essentially belong to three distinct structural scaffolds that assemble in different ways to generate more complex oligomeric structures:

3.1.1. The β-Sandwich Fold

The jelly roll scaffold occurring in legume lectins (Fabaceae) consists of either a single or two polypeptide chains. In two-chain lectins, the light (α) and heavy (β) chains made of six and seven strands of antiparallel β-sheet, respectively, non-covalently associate in a β-sandwich protomer (Figure 1A). Protomers associate by non covalent bonds to give the homodimeric lectins of the Vicieae tribe, e.g., pea lectin (Pisum sativum agglutinin PsA) [57], lentil lectin (Lens culinaris agglutinin LcA) [156], yellow vetch lectin (Lathyrus ochrus lectin Lol) [48] (Figure 1B), and the faba bean lectin (Vicia faba agglutinin Vfa or favin) [68] (Figure 1B). In contrast, the Man-specific lectin from Lathyrus sphaericus consists of an uncleaved single chain protomer [51]. The single-chain protomers associate into homotetramers. Examples are the mannose-binding lectins characterized in the tribes Baphieae (Bowringia mildbraedii agglutinin BMA) [17], Dalbergieae (Centrolobium tomentosum lectin CTL [29], Pterocarpus angolensis lectin PAL [58]), Diocleae (Con A [23,157] (Figure 1C), Cymbosema roseum CRL [33], Dioclea grandiflora lectin Con GF [25], and other Dioclea sp. lectins). Dimeric lectins such as PsA, possess two identical mannose-binding sites whereas tetrameric lectins like Con A, exhibit four mannose-binding sites. Gal/GalNAc-specific lectins from other legume tribes such as the soybean agglutinin SBA (Glycine max) from the Glycineae tribe (PDB code 1SBF) [158], the peanut agglutinin PNA (Arachis hypogaea) from the Aeschynomeneae (PDB code 2PEL) [159], the coral tree lectin EcorL (Erythrina corallodendron) from the Erythrinae tribe (PDB code 1AXY) [160], and the kidney bean leucoagglutinin PHA-L (PDB code 1FAT) [161] and erythroagglutinin PHA-E (PDB code 3WCR) [162], (Phaseolus vulgaris) belonging to the Phaseolae tribe, all strikingly resemble Con A and other Dioclea lectins but differ in the topological organization for the single-chain protomers that constitute the lectin.

3.1.2. The β-Prism I Fold

The β-prism I scaffold serves as a building block for the mannose-binding lectins in seeds of the Moraceae such as artocarpin, the lectin from the Jackfruit (Artocarpus integrifolia) seeds which serves as a prototype for this group [163]. The β-prism I scaffold consists of three bundles of four antiparallel β-strands forming three Greek keys 1, 2 and 3, arranged into a β-prism structure along a longitudinal axis (Figure 1D). Depending on the lectins, a posttranslational proteolytic cleavage between the β-strands β1 and β2 of Greek key 1 occurs during seed ripening, to liberate the light α-chain with a terminal Gly1 residue exhibiting a free H$_2$N- group, and the heavy β-chain comprising the rest of the β-prism structure. This proteolytic cleavage occurs in the Gal/GalNAc-specific homotetrameric lectins of Moraceae, such as jacalin (Figure 1E) (PDB code 1JAC) [164], the MPA lectin from Osage orange (Maclura pomifera) seeds (PDB code 1JOT) [165], and the Gal/GalNAc-specific lectin Morniga-G from the bark of blackberry (Morus nigra) [80]. However, the Man-specific lectins from the Moraceae family, e.g., artocarpin from Jackfruit [163] and Morniga-M from blackberry [166], consist of an uncleaved single-chain β-prism polypeptide chain. Similarly, Heltuba, the lectin from the Jerusalem artichoke (Helianthus tuberosus), also consists of a single-chain β-prism polypeptide chain made of 8 β-prisms non-covalently associated around a central axis to form a flattened star-shaped architecture comprising 8 identical carbohydrate-binding sites (Figure 1F) [81].
Amaryllidaceae. The scaffold consists of three bundles of four Galanthus nivalis from the bulbs of snowdrop (β3.1.3. The flattened Amaryllidaceae bulbs 3.1.3. Int. Mol. Sci. 2019, 20, 254). (Figure 1). The four single-chain protomers are shown in different colors. (C). Homotetrameric organization of Con A (PDB code 3CNA). The four single-chain protomers are shown in different colors. (D). The β-prism organization of the artocarpin protomer from Artocarpus integrifolia (PDB code 1J4S). The three bundles of β-strands forming the β-prism are colored green, red and orange, respectively. (E). Homotetrameric organization of artocarpin from A. integrifolia (1J4U). The β-prism protomers are colored differently. (F). Homooctameric organization of Heltuba from Helianthus tuberosus (1C3M) [81]. The β-prism protomers are colored differently. (G). The β-prism II organization of the protomer of GNA from Galanthus nivalis (PDB code 1MSA). (H). Organization of the β-prism II protomers in the GNA tetramer (PDB code 1MSA). (I). Hexameric structure of the tarin lectin from Colocasia esculenta (PDB code 5T20). The six β-prism-folded protomers are colored differently.

3.1.3. The β-Prism II Fold

The β-prism II scaffold was first identified in GNA, the mannose-specific lectin isolated from the bulbs of snowdrop (Galanthus nivalis), a plant species belonging to the monocot family Amaryllidaceae [110]. The scaffold consists of three bundles of four β-strands arranged into a flattened
Their amino acid sequences readily differ from that of griffithsin and, most probably, they also differ from griffithsin by their three-dimensional structure and monomer organization.

The mannose-specific lectin griffithsin from the red alga Griffithsia sp., consists of a domain-swapped dimer made of two protomer exhibiting the β-prism I fold, that closely resembles to the jacalin-related lectin organization (PDB code 2GTY) [140]. Swapping results from the participation of two β-strands of one molecule in the completion of the three four-stranded sheets forming the β-prism of the other molecule, and vice versa. As a result of this swapping, both molecules in the dimer consist of a complete β-prism organization (Figure 3).

In spite of a high number of cloned and sequenced lectins from different species of red and green algae, their three-dimensional organization(s) were poorly investigated and still remain unknown. Their amino acid sequences readily differ from that of griffithsin and, most probably, they also differ from griffithsin by their three-dimensional structure and monomer organization.

β-prism structure around a central pseudoaxis (Figure 1G). A carbohydrate-binding site occurs in a groove located at the center of the bundle of β-strands forming each β-sheet. The monocot-specific lectins result from the non-covalent association of four β-prism II scaffolds. Depending on the lectin, four identical β-prism II of 12 kDa form a homotetramer, e.g., in GNA (Figure 1H) [167], whereas other lectins consist of heterotetramers built up from the symmetrical association of two 12 kDa and two 14 kDa β-prism subunits, e.g., the Araceae lectins [6]. Usually, all three carbohydrate-binding sites occurring in each β-prism scaffold are readily functional but in a few lectins, one or two carbohydrate-binding sites are apparently inactive due to point mutation(s) in key residues involved in the H-bonding of mannose. Tarin from Colocasia esculenta assembles into homohexameric structures made of 6 β-prism scaffolds [168] (Figure 1I).

The β-trefoil scaffold, another β-prism II scaffold, has been primarily identified in type II Ribosome-Inactivating Proteins (RIP-II), in amaranthin, a T antigen-specific lectin from amaranth (Amaranthus caudatus) [169], and it also occurs in the stress inducible lectins composed of EUL (Euonymus lectin) domains, such as the lectins from rice (Oryza sativa) and Arabidopsis [170]. The β-trefoil scaffold consists of six β-hairpins arranged around an approximate three-fold symmetry axis, linked to extended loops that simulate the three lobes of a trefoil leaf (Figure 2). The Man-binding sites are located in the shallow depressions of the β-strands but, usually not all binding sites are functional.

![Figure 2. Three-dimensional models for the EUL domain of EUL-domains of rice lectin Oryzata, showing the β-trefoil organization made of three bundles of antiparallel β-sheets (I, II, III).](image)

An unexpected four-bladed β-propeller structure was found to occur in a PA2 albumin from chickpea (Cicer arietinum), which displays a well documented hemagglutinating activity most probably related to a lectin with an unusual hemopexin fold [171].

3.2. Structure of Mannose-Specific Algal Lectins

The mannose-specific lectin griffithsin from the red alga Griffithsia sp., consists of a domain-swapped dimer made of two protomer exhibiting the β-prism I fold, that closely resembles to the jacalin-related lectin organization (PDB code 2GTY) [140]. Swapping results from the participation of two β-strands of one molecule in the completion of the three four-stranded sheets forming the β-prism of the other molecule, and vice versa. As a result of this swapping, both molecules in the dimer consist of a complete β-prism organization (Figure 3).
Figure 3. Three-dimensional model of griffithsin (PDB code 2GTY), showing the β-prism organization made of three four-stranded β-sheets in each monomer. The four stranded β-sheets are colored red, pink and magenta in monomer (A), and blue, light blue and purple in monomer (B), respectively. The stars indicate the localization of the carbohydrate-binding sites in each monomer.

3.3. Structure of Mannose-Specific Fungal Lectins

Mannose-specific lectins isolated from fungi result from the non-covalent association of different structural scaffolds resulting in more complex oligomeric structures: An unusual six-bladed β-propeller organization built up from 4-stranded anti-parallel β-sheets was identified in tectonin 2, a lectin from the mushroom Laccaria bicolor AAL (PDB code 5FSC), that specifically recognizes O-methylated glycans [148] (Figure 4).

Figure 4. (A). Beta-propeller organization of tectonin 2 from the mushroom Laccaria bicolor in complex with allyl-α4-methyl-mannoside. The lectin consists of 6 antiparallel strands of β-sheet (colored differently) organized in 6 blades around the axis of the β-propeller. The allyl-mannoside residues (M) anchored to the carbohydrate-binding sites of the lectin are colored purple (PDB code 5FSC) (B). Sixth mannose-binding site of tectonin 2 in complex with allyl-α4-methyl-mannoside. Hydrogen bonds connecting the monosaccharides to the amino acid residues Ser200, Asn216 and Tyr222, forming the monosaccharide-binding site are represented by black dashed lines. Aromatic residues Trp3 and Tyr222, participating in stacking interactions with the sugar ring are colored orange. The molecular surface of the lectins is colored dark grey and their extended oligosaccharide-binding areas are delineated by white dashed lines. (C). The shallow depression corresponding to the monosaccharide-binding site that accommodates the allyl-mannoside residue (colored purple) at the molecular surface (colored according to the ouldonic charges) of tectonin 2, is delineated by a green dashed line.

A similar 6-bladed β-propeller structure was observed in the fucose-binding lectins from the bacteria Ralstonia solanacearum [172], Photorhabdus luminescens [173], Photorhabdus asymbiotica [174], as well as in the tachyletin from the Japanese horseshoe crab Tachypleus tridentatus [175]. However, the β-propeller scaffold is not specific for the fucose-binding property since a β-propeller structure was shown to occur in other lectins with quite different sugar-binding specificities, e.g., the Neu5Ac- and GlcNAc-specific lectins from the mushrooms Psathyrella velutina [176] and Psathyrella aspersospa [177],
and the lectin Baml from the bacterium *Burkholderia ambifaria*, which specifically interacts with the lewis x antigen, the blood H type 1 and H type 2 tetrasaccharides and the blood group B epitope [178].

The β-sandwich scaffold is another structural scaffold found in the mannos-binding N-terminal domain of flocculins Flo1 and Flo5 from *Saccharomyces cerevisiae*, and Flo1 from *S. pasteurianus* [150,151]. These surface-adhesins possess a N-terminal domain that readily accomodates Man and α1,2-mannobiose via a network of hydrogen bonds and stacking interactions with aromatic residues, very similar to those occurring in Man-specific lectins of higher plants (Figure 5). Most of the aminoacid residues involved in the binding of mannos also serve as ligands for a Ca$^{2+}$ ion located at the bottom of the mannos-binding site. The mannos-binding activity of Flo1 and Flo5 proteins plays a key role in the self-recognition processes occurring during the growth of the yeasts.

The cyanovirin-fold (CVN-fold) also occurs as a structural scaffold identified in the cyanovirin-N family of mannos-binding fungal lectins, including the ascomycetous fungi *Ceratopterus richardii* (CrCVNH), *Neurospora crassa* (NcCVNH) and *Tuber borchi* (TbCVNH) [155]. The NcCVNH lectin consists of a two swapped domains polypeptide chain of 111 amino acids, built up from a domain A of 56 residues (residues 1–42 and residues 100–111), and a domain B of 57 residues (residues 43–99). According to the swapping occurring between both domains, domain A comprises the triple-stranded β-sheet (β1, β2, β3) associated to the β-hairpin (β9, β10), whereas domain B consists of the triple-stranded sheet (β6, β7, β8) associated to the β-hairpin (β4, β5) (Figure 6A). Other CrCVNH and TbCVNH exhibit a very similar organization.

It is noteworthy that most of the Man-specific lectins identified in bacteria consist of the so-called CVN family fold (Table 2), which comprises cyanovirin, actinohivin, and microvirin occurring in cyanobacteria (ex blue-green algae) as a two swapped domains polypeptide chain, each domain built up from a β-sheet of three anti-parallel β-strands linked to a β-hairpin by a short α-helical turn [179] (Figure 6B).
with complexity including tri-, octa- and dodecasaccharides, accomplished a breakthrough by providing anti-HIV-1 activity. The mannose-binding site has been identified at the top of domain B (red star ⋆). (B). Ribbon diagram showing the structural organization of the two-domain (A and B) cyanobacterial microvirin from *Microcystis aeruginosa* (PDB code 2YHH) The β-strands, β-hairpins and turns, are colored purple, red and green, respectively.

Table 2. Overview of bacterial lectins of the CVN-fold with a mannose-binding specificity.

Bacteria Family	Species	Lec Lectin	Structural Sc scaffold	Ref.
Actinomycetaceae	*Actinomyzete* sp.	Actinohivin	CVN-fold	[180]
Bukholderiaaceae	*Burkholderia cenocepacia*	BcLA	id.	[181]
Cyanothecaceae	*Cyanothecaceae* sp.	Cyt-CVNH	id.	[182]
Nectriaceae	*Gibberella zeae*	Gz-CVNH	id.	[183]
Oscillatoriaceae	*Oscillatoria agardii*	OAA	id.	[184]
Microcystaceae	*Microcystis aeruginosa*	Microvirin	id.	[179]
Nostocaceae	*Nostoc elliposporum*	cyanovirin-N	id.	[185]
Microcystaceae	*Nostoc elliposporum*	cyanovirin-N	id.	[186]
Pseudomonadaceae	*Pseudomonas fluorescens*	PFL	id.	[186]
	Pseudomonas putida	LLP	id.	[187]
Scytonemataceae	*Scytonema varium*	id.		
Thermotogaceae	*Thermotogae maritim*	Tmcbm27	β-sandwich	[180]

The mannose-binding properties of these lectins exhibiting the CVN-fold account for their anti-HIV-1 activity.

4. The Mannosyl-Binding Specificities of Mannose-Binding Lectins

The high-resolution X-ray structures for a series of complexes between the isolectins LoLI and LoLLII from the Cyprus vetch (*Lathyrus ochrurus*) and various *N*-oligosaccharides of increasing complexity including tri-, octa- and dodecasaccharides, accomplished a breakthrough by providing a new framework for understanding how plant lectins specifically accommodate sugar units of complex *N*-glycans [191–193]. Additional crystal structures of other *Man*-specific lectins in complex with *N*-oligosaccharides allowed to decipher the complexity of the carbohydrate-binding of complex glycans to plant and fungal lectins at the molecular level (Table 3).
Table 3. PDB codes of lectins from plants and fungi, complexed with simple sugars (m), oligomannosides (o), and complex (c) mannose-containing glycans.

Plant Species:	Lectin:	PDB Code:	Ref.
Baueringia mildbraedii	BMA	2FMD(o)	[194]
Canavalia ensiformis	ConA	1BXH(o), 1CVN(o), 1I3H(o), 1ONA(o), 1QDC(o), 1QDO(o), 1TEI(o), 1VAM(m), 5CNA(m), 5WEY(o)	[195–203]
Canavalia gladiata	CGL	2D7F(m), 2E6F(o), 2OVU(o)	[204,205]
Canavalia maritima	ConM	2OW4(o), 2P3T(o)	[205]
Canavalia virosa	ConV	5FSQ(m)	[27]
Centroleobium tomentosum	CTL	5EYX(o), 5EYY(o)	[29]
Cymbosoma roseum	CRLI	4MYE(m)	
Dioeclea grandiflora	DGL	1DGL(o)	[35]
Dioeclea lasiocarpa	DLL	5UYY(m)	[37]
Dioeclea lasiothylla	DlyL	6CJ9(m)	[38]
Dioeclea reflexa	DrfL	5TG3(m)	[39]
Dioeclea rostrata	DRL	2ZBJ	[40]
Dioeclea scleroarpa	DSL	4NOT(m)	[41]
Dioeclea virgata	DvirL	3R56(m)	[43]
Lathyrus ochrus	LoLI	1LOA(m), 1LOB(m), 1LOF(o), 1LOG(o)	[191,192,206]
Pisum arvense	PAL	5T7(m)	[207]
Pisum sativum	PsA	1BQP(m), 1RIN(o)	[208,209]
Pterocarpus angolensis	PAL	1Q8O(o), 1Q8P(o), 1Q8Q(o), 1Q8S(o), 1Q8V(o), 1UKG(m), 2ARB(o), 2ARE(m), 2ARX(o), 2AUU(o), 2GN3(m), 2GN7(o), 2GMM(o), 2GMN(o), 2GMP(o), 2PHF(o), 2PHR(o), 2PHU(o), 2PHW(o), 2PHX(o)	[210–213]
Parkia biglobosa	PBL	4MQO(m)	
Artocarpus incisa	frutapin	5M6O(m)	[72]
Artocarpus integrifolia	artocarpin	1J4U(m), 1VB0(o), 1VBP(o)	[163,214]
	jacalin	1KUJ(m), 1WS4(m), 1WS5(m)	[77,78]
Morus nigra	Morniga-M	1XXR(m)	[168]
Helianthus tuberosus	Heltuba	1CS3(m), 1CSN(o)	[81]
Colocasia esculenta	tarin	5DGZ(m), 5T20(o)	[165]
Ipomoea batatas	ipomoelin	3RS1(m), 1OUE(m), 5AV7(o), 5XF1(m)	[99]
Calystegia sepium	Calsepa	1OUW(m), 5AV7(o), 5XF1(o)	[95]
Allium sativum	ASA	1BWU(m), 1KJ1(m)	[215,216]
Galanthus nivalis	GNA	1JPC(o), 1MSA(m), 1NIV(o)	[217,218]
Narcissus pseudonarcissus	NPA	1NPL(o), 3DZJW(o)	[219]
Musa acuminata	3MIT(m), 3MIU(o), 4PIK(o), 4PIT(o)	[128,220]	
Musa paradisiaca	1X1V(m)	[127]	
Oryza sativa	Orysata	5XFH(c), 5XFI(c)	[221]

Fungal/Algal Species: Lectin: PDB Code: Ref.

Griffithsia sp. | griffithsin | 2GUC(m), 2GUD(m), 2HYQ(o), 3L22(c) | [140,222,223] |
Saccharomyces cerevisiae | adhesin Flo1 | 4LHK(o), 4LHN(m) | [151] |
Saccharomyces pastorinus | flocculin Flo5 | 2XJP(m), 2XRJ(o), 2XJS(o), 2XJT(o), 2XJU(o) | [150] |
Schizosaccharomyces pombe | glucosidase II | 4XQM(m) | [152] |
Marasmus oryzae | cyanovirin-N | 4TKC(m) | |
Actinomyces sp. | actinohivin | 4P6A(o) | [224] |
Depending on the molecular complexity of the recognized carbohydrates, two types of closely interlinked carbohydrate-binding specificities can occur at the carbohydrate-binding site of plant and fungal lectins:

1. A monosaccharide-binding specificity, allowing the lectin to specifically recognize a simple sugar, e.g., mannose Man, and its derivatives, e.g., α-methylmannoside. This type of monosaccharide recognition by lectins corresponds to the so-called “broad sugar-binding specificity” of lectins, which relies on the occurrence of a monosaccharide-binding pocket within the carbohydrate-binding site.

2. An oligosaccharide-binding specificity, which consists of the simultaneous accommodation of several sugar units of a complex N-glycan, e.g., high-mannose glycans, also known as the “fine sugar-binding specificity” of the lectins. This type of oligosaccharide recognition involves most of the surface of the carbohydrate-binding site, including the monosaccharide-binding site.

The monosaccharide-binding site is part of a more extended oligosaccharide-binding site. In physiological conditions, however, plant and fungal lectins are almost always involved in the recognition of complex glycans, rather than simple sugars, simply because the amount of free monosaccharides in cells and tissues is very low. The binding of plant and fungal lectins to mannose was first observed in hapten inhibition experiments, by introducing free mannose or mannose derivatives to prevent or reverse the in vitro interaction between lectins and red blood cells or complex glycans. Obviously, the affinity of mannose-specific lectins for simple sugars, e.g., for Man or Man derivatives, is far weaker compared to the affinity measured for more complex glycans, e.g., for complex N-glycans or high-mannose type glycans (Table 4) [10,225].

Table 4. Minimum concentrations (mM) of various oligosaccharidic structures and glycopeptides necessary to completely inhibit red blood cells agglutination by Con A, LcA from lentil and favin (from ref. [225]).

Oligosaccharidic Structures	Con A	LcA	Favin
α-Man(1,3)β-Man(1,4)GlcNAc	1.25	2.5	0.625
α-Man(1,2)α-Man(1,4)GlcNAc	0.104	0.83	0.104
α-Man(1,2)α-Man(1,3)β-Man(1,4)GlcNAc	0.102	0.21	0.105
β-GlcNAc(1,2)α-Man(1,3)β-Man(1,4)GlcNAc	0.0003	0.157	0.31

4.1. The Mannose-Binding Specificity

The recognition and binding of simple sugars by lectins occurs through non covalent interactions occurring between some hydroxyls of the sugar ring and a few, essentially polar, amino acid residues forming a shallow depression at the lectin surface, the so-called monosaccharide-binding site. Usually, most of these interactions consist of hydrogen bonds (H-bond) often associated to a hydrophobic stacking of the pyranose ring of the sugar to the phenolic ring of an aromatic residue such as Phe (F), Tyr (Y), or Trp (W), located in the close vicinity of the monosaccharide-binding cavity. Acidic residues like Asp (D) and Glu (E), often participate in the interaction with simple sugars, thus attributing a more or less pronounced electronegative character to the monosaccharide-binding site. Both acidic
residues Asp and Glu, play a key role in the binding of simple sugars due to their capacity to create multiple H-bonds with the hydroxyls emerging from the sugar ring.

Detailed structural information is available for the binding of α-D-mannose (Man) to the monosaccharide-binding site of Man-specific legume lectins including Con A [202], LoLI isolectin from Lathyrus ochrus [206], favin from the broad bean Vicia faba [63], pea lectin PsA [209] and PAL from Pterocarpus angolensis [210]. A very similar binding scheme occurs for both the two-chain (LoLI, favin, PsA) and single-chain (Con A) lectins: a few amino acid residues located on three distinct loops exposed at the top of the dome-shaped lectin protomer, form a shallow depression which accommodates the Man ligand via a network of hydrogen bonds connected to the O3, O4, O5 and O6 atoms of the sugar. An acidic residue (Asp208 of Con A, Asp81 of LoLI and PsA), which also participates in the binding of a Ca$^{2+}$ ion located in the close vicinity of the binding site, plays a key role in ligand binding. An additional stacking interaction between the pyranose ring of Man and one (Phe123 of LoLI) or two (Tyr12 and Tyr100 of Con A) aromatic residues located in the vicinity of the monosaccharide-binding site, reinforces anchorage of the sugar to the binding site (Figure 7A–D). A few water molecules also participate in the binding of Man to the monosaccharide-binding site of the lectins. Very similar binding observations were reported for the binding of Man or α-methyl-D-mannoside (MeMan) to other Canavalia [20,21,25,27] and Dioclea lectins [34–44], Parkia biglobosa (PDB code 4MQ0) and Cymosema roseum (PDB code 4MYE) Man-specific lectins from the Brazilian flora.

The accommodation of Man by artocarpin, a Man-specific jacalin-related lectin, shows a very similar network of 9 H-bonds between four amino acid residues (Gly15, Asp138, Leu139, Asp141) located at the top of the β-prism protomer, and the O1, O3, O4, O5, and O6 atoms of the sugar (Figure 7E,F). No stacking interactions occur between the aromatic residues of the monosaccharide-binding site and the sugar. In addition, jacalin, another member of the jacalin-related lectins, offers an interesting example of sugar-binding promiscuity because this Gal-specific lectins also interacts, albeit with lower affinity, with other simple sugars like Man, Glc and GalNAc via a very similar H-bond network [77]. Another Man-specific lectin with a β-prism architecture, Heltuba of Helianthus tuberosus, also accommodates Man through a very similar network of H-bonds between four amino acid residues (Gly18, Asp136, Val137, Asp139), which form the monosaccharide-binding site also located at the top of the β-prism protomer, and the O3, O4, O5 and O6 atoms of the sugar (Figure 7G,H).

The recognition of Man by GNA, the Man-specific snowdrop (Galanthus nivalis) lectin, and other monocot Man-binding lectins harboring a similar β-prism architecture (a β-prism in which the strands composing the β-sheet are arranged perpendicularly to the axis of the prism), exhibits a different mode of binding due to the fact that three out of eight H-bonds connecting the Gln89, Asp91, Asn93 and Tyr97 residues from the 3rd mannose-binding site to the O2, O3, O4, and O6 atoms of Man, are connected to the axial O2 atom (Figure 5I,J). Residue Tyr97 also provides a stacking interaction with one face of the Man pyranose ring. An additional hydrophobic interaction with Val95, another residue of the consensus sequence stretch QXDXNXVXY of the monosaccharide-binding binding site, reinforces the anchorage of Man to the binding site.

Molecular modeling and in silico docking suggest that other nucleocytoplasmic EUL domain-containing lectins from rice (Oryza sativa) and Arabidopsis with a β-prism architecture, also interact with mannose via a very similar network of H-bonds and stacking interactions with aromatic amino acid residues located in the close vicinity of the monosaccharide-binding site (Figure 8) [170]. However, some promiscuity was shown to occur at the monosaccharide-binding site of the EUL-lectins, which in addition to high mannose N-glycans also recognize blood group B related structures and galactosylated epitopes [226].
Figure 7. (A,B). ConA from *Canavalia ensiformis* in complex with α-methylmannoside (PDB code 5CNA). (C,D). Isolectin LoLI from *Lathyrus ochrus* in complex with Man (PDB code 1LOB). (E,F). Artocarpin from *Artocarpus integrifolia* in complex with α-methylmannoside (PDB code 1J4U). (G,H). Heltuba from *Helianthus tuberosus* in complex with Manα1,3Man (PDB code 1C3M). (I,J). Third Man-binding site of GNA from *Galanthus nivalis* in complex with α-methylmannoside (PDB code 1MSA). Hydrogen bonds connecting the monosaccharides to the amino acid residues forming the monosaccharide-binding site are represented by black dashed lines. Aromatic residues participating in stacking interactions with the sugar rings are colored orange. The molecular surface of the lectins is colored dark grey and their extended oligosaccharide-binding areas are delineated by white dashed lines. The shallow depression corresponding to the monosaccharide-binding site that accommodates simple sugars is delineated by a green dashed line. The green and violet spheres correspond to the Ca$^{2+}$ and Mn$^{2+}$ ions, that have a stabilizing effect on the carbohydrate-binding site.
with oligomannosides were solved at atomic resolution [191–193], it became evident that the so-called Asn-bound GlcNAc of the glycan whereas Con A does not interfere at all with the Fuc residue. Similarly, (Figure 7H), illustrates how discrepancies observed in the topographical features (shape and size) of pea PsA and lentil LcA lectins, which differ from Con A by a higher affinity for fucosylated glycans lectins belonging to distinct scaffold architectures.

The accommodation of structurally closely-related oligomannosides by GNA (Figure 9F) and PAL from *Lathyrus ochrus* lectin. However, depending on the lectin, important discrepancies occur in the accommodation of different Man-specific glycans in complex with a mannopentaose (Figure 9E,F), and PAL from *Pterocarpus angolensis* in complex with a mannotetraose (Figure 9G,H), show that a complex network of H-bonds, stacking and hydrophobic interactions, links several sugar units of the glycan chain to the oligosaccharide-binding site of the lectin. However, depending on the lectin, important discrepancies occur in the accommodation of sugar units. In this respect, isolectins of *Lathyrus ochrus* and other two-chain Vicieae lectins such as pea PsA and lentil LcA lectins, which differ from Con A by a higher affinity for fucosylated glycans of the N-acetyltactosaminic type [10,225], strongly interact with the α1,6-Fuc residue linked to the Asn-bound GlcNAc of the glycan whereas Con A does not interfere at all with the Fuc residue. Similarly, the accommodation of structurally closely-related oligomannosides by GNA (Figure 9F) and PAL (Figure 7H), illustrates how discrepancies observed in the topographical features (shape and size) of the oligosaccharide-binding site can affect the binding of complex glycans to different Man-specific lectins belonging to distinct scaffold architectures.

4.2. The Oligosaccharide-Binding Specificity

Although the monosaccharide-binding capacity of Man-specific lectins has been widely investigated, it is obvious that simple sugar residues like Man probably cannot be considered as the natural ligands for plant and fungal lectins, due to the extreme scarcity of simple sugars as free ligands occurring in living organisms, compared to other complex carbohydrates. Along this line, the affinity of Man-specific lectins for complex high-mannose N-glycans is much higher than that measured for free Man [10,225]. In fact, once the first crystallographic structures of complexes of Man-specific lectins with oligomannosides were solved at atomic resolution [191–193], it became evident that the so-called monosaccharide-binding site can affect the binding of complex glycans to different Man-specific lectins. However, depending on the degree of freedom of the different sugar units (e.g., α1-2, α1-3, α1-4 or α1-6, occurring along the glycan chain, complex glycans can more or less fit the shape of the lectin oligosaccharide-binding site.

Structural analysis of different lectin-oligosaccharide complexes (Table 5), including Con A in complex with a pentasaccharide (Figure 9A,B), isolectin LoLII from *Lathyrus ochrus* in complex with a biantennary octasaccharide of the N-acetyllactosamine type from lactotransferrin (Figure 9C,D), GNA in complex with a mannopentaose (Figure 9E,F), and PAL from *Pterocarpus angolensis* in complex with a mannotetraose (Figure 9G,H), show that a complex network of H-bonds, stacking and hydrophobic interactions, links several sugar units of the glycan chain to the oligosaccharide-binding site of the lectin. However, depending on the lectin, important discrepancies occur in the accommodation of sugar units. In this respect, isolectins of *Lathyrus ochrus* and other two-chain Vicieae lectins such as pea PsA and lentil LcA lectins, which differ from Con A by a higher affinity for fucosylated glycans of the N-acetyltactosaminic type [10,225], strongly interact with the α1,6-Fuc residue linked to the Asn-bound GlcNAc of the glycan whereas Con A does not interfere at all with the Fuc residue. Similarly, the accommodation of structurally closely-related oligomannosides by GNA (Figure 9F) and PAL (Figure 7H), illustrates how discrepancies observed in the topographical features (shape and size) of the oligosaccharide-binding site can affect the binding of complex glycans to different Man-specific lectins belonging to distinct scaffold architectures.
Figure 9. (A,B). ConA from *Canavalia ensiformis* in complex with β-D-GlcNAc-(1,2)-α-D-Man-(1,6)-[β-D-GlcNAc-(1,2)-α-D-Man-(1,6]-α-D-Man (PDB code 1TEI) [196]. (C,D). Isolectin LoLII from *Lathyrus ochrus* in complex with a biantennary octasaccharide of the N-acetyllactosamine type from lactotransferrin (PDB code 1LOF). (E,F). GNA from *Galanthus nivalis* in complex with three mannosyl residues from a mannopentaose (PDB code 1JPC). (G,H). PAL from *Pterocarpus angolensis* in complex with a mannotetraose (PDB code 2PHF). Hydrogen bonds connecting the oligosaccharides to the amino acid residues forming the extended carbohydrate-binding site are represented by black dashed lines. Aromatic residues participating in stacking interactions with the sugar rings are colored orange. The electrostatic potentials were calculated and mapped on the molecular surface of the lectins, using YASARA. The extended oligosaccharide-binding areas are delineated by white dashed lines. The shallow depression corresponding to the monosaccharide-binding site that accommodates simple sugars, is delineated by a green dashed line.
Investigations on the oligosaccharide-binding specificity of Man-specific bacterial lectins, showed a highly similar binding scheme associated to the recognition of oligomannosides and complex high-mannose N-glycans. However, depending both on the extent of the glycan chain and the shape and size of the oligosaccharide-binding site in the lectin monomer, which possesses a β-prism-(griffithsin) or a β-barrel-architecture (actinohivin), rather distinct accommodation schemes were observed for these lectins (Figure 10) [227]. The oligosaccharide-binding sites of griffithsin and actinohivin readily differ by the shape, the size and the discrete distribution of charged residues that account for the differences observed in the accommodation of oligomannosides and high-mannose branched glycans by the lectins. Similar to plant lectins, the monosaccharide-binding pocket occupies a pivotal position at the centre of the binding site and fully participates in the binding of the complex glycans.

Obviously, the binding of complex glycan chains to lectins is a highly complex interaction process due to the extreme variability observed in the topographical features of the oligosaccharide-binding site of lectins, associated to the extreme diversity of the recognized glycan structures. Hopefully, the recent developments in glycan array technology [228], and the improvement of frontal affinity chromatography [229], offer new important tools for deciphering the biomolecular interactions between plant lectins and the large panel of complex glycans.

Table 5. Structure of the branched oligosaccharides complexed to Con A (PDB code 1TE1), LoLII (PDB code 1LOF), GNA (PDB code 1JPC) and PAL (PDB code 2PHF).

Oligosaccharides/Glycopeptide	Complexed to:
βGlcNAc-(1,2)-αMan-(1,3)	Con A
βGlcNAc-(1,2)-αMan-(1,6)	
βGal-(1,4)-βGlcNAc-(1,2)-αMan-(1,3)	LoLII
βGal-(1,4)-βGlcNAc-(1,2)-αMan-(1,6)	
αMan-(1,6)	GNA
αMan-(1,3)	
αMan-(1,6)βMan	
αMan-(1,3)	
αMan-(1,6)	PAL
αMan-(1,3)	
αMan-(1,6)βMan	
Figure 10. Structural diversity of the mannose-binding lectins. (A–C). Ribbon diagrams (A lateral view, B upper view) and surface electrostatic potentials (C) of griffthsin in complex with a high-mannose branched glycan (colored cyan) (PDB code 3LL2), showing the β-prism organization of the lectin. Note the electronegatively charged character (colored red) of the Man-binding pockets at the upper face of the β-prism. (D–F). Ribbon diagrams (D lateral view, E upper view) and surface electrostatic potentials (F) of actinohivin in complex with a high-mannose branched glycan (colored cyan) (PDB code 3S5X), showing the β-trefoil (β-prism II) organization of the lectin. Note the electronegatively (colored red) and electropositively (colored blue) charged character of the Man-binding pockets at the edges of the β-trefoil. (G–I). Ribbon diagrams (G lateral view, H upper view) and surface electrostatic potentials (I) of actinohivin in complex with α-1,2-mannotriose (colored cyan) (PDB code 4P6A), showing the organization of the lectin. Note the electronegatively charged character (colored red) of the Man-binding pockets.
5. Functions of Mannose-Specific Lectins

The Man-specific lectins present in seeds or storage organs (bulbs, rhizomes) of plants, are abundant proteins with a dual role as storage proteins and defense proteins [230,231]. In contrast, Man-specific lectins occurring in the nucleus or in the cytoplasmic compartment are usually synthesized at low levels. Since lectin concentrations are higher after exposure of the plant to e.g., salt or drought stress, or pathogen infections these stress inducible lectins are involved in plant immunity and can help the plant to cope with environmental stresses [1,231].

5.1. Insecticidal Activity

A large group of GNA-related lectins have been investigated with respect to their insecticidal properties. The interest in the monocot Man-specific lectins was triggered because these lectins showed toxicity towards aphid pests responsible for serious crop damage (Table 6). The expression of GNA and other monocot lectins in various transgenic plants conferred enhanced resistance to sap-sucking aphid predators. In addition, these lectins often caused a higher larval mortality and retardation in larval development. Similarly legume lectins such as Con A were investigated for their deleterious effects on aphid growth and development. At present, the mechanism of entomotoxicity still remain poorly understood and most probably depends on diverse, complementary mechanisms [232].

The detrimental effects of Man-specific lectins on aphids relies on their ability to recognize and bind high-mannose glycan receptors present in the peritrophic membrane and the underlying midgut epithelium. Receptors proteins for the monocot Man-specific lectins (ACA of Allium cepa, Diefenbachia sequina lectin, CEA of Colocasia esculenta, AMA of Arum maculatum) have been identified in brush border membrane vesicles of the midgut [233], and two major receptors for AMA of 40 kDa and 35 kDa, respectively, were detected in the brush border membrane vesicles of the aphids Lipaphis erysimi and Aphis craccivora [234]. A major binding protein for Con A was identified as a membrane-bound aminopeptidase of 130 kDa, in the pea aphid Acyrthosiphon pisum [235]. Two other abundant membrane-associated proteins, an alanyl aminopeptidase N and a sucrase, have also been postulated as possible receptors in Acyrthosiphon pisum, for both garlic lectins ASAI and ASAII [236]. Interestingly, a putative glycosylated receptor of 37 kDa identified in the mushroom Rhizoctonia solani cross-reacted with the homodimeric Allium sativum leaf lectin and the interaction, which depends on the oligomeric assembly of the lectin, was specifically inhibited by addition of mannose [237]. Binding partners of CEA, the Colocasia esculenta Man-specific lectin, were identified as ATPase and ATP synthase in Bemisia tabaci, and ATP synthase, HSP70 and clathrin heavy chain in Lipaphis erysimi [238].

The dietary ingestion of Con A resulted in a marked decrease of the α-glucosidase and alkaline phosphatase activity in the bird cherry-oat aphid Rhopalosiphum padi [232]. Taken together, these results argue for multiple so-called lectin “receptors” occurring in aphid pests.

Table 6. List of Man-specific lectins investigated for their toxicity towards aphids (aphid predator species are indicated with an asterisk *).

Lectin class	Lectin	Aphid	Ref.
Monocot lectins	GNA (Galanthus nivalis)	Aulacorthum solani	[239]
Monocot lectins	M. persicae	Myzus persicae	[240,241]
Monocot lectins	Caratovacuna lanigera	Myzus persicae	[242]
Monocot lectins	Rhopalosiphum maidis	Myzus persicae	[243]
Monocot lectins	Chrysoperla carnea* Adalia punctata*, Coccinella septempunctata*	Sitobium avenae, Schizaphis graminum, Rhopalosiphum padi	[244]
Monocot lectins	PTA (Pinellia ternata)	M. persicae	[245,246]
Monocot lectins	PPA (Pinellia pedatisecta)	Sitobium avenae	[247]
Monocot lectins	AAA (Allium altaicum)	Aphis gossypii	[248]
Monocot lectins	ACA (Allium cepa)	M. persicae	[249]
Table 6. Cont.

Lectin class	Lectin	Aphid	Ref.
ASA (Allium sativum)		Myzus persicae	[251]
		Aphis craccivora	[252]
		Myzus nicotianae	[253]
		Acyrthosiphon pisum	[256]
AHA (Arisaema heterophyllum)		Myzus persicae	[254]
MDA (Monstera deliciosa)		Myzus persicae	[255]
Orysata (Oryza sativa)		Acyrthosiphon pisum, Myzus persicae	[256]
Dieffenbachia sequina		Aphis craccivora, Lipaphis erysimi	[233]
CEA (Colocasia esculenta)		Lipaphis erysimi, Aphis craccivora	[233]
AMA (Arum maculatum)		Aphis craccivora, Lipaphis erysimi	[234]
ZGA (Zephyranthes grandiflora)		Myzus nicotianae	[257]
Legume lectins	Con A (Canavalia ensiformis)	Acyrthosiphon pisum	[235]
		Rhopalosiphum padi	[232]
β-prism lectins	HTA (Helianthus tuberosus)	Myzus persicae	[258]
Fungal lectins	PeCl (Penicillium chrysogenum)	Myzus persicae	[149]

Beyond the alterations resulting from the binding of Con A to the midgut epithelial cells in the pea aphid *Acyrthosiphon pisum*, e.g., the cellular swelling of epithelial cells associated with hypersecretion [259], other systemic effects of Con A like DNA damage accompanied with an increase in caspase 3 activity in the gut tissues, were observed in the aphid *Rhopalosiphum padi* fed with a Con A-containing diet [232]. A similar entomotoxic effect accompanied by DNA fragmentation and caspase-3-dependent apoptosis, was observed in *Acyrthosiphon pisum* fed with a diet containing the lectin SNA-I from *Sambucus nigra*, a chimerolectin corresponding to a type II RIP with a carbohydrate-binding B chain displaying sialic acid-binding specificity [260]. Finally, in addition to the direct effect of aphidicidal lectins on death of gut epithelial cells, an effect on the feeding behavior has been invoked to account for the entomotoxicity of plant lectins towards aphid pests [232].

5.2. Resistance to Abiotic (and Biotic) Stresses

Although most lectins studied at present are constitutively expressed in plant tissues, some lectins are considered as stress inducible proteins. The discovery of Nictaba, a tobacco (*Nicotiana tabacum*) lectin which is synthesized in response to a jasmonic acid (JA) treatment, and insect herbivory, and accumulates in the cytosol and the nucleus of leaf cells [5], shed a new light on plant lectins and allowed the development of very new concepts on the role(s) of plant lectins [4,231,261,262].

Besides Nictaba, which appears as the prototype of a group of closely related lectins [263,264], other groups of stress inducible lectins in the nucleocytoplasmic compartment have been identified, such as the *Euonymus europaeus* EUL-related lectins [170,265] and the group of mannose-binding jacalin-related lectins [221,266]. Among the stress inducible cytoplasmic/nuclear lectins identified so far, Nictaba belonging to the Nictaba-related lectins [267], Orysata belonging to the jacalin-related lectins [268], and OrysaEULD1A belonging to the EUL-related lectins [269], all readily interact with high-mannose glycan structures (Table 7). Accordingly, they participate as signaling molecules in the plant response to stress conditions [270]. In this respect, a member of the EUL-related lectin family, AthEULS3 is involved in abscissic acid (ABA)-induced stomatal closure [271]. Overexpression of the Nictaba-like lectin genes GmLLL1 and GmNLL2 from soybean in *Arabidopsis thaliana*, was reported to confer tolerance to *Pseudomonas syringae* infection, aphid (*Aphis glycines*) infestation and salt stress [272]. Similarly, the involvement of Nictaba homologs from *Arabidopsis thaliana* in the plant stress response was recently demonstrated [273].
Table 7. List of the stress inducible, nucleocytoplasmic lectin families identified in plants.

Lectin Families	Carbohydrate-Binding Specificity
Jacalin-related lectin family	High-mannose N-glycans
EUL-related lectin family	Galactosides, high-mannose N-glycans
Nictaba-related lectin family	Chitooligosaccharides, recognition of the (GlcNAc)\(_2\)-Man\(_3\) core of high-mannose N-glycans and complex glycans

Recent studies for lectin sequences in several complete plant genomes reported the occurrence of chimeric proteins composed of a lectin domain with known Man-binding specificity, such as e.g., the GNA-like domain or legume lectin domain, linked to an intracellular kinase domain through a transmembrane linker domain. These lectin-receptor-like kinases (LecRLK), play a role in the signaling cascades triggered in response to biotic and abiotic stress [270].

6. Medical Applications for the Mannose-Specific Lectins

So far, medical applications of Man-specific lectins, have been developed in two domains: (1) as inhibitors of the entry of HIV-1 into CD4+ T-lymphocytes and, (2) as anticancer drugs for the chemotherapeutic treatment of cancers.

6.1. Mannose-Specific Lectins as Immunomodulators

Soon after the identification of high-mannose N-glycans decorating the gp120 protein of HIV-1 (Figures 11 and 12) [274], many studies focused on the use of mannose-specific lectins from bacteria, mushrooms and plants as tools to decipher the importance of the high-mannose moiety of gp120 for the recognition by the CD4+ T-lymphocytes as well as for preventing the virion infectivity of HIV toward the host cells in vitro [275–280]. Two classes of mannose-specific lectins from the Vicieae tribe and the GNA-related lectins, were particularly investigated with respect to their blocking capacity (Table 8).

Mannose-binding lectins of bacterial origin were identified as potent HIV-1-inactivating proteins through their specific binding to the envelope glycoprotein gp120. Studies have been performed for actinohivin [180], cyanovirin-N [281,282], MVL from Microcystis viridis [283], OAA from Oscillatoria agardhii [284] and the lectin from Scytonema varium [285].

Figure 11. Three-dimensional structure of the highly-mannosylated gp120 molecule associated to the O-glycosylated gp41 molecule (PDB code 5FYK). Surface-exposed Man residues of high-mannose N-glycoproteins decorating gp120 are colored green. O-glycans of gp41 are colored blue.
Table 8. List of the mannose-specific lectins inhibiting HIV infection by binding to the viral gp120 envelope protein.

Lectin Class	Lectin	Ref.
Vicieae lectins	Con A (Canavalia ensiformis)	[276,286–294]
	LcA (Lens culinaris)	[280]
	LoLI (Lathyrus ochrus)	[280]
	PsA (Pisum sativum)	[280,295]
Monocot lectins	CHA (Cymbidium hybrid)	[280,296]
	EHA (Epipactis helleborine)	[280,296]
	GNA (Galanthus nivalis)	[280,297–302]
	HHA (Hippeastrum hybrid)	[280,297,302]
	LOA (Listera ovata)	[280,297]
	NPA (Narcissus pseudonarcissus)	[280,297,303]
	NTA (Narcissus tazetta)	[304]
	Narcissus confusus, N. leonensis and N. tortifolius	[124]
	PCL (Polygonatum cytonema)	[96,305]
Convolvulaceae	Calsepa (Calystegia sepium)	[280]
Urticaceae	UDA (Urtica dioica)	[296]
Araceae	RVL (Remusatia vivipara)	[91]
Musaceae	BanLec (Musa acuminata)	[306]
Poaceae	GNAmaze (Zea mays)	[307]
Asteraceae	Heltuba (Helianthus tuberosus)	[280]
Red algae	Griffithsin (Griffithia sp.)	[139,308]
Green algae	KAA (Kappaphycus alvarezii)	[309]
	BCA (Boodlea coacta)	[143]

Figure 12. Three-dimensional structure of the gp120-gp41 tandem complexed to a CD4 molecule (PDB code 47VP). Gp120, gp41 and CD4 are colored pink, purple, and orange/yellow, respectively. The high-mannose N-glycan chains decorating gp120 are represented in cyan colored sticks. The carbohydrate binding agents (red arrow) specifically recognize some of the high-mannose N-glycans exposed at the surface of gp120, thus preventing the recognition of gp120 by the CD4 molecule of the CD4+ T lymphocytes. In fact, the association of three gp120-gp41 tandems forms the HIV-1-envelope spike, which facilitates the HIV-1 entry. The Env spike consists of a transmembrane trimer of gp41 associated to an extracellular trimer of gp120 offering exposed high-mannose glycans to the CD4 recognition process.
Investigating the surface carbohydrates of gp120 showed that resistance of cyanovirin N- and Con A-resistant HIV-1 strains highly depends on mutations that have eliminated N-linked glycans on gp120 [310]. In general, the number of N-glycan deletions in gp120 correlated with the level of phenotypic resistance to cyanovirin of the mutated VIH-1A strains [311]. A similar observation was previously reported in a series of mutant HIV-1 isolates resistant to GNA (Galanthus nivalis) and HHA (Hippeastrum sp. hybrid) lectins, showing that the major amino acid mutations occur at several putative N-glycosylation sites NXT and NXS, and especially, at the ultimate T or S residues [312]. Removal of two high-mannose N-glycans in gp120 resulted in an enhanced resistance of HIV-1 to griffithsin [308]. In fact, the association of three gp120-gp41 forming the HIV1-envelope spike, will be necessary for the recognition by CD4+ T-lymphocytes [313].

Long term exposure of HIV to cyanovirin or monocot mannose-binding lectins like GNA, HHA and NPA, was shown to progressively result in the deletions of some N-glycan chains decorating the envelope gp120, in an attempt of the retrovirus to diminish the drug pressure and acquire resistance against the carbohydrate-binding agents [314–316]. In addition, the associated treatment of mutant virus strains by 1-deoxymannojirimycin, a potent inhibitor of the α(1,2)-mannosidase, strongly enhanced the suppressive effect of carbohydrate-binding agents on VIH-1 replication [317]. A similar synergistic effect was also observed when combining two carbohydrate-binding agents that recognize distinct N-glycan structures decorating the gp120 [318].

Additionally, a 13 kDa monomeric mannose-binding lectin from edible chive (Allium tuberosum), exhibited pronounced inhibitory activity against the HIV-1 reverse transcriptase, a key enzyme in the replication of the HIV-1 genome [319]. However, other lectins with different carbohydrate-binding specificities like PHA from Phaseolus vulgaris, RCA from Ricinus communis and ABA from the mushroom Agaricus bisporus, also exhibited a similar inhibitory activity against the HIV-1 reverse transcriptase [320].

Moreover, the bacterial carbohydrate-binding agents cyanovirin-N, griffithsin and scytovirin, also inhibit the syncytium formation in different HIV-1 infected and uninfected cell lines by preventing the DC-SIGN receptor-directed HIV-1 capture by monocyte-derived dendritic cells (DCs), and subsequent transmission to CD4+ T-lymphocytes [321–324].

Other lectins with very different carbohydrate-binding specificities like the Gal/GalNAc-specific jacalin from Artocarpus integrifolia and the GlcNAc-specific Nictaba from Nicotiana tabacum, are also potent inhibitors for the HIV-1 infection of CD4+ T lymphocytes [325,326]. In fact, both lectins exhibit some mannose-binding promiscuity as shown from X-ray crystallographic experiments for jacalin [77,78], and glycan array experiments for Nictaba [267], respectively.

6.2. Mannose-Specific Lectins as Cancer Biomarkers and Anti-Cancer Drugs

The ability of mannose-specific lectins to distinguish between normal and diseased cancer cells through the selective recognition of the altered hypermannosylation N-glycans associated to various tumor cell transformations, has led to the application of mannose-binding lectins as potential biomarkers for the detection and the follow up of different tumor cells. In this respect, a variety of legume Man-specific legume lectins and GNA-like lectins were deeply investigated (Table 9).

The recognition of altered N-glycans covering the cancer cells by lectins resulted in programmed cell death through targeting of different apoptotic and autophagic pathways. However, the effects of plant lectins on programmed cell death of cancer cells is not limited to Man-specific lectins since, other plant lectins with distinct carbohydrate-binding specificities, e.g., T/Tn-specific lectins, also interfere with other altered O-glycans covering tumor cells to exert their cytotoxic effects [327].

Plant and fungal lectins affect both apoptosis and autophagy in cancer cells by modulating diverse signaling pathways associated to various pro-apoptotic gene families including, but not exclusively, the Bcl-2 family, caspase family, ROS-p38-p53, P73-Foxo1a-Bim apoptosis, PI3K/Akt, ERK, BNIP3-mediated mitochondrial autophagy, Ras-Raf family and ATG family [328–330] (Table 9).
However, depending on both the lectins and the type of targeted cancer cells, some discrepancies occur with respect to the apoptotic and autophagic pathways leading to the programmed cell death.

Table 9. Cytotoxic effects of Man-specific lectins on cancer cells (reported during the last decade).
Lectin

Cabo (**Canavalia bonariensis**)
PsA (**Pisum sativum**)
MOSL (**Moringa oleifera**)
DLasiL (**Dioclea lasiocarpa**)
POL (**Polygonatum odoratum**)
Hyacinthus sp.
RVL (**Remusatia vivipara**)
ArtinM (**Artocarpus heterophyllus**)
PCL (**Polygonatum cyrtomena**)
AHA (**Arisema heterophyllum**)
LeA (**Lens culinaris**)
ASA (**Allium sativum**)
Con A (**Canavalia ensiformis**)
SFL (**Sophora flavescens**)
CML (**Clematis montana**)
ConBr (**Canavalia brasiliensis**)
PTA (**Pinellia ternata**)
Table 9. Cont.

Lectin	Cancer Cell	Apoptosis	Autophagy	Ref.
ESA (*Eucheuma serra*)	osteosarcoma +			[357]
	mice colon adenocarcinoma +			[358]
	colon cancer, HeLa +			[138]
OJL (*Ophiopogon japonicus*)	murine fibrosarcoma +			[96]
LNL (*Liparis noversa*)	murine fibrosarcoma +			[96]

Following to these cytotoxic effects on cancer cells, some therapeutic applications have been considered, essentially for the Man-specific legume lectins (Con A) and the GNA-related lectins (*Polygonatum cyrtonema*) [359–361]. To date, however, the use of plant lectins as targeting tools for therapeutic applications has rarely been used [362].

7. Biomedical Perspectives for Mannose-Specific Lectins

Obviously, Man-specific lectins from plants, algae and fungi are interesting probes to target the altered hypermannosylated N-glycan expressed at the surface of malignant cells. Our knowledge on the fine carbohydrate-binding specificity of plant and fungal lectins revealed the extreme versatility of the Man-specific lectins to specifically recognize discrete/subtle differences in the expression of altered glycans by tumor cells. Depending on the discrepancies observed in both the shape and size of their extended carbohydrate-binding site, the affinity towards high-mannose N-glycans and their chemical substitutions such as sialylation or sulfation varies widely from one lectin to another. The ability of Man-specific lectins to accommodate large mannosylated chains to the extended carbohydrate-binding site via a complex network of hydrogen bonds and hydrophobic interactions, readily accounts for such versatility. Compared to monoclonal antibodies used as standard probes for the detection of the glycan aberrations occurring at the cancer cell surface, plant and fungal Man-specific lectins are a complementary and equally powerful tool for the recognition of high-mannose N-glycans [362]. Besides the high-mannose N-glycan recognition, Man-specific lectins can exert cytotoxic effects on the targeted cancer cells. They induce apoptotic and autophagic death through modulation of different signaling pathways in cancer cells. These encouraging results suggest the potential use of carefully selected Man-specific lectins for the treatment of cancers [361–363].

Besides their cytotoxic effects detrimental for cancer cells, Man-specific lectins have been proven to act as valuable anti-HIV drugs in vitro and in vivo. The Man-specific lectins from plants, fungal and bacterial origin constitute an important class of HIV entry inhibitors by virtue of their capacity to specifically recognize and bind the oligomannoside chains decorating the envelope gp120 of HIV [363]. Moreover, a long-term exposure of HIV to plant and fungal lectins results in deletions in some of the N-glycan chains of gp120, as an attempt of the virus to escape drug pressure, that improves the antiviral activity of these carbohydrate-binding agents [318]. However, the therapeutic use of Man-specific lectins still suffers from several limitations dealing with their high manufacturing costs, formulation and potential mitogenicity, as stated in [364]. In spite of these limitations, encouraging results have been reported using lectins via topical mucosa administration [324].

Author Contributions: A.B. and Y.B. provided the bibliographic informations and analyses. P.R. provided the molecular docking pictures. E.J.M.V.D. and P.R. participated in the writing of the review. All authors approved the final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
Abbreviations

ABA Agaricus bisporus agglutinin
ACA Allium cepa agglutinin
AMA Arum maculatum agglutinin
ASA Allium sativum agglutinin
Asp, D Aspartic acid
Ath Arabidopsis thaliana
ATP Adenosine triphosphate
BMA Bowringia mildbraedii agglutinin
CBA Carbohydrate-binding agent
CBM Carbohydrate-binding module
CBS Carbohydrate-binding site
CEA Colocasia esculenta agglutinin
Con A Concanavalin A
CTL Centrolobium tomentosum lectin
CVN Cyanovirin N
EUL Euonymus europaeus lectin
Glu, E Glutamic acid
Gly, G Glycine
GNA Galanthus nivalis agglutinin
Heltuba Helianthus tuberosus agglutinin
HHA Hippeastrum hybrid agglutinin
HIV Human Immunodeficiency virus
HSP Heat shock protein
Leu, L Leucine
LcA Lens culinaris agglutinin
LoL Lathyrus ochrus lectin
MPA Maclura pomifera agglutinin
MVL Microcystis viridis lectin
OAA Oscillatoria agardhii agglutinin
PAL Pterocarpus angolensis lectin
PDB Protein data bank
PHA Phytohemagglutinin
Phe, F Phenylalanine
PNA Peanut agglutinin
PsA Pisum sativum agglutinin
ROS Reactive oxygen species
RIP Ribosome inactivating protein
SBA Soybean agglutinin
SNA Sambucus nigra agglutinin
Trp, W Tryptophane
Tyr, Y Tyrosine
Val, V Valine
VfA Vicia faba agglutinin

References

1. Van Damme, E.J.M.; Rougé, P.; Peumans, W.J. Plant lectins. In Carbohydrate-Protein Interactions: Plant Lectins; Kamerling, J.P., Boons, G.J., Lee, Y.C., Suzuki, A., Taniguchi, N., Voragen, A.G.I., Eds.; Elsevier: New York, NY, USA, 2007; pp. 564–599.

2. Wu, A.M.; Song, S.C.; Tsai, M.S.; Herp, A. A guide to the carbohydrate specificities of applied lectins-2. Adv. Exp. Med. Biol. 2001, 491, 551–585.
3. De Schutter, K.; Van Damme, E.J.M. Protein-carbohydrate interactions as part of plant defense and animal immunity. *Molecules* **2015**, *20*, 9029–9053. [CrossRef] [PubMed]

4. Van Damme, E.J.M.; Lannoo, N.; Fouquart, E.; Peumans, W.J. The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. *Glycoconj. J.* **2004**, *20*, 449–460. [CrossRef] [PubMed]

5. Chen, Y.; Peumans, W.J.; Hause, B.; Bras, J.; Kumar, M.; Proost, P.; Barre, A.; Rougé, P.; Van Damme, E.J.M. Jasmonic acid methyl ester induces the synthesis of a cytoplasmic/nuclear chito-oligosaccharide binding lectin in tobacco leaves. *FASEB J.* **2002**, *16*, 905–907. [CrossRef] [PubMed]

6. Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rougé, P. Plant lectins: A composite of several distinct families of structurally and evolutionarily related proteins with diverse biological roles. *Crit. Rev. Plant Sci.* **1998**, *17*, 575–692. [CrossRef]

7. Agrawal, B.B.; Goldstein, I.J. Specific binding of concanavalin A to cross-linked dextran gels. *Biochem. J.* **1965**, *96*, 23C–25C. [CrossRef]

8. Singh, R.S.; Bhari, R.; Kaur, H.P. Mushroom lectins: Current status and future perspectives. *Crit. Rev. Biotechnol.* **2010**, *30*, 99–126. [CrossRef]

9. Okuyama, S.; Nakamura-Tsuruta, S.; Tateno, H.; Hirabayashi, J.; Matsubara, K.; Hori, K. Strict binding specificity of small-sized lectins from the red alga *Hypnea japonica* for core (α1-6) fucosylated N-glycans. *Biosci. Biotechnol. Biochem.* **2009**, *73*, 912–920. [CrossRef]

10. Debray, H.; Rougé, P. The fine sugar specificity of the *Lathyrus ochrus* seed lectin and isolectins. *FEBS Lett.* **1984**, *176*, 120–124. [CrossRef]

11. Tateno, H.; Nakamura-Tsuruta, S.; Hirabayashi, J. Comparative analysis of core-fucose-binding lectins from *Lens culinaris* and *Pisum sativum* using frontal affinity chromatography. *Glycobiology* **2009**, *19*, 527–536. [CrossRef]

12. Tateno, H.; Winter, H.C.; Petryniak, J.; Goldstein, I.J. Purification, characterization, molecular cloning, and expression of novel members of jacalin-related lectins from rhizomes of the true fern *Phlebodium aureum* (L.) J. Smith (Polypodiaceae). *J. Biol. Chem.* **2003**, *278*, 10891–10899. [CrossRef] [PubMed]

13. Datta, P.K.; Figueroa, M.O.R.; Lajolo, F.M. Purification and characterization of two major lectins from *Araucaria brasiiliensis* syn *Araucaria angustifolia* seeds (pinhão). *Plant Physiol.* **1991**, *97*, 856–862. [CrossRef]

14. Miyakawa, T.; Hatano, K.; Miyauchi, Y.; Suwa, Y.; Sawano, Y.; Tanokura, M. A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity. *Plant Biotechnol.* **2014**, *166*, 766–778. [CrossRef] [PubMed]

15. Yagi, F.; Iwaya, T.; Haraguchi, T.; Goldstein, I.J. The lectin from leaves of Japanese cycad, *Cycas revoluta* Thunb. (Gymnosperm) is a member of the jacalin-related family. *Eur. J. Biochem.* **2002**, *269*, 4335–4341. [CrossRef] [PubMed]

16. Shimokawa, M.; Haraguchi, T.; Minami, Y.; Yagi, F.; Hiemori, K.; Tateno, H.; Hirabayashi, J. Two carbohydrate-recognizing domains from *Cycas revoluta* leaf lectin show the distinct sugar-binding specificity—A unique mannooligosaccharide recognition by N-terminal domain. *J. Biochem.* **2016**, *160*, 27–35. [CrossRef]

17. Animashaun, T.; Hughes, R.C. *Bouringia milbraedii* agglutinin. Specificity of binding to early processing intermediates of asparagine-linked oligosaccharide and use as a marker of endoplasmic reticulum glycoproteins. *J. Biol. Chem.* **1989**, *264*, 4657–4663. [PubMed]

18. Siddiqui, S.; Hasan, S.; Salahuddin, A. Isolation and characterization of *Cajanus cajan* lectin. *Arch. Biochem. Biophys.* **1995**, *319*, 426–431. [CrossRef]

19. Souza Teixeira, C.; da Silva, H.C.; de Moura, T.R.; Pereira-Júnior, F.N.; do Nascimento, K.S.; Nagano, C.S.; Sampaio, A.H.; Delatorre, P.; Rocha, B.A.; Cavada, B.S. Crystal structure of the lectin of *Camptosema pedicellatum*: Implication of a conservative substitution at the hydrophobic subsite. *J. Biochem.* **2012**, *152*, 87–98. [CrossRef]

20. Bezerra, G.A.; Viertlmyar, R.; Moura, T.R.; Delatorre, P.; Rocha, B.A.; do Nascimento, K.S.; Figueiredo, J.G.; Bezerra, I.G.; Teixeira, C.S.; Simões, R.C.; et al. Structural studies of an anti-inflammatory lectin from *Canavalia boliviensis* seeds in complex with dimannosides. *PLoS ONE* **2014**, *9*, e97015. [CrossRef]

21. Cavada, B.S.; Silva, M.T.L.; Osterne, V.J.S.; Pinto-Junior, V.R.; Nascimento, A.P.M.; Wolin, I.A.V.; Heinrich, I.A.; Nobre, C.A.S.; Moreira, C.G.; Lossio, C.F.; et al. *Canavalia bonariensis* lectin: Molecular bases of glycoconjugates interaction and antiangioma potential. *Int. J. Biol. Macromol.* **2018**, *106*, 369–378. [CrossRef]
22. Sanz-Aparicio, J.; Hermoso, J.; Grangeiro, T.B.; Calvete, J.J.; Cavada, B.S. The crystal structure of Canavalia brasilensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Lett. 1997, 405, 114–118. [CrossRef]

23. Agrawal, B.B.; Goldstein, I.J. Physical and chemical characterization of concanavalin A, the hemagglutinin from jack bean (Canavalia ensiformis). Biochim. Biophys. Acta 1967, 133, 376–379. [CrossRef]

24. Kojima, K.; Ogawa, H.; Seno, N.; Matsumoto, I. Purification and characterization of Canavalia gladiata agglutinin. Carbohydr. Res. 1991, 213, 275–282. [CrossRef]

25. Barroso-Neto, I.L.; Simões, R.C.; Rocha, B.A.; Bezzera, M.J.; Pereira-Junior, F.N.; Silva Osterne, V.J.; Nascimento, K.S.; Nagano, C.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S.; Wolin, I.A.V.; Barreto, A.A.G.C.; Silva-Filho, J.C.; Santiago, M.Q.; Pinto-Junior, V.R.; Almeida, A.C.; Barreto, A.A.G.C.; et al. Structural characterization of a lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities. Int. J. Biol. Macromol. 2017, 94, 271–282. [CrossRef]

26. Varga, P.G.; Neto, C.C.; Correia, J.L.A.; et al. Crystal structure of DlyL, a mannose-specific lectin from Centrolobium tomentosum. Biochemistry 2001, 50, 600–607. [CrossRef] [PubMed]

27. Osterne, V.J.; Silva-Filho, J.C.; Santiago, M.Q.; Pinto-Junior, V.R.; Almeida, A.C.; Barreto, A.A.G.C.; Wolin, I.A.V.; Nascimento, A.P.M.; Amorim, R.M.F.; Rocha, B.A.M.; et al. Structural characterization of a lectin from Canavalia virosa seeds with inflammatory and cytotoxic activities. Int. J. Biol. Macromol. 2015, 81, 600–607. [CrossRef]

28. Vasconcelos, M.A.; Alves, A.C.; Carneiro, R.F.; Dias, A.H.; Martins, F.W.; Cajazeiras, J.B.; Nagano, C.S.; Teixeira, E.H.; Nascimento, K.S.; Cavada, B.S. Purification and primary structure of a novel mannos-specific lectin from Centrolobium microchaete Mart seeds. Int. J. Biol. Macromol. 2015, 81, 600–607. [CrossRef]

29. Almeida, A.C.; Osterne, V.J.; Santiago, M.Q.; Pinto-Junior, V.R.; Silva-Filho, J.C.; Lossio, C.F.; Nascimento, F.L.; Almeida, R.P.; Teixeira, C.S.; Leal, R.B.; et al. Structural analysis of Centrolobium tomentosum seed lectin with inflammatory activity. Arch. Biochem. Biophys. 2016, 596, 73–83. [CrossRef]

30. Van Damme, E.; M. A.; Barre, A.; Bemer, M.; Vroués, P.; Van Leuven, F.; Peumans, W.J.; Peumans, W.J. A lectin and a lectin-related protein are the two most prominent proteins in the bark of yellow wood (Cladrastis lutea). Plant Mol. Biol. 1995, 29, 579–598. [CrossRef]

31. Del Sol, F.G.; Cavada, B.S.; Calvete, J.J. Crystal structures of floribunda seed lectin at acidic and basic pHs. Insights into the structural basis of the pH-dependent dimer-tetramer transition. J. Struct. Biol. 2007, 158, 1–9. [CrossRef]

32. Varejão, N.; Correia, M.T.; Foguel, D. Characterization of the unfolding process of the tetrameric and dimeric forms of Cratylium mollis seed lectin (CRAMOLL1): Effects of natural fragmentation on protein stability. Biochemistry 2011, 50, 7330–7340. [CrossRef] [PubMed]

33. Rocha, B.A.; Delatorre, P.; Oliveira, T.M.; Benevides, R.G.; Pires, A.F.; Sousa, A.A.; Souza, L.A.; Asseure, A.M.; Debray, H.; de Azevedo, X.W.F.; et al. Structural basis for noth pro- and anti-inflammatory response induced by mannos-specific legume lectin from Cymbospera roseum. Biochimie 2011, 93, 806–816. [CrossRef] [PubMed]

34. Moreira, R.A.; Barros, A.C.; Stewart, J.C.; Puszta, A. Isolation and characterization of a lectin from the seeds of Dioclea grandiflora (Mart.). Planta 1983, 158, 63–69. [CrossRef]

35. Rozwarski, D.A.; Swami, B.M.; Brewer, C.F.; Sacchetini, J.C. Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. J. Biol. Chem. 1998, 273, 32818–32825. [CrossRef] [PubMed]

36. Wah, D.A.; Romero, A.; Calvete, J.J. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. J. Mol. Biol. 2001, 310, 885–894. [CrossRef] [PubMed]

37. Nascimento, K.S.; Santiago, M.Q.; Pinto-Junior, V.R.; Osterne, V.J.S.; Martin, D.W.V.; Nascimento, A.P.M.; Wolin, I.A.V.; Heinrich, I.A.; Martin, D.G.Q.; Silva, M.T.L.; et al. Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 2017, 92, 79–89. [CrossRef] [PubMed]

38. Leal, R.B.; Pinto-Junior, V.R.; Osterne, V.J.S.; Wolin, I.A.V.; Nascimento, A.P.M.; Neco, A.H.B.; Arrripe, D.A.; Welter, P.G.; Neto, C.C.; Correia, J.L.A.; et al. Crystal structure of DylL, a mannos-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol. 2018, 114, 64–76. [CrossRef] [PubMed]
39. Pinto-Junior, V.R.; Osterne, V.J.; Santiago, M.Q.; Correia, J.L.; Pereira-Junior, F.N.; Leal, R.B.; Pereira, M.G.; Chicas, L.S.; Nagano, C.S.; Rocha, B.A.; et al. Structural studies of a vasorelaxant lectin from Dioclea reflexa Hook seeds: Crystal structure, molecular docking and dynamics. *Int. J. Biol. Macromol.* 2017, 98, 12–23. [CrossRef] [PubMed]

40. De Oliveira, T.M.; Delatorre, P.; da Rocha, B.A.; de Souza, E.P.; Nascimento, K.S.; Bezerra, G.A.; Moura, T.R.; Benevides, R.G.; Bezerra, E.H.; Moreno, F.B.; et al. Crystal structure of *Dioclea rostrata* lectin: Insights into understanding the pH-dependent dimer-tetramer equilibrium and the structural basis for carbohydrate recognition in Diocleinae lectins. *J. Struct. Biol.* 2008, 164, 177–182. [CrossRef]

41. Barroso-Neto, I.L.; Delatorre, P.; Teixeira, C.S.; Correia, J.L.; Cajaizeiras, J.B.; Pereira, R.I.; Nascimento, K.S.; Laranjeira, E.P.; Pires, A.F.; Assreuy, A.M.; et al. Structural analysis of a *Dioclea sclerocarpa* lectin: Study on the vasorelaxant properties of *Dioclea* lectins. *Int. J. Biol. Macromol.* 2016, 82, 464–470. [CrossRef]

42. Bezerra, M.J.; Rodrigues, N.V.; Pires Ade, F.; Bezerra, G.A.; Nobre, C.B.; Alencar, K.L.; Soares, P.M.; do Nascimento, A.S.; Bezerra, M.J.; do Nascimento, K.S.; Nagano, C.S.; Martins, J.L.; et al. Crystal structure of *Dioclea violacea* lectin and a comparative study of vasorelaxant properties with *Dioclea rostrata* lectin. *Int. J. Biochem. Cell Biol.* 2013, 45, 807–815. [CrossRef] [PubMed]

43. Batista da Nóbrega, R.; Rocha, B.A.; Gadelha, C.A.; Santi-Gadelha, T.; Pires, A.F.; Assreuy, A.M.; Nascimento, K.S.; Nagano, C.S.; Sampaio, A.H.; Cavada, B.S.; et al. Structure of *Dioclea virgata* lectin: Relations between carbohydrate binding site and nitric oxide production. *Biochimie* 2012, 94, 900–906. [CrossRef] [PubMed]

44. Rangel, T.B.; Rocha, B.A.; Bezerra, G.A.; Assreuy, A.M.; Pires Ade, F.; do Nascimento, A.S.; Bezerra, M.J.; do Nascimento, K.S.; Nagano, C.S.; Sampaio, A.H.; et al. Crystal structure of a pro-inflammatory lectin from the seeds of *Dioclea wilsonii* Standl. *Biochimie* 2012, 94, 525–532. [CrossRef] [PubMed]

45. Cavada, B.S.; Richardson, M.; Yarwood, A.; Père, D.; Rougé, P. The amino acid sequences of the α subunits of the lectins from *Lathyrus cicera*, *L. aphaca* and *L. articulatus*. *Phytochemistry* 1986, 25, 115–118. [CrossRef]

46. Yarwood, A.; Richardson, M.; Cavada, B.S.; Père, D.; Rougé, P. The amino acid sequences of the α subunits of the lectins from the seeds of *Lathyrus hirsutus* and *Lathyrus tingitanus*. *Phytochemistry* 1986, 25, 2109–2112. [CrossRef]

47. Yarwood, A.; Richardson, M.; Morphet, B.; Westby, M.; Père, D.; Rougé, P. The amino acid sequences of two atypical single-chain Vicieae isolectins from seeds of *Lathyrus nissolia*. *Phytochemistry* 1988, 27, 1719–1721. [CrossRef]

48. Bourne, Y.; Abergel, C.; Cambillau, C.; Frey, M.; Rougé, P.; Fontecilla-Camps, J.C. X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of *Lathyrus ochrus*. *J. Mol. Biol.* 1990, 214, 571–584. [CrossRef]

49. Kolberg, J. Isolation and partial characterization of a mitogenic lectin from *Lathyrus odoratus* seeds. *Acta Pathol. Microbiol. Scand. C* 1978, 86C, 99–104. [CrossRef]

50. Sletten, K.; Kolberg, J. The primary structure of the α chain of a mitogenic lectin from the seeds of *Lathyrus sativus*. *Hoppe Seylers Z. Physiol. Chem.* 1983, 364, 1047–1051. [CrossRef]

51. Richardson, M.; Yarwood, A.; Rougé, P. The amino acid sequence of an atypical single-chain lectin from seeds of *Lathyrus spharius*. *FEBS Lett.* 1987, 216, 145–150. [CrossRef]

52. Tichá, M.; Zeineddin, I.; Kocourek, J. Studies on lectins. XLVIII. Isolation and characterization of lectins from the seeds of *Lathyrus odoratus L.* and *Lathyrus silextris L.* *Acta Biol. Med. Ger.* 1980, 39, 649–655. [PubMed]

53. Foriers, A.; Van Diessche, E.; De Neve, R.; Kanarek, L.; Strosberg, A.D. The subunit structure and N-terminal sequences of the α- and β-subunits of the lentil lectin (*Lens culinaris*). *FEBS Lett.* 1977, 75, 237–240. [CrossRef]

54. Gao, S.; An, J.; Wu, C.F.; Gu, Y.; Chen, F.; Yu, Y.; Wu, Q.Q.; Bao, J.K. Effect of amino acid residue and oligosaccharide chain chemical modifications on spectral and hemagglutinating activity of *Milletta dielsiana* Harms. ex Diels. lectin. *Acta Biochim. Biophys. Sin. (Shanghai)* 2005, 37, 47–54. [CrossRef]

55. Young, N.M.; Williams, R.E.; Roy, C.; Nagana, M. Structural comparison of the lectin from sainfoin (*Onobrychis vicifolia*) with concanavalin A and other D-mannose specific lectins. *Can. J. Biochem.* 1982, 60, 933–941. [CrossRef]

56. Cavada, B.S.; da Silva, L.I.; Ramos, M.V.; Galvani, F.R.; Grangeiro, T.B.; Leite, K.B.; Assreuy, A.M.; Cajaizeiras, J.B.; Calvete, J.J. Seed lectin from *Pisum arvense*: Isolation, biochemical characterization and amino acid sequence. *Protein Pept. Lett.* 2003, 10, 607–617. [CrossRef]
77. Bourne, Y.; Houles-Astoul, C.; Zamboni, V.; Peumans, W.J.; Menu-Bouaouiche, L.; Van Damme, E.J.M.; Barre, A.; Rougé, P. Structural basics for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem. J. 2002, 364, 173–180. [CrossRef] [PubMed]

78. Jeyaprakash, A.A.; Jayashree, G.; Mahanta, S.K.; Swaminathan, C.P.; Sekar, K.; Surolia, A.; Vijayan, M. Structural basis for the energetics of jacalin-sugar interactions: Promiscuity versus specificity. J. Mol. Biol. 2005, 347, 181–188. [CrossRef] [PubMed]

79. Chijowdhusry, S.; Ahmed, H.; Chatterjee, B.P. Chemical modification studies of Artocarpus lakoocha lectin artocarpin. Biochimie 1991, 73, 563–571. [CrossRef]

80. Van Damme, E.J.; Hause, B.; Hu, J.; Barre, A.; Rougé, P.; Proost, P.; Peumans, W.J. Two distinct jacalin-related lectins with different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. Plant Physiol. 2002, 130, 757–769. [CrossRef]

81. Bourne, Y.; Zamboni, V.; Barre, A.; Peumans, W.J.; Van Damme, E.J.; Rougé, P. Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Structure 1999, 7, 1473–1482. [CrossRef]

82. Beneteteau, J.; Renard, D.; Marché, L.; Douville, E.; Lavenant, L.; Rahbé, Y.; Dupont, D.; Vilaine, F.; Dinant, S. Binding properties of the N-acetylgalactosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. Plant Physiol. 2010, 153, 1345–1361. [CrossRef]

83. Peng, H.; Lv, H.; Wang, Y.; Liu, Y.H.; Li, C.Y.; Meng, L.; Chen, F.; Bao, J.K. Cloning and characterization of a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 2009, 30, 1805–1815. [CrossRef] [PubMed]

84. Koike, T.; Titani, K.; Suzuki, M.; Beppu, H.; Kuzuya, H.; Maruta, K.; Shimpo, K.; Fujita, K. The complete amino acid sequence of a mannose-binding lectin from "Kidachi Aloe" (Aloe arborescens Miller var. natalensis Berger). Biochem. Biophys. Res. Commun. 1999, 214, 163–170. [CrossRef] [PubMed]

85. Lin, J.; Zhou, X.; Pang, Y.; Gao, H.; Fei, J.; Shen, G.A.; Wang, J.; Li, X.; Sun, X.; Tang, K. Cloning and characterization of an agglutinin gene from Arisaema lobatum. Biosci. Rep. 2005, 25, 345–362. [CrossRef] [PubMed]

86. Zhao, X.; Yao, J.; Liao, Z.; Zhang, H.; Chen, F.; Wang, L.; Lu, Y.; Sun, X.; Yu, S.; Tang, K. Molecular cloning of a novel mannose-binding lectin gene from Arisaema heterophyllum. Plant Sci. 2003, 165, 55–60. [CrossRef]

87. Van Damme, E.J.; Goossens, K.; Smeets, K.; Van Leuven, F.; Verhaert, P.; Peumans, W.J. The major tuber storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol. 1995, 107, 1147–1158. [CrossRef]

88. Pereira, P.R.; Winter, H.C.; Vericimo, M.A.; Meagher, J.L.; Stickey, J.A.; Goldstein, I.J.; Paschoalin, V.M.; Silva, J.T. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochim. Biophys. Acta 2015, 1854, 20–30. [CrossRef]

89. Nakagawa, Y.; Sakamoto, H.; Tateno, H.; Hirabayashi, J.; Oguri, S. Purification, characterization, and molecular cloning of lectin from winter buds of Lysichiton camtschatcensis (L.) Schott. Biosci. Biotechnol. Biochem. 2012, 76, 25–33. [CrossRef]

90. Yao, J.H.; Zhao, X.Y.; Liao, Z.H.; Lin, J.; Chen, Z.H.; Chen, F.; Song, J.; Sun, X.F.; Tang, K.X. Cloning and molecular characterization of a novel lectin gene from Pinellia ternata. Cell Res. 2003, 13, 301–308. [CrossRef]

91. Shetty, K.N.; Bhat, G.G.; Inamdar, S.R.; Swamy, B.M.; Suguna, K. Crystal structure of a β-prism II lectin from Remusussia vivipara. Glycobiology 2012, 22, 56–69. [CrossRef]

92. Luo, Y.; Xu, X.; Liu, J.; Li, J.; Sun, Y.; Liu, Z.; Liu, J.; Van Damme, E.; Balzarini, J.; Bao, J. A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Deane (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J. Biochem. Mol. Biol. 2007, 40, 358–367. [CrossRef] [PubMed]

93. Mo, H.; Rice, K.G.; Evers, D.L.; Winter, H.C.; Peumans, W.J.; Van Damme, E.J.; Goldstein, I.J. Xanthosoma sagittifolium tubers contain a lectin with two different types of carbohydrate-binding sites. J. Biol. Chem. 1999, 274, 33300–33305. [CrossRef]

94. Chen, Z.; Pang, Y.; Liu, X.; Wang, X.; Deng, Z.; Sun, X.; Tang, K. Molecular cloning and characterization of a novel mannose-binding lectin cDNA from Zantedeschia aethiopica. Biocell 2005, 29, 187–193.

95. Liu, B.; Peng, H.; Yao, Q.; Li, J.; Van Damme, E.; Balzarini, J.; Bao, J.K. Bioinformatics analyses of the mannose-binding lectins from Polygonatum corynemum, Ophiopogon japonicus and Liparis noversa with antiproliferative and apoptosis-inducing activities. Phytomedicine 2009, 16, 601–608. [CrossRef] [PubMed]
96. Ding, J.; Bao, J.; Zhu, D.; Zhang, Y.; Wang, D.C. Crystal structure of a novel anti-HIV mannose-binding lectin from Polygonatum cyrtomena Hua with unique ligand-binding property and super-structure. J. Struct. Biol. 2010, 171, 309–317. [CrossRef] [PubMed]

97. Van Damme, E.J.; Barre, A.; Rougé, P.; Van Leuven, F.; Balzarini, J.; Peumans, W.J. Molecular cloning of the lectin and a lectin-related protein from common Solomon’s seal (Polygonatum multiflorum). Plant Mol. Biol. 1996, 31, 657–672. [CrossRef] [PubMed]

98. Yang, Y.; Xu, H.L.; Zhang, Z.T.; Liu, J.J.; Li, W.W.; Ming, H.; Bao, J.K. Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. Phytomedicine 2011, 18, 748–755. [CrossRef] [PubMed]

99. Bourne, Y.; Roig-Zamboni, V.; Barre, A.; Peumans, W.J.; Astoul, C.H.; Van Damme, E.J.; Rougé, P. The crystal structure of the Calystegia sepium agglutinin reveals a novel quaternary arrangement of lectin subunits with a β-prism fold. J. Biol. Chem. 2004, 279, 527–533. [CrossRef]

100. Chang, W.C.; Liu, K.L.; Hsu, F.C.; Jeng, S.T.; Cheng, Y.S. Ipomoelin, a jacalin-related lectin with a compact structure of the Allium tuberosum protein from the Chinese chive herb (Amaryllidaceae). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004, 21, 812–818. (In Chinese) [PubMed]

101. Upadhyay, S.K.; Saurabh, S.; Singh, R.; Rai, P.; Dubey, N.K.; Chandra, Y.S. Purification and characterization of a lectin with high hemagglutination property isolated from Allium ascalonicum (family Amaryllidaceae). J. Integr. Plant. Physiol. 2003, 46, 1301–1306. (In Chinese) [CrossRef]

102. Mo, H.; Van Damme, E.J.; Peumans, W.J.; Goldstein, I.J. Purification and characterization of a mannose-specific lectin from shallot (Allium ascalonicum) bulbs. Arch. Biochem. Biophys. 1993, 306, 431–438. [CrossRef] [PubMed]

103. Van Damme, E.J.; Smeets, K.; Engelberghs, L.; Aelbers, H.; Balzarini, J.; Pusztai, A.; Van Leuven, F.; Goldstein, I.J.; Peumans, W.J. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek. Plant. Mol. Biol. 1993, 23, 365–376. [CrossRef] [PubMed]

104. Van Damme, E.J.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Goldstain, I.J.; Peumans, W.J. The closely related homomeric and heterodimeric mannose-binding lectins from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur. J. Biochem. 1992, 206, 413–420. [CrossRef] [PubMed]

105. Ooi, L.S.; Yu, H.; Chen, C.M.; Sun, S.S.; Ooi, V.E. Isolation and characterization of a bioactive mannose-binding protein from the Chinese chive Allium tuberosum. J. Agric. Food Chem. 2002, 50, 696–700. [CrossRef] [PubMed]

106. Van Damme, E.J.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Peumans, W.J. The mannose-specific lectins from garlic are encoded by three sets of genes. Eur. J. Biochem. 1993, 217, 123–129. [CrossRef] [PubMed]

107. Wu, C.-F.; An, J.; He, X.-J.; Deng, J.; Hong, Z.-X.; Liu, C.; Hong-Zhou, L.; Li, Y.-J.; Wang, C.-J.; Chen, F.; Bao, J. Novel molecular cloning of a novel mannose-binding lectin gene from bulbs of Amaryllis vittata (Amaryllidaceae). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004, 46, 1301–1306. (In Chinese) [PubMed]

108. Van Damme, E.J.; Smeets, K.; Van Leuven, F.; Peumans, W.J. Molecular cloning of mannose-binding lectins from Allium ursinum L.) are encoded by three sets of genes. Eur. J. Biochem. 1994, 224, 825–830. [CrossRef] [PubMed]

109. Chai, Y.; Pang, Y.; Liao, Z.; Zhang, L.; Sun, X.; Lu, Y.; Wang, S.; Tang, K. Molecular cloning and characterization of a mannose-binding lectin gene from Crinum asiaticum. J. Plant Physiol. 2003, 160, 913–920. [CrossRef]

110. Van Damme, E.J.; Kaku, H.; Perini, E.; Goldstein, I.J.; Peeters, B.; Yagi, E.; Decock, B.; Peumans, W.J. Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis) lectin. Eur. J. Biochem. 1991, 202, 23–30. [CrossRef] [PubMed]

111. Kaku, H.; Van Damme, E.J.; Peumans, W.J.; Goldstein, I.J. Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys. 1990, 279, 298–304. [CrossRef] [PubMed]

112. Antoniuk, L.L.A.; Antoniuk, V.O. Interaction of immobilized lectin from Leucojum vernum L. with polysaccharides and glycoproteins. Ukrainskii Biokhimicheskii Zhurnal 1978, 65, 69–77. (In Ukrainian) [PubMed]

113. Wu, C.-F.; Li, J.; An, J.; Chang, L.-Q.; Che, F.; Bao, J.-K. Purification, biological activities, and molecular cloning of a novel mannose-binding lectin from bulbs of Zephyranthes candida herb (Amaryllidaceae). J. Integr. Plant Biol. 2006, 48, 223–231. [CrossRef] [PubMed]

114. Bao, J.; Wu, C.; An, J.; Gao, S.; Zhao, X.; Chang, L.; Rong, Y.; Wang, C.; Chen, F. Molecular cloning and analysis of a monocot mannose-binding agglutinin from Zephyranthes grandiflora (family Amaryllidaceae). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004, 21, 812–818. (In Chinese) [PubMed]
115. Liu, J.; Xu, X.; Liu, J.; Balzarini, J.; Luo, Y.; Kong, Y.; Li, J.; Chen, F.; Van Damme, E.J.; Bao, J. A novel tetrameric lectin from Lycoris aurea with four mannose binding sites per monomer. *Acta Biochim. Pol.* 2007, 54, 159–166. [PubMed]

116. Zhao, X.; Yao, J.; Sun, X.; Tang, K. Molecular cloning and characterization of a novel lectin gene from *Lycoris radiata*. *DNA Seq.* 2003, 14, 223–226. [CrossRef] [PubMed]

117. Ohizumi, Y.; Gaidamashvili, M.; Ohwada, S.; Matsuoka, K.; Kominami, J.; Nakamura-Tsuruta, S.; Hirabayashi, J.; Naganuma, T.; Ogawa, T.; Muramoto, K. Mannose-binding lectin from yam (*Dioscorea batatas*) tubers with insecticidal properties against *Helicoverpa armigera* (Lepidoptera:Noctuidae). *J. Agric. Food Chem.* 2009, 57, 2896–2902. [CrossRef]

118. Sharma, M.; Vishwanathreddy, H.; Sindhura, B.R.; Kamalanathan, A.S.; Swamy, B.M.; Inamdar, S.R. Purification, characterization and biological significance of mannose binding lectin from *Dioscorea bulbifera* bulbs. *Int. J. Biol. Macromol.* 2017, 101, 1146–1155. [CrossRef] [PubMed]

119. Oda, Y.; Nakayama, K.; Abdul-Rahman, B.; Kinoshita, M.; Hashimoto, O.; Kawasaki, N.; Hayakawa, T.; Kakehi, K.; Tomiya, N.; Lee, Y.C. *Crocus sativus* lectin recognizes Man3GlcNAc in the N-glycan core structure. *J. Biol. Chem.* 2000, 275, 27672–27779. [CrossRef]

120. Escribano, J.; Rubio, A.; Alvarez-Ortíz, M.; Molina, A.; Fernández, J.A. Purification and characterization of a mannan-binding lectin specifically expressed in corms of saffron plant (*Crocus sativus* L.). *J. Agric. Food Chem.* 2000, 48, 457–463. [CrossRef]

121. Van Damme, E.J.; Astoul, C.H.; Barre, A.; Rougé, P.; Peumans, W.J. Cloning and characterization of a monocot mannose-binding lectin from *Crocus vernus* (family Iridaceae). *Eur. J. Biochem.* 2000, 267, 5067–5077. [CrossRef]

122. Xu, X.; Wu, C.; Liu, C.; Luo, C.; Luo, Y.; Li, J.; Zhao, X.; Van Damme, E.; Bao, J. Purification and characterization of a mannose-binding lectin from the rhizomes of *Aspidistra elatior* Blume with antiproliferative activity. *Acta Biochim. Biophys. Sin. (Shanghai)* 2007, 39, 507–519. [CrossRef]

123. Ooi, L.S.; Ho, W.S.; Ngai, K.L.; Tian, L.; Chan, P.K.; Sun, S.S.; Ooi, V.E. *Narcissus tazetta* lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. *J. Biosci.* 2010, 35, 95–103. [CrossRef] [PubMed]

124. López, S.; Armand-Ugon, M.; Bastida, J.; Viladomat, F.; Esté, J.A.; Stewart, D.; Codina, C. Anti-human immunodeficiency virus type 1 (HIV-1) activity of lectins from *Narcissus* species. *Planta Med.* 2003, 69, 109–112. [CrossRef] [PubMed]

125. Van Damme, E.J.; Briqué, F.; Winter, H.C.; Van Leuven, F.; Goldstein, I.J.; Peumans, W.J. Molecular cloning of two different mannose-binding lectins from tulip bulbs. *Eur. J. Biochem.* 1996, 236, 419–427. [CrossRef] [PubMed]

126. Ooi, L.S.; Sun, S.S.; Wang, H.; Ooi, V.E. New mannose-binding lectin isolated from the rhizome of *Sarsaparilla Smilax glabra* Roxb. (Liliaceae). *J. Agric. Food Chem.* 2004, 52, 6091–6095. [CrossRef] [PubMed]

127. Wright, L.M.; Wood, S.D.; Reynolds, C.D.; Rizkallah, P.J.; Peumans, W.J.; Van Damme, E.J.; Allen, A.K. Purification, crystallogization and preliminary X-ray analysis of a mannose-binding lectin from bluebell (*Scilla campanulata*) bulbs. *Acta Crystallogr. D Biol. Crystallogr.* 1996, 52, 1021–1023. [CrossRef] [PubMed]

128. Sharma, A.; Vijayan, M. Influence of glycosidic linkage on the nature of carbohydrate binding in β-prism I fold lectins: An X-ray and molecular dynamics investigation on banana lectin-carbohydrate complexes. *Glycobiochemistry* 2011, 21, 23–33. [CrossRef]

129. Singh, D.D.; Saikrishnan, K.; Kumar, P.; Surolia, A.; Sekar, K.; Vijayan, M. Unusual sugar specificity of banana lectin from *Musa paradisiaca* and its probable evolutionary origin. Crystallographic and modelling studies. *Glycobiochemistry* 2005, 15, 1025–1032. [CrossRef]

130. Ooi, L.S.; Sun, S.S.; Ooi, V.E. Purification and characterization of a new antiviral protein from the leaves of *Pandanus amaryllifolius* (Pandaceae). *Int. J. Biochem. Cell Biol.* 2004, 36, 1440–1446. [CrossRef]

131. Van Damme, E.J.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of mannose-binding lectins from the Orchidaceae species *Listera ovata*, *Epipactis helleborine* and *Cymbidium hybrid*. *Eur. J. Biochem.* 1994, 221, 769–777. [CrossRef]

132. Chen, Z.; Sun, X.; Tang, K. Cloning and expression of a novel cDNA encoding a mannose-binding lectin from *Dendrobium officinale*. *Toxicon* 2005, 45, 535–540. [CrossRef]
133. Liu, W.; Yang, N.; Ding, J.; Huang, R.H.; Hu, Z.; Wang, D.C. Structural mechanism governing the quaternary organization of monocot mannose-binding lectin revealed by the novel monomeric structure of an orchid lectin. J. Biol. Chem. 2005, 280, 14865–14976. [CrossRef] [PubMed]
134. Zhang, W.; Peumans, W.J.; Barre, A.; Astoul, C.H.; Rovira, P.; Rougé, P.; Proost, P.; Truffa-Bachi, P.; Jalali, A.A.; Van Damme, E.J. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 2000, 210, 970–978. [PubMed]
135. Do Nascimento-Neto, L.G.; Carneiro, R.F.; da Silva, S.R.; Rocha da Silva, B.; Arruda, F.V.S.; Carneiro, V.A.; do Nascimento, K.S.; Saker-Sampaio, S.; da Silva, V.A., Jr.; Figueiredo Porto, A.L.; et al. Characterization of isoforms of the lectin isolated from the red algae Bryothamnion seaforthii and its pro-healing effect. Mar. Drugs 2012, 10, 1936–1954. [CrossRef] [PubMed]
136. Calvete, J.J.; Costa, F.H.; Saker-Sampaio, S.; Murciano, M.P.; Nagano, C.S.; Cavada, B.S.; Grangeiro, T.B.; Ramos, M.V.; Bloch, C., Jr.; Silveira, S.B.; et al. The amino acid sequence of the agglutinin isolated from the red marine alga Bryothamnion triquetrum defines a novel lectin structure. Cell Mol. Life Sci. 2000, 57, 343–350. [CrossRef]
137. Hung, L.D.; Hirayama, M.; Ly, B.M.; Hori, K. Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum. J. Appl. Phycol. 2015, 27, 1657–1669. [CrossRef]
138. Sugahara, T.; Ohama, Y.; Fukuda, A.; Hayashi, M.; Kawakubo, A.; Kato, K. The cytotoxic effect of Hypnea musciformis α with preference for the cluster of Phytochemistry 2001, 36, 93–99. [CrossRef]
139. Mori, T.; O’Keefe, B.R.; Sowder, R.C., 2nd; Bringans, S.; Cardella, R.; Berg, S.; Cochran, P.; Turpin, J.A.; Buckheit, R.W., Jr.; McMahon, J.B.; et al. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem. 2005, 280, 9345–9353. [CrossRef]
140. Ziółkowska, N.E.; O’Keefe, B.R.; Mori, T.; Zhu, C.; Giomarelli, B.; Vojdani, F.; Palmer, K.E.; McMahon, J.B.; Wlodawer, A. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure 2006, 14, 1127–1138. [CrossRef]
141. Nascimento, K.S.; Nagano, C.S.; Nunes, E.V.; Rodrigues, R.F.; Goersch, G.V.; Cavada, B.S.; Calvete, J.J.; Saker-Sampaio, S.; Farias, W.R.; Sampaio, A.H. Isolation and characterization of a new agglutinin from the red marine alga Hypnea cervicornis. J. Agardh. Bioch. 2006, 84, 49–54. [CrossRef]
142. Nagano, C.S.; Moreno, F.B.; Bloch, C., Jr.; Prates, M.V.; Calvete, J.J.; Saker-Sampaio, S.; Farias, W.R.; Tavares, T.D.; Nascimento, K.S.; Grangeiro, T.B.; et al. Purification and characterization of a new lectin from the red marine alga Hypnea musciformis. Protein Pept. Lett. 2002, 9, 159–166. [CrossRef]
143. Sato, Y.; Moriimoto, K.; Hirayama, M.; Hori, K. High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem. Biophys. Res. Commun. 2011, 405, 291–296. [CrossRef] [PubMed]
144. Hung, L.D.; Sato, Y.; Hori, K. High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyta). Phytochemistry 2011, 72, 855–861. [CrossRef] [PubMed]
145. Sato, Y.; Hirayama, M.; Morimoto, K.; Yamamoto, N.; Okuyama, S.; Hori, K. High-mannose-binding lectin with preference for the cluster of α1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J. Biol. Chem. 2011, 286, 19446–19458. [CrossRef]
146. Mu, J.; Hirayama, M.; Sato, Y.; Morimoto, K.; Hori, K. A novel high-mannose-specific lectin from the green alga Halimeda ronchii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Mar. Drugs 2017, 15, 255. [CrossRef] [PubMed]
147. Wohlschlager, T.; Butschi, A.; Grassi, P.; Sutov, G.; Gauss, R.; Hauck, D.; Schmieder, S.S.; Knobel, M.; Titiz, A.; Dell, A.; et al. Methylated glycans as conserved targets of animal and fungal innate defense. Proc. Natl. Acad. Sci. USA 2014, 111, E2787–E2796. [CrossRef]
148. Sommer, R.; Makshakova, O.N.; Wohlschlager, T.; Hütin, S.; Marsh, M.; Titiz, A.; Künzler, M.; Varrot, A. Crystal structure of fungal tectonin in complex with O-methylated glycans suggest key role in innate immune defense. Structure 2018, 26, 391–402. [CrossRef] [PubMed]
149. Francis, F.; Jaber, K.; Colinet, F.; Portetelle, D.; Haubruege, E. Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphicidal properties. Fungal Biol. 2011, 115, 1093–1099. [CrossRef] [PubMed]
150. Veelders, M.; Brückner, S.; Ott, D.; Unverzagt, C.; Mösch, H.U.; Essen, L.O. Structural basis of flocculin-mediated social behavior in yeast. Proc. Natl. Acad. Sci. USA 2010, 107, 22511–22516. [CrossRef]

151. Goossens, K.V.; Ielasi, F.S.; Nookaew, I.; Stals, I.; Alonso-Sarduy, L.; Daenen, L.; Van Mulders, S.E.; Stassen, C.; van Eijden, R.G.; Siewers, V.; et al. Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. MBio 2015, 6, e00427-15. [CrossRef]

152. Olson, L.J.; Orsi, R.; Peterson, F.C.; Parodi, A.J.; Kim, J.J.; D’Alessio, C.; Dahms, N.M. Crystal structure and functional analyses of the lectin domain of glucosidase II: Insights into oligomannose recognition. Biochemistry 2015, 54, 4097–4111. [CrossRef]

153. Suzuki, T.; Sugiyama, K.; Hirai, H.; Ito, H.; Morita, T.; Dohra, H.; Murata, T.; Usui, T.; Tateno, H.; Hirabayashi, J.; et al. Mannose-specific lectin from the mushroom Hygrophorus russula. Glycobiology 2012, 22, 616–629. [CrossRef]

154. Shimokawa, M.; Fukudome, A.; Yamashita, R.; Minami, Y.; Yagi, F.; Tateno, H.; Hirabayashi, J. Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj. J. 2012, 29, 457–465. [CrossRef] [PubMed]

155. Koharudin, L.M.; Viscomi, A.R.; Jee, J.G.; Ottonello, S.; Gronenborn, A.M. The evolutionary conserved family of cyanovirin-N homologs: Structures and carbohydrate specificity. Structure 2008, 16, 570–584. [CrossRef] [PubMed]

156. Loris, R.; Van Overberge, D.; Dao-Thi, M.H.; Poortmans, F.; Maene, N.; Wyns, L. Structural analysis of two crystal forms of lentil lectin at 1.8 Å resolution. Proteins 1994, 20, 330–346. [CrossRef] [PubMed]

157. Hardman, K.D.; Ainsworth, C.F. Structure of concanavalin A at 2.4-Å resolution. Biochemistry 1972, 11, 4910–4919. [CrossRef] [PubMed]

158. Olsen, L.R.; Dessen, A.; Gupta, D.; Sabesan, S.; Sacchettini, J.C.; Brewer, C.F. X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 1997, 36, 15073–15080. [CrossRef] [PubMed]

159. Banerjee, R.; Das, K.; Ravishankar, R.; Suguna, K.; Surolia, A.; Vijayan, M. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J. Mol. Biol. 1996, 259, 281–296. [CrossRef]

160. Elgavish, S.; Shaanan, B. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. J. Mol. Biol. 1998, 277, 917–932. [CrossRef]

161. Hamelryck, T.W.; Dao-Thi, M.H.; Poortmans, F.; Chrispeels, M.J.; Wyns, L.; Loris, R. The crystallographic structure of phytohemagglutinin-L. J. Biol. Chem. 1996, 271, 20479–20485. [CrossRef]

162. Nagae, M.; Soga, K.; Morita-Matsumoto, K.; Hanashima, S.; Ikeda, A.; Yamamoto, K.; Yamaguchi, Y. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold. Glycobiology 2014, 24, 368–378. [CrossRef] [PubMed]

163. Prapat, J.V.; Jeyaprakash, A.A.; Rani, P.G.; Sekar, K.; Surolia, A.; Vijayan, M. Crystal structure of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-α-D-mannose: Implications to the generation of carbohydrate specificity. J. Mol. Biol. 2002, 317, 237–247. [CrossRef] [PubMed]

164. Sankaranarayanan, R.; Sekar, K.; Banerjee, R.; Sharma, V.; Surolia, A.; Vijayan, M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat. Struct. Biol. 1996, 3, 596–603. [CrossRef]

165. Lee, X.; Thompson, A.; Zhang, Z.; Ton-that, H.; Biesterfeldt, J.; Ogata, C.; Xu, L.; Johnston, R.A.; Young, N.M. Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Galβ1,3GalNAc. J. Biol. Chem. 1998, 273, 6312–6318. [CrossRef]

166. Rabijns, A.; Barre, A.; Van Damme, E.J.M.; Peumans, W.J.; De Ranter, C.J.; Rougé, P. Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. FEBS J. 2005, 272, 3725–3732. [CrossRef] [PubMed]

167. Hester, G.; Kaku, H.; Goldstein, I.J.; Wright, C.S. Structure of mannose-specific snowdrop (Galmanthus nivalis) lectin is representative of a new plant lectin family. Nat. Struct. Biol. 1995, 2, 472–479. [CrossRef] [PubMed]

168. Pereira, P.R.; Meagher, J.L.; Winter, H.C.; Goldstein, I.J.; Paschoalin, V.M.; Silva, J.T.; Stuckey, J.A. High-resolution crystal structures of Colocasia esculenta tarin lectin. Glycobiology 2017, 27, 50–56. [CrossRef]

169. Transue, T.R.; Smith, A.K.; Mo, H.; Goldstein, I.J.; Saper, M.A. Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat. Struct. Biol. 1997, 4, 779–783. [CrossRef] [PubMed]
170. De Schutter, K.; Tsaneva, M.; Kulkarni, S.R.; Rougé, P.; Vandepoele, K.; Van Damme, E.J.M. Evolutionary relationships and expression analysis of EUL domain proteins in rice (Oryza sativa). *Rice* 2017, 10, 26. [CrossRef]

171. Sharma, U.; Katre, U.V.; Suresh, C.G. Crystal structure of a plant albumin from *Cicer arietinum* (chickpea) possessing hemopexin fold and hemagglutination activity. *Planta* 2015, 241, 1061–1073. [CrossRef]

172. Kostlánová, N.; Mitchell, E.P.; Lortat-Jacob, H.; Oscarson, S.; Lahmann, M.; Gilboa-Garber, N.; Chambat, G.; Wimmerová, M.; Imberty, A. The fucose-binding lectin from *Ralstonia solanacearum*. A new type of β-propeller architecture formed by oligomerization and interacting with fucoside, fucosylactose, and plant xyloglucan. *J. Biol. Chem.* 2005, 280, 27839–27849. [CrossRef] [PubMed]

173. Kumar, A.; Sýkorová, P.; Demo, G.; Dobeš, P.; Hyršl, P.; Wimmerová, M. A novel fucose-binding lectin from *Photorhabdus luminescens* (PPL) with an unusual heptabladed β-propeller tetrameric structure. *J. Biol. Chem.* 2016, 291, 25032–25049. [CrossRef] [PubMed]

174. Jančaříková, G.; Houser, J.; Dobeš, P.; Demo, G.; Hyršl, P.; Wimmerová, M. Characterization of novel bangle lectin from *Photorhabdus asymbiotica* with dual sugar-binding specificity and its effect on host immunity. *PLoS Pathog.* 2017, 13, e1006564. [CrossRef] [PubMed]

175. Yadid, I.; Kirshenbaum, N.; Sharon, M.; Dym, O.; Tawfik, D.S. Metamorphic proteins mediate evolutionary transitions of structure. *Proc. Natl Acad. Sci. USA* 2010, 107, 7287–7292. [CrossRef] [PubMed]

176. Cioci, G.; Mitchell, E.P.; Chazalet, V.; Debray, H.; Oscarson, S.; Lahmann, M.; Gautier, C.; Perez, S.; Imberty, A. Beta-propeller crystal structure of *Psathyrella velutina* lectin: An integrin-like fungal protein interacting with monosaccharides and calcium. *J. Mol. Biol.* 2006, 357, 1575–1591. [CrossRef] [PubMed]

177. Ribeiro, J.P.; Ali Abol Hassan, M.; Rouf, R.; Tiralongo, E.; May, T.W.; Day, C.J.; Imberty, A.; Tiralongo, J.; Varrot, A. Biophysical characterization and structural determination of the potent cytotoxic *Psathyrella asperospora* lectin. *Proteins* 2017, 85, 969–975. [CrossRef]

178. Audfray, A.; Claudinon, J.; Abounit, S.; Ruvöen-Clouet, N.; Larson, G.; Smith, D.F.; Wimmerová, M.; Le Pendu, J.; Römer, W.; Varrot, A.; et al. Fucose-binding lectin from opportunistic pathogen *Burkholderia ambifaria* binds to both plant and human oligosaccharidic epitopes. *J. Biol. Chem.* 2012, 287, 4335–4347. [CrossRef]

179. Shahzad-ul-Huassan, S.; Gustchina, E.; Ghirlando, R.; Clore, G.M.; Bewley, C.A. Solution structure of the monovalent lectin microvirin in complex with Manα(1-2)Man provides a basis for anti-HIV activity with low toxicity. *J. Biol. Chem.* 2011, 286, 20788–20796. [CrossRef]

180. Chiba, H.; Inokoshi, J.; Okamoto, M.; Matsuaki, K.; Iwama, M.; Mizumoto, K.; Tanaka, H.; Oheda, M.; Fujita, K.; Nakashima, H.; et al. Actinohivin, a novel anti-HIV protein from an actinomycete that inhibits syncytium formation: Isolation, characterization, and biological activities. *Biochem. Biophys. Res. Commun.* 2001, 282, 595–601. [CrossRef] [PubMed]

181. Lameignere, E.; Malinovská, L.; Sláviková, M.; Duchaud, E.; Mitchell, E.P.; Varrot, A.; Sedo, O.; Imberty, A.; Wimmerová, M. Structural basis for mannose recognition by a lectin from opportunistic bacteria *Burkholderia cenovacapua*. *Biochem. J.* 2008, 411, 307–318. [CrossRef] [PubMed]

182. Matei, E.; Basu, R.; Furey, W.; Shi, J.; Calnan, C.; Aiken, C.; Gronenborn, A.M. Structure and glycan binding of a new cyanovirin-N homolog. *J. Biol. Chem.* 2016, 291, 18967–18976. [CrossRef] [PubMed]

183. Matei, E.; Louis, J.M.; Jee, J.; Gronenborn, A.M. NMR solution structure of a cyanovirin homolog from wheat head blight fungus. *Proteins* 2011, 79, 1538–1549. [CrossRef] [PubMed]

184. Koharudin, L.M.I.; Furey, W.; Gronenborn, A.M. Novel fold and carbohydrate specificity of the potent anti-HIV cyano bacterial lectin from *Oscillatoria agardhii*. *J. Biol. Chem.* 2011, 286, 1588–1597. [CrossRef] [PubMed]

185. Williams, D.C., Jr.; Lee, J.Y.; Cai, M.; Bewley, C.A.; Clore, G.M. Crystal structures of the HIV-1 inhibitory protein MVL free and bound to Man3GlcNAc2: Structural basis for specificity and high-affinity binding to the core pentasaccharide from N-linked oligomannoside. *J. Biol. Chem.* 2005, 280, 29269–29276. [CrossRef] [PubMed]

186. Koharudin, L.M.; Kollipara, S.; Aiken, C.; Gronenborn, A.M. Structural insights into the anti-HIV activity of the *Oscillatoria agardhii* agglutinin homolog lectin family. *J. Biol. Chem.* 2012, 287, 33796–33811. [CrossRef] [PubMed]
197. Moothoo, D.N.; Canan, B.; Field, R.A.; Naismith, J.H. Manα1-2Manα1-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. *Glycobiology* **1999**, 9, 539–545. [CrossRef] [PubMed]

198. Sanders, D.A.; Moothoo, D.N.; Reftery, J.; Howard, A.J.; Helliwell, J.R.; Naismith, J.H. The 1.2 Å resolution structure of the Con A-dimannose complex. *J. Mol. Biol.* **2001**, 310, 875–884. [CrossRef]

199. Loris, R.; Maes, D.; Poortmans, F.; Loris, R. The crystal structure of a (α-Man(1-3)β-Man(1-4)GlcNAc)-lectin complex at 2.1-Å resolution. The role of water in sugar-lectin interaction. *J. Biol. Chem.* **1999**, 274, 9721–9726. [CrossRef] [PubMed]

200. Bourne, Y.; Ruegg, P.; Camillau, C. X-ray structure of a biantennary octasaccharide-lectin complex refined at 2.3-A resolution. *J. Biol. Chem.* **1992**, 267, 197–203. [PubMed]

201. Bourne, Y.; Mazurier, J.; Legrans, D.; Ruegg, P.; Montreuil, J.; Spik, G.; Camillau, C. Structure of a legume lectin complexed with the human lactotransferrin N2 fragment, and with an isolated biantennary glycopeptide: Role of the fucose moiety. *Structure* **1994**, 2, 209–219. [CrossRef]

202. Bourne, Y.; Rougé, P.; Camillau, C. X-ray structure of a biantennary octasaccharide-lectin complex refined at 2.3-Å resolution. *J. Biol. Chem.* **1992**, 267, 197–203. [PubMed]

203. Bourne, Y.; Rougé, P.; Camillau, C. X-ray structure of a biantennary octasaccharide-lectin complex refined at 2.3-Å resolution. *J. Biol. Chem.* **1992**, 267, 197–203. [PubMed]

204. Barts, L.; Garcia-Pino, A.; Wyns, L.; Loris, R. Structural basis of carbohydrate recognition by a Man(α1-2)Man-specific lectin from *Bouringia milbraedii*. *Glycobiology* **2006**, 16, 635–640. [CrossRef] [PubMed]

205. Naismith, J.H.; Field, R.A. Structural basis of trimannoside recognition by concanavalin A. *J. Biol. Chem.* **1996**, 271, 972–976. [CrossRef] [PubMed]

206. Moothoo, D.N.; Naismith, J.H. Concanavalin A distorts the β-GlcNac-(1,2)-Man linkage of β-GlcNac-(1,2)-α-Man-(1,3)-(β-GlcNac-(1,2)-α-Man) upon binding. *Glycobiology* **1998**, 8, 173–181. [CrossRef] [PubMed]

207. Moothoo, D.N.; Canan, B.; Field, R.A.; Naismith, J.H. Manα1-2Manα1-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. *Glycobiology* **1999**, 9, 539–545. [CrossRef] [PubMed]

208. Sanders, D.A.; Moothoo, D.N.; Reftery, J.; Howard, A.J.; Helliwell, J.R.; Naismith, J.H. The 1.2 Å resolution structure of the Con A-dimannose complex. *J. Mol. Biol.* **2001**, 310, 875–884. [CrossRef]

209. Loris, R.; Maes, D.; Poortmans, F.; Wyns, L.; Bouckaert, J. A structure of the complex between concanavalin A and methyl-3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside reveals two binding modes. *J. Biol. Chem.* **1996**, 271, 30614–30618. [CrossRef] [PubMed]

210. Bouckaert, J.; Hamelryck, T.W.; Wyns, L.; Loris, R. The crystal structure of Man(α1-3)Man(α1-OMe) and Man(α1-6)Man(α1-O)Me in complex with concanavalin A. *J. Biol. Chem.* **1999**, 274, 29188–29195. [CrossRef]

211. Kanellopoulos, P.N.; Pavlou, K.; Perrakis, A.; Agiantian, B.; Vorgias, C.E.; Mavrommatis, C.; Soufi, M.; Tucker, P.A.; Hamodrakas, S.J. The crystal structure of the complexes of concanavalin A with 4′-nitrophenyl-α-D-mannopyranoside and 4′-nitrophenyl-α-D-glucopyranoside. *J. Struct. Biol.* **1996**, 116, 345–355. [CrossRef]

212. Naismith, J.H.; Emmerich, C.; Habash, J.; Harrop, S.J.; Helliwell, J.R.; Hunter, W.N.; Reftery, J.; Kalb, A.J.; Yariv, J. Refined structure on concanavalin A complexed with methyl α-D-mannopyranoside at 2.0 Å resolution and comparison with the saccharide-free structure. *Acta Crystallogr. D Biol. Crystallogr.* **1994**, 50, 847–858. [CrossRef] [PubMed]

213. Gerličs, O.O.; Coates, L.; Woods, R.J.; Kovalevsky, A. Mannobiode binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography. *Biochemistry* **2017**, 56, 4747–4750. [CrossRef] [PubMed]

214. Delatorre, P.; Rocha, B.A.; Souza, E.P.; Oliveira, T.M.; Benzerza, G.A.; Moreno, F.B.; Freitas, B.T.; Santi-Gadelha, T.; Sampaio, A.H.; Azevedo, W.F.; Jr.; et al. Structure of a lectin from *Canavalia gladiata* seeds: New structure insights for old molecules. *BMC Struct. Biol.* **2007**, 7, 52. [CrossRef] [PubMed]

215. Bezerra, G.A.; Oliveira, T.M.; Moreno, F.B.; de Souza, E.P.; da Rocha, B.A.; Benevides, R.G.; Delatorre, P.; de Azevedo, W.F.; Jr.; Cavada, B.S. Structural analysis of *Canavalia maritima* and *Canavalia gladiata* lectins complexed with different dimannosides: New insights into the understanding of the structure-biological activity relationship in legume lectins. *J. Struct. Biol.* **2007**, 160, 168–176. [CrossRef] [PubMed]
214. Jeyaprakash, A.A.; Srivastav, A.; Surolia, A.; Vijayan, M. Structural basis for the carbohydrate specificities of Loris, R.; Van Walle, I.; De Greve, H.; Beeckmans, S.; Deboeck, F.; Wyns, L.; Bouckaert, J. Structural basis of the pea lectin-D-mannopyranose complex at 2.1 Å resolution. *Russ. J. Bioorg. Chem.* 1998, 24, 277–279.

215. Chandra, N.R.; Ramachandraiah, G.; Bachhawat, K.; Dam, T.K.; Surolia, A.; Vijayan, M. Crystal structure of a dimeric mannose-specific agglutinin from garlic: Quaternary association and carbohydrate specificity. *J. Mol. Biol.* 1999, 285, 1157–1168. [CrossRef]

216. Ramachandraiah, G.; Chandra, N.R.; Surolia, A.; Vijayan, M. Re-refinement using processed data to improve the quality of the structure: A case study involving garlic lectin. *Acta Crystallogr. D Biol. Crystallogr.* 2002, 58, 414–420. [CrossRef] [PubMed]

217. Wright, C.S.; Hester, G. The 2.0 Å structure of a cross-linked complex between snowdrop lectin and a branched mannopentaose: Evidence for two unique binding modes. *Structure* 1996, 4, 1339–1352. [CrossRef]

218. Hester, G.; Wright, C.S. The mannose-specific bulb lectin from *Narcissus pseudonarcissus* (snowdrop) binds mono-, di- and trimannosides at distinct sites. Structure analysis of refined complexes at 2.3 Å and 3.0 Å resolution. *J. Mol. Biol.* 1996, 262, 516–531. [CrossRef] [PubMed]

219. Sauerborn, M.K.; Wright, L.M.; Reynolds, C.D.; Grossmann, J.G.; Rzikallah, P.J. Insights into carbohydrate recognition by *Narcissus pseudonarcissus* lectin: The crystal structure at 2 Å resolution in complex with α1-3 manno-βiose. *J. Mol. Biol.* 1999, 290, 185–199. [CrossRef] [PubMed]

220. Swanson, M.D.; Boudreaux, D.M.; Salmon, L.; Chugh, J.; Winter, H.C.; Meagher, J.L.; Andre, S.; Murphy, P.V.; Oscarson, S.; Roy, R.; et al. Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity. *Cell* 2015, 163, 746–758. [CrossRef]

221. Nagae, M.; Mishra, S.K.; Hanashima, S.; Tateno, H.; Yamaguchi, Y. Distinct roles for each N-glycan branch interacting with mannose-binding type jacalin-related lectins Orysata and Calsepa. *Glycobiology* 2017, 27, 1104–1133. [CrossRef]

222. Ziółkowska, N.E.; Shenoy, S.R.; O’Keefe, B.R.; McMahon, J.B.; Palmer, K.E.; Dwek, R.A.; Wormald, M.R.; Wlodawer, A. Crystallographic, thermodynamic, and molecular modeling studies of the mode of binding of oligosaccharides to the potent antiviral protein griffithsin. *Proteins* 2007, 67, 661–670. [CrossRef] [PubMed]

223. Moulaei, T.; Shenoy, S.R.; Giomarelli, B.; Thomas, C.; McMahon, J.B.; Dauter, Z.; O’Keefe, B.R.; Wlodawer, A. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity. *Structure* 2010, 18, 1104–1115. [CrossRef] [PubMed]
244. Wang, Z.; Zhang, K.; Sun, X.; Tang, K.; Zhang, J. Enhancement of resistance to aphids by introducing the snowdrop lectin gene GNA into maize plants. *J. Biosci.* 2005, 30, 627–638. [CrossRef] [PubMed]

245. Hogervorst, P.A.; Ferry, N.; Gatehouse, A.M.; Wäckers, F.L.; Romeis, J. Direct effects of snowdrop lectin (GNA) on larvae of three aphid predators and fates of GNA after ingestion. *J. Insect Physiol.* 2006, 52, 614–624. [CrossRef] [PubMed]

246. Miao, J.; Wu, Y.; Xu, W.; Hu, L.; Yu, Z.; Xu, Q. The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids *Sitobion avenae*, *Schizaphis graminum*, and *Rhopalosiphum padi*. *Environ. Entomol.* 2011, 40, 743–748. [CrossRef]

247. Qi, G.; Lan, N.; Ma, X.; Yu, Z.; Zhao, X. Controlling *Myzus persicae* with recombinant endophytic fungi *Chaetomium globosum* expressing *Pinellia ternata* agglutinin: Using recombinant endophytic fungi to control aphids. *J. Appl. Microbiol*. 2011, 110, 1314–1322. [CrossRef]

248. Xiao, Y.; Wang, K.; Ding, R.; Zhang, H.; Di, P.; Chen, J.; Zhang, L.; Chen, W. Transgenic tetraploid *Isatis indigotica* expressing Bt Cry1Ac and *Pinellia ternata* agglutinin showed enhanced resistance to moths and aphids. *Mol. Biol. Rep.* 2012, 39, 485–491. [CrossRef]

249. Duan, X.; Hou, Q.; Liu, G.; Pang, X.; Niu, Z.; Wang, X.; Zhang, Y.; Li, B.; Liang, R. Expression of *Pinellia pedatisecta* lectin gene in transgenic wheat enhances resistance to wheat aphids. *Molecules* 2018, 23, 748. [CrossRef]

250. Javaid, S.; Amin, I.; Jander, G.; Mukhtar, Z.; Saeed, N.A.; Mansoor, S. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. *Sci. Rep.* 2016, 6, 34706. [CrossRef]

251. Chakraborti, D.; Sarkar, A.; Mondal, H.A.; Schuermann, D.; Hohn, B.; Sarmah, B.K.; Das, S. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect. *Plant Cell Rep.* 2008, 27, 1623–1633. [CrossRef]

252. Chakraborti, D.; Sarkar, A.; Mondal, H.A.; Das, S. Tissue expression of potent insecticidal, *Allium sativum* leaf agglutinin (ASAL) in important pulse crop, chickpea (*Cicer arietinum*) to resist the phloem feeding *Aphis craccivora*. *Transgenic Res.* 2009, 18, 529–544. [CrossRef] [PubMed]

253. Sadeghi, A.; Broeders, S.; De Greve, H.; Hernalsteens, J.P.; Peumans, W.J.; Van Damme, E.J.; Smagghe, G. Expression of garlic leaf lectin under the control of the phloem-specific *Asus1* from *Arabidopsis thaliana* protects tobacco plants against the tobacco aphid (*Myzus nicotianae*). *Pest Manag. Sci.* 2007, 63, 1215–1223. [CrossRef]

254. Yao, J.; Zhao, X.; Qi, H.; Wan, B.; Chen, F.; Sun, X.; Yu, S.; Tang, K.X. Transgenic tobacco expressing an *Arisaema heterophyllum* agglutinin gene displays enhanced resistance to aphids. *Can. J. Plant Sci.* 2004, 84, 785–790.

255. Kai, G.; Ji, Q.; Lu, Y.; Qian, Z.; Cui, L. Expression of *Monstera deliciosa* agglutinin (MDA) in tobacco confers resistance to peach-potato aphids. *Integr. Biol.* 2012, 4, 937–944. [CrossRef]

256. Al Atalah, B.; Smagghe, G.; Van Damme, E.J.M. Orysata, a jacalin-related lectin from rice, could protect plants against biting-chewing and piercing-sucking insects. *Plant Sci.* 2014, 211–222, 21–28. [CrossRef] [PubMed]

257. Ye, S.H.; Chen, S.; Zhang, F.; Wang, W.; Tian, Q.; Liu, J.Z.; Chen, F.; Bao, J.K. Transgenic tobacco expressing *Zephyranthes grandiflora* agglutinin confers enhanced resistance to aphids. *Appl. Biochem. Biotechnol.* 2009, 158, 615–630. [CrossRef] [PubMed]

258. Chang, T.; Chen, L.; Chen, S.; Cai, H.; Liu, X.; Xiao, G.; Zhu, Z. Transformation of tobacco with genes encoding *Helianthus tuberosus* agglutinin (HTA) confers resistance to peach-potato aphid (*Myzus persicae*). *Transgenic Res.* 2003, 12, 607–614. [CrossRef]

259. Sauvion, N.; Nardon, C.; Febvay, G.; Gatehouse, A.M.; Rahbé, Y. Binding of the insecticidal lectin concanavalin A in pea aphid, *Acyrthosiphon pismum* (Harris) and induced effects on the structure of midgut epithelial cells. *J. Insect Physiol.* 2004, 50, 1137–1150. [CrossRef]

260. Shahidi-Noghabi, S.; Van Damme, E.J.; Mahdian, K.; Smagghe, G. Entomotoxic action of *Sambucus nigra* agglutinin 1 in *Acyrthosiphon pisum* aphids and *Spodoptera exigua* caterpillars through caspase-3-like-dependent apoptosis. *Arch. Insect. Biochem. Physiol.* 2010, 75, 207–220. [CrossRef]

261. Van Damme, E.J.M.; Barre, A.; Rougé, P.; Peumans, W.J. Cytoplasmic/nuclear plant lectins: A new story. *Trends Plant Sci.* 2004, 9, 484–489. [CrossRef]
262. Lannoo, N.; Van Damme, E.J.M. Nucleocytoplasmic plant lectins. *Biochim. Biophys. Acta* 2010, 1800, 190–201. [CrossRef] [PubMed]

263. Delporte, A.; Van Holle, S.; Lannoo, N.; Van Damme, E.J.M. The tobacco lectin, prototype of the family of Nictaba-related proteins. *Curr. Protein Pept. Sci.* 2015, 16, 5–16. [CrossRef] [PubMed]

264. Van Holle, S.; Rougé, P.; Van Damme, E.J.M. Evolution and structural diversification of Nictaba-like genes in food crops with focus on soybean (*Glycine max*). *Ann. Bot.* 2017, 119, 901–914. [PubMed]

265. Fouquaert, E.; Peumans, W.J.; Vandekerckhove, T.T.M.; Ongenaert, M.; Van Damme, E.J.M. Proteins with an *Eucaryon*-like domain are ubiquitous in embryophyta. *BMC Plant Biol.* 2009, 9, 136. [CrossRef]

266. Esch, L.; Schaffrath, U. An update on jacalin-like lectins and their role in plant defense. *Int. J. Mol. Sci.* 2017, 18, 1592. [CrossRef] [PubMed]

267. Lannoo, N.; Peumans, W.J.; Pamel, E.V.; Alvarez, R.; Xiong, T.C.; Hause, G.; Mazars, C.; Van Damme, E.J.M. Localization and in vitro binding studies suggest that the cytoplasmic/nuclear tobacco lectin can interact in situ with high mannose and complex N-glycans. *FEBS Lett.* 2006, 580, 6329–6337. [CrossRef] [PubMed]

268. Al Atalah, B.; Fouquaert, E.; Vanderschaeghe, D.; Proost, P.; Balzarini, J.; Smith, D.F.; Rougé, P.; Lasanajak, Y.; Callewaert, N.; Van Damme, E.J.M. Expression analysis of the nucleocytoplasmic lectin ‘Orysata’ from rice in *Pichia pastoris*. *FEBS J.* 2011, 278, 2064–2079. [CrossRef] [PubMed]

269. Egermont, L.; Stefanowicz, K.; Van Damme, E.J.M. Nucleocytoplasmic plant lectins. *Front. Plant Sci.* 2016, 7, 1590. [CrossRef] [PubMed]

270. Van Holle, S.; Van Damme, E.J.M. Signaling through plant lectins: Modulation of plant immunity and beyond. *Biochem. Soc. Trans.* 2018, 46, 217–223. [CrossRef] [PubMed]

271. Stewart-Jones, G.B.; Soto, C.; Lemmin, T.; Chuang, G.Y.; Druz, A.; Kong, R.; Thomas, P.V.; Wagh, K.; Zhou, T.; Behrens, A.J.; et al. Trimeric HIV-en structures define glycan shields from clades A, B, and G. *Cell* 2016, 165, 813–826. [CrossRef] [PubMed]

272. Van Holle, S.; Smagghe, G.; Van Damme, E.J.M. Overexpression of Nictaba-like lectin genes from *Glycine max* confers tolerance toward *Pseudomonas syringae* infection, aphid infestation and salt stress in transgenic *Arabidopsis* plants. *Front. Plant Sci.* 2016, 7, 2218. [CrossRef] [PubMed]

273. Eggermont, L.; Houlé, C.; Peumans, W.J.; Pamell, E.V.; Alvarez, R.; Xiong, T.C.; Hause, G.; Mazars, C.; Van Damme, E.J.M. Characterization of a type D1A EUL-related lectin from rice expressed in *Pichia pastoris*. *Biol. Chem.* 2014, 395, 413–424. [CrossRef] [PubMed]

274. Boyd, M.R.; Gustafson, K.R.; Mcmahon, J.B.; Shoemaker, R.H.; O’Keefe, B.R.; Mori, T.; Gulakowski, R.J.; Wu, L.; Rivera, M.I.; Laurencot, C.M.; et al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. *Antimicrob. Agents Chemother.* 1997, 41, 1521–1530. [CrossRef]
282. Dey, B.; Lerner, D.L.; Lusso, P.; Boyd, M.R.; Elder, J.H.; Berger, E.A. Multiple antiviral activities of cyanovirin-N: Blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. *J. Virol.* 2000, 74, 4562–4569. [CrossRef] [PubMed]

283. Bewley, C.A.; Cai, M.; Ray, S.; Ghehrando, R.; Yamaguchi, M.; Muramoto, K. New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies. *J. Mol. Biol.* 2004, 339, 901–914. [CrossRef] [PubMed]

284. Férinr, G.; Huskens, D.; Nonnen, S.; Koharudin, L.M.; Gronenborn, A.M.; Schols, D. Broad anti-HIV activity of the *Oscillatoria agardhii* agglutinin homologue lectin family. *J. Antimicrob. Chemother.* 2014, 69, 2746–2758. [CrossRef] [PubMed]

285. Robinson, J.E.; Holton, D.; Liu, J.; McMurdo, H.; Murciano, A.; Gohd, R. A novel enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to HIV-1 envelope glycoproteins based on immobilization of viral glycoproteins in microtiter wells coated with concanavalin A. *J. Immunol. Methods* 1990, 132, 63–71. [CrossRef]

286. Bokesch, H.R.; O’Keefe, B.R.; McKeel, T.C.; Pannell, L.K.; Patterson, G.M.; Gardella, R.S.; Sower, R.C., 2nd; Turpin, J.; Watson, K.; Buckheit, R.W., Jr.; et al. A potent novel anti-HIV protein from the cultured cyanobacterium *Scytonema varium*. *Biochemistry* 2003, 42, 2578–2584. [CrossRef]

287. Gram, G.J.; Hemming, A.; Bolmstedt, A.; Jansson, B.; Olofsson, S.; Akerblom, L.; Nielsen, J.O.; Hansen, J.E. The envelope glycoproteins of HIV-1, HIV-2, and SIV purified with *Galanthus nivalis* agglutinin and detection of antibodies to envelope glycoproteins of HIV and SIV. *J. Med. Virol.* 1994, 43, 16–24. [CrossRef] [PubMed]

288. Akashi, M.; Niikawa, T.; Serizawa, T.; Hayakawa, T.; Baba, M. Capture of HIV-1 gp120 and virions by lectin-immobilized polystyrene nanospheres. *Bioconj. Chem.* 2000, 11, 2578–2584. [CrossRef]

289. Hayakawa, T.; Kawamura, M.; Okamoto, M.; Baba, M.; Niikawa, T.; Takehara, S.; Serizawa, T.; Akashi, M. Concanaavalin A-immobilized polystyrene nanospheres capture HIV-1 virions and gp120: Potential approach towards prevention of viral transmission. *J. Med. Virol.* 1998, 56, 327–331. [CrossRef]

290. No, T.B.; Chan, Y.S.; Ng, C.C.; Wong, J.H. Purification and characterization of a lectin from green split peas (*Pisum sativum*). *Appl. Biochem. Biotechnol.* 2015, 177, 1374–1385.

291. Balzarini, J.; Neyts, J.; Schols, D.; Hosoya, M.; Van Damme, E.; Peumans, W.; De Clercq, E. The mannose-specific lectins from *Cymbidium* hybrid and *Epipactis helleborine* and the (N-acetylgalcosamine)n-specific plant lectin from *Urtica dioica* are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. *Antivir. Res.* 1992, 19, 191–207. [PubMed]

292. Balzarini, J.; Schols, D.; Neyts, J.; Van Damme, E.; Peumans, W.J.; De Clercq, E. α-(1-3)- and α-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infections in vitro. *Antimicrob. Agents Chemother.* 1991, 35, 410–416. [CrossRef] [PubMed]

293. Mahmood, N.; Hay, A.J. An ELISA utilizing immobilized snowdrop lectin GNA for the detection of envelope glycoproteins of HIV and SIV. *J. Immunol. Methods* 1992, 151, 9–13. [CrossRef]

294. Gillham, G. Envelope glycoproteins of HIV-1, HIV-2, and SIV purified with *Galanthus nivalis* agglutinin induce strong immune responses. *AIDS Res. Hum. Retrovir.* 1993, 9, 431–438. [CrossRef]

295. Hammar, L.; Hirsch, I.; Machado, A.; De Mareuil, J.; Baillon, J.; Chermann, J.C. Lectin effects on HIV-1 infectivity. *Ann. N. Y. Acad. Sci.* 1994, 724, 166–169. [CrossRef]
Balzarini, J.; Huse, S.; Vermeire, K.; Princen, K.; Aquaro, S.; Perno, C.-F.; De Clercq, E.; Egberink, H.; Vandendooren, G.; Peumans, W.; et al. Mannose-specific plant lectins from the amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2004, 48, 3858–3870. [CrossRef] [PubMed]

Weiler, B.E.; Schröder, H.C.; Stefanovich, V.; Stewart, D.; Forrest, J.M.; Allen, L.B.; Bowden, B.J.; Kreuter, M.H.; Voth, R.; Müller, W.E. Sulphoevernan, a polyanionic polysaccharide, and narcissus lectin potently inhibit human immunodeficiency virus infection by binding to viral envelope protein. J. Gen. Virol. 1990, 71, 1957–1963. [CrossRef] [PubMed]

Gao, Z.; Zheng, B.; Wang, W.; Li, Q.; Yuan, Q. Cloning and functional characterization of a GNA-like lectin from Chinese narcissus (Narcissus tazetta var. Chinensis Roem.). Physiol. Plant. 2011, 142, 193–204. [CrossRef] [PubMed]

An, J.; Liu, J.Z.; Wu, C.F.; Li, J.; Dai, L.; Van Damme, E.; Balzarini, J.; De Clercq, E.; Chen, F.; Bao, J.K. Anti-HIV I/II activity and molecular cloning of a novel mannosie/sialic acid-binding lectin from rhizome of Polygonatum corytome Hua. Acta Biochim. Biophys. Sin. (Shanghái) 2006, 38, 70–78. [CrossRef] [PubMed]

Swanson, M.D.; Winter, H.C.; Goldstein, I.J.; Markovitz, D.M. A lection isolated from bananas is a potent inhibitor of HIV replication. J. Biol. Chem. 2010, 285, 8646–8655. [CrossRef] [PubMed]

Hooorelbeke, B.; Van Damme, E.J.; Rougé, P.; Schols, D.; Van Laethem, K.; Fouquaert, E.; Balzarini, J. Differences in the mannose oligomer specificities of the closely related lectins from Galanthus nivalis and Zea mays strongly determine their eventual anti-HIV activity. Retrovirology 2011, 8, 10. [CrossRef] [PubMed]

Huang, X.; Jin, W.; Griffin, G.E.; Shattock, R.J.; Hu, Q. Removal of two high-mannose N-linked glycans on gp120 renders human immunodeficiency virus 1 largely resistant to the carbohydrate-binding agent griffithsin. J. Gen. Virol. 2011, 92, 2367–2373. [CrossRef]

Hirahayama, M.; Shibata, H.; Imamura, K.; Sakaguchi, T.; Hori, K. High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120. Mar. Biotechnol. 2016, 18, 215–231. [CrossRef]

Witvrouw, M.; Fikker, V.; Hantson, A.; Panneckouque, C.; O’Keefe, B.R.; McMahon, J.; Stamatasos, L.; de Clercq, E.; Bolmstedt, A. Resistance of human immunodeficiency virus type 1 to the high-mannose binding agents cyanovirin N and concanavalin A. J. Virol. 2005, 79, 7777–7784. [CrossRef]

Balzarini, J.; Van Laethem, K.; Peumans, W.J.; Van Damme, E.J.; Bolmstedt, A.; Gago, F.; Schols, D. Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. J. Virol. 2006, 80, 8411–8421. [CrossRef]

Balzarini, J.; Van Laethem, K.; Hatse, S.; Vermeire, K.; De Clercq, E.; Peumans, W.; Van Damme, E.; Vandamme, A.-M.; Böhlmstedt, A.; Schols, D. Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins. J. Virol. 2004, 78, 10617–10627. [CrossRef] [PubMed]

Pancerce, M.; Zhou, T.; Druz, A.; Georgiev, I.S.; Soto, C.; Gorman, J.; Huang, J.; Acharya, P.; Chuang, G.-Y.; Ofek, G.; et al. Structure and immune recognition of trimeric prefusion HIV1 Env. Nature 2014, 514, 455–461. [CrossRef] [PubMed]

Balzarini, J.; Van Laethem, K.; Hatse, S.; Froeyen, M.; Peumans, W.; Van Damme, E.; Schols, D. Carbohydrate-binding agents cause deletions of highly conserved glycosylation sites in HIV gp120: A new therapeutic concept to hit the Achilles heel of HIV. J. Biol. Chem. 2005, 280, 41005–41014. [CrossRef] [PubMed]

Balzarini, J.; Van Laethem, K.; Hatse, S.; Froeyen, M.; Van Damme, E.; Bolmstedt, A.; Peumans, W.; De Clercq, E.; Schols, D. Marked depletion of glycosylation sites of HIV-1 gp120 under selective pressure by the mannose-specific plant lectins of Hippeastrum hybrid. and Galanthus nivalis. Mol. Pharmacoal. 2005, 67, 1556–1565. [CrossRef] [PubMed]

Balzarini, J. Carbohydrate-binding agents: A potential future cornerstone for the chemotherapy of enveloped viruses? Antivir. Chem. Chemother. 2007, 18, 1–11. [CrossRef] [PubMed]

Balzarini, J. The α(1,2)–mannosidase I inhibitor I-deoxymannojirimycin potentiates the antiviral activity of carbohydrate-binding agents against wild-type and mutant HIV-1 strains containing glycan deletions in gp120. FEBS Lett. 2007, 581, 2060–2064. [CrossRef] [PubMed]
318. Férir, G.; Huskens, D.; Palmer, K.E.; Boudreaux, D.M.; Swanson, M.D.; Markovitz, D.M.; Balzarini, J.; Schols, D. Combinations of griffithsin with other carbohydrate-binding agents demonstrate superior activity against HIV type 1, HIV type 2, and selected carbohydrate-binding agent-resistant HIV type 1 strains. *AIDS Res. Hum. Retrovir.* 2012, 28, 1513–1523. [CrossRef] [PubMed]

319. Lam, Y.W.; Ng, T.B. A monomeric mannose-binding lectin from inner shoots of the edible chive (*Allium tuberosum*). *J. Protein Chem.* 2001, 20, 361–366. [CrossRef]

320. Wang, H.X.; Ng, T.B. Examination of lectins, polysaccharopeptide, polysaccharide, coumarin and trypsin inhibitors for inhibitory activity against human immunodeficiency virus reverse transcriptase and glycosylases. *Planta Med.* 2001, 67, 669–672. [CrossRef]

321. Pollicita, M.; Schols, D.; Aquaro, S.; Peumans, W.J.; Van Damme, E.J.; Perno, C.E.; Balzarini, J. Carbohydrate-binding agents (CBAs) inhibit HIV-1 infection in human primary monocyte-derived macrophages (MDMs) and efficiently prevent MDM-directed viral capture and subsequent transmission to CD4+ T lymphocytes. *Virology* 2008, 370, 382–391. [CrossRef]

322. Alexandre, K.B.; Gray, E.S.; Mufhandu, H.; McMahon, J.B.; Chakauya, E.; O’Keefe, B.R.; Chikwamba, R.; Lafont, V.; Dornand, J.; Covassin, L.; Liautard, J.P.; Favero, J. The lectin jacalin triggers CD4-mediated lymphocyte binding by forming a protein-protein interaction. *J. Leukoc. Biol.* 1996, 59, 691–696. [CrossRef] [PubMed]

323. Mitchell, C.A.; Ramessar, K.; O’Keefe, B.R. Antiviral lectins: Selective inhibitors of viral entry. *Antivir. Res.* 2017, 142, 37–54. [CrossRef] [PubMed]

324. Lafont, V.; Dornand, J.; Covassin, L.; Liautard, J.P.; Favero, J. The lectin jacalin trigers CD4-mediated lymphocyte binding by forming a protein-protein interaction. *J. Leukoc. Biol.* 1996, 59, 691–696. [CrossRef] [PubMed]

325. Gondim, A.C.S.; Romero-Canelón, I.; Sousa, E.H.S.; Blindauer, C.A.; Butler, J.S.; Romero, M.J.; Sanchez-Cano, C.; Sousa, B.L.; Chaves, R.P.; Nagano, C.S.; et al. The potent anti-cancer activity of *Dioclea lasiocarpa* lectin. *Inorg. Biochem.* 2017, 175, 179–189. [CrossRef] [PubMed]
Chan, Y.S.; Yu, H.; Xia, L.; Ng, T.B. *Lens culinaris* lectin promotes *BECN1* expression and induces autophagy in malignant melanoma by regulation of miR1290. *OncoTargets Ther.* 2017, 10, 4569–4577. [CrossRef] [PubMed]

Wu, L.; Liu, T.; Xiao, Y.; Li, X.; Zhu, Y.; Zhao, Y.; Bao, J.; Wu, C. *Polygonatum odoratum* lectin induces apoptosis and autophagy by regulation of microRNA-1290 and microRNA-15a-3p in human lung adenocarcinoma A549 cells. *Int. J. Biol. Macromol.* 2016, 85, 217–226. [CrossRef] [PubMed]

Ouyang, L.; Chen, Y.; Wang, X.Y.; Lu, R.F.; Zhang, S.Y.; Tian, M.; Xie, T.; Liu, B.; He, G. *Polygonatum odoratum* lectin induces apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK pathway in human MCF-7 breast cancer cells. *Phytomedicine* 2014, 21, 1658–1665. [CrossRef] [PubMed]

Li, C.; Chen, J.; Lu, B.; Shi, Z.; Wang, H.; Zhang, B.; Zhao, K.; Qi, W.; Bao, J.; Wang, Y. Molecular switch of Akt in *Polygonatum odoratum* lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. *PLoS ONE* 2014, 9, e101526. [CrossRef]

Liu, B.; Zhang, B.; Min, M.W.; Bian, H.J.; Chen, L.F.; Liu, Q.; Bao, J.K. Induction of apoptosis by *Polygonatum odoratum* lectin and its molecular mechanisms in murine fibrosarcoma L929 cells. *Biochim. Biophys. Acta* 2009, 1790, 840–844. [CrossRef]

Naik, S.; Rawat, R.S.; Khandai, S.; Kumar, M.; Jena, S.S.; Vijayalakshmi, M.A.; Kumar, S. Biochemical characterisation of lectin from Indian hyacinth plant bulbs with potential inhibitory action against human cancer cells. *Int. J. Biol. Macromol.* 2017, 105, 1349–1356. [CrossRef]

Sindhura, B.R.; Hegde, P.; Chachadi, V.B.; Inamdar, S.R.; Swamy, B.M. High mannose N-glycan binding lectin from *Renusatia vivipara* (RVL) limits cell growth, motility and invasiveness of human breast cancer cells. *Biomed. Pharmacother.* 2017, 93, 654–665. [CrossRef] [PubMed]

Liu, T.; Wu, L.; Wang, D.; Wang, H.; Chen, J.; Yang, C.; Bao, J.; Wu, C. Role of reactive oxygen species-mediated MAPK and NF-kB activation in *Polygonatum cyrtonema* lectin-induced apoptosis and autophagy in human lung carcinoma A549 cells. *J. Biochem.* 2016, 160, 315–324. [CrossRef] [PubMed]

Liu, B.; Wu, J.M.; Li, J.; Liu, J.J.; Li, W.W.; Li, C.Y.; Xu, H.L.; Bao, J.K. *Polygonatum cyrtonema* lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways. *Biochimie* 2010, 92, 1934–1938. [CrossRef] [PubMed]

Liu, B.; Cheng, Y.; Bian, H.J.; Bao, J.K. Molecular mechanisms of *Polygonatum cyrtonema* lectin-induced apoptosis and autophagy in cancer cells. *Autophagy* 2009, 5, 253–255. [CrossRef] [PubMed]

Liu, B.; Cheng, Y.; Zhang, B.; Bian, H.J.; Bao, J.K. *Polygonatum cyrtonema* lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. *Cancer Lett.* 2009, 275, 54–60. [CrossRef]

Feng, L.X.; Sun, P.; Mi, T.; Liu, M.; Liu, W.; Yao, S.; Cao, Y.M.; Yu, X.L.; Wu, W.Y.; Jiang, B.H.; et al. Agglutinin isolated from *Arisena heterophyllum* Blume induces apoptosis and autophagy in A549 cells through inhibiting PI3K-Akt pathway and inducing ER stress. *Clin. J. Nat. Med.* 2016, 14, 856–864.

Chan, Y.S.; Yu, H.; Xia, L.; Ng, T.B. Lectin from green speckled lentil seeds (*Lens culinaris*) triggered apoptosis in nasopharyngeal carcinoma cell lines. *Chin. Med.* 2015, 10, 25. [CrossRef]

Kumar, S.; Jitendra, K.; Singh, K.; Kappor, V.; Sinha, M.; Xess, I.; Das, S.N.; Sharma, S.; Singh, T.P.; Dey, S. Biological properties and characterization of ASL50 protein from aged *Allium sativum* bulbs. *Appl. Biochem. Biotechnol.* 2015, 176, 1914–1927. [CrossRef]

Shi, Z.; Chen, J.; Li, C.Y.; An, N.; Wang, Z.J.; Yang, S.L.; Huang, K.E.; Bao, J.K. Antitumor effects of concanavalin A and *Sophora flavescens* lectin in vitro and in vivo. *Acta Pharmacol. Sin.* 2014, 35, 248–256. [CrossRef]

Amin, A.R.; Thakur, V.S.; Gupta, K.; Jackson, M.W.; Harada, H.; Agarwal, M.K.; Shin, D.M.; Wald, D.N.; Agarwal, M.L. Restoration of p53 functions protects cells from concanavalin A-induced apoptosis. *Mol. Cancer Ther.* 2010, 9, 471–479. [CrossRef]
354. Liu, B.; Min, M.W.; Bao, J.K. Induction of apoptosis by concanavalin A and its molecular mechanisms in cancer cells. *Autophagy* **2009**, *5*, 432–433. [CrossRef] [PubMed]

355. Silva, F.O.; Santos, P.N.; Figueiróa, E.O.; de Melo, C.M.; de Andradre Lemoine Neves, J.K.; Arruda, F.V.; Cajazeiras, J.B.; do Nascimento, K.S.; Teixeira, E.H.; Cavada, B.S.; et al. Antiproliferative effect of *Canavalia brasiliensis* lectin on B16F10 cells. *Res. Vet. Sci.* **2014**, *96*, 276–282. [CrossRef] [PubMed]

356. Zhou, W.; Gao, Y.; Xu, S.; Yang, Z.; Xu, T. Purification of a mannose-binding lectin Pinellia ternata agglutinin and its induction of apoptosis in Bel-7404 cells. *Protein Expr. Purif.* **2014**, *93*, 11–17. [CrossRef] [PubMed]

357. Hayashi, K.; Walde, P.; Miyazaki, T.; Sakayama, K.; Nakamura, A.; Kameda, K.; Masuda, S.; Umakoshi, H.; Kato, K. Active targeting to osteosarcoma cells and apoptotic cell death induction by the novel lectin Eucheuma serra agglutinin isolated from a marine red alga. *J. Drug Deliv.* **2012**, *2012*, 842785. [CrossRef] [PubMed]

358. Fukuda, Y.; Sugahara, T.; Ueno, M.; Fukuta, Y.; Ochi, Y.; Akiyama, K.; Miyazaki, T.; Masuda, S.; Kawakubo, A.; Kato, K. The anti-tumor effect of *Eucheuma serra* agglutinin on colon cancer cells in vitro and in vivo. *Anticancer Drugs* **2006**, *17*, 943–947. [CrossRef] [PubMed]

359. Yau, T.; Dan, X.; Ng, C.C.W.; Ng, T.B. Lectins with potential for anti-cancer therapy. *Molecules* **2015**, *20*, 3791–3810. [CrossRef] [PubMed]

360. Estrada-Martínez, L.E.; Moreno-Celis, U.; Cervantes-Jiménez, R.; Ferriz-Martínez, R.A.; Blanco-Labra, A.; García-Gasca, T. Plant lectins as medical tools against digestive system cancers. *Int. J. Mol. Sci.* **2017**, *18*, 1403. [CrossRef] [PubMed]

361. Lagarda-Dias, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. *Int. J. Mol. Sci.* **2017**, *18*, 1242. [CrossRef] [PubMed]

362. Poiroux, G.; Barre, A.; Rougé, P.; Benoist, H. Targeting glycosylation aberrations to improve the efficiency of cancer phototherapy. *Curr. Cancer Drug Targets* **2018**. [CrossRef] [PubMed]

363. François, K.O.; Balzarini, J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. *Mol. Res. Rev.* **2012**, *32*, 349–387. [CrossRef] [PubMed]

364. Mahalingam, A.; Geonnotti, A.R.; Balzarini, J.; Kiser, P.F. Activity and safety of synthetic lectins based on benzoboroxole-functionalized polymers for inhibition of HIV entry. *Mol. Pharm.* **2011**, *8*, 2465–2475. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).