Research Article

Nutrition in Herbal Plants Used in Saudi Arabia

Hanan Almahasheer

Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia

Correspondence should be addressed to Hanan Almahasheer; halmahasheer@iau.edu.sa

Received 4 October 2019; Accepted 30 March 2020; Published 28 April 2020

Academic Editor: Roland Bitsch

Copyright © 2020 Hanan Almahasheer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Herbs are used for centuries by many people worldwide. This study derives insights into the use and content of herbs that are consumed among Saudi citizens. An online questionnaire was distributed to understand the basic information about Saudi citizens’ preference and daily patterns of herbal plants that are usually used as drinks. Moreover, concentrations of fourteen elements in twenty-one herbal plants that were indicated in the previous questionnaire were collected from the local market and then analyzed using an Inductively Coupled Plasma Emission Spectrometry (ICP). Mint leaves were significantly higher in most of the nutrients analyzed, and mint was the most popular drink among participants, followed by green tea and anise. Most of the citizens preferred to drink one cup only at home and believed that herbs are good for their health and potentially could help them to sleep better. The outcomes derived from this research could help future assessments of diet patterns among Saudi citizens.

1. Introduction

Herbal plants, hereafter, herbs, are one of the most important sources of many elements that are vital for humans and animals’ diet and are used to prevent or treat diseases. These elements are necessary nutrients to their lives and are, therefore, needed in food as the body cannot synthesize them [1]. Herbs play an important role in politics, romance, religion, and health [2], and they are still used by millions of people globally, in particular as medicine as there are more than 50 elements considered as a major component of enzymes and proteins [3]. And optimal uptakes of nutrients may reduce health risk [4]; therefore, their use is increasing globally due to their low side effects when used moderately [5]. Hence, knowing the exact elemental composition of food and other products is important to understand the nutritive value [6], while the use of low nutritive refined food products may affect health [7]. Moreover, some of these are essential nutrients to a certain limit, e.g., iron and copper, whereas others, e.g., lead and cadmium, are poisonous [5].

Most of the herbs are naturally grown in many regions around the planet and used from ancient times [8]. They are also used for culinary [9] cosmetics [10–12], and up to 80% of the world’s population depend on plant-derived drugs for medical purposes [13]. Also, green tea is a good example of the use of herbs that started for centuries in China and Japan [6] and is still used nowadays. However, for safety reasons, it is advisable to assess different pollutants before delivering those herbs to the end user (consumer) [14].

Numerous attempts have been made to determine the element’s content in plants around the world, e.g., Nigeria [15] and Malaysia [16]. However, a quick search in Scopus with the keywords “herbal plant” and “nutrient” revealed that most of the published papers are from Asia, i.e., India, China, Iran, and Malaysia. Saudi Arabia’s market is rich with various herbal plants that citizens are using as “traditional medicine,” many of those are coming from Asia and Africa, while the rest are harvested locally. Studies concerning elemental content of these herbs that are acquired from the Saudi market are rare, whereas herbal preference among citizens and their knowledge base have not hitherto been performed. As a result, the outcomes of this research would serve as a base for further assessments related to herbal plants in Saudi Arabia and describe patterns of practices among Saudi citizens.
2. Materials and Methods

2.1. Questionnaire. To assess the public preference regarding herbal plants that are usually used on a daily basis by people in Saudi Arabia, a survey was carried out online in 2018. The participants were asked before starting the survey if they drink herbal tea; if no, the survey was terminated. The panel respondents who were above 18 years old were invited to participate via Google survey online (https://gsuite.google.com/products/forms/). However, only 44 participants were under 18 which corresponds to 4% only; therefore, their answers were not excluded from the results. Demographic characteristics (i.e., questions about sex, age, and educational stage) were asked to identify the range of participants) are shown in Supplementary Table S1. The questionnaire was designed to include the following: From where do you get your herbs, why do you drink herbal tea, does it help you sleep, where do you drink it, how many cups per day, how many scoops of the herb do you use per cup, and which herbs do you drink, along with options to choose from which are in Supplementary Table S2. The questionnaire was in the Arabic language; then, the results were translated to English.

2.2. Collection of the Samples. Twenty-one herbal plants that were indicated in the previous questionnaire (Table 1 and Figure 1) were collected from a local market in Dammam, Saudi Arabia, in 2018. The material was already dried; therefore, three replicated samples \((n=3)\) from each herb were directly ground in an agate mortar. The scientific name and family of each herb were further investigated using Encyclopedia Britannica (http://www.britannica.com) and Herbal Encyclopedia (https://www.cloverleaffarmherbs.com).

2.3. Chemical Analysis and Data Quality. Plant samples were already dried, then ground using a granite mortar, and photographed; then, 0.5 grams of the plant sample (i.e., leaves, stem, or seeds) was digested with 5 mL of concentrated HNO3 and 2 mL of H2O2 in polyethylene tubes at digestion systems for 2 hours at 100 °C [17]. The digested samples were left to cool, then diluted to 45 mL with Milli-Q water (18.2 \(\Omega/cm\)), then filtered with a Whatman filter paper of 44-micron size. Concentrations of fourteen elements: calcium (Ca), chromium (Cr), copper (Cu), iron (Fe), iodine (I), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), selenium (Se), and zinc (Zn), were analyzed using Inductively Coupled Plasma Emission Spectrometry (Shimadzu, model 9820). To confirm the quality of the analysis, replicates and PanReac AppliChem multielement standard solution between the 20 samples were used. The analytical recovery of the standards and the duplicated samples is reported in Table 1.

2.4. Statistical Analysis. Descriptive statistics and general linear models were used to test the effects of differences among herbs for every single element as well as Tukey’s HSD (honestly significant difference) post hoc test was used to assess pairwise differences. Moreover, assuming that the average consumption of herbs is one spoon equivalent of 0.5 g, the estimated dietary intake (mg day\(^{-1}\)) based on 70 kg body weight was calculated by dividing the nutrient concentration (mg kg\(^{-1}\)) by 70. All statistics were computed using JMP v12 (Table 2).

3. Results

The range of participants who answered the online survey that was distributed through the social media was from 12 to
70 years old, with about 1200 participants in about 10 days (only 44 participants were under 18 years old which corresponds to 4% only; therefore, their answers were not excluded from the results). Female participants were the highest comprising about 77%, while male participants were only 23%. Details of age and sex along with the education

Figure 1: Images of herbal plants acquired and analyzed, which correspond to plants in Table 1.
level of participants are summarized in Supplementary Table S1.

The majority of participants, i.e., 75% of the participants, have their herbal tea at home, and 22% of the participants drink it anywhere, whereas only 2% and 1% have it at the coffee shop or at work. Moreover, 79% of the participants believe that drinking herbal tea is good for health, while 15% prefer it just for the taste, 2% chose it for the smell, and 4% have other reasons. Interestingly, about 83% answered yes or maybe to the question about if they believe if the herbal tea would help them to sleep, while only 18% answered with no. Additionally, about 58% answered that they get it from their mothers or herb specialists, whereas 43% from the supermarket (Figure 2 and Supplementary Table S2). Furthermore, 71% (i.e., 852 participants) of the 1200 preferred to drink only one cup of herb a day; 60% out of those (852 participants) prepared it with only one spoon, 8% prepared it using two spoons, and only 3% used three spoons. Moreover, 20% (i.e., 240 participants) of 1200 preferred to drink two cups of herb a day; 20% of those (240 participants) prepared it with only one spoon, 5% prepared it using two spoons, and only 2% used three spoons. Finally, only 28 participants preferred three cups a day, and 1%,

Table 2: Summary of certified standards and the duplicated samples measured, along with the selected wavelength of each element analyzed.

Element	Symbol	Wavelength	Standard	% Recovery
Calcium	Ca	220.86	99	86
Chromium	Cr	205.55	100	113
Copper	Cu	261.84	98	98
Iron	Fe	259.94	101	82
Iodine	I	178.28	112	89
Potassium	K	766.49	86	93
Magnesium	Mg	279.55	98	120
Manganese	Mn	260.57	96	88
Molybdenum	Mo	202.03	102	100
Sodium	Na	589.59	87	94
Nickel	Ni	231.60	100	94
Phosphorus	P	213.62	96	86
Selenium	Se	203.99	95	89
Zinc	Zn	213.86	98	95

Figure 2: Analyses of survey questions (from where do you get your herbs, why do you drink herbal tea, does it help you sleep, and where do you drink it?).
0.3%, and 0.8% preferred one, two, and three spoons per cup, respectively (Figure 3 and Supplementary Table S2).

The majority of the Saudi participants (about 85%) preferred to drink mint, followed by 69% favoring green tea and then 59% with anise. Moreover, Chamomile, Cinnamomum, Sage, Roselle, Thyme, Marjoram, and Fennel were intermediate with 44, 31, 30, 26, 22, 17, and 16% respectively while the rest (i.e., rose, curcuma, mugworts, ajwain, star anise, lemon balm, olive leaves, licorice, laurel leaf, maidenhair, and dried black lime) were ≤10% (Figure 4).

Most of the elements analyzed, i.e., Ca, Cu, Fe, Cr, Mn, Ni, and Se, were significantly higher in mint, maidenhair, green tea, dried black lime, and laurel leaf whereas Zn, Na, and Mg were significantly higher in mugworts, and K was significantly higher in both mugworts and curcuma. Moreover, P, Mo, and I were significantly higher in lemon balm, dried black lime, and mint, respectively (Table 3, Tukey’s HSD, P < 0.05).

4. Discussion

The Recommended Dietary Allowance (RDA) is the sufficient amount of required nutrients that are needed for healthy individuals, which are established by the Food and Nutrition Board [18]. Herbal plants are one of the major resources of these nutrients and, therefore, the amount of nutrients in plants is one of the criteria that makes it favorable to use [6], although the paucity of these nutrients can lead to disease [1]. Many of them are essential nutrients for humans; e.g., iron is basic to hemoglobin and many enzymes, while calcium and phosphorous are essential
Table 3: Average ± standard error (SE) of fourteen elemental concentrations (mg kg⁻¹) for twenty-one herbs (n = 3) collected from Saudi Arabia.

Culinary Herb	Ca	Cr	Cu	Fe	Mn	Mg	Mo	Na	Ni	P	Se	Zn
Sage	339	376	340	170	197	146	20	998	388	1127	981	247
Ajwain	345	269	159	724	1152	556	30	242	333	840	569	116
Anise	397	555	1087	914	1503	463	30	1303	332	1447	730	56
Chamomile	323	308	360	1165	3835	981	2	416	746	309	580	190
Cinnamonum	309	69	608	2213	492	327	8	342	227	592	388	121
Coreuma	280	178	550	1213	997	15	8	327	227	592	388	121
Dried black lime	293	253	6737	1014	834	1569	30	7467	3050	1257	1317	251
Fennel	312	593	8750	1980	516	2488	30	2488	340	1587	916	197
Green tea	315	999	7073	990	813	1267	41	8433	2660	1230	1297	488
Laurel leaf	2853	619	1011	834	1157	6273	46	2660	2677	1220	1287	244
Lemon balm	433	555	1227	872	140	726	6	1555	1466	1763	1200	258
Licorice	416	823	3847	2560	196	608	10	3067	472	1110	944	225
Maidenhair	331	573	337	196	140	808	10	3067	472	1110	1340	257
Marjoram	425	245	2187	1280	123	520	46	858	885	1353	874	257
Mint	327	772	1040	852	1313	2424	69	3047	1287	3130	1343	257
Mugworts	560	208	682	206	1237	1427	19	1427	655	1320	300	304
Olive leaves	453	225	883	2467	971	437	10	407	378	884	824	171
Rose	143	77	859	367	126	418	9	167	86	9	244	243
Roselle	419	120	190	1490	472	54	26	427	12	254	97	97
Star anise	191	395	1122	514	352	34	5	162	5	1055	1045	219
Thyme	194	1587	4183	871	604	292	3	1600	1055	1045	1045	219
ratio	22	35	38	67	38	17	9	38	10	39	43	43

The results (F ratio and P value: * = 0.05 > P > 0.01; ** = P < 0.01) from ANOVA. Different letters a, b, c, and d indicate significant differences among different herbs for every single element (Tukey’s HSD multiple comparison post hoc test, P < 0.05).
Table 4: Median nutrient intake values by herbs based on 70 kg body weight (mg day$^{-1}$).

Herb	Ca	Cr	Cu	Fe	I	K	Mg	Mn	Mo	Na	Ni	P	Se	Zn
Sage	6	5	5	6	17	27	21	2	8	14	6	16	14	4
Ajwain	4	2	5	2	8	15	3	2	5	5	4	6	7	3
Anise	7	4	10	5	15	132	21	2	7	18	5	21	10	3
Chamomile	5	4	4	5	17	55	14	2	6	11	4	15	8	3
Cinnamomum	5	2	2	1	9	32	4	2	5	6	2	7	6	2
Curcuma	4	3	2	4	8	174	10	2	5	5	3	9	5	2
Dried Black lime	40	20	43	37	33	97	15	12	18	105	40	19	19	4
Fennel	9	5	9	4	17	124	28	3	8	49	5	23	13	3
Green tea	37	18	45	37	33	101	14	12	18	120	41	17	19	4
Laurel leaf	39	19	42	35	31	91	15	12	17	91	38	17	18	4
Lemon Balm	8	6	5	8	23	17	5	2	10	2	1	24	17	4
Licorice	22	6	12	9	14	54	37	3	9	39	7	16	13	3
Maidenhair	40	20	48	40	34	110	15	12	19	133	44	19	19	4
Marjoram	4	5	6	6	16	30	18	2	7	11	5	17	12	3
Mint	40	20	48	39	34	111	15	12	19	137	44	18	19	4
Mugworts	17	8	23	11	22	183	88	5	13	219	9	21	19	4
Olive leaves	8	3	7	3	13	41	14	2	6	5	5	13	13	3
Rose	2	2	1	1	3	8	9	1	3	8	2	6	2	1
Roselle	5	5	6	6	17	28	21	3	8	9	6	15	14	4
Star anise	3	2	3	3	5	18	7	2	3	1	2	6	4	1
Thyme	22	12	40	30	30	85	15	12	15	63	30	16	16	3
Males (9 to >70 y)*	1000–1300	0.03–0.04	0.07–0.09	8–11	0.1–0.2	4500–4700	240–420	1.9–2.3	0.03–0.05	1200–1500	—	700–1250	0.1	8–11
Females (9 to >70 y)*	1000–1300	0.02–0.03	0.07–0.09	8–18	0.1–0.2	4500–4700	240–320	1.6–1.8	0.03–0.05	1200–1500	—	700–1250	0.1	8–9

*RDA values from [20]
components to bones, magnesium is important to all biosynthetic processes, and zinc is basic to many enzymes that are involved in metabolic pathways [19].

The estimated dietary intake (mg day$^{-1}$) in this study compared to the RDA varied among different elements. That is, Ca, K, Mg, Na, P, and Zn were within the recommended range of intake for males and females (Table 4) while Cr, Cu, I, Mo, and Se were higher than the range of the reported values and finally Fe and Mn were intermediate with seven herbs (i.e., black lime, green tea, laurel leaf, maidenhair, mint, mugworts, and thyme; Table 4) out of twenty-one being higher than the RDA values reported by Dell Valle et al. [20].

Moreover, in this study, two-thirds of the participants were females, indicating a higher rate of use among females; this rate of female users was observed by the findings of Alghamdi et al. [21]. The growing interest of females to herbal drinks, e.g., tea, might be due to the daily news of their benefits that ranged from the protection of hip structure in elderly women [22] to cancer potential treatments and risks caused by diabetes [23].

While there is no explanation why the majority drink only one cup of herbal tea preferring it at home compared to the work place, and around half of the participants acquire it from their moms or specialists, yet, in general, about 79% of the participants believed that herbal tea is good for their health compared to smell and taste, and 83% believed that it may help them sleep. Similarly, a recent study on two hundred patients in Saudi Arabia found that 76% of the patients with chronic illness had used herbal medicine [21], compared to a lower range of 10 to 52% in western countries [24]. And a higher range of migrants of about 75% uses herbal medicine in the west [25].

Mint was the most popular herb among Saudi citizens, followed by green tea and anise. In Australia, mint comes as number seven of most sold herbs and spices in the supermarket for 2013 with about $215,150 of sales value [26]. However, many studies documented the effect of green tea as a potential treatment preventing cancer [27, 28]. Furthermore, most of the nutrients, i.e., Ca, Cu, Fe, Cr, Mn, Ni, and Se, were significantly higher in mint, maidenhair, green tea, dried black lime, and laurel leaf, whereas nutrients’ concentrations in this study, particularly, Zn, Na, K, and Mg, were significantly higher in mugworts compared to other herbs, which is coherent with early Chinese beliefs of the medical benefits of mugworts, as well as France in the middle ages, where they used it to protect babies from cold [2].

Nevertheless, these herbs must be used with care, as many reports have documented the presence of toxic heavy metals and undeclared pollutants, e.g., in Asia [29–31] and Africa [32, 33].

5. Conclusion

The concentration of nutrients carried out was depending on the plant species analyzed; most of the herbs analyzed were within the RDA limits. However, participants who selected many cups per day or many spoons per cup could be at risk of bioaccumulation. In this study, mint leaves were significantly higher in most of the nutrients analyzed, and mint was the most popular drink among Saudi citizens, followed by green tea and anise.

Data Availability

The data used to support the findings of this study are included within the supplementary information files.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

The author is thankful to Science College Research Units at Imam Abdulrahman Bin Faisal University (IAU), for providing chemicals and analyzing samples in the ICP unit, in particular, Amna Alharbi and Rasha Almalih. The author is also thankful to Sarah Alhajri for purchasing the used herbs from the local market.

Supplementary Materials

Supplementary Tables S1 and S2: questions about sex, age, and educational stage were asked to identify the range of participants. (Supplementary Materials)

References

[1] A. Lesniewicz, K. Jaworska, and W. Zyrnicki, “Macro- and micro-nutrients and their bioavailability in polish herbal medicaments,” Food Chemistry, vol. 99, no. 4, pp. 670–679, 2006.
[2] J. R. Nuss and P. Ferretti, “Growing herbs in the home garden,” in Cooperative Extension Services of the Northeast States, Embrapa Hortaliças, Brasilia, Brazil, 1978.
[3] E. I. Obiajunwa, A. C. Adebajo, and O. R. Omobuwajo, “Essential and trace element contents of some Nigerian medicinal plants,” Journal of Radioanalytical and Nuclear Chemistry, vol. 252, no. 3, pp. 473–476, 2002.
[4] W. Mertz, “Trace minerals and atherosclerosis,” Federation proceedings, vol. 41, no. 11, pp. 2807–2812, 1982.
[5] Ş. Tokaloğlu, “Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis,” Food Chemistry, vol. 134, no. 4, pp. 2504–2508, 2012.
[6] S. Nookabkaew, N. Rangkadilok, and J. Satayavivad, “Determination of trace elements in herbal tea products and their infusions consumed in Thailand,” Journal of Agricultural and Food Chemistry, vol. 54, no. 18, pp. 6939–6944, 2006.
[7] M. Öross, “Determination of mineral contents of Turkish herbal tea (Salvia aucharvi var. canescens) at different infusion periods,” Journal of Medicinal Food, vol. 8, no. 1, pp. 110–112, 2005.
[8] M. M. ÖübMe and M. Akbulut, “Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea,” Food Chemistry, vol. 106, no. 2, pp. 852–858, 2008.
[9] A. Jakesvicius, M. Carew, C. Mistry, H. Modjtabahedi, and E. Opara, “Culinary herbs and spices: an investigation of their effect on the growth of, and COX-2 expression in, HCA-7 colorectal cancer cells,” Nutrients, vol. 9, no. 10, 2017.
[10] O.-S. Lee, H.-H. Kang, and S.-H. Han, "Oriental herbs in cosmetics: plant extracts are reviewed for their potential as cosmetic ingredients," *Cosmetics and Toiletries*, vol. 112, no. 1, pp. 57–64, 1997.

[11] P. Shivanand, M. Nilam, and D. Viral, "Herbs play an important role in the field of cosmetics," *International Journal of PharmTech Research*, vol. 2, no. 1, pp. 632–639, 2010.

[12] A. A. Joshi, "Formulation and evaluation of polyherbal hair oil," *International Journal of Green Pharmacy (IJGP)*, vol. 11, no. 1, 2017.

[13] O. Akerele, "Nature’s medicinal bounty: don’t throw it away," *World health forum*, vol. 14, no. 4, pp. 390–395, 1993.

[14] M. A. Maobe, E. Gatebe, L. Gitu, and H. Rotich, "Profile of heavy metals in selected medicinal plants used for the treatment of diabetes, malaria and pneumonia in Kisii region, Southwest Kenya," *Global Journal of Pharmacology*, vol. 6, no. 3, pp. 245–251, 2012.

[15] A. M. O. Ajasa, M. O. Bello, A. O. Ibrahim, I. A. Ogunwande, and N. O. Olawore, "Heavy trace metals and macronutrients status in herbal plants of Nigeria," *Food Chemistry*, vol. 85, no. 1, pp. 67–71, 2004.

[16] A. A. Majid, S. Sarmani, N. I. Yusoff, Y. K. Wei, and F. Hamzah, "Trace elements in Malaysian medicinal plants," *Journal of Radioanalytical and Nuclear Chemistry Articles*, vol. 195, no. 1, pp. 173–183, 1995.

[17] S. Spalla, C. Baffi, C. Barbante et al., "Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques," *Rapid Communications in Mass Spectrometry*, vol. 23, no. 20, pp. 3285–3292, 2009.

[18] Food and Nutrition Board, *Dietary Reference Intakes: A Risk Assessment Model for Establishing Upper Intake Levels for Nutrients*, National Academies Press, Washington, DC, USA, 1998.

[19] National Research Council, *Recommended Dietary Allowances*, National Academies Press, Washington, DC, USA, 1989.

[20] A. C. Ross, C. L. Taylor, A. L. Yaktine, and H. B. Del Valle, *Dietary Reference Intakes for Calcium and Vitamin D*, National Academies Press, Washington, DC, USA, 2011.

[21] M. Alghamdi, A. Mohammed, F. Alfahaid, and A. Alshbabshe, "Herbal medicine use by Saudi patients with chronic diseases: a cross-sectional study (experience from Southern Region of Saudi Arabia)," *Journal of Health Specialties*, vol. 6, no. 2, pp. 77–81, 2018.

[22] A. Devine, J. M. Hodgson, I. M. Dick, and R. L. Prince, “Tea drinking is associated with benefits on bone density in older women,” *The American Journal of Clinical Nutrition*, vol. 86, no. 4, pp. 1243–1247, 2007.

[23] Y. Cao and R. Cao, "Angiogenesis inhibited by drinking tea," *Nature*, vol. 398, no. 6726, p. 381, 1999.

[24] P. Thomson, J. Jones, M. Browne, and S. J. Leslie, "Why people seek complementary and alternative medicine before conventional medical treatment: a population based study," *Complementary Therapies in Clinical Practice*, vol. 20, no. 4, pp. 339–346, 2014.

[25] T. Van Andel and P. Westers, "Why Surinamese migrants in The Netherlands continue to use medicinal herbs from their home country," *Journal of Ethnopharmacology*, vol. 127, no. 3, pp. 694–701, 2010.

[26] L. C. Tapsell, I. Hemphill, L. Cobiac et al., "Health benefits of herbs and spices: the past, the present, the future," *The Medical Journal of Australia*, vol. 185, no. 84, pp. S1–S24, 2006.