TiO₂ nanorod arrays hydrothermally grown on MgO-coated compact TiO₂ for efficient perovskite solar cells

Wenhan Chen, Qi Luo, Xueshuang Deng, Jianfeng Zheng, Chenxi Zhang, Xiaohong Chen and Sumei Huang

The morphology of electron transport layers has a significant impact on the device architecture and electronic processes of mesoscopic perovskite solar cells (PSCs). In this study, ultrathin MgO is coated on the surface of compact TiO₂ (c-TiO₂). The MgO-coated c-TiO₂ is first used as seeds to hydrothermally grow one-dimensional (1D) TiO₂ nanorod (NR) arrays for PSC devices. Rutile nanorod arrays are fabricated via a facile solvothermal method using tetraethyl titanate (TBT) as the Ti precursor. The microstructures and morphologies, including nanorod diameter, length, and areal density, of the TiO₂ NR arrays are varied by controlling the concentration of TBT from 0.3 M to 0.7 M. Furthermore, the profound effects of the MgO modification and titania nanorod morphology on the pore-filling of perovskite CH₃NH₃PbI₃, charge separation and recombination at the perovskite/titania nanorod interface are investigated. Our results reveal that the Ti precursor concentration strongly affects the open-circuit voltage (V_{OC}), short-circuit current density (J_{SC}), and fill factor (FF) of the 1D TiO₂ NR array-based device. Under optimized conditions with MgO coating and at 0.4 M TBT, our champion cell with 1D TiO₂ NRs demonstrates a power conversion efficiency (PCE) of 17.03% with J_{SC} = 22.01 mA cm⁻², V_{OC} = 1.06 V, and FF = 0.73. Under the same fabrication conditions, MgO modification enhances the average PCE to 16.24% for the PSCs with the MgO coating from 13.38% for the PSCs without the MgO coating. The devices show an approximately 18% improvement in performance, which mainly results from the open-circuit voltage and fill factor enhancements. Moreover, advantageously, the MgO modification is found to reduce the current density–voltage (J–V) hysteresis with respect to the scan direction and improve the UV stability of the non-encapsulated cells. Therefore, this study presents a promising approach to fabricate efficient and stable one-dimensional TiO₂ nanorod array-based perovskite solar cells.

1. Introduction

Organometal halide perovskite solar cells (PSCs) are becoming a significant portion of photovoltaic technologies due to their low cost and rapidly increasing efficiency. PSCs have already surpassed organic photovoltaics (OPVs)¹ and dye-sensitized solar cells (DSSCs)²³ and are now, at least in terms of efficiency, in the same range as leading thin film PVs such as cadmium telluride (CdTe)⁴ and copper indium gallium selenide (CIGS)⁵⁶ or other types of thin film solar cells that have existed for decades. Currently, perovskite solar cells based on zero dimensional (0D) metal oxide nanostructures have achieved excellent power conversion efficiencies (PCEs) of 22.1% (for small area devices)⁷ and 17.8% (for large area devices).⁸ The major components of PSC devices include electron transporting layers (ETL), hole transport layers (HTL) and perovskite absorbing films. Among these functional layers, ETLs are a critical component of PSCs for the improvement in PV performance.⁹ Mesoporous TiO₂ is the most common ETL used for highly efficient perovskite solar cells.¹⁰⁻¹¹ The mesoporous architecture is comprised of a large number of ca. 20 nm-sized nanoparticles (NPs) with many grain boundaries, which hamper electron transport and limit the charge collection efficiency.¹⁶,¹⁷ In addition, due to the random distribution of NPs within mesoporous metal oxide films, pore-filling of perovskite and hole transport materials (HTM) in the interspace between NPs remains a persistent difficulty. To overcome the problems associated with mesoscopic structures, great effort is being devoted towards the application of one-dimensional (1D) ETLs in PSCs. ETLs with 1D structures provide a direct path for the transport of photo-generated electrons. These structured ETLs also allow better pore filling of the perovskite absorber than mesoscopic TiO₂ films due to the open and regular pore structure of the former.¹⁸⁻²⁰ TiO₂, WO₃, ZnO and CdS nanorods and nanotubes have been tested as ETLs for PSCs, but only TiO₂
nanorods have consistently produced PSCs with PCEs above 15%.21-23 TiO\textsubscript{2} nanorods (NRs) are developing as another popular configuration for ETLs in perovskite solar cells. Qiu et al.29 first reported the use of TiO\textsubscript{2} nanorods as an ETL in PSCs. Using a CH\textsubscript{3}NH\textsubscript{3}PbBr\textsubscript{3} absorber on 1.5 \textmu m-thick nanorods, they reported a PCE of 4.87%. This report triggered new research on the application of TiO\textsubscript{2} nanorods as an ETL for perovskite solar cells. Kim et al.26 made comparative studies on the performance of longer and shorter TiO\textsubscript{2} nanorods. They concluded that shorter nanorods could provide better infiltration of perovskite. Using 560 nm-long nanorods, they achieved a PCE of about 9.4%. In 2014, Jiang et al.24 fabricated a perovskite solar cell using 900 nm-long TiO\textsubscript{2} nanorods as the ETL and achieved an efficiency of 11.7%. Subsequently, Mali et al.25 were able to demonstrate a TiO\textsubscript{2}-nanorod based perovskite solar cell with an efficiency of 13.5%, which was achieved by passivating the surface of the nanorods with ultrathin TiO\textsubscript{2} via atomic layer deposition in 2015. Most recently, in 2016, Li et al. achieved record efficiencies of 18.22%.26 They utilized a UV-ozone cleaning process to eliminate organic residues on the nanorod surface to improve the TiO\textsubscript{2} nanorod/perovskite interface.

In this study, ultrathin MgO is coated on the surface of compact TiO\textsubscript{2} (c-TiO\textsubscript{2}). The MgO-coated c-TiO\textsubscript{2} is first used as seeds to hydrothermally grow one-dimensional (1D) TiO\textsubscript{2} nanorod (NR) arrays for PSC devices. Rutile nanorod arrays are fabricated via a facile solvothermal method using tetrabutyl titanate (TBT) as the Ti precursor. The microstructures and morphologies of the TiO\textsubscript{2} NR arrays, including nanorod diameter, length and areal density, are tuned by controlling the concentration of TBT from 0.3 M to 0.7 M. The electrical behavior and optical properties of titania nanorod ETLs are characterized and examined to understand the sources of both underperformance and outperformance in various device parameters. We demonstrate the profound effect of the MgO modification and titania nanorod morphology on the pore-filling of perovskite CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3}, charge separation and recombination at the perovskite/titania nanorod interface. We optimize the Ti precursor concentration and morphology of the hydrothermally grown TiO\textsubscript{2} nanorod arrays to produce hysteresis-less CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3} perovskite solar cells with a champion PCE of 17.03% and high UV light stability.

2. Experimental

2.1 Materials

Tetrabutyl titanate (TBT) (99.0%), titanium(iv) isoproxide (99.999% metal basis) and magnesium acetate tetrahydrate (99.98% metal basis) were obtained from Aladdin. Hydrochloric (99.999% metal basis) and magnesium acetate tetrahydrate (99.98% metal basis) were obtained from Sinopharm Chemical Reagent Co., China. All reagents were used as received without further purification.

2.2 Preparation of rutile TiO\textsubscript{2} nanorod arrays

Rutile TiO\textsubscript{2} arrays were prepared via a hydrothermal method, as reported in ref. 27. Fluorine-doped tin oxide (FTO)-coated glass substrates were cleaned by ultrasonication with soap, deionized water, acetone, and isopropyl alcohol and finally treated with ultraviolet light for about 20 minutes. Then, isopropyl titanate (200 \mu L) and ethanol (5 \mu L) were mixed to prepare a clear precursor sol. The precursor sol was spin-coated on the Zn/HCl-etched FTO substrate at 4500 rpm, followed by annealing at 500 °C to form a compact TiO\textsubscript{2} (c-TiO\textsubscript{2}) layer. To prevent charge recombination at the methylamine lead iodide/TiO\textsubscript{2} interface in perovskite solar cells, MgO coated c-TiO\textsubscript{2} layers were fabricated before the synthesis of TiO\textsubscript{2}-NR arrays by modifying the procedure reported in our previous work.24 An MgO precursor solution of Mg(CH\textsubscript{3}COO)\textsubscript{2} in deionized water was spin-coated on the c-TiO\textsubscript{2} layer at 4500 rpm for 30 seconds, and was then heated at 400 °C for 1 h. The concentration of the magnesium salt used was 70 mM. Herein, two pieces of clean FTO glass with TiO\textsubscript{2} seed layers were placed at an angle of 45° against the wall of the Teflon-liner with the conducting side facing down. Concentrated hydrochloric acid (36.5–38% by weight) was added to deionized water with a volume ratio of 1 : 1 and stirred for 2 minutes. Subsequently, TBT was added, and the mixture was further stirred. The amount of titanium butoxide was set as 0.03, 0.035, 0.04, 0.05, 0.06 M to obtain the desired TiO\textsubscript{2}-NR arrays respectively. The hydrothermal synthesis was conducted at 150 °C for 4 h in an electric oven to ensure that TiO\textsubscript{2}-NR arrays with a uniform thickness were obtained. After cooling to room temperature in air, the films were taken out from the autoclaves, rinsed with deionized water, dried in air, and annealed at 500 °C for 30 min to remove any residual organic contaminants.

2.3 Solar cell device fabrication

CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3} was coated on the TiO\textsubscript{2}-NR arrays via a typical one-step spin-coating procedure under a nitrogen atmosphere.28,29 Synthesized CH\textsubscript{3}NH\textsubscript{3}I (0.1975 g) powder and lead iodide PbI\textsubscript{2} (0.5785 g) were stirred in a mixture of γ-butyrolactone (GBL) (700 \mu L) and dimethylsulphoxide (DMSO) (300 \mu L) at 60 °C for 12 h. The film was spin-coated with the precursor solution at 2000 rpm for 30 seconds and at 3500 rpm for 40 seconds. 70 \mu L of anhydrous diethyl ether was dropped onto the center of the sample during the last 30–40 s. The CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3} film was obtained after annealing at 115 °C for 20 min on a hotplate, and the film color changed from transparent to yellow and finally to dark brown. After the deposition of perovskite, an HTM solution was spin-coated at 3500 rpm for 30 s. The HTM solution was obtained using 1 mL 2,2,7,7-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (spiro-OMeTAD)/chlorobenzene (72.3 mg mL-1) solution with 17.5 \mu L Li-TFSI/acetonitrile (520 mg mL-1) and 28.8 \mu L BPh. Finally, an Ag-Al electrode (70 nm) was thermally evaporated at an atmospheric pressure of 10-7 Torr to match the work function.28,30

2.4 Characterization

The morphology, structure and composition of the TiO\textsubscript{2} arrays were investigated via field emission scanning electron microscopy (FESEM, HitachiS-4800), and X-ray diffraction (XRD, Bruker D8 D Avinci instrument, Cu-Kz: λ = 0.15406 nm). UV-vis absorption spectra were obtained using a UV-vis
spectrophotometer (HitachiU-3900). The photocurrent density-voltage (J–V) curve was measured using a Keithley model 2440 Source Meter under the illumination of simulated AM 1.5 G solar light (100 mW cm\(^{-2}\), 1 sun intensity) from a Newport solar simulator system (equipped with a 1 kW xenon arc lamp, oriel, calibrated with a standard silicon reference cell). During device photovoltaic performance characterization, a metal aperture mask with an opening of about 0.09 cm\(^2\) was used. External quantum efficiency (EQE) measurements (74125, Oril, USA) were also carried out for these cells.

3. Results and discussion

Fig. 1 shows the top surface and cross-sectional SEM images of the TiO\(_2\) NR arrays prepared with different concentrations of TBT ranging from 0.03 M to 0.07 M. The TiO\(_2\)-NR arrays are grown in the preferred [001] direction, and are vertically and uniformly distributed on the glass/FTO/c-TiO\(_2\) substrates. Hydrothermal solution growth of TiO\(_2\)-NR arrays has been widely reported on TiO\(_2\) seed layers or directly on Ti foil substrates to increase the nucleation sites for growth.\(^{18,31,32}\) In our work, the growth mechanism of the TiO\(_2\)-NR arrays on MgO-coated c-TiO\(_2\) is similar to the traditional case due to the ultrathin thickness of MgO. When TBT was mixed with HCl solution at room temperature, TBT reacted with HCl and H\(_2\)O forming a Ti(\(\nu\)) complex. When the solution was heated at 150 °C, the Ti(\(\nu\)) complex transformed into TiO\(_2\) on the surface of the c-TiO\(_2\) layer. Cl\(^{-}\) ions can selectively adsorb onto the (110) crystal planes suppressing further growth of the planes, resulting in anisotropic growth along the [001] orientation.\(^{18,31}\) Meanwhile, the growth process was significantly influenced by the concentration of the Ti(\(\nu\)) complex in the solution. As shown in Fig. 1, the diameter and areal density of the TiO\(_2\) NRs changed with the concentration of TBT. As the TBT concentration increased from 0.03 M to 0.07 M, the length and mean diameter (measured by Nano Measurer) of the TiO\(_2\)-NRs increased from 250 nm and 21 nm to 1163 nm and 76 nm, respectively, while the areal density (number of nanorods per unit area) of the TiO\(_2\)-NR arrays increased from 224 m\(^2\) at 0.03 M TBT to 392 m\(^2\) at 0.07 M, and then decreased as the TBT concentration further increased, as shown in Table 1. The TiO\(_2\)-NR arrays became more and more vertically aligned and compact with an increase in the TBT concentration from 0.03 M to 0.07 M. It is worth noting that the TiO\(_2\)-NR arrays grown in 0.04 M TBT precursor solution were 298 nm in length and had a small mean diameter of 22 nm and high areal density of 392 m\(^2\). The microstructures and morphologies of the grown TiO\(_2\)-NR arrays play an important role in the performance of PSCs due to the charge separation and recombination at the perovskite/titania nanorod interface and the sensitivity of perovskite crystallization to the interfacial structure.\(^{33,34}\) A small diameter is very important in obtaining a high area density, which is conducive to increasing the surface area of the TiO\(_2\)-NR array. Increasing the surface area leads to improved charge separation at the interface of CH\(_3\)NH\(_3\)PbI\(_3\)/TiO\(_2\). On the other hand, with an increase in length of the TiO\(_2\) NRs, the charge combination is expected to be intensified.

Fig. 2 shows top surface and cross-sectional SEM images of the CH\(_3\)NH\(_3\)PbI\(_3\)-coated TiO\(_2\)-NR arrays prepared with different concentrations of TBT. It can be seen that the total thickness of the CH\(_3\)NH\(_3\)PbI\(_3\) absorber layer on the TiO\(_2\)-NR arrays prepared with TBT concentrations ranging from 0.03 M to 0.07 M increased from about 400 nm to 1320 nm. The pore-filling of CH\(_3\)NH\(_3\)PbI\(_3\) dramatically varied together with a change in the interspace between the TiO\(_2\) NRs. The dispersed small sized TiO\(_2\) NRs prepared with a low TBT concentration facilitated the loading of perovskite into the TiO\(_2\) pores or clearance between TiO\(_2\) NRs. The perovskite capping layers in the TiO\(_2\)-NR arrays prepared with the low TBT concentrations of 0.03 M and 0.04 M show a very smooth and compact top surface morphology, as shown in Fig. 2(a) and (b), respectively. However, when the TBT
Table 1 Lengths, diameters, and areal densities of the TiO2 nanorod arrays prepared with different concentrations of TBT

TBT concentration	Length (nm)	Absorber length (nm)	Diameter (nm)	Max	Mean	Areal density (μm\(^{-2}\))
0.03 M	250	401	35	21		224
0.04 M	298	452	36	22		392
0.05 M	555	720	55	33		276
0.06 M	906	1107	89	59		120
0.07 M	1163	1317	161	76		112

Fig. 2 Top surface and cross-sectional SEM images of the CH\(_3\)NH\(_3\)PbI\(_3\)-coated TiO\(_2\)-NR arrays prepared with different concentrations of TBT, (a and f) 0.03 M, (b and g) 0.04 M, (c and h) 0.05 M, (d and i) 0.06 M and (e and j) 0.07 M.
NH3PbI3 coated TiO2 NRs.

large perovskite material voids are clearly observed on the Ostwald type ripening process during the crystal growth. In Fig. 2(d) and (e). Moreover, from the side views (Fig. 2(h)–(j)), pinholes or perovskite material voids in the absorbers can be seen from Fig. 2(g). This case, as shown in Fig. 2(h). Kim et al. also found that photocurrent, photovoltage and power conversion efficiency decreased with an increase in nanorod length and diameter of the TiO2 nanorod arrays, which may reduce reflection and transmission.

The real absorption spectra of perovskite CH3NH3PbI3 is shown in Fig. 3(c). As can be seen from Fig. 3(c), the absorption onsets of the TiO2-NR arrays prepared with TBT concentrations of 0.03 to 0.04 M, the perovskite CH3NH3PbI3 has gradually stronger absorption in the 450–750 nm wavelength range. However, when the TBT concentration increased further from 0.04 to 0.07 M, the perovskite has weaker absorption. The perovskite film formed with the TBT concentration of 0.04 M exhibits the strongest light absorption over the 450–750 nm wavelength range. The increased absorption of the perovskite should be the result of improved surface coverage and more uniform crystal formation in the perovskite thin film. Moreover, due to the similar thicknesses of the CH3NH3PbI3 capping layers under the conditions of various TBT concentrations, as shown in Fig. 2(f)–(j), the increased absorbance is mainly associated with the optimized interfaces of perovskite/TiO2-NRs.

Concentration is higher, some perovskite material voids are visible on the top surface of the perovskite absorber, as shown in Fig. 2(d) and (e). Moreover, from the side views (Fig. 2(h)–(j)), large perovskite material voids are clearly observed on the surface or vicinity of the TiO2 NRs, which is probably caused by an Ostwald type ripening process during the crystal growth. The pinholes or perovskite material voids in the absorbers can decrease the shunt resistances or lead to HTM infiltration and cause short circuit, resulting in poor PSC device performances. Notably, the absorber sample formed under condition of 0.04 M TBT shows the optimal top-view and cross-section morphological properties. The perovskite semiconductor material almost completely covers the TiO2 NR array scaffold in this case, as shown in Fig. 2(g).

Fig. 3(a) and (b) show the UV-vis spectra of the bare and CH3NH3PbI3 coated TiO2-NR arrays prepared with different concentrations of TBT, respectively. From Fig. 3(a), the absorption onsets of the TiO2-NR arrays prepared with TBT concentrations of 0.03 M (0.04 M), 0.05 M, and 0.06 M (0.07 M) are approximately 360 nm, 400 nm and 405 nm, respectively. Consistent with the SEM images shown in Fig. 1, the results of the UV-vis spectra are thought to be attributed to the increasing length and diameter of the TiO2 nanorod arrays, which may reduce reflection and transmission. The real absorption spectra of perovskite CH3NH3PbI3 is shown in Fig. 3(c). As can be seen from Fig. 3(c), the absorption onsets of the TiO2-NR arrays prepared with TBT concentrations of 0.03 to 0.04 M, the perovskite CH3NH3PbI3 has gradually stronger absorption in the 450–750 nm wavelength range. However, when the TBT concentration increased further from 0.04 to 0.07 M, the perovskite has weaker absorption. The perovskite film formed with the TBT concentration of 0.04 M exhibits the strongest light absorption over the 450–750 nm wavelength range. The increased absorption of the perovskite should be the result of improved surface coverage and more uniform crystal formation in the perovskite thin film. Moreover, due to the similar thicknesses of the CH3NH3PbI3 capping layers under the conditions of various TBT concentrations, as shown in Fig. 2(f)–(j), the increased absorbance is mainly associated with the optimized interfaces of perovskite/TiO2-NRs.
however, the major contributors to the series resistance (\(R_s\)) are the bulk resistance of the semiconductor material (the active layer), the contact resistance at the semiconductor–conductive interfaces and the resistance of the conductive contacts. \(^{27}\) As the TBT concentration increased from 0.03 to 0.04 M, the device showed an obvious decrease in both \(R_s\) and \(R_{SH}\). Further increasing the TBT concentration from 0.04 M to 0.07 M, \(R_S\) changed slightly, while \(R_{SH}\) continuously decreased. At 0.07 M TBT, the shunt resistance decreased by 5 times. The lowest FF of the device prepared at 0.03 M can be associated with the largest \(R_s\). \(^{28}\) The key limitation in the performance of meso-superstructured PSCs is the balance between \(R_{SH}\) and \(R_s\) resistance. \(^{28}\) Both the smallest series resistance and the second largest shunt resistance of the PSC device prepared at 0.04 M are responsible for its highest FF. When the TBT concentration is 0.04 M, the formed TiO\(_2\) NRs have a small diameter and the highest area density, which are conducive to increasing the surface area of the TiO\(_2\)-NR arrays and enhancing pore-filling. This leads to improved charge separation at the interface of CH\(_3\)NH\(_2\)PbI\(_3\)/TiO\(_2\), and as a result, optimal and high-performance perovskite solar cells were assembled.

The EQE values of the devices based on the TiO\(_2\) NRs prepared with various TBT concentrations are quite different in the wavelength range of 300 and 400 nm, as shown in Fig. 4(b). This difference is due to the absorption of light by the TiO\(_2\) NRs, as shown in Fig. 3(a). Moreover, the EQE shown in Fig. 4(b) is relatively higher for the lower TBT concentration in the wavelength range of 400 and 600 nm, which indicates that the shorter nanorods utilize light more efficiently than the longer nanorods in this wavelength region. The EQE results of the devices with different TBT amounts are in good agreement with that from the \(J\)–\(V\) measurements of these cells, as shown in Fig. 4(a).

In early-reported TiO\(_2\) NR array based PSCs,\(^{19,20,24–26}\) TiO\(_2\) NR arrays were mostly grown on TiO\(_2\) compact-layer seeded FTO substrates via the hydrolysis of Ti precursors. In our work, ultrathin MgO coated-c-TiO\(_2\) layers were fabricated before the synthesis of the TiO\(_2\)-NR arrays by modifying the procedure reported in our previous work for incorporating MgO into porous TiO\(_2\).\(^{14}\) In order to examine the influence of MgO modification, we measured the top surface and cross-sectional SEM images of TiO\(_2\) NR arrays directly deposited on c-TiO\(_2\) with 0.04 M TBT, as shown in Fig. 5(a) and (b), respectively. The length and mean diameter of the TiO\(_2\) nanorods prepared at 0.04 M TBT without MgO modification are similar to that of the

Table 2: Photovoltaic properties of the PSC devices based on TiO\(_2\)-NR arrays prepared with different TBT concentrations under AM 1.5 G illumination

TBT amount (M)	\(V_{OC}\) (V)	\(J_{SC}\) (mA cm\(^{-2}\))	Fill factor	PCE (%)	\(R_s\) (\(\Omega\))	\(R_{SH}\) (\(\Omega\))
0.03	1.05	22.0	0.63	14.55	104	49 137
0.04	1.04	21.75	0.73	16.24	40	20 430
0.05	1.01	21.23	0.70	14.90	43	14 104
0.06	1.02	20.66	0.69	14.69	42	11 802
0.07	0.98	19.25	0.68	13.52	41	9800

Fig. 4 (a) \(J\)–\(V\) characteristics and (b) EQE spectra of the PSC devices based on TiO\(_2\)-NR arrays prepared with different TBT concentrations.

Fig. 5 Top surface and cross-sectional SEM images of bare and CH\(_3\)NH\(_2\)PbI\(_3\)/coated TiO\(_2\) NR arrays deposited on c-TiO\(_2\) with a TBT concentration of 0.04 M without MgO modification.

Fig. 6 UV-vis spectra of (a) bare and (b) CH$_3$NH$_3$PbI$_3$ coated TiO$_2$ nanorod arrays prepared at 0.04 M TBT with and without MgO modification. (c) J–V characteristics with forward and reverse scans. (d) EQE and (e) EIS (under dark conditions) spectra of the best-performing PSC devices based on c-TiO$_2$ without and with MgO modification. (f) Normalized PCE decay of unsealed devices upon UV irradiation.

TiO$_2$ NRs grown at the same TBT concentration with MgO modification; however, the areal density of the former (248 m$^{-2}$) is smaller than that (392 m$^{-2}$) of the latter, as shown in Fig. 5 and 1(b) and (g), respectively. Moreover, without MgO modification, the obtained TiO$_2$ NR arrays are randomly and non-uniformly tilted. The small areal density and badly aligned and unevenly distributed TiO$_2$ NR arrays hinder infiltration of perovskite, thus leading to absorbers with poor morphology which degrade the photovoltaic performance of PSCs. With MgO modification of the c-TiO$_2$, MgO insulating material particles are spread over the c-TiO$_2$ layer which can partially cover these pores. Furthermore, since MgO particles are scattered over the substrate, the MgO coated c-TiO$_2$ layer has places where TiO$_2$ can have electrical contact with the TiO$_2$ NRs and perovskite. Upon MgO modification, the c-TiO$_2$ layer becomes smoother, leading the growth of more vertically aligned TiO$_2$-NR arrays, as evidenced by the SEM observations shown in Fig. 1 and 5.
Table 3 Best and average photovoltaic performance values of the TiO2-NR PSC devices based on c-TiO2 without and with MgO modification (with a TBT concentration of 0.04 M under AM 1.5G illumination)

Device	Device	V_{OC} (V)	J_{SC} (mA cm$^{-2}$)	Fill factor	PCE (%)	R_s (Ω)
Without MgO	Best	0.96	21.63	0.71	14.81	57
	Average	0.96 ± 0.04	21.58 ± 0.80	0.67 ± 0.04	13.38 ± 1.43	55 ± 8
With MgO	Best	1.06	22.01	0.73	17.03	39
	Average	1.04 ± 0.02	21.75 ± 0.40	0.73 ± 0.02	16.24 ± 0.79	37 ± 6

Fig. 6(a) and (b) show the UV-vis spectra of the bare and CH$_3$NH$_3$PbI$_3$ coated TiO2-NR arrays based on c-TiO2 with and without MgO modification at 0.04 M TBT. From Fig. 6(a), the optical absorption edge of the TiO2-NR arrays with MgO modification shifts to a shorter wavelength range and a slightly lower absorbance or higher transmission is observed, especially in the short wavelength region. The higher transmission can contribute to improving the photocurrent. The blue-shift in the light absorption is due to the wider energy band gap of MgO. The perovskite absorber film based on c-TiO2 with MgO modification displays slightly stronger light absorption in the 300–800 nm range than the case without MgO modification, as shown in Fig. 6(b). The increased absorption of the perovskite is the result of efficient infiltration of perovskite, improved surface coverage and more uniform crystal formation in the perovskite thin films.

Fig. 6(c) shows the J–V curves of the best-performing perovskite solar cells based on c-TiO2 without and with MgO modification at 0.04 M TBT for forward and reverse scans. The corresponding best and mean PV parameters including J_{SC}, V_{OC}, FF and PCE are summarized for the reverse scans in Table 3. As can be seen from Table 3, the PSC device based on c-TiO2 without MgO modification shows an average PCE of 13.38% ± 1.43% resulting from a V_{OC} of 0.96 V ± 0.04 V, J_{SC} of 21.58 ± 0.80 mA cm$^{-2}$ and FF of 0.67 ± 0.04. In contrast, the PSC with MgO modification has a higher average PCE of 16.24% ± 0.79%, with a V_{OC} of 1.04 V ± 0.02 V, J_{SC} of 21.75 ± 0.40 mA cm$^{-2}$, and FF of 0.73 ± 0.02. With MgO modification, there are obvious enhancements in the V_{OC} and FF. Besides, there was also a slight enhancement in the J_{SC}, as expected, from the SEM and optical absorption examination and analysis in the previous sections. The improved photocurrent is also supported by the EQE spectra shown in Fig. 6(d). The improved open-circuit voltage can be attributed to the up-shift of the conduction band edge of TiO2 with the MgO coating. Moreover, the series resistance (R_s) derived from the J–V curves has an impact on the FF. The lower R_s of the PSC with MgO modification induced its higher FF. As result, the PSC with MgO modified c-TiO2 achieved a champion PCE of 17.03%.

Mesoscopic CH$_3$NH$_3$PbI$_3$ perovskite hybrid solar cells usually have significant J–V hysteresis with respect to the forward and reverse scan directions owing to charge accumulation or dielectric polarization by ferroelectric properties. From Fig. 6(c), the PSC device based on c-TiO2 with MgO modification exhibited not only better device efficiency but also smaller J–V hysteresis with respect to the scan direction than the PSC devices without MgO modification. With MgO modification, the reduced J–V hysteresis can be attributed to the decreased recombination by eliminating the undesirable recombination pathway between TiO2 and the spiro-OMeTAD hole conductor and the reduction in electronic trap states, which enable faster electron transport by the formation of high-quality CH$_3$NH$_3$PbI$_3$ absorbers.

Fig. 6(e) shows the EIS results for perovskite solar cells based on c-TiO2 without and with MgO modification tested in the dark. In dark conditions, the structure of the PSC device could be simplified as a leaking capacitor. From Fig. 6(e), the size of the semicircle is related to the recombination resistance at the interface of the TiO2/perovskite layer and TiO2/hole transport layer. The bigger the diameter of the semicircle, the lower the electron recombination at the interface. The obtained EIS indicates that the recombination resistance increased by several times after MgO modification, which led to a significant decrease in current loss through recombination and an increase in FF.

The stability of perovskite solar cells is a major issue restricting their terrestrial application. We investigated the stability of unsealed PSCs based on c-TiO2 with and without modification with under UV irradiation. The PSCs were exposed to 365 nm UV illumination at an intensity of 90 mW cm$^{-2}$, and were removed at certain time intervals to measure the J–V curves under simulated AM1.5 100 mW cm$^{-2}$ irradiance. In Fig. 6(f), it can be observed that device based on 1D TiO2 NR arrays grown on MgO coated c-TiO2 exhibits a significantly improved stability. Its PCE retains more than 92% of its initial value, even after 25 min UV irradiation in air.

4. Conclusions

We have demonstrated a low-temperature synthesis approach for good ultrathin passivation on TiO2 seeds and high-quality 1D TiO2 nanorod arrays using MgO coating and hydrothermal techniques, respectively. Ultrathin MgO coated c-TiO2 has been used as seeds to hydrothermally grow one-dimensional TiO2 NR arrays for PSCs. Tetraethyl titanate (TBT) was employed as the Ti precursor. The nanorod diameter and length and areal density of the TiO2 NR arrays were adjusted by controlling the concentration of TBT from 0.3 M to 0.7 M. The effects of MgO modification and TiO2 NR array morphology on the pore-filling of perovskite CH$_3$NH$_3$PbI$_3$ as well as charge separation and recombination at the perovskite/titania nanorod interface have been investigated. Our results show that the TBT concentration strongly affects the V_{OC}, J_{SC} and FF of the 1D TiO2 NR based PSC cell. The best perovskite solar cell based on embedded 1D TiO2
NRs was achieved with MgO coating and at 0.4 M TBT, which displays a PCE of 17.03% with \(J_{sc} = 22.01 \text{ mA cm}^{-2}, V_{oc} = 1.06 \text{ V}, \) and FF = 0.73. MgO modification elevated the average PCE from 13.38% for the PSCs prepared at 0.4 M TBT without MgO coating to 16.24% for the PSCs formed at the same TBT concentration with MgO coating, exhibiting an approximately 18% improvement in PV performance. This improvement is mainly ascribed to the improved open-circuit voltage and fill factor. Furthermore, MgO modification reduced the \(J-V \) hysteresis with respect to the scan direction and improved the UV stability of the non-encapsulated solar cells. This study demonstrates that the employment of ultrathin MgO-coated TiO\(_2\) as seeds is a promising strategy to hydrothermally grow high-quality 1D TiO\(_2\) nanorod arrays for efficient and stable perovskite solar cells.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11274119 and 61275038) and the Large Instruments Open Foundation of East China Normal University.

References

1. J. Wang, X. Jia, J. Zhou, L. Pan, S. Huang and X. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 26098–26104.
2. S. Mathew, A. Yella, P. Gao, R. H. Baker, B. F. E. Curchod, N. A. Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Nat. Chem., 2014, 6, 242–247.
3. J. Shen, R. Cheng, X. H. Chen, Z. Sun and S. M. Huang, ACS Appl. Mater. Interfaces, 2013, 5, 13000–13005.
4. M. Gloeckler, I. Sankin and Z. Zhao, IEEE J. Photovolt., 2013, 3, 1389–1393.
5. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann and M. Powalla, Phys. Status Solidi RRL, 2014, 8, 219–222.
6. J. Shi, Z. Li, D. Zhang, Q. Liu, Z. Sun and S. Huang, Prog. Photovolt., 2011, 19, 160–164.
7. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi and A. W. Y. Ho-Baillie, Prog. Photovolt., 2017, 25, 565–572.
8. M. Afzaal, H. M. Yates, A. Walter, S. Nicolay and C. Ballif, J. Mater. Chem. C, 2017, 5, 4946–4950.
9. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234–1237.
10. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643–647.
11. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen and Y. Yang, Science, 2014, 345, 295–298.
12. C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun and S. Huang, Nano-Micro Lett., 2016, 8, 347–357.
13. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate and A. Hagfeldt, Energy Environ. Sci., 2016, 9, 1989–1997.
14. C. Zhang, Q. Luo, J. Shi, L. Yue, Z. Wang, X. Chen and S. Huang, Nanoscale, 2017, 9, 2852–2864.
15. W. Wu, D. Chen, R. A. Caruso and Y. Cheng, J. Mater. Chem. A, 2017, 5, 10092–10109.
16. E. Hendry, M. Koeberg, B. O’Regan and M. Bonn, Nan lett., 2006, 6, 755–759.
17. J. Song, S. P. Li, Y. L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X. Q. Gu and Y. H. Qiang, J. Alloys Compd., 2017, 694, 1232–1238.
18. X. Feng, K. Zhu, A. J. Frank, C. A. Grimes and T. E. Mallouk, Angew. Chem., Int. Ed., 2012, 51, 2727–2730.
19. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan and S. Yang, Nanoscale, 2013, 5, 3245–3248.
20. H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel and N. Park, Nano Lett., 2013, 13, 2412–2417.
21. K. Mahmood, B. S. Swain, A. R. Kirmani and A. Amassian, J. Mater. Chem. A, 2015, 3, 9051–9057.
22. K. Mahmood, B. S. Swain and A. Amassian, Adv. Energy Mater., 2015, 5, 1500568.
23. Z. Gu, F. Chen, X. Zhang, Y. Liu, C. Fan, G. Wu, H. Li and H. Chen, Sol. Energy Mater. Sol. Cells, 2015, 140, 396–404.
24. Q. Jiang, X. Sheng, Y. Li, X. Feng and T. Xu, Chem. Commun., 2014, 50, 14720–14723.
25. S. S. Mali, C. S. Shim, H. K. Park, J. Heo, P. S. Patil and C. K. Hong, Chem. Mater., 2015, 27, 1541–1551.
26. X. Li, S.-M. Dai, P. Zhu, L.-L. Deng, S.-Y. Xie, Q. Cui, H. Chen, N. Wang and H. Lin, ACS Appl. Mater. Interfaces, 2016, 8, 21358–21365.
27. B. Liu and E. Aydil, J. Am. Chem. Soc., 2009, 131, 3985–3990.
28. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643–647.
29. Y. Luo, X. Chen, C. X. Zhang, J. J. Li, J. H. Shi, Z. Sun, Z. Wang and S. Huang, RSC Adv., 2015, 5, 56037–56044.
30. X. Jia, Z. Jiang, X. Chen, J. Zhou, L. Pan, F. Zhu, Z. Sun and S. Huang, ACS Appl. Mater. Interfaces, 2016, 8, 3792–3799.
31. A. Kumar, A. Madaria and C. Zhou, J. Phys. Chem. C, 2010, 114, 7787–7792.
32. J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin and L. Qi, Energy Environ. Sci., 2012, 5, 7575–7581.
33. Y. Zhou, A. Vasiliev, W. Wu, M. Yang, S. Pang, Z. Kai and N. Padture, J. Phys. Chem. Lett., 2015, 6, 2292–2297.
34. P. Docampo, J. Ball, M. Darwich, G. Eperon and H. Snaith, Nat. Commun., 2013, 4, 2761–2767.
35. A. Baldan, J. Mater. Sci., 2002, 37, 2171–2202.
36. J. Jung, K. Zhou, H. Um, Z. Guo, S. W. Lee, K. Park and J. Lee, Opt. Lett., 2011, 36, 2677–2679.
37. K. Bouzidi, M. Chegaar and A. Bouhemadou, Sol. Energy Mater. Sol. Cells, 2007, 91, 1647–1651.
38. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar and M. K. Nazeeruddin, Nat. Photonics, 2013, 7, 486–491.
39 X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. Zakeeruddin, M. Nazeeruddin, H. Han and M. Grätzel, Nat. Chem., 2015, 7, 703–711.

40 C. Zhang, Y. Luo, X. Chen, W. Ou-Yang, Y. Chen, Z. Sun and S. Huang, Appl. Surf. Sci., 2016, 388, 82–88.

41 A. Kulkarni, A. Jena, H. Chen and T. Miyasaka, Sol. Energy, 2016, 136, 379–384.

42 J. Wang, M. Qin, H. Tao, W. Ke, Z. Zhao, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu and G. Fang, Appl. Phys. Lett., 2015, 106, 121104.

43 H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park and J. Bisquert, Nat. Commun., 2013, 4, 2242.

44 F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt and M. Graetzel, Nat. Commun., 2016, 7, 10379.

45 W. Li, W. Zhang, S. Van Reenen, R. J. Sutton, J. Fan, A. A. Haghighirad, M. B. Johnston, L. Wang and H. J. Snaith, Energy Environ. Sci., 2016, 9, 490–498.