A Peptide-binding Motif for I-Ag7, the Class II Major Histocompatibility Complex (MHC) Molecule of NOD and Biozzi AB/H Mice

By Leonard C. Harrison,* Margo C. Honeyman,* Sylvie Trembleau,‡ Silvia Gregori,‡ Fabio Gallazzi,‡ Petra Augstein,* Vladimir Brusic,* Juergen Hammer,‡ and Luciano Adorini‡

From *the Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville 3050, Australia; and ‡Roche Milano Ricerche, 1-20132, Milano, Italy

Summary

The class II major histocompatibility complex molecule I-Ag7 is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its \(\beta\) chain. To identify the requirements for peptide binding to I-Ag7 and thereby potentially pathogenic T cell epitopes, we analyzed a known I-Ag7-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9–27. NH\(_2\)- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R 21 and the minimum sequence for direct binding to purified I-Ag7 M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimal binding occurred when p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-Ag7 deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-Ag7-restricted T cell epitopes or eluted from I-Ag7. Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.

Non obese diabetic (NOD)1 mice develop autoimmune T cell-mediated destruction of pancreatic islet \(\beta\) cells and are a model of human insulin-dependent diabetes mellitus (IDDM) (1). In common with humans who develop IDDM, NOD mice have immune responses to islet autoantigens such as insulin and glutamic acid decarboxylase (GAD). In addition, they share a structurally similar class II MHC molecule associated with disease susceptibility. This molecule, I-Ag7, has a \(\beta\) chain sequence otherwise found only in Biozzi AB/H mice that are susceptible to chronic relapsing experimental allergic encephalomyelitis (CR-EAE) (2). It is characterized by a non-Asp residue at position 57 (3), as in the \(\beta\) chain of the HLA-DQ molecules associated with human IDDM (4). The capacity of these unique class II molecules to bind and present peptides to autoreactive T cells could be critical in the development of IDDM and CR-EAE.

Although amino acid motifs for peptides that bind to individual class I and some class II MHC molecules have been well defined (5, 6), the rules that govern binding of peptides to I-Ag7 are still unclear. Reich et al. (7) eluted and sequenced several naturally processed peptides from I-Ag7 and concluded that binding may require an acidic residue in the COOH terminus of the peptide. Carrasco-Marin et al. (8) found that I-Ag7 either on the surface of antigen-presenting cells or in SDS-PAGE after its purification was unstable and that the binding of known I-Ag7-restricted T cell peptides...
epitopes or the peptides eluted by Rich et al. (7) was difficult or impossible to demonstrate. This led them to hypothesize that weak peptide binding by I-A^d^ mediated against elimination of autoreactive T cells in the NOD mouse. Amor et al. (9) investigated the fine specificity of peptides from myelin oligodendrocyte glycoprotein (MOG) or proteolipid protein (PLP) for the induction of experimental allergic encephalomyelitis (EAE) in Biozzi AB/H mice and suggested a core motif for I-A^d^ binding peptides.

In this study, we used the I-A^d^–restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9–27, as a template with which to analyze the amino acid sequence of peptides that bind to purified, naive I-A^d^ and activate a T cell hybridoma. This has enabled us to define general rules that identify most known I-A^d^ binding peptides.

Materials and Methods

Purification of I-A^d^. I-A^d^ protein was affinity-purified from detergent lysates of 4G4.7 B cell hybridoma cells by adsorption from OX-6 mouse monoclonal antibody. The 4G4.7 B cell hybridoma was derived by polyethylene glycol (PEG)-induced fusion of NOD mouse T cell–depleted splenocytes with the HAT-sensitive A20.2 J lymphoma line (10). OX-6 is a mouse monoclonal IgG1 antibody against an invariant determinant of rat IgG1 which also recognizes I-A^d^ but not I-A^k^ (11, 12). Approximately 15 mg of OX-6 antibody was first bound to 4 ml of protein A–Sepharose 4 Fastflow (Pharmacia, Uppsala, Sweden) and then chemically cross-linked to the protein A with dimethyl pimelimidate dihydrochloride (Sigma Chemical Co., St. Louis, MO) in sodium borate buffer, pH 9.0. After the protein A with dimethyl pimelimidate dihydrochloride (Sigma Chemical Co., St. Louis, MO) in sodium borate buffer, pH 9.0. After 60 min at room temperature (RT), the reaction was quenched by incubating the Sepharose in 0.2 M ethanolamine, pH 8.0, for 60 min at RT. The suspension was washed thoroughly in PBS and stored in PBS, 0.02% sodium azide (NaN3).

4G4.7 cells were harvested by centrifugation, washed in PBS, resuspended at 10^6 cells/ml of lysis buffer, and then allowed to stand at 4°C for 120 min. The lysis buffer was 0.05 M sodium phosphate, pH 7.5, containing 0.15 M NaCl, 1% (vol/vol) N-P-40 detergent and the following protease inhibitors: 1 mM phenylphosphate, pH 7.5, containing 0.15 M NaCl, 1% (vol/vol) NP-10, 0.5% DOC, 10% glycerol, and 0.03% NaN3.

Buffer A was 0.05 M Tris, pH 8.0, 0.15 M NaCl, 0.5% N-P-40, 0.5% DOC, 10% glycerol, and 0.03% NaN3; buffer B was 0.05 M Tris, pH 9.0, 0.5 M NaCl, 0.5% N-P-40, 0.5% DOC, 10% glycerol, and 0.03% NaN3; buffer C was 2 mM Tris, pH 8.0, 1% octyl-β-D-glucopyranoside (OGP), 10% glycerol, and 0.03% NaN3. Bound I-A^d^ was eluted with 50 mM diethylamine HCl, pH 11.5 in 0.15 M NaCl, 1 mM EDTA, 1% OGP, 10% glycerol, and 0.03% NaN3, and immediately neutralized with 1 M Tris.

Peptide Synthesis

Peptides were synthesized with a multiple peptide synthesizer (model 396; Advanced ChemTech, Louisville, KY) using Fmoc chemistry and solid phase synthesis on Rink Amide resin. All acylation reactions were effected with a threefold excess of activated Fmoc amino acids, and a standard coupling time of 20 min was used. Each Fmoc amino acid was coupled at least twice. Cleavage and side chain protection was achieved by treating the resin with 90% trifluoroacetic acid, 5% thioanisole, 2.5% phenol, 2.5% water. The indicator peptide for the binding assay was biotinylated before being cleaved from resin by coupling two 6-aminocaproic acid spacers on the NH2 terminus and one biotin molecule sequentially, using the above-described procedure. Individual peptides were analyzed by reverse-phase HPLC and those used in this study were routinely >85% pure.

T Cell Hybridoma

Hybridoma 2D.12.1 was generated by PEG-induced fusion of HEL-immune lymph node cells from a NOD mouse with the TCR-α/β-negative variant of the BW5147 thymoma, as described previously (13). Reactivity of 2D.12.1 to HEL peptides was assayed by incubating 2.5 × 10^6 NOD spleen cells and HEL peptides (0.3 nM to 10 μM) with 5 × 10^6 T hybridoma cells/well. Culture medium was RPMI 1640 supplemented with 10% FCS, 2 mM l-glutamine, 50 μg/ml gentamicin, and 50 μM 2-mercaptoethanol. After 24 h of culture, 50 μl of supernatants were transferred to culture wells containing 10^6 IL-2–responsive CTLL-2 cells. During the final 4 h of a 24-h culture, CTLL-2 cells were pulsed with 1 μCi [3H]thymidine. Thymidine incorporation was measured by scintillation spectrometry. The concentration of peptide that caused 50% of maximum stimulation is referred to as SC_{50}.

I-A^d^ Peptide Binding Assay

Peptides were dissolved at 10 mM in DM SO and diluted into 20% DM SO/PBS for assay. Hybridoma 2D.12.1 was generated by PEG-induced fusion of HEL-immune lymph node cells from a NOD mouse with the TCR-α/β-negative variant of the BW5147 thymoma, as described previously (13). Reactivity of 2D.12.1 to HEL peptides was assayed by incubating 2.5 × 10^6 NOD spleen cells and HEL peptides (0.3 nM to 10 μM) with 5 × 10^6 T hybridoma cells/well. Culture medium was RPMI 1640 supplemented with 10% FCS, 2 mM l-glutamine, 50 μg/ml gentamicin, and 50 μM 2-mercaptoethanol. After 24 h of culture, 50 μl of supernatants were transferred to culture wells containing 10^6 IL-2–responsive CTLL-2 cells. During the final 4 h of a 24-h culture, CTLL-2 cells were pulsed with 1 μCi [3H]thymidine. Thymidine incorporation was measured by scintillation spectrometry. The concentration of peptide that caused 50% of maximum stimulation is referred to as SC_{50}.

Figure 1. Examples of competition between biotinylated HEL peptide (amino acids 10–23) and unlabeled peptides for binding to purified I-A^d^, measured by ELISA (see Materials and Methods). Unlabeled HEL 10–23 (Δ) was used as an internal control in each 96-well plate assay; □, good binder (IC_{50} 50,000 nM); ▲, weak binder (IC_{50} 2000 nM); ◊, non-binder (IC_{50} 50,000 nM).
were coincubated with ~200 ng of I-A\(^{g7}\) protein in U-bottomed polypropylene 96-well plates (Costar Serocluster, Costar Corp., Cambridge, MA) in binding buffer at RT. The binding buffer was 6.7 mM citric phosphate, pH 7.0, with 0.15 M NaCl, 2% NP-40, 2 mM EDTA, and the protease inhibitors as used in the lysis buffer. After a minimum of 24 h, each incubate was transferred to the corresponding well of an ELISA plate (Nunc Maxisorp, Nunc, Roskilde, Denmark) containing prebound OX-6 antibody (5 \(\mu\)g/ml overnight at 4\(^\circ\)C, followed by washing). After incubation at RT for at least 2 h, and washing, bound biotinylated peptide-I-A\(^{g7}\) complexes were detected colorimetrically at 405 nm after reaction with streptavidin-alkaline phosphatase and paranitrophenolphosphate. Competition binding curves were plotted and the affinity of peptide for I-A\(^{g7}\) was expressed as an inhibitory concentration 50 (IC\(_{50}\)), the concentration of peptide required to inhibit the binding of bio-HEL 10–23 by 50%.

Results and Discussion

I-A\(^{g7}\) Purification and Binding Assay
Approximately 2 mg of protein, estimated by Coomassie blue binding (Bio Rad Protein assay), was purified from 5 \(\times\) 10\(^{10}\) 4G.7 cells. In SDS-PAGE, the majority (>95%) of the protein was resolved as two bands of molecular weight ~33,000 and ~28,000 that correspond to the \(\alpha\) and \(\beta\) subunits, respect-

| HEL 9–27 A A A M K R H G L D N Y R G Y S L G N 350 60 |
| 10–27 A A A M K R H G L D N Y R G Y S L G N 300 84 |
| 11–27 A M K R H G L D N Y R G Y S L G N 300 84 |
| 12–27 M K R H G L D N Y R G Y S L G N 300 380 |
| 13–27 K R H G L D N Y R G Y S L G N 300 3,000 |
| 14–27 R H G L D N Y R G Y S L G N 2,000 >10,000 |
| 15–27 H G L D N Y R G Y S L G N 20,000 >10,000 |
| 16–27 G L D N Y R G Y S L G N >50,000 >10,000 |
| 17–27 L D N Y R G Y S L G N >50,000 >10,000 |
| 18–27 D N Y R G Y S L G N >50,000 >10,000 |
| 19–27 N Y R G Y S L G N >50,000 >10,000 |

Table 1. Truncation Analysis of I-A\(^{g7}\)-restricted HEL 9–27 Epitope

| HEL 9–26 A A A M K R H G L D N Y R G Y S L G 300 60 |
| 9–25 A A A M K R H G L D N Y R G Y S L 300 140 |
| 9–24 A A A M K R H G L D N Y R G Y S L 200 72 |
| 9–23 A A A M K R H G L D N Y R G Y 150 180 |
| 9–22 A A A M K R H G L D N Y R G 300 240 |
| 9–21 A A A M K R H G L D N Y R 300 360 |
| 9–20 A A A M K R H G L D N Y 150 >10,000 |
| 9–19 A A A M K R H G L D N 15,000 >10,000 |
| 9–18 A A A M K R H G L 15,000 >10,000 |
| 9–17 A A A M K R H G L >50,000 >10,000 |

| HEL 12–23 M K R H G L D N Y R G Y 250 800 |
| 12–22 M K R H G L D N Y R G 600 Not done |
| 12–21 M K R H G L D N Y R 1,000 1,200 |
| 12–20 M K R H G L D N Y 1,250 >10,000 |
| 13–23 K R H G L D N Y R G Y 200 Not done |
| 13–22 K R H G L D N Y R G 250 Not done |
| 13–21 K R H G L D N Y R 5,000 >10,000 |
| 13–20 K R H G L D N Y 30,000 >10,000 |
| 14–23 R H G L D N Y R G Y 500 Not done |
| 14–22 R H G L D N Y R G 3,000 Not done |
of mouse class II MHC molecules (data not shown). The competition binding assay with purified I-Ag7 was sensitive and specific (Fig. 1), and highly reproducible; in 15 separate assays the mean \pm SD of the IC\textsubscript{50} for competition between biotinylated and unlabeled HEL 10–23 was 295 \pm 72 nM.

Carrasco-Marin et al. (8) were unable to demonstrate direct binding of HEL 11–25 to purified I-Ag7 and proposed that I-Ag7 was inherently unstable. We found that purified I-Ag7 stored at -70°C for more than 1 yr reproducibly bound HEL 10–23 with high affinity. Therefore, our results do not support their hypothesis that I-Ag7 is inherently unstable, which they postulated would impair its ability to bind and induce tolerance to autoreactive peptides.

Truncation Analysis of HEL 9–27. Peptides representing sequential truncations of HEL 9–27, from either the NH\textsubscript{2} or COOH-terminus, were each assayed in parallel for binding to I-Ag7 and for their ability to activate the 2D12.1 hybridoma. Inspection of these data (Table 1) reveals that the minimum T cell epitope is M12-R21, and the minimum binder is M12-Y20 or K13-R21.

Effect of Selected Substitutions on Binding and Bioactivity of HEL 10–22. Substitution of alanine (A) at each position in HEL 12–22 (Table 2) had no significant effect on binding, with the sole exceptions of positions L17 and Y20. Substitution at either of these two positions virtually abolished binding. On the other hand, while having no effect on binding, substitutions by A at K13, R14, H15, G16, and D18, and to a lesser extent at R21, abolished T cell activation. Removal of R21 (see Table 1) abolished T cell activation. Further substitutions of representative amino acids (D, K, P, Y, L, Q) at each position (Table 2) revealed varying levels of tolerance of specific residues/positions for binding (see below) and generally confirmed the results of the alanine substitutions on T cell activation. On the basis of these results, we can deduce that most residues in the minimal T cell epitope HEL 12–21 have TCR contacts and that two, L17 and Y20, are essential for binding to I-Ag7 (Fig. 2).

Table 2. Effect of Selected Amino Acid Substitutions on Binding and T Cell Activation of HEL 10–22

Substituted amino acid	HEL 10–22																		
	A	11	12	13	14	15	16	17	18	19	20	21	22						
ALA (A)	–	–	6004	300	300	300	400	30,000	150	150	30,000	800	350						
ASP (D)	950	950	950	950	950	950	7,500	1,750	2,000	7,500	–	2,000	7,000	750	150				
LYS (K)	160	750	500	–	900	800	1,500	7,000	600	7,000	900	350	1,500						
PRO (P)	200	100	60	–	200	>10,000	4,750	3,000	3,000	3,500	4,750	200	250						
TYR (Y)	240	240	400	900	900	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000			
LEU (L)	300	400	550	1,100	750	450	1,400	–	75	1,450	1,550	500	1,500						
GLN (Q)	270	400	<10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000	>10,000		
	270	400	500	900	550	400	700	12,000	200	2,000	2,000	700	900						
	25	47	43	28,250	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000

*For natural, unsubstituted HEL 10–22, the binding affinity for I-Ag7 (IC\textsubscript{50} mean \pm SD) was 295 \pm 72 nM ($n = 15$) and the dose (SC\textsubscript{50}) for activation of the T cell hybridoma was 52 \pm 23 nM ($n = 6$).

†Binding to I-Ag7; IC\textsubscript{50}(nM).
‡Activation of the T cell hybridoma 2D12.1: SC\textsubscript{50} (nM).

Figure 2. Minimal T cell epitope, HEL 12(M)–21(R), showing TCR contact residues and L and Y primary anchors for binding to I-Ag7. The critical roles of L17 and Y20 in the HEL epitope, as model anchor residues for binding to I-Ag7, was demonstrated with poly(A) pep...
The nonbinding poly(A) peptide, KAA
AAAAAA, was converted to a super binder simply by in-
corporating L and Y at the same relative positions as in the
HEL epitope. Either residue alone was not sufficient. Bind-
ing was reconstituted only when these two residues were
appropriately spaced and in the correct order. In addition,
this approach reveals the importance of the frame or con-
text of the anchor residues. The LAAY sequence must be
flanked by at least two As, an absence of which at the
COOH terminus can be compensated for by at least three
As on the NH2 terminus, but not vice versa. This suggests
that binding of these specific residues within the I-A\textgamma groove requires stabilization by hydrogen bonding from
nonspecific flanking residues, in particular at the NH2 ter-
minus. For the purpose of further analysis, the relative posi-
tions (p) of L and Y in the HEL epitope 12–21 are desig-
nated p6 and p9.

Effect of Multiple Substitutions at p6 and p9. In addition to
the selected substitutions at all positions (see Table 2), we
investigated the effect on binding of all possible substitu-
tions (except labile cysteine) at p6 or p9. A single residue
substitution was classified as well tolerated, weakly toler-
ated, or nontolerated according to a threshold on its IC\textsubscript{50}
value: well tolerated, \(<1,000\) nM; weakly tolerated, 1,000–
10,000 nM; nontolerated, \(>10,000\) nM. Although some-
what arbitrary, this classification corresponds to generally
accepted notions of good binders, moderate binders, and
weak to non-binders. The results, combined with those
from Table 2, are presented in Table 4. Optimally, p6 is a
large, hydrophobic residue (L, I, M, V), whereas p9 is aro-
nomatic and hydrophobic (Y, F) or positively charged (K, R).
Most amino acids are not well tolerated at these anchor po-
sitions. Additionally, specific amino acids are not tolerated
at other positions, namely F and E at p3 and W and Y at
p8. This information allowed us to propose and test minimum
rules for a motif for I-A\textgamma binding peptides. These were that
a binder must have the following: (a) two well-tolerated res-
idues or one well-tolerated and one weakly-tolerated residue
at anchor positions p6 and p9, (b) no nontolerated residues
at positions p3 and p8, and (c) at least two residues flanking
p6 and p9, or at least three residues NH2-terminal of p6.

Motifs in Peptides Known or Deduced to Bind I-A\textgamma.
Relatively few peptides containing sequences that might bind to
I-A\textgamma have been reported in the literature. They include
peptides that stimulate I-A\textgamma-restricted T cells or T cell
hybridomas, compete for antigen presentation to T cell hy-
bridomas, induce EAE in Biozzi AB/H mice, or have been
eluted from I-A\textgamma (listed in Table 5). It should be noted

Table 3. Binding to I-A\textgamma of L- and Y-substituted Poly(A) Peptides

Peptide	Binding IC\textsubscript{50} (nM)
* K A A A A A A A A	25,000
K A A L A A A A	25,000
K A A A A A A Y A	20,000
K A A L A A Y A	50
A A A A L A A Y A	50
A A A Y A A A L A	12,000
A A L A A A Y A	12,000
A A A A A L A Y A	25
A A A A A L A Y	200
A A A L A A Y A	600
A A A L A A Y A A	150
A A L A A Y A A	400
A A L A A Y A	20,000
A L A Y A A A A A	6,000
A L A A Y A	30,000
L A A Y A A A A A	35,000

*K added at NH2 terminus to improve solubility.

Table 4. Effects of Amino Acid Substitutions on Binding of HEL 12–22 to I-A\textgamma

Relative position (HEL 12–22)	Well-tolerated residues	Weakly tolerated residues	Nontolerated
	(IC\textsubscript{50} \(<1,000\) nM)	(IC\textsubscript{50} 1,000–10,000 nM)	(IC\textsubscript{50} >10,000 nM)
1 2 3 4 5 6 7 8 9 10 11 M K R H G L D N Y R G			
	A A A A A A I A A F A A	D D K K Q M E G K D D	E A W A
	D D K K Q M E G K D D	K Q L L Y V K P R K P	F E Y E
	L Y Q Q L S L Q Q Q Y Y P P Y Y	Y Q Q Q	\textbf{G G}
	Y Q Q Q R Y Y R Y Y R	T Q Q Q T Q Q Q Y Y R W	
	P L D D D D D D K	P G P K F E H L	S T W V
	W P K K M P L H F L	S N L N T Q Q Q Y Y R W	

Wells in Peptides Known or Deduced to Bind I-A\textgamma.
Table 5: Motif in Reported I-A^β Binding Peptides

Protein	Peptide	Method of Identification	Reference	Motif
HEL (9-29)	AAAMKRHCLDNYRGYSLLGNW	T cell hybridoma stimulation	14	+
HEL (90-104)	S V N C A K K I V S D G N M	T cell stimulation	15	+
h/m GAD 65 (524-543)	SRLSKVAPVIKARMMEYCTT		16	+
h GAD 65 (509-528)	IPSLLYRLDNEERMSRLSK		17	+
h GAD 65 (247-266)	N M Y A M I A F K M F P E V K E G			+
OVA (323-339)	ISQAVHAAHAEINEAGR		18	-
λ Repressor protein (12-26)	LEDARRLKA	Elution and sequencing	7	-
In serum albumin (560-574)	KPKATAEQLKTVMDD			+
Transferrin (55-68)	G H N Y V T A I R N Q Q E G			+
hR NPA1 (44-59)	V V M R D P Q T K R S R G F G F			+
hR NPA24B1 (51-66)	V V M R D P A S K R S R G F G F			+
hR NPA24B1 (31-43)	E T T e E S L R N Y E Q			+
r MOG (8-22)	P G Y P I R A L V O Q E D E D	Induction of CR-EAE	9	+
m PLP (56-70)	D Y E Y L I N V H A F Q Y V			+
m MBP (12-35)	Y L A T A S T D M H A R G E L P R H O T G I			+
Heat shock protein (437-460)	V L G G C A L L C R I P A L D S I T P A N E D	T cell hybridoma stimulation	8	+
Carboxypeptidase H (362-382)	K N S L I N L E Q I H R G V K G F V R			+
Carboxypeptidase H (440-464)	F S P A V G V D F P E L S E S E R K E E K E E L			+
Staphylococcal nuclease (61-79)	F T K H M V E N A K K I E V E F D K			+
Equine myoglobin (131-153)	M T K A E L F R N D I A A K Y K E L G F Q G	T cell immunogen and/or T cell Hybridoma competition	19	+
m α-1 antitrypsin (148-163)	L S Q A V H K A V L T I D E T G			+
m laminin b1 chain precursor (1594-1612)	M V K E A L E E A E K A Q V A A E K A	Induction of CR-EAE	9	+
m prostate secretory glycoprotein precursor (63-76)	F E N R K I E P V L I R K			+
m myoglobin (131-153)	M S K A E L F R N D I A A K Y K L G F Q G	T cell stimulation	20	+
m insulin B chain (9-23)	S H L V E A L Y L V C G E R G			+
m TCR Vβ8.2 (38-60)	D T G H G L R L I H Y S Y G A S T E K G D I		21	+
m TCR Vβ6 (38-60)	D S G K G L R L I Y S I T E N D L Q K D G L			+
m myoglobin (110-121)	I I I E V L K R H S G			+
m myoglobin (69-78)	L T A L G T L K K			+
Ribosomal S30 peptide (75-96)	K V H G S L A R A G K V R G Q T P K A V K Q	Induction of CR-EAE	22	+
m MOG (35-55)	M E V G W Y R S P F S R V V H L V R N G K			+

- Residues shown to be well tolerated at the p6 or p9 anchor positions (see Table 4) are bolded; weakly tolerated are underlined; nontolerated are bolded in lower case. h, human; m, mouse; r, rat.
that apart from the present study and that of Carrasco-Marin et al. (8), binding has not been determined by direct peptide interaction with purified I-A9, but either by elution from I-A9, competition with peptides that activate I-A9-bearing T cell hybridomas or induction of EAE. The motif we have defined correctly identifies 27/30 (90%) of the published sequences (Table 5). Interestingly, we found that one of these sequences, mouse serum albumin 560–574, that does not contain the motif, did not bind to I-A9 (data not shown).

Two groups have suggested putative motifs for peptides that bind to I-A9. Reich et al. (7) found that several peptides eluted from I-A9 had an acidic residue at the COOH terminus. Their data also indicated that this residue was separated by three from a basic residue. Whereas basic residues are major p9 anchors in our motif, an acidic residue at the COOH terminus is not a uniform feature of other peptides deduced (Table 5) or shown (Table 6) to bind to I-A9.

However, it is conceivable that in some cases, e.g., OVA 323–339 (see Table 5), a COOH-terminal acidic residue could compensate for a nontolerated residue at p9. Amor et al. (9) described a possible motif shared by encephalitogenic peptides in the Biozzi AB/H (I-A9) mouse. It contained hydrophobic (I or L), basic (K, R, or H), a small T cell contact (A or G) and large hydrophobic (L or F) residues within a 6–7-amino acid core. They studied the effect of K substitutions on the immunogenicity of phospholipid protein 56–70 (see Table 5), in which they had deduced a core sequence, NVHAFQ, necessary for the induction of EAE. This sequence contains our motif (p6) and F (p9). K substitutions at I, H, A, or F completely abolished the ability of the peptide to induce EAE. We would have predicted abolition of binding by the K substitution at I or A and, by analogy with HEL (see Table 2), a significant reduction in T cell activation by H or F. Thus, the features of this encephalitogenic motif are contained within the expanded and generalized motif we have described.

Presence of M motif in 0 overlapping Peptides from Human Proinsulin. We tested peptides overlapping by four residues and spanning the entire sequence of human proinsulin for binding to I-A9, and inspected them for presence of the binding motif (Table 6). All six (100%) good binders contained a motif. However, a motif was present in 4/13 (30%) weak or non-binders. Clearly, the motif rules do not fully account for the effects of residue combinations or flanking sequences. Proinsulin 5–19 has a well-tolerated V at p6 and a weakly tolerated L at p9 yet did not bind, but when this anchor pair moves towards the NH\textsubscript{2} terminus in the following 9–23 sequence, the peptide becomes a binder. Proinsulin 45–59 has a well-tolerated L at p6 and a weakly tolerated L at p9 and binds with high affinity, but when this anchor pair moves towards the NH\textsubscript{2} terminus in the following 49–63 sequence, the affinity of the peptide decreases. Human proinsulin 17–31 has a weakly tolerated Y at p6 and a well-tolerated K at p9, yet does not bind. Although this anchor pair is close to the COOH terminus, this does not preclude other peptides, e.g., human proinsulin 65–79, from binding with high affinity. However, human proinsulin 17–31 has a positively charged p9/COOH terminus, whereas the other binding peptides are generally neutral or tend to be acidic. Reich et al. (7) noted a bias towards acidic residues at the COOH terminus of peptides they eluted from I-A9. When the anchor pair in this peptide moves towards the NH\textsubscript{2} terminus in the following 21–35 sequence with an acidic COOH terminus, the peptide becomes a binder. Thus, in a small set of unbiased peptides, the motif appears to have high sensitivity and some degree of specificity. A similar degree of specificity was found for an I-EK motif by correlating binding with the presence of the motif in a panel of ~150 peptides (23).

Table 6. 0 overlapping Human Proinsulin Peptides to I-A9

Peptide sequence	IC\textsubscript{50} (nM)	M motif
(1–15) FVQHLAGSHLV EAL	7,000	–
(5–19) HL AGSHL V EA L Y L V A	30,000	+
(9–23) S HL V E A L Y LV A G E R	1,000	+
(13–27) EA LY LV A G E R F FY T	4,000	–
(17–31) LV A GE R F FY T PK T R > 50,000	+	
(21–35) E R G F FY T PK T R E A E	1,000	+
(25–39) FY T PK T R E A E D L Q V	1,000	+
(29–43) K T R EA E D L Q V G Q V E	7,000	–
(33–47) EA E D L Q V G Q V E L G G G G > 50,000	–	
(37–51) L Q V G Q V E L G G G G P AG > 50,000	–	
(41–55) Q V E L G G G G P AG S L Q P	6,000	–
(45–59) G G G P G A G S L Q P L A E	200	–
(49–63) G A S L Q P L A E G L S Q	1,000	–
(53–67) L Q P L A E G L S Q K R G I	25,000	–
(57–71) A L E G S L Q K R G I V E Q A	15,000	–
(61–75) S L Q K R G I V E Q A T S I	12,000	–
(65–79) R G I V E Q A T S I A S L Y	400	–
(69–83) E Q A T S I A S L Y Q L E N	12,000	–
(73–86) T S I A S L Y Q L E N Y A N	10,000	–

Residues well tolerated at the p6 or p9 anchor positions (see Table 4) are bolded; weakly tolerated are underlined; nontolerated are bolded in italics.
key positions in HEL 12–22, we appear to have unearthed general rules that identify a large majority of known binders to I-A\(^\text{\textgreek{y}}\), and discriminate most non-binders.

The high sensitivity of the motif for reported I-A\(^{\text{\textgreek{y}}}\) binders or T cell epitopes is remarkable, but the utility of the motif will depend on its specificity, i.e., its absence in non-binders. Specificity was 70% for the peptides in Table 6, but the database is small. Even if somewhat degenerate in its present form, the motif should considerably narrow the search for possible binders. The I-A\(^{\text{\textgreek{y}}}\) binding assay we have described is robust and will enable the database of binders and non-binders to be enlarged progressively to further validate the motif. Experiments to fine tune the motif by using peptide libraries are in progress. Just as a motif for human class II DR 4 (*0401) binding peptides was applied to scan candidate autoantigen proteins in rheumatoid arthritis for potential epitopes (26), so also might the motif for I-A\(^{\text{\textgreek{y}}}\) binding be applied to identify potential autoepitopes for IDDM in NOD mice and CR-EAE in Biozzi AB/H mice.

L. C. Harrison and M. C. Honeyman were supported by the National Health and Medical Research Council of Australia and a Diabetes Interdisciplinary Research Program grant from the Juvenile Diabetes Foundation International. P. Augstein was supported by Deutscher Akademischer Austauschdienst, Bonn. Secretarial assistance was provided by Margaret Thompson.

Address correspondence to L.C. Harrison, The Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Parkville, 3050, Australia.

Received for publication 18 November 1996 and in revised form 8 January 1997.

References

1. Kikutani, H., and S. Makino. 1992. The murine autoimmune diabetes model: NOD and related strains. Adv. Immunol. 51: 285–322.
2. Liu, G.Y., D. Baker, S. Fairchild, F. Figueroa, R. Quartermas, M.Tone, D. Haeley, A. Cooke, J.L. Turk, and D.C. Wraith. 1993. Complete characterization of the expressed immune response genes in Biozzi AB/H mice: structural and functional identity between AB/H and NOD A region molecules. Immunogenetics. 37:296–300.
3. Acha-Orbea, H., and H.O. McDevitt. 1987. The first external domain of the nonobese diabetic class II A\(^\text{\beta}\) chain is unique. Proc. Natl. Acad. Sci. USA. 84:2435–2439.
4. Tait, B.D., and L.C. Harrison. 1991. Overview: the major histocompatibility complex and insulin-dependent diabetes mellitus. Baillieres Clin. Endocrinol. & Metab. 5:211–228.
5. Rammensee, H.-G. 1995. Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol. 7:85–96.
6. Sinigaglia, F., and J. Hammer. 1994. Defining rules for the peptide–MHC class II interaction. Curr. Opin. Immunol. 6: 52–56.
7. RIch, E.-P., H. von Gratenstein, A. Barlow, K.E. Swendon, K. Williams, and C.A. Janeway, Jr. 1994. Self peptides isolated from MHC glycoproteins of non-obese diabetic mice. J. Immunol. 152:2279–2288.
8. Carrasco-Marin, E., J. Shimizu, O. Kanagawa, and E.R. Umanue. 1996. The class II MHC I-A\(^{\text{\textgreek{y}}}\) molecules from nonobese diabetic mice are poor peptide binders. J. Immunol. 156:450–458.
9. Amor, S., J.K. O’Neill, M.M. Morris, R.M. Smith, D.C. Wraith, N. Groome, and D. Baker. Encephalitogenic epitopes of myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi AB/H (H-2A\(^{\text{\textgreek{y}}}\)) mice share an amino acid motif. J. Immunol. 156:3000–3008.
10. Kappeller, J., J. W. Hite, D. W. Egmann, E. M. ustin and P. M. arrack. 1982. Antigen presentation by la\(^\text{\textgreek{y}}\) B cell hybridomas to H-2-restricted T cell hybridomas. Proc. Natl. Acad. Sci. USA. 79:3604–3608.
11. O’Reilly, L.A., P.R. Hutchings, P.R. Crocker, E. Simpson, T. Lund, D. Kioussis, F. Takei, J. Baird, and A. Cooke. 1991. Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. Eur. J. Immunol. 21:1171–1180.
12. Chocho, N., and L.C. Harrison. 1993. Suppression of diabetess mellitus in the non-obese diabetic (NOD) mouse by an auto-reactive (anti-T-A\(^{\text{\textgreek{y}}}\)) iet-derived CD4+ T cell line. Diabetologia. 36:716–721.
13. Adorini, L., A. Sette, S. Buus, H.M. Grey, M. Darley, P.V. Lehmann, G. Doria, Z.A. Nagy, and E. Appella. 1988. Inter- action of an immunodominant epitope with la molecules in T-cell activation. Proc. Natl. Acad. Sci. USA. 85:5181–5185.
14. Hurbenthal, U., E. Lier, L. Adorini, and Z.A. Nagy. 1993. Prevention of autoimmune diabetes in nonobese diabetic autoantigen mice by treatment with a class II major histocompatibility complex-blocking peptide. J. Exp. Med. 177:1499–1594.
15. Deng, H., R. Apple, M. Clare-Salzer, S. Trembleau, D. Mathis, L. Adorini, and E. Sercarz. 1993. Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease. J. Exp. Med. 178:1675–1680.
16. Chen, S.-L., P.J. W hiteley, D.C. Freed, J.B. Rothbard, L.B. Peterson, and L.S. Wicker. 1994. Responses of NOD congenic mice to a glutamic acid decarboxylase–derived peptide. J. Autoimmunity. 7:635–641.
17. Kaufman, D.L., M. Clare-Salzer, N. Tian, T. Forsthuber, G.S.P. Ting, P. Robinson, M.A. Atkinson, E.E. Sercarz, A.J. Tobin, and P.V. Lehmann. Spontaneous loss of T-cell toler- ance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature (Lond.). 366:69–72.
18. Smilek, D.E., C.B. Lock, and H.O. McDevitt. 1990. Antigen recognition and peptide-mediated immunotherapy in au- toimmune disease. ImmunoI. Rev. 118:37–71.
19. Vaysburd, M., C. Lock, and H. McDevitt, 1995. Prevention
of insulin-dependent diabetes mellitus in nonobese diabetic mice by immunogenic but not by tolerated peptides. J. Exp. Med. 182:897–902.
20. Daniel, D., and D.R. Wegmann. 1996. Protection of non-obese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9–23). Proc Natl. Acad. Sci. USA. 93:956–960.
21. Ridgway, W.M., M. Fasso, A. Lanctot, C. Garvey, and C.G. Fathman. 1996. Breaking self-tolerance in nonobese diabetic mice. J. Exp. Med. 183:1657–1662.
22. Bernard, C.C.A., T.G. Johns, A. Slavin, M. Ichikawa, C. Ewing, J. Liu, and J. Bettadapura. 1996. Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J. Mol. Med. In press.
23. Leighton, J., A. Sette, J. Sidney, E. Appella, C. Ehrhardt, S. Fuchs, and L. Adorini. 1991. Comparison of structural requirements for interaction on the same peptide with I-Ek and I-Ed molecules in the activation of MHC class II–restricted T cells. J. Immunol. 147:198–204.
24. Jardetzky, T.S., J.B. Brown, J.C. Gorga, L.J. Stern, R.G. Urban, J.L. Strominger, and D.C. Wiley. 1996. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II–like conformation for bound peptides. Proc Natl. Acad. Sci. USA. 93:734–738.
25. Rammensee, H.G., T. Friede, and S. Stevanovic. 1995. MHC ligands and peptide motifs: first listing. Immunogenetics. 41:178–228.
26. Hammer, J., F. Gallazzi, E. Bono, R.W. Karr, J. Guenot, P. Valassini, Z.A. Nagy, and F. Sinigaglia. 1995. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J. Exp. Med. 181:1847–1855.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Harrison, LC; Honeyman, MC; Trembleau, S; Gregori, S; Gallazzi, F; Augstein, P; Brusic, V; Hammer, J; Adorini, L

Title:
A peptide-binding motif for I-A(g7), the class II major histocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice.

Date:
1997-03-17

Citation:
Harrison, L. C., Honeyman, M. C., Trembleau, S., Gregori, S., Gallazzi, F., Augstein, P., Brusic, V., Hammer, J. & Adorini, L. (1997). A peptide-binding motif for I-A(g7), the class II major histocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice.. J Exp Med, 185 (6), pp.1013-1021. https://doi.org/10.1084/jem.185.6.1013.

Persistent Link:
http://hdl.handle.net/11343/259263

File Description:
Published version

License:
CC BY-NC-SA