How is rating of perceived capacity related to VO$_{2\text{max}}$ and what is VO$_{2\text{max}}$ at onset of training?

Christina Gjestvang, Trine Stensrud, Lene A H Haakstad

ABSTRACT

Objective To evaluate how rating of perceived capacity (RPC) is related to maximal oxygen uptake (VO$_{2\text{max}}$) and examine VO$_{2\text{max}}$ at onset of training in healthy adults.

Methods In total, 125 newly registered fitness centre members, equally men and women, answered the RPC scale and performed a treadmill test for measurement of VO$_{2\text{max}}$. Eligible criteria were <4 weeks of fitness centre membership, physically inactive, ≥18 years and not pregnant. The RPC is a one-page scale (1–20) based on metabolic equivalent tasks, where the individual chooses the most strenuous activity that can be sustained for at least 30 min.

Results The Bland-Altman plot demonstrated a tendency of overestimation, meaning that the participants ranked their own aerobic capacity 17.5% higher than objectively measured values of VO$_{2\text{max}}$. The mean difference between the two methods were +4.92±1.96 and +6.35±1.96 mL/min/kg VO$_{2\text{max}}$ in men and women, respectively. The Pearson correlation coefficient was moderate, with r=0.426 (p<0.01). A linear regression analysis showed that both age and VO$_{2\text{max}}$ were significant predictors of RPC (p<0.01). Measured VO$_{2\text{max}}$ at onset of fitness centre membership was in men aged 38.7±11.7 and women aged 34.7±9.9, 40.5±7.2 and 35.0±6.0 mL/min/kg, respectively. Estimated VO$_{2\text{max}}$ from the RPC scale was 45.7±9.8 and 41.4±10.1 mL/min/kg in men and women, respectively.

Conclusions The RPC seems less accurate at the individual level and may overestimate VO$_{2\text{max}}$. Still, it may be considered useful in large-scale studies.

INTRODUCTION

To date, it is scientific evidence linking low cardiorespiratory fitness to cardiovascular disease and all-cause mortality, and higher levels of cardiorespiratory fitness are associated with a lower risk of mortality from cardiovascular disease, independent of age, smoking and body composition. Cardiorespiratory fitness is usually expressed as maximal oxygen uptake (VO$_{2\text{max}}$) measured by exercise testing or in metabolic equivalent tasks (METs). VO$_{2\text{max}}$ is defined as the highest rate the body can transport and use oxygen during exercise, and cardiopulmonary exercise testing (CPET) is one of the most common and valid measurements of cardiorespiratory fitness. However, CPET is time consuming, expensive and requires exercise to volitional exhaustion. Therefore, it is not advisable for all individuals. Thus, several different submaximal testing protocols have been developed to reduce testing time, costs and increase the individuals motivation for strenuous exercise.

Still, it would be advantageous to predict an individuals cardiorespiratory fitness without having to perform CPET. Wisen et al have developed a one-page scale based on different activities that are linked to a MET. An estimated VO$_{2\text{max}}$ is obtained by asking the individual to choose the most strenuous activity that can be sustained for at least 30 min. The corresponding selected MET value can then be transformed into
oxygen uptake or workload, valuable when questionnaires are conducted in epidemiological studies. To our knowledge, only one study has investigated RPC and the relationship with VO$_{2\text{max}}$. Wisen et al compared the RPC scale with work capacity assessed by a ramp cycle test, which is not considered the gold standard to examine cardiorespiratory fitness. In addition, CPET are important to evaluate exercise programmes and to encourage individuals to have a physically active lifestyle. Despite this, it is rarely measured in new beginner exercisers. To our knowledge, no study has investigated aerobic capacity at onset of fitness centre membership. Hence, the aims of the present study were to (1) validate the RPC scale against VO$_{2\text{max}}$ measured on a treadmill (gold standard) and (2) assess VO$_{2\text{max}}$ at onset of training in healthy men and women.

MATERIALS AND METHODS

Design
This study was part of a longitudinal prospective cohort study, following up a group of new members at 25 fitness centres in Oslo, Norway, to gather repeated measures of physical activity level and health status, including a wide range of psychosocial and physiological parameters. The present study was financed by and conducted at the Norwegian School of Sports Sciences in Oslo, during the period October 2015 to April 2016. The study was reviewed by the Regional Committee for Medical and Health Research Ethics (REK 2015/1443 A), who concluded that, according to the Act on medical and health research (the Health Research Act 2008), the study did not require full review by REK. The study was approved by the Norwegian Social Science Data Service (NSD 44135). In accordance with the Declaration of Helsinki, all participants received written information about the projects purpose and procedures, and gave consent to participate. Further, it was emphasised that the participants could withdraw from the project at any time with no explanation required. No economic compensation was given.

Participants
Participants for the present study were recruited by an email invitation from the local fitness centre. Eligibility criteria were <4 weeks membership, untrained, <718 years, healthy and not pregnant. Untrained was classified as exercising <60 min once a week at moderate or vigorous intensity. Being healthy was defined as no chronic serious disease or pathology (heart disease or severe hypertension).

Measurements
An electronic questionnaire including the RPC scale was answered before measurement of VO$_{2\text{max}}$ at the laboratory. The questionnaire also contained questions about background information, motives and barriers for physical activity, social support to physical activity, subjective health complaints, perceived quality of life, body image and exercise dependence.

Rating of perceived capacity scale
To estimate and classify the energy cost of physical activity, it is usual to express the energy cost as METs. The MET value is defined as the ratio of work metabolic rate to a standard resting metabolic rate (RMR) of 1 kcal/kg/hour. One MET is considered the energy cost of a person at rest (3.5 mL/min/kg). The RPC scale is based on MET values, and each number on the scale is linked to different activities such as sitting, walking and running, derived from several sources (table 1). The scale is designed to be useful for both genders, with maximal MET values in gender differences (20 for men and 18 for women). The participants were told to select one distinct MET value, the most strenuous activity that could be sustained for at least 30 min. A Norwegian version of the scale was used in the present study.

Table 1 Rating of perceived capacity (RPC) scale
Are you able, for half an hour or more, to
1 Sit
2
3 Walk slowly
4
5 Walk at normal pace/cycle slowly
6
7
8 Jog/cycle
9
10 Run
11
12 Run fast/cycle fast
13
14
15 Run very fast (more than 15 km/hour)
16
17
18 Perform elite aerobic training (women)
19
20 Perform elite aerobic training (men)

Gjestvang C, et al. BMJ Open Sport Exerc Med 2017;3:a000232. doi:10.1136/bmjsem-2017-000232
VO\textsubscript{2max}
For accurate measurements of VO\textsubscript{2max}, body weight was measured with Inbody 720 (Biospace), in light clothing without shoes.29 Height and body weight were measured to the nearest 0.5 cm and 0.1 kg, respectively.

The stepwise modified Balke protocol started with a 3 min warm-up at an initial speed of 4.5 km/hour with no inclination.30 Then, the treadmill inclination increased by 5% every minute up to 20%, while the speed was kept constant (4.8 km/hour). Accordingly, the speed increased every minute with 0.5 km/hour, while inclination was constant (20%).30 The Borg scale (range 6-20) was used for rating perceived exertion.31 The exercise test was stopped when the participants reached maximal exhaustion (?19 on the Borg scale).

Measurement of VO\textsubscript{2max} was registered with indirect calorimetry (Oxycon Pro; Jaeger). The participants breathed through a Hans Rudolph mask (US) covering both mouth and nose attached to a non-rebreathing hose. Expired air/gases were continuously sampled each 30 s during the whole exercise test. A heart rate monitor (Polar RS800) was used to record maximal heart rate (HR\textsubscript{max}). Prior to each test day, all analysers were calibrated after the manufacturers guidelines and all exercise tests were supervised by the same research fellow.

Data processing
In prolonged periods of physical activity/exercise (approximately 30 min), a healthy untrained individual will be able to use about 70% of their VO\textsubscript{2max}.25 Hence, the MET value from the RPC scale may express about 70% of an individual’s VO\textsubscript{2max}.25

The average RMR in adults is 3.5 mL/min/kg, and this is equal to one MET.24–26 In order to compare the RPC scale with VO\textsubscript{2max} MET values from the RPC scale were transformed into MET\textsubscript{max} and then calculated to estimated VO\textsubscript{2max} using the following equations:

\[\text{METmax} = \frac{\text{VO}_{2\text{max}} (\text{mL min}^{-1} \cdot \text{kg}^{-1})}{3.5} \]

\[\text{Estimated VO}_{2\text{max}} = \text{METmax} \cdot 3.5 \]

Statistical analysis
Data analysis was conducted with SPSS Statistical Software V.24.0 for Windows. Background variables, estimated VO\textsubscript{2max} (RPC) and measured VO\textsubscript{2max} are presented as means with SD or frequencies and percentages. The strength of agreement between the two methods was analysed by Bland-Altman plot.33 Additionally, to enable comparison of these results with other studies, the Pearson correlation coefficient was used to evaluate the rpc scale (estimated VO\textsubscript{2max}) and measured VO\textsubscript{2max}. The correlation values were interpreted as good=0.50–1.0, moderate=0.30–0.49 and fair=0.10–0.29.34–35 A linear regression analysis was calculated to examine if RPC was predicted by VO\textsubscript{2max} age or gender. Level of significance was set at p<0.05.

RESULTS
Of 275 who contacted the research group, 146 were excluded due to exercising regularly and four due to various diseases. Hence, our final sample included 125 participants, equally men and women. Demographic characteristics and health factors are given in table 2. Age ranged from 18 to 71 and 2159 years in men and

Variable	Men (n=62)	Women (n=63)	p Value
Age (years)	38.8 (±11.7)	34.8 (±10.0)	0.04
BMI (kg/m2)	25.6 (±3.2)	24.6 (±4.5)	0.13
Waist/hip ratio	0.90 (±0.03)	0.87 (±0.05)	<0.01
Fat mass (%)	20.0 (±5.4)	30.5 (±7.9)	<0.01
Fat-free mass (kg)	67.9 (±7.4)	47.0 (±4.9)	<0.01
Muscle mass (kg)	38.6 (±4.4)	25.6 (±4.0)	<0.01
Self-perceived health ≥ good	38 (61.3%)	40 (63.5%)	0.94
Higher education ≥ 4 years	26 (41.9%)	31 (49.2%)	0.1
Daily smoker	3 (4.8%)	4 (6.3%)	0.7
Household income ≥ 400 000 (Kr/year)	52 (83.9%)	49 (77.8%)	0.1

Data are presented as mean (SD) for continuous variables and n (%) for categorical variables. BMI, body mass index.
In terms of body mass index (BMI), 9.6% men and 9.5% women were classified as obese (BMI >30), and 58.0% men and 33.3% women were classified as overweight (BMI >25). Abdominal obesity (waist-hip ratio >0.90 for men and >0.85 for women) was assessed in 50% of the men and 61.9% of the women.

With respect to fat percentage, 47.5% of the participants had measurements above reference values (>20% for men and >30% for women).

The visual agreement of the Bland-Altman plot demonstrated an overestimation (figures 1 and 2). The mean difference between the two methods was 4.92 ± 1.96 and 6.35 ± 1.96 mL/min/kg VO\textsubscript{2max}, with 95% confidence limits of agreement varying from +22.44 to 12.60 and +26.49 to 13.79 mL/min/kg VO\textsubscript{2max} for men and women, respectively. Three men and four women were outliers of the 95% limits of agreement. The Pearson correlation coefficient between the two methods was moderate, with r=0.426 (p<0.01).

The linear regression analysis showed a significant association between age (p<0.01), VO\textsubscript{2max} (p<0.01) and the prediction of RPC. The beta coefficient was 0.26 and 0.55 for age and VO\textsubscript{2max}, respectively. No significant association was found between gender and RPC (p=0.53).

We had no dropouts or error at measurement with respect to the stepwise modified Balke protocol. Measured and estimated VO\textsubscript{2max} at onset of training are shown in table 3. Women had on average 13.6% lower measured VO\textsubscript{2max} compared with the men (p<0.01). The participants ranked their own aerobic capacity 17.5% higher than objectively measured values of VO\textsubscript{2max}. The mean duration of the stepwise modified Balke protocol was 10.43 ± 1.50 min and 9.03 ± 1.19 min for men and women, respectively (p=0.07) (table 3).

DISCUSSION

In this study, we compared estimated VO\textsubscript{2max} (RPC) with directly measured VO\textsubscript{2max} on a treadmill using a stepwise modified Balke protocol until exhaustion in 125 healthy untrained adults. The Bland-Altman plot of the two methods showed an overestimation in aerobic capacity at the individual level. Overestimation of estimated VO\textsubscript{2max} was 14.5% and 20.3% in men and women, respectively. The correlation between the two methods was moderate (r=0.426, p<0.01). VO\textsubscript{2max} at onset of training was 40.5 mL/min/kg and 35.0 mL/min/kg for men and women, respectively.

Participants

All participants were defined as untrained, possibly influencing the participants estimation of their own aerobic capacity. Knapik et al showed that trained individuals are more capable to predict their aerobic capacity subjectively. Still, a sedentary lifestyle is becoming more and more common worldwide, and the

Variable	Men (n=62)	Women (n=63)	p Value
Measured VO\textsubscript{2max} (mL/min/kg)	40.5±7.2	35.0±6	<0.01
Estimated VO\textsubscript{2max} (mL/min/kg)	45.7±9.8	41.4±10.1	<0.01
HR\textsubscript{max} (beats/min)	183±15	176±26	0.1
Borg scale	19.3±0.6	19.1±0.7	0.2
RER	1.38±0.09	1.36±0.07	0.2

Values are presented as mean (SD). HR\textsubscript{max}, maximal heart rate; RER, respiratory exchange ratio.

Figure 1 Bland-Altman plot for men showing the difference plotted against the mean of the two estimates assessed with the RPC scale and measured with a stepwise modified Balke protocol.

Figure 2 Bland-Altman plot for women showing the difference plotted against the mean of the two estimates assessed with the RPC scale and measured with a stepwise modified Balke protocol.

Table 3 Measured and rated values from VO\textsubscript{2max} and rating of perceived capacity (RPC)
majority of participants in large population-based studies are physically inactive or insufficiently physically active, with a low $VO_{2\text{max}}$. Our participants may therefore be considered representative of a general urban European population.

Measurements

Rating of perceived capacity scale

The RPC scale has a limited number of aerobic activities, which is believed to make it easier to evaluate aerobic capacity. Still, there may be a challenge in relation to the interpretation of the RPC scale. The aerobic activities presented in the RPC scale include walking, running and cycling at different speeds. It may be a limitation if an individual has no appreciation to perform these activities. The risk of over-reporting or under-reporting may also be present when an individual is asked to subjectively assess their aerobic capacity based on a simple scale. For example, running fast will not necessarily have the same meaning to an untrained and a trained individual.

$VO_{2\text{max}}$

Assessment of $VO_{2\text{max}}$ using CPET is considered the most valid measure of cardiorespiratory fitness, and an increase in $VO_{2\text{max}}$ is the most common measure of demonstrating a training effect. However, CPET may not be suitable for individuals who have different health challenges related to pain or fatigue. Further, the method requires exercise to volitional exhaustion, qualified personnel, as well as being expensive and time consuming.

The secondary aim of the present study was to evaluate $VO_{2\text{max}}$ at onset of training in healthy men and women. To verify a valid $VO_{2\text{max}}$, RER had to be between 1.10 and 1.30 according to the age-dependent results reported by Edvardsen et al. In addition, the Borg scale had to be ≥19, reflecting a combination of exhaustion from central and peripheral factors, as well as psychological factors. Both physiological and psychological end criteria are of importance to determine maximal exhaustion due to that untrained individuals often overestimate perceived exertion. Our participants expressed more muscular fatigue than shortness of breath. One explanation for this may be the chosen test protocol, and lower anaerobic threshold in untrained individuals, meaning that local muscle fatigue was a determining limitation more than central factors.

Results

$VO_{2\text{max}}$ related to the RPC scale

The present results showed large individual differences, with 17.4% overestimation in subjectively estimated $VO_{2\text{max}}$ compared with measured values. This is in contrast to the findings of Wisen et al, where the participants underestimated their aerobic capacity by 17%. It should be noted that Wisen et al compared RPC with a ramp cycle test. Myers et al also found an underestimation in self-rated aerobic capacity, using veterans specific activity questionnaire and maximal exercise testing on a treadmill in 212 elderly.

Prieto et al compared $VO_{2\text{max}}$ on a treadmill with Subjective Appraisal of Aerobic Capacity (SAAC) scale and found that 94.4% of the participants with a low $VO_{2\text{max}}$ ($<43.0\text{mL/min/kg}$) classified their aerobic capacity as high or very high. The major difference between the RPC and SAAC scale is how the participants rank their aerobic capacity. The SAAC scale uses values related to aerobic capacity levels from 1=Very poor to 7=Excellent. Furthermore, the scale is not related to MET values. The RPC scale has multiple MET values (120), most likely making it simpler for each individual to predict their aerobic capacity. Hence, we believe that the RPC scale may be more accurate and relevant to aerobic capacity in individuals with a low $VO_{2\text{max}}$.

Still, the present study found an overestimation in estimated $VO_{2\text{max}}$, with an average of 17.5%.

Differences in self-reported and objectively measured aerobic capacity may be explained by the variations in chosen questionnaires/scales, exercise tests ($VO_{2\text{max}}$/submaximal, treadmill/bicycle) and participants (untrained/trained). In addition, it is not possible to sustain prolonged activity at the maximal level, and differences in perception of activity will affect the risk of underestimation or overestimation.

The difference in objectively measured $VO_{2\text{max}}$ and the RPC scale in the present study may be of importance to the individual level, but not in large-scale surveys, where the purpose is to get an overview of maximal aerobic capacity at the population level.

Several mathematical non-exercise models have been developed with the aim of predicting $VO_{2\text{max}}$. The studies of Jurca et al and Nes et al concluded that $VO_{2\text{max}}$ may be accurately estimated with a non-exercise model including several variables such as gender, age, body composition, physical activity level and resting heart rate. Still, the results of Nes et al indicated that the non-exercise model underestimated $VO_{2\text{max}}$ among the most fit subjects and overestimated $VO_{2\text{max}}$ among the least fit participants, in accordance with the findings in the present study.

It is suggested that for untrained individuals, direct measurement of $VO_{2\text{max}}$ should be used for a more accurate examination. Still, this method may not increase an untrained individuals motivation for exercise, mainly because it requires vigorous intensity and voluntary exhaustion.

$VO_{2\text{max}}$ at onset of training

Several studies have investigated $VO_{2\text{max}}$ in the general adult population (2090 years). The present study showed a lower $VO_{2\text{max}}$ than these studies. Compared with Norwegian data, the participants in the present study had in general 16.5% and 9.6% lower...
VO$_{2\text{max}}$ in men and women, respectively.39 60 This may be explained by the fact that our participants were classified as untrained by inclusion due to our secondary aim. Edvardsen \textit{et al} and Aspenes \textit{et al} had no inclusion/exclusion criteria with respect to physical activity level, and it is not unlikely that those who are physically active had more interest in participating in studies aiming to investigate aerobic capacity.39 60 Only one study showed a lower VO$_{2\text{max}}$ than ours. Mishra and Budholia compared VO$_{2\text{max}}$ between trained and untrained men, and found on average a VO$_{2\text{max}}$ of 37.2 mL/min/kg in the untrained group.62 Our men had a slightly higher VO$_{2\text{max}}$ (40.5 mL/min/kg). A limitation of Mishra and Budholia was a sample size of 24 untrained participants only and measurement of VO$_{2\text{max}}$ using a bicycle ergometer.62

REFERENCES

1. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. \textit{JAMA} 2009;301:202435.
2. Lee DC, Artero EG, Sui X, et al. Mortality trends in the general population: how to measure cardiorespiratory fitness. \textit{J Psychopharmacol} 2010;24 (Suppl 4):2735.
3. Bouchard C, Blair SN, Katzamarytz PT. Less sitting, more physical activity, or higher fitness? \textit{Mayo Clin Proc} 2015;90:153340.
4. DeFina LF, Haskell WL, Willis BL, et al. Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? \textit{Prog Cardiovasc Dis} 2015;57:3249.
5. Després JP. Physical activity, sedentary behaviours, and cardiovascular health: when will cardiorespiratory fitness become a vital sign? \textit{Can J Cardiol} 2016;32:50513.
6. Evans HJ, Ferrar KE, Smith AE, et al. A systematic review of methods to predict maximal oxygen uptake from submaximal, open circuit spirometry in healthy adults. \textit{J Sci Med Sport} 2015;18:1838.
7. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. \textit{Phys Ther} 2000;80:782807.
8. Arena R, Myers J, Williams MA, et al. Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Cardiology and the Council on Cardiovascular Nursing. \textit{Circulation} 2007;116:32943.
9. Wisn AG, Farazdaghgi RG, Wohlfart B. A novel rating scale to predict maximal exercise capacity. \textit{Eur J Appl Physiol} 2002;87(4-5):3507.
10. Vanhees L, Lefèvre J, Philippaerts R, et al. How to assess physical activity? How to assess physical fitness? \textit{Eur J Cardiovasc Prev Rehabil} 2005;12:10214.
11. Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. \textit{Med Sci Sports Exerc} 1995;27:1292301.
12. Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. \textit{Med Sci Sports Exerc} 2007;39:142334.
13. Markland D, Ingledew DK. The measurement of exercise motives: factorial validity and invariance across gender of a revised exercise motivations inventory. \textit{Br J Health Psychol} 1997;2:36176.
14. Sørensen M, Gill DL. Perceived barriers to physical activity across Norwegian adult age groups, gender and stages of change. \textit{Scand J Med Sci Sports} 2008;18:85163.
15. Lorentzen C, Ommundsen Y, Holme I. Psychosocial correlates of stages of change in physical activity in an adult community sample. \textit{Eur J Sport Sci} 2007;7:93106.
16. Salis JF, Grossman RM, Pinski RB, et al. The development of scales to measure social support for diet and exercise behaviors. \textit{Prev Med} 1987;16:82536.
17. Eriksen HR, Ihløbaek C, Ursin H. A scoring system for subjective health complaints (SHC). \textit{Scand J Public Health} 1999;27:6372.
18. Ihløbaek C, Eriksen HR, Ursin H. Prevalence of subjective health complaints (SHC) in Norway. \textit{Scand J Public Health} 2002;30:209.
19. Park H, Suh BS, Kim WS, et al. Character profiles and life satisfaction. \textit{Compr Psychiatry} 2015;58:1727.
20. Pavot W, Diener E, Colvin CR, et al. Further validation of the Satisfaction with Life Scale: evidence for the cross-method convergence of well-being measures. \textit{J Pers Assess} 1991;57:14961.
21. Anderssen SA, Andersen LB. Fysisk aktivitetsnivå i Norge. 2003. Data basert p sprekserknaet International Physical Activity Questionnaire. IS-1254 Sosial- og helsedirektoratet 2004.
22. Pavot W, Diener E. Review of the Satisfaction with Life Scale. \textit{Psychol Assess} 1995;3:16472.
23. Cash T. The multidimensional body-self relations questionnaire. Test manual. Norfolk, Virginia: Old Dominion University, 1990.
24. Hausenblas HA, Symons Downs D. Exercise Dependence Scale-21 manual, 2002.
25. Gjestvang C, et al. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity. Front Physiol 2015;6:226.
26. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 2011;43:157581.
27. Jett M, Sidney K, Blomchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 1990;13:35565.
28. Haakstad LAH, B K. Fitness and physical activity in norwegian adults. Adv Physiother 2007;9:8996.
29. Anderson LJ, Erceg DN, Schroeder ET. Utility of multifrequency bioelectrical impedance compared to DEXA for assessment of regional lean mass. Med Sci Sport Exerc 2011;43:316.
30. Balke B, Ware RW. An experimental study of physical fitness of Air Force personnel. U S Armed Forces Med J 1959;10:6788.
31. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 1970;2:928.
32. Edvardsen E, Hem E, Anderssen SA. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS One 2014;9:e85276.
33. Strømme SB, Hstmark AT. [Physical activity, overweight and obesity], Tidsskr Nor Laegeforen 2000;120:357882.
34. Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 2003;22:8593.
35. Haakstad LA, Gunsende I, B K. Self-reporting compared to motion monitor in the measurement of physical activity during pregnancy. Acta Obstet Gynecol Scand 2010;89:74956.
36. Hankin JH, Wilkens LR, Kolonel LN, et al. Validation of a quantitative diet history method in Hawaii. Am J Epidemiol 1991;133:61628.
37. World Health Organisation. Waist circumference and waist hip ratio. Report of a WHO expert consultation. World Health Organisation, 2011;39.
38. Jeukendrup A, Gleeson M. Sport nutrition. 2nd edn. Human Kinetics, 2010:488.
39. Knapik JJ, Jones BH, Reynolds KL, et al. Validity of self-assessed physical fitness. Am J Prev Med 1992;8:36772.
40. Edvardsen E, Sclent C, Hansen BH, et al. Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population. Chest 2013;144:2418.
41. Dumith SC, Hallal PC, Reis RS, et al. Worldwide prevalence of physical inactivity and its association with human development index in 76 countries. Prev Med 2011;53:248.
42. Scarbrough P, Bhatnagar P, Wijayasinghe KK, et al. The economic burden of ill health due to diet, physical inactivity, smoking, alcohol and obesity in the UK: an update to 200607 NHS costs. J Public Health 2011;33:52735.
43. Colley RC, Garriguet D, Janssen I, et al. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 2011;22:714.
44. Choi BC, Pak AW. Understanding and minimizing epidemiologic bias in public health research. Can J Public Health 2005;96:2846.
45. Hassmnn P. Perceptual and physiological responses to cycling and running in trained and untrained subjects. Eur J Appl Physiol Occup Physiol 1990;60:44551.
46. Schillings ML, Hoefsloot W, Stegemann DF, et al. Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. Eur J Appl Physiol 2003;90:9026.
47. Davis JM. Central and peripheral factors in fatigue. J Sports Sci 1995;13 Spec No:S49553.
48. Farrell PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports 1979;11:39844.
49. Cerretelli P, Ambrosoli G, Fumagalli M. Anaerobic recovery in man. Eur J Appl Physiol Occup Physiol 1975;34:1418.
50. Shimizu M, Myers J, Buchanan N, et al. The ventilatory threshold: method, protocol, and evaluator agreement. Am Heart J 1991;122:50916.
51. Kang J, Chaloupka EC, Mastrangelo MA, et al. Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur J Appl Physiol 2001;84:2915.
52. Myers J, Do D, Herbert W, et al. A nomogram to predict exercise capacity from a specific activity questionnaire and clinical data. Am J Cardiol 1994;73:5916.
53. Prieto Saborit JA, Del Valle Soto M, Montoliu Sanclemente MA, et al. [Relation between the assessed and the measured aerobic capacity and the VO2max in firemen], Psicothema 2010;22:1316.
54. Prieto JA, Nistal P, Mndez D, et al. Impact of error self-perception of aerobic capacity in the safety and efficacy of the lifeguards. Int J Occup Saf Ergon 2016;22:15963.
55. Peate WF, Lundergan L, Johnson JJ. Fitness self-perception and VO2max in firefighters. J Occup Environ Med 2002;44:54650.
56. Jurca R, Jackson AS, LaMonte MJ, et al. Assessing cardiorespiratory fitness without performing exercise testing. Am J Prev Med 2005;29:18593.
57. Nes BM, Janszky I, Vatten LJ, et al. Estimating VO2peak from a nonexercise prediction model: the HUNT Study, Norway. Med Sci Sports Exerc 2011;43:202430.
58. Inbar O, Oren A, Scheinowitz M, et al. Normal cardiopulmonary responses during incremental exercise in 20- to 70-year-old men. Med Sci Sports Exerc 1994;26:538–46.
59. Nelson MD, Petersen SR, Dlin RA. Effects of age and counseling on the cardiorespiratory response to graded exercise. Med Sci Sports Exerc 2010;42:25564.
60. Aspnes ST, Nilsen TI, Skaug EA, et al. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc 2011;43:146573.
61. Kusy K, Zielinski J. Aerobic capacity in speed-power athletes aged 20-80 years vs endurance runners and untrained participants. Scand J Med Sci Sports 2014;24:88–79.
62. Mishra AKB, Buddhokia PK. Comparison of VO2max between trained and untrained young adults. Global J Res Analys 2016;5:79–80.