Materials Research Express

PAPER

Density functional theory calculations for electronic, optoelectronic and thermodynamic properties of dibenzothiophene metal complexes

Anu1, Anurag Srivastava2 and Mohd Shahid Khan1

1 Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
2 Advanced Material Research Group, CNT Lab, ABV-Indian Institute of Information Technology and Management, Gwalior 474015, India

E-mail: mskhan@jmi.ac.in

Keywords: metal organic complexes, polarizability, hyperpolarizability, electric susceptibility, refractive index, solvent effects

Abstract

The modelling and geometry optimisation of metal–organic complexes of dibenzothiophene have been done to analyse their electronic, optoelectronic, and thermodynamic properties in the gas phase and in solvent phase (Heptane, Chloroform, Dichloroethane, Ethanol, Acetonitrile, Water). The Density functional theory (DFT) has been used to deduce the properties like polarizability (\(\alpha\)), dipole moment (\(\mu\)), first hyperpolarizability (\(\beta\)), second hyperpolarizability (\(\gamma\)), susceptibility (\(\chi\)), dielectric constant (\(\epsilon\)), refractive index (\(n\)), and thermodynamic properties, using the B3LYP functional and LANL2DZ basis function. The high values of n, \(\chi\), \(\beta\), and \(\alpha\), and the small values of HOMO-LUMO energy gap, and \(\epsilon\) affirm good optoelectronic and electronic applications for the studied molecules.

1. Introduction

Earlier, non-linear optical (NLO) materials were majorly based on inorganic crystals but despite having mechanical and thermal stability, they have limited second order coefficients. From recent times potential researches are dwelling upon organic and metal organic NLO materials [1–5]. For the potential applications in the photonic devices, the search for novel materials having large second order nonlinear optical properties are currently a subject of consideration [6, 7]. Organic molecules being chemically flexible with large and fast nonlinear optical response have already proved to be good materials for nonlinear devices. Because of high NLO susceptibilities, organic and metal–organic complexes are of great research interest [8–10]. To predict non-linearity, researchers have studied various organic and organometallic molecular systems [11–13]. This continued interest in organometallic molecules for large NLO properties has been the motivation for the current work presented.

Of various optoelectronic properties, the electric polarizability is an important property for the investigation of optoelectronic properties of the molecules. It can create an induced dipole moment in a dielectric material in the external electric field’s presence. For low electric field case, the formula \(\mu = \langle \alpha \rangle E\) reflecting linearity of the dipole moment, where \(\mu\) is the dipole moment, \(\langle \alpha \rangle\) is the average polarizability, and E is the electric field, defines the polarizability. The behaviour of dipole moment is not linear for the case of strong fields and is given by the relation \(\mu = \alpha E + \beta E^2 + \gamma E^3\) … where \(\beta\) is the first molecular hyperpolarizability, \(\gamma\) is the second molecular hyperpolarizability. A number of studies have been done to discover these properties for different molecules, like Labidi et al [1–4] studied all-trans hexatriene for the substitution effects on the polarizability and hyperpolarizability, while Atalay et al [15] studied some donor–acceptor oxadiazoles for linear and nonlinear optical properties using Hartree–Fock method; and Zafar et al studied non-linear optical properties of 1, 4-Diamino–9, 10-Anthraquinone [16], and many more [17, 18]. There are studies present on NLO properties for natural pigments also [19].

© 2020 The Author(s). Published by IOP Publishing Ltd
The current work aims to predict the electronic, optoelectronic, and thermodynamic properties of the molecules: Cr-complex of thiol-ended dibenzothiophene (Cr-TED) and W-complex of thiol-ended dibenzothiophene (W-TED), using density functional theory (DFT). These molecules are formed by replacing the dangling hydrogen in dibenzothiophene with the sulphur atom. The resultant molecule the thiol-ended dibenzothiophene (TED) has been used to make its metal complexes [20, 21]. The electronic and optoelectronic properties along with thermodynamic properties of these molecules are studied to judge whether the molecules are appropriate for optoelectronic applications or not. The properties are studied in the gas phase as well as solvent phase. Since experimentalist use the molecules in the solvent and solvent could modify the geometry and the optoelectronic properties of the molecule, the need for solvent phase calculations seems to be more fruitful and realistic.

2. Computational methodology

Both the molecules (Cr-TED and W-TED) are optimised using Gaussian 03 software [22] by employing B3LYP functional [23–25] accompanied by LANL2DZ basis set in gas phase and in solvent phase (Heptane (1.9), Chloroform (4.81), Dichloroethane (10.36), Ethanol (24.5), Acetonitrile (37.5), Water (80.1)). The basis set LANL2DZ has been chosen because of the presence of transition metal in the molecules and hence is applied for both the molecules in order to compare the results at same level of theory. Further, calculations to determine mean polarizability (α), first molecular hyperpolarizability (β), average second molecular hyperpolarizability (γ) and isotropy ($\Delta\alpha$) of the molecular systems are performed using the same functional and basis set.

Due to the inadequacy of gas phase results of the molecules in describing the solution effect, the solvent effect has been studied using Heptane, Chloroform, Dichloroethane, Ethanol, Acetonitrile, and Water as solvent for the molecules. For this process, the self-consistent reaction field (SCRF) theory [26] is used with LANL2DZ basis set.

For the calculation of optoelectronic properties of the molecules, the conversion factors required to convert atomic units to SI units: 1 Debye = 3.336×10^{-30} Cm (Coulomb meter), 1 a. u. of $\alpha = 1.64878 \times 10^{-41}$ C2 m3 J$^{-1}$, 1 a. u. of $\beta = 8.6393 \times 10^{-33}$ esu = 3.206361×10^{-53} C3 m3 J$^{-2}$, and 1 a.u. of $\gamma = 6.23597 \times 10^{-65}$ C4 m4 J$^{-3}$ [27, 28]. Also, pressure and temperature are set to 1 atm and 298.15 K, respectively for all the thermodynamic property calculations.

3. Results

3.1. Molecular structure and geometrical properties

The ground state geometries of the molecules (TED, Cr-TED, and W-TED) optimised using B3LYP functional employing LANL2DZ basis set for the DFT calculations are shown in the figure 1. The optimised ground state energies are -13362.88 eV for TED, -31129.81 eV and -30628.16 eV for Cr-TED and W-TED, respectively showing relative stabilisation of the molecules.

The selected optimised parameters presented in table 1 for Cr and W complex of Dibenzo thiophene show almost same values for experimental [29] and theoretical case as depicted by percentage difference values.
	Cr-TED	W-TED		Cr-TED	W-TED		
	Theoretical	Experimental	% Difference	Theoretical	Experimental	% Difference	
Cr-S	2.6012	2.4512	3.48	W-S	2.720	2.580	5.28
Cr-C (2)	1.8969	1.9090	0.63	W-C (4)	2.041	2.006	1.72
Cr-C (4)	1.8926	1.8984	0.30	W-C (5)	2.039	2.039	0.00
Cr-C (6)	1.8944	1.9218	1.43	W-C (6)	2.037	2.060	1.12
Cr-C (5)	1.8944	1.9030	0.45	W-C (2)	2.037	2.020	0.83
Cr-C (3)	1.8484	1.8550	0.35	W-C (3)	1.975	1.962	0.66
S-C (13)	1.8459	1.7727	4.04	S-C (12)	1.852	1.762	4.98
S-C (12)	1.8480	1.7692	4.35	S-C (13)	1.851	1.764	4.81
Angle (degree)	Theoretical	Experimental	Percentage difference	Angle (degree)	Theoretical	Experimental	Percentage difference
C(13)-S-Cr	112.68	109.40	3.04	C(12)-S-W	109.9	110.8	0.81
C(12)-S-Cr	110.79	112.78	1.78	C(13)-S-W	111.8	108.2	3.27
C(2)-Cr-S	87.82	92.81	5.52	C(3)-W-S	177.2	177.1	0.05
C(4)-Cr-S	87.58	88.06	0.54	C(4)-W-C(6)	178.9	178.9	0.00
C(6)-Cr-S	91.08	91.12	0.04	C(2)-W-C(5)	178.3	175.1	1.81
C(5)-Cr-S	93.05	91.78	1.37	C(3)-W-C(4)	90.2	89.3	1.00
C(3)-Cr-S	176.76	177.05	0.16	C(3)-W-C(2)	89.2	89.7	0.55
C(12)-S-C(13)	89.11	91.05	2.15	C(12)-S-W	109.9	110.8	0.81
C(4)-Cr-C(2)	89.94	90.54	0.66	C(3)-W-C(5)	89.1	85.7	3.89
C(2)-Cr-C(6)	90.07	90.77	0.77	C(4)-W-C(2)	89.8	90.9	1.21
C(3)-Cr-C(4)	89.55	89.17	0.42	C(3)-W-C(6)	90.7	90.9	0.2
C(3)-Cr-C(5)	90.84	89.27	1.74	C(2)-W-C(6)	90.4	88.0	2.69
C(4)-Cr-C(5)	90.60	90.72	0.13	C(5)-W-C(6)	89.4	90.4	1.11
C(3)-Cr-C(2)	89.55	86.19	3.82	C(4)-W-S	87.8	88.6	0.90
C(5)-Cr-C(2)	178.54	175.28	1.84	C(2)-W-S	88.7	92.3	3.97
C(3)-Cr-C(6)	90.84	91.67	0.90	C(5)-W-S	92.8	92.4	0.43
C(4)-Cr-C(6)	179.11	178.49	0.34	C(6)-W-S	91.0	91.2	0.21
C(5)-Cr-C(6)	89.39	88.03	1.53	C(12)-S-C(13)	89.0	90.7	1.89

* Reference [29].
Now to understand molecular chemical stability and the relationship of Nonlinear optical properties with the molecular structure, the HOMOs, LUMOs, and HOMO-LUMO energy gaps have been studied for both the molecules [30]. The HOMO-LUMO energy gap for the optimised molecules in gas phase and solvent (Heptane, Chloroform, Dichloroethane, Ethanol, Acetonitrile, Water) phase are presented in the table 2. It can be observed clearly from table 2 that the $E_g = E_{HOMO} - E_{LUMO}$ values for both the molecules changes on the inclusion of solvation effects. Also, there is an increment in the HOMO-LUMO gap for solvent phase than gas phase for both the metal complexes with increasing dielectric constant of the solvents.

3.2. Energies

The first order energy derivative with respect to the applied electric field gives the dipole moment and represents the strength of the polarity of the molecule. The thermodynamic properties like zero-point vibrational energy, electronic energy (zero-point corrected total energy), entropy, enthalpy, and free energy of the molecules: Cr–TED, and W–TED, are presented in table 3. The effects of solvent phase can be seen on the thermodynamic properties, electronic energies are decreasing with increasing dielectric constants of the solvents, hence molecules are getting stabilized in more polar solvents.

3.3. Polarizability, hyperpolarizability and second hyperpolarizability

The second order energy derivative with respect to the applied electric field is defined as the polarizability of the molecule. A large variety of physical phenomena are explainable with the help of polarizability. Also, experimental difficulties in obtaining reliable values for polarizability arouses the demand of theoretical results.

Table 2. The HOMO-LUMO energy gap (in eV) of the molecules: Cr–TED, and W–TED.

Phase	Cr–TED	W–TED
Gas	1.5170	1.5164
Heptane (1.9)	1.5217	1.5249
Chloroform (4.81)	1.5287	1.5306
Dichloroethane (10.36)	1.5339	1.5254
Ethanol (24.5)	1.5366	1.5293
Acetonitrile (37.5)	1.5574	1.5303
Water (80.1)	1.5385	1.5459

Table 3. Thermodynamic properties i.e., zero-point vibrational energy ZPVE (kcal/mol), electronic energy E (kcal/mol), entropy S (cal/mol-K), enthalpy H (kcal/mol), and free energy F (kcal/mol) of the molecules: Cr–TED, and W–TED.

Phase	ZPVE	E	S	H	F
Cr–TED					
Gas	115.9489	−717754.2523	179.007	16.3843	−36.9860
Heptane (1.9)	115.7780	−717758.4591	179.517	16.4169	−37.1059
Chloroform (4.81)	115.6730	−717762.7205	179.149	16.4219	−36.9917
Dichloroethane (10.36)	115.7592	−717764.7781	177.776	16.3793	−36.6246
Ethanol (24.5)	115.7852	−717766.0382	178.012	16.3755	−36.6993
Acetonitrile (37.5)	115.7920	−717766.3199	178.121	16.3736	−36.7332
Water (80.1)	115.7451	−717766.7284	178.763	16.3912	−36.9070

Phase	ZPVE	E	S	H	F
W–TED					
Gas	115.1348	−706186.4693	183.312	16.6460	−38.0083
Heptane (1.9)	114.9315	−706190.9904	176.319	16.1314	−36.4389
Chloroform (4.81)	114.8120	−706195.5298	184.503	16.7300	−38.2793
Dichloroethane (10.36)	114.7418	−706197.7763	186.093	16.7520	−38.7318
Ethanol (24.5)	114.7549	−706199.1085	186.294	16.7432	−38.8002
Acetonitrile (37.5)	114.7618	−706199.4047	186.375	16.7407	−38.8272
Water (80.1)	114.7209	−706199.4743	177.121	16.1835	−36.6252
The B3LYP functional with LANL2DZ basis set are used to obtain the tensor components of polarizability, using these components the average polarizability, the anisotropy, and the averaged second hyperpolarizability for the molecules have been calculated. The six polarizability tensor components for a molecule are given as $\alpha_{x x}$, $\alpha_{y y}$, $\alpha_{z z}$, $\alpha_{x y}$, $\alpha_{x z}$, and $\alpha_{y z}$. These are further used to calculate average polarizability $\langle \alpha \rangle$ and anisotropy $\Delta \alpha$ using the following formulas:

$$\langle \alpha \rangle = \frac{1}{3}(\alpha_{x x} + \alpha_{y y} + \alpha_{z z})$$

$$\Delta \alpha = \frac{1}{2}[(\alpha_{x x} - \alpha_{y y})^2 + (\alpha_{y y} - \alpha_{z z})^2 + (\alpha_{z z} - \alpha_{x x})^2 + 6(\alpha_{x y}^2 + \alpha_{y z}^2 + \alpha_{z x}^2)]^{\frac{1}{2}}$$

and are expressed in the Table 4.

It can be observed that the dipole moments of the metal complexes have changed on the solvent introduction and increase on increasing polarity of solvents. On comparing the gas phase to solvent phase calculations, one can observe an increment in the magnitude of dipole moment for the solvent phase, with a decrement in the energies.

To understand the relation between the nonlinear optical properties and the molecular structure, it is useful to theoretically determine the hyperpolarizability of the molecule. The nonlinear optical activity of the molecule is measured by hyperpolarizability. From table 4, it is found that the polarizability of metal complexes has changed on the inclusion of solvent phase. Also, there is a noticeable change in the values of the polarizability for both the molecules from gas to solvent phase. Also, anisotropy of the molecules has shown an increase in values for the metal complexes on shifting to solvent phase from gas phase.

Table 4 also shows the first molecular hyperpolarizability (β_{mol}) of the molecules calculated from the 10 components β_{xxx}, β_{xxy}, β_{xyy}, β_{yyx}, β_{yyz}, β_{xyz}, β_{xzx}, β_{xzy}, β_{yyz}, and β_{zzz} of the hyperpolarizability. The values are presented in electrostatic units after conversion from the atomic units. The formula used for the calculations are as follows:

$$\beta_{tot} = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{\frac{1}{2}}$$

$$\beta_{mol} = \frac{1}{3}(\beta_x^2 + \beta_y^2 + \beta_z^2)^{\frac{1}{2}}$$

Where, β_x, β_y, and β_z have been calculated using

$$\beta_i = \beta_{ii} + \frac{1}{3}\sum_{j\neq i}(\beta_{ij} + \beta_{ji})$$
As is evident from table 4, the molecular hyperpolarizability for the Cr complex of dibenzothiophene and W complex of dibenzothiophene has shown a decrease in the values with respective solvent inclusion. Also, an inverse relationship of hyperpolarizability with HOMO-LUMO energy gap, \(E_g \) has been observed. This is in conformity with the earlier results reported in the literature. It has also been observed that the values of the hyperpolarizability obtained for the studied molecules (Cr-TED \((0.5030 \times 10^{-30}\) esu), and W-TED \((1.8176 \times 10^{-30}\) esu)) are higher in comparison to that of Urea \((0.1947 \times 10^{-30}\) esu) reported in literature \([31–33]\). Urea is the reference molecule which is used in the study of the nonlinear optical properties of molecular structure. On comparing gas phase to the solvent phase, a clear increase in the molecular hyperpolarizability value for both the molecules can be noted. From the table 4 one can conclude that the polarizability and first hyperpolarizability values for these molecules are sufficiently high to be considered as good option for optoelectronic applications.

The averaged second hyperpolarizability is defined as

\[
\langle \gamma \rangle = \frac{1}{5} \left[\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2(\gamma_{xyyx} + \gamma_{xxyx} + \gamma_{yyzz}) \right]
\]

Where, \(\gamma_{xxxx} \), \(\gamma_{yyyy} \), \(\gamma_{zzzz} \), \(\gamma_{xyyx} \), \(\gamma_{xxyx} \), and \(\gamma_{yyzz} \) are the components of the second hyperpolarizability tensor. The averaged second hyperpolarizability values in gas phase as well as in the solvent phase are presented in table 4 for both the molecules: Cr-TED, and W-TED. From table 4, one can conclude that the averaged second hyperpolarizability values have decreased for the metal complexes from gas phase to solvent phase.

Another important property i.e., Molar Refractivity (MR) related to polarizability by the Lorentz-Lorentz equation is as follows

\[
MR = \frac{(n^2 - 1)(n^2 - 2)MW}{\rho} = 1.333\pi N\alpha
\]

Where, \(n \), \(MW \), \(\rho \), \(N \), and \(\alpha \) are the refractive index, molecular weight, density, Avogadro number, and polarizability of the molecule respectively. On inclusion of solvent, MR shows an increment with increasing dielectric constant of solvents.

3.4. Electronic and optoelectronic properties

Depending upon the values of polarizability and dipole moment, the electronic and optoelectronic properties have been calculated. The values of the average electric field \(E \), the polarisation density \(P \), the electric susceptibility \(\chi \), the dielectric constant \(\epsilon_r \), the refractive index \(n \), and the displacement vector magnitude \(D \), of the molecules obtained from B3LYP functional with LANL2DZ basis sets are shown in the table 5. These values of electronic and optoelectronic properties of molecules are obtained from the given equations in the literature \([34]\) as follows

\[
\mu = \langle \alpha \rangle E, \quad P = \frac{\langle \alpha \rangle}{V}, \quad P = \epsilon_0 \chi E, \quad \chi = \epsilon_r - 1, \quad \epsilon = \epsilon_0 \epsilon_r, \quad n = \sqrt{\epsilon}, \quad D = \epsilon E
\]

All symbols have their respective meanings.

Table 5. Electronic and optoelectronic properties, the average electric field \(E \) (\(\text{Vm}^{-1} \)), the polarization density \(P \), electric susceptibility \(\chi \), refractive index \(n \), the dielectric constant \(\epsilon \), and the magnitude of the displacement vector \(D \) of the molecules: Cr-TED, and W-TED.

Phase	\(E \times 10^9 \)	\(P \times 10^{-1} \)	\(\chi \)	\(n \)	\(\epsilon \times 10^{-11} \)	\(D \times 10^{-1} \)
Cr-TED						
Gas	3.2075	1.9179	6.7563	2.7850	6.8644	2.2017
Heptane (1.9)	2.8188	1.7176	6.8852	2.8081	6.9784	1.9671
Chloroform (4.81)	2.4063	2.2989	10.7949	3.4344	9.5354	2.2989
Dichloroethane (10.36)	2.2046	2.6328	13.4944	3.8071	12.8275	2.8279
Ethanol (24.5)	2.1181	2.7140	14.4781	3.9342	13.6981	2.9014
Acetonitrile (37.5)	2.0577	2.6917	14.7805	3.9725	13.9657	2.8738
Water (80.1)	2.0207	2.7535	15.3965	4.0493	14.5109	2.9323
W-TED						
Gas	3.4519	1.3974	4.5743	2.3610	4.9333	1.7029
Heptane (1.9)	3.0216	2.0317	7.3976	2.9322	7.6088	2.2991
Chloroform (4.81)	2.6376	2.4566	10.5239	3.9347	10.1986	2.6900
Dichloroethane (10.36)	2.4213	2.7402	12.7875	3.7132	12.2019	2.9545
Ethanol (24.5)	2.2848	2.6349	13.0310	3.7585	12.4174	2.8371
Acetonitrile (37.5)	2.2544	2.2762	11.4084	3.5226	10.9815	2.4757
Water (80.1)	2.1544	2.7575	14.4623	3.9322	13.6841	2.9482
The solvent effect on the molecules is such that the values for P, χ, n, ϵ, and D have changed. Also, a decrease in the values of E is seen for the solvent phase. From table 5 one can see clearly the high values for susceptibility and refractive index, and small values of dielectric constant, polarization density and the displacement vector magnitude. And, the high value of the refractive index of the molecules is due to their high average polarizability. Also, on comparing the results calculated with other metal complexes, the polarizability and hyperpolarizability values are found to be greater for our complexes. Some metal complexes from literature - Mn(II) complex [35] with $\alpha = 43.913 \times 10^{-24}$ esu, - Novel Zn(II) complexes [36] with α ranging from 2.07×10^{-23} esu to 4.92×10^{-23} esu and β ranging from 0.75×10^{-30} esu to 2.90×10^{-30} esu, - Copper(II) complex [37] with $\alpha = 53.42 \times 10^{-22}$ esu and $\beta = 0.31 \times 10^{-30}$ esu, - Bis(Thiourea) Nickel Bromide (BTNB) [38] with $\alpha = 275.844$ au and $\beta = 60.3088$ au, and some other complexes [39] have lower values of α and β than our complexes Cr-TED ($\alpha = 58.02 \times 10^{-24}$ esu and $\beta_{tot} = 1.51 \times 10^{-36}$ esu) and W-TED ($\alpha = 60.50 \times 10^{-24}$ esu and $\beta_{tot} = 5.45 \times 10^{-36}$ esu) and hence are found to be having greater NLO properties, making them more appropriate for electronic and optoelectronic applications.

4. Conclusions

The molecules Cr-TED, and W-TED have been studied for the optoelectronic properties (dipole moment, polarizability, anisotropy, first molecular hyperpolarizability, polarization density, electric susceptibility, refractive index, dielectric constant, the magnitude of the displacement vector of the molecule) and thermodynamic properties (zero-point vibrational energy, electronic energy, entropy, enthalpy, and free energy) using DFT method by employing B3LYP functional and LANL2DZ basis set for gas phase and solvent phase (Heptane, Chloroform, Dichloroethane, Ethanol, Acetonitrile, Water). The E_g of studied molecules shows an inverse relationship with hyperpolarizability and referring to Urea (0.1947 $\times 10^{-30}$ esu) and some other metal complexes, both the molecules have larger values of first molecular hyperpolarizability. Molar Refractivity has been calculated with polarizability. The molecules show second-order optical effects due to their large first hyperpolarizability suggesting potential applications in the field of optoelectronics like charge storage, electroluminescent devices, optoelectronic devices, etc. The molecules come up with high values of refractive index and susceptibility, along with small values of dielectric constant, polarization density and the magnitude of the displacement vector in both gas and solvent phase, leading to optoelectronic properties and applications.

Acknowledgments

The authors are thankful to Jamia Millia Islamia, New Delhi for the computational facilities.

ORCID iDs

Anu https://orcid.org/0000-0001-9668-431X
Anurag Srivastava https://orcid.org/0000-0002-7046-405X

References

[1] Eujh G W et al 2016 Modeling of the electronic, optoelectronics, photonic and thermodynamics properties of 1, 4-bis(3-carboxyl-3-oxo-prop–1-nyl) benzene molecule Journal of the Iranian Chemical Society 13 2039–48
[2] Karakas A et al 2013 Second-order hyperpolarizability and susceptibility calculations of a series of ruthenium complexes 2013 15th Int. Conf. on Transparent Optical Networks (ICTON) (Piscataway, NJ) (IEEE) (https://doi.org/10.1109/ICTON.2013.6602901)
[3] Karakas A et al 2016 Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications Optical Materials 56 8–17
[4] Liu Y et al 2001 Theoretical investigation on second-order nonlinear optical properties of (dicyanomethylene)-pyran derivatives Journal of Molecular Structure 570 43–51
[5] Powell C E and Mark G H 2004 Nonlinear optical properties of transition metal acetylides and their derivatives Coordination Chemistry Reviews 248 725–56
[6] Kanis D R, Mark A R and Tobin J M 1994 Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects Chemical Reviews 94 195–242
[7] Hatuna K and Prasanta K N 2012 Theoretical study of electronic structure and third-order optical properties of beryllium–hydrocarbon complexes Computational and Theoretical Chemistry 996 82–90
[8] Eujh G W et al 2017 Prediction of electronic structure, dielectric and thermodynamical properties of flurbiprofen by density functional theory calculation Karbala International Journal of Modern Science 4 12–20
[9] Nishal V et al 2015 Optoelectronic characterization of zinc complexes for display device applications Journal of Materials Science: Materials in Electronics 26 6762–8
[10] Serrano-Andrés L et al 2009 Linear and nonlinear optical properties of a series of Ni-dithiolene derivatives The Journal of Chemical Physics 131 134312
[11] Silva P S P et al 2014 Experimental and theoretical studies of the second- and third-order NLO properties of a semi-organic compound: 6-Aminoquinolinium iodide monohydrate Chemical Physics 428 67–74
[12] Nya F, Tchantangwa G W, Ejeh and Ndjakia J M B 2017 Theoretical study of optoelectronic and thermodynamic properties of molecule 4-2-(2-N, dihydroxy amino thiophene) vinyl]benzaminie: Influence of hydroxyl position Materials Letters 202 89–95
[13] Nouemo S et al 2015 Ab initio study of opto electric properties of the molecules pyrimethamine and sulfadoxine Journal of King Saud University-Science 27 349–55
[14] Labidi N S, Djeballi A and Rouina I 2011 Substitution effects on the polarizability (α) and first hyperpolarizability (β) of all-trans hexatriene Journal of Saudi Chemical Society 15 29–37
[15] Atalay Y, Avci D and Başoğlu A 2008 Linear and non-linear optical properties of some donor–acceptor oxadiazoles by ab initio Hartree–Fock calculations Structural Chemistry 19 239–46
[16] Zafar S, Zahid H K and Khan M S 2013 Experimental and theoretical investigations of nonlinear optical properties of 1, 4-Diamino-9 10-Anthraquinone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 114 164–9
[17] Ejeh G W et al 2016 Computational determination of the electronic and nonlinear optical properties of the molecules 2-(4-aminophenyl) quinoline, 4-(4-aminophenyl) quinoline, antracene, anthraquinone and phenanthrene Materials Letters 178 221–6
[18] Champagne B and Spasova M 2009 Theoretical investigation on the polarizability and second hyperpolarizability of polysilole Chemical Physics Letters 471 111–5
[19] Karakas A et al 2017 Second and third-order nonlinear optical behavior of natural pigment: chlorophyll and crocin Ionics 23 343–6
[20] Anu A S et al 2017 High-performance single-electron transistor based on metal–organic complex of thiophene: first principle study IEEE Transactions on Electron Devices 64 6428–35
[21] Anu A, Srivastava and Khan M S 2018 First principle study of single electron transistor based on metal–organic complex of dibenzothiophene Organic Electronics 53 227–34
[22] Frisch M J et al 2004 GAUSSIAN 03 Software Package. (Wallingford: Gaussian Inc.) accessed 15th May 2019.
[23] Becke A D 1988 Density-functional exchange–energy approximation with correct asymptotic behavior Physical Review A 38 3098
[24] Lee C, Weitao Y and Robert G P 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Physical Review B 37 7785
[25] Vosko S H, Wilk L and Nusair M 1980 Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis Canadian Journal of Physics 58 1200–11
[26] Miertus S, Scrocco E and Tomasi J 1981 Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects Chemical Physics 55 117–29
[27] Reis H et al 2000 Calculation of macroscopic linear and nonlinear optical susceptibilities for the naphthalene, anthracene and meta-nitroaniline crystals Chemical Physics 261 359–71
[28] de Andrade A M, Inacio P L and Camilo A Jr 2015 Theoretical investigation of second hyperpolarizability of trans-polyacetylene: comparison between experimental and theoretical results for small oligomers The Journal of Physical Chemistry 143 244906
[29] Reynolds M A et al 1999 Transition Metal Complexes of Chromium, Molybdenum, Tungsten, and Manganese Containing (S)-2, 5-Dimethylthiophene, Benzothiophene, and Dibenzothiophene Ligands Organometallics 18 4075–81
[30] Vijayakumar T et al 2008 Efficient π electrons delocalization in prospective push–pull non-linear optical chromophore 4-{N, N-dimethylamino}-4’-nitro stilbene (DANS): a vibrational spectroscopic study Chemical Physics 343 83–99
[31] Wu K, Jaap G S and Lin C 2002 Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters The Journal of Physical Chemistry 106 8934–8
[32] Nagalakshmi R et al 2011 Polarized Raman and hyperpolarizability studies of Hydroxyethylammonium (I) tartrate monohydrate for a quadratic nonlinear optics Journal of Molecular Structure 988 17–23
[33] Sajan D et al 2006 Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate Journal of Molecular Structure 785 43–53
[34] Spott A, Jarrof-Becker A and Becker A 2014 Ab initio and perturbative calculations of the electric susceptibility of atomic hydrogen Physical Review A 90 013426
[35] Alturk S et al 2015 Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn(II) complex Journal of Organometallic Chemistry 797 110–9
[36] Abdel-Latif S A and Adel A M 2018 Novel Zn(II) complexes of 1, 3-diphenyl-4-(aryloxy) pyrazol-5-one derivatives: Synthesis, spectroscopic properties, DFT calculations and first order nonlinear optical properties Journal of Molecular Structure 1156 712–25
[37] Rajasekhar B, Elizaj P K M and Swu T 2018 Computational study on non-linear optical property of Wittig based Schiff–Base ligands (both Z & E isomers) & Copper (II) complex Journal of Molecular Structure 1168 212–22
[38] Anand S et al 2016 Physico-Chemical Characterization, Opto Electronic Investigation and Vibrational Analysis on Coordinate Covalent Complex; Bis (Thioura) Nickel Bromide (BTN) Using Experimental and Computational Tools J Theor Comput Sci 32
[39] Calaminici P, Joq K and Koster A M 1998 Density functional calculations of molecular polarizabilities and hyperpolarizabilities The Journal of Chemical Physics 109 7756–63