A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING

JIAN-MIN WANG1,2, PU DU3, YAN-RONG LI1, LUIS C. HÖ1,4, CHEN HU1, and JIN-MING BAI5

1 Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China; wangjm@mail.ihep.ac.cn
2 National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Road, Beijing 100020, China
3 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100875, China
4 Department of Astronomy, Peking University, Beijing 100875, China
5 Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, China

Received 2014 July 8; accepted 2014 August 5; published 2014 August 19

ABSTRACT

A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hβ emission line. The $R_{\text{BLR}} \sim L_\beta$ relation arises from simple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hβ to the varying continuum depends very sensitively on black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hβ lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical $R_{\text{BLR}} \sim L_\beta$ relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed $R_{\text{BLR}} \sim L_\beta$ relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes.

Key words: accretion, accretion disks – galaxies: active

1. INTRODUCTION

The broad emission lines from quasars and active galactic nuclei (AGNs) largely reflect virial motions of broad-line region (BLR) clouds governed by the gravitational potential of the central supermassive black hole (BH). The BLR clouds are mainly photoionized by the continuum emission from the accretion disk (e.g., Osterbrock & Mathews 1986; Ho 2008), and the detailed emission-line spectra depend, at least in part, on the spectral energy distribution (SED) of the disk. The SED, in turn, varies as a function of BH mass, spin, and accretion rate.

Reverberation mapping (RM; Blandford & McKee 1982) of ~50 AGNs has discovered a very tight correlation between BLR size, as measured from the Hβ lag in response to the varying continuum, and the optical luminosity (popularly measured at 5100 Å; Kaspi et al. 2000; Bentz et al. 2013). This well-known relation can be described as $R_{\text{BLR}} \approx 36.3 L_\beta^{1/44}$, where $L_\beta = 5100$ Å luminosity L_{5100} in units of 10^{44} erg s$^{-1}$. This is a natural consequence of photoionization of BLR clouds. Defining the ionization parameter as $U = Q_{\text{ion}} / 4\pi R_{\text{Hß}}^2 n_e$, with n_e the electron density, Q_{ion} the rate of ionizing photons, and c the speed of light, this empirical $R_{\text{BLR}} \sim L_\beta$ relation can be explained if the photoionized clouds obey the condition $n_e U \sim 10^{10}$ (Negrete et al. 2013). Alternatively, sublimation of dust particles and energy balance between heating and radiation loss in the BLR produces a similar scaling relation between R_{BLR} and L_β (Netzer & Laor 1993). In either case, this observational relation sets strong constraints on the physical properties of the BLR. It is of interest to explore how the $R_{\text{BLR}} \sim L_\beta$ is affected by the ionizing SED.

In this Letter, we show that ionizing luminosity L_{ion} is a complicated function of BH mass, spin, and accretion rate. It can be much fainter than L_{5100}, and thus the Hβ-emitting region can be much smaller than that predicted by the $R_{\text{BLR}} \sim L_{5100}$ relation, which is based on L_{5100}. We emphasize the influence of BH mass and spin on the SED, and thus on Hβ reverberation. The sensitivity of Hβ lags to BH spin provides a promising method to estimate BH spins from RM observations.

2. IONIZING LUMINOSITY FROM ACCRETION DISKS

2.1. Emissions from Accretion Disks

We employ the general relativistic version of the Shakura–Sunyaev (1973) disk (Page & Thorne 1974). General relativistic effects are important because the ionizing photons are emitted from regions very close to the innermost last stable orbit (r_{in}, especially for extremely massive BHs ($\sim 10^9 M_\odot$). We define the dimensionless accretion rate as $m = 0.1 M_\bullet c^2 / L_{\text{Edd}}$, where M_\bullet is the accretion rate, $L_{\text{Edd}} = 4\pi G M_\bullet m_p c / \sigma_T$ is the Eddington luminosity, M_\bullet is the BH mass, σ_T is the Thompson cross section, and G is the gravitational constant. Disks with accretion rates $m \approx 0.01–0.3$ are in the Shakura–Sunyaev regime, characterized by being geometrically thin and optically thick. Above this regime in m, accretion onto BHs is described by slim disks (Abramowicz et al. 1988). Wang et al. (2014) recently discuss the influence of slim disks on the BLR. This Letter is devoted to thin disks. The radiation flux from the disks is given by

$$ F(r) = \frac{3 m_p c^5}{2 \sigma_T G M_\bullet r^3} f_{\text{ok}}(r, a) $$

where $m_{0.1} = m / 0.1$, a is the specific angular momentum of the BH, $M_\odot = M_\bullet / 10^9 M_\odot$, $r = r / R_\odot$ is the dimensionless radius, and $R_\odot = GM_\bullet / c^2 = 1.48 \times 10^{14} M_\odot$ cm. Here, $f_{\text{ok}}(r, a)$
is a factor that includes general relativistic effects (Page & Thorne 1974):

\[f_{\text{GR}}(r, a) = \frac{1}{C \sqrt{r}} \left\{ \sqrt{r} - \sqrt{r_{\text{ms}}} - \frac{3a}{4} \ln \frac{r}{r_{\text{ms}}} \right. \]
\[- 3 \left[\frac{(x_1 - a)^2}{x_1(x_1 - x_2)(x_1 - x_3)} \ln \frac{\sqrt{r} - x_1}{\sqrt{r_{\text{ms}}} - x_1} \right. \]
\[+ \frac{(x_2 - a)^2}{x_2(x_2 - x_1)(x_2 - x_3)} \ln \frac{\sqrt{r} - x_2}{\sqrt{r_{\text{ms}}} - x_2} \]
\[+ \frac{(x_3 - a)^2}{x_3(x_3 - x_1)(x_3 - x_2)} \ln \frac{\sqrt{r} - x_3}{\sqrt{r_{\text{ms}}} - x_3} \right\} , \tag{2} \]

where \(C = 1 - 3/r + 2a/\sqrt{r} \), \(x_1 = 2 \cos(\Theta_0 - \pi)/3 \), \(x_2 = 2 \cos(\Theta_0 + \pi)/3 \), \(x_3 = -2 \cos(\Theta_0/3) \), and \(\Theta_0 = \arccos a \). Here \(r_{\text{ms}} \) is the last stable orbit, and can be expressed by \(r_{\text{ms}} = [3 + Z_2 \mp \sqrt{(3 - Z_1)(3 + Z_1 + 2Z_2)}] \), where \(Z_1 = 1 + (1 - a^2)^{1/3}[1 + a]^{1/3} + (1 - a)^{1/3} \) and \(Z_2 = \sqrt{3a^2 + Z_1} \).

Figure 1 shows the function \(r^{-3} f_{\text{GR}}(r, a) \), which is related to the effective temperature of the disk, for different spins. We find that the peak of the dissipation rate is sensitive to \(a \), lending us an opportunity to constrain the spin.

The SED is governed by the effective temperature distribution of the disk, which follows from \(T_{\text{eff}} = [F(r)/\sigma_{\text{SB}}]^{1/4} \), where \(\sigma_{\text{SB}} \) is the Stefan–Boltzmann constant,

\[T_{\text{eff}} = 3.32 \times 10^7 \dot{m}_{0.1} M_0^{-1/4} r^{-3/4} f_{\text{GR}}^{1/4} \text{K}, \tag{3} \]

and can be obtained by integrating the entire disk from \(r_{\text{ms}} \) to infinity,

\[L_\nu = 32\pi^2 \cos i R_s^2 \int_{r_{\text{ms}}}^{\infty} \frac{2h}{c^2} \frac{v^3 r dr}{e^{h\nu/kT_{\text{eff}}} - 1}, \tag{4} \]

where \(h \) and \(k \) are the Planck and Boltzmann constants, respectively, and \(i \) is the inclination of the disk with respect to the line of sight. For a given wavelength \(\lambda = c/\nu \), we have the luminosity \(L_\lambda = vL_\nu \), which is used for the empirical correlation with

Figure 2. SEDs of accretion disks and their dependence on BH mass, accretion rate, and BH spin. The blue and red curves are for \(\dot{m} = 0.5 \) and 0.01, and the dashed-dotted, solid, and dotted lines are for spin \(a = -1, 0, \) and 0.998, respectively. The two gray vertical lines mark 5100 Å and 13.6 eV.
the BLR size. Integration of Equation (4) yields the approximate functional form $L_{\nu} \propto v^{1/3}$. For convenience, we set $\cos i = 1$.

Figure 2 shows spectra from accretion disks with different parameters. We keep the accretion rates in the Shakura–Sunyaev regime in order to avoid the self-shadowing effects of the disk itself (Wang et al. 2014). For the same m, retrograde spins produce much softer SEDs than prograde spins. For each disk with (M_*, \dot{m}), we plot spins of $a = -1.0, 0, 0.998$. We find the following. (1) The luminosity at 5100 Å, L_{5100}, is always insensitive to spin for $m = 0.5-0.01$, except for extremely large BHs with $M_* \gtrsim 10^9 M_\odot$. (2) For a given \dot{m}, the SED is very sensitive to a, except for values of $a = 0$ or $a = -1$. (3) For $M_* \lesssim 10^8 M_\odot$ and higher accretion rate ($\dot{m} \gtrsim 0.5$), the hydrogen ionizing luminosity depends very little on spin ($\Delta \log L_{13.6 eV} \lesssim 0.5 \text{ dex}$ for $a = 0.998$ and $a = -1$); thus, the present approach of constraining spins is not effective for less massive BHs (see discussion in Section 2.2).

2.2. Photoionizing Luminosity

The ionizing portion of the SED is sensitive to (M_*, \dot{m}, a). Integration of the SED above $\epsilon_i = 13.6 \text{ eV}$ yields the ionizing luminosity. To estimate the number of ionizing photons, we need to know the photoionization cross section of hydrogen (e.g., Osterbrock 1989). For $h \nu \gg \epsilon_i$,

$$\sigma_\nu = 6.3 \times 10^{-18} \left(\frac{\epsilon_i}{h \nu}\right)^4 \frac{e^{4-[(4 \tan^{-1} e)/e]} - 1}{e^{-2 \pi e} - 1} \text{ cm}^{-2},$$

(5)

where $e = (h \nu/\epsilon_i - 1)^{1/2}$, h is the Planck constant; otherwise, $\sigma_\nu = 0$ when $h \nu < \epsilon_i$. The total luminosity to ionize hydrogen is

$$L_{\text{ion}} = \frac{\int_{\epsilon_0}^{\epsilon_f} V L_\nu \sigma_\nu d\nu}{\int_{\epsilon_0}^{\epsilon_f} \sigma_\nu d\nu}.$$

(6)

The observed Hβ luminosity is given by $L_{\text{H}\beta} = (\Delta \Omega/4\pi) (\epsilon_{16}/\epsilon_{\beta}) Q_{\text{ion}}(H^\beta)$, where $\Delta \Omega$ is the solid angle subtended by the BLR, ϵ_{16} is the recombination-line emission coefficient of Hβ, α_β is the radiative recombination coefficient for hydrogen quantum levels $n = 2$ and higher, $Q_{\text{ion}}(H^\beta)$ is the ionizing photon rate. In principle, the Hβ luminosity ($L_{\text{H}\beta}$) emitted from the photoionized clouds in the BLR is proportional to L_{ion}, but it also depends on some details of the clouds and the BLR. The $L_{\text{H}\beta}-L_{5100}$ relation can be used to observationally test photoionization processes.

Figure 3 shows predicted $L_{\text{ion}}-L_{5100}$ relations for disks with $a = (-1, -0.5, 0, 0.5, 0.998)$ and $\dot{m} = (0.01, 0.1, 0.5)$. The ratio $\epsilon = L_{\text{ion}}/L_{5100}$ is a complicated function of (M_*, \dot{m}, a). For a given \dot{a} and m, L_{5100} increases with BH mass, approximately as $L_{5100} \propto M_*^{1/3}$ for a Newtonian potential. For the case of $a = -1$ (left panel of Figure 3), we find that L_{ion} linearly increases with L_{5100} in logarithmic space until a critical luminosity L_{5100}^c. Above L_{5100}^c, L_{ion} decreases exponentially with L_{5100}. This means that L_{ion} does not follow a linear relation with the observed optical luminosity. L_{5100}^c is jointly determined by \dot{m} and a, increasing with increasing a. For extreme prograde spins, the $L_{\text{ion}}-L_{5100}$ relation remains linear for $a \gtrsim 0.01$ up to $L_{5100}^c \approx 10^{47} \text{ erg s}^{-1}$, which corresponds to the most massive BHs in quasars ($\sim 10^{10} M_\odot$). The non-monotonic connection between L_{ion} and L_{5100} has strong observational implications for the BLR as well as BH spins.

We note that the $L_{\text{ion}}-L_{5100}$ relation discussed here is closely related to the well-known correlation between Balmer line luminosity and optical continuum, which is usually taken as evidence for photoionization (e.g., Shuder 1981; Greene & Ho 2005). However, for the comparison between Hβ and 5100 Å continuum, the rms scatter of either the luminosity–luminosity or flux–flux correlations is still ~ 0.2–0.3 dex, depending on the sample and method of spectral analysis (Greene & Ho 2005; Hu et al. 2008; Shen et al. 2011). The scatter might reflect the range in BLR covering factors of individual objects, or, alternatively, variations in M_*, \dot{m}, and a.

The AGN continuum is composed of optical–UV blackbody radiation from the cold disk (the “big blue bump”) and Comptonization of the disk photons into X-rays by a hot corona above the disk (e.g., Haardt & Maraschi 1991). The fraction (f_β) of the gravitational energy dissipated in the hot corona is anti-correlated with m (see Figure 1(b) in Wang et al. 2004), but it remains the largest source of uncertainty in the disk–corona system (e.g., Svensson & Zdziarski 1994). In principle, f_β should be determined by the details of the accretion physics, such as the radial motion of the accretion flow, the magnetic field, and its reconnection (e.g., Merloni & Fabian 2002; Wang et al. 2004; Cao 2009; Done et al. 2013; Uzdensky 2013). Observations show that the maximum value of f_β is $\lesssim 0.5$ (between 2 and 150 keV) for a Shakura–Sunyaev disk (e.g., Figure 1 in Yang et al. 2007; Cao 2009), and variations in f_β can change the ionizing luminosity by ~ 0.3 dex. By contrast, Figure 2 shows that variations in a (from $a = 0.998$ to -1) causes L_{ion} to vary by $\gtrsim 0.5$–2 dex for $m \lesssim 0.5$ and $M_* \sim 10^6-10^{10} M_\odot$ (except for $M_* \lesssim 10^8 M_\odot$; see Figure 2), respectively. The spin strongly influences the ionizing luminosity, especially when m is decreased. Therefore, the current approach does not apply to less massive BHs with high accretion rates, such as narrow-line Seyfert 1 galaxies. Hot electron scattering of the disk surface may additionally modify the SED, but this influence does not exceed a factor of two (e.g., Czerny & Elvis 1987) and is neglected in the present Letter. Here we focus on first-order constraints on BH spin that can be

![Figure 3](image-url) Relation between the hydrogen ionizing luminosity and the luminosity at 5100 Å. Panels from left to right are for different values of BH spin, from $a = -1.0$ to $a = 0.998$. Each panel plots four color lines for different accretion rates. Given \dot{m} and a, L_{5100} is a function of the BH mass.
Figure 4. Relation between the BLR lag and the luminosity at 5100 Å. Panels from left to right are for different values of BH spin, from \(a = -1.0 \) to \(a = 0.998 \). Each panel plots four color lines for different accretion rates. The normalization constants, for \(\dot{m} = (0.01, 0.05, 0.1, 0.5) \), are as follows: \(a = -1 \): \(R_0 = (18.4, 12.0, 10.6, 8.4) \) ld; \(a = -0.5 \): \(R_0 = (16.3, 11.2, 10.0, 8.2) \) ld; \(a = 0 \): \(R_0 = (14.2, 10.3, 9.4, 7.9) \) ld; \(a = 0.5 \): \(R_0 = (12.0, 9.3, 8.6, 7.5) \) ld; and \(a = 0.998 \): \(R_0 = (8.3, 7.4, 7.2, 6.6) \) ld.

Figure 5. Distribution of virial velocities for the BLR clouds as a function of optical continuum luminosity. Panels from left to right are for different values of BH spin, from \(a = -1.0 \) to \(a = 0.998 \). Each panel plots four curves for different \(\dot{m} \) (corresponding to the same color). The black points are the RM AGNs, the magenta points SDSS quasars from Hu et al. (2008). The contours mark 20%, 50%, and 80% of the sample. The regions of the diagram not occupied by the quasar sample may represent massive BHs and accretion rates \(\dot{m} \gtrsim 0.5 \), where the present approach does not apply.

derived from H\(\beta \) reverberation. More detailed measurements of the BH spin will require a need more careful treatment of the disk–corona radiation and determination of the parameter \(n_c \) from photoionization calculations.

2.3. Size–Luminosity Relation

The strong empirical correlation \(R_{\text{BLR}} \propto 33L_{5100}^{0.7} \) (Bentz et al. 2013) is in good agreement with the constant-\(n_c \) model. \(L_{5100} \) can be converted into \(L_{\text{ion}} \) for a given accretion disk model. We calculate the \(R_{\text{BLR}}-L_{5100} \) relation by inserting \(L_{\text{ion}} = \ell L_{5100} \) into the constant-\(U \) model. Supposing that \(R_{\text{BLR}} \propto \ell_{\text{ion}}^{1/2} \), we have \(R_{\text{BLR}} = R_0 \ell_{\text{ion}}^{1/4} \), where \(R_0 = 36.3/\ell_{\text{ion}}^{1/2} \) is the normalization, and \(\ell_{\text{ion}} \) is \(\ell \) obtained by setting \(L_{5100} = 10^{44} \) erg s\(^{-1} \) for given \(a \) and \(m \).

Figure 4 shows the photoionization-based model of the variation of BLR size with \(L_{5100} \). The normalization is determined by the observed relation. The data of points in the plot are taken from Bentz et al. (2013). For retrograde spins (\(a = -1 \)), the predicted time lags are generally shorter than the observed values unless the accretion rates are very high (up to the super-Eddington regime of slim disks with \(\dot{m} \gtrsim 1.0 \)). Increasing the BH spin increases the lags and brings them into better agreement with the observed values. This is a consequence of the increased production of ionizing photons for larger values of \(\dot{m} \) and \(a \), which leads to expansion of the ionizing front of BLR clouds and thus longer lags.

BHs with spins \(a \leq 0 \) lead to BLR sizes much smaller than those observed in the \(R_{\text{BLR}}-L_{5100} \) relation. The sizes can be increased by elevating the accretion rates in the Shakura–Sunyaev regime, but they are still systematically too small. The only way to reconcile this discrepancy with the observed \(R_{\text{BLR}}-L_{5100} \) relation is to increase the BH spin. As described in Section 3.1, there are five RM AGNs with BH spins determined through \textit{Suzaku} observations. They are all fast-rotating BHs, and they are all consistent with the last panel (\(a = 0.998 \)) in Figure 4. We deduce that most of the \(\sim 50 \) RM AGNs are rotating maximally.

This work shows that BHs undergoing retrograde accretion can produce H\(\beta \) lags much shorter than those observed on the \(R_{\text{BLR}}-L_{5100} \) relation. Self-shadowing effects from a slim disk (Wang et al. 2014), if present, further shorten the lags. Since slim disks emit a distinctive SED (Wang et al. 2014), the two effects can, in principle, be disentangled. The \(R_{\text{BLR}}-L_{5100} \) relation of the current sample of RM AGNs already has a remarkably tight of 0.13 dex (Bentz et al. 2013). Some of the scatter surely must arise from variations in accretion rate and physical conditions of the BLR. Thus, barring strong selection effects of some kind, the tight observed \(R_{\text{BLR}}-L_{5100} \) relation strongly suggests that the current sample of RM AGNs statistically have high BH spins. By the same token, future, larger RM samples provide an opportunity to discover BHs with low or even retrograde spins by identifying outliers in the \(R_{\text{BLR}}-L_{5100} \) relation.

2.4. FWHM and Luminosity Plane

The virial velocity of the clouds in the BLR is given by

\[
V_{\text{vir}} = c/\sqrt{\ell_{\text{BLR}}} = 9.9 \times 10^3 \xi^{-0.27} M_8^{1/2} L_{44}^{-0.27} \text{ km s}^{-1},
\]

where \(\ell_{\text{BLR}} = R_{\text{BLR}}/R_g \) is the BLR size in units of \(R_g \), \(\xi = \ell/10 \), and \(M_8 = M_8/10^8 M_\odot \). Since \(\xi \) is a function of \((M_\star, \dot{m}, a) \), the plane formed by the two observables FWHM and \(L_{5100} \) can deliver information on the spin.

We plot the RM AGNs as red points in Figure 5; they are quite homogeneously distributed in the FWHM–\(L_{5100} \) plane. As shown by the panels, the distribution of RM AGNs is mostly covered by model lines that cover \(\dot{m} \in (0.1, 0.5) \) and \(a = 0.998 \). We also show the quasar sample from
Hu et al. (2008). Interestingly, most quasars occupy the region of parameter space $m \in (0.1, 0.5)$, in general agreement with the observed Eddington ratio distribution of Sloan Digital Sky Survey (SDSS) quasars (e.g., Shen et al. 2011), and $a = 0.5$.

3. DISCUSSION AND SUMMARY

Measurements of BH spins are elusive in AGNs. The iron Kα line profile, broadened and skewed by the strong gravity around the BH, is usually employed to estimate the spin of the hole (e.g., Risaliti et al. 2013; see Reynolds 2013 for review). A significant fraction of the AGNs with robust constraints on their spin from X-ray observations with XMM-Newton, Suzaku, and NuSTAR have spin parameters $a > 0.5$ (Reynolds 2013). Among these, five have been monitored by RM. Suzaku observations (Waltan et al. 2013) report high spins: $a = 0.86$ (Mrk 509), 0.83 (Mrk 335), >0.64 (Fairall 9), >0.81 (Ark 120), and >0.99 (Ark 110). In principle, BH spins for AGNs can also be obtained from fitting the continuum with disk models (Czerny et al. 2011; Done et al. 2013), but it is often challenging to measure the full SED simultaneously. More statistical techniques rely on estimating the average radiative efficiency of AGN populations, and using this information to infer the implied BH spin and its evolution with redshift (e.g., Wang et al. 2009; Li et al. 2012; Volonteri et al. 2013).

This Letter offers a new approach to measure BH spins in AGNs using RM of the Hβ line. Studying the BLR size–luminosity relation based on a standard accretion disc model, we find that the BLR size is very sensitive to the spin of the BH. BHs with low spins or retrograde accretion exhibit significantly shorter Hβ lags in response to the varying optical continuum. In practice, our technique can be applied as follows. Using RM observations, we can derive the BH mass $M_\star = f_{BLR} R_{BLR} V_{BLR}^2 / G$, where the virial factor f_{BLR} can be obtained from calibrations against the local scaling relations between BH mass and bulge properties (e.g., Onken et al. 2004; Ho & Kim 2014) or from more sophisticated dynamical models of the BLR (Pancoast et al. 2011; Li et al. 2013). As shown in Figure 2, the optical part of the disk continuum is insensitive to the spin, allowing us to estimate the accretion rates M_\star. Then, invoking Figure 4, we can estimate the spin from the R_{BLR}–L_{5100} relation. Applying this technique to the currently available sample of ~50 RM AGNs, we find that the majority of them are consistent with having fast-rotating BHs.

Apart from the R_{BLR}–L_{5100} relation, we also discuss how BH spins can be constrained from the distribution of broad Hβ line widths and optical luminosity (Figure 5). The sample of $z \lesssim 0.8$ quasars from Hu et al. (2008) appears to have moderate spins ($a \approx 0.5$), qualitatively consistent with the results from Wang et al. (2009), Li et al. (2012), and Volonteri et al. (2013) based on radiative efficiency considerations (there is growing evidence for the fast spins of black holes at $z \sim 1–3.5$; Trakhtenbrot 2014). Spin parameters in the range $a \approx (0.5, 0.7)$ correspond to $\eta \approx (0.08, 0.1)$.

High-luminosity quasars are normally difficult to study through RM because of their low level of variability, predicted long variability timescales, as well as (1 + z) time dilution (e.g., Kaspi et al. 2007). If high-z quasars follow the local size–luminosity relation, the Hβ lags are predicted to be 380(1 + z)L_{46}^3 days, for $L_{46} = L_{5100}/10^{46}$ erg s$^{-1}$. From the results of this study, we note that the observed L_{5100} is linearly proportional to L_{46} only for $M_\star \lesssim 10^8 M_\odot$. L_{46} drops dramatically for BHs with very high mass and luminosity, which in turn leads to much shorter lags for the emission-line response. Estimating from Figure 4, a $10^8 M_\odot$ quasar with $0.2 L_{\text{Edd}}$ will have its lag reduced to ~20, 50, and 200 days if $a = -1$, 0, and 0.998, respectively. If BHs grow through random accretion (Wang et al. 2009; Li et al. 2012; Volonteri et al. 2013), some of them must undergo retrograde accretion and thus should have very short Hβ lags. This expectation can be tested with future large-scale RM surveys. Additional candidates of BH with retrograde spins can be selected from luminous quasars with very broad Hβ profile in the FWHM–L_{5100} plane (Figure 5).

The authors thank the anonymous referee for a helpful report clarifying several points. We are grateful to the members of IHEP AGN group for stimulating discussions. This research is supported by the Strategic Priority Research Program—The Emergence of Cosmological Structures of the Chinese Academy of Sciences, grant No. XDB09000000, by NSFC grants NSFC-11173023, NSFC-11133006, and NSFC-11233003, and by Israel–China ISF-NSFC grant 83/13. L.C.H. receives support from the Kavli Foundation and Peking University.

REFERENCES

Abramowicz, M. A., Czerny, B., Lasota, J.-P., & Sadowski, E. 1988, ApJ, 332, 646
Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, ApJ, 767, 149
Blandford, R. D., & McKee, C. F. 1982, ApJ, 255, 419
Cao, X. 2009, MNRAS, 394, 207
Czerny, B., & Elvis, M. 1987, ApJ, 321, 305
Czerny, B., Hryniewicz, K., Nikolajuk, M., & Sadowski, A. 2011, MNRAS, 415, 2942
Done, C., Jin, C., Middleton, M., & Ward, M. 2013, MNRAS, 434, 1955
Greene, J. E., & Ho, L. C. 2005, ApJ, 630, 122
Haardt, F., & Maraschi, L. 1991, ApJL, 380, L51
Ho, L. C. 2008, ARA&A, 46, 475
Ho, L. C., & Kim, M. 2014, ApJ, 789, 17
Hu, C., Wang, J.-M., Ho, L. C., et al. 2008, ApJ, 687, 78
Kaspi, S., Brandt, W. N., Maoz, D., et al. 2007, ApJ, 659, 997
Kaspi, S., Smith, P. S., Netzer, H., et al. 2000, ApJ, 533, 631
Li, Y.-R., Wang, J.-M., & Ho, L. C. 2012, ApJ, 749, 187
Li, Y.-R., Wang, J.-M., Ho, L. C., Du, P., & Bai, J.-M. 2013, ApJ, 779, 110
Merloni, A., & Fabian, A. C. 2002, MNRAS, 323, 165
Netzer, H., & Laor, A. 1993, ApJ, 404, L51
Onken, C. A., Ferrarese, L., Merritt, D., et al. 2004, ApJ, 615, 645
Osterbrock, D. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Berkeley: Univ. California Press)
Osterbrock, D. E., & Mathews, W. G. 1986, ARA&A, 24, 171
Page, D. N., & Thorne, K. S. 1974, ApJ, 191, 499
Pancoast, A., Brewer, B. J., & Treu, T. 2011, ApJ, 730, 139
Reynolds, C. S. 2013, CQGra, 30, 4004
Risaliti, G., Harrison, F. A., Madsen, K. K., et al. 2013, Natur, 494, 449
Shakura, N. I., & Sunyaev, R. 1973, A&A, 24, 337
Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, ApJS, 194, 45
Shuder, J. M. 1981, ApJ, 244, 12
Svensson, R., & Zdziarski, A. 1994, ApJS, 436, 599
Trakhtenbrot, B. 2014, ApJL, 789, L9
Uzdensky, D. A. 2013, ApJ, 775, 105
Volonteri, M., Sikora, M., Lasota, J.-P., & Merloni, A. 2013, ApJ, 775, 94
Walton, D. J., Nardini, E., Fabian, A. C., Gallo, L. C., & Reis, R. C. 2013, MNRAS, 428, 2901
Wang, J.-M., Hu, C., Li, Y.-R., et al. 2009, ApJL, 697, L141
Wang, J.-M., Qin, J., Du, P., & Ho, L. C. 2014, ApJ, submitted
Wang, J.-M., Watarai, K.-Y., & Mineshige, S. 2004, ApJL, 607, L107
Yang, F., Hu, C., Chen, Y.-M., & Wang, J.-M. 2007, ChJAA, 7, 353