Observation of $\Upsilon(2S) \to \gamma \eta_b(1S)$ decay

B. G. Fulsom, T. K. Pedlar, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, H. Atmacan, V. Aulchenko, T. Asushev, R. Ayad, V. Babu, I. Badhrees, A. M. Bakich, V. Bansal, P. Behera, C. Beleño, V. Bhardwaj, B. Bhuyan, T. Bilka, J. Biswal, A. Bondar, G. Bonvicini, A. Bozkı, M. Bračko, T. E. Browder, L. Cao, D. Červenkov, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, K. Cho, S.-K. Choi, Y. Choi, S. Choudhury, D. Cinabro, S. Cunliffe, N. Dash, S. Di Carlo, Z. Doležal, T. V. Dong, Z. Drásl, S. Eidelman, D. Epifanov, J. E. Fast, T. Ferber, R. Garg, V. Gaur, N. Gabyshev, A. Garmash, M. Gelb, A. Gér, P. Goldenzweig, E. Guido, J. Habaz, K. Hayasaka, H. Hayashi, S. Hirose, W.-S. Hou, T. Iijima, K. Inami, G. Inguglia, A. Ishikawa, R. Itoh, M. Iwasaki, Y. Iwasaki, W. W. Jacobs, H. B. Jeon, S. Jia, Y. Jin, D. Joffe, K. K. Joo, T. Julius, T. Kawasaki, H. Kichimi, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, S. H. Kim, K. Kinoshita, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, R. Kroeger, P. Krokovny, T. Kuhr, R. Kulasiri, A. Kuzmin, J. Kwon, J. S. Lange, I. S. Lee, C. Lee, L. K. Li, Y. B. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Mattienko, M. Merola, M. Miyabayashi, H. Miyata, R. Mizuk, G. B. Mohanty, H. K. Moon, T. Mori, R. Musa, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Niiyama, D. Niyama, N. Nisar, S. Nishida, S. Ogawa, S. Okuno, H. Ono, P. Pakhlov, G. Pakhlova, G. Pakhlova, B. Pal, S. Pardi, H. Park, S. Paul, R. Pestotnik, L. E. Piilonen, V. Popov, E. Prencipe, A. Rabusov, M. Ritter, A. Rostomyan, G. Russo, Y. Sakai, M. Salehi, S. Sandilya, L. Santelj, T. Sanuki, V. Savinov, O. Schneider, G. Schnell, C. Schwanda, Y. Seino, M. E. Sevior, V. Shebalin, C. Shen, T.-A. Shibata, J.-G. Shin, B. Shwartz, F. Simon, J. B. Singh, A. Sokolov, E. Solovieva, J. F. Strube, M. Sumihama, K. Sumisawa, R. Sumiyoshi, W. Sutcliffe, M. Takizawa, U. Tamponi, K. Tanida, F. Tenchini, M. Uchida, T. Uglyg, Y. Unno, S. Uno, P. Urquijo, S. E. Vahsen, C. Van Hulse, R. Van Tonder, G. Varner, A. Vinokurova, V. Vorobyev, A. Vossen, B. Wang, C. H. Wang, P. Wang, M. Watanabe, S. Watanuki, E. Widmann, W. Won, H. Ye, J. H. Yin, C. Z. Yuan, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, A. Zupanc, (The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 Beijing University, Beijing 100191
3 University of Bonn, 53115 Bonn
4 Brookhaven National Laboratory, Upton, New York 11973
5 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6 Faculty of Mathematics and Physics, Charles University, Prague, 121 16 Prague
7 Chonnam National University, Kwangju 660-701
8 University of Cincinnati, Cincinnati, Ohio 45221
9 Deutsches Elektronen-Synchrotron, 22607 Hamburg
10 Duke University, Durham, North Carolina 27708
11 H. E. Pharmacological Institute, Georg-August-Universität Göttingen, 37073 Göttingen
12 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
13 Gyeongsang National University, Chinju 660-701
14 Hanyang University, Seoul 133-791
15 University of Hawaii, Honolulu, Hawaii 96822
16 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
17 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18 Forschungszentrum Jülich, 52425 Jülich
19 Institute of Modern Physics, Fudan University, Shanghai 200443
20 Justus-Liebig-Universität Gießen, 35392 Gießen
21 Gifu University, Gifu 501-1193
22 Ikerbasque, Basque Foundation for Science, 48013 Bilbao
23 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
24 Brookhaven National Laboratory, Upton, New York 11973
25 Brookhaven National Laboratory, Upton, New York 11973
26 Brookhaven National Laboratory, Upton, New York 11973
27 Brookhaven National Laboratory, Upton, New York 11973
28 Brookhaven National Laboratory, Upton, New York 11973
29 Brookhaven National Laboratory, Upton, New York 11973
30 Brookhaven National Laboratory, Upton, New York 11973
31 Brookhaven National Laboratory, Upton, New York 11973
32 Brookhaven National Laboratory, Upton, New York 11973
33 Brookhaven National Laboratory, Upton, New York 11973
34 Brookhaven National Laboratory, Upton, New York 11973
35 Brookhaven National Laboratory, Upton, New York 11973
36 Brookhaven National Laboratory, Upton, New York 11973
37 Brookhaven National Laboratory, Upton, New York 11973
38 Brookhaven National Laboratory, Upton, New York 11973
39 Brookhaven National Laboratory, Upton, New York 11973
40 Brookhaven National Laboratory, Upton, New York 11973
41 Brookhaven National Laboratory, Upton, New York 11973
42 Brookhaven National Laboratory, Upton, New York 11973
43 Brookhaven National Laboratory, Upton, New York 11973
44 Brookhaven National Laboratory, Upton, New York 11973
45 Brookhaven National Laboratory, Upton, New York 11973
46 Brookhaven National Laboratory, Upton, New York 11973
47 Brookhaven National Laboratory, Upton, New York 11973
48 Brookhaven National Laboratory, Upton, New York 11973
49 Brookhaven National Laboratory, Upton, New York 11973
50 Brookhaven National Laboratory, Upton, New York 11973
51 Brookhaven National Laboratory, Upton, New York 11973
52 Brookhaven National Laboratory, Upton, New York 11973
53 Brookhaven National Laboratory, Upton, New York 11973
Institution Name	City, Country
Indian Institute of Technology Bhubaneswar	Satya Nagar, Assam 781039
Indian Institute of Technology Guwahati	Assam 781039
Indian Institute of Technology Hyderabad	Telangana 502285
Indian Institute of Technology Madras	Chennai 600036
Indiana University, Bloomington, Indiana	Indianapolis 47408
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing	100049
Institute of High Energy Physics, Vienna	1050
Institute for High Energy Physics, Protvino	142281
INFN - Sezione di Napoli	Napoli 80126
INFN - Sezione di Torino	Torino 10125
Advanced Science Research Center, Japan Atomic Energy Agency, Naka	319-1195
J. Stefan Institute, 1000 Ljubljana	
Kanagawa University, Yokohama	221-8686
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie	76131 Karlsruhe
King Abdulaziz City for Science and Technology, Riyadh	11442
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah	21589
Korea Institute of Science and Technology Information, Daejeon	305-806
Korea University, Seoul	136-713
Kyoto University, Kyoto	606-8502
Kyungpook National University, Daegu	702-701
LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay	
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne	1015
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow	119991
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana	
Ludwig Maximilians University, 80539 Munich	
Luther College, Decorah, Iowa	52101
University of Malaya, 50603 Kuala Lumpur	
University of Maribor, 2000 Maribor	
Max-Planck-Institut für Physik, 80805 München	
School of Physics, University of Melbourne, Victoria	3010
University of Mississippi, University, Mississippi, 38677	
University of Miyazaki, Miyazaki, 889-2192	
Moscow Physical Engineering Institute, Moscow	115409
Moscow Institute of Physics and Technology, Moscow Region	141700
Graduate School of Science, Nagoya University, Nagoya	464-8602
Kobayashi-Maskawa Institute, Nagoya University, Nagoya	464-8602
Università di Napoli Federico II, 80055 Napoli	
Nara Women’s University, Nara	630-8506
National Central University, Chung’-li, 32054	
National United University, Miao Li, 36003	
Department of Physics, National Taiwan University, Taipei	10617
H. Niewodniczanski Institute of Nuclear Physics, Krakow	31-342
Nippon Dental University, Niigata, 951-8580	
Niigata University, Niigata, 950-2181	
Novosibirsk State University, Novosibirsk, 630090	
Osaka City University, Osaka	558-8585
Pacific Northwest National Laboratory, Richland, Washington	99352
Panjab University, Chandigarh, 160014	
Peking University, Beijing, 100071	
University of Pittsburgh, Pittsburgh, Pennsylvania, 15260	
Theoretical Research Division, Nishina Center, RIKEN, Satama, 351-0198	
University of Science and Technology of China, Hefei	230026
Showa Pharmaceutical University, Tokyo, 194-8543	
Soongsil University, Seoul, 156-743	
University of South Carolina, Columbia, South Carolina, 29208	
Stefan Meyer Institute for Subatomic Physics, Vienna, 1090	
Sungkyunkwan University, Suwon, 440-746	
School of Physics, University of Sydney, New South Wales, 2006	
Department of Physics, Faculty of Science, University of Tabuk, Tabuk, 71451	
Tata Institute of Fundamental Research, Mumbai, 400005	
Excellence Cluster Universe, Technische Universität München, 85748 Garching	
Department of Physics, Technische Universität München, 85748 Garching	
We report the observation of $\Upsilon(2S) \to \gamma b\bar{b}(1S)$ decay based on analysis of the inclusive photon spectrum of 24.7 fb$^{-1}$ of e^+e^- collisions at the $\Upsilon(2S)$ center-of-mass energy collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We measure a branching fraction of $B(\Upsilon(2S) \to \gamma b\bar{b}(1S)) = (6.1^{+0.6+0.9}_{-0.7-0.5}) \times 10^{-4}$, and derive an $b\bar{b}(1S)$ mass of 9394.8$^{+2.7+1.2}_{-3.1-2.7}$ MeV/c^2, where the uncertainties are statistical and systematic, respectively. The significance of our measurement is greater than 7 standard deviations, constituting the first observation of this decay mode.

PACS numbers: 13.20.Gd, 14.40.Pq
iterative fashion. A subset of ~5% of the total \(\Upsilon(2S) \) data is used as the background sample for optimizing the selection. To avoid potential bias, these events are discarded from the final analysis. Large Monte Carlo (MC) samples of simulated \(\Upsilon(2S) \rightarrow \gamma \eta_b(1S) \) events are used as the signal input, assuming the branching fraction from [2]. Particle production and decays are simulated using the EVTGEN [10] package, with PHOTOS [17] for modeling final-state radiation effects, and PYTHIA [18] for inclusive \(b\bar{b} \) decays. The interactions of the decay products with the Belle detector are modeled with the GEANT3 [19] simulation toolkit.

This analysis studies radiative bottomonium transitions based on the energy spectrum of the photons in each event. Photon candidates are formed from clusters of energy deposited in crystals grouped in the ECL. Clusters are required to include more than a single crystal. The ratio of the energy deposited in the innermost \(3 \times 3 \) array of crystals compared to the complete \(5 \times 5 \) array centered on the most energetic crystal is required to be greater than or equal to 0.925. Clusters must be isolated from the projected path of charged tracks in the CDC, and the associated electromagnetic shower must have a width of less than 6 cm. Due to increased beam-related backgrounds in the forward endcap region, and insufficient energy resolution in the backward one, we consider only clusters in the ECL barrel region for this analysis.

The inclusive photon sample is drawn from events passing a standard Belle definition for hadronic decays. This requires at least three charged tracks, a visible energy greater than 20% of the CM beam energy \(\sqrt{s} \), and a total energy deposition in the ECL between 0.2\(\sqrt{s} \) and 0.8\(\sqrt{s} \).

We consider the cosine of the angle \(\theta_T \) between the photon and the thrust axis calculated in the \(e^+e^- \) CM frame as a discriminant. In a given event, the thrust axis is calculated based on all charged particle tracks and photons except the candidate photon. For continuum background events the photon direction tends to be (anti-) aligned along the thrust axis, whereas the distribution for signal events is isotropic. Therefore to reduce this background we require \(|\cos \theta_T| < 0.85 \).

To remove backgrounds from \(\pi^0 \rightarrow \gamma\gamma \) decays, each photon candidate is sequentially paired with all remaining photon candidates in the event, and vetoed if the resulting invariant mass \(M_{\gamma\gamma} \) is consistent with that of a \(\pi^0 \) \((m_{\pi^0}) \) [20]. In order to improve purity and reduce combinatorial background, a requirement on the minimum energy of the second photon \((E_{\gamma,2}) \) is applied. We require \(E_{\gamma,2} > 60 \) MeV, and \(|M_{\gamma\gamma} - m_{\pi^0}| > 15 \) MeV/\(c^2 \).

The resulting spectrum of photon energies in the CM frame \((E^*_\gamma) \) is shown in Fig. 1. Below 200 MeV there are three prominent peaks related to \(\Upsilon(2S) \rightarrow \gamma \chi_{bJ}(1P) \) transitions. The region of interest for this analysis is \(300 < E^*_\gamma < 800 \) MeV, where six components are expected. Photons from the \(\Upsilon(2S) \rightarrow \gamma \eta_b(1S) \) signal transition will produce a peak in this distribution near 600 MeV. Direct production of \(\Upsilon(1S) \) via initial-state radiation (ISR), \(e^+e^- \gamma_{ISR} \rightarrow \Upsilon(1S) \), results in a second peak at \(E^*_\gamma \sim 547 \) MeV. A series of three peaks due to \(\chi_{bJ=0,1,2}(1P) \rightarrow \gamma \Upsilon(1S) \) [21] transitions are centered at ~391, ~424, and ~442 MeV. These peaks are Doppler-broadened because the \(\chi_{bJ}(1P) \) states originate from \(\Upsilon(2S) \rightarrow \gamma \chi_{bJ}(1P) \) decays, and are therefore not at rest in the CM frame to which we boost the photon energy for this analysis. As such, they also overlap one another. These peaking features are all found above a very large, smooth, inclusive photon background that diminishes as energy increases.

The lineshape parameters and efficiencies are determined from the MC samples. The \(\eta_b(1S) \) and \(\chi_{bJ}(1P) \) transitions are described by a variation on the Crystal Ball function [22]: a bifurcated Gaussian with individual power-law tails on either side. We assume a natural width for the \(\eta_b(1S) \) of \(\Gamma_{\eta_b(1S)} = 10^{+5}_{-4} \) MeV [20]. A Gaussian with a low-side power-law tail [22] is used to model the ISR-produced \(\Upsilon(1S) \) signal. The underlying background lineshape is parameterized by an exponential function with a sixth-order polynomial. This was selected based on the best fit of 1.7 fb\(^{-1}\) of continuum background data collected at an energy 30 MeV below the \(\Upsilon(2S) \) resonance.

With the above selection criteria our efficiency \((\epsilon) \) for the peaking processes ranges from 26 to 32%, depending on the mode (Table I). Photon energy resolution in the
CM frame varies from approximately 8 to 12 MeV. Both quantities increase with energy.

The photon energy scale and resolution are verified with multiple independent control samples. The Belle $\Upsilon(2S)$ data were collected in two separate time periods with different operating characteristics. We apply an energy scale adjustment in order to ensure correspondence of the $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$ transition energies in both of the periods. To account for differences between MC simulation and data, we fit the energy spectrum with the MC-determined lineshapes for the $\Upsilon(2S) \rightarrow \gamma \chi_{bJ}(1P)$ and $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$ transitions, allowing the energy scale and resolution to vary in order to reproduce the expected E_γ^* values [2] of the $\chi_{bJ}(1P)$ peaks in data. We linearly extrapolate the measured energy scale shift and resolution broadening to the $\eta_b(1S)$ energy region, and correct the expected signal lineshape accordingly.

We perform a binned maximum-likelihood fit to data in the region of $300 < E_\gamma^* < 804$ MeV including all six peaking components and the exponential background. The yields, energy peak values, and background polynomial coefficients are allowed to vary. In $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$ transitions we find the $J = 0$ component, known to be suppressed compared to the $J = 1$ and 2 transitions, to be absorbed into the other nearby peaks. We fix the $J = 0$ peak position in the fit, and measure a yield consistent with zero. The results of the fit are shown in Fig. 2 and summarized in Table I Branching fractions are calculated by dividing the yield by the MC-determined efficiency and number of $\Upsilon(2S)$ events ($(149.6 \pm 3.4) \times 10^6$ with the optimization sample excluded). The value for $\chi_{bJ}(1P)$ modes includes the $\Upsilon(2S) \rightarrow \gamma \chi_{bJ}(1P)$ transition. The goodness of fit is given by a χ^2 per degrees of freedom of 261.5/237, giving a p-value of 0.132.

We consider three categories of systematic uncertainties in this analysis: those related to energy calibration, fit parametrization, and all other uncertainties. These are listed in Table I and are summed in quadrature.

As verification of the energy calibration, we consider a complementary method based on the photon energy in the laboratory frame, similar to previous Belle studies [3, 4]. We derive E_γ-dependent corrections to the photon energy according to the comparison between MC and data for $D^{*0} \rightarrow D^0(K^{\pm} \pi^{\mp})\gamma$, inclusive $\eta \rightarrow \gamma \gamma$, and exclusive $\chi_{b1,2}(1P) \rightarrow \gamma \Upsilon(1S)(\mu^+\mu^-)$ decays. After applying these corrections, only a small remaining resolution broadening, taken as a systematic uncertainty, is required to the related E_γ^* values to best reproduce the $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$ transitions in data. The $\eta_b(1S)$ results obtained by these two independent methods agree closely (within 0.2 MeV), providing confidence in our assessment of the energy calibration.

Measurement of the ISR peak position is used to estimate the uncertainty of the $\eta_b(1S)$ transition energy. For this purpose, we adopt the symmetrized combination of the statistical uncertainty from the fit and contributions from the world average Υ mass uncertainties [20]. This value is greater than the maximal difference obtained by repeating the analysis under both energy calibration methods and while varying the derived calibration parameters within $\pm 1\sigma$, providing the most conservative bound on this uncertainty.

Alternative parameterizations of the $\eta_b(1S)$ transition lineshape are considered by refitting the data using a Breit-Wigner functional form, including the case with additional E_{γ}^3 corrections suggested for some quarkonium transitions [10]. The latter leads to a $+2.6$ MeV shift in interpretation of the $\eta_b(1S)$ transition energy. The fit is repeated with higher-order E_{γ}^3 contributions considered, but their relative strength cannot be resolved in this anlaysis, and lead to a small additional systematic uncertainty. We account for uncertainty in the natural $\eta_b(1S)$ width by refitting the data according to MC samples generated with the nominal value varied by $\pm 1\sigma$ [20]. By comparing χ^2 goodness-of-fit results under a variety of different assumed values in this range, we verify that our data are consistent with this nominal value. We vary the background shape by changing the degree of the polynomial in the exponential to five and seven, and refitting the data. We also repeat the fit with the background shape fixed to the parameters determined by using only the ISR and $\eta_b(1S)$ sidebands: $300 < E_\gamma^* < 500$ MeV and $650 < E_\gamma^* < 800$ MeV. The fit is repeated with a $\chi_{b0}(1P)$ yield fixed to the expected value, and the difference in results from its effect on the background shape is taken as a systematic uncertainty. The systematic effects of fitting with a finer binning of 1 MeV and with an extended range to 900 MeV are also considered.

We assign an overall photon reconstruction efficiency uncertainty of 2.8% based on previous Belle studies of photons in a similar energy range [23]. The uncertainty on the number of $\Upsilon(2S)$ events was determined from a study of hadronic decays to be 2.3% [14]. Derived quantities related to masses and expected CM energies use the world average values and their associated uncertainties [20].

The corrected peak E_γ^* values of the $\chi_{b1,2}(1P)$ transitions are in good agreement with the world average values (in parentheses) [20]: 423.1 ± 0.1 (423.0 ± 0.5) MeV and 442.1 ± 0.2 (441.6 ± 0.5) MeV, where the experimental uncertainties are statistical only. For the $\chi_{b1,2}(1P) \rightarrow \gamma \Upsilon(1S)$ branching fractions, we measure $(2.45 \pm 0.02 \pm 0.09)\%$ and $(1.17 \pm 0.01^{+0.05}_{-0.04})\%$. These values are consistent with the average of the most recent directly measured values from CLEO [24] and BaBar [7, 25]: $(2.40 \pm 0.08)\%$ and $(1.33 \pm 0.05)\%$. A significant peak from ISR $\Upsilon(1S)$ events is observed with a corrected E_γ^* value of $547.2^{+0.6+1.2}_{-2.3-1.2}$ MeV, in agreement with the expectation of 547.2 ± 0.4 MeV [20]. The measured ISR signal yield is $(29.2^{+29+5.4}_{-3.2-0.9}) \times 10^5$ events. This corresponds to the expectation of $(27 \pm 3) \times 10^5$ events based on the second-order calculation from [20] and our photon
efficiency and ECL angular coverage.

We measure $(28.8^{+2.6+4.2}_{-2.2-2.0}) \times 10^3 \, \Upsilon(2S) \rightarrow \gamma \eta_b(1S)$ events, equivalent to a branching fraction of $(6.1^{+0.6+0.9}_{-0.7-0.5}) \times 10^{-4}$. This is in agreement with the most recent lattice QCD calculation of $(5.4 \pm 1.8) \times 10^{-4}$ [12]. This value is compatible with the previous BaBar measurement of $(3.9 \pm 1.5) \times 10^{-4}$ [3]. We measure a transition energy of $E^\gamma_b = 660.1^{+2.4}_{-2.0} \pm 3.4$ MeV, to be compared with 609.3$^{+5.0}_{-4.9}$ MeV in the similar decay mode in BaBar. If we consider a transition line shape proportional to E^γ_b, unlike previous analyses of the M1 radiative transition [2,4], the interpretation of the data produces a mass measurement of $m_{\eta_b(1S)} = 9394.9^{+2.7+4.5}_{-3.1-2.7}$ MeV/c^2. This is in agreement with the current world average value of 9399.0 ± 2.3 MeV/c^2 [20]. This is between previous Belle h_b-based measurements [2,4] and those from radiative Υ decays [2,4], consistent with the former at the level of 1.2σ, and 0.7σ for the latter. The statistical significance of this measurement is estimated to be 8.4σ, determined from the difference in the likelihood between the results with and without an $\eta_b(1S)$ component included. Even after considering yield-related systematic uncertainties, the signal significance exceeds 7σ. This result represents the first significant observation of the $\Upsilon(2S) \rightarrow \gamma \eta_b(1S)$ decay mode. We look forward to additional dedicated bottomonium data samples from the Belle II experiment to mitigate energy scale uncertainties and provide greater ability to interpret radiative M1 transition line shape effects.

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET5 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC (Australia); FWF (Austria); NSFC and CCEPP (China); MSMT (Czechia); CZF, DFG, EXC153, and VS (Germany); DST (India); INFN (Italy); MOE, MSIP, NRF, RSRI, FLRFAS project and GSDC of KISTI (Korea); MNIsw and NCN (Poland); MES and RFAAE (Russia); ARRS (Slovenia); IKERBASQUE and MINECO (Spain); SNSF (Switzerland); MOE and MOST (Taiwan); and DOE and NSF (USA).

[1] See N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011) and the references therein.
[2] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 101, 071801 (2008).
[3] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 103, 161801 (2009).
[4] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 81, 031104 (2010).
[5] R. Mizuk et al. (Belle Collaboration), Phys. Rev. Lett. 109, 232002 (2012).
[6] U. Tamponi et al. (Belle Collaboration), Phys. Rev. Lett. 115, 142001 (2015).
[7] J.P. Lees et al. (BaBar Collaboration), Phys. Rev. D 84, 072002 (2011).
[8] S. Dobbs et al., Phys. Rev. Lett. 109, 082001 (2012).
FIG. 2: (a) The inclusive photon spectrum. The solid black curve indicates the total fit to the data. The dashed gray curve indicates the exponential background component. The peak due to the $\chi_{bJ}(1P) \rightarrow \gamma \Upsilon(1S)$ transitions is clearly visible. (b) The inclusive photon spectrum after subtraction of the background component of the fit. The black curve indicates the total fit to the data, and the gray curves indicate the individual signal components. The $\chi_{b1,2}(1P) \rightarrow \gamma \Upsilon(1S)$ transitions at ~ 424 and ~ 442 MeV are dominant. (c) Same as (b), with the scale chosen to highlight the ISR and $\eta_b(1S)$ signal peaks, appearing at ~ 547 and ~ 600 MeV, respectively.
[9] R.E. Mitchell et al. (CLEO Collaboration), Phys. Rev. Lett. 102, 011801 (2009); erratum-ibid. 106, 159903 (2011); V.V. Anashin et al., Phys. Lett. B 738, 391 (2014); M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 108, 222002 (2012).

[10] N. Brambilla, Y. Jia, and A. Vairo, Phys. Rev. D 73, 054005 (2006); N. Brambilla, P. Roig, and A. Vairo, AIP Conf. Proc. 1343, 418 (2011).

[11] A review is provided in T.J. Burns, Phys. Rev. D 87, 034022 (2013).

[12] Many theoretical predictions appear in the literature; here we refer to only a small recent sample. For potential models: S. Godfrey and K. Moats, Phys. Rev. D 92, 054005 (2015); J. Segovia et al., Phys. Rev. D 93, 074027 (2016). For lattice QCD: C. Hughes et al. (HPQCD Collaboration), Phys. Rev. D 92, 094501 (2015). For non-relativistic QCD: A. Pineda and J. Segovia, Phys. Rev. D 87, 074024 (2013).

[13] S. Kurokawa and E. Kikutani, Nucl. Instr. Meth. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.

[14] X.L. Wang et al. (Belle Collaboration), Phys. Rev. D 84, 071107(R) (2011).

[15] A. Abashian et al. (Belle Collaboration), Nucl. Instr. Meth. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).

[16] D.J. Lange et al., Nucl. Instr. Meth. A 462, 152 (2001).

[17] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).

[18] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).

[19] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1 (1984).

[20] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016) and 2017 update.

[21] We use the notation χ_{bJ} to collectively refer to the $J = 0, 1, 2$ transitions.

[22] T. Skwarnicki, Ph.D. thesis, Institute for Nuclear Physics, Krakow 1986; DESY Internal Report, DESY F31-86-02 (1986).

[23] U. Tamponi et al. (Belle Collaboration), submitted to Eur. Phys. J. C. [arXiv:1803.03225] (2018).

[24] M. Kornicer et al. (CLEO Collaboration), Phys. Rev. D 83, 054003 (2011).

[25] J.P. Lees et al. (BaBar Collaboration), Phys. Rev. D 90, 112010 (2014).

[26] M. Benayoun et al., Mod. Phys. Lett. A 14, 2605 (1999).