Retrospective Study
Influence of bile contamination for patients who undergo pancreaticoduodenectomy after biliary drainage

Keiichi Okano, Yasuyuki Suzuki

ORCID number: Keiichi Okano (0000-0001-9559-6182); Yasuyuki Suzuki (0000-0002-4871-9685).

Author contributions: Okano K and Suzuki Y designed and performed the research and wrote the paper.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the Kagawa University Hospital.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: We have no financial relationships to disclose.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Abstract

BACKGROUND
The influence of bile contamination on the infectious complications of patients undergoing pancreaticoduodenectomy (PD) has not been thoroughly evaluated.

AIM
To evaluate the effect of preoperative biliary drainage and bile contamination on the outcomes of patients who undergo PD.

METHODS
The database of 4101 patients who underwent PD was reviewed. Preoperative biliary drainage was performed in 1964 patients (47.9%), and bile contamination was confirmed in 606 patients (14.8%).

RESULTS
The incidence of postoperative infectious complications was 37.9% in patients with preoperative biliary drainage and 42.4% in patients with biliary contamination, respectively. Patients with extrahepatic bile duct carcinoma, ampulla of Vater carcinoma, and pancreatic carcinoma had a high frequency of preoperative biliary drainage (82.9%, 54.6%, and 50.8%) and bile contamination (34.3%, 26.2%, and 20.2%). Bile contamination was associated with postoperative pancreatic fistula (POPF) Grade B/C, wound infection, and catheter infection. A multivariate logistic regression analysis revealed that biliary contamination (odds ratio 1.33, \(P = 0.027 \)) was the independent risk factor for POPF Grade B/C. The three most commonly cultured microorganisms from bile (Enterococcus, Klebsiella, and Enterobacter) were identical to those isolated from organ spaces.

CONCLUSION
In patients undergoing PD, bile contamination is related to postoperative infectious complication including POPF Grade B/C. The management of biliary contamination should be standardised for patients who require preoperative biliary drainage for PD, as the main microorganisms are identical in both organ spaces and bile.
INTRODUCTION

Pancreatoduodenectomy (PD) is a common and complex procedure in gastroenterological surgery. Although the perioperative mortality rate of PD in high-volume centres is reportedly 1% to 2%, the post-PD morbidity rate remains relatively high at 20% to 50%[1-7]. In a previous study, we reported that infectious complications are the main cause of postoperative morbidity after PD[8]. Nine risk factors for infectious complications after PD were identified: Male sex, age of 70 years or more, body mass index of at least 25 kg/m², other previous malignancy, liver disease, bile contamination, surgery duration of 7 h or longer, intraoperative blood transfusion, and soft pancreas. Among these factors, bile contamination is the one that surgeons could control by appropriate perioperative management.

Obstructive jaundice is the most common symptom in patients with periampullary malignancy. Routine preoperative biliary drainage in patients undergoing surgery for cancer of the pancreatic head increases the rate of complications[9,10]. With the advent of neoadjuvant chemotherapy used to downstage potentially unresectable tumours in the hope of improving the outcome[11,12], concern regarding preoperative biliary drainage during neoadjuvant treatment is clinically relevant. Preoperative endoscopic biliary procedures are widespread in the management of periampullary tumours[13]. The effect of endoscopic procedures on biliary contamination and the immediate outcomes of PD remain controversial, although the several studies reported increased mortality or morbidity rate[14-17]. This study aimed to identify the clinical features and outcomes after PD in patients with infected bile based on data from the Japanese Society of Pancreatic Surgery for future management of perioperative infectious complications.

MATERIALS AND METHODS

A nationwide multi-institutional analysis of infectious complications after major pancreatic surgery was conducted by the Japanese Society of Pancreatic Surgery. A database of 4101 patients who underwent PD during a 3-year period were analysed for this study. This study was approved by the Institutional Ethics Committee of Kagawa University.

Definitions

The definitions of complications including infectious complications are almost identical to those of the American College of Surgeons–National Surgical Quality Improvement Program criteria (NSQIP)[18]. In the present study, infectious complications are defined as postoperative global infectious complications including...
surgical site infection [i.e., wound infection, intra-abdominal abscess, infected postoperative pancreatic fistula (POPF)] and extraparieto-abdominal infection (i.e., catheter infection, pneumonia, urinary tract infection). Infectious complications are also identified as a specific clinical condition that was related to infection by bacteria, fungus, or virus in a specific organ/compartment. A positive culture without correlation to a specific clinical condition was not considered an infectious complication.

As the NSQIP 30-d mortality rates underestimate the mortality rate for complicated surgical procedures such as PD\(^7\), the present study applied in-hospital mortality. In-hospital mortality was defined as death before postoperative day 30, and death among patients who were hospitalised for 30 d or more after surgery and died during that time\(^7\).

Complication severity was graded according to the Clavien–Dindo classification\(^19\). Pancreatic fistula was defined according to the International Study Group on Pancreatic Fistula guidelines\(^20\) as an amylase level in the drainage fluid on postoperative day 3 that is \(> 3\) times the normal serum amylase level. Grade A fistulas presented with elevated drain amylase levels only, and they lacked any clinical consequences. Grade B fistulas, requiring therapeutic interventions, behaved in an intermediate fashion, with marginal increases in duration of hospitalisation and rates of complications. Grade C fistulas were the most severe, and patients frequently required intensive care unit transfer for sepsis management. An infected pancreatic fistula was defined as a clinically relevant fistula with proven infection by positive culture. Postoperative intra-abdominal haemorrhage was defined as bleeding requiring a blood transfusion, reoperation, or interventional radiology. An intra-abdominal abscess was defined as intra-abdominal fluid collection with positive cultures or organ/space surgical site infection in the abdominal cavity. A positive culture was not required to determine the presence of an infection, in cases in which NSQIP criteria were met and the clinical picture was consistent. Cultured organisms from organ space infections were determined by positive culture from the percutaneous drain, in patients with a clinical picture consistent with infection.

The types of biliary drainage and the results of preoperative bile culture were recorded for patients who underwent preoperative biliary drainage before PD. The preoperative biliary culture was performed in 1651 of 1964 patients (84.1%) who underwent biliary drainage in present study. Percutaneous trans-hepatic biliary drainage and endoscopic naso-biliary drainage were categorised as types of external drainage, and endoscopic retrograde biliary drainage was categorised as internal drainage. Positive results of cultured microorganisms in bile from a preoperative biliary stent or intraoperative bile collection were defined as bile contamination. Results of cultured microorganisms from overall infection site or organ space infections were collected from the patients with infectious complications. The standard perioperative management strategies were described previously\(^8\). Drains were usually removed at 3 to 7 postoperative days according to the early removal policy.

Statistical analysis

All statistical analyses were performed using SAS 8.2 (SAS Institute Inc., Cary, NC, United States). Patient characteristics and clinical factors were compared using the Mann-Whitney \(U\) test for continuous variables and Fisher’s exact test or the chi-squared test for categorical variables. Risk factors that were significantly associated with POPF Grade B/C in univariate models \((P < 0.05)\) were included in a multivariate logistic regression model. Throughout this study, \(P\) values \(< 0.05\) were considered statistically significant.

RESULTS

The median age of the 4101 patients included in this study was 68 years (range 6-89); 1920 patients (46.8%) were over 70 years old. The male to female ratio was 1.53:1. Preoperative biliary drainage was performed in 1964 of 4101 patients (47.9%), and bile contamination was confirmed in 606 patients (14.8%).

Primary disease and infectious complications

The primary disease was significantly associated with preoperative biliary drainage and bile contamination (Table 1). Patients with extrahepatic bile duct carcinoma, ampulla of Vater carcinoma, and pancreatic carcinoma had a high frequency of preoperative biliary drainage (82.9%, 54.6%, and 5.80%) and bile contamination (34.3%, 26.2%, and 20.2%). In contrast, patients with intraductal papillary mucinous neoplasms, pancreas neuroendocrine tumours, and pancreas cystic tumours had a low
frequency of preoperative biliary drainage and bile contamination at 10% or less.

Background, outcomes, infectious complications, and cultured organisms

There were significant differences in the age and sex ratio in patients with or without preoperative biliary drainage and bile contamination (Table 2). The incidence of postoperative infectious complications was 37.9% in patients with preoperative biliary drainage and 42.4% in patients with bile contamination, respectively. Preoperative biliary drainage was performed in male and elderly patients frequently. Preoperative biliary drainage and bile contamination were not associated with the rate of readmission and mortality. Bile contamination was associated with prolonged surgery duration. Preoperative biliary drainage and bile contamination were associated with both overall complications and infectious complications. Preoperative biliary drainage was associated with wound infection. Bile contamination was associated with POPF Grade B/C, wound infection, and catheter infection.

Cultured organisms from the bile and organ space

The most commonly cultured organisms from the bile were *Enterococcus* (42.7%), *Klebsiella* (26.6%), *Enterobacter* (14.2%), *Staphylococcus* (12.7%), and *E. Coli* (11.9%) (Table 3). The most commonly cultured organisms from the organ space (n = 596) were *Enterococcus* (47.7%), *Enterobacter* (20.0%), *Klebsiella* (14.8%), *Pseudomonas* (13.8%), and *Staphylococcus aureus* (methicillin-resistant *S. aureus*) (10.6%). These organisms were mainly cultured from drain discharge (n = 398) and intra-abdominal abscesses (n = 201 patients) which were strongly suspected to be associated with pancreatic fistula. The three most commonly cultured microorganisms from bile (*Enterococcus, Klebsiella, and Enterobacter*) were identical to those isolated from organ spaces. Most of the participating institutions (49 of 69 institutions) changed their antibiotic prophylaxis based on bile culture results in the present study.

Risk factors influencing POPF Grade B/C

Table 4 shows the results of multivariate analysis using risk factors that were significantly associated with POPF Grade B/C in univariate models. Six significant risk factors for infectious complications after PD were identified by multivariate analysis: male sex, age ≥ 70 years, body mass index ≥ 25 kg/m², bile contamination, soft pancreas, and operative time ≥ 7 h. Preoperative biliary drainage was not an independent significant risk factor.

The 1283 patients (40.5%) with high total bilirubin level (< 1.0g/dL) were compared with the 1886 patients (59.5%) with normal total bilirubin level (> 1.0g/dL) for incidence of all POPF and clinical relevant POPF (Grade B/C). There was no significant difference for all POPF (37.8% vs 39.5%, P = 0.55) or clinical relevant POPF (21.4% vs 20.6%, P = 0.82) between the patients with high and normal total bilirubin levels.

Outcome according to the type of drainage

Table 5 shows the demographic characteristics, perioperative variables, and immediate outcome according to the type of drainage (external or internal drainage) in 1942 patients who received PD. External drainage was performed in 772 patients (endoscopic nasobiliary drainage in 499 cases and percutaneous transhepatic biliary drainage in 273 cases) and internal drainage (endoscopic retrograde biliary drainage) was performed in 1170 patients. The duration of surgery was significantly longer in the patients with internal drainage than in those with external drainage. There were no significant differences between the two groups concerning the incidence of postoperative complications such as infectious complication, POPF, delayed gastric emptying, and intra-abdominal bleeding.

DISCUSSION

In this multicentre observational study, preoperative biliary drainage and bile contamination had a notable effect on the immediate outcomes after PD, with a high frequency of infectious complications. Especially, bile contamination had a strong association with POPF (Grade B/C). Bile contamination was present mainly in patients with pancreas cancer, bile duct carcinoma, and ampulla of Vater carcinoma. Furthermore, we found that the three most commonly cultured microorganisms from bile (*Enterococcus, Klebsiella, and Enterobacter*) were identical to those isolated from organ spaces. As the post-PD morbidity rate remains considerably high[1-7], the prevention of bile contamination should be the most effective target to decrease the high morbidity after PD.
Several studies showed that early surgery without preoperative biliary drainage is the standard treatment in patients with resectable pancreatic head cancer presenting with jaundice\cite{9,10}. However, early surgery is not always feasible, and preoperative biliary drainage may be still necessary for patients with high hyperbilirubinaemia at diagnosis or for those undergoing neoadjuvant treatment. It is still controversial how biliary drainage-related complications affect the incidence of postoperative complications after PD. Jagannath et al\cite{21} reported that a positive intraoperative bile culture was associated with higher morbidity rates after PD, and biliary drainage was not associated with increased morbidity. Cortes et al\cite{22} also reported that biliary contamination had a remarkable effect on the immediate outcomes after PD for tumours, with a higher rate of infectious complications including wound and intraabdominal abscesses. Kitahata et al\cite{23} reported that patients undergoing internal drainage had a significantly higher incidence of cholangitis because of biliary drainage (22.4% vs 1.7% in the external drainage group). Internal drainage significantly increased the incidence of morbidity compared with external drainage (41.8% vs 22.3%). The present study analysed 772 and 1170 patients who received external and internal drainages, respectively, and no significant difference in postoperative complications was found between the internal and external drainage groups. The results suggested that the postoperative infectious complications for patients who underwent PD were not associated with type of biliary drainage.

The incidence of positive bile culture was reported to increase significantly in patients who underwent biliary drainage and presented complications such as cholangitis\cite{22,24}. Yanagimoto et al\cite{25} reported that preoperative cholangitis after biliary drainage was associated with development of POPF Grade B/C. The present study clearly revealed that significant association of bile contamination and POPF Grade B/C. The results strongly supported previous reports\cite{19,21,24}. Stent occlusion was reported to cause preoperative cholangitis, and cholangitis occurred in 26% of patients who underwent internal drainage\cite{10}. A possible mechanism to explain the association between cholangitis and internal drainage is the ascent of microorganisms from the open passage to the duodenum and subsequent reflux of duodenal contents\cite{21,22,24}. However, internal biliary drainage permits physiological bile flow, which is important for intestinal immunity and the prevention of bacterial translocation\cite{21,22,24}. Several studies reported that metallic stents have more advantages compared with plastic stents when used for preoperative biliary drainage in patients undergoing neoadjuvant therapy for pancreatic cancer\cite{23,24}. In two previous studies, stent-related complications were significantly higher with plastic stents than with fully covered self-expandable metal stents with no differences in the rate of overall surgical complications\cite{21,22,24}. Further studies are required to assess the fully covered self-expandable metal stents as preoperative biliary drainage affects the surgical procedure or perioperative outcome.

To our knowledge, this is the first report that clarified the specific causative microorganism profile for bile contamination in a large PD series. The *Enterococcus*, *Enterobacter*, and *Klebsiella* species were the more commonly cultured microorganisms from organ space infections and bile contamination. The illustration of different organisms is useful for selecting prophylactic antibiotics or considering drain management after pancreatic surgery. In addition, there were significant differences in the incidence of bile contamination among primary diseases. The results of cultured organisms suggest the need for tailored antibiotic prophylaxis for patients with a high risk of biliary contamination. In the present study, preoperative biliary culture was

Disease	Preoperative biliary drainage	Bile contamination				
	Yes (n = 1964)	No (n = 2137)	P value	Yes (n = 606)	No (n = 2130)	P value
Pancreatic cancer	955 (50.8)	925 (49.2)	< 0.0001	261 (20.2)	1029 (79.8)	< 0.0001
Bile duct carcinoma	691 (82.9)	143 (17.1)	208 (34.3)	399 (65.7)		
Intraductal papillary mucinous neoplasm	19 (4.5)	406 (95.5)	10 (5.1)	187 (94.9)		
Ampulla of Vater carcinoma	250 (54.6)	208 (45.4)	78 (26.2)	220 (73.8)		
Pancreas neuroendocrine tumour	11 (8.9)	113 (91.1)	3 (4.2)	69 (95.8)		
Pancreas cystic tumour	3 (2.6)	113 (97.4)	1 (2.9)	34 (97.1)		
Duodenal cancer	23 (18.3)	103 (81.7)	7 (9.7)	65 (90.3)		

Disease	Bile contamination		
	Yes (n = 606)	No (n = 2130)	P value
Pancreatic cancer	220 (73.8)	220 (73.8)	< 0.0001
Bile duct carcinoma	208 (45.4)	208 (45.4)	0.0969
Intraductal papillary mucinous neoplasm	10 (5.1)	10 (5.1)	0.9302
Ampulla of Vater carcinoma	78 (26.2)	78 (26.2)	< 0.0001
Pancreas neuroendocrine tumour	3 (4.2)	3 (4.2)	< 0.0001
Pancreas cystic tumour	1 (2.9)	1 (2.9)	< 0.0001
Duodenal cancer	7 (9.7)	7 (9.7)	< 0.0001
Okano K et al. Influence of bile contamination after pancreaticoduodenectomy

Table 2 Association of preoperative biliary drainage and bile contamination with immediate outcome after pancreaticoduodenectomy, n (%)

Preoperative biliary drainage	Bile contamination					
Yes (n = 1964)	No (n = 2137)	P value	Yes (n = 606)	No (n = 2130)	P value	
Demographics						
Age (yr), median	69	68	< 0.0001	69	68	0.0004
Sex ratio (M:F)	1.81:1	1.34:1	< 0.0001	2.11:1	1.56:1	0.0012
Duration of hospital stay (d), median	29	29	0.29	29	31	0.11
Readmission	64 (3.3)	84 (3.9)	0.25	19 (3.1)	91 (4.3)	0.33
In-hospital death	42 (2.1)	34 (1.6)	0.21	8 (1.3)	46 (2.2)	0.19
Operative variables						
Estimated blood loss (g), median	855	643	< 0.0001	875	759	0.053
Duration of surgery (min), median	487	461	< 0.0001	497	483	0.0005
Postoperative complications						
Overall complications	1084 (55.2)	1114 (52.1)	0.049	356 (58.7)	1130 (53.1)	0.0014
Infectious complications	744 (37.9)	714 (33.4)	0.003	257 (42.4)	746 (35.0)	0.0003
Severe complications (grade III or more)	340 (17.3)	316 (14.8)	0.036	110 (18.2)	321 (15.0)	0.039
POPF (all)	739 (37.6)	809 (37.9)	0.42	246 (40.6)	773 (36.3)	0.06
Delayed gastric emptying	111 (5.7)	144 (6.7)	0.18	40 (6.6)	143 (6.7)	0.42
Intra-abdominal bleeding	67 (3.4)	57 (2.7)	0.16	18 (3.0)	61 (2.9)	0.78
Details of infectious complication						
POPF (ISGPF grade B or C)	444 (22.6)	438 (20.5)	0.13	154 (25.4)	432 (20.3)	0.003
Wound infection	320 (16.3)	216 (10.3)	< 0.0001	93 (15.3)	263 (12.3)	0.045
Intra-abdominal abscess	289 (14.7)	295 (14.0)	0.53	94 (15.5)	293 (13.8)	0.23
Cholangitis	79 (4.1)	95 (4.5)	0.45	24 (4.0)	105 (4.9)	0.35
Pneumonia	61 (3.1)	61 (2.9)	0.7	21 (3.5)	66 (3.1)	0.62
Liver abscess	21 (1.1)	24 (1.2)	0.83	9 (1.5)	19 (0.9)	0.21
Sepsis	86 (4.5)	86 (4.2)	0.66	30 (5.0)	83 (3.9)	0.24
Pseudomembranous enteritis	31 (1.6)	30 (1.4)	0.68	13 (2.1)	27 (1.3)	0.12
Catheter infection	91 (4.7)	115 (5.5)	0.24	41 (6.8)	98 (4.6)	0.029
Fungaemia	28 (1.5)	28 (1.4)	0.8	8 (1.3)	25 (1.2)	0.75

The variables were identical to those of the American College of Surgeons-National Surgical Quality Improvement Program. POPF: Postoperative pancreatic fistula; ISGPF: Influencing postoperative pancreatic fistula.

In conclusion, preoperative biliary drainage and bile contamination had a notable effect on immediate outcomes after PD, with high frequency of infectious complications. Particularly, bile contamination is related to POPF Grade B/C. Management of biliary contamination should be standardised for patients who performed in 1651 of 1964 patients (84.1%) who underwent biliary drainage. Bile contamination was confirmed in 606 of 1651 patients (36.7%). Most of the participating institutions (49 of 69 institutions) changed their antibiotic prophylaxis based on bile culture results in the present study. As the specific antibiotic prophylaxis based on bile culture results prevents infectious complications in PD patients with preoperative biliary drainage[13], preoperative bile culture should be considered in patients with biliary drainage. However, as there is currently no consensus regarding the appropriate type of antibiotic prophylaxis, a prospective study is warranted to provide evidence to validate appropriate antibiotic prophylaxis for patients with biliary contamination.

This multicentre study has several limitations. First, data were retrospectively collected, which makes it a potential source for significant bias. Second, the results may have been influenced by hospital volume, hospital training status, hospital compliance, and procedure-specific variables. Third, in some patients who received immediate internal drainage, a preoperative biliary culture was not obtained. Although these limitations are recognised, we believe that our findings will contribute to improving quality control in pancreatic surgery. Further prospective, randomised studies are needed to overcome these limitations.
Table 3 Comparison of cultured organisms from bile and organ space infections

Characteristic	n (%)
Cultured from bile	606
Enterococcus	259 (42.7)
Klebsiella	161 (26.6)
Enterobacter	86 (14.2)
Streptococcus	77 (12.7)
E.coli	72 (11.9)
Other Gram negative rods	59 (9.7)
Citrobacter	42 (6.9)
Pseudomonas	38 (6.3)
Coagulase negative staphylococcus	34 (5.6)
Candida albicans	23 (3.8)
Staphylococcus aureus (MRSA)	20 (3.3)
Staphylococcus aureus (MSSA)	10 (1.7)
Cultured from organ space	596
Enterococcus	284 (47.7)
Enterobacter	119 (20.0)
Klebsiella	88 (14.8)
Pseudomonas	82 (13.8)
Staphylococcus aureus (MRSA)	63 (10.6)
Candida albicans	56 (9.7)
Coagulase-negative Staphylococcus	55 (9.2)
Streptococcus	51 (8.6)
Staphylococcus aureus (MSSA)	48 (8.1)
E.coli	26 (4.4)

MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus.

require preoperative biliary drainage for PD, as the main microorganisms are identical in both infected POPF and bile. These findings contribute to the proper management of patients with biliary drainage for PD and may help to establish perioperative therapeutic strategies for biliary contaminations.
Table 4 Multivariate analysis for risk factors influencing postoperative pancreatic fistula (Grade B/C) patients who received pancreaticoduodenectomy

Risk factor	Significance (P value)	Odds ratio	95%CI
Male sex	< 0.0001	1.815	1.459-2.266
Age ≥ 70	0.032	1.250	1.018-1.535
BMI (kg/m²) ≥ 25	< 0.0001	2.095	1.610-2.718
Other previous malignancies	0.079	1.253	0.971-1.612
Liver disease	0.119	1.422	0.903-2.200
Preoperative biliary drainage	0.461	1.087	0.869-1.361
Bile contamination	0.026	1.338	1.033-1.729
Soft pancreas	< 0.0001	4.594	3.650-5.824
Operation time (h) ≥ 7	0.021	1.441	1.143-1.822

BMI: Body mass index; NA: Not available; POPF: Postoperative pancreatic fistula; ISGPF: International Study Group on Pancreatic Fistula; CI: Confidence interval.

Table 5 Comparison of complications and immediate outcome according to the type of drainage (external or internal) after pancreaticoduodenectomy, n (%)

Type of biliary drainage	External (n = 772)	Internal (n = 1170)	P value
Demographics			
Age (yr), median	64	62	0.025
Sex ratio (M:F)	1.97:1	1.84:1	0.99
Duration of hospital stay (d), median	30	28	0.72
Readmission	29 (3.8)	36 (3.1)	0.32
In-hospital death	15 (1.9)	27 (2.3)	0.58
Operative variables			
Estimated blood loss (g), median	855	860	0.75
Duration of surgery (min), median	475	500	0.0004
Postoperative complications			
Overall complications	433 (56.1)	646 (55.2)	0.7
Infectious complications	293 (38.0)	445 (38.0)	0.77
Severe complications (grade III or more)	127 (16.5)	211 (18.0)	0.35
POPF (all)	284 (36.8)	450 (38.5)	0.57
POPF (ISGPF grade B or C)	164 (21.2)	277 (19.4)	0.19
Delayed gastric emptying	97 (12.6)	166 (14.2)	0.37
Intra-abdominal bleeding	36 (4.7)	68 (5.8)	0.32

The variables were identical to those of the American College of Surgeons-National Surgical Quality Improvement Program Percutaneous transhepatic biliary drainage and endoscopic nasobiliary drainage were categorized as the types of external drainage and endoscopic retrograde biliary drainage was categorized as internal drainage. External drainage was performed in 772 patients (endoscopic nasobiliary drainage in 499 cases, percutaneous transhepatic biliary drainage in 241 cases, and PTGBD in 32 cases) and internal drainage was performed in 1170 patients. POPF: Postoperative pancreatic fistula.

ARTICLE HIGHLIGHTS

Research background
Preoperative endoscopic biliary procedures are widespread in the management of periampullary tumours. The influence of bile contamination on the infectious complications of patients undergoing pancreaticoduodenectomy (PD) has not been thoroughly evaluated.

Research motivation
The large data of clinical features and outcomes after PD in patients with infected bile will help improve future clinical outcome.
Research objectives
This study aimed to identify the clinical features and outcomes after PD in patients with infected bile based on data from the Japanese Society of Pancreatic Surgery for future management of perioperative infectious complications.

Research methods
We retrospectively reviewed the database of 4101 patients who underwent PD. Preoperative biliary drainage was performed in 1964 patients (47.9%), and bile contamination was confirmed in 608 patients (14.8%).

Research results
The incidence of postoperative infectious complications was 37.9% in patients with preoperative biliary drainage and 42.4% in patients with biliary contamination, respectively. Patients with extrahepatic bile duct carcinoma, ampulla of Vater carcinoma, and pancreatic carcinoma had a high frequency of preoperative biliary drainage (82.9%, 54.6%, and 50.8%) and bile contamination (54.3%, 26.2%, and 20.2%). Bile contamination was associated with postoperative pancreatic fistula (POPF) Grade B/C. The three most commonly cultured microorganisms from bile (Enterococcus, Klebsiella, and Enterobacter) were identical to those isolated from organ spaces.

Research conclusions
In patients undergoing PD, bile contamination is related to postoperative infectious complication including POPF Grade B/C.

Research perspectives
The management of biliary contamination should be standardised for patients who require preoperative biliary drainage for PD, as the main microorganisms are identical in both organ spaces and bile.

REFERENCES

1. Winter JM, Cameron JL, Campbell KA, Arnold MA, Chang DC, Coleman J, Hodgkin MB, Sauter PK, Hruban RH, Riall TS, Schulick RD, Choti MA, Lillemoe KD, Yeo CJ. 1423 pancreaticoduodenectomies for pancreatic cancer: A single-institution experience. J Gastrointest Surg 2006; 10: 1199-210; discussion 1210-1 [PMID: 17144007 DOI: 10.1016/j.gassur.2006.08.018]

2. Cameron JL, Riall TS, Coleman J, Belcher KA. One thousand consecutive pancreaticoduodenectomies. Ann Surg 2006; 244: 10-15 [PMID: 16794338 DOI: 10.1097/01.sla.0000217673.04165.ea]

3. Vin Y, Sima CS, Getrajdman GI, Brown KT, Covey A, Brennan MF, Allen PJ. Management and outcomes of postpancreatectomy fistula, leak, and abscess: results of 908 patients resected at a single institution between 2000 and 2005. J Am Coll Surg 2008; 207: 490-498 [PMID: 18926450 DOI: 10.1016/j.jamcollsurg.2008.05.003]

4. Yeo CJ, Cameron JL, Sohn TA, Lillemoe KD, Pitt HA, Talanmini MA, Hruban RH, Ord SE, Sauter PK, Coleman J, Zahrakar ML, Grochow LB, Abrams RA. Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications, and outcomes. Ann Surg 1997; 226: 248-57; discussion 257-60 [PMID: 9339931 DOI: 10.1097/00000658-199709000-00006]

5. Buchler MW, Friess H, Muller MW, Wheatley AM, Beger HG. Randomized trial of duodenal-preserving pancreatic head resection versus pylorus-preserving Whipple in chronic pancreatitis. American journal of surgery. 1995; 165; 69-70 [DOI: 10.1016/S0002-9610(95)90187-8]

6. Simons JP, Shah SA, Ng SC, Whalen GF, Tseng JF. National complication rates after pancreatectomy: beyond mere mortality. J Gastrointest Surg 2009; 13: 1798-1805 [PMID: 19506975 DOI: 10.1007/s11605-009-0336-1]

7. Kinnura W, Miyata H, Gotoh M, Hirai I, Kenjo A, Kitagawa Y, Shimada M, Baba H, Tomita N, Nakagoe T, Sugihara K, Mori M. A pancreaticoduodenectomy risk model derived from 8573 cases from a national single-race population (Japanese) using a web-based data entry system: the 30-day and in-hospital mortality rates for pancreaticoduodenectomy. Ann Surg 2014; 259: 773-780 [PMID: 24253151 DOI: 10.1097/SLA.0000000000000263]

8. Okano K, Hiroo T, Unno M, Fujii T, Yoshihimi H, Suzuki S, Satoi S, Takahashi S, Kainuma O, Suzuki Y. Postoperative infectious complications after pancreatic resection. Br J Surg 2015; 102: 1551-1560 [PMID: 26387569 DOI: 10.1002/bjs.9919]

9. van der Gaag NA, Rauws EA, van Eijck CH, Bruno MJ, van der Harst E, Kubben FJ, Gerritsen JJ, Greve JW, Gerhards MF, de Hingh IH, Klinkenbijl JH, Nio CY, de Castro SM, Busch OR, van Gulik TM, Bossuyt PM, Gouma DJ. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med 2010; 362: 129-137 [PMID: 20071702 DOI: 10.1056/NEJMoai0901236]

10. Fang Y, Gurusamy KS, Wang Q, Davidson BR, Lin H, Xie X, Wang C. Meta-analysis of randomized clinical trials on safety and efficacy of biliary drainage before surgery for obstructive jaundice. Br J Surg 2013; 100: 1589-1596 [PMID: 24204780 DOI: 10.1002/bjs.9260]

11. Winner M, Goff SL, Chabot JA. Neoadjuvant therapy for non-metastatic pancreatic ductal adenocarcinoma. Semin Oncol 2015; 42: 86-97 [PMID: 25726054 DOI: 10.1053/j.seminoncol.2014.12.008]

12. Li D, O'Reilly EM. Adjuvant and neoadjuvant systemic therapy for pancreas adenocarcinoma. Semin Oncol 2015; 42: 134-143 [PMID: 25726058 DOI: 10.1053/j.seminoncol.2014.12.012]

13. Umeda J, Tsoi T. Current status of preoperative biliary drainage. J Gastroenterol 2015; 50: 940-954 [PMID: 26138070 DOI: 10.1007/s00535-015-1096-6]

14. Povoski SP, Karpeh MS, Conlon KC, Blumgart LH, Brennan MF. Association of preoperative biliary...
drainage with postoperative outcome following pancreaticoduodenectomy. *Ann Surg* 1999; **230**: 131-142 [PMID: 10450725 DOI: 10.1097/00000658-199908000-00001]

15. Sohn TA, Yeo CJ, Cameron JL, Pitt HA, Lillemoe KD. Do preoperative biliary stents increase postpancreaticoduodenectomy complications? *J Gastrointest Surg.* 2000; **25**: 267-267, discussion 267-258 [DOI: 10.1016/S1091-555X(00)00474-8]

16. Pisters PW, Hudec WA, Hess KR, Lee JE, Vauthey JN, Lahoti S, Rajmian I, Evans DB. Effect of preoperative biliary decompression on pancreaticoduodenectomy-associated morbidity in 300 consecutive patients. *Ann Surg 2001; 234*: 47-55 [PMID: 11420482 DOI: 10.1097/00000658-200107000-00008]

17. Srivastava S, Sukor SS, Kumar A, Saxena R, Kapoor VK. Outcome following pancreaticoduodenectomy in patients undergoing preoperative biliary drainage. *Dig Surg* 2001; **18**: 381-387 [PMID: 11721135 DOI: 10.1159/000050178]

18. American College of Surgeons. User Guide for the 2012 Participant Use Data File. American College of Surgeons National Surgical Quality Improvement Program. 2012; Available from: https://accreditation.facs.org/Programs/PreApp

19. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg 2004; 240*: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000103083.59434.ac]

20. Bassi C, Derervis C, Buttari G, Fingerhut A, Yeo C, Ieibeki I, Neoptolemos J, Sarr M, Traverse W, Buchler M. International Study Group on Pancreatic Fisuta Definition. Postoperative pancreatic fistula: an international study group (ISGPF) definition. *Surgery 2005; 138*: 8-13 [PMID: 16003309 DOI: 10.1016/j.surg.2005.05.001]

21. Jagannath P, Dhir V, Shrikhande S, Shah RC, Mullerpatan P, Mohandas KM. Effect of preoperative biliary stenting on immediate outcome after pancreaticoduodenectomy. *Br J Surg 2005; 92*: 356-361 [PMID: 15672425 DOI: 10.1002/bjs.4864]

22. Cortes A, Sauvant E, Bert F, Janny S, Sockeel P, Kianmanesh R, Ponsot P, Ruszniewski P, Belghiti J. Effect of bile contamination on immediate outcomes after pancreaticoduodenectomy for tumor. *J Am Coll Surg 2006; 202*: 93-99 [PMID: 16077702 DOI: 10.1016/j.jamcollsurg.2005.09.013]

23. Kikahata Y, Kawai M, Tani M, Hiroto S, Okada K, Miyazawa M, Shinizu A, Yamada H. Preoperative cholangitis during biliary drainage increases the incidence of postoperative severe complications after pancreaticoduodenectomy. *Ann Surg 2014; 208*: 1-10 [PMID: 24530042 DOI: 10.1016/j.amjsurg.2013.10.021]

24. Yanagimoto H, Satoi S, Yamamoto T, Toyokawa H, Hirooka S, Yui R, Yamaki S, Rystia H, Inoue K, Michiura T, Matsui Y, Kwon AH. Clinical impact of preoperative cholangitis after biliary drainage in patients who undergo pancreaticoduodenectomy on postoperative pancreatic fistula. *Am J Surg 2014; 80*: 36-42 [PMID: 24401513]

25. Hochwald SN, Burke EC, Jarnagin WR, Fong Y, Blumgart L. Association of preoperative biliary stenting with increased postoperative infectious complications in proximal cholangiocarcinoma. *Arch Surg 1999; 134*: 261-266 [PMID: 10088565 DOI: 10.1001/archsurg.134.3.261]

26. Lermite E, Pessaux P, Teyssedou C, Etienne S, Brehant O, Arnaud JP. Effect of preoperative endoscopic biliary drainage on infectious morbidity after pancreaticoduodenectomy: a case-control study. *Am J Surg 2008; 195*: 442-446 [PMID: 18304506 DOI: 10.1016/j.amjsurg.2007.03.016]

27. Clements WD, Diamond T, McCrory DC, Rowlands BJ. Biliary drainage in obstructive jaundice: experimental and clinical aspects. *Br J Surg 1993; 80*: 834-842 [PMID: 7690291 DOI: 10.1002/bjs.2680800700]

28. Parks RW, Clements WD, Smye MG, Pope C, Rowlands BJ, Diamond T. Intestinal barrier dysfunction in clinical and experimental obstructive jaundice and its reversal by internal biliary drainage. *Br J Surg 1996; 83*: 1345-1349 [PMID: 8944445 DOI: 10.1002/bjs.1800831007]

29. Kamiya S, Nagino M, Kanazawa H, Komatsu S, Mayumi T, Takagi K, Ashara T, Nomoto K, Tanaka R, Nimura Y. The value of bile replacement during external biliary drainage: an analysis of intestinal permeability, integrity, and microflora. *Ann Surg 2004; 239*: 510-517 [PMID: 15243142 DOI: 10.1016/j.archsurg.2004.06.021]

30. Tol JA, van Hooff JE, Timmer R, Kohnen S, van der Harst E, de Hingh IH, Vleggaar FP, Molenaar IQ, Keulemans YC, Boerma D, Bruno MJ, Schoon EJ, van der Gaag NA, Besselink MG, Fockens P, van Gulik TM, Rauws EA, Busch OR, Gouma DJ. Metal or plastic stents for preoperative biliary drainage in resectable pancreatic cancer. *Gut 2016; 65*: 1981-1987 [PMID: 26306766 DOI: 10.1136/gutjnl-2014-307862]

31. Aadam AA, Evans DB, Khan A, Oh Y, Dua K. Efficacy and safety of self-expandable metal stents for biliary decompression in patients receiving neoadjuvant therapy for pancreatic cancer: a prospective study. *Gastrointest Endosc 2012; 76*: 67-75 [PMID: 22483859 DOI: 10.1016/j.gie.2012.02.041]

32. Crippa S, Cicciroli R, Parietti S, Petrone MC, Muffatti F, Renzi C, Falconi M, Areadiaco PA. Systematic review and meta-analysis of metal versus plastic stents for preoperative biliary drainage in resectable periampullary or pancreatic head tumors. *Eur J Surg Oncol 2016; 42*: 1278-1285 [PMID: 27296728 DOI: 10.1016/j.ejso.2016.05.001]

33. Kahaleh M, Tokar J, Conaway MR, Brock A, Le T, Adams RB, Yeaton P. Efficacy and complications of covered Wallstents in malignant distal biliary obstruction. *Gastrointest Endoscopy*. 2005; 528-533 [DOI: 10.1016/s0016-5107(04)02593-3]

34. Soderlund C, Linder S. Covered metal versus plastic stents for malignant common bile duct stenosis: a prospective, randomized, controlled trial. *Gastrointest Endosc 2006; 63*: 986-995 [PMID: 16733114 DOI: 10.1016/j.gie.2005.11.052]

35. Sudo T, Murakami Y, Uemura K, Hayashidani Y, Hashimoto Y, Ohge H, Sueda T. Specific antibiotic prophylaxis based on bile cultures is required to prevent postoperative infectious complications in pancreaticoduodenectomy patients who have undergone preoperative biliary drainage. *World J Surg 2007; 31*: 2230-2235 [PMID: 17726628 DOI: 10.1007/s00268-007-9210-4]
