Supplementary information

Yijie Wang, Wenjie Luo, Haojie Li, and Chuanwei Cheng

Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P.R. China. E-mail: cwcheg@tongji.edu.cn
Fig S1 (a) XPS survey of Ru/H-S, N-C, Ru/H-N-C, and H-S, N-C; (b) C 1s and Ru 3d spectra; (c) N 1s spectra
Fig S2 The comparison of LSV curves before and after iR correction of Ru/H-S, N-C
Fig S3 CV curves between 0.30 and 0.40 V of (a) Ru/H-S, N-C, (b) Ru/H-N-C, and (c) H-S, N-C
Fig S4 (a) TEM and (b-c) HRTEM images of Ru/H-S, N-C after stability test.
Fig S5 XPS spectra of Ru/H-S, N-C after stability test
Fig. S6 The N$_2$ adsorption and desorption measurements (a) Ru-S, N-C and Ru/H-S, N-C with different diameters of SiO$_2$ as templates (b) 50 nm, (c) 227 nm, and (d) 380 nm
Table S1. Statistic data of yield after each synthesis procedure of Ru/H-S, N-C

Procedure	Weight (mg)	Yield (%)
Weighing	127.06	-
Self-assembly & Oil bath	107.02	84.23
Pyrolysis	78.53	73.38
HF etching	6.71	8.54
Table S2. Element composition of Ru/H-S, N-C and Ru/H-N-C on the basis of TEM-EDS

Sample	Element	Wt%			
Ru/H-S, N-C	Ru	16.76			
	S	2.29			
	N	1.12			
	C	79.83			
Ru/H-N-C	Ru	13.12			
	N	0.43			
	C	86.45			
Catalysts	Electrolyte	η_{10} (mV)	Tafel slope (mV dec^{-1})	loading (mg cm^{-2})	Ref.
--------------------	-------------	-------------	---------------------------	----------------------	--------
Ru/H-S, N-C	1.0 M KOH	32	24	0.35	This work
Pt/C	1.0 M KOH	40	42	0.35	This work
Ru⁰/CeO₂	1.0 M KOH	47	41	0.197	1
Ru-MoO₂	1.0 M KOH	29	31	0.285	2
Cu_{2-x}S@Ru	1.0 M KOH	82	48	0.23	3
NiO/Ru@Ni	1.0 M KOH	39	75	-	4
RuP₂@NPC	1.0 M KOH	52	69	1.0	5
S-4	1.0 M KOH	28	31	0.275	6
Ru₂Ni₂SNs/C	1.0 M KOH	40	23.4	0.1	7
Ru@SC-CDs 2:10	1.0 M KOH	29	57	0.42	8
Ru₂P@PNC/CC-9 00	1.0 M KOH	50	66	1.5	9
Ni@Ni₂P-Ru HNRs	1.0 M KOH	41	31	-	10
SA-Ru-MoS₂	1.0 M KOH	76	21	0.285	11
Ru-MoS₂/CNT	1.0 M KOH	50	62	1.0	12
RuS₂/S-GO	1.0 M KOH	58	56	1.0	13
$\text{Ru}_{0.33}\text{Se @ TNA}$	1.0 M KOH	57	50	0.2	14
Table S4. The calculation of the atomic ratio of Ru 3p to N 1s of Ru/H-S, N-C before and after the stability test.

Sample	Element	Peak Area	Sensitivity Factor	Normalized Area	Atomic Ratio
Before stability test	Ru 3p	16007.3	13.262	1207.0	0.302
	N 1s	6693.6	1.676	3993.8	
After stability test	Ru 3p	7693.1	13.262	580.1	0.305
	N 1s	3190.6	1.676	1903.7	
Reference:

1. E. Demir, S. Akbayrak, A. M. Onal and S. Ozkar, ACS Appl. Mater. Interfaces, 2018, 10, 6299-6308.

2. P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su and Q. Chen, J. Mater. Chem. A, 2017, 5, 5475-5485.

3. D. Yoon, J. Lee, B. Seo, B. Kim, H. Baik, S. H. Joo and K. Lee, Small, 2017, 13, 1700052.

4. C. Zhong, Q. Zhou, S. Li, L. Cao, J. Li, Z. Shen, H. Ma, J. Liu, M. Lu and H. Zhang, J. Mater. Chem. A, 2019, 7, 2344-2350.

5. Z. Pu, I. S. Aminu, Z. Kou, W. Li and S. Mu, Angew. Chem. Int. Ed., 2017, 56, 11559-11564.

6. J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang and Q. Chen, Nat. Commun., 2017, 8, 14969.

7. J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong and J. B. Baek, Nat. Nanotechnol., 2017, 12, 441-446.

8. Y. Liu, Y. Yang, Z. Peng, Z. Liu, Z. Chen, L. Shang, S. Lu and T. Zhang, Nano Energy, 2019, 65, 104023.

9. T. Liu, B. Feng, X. Wu, Y. Niu, W. Hu and C. M. Li, ACS Appl. Energy Mater., 2018, 1, 3143-3150.

10. Q. Liu, L. Wang, X. Liu, P. Yu, C. Tian and H. Fu, Sci. China Mater., 2018, 62, 624-632.

11. J. Zhang, X. Xu, L. Yang, D. Cheng and D. Cao, Small Methods, 2019, 3, 1900653.

12. X. Zhang, F. Zhou, S. Zhang, Y. Liang and R. Wang, Adv. Sci., 2019, 6, 190090.

13. W. Fang, H. Hu, T. Jiang, G. Li and M. Wu, Carbon, 2019, 146, 476-485.

14. K. Wang, Q. Chen, Y. Hu, W. Wei, S. Wang, Q. Shen and P. Qu, Small, 2018, 14, e1802132.