DYNAMICAL DEGREE AND ARITHMETIC DEGREE OF ENDOMORPHISMS ON PRODUCT VARIETIES

KAORU SANO

Abstract. For a dominant rational self-map on a smooth projective variety defined over a number field, Shu Kawaguchi and Joseph H. Silverman conjectured that the (first) dynamical degree is equal to the arithmetic degree at a rational point whose forward orbit is well-defined and Zariski dense. We give some examples of self-maps on product varieties and rational points on them for which the Kawaguchi-Silverman conjecture holds.

1. Introduction

Let X be a smooth projective variety defined over a number field k, and $f: X \to X$ a dominant rational self-map defined over k. Let $I_f \subset X$ be the indeterminacy locus of f. Let $X_f(k)$ be the set of k-rational points P on X such that $f^n(P) \notin I_f$ for every n. For a k-rational point $P \in X_f(k)$, its forward f-orbit is defined by $O_f(P) := \{f^n(P) : n \geq 0\}$.

Let H be an ample divisor on X defined over k. The (first) dynamical degree of f is defined by
$$\delta_f := \lim_{n \to \infty} \deg((f^n)^*H) \cdot H^{\dim X-1}/n.$$ The arithmetic degree of f at a k-rational point $P \in X_f(k)$ is defined by
$$\alpha_f(P) := \lim_{n \to \infty} h^+_H(f^n(P))^{1/n}$$ if the limit on the right hand side exists. Here, $h_H: X(k) \to [0, \infty)$ is the (absolute logarithmic) Weil height function associated with H, and we put $h_H^+ := \max\{h_H, 1\}.$

Shu Kawaguchi and Joseph H. Silverman formulated the following conjecture.

Conjecture 1.1 (Kawaguchi-Silverman conjecture (see [18, Conjecture 6])). For every k-rational point $P \in X_f(k)$, the arithmetic degree $\alpha_f(P)$ is defined. Moreover, if the forward f-orbit $O_f(P)$ is Zariski dense in X, the arithmetic degree $\alpha_f(P)$ is equal to the dynamical degree δ_f, i.e., we have
$$\alpha_f(P) = \delta_f.$$ The existence of the limit defining the arithmetic degree when f is a dominant endomorphism (i.e., f is defined everywhere) is proved in [16]. But in general, the convergence is not known. It seems difficult to prove Conjecture [11] in full generality.

The following variant of Conjecture [11] is also studied by Kawaguchi and Silverman in [17].

Conjecture 1.2 (see [17, Theorem 3]). The set
$$\{P \in X_f(k) : \alpha_f(P) \text{ is defined and equal to } \delta_f\}$$ contains a Zariski dense set of points having disjoint orbits.
The aim of this paper is to give examples of endomorphisms on product varieties and rational points on them for which Conjecture 1.1 or Conjecture 1.2 is true.

We prove Conjecture 1.1 in the following situations.

Theorem 1.3. For \(i = 1, 2, \ldots, n \), let \(X_i \) be a smooth projective variety defined over a number field \(k \). Assume that each \(X_i \) satisfies at least one of the following conditions:
- the first Betti number of \(X_i(\mathbb{C}) \) is zero and the Néron-Severi group of \(X_i \otimes_k \bar{k} \) has rank one,
- \(X_i \) is an abelian variety,
- \(X_i \) is an Enriques surface, or
- \(X_i \) is a K3 surface.

Then Conjecture 1.1 is true for any endomorphism \(f : \prod_{i=1}^{n} X_i \rightarrow \prod_{i=1}^{n} X_i \) defined over \(k \).

We also prove that, when one of the direct factors is of general type, any endomorphism on the product variety does not admit Zariski dense forward orbit. Thus, Conjecture 1.1 is obviously true for such endomorphisms.

Theorem 1.4. Let \(X \) and \(Y \) be smooth projective varieties of dimension \(\geq 1 \) defined over a subfield \(k \subset \mathbb{C} \), and let \(f : X \times Y \rightarrow X \times Y \) be an endomorphism defined over \(k \). Assume that at least one of \(X \) or \(Y \) is of general type. Then, for every \(k \)-rational point \(P \in (X \times Y)(\bar{k}) \), the forward \(f \)-orbit \(O_f(P) \) is not Zariski dense in \(X \times Y \).

We prove Conjecture 1.2 for certain rational self-maps on the projective space \(\mathbb{P}^N \).

Theorem 1.5. Let \(f : \mathbb{P}^N \rightarrow \mathbb{P}^N \) be a dominant rational self-map defined over a number field \(k \) whose restriction to \(\mathbb{A}^N \) is a morphism written as
\[
\begin{align*}
 f(x_1, x_2, \ldots, x_N) &= (f_1(x_1, x_2, \ldots, x_N), f_2(x_2, x_3, \ldots, x_N), \ldots, f_N(x_N))
\end{align*}
\]
for some polynomials \(f_i \in k[x_i, x_{i+1}, \ldots, x_N] \) for \(i = 1, 2, \ldots, N \). Assume that at least one of the following conditions is satisfied:
- \(\deg x_i f_i > \deg x_{i+1} f_{i+1} \) for every \(i \), or
- \(N = 2 \).

Then the set
\[
\{ P \in \mathbb{A}^N(\bar{k}) : \alpha_f(P) \text{ is defined and equal to } \delta_f \}
\]
contains a Zariski dense set of points having disjoint orbits.

Remark 1.6. Kawaguchi and Silverman proved Conjecture 1.1 in the following cases (for details, see [16], [17], [21], [22]).
- ([17, Theorem 2 (a)]) \(f \) is an endomorphism and the Néron-Severi group of \(X \otimes_k \bar{k} \) has rank one.
- ([17, Theorem 2 (b)]) \(f \) is the extension to \(\mathbb{P}^N \) of a regular affine automorphism on \(\mathbb{A}^N \).
- ([17, Theorem 2 (c)]) \(X \) is a smooth projective surface and \(f \) is an automorphism on \(X \).
- ([21, Proposition 19]) \(f \) is the extension to \(\mathbb{P}^N \) of a monomial endomorphism on \(\mathbb{G}^N_m \) and \(P \in \mathbb{G}^N_m(\bar{k}) \).
- ([16, Corollary 31], [22, Theorem 2]) \(X \) is an abelian variety. Note that any rational map between abelian varieties is automatically a morphism, and can be written as the composition of a homomorphism of abelian varieties and the translation by a point.
Remark 1.7. Kawaguchi and Silverman proved Conjecture 1.2 in the following cases (for details, see [17]):

- ([17, Theorem 3 (a)]) \(f \) is an algebraically stable dominant rational self-map on \(\mathbb{P}^2 \) whose restriction to \(\mathbb{A}^2 \) is an affine morphism.
- ([17, Theorem 3 (b)]) \(f \) is a dominant rational self-map on \(\mathbb{P}^2 \) with \(\deg(f) = 2 \) whose restriction to \(\mathbb{A}^2 \) is an affine morphism.
- ([17, Lemma 21]) \(f \) is a dominant rational self-map on \(\mathbb{P}^N \) with \(\delta_f > 1 \) such that its restriction to \(\mathbb{A}^N \) is an affine morphism, and there exists a \(k \)-rational point \(Q_0 \in \mathbb{P}^N(k) \) lying on the hyperplane at infinity satisfying that \(f^m \) is defined at \(Q_0 \) and \(f^m(Q_0) = Q_0 \) for some \(m \geq 1 \).

Notation. The base field \(k \) is always a number field or a subfield of \(\mathbb{C} \). A variety defined over \(k \) means a scheme of finite type over \(\text{Spec} \ k \) which is geometrically integral. An endomorphism on a variety \(X \) means a morphism from \(X \) to itself. For a smooth projective variety defined over a number field \(k \), \(b_1(X) := \dim_{\mathbb{Q}} H^1(X(\mathbb{C}), \mathbb{Q}) \) denotes the first Betti number of the complex manifold \(X(\mathbb{C}) \), and \(\text{NS}(X) \) denotes the Néron-Severi group of \(X \otimes_k \mathbb{R} \). It is well-known that \(b_1(X) \) does not depend on the choice of an embedding \(k \hookrightarrow \mathbb{C} \), and \(\text{NS}(X) \) is a finitely generated abelian group. We put \(\text{NS}(X)_\mathbb{R} := \text{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R} \). The Albanese variety of \(X \) is denoted by \(\text{Alb}(X) \).

Outline of this paper. In Section 2, we recall the definitions and some properties of dynamical and arithmetic degrees. In Section 3, we prove some lemmas about reduction of Conjecture 1.1. In Section 4, we study some sufficient conditions for endomorphisms on product varieties to be split. These are important to prove Theorem 1.3 and Theorem 1.4. Theorem 1.3 is proved in Section 5, and Theorem 1.4 is proved in Section 6. Finally, in Section 7, we prove Theorem 1.5.

2. Dynamical degree and Arithmetic degree

Let \(H \) be an ample divisor on a smooth projective variety \(X \) defined over a number field \(k \). The (first) dynamical degree of a dominant rational self-map \(f : X \rightarrow X \) is defined by

\[
\delta_f := \lim_{n \to \infty} \frac{\deg(((f^n)^*H) \cdot H^\dim X - 1)}{n}.
\]

The limit defining \(\delta_f \) exists, and \(\delta_f \) does not depend on the choice of \(H \) (see [6, Corollary 7], [10, Proposition 1.2]). Note that if \(f \) is an endomorphism, we have \((f^n)^* = (f^*)^n \) as a linear self-map on \(\text{NS}(X) \). But if \(f \) is merely a rational self-map, we have \((f^n)^* \neq (f^*)^n \) in general.

Remark 2.1 ([12, Section 3], [21, p. 675]). Let \(f : \mathbb{P}^N \rightarrow \mathbb{P}^N \) be a dominant rational self-map on the projective space \(\mathbb{P}^N \) defined over \(k \). In homogeneous coordinates, \(f \) can be written as

\[
f : [X_0 : \cdots : X_N] \mapsto [P_0(X_0, \ldots, X_N) : \cdots : P_N(X_0, \ldots, X_N)],
\]

where \(P_0, \ldots, P_N \) are homogeneous polynomials of the same degree without common nontrivial factors (see [12, Lemma 2.9]). The common degree of these polynomials is written as \(\deg(f) \), and we call it the degree of \(f \). Then the following equality holds:

\[
\delta_f = \lim_{n \to \infty} \left(\deg(f^n) \right)^{1/n}.
\]
Note that, in general, this notion is different from the degree of the extension of function fields induced by \(f \). The logarithm of the right hand side is called the \textit{algebraic entropy}. For details, see [12], [21] and references therein.

\textbf{Remark 2.2} \textnormal{(6 Proposition 1.2 (iii), 18 Remark 7).} Let \(\rho(f^*) \) be the spectral radius of the linear self-map \(f^* : \text{NS}(X)_{\mathbb{R}} \to \text{NS}(X)_{\mathbb{R}} \). The dynamical degree \(\delta_f \) is equal to the limit \(\lim_{n \to \infty} (\rho((f^n)^*))^{1/n} \). Thus we have \(\delta_{f^n} = \delta_f^n \) for every \(n \geq 1 \).

Let \(X_f(\overline{k}) \) be the set of \(\overline{k} \)-rational points on \(X \) at which \(f^n \) is defined for every \(n \geq 1 \). The \textit{arithmetic degree} of \(f \) at a \(\overline{k} \)-rational point \(P \in X_f(\overline{k}) \) is defined as follows. Let \(h_H : X(\overline{k}) \to [0, \infty) \) be the (absolute logarithmic) Weil height function associated with \(H \) (see [13, Theorem B3.2]). We put

\[
\overline{\alpha}_f(P) := \max\{ h_H(P), 1 \},
\]

the upper arithmetic degree and the lower arithmetic degree, respectively. It is known that \(\overline{\alpha}_f(P) \) and \(\underline{\alpha}_f(P) \) do not depend on the choice of \(H \) (see [18, Proposition 12]). If \(\overline{\alpha}_f(P) = \underline{\alpha}_f(P) \), the limit

\[
\alpha_f(P) := \lim_{n \to \infty} h_H^+(f^n(P))^{1/n}
\]

is called the arithmetic degree of \(f \) at \(P \).

\textbf{Remark 2.3.} When \(f \) is an endomorphism, the existence of the limit defining the arithmetic degree \(\alpha_f(P) \) is proved by Kawaguchi and Silverman in [16, Theorem 3]. But it is not known in general.

\textbf{Remark 2.4.} The inequality \(\overline{\alpha}_f(P) \leq \delta_f \) is proved by Kawaguchi and Silverman in [18, Theorem 4]. Hence, in order to prove Conjecture [14, 15] it is enough to prove the opposite inequality \(\underline{\alpha}_f(P) \geq \delta_f \). Similarly, in order to prove Conjecture [12, 13] it is enough to prove that the set

\[
\{ P \in X_f(\overline{k}) : \underline{\alpha}_f(P) \geq \delta_f \}
\]

contains a Zariski dense set of points having disjoint orbits.

We recall the following result on relative dynamical degrees proved by T.-C. Dinh and V.-A. Nguyên.

\textbf{Theorem 2.5} \textnormal{(5, Theorem 1.1).} Let \(X \) and \(Y \) be smooth projective varieties defined over \(\mathbb{C} \), with \(\dim X \geq \dim Y \). Let \(f : X \dashrightarrow X \), \(g : Y \dashrightarrow Y \) and \(\pi : X \dashrightarrow Y \) be dominant rational maps such that \(\pi \circ f = g \circ \pi \). Then we have

\[
d_p(f) = \max_{0 \leq j \leq \min\{p, \dim Y\}} d_j(g)d_{p-j}(f|_\pi)
\]

for every \(0 \leq p \leq \dim X \).

Here, \(d_p(f) \) and \(d_p(f|_\pi) \) are the \(p \)-th dynamical degree and the \(p \)-th relative dynamical degree, respectively, defined in [5, Section 3].
Corollary 2.6. Let \(k \) be a subfield of \(\mathbb{C} \). Let \(f : X \rightarrow X \) and \(g : Y \rightarrow Y \) be dominant rational self-maps on smooth projective varieties of dimension \(\geq 1 \) defined over \(k \). Let \(f \times g : X \times Y \rightarrow X \times Y \) be the product of \(f \) and \(g \). Then we have \(\delta_{f \times g} = \max \{ \delta_f, \delta_g \} \).

Proof. Since the (first) dynamical degrees do not change when the base field \(k \) is extended, we may assume \(k = \mathbb{C} \). We apply Theorem 2.5 for \(X \times Y, Y, f \times g, g, pr_2 \) and \(p = 1 \). We have \(d_1(g) = \delta_g, d_0(g) = 1, d_1((f \times g)|_{pr_2}) = \delta_f, d_0((f \times g)|_{pr_2}) = 1 \), and \(d_1(f \times g) = \delta_{f \times g} \) (see [5, Section 3]). Hence we get

\[
\delta_{f \times g} = d_1(f \times g) = \max \{ d_1(g)d_0((f \times g)|_{pr_2}), d_0(g)d_1((f \times g)|_{pr_2}) \} = \max \{ \delta_f, \delta_g \}.
\]

\[\square\]

3. Some reductions of the Kawaguchi-Silverman conjecture.

In this section, we prove lemmas which are useful to prove some cases of Conjecture 1.1.

Lemma 3.1. Let \(\{a_n\} \) and \(\{b_n\} \) be sequences of positive real numbers. Assume that the limits \(\lim_{n \to \infty} a_n^{1/n} \) and \(\lim_{n \to \infty} b_n^{1/n} \) exist and are not less than 1. Then the limit \(\lim_{n \to \infty}(a_n + b_n)^{1/n} \) exists and is equal to \(\max \{ \lim_{n \to \infty} a_n^{1/n}, \lim_{n \to \infty} b_n^{1/n} \} \).

Proof. We put \(\alpha := \lim_{n \to \infty} a_n^{1/n} \) and \(\beta := \lim_{n \to \infty} b_n^{1/n} \). If \(\alpha > \beta \), we have

\[
a_n^{1/n} \leq (a_n + b_n)^{1/n} \leq (2a_n)^{1/n}
\]

for all sufficiently large \(n \). Hence we have \(\lim_{n \to \infty}(a_n + b_n)^{1/n} = \alpha \). The proof for the case \(\alpha < \beta \) is similar.

If \(\alpha = \beta \), since we have \(\lim_{n \to \infty}(a_n + b_n)^{1/n} = \alpha \cdot \lim_{n \to \infty}(1 + b_n/a_n)^{1/n} \), it is enough to prove the assertion when \(a_n = 1 \) for all \(n \) and \(\beta = 1 \). Fix a real number \(0 < \varepsilon < 1 \). There exists an integer \(n_0 \) such that \(b_n \leq (1 + \varepsilon)^n \) holds for all \(n \geq n_0 \). Then we have

\[
1 \leq (1 + b_n)^{1/n} \leq (1 + (1 + \varepsilon)^n)^{1/n} \leq (2(1 + \varepsilon)^n)^{1/n} = 2^{1/n}(1 + \varepsilon).
\]

Hence we get \(1 \leq \lim_{n \to \infty}(1 + b_n)^{1/n} \leq 1 + \varepsilon \), and the assertion follows. \[\square\]

Lemma 3.2. Let \(X \) and \(Y \) be smooth projective varieties defined over a number field \(k \). Let \(f : X \rightarrow X \) and \(g : Y \rightarrow Y \) be dominant endomorphisms defined over \(k \), respectively. Assume that Conjecture [1.1] is true for \(f \) and \(g \). Then Conjecture [1.1] is true for the product endomorphism \(f \times g : X \times Y \rightarrow X \times Y \).

Proof. Let \(D_1 \) and \(D_2 \) be ample divisors on \(X \) and \(Y \), respectively. Then \(H := pr_1^*D_1 + pr_2^*D_2 \) is an ample divisor on \(X \times Y \) (see [11, II, Proposition 7.10]). Fix the Weil height function associated with \(H, pr_1^*D_1 \) and \(pr_2^*D_2 \) to satisfy \(h_H = h_{pr_1^*D_1} + h_{pr_2^*D_2} \). Since \(D_1 \) and \(D_2 \) are ample, we may assume that \(h_{pr_1^*D_1} \) and \(h_{pr_2^*D_2} \) are positive functions. For every \(\overline{k} \)-rational point \(P \in (X \times Y)(\overline{k}) \) whose forward \((f \times g)\)-orbit \(O_{f \times g}(P) \) is Zariski
dense in \(X \times Y \), we have
\[
\delta_{f \times g} = \max\{\delta_f, \delta_g\}
\]
Corollary 2.6
\[
= \max\{\alpha_f(\text{pr}_1(P)), \alpha_g(\text{pr}_2(P))\}
\]
Conjecture 1.1
\[
= \lim_{n \to \infty} (h^+_{\text{pr}_1 D_1}((f \times g)^n(P)) + h^+_{\text{pr}_2 D_2}((f \times g)^n(P)))^{1/n}
\]
Lemma 3.1
\[
= \lim_{n \to \infty} h^+_H((f \times g)^n(P))^{1/n}
\]
\[
= \alpha_{f \times g}(P).
\]

Hence Conjecture 1.1 is true for \(f \times g \).

\[\square \]

Lemma 3.3. Let \(X \) be a smooth projective variety defined over a number field \(k \), and \(f: X \to X \) an endomorphism defined over \(k \). Then Conjecture 1.1 is true for \(f \) if and only if Conjecture 1.1 is true for \(f^t \) for some \(t \geq 1 \).

Proof. One direction is trivial. Assume that Conjecture 1.1 is true for \(f^t \) for some \(t \geq 1 \). For every \(\overline{k} \)-rational point \(P \in X(\overline{k}) \), we have
\[
\mathcal{O}_f(P) = \bigcup_{i=0}^{t-1} f^i(\mathcal{O}_{f^t}(P)).
\]
Therefore, \(\mathcal{O}_f(P) \) is Zariski dense in \(X \) if and only if \(\mathcal{O}_{f^t}(P) \) is Zariski dense in \(X \). Since we know the existence of \(\alpha_f(P) \) (see Remark 2.3), we get
\[
\alpha_f(P) = \lim_{n \to \infty} h^+_H(f^n(P))^{1/n}
\]
\[
= \lim_{n \to \infty} h^+_H((f^t)^n(P))^{1/n}
\]
\[
= \alpha_{f^t}(P)^{1/t}
\]
\[
= \delta_f^{1/t}
\]
\[
= \delta_f
\]
Remark 2.2
Hence Conjecture 1.1 is true for \(f \).

\[\square \]

4. SPLITTING OF ENDOmorphisms ON PRODUCT VARIETIES

In this section, we work over \(\mathbb{C} \). All varieties and morphisms are defined over \(\mathbb{C} \).

Let \(X \) and \(Y \) be smooth projective varieties, and \(f: X \times Y \to X \times Y \) a dominant endomorphism. For a \(\mathbb{C} \)-rational point \(x \in X(\mathbb{C}) \), let \(i_x: Y \hookrightarrow X \times Y \) be the closed embedding defined by \(i_x(y) := (x, y) \). For a \(\mathbb{C} \)-rational point \(y \in Y(\mathbb{C}) \), let \(j_y: X \hookrightarrow X \times Y \) be the closed embedding defined by \(j_y(x) := (x, y) \). We put \(X_y := j_y(X) \subset X \times Y \).

We say an endomorphism \(f: X \times Y \to X \times Y \) is split if there exist endomorphisms \(g: X \to X \) and \(h: Y \to Y \) satisfying \(f = g \times h \). In this section, we study sufficient conditions for endomorphisms on product varieties to be split.

4.1. Some lemmas on endomorphisms on product varieties.

Lemma 4.1. Let \(y \in Y(\mathbb{C}) \) be a \(\mathbb{C} \)-rational point, and \(Z \subset X \times Y \) a closed subvariety with \(\dim Z = \dim Y \). Then the following are equivalent.

- \(\text{pr}_2|_Z: Z \to Y \) is dominant.
- \(\deg(X_y \cdot Z) \neq 0 \). Here, \(X_y \cdot Z \) is a zero cycle on \(X \times Y \), which is the intersection product of cycles \(X_y \) and \(Z \) on \(X \times Y \).
Proof. If \(\text{pr}_2|_Z \) is dominant, we have \(\text{pr}_2^\ast(Z) = \deg(Z/Y)Y \) as cycles on \(Y \) (see [9, 1.4]). Since \(X_y = \text{pr}_2^\ast(y) \) as cycles on \(X \times Y \), we have

\[
\deg(X_y \cdot Z) = \deg(\text{pr}_2^\ast(y) \cdot Z)
\]

\[
= \deg(y \cdot \text{pr}_2^\ast(Z)) \text{ by the projection formula ([9, Example 8.1.7])}
\]

\[
= \deg(Z/Y) \geq 1.
\]

Conversely, if \(\text{pr}_2|_Z \) is not dominant, \(\text{pr}_2|_Z \) is not surjective. We may assume \(y \not\in \text{pr}_2(Z) \) because \(\deg(X_y \cdot Z) \) does not depend on \(y \); see Remark 4.2 below. Since \(X_y \cap Z = \emptyset \), we have \(\deg(X_y \cdot Z) = 0 \).

Remark 4.2. For \(y, y' \in Y(\mathbb{C}) \), the cycles \(X_y \) and \(X_{y'} \) on \(X \times Y \) are algebraically equivalent. Hence the degree \(\deg(X_y \cdot Z) \) does not depend on \(y \) (see [9, Corollary 10.2.2]).

Lemma 4.3. There is a positive integer \(t \geq 1 \) such that the endomorphism

\[
\text{pr}_2 \circ f^t \circ i_{x} : Y \to Y
\]

is dominant for every \(x \in X(\mathbb{C}) \).

Proof. Fix \(C \)-rational points \(x_0 \in X(\mathbb{C}) \) and \(y_0 \in Y(\mathbb{C}) \). We put \(Z_{x_0,t} := f^t(i_{x_0}(Y)) \) for each \(t \geq 0 \). We have \(\dim Z_{x_0,t} = \dim Y \) because \(f \) is finite (see [2, Lemma 1], [3, Lemma 2.3 (1)]). Let us consider the cohomology classes \(\text{cl}(X_{y_0}) \in H^{2\dim Y}(X(\mathbb{C}) \times Y(\mathbb{C}), \mathbb{Q}) \) and \(\text{cl}(Z_{x_0,t}) \in H^{2\dim X}(X(\mathbb{C}) \times Y(\mathbb{C}), \mathbb{Q}) \). Recall that the intersection number is calculated by the cup product of cohomology classes. Hence, we have \(\text{cl}(X_{y_0}) \cup \text{cl}(Z_{x_0,t}) = \deg(X_{y_0} \cap Z_{x_0,t}) \) in \(H^{2\dim X + 2\dim Y}(X(\mathbb{C}) \times Y(\mathbb{C}), \mathbb{Q}) = \mathbb{Q} \). By Lemma 4.1\(\text{pr}_2 \circ f^t \circ i_{x_0} \) is dominant if and only if \(\deg(X_{y_0} \cap Z_{x_0,t}) \neq 0 \). Since \(\text{cl}(Z_{x_0,t}) \) does not depend on \(x_0 \), we see that \(\text{pr}_2 \circ f^t \circ i_{x_0} \) is dominant for one \(x \in X(\mathbb{C}) \) if and only if it is dominant for every \(x \in X(\mathbb{C}) \). Therefore, it is enough to consider the case of \(\text{pr}_2 \circ f^t \circ i_{x_0} \).

Since \(H^{2\dim X}(X(\mathbb{C}) \times Y(\mathbb{C}), \mathbb{Q}) \) is a finite dimensional \(\mathbb{Q} \)-vector space, there is an unique integer \(s \geq 0 \) such that \(\text{cl}(Z_{x_0,i}) \) (\(0 \leq i \leq s \)) are linearly independent over \(\mathbb{Q} \), but \(\text{cl}(Z_{x_0,i}) \) (\(0 \leq i \leq s + 1 \)) are linearly dependent over \(\mathbb{Q} \). We write \(\text{cl}(Z_{x_0,s+1}) = \sum_{i=0}^{s} a_i \text{cl}(Z_{x_0,i}) \) for some \(a_i \in \mathbb{Q} \). Assume that \(\text{pr}_2 \circ f^t \circ i_{x_0} \) is not dominant for all \(t \geq 1 \). Then we have \(\text{cl}(X_{y_0}) \cup \text{cl}(Z_{x_0,t}) = 0 \) for all \(t \geq 1 \). On the other hand, since \(\text{pr}_2 \circ i_{x_0} = i_Y \), we have \(\text{cl}(X_{y_0}) \cup \text{cl}(Z_{x_0,0}) = 1 \). Calculating the cup products with \(\text{cl}(X_{y_0}) \), we have

\[
0 = \text{cl}(X_{y_0}) \cup \text{cl}(Z_{x_0,s+1}) = \sum_{i=0}^{s} a_i (\text{cl}(X_{y_0}) \cup \text{cl}(Z_{x_0,i})) = a_0.
\]

If \(s = 0 \), we get \(\text{cl}(Z_{x_0,1}) = 0 \). But this is a contradiction because \(\text{cl}(Z_{x_0,1}) \) is a prime cycle. Thus we may assume \(s \geq 1 \).

Recall that \(f \) induces a bijective \(\mathbb{Q} \)-linear map

\[
f_* : H^{2\dim X}(X(\mathbb{C}) \times Y(\mathbb{C}), \mathbb{Q}) \to H^{2\dim X}(X(\mathbb{C}) \times Y(\mathbb{C}), \mathbb{Q})
\]

satisfying \(f_*(\text{cl}(Z_{x_0,t})) = \text{cl}(f_*(Z_{x_0,t})) = \deg(Z_{x_0,t}/Z_{x_0,t+1}) \cdot \text{cl}(Z_{x_0,t+1}) \) (see [2, Lemma 1]). We put

\[
\alpha := \sum_{i=1}^{s} a_i \cdot \deg(Z_{x_0,i-1}/Z_{x_0,i})^{-1} \cdot \text{cl}(Z_{x_0,i-1}).
\]
Since $a_0 = 0$, we have
\[f_*(\alpha) = \sum_{i=1}^{s} a_i \cl(Z_{x_0,i}) \]
\[= \cl(Z_{x_0,s+1}) \]
\[= f_*(\deg(Z_{x_0,s}/Z_{x_0,s+1})^{-1} \cdot \cl(Z_{x_0,s})). \]
By the injectivity of f_*, we have $\alpha = \deg(Z_{x_0,s}/Z_{x_0,s+1})^{-1} \cdot \cl(Z_{x_0,s})$. But it contradicts with the assumption that $\cl(Z_{x_0,i}) (0 \leq i \leq s)$ are linearly independent over \Q. Therefore, $\pr_2 \circ f^t \circ i_{x_0}$ is dominant for some $t \geq 1$. \qed

4.2. Splitting of endomorphisms on product varieties (1). For a smooth projective variety X, the automorphism group of X, denoted by $\Aut(X)$, has a natural structure of a group scheme locally of finite type (see \cite[Theorem 3.7]{20}). Its neutral component is denoted by $\Aut^0(X)$. Let $\text{Sur}(X)$ be the scheme of surjective endomorphisms on X, which has a natural action of $\Aut(X)$ (for details, see \cite[3]{8}).

Lemma 4.4. Let X be a smooth projective variety.

(1) $b_1(X) = 0$ if and only if $\text{Alb}(X) = 0$.

(2) If $b_1(X) = 0$, $\Aut^0(X)$ is a linear algebraic group.

Proof. The part (1) follows from the equality $b_1(X) = 2 \cdot \dim \text{Alb}(X)$ (see \cite[Theorem V.13]{1}]. For the part (2), see [11, Corollary 5.8], [3, p.73, Remark 2]. \qed

Lemma 4.5. Let X and Y be smooth projective varieties, and $f : X \times Y \longrightarrow X \times Y$ a dominant endomorphism. Assume that at least one of the following conditions is satisfied:

- $b_1(X) = 0$, or
- $\Aut^0(Y)$ is a linear algebraic group.

Then there is an integer $t \geq 1$ such that $f^t(x, y) = (g(x, y), h(y))$ for some morphisms $g : X \times Y \longrightarrow X$ and $h : Y \longrightarrow Y$.

Proof. Take an integer $t \geq 1$ as in Lemma 4.3. Fix a C-rational point $x_0 \in X(C)$, and get a holomorphic map $X(C) \longrightarrow \text{Sur}(Y)(C), x \mapsto \pr_2 \circ f^t \circ i_x$. The image of $X(C)$ in $\text{Sur}(Y)(C)$ is contained in a left $\Aut^0(Y)(C)$-orbit by Horst’s theorem \cite[Theorem 3.1]{13}. Hence there is a holomorphic map $\varphi : X(C) \longrightarrow \Aut^0(Y)(C)$ satisfying $\pr_2 \circ f^t \circ i_x = \varphi(x) \circ \pr_2 \circ f^t \circ i_{x_0}$ for all $x \in X(C)$.

We shall show φ is constant. Since $\Aut^0(Y)$ is a connected algebraic group, by Chevalley’s theorem \cite[1]{14}, there is a linear normal subgroup $\Aut^0(Y)_{\text{lin}} \subset \Aut^0(Y)$ such that $\Aut^0(Y)/\Aut^0(Y)_{\text{lin}}$ is an abelian variety. If $b_1(X) = 0$, $\text{Alb}(X)$ is trivial by Lemma 4.3 (1). By the universal property of the Albanese varieties (see \cite[Theorem V.13]{1}), the image of $X(C)$ in $(\Aut^0(Y) / \Aut^0(Y)_{\text{lin}})(C)$ is trivial. Hence φ is a holomorphic map from $X(C)$ to $(\Aut^0(Y)_{\text{lin}})(C)$. Since X is a projective variety and $\Aut^0(Y)_{\text{lin}}$ is an affine variety, φ is constant. Similarly, if $\Aut^0(Y)$ is a linear algebraic group, we have $\Aut^0(Y) = \Aut^0(Y)_{\text{lin}}$, and φ is constant.

Therefore, we conclude $\varphi(x) = \text{id}_X$ for all $x \in X(C)$. Putting $g := \pr_1 \circ f^t$ and $h := \pr_2 \circ f^t \circ i_{x_0}$, we have $f^t(x, y) = (g(x, y), h(y))$. \qed

Theorem 4.6. Let X and Y be smooth projective varieties, and $f : X \times Y \longrightarrow X \times Y$ a dominant endomorphism. Assume that at least one of the following conditions is satisfied:
Let \(X \) and \(Y \) be smooth projective varieties satisfying

\[\text{rank } \text{NS}(X \times Y) = \text{rank } \text{NS}(X) + \text{rank } \text{NS}(Y). \]

Under this assumption, we shall prove results similar to Theorem 4.6 for dominant endomorphisms on \(X \times Y \).

Lemma 4.7. Let \(X \) and \(Y \) be smooth projective varieties satisfying

\[\text{rank } \text{NS}(X \times Y) = \text{rank } \text{NS}(X) + \text{rank } \text{NS}(Y). \]

Fix \(\mathbb{C} \)-rational points \(x_0 \in X(\mathbb{C}) \) and \(y_0 \in Y(\mathbb{C}) \).

1. The following maps are isomorphisms and inverses to each other:

\[\text{NS}(X)_{\mathbb{R}} \oplus \text{NS}(Y)_{\mathbb{R}} \overset{\cong}{\to} \text{NS}(X \times Y)_{\mathbb{R}}, \quad (\alpha, \beta) \mapsto \text{pr}_1^* \alpha + \text{pr}_2^* \beta, \]

\[\text{NS}(X \times Y)_{\mathbb{R}} \overset{\cong}{\leftarrow} \text{NS}(X)_{\mathbb{R}} \oplus \text{NS}(Y)_{\mathbb{R}}, \quad \gamma \mapsto (j_{y_0}^* \gamma, i_{x_0}^* \gamma). \]

2. For a closed subvariety \(\iota_Z : Z \hookrightarrow X \) and an element \(\alpha \in \text{NS}(X \times Y)_{\mathbb{R}} \), the following are equivalent:

 - \((\iota_Z \times \text{id}_Y)^* \alpha \in \text{NS}(Z \times Y)_{\mathbb{R}}\) is ample.
 - \((j_{y_0} \circ \iota_Z)^* \alpha \in \text{NS}(Z)_{\mathbb{R}}\) and \(i_{x_0}^* \alpha \in \text{NS}(Y)_{\mathbb{R}}\) are ample.

Proof. The part (1) is clear. For the part (2), by (1), we have \(\alpha = \text{pr}_1^* j_{y_0} \alpha + \text{pr}_2^* i_{x_0}^* \alpha \).

Hence we have

\[(\iota_Z \times \text{id}_Y)^* \alpha = (\text{pr}_1 \circ (\iota_Z \times \text{id}_Y))^* (j_{y_0}^* \alpha) + (\text{pr}_2 \circ (\iota_Z \times \text{id}_Y))^* (i_{x_0}^* \alpha) \]

\[= \text{pr}_2^* ((j_{y_0} \circ \iota_Z)^* \alpha + \text{pr}_2^* (i_{x_0}^* \alpha)), \]

where \(\text{pr}_Z : Z \times Y \to Z \) and \(\text{pr}_Y : Z \times Y \to Y \) are projections. Therefore, \((\iota_Z \times \text{id}_Y)^* \alpha\) is ample if and only if \((j_{y_0} \circ \iota_Z)^* \alpha\) and \(i_{x_0}^* \alpha\) are ample (see [11, Proposition 7.10]).
Lemma 4.8. Let X and Y be smooth projective varieties satisfying
\[\text{rank } \text{NS}(X \times Y) = \text{rank } \text{NS}(X) + \text{rank } \text{NS}(Y), \]
and $f : X \times Y \to X \times Y$ an endomorphism. If $pr_2 \circ f \circ i_{x_0} : Y \to Y$ is dominant for some $x_0 \in X(\mathbb{C})$, we have $f(x, y) = (g(x, y), h(y))$ for some morphisms $g : X \times Y \to X$ and $h : Y \to Y$.

Proof. It suffices to prove $pr_2 \circ f \circ j_{y_0} : X \to Y$ is constant. Assume that it is not constant. Since $\dim pr_2 \circ f \circ j_{y_0}(X) \geq 1$, there is an irreducible curve $i_Z : Z \to X$ with $\dim pr_2 \circ f \circ j_{y_0}(Z) = 1$. Let $\delta \in \text{NS}(Y)_R$ be the class of an ample divisor on Y. Since $pr_2 \circ f \circ j_{y_0} \circ i_Z : Z \to Y$ is finite, the pullback
\[(pr_2 \circ f \circ j_{y_0} \circ i_Z)^* \delta = (j_{y_0} \circ i_Z)^*(pr_2 \circ f)^* \delta \in \text{NS}(Z)_R \]
is ample. On the other hand, since $pr_2 \circ f \circ i_{x_0}$ is a dominant endomorphism on Y, it is finite (see [2, Lemma 1], [8, Lemma 2.3 (1)]), and the pullback
\[(pr_2 \circ f \circ i_{x_0})^* \delta = (i_{x_0})^*(pr_2 \circ f)^* \delta \in \text{NS}(Y)_R \]
is ample. Applying Lemma 4.7 (2) for $\alpha = (pr_2 \circ f)^* \delta$, we see that
\[(i_Z \times \text{id}_Y)^* (pr_2 \circ f)^* \delta = (pr_2 \circ f \circ (i_Z \times \text{id}_Y))^* \delta \in \text{NS}(Z \times Y)_R \]
is ample. Since the pullback of δ by $pr_2 \circ f \circ (i_Z \times \text{id}_Y)$ is ample, the morphism $pr_2 \circ f \circ (i_Z \times \text{id}_Y) : Z \times Y \to Y$ must be finite. It is a contradiction because $\dim(Z \times Y) > \dim Y$. Hence $pr_2 \circ f \circ j_{y_0}$ is constant as required. \hfill \Box

Theorem 4.9. Let X and Y be smooth projective varieties satisfying
\[\text{rank } \text{NS}(X \times Y) = \text{rank } \text{NS}(X) + \text{rank } \text{NS}(Y) \]
and $f : X \times Y \to X \times Y$ an endomorphism. Then f^t is split for some $t \geq 1$.

Proof. Applying Lemma 4.3 and Lemma 4.8, there is an integer $t_1 \geq 1$ such that $f^{t_1}(x, y) = (g_1(x, y), h_1(y))$ for some morphisms $g_1 : X \times Y \to X$ and $h_1 : Y \to Y$. Changing the role of X and Y and applying Lemma 4.3 and Lemma 4.8 again, there is an integer $t_2 \geq 1$ such that $f^{t_2}(x, y) = (g_2(x), h_2(x, y))$ for some morphisms $g_2 : X \to X$ and $h_2 : X \times Y \to Y$. Then we have $f^{t_1 t_2}(x, y) = (g_2(x), h_1^{t_2}(y))$. Hence $f^{t_1 t_2}$ is split. \hfill \Box

5. Proof of Theorem 4.3

The base field k is a number field in this section.

For a smooth projective variety X defined over k, we say “Conjecture 4.1 is true for endomorphisms on X” if Conjecture 4.1 is true for every dominant endomorphism $f : X \to X$ defined over a finite extension of k and every k-rational point $P \in X(\overline{k})$ with Zariski dense forward f-orbit.

Lemma 5.1. Let X and Y be smooth projective varieties defined over k, and $f : X \times Y \to X \times Y$ an endomorphism defined over k. Fix an embedding $k \to \mathbb{C}$. Assume that f is split over \mathbb{C}, i.e., there exist endomorphisms $g : X \to X$ and $h : Y \to Y$ defined over \mathbb{C} satisfying $f = g \times h$. Then, there is a finite extension k'/k such that f is split over k'.

Proof. Take \overline{k}-rational points $x_0 \in X(\overline{k})$ and $y_0 \in Y(\overline{k})$. We put $g_0 := pr_1 \circ f \circ j_{y_0}$ and $h_0 = pr_2 \circ f \circ i_{x_0}$. These are endomorphisms on X and Y, respectively, defined over \overline{k}. By assumption, $f(x, y) = (g_0(x), h_0(y))$ for all $x \in X(\mathbb{C})$ and $y \in Y(\mathbb{C})$. Hence
Let \(f = g_0 \times h_0 \) as endomorphisms defined over \(\overline{k} \). Since \(g \) and \(h \) are defined over a finite extension of \(k \), the assertion follows.

\[\text{Lemma 5.2.} \quad \text{Let} \quad X \quad \text{and} \quad Y \quad \text{be smooth projective varieties defined over} \quad k. \quad \text{Assume that} \quad \text{Conjecture 1.1 is true for endomorphisms on} \quad X \quad \text{and} \quad Y. \quad \text{Moreover, assume that at least one of the following conditions is satisfied:} \]

- \(b_1(X) = 0 \),
- \(b_1(Y) = 0 \),
- \(\text{Aut}^0(X) \) and \(\text{Aut}^0(Y) \) are linear algebraic groups, or
- \(\text{rank NS}(X \times Y) = \text{rank NS}(X) + \text{rank NS}(Y) \).

\(\text{Then Conjecture 1.1 is true for endomorphisms on} \quad X \times Y. \quad \text{Moreover if} \quad b_1(X) = b_1(Y) = 0, \quad \text{we have} \quad b_1(X \times Y) = 0. \)

\[\text{Proof.} \quad \text{Let} \quad f : X \times Y \to X \times Y \quad \text{be an endomorphism defined over} \quad k. \quad \text{If one of the first, second, or third condition is satisfied, we apply Theorem 4.6 to conclude that} \quad f^t \quad \text{is split for some} \quad t \geq 1. \quad \text{If the fourth condition is satisfied, we apply Theorem 4.9 to conclude that} \quad f^t = g \times h \quad \text{for endomorphisms} \quad g : X \to X \quad \text{and} \quad h : Y \to Y \quad \text{defined over a finite extension} \quad k'. \]

Since Conjecture 1.1 is true for \(g \) and \(h \), it is true for \(f^t \) by Lemma 3.2. Therefore, it is true for \(f \) by Lemma 3.3.

\[\text{Finally, the assertion on the first Betti number follows from the equality} \quad b_1(X \times Y) = b_1(X) + b_1(Y). \quad \square \]

\[\text{Lemma 5.3.} \quad \text{Let} \quad X \quad \text{be an Enriques or a K3 surface defined over} \quad k. \quad \text{Then} \quad b_1(X) = 0 \quad \text{and Conjecture 1.1 is true for endomorphisms on} \quad X. \]

\[\text{Proof.} \quad \text{It is well-known that the first Betti number of an Enriques or a K3 surface is zero (see [1, Theorem VIII. 2]). It is well-known that any dominant endomorphism on an Enriques or a K3 surface is an automorphism ([8, Corollary 2.4]). Since Conjecture 1.1 is true for automorphisms on smooth projective surfaces ([17, Theorem 2 (c)]), Conjecture 1.1 is true for endomorphisms on an Enriques or a K3 surface.} \quad \square \]

Now, we shall complete the proof of Theorem 1.3.

\[\text{Proof of Theorem 1.3.} \quad \text{Recall that each} \quad X_i \quad \text{satisfies at least one of the following conditions:} \]

- \(b_1(X_i) = 0 \) and \(\text{rank NS}(X_i) = 1 \),
- \(X_i \) is an abelian variety,
- \(X_i \) is an Enriques surface, or
- \(X_i \) is a K3 surface.

By Lemma 5.3, there is a unique subset \(I \subset \{1, \ldots, n\} \) such that \(X_i \) is an abelian variety for every \(i \in I \), and \(b_1(X_i) = 0 \) for every \(i \notin I \). We put \(Y := \prod_{i \in I} X_i \) and \(Z = \prod_{i \notin I} X_i \). Then \(Y \) is an abelian variety of dimension \(\sum_{i \in I} \dim X_i \).

Conjecture 1.1 is true for endomorphisms on \(Y \) by [16, Corollary 31], [22, Theorem 2]. On the other hand, by [17, Theorem 2 (a)] and Lemma 5.2, Conjecture 1.1 is true for endomorphisms on \(Z \). We also have \(b_1(Z) = 0 \).

By Lemma 5.2, Conjecture 1.1 is true for endomorphisms on \(Y \times Z \). \(\square \)
6. Proof of Theorem 1.4

Proof of Theorem 1.4. We may assume $k = \mathbb{C}$ and Y is of general type. Then the automorphism group $\text{Aut}(Y)$ is finite ([19, Corollary 2], [15, Theorem 11.12]). Hence the neutral component $\text{Aut}^0(Y)$ is trivial.

Applying Lemma 4.5 there is an integer $t \geq 1$ such that $f^t(x, y) = (g(x, y), h(y))$ for some morphisms $g: X \times Y \to X$ and $h: Y \to Y$.

Since Y is of general type, h is an automorphism ([8, Proposition 2.6]). Replacing t by $t \cdot |\text{Aut}(Y)|$, we may assume $h = \text{id}_Y$.

Then, for every C-rational point $P \in (X \times Y)(\mathbb{C})$, we have $pr_2(P) = pr_2(f^j(P))$ for some $0 \leq j < t$.

7. Proof of Theorem 1.5

7.1. Strategy of the proof of Theorem 1.5. The following useful result is proved by Kawaguchi and Silverman in [17], [18].

Lemma 7.1. Let $f: X \to X$ be a dominant rational self-map on a smooth projective variety X defined over a number field k, and D a divisor on X. For a k-rational point $P \in X_f(k)$ with

$$\hat{h}_{f,D}(P) := \liminf_{n \to \infty} \delta_f^{-n}h^{\delta_f}(f^n(P)) > 0,$$

the arithmetic degree $\alpha_f(P)$ is defined and equal to δ_f.

Proof. See [17, Proposition 14] and [18, Theorem 4]. See also Remark 2.4.

In the following, let $f: \mathbb{P}^N \to \mathbb{P}^N$ be a rational self-map defined over a number field k as in Theorem 1.5. Our goal is to apply Lemma 7.1 for k-rational points in a suitable p-adic open set of $\mathbb{A}^N(k)$ for a finite place p of k. The proof of Theorem 1.5 has three steps.

1. First, we calculate the dynamical degree of f. It is an easy exercise in linear algebra.

2. Second, we find a finite place p and a p-adic open subset $U \subset \mathbb{A}^N(k)$ satisfying

 - U is stable by f, i.e., for every k-rational point $P \in U$, we have $f(P) \in U$, and

 - every k-rational point $P = (x_1, x_2, \ldots, x_N) \in U$ satisfies $|x_1^{(1)}|_p \geq |x_1|_p^{\delta_f}$, where we put $f^n(P) = (x_1^{(n)}, x_2^{(n)}, \ldots, x_N^{(n)})$ for $n \geq 1$.

 - $U \setminus f(U) \subset \mathbb{A}^N(k)$ is a non-empty p-adic open set.

3. Finally, we prove $\hat{h}_{f,H}(P) > 0$, where $H \subset \mathbb{P}^N$ is a hyperplane defined over k.

Applying Lemma 7.1 we conclude that, for every k-rational point $P \in U$, the arithmetic degree $\alpha_f(P)$ is defined and equal to δ_f.

7.2. Dynamical degrees in the situation of Theorem 1.5.
Definition 7.2. Let \(\text{Deg}(f) \) be the square matrix of size \(N \) whose \((i, j)\)-th entry is equal to \(\deg_{x_i} f_j \). We call it the degree matrix of \(f \). Concretely, we have
\[
\text{Deg}(f) := \begin{pmatrix}
\deg_{x_1} f_1 & 0 & 0 & \ldots & 0 \\
\deg_{x_2} f_1 & \deg_{x_2} f_2 & 0 & \ldots & 0 \\
\deg_{x_3} f_1 & \deg_{x_3} f_2 & \deg_{x_3} f_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\deg_{x_N} f_1 & \deg_{x_N} f_2 & \deg_{x_N} f_3 & \ldots & \deg_{x_N} f_N
\end{pmatrix}.
\]
The \((i, j)\)-th entry of \(\text{Deg}(f) \) is denoted by \(d_{i,j}^{(1)} \). Similarly, the degree matrix of \(f^n \) is denoted by \(\text{Deg}(f^n) \), and the \((i, j)\)-th entry of \(\text{Deg}(f^n) \) is denoted by \(d_{i,j}^{(n)} \).

Lemma 7.3. Let \(g : \mathbb{P}^N \rightarrow \mathbb{P}^N \) be a dominant rational self-map satisfying the same conditions as \(f \) in Theorem 1.5. Let \(\text{Deg}(g) = (d'_{i,j}) \) be the degree matrix of \(g \). Then the following inequalities hold:
\[
\begin{pmatrix}
d_{1,1}d'_{1,1} & 0 & 0 & \ldots & 0 \\
0 & d_{2,2}d'_{2,2} & 0 & \ldots & 0 \\
0 & 0 & d_{3,3}d'_{3,3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & d_{N,N}d'_{N,N}
\end{pmatrix} \leq \text{Deg}(f \circ g) \leq (\text{Deg}(g))(\text{Deg}(f)).
\]
Here we use the following notation: for real matrices \(A = (a_{i,j}) \) and \(B = (b_{i,j}) \), the inequality \(A \leq B \) means \(a_{i,j} \leq b_{i,j} \) for all \(i, j \).

Proof. The second inequality is obvious because the entries of \((\text{Deg}(g))(\text{Deg}(f))\) are the largest possible degrees of the monomials which can appear in the polynomials \((f \circ g)_j\), where we put
\[
(f \circ g)(x) = ((f \circ g)_1(x), (f \circ g)_2(x), \ldots, (f \circ g)_N(x)).
\]
Let us prove the first inequality. Since \(g \) is dominant, the polynomials \(g_1, g_2, \ldots, g_N \) are algebraically independent over \(k \). We denote
\[
\begin{align*}
f_1 &= F_1(x_1, \ldots, x_N)x_1^{d_{1,1}} + \text{(lower terms in } x_1), \\
g_1 &= G_1(x_2, \ldots, x_N)x_1^{d'_{1,1}} + \text{(lower terms in } x_1)
\end{align*}
\]
for nonzero polynomials \(F_1, G_1 \). We calculate
\[
(f \circ g)_1 = F_1(g_2, \ldots, g_N)g_1^{d'_{1,1}} + \text{(other terms)}
\]
\[
= F_1(g_2, \ldots, g_N)G_1(x_2, \ldots, x_N)x_1^{d_{1,1}d'_{1,1}} + \text{(other terms)}.
\]
Since \(g_2, \ldots, g_N \) are algebraically independent over \(k \), we have \(F_1(g_2, \ldots, g_N) \neq 0 \). Consequently, we have \(d_{1,1}d'_{1,1} = (\text{Deg}(f \circ g))_{1,1} \). We can prove \(d_{i}\!,d'_{i,i} = (\text{Deg}(f \circ g))_{i,i} \) for \(i = 2, 3, \ldots, N \) by the same way. \(\square\)

The proof of the following lemma is omitted because it is an easy exercise in linear algebra.

Lemma 7.4. Let \(A \in M_m(\mathbb{C}) \) be a complex square matrix of size \(m \). Let \(a_{i,j}^{(n)} \) be the \((i, j)\)-th entry of \(A^n \). Then we have
\[
\lim_{n \rightarrow \infty} \max_{1 \leq i, j \leq m} |a_{i,j}^{(n)}|^{1/n} = \rho(A),
\]
where $\rho(A)$ denotes the spectral radius of A.

Proposition 7.5. In the situation of Theorem 7.3, we have $\delta_f = \max_{1 \leq i \leq N} d_{i,i}$.

Proof. We put $(\text{Deg}(f))^n = (e_{i,j}^{(n)})_{i,j}$. Then we have

$$\max_{1 \leq i \leq N} d_{i,i} \leq \text{deg}_n \leq \max_{1 \leq j \leq N} \sum_{i=1}^{N} d_{i,j}^{(n)} \leq \max_{1 \leq j \leq N} \sum_{i=1}^{N} e_{i,j}^{(n)}$$

by Lemma 7.3. Taking the n-th root and letting $n \to \infty$, we have

$$\max_{1 \leq i \leq N} d_{i,i} \leq \delta_f = \lim_{n \to \infty} (\text{deg}_n)^{1/n}$$

by Remark 2.1. Taking the n-th root and letting $n \to \infty$, we have

$$\max_{1 \leq i \leq N} d_{i,i} \leq \delta_f \leq \max_{1 \leq j \leq N} \sum_{i=1}^{N} e_{i,j}^{(n)} \leq \max_{1 \leq j \leq N} \sum_{i=1}^{N} e_{i,j}^{(n)}$$

Hence we have $\delta_f = \max_{1 \leq i \leq N} d_{i,i}$. \qed

7.3. **Proof of Theorem 1.5 in the first case.** We fix a finite place p such that all the coefficients of f_i are p-adic units. We also fix an embedding $\bar{k} \hookrightarrow k_p$, and consider the p-adic absolute value $|\cdot|_p$ on \bar{k}. To prove Theorem 1.5 in the first case, it is sufficient to prove the following assertion: if $d_{i,i} > d_{i+1,i+1}$ for each i, there exists a p-adic open subset $U \subset X_f(\bar{k})$ such that $\hat{h}_{f,H}(P) > 0$ for every \bar{k}-rational point $P \in U$.

We fix a constant C with $C > N \cdot \max_{1 \leq i,j \leq N} \text{deg}_x f_j$. We define a p-adic open subset $U \subset \mathbb{A}^N(\bar{k})$ by

$$U := \{(x_1, x_2, \ldots, x_N) \in \mathbb{A}^N(\bar{k}) : |x_i|_p > |x_{i+1}|_p^C > 1 \text{ for } 1 \leq i \leq N - 1\}.$$

For each i, let $u_i x_i^{d_{i,i}} \prod_{l=i+1}^{N} x_l^{e_{i,l}}$ be the nonzero monomial in f_i which has the largest index with respect to the lexicographic order.

Lemma 7.6. For every \bar{k}-rational point $P = (x_1, x_2, \ldots, x_N) \in U$, we have

$$|x_1^{(1)}|_p = |x_i^{d_{i,i}}|_p \cdot \prod_{l=i+1}^{N} |x_l^{e_{i,l}}|_p,$$

$$|x_1^{(1)}|_p = \max_{1 \leq i \leq N} |x_i^{(1)}|_p.$$

Moreover, the p-adic open subset $U \subset \mathbb{A}^N(\bar{k})$ is stable by f, i.e., for every \bar{k}-rational point $P \in U$, we have $f(P) \in U$.

Proof. First, let $u' \prod_{l=i}^{N} x_l^{t_l}$ be any nonzero monomial in f_i which is different from $u_i x_i^{d_{i,i}} \prod_{l=i+1}^{N} x_l^{e_{i,l}}$. We put $e_{i,i} := d_{i,i}$. Let j be the smallest index with $t_j \neq e_{i,j}$. Then
The above inequalities show that the following inequalities hold.

\[|u_i x_i^{d_{i,i}}|_p \cdot \prod_{l=i+1}^{N} |x_l^{e_{i,l}}|_p \geq |x_i^{d_{i,i}}|_p \cdot \prod_{l=i+1}^{j} |x_l^{e_{i,l}}|_p \]

because \(u_i \) is a \(p \)-adic unit

\[\geq \prod_{l=i}^{j-1} |x_l^{f_{l,i}}|_p \cdot |x_l^{f_{l,i+1}}|_p \]

choice of \(j \)

\[= \prod_{l=i}^{j} |x_l^{f_{l,i}}|_p \cdot |x_j^{(N-j)/(N-j)}|_p \]

\[> \prod_{l=i}^{j} |x_l^{f_{l,i}}|_p \cdot \prod_{l=j+1}^{N} |x_l^{C_{l,j}/(N-j)}|_p \]

the definition of \(U \)

\[> \prod_{l=i}^{N} |x_l^{f_{l,i}}|_p \]

\(C \) is sufficiently large.

The above inequalities show that the \(p \)-adic absolute value of \(u_i x_i^{d_{i,i}} \prod_{l=i+1}^{N} x_l^{e_{i,l}} \) is greater than the \(p \)-adic absolute values of the other monomials in \(f_i \). Hence we have \(|x_i^{(1)}|_p = |x_i^{d_{i,i}}|_p \prod_{l=i+1}^{N} |x_l^{e_{i,l}}|_p \).

Second, the following inequalities hold.

\[|x_i^{(1)}|_p = |x_i^{d_{i,i}}|_p \prod_{l=i+1}^{N} |x_l^{e_{i,l}}|_p \]

\[\geq |x_i^{d_{i,i}}|_p \]

\[= |x_i^{d_{i,i-1}} x_i|_p \]

\[> |x_{i+1}^{C(d_{i,i-1})} x_i^{(N-i-1)/(N-i-1)}|_p \]

\[\geq |x_{i+1}^{d_{i+1,i+1}}|_p \cdot \prod_{l=i+2}^{N} |x_l^{C_{l,j}/(N-j)}|_p \]

\(d_{i,i} - 1 \geq d_{i+1,i+1} \)

\[> |x_{i+1}^{(1)}|_p^C \]

\(C^2/(N-i-1) > C e_{i+1,i} \).

Hence we have \(f(P) = (x_1^{(1)}, x_2^{(1)}, \ldots, x_N^{(1)}) \in U \). Consequently, the subset \(U \subset \mathbb{A}^N(\overline{K}) \) is stable by \(f \), and \(|x_1^{(1)}|_p = \max_{1 \leq i \leq N} |x_i^{(1)}|_p \).

By the construction of \(U \), it is clear that the set \(U \setminus f(U) \subset \mathbb{A}^N(\overline{K}) \) is a non-empty \(p \)-adic open set.

Let us return to the proof of Theorem \[1.5\] in the first case. For each \(\overline{K} \)-rational point \(P \in U \), the following inequalities hold.

\[\hat{\eta}_{f,H}(P) = \liminf_{n \to \infty} \delta_{f^n H}(f^n(P)) \]

\[\geq \liminf_{n \to \infty} \max_{1 \leq i \leq N} \delta_{f^n}^{-n} \log |x_i^{(n)}|_p \]

\[\geq \liminf_{n \to \infty} \delta_{f}^{-n} \log |x_1^{d_{1,1}}|_p \]

\[= \liminf_{n \to \infty} d_{1,1} n \log |x_1^{d_{1,1}}|_p \]

because \(\delta_f = d_{1,1} \)
= \log |x_1|_p
> 0.

Applying Lemma 7.1, the proof of Theorem 1.5 in the first case is completed. \qed

7.4. **Proof of Theorem 1.5 in the second case.** Finally, we prove Theorem 1.5 in the second case, i.e., $N = 2$.

If $d_{1,1} > d_{2,2}$, this is the case $N = 2$ of the first case of Theorem 1.5.

If $d_{1,1} \leq d_{2,2}$, we take a finite place p such that all the coefficients of f_1 and f_2 are p-adic units, and define a p-adic open subset $U \subset \mathbb{A}^2(\kappa)$ by

$$U := \{(x, y) \in \mathbb{A}^2(\kappa) : |x_2|_p > 1\}.$$

It is easy to check the following assertions:

- $\delta_f = d_{2,2}$,
- U is stable by f,
- $U \setminus f(U)$ is a non-empty p-adic open set, and
- $|x_2^{(n)}|_p = |x_2|_{p^{d_{2,2}}}$

For every \mathbb{F}-rational point $P \in U$, the following inequalities hold.

$$\hat{h}_{f,H}(P) = \liminf_{n \to \infty} \delta_f^{-n} h_H^+(f^n(P))$$

$$\geq \liminf_{n \to \infty} \max_{i=1,2} \delta_f^{-n} \log |x_i^{(n)}|_p$$

$$\geq \liminf_{n \to \infty} \delta_f^{-n} \log |x_2^{(n)}|_p$$

$$\geq \liminf_{n \to \infty} d_{2,2}^{-n} \log |x_2|_{p^{d_{2,2}}}$$

$$= \log |x_2|_p$$

$$> 0.$$

Applying Lemma 7.1, the proof of Theorem 1.5 in the second case is complete. \qed

ACKNOWLEDGEMENTS

This paper is a revised version of the master’s thesis of the author. In writing this paper, Associate Professor Tetsushi Ito made a polite and delicate guidance for the author. The author would like to thank Professor Shu Kawaguchi at Doshisha University and Professor Serge Cantat at Université de Rennes for their advice on the definition and properties of dynamical degrees. It is very kind of them to assist the author to complete this paper.

REFERENCES

[1] Beauville, A., *Complex algebraic surfaces*, Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd Barron and M. Reid. Second edition. London Mathematical Society Student Texts, 34. Cambridge University Press, Cambridge, 1996.

[2] Beauville, A., *Endomorphisms of hypersurfaces and other manifolds*, Internat. Math. Res. Notices 2001, no. 1, 53-58.

[3] Brion, M., *On automorphisms and endomorphisms of projective varieties*, Automorphisms in birational and affine geometry, 59-81, Springer Proc. Math. Stat., 79, Springer, Cham, 2014.

[4] Chevalley, C., *Une démonstration d’un théorème sur les groupes algébriques*, J. Math. Pures Appl. (9) 39 (1960), 307-317.
[5] Dinh, T.-C., Nguyên, V.-A., Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv. 86 (2011), no. 4, 817-840.

[6] Dinh, T.-C., Sibony, N., Une borne supérieure de l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637-1644.

[7] Fujiki, A., On automorphism group of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225-258

[8] Fujimoto, Y., Endomorphisms of Smooth Projective 3-folds with nonnegative Kodaira dimension, Publ. RIMS, Kyoto Univ., 38 (2002), 33-92

[9] Fulton, W., Intersection theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.

[10] Guedj, V., Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), no. 3, 1589-1607.

[11] Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[12] Hasselblatt, B., Propp, J., Degree-growth of monomial maps, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1375-1397.

[13] Hindry, M., Silverman, J. H., Diophantine geometry. An introduction, Graduate Texts in Mathematics, No. 201. Springer-Verlag, New York, 2000.

[14] Horst, C., Compact varieties of surjective holomorphic endomorphisms, Math. Z. 190 (1985), no. 4, 499-504.

[15] Iitaka, S., Algebraic geometry. An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics, 76. North-Holland Mathematical Library, 24. Springer-Verlag, New York-Berlin, 1982.

[16] Kawaguchi, S., Silverman, J. H., Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), 5009-5035

[17] Kawaguchi, S., Silverman, J. H., Examples of dynamical degree equals arithmetic degree, Michigan Math. J. 63 (2014), no. 1, 41-63.

[18] Kawaguchi, S., Silverman, J. H., On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, to appear in J. Reine Angew. Math., preprint, 2013, http://arxiv.org/abs/1208.0815

[19] Matsumura, H., On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 34 (1963), 151-55.

[20] Matsumura, H., Oort, F., Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1-25

[21] Silverman, J. H., Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), no. 2, 647-678.

[22] Silverman, J. H., Arithmetic and dynamical degrees on abelian varieties, preprint, 2015, http://arxiv.org/abs/1501.04205

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
E-mail address: ksano@math.kyoto-u.ac.jp