Enzymatic and Electron Transfer Activities in Crystalline Protein Complexes*

(Received for publication, December 26, 1995, and in revised form, February 12, 1996)

Angelo Merlić, Ditlev E. Brodersen†, Barbara Morini‡, Zhi-wei Chen‡, Rosemary C. E. Durley§, F. Scott Mathews¶, Victor L. Davidson‖, and Gian Luigi Rossid

From the §Istituto di Scienze Biochimiche, Università di Parma, Parma, Italy, the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, and the Department of Biochemistry, the University of Mississippi Medical Center, Jackson, Mississippi 34216

Enzymatic and electron transfer activities have been studied by polarized absorption spectroscopy in single crystals of both binary and ternary complexes of methylamine dehydrogenase (MADH) with its redox partners. Within the crystals, MADH oxidizes methylamine, and the electrons are passed from the reduced tryptophan tryptophylquinone (TTQ) cofactor to the copper of amicyanin and to the heme of cytochrome c(551) via amicyanin. The equilibrium distribution of electrons among the cofactors, and the rate of heme reduction after reaction with substrate, are both dependent on pH. The presence of copper in the ternary complex is not absolutely required for electron transfer from TTQ to heme, but its presence greatly enhances the rate of electron flow to the heme.

Communication

Specific protein recognition is of the utmost importance for all biological systems both for regulation and for transfer of information, metabolites, and other components of living systems. For electron transfer, such recognition is needed for proper alignment of donor and acceptor molecules to achieve efficiency and to prevent energy loss through chance encounter leading to misdirected electron flow or abortive complex formation (1, 2). Several models for the interaction of protein partners have been developed, largely based on complementarity of surface charge or surface topology (3–5). However, direct observation of electron transfer complexes in the crystalline state between weakly associating partners has been reported in only three instances. These are a complex between cytochrome c and cytochrome c peroxidase (6), a complex between methylamine dehydrogenase (MADH)† and amicyanin (7), and a ternary complex between the latter complex and cytochrome c(551) (8). Although these complexes provide much detailed structural information about the interacting surfaces and arrangement of cofactors between and among the partners, and suggest potential pathways for electrons to flow during transfer, questions about their physiological relevance and catalytic competence do arise. To address these questions, we have undertaken a single crystal polarized absorption study of the reactivity of the MADH-amicyanin and MADH-amicyanin-cytochrome c(551) complexes in their crystalline states.

Polarized absorption microspectrophotometry can be a useful tool to probe the redox properties of proteins in the solid state. For example, earlier microspectrophotometric measurements showed that cytochrome c can diffuse into crystals of yeast flavocytochrome b2 (l-lactate:cytochrome-c oxidoreductase) to form a reversible and functionally competent complex (9). In the present study, spectra have been recorded of crystals of the MADH binary and ternary complexes prepared using either copper-containing amicyanin or copper-free apoamicyanin. The crystals of these homo- and apocomplexes are isomorphous (10, 11). This isomorphism is very advantageous for these microspectrophotometry studies since it provides an internal control, allowing studies of the reactions of MADH in these crystalline complexes with and without the possibility of electron transfer through the copper atom. Furthermore, the spectral components of the prosthetic groups in this system can be better resolved when compared in the presence and absence of copper. Thus, this method would be well suited to test whether the arrangements of electron transfer partners observed in the two types of crystal lattice are competent for electron transfer and do not represent merely favorable but accidental crystal contacts.

MADH catalyzes the oxidation of methylamine in the periplasm of many methylotrophic and autotrophic bacteria to form ammonia and formaldehyde concomitant with the two-electron reduction of its redox cofactor tryptophan tryptophylquinone (TTQ) (12). In the autotrophs, the electrons are subsequently passed to a type I copper protein, amicyanin, then to one or more c-type cytochromes and finally to a membrane-bound cytochrome oxidase. For Paracoccus denitrificans, cytochrome c(551) has been shown in vitro to accept electrons from a complex between MADH and amicyanin (13). The existence of this complex has been further demonstrated by chemical cross-linking and steady state kinetic analysis (14, 15). Rates of the electron transfer reactions between redox centers in the binary and ternary complex in solution have been measured by stopped-flow spectroscopy. The rate for heme reduction by Cu(I) in the ternary complex is 50–100 s(−1) at 30 °C (16). The rate for the reduction of copper by MADH in the binary complex is highly dependent on temperature, reaction conditions, and whether the substrate-derived amino group remains bound to reduced TTQ. Measured rates vary from 5 to several hundred per s (17–19).

MADH is an H2L2 heterotetramer with subunit molecular masses of 47 kDa and 15 kDa. The TTQ, located in the small subunit, is derived from two tryptophan side chains which are cross-linked and further modified to contain an orthoquinone function through a post-translational modification (20, 21). The*

†To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 600 S. Euclid Ave., Box 8231, St. Louis, MO 63110. Tel.: 314-362-1880; Fax: 314-362-7208; E-mail: mathews@fsmiris.wustl.edu.

‡The abbreviations used are: MADH, methylamine dehydrogenase; TTQ, tryptophan tryptophylquinone.

© 1996 by The American Society for Biochemistry and Molecular Biology, Inc.

THE JOURNAL OF BIOLOGICAL CHEMISTRY
Vol. 271, No. 16, Issue of April 19, pp. 9177–9180, 1996
Printed in U.S.A.
amicyanin has a molecular mass of 12.5 kDa and the cytochrome a molecular mass of 17.5 kDa. In the crystalline binary complex, one molecule of amicyanin is bound to each half of the MADH heterotetramer in an identical manner. In the crystalline ternary complex (Fig. 1a), the MADH and amicyanin are related in the same way as in the binary complex. The cytochrome binds to amicyanin at the hinge of the β-clamshell on the other side from the MADH binding site. The color scheme for the protein chains and cofactors is the same as in a. The copper and heme ligands are in light gray. Most of the interactions between MADH and amicyanin involve nonpolar groups, whereas the interactions between amicyanin and the cytochrome involve main chain hydrogen bonds and a greater number of polar side chains. Nonpolar groups or polar groups whose aliphatic portions are within an interface are shown in pink; polar residues which may be involved in salt bridges or hydrogen bonds are shown as red for acidic and blue for basic. This diagram was prepared using the molecular graphics program SETOR (32).

FIG. 1. a, stereo ribbon diagram of the ternary complex between MADH (half the heterotetramer), amicyanin, and cytochrome c551i. The MADH H and L subunits are shown in gray and green and amicyanin and cytochrome are shown in blue and yellow, respectively. The three cofactors, TTQ, copper, and heme, are drawn in black, and the copper and heme ligands are highlighted in light blue. The quinone oxygens of TTQ lie close to the center of the β-disk of the H subunit whereas the second tryptophan ring is exposed to the MADH surface close to the copper site of amicyanin. The cytochrome approach is made to the twisted β-strand, which is shared between the two β-sheets, of amicyanin and does not involve MADH. This diagram was prepared using the molecular graphics program SETOR (32). b, this stereoview focuses on the two interfaces, one between amicyanin and MADH and the other between amicyanin and the cytochrome. The color scheme for the protein chains and cofactors is the same as in a. The copper and heme ligands are in light gray. Most of the interactions between MADH and amicyanin involve nonpolar groups, whereas the interactions between amicyanin and the cytochrome involve main chain hydrogen bonds and a greater number of polar side chains. Nonpolar groups or polar groups whose aliphatic portions are within an interface are shown in pink; polar residues which may be involved in salt bridges or hydrogen bonds are shown as red for acidic and blue for basic. This diagram was prepared using the molecular graphics program SETOR (32).

amicyanin (Fig. 1b). The iron of the heme and the copper of amicyanin are separated by approximately 25 Å and the distance from the O-6 quinone of TTQ to the iron is approximately 40 Å.

EXPERIMENTAL PROCEDURES

Polarized Absorption Spectra—The methodology of polarized absorption spectroscopy of single crystals is well established (22–24). The spectra in this study were recorded using a Zeiss MPM800 microspectrophotometer. The crystals were placed in a flow cell with quartz windows. Tetragonal crystals of the binary complexes (space group P41212) (10) grew as rhomboidal sections of a bipyramid with the c axis as the longer diagonal of the observed (110) face. Absorption of the incident plane-polarized light was recorded with the beam directed normal to this face and the electric vector oriented parallel or perpendicular to the c axis; the absorption obeyed the Beer-Lambert law. Orthorhombic crystals of the ternary complex (space group C2221) (11) grew flattened on their (101) face with the b axis parallel to the long edge of the crystal. The spectral data were recorded with the electric vector parallel or perpendicular to the b axis, both being extinction directions. The isotropic spectrum of the tetragonal binary complex crystals was calculated as $A_{iso} = (A_1 + 2A_2)/3$ where A_1 and A_2 are the absorbances when the electric vector is parallel and perpendicular, respectively, to c. To compute the isotropic spectrum of the ternary complex would require that polarized spectra be measured in three
Activity in Crystalline Protein Crystal Complexes

Results and Discussion

Reduction of the Binary Complex—The polarized absorption spectra show that crystals of the apohorinary complex are reduced fully by methylamine and exhibit changes consistent with 2-electron reduction of TTQ as observed in solution (29) (Fig. 2). Minor variations can be attributed to differences in ionic strength, composition of the medium, and pH (30). Thus, the crystal lattice appears to have little effect on the electronic properties of TTQ in the enzyme, as would be expected. More importantly, the presence of apoamicyanin in complex with MADH also has only a minor effect on its spectrum. The polarization ratio \(A_1/A_2\) for MADH changes dramatically upon reduction of the oxidized TTQ cofactor. In the oxidized crystal, \(A_1\) is generally 2-fold larger than \(A_2\), while the reverse is true for the reduced crystal. This indicates that the direction of the transition dipole moment of TTQ changes when the enzyme is reduced as a result of changes in the electronic structure of TTQ and possibly of its orientation.

Addition of methylamine to crystals of the holobinary complex causes spectral changes indicating the formation of significant amounts of the semiquinone form of TTQ (Fig. 3). In these crystals, the semiquinone can only be formed by transfer of one electron from TTQ to the copper of amicyanin after the TTQ has first been reduced fully to the hydroquinone form by substrate. This demonstrates that MADH in the crystalline holobinary complex is competent both in catalysis and electron transfer. The amount of semiquinone formed is dependent upon pH. At pH 5.7, a large fraction of the TTQ remains reduced and a significant absorbance by Cu(II) can be observed, whereas at pH 9.0 the TTQ is mostly in the semiquinone form. Furthermore, after the reaction of the crystal with methylamine is complete, the ratio of semiquinone to reduced TTQ can be shifted reversibly by shifting the pH, suggesting that the difference between the redox potentials for the TTQ semiquinone/reduced couple and the Cu\(^{2+}/\)Cu\(^{3+}\) couple is pH-dependent.

The pH dependence of the electron distribution between TTQ and the copper in crystals of the binary complex may result from two factors. One is stabilization of the TTQ semiquinone at high pH. This has been demonstrated by solution studies involving titration of MADH with substoichiometric amounts of methylamine at low pH; redistribution of electrons between reduced and oxidized MADH to form semiquinone was found to occur at high pH (31). This stabilization could arise, for example, by dissociation of a proton from reduced TTQ but not from the semiquinone form at high pH. The other factor could be a pH dependence of the redox potential of amicyanin when it is complexed with MADH. It is known that the amicyanin redox potential drops by 73 mV when in complex with MADH (13). Reduced amicyanin in the crystalline state has been found to undergo a conformational change at low pH (below about pH 6) resulting from protonation of the exposed histidine ligand to copper with rotation of 180° about the C-H bond and movement away from the copper into solution. In the binary complex, such a histidine flip would move the imidazole

\[\text{H} \]
Activity in Crystalline Protein Crystal Complexes

Fig. 4. Polarized absorption spectrum of a single crystal (0.1 × 0.1 × 0.03 mm) of the ternary complex between MADH, amicyanin, and cytochrome c₅₅₃ recorded at pH 7.5. Spectra are recorded for the native complex (solid line) and at 13 min (dashed line) and 60 min (dotted line) after addition of 0.2 mM methylamine. For this spectrum, the electric vector of the polarized light is perpendicular to the crystallographic b axis. When the electric vector is aligned parallel to the b axis, the spectrum is weak and relatively featureless, consistent with the fact that the planes of the heme groups which contain the principal transition dipole moments are approximately perpendicular to the b axis ([1]). Since the native crystal was not pretreated with ferricyanide, it contains a small amount of reduced heme.

ring about 0.7 Å closer to MADH, according to a simple model building experiment, promoting disruption of the MADH-amicyanin interface. This would destabilize the reduced form of amicyanin in the complex and diminish its redox potential with respect to TTQ at lower pH.

Reduction of the Ternary Complex—Within the holoternary complex, heme reduction occurs when crystals are treated with methylamine at pH 7.5 (Fig. 4). The rate of heme reduction is dependent on pH. Even after several days, there had been little reduction of heme when substrate was added at pH 5.7. This is consistent with the observation that electron transfer from reduced TTQ to copper in the crystals of the binary complex can enhance, by some orders of magnitude, the rate of the electron transfer reaction from TTQ to heme. The results do not prove that the orientation of proteins in the crystallized complexes are exactly those which occur in vivo or that this is the only possible orientation for these proteins. The present studies do, however, clearly demonstrate that catalysis and long range electron transfer from TTQ to copper and from TTQ to heme via copper can and do occur in a predictable manner when the proteins are present in this orientation.

These studies show that the holobinary and the holoternary complexes are competent both for substrate oxidation and for electron transfer. The results do not prove that the orientation of proteins in the crystallized complexes are exactly those which occur in vivo or that this is the only possible orientation for these proteins. The present studies do, however, clearly demonstrate that catalysis and long range electron transfer from TTQ to copper and from TTQ to heme via copper can and do occur in a predictable manner when the proteins are present in this orientation.

REFERENCES
1. Canter, C. W., and van de Kamp, M. (1992) Curr. Opin. Struct. Biol. 2, 859–869
2. Eversen, J. W., and Karplus, M. (1993) Science 262, 1247–1249
3. Salenme, F. R. (1976) J. Mol. Biol. 102, 563–568
4. Weber, P. C., and Tolin, G. (1985) J. Biol. Chem. 260, 5588–5573
5. Ritzvai, V. A., Freeman, H. C., Olson, A. J., Tainer, A. J., and Getzoff, E. D. (1991) J. Biol. Chem. 266, 13431–13441
6. Pelletier, H., and Kraut, J. (1992) Science 258, 1748–1755
7. Chen, L., Durley, R., Poliks, B. J., Hamada, K., Chen, Z., Mathews, F. S., Davidson, V. L., Satow, Y., Huizinga, E., Vellieux, M. D., and Hol, W. G. J. (1992) Biochemistry 31, 4959–4964
8. Chen, L., Durley, R. E. C., Mathews, F. S., and Davidson, V. L. (1994) Science 264, 86–90
9. Tegoni, M., Mozzarelli, A., Rossi, G. L., and Labeysie, F. (1983) J. Biol. Chem. 258, 5424–5427
10. Chen, L., Lim, L. W., Mathews, F. S., Davidson, V. L., and Hussain, M. (1988) J. Biol. Chem. 263, 1137–1138
11. Chen, L., Mathews, F. S., Davidson, V. L., Tegoni, M., Rivetti, C., and Rossi, G. L. (1993) Protein Sci. 2, 147–154
12. Davidson, V. L. (ed) (1993) in Principles and Applications of Quinoproteins, pp. 73–95, Marcel Decker, Inc., New York
13. Gray, K. A., Davidson, V. L., and Knaff, D. B. (1988) J. Biol. Chem. 263, 13987–13990
14. Kumar, M. A., and Davidson, V. L. (1990) Biochemistry 29, 5299–5304
15. Davidson, V. L., and Jones, L. H. (1990) Anal. Chim. Acta 249, 235–240
16. Davidson, V. L., and Jones, L. H. (1995) J. Biol. Chem. 270, 28941–28943
17. Brooks, H. B., and Davidson, V. L. (1993) Biochem. J. 294, 211–213
18. Brooks, H. B., and Davidson, V. L. (1994) Biochemistry 33, 5696–5701
19. Bishop, G. R., and Davidson, V. L. (1993) 34th International Symposium on the Chemistry of Biological Systems, 147–154
20. Davidson, V. L. (ed) (1993) in Principles and Applications of Quinoproteins, pp. 73–95, Marcel Decker, Inc., New York
21. Gray, K. A., Davidson, V. L., and Knaff, D. B. (1988) J. Biol. Chem. 263, 13887–13890
22. Davidson, V. L., Jones, L. H., and Kumar, M. A. (1990) Biochemistry 29, 13431–13441
23. Rivetti, C., Mozzarelli, A., Rossi, G. L., Henry, E. R., and Eaton, W. A. (1993) Biochemistry 32, 2888–2906
24. Fulop, V., Phizackerley, R. P., Soltis, S. M., Clifton, I. J., Wakatsuki, S., Ermann, J., Hajdu, J., and Edwards, S. L. (1994) FEBS Lett. 327, 163–169
25. Rossi, G. L., Mozzarelli, A., Peracchi, A., and Rivetti, C. (1992) Philos. Trans. R. Soc. Lond. A Math. Phys. Sci. 340, 191–207
26. Rivetti, C., Mozzarelli, A., Rossi, G. L., Henry, E. R., and Eaton, W. A. (1993) Biochemistry 32, 2888–2906
27. Husain, M., and Davidson, V. L. (1995) J. Biol. Chem. 260, 14626–14629
28. Husain, M., and Davidson, V. L. (1996) J. Biol. Chem. 271, 8977–8980
29. Husain, M., and Davidson, V. L. (1987) J. Bacteriol. 169, 1712–1717
30. Husain, M., and Davidson, V. L., Gray, K. A., and Knaff, D. B. (1987) Biochemistry 26, 1439–1443
31. Kuusk, V., and McDnire, W. S. (1994) J. Biol. Chem. 269, 26316–26343
32. Davidson, V. L., Jones, L. H., and Kumar, M. A. (1990) Biochemistry 29, 10786–10791
33. Evans, S. V. (1993) J. Mol. Graphics 11, 134–138
Enzymatic and Electron Transfer Activities in Crystalline Protein Complexes
Angelo Merli, Ditlev E. Brodersen, Barbara Morini, Zhi-wei Chen, Rosemary C. E. Durley, F. Scott Mathews, Victor L. Davidson and Gian Luigi Rossi

J. Biol. Chem. 1996, 271:9177-9180.
doi: 10.1074/jbc.271.16.9177

Access the most updated version of this article at http://www.jbc.org/content/271/16/9177

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 31 references, 15 of which can be accessed free at http://www.jbc.org/content/271/16/9177.full.html#ref-list-1