Spot Welded Tensile Properties in Automobile Ultrahigh Strength TRIP-aided Martensitic Steel Sheet

Akihiko Nagasaka1)*, Tomohiko Hojo2), Katsuya Aoki3), Hirofumi Koyama1) and Akihiro Shimizu3)

1) Department of Mechanical Engineering, National Institute of Technology (KOSEN), Nagano College
2) Institute for Materials Research, Tohoku University
3) Advanced Course of Production and Environment System, National Institute of Technology (KOSEN), Nagano College

Abstract: Effect of heat-affected zone (HAZ) softening on tensile strength (TS) and total elongation (TEl) of spot welded ultrahigh strength TRIP-aided martensitic (TM) steel sheet was investigated for automobile applications. Tensile test was performed on an Instron type tensile testing machine at a crosshead speed of 3 mm/min (strain rate of 8.3×10⁻⁴ s⁻¹), using spot welded specimen. The results are as follows.
(1) The spot welded specimen at the current value (I) of 6.5 kA for the TM steel with the maximum stress (TS*) of 1450 MPa and the fracture elongation (TEl*) of 7.0% was superior to that of hot stamping steel (the HS1 steel), and it was found that the TS* and the TEl* for the TM steel possessed those of base metal specimen for the HS1 steel with the tensile strength (TS) of 1469 MPa and the total elongation (TEl) of 7.7%.
(2) The TRIP effect for the TM steel with an excellent strength-ductility balance (TS×TEl) of 14.4 GPa% (i.e. the tensile strength (TS) of 1532 MPa and the total elongation (TEl) of 9.4%) suppressed HAZ softening and was able to express a high maximum stress (TS*) of 1450 MPa for the TM steel of the spot welded specimen.

Keywords: spot weldability; hot stamping; tensile strength; TRIP; acoustic emission.

Received on Nov. 9, 2019 ; Accepted on Feb. 20, 2020

* Corresponding author. E-mail : nagasaka@nagano-nct.ac.jp, Address : National Institute of Technology (KOSEN), Nagano College, 716 Tokuma Nagano Nagano 381-8550

Copyright © 2020 The Iron and Steel Institute of Japan
自動車用超高強度TRIP型マルテンサイト鋼板のスポット溶接引張特性

長坂 明彦1)・北條 智彦2)・青木 克弥3)・小山 景史1)・清水 空博1)

Spot Welded Tensile Properties in Automobile Ultrahigh Strength TRIP-aided Martensitic Steel Sheet

Akihiko NAGASAKA, Tomohiko HOO, Katsuya AKI, Hirofumi KONYAMA and Akihiro SHIMZU

1．緒言

近年、軽量化ならびに衝突安全性の向上を目指して自動車用鋼板の超高強度化が進められている。しかしながら、Bパターンおよびバンパープーリー等で1470 MPa以上の強度を実現するためにホットスタンプ（hot stamped：HS）鋼板が使われている1)。一方、衝突安全性およびプレス成形性等を考慮した場合、自動車用プレーム部材には残留オーステナイトγの変態誘起塑性（TRIP）2)を利用した低合金TRIP鋼板の適用が期待される3)。HS鋼板や低合金TRIP鋼板が自動車用衝突安全部材として組み込まれる場合、ほとんどの場合、部材同士はスポット溶接によって組み立てられる。そのため、高強度鋼板のスポット溶接性を明らかにすることが重要となり1180 MPa級相当のTRIP鋼板の研究は報告されているが、1470 MPa級の超高強度TRIP鋼板のスポット溶接性に関する研究は十分に行われてこない2)-4)。たとえば、高張力鋼板スポット溶接維手の面外引張試験での最大応力（強度）と破断伸びに及ぼす熱影響部（HAZ）での欠け形状の硬さ分布の低下が及ぼす軟化現象（HAZ軟化）の影響について、スポット溶接側と鋼板側の影響因子について検証している5)。HAZ軟化による溶接維手の機械的性質への影響は、JIS規格に基づくスポット溶接維手の評価法である引張せん断試験TSSや十字引張試験CTSでは問題とならないとされている6)。他方、自動車の側面衝突評価ではセンターパーラーのフランジはスポット溶接部を有する鋼板が鋼板面内で引張りを受ける变形モードに近いモードになることがあるため、破壊はフランジのスポット溶接部のHAZ軟化部を起点とするリスクがある7)。また、CTS試験を含む圧縮観察や引き裂発生、破壊荷重を示す実験を通じて、スポット溶接部の破壊挙動について数値解析を用いて解明している1)。

そこで、本研究では超高強度鋼板のホットスタンプ成形後の変形能（延性や靭性）を改善するため、TRIP型マルテンサイト鋼（TM鋼）3)等の溶接維手の引張強度特性を明らかにする目的として、スポット溶接したTM鋼板の引張特性を調査した。

2．実験方法

Table 1に供試鋼の化学組成を示す。供試鋼にはSi添加量の異なる化学組成を有する冷延鋼板（t = 1.4 mm）を用いた（Table 1）。供試鋼は相圧延（板厚t = 60 → t = 30 mm）、仕上げ圧延（t = 30 → t = 4 mm）、酸洗後冷間圧延（t = 4 → t = 1.4 mm）を施したTM鋼である。TM鋼は、900℃、1200 sのオーステナイト化後、250℃、200 sの等温変態処理を施した。比較として、900℃、240 s加熱、合金保持15 sのダイクエチニとした鋼とその後、700℃、1 hr空冷の焼戻しを施した2種類の鋼板を作製した。以後、ダイクエチニままでのホットスタイプ材をHS1鋼、HS1鋼に焼戻しを施した材をHS7鋼と呼ぶ。

Fig.1にスポット溶接引張試験片を示す8)。引張試験片の平行部の中央にタブ材をスポット溶接し、スポット溶接試験片を作製した。Table 2にスポット溶接条件を示す。スポット溶接試験には、固定式直流インバータスポット溶接機（ダイヘン、SLAI 65-601（S-I））を用いた。電極には

steel	C	Si	Mn	Ti	Cr	B
TM	0.22	1.51	1.51	0.020	0.21	0.003
HS1, HS7	0.22	–	1.21	0.038	0.25	0.004

2019年11月9日受理 2020年2月20日受理（Received on Nov. 9, 2019; Accepted on Feb. 20, 2020）

1) 長野工業高等専門学校機械工学科（Department of Mechanical Engineering, National Institute of Technology (KOSEN), Nagano College）
2) 東北大学金属材料研究所（Institute for Materials Research, Tohoku University）
3) 長野工業高等専門学校金属工学科材産システム教育センター（Advanced Course of Production and Environment System, National Institute of Technology (KOSEN), Nagano College）

* Corresponding author. E-mail: nagasaka@nagano-nct.ac.jp, Address: National Institute of Technology (KOSEN), Nagano College, 716 Tokuma Nagano Nagano 381-8550

https://doi.org/10.2355/tetsutohagane.TETSU-2019-112
DR16×60, 40RのCu-Cr合金を用い、加圧力3.0 kN, 通電時間333 ms, 溶接電流7は6.5 kAまたは9.5 kAで行った。

ミクロ組織観察には、SEM-EBSDを用いて行った。残留オーステナイトの体積率f_{\gamma}(vol%)はCu-Kα線によって測定された(200)_{h}, (211)_{h}, (200)_{p}, (220)_{p}, (311), 回折ピークの積分強度により測定した^{(12)}。また、残留オーステナイト中の炭素濃度C_{s}(mass%)はCu-Kα線によって測定した(200)_{p}, (220)_{p}, および(311), 回折ピーク角度から求めた格子定数の平均値a_{0}(×10^{-10} m)を次式^{(13)}に代入して求めた。

\[a_{0} = 3.5780 + 0.0330C_{S} + 0.00095Mn_{p} + 0.0056Al_{p} + 0.0220N_{p} \]

(1)

ここで、Mn_{p}, Al_{p}およびN_{p}はオーステナイトγ中の元素濃度(mass%)を表す。本研究では便宜上、それぞれの合金元素の添加量を用いた。

引張試験には、母材引張試験片（板幅: 20 mm, 平行部の長さ: 60 mm, 標点間距離: 50 mm）およびスポット溶接引張試験片（溶接試験片、タブ部: 20×20×1.4 mm^{3})を用い、インストロン型引張試験機によりクロスヘッド速度3 mm/min（ひずみ速度8.3×10^{-5}s^{-1})で行った（Fig.1）。

ビッカース硬さ試験には、ダイナミック微小硬さ計（荷重98.1 mN, 保持時間5 s）により、鋼板の真ん中面からx=0.35 mm鋼板内側の位置にて、鋼板表面にx=0.1 mm間隔に平行方向の硬さを測定した。

アコースティック・エミッション（AE）測定には、AEセンサー（動作周波数範囲: 100～1000 kHz, 広帯域差動圧電変換器WD: 直径18 mm, しきい値: 30 dB）^{(14)}により、0.8 s間隔でAE波を測定した。

Fig. 1. Geometry of spot welded test specimen.

Table 2. Condition of spot welding.

Electrode cap	Electrode force	Welding time	Welding current
Cu-Cr DR	3.0 kN	333 ms	6.5 kA
16×60, 40R	(0.25 MPa)	(20 cycles/60 Hz)	9.5 kA

3. 実験結果および考察

3.1 組織と機械的特性

Fig.2に供試鋼のミクロ組織SEM写真を示す。Fig.2 (a)はTM鋼、Fig.2 (b)はHS1鋼およびFig.2 (c)はHS7鋼のミクロ組織である。3%硝酸エタノール溶液腐食により、TM鋼はマルテンサイトと残留オーステナイト（γの体積率f_{γ}=1.52 vol%、γ中の炭素濃度C_{s}=0.79 mass%）、HS1鋼はマルテンサイト、HS7鋼は粒界マルテンサイトの組織からそれぞれなる。

Table 3 に供試鋼の母材試験片の機械的特性および炭素当量C_{eq}を示す^{(15)}。ここで、炭素当量C_{eq}は次式より求め、

\[C_{eq} = [C] + \frac{\left| [Si] \right|}{24} + \frac{\left| [Mn] \right|}{6} + \frac{\left| [Cr] \right|}{5} \]

(2)

Fig.3にTM鋼、HS1鋼およびHS7鋼の母材試験片の公称応力σ−ひずみε線図を示す。また、Fig.4にTM鋼、Fig.5にHS1鋼、Fig.6にHS7鋼の母材および溶接試験片のσ−ε線図を示す。また、Table 4に供試鋼の溶接試験片の機械的特性を示す。さらに、Fig.7にTM鋼の破断後のスポット溶接試験片を示す（I=6.5 kA）。ここで、母材試験片の引張強さTSと全伸びTEI, 溶接試験片の引張強さ（最大応力）TS^{*}と溶接試験片の全伸び（破断伸び）TEI^{*}より、引張強さの差ΔTSをΔTS=TS^{*}−TS, 全伸びの差ΔTEIをΔTEI=TEI^{*}−TEIとそれぞれ定義した（Table 3, Table 4）。各鋼の母材の引張特性は、TM鋼、HS1鋼で1470 MPa級の引張強さを有する。

Table 3. Mechanical properties of steel sheets used.

steel	YS (MPa)	TS (MPa)	UEl (%)	TEI (%)	TS^{*}+TEI^{*} (GPa%)	ΔTS	ΔTEI (%)
TM	1180	1532	5.6	9.4	14.4	0.58	
HS1	1095	1469	6.5	7.7	11.3	0.47	
HS7	521	559	13.7	22.4	12.5	0.47	

YS: yield stress or 0.2% offset proof stress, TS: tensile strength, UEl: uniform elongation, TEI: total elongation, TS^{*}+TEI^{*}: strength-ductility balance and C_{eq}: carbon equivalent.

Table 4. Mechanical properties of spot welded test specimen.

spot welded test specimen	I (kA)	TS^{*} (MPa)	TEI^{*} (%)	TS^{*}+TEI^{*} (GPa%)	ΔTS	ΔTEI (%)
TM	6.5	1450	7.0	10.2	-82	-2.4
	9.5	1430	7.0	10.0	-102	-2.4
HS1	6.5	1388	6.2	8.6	-81	-1.5
	9.5	1326	5.1	6.8	-143	-2.6
HS7	6.5	557	21.7	12.1	-2	-0.7
	9.5	549	21.6	11.9	-10	-0.8

I: welding current, TS^{*}: tensile strength of spot welded test specimen, TEI^{*}: total elongation of spot welded test specimen, TS^{*}+TEI^{*}: strength-ductility balance of spot welded test specimen, ΔTS: tensile strength difference (ΔTS=TS^{*}−TS) and ΔTEI: total elongation difference (ΔTEI=TEI^{*}−TEI).
Fig. 2. Scanning electron micrographs of (a) TM, (b) HS1 and (c) HS7 steels. (Online version in color.)

Fig. 3. Stress (σ)-strain (ε) curves for TM, HS1 and HS7 base metal test specimens.

Fig. 4. Stress (σ)-strain (ε) curves for TM steel of base metal and spot welded test specimens.

Fig. 5. Stress (σ)-strain (ε) curves for HS1 steel of base metal and spot welded test specimens.

Fig. 6. Stress (σ)-strain (ε) curves for HS7 steel of base metal and spot welded test specimens.
し、HS7鋼は590 MPa級の引張強さとなった。一方、HS7鋼はTM鋼、HS1鋼よりも大きな全伸びを有した。また、TM鋼はHS1鋼と同レベルの引張強さを有するにもかかわらず、HS1鋼よりも大きな全伸びを有した。TM鋼およびHS1鋼において、溶接試験片（I = 6.5 kA、9.5 kA）は母材試験片と比較して、引張強さと全伸びはそれぞれ低下した（Table 3、Table 4、Fig.4、Fig.5）。(TM鋼およびHS1鋼の溶接試験片はスポット溶接部外周で破断した（Fig.7）。一方、HS7鋼において、溶接試験片は母材試験片と比較して、TS*は変化しなかったが、TEI*はわずかに低下し、母材部破断した（Table 4）。このことから、TM鋼の溶接試験片（I = 6.5 kA）の最大応力TS* = 1450 MPaおよび破断伸びTEI* = 7.0%は、HS1鋼の破断伸びと比較して優れており、HS1鋼の母材強度（TS = 1469 MPa）レベルを有することがわかる（Table 3、Table 4）。また、TM鋼の溶接試験片の強度、延性バランスTS*×TEI*はHS1鋼のそれと比較して優れている。

3.2 引張強度特性に及ぼすスポット溶接部の硬さ分布の影響

Fig.8にTM鋼のスポット溶接部断面（I = 9.5 kA）を示す。また、Fig.9にTM鋼（I = 6.5 kA、9.5 kA）、Fig.10にHS1鋼（I = 6.5 kA、9.5 kA）およびFig.11にHS7鋼（I = 6.5 kA、9.5 kA）の溶接部断面のビッカース硬さHV分布をそれぞれ示す。スポット溶接部断面は、母材部、HAZおよび溶接部から構成される。TM鋼（I = 6.5 kA）の溶接試験片は、適切なナゲット径dとされる4√τ = 4.73 mmから5√τ = 5.91 mmの間のd = 5.60 mmであった。一方、I = 9.5 kAのナゲット径はd = 6.57 mmと5√τ以上と適正値を逸脱した。

Fig.12 (a, d) にTM鋼（I = 6.5 kA）の母材部、Fig.12 (b, e) にHAZ部およびFig.12 (c, f) に溶接部断面のEBSD解析結果（IPFマップおよび相分布マップ）をそれぞれ示す。母材部はマルテンサイト母相（青色）と微細な残留オーステナ

Fig. 8. Cross-sectional image of spot welded TM steel (I=9.5 kA). (Online version in color.)

Fig. 9. Vickers hardness (HV) distribution for TM steel ((a) I=6.5 kA, (b) I=9.5 kA).
Fig. 10. Vickers hardness (HV) distribution for HS1 steel ((a) $I=6.5$ kA, (b) $I=9.5$ kA).

Fig. 11. Vickers hardness (HV) distribution for HS7 steel ((a) $I=6.5$ kA, (b) $I=9.5$ kA).

Fig. 12. (a, b and c) Inverse pole figure maps and (d, e and f) phase maps of bcc and fcc in (a and d) base metal, (b and e) heat affected zone and (c and f) fusion zone for TM steel. Red and blue portions in phase maps represent retained austenite and martensite, respectively.
Fig. 13. Variation of stress (σ) and RMS voltage with time (T) in spot welded specimen of TM steel, in which (a) is from 0 to 140 s and (b) is from 125 to 135 s. ($I=6.5$ kA). (Online version in color.)

Fig. 14. Variation of stress (σ) and RMS voltage with time (T) in base metal specimen of TM steel. (Online version in color.)

Fig. 15. Scanning electron micrographs of fractograph in TM steel ($I=6.5$ kA). ((a) overview, (b) magnification of point A in (a), (c) magnification of point B in (a), (d) magnification of point C in (a)) (Online version in color.)
6.5 kA，Fig.16にTM鋼の溶接試験片（I = 9.5 kA）およびFig.17にHS1鋼の溶接試験片（I = 9.5 kA）の破面観察をそれぞれ示す。

Fig.13において，溶接試験片は時間T = 127.2 sおよび129.6 sで，RMS値のAE波が2回検出される。TM鋼の最高荷重点の直前に，T = 127.2 sで溶接のHAZ部でき裂が発生し，その後，T = 129.6 sでき裂は引張方向に約45°方向に進展するとともに，応力がさらに低下し破断したときにAE信号を検出したため，2回のAE信号を検出したと考えられた。ここで，スポット溶接外周の平均き裂進展速度は2.03 mm/sと推定できる。また，AE発生率はRMS値の大きさから，2回目のT = 129.6 sの方がT = 127.2 sと比較して相対的に高いことがわかる。すなわち，AE波により，TM鋼のスポット溶接のき裂発生・進展の破壊挙動を裏付けることができ，1回目のAE信号はHAZ部でのき裂の発生を，2回目の大きなAE信号は最終破断に起因するき裂の進展を検出したと考えられた。一方，母材試験片のRMS値のAE波は，破断時の1回である（Fig.14）。母材試験片で検出されたAE信号は，最終破断時に検出されたき裂の発生，進展に起因したものであると考えられる。HS1鋼およびHS7鋼も同様な信号であった。以上のことから，スポット溶接試験片はHAZ部でのき裂発生過程が存在することによって，母材試験片よりも破断伸びが低下したと考えられる。

Fig.16からFig.11の各鋼のスポット溶接部の硬さ分布より，TM鋼の母材は，500 HV～600 HV，HS1鋼の母材は400 HV～500 HVを有し，溶融部の硬さも母材の硬さとほとんど変わらなかった。また，TM鋼，HS1鋼ともHAZ部の硬さは母材よりも低下したが，TM鋼のHAZ部の硬さ低下量はHS1鋼のHAZ部の硬さの低下量ほど大きくなかった。一方，HS7鋼では，母材の硬さは200 HV程度であったが，スポット溶接の溶融部およびHAZ部の硬さは約500 HVまで上昇し，母材と比較してかなり高くなった。

TM鋼およびHS1鋼は，HAZ部の硬さが母材および溶融部と比較して低下したことにより，このHAZ部が切欠きと同様の効果を示し，HAZ部でき裂が発生したため，母材試験片と比較して破断伸びが低下したと考えられた。一方，HS7鋼の母材部硬さは200 HV，溶融部の硬さが500 HVであることから，HAZ部が切欠きとして作用せず，溶融部やHAZ部ではなく母材破断したため，破断伸びの大きな低下は抑制されたと考えられる。また，TM鋼は優れた強度・延性バランスTS×TEI = 14.4 GPa% （TS = 1532 MPa，TEI = 96.5 MPa%）を有している。
TM鋼において、スポット溶接のHAZ軟化は抑制されないが、引張試験中の残留オーステライトγのTRIP効果によってHAZ軟化した部分を強化してHAZ部でのき裂の発生を遅らせため、TS* = 1450 MPaの高溶接試験片の最大応力を発現したと考えられる（Table 3, Table 4）。

また、Fig.8よりTM鋼のI = 6.5 kA（ナゲット径：d = 5.60 mm、コラボ幅：c = 0.56 mm）に比べ、I = 9.5 kAはd = 6.57 mm、c = 0.65 mmと5%を超え、溶接部が大きくなることで、HAZ軟化の影響を受けやすくなり、最大応力TS*と破壊伸びTEI*がそれぞれ低下することに至ったと考えられる（Table 4）。TM鋼とHS1鋼の硬さ分布は、電流値の大小に関わらず類似していることがわかる。

I = 9.5 kAになることでHAZ軟化部が外周にシフトした。これは、ナゲット径の大きさに依存している。

TM鋼（I = 6.5 kA）では、板厚をw = 20 mm、き裂長さを2a = 1.62 mm、き裂先端からの距離r = 9.19 mm、き裂が進展する最小限度の応力σc = 1450 MPa、降伏応力σv = 1180 MPaとすると、モードIの応力拡大係数はKc = 2313 Nmm^{-1/2}、き裂近傍の応力σa = 304 MPa、き裂先端の塑性域r = 0.73 mmとなる[8]。HS1鋼（I = 6.5 kA）では、き裂が進展する最小限度の応力σc = 1388 MPa、降伏応力σv = 1095 MPaとすると応力拡大係数はKc = 2214 Nmm^{-1/2}、き裂近傍の応力σa = 291 MPa、き裂先端の塑性域r = 0.65 mmとなる。このことより、き裂近傍の応力σaはTM鋼の方が相対的に高くなるが、き裂先端の塑性域rは小さくなる（Table 3）。

Fig.15からFig.17に、スポット溶接部の破面観察を示す。ここでFig.15のTM鋼（I = 6.5 kA）、Fig.16のTM鋼（I = 9.5 kA）およびFig.17のHS1鋼（I = 9.5 kA）は、それぞれ（a）全体、（b）き裂発生部A、（c）き裂進展部B、（d）破断部Cを示す。TM鋼は、はく離による破面き裂を認められる（Fig.15（b）、Fig.16（b））、HS1鋼はディンプルが確認される（Fig.17（b））。TM鋼は、き裂進展部も同様なフラクトグラフィを呈する（Fig.15（c）、Fig.16（c））、HS1鋼ではディンプルが確認される（Fig.17（c））。破断部は、それぞれディンプルからなる延性破壊が支配的となることから、软化と強度およびき裂の進展などを対応づけることができたと考えられる（Fig.15（d）、Fig.16（d）、Fig.17（d））。

4. 結言

超高強度TRIP型マルテンサイト鋼（TM鋼）板のスポット溶接特性を調査した。主な結果は以下の通りである。
(1) TRIP型マルテンサイト鋼 (TM鋼) のスポット溶接引張試験片（電流値I＝6.5 kA）の最大応力TS*＝1450 MPaおよび破断伸びTEI*＝7.0%は、ホットスタンプ鋼 (HS1鋼) のそれと比較して優れ、HS1鋼の母材強度 (母材引張試験片の引張強さTS＝1469 MPa、全伸びTEI＝7.7%) レベルを有することがわかった。

(2) TM鋼の優れた強度・延性バランスTS×TEI＝14.4 GPa% (TS＝1532 MPa、TEI＝9.4%) を有するTRIP効果は、スポット溶接のHAZ軟化を抑制し、TS*＝1450 MPaの高い溶接試験片の最大応力を発現できた。

(3) AE波により、TM鋼のスポット溶接のき裂発生・進展の破壊挙動を観察することができた。

謝辞

最後に、本研究の一部は公益財団法人天田財団および公益財団法人スズキ財団によって行われた。ここに、深謝いたします。また、本研究に際しご協力をいただきました（株）神戸製鋼所・自動車ソリューションセンターの内藤純也氏、長野工業高等専門学校の北原悠氏、保科龍哉氏、小野晴之氏、宮澤優仁氏、塩崎晃之朗氏、岡崎司氏、古谷星悟氏、三井孔佑氏、三尾敦氏、加藤正幸氏および佐藤孝幸氏にお礼申し上げます。

文献

1) T.Okada, K.Hamada, H.Fujimoto, H.Ueda, M.Yasuyama and M.Uchihara: J. Jpn. Soc. Weld. Soc. Meet., 91(2012), 295 (in Japanese).

2) V.F.Zackay, E.R.Parker, D.Fahr and R.Busch: Trans. Am. Soc. Met., 60(1967), 252.

3) K.Okita, J.Naito, T.Murakami and S.Ikeda: Proc. 4th Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel (CHS), Verlag Wissenschaftliche Scripten, Auerbach, (2013), 137.

4) D.V.Pham, J.Kobayashi and K.Sugimoto: Tetsu-to-Hagané, 99(2013), 659 (in Japanese).

5) H.Wu, B.Zhao, H.Gao, Z.Zhao and C.Liu: Appl. Mech. Mater., 789-790(2015), 15.

6) S.S.Nayak, V.H.Baltazar Hernandez, Y.Okita and Y.Zhou: Mater. Sci. Eng. A., 551(2016), 73.

7) H.E.Emre and R.Kaçar: Metals, 12(2016), 299.

8) H.Fujimoto, K.Hamada, T.Okada and M.Uchihara: Q. J. Jpn. Soc. Weld. Soc., 34(2016), 285 (in Japanese).

9) Y.Oki, R.Ikeda and S.Endo: J. Jpn. Soc. Weld. Soc. Meet., 89(2011), 36 (in Japanese).

10) M.Fermer, R.Johansson, P.Nystron and O.Hederegard: Proc. Material in Car Body Engineering, Vincentz, Hannover, (2012), 1.

11) T.Sadasue, S.Igi and K.Taniguchi: JFE Tech. Rep., 34(2014), 14 (in Japanese).

12) H.Maruyama: J. Jpn. Soc. Heat. Treat., 17(1977), 198 (in Japanese).

13) D.J.Dyson and B.Holmes: J. Iron Steel Inst., 208(1970), 469.

14) M.Mukherjee, O.N.Mohanty, S.Hashimoto, T.Hojo and K.Sugimoto: ISIJ Int., 46(2006), 1241.

15) K.Momma: Daigaku Kiso Kikai Zairyo SI Tan'i Ban (SI Basic Unit for University Basic Mechanical Materials), Jikkyo Shuppan, Tokyo, (1993), 71 (in Japanese).

16) K.Kuroki, M.Omori and Y.Tomota: Kinzoku no Kyodo to Hakai, Dai 2 Han [POD Ban] (Strength and Fracture of Metals, 2nd ed. [POD Version], Morikita Shuppan, Tokyo, (2009), 18 (in Japanese).