Efficient reduction of four-loop massless propagators

T Ueda\textsuperscript{1}, B Ruijl\textsuperscript{1,2} and J A M Vermaseren\textsuperscript{1}

\textsuperscript{1} Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands
\textsuperscript{2} Leiden Centre of Data Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

E-mail: tueda@nikhef.nl, benrl@nikhef.nl, t68@nikhef.nl

Abstract. In the light of precision measurements at the LHC experiments, theory predictions including higher-order corrections have become more important. We have developed a program \texttt{Forcer} dedicated to analytical evaluation of four-loop massless propagator-type Feynman integrals via parametric integration-by-parts reduction. Some recent physics results obtained by \texttt{Forcer} are discussed.

1. Introduction

In the last decade, much effort has been made on accurate theory predictions to meet requirements from precision experiments. Especially, precise QCD predictions are crucial for experiments at hadron colliders due to the strong interactions, hence theory calculations for higher-order radiative corrections in perturbative theory are mandatory to analyze a large amount of data from detectors.

A notoriously well-known example that slowly converges and hence requires higher-order calculations is the Higgs production cross section in the gluon-fusion channel $gg \rightarrow H$, which is the dominant channel in hadron colliders. In this channel, the next-leading order corrections in the strong coupling give a large contribution comparable to that from the leading order, thus in practice one has to use the next-to-next-to-leading order (NNLO) prediction for any phenomenological studies. Recently, a more precise result for the total cross section including the next-to-next-to-next-to-leading order ($N^3$LO) corrections in the heavy top-quark mass limit became available \cite{1}, which reduced the total uncertainty down to less than 10\% for the LHC at 13 TeV.

One of the remaining sources of theory uncertainty for the total Higgs production cross section originates from the fact that parton distribution functions are extracted from experimental data via NNLO analysis while the partonic cross section is obtained up to the $N^3$LO. In order to improve this situation, one must know four-loop splitting functions, however, a direct computation of them sounds too challenging at present. A more promising approach in the near-to-mid term is to compute low-integer Mellin $N$-th moments of the splitting functions and estimate them via, e.g., Padé approximant. Indeed, such estimations were performed at the three-loop level [2, 3, 4] before the full $N$-dependence was computed [5, 6]. At the four-loop level, until recently, these computations had been done only up to $N = 4$ [7, 8, 9, 10].
Once $N$ is fixed to an integer, such an $N$-th moment calculation reduces to evaluation of massless propagator-type Feynman integrals. Master integrals in this class of integrals are known at the four-loop level [11, 12]. The main obstacle for computing moments for higher $N$ is, however, the reduction to the master integrals via integration-by-parts (IBP) identities [13, 14] within dimensional regularization [15, 16]. Although there are several generic IBP reduction methods available on the market — for example, Laporta’s algorithm [17] (see [18, 19, 20, 21, 22, 23] for public implementations), Baikov’s method [24, 25] and Lee’s heuristic approach [26, 27] — it is still a tough problem to perform reductions needed for higher moments in a reasonable amount of computational time.

On the other hand, up to the three-loop level, it is known that many massless propagator-type integrals can be reduced into simpler ones by using the so-called triangle rule [13, 14, 28] constructed from the IBP identities and by performing one-loop massless integrations with $G$-functions [29, 14]. There are only two topologies that require manually solved IBP reduction rules [14]. In this way, the IBP reduction need not be performed when one arrives at integrals that can be expressed in terms of the gamma function. This approach was implemented in the Mincer program [30] written in SCHOONSCHIP [31] and later reprogrammed [32] in FORM [33, 34], which is highly efficient and has been used for many calculations including very high moments (e.g., [35, 36]).

The successful experience at the three-loop level suggests that if one could extend the Mincer program to the four-loop level then it might be more efficient than general IBP solvers for massless propagator-type integrals. This is a natural expectation because usually an algorithm with domain-specific knowledge has a better performance than a generic algorithm. This work aims to develop a new FORM package Forcer [37, 38, 39], which is, in a word, an extension of Mincer to the four-loop level, and push the limit of our capability for this class of integrals. Due to a high complexity of the program at the four-loop level, code generation must be as much automatized as possible. Forcer allows us to compute more high $N$ moments of four-loop splitting functions and can be useful for other calculations (see [10] for a recent review on physics related to massless propagators).

2. Reduction of each topology by its substructure

Families of scalar Feynman integrals can be classified by their denominator structure or topologies of corresponding Feynman diagrams. In our case, all (squared) propagators appearing in the denominator are massless. Figure 1 shows example topologies at the four-loop level. Generic (top-level) topologies, consisting of three-point vertices, at this level have 11 internal lines. There are also 3 irreducible numerators, which cannot be expressed in terms of propagators, and hence they are characterized by 14 parameters (called as indices).

As seen in the Mincer approach, some substructures found in topologies lead to reduction rules of integrals belonging to a topology into ones in simpler topologies.

\[\text{(a) ladder} \quad \text{(b) non-planar (no1)}\]

**Figure 1.** Two topologies out of 11 top-level topologies at the four-loop level.
2.1. One-loop insertion integral
When a topology contains a massless one-loop insertion graph (figure 2a) as its substructure, one can integrate out the corresponding loop momentum. The integration gives $G$-functions, which can be expressed in terms of the gamma function and are exact in $D = 4 - 2\epsilon$ space-time dimensions. Graphically the two lines in the loop become a single line but it gets a non-integer power $1/(Q^2\epsilon)$ of the resultant momentum $Q$ (indicated by “*” in figure 2a). The powers of the two propagators can be arbitrary numbers.

2.2. Carpet integral
There is another type of massless one-loop integrals that can be easily performed. When a subgraph is inserted to a one-loop graph (figure 2b), the outer loop can be integrated out first. The powers of the two outer propagators can be arbitrary numbers.

2.3. Triangle rule
When a topology contains a one-loop triangle subgraph depicted in figure 2c, there is a combination of IBP identities that decreases a sum of powers of the three propagators indicated by the arrows (triangle rule). If the powers of the three propagators are positive integers, then recursive use of the triangle rule reduces an integral into a sum of integrals in simpler topologies with one of the three propagators removed. The number of external lines attached to the top...
vertex has no restriction. For example, the ladder topology in figure 1a has two triangles where the triangle rule is applicable. Note that non-integer powers of propagators can be introduced by one-loop insertion integrals or carpet integrals and they may disallow a use of the triangle rule.

2.4. Diamond rule
The triangle rule has an extension for multi-loop diamond-shaped subgraphs [40]. Figure 2d shows the simplest diamond structure, which appears at the four-loop level for the first time and removes one of the six lines indicated by the arrows.

2.5. Special rule
In the non-planar topology in figure 1b (referred as “no1” in Forcer), one cannot find any of the above substructures. For a topology where none of the useful substructures is available, one has to prepare “manually” solved IBP reduction rules in such a way that integrals are reduced to ones in simpler topologies or at least to the master integral in the topology. We used considerably computer-assisted derivations of IBP reduction rules for each topology; although it has not been fully automatized.

We start from a set $S_0$ of IBP identities, which are constructed in the usual way,

$$S_0 = \{I_1, \ldots, I_{R_0}\}. \quad (1)$$

Each IBP identity, given as $I_i = 0$, is a linear relation of integrals with various indices. Their coefficients contain the regulator $\epsilon$ of dimensional regularization and the indices $n_j$ parametrically. The number of the relations is $R_0 = L(L + E)$ for an $L$-loop topology with $E$-independent external momenta. We make a set $S_1$ of relations obtained from $S_0$ with an index shifted by one in all possible ways. The set $S_1$ has $R_1 = NR_0$ elements for a topology with $N$-indices. Many useful reduction rules can be found as a linear combination of IBPs in the combined set of $S_0 \cup S_1$:

$$\sum_i c_i I_i = 0, \quad I_i \in S_0 \cup S_1. \quad (2)$$

Basically this is achieved by elimination of complicated integrals in the system. We have constructed an reduction scheme for each topology by combining resulted identities.

3. Construction of the reduction flow for all topologies
In the Mincer program, all topologies appearing in the problem were classified by their substructure and all the cases, requiring reductions discussed in section 2, were programmed by hand. This means that the program also contains code for transition from a topology to simpler topologies, for example, rewriting a missing momentum that does not exist in a simpler topology and applying topology symmetries that equate several topologies and so on. At the four-loop level, however, it becomes highly complicated and error-prone. Therefore one should completely automatize the code generation for handling each topology and transition among topologies as well as the classification.

We represent a topology as an undirected graph in graph theory. This makes it easy to detect substructure in a graph; the classification can be done just by pattern matchings of connections of vertices and edges. The reason why we use undirected graphs is that all propagators are squared $p_i^2$ and after integration the result is a function of the square of the external momentum $Q^2$, so their directions do not matter. Undirected graphs exhibit symmetries for such momentum directions. One tricky point is the fact that we use dot products ($p_i \cdot p_j$ or $p_i \cdot Q$) as irreducible numerators, hence an extra minus sign may have to be compensated when a momentum is
flipped. Non-integer powers of propagators are treated by assigning “colors” to edges, which enables us to distinguish different numbers of non-integer powers $m_i$ of $1/(p_i^2)^{n_i+m_i\epsilon}$. Massive propagators may be handled by additional colors of edges although all propagators are massless in our problem.

The reduction flow of all topologies is constructed as follows. Starting from the top-level topologies, we consider all possible ways to remove a line for each topology. Topologies with massless tadpoles are immediately discarded. Some of the generated topologies are indeed identical under graph isomorphism, which is detected by graph algorithms. We keep track of all mappings of momenta in topology transitions, which is necessary for rewriting propagators and irreducible numerators. For each topology, the next action is determined by its substructure. Irreducible numerators are chosen in such a way that they do not interfere with the action. Symmetries in a topology are detected as graph automorphisms, which helps to reduce the number of terms in the calculation. We repeat this procedure until all topologies are reduced into the Born graph, which creates the whole reduction flow of all possible topologies in the problem.

We have implemented this method by using Python with a graph library igraph [41]. The program generates FORM code in the end. From 11 top-level topologies at the four-loop level, 437 non-trivial topologies appear in the reduction flow. The numbers of topologies with one-loop insertions, carpet integrals, triangles and diamonds are 335, 24, 53 and 4, respectively. The remaining 21 topologies require special rules.

4. Discussion

Together with the special rules and a set of auxiliary library routines, the FORM code generated as in section 3 leads to the Forcer package. To give a feeling about the performance of Forcer, we performed a benchmark reduction of no1(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, $-1, -1, -1$), which is obtained by increasing indices for all propagators and decreasing them for all irreducible numerators from the master integral no1(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) in the “no1” topology (figure 1b). It took about 4 hours on a desktop PC with 4 cores. This can be improved if one uses a truncated expansion of $\epsilon$ in intermediate steps rather than rational arithmetic.

In practice, one needs to compute Feynman diagrams, which must be also automatically generated in some way. Our setup uses QGRAF [42] for generating diagrams. The output is then manipulated in FORM, as discussed in Ref. [43], and passed to Forcer.

The correctness of the program was checked by recomputing several known results found in the literature. Especially, a computation of the four-loop QCD beta function [44, 45] via renormalization constants of self-energies and a vertex with keeping the full dependence of the gauge parameter provides a strong check (the final result of the beta function is of course gauge independent in the minimum subtraction scheme). Others include lower moments of the four-loop splitting functions in the flavor non-singlet sector [7, 8, 9, 10].

Forcer was successfully used for several calculations. In Refs. [46, 47], Mellin moments of the four-loop splitting functions and coefficient functions were studied. They include the moments of the splitting functions up to $N = 6$ and $N = 4$ for the non-singlet and singlet cases, respectively, and the moments for structure functions $F_{2,ns}$ and $F_{L,ns}$ up to $N = 6$. Interestingly, the full $N$-dependence of $n_f^2$ contributions to non-singlet splitting functions and $n_f^3$ contributions to singlet splitting functions at this order can be completely determined by computing a fairly large number of Mellin moments and using the LLL algorithm [48]. In Ref. [49], by combining Forcer with the $R^*$-operation [50, 51, 52, 53], the five-loop beta function of Yang-Mills theory coupled to fermions for a general gauge group was obtained, which extended and hence confirmed results obtained in Refs. [54, 55]. More physics results by Forcer will be reported elsewhere [56].

The construction of the reduction flow described in section 3 is applicable also at the five-loop level. There are 6570 topologies obtained from 64 top-level topologies. However, 284
topologies have no useful substructure and they require special reduction rules. At present, this seems rather difficult and probably it requires complete automatization for solving IBP relations. Furthermore, derivation of parametric reduction rules can be helpful for other processes. Even partial reductions could be used for preprocessing input integrals in other generic IBP solvers, e.g., Laporta’s algorithm, and might give a performance gain. We leave these problems for future work.

Acknowledgments

We would like to thank Joshua Davies, Franz Herzog and Andreas Vogt for discussions and collaboration for physics applications. This work is supported by the ERC Advanced Grant no. 320651, “HEPGAME”. Figures were drawn with A0xdr2 [57].

References

[1] Anastasiou C, Duhr C, Dulat F, Furlan E, Gehrmann T, Herzog F, Lazopoulos A and Mistlberger B 2016 JHEP 05 058 (Preprint 1602.00695)
[2] Larin S A, van Ritbergen T and Vermaseren J A M 2001 Nucl. Phys. B604 281–311 (Preprint hep-ph/9909405)
[3] Retey A and Vermaseren J A M 2004 Nucl. Phys. B626 48–79 (Preprint hep-ph/0307294)
[4] Moch S, Vermaseren J A M and Vogt A 2004 Nucl. Phys. B626 101–34 (Preprint hep-ph/0403192)
[5] Vogt A, Moch S and Vermaseren J A M 2004 Nucl. Phys. B691 129–81 (Preprint hep-ph/040111)
[6] Baikov P A and Chetyrkin K G 2006 Nucl. Phys. Proc. Suppl. 150 76–9
[7] Velizhanin V N 2005 Nucl. Phys. B860 288–94 (Preprint 1112.3954)
[8] Velizhanin V N 2005 Nucl. Phys. B860 288–94 (Preprint 1112.3954)
[9] Velizhanin V N 2005 Nucl. Phys. B860 288–94 (Preprint 1112.3954)
[10] Baikov P A, Chetyrkin K G and Kühn J H 2015 Nucl. Part. Phys. Proc. 261–262 3–18 (Preprint 1501.06739)
[11] Baikov P A and Chetyrkin K G 2010 Nucl. Phys. B837 186–220 (Preprint 1004.1153)
[12] Lee R N, Smirnov A V and Smirnov V A 2012 Nucl. Phys. B856 95–110 (Preprint 1108.0732)
[13] Tkachov F V 1981 Phys. Lett. B100 65–8
[14] Chetyrkin K G and Tkachov F V 1981 Nucl. Phys. B192 159–204
[15] Bollini C G and Giambiagi J J 1972 Nuovo Cim. B12 20–6
[16] ’t Hooft G and Veltman M J G 1972 Nucl. Phys. B44 189–213
[17] Laporta S 2000 Int. J. Mod. Phys. A15 5087–159 (Preprint hep-ph/0102033)
[18] Anastasiou C and Lazopoulos A 2004 JHEP 07 046 (Preprint hep-ph/0404258)
[19] Smirnov A V 2008 JHEP 10 107 (Preprint 0807.3243)
[20] Smirnov A V and Smirnov V A 2013 Comput. Phys. Commun. 184 2820–7 (Preprint 1302.5885)
[21] Smirnov A V 2014 Comput. Phys. Commun. 189 182–91 (Preprint 1408.3272)
[22] Studerus C 2010 Comput. Phys. Commun. 181 1293–300 (Preprint 0912.2546)
[23] von Manteuffel A and Studerus C 2012 Preprint 1201.4330
[24] Baikov P A 1996 Phys. Lett. B385 404–10 (Preprint hep-ph/9603267)
[25] Baikov P A 2006 Phys. Lett. B634 325–9 (Preprint hep-ph/0507053)
[26] Lee R N 2012 Preprint 1212.2685
[27] Lee R N 2014 J. Phys. Conf. Ser. 523 012059 (Preprint 1310.1145)
[28] Tkachov F V 1983 Theor. Math. Phys. 56 866–70
[29] Chetyrkin K G, Kataev A L and Tkachov F V 1980 Nucl. Phys. B174 345–77
[30] Gorishny S G, Larin S A, Surguladze L R and Tkachov F V 1989 Comput. Phys. Commun. 55 381–408
[31] Struble H 1974 Comput. Phys. Commun. 8 1–30
[32] Larin S A, Tkachov F V and Vermaseren J A M The FORM version of MINCER NIKHEF-H/91–18
[33] Vermaseren J A M 2000 Preprint math-ph/0010025
[34] Kuipers J, Ueda T, Vermaseren J A M and Vollinga J 2013 Comput. Phys. Commun. 184 1453–67 (Preprint 1203.6543)
[35] Velizhanin V N 2012 Nucl. Phys. B864 113–40 (Preprint 1203.1022)
[36] Moch S, Vermaseren J A M and Vogt A 2014 Nucl. Phys. B889 351–400 (Preprint 1409.5131)
[37] Ueda T, Ruijl B and Vermaseren J A M 2016 J. Phys. Conf. Ser. 762 012000 (Preprint 1604.08767)
[38] Ueda T, Ruijl B and Vermaseren J A M 2016 PoS LL2016 070 (Preprint 1607.07318)
[39] Ruijl B, Ueda T and Vermaseren J A M in preparation
[40] Ruijl B, Ueda T and Vermaseren J 2015 Phys. Lett. B746 347–50 (Preprint 1504.08258)
[41] Csardi G and Nepusz T The igraph software package for complex network research InterJournal Complex Systems (2006) 1695, http://igraph.org
[42] Nogueira P 1993 J. Comput. Phys. 105 279–89
[43] Herzog F, Ruijl B, Ueda T, Vermaseren J A M and Vogt A 2016 PoS LL2016 073 (Preprint 1608.01834)
[44] van Ritbergen T, Vermaseren J A M and Larin S A 1997 Phys. Lett. B400 379–84 (Preprint hep-ph/9701390)
[45] Czakon M 2005 Nucl. Phys. B710 485–98 (Preprint hep-ph/0411261)
[46] Ruijl B, Ueda T, Vermaseren J A M, Davies J and Vogt A 2016 PoS LL2016 071 (Preprint 1605.08408)
[47] Davies J, Vogt A, Ruijl B, Ueda T and Vermaseren J A M 2017 Nucl. Phys. B915 335–62 (Preprint 1610.07477)
[48] Lenstra A K, Lenstra H W and Lovász L 1982 Math. Ann. 261 515–34
[49] Herzog F, Ruijl B, Ueda T, Vermaseren J A M and Vogt A 2017 JHEP 02 090 (Preprint 1701.01404)
[50] Chetyrkin K G and Tkachov F V 1982 Phys. Lett. B114 430–4
[51] Chetyrkin K G and Smirnov V A 1984 Phys. Lett. B144 419–24
[52] Chetyrkin K G 2017 Preprint 1701.08627
[53] Herzog F and Ruijl B in preparation
[54] Baikov P A, Chetyrkin K G and Kühn J H 2017 Phys. Rev. Lett. 118 082002 (Preprint 1606.08659)
[55] Luthe T, Maier A, Marquard P and Schröder Y 2016 JHEP 07 127 (Preprint 1606.08662)
[56] Ruijl B, Ueda T, Vermaseren J A M and Vogt A in preparation
[57] Collins J C and Vermaseren J A M 2016 Preprint 1606.01177