Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome

Juliette Coutureau, MD, Julien Asselineau, MSc, Paul Perez, MD, PhD, Gregory Kuchcinski, MD, Sharmila Sagnier, MD, PhD, Pauline Renou, MD, Fanny Munsch, PhD, Renaud Lopes, PhD, Hilde Henon, MD, Regis Bordet, MD, PhD, Vincent Dousset, MD, PhD, Igor Sibon, MD, PhD, and Thomas Tourdias, MD, PhD

Neurology® 2021;96:e527-e537. doi:10.1212/WNL.0000000000011208

Abstract

Objective
To determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in patients with stroke.

Methods
White matter hyperintensity, lacunes, perivascular spaces, microbleeds, and atrophy were quantified in 2 prospective datasets of 428 and 197 patients with first-ever stroke, using MRI collected 24 to 72 hours after stroke onset. Functional, cognitive, and psychological status were assessed at the 3- to 6-month follow-up. The predictive accuracy (in terms of calibration and discrimination) of age, baseline NIH Stroke Scale score (NIHSS), and infarct volume was quantified (model 1) on dataset 1, the total SVD score was added (model 2), and the improvement in predictive accuracy was evaluated. These 2 models were also developed in dataset 2 for replication. Finally, in model 3, the MRI features of cerebral SVD were included rather than the total SVD score.

Results
Model 1 showed excellent performance for discriminating poor vs good functional outcomes (area under the curve [AUC] 0.915), and fair performance for identifying cognitively impaired and depressed patients (AUCs 0.750 and 0.688, respectively). A higher SVD score was associated with a poorer outcome (odds ratio 1.30 [1.07–1.58], \(p = 0.0090\) at best for functional outcome). However, adding the total SVD score (model 2) or individual MRI features (model 3) did not improve the prediction over model 1. Results for dataset 2 were similar.

Conclusions
Cerebral SVD was independently associated with functional, cognitive, and psychological outcomes, but had no clinically relevant added value to predict the individual outcomes of patients when compared to the usual predictors, such as age and baseline NIHSS.
The number of survivors living with the consequences of stroke is increasing worldwide.1 Rapidly predicting outcome following stroke is crucial to the management of these patients.2 Increasing attention, in this regard, has been given to cerebral small vessel disease (SVD),3 as it could affect outcome by disrupting network and neuronal plasticity capabilities.4 The total SVD score5,6 has become increasingly used as a convenient way to assess the global burden of cerebral SVD through a neuroimaging evaluation of white matter hyperintensity (WMH), lacunes, perivascular spaces (PVS), and cerebral microbleeds (CMBs). Despite the finding that cerebral SVD has been shown to be associated with clinical outcome,7–16 whether it actually adds information to the prediction of stroke outcome is unknown. Major methodologic considerations are that (1) associations measured in terms of odds ratios (ORs) do not necessarily imply that the markers will be able to distinguish patients with different outcomes accurately17 and (2) markers should be evaluated for their incremental value on top of the already known predictors.2,18

We quantified the prognostic value of cerebral SVD in terms of functional, cognitive, and psychological outcomes after stroke. We first developed prognostic models based on already known predictors,2 including age, initial severity, and infarct volume in a prospective longitudinal cohort. Then, the potential added value of cerebral SVD19 was assessed and models were compared in terms of calibration and discrimination. Some analyses were replicated on an external cohort for generalizability.

Methods

Study Populations

The first dataset (dataset 1) included patients from the “brain before stroke” cohort. The study recruited 428 patients, prospectively and consecutively, who presented for suspected ischemic stroke at the University Hospital of Bordeaux, France, from June 2012 to February 2015. Primary inclusion criteria were men and women >18 years of age with a clinical diagnosis of minor to severe supratentorial cerebral infarct (NIH Stroke Scale [NIHSS] score 1–25). Exclusion criteria were history of symptomatic cerebral infarct with functional deficit (prestroke modified Rankin Scale [mRS] score ≥1), infratentorial stroke or no stroke on research MRI performed between 24 and 72 hours after stroke onset, history of severe cognitive impairment (dementia) or psychiatric disorder, coma, pregnancy, and contraindications to MRI.

A second independent dataset (dataset 2) was used for generalizability and included 197 patients from the Strokdem cohort, who were recruited prospectively at the University Hospital of Lille, France, with similar inclusion criteria.

Clinical Assessment

Demographic data, vascular risk factors, treatments, and the NIHSS score were recorded between 24 and 72 hours after stroke onset (baseline evaluation). Level of education and pre-cognitive state were also recorded using the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE), which was completed by the patient’s relative at the time of admission.

In dataset 1, all patients underwent a standardized battery of clinical testing at the 3-month follow-up that included the mRS25 score to assess functional outcome, the Montreal Cognitive Assessment (MoCA)26 to assess cognitive outcome, and the Hospital Anxiety and Depression Scale (HADS)27 to assess psychological outcome. In dataset 2, follow-up was performed at 6 months with the same clinical tests, except for the presence of depression, which was assessed by the Center for Epidemiologic Studies–Depression score.

Brain MRI Acquisition and Analyses

Acquisition

Standardized MRI examinations were performed between 24 and 72 hours after stroke onset on a 3T scanner (Discovery MR 750w, GE Healthcare, Milwaukee, WI) for dataset 1 and on a 3T scanner (Achieva, Philips, Best, the Netherlands) for dataset 2. Imaging protocols included, among others, diffusion-weighted imaging (DWI), fluid-attenuated inversion recovery (FLAIR), gradient echo T2*-weighted imaging (T2*WI), susceptibility-weighted imaging (SWI), and 3D T1-weighted imaging (3D-T1WI). Scan parameters have been detailed elsewhere20–24 and are also available in table e-1 (available from Dryad, doi.org/10.5061/dryad.2547d7wnj).
Image Analyses

All images were reviewed centrally and independently by 2 radiologists blinded to the clinical data at baseline and at follow-up. Recent infarcts were defined as hyperintense areas on DWI with a corresponding low apparent diffusion coefficient and were segmented using a semiautomatic tool available in 3D Slicer. Cerebral SVD features were assessed according to the standards for reporting vascular changes on neuroimaging. WMHs were defined as hyperintensity on FLAIR, distinct from cavitation; their severity was determined according to the Fazekas scale. Lacunes were manually counted by looking for rounded or ovoid subcortical lesions, between 3 and 20 mm in diameter, with a CSF signal on T1WI and FLAIR. PVS were defined as small (<3 mm) punctate or linear lesions, with intensity similar to CSF on all sequences in the basal ganglia or centrum semiovale and were rated on 3D-T1WI based on a previously validated semiquantitative scale from 0 to 4. CMBs were defined as small (up to 10 mm) areas of signal void with associated blooming artifacts seen on gradient echo imaging and were independently counted on T2*WI and SWI according to current guidelines. Sequelae of previous strokes were also rated. The interrater weighted κ values from a subset of 200 randomly selected scans were good and ranged from 0.72 for PVS to 0.88 for WMH.

The total SVD score was rated from these features by allocating 1 point to each of the following: (1) confluent deep WMH (Fazekas score 2 or 3) or irregular periventricular WMHs extending into the deep white matter (Fazekas score 3), (2) presence of 1 or more lacune, (3) moderate to severe (>10) PVS in the basal ganglia, and (4) presence of any CMBS on T2*WI.

For volumetric analyses, FLAIR and 3D-T1WI were processed using the VolBrain system. The automatically segmented WMHs were quality controlled and manually corrected, particularly by excluding the acute infarct. Brain volume was also automatically computed and normalized for atrophy using intracranial cavity volume to control for variations in head size.

Statistical Analysis

Statistical analyses were performed with SAS v9.4 software (SAS Institute, Cary, NC).

Sample Size Calculation

The sample size of dataset 1 was powered for the primary objective, to predict poor functional outcome (mRS > 2) at 3 months, with 12–15 possible predictors, without overfitting the models. Considering that at least 10 outcomes should be observed for each degree of freedom, 120–150 patients with mRS >2 at 3 months were needed, which required including 343–429 patients for an estimated 35% prevalence of poor outcome.

Model Variables

Three dependent variables were prespecified to quantify the capability to predict a handicap following stroke within the functional, cognitive, and psychological domains. We used the mRS, MoCA, and HADS collected at follow-up, which were dichotomized based on clinically relevant and literature-supported thresholds. Poor status at follow-up was defined as mRS >2, as MoCA <26, and as HADS >7 for the functional, cognitive, and psychological outcomes, respectively. Because aphasia could possibly bias the evaluation of MoCA and HADS, additional analyses were also conducted by excluding aphasic patients, defined as those who had at least 1 point on the item 9 of NIHSS at follow-up.

Independent variables consisted of (1) age, (2) initial NIHSS, and (3) infarct volume from baseline DWI considering that these predictors are the most consistently reported in the literature. This set of 3 independent variables was used to build model 1. The total SVD score was added to model 1 to generate model 2. Because refinement of the total SVD score has been hypothesized as a method to improve quantification of the total burden of cerebral SVD, we also tested (model 3) all cerebral SVD MRI features added to model 1, instead of the total SVD score, which is based on specific criteria and thresholds. Therefore, the following imaging variables were included in model 3: (1) deep white matter Fazekas score (0, 1, 2, or 3), (2) periventricular Fazekas score (0, 1, 2, or 3), (3) volumetric analysis of WMH (in cm³), (4) number of lacunes, (5) number of PVS in basal ganglia (0, 1–10, 11–20, 21–40, and >40) and in centrum semiovale ganglia (0, 1–10, 11–20, 21–40, and >40), (6) number of CMBS on T2*WI (0, 1–4, and >4), (7) number of CMBS on SWI (0, 1–4, and >4), (8) sequel of previous stroke, and (9) and atrophy (% of intracranial cavity).

Analyses

We used multivariate logistic regression analyses to estimate predictive models for the 3 dependent variables following the TRIPOD recommendations. For the independent quantitative variables, the shapes of the association with the clinical outcomes were analyzed using fractional polynomials implemented in a bootstrapping approach to select a more robust shape. Transformations, such as log-transformation, were applied if they improved the shape of the association. The independent variables for model 1 were introduced simultaneously. The SVD score was added to model 1 for model 2. A backward and stepwise selection of each of the cerebral SVD features was applied in model 3 using the Akaike information criterion (corresponding to \(p = 0.135 \) for one degree of freedom).

Missing data were not excluded but they were replaced using a multiple imputation method during development of the models. The number of imputations was proportional to the percentage of patients with at least one missing datum. If the outcome measure at follow-up was missing, baseline data were still included to implement the imputation model. Results of the imputed datasets were aggregated using the Rubin rule.

Model Performance

The strengths of the associations were measured using ORs and their 2-sided 95% confidence intervals (CIs). Then, the predictive performances of the models were assessed through their calibration and discrimination capabilities. For calibration, we used the plots of predicted probability of outcome vs the actual
outcome. For discrimination, we used the area under the receiver operating characteristic curve (AUC) and its 2-sided 95% CI.40 We also used reclassification tables to assess the clinical pertinence of the models by quantifying the number of reclassified patients when new variables were added to the previous model.

An internal validation was used through a repeated 10-fold cross-validation procedure to correct the AUC of each model for optimism. The bootstrap technique was performed with 1,000 replications to estimate 2-sided 95% CIs of each AUC and the added value.41

The second dataset was analyzed to assess the degree of replication of the model 1 and model 2 results.

Data Availability
Anonymized data will be shared by request from any qualified investigator.

Results

Among the 428 patients recruited for dataset 1, 80 were excluded, leaving 348 patients for analyses (n = 30, no infarct; n = 27, no baseline MRI; n = 9, posterior fossa infarct; n = 4, claustrophobia; n = 6, uninterpretable MRI data and agitation; n = 4, violation of other inclusion criteria). Among the 197 patients in independent dataset 2, 60 were excluded for similar reasons, leaving 137 patients for the analyses.

Patient Characteristics and Imaging Features

The clinical and imaging characteristics at baseline and the clinical outcomes at follow-up were compared between the 2 datasets in table 1.

None of the patients had prestroke cognitive impairment based on the IQCODE score. The median NIHSS at baseline and infarct volume suggested mild to moderate neurologic deficit in the 2 datasets with younger patients and with a lower deficit in dataset 2. White matter disease and PVS had the highest prevalence among the cerebral SVD features, with a predominance of low-grade anomalies in the 2 datasets. For instance, the Fazekas score of periventricular WMH was >1 in about 35% of the patients, and more than 20 PVS were found in 13.2% and 8.1% of the patients in datasets 1 and 2, respectively. Lacunes were described in <20% of patients, and CMBs in 12% and 21% of the patients in datasets 1 and 2, respectively. Despite differences in the individual components, the total SVD scores showed relatively comparable distribution in the 2 datasets. At follow-up, patients from dataset 2 had less severe disease than those from dataset 1, in which 95/348 (27.4%) patients had a mRS >2, 167/288 (58.0%) patients had a MoCA <26, and 58/288 (20.1%) patients had a HADS score >7.

Age, Baseline NIHSS, and Infarct Volume Were Associated With, and Predicted, Patient Outcome

Table 2 shows model 1 for the 3 clinical outcomes in dataset 1. As expected, higher age and higher baseline NIHSS were significantly associated with a poor mRS at 3 months, with a predominant effect of the NIHSS (OR for log-transformed NIHSS, 10.56 [5.83–19.14], p < 0.0001). Higher age and higher NIHSS were also significantly associated with poor cognitive performance and with depression at 3 months. Infarct volume was not associated with any of the clinical outcome variables.

Overall, the combination of these 3 variables (actually, mainly age and baseline NIHSS) translated into predictive performance. The calibration curves showed that the predicted outcome probability based on the combination of the 3 variables was very close to the observed outcome probability (see below). The prediction ranged from excellent to discriminate between poor and good mRS at 3 months (AUC, 0.915 [0.868–0.943]) to fair to discriminate cognitively impaired and depressed patients at 3 months (AUC, 0.750 [0.644–0.797] and 0.688 [0.557–0.759], respectively). A sensitivity analysis was also conducted by running the same models with the addition of acute treatments (thrombolysis or thrombectomy) which did not significantly change the AUCs (data not shown) possibly because part of the effect is captured by NIHSS and infarct volume measured between 24 and 72 hours after stroke onset.

Total SVD Score Was Associated With Patient Outcome, but Did Not Provide Significant Improvement of Prediction

A shift toward higher total SVD scores was observed in patients with poor outcomes (functional, cognitive, and psychological) compared to patients with good outcomes at 3 months (figure 1). Accordingly, univariate logistic regressions showed slight but significant associations between the SVD score and functional and cognitive outcome (OR, 1.30 [1.07–1.58], p = 0.0090; and OR, 1.23 [1.00–1.50], p = 0.05, respectively) while the association did not reach significance for psychological outcome (OR, 1.16 [0.92–1.45], p = 0.2077).

However, in multivariate analyses, adding the total SVD score to model 1 did not improve the prediction of the 3 outcomes (table 3). Indeed, these combined models produced AUCs that were not statistically different from those of model 1, with a difference in the AUCs of 0.003 (−0.006 to 0.014) for functional outcome, −0.004 (−0.018 to 0.010) for cognitive outcome, and −0.004 (−0.030 to 0.023) for psychological outcome. Results were consistent when the analyses were reconducted after exclusion of patients with aphasia at follow-up (ΔAUC of 0.003 for both cognitive and psychological outcomes).

To understand whether the lack of improvement of the prediction by adding SVD could be related to collision with the other variables (age, baseline NIHSS, and infarct volume), we also tested the predictive performances of the total SVD score alone and found they were close to random for functional, cognitive, and psychological outcome (AUC of 0.577...
MRI Features of Cerebral SVD Were Associated With Patient Outcome, but Did Not Provide Significant Improvement of the Prediction

Table 4 shows model 3 for the 3 clinical outcomes in dataset 1. The rationale was to keep the predictors of model 1 and to identify, through a backward and stepwise selection, the MRI features of the underlying brain that showed an association with outcomes using detailed MRI features beyond strict utilization of the SVD score.

WMH was a feature consistently associated with a poor outcome, with various definitions showing up (Fazekas grade for deep white matter, Fazekas grade for periventricular white matter or volumetric quantification), depending on the outcome score that was considered. Among the variables not evaluated by the total SVD score, we also found a
A significant association between brain volume loss and poor functional outcome at 3 months (OR, 1.18 [1.06–1.31], \(p = 0.0029\)).

Importantly, these combined models did not improve the predictive performance of model 1 either. Indeed, on the calibration curves, the excellent correspondence between the predicted probability and the observed probability of the outcome observed in model 1 did not improve in model 3 (figure 2, upper row). Similarly, the AUCs for model 1 vs model 3 were not significantly different: \(\Delta\)AUC of 0.007 (−0.027 to 0.027) for functional outcome, −0.010 (−0.069 to 0.014) for cognitive outcome, and 0.027 (−0.083 to 0.084) for psychological outcome (figure 2, lower row).

While the predicted outcomes were similar in model 3 compared to model 1 based on these calibration and discrimination metrics, we hypothesized that model 3 might help to classify clinically the patients with more certainty than model 1. To test this hypothesis, we considered that only patients

Table 2 Prognostic Values of Age, Baseline NIH Stroke Scale Score (NIHSS), and Infarct Volume to Assess Functional, Cognitive, and Psychological Outcomes at 3 Months in Dataset 1 (Model 1)

Dependent variables	Independent variables	OR	95% CI	\(p\) Value	AUC \(^a\) (95% CI) (bootstrap corrected)
Functional outcome	Age (+5 y)	1.30	1.14; 1.48	0.0001\(^b\)	0.915 (0.868; 0.943)
	Baseline NIHSS (+1 log)\(^c\)	10.56	5.83; 19.14	<0.0001\(^b\)	0.8178
	Infarct volume (+1 cm\(^3\))	1.00	0.99; 1.01		
Cognitive outcome	Age (+5 y)	1.28	1.15; 1.43	<0.0001\(^b\)	0.750 (0.644; 0.797)
	Baseline NIHSS (+1 point)	1.15	1.06; 1.25	0.0012\(^b\)	
	Infarct volume (+1 cm\(^3\))	1.00	0.99; 1.01	0.8530	
Psychological outcome	Age (+5 y)	1.18	1.05; 1.32	0.0064\(^b\)	0.688 (0.557; 0.759)
	Baseline NIHSS (+1 point)	1.10	1.04; 1.16	0.0015\(^b\)	
	Infarct volume (+1 cm\(^3\))	1.00	0.99; 1.01	0.8078	

Abbreviations: AUC = area under the receiver operating characteristic curve; CI = confidence interval; OR = odds ratio. Predictions are shown for poor outcome at 3 months assessed by modified Rankin Scale score >2 for functional outcome, Montreal Cognitive Assessment score <26 for cognitive outcome, and Hospital Anxiety and Depression Scale score >7 for psychological outcome. The 3 independent variables were introduced simultaneously.

\(^a\) AUCs were corrected for optimism through a repeated 10-fold cross-validation procedure and with a bootstrap technique (1,000 replications) to estimate the 2-sided 95% CIs.

\(^b\) \(p < 0.05\).

\(^c\) Baseline NIHSS was log transformed in this model, as it improved the association with the outcome.

Figure 1 Distribution of Small Vessel Disease (SVD) Scores

Distribution of SVD scores in dataset 1 according to functional (modified Rankin Scale [mRS]), cognitive (Montreal Cognitive Assessment [MoCA]), and psychological (Hospital Anxiety and Depression Scale [HADS]) outcomes at 3-month follow-up. Outcomes were dichotomized as described in the Methods. A mild shift toward a higher score was observed in patients with worse outcome.
with a predicted probability >70% or <30% could be considered at high risk or low risk to evolve toward a poor outcome, while patients with a predicted probability of 30%–70% would have an uncertain outcome. Actually, only 3 patients (of the 348) were reclassified in the ranges of high certainty (>70% or <30%) when model 3 was compared to model 1 for

Table 3 Prognostic Values of the Total Small Vessel Disease (SVD) Score to Assess Functional, Cognitive, and Psychological Outcomes at 3 Months in Dataset 1 (Model 2)

Dependent variables	Independent variables	OR	95% CI	p Value	AUC (95% CI) (bootstrap corrected)
Functional outcome	Age (+5 y)	1.27	1.11; 1.45	0.0006b	0.917 (0.869; 0.945)
	Baseline NIHSS (+1 log)c	10.70	5.83; 19.62	<0.0001b	
	Infarct volume (+1 cm³)	1.00	1.01; 1.02	0.3943	
	Total SVD score (+1)d	1.44	1.05; 1.96	0.0219b	
Cognitive outcome	Age (+5 y)	1.28	1.14; 1.43	<0.0001b	0.745 (0.637; 0.793)
	Baseline NIHSS (+1 point)	1.15	1.06; 1.25	0.0014d	
	Infarct volume (+1 cm³)	1.00	0.99; 1.01	0.8978	
	Total SVD score (+1)	1.04	0.82; 1.31	0.7638	
Psychological outcome	Age (+5 y)	1.17	1.03; 1.32	0.0120b	0.685 (0.551; 0.756)
	Baseline NIHSS (+1 point)	1.10	1.04; 1.16	0.0017d	
	Infarct volume (+1 cm³)	1.00	0.99; 1.01	0.8875	
	Total SVD score (+1)	1.07	0.83; 1.38	0.5975	

Abbreviations: AUC = area under the receiver operating characteristic curve; CI = confidence interval; NIHSS = NIH Stroke Scale; OR = odds ratio; WMH = white matter hyperintensity.

Predictions are shown for poor outcomes at 3 months assessed by modified Rankin Scale score >2 for functional outcome, Montreal Cognitive Assessment score <26 for cognitive outcome, and Hospital Anxiety and Depression Scale score >7 for psychological outcome. The models are shown with SVD combined with age + baseline NIHSS + infarct volume, forced in final model 2.

* AUCs were corrected for optimism through a 10-fold cross-validation procedure and with a bootstrap technique (1,000 replications) to estimate the 2-sided 95% CIs.

Table 4 Prognostic Values of MRI Features of Cerebral Small Vessel Disease (SVD) to Assess Functional, Cognitive, and Psychological Outcomes at 3 Months in Dataset 1 (Model 3)

Dependent variables	Independent variables	OR	95% CI	p Value	AUC (95% CI) (bootstrap corrected)
Functional outcome	Age (+5 y)	1.15	0.96; 1.38	0.1268b	0.921 (0.861; 0.947)
	Baseline NIHSS (+1 log)c	9.66	5.23; 17.83	<0.0001b	
	Infarct volume (+1 cm³)	1.01	1.00; 1.02	0.0795b	
	Brain volume (+1%)	1.18	1.06; 1.31	0.0029b	
	Fazekas deep white matter (+1 point)	1.97	1.18; 3.30	0.0101b	
	Number of microbleed (1–4 vs 0)	2.77	0.87; 8.83	0.0124m	
	Number of microbleed (>4 vs 0)	3.90	0.49; 30.92	0.0256m	
	Total PVS (+1 point)	0.53	0.3; 0.93	0.397b	
Cognitive outcome	Age (+5 y)	1.25	1.11; 1.40	0.0001b	0.739 (0.603; 0.781)
	Baseline NIHSS (+1 point)	1.14	1.05; 1.24	0.0022b	
	Infarct volume (+1 cm³)	1.00	0.99; 1.01	0.9584	
	WMH (+5 cm³)	1.07	0.98; 1.18	0.1336b	
Psychological outcome	Age (+5 y)	1.15	1.01; 1.32	0.0383b	0.715 (0.539; 0.774)
	Baseline NIHSS (+1 point)	1.10	1.03; 1.17	0.0047b	
	Infarct volume (+1 cm³)	1.00	0.99; 1.01	0.9340	
	Fazekas periventricular (1 vs 0)	0.52	0.20; 1.33	0.0018b	
	Fazekas periventricular (2 vs 0)	1.08	0.37; 3.14	0.0515b	
	Fazekas periventricular (3 vs 0)	3.43	0.96; 12.24	0.0001b	
	Basal ganglia PVS (2 vs 0–1)	0.41	0.17; 0.97	0.0002b	
	Basal ganglia PVS (3–4 vs 0–1)	0.51	0.17; 1.57	0.0002b	

Abbreviations: AUC = area under the receiver operating characteristic curve; CI = confidence interval; NIHSS = NIH Stroke Scale; OR = odds ratio; PVS = perivascular space; WMH = white matter hyperintensity.

Predictions are shown for poor outcome at 3 months assessed by modified Rankin Scale score >2 for functional outcome, Montreal Cognitive Assessment score <26 for cognitive outcome, and Hospital Anxiety and Depression Scale score >7 for psychological outcome. The models are shown with age + baseline NIHSS + infarct volume forced in the final model 3 and associated with individual MRI features of cerebral SVD that were added according to a backward and stepwise selection.

* AUCs were corrected for optimism through a 10-fold cross-validation procedure and with a bootstrap technique (1,000 replications) to estimate the 2-sided 95% CIs.

* p < 0.135 (according to Akaike information criteria for 1 degree of freedom).

* Baseline NIHSS was log-transformed in this model, as it improved the association with outcome.
The Results Were Confirmed Using Independent Dataset 2

Similar results were found when models 1 and 2 were replicated on dataset 2. The total SVD score confirmed a low predictive value, with differences in AUCs between model 1 and model 2 of -0.009 (-0.120 to 0.063), 0.044 (-0.154 to 0.145), and -0.023 (-0.128 to 0.178) for the functional, cognitive, and psychological outcomes, respectively. Calibration curves and AUCs for models 1 and 2 based on dataset 2 can be found in figure e-1 (available from Dryad, doi.org/10.5061/dryad.2547d7wnj).

Discussion

Our results show that cerebral SVD (assessed by the total SVD score or by detailed SVD MRI features) was associated with functional, cognitive, and psychological outcomes but did not provide any clinically relevant added value to predict the individual outcomes of patients when compared to the usual validated predictors, such as age and baseline NIHSS.

Models that accurately predict clinical outcome after stroke could have several uses. Such models could help to provide rapid, realistic prognostic expectations to the patients and families, which could be useful for anticipating home adjustments. These models could also help in the planning of long-term care, such as access to intensive rehabilitation, cognitive training, or introduction of behavioral therapy depending on the domain that is most at risk. They could also help to allocate resources more specifically, to reduce costs. Furthermore, such models could be useful for selecting homogeneous patient populations to improve statistical power and reduce the required sample size when assessing interventions for clinical trials.

We reaffirmed that age and baseline NIHSS are very strong predictors of functional outcome determined by the 3- to 6-month mRS, but at a lower degree for cognitive and psychological outcomes. In line with previous studies, infarct volume on DWI did not contribute to the predictive models.

The main goal of this study was to evaluate the predictive value of the underlying brain that we call the “brain before stroke” to refer to modifications related to cerebral SVD. Consistent with the literature, the total SVD score was significantly associated with some aspects of poststroke outcome. Refinements in the total SVD score have been discussed by several authors to redefine the thresholds for each feature, to avoid redundancy between the features, or to consider atrophy as an additional criterion of the ageing brain. Therefore, we also tested the value of all MRI features independently of the total SVD score in model 3 and found that WMH was the most consistent marker.
associated with 3-month functional, cognitive, and psychological outcomes, which agrees with previous literature.11,46 Cerebral atrophy was also associated with functional outcome.

Despite these associations, adding cerebral SVD neuroimaging markers to validated predictors (age and baseline NIHSS) did not significantly improve the accuracy of predicting a patient’s individual outcome (no significant modification of the calibration curves or of the AUC). There are several probable reasons why cerebral SVD does not add information to the prediction of stroke outcome. First, our results indicate that statistical associations between a marker and an outcome do not necessarily imply that the marker can discriminate between individuals likely, or otherwise, to have the outcome. This is the major difference between the concept of statistical association and the concept of prediction. Strong associations are needed for a marker to classify subjects, and the OR is a simple scalar measure of association that corresponds to many different pairs of sensitivity and specificity on the receiving operating characteristic curve.17 This may explain the poor performance of cerebral SVD features that could have been improperly described in the literature as “predictive” factors of stroke outcome, given that such conclusions were only based on logistic models or regression analyses.7–13,15,16 In our analyses, the ORs for WMH ranged from 1.07 to 3.43, and the ORs for the total SVD score were relatively weak but actually in line with many others.7,8,10–12 This result is insufficient to affect the prediction, as compared to NIHSS and age, which together dominate the prediction.47 This is particularly true for functional outcome, as shown by the high AUC of the model that included those 2 markers alone (AUC 0.915). Lower performance was found with age and baseline NIHSS for predicting cognitive and psychological outcomes, pointing to other possible predictors.20 We would have expected that cerebral SVD markers would contribute more to prediction in these fields by altering the networks involved in information processing speed, executive functions, or plasticity following stroke, but this was not the case. Importantly, we only selected patients without premorbid cognitive deficits, which is an important methodologic point to avoid improper interpretation of preexisting deficit as cognitive decline in the context of cerebral SVD and stroke. Another reason why cerebral SVD does not add information to the prediction might have been that age and cerebral SVD are correlated5,11 (which is true in our data; data not shown) and one could have assumed that age, which was included in our models, was conveying most of the information. This phenomenon has been suggested to explain the small magnitude of the effect of infarct volume when NIHSS is included in the same model because it captures the same information.44,46 The strengths of associations between SVD and cognitive and psychological outcomes indeed decreased when age was included (lower OR) but this cannot be the sole explanation because even the SVD score alone did not show any significant predictive performances.

We could demonstrate, in line with the current literature, that cerebral SVD is associated with stroke outcome, but we could not find a significant predictive role of SVD imaging features compared to validated predictors of outcome such as age and NIHSS. Such a “negative” result is of substantial value because our study included a large dataset of patients, prospectively and longitudinally followed over time, with applications of all major methodologic requirements for prognostic research design and analysis,36 including an adequate sample size calculation, appropriate handling of missing data with statistical imputation, and internal validation and confirmation on an independent dataset. However, the limitations of this study should be acknowledged. The main limitation is that the 2 datasets included patients with mild severity at baseline and rather good functional outcomes, which is not representative of the general stroke population. This might be because patients with more severe stroke sometimes do not consent to participate or do not tolerate the longer MRI examination used here for research purposes. Otherwise, all patients with a suspected diagnosis of stroke were included; patients unable to be scanned with the research protocol or with images not assessable were secondarily excluded. These results cannot be extrapolated to patients with hemorrhagic, infratentorial, or DWI-negative strokes who were not included in this study. Second, the burden of cerebral SVD was also rather low, with <15% of the population having Fazekas grade 3 WMH, or a SVD score >2, which could have altered the strength of associations and the predictive effect of the cerebral SVD factors. Nevertheless, these imaging characteristics were similar to those described in previous studies7,45,49 and correspond to a relevant category of the population frequently encountered. Third, cognitive outcomes should be assessed with a broader neuropsychological battery in the future because the MoCA, while validated for screening cognitive impairment after stroke,26 cannot capture all nuances of cognition. A longer follow-up would also be preferred,40 even though much of the recovery has already occurred at 3–6 months. Fourth, the outcomes were considered as dichotomous variables using clinically relevant cutpoints based on the literature,25–27 and not used as continuous variables. This approach may have weakened the statistical power to detect the associations between the SVD score and outcome, but is the best way to evaluate the performances of predictive models in terms of classification errors in the clinical decision process.17 Finally, other metrics to quantify cerebral SVD could be used in the future, including diffusion tensor imaging to capture diffuse microstructural alterations, even in normal-appearing white matter.

Overall, in our cohorts of patients with moderately severe stroke, we demonstrated that, although imaging features of cerebral SVD and total SVD score were associated with the patient’s prognosis and could be interesting from a pathophysiologic point of view, adding these neuroimaging markers to validate clinical predictors did not improve accuracy of prediction of the outcome for an individual patient.

Study Funding

The study was supported by public grants from the French Agence Nationale de la Recherche within the context of the Investments for the Future Program, referenced ANR-10-
LABX-57, and named TRAIL (Translational Research and Advanced Imaging Laboratory). The development cohort was funded by a public grant from the French government (PHRC [Programme Hospitalier de Recherche Clinique Inter-régional]) funded in 2012. The validation cohort was funded by the Hauts-de-France Regional Council, the Coeur et Artères foundation, and the French Ministry of Health. The authors thank the In-vivo Imaging and Functions core facility (ci2c.fr) for the MRI acquisitions of Strokdem database.

Disclosure
The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology February 13, 2020. Accepted in final form September 11, 2020.

Appendix

Table: Authors

Name	Location	Contribution
Juliette Coutureau, MD, PhD	University Hospital of Bordeaux, France	Analyzed the data, interpreted the data, drafted the manuscript for intellectual content
Julien Asselineau, MSc	University Hospital of Bordeaux, France	Designed and conceptualized study, performed biostatistical analyses, revised the manuscript critically for intellectual content
Paul Perez, MD, PhD	University Hospital of Bordeaux, France	Designed and conceptualized study, biostatistical review of results, revised the manuscript critically for intellectual content
Gregory Kuchcinski, MD	University Hospital of Lille, France	Coordinated imaging for site, major role in the acquisition of data, participated in MRI review, revised the manuscript critically for intellectual content
Sharmila Sagner, MD, PhD	University Hospital of Bordeaux, France	Major role in the acquisition of data, participated to MRI review, revised the manuscript critically for intellectual content
Pauline Renou, MD	University Hospital of Bordeaux, France	Major role in the acquisition of data, revised the manuscript critically for intellectual content
Fanny Munsch, PhD	Beth Israel Deaconess Medical Center, Boston, MA	Major role in the acquisition of data, participated to MRI review, revised the manuscript critically for intellectual content
Renaud Lopes, PhD	University Hospital of Lille, France	Major role in the acquisition of data, revised the manuscript critically for intellectual content
Hilde Henon, MD	University Hospital of Lille, France	Major role in the acquisition of data, revised the manuscript critically for intellectual content
Regis Bordet, MD, PhD	University Hospital of Lille, France	Design and conceptualized study, revised the manuscript critically for intellectual content
Vincent Dousset, MD, PhD	University Hospital of Bordeaux, France	Design and conceptualized study, revised the manuscript critically for intellectual content

Appendix (continued)

Name	Location	Contribution
Igor Sibon, MD, PhD	University Hospital of Bordeaux, France	Design and conceptualized study, revised the manuscript critically for intellectual content
Thomas Tourdias, MD, PhD	University Hospital of Bordeaux, France	Design and conceptualized study, Interpreted the data, drafted the manuscript for intellectual content

References
1. Feiglin VI, Krishnamurthi RV, Parmar P, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology 2015;45:161–176.
2. Jumapathing N, Loopaboloon M, Rattanakanokchai S, Pattanittum P. Prognostic models for complete recovery in ischemic stroke: a systematic review and meta-analysis. BMC Neurol 2018;18:26.
3. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013;12:483–497.
4. Concha L. A macroscopic view of microstructure: using diffusion-weighted images to infer damage, repair, and plasticity of white matter. Neuroscience 2014;276:14–28.
5. Staal J, Makin SD, Doubl FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 2014;83:1228–1234.
6. Klarenbeek P, van Oostenbrugge RJ, Rouhl RP, Knotnerus IL, Staal J. Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke 2013;44:2995–2999.
7. Arba F, Inzitari D, Ali M, et al. Small vessel disease and clinical outcomes after IV rt-PA treatment. Acta Neurol Scand 2017;136:72–77.
8. Liu Y, Chen YK, Mok VC, et al. Cerebral small vessel disease burden is associated with poststroke depressive symptoms: a 15-month prospective study. Front Aging Neurosci 2018;10:46.
9. Huijts M, Duits A, van Oostenbrugge RJ, Kroon AA, de Leeuw PW, Staal J. Accumulation of MRI markers of cerebral small vessel disease is associated with decreased cognitive function: a study in first-ever lacunar stroke and hypertensive patients. Front Aging Neurosci 2015;3:52.
10. Molad J, Kliper E, Korczyn AD, et al. Only white matter hyperintensities predicts post-stroke cognitive performances among cerebral small vessel disease markers: results from the TABASCO study. J Alzheimers Dis 2017;56:1289–1299.
11. Ryu WS, Woo SH, Schillinghout D, et al. Stroke outcomes are worse with larger leukoaraiosis volumes. Brain 2017;140:158–170.
12. Dufouil C, Godin O, Chalmers J, et al. Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history. Stroke 2009;40:2219–2221.
13. Makin SD, Turpin S, Dennis MS, Wardlaw JM. Cognitive impairment after lacunar stroke: systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes. J Neurol Neurosurg Psychiatry 2013;84:893–900.
14. Choi KH, Kim JH, Kang KW, et al. Impact of microbleeds on outcome following recanalization in patients with acute ischemic stroke. Stroke Epub 2018 Dec 7.
15. Passiauk BS, Liu D, Krozge HA, et al. Perivascular spaces contribute to cognition beyond other small vessel disease markers. Neurology 2019;92:e1309–e1321.
16. Appleton JP, Woodhouse LJ, Adami A, et al. Imaging markers of small vessel disease and brain frailty, and outcomes in acute stroke. Neurology 2020;94:e439–e452.
17. Pepe MS, Janes H, Longton G, Leisingen W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 2004;159:882–890.
18. Moons KG, Engnpe AP, Woodward M, et al. Risk prediction models: I. development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012;98:683–690.
19. Jickling GC, Chen C. Rating total cerebral small-vessel disease: does it add up? Neurology 2014;83:1224–1225.
20. Munsch F, Sagner S, Asselineau J, et al. Stroke location is an independent predictor of cognitive outcome. Stroke 2016;47:66–73.
21. Bigourdan A, Munsch F, Coupe P, et al. Early fiber number ratio is a surrogate of corticospinal tract integrity and predicts motor recovery after stroke. Stroke 2016;47:1053–1059.
22. Kuchcinski G, Munsch F, Lopes R, et al. Thalamic alterations remote to infarct appear as focal iron accumulation and impact clinical outcome. Brain 2017;140:1932–1946.
23. Linek PA, Kuchcinski G, Munsch F, et al. Neurodegeneration of the substantia nigra after ipsilateral infarct: MRI R2* mapping and relationship to clinical outcome. Radiology 2019;291:438–448.
24. Bouronville C, Henon H, Dordaine T, et al. Identification of a specific functional network altered in poststroke cognitive impairment. Neurology 2018;90:e1879–e1888.
25. Banks JI, Marotta CA. Outcomes validity and reliability of the modified Rankin Scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 2007;38:1091–1096.
26. Pendlebury ST, Mariz J, Bull L, Mehta Z, Rothwell PM. MoCA, ACE-R, and MMSE versus the national Institute of neurological disorders and stroke-Canadian stroke network vascular cognitive impairment harmonization standards neuropsychological battery after TIA and stroke. Stroke 2012;43:464–469.

27. Sagen U, Vek TG, Mosum T, Morland T, Frisén A, Dammen T. Screening for anxiety and depression after stroke: comparison of the hospital anxiety and depression scale and the Montgomery and Asberg Depression Rating Scale. J Psychosom Res 2009;67:325–332.

28. 3DSlicer. Available at: slicer.org. Accessed November 2020.

29. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822–838.

30. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987;149:351–356.

31. Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis 2015;39:224–231.

32. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–174.

33. volBrain. Available at: volbrain.upv.es. Accessed November 2020.

34. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996;49:1373–1379.

35. Konig IR, Ziegler A, Blahnik E, et al. Predicting long-term outcome after acute ischemic stroke: a simple index works in patients from controlled clinical trials. Stroke 2008;39:1821–1826.

36. Onteddu SR, Goddeau RP, Jr., Minaeian A, Henninger N. Clinical impact of leukoaraiosis burden and chronological age on neurological deficit recovery and 90-day outcome after minor ischemic stroke. J Neurol Sci 2015;359:418–423.

37. Tang FY, Amiesimaka O, Harrison SL, et al. Longitudinal effect of stroke on cognition: a systematic review. J Am Heart Assoc 2018;7:e006443.