APPROSSIMATION OF OPERATORS IN BANACH SPACES

O.I. Reinov

§0. Notations

This work is the first part of some investigations which are concerned with an approx-
imation of ones or others classes of operators in Banach spaces (the approximation can
be understood in different sences). The main ojects of the study will be the spaces, pos-
sessing (or not possessing) the so-called approximation perperties APp and the bounded
approximation properties BAPp of order p, where p > 0 (see, e.g., [9], [10]). In the pro-
pounded part, we consider only the properties APp where p ⩾ 1, and our considerations
are bounded by some equivalent reformulations of the first-given definition from [9].
The main accent is put on the investigation of the conditions, under which the finite di-
mensional operators are dense in norm in the space of quasi-p-nuclear operators, as well
as in the space of all absolutely p-summing operators in the topology of ”πp-compact
convergence”.

We will keep the standard notations and the terminology. If A is a bounded subset
of a Banach space X, then \(\overline{\Gamma(A)} \) is the closed absolutely convex hull of A; \(X_A \) is the
Banach space with ”the unit ball” \(\overline{\Gamma(A)} \); \(\Phi_A : X_A \to X \) is the canonical embedding.
For \(B \subset X \), it is denoted by \(\overline{B}^\tau \) and \(\overline{B}^{\| \cdot \|} \) the closures of the set \(B \) in the topology \(\tau \)
and in the norm \(\| \cdot \| \) respectively. When it is necessary, we denote by \(\| \cdot \|_X \) the norm
in \(X \). Other notations: \(\Pi_p, \, QN_p, \, N_p, \, I_p \) are the ideals of absolutely p-summing, quasi-
p-nuclear, p-nuclear , strictly p-integral operators, respectively (see [8], [10]); \(X^* \hat{\otimes}_p Y \) is
the complete tensor product associated with \(N_p(X, Y); \, X^* \hat{\otimes}_p Y = X^* \otimes Y^{\pi_p} \) (i.e. the
closure of the set of finite dimensional operators in \(\Pi_p(X, Y) \)). Finally, if \(p \in [1, +\infty] \)
then \(p' \) is the adjoint exponent.

Everywhere bellow, we use to suppose that \(p \in [1, +\infty] \); however, the proofs are given
for \(p \in (1, +\infty) \) (with some non-essential changes, all proofs pass through the cases
\(p = 1 \) and \(p = +\infty \)). The domain of changes for \(p \) is noted specially only in the places
where it is necessary, or where a vagueness can be arised.

[R–KGU] Reinov O.I., Approximation of operators in Banach spaces, in book Primenenie funkcional’nogo
analiza v teorii priblizheni, Kalinin: KGU, 1985, 128-142.
§1. Approximation of absolutely p-summing operators

In this paragraph we will describe the topology τ_p in the space $\Pi_p(Y, X)$, for which the closures of convex sets in τ_p and in $*$-weak topology of the space $\Pi_p(Y, X)$ are coincident. This is an answer to a corresponding question of P. Saphar in [12], p.385. Thereafter, we will investigate some properties of the space Π_p, related to this new topology.

Thus, consider in the space $\Pi_p(Y, X)$ the topology τ_p of π_p-compact convergence, a local base (in zero) of which is defined by sets of type

$$\omega_{K,\varepsilon} = \{U \in \Pi_p(Y, X) : \pi_p(U\Phi_K) < \varepsilon\},$$

where $\varepsilon > 0, K = \overline{\Gamma(K)}$ — a compact subset of Y.

1.1. Proposition. Let R be a linear subspace in $\Pi_p(Y, X)$, containing $Y^* \otimes X$. Then $(R, \tau_p)'$ is isomorphic to a factor space of the space $X^* \widehat{\otimes} Y_p$. More precisely, if $\varphi \in (R, \tau_p)'$, then there exists an element $z = \sum_1^\infty x_n' \otimes y_n \in X^* \widehat{\otimes} Y_p$ such that

$$(*) \quad \varphi(U) = \text{trace } U \circ z, \ U \in R.$$

On the other hand, for every $z \in X^* \widehat{\otimes} Y_p$ the relation $(*)$ defines a linear continuous functional on (R, τ_p).

The proof of this proposition will be given in detail. However, we will omit details in analogous cases hereinafter. So, let φ be a linear continuous functional on (R, τ_p). Then one can find a neighborhood of zero $\omega_{K,\varepsilon} = \omega_{K,\varepsilon}^\varepsilon$, such that φ is bounded on it: $\forall U \in \omega_{K,\varepsilon}, |\varphi(U)| \leq 1$. We may assume that $\varepsilon = 1$. Consider the operator $U\Phi_K : Y_K \xrightarrow{\Phi_K} Y \xrightarrow{U} X$. Since the mapping Φ_K is compact, $U\Phi_K \in \text{QN}_p(Y_K, X)$. Put $\varphi_k(U\Phi_K) = \varphi(U)$ for $U \in R$. On the linear subspace $R_K = \{V \in \text{QN}_p(Y_K, X) : V = U\Phi_K\}$ of the space $\text{QN}_p(Y_K, X)$, the linear functional φ_K is bounded; if $V = U\Phi_K \in R_K$ and $\pi_p(V) \leq 1$, then $|\varphi_K(V)| = |\varphi(U)| \leq 1$. Therefore, φ_K can be extended to a linear continuous functional $\widehat{\varphi}$ on the whole $\text{QN}_p(Y_K, X)$; moreover, because of the injectivity of the ideal QN_p, considering X as a subspace of some space $C(K)$, we may assume that $\widehat{\varphi} \in \text{QN}_p(Y_K, C(K))^\ast$. Let us mention that

$$\varphi(jU\Phi_K) = \varphi(U) \quad (1)$$

(here j is an isometric embedding of X into $C(K)$).

Furthermore, since $\text{QN}_p(Y_K, C(K))^\ast = I_{p'}(C(K), (Y_K)^{**})$, we can find an operator $\Psi : C(K) \to (Y_K)^{**}$, for which

$$\varphi(A) = \text{trace } \Psi A, \ A \in (Y_K)^\ast \otimes C(K).$$

Let $A_n \in (Y_K)^\ast \otimes C(K), \pi_p(A_n - jU\Phi_K) \to 0$. Then

$$\varphi(jU\Phi_K) = \lim \text{trace } \Psi A_n \quad (2)$$

Consider the operator $\Phi_K^\ast \Psi : C(K) \xrightarrow{\Psi} (Y_K)^{**} \xrightarrow{\Phi_K^*} Y$. Since $\Psi \in I_{p'}$, and Φ_K is compact, we have $\Phi_K^\ast \Psi \in N_{p'}(C(K), Y) = C(K)^* \widehat{\otimes} Y_p$. Let $\sum_1^\infty \mu_n \otimes y_n \in C(K)^* \widehat{\otimes} Y_p$. Then
be a representation of the operator $\Phi^*_K \Psi$. Put $z = \sum j^*(\mu_n) \otimes y_n$. The element z generates an operator $\Phi^*_K \Psi j$ from X to Y. We will show now that $\text{trace } U \circ z = \overline{\varphi}(jU \Phi_K)$ (note that $U \circ z$ is an element of the space $X^* \hat{\otimes} X$, so the trace is well defined). We have:

\begin{align*}
(3) & \quad \text{trace } U \circ z = \text{trace } \left(\sum j^*(\mu_n) \otimes Uy_n \right) = \sum \langle j^*(\mu_n), Uy_n \rangle = \\
& = \sum \langle \mu_n, jUy_n \rangle = \text{trace } jU\Phi^*_K \Psi = \text{trace } (jU\Phi_K)^* \Psi,
\end{align*}

where $(jU\Phi_K)^* \Psi : C(K) \xrightarrow{\Psi} (Y_K)^* \xrightarrow{\Phi_K^*} Y \xrightarrow{U} X \xrightarrow{j} C(K)$. Since $\pi_p(A_n - jU\Phi_K) \to 0$, then $\pi_p(A_n^* - (jU\Phi_K)^*) \to 0$. Moreover, if $A := A_n = \sum_{1}^{N} w_m \otimes f_m \in (Y_K)^* \otimes C(K)$, then

$$
\text{trace } A_n^* \Psi = \sum_{m} \langle \Psi^* w_m, f_m \rangle = \sum_{m} \langle w_m, \Psi f_m \rangle = \text{trace } \Psi A.
$$

Hence, $\text{trace } (jU\Phi_K)^* \Psi = \lim \text{trace } A_n^* \Psi = \lim \text{trace } \Psi A_n$. Now, it follows from (3) and (2) that $\overline{\varphi}(jU\Phi_K) = \text{trace } U \circ z$. Finally, we get from (1): $\varphi(U) = \text{trace } U \circ z$. Thus, the functional φ is defined by an element of $X^* \hat{\otimes}_p Y$.

Inversely, if $z \in X^* \hat{\otimes}_q Y$, put $\varphi(U) = \text{trace } U \circ z$ for $U \in R$ (the trace is defined since $U \circ z \in X^* \hat{\otimes} X$). We have to show that the linear functional φ is bounded on a neighborhood $\omega_{K,\varepsilon}$ of zero in τ_p. For this, we need

1.2. Lemma. If $z \in X^* \hat{\otimes}_q Y$, then $z \in X^* \hat{\otimes}_q Y_K$, where $K = \overline{\Gamma(K)}$ is a compact in Y.

Proof of the lemma. Let $z = \sum x'_n \otimes y_n$, $\{c_n\} \subset c_0$ and $\sum \|x'_n\|^q c_n^{-1} < +\infty$. Consider the operator $A_1 : l_q \to Y$, $A_1(a_n) = \sum a_nc_ny_n$. Since this operator is compact, one can find a compact $K \subset Y$ and an operator $A_2 : l_q \to Y_K$, for which $A_1 = \Phi_K A_2$. Put $z_0 = \sum c_n^{-1} x'_n \otimes e_n (e_n$ are orths in l_q). Then $\overline{z} := (1 \otimes A_2)(z_0) \in X^* \hat{\otimes}_q Y_K$, and $\Phi_K(\overline{z}) = z$. \blacksquare

Let us continue the proof of the theorem. Let K be a compact subset of Y, for which $z \in X^* \hat{\otimes}_p Y_K$. If $U \in \omega_{K,1}$, then $\pi_p(U\Phi_K) < 1$ and $|\text{trace } U\Phi_K \circ z| \leq \|z\|_{X^* \hat{\otimes}_p Y_K} \cdot \pi_p(U\Phi_K) \leq C$. \blacksquare

1.3. Corollary. $(R, \tau_p)' = (R, \sigma)'$, where $\sigma = \sigma(R, X^* \hat{\otimes}_p Y)$. Thus, the closures of convex subsets of the space $\Pi_p(Y, X)$ in τ_p and in σ are the same. \blacksquare

Denote by $X^* \hat{\otimes}_p Y$ the closure of the set $X^* \otimes Y$ in the space $\Pi_p(X, Y**)$ (dual to $Y^* \hat{\otimes}_p X$).

1.4. Proposition. Let A be the intersection of the unit ball of the (dual to $X^* \hat{\otimes}_p Y$) space $G = G(Y, X^*)$ with the subspace $Y^* \otimes X$. $*$-weak closure of the set A in $G \cap \Pi_p(Y, X)$ coincides with the closure of A in $(\Pi_p(Y, X), \tau_p)$.

Proof. Let us consider the canonical mappings

$$
X^* \hat{\otimes}_p Y \xrightarrow{j} X^* \hat{\otimes}_p Y,
\Pi_p(Y, X**) \xleftarrow{j^*} G(Y, X**).
$$

\[
\begin{align*}
X^* \hat{\otimes}_p Y & \xrightarrow{j} X^* \hat{\otimes}_p Y, \\
\Pi_p(Y, X**) & \xleftarrow{j^*} G(Y, X**).
\end{align*}
\]
Since \(j^* \) is one-to-one, then the closures of the bounded sets in \(G(Y, X^{**}) \), in topologies \(\sigma(G, X^* \hat{\otimes}_p Y) \) and \(\sigma(G, X^* \hat{\otimes}_p Y) \) are the same. Therefore, if \(B \) is a convex bounded set in \(G(Y, X) \subset \Pi_p(Y, X) \), then the closure of the set \(B \) in \((\Pi_p(Y, X) \cap G, \sigma(G, X^* \hat{\otimes}_p Y)) \) coincides with the closure of the set \(B \) in the space \((\Pi_p(Y, X), \sigma(\Pi_p(Y, X), X^* \hat{\otimes}_p Y)) \) and, therefore, by Corollary 1.3, — with the closure of \(B \) in \((\Pi_p(Y, X), \tau_p) \).

1.5. Corollary. With notations of the proposition 1.4, the closure of the set \(A \) in \(\tau_p \) coincides with the closure of \(A \) in the space \(\text{L}(Y, X) \) in the topology of compact convergence.

For the proof, it is enough to use the previous assertion, considering the canonical mapping from \(X^* \hat{\otimes}_1 Y \) into \(X^* \hat{\otimes}_p Y \) instead of the map \(j \) from the proof of the proposition 1.4 (and to apply either Proposition 1.1 for \(p = +\infty \), or results on duality from \[4\]).

1.6. Corollary. Let \(C > 0 \) and \(T \in \Pi_p(Y, X) \). The following assertions are equivalent:

1) there is a net \(\{T_\alpha\}, T_\alpha \in Y^* \otimes X \), converging to \(T \) in the topology \(\tau_p \) such that \(\pi_p(T_\alpha) \leq C \);

2) there is a net \(\{T_\alpha\}, T_\alpha \in Y^* \otimes X \), converging to \(T \) in the topology of compact convergence, such that \(\pi_p(T_\alpha) \leq C \).

1.7. Proposition. For an operator \(T \in \Pi_p(Y, X), \overline{T(Y)} = X \), the following are the same:

1) \(T \in \overline{Y^* \otimes X}^{\tau_p} \);

2) there is a net of operators \(R_\alpha \in Y^* \otimes Y \) such that \(TR_\alpha \to T \) in the topology \(\tau_p \).

Proof. Assuming that 2) is not valid, we (by Corollary 1.3) get:

\[
\exists R_\alpha \in Y^* \otimes Y : \overline{TR_\alpha} \to \text{T in } (\Pi_p(Y, X), \sigma(\Pi_p(Y, X), X^* \hat{\otimes}_p Y)).
\]

Consider the associated with \(T \) mappings:

\[
\begin{align*}
X^* \hat{\otimes}_p Y & \xrightarrow{\tilde{T}} Y^* \hat{\otimes}_1 Y, \\
\Pi_p(Y, X^{**}) & \xleftarrow{\tilde{T}^*} \text{L}(Y, Y^{**}).
\end{align*}
\]

where \(\tilde{T}(z) = z \circ T \) for \(z \in X^* \hat{\otimes}_p Y \). Let \(Z = \overline{\tilde{T}^*(Y^* \otimes Y)} \) (the closure is taken in the subspace \(\Pi_p(Y, X) \) in *-weak topology). It follows from (4) that \(T \) is not zero on the subspace \(Z^\perp \subset X^* \hat{\otimes}_p Y \), i.e. there exists an element \(A \in Z^\perp \) such that \(\langle T, A \rangle = \text{trace} \, AT = 1 \). But \(AT = \tilde{T}(A) \), and if \(R \in Y^* \otimes Y \), then \(\langle \tilde{T}(A), R \rangle = \langle A, (\tilde{T})^*(R) \rangle = 0 \). Hence, the element \(\tilde{T}(A) \) of the projective tensor product \(Y^* \hat{\otimes} Y \) is not zero (since trace \(\tilde{T}(A) = 1 \), but generates a null-operator in \(Y \). For any \(y' \in Y^* \) and \(Ty \in T(Y) \) we have: \(\langle A, Ty \otimes y' \rangle = \langle ATy, y' \rangle = 0 \). Since \(\overline{T(Y)} = X \), we obtain that a non-zero tensor element \(A \in X^* \hat{\otimes}_p Y \) generates a zero-operator. Again, by using the equality trace \(AT = 1 \), we conclude that \(T \) can not be approximated in *-weak topology by finite rank operators. Now, it follows from Corollary 1.3 that 1) is not fulfilled.

Next two statements give us sufficient (but not necessary, as we will see below) conditions for the density of the set of all finite rank operators in the space of operators \(\Pi_p(Y, X) \) in the topology \(\tau_p \) of \(\pi_p \)-compact convergence.
1.8. Proposition1. If $\text{QN}_p(Y, X) = \overline{Y^* \otimes X}^{\tau_p}$ for every Banach space Y, then for each $Y \subset \text{Pi}_p(Y, X) = \overline{Y^* \otimes X}^{\tau_p}$.

Proof. Let $U \in \text{Pi}_p(Y, X)$, $\varepsilon > 0$, $K = \overline{\text{Ker}(U)}$ be a compact in Y. By the assumptions, there is an operator $V \in (Y_K)^* \otimes X$, such that $\pi_p(V - U\Phi_K) < \varepsilon$. We need to set successfully instead of V an operator \tilde{V}_K, where $\tilde{V} \in Y^* \otimes X$. Let $V = \sum_{n=1}^N z_n \otimes x_n$. Note that we can consider only the case where Φ_K^{**} is one-to-one (else, with the help of the construction of \cite{2} we change Y_K by a space Y_{K_0}, for which the operator Φ_{K_0} is compact and the operator $\Phi_{K_0}^{**}$ is one-to-one). In this case Y^* is norm dense in $(Y_K)^*$ and, therefore, for every positive number sequence $\{\varepsilon_n\}$ there exist the elements $y'_n \in Y^*$, for which $\|y'_n - z_n\|_{Y^*_K} < \varepsilon_n$. Put $V = \sum_{n=1}^N y'_n \otimes x_n \in Y^* \otimes X$. Let $\{a_n\}$ be a sequence of the elements of the space Y_K, such that $\sup \{\sum|\langle a_n, a'\rangle|: \|a'\|_{Y^*_K} \leq 1\} \leq 1$. We have:

$$\sum_{i=1}^m \|\langle \tilde{V}_K - V\rangle a_i\|^p \leq \sum_{i=1}^m \sum_{n=1}^N |\langle y'_n - z_n, a_i\rangle| \left(\sum_{n=1}^N \|x_n\|^{p'}\right)^{p/p'} \leq \left(\sum_{n=1}^N \|x_n\|^{p'}\right)^{p/p'} \sum_{n=1}^N |\langle y'_n - z_n\rangle_{Y^*_K}| \left(\sum_{n=1}^N \|x_n\|^{p'}\right)^{p/p'} \varepsilon_n.$$

If we take ε_n small enough then the last number is less then ε, and, from the inequality $\pi_p(V - U\Phi_K) \leq \varepsilon$, we get that $\pi_p(\tilde{V}_K - U\Phi_K) \leq \varepsilon + \pi_p(V - \tilde{V}_K) \leq 2\varepsilon$. Hence, $\tilde{V} - U \in \omega_{K,2\varepsilon}$. Thus, we have shown that for every neighborhood $\omega_{K,\varepsilon}$ there exists an operator $\tilde{V} \in Y^* \otimes X$, for which $\tilde{V} - U \in \omega_{K,\varepsilon}$. Therefore $U \in \overline{Y^* \otimes X}^{\tau_p}$.

\textbf{1.9. Proposition.} If the canonical mapping $j : X^* \hat{\otimes}_{p'} Y \to N_p(X, Y)$ is one-to-one then $\text{Pi}_p(Y, X) = \overline{Y^* \otimes X}^{\tau_p}$.

Proof. If the map j is one-to-one then the annihilator $j^{-1}(0)^\perp$ of its kernel in the space, dual to $X^* \hat{\otimes}_{p'} Y$, coincides with $\text{Pi}_p(Y, X^{**})$. On the other hand, in any case $j^{-1}(0)^\perp = \overline{Y^* \otimes X}^{*}$ (the closure in *-weak topology of the space $\text{Pi}_p(Y, X^{**})$); by Corollary 1.3,

$$\text{Pi}_p(Y, X) \cap \overline{Y^* \otimes X}^{*} = \overline{Y^* \otimes X}^{\tau_p}.$$

Therefore, $\text{Pi}_p(Y, X) = \overline{Y^* \otimes X}^{\tau_p}$.

For a reflexive space X, the dual space to $X^* \hat{\otimes}_{p'} Y$ is equal to $\text{Pi}_p(Y, X)$. Consequently, it follows from 1.3 and 1.9

\textbf{1.10. Corollary.} For a reflexive space X the canonical mapping $j : X^* \hat{\otimes}_{p'} Y \to N_p(X, Y)$ is one-to-one iff the set of finite rank operators is dense in the space $\text{Pi}_p(Y, X)$ in the topology τ_p of π_p-compact convergence.

To conclude this part of our considerations, let us give an assertion which shows the following. It follows from the existing of an absolutely p-summing operator, which is non-approximated in the topology τ_p, that there esits a non-approximated (in the same topology) quasi-p-nuclear operator (with values in the same space).

1In the original paper [R–KGU] this Proposition was sounded as follows:

"If $\text{QN}_p(Y, X) = \overline{Y^* \otimes X}^{\tau_p}$, then $\text{Pi}_p(Y, X) = \overline{Y^* \otimes X}^{\tau_p}$."
1.11. Proposition. If there exists an operator $T \in \Pi_p(Y, X) \setminus Y^* \otimes X^{\tau_p}$, then there exist a reflexive space Z and an operator $U \in QN_p(Z, X)$, which is not in the closure $Y^* \otimes X^{\tau_p}$.

For the proof it is enough to remember the definition of the topology τ_p and to use the following two facts: a) if V is a compact operator then it can be represented as a composition of two compact operators; b) the product AB of a compact operator B and absolutely p-summing operator A is a quasi-p-nuclear map (see [5], [8]).

1.12. Remark. 2

§2. Approximation properties of Banach spaces

In this paragraph, we fix the space of images of operators (or the spaces where operators are defined), and investigate the conditions under which it is possible to approximate (by finite rank operators) all absolutely p-summing mappings with values in a given space (or acting from a given space). 3

2.1. Proposition. For a Banach space X the following are equivalent:

1) for every Banach space Y the equality $QN_p(Y, X) = Y^* \otimes X^{\pi_p}$ holds;
2) for every Banach space Y the equality $\Pi_p(Y, X) = Y^* \otimes X^{\tau_p}$ holds;
3) for every Banach space Y one has $QN_p(Y, X) \subset Y^* \otimes X^{\tau_p}$;
4) for every reflexive Banach space Y the equality $QN_p(Y, X) = Y^* \otimes X^{\tau_p}$ holds.

Proof. Implications 2) \implies 3) \implies 4) are evident; 1) \implies 2) by Proposition 1.8.

For the proof of the implication 4) \implies 1), consider an operator $V \in QN_p(Y, X)$. By using the results of [2], we can factorize the operator V by the following way: $V = UA$, where $A \in L_c(Y, Z)$, $U \in QN_p(Z, X)$, and, moreover, the space Z is reflexive. Put $K = A(Ball_Y)$. From 4), it follows that

$$\forall \varepsilon > 0 \exists \tilde{V} \in Z^* \otimes X : \tilde{V} - U \in \omega_{K, \varepsilon},$$

i.e. $\pi_p(\tilde{V} \Phi_K - U \Phi_K) < \varepsilon$. Hence, $\pi_p(V - \tilde{V} A) \leq C \pi_p(U \Phi_K - \tilde{V} \Phi_K) \leq C \varepsilon$. ■

2.2. Corollary. If for every reflexive space Y the canonical mapping $X^* \hat{\otimes}_p Y \to N_p'(X, Y)$ is one-to-one then for each Banach space Y the equality $QN_p(Y, X) = Y^* \otimes X^{\tau_p}$ holds.

For the proof, Proposition 1.9 may be applied, and then use the implication 2) \implies 1) of the previous fact. ■

It follows from Corollaries 1.10 and 2.2

2In the original paper [R–KGU] this non-essential remark is sounded exactly as "At the moment, I do not know whether the inverse of Proposition 1.8 is true in the case where the space X is reflexive.

3In the original paper [R–KGU], there was here the phrase "The next statement, among other things, gives us a partial inversion of Proposition 1.8."

4In the original paper [R–KGU], there was here an evident misprint: "for every Banach space Y the equality $QN_p(Y, X) = Y^* \otimes X^{\tau_p}$ holds;"
2.3. **Corollary.** For a reflexive Banach space X the following are equivalent:

1) for each space Y the canonical mapping $X^* \otimes_{p'} Y \rightarrow N_{p'}(X, Y)$ is one-to-one;
2) for each space Y the set of finite rank operators is dense in the Banach space $QN_p(Y, X)$.

The next statement, among other things, gives us a partial inversion of Proposition 1.9.

2.4. **Corollary.** For every Banach space X the following are equivalent:

1) for each space Y the canonical mapping $Y^* \otimes_{p'} X \rightarrow N_{p'}(Y, X)$ is one-to-one;
2) for each reflexive Banach space Y the canonical mapping $Y^* \otimes_{p'} X \rightarrow N_{p'}(Y, X)$ is one-to-one;
3) for each (reflexive) Banach space Y $X^* \otimes_{p'} Y^{\tau_{p'}} = \Pi_{p'}(X, Y)$.

Proof. Concerning the equivalence $1) \iff 2)$, see [1]; the implications $1) \implies 3)$ and $3) \implies 2)$ follow from 1.9 and 1.10, respectively.

The previous statement yields the following well known result:

2.5. **Corollary.** If a Banach space X has the approximation property then for any $p > 1$ and any space Y the canonical mapping $Y^* \otimes_{p'} X \rightarrow N_{p'}(Y, X)$ is one-to-one.

The above results lead us to the following definition which is equivalent to corresponding definition in [9], [10], [11].

2.6. **Definition.** Let $p \geq 1$. A Banach space X has the property AP_p (the approximation property of order p), if every absolutely p'-summing operator, acting from the space X, can be approximated in the topology of $\pi_{p'}$-compact convergence $\tau_{p'}$ by operators of finite rank.

It follows from Proposition 1.8 and Corollary 2.4 that

2.7. **Corollary.** If for each Banach space Y the equality $QN_{p'}(X, Y) = X^* \otimes_{p'} Y^{\tau_{p'}}$ holds then the space X has the property AP_p.

Recall for the sake of completeness the following assertion on a characterization of the spaces with the property AP_p (a proof can be found in [1]).

2.8. **Proposition.** A Banach space X has the property AP_p iff for every Banach space Y, for every operator $T \in \Pi_{p'}(X, Y)$, for each weakly p'-summable sequence $\{x_k\}$ of elements of the space X and for every rank operator $R : X \rightarrow Y$, such that $\sum \|Ux_k - Rx_k\| < \varepsilon$. p'

As the property AP_1 (the usual approximation property of Grothendieck), the properties AP_p are very useful in investigations of the questions of different kinds in the geometrical theory of operators (for instance, when describing the dual spaces of some spaces of operators; so, if X possesses the property AP_p, then $N_p(Y, X)^* = \Pi_{p'}(X, Y^{**})$ for every space Y). However, we would like (concluding this paragraph) to adduce a simple fact, which is valid without any assumptions on approximation (see [3] for $p = 1$ and [12] for $p > 1$, where an analogous assertion was proved with a supposition of approximation property; see also [7], Theorem 4.6, where it is obtained a little bit less general result.).
2.9. Proposition. Let $p \in [1, +\infty)$. The following are equivalent

1) Banach spaces X and Y are reflexive;
2) the space $\text{QN}_p(X, Y)$ is reflexive;
3) the space $\Pi_p(X, Y)$ is reflexive.

Proof. Since, for reflexive spaces X and Y, the equality $\text{QN}_p(X, Y) = \Pi_p(X, Y)$ holds, it is sufficient to prove only the implication $1) \implies 2)$. For this, imbed the space Y into some space $C(K)$ isometrically, and let us consider the space $\text{QN}_p(X, Y)$ as a subspace of $\text{QN}_p(X, C(K))$. Then any continuous functional Φ on $\text{QN}_p(X, Y)$ has an extension with the same norm to a linear functional $\tilde{\Phi}$ on $\text{QN}_p(X, C(K))$. In turn, the functional $\tilde{\Phi}$ is generated by an operator $U \in \text{I}_{p'}(C(K), X^{**})$, so $\langle \Phi, T \rangle = \text{trace } U_j T$ for $T \in \text{QN}_p(X, Y)$ (where j is the imbedding of Y into $C(K)$). Since the space Y is reflexive, one has $U_j \in \text{N}_{p'}(Y, X)$ [7]. Therefore, as a functional, Φ is generated by an element of the space $Y^{*} \hat{\otimes} \text{p'}_p X$. Thus, the natural mapping $Y^{*} \hat{\otimes} \text{p'}_p X \rightarrow \text{QN}_p(X, Y)^*$ is an "onto" map. Since $(Y^{*} \hat{\otimes} \text{p'}_p X)^* = \text{QN}_p(X, Y)$, we get that the space $\text{QN}_p(X, Y)$ is reflexive. ■

§3. Counterexamples

A lot of counterexamples concerning AP’s can be found in [9], [10], [11]. We will use them partially. Recall that for any $p \geq 1$, $p \neq 2$, there exists a separable reflexive Banach space without the property AP. Moreover, for every $p \geq 1$, $p \neq 2$, there exist a separable reflexive E, an operator $R \in \Pi_{p'}(E, E)$ and a tensor element $t \in E^{*} \hat{\otimes} \text{p}_p E$, so that trace $t \circ R = 1$ and trace $t \circ A = 0$ for each finite rank operator $A \in E^{*} \otimes E$ (for details, we refer the reader to the papers [9], [10], [11]). It is often very useful to apply the following fact when constructing some counterexamples (see [6]):

3.1. Lemma. For every separable Banach space E there exist a separable conjugate Banach space $H = Y^{*}$ with a basis and operators $Q : H \rightarrow E$ and $U : H^{*} \rightarrow E^{*}$ so that $Q(H) = E$, $U(H^{*}) = E^{*}$, $\|U\| \leq 1$, $\|Q\| \leq 1$, $UQ^{*} = \text{id}_{E^{*}}$ and the space $(\text{id}_{E^{*}} - Q^{*}U)(H^{*})$ is isomorphic to the space Y.

Now we are ready for constructions of our counterexamples. Firstly, we will show that the inversion of Proposition 1.9 and Corollary 2.2 are not valid.

3.2. Proposition. For every $p \in [1, +\infty]$, $p \neq 2$, there exist a separable reflexive space E, a separable conjugate space H with a basis such that the canonical mapping $j : H^{*} \hat{\otimes} \text{p'}_p E \rightarrow \text{N}_{p'}(H, E)$ is not one-to-one. On the other hand, since H has the AP, $\text{QN}_p(E, H) = E^{*} \hat{\otimes} \text{p'}_p H$ and $\Pi_p(E, H) = H^{*} \hat{\otimes} \text{p'}_p H$.

Proof. Let E, $t \in E^{*} \hat{\otimes} \text{p'}_p E$ and $R \in \Pi_{p}(E, E)$ be the mentioned above spaces, tensor element and operator so that trace $t \circ R = 1$ and $t = 0$ as an operator. Set $g = t \circ Q \in H^{*} \hat{\otimes} \text{p'}_p E$ and $V = U^{*} R \in \text{QN}_p(E, H^{**})$. Then trace $V \circ g = 1$ (consequently, the tensor element g is not equal to zero) and $g = 0$ as an operator. ■

3.3. Corollary. For every $p \in [1, +\infty]$, $p \neq 2$, there exist a Banach space Z, an element $z \in Z^{*} \hat{\otimes} \text{p'}_p Z$ and an operator $\Psi \in \Pi_p(Z, Z^{**})$ such that trace $\Psi \circ z = 1$, but trace $\Phi \circ z = 0$ for all $\Phi \in \Pi_p(Z, Z)$.

8
Proof. Let us use notation introduced in the proof of Proposition 3.2. Let $\sum y'_n \otimes y_n$ be any representation of a tensor element $g \in H^* \hat{\otimes}_p E$. Note that $\text{trace } A \circ g = 0$ for every operator $A \in \Pi_p(E, H)$ (because of the space H has approximation property). Put $Z = H + E$, $z = \sum (y'_n, 0) \otimes (0, y_n)$ and define the operator $\Psi \in QN_p(Z, Z^{**})$ by $\Psi(h, y) = (V y, 0)$. We have:

$$\text{trace } \Psi \circ z = \sum \langle (y'_n, 0), (V y_n, 0) \rangle = \sum \langle y'_n, V y_n \rangle = \text{trace } V \circ g = 1.$$

On the other hand, denoting by P_H and P_E the natural projectors from Z onto H and E respectively, we have, for arbitrary operator $\Phi \in \Pi_p(Z, Z)$,

$$\Phi(h, y) = \Phi |_H(h) + \Phi |_E(y) = (P_H \Phi |_H(h) + P |_E \Phi |_H(h)) + (P_H \Phi |_E(y) + P |_E \Phi |_E(y)),$$

whence,

$$\text{trace } \Phi \circ z = \sum \langle (y'_n, 0), [P_H \Phi(0, y_n)] \rangle = \sum \langle (y'_n, 0), P_H \Phi |_E(y_n) \rangle.$$

Denoting by A the operator $P_H \Phi |_E$, we get:

$$A \in \Pi_p(E, H); \quad \text{trace } \Phi \circ z = \text{trace } A \circ g = 0. \quad \blacksquare$$

3.4. Remark. For $p = +\infty$ we get nonzero tensor element $z \in Z^* \hat{\otimes}_1 Z$, vanishing on the subspace $L(Z, Z)$ of the space $L(Z, Z^{**})$. This is an answer to a question of Swedish mathematician Sten Kaijser, who was one who is directed my attention for a possibility of the existence of such an element z.

Now we will show that the inversion of Proposition 1.8\(^5\) and Corollary 2.7 are invalid too.

3.5. Proposition. For every $p \in [1, +\infty]$, $p \neq 2$, there exist a separable reflexive space E, a separable conjugate space H with a basis (so, with the property $\text{AP}_{p'}$) such that $QN_p(H, E) \neq H^* \hat{\otimes}_p E^{**}$; on the other hand, $\Pi_p(H, E) = H^* \hat{\otimes}_p E^{**}$ (see Corollary 2.4).

Proof. With the notation of the proof of Proposition 3.2, set $L = RQ$. Since $\text{trace } (t \circ RQ^{**} Y^*) = 1$ and $t = 0$ as an operator, the map RQ^{**} can not be approximated by finite rank operators in the space $QN_p(H^{**}, E)$. Moreover, $L \not\subset H^* \hat{\otimes}_p E^{**}$. \quad \blacksquare

In conclusion, let us bring the following, at first sight somewhat surprising, statement which shows, roughly speaking, that there are spaces X and Y, for which the closures in $(\Pi_p(X, Y^{**}), w^*)$ of the set of all finite dimensional operators is minimal: coincides with $X^* \hat{\otimes}_p Y$.

\(^5\)In [R-KGU] I meant that, for fixed X and Y, in Proposition 1.8

$$\Pi_p(Y, X) = Y^* \hat{\otimes} X^{**} \Rightarrow QN_p(Y, X) = Y^* \hat{\otimes} X^{**}$$
3.6. Proposition. For every $p \in [1, +\infty)$ there exist (separable and reflexive) Banach spaces X and Y such that

$$X^* \hat{\otimes} Y^\tau_p = X^* \hat{\otimes}_p Y.$$

Proof. Let X and Y be th separable and reflexive spaces such that the natural mapping $Y^* \hat{\otimes}_p X \rightarrow N_{p'}(Y, X)$ is not one-to-one. By Proposition 1.1, the dual space to $N_{p'}(Y, X)$ can be identified with a subspace $X^* \hat{\otimes} Y^\tau_p$ of the spaces $\Pi_p(X, Y)$ (see also the proof of Proposition 1.9). Since this subspace is reflexive (Proposition 2.9) and $(X^* \hat{\otimes}_p Y)^* = N_{p'}(Y, X)$, we have: $X^* \hat{\otimes}_p Y = X^* \otimes Y^\tau_p$. ■

3.7. Remark. Seemingly, it is unknown whether Proposition 3.6 is true in the case where $p = +\infty$.

References

1. Bourgain J., Reinov O.I., On the approximation properties for the space H^∞, Math. Nachr. 122 (1985), 19-27.
2. Davis W.J, Figiel T., Johnson W.B., Pelczynski A., Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311-327, MR50#8010.
3. Y.Gordon, D.R.Lewis, H.R.Retherford, Banach ideals of operators with applications, J. Funct. Anal. 14 (1973), no. 1, 85-129.
4. Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), pp. 196 + 140.
5. Johnson W.B., Factoring compact operators, Israel J. Math. 9 (1971), 337-345.
6. Lindenstrauss J., On James’ paper ”Separable Conjugate Spaces”, Israel J. Math. 9 (1971), 279-284.
7. Makarov B.M., Samarskij V.G., Weak sequential completeness and close properties of he spaces of operators, Theory of operators and theory of functions, 1, LGU, Leningrad, 1983, 122-144
8. Pietsch A., Operator ideals, North-Holland, Deutscher Verlag der Wiss., Berlin, 1978. 451 p.
9. Reinov O.I., Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints, Doklady AN SSSR 256 (1981), no. 1, 43-47.
10. Reinov O.I., Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints, Math. Nachr. 109 (1982), 125-134.
11. Reinov O.I., Disappering tensor elements in the scale of p-nuclear operators, Theory of operators and theory of functions (LGU) (1983), 145-165.
12. Saphar P., Produits tensoriels d’espaces de Banach et classes d’applications lineaires, Studia Math. 38 (1970), 71-100 MR43#878.