Evaluation of Patients Treated in Intensive Care Due to COVID-19: A Retrospective Study

Gökhan Kılınç and Aslı Akcan Atasoy

Department of Anesthesiology and Reanimation Intensive Care, Balıkesir Atatürk City Hospital, Balıkesir, Turkey

ABSTRACT

Background: The aim of this study is to report the demographic characteristics, clinical features, treatment protocols, comorbidities, imaging findings, prognosis and factors affecting mortality in critically ill patients with coronavirus disease 2019 (COVID-19) in the intensive care unit.

Materials and Methods: This retrospective cohort study consists of adult (≥18 years old) patients hospitalized in a tertiary hospital intensive care unit with COVID-19. The independent effects of possible factors identified in previous analyzes on survival were analyzed using univariate and multivariate logistic regression analysis.

Results: The mean age of all patients was 70.2 ± 13.9 years. Of the 200 patients, 139 (69.5%) had died. White blood cells (19.2 ± 76.1 × 10^9 per L), neutrophil/lymphocyte ratio (15.4 ± 65.1), d-dimer (2,558.4 ± 4,574.2 ng/mL), ferritin (1,481.2 ± 4,447.4 μg/L) and C-reactive protein (CRP) (12.1 ± 11.9 mg/dL) levels were high at the time of admission. According to the results of univariate regression analysis; presence of additional disease (odds ratio [OR]: 3.837; P = 0.015), older age (OR: 1.027; P = 0.015), reverse transcriptase-polymerase chain reaction (RT-PCR) positivity (OR: 2.58; P = 0.019), higher heart rate (OR = 1.027; P = 0.028), higher APACHE II score (OR: 1.049; P = 0.012), higher sequential organ failure assessment (SOFA) score (OR: 1.479; P = 0.014), high d-dimer levels at admission (OR: 3.459; P = 0.002) and diabetes mellitus (OR: 3.433; P = 0.035) increase the risk of death. When patients with full data for all variables in the multivariate logistic regression model were evaluated; positive RT-PCR (OR=4.105; P = 0.015), older age (OR: 1.027; P = 0.015), reverse transcriptase-polymerase chain reaction (RT-PCR) positivity (OR: 2.58; P = 0.019), higher heart rate (OR = 1.027; P = 0.028), higher APACHE II score (OR: 1.049; P = 0.012), higher sequential organ failure assessment (SOFA) score (OR: 1.479; P = 0.014), high d-dimer levels (OR: 3.180; P <0.001) and high CRP levels (OR: 1.035; P = 0.028) increases the risk of death. When patients with full data for all variables in the multivariate logistic regression model were evaluated; positive RT-PCR (OR=4.105; P = 0.005), older age (OR: 1.033; P = 0.024), higher heart rate (OR: 1.042; P = 0.006), higher (SOFA) score (OR: 1.477; P <0.001), high d-dimer levels at admission (OR: 3.459; P = 0.002) and diabetes mellitus (OR: 3.433; P = 0.035) increase the risk of death.

Conclusion: Mortality of critically ill patients with COVID-19 pneumonia was high (69.5%). Older patients and acute respiratory distress syndrome were at higher risk of death. High SOFA score, high d-dimer at admission, and presence of diabetes mellitus were associated with high mortality.

Keywords: COVID-19; Prognosis; Intensive care unit; RT-PCR, APACHE
INTRODUCTION

More than 500 million people in the world have been diagnosed with coronavirus disease 2019 (COVID-19) and more than 6 million patients have died. In Turkey, the diagnosis of COVID-19 has reached fifteen million and the number of deaths has reached one hundred thousand [1]. Patients infected with COVID-19 may present with symptoms ranging from mild to severe and a large proportion of the population is asymptomatic carriers. The most common initial symptoms of COVID-19 are cough, fever, fatigue, headache, myalgia, and diarrhea [2, 3]. Severe illness usually begins about 1 week after the onset of symptoms. Dyspnea is the most common symptom of severe disease and often accompanies hypoxemia [2, 4].

Approximately 5 - 15% of patients with COVID-19 infection require intensive care surveillance and respiratory support. Intensive care units (ICUs) have an important role in the management of most of these patients, but the mortality rate in this group is high. Mortality is even higher in patients who need invasive mechanical ventilator therapy [5]. Most patients with severe COVID-19 have lymphopenia and some have thromboembolic complications as well as central or peripheral nervous system disorders [6-8]. Severe COVID-19 can also cause of acute organ damage in addition to cardiac arrhythmias, rhabdomyolysis, coagulopathy and shock [9]. These organ failures may be associated with clinical and laboratory manifestations of inflammation, including high fever, thrombocytopenia, hyperferritinemia, and high levels of C-reactive protein (CRP) and interleukin-6 [10]. Patients should have chest radiographs and usually show bilateral consolidations or ground glass opacities [11].

In this report, we aimed to explain the demographic characteristics, comorbidities, treatment protocols, clinical outcomes and factors affecting mortality of critically ill patients admitted to the ICU of our hospital due to COVID-19.

MATERIALS AND METHODS

1. Study design
This retrospective cohort study consists of adult patients (≥18 years old) hospitalized in the ICU of Balkesir Atatürk City Hospital. All adult patients diagnosed with COVID-19, according to World Health Organization (WHO) guidance, were screened and included those who died or were discharged between 1 April 2020 (i.e., when the first patients were admitted) and 1 July 2020.

Patients with COVID-19 infection or clinically and radiologically confirmed COVID-19 infection admitted to adult ICUs were included in the study. The researchers analyzed only the anonymized data.

The case definition was made according to the definitions of the WHO COVID-19. WHO suggests that COVID-19 be suspected in patients with acute respiratory illness and fever, plus travel to or residence in a location reporting community transmission, or contact with a confirmed or probable COVID-19 case in the 14 days before symptom onset; and in patients with severe acute respiratory illness who require hospitalisation without an alternative diagnosis that fully explains the clinical presentation.
A confirmed case of COVID-19 was identified by a positive result on the reverse transcriptase-polymerase chain reaction (RT-PCR) test or rapid antibody test of a sample collected from a nasopharyngeal swab or endotracheal aspirate. During Severe acute respiratory syndrome coronavirus 2 RT-PCR, we used Bio-speedy RT-qPCR kit (Bioeksen, Istanbul, Turkey), that detects Orf1ab (N genes) (FAM) and RNaseP (internal control) (HEX). Patient data were obtained from electronic data stored in software on hospital computers.

2. Ethics statement
Ethical clearance for this study was obtained from the Balıkesir University Faculty of Medicine Institutional Review Board (IRB number is KY-2020–01.01) and the need for informed consent was waived by the committee. And also necessary permissions were obtained from Republic of Turkey Ministry of Health for the study.

3. Data collection
The files of all patients over the age of 18 who were hospitalized in the ICU with a prediagnosis of COVID-19 were scanned retrospectively. Demographic data such as age and sex, chronic diseases, laboratory values (blood cell count, neutrophil/lymphocyte ratio, international normalized ratio (INR), aspartate aminotransferase, alanine aminotransferase, d-dimer, creatinine, lactate, ferritin, fibrinogen, CRP, procalcitonin, radiological findings (Computed tomography and chest X-ray), acute physiologic assessment and chronic health evaluation (APACHE)-II and the sequential organ failure assessment (SOFA) scores, vital signs (heart rate, respiratory rate, blood pressure) at admission to the ICU, RT-PCR results, need for mechanical ventilation, length of stay in the ICU, 28-day survival and exit status from the ICU were examined. To identify COVID-19 infection, respiratory samples, including nasal and pharyngeal swabs, were collected from all patients at admission and during their stay. The data were obtained from the data processing center and analyzed by anonymization.

Sepsis and septic shock were defined and managed according to established guidelines [12] and Republic of Turkey Ministry of Health recommendations for the treatment of COVID-19 patients [13].

4. Statistical analysis
Statistical analyses were performed using statistical software (SPSS 25.0, IBM Corporation, Armonk, Chicago, IL, USA). Descriptive statistics were used to summarize the data; results are reported as means and standard deviations. Categorical variables were summarized as numbers and percentages. Conformity of continuous variables to normal distribution was examined. Student’s t-test was used for the comparison of normally distributed variables in 2 independent groups, and the Mann Whitney U-test was used for non-normally distributed variables. The difference in frequency between the groups was compared using the chi-square and fisher test. The independent effects of possible factors identified in previous analyzes on survival were analyzed using univariate and multivariate logistic regression analysis. P <0.05 was considered statistically significant. Significant in univariate analyzes, P-value close to type 1 error value (with P = 0.25 cut off value) and correlation matrix of regression coefficients below 0.6; age, comorbidity, renal replacement therapy, presence of nodules in computerized tomography, diagnosis, contact history, pulmonary disease, diabetes mellitus, hypertension, RT-PCR positivity and d-dimer, APACHE II score, SOFA score, respiratory rate, fever, heart rate, lymphocyte, CRP values were included in the multivariate analysis.
RESULTS

1. Epidemiological and clinical manifestations

Between April 1 and July 1, 2020; a total of 1,443 patients with a prediagnosis of COVID-19 were hospitalized in our hospital. 200 adult patients (18 years of age or older) were admitted to the ICU with either laboratory-confirmed COVID-19 infection or clinical/radiologically-confirmed COVID-19 infection (Fig. 1). The mean age of all patients was 70.2 ± 13.9 years, the mean age of discharged patients was 66.5 ± 15.8 years and the mean age of patients who died was 71.8 ± 12.8 years. 93 (46.5%) were female, 107 (53.5%) were male (Table 1). The mean body mass index was 25.9 ± 3.19. While 61 (30.5%) of the patients survived, 139 (69.5%) died. 185 (92.5%) patients had chronic disease. The most common comorbidities were hypertension (45.0%), cardiac disease (35.0%) and lung disease (27.1%). The most common symptoms during intensive care hospitalization were dyspnea in 174 (87.0%) patients, fever in 107 (53.5%) and cough in 97 (48.5%) (Table 1). There was a history of smoking in 89 (44.5%) of the patients, but there was no statistically significant difference between the two groups in smoking patients ($P = 0.370$) (Table 1). APACHE II and SOFA scores were found to be high. APACHE II and SOFA scores of non-survivor patients were significantly higher than those of surviving patients ($P = 0.011$ and $P < 0.001$). The data are shown in Table 1.

Seventy seven (38.5%) were admitted from the emergency department, 69 (34.5%) from the hospital and 54 (27.0%) from other hospitals (Table 2). The most common reasons for hospitalization were respiratory failure in 166 (83.0%) and sepsis developing secondary to COVID-19 in 17 (8.5%) patients.

2. Laboratory and computed tomography finding

White blood cells ($19.2 ± 76.1 \times 10^9$ per L) and neutrophil/lymphocyte ratio ($15.4 ± 65.1$) were high at the time of admission. d-dimer ($2,558.4 ± 4,574.2$ ng/mL), ferritin ($1,481.2 ± 4,447.4$ μg/L) and CRP levels ($12.1 ± 11.9$ mg/dL) were also found high in the patients. At the same time, CRP levels of patients who died were significantly higher than survived ($P = 0.011$ and $P < 0.001$). (Table 3).
Table 1. Demographics and clinical characteristics of COVID-19 patients at admission to intensive care unit

	Survivors (n = 61)	Non-survivors (n = 139)	Total (n = 200)	P-value
Age	66.5 ± 15.8	71.8 ± 12.8	70.2 ± 13.9	0.013
Sex				0.263
Female	32 (52.5)	61 (43.9)	93 (46.5)	
Male	29 (47.5)	78 (56.1)	107 (53.5)	
BMI (kg/m²)	25.6 ± 3.3	26.1 ± 3.2	25.9 ± 3.2	0.370
Smoke (%)	24 (39.3)	65 (46.8)	89 (44.5)	0.331
APACHE II score	21.2 ± 8.2	24.6 ± 8.6	23.6 ± 8.6	0.011
SOFA score	4.6 ± 2.0	5.9 ± 2.0	5.5 ± 2.1	<0.001
Fever (°C)	36.7 ± 0.6	36.9 ± 0.7	36.9 ± 0.7	0.199
Respiratory Rate	23 ± 2.4	23.5 ± 2.9	23.4 ± 2.8	0.217
Heart rate	95.8 ± 13.5	100.2 ± 12.7	98.9 ± 13.1	0.026
MAP (mm/Hg)	59.4 ± 7.3	59.7 ± 7.6	59.6 ± 7.4	0.852
SpO₂	89.4 ± 1.6	89.1 ± 2.6	89.2 ± 2.4	0.474
RT-PCR (%)	9 (17.3)	43 (82.7)	52 (26.0)	0.016
Comorbidity (%)	52 (82.2)	133 (95.7)	185 (92.5)	0.017
Hypertension	23 (37.7)	67 (48.2)	90 (45.0)	0.770
Diabetes	6 (9.8)	26 (18.7)	32 (16.0)	0.115
Cardiac Disease	19 (31.1)	51 (36.7)	70 (35.0)	0.449
Pulmonary Disease	13 (21.3)	41 (29.7)	54 (27.1)	0.219
Malignancy	9 (14.8)	26 (18.7)	35 (17.5)	0.498
Chronic Kidney Injury	8 (13.1)	15 (10.8)	23 (11.5)	0.635
Immune Deficiency (%)	6 (9.8)	16 (11.0)	22 (11.0)	0.727
Symptom (n) (%)	51 (83.6)	123 (88.5)	174 (87.0)	0.344
Fever	29 (47.5)	78 (56.1)	107 (53.5)	0.263
Dispnea	51 (83.6)	123 (88.5)	174 (87.0)	0.344
Cough	34 (55.7)	63 (45.3)	97 (48.5)	0.775
Fatigue	18 (29.5)	47 (33.8)	65 (32.5)	0.550

COVID-19, coronavirus disease 2019; BMI, body mass index; APACHE II, acute physiology and chronic health evaluation II; SOFA, sequential organ failure assessment; MAP, mean arterial pressure; SpO₂, saturation of peripheral oxygen; RT-PCR, reverse transcriptase-polymerase chain reaction.

Table 2. Intensive care treatment times and the need for renal replacement of COVID-19 patients

	Survivors (n = 61)	Non-survivors (n = 139)	All (n = 200)	P-value
Renal replacement therapy (%)	20 (30.5)	64 (46.5)	84 (42.0)	0.080
Length of stay in intensive care (days)	19.6 ± 18.3	8.5 ± 9.5	11.9 ± 3.8	<0.001
Duration of mechanical ventilation (days)	2.8 ± 7.3	4.7 ± 7.2	4.1 ± 7.3	0.080
Duration of non-invasive mechanical ventilation (days)	0.6 ± 1.4	0.5 ± 1.3	0.6 ± 1.3	0.508

COVID-19, coronavirus disease 2019.

Table 3. Laboratory parameters of COVID-19 patients at admission to intensive care unit

	Survivors (n = 61)	Non-survivors (n = 139)	Total (n = 200)	P-value
White blood cell count, × 10⁹ per L	23.3 ± 109.6	17.3 ± 55.8	19.2 ± 76.1	0.613
Lymphocyte count, × 10⁹ per L	2.2 ± 1.1	1.86 ± 1.6	1.9 ± 1.5	0.112
Platelet count, × 10¹² per L	302.1 ± 183.9	277.6 ± 181.1	285.1 ± 181.9	0.381
Neutrophil lymphocyte ratio	16.4 ± 89.4	15.1 ± 51.1	15.4 ± 65.1	0.889
INR	1.7 ± 1.9	1.54 ± 0.7	1.6 ± 1.2	0.470
Aspartate aminotransferase, U/L	91.4 ± 158.8	208.5 ± 883.9	172.8 ± 743.2	0.306
Alanine aminotransferase, U/L	78.3 ± 171.4	117.9 ± 368.8	105.7 ± 321.5	0.421
d-dimer, ng/mL	1,110.8 ± 1,477.1	3,206.5 ± 5,294.6	2,558.4 ± 4,574.2	<0.001
Creatinine, mg/dL	2.3 ± 2.4	2.7 ± 1.8	2.6 ± 2.1	0.264
Lactate, μg/L	2.1 ± 0.7	2.2 ± 0.8	2.1 ± 0.7	0.553
Ferritin, μg/L	624.3 ± 807.8	1,921.1 ± 5,395.9	1,481.2 ± 4,447.4	0.014
Fibrinogen, mg/dL	646.6 ± 206.7	625.1 ± 227.2	632.3 ± 220.1	0.545
C reactive protein, mg/dL	9.2 ± 9.4	13.4 ± 12.7	12.1 ± 11.9	0.012
Procalcitonin, ng/mL	6.7 ± 9.2	9.7 ± 15.6	8.8 ± 14.1	0.359

COVID-19, coronavirus disease 2019; INR, international normalized ratio.
Procalcitonin \((8.8 \pm 14.1 \text{ ng/mL})\), aspartate aminotransferase (AST) \((172.8 \pm 743.2 \text{ U/L})\), alanine transaminase (ALT) \((105.7 \pm 321.5 \text{ U/L})\) and creatinine \((2.6 \pm 2.1 \text{ mg/dL})\) levels at the time of hospitalization values were also high. Lymphocyte count \((1.9 \pm 1.5 \times 10^9 \text{ per L})\) and platelet count \((285.1 \pm 181.9 \times 10^9 \text{ per L})\) were normal and there was no significant difference between the two groups (Table 3). RT-PCR results were positive in only 52 (26.0%) of the patients in the ICU. RT-PCR sample taken in the ICU of 44 patients was positive. The rate of positive RT-PCR results in patients who died was significantly higher than in patients who survived \((P = 0.016)\) (Table 1).

199 patients had thorax computed tomography (CT) imaging. 179 (85.9%) patients had bilateral ground glass opacity. Pleural effusion and nodular appearance were present in 91 (45.5%) of the patients. There was no patient with normal CT findings. Other findings are shown in Table 4.

3. Treatment and outcomes

All patients were diagnosed with acute respiratory distress syndrome (ARDS) and 7 patients were diagnosed with sepsis. 154 (78.2%) of the patients were treated with hydroxychloroquine sulfate (Plaquenil, Sanofi, İstanbul, Turkey), 178 (89.9%) of them were treated with antibiotics and all of the patients were treated with antiviral drugs (oseltamivir [Tamiflu, Roche Basel, Switzerland]; lopinavir/ritonavir [Kaletra, AbbVie, Ludwigshafen, Germany; favipiravir [Favira, Novelfarma, İstanbul, Turkey]. Mesenchymal stem cell therapy was applied to 4 (2.0%) patients. Convalescent plasma therapy was applied to 8 (4.0%) patients. 135 (67.5%) of the patients received vasopressor treatment. Renal replacement therapy was administered to 40 (20.0%) of 84 (42.0%) patients with renal failure (Table 5).

Table 4. Radiologic findings of COVID-19 patients at admission to intensive care unit

Radiographic findings	Survivors (n = 61)	Non-survivors (n = 139)	All (n = 200)	P-value
Radiography (%)	20 (32.7)	46 (33.0)	66 (33.0)	0.966
Pathologic findings	17 (27.8)	37 (26.6)	54 (27.0)	0.855
Bilateral infiltrates	13 (21.3)	27 (19.4)	40 (20.0)	0.759
Pleural effusion	0 (0.0)	5 (3.59)	5 (2.5)	0.326
Irregular opacities	10 (16.3)	28 (20.1)	38 (19.0)	0.534
CT (%)	61 (100)	138 (99.2)	199 (99.5)	0.98
Pleural effusion	27 (45.0)	64 (46.3)	91 (45.5)	0.858
Bilateral ground glass opacification	52 (86.6)	127 (91.3)	179 (85.9)	0.312
Nodules	12 (20.0)	64 (32.6)	91 (45.5)	0.072

COVID-19, coronavirus disease 2019; CT, computed tomography.

It is clear that the patients who died had a higher rate of positive RT-PCR results and more severe radiographic findings compared to those who survived. The treatment of COVID-19 patients involved a combination of antiviral drugs, antibiotics, and mesenchymal stem cell therapy. The mortality rate was 42.0% in patients with renal failure. The duration of invasive mechanical ventilation was 4.1 ± 7.3 days. Further research is needed to determine the effectiveness of different treatment strategies and to improve outcomes for COVID-19 patients.
When the duration of hospitalization in the ICU was examined, the mean ICU stay was 11.9 ± 3.8 days and the ICU hospitalization days of the surviving patients were longer (19.6 ± 18.3 days, \(P < 0.05\)). 157 (78.5%) patients received invasive mechanical ventilation therapy. While the duration of invasive mechanical ventilation was 4.1 ± 7.3 days, it was 0.6 ± 1.3 days in patients who underwent non-invasive mechanical ventilation. At admission, the respiratory rate was 23.4 ± 2.8/min, \(\text{SpO}_2\) value was 89.2 ± 2.4, and heart rate was 98.9 ± 13.1 beat/min.

Acute kidney injury developed in 84 (42.0%) patients during the ICU stay and this rate was statistically higher in patients who died (\(P = 0.080\)) (Table 1). According to the results of univariate regression analysis; presence of additional disease (OR: 3.837; \(P = 0.015\)), older age (OR: 1.027; \(P = 0.015\)), RT-PCR positivity (OR: 2.58; \(P = 0.019\)), higher APACHE II score (OR: 1.049; \(P = 0.012\)) and higher SOFA score (OR: 1.479; \(P = 0.014\)), higher heart rate (OR: 1.027; \(P = 0.028\)), high d-dimer levels (OR: 3.180; \(P < 0.001\)) and high CRP levels (OR: 1.035; \(P = 0.028\)) increases the risk of death (Table 6).

When patients with full data for all variables in the multivariate logistic regression model were evaluated; positive RT-PCR (OR: 4.105; \(P = 0.005\)), older age (OR: 1.033; \(P = 0.024\)), higher SOFA score (OR: 1.477; \(P < 0.001\)), high d-dimer levels at admission (OR: 3.459; \(P = 0.002\)) and the presence of diabetes mellitus (OR: 3.433; \(P = 0.035\)), high heart rate (OR: 1.042; \(P = 0.006\)) increase the risk of death rates (Table 6).

DISCUSSION

In this report, we summarize the clinical features, treatment protocols and clinical results in critically ill patients who were followed up in the ICU due to the prediagnosis of COVID-19. In our study, most of the patients were hospitalized in the ICU due to respiratory failure. Most...
of the patients were admitted directly from the emergency room to the ICU. First of all, like previous studies, this study confirmed that increasing age is also associated with death in the ICU due to COVID-19.

The most common symptoms during ICU admission were dyspnea (87.0%), fever (53.5%) and cough (48.5%). In studies conducted in the United States, Netherlands, and Italy the most common symptoms were dyspnea, fever and cough, as in our study [14-16].

In a cohort of 1,500 critical ICU patients with COVID-19 in Lombardy, Italy, 68% of patients had at least one comorbidity. Hypertension was the most common comorbidity (49.0%) [14]. In a study conducted in United States, 1,738 patients had at least one comorbidity such as hypertension, diabetes and chronic lung disease. Hypertension (59.7%) and diabetes (38.9%) were seen most frequently [15]. In a meta-analysis examining 87 studies, it was stated that comorbidities play a very important role in hospitalized COVID-19 patient deaths. The most common comorbidity is hypertension and diabetes mellitus is one of the most important markers of mortality [17]. Patients with both type 1 and type 2 diabetes are associated with significant increases in the risk of COVID-19 disease compared to the risks seen in people of the same age [18]. 92.5% of our patients had at least one comorbidity and hypertension was the most common comorbidity, as in other studies. We found that the presence of diabetes was associated with high mortality.

In previous studies, d-dimer levels have been commonly found to be elevated in patients with COVID-19, and d-dimer levels have been associated with disease severity. It is a prognostic marker for hospital mortality in COVID-19 patients. d-dimer levels greater than 2,000 ng/mL have been associated with mortality [19, 20]. d-dimer levels were significantly higher in patients who died in our study compared to those who survived. Most patients exhibited a hyperinflammatory profile with high CRP, ferritin and procalcitonin levels. CRP levels were found to be significantly higher in nonsurvivor patients compared to survivor patients. Similar results were obtained in a study conducted in Turkey [21]. Disease severity scores were found to be high for APACHE II and SOFA scores. The APACHE II and SOFA scores of the patients who died were statistically significantly higher than those of the patients who survived. Various studies have also shown that higher SOFA and APACHE II scores are associated with mortality in admission to the ICU [21-23]. Other studies suggest that the APACHE II score may be better at predicting mortality among severely ill patients [24].

Vasopressors was required 67.5% of the patients, 42.0% of the population developed acute kidney injury (AKI) and 20.8% of the population received renal replacement therapy (RRT). In different studies, the incidence of AKI was between 12.3% and 50.2% [25-27]. It has been observed that there is a positive correlation between high CRP levels and RRT [27].

Most patients (78.5%) admitted to the ICU needed invasive mechanical ventilation. Series published from Italy (88.0%), United States (71.0%), Spain (77.0%) and Sweden (86.5%) had similar results [14, 28-30].

RT-PCR results were positive in only 52 of the patients in the ICU. RT-PCR sample of 44 patients taken at the ICU was positive and the mortality of RT-PCR positive patients was found to be higher. Many factors can affect the reliability of the RT-PCR test, such as the quality of sample collection, the day of the disease, the sampling site, the stages of infection, and the quality of the PCR tests used. Diagnostic RT-PCR test sensitivity can range from
In the diagnosis of COVID-19, clinical findings should be evaluated together with laboratory and radiological findings.

CT with the COVID-19 Reporting and Data System (CO-RADS) is a reliable, practical and rapid method for diagnosing and evaluating COVID-19 in symptomatic individuals and excluding pulmonary fibrosis in follow-up in patients recovering from COVID-19 infection [32]. There was no normal CT finding in our patients, and bilateral ground glass opacity was the most common.

According to the results of our study, the case fatality rate was 69.5%. Previous reports have described different mortality rates in patients admitted to the ICU, ranging from 16.0% to 78.0% [2, 4, 33, 34]. In a meta-analysis evaluating 32 studies, the ICU mortality rate among COVID-19 patients was 30.6%. The mortality rate was higher (59.6%) when only mechanically ventilated patients were considered [35]. In a meta-analysis including 43,128 patients admitted to the ICU with COVID-19, the ICU mortality rate was found to be 35.5%. In the study, steroids (especially dexamethasone) improved survival in patients who were oxygen dependent or who received mechanical respiratory support in the later stages of the pandemic; it has been stated that other drugs such as chloroquine, azithromycin, lopinavir/ritonavir and remdesivir have no effect and the management of COVID-19 has probably evolved over the years with changes in approaches to oxygen therapy, fluids and anticoagulation management. For this reason, it has been emphasized that while mortality rates are higher in the early stages of the pandemic, they may be lower in the following periods, and that there may be a change in mortality due to the fact that the study deals with studies involving a wide process [36]. In our study, our mortality rates may be high, since the use of corticosteroids and different anticoagulants was not included in the routine treatment protocols and included the early stages of the pandemic.

In conclusion, the mortality of critically ill patients with COVID-19 pneumonia is high. ARDS and elderly patients are at high risk of death. Higher SOFA score, higher D-dimer levels at admission, higher heart rate, positive RT-PCR, and presence of diabetes mellitus are associated with high mortality. The severity of COVID-19 pneumonia places a huge strain on hospital critical care resources, especially when adequate staffing or resources are not provided.

REFERENCES

1. World Health Organization (WHO). WHO coronavirus (COVID-19) dashboard. Available at: https://covid19.who.int/. Access 20 March 2022.
2. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.

3. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang R, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GR, Tan W; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-33.

4. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62.

5. Möhlenkamp S, Thiele H. Ventilation of COVID-19 patients in intensive care units. Herz 2020;45:329-31.

6. Collantes MEV, Espiritu AI, Sy MCC, Anlacan VMM, Jamora RDG. Neurological manifestations in COVID-19 infection: A systematic review and meta-analysis. Can J Neurol Sci 2021;48:66-76.

7. Helms J, Jacqaud C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clerc-Jehl R, Schenck M, Fagot Gendet F, Fafi-Kremer S, Castelain V, Schneider F, Grunbaum L, Anglés-Cano E, Sattler L, Mertz PM, Meziani F; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020;46:1089-98.

8. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, Barnaby DP, Becker LB, Chelico JD, Cohen SJ, Cooking JW, Coppa K, Diefenbach MA, Dominello A, Duer-Hefele J, Falcon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qui M, Zanos TP; the Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052-9.

9. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:811-8.

10. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368:473-4.
16. Pouw N, van de Maat J, Veerman K, Ten Oever J, Janssen N, Abbingk E, Reijers M, de Mast Q, Hoesloot W, van Crevel R, Sliker K, van Apeldoorn M, Blauw M, Dofferhoff A, Hoogerwerf I. Clinical characteristics and outcomes of 952 hospitalized COVID-19 patients in The Netherlands: A retrospective cohort study. PLoS One 2021;16:e0248713.

17. Corona G, Pizzocaro A, Vena W, Rastrelli G, Semeraro F, Isidori AM, Piovanello R, Salonia A, Sforza A, Maggi M. Diabetes is most important cause for mortality in COVID-19 hospitalized patients: Systematic review and meta-analysis. Rev Endocr Metab Disord 2021;22:275-96.

18. McGurnaghan SJ, Weir A, Bishop J, Kennedy S, Blackbourn LAK, McAllister DA, Hutchinson S, Caparrotta TM, Mellor J, Jeyam A, O'Reilly JE, Wild SH, Hatam S, Höhn A, Colombo M, Robertson C, Lone N, Murray J, Butterfly E, Petrie J, Kennon B, McCrimmon R, Lindsay R, Pearson E, Sattar N, McNight J, Philip S, Colmenero J, Smith-Palmer A, Goldberg D, McKeigue PM, Colhoun HM; Public Health Scotland COVID-19 Health Protection Study Group; Scottish Diabetes Research Network Epidemiology Group. Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland. Lancet Diabetes Endocrinol 2021;9:82-93.

19. Yao Y, Cao J, Wang Q, Shi Q, Liu K, Luo Z, Chen X, Chen S, Yu K, Huang Z, Hu B. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care 2020;8:49.

20. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 2020;18:1324-9.

21. Kocayigit H, Ozmen Suner K, Tomak Y, Demir G, Kocayigit I, Yaylaci S, Aydemir Y, Koyroglu M, Karabay O, Ozturk MH, Erdem AF. Characteristics and outcomes of critically ill patients with covid-19 in Sakarya, Turkey: a single centre cohort study. Turk J Med Sci 2021;51:440-7.

22. Taylor EH, Marson EJ, Elhadi M, Macleod KDM, Yu YC, Davids R, Boden R, Overmeyer RC, Ramakrishnan R, Thomson DA, Coetzee I, Biccard BM. Factors associated with mortality in patients with COVID-19 admitted to intensive care: a systematic review and meta-analysis. Anaesthesia 2021;76:1224-32.

23. Burrell AJ, Pellegrini B, Salimi F, Begum H, Broadley T, Campbell LT, Cheng AC, Cheung W, Cooper DJ, Earnest A, Erickson SJ, French CJ, Kaldor JM, Litton E, Murchy S, McAllister RE, Nichol AD, Palermo A, Plummer MP, Ramanan M, Reddi BA, Reynolds C, Trapani T, Webb SA, Udy AA. Outcomes for patients with COVID-19 admitted to Australian intensive care units during the first four months of the pandemic. Med J Aust 2021;214:23-30.

24. Yang X, Tian S, Guo H. Acute kidney injury and renal replacement therapy in COVID-19 patients: A systematic review and meta-analysis. Int Immunopharmacol 2021;90:107159.

25. Gupta S, Coca SG, Chan L, Melamed ML, Brenner SK, Hayek SS, Sutherland A, Puri S, Srivastava A, Leonberg-Yoo A, Shehata AM, Flythe JE, Rashidi A, Schenck EJ, Goyal N, Hedaya SS, Dy R, Bansal A, Athavale A, Nguyen HB, Vijayan A, Charytan DM, Schulze CE, Joo MJ, Friedman AN, Zhang J, Sosa MA, Judd E, Velez JQ, Mallappallil M, Redfern RE, Bansal AD, Neyra JA, Liu KD, Renaghan AD, Christov M, Molnar MZ, Sharma S, Kamal O, Boateng JO, Short SAP, Admon AJ, Sise ME, Wang W, Parikh CR, Leaf DE; STOP-COVID Investigators. AKI treated with renal replacement therapy in critically ill patients with COVID-19. J Am Soc Nephrol 2021;32:161-76.

26. Doher MP, Torres de Carvalho FR, Scherer PF, Matsui TN, Ammirati AL, Caldeira da Silva B, Barbeiro BG, Carneiro FD, Corrêa TD, Ferraz LJF, De Jesus Santos BFC, Pereira WG, Batista MC, Monte JCM, Santos OFP, Bellomo R, Serpa Neto A, Durão MS. Acute kidney injury and renal replacement therapy in critically ill patients with COVID-19: Risk factors and outcomes: A single-center experience in Brazil. Blood Purif 2021;50:520-30.

27. Ramirez P, Gordan M, Martin-Cerezuela M, Villarreal E, Sancho E, Padró M, Frasquet J, Levy G, Molina I, Barrios M, Gimeno S, Castellanos Á. Acute respiratory distress syndrome due to COVID-19. Clinical and prognostic features from a medical critical care unit in Valencia, Spain. Med Intensiva (Engl Ed) 2021;45:27-34.
29. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, Kritek PA, West TE, Luks A, Gerbino A, Dale CR, Goldman JD, O’Mahony S, Mikacenic C. Covid-19 in critically ill patients in the Seattle region - Case series. N Engl J Med 2020;382:2012-22.

30. Larsson E, Brattström O, Agvald-Öhman C, Grip J, Campoccia Jalde F, Strålín K, Naualér P, Oldner A, Konrad D, Persson BP, Eriksson LI, Mårtensson J; Karolinska intensive care COVID-19 study group. Characteristics and outcomes of patients with COVID-19 admitted to ICU in a tertiary hospital in Stockholm, Sweden. Acta Anaesthesiol Scand 2021;65:76-81.

31. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, Qian S, Hong C, Wang F, Liu Y, Wang Z, He Q, Li Z, He B, Zhang T, Fu Y, Ge S, Liu L, Zhang J, Xia N, Zhang Z. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis 2020;71:2027-34.

32. De Smet K, De Smet D, Ryckaert T, Laridon E, Heremans B, Vandenbulcke R, Demedts I, Bouckaert B, Gryspeerdt S, Martens GA. Diagnostic performance of chest CT for SARS-CoV-2 infection in individuals with or without COVID-19 symptoms. Radiology 2021;298:E30-7.

33. Yang X, Yu Y, Xu J, Shi H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020;8:475-81.

34. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.

35. Serafim RB, Póvoa P, Souza-Dantas V, Kalil AC, Salluh JIF. Clinical course and outcomes of critically ill patients with COVID-19 infection: a systematic review. Clin Microbiol Infect 2021;27:47-54.

36. Armstrong RA, Kane AD, Kursunovic E, Oglesby FC, Cook TM. Mortality in patients admitted to intensive care with COVID-19: an updated systematic review and meta-analysis of observational studies. Anaesthesia 2021;76:537-48.