Example-based Machine Translation using Structural Translation Examples

Eiji Aramaki*
Sadao Kurohashi*
* University of Tokyo
Proposed System
Proposed System

1. Parses an Input Sentence
2. Selects Structural Translation Examples
3. Combines them to generate an output tree
4. Decides the word-order
Structural Translation Examples

• The Advantage of High-Usability

• BUT: It requires many technologies
 – Parsing & Tree Alignment (are still being developed)

→ A naive method without such technologies may be efficient in a limited domain
Outline

• Algorithm
 – Alignment Module
 – Translation Module

• Experimental Results

• Conclusion
System Frame Work

- **Alignment module**
 - Builds Translation Examples from Bilingual Corpus

- **Translation module**
 - Selects Translation Examples
 - Combines them into a Translation
Alignment Module （1/2）

- A sentence pair is analyzed by parsers [Kurohashi1994][Charniak2000]
- Correspondences are estimated by Dictionary-based Alignment method [Aramaki 2001]

新聞を（give）
日本語の（Japanese）
新聞を（news paper）
下げ（give）

(S (VP (VBP Give) (NP (PRP me))) (NP (DT a) (JJ Japanese) (NN newspaper.))))
• **Translation example**

 = A combinations of correspondences which are connected to each other

 – With **Surrounding phrases** (= the parent and children phrases of correspondences)

• for Selection of Translation Examples
System Frame Work

- **Alignment module**
 - Builds Translation Examples from Bilingual Corpus

- **Translation module**
 - Selects of Translation Examples
 - Combines them into a Translation

Bilingual Corpus → Alignment module → Translation Memory → Translation module

Input → Output
Translation Module (1/2)

INPUT

中国語の

obj
新聞を

(pos)
(Chinese)

給

(give)

TRANSLATION EXAMPLE

Give

me

newspaper

Equality: The number of equal phrases

Context Similarity: calculated with a Japanese thesaurus

Alignment Confidence: the ratio of content words which can be found in dictionaries
Translation Module (1/2)

• **Equality**: The number of equal phrases

• **Context Similarity**:
 – calculated with a Japanese thesaurus

• **Alignment Confidence**:
 – the ratio of content words which can be found in dictionaries
• **Equality**: The number of equal phrases

• **Context Similarity**:
 – calculated with a Japanese thesaurus

• **Alignment Confidence**:
 – the ratio of content words which can be found in dictionaries
• **Equality**: The number of equal phrases

• **Context Similarity**:
 – calculated with a Japanese thesaurus

• **Alignment Confidence**:
 – the ratio of content words which can be found in dictionaries
Translation Module (2/2)

• Selection
 – Score := \((\text{Equality} + \text{Similarity}) \times (\lambda + \text{Confidence})\)

• Combine
 – The dependency relations & the word order in the translation examples are preserved

– The dependency relations & the word order between the translation examples are decided by heuristic rules
Exception: Shortcut

If a Translation Example is *almost equal* to the input
⇒ the system outputs its target parts as it is.

- Almost equal
 = Character-based DP Matching Similarity > 90%
Outline

• Algorism
 – Alignment Module
 – Translation Module

• Experimental Results

• Conclusion
Experiments

• We built Translation Examples from training-set (only given in IWSLT)

Auto. Eval. Result
bleu
Dev-set
Test-set

• Dev-set & Test-set score are similar
 ← the system has no tuning metrics for the dev-set.
The system without a corpus can generate translations using only the translation dictionaries.

The score is not saturated ⇒ the system will achieve a higher performance if we obtain more corpora.
Subjective Evaluation

• Subjective Evaluation Result

Fluency	3.650
Adequacy	3.316

5: "Flawless English"
4: "Good English"
3: "Non-native English"
2: "Disfluent English"
1: "Incomprehensible"

• Error Analysis
 – Most of the errors are classified into the following three problems:
 (1) Function Words
 (2) Word Order
 (3) Zero-pronoun
Problem 1: Function words

OUTPUT	I'd like to contact my Japanese embassy
Translation Example	I'd like to contact my bank

- The system selects translation examples using mainly content words
 ⇒ it sometimes generates un-natural function words
 - Determiners, prepositions
Problem 2: Word Order

OUTPUT	is there anything a like local cuisine?

• The word order between translation examples is decided by the heuristic rules.
• The lack of rules leads to the wrong word order.

Problem 3: Zero-pronoun

OUTPUT	has a bad headache.

• The input includes zero-pronoun.
⇒ outputs without a pronoun.
Outline

• Algorism
 – Alignment Module
 – Translation Module

• Experimental Results

• Conclusion
Conclusions

• We described an EBMT system which handles Structural translation examples

• The experimental results shows the basic feasibility of this approach

• In the future, as the amount of corpora increases, the system will achieve a higher performance
