Abstract

In this short note we will revisit the large N solution of $\mathbb{C}P^N$ sigma model on a finite interval of length L. We will find a family of boundary conditions for which the large N saddle point can be found analytically. For a certain choice of the boundary conditions the theory has only one phase for all values of L. Also, we will provide an example when there are two phases: for large L there is a standard phase with an unbroken $U(1)$ gauge symmetry and for small L there is Higgs phase with a broken gauge symmetry.

1 Introduction

Two dimensional $\mathbb{C}P^N$ sigma model in the large N limit was first solved in [1] and [2]. The theory exhibits a plethora of non-trivial properties: asymptotic freedom, confinement and dynamical scale Λ generation via the dimensional transmutation:

$$\Lambda^2 = \Lambda_{\text{av}}^2 \exp \left(- \frac{4\pi}{g^2} \right)$$ \hspace{1cm} (1)

where g is the coupling constant.

Physically, 2D $\mathbb{C}P^N$ model naturally arises as a low-energy effective action of non-Abelian strings in QCD-like models, see [3] for a review. Therefore, a finite interval geometry corresponds to a string stretched between two branes or a monopole–anti-monopole pair. Such configuration was studied in [4].

Recently $\mathbb{C}P^N$ sigma model on a finite interval of length L with Dirichlet boundary conditions(BC) was investigated in [5] and [6] using large N expansion. In the earlier work [5] the large N saddle point equations were solved only approximately and two distinct phases were found. In [6] saddle-point equations were solved numerically and it was argued that there is only one phase. In this paper we will find a set boundary conditions...
conditions for which the saddle point equations can be solved analytically. Strictly speaking, we will study $\mathbb{C}P^{2N+1}$ sigma model. We will consider two different boundary conditions:

- Mixed Dirichlet-Neumann (D-N) boundary conditions which will break global $SU(2N+1)$ to $SU(N) \times SU(N)$. We will show that the system has at least two phases: for $L > \pi/4\Lambda$ there is a standard “Coulomb” phase with an unbroken $U(1)$ gauge symmetry. This phase takes place for the $\mathbb{C}P^N$ model on usual \mathbb{R}^2. For $L < \pi/4\Lambda$ there is “Higgs” phase with broken $U(1)$. Global $SU(N) \times SU(N)$ stays unbroken in both phases.

- Dirichlet-Dirichlet and Neumann-Neumann (D-D and N-N) boundary conditions which will break $SU(2N+1)$ to $SU(N) \times SU(N+1)$. In this case, for all values of L there is a standard phase with an unbroken $U(1)$ gauge symmetry. Higgs phase is prohibited in this case, because it will break global $SU(N) \times SU(N+1)$ to $SU(N) \times SU(N)$.

In case of simple Dirichlet boundary conditions studied in [3, 6], Higgs phase does not break any global symmetries, so we expect that the system will have two phases as was predicted in [5]. Let us note that the large N $\mathbb{C}P^N$ model on a cylinder also possesses multiple phases [7].

2 Generalized saddle point equations

Let us study $\mathbb{C}P^{2N+1}$ model in the large N limit. The field content consists of $2N + 1$ fields n^i, $i = 0, \ldots, 2N$, real vector field A_μ and real scalar λ. In the Euclidian space the Lagrangian reads as:

$$\mathcal{L} = (D_\mu n^i)^* (D^\mu n^i) + \lambda (n^* n^i - r)$$

(2)

where $D_\mu = \partial_\mu - iA_\mu$, $\mu = t, x$ and $r = 2N/g^2$. Time coordinate t takes values from $-\infty$ to $+\infty$ and $x \in [0, L]$.

Non-dynamical Lagrangian multipliers A_μ and λ forces n^i to lie on $\mathbb{C}P^{2N+1}$ space: integration over λ yields $\sum_i n^* n^i = r$ and A_μ is responsible for $U(1)$ invariance $n^i \sim e^{i\phi} n^i$.

We will proceed in a standard fashion: we will integrate out $2N$ fields n^i, $i = 1, \ldots, 2N$ fields and then find the large N saddle point values of λ, A_μ and the remaining n^0 which we will denote by $\sigma = n^0$. After integrating out $2N$ n^i, fields we have:

$$S_{eff} = \text{tr} \log(-D_x^2 - D_t^2 + \lambda) + \int d^2x \left((D\sigma)^2 + \lambda(|\sigma|^2 - r)\right)$$

(3)

So far we do not have a factor of $2N$ in front of the determinant because we will impose different boundary conditions for these $2N$ fields.
We will study this model on a finite interval of length L with various boundary conditions. Note that the translational symmetry in x direction is explicitly broken. However, we still have the time translations so we will consider only time translation invariant saddle points. By the choice of gauge we can always set $A_t = 0$. This allows us to rewrite eq. (3) as:

$$S_{\text{eff}} = \sum_n E_n + \int d^2x \left((D_x \sigma)^2 + \lambda(|\sigma|^2 - r) \right)$$

(4)

Note that we have already integrated out time frequencies, so we have energies E_n instead of the usual log det. The sum over n is the sum over the eigenvalues E_n^2 of the following equation:

$$(-D_x^2 + \lambda(x))\psi_n = E_n^2 \psi_n(x)$$

(5)

ψ_n are required to be normalized.

Varying effective action (4) with respect to λ we get the first saddle point equation:

$$\frac{1}{2} \sum_n \frac{|\psi_n(x)|^2}{E_n} + |\sigma(x)|^2 - r = 0$$

(6)

To obtain this equation we have used the standard quantum mechanical first order perturbation theory for (5).

The second saddle-point equation coincides with the σ equation of motion:

$$D_x^2 \sigma - \lambda(x)\sigma = 0$$

(7)

Finally, we have to vary with respect to A_x:

$$i \frac{1}{2} \sum_n \frac{\psi_n(D_x \psi_n)^* - \psi_n^* D_x \psi_n}{E_n} = i\sigma(D_x \sigma)^* - i\sigma_n^* D_x \sigma_n$$

(8)

Below we will study the case $A_x = 0$ with real ψ_n and σ and so this equation will be trivially satisfied.

3 **D-N boundary conditions: two phases**

Now it is time to choose boundary conditions. Let us consider the following: For N fields $n^i, i = 1, \ldots, N$ we will use Dirichlet-Neumann (D-N):

$$n^i(0) = 0, \ D_x n^i(L) = 0$$

(9)

And for N fields $n^i, i = N + 1, \ldots, 2N$ we will use Neumann-Dirichlet (N-D):

$$D_x n^i(0) = 0, \ n^i(L) = 0$$

(10)
And for σ we will impose Neumann-Neumann (N-N):

$$D_x \sigma(0) = D_x \sigma(L) = 0$$ (11)

This choice breaks global $SU(2N + 1)$ to $SU(N) \times SU(N)$.

Then in the D-N sector we have:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x (n - 1/2)}{L} \right), \quad E_n^2 = \left(\frac{\pi (n - 1/2)}{L} \right)^2 + \lambda, \quad n = 1, \ldots$$ (12)

In the N-D sector:

$$\tilde{\psi}_n(x) = \sqrt{\frac{2}{L}} \cos \left(\frac{\pi x (n - 1/2)}{L} \right), \quad E_n^2 = \left(\frac{\pi (n - 1/2)}{L} \right)^2 + \lambda, \quad n = 1, \ldots$$ (13)

If we plug this into the first saddle point equation (6) we will notice that \sin^2 and \cos^2 will sum up to 1 and the x-dependence will disappear! So we can consider σ to be constant. Let us first study the phase with non-zero λ. From the second saddle-point equation (7) we see that we have to put $\sigma = 0$. We will call this phase "Coulomb" phase because n^i has zero VEV which leaves the $U(1)$ unbroken.

The first saddle-point equation now reads as:

$$\frac{N}{\pi} \sum_{n=1}^{\infty} \frac{1}{\sqrt{(n - 1/2)^2 + (\lambda L/\pi)^2}} - r = 0$$ (14)

We need to separate the divergent part:

$$\frac{N}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{(n - 1/2)^2 + (\lambda L/\pi)^2}} - \frac{1}{n} \right) + \frac{N}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} - r = 0$$ (15)

Introducing the cut-off:

$$\sum_{n=1}^{\infty} \frac{\exp(-n\pi/L\Lambda_{uv})}{n} = -\log(1 - \exp(-\pi/L\Lambda_{uv})) \approx -\log(\pi/L\Lambda_{uv})$$ (16)

Renormalizing r using eq. (11) we will have:

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{(n - 1/2)^2 + (\lambda L/\pi)^2}} - \frac{1}{n} \right) = \log(\pi/L)$$ (17)

Now it is easy to see the presence of two phases: the maximum of the LHS is reached when $\lambda = 0$, the corresponding value is

$$\sum_{n=1}^{\infty} \left(\frac{1}{n - 1/2} - \frac{1}{n} \right) = \log(4)$$ (18)
It means that if \(\log(\pi/\Lambda L) > \log(4) \) the saddle-point equations do not have a solution with non-zero \(\lambda \).

Let consider the limit \(L \to 0 \). We can expand the LHS in power series in \(\lambda L \):

\[
\frac{1}{\sqrt{(n - 1/2)^2 + (\lambda L/\pi)^2}} = \frac{1}{n - 1/2} - 4 \left(\frac{\lambda L}{\pi} \right)^2 \frac{1}{(2n - 1)^3} + \ldots \tag{19}
\]

Using the following identity:

\[
\sum_{n=1}^{\infty} \frac{4}{(2n - 1)^3} = \frac{7}{2} \zeta(3) \tag{20}
\]

we have:

\[
\frac{7\zeta(3)}{2} \left(\frac{\lambda L}{\pi} \right)^2 = \log(4\Lambda L/\pi) \tag{21}
\]

We see that the Coulomb phase does not exist for \(L < \pi/4\Lambda \).

Let us now show that the "Higgs" phase \(\sigma = \text{const}, \lambda = 0 \) exists only for \(L < \pi/4\Lambda \). We call this phase "Higgs" because non-zero \(\sigma \) breaks \(U(1) \) gauge symmetry. In this case the second saddle-point equation is satisfied. The first one reads as:

\[
\frac{N}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{n - 1/2} - \frac{1}{n} \right) + \sigma^2 = \frac{N}{\pi} \log(\pi/\Lambda L) \tag{22}
\]

Again using eq. (20) we have:

\[
\sigma^2 = \frac{N}{\pi} \log(\pi/4\Lambda L) \tag{23}
\]

4 D-D and N-N boundary conditions: one phase

Instead of the D-N and N-D boundary conditions let us investigate the case with Dirichlet-Dirichlet(D-D) and Neumann-Neumann(N-N) boundary conditions. As we will see shortly Coulomb phase is possible for all values of \(L \). For the D-D case we have the following set of eigenfunctions:

\[
\psi_n(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{\pi x n}{L} \right), \quad E_n^2 = \left(\frac{\pi n}{L} \right)^2 + \lambda, \quad n = 1, \ldots \tag{24}
\]

And for N-N:

\[
\psi_n(x) = \sqrt{\frac{2}{L}} \cos \left(\frac{\pi x n}{L} \right), \quad E_n^2 = \left(\frac{\pi n}{L} \right)^2 + \lambda, \quad n = 0, \ldots \tag{25}
\]
Note that now we can have $n = 0$ which corresponds to a constant mode. Note that if $\lambda = 0$ we have a genuine zero mode. It means that the phase with $\lambda = 0$ can not exist for this choice of boundary conditions. In the saddle-point equations \cos^2 and \sin^2 again sum to 1, so we can have a saddle-point with constant σ and λ. From now on, we will assume that $\lambda = \text{const} \neq 0$. Then from the second saddle-point equation it follows that $\sigma = 0$. The first saddle-point equation now reads as:

$$\frac{N}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n^2 + (\lambda L/\pi)^2}} - \frac{1}{n} \right) + \frac{N}{\lambda L} + \frac{N}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} - r = 0$$

(26)

After r renormalization we have:

$$\frac{N}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n^2 + (\lambda L/\pi)^2}} - \frac{1}{n} \right) + \frac{N}{\lambda L} = \frac{N}{\pi} \log(\pi/\Lambda L)$$

(27)

Unlike the D-N and N-D case now the LHS is not bounded from above because of the $\frac{N}{\lambda L}$ term, which is essentially the contribution from the N-N constant mode. It easy to show that for a fixed Λ and L we can always find the corresponding value of λ (for example one can plot the LHS as a function of λ and see that it takes values from $-\infty$ to $+\infty$).

5 Conclusion

In this paper we studied the large N $\mathbb{C}P^N$ model on a finite interval. We have shown that for a specific choice of boundary conditions the saddle-point equations admit a simple analytical solution. Under the Dirichlet-Dirichlet and Neumann-Neumann boundary condition the system possesses a Coulomb phase with the uniform λ VEV, usual for the $\mathbb{C}P^N$ in the infinite space. This phase exists for all values of the interval length L. However, under the mixed Dirichlet-Neumann boundary conditions the system has two phases: Coulomb phase which exists for $L > \pi/4\Lambda$ and unusual Higgs phase for $L < \pi/4\Lambda$ with the uniform n^0 VEV. Strictly speaking, it is possible to have additional phases with non-constant VEVs, similar to the FFLO phase in superconductivity. It is even possible that the Coulomb and Higgs phases in the N-D case are not adjacent on the phase diagram because of the presence of additional phases. We will postpone this analysis for future work.

Acknowledgment

We are thankful to A. Gorsky for numerous discussions and F. Popov for reading the manuscript. A.M. is grateful to RFBR grant 15-02-02092 for travel support.
References

[1] A. D’Adda, M. Luscher, and P. Di Vecchia. “A 1/n Expandable Series of Nonlinear Sigma Models with Instantons”. In: Nucl. Phys. B146 (1978), pp. 63–76. DOI: 10.1016/0550-3213(78)90432-7

[2] Edward Witten. “Instatons, the quark model, and the 1/N expansion”. In: Nuclear Physics B 149.2 (1979), pp. 285–320. ISSN: 0550-3213. DOI: http://dx.doi.org/10.1016/0550-3213(79)90243-8

[3] M. Shifman and A. Yung. “Supersymmetric Solitons and How They Help Us Understand Non-Abelian Gauge Theories”. In: Rev. Mod. Phys. 79 (2007), p. 1139. DOI: 10.1103/RevModPhys.79.1139 arXiv: hep-th/0703267 [hep-th]

[4] Chandrasekhar Chatterjee and Kenichi Konishi. “Monopole-vortex complex at large distances and nonAbelian duality”. In: JHEP 09 (2014), p. 039. DOI: 10.1007/JHEP09(2014)039 arXiv:1406.5639 [hep-th]

[5] A. Milekhin. “CP(N-1) model on finite interval in the large N limit”. In: Phys. Rev. D86 (2012), p. 105002. DOI: 10.1103/PhysRevD.86.105002 arXiv:1207.0417 [hep-th]

[6] Stefano Bolognesi, Kenichi Konishi, and Keisuke Ohashi. “Large-\(N/C^{N-1}\) sigma model on a finite interval”. In: JHEP 10 (2016), p. 073. DOI: 10.1007/JHEP10(2016)073 arXiv:1604.05630 [hep-th]

[7] Sergey Monin, Mikhail Shifman, and Alexei Yung. “Non-Abelian String of a Finite Length”. In: Phys. Rev. D92.2 (2015), p. 025011. DOI: 10.1103/PhysRevD.92.025011 arXiv:1505.07797 [hep-th]

[8] P. Fulde and R. A. Ferrell. “Superconductivity in a Strong Spin-Exchange Field”. In: Physical Review 135 (Aug. 1964), pp. 550–563. DOI: 10.1103/PhysRev.135.A550

[9] A. I. Larkin and Y. N. Ovchinnikov. “Nonuniform state of superconductors”. In: Zh. Eksp. Teor. Fiz. 47 (1964). [Sov. Phys. JETP20,762(1965)], pp. 1136–1146.