Orthogonal ray scheme: a method for processing interference patterns and reconstructing the shape of a test convex mirror

A E Gavlina¹, D A Novikov² and M V Askerko³

¹ Scientific and Technological Center of Unique Instrumentation, Butlerova str., 15, 117342, Moscow, Russian Federation
² All-Russian research institute of metrological service, 46 Ozernaya str., 119361, Moscow, Russian Federation
³ Bauman Moscow State Technical University, 2nd Baumanskaya str., 5, 105005, Moscow, Russian Federation

E-mail: gluk45091567@mail.ru

Abstract. This report is devoted to the processing of the interference pattern of the tested mirror, obtained using the orthogonal ray scheme, where the convex testing surface is illuminated by a collimated beam, which is perpendicular to the optical axis of the surface. The interference pattern is created by two wavefronts, one of which is reflected from the mirror, while the other wavefront bypasses the mirror and travels directly to the detector plane. The result of interference pattern processing is a topography map formed by several tangential profiles. The proposed method is suited for large diameter convex spherical and aspherical mirrors and does not require a priori information of surface under the test, such as the vertex radius of curvature and the conical constant. Theoretical foundation of the data processing method are presented.

1. Introduction
The development of testing methods for convex aspherical and spherical mirrors of large diameter is an urgent task. To reduce figure errors during the manufacturing phase, one needs to have reliable testing techniques, which in the case of large convex mirrors requires bulky optical setups based on Hindle sphere or other compensatory reflective optics [8]. Thus, when testing convex aspherical and spherical optical surfaces by traditional methods, it is necessary to use precision optical elements with a diameter larger than the diameter of the test surface [5-7]. This problem is especially urgent due to the new generation of very large grand-based optical telescopes [1-5] in which a convex secondary mirror is used to reduce the length of the optical system of the telescope [1, 6-9].

At present, an interference method for testing convex aspherical mirrors based on the orthogonal ray scheme is being developed [10-13], which does not require the use of large-diameter auxiliary optical elements [6-8]. The report is devoted to the processing of the interference pattern obtained by the proposed interference method.

2. Theoretical foundation of the data processing method
The basis of the proposed interference method is in the illumination scheme with a collimated beam directed orthogonally to the optical axis [5-9]. The interference pattern is created by two wavefronts,
one of which is reflected from the mirror (object beam), while the other wavefront (reference beam) bypasses the mirror and travels directly to the detector plane, see figure 1. The detector plane is located at a distance s from the vertex of tested surface. The measurement result is the coordinates of the interference fringes.

The interference pattern is a system of fringes. Fringe width depends upon optical path difference between the object and reference beams and decreases from the vertex of the tested mirror to the edge of it.

The distribution of the optical path difference of the interference pattern is known depending on the coordinate in the detector plane $\Delta (h)$. The optical path difference can be determined as (figure 1)

$$\Delta B = PB - AB. \quad (1)$$

The coordinates of the point P are unknown, and the task of reconstructing the tested profile is define it. Point P belongs to a curve for which the following geometrical relations is true

$$PB - AB = \text{const} = \Delta B. \quad (2)$$

The locus of points P satisfying (2) is a parabola with a geometric focus coinciding with point B (figure 2). By the same reasoning, each tested surface point lies on the corresponding parabola.

To find the equation of the profile under test we need write the equation of the parabola using a Cartesian coordinate system YOZ with its origin at the vertex of the mirror under the test. First, we introduce an auxiliary $YO'Z'$ coordinate system with the origin at the vertex of the parabola (figure 2). The canonical equation for a parabola of the local coordinate system $YO'Z'$ is

$$y' = \frac{z'^2}{2p(h)}, \quad (3)$$

where parameter p is the distance from the focus of the parabola to the directrix.

The distribution of the distance p depends from coordinate h reflected object beam. The distance p depends on the coordinate h of the object beam (1) in the detector plane.

In order to find the canonical equation for a parabola of the YOZ coordinate system, we express equation (3) in the local $YO'Z'$ coordinate system through the global YOZ coordinate system

$$y(z) = \left(\frac{-z-h}{2p(h)}\right) - \left(s + \frac{p(h)}{2}\right), \quad (4)$$

where h is the height of the reflected ray in the detector plane, which depends on the z coordinate of the reflection of ray (1) from the surface under the test (figure 1).
Figure 2. To the definition of the parabola equation.

Since the segments PB and PK are equal by the definition of a parabola, the path difference $PB - AB = \Delta$ is also equal to $AL - AB = p$. Therefore, the parabola parameter p is equal to the difference between the paths of the beams PB and $ABp = \Delta$.

Figure 3. The test mirror is the envelope of the parabola family.

As a result of measurements in practice, two data sets are obtained: h and Δ, which can be approximated by the function $h(\Delta)$. The parametric equation of the i-th parabola in the XOY coordinate system

$$y_i(z) = \left(\frac{-z-h_i(\Delta_i)}{2\Delta_i}\right) - \left(s + \frac{\Delta_i}{2}\right),$$ \hspace{1cm} (5)$$

where Δ_i is a parameter that is an element of the array Δ.

To determine the coordinates of the set of points P belonging to the tested surface, it is necessary to find the envelope of the family of parabolas.

To find the coordinates of an arbitrary point P_i, you need to solve the system of equations

\[
\begin{align*}
F_i(y, z, \Delta) &= 0 \\
\frac{dF_i(y, z, \Delta)}{d\Delta} &= 0.
\end{align*}
\]

(6)

Thus, reconstructing the profile of the tested surface (figure 3) is reduced to solving systems of equations (6). The result of measurement is a topography map formed by several tangential profiles.

3. Conclusion

The method for reconstructing of topography convex aspherical and spherical mirrors with various geometrical parameters has been developed. The present method may be applied for convex surfaces without the a priori information of it, such as the vertex radius of curvature and the conical constant.

Acknowledgments

The results of the work were obtained using the equipment of the Center for Collective Use of the Scientific and Technological Center for Unique Instrumentation Making of the Russian Academy of Sciences (STC of the Russian Academy of Sciences) [14]. The authors are grateful to Professor Daniil Trofimovich Puryaev for his help with the work [11].

References

[1] Burge J H, Su P and Zhao C 2008 Optical metrology for very large convex aspheres Proc. of SPIE Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation vol 7018 ed E Atad-Ettedgui and D Lemke (Marseille: France) 701818-1-1
[2] Roberts S C 2004 Development of a Canadian large optical telescope Pros. SPIE 5578 29-39
[3] Andersen T, Ardeberg A, Beckers J, Goncharov A, Owner-Petersen M and Riewaldt H 2004 Euro50 Pros. SPIE 5382 169-82
[4] Mould J 2004 GSMT Pros. SPIE 5382 135-7
[5] Nelson J and Sanders G 2008 The status of the Thirty Meter Telescope project Pros. SPIE 7012
[6] Gavlina A E, Batshev V I, Novikov D A and Sergeeva M V 2019 Interferometer for large convex optical aspheric surfaces testing Proc. Of SPIE Optical Measurement Systems for Industrial Inspection XI vol 11056 ed P Lehmann, W Osten and A Albertazzi Goncalves Jr pp 110563T
[7] Batshev V I, Gavlina A E and Novikov D A 2018 Testing method of large-sized convex optical surfaces Proc. Of SPIE 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics vol 10833 ed G G Matvienko and O A Romanovskii (Novosibirsk: Russia) pp 10833R
[8] Druzhin V V and Batshev V I 2010 New methods for optical testing of large convex aspheric astronomical mirrors Proc. IONS 8 34–5
[9] Burge J H and Zhao C 2012 Applications of subaperture stitching interferometry for very large mirrors Proc. of SPIE Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II vol 8450 ed R Navarro, C R Cunningham et al (Amsterdam: Netherlands)
[10] Batshev V I, Gavlina A E and Novikov D A 2018 Testing method of large-sized convex optical surfaces Proc. SPIE 10833
[11] Puryayev D T 1976 Invention patent N3467407.25-28 "Testing Method of the optical surface profiles" (in Russian), author certificate 1044969 USSR, MKI4G 01 B II/24 (1982)
[12] Batshev V I, Badunova E A and Polschikova O V 2013 Promising methods for quality control test of large convex aspherical mirrors Science and Education 12 515-26
[13] Goncharov A V, Druzhin V V and Batshev V I 2009 Non-contact methods for optical testing of convex aspheric mirrors for future large telescope Proc. SPIE 7389 73891A-1
[14] http://ckp.ntcup.ru