STABILITY OF A FUNCTIONAL EQUATION DERIVING FROM QUARTIC AND ADDITIVE FUNCTIONS

MADJID ESHAGHI GORDJI

Abstract. In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation
\[f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) - \frac{3}{2}(f(2y) - 2f(y)) + 2f(2x) - 8f(x). \]

1. Introduction

The stability problem of functional equations originated from a question of Ulam [28] in 1940, concerning the stability of group homomorphisms. Let \((G_1, \cdot)\) be a group and let \((G_2, \ast)\) be a metric group with the metric \(d(\cdot, \cdot)\). Given \(\epsilon > 0\), does there exist a \(\delta > 0\), such that if a mapping \(h : G_1 \to G_2\) satisfies the inequality \(d(h(x \cdot y), h(x) \ast h(y)) < \delta\) for all \(x, y \in G_1\), then there exists a homomorphism \(H : G_1 \to G_2\) with \(d(h(x), H(x)) < \epsilon\) for all \(x \in G_1\)? In other words, under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D. H. Hyers [13] gave a first affirmative answer to the question of Ulam for Banach spaces. Let \(f : E \to E'\) be a mapping between Banach spaces such that
\[\|f(x + y) - f(x) - f(y)\| \leq \delta \]
for all \(x, y \in E\), and for some \(\delta > 0\). Then there exists a unique additive mapping \(T : E \to E'\) such that
\[\|f(x) - T(x)\| \leq \delta \]
for all \(x \in E\). Moreover if \(f(tx)\) is continuous in \(t\) for each fixed \(x \in E\), then \(T\) is linear. Finally in 1978, Th. M. Rassias [25] proved the following theorem.
Theorem 1.1. Let $f : E \to E'$ be a mapping from a norm vector space E into a Banach space E' subject to the inequality
\begin{equation}
\|f(x + y) - f(x) - f(y)\| \leq \epsilon (\|x\|^p + \|y\|^p)
\end{equation}
for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and $p < 1$. Then there exists a unique additive mapping $T : E \to E'$ such that
\begin{equation}
\|f(x) - T(x)\| \leq \frac{2\epsilon}{2 - 2p} \|x\|^p
\end{equation}
for all $x \in E$. If $p < 0$, then inequality (1.1) holds for all $x, y \neq 0$, and (1.2) for $x \neq 0$. Also, if the function $t \mapsto f(tx)$ from \mathbb{R} into E' is continuous for each fixed $x \in E$, then T is linear.

In 1991, Z. Gajda [9] answered the question for the case $p > 1$, which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations (see [1, 3], [5-15], [22-24]).

In [19], W.-G. Park and J. H. Bae, considered the following functional equation:
\begin{equation}
f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) + 24f(x) - 6f(y).
\end{equation}
In fact they proved that a function f between real vector spaces X and Y is a solution of (1.3) if and only if there exists a unique symmetric multi-additive function $B : X \times X \times X \times X \to Y$ such that $f(x) = B(x, x, x, x)$ for all x (see [2, 4], [16-21], [26, 27]). It is easy to show that the function $f(x) = x^4$ satisfies the functional equation (1.3), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function.

We deal with the next functional equation deriving from quartic and additive functions:
\begin{equation}
f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) - \frac{3}{2}(f(2y) - 2f(y)) + 2f(2x) - 8f(x).
\end{equation}
It is easy to see that the function $f(x) = ax^4 + bx$ is a solution of the functional equation (1.4). In the present paper we investigate the general solution and the generalized Hyers-Ulam-Rassias stability of the functional equation (1.4).

2. General solution

In this section we establish the general solution of functional equation (1.4).

Theorem 2.1. Let X,Y be vector spaces, and let $f : X \to Y$ be a function satisfies (1.4). Then the following assertions hold.

a) If f is even function, then f is quartic.

b) If f is odd function, then f is additive.

Proof. a) Putting $x = y = 0$ in (1.4), we get $f(0) = 0$. Setting $x = 0$ in (1.4), by evenness of f, we obtain
\begin{equation}
f(2y) = 16f(y)
\end{equation}
for all \(y \in X \). Hence (1.4) can be written as

\[
(2.2) \quad f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) + 24f(x) - 6f(y)
\]

for all \(x, y \in X \). This means that \(f \) is a quartic function.

b) Setting \(x = y = 0 \) in (1.4) to obtain \(f(0) = 0 \). Putting \(x = 0 \) in (1.4), then by oddness of \(f \), we have

\[
(2.3) \quad f(2y) = 2f(y)
\]

for all \(y \in X \). We obtain from (1.4) and (2.3) that

\[
(2.4) \quad f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) - 4f(x)
\]

for all \(x, y \in X \). Replacing \(y \) by \(-2y\) in (2.4), it follows that

\[
(2.5) \quad f(2x - 2y) + f(2x + 2y) = 4(f(x - 2y) + f(x + 2y)) - 4f(x).
\]

Combining (2.3) and (2.5) to obtain

\[
(2.6) \quad f(x - y) + f(x + y) = 2(f(x - 2y) + f(x + 2y)) - 2f(x).
\]

Interchange \(x \) and \(y \) in (2.6) to get the relation

\[
(2.7) \quad f(x + y) + f(x - y) = 2(f(y - 2x) + f(y + 2x)) - 2f(y).
\]

Replacing \(y \) by \(-y\) in (2.7), and using the oddness of \(f \) to get

\[
(2.8) \quad f(x - y) - f(x + y) = 2(f(2x - y) - f(2x + y)) + 2f(y).
\]

From (2.4) and (2.8), we obtain

\[
(2.9) \quad 4f(2x + y) = 9f(x + y) + 7f(x - y) - 8f(x) + 2f(y).
\]

Replacing \(x + y \) by \(y \) in (2.9) it follows that

\[
(2.10) \quad 7f(2x - y) = 4f(x + y) + 2f(x - y) - 9f(y) + 8f(x).
\]

By using (2.9) and (2.10), we lead to

\[
(2.11) \quad f(2x + y) + f(2x - y) = \frac{79}{28}f(x + y) + \frac{57}{28}f(x - y) - \frac{6}{7}f(x) - \frac{11}{14}f(y).
\]

We get from (2.4) and (2.11) that

\[
(2.12) \quad 3f(x + y) + 5f(x - y) = 8f(x) - 28f(y).
\]

Replacing \(x \) by \(2x \) in (2.4) it follows that

\[
(2.13) \quad f(4x + y) + f(4x - y) = 16(f(x + y) + f(x - y)) - 24f(x).
\]

Setting \(2x + y \) instead of \(y \) in (2.4), we arrive at

\[
(2.14) \quad f(4x + y) - f(y) = 4(f(3x + y) + f(x - y)) - 4f(x).
\]

Replacing \(y \) by \(-y\) in (2.14), and using oddness of \(f \) to get

\[
(2.15) \quad f(4x - y) + f(y) = 4(f(3x + y) + f(x + y)) - 4f(x).
\]

Adding (2.14) to (2.15) to get the relation

\[
(2.16) \quad f(4x + y) + f(4x - y) = 4(f(3x + y) + f(3x - y)) - 4(f(x + y) + f(x - y)) - 8f(x).
\]
Replacing y by $x + y$ in (2.4) to obtain
\begin{equation}
(2.17) \quad f(3x + y) + f(x - y) = 4(f(2x + y) - f(y)) - 4f(x).
\end{equation}
Replacing y by $-y$ in (2.17), and using the oddness of f, we lead to
\begin{equation}
(2.18) \quad f(3x - y) + f(x + y) = 4(f(2x - y) + f(y)) - 4f(x).
\end{equation}
Combining (2.17) and (2.18) to obtain
\begin{equation}
(2.19) \quad f(3x + y) + f(3x - y) = 15(f(x + y) + f(x - y)) - 24f(x).
\end{equation}
Using (2.16) and (2.19) to get
\begin{equation}
(2.20) \quad f(4x + y) + f(4x - y) = 56(f(x + y) + f(x - y)) - 104f(x).
\end{equation}
Combining (2.13) and (2.20), we arrive at
\begin{equation}
(2.21) \quad f(x + y) + f(x - y) = 2f(x).
\end{equation}
Hence by using (2.12) and (2.21) it is easy to see that f is additive. This completed the proof of theorem. $$\square$$

Theorem 2.2. Let X, Y be vector spaces, and let $f : X \to Y$ be a function. Then f satisfies (1.4) if and only if there exist a unique symmetric multi-additive function $B : X \times X \times X \times X \to Y$ and a unique additive function $A : X \to Y$ such that $f(x) = B(x,x,x,x) + A(x)$ for all $x \in X$.

Proof. Suppose f satisfies (1.4). We decompose f into the even part and odd part by setting
\begin{align*}
&f_e(x) = \frac{1}{2}(f(x) + f(-x)), \quad f_o(x) = \frac{1}{2}(f(x) - f(-x))
\end{align*}
for all $x \in X$. By (1.4), we have
\begin{align*}
f_e(2x + y) + f_e(2x - y)
&= \frac{1}{2}[f(2x + y) + f(-2x - y) + f(2x - y) + f(-2x + y)] \\
&= \frac{1}{2}[f(2x + y) + f(2x - y)] + \frac{1}{2}[f(-2x + (-y)) + f(-2x - (-y))] \\
&= \frac{1}{2}[4f(x + y) + f(x - y)] - \frac{3}{7}(f(2y) - 2f(y)) + 2f(2x) - 8f(x) \\
&\quad + \frac{1}{2}[4f(-x - y) + f(-x - (-y))] - \frac{3}{7}(f(-2y) - 2f(-y)) + 2f(-2x) - 8f(-x) \\
&= 4\left[\frac{1}{2}(f(x + y) + f(-x - y)) + \frac{1}{2}(f(-x + y) + f(x - y))\right] \\
&\quad - \frac{3}{7}\left[\frac{1}{2}(f(2y) + f(-2y)) - (f(y) - f(-y))\right] \\
&\quad + 2\left[\frac{1}{2}(f(2x) + f(-2x))\right] - 8\left[\frac{1}{2}(f(x) + f(-x))\right] \\
&= 4(f_e(x + y) + f_e(x - y)) - \frac{3}{7}(f_e(2y) - 2f_e(y)) + 2f_e(2x) - 8f_e(x)
\end{align*}
for all \(x, y \in X \). This means that \(f_e \) holds in (1.4). Similarly we can show that \(f_o \) satisfies (1.4). By above theorem, \(f_e \) and \(f_o \) are quartic and additive respectively. Thus there exists a unique symmetric multi-additive function \(B : X \times X \times X \times X \to Y \) such that \(f_e(x) = B(x, x, x, x) \) for all \(x \in X \). Put \(A(x) := f_o(x) \) for all \(x \in X \). It follows that \(f(x) = B(x) + A(x) \) for all \(x \in X \). The proof of the converse is trivially. \(\square \)

3. Stability

Throughout this section, \(X \) and \(Y \) will be a real normed space and a real Banach space, respectively. Let \(f : X \to Y \) be a function then we define \(D_f : X \times X \to Y \) by

\[
D_f(x, y) = 7[f(2x + y) + f(2x - y)] - 28[f(x + y) + f(x - y)] \\
+ 3[f(2y) - 2f(y)] - 14[f(2x) - 4f(x)]
\]

for all \(x, y \in X \).

Theorem 3.1. Let \(\psi : X \times X \to [0, \infty) \) be a function satisfies \(\sum_{i=0}^{\infty} \frac{\psi(0, 2^i x)}{16^i} < \infty \) for all \(x \in X \), and \(\lim_{n \to \infty} \frac{\psi(2^n x, 2^n y)}{16^n} = 0 \) for all \(x, y \in X \). If \(f : X \to Y \) is an even function such that \(f(0) = 0 \), and that

\[||D_f(x, y)|| \leq \psi(x, y) \]

for all \(x, y \in X \), then there exists a unique quartic function \(Q : X \to Y \) satisfying (1.4) and

\[||f(x) - Q(x)|| \leq \frac{1}{48} \sum_{i=0}^{\infty} \frac{\psi(0, 2^i x)}{16^i} \]

for all \(x \in X \).

Proof. Putting \(x = 0 \) in (3.1), then we have

\[||3f(2y) - 48f(y)|| \leq \psi(0, y). \]

Replacing \(y \) by \(x \) in (3.3) and then dividing by 48 to obtain

\[||\frac{f(2x)}{16} - f(x)|| \leq \frac{1}{48} \psi(0, x) \]

for all \(x \in X \). Replacing \(x \) by \(2x \) in (3.4) to get

\[||\frac{f(4x)}{16} - f(2x)|| \leq \frac{1}{48} \psi(0, 2x). \]

Combine (3.4) and (3.5) by use of the triangle inequality to get

\[||\frac{f(4x)}{16^2} - f(x)|| \leq \frac{1}{48} \left(\frac{\psi(0, 2x)}{16} + \psi(0, x) \right). \]
By induction on \(n \in \mathbb{N} \), we can show that

\[
\| \frac{f(2^nx)}{16^n} - f(x) \| \leq \frac{1}{48} \sum_{i=0}^{n-1} \psi(0, 2^i x).
\]

Dividing (3.7) by \(16^m \) and replacing \(x \) by \(2^m x \) to get

\[
\left\| \frac{f(2^{m+n}x)}{16^{m+n}} - \frac{f(2^mx)}{16^m} \right\| = \frac{1}{16^m} \| f(2^n 2^m x) - f(2^mx) \|
\]

\[
\leq \frac{1}{48 \times 16^m} \sum_{i=0}^{n-1} \psi(0, 2^i x)\]

\[
\leq \frac{1}{48} \sum_{i=0}^{\infty} \psi(0, 2^i 2^m x) \frac{1}{16^{n+i}}
\]

for all \(x \in X \). This shows that \(\{ \frac{f(2^nx)}{16^n} \} \) is a Cauchy sequence in \(Y \), by taking the \(\lim m \to \infty \). Since \(Y \) is a Banach space, then the sequence \(\{ \frac{f(2^nx)}{16^n} \} \) converges.

We define \(Q : X \to Y \) by \(Q(x) := \lim_{n \to \infty} \frac{f(2^nx)}{16^n} \) for all \(x \in X \). Since \(f \) is even function, then \(Q \) is even. On the other hand we have

\[
\| D_Q(x, y) \| = \lim_{n \to \infty} \frac{1}{16^n} \| D_f(2^n x, 2^ny) \|
\]

\[
\leq \lim_{n \to \infty} \frac{\psi(2^n x, 2^ny)}{16^n} = 0
\]

for all \(x, y \in X \). Hence by Theorem 2.1, \(Q \) is a quartic function. To shows that \(Q \) is unique, suppose that there exists another quartic function \(\hat{Q} : X \to Y \) which satisfies (1.4) and (3.2). We have \(Q(2^n x) = 16^n Q(x) \) and \(\hat{Q}(2^n x) = 16^n \hat{Q}(x) \) for all \(x \in X \). It follows that

\[
\| \hat{Q}(x) - Q(x) \| = \frac{1}{16^n} \| \hat{Q}(2^n x) - Q(2^n x) \|
\]

\[
\leq \frac{1}{16^n} \| \hat{Q}(2^n x) - f(2^nx) \| + \| f(2^n x) - Q(2^n x) \|
\]

\[
\leq \frac{1}{24} \sum_{i=0}^{\infty} \psi(0, 2^n 2^i x) \frac{1}{16^{n+i}}
\]

for all \(x \in X \). By taking \(n \to \infty \) in this inequality we have \(\hat{Q}(x) = Q(x) \). \(\square \)

Theorem 3.2. Let \(\psi : X \times X \to [0, \infty) \) be a function satisfies

\[
\sum_{i=0}^{\infty} 16^i \psi(0, 2^{-i-1} x) < \infty
\]

for all \(x \in X \), and \(\lim 16^n \psi(2^{-n} x, 2^{-n} y) = 0 \) for all \(x, y \in X \). Suppose that an even function \(f : X \to Y \) satisfies \(f(0) = 0 \), and (3.1). Then the limit
Q(x) := \lim_n 16^n f(2^{-n}x) exists for all x ∈ X and Q : X → Y is a unique quartic function satisfies (1.4) and

(3.8) \quad \|f(x) - Q(x)\| \leq \frac{1}{3} \sum_{i=0}^{\infty} 16^i \psi(0, 2^{-i-1}x)

for all x ∈ X.

Proof. By putting x = 0 in (3.1), we get

(3.9) \quad \|3f(2y) - 4f(y)\| \leq \psi(0, y).

Replacing y by \frac{1}{2} in (3.9) and result dividing by 3 to get

(3.10) \quad \|16f(2^{-1}x) - f(x)\| \leq \frac{1}{3} \psi(0, 2^{-1}x)

for all x ∈ X. Replacing x by \frac{x}{2} in (3.10) it follows that

(3.11) \quad \|16f(4^{-1}x) - f(2^{-1}x)\| \leq \frac{1}{3} \psi(0, 2^{-2}x).

Combining (3.10) and (3.11) by use of the triangle inequality to obtain

(3.12) \quad \|16^2 f(4^{-1}x) - f(x)\| \leq \frac{1}{3} \left(\frac{\psi(0, 2^{-2}x)}{16} + \psi(0, 2^{-1}x) \right).

By induction on n ∈ N, we have

(3.13) \quad \|16^n f(2^{-n}x) - f(x)\| \leq \frac{1}{3} \sum_{i=0}^{n-1} 16^i \psi(0, 2^{-i-1}x).

Multiplying (3.13) by 16^n and replacing x by 2^{-m}x to obtain

\quad \|16^{m+n} f(2^{-m-n}x) - 16^m f(2^{-m}x)\| = 16^m \|f(2^{-n}2^{-m}x) - f(2^{-m}x)\|

\leq \frac{16^m}{3} \sum_{i=0}^{n-1} 16^i \psi(0, 2^{-i-1}x)

\leq \frac{1}{3} \sum_{i=0}^{\infty} 16^{m+i} \psi(0, 2^{-i-1}2^{-m}x)

for all x ∈ X. By taking the \lim_{m→\infty}, it follows that \{16^n f(2^{-n}x)\} is a Cauchy sequence in Y. Since Y is a Banach space, then the sequence \{16^n f(2^{-n}x)\} converges. Now we define Q : X → Y by

Q(x) := \lim_n 16^n f(2^{-n}x)

for all x ∈ X. The rest of proof is similar to the proof of Theorem 3.1. □

Theorem 3.3. Let \psi : X × X → [0, \infty) be a function such that

(3.14) \quad \sum \frac{\psi(0, 2^i x)}{2^i} < \infty
and
\[\lim_{n \to \infty} \frac{\psi(2^n x, 2^n y)}{2^n} = 0 \]
for all \(x, y \in X \). If \(f : X \to Y \) is an odd function such that
\[\|Df(x,y)\| \leq \psi(x,y) \]
for all \(x, y \in X \). Then there exists a unique additive function \(A : X \to Y \) satisfies (1.4) and
\[\|f(x) - A(x)\| \leq \frac{1}{2} \sum_{i=0}^{\infty} \psi(0,2^i x) \]
for all \(x \in X \).

Proof. Setting \(x = 0 \) in (3.16) to get
\[\|f(2y) - 2f(y)\| \leq \psi(o, y) \]
Replacing \(y \) by \(x \) in (3.17) and result dividing by 2, then we have
\[\left\| \frac{f(2x)}{2} - f(x) \right\| \leq \frac{1}{2} \psi(0, x) \]
Replacing \(x \) by \(2x \) in (3.18) to obtain
\[\left\| \frac{f(4x)}{2} - f(2x) \right\| \leq \frac{1}{2} \psi(0, 2x) \]
Combine (3.18) and (3.19) by use of the triangle inequality to get
\[\left\| \frac{f(4x)}{4} - f(x) \right\| \leq \frac{1}{2} (\psi(0, x) + \frac{1}{2} \psi(0, 2x)) \]
Now we use iterative methods and induction on \(n \) to prove our next relation.
\[\left\| \frac{f(2^n x)}{2^n} - f(x) \right\| \leq \frac{1}{2} \sum_{i=0}^{n-1} \psi(0,2^i x) \]
Dividing (3.21) by \(2^m \) and then substituting \(x \) by \(2^m x \), we get
\[\left\| \frac{f(2^{m+n} x)}{2^{m+n}} - \frac{f(2^m x)}{2^m} \right\| = \frac{1}{2^m} \left\| \frac{f(2^{n+1} x)}{2^{n+1}} - f(2^m x) \right\| \]
\[\leq \frac{1}{2^{m+1}} \sum_{i=0}^{n-1} \psi(0,2^i 2^m x) \]
\[\leq \frac{1}{2} \sum_{i=0}^{\infty} \psi(0,2^{i+m} x) \]
(3.22)
Taking $m \to \infty$ in (3.22), then the right hand side of the inequality tends to zero. Since Y is a Banach space, then $A(x) = \lim_n \frac{f(2^n x)}{2^n}$ exits for all $x \in X$. The oddness of f implies that A is odd. On the other hand by (3.15) we have

$$D_A(x, y) = \lim_n \frac{1}{2^n} \|D_f(2^n x, 2^n y)\| \leq \lim_n \frac{\psi(2^n x, 2^n y)}{2^n} = 0.$$

Hence by Theorem 1.2, A is additive function. The rest of the proof is similar to the proof of Theorem 3.1.

Theorem 3.4. Let $\psi : X \times X \to [0, \infty)$ be a function satisfies

$$\sum_{i=0}^{\infty} 2^i \psi(0, 2^{-i-1} x) < \infty$$

for all $x \in X$ and $\lim 2^n \psi(2^{-n} x, 2^{-n} y) = 0$ for all $x, y \in X$. Suppose that an odd function $f : X \to Y$ satisfies (3.1). Then the limit $A(x) := \lim_n 2^n f(2^n x)$ exists for all $x \in X$ and $A : X \to Y$ is a unique additive function satisfying (1.4), and

$$\|f(x) - A(x)\| \leq \sum_{i=0}^{\infty} 2^i \psi(0, 2^{-i-1} x)$$

for all $x \in X$.

Proof. It is similar to the proof of Theorem 3.3. □

Theorem 3.5. Let $\psi : X \times X \to Y$ be a function such that

$$\sum_{i=0}^{\infty} \frac{\psi(0, 2^i x)}{2^i} \leq \infty \quad \text{and} \quad \lim_n \frac{\psi(2^n x, 2^n y)}{2^n} = 0$$

for all $x \in X$. Suppose that a function $f : X \to Y$ satisfies the inequality

$$\|D_f(x, y)\| \leq \psi(x, y)$$

for all $x, y \in X$, and $f(0) = 0$. Then there exist a unique quartic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfying (1.4) and

$$\|f(x) - Q(x) - A(x)\| \leq \frac{1}{48} \left[\sum_{i=0}^{\infty} \left(\psi(0, 2^i x) + \psi(0, -2^i x) \right) \right]$$

(3.23)

for all $x, y \in X$.

Proof. We have

$$\|D_f(x, y)\| \leq \frac{1}{2} [\psi(x, y) + \psi(-x, -y)]$$
for all \(x, y \in X \). Since \(f_e(0) = 0 \) and \(f_e \) is an even function, then by Theorem 3.1, there exists a unique quartic function \(Q : x \to Y \) satisfying

\[
\| f_e(x) - Q(x) \| \leq \frac{1}{48} \sum_{i=0}^{\infty} \frac{\psi(0, 2^i x) + \psi(0, -2^i x)}{2 \times 16^i}
\]

for all \(x \in X \). On the other hand \(f_0 \) is odd function and

\[
\| D f_0(x, y) \| \leq \frac{1}{2} \left[\psi(x, y) + \psi(-x, -y) \right]
\]

for all \(x, y \in X \). Then by Theorem 3.3, there exists a unique additive function \(A : X \to Y \) such that

\[
\| f_0(x) - A(x) \| \leq \frac{1}{2} \sum_{i=0}^{\infty} \frac{\psi(0, 2^i x) + \psi(0, -2^i x)}{2 \times 2^i}
\]

for all \(x \in X \). Combining (3.24) and (3.25) to obtain (3.23). This completes the proof of theorem. \(\square \)

By Theorem 3.5, we are going to investigate the Hyers-Ulam-Rassias stability problem for functional equation (1.4).

Corollary 3.6. Let \(\theta \geq 0, P < 1 \). Suppose \(f : X \to Y \) satisfies the inequality

\[
\| D f(x, y) \| \leq \theta (\| x \|^p + \| y \|^p)
\]

for all \(x, y \in X \) and \(f(0) = 0 \). Then there exists a unique quartic function \(Q : X \to Y \) and a unique additive function \(A : X \to Y \) satisfying (1.4), and

\[
\| f(x) - Q(x) - A(x) \| \leq \frac{\theta}{48} \| x \|^p \left(\frac{16}{16 - 2^p} + \frac{96}{1 - 2^{p-1}} \right)
\]

for all \(x \in X \).

By Corollary 3.6, we solve the following Hyers-Ulam stability problem for functional equation (1.4).

Corollary 3.7. Let \(\epsilon \) be a positive real number, and let \(f : X \to Y \) be a function satisfies

\[
\| D f(x, y) \| \leq \epsilon
\]

for all \(x, y \in X \). Then there exist a unique quartic function \(Q : X \to Y \) and a unique additive function \(A : X \to Y \) satisfying (1.4), and

\[
\| f(x) - Q(x) - A(x) \| \leq \frac{362}{45} \epsilon
\]

for all \(x \in X \).

By applying Theorems 3.2 and 3.4, we have the following theorem.
Theorem 3.8. Let $\psi : X \times X \to Y$ be a function such that
\[\sum_{i=0}^{\infty} 16^i \psi(0, 2^{-i-1}x) \leq \infty \quad \text{and} \quad \lim_{n \to \infty} 16^n \psi(2^n x, 2^n x) = 0 \]
for all $x \in X$. Suppose that a function $f : X \to Y$ satisfies the inequality
\[\| Df(x, y) \| \leq \psi(x, y) \]
for all $x, y \in X$ and $f(0) = 0$. Then there exist a unique quartic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfying (1.4), and
\[\| f(x) - Q(x) - A(x) \| \leq \sum_{i=0}^{\infty} \left(\frac{16^i}{3} + 2^i \right) \left(\frac{\psi(0, 2^{-i-1}x) + \psi(0, -2^{-i-1}x)}{2} \right) \]
for all $x, y \in X$.

Corollary 3.9. Let $\theta \geq 0$, $P > 4$. Suppose $f : X \to Y$ satisfies the inequality
\[\| Df(x, y) \| \leq \theta (\| x \|^p + \| y \|^p) \]
for all $x, y \in X$, and $f(0) = 0$. Then there exist a unique quartic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfying (1.4), and
\[\| f(x) - Q(x) - A(x) \| \leq \frac{\theta}{3 \times 2^p} \| x \|^p \left(\frac{1}{1 - 2^{4-p}} + \frac{1}{1 - 2^{1-p}} \right) \]
for all $x \in X$.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
[2] L. Cădariu, Fixed points in generalized metric space and the stability of a quartic functional equation, Bul. Științ. Univ. Politeh. Timișoara, Ser. Mat. Fiz. 50(64) (2005), no. 2, 25–34.
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76–86.
[4] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc. 40 (2003), no. 4, 565–576.
[5] M. Eshaghi-Gordji, A. Ebadian, and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis 2008 (2008), Article ID 801904, 17 pages.
[6] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, M. S. Moslehian, and S. Zolfaghari, Stability of a mixed type additive, quadratic, cubic and quartic functional equation, To appear.
[7] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park, and S. Zolfaghari, Stability of an additive-cubic-quartic functional equation, Submitted.
[8] M. Eshaghi-Gordji, C. Park, and M. Bavand-Savadkouhi, Stability of a quartic type functional equation, Submitted.
[9] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431–434.
[10] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.
[11] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3-4, 217–235.
[12] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Inc., Boston, MA, 1998.
[13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222–224.
[14] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131–137.
[15] G. Isac and Th. M. Rassias, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219–228.
[16] S. H. Lee, S. M. Im, and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), no. 2, 387–394.
[17] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), no. 1, 569–574.
[18] C. G. Park, On the stability of the orthogonally quartic functional equation, Bull. Iranian Math. Soc. 31 (2005), no. 1, 63–70.
[19] W. G. Park and J. H. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal. 62 (2005), no. 4, 643–654.
[20] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. (N.S.) 67 (2000), no. 1–4, 169–178.
[21] Th. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), no. 2, 243–252.
[22] Th. M. Rassias, Functional Equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000.
[23] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23–130.
[24] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264–284.
[25] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300.
[26] K. Ravi and M. Arunkumar, Hyers-Ulam-Rassias stability of a quartic functional equation, Int. J. Pure Appl. Math. 34 (2007), no. 2, 247–260.
[27] E. Thandapani, K. Ravi, and M. Arunkumar, On the solution of the generalized quartic functional equation, Far East J. Appl. Math. 24 (2006), no. 3, 297–312.
[28] S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964.