Feshbach spectroscopy of an ultracold mixture of 85Rb and 133Cs

Hung-Wen Cho1, Daniel J. McCarron1, Michael P. Köppinger1, Daniel L. Jenkin1, Kirsteen L. Butler1, Paul S. Julienne2, Caroline L. Blackley3, C. Ruth Le Sueur3, Jeremy M. Hutson3, and Simon L. Cornish1

1Joint Quantum Institute (JQI) Durban/Newcastle, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom

2Joint Quantum Institute, NIST and the University of Maryland, Gaithersburg, Maryland 20899-8423, USA and

3Joint Quantum Centre (JQC) Durham/Newcastle, Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom

(Dated: August 23, 2012)

We report the observation of interspecies Feshbach resonances in an optically trapped mixture of 85Rb and 133Cs. We measure 14 interspecies features in the lowest spin channels for a magnetic field range from 0 to 700 G and show that they are in good agreement with coupled-channel calculations. The interspecies background scattering length is close to zero over a large range of magnetic fields, permitting the sensitive detection of Feshbach resonances through interspecies thermalisation. Our results confirm the quality of the Rb-Cs potential curves and offer promising starting points for the production of ultracold polar molecules.

Ultracold polar molecules provide numerous new and exciting avenues of research for studies of dilute quantum systems1,2. The permanent electric dipole moments possessed by these molecules give rise to anisotropic, long-range dipole-dipole interactions which are in contrast to the isotropic, short-range interactions commonly encountered in ultracold atomic gas experiments3. These dipole-dipole interactions can operate over a range greater than typical optical lattice separations leading to a range of novel quantum phases and opportunities for quantum simulation and quantum information processing4,5.

The most promising route towards realizing these proposals exploits a two-step indirect method where the constituent atoms in a mixed-species quantum gas are associated into ground-state molecules6. Weakly bound molecules are first made by magneto-association using a Feshbach resonance8 and are then optically transferred into the rovibrational ground state by stimulated Raman adiabatic passage (STIRAP)9. Great strides have been made using this approach in a number of systems10,11, although the only polar molecule that has so far been produced at high phase-space density is fermionic KRB10. However, two KRb molecules can undergo an exothermic reaction to form K$_2$ + Rb$_2$. An alternative attractive method is to form ground-state RbCs, which is expected to be collisionally stable because both the exchange reaction 2RbCs → Rb$_2$ + Cs$_2$ and trimer formation reactions are endothermic14. There has been considerable work on the Feshbach resonances of13 and molecule formation15,16 in 87Rb133Cs. However, this isotopologue has an interspecies background scattering length that is large and positive, which produces a spatial separation of the dual condensate18 and enhances losses from 3-body collisions19,20. Both of these factors inhibit the formation of weakly bound Feshbach molecules.

In this Letter we explore the alternative mixture of 85Rb and 133Cs, which we show does not suffer from the problems present for the mixture of 87Rb and 133Cs. We report the observation of 14 interspecies Feshbach resonances in excellent agreement with coupled-channel calculations. We show that the interspecies background scattering length is close to zero over a large range of magnetic fields, permitting the sensitive detection of Feshbach resonances through interspecies thermalisation. Our observations together with detailed calculations of the near-threshold bound-state spectrum reveal numerous possible gateways into the realm of ultracold heteronuclear molecules.

Details of our apparatus have been described previously in the context of our work on dual-species condensates of 87Rb and 133Cs18,19. Ultracold mixtures of 85Rb and 133Cs are collected in a two-species magneto-optical trap. The 85Rb and 133Cs atoms are optically pumped into the $|2, 0\rangle$ states, respectively, and then loaded into a magnetic quadrupole trap. Forced RF evaporation cools the 85Rb atoms to 50 µK while 133Cs is cooled sympathetically by interspecies elastic collisions. Further efficient evaporative cooling is inhibited by Majorana losses21. The two species are then transferred into a crossed dipole trap formed using the output of a 30 W, 1550 nm fibre laser. After loading, the 85Rb and 133Cs atoms are transferred into the $|2, 2\rangle$ and $|3, 3\rangle$ states respectively by RF adiabatic rapid passage22 and a vertical magnetic field gradient of 21.2 G/cm is applied, just below the 22.4 G/cm required to levitate 85Rb23. The resulting gravitational sag of the 133Cs cloud ($\lesssim 2\mu$m) is significantly less than the typical vertical FWHM of the cloud ($\sim 24\mu$m), so that there is excellent spatial overlap of both species throughout the measurement. The magnetic field gradient also results in a field spread of $\lesssim 0.05$ G across the cloud, which limits the minimum observed resonance width. The magnetic field is calibrated using microwave spectroscopy between the hyperfine states of 133Cs.

A typical experiment starts with a mixture of
2.0(1) \times 10^5 85Rb atoms at 7.9(1) \mu K and 2.3(1) \times 10^4 133Cs atoms at 10.6(5) \mu K confined in the dipole trap in the lowest spin channels. The temperature difference between the two species arises from a combination of the small interspecies background scattering length and the differing trap depths for the two species: at 1550 nm the polarisability of 133Cs is \sim 1.4 times greater than that of 85Rb. The significant atom number imbalance between the two species increases the sensitivity of heteronuclear Feshbach spectroscopy. Here the 133Cs atoms act as a probe species immersed in a collisional bath of 85Rb [24]. To perform Feshbach spectroscopy, the magnetic field is switched to a specific value in the range 0 to 700 G. Evaporative cooling is then performed by reducing the laser powers by a factor of 4 over 2 s to final trap depths of 15 \mu K for 85Rb and 22 \mu K for 133Cs. The mixture is then held for 1 s in this final potential. To probe the mixture, resonant absorption images of both species are captured in each experimental cycle using a frame-transfer CCD camera. Interspecies Feshbach resonances are identified by studying the variation in the atom number and temperature for both species with magnetic field.

The rich Feshbach resonance structure of this system is shown in Fig. 1. The top panel shows a coarse scan of the 85Rb (\textbullet) and 133Cs (\textcircled{c}) temperatures between 0 and 700 G. Each point corresponds to an average of at least 3 repeated measurements. The bottom panel shows the scattering length and the energies of the near-threshold molecular states, obtained from coupled-channel calculations as described below. Over a large range of magnetic field the magnitude of the interspecies scattering length is \sim 30 bohr (indicated by the grey shaded region) and the two species do not equilibrate to a common temperature within the duration of the experiment. However, the variation of the scattering length in the vicinity of an interspecies resonance produces a pronounced feature in the 133Cs temperature as the 133Cs atoms are sympathetically cooled by the colder 85Rb atoms. The large windows of thermal equilibrium around 110 G and 640 G coincide with broad s-wave resonances. Additionally, many narrow resonances can be identified in very good agreement with the calculated Feshbach spectrum. The positions of experimental resonances are marked by arrows whose positions are determined by fine scans across each resonance. Red arrows mark s-wave features while blue arrows mark two observed p-wave resonances.

Fig. 4 shows an example of a fine scan across the interspecies resonance at 187.66(5) G. Here the thermalisation between the two species on resonance is clear as 133Cs is sympathetically cooled by 85Rb (Fig. 2a). The sympa-
Intra- and interspecies Feshbach resonances are distinguished as shown in Fig. 3. In this region, the 87Rb number shows two loss features (Fig. 3(a)). The resonance at 368.78(3) G results in no change of the 133Cs temperature, indicating that this feature is a 85Rb intraspecies resonance. Conversely, near the feature at 370.39(1) G, the two species come into thermal equilibrium through sympathetic cooling, showing this to be an interspecies resonance (Fig. 3(b)). This interpretation is confirmed by performing single-species measurements. Further details on the observed 85Rb intraspecies resonances will be presented in ref. [25].

The interspecies scattering length and bound-state positions are calculated from a coupled-channel model, using the potential curves of ref. [17], which were fitted to Fourier transform spectra of both 85Rb133Cs and 87Rb133Cs and Feshbach resonances and weakly bound states of 87Rb133Cs. All the calculations are carried out in a fully uncoupled basis set, $|s_{Rb}m_{sRb}⟩ |i_{Rb}m_{iRb}⟩ |s_{Cs}m_{sCs}⟩ |i_{Cs}m_{iCs}⟩ |LM⟩$, where s and i indicate electron and nuclear spins and L is the quantum number for end-over-end rotation of the two atoms about one another. The coupled equations are diagonal in the total projection quantum number $M_{tot} = M_L + M_F$, where $M_F = m_{sRb} + m_{iRb} + m_{sCs} + m_{iCs}$. The basis sets used here included all functions with $L = 0$ and 2 for incoming $L = 0$ (s-wave) and with $L = 1$ and 3 for incoming $L = 1$ (p-wave).

The scattering calculations are carried out using the MOLSCAT program [26], as modified to handle collisions in an external field [27]. The calculations use a fixed-step log-derivative propagator [28] to propagate from 0.3 to 1.9 nm and then the variable-step Airy propagator [29] to propagate from 1.9 to 1,500 nm. The s-wave scattering length is obtained from $a(k) = (ik)^{-1}(1 - S_{00})/(1 + S_{00})$ [30], where S_{00} is the diagonal S-matrix element in the incoming channel and k is the corresponding wavevector. For incoming $L = 1$, a and k are replaced by a^3 and k^3. Single-channel calculations on the singlet and triplet potential curves of ref. [17] give singlet and triplet scattering lengths of 585.6 and 11.27 bohr respectively.

The bound-state calculations use the associated packages BOUND [31] and FIELD, which locate bound states by solving sets of coupled differential equations in the same basis set as for scattering calculations, as described for alkali-metal dimers in ref. [32]. BOUND locates the energies of bound states at fixed magnetic field, whereas FIELD locates the magnetic fields at which bound states exist at fixed binding energy.

The scattering length is given approximately by $a(B) = a_{bgz} (1 - (∆/(B - B_0)))$. The width $∆$ is thus conveniently calculated for each resonance as $B_0 - B_0$, where B_0 is the field where $a(B)$ crosses zero and B_0 is the location of the corresponding pole. The MOLSCAT package is capable of converging directly on both these points. However, it should be noted that theoretical widths defined in this way are
not the same thing as the fitted experimental Lorentzian widths δ, and the two should not be compared.

Experiment	Theory								
B_0	δ	Assignment	B_0	B_*	Δ	a_{bg}			
(G)	(G)	$L_F M_F$	(G)	(G)	(G) (bohr)				
3.47(1)	0.12(2)	s	2	5	3	70.54	58.54	-12	-
3.90(2)	0.33(5)	s	2	5	4	42.7	42.7	0.00029	27.8
6.76(2)	0.14(3)	s	2	5	5	6.80	6.80	0.00086	28.6
70.68(4)	0.8(1)	p	1	-	-	-	-	-	-
70.68(4)	0.8(1)	s	2	4	3	77.51	77.52	0.010	93.6
107.13(1)	0.6(2)	s	0	3	5	109	350	241	9.6
112.39(1)	0.08(4)	s	2	9	6	112.29	112.12	-0.17	-628
187.66(5)	1.7(3)	s	0	6	5	187.07	182.97	-4.1	-30.3
233.92(2)	2.1(3)	-	-	-	-	-	-		
246.5(3)	14(2)	-	-	-	-	-	-		
370.39(1)	0.08(4)	s	2	7	7	370.41	374.31	0.45	3.4
370.39(1)	0.08(4)	s	2	7	7	395.11	395.56	0.45	3.4
577.8(1)	1.1(3)	s	0	6	5	578.36	578.70	0.34	32.2
614.6(3)	1.1(4)	p	1	-	-	614.98	608.18	-6.8	-
641.8(3)	6(2)	s	0	5	5	642	901	259	9.6

TABLE I. Feshbach resonances for $^{85}\text{Rb}\, |2, +2\rangle + ^{133}\text{Cs} |3, +3\rangle$ in the field range 0 to 700 G. All resonances with calculated widths $\Delta > 0.01$ G are listed. See Supplemental Material at [URL will be inserted by publisher] for a complete listing of the s-wave resonances, including narrower ones. The experimental errors δ are statistical uncertainties resulting from the fits as described in the text. Additional systematic uncertainties of 0.1 G and 0.5 G apply to the experimental resonance positions in the field ranges 0 to 400 G and 400 to 700 G respectively.

The experimental and theoretical resonance parameters are compared in Table I. Most of the experimentally observed resonance positions are in good agreement with the theoretical predictions [33]. The success of mass scaling between $^{87}\text{Rb}^{133}\text{Cs}$ and $^{85}\text{Rb}^{133}\text{Cs}$ demonstrates the accuracy of the potential curves, and in particular confirms that they support the correct absolute number of bound states. This agreement extends over features measured for both incoming s- and p-wave collisions [34].

Our observations show that the interspecies background scattering length is close to zero over a large range of magnetic fields. This reduces losses due to interspecies 3-body collisions for $^{85}\text{Rb} + ^{133}\text{Cs}$ and makes it much easier to achieve good overlap of atomic clouds than for $^{87}\text{Rb} + ^{133}\text{Cs}$. The broad resonances near 110 G and 640 G will permit precise tuning of the interatomic interactions, allowing control of the miscibility and studies of Efimov physics in heteronuclear systems. There are also numerous narrower resonances with widths in the range that is convenient for magnetoassociation. Future work will include exploration of the molecular bound states (Fig. I) by magnetic-field modulation spectroscopy, magnetoassociation to form weakly bound molecules, and optical transfer to the ground state. $^{85}\text{Rb}^{133}\text{Cs}$ thus offers the prospect of forming a gas of ultracold polar molecules that are stable with respect to chemical reactions.

This work was supported by the UK EPSRC, by AFOSR MURI Grant FA9550-09-1-0617, and by EOARD Grant FA8655-10-1-3033.

[1] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).
[2] B. Friedrich and J. M. Doyle, ChemPhysChem 10, 604 (2009).
[3] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep. Prog. Phys. 72, 126401 (2009).
[4] B. Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P. Zoller, and G. Pupillo, Phys. Rev. Lett. 104, 125301 (2010).
[5] A. Micheli, G. Pupillo, H. P. Büchler, and P. Zoller, Phys. Rev. A 76, 043604 (2007).
[6] M. L. Wall and L. D. Carr, New J. Phys. 11, 055027 (2009).
[7] B. Damski, L. Santos, E. Tiemann, M. Lewenstein, S. Kotochigova, P. Julienne, and P. Zoller, Phys. Rev. Lett. 90, 110401 (2003).
[8] C. Chin, R. Grimm, E. Tiesinga, and P. S. Julienne, Rev. Mod. Phys. 82, 1225 (2010).
[9] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70, 1003 (1998).
[10] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, Science 322, 231 (2008).
[11] F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. Hecker Denschlag, Phys. Rev. Lett. 101, 135005 (2008).
[12] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H.-C. Nägerl, Nature Phys. 6, 265 (2010).
[13] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Science 327, 853 (2010).
[14] P. S. Zuchowski and J. M. Hutson, Phys. Rev. A 81, 060703 (2010).
[15] K. Pflich, A. D. Lange, A. Prantner, G. Kerner, F. Ferlaino, H.-C. Nägerl, and R. Grimm, Phys. Rev. A 79, 042718 (2009).
[16] M. Debatin, T. Takekoshi, R. Rameshan, L. Reichsöllner, F. Ferlaino, R. Grimm, R. Vexiau, N. Boulova, O. Dulieu, and H.-C. Nägerl, Phys. Chem. Chem. Phys. 13, 18926 (2011).
[17] T. Takekoshi, M. Debatin, R. Rameshan, F. Ferlaino, R. Grimm, H.-C. Nägerl, C. R. Le Sueur, J. M. Hutson,
P. S. Julienne, S. Kotochigova, and E. Tiemann, Phys. Rev. A 85, 032506 (2012).

[18] D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Köppinger, and S. L. Cornish, Phys. Rev. A 84, 011603 (2011).

[19] H. W. Cho, D. J. McCarron, D. L. Jenkin, M. P. Köppinger, and S. L. Cornish, Eur. Phys. J. D 65, 125 (2011).

[20] A. D. Lercher, T. Takekoshi, M. Debatin, B. Schuster, R. Rameshan, F. Ferlaino, R. Grimm, and H.-C. Nägerl, Eur. Phys. J. D 65, 3 (2011)

[21] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, Phys. Rev. A 79, 063631 (2009).

[22] D. L. Jenkin, D. J. McCarron, M. P. Köppinger, H. W. Cho, S. A. Hopkins, and S. L. Cornish, Eur. Phys. J. D 65, 11 (2011).

[23] Units of gauss rather than tesla, the accepted SI unit for the magnetic field, have been used in this paper to conform to the conventional usage in this field of physics.

[24] E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, Phys. Rev. Lett. 100, 053201 (2008).

[25] C. L. Blackley et al., in preparation.

[26] J. M. Hutson and S. Green, MOLSCAT computer program, version 14 (CCP6, Daresbury, 1994).

[27] M. L. González-Martínez and J. M. Hutson, Phys. Rev. A 75, 022702 (2007).

[28] D. E. Manolopoulos, J. Chem. Phys. 85, 6425 (1986).

[29] M. H. Alexander, J. Chem. Phys. 81, 4510 (1984).

[30] J. M. Hutson, New J. Phys. 9, 152 (2007).

[31] J. M. Hutson, BOUND computer program, version 5 (CCP6, Daresbury, 1993).

[32] J. M. Hutson, E. Tiesinga, and P. S. Julienne, Phys. Rev. A 78, 052703 (2008).

[33] Comparison between theory and experiment for the cluster of resonances near 110 G is limited by the fact that not all resonances are resolved experimentally. Two experimental observations, strong thermalisation at 233.9(2) G and strong loss at 246.5(3) G, do not correspond to 2-body resonances using the current theoretical model and require further investigation.

[34] The two \(p\)-wave resonances that are observed experimentally have calculated widths > 6 G, and all others have calculated widths < 0.3 G.