Fungal epidemic lurking in the shadows of a viral pandemic

Dear Editor,

We read with great interest the recent editorial, “Code Mucor”[1] published in Indian Journal of Ophthalmology. We appreciate the author for enlightening the fraternity and the general population about red flag symptoms of COVID-19-associated mucormycosis which is the need of the hour. Looking at the upsurge of rhino-orbital-cerebral (ROCM) in India, it has now been declared as an epidemic in many states of India.

We have never come across in many years with such elaborate staging of ROCM.[2] Earlier it was classified into three clinical stages. Stage-I involving sino-nasal area, stage-II involving sino-orbital infection, and stage-III involving intracranial compartment.[2] The clinical assessment alone might not justify the extent of staging, as the radiological findings might surprise us. The proposed staging by the author with adjunct radiology to the clinical acumen helps in better assessment of the stage of the disease.

Our department is performing diagnostic nasal endoscopy (DNE) with contrast-enhanced magnetic resonance imaging (CEMRI) in high-risk patients with alarming symptoms. We hereby report the staging of 15 patients of ROCM by clinical assessment/DNE and comparing it with radiological derived staging [Table 1]. In eight patients, the clinical and radiological staging were the same, while in seven patients, we observed that MRI has upstaged the disease. Two patients of stage 1 were upstaged to stages 2b and 2c, while five patients upstaged in subcategories of the same stage. This upstaging helped us in proper evaluation and management. With the numbers rising, we have a dedicated mucor ward with almost 60 patients. We are now witnessing patients of ROCM with only

Table 1: Demographics, staging, and management

Age/Sex	Presentation	Staging by clinical assessment + DNE	Staging by MRI	Treatment
29/M	Nasal	1b	2d	Endoscopic endonasal debridement
30/M	Nasal and facial	2c	2c	Endoscopic endonasal debridement
37/M	Nasal	2a	2c	Endoscopic endonasal debridement + infrastructural maxillectomy
37/M	Nasal, orbital, oral, and cranial	4a	4a	Total maxillectomy with orbital exenteration
40/F	Nasal	2a	2d	Endoscopic endonasal debridement
43/M	Nasal and palate	2c	2d	Endoscopic endonasal debridement + infrastructural maxillectomy
45/M	Nasal and oral	2c	2c	Endoscopic endonasal debridement
45/M	Nasal	1a	2c	Endoscopic endonasal debridement
48/F	Nasal and facial	2d	2d	Debridement (Endoscopic endonasal + Caldwell Luc)
48/M	Nasal and orbital	3a	3b	Orbital decompression
50/M	Nasal, facial, and oral	2c	2c	Debridement (Endoscopic endonasal + Caldwell Luc)
53/F	Facial and orbital	3a	3a	Endoscopic endonasal debridement
54/M	Nasal and orbital	3b	3b	Orbital decompression
63/M	Nasal and orbital	3a	3c	Total maxillectomy with orbital exenteration
70/M	Nasal, facial, and oral	2d	2d	Endoscopic endonasal debridement
involvement of orbital compartment sparing nasal cavity and face. DNE in such cases is inconclusive, while CEMRI showed us active disease in paranasal sinuses and orbital compartment. Therefore, early detection of mucormycosis with accurate staging (clinical + radiological) is essential for a good prognosis. A teamwork of ophthalmologists and otorhinolaryngologists in unison is paramount to fight this epidemic.

Acknowledgement
We acknowledge Department of Ophthalmology, Microbiology, Medicine, and Neurology, at Dr. Sampurnanand Medical College, Jodhpur.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Mahendra Chouhan, Bharti Solanki, Neha Shakrawal, Nadeem Shaikh
Department of Otorhinolaryngology and Head-Neck Surgery, Dr. Sampurnanand Medical College, Jodhpur, Rajasthan, India

Correspondence to: Dr. Neha Shakrawal, Department of Otorhinolaryngology and Head-Neck Surgery, Dr. Sampurmanand Medical College, Jodhpur, Rajasthan - 342 003, India.
E-mail: drnehaa.im@gmail.com

References
1. Honavar SG. Code mucor: Guidelines for the diagnosis, staging and management of rhino-orbito-cerebral mucormycosis in the setting of COVID-19. Indian J Ophthalmol 2021;69:1361-5.
2. Chakrabarti A, Chatterjee SS, Das A, Panda N, Shivaprakash MR, Kaur A, et al. Invasive zygomycosis in India: Experience in a tertiary care hospital. Postgrad Med J 2009;85:573-81.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Access this article online
Quick Response Code: Website: www.ijo.in
DOI: 10.4103/ijo.IJO_1549_21
PMID: 34304224

Cite this article as: Chouhan M, Solanki B, Shakrawal N, Shaikh N. Fungal epidemic lurking in the shadows of a viral pandemic. Indian J Ophthalmol 2021;69:2239-40.

© 2021 Indian Journal of Ophthalmology | Published by Wolters Kluwer - Medknow