Prevalence of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA), Durban and Coast, South Africa

S Mukaratirwa and V P Singh

ABSTRACT
Coprological examination was used to determine the prevalence and intensity of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA), Durban and Coast, South Africa. Helminth and protozoan parasites were found in faeces of 240 dogs with an overall prevalence of 82.5% (helminth parasites 93.1% and protozoan parasites 6.9%). The following parasites and their prevalences were detected: Ancylostoma sp. (53.8%), Trichuris vulpis (7.9%), Sarcocercia lupi (5.4%), Toxocara canis (7.9%), Toxocaris leonina (0.4%) Giardia intestinalis (5.6%) and Isospora sp. (1.3%). Dogs harbouring a single parasite species were more common (41.7%) than those harbouring 2 (15%) or multiple (2.1%) species. Ancylostoma sp., Toxocara canis and Giardia intestinalis have zoonotic potential and were detected in 66.7% of the samples.

Keywords: Durban, gastrointestinal parasites, intensity, prevalence, SPCA, stray dogs, zoonosis.

INTRODUCTION
Gastrointestinal (GI) parasites are common pathogens in stray dogs and some are reservoirs of parasitic infections of humans, particularly in urban areas and especially in informal urban areas. Some of the important zoonotic diseases include visceral larva migrans caused by Toxocara canis, cutaneous larva migrans caused by Ancylostoma caninum and A. braziliensis, giardiosis, cryptosporidiosis and echinococcosis. Transmission may occur from dogs to humans directly or indirectly.

The prevalence of GI parasites may vary due to several factors, including geographical region, level of veterinary care before straying and habits of the animal. In most cities in developing countries control of stray dogs is practically non-existent, resulting in an increased risk of exposure to zoonoses transmitted by these animals.

Several studies have demonstrated that stray dogs have a high prevalence of gastrointestinal parasites. In South Africa there are reports on prevalence of GI parasites in dogs from resource-limited communities and a metropolitan population from Pretoria. Minaar et al. examined 106 dogs and found Ancylostoma spp. as the most common helminth parasite followed by T. canis.

Information on GI parasites of urban stray dogs is lacking in South Africa and the purpose of this study was to provide baseline information on GI parasite infection of stray dogs on a local scale in the Durban metropole, South Africa.

MATERIALS AND METHODS
Source of samples
In this study a stray dog is defined as any dog roaming in a public place without its owner or a person who is responsible for it and consequently impounded by the Society for the Prevention of Cruelty to Animals (SPCA). Between August 2008 and January 2009, faecal samples were collected in plastic containers from 240 male and female stray dogs of ages varying between 6 months and 6 years. The dogs had been impounded by the SPCA, Durban and Coast, Springfield Park, and were accommodated in individual kennels. The faecal samples were collected from each dog at the 1st day of impoundment. The dogs were of a variety of breeds from various suburbs in the Durban metropole, South Africa.

Parasitological procedures
Fresh faecal samples were processed individually and examined microscopically for helminth eggs and protozoan cysts and/or oocysts after concentration by the modified formol-ether technique.

Briefly, 1 g of faeces was added to 7 ml of 10% formal-saline in a 15 ml test tube. The content was mixed thoroughly and strained through a 200-μm aperture sieve and collected into another test tube. The suspension was centrifuged at 2000 rpm (Sigma 204, swing-out, rotor diameter 12 cm, g-force 53.6) for 3 min and the supernatant fluid decanted. The procedure was repeated by adding formal-saline to the sediment to make up 12 ml and centrifuged and the supernatant decanted. Eight ml of buffered-alcohol (H3PO4) solution was added to the sediment and the solution stirred using a wooden applicator to break up the sediment followed by addition of 4 ml of ether. The solution was vigorously shaken and centrifuged at 1500 rpm for 1 min, and the supernatant fluid decanted. The remaining sediment was diluted with 3 ml of normal saline and strained through a 200-μm aperture sieve into a clean 15 ml centrifuge tube. The filtrate was left to settle for 15 min and the supernatant fluid decanted. The sediment was transferred to a glass slide using a Pasteur pipette and the tube was rinsed with a few drops of saline to remove the last bits of sediment and examined under a light microscope. The number of eggs/cysts/oocysts were identified, counted and expressed as eggs/cysts/oocysts per gram of faeces.

Data analysis
Faecal samples were recorded as positive if 1 egg/cyst/oocyst was observed in the faecal analysis. The prevalence of infection for each parasite was calculated as...
the number of positive samples divided by the total number of samples tested expressed as a percentage. Intensity of infection was quantified by the number of eggs/cysts/oocysts per gram of faeces. The infection status of each dog was classified into either no infection, single or multiple infection.

RESULTS

The prevalence of GI parasites in stray dogs is shown in Table 1 and indicates that 82.5% of the dogs were infected by 8 genera and/or species. *Ancylostoma* sp. had the highest prevalence (53.8%) followed by *T. canis* and *Trichuris vulpis* (both 7.9%) and the lowest was *Toxascaris leonina* and *Taenia* sp. (both 0.4%). Species of zoonotic potential represented by *Ancylostoma* sp., *T. canis* and *Giardia* sp. were detected in 66.7% of the samples (Table 2).

The observed infection status of GI parasites and the intensity of infection are shown in Tables 1 and 2, respectively. Intensities of 50–500 eggs/cysts/oocysts per gram of faeces were recorded in 26.4% of the dogs with *Ancylostoma* sp.-infected dogs contributing the highest percentage (16.7%). A small proportion of the dogs (6.7%) had more than 5000 eggs/cysts/oocysts per gram of faeces with *Ancylostoma* sp.-infected dogs again contributing the highest percentage (3.7%). No dogs infected with *T. leonina*, *Giardia intestinalis* or *Isospora* sp. had an intensity of infection >5000 oocysts/cysts per gram of faeces.

Infection with 1 species of parasite was more common (41.7%) than double infection (15%) and multiple infection (2.1%) (Table 2). A single infection of *Ancylostoma* sp., *T. vulpis*, *T. canis* and *Giardia intestinalis* was recorded in 84 (35%), 6 (2.5%), 5 (2.1%) and 5 (2.1%) dogs respectively (Table 2).

DISCUSSION

Helminth parasites were more prevalent (6 species/groups) than protozoans (2 species/group). A large proportion of dogs had a low to medium intensity of infection by helminth parasites while the protozoan parasites had an evenly distributed intensity of infection and no dogs were recorded with intensity of infection >5000 oocysts/cysts per gram of faeces.

The overall prevalence of GIT parasites in stray dogs found in this study revealed a very high level of infection comparable with studies elsewhere. Helminth infection predominated over protozoan infections in this study and this is similar to other studies. The history of deworming of the dogs in our study was unknown and they might have been a mixture of dogs which were routinely dewormed before straying and those that were not dewormed. However, the increased helminth infection and reduced protozoan infection is most likely due to increased routine use of anthelmintics in the stray dogs in contrast to what has been observed in other studies.

Ancylostoma sp. was the most prevalent parasite species and this is similar to findings from other studies. The species of *Ancylostoma* are the most pathogenic in dogs and are also involved in human infection as the cause of cutaneous larva migrans. The high prevalence suggests that the environmental conditions in Durban are conducive for the survival and transmission of the parasite, but reports on human infection are nonexistent. There is a possibility that *Ancylostoma* sp. might have developed resistance to the common anthelmintics as some dogs from this study must have been regularly dewormed before straying.

Prevalence of *T. canis* observed in this study is comparable with that reported in Zimbabwe but lower than what has been reported in dogs from resource-poor communities in South Africa. The difference might have been due to the differences in the age distribution of dogs sampled as young dogs that acquire infection via congenital transmission tend to have a high prevalence compared with adults.

Trichuris vulpis is one of the common intestinal helminths in dogs in Europe and the prevalence of 7.9% from this study fell within the wide range of values that have been reported by the above authors. Surprisingly, the parasite was absent in the previous studies in South Africa, but reported in stray dogs in neighbouring Zimbabwe. Human infections by *T. vulpis* have been reported and have been attributed to humans being in continuous contact with environments contaminated by infected dogs.

The prevalence of *S. lupi* in dogs in some parts of South Africa has been reported and in urban stray dogs in Zimbabwe with rates comparable to our study. However, the prevalence rate recorded from our study is on the lower side compared with what has been reported elsewhere. Variation in prevalence of this parasite has been mainly attributed to high prevalence of intermediate and paratenic hosts and whether the dogs are stray, farm dogs or pets.

Giardia intestinalis was the most prevalent

Table 1: Prevalence and intensity of infection of stray dogs with gastrointestinal parasites (n = 240).

Parasite species	Intensity of infection (eggs/cysts/oocysts/gram of faeces)	Prevalence (%)				
	50–500 (%)	501–1000 (%)	1001–2000 (%)	2001–5000 (%)	>5000 (%)	
Ancylostoma sp.	40. (16.7)	37. (15.4)	25. (10.4)	18. (7.5)	9. (3.7)	129. (53.8)
Trichuris vulpis	7. (2.9)	4. (1.7)	3. (1.3)	2. (0.8)	1. (0.4)	19. (7.9)
Spirocerca lupi	5. (2.1)	4. (1.7)	2. (0.8)	0.	1. (0.4)	13. (5.4)
Toxocara canis	8. (3.3)	4. (1.7)	5. (2.1)	0.	2. (0.8)	19. (7.9)
Toxascaris leonina	0.	1. (0.4)	0.	0.	1. (0.4)	1. (0.4)
Taenia sp.	0.	0.	0.	0.	1. (0.4)	1. (0.4)
Giardia intestinalis	4. (1.7)	6. (2.5)	1. (0.4)	2. (0.8)	0.	13. (5.4)
Isospora sp.	0.	1. (0.4)	1. (0.4)	0. (0)	0.	3. (1.3)
Total	64 (26.7)	58 (24.2)	37 (15.4)	23 (9.6)	16 (6.7)	198 (82.5)

Table 2: Infection status of stray dogs with gastrointestinal parasites.

Infection status	Number of samples	Prevalence (%)
1. No infection	94	39.2
2. Single infection	100	41.7
Ancylostoma sp.	84	35
Trichuris vulpis	6	2.5
Toxocara canis	5	2.1
Giardia intestinalis	5	2.1
3. Double infection	36	15
4. Multiple infection	5	2.1
protozoan recorded in this study, similar to what has been reported in other studies
develop the dog. High prevalence of *Giardia* in dogs in Australia has been attributed to the fact
that most of the anthelmintics do not interfere in the development of the para-
site and the ability to colonise niches previously occupied by parasites such as
T. canis and *Dipylidium caninum*. This does not seem to be the case for the
recorded prevalence of *Giardia intestinalis* as the parasite was also recorded in
dogs with multiple infections involving helminth parasites.

ACKNOWLEDGEMENTS
Special appreciation to the management and staff of the Society for the Prevention of
Cruelty to Animals (SPCA), Durban and Coast, for their cooperation and
assistance in collecting the faecal specimens.

REFERENCES
1. Barutzki D, Schaper R 2003 Endoparasites in
dogs and cats in Germany 1999–2002. Parasitology Research 90: 148–150
2. Brodey R S, Thompson R G, Sayer P D, Eugster B 1977 *Spirocerca lupi* infection in
dogs in Kenya. Veterinary Parasitology 3: 49–59
3. Bugg R J, Robertson I D, Elliot A D, Thompson R C 1999 Gastrointestinal parasites of
urban dogs in Perth, Western Australia. Veterinary Journal 157: 295–301
4. Chandrasekharan K P, Sastry G A, Menon M N 1998 Canine spirocercosis with special
reference to the incidence and lesions. British Veterinary Journal 114: 388–395
5. Fok E, Sztamani V, Busak K, Rozgonyi F 2001 Prevalence of intestinal parasites in dogs in
some urban and rural areas of Hungary. Veterinary Quarterly 23: 96–98
6. Georgieva D, Ivanov A, Prelesov P 1999 Studies on the parasitic fauna in stray dogs in the
Stara Zagora region. Bulgarian Journal of Veterinary Medicine 2: 121–124
7. Jittapalapong S, Inparksawat T, Pinyo-
panuwart N, Kengradomkij C, Sangvaram-
nond A, Wongnakphet S 2007 Gastrointes-
tinal parasites of stray cats in Bangkok Met-
ropolitan areas. Thailand. Khabetsart Journal
of Natural Science 41: 69–73
8. Kaewthamasorn K, Niwetpathomwat A, Assrasakaron S, Wongsame S, Tia-
wsirip S 2006 A surveillance of canine gastrointes-
tinal parasites fecal samples from public
areas of Bangkok, Thailand. Journal of Animal
and Veterinary Advances 5: 1209–1213
9. Kagei N, Hayashi S, Kato K 1986 Human
cases of infection with canine whipworms,
Trichuris vulpis (Froelich, 1789), in Japan.
Japanese Journal of Medical Science and Biology
39: 177–184
10. Komara J A 1964 The incidence of canine
spirocercosis in the Freetown area of Sierra
Leone. Bulletin of Epizootology Diseases of Africa
12: 465–469
11. Katajiri S, Oliveira-Sequeira T C G 2008 Prevalence of dog intestinal parasites and
risk perception of zoonotic infection by dog
owners in Saõ Paulo State, Brazil. Zoonoses
Public Health 55: 406–413
12. Kenney M, Yermakov V 1980 Infection of
man with *Trichuris vulpis*, the whipworm of
dogs. American Journal of Tropical Medicine
and Hygiene 29: 1205–1208
13. Knight W B, Hatt R A, Cline B L, Ritchie B S 1976 A modification of the formol-ether
concentration technique for increased sen-
vitivity in detecting *Schistosoma mansoni*
egg. American Journal of Tropical Medicine
and Hygiene 25: 818–822
14. Labruna M B, Pena H F G, Souza S L P, Pinter A, Silva J C R, Ragozo A M A, Camargro L M A, Gennari S M 2006 Prevalence of endoparasites in dogs from
the urban area of Montenegro municipality,
Rondônia. Arquivos do Instituto Biológico
(São Paulo) 73: 183–193
15. Lobetti R 2000. Survey of the incidence,
diagnosis, clinical manifestations and treat-
ment of *Spirocerca lupi* in South Africa. Jour-
nal of the South African Veterinary Association
71: 43–46
16. Minaar W N, Kreeck R C, Rajput R J 1999 Helminth parasites of dogs from two
resource-limited communities in South
Africa. Journal of South African Veterinary
Association 70: 92–94
17. Minaar W N, Kreeck R C, Fourie L J 2002 Helminths in dogs from a peri-urban re-
source-limited community in Free State Province, South Africa. Veterinary Parasitology
107: 343–349
18. Mukaratirwa S, Busayi R 1995 A survey of
patent gastrointestinal parasites of stray
dogs in Bulawayo urban area. Zimbabwe
Veterinary Journal 26: 19–27
19. Oliveira-Sequiera T C, Amarane A F, Ferrari
TB, Nunes LC 2002 Prevalence of intestinal parasites in dogs from São Paulo State
Brazial. Veterinary Parasitology 103: 19–27
20. Orlepp R J 1934 Echinococcus in dogs from
Pretoria and vicinity. Onderstepoort Journal
of Veterinary Science and Animal Industry 3:
97–108
21. Overgaauw P A M, Boersena J H 1998 Nematode infections in dog breeding
kennels in the Netherlands, with special
reference to *Toxocara*. Veterinary Quarterly
20: 11–14
22. Palmer CS, Thompson R C A, Traub R J, Res
R, Robertson I D 2008 National study of the
gastrointestinal parasites of dogs and cats
in Australia. Veterinary Parasitology 151:
181–190
23. Ramirez-Barrios R A, Barbosa-Mena G, Munoz J, Angelo-Cubilán F, Hernandez E,
Gonzalez F, Escalona F 2004 Prevalence of intestinal parasites in dogs under veterinary
care in Maracaibo, Venezuela. Veterinary
Parasitology 121: 11–20
24. Reinecke R K 1983. Veterinary helminthology.
Butterworth, Durban
25. Singh S, Samantaray C, Singh N, Das G B,
Verma I C 1993 *Trichuris vulpis* infection in
Indian tribal population. Journal of Parasitology 79: 457–45
26. Van der Merwe L L, Kirberger R M, Chift S,
Williams M, Keller N, Naidoo V 2008 *Spiro-
cerca lupi* infection in the dog: a review. Veterinary Journal 176: 284–309
27. Verster A 1979 Gastro-intestinal helminths of
domestic dogs in the Republic of South
Africa. Onderstepoort Journal of Veterinary
Research 46: 79–82