The Tandem BRCT Domain of 53BP1 Is Not Required for Its Repair Function

Received for publication, August 9, 2006, and in revised form, October 16, 2006. Published, JBC Papers in Press, October 16, 2006, DOI 10.1074/jbc.M607577200

Irene Ward‡1, Ja-Eun Kim‡1,2, Kay Minn‡3, Claudia C. Chini‡, Georges Mer‡, and Junjie Chen‡3

From the Department of Oncology Research and Department of Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905

The tandem BRCT domain of 53BP1 is not essential for its repair function. 53BP1 plays an important role in cellular response to DNA damage. It is thought to be the mammalian homologue of budding yeast Rad9 and/or fission yeast Crb2. Rad9/Crb2 are bona fide checkpoint proteins whose activation requires their corresponding C-terminal tandem BRCT (BRCA1 C-terminal) motifs, which mediate their oligomerization and phosphorylation at multiple sites following DNA damage. Here we show that the function of human 53BP1 similarly depends on its oligomerization and phosphorylation at multiple sites but in a BRCT domain-independent manner. Moreover, unlike its proposed yeast counterparts, human 53BP1 only has limited checkpoint functions but rather acts as an adaptor in the repair of DNA double strand breaks. This difference in function may reflect the higher complexity of the DNA damage response network in metazoans including the evolution of other BRCT domain-containing proteins that may have functions redundant or overlapping with those of 53BP1.

To protect the integrity of their DNA against the potentially deleterious assaults from various endogenous and environmental sources, cells have evolved a genome surveillance network that carefully coordinates DNA repair with cell cycle progression. DNA double strand breaks (DSBs) are considered the most toxic type of DNA damage. If left unrepaired or repaired improperly, they cause chromosomal aberrations, which may be lethal or result in oncogenic transformation (1, 2). One of the network components activated early in response to DNA DSBs is 53BP1, a large nuclear protein that was originally identified in a yeast two-hybrid screen as a p53-binding partner (3). Domain analysis revealed the presence of a tandem BRCT motif at the C terminus of 53BP1, a domain frequently found in proteins implicated in DNA damage response pathways (4, 5). Moreover, the N terminus of 53BP1 contains several (S/T)Q motifs, the preferred phosphorylation sites for members of the phosphoinositide 3-kinase-related protein kinase (PIKK) family, which play central roles in DNA damage signal transduction. Subsequent studies showed that 53BP1 is phosphorylated by the PIKK family member ATM and undergoes a rapid relocalization to sites of DNA DSBs upon exposure of cells to DNA-damaging agents (6–9). Mice deficient for 53BP1 show increased radiation sensitivity and an elevated tumor risk (10, 11). Moreover, class switch recombination of immunoglobulin heavy chains is severely impaired in the absence of 53BP1, suggesting a defect in the non-homologous end-joining of DNA DSBs (12, 13).

The repair defect in 53BP1-deficient cells can be quantified by assessing PIKK-dependent phosphorylation of the histone H2A variant, H2AX, a component of the nucleosome core structure (14, 15). In response to DNA damage, H2AX is reversibly phosphorylated at megabase regions flanking the sites of DNA DSBs (16). Once repair has been completed, the histone mark is removed from the chromatin with the help of protein phosphatase 2A (17, 18).

Previous studies showed that relocalization of 53BP1 to the sites of DNA DSBs depends on a region upstream of the BRCT domains (10, 19, 20). This region includes a tandem Tudor domain, which was recently proposed to be required for the initial recruitment of 53BP1 to chromatin by its direct binding to a methylated histone mark (21, 22), as well as an adjacent region required for 53BP1 accumulation (20). However, it is unknown to what extent the 53BP1 BRCT motifs or the multiple N-terminal (S/T)Q sites are needed for the repair function of 53BP1. To address these questions, we stably expressed various 53BP1-deletion mutants in 53BP1-deficient MEFs and analyzed the repair capacity of these cells by determining the numbers of residual P-H2AX foci following treatment with ionizing radiation. Moreover, we fine-mapped the region required for 53BP1 oligomerization and, using the same approach, assessed the role of 53BP1 oligomerization in DNA DSB repair.

EXPERIMENTAL PROCEDURES

Constructs and Transfection—The original plasmid containing HA-tagged human 53BP1 cDNA was obtained from Dr. K. Iwabuchi (pCMH6K53BP1) (23). Mutations or deletions were inserted using site-directed mutagenesis (QuikChange, Strat-
agene). The 15AQ plasmid, a pCMH6K53BP1 derivative, was provided by Dr. P. B. Carpenter (10). Stable cell lines were established by co-transfecting 53BP1-deficient, immortalized MEF cells (11) with the purified 53BP1 plasmid and a vector containing the puromycin resistance gene under the transcriptional control of the PGK promoter. FuGENE 6 (Invitrogen) was used as the transfection reagent.

Repair and Checkpoint Assays—For the DNA DSB repair assay, cells were plated onto coverslips and grown to confluency. Once the cells had stopped dividing, they were irradiated with 1 or 2 Gy using a 137Cs source and allowed to recover for up to 27 h prior to immunostaining with anti-phospho H2AX antibodies (24). The cells were viewed on a Nikon Eclipse 800 microscope, and the number of P-H2AX foci was assessed in 100–200 cells/sample. To analyze the integrity of the intra-S-phase checkpoint, logarithmically growing cells were plated into 96-well plates and grown at 37 °C for 2 days in medium containing 10 nCi of [14C]thymidine (ICN Radiochemicals) per ml. Radioactive medium was replaced overnight with fresh medium to chase [14C]-labeled precursors into DNA prior exposure of cells to 0, 5, 10, and 20 Gy of IR. 30 min later, [3H]thymidine was added to the medium (20 μCi/ml), and the cells were incubated for another 30 min at 37 °C. After removal of the radioactive medium and two washes with cold phosphate-buffered saline, the cells were trypsinized, harvested on filter paper, and analyzed on a scintillation counter. For the low dose G$_2$/M checkpoint assay, cells were either untreated or irradiated with 0.5 Gy and then incubated for 1 h at 37 °C prior to fixation and staining with anti-phospho-histone H3 antibodies (Upstate Biotechnology) and propidium iodide. The number of mitotic cells was assessed by immunofluorescence microscopy.

Immunoprecipitation and Immunoblotting—Cells were lysed in is-8 buffer (20 mM Tris-HCl, pH 8, 100 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40) supplemented with 1 mM phenylmethylsulfonyl fluoride, 2 μg/ml aprotinin, 50 mM NaF, 40 mM β-glycerophosphate, and 2 mM Na$_3$VO$_4$, and extracts were incubated with the indicated primary antibodies and protein G-Sepharose beads (Amersham Biosciences) or S-agarose beads (EMD Biosciences) for 1 h at 4 °C. The beads were then gently washed three times with lysis buffer, and the precipitated complexes were resuspended in 2 × Laemmli buffer. After boiling, the samples were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane, and immunoblotted with various antibodies. Monoclonal antibodies against the FLAG (M2) and HA epitope (HA.11) were purchased from Oncogene, whereas the polyclonal anti-53BP1 antibody was raised against the N terminus of 53BP1 (7).

RESULTS

Localization of 53BP1 to sites of DNA DSBs (the formation of so-called ionizing radiation-induced foci (IRIF)) requires a region upstream of the two BRCT domains (10, 19, 20). The current hypothesis is that a tandem Tudor fold within this region (here referred to as the IRIF region) is required for the initial targeting of 53BP1 to sites of DSBs by recognizing and binding methylated histones exposed at the areas surrounding the DNA lesions (21, 22). Subsequent interactions of the IRIF region with other proteins or protein modifications are then needed to retain and/or stabilize 53BP1 at the break sites (20, 25).

It is speculated that the proper localization of 53BP1 would be required for its function in DNA damage response, although direct evidence is lacking. To investigate the requirement of various 53BP1 regions in the non-homologous repair of DNA DSBs, we generated 53BP1-null MEF lines expressing HA-tagged full-length or mutated h53BP1. Using residual P-H2AX foci as a readout, we assessed the efficiency of DNA DSB repair 27 h after exposure of superconfluent G$_2$-phase cells to 2 Gy IR. As expected, 53BP1 IRIF mutants (Δ1052–1302 and ΔTudor 1477–1632), which are unable to relocate in response to DNA damage, showed the same repair defect as 53BP1-deficient cells (Fig. 1). Moreover, reconstitution with h53BP1 full-length protein (FL) restored the DSB repair to levels that were similar to the ones observed in the 53BP1 wild-type line (Fig. 1, wt), suggesting that human 53BP1 can fully replace its murine counterpart in DNA DSB repair.

The N terminus of 53BP1 contains no functionally defined protein region but has several S/T/Q sites, which represent potential target sites for ATM or other PIKKs. In fact, we and others had previously shown that 53BP1 becomes hyperphosphorylated in an ATM-dependent manner in response to
DNA damage, and we mapped Ser-6, Ser-25, Ser-29, and Ser-784 as inducible in vivo ATM phosphorylation sites (7, 9, 20). To test whether phosphorylation of these four sites is required for the repair function of 53BP1, we transiently transfected 53BP1-deficient MEFs with a quadruple serine to alanine mutant (S6A,S25A,S29A,S784A). Interestingly, the expression of this particular 53BP1 phospho-mutant almost restored the repair efficiency to wild-type levels, whereas cells expressing the Δ1–1052 mutant showed the repair defect similar to 53BP1-null cells (53BP1−/−, 5.20 ± 0.26; FL, 1.38 ± 0.18; S6A,S25A,S29A,S784A, 2.10 ± 0.18; Δ1–1052, 5.24 ± 0.31, mean ± S.E.).

There are at least two possible explanations for this result. One is that there are additional redundant phosphorylation sites at the N terminus of 53BP1. Phosphorylation of those sites is sufficient for mediating DNA DSB repair. Alternatively, 53BP1 phosphorylation could be independent from the repair function of 53BP1 and might contribute to checkpoint or other function of 53BP1. To distinguish these two possibilities, we analyzed a series of MEF lines stably expressing increasing N-terminal deletions (Δ1–165, Δ1–334, Δ1–500, Δ1–659, Δ1–1052) or a phospho-mutant (10) with all 15 conserved (S/T)Q sites being changed to AQ sites (15AQ) (Fig. 2A). Using the same residual P-H2AX foci assay, we observed a gradual increase in repair deficiency with increasing length of the deletion (Fig. 2B). Consistent with this finding, transient expression of two internal deletion mutants, Δ170–499 and Δ334–659, resulted only in a partial rescue of the repair deficiency (data not shown). Moreover, expression of the 15AQ mutant could not salvage the repair defect in 53BP1-null MEFs, although the average number of residual P-H2AX foci was slightly lower than that observed in the parental line or in cells expressing the Δ1–1052 deletion mutant (Fig. 2B). Based on these observations, we believe that phosphorylation of 53BP1 at multiple sites within the 53BP1 N terminus is required for efficient DNA DSB repair.

To test whether 53BP1 phosphorylation would be involved in checkpoint control, we analyzed the ability of cells to repress DNA synthesis in the presence of DNA damage (radio-resistant DNA synthesis (RDS) assay). However, unlike ATM-deficient control cells, neither 53BP1-null nor 53BP1-reconstituted MEFs showed a significant RDS phenotype in response to 5, 10, or 20 Gy IR (Fig. S1 in supplemental materials and data not shown). These findings corroborated our former conclusion that 53BP1 does not play a major role in cell cycle checkpoint control (11).

Next, we investigated to what extent the C-terminal BRCT repeats contribute to the function of 53BP1 in DNA DSB repair. 53BP1 had been identified and named based on the in vitro interaction of its C terminus with the central DNA-binding domain of p53 (3). Although this original observation was made in yeast cells overexpressing these two proteins, subsequent structural analyses confirmed that the first BRCT motif together with the inter-repeat linker bind to the DNA-binding surface of p53 (26). We also observed an interaction of endogenous 53BP1 and p53 in human cells (Fig. 3B). However, the functional significance of this tandem BRCT domain has not been addressed.
S-FLAG-53BP1 FL could be readily detected in the HA-FL and HA-Δ1–1052 precipitates but not in the HA-ΔDimer (Δ1231–1270) and HA-Δ1052–1302 precipitates. Correspondingly, HA-FL and HA-Δ1–1052, but not HA-ΔDimer or HA-Δ1052–1302, co-immunoprecipitated with S-FLAG-FL 53BP1 (Fig. 4B). These data confirm that the region comprising residues 1231–1270 is required for 53BP1 oligomerization.

Next, we transfected 53BP1-null MEFs with the ΔDimer (Δ1231–1270) construct and asked whether deletion of the oligomerization region would affect 53BP1 accumulation at the sites of DNA DSBs. Notably, cells expressing the deletion mutant still formed IRIF, although the deleted region resides within the region required for 53BP1 foci formation (Fig. 4, A and C). However, expression of ΔDimer (Δ1231–1270) could not rescue the repair defect in stably transfected 53BP1-deficient MEFs (Fig. 4D). Collectively, these findings suggest that oligomerization of 53BP1 is critical for its function in DNA DSB repair.

DISCUSSION

53BP1 plays a significant role in the repair of DNA DSBs, and here we provide evidence that phosphorylation and homo-oligomerization of 53BP1 are crucial to exert this function. In contrast, the C-terminal tandem BRCT motifs of 53BP1 appear not to be required for DSB repair.

53BP1 has been shown to undergo a dynamic interaction with chromatin following DNA damage. Upon exposure of cells to ionizing radiation, 53BP1 becomes transiently immobilized at the chromosomal regions flanking the DNA DSBs (28). Binding and retention of 53BP1 to chromatin requires an intact Tudor domain, a recently characterized methyl-binding motif (21), as well as a less distinguished upstream region (20). Deletion of the Tudor domain or the preceding region prevent the repair function of 53BP1, indicating that accumulation of 53BP1 at break sites is an absolute requirement for efficient DNA DSB repair. Similarly, mutation of multiple phosphorylation sites at the 53BP1 N terminus impairs DSB repair in an incremental fashion. Although it remains to be determined how many phosphorylation sites have to conspire for full 53BP1 function, it appears that there is no sharp threshold for these phosphorylation events. DNA damage-induced phosphorylation of multiple PIKK sites has also been described in budding yeast Rad9 (29), which is thought to be the homologue of mammalian 53BP1 based on sequence similarities in its tandem BRCT and Tudor motifs. In budding yeast, phosphorylation of Rad9 is required for the survival of genotoxic stress by regulating the activation of the checkpoint kinase Rad53, the functional orthologue of the mammalian signal transducer Chk2 (29). Phosphorylated Rad9 recruits Rad53 to DNA lesions, thus enabling its phosphorylation by the PIKK Mec1. Phosphorylation of Rad53 triggers its activation, autophosphorylation, and subsequent release from Rad9 (30, 31). Similarly, 53BP1 has been shown to interact with Chk2 and promote its phosphorylation (11, 32, 33). However, unlike its yeast counterpart, Chk2 (2) can still be activated in the absence of 53BP1 (11, 34), although the activation or phosphorylation of Chk2 is reduced in 53BP1-deficient cells. These data suggest that 53BP1 is not essential for Chk2 phosphorylation and/or activation following DNA dam-

53BP1 has recently been shown to homo-oligomerize in a DNA damage-independent manner. The region required and sufficient for oligomerization has been mapped to residues 1052–1475, an area upstream of the 53BP1 tandem Tudor folds (27). To gain further insight into the function of 53BP1 oligomerization, we attempted to narrow down the region using nuclear magnetic resonance (NMR) spectroscopy. The data gained from this analysis suggested that residues 1231–1270 mediate the oligomerization of 53BP1 (data not shown). To confirm these in vitro findings, we generated an HA-tagged 53BP1 ΔDimer (Δ1231–1270) construct and performed a double-transfection assay. 293T cells were co-transfected with S-FLAG-tagged full-length 53BP1 and the HA-ΔDimer mutant or an HA-tagged control plasmid. 48 h later, aliquots of the cells were collected. Cell lysates were immunoprecipitated with either anti-HA or anti-S antibodies and analyzed by Western blotting using anti-FLAG and anti-HA antibodies, respectively.
regulation of 53BP1 led to impaired p53 accumulation in a human cancer line (32). However, no defect in p53 stabilization was found in primary 53BP1-deficient mouse thy-mocytes, nor did these cells fail to undergo p53-mediated G₁ arrest or apoptosis (11, 15). Thus, it remains a subject of debate as to whether the regulation of p53 is a biological function of 53BP1. Alternatively, the 53BP1 BRCT domains could interact with an as yet unidentified protein, perhaps a phosphoprotein, since tandem BRCT domains bind preferentially to phosphorylated peptides (38, 39). Such a hypothetical complex could function in a sub-type of DNA repair that is not measured by our DSB repair assay.

Unlike budding yeast Rad9 or fission yeast Crb2, which are key players in DNA damage checkpoint control (40, 41), 53BP1 appears to have a limited role in DNA damage checkpoints. Although small interfering RNA-mediated down-regulation of 53BP1 in human cancer lines led to defects in the G₂/M and intra-S-phase checkpoints (32, 33), minor age, raising the possibility that a more complex and redundant signal adaptor system may be evolved in higher organisms. Indeed, although phosphorylation of Rad9 as well as Rad9-dependent phosphorylation of Rad53 require the C-terminal tandem BRCT domains in budding yeast (35), deletion of the BRCT domains in mammalian 53BP1 did not affect 53BP1 phosphorylation (data not shown) or 53BP1 function in DNA DSB repair. Moreover, homo-oligomerization appears to be the critical function of the Rad9 (budding yeast) or Crb2 (fission yeast) BRCT domains (35, 36), whereas oligomerization of 53BP1 depends on a small region outside of its BRCT domains.

The fact that the BRCT domains of 53BP1 are not required for effective DNA DSB repair raises the question of the specific function of this tandem motif in 53BP1. An obvious possibility would be a role in p53 regulation. The evolution of this tumor suppressor module in higher eukaryotes could have conferred a new role to the C terminus of 53BP1, whereas a novel upstream region assures the homo-oligomerization of the protein. It seems clear that the 53BP1 BRCT domain is able to interact with the DNA-binding domain of p53 and initial studies implied that 53BP1 may stimulate p53-mediated transcriptional activation (23). However, p53 cannot bind simultaneously to 53BP1 and DNA (26, 37). It is therefore unlikely that 53BP1 could directly activate p53-mediated transcription. In addition, IR-induced p21 activation was found to be normal in 53BP1-deficient splenocytes (15). 53BP1 might regulate p53 indirectly by affecting the phosphorylation of p53 following DNA damage. In fact, small interfering RNA-mediated down-

Acknowledgments—We thank members of the Chen laboratory for helpful discussions and technical support.

REFERENCES

1. Difilippantonio, M. J., Petersen, S., Chen, H. T., Johnson, R., Jasin, M., Kanaar, R., Ried, T., and Nussenzweig, A. (2002) J. Exp. Med. 196, 469–480

2. Zhu, C., Mills, K. D., Ferguson, D. O., Lee, C., Manis, J., Fleming, J., Gao, Y., Morton, C. C., Alt, F. W., Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y.,
and Ziv, Y. (2002) Cell 109, 811–821
3. Iwabuchi, K., Bartel, P. L., Li, B., Marraccino, R., and Fields, S. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 6098–6102
4. Bork, P., Hofmann, K., Bucher, P., Neuwald, A. F., Altschul, S. F., and Koonin, E. V. (1997) FEBS Lett. 11, 68–76
5. Callebaut, I., and Mormo, J. P. (1997) FEBS Lett. 400, 25–30
6. Anderson, L., Henders, C., and Adachi, Y. (2001) Mol. Cell Biol. 21, 1719–1729
7. Rappold, I., Iwabuchi, K., Date, T., and Chen, J. (2003) J. Cell Biol. 153, 613–620
8. Schultz, L. B., Chehab, N. H., Malikzay, A., and Halazonetis, T. D. (2000) J. Cell Biol. 151, 1381–1390
9. Manis, J. P., Morales, J. C., Dutta, S., and Carpenter, P. B. (2001) J. Cell Biol. 267, 2708–2718
10. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S., and Yanagida, M. (1997) J. Biol. Chem. 272, 36487–36495
11. Ward, I. M., Minn, K., Van Deursen, J., and Chen, J. (2003) Mol. Cell Biol. 23, 2556–2563
12. Ward, I. M., Reina-San-Martin, B., Solar, A., Minn, K., Tamada, K., Lau, J. S., Cascalho, M., Chen, L., Nussenzweig, A., Livak, F., Nussenzweig, M. C., and Chen, J. (2004) J. Cell Biol. 165, 459–464
13. Manis, J. P., Morales, J. C., Xia, Z., Koutok, J. L., Alt, F. W., and Carpenter, P. B. (2004) Nat. Immunol. 5, 481–487
14. Kuhne, M., Riballo, E., Rif, N., Rothkamm, K., Jeggo, P. A., and Lobrich, M. (2004) Cancer Res. 64, 500–508
15. Ward, I. M., Difilippantonio, S., Minn, K., Mueller, M. D., Molina, J. R., Yu, X., Frisk, C. S., Ried, T., Nussenzweig, A., and Chen, J. (2005) Mol. Cell Biol. 25, 10079–10086
16. Rogakou, E. P., Boon, C., Redon, C., and Bonner, W. M. (1999) J. Cell Biol. 146, 905–916
17. Choudhury, D., Keogh, M. C., Ishii, H., Peterson, C. L., Buratowski, S., Lieberman, J., Kim, J. A., Downey, M., Fillingham, J., Harrison, J. C., Onishi, M., Datta, N., Galicia, S., Emili, A., Shen, X., Haber, J. E., Durocher, D., Greenblatt, J. F., and Krogan, N. J. (2005) Mol. Cell 20, 801–809
18. Keogh, M. C., Kim, J. A., Downey, M., Fillingham, J., Choudhury, D., Harrison, J. C., Onishi, M., Datta, N., Galicia, S., Emili, A., Lieberman, J., Shen, X., Buratowski, S., Haber, J. E., Durocher, D., Greenblatt, J. F., and Krogan, N. J. (2006) Nature 439, 497–501
19. Iwabuchi, K., Basu, B. P., Kysela, B., Kurihara, T., Shih, M., Grant, D., Cao, Y., Hamada, T., Inamura, K., Jeggo, P. A., Date, T., and Doherty, A. J. (2003) J. Biol. Chem. 278, 36487–36495
20. Ward, I. M., Minn, K., Jorda, K. G., and Chen, J. (2003) J. Biol. Chem. 278, 19579–19582
21. Huyen, Y., Zgheib, O., Ditullio, R. A., Jr., Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheslow, A. E., Mertell, H. S., Stavridi, E. S., and Halazonetis, T. D. (2004) Nature 432, 406–411
22. Sanders, S. L., Portoso, M., Mata, J., Bahler, J., Allshire, R. C., and Kouzarides, T. (2004) Cell 119, 603–614
23. Iwabuchi, K., Li, B., Massa, H. F., Trask, B. J., Date, T., and Fields, S. (1998) J. Biol. Chem. 273, 26061–26068
24. Riballo, E., Kuhne, M., Rief, N., Doherty, A., Smith, G. C., Recio, M. J., Reis, C., Dahm, K., Fricke, A., Kremler, A., Parker, A. R., Johnson, S. P., Genney, A., Jeggo, P. A., and Lobrich, M. (2004) Mol. Cell 16, 715–724
25. Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. J., Pluch, D. R., Staudt, D. W., Lee, A., Bonner, R. F., Bonner, W. M., and Nussenzweig, A. (2003) Nat. Cell Biol. 5, 675–679
26. Joo, W. S., Jeffrey, P. D., Cantor, S. B., Finnin, M. S., Livingston, D. M., and Pavletic, N. P. (2002) Genes Dev. 16, 583–593
27. Adams, M. M., Wang, B., Xia, Z., Morales, J. C., Lu, X., Donehower, L. A., Bochar, D. A., Elledge, S. J., and Carpenter, P. B. (2005) Cell Cycle 4, 1854–1861
28. Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J., and Lukas, J. (2005) J. Cell Biol. 170, 201–211
29. Schwartz, M. F., Duong, J. K., Sun, Z., Morrow, J. S., Pradhan, D., and Stern, D. F. (2002) Mol Cell 9, 1055–1065
30. Gilbert, C. S., Green, C. M., and Lowndes, N. F. (2001) Mol. Cell 8, 129–136
31. Sweeney, F. D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D. F., and Durocher, D. (2005) Curr. Biol. 15, 1364–1375
32. Wang, B., Matsuo, S., Carpenter, P. B., and Elledge, S. J. (2002) Science 298, 1435–1438
33. DiTullio, R. A., Mochan, T. A., Venere, M., Bartkova, J., Sehested, M., Bartek, J., and Halazonetis, T. D. (2002) Nat. Cell Biol. 4, 998–1002
34. Fernandez-Capetillo, O., Chen, H. T., Celeste, A., Ward, I., Romainenko, P. J., Morales, J. C., Naka, K., Xia, Z., Camerini-Otero, R. D., Motoyama, N., Carpenter, P. B., Bonner, W. M., Chen, J., and Nussenzweig, A. (2002) Nat. Cell Biol. 4, 993–997
35. Soulier, J., and Lowndes, N. F. (1999) Curr. Biol. 9, 551–554
36. Du, L. L., Moser, B. A., and Russell, P. (2004) J. Biol. Chem. 279, 38409–38414
37. Derbyshire, D. J., Basu, B. P., Serpell, L. C., Joo, W. S., Date, T., Iwabuchi, K., and Doherty, A. J. (2002) EMBO J. 21, 3863–3872
38. Manke, I. A., Lowery, D. M., Nguyen, A., Yaffe, M. B., Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. (2003) Science 302, 636–639
39. Yu, X., Chini, C. C., He, M., Mer, G., Chen, J., Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. (2003) Science 302, 639–642
40. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S., and Yanagida, M. (1997) Genes Dev. 11, 3387–3400
41. Weinert, T. A., Hartwell, L. H., Lou, Z., Chini, C. C., Minter-Dykhouse, K., Chen, J., Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M., Elledge, S. J., Wu, X., Goldberg, M., Stucki, M., Falck, J., D’Amours, D., Rahman, D., Pappin, D., Bartek, J., and Jackson, S. P. (1998) Science 241, 317–322