Microsatellite loci for *Urochloa decumbens* (Stapf) R.D. Webster and cross-amplification in other *Urochloa* species

Rebecca C. U. Ferreira¹, Letícia J. Cançado², Cacilda B. do Valle³, Lucimara Chiari³ and Anete P. de Souza¹,4*

Abstract

Background: Forage grasses of the African genus *Urochloa* (syn. *Brachiaria*) are the basis of Brazilian beef production, and there is a strong demand for high quality, productive and adapted forage plants. Among the approximately 100 species of the genus *Urochloa*, *Urochloa decumbens* is one of the most important tropical forage grasses used for pastures due to several of its agronomic attributes. However, the level of understanding of these attributes and the tools with which to control them at the genetic level are limited, mainly due to the apomixis and ploidy level of this species. In this context, the present study aimed to identify and characterize molecular microsatellite markers of *U. decumbens* and to evaluate their cross-amplification in other *Urochloa* species.

Findings: Microsatellite loci were isolated from a previously constructed enriched library from one *U. decumbens* genotype. Specific primers were designed for one hundred thirteen loci, and ninety-three primer pairs successfully amplified microsatellite regions, yielding an average of 4.93 alleles per locus. The polymorphism information content (PIC) values of these loci ranged from 0.26 to 0.85 (average 0.68), and the associated discriminating power (DP) values ranged from 0.22 to 0.97 (average 0.77). Cross-amplification studies demonstrated the potential transferability of these microsatellites to four other *Urochloa* species. Structure analysis revealed the existence of three distinct groups, providing evidence in the allelic pool that *U. decumbens* is closely related to *Urochloa ruziziensis* and *Urochloa brizantha*.

Conclusions: The microsatellite markers identified in this study are the first set of molecular markers for *U. decumbens* species. Their availability will facilitate understanding the genetics of this and other *Urochloa* species and breeding them, and will be useful for germplasm characterization, linkage mapping and marker-assisted selection.

Keywords: Enriched library, Forage, Signalgrass, Simple sequence repeat, Transferability

Background

It has been estimated that 167 million hectares of pasture land in Brazil is used to feed a herd of approximately 208 million head of cattle [1]. These pastures consist mainly of forage grasses of the genus *Urochloa* (syn. *Brachiaria*), which were introduced from Africa [2]. These forage grasses have greatly contributed to the development of the national cattle industry of Brazil, establishing Brazil as the second largest beef producer and the main beef exporter in the world. The competitive advantage of cattle production in Brazil is the exclusive use of pasture [3]. Moreover, Brazil is the largest producer and exporter of tropical forage seeds in the world [2].

One of the most widely cultivated species of *Urochloa* is *Urochloa decumbens* Stapf., particularly *U. decumbens* cv. ‘Basilisk.’ This species exhibits exceptional adaptation to the poor and acidic soils that are typical of the tropics.

¹Correspondence: anete@unicamp.br
²Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6109, Campinas, SP CEP 13083-862, Brazil
³Full list of author information is available at the end of the article

© 2016 Ferreira et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source; provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
and lead to good animal performance [4]. However, the molecular genetic information regarding this species is limited, mainly due to its reproducing predominantly via apomixis and because its ploidy levels range from diploid to pentaploid [5].

The need for new more productive and efficient cultivars has inspired the search for new tools to facilitate the selection process [3]. Thus, genetic and genomic studies are essential to advancing breeding programs via a better understanding of the genetic structure of the species. These types of studies can be conducted by using molecular tools, such as molecular markers.

Among all molecular markers, one of the most effective for plant genetics studies is the microsatellite, also known as the SSR (Simple Sequence Repeat). These markers are highly informative due to their multi-allelic nature, codominant inheritance, high transferability and broad distribution in the genomes of the species [6–8].

Whereas some microsatellite markers for *Urochloa* species have been developed [9–13], specific microsatellite markers for *U. decumbens* have not been reported. Specific microsatellite molecular markers can be very useful in assessing the genetic diversity of germplasms, performing linkage mapping, identifying quantitative trait loci (QTL), performing genome-wide selection and marker-assisted selection, and facilitating molecular based breeding to improve the economically importance characteristics of a species [6, 7]. Moreover, microsatellite markers identified in species with little genome information may be used for cross-amplification between related species [14].

The aims of the present study were to identify and characterize the first set of microsatellite markers for *U. decumbens* and to test their transferability to four other *Urochloa* species (*U. brizantha*, *U. dictyoneura*, *U. humidicola* and *U. ruziziensis*).

Methods

Thirty-four *Urochloa* genotypes were obtained from the Embrapa Beef Cattle collection, in Campo Grande, MS, Brazil for marker validation. Twenty of these genotypes are represented by *U. decumbens* accessions, six genotypes are intra-specific hybrids of the same species and the other eight genotypes are represented by two different germplasm accessions each from *U. brizantha*, *U. humidicola*, *U. dictyoneura* and *U. ruziziensis*. These other *Urochloa* species were used for the cross-amplification tests. The annotation numbers, accession numbers (as recorded in the Embrapa- BRA-, in the Embrapa Beef Cattle- EBC- and in the Center for Tropical Agriculture-CIAT- databases), genotypes, species identified, their mode of reproduction and the origin of the genotypes are shown in Table 1.

Genomic DNA was isolated from fresh leaves using the CTAB method [15]. The purity and concentration of the isolated DNA were determined using a NanoDrop1000 (Thermo) spectrophotometer and by electrophoresis in a 0.8 % agarose gel that was subsequently stained with ethidium bromide (5 µg/mL⁻¹).

In a previous study, a microsatellite-enriched library of one *U. decumbens* genotype was constructed using the method described by Billotte et al. [16]. The sequences were then treated as described previously [9]. The microsatellites were identified using MISA software [17], and only mononucleotides with 12 or more repeats, dinucleotides with six or more repeats, trinucleotides with four or more repeats, and tetra, penta, and hexanucleotides with three or more repeats were considered. The DNA sequences determined in this study were deposited in GenBank under the accession numbers shown in Table 2.

After the primer pairs were designed using Primer3Plus software [18], we added a M13 tail (5′CAC-GAGCTTGTTAAAACGAC-3′) to each forward primer. Polymerase chain reaction (PCR) assays were conducted as described previously [9]. The amplified products were separated by electrophoresis through 3 % agarose gels prior to vertical electrophoresis through 6 % denaturing polyacrylamide gels. The gels were then silver stained [19], and the product sizes were determined by comparison to those of a 10 bp DNA ladder (Invitrogen, Carlsbad, CA, USA).

We considered only the strongest bands because the less intense bands might have been stutter bands and an SSR was considered transferable when a band of the expected size was amplified via PCR and an appropriate SSR pattern was observed. Each SSR allele was treated as dominant due to the high ploidy levels of the genotypes; thus, this analysis was based on the presence (1) or absence (0) of a band in the polyacrylamide gels.

The genetic distance among the genotypes was evaluated according to Jaccard’s coefficient [20] based on a binary matrix constructed using the molecular data. This analysis was conducted using the software package NTSYSpc 2.11X [21]. An unrooted tree was constructed using the weighted neighbor-joining method (NJ) using DARwin 6.0.010 software [22].

The set of molecular data was also analyzed using the admixture model of STRUCTURE software version 2.3.4 [23] to infer the population structure of the 34 genotypes. The admixture model was tested using a period of burn-in with 100,000 iterations and a run length of 200,000. The number of K (clusters) was set from 2 to 20. To infer the appropriate number of clusters in our data, we used the ΔK statistic, which represents the rate of change in the log probability of the data between successive K
values rather than the log probability of the data [24]. We retained the K value corresponding to the highest value of ΔK obtained using the online tool Structure Harvester [25].

The polymorphism information content (PIC) values were calculated to evaluate the levels of marker informativeness and to help choose primers for future studies [26]. To compare the efficacies of the markers used for varietal identification, the discrimination power (DP) value was determined for each primer [27].

Results

We analyzed 281 contigs, of which 128 were found to contain SSR. One hundred fifty-five SSR motifs were found, with the perfect microsatellite being the most abundant. Dinucleotide repeats were the most abundant class of microsatellite detected (59.36 %), followed by tetranucleotide (18.71 %), trinucleotide (12.26 %), mononucleotide (3.87 %), hexanucleotide (3.22 %) and pentanucleotide (2.58 %) repeats. Furthermore, 22 % of the microsatellite motifs were classified as class I motifs.
Table 2 Description of the 93 SSR markers developed for *U. decumbens*

SSR locus	GenBank accession	Primer sequences (5'-3')	Repeat motif	Ta (°C)	Size (bp)	NA^b	PIC^c	DP^d
Dec01	KT587691	F_CAAACGACTGCTGATGATGG	(AC)₁₆	65°	250–280	5	0.68	0.89
		R_TGAGGGCTATAGGACAACCT						
Dec03	KT587692	F_AACTGAACGTCATGCTGCTCT	(GT)₆	65°	240–260	3	0.58	0.63
		R_GGTCGCCGAATATAAGAGGCA						
Dec05	KT587693	F_GGGTCCTCCATACGCAAGTGA	(GAO)₆	65°	132–140	4	0.61	0.54
		R_GTGTTCTCCGGGAGCTATCA						
Dec06	KT587694	F_GTTCATGAGGGGCAATCAGT	(CTGG)₄	65°	120–130	4	0.70	0.54
		R_CGGTGAATCTGAGACGAGTA						
Dec07	KT587695	F_CGAAACATTACATACAAAAA	(AC)₇	65°	226–242	5	0.74	0.87
		R_CTGTCCGATTATTTTGCAAT						
Dec09	KT587696	F_GCCAACATGGAATGTGCTA	(TC)₆	65°	264–280	5	0.72	0.91
		R_CGACGCTCCTTGTGTTGTTCT						
Dec10	KT587697	F_GAGCTGAGAGAACAAACAAC	(CAAG)₃	65°	210–256	6	0.79	0.86
		R_TCTTTACCCCTTCGACATTTC						
Dec11	KT587698	F_GGGGGGAAAGTGAGACGAGA	(AG)₁₆	65°	154–198	5	0.80	0.94
		R_GCTAACGACAGACGACACAC						
Dec12	KT587699	F_CTCACACACCTCTTTCTGCTG	(GT)₆	65°	196–226	9	0.82	0.97
		R_CGATCGCTCCTCCTACTGTC						
Dec13	KT587700	F_CCCCCGTAAAACAGACAAAA	(TA)₆	65°	166–178	5	0.72	0.89
		R_ACCATGATACAGCGTGCAA						
Dec14	KT587701	F_AACGGGAAGGGGTCACCAT	(GAC)₄	65°	290–310	3	0.62	0.22
		R_GAGCATTACATGAGACGGG						
Dec17	KT587702	F_CCTTCTGCTTATTACCTGAA	(TG)₆	65°	224–248	6	0.63	0.72
		R_ATCACCACAGTGACATTGA						
Dec18	KT587703	F_ACACGACACACACACACAAA	(CGAT)₃	65°	180–202	6	0.78	0.96
		R_ATTTGCATACGCTCTGCAA						
Dec19	KT587704	F_AGTTGCGATAATCGGCACAC	(GT)₇	65°	220–236	6	0.79	0.95
		R_CGCAAGTGGTAGCAGAACATT						
Dec20	KT587705	F_ACCTTTGAACCTCTGTTTGT	(AC)₁₀	65°	150–160	6	0.75	0.92
		R_AGACATC TTCACACACACAA						
Dec21	KT587706	F_GCCGCATACAACATCTGATT	(GT)₇	65°	176–190	5	0.76	0.85
		R_CTCCTCTGCACCTATTCTC						
Dec22	KT587707	F_GTTGTGATCTGAGTCATGATG	(CTT)₄	65°	186–192	4	0.47	0.57
		R_ATCGATCTACACTGACCATGT						
Dec24	KT587708	F_TAAAGAAAAACATGGGCGGTA	(GCC)₃	65°	210–226	5	0.73	0.86
		R_TATTCCTGGTGGTAGGTGGTG						
Dec26	KT587709	F_TCGGAACGGCAGAGAGAGAG	(CA)₁₀	65°	180–190	4	0.68	0.59
		R_GTCATCGTTGGTCTGGCTTGT						
Dec27	KT587710	F_TGTACATGTAAGGCGAGCACA	(AGAT)₆	65°	248–262	6	0.73	0.76
		R_AAACGACGAGAGATGAGCA						
Dec28	KT587711	F_GTCTCCTCCCAGAAGACAAACA	(AC)₁₆	65°	146–180	8	0.78	0.84
		R_CCAACATCCACTGCTTGCT						
Dec29	KT587712	F_TGTATAATTGCTACTGATCT	(GTA)₆	65°	170–184	6	0.70	0.67
		R_ACAGCTATTGCGCACTACTGGA						
Dec30	KT587713	F_CATTACGGACGGCAAGAGAGAGA	(CA)₇	65°	152–164	5	0.71	0.59
		R_TACCCACTGTGGAGCACGGAGA						
Dec31	KT587714	F_CGTTGTCAGCAGCAGCAGCAGC	(TCTA)₃	65°	136–146	5	0.70	0.79
SSR locus	GenBank accession	Primer sequences (5′–3′)	Repeat motif	Ta (°C)	Size (bp)	NA	PIC	DP
----------	------------------	-------------------------	--------------	---------	-----------	----	-----	----
Dec33	KTS87715	F_TGTGCTGTTGGTTTTTTTTGTT	(CTT)₄	60°	274–336	8	0.78	0.94
		R_CTAAGATCCCCACTCCTCACA						
Dec35	KTS87716	F_TTCCTGAGACACAGACCTTTTG	(TG)₄	65°	274–290	6	0.72	0.88
		R_GGCGCTGAAACATCATCCACT						
Dec36	KTS87717	F_GAAAGGTGATGATCGGACAGTT	(GCAG)₃	65°	280	1	0.00	0.00
		R_GTGCGGTTGTCCTGCTCTA						
Dec37	KTS87718	F_CCTCTTCCTCGTTTTGCTCTG	(GTG)₅	65°	198–218	5	0.70	0.81
		R_TGAACAGGGACGAGATTGATA						
Dec39	KTS87719	F_TAGGTGTCCATGGTGCGAT	(GT)₇	55°	166–182	5	0.64	0.34
		R_AGAGAGGCCTCTGCTCTTTT						
Dec42	KTS87720	F_CAGGTCTATGTACTCGGATCC	(GA)₉	65°	220–230	3	0.56	0.68
		R_GGCCTACACATACACACACG						
Dec43	KTS87721	F_CAGTCATCGCATTCAGGTAT	(TG)₁₅ (AG)₆	65°	212–228	5	0.74	0.91
		R_ATACCTTGGCATGTCCTTGCTT						
Dec44	KTS87722	F_CATGCCTAATCCGAAATCAG	(AC)₁₂	65°	182–226	6	0.78	0.94
		R_TGAAACCCGGAAAAATGTAAGTCT						
Dec45	KTS87723	F_TGGAGATGGAGAGGAGATG	(GGAT)₃	65°	210	1	0.00	0.00
		R_GCAAAGAAATTTGGGTTAAGGG						
Dec47	KTS87724	F_AGAGAGGGCTGATGCGGTGT	(GA)₉	65°	210	1	0.00	0.00
		R_GGGAAATTTGTGGGGGATCTCG						
Dec48	KTS87725	F_CTAACCTTGATCGTTCTGCTT	(CT)₁₅	65°	144–190	10	0.85	0.94
		R_TGAGAGGAGAGAGAGAGAGAGA						
Dec49	KTS87726	F_CATGTCATGCTGGTGGATG	(GT)₆	65°	166–180	5	0.65	0.74
		R_CATCGCGGAGGGAGTGTGCT						
Dec50	KTS87727	F_GAAACAGGACCATCATGAGCA	(CA)₆	65°	164–180	5	0.76	0.84
		R_GGAATCTGCGGTTTTGGAGGG						
Dec51	KTS87728	F_GCTGATCCCCTGGCGATGTT	(TG)₁₁	65°	248–262	5	0.69	0.92
		R_TAACCTGGGAGCCGGTAAAGG						
Dec52	KTS87729	F_CAGAAATGCGACATGCAATAA	(GT)₆	65°	289–292	2	0.00	0.00
		R_AGTTGAACCAACTGGCAGAAA						
Dec54	KTS87730	F_GGCCCTTTTTTACCTGCTTTA	(CA)₆	65°	236–252	5	0.75	0.92
		R_GTATCCTTCCTGCGTGAACCT						
Dec55	KTS87731	F_AGAGACCATCATCTTTTACAAA	(ACACC)₃	65°	212–224	6	0.78	0.73
		R_GAAGGAATTGTGCCATCAAAAGA						
Dec56	KTS87732	F_GAACTTAAATGGCGAGTAGAC	(AG)₁₄	55°	220–230	2	0.00	0.00
		R_CACAGATTTGCTAATGTTTTC						
Dec58	KTS87733	F_ATTAGATGGGCACACTGCTTG	(GT)₆	65°	286–298	5	0.64	0.8
		R_ATCCGCGCCTACACACCTTTC						
Dec59	KTS87734	F_GTTAATGATGTCGCGTGAAG	(GT)₁	65°	184–220	5	0.73	0.92
		R_ACCTAGTGGCTGCTGACAA						
Dec60	KTS87735	F_ATTTCAGGTGACCATCTTTA	(GT)₁₀	55°	220–230	2	0.00	0.00
		R_TCAAATATCTGATTCAGAAAGA						
Dec62	KTS87736	F_AGGAAGGGTACGGTATAGGC	(CA)₁	65°	216–238	4	0.41	0.59
		R_TCTACATGACATCCCGGGAAA						
Dec63	KTS87737	F_GGATATTTTTCCGCGATGT	(CTT)₄	65°	218–226	3	0.51	0.7
		R_CAGACGTGACAAAGTCCTTAC						
Dec65	KTS87738	F_TGGAGATGGACACCACTCTTCT	(GGCC)₃	65°	180	1	0.00	0.00
SSR locus	GenBank accession	Primer sequences (5′–3′)	Repeat motif	Ta (°C)	Size (bp)	NA	PIC	DP
----------	------------------	--------------------------	--------------	---------	-----------	----	-----	----
Dec69	KTS87739	F_GATGGCTACTCGATTGGAT	(CCAT)$_3$	55°	168–180	6	0.79	0.96
Dec70	KTS87740	R_ATAAGGGGAGGCCCTCAAAA	(TG)$_3$	65°	256–268	5	0.72	0.62
Dec71	KTS87741	F_GAGGTCTTCATCGTGTGATA	(TG)$_{10}$	55°	234–254	4	0.62	0.84
Dec75	KTS87742	R_ATGACAATTGCTATGCAGCC	(ATGC)$_3$	65°	150–166	5	0.68	0.69
Dec76	KTS87743	R_GTGCCTGTGCTGTGCTTCCT	(TAG)$_3$	65°	270	1	0.00	0.00
Dec77	KTS87744	R_GCACACATGCTAGTGAAGGA	(AG)$_{12}$	55°	234–260	7	0.76	0.9
Dec78	KTS87745	R_GCTTACCACATCCGGTGATT	(AC)$_6$	65°	256–260	5	0.66	0.71
Dec83	KTS87746	R_TAAGGAGCTTTCTAGTGAG	(CA)$_{10}$	65°	174–198	4	0.66	0.72
Dec84	KTS87747	R_GTGCCTGTGCTGTGCTTCCT	(AC)$_6$	65°	220–250	7	0.78	0.95
Dec86	KTS87748	R_TTCGTCACGCTCAAAAACAGC	(AG)$_2$	55°	140–180	9	0.80	0.94
Dec89	KTS87749	R_CGAGGATGCTCTTCTGGT	(TC)$_6$	65°	146–180	4	0.55	0.41
Dec90	KTS87750	R_CGGTGCTCCATGATTGAGG	(GT)$_6$	65°	278–326	7	0.77	0.82
Dec91	KTS87751	R_TGGCAACTTTCATTTTTAT	(TG)$_1$	55°	290–330	3	0.26	0.22
Dec92	KTS87752	R_AAGGAGATGCTCTTTTATTG	(AC)$_2$	65°	264–290	7	0.79	0.92
Dec93	KTS87753	R_TCTCGTGCGCTTCGAGTGG	(AC)$_6$	65°	226–244	5	0.72	0.95
Dec95	KTS87754	R_GTTGGTCTCTTTTGTCG	(CT)$_{24}$	65°	178–208	6	0.71	0.89
Dec96	KTS87755	R_AAGGAGGATGCTCTTTTGGA	(CA)$_6$	65°	148–154	4	0.66	0.85
Dec97	KTS87756	R_ATGACGAGCTTGAGTATTG	(TCT)$_3$	65°	176–184	4	0.61	0.72
Dec98	KTS87757	R_TTGGTCTCTGGAGTTTGG	(AG)$_{10}$	65°	252–272	7	0.76	0.95
Dec99	KTS87758	R_GGAGGCTACATAAAAGAGAG	(AGCAGG)$_3$	65°	210–228	7	0.77	0.91
Dec101	KTS87759	R_GTCAGCTGGCTGGCTGCTG	(GGC)$_3$	65°	220–232	3	0.53	0.71
Dec103	KTS87760	R_ATGACGAGCTTGAGTATTG	(AC)$_6$	55°	176–206	4	0.51	0.71
Dec105	KTS87761	R_TTGGTCTCTTTTGAGCTCG	(TG)$_6$	65°	174–198	4	0.56	0.70
Dec106	KTS87762	R_TCAGACAAGACGATAGACGC	(TG)$_1$	55°	180–230	7	0.74	0.93
Table 2 continued

SSR locus	GenBank accession	Primer sequences (5′-3′)	Repeat motif	Ta (°C)	Size (bp)	NA	PIC	DP
Dec108	KT87763	F_CATACCGCATTTATGCAAG	(AG)_6	65°	184–200	6	0.68	0.85
		R_ACACACGCTCTCTCTCCT						
Dec109	KT87764	F_CAGCACACTGAATCTTCTGCC	(GT)_6	65°	216–220	3	0.39	0.59
		R_CCGTGGTGCATCATGAAAGCC						
Dec110	KT87765	F_CTCGGAAGATCGAGTCTAGT	(GT)_7	65°	178–184	4	0.31	0.41
		R_CCCCTGGAGGCCCTAAAAAGG						
Dec111	KT87766	F_TGATAGGTGTGACTGCTGCTG	(ATTT)_3	65°	178–186	5	0.50	0.57
		R_CGGACAGAGTGATTTGTTGTTG						
Dec112	KT87767	F_CCTCAGAAGCTCTGGGATTTC	(TGT)_3	55°	238–244	4	0.57	0.72
		R_TGTCGAACCTCAGTAGAGCA						
Dec113	KT87768	F_TGACTAATGGCTAGCTGGTG	(GT)_6	208–224	7	0.74	0.94	
		R_CTGAGGAGCACAGGCGAAAAT						
Dec114	KT87769	F_CAACAGCCATGCTCTGGTACT	(GT)_7	214–220	4	0.62	0.72	
		R_CACTGTCAGGGCAGCCTTAA						
Dec115	KT87770	F_GGCATATGCTGTAGAAGTGTT	(TCT)_4	55°	160–174	6	0.76	0.6
		R_CGGTGGTCCATGCTTTTTT						
Dec116	KT87771	F_TCATCTTACACATGACGTTG	(TG)_7	274	1	0.00	0.00	
		R_AAAAGGGAGCAGACCGTGAAGC						
Dec118	KT87772	F_ACACACCCCAACTCTCAACAA	(AC)_6	208–226	6	0.75	0.83	
		R_TGGTCAATGGCCAAAAGATGAA						
Dec121	KT87773	F_TGACAAATGATGAAACAGGG	(GT)_7	226–264	6	0.74	0.74	
		R_AGTGAAACAACTCCGAGAAGA						
Dec122	KT87774	F_CCTGCGTCACTGGAGAAA	(TCT)_3	268–292	6	0.76	0.93	
		R_CAAATGTGACCTGGACATTTG						
Dec123	KT87775	F_TGACCAACACTGGAGAATGG	(TC)_9	248–280	9	0.80	0.94	
		R_CGTAATGACCTGGACAGGGGTT						
Dec124	KT87776	F_AGAAACCCAGAATGGTCTGA	(GT)_6	270–306	4	0.52	0.69	
		R_GCTAGTTCGGGTCTACCGTT						
Dec125	KT87777	F_TCTGGGTTGGAGATGGTGGAT	(CT)_11	202–214	4	0.61	0.34	
		R_CCCTTACCTTGGAGAAGACAA						
Dec126	KT87778	F_GGATGATTGATGGATGCTTT	(GGGC)_3	268–304	7	0.77	0.93	
		R_AACCCGAAGGGCTAAGCTA						
Dec127	KT87779	F_CGGTTGATCAACAGCTTCAGG	(TTGC)_9	250–280	4	0.65	0.75	
		R_GATTTGCGCACCAACCAATTCT						
Dec131	KT87780	F_CTGGTACCTTCTGCAAAATAAA	(GAA)_5	160–170	3	0.00	0.00	
		R_ATTATGCTTTCTCTTGTTCTC						
Dec132	KT87781	F_GTTCGGTGATGACAGCAGCG	(AAGC)_3	220–240	2	0.00	0.00	
		R_GGAATATCTCCTACCCGAGAG						
Dec133	KT87782	F_GGATGGAAGAGCACAAAAGGC	(CT)_7	265–285	5	0.68	0.81	
		R_GGATGTGTGTGTGTGTGTGTG						
Dec134	KT87783	F_CAGGCTTCTCTTCTCTCTCTCT	(AC)_7	220–260	8	0.76	0.93	
		R_GCAACCGGAAAGATCTATG						

Total average: 4.93, 0.68, 0.77

a Amplification temperature (°C)
b Maximum number of alleles observed
c Polymorphism information content
d Discrimination power
(>20 bp), and 78 % were classified as class II motifs (from 12 to 20 bp).

A total of 113 specific primer pairs were designed, and 93 SSR markers amplified from *U. decumbens*, with 82 of these being polymorphic. A total of 459 bands were scored, and the number of bands per locus was found to range from 1 to 10, with an average of 4.93 bands per locus (Table 2).

The PIC values of the 82 polymorphic loci ranged from 0.26 to 0.85 (average of 0.68), and the discrimination power (DP) values ranged from 0.22 to 0.97 (average of 0.77) (Table 2).

Two genotypes of four other species of the genus *Urochloa* (*U. brizantha*, *U. humidicola*, *U. dictyoneura* and *U. ruziziensis*) (Table 1) were used to evaluate the transferability of the 93 SSR markers. All of the loci were tested using the same PCR conditions used for analysis of *U. decumbens*. Fifty-six percent of the loci were amplified in at least one *U. dictyoneura* genotype, 38 % were amplified in *U. humidicola*, 99 % were amplified in *U. ruziziensis*, and 92 % were amplified in *U. brizantha*. Amplification of 33 % of the microsatellite markers was achieved for all of the evaluated species. The microsatellite markers Dec07, Dec31, Dec33, Dec77 and Dec108 were only transferable for *U. ruziziensis* species (see Additional file 1).

Based on the allelic frequencies determined using STRUCTURE software [23], 28 % of the alleles are rare (frequency < 0.05), 57 % of these alleles are of intermediate abundance (0.05 < frequency < 0.30), and 15 % are abundant alleles (frequency > 0.30). We observed 43 rare alleles that are specific for *U. decumbens*, eight rare alleles specific for *U. humidicola*, seven specific for *U. dictyoneura*, four alleles specific for *U. brizantha* and two rare alleles specific for *U. ruziziensis*.

The Bayesian analysis performed using STRUCTURE software [23] revealed that the 34 *Urochloa* genotypes could be distributed into three distinct clusters (Fig. 1), as determined from the ΔK values that were generated using Structure Harvester software [24, 25] (see Additional file 2). Using a K value of three, 15 genotypes were allocated into Cluster I (6 to 9), 13 genotypes were grouped into Cluster II (21 to 19) and six genotypes were allocated into Cluster III (27 to 32) (Fig. 1).

The genetic distance values that were determined using Jaccard’s coefficient ranged from 0.06 (D062 and R10) to 0.76 (H016 and D009) (see Additional file 3). The unrooted neighbor-joining tree successfully discriminated all of the tested genotypes (Fig. 2).

Discussion

In this report, we have described the first set of microsatellite markers for *U. decumbens*, which is an important tropical forage grass for which there is limited genetic information. The availability of a robust set of informative molecular markers is essential to accelerating its breeding programs as well as for germplasm characterization, genetic map development and marker-assisted selection.

In the present study, dinucleotide repeats were the most abundant class of microsatellites detected, followed by tetra, tri, mono, hexa and pentanucleotide repeats. Dinucleotide motifs have been found to be the most abundant type of microsatellites in plant genomes [28, 29]. Notably, the high occurrence of dinucleotide motifs can be attributed to both of the evaluated libraries having been enriched using (CT)8 and (GT)8 probes.

In total, 93 SSR markers were characterized, 82 of which were found to be polymorphic (88 %). The loci that did not exhibit polymorphism in the genotypes that we evaluated may be useful in other studies.

The Polymorphism Information Content (PIC) is an index used to qualify a marker for genetic studies and reflects the level of polymorphism detected. Seventy-seven markers tested in *U. decumbens* genotypes were found to be highly informative (PIC > 0.5) and...
five markers were found to be moderately informative (0.25 < PIC < 0.5), based on a previously proposed classification system [30] (Table 2). The Dec48 marker had the highest PIC value, 0.85, and the Dec91 marker had the lowest value, 0.26. The average PIC values for all of the markers was 0.68 (Table 2), indicating a high level of polymorphism.

To determine whether these molecular markers could discriminate the genotypes of *U. decumbens*, the discrimination power (DP) of each SSR locus was computed. The PD values ranged from 0.22 (Dec14 and Dec91) to 0.97 (Dec12), with an average value of 0.77.

The most informative loci in this panel of SSRs were Dec12, Dec48, Dec86 and Dec97 because they had the highest PIC and DP values (Table 2). In contrast, the Dec91 locus had low PIC and DP values (0.26 and 0.22, respectively), as expected due to its low levels of polymorphism and cross-amplification in all of the other *Urochloa* species tested, which suggests that this locus is a conserved region [11].

Structure analysis showed that the genotypes were distributed in three clusters and that each cluster was characterized by a set of allele frequencies at each locus and was represented by different colors (red, green and blue) as shown in Fig. 1. The best K number of clusters was determined using the ΔK method [24] and implemented in the online tool Structure Harvester [25] (see Additional file 2).

Cluster I included fifteen *U. decumbens* genotypes plus the *U. ruziensis* genotypes, Cluster II contained only *U. decumbens* genotypes, and Cluster III contained the others *Urochloa* species, including *U. dictyoneura*, *U. humidicola* and *U. brizantha* (Fig. 1). The clustering of some of the *U. decumbens* genotypes with *U. ruziensis* genotypes may be explained by the genetic proximity of these species [11, 13, 31, 32]. This fact is reflected in the allelic pools that are identified with different colors in Fig. 1.

Cluster II included genotypes 19 and 20, and six hybrids derived from crosses between these two genotypes that were grouped together (Fig. 1). These hybrids are members of an F$_1$ population that will be mapped using the polymorphic SSRs described in this study. In Cluster III, which included three different *Urochloa* species, the predominant allelic pool is represented in blue, and only the *U. brizantha* genotypes showed some percentage of the red allelic pools, demonstrating their genetic proximity to *U. decumbens* (Fig. 1).

The tree constructed based on Jaccard’s coefficient successfully discriminated all of the tested genotypes (Fig. 2).
and showed a distribution of these genotypes similar to that obtained using STRUCTURE software [23] (Fig. 1), although the two types of analysis used different statistical approaches. Moreover, this tree and the allelic pools that were determined indicated that U. decumbens and U. ruziziensis are more closely related to one another than to the other species (Figs. 1 and 2).

Based on the genetic values obtained using Jaccard’s coefficient, the lowest genetic distance was observed between the D062 and R10 genotypes (0.06). The R10 genotype should correspond to a hybrid that originated from a cross between D062 and D24/27, but the genetic distance observed shows that it is likely a false hybrid, which demonstrates the importance of using molecular markers to discriminate genotypes. The highest genetic distance (0.76) was observed between the D009 and H016 genotypes, representing U. decumbens and U. humidicola species, respectively, which are genetically distant species [11, 13, 31, 32] (see Additional file 3).

All of the microsatellite markers were transferable to at least one different species of the Urochloa genus, and 33 % of the markers were successfully amplified in all of the species, indicating their absolute transferability. The highest level of transferability was observed in U. ruziziensis, followed by U. brizantha, U. dictyoneura and U. humidicola (see Additional file 1). The higher proportion of successful PCR amplification for the U. ruziziensis and U. brizantha genotypes indicates the closer phylogenetic distance between these species and U. decumbens. Thus, U. brizantha, U. decumbens and U. ruziziensis form an agaric complex and produce fertile hybrids [33, 34], enhancing the Urochloa breeding program.

Silva et al. [12] developed 198 polymorphic microsatellite markers for U. ruziziensis and found that the percentages of markers potentially transferable to U. decumbens and U. humidicola were 92.9 % and 42.9 %, respectively, corroborating our results. Others studies showed that U. brizantha and U. ruziziensis are more closely related to U. decumbens than to U. humidicola and U. dictyoneura [11, 13, 31, 32]. Marker transferability is effective in reducing the time and cost of initial studies aimed at identifying microsatellite markers in related species; thus, these markers could be used in genetics studies, such as in those concerning intra-species molecular characterization, species differentiation, molecular identification, and characterization of interspecific hybrids [14].

The success of a breeding program can be accelerated by the effective use of molecular markers. Thus, the SSR markers developed in this study will be useful for U. decumbens breeding programs and possibly for those of other related Urochloa species.

Availability of supporting data
The datasets supporting the results of this article are included in the article.

Additional files

Additional file 1. Transferability of the SSR markers developed for Urochloa decumbens.

Additional file 2. Magnitude of ΔK determined in STRUCTURE analysis of K, calculated following the ΔK method proposed by Evanno et al. [24]. The highest ΔK value corresponds to the optimal K.

Additional file 3. Jaccard’s coefficient for 34 genotypes of Urochloa spp. evaluated using 82 microsatellite markers. Individuals are identified according to their EBC codes (Table 1).

Abbreviations
AN: annotation number; bp: base pairs; CAPES: Coordination of Improvement of Higher Education Personnel; CTAB: cetyltrimethyl ammonium bromide; DNA: deoxyribonucleic acid; DP: discrimination power; EBC: Embrapa Beef Cattle; EMBRAPA: Brazilian Agricultural Research Corporation; K: number of clusters; MCMC: Markov Chain Monte Carlo; NA: number of alleles; NJ: neighbor-joining; PCR: polymerase chain reaction; PIC: polymorphism information content; Q: association coefficient determined using STRUCTURE analysis; QTL: quantitative trait loci; SSR: simple sequence repeat; Syn: synonym; Ta (°C): annealing temperature.

Authors’ contributions
LJC developed the microsatellite-enriched libraries. RCUF conducted the bioinformatics searches to identify the microsatellites, designed the flanking primers, validated the microsatellite markers, performed the statistical analysis and drafted the manuscript. CBV and LC participated in the design and implementation of the study. LC helped draft the manuscript. APS conceived and supervised the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Author details
1 Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6010, Campinas, SP CEP 13083-875, Brazil. %EMBRAPA: Brazilian Agricultural Research Corporation, CP 02372, Brasília, DF CEP 70770-900, Brazil. 3 EMBRAPA Beef Cattle, Brazilian Agricultural Research Corporation, CP 154, Campo Grande, MS CEP 79002-970, Brazil. 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, CP 6105, Campinas, SP CEP 13083-862, Brazil.

Acknowledgements
The authors thank the Fundação de Amparo à Pesquisa de SP (FAPESP 08/52197-4) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Computational Biology Program) for grants; the Brazilian Agricultural Research Corporation (EMBRAPA Beef Cattle) for providing the Urochloa genotypes used. RCUF is a recipient of a graduate fellowship from CAPES-EMBRAPA Program.

Competing interests
The authors declare that they have no competing interests.

Received: 2 October 2015 Accepted: 1 March 2016
Published online: 10 March 2016

References
1. Associação Brasileira das Indústrias Exportadoras de Carne (ABIEC). Estatísticas: balanço da pecuária. http://www.abiec.com.br/texto.asp?id=8. 2014. Accessed 15 July 2015.
