Novel Proximal 14q Deletion: Clinical and Diffusion Tensor Imaging Tractography Findings in a Patient with Lissencephaly, Agenesis of the Corpus Callosum, and Septo-Optic Dysplasia

E.K. Bravo, M.L. White, A.H. Olney, J.L. McAllister and Y.D. Zhang

AJNR Am J Neuroradiol 2012, 33 (2) E16-E18
doi: https://doi.org/10.3174/ajnr.A2745
http://www.ajnr.org/content/33/2/E16
CASE REPORT

E.K. Bravo
M.L. White
A.H. Olney
J.L. McAllister
Y.D. Zhang

SUMMARY: We report the unique CNS findings in a patient with a proximal chromosome 14q interstitial deletion. Conventional MR imaging allowed the clear delineation of agenesis of the corpus callosum, SOD, and diffuse lissencephaly. DTI tractography played a significant role in the evaluation of the proximal 14q deletion–associated abnormalities, delineating the extent of the dysmorphic connections of the Probst bundles and clarifying that apparent areas of heterotopias were the corticospinal tracts.

ABBREVIATIONS FA = fractional anisotropy; SOD = septo-optic dysplasia

A brain MR imaging examination was performed at 1.5T (Intera 12.6, level 1; Philips Healthcare, Best, Netherlands). Images obtained included sagittal T1-weighted, axial T2-weighted, axial T2 fluid-attenuated inversion recovery, coronal T2-weighted, and a DTI sequence (TR, 4699 ms; TE, 68 ms; bandwidth, 24 Hz; acquired voxel 2 × 2 × 2 mm; reconstructed voxel, 1.75 × 1.75 mm; FOV, 180 × 180 mm; section thickness, 3 mm; section gap, 0 mm; number of signal averages, 3; sense factor, 2; b = 800; directions of gradient sampling, 16; scanning time, 3 minutes, 60 seconds). The DTI sequence was registered so the successive series were compared and any motion was corrected. The fiber tracts were created on MR Extended Workspace (EWS release 2.5.3.0, Philips Healthcare) using the fiber tracking option. Fiber tract parameters were the following: FA minimum cutoff, 0.15; minimum fiber length, 10; angle changes, <27° for the corticospinal tract; and angle changes, <45° for the Probst bundles. A 2-region-of-interest method was used to create all of the fiber tracts.

The MR images demonstrated agenesis of the corpus callosum, posteriorly enlarged lateral ventricles with parallel orientation (colpocephaly), agenesis of the cingulate gyrus, absence of the septum pellucidum, lateral displacement of the fornices, atrophy of the optic chiasm, minimal hypoplasia of the inferior vermis, and extensive lissencephaly with possible heterotopias along the ventricular wall (Fig 1). DTI tractography further confirmed agenesis of the corpus callosum, along with formation of Probst bundles having dysmorphic and extensive connections to the temporal lobes and anterior internal capsules (left > right) (Fig 2A–C). DTI fiber tract analysis also showed that the foci of periventricular signal-intensity abnormalities initially thought to be heterotopias actually represented the corticospinal tracts (Fig 2D).

The patient’s twin was healthy. His mother and father had normal chromosome study findings. They were provided with genetic counseling regarding the patient’s de novo chromosome deletion.

Discussion

Previous reports of proximal 14q deletions have been made, but it is an extremely rare occurrence. However, none have the specific chromosome deletion or the combination of CNS malformations as in our case. SOD has not been previously described, to our knowledge; and lissencephaly has been described only once in prior reports of cases with proximal 14q deletion.1 Also, the MR images of the reported case with liss-
encephaly were not presented, but the description of the imaging findings significantly differed from those in our patient. DTI tractography was used in the evaluation of our patient (Fig 2). This allowed better visualization of the aberrant white matter connections, which are often found in congenital CNS malformations and are not visualized with conventional MR imaging. DTI tractography allowed us to better evaluate the morphologic changes associated with agenesis of the corpus callosum.
callosum. With DTI tractography, we visualized fibers from the hemispheric cortex failing to cross the midline and forming thick bundles running anteroposteriorly to become Probst bundles.

Agenesis of the corpus callosum results in failure of association fibers to decussate to the contralateral hemisphere due to lack of induction by the massa commissuralis. The Probst bundle is formed from the development of association fibers, which do not pass through the callosal precursor and then continue to grow caudally along the medial surface of the ipsilateral cerebral hemisphere. Tractography in our patient demonstrated the Probst bundles as having prominent connections to the temporal lobes. Also, fibers were visualized extending into the anterior internal capsules on the left greater than on the right (Fig 2). This degree of temporal lobe and internal capsule connections has not been previously reported, though variability of Probst connections has been noted. The Probst connections that we have visualized may be an indication of the variability that can exist with their formation. However, tractography of the Probst bundles may also be demonstrating white matter connections of the cingulate gyri to the temporal lobes secondary to the cingulate bundles not being separated from the Probst bundles. Many attempts were made by tractography to separate the cingulate bundle from Probst bundle without success. Furthermore, our tractography findings may indicate spurious fiber tract connections resulting from performing fiber tractography in a 4-month-old with incompletely myelinated white matter. It would be interesting to see if the appearance of the Probst bundles in this subject changes with age.

DTI tractography also allowed us to determine the true nature of the suspected heterotopias found running adjacent to the lateral ventricles as actually being corticospinal tract fibers (Fig 2D). The isointense-to–gray matter T2 signal intensity associated with the corticospinal tract makes it similar in signal intensity to the gray matter; hence, the heterotopic appearance is hypothesized to be due to myelination of the corticospinal tract.

In conclusion, this is a case report of previously undescribed and rarely described findings associated with a proximal 14q deletion that included SOD and lissencephaly. Conventional MR imaging allowed excellent delineation of agenesis of the corpus callosum with the associated findings and the presence of diffuse lissencephaly. However, DTI tractography played a significant role in the evaluation by delineating the extent of potential dysmorphic connections of the Probst bundles and clarifying that apparent areas of periventricular heterotopias were in fact the corticospinal tracts.

References
1. Schuffenhauer S, Leifheit HJ, Lichtner P, et al. De novo deletion (14)(q11.2q13) including PAX9: clinical and molecular findings. J Med Genet 1999;36:233–36
2. Lee SK, Kim DI, Kim F, et al. Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics 2005;25:53–65
3. Utsunomiya H, Yamashita S, Takano K, et al. Arrangement of fiber tracts forming Probst bundle in complete callosal agenesis: report of two cases with an evaluation by diffusion tensor tractography. Acta Radiol 2006;10:1063–66
4. Wahl M, Strogminger Z, Jeremy RJ, et al. Variability of homotopic and heterotopic callosal connectivity in partial agenesis of the corpus callosum: a 3T diffusion tensor imaging and Q-ball tractography study. AJNR Am J Neuroradiol 2009;30:282–89. Epub 2008 Nov 11
5. Lee SK, Mori S, Kim DJ, et al. Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. AJNR Am J Neuroradiol 2004;25:25–28
6. Tovar-Moll F, Moll I, Oliveira-Souza R, et al. Neuroplasticity in human callosal dysgenesis: a diffusion tensor imaging study. Cereb Cortex 2007;17:531–41. Epub 2006 Apr 20
7. Wahl M, Strogminger Z, Wakahiro M, et al. Diffusion tensor imaging of Aicardi syndrome. Pediatr Neurol 2010;43:2:87–91