THE WINNING PROPERTY
OF MIXED BADLY APPROXIMABLE NUMBERS

YAQIAO LI

Abstract. For any pair of real numbers (i, j) with $0 < i, j < 1$ and $i + j = 1$, we prove that the set of p-adic mixed (i, j)-badly approximable numbers $\text{Bad}_p(i, j)$ is $1/2$-winning in the sense of Schmidt’s game. This improves a recent result of Badziahin, Levesley, and Velani on mixed Schmidt conjecture.

1. Introduction

Given a pair of real numbers (i, j) such that

$$0 < i, j < 1 \quad \text{and} \quad i + j = 1.$$ \hfill (1.1)

Let $\text{Bad}(i, j)$ denote the set of (i, j)-badly approximable vectors in \mathbb{R}^2, that is,

$$\text{Bad}(i, j) := \left\{ (x, y) \in \mathbb{R}^2 : \exists c(x, y) > 0 \text{ such that } \max\{\|qx\|^{1/i}, \|qy\|^{1/j}\} > \frac{c(x, y)}{q}, \forall q \in \mathbb{N} \right\},$$ \hfill (1.2)

where $\|\cdot\|$ denotes the distance of a number to its nearest integer. The Schmidt conjecture says that for any two pairs of real numbers (i_1, j_1) and (i_2, j_2) satisfying (1.1), we have

$$\text{Bad}(i_1, j_1) \cap \text{Bad}(i_2, j_2) \neq \emptyset.$$

Recently, Badziahin, Pollington, and Velani proved Schmidt conjecture affirmatively in [3] by showing that the intersection of countably many $\text{Bad}(i_n, j_n)$ is of full Hausdorff dimension. In two recent papers, An improved BPV’s theorem by showing that every $\text{Bad}(i, j)$ is a winning set in the sense of Schmidt’s game, see [1, 2]. Recall that any countable intersection of α-winning sets is also α-winning, and an α-winning set is of full Hausdorff dimension, see [7, 8]. Hence An indeed improved BPV’s theorem.

We now consider the case in dimension one, the set (1.2) is then reduced to the classical set of badly approximable numbers.

$$\text{Bad} := \left\{ x \in \mathbb{R} : \exists c(x) > 0 \text{ such that } \|qx\| > \frac{c(x)}{q}, \forall q \in \mathbb{N} \right\}.$$ \hfill (1.3)

Given $0 < \alpha, \beta < 1$, let $\gamma := 1 - 2\alpha + \alpha\beta$, we say the pair (α, β) is admissible if $\gamma > 0$. A classical result of Schmidt says that Bad is (α, β)-winning for all admissible (α, β). Observe that $(\frac{1}{2}, \beta)$ is always admissible for every $0 < \beta < 1$, so in particular, Bad is $1/2$-winning.

In [5], the D-adic mixed Diophantine problems were studied. Let D be a bounded sequence of positive integers $(d_k)_{k=1}^\infty$, where every $d_k \geq 2$. Let $D_0 := 1$, $D_n := \prod_{k=1}^n d_k$. For every natural number $q \in \mathbb{N}$, define the D-adic pseudo absolute value as follows,

$$|q|_D := \inf\left\{ \frac{1}{D_n} : q \in D_n\mathbb{Z} \right\}.$$
The \mathcal{D}-adic pseudo absolute value reduces to the usual p-adic norm if we let \mathcal{D} be the constant sequence consisting of a prime number p. Recently, Badziahin, Levesley, and Velani initiated the study of mixed Schmidt conjecture in [4]. Let

$$\text{Bad}_\mathcal{D}(i, j) := \left\{ x \in \mathbb{R} : \exists c(x) > 0 \text{ such that } \max \left\{ \frac{\| q x \|^{i/j}}{q}, \forall q \in \mathbb{N} \right\} \geq \frac{c(x)}{q} \right\}.$$ (1.4)

We call this set as the set of mixed (i, j)-badly approximable numbers. The mixed Schmidt conjecture is then stated as follows: for any two pairs of real numbers (i_1, j_1) and (i_2, j_2) satisfying (1.1), we have

$$\text{Bad}_\mathcal{D}(i_1, j_1) \cap \text{Bad}_\mathcal{D}(i_2, j_2) \neq \emptyset.$$ In [4], they proved $\text{Bad}_\mathcal{D}(i, j)$ is $1/4$-winning, thus resolved the mixed Schmidt conjecture affirmatively.

Now we recall the notion of winning dimension, which is introduced in [7]. The definition of (α, β)-winning and α-winning will be reviewed in Section 2. Let $S \subset \mathbb{R}^n$, the winning dimension of S, denoted by $\text{windim} S$, is defined as follows

$$\text{windim} S = \sup \{ 0 < \alpha < 1 : S \text{ is } \alpha\text{-winning} \}.$$ A result in [7] says that if S is a nontrivial subset, then $0 \leq \text{windim} S \leq \frac{1}{2}$. For example, $\text{windim} \text{Bad} = \frac{1}{2}$. BLV’s theorem says that $\text{windim} \text{Bad}_\mathcal{D}(i, j) \geq \frac{1}{4}$.

Moshchevitin asked whether $\text{windim} \text{Bad}_\mathcal{D}(i, j) = \frac{1}{2}$ in his recent survey on Diophantine problems, see [6]. This paper answers this question affirmatively. In fact, our theorem is a natural generalization of Schmidt’s classical result on the set Bad.

Theorem 1. The set $\text{Bad}_\mathcal{D}(i, j)$ is (α, β)-winning for all admissible (α, β), in particular, $\text{Bad}_\mathcal{D}(i, j)$ is $1/2$-winning.

As a result, $\text{windim} \text{Bad}_\mathcal{D}(i, j) = \frac{1}{2}$. A result in [8] says a set is (α, β)-winning for $\gamma \leq 0$ if and only if this set is the whole set, accordingly, the winning property of $\text{Bad}_\mathcal{D}(i, j)$ is the best possible, so we give the best improvement of BLV’s result in the sense of winning dimension.

Given a prime number p, we use $\text{Bad}_p(i, j)$ to denote the set defined by (1.4) where the \mathcal{D}-adic is replaced by p-adic. Theorem 1 gives the following corollary.

Corollary 1. For any two different prime numbers p, q, for any two pairs of real numbers (i_1, j_1) and (i_2, j_2) satisfying (1.1), the set $\text{Bad}_p(i_1, j_1) \cap \text{Bad}_q(i_2, j_2)$ is $1/2$-winning. In particular,

$$\text{Bad}_p(i_1, j_1) \cap \text{Bad}_q(i_2, j_2) \neq \emptyset.$$ Note that the “In particular” part could also be deduced from BLV’s result.

The rest of the paper is organized as follows: in Section 2, we introduce the notion of Schmidt’s game and establish some notations, then we give two useful lemmas; the proof of theorem 1 will be given in Section 3.

2. Schmidt’s Game and Two Lemmas

First we recall the notion of Schmidt’s game, for details see [7, 8]. In this paper we only consider Schmidt’s game on \mathbb{R}, so we restrict our description only in this situation. Given a set $S \subset \mathbb{R}$, given two real numbers $0 < \alpha, \beta < 1$, two players, say Alice and Bob, will play the game. The game is played as follows, Bob starts the game by choosing a closed interval $B_1 \subset \mathbb{R}$, then Alice chooses an closed interval A_1 such that $A_1 \subset B_1$ and $\rho(A_1) = \alpha \rho(B_1)$, then Bob chooses another closed interval B_2 such that $B_2 \subset A_1$.
and $\rho(B_2) = \beta \rho(A_1)$, then Alice chooses another closed interval A_2 such that $A_2 \subset B_2$ and $\rho(A_2) = \alpha \rho(B_2)$, and so on. Here $\rho(A) = \frac{1}{2}|A|$, where $|A|$ denotes the length of the interval A. We can see that intervals appearing in the game obey the following relation, $B_1 \supset A_1 \supset B_2 \supset A_2 \supset \ldots$. We say Alice wins the game if she can play such that the single point in $\cap_{k=1}^{\infty} A_k = \cap_{k=1}^{\infty} B_k$ lies in S, otherwise Bob wins. We say S is (α, β)-winning if Alice can always win the game no matter how Bob plays, and S is α-winning if it is (α, β)-winning for every $0 < \beta < 1$.

Let $\rho_k := \rho(B_k)$, then $\rho_{k+t} = (\alpha \beta)^t \rho_k$. We now give the first lemma.

Lemma 2.1. Assume (α, β) is admissible. Let $t \in \mathbb{N}$ be such that $(\alpha \beta)^t < \frac{1}{2}\gamma$. Suppose an interval B_k occurs in the (α, β) game, and suppose $y \in \mathbb{R}$ is an arbitrary fixed point, then Alice can play, no matter how Bob plays, such that for every point $x \in B_{k+t}$,

$$|x - y| > \frac{1}{2}\gamma \rho_k.$$

This lemma is essentially due to Schmidt, we just write it in a slightly different form in order to facilitate the proof of our theorem. See Schmidt’s book [8] p.49 for a complete proof. Here we give only the proof’s main idea.

Proof. Without loss of generality, we could assume y be the middle point of B_k. Alice adopts the strategy that always selecting the most left possible inscribed interval in each turn. Then after t turns, all points in B_{k+t} will satisfy the property in the lemma. □

To give the next lemma we need some notations from [4], we put them here for completeness. For any real number $c > 0$, let

$$\text{Bad}_D(c; i, j) := \left\{ x \in \mathbb{R} : \max\{ |q|^{1/i}_D, \|q x\|^{1/j} \} > \frac{c}{q}, \forall q \in \mathbb{N} \right\},$$

then we see

$$\text{Bad}_D(i, j) = \bigcup_{c > 0} \text{Bad}_D(c; i, j).$$

Let $C_c := \left\{ \frac{r}{q} \in \mathbb{Q} : (r, q) = 1, q > 0, \text{ and } |q|_D \leq \left(\frac{c}{q} \right)^i \right\}$. Let $P = \frac{r}{q}$, and let

$$\Delta_c(P) := \left\{ x \in \mathbb{R} : |x - P| \leq \frac{cq}{q^{i+j}} \right\},$$

then clearly we have

$$\text{Bad}_D(c; i, j) = \mathbb{R} \setminus \bigcup_{P \in C_c} \Delta_c(P).$$

Let $R \in \mathbb{R}, R > 1$, let $t \in \mathbb{N}$, both of which will be fixed in Section 3. Define

$$C_{c,k} := \left\{ P = \frac{r}{q} \in C_c : R^{k-1} \leq \frac{q^{i+j}}{q^{i+j}} < R^k \right\},$$

then we have

$$C_c = \bigcup_{k=1}^{\infty} C_{c,k},$$

hence

$$\text{Bad}_D(c; i, j) = \mathbb{R} \setminus \bigcup_{k=1}^{\infty} \bigcup_{P \in C_{c,k}} \Delta_c(P). \tag{2.1}$$

It is this relation that will be used in the proof in Section 3.

Now we give the following lemma, the idea of which is already in [4].
Lemma 2.2. For any two different points $P_s = \frac{r_s}{q_s} \in C_{c,k}$, $s = 1, 2$, we have

$$|P_1 - P_2| > c^{-1} R^{2t(k-1) - \frac{1}{t+2} 2tk}.$$

Proof. By $P = \frac{r}{q} \in C_{c,k} \subset C_c$, we have $|q| \leq (\frac{c}{q})^i$, by the definition of the norm $|q|_D$, there is an appropriate $n \in \mathbb{N}, q^* \in \mathbb{N}$ such that

$$q = D_nq^*, \text{ and } q \notin D_{n+1}\mathbb{Z},$$

hence,

$$D_n \geq \left(\frac{q}{c}\right)^i \geq c^{-1} R^{2t(k-1)}.$$

Now there will be D_{n_1} and D_{n_2} respectively for P_1 and P_2, and one of them will divide another by the definition of D_n, so $(q_1, q_2) \geq \min\{D_{n_1}, D_{n_2}\} \geq c^{-1} R^{2t(k-1)}$. Therefore,

$$|P_1 - P_2| \geq \frac{(q_1, q_2)}{q_1q_2} > c^{-1} R^{2t(k-1) - \frac{1}{t+2} 2tk}.$$

\[\square\]

3. Proof of theorem

Now we prove theorem 1. Given (α, β) be admissible, then $0 < \gamma < 1$. Fix one $t \in \mathbb{N}$ such that $(\alpha\beta)^t < \frac{1}{2}\gamma$, which is used in lemma 2.1. Our aim is to show that $\text{Bad}_D(i, j)$ is (α, β)-winning. Without loss of generality we can assume that ρ_1 is very small, so we take the following constants,

$$\begin{align*}
R = \frac{1}{\alpha^2} > 1, \\
0 < \rho_1 < \left(\frac{1}{4} R^{-\frac{2t}{t+2}}\right)^j, \\
0 < c < (\frac{c}{\gamma}\rho_1)^{1/j} < \rho_1^{1/j}.
\end{align*}$$

(3.1)

As we pointed out in Section 2 that $\text{Bad}_D(i, j) = \bigcup_{c > 0} \text{Bad}_D(c; i, j)$, hence it suffices to show that for the c satisfying (3.1), $\text{Bad}_D(c; i, j)$ is (α, β)-winning.

Proof. We prove it by showing the following two facts.

Fact 1. For every $k \geq 1$,

$$\#\{P \in C_{c,k} : \Delta_c(P) \cap B_{t(k-1)+1} \neq \emptyset\} \leq 1.$$

Fact 2. Suppose Fact 1 holds, then Alice can play, no matter how Bob plays, such that for every $k \geq 1$,

$$\#\{P \in C_{c,k} : \Delta_c(P) \cap B_{tk+1} \neq \emptyset\} = 0,$$

which is equivalent to

$$\Delta_c(P) \cap B_{tk+1} = \emptyset, \quad \forall P \in C_{c,k}.$$

Notice that the above equation implies

$$\Delta_c(P) \cap B_{tk+1} = \emptyset, \quad \forall P \in C_{c,l}, \quad l = 1, 2, \ldots, k.$$

Recall the relation (2.1), then Fact 2 is equivalent to say that Alice can play such that the single point in $\cap_{k=1}^\infty B_{tk+1}$ lies in $\text{Bad}_D(c; i, j)$, so Alice can always win the game and we are done. Hence we are only left to show the two facts.

Now we show Fact 1. Let z be the middle point of $B_{t(k-1)+1}$. For those $P \in C_{c,k}$ satisfying $\Delta_c(P) \cap B_{t(k-1)+1} \neq \emptyset$, let $x \in \Delta_c(P) \cap B_{t(k-1)+1}$, then

$$|P - x| \leq |P - z| + |x - z| \leq \frac{c^j}{q^{1+j}} + \rho_1 R^{-t(k-1)} < 2\rho_1 R^{-t(k-1)}.$$
Assume there are two points $P_1, P_2 \in \mathcal{C}_{c,k}$, $P_1 \neq P_2$, and they satisfy $\Delta_c(P_1) \cap B_{t(k-1)+1} \neq \emptyset$, $\Delta_c(P_2) \cap B_{t(k-1)+1} \neq \emptyset$. By applying lemma 2.2, then
\[
c^{-1}R^{1+\frac{1}{t}2tk} < |P_1 - P_2| \leq |P_1 - z| + |z - P_2| < 4\rho_1 R^{-t(k-1)},
\]
which is equivalent to
\[
4\rho_1 c^j > R^{(1+\frac{1}{t})t(k-1)-\frac{1}{t}2tk} = R^{-\frac{2j}{t+1}}.
\]
Now use our assumption for c in (3.1), then
\[
R^{-\frac{2j}{t+1}} < 4\rho_1 c^j < 4\rho_1^{1+\frac{j}{t}} = 4\rho_1^{\frac{1}{2}},
\]
contradicts to our assumption on ρ_1.

Now we show Fact 2. We proceed by induction. The base is quite clear. Suppose that an interval $B_{t(k-1)+1}$ occurs in the game and it has empty intersection with all intervals $\Delta_c(P)$ with $P \in \mathcal{C}_{c,k}$. By Fact 1, there is not more than one “dangerous” point $P \in \mathcal{C}_{c,k}$ such that $\Delta_c(P) \cap B_{t(k-1)+1} \neq \emptyset$. View this point P as the point y in lemma 2.1, by applying that lemma, then Alice can play, no matter how Bob plays, such that for all $x \in \Delta_c(P) \cap B_{tk+1}$, we have
\[
\frac{c^j}{q^{1+j}} \geq |x - P| > \frac{1}{2}\gamma\rho_1 R^{-t(k-1)} = \frac{1}{2}\gamma\rho_1 R^{-t(k-1)},
\]
since $P \in \mathcal{C}_{c,k}$, this gives
\[
c^j R^{-t(k-1)} \geq \frac{c^j}{q^{1+j}} > \frac{1}{2}\gamma\rho_1 R^{-t(k-1)},
\]
which reduces to
\[
c^j > \frac{1}{2}\gamma\rho_1,
\]
contradicts to our assumption on c. So $\Delta_c(P) \cap B_{tk+1} = \emptyset$. □

Acknowledgments

The author is grateful to Professor Jinpeng An for many valuable conversations. He thanks the referee’s advice on how to make the proof more clear. The author also thanks Mengting Pan for her selfless support and constant encouragement.

References

[1] J. An, Badziahin-Pollington-Velani’s theorem and Schmidt’s game, Bull. Lond. Math. Soc., to appear.
[2] J. An, Two dimensional badly approximable vectors and Schmidt’s Game, preprint, arXiv:1204.3610.
[3] D. Badziahin, A. Pollington, S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt’s conjecture, Ann. of Math. (2) 174 (2011), no.3, 1837-1883.
[4] D. Badziahin, J. Levesley, S. Velani, The mixed Schmidt conjecture in the theory of Diophantine approximation, Mathematika 57 (2011), 239-245.
[5] B. de Mathan, O. Teulié, Problèmes diophantiens simultanés, Monatsch. Math. 143 (2004), no.3, 229-245.
[6] N. Moshchevitin, On some open problems in Diophantine approximation, preprint, arXiv:1202.4539.
[7] W. M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178-199.
[8] W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer, Berlin, 1980.

School of Mathematical Sciences, Peking University, Beijing, 100871, China
E-mail address: yaqiaoli@pku.edu.cn