Brazilian obligatory subterranean fauna and threats to the hypogean environment

Jonas Eduardo Gallão¹, Maria Elina Bichuette¹

¹ Laboratório de Estudos Subterrâneos, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, São Carlos, São Paulo, Brasil

Corresponding author: Jonas Eduardo Gallão (jonasgallao@gmail.com)

Academic editor: J. Maldonado | Received 18 July 2017 | Accepted 14 January 2018 | Published 26 March 2018

Citation: Gallão JE, Bichuette ME (2018) Brazilian obligatory subterranean fauna and threats to the hypogean environment. ZooKeys 746: 1–23. https://doi.org/10.3897/zookeys.746.15140

Abstract

The subterranean environment harbors species that are not capable of establishing populations in the epigean environment, i.e., the obligatory subterranean species. These organisms live in a unique selective regime in permanent darkness and usually low food availability, high air humidity in terrestrial habitats, and low temperature range allied to other unique conditions related to lithologies and past climatic influences. The pressure to increase Brazil’s economic growth relies on agricultural/pastoral industries and exporting of raw materials such as iron, limestone, ethanol, soybean, cotton, and meat, as well as huge reservoir constructions to generate electricity. Mining (even on a small scale), agricultural expansion, and hydroelectric projects are extremely harmful to subterranean biodiversity, via the modification and even destruction of hypogean habitats. The Brazilian subterranean species were analyzed with respect to their distributions, presence on the IUCN Red List, and current and potential threats to hypogean habitats. A map and three lists are presented, one with the described obligatory subterranean species, one with undescribed taxa, and one with the current and potential threats to the hypogean environment. To date, 150 obligatory subterranean species have been recorded in Brazil, plus at least 156 undescribed troglobiotic taxa, totaling 306 Brazilian troglobites/obligatory cave fauna. We also analyzed the current and potential cave threats and the conservation actions that are underway to attempt to compensate for loss of these habitats. In according to the Brazilian legislation (Decree 6640) only caves of maximum relevance are fully protected. One strategy to protect the subterranean fauna of Brazil is the inclusion of these species in the IUCN Red List (one of attributes that determines maximum relevance for caves); however, one of the IUCN assumptions is that the taxa must be formally described. It is clear that the description and proposed protection of Brazilian subterranean biodiversity depends on more systematics studies.

Keywords
caves, Neotropical region, IUCN Red list, troglobites
Introduction

The most obvious intrinsic feature of subterranean environments is the absence of light, which results in energy restriction (Poulson and White 1969, Poulson and Lavoie 2000). Furthermore, subterranean environments tend to be environmentally stable in terms of low temperature, high relative humidity, and complete darkness (Moore and Sullivan 1997). Consequently, few organisms are capable of effectively colonizing these environments (Barr 1968).

Obligatory subterranean species have evolved in isolation under particular selective conditions, such as complete darkness, low food quantity (with exceptions), and high and constant air humidity for terrestrial species. Obligatory subterranean species have accumulated specializations that are not present in their epigean relatives, which have culminated in exclusively subterranean populations that are no longer capable of colonizing the epigean realm (Trajano 2012).

The importance and fragility of hypogean environments was acknowledged when subterranean species were placed on the IUCN Red List by the environmental government agency in 2004 (IBAMA) and 2014 (ICMBio) (Machado et al. 2008, ICMBio 444 2014 and ICMBio 445 2014). The inclusion of obligatory subterranean species in the IUCN Red List elevates caves to the maximum relevance level (out of four levels of relevance - maximum, high, median, and low), meaning that the cave habitat must be protected (Decree 6640 from November 7, 2008 (Brasil 2008), Normative Instruction [NI] number 2 from August 20, 2009; Normative Instruction [NI] number 2 from August 30, 2017). The biological attributes present in the Normative Instructions that elevates caves to maximum relevance are species included in official Red Lists; presence of endemic or relict troglobites; presence of rare troglobites; and occurrence of unique ecological interactions.

The hypogean environment is fragile and, thus, highly vulnerable to environmental changes; it typically presents high endemism and small population sizes with low restoration capacity, which implies that obligatory subterranean fauna is sensitive to habitat changes, such as chemical pollution, eutrophication, deforestation close to the outcrops and drainages, uncontrolled tourism, mining, dams, etc. (Poulson 1964, Culver and Pipan 2009).

Extinction rates and disturbances caused by human activities are significant (Pimm et al. 1995), thus the knowledge of biodiversity becomes a fundamental tool to recognize threats to biodiversity. Financial resources for documenting biodiversity must be prioritized, as they are essential to establishing and developing best conservation policies (Brooks et al. 2006).

Knowledge of the geographical distribution of obligatory subterranean fauna in Brazil is fragmented compared to Europe and Asia, where a higher level of knowledge has been achieved (Botosaneanu 1986, Juberthie and Decu 2001, Deharveng et al. 2009, Stoch et al. 2009, Brancelj et al. 2013). The first list of obligatory subterranean fauna of Brazil was published in the 1980s and comprised five areas (Dessen et al. 1980). Since then, these lists have been constantly reviewed (Trajano 1987, Trajano
and Gnaspini-Netto 1991, Gnaspini and Trajano 1994, Pinto-da-Rocha 1995, Trajano and Bichuette 2010a). Herein we update and elaborate on the list of Brazilian obligatory subterranean fauna, mapping in detail the areas/regions with this fauna and its main threats.

Materials and methods

To construct the list, species descriptions, literature data, and sampling conducted by our group were utilized. The undescribed taxa were confirmed by specialists and are deposited in Brazilian collections (Museu Nacional do Rio do Janeiro/Universidade Federal do Rio de Janeiro, Instituto Butantan, Museu de Zoologia da Universidade de São Paulo). The information contained in two existing faunistic lists is expanded upon: one with the formally described obligatory subterranean fauna and the other containing the troglomorphic taxa (possible obligatory subterranean fauna detailed to as accurate taxonomic level as possible).

The purpose of the inclusion of undescribed troglomorphic taxa was to propose potential areas for conservation (since they are not included in the IUCN Red List). To avoid overestimation of taxa, we did not use data from environmental impact assessment reports.

The geomorphologic units used follow Karmann and Sanchez (1979). Groups: main uninterrupted limestone rocks (Una-Irecê, Corumbá, Bambuí, Açungui, Rio Pardo, Araras, Brusque, Apodi); superfamilies: main interrupted limestone rocks (Canudos); sandstone: main sandstone rocks (Altamira-Itaituba, Chapada Diamantina); formation: main iron ore rocks (Carajás, Quadrilátero Ferrífero). Since the Bambuí group is huge, we divided it into regions, based on municipalities (Presidente Olegário, Mambaí, São Domingos, São Desidério, Itacarambi, Jaíba, Montes Claros, Cordisburgo, Unaí, Distrito Federal) or based on continuous outcrops (Serra da Canastra, Serra do Ramalho). Other minor geomorphological units used are Serra do Mar and Serra da Mantiqueira (quartzitic), Vargem Alta (marble), and Itirapina (sandstone).

The threats listed herein are those that directly disturb the hypogean environment and its fauna, such as small and large hydroelectrical projects, mining projects, deforestation, uncontrolled tourism, chemical pollution, and lowering of the water table due to extraction of water; and indirect threats such as roads, land conflicts and gas extraction. The main threats were listed for municipalities and for some Brazilian geomorphologic units.

The map was created on QuantumGis Essen 2.14 with shapefiles of South America and Brazil. Besides these, we used the shapefile of Brazilian karst areas, available at the CECAV/ICMBIO website. Circle size is proportional to the number of species occurring in each area and was plotted using Adobe Illustrator CS6.

To evaluate the addition of Brazilian subterranean species in the IUCN Red lists, we compared the number of species presented in the 2004 IUCN Red List (Machado et al. 2008) and the 2014 IUCN Red List (ICMBio 444 2014 and ICMBio 445
We distinguished between the species not rated in the IUCN Red List as “not reported” and “not included”. “Not reported” refers to species that were not revised and “not included” are species that were revised and do not fit into any threat category: vulnerable (VU), endangered (EN), and critically endangered (CR). The term IUCN Red List used herein correspond to the Brazilian List of Threatened Fauna.

Results

Presently, Brazil has 150 described obligatory subterranean species, distributed over 12 states and located in different lithologies and geomorphologic groups (Figure 1, Table 1). The majority of these species occur in limestone rocks (123 species), mainly owing to the vast size of limestone geomorphologic units and the higher sampling effort in this lithology. Even with the high number of impact reports (mainly mining) regarding iron ore lithologies, and the increase in studies and inventories over the last ten years after publication of Decree 6640, there has been few described species (twelve species). In the other lithologies, sandstone contains less described species than does iron ore (ten species); for quartzitic and marble lithologies, we recorded only two obligatory subterranean species, one for each. Besides, there are two hyporheic fishes, one from Pará State and another from Rondônia State.

At least 156 troglomorphic/stygomorphic taxa are undescribed (Figure 1, Table 2), representing possible obligatory subterranean populations; these collections, deposited in different museums, await further taxonomic studies. Most of these specimens have not been identified to even a generic taxonomic level. In total, we listed approximately 306 obligatory and potentially obligatory subterranean species for Brazil (Tables 1 and 2). The Brazilian states with the highest number of species are Bahia (Serra do Ramalho karst area and São Desidério region, part of the Bambuí group, the Una-Irecê and Rio Pardo groups, the Canudos supergroup and the sandstone Chapada Diamantina; at least 90 obligatory subterranean species) and São Paulo (including part of the Açungui group, with at least 66 obligatory subterranean species) (Figure 1). Considering the geomorphologic units used here, the Bambuí group is the richest with 100 obligatory subterranean species followed by the Açungui group with 73 obligatory subterranean species.

In total, eight threats are identified in the Bahia State (Table 3) and the majority of the caves in this State are outside conservation units (natural areas liable for protection by law owing to special features), the exception being in the Andaraí and Lençóis regions, where the sandstone caves are recorded inside a conservation unit. For São Paulo State, the amount of threats are fewer (five, Table 3), but there is a concentration of them in areas that contain a high number of subterranean species, e.g., the Alto do Ribeira region – deforestation, land conflicts, pollution of subterranean drainage, small hydroelectric power-stations buildings (SHPS) and uncontrolled tourism.

The most common threat to the hypogean environment (Figure 1, Table 3) was miscellaneous impacts, with historical threats (e.g., deforestation related to agriculture/pastures and mining). For example, from the 29 impacted regions, deforestation for
Brazilian obligatory subterranean fauna and threats to the hypogean environment

Figure 1. Map of Brazil with main rock groups, karst areas, and formations with obligatory cave-dwelling species. Threats are indicated by letters as follows: A Minig B Reservoir construction C Deforestation for pastures D Deforestation for agriculture E Pollution of subterranean drainages F Tourism G Land conflict H Road construction, I Lowering of water table J Small hydroelectric power station buildings, K Pesticides L Natural gas and oil exploration. For Bambuí group, we grouped as follows (see Table 1 for distinction):

- Mambaí region - Mambaí and Posse municipalities; Distrito Federal region - Distrito Federal region plus Formosa and Padre Bernardo municipalities; Presidente Olegário region - Presidente Olegário and Vazante municipalities; Serra da Canastra region - São Roque de Minas, Arcos and Pains municipalities; Cordisburgo region - Cordisburgo, Matozinhos, Sete Lagoas, Morro do Pilar, Monjolos and Lagoa Santa municipalities; Montes Claros region - Montes Claros, Coração de Jesus and Luislândia municipalities.

agricultural and/or pastures occurred in 17 (58.6 %); mining in 15 (51.7 %), uncontrolled tourism in six, as is also the case for pollution (20.7 % each); hydroelectric projects are present in five (17.2 %). Roads, land conflicts, gas extraction, and lowering of the water table are more widespread and are present in five regions (17.2 %). Caves included in conservation units are not fully protected - for example, the Açungui group in southeastern Brazil (where there are three State Parks) is under five different threats (Figure 1, Table 3). Specifically, considering the Carajás region in North Brazil, we observed that only mining had an impact that would deplete the entire subterranean environment and lead to the total destruction of landscapes and caves (by mining), with the possible pollution of soil and drainage ways.

Considering the described subterranean species up to the end of 2003, only 33 were included in the Brazilian Red List of 2004 and another 30 species were “not re-
Table 1. Obligatory subterranean fauna described in Brazil (149 species) and IUCN Red List threatened species categories. VU – vulnerable; EN – endangered; CR – critically endangered; LC – least concern; DD – data deficient. SNR – still not rated, see text for explanations. States: BA – Bahia, GO – Goiás, MG – Minas Gerais, MS – Mato Grosso do Sul, MT – Mato Grosso, PA – Pará, PR – Paraná, RO – Rondônia, RN – Rio Grande do Norte, SP – São Paulo.

Higher taxon	Species	Lithology / Geomorphological Unit / Karstic area or Region (State)	Category 2004	Category 2014
Phylum Platyhelminthes				
Class Turbellaria				
Order Tricladida				
Dimarcusidae	*Hausera hauseri* Leal-Zanchet & Souza, 2014	Limestone / Apodi group / Felipe Guerra region (RN)	–	SNR
Dugesiidae	*Girardia multidiverticulata* Souza, Morais, Condeiro & Leal-Zancheti, 2015	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	–	SNR
	Girardia desiderensis Souza & Leal-Zancheti, 2016	Limestone / Bambuí group / São Desidério region (BA)	–	SNR
Phylum Porifera				
Class Demospongiae				
Order Haplosclerida				
Spongillidae	*Racekiela cavernicola* Volkmer-Ribeiro, Bichuette & Machado, 2010	Limestone / Una-Irecê group / Morro do Chapéu region (BA)	–	CR
Phylum Arthropoda				
Class Malacostraca				
Order Amphipoda				
Hyalellidae	*Hyalella caeca* Pereira, 1989	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	SNR
	Hyalella spelaea Bueno & Cardoso, 2011	Sandstone / Itirapina region (SP)	–	SNR
	Hyalella veredae Cardoso & Bueno, 2014	Limestone / Bambuí group / Vazante formation / Presidente Olegário region (MG)	–	SNR
	Hyalella formosa Cardoso & Araujo, 2014	Limestone / Açungui group / Alto do Ribeira karst area (PR)	–	SNR
	Hyalella epikarstica Rodrigues, Bueno & Ferreira, 2014	Limestone / Açungui group / Alto do Ribeira karst area (SP)	–	SNR
Artesiidae	*Megagidiella azul* Koemenann & Holsinger, 1999	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	“Not reported”	SNR
	Spelaeogammarus bahiensis Brum, 1975	Limestone / Una-Irecê group / Curaxá region (BA)	“Not reported”	SNR
	Spelaeogammarus unitanensis Koemenann & Holsinger, 2000	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	“Not reported”	SNR
	Spelaeogammarus spinilacertus Koemenann & Holsinger, 2000	Limestone / Una-Irecê group / Iraquara region (BA)	“Not reported”	SNR
Mesogammaridae	*Spelaeogammarus trinacronae* Koemenann & Holsinger, 2000	Limestone / Una-Irecê group / Campo Formoso region (BA)	“Not reported”	SNR
	Spelaeogammarus titan Senna, Andrade, Castelo-Branco & Ferreira, 2014	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	–	SNR
	Spelaeogammarus sanctus Bastos-Pereira & Ferreira, 2015	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	–	SNR
	Spelaeogammarus natut Bastos-Pereira & Ferreira, 2017	Limestone / Bambuí group / Itaparicambi region (MG)	–	–
Seborgiidae	*Pseibera praesauropoda* Fiser, Zagmajter & Ferreira, 2013	Limestone / Apodi group / Felipe Guerra region (RN)	–	SNR
	Seborgia potiaguara Fiser, Zagmajter & Ferreira, 2013	Limestone / Apodi group / Governador Dix-Sept Rosado region (RN)	–	SNR
Aeglidae	*Aegla cavernicola* Turkay, 1972	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR
Brazilian obligatory subterranean fauna and threats to the hypogean environment

Higher taxon	Species	Lithology / Geomorphological Unit / Karstic area or Region (State)	Category 2004	Category 2014	
Aeglida	*Aegla leptochaeta* Bond-Buckup & Buckup, 1994	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR	
	Aegla micropthalma Bond-Buckup & Buckup, 1994	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR	
Order Isopoda					
Calabozoidae					
	Pongycarcinia xiphioidea Messana, Baratti & Benvenuti, 2002	Limestone / Una-Irecê group / Campo Formoso region (BA)	"Not reported"	SNR	
Brasilinriinae					
	Brazilinrinus canaliculus Pryorominick, Ferreira & Sket, 2011	Limestone / Canudos supergroup / Paripiranga region (BA)	–	SNR	
Oedopoidea					
Philoscidiidae					
	Benthana spongiogena Lima & Serejo, 1993	Limestone / Açungui group / Alto do Ribeira karst area (SP)	"Not reported"	SNR	
	Leonardossia basalli Campos-Filho, Araujo & Taiti, 2014	Sandstone / Altamira-Iaituha group / Altamira region (PA)	–	SNR	
Pudeoniscidae					
	Iansaoniscus georginae Campos-Filho, Araujo & Taiti, 2017	Limestone / Una-Irecê group / Campo Formoso region (BA)	–	–	
	Iansaoniscus iraquara Campos-Filho, Araujo & Taiti, 2017	Sandstone / Altamira-Iaituha group / Altamira region (PA)	–	–	
Order Scleropoda					
Scleropactidae					
	Amazoniscus eleonorae Souza, Ferreira & Araujo, 2006	Limestone / Altamira-Iaituha group / Altamira region (PA)	–	SNR	
	Amazoniscus leistikowi Campos-Filho, Araujo & Taiti, 2014	Sandstone / Altamira-Iaituha group / Altamira region (PA)	–	SNR	
	Cirrinitus buchelli Campos-Filho & Araujo, 2011	Iron ore / Carajás formation / Parauapebas region (PA)	–	SNR	
	Cirrinitus camptoaenius Campos-Filho & Araujo, 2011	Iron ore / Carajás formation / Canção dos Carajás region (PA)	–	SNR	
Styloniscidae					
	Spelunconiscus castroi Campos-Filho, Araujo & Taiti, 2014	Limestone / Bambuí group / Matozinhos region (MG)	–	SNR	
	Xangoniscus aganju Campos-Filho, Araujo & Taiti, 2014	Limestone / Bambuí group / Matozinhos region (MG)	–	SNR	
	Xangoniscus itacarambeiensis Bastos-Pereira, Souza & Ferreira, 2017	Limestone / Bambuí group / Parauapebas region (PA)	–	–	
Order Styloniscidae					
	Iuiuniscus iuiuensis Souza, Ferreira & Senna, 2015	Limestone / Bambuí group / Matozinhos region (MG)	–	SNR	
Order Spelaeogriphacea					
Spelaeogriphidae					
	Potiicoara brasiliensis Pires, 1987	Limestone / Corumbá and Araras groups / Serra da Bodoquena karst area (MS) and Rosário Oeste region (MT)	"Not reported"	SNR	
Class Chelicerata					
Order Amblypygi					
Charinidae					
	Charinus troglodytus Baptista & Giupponi, 2002	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	CR	CR	
	Charinus eleonore Baptista & Giupponi, 2003	Limestone / Bambuí group / Itacarambi region (MG)	"Not reported"	CR	
	Charinus caatingae Vasconcelos & Ferreira, 2016	Limestone / Una-Irecê group / Várzea Nova region (BA)	–	–	
	Charinus tabua Vasconcelos, Giupponi & Ferreira, 2016	Limestone / Bambuí group / Sete Lagoas region (MG)	–	SNR	
	Charinus ferreus Giupponi & Miranda, 2016	Iron ore / Carajás formation / Serra de Carajás (PA)	–	SNR	
	Charinus spelaeus Vasconcelos & Ferreira, 2017	Limestone / Bambuí group / Presidente Juscelino region (MG)	–	–	
Order Araneae					
Theraphosidae					
	Timexiphanthos hypogaeus Bertani, Bichuette & Pedrasso, 2013	Sandstone / Chapada Diamantina region (BA)	–	CR	
Dipluridae					
	Harmonicon cerberus Pedrasso & Baptista, 2014	Iron ore / Carajás formation / Parauapebas region (PA)	–	CR	
Ctenidae					
	Isotetus corymbulus Polotow, Brescovit & Pellegatti-Franco, 2005	Limestone / Bambuí group / São Domingos karst area (GO)	–	CR	
Ochyroceratidae					
	Spencera eleonore Baptista, 2003	Limestone / Bambuí group / Serra da Bodoquena karst area (MS)	"Not reported"	EN	
Higher taxon	Species	Lithology / Geomorphological Unit / Karstic area or Region (State)	Category 2004	Category 2014	
--------------------------	---	--	---------------	---------------	
Ochyroceratidae	Ochyroceras ibitipoca Baptista, Gonzalez & Tourinho, 2008	Quartzitic / Serra da Mantiqueira / Lima Duarte (MG)	–	EN	
Pholcidae	Metagonia diamantina Machado, Ferreira & Brescovit, 2011	Limestone / Una-Irecê group / Itaeté region (BA)	–	CR	
	Metagonia potiguar Ferreira, Souza, Machado & Brescovit, 2011	Limestone / Apodi group / Felipe Guerra region (RN)	–	CR	
Prodidomidae	Lysogennes yaguenae Rheims & Brescovit, 2004	Limestone / Bambuí group / Cordisburgo region (MG)	–	CR	
Symphytognathidae	Anapistula guyri Rheims & Brescovit, 2003	Limestone / Bambuí group / São Domingos karst area (GO)	VU	LC	
Order Opiliones					
Gerdesiidae	Gonyoxenus plato Bragagnolo, Hara & Pinto-da-Rocha, 2015	Limestone / Bambuí group / Morro do Pilár region (MG)	–	–	
	Pachylaepeles strinatus Silhavy, 1974	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	EN	
	Landosomaeta uiti Pinto-da-Rocha, 1996	Limestone / Bambuí group / Itacarambi region (MG)	CR	CR	
	Landosomaeta smegel Pinto-da-Rocha, Fonseca-Ferreira & Bichuette, 2015	Limestone / Bambuí group / Monjolos region (MG)	–	–	
	Landosomaeta siringapucu Hara & Pinto-da-Rocha, 2008	Limestone / Bambuí group / Coração de Jesus region (MG)	–	EN	
	Giupponia chagasi Pérez & Kury, 2008	Sandstone / Chapada Diamantina region (BA)	CR	CR	
	Discocyrtus pedrului Kury, 2008	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	CR	CR	
	Enacrus elinae Kury, 2008	Limestone / Una-Irecê group / Iraquara region (BA)	–	EN	
	Spinopilar moria Kury & Pérez-González, 2008	Limestone / Bambuí group / Cordisburgo region (MG)	–	CR	
Escadabiidae	Spelaeoleptes spaeleus Soares, 1966	Limestone / Bambuí group / Cordisburgo region (MG)	EN	EN	
Kimulidae	Relictopus galadriel Pérez-González, Monte & Bichuette, 2017	Limestone / Bambuí group / Itacarambi region (MG)	–	–	
Order Palpigradi					
Eukoeneniidae	Eukoenenia maqueenii Souza & Ferreira, 2010	Limestone / Bambuí group / Cordisburgo region (MG)	–	CR	
	Eukoenenia spelunc Souza & Ferreira, 2011	Marble / Vargem Alta region (ES)	–	CR	
	Eukoenenia virgindalapa Souza & Ferreira, 2012	Limestone / Bambuí group / Vazante formation / Vazante region (MG)	–	EN	
	Eukoenenia sagarana Souza & Ferreira, 2012	Limestone / Bambuí group / Cordisburgo region (MG)	–	CR	
	Eukoenenia jequitinhonha Souza & Ferreira, 2016	Granitic / Carai region (MG)	–	–	
	Eukoenenia cavaticta Souza & Ferreira, 2016	Limestone / Bambuí group / Arcos region	–	–	
Order Pseudoscorpiones					
Bochicidae	Spelaeobochica allidentatus Mahnert, 2008	Limestone / Una-Irecê group / Palmeiras region (BA)	“Not reported”	CR	
	Spelaeobochica muchuneri Andrade & Mahnert, 2003	Limestone / Açungui group / Alto do Ribeira karst area (SP)	“Not reported”	EN	
	Spelaeobochica inui Ratton, Mahnert & Ferreira, 2012	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	–	CR	
Chthoniidae	Mascherina ipomongae Mahnert & Andrade, 1998	Limestone / Açungui group / Alto do Ribeira karst area (SP)	EN	CR	
	Pseudochthonius striatit Beier, 1969	Limestone / Açungui and Bambuí groups / Alto do Ribeira karst area (SP-PR) and Sete Lagoas region (MG)	VU	DD	
	Pseudochthonius biseriatus Mahnert, 2001	Limestone / Bambuí group / Itacarambi region (MG)	“Not reported”	CR	
Ideorncidae	Ideorncus cavica Mahnert 2001	Limestone / Açungui group / Alto do Ribeira karst area / Ipomarã (SP) and Rio Branco do Sul regions (PR)	“Not reported”	VU	
Higher taxon	Species	Lithology / Geomorphological Unit / Karstic area or Region (State)	Category 2004	Category 2014	
-------------	---------	---	---------------	---------------	
Order Scorpionidae	Troglorhopalurus translucidus Lourenço, Baptista & Giupponi, 2004	Sandstone / Chapada Diamantina region (BA)	–	EN	
	Troglorhopalurus lacrus (Lourenço & Pinto-da-Rocha, 1997)	Limestone / Una-Irecê group / Itacét region (BA)	“Not reported”	EN	
Class Chilopoda					
Order Scolopendromorpha	Cryptops (Trygonocryptops) iporanguensis Ázara & Ferreira, 2013	Limestone / Açungui group / Alto do Ribeira karst area (SP)	–	EN	
	Cryptops (Cryptops) spelaeoptor Ázara & Ferreira, 2014	Limestone / Una-Irecê group / Campo Formoso region (BA)	–	VU	
	Scolecoptops troylacaudatus Chagas-Jr. & Bichuette, 2015	Sandstone / Chapada Diamantina region (BA)	–	SNR	
Class Diplopoda					
Order Glomeromorpha	Pseudonannolene lundi Ázara & Ferreira, 2015	Limestone / Bambuí group / Luislândia region (MG)	–	SNR	
Class Entognatha	Oncinocampa trajanoae Condé, 1997	Limestone / Açungui group / Alto do Ribeira karst area (SP)	“Not reported”	SNR	
Order Collembola	Arrhopalites amori / Palacios-Vargas & Zeppelini, 1995	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR	
	Arrhopalites gnaspini / Palacios-Vargas & Zeppelini, 1995	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR	
	Arrhopalites laurencii / Palacios-Vargas & Zeppelini, 1995	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR	
	Arrhopalites adulteratus Zeppelini, 2006	Limestone / Açungui group / Alto do Ribeira karst area (SP)	–	CR	
	Arrhopalites boesenbergii Zeppelini, 2006	Limestone / Brusque group / Botuverá region (SC)	–	CR	
	Arrhopalites heteroculatus Zeppelini, 2006	Limestone / Açungui group / Alto do Ribeira karst area (SP)	–	CR	
	Arrhopalites pantanalensis Zeppelini, 2006	Limestone / Açungui group / Alto do Ribeira karst area (PR)	–	CR	
Class Hypogastruridae	Acherontides eisenowi Palacios-Vargas & Gnaspini-Neto, 1992	Limestone / Açungui group / Alto do Ribeira karst area / Iporanga (SP) and Rio Branco do Sul regions (PR)	“Not reported”	EN	
Higher taxon	Species	Lithology / Geomorphological Unit / Karstic area or Region (State)	Category 2004	Category 2014	
-------------	---------	--	---------------	---------------	
Paronellidae	Troglobius brasilienis Palacios-Vargas & Zeppelini, 1995	Sandstone / Altamira-Itaituba region / Medicilândia region (PA); Limestone / Açungui group / Alto do Ribeira karst area (SP)	"Not reported"	CR	
	Troglobius ferricus Zeppelini, Silva & Palacios-Vargas, 2014	Iron ore / Quadrilátero Ferrífero formation / Itabirito region (MG)	–	CR	
	Trogolaphys aelleni Yossi, 1988	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	VU	
	Trogolaphys basleri Yossi, 1989	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	VU	
Sminthuridae	Panarrhopalites wallacei (Palacios-Vargas & Zeppelini, 1995)	Limestone / Açungui group / Campo Formoso region (BA)	"Not reported"	SNR	
	Troglobius brasiliensis Palacios-Vargas & Zeppelini, 1995	Sandstone / Altamira-Itaituba region / Medicilândia region (PA); Limestone / Açungui group / Alto do Ribeira karst area (SP)	"Not reported"	CR	
	Troglobius ferroicus Zeppelini, Silva & Palacios-Vargas, 2014	Iron ore / Quadrilátero Ferrífero formation / Itabirito region (MG)	–	CR	
	Trogolaphys aelleni Yossi, 1988	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	VU	
	Trogolaphys basleri Yossi, 1989	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	VU	
	Panarrhopalites wallacei (Palacios-Vargas & Zeppelini, 1995)	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR	
	Panarrhopalites papaveroi (Zeppelini & Palacios-Vargas, 1999)	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	VU	
Class Insecta					
	Class Insecta				
	Order Zygentoma				
	Nicoletiidae	Cobacubana spelaea Galán, 2001	Limestone / Una-Irecê group / Campo Formoso region (BA)	"Not reported"	SNR
	Order Blattaria				
	Blattellidae	Litobolatta canaryoi Gutierrez, 2005	Limestone / Una-Irecê group / Iraquara region (BA)	–	SNR
	Order Coleoptera				
	Sphindidae				
	Carabidae	Schizophorus ocellatus Whitehead, 1972	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	EN
		Coenazaphium tessai (Godoy & Vanin, 1990)	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	VU	CR
		Coenazaphium bexerrn Gnaspini, Vanin & Godoy, 1998	Limestone / Bambuí group / Sáo Domingos karst area (GO)	VU	VU
		Coenazaphium cesaiima Gnaspini, Vanin & Godoy, 1998	Limestone / Una-Irecê group / Itacét region (BA)	VU	CR
		Coenazaphium painis Alves & Ferreira, 2002	Limestone / Bambuí group / Pains region (MG)	VU	EN
		Coenazaphium fornsos Pellegrini & Ferreira, 2011	Limestone / Una-Irecê group / Campo Formoso region (BA)	–	VU
		Coenazaphium tapiauaaua Pellegrini & Ferreira, 2011	Iron ore / Carajás formation / Curionópolis region (PA)	–	CR
		Coenazaphium cassuing Pellegrini & Ferreira, 2014	Limestone / Una-Irecê group / Campo Formoso region (BA)	–	EN
		Coenazaphium ricardoi Bená & Vanin, 2014	Limestone / Açungui group / Alto do Ribeira karst area (PR)	–	CR
		Coenazaphium amazonicus Pellegrini & Ferreira, 2017	Iron ore / Carajás formation / Curionópolis region (PA)	–	–
	Dytiscidae	Capelatus cesaiima Caetano, Bená & Vanin, 2013	Iron ore / Carajás formation / Parauapebas region (PA)	–	CR
		Metopius patennis Asenjo, Ferreira & Zampaulo, 2017	Limestone / Bambuí group / Pains region (MG)	–	–
	Staphylinidae				
	Order Hemiptera				
	Cixiidae	Ferricixius davidi Hoch & Ferreira, 2012	Iron ore / Quadrilátero Ferrífero formation / Itabirito region (MG)	–	SNR
		Kinnaridae	Limestone / Apodi group / Felipe Guerra and Governador Dix-Sept Rosado regions (RN)	–	SNR
		Bixia caeca Hoch & Ferreira, 2016	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	–	SNR
	Order Orthoptera				
	Phalangopsidae	Endevou aelpern Bolfarini & Souza-Dias, 2013	Limestone / Una-Irecê group / Iruçu region (BA)	–	SNR
		Endevou persuasense Bolfarini, 2015	Limestone / Bambuí group / Itacarumbi region (MG)	–	–
Brazilian obligatory subterranean fauna and threats to the hypogean environment

Higher taxon	Species	Lithology / Geomorphological Unit / Karstic area or Region (State)	Category 2004	Category 2014
Phylum Mollusca	Potamolithus troglobius Simone & Moracchiolli, 1999	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR
Class Gastropoda	Spiripokia punctata Simone, 2012	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	–	EN
Order Caenogastropoda	Potamolithus troglobius Simone & Moracchiolli, 1999	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR
Phylum Chordata	Potamolithus troglobius Simone & Moracchiolli, 1999	Limestone / Açungui group / Alto do Ribeira karst area (SP)	VU	CR
Order Characiformes	Stygichthys typhlops Brittan & Böhlke, 1965	Limestone / Bambuí group / Jaíba region (MG)	VU	EN
Order Gymnotiformes	Eigenmannia vicentespelaea Tríques, 1996	Limestone / Bambuí group / São Domingos karst area (GO)	VU	VU
Order Siluriformes	Heptapteridae			
Loricariidae	Ancistrus cryptophthalmus Reis, 1987	Limestone / Bambuí group / Posse region (GO)	“Not reported”	EN
	Ancistrus formoso Sabino & Trajano, 1997	Limestone / Córumbá group / Serra da Bodoquena karst area (MS)	VU	VU
	Trichomycterus itacarambis Trajano & de Pinna, 1996	Limestone / Bambuí group / Itacarambi region (MG)	VU	CR
	Trichomycterus ruddi Rizzato, Costa-Jr, Trajano & Bichuette, 2011	Limestone / Córumbá group / Serra da Bodoquena karst area (MS)	–	VU
	Ituglanis naembi Bichuette & Trajano, 2008	Limestone / Bambuí group / Posse region (GO)	–	EN
	Ituglanis bambui Bichuette & Trajano, 2004	Limestone / Bambuí group / São Domingos karst area (GO)	–	CR
	Ituglanis paesii Fernandez & Bichuette, 2002	Limestone / Bambuí group / São Domingos karst area (GO)	“Not reported”	VU
	Ituglanis ramiroi Bichuette & Trajano, 2004	Limestone / Bambuí group / São Domingos karst area (GO)	–	VU
	Ituglanis botucatu Rizzato & Bichuette, 2011	Limestone / Bambuí group / Mambaí region (GO)	–	SNR
	Glaophyropoma spinosum Bichuette, de Pinna & Trajano, 2008	Sandstone / Chapada Diamantina region (BA)	–	VU
Incertae sedis	Phreatobius cisternarum Goeldi, 1905	Hyporheic / Ilha de Marajó (PA)	–	“Not reported”
	Phreatobius deuncensudus Shibata, Muriel-Cunha & de Pinna, 2007	Hyporheic / Rio Pardo basin (RO)	–	“Not reported”
Table 2. Obligatory subterranean undescribed. References: A – Dessen et al. 1980; B – Chaimowicz 1984; C – Trajano 1987; D – Trajano and Gnasini-Netto 1991; E – Trajano and Moreira 1991; F – Gnasini and Trajano 1994; G – Trajano and Sanchez 1994; H – Pinto-da-Rocha 1995; I – Bichuette 1998; J – Lourenço et al. 2004; K – Deharveng 2005; L – Trajano and Bichuette 2010a; M – Cordeiro et al. 2014; TS – this study. spp – widespread taxa possibly meaning several species. States: BA-Bahia, GO-Goiás, MG-Minas Gerais, MS-Mato Grosso do Sul, MT-Mato Grosso, PA-Pará, PR-Paraná, RJ-Rio de Janeiro, RN-Rio Grande do Norte, SC-Santa Catarina, SP-São Paulo.

Taxon	Lithology / Geomorphological Unit / karst area or region	References
Phylum Annelida		
Class Clitellata		
Subclass Oligochaeta	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Phylum Platyhelminthes		
Order Tricladida		
Dugesiidae indet. 1	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Dugesiidae indet. 2	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
Phylum Onychophora		
Order Eunonychophora		
Peripatidae indet.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Phylum Arthropoda		
Order Amphipoda		
Bogidiellidae		
Megagidiella sp.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	L
Hyaliellidae		
Hyalella aff. pernix	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, G, H
Hyalella sp.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	A, D, G, H
Order Isopoda		
Indet. 1	Limestone / Bambuí group / Montes Claros region (MG)	A, B, H
Indet. 2	Limestone / Araras group / Nobres region (MT)	L
So. Oniscidea	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Armadillidae		
Veneziello sp. 1	Magnesita / Padre Bernardo region (GO)	F, H
Veneziello sp. 2	Limestone / Bambuí group / Distrito Federal region (GO)	L
Bathytropidae		
Neotroponiscus sp.	Iron ore / Quadrilátero Ferrífero formation / Brumadinho region (MG)	Cardoso & Araujo pers. comm.
Philiscidae indet. 1	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Philiscidae indet. 2	Sandstone / Chapada Diamantina region (BA)	TS
Benthabana sp.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, G, H
Platyarthridae		
Trichobrata spp.	Limestone / Bambuí group / several regions (BA, MG, SP, PR); Iron ore / Quadrilátero Ferrífero (MG)	H, L
Scleropactidae indet. 1	Sandstone / Altamira-Itainaba group / Altamira region (PA)	E, F, G, H, L
Styloiscidae indet. 1	Limestone / Bambuí group / Itacarambi region (MG)	TS
Styloiscidae indet. 2	Limestone / Bambuí group / Itacarambi region and Serra do Ramalho karst area (MG and BA)	L, TS
Styloiscidae indet. 3	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Styloiscidae indet. 4	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Styloiscidae indet. 5	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	F, G, H
Styloiscidae indet. 6	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Styloiscidae indet. 7	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Styloiscidae indet. 8	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	B, G, H
Taxon	Lithology / Geomorphological Unit / karst area or region	References
----------------------------------	--	------------
Styloniscidae indet. 9	Sandstone / Chapada Diamantina region (BA)	TS
Pectenoniscus sp. 1	Limestone / Brusque group / Botuverá region (SC)	L
Pectenoniscus sp. 2	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Pectenoniscus sp. 3	Limestone / Bambuí group / Lagoa Santa region (MG)	L
Pectenoniscus sp. 4	Limestone / Açungui group / Alto do Ribeira karst area (SP)	H, L
Order Decapoda		
Palaeomorphaeidae		
Macrolebias indet.	Sandstone / Aliazam-Itaituba group / Prainha region (PA)	E, G, H
Subclass *Acari* indet. 1	Sandstone / Chapada Diamantina region (BA)	TS
Subclass *Acari* indet. 2	Sandstone / Chapada Diamantina region (BA)	TS
Order Amblypygi		
Charinus sp.	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	L, TS
Order Araneae		
Euryphantes sp.	Sandstone / Chapada Diamantina region (BA)	J, L
Subclass Acariidae		
Ochyroceratidae indet. 1	Limestone / Açungui group / Alto do Ribeira karst area (SP)	J, L
Ochyroceratidae indet. 2	Limestone / Açungui group / Alto do Ribeira karst area (SP)	J, L
Ochyroceratidae indet. 3	Limestone / Açungui group / Alto do Ribeira karst area (SP)	J, L
Ochyrocera sp. 1	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	L, TS
Ochyrocera sp. 2	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	L, TS
Eusarcus sp. 1	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	L
Nesticus sp. 1	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	L
Nesticus sp. 2	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	L
Order Opiliones		
Eusarcus sp. 1	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	L
Eusarcus sp. 2	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	L
Order Pseudoscorpiones		
Eukoenenia sp.	Sandstone / Chapada Diamantina region (BA)	TS
Eukoenenia sp.	Sandstone / Chapada Diamantina region (BA)	TS
Order Pseudoscorpiones		
Chernetidae indet.	Sandstone / Chapada Diamantina region (BA)	TS
Order Palpigradi		
Eukoenenia sp.	Sandstone / Chapada Diamantina region (BA)	TS
Eukoenenia sp.	Sandstone / Chapada Diamantina region (BA)	TS
Taxon	Lithology / Geomorphological Unit / karst area or region	References
-------	--	------------
Chthoniidae indet. 1	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Chthoniidae indet. 2	Sandstone / Chapada Diamantina region (BA)	TS
Chthoniidae indet. 3	Iron ore / Quadrilátero Ferrífero (MG)	L
Class Diplopoda indet. 1	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	F, H
Diplopoda indet. 2	Limestone / Bambuí group / Unaí region (MG)	D, H
Order Polydesmida indet. 1	Limestone / Bambuí group / Formosa region (GO)	F, G, H
Polydesmida indet. 2	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Polydesmida indet. 3	Iron ore / Quadrilátero Ferrífero (MG)	L
Polydesmida indet. 4	Limestone / Bambuí group / Itacarambi region (MG)	K, TS
Chelodesmidae indet.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Aleodesmus sp.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Cryptodesmus indet.	Limestone / Açungui group / Adrianópolis region (PR)	H
Cryptodesmus sp. 1	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
Cryptodesmus sp. 2	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
cf. Cryptodesmidae indet.	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	F, H
Oniscodesmidae indet. 1	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	F, H
Oniscodesmidae indet. 2	Granitic / Serra do Mar / Ribeirão Pires region (SP)	F, H
Oniscodesmidae indet. 3	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Crypturodesmus sp. 1	Limestone / Corumbá group / Serda da Bodoquena karst area (MS)	L, M
Crypturodesmus sp. 2	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
Crypturodesmus sp. 3	Limestone / Brusque group / Botuverá region (SC)	L
Katandodesmus spp.	Limestone / Açungui group / several regions (PR and SP)	F, G, H
Katandodesmus sp.	Limestone / Corumbá group / Serda da Bodoquena karst area (MS)	F, G, H, M
Paradoxosomatidae indet.	Limestone / Corumbá group / Serda da Bodoquena karst area (MS)	M
Pyrgodesmidae indet.	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	TS
Order Spirostreptida		
Pseudonannolenidae indet.	Sandstone / Chapada Diamantina region (BA)	TS
Class Chilopoda		
Order Geophilomorpha		
Geophilidae indet.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
Order Scolopendromorpha		
Cryptopidae		
Cryptops sp.	Iron ore / Carajás Formation / Carajás region (PA)	L
Scolopendridae indet.	Sandstone / Chapada Diamantina region (BA)	TS
Order Lithobiomorpha indet.	Iron ore / Quadrilátero Ferrífero (MG)	L
Class Pauropoda indet.	Sandstone / Altamira-Itaituba group / Altamira region (PA)	TS
Class Symphyida indet.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
Scutigerellidae indet.	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
cf. Hanseniella sp.	Limestone / Rio Pardo group (BA)	L
Class Entognatha		
Order Collembola indet.	Limestone / Bambuí group / Itacarambi region (MG)	K, TS
Aribhopalitidae indet.	Limestone / Corumbá group / Serda da Bodoquena karst area (MS)	F, G, H
Aribhopalites sp.	Iron ore / Quadrilátero Ferrífero (MG)	L
Hypogastruridae		
Acherontides spp.	Limestone / Brusque and Rio Pardo groups (SC and BA)	L
Onychiuridae indet.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, H
Isotomidae spp.	Granitic, Limestone and Iron ore / Serra do Mar, Bambuí group and Quadrilátero Ferrífero / several regions (SP and MG)	D, F, G, H, L
Taxon	Lithology / Geomorphological Unit / karst area or region	References
-------	--	------------
Entomobryidae spp.	Limestone and Sandstone / Açungui, Bambuí, Corumbá groups and Chapada Diamantina region (BA, GO, MS, PR and SP)	F, G, H, L, M
Heteromurera sp.	Sandstone / Chapada Diamantina region (BA)	TS
Vertueella sp.	Sandstone / Chapada Diamantina region (BA)	TS
Cyphoderidae spp.	Granitic and Limestone / Serra do Mar, Bambuí and Corumbá groups / several regions (BA, GO, MS and SP)	F, G, H, M
Cyphoderus sp.	Limestone / Bambuí group / Montes Claros region (MG)	F, H
Paronellidae spp.	Limestone / Açungui, Una-Itacai and Corumbá groups / Alto do Ribeira karst area, Chapada Diamantina region and Serra da Bodoquena karst area (SP, BA and MS)	D, F, H, G
Trogolaphysa sp.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Troglopedetes sp. 1	Sandstone / Chapada Diamantina region (BA)	TS
Troglopedetes sp. 2	Limestone / Bambuí group / São Domingos karst area (GO)	F, H, L
Troglobius sp. 1	Sandstone / Altamira-Itaituba / Prainha region (PA)	E, F, H
Troglobius sp. 2	Sandstone / Chapada Diamantina region (BA)	TS
Class Insecta		
Order Blattaria		
Blattellidae indet.	Sandstone / Chapada Diamantina region (BA)	TS
Order Coleoptera		
Carabidae indet.	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Oxytreptopus sp.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, G, H, L
Dytiscidae indet.	Sandstone / Chapada Diamantina region (BA)	TS
Staphylinidae		
Pselaphinae indet. 1	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, G, H
Pselaphinae indet. 2	Limestone / Bambuí group / São Domingos karst area (GO)	TS
Pselaphinae indet. 3	Sandstone / Chapada Diamantina region (BA)	TS
Arthimius sp.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, G, H, L
Syrbus sp. 1	Limestone / Bambuí group / Pains region (MG)	F, H, L
Syrbus sp. 2	Granitic / Serra do Mar / Rio de Janeiro region (RJ)	F, H, L
cf. Strombopsis sp.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	F, G, H, L
Tenebrionidae indet.	Granitic / Serra do Mar / Rio de Janeiro region (RJ)	F, H, L
Order Hemiptera		
Dipsoecoridae indet.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Enicocephalidae indet.	Iron ore / Quadrilátero Ferrífero (MG)	L
Ortheziidae indet.	Iron ore / Quadrilátero Ferrífero (MG)	L
Hydrometridae indet.	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Order Hymenoptera		
Formicinae indet.	Limestone / Bambuí group / São Desidério karst area (BA)	TS
Ponerinae indet.	Limestone / Bambuí group / São Domingos karst area (GO)	F, G, H, L
Order Orthoptera		
Phalangopsidae indet.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	TS
Phylum Mollusca		
Order Caenogastropoda		
Pomatiopsidae		
cf. Spirosockia sp.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Order Mesogastropoda		
Potamolithus sp. 1	Limestone / Açungui group / Alto do Ribeira karst area (SP)	I
Potamolithus sp. 2	Limestone / Açungui group / Alto do Ribeira karst area (SP)	I
Potamolithus sp. 3	Limestone / Açungui group / Alto do Ribeira karst area (SP)	I
Potamolithus sp. 4	Limestone / Açungui group / Alto do Ribeira karst area (SP)	I
Taxon	Lithology / Geomorphological Unit / karst area or region	References
-----------------------	--	---------------------
Potamolithus sp. 5	Limestone / Açungui group / Alto do Ribeira karst area (SP)	D, F, H
Potamolithus sp. 6	Limestone / Açungui group / Alto do Ribeira karst area (SP)	I, M.E. Bichuette pers. obs.
cf. *Potamolithus*	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	L
Order Pulmonata		
Endodontidae indet.	Limestone / Açungui group / Alto do Ribeira karst area (SP)	L
Systrophiidae		
Hapnia sp.	Sandstone / Chapada Diamantina region (BA)	TS
Phylum Chordata		
Order Siluiformes		
Loricariidae		
Ancistrus sp.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Trichomycteridae		
Trichomycteridae indet.	Limestone / Bambuí group / Pains region (MG)	TS
Trichomycterus sp. 1	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Trichomycterus sp. 2	Limestone / Bambuí group / Serra do Ramalho karst area (BA)	TS
Copeionodon sp.	Sandstone / Chapada Diamantina region (BA)	TS
Heptapteridae		
Heptapteridae indet.	Limestone / Bambuí group / Posse region (GO)	TS
Rhambdus sp.	Limestone / Corumbá group / Serra da Bodoquena karst area (MS)	M
Rhamdopsis sp. 1	Limestone / Bambuí group / Cordisburgo region (MG)	E. Trajano pers. comm.
Rhamdopsis sp. 2	Limestone / Una-Irecê group / Chapada Diamantina region (BA)	E. Trajano pers. comm.

Table 3. Threats recorded for different Brazilian regions with subterranean taxa. Highlighted in bold, intense degradation activities nowadays; highlighted in italics, potential threats in the near future. SHPS – small hydroelectric power-station buildings.

State / Region	Municipality	Lithology / Geomorphological Unit	Threats
Pará / North Brazil	Altamira	Sandstone / Altamira-Itaituba group	Reservoir construction (Belo Monte) / Deforestation for pastures
–	Parauapebas, Carunholópolis and Canaã dos Carajas region	Iron ore / Carajás Formation	Mining
Mato Grosso do Sul / Central Brazil	Bonito and Jardim regions	Limestone / Corumbá group	Deforestation for pastures / Mining projects
Mato Grosso / Central Brazil	Nobres region	Limestone / Araras group	Hydroelectric project / Mining / Deforestation for agriculture
Rio Grande do Norte / Northeastern Brazil	Felipe Guerra and Governador Dix-Spet Rosado regions	Limestone / Apodi group	Mining / Natural gas and oil exploration
Bahia / Northeastern Brazil	Morro do Chapéu region	Limestone / Una-Irecê group	Pollution of subterranean drainages / Deforestation for agriculture / Mining projects
–	Iraquara	Limestone / Una-Irecê group	Lowering of the water table / Uncontrolled tourism
State / Region	Municipality	Lithology / Geomorphological Unit	Threats
---------------	--------------	-----------------------------------	---------
Brazil	Carinhanha, Coribe, Santana and Santa Maria da Vitória regions	Limestone / Bambuí group - Serra do Ramalho karst area	Deforestation for charcoal production and agriculture / Mining projects
	São Desidério region	Limestone / Bambuí group	Road construction (collapses of rock) / Pollution of subterranean drainage
	Itaeté region	Limestone / Una-Irecê group	Uncontrolled tourism / Deforestation for pastures and agriculture
	Andaraí and Lençóis regions	Sandstone / Chapada Diamantina	Illegal garimpo / Uncontrolled tourism
	Paripiranga region	Limestone / Canudos supergroup	Mining projects
Goiás / Central Brazil	São Domingos region	Limestone / Bambuí group - São Domingos karst area	Uncontrolled tourism / Illegal mining / Deforestation for pastures and charcoal production
	Posse and Mambai regions	Limestone / Bambuí group	Deforestation for pastures, agriculture and charcoal production
	Distrito Federal region	Limestone / Bambuí group	Mining projects
Tocantins / Central Brazil	Aurora do Tocantins	Limestone / Bambuí group	Deforestation for pastures and agriculture / Mining projects
Minas Gerais / Southeastern Brazil	São Roque de Minas	Limestone / Bambuí group - Serra da Canastra region	Uncontrolled tourism / Deforestation for pastures
	Jaíba region	Limestone / Bambuí group	Lowering of the water table / Pollution of subterranean drainage
	Presidente Olegário region	Limestone / Bambuí group	SHPS / Deforestation for pastures
	Caeté, Moeda and Brumadinho regions	Iron ore / Quadrilátero Ferrifero	Mining
	Itacarambi and Januária regions	Limestone / Bambuí group	Deforestation for pastures and charcoal production.
	Córdisburgo region	Limestone / Bambuí group	Uncontrolled tourism (Maquiné cave) / Deforestation for pastures and agriculture
	Sete Lagoas region	Limestone / Bambuí group	Mining
	Pains region	Limestone / Bambuí group	Mining
	Serra da Mantiqueira region	Quartizitic	Deforestation for agriculture / Pollution by pesticides
São Paulo / Southeastern Brazil	Iporanga, Aplaí and Eldorado regions	Limestone / Açungui group - Alto do Ribeira karst area	Uncontrolled tourism / Land conflicts / Pollution of subterranean drainage due to illegal mining and tomatoes plantation / SHPS
	Itirapina region	Sandstone	Deforestation for pastures and agriculture / Pollution of subterranean darinages
	Serra do Mar region	Quartizitic	Deforestation for agriculture / Pollution by pesticides
Paraná / South Brazil	Adrianópolis and Rio Branco do Sul regions	Limestone / Açungui group - Alto do Ribeira karst area	SHPS / Deforestation for pastures and agriculture
ported”. This corresponds to 53% of the known described subterranean species being included in the IUCN Red List at that time. From 2004 to 2014 we observe augmentation of the Red List, from 33 to 83 species, as well as an increase in the number of described obligatory subterranean species. The majority of these are in the Endangered (EN) or Critically Endangered (CR) categories, compared with the previous Red List, corroborating the fragility of this fauna. Besides there are many species that have not been evaluated (Table 1).

Discussion

Considering the small number of Brazilian subterranean species recorded to date (150 species plus 156 troglomorphic taxa), we highlight the extreme difficulty in effectively protecting these species. Taxonomic impediment (Linnean shortfall - most of the species have not been described and catalogued (Brown and Lomolino 1998)) is reflected in our results, including specimens of known taxa that have been stored for over 20 years that still are undescribed (e.g., Pseudoscorpiones and Diplopoda). Thus, there is an urgent need for training new taxonomists, since they can accelerate the descriptions, conduct revisionary works, and then include obligatory subterranean species in the IUCN Red List.

As observed in other studies, São Paulo and Bahia States have the highest numbers of obligatory subterranean species, since the São Paulo cave fauna is the best studied in Brazil (Dessen et al. 1980, Trajano 1987, Trajano and Gnaspini-Netto 1991). Regarding the Bahia State, the extended limestone area associated with the current semi-arid climate conditions and the history of past climates has allowed many possibilities for faunistic isolations (Trajano 1995, Trajano et al. 2016). Indeed, it is in this state that we recorded the highest number of obligatory subterranean species occurring also in other kinds of previously neglected lithologies, such as sandstone (Gallão and Bichuette 2015).

Publication of Decree 6640 and the corresponding Normative Instructions (2009, 2017), which classifies caves in terms of relevance degrees, resulted in suppression of Brazilian cave listings. The NIs recommend that subterranean studies for environmental impact assessment reports (for commercial use of the cave/subterranean habitat, such as mining) include two cave sampling campaigns, one in the dry season and one in the rainy season. Highlighting conceptual problems of the NIs, Deharveng et al. (2009) show that even after 110 samplings in European karstic areas, obligatory subterranean species were found. Subterranean fauna inventories may be so inadequate that many species become extinct, before they are discovered and identified (Schneider and Culver 2004, Zagmajster et al. 2014). Thus, adequate sampling methods in different habitats are extremely relevant (Brancelj 2002, Bichuette et al. 2015). Poor subterranean studies represent another problem considering cave conservation. Trajano and Bichuette (2010b) and Trajano et al. (2012) stressed that inadequate sampling designs for evaluation of taxonomic and ecological characteristics leads to biased conclusions, and consequently compromises the conservation of these habitats.
According to Primack and Rodrigues (2001), some species are especially vulnerable to extinction and occur in the following categories: limited occurrence area; one or few known populations; small populations; declining populations; low population density; need huge habitats; large species; species that are not effective dispersers; seasonal migrants; low genetic variability; species that require special niches; species that occur in stable environments; permanent or temporary aggregations species; and hunting or consumed species. Among these fourteen categories, obligatory subterranean fauna fit at least eight of them (highlighted in italics), revealing the fragility and vulnerability of this fauna.

Although the extent and intensity of deforestation have been relatively high in our study area, reservoir construction for hydroelectric power stations and mining projects are worse threats because these can cause total destruction or irreversible impacts (total removal or flooding) of subterranean habitats, which could lead to fauna extinction as a result of physical destruction of the habitat (Culver 1986). According to Groombridge (1992), habitat loss is the most harmful threat to vertebrates as well as invertebrates, reinforcing the harm caused by the above activities, which can decimate cave fauna.

Recognition of the importance and fragility of subterranean environments by government agencies is becoming apparent with inclusion of obligatory subterranean fauna in threatened species lists. Gallão and Bichuette (2012) stressed the importance of the IUCN Red List for the protection of obligatory subterranean fauna in Brazil. When there is such inclusion, the cave is categorized as ‘maximum totally avoiding cave destruction/suppression’, thus, the IUCN Red List becomes one of the most important tools for protecting caves in Brazil. The IUCN Red List is also an important tool for obligatory subterranean species conservation, since it is one element (among others, see Trajano and Bichuette (2010b) for a review) that includes hypogean habitats as having maximum relevance according to the new Brazilian speleological laws (Decree 6640; see Trajano 2010, 2013, Trajano and Bichuette 2010b). Another relevant and critical point is that, with the inclusion of subterranean species in the IUCN Red List, the whole habitat is being protected. Despite caves with several subterranean species being existing conservation priorities, inclusion of a single subterranean species should be enough to protect the entire cave. However, it is important that we try to protect the entire system, i.e., the cave itself, the surroundings, and the hydrographic basin and/or landscape (Gallão and Bichuette 2012).

Acknowledgements

Both authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2008/05678-7 and 2010/08459-4) for grants to develop this work. MEB is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (fellowship 303715/2011-1). JEG thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for Master scholarship. We kindly thank Diego M. v. Schimonsky for the map idea and confection. Both authors thank Programa de
Pós-Graduação em Ecologia e Recursos Naturais (PPGERN/UFSCar) for infrastructure and part of financial support. Collections permit supported by Instituto Chico Mendes de Biodiversidade (ICMBio, 20165 and 28992). We thank Eleonora Trajano, José Salatiel and Douglas Zeppelini for contributions in early drafts of this work as well as one anonymous reviewer and Javier Alejandro Maldonado for their insightful comments and suggestions that improved the manuscript.

References

Barr TC (1968) Cave ecology and the evolution of troglobites. Evolutionary Biology 2: 35–102. https://doi.org/10.1007/978-1-4684-8094-8_2

Bichuette ME (1998) Distribuição e biologia de gastrópodes de água doce, gênero Potamolitthus, no Vale do Alto Ribeira, São Paulo (Mollusca: Gastropoda: Hydrobiidae). Master Degree Dissertation, São Paulo, Brasil: Universidade de São Paulo.

Bichuette ME, Simões LB, Schimosnky DMv, Gallão JE (2015) Effectiveness of quadrat sampling on terrestrial cave fauna survey - a case study in a Neotropical cave. Acta Scientiarum Biological Sciences 37(3): 345–351. https://doi.org/10.4025/actascibiolsci.v37i3.2837

Botosaneanu L (1986) Stygofauna Mundi. A faunistic distributional and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial). Leiden E. J. Brill, The Netherlands, 740 pp.

Brancelj A (2002) Microdistribution and high diversity of Copepoda (Crustacea) in a small cave in central Slovenia. Hydrobiologia 477: 59–72. https://doi.org/10.1023/A:1021043014879

Brancelj A, Boonyanusith C, Watiroyram S, Sanoamuang L (2013) The groundwater-dwelling fauna of Southeast Asia. Journal of Limnology 72(2): 327–344. https://doi.org/10.4081/jlimnol.2013.s2.e16

Brasil (2008) Ministério do Meio Ambiente - MMA. Decreto Nº 6.640, de 7 de Novembro de 2008. Diário Oficial da República Federativa do Brasil, Brasília. http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Decreto/D6640.htm [last acess 20/04/2017]

Brooks TM, Mitttermieier RA, Da Fonseca GAB, Gerlach J, Hoffman M, Lamoreux JF; Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313: 58–61. https://doi.org/10.1126/science.1127609

Brown JH, Lomolino MV (1998) Biogeography. Sinauer, Sunderland, MA, 691 pp.

Chaimowicz F (1984) Levantamento bioespeleologic de algumas grutas de Minas Gerais. Espeleo-Tema 14: 97–107.

Cordeiro LM, Borghezan R, Trajano E (2014) Subterranean biodiversity in the serra da Boastra karst area, paraguay river basin, Mato Grosso do Sul, Southwestern Brazil. Biota Neotropica 14(3): 1–28. https://doi.org/10.1590/1676-06032014011414

Culver DC (1986) Cave Fauna. In: Soule ME (Ed.) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Massachusetts, 427–443.

Culver DC, Pipan T (2009) Biology of Caves and Other Subterranean Habitats. Oxford University Press, Oxford, 256 pp.
Deharveng L (2005) Diversity patterns in the Tropics. In: Culver DC, White WB (Eds) Encyclopedia of caves. Elsevier Academic Press, Amsterdam, 166–170.
Deharveng L, Stoch F, Gibert J, Bedos A, Galassi DMP, Zaghmajster M, Brancelj A, Camacho AI, Fiers F, Martín P, Giani N, Magniez G, Marmonier P (2009) Ground water biodiversity in Europe. Freshwater Biology 54(4): 709–726. https://doi.org/10.1111/j.1365-2427.2008.01972.x
Dessen EMB, Eston VR, Silva MS, Temperini-Beck MT, Trajano E (1980) Levantamento preliminar da fauna de cavernas de algumas regiões do Brasil. Ciência & Cultura 32(6): 714–725.
Gallão JE, Bichuette ME (2012) The List of Endangered Fauna and Impediments Inclusion of Species - the Example of Brazilian Troglobitic Fishes. Brazilian Journal for Nature Conservation 10(1): 83–87. https://doi.org/10.4322/natcon.2012.014
Gallão JE, Bichuette ME (2015) Taxonomic distinctness and conservation of a new high biodiversity subterranean area in Brazil. Anais da Academia Brasileira de Ciências 87(1): 209–217. https://doi.org/10.1590/0001-3765201520140312
Gnaspini P, Trajano E (1994) Brazilian cave invertebrates, with a checklist of troglomorphic taxa. Revista Brasileira de Entomologia 38(3/4): 549–584.
Groombridge B (1992) Global biodiversity: status of the earth's living resources. World Conservation Monitoring Centre, London, 585 pp.
ICMBio 444 (2014) Ministério do Meio Ambiente, portaria 444 from 17 December 2014. http://www.icmbio.gov.br/portal/images/stories/biodiversidade/fauna-brasileira/avaliacao-do-risco/PORTARIA_N%C2%BA_444_DE_17 DE_DEZEMBRO_DE_2014.pdf [last access at 20/04/2017]
ICMBio 445 (2014) Ministério do Meio Ambiente, portaria 445 from 17 December 2014. http://www.icmbio.gov.br/portal/images/stories/biodiversidade/fauna-brasileira/avaliacao-do-risco/PORTARIA_N%C2%BA_445_DE_17 DE_DEZEMBRO_DE_2014.pdf [last access at 20/04/2017]
Juberthie C, Decu V (2001) Encyclopaedia Biospéologica Tome III. Société de Biospéologie, Moulis, 927 pp.
Karmann I, Sanchez LE (1979) Distribuição das Rochas Carbonáticas e Províncias Espeleológicas do Brasil. Espeleo-Tema 13: 105–167.
Lourenço WR, Baptista RLC, Giupponi APL (2004) Troglobitic scorpions: a new genus and species from Brazil. Comptes Rendus Biologies 327(12): 1151–1156. https://doi.org/10.1016/j.crvi.2004.09.001
Machado ABM, Drummond GM, Paglia AP (2008) Livro vermelho da fauna brasileira ameaçada de extinção. Fundação Biodivesitas, Ministério do Meio Ambiente-Brasília, 160 pp.
May RM (1990) Taxonomy as destiny. Nature 347: 129–130. https://doi.org/10.1038/347129a0
Ministério do Meio Ambiente (2009) Normative Instruction number 2 from August, 20. http://www.icmbio.gov.br/ceccav/images/download/IN%202002_MMA_criterios_210809.pdf [last access at 20/04/2017]
Ministério do Meio Ambiente (2017) Normative Instruction number 2 from August, 30. http://www.icmbio.gov.br/ceccav/images/stories/downloads/Legislacao/IN_02_2017_MMA_30Ago17.pdf [last acess 07/11/2017]
Moore GW, Sullivan N (1997) Speleology, Caves and the Environment. Cave Books, Saint Louis, 176 pp.
Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269: 347–359. https://doi.org/10.1126/science.269.5222.347
Pinto-da-Rocha R (1995) Sinopse da fauna cavernícola do Brasil (1907–1994). Papéis Avulsos de Zoologia 39(6): 61–173.
Poulson TL (1964) Animals in aquatic environments: animals in caves. In: Dill DB (Ed.) Handbook of physiology. American Physiological Society, Washington, 749–771.
Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (Eds) Ecosystems of the World, Vol. 30: Subterranean Ecosystems. Elsevier Academic Press, Amsterdam, 231–249.
Poulson TL, White WB (1969) The cave environment. Science 165: 971–981. https://doi.org/10.1126/science.165.3897.971
Primack RB, Rodrigues E (2001) Biologia da Conservação. Planta, Londrina-Brasil, 328 pp.
Schneider K, Culver DC (2004) Estimating subterranean species richness using intensive sampling and rarefaction curves in a high density cave region in West Virginia. Jornal of Cave and Karst Studies 66(2): 39–45.
Sket B (1992) Conservation of sites important for their hypogean aquatic fauna. A proposal. Bulletin de Liaison de la Société Internationale de Biospéologie 19: 23–26.
Stoch F, Arttheau M, Brancelj A, Galassi MPD, Malard F (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshwater Biology 54: 745–755. https://doi.org/10.1111/j.1365-2427.2008.02143.x
Trajano E (1987) Fauna cavernícola brasileira: composição e caracterização preliminar. Revista Brasileira de Zoologia 3(8): 533–561. https://doi.org/10.1590/S0101-8175198600400004
Trajano E (1995) Evolution of tropical troglobites: Applicability of the model of Quaternary climatic fluctuations. Mémoires de Biospéologie 22: 203–209.
Trajano E (2001) Ecology of subterranean fishes: an overview. Environmental Biology of Fishes 62(1/3): 133–160. https://doi.org/10.1007/978-94-015-9795-1_10
Trajano E (2010) Política de conservação e critérios ambientais: princípios, conceitos e protocolos. Estudos Avançados 24(68): 135–146. https://doi.org/10.1590/S0103-40142010000100012
Trajano E (2012) Ecological classification of subterranean organisms. In: White WB, Culver DC (Eds) Encyclopedia of Caves. Elsevier Academic Press, Amsterdam, 275–277. https://doi.org/10.1016/B978-0-12-383832-2.00035-9
Trajano E (2013) Variações anuais e infra-anuais em ecossistemas subterrâneos: implicações para estudos ambientais e preservação de cavernas. Revista da Biologia 10(2): 1–7. https://doi.org/10.7594/revbio.10.02.01
Trajano E, Bichuette ME (2010a) Diversity of Brazilian subterranean invertebrates, with a list of troglomorphic taxa. Subterranean Biology 7: 1–16.
Trajano E, Bichuette ME (2010b) Relevance of caves: why environmental studies have been inadequate. Espeleo-Tema 21(1): 105–112.
Brazilian obligatory subterranean fauna and threats to the hypogean environment

Trajano E, Bichuette ME, Batalha MA (2012) Environmental Studies in Caves: The Problems of Sampling, Identification, Inclusion, and Indices. Espeleo-Tema 23(1): 13–22.

Trajano E, Gallão JE, Bichuette ME (2016) Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodiversity and Conservation 25: 1805–1828. https://doi.org/10.1007/s10531-016-1151-5

Trajano E, Gnaspini-Netto P (1991) Fauna cavernícola brasileira, com uma análise preliminar da distribuição dos táxons. Revista Brasileira de Zoologia 7(3): 383–407. https://doi.org/10.1590/S0101-81751990000300017

Trajano E, Moreira JRA (1991) Estudo da fauna de cavernas da Província Espeleológica Arenítica Altamira-ltaituba, Pará. Revista Brasileira de Zoologia 51(1): 13–29.

Trajano E, Sanchez LE (1994) Brésil. In: Juberthie C, Decu V (Eds) Encyclopaedia Biospéologie, Tome I. Société de Biospéologie, Moulis, 527–540.

Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect: systematics and the agony of choice. Biological Conservation 55(3): 235–254. https://doi.org/10.1016/0006-3207(91)90030-D

Williams PH, Humphries CJ, Vane-Wright RI (1991) Measuring biodiversity: taxonomic relatedness for conservation priorities. Australian Systematic Botany 4(4): 665–679. https://doi.org/10.1071/SB9910665

Zagmajster M, Eme D, Fišer C, Galassi DMP, Marmonier P, Stoch F, Cornu JF, Malard F (2014) Geographic variation in range size and beta diversity of groundwater crustacean: insights from habitats with low thermal seasonality. Global Ecology and Biogeography 23(10): 1135–1145. https://doi.org/10.1111/geb.12200