Random sampling in weighted reproducing kernel subspaces of $L^p_\nu(\mathbb{R}^d)$

Yingchun Jiang Wan Li
School of Mathematics and Computational Science,
Guilin University of Electronic Technology, Guilin, P. R. China

Abstract: In this paper, we mainly study the random sampling and reconstruction for signals in a reproducing kernel subspace of $L^p_\nu(\mathbb{R}^d)$ without the additional requirement that the kernel function has polynomial decay. The sampling set is independently and randomly drawn from a general probability distribution over \mathbb{R}^d, which improves and generalizes the common assumption of uniform distribution on a cube. Based on a frame characterization of reproducing kernel subspaces, we first approximate the reproducing kernel space by a finite dimensional subspace on any bounded domains. Then, we prove that the random sampling stability holds with high probability for all signals in reproducing kernel subspaces whose energy concentrate on a cube when the sampling size is large enough. Finally, a reconstruction algorithm based on the random samples is given for functions in the corresponding finite dimensional subspaces.

Keywords: random sampling; weighted reproducing kernel subspace; sampling stability; probability density function; reconstruction algorithm

MR(2000) Subject Classification: 94A20, 46E30.

1 Introduction

Random sampling plays an important role in many fields, such as image processing [6], compressed sensing [10] and learning theory [20]. Random sampling has been generally studied for multivariate trigonometric polynomials [2], bandlimited signals [3, 4], signals that satisfy some locality properties in short-time Fourier transform [22], signals with bounded derivatives [25], signals in a shift-invariant space [11, 16, 24, 26] and signals with finite rate of innovation [17]. Recently, ideal random sampling in reproducing kernel subspaces of $L^p(\mathbb{R}^d)$ was given in [19] with random samples taken from a uniform distribution on a bounded domain $[-K, K]^d$. Moreover, [19] used a very strong condition

$$|K(x, y)| \leq \frac{C}{(1 + \|x - y\|_1)\alpha}$$ (1.1)

on the kernel function K. Reproducing kernel subspaces have been generally studied in recent years [8, 14, 15, 18, 23] and have potential applications in machine learning [7, 27]. In this paper,
we mainly study the random sampling and reconstruction of signals in a weighted reproducing kernel subspace of $L^p_\nu(\mathbb{R}^d)$ without the condition (1.1), and the random samples are drawn over \mathbb{R}^d from a general probability distribution.

Suppose that ω is a weight function which is continuous, symmetric, positive and sub-multiplicative,

$$0 < \omega(x + y) \leq \omega(x)\omega(y), \ x, y \in \mathbb{R}^d.$$ \hfill (1.2)

Weight function ν is said to be ω-moderate, that is, it is continuous, symmetric, positive and satisfies

$$0 < \nu(x + y) \leq C_0 \omega(x)\nu(y), \ x, y \in \mathbb{R}^d$$ \hfill (1.3)

for some positive constant $C_0 > 0$. More details about weight functions can refer to [12].

For $1 \leq p \leq \infty$, $L^p_\nu(\mathbb{R}^d)$ is the Banach space of all weighted p-integrable function on \mathbb{R}^d,

$$L^p_\nu(\mathbb{R}^d) = \{f : \|f\|_{L^p_\nu} = \|\nu f\|_{L^p} < \infty\}.$$ \hfill (1.4)

Let K be a function defined on $\mathbb{R}^d \times \mathbb{R}^d$ which satisfies

$$\|K\|_W = \sup_{z \in \mathbb{R}^d} |K(\cdot + z, z)|_{L^1_\omega} = \sup_{z \in \mathbb{R}^d} |K(z, \cdot + z)|_{L^1_\omega} < \infty$$ \hfill (1.5)

and

$$\lim_{\delta \to 0} \|\omega_\delta(K)\|_W = 0.$$ \hfill (1.6)

Here, $\omega_\delta(K)$ is the modulus of continuity defined by

$$\omega_\delta(K)(x, y) = \sup_{|x'|, |y'| \leq \delta} |K(x + x', y + y') - K(x, y)|.$$ \hfill (1.7)

Suppose that T is an idempotent ($T^2 = T$) integral operator with kernel K,

$$Tf(x) = \int_{\mathbb{R}^d} K(x, y)f(y)dy, \ f \in L^p_\nu(\mathbb{R}^d).$$ \hfill (1.8)

Then its range space

$$V_{K,p} = \{Tf : f \in L^p_\nu(\mathbb{R}^d)\} = \{f \in L^p_\nu(\mathbb{R}^d) : Tf = f\}$$ \hfill (1.9)

is a weighted reproducing kernel subspace of $L^p_\nu(\mathbb{R}^d)$ [15] [23], which means that for any $x \in \mathbb{R}^d$, there exists a $C_x > 0$ such that

$$|f(x)| \leq C_x \|f\|_{L^p_\nu}, \ f \in V_{K,p}.$$ \hfill (1.10)

Let $0 < \delta < 1$ and $C_R = [-R, R]^d$ for $R > 0$. Define a compact subset of $V_{K,p}$ by

$$V_{K,p}(R, \delta) = \left\{f \in V_{K,p} : \int_{C_R} |f(x)\nu(x)|^pdx \geq (1 - \delta) \int_{\mathbb{R}^d} |f(x)\nu(x)|^pdx \right\},$$ \hfill (1.11)
which contains all functions in $V_{K,p}$ whose energy concentrate on the cube C_R.

This paper is organized as follows. In section 2, we show that a function $f \in V_{K,p}$ can be approximated by a function f_N in a finite dimensional subspace $V_{K,p}^N$ on any bounded domains. In section 3, we give an estimate for the covering number of normalized $V_{K,p}^N$. In section 4, we prove that the sampling inequality holds with high probability for all functions in $V_{K,p}(R,\delta)$. In section 5, a reconstruction algorithm based on random samples is provided for functions in $V_{K,p}^N$.

2 Approximation to $V_{K,p}$

In this section, we will show that $V_{K,p}$ can be approximated by a finite dimensional subspace on any bounded domains. The following definitions of frame is similar to [1, 13, 21].

Definition 2.1 Let V be a Banach subspace of $L^p_\nu(\mathbb{R}^d)$. A family $\Psi = \{\psi_\gamma\}_{\gamma \in \Gamma}$ of functions in $L^{p'}_{1/\nu}(\mathbb{R}^d)$ is a p-frame for V, if there exist positive constants A_p and B_p such that

$$A_p\|f\|_{L^p_\nu} \leq \|\{\langle f, \psi_\gamma \rangle\}_{\gamma \in \Gamma}\|_{\ell^p_\nu} \leq B_p\|f\|_{L^p_\nu}, \forall f \in V.$$

Definition 2.2 Let $V \subset L^p_\nu(\mathbb{R}^d)$ and $W \subset L^{p'}_{1/\nu}(\mathbb{R}^d)$. The p-frame $\tilde{\Phi} = \{\tilde{\phi}_\lambda\}_{\lambda \in \Lambda} \subset W$ for V and the p'-frame $\Phi = \{\phi_\lambda\}_{\lambda \in \Lambda} \subset V$ for W form a dual pair if the following reconstruction formulae hold:

$$f = \sum_{\lambda \in \Lambda} \langle f, \tilde{\phi}_\lambda \rangle \phi_\lambda \text{ for all } f \in V \quad (2.1)$$

and

$$g = \sum_{\lambda \in \Lambda} \langle g, \phi_\lambda \rangle \tilde{\phi}_\lambda \text{ for all } g \in W. \quad (2.2)$$

The following lemma is a generalization of Theorem A.2 in [13] to the weighted case.

Lemma 2.3 [13] Let $1 \leq p \leq \infty$, T be an idempotent integral operator on $L^p_\nu(\mathbb{R}^d)$ whose kernel K satisfies (1.5) and (1.6), and let $V_{K,p}$ be the range space of T. Then there exists a relatively-separated subset $\Lambda = \delta_0 \mathbb{Z}^d$ which is determined by the condition $C_0\|K\|_W \|\omega_{\delta_0}(K)\|_W < 1$, and two families $\Phi = \{\phi_\lambda\}_{\lambda \in \Lambda}$ in $V_{K,p}$ and $\tilde{\Phi} = \{\tilde{\phi}_\lambda\}_{\lambda \in \Lambda}$ in $V_{K,p}^*$ which are defined by

$$\phi_\lambda(x) = \delta_0^{-d/p} \int_{\mathbb{R}^d} \int_{[-\delta_0/2,\delta_0/2]^d} K_{\delta_0}(x,z_1) K(z_1, \lambda + z_2) dz_2 dz_1 \quad (2.3)$$

and

$$\tilde{\phi}_\lambda(x) = \delta_0^{-d+d/p} \int_{[-\delta_0/2,\delta_0/2]^d} K(\lambda + z, x) dz \quad (2.4)$$

such that
(i) Both Φ and $\tilde{\Phi}$ are localized in the sense that
\[
|\phi_\lambda(x)| + |\tilde{\phi}_\lambda(x)| \leq h(x - \lambda), \quad (2.5)
\]
where $h \in L^1_\nu(\mathbb{R}^d)$.

(ii) Φ and $\tilde{\Phi}$ form a dual frame pair for $V_{K,p}$ and $V_{K,p}^*$.

(iii) Both $V_{K,p}$ and $V_{K,p}^*$ are generated by Φ and $\tilde{\Phi}$ in the sense that
\[
V_{K,p} = \left\{ \sum_{\lambda \in \Lambda} c(\lambda)\phi_\lambda : (c(\lambda))_{\lambda \in \Lambda} \in \ell^p(\Lambda) \right\} \quad (2.6)
\]
and
\[
V_{K,p}^* = \left\{ \sum_{\lambda \in \Lambda} \tilde{c}(\lambda)\tilde{\phi}_\lambda : (\tilde{c}(\lambda))_{\lambda \in \Lambda} \in \ell^{p/(p-1)}(\Lambda) \right\}. \quad (2.7)
\]

(iv) $||K_\delta||_W < \infty$ and $\lim_{\delta \to 0} ||\omega_\delta(K_\delta)||_W = 0$.

Based on Lemma 2.3 for a given positive integer N, define a finite dimensional subspace
\[
V_{K,p}^N = \left\{ \sum_{\lambda \in \Lambda \cap [-N,N]^d} c(\lambda)\phi_\lambda : c(\lambda) \in \mathbb{R} \right\} \quad (2.8)
\]
of $V_{K,p}$ and its normalization
\[
V_{K,p}^{N,*} = \left\{ f \in V_{K,p}^N : ||f||_{L^p_\nu(\mathbb{R}^d)} = 1 \right\}. \quad (2.9)
\]

In the following, we will show that $V_{K,p}$ can be approximated by $V_{K,p}^N$ on any bounded domains $C_M = [-M, M]^d$ for $M > 0$.

Lemma 2.4 Let $1 \leq p \leq \infty$ and p' be the conjugate number of p. Suppose that K satisfies the assumptions (1.5) and (1.6). If $f \in V_{K,p}$ and $||f||_{L^p_\nu(\mathbb{R}^d)} = 1$, then for given $\varepsilon > 0$, there exist $N = N(\varepsilon, M, f)$ and $f_N \in V_{K,p}^N$ such that
\[
||f - f_N||_{L^p_\nu(\mathbb{R}^d)} \leq \varepsilon \quad \text{and} \quad ||f - f_N||_{L^{p'}_\nu(\mathbb{R}^d)} \leq \frac{\varepsilon}{(2M)^d}. \quad (2.10)
\]

Proof For $f = \sum_{\lambda \in \Lambda} (f, \phi_\lambda)\phi_\lambda \in V_{K,p}$, choose
\[
f_N = \sum_{\lambda \in \Lambda \cap [-N,N]^d} (f, \phi_\lambda)\phi_\lambda \in V_{K,p}^N.
\]
Since $||K||_W < \infty$ and $||K_\delta||_W < \infty$, then
\[
\sum_{\lambda \in \Lambda} |\phi_\lambda(x)||\omega(x - \lambda) \leq \delta_0^{d/p} \int_{\mathbb{R}^d} |K_{\delta_0}(x, z)| |\omega(x - z)| \sum_{k \in \mathbb{Z}^d} \int_{\delta_0k + [-\frac{d}{2}, \frac{d}{2}]^d} |K(z_1, z_2)| |\omega(z_1 - \delta_0 k)|dz_2dz_1
\leq \delta_0^{d/p} \left(\max_{x \in [-\frac{d}{2}, \frac{d}{2}]^d} \omega(x) \right) ||K_\delta||_W ||K||_W. \quad (2.11)
\]
Note that \(\Lambda = \delta_0 \mathbb{Z}^d \). For \(k = (k_1, k_2, \cdots, k_d) \in \mathbb{Z}^d \), let \(|k| = \max\{|k_1|, |k_2|, \cdots, |k_d|\} \). Then it follows from (1.2), (1.3) and (2.11) that

\[
\begin{align*}
|f(x) - f_N(x)|\nu(x) &= \left| \sum_{\lambda \in \Lambda \cap \{\mathbb{R}^d \mid [-N,N]^d\}} (f, \tilde{\phi}_\lambda) \phi_\lambda(x) \nu(x) \right| \\
&\leq C_0 \sum_{\lambda \in \Lambda \cap \{\mathbb{R}^d \mid [-N,N]^d\}} |(f, \tilde{\phi}_\lambda)| \nu(\lambda) \cdot |\phi_\lambda(x)| \omega(x - \lambda) \\
&\leq C_0 \left(\sum_{\lambda \in \Lambda \cap \{\mathbb{R}^d \mid [-N,N]^d\}} |(f, \tilde{\phi}_\lambda)| \nu(\lambda) \right)^{1/p'} \left(\sum_{\lambda \in \Lambda} |\phi_\lambda(x)| \omega(x - \lambda) \right)^{1/p} \\
&\leq C_0 \left(\sum_{\lambda \in \Lambda \cap \{\mathbb{R}^d \mid [-N,N]^d\}} |(f, \tilde{\phi}_\lambda)| \nu(\lambda) \right)^{1/p'} \left(\sum_{\lambda \in \Lambda} |\phi_\lambda(x)| \omega(x - \lambda) \right) \\
&\leq C_0 \delta_k^{d-2p} \max_{x \in [-\frac{\delta_k}{2}, \frac{\delta_k}{2}]^d} \omega(x) \|K_{\delta_k}\|_W \|K\|_W \left\{ (f, \tilde{\phi}_\lambda) \right\}_{\lambda = \delta_0 k \in \delta_0 \mathbb{Z}^d, |k| > N} \|\ell_{\nu, p}' \|.
\end{align*}
\] (2.12)

Since \(\tilde{\Phi} = \{\tilde{\phi}_\lambda\}_{\lambda \in \Lambda} \) is a \(p \)-frame of \(V_{K,p} \), by Definition 2.1, one has

\[
\left\| \{ (f, \tilde{\phi}_\lambda) \}_{\lambda \in \Lambda} \right\|_\ell_{\nu, p}' \leq B_p \| f \|_{L_p^\nu} = B_p,
\] (2.13)

which means that \(\lim_{N \to \infty} \left\| \{ (f, \tilde{\phi}_\lambda) \}_{\lambda = \delta_0 k \in \delta_0 \mathbb{Z}^d, |k| > N} \right\|_\ell_{\nu, p}' = 0 \) and the desired result (2.10) follows.

Lemma 2.5 Suppose that \(K \) satisfies the assumptions (1.5) and (1.6), then there exists a \(C_K > 0 \) such that

\[
\left\| \sum_{\lambda \in \Lambda} c(\lambda) \phi_\lambda \right\|_{L_p^\nu(\mathbb{R}^d)} \leq C_K \left\| (c(\lambda))_{\lambda \in \Lambda} \right\|_{\ell_r(\Lambda)}.\] (2.14)

Proof It follow from (2.5) and (2.11) that

\[
\begin{align*}
&\left\| \sum_{\lambda \in \Lambda} c(\lambda) \phi_\lambda \right\|_{L_p^\nu(\mathbb{R}^d)}^p \\
&= \int_{\mathbb{R}^d} \left| \sum_{\lambda \in \Lambda} c(\lambda) \phi_\lambda \right|^p \nu(x) \, dx \\
&\leq C_0^p \int_{\mathbb{R}^d} \left(\sum_{\lambda \in \Lambda} |c(\lambda)| \nu(\lambda) \cdot |\phi_\lambda(x)| \omega(x - \lambda) \right)^p \, dx \\
&\leq C_0^p \left(\sum_{\lambda \in \Lambda} |c(\lambda)| \nu(\lambda) \cdot |\phi_\lambda(x)| \omega(x - \lambda) \right)^p \int_{\mathbb{R}^d} |\phi_\lambda(x)| \omega(x - \lambda) \, dx \\
&\leq C_0^p \delta_k^{d-2p} \max_{x \in [-\frac{\delta_k}{2}, \frac{\delta_k}{2}]^d} \omega(x) \|K_{\delta_k}\|_W \|K\|_W \left\{ c(\lambda) \right\}_{\lambda = \delta_0 k \in \delta_0 \mathbb{Z}^d, |k| > N} \|h\|_{L_1^\nu} \left\| (c(\lambda))_{\lambda \in \Lambda} \right\|_{\ell_r(\Lambda)}^p \\
&=: C_K^p \left\| (c(\lambda))_{\lambda \in \Lambda} \right\|_{\ell_r(\Lambda)}^p.
\end{align*}
\] (2.15)
3 Covering number for $V_{K,p}^{N,*}$

In this section, we discuss the covering number of $V_{K,p}^{N,*}$ with respect to the norm $\| \cdot \|_{L^\infty(\mathbb{R}^d)}$. Let S be a metric space and $\eta > 0$, the covering number $\mathcal{N}(S, \eta)$ is defined to be the minimal integer $m \in \mathbb{N}$ such that there exist m disks with radius η covering S.

Lemma 3.1 ([3]) Suppose E is a finite dimensional Banach space with $\dim E = s$. Let $B_\varepsilon := \{x \in E : \|x\| \leq \varepsilon\}$ be the closed ball of radius ε centered at the origin. Then

$$\mathcal{N}(B_\varepsilon, \eta) \leq \left(\frac{2\varepsilon}{\eta} + 1\right)^s.$$

Note that

$$\dim(V_{K,p}^N) \leq \#\{\lambda \in \Lambda : \lambda \in [-N,N]^d\} \leq \left(\frac{2N}{\delta_0} + 1\right)^d. \quad (3.1)$$

Then by Lemma 3.1 we have the following result.

Lemma 3.2 Let $V_{K,p}^{N,*}$ be defined by (2.2). Then for any $\eta > 0$, the covering number of $V_{K,p}^{N,*}$ concerning the norm $\| \cdot \|_{L_p^\infty(\mathbb{R}^d)}$ is bounded by

$$\mathcal{N}(V_{K,p}^{N,*}, \eta) \leq \exp\left(\left(\frac{2N}{\delta_0} + 1\right)^d \ln \left(\frac{2}{\eta} + 1\right)\right).$$

Lemma 3.3 Suppose that K satisfies the assumptions (1.5) and (1.6). Then for every $f \in V_{K,p}$, we have

$$\|f\|_{L_p^\infty(\mathbb{R}^d)} \leq C^*\|f\|_{L_p^\infty(\mathbb{R}^d)}, \quad (3.2)$$

where

$$C^* = B_pC_0\delta_0^{-d/p}\left(\max_{x \in [-\frac{N}{2}, \frac{N}{2}]^d} \omega(x)\right)\|K\|_W\|K\|_W. \quad (3.3)$$

Proof Suppose that $f \in V_{K,p}$, then it follows from Definition 2.1, Definition 2.2 and Lemma 2.3 that $f = \sum_{\lambda \in \Lambda} \langle f, \tilde{\phi}_\lambda \rangle \phi_\lambda$. Moreover, we can obtain from (2.11) that

$$\|f\|_{L_p^\infty(\mathbb{R}^d)} \leq \sup_{x \in \mathbb{R}^d} \sum_{\lambda \in \Lambda} |\langle f, \tilde{\phi}_\lambda \rangle| |\phi_\lambda(x)| \nu(x)$$

$$\leq C_0 \sup_{x \in \mathbb{R}^d} \sum_{\lambda \in \Lambda} |\langle f, \tilde{\phi}_\lambda \rangle| \nu(\lambda) \cdot |\phi_\lambda(x)| \omega(x - \lambda)$$

$$\leq C_0 \delta_0^{-d/p}\left(\max_{x \in [-\frac{N}{2}, \frac{N}{2}]^d} \omega(x)\right)\|K\|_W\|K\|_W \|\{\langle f, \tilde{\phi}_\lambda \rangle \}_{\lambda \in \Lambda}\|_{L_p^\infty(\mathbb{R}^d)}$$

$$\leq B_pC_0\delta_0^{-d/p}\left(\max_{x \in [-\frac{N}{2}, \frac{N}{2}]^d} \omega(x)\right)\|K\|_W\|K\|_W \|f\|_{L_p^\infty(\mathbb{R}^d)}.$$

Lemma 3.4 Suppose that K satisfies the assumptions (1.5) and (1.6), then the covering number of $V_{K,p}^{N,*}$ with respect to $\| \cdot \|_{L^\infty(\mathbb{R}^d)}$ is bounded by

$$\mathcal{N}(V_{K,p}^{N,*}, \eta) \leq \exp\left(\left(\frac{2N}{\delta_0} + 1\right)^d \ln \left(\frac{2C^*}{\eta} + 1\right)\right).$$
Proof By Lemma 3.2, the covering number of $V_{K,p}^{N,*}$ with respect to $\| \cdot \|_{L^p(\mathbb{R}^d)}$ satisfies
\[
N\left(V_{K,p}^{N,*}, \frac{\eta}{C_*} \right) \leq \exp \left(\left(\frac{2N}{\delta_0} + 1 \right) d \ln \left(\frac{2C_*}{\eta} + 1 \right) \right). \quad (3.4)
\]

Let \mathcal{F} be the corresponding $\frac{\eta}{C_*}$-net for $V_{K,p}^{N,*}$. It means that for every $f \in V_{K,p}^{N,*}$, there exists a $\tilde{f} \in \mathcal{F}$ such that $\|f - \tilde{f}\|_{L^p(\mathbb{R}^d)} \leq \frac{\eta}{C_*}$. By Lemma 3.3, we have
\[
\|f - \tilde{f}\|_{L^p(\mathbb{R}^d)} \leq C_* \|f - \tilde{f}\|_{L^p(\mathbb{R}^d)} \leq \eta.
\]

Therefore, \mathcal{F} is also a η-net of $V_{K,p}^{N,*}$ with respect to the norm $\| \cdot \|_{L^\infty(\mathbb{R}^d)}$. Since
\[
\#(\mathcal{F}) \leq \exp \left(\left(\frac{2N}{\delta_0} + 1 \right) d \ln \left(\frac{2C_*}{\eta} + 1 \right) \right),
\]
the desired result is proved.

4 Random sampling inequality of $V_{K,p}(R, \delta)$

Let $X = \{x_j : j \in \mathbb{N}\}$ be a sequence of independent random variables that are drawn from a general probability distribution over \mathbb{R}^d with density function ρ satisfying
\[
0 < c_\rho = \liminf_{x \in \mathbb{R}^d} \rho(x) \text{ and } C_\rho = \limsup_{x \in \mathbb{R}^d} \rho(x) < \infty. \quad (4.1)
\]

Then for any $f \in V_{K,p}$, we introduce the random variables
\[
X_j(f) = |f(x_j)\nu(x_j)|^p - \int_{\mathbb{R}^d} \rho(x)|f(x)\nu(x)|^pdx. \quad (4.2)
\]

It is easy to see that $X_j(f)$ is a sequence of independent random variables with expectation $E[X_j(f)] = 0$. Next, we will give some estimates for $X_j(f)$.

Lemma 4.1 Let $\rho(x)$ be a probability density function over \mathbb{R}^d satisfying (4.1). Then for any $f, g \in V_{K,p}$, the following inequalities hold:
1. $\|X_j(f)\|_{L^\infty(\mathbb{R}^d)} \leq \|f\|_{L^p(\mathbb{R}^d)}^p$.
2. $\|X_j(f) - X_j(g)\|_{L^\infty(\mathbb{R}^d)} \leq 2p \left(\max \left\{ \|f\|_{L^p(\mathbb{R}^d)}, \|g\|_{L^p(\mathbb{R}^d)} \right\} \right)^{p-1} \|f - g\|_{L^p(\mathbb{R}^d)}$.
3. $\text{Var}(X_j(f)) \leq C_\rho \|f\|_{L^p(\mathbb{R}^d)}^p \|f\|_{L^p(\mathbb{R}^d)}^p$.
4. $\text{Var}(X_j(f) - X_j(g)) \leq pC_\rho \left(\max \left\{ \|f\|_{L^p(\mathbb{R}^d)}, \|g\|_{L^p(\mathbb{R}^d)} \right\} \right)^{p-1} \|f - g\|_{L^p(\mathbb{R}^d)}^p + \|g\|_{L^p(\mathbb{R}^d)}^p$.

Proof (1) Direct computation obtains
\[
\|X_j(f)\|_{L^\infty(\mathbb{R}^d)} \leq \sup_{x \in \mathbb{R}^d} \max \left\{ |f(x)\nu(x)|^p, \int_{\mathbb{R}^d} \rho(x)|f(x)\nu(x)|^pdx \right\} \leq \|f\|_{L^p(\mathbb{R}^d)}^p.
\]
(2) By mean value theorem, one has
\[
\|X_j(f) - X_j(g)\|_{\ell^\infty} \leq \sup_{x \in \mathbb{R}^d} \left(\|f(x)\nu(x)\|^p - |g(x)\nu(x)|^p \right) + \int_{\mathbb{R}^d} \rho(x) \left| |f(x)\nu(x)|^p - |g(x)\nu(x)|^p \right| dx
\]
\[
\leq 2 \sup_{x \in \mathbb{R}^d} \|f(x)\nu(x)|^p - |g(x)\nu(x)|^p
\]
\[
= 2p \left(\max \{ \|f\|_{L_\nu^p(\mathbb{R}^d)}, \|g\|_{L_\nu^p(\mathbb{R}^d)} \} \right)^{p-1} \|f - g\|_{L_\nu^p(\mathbb{R}^d)}.
\]

(3) Since \(E[X_j(f)] = 0 \), then
\[
Var(X_j(f)) = E[(X_j(f))^2]
\]
\[
= E[|f(x)\nu(x)\|^p] - \left(\int_{\mathbb{R}^d} \rho(x)|f(x)\nu(x)|^p dx \right)^2
\]
\[
\leq \int_{\mathbb{R}^d} \rho(x)|f(x)\nu(x)|^{2p} dx
\]
\[
\leq C \rho \|f\|_{L_\nu^p(\mathbb{R}^d)} \|f\|_{L_\nu^p(\mathbb{R}^d)}.
\]

(4) Using the similar method as (3), we have
\[
Var(X_j(f) - X_j(g))
\]
\[
= E[(X_j(f) - X_j(g))^2]
\]
\[
\leq C \rho \int_{\mathbb{R}^d} \left(|f(x)\nu(x)|^p - |g(x)\nu(x)|^p \right)^2 dx
\]
\[
\leq C \rho \int_{\mathbb{R}^d} \left(|f(x)\nu(x)|^p - |g(x)\nu(x)|^p \right) \left(|f(x)\nu(x)|^p + |g(x)\nu(x)|^p \right) dx
\]
\[
\leq C \rho \sup_{x \in \mathbb{R}^d} \left(|f(x)\nu(x)|^p - |g(x)\nu(x)|^p \right) \left(\|f\|_{L_\nu^p(\mathbb{R}^d)} + \|g\|_{L_\nu^p(\mathbb{R}^d)} \right)
\]
\[
\leq pC \rho \left(\max \{ \|f\|_{L_\nu^p(\mathbb{R}^d)}, \|g\|_{L_\nu^p(\mathbb{R}^d)} \} \right)^{p-1} \|f - g\|_{L_\nu^p(\mathbb{R}^d)} \left(\|f\|_{L_\nu^p(\mathbb{R}^d)} + \|g\|_{L_\nu^p(\mathbb{R}^d)} \right).
\]

In the following lemma, we will show that a uniform large deviation inequality holds for functions in \(V_{K,p}^N \) by Bernstein’s inequality.

Lemma 4.2 (Bernstein’s inequality) Let \(X_1, X_2, \ldots, X_n \) be independent random variables with expected values \(E(X_j) = 0 \) for \(j = 1, 2, \ldots, n \). Assume that \(\text{Var}(X_j) \leq \sigma^2 \) and \(|X_j| \leq M_0 \) almost surely for all \(j \). Then for any \(\lambda \geq 0 \),
\[
\text{Prob} \left(\left| \sum_{j=1}^n X_j \right| \geq \lambda \right) \leq 2 \exp \left(-\frac{\lambda^2}{2n\sigma^2 + \frac{3}{4}M_0\lambda} \right).
\]

Lemma 4.3 Let \(\{x_j : j \in \mathbb{N}\} \) be a sequence of independent random variables that are drawn from a general probability distribution over \(\mathbb{R}^d \) with density function \(\rho \) satisfying (4.1). If \(f \in V_{K,p}^N \), then for \(n \in \mathbb{N} \) and \(\lambda \geq 0 \),
\[
\text{Prob} \left(\sup_{f \in V_{K,p}^N} \left| \sum_{j=1}^n X_j(f) \right| \geq \lambda \right) \leq A \exp \left(-B \frac{\lambda^2}{12nC_\rho + 2\lambda} \right).
\]
where A is of order $\exp(CN^d)$ with $B = \min\{\frac{\sqrt{7}}{25692p(C_*)^p}, \frac{2}{221p(C_*)^p}\}$, C depending on Λ and K.

Proof For given $\ell \in \mathbb{N}$, we construct a $2^{-\ell}$-covering for $V_{K,p}^{N,*}$ with respect to the norm $\|\cdot\|_{L_\infty(\mathbb{R}^d)}$. Let C_ℓ be the corresponding $2^{-\ell}$-net for $\ell = 1, 2, \ldots$. Then,

$$\sharp(C_\ell) \leq \mathcal{N}(V_{K,p}^{N,*}, 2^{-\ell}).$$

For given $f \in V_{K,p}^{N,*}$, let f_ℓ be the function in C_ℓ that is closest to f with respect to the norm $\|\cdot\|_{L_\infty(\mathbb{R}^d)}$. Then, $\|f - f_\ell\|_{L_\infty(\mathbb{R}^d)} \leq 2^{-\ell} \to 0$ when $\ell \to \infty$. Moreover, by Lemma 3.3 and the item (2) of Lemma 4.4, we have

$$X_j(f) = X_j(f_1) + (X_j(f_2) - X_j(f_1)) + (X_j(f_3) - X_j(f_2)) + \cdots.$$

If $\sup_{f \in V_{K,p}^{N,*}} \left| \sum_{j=1}^{n} X_j(f) \right| \geq \lambda$, the event ω_ℓ must hold for some $\ell \geq 1$, where

$$\omega_1 = \left\{ \text{there exists } f_1 \in C_1 \text{ such that } \left| \sum_{j=1}^{n} X_j(f_1) \right| \geq \frac{\lambda}{2} \right\}$$

and for $\ell \geq 2$,

$$\omega_\ell = \left\{ \text{there exist } f_\ell \in C_\ell \text{ and } f_{\ell-1} \in C_{\ell-1} \text{ with } \|f_\ell - f_{\ell-1}\|_{L_\infty(\mathbb{R}^d)} \leq 3 \cdot 2^{-\ell}, \right.\
\text{such that } \left| \sum_{j=1}^{n} (X_j(f_\ell) - X_j(f_{\ell-1})) \right| \geq \frac{\lambda}{2\ell^2} \right\}.$$

If this is not the case, then with $f_0 = 0$, we have

$$\left| \sum_{j=1}^{n} X_j(f) \right| \leq \sum_{\ell=1}^{\infty} \left| \sum_{j=1}^{n} (X_j(f_\ell) - X_j(f_{\ell-1})) \right| \leq \sum_{\ell=1}^{\infty} \frac{\lambda}{2\ell^2} = \frac{\pi^2\lambda}{12} \leq \lambda.$$

Next, we estimate the probability of each ω_ℓ. By Lemma 3.3, 4.1 and 4.2 for every fixed $f \in C_1$,

$$\text{Prob} \left(\left| \sum_{j=1}^{n} X_j(f) \right| \geq \frac{\lambda}{2} \right) \leq 2 \exp \left(-\frac{\left(\frac{\pi}{2}\right)^2}{2n\text{Var}(X_j(f)) + \frac{2}{3}\|X_j(f)\|_{L_\infty}\cdot \frac{\lambda}{2}} \right) \leq 2 \exp \left(-\frac{\lambda^2}{8nC_p(C_*)^p + \frac{4}{3}\lambda(C_*)^p} \right).$$

By Lemma 3.3, there are at most

$$\mathcal{N}(V_{K,p}^{N,*}, 1/2) \leq \exp \left(\frac{2N}{\delta_0}^d \ln(4C_* + 1) \right)$$

functions in C_1. Thus, the probability of ω_1 is bounded by

$$\text{Prob}(\omega_1) \leq 2 \exp \left(\frac{2N}{\delta_0}^d \ln(4C_* + 1) \right) \exp \left(-\frac{\lambda^2}{8nC_p(C_*)^p + \frac{4}{3}\lambda(C_*)^p} \right) = 2 \exp \left(\frac{2N}{\delta_0}^d \ln(4C_* + 1) \right) \exp \left(-\frac{\lambda^2}{\frac{2}{3}(C_*)^p(12nC_p + 2\lambda)} \right). \quad (4.3)$$
For $\ell \geq 2$, we estimate the probability of ω_ℓ in a similar way. For $f \in C_\ell$, $g \in C_{\ell - 1}$ and $\|f - g\|_{L^\infty(\mathbb{R}^d)} \leq 3 \cdot 2^{-\ell}$, we have

$$
\text{Prob}
\left(
\sum_{j=1}^{n} (X_j(f) - X_j(g)) \geq \frac{\lambda}{2\ell^2}
\right)
\leq 2 \exp\left(-\frac{(\frac{\lambda}{2\ell^2})^2}{2n\text{Var}(X_j(f) - X_j(g)) + \frac{\lambda}{2\ell^2} \|f - g\|_{L^\infty} \cdot \frac{\lambda}{2\ell^2}}\right)
\leq 2 \exp\left(-\nu \frac{2^\ell}{\ell^4}\right),
$$

where $\nu = \frac{\lambda^2}{4p(C^*)^p - (12nC_\rho + 2\lambda)}$. There are at most $\mathcal{N}(V_{K,p}^{N*, 2^{-\ell}})$ functions in C_ℓ and $\mathcal{N}(V_{K,p}^{N*, 2^{-\ell+1}})$ functions in $C_{\ell - 1}$. Therefore, we have

$$
\text{Prob}\left(\bigcup_{\ell=2}^{\infty} \omega_\ell\right) \leq \sum_{\ell=2}^{\infty} \mathcal{N}(V_{K,p}^{N*, 2^{-\ell}}) \mathcal{N}(V_{K,p}^{N*, 2^{-\ell+1}}) \sum_{\ell=2}^{\infty} \exp\left(-\nu \frac{2^\ell}{\ell^4}\right)
= C_1 \sum_{\ell=2}^{\infty} \exp\left(C_2 \ell - \frac{\nu 2^\ell}{\ell^4}\right)
= C_1 \sum_{\ell=2}^{\infty} \exp\left(-\nu 2^\frac{\ell}{\ell^4} - \frac{C_2 \ell}{2^\frac{\ell}{\ell^4}}\right),
$$

where $C_1 = 2(2C^* + 1)^2 \left(\frac{2N}{b_0} + 1\right)^d$ and $C_2 = (2\ln 2) \left(\frac{2N}{b_0} + 1\right)^d$.

Let $C_3 := \min_{\ell \geq 2} \frac{2^\frac{\ell}{\ell^4}}{2^\frac{\ell}{\ell^4} + \nu} = \frac{1}{324}$ and $C_4 := \max_{\ell \geq 2} \frac{8p(C^*)^{p-1} \ell \ln 2}{2^\frac{\ell}{\ell^4}} = 6\sqrt{2} p(C^*)^{p-1} \ln 2$. Then

$$
\frac{2^\frac{\ell}{\ell^4} - C_2 \ell}{2^\frac{\ell}{\ell^4} + \nu} = \frac{2^\frac{\ell}{\ell^4} - \frac{8p(C^*)^{p-1} \ell \ln 2}{2^\frac{\ell}{\ell^4}}}{2^\frac{\ell}{\ell^4} + \nu}
\geq \frac{1}{324} - \frac{C_4 \left(\frac{2N}{b_0} + 1\right)^d (12nC_\rho + 2\lambda)}{\lambda^2}.
$$

We first consider the case that

$$
\frac{1}{324} - \frac{C_4 \left(\frac{2N}{b_0} + 1\right)^d (12nC_\rho + 2\lambda)}{\lambda^2} > \frac{1}{648}. \tag{4.4}
$$
Since \(p, a > 0 \), one has \(\sum_{\ell=2}^{\infty} e^{-pa\ell} < \frac{e^{-pa}}{pa\ln a} \) ([20]), then

\[
Prob\left(\bigcup_{\ell=2}^{\infty} \omega_\ell \right) \leq \frac{C_1 \exp\left(-\sqrt{2} v \left(\frac{1}{324} - \frac{C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d (12nC_\rho) }{\lambda^2} \right) \right)}{\sqrt{2} \ln \sqrt{2} \cdot v \left(\frac{1}{324} - \frac{C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d (12nC_\rho) }{\lambda^2} \right)}
\]

\[
= \frac{2(2C^* + 1)^d}{\sqrt{2} \ln \sqrt{2} \cdot v \left(\frac{1}{324} - \frac{C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d (12nC_\rho) }{\lambda^2} \right)}
\]

\[
\times \exp\left(-\sqrt{2} v \left(\frac{1}{324} - \frac{C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d (12nC_\rho) + 2\lambda }{\lambda^2} \right) \right).
\]

Under the condition (4.4), we have

\[
\sqrt{2} \ln \sqrt{2} \cdot v \left(\frac{1}{324} - \frac{C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d (12nC_\rho) + 2\lambda }{\lambda^2} \right) \geq \sqrt{2} \ln \sqrt{2} \cdot C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d
\]

\[
\geq \frac{\sqrt{2} \ln \sqrt{2} C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d}{4p(C^*)^{p-1}}
\]

\[
\geq 3 \ln \sqrt{2} \ln 2.
\]

This together with the probability of \(\omega_1 \) in (4.3) obtains

\[
Prob\left(\sup_{f \in V_{K,p}^N} \left| \sum_{j=1}^{n} X_j(f) \right| \geq \lambda \right) \leq Prob\left(\bigcup_{\ell=1}^{\infty} \omega_\ell \right) \leq A \exp\left(-\frac{B}{12nC_\rho + 2\lambda} \right).
\]

Here, \(A \) is of order \(\exp\left(CN^d \right) \) with \(C = 2^{d+1} \left(1 + \frac{1}{\delta_0} \right)^d \ln(2C^* + 1) \) and \(B = \min\left\{ \frac{\sqrt{2}}{4p(C^*)^{p-1}}, \frac{3}{2(C^*)^p} \right\} \).

Finally, we consider the case that

\[
\frac{1}{324} - \frac{C_4 \left(\frac{2N}{\delta_0} + 1 \right)^d (12nC_\rho) + 2\lambda }{\lambda^2} \leq \frac{1}{648}.
\]

In this case, we can choose \(C \geq 648C_4B2^d \left(1 + \frac{1}{\delta_0} \right)^d \) such that \(A \exp\left(-\frac{B}{12nC_\rho + 2\lambda} \right) \geq 1 \). This completes the proof.

Lemma 4.4 Let \(X = \{ x_j : j \in \mathbb{N} \} \) be a sequence of independent random variables that are drawn from a general probability distribution over \(\mathbb{R}^d \) with density function \(\rho \) satisfying (4.1). Then for any \(\gamma > 0 \), the sampling inequality

\[
n c_\rho \left(\|f\|_{L^p(C_{0})}^p - \gamma \|f\|_{L^p(\mathbb{R}^d)}^p \right) \leq \sum_{j=1}^{n} |f(x_j)\nu(x_j)|^p \leq n(c_\rho \gamma + C_\rho) \|f\|_{L^p(\mathbb{R}^d)}^p
\]

(4.5)
holds for function \(f \in V_{K,p}^N \) with probability at least
\[
1 - A \exp \left(-B \frac{\gamma^2 n c_p^2}{12 c_p + 2 \gamma c_p} \right),
\]
where \(A \) and \(B \) are as in Lemma 4.3.

Proof It is obvious that every \(f \in V_{K,p}^N \) satisfies the inequality (4.5) if and only if \(f \| f \|_{L_p^n(R^d)} \) dose. So we assume that \(f \| f \|_{L_p^n(R^d)} = 1 \), then \(f \in V_{K,p}^N, \ast \). The event
\[
D = \left\{ \sup_{f \in V_{K,p}^N, \ast} \left| \sum_{j=1}^n X_j(f) \right| > \gamma n c_p \right\}
\]
is the complement of
\[
\tilde{D} = \left\{ n \int_{R^d} \rho(x) |f(x)\nu(x)|^p dx - \gamma n c_p \leq \sum_{j=1}^n |f(x_j)\nu(x_j)|^p \right\}
\leq \gamma n c_p + n \int_{R^d} \rho(x) |f(x)\nu(x)|^p dx, \quad \forall f \in V_{K,p}^N, \ast \}
\leq \left\{ n c_p \left(\| f \|_{L_p^n(C_n)}^p - \gamma \| f \|_{L_p^n(R^d)}^p \right) \right\} \leq \sum_{j=1}^n |f(x_j)\nu(x_j)|^p
\leq n (c_p \gamma + C_p) \| f \|_{L_p^n(C_n)}^p, \quad \forall f \in V_{K,p}^N, \ast \}
\]
Using Lemma 4.3 the sampling inequality (4.5) holds for all \(f \in V_{K,p}^N \) with probability
\[
Prob(\tilde{D}) \geq Prob(\tilde{D}) = 1 - Prob(D) \geq 1 - A \exp \left(-B \frac{\gamma^2 n c_p^2}{12 c_p + 2 \gamma c_p} \right).
\]

In the following, we will show that if the sampling size is sufficiently large, the sampling inequality holds with overwhelming probability for functions in \(V_{K,p}(R, \delta) \).

Theorem 4.5 Let \(X = \{x_j : j \in \mathbb{N}\} \) be a sequence of independent random variables that are drawn from a general probability distribution over \(R^d \) with density function \(\rho \) satisfying (4.1). Suppose that \(M > R \) is a constant such that \(\{x_j : j = 1, 2, \cdots, n\} \subseteq C_M \), then for any \(0 < \varepsilon, \gamma < 1 \) which satisfy
\[
L(\varepsilon, \gamma) = c_p \left(1 - \delta - p(1 + \varepsilon)^{p-1} \varepsilon - \gamma \left(B_p C_K \right)^p \right) - p(C^\ast)^{p-1} \frac{\varepsilon}{(2M)^d} > 0,
\]
the sampling inequality
\[
nL(\varepsilon, \gamma) \| f \|_{L_p^n(R^d)}^p \leq \sum_{j=1}^n |f(x_j)\nu(x_j)|^p \leq n U(\varepsilon, \gamma) \| f \|_{L_p^n(R^d)}^p
\]
holds for function \(f \in V_{K,p}(R, \delta) \) with probability at least
\[
1 - A \exp \left(-B \frac{\gamma^2 n c_p^2}{12 c_p + 2 \gamma c_p} \right).
\]
Here, $U(\varepsilon, \gamma) = (c_\rho \gamma + C_\rho)(B_\rho C_K)^p + p(C^*)^{p-1} - \frac{\varepsilon}{(2M)^d}$, A and B are the constants in Lemma 4.3 corresponding to $N = N(\varepsilon, M, f)$.

Proof It is obvious that every $f \in V_{K,p}(R, \delta)$ satisfies the inequality (4.7) if and only if $\left\|f\right\|_{L^p_\infty(\mathbb{R}^d)} \leq \delta$. Hence, we assume that $\left\|f\right\|_{L^p_\infty(\mathbb{R}^d)} = 1$.

For random variables $\{x_j : j = 1, 2, \cdots, n\}$, there exists a $M > R$ such that $\{x_j : j = 1, 2, \cdots, n\} \subset C_M$. By Lemma 2.4, for any $\varepsilon > 0$ satisfying (4.6), there exist $N = N(\varepsilon, M, f)$ and $f_N \in V_{K,p}^N$ such that

$$\left\|f - f_N\right\|_{L^p_\infty(C_M)} \leq \varepsilon \quad \text{and} \quad \left\|f - f_N\right\|_{L^\infty(C_M)} \leq \frac{\varepsilon}{(2M)^d}. \tag{4.8}$$

This together with mean value theorem obtains

$$\left|\left\|f\right\|_{L^p_\infty(C_R)}^p - \left\|f_N\right\|_{L^p_\infty(C_R)}^p\right| \leq p(1 + \varepsilon)^{p-1}\varepsilon \tag{4.9}$$

and

$$\left|f(x_j)\nu(x_j)|^p - \left|f_N(x_j)\nu(x_j)|^p\right| \leq p\left(\max\{|f(x_j)\nu(x_j)|, |f_N(x_j)\nu(x_j)|\}\right)^{p-1}\left|f(x_j) - f_N(x_j)\right|\nu(x_j) \leq p(C^*)^{p-1} - \frac{\varepsilon}{(2M)^d}. \tag{4.10}$$

It follows from (4.10) that

$$\sum_{j=1}^n |f_N(x_j)\nu(x_j)|^p - np(C^*)^{p-1} - \frac{\varepsilon}{(2M)^d} \leq \sum_{j=1}^n |f(x_j)\nu(x_j)|^p \leq \sum_{j=1}^n |f_N(x_j)\nu(x_j)|^p + np(C^*)^{p-1} - \frac{\varepsilon}{(2M)^d}. \tag{4.11}$$

For the above $f_N \in V_{K,p}^N$, we know from Lemma 4.3 that

$$nc_\rho\left(\left\|f_N\right\|_{L^p_\infty(C_R)}^p - \gamma\left\|f_N\right\|_{L^p_\infty(\mathbb{R}^d)}^p\right) \leq \sum_{j=1}^n |f_N(x_j)\nu(x_j)|^p \leq n(c_\rho \gamma + C_\rho)\left\|f_N\right\|_{L^p_\infty(\mathbb{R}^d)}^p \tag{4.12}$$

holds with probability at least

$$1 - A \exp\left(-B\frac{\gamma^2 n c_\rho^2}{12C_\rho + 2\gamma c_\rho}\right). \tag{4.13}$$

Then, it follows from (4.9), (4.11) and (4.12) that

$$nc_\rho\left(\left\|f\right\|_{L^p_\infty(C_R)}^p - p(1 + \varepsilon)^{p-1}\varepsilon - \gamma\left\|f_N\right\|_{L^p_\infty(\mathbb{R}^d)}^p\right) - np(C^*)^{p-1} - \frac{\varepsilon}{(2M)^d} \leq \sum_{j=1}^n |f(x_j)\nu(x_j)|^p \leq n\left(c_\rho \gamma + C_\rho\right)\left\|f_N\right\|_{L^p_\infty(\mathbb{R}^d)}^p + np(C^*)^{p-1} - \frac{\varepsilon}{(2M)^d}. \tag{4.14}$$
holds with the same probability as (4.13). Since \(f \in V_{K,p}(R, \delta) \), we have
\[
(1 - \delta)\|f\|_{L_p^p(\mathbb{R}^d)}^{p} \leq \|f\|_{L_p^p(C_R)}^{p},
\]
(4.15)
Moreover, we know from Lemma 2.5 that
\[
\|f_N\|_{L_p^p(\mathbb{R}^d)} \leq C_K \|\left(\langle f, \tilde{\phi}_\lambda \rangle \right)_{\lambda \in \Lambda} \|_{{\ell}_p^p} \leq B_K \|f\|_{L_p^p(\mathbb{R}^d)}. \quad (4.16)
\]
Note that \(\|f\|_{L_p^p(\mathbb{R}^d)} = 1 \). Then, the sampling inequality (4.7) follows from (4.14)-(4.16).

5 Reconstruction algorithm in \(V_{K,p}^N \)

In this section, we consider the reconstruction algorithm of functions in \(V_{K,p}^N \) from the corresponding random samples.

Lemma 5.1 Suppose that there exists some constant \(\zeta > 0 \) such that for any
\[
f = \sum_{\lambda \in \Lambda \cap [-N,N]^d} c(\lambda) \phi_\lambda \in V_{K,p}^N,
\]
we have
\[
\sum_{j=1}^{n} |f(x_j)\nu(x_j)|^p \geq \zeta \|c\|_{\ell_p^p}^p. \quad (5.1)
\]
Then there exist reconstruction functions \((S_j(x))_{1 \leq j \leq n} \) such that for all \(f \in V_{K,p}^N \),
\[
f(x) = \sum_{j=1}^{n} f(x_j)S_j(x). \quad (5.2)
\]

Proof For \(f = \sum_{\lambda \in \Lambda \cap [-N,N]^d} c(\lambda) \phi_\lambda \in V_{K,p}^N \), we try to solve the system of linear equations
\[
f(x_j) = \sum_{\lambda \in \Lambda \cap [-N,N]^d} c(\lambda) \phi_\lambda (x_j), \quad 1 \leq j \leq n \quad (5.3)
\]
for the coefficients \((c(\lambda))_{\lambda \in \Lambda \cap [-N,N]^d} \). Define a random matrix
\[
U = (u_{j,\lambda})_{j=1,2,\ldots,n;\lambda \in \Lambda \cap [-N,N]^d}, \quad (5.4)
\]
where \(u_{j,\lambda} = \phi_\lambda(x_j) \). In fact, the column number of \(U \) is less than \((2N/\delta + 1)^d \). Then the system (5.3) of linear equations can be rewritten as
\[
Uc = f|_{\{x_j; j=1,2,\ldots,n\}}. \quad (5.5)
\]
Since \(\sum_{j=1}^{n} |f(x_j)\nu(x_j)|^p \geq \zeta \|c\|_{\ell_p^p}^p \), we have
\[
\|Uc\|_{\ell_p^p} \geq \zeta^{1/p} \|c\|_{\ell_p^p}, \quad \forall \ c \in \ell_p^p(\Lambda \cap [-N,N]^d). \quad (5.6)
\]
Then U^TU is invertible, which implies that
\[
c = (U^TU)^{-1}U^Tf|_{\{x_j:j=1,2,\ldots,n\}}.
\] (5.7)

Let $\Psi(x) = (\phi_\lambda(x))_{\lambda \in \Lambda \cap [-N,N]^d}^T$ and $(S_j(x))_{1 \leq j \leq n}^T = U(U^TU)^{-1}\Psi$. Then
\[
f(x) = \sum_{j=1}^n f(x_j)S_j(x).
\]

The following theorem presents a reconstruction algorithm for signals in a finite dimensional subspace $V_{K,p}^N$.

Theorem 5.2 Suppose that there exists a $\alpha_p > 0$ such that for all $c \in \ell^p_\nu(\Lambda \cap [-N,N]^d)$,
\[
\left\| \sum_{\lambda \in \Lambda \cap [-N,N]^d} c(\lambda)\phi_\lambda \right\|_{L^p(C_R)} \geq \alpha_p \|c\|_{\ell^p_\nu}.
\] (5.8)

Let U be as in (5.4), $\Psi(x) = (\phi_\lambda(x))_{\lambda \in \Lambda \cap [-N,N]^d}^T$ and $(S_j(x))_{1 \leq j \leq n}^T = U(U^TU)^{-1}\Psi$. Then for any $0 < \gamma < \frac{\alpha_p}{\epsilon_K}$, the reconstruction formula
\[
f(x) = \sum_{j=1}^n f(x_j)S_j(x)
\] (5.9) holds for all $f \in V_{K,p}^N$ with probability at least
\[
1 - A \exp\left(-B \frac{\gamma^2 n c_p^2}{12 C_p + 2 \gamma c_p}\right),
\]
where A and B are as in Lemma 4.3.

Proof For $f = \sum_{\lambda \in \Lambda \cap [-N,N]^d} c(\lambda)\phi_\lambda \in V_{K,p}^N$, it follows from Lemma 4.3 and Lemma 2.5 that
\[
\sum_{j=1}^n |f(x_j)\nu(x_j)|^p \geq n c_p \left(\alpha_p^p \|c\|_{\ell^p_\nu}^p - \gamma \|f\|_{L^p(R^d)}^p \right) \geq n c_p \left(\alpha_p^p - \gamma C_K^p \right) \|c\|_{\ell^p_\nu}^p
\]
holds with probability at least
\[
1 - A \exp\left(-B \frac{\gamma^2 n c_p^2}{12 C_p + 2 \gamma c_p}\right).
\]

Then the desired reconstruction formula (5.9) follows from Lemma 5.1.

For a linear operator L defined on $\ell^p_\nu(\Lambda \cap [-N,N]^d)$, the (p, ν)-norm condition number of L is defined by
\[
\kappa(L, p, \nu) := \max_{a \in \ell^p_\nu(\Lambda \cap [-N,N]^d), a \neq 0} \frac{\|La\|_{\ell^p_\nu}}{\|a\|_{\ell^p_\nu}} \left(\min_{a \in \ell^p_\nu(\Lambda \cap [-N,N]^d), a \neq 0} \frac{\|La\|_{\ell^p_\nu}}{\|a\|_{\ell^p_\nu}} \right)^{-1}.
\] (5.10)
Theorem 5.3 Suppose that random variables $X = \{x_j : j \in \mathbb{N}\}$ and density function ρ are as in Theorem 4.5. If the condition (5.8) holds for all $c \in \ell_p^\nu(\Lambda \cap [-N, N]d)$, then for any $0 < \gamma < \alpha_p^p C_K$, the (p, ν)-norm condition number

$$\kappa(U, p, \nu) \leq \left(\frac{c_p \gamma + C_p}{c_p(\alpha_p^p - \gamma C_K^p)} \right)^{1/p} C_K$$

holds with probability at least

$$1 - A \exp \left(- B \frac{\gamma^2 n c_p^2}{12 C_p + 2 \gamma c_p} \right),$$

where A and B are as in Lemma 4.3.

Proof For every $c \in \ell_p^\nu(\Lambda \cap [-N, N]d)$ and $g = \sum_{\lambda \in \Lambda \cap [-N, N]d} c(\lambda) \phi_\lambda$, it follows from Lemma 4.1 that the sampling inequality

$$nc_p \left(\|g\|_{L_p^\nu(C_K)}^p - \gamma \|g\|_{L_p^\nu(\mathbb{R}^d)}^p \right) \leq \sum_{j=1}^n |g(x_j) \nu(x_j)|^p \leq n(c_p \gamma + C_p) \|g\|_{L_p^\nu(\mathbb{R}^d)}^p$$

holds for all $c \in \ell_p^\nu(\Lambda \cap [-N, N]d)$ with probability at least

$$1 - A \exp \left(- B \frac{\gamma^2 n c_p^2}{12 C_p + 2 \gamma c_p} \right).$$

By Lemma 2.5, $\|g\|_{L_p^\nu(\mathbb{R}^d)} \leq C_K \|c\|_{\ell_p^\nu}$. Furthermore, it can be easily verified from (5.4) that

$$\sum_{j=1}^n |g(x_j) \nu(x_j)|^p = \|Uc\|_{\ell_p^\nu}^p.$$ (5.12)

Then, combining (5.11)-(5.12) obtains

$$nc_p(\alpha_p^p - \gamma C_K^p) \leq \frac{\|Uc\|_{\ell_p^\nu}^p}{\|c\|_{\ell_p^\nu}^p} \leq n(c_p \gamma + C_p) C_K^p.$$

This together with (5.10) leads to the desired result.

Acknowledgement The project is partially supported by the National Natural Science Foundation of China (Nos. 11661024, 11671107) and the Guangxi Natural Science Foundation (Nos. 2019GXNSFA245012, 2017GXNSFA198194), Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201614), Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation.
References

[1] A. Aldroubi, Q. Sun, W. S. Tang. p-frames and shift-invariant subspaces of L^p. *J. Fourier Anal. Appl.*, **7**(1)(2001), 1-22.

[2] R. F. Bass and K. Gröcheing. Random sampling of multivariate trigonometric polynomials. *SIAM J. Math. Anal.*, **36**(3)(2005), 773-795.

[3] R. F. Bass and K. Gröcheing. Random sampling of bandlimited functions. *Israel J. Math.*, **177**(1)(2010), 1-28.

[4] R. F. Bass and K. Gröcheing. Relevant sampling of bandlimited functions. *Illinois J. Math.*, **57**(1)(2013), 43-58.

[5] G. Bennett. Probability inequalities for the sum of independent random variable. *J. Amer. Statist. Assoc.*, **57**(297)(1962), 33-45.

[6] S. H. Chan, T. Zickler and Y. M. Lu. Monte Carlo non-local means: random sampling for large-scale image filtering. *IEEE Trans. Image Process.*, **23**(8)(2014), 3711-3725.

[7] L. Z. Chen, H. Z. Zhang. Margin error bounds for support vector machines on reproducing kernel Banach spaces. *Neural Computation*, **29**(11)(2017), 3078-3093.

[8] C. Cheng, Y. C. Jiang, Q. Sun. Sampling and Galerkin reconstruction in reproducing kernel spaces. *Appl. Comput. Harmon. Anal.*, **41**(2016), 638-659.

[9] F. Cucker and D. X. Zhou. Learning Theory: An Approximation Theory Viewpoint. *Cambridge University Press*, 2007.

[10] Y. C. Eldar. Compressed sensing of analog signal in a shift-invariant spaces. *IEEE Trans. Signal Process.*, **57**(8)(2009), 2986-2997.

[11] H. Führ and J. Xian. Relevant sampling in finitely generated shift-invariant spaces. *J. Approx. Theory*, **240**(2019), 1-15.

[12] K. Gröcheing. Weight functions in time-frequency analysis. in ”*Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis*”, L. Rodino et al., eds., *Fields Institute Comm.*, **52**(2007), 343-366.

[13] D. Han, D. Larson. Frames, bases and group representations. *Memoirs Amer. Math. Soc.*, **147**(697)(2000).

[14] D. Han, M.Z. Nashed, Q. Sun. Sampling expansions in reproducing kernel Hilbert and Banach spaces. *Numer. Funct. Anal. Optim.*, **30**(2009), 971-987.
[15] Y. C. Jiang. Time sampling and reconstruction in weighted reproducing kernel subspaces. *J. Math. Anal. Appl.*, 444(2016), 1380-1402.

[16] Y. X. Li, J. Wen and J. Xian. Reconstruction from convolution random sampling in local shift invariant spaces. *Inverse Problems*, 35(12)(2019), 125008.

[17] Y. C. Lu, J. Xian. Nonuniform random sampling and reconstruction in signal spaces with finite rate of innovation. *Acta Appl. Math.*, https://doi.org/10.1007/s10440-019-00298-6, 2019.

[18] M. Z. Nashed, Q. Sun. Sampling and reconstruction of signals in a reproducing kernel subspace of $L^p(\mathbb{R}^d)$. *J. Funct. Anal.*, 258(2010), 2422-2452.

[19] D. Patel and S. Sampath. Random sampling on reproducing kernel subspaces of $L^p(\mathbb{R}^n)$. arXiv:1909.13613v1, 2019.

[20] S. Smale and D. X. Zhou. Online learning with Markov sampling. *Anal. Appl.*, 7(1)(2009), 87-113.

[21] Q. Sun. Frames in spaces with finite rate of innovation. *Adv. Comput. Math.*, 28(2008), 301–329.

[22] G. A. Velasco. Relevant sampling of the short-time Fourier transform of time-frequency localized functions. arXiv: 1707.09634v1, 2017.

[23] J. Xian. Weighted sampling and reconstruction in weighted reproducing kernel spaces. *J. Math. Anal. Appl.*, 367(2010), 34-42.

[24] J. B. Yang. Random sampling and reconstruction in multiply generated shift-invariant spaces. *Anal. Appl.*, 17(2)(2019), 323-347.

[25] J. B. Yang and X. Tao. Random sampling and approximation of signals with bounded derivatives. *J. Ineq. Appl.*, (2019), 107.

[26] J. B. Yang and W. Wei. Random sampling in shift invariant spaces. *J. Math. Anal. Appl.*, 398(1)(2013), 26-34.

[27] H. Z. Zhang, Y. S. Xu, J. Zhang. Reproducing kernel Banach spaces for machine learning. *J. Machine Learning Research*, 10(2009), 2741-2775.