Accessibility-Based Clustering for Efficient Learning of Locomotion Skills

Chong Zhang1*, Wanming Yu2*, and Zhibin Li2†

Abstract—For model-free deep reinforcement learning of quadruped locomotion, the initialization of robot configurations is crucial for data efficiency and robustness. This work focuses on algorithmic improvements of data efficiency and robustness simultaneously through automatic discovery of initial states, which is achieved by our proposed K-Access algorithm based on accessibility metrics. Specifically, we formulated accessibility metrics to measure the difficulty of transitions between two arbitrary states, and proposed a novel K-Access algorithm for state-space clustering that automatically discovers the centroids of the static-pose clusters based on the accessibility metrics. By using the discovered centroidal static poses as the initial states, we can improve data efficiency by reducing redundant explorations, and enhance the robustness by more effective explorations from the centroids to sampled poses. Focusing on fall recovery as a very hard set of locomotion skills, we validated our method extensively using an 8-DoF quadrupedal robot \textit{Bittle}. Compared to the baselines, the learning curve of our method converges much faster, requiring only 60\% of training episodes. With our method, the robot can successfully recover to standing poses within 3 seconds in 99.4\% of the test cases. Moreover, the method can generalize to other difficult skills successfully, such as backflipping.

I. INTRODUCTION

Among robot locomotion skills, trotting and some other tasks are easy in terms of exploration, while fall recovery is difficult due to many possible robot states. Thus, the ability to recover from a fall is critical for legged robots to improve their robustness against potential failures.

For fall recovery, manually-designed joint trajectories \cite{1} are laborious, and their robustness in different environments is not guaranteed. Optimization-based \cite{2} methods require a significant amount of time to obtain a feasible solution since dynamic models and complex contact situations need to be considered \cite{3}, which makes it difficult to achieve real-time fall recovery. To overcome the limitations of these methods, model-free deep reinforcement learning (DRL) methods \cite{4} serve as a promising alternative.

However, learning fall recovery via DRL suffers from hard exploration, i.e., to explore in domains with sparse, delayed, or deceptive rewards, and redundant exploration, i.e., certain regions of the state space being too frequently visited while training because of skewed data collection.

Both hard exploration and redundant exploration can detract the data efficiency and learning performance, and initial state distribution is one of the key factors that can affect the efficiency of exploration.

Currently, there are three common ways to design initial state distributions for learning fall recovery via DRL: 1) initialization from demonstrations \cite{5}, 2) initialization from random distributions \cite{6}, and 3) initialization from predefined poses \cite{4}. For initialization from demonstrations, the performance is limited to the demonstrated examples. For initialization from random distributions, it is not data efficient \cite{6} because of the redundant exploration. Also, corner cases may suffer from insufficient exploration because of skewed data collection. As a result, the diversity of exploration is not guaranteed. For initialization from predefined poses, states that lack heuristics are very likely to be missed, and the generalization can be a problem despite high data efficiency.

In this work, we aim to automatically discover initial states that can help achieve high robustness while still being data efficient. We propose to achieve this by clustering the static poses of the robot and applying centroids as initial states.

A. Related Work

Regarding DRL, model-free DRL has been a commonly-used method for fall recovery and other locomotion tasks \cite{7} \cite{8} \cite{9}. In contrast to model-based methods such as model predictive control \cite{10} \cite{11}, trajectory optimization \cite{12} \cite{13} and Bayesian optimization \cite{14}, model-free methods do not require explicit knowledge of complex dynamics, and support fast online computation without mathematical optimization. The most popular model-free DRL algorithms for robot locomotion are the PPO algorithm \cite{15} and the SAC algorithm \cite{16}.

Regarding clustering, common clustering methods have successful applications in RL, such as value function approximation \cite{17}, but they fail to achieve ideal clustering of diverse robot states. For centroid-based methods such as K-Means \cite{18} and density-based methods such as DBSCAN \cite{19}, the problem is the metric for clustering, which will be discussed later. For pattern-based methods \cite{20}, state transitions of the robot can be regarded as edges in a directed graph. However, the existing methods could not achieve the desired effect as well, which will be discussed in I-B.

Regarding the metric, we usually adopt the Euclidean distance assuming orthogonal coordinates and undirected distances. However, both of the assumptions are problematic for robot poses. For the state space of static poses, we tend to use the combination of the normalized gravity vector and the
joint positions [4], and these feature dimensions are coupled. Also, it is difficult to determine the scale of the features. A failure case of the Euclidean distance is shown in Fig. 1. The undirected distances are inapplicable because the robot's transitions are directed. For instance, it is easy to fall from a standing pose, but difficult to recover from a lying pose.

There are also some metric learning methods, but they are time-consuming and difficult to obtain values for each start-end pose pair. In [21], the distance metric is approximated for state-space RRTs [22], but it is impractical to construct an RRT for each pose. In [23], the metric is learned during the training process, but we do not want to learn the metric for a certain DRL model before clustering.

B. Motivation and Our Contribution

In this paper, we aim to find the initial states that can help reduce hard exploration and redundant exploration during the training process to learn robust fall recovery efficiently. To ensure robustness, the initial states need to cover as much of the state space as possible. We expect the centroids of the static-pose clusters to serve as the ideal initial states.

In terms of the metric for clustering, we propose the accessibility metric in II-A to overcome the shortcomings of the Euclidean distance mentioned in I-A.

For pattern-based clustering, we tried several common methods but they all failed. The directed Louvain method [24] failed because it cannot properly distinguish the direction of the edges (state transitions in this paper) [25]. The Infomap method [26] failed because unreachable states could exist in the same cluster, which means that the agent was expected to explore states that can hardly be reached from the initial states. The spectral clustering method [27] failed because the number of clusters was too small, which indicates low robustness. To obtain the ideal clustering effect, we propose a new accessibility-based clustering method, i.e., K-Access, in II-C.

Our contributions in this paper include:

- An accessibility metric to quantify the level of difficulties for a robot to transition from one physical state/configuration to another;
- A K-Access algorithm based on the accessibility metric for state-space clustering, which is adapted from the K-Means++ algorithm;

Fig. 1. An erroneous case of using Euclidean distance metric. The distance between a backward leaning stance and a forward leaning stance should be smaller than that between a forward leaning stance and a lying pose.

Fig. 2. An illustration of accessibility. The accessibility value corresponds to the difficulty of a state being explored from the initial state.

- A pipeline of automatically discovering feasible initial states, based on their inter-connected transitions, for efficient learning of robot fall recovery and other tasks.

With our proposed method, the data efficiency of DRL models can be greatly improved by avoiding repeated and redundant explorations, and the robustness can be greatly enhanced because of the wide range of searched states and their explored inter-connections.

II. METHODOLOGY

In this section, the concept of accessibility is firstly introduced in II-A. The criteria of good initial state distributions are discussed in II-B, and the K-Access algorithm is presented in II-C. In II-D, the DRL is applied for fall recovery, and the entire pipeline is shown in Fig. 4. Generic principles to apply our proposed method to learning other locomotion tasks are presented in II-E.

A. Accessibility

To model the difficulty of transitions from one state to another, we propose the accessibility metric. Figure 2 demonstrates the concept of accessibility. Consider an initial state s_0 in the state space S. There is a region $R \subseteq S$ that can be easily and effectively explored from s_0, and this region can be mathematically defined as

$$ R = \{s|s \in S, t(s_0, s) < t_0\}, \quad (1) $$

where $t(s_0, s)$ is the minimal time cost (in seconds) of the transition from s_0 to s, and t_0 is a positive value. R is called the effective exploration region of s_0.

Consider another two states $s_1 \in R$ and $s_2 \notin R$. We can say that the accessibility from s_0 to s_1 is high, and it is easy to explore s_1 from s_0. In contrast, the accessibility from s_0 to s_2 is low, and it is difficult to explore s_2 from s_0.

Mathematically, we define the accessibility from $s_i \in S$ to $s_j \in S$ as

$$\text{access}(s_i, s_j) = e^{-t(s_i, s_j)}. \quad (2)$$

In practice, it is difficult to get the minimal time cost $t(s_i, s_j)$, and we approximate it with PD tracking (see III-B). The range of accessibility is $[0, 1]$. If the accessibility is zero, s_j is unreachable from s_i. If the accessibility is one, $s_i = s_j$.

Algorithm 1 K-Access(k, A)

1: $c\text{Index} \leftarrow \text{zeros}(k)$; \hspace{1cm} \triangleright indices of centroids
2: $c\text{Index}[0] \leftarrow \text{randInt}(0,k)$;
3: for $i = 1$ to $k-1$ do
4: \quad $\text{CAccess} \leftarrow \sum_{i=0}^{i-1} (A[c\text{Index}[i],:] + A[:,c\text{Index}[i]])$;
5: \quad $c\text{Index}[:i] \leftarrow \arg\min_j \text{CAccess}[j]$; \hspace{0.5cm} \triangleright initialize $c\text{Index}$
6: end for
7: $\text{assignment}[:l] \leftarrow \arg\max_{c\text{Index}} A[c,:], \forall l < n, l \in \mathbb{N}$;
8: $\text{preassign} \leftarrow \text{zeros}(n)$; \hspace{1cm} \triangleright previous assignment
9: while $\text{preassign} \neq \text{assignment}$ do
10: \quad $\text{preassign} \leftarrow \text{assignment}$;
11: \quad $c\text{Index}[:l] \leftarrow \arg\max_{c\text{Index}} \min_{m \in \Lambda} A[m,:], \forall i < k, i \in \mathbb{N}$;
12: \quad $\text{assignment}[:l] \leftarrow \arg\max_{c\text{Index}} A[c,:], \forall l < n, l \in \mathbb{N}$;
13: end while
14: return $c\text{Index}$, assignment

Algorithm 1. The inputs are the number of clusters k and the accessibility matrix A for the sampled states $s_0, s_1, \ldots, s_{n-1} \in S$. The size of A is (n,n), and $A[i,j]$ is the accessibility from s_i to s_j $(i, j \in \{0, \ldots, n-1\})$. The outputs are the indices of the centroids $c\text{Index} = (c_0, \ldots, c_{k-1})$ and the centroids of each state’s cluster $\text{assignment} = (a_0, \ldots, a_{n-1})$.

Similar to the K-Means++ algorithm, the first step of K-Access algorithm is to initialize the centroids, and then we repeat the assignment step and the update step until the assignments no longer change, as described below.

1) Initialization of centroids: The first centroid is randomly selected (line 2), and each new centroid is the furthest sample from the already selected centroids (line 3-6).
2) Assignment of samples to clusters: Each sample state is assigned to the cluster of which the centroid has the highest accessibility to this state (line 7,12). Note that we only consider the accessibility of single direction here.
3) Update of the choice of centroids: The new centroid has the maximal neighborhood accessibility. The neighborhood accessibility of one state is defined as the minimal accessibility value from the state to its neighbors in the same cluster (line 11). To ensure robustness, we do not take the average, which differs from K-Means++.

Finally, the K-Access algorithm can converge to a result that prefers high intra-cluster accessibility and low inter-cluster accessibility. To determine the number of clusters, we propose an index based on the discussions in II-B that good clustering results should have high intra-cluster accessibility and low inter-cluster accessibility. The index I is defined as

\[I = \log(A_{\text{intra}}) - \log(A_{\text{inter}}) - \alpha \cdot |\Lambda|, \]

where A_{intra} is the intra-cluster accessibility array of size k, A_{inter} is the inter-cluster accessibility of size (k, k), and $\alpha \cdot |\Lambda|$ is the regularization term. The clustering results are better if the index is larger, and the inter/intra-cluster metrics are also defined in a different way from K-Means++. To be specific,

\[A_{\text{intra}}[i] = \min_{a_i = c_j, j < n} A[c_i, j], \forall i < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, c_j], \forall i < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, c_j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{intra}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]

\[A_{\text{inter}}[i,j] = \min_{i < k, j < k} A[c_i, j], \forall i,j < k, \]
Fig. 4. Pipeline of the proposed method. First, static poses are randomly sampled. Second, the estimated accessibility values are obtained via simulation. Third, the proposed K-Access algorithm selects and discovers the optimal initial states. Finally, the DRL agent learns fall recovery through exploration based on the discovered initial states.

\[
A_{\text{inter}}[i,j] = \begin{cases} \text{mean } A[a_i, c_j], & \forall i \neq j, \\ 1, & \forall i = j, \end{cases}
\]

where \(i < k, i \in \mathbb{N}, j < k, j \in \mathbb{N}, \)

\[
\Lambda = \{ c_i | i < k, i \in \mathbb{N}, | \{ l | a_l = c_i, l < n, l \in \mathbb{N} \} | = 1 \}, \tag{6}
\]

and \(\alpha \) is a real value (recommended value: 1). We penalize the number of one-sample clusters because such clusters can hardly be encountered and they may exist because of extreme circumstances. In most cases, one-sample clusters are also accessible from other clusters. Therefore, one-sample clusters should be rare or non-existent, otherwise the training process may suffer from unnecessary or redundant explorations. In Fig. 4 (c), the K-Access algorithm is applied for clustering, after the estimation of accessibility values for the sampled poses.

D. Fall Recovery Learning

Our DRL framework is shown in Fig. 5. The state space consists of the orientation (represented by the normalized gravity vector), the angular velocity of the body, and the joint positions. Here we adopt the positional control for high learning efficiency and performance according to [29]. The outputs of the policy network are the target joint positions which update at 25 Hz. The PD controllers generate torques based on the target joint positions and the measured joint positions at 300 Hz. The SAC algorithm is applied for learning the feedback control policy.

The reward function is the sum of reward terms in Table I. The first principle is about how we define the subspace for clustering. The generic principles to apply the proposed method are:

1) Perform clustering in a subspace with feasible and necessary dimensions;
2) Ensure that the target state has the maximum expected return in the subspace;
3) Estimate the accessibility values with time-accuracy trade-off.

The learning process is the last stage (d) of the pipeline in Fig. 4, where we apply the centroids in (c) as the initial states for DRL of quadruped fall recovery.

E. Learning Other Tasks

The proposed method is not limited to fall recovery learning. In III-E, we also validated our method in backflip learning. The generic principles to apply the proposed method are:

1) Perform clustering in a subspace with feasible and necessary dimensions;
2) Ensure that the target state has the maximum expected return in the subspace;
3) Estimate the accessibility values with time-accuracy trade-off.

The first principle is about how we define the subspace for clustering. Some dimensions such as velocities are not suitable for estimating the accessibility values. Also, necessary dimensions to identify the initial states must be included.
The state of robot was close to the state of B. If these two static equilibrium within 3 seconds, we checked whether positions of B as the target positions. If the robot entered we sent a command to the PD controllers with the joint pose B, we initialized the robot with static pose A. Then B. Estimating Accessibility Values

To estimate the accessibility from static pose A to static pose B, we applied the proposed K-Access algorithm to the 1k accessibility matrix obtained in III-B. The α value for the index is 1. To determine the number of clusters k, we tried different k values and obtained the maximum index value when k = 43. The number of samples in each of the 43 clusters is shown in Fig. 6, indicating that the static poses of the robot are subjected to a long-tail distribution.

Fig. 7 visualizes the inter-cluster accessibility of top-20 clusters. Inter-cluster accessibility values above 0.15 are highlighted, and those values below 0.05 are omitted here for clarity.

III. IMPLEMENTATION AND RESULTS

A. Sampling Static Poses

In the PyBullet environment, we randomly initialized the Bittle robot with roll angle $\phi \sim U(-\pi, \pi)$, pitch angle $\theta \sim U(-\frac{\pi}{2}, \frac{\pi}{2})$, yaw angle $\psi = 0$, and joint positions $p \sim U(-\frac{\pi}{2}, \frac{\pi}{2})$. Self-collision cases were abandoned.

The robot was dropped from 0.35 m above the ground. If the robot was stationary within 2 seconds (with negligible velocity, angular velocity, and distance to the ground), we recorded the final joint positions, the final roll angle, the final pitch angle, and the body height. We assume the ground to be flat for sampling.

With $12 \times$ multiprocessing, we sampled 2.4k static poses within an hour on an ordinary desktop machine.

B. Estimating Accessibility Values

To estimate the accessibility from static pose A to static pose B, we initialized the robot with static pose A. Then we sent a command to the PD controllers with the joint positions of B as the target positions. If the robot entered static equilibrium within 3 seconds, we checked whether the state of robot was close to the state of B. If these two states were close enough, we recorded the time cost t and the estimated accessibility from A to B was e^{-t}. Otherwise, we set the accessibility to be 10^{-8} instead of zero because all the sampled static poses are assumed to be accessible.

We randomly selected 1k samples from the sampled static poses. With $12 \times$ multiprocessing, we obtained the 1M accessibility values for the 1k accessibility matrix within 20 hours on an ordinary desktop machine.

C. Clustering

We applied the proposed K-Access algorithm to the 1k accessibility matrix obtained in III-B. The α value for the index is 1. To determine the number of clusters k, we tried different k values and obtained the maximum index value when k = 43. The number of samples in each of the 43 clusters is shown in Fig. 6, indicating that the static poses of the robot are subjected to a long-tail distribution.

D. Deep Reinforcement Learning

We applied six kinds of initial state distributions:

1) Centroids of the obtained 43 clusters by K-Access (abbreviated to KA);
In this paper, we propose to automatically discover initial states for DRL of locomotion skills via the accessibility metric and the K-Access clustering algorithm. With the obtained centroids as the initial states, the data efficiency can be greatly improved, and the robustness can be guaranteed. Despite the extra computation to estimate accessibility values before clustering, the centroids are only computed once based on this learning-free metric, and they can boost the training process regardless of the choices of DRL algorithms, hyperparameters, and reward functions.

The K-Access algorithm performs better than the existing clustering methods because: 1) the direction of transitions is taken into consideration; 2) the neighbors in one cluster are all easy to explore from the centroid; 3) the number of clusters can be assigned and determined by the index value. The generalization to backflipping also shows that intermediate and unstable poses can also be better explored with our method.

Future work will focus on the possible extensions to other tasks that can benefit from the proposed technique. We will also do hardware validation and try other methods for better accessibility estimation, e.g., neural networks.
REFERENCES

[1] S. Shamsuddin et al., “Humanoid robot nao: Review of control and motion exploration,” in 2011 IEEE international conference on Control System, Computing and Engineering, 2011, pp. 511–516.

[2] I. Mordatch et al., “Discovery of complex behaviors through contact-invariant optimization,” ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[3] O. Melon et al., “Receding-horizon perceptive trajectory optimization for dynamic legged locomotion with learned initialization,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2021.

[4] C. Yang et al., “Multi-expert learning of adaptive legged locomotion,” Science Robotics, vol. 5, no. 49, 2020.

[5] X. B. Peng et al., “Deepmimic: Example-guided deep reinforcement learning of physics-based character skills,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

[6] D. Reda et al., “Learning to locomote: Understanding how environment design matters for deep reinforcement learning,” in Motion, Interaction and Games, 2020, pp. 1–10.

[7] J. Yue, “Learning locomotion for legged robots based on reinforcement learning: A survey,” in 2020 International Conference on Electrical Engineering and Control Technologies (CEECT), 2020, pp. 1–7.

[8] J. Hwangbo et al., “Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

[9] N. Rudin et al., “Learning to walk in minutes using massively parallel deep reinforcement learning,” in 5th Annual Conference on Robot Learning, 2021.

[10] M. Neunert et al., “Whole-body nonlinear model predictive control through contacts for quadrupeds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[11] J. Lafaye et al., “Model predictive control for tilt recovery of an omnidirectional wheeled humanoid robot,” in 2015 IEEE international conference on robotics and automation (ICRA), 2015, pp. 5134–5139.

[12] I. Chatzinikolaidis et al., “Contact-implicit trajectory optimization using an analytically solvable contact model for locomotion on variable ground,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6357–6364, 2020.

[13] J. Wang et al., “Whole-body trajectory optimization for humanoid falling,” in 2012 American Control Conference (ACC), 2012, pp. 4837–4842.

[14] K. Yuan et al., “Bayesian optimization for whole-body control of high-degree-of-freedom robots through reduction of dimensionality,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2268–2275, 2019.

[15] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[16] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[17] X. Xu et al., “A clustering-based graph laplacian framework for value function approximation in reinforcement learning,” IEEE Transactions on Cybernetics, vol. 44, no. 12, pp. 2613–2625, 2014.

[18] J. MacQueen et al., “Some methods for classification and analysis of multivariate observations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281–297.

[19] M. Ester et al., “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, ser. KDD ’96. AAAI Press, 1996, p. 226–231.

[20] F. D. Malliaros and M. Vazirgiannis, “Clustering and community detection in directed networks: A survey,” Physics reports, vol. 533, no. 4, pp. 95–142, 2013.

[21] M. Bharathreshe et al., “Distance metric approximation for state-space rrs using supervised learning,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 252–257.

[22] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,” Computer Science Department, Iowa State University, Tech. Rep., 1998.

[23] M. E. Taylor et al., “Metric learning for reinforcement learning agents,” in The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, 2011, pp. 777–784.

[24] N. Dugue and A. Perez, “Directed louvain: maximizing modularity in directed networks,” Ph.D. dissertation, Université d’Orléans, 2015.

[25] Y. Kim et al., “Finding communities in directed networks,” Physical Review E, vol. 81, no. 1, p. 016103, 2010.

[26] L. Bohlin et al., “Community detection and visualization of networks with the map equation framework,” in Measuring scholarly impact. Springer, 2014, pp. 3–34.

[27] D. Gleich, “Hierarchical directed spectral graph partitioning,” Information Networks, vol. 443, 2006.

[28] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” Stanford, Tech. Rep., 2006.

[29] X. B. Peng and M. van de Panne, “Learning locomotion skills using deeprl: Does the choice of action space matter?” in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2017, pp. 1–13.

[30] Petoi. (2021) Bittle robot. [Online]. Available: https://www.kickstarter.com/projects/petoi/bittle

[31] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2017, pp. 1–13.

[32] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2016–2021.

[33] J. Borras and T. Asfour, “A whole-body pose taxonomy for manipulation tasks,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 1578–1585.

[34] J. Borras et al., “A whole-body support pose taxonomy for multi-contact humanoid robot motions,” Science Robotics, vol. 2, no. 13, 2017.

[35] J. C. Bezdek and N. R. Pal, “Cluster validation with generalized dunn’s indices,” in Proceedings 1995 second New Zealand international two-stream conference on artificial neural networks and expert systems, 1995, pp. 190–193.