Unusual Scaling of Kondo Spin Relaxation

Xingyu Shen and Yi Ji

Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
(Dated: December 23, 2020)

The relation between the Kondo spin relaxation rate τ_{sK}^{-1} and the Kondo momentum relaxation rate τ_{eK}^{-1} is explored by using nonlocal spin valves with submicron copper channels that contain dilute iron impurities. A linear relation between τ_{sK}^{-1} and τ_{eK}^{-1} is established under varying temperatures. However, under varying impurity concentrations, τ_{sK}^{-1} remains nearly constant despite variation of τ_{eK}^{-1} by a factor of 10. This surprising relation can be understood by considering spin relaxation through overlapping Kondo screening clouds and supports the physical existence of the elusive Kondo clouds.

The Kondo effect [1, 2] has captured the attention of experimentalists and theorists alike for decades because of its complex many-body physics. In metals with dilute magnetic impurities, the experimental signature of the Kondo effect is the low temperature increase of resistivity, which is attributed to the many-body antiferromagnetic s-d exchange interaction between the impurity spin and the conduction electron spins of the host metal.

The Kondo effect has also been observed in semiconductor quantum dot (QD) systems where an unpaired spin in a QD is coupled to the surrounding electron reservoirs. [3] A popular but controversial physical picture of the Kondo effect is the Kondo screening cloud, which is an electron cloud surrounding the impurity site with an overall spin polarization opposite to the impurity spin. At temperatures well below the Kondo temperature T_K, the net spin of the Kondo cloud completely screens the impurity spin forming a Kondo singlet state. The spatial extent ξ_K of the Kondo cloud is given by $\hbar v_F/k_BT_K$ in ballistic transport regime and $\sqrt{D/k_BT_K}$ in diffusive regime, [4, 5] where v_F is the Fermi velocity, k_B is the Boltzmann constant, and D is the diffusion constant. Experimental evidence for the screening cloud is scarce and therefore its physical existence has been questioned. [6] Recently Borzenets et al. [7] found convincing evidence for micrometer-sized Kondo clouds in a QD system. In diffusive metals, ξ_K is expected to be ~ 100 nm, but has not yet been experimentally confirmed.

In recent years, the Kondo effect crosses paths with spintronics. In the Cu channels of nonlocal spin valves (NLSVs) [8, 9] with dilute Fe impurities, the spin relaxation time and momentum relaxation time, respectively. For spin relaxation in general, Elliott-Yafet (EY) [14, 15] and Dyakonov-Perel (DP) [16] models give explicit relations between spin relaxation and momentum relaxation, respectively. Here τ_s and τ_e are the spin relaxation time and momentum relaxation time, respectively. For spin relaxation in general, Elliott-Yafet (EY) [14, 15] and Dyakonov-Perel (DP) [16] models give explicit relations between τ_{sK}^{-1} and τ_{eK}^{-1}. The EY spin relaxation is caused by weak spin-orbit coupling between energy bands and τ_{sK}^{-1} is proportional to τ_{eK}^{-1}. The ratio τ_{e}/τ_{s} is the spin flip probability α. The DP spin relaxation originates from spin-orbit coupling, caused by inversion symmetry breaking, between two spin subbands within the same energy band and the τ_{sK}^{-1} is inversely proportional to τ_{eK}^{-1}. The Kondo spin relaxation, however, is caused by s-d exchange interaction instead of spin orbit effects. The relation between the Kondo spin relaxation rate τ_{sK}^{-1} and Kondo momentum relaxation rate τ_{eK}^{-1}, to the best of our knowledge, has not yet been explored.

In this work, we extract values of τ_{sK}^{-1} and τ_{eK}^{-1} from Cu-based NLSVs fabricated by 2-step electron beam lithography. Each NLSV includes a spin injector F_1, a spin detector F_2, and a Cu channel, as shown in Figure 1 (a). Magnetic electrodes F_1 and F_2, made of Ni$_81$Fe$_{19}$ alloy (permalloy or Py), are patterned in the first step and Cu channels are patterned in the second step. The materials are deposited by electron beam evaporation. Before the deposition of Cu, low energy ion milling is performed to clean the surface of Py and a 3 nm AlO$_x$ layer is deposited. The Py/AlO$_x$/Cu interface has been shown to provide a higher effective spin polarization than the ohmic Py/Cu interfaces. [17, 18] The distance L between F_1 and F_2 varies from 1 to 5 μm with 1 μm increment. All Cu channels are 500 nm wide and 300 nm thick to prevent the suppression of Kondo clouds. [19, 20] This work involves data from two sample substrates (chip 11 and chip 12) with 10 devices on each. Devices on the same substrate undergo identical fabrication conditions.

The measurement configuration is shown in Figure 1 (a). A low frequency excitation alternating current (AC) I_e is driven from F_1 to the upper end of the Cu channel, and the spin accumulation is detected by measuring the nonlocal voltage V_{nl} between F_2 and the lower end of the channel. Figure 1 (b) shows the nonlocal resistance $R_s = V_{nl}/I_e$ as a function of magnetic field B applied parallel to F_1 and F_2 stripes. The high and low states of R_s correspond to the parallel and antiparallel states of F_1 and F_2 magnetizations, respectively. The difference is the spin signal [21]

$$\Delta R_s = \frac{P_e \rho_{cu} \lambda_{cu} e^{-\frac{\Delta s}{A_{cu}}}}{A_{cu}},$$

where P_e is the effective spin polarization of F_1 and F_2, ρ_{cu} the Cu resistivity, λ_{cu} the Cu spin relaxation length, and A_{cu} the Cu channel cross sectional area. $\Delta R_s(T)$ of
each NLSV is measured from 5 K to 100 K and Figure 1 (c) shows the data of device 11-43 (device 43 on chip 11). As T decreases, ΔR_s initially increases, reaching its maximum at 30 K, and then decreases. This feature is well documented for NLSVs and convincingly attributed to the Kondo effect. [10–13, 26, 27]

The resistivity ρ_{cu} of a given NLSV is deduced from its Cu channel resistance R_{cu}, which is obtained by sending in a current through the channel and measuring the voltage difference between F_1 and F_2. The $\rho_{cu}(T)$ for device 11-43 is shown in Figure 1 (d) with $\rho_{cu} = 0.43 \mu\Omega$-cm at 5 K and $\rho_{cu} = 2.60 \mu\Omega$-cm at 295 K. The ratio of the two values (6.1) is the residual resistivity ratio (RRR). The inset of Figure 1 (d) shows the low temperature portion of $\rho_{cu}(T)$. The low T increase of ρ_{cu} indicates Kondo effect from dilute magnetic impurities in Cu.

Next, we extract the average P_e and λ_{cu} values of devices on the same substrate. ΔR_s versus T is plotted for 10 devices on chip 11 at 30 K in Figure 2 (a). Fitting Eq. (1) to the plot yields $\lambda_{cu} = 2.6 \pm 0.1 \mu$m and $P_e = 0.066 \pm 0.003$. The average ρ_{cu} used in this process is deduced from the linear fitting of the R_{cu} versus L data in Figure 2 (b). In this manner, the average P_e and λ_{cu} are obtained between 5 K and 100 K and shown in Figure 2 (c) and its inset, respectively. $\lambda_{cu}(T)$ resembles $\Delta R_s(T)$ in Figure 1(c) and reaches its maximum of 2.6 μm at 30 K. λ_{cu} decreases to 2.2 μm at 5 K because of the enhanced Kondo spin relaxation. The plot of $P_e(T)$ shows a rather flat trend around 0.07 within the temperature range of our measurements.

As suggested by previous works on Py/Cu NLSVs, the Kondo effect originates from Fe impurities. [10, 12, 26, 27] The maximum λ_{cu} occurs at 30 K, which is the Kondo temperature T_K for Fe impurities in Cu host. Data analysis of $\tau_s^{-1}(T)$ and $\tau_e^{-1}(T)$ later in the text is also consistent with $T_K = 30$ K. The Fe impurities are likely introduced in the fabrication processes. When the Py surface is ion milled, Fe atoms are removed and deposited on the side walls of the resist. When Cu is evaporated, the vapor flux of Cu transfers momentum to the Fe atoms on the side walls and redeposits them into the Cu channel. In some of the previous works, [10, 12, 26, 27] Fe impurities are concentrated near the ohmic Py/Cu interfaces, and as a result the spin polarization $P_e(T)$ is suppressed at low T. In our devices, the Fe impurities are located throughout the Cu channel. This is evident from the low T upturn of $\rho_{cu}(T)$, the low T downturn of $\lambda_{cu}(T)$, and the flat trend of $P_e(T)$.

It is noticeable that data points disperse around the fitted lines in Figure 2 (a) and (b). For the two devices with $L = 3 \mu$m, for example, data points of ΔR_s are above the fitted line and those of R_{cu} are below. The two devices with $L = 4 \mu$m have ΔR_s below the fitted line and R_{cu} above. These indicate variations of λ_{cu} and ρ_{cu} between devices. Assuming a common P_e (the fitted P_e) for all devices on the same substrate at a specific T, we deduce λ_{cu} for each individual NLSV from its ΔR_s and ρ_{cu} by using Eq. (1). $\lambda_{cu}(T)$ for device 11-43 is shown in Figure 2 (d) with a maximum $\lambda_{cu} = 3.0 \pm 0.1 \mu$m at 30 K. In this manner $\lambda_{cu}(T)$ is obtained for all 20 NLSVs. The spin relaxation rate $\tau_s^{-1}(T)$ is then calculated from $\lambda_{cu}(T)$ by using the relation $\lambda_{cu} = \sqrt{D\tau_s}$ and shown in Figure 3 (a) and (b) for devices 11-33 and 12-32, respectively. $D = \frac{1}{2}v_F^2\tau_s$ is the diffusion constant and $v_F = 1.57 \times 10^6$ m/s is the Fermi velocity of Cu. τ_s can be derived from ρ_{cu} by using the Drude model $\rho_{cu} = m/(\tau_s e^2)$, where $n = 8.47 \times 10^{28}$ m$^{-3}$ is the Cu electron density and m and e are electron mass and charge, respectively. With a decreasing T, τ_s^{-1} initially decreases, reaches its minimum

![FIG. 1](image1.png)

(a) SEM image of a NLSV. Plots of (b) R_s vs. B, (c) ΔR_s vs. T, and (d) ρ_{cu} versus T for device 11-43 ($L = 3.0 \mu$m).

![FIG. 2](image2.png)

(a) Spin signal ΔR_s and (b) Cu resistance R_{cu} versus channel length L for NLSVs on chip 11 at 30 K. (c) Fitted average P_e and λ_{cu} (inset) as a function of T. (d) λ_{cu} versus T for device 11-43.
be described by a phenomenological formula

$$\rho_K(T) = \rho_{K0} \left(\frac{T_K' \alpha}{T^2 + T_K^2} \right)^s,$$

(3)

where $T_K' = T_K/\sqrt{2T_0 - 1}$, $s = 0.225$ and $T_K = 30$ K. From $\tau_{s}^{-1} = \tau_{e,def}^{-1} + \tau_{e,ph}^{-1} + \tau_{sK}^{-1}$, the total resistivity is

$$\rho_{cu}(T) = \rho_{def} + AT^5 + \rho_K(T).$$

(4)

Fitting Eq. (1) along with Eq. (3) to the measured $\rho_{cu}(T)$ data below 20 K yields ρ_{def}, A, and ρ_{K0}. Note that the fitting does not work well for $T > 20$ K, because $\rho_{ph}(T) = AT^5$ is an approximation valid at low T. For the data of 11-33 and 12-32 in the insets of Figure 3 (a) and (b), the fitted values of ρ_{K0} are 0.0013 μcm and 0.0067 μcm, respectively. ρ_{K0} or τ_{sK0}^{-1} represents the ρ_K or τ_{sK}^{-1} value at $T < T_K$.

To extract α_{def}, α_{ph}, and α_K, we fit Eq. (2) to the $\tau_s^{-1}(T)$ data by using the empirical data of $\tau_{e,def}^{-1}$, $\tau_{e,ph}^{-1}(T)$, and $\tau_{sK}^{-1}(T)$ obtained from the measured $\rho_{cu}(T)$ and fitting. More specifically, $\tau_{e,def}^{-1}$ can be obtained from the fitted ρ_{def} and $\tau_{sK}^{-1}(T)$ from the fitted ρ_{K0} and Eq. (3). For $\tau_{e,ph}^{-1}(T)$ we use the relation $\rho_{ph}(T) = \rho_{cu}(T) - \rho_{def} - \rho_K(T)$. We do not use $\rho_{ph}(T) = AT^5$ because it significantly deviates from experimental data when $T > 20$ K. The best fits for α_K are 0.30 ± 0.03 and 0.066 ± 0.006 and the best fits for α_{ph} are $(8.4 \pm 0.3) \times 10^{-4}$ and $(9.3 \pm 0.4) \times 10^{-4}$ for devices 11-33 and 12-32, respectively. While α_{ph} values are comparable, α_K values are quite different. Again, the results point to the unusual scaling for Kondo spin relaxation.

We should justify the assumed linear relation $\tau_{sK}^{-1}(T) = \alpha_K \cdot \tau_{sK}^{-1}(T)$ under varying T in Eq. (2). In Figure 3 (c), τ_s^{-1} is plotted versus τ_{sK}^{-1} between 5 K and 30 K for the two NLSVs and we observe clear linear dependences. At $T \leq 30$ K, the variation of τ_s^{-1} should be dominated by τ_{sK}^{-1}, because $\tau_{e,def}^{-1}$ is T independent and $\tau_{e,ph}^{-1}$ is negligible compared to τ_{sK}^{-1}. Therefore, Figure 3 (c) confirms the linear relation between $\tau_{sK}^{-1}(T)$ and $\tau_{sK}^{-1}(T)$ under varying T. In addition, the slopes of the linear fittings to the τ_s^{-1} versus τ_{sK}^{-1} data are very close to the fitted α_K values using Eq. (2). Similarly, linear relation for phonons between $\tau_{e,ph}^{-1}(T)$ and $\tau_{e,ph}^{-1}(T)$ is also verified in Figure 3 (d). The data of $\tau_{e,ph}^{-1}$ is obtained by subtracting $\alpha_{def} \cdot \tau_{e,def}^{-1}$ and $\alpha_K \cdot \tau_{sK}^{-1}$ from the total τ_s^{-1}. The slopes of the fitted lines are the same as the fitted α_K values by using Eq. (2).

Next, we demonstrate the unusual relation between τ_{sK}^{-1} and τ_{sK}^{-1} under a varying impurity concentration C_{Fe} which is approximately proportional to ρ_{K0} or τ_{sK0}^{-1}. Figure 4 (a) shows α_K versus ρ_{K0} extracted from all NLSVs. Strikingly, α_K decreases drastically from 0.44 ± 0.05 to 0.045 ± 0.004 as $\rho_{K0} \propto \tau_{sK0}^{-1}$

around 30 K, and then increases upon further cooling. This resembles Kondo effect’s low temperature increase of ρ_{cu} as shown in the insets of Figure 3 (a) and (b). The low T increase of ρ_{cu} of 11-33 is much smaller than that of 12-32, indicating a lower impurity concentration in 11-33. However, the low T increase of τ_{s}^{-1} of the two devices are surprisingly comparable. This provides the first hint for an unusual relation between Kondo momentum relaxation and Kondo spin relaxation.

Applying Matthiessen’s rule to spin relaxation, the total τ_{s}^{-1} is given by $\tau_{s}^{-1} = \tau_{s,def}^{-1} + \tau_{s,ph}^{-1} + \tau_{sK}^{-1}$, where $\tau_{s,def}^{-1}$, $\tau_{s,ph}^{-1}$, and τ_{sK}^{-1} are the spin relaxation rates attributed to defects, phonon, and Kondo effects, respectively. Defining $\tau_{s,def}^{-1}$, $\tau_{e,ph}^{-1}$, and τ_{sK}^{-1} as the corresponding momentum relaxation rates and α_{def}, α_{ph}, and α_K as the associated spin flip probabilities, we have

$$\frac{1}{\tau_s(T)} = \alpha_{def} \frac{1}{\tau_{e,def}} + \alpha_{ph} \frac{1}{\tau_{e,ph}(T)} + \alpha_K \frac{1}{\tau_{sK}(T)}.$$

(2)

It is well justified to assume a linear relation between τ_{s}^{-1} and τ_{e}^{-1} for defects and phonons, because EY mechanism is dominant in these processes. We will show later that τ_{sK}^{-1} is also proportional to τ_{sK}^{-1} under varying T.

The τ_{s}^{-1} of each type (total, defect, phonon, or Kondo) is linked to the corresponding ρ by the Drude model $\rho = m/(\tau_{s}ne^2)$. The defect resistivity ρ_{def} is T independent and the phonon resistivity can be described as $\rho_{ph}(T) = AT^5$ at low T, where A is constant related to the Debye temperature. [28] The Kondo resistivity can

FIG. 3. Spin relaxation rate τ_{s}^{-1} versus T for (a) device 11-33 and (b) device 12-32. $\rho_{cu}(T)$ plots are shown in the insets. (c) $\tau_{s,ph}^{-1}$ versus $\tau_{s,ph}^{-1}$ for $T \leq 30$ K for the two devices. The slopes of the linear fittings are compared with α_K values obtained from fittings with Eq. (2). (d) $\tau_{s,ph}^{-1}$ versus $\tau_{e,ph}^{-1}$ plots.
increases from $<0.001 \mu \Omega \cdot \text{cm}$ to $>0.009 \mu \Omega \cdot \text{cm}$. As a comparison, Figure 4 (b) shows α_{ph} versus $\rho_{ph,100K}$, which is the ρ_{ph} at 100K, for all NLSVs. α_{ph} remains nearly a constant and independent of $\rho_{ph,100K}$ as expected for processes governed by EY mechanism. The average value of α_{ph} ($\sim 8.5 \times 10^{-4}$) is in good agreement with previous works. α_{def} is 3.2×10^{-4} and the data are shown in the Supplementary Materials (Note S1). The decreasing trend in Figure 4 (a) suggests that the relation between τ_{sK0}^{-1} and τ_{sK0}^{-1} is not linear, where τ_{sK0}^{-1} is the value of τ_{sK0}^{-1} at $T \ll T_K$. Figure 5 (a) shows τ_{sK0}^{-1}, obtained by using the definition $\tau_{sK0}^{-1} = \alpha_K \cdot \tau_{K0}^{-1}^{-1}$, versus τ_{K0}^{-1}. While τ_{K0}^{-1} varies by a factor of 10, τ_{sK0}^{-1} stays nearly constant clearly defying a linear dependence. In contrast, the few previous theoretical treatments of Kondo spin relaxation assume a linear relation and yield a constant α_K of 2/3. α_{def} The dependences shown in Figure 4 (a) and 5 (a) have been neither anticipated nor addressed previously. These plots with horizontal error bars are available in the Supplementary Materials (Note S2). The C_{Fe} for each NLSV can be extracted from the temperature T_{min} that corresponds to the minimum of the fitted $\rho_{Fe}(T)$ curve. α_{def} Figure 5 (b) shows the extracted C_{Fe} versus ρ_{K0} for all NLSVs.

To address this unusual scaling between the Kondo momentum and spin relaxation, the physical picture of the Kondo cloud becomes appealing. If Kondo clouds exist, it is valid to consider them as momentum scattering barriers as well as spin scattering barriers for conduction electrons passing through them. α_{def} The τ_{K0}^{-1} should be proportional to the average charge density of the cloud. The τ_{K0}^{-1} should be proportional to the average spin density of the cloud. It may also be related to the relative orientation between the conduction electron spin and the polarization direction of the cloud. The observed unusual scaling arises when the Kondo clouds of adjacent impurities overlap.

Two relevant length scales are the size of a single Kondo cloud ξ_K and the average distance d_{Fe} between Fe impurities. The former is estimated to be $\xi_K = \sqrt{\hbar D/k_B T_K} \approx 100 \text{ nm}$ for diffusive Cu channels. The latter is $10 \text{ nm} < d_{Fe} < 20 \text{ nm}$, estimated from the C_{Fe} of our NLSVs, and obviously $\xi_K > d_{Fe}$. Therefore, the Kondo clouds from adjacent impurities overlap and the conduction electrons associated with the clouds form a continuous medium in the Cu channel. The medium can be characterized by its local charge density, spin density, and polarization direction with some spatial variations. The charge density of overlapping clouds should simply add up. However, the spin density of overlapping clouds may cancel out each other. Because impurity spin directions are random and so are the polarization directions of the clouds. Such cancellation effect of spin density has important implications on the τ_{K0}^{-1}. Figure 5 (c) is a qualitative illustration of the spin density distribution and polarization directions of the Kondo medium. Domains with random polarization directions are formed in the medium around impurity sites.

When a conduction electron traverses through the medium, the spin and momentum relaxation occur through the interaction between the electron and the Kondo medium. The τ_{K0}^{-1} or τ_{sK0}^{-1} should be proportional to the average charge density or the average spin density of the medium, respectively, along the electron’s path. The influence of the polarization directions on τ_{sK0}^{-1} can be neglected, because the traversing electron.
passes through many ($\approx 10^4$) randomly oriented Kondo domains within the time of τ_{eK0}. As C_{Fe} increases, more electrons are added to the Kondo medium, leading to a higher charge density and a higher τ_{eK0}^{-1}. However, the spin density may not increase, because a higher C_{Fe} enhances cloud overlapping and the cancellation effect. The exact trend is challenging to predict, because it requires precise knowledge of the spatial distributions of spin and charge densities of Kondo clouds and how overlapping clouds interact. From experimental results in Figure 5 (a), we infer that the average spin density of the medium maintains a nearly constant value within the range of 1 ppm $< C_{Fe} < 12$ ppm, corresponding to 10 nm $< d_{Fe} < 20$ nm. The red curve in Figure 5 (a) is a guide to the eye with a reasonable assumption that $\tau_{eK0}^{-1} \rightarrow 0$ as $\tau_{eK0}^{-1} \rightarrow 0$. We speculate that the initial slope of the curve, representing α_K in the limit of $\tau_{eK0}^{-1} \rightarrow 0$, should be the theoretically predicted $2/3$.[2,27]

In conclusion, we extract the Kondo momentum relaxation rate τ_{eK0}^{-1} and the Kondo spin relaxation rate τ_{sK0}^{-1} from Cu-based nonlocal spin valves with Fe impurities. While τ_{eK0}^{-1} is tuned by a factor of 10 by varying Fe concentrations, τ_{sK0}^{-1} remains nearly constant and defies a more intuitive linear dependence on τ_{eK0}^{-1}. Such a relation can be understood by considering a continuous Kondo medium formed by overlapping Kondo clouds. Spin relaxation occurs through interaction between a conduction electron spin and the medium. As the impurity concentration increases, the polarized spins of overlapping Kondo clouds partially cancel each other, and the average spin density of the Kondo medium reaches a stable value giving rise to a nearly constant τ_{sK0}^{-1}. Our experimental results provide evidence for the physical existence of the elusive Kondo screening clouds.

References:

[1] W. J. De Haas and G. J. Van Den Berg, Physica 3, 440 (1936).
[2] J. Kondo, Progress of Theoretical Physics 32, 37 (1964).
[3] D. Goldhaber-Gordon, J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Physical Review Letters 81, 5225 (1998).
[4] V. Chandrasekhar, C. Van Haesendonck, and A. Zawadowski, Kondo Effect and Dephasing in Low-Dimensional Metallic Systems, Kondo Effect and Dephasing in Low-Dimensional Metallic Systems (Kluwer Academic Publishers, 2000).
[5] I. Affleck, arXiv:0911.2209 (2009).
[6] J. B. Boyce and C. P. Slichter, Physical Review Letters 32, 61 (1974).
[7] I. V. Borzenets, J. Shim, J. C. H. Chen, A. Ludwig, A. D. Wieck, S. Tarucha, H. S. Sim, and M. Yamamoto, Nature 579, 210 (2020).
[8] M. Johnson and R. H. Silsbee, Physical Review Letters 55, 1790 (1985).
[9] F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2001).
[10] L. O’Brien, M. J. Erickson, D. Spivak, H. Ambaye, R. J. Hoyette, V. Lauter, P. A. Crowell, and C. Leighton, Nat Commun 5, 3927 (2014).
[11] J. T. Batley, M. C. Rosamond, M. Ali, E. H. Linfield, G. Burnell, and B. J. Hickey, Physical Review B 92 (2015).
[12] K. Hamaya, T. Kurokawa, S. Oki, S. Yamada, T. Kanashima, and T. Taniyama, Physical Review B 94, 140401(R) (2016).
[13] J. D. Watts, L. O’Brien, J. S. Jeong, K. A. Mkhoyan, P. A. Crowell, and C. Leighton, Physical Review Materials 3, 124409 (2019).
[14] R. J. Elliott, Physical Review 96, 266 (1954).
[15] Y. Yafet, Physics Letters A 98, 287 (1983).
[16] M. I. Dyakonov and V. I. Perel, Soviet Physics Solid State, Ussr 13, 3023 (1972).
[17] X. J. Wang, H. Zou, L. Ocola, and Y. Ji, Applied Physics Letters 95, 022519 (2009).
[18] Y. J. Cai, Y. M. Luo, C. Zhou, C. Qin, S. H. Chen, Y. Z. Wu, and Y. Ji, Journal of Physics D: Applied Physics 49, 185003 (2016).
[19] G. L. Chen and N. Giordano, Physical Review Letters 66, 209 (1991).
[20] M. A. Blachly and N. Giordano, Physical Review B 51, 12537 (1995).
[21] M. Johnson, Physical Review Letters 70, 2142 (1993).
[22] T. Kimura, T. Sato, and Y. Otani, Physical Review Letters 100, 066602 (2008).
[23] G. Mihajlovic, J. E. Pearson, S. D. Bader, and A. Hoffmann, Physical Review Letters 104, 237202 (2010).
[24] H. Zou and Y. Ji, Applied Physics Letters 101, 082401 (2012).
[25] E. Villamor, M. Isasa, L. E. Hueso, and F. Casanova, Physical Review B 87, 094417 (2013).
[26] L. O’Brien, D. Spivak, J. S. Jeong, K. A. Mkhoyan, P. A. Crowell, and C. Leighton, Physical Review B 93, 014413 (2016).
[27] K. W. Kim, L. O’Brien, P. A. Crowell, C. Leighton, and M. D. Stiles, Physical Review B 95, 104404 (2017).
[28] J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960).
[29] P. Monod and F. Beuneu, Physical Review B 19, 911 (1979).
[30] J. P. Franck, D. L. Martin, and F. D. Manchester, Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 263, 494 (1961).
[31] P. Simon and I. Affleck, Physical Review B 68, 115304 (2003).