SIGNIFICANCE OF THE PROLINE ASSAY IN THE STUDY OF ANTI-MSV CELL-MEDIATED IMMUNE REACTIONS

Y. HENIN, E. GOMARD, S. GISSELBRECHT AND J. P. LEVY

From the Laboratoire d’Immunologie et Virologie des Tumeurs, INSERM U-152, Hôpital Cochin, Bâtiment G. Roussy, Paris

Received 8 September 1978 Accepted 4 November 1978

Summary.—The cytosis of 3H-proline-labelled tumour cells growing in monolayer by syngeneic immune lymphocytes has been studied in the murine sarcoma virus (MSV) system. Results show that the proline assay (PA) is a convenient way to reveal the activity of cytolytic T lymphocytes against FMR-like antigens. Using the same effector and target cells, the classical chromium-release test (CRT) fails to reveal any cytolytic activity, and the visual microcytotoxicity assay as well as several derived isotopic methods are known to reveal mainly non-specific reactions due to non-T effector cells. The PA, therefore, appears to be a useful method for testing an antitumour reaction against tumour cells in monolayer. The results are, however, different from those obtained in the CRT using the same effector cells but lymphoma cells in suspension as targets, the major discrepancies being the following: (a) the PA does not provide truly quantitative data, due to the very high lymphoid: effector cell ratios needed in this test; (b) unexpected patterns of antigenic specificities are sometimes detected in PA; (c) a non-specific natural killer activity of non-T cells is frequently detected in the PA, masking at low lymphoid: target cell ratios the T-dependent specific cytosis; (d) the H-2 restriction of the cytolytic T-cell activity is poorly detected in PA, whereas the role of H-2 antigens is clearly shown by blocking experiments using anti-H-2 antibodies.

One of the major problems facing tumour immunologists studying cell-mediated reactions results from the disparity in the results with different in vitro cytotoxicity assays. Such disparity could be caused by variations in methodological parameters, which include the nature of the target cells and the length of the incubation period in vitro with the effector cells. Both the original visual microcytotoxicity assay (MA) (Takasugi & Klein, 1970) and several derived radioisotopic methods (Jagarlamoody et al., 1971; Cohen et al., 1972; Hashimoto & Sudo, 1971; Permann & Holm, 1969; Hashimoto et al., 1969; Bean et al., 1973) require long incubation periods and target cells in monolayers. Most of them reveal simultaneously cytostatic and cytolytic activities due to different effector cell populations, including T and non-T cells as it has been shown, for example, in the murine sarcoma virus (MSV) system (Lamon et al., 1973; Plata et al., 1974; Owen & Seeger, 1973). The cytostatic phenomenon mediated by non-T cells being, at least for the main part, non-specific (Owen & Seeger, 1973; Senik et al., 1974) it is often difficult to assess the specificity of the reactions measured by such methods. More antigen-specific reactions are generally obtained using short-term assays with ascitic lymphoma cells or tumour cells cultivated in suspension as targets. Under these conditions, very clear results can be obtained in the MSV system, regardless of the isotopic marker e.g., 51Cr (Leclerc et al., 1972), 125I UdR (Oldham & Herberman, 1973) or 3H-proline (Shiku et al., 1975; Oldham et al., 1977). These tests appear especially valuable in revealing the activity of cytolytic T lymphocytes.
(CTL). They are, however, much less efficient with target cells in monolayers. Relatively few in vitro-maintained tumour cells being available in suspension, only a limited number of tumour antigens can, therefore, be studied under optimal conditions. The availability of a specific cytotoxic assay using target cells in monolayers but revealing only cytolytic reactions would, therefore, constitute a major advance in tumour immunology.

The proline assay (PA) was initially proposed (Bean et al., 1973) because: (1) 3H-proline is retained by the target cells longer than 51Cr or 3H-thymidine; (2) it is less toxic than 13IUdR or $[^3$H]-Tdr; (3) when released by destroyed target cells the label is not re-utilized, because cold proline is present in large excess in the medium; (4) the results are not noticeably affected by proliferation or cytostasis of target cells during the incubation, so that only cytolysis is measured. This method appeared, therefore, as a candidate to replace other tests in the study of target cells in monolayers. It has notably been applied in the study of chemically induced sarcomas (Shiku et al., 1975) and the MSV tumour (Weiland & Mussgay, 1976). Here we report results of experiments using the latter system, aimed at determining the nature of effector cells, the level of H-2 restriction of target-cell cytolysis and the antigenic specificities involved. The results show on the one hand that the PA clearly reveals CTL-mediated reactions but, on the other hand, that the results obtained are not identical with those found using the Cr-release test (CRT). The major discrepancies concern the frequent detection of non-T-cell-mediated cytolysis, the lower precision in the quantification of the reactions, the less clear H-2 restriction of the CTL activity, and the unexpected lack of activity of some effector-cell populations. This suggests that some caution is necessary in the interpretation of antitumour reactions measured using PA, further emphasizing the difficulty in comparing antitumour cell-mediated reactions in different assays.

MATERIALS AND METHODS

Mice.—One to 2-months old C57BL/6 (B6) BALB/B, B10.D2 and BALB/c mice were raised in our own colonies.

Viruses.—Tumours were induced in vivo, either by MSV-Moloney isolate, (maintained in vivo by regular acellular passages in newborn B6) or by the Friend leukaemia virus (FLV) (maintained in vivo in adult BALB/c). To infect cultured cells in vitro, the same agents or in vitro-produced viruses were used. The Moloney leukemia virus (MLV) was harvested from the supernatant of virus-infected non-Fv.1-restricted 3T3.FL lines, initially derived from NIH Swiss embryos. The Gross leukaemia virus (GLV) was similarly obtained from an in vitro-infected SCI line derived from wild mice, the Rauscher leukaemia virus (RLV) from a BALB/c 3T3 line in vitro transformed by a RLV pseudo-type of MSV.

Cell lines.—Their main characteristics are summarized in Table I.

Immune lymphocytes.—Anti-MSV immune lymphocytes were harvested from the spleens of adult mice inoculated 10–15 days before with 0.2 ml of a 10$^{-1}$ dilution of the virus. Anti-FLV immune lymphocytes were obtained similarly from the spleen of adult B6, 10–20 days after an 0.1 ml i.p. inoculation of 1/5 diluted FLV. Spleen-cell pellets were incubated 20 sec in distilled water to eliminate red blood cells and the normal osmolality was then adjusted by adding hypertonic NaCl. The cells were washed in medium and their concentration adjusted to the test density. Normal spleen cells from the same inbred strain of mice were used as controls.

Effector-cell purification.—(1) T cell elimination. Non-T cells were purified by eliminating Thy-1-2 cells from the whole-spleen cell suspensions using AKR anti-Thy-1-2 serum and rabbit complement. The preparation and specificity of the anti-Thy-1-2 serum, and the technical conditions used have been described previously (Leclere et al., 1973).

(2) T-cell enrichment. T cells were enriched by passing the whole-spleen cell suspensions through nylon-wool columns (Julius et al., 1973). Columns were first incubated for 1 h at 37°C with 25 ml of medium supplemented with foetal calf serum (FCS). After washing,
PROLINE ASSAY AND MSV TUMOURS

Cell lines	Reference	Virus produced	Transforming agent	Origin
MSB	Pearson et al., 1973	M-MSV(MLV)	M-MSV	C57BL/6
M3C	Massicot et al., 1971	M-MSV(MLV)	M-MSV	BALB/c
B6 MEF	Our laboratory	None	None	C57BL/6
NZB, clone S-2	Levy, 1973	Xenotropic	None	NZB
SWISS 3T3	Todaro & Green, 1963	None	None	Non-inbred Swiss
BALB 3T3	Aaronson & Todaro, 1968	None	None	BALB/c
C3H	Reznikoff et al., 1973	None	None	C3H/He
C3H Moloney	Our laboratory	MLV	None	C3H/He
K-BALB	Aaronson & Weaver, 1971	None	Ki-MSV	BALB/c
K-BALB-Moloney	Our laboratory	Ki-MSV(MLV)	Ki-MSV	BALB/c
MSV-85	Aaronson & Rowe, 1970	None	HT-1-MSV§	BALB/c
SC-1	Hartley & Rowe, 1975	None	None	Wild mouse
CCC S-L⁻	Fischinger et al., 1974	Xenotropic RD-114	None	Cat
NRK	Duc-Nguyen et al., 1966	None	None	Rat

† MSV Moloney isolate.
‡ MSV Kirsten isolate.
§ HT-1 isolate of the M-MSV.

2 x 10⁸ lymphocytes in 2 ml of FCS-supplemented medium were added, and 30 min later they were passed at a rate of 1 ml/min.

3) Macrophage elimination. Macrophages were removed from unfractionated spleen-cell suspensions by: (a) carbonyl iron and magnet treatment; (b) plastic culture-flask adherence at 37°C for 1 h (Golstein & Blomgren, 1973); (c) successive treatment by both methods.

The ³⁵H-proline assay (PA).—PA was performed using a slightly modified version of the original method of Bean et al., (1973). Target-cell monolayers at 80% confluence in T-30 flasks were washed twice with minimum Eagle’s medium (MEM) lacking non-essential amino acids (including proline) and incubated overnight in MEM lacking non-essential amino acids plus 15% FCS at 37°C in a 5% CO₂ atmosphere, in the presence of 100 μCi ³⁵H-proline (L-proline ³⁵H-5, sp. act.: 22 Ci/mmol, CEA, Gif sur Yvette, France). The following day the culture was washed twice with complete MEM containing 15% FCS and 2% non-essential amino acids and incubated for 20–30 min at 37°C. The cells were detached with 0.05% trypsin, centrifuged 10 min at 800g, suspended in 1 ml MEM containing 10% FCS and 1% non-essential amino acids (test medium), and the cell concentration adjusted to 10⁶ cells/ml. Ten μl containing 1000 target cells were distributed with a microlitre syringe into the wells of microtest II plates prefilled with 0.1 ml of test medium. Effector cells were added ~4 h later in 0.1 ml of test medium, the lymphoid target cell (L/T) ratios varying from 25:1 to 300:1. Six to 8 replicates were used for each L/T ratio. After 24–48 h incubation at 37°C under 5% CO₂, the plates were inverted, shaken slightly to remove medium, then submerged ×3 in prewarmed PBS containing 10% FCS, and wiped with blotting paper. The cells remaining alive were harvested by adding 250 μl of 0.05% trypsin to each well, and transferred to scintillation vials. The arithmetic mean of 6–8 wells was calculated in order to estimate percentage relative inhibition of tumour cells after incubation with normal or immune lymphocytes, this inhibition being expressed as follows:

\[
\text{inhibition} = \frac{100 \times (\text{mean ct/min after incubation with normal lymphocytes} - \text{mean ct/min after incubation with immune lymphocytes})}{\text{mean ct/min after incubation with normal lymphocytes}}
\]

The activity of the effector-cell suspension was also expressed in lytic units per 10⁶ effector cells (LU) as previously reported (Plata et al., 1975): one LU represents the number of effector cells necessary to decrease by 50% the radioactivity of 1000 target cells. All statistical analyses were performed using Student’s t test. The levels of significance were expressed as usual: NS = not significant, * = 0.05 > P > 0.01, ** = 0.01 > P > 0.001, *** = P < 0.001.

The ⁵¹Cr-release test (CRT) was performed as previously described (Leclerc et al., 1972)
Target cells	Normal Spleen cells	Immune spleen cells	Inhibition %†
Expt 1:			
MSB	4777 ± 462†	2426 ± 779	49.2***
MEF	NT	NT	
Expt 2:			
MSB	3495 ± 512	3473 ± 733	0
MEF	NT	NT	
Expt 3:			
MSB	4930 ± 950	5265 ± 672	0
MEF	NT	NT	

Spleen cell:target cell ratio	Normal spleen cells	Immune spleen cells	Inhibition %
100:1			
Normal	4537 ± 633	1880 ± 554	59.6***
MEF	4621 ± 1011	4761 ± 207	0
200:1			
Normal	4184 ± 368	1154 ± 276	72.4***
MEF	4751 ± 263	4481 ± 475	5.7 NS§
300:1			
Normal	4572 ± 320	2210 ± 365	48.1***
MEF	799 ± 199	917 ± 269	0

† Arithmetic mean ct/min of 6–8 replicates ± s.d.
†† Percentage reduction of target-cell radioactivity calculated as described in Materials and Methods. The asterisks indicate the reduction of ct/min significant by Student's t test. * = 0.05 > P > 0.01
** = 0.01 > P > 0.001
*** = P < 0.001

§ Not significant.
‖ Not tested.
using as target cells the B6 Moloney-virus-induced MBL2 lymphoma cells.

Blocking of the cytolyis by antisera.—1000 target cells in 10 μl of medium containing 10% FCS and 1% non-essential amino acids were incubated for 2 h at 37°C in 5% CO₂ in the presence of 0-1 ml of normal inactivated or immune serum diluted 1:2 or medium alone. The sera were then removed using a Pasteur pipette, and 3×10⁵ effector cells in 0-1 ml were added to each well. After 24 h the final activity was calculated by comparing the cytolyis of target cells in the presence of normal or immune serum.

RESULTS

Levels and specificity of the anti-MSV reactions detected in PA

The spleen cells of MSV regressors, harvested at the beginning of tumour rejection some 12-16 days after virus inoculation, were always effective in PA against MSV tumour cells, when 300:1 L/T ratios were used (Table II). With decreasing ratios, lower levels of cytolytic activity were detected. When aliquots of

TABLE III.—Cytolytic activity of MSV-infected B6 mouse spleen cells as detected by 3 different assays

Spleen cell target cell ratio	CRT with MBL2	CRT with MSB	PA with MBS	
target	target	target	target	
Expt 1				
200:1	45-6	0	59-6	
100:1	43-0	0	49-2	
50:1	22-4	0	16-1	
20:1	13-3	0	0	
Expt 2				
200:1	59-8	0	39-0	
100:1	57-5	0	21-5	
50:1	23-2	0	7-3	
20:1	17-2	0	0	

† 10,000 per well.
‡ 5000 per well.
§ 1000 MSB per well.
|| Calculated as described in Materials and Methods after 18 h incubation with the 3 assays.

The same effector and target-cell preparations were tested in CRT, no activity was found (Table III). Nevertheless, the same effector-cell preparations were always highly efficient in CRT against MBL2 lymphoma cells in suspension. The maximum cytolytic activity detected against MSV tumour cells in monolayer (PA) or against the antigenically related MBL2 cells in suspension (CRT) were in the same range, but when different L/T ratios were used in both tests it appeared that, in terms of LU/10⁶ effector cells, CRT was more sensitive than PA. However, the latter method was able to show cytolyis of MSV tumour cells, which CRT failed to detect.

A good level of cytolyis was also found in PA when normal mouse embryonic fibroblasts (MEF) infected in vitro with different transforming or non-transforming type C viruses, were used as target cells (Table IV). MLV, FLV or RLV-infected cells were regularly lysed, whereas normal MEF or GLV-infected MEF were unaffected. From these results it can be suggested that: (a) an "FMR-like" antigen could be involved in PA as in classical CRT (Gomard et al., 1978) and (b) an MSV-specific, or tumour-specific antigen is certainly not concerned, since not only MSV tumour cells but also type C virus-infected but non-transformed cells can function as targets in PA.

A somewhat more surprising result was found when anti-MSV and anti-FLV effectors were compared in PA against MSV tumour cells. Whereas anti-FLV and anti-MSV lymphocytes behave similarly in CRT against MBL2 target cells (Table V), B6 anti-FLV were normally inactive in PA, or remained much less efficient than anti-MSV lymphocytes. These results could be taken to suggest that the antigen recognized on MBL2 cells was lacking from the surface of MSV-transformed cells. This hypothesis is, however, unlikely since: (a) the same anti-FLV lymphocytes were also inefficient against FLV-infected mouse embryonic fibroblasts; (b) 6-days in vitro coculture of anti-FLV lympho-
TABLE IV.—Cytolytic activity (as % inhibition†) of anti-MSV spleen cells detected in PA against MSB or type C virus-infected MEF

Target cells†	Spleen cells§	Normal	MSB	MLV-infected MEF	FLV-infected MEF	R-MSV-infected MEF	GLV-infected MEF
Expt 1	46.7***	0	36.6***	21.2***	—	13-3 NS	
Expt 2	34.6***	—	—	57.2***	51-0***	—	
Expt 3	47.2***	—	33-1***	35.8*	12.7*	12-6 NS	
Expt 4	28.6***	—	—	42-0***	—	17-5 NS	
Expt 5	34-6***	0	—	57-3***	51-1***	—	

† See Table I.
‡ See footnotes † and § of Table II.
§ Spleen cell: target cell ratio is 300:1 Target cells = 10⁴.

TABLE V.—Comparison of cytolytic activity of anti-MSV and anti-FLV spleen cells detected in PA and CRT

Activity in PA on MSB target cell	Spleen-cell donors	Activity in CRT on MBL2 target cell	Effector:	Effector:	
		Effector:	target ratio 300:1	target ratio 200:1	target ratio 100:1†
	ct/min†	Inhibition %‡	ct/min	Inhibition %	³¹Cr release
Expt 1					
Normal	B6	4250 ± 860	3941 ± 839	61.2	
Anti-MSV	B6	2210 ± 365	3283 ± 872	16-7***	
Anti-FLV	B6	4747 ± 689	3902 ± 827	0	
Expt 2					
Normal	B6	4778 ± 480	5447 ± 629	45-5	
Anti-MSV	B6	2552 ± 559	4481 ± 987	17-7***	
Anti-FLV	B6	3798 ± 689	5026 ± 510	0	
Expt 3					
Normal	B6	5092 ± 704	4912 ± 955	31-3	
Anti-MSV	B6	3328 ± 559	2452 ± 494	50-1***	
Anti-FLV	B6	5696 ± 836	4198 ± 867	14-5 NS	

† Optimal ratio—Similar activity found at 200:1 or 300:1.
‡ See footnotes †, † and § of Table II.

cytes and MSV tumour cells resulted in a strong secondary cytolytic activity against MBL2 target cells (results not given).

Nature of the effector cells in PA

The cytolytic activity being specifically abrogated by anti-Thy-1-2 and complement treatment of the effector cells, it appeared dependent on the presence of T lymphocytes (Table VI). Macrophages were apparently not concerned, since carbonyl iron and magnet treatments did not significantly decrease attacker-cell efficiency. The role of a non-phagocytic but plastic-adherent cell cannot be ruled out, since the activity of the whole-spleen cell suspension was clearly decreased by plastic adherence (Table VI) and still more by plastic adherence plus carbonyl iron treatment. It must be noted, however, that after such treatments the activity of the treated cells was always greater if measured in a 48-h rather than in a 24-h assay. This suggested that relatively time-consuming and aggressive manipulations could have non-specifically altered the effector cells, which then need more than 24 h to restore their normal functions. This hypothesis was reinforced by the fact that passing through nylon-wool
Table VI.—Effect of different treatments on the activity of anti-MSV spleen cells tested in PA against MSB target cells

Spleen cells treated with†	Incubation (h)	ct/min with normal lymphocytes‡	ct/min with immune lymphocytes‡	Inhibition ‡ %
Expt 1				
Normal AKR Serum + C'	24	11451 ± 1981	7935 ± 1413	30.7***
Anti-Thyl-2 Serum + C'	24	10571 ± 1375	10685 ± 1818	0
Normal AKR Serum + C'	48	5197 ± 581	2351 ± 463	54.7***
Anti-Thyl-2 Serum + C'	48	5883 ± 388	5868 ± 1083	0
Expt 2				
Test medium	24	1331 ± 175	620 ± 62	53.4***
Carboylin iron	24	1617 ± 200	789 ± 212	51.2***
Adherence on plastic	24	1683 ± 110	1343 ± 110	20.2***
Carboxylin iron + adherence on plastic	24	1428 ± 460	1371 ± 206	3.9 NS
Test medium	48	1097 ± 126	375 ± 49	65.2***
Carboxylin iron	48	1025 ± 161	550 ± 94	46.3***
Adherence on plastic	48	1271 ± 178	993 ± 203	21.0***
Carboxylin iron + adherence on plastic	48	1143 ± 38	991 ± 150	15.3*
Expt 3				
Test medium	24	1115 ± 183	407 ± 99	63.5***
Passage through nylon-wool column	24	1392 ± 168	617 ± 116	55.7***
Test medium	48	440 ± 34	255 ± 73	42.0***
Passage through nylon-wool column	48	494 ± 125	290 ± 108	41.3***

† See Material and Methods. ‡ See footnotes †, ‡ and § of Table II.

columns, which takes only a relatively short time, did not decrease the cytolytic activity of the spleen-cell suspensions. We concluded, therefore, that the CTL were, at least for the most part, the effector cells of the anti-MSV reaction measured in PA.

The role of cytolytic T lymphocytes (CTL) would be further supported by the existence of an H-2 restriction of cytolytic activity, this property being one of the major characteristics of CTL in the MSV (Gomard et al., 1976) as well as in many other systems (Doherty et al., 1976; Dennert 1976; Forman 1976; Shearer et al., 1976). The experiments reported in Table VII showed that such an H-2 restriction can be found in PA, allogeneic MSV tumour cells being lysed significantly but at a 2–3-times lower level than syngeneic targets. However, we have never found in PA, the very strong H-2 restriction which is regularly detected in CRT with lymphoma target cells (Gomard et al., 1978).

The involvement of H-2 normal antigens in the effector–target-cell interaction is clearly confirmed by the observation that preincubation of H-2b tumour cells with anti-H-2b antibodies specifically abrogated their sensitivity to syngeneic anti-MSV effector cells in PA (Table VIII) as previously shown in the CRT (Gomard et al., 1977).

Detection of natural killer (NK) cells in PA

The cytolytic activities of non-immune spleen cells were measured in PA by comparing cytolyis in the presence of normal lymphoid cells and in medium alone. The results in Table IX show that in PA normal murine spleen cells had a strong killer activity for: (a) normal mouse fibroblasts; (b) type C virus-infected murine cells whether transformed or untransformed; (c) normal xenogeneic cells. This NK-cell activity was not H-2 restricted, and did not depend on a viral antigen, since it was also found with non-virus-infected cells. It was not dependent on tumour antigen(s) since normal cells were also affected. It appeared, therefore, as mainly non-specific and predominantly determined by the general sensitivity of the target cells to immune cytolyis, a
TABLE VII.—Cytolysis of MSV-transformed cells by syngeneic or allogeneic effector cells

Spleen-cell donors	H-2 Haplotype	Effector: target ratio	Inhibition†	Lytic‡ units	MSB	MSC
Normal mice	b/d §	300	4184 ± 368	759 ± 156		
		200	4537 ± 633	840 ± 112		
		100	4777 ± 422	930 ± 79		
		50	4502 ± 425	1156 ± 40		
B6 anti-MSV	b	300	1154 ± 276	300 ± 28	60-4***	5-8
		200	1830 ± 554	59-6***	373 ± 44	55-5***
		100	2426 ± 779	49-2***	630 ± 106	32-2***
		50	3775 ± 497	857 ± 54	25-8***	
BALB/c anti-MSV	d	300	2619 ± 519	409 ± 81	46-1***	
		200	3042 ± 125	471 ± 72	43-9***	2-5
		100	4389 ± 874	686 ± 146	26-2***	
		50	4101 ± 239	877 ± 53	24-1***	
B10.D2 anti-MSV	d	300	1368 ± 447	306 ± 47	59-6***	
		200	1697 ± 175	364 ± 59	56-6***	16-6
		100	2800 ± 411	401 ± 38	56-8***	
		50	3605 ± 720	599 ± 129	48-1***	
BALB/B anti-MSV	b	300	2523 ± 393	547 ± 69	27-9*	
		200	3255 ± 319	646 ± 208	23-1*	
		100	3531 ± 628	769 ± 139	17-9*	
		50	4197 ± 328	1066 ± 149	7-8 NS	

† See footnotes †, ‡ and § of Table II.
‡ See Material and Methods.
§ b with MSB targets and d with MSC targets.

TABLE VIII.—Effect of anti-H-2b serum on the activity in PA of H-2b anti-MSV spleen cells

Spleen cell: target cell ratio	MSB Target cells treated with†	ct/min with normal‡ lymphocytes	ct/min with immune‡ lymphocytes	inhibition%	ct/min with normal‡ lymphocytes	ct/min with immune‡ lymphocytes	inhibition%
	300:1						
	Expt 1						
	Test medium	6723 ± 782	5483 ± 822	18-4***			
	Normal mouse serum	4282 ± 597	3373 ± 595	21-2***			
	BALB/c anti-BALB/B serum	3801 ± 654	3545 ± 361	6-7 NS			
	Expt 2						
	Normal mouse serum	2167 ± 360	784 ± 372	63-8***	2250 ± 293	1432 ± 324	36-4***
	BALB/c anti-BALB/B serum	1428 ± 382	1357 ± 400	4-9 NS	1842 ± 474	1810 ± 344	1-7 NS

† See Material and Methods.
‡ See footnotes †, ‡ and § of Table II.

clear parallelism existing, for example, between the sensitivity to NK cells and the sensitivity to related anti-H-2 lymphocytes. Table X shows that the effector cells were non-phagocytic and non-T. It is important to emphasize that aliquots of the same effector-cell populations were always devoid of cytolytic activities when tested in CRT against ascitic tumour cells (results not given).

DISCUSSION

The above-reported results show that PA is a convenient method of revealing
Table IX.—Spontaneous cytolytic activity of normal spleen cells in PA (Inhibition %)†

Spleen-cell donors	(a) Normal mouse cell lines	(b) Transformed and/or type C virus-producer cell lines	(c) Xenogeneic cell lines
	NZB (H-2^d)	BALB/c (H-2^d) C3H (H-2^k) SC-1 (H-2^e)	
Normal BALB/c/	0	43-0***	
Normal CBA/	0	10-8 NS	
Normal C3H/He	0	73-8***	
Normal DBA/2	0	11-5 NS	
Normal Swiss	0	24-9***	
Normal B6	NT		29-1***
Normal AKR	0	10-8 NS	
B6 anti-BALB/c#	0	0	
B6 anti-AKR##	0	0	
	K-BALB/c (H-2^d)	K-BALB/c (H-2^d) MSB (H-2^b) C3H-MSV (H-2^b) MSV-85 (H-2^b)	
Normal B6	37-3***	29-9***	
Normal BALB/c	46-3***	16-6***	
Normal AKR	NT	29-7***	
Normal CBA	NT	48-4***	
Normal C3H/He	NT	28-5***	
Normal DBA/2	NT	45-8***	
Normal Swiss	NT	23-1***	
BALB/c anti B6##	NT	78-4***	
B6 anti BALB/c##	NT	23-9***	
	SIRC (Rabbit) NRK (Rat)	CCC S^+L^- (Cat)	
Normal BALB/c	0	48-5***	
Normal C3H/He	0	46-7***	
Normal DBA/2	0	36-5***	
Normal Swiss	0	33-8***	
Normal B6	0	33-0***	

† See Table I.

† Inhibition percentage was calculated as follows:

\[
100 \times \frac{\text{mean ct/min after incubation with test medium}}{\text{mean ct/min after incubation with normal lymphocytes}}
\]

NT = not tested.

50 x 10^6 normal spleen cells inoculated i.p. 4 days before.

Specific cell-mediated cytolytic reactions against MSV tumour cells. The cytolyis induced by immune lymphocytes is predominantly, if not exclusively, due to T cells. The possible involvement of a minor population of plastic-adherent cells does not change this conclusion, since its activity was abrogated by an anti-Thy 1-2 and complement treatment, suggesting that it too may be a T-cell subpopulation. The cytolytic activity appears very specific and probably directed against the same "FMR-like" antigen which is recognized by anti-MSV CTL in CRT (Gomard et al., 1978).

Despite the use of tumour target cells in monolayers and of relatively long in vitro incubations, PA gives much more specific results than MA. The fact that PA does not measure cytostatic phenomena is probably determinant (Seeger et al., 1974). Moreover, according to the recent results of Brooks et al. (1978) we may suppose that the use of labelled amino acids in place of radioactive nucleotides explains its better specificity than that of other isotopic MA. PA allows one to detect the cytolyis of MSV tumour cells themselves, whereas CRT fails to do so, or provides only very weak and hardly reproducible results. This advantage of PA contrasts with its lower sensitivity than classical
Table X.—Effect of different treatments of normal spleen cells on their activity in PA against MSB and target cells

Spleen cells treated with†	MSB	MSC						
	incubation (h)	ct/min with test medium	ct/min with normal lymphocytes	inhibition %	incubation (h)	ct/min with test medium	ct/min with normal lymphocytes	inhibition %
Expt 1:								
no spleen cell	24	5552±1023	34.4***	24	2406±254	44.7***		
test medium	24	3642±609	37.3***	24	1331±175	32.8***		
carbonyl iron	24	3482±437	35.4	24	1617±200	40.6***		
carbonyl iron + adherence on plastic	24	3586±913	30.0***	48	1428±460	47.1***		
adherence on plastic								
no spleen cell	48	1962±236	45.1***	48	1077±126	41.7***		
test medium	48	1025±161	35.2***	48	1143±38	39.8***		
carbonyl iron	48	1271±178	35.2***	48	1271±178	35.2***		
carbonyl iron + adherence on plastic	48	1025±161	47.1***	48	1143±38	41.7***		
adherence on plastic								
Expt 2:								
no spleen cell	24	7292±1918	21.5*	48	3157±354	35.5***		
normal serum	24	5725±990	21.5*	48	1941±286	38.5***		
anti-Thy 1-2 serum + C'	24	5285±687	16.1*	48	1639±509	48.0***		
no spleen cell	48	1620±316	16.1*	48	1904±297	36.7***		
test medium	48	1359±323	19.4*	48	1639±509	48.0***		
normal serum	48	1306±308	21.5*	48	1904±297	36.7***		
anti-Thy 1-2 serum + C'	48	1271±165	19.2*	48	1639±509	48.0***		
Expt 3:								
no spleen cell	24	2273±253	13.4*	48	569±131	35.0***		
test medium	24	1930±311	14.0*	48	604±137	32.0***		
passage through nylon-wool column	24	1954±375	14.0*	48	569±131	35.0***		
no spleen cell								
test medium	48	569±131	35.0***	48	604±137	32.0***		
passage through nylon-wool column	48	569±131	35.0***	48	604±137	32.0***		

† See Material and Methods.
‡ See footnote † of Table IX.
CRT using lymphoma cells as target. It is probably related to the longer in vitro incubations which are possible with PA, allowing lysis of relatively insensitive tumour cells. Such incubations are hardly possible in CRT due to the high level of spontaneous marker elution, except when specially selected tumour cells are used. Moreover, the cellular lesion which is necessary to allow the detachment of altered cells from the plastic could be an earlier step in cell death than the release of 51Cr-labelled large molecules. PA appears, therefore, as a useful test in tumour immunology when tumour-cell populations growing in monolayer have to be used.

Nevertheless, it must be emphasized that in the MSV system, PA and CRT, which both reveal a CTL-mediated reaction directed against an “FMR-like” antigen, do not provide identical results. At least 3 major differences have been detected in our experiments:

(1) A natural killer activity was regularly found in PA but not in CRT. It has been detected, however, by others with the latter method (Bean et al., 1973; Oldham et al., 1977). The discrepancy is probably related to the variable sensitivity of tumour cells to NK-cell-mediated cytolysis, with an especially high sensitivity of in vitro tumour cells (Sendel et al., 1975). The fact that PA measures the cells unstacking could account for its specially high ability to reveal natural killing since it is well established that non-T-cells are frequently responsible for such phenomena, independent of target-cell cytolysis (Golstein, 1970). The important point is that the NK-cell-mediated reactions could mask, in PA experiments much more than in CRT, weak CTL-mediated cytolysis.

(2) Anti FLV-effector cells were much less efficient in PA than anti-MSV, whereas both kinds of CTL behave alike in CRT. The reasons for this surprising phenomenon is unclear, and the role of different cell-surface antigens appears unlikely, as discussed above. An explanation may perhaps be found in the high degree of adhesiveness of anti-FLV-CTL. It is known that these cells can be retained by nylon-wool columns (Leclerc & Gomard, 1972) and we observed that they were much more adherent to target-cell monolayers than anti-MSV-CTL. Whatever its origin, this phenomenon could alter the CTL-tumour-cell interaction and it could be responsible for false-negative reactions suggesting an incorrect pattern of antigen specificity.

(3) The H-2 restriction of CTL reactivity was far weaker in PA than in CRT. This could be related to quantitation problems, since when strongly efficient CTL are tested the H-2 restriction can only be established by quantitative experiments using several L/T ratios (Gomard et al., 1978). Such experiments are hardly possible in PA since the cytotoxic activity falls very rapidly with decreasing L/T ratios. The NK-cell activity is also increased by prolonged in vitro incubations. This NK activity, which increases the background cytolysis, can in turn mask some of the specific cytolysis, especially at low L/T ratios when syngeneic but not allogeneic effector cells should be efficient at a relatively weak level. PA, therefore, appears a priori to be a bad method for revealing H-2 restriction phenomena, and this may explain the weakness of the H-2 restriction of viral mammary-tumour cell cytolysis previously reported (Stutman, 1977). It is remarkable, in view of the above considerations, that it was nevertheless possible to establish that H-2 antigens were involved in PA reactivity, as in the CRT, as demonstrated by the strong blocking activity of anti-H-2 antibodies.

In conclusion, PA can be a useful method of testing CTL-mediated anti-tumour or anti-viral immune reactions, but several peculiarities of the test should be borne in mind in order to avoid misinterpretation of the results. Once again, it appears that the technical parameters are especially determinant in the detection of cellular anti-tumour reactions, as recently emphasized by other investiga-
tions in different systems (Chou-Chik Ting et al., 1977a, b; Oldham et al., 1977; Brooks et al., 1978).

This research was supported by grants from ISERM & CNRS. We are indebted to Mrs Hélène Touitou for help with the manuscript.

REFERENCES

Aaronson, S. A. & Weaver, C. A. (1971) Characterization of murine sarcoma virus (kirsten) transformation of mouse and human cells. J. Gen. Virol., 13, 245.

Aaronson, S. A. & Rowe, W. P. (1970) Non-producer clones of murine sarcoma virus transformed BALB/3T3 cells. Virology, 42, 8.

Aaronson, S. A. & Todaro, G. J. (1968) Development of 3T3-like lines from BALB/c mouse embryo cultures: transformation susceptibility to SV40. J. Cell. Physiol., 72, 141.

Bean, M. A., Pees, S. H., Rosen, G. & Oettgen, H. F. (1973) Prelabelling target cells with 3H-proline as a method for studying lymphocyte cytolysis. Natl Cancer Inst. Monog., 37, 41.

Brooks, C. G., Rees, R. C. & Robins, R. A. (1978) Studies on the microcytotoxicity test II. The uptake of amino acids (3H leucine or 35S methionine) but not nucleosides (3H thymidine or 125IUDR) or 31CrO42- provides a direct and quantitative measure of target cell survival in the presence of lymphoid cells. J. Immunol. Meth., 21, 111.

Chou-Chick Ting, Park, J. Y., Nunn, M. E. & Herberman, R. B. (1977a) Comparison of three isotopic assays of cell mediated cytotoxicity against mouse tumors. I. Basic parameters, baseline controls, target cells, and methods of calculation. J. Natl Cancer Inst., 58, 323.

Chou-Chick Ting, Nunn, M. E., Park, Y. S. & Herberman, R. B. (1977b) Comparison of three isotopic assays of cell mediated cytotoxicity against mouse tumor cells. II Sensitivity and specificity of the assays and characteristics of effector and sensitizing cells. J. Natl Cancer Inst., 58, 333.

Cohen, A. M., Millar, R. C. & Ketcham, A. S. (1972) A microassay for cytotoxic antibody using 125I-iododeoxyuridine-labelled target cells. Transplantation, 13, 57.

Dennert, G. (1976) Thymus derived killer cells: specificity of function and antigen recognition. Transplant. Rev., 29, 59.

Doherty, P. G., Blanden, R. V. & Zinkernagel, R. M. (1976) Specificity of virus-immune effector T cells for H-2 K or H-2 D compatible interactions: implications for H antigen diversity. Transplant. Rev., 29, 89.

Duc-Nguyen, J., Rosenblum, E. N. & Zeigel, R. E. (1966) Persistent infection of rat kidney cell line with rauscher murine leukemia virus. J. Bacteriol., 92, 1133.

Fischinger, P. J., Bleivins, C. S. & Nomura, S. (1974) Simple, quantitative assay for both xenotropic murine leukemia and ecotropic feline leukemia viruses. J. Virol., 14, 177.

Forman, J. (1976) The specificity of thymus derived T-cells in cell mediated cytotoxic reactions. Transplant. Rev., 29, 146.

Golstein, P. & Blomgren, H. (1973) Further evidence for autonomy of T cells mediating specific in vitro cytotoxicity: efficiency of very small amounts of highly purified T cells. Cell. Immunol., 9, 127.

Golstein, P. (1970) Detachment of L cells in the presence of normal mouse spleen cells in vitro: a quantitative study. Clin. Exp. Immunol., 7, 885.

Gomard, E., Duprez, V., Henin, Y. & Levy, J. P. (1976) H-2 region product as determinant in immune cytolysis of syngeneic tumour cells by anti-MSV T lymphocytes. Nature, 260, 707.

Gomard, E., Levy, J. P., Plata, F. & 4 others (1978) Studies on the nature of the cell surface antigen reacting with cytolytic T lymphocytes in murine oncornavirus-induced tumors. Eur. J. Immunol., 8, 228.

Gomard, E., Duprez, V., Henin, Y. & Levy, J. P. (1977) Relationships between H-2 and viral antigens in murine oncornavirus-induced tumors. J. Immunogenetics, 4, 35.

Hartley, J. W. & Rowe, W. P. (1975) Clonal cell lines from a feral mouse embryo which lack host-range restrictions for murine leukemia viruses. Virology, 65, 129.

Hashimoto, Y. & Sudo, H. (1971) Evaluation of cell damage in immune reactions by release of radioactivity from H-uridine labelled cells. Gann, 62, 139.

Hashimoto, Y., Boyer, E. A. & Beth, E. (1969) Reaction of immune mouse peritoneal lymphocytes with allogeneic leukemia cells in vitro. Proc. Am. Assoc. Cancer Res., 10.

Jagarlamoody, S. M., Aust, J. C. & Tew, R. H. (1971) In vitro detection of cytotoxic cellular immunity against tumor-specific antigens by a radiosotopic technique. Proc. Natl Acad. Sci. USA, 68, 1346.

Julius, M. H., Simpson, E. & Herzenberg, L. A. (1973) A rapid method for the isolation of functional thymus derived murine lymphocytes. Eur. J. Immunol., 3, 645.

Lamon, E. W., Wiegell, H., Klein, E. Andersson, B. & Shurzak, H. M. (1973) The lymphocyte response to primary Moloney sarcoma virus tumors in BALB/c mice. Definition of the active subpopulations at different tumors. J. Exp. Med., 137, 1472.

Leclerc, J. C., Gomard, E. & Levy, J. P. (1972) Cell-mediated reaction against tumors induced by oncornaviruses. I. Kinetics and specificity of the immune response in murine sarcoma virus (MSV) induced and transplanted lymphomas. Int. J. Cancer, 10, 509.

Leclerc, J. C., Gomard, E., Plata, F. & Levy, J. P. (1973) Cell-mediated reaction against tumors induced by oncornaviruses. II. Nature of the effector cells in tumor cell cytolysis. Int. J. Cancer, 11, 426.

Leclerc, J. C. & Gomard, E. (1972) Characteristics of cytolytic T cells from resistant and sensitive strains in murine leukemia. Proc. 66th Meeting American Cancer Soc., 806, 202.

Levy, J. A. (1973) Xenotropic viruses: murine leukemia viruses associated with NIH Swiss, NZB, and other mouse strains. Science, 182, 1151.

Levy, J. P. & Leclerc, J. C. (1976) The murine sarcoma induced tumor: exception of general model in tumor immunology. Adv. Cancer Res., 24, 2.
MASSICOT, J. G., WOODS, W. A. & CHIRigos, M. A. (1971) cell line derived from a murine sarcoma virus (Moloney pseudotype) induced tumor: cultural, antigenic, and virological properties. Appl. Microbiol., 22, 1119.

OLDHAM, R. K. & HERBERMAN, R. B. (1973) Evaluation of cell-mediated cytotoxic cellular immunity against tumor specific antigens by a radioisotope technique. Proc. Natl Acad. Sci. U.S.A., 68, 1346.

OLDHAM, R. K., ORTALDO, J. R. & HERBERMAN, R. B. (1977) Natural cytotoxic reactivity of rat lymphocytes against Gross virus-induced tumor cell lines as measured by 125I-iododeoxyuridine and tritiated proline microcytotoxicity assays. Cancer Res., 37, 4467.

OWEN, J. J. T. & SEEGER, R. C. (1973) Immunity to tumours of the murine leukemia sarcoma virus complex. Br. J. Cancer, 28 (Suppl. I), 26.

PEARSON, G. R., REDMON, L. W. & BASS, L. R. (1973) Protective effect of immune sera against transplantable Moloney virus-induced sarcoma and lymphoma. Cancer Res., 33, 171.

PERLMANN, P. & HOLM, G. (1969) Cytotoxic effects of lymphoid cells in vitro. Adv. Immunol., 11, 117.

PLATA, F., GOMARD, E., LECLERC, J. C. & LEVY, J. P. (1974) Comparative in vitro studies on effector cell diversity in the cellular immune response to murine sarcoma viruses (MSV)-induced tumors in mice. J. Immunol. 112, 1477.

PLATA, F., CEROTTINI, J. C. & BRUNNER, K. T. (1975) Primary and secondary in vitro generation of cytolytic T lymphocytes in the murine sarcoma virus system. Eur. J. Immunol., 5, 227.

REZNIKOFF, C. A., BRANKOW, D. W. & HEIDELBERGER, C. (1973) Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res., 33, 3231.

SEEGER, R. C., RAYNER, S. A. & OWEN, J. J. T. (1974) An analysis of variables affecting the measurement of tumor immunity in vitro with 125I-iododeoxyuridine labelled target cells. Studies of immunity to primary Moloney sarcomas. Int. J. Cancer, 13, 697.

SENDO, F., AOKI, T., BOYSE, E. A. & BUAFO, C. K. (1975) Natural occurrence of lymphocytes showing cytotoxic activity to BALB/c radiation induced leukemia RL31 cells. J. Natl Cancer Inst., 55, 603.

SENOL, A., DE GIORGI, L. & LEVY, J. P. (1974) Cell-mediated anti-tumor immunity in oncornaivus induced tumors specific cytoplasia of tumor cells by spleen and lymph-node cells. Int. J. Cancer, 14, 386.

SHEARER, G. M., REHN, T. G. & SCHMITT-VERHULST, A. M. (1976) Role of the murine major histocompatibility complex in the specificity of in vitro T-cell-mediated lympholysis against chemically modified autologous lymphocytes. Transplant. Rev., 29, 222.

SHIKU, H., BEAN, M. A., OLD, L. J. & OETTGEN, H. F. (1975) Cytotoxic reactions of murine lymphoid cells studied with a tritiated proline microcytotoxicity test. J. Natl Cancer Inst., 54, 415.

STUTMAN, O. (1977) Role of H-2 histocompatibility in generation of cell-mediated cytoxicity against virus-induced mammary tumors in C3H mice. Transplant. Proc., 9, 1153.

TODARO, G. J. & GREEN, H. (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol., 17, 299.

TOKAUSHI, M. & KLEIN, E. (1970) A microassay for cell-mediated immunity. Transplantation, 9, 219.

WEILAND, E. & MUSSGAY, M. (1976) Detection of cytotoxic lymphoid spleen cells from STU mice with Moloney sarcoma by a 3H-proline microcytotoxicity assay. Med. Microbiol. Immunol., 162, 81.