Editorial
Christensen, Anders Fogh; Christensen, Hanne

Published in:
Frontiers in Neurology

DOI:
10.3389/fneur.2017.00736

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Christensen, A. F., & Christensen, H. (2018). Editorial: Imaging in Acute Stroke-New Options and State of the Art. Frontiers in Neurology, 8, [736]. https://doi.org/10.3389/fneur.2017.00736
Editorial: Imaging in Acute Stroke—New Options and State of the Art

Anders Fogh Christensen1,2* and Hanne Christensen1,2

1 Department of Radiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark, 2 Department of Neurology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark

Keywords: hyperacute stroke, MRI, CT, sonography, imaging

Editorial on the Research Topic

Imaging in Acute Stroke—New Options and State of the Art

During the last two decades, the state of art imaging in acute stroke has developed from non-contrast CT performed within 7 days to including hyperacute imaging including both angiographic and perfusion imaging. This includes using both new techniques but also using new ways to combine long existing modalities in daily practice. The increasing focus on the importance of both swift and reliable diagnostics combined with an improved scanner accessibility has fueled this development. This development in imaging has answered to the needs of the introduction of acute vascular recanalization treatments in ischemic stroke, which has revolutionized the area. I.V. thrombolysis has been increasingly used since the end of the 1990s and is now considered a standard treatment, while mechanical thrombectomy has been accepted as a standard procedure following randomized controlled trials documenting its efficacy within the last 5 years. Further, efficacious treatment options in acute ICH are sought, including thrombostatics to reduce final hematoma volume leading to increased activity in this area also.

The imaging modalities, which are in widespread use in primary stroke imaging—at least in tertiary centers, include CT, MRI, and sonography. These methods are complementary in clinical practice with their different strengths. In the following, we will discuss generally available methods to image brain parenchyma, cerebral, and pre-cerebral vasculature and cerebral perfusion in acute stroke.

IMAGING THE BRAIN PARENCHYMA

Time is of the essence in the diagnosis and treatment of acute ischemic stroke (1). It has been shown that by using a CT-based set-up for IV thrombolysis, a door to needle time around 20 min is achievable based on admitting patients directly to hospital units providing imaging facilities including radiology department, emergency rooms, or trauma centers (2).

CT has a high sensitivity in detecting blood and thereby identifying a bleeding in the brain parenchyma, which is the major contraindication in IV thrombolysis as well as identifying, e.g., neoplasms. Consequently, IV thrombolysis can be initiated safely based on a non-contrast-CT of the brain as only brain imaging (3).

CT has a high sensitivity in detecting blood and thereby identifying a bleeding in the brain parenchyma, which is the major contraindication in IV thrombolysis as well as identifying, e.g., neoplasms. Consequently, IV thrombolysis can be initiated safely based on a non-contrast-CT of the brain as only brain imaging (3).

It has been reported that dual-energy CT (DECT-CT) should improve detection of underlying causes for ICH as well as the differentiation between blood and leaked iodine contrast after endovascular procedures compared to standard non-contrast CT.

Transcranial Doppler (TCD) has little use in visualizing brain parenchyma but can be used to measure the size of an intracerebral hemorrhage and thus visualize an eventual expansion in size (4);
however, the sensitivity for, e.g., hemorrhage in proximity to the
scull base does not allow for this modality as only imaging before
revascularisation treatment.

MRI is superior to CT in showing acute ischemic changes in
the brain parenchyma (5). Diffusion-weighted imaging shows
the ischemic lesion in 80–90% of cases in acute stroke but,
in the remaining patients, there will not be DWI-positivity,
 i.e., the DWI-negative stroke (6). Consequently, a reliable diagno-
sis of stroke cannot be made based on only MRI conformation if
ischemia, clinical diagnosis is still needed.

The ability to detect ischemic lesions is, however, also valuable
in transient ischemic attack (TIA). This diagnosis is in Europe
based on clinical definitions, but severity scores are used in com-
bination with DWI-positivity in the identification of high-risk
patients who have a substantial risk of a subsequently ischemic
stroke (7). An unexplained sevenfold variation exists in the fre-
cuency of DWI lesions between TIA cohorts, and a DWI-negative
scan is very far from ruling out a true ischemic event in these
patients (8). MRI is also superior in identifying the underlying
cause of stroke based on examination of the brain parenchyma:
the pattern of DWI lesions helps to differentiate between large
vessel disease and cardiac emboli where, in the latter, several
vascular territories are often affected. Microvascular changes in
small vessel disease can be diagnosed and quantified, not only
forming the basis of a diagnosis of small vessel disease but also in
differencing between probable cerebral amyloid angiopathy and
deep perforator angiopathy. MRI allows for identifying location
and number of micro bleeds, lacunar infarcts, unspecific vascular
gliosis, and enhanced perivascular space.

Substantial leukoariosis predict a higher risk of both symp-
tomatic and asymptomatic hemorrhage after IV thrombolysis
treatment and independent of this was evaluated by MRI or CT
(9). The presence of cerebral micro-bleeds before IV thrombolysis
treatment predicts and increased risk of new micro-bleeds after
TIA. Further, patients with new micro-bleeds were more likely
to develop symptomatic remote hemorrhage, but no increase
in rate of hemorrhagic transformation was observed, consequently,
this is of minor clinical importance (10).

Using MRI in the work-up of hyperacute stroke increases the
door to needle time with about 10 min even in a well-organized
setting. This is due to MRI safety issues as well as longer scan-
time compared to CT (11). A protocol used for evaluating acute
ischemia must include T2 flair and a hemo-sequence in order to
exclude intracerebral bleeding. MRI is not possible in a substan-
tial number of acute stroke patients due to either safety issues,
being unable to cooperate, or in need of close monitoring. The
number of patients falling into this category has been reported
as high as 20–40% (12) MRI is performed without applying any
radiation to the patient in comparison with CT, which makes it
safer to use regarding younger patients.

IMAGING THE ARTERIAL VESSELS OF
THE HEAD AND NECK

By adding CT-angiography (CTA) to an nc-CT, the vessels from
the aortic arch to the vertex can be visualized with a resolution
of 0.5 mm iso voxel corresponding to a vessel size of 1 mm.
This reveals vessel occlusion down to vessel sized too small
for mechanical thrombectomy, thereby allowing for precise
identification of patients for this procedure. CTA is also reliable
in evaluation for underlying pathologies such as dissection and
arteriosclerotic disease (13, 14).

CT-angiography in combination with cerebral post-contrast
CT is not only a strong tool in identification of neoplasms but also
other underlying causes in patients with intracerebral hemor-
rhage, including some vascular malformations (15). In addition,
the presence of arterial and/or venous extravasation of contrast,
the so-called spot-sign, is a strong predictor for hematoma
expansion with resulting poorer outcome (16). This may be of
use in selecting patients for experimental treatment with pro-
thrombotic drugs in order to reduce hematoma expansion (16).

Dual-energy CT improves the diagnostic accuracy of CTA
in areas close to bone (17), which is clinically highly relevant in
patients with posterior circulation stroke.

Sonography can be performed in the stroke unit and, since it
involves no radiation exposure, patient safety issues will not limit
the number of examinations. It is possible to evaluate both arte-
rial vessels of the neck as well as intracranial vessels—the latter
only as a flow examination whereas the vessel wall of the arteries
of the neck can be examined with a resolution of 0.2 mm. This
allows the detection of occlusions and stenosis as by CTA but
with a greater possibility of a non-conclusive examination based
on the possible lack of a temporal sonar window or other bone
disturbances of the sonar signal. TCD allows for documentation
of reperfusion after IV thrombolysis treatment (18) as well as for
quantification of collateral status in middle cerebral artery occlu-
sion by measuring the flow in the anterior cerebral arteries (19).
This allows for close observation of this critical patient group.

Sonography has the ability to verify vessel wall changes in
cervical arteries including dissection, plaque characterization,
and detection of unstable thrombi; however, the clinical impli-
cations of especially plaque characterization remain uncertain.
Likewise, it is standard practice to use Duplex in the preop-
erative evaluation of carotid stenosis for thrombendarterectomy
using flow measurements to quantify the degree of a stenosis
even if CTA has documented a reduction in vessel lumen (20).
By using ultrasound contrast media, it is possible to diagnose
the presence of persistent foramen ovale or a pulmonary fistula
if contrast media is detected in the intracerebral circulation after
Valsalva (21).

Further, continuous sonographic input on the acute thrombo-
sis increases the thrombolytic effects of rtPA (22).

MR angiography may be performed without contrast as Time
of Flight sequences, i.e., arterial TOF, which is more time con-
suming compared to CT angiography as the scan time is several
minutes just to visualize the intracranial arteries and longer if the
cervical arteries are also included. The longer the scan time the
higher the risk of impairing movement artifacts, which are more
prevalent in MRI in an acute setting in comparison to planned
examinations (Havsteen et al.).

Contrast-enhanced arterial TOF-sequences improve detect-
tion of pathology in the vessel lumen in comparison to non-
contrast-enhanced TOF sequences. Contrast-enhanced TOF
can be augmented to a resolution down to 0.5 mm isovoxel—the same level as CTA—when using 3-T MRI, but at the expense of prolonged scan time.

Comparative studies show no difference in the sensitivity for detection small aneurisms in comparison to CTA, but the specificity seems to be lower (23). High resolution MRI (HR-MRI) can characterize arteriosclerotic plaques often using contrast-enhanced series, which is reported to give prognostic information about the risk of subsequent vascular events. HR-MRI can also verify dissection changes in small intracranial arteries and visualize reperfusion of such vessels. Vessel wall imaging may be improved by using higher field strength, i.e., 7T MRI (24).

CT-perfusion can be added to the imaging protocol at the price of 5 min more scan-time and an extra 3–5 ms radiation dose. Whole-brain CT-perfusion, i.e., 16 cm coverage has been introduced and has the ability to show areas with low perfusion anywhere in the brain and not restricted to a 4–8 cm slab. This can be useful to both quantify the area with perfusion below which brain parenchyma is lost, i.e., infarct core as well as surrounding salvageable areas with less degree of decreased perfusion, i.e., penumbra. Recently, results from the DAWN study (25) were presented at the ESOC 2017 conference indicating that CT-perfusion—or MR-DWI—can be used to select patients for thrombectomy up to 24 h after ictus, increasing the clinical interest in CTP. The DAWN study was set up to address the issue of wake up and late presenting strokes and neurointervention based on CT-perfusion or DWI-FLAIR mismatch: imaging markers of salvageable tissue. In order to differentiate between ischemic stroke and stroke mimics, perfusion CT may also be helpful and thus compensate for the low visibility of acute ischemia in the brain parenchyma on non-contrast CT alone (26).

An additional feature of whole brain perfusion is the possibility to extract a 4-D angiogram from the perfusion image data without having to perform an angiography; these images show the filling of the intracranial vessels from the early arterial to the late venous phase, which adds a dynamic perspective in the evaluation of acute ischemia improving the visualization of collateral filling (27). The lack of visualization of the vessels of the neck using this method alone can hinder the diagnosis of the underlying cause of stroke.

MRI perfusion is able to show the same findings as CT-perfusion and when it is based on the use of contrast MRI perfusion has considerable advantages especially in obtaining absolute measures of perfusion. It is also possible to apply perfusion sequences without the use of contrast, i.e., arterial spin labeling techniques ASL. ASL has proven as reliable as contrast-enhanced perfusion techniques in detecting areas with reduced perfusion in acute brain ischemia (28) and with the more extensive use of 3T MRI technology, the resolution has improved. It is reported that adding ASL to a DWI-based TIA protocol increases correct detection of ischemic lesions by 5%. This is primarily the case when the DWI lesion is very small and, therefore, doubtful but with a simultaneous area of hypo perfusion surrounding it clarifying the ischemic diagnosis (29).

Perfusion MRI, in combination with DWI, may also guide the decision of mechanical thrombectomy in large vessel occlusion with unknown time of onset based on the mismatch of the infarct core and the surrounding penumbra on CT perfusion (29), but is more time-consuming than the approach used in the DAWN study.

CONCLUSION

Combining several image techniques offers several opportunities and advantages. Modern ultrasound apparatus thus offers real-time image fusion so that sonography of the intracranial vessels can be performed using an already performed CTA as anatomical guide. The CTA images can be viewed simultaneously with the live images from TCD and thus assist in the evaluation of intracranial stenosis. Likewise, it is possible in a modern PACS system to co-evaluate all three modalities and thus extract the needed information. This can combine information from a MRI perfusion investigation with CTA visualization of the vessel and Doppler measurements in order to assess the impact of the changes. The information of flow direction and speed form sonography in combination with perfusion measurements and images of the vessel wall can help to explain the extent and location of ischemic lesions and help to decide the treatment options. In acute stroke, the access to all these modalities help to ensure the correct action needed; however, this requires a neuroradiologist on call in collaboration with specialized stroke neurologists. Often in our experience from a tertiary centre, a good strategy is to combine a CTA with an MRI of the brain (DWI, FLAIR, GE/SWI, ASL) to diagnose the cause of stroke and to rule out stroke mimics.

AUTHOR CONTRIBUTIONS

This editorial was written with equal participation from the authors.

REFERENCES

1. Saver JL. Time is brain – quantified. Stroke (2006) 37(1):263–6. doi:10.1161/01. STR.0000196957.53928.ab

2. Meretoja A, Sirbhan D, Mustanoja S, Tatlisumak T, Lindsberg PJ, Kaste M. Reducing in-hospital delay to 20 minutes in stroke thrombolysis. *Stroke* (2006) 37(1):263–6. doi:10.1161/01. STR.0000196957.53928.ab

3. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. *N Engl J Med* (2008) 359(13):1317–29. doi:10.1056/NEJMoA0804656

4. Ovesen C, Christensen AF, Krieger DW, Rosenbaum S, Havsteen I, Christensen H. Time course of early postadmission hematoma expansion in spontaneous intracerebral hemorrhage. *Stroke* (2014) 45(4):994–9. doi:10.1161/STROKEAHA.113.003608

5. Fiebach JB, Schellinger PD, Jansen O, Meyer M, Wilde P, Bender J, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. *Stroke* (2002) 33(9):2206–10. doi:10.1161/01. STR.0000026864.20339.CB

6. Makin SD, Doublan FN, Dennis MS, Wardlaw JM. Clinically confirmed stroke with negative diffusion-weighted imaging magnetic resonance imaging: longitudinal study of clinical outcomes, stroke recurrence, and systematic review. *Stroke* (2015) 46(11):3142–8. doi:10.1161/STROKEAHA.115.010665
7. Meng X, Wang Y, Liu L, Pu Y, Zhao X, Wang C, et al. Validation of the ABCD²-I score to predict stroke risk after transient ischemic attack. *Neuro R Res* (2011) 37(7):802–6. doi:10.1111/j.1747-4900.2011.00128.x

8. Brazzelli M, Chappell FM, Miranda H, Shuler K, Dennis M, Sandercock PA, et al. Diffusion-weighted imaging and diagnosis of transient ischemic attack. *Ann Neurol* (2014) 75(1):67–76. doi:10.1002/ana.24026

9. Willer L, Havsteen I, Ovesen C, Christensen AF, Christensen H. Computed tomography – verified leukoaraiosis is a risk factor for post-thrombolytic hemorrhage. *J Stroke Cerebrovasc Dis* (2015) 24(6):1126–30. doi:10.1016/j.jstrokecerebrovasdis.2014.12.018

10. Kimura K, Aoki J, Shibazaki K, Saji N, Uemura J, Sakamoto Y. New appearance of extracranial microbleeds on T2*-weighted magnetic resonance imaging 24 hours after tissue-type plasminogen activator administration. *Stroke* (2013) 44(10):2776–81. doi:10.1161/STROKEAHA.113.001778

11. Hansen CK, Christensen A, Rodgers H, Havsteen I, Kruse C, Nybing J, et al. CT and MRI-based door-needle-times for acute stroke patients a quasi-randomized clinical trial. *Clin Neurol Neurosurg* (2017) 159:42–9. doi:10.1016/j.clineuro.2017.05.011

12. Hand PJ, Wardlaw JM, Rowat AM, Haisma JA, Lindley RI, Dennis MS. Magnetic resonance brain imaging in patients with acute stroke feasibility and patient related difficulties. *J Neurol Neurosurg Psychiatry* (2005) 76(11):1525–7. doi:10.1136/jnnp.2005.062539

13. Power S, McEvoy SH, Cunningham J, Ti JP, Looby S, O’Hare A, et al. Value of CT angiography in anterior circulation large vessel occlusive stroke: imaging findings, pearls, and pitfalls. *Eur J Radiol* (2015) 84(7):1333–44. doi:10.1016/j.ejrad.2015.04.012

14. Silvennoinen HM, Ikonen S, Soinne L, Raio M, Valanne L. CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semi-automatic vessel analysis, and digital subtraction angiography. *AJNR Am J Neuroradiol* (2007) 28(1):97–103.

15. Gazzola S, Aviv RI, Gladstone DJ, Mallia G, Li V, Fox AJ, et al. Vascular and nonvascular mimics of the CT angiography “spot sign” in patients with secondary intracerebral hemorrhage. *Stroke* (2008) 39(4):1177–83. doi:10.1161/STROKEAHA.107.499442

16. Hallevi H, Abraham AT, Barreto AD, Grotta JC, Savitz SI. The spot sign in intracerebral hemorrhage: the importance of looking for contrast extravasation. *Cerebrovasc Dis* (2010) 29(3):217–20. doi:10.1159/000267842

17. Sprigg N, Robson K, Bath P, Dineen R, Roberts I, Robinson T, et al. Intravenous tranexamic acid for hyperacute primary intracerebral hemorrhage: protocol for a randomized, placebo-controlled trial. *Int J Stroke* (2016) 11(6):683–94. doi:10.1177/1747493016641960

18. Brunser AM, Mansilla E, Hoppe A, Olavarria V, Sujima E, Lavados PM. The role of TCD in the evaluation of acute stroke. *J Neuroimaging* (2016) 26(4):420–5. doi:10.1111/jon.12334

19. Kim YS, Meyer JS, Garani Z, Molina CA, Pavlovic AM, Alexandrov AV. Flow diversion in transcranial Doppler ultrasound is associated with better improvement in patients with acute middle cerebral artery occlusion. *Cerebrovasc Dis* (2006) 21(1–2):74–8. doi:10.1159/000090006

20. Writing Group, Naylor AR, Ricco JB, de Borst GJ, Debus S, de Haro J, et al. Management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). *Eur J Vasc Endovasc Surg* (2018) 55(1):3–81. doi:10.1016/j.ejvs.2017.12.021

21. Kilburg C, Scott McNally J, de Havener A, Tausky S, Kalani MY, Park MS. Advanced imaging in acute ischemic stroke. *Neurology Focus* (2017) 42(4):E10. doi:10.3171/2017.1.FOCUS16503

22. Reinhard M, Taschner CA, Hörsch N, Allgöwl A, Maurer CJ, Niesen WD, et al. Endovascular treatment versus sonothrombolysis for acute ischemic stroke. *Cerebrovasc Dis* (2015) 40(5–6):205–14. doi:10.1159/000439142

23. Sailer AM, Wagemans BA, Nelemans PJ, de Graaf R, van Zwan WH. Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis. *Stroke* (2014) 45(1):119–26. doi:10.1161/STROKEAHA.113.003133

24. Harteveld AA, van der Kolk AG, van der Worp HB, Dieleman N, Zwanenburg JIM, Luitjen PR, et al. Detecting intracranial vessel wall lesions with 7T-magnetic resonance imaging: patients with posterior circulation ischemia versus healthy controls. *Stroke* (2017) 48(9):2601–4. doi:10.1161/STROKEAHA.117.017868

25. Jovin TG, Saver JL, Ribo M, Pereira V, Furlan A, Bonafe A, et al. Diffusion-weighted imaging or computerized tomography perfusion assessment with clinical mismatch in the triage of wake up and late presenting strokes undergoing neurointervention with Trevo (DAWN) trial methods. *Int J Stroke* (2017) 12(6):641–52. doi:10.1111/1747-4930.17710

26. Bivard A, Levi C, Krishnamurthy V, McElduff P, Mitteil F, Spratt NJ, et al. Perfusion computed tomography to assist decision making for stroke thrombolysis. *Brain* (2015) 138(7):1919–31. doi:10.1093/brain/awv071

27. van den Wijngaard IR, Holwilder G, Wermier MJ, Boiten J, Algra A, Dippel DW, et al. Assessment of collateral status by dynamic CT angiography in acute MCA stroke: timing of acquisition and relationship with final infarct volume. *AJNR Am J Neuroradiol* (2016) 37(7):1231–6. doi:10.3174/ajnr.A4746

28. Bokkers RPH, Hernandez DA, Merino JG, Mirsol RV, van Osch MJ, Hendriks J, et al. Whole-brain arterial spin labeling perfusion MR imaging in patients with acute stroke. *Stroke* (2012) 43(5):1290–4. doi:10.1161/STROKEAHA.110.589234

29. Zaharchuk G, Olovit JM, Fischbein NJ, Bammer R, Straka M, Kleinman JT, et al. Arterial spin labeling imaging findings in transient ischemic attack patients: comparison with diffusion- and bolus perfusion-weighted imaging. *Cerebrovasc Dis* (2012) 34(3):221–8. doi:10.1159/000339682

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.