The Production of Z' Associated With Photons or Jets as a Probe of New Gauge Boson Couplings

THOMAS G. RIZZO
High Energy Physics Division
Argonne National Laboratory
Argonne, IL 60439

and

Ames Laboratory and Department of Physics
Iowa State University
Ames, IA 50011

Abstract

We examine the production of a new Z' gauge boson in association with photons or jets at future hadron supercolliders as a probe of its couplings to fermions. Associated jet production is found to be rather insensitive to these couplings and suffers from large uncertainties as well as substantial backgrounds. On the other hand, the ratio of rates for associated photon Z' production to that of conventional Z' production has a rather clean signature (once appropriate cuts are made), and is found to be quite sensitive to the choice of extended electroweak model, while being simultaneously insensitive to structure function uncertainties and QCD corrections. Rates at both the SSC and LHC are significant for Z' masses in the 1 TeV range.

*Research supported by the U.S. Department of Energy, Division of High Energy Physics, Contracts W-31-109-ENG-38 and W-7405-Eng-82.
It is by now well known that the production of a new neutral gauge boson, Z', in the few TeV mass range should be easily observed at the SSC and LHC hadron supercolliders [1] via its decay to lepton pairs. If such a particle is observed it will be mandatory to determine its couplings to fermions in order to identify which Z', of the many proposed in the literature, has been discovered. During the past 1-2 years, this subject has gotten significant attention from several groups of authors [2, 3, 4, 5, 6] who have found that Z' identification is a serious problem for realistic detectors if as few as possible theoretical assumptions are made about the Z' decay modes even if such new gauge bosons are relatively light. If one assumes that the Z' can decay only to the conventional particles of the Standard Model (SM) then it has been shown [2] that measurements of its mass (M_2), width (Γ_2), and production cross section (σ_0), together with the corresponding leptonic forward-backward asymmetry (A_{FB}^l), can be used to ‘identify’ the Z' for masses up to several TeV. However, we note that many extended electroweak models (EEM) allow for non-SM Z' decays which could dominate the Z' width although the above assumption is not so bad in some specific cases. Of the observables listed above, only A_{FB}^l (other than, of course, M_2) is insensitive to any assumptions about the Z' decay modes and so, by itself, is insufficient to probe the details of the new gauge boson’s couplings. It is thus absolutely necessary to find additional observables which are also insensitive to any assumption on how the Z' may decay.

One suggestion [7] is to look for multi-body Z' fermionic decay modes and to form various ratios of decay rates and a second is to examine the polarization of τ’s resulting from the decay $Z' \rightarrow \tau^+\tau^-$. A third proposal takes advantage of the potential possibility of polarized pp scattering [4] to create a sizeable left- right asymmetry. All of these scenarios suffer from either large SM backgrounds which must be subtracted (but are still found to be useful for a relatively light Z' of order 1 TeV in mass) or are hampered by our current lack of knowledge of the polarized parton distributions.
Recently, Cvetic and Langacker\cite{8} have proposed the use of associated Z' production, i.e., $\bar{q}q \to VZ'$, with $V = Z, W^{\pm}$, as a new probe of the Z' couplings to fermions. The ratios of the cross sections for these events to that for single Z' production (as measured via the $Z' \to l^+l^-$ channel) are independent of Γ_2, were found to be statistically significant in the absence of cuts, and quite sensitive to the choice of EEM. Of course, paying the price of applying realistic cuts and allowing for V branching fractions (or V identification efficiencies) will reduce the values of these ratios somewhat resulting in a significant decrease in model sensitivity via a loss is statistical power.

In this paper we will examine both Z' produced together with a single jet or together with an isolated photon; the first process proceeds in lowest order\cite{9} either via $\bar{q}q \to Z'g$ or $gq \to Z'q$ while the second proceeds only via $\bar{q}q \to Z'\gamma$\cite{10} in lowest order. Although the gq production process was ignored in the brief discussion given by Cvetic and Langacker, we verify their conclusion that Z' production in association with a jet is quite insensitive to the Z' couplings to fermions. $Z'\gamma$ production, on the other hand, will be shown to be very clean and effectively background free when only very mild cuts are applied. Additionally, the efficiency of isolated photon detection is very high for planned collider detectors\cite{11} due to its usefulness in hunting for the intermediate-mass Higgs boson of the SM. We will show below that the ratio of the number of $Z'\gamma$ to Z' events observed at either the SSC or LHC, detected via the leptonic decay of the Z', provides a statistically useful probe of the Z' couplings which is insensitive to variations in the parton densities and higher order QCD corrections. Unlike the situation of $Z'V$ production, in the $Z'\gamma$ case we need not pay any significant price in applying cuts to remove SM backgrounds or for V branching fractions.

There are very many models in the literature which predict the existence of a Z' so that we can hardly perform an exhaustive analysis. Thus to be specific we’ll deal with only a small representative set of EEM’s which we feel are fairly representative: (i) the
‘Effective Rank-5’ Models (ER5M) arise from string-inspired E_6 and are obtained via the symmetry breaking chain $E_6 \rightarrow SO(10) \times U(1)_\psi \rightarrow SU(5) \times U(1)_x \times U(1)_\psi \rightarrow SM \times U(1)_\theta$ such that we can identify $Z' = Z_\psi \cos \theta - Z_\chi \sin \theta$ with $-\pi/2 \leq \theta \leq \pi/2$ being an a priori free parameter whose value fixes the Z' couplings to fermions; (ii) the now-classic Left Right Model (LRM) with $g_L = g_R$; (iii) the ‘Alternative’ Left Right Model (ALRM); (iv) a toy model wherein the Z' is just a heavier version of the SM Z (SSM). We refer the reader to the original literature for the details on each of these EEM’s.

Following Ref.9, the lowest order $Z' + jet$ or $Z'\gamma$ differential production cross section can be written as

$$\frac{d\sigma}{dp_t dy} = 2p_t \sum_{i,j} \int_{x_{min}}^1 \hat{s} f_i(x_1,q^2) f_j(x_2,q^2) \hat{\sigma}_{ij}(\hat{s},\hat{t},\hat{u}) x_1 s + u - M_2^2 \tag{1}$$

The kinematics are defined via the relationships

\begin{align*}
m^2_T &= p_t^2 + M_2^2 \\
\hat{s} &= sx_1 x_2 \\
t, u &= -\sqrt{s} m_T e^{\mp y} + M^0_2 \\
\hat{t}, \hat{u} &= -\sqrt{s} m_T x_{1,2} e^{\pm y} + M^2_2 \\
x_2 &= \frac{-x_1 t - (1 - x_1) M^2_2}{x_1 s + u - M^2_2} \\
x_{min} &= \frac{-u}{s + t - M^2_2} \tag{2}
\end{align*}

and f_i are the appropriate parton densities. For $\bar{q}q \rightarrow Z'g$ we have

$$\hat{\sigma}_{\bar{q}q} = \frac{2 \sqrt{2} G_F M_Z^2}{9 \hat{s}^2} \left(\frac{\hat{t}}{\hat{u}} + \frac{\hat{u}}{\hat{t}} + \frac{2 \hat{s} M^2_Z}{\hat{u} \hat{t}} \right) \alpha_s(q^2) (v_i^2 + a_i^2) \tag{3}$$
whereas for $\bar{q}q \to Z'\gamma$, we replace $\alpha_s(q^2)$ by $3/4 \alpha(q^2)Q_i^2$ where Q_i is the quark electric charge in units of e. For the $gq \to Z'q$ subprocess one has instead

$$
\hat{\sigma}_{gq} = \sqrt{2}G_F M_Z^2 \left(-\hat{s} \hat{u} - \frac{\hat{t} M_Z^2}{\hat{u} \hat{s}} \right) \alpha_s(q^2)(v_i^2 + a_i^2)
$$

(4)

In writing down these expressions we have normalized the various fermionic couplings to the Z' as in the SM:

$$
\mathcal{L} = \frac{g}{2c_w} \bar{q}_i \gamma_{\mu}(v_i - a_i \gamma_5)q_i Z'_\mu
$$

(5)

with $c_w = \cos\theta_w$ and g being the usual weak coupling constant. For purposes of numerical evaluations we take $q^2 = M_Z^2$ and evolve $\alpha_s(q^2)$ via the 3-loop renormalization group equation (taking the appropriate value of the scale Λ associated with the choice of parton distributions); we also take $\alpha^{-1}(q^2)=127.9$.

Let us first briefly examine the Z' plus jet production process; we normalize our differential rates by the lowest order $\bar{q}q \to Z'$ production cross section, σ_0. Since the $Q=2/3$ and $Q=-1/3$ quarks contribute differently to the two distinct subprocesses one might expect that the Z' plus jets production rate might be sensitive to the fermionic Z' couplings; unfortunately this is not the case. Fig. 1a shows the normalized differential rate for the SSC as a function of the jet p_t for $y = 0$ assuming the Morfin-Tung set S1 (MT-S1) parton distributions\[15\] taking $M_2 = 1$ TeV for four different EEM’s. Although this is only a Born level calculation, we see the essential feature immediately: all of the predictions lie virtually atop one another over a wide range of p_t. Fixing the p_t at 300 GeV and maintaining $y = 0$, Fig. 1b shows the extremely weak θ dependence (about 10%) of the normalized Z' plus jet cross section for the ER5M which again demonstrates the lack of sensitivity of this mechanism to the fermionic Z' couplings anticipated by the discussion given by Cvetic and...
Langacker [8]. We thus conclude that this reaction is useless as a probe of the Z' couplings. We note, however, that had the color factors been such as to make the gq subprocess occur at an even larger rate then the Z' plus jet mode might have provided a relatively sensitive tool with which to have analyzed the Z' couplings.

Turning now to the $Z'\gamma$ mode we see in Fig. 2a the normalized differential rate for this process as a function of the photon’s E_t for the same situation as in Fig. 1a. Instead of lying atop one another, we see here that the predictions of the four different EEM’s yield somewhat different results giving us some hope of the usefulness of this channel. Of course, since the rates are small and differential distributions are more sensitive to QCD corrections than are integrated quantities, we integrate our distribution over the photon $E_t > 50$ GeV and the rapidity interval

$$|y| \leq \min\left[2.5, \cosh^{-1}\left(\frac{s + M_2^2}{2\sqrt{s}m_T}\right)\right]$$

(6)

Here the former value represents the typical γ rapidity coverage of the SSC and LHC detectors [11] while the latter is purely kinematic. (A similar rapidity cut can be applied to the leptons from the decay of the Z'.) Backgrounds from decays such as $Z' \rightarrow l^+l^-\gamma$ can be completely removed by demanding that the lepton pair mass satisfy $M_{ll} > 0.95M_2$ coupled with the photon’s E_t cut for a Z' with a mass of 1 TeV. Note that the typical supercollider detector will have a dilepton pair mass resolution of order 1% or better [11]. As long as the probability of mis-identifying a jet as a photon is less than about 10^{-3}, there are no significant backgrounds from QCD sources which are not removed by the above cuts. This level of jet rejection should be obtainable for most of the SSC and LHC detectors [11].

The ratio of $Z'\gamma$ to Z' events, R_γ, is shown for the SSC assuming $M_2 = 1$ TeV for the ER5M case as a function of the parameter θ.
in Fig. 2b for several different choices of the parton densities\cite{15, 16, 17}. Here we see that (i) the results are insensitive to the choice of parton densities with a variation of at most 5% for the models we’ve examined; (ii) R_γ lies in the range 0.2-0.9%; and (iii) R_γ is quite sensitive to the value of θ as we would hope. Assuming MT-S1 distributions we also find that $R_\gamma=(4.95, 8.46, 5.50)10^{-3}$ corresponding to the (LRM, ALRM, SSM) cases respectively. For the LHC, under identical assumptions for the same models we find instead that $R_\gamma=(4.65, 7.26, 5.11)10^{-3}$, numerically comparable to their corresponding values at the SSC. For the ER5M case, the predicted value of R_γ at the LHC is shown in Fig. 2c as a function of θ assuming the same sets of structure functions as in Fig. 2b.

For larger Z' masses, e.g., $M_2 = 3$ TeV, the ratio R_γ is somewhat increased as shown in Fig. 2d and has a comparable sensitivity to variations in the Z' couplings. In fact, R_γ is found to approximately scale with the Z' mass and choice of minimum photon E_t as $\log^2(M_2/E_t^{\min})$. However, since the number of Z' events is drastically smaller for the larger Z' mass we lose the statistical power of R_γ as will be apparent from the number of events that we present below in the case of $M_2 = 1$ TeV.

Since we have so far presented only a Born-level calculation, we must worry about how R_γ would be modified by QCD corrections; such corrections have been considered in the literature for the production of $Z\gamma$ and $W^{\pm}\gamma$\cite{18}. One possibly sizeable correction at SSC and LHC energies arises from the box diagram-mediated process $gg \rightarrow Z'\gamma$. In the SM case, this represents an approximate 30% effect due to the high gg luminosity at small x values. In the $Z'\gamma$ case this contribution will be much smaller as significantly larger x values are being probed since the Z' is so massive. Additionally, this contribution is model dependent as it is sensitive to the existence of all color non-singlet fields in the model which couple to the Z' and the photon. Full next-to-leading(NLL) order calculations of $Z\gamma$ production in
pp collisions have only recently been completed by Ohnemus\[18\]; we note that the choice of kinematic cuts selected by that author is quoting his results is identical to the choice we have made above. Thus we can estimate that the corrections to the integrated $Z'\gamma$ cross section at both the SSC and LHC will be almost identical to the size of the ‘K-factor’ correction to the total Z' production rate as given, e.g., by the analysis of Hamberg et al.\[19\] which we have used in our earlier work\[3\]. This being the case, we estimate that the numerical values of R_γ presented above are relatively insensitive to large higher order QCD corrections at the level of more than a few percent. In quoting the numbers of events below, we will take all such ‘K-factor’ effects into account.

How well can R_γ be determined? Since there is little background and many of the various systematic uncertainties cancel in forming the ratio of cross sections, the dominant error in R_γ is expected to be statistical so that it will scale approximately inversely proportional to the square root of the number of $l^+l^-\gamma$ events(N_γ) which pass our cuts. We will assume that the isolated lepton identification efficiency is 0.85 separately for both e’s and μ’s and will sum over both leptonic flavors below. Table 1 shows the resulting values of N_γ for both the SSC (L=10 fb$^{-1}$) and LHC (L=100 fb$^{-1}$) with $M_2 = 1$ TeV and assuming MT-S1 parton distributions for several different EEM. The Table also shows the anticipated size of the relative error on a R_γ measurement for each of the EEM at both colliders. With the integrated luminosities that we’ve assumed, it is clear that R_γ can be relatively well determined at either supercollider for a 1 TeV Z' although the anticipated errors for the LHC are somewhat smaller due to the approximate factor of 2 larger event rate. It is important to note that the assumed factor of 10 larger luminosity of the LHC only translates into an approximate factor of 2 larger rate due to the LHC’s smaller center of mass energy. It is clear from the numbers in the Table that this method will fail for Z' masses significantly larger than 1 TeV since the event rates will fall off quite rapidly with increasing Z' mass.
Thus this technique is seen to be limited to the case of a relatively light \(Z' \).

In this paper we have obtained the following results:

(i) By explicit calculation, we demonstrated that the associated production of \(Z' \) plus jets is insensitive to the fermionic couplings of the \(Z' \) even though two distinct subprocesses contribute to the full cross section.

(ii) We have shown that the ratio of the cross sections for \(Z'\gamma \) and \(Z' \) production, \(R_\gamma \), is a sensitive probe of the \(Z' \) couplings, and is insensitive to structure function uncertainties and QCD corrections when suitable ‘K-factor’ contributions are accounted for.

(iii) With suitably soft cuts which do not modify the signal rate, \(Z'\gamma \) production is found to be essentially free of QCD and radiative \(Z' \) decay backgrounds with a final state that can be easily identified with high efficiency without paying the price of small branching fractions.

(iv) Although sufficient statistics can be accumulated at both the SSC and LHC to make \(R_\gamma \) a useful tool for a 1 TeV \(Z' \), the event rate falls off quite quickly with increasing mass rendering it useless if the \(Z' \) is significantly heavier.

Hopefully a new \(Z' \) will exist in the mass range of interest and provide us with further clues to new physics beyond the SM.
ACKNOWLEDGEMENTS

The author would like to thank J. Hewett and J. Ohnemus for discussions related to this work. This research was supported in by the U.S. Department of Energy under contracts W-31-109-ENG-38 and W-7405-ENG-82.
References

[1] See, for example, J.L. Hewett and T.G. Rizzo, in Proceedings of the 1988 Snowmass Summer Study on High Energy Physics in the 1990’s, Snowmass, CO 1988, ed. S. Jensen; V. Barger et al., Phys. Rev. D35, 166 (1987); L.S. Durkin and P. Langacker, Phys. Lett. B166, 436 (1986); F. Del Aguila, M. Quiros, and F. Zwirner, Nucl. Phys. B287, 419 (1987), B284, 530 (1987); P. Chiappetta et al., in the Proceedings of the Large Hadron Collider Workshop, Aachen, Germany, 1990; see also F. del Aguila and J. Vidal, Int. J. Mod. Phys. A4, 4097 (1989); B. Aveda et al., in Proceedings of the 1986 Summer Study on the Physics of the Superconducting Supercollider, Snowmass, CO, 1986 eds. R. Donaldson and J.N. Marx.

[2] J.L. Hewett and T.G. Rizzo, Phys. Rev. D45, 161 (1992); Argonne National Laboratory reports ANL-HEP-PR-92-33 (1992) and ANL-HEP-PR-92-33 (1992); T.G. Rizzo, Phys. Lett. B192, 125 (1987) and talk given at the Physics Beyond the Standard Model III Conference, Ottawa, Canada, June 22-24, 1992.

[3] M. Cvetic and P. Langacker, Phys. Rev. D46, 14 (1992) and M. Cvetic, P. Langacker, and B. Kayser, Phys. Rev. Lett. 68, 2871 (1992).

[4] A. Fiandrino and P. Taxil, Phys. Rev. D44, 3490 (1991) and Marseille report CPT-92/P.2717 (1992).

[5] For an early analysis, see H. Haber in Proceedings of the 1984 Summer Study on the Design and Utilization of the Superconducting Super Collider, ed. R. Donaldson and J.G. Morfin (1984), p. 157; J.D. Anderson, M.H. Austern, and R.N. Cahn, Phys. Rev. Lett. 69, 25 (1992) and Phys. Rev. D46, 290 (1992).

[6] F. del Aguila et al., Universidad de Granada report UG-FT-22/92 (1992).
This has been discussed by the authors of Refs. 2, 3, and 6.

M. Cvetic and P. Langacker, Univ. of Pennsylvania report UPR-514-T (1992).

F. Halzen and D.M. Scott, Phys. Rev. D18, 3378 (1978); E. Eichten et al., Rev. Mod. Phys. 56, 579 (1984).

F. Renard, Nucl. Phys. B196, 93 (1982).

SDC Technical Design Report, E. Berger et al., SDC-92-201 (1992); GEM Letter of Intent, R. Steiner et al., (1991); ASCOT Expression of Interest, P.R. Norton et al., (1992); CMS Expression of Interest, M. Della Negra et al., (1992); EAGLE Expression of Interest, P. Jenni et al., (1992); L3+1 Expression of Interest, S.C.C. Ting et al., (1992).

For a review of the E_6 models discussed here, see J.L. Hewett and T.G. Rizzo, Phys. Rep. 183, 193 (1989).

For a review of the LRM and original references, see R.N. Mohapatra, Unification and Supersymmetry, (Springer, New York, 1986); P. Langacker and S. Uma Sankar, Phys. Rev. D40, 1569 (1989).

E. Ma, Phys. Rev. D36, 274 (1987) and Mod. Phys. Lett. A3, 319 (1988); K.S. Babu et al., Phys. Rev. D36, 878 (1987); V. Barger and K. Whisnant, Int. J. Mod. Phys. A3, 879 (1988); J.F. Gunion et al., Int. J. Mod. Phys. A2, 118 (1987); T.G. Rizzo, Phys. Lett. B206, 133 (1988).

J.C. Morfin and W.-K. Tung, Z. Phys. C52, 13 (1991).

P. Harriman, A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Rev. D42, 798 (1990); A.D. Martin et al., Phys. Rev. D37, 1161 (1988).
[17] J. Kwiecinski, A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Rev. D42, 3645 (1990).

[18] J. Ohnemus, Univ. of Durham report DTP/92/54 (1992); see also U. Baur et al., Nucl. Phys. B318, 106 (1989); V. Barger et al., Phys. Rev. D41, 2782 (1990); J. Smith et al., Z. Phys. C44, 267 (1989); gg box diagram contributions have been considered by Ll. Amteller et al., Phys. Rev. D32, 1699 (1985) as well as J.J. van der Bij and E.W.N. Glover, Phys. Lett. B206, 701 (1988).

[19] R. Hamberg, J. van Neervan, and T. Matsuura, Nucl. Phys. B359, 343 (1991).
Figure Captions

Figure 1. (a) Normalized Born-level p_t distribution for Z' plus jet production at the SSC with $y = 0$ assuming $M_2 = 1$ TeV and MT-S1 parton distributions. The solid (dash-dotted, dashed, dotted) curve corresponds to the LRM(χ, ψ, ALRM) case. (b) Same as (a) but for the ER5M as a function of θ assuming $p_t = 300$ GeV.

Figure 2. (a) Normalized Born-level E_t distribution for $Z'\gamma$ production at the SSC with $y = 0$ assuming $M_2 = 1$ TeV and MT-S1 parton distributions. The solid (dash-dotted, dashed, dotted) curve corresponds to the LRM(ALRM, ψ, χ) case. (b) The ratio R_γ assuming a 1 TeV Z' at the SSC after cuts for the ER5M as a function of θ. The solid (dash-dotted, dashed, dotted, square dotted) curve corresponds to the choice of MT-S1(HMRS-B, MT-S2, KMRSB0, KMRSB-2) parton densities. (c) Same as (b) but for the LHC assuming the same sets of parton distributions. (d) Same as (b) but for a 3 TeV Z' at the SSC.
Table 1: The number of $Z'\gamma$ events (N_γ) and the relative error in R_γ in percent for several EEM’s at both the SSC and LHC assuming MT-S1 parton distributions.

EEM	N_γ	$\delta R_\gamma/R_\gamma$ (%)
		SSC (10 fb$^{-1}$)
LRM	65.4	12.4
ALRM	180.7	7.4
SSM	109.6	9.6
ψ	26.8	19.3
χ	40.0	15.8
η	39.0	16.0
		LHC (100 fb$^{-1}$)
LRM	125.2	8.9
ALRM	393.6	5.0
SSM	207.5	6.9
ψ	63.4	12.6
χ	74.6	11.6
η	81.7	11.0