The aerial parts of *Artemisia fragrans* Willd. were examined by a cell-free β-hematin formation assay. The aerial parts of *A. fragrans* were extracted by a Soxhlet extractor, and essential oil was obtained by a Clevenger apparatus. Then, GC-MS analysis was used to identify volatile compounds of essential oil and the 100% VLC fraction of chloroform.

Methods

In this study, the antimalarial activities of essential oil, different extracts, and vacuum liquid chromatography (VLC) fractions of *A. fragrans* Willd. were examined by a cell-free β-hematin formation assay. The aerial parts of *A. fragrans* were extracted by a Soxhlet extractor, and essential oil was obtained by a Clevenger apparatus. Then, GC-MS analysis was used to identify volatile compounds of essential oil and the 100% VLC fraction of chloroform.

Results

Among the extracts, chloroform extract illustrated considerable antimalarial activity compared to the control (P < 0.001), with the IC₅₀ value of 1.22 ± 0.05 mg/mL. Among the fractions, 100% VLC fraction of chloroform extract illustrated potent antimalarial effects compared to the control (P < 0.001). The volatile oil demonstrated moderate antimalarial effects (P < 0.001) compared with the control. Besides, GC-MS determined that sesquiterpenes in the 100% ethyl acetate fraction of the chloroform extract and oxygenated monoterpenes in the essential oil might be responsible for the potent antimalarial activity of this plant.

Conclusions

The 100% ethyl acetate fraction of chloroform extract along with the essential oil of *A. fragrans* indicated potent and moderate activity, possibly due to sesquiterpenes and oxygenated monoterpenes, respectively.

Keywords

Anti-malaria, *Artemisia fragrans* Willd., Phytochemical Analysis

1. Background

Malaria is one of the most momentous transmittable illnesses globally. It is the primary controversial issue in areas where the risk of malaria is high. According to the WHO report, malaria caused 429,000 deaths in 2015, and new malaria cases are predicted at approximately 212 million. Malaria is identified mainly in African countries. From 2010 to 2015, malaria’s frequency and mortality rates decreased in Iran (1). The control of malaria has been far-fetched regarding the resistance of mosquitoes to insecticides and antimalarial drugs. *Plasmodium falciparum* is a parasitic species that has developed resistance to almost all kinds of antimalarial drugs, and *P. vivax* has been resistant to chloroquine derivatives (2-4). Other reasons for the difficulty controlling malaria are the high price of antimalarial drugs and logistical difficulties, particularly in poor areas where malaria is endemic (5).

During the last 30 years, products with natural sources have made up two-thirds of all drugs (6). Medicinal herbs such as *Cinchona* species, *Artemisia annua*, *Simaroubaceae*, and *Meliaceae* family are the possible sources of new, effective, and cheap antiplasmodial products, which can make up the leading molecules to investigate new antimalarial drugs (7-10). The genus *Artemisia*, known as “Dermane” in Persian and “wormwood” in English, is the most prominent member of the *Asteraceae* family, with more than 300 species of fragrant and medical plants being widely disturbed all over the world, particularly in Southwest Asia and Central Europe (11-13). Essential oils of some species are used in aromatherapy and medicine, and the leaves of some others are used for cooking (14). Approximately 34 species of the *Artemisia* genus are found in Iran, including *A. melanocephala* and *A. kermaensis*, which are endemic (15). Investigating the biological activities of the secondary metabolites of this genus indicated that they had
some medicinal effects such as anticonvulsant (16), apoptosis (17), immunosuppressive (18), anthelmintic (19), antimalarial (20), anti-inflammatory (21), anti-HIV (22), antibacterial (23), and antifungal (24) activities. The phytochemical investigations of this genus growing in Iran demonstrated monoterpenes and sesquiterpenes, particularly sesquiterpene lactones, in volatile oils (25). The main secondary metabolites in this genus include acetylene, coumarin, flavonoids, and terpenes. Terpenes, particularly sesquiterpenes characterized by several Asteraceae species, especially the Artemisia genus, are highly diverse and abundant (26). Artemisia fragrans, known as "Dermane ye matter" in Persian, grows in Iran, Russia, and neighboring areas and is famed for its strong fragrans (11).

2. Objectives

The present study aimed to screen the antimalarial activity of the aerial parts of A. fragrans.

3. Methods

3.1. Chemicals

Chloroquine diphosphate, hematin porcine, sodium acetate, sodium dodecyl sulfate (SDS), magnesium sulfate, sodium chloride, sodium hydrogen phosphate, sodium hydroxide, potassium chloride, sodium bicarbonate, and glucose were obtained from Sigma-Aldrich (United Kingdom). Oleic acid was attained from Fluka (India), and all solvents used for extraction and fractionation were obtained from Scharlau.

3.2. Plant Material

The aerial parts of A. fragrans Willd. were collected from Mughan in East Azarbaijan province, Iran. A voucher specimen in this collection with TBZFPH 404 has been deposited in the Herbarium of Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

3.3. Extraction

The aerial parts of A. fragrans were dried at room temperature and powdered by a grinder. Then, 200 g of the dried powder of A. fragrans was extracted sequentially with n-hexane, chloroform, and methanol (1 L each solvent) with the Soxhlet method (Brand, Wertheim, Germany) at room temperature for eight hours. Then, all the extracts were concentrated using a rotary evaporator at a maximum temperature of 45°C and low pressure.

3.4. Potent Extract Fractionation

The fractionation of chloroform extract (2 g) was conducted via vacuum liquid chromatography (VLC) method over silica gel (20 g of each) with a mixture of solvents with increasing polarity: (1) ethyl acetate (EtOAc)/n-hexane (10:90); (2) EtOAc/n-hexane (20:80); (3) EtOAc/n-hexane (40:60); (4) EtOAc/n-hexane (60:40); (5) EtOAc/n-hexane (80:20); and (6) EtOAc/n-hexane (100:00). All fractions were dried using a rotary evaporator at an ambient temperature of 45°C.

3.5. Essential Oil

For making essential oil (EO), 100 g of the air-dried aerial parts of A. fragrans was powdered and extracted by a Clevenger apparatus (Germany) at room temperature for three hours. After decanting, the colored oils were recovered in the yield of 0.45% (v/w), and the oil was stored at 18°C for further investigation.

3.6. GC-MS Analysis

The EO and 100% VLC fraction were determined by a Shimadzu (Corporation, Kyoto, Japan) GC-MS QP5050A apparatus using the DB-1 capillary column (60 m × 0.25 mm id, film thickness 0.25 µm). Helium was used as the carrier gas at a 1.3 mL/min flow rate. For the EO analysis, the oven temperature was kept at 50°C for three minutes, then increased at a speed of 3°C/min to 260°C, and kept stable for nine minutes. For analysis of the 100% VLC fraction, the oven temperature was maintained at 50°C for four minutes, then it raised at a rate of 5°C/min to 300°C, and kept steady for 24 min. In addition, the injector temperature and split ratios were 220°C and 1: 33, respectively. The components of EO and a potent fraction (100% EtOAc) were identified by Kovats Index (KI), retention time (RT), and mass spectrum (MS).

3.7. In Vitro β-hematin Formation Assay

The antimalarial activities of the extracts and different fractions of potent extracts and EO of A. fragrans were evaluated by the modified method of Fitch et al. (27, 28). Incubation of various concentrations of aerial parts (0 - 2 mg/mL in 10% DMSO) was done with 300 µM of hematin, dissolved in 0.1 M NaOH, 10 mM oleic acid, and 1 M HCl. Chloroquine diphosphate was utilized as a positive control. The samples were kept in an incubator overnight at 37°C with regular shaking. Afterward, the samples were centrifuged (14,000 x g, 10 min, 21°C), and the hemozoin pellet was washed continuously with 2.5% (w/v) SDS in phosphate-buffered saline by sonication (30 min at 21°C) until the supernatant was transparent. Then, the hemozoin pellet was washed with 0.1 M sodium bicarbonate (pH 9.0) until the supernatant was clear again.
(usually 3 - 5 washes). After the final wash, the supernatant was eliminated, and the pellets were dissolved in 1 mL of 0.1 M NaOH before determining the amount of hemozoin by evaluating absorbance at 400 nm in a 1 mL quartz Corbett (Beckmann DU640 spectrophotometer). The results were recorded as percentage inhibition (I%) of heme polymerization/crystallization compared to a positive control (chloroquine) using the following formula: I% = [(AB–AA)/AB] × 100, where AB is the absorbance of blank (DMSO), and AA is the absorbance of the test sample.

3.8. Statistical Analysis

Experiments were tested in Quadruple measurements and illustrated as the mean ± SD. Furthermore, Microsoft Excel 2012 and Graph Pad Prism 8.0.2 (Graph Pad Software Inc., San Diego, CA, USA) were used for analyzing data. The IC₀ and IC₉₀ values were calculated from nonlinear regression analysis. Significant differences were determined using a one-way ANOVA test.

4. Results

4.1. In Vitro β-hematin Formation Assay

The results of the in vitro β-hematin formation assay of three different extracts of A. fragrans, six VLC fractions of chloroform extract, and essential oil are displayed in Table 1 and Figure 1. The inhibition of β-hematin formation by each extract/fraction is shown as a percentage (I%) and standard deviation. Among the extracts, the chloroform extract illustrated a considerable inhibitory effect with an IC₀ value of 1.22 ± 0.05 mg/mL compared to the control group (DMSO) (P < 0.001). Among the six VLC fractions with different polarities, the 100% EtOAc fraction demonstrated significant antimalarial activity with an IC₀ value of 0.11 ± 0.018 mg/mL compared to the control group (P < 0.001).

Then, GC-MS analysis was used to assess the volatile compounds of the potent fraction. According to Table 2, aromadendrene oxide I (34.69%), p-Octyloxynitrobenzene (8.65%), α-Santonin (7.53%), 7α-Isopropenyl-4,5-Dimethyloctahydroindene-4-carboxylic acid (5.96%), and β-Methyl ether dihydroartemisinin (5.72%) were found in this fraction.

4.2. GC-MS Analysis of Essential Oil

The essential oil components are presented in Table 3, based on their wash on the DB-1 column. According to Table 3, a total of 32 volatile components were identified in the aerial part of A. fragrans, which contained 99.04% essential oils. It contained 19.6% non-terpenoids and 97.08% terpenoids. Among the terpenoids, monoterpenes and sesquiterpenes were specified as 96.41% and 1.06% of the compounds, respectively. The GC-MS analysis of the EO led to the identification and quantification of five main monoterpenes, including β-thujone (47.43%), eucalyptol (18.04%), α-thujone (7.89%), camphor (7.22%), and 4-Terpineol (3.84%). The β-thujone is the main component of the A. fragrans essential oil.

5. Discussion

The Anopheles mosquitoes’ bite infects the human body with Plasmodium, an intracellular parasite, causing malaria (29). Hemoglobin of infected erythrocytes is degraded to amino acids by Plasmodium to use the catabolic products as the primary source of nutrition for their development and proliferation. Free heme is a toxic by-product released by the degradation of hemoglobin by protease enzymes. Hence, the parasite detoxifies free heme in different ways. The most common way of overcoming this problem is by converting large amounts of heme to hemozoin or water-insoluble malaria pigment through the biocrystallization process.

Although there is a different spectrum of chemical drugs for the treatment of parasite infection, the side effects of chemical compounds persuade researchers to discover novel approaches and drugs originating from natural sources. Artemisinin and 4-aminoquinolines derivatives (quinine, mefloquine, and chloroquine) are natural antimalarial compounds inhibiting hemozoin formation (30, 31). In the present study, A. fragrans was selected to evaluate its antimalarial activity and identify chemical compounds responsible for inhibiting the conversion of hemozoin or water-insoluble malaria pigment through the biocrystallization process.
heme to hemozoin. Although all of the extracts exhibited significant antimalarial activity compared to the control (P < 0.001), based on the IC₅₀ results, the CHCl₃ extract (with the minimum IC₅₀) was selected for further evaluation. It is worth mentioning that the CHCl₃ extract significantly inhibited heme conversion compared to n-Hexane and MeOH extracts (P < 0.001). The mentioned results guided us to study the fractions of CHCl₃ extract using the VLC method. The 100% EtOAc fraction was considered the most active fraction among the fractions compared to the control (P < 0.001). The GC-MS analysis of the 100% EtOAc VLC fraction indicated that aromadendrene oxide I was the main compound in this fraction, followed by p-Octyloxy nitrobenzene and α-Santonin. In the 100% VLC fraction, sesquiterpenes are probably responsible for antimalarial effects with an acceptable amount.

Several studies have demonstrated the antimalarial activity of different species of Artemisia. For example, from three different Artemisia species, including A. ciniformis, A. turanica, and A. biennis, the dichloromethane extract of A. ciniformis revealed the most potent antimalarial activity (32). Furthermore, in the same study, A. ciniformis contained many sesquiterpenes, while A. biennis and A. tyrannical contained a few sesquiterpenes. Therefore, the antimalarial effect of A. ciniformis might be attributed to sesquiterpenes (33). In another investigation, the in vivo antimalarial activity of extracts and fractions of A. diffuse was determined, showing that the inhibitory effect of Plasmodium was due to the presence of a sesquiterpene called Tehranolide (34). According to the mentioned studies, sesquiterpenes were responsible for antimalarial effects, in parallel with the results of our study. As mentioned, the high antimalarial activity of the 100% EtOAc fraction was due to sesquiterpenes. Besides, α-santonin and dihydroartemisinin were other ingredients in 100% VLC fraction with high percentages, and their anti-Plasmodium efficacy was evaluated in various investigations. Although the antimalarial activity of α-santonin has not been proven yet in vitro, one study evaluated the antiplasmodial effect of synthesized peroxide derivatives of α-santonin in vivo (35).
Table 2. Chemical Compositions of 100% Vacuum Liquid Chromatography Fraction

No.	Name	Formula	MW	Area (%)	RT
1	Ethyl propionate	C₇H₁₀O₂	102	0.32	6.515
2	Butyric acid	C⁴H₈O₂	88	2.20	8.926
3	2-butane, 4-hydroxymethanone	C₆H₁₄O₂	130	0.64	17.713
4	2,3-Hexan-2-ol, 6-ethylenetetrahydro-2,6,4-trimethyl	C₁₀H₁₈O₂	170	0.52	27.933
5	p-Menthene, 2,4-triol	C₁₀H₁₆O₂	188	0.31	30.195
6	2-Hexanone, 3-methyl-4-methylene	C₈H₁₄O	125	0.19	31.459
7	Loliolide	C₈H₁₆O	196	0.17	37.02
8	4,6,10,10-Tetramethyl-5-oxatriko[4.4.0.0(1,4)]dec-2-en-7-0	C₁₀H₂₀O₂	208	0.18	39.268
9	Epiglobulol	C₁₀H₂₀O₂	308	0.24	40.633
10	Hexaethylbenzene	C₁₂H₁₂O	246	1.27	43.718
11	Verrucarol	C₁₂H₂₂O₄	266	1.60	45.954
12	Carbon oxide	C₈H₁₆O₂	166	0.28	46.137
13	p-Octyloxydihydrobenzene	C₁₆H₂₈NO	251	8.65	46.445
14	α-Santonin	C₁₅H₂₂O₃	246	7.53	46.589
15	Cyclopropanaphthalen-3-one, octahydro-2,4a, 8,8-tetramethyl, oxime	C₁₅H₂₄NO	235	2.16	46.915
16	β-methyl ether of 11-epi-dihydroartemisin	C₁₅H₂₂O₅	298	5.72	48.068
17	Aromadendreneoxide-I	C₁₅H₂₆O	220	34.69	48.843
18	7a-Isopropenyl-4,5-dimethylcyclohexyldiene-4-carboxylic acid	C₁₅H₂₈O₂	236	5.96	49.673
19	6-Nitrocyclodecane-1,3-dione	C₁₅H₂₈NO₄	241	1.21	50.531
20	Limonene dioxide	C₁₀H₁₆O₂	168	0.95	50.833
21	Cyclooctene, dimmer	C₁₀H₁₆O₂	248	1.17	51.05
22	cis-Z-α-Bisabolene epoxide	C₁₅H₂₈O₂	220	0.57	51.309
23	d-Nerolidol	C₁₅H₂₆O	222	0.18	52.321
	Total		76.7		
	Non-terpenoids		24.8		
	Terpenoids		51.8		
	Monoterpene		154		
	Sesquiterpene		50.2		

Abbreviations: MW, molecular weight; RT, retention time (min).

Moreover, Suputtamongkol et al. set the activity of a derivative of dihydroartemisinin in vivo (beta-methyl ether of 11-epi-dihydroartemisinin or Artemether) (36). Also, the antimalarial activity of the essential oil was significantly (IC₅₀ = 2.21 ± 0.18 mg/mL, P < 0.001) higher than that of the control.

According to the GC-MS analysis results, 32 volatile components corresponding to 99.04% of the total oil were identified, representing high amounts of terpenoids. Among the terpenoids, oxygenated monoterpenes, monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes were the main compounds of volatile oil, in sequence. Here, among the oxygenated monoterpenoids, beta-thujone, eucalyptol, α-thujone, and camphor were specified with high amounts. Other studies into EO of A. fragrans collected from a region in Behshahr indicated that most compounds of EO were camphor (46%), eucalyptol (23%), and camphene (7.9%) (13). Another study into EO revealed that the main compounds of the volatile oil of this plant gathered from the surrounding areas of Tabriz were eucalyptol (52.1%) and alpha-thujone (34.8%) (37). Moreover, Delazar et al. reported the main compounds of this essential oil as follows: (1) camphor (54.92%); (2) eucalyptol (11.48%); (3) α-thujone (9.21%); and (4) β-thujone (4.83%). It is worth mentioning that although the main compounds of EO of A. fragrans collected from different re-
Table 3. Chemical Compositions of Essential Oil from the Aerial Part of Artemisia fragrans

No.	Name	Formula	MW	Area (%)	Ki
1	α-Thujene	C_{10}H_{16}	152	0.39	923.03
2	α-Terpinene	C_{10}H_{16}	136	0.7	1009.26
3	α-Cymene	C_{10}H_{14}	134	0.55	1012.12
4	Eucalyptol	C_{10}H_{16}O	154	18.04	1022.30
5	delta 3-Carene	C_{10}H_{16}	136	1.2	1049.54
6	trans-Sabinenehydrate	C_{10}H_{18}O	154	0.31	1054.59
7	Terpinolene	C_{10}H_{16}	136	0.24	1079.50
8	β-Thujone	C_{10}H_{16}O	152	47.43	1081.60
9	α-Thujone	C_{10}H_{16}O	152	7.89	1099.60
10	Terpineol	C_{10}H_{16}O	154	1.06	1108.18
11	Camphor	C_{10}H_{16}O	152	7.22	1122.41
12	Pinion-3-ol	C_{10}H_{16}O	152	1.68	1124.25
13	(5)-cis-Verbenol	C_{10}H_{16}O	152	0.31	1129.06
14	Pinocarvone	C_{10}H_{16}O	150	0.51	1139.39
15	α-Terpinol	C_{10}H_{16}O	154	0.46	1148.07
16	Borneol	C_{10}H_{16}O	154	0.31	1150.24
17	4-Terpinol	C_{10}H_{18}O	154	3.84	1163.31
18	Amyl vinyl carbinol	C_{10}H_{18}O	128	0.21	1165.37
19	Myrtenal	C_{10}H_{16}O	150	0.67	1170.28
20	α-Terpinol	C_{10}H_{16}O	154	0.45	1173.23
21	Myrtenol	C_{10}H_{16}O	152	0.35	1179.76
22	trans-Piperitol	C_{10}H_{16}O	154	0.62	1181.09
23	Caravan	C_{10}H_{16}O	150	0.36	1255.76
24	Piperitone	C_{10}H_{16}O	152	0.25	1227.30
25	cis-Sabinol	C_{10}H_{16}O	152	1.31	1273.31
26	Carvacrol	C_{10}H_{16}O	150	0.26	1277.90
27	α-Terpineol acetate	C_{10}H_{16}O_{3}	196	0.29	1299.53
28	α-Terpinyl acetate	C_{10}H_{16}O_{3}	196	0.28	1333.27
29	Methyl cis-cinnamate	C_{10}H_{16}O_{3}	162	0.31	1350.88
30	cis-Jasmone	C_{10}H_{16}O	164	0.48	1668.37
31	Germacrene D	C_{10}H_{14}	204	0.68	1478.62
32	Spathulenol	C_{10}H_{16}O	220	0.38	1507.27
	Total			**99.04**	
	Non-terpenoids			**1.96**	
	Terpenoids			**97.08**	
	Monoterpene			**96.41**	
	Sesquiterpene			**1.06**	

Abbreviations: MW, molecular weight; KI, Kovats Index.
regions of East Azerbaijan province [one from the Botanical Garden of Drug Applied Research Center of Tabriz (Delazar et al.,) and one we studied EO from Moghan] are the same in different years and seasons, their percentage in some ingredients are different. For clarification, although in the current research, \(\beta\)-thujone had a high percentage, in the study conducted by Delazar et al., camphor held the first rank in terms of high percentage. Interestingly, eucalyptol is a common compound in all \(A.\ fragrans\) species collected from different regions of Iran (11).

In all the mentioned EO studies, oxygenated monoterpenes played a vital role in demonstrating the antimalarial activity, which is consistent with the results of various published papers. Chabir et al., in their study into the essential oil of the leaves of \(Melaleuca\ armillaris\), showed that the antimalarial activity of EO of this plant was attributed to oxygenated monoterpenes like eucalyptol (38). Other investigations on four Salvia species rejected that the antiplasmodial activity of their essential oils may be due to high levels of monoterpenoids such as \(\alpha\)-pinene, eucalyptol, and \(\beta\)-cymene (39). Furthermore, Sedaghat et al. concluded that the presence of oxygenated monoterpenes such as eucalyptol in the essential oil of \(Eucalyptus\ camaldulensis\) leaves significantly inhibited the growth of Anopheles mosquito larvae (40). Therefore, the antimalarial effect of \(A.\ fragrans\) essential oil may also be owing to oxygenated monoterpenes like eucalyptol.

5.1. Conclusion

The present study inspected the antimalarial activity of different extracts and essential oil of the aerial parts of \(A.\ fragrans\) growing in Iran. Among the extracts, the chloroform extract showed significant antimalarial activity compared to the control, with the IC\(_{50}\) value of 1.22 ± 0.05 mg/mL. The essential oil showed moderate antimalarial effects compared with the control. Among the fractions, 100% VLC fraction of chloroform extract showed potent antimalarial effects compared to the control. The GC-MS study determined that the sesquiterpene in the 100% EtOAc fraction of the chloroform extract and oxygenated monoterpenes in the essential oil might be responsible for the potent antimalarial activity of this plant. The results of the phytochemical study of \(A.\ fragrans\) may prompt researchers to conduct future studies on this plant.

Acknowledgments

This work was financially supported by the Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Grant Number: 59212).

Footnotes

Authors’ Contribution: P. A. A. was the leading researcher and writer of the manuscript. S. A. and P. A. designed and supervised the study. Y. R., S. A., and P. A. analyzed the data and revised the manuscript.

Conflicts of Interests: The authors declare no conflict of interest.

Ethical Approval: The Ethics Committee of Tabriz University of Medical Sciences approved this study (IR.TBZMED.VCR.REC:1396.1182).

Funding/Support: This work was supported and funded by the Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (grant number: 59212).

References

1. World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals. Geneva, Switzerland: World Health Organization; 2016.
2. Khodadadi M, Nateghpour M, Souri E, Farivar L, Motevalli Haghi A, Rahimi-Froushani A, et al. Evaluation of Effectiveness of Ethanolic Extract of Artemisia aucheri, Individually and in Combination with Chloroquine, on Chloroquine - Sensitive Strain of Plasmodium berghei in Sourian Mice. Iran J Public Health. 2013;42(8):883-8. [PubMed: 26056643]. [PubMed Central: PMC4449210].
3. Mengiste B, Makonnen E, Ugya K. Antimalarial Activity of Dodonaea Angustifolia Seed Extracts Against Plasmodium Berghei in Mice Model. Monoma Ethiopian Journal of Science. 2012;4(1):47. doi: 10.4341/mej.v4i1.74056.
4. Muluye AB, Melese A, Adnew GM. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice. BMC Complement Altern Med. 2015;15:267. doi: 10.1186/s12906-015-0393-2. [PubMed: 26470058]. [PubMed Central: PMC4608310].
5. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9(7):725-32. doi: 10.1038/nfi.2005.205. [PubMed: 18560381].
6. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311-35. doi: 10.1021/np2009060. [PubMed: 22296399]. [PubMed Central: PMC3721881].
7. Schmidt TJ, Khalid SA, Romanian AJ, Alves TM, Biavatti MW, Brun R, et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr Med Chem. 2012;19(14):2176-228. [PubMed: 2244104].
8. Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules. 2016;21(10). doi: 10.3390/molecules21010189. [PubMed: 27775577].
9. Ameba Onguene P, Ntei-Kang F, Lifongo LL, Ndoum JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J. 2013;12:449. doi: 10.1186/1756-3305-12-449. [PubMed: 24130395]. [PubMed Central: PMC3873730].
10. Paney A, Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J pharmacogn phytochem. 2014;2(5):215-9.
11. Delazar A, Naseri M, Nahar I, Moghadam SB, Esnaashari S, Nazemiye H, et al. GC-MS analysis and antioxidant activities of essential oils of two cultivated Artemisia species. Chem Nat Compd. 2007;43(1):312-4. doi: 10.1007/s10009-007-0047-8.

Jundishapur J Nat Pharm Prod. 2022;17(2):e117597.
12. Mirjalili MH, Tabatabaei SMF, Hadian J, Ebrahimi S, Sonboli A. Phenological Variation of the Essential Oil of Artemisia scoparia Waldst. et Kit from Iran. J Essent Oil Res. 2007;19(4):326-9. doi: 10.1080/10412905.2007.969294.

13. Morteza-Semnani K, Akbarzadeh M, Moshiri K. Essential oil composition of Artemisia fragrans Willd. from Iran. Flavour Fragr J. 2005;20(3):330-4. doi: 10.1002/ffj.1431.

14. Duke J. Duke's Phytochemical and Ethnobotanical Databases. Maryland, USA: Beltsville Agricultural Research Centre; 2005.

15. Rustaiyan A, Masoudi S. Chemical constituents and biological activities of Iranian Artemisia species. Phytochem Lett. 2011;4(4):440-7. doi: 10.1016/j.phytol.2010.07.001.

16. Nasiri Borujerdi M, Rahimi-Madiseh M, Lorigooini Z, Piroozi R, Rafieian-Kopaei M, Amini-Khoei H. NMDA Receptor Mediates the Anticonvulsant Effect of Hydroalcoholic Extract of Artemisia persica in PizF-induced Seizures in Mice. Evid Based Complement Alternat Med. 2021;2021:642451. doi: 10.1155/2021/642451. [PubMed: 34394390]. [PubMed Central: PMC8360738].

17. Nazeri M, Mirzaei-Asl A, Saidijam M, Moradi M. Methanolic extract of Artemisia absinthium F. Zangie in apopiosis, enhances arescence of Bax:Bcl-2 ratio, cell cycle arrest, caspase-3 activation and mitochondrial membrane potential destruction in human colorectal cancer HCT-116 cells. Mol Cell Biol. 2020;40(11):8831-40. doi: 10.1093/motop/000.0.05931-2. [PubMed: 33412888].

18. Zimmermann-Klemd AM, Reinhardt JK, Morath A, Schamel WW, Steinberger P, Leitner J, et al. Immunosuppressive Activity of Artemisia argyi Extract and Isolated Compounds. Front Pharmacol. 2020;11:402. doi: 10.3389/fphar.2020.00402. [PubMed: 32322200]. [PubMed Central: PMC715444].

19. Mravcakova D, Komaromyova M, Babjak M, Urda Dolinska M, Konigova A, Petric D, et al. Anthelmintic Activity of Wormwood (Artemisia absinthium) and Mallow (Malva sylvestris L.) against Taenia solium and Hymenolepis nana. Front Pharmacol. 2020;11:503. doi: 10.3389/fphar.2020.00503. [PubMed: 32988347]. [PubMed Central: PMC7537645].

20. Yang J, He Y, Li Y, Zhang X, Wong YK, Shen S, et al. Advances in the Pharmacological research of Artemisia annua L. Anal Biochem. 1979;95(2):402. doi: 10.1016/0003-2697(79)90077-7. [PubMed: 3093124]. [PubMed Central: PMC4597161].

21. Akbari P, et al. Ethanolic extract of Artemisia campestris subsp. glutinosa (Besser) Batt. inhibits HIV-1 replication in vitro through the activity of terpenes and flavonoids on viral entry and NF-kappaB pathway. J Ethnopharmacol. 2020;248:113163. doi: 10.1016/j.jep.2020.113163. [PubMed: 32758675]. [PubMed Central: PMC7397943].

22. Apaza Ticona L, Bermejo P, Guerra JA, Abad MJ, Beltran M, Martin Lazaro R, et al. Ethnolocal Extract of Artemisia campestris subsp. glutinosa (Besser) Batt. Inhibits HIV-1 Replication in vitro through the Activity of Terpenes and Flavonoids on Viral Entry and NF-kappaB pathway. J Ethnopharmacol. 2020;248:113163. doi: 10.1016/j.jep.2020.113163. [PubMed: 32758675]. [PubMed Central: PMC7397943].

23. Sultan MH, Zuwaiall AA, Moni SS, Alshahri S, Alqahtani SS, Madkhali O, et al. Bioactive Principles and Potentiality of Hot Methanolic Extract of the Leaves from Artemisia absinthium L. ‘in vitro Cytotoxicity Against Human MCF-7 Breast Cancer Cells, Antibacterial Study and Wound Healing Activity’.Curr Pharm Biotechnol. 2020;21(5):371-21. doi: 10.2174/18783274196666200928500559. [PubMed: 32988347].

24. Feng X, Cao S, Qiu F, Zhang B. Traditional and modern pharmacological research of Artemisia annua L. Pharmacol Ther. 2020;216:107650. doi: 10.1016/j.pharmthera.2020.107650. [PubMed: 32758647].

25. Rustaiyan A, Ezzatzehad E. Sesquiterpene Lactones and Pentamethoxylated Flavone from Artemisia kalidacca Boiss. & Buhse. Planta Med. 2011;77(12). doi: 10.1055/s-0031-1282128.