Research Article

Structural and functional characterization of the mitochondrial complex IV assembly factor Coa6

Shadi Maghool1, N Dinesha G Cooray1, David A Stroud2, David Aragão3, Michael T Ryan4, Megan J Maher1,5

Assembly factors play key roles in the biogenesis of many multi-subunit protein complexes regulating their stability, activity, and the incorporation of essential cofactors. The human assembly factor Coa6 participates in the biogenesis of the CuA site in complex IV (cytochrome c oxidase, COX). Patients with mutations in Coa6 suffer from mitochondrial disease due to complex IV deficiency. Here, we present the crystal structures of human Coa6 and the pathogenic W59C-Coa6-mutant protein. These structures show that Coa6 has a 3-helical bundle structure, with the first 2 helices tethered by disulfide bonds, one of which likely provides the copper-binding site. Disulfide-mediated oligomerization of the W59C-Coa6 protein provides a structural explanation for the loss-of-function mutation.

DOI 10.26508/lsa.201900458 | Received 17 June 2019 | Revised 26 August 2019 | Accepted 2 September 2019 | Published online 12 September 2019

Introduction

The mitochondrial oxidative phosphorylation (OXPHOS) system generates the bulk of cellular ATP, fuelling the energy demands of most eukaryotes. Five multi-subunit protein complexes in the mitochondrial inner membrane, termed complexes I–V, comprise the OXPHOS system. Complex IV (cytochrome c oxidase; COX) is the last complex of the electron transport chain, transferring electrons from cytochrome c to molecular oxygen, and in the process, pumping four protons across the inner membrane (1). In mammals, complex IV is additionally found with complexes I and III in large multicomplex assemblies termed the respiratory chain supercomplexes (2, 3). In humans, complex IV is composed of 14 subunits with the three mitochondrial DNA-encoded subunits (COX1-3) forming the catalytic core of the enzyme that is conserved from yeast to man (4). Cytochrome c docks onto the intermembrane space (IMS) domain of COX2, which contains a binuclear copper center, termed Cux, that accepts the electrons. The electrons are then passed to a heme a group in COX1 and then to a heme a3-Cux site and finally to oxygen, which is reduced to water (5). Thus, reduction of the Cux site in COX2 represents the critical first stage in complex IV activity.

In humans, the assembly of the Cux site requires the assembly factors Cox16 (6), Cox17 (7), Sco1 (8), Sco2 (9), and Coa6 (10, 11), with mutations in these proteins resulting in COX assembly defects and an attenuation in the activity of the complex (12, 13). The metallochaperone Cox17 (7) is a mitochondrial IMS located protein, which receives copper from the mitochondrial matrix copper pool where copper is bound by an anionic fluorescent molecule (also known as copper ligand, Cul) (8, 14, 15). Cul has also been reported to be located in the cytoplasms and may be a vehicle for copper transport into mitochondria (14). Cox17 is crucial for copper delivery to COX2 through a proposed sequential pathway, with Sco2 acting upstream of Sco1 (16, 17, 18, 19). Recently, Cox16 has been shown to play a role in this process, being required for the association between Sco1 and COX2 and between COX1 and COX2 for COX assembly (6).

Coa6 is a soluble IMS protein with a CX9C–CX9C sequence motif, which binds Cul(1) with a Kd(Cul) of ~10−17 M (11). Coa6 deletion in both yeast and human cells results in diminished COX assembly and activity; however, this defect can be partially rescued by exogenous copper supplementation (10) and in yeast by treatment with elesclomol (via a proposed ellesclomol–copper complex (20)). Recent studies (11, 21) have shown that Coa6 interacts with newly synthesized COX2 (11, 21) and with both Sco1 and Sco2, leading to suggestions that Coa6 acts to facilitate Cux site assembly and, therefore, COX biogenesis as part of a Sco1/Sco2 (21)-containing complex and/or through the redox cycling of Sco2 (22).

Pathogenic mutations in the Coa6 protein (W59C and E87*) were identified in a patient suffering from hypertrophic obstructive cardiomyopathy, resulting in a COX defect in the heart tissue, but no defect in fibroblasts (17). An additional patient with a W66R mutation in Coa6 suffered from neonatal hypertrophic cardiomyopathy, muscular hypotonia, and lactic acidosis with a COX defect in the fibroblasts (16). One report examining the W59C-Coa6 variant showed the protein was mistargeted to the mitochondrial matrix; however, our previous results (11) showed that the W59C-Coa6 was...
able to partially rescue human embryonic kidney (HEK293T) Coa6 knockout cells, suggesting that the mutant protein retains some functionality.

It is clear that Coa6 is essential for COX assembly, that it plays a role in the biogenesis of the Cu₆₆₆₆ site, interacts with crucial factors in the IMS Cu delivery pathway, and that mutations to Coa6 are pathogenic and lead to mitochondrial disease (16, 17). However, the precise role that Coa6 plays in COX biogenesis, and therefore, the mechanism underlying W59CCoa6 pathogenesis remains to be elucidated. In this study, we have determined the crystal structures of the human wild-type Coa6 (WTCoa6) and W59CCoa6 proteins by X-ray crystallography to 1.65 and 2.2 Å resolution, respectively. By mutagenesis, we propose the location of the copper-binding site within Coa6. Examination of the structures allows us to suggest the mechanism of action for this protein in COX assembly and the molecular origin of pathogenesis for the W59C mutation.

Table 1. Data collection and refinement statistics.a

Data collection	Native WTCoa6	Anomalous WTCoa6	W59C-Coa6
Crystal	Native WTCoa6	Anomalous WTCoa6	W59C-Coa6
Wavelength (Å)	0.9918	1.722	0.954
Temperature (K)	100		
Diffraction source	Australian synchrotron (MX2)		
Detector	ADSC quantum 315r		
Space group	P2,2,2,1	P2,2,2,1	P1
a, b, c (Å)	32.0, 52.4, 78.3	32.2, 52.7, 78.6	41.4, 47.8, 48.1
α, β, γ (°)	90, 90, 90	90, 90, 90	116.9, 98.8, 104.1
Resolution range (Å)	50.0–1.65 (1.71–1.65)	44.0–2.28 (2.35–2.28)	50.0–2.20 (2.28–2.20)
Total no. of reflections	80,326	416,239	49,280
No. of unique reflections	16,393	6,519	15,400
Completeness (%)	99.8 (100.0)	99.5 (95.1)	98.4 (97.3)
Redundancy	4.9 (5.0)	63.9 (33.7)	3.2 (3.1)
⟨I/σ(I)⟩	29.9 (23)	70.3 (5.6)	14.4 (2.1)
Rmerge (%)	4.7 (67.3)	5.8 (73.1)	5.9 (59.6)
Rfree (%)	2.3 (32.8)	0.7 (12.4)	4.1 (40.8)
Refinement statistics			
Resolution range (Å)	43.6–1.65 (1.69–1.65)	38.3–2.2 (2.129–2.185)	
No. of reflections, working set	14,716	14,685	
No. of reflections, test set	1,632	713	
Rwork (%)	18.8 (27.5)	20.0 (27.3)	
Rfree (%)	22.9 (33.4)	24.4 (37.2)	
R.m.s.d. bond lengths (Å)	0.012	0.003	
R.m.s.d. bond angles (°)	1.75	1.21	
Ramachandranb			
Favored, %	100	98.3	
Allowed, %	100	100	
PDB ID code	6PCE	6PCF	

Recombinant WTCoa6 protein was overexpressed in Escherichia coli strain Shuffle T7, which promotes the production of correctly disulfide bonded active proteins within the cytoplasm (23, 24). The fully oxidized WTCoa6 protein (including two disulfide bonds) was purified by affinity and size-exclusion chromatography (SEC). The redox state of the purified WTCoa6 protein was confirmed by Ellman’s assay (25). To elucidate the atomic structure of the WTCoa6 protein, we crystallized and determined its structure to 1.65 Å resolution by X-ray crystallography (Table 1). The structure shows two monomers of WTCoa6 per asymmetric unit, arranged as an antiparallel dimer (Fig 1A). The final WTCoa6 model includes residues 52–111 from molecule A (Fig 1A, cyan) and residues 50–119 from
molecule B (Fig 1A, gray). Interpretable electron density was not observed for residues A47–51, A112–125, B47–49, and B120–125, and these were omitted from the final model. The superposition of molecule A with molecule B gives a root mean square deviation (r.m.s.d.) for 53 common Ca positions of 0.43 Å, indicating the structures of the two monomers are very similar.

Each monomer is composed of a 3-helical bundle, with a coiled–coil–helix–coiled–helix (CHCH) fold (26) (Fig 2C). The sequence of WTCoa6 includes four Cys residues (at positions 58, 68, 79, and 90) in a CX9C–CX10C sequence motif, which in the crystal structure form two intramolecular disulfide bonds per monomer, between Cys58–Cys90 and Cys68–Cys79, in accordance with the fully oxidized state of the protein (Fig 1A). These disulfides tether helices α1 and α2 together at each end of the helical pair.

Proteins which include twin CX9C motifs and adopt CHCH folds include the mitochondrial copper chaperone Cox17 (7) (Fig 2A, Protein Data Bank [PDB] 2RNB), Mia40 (PDB 2K3J) (27), CMC4 (p8MTCP1; PDB 1HP8) (28), CHCHD5 (PDB 2LQL), and CHCHD7 (PDB 2LQT) (29), whose structures have been elucidated by Nuclear Magnetic Resonance. In addition, a search of the WTCoa6 coordinates against the PDB revealed (30) that WTCoa6 shares significant structural similarity with the Cox6B subunit of COX (Fig 2B, PDB 22XW (31), Chains H and U, r.m.s.d. 1.8 Å for 51 common Ca positions). The structure of Cox6B also shows a CHCH fold and includes four Cys residues, which are found in a CX9C–CX10C sequence motif. These Cys residues also form two pairs of intramolecular disulfide bonds (between Cys29–Cys64 and Cys39–Cys53), with positions that superpose exactly with the WTCoa6 structure (Figs 2B and S1). Because of its CHCH structure, Cox6B has been included in the twin Cx9C protein family (despite showing a sequence variation: CX9C–CX10C). Coa6 can now also be included in that family. All structurally characterized twin Cx9C proteins listed here include an N-terminal (α1/α2) helical pair, which is tethered at each end by disulfide bonds (Fig 2) and most have been shown to undergo import into the mitochondrial IMS through an Mia40-mediated oxidative folding pathway (26, 32, 33). However, only the Cox17 protein has been shown to bind Cu(I) (7) and to play a role in COX assembly.

The Coa6 dimer has buried surface areas of 701 and 656 Å² (for molecules A and B, respectively), which are 15 and 13%, of the total surface areas of each corresponding monomer, indicating that WTCoa6 forms a stable dimer in solution (34). This agrees with our previous SEC data, which demonstrated that WTCoa6 eluted from an analytical column at a volume corresponding to the molecular weight of a dimer (11). The Coa6 dimer is entirely mediated by intermolecular contacts between Helix α3 from each monomer. These contacts include electrostatic interactions, including hydrogen bonds and salt bridges (Fig 1B). In addition, Tyr97 of monomer A (Helix α3, cyan, Fig 1B) forms a π-stacking interaction with Phe111 of monomer B (Helix α3, gray, Fig 1B) at the dimer interface.

To investigate the roles of individual interface residues in the stabilization of the dimer, we generated variant proteins where interface residues were mutated to alanine (Y97A, Y104A, R101A, and Y97A/Y104A mutant proteins) and analyzed the quaternary structures.
of these variant proteins by analytical SEC. All mutant proteins eluted from SEC at volumes similar to that for dimeric WTCoa6 (Fig S2), indicating conservation of their dimeric quaternary structures and therefore, the extensive nature of the dimer interface. Interestingly, no other twin CX9C proteins have been characterized as dimeric and all reported structures to date have shown monomeric proteins (7, 27, 28, 29).

Mutation of residues Cys58 and Cys90 eliminates Cu(I) binding to Coa6

We have previously reported that both the WTCoa6 and W59CCoa6 proteins bind Cu(I) with $K_{\text{Cu(I)}} = 10^{-17}$ M (11). To determine the stoichiometry of Cu(I) binding, purified apo-WTCoa6 was loaded with Cu(I) in the presence of the reducing agent as previously described (11, 35). Following SEC to remove excess Cu, WTCoa6 was found to bind Cu(I) with a Cu:protein stoichiometry of 1:1 (Fig S3), indicating the presence of a single Cu(I) binding site per molecule of WTCoa6.

CX9C motifs are commonly present in soluble, high-affinity Cu(I)-binding proteins (copper metallochaperones) such as Atox1 (36), where redox cycling of the pair of Cys residues from oxidized (disulfide, S–S) to reduced (2SH) allows Cu(I) coordination between the thiolate groups of the Cys side chains. CHCH fold proteins have been characterized with redox active disulfide bonds; however, this activity is mediated not by the Cys residues that are part of the CX9C motifs but by additional pairs of Cys residues at the N termini of the proteins (37). For example, in Cox17, an N-terminal C–C motif shows oxidoreductase activity and also binds Cu(I) with femtomolar affinity, for transfer to receiving copper proteins of the IMS, such as Cox11, Sco1, and Sco2 (8, 38, 39). Mia40 has a conserved N-terminal CPC motif that catalyzes the formation of intermolecular disulfides in CX9C proteins within the IMS (40). The redox potentials of the N-terminal Cys pairs for Cox17 and Mia40 are −198 (41) and −200 mV (27). In addition, the human Sco1 and Sco2 proteins have been shown to possess redox-active disulfide bonds that bind Cu(I) when in the reduced state, with measured redox potentials for the respective S–S/2SH couples of −277 and less than −300 mV (9, 22, 38).

Our previous study showed that WTCoa6 exists in mitochondria in a partially reduced state, that is, with one of the two intramolecular disulfide bonds reduced (11). Reduction of one disulfide bond would facilitate Cu(I) binding and yield Cu:protein stoichiometry of 1:1. We therefore sought to determine whether a Cu(I) binding site might exist between the Cys58–Cys90 or Cys68–Cys79 disulfides in WTCoa6. To that end, we determined the redox potential of the S–S/2SH couple for the Coa6 protein (using a DTTRed/DTTOx redox couple) as −349 ± 1 mV (pH 7.0, Fig S4). To determine whether this represented one or both of the S–S/2SH redox couples in WTCoa6 (i.e., the Cys58–Cys90 and/or the Cys68–Cys79 disulfides), the purified protein was incubated with DTTRed/DTTOx (40:1), followed by labeling with iodoacetamide (IAA) before analyses by both Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometry (MS) (Fig S5 and Table S1) and tryptic digest and peptide analysis by tandem MS/MS (Table 2). The MALDI-TOF data revealed that the dominant species in the reduced WTCoa6 sample

Figure 2. WTCoa6 has a twin CX9C protein fold.

(A) Cox17 (PDB 2RNB): helices are shown in green, and cysteines in the CX9C motifs that form disulfide bonds are shown as yellow sticks. (B) Cox6B (PDB 2EIJ): helices are shown in raspberry, and cysteines in the CX9C (or CX10C) motifs that form disulfide bonds are shown as yellow sticks. (C) WTCoa6 (this work): helices are shown in gray, and cysteines in the CX9C (or CX10C) motifs that form disulfide bonds are shown as yellow sticks. In all panels, the positions of the corresponding motifs are shown as red arrows. In panel (B), part of the N terminus and helix α3 in panels (B) and (C) are not colored for clarity.
Table 2. WTCoa6 mass determined via MS/MS following reduction and IAA labeling.

Peptide sequence	Predicted mass of peptide sequence (D)	Predicted mass upon alkylation (D)	Residue	Predicted mass upon alkylation (D)	Determined mass upon alkylation (D)
FEAGQFEPSSETTAK	1541.7118	111–124	—	—	ND
SSFESCoPOQWK	1526.6944	84–96	Cys90	1584.6999	1584.8
C68LDENLEDASQC79K	1467.6090	68–80	Cys68, Cys79	1583.6199	ND
GPLGSMAAPSMK	1146.5645	42–53	—	ND	ND
QVC58WGAR	819.3930	56–62	Cys58	877.3985	877.6
DEYWK	740.3250	63–67	—	ND	ND
YFDK	572.2715	97–100	—	ND	ND
DYLK	538.2871	103–106	—	ND	ND

The determined masses of peptides, including Cys58 and Cys90, were detected at the predicted molecular masses of the peptide-IAA adducts, which were calculated by PEPTIDEMASS (57), indicating the reduction of the Cys58–Cys90 disulfide bond under these conditions. The alkylated residues Cys58 and Cys90 are highlighted in bold. ND, not detected.

The MS/MS data showed that peptides that included residues Cys58 and Cys90 yielded molecular weights corresponding to adducts with IAA, indicating reduction of the Cys58–Cys90 disulfide bond under these conditions (Table 2).

In addition, we generated C58S/C90S Coa6 and C68S/C79S Coa6 variants, which were analyzed for Cu(I) binding as previously described (11). Cu(I)-binding to the C58S/C90S Coa6-mutant protein was not detected using this assay (Fig. 3). In contrast, Cu(I) binding to the C58S/C90S Coa6 variant gave a measured $K_{Cu(I)}^{-1}$ of 10^{-16} M, which is ~10-fold weaker than that determined for the WTCoa6 protein (11). Circular dichroism (CD) spectroscopic analyses of the mutant proteins showed that both proteins gave spectra similar to that of the WTCoa6 protein, indicating that the observed changes in Cu(I)-binding properties were not due to alterations in the secondary structures of the proteins in the presence of the mutations (Fig S6). However, the possibility exists that the mutagenesis affected the flexibility of the protein and/or its tertiary structure as observed for a similar analysis of the human Cox17 protein (42).

Interestingly, an analysis of the geometries and potential energies of the Cys58–Cys90 and Cys68–Cys79 disulfides (43) revealed that the Cys58–Cys90 bond has a +/−RHHook geometry, which is commonly observed for disulfide bonds within thioredoxin-like proteins, being classified as a “catalytic” conformation. These types of disulfide bonds are observed to redox cycle, which is the foundation of their activities. This is in comparison with the geometry of the Cys68–Cys79 disulfide which shows a −LHSpiral geometry, which is the geometry commonly observed for structurally stable disulfide bonds (43, 44, 45). In addition, the structure of the WTCoa6 shows that the Cys58–Cys90 site is proximate to positively charged residues (Lys53 and Arg55) and bordered by aromatic side chains (Trp59 and Trp94), which partially shield the site from the solvent (Fig S7). Positively charged residues in the vicinity of Cu(I)-binding sites within structurally characterized metallochaperone proteins such as Atox1 have been proposed to stabilize Cu(I) binding and mediate its transfer to other protein partners (46, 47). In addition, cation–π interactions (between Cu(I) and aromatic amino acid side chains), such as those observed in the crystal structure of the Cu(I)-CusF protein from E. coli (48), are known to stabilize copper binding.

To further investigate the position of the Cu(I)-binding site, we expressed the FLAG-tagged WTCoa6 and FLAG-tagged C58S/C90S Coa6 double mutant in COA6KO cells and compared the levels of assembly COX with control HEK293T and COA6KO cells by blue native-PAGE (BN-PAGE) and Western blotting. As previously reported (11), the complementation with WTCoa6-FLAG in COA6KO cells restored COX assembly. However, complementation with C58S/C90S-Coa6-FLAG was not able to rescue COX assembly and activity in COA6KO cells. Examination of the cellular localization of the overexpressed C58S/C90S-Coa6-FLAG protein by immunofluorescence showed that unlike WTCoa6-FLAG, the C58S/C90S-Coa6 protein was cytosolic (Fig S8). Ox6C–Ox5C and Ox6C proteins require the presence of the Cys residues within these motifs for
import into the IMS, and oxidative folding via Mia40 to trap the proteins in the IMS (49, 50). The absence of IMS localization of the C58S/C90S Coa6-FLAG protein correlates with these observations and impeded our efforts to probe the role of these residues in Coa6 function and specifically COX assembly in human cells. Interestingly, however, an examination of the C25AyCoa6 and C68AyCoa6 (equivalent to human C90ACoa6) variants from yeast, showed that unlike WTCoa6, these mutants were not able to rescue the respiratory growth defect of COA6KO cells (10). In addition, these mutations were shown to disrupt the interactions (probed by co-immunoprecipitation) between yCoa6 and yCox2 and ySco1 (51).

Taken together, the redox potential of the WTCoa6 Cys58–Cys90 disulfide, the results of mutagenesis, Cu(I)-binding experiments, and analyses of the geometries of the intramolecular disulfide bonds of WTCoa6 indicate that the WTCoa6 Cys58–Cys90 disulfide may redox cycle and in the reduced state (2SH), bind Cu(I). The redox potential of the WTCoa6 Cys58–Cys90 S–S/2SH redox couple at −349 ± 1 mV indicates WTCoa6 could reduce the disulfide bonds in COX2 (−288 ± 3 mV) (22), and Sco1 (−277 ± 3 mV) (38) and could either reduce or be reduced by Sco2 (less than −300 mV) (9). In fact, a recent examination of this pathway suggested WTCoa6 may play such a role (22). Unfortunately, despite extensive attempts, we were unable to crystallize the Cu(I)-bound WTCoa6. Confirmation of Cu(I) binding and the atomic details of the Cu(I) site structure, therefore, await future investigation.

The structure of W59C Coa6 reveals a disulfide-mediated oligomerization

Finally, we determined and refined the crystal structure of the pathogenic mutant protein W59C Coa6 to 2.2 Å resolution by X-ray crystallography (Table 1). The structure of W59C Coa6 shows four molecules (A, B, C, and D) per asymmetric unit. The noncovalent dimer observed in the WTCoa6 structure (Fig 4A) is maintained for W59C Coa6 (between molecules A [cyan] and B [gray]) through

Figure 4. Structure of the W59C-mutant protein. (A) Cartoon representation of the overall structure of WTCoa6. Secondary structures are represented as cartoons with monomers colored in cyan and gray. (B) Cartoon representation of the overall structure of W59C Coa6. Secondary structures are represented as cartoons with monomers colored in cyan, gray, salmon and gold. Residues Cys58 and Cys90 are shown as pink spheres and residues Cys68 and Cys79 as yellow spheres. Each monomer (cyan and gray) is linked to another monomer (salmon and gold, respectively) by an intermolecular disulfide bond (shown as yellow sticks) through the introduced Cys59 residue.
contacts along Helix α3 from each monomer (Fig 4B). In addition, each of these molecules form a covalent dimer with another molecule of W59Coa6 through a disulfide bond between the introduced residue Cys59 on each chain (covalent dimers between molecules A/D [cyan and salmon] and B/C [gray and gold], Fig 4B). In this way, the asymmetric unit is composed of a dimer of dimers (a noncovalent dimer of disulfide bridged dimers). Importantly, this pattern of interactions is propagated throughout the crystal so that every molecule of W59Coa6 interacts with two others—one through noncovalent contacts along Helix α3 (as observed for WTCoa6, cyan and gray, Fig 4B) and the other through a disulfide bond between residue Cys59 on each molecule as a result of the mutation (cyan/salmon and gray/gold, Fig 4B).

The superposition of the WTCoa6 structure with the noncovalent A/B dimer of W59Coa6 yields a r.m.s.d. value of 1.2 Å for 113 common Ca atoms. These minor structural differences originate from a slightly different association between the monomers in the dimers, rather than specific structural rearrangements. Importantly, in the WTCoa6 and W59Coa6 structures, the positions of the proposed Cys58–Cys90 Cu(I)-binding sites are identical. Because the Cu(I)-binding activity of the W59Coa6 protein is preserved in the presence of the mutation (11), these residues, being positioned at the “end” of the (α1/α2) helical pair presumably remain accessible to Cu(I) binding, despite the oligomerization of the W59Coa6.

Our previous analysis of the quaternary structure of the W59Coa6-mutant protein by SEC (11) showed a broad elution profile, indicating protein oligomerization. Under reducing conditions, the elution profile for the W59Coa6 protein was identical to that of WTCoa6, corresponding to a dimeric protein (11). These observations agree with the crystal structure described here, which shows that W59Coa6 oligomerization is mediated by the presence of intermolecular disulfide bonds that bridge noncovalent W59Coa6 dimers.

Characterizations of the W59Coa6-mutant protein in yeast (W26CyCoa6) and human cells by other groups have suggested differing localizations of the mature protein: to the IMS (51) and mislocalization to the matrix (in U2OS cells (21)). Our previous study showed that complementation of W59Coa6 in COA6 KO HEK293T cells only partially restored COX assembly and that in yeast, accumulation of yCoa6 in the mitochondrial IMS was impaired in the presence of the mutation W26C (equivalent to human W59Coa6) (11). Additional studies have also shown a decrease in steady state levels of Coa6 in yeast for the W26CyCoa6-mutant protein (10) and an impaired interaction of the mutant protein with COX2 (51).

The structure of W59Coa6 is consistent with the bulk of these data. Oligomerization of the protein, through the creation of intermolecular disulfide bonds may inhibit or eliminate targeted protein–protein interactions between Coa6 and proteins such as Sco1, Sco2, and COX2, which are critical for its function. Certainly, the structures and charge distributions on the surfaces of the WTCoa6 dimer and W59Coa6 tetramer are different (Fig S9A and B). In particular, condensed areas of positive charge on the surface of the WTCoa6 dimer (Fig S9A) are not present in the W59Coa6 tetramer (Fig S9B). These regions may mediate interactions with the Sco1, Sco2, and COX2 proteins through concentrated areas of negative charge on the surface structures of those proteins (Fig S9C–E).

Conclusion

Despite intense investigation, the identities of all proteins involved, their respective roles, and the sequence of their participation in complex IV biogenesis are currently not known (4, 22, 52, 53). The COX assembly factor Coa6 was identified through a proteomic survey of the mitochondrial IMS from Saccharomyces cerevisiae (49) and the significant number of investigations that followed, proposed its role in the biogenesis of the CuA site, presumably through the interaction of Coa6 with other critical proteins in the COX biogenesis pathway such as Sco1 and Sco2 (10, 11, 21, 51). However, the molecular details of how Coa6 functions in this pathway, particularly the molecular foundations of its ability to bind copper have until now been undefined. Crucially, the molecular basis of the pathogenic effect of the W59Coa6 mutation has remained elusive.

Here, through the determination of the high-resolution crystal structures of the WTCoa6 and W59Coa6 proteins, we have contributed to the interpretation of the role of Coa6 in COX biogenesis. The WTCoa6 structure shows a 3-helical bundle fold, where the N-terminal helical pair is tethered at each end by intramolecular disulfide bonds. We propose that in the mitochondrial IMS, the Cys58–Cys90 disulfide redox cycles between oxidized and reduced states and that when reduced, may constitute a Cu(I)-binding site. This proposal is supported by our data showing that the Coa6 protein in human mitochondria is partially reduced, that residues Cys58 and Cys90 can be labeled by IAA under reducing conditions, and that in the structure of WTCoa6, the Cys58–Cys90 disulfide shows a geometry and surrounding protein structure that are amenable to redox cycling and copper binding, respectively. Finally, site-directed mutagenesis of residues Cys58 and Cys90 to Ser eliminates Cu(I) binding. However, the question remains as to the precise role of Coa6 in COX biogenesis. The question of whether Coa6 directly facilitates copper delivery to the COX CuA site or mediates the activities and redox states of other proteins in the pathway remains.

What is known is that the biogenesis pathway for the COX CuA site relies on the execution of finely tuned protein–protein interactions. The disulfide-mediated oligomerization, which occurs for the W59Coa6-mutant protein inhibits these interactions and, therefore, leads to the pathogenic outcome of complex IV deficiency.

During the revision of this article, Soma et al (54) reported the characterization of the solution structure of WTCoa6 and determination of its redox properties. Consistent with our studies, they found that WTCoa6 has a CHCH fold, determined a comparable redox potential for the protein (~330 mV, pH 7.0), and suggested that the pathogenic effects of the W59Coa6 variant may stem from changes in the interactions between Coa6 and other
members of the COX assembly pathway (such as Sco1 and COX2). There are some differences between the findings of the Soma et al report and the current work, however, which must await further investigation.

Materials and Methods

Throughout this study, WTCoa6 refers to Coa6 isoform 3 (11), which is composed of residues 47–125 of the full-length Coa6, isoform 1 (UniProtKB: Q5TJ13). Residue numbering for all protein constructs described here (WTCoa6, W59CCoa6, C58S/C90SCoa6, C68S/C79SCoa6, Y97ACoa6, Y104ACoa6, R101ACoa6, and Y97A/Y104ACoa6), including the structural descriptions and the submitted PDB coordinates follows the PDB convention, numbered according to the full-length Coa6, including the signal sequence. Therefore, the N-terminal residue of WTCoa6 is numbered Met47.

Protein overexpression, purification, and characterization

The WTCoa6 and W59CCoa6 cDNAs encoding Coa6 isoform 1 residues 47–125 were amplified via PCR and subcloned into a pGEX-6P-1 GST fusion vector with an intervening PreScission Protease site for cleavage of the GST tag. Double cysteine mutations (C58S/C90SCoa6 and C68S/C79SCoa6) and mutations located at dimer interface (Y97ACoa6, Y104ACoa6, R101ACoa6, and Y97A/Y104ACoa6) were introduced into the ORF encoding the WTCoa6 protein using a Q5 Site-Directed Mutagenesis kit (New England Biolabs), according to the manufacturer’s instructions. We also introduced a C58S/C90S double mutation into the ORF encoding the WTCoa6 protein in the pBabe-puro plasmid (Addgene) for cell culture and complementation studies using the same method.

Forward and reverse primers for all mutant proteins were designed using NEBaseChanger online tool (http://nebasechanger.neb.com/). The DNA sequence encoding all variants were individually amplified using NEBaseChanger online tool (http://nebasechanger.neb.com/) and subcloned into a pGEX-6P-1 GST fusion vector (New England Biolabs). The DNA sequence encoding all variants were individually amplified using NEBaseChanger online tool (http://nebasechanger.neb.com/) and subcloned into a pGEX-6P-1 GST fusion vector (New England Biolabs). The DNA sequence encoding all variants were individually amplified using NEBaseChanger online tool (http://nebasechanger.neb.com/) and subcloned into a pGEX-6P-1 GST fusion vector (New England Biolabs).

Measurements of the copper-binding affinities of the WTCoa6 and mutant proteins (W59CCoa6, C58S/C90SCoa6, and C68S/C79SCoa6) were performed as previously described (11). Briefly, purified proteins (in 20 mM Tris-MES, pH 8.0) were titrated at various concentrations (1–30 µM) into solutions containing buffer (20 mM Tris-MES, pH 7.0), CuSO4 (20 µM), Bcs (200 µM), and NH2OH (1 mM). The exchange of Cu(I) from the [Cu(Bcs)3]3+ complex to the proteins was monitored by measuring the absorbance of the resulting solutions at 483 nm. The data were analyzed by plotting [Cu(Bcs)3]3+ (as determined from the absorbance values at 483 nm) versus protein/Cu ratios, and the data fitted using the equation previously described (11, 35).
buffer (10 mM sodium fluoride, 50 mM potassium phosphate, pH 8.5, 0.5 mM tris(2-carboxyethyl)phosphine [TCEP]), and wavelength scans were recorded at 20°C between 190 and 250 nm. Data were converted to mean residue ellipticity and the secondary structure compositions of the protein samples estimated using the CDPro software with CONTINLL and CDSSTR algorithms (55).

Analytical SEC

WTCoa6, Y97A-Coa6, Y104A-Coa6, R101A-Coa6, and Y97A/Y104A-Coa6 proteins (100 μg) were applied to an analytical SEC column (Superdex 200 Increase 3.2/300; GE Healthcare) pre-equilibrated with 20 mM Tris-MES, pH 8.0, and 150 mM NaCl buffer and eluted at 0.05 ml-min⁻¹ in the same buffer. Elution volumes for each variant were compared with that of WTCoa6, which was applied to and eluted from the column under the same conditions.

MS

A sample of WTCoa6 (200 μM) was reduced with 4 mM DTT and then alkylated with 50 mM IAA for 30 min before MALDI-TOF. In addition, IAA-labeled and unlabeled samples were subjected to trypsin digestion and tandem MS/MS sequencing using a Thermo Fisher Scientific LTQ Orbitrap Elite ETD Mass Spectrometer as previously reported (56). Upon digestion, peptides containing the free sulfhydryl groups on the cysteine residues shift by 58 Da because of the alkylation. The predicted mass of alkylated peptides were calculated using PEPTIDEMASS (57).

Determination of redox potential of WTCoa6

Redox potential of the S–S/SH redox couple of WTCoa6 was determined as previously described (58). Briefly, WTCoa6 (200 μM) was incubated at room temperature in 100 mM phosphate buffer and 1 mM EDTA (pH 7.0) containing 20 mM oxidized DTT and increasing concentrations of reduced DTT (0–800 mM). After 2-h incubation, the reactions were stopped by addition of 10% trichloroacetic acid and centrifuged (13,000 g). The precipitated protein pellets were washed with ice-cold 100% acetone, dissolved in 4% acetic acid/maleimidylstilbene-2,2′-disulfonic acid (AMS) buffer (2 mM AMS, 1% SDS, and 50 mM Tris [pH 7.0]) to label free thiols and analyzed by BN-PAGE to separate the oxidized and AMS-bound reduced forms. The fractions of reduced protein were quantified using the CDPro software with CONTINLL and CDSSTR algorithms (55).

Mitochondria and Western blot analysis

Mitochondria were isolated as previously described (61). Mitochondria were solubilized in 1% digitonin and separated on 4–10% acrylamide–bisacrylamide BN-PAGE gels as previously described (62) and detected by Western blot using a total OXPHOS Rodent WB Antibody Cocktail (ab110413; Abcam).

Immunofluorescence assay

Cells were fixed with 4% (wt/vol) paraformaldehyde in PBS (pH 7.4) for 10 min followed by permeabilization with 0.2% (wt/vol) Triton X-100 in PBS before incubation with primary antibodies against Tom20 (rabbit polyclonal, 1:50; Santa Cruz, SC11415) and Flag (mouse monoclonal, 1:100; Sigma-Aldrich, F1804-1MG) for 90 min in 3% BSA, 0.02% Tween-20 in PBS at room temperature. Primary antibodies were labeled with either Alexa Fluor488-conjugated antimouse-IgG or Alexa Fluor568-conjugated antirabbit-IgG secondary antibodies (A-11001 and A-11011; Thermo Fisher Scientific, respectively). Hoechst 33,258 (1 μg·ml⁻¹) was used to stain nuclei. Confocal microscopy was performed using a Leica TCS SP8 confocal microscope (405, 488, 552, and 647 nm; Leica Microsystems) equipped with HyD detectors. Z-sectioning was performed using 300-nm slices and combined. All images were processed using ImageJ (59).

Protein crystallization and data collection

Crystallization trials were conducted using commercially available screens (SaltRx HT and Index HT [Hampton Research]) by sitting drop vapor diffusion in 96-well plates (Molecular Dimensions) using pure WTCoa6 and W59C-Coa6 samples at two different protein concentrations (10 and 20 mg·ml⁻¹). Crystallization drops consisting of equal volumes (0.2 μl) of reservoir and protein solutions were dispensed using a Crystal Gryphon Liquid Handling System (Art Robbins Instruments) and were equilibrated against a reservoir of screen solution (50 μl). Plates were incubated at 20°C. Several tiny crystals of WTCoa6 were observed within 2 wk in conditions D8 and D9 of the Index HT screen (0.1 M Hepes, pH 7.5, 25% [wt/vol] PEG 3350, and 0.1 M Tris, pH 8.5, 25% [wt/vol] PEG 3350, respectively) and multiple small W59C-Coa6 crystals were obtained after 5 d in conditions G10, G11, G6, and G7 of the Index HT screen (0.2 M magnesium chloride hexahydrate, 0.1 M Bis-Tris, pH 5.5, 25% wt/vol polyethylene glycol 3350; 0.2 M magnesium chloride hexahydrate, 0.1 M Bis-Tris, pH 6.5, 25% wt/vol polyethylene glycol 3350; 0.2 M ammonium acetate, 0.1 M Bis-Tris, pH 5.5, 25% wt/vol polyethylene glycol 3350; and 0.2 M ammonium acetate, 0.1 M Bis-Tris, pH 6.5, 25% wt/vol polyethylene glycol 3350, respectively). Optimization of these conditions was carried out by hanging-drop vapor diffusion in 24-well VDX plates (Hampton Research). Diffraction-quality crystals of WTCoa6 grew after 7 d at 20°C by hanging-drop vapor diffusion with drops containing equal volumes (1 μl) of WTCoa6 (30 mg·ml⁻¹ in the presence of 8 μg·ml⁻¹ polyethylene glycol. Transduced cells were expanded following selection for 48 h under 1 μg·ml⁻¹ puromycin.

Cell culture

HEK293T cells using Lipofectamine 2000. Viral supernatant was collected at 48 h post-transfection and used to infect COA6KO cells in the presence of 8 μg·ml⁻¹ polyethylene glycol. Transduced cells were expanded following selection for 48 h under 1 μg·ml⁻¹ puromycin.
20 mM Tris-MES, pH 8.0, and 150 mM NaCl) and crystallization solution (0.1 M Hepes, pH 7.6, and 29% [wt/vol] PEG 3350) equilibrated against 500 μl reservoir solution. W5SCoA6 was crystallized at 20°C by hanging-drop vapor diffusion with drops consisting of equal volumes (1 μl) of protein (25 mg·mL⁻¹ in 20 mM Tris-MES, pH 8.0, and 150 mM NaCl) and reservoir solution (0.1 M Bis-Tris, pH 5.7, 0.23 M MgCl₂·6H₂O, and 29% [wt/vol] PEG 3350). Both WTCoA6 and W5SCoA6 crystals were cryoprotected in reservoir solution containing 25% (vol/vol) glycerol before flash-cooling in liquid nitrogen.

Diffraction data were recorded on an ADSC Quantum 315r detector at the Australian Synchrotron on beamline MX2 at wavelengths of 0.9918, 1.722 and 0.954 Å for the WTCoA6 native data set, WTCoA6 anomalous data set and W5SCoA6, respectively. All data were collected at 100 K and were processed and scaled with HKL2000 (63). Data collection statistics are detailed in Table 1.

Structure solution and refinement

The crystal structure of WTCoA6 was determined by sulfur single-wavelength anomalous dispersion. Eight sulfur sites were identified using SHELXD and phasing performed by SHELXE within the CCP4 suite (64). Statistical phase improvement and solvent flattening was carried out using the program PIRATE from the CCP4 suite (64). Initial model building was carried out using Buccaneer from the CCP4 suite (64) with manual model building and the addition of water molecules were carried out in COOT (65). The model was refined using REFMAC5 (66). The quality of the structure was determined by MOLPROBITY (67) (Table 1).

The crystal structure of W5SCoA6 was solved by molecular replacement using the program Phaser (68) from the CCP4 suite (64). The crystal structure of WTCoA6 was used as a search model after removal of all water molecules. The model was refined using REFMAC5 (66) and manual model building and the addition of water molecules were carried out in COOT (65). The quality of the structure was determined by MOLPROBITY (67) (Table 1).

Structure superpositions and the calculation of r.m.s.d’s were carried out with LSQKAB (as part of the CCP4 suite) (65) and analyses of oligomeric protein complexes and buried surface areas were performed with the PDBePISA server (69).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.2019000458.

Acknowledgements

This study was funded by the Australian Research Council (DP140102746 to MJ Maher), the National Health and Medical Research Council (GNT1165217 to MT Ryan and MJ Maher; GNT1140851 to DA Stroud), and an Australian Government Research Training Program Scholarship to S Maghool. Aspects of this research were undertaken on the Macromolecular Crystallography beamline MX2 at the Australian Synchrotron (Victoria, Australia) and we thank the beamline staff for their enthusiastic and professional support. We also acknowledge the La Trobe University Comprehensive Proteomics Platform for providing infrastructure for this study.

Author Contributions

S Maghool: data curation, formal analysis, investigation, and writing—original draft, review, and editing.

NDG Cooray: investigation.

DA Stroud: conceptualization, data curation, formal analysis, supervision, funding acquisition, investigation, and writing—review and editing.

D Aragão: data curation, investigation, methodology, and writing—review and editing.

MT Ryan: conceptualization, formal analysis, supervision, funding acquisition, and writing—review and editing.

MJ Maher: conceptualization, data curation, formal analysis, supervision, funding acquisition, validation, investigation, project administration, and writing—original draft, review, and editing.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

1. Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96: 2889–2908. doi:10.1021/cr950051s

2. Soto IC, Fontanesi F, Liu J, Barrientos A (2012) Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim Biophys Acta 1822: 883–897. doi:10.1016/j.bbabio.2011.09.005

3. Fernandez-Vizarra E, Tiranti V, Zeviani M (2009) Assembly of the oxidative phosphorylation system in humans: What we have learned by studying its defects. Biochim Biophys Acta 1793: 200–211. doi:10.1016/j.bbamcr.2008.05.028

4. Timon-Gomez A, Nyvitova E, A bribery LA, Vila AJ, Hosler J, Barrientos A (2018) Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin Cell Dev Biol 76: 163–178. doi:10.1016/j.secmdb.2017.08.055

5. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shizawa-Itoh K, Nakashima R, Yoano R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272: 136–144. doi:10.1126/science.272.5265.1316

6. Aich A, Wang C, Crowdurry A, Ronsor C, Pache–Grau D, Richter–Dennlerfein R, Dennerlein S, Rehling P (2018) COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 7: e32572. doi:10.7554/elife.32572

7. Banci L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P (2008) A structural-dynamical characterization of human Cox7. J Biol Chem 283: 7912–7920. doi:10.1074/jbc.m708016200

8. Banci L, Bertini I, Ciofi-Baffoni S, Hadjiio T, Martinelli M, Palumaa P (2008) Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Proc Natl Acad Sci U S A 105: 6803–6808. doi:10.1073/pnas.080019105

9. Banci L, Bertini I, Ciofi-Baffoni S, Gerohanassip I, Leontari I, Martinelli M, Wang S (2007) A structural characterization of human SCO2. Structure 15: 1132–1140. doi:10.1016/j.str.2007.07.011

10. Ghosh A, Trivedi PP, Timbalia SA, Griffin AT, Rahn JH, Chan SS, Gohil VM (2014) Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum Mol Genet 23: 3596–3606. doi:10.1093/hmg/ddu069

11. Stroud DA, Maher MJ, Lindau C, Vogtle FN, Frazier AE, Surgenor E, Mountford H, Singh AP; Bonás M, Oeljeklaus S, et al (2015) COA6 is a
mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. *Hum Mol Genet* 24: 5404–5415. doi:10.1093/hmg/ddv265

12. Baker ZN, Cobine PA, Leary SC (2017) The mitochondrion: A central architect of copper homeostasis. *Metallomics* 9: 1501–1512. doi:10.1039/c7mt0022a

13. Rak M, Benit P, Chretien D, Schiff M, El-Khoury R, Tzagoloff A, Rustin P (2016) Mitochondrial cytochrome c oxidase deficiency. *Clin Sci* 130: 393–407. doi:10.1042/CS20150707

14. Cobine PA, Pierrel F, Bestwick ML, Winge DR (2006) Mitochondrial matrix copper complex used in metalation of cytochrome oxidase and superoxide dismutase. *J Biol Chem* 281: 36552–36559. doi:10.1074/jbc.m606839200

15. Cobine PA, Ojeda LD, A M van den Brand M, Hertecant JL, Al-Shamsi A, P van den Heuvel L, Distelmaier F, Mayatepek E, Smeitink JA, Nijtmans LG, Rodenburg RJ (2015) Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy. *Hum Mutat* 36: 34–38. doi:10.1002/humu.22715

16. Baertling F, A M van den Brand M, Hertecant JL, Al-Shamsi A, P van den Heuvel L, Distelmaier F, Mayatepek E, Smeitink JA, Nijtmans LG, Rodenburg RJ (2015) Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy. *Hum Mutat* 36: 34–38. doi:10.1002/humu.22715

17. Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, Laskowski A, Garone C, Liu S, Jaffe DB, et al. (2012) Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. *Sci Transl Med* 4: 118ra10. doi:10.1126/scitranslmed.3003310

18. Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J (2009) Loss of mitochondrial complex IV assembly factor Coa6 reveals a new alpha-helical assembly motif. *J Mol Biol* 274: 833–847. doi:10.1016/s0022-2836(97)00035-8

19. Banci L, Bertini I, Cioff-Baffoni S, Jaiswal D, Neri S, Peruzzi R, Winkelmann J (2012) Structural characterization of CHCHD5 and CHCHD7: Two atypical human twin CX9C proteins. *J Struct Biol* 180: 190–200. doi:10.1016/j.jsb.2012.07.007

20. Kriessner E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. *Acta Crystallogr D Biol Crystallogr* 60: 2256–2268. doi:10.1107/s0907444904026460

21. Aoyama H, Muramoto K, Shinzawa-Itoh K, Hisao K, Yamashita E, Tsukihara T, Ogura T, Yoshikawa S (2009) A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. *Proc Natl Acad Sci U S A* 106: 2165–2169. doi:10.1073/pnas.0806391106

22. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: Machineries and mechanisms. *Cell* 138: 628–644. doi:10.1016/j.cell.2009.08.005

23. Sideris DP,Tokatidis K (2010) Oxidative protein folding in the mitochondrial intermembrane space. *Antioxid Redox Signal* 13: 1189–1204. doi:10.1089/ars.2010.3157

24. Jones S, Thornton JM (1995) Protein-protein interactions: A review of protein dimer structures. *Prog Biophys Mol Biol* 63: 31–65. doi:10.1016/0032-9592(94)00008-w

25. Brose J, La Fontaine S, Wedd AG, Xiao Z (2014) Redox sulfur chemistry of the copper chaperone Atx1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutatione couple GSSG/GSH and the availability of Cu(I). *J Biol Chem* 289: 793–808. doi:10.1074/jbc.m406544200

26. Xiao Z, Brose J, Schimo S, Ackland SM, La Fontaine S, Wedd AG (2011) Coupling of the copper(I) binding affinities of the metallo-chaperones Atx1, Atx1, and related proteins: Detection probes and affinity standards. *J Biol Chem* 286: 11047–11055. doi:10.1074/jbc.m110.213074

27. Banci L, Bertini I, Cioff-Baffoni S, Tokatidis K (2009) The coiled-coil-helix-coil-helix proteins may be redox proteins. *FEBS Lett* 583: 1699–1702. doi:10.1016/j.febslet.2009.03.061

28. Banci L, Bertini I, Cioff-Baffoni S, Leontari I, Martinelli M, Palumaa P, Sillard R, Wang S (2007) Human Sc01 functional studies and pathological implications of the P174L mutant. *Proc Natl Acad Sci U S A* 104: 15–20. doi:10.1073/pnas.0606189103

29. Horng YC, Cobine PA, Mafield AB, Carr HS, Winge DR (2006) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. *J Biol Chem* 279: 35334–35340. doi:10.1074/jbc.m40477200

30. Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosome. *J Cell Biol* 166: 337–345. doi:10.1083/jcb.200402120

31. Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Kazantseva J, Atx1, Atox1, and related proteins: Detection probes and af- fection of the copper(I) binding affinities. *J Biol Chem* 279: 13694–13708. doi:10.1074/jbc.A804910200

32. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G (2001) Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gmr mutants via the coexpression of molecular chaperones. *Protein Expr Purif* 23: 338–347. doi:10.1016/s0887-3585(01)00237-7

33. Ellman GL (1959) Tissue sulfhydryl groups. *Arch Biochem Biophys* 82: 70–77. doi:10.1016/0003-9861(59)90099-6

34. Cavallaro G (2010) Genome-wide analysis of eukaryotic twin CX9C proteins. *Mol Biosyst* 6: 2459–2470. doi:10.1039/c9mb0058b

35. Banci L, Bertini I, Cioff-Baffoni S, Gallo A, Martinelli M, Sideris DP, Katyalnik N, Tokatidis K (2009) MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. *Nat Struct Mol Biol* 16: 198–206. doi:10.1038/nsmb.1553

36. Barthe P, Yang YS, Chiche L, Hoh F, Strub MP, Guignard L, Soulier J, Stern MH, van Tilburgh H, Lhoste JM, et al. (1997) Solution structure of human p8MTCp1, a cysteine-rich protein encoded by the MTCp1 oncogene, reveals a new alpha-helical assembly motif. *J Mol Biol* 274: 801–815. doi:10.1016/s0022-2836(97)00138-9

37. Banci L, Bertini I, Cioff-Baffoni S, Jaiswal D, Neri S, Peruzzi R, Winkelmann J (2012) Structural characterization of CHCHD5 and CHCHD7: Two atypical human twin CX9C proteins. *J Struct Biol* 180: 190–200. doi:10.1016/j.jsb.2012.07.007

38. Schmidt B, Ho L, Hogg Pj (2006) Allosteric disulphide bonds. *Biochemistry* 45: 7429–7433. doi:10.1021/bi0603064

39. Marques JR, da Fonseca RR, Drury B, Melo A (2010) Conformational characterization of disulfide bonds: A tool for protein classification. *J Theor Biol* 267: 388–395. doi:10.1016/j.jtbi.2010.09.012
46. Boal AK, Rosenzweig AC (2009) Structural biology of copper trafficking.
 Chem Rev 109: 4760–4779. doi:10.1021/cr900104z

47. Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC
 (2009) Structural basis for copper transfer by the metallochaperone for
 the Menkes/Wilson disease proteins. Nat Struct Biol 16: 766–771.
 doi:10.1038/nsmb1400

48. Xue Y, Davis AV, Balakrishnan G, Stasser JP, Staehelin BM, Focia P, Spiro TG,
 Penner-Hahn JE, O’Halloran TV (2008) Cu(I) recognition via cation-pi and
 methionine interactions in CusF. Nat Chem Biol 4: 107–109. doi:10.1038/
 nchembio.2007.57

49. Vogtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC,
 Harten SK, Oey H, Bourke LM, Bharti V, Isbel L, Daxinger L, Faou P,
 Ghosh A, Pratt AT, Soma S, Theriault SG, Griffin AT, Trivedi PP, Gorbhil
 VM (2016) Mitochondrial disease genes COA6, COX6B and SCO2 have
 overlapping roles in COX2 biogenesis. Hum Mol Genet 25: 660–671.
 doi:10.1093/hmg/ddv503

50. Banci L, Bertini I, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A,
 Gonnelli L, Luchinat E, Sideris D, et al (2010) Molecular chaperone
 function as a thiol-disulphide oxidoreductase in copper delivery to
 mitochondrial cytochrome c oxidase assembly factors SCO1 and SCO2 have
 regulatory roles in the maintenance of cellular copper homeostasis.
 Mol Cell Proteomics 11: 1840–1852. doi:10.1074.mcp.M10102105

51. Jett KA, Leary SC (2018) Building the CuA site of cytochrome c oxidase: A
 complicated, redox-dependent process driven by a surprisingly large
 complement of accessory proteins. J Biol Chem 293: 4644–4652.
 doi:10.1074/jbc.r117.816132

52. Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J,
 Lockitch G, Winge DR, Rustin P, Horvath R, et al (2007) The human
 cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory
 roles in the maintenance of cellular copper homeostasis. Cell Metab 5:
 9–20. doi:10.1016/j.cmet.2006.12.001

53. Sreerama N, Woody RW (2000) Estimation of protein secondary structure
 from circular dichroism spectra: Comparison of CONTIN, SELCON,
 and CDSSTR methods with an expanded reference set. Anal Chem
 72: 252–260. doi:10.1021/ac993086x

54. Harten SK, Oey H, Bourke LM, Bharti V, Isbel L, Daxinger L, Faou P,
 Robertson N, Matthews JM, Whitelaw E (2015) The recently
 identified modifier of murine metastable epialleles, rearranged
 L-Myc fusion, is involved in maintaining epigenetic marks at CpG
 island shores and enhancers. BMC Biol 13: 21. doi:10.1186/s12915-015-
 0128-2

55. Wilkins MR, Lindskog I, Gasteiger E, Bairach O, Sanchez JC, Hochstrasser
 DF, Appel RD (1997) Detailed peptide characterization using
 PEPTIDEMASS: A world-wide-web-accessible tool. Electrophoresis 18:
 403–408. doi:10.1002/elps.1105180314

56. Inaba K, Ito K (2002) Paradoxical redox properties of DsbB and DsbA in
 the protein disulfide-introducing reaction cascade. EMBO J 21:
 2646–2654. doi:10.1093/emboj/21.11.2646

57. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25
 years of image analysis. Nat Methods 9: 671–675. doi:10.1038/nmeth.2089

58. Kurz M, Iturbe-Ormaetxe I, Jarrott R, Shouldice SR, Wouters MA, Frei P,
 Gocke, Shusterub R, O’Neill SL, Heras B, Martin JL (2009) Structural
 and functional characterization of the oxidoreductase alpha-DsbA1 from
 Wolbachia pipientis. Antioxid Redox Signal 11: 1485–1500. doi:10.1089/
 ars.2008.2420

59. Johnston AJ, Hoogenaar J, Dousan DA, Truscott KN, Yano M, Morii M,
 Hoogenaar NJ, Ryan MT (2002) Insertion and assembly of human tom7
 into the preprotein translocase complex of the outer mitochondrial
 membrane. J Biol Chem 277: 42197–42204. doi:10.1074/jbc.m205613200

60. McKenzie J, Lazarou M, Thorton DR, Ryan MT (2007) Analysis of
 mitochondrial subunit assembly into respiratory chain complexes using
 Blue Native polyacrylamide gel electrophoresis. Anal Biochem 364:
 128–137. doi:10.1016/j.ab.2007.02.022

61. Otwowski Z, Minor W (1997) Processing of x-ray diffraction data
 collected in oscillation mode. Methods Enzymol 276: 307–326.
 doi:10.1006/mcet.1997.1008

62. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan
 RM, Kriesselm EB, Leslie AG, McCoy A, et al (2011) Overview of the CCP4
 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:
 235–242. doi:10.1107/s0907498410043749

63. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and
 development of Coot. Acta Crystallogr D Biol Crystallogr 66: 496–501.
 doi:10.1107/s0907498410004703

64. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA,
 Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of
 macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:
 355–367. doi:10.1107/s0907498411001314

65. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GI,
 Murray LW, Richardson JS, Richardson DC (2010) MolProbity: All-atom
 structure validation for macromolecular crystallography. Acta
 Crystallogr D Biol Crystallogr 66: 12–21. doi:10.1107/s0907498410040273

66. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ
 (2007) Phaser crystallographic software. J Appl Crystallogr 40: 658–674.
 doi:10.1107/s0021889806002120

67. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies
 from crystallographic data. J Mol Biol 372: 774–797. doi:10.1016/j.
 jmb.2007.05.022

68. Banci L, Bertini I, Calderone V, Ciofi-Baffoni S, Mangani S, Martellini M,
 Palumma P, Wang S (2006) A hint for the function of human Sco1 from
 different structures. Proc Natl Acad Sci U S A 103: 8595–8600.
 doi:10.1073/pnas.0601735101

69. Zong S, Wu M, Gu J, Liu T, Guo R, Yang M (2018) Structure of the intact 14-
 subunit human cytochrome c oxidase. Cell Res 28: 1026–1034.
 doi:10.1038/s41422-018-0071-1
