A Box Particle Filter Method for Tracking Multiple Extended Objects

ALLAN DE FREITAS ©, LYUDMILA MIHAYLOVA ©, Senior Member, IEEE
University of Sheffield, Sheffield, U.K.

AMADOU GNING ©
University of Hull, Hull, U.K.

MAREK SCHIKORA
Xarvio Digital Farming Solutions, BASF, Langenfeld, Germany

MARTIN ULMKE
Fraunhofer FKIE, Wachtberg, Germany

DONKA ANGELOVA
Bulgarian Academy of Sciences, Sofia, Bulgaria

WOLFGANG KOCH
Fraunhofer FKIE, Wachtberg, Germany

Extended objects generate a variable number of multiple measurements. In contrast with point targets, extended objects are characterized with their size or volume, and orientation. Multiple object tracking is a notoriously challenging problem due to complexities caused by data association. This paper develops a box particle filter (box PF) method for multiple extended object tracking, and for the first time, it is shown how interval-based approaches can deal efficiently with data association problems and reduce the computational complexity of the data association. The box PF relies on the concept of a box particle. A box particle represents a random sample and occupies a controllable rectangular region of nonzero volume in the object state space. A theoretical proof of the generalized likelihood of the box PF for multiple extended objects is given based on a binomial expansion. Next, the performance of the box PF is evaluated using a challenging experiment with the appearance and disappearance of objects within the area of interest, with real laser rangefinder data. The box PF is compared with a state-of-the-art particle filter with point particles. Accurate and robust estimates are obtained with the box PF, both for the kinematic states and extent parameters, with significant reductions in computational complexity. The box PF reduction of computational time is at least 32% compared with the particle filter working with point particles for the experiment presented. Another advantage of the box PF is its robustness to initialization uncertainty.

1. INTRODUCTION

For decades, scientists and engineers have focused their attention on finding estimates of states of objects (e.g., the centre of gravity location of an airplane) and their size (in a two-dimensional (2-D) consideration) or their volume (in the three-dimensional space). Such extended objects are often considered in intelligent transportation systems (crowds of people [1], a convoy of vehicles [2]), surveillance (ships [3]), robotics (a swarm of unmanned aerial vehicles jointly performing a task), to name a few. There are also results with different types of data: radar [3], image and video [4], laser range sensors [5], LiDAR data (radioactive clouds [6]), and others.

Extended objects are characterized by their size and orientation, in contrast to point objects ([7], [8]) where the whole is approximated with a single point. Extended objects may generate varying numbers of multiple measurements, which require efficient data association algorithms. While tracking point objects has been widely studied, and efficient solutions have been developed, the problem of extended object tracking is still challenging and requires new efficient approaches. Moreover, tracking multiple extended objects is not sufficiently studied, except for recent works, e.g., [8]. Extended objects can spawn, merge, and cross their trajectories. The methods for extended object tracking can be broadly classified into several categories: random finite set statistics methods (the probabilistic hypothesis density (PHD) filter [9], [10], cardinality PHD filter [11], multi-Bernoulli filters [12], etc.), sequential Monte Carlo methods and Markov Chain Monte Carlo methods for Bayesian state-space models [7], and analytical type of methods [13], [14]. The reader is referred to the surveys [7], [8] where detailed classification of the methods for extended object tracking is given.

Various models for the representation of the shape of an object have been explored. In [3], the shape of an object is modeled as an ellipse and the parameters of the ellipse are directly related to the measurements. In [15], multiple ellipses are considered for the modeling of a single extended object.
object. The concept of a spatial distribution over the object extent was introduced in [16], where the parameters specify the region of the spatial distribution. This concept has also been applied in a track-before-detect setting [17]. In [18], the extent parameter is represented by a random matrix. In [19], the shape of an object is described by an implicit function instead of in a parametric form. Similarly, the shape contour describing the extent is modeled with a Gaussian process in [20].

In general, when model complexities lead to solutions for state-space models without a closed form, particle-based approximations are utilized. However, particle-based approaches typically suffer due to high computational requirements. This paper proposes a box particle filter (box PF) method for solving the multiple extended object tracking problem. The box PF is a combination of interval-based techniques and the Bayesian framework. The box PF for point object state estimation has been used in a number of applications, including localization problems [21] and terrain navigation [22], [23]. The theoretical justification of the point object box PF method is derived in [24] and [25]. Filters based on the box concept have been shown to have significant computational efficiency without sacrificing accuracy, robustness to different types of uncertainty in the measurements, and robustness to filter initialization. Preliminary results for the tracking of a single extended object with the box PF are reported in [26] and tested with simulation data, without a comparison with other approaches. The likelihood function of the box PF is derived in [27] from geometrical considerations.

The novel contribution of this paper is the development of a box PF method for multiple extended object tracking with clutter. A theoretical proof of the generalized likelihood is given based on a binomial expansion. An efficient implementation of the generalized box PF method for multiple extended object tracking in clutter is developed. For the first time, it is shown how interval-based approaches can be used to deal with data association and to reduce the computational complexity in the data association process. Finally, a comparison with a state-of-the-art PF using point samples and clustering algorithm over a challenging real dataset is presented.

The remainder of this paper is structured in the following manner. Section II gives details of the general problem formulation for multiple extended object tracking. In Section III, the new box PF for multiple extended object tracking is presented. In Section IV, an evaluation of the effectiveness of the proposed method is presented and conclusions are drawn in Section V.

II. MULTIPLE EXTENDED OBJECT TRACKING AS STATE AND PARAMETER ESTIMATION

The multiple extended object tracking problem can be formulated as joint state and parameter estimation in the presence of multiple measurements coming simultaneously from the border or surface of multiple objects. It is also considered that some of the measurements may not originate from an object, in this case referred to as clutter. The latent states of all the objects are combined into a single state vector with fixed dimension, \(\mathbf{x}_k = (x_{1,k}^T, x_{2,k}^T, \ldots, x_{N_T,k}^T)^T \), where \(N_T \) represents the maximum number of extended objects, and \(k \in \{1, 2, \ldots, T\} \) the discrete time steps, with \(T \) representing the final time step. The notation \((\cdot)^T\) denotes the transpose operator.

In an extended object tracking, each extended object sub-state vector is defined as \(x_{i,k} = (X_{i,k}^T, \Theta_{i,k}^T)^T \). The subset of states, \(X_{i,k} \), comprises all the states related to the kinematics (e.g., position coordinates and velocities) of the centroid of motion of the object. This typically includes the position, velocity, and any other higher order position derivatives defined by the motion model. The subset of states, \(\Theta_{i,k} \), comprises all the parameters used to model the extent of the object. This allows for the extent of the object to be represented by a variety of parametric shapes. It is assumed that the kinematic states and parameter states are independent.

At each time step, \(k \), an unordered set of measurements is collected, \(\mathbf{z}_k = (z_{i,k}, z_{2,k}, \ldots, z_{M_k}) \), where \(M_k = \sum_{i=1}^{N_i} M_{T,i} + M_{C,k} \) represents the total number of measurements at time step \(k \). The number of measurements \(M_{T,i} \) originating from the visible border or surface of the source is considered as a Poisson-distributed random variable with a mean value \(\lambda_{T,i} \), i.e., \(M_{T,i} \sim \text{Poisson}(\lambda_{T,i}) \). Similarly, the number of clutter measurements is \(M_{C,k} \sim \text{Poisson}(\lambda_C) \), where \(\lambda_C \) is the mean value of the clutter measurements.

A. Birth and Disappearance of Extended Objects

In multiple object tracking, an object may enter or leave the area observed by the sensors at any time. This is referred to as the birth or death of an object, respectively. To cater for a varying number of extended objects, a binary variable representing the existence of each extended object is introduced, inspired by [28] and [29], \(e_i = (e_{1,i}, e_{2,i}, \ldots, e_{N_{i},k})^T \) with \(e_i \in \{0, 1\} \), where the values of 0 and 1 correspond to a nonexistent and existent object, respectively. The existence variable, \(e_{i,k} \), evolves according to a Markov chain with the following property:

\[
p(e_{i,k} | e_{i,k-1} = \ell) = \begin{cases} P_e & \text{when } e_{i,k} = \ell \\ 1 - P_e & \text{otherwise} \end{cases}
\]

where \(P_e \) represents the probability of existence.

B. Problem Formulation Within the Bayesian Framework

It is required to estimate \(\mathbf{x}_k \) and \(e_k \), jointly considered as \(\mathbf{s}_k = (x_k^T, e_k^T)^T \). Suppose that the initial probability density function (pdf) of \(p(s_0) \) is given. According to the Bayesian framework, the posterior state pdf given the sensor measurements, \(p(s_k | \mathbf{z}_{1:k}) \), where \(\mathbf{z}_{1:k} = (\mathbf{z}_1, \ldots, \mathbf{z}_k) \), is of interest. The posterior state pdf can be updated iteratively through two steps. A prediction step

\[
p(s_k | \mathbf{z}_{1:k-1}) = \int p(s_k | s_{k-1}) p(s_{k-1} | \mathbf{z}_{1:k-1}) ds_{k-1}
\]
followed by an update step

\[
p(s_k|Z_{1:k}) = \frac{p(Z_k|s_k)p(s_k|Z_{1:k-1})}{p(Z_k|Z_{1:k-1})}
\]

(3)

where \(p(s_k|Z_{1:k-1})\) is the predictive posterior state pdf, \(p(s_k|s_{k-1})\) is the state transition pdf, \(p(Z_k|s_k)\) is the likelihood function, and \(p(Z_k|Z_{1:k-1})\) is a normalization factor.

C. State Transition Representation

The state transition pdf can be further factorized as follows:

\[
p(s_k|s_{k-1}) = \prod_{i=1}^{N_f} p(x_{i,k}|x_{i,k-1}, e_{i,k}, e_{i,k-1}) p(e_{i,k}|e_{i,k-1}).
\]

(4)

The sub-state transition pdf for the \(i\)th object is defined as follows:

\[
p(x_{i,k}|x_{i,k-1}, e_{i,k}, e_{i,k-1}) = \begin{cases} p_0(x_{i,k}) & \text{if } e_{i,k}, e_{i,k-1} = [1, 0] \\ p_d(x_{i,k}) & \text{if } e_{i,k} = [0] \\ p_d(x_{i,k}|x_{i,k-1}) & \text{if } e_{i,k}, e_{i,k-1} = [1, 1] \end{cases}
\]

(5)

where \(p_0(x_{i,k})\) and \(p_d(x_{i,k})\) are the probability values of an object birth and death, respectively, and \(p(x_{i,k}|x_{i,k-1})\) represents the motion of existing extended objects.

D. Likelihood Representation

The likelihood in (3) can be calculated in various ways with different data association algorithms. One of the best approaches, which alleviates the combinatorial complexity in data association, is proposed in [30]. It adopts Poisson assumptions for the number of measurements originating from the objects and the number of clutter points. This generalized likelihood function is of the form

\[
p(Z_k|s_k) = \frac{e^{-\sum_{m \in \mathcal{Z}} \lambda_{C,m}}}{M_k!} \prod_{m=1}^{M_k} \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} p(z_{m,i}^k|x_{i,k}) \right)
\]

(6)

where \(\mathcal{Z}\) denotes a set corresponding to the index of active targets at the current time step, \(\lambda_{C}\) and \(\lambda_{T,i}\) are the mean values for the Poisson distribution describing the number of measurements originating from the clutter and the \(i\)th target, respectively, \(\rho = \frac{\lambda_C}{A_C}\) is the clutter density, \(A_C\) represents the area of the region where clutter may be emitted from, and \(p(z_{m,i}^k|x_{i,k})\) is the measurement likelihood for a single object.

Consider the use of multiple sensors to observe the extended objects. The state of sensor \(s\) is known and given by \(x_{s,k} = (x_{s,k}, y_{s,k}, \alpha_{s,k}, \phi_{s,k})\), where \((x_{s,k}, y_{s,k})\) are the sensor position coordinates, \(\alpha_{s,k}\) and \(\phi_{s,k}\) represent two parameters defining the angle of view of the sensor. When an extended object is visible from sensor \(s\), the sensor states and object system sub-states geometrically define the visible border of the extended object, \(V_k(x_{i,k}, x_{s,k})\). For a single time instance \(k\), measurement \(z_{m,i}^k\) is related to a specific point on the visible surface of an extended object. This point is referred to as the \(m\)th point source and denoted by \(V_{i,k}\).

The relationship between \(z_{m,i}^k\) and \(V_{i,k}\) is given by

\[
z_{m,i}^k = h(V_{i,k}) + w_{m,i}^k
\]

(7)

where \(h()\) is a nonlinear function, and the measurement noise \(w_{m,i}^k\) is assumed (but not restricted) to be white zero mean Gaussian, with a known covariance matrix \(\Sigma\).

The measurement likelihood for a single object consists of the combination of two pdfs

\[
p(z_{m,i}^k|x_{i,k}) = \int p(z_{m,i}^k|V_{i,k}) p(V_{i,k}|x_{i,k}) dV_{i,k}
\]

(8)

where \(p(z_{m,i}^k|V_{i,k})\) denotes the likelihood of the measurement given a point source [based on (7)], and \(p(V_{i,k}|x_{i,k})\) is the likelihood of the point source given the object sub-states.

One simplified assumption about the distribution of the point sources of measurements, given the object sub-states and the sensor states, is a uniform distribution along the region \(V_k(x_{i,k}, x_{s,k})\), visible from the sensor position, i.e.,

\[
p(V_{i,k}^j|x_{i,k}) = \frac{1}{|V_k(x_{i,k}, x_{s,k})|}
\]

(9)

where \(U_{V_k(x_{i,k}, x_{s,k})}(\cdot)\) is a uniform pdf with the support \(V_k(x_{i,k}, x_{s,k})\) and \(|V_k(x_{i,k}, x_{s,k})|\) denotes some measure of the region \(V_k(x_{i,k}, x_{s,k})\), such as the Euclidean norm.

III. DERIVATION OF THE NEW EXTENDED OBJECT BOX PARTICLE FILTER

No closed-form solution exists for the prediction and updating of the posterior state pdf in (2) and (3) due to complexities in the state-space model. Therefore, Monte Carlo methods that approximate the posterior state pdf are considered. The box PF is a Monte Carlo method based on the recently emerged concept of “generalized boxes,” also called “box particles” [31]. A box is a controllable rectangular region having a nonzero volume in the state space. The main idea of the box PF is to replace the point particles in general PF algorithms with region-particles, i.e., with box particles.

A. Time Update Step of the Box Particle Filter

The box PF represents the posterior pdf by a weighted summation of uniform distributions

\[
p(s_{k-1}|Z_{1:k-1}) \approx \sum_{p=1}^{N} w_{k-1}^{(p)} U_{|V_{k-1}^{|z_{m,i}^k}|}(s_{k-1})
\]

(10)

where the notation \(U_{|\cdot|}(\cdot)\) denotes a uniform distribution with support\(^1\) \([\cdot, \cdot]\), corresponding to a box particle, \(N\) is the number of box particles, and \(w_{k-1}^{(p)}\) is the normalized weight for box particle \(p\). The box PF is suitable for various types

\(^1\)The support of a function is the set of points where the function is not zero-valued or, in the case of functions defined on a topological space, the closure of that set.
of uncertainties in the measurements, i.e., interval, stochastic, and data association uncertainties as shown in [32]. In this application, the dimensions of s_k corresponding to the existence vector, e_k, are still considered to have zero volume.

The box PF framework is based on the prediction and update steps as presented by (2) and (3). For the box PF, the prediction step can be written as follows:

$$p(s_k | Z_{1:k-1}) \approx \int p(s_k | s_{k-1}) \sum_{p=1}^{N} w_{k-1}^{(p)} U_{[s_{k-1}^{(p)}, s_{k-1}]} ds_{k-1}$$

$$= \sum_{p=1}^{N} w_{k-1}^{(p)} \int_{[s_{k-1}^{(p)}, s_{k-1}]} p(s_k | s_{k-1}) U_{[s_{k-1}^{(p)}, s_{k-1}]} ds_{k-1}.$$

(11)

Representing the transition pdf in (4) as a transition function, f, an inclusion function $[f]$ (see [25] for more details) where $f([s]) \subseteq [f([s])]$ can be obtained. For the inclusion function, with $\forall p = 1, \ldots, N$, if $s_{k-1} \in [s_{k-1}^{(p)}]$, then $s_k \in [f([s_{k-1}])]$. Thus, for all $p = 1, \ldots, N$:

$$p(s_k | s_{k-1}) U_{[s_{k-1}^{(p)}, s_{k-1}]} = 0, \forall s_k \notin [f([s_{k-1}])] .$$

(12)

Using interval analysis techniques, the support of the function for the pdf terms in (11) can be approximated by $[f([s_{k-1}])]$. In the box PF algorithm each pdf term in (11) is approximated by one uniform pdf component having as support the interval $[f([s_{k-1}])]$, i.e.,

$$\int_{[s_{k-1}^{(p)}, s_{k-1}]} p(s_k | s_{k-1}) U_{[s_{k-1}^{(p)}, s_{k-1}]} ds_{k-1} \approx U_{[f([s_{k-1}])]},$$

(13)

Combining (11) and (13) gives

$$p(s_k | Z_{1:k-1}) \approx \sum_{p=1}^{N} w_{k-1}^{(p)} U_{[f([s_{k-1}])]},$$

$$= \sum_{p=1}^{N} w_{k-1}^{(p)} U_{[s_{k-1}^{(p)}, s_{k-1}]}.$$

(14)

Approximating each pdf term in (14) using one uniform pdf component may not be accurate enough. However, as for the PF, it is sufficient to approximate the first moments of the pdf. If a more accurate representation is required, then each term can be approximated as a mixture of uniform pdfs as shown in [25].

B. Box Particle Filter Likelihood for Multiple Extended Objects

A reasonable assumption for the box PF is that the likelihood of a measurement given a point source has a bounded support. This leads to the definition of an interval measurement, $[z_{m}^{n}]$, and corresponding likelihood approximated by a uniform distribution, i.e., $p(z_{m}^{n} | V_{m}^{n}) = U_{[z_{m}^{n}]}(h(V_{m}^{n}))$.

As in the standard PF, the update step for the box PF assigns a weighting to each of the predicted box particles.

However, it is also required to apply an interval technique, called contraction [33], to each box particle. Contraction is used to eliminate regions of the predicted box particles, which are not consistent with the object emitted measurements. This is a challenging task when dealing with extended objects and clutter. To define the weight updates and contraction, it is required to derive an expression for the posterior state pdf.

PROPOSITION 1 An alternative form of the generalized likelihood function of (6) is given by the following:

$$p(Z_k | s_k) = \frac{e^{-\sum_{t=1}^{T} \lambda_T} M_k!}{M_k} \left(\rho M_k + \sum_{m=1}^{M_k} \sum_{j=1}^{M_k} \sum_{n=1}^{M_k} \rho M_k - m \right) x \prod_{t=1}^{m} \lambda_T(b_{m,n}), p(z_{m,n}^{(a_{m,n})} | x(b_{m,n}, k)),$$

(15)

where the notation $| \cdot |$ denotes the cardinality of a set, $(a_{m,n})_{m,n=1}^{M_k}$ is a sequence of sequences corresponding to the index for all combinations of measurements, and $(b_{m,n})_{m,n=1}^{M_k}$ is a sequence of sequences corresponding to the index for all existent object to measurement associations.

PROOF See Appendix B.

EXAMPLE Consider a state vector for the case of when there are a maximum of three extended objects, where currently only the first and third objects are existent, i.e., $\mathcal{I} = \{1, 3\}$, with two measurements. The sequences are thus defined as: $(a_{1,1}) = (1); (a_{1,2}) = (2); (a_{2,1}) = (1, 2); (b_{1,1}) = (1); (b_{1,2}) = (3); (b_{2,1}) = (1); (b_{2,2}) = (1, 3); (b_{2,3}) = (3, 1); (b_{2,4}) = (3, 3)$, resulting in the following generalized likelihood expression:

$$p(Z_k | s_k) = \frac{e^{-\lambda_T + \lambda_T}}{2!} \left(\rho^2 + \rho \lambda_T, p(z_1^{(1)} | x_1, k) + \rho \lambda_T, p(z_1^{(3)} | x_3, k) + \rho \lambda_T, p(z_3^{(2)} | x_3, k) + \lambda_T, p(z_1^{(1)}) p(z_1^{(3)}) + \lambda_T, p(z_1^{(3)}) p(z_3^{(2)}) + \lambda_T, p(z_3^{(2)}) p(z_3^{(2)}) p(z_3^{(3)} | x_3, k) + \lambda_T, p(z_1^{(3)}) p(z_3^{(2)}) p(z_3^{(3)} | x_3, k) + \lambda_T, p(z_3^{(2)}) p(z_3^{(2)}) p(z_3^{(3)} | x_3, k) \right),$$

(16)

This example highlights the fact that the evaluation of the generalized likelihood for a single state results in a summation of terms. Each term corresponds to a unique measurement association and for each object assigned measurement, an association with a specific object.

The posterior state pdf can be obtained through the combination of the predictive posterior state pdf and generalized
likelihood as follows:

\[p(s_k | Z_{1:k}) = \frac{1}{\alpha_k} p(Z_k | s_k) p(s_k | Z_{1:k-1}) \]

\[= \frac{1}{\alpha_k} \prod_{p=1}^{N} \frac{w_{k}^{(p)}}{\alpha_p M_k^!} \left(\rho^M U_{[s_k^{(p)}]}(s_k) \right) \]

\[+ \sum_{m=1}^{M_k} \sum_{j=1}^{(\ell_m)^m} \rho_{M_k-m} \prod_{\ell=1}^{m} \lambda_{T(b_{a,m},\ell)} \times p(z_{k}^{(a_m,h)}) \left[| x_{(b_{a,m},k),k-1} | \right] U_{[s_k^{(p)}]}(s_k) \right) . \]

(17)

The expressions in the product of each of the latter terms can be further reduced based on the decomposition of the measurement likelihood for a single object, i.e., (8). For notational convenience, \((a_{m,j})_k\) and \((b_{m,n})_k\) are represented by \(a_c\) and \(b_t\), respectively,

\[p(z_{k}^{(p)} | x_{(b_{t},k)}) U_{[s_k^{(a_c,h)}]}(s_k) = \]

\[\int U_{[a_c,h]}(s_k) U_{[s_k^{(a_c,h)}]}(s_k) \left(h \left(\frac{V_{a_c,h}}{b_t} \right) \right) U_{[s_k^{(a_c,h)}]}(s_k) dV_{a_c,h} . \]

(18)

The terms within the integration form a constant function with a support being the following region:

\[S_p^{a_c} = \left\{ s_k \in [s_k^{(p)}] \mid V_{a_c,h} \mid a_c, h \left(\frac{V_{a_c,h}}{b_t} \right) \right\} . \]

(19)

This represents a constraint and from its expression, it can be deduced that the predicted supports \([s_k^{(p)}] \mid a_c\). from the time update pdf approximation, have to be contracted with respect to the interval measurements \([Z_k]\). This forms the basis for what is known as a constraints satisfaction problem (CSP). In this paper, the constraints propagation (CP) technique [33] is used to contract the box particles.

The contracted box particle is represented by \([s_k^{(p)}] \mid a_c\).

It is important to note that contraction only occurs on the sub-states corresponding to the object indexed by \(b_t\), i.e., \([s_k^{(p)}] \mid x_{(b_{t},k)} = \left([x_{(p)}^{(k)}] \mid a_{c}, h \right), \ldots, [x_{(p)}^{(k)}] \mid a_{c}, h \right) \}, \}

where \([x_{(p)}^{(k)}] \mid a_{c}\) represents the substates of object \(i\) contracted by the measurement indexed by \(a_c\). Following the definition of the set \(S_p^{a_c} \}

(19), (18) can be rewritten as follows:

\[p(z_{k}^{(p)} | x_{(b_{t},k)}) U_{[s_k^{(a_c,h)}]}(s_k) = \]

\[\prod_{p=1}^{N} \frac{w_{k}^{(p)}}{\alpha_p M_k^!} \left(\rho^M U_{[s_k^{(p)}]}(s_k) \right) \]

\[+ \sum_{m=1}^{M_k} \sum_{j=1}^{(\ell_m)^m} \rho_{M_k-m} \prod_{\ell=1}^{m} \lambda_{T(b_{a,m},\ell)} \times p(z_{k}^{(a_m,h)}) \left[| x_{(b_{a,m},k),k-1} | \right] U_{[s_k^{(p)}]}(s_k) \right) . \]

(20)

Note, the notation \(| \cdot |\) for a box denotes the interval length (respectively, the box volume in the multidimensional case), in contrast to the cardinality of a set. If the entire product is considered, \[\prod_{p=1}^{N} p(z_{k}^{(p)} | x_{(b_{t},k)}) U_{[s_k^{(a_c,h)}]}(s_k)\], the contracted box, \(U_{[s_k^{(a_c,h)}]}(s_k)\), is further contracted in the same manner as described by (19) and (20) by each measurement likelihood for a single object. In terms of interval arithmetic, the product of contracted boxes is equivalent to the intersection of the box particles contracted by the individual

measurements

\[\prod_{\ell=1}^{m} p(z_{\ell}^{(p)} | x_{(b_{\ell},k)}) U_{[s_k^{(a_{\ell},h)}]}(s_k) \]

\[= \left[\prod_{\ell=1}^{m} \frac{w_{\ell}^{(p)}}{\alpha_p M_k^!} \left(\rho^M U_{[s_k^{(p)}]}(s_k) \right) \right] \]

\[+ \sum_{m=1}^{M_k} \sum_{j=1}^{(\ell_m)^m} \rho_{M_k-m} \prod_{\ell=1}^{m} \lambda_{T(b_{a,m},\ell)} \times p(z_{\ell}^{(a_{m,h})}) \left[| x_{(b_{a,m},k),k-1} | \right] U_{[s_k^{(p)}]}(s_k) \right) . \]

(21)

This is a brute force approach, which considers every possible measurement association. It is clear from the indices of the summations that a single predicted box particle can result in a summation of a large number of terms. For example, in the case of 3 objects and 15 measurements, each predicted box particle would result in over one billion weighted boxes after the update. Thus, the brute force implementation is not computationally tractable.

C. Box Particle Filter Likelihood for Multiple Extended Objects With Clustering

There are two causes for why such a considerable number of boxes exists. The first cause is the uncertainty in which measurements are from which objects. This uncertainty can be reduced through the introduction of clustering. The clustering algorithm assigns the index of each measurement to a single cluster set \(C_i\), where \(i = 1, \ldots, N_c\), with \(N_c\) the total number of clusters, assumed unknown. Measurements which are close to each other, according to a specific metric, are assigned to the same cluster. The validity of utilizing clustering is based on the assumption that measurements from a single object are typically located within the vicinity of each other in the measurement space. However, care is taken to ensure that the algorithm is robust to sub-optimal clustering. Employing clustering results in the following approximation of the posterior state pdf:

\[p(s_k | Z_{1:k}) \]

\[\approx \prod_{p=1}^{N} \frac{w_{k}^{(p)}}{\alpha_p M_k^!} \left(\rho^M U_{[s_k^{(p)}]}(s_k) \right) \]

\[+ \sum_{m=1}^{M_k} \sum_{j=1}^{(\ell_m)^m} \rho_{M_k-m} \prod_{\ell=1}^{m} \lambda_{T(b_{a,m},\ell)} \times p(z_{\ell}^{(a_{m,h})}) \left[| x_{(b_{a,m},k),k-1} | \right] U_{[s_k^{(p)}]}(s_k) \right) . \]

(23)
where \(d_j \) is the number of clusters that the \(j \)th unique combination of object assigned measurements originates from, and the sequences \((b_{m,n}) \) are reduced to only consider the measurements to object associations where measurements from the same cluster are assigned to the same object. Considering the same example of 3 objects and 15 measurements, if the clustering algorithm results in 3 clusters, each indexing 5 of the measurements, the number of weighted box particles after the update per predicted box particle is reduced from over 1 billion to 830 584. Although this reduces the number of weighted boxes by orders of magnitude for each box particle, this still results in a large computational burden.

D. Box Particle Filter Likelihood for Multiple Extended Objects With Clustering and the Relaxed Intersection

The second cause for the large number of boxes is the uncertainty in which measurements are emitted by an object or are clutter. Using an interval-based approach, it is possible to reduce the number of boxes due to this uncertainty.

The weight of each term in the posterior state pdf describes how likely the associations are, given the measurements. As observed in (21), each term is nonzero on the predicted state interval contracted by all the assigned object measurements. This interval is equivalent to the intersection of the contraction results for each of the measurements assigned as object originated. Each term can have clutter measurements assigned as object measurements. However, the contraction due to a clutter measurement can be an interval which does not exist, or is disjoint with the contracted intervals from the object originated measurements, as illustrated in Fig. 1.

Since the overall result is dependent on the intersection, even a single clutter measurement assigned as an object measurement may result in the corresponding term having a zero weight. The computation of these terms can be avoided by approximating the intersection with the relaxed intersection. The relaxed intersection, first introduced in [34], corresponds to the classical intersection between intervals with the exception that it is allowed to relax a certain number of intervals in order to avoid an empty intersection.

Utilizing the relaxed intersection, the following approximation for the posterior state pdf is obtained:

\[
p(s_k | Z_{1:k}) \approx \sum_{p=0}^{N} w_k^{(p)} e^{-\frac{\lambda_{k} \sum_{n=1}^{M} [s_{k}^{a,(p,n)}]] \rho M_{k} - u^{(p)}}{2}} \cdot U_{[x_{i,k}^{f,(p,n)}]}(s_{k}) \prod_{i=1}^{n} P(x_{i,k}^{e,(p,n)} | [x_{i,k}^{f,(p,n)}]) (24)
\]

where \(u^{(p)} \) is the number of consistent intervals, which results in a nonempty relaxed intersection. In order to determine the contracted state, \([x_{k}^{a,(p,n)}] \), the sub-states of each object are considered individually. The index for all the measurements assigned to object \(i \), according to clustering, is defined by the set \(B \). Since only these measurements contract the sub-state of object \(i \), the resulting contraction result for all measurements is given by

\[
[x_{i,k}^{a,(p,n)}] = \bigcap_{\ell \in B} [x_{i,k}^{f,(p,n)}] \quad \text{with} \quad u^{(p)} = \sum_{\ell \in B} u_{\ell}^{(p)}
\]

Considering the same example of 3 objects and 15 measurements, if the clustering algorithm results in 3 clusters, each indexing 5 of the measurements, the number of weighted box particles after the update per predicted box particle is reduced from 830 584 with the approximate posterior in (23) to 27 with the approximate posterior in (24).

Two issues remain with the calculation of the approximate pdf in (24). First, the relaxed intersection does not explicitly indicate the indices of the \(u \) measurements which result in the nonzero intersection, which means it is not possible to evaluate the corresponding measurement likelihood for a single object expression. Second, it is required to ensure that the box particle weight is represented by a single scalar value. If the measurement likelihood for a single object could be evaluated, this result may not be the case. Several approaches could be used to overcome this, such as selecting the midpoint of the box particle for measurement likelihood for a single object evaluation. The approach adopted in this paper overcomes both remaining issues by approximating the measurement likelihood for a single object with a uniform distribution, as done previously in [1]

\[
p(z_{k}^{i} | x_{i,k}) \approx U_{r(x_{i,k})}(z_{k}^{i}) \quad (25)
\]

where \(r(x_{i,k}) \) represents the region in the measurement space where measurements from object \(i \) may exist, based on the model of object \(i \), and sensor noise characteristics. This approximation is valid if the uncertainty in the sensor error is significantly smaller than the extent of the object. In summary, the posterior at the previous time step, \(p(s_{k-1} | Z_{1:k-1}) \), is approximated by \(\{w_{k-1}^{(p)}, [s_{k-1}^{a,(p,n)}])\}_{n=1}^{M} \), and the posterior at the current time step, \(p(s_{k} | Z_{1:k}) \) is ap-
proximated by \(\{ [w_k^{(p,n)}, s_k^{(p,n)}]_{n=1}^{N} \} \), where \([s_k^{(p,n)}] = [s_k^{(p,n)}] \) and
\[
w_k^{(p,n)} = w_k^{(p)} \frac{e^{-\sum_{i=1}^{N \lambda_{[s_k^{(p,n)]} \rho_{[s_k^{(p,n)]}}}}}}{[s_k^{(p)}_k \rho_{[s_k^{(p,n)]}}]} \times \prod_{\ell \in \ell \in \ell}(λ_{T,\ell}^{a_{[s_k^{(p,n)]}}}).
\]

E. Box Particle Filter Resampling

The number of box particles representing the posterior state pdf grows randomly with each time step. The increase in the number of box particles is curbed through the implementation of a resampling step. The number of resampled particles is equal to the original number of box particles. In addition, the resampling step also relieves particle degeneracy [7]. The resampling step in the box PF differs from the resampling step of the generic PF [25]. The resampling step in the box PF performs a division of box particles [32] (a box particle selected \(n \) times during resampling is partitioned into \(n \) disjoint smaller boxes) or by other techniques.

A summary of the box PF for multiple extended object tracking is given in algorithm 1.

IV. PERFORMANCE EVALUATION

A. Testing Environment

The method performance is evaluated using data obtained from the Hazardous Material Localization and Person Tracking (HAMLeT) system environment [37] (Fraunhofer FKIE, Germany). The data is from a prototype security system developed by an EU funded project, representing an airport corridor. This data consists of range and bearing components obtained by three laser range-finder devices. The measurement devices are positioned at three key locations in a curved corridor [see Fig. 2(a)]. The considered scenario consists of three people who enter and traverse the corridor while being observed by the sensors. The trajectories of the people are shown in Fig. 2(b).

Throughout their motion, each person moves in and out of the area visible by the sensors at different times. The sensors are positioned on the wall at the level of height of the hip.

B. Person Modeling

The HAMLeT test environment focuses on tracking multiple people. Each person is modeled as an extended object in a 2-D plane with a circular extent, as in Fig. 3. The sub-states of the state vector corresponding to the kinematics of each extended object is a vector, \(X_{i,k} = (x_{i,k}^r, y_{i,k}^r, c_{i,k}^r, y_{i,k}^c)^T \), which comprises of the position coordinates, \(x_{i,k}^r, y_{i,k}^r, c_{i,k}^r, y_{i,k}^c \), and respective velocity components, \(x_{i,k}^v, y_{i,k}^v \). In this scenario, the subset of states of the state vector that comprises the parameters used to model the extent of each object reduces to a scalar representing the radius of the circle used to approximate the extent, \(\Theta_{i,k} = R_{i,k} \).

Algorithm 1: A Box Particle Filter for Multiple Extended Object Tracking.

Initialization

Initialize the box particles based on the available prior information about the objects kinematic and parameter state.

Repeat for \(K \) time steps, \(k = 1, \ldots, K \), the following steps:

1) Prediction

Propagate the box particles through the state evolution model to obtain the predicted box particles. Apply interval inclusion functions as described in [35]. (The implementation presented in this paper is based on the INTLAB [36] toolbox, which contains a number of built-in routines for interval calculations.)

2) Measurement Update

a) Upon receiving the measurements, form intervals around them, taking into account the uncertainty of the sensor, thus obtaining the measurement likelihood boxes \([Z_k] \).

b) Cluster the measurements to obtain the set \(C_i \), where \(i \in 1, \ldots, N_r \).

c) Solve the CSP in (19) using the CP algorithm to obtain the contracted box particles for each measurement \([s_k^{(p,n)}] \).

d) Determine the combined contracted box particle, \([s_k^{(p,n)}] \), and the number of consistent intervals, \(u \), through the calculation of the relaxed intersection.

e) Generate the set of weighted box particles according to (26).

3) Output

Obtain a box estimate for the state of the extended objects based on the maximum box particle weight:
\[
[\hat{s}_k] = \arg \max p(s_k | Z_k) \approx \arg \max w_k^{(p,n)}
\]
and a point estimate \(\hat{s}_k \) for the extended shape based on the center of the box estimate.

4) Resampling

Resample \(N \) particles with high weights by division.
Finally, reset the weights: \(w_k^{(p)} = 1/N. \)

In this paper, the nearly constant velocity motion model [38] is representing the motion of each person, in 2-D
\[
X_{i,k} = AX_{i,k-1} + \Gamma \eta_X
\]
where \(A = \text{diag}(A_1, A_1) \), \(A_1 = \begin{pmatrix} t^2/2 & t \sigma_x^2/2 & 0 \sigma_x^2 \end{pmatrix} \), \(T_i \) is the sampling interval and \(\eta_X \sim \mathcal{N}(0, Q_X) \) is the system dynamics noise, with covariance matrix \(Q_X \).
It is assumed that \(Q_X = \text{diag}(Q_1, Q_1, Q_1, Q_1) \), where \(Q_1 = (t^2/4, t^2/2) \sigma_x^2 \) and \(\sigma_x \) and \(\sigma_y \) are the acceleration noise standard deviations for the \(x \) and \(y \) coordinate, respectively. The
Fig. 2. Layout of the corridor for the experiments. (a) Three laser scanner devices are indicated with crossed boxes. Several measurements from the sensor located at the top left of the figure are displayed in red. (b) Trajectories of the people moving through the corridor for the experiment.

Fig. 3. Notations and definitions for a single circular extended object.

The evolution model for the extent parameter is

\[\Theta_{i,k} = \Theta_{i,k-1} + \eta_{\Theta} \]

(29)

where \(\eta_{\Theta} \sim \mathcal{N}(0, \sigma_{\Theta}^2) \). The visible border for a circular extended object is described as follows:

\[V_k(x_{i,k}, x_{s,k}) = (x_{c,i,k} + R_{i,k} \cos(\theta_k), y_{c,i,k} + R_{i,k} \sin(\theta_k)) \]

(30)

where \(\theta_k \in [\theta_{1,k}, \theta_{2,k}] \), with the \(j \)th point source defined as

\[V^j_{i,k} = (x^c_{i,k} + R_{i,k} \cos(\theta^j_k), y^c_{i,k} + R_{i,k} \sin(\theta^j_k)). \]

(31)

A graphical representation is shown on Fig. 3. The measurement \(z^j_k \) collected from a sensor is in polar coordinates and consists of range \(d^j_k \) and bearing \(\beta^j_k \). The observation equation is thus given by

\[z^j_k = (d^j_k, \beta^j_k)^T = h(V^j_{i,k}) + w^j_k \]

(32)

where \(h(\cdot) \) is

\[h(V^j_{i,k}) = \left(\sqrt{(x^c_{i,k} + R_{i,k} \cos(\theta^j_k) - x_{s,k})^2 + (y^c_{i,k} + R_{i,k} \sin(\theta^j_k) - y_{s,k})^2}, \tan^{-1}\left(\frac{y^c_{i,k} + R_{i,k} \sin(\theta^j_k) - y_{s,k}}{x^c_{i,k} + R_{i,k} \cos(\theta^j_k) - x_{s,k}} \right) \right). \]

(33)

The measurement noise \(w^j_k = (w^j_d,k, w^j_{\beta,k})^T \) is zero mean Gaussian, with a known covariance matrix \(\Sigma = \text{diag}(\sigma^2_d, \sigma^2_{\beta}) \). The application of the CP to track a circular extended object with the box PF is summarized in algorithm 2 and illustrated in Fig. 4.

C. Performance Comparison

The algorithms’ evaluation is performed on a mobile computer with Intel(R) Core(TM) i7-4702HQ CPU @ 2.20 GHz and with 16 GB of RAM. A comparison is made between the performance of the box PF, a state-of-the-art PF, hereafter referred to as the border parameterized (BP) PF, and the output of a purely clustering approach. The BP PF is the extended object tracking PF presented in [30] adapted for a varying number of extended objects, further details can be found in Appendix A. Clustering is performed with the DBSCAN algorithm [39]. This is a density-based clustering algorithm, which groups the measurements that are closely packed together into a single cluster. DBSCAN is well suited to the problem of interest as it does not require knowledge of the number of clusters, and the density of the measurements from each object is consistent. The centroid of an object is estimated as the mean of all measurements assigned as a cluster. The radius of an object is approximated as the maximal distance between the centroid and any measurement assigned to the cluster. A threshold variable was introduced to reduce the effects of clutter. The results are averaged over a total of 100 independent runs.
Algorithm 2: Solving the CSP for Circular Extended Object Tracking.

1) Transform the range and bearing measurements into the x–y plane using an inclusion function:

$$
\begin{align*}
\mathcal{C}_1' &= \left[C_{z_1} \right] \left(\left[d'_k \right], \left[\beta'_k \right] \right) \\
\mathcal{C}_2' &= \left[C_{z_2} \right] \left(\left[d'_k \right], \left[\beta'_k \right] \right)
\end{align*}
$$

where $[z'_1]$ and $[z'_2]$ represent the x and y dimension converted box measurements, respectively, and $[C_{z_1}](\cdot)$ and $[C_{z_2}](\cdot)$ represent the corresponding inclusion functions.

2) Perform contraction on the sub-states corresponding to each object for each particle and measurement based on the following equations:

$$
\begin{align*}
\mathcal{R}^{(p)}_k &\cap \left(\sqrt{\left(\mathcal{C}_1' - \left[x_{c,k}^{(p)} \right] \right)^2 + \left(\mathcal{C}_2' - \left[y_{c,k}^{(p)} \right] \right)^2} \right) \\
\mathcal{C}_1^{(p)} &\cap \left(\left[x_{c,k}^{(p)} \right] \pm \sqrt{\mathcal{R}^{(p)}_k} \right) \\
\mathcal{C}_2^{(p)} &\cap \left(\left[y_{c,k}^{(p)} \right] \pm \sqrt{\mathcal{R}^{(p)}_k} \right) \\
\mathcal{R}^{(p)}_k &\cap \left(\sqrt{\left(\mathcal{C}_1' - \left[x_{c,k}^{(p)} \right] \right)^2 + \left(\mathcal{C}_2' - \left[y_{c,k}^{(p)} \right] \right)^2} \right) \\
\mathcal{C}_1^{(p)} &\cap \left(\left[x_{c,k}^{(p)} \right] \pm \sqrt{\mathcal{R}^{(p)}_k} \right) \\
\mathcal{C}_2^{(p)} &\cap \left(\left[y_{c,k}^{(p)} \right] \pm \sqrt{\mathcal{R}^{(p)}_k} \right)
\end{align*}
$$

3) Contract the original measurements with the contracted converted measurements:

$$
\begin{align*}
\mathcal{C}_1' &= \mathcal{C}_1^{(p)} \cap \left(\left[x_{c,k}^{(p)} \right], \left[y_{c,k}^{(p)} \right] \right) \\
\mathcal{C}_2' &= \mathcal{C}_2^{(p)} \cap \left(\left[x_{c,k}^{(p)} \right], \left[y_{c,k}^{(p)} \right] \right)
\end{align*}
$$

4) Repeat steps 2) and 3) sequentially until the gain in amount of contraction is sufficiently small. The amount of contraction could be checked or the steps could be iterated a fixed amount of times.

where the measurements are perturbed by the measurement noise for each run. The performance is evaluated based on the optimal subpattern assignment (OSPA) [40] for the position of the objects, cardinality for the existent variables, the statistics of the existent object extents, and the average simulation time.

![Fig. 5. Comparison of the average OSPA for the BP PF with 5000 particles, the box PF with 32 particles, and DBSCAN clustering.](image-url)

D. Filter Parameters and Initialization

The box PF utilizes the output of the DBSCAN algorithm. DBSCAN requires two parameters, $\epsilon = 0.43$, related to the density of the clusters, and the minimum number of points required to form a dense region, which is selected as 1. In this simulation, the region $r(x_{i,k})$ is represented by (31).

The other parameters used in simulation for the performance evaluation are as follow: $\sigma_x = 0.05 \text{ m/s}^2$, $\sigma_y = 0.05 \text{ m/s}^2$, $\sigma_R = 0.05 \text{ m}$, $\sigma_d = 0.025 \text{ m}$, $\sigma_{\beta} = 0.1 \pi/180$ rad, $T_s = 1 \text{ s}$, $\lambda_T = 50$, $\rho = 1 \times 10^{-6}$, $P_c = 0.9$, $F = 30$.

The filters utilize a uniform distribution to initialize each object sub-state when an object birth occurs. In the case of the box PF, the same uniform region where the BP PF randomly generate particles from is subdivided so that the entire region is encompassed by all the box particles. This region, for each object sub-state, is located at the entrance/exit of the corridor: $[x_c] = [-1.5, -0.5] \cup [0.5, 1.5] \text{ m}$, $[\dot{x}_c] = [-0.1, 0.1] \text{ m/s}$, $[y_c] = [-1, 0] \text{ m}$, $[\dot{y}_c] = [-0.1, 0.1] \text{ m/s}$, $[R] = [0, 0.3] \text{ m}$.

E. Results

The performance of the filters is examined for three cases: a small, medium, and large number of particles. The average OSPA results for each case are illustrated in Figs. 5–7. The spikes in the results correspond to a mismatch in cardinality.

In the case of the box PF and BP PF, this is caused by the fact that only a small number of measurements are observed from the objects when they first enter the observable region of a sensor. In the case of the clustering algorithm, the spikes are caused by poorly selected parameters in the clustering algorithm. This highlights the robustness of the box PF to the selection of parameters for the clustering algorithm. When cardinality errors are not present, the clustering algorithm performs on par with the filtering approaches with respect to OSPA. This is aligned
with the findings in [41] and [42] where clustering algorithms are applied in the context of object tracking. In the case of the filters, decreasing the number of particles increases the amount of error, however, it is worth noting that a decrease in the number of particles for the BP PF also causes the filter to become unstable when three objects are within the scene. The average cardinality results for each case are illustrated in Figs. 8–10. The cardinality of the box PF is significantly more robust to different numbers of box particles and clustering parameters.

The performance of the approaches for the estimation of the extent parameter is illustrated by the mean and standard deviation of the extent parameter for all active objects over all time steps, this is illustrated in Table I. The contraction operation leads to the box PF sustaining significantly lower variations in the extent, even with higher numbers of particles. The rudimentary approach of approximating the extent in the clustering approach leads to an over estimate of the extent which is sensitive to clutter.
The computational time for each of the considered cases under the same conditions is given in Table II. Note that implementing the box PF with the INTLAB toolbox [36], MATLAB toolbox is just one possible way. This toolbox was initially designed and optimized for estimating rounding errors. Faster realizations of the box PF in C/C++ are also possible. For instance, in [43], the box probability hypothesis density filter is shown to be 10.9 times faster than the probability hypothesis density filter working with point particles (both implemented in C++). Furthermore, optimization is possible for the box PF realization, thus the results in Table II would represent a minimum efficiency improvement. The box PF is also a very attractive solution from the perspective of distributed estimation, as shown in [44]. The clustering approach offers significant computational savings, but this comes at a cost of reduced estimation accuracy of the objects’ extents which are sensitive to clutter.

An attractive benefit of the box PF, not clearly illustrated in the results presented so far, is the ability of the filter to handle large regions of initial uncertainty. For example, the prior distribution on the sub-states related to the velocity components of each object is a uniform distribution with the following discrete approximation:

$$p(\mathbf{x}_p|\mathbf{Z}_{1:k}) = \sum_{p=1}^{N} w_k^{(p)} \delta(s_k - s_k^{(p)})$$

where \(\delta(\cdot) \) is the Dirac delta function, and the weights, \(w_k^{(p)} \), are normalized so that \(\sum_{p=1}^{N} w_k^{(p)} = 1 \).

The transition pdf, described in (4), is used to modify the set of particles, represented by \(\{\mathbf{x}^{(p)}_{i,k,k-1}\}_{p=1}^{N} \). The weight of each particle is re-evaluated based on the latest set of measurements and the generalized likelihood function of (6).

Since the measurement likelihood for a single object, \(p(x_i^p|\mathbf{Z}_{1:k}) \), is analytically intractable, a Monte Carlo method is used to approximate it, as in [17] and [47]. For each particle existing object subspace, \(\mathbf{x}^{(p)}_{i,k,k-1} \), the support of \(p(\mathbf{V}^{(p)}_{i,k,i,k-1} | \mathbf{V}^{(p)}_{i,k,k-1}) \) is defined by a uniform distribution over the angular range \([\theta_1,k, \theta_2,k] \) of the visible border \(V_k(\mathbf{x}^{(p)}_{i,k,k-1}, \mathbf{x}_{i,k}) \) with respect to the object center. A sam-

V. CONCLUSION

This paper presents a box PF method for multiple extended object tracking. The approach is, especially suitable to practical tasks where the sensor error characteristics are not exactly known, but instead the regions to which they belong are available. A theoretical derivation of the generalized likelihood function of the box PF is presented for the case when the measurements contain clutter noise. The proved equation is further modified to minimize the computational complexity. It is shown that the box PF can work efficiently with 4 to 32 box particles, whereas the particle filter working with point particles needs hundreds and thousands of particles to achieve the same accuracy. The box PF has been shown to have several advantages when compared to the BP PF. This includes a significant computational gain, more than 32%, which could potentially be further exploited through an implementation on a platform that is efficient in interval arithmetic. Compared with the standard PF, the box PF exhibits robustness for a significantly smaller number of box particles, which completely encompass the initialization region. The performance of the method is validated with real data from laser rangefinder sensors.

Future work will focus on the expansion and validation of the method for more general application settings, such as asynchronous multirate sensor networks [45], and correlated sensor noise [46].

APPENDIX A

BORDER PARAMETERIZED PARTICLE FILTER

In [30], a PF for tracking multiple extended objects is presented. However, in this case, the number of extended objects is fixed and known. This algorithm has been adapted to consider a varying number of extended objects as in Section II-A. With respect to the notation developed in Section II-B, the BP PF represents the posterior state pdf with the following discrete approximation:

$$p(s_k|\mathbf{Z}_{1:k}) = \sum_{p=1}^{N} w_k^{(p)} \delta(s_k - s_k^{(p)})$$
Algorithm 3: The Border Parameterized Particle Filter for Multiple Extended Object Tracking.

Initialization

$k = 0$, Initialize the set of particles based on the available prior information, \(\{s_{k}^{(p)}\}_{p=1}^{N} \). Set initial weights \(\{w_{0}^{(p)}\}_{p=1}^{N} = \frac{1}{N} \).

Repeat the following steps for \(T \) time steps, \(k = 1, \ldots, T \):

1) **Prediction**

Propagate the particles, \(\{s_{k}^{(p)}\}_{p=1}^{N} \) with the state transition pdf \((4) \) to obtain the predicted particles, \(\{s_{t-1}^{(p)}\}_{p=1}^{N} \).

2) **Measurement Update**

On the receipt of a new measurement:

a) Evaluate the measurement likelihood for a single object, \(p(z_{k}^{(p)}|x_{k-1}) \), according to \((39) \) for all the measurements.

b) Calculate the weights \(w_{k}^{(p)} \), \(p = 1, \ldots, N \) using terms from step 2-a) and \((6) \).

3) **Output**

Calculate the estimated state vector \(\hat{s}_{k} \) based on the maximum particle weight:

\[
\hat{s}_{k} = \text{arg} \max p(s_{k}|Z_{k}) \approx \text{arg} \max w_{k}^{(p)}. \quad (41)
\]

4) **Resampling**

a) Compute the effective sample size

\[
N_{\text{eff}} = \frac{1}{\sum_{p=1}^{N} \left(\frac{w_{k}^{(p)}}{N} \right)^{2}}.
\]

b) Selection

If \(N_{\text{eff}} \leq N_{\text{thresh}} \) (with e.g. \(N_{\text{thresh}} = 2N/3 \) re-sample the particles. Finally, reset the weights:

\[
w_{k}^{(p)} = 1/N.
\]

The BP PF is summarized in algorithm 3.

APPENDIX B

EXPANDED GENERALIZED LIKELIHOOD PROOF

According to \((15) \), given \(\mathcal{I} \), for any value of \(M_{k}^{c} \)

\[
\prod_{m=1}^{M_{k}} \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} p(z_{k}^{m}|x_{k,i}) \right) = \rho^{M_{k}} + \sum_{m=1}^{M_{k}} \sum_{j=1}^{m} \sum_{n=1}^{m} \rho^{M_{j}-m} \times \prod_{\ell=1}^{m} \lambda_{T,(b_{n},a_{i})} p(z_{k}^{(a_{i})}|x_{k,(b_{n},a_{i}),i}).
\]

To simplify notations, define: \(c_{m,i} = p(z_{k}^{m}|x_{k,i}) \) and \(C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k},i}; \psi) \) represents the summation of all unique combinations of \(c_{m,i} \) terms multiplied by the associated object densities, with \(C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k},i}; 0) = 1 \), \(C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k},i}; -1) = 0 \), and \(C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k},i}; M_{k} + 1) = 0 \). For example, if \(\mathcal{I} = \{1, 2\} \), then \(C(c_{1,i}, c_{2,i}, c_{3,i}; 2) = \lambda_{1,1}^{2} c_{1,1} c_{2,1} + \lambda_{1,2} c_{1,2} c_{2,1} + \lambda_{1,3} c_{1,3} c_{2,1} + \lambda_{2,1}^{2} c_{1,1} c_{2,2} + \lambda_{2,2} c_{1,2} c_{2,2} + \lambda_{2,3} c_{1,3} c_{2,2} + \lambda_{1,1} c_{1,1} c_{3,1} + \lambda_{1,2} c_{1,2} c_{3,1} + \lambda_{1,3} c_{1,3} c_{3,1} + \lambda_{2,1}^{2} c_{1,1} c_{3,2} + \lambda_{2,2} c_{1,2} c_{3,2} + \lambda_{2,3} c_{1,3} c_{3,2} \). A useful decomposition of the expression in this form is: \(C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k}+1}; \psi) = C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k}}, \psi) + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{M_{k}+1} c_{(c_{1,i}, c_{2,i}, \ldots, c_{M_{k}}, \psi) - 1} \). The compact form of \((40) \) is

\[
\prod_{m=1}^{M_{k}} \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{m,i} \right) = \sum_{m=0}^{M_{k}} \rho^{M_{k}-m} C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k}}, m). \quad (42)
\]

Base case: \(M_{k} = 1 \):

\[
\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{1,i} = \sum_{m=0}^{1} \rho^{1-m} C(c_{1,i}; m) = \rho^{1-0} C(c_{1,i}; 0) + \rho^{1-1} C(c_{1,i}; 1) = \rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{1,i}. \quad (43)
\]

Inductive hypothesis: Suppose \((42) \) holds for all values of \(M_{k} \).

Inductive step: Consider the scenario with \(M_{k} + 1 \) measurements

\[
\prod_{m=1}^{M_{k}+1} \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{m,i} \right) = \prod_{m=1}^{M_{k}} \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{m,i} \right) \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{M_{k}+1,i} \right)
\]

\[
= \sum_{m=0}^{M_{k}} \rho^{M_{k}-m} C(c_{1,i}, c_{2,i}, \ldots, c_{M_{k}}, m) \times \left(\rho + \sum_{i \in \mathcal{I}} \lambda_{T,i} c_{M_{k}+1,i} \right)
\]
\[\begin{align*}
&= \sum_{m=0}^{M_k+1} \rho^{M_k+1-m} C(c_{1,T}, c_{2,T}, \ldots, c_{M_k,T}; m) \\
&\quad + \sum_{i \in \mathcal{I}} \lambda_{T,i} C(c_{M_k+1,i}, \sum_{m=0}^{M_k+1} \rho^{M_k+1-m} \\
&\quad \times C(c_{1,T}, c_{2,T}, \ldots, c_{M_k,T}; m - 1) \\
&= \sum_{m=0}^{M_k+1} \rho^{M_k+1-m} \left(C(c_{1,T}, c_{2,T}, \ldots, c_{M_k,T}; m) \\
&\quad + \sum_{i \in \mathcal{I}} \lambda_{T,i} C(c_{M_k+1,i}, C(c_{1,T}, c_{2,T}, \ldots, c_{M_k,T}; m - 1) \right) \\
&= \sum_{m=0}^{M_k+1} \rho^{M_k+1-m} C(c_{1,T}, c_{2,T}, \ldots, c_{M_k+1,T}; m). \quad (44)
\end{align*} \]

By the principle of mathematical induction, the proposition holds for all \(M_k \in \mathbb{N} \).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and the associate editor for their constructive suggestions.

REFERENCES

[1] A. De Freitas, L. Mihaylova, A. Gning, D. Angelova, and V. Kadirkamanathan
Autonomous crowds tracking with box particle filtering and convolution particle filtering
Automatica, vol. 69, pp. 380–394, 2016.

[2] M. Feldmann and W. Koch
Road-map assisted convoy track maintenance using random matrices
In Proc. 11th Int. Conf. Inf. Fusion, Jun. 2008, pp. 1–8.

[3] D. Angelova and L. Mihaylova
Extended object tracking using Monte Carlo methods
IEEE Trans. Signal Process., vol. 56, no. 2, pp. 825–832, Feb. 2008.

[4] A. Carmi, F. Septier, and S. J. Godsill
The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking
Automatica, vol. 48, no. 10, pp. 2454–2467, 2012.

[5] K. Granström, C. Lundquist, and U. Orguner
Tracking rectangular and elliptical extended targets using laser measurements
In Proc. 14th Int. Conf. Inf. Fusion, Jul. 2011, pp. 1–8.

[6] F. Septier, S. K. Pang, A. Carmi, and S. Godsill
On MCMC-based particle methods for Bayesian filtering: Application to multitarget tracking
In Proc. IEEE Int. Workshop Comput. Adv. Multi-Sens. Adaptive Process., Dec. 2009, pp. 360–363.

[7] L. Mihaylova, A. Carmi, F. Septier, A. Gning, S. Pang, and S. Godsill
Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking
Digital Signal Process.: A Rev. J., vol. 25, no. 1, pp. 1–16, 2014.

[8] K. Granström and M. Baum
Extended object tracking: Introduction, overview and applications
J. Advances Inform. Fusion vol. 12, no. 2, pp. 139–174, Dec. 2017.

[9] R. P. S. Mahler
PHD filters for nonstandard targets, I: Extended targets
In Proc. 12th Int. Conf. Inf. Fusion, 2009, pp. 915–921.

[10] K. Granström and U. Orguner
A PHD filter for tracking multiple extended targets using random matrices
IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5657–5671, Nov. 2012.

[11] C. Lundquist, K. Granström, and U. Orguner
An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation
IEEE J. Sel. Topics Signal Process., vol. 7, no. 3, pp. 472–483, Jun. 2013.

[12] M. Beard, S. Reuter, K. Granström, B. T. Vo, B. N. Vo, and A. Scheel
Multiple extended target tracking with labeled random finite sets
IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1638–1653, Apr. 2016.

[13] M. Baum and U. Hanebeck
Shape tracking of extended objects and group targets with star-convex RHMs
In Proc. 14th Int. Conf. Inf. Fusion, 2011, pp. 1–8.

[14] M. Baum and U. D. Hanebeck
Extended object tracking based on set-theoretic and stochastic fusion
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 4, pp. 3103–3115, Oct. 2012.

[15] J. Lan and X. Li
Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix
IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2450–2463, May 2014.

[16] K. Gilholm and D. Salmond
Spatial distribution model for tracking extended objects
IEEE Proc. Radar, Sonar Navigat., vol. 152, no. 5, pp. 364–371, Oct. 2005.

[17] Y. Boers, H. Driessen, J. Torstensson, M. Trieb, R. Karlsson, and F. Gustafsson
Track-before-detect algorithm for tracking extended targets
IEEE Proc. Radar, Sonar Navigat., vol. 153, no. 4, pp. 345–351, Aug. 2006.

[18] J. Koch
Bayesian approach to extended object and cluster tracking using random matrices
IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 1042–1059, Jul. 2008.

[19] M. Baum and U. D. Hanebeck
Extended object tracking with random hypersurface models
IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 1, pp. 149–159, Jan. 2014.

[20] N. Wahlström and E. Özkán
Extended target tracking using Gaussian processes
IEEE Trans. Signal Process., vol. 63, no. 16, pp. 4165–4178, Aug. 2015.

[21] F. Abdallah, A. Gning, and P. Bonnifait
Box particle filtering for nonlinear state estimation using interval analysis
Automatica, vol. 44, no. 3, pp. 807–815, Mar. 2008.

[22] N. Merlinge, J. Marrat, and L. Reboul
Optimal guidance and observer design for target tracking using bearing-only measurements
in Proc. 16th ONERA-DLR Aerospace Symp., Oberpfaffenhofen, Jun. 21–23, 2016.

[23] N. Merlinge, K. Dahlà, and H. Piet-Lahanier
A box regularized particle filter for terrain navigation with highly non-linear measurements
In Proc. 20th IFAC Symp. Autom. Control Aerosp., 2016, vol. 49, pp. 361–366.
[24] A. Gning, L. Mihaylova, and F. Abdallah
Mixture of uniform probability density functions for nonlinear state estimation using interval analysis
In Proc. 13th Int. Conf. Inf. Fusion, 2010, pp. 1–8.

[25] A. Gning, L. Mihaylova, F. Abdallah, and B. Ristic
Particle filtering combined with interval methods for tracking applications
in Integrated Tracking, Classification, and Sensor Management: Theory and Applications, M. Mallick, V. Krishna-murthy, and B.-N. Vo Eds. New Jersey, NJ, USA: Wiley, 2012, pp. 43–74.

[26] N. Petrov et al.
On the performance of the box particle filter for extended object tracking using laser data
In Proc. Workshop Sens. Data Fusion, Sep. 2012, pp. 19–24.

[27] N. Petrov, A. Gning, L. Mihaylova, and D. Angelova
Box particle filtering for extended object tracking
In Proc. 15th Int. Conf. Inf. Fusion, Jul. 2012, pp. 82–89.

[28] J. Vermaak, N. Ikoma, and S. Godsill
Sequential Monte Carlo framework for extended object tracking
IEE Proc. Radar, Sonar Navigat., vol. 152, no. 5, pp. 353–363, Oct. 2005.

[29] F. Septier, J. Cornebise, S. Godsill, and Y. Delignon
A comparative study of Monte-Carlo methods for multitarget tracking
In Proc. IEEE Statist. Signal Process. Workshop, Jun. 2011, pp. 205–208.

[30] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond
Poisson models for extended target and group tracking
In Proc. SPIE, 2005, vol. 5913, pp. 230–241.

[31] A. Gning, B. Ristic, L. Mihaylova, and F. Abdallah
An introduction to box particle filtering [Lecture Notes]
IEEE Signal Process. Mag., vol. 30, no. 4, pp. 166–171, Jul. 2013.

[32] A. Gning, B. Ristic, and L. Mihaylova
Bernoulli particle/box–particle filters for detection and tracking in the presence of triple measurement uncertainty
IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2138–2151, May 2012.

[33] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter
Applied Interval Analysis. Berlin, Germany: Springer-Verlag, 2001.

[34] L. Jaulin
Robust set-membership state estimation; application to underwater robotics
Automatica, vol. 45, no. 1, pp. 202–206, Jan. 2009.

[35] L. Jaulin
Nonlinear bounded-error state estimation of continuous-time systems
Automatica, vol. 38, no. 6, pp. 1079–1082, Jun. 2002.

[36] S. Rump
INTLAB—INTerval LABoratory
In Developments in Reliable Computing, T. Csendes Ed., Dordrecht. The Netherlands: Kluwer, 1999, pp. 77–104. [Online]. Available: http://www.ti3.tu-harburg.de/rump/

[37] M. Wienceke, K. Safenreiter, and W. Koch
Combined person tracking and classification in a network of chemical sensors
In Proc. 11th Int. Conf. Inf. Fusion, Jun. 2008, pp. 1–8.

[38] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan
Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Hoboken, NJ, USA: Wiley, 2001.

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu
A density-based algorithm for discovering clusters in large spatial databases with noise
In Proc. 2nd Int. Conf. Knowl. Discovery Data Mining, 1996, pp. 226–231

[40] D. Schuhmacher, B. T. Vo, and B. N. Vo
A consistent metric for performance evaluation of multi-object filters
IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

[41] T. Li, F. D. la Pintado, J. M. Corchado, and J. Bajo
Multi-source homogeneous data clustering for multi-target detection from cluttered background with misdetection
Appl. Soft Comput., vol. 60, pp. 436–446, 2017.

[42] T. Li, J. M. Corchado, S. Sun, and J. Bajo
Clustering for filtering: Multi-object detection and estimation using multiple/massive sensors
Inf. Sci., vol. 388–389, pp. 172–190, 2017.

[43] M. Schikora, A. Gning, L. Mihaylova, D. Cremers, and W. Koch
Box-particle probability hypothesis density filtering
IEEE Trans.Aerosp. Electron. Syst., vol. 50, no. 3, pp. 1660–1672, Jul. 2014.

[44] H. Haj Chadé, A. Gning, F. Abdallah, I. Mougharbel, and S. Julier
Non parametric distributed inference in sensor networks using box particles messages
Math. Comput. Sci., vol. 8, no. 3–4, pp. 455–478, Aug. 2014.

[45] L. Yan, X. R. Li, Y. Xia, and M. Fu
Modeling and estimation of asynchronous multirate multisensor system with unreliable measurements
IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2012–2026, Jul. 2015.

[46] L. Yan, X. R. Li, Y. Xia, and M. Fu
Optimal sequential and distributed fusion for state estimation in cross-correlated noise
Automatica, vol. 49, no. 12, pp. 3607–3612, 2013.

[47] N. Petrov, L. Mihaylova, A. Gning, and D. Angelova
A novel sequential Monte Carlo approach for extended object tracking based on border parameterisation
In Proc. 14th Int. Conf. Inf. Fusion, 2011, pp. 306–313.

Allan De Freitas received the B.Eng., B.Eng. (Hons), and M.Eng. degrees in electronic engineering from the University of Pretoria, Pretoria, South Africa in 2009, 2010, and 2013, respectively, and the Ph.D. degree in the automatic control and systems engineering department from the University of Sheffield, Sheffield, U.K.

His main scientific interests are in the areas of signal processing, object tracking, communications, image processing, and complex systems.
Lyudmila Mihaylova (M’98–SM’08) is a Professor of signal processing and control with the Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K. Her research is in the areas of autonomous systems with various applications such as navigation, surveillance, and sensor networks. Prof. Mihaylova is an Associate Editor for the IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS and for the Signal Processing Journal. She is currently the President of the the International Society of Information Fusion in the period 2016–2018.

Amadou Gning received the M.S. degree in technologies of information and system, in 2002, and the Ph.D. degree, in 2007, from the University of Technology of Compiegne, Compiegne, France.

He is currently a Lecturer with the Department of Computer Science, University of Hull, Hull, U.K. He previously worked several years as a Research Engineer with Dyson Ltd., and as a Research Associate with the University College London and Lancaster University. His main interests are on robotics applications and exploring mathematical tools ranging from statistical methods to set theoretic methods.

Marek Schikora received the B.S. (Vordiplom) and M.S. (Diplom) degrees in computer science from the University of Bonn, Bonn, Germany in 2006 and 2008, and the Ph.D. degree, in 2014, from the Technical University of Munich, Munich, Germany.

He is currently working as an Artificial Intelligence Specialist and a Product Owner with Xarvio Digital Farming Solutions, BASF, Langenfeld, Germany. Previously, he was leading a research group in the sensor data and information fusion department with Fraunhofer FKIE. His research interests include deep learning, computer vision, sensor fusion and multitarget tracking, and related computer vision.

Martin Ulmke received the M.S. (Dipl.-Phys.) and Ph.D. (Dr. rer. nat.) degrees in physics from the Aachen Technical University, Aachen, Germany, in 1991 and 1995, respectively.

He has been employed as a Scientist with Fraunhofer FKIE (former FGAN), Department Sensor Data and Information Fusion, since 2001. He is a Project Manager in “wide area surveillance.” From 1995 to 1998, he was a Research Associate in condensed matter theory with the University of California, Davis and the University of Augsburg, Germany. From 1998 to 2001, he has been employed as a Systems Engineer with MTU Aero Engines, Munich. He acted as a Technical Programme Co-chair of the 11th International Conference on Information Fusion (FUSION 2008) in Cologne, Germany.
Donka Angelova received the M.S. degree in mechanical engineering from the Technical University of Sofia, Sofia, Bulgaria, and the Ph.D. degree in electrical engineering from the Bulgarian Academy of Sciences, Institute for Parallel Processing, Sofia, Bulgaria. She is an academic rank Associate Research Professor with Bulgarian Academy of Sciences, Institute for Parallel Processing, Sofia, Bulgaria. She works as a Key Researcher and is involved in academic and industry projects in the areas of multitarget tracking and multisensor data fusion. Her current research interests include the application of sequential Monte Carlo methods to the problems of applied estimation and filtering.

Wolfgang Koch studied physics and mathematics at the Aachen Technical University, Aachen, Germany, where he received the Dr. rer. nat. degree in theoretical physics. For many years, he is the Head of the Department Sensor Data and Information Fusion, Institute of the Fraunhofer Society, the largest institution for applied research in Europe. On various topics within the area of sensor data and information fusion, he has published a well-referenced text book on target tracking and sensor data fusion Springer Mathematical Engineering Series, translated into Chinese (Springer, 2014), 16 handbook chapters, and more than 200 journal and conference articles.