SPRINGS: DNA BARCODING OF CADDISFLIES (INSECTA, TRICHOPTERA) IN CROATIA WITH NOTES ON TAXONOMY AND CONSERVATION BIOLOGY

Mladen Kučinić1*, Andela Ćukušić2, Sanja Žalac3, Antun Delić4, Darko Cerjanec5, Martina Podnar6, Renata Ćuk7, Ivan Vučković8, Ana Previšić1, Marijana Vuković6, Svetlana Stanić Koštroman9, Višnja Bukvić10, Ana Šalinović11 & Mladen Plantak8

1Department of Biology (*Laboratory for Entomology), Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
2Ministry of Environment and Energy, Radnička cesta 80/7, 10000 Zagreb, Croatia
3ZSC „Dr. Ivo Pevalek”, Plitvice Lakes National Park, Josipa Jovića 19, 53231 Plitvička jezera, Croatia
4Nikole Šubića Zrinskog 3, 43290 Grubišno Polje, Croatia
5Barilović Primary school, Barilović 96, 47252 Barilović, Croatia
6Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia
7Hrvatske vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia
8Elektroprojekt d.d., Civil and Architectural Engineering Department, Water Resources, Nature and Environmental Protection, Alexandera von Humboldt 4, 10000 Zagreb, Croatia
9Department of Biology, Faculty of Science and Education, University of Mostar, Matice hrvatske, 88000 Mostar, Bosnia and Herzegovina
10University of Hercegovina, Blajburških žrtava 100, 88000 Mostar, Bosnia and Herzegovina
11Postelska ulica 10, 2000 Maribor, Slovenia

Kučinić, M., Ćukušić, A., Žalac, S., Delić, A., Cerjanec, D., Podnar, M., Ćuk, R., Vučković, I., Previšić, A., Vuković, M., Stanić Koštroman, S., Bukvić, V., Šalinović, A. & Plantak, M.: Springs: DNA barcoding of caddisflies (Insecta, Trichoptera) in Croatia with notes on taxonomy and conservation biology. Nat. Croat., Vol 29, No. 1, 73-98, 2020, Zagreb.

The paper provides the results of DNA barcoding based on the cytochrome c oxidase subunit 1 mitochondrial gene (mtCOI) of 110 Trichoptera specimens collected in 36 springs in the Pannonian-Peripannonian, central mountainous and Mediterranean part of Croatia. We barcoded 70 species from 32 genera and 15 families. The data obtained show interesting faunistic and taxonomic results, for, for example, the species Rhyacophila cabrankensis, R. balcanica, Crunoezia kempnyi, Allogmaus auricollis and emphasize the need for further faunistic research into springs, in their role as habitats with a specific and very interesting fauna. The mtCOI DNA barcoding should be included in such research, because it would enable better presentation of the results, especially regarding biodiversity, taxonomy, phylogeny and conservation biology, not just as a segment of a local but also of a global process of understanding biodiversity in a different way. The results of this study show a global need for the protection of springs, because they are specific not only as habitats, but also as localities with an interesting fauna and often endemic species of very limited distribution (for example Rhyacophila cabrankensis).

Key words: upper stream reaches, caddisflies, biodiversity, molecular methods, Rhyacophila cabrankensis
Kučinić, M., Ćukušić, A., Žalac, S., Delić, A., Cerjanec, D., Podnar, M., Ćuk, R., Vučković, I., Previšić, A., Vuković M., Stanić Koštroman S., Bukvić, V., Šalinović, A. & Plantak, M.: Izvori DNA barkodiranje tulara (Insecta, Trichoptera) u Hrvatskoj s napomenama o taksonomiji i konzervacijskoj biologiji. Nat. Croat., Vol 29, No. 1, 73-98, 2020, Zagreb.

U radu se prikazuju rezultati DNA barkodiranja temeljenog na mitohondrijskom genu za podjedinicu 1 citokrom c oksidaze (mtCOI), za 110 primjeraka Trichoptera prikupljenih u 36 izvora u panonsko-peripanonskom, središnje-planinskom i mediteranskom području Hrvatske. DNA barkodiranje je 70 vrsta iz 32 roda i 15 porodica. U studiji se ukazuje na neke zanimljive faunističke i taksonomsko-biološke rezultate, npr. za vrste Rhyacophila cabrankensis, R. balcanica, Crunoecia kempnyi, Allogmaus auricolli te potrebu daljnjih faunističkih istraživanja izvora kao staništa sa specifičnom i vrlo zanimljivom faunom. U ta istraživanja zbog kvalitetnije prezentacije rezultata, posebno u područjima bioraznolikosti, taksonomiji, filogeniji i konzervacijskoj biologiji, potrebno je uključiti i metodu DNA barkodiranja mtCOI, kao segment ne samo lokalnog, nego i globalnog procesa u spoznavanju bioraznolikosti na jedan drugačiji način. Navedeni rezultati ovog rada ukazuju na globalnu potrebu veće zaštite izvora jer su specifični ne samo kao staništa, nego vrlo često i kao područja nalaza endemskih vrsta s vrlo malim područjem rasprostranjenja (npr. Rhyacophila cabrankensis).

Ključne riječi: gornji dijelovi tekućica, tulari, biološka raznolikost, molekularne metode, Rhyacophila cabrankensis

INTRODUCTION

Springs comprise a particularly interesting type of aquatic habitats characterized by specific hydrological, geological and geomorphological features. They are considered biodiversity hotspots, and also among the most endangered freshwater habitats (Kučinić et al., 2015a, 2015b; Pešić et al., 2019; Vitecek et al., 2015, 2017). Along with biological characteristics of various animal groups, certain spring features are dominant in affecting the composition and structure of their fauna. Type of benthic substrate, spring morphology, water temperature and location of springs (for example springs in forests, springs in open areas) are very important for composition of fauna (Govoni et al. 2018; Ilmonen & Paasivirta 2005; Ivković et al., 2013; Kreiling et al., 2020; Matić et al., 2016; Myers & Resh, 2002). Springs are, in hydrological terms, ‘places where subterranean water emerges to the surface’ (Habdija & Primc, 2019) (Figs 1-4). There are many classifications of springs, and one of them is based on their geomorphological and hydrological characteristics, which have a major effect on spring hydrology, and divides them into limnocrene and rheocrene springs (Habdija & Primc, 2019; Steinmann, 1907). Limnocrene springs are shaped like lakes of various depths and sizes (Figs 1-2, 4). In contrast, rheocrene springs (Fig. 3) emerge as water flowing to the surface mostly on rocks, thereby creating a waterfall as the initial part of the stream (Habdija & Primc, 2019).

The faunistic uniqueness of springs is also a consequence of their spatial isolation, which can be bigger or smaller, leading to disjunct distributions of populations, which can in time cause allopatric speciation and produce new taxa (subspecies, species) (for example Erman & Erman, 1995; Marinković Gospodnetić, 1971, 1976, Malicky, 2020, Previšić et al., 2014; Vitecek et al., 2017), by geographic isolation (Nei, 1975). Those characteristics favour many endemic, rare and interesting species belonging to various animal groups, e.g. water mites (for example Pešić et al., 2019; Pozojević et al., 2020; Di Sabatino et al., 2003), crustaceans (for example Glazer, 1998; Sidorov et al., 2012, 2018), aquatic insects (for example Grae et al., 2012; Ivković et al., 2020; Majolini et al., 2011; Pollet & Ivković, 2018; Waringer et al., 2009) and others. There is a great level of endemism in Trichoptera as well, and there are genera and species which can be found only in springs or in upper stream reaches (Cianficconi et al., 1998; Hinić et al. 2020; Kučinić
et al. 2015a; MALICKY, 2020; MARINKOVIĆ-GOSPODNETIĆ 1971, 1976, 1979; OLÁH, 2010; PREVIŠIĆ et al. 2014a, 2014b; VITECEK et al. 2015, 2020; WARINGER et al., 2009, 2013, 2015, 2016).

The study of the Earth’s biodiversity attained scientific dimensions with the establishment of binomial nomenclature, the taxonomic and basic evolutionary model for the depiction of this diversity (Linnaeus, 1758). Since that period, a large number of organisms have been described, with more than a million known species, which is considered as just a part of total existing biodiversity. Each year thousands of new species within various groups of organisms are described, and the introduction of DNA barcoding based on the cytochrome c oxidase subunit 1 mitochondrial gene (mtCOI), along with the establishment of the Barcode of Life Data Systems (BOLD) (HEBERT et al., 2003a, 2003b; RATNASINGHAM & HEBERT, 2007) resulted in new aspects of global biodiversity on Earth. DNA barcoding has proved to be a useful method in studies of the taxonomy, phylogenesis, phylogeography and biodiversity of different groups of organisms (for example AMORA et al. 2015; BREHM et al., 2019; CÁRDENAS et al., 2013; DE BARROS MACHADO et al., 2017; DELA CRUZ et al., 2016; ELÍAS-GUTIÉRREZ et al., 2008; GUO et al., 2016; HUEMER et al., 2020; KUČINIĆ et al., 2019a, 2019b; LÉGER et al., 2020; PAULS et al., 2009; SANTOS et al. 2016; TYAGI et al., 2017; VAGLIA et al. 2008; VIJAYAN & TSOU, 2010; YANG et al., 2015).

Regarding Trichoptera, DNA barcoding has been used in numerous studies in different regions (for example GERACI et al. 2011; HJALMARSSON et al., 2018; MORINIÈRE et al., 2017; PAULS et al. 2010; VALLADOLID et al., 2018, 2019; ZHOU et al., 2016) and that approach has been also applied in Croatia (for example ĆUKUŠIĆ, 2019; ĆUKUŠIĆ et al., 2017; KUČINIĆ et al., 2013, 2019a, 2019b; SZIVÁK et al., 2017).

In this paper we provide (1) an overview of DNA barcoded species of Trichoptera collected in springs in different parts of Croatia, including some literature data (KUČINIĆ et al., 2016, 2017, 2019a, Tab. 2); (2) a review of some preliminary taxonomic features; (3) some aspects of threats to the caddisfly spring fauna and their conservation.

This study does not encompass certain genera and species that were found in Croatian springs and are DNA barcoded (for examples Rhyacophila hirticornis McLachlan, 1879, Agapetus sp., Diplectrona sp., Potamophylax sp.), and also does not provide detailed information about trichopteran spring fauna, which are the subject of other scientific studies in progress.

MATERIAL AND METHODS

Field work

Collecting of Trichoptera was performed at 36 springs presented in Tab. 1 containing a checklist of all springs with data on spring type (limnocrene- or rheocrene), geocoordinates, biogeographical region, basin and ecoregion. Caddisflies were collected during the night, with small portable batteries and 12 W UV lamps and during the day by entomological nets. All collected specimens were stored in absolute ethanol.

Biogeographical presentation

There are three biogeographical divisions of Croatia relevant for this study, and the results are presented according to each of them. BERTIĆ et al. (2001) divide Croatia into three biogeographical regions: the Pannonian-Peripannonian in the north and east,
central mountainous in the middle and the Mediterranean in the south (Fig. 5). Nine springs are in the Panonnnian-Peripannonian part, fifteen in the central mountainous part and twelve are in the Mediterranean part (Tab. 1, Fig. 5).

All streams in Croatia belong to one of two basins: the Black Sea and the Adriatic Sea Basin (Tab. 1, PRIMC & HABDIJA, 2019; VILENCA et al., 2015). The Black Sea Basin encompasses streams from the Panonnnian-Peripannonian and central mountainous parts (21 springs in this paper), and the Adriatic Sea Basin those in the Mediterranean region (15 springs in this paper) (Tab. 1).

In the 1970-ies Illies divided Europe, regarding hydrology and biological freshwater data, into 25 biocenotic ecoregions (ILLIES, 1978), with Croatia lying in two of them, Dinaric Western Balkans - Ecoregion 5 (ER5) and Hungarian (Pannonian) Lowland - Ecoregion 11 (ER11) (ILLIES, 1978; GRAF et al., 2020 - www.freshwater.info). In this study, 34 springs are in Ecoregion 5, and 2 springs in Ecoregion 11 (Tab. 1, Fig. 5).

Karst boundaries are given according to BIONDIĆ et al. (2009). There are 30 springs from this study in the karst area (Fig. 5).

Laboratory work

In order for us to be able to use DNA-based methods of specimen identification along with morphological features, all collected material was preserved in absolute ethanol. The DNA vouchers of the barcoded samples are stored in the Croatian Natural History Museum.

Species identification was done according to MALICKY (2004) and KUMANSKI (1985, 1988). Systematics follows MORSE (2020). In Tab. 2 there are data concerning determination according to morphological features (first column), specimens ID, Locality/Family, BOLD Sequence ID and species identification after DNA barcoding analyses (last column).

Macrophotographing of Trichoptera adults was carried out using a Leica Wild MZ8 stereomicroscope and Olympus SP-500 UZ digital camera, processed with the computer program Olympus Quick Photo Camera 2.2 at the tree pathology laboratory, Department of Forest Protection and Wildlife Management at the Faculty of Forestry, University of Zagreb.

DNA extraction and PCR amplification. Genomic DNA was extracted from legs of 110 specimens listed in Tab. 2. Genomic DNA was extracted from legs or part of body for small specimens using GenElute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich, Germany) according to the manufacturer’s specifications and eluted in 50 µl of elution buffer. For the amplification of the COI-5P barcode region primers: LCO1490 and HCO2198 (FOLMER et al., 1994) were used. For specimens that could not be amplified with Folmer primers, specific primers were designed: TM3 HCOI (TGATTYTTYGGYACCCCWGAAGTITA), TM4 HCOI (TGATTYTTYGGRACCCCWGAAGTITA) or a mix of primers C_LepFolF and C_LepFolR was used (HERNÁNDEZ-TRIANA et al., 2014). The volume of mixture for polymerase chain reactions (PCR) was 50 µl. The PCR mixture contained 1 x Go Taq® Reaction Buffer (containing 1.5 mM MgCl2, Promega), 0.2 mM of each dNTP, 0.4 µM of each primer, 1.25 units of Go Taq® DNA Polymerase (Promega) and 5 µl of DNA eluate. PCR cycling conditions comprised an initial denaturation step (94°C for 2 min) followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 30 s and elongation at 72°C for 90 s and a final extension step of 72°C for 7 min. Product purification and bidirectional sequencing was performed by
Macrogen Inc. Sequencing Service (Seoul, South Korea and Macrogen Europe) using the amplification primers. Sequences were edited manually and aligned using the program BioEdit (Hall, 1999). DNA sequences obtained in this study were submitted for phylogenetic analysis of *Rhyacophila* species to Barcode of Life Data Systems (BOLD, Ratnasingham & Hebert 2007, Tab. 2). For the 110 DNA barcode sequences obtained in this study, a similarity search was performed using the BOLD Identification Engine (available on http://boldsystems.org/) which uses all sequences uploaded to BOLD from public and private projects to locate the closest match.

DNA data analysis – phylogenetic reconstruction and species delimitation methods. For phylogenetic analysis of *Rhyacophila* species two different methods of tree reconstruction were used: Neighbor-Joining (NJ) and Maximum likelihood (ML) as implemented in MEGA 7.0. (Kumar et al., 2016) to infer phylogeny-based specimen identifications. Inter- and intraspecific genetic uncorrected pairwise divergences (\(p\) - distances) were calculated in MEGA 7.0. (Kumar et al., 2016). The number of hypothetical species within the data set was estimated based on barcode gap (difference between inter- and intraspecific genetic distances) with the use of Automatic Barcode Gap Discovery, ABGD (Puillandre et al., 2012) (Fig. 10, Appendix 1). DNA barcode sequences were submitted to the ABGD online website and analysed under the following settings: P (prior intraspecific divergence) set from 0.001 (Pmin) to 0.08 (Pmax) and Steps set to 10; X (minimum relative gap width) set to 1; Nb bins (for distance distribution) set to 20; we selected the Kimura (K80) model and set TS/TV to 2.0. The data set for phylo-
genetic analysis comprised the DNA barcodes amplified from *Rhyacophila cabrankensis* Malicky, Previšić & Kučinić, 2007 (TRCAB_1), *R. vulgaris* Pictet, 1834 (TRVUL) and the outgroup species *Anabolia furcata* Brauer, 1857 (TAFUR_1), along with all available *Rhyacophila* barcode sequences retrieved from the Barcode of Life Data Systems (BOLD; Ratnasingham & Hebert, 2007)

Due to the more detailed presentation of DNA barcoded caddisflies in the springs in this study we also included the DNA barcoding data presented in previous studies (Kučinić et al., 2016, 2017, 2019a, Tab. 2). Additionally, there are some corrections of previous data; *Agrypnia varia* (Fabricius, 1793) for the Ruda spring (specimen ID TAVAR_2; BOLD Sequence ID CROTR078-19) given in Kučinić et al. (2019a) actually relates to the Grab spring, which is corrected in this paper (Tab. 2), and *M. wageneri* Malicky, 1971 was not found at the spring Palje in Konavle (Kučinić et al., 2017) but at the spring in Vodovađa village (Tab. 2).

Tab. 1. List of the 36 study springs where caddisflies were collected with basic characteristics: TS (type of spring): L (limnicrene spring), R (rheocrene spring) (according to Habjina & Primc, 2019); BR (biogeographical regions of Croatia): PP (Pannonian-Peripannonian part), CM (central mountainous part), ME (Mediterranean part) (according to Bertíć et al., 2001); EC (ecoregions): EC5 (ecoregion 5), EC 11 (ecoregion 11) (according to Illies, 1978); BA (basin): BS (Black Sea Basin), AS (Adriatic Sea Basin), * - closed karstic system, * – anthropogenic influence.

Localities	TS	BR	EC	BA	Long	Lat
1. spring Jankovac (Mt Papuk)	R	PP	ER1	BS	45.51875	17.68664
2. spring Škodinovac (Mt Papuk)	R	PP	ER1	BS	45.66388	17.33289
3. spring of the Šumi stream (Mt Ivanšćica)	R	PP	ER5	BS	46.18884	16.15777
4. spring of the Križ stream*	R	PP	ER5	BS	45.4225	16.248
5. spring Pašina vrela	L	PP	ER5	BS	45.28936	16.42339
6. spring Bijele stijene*	R	PP	ER5	BS	45.42317	16.22337
7. spring of the Slunjčica River	L	PP	ER5	BS	45.07964	15.58925
8. spring of the Rudnica River (Ožanići)	R	PP	ER5	BS	45.21457	15.39262
9. spring of the Tounjčica River	R	PP	ER5	BS	45.24844	15.32317
10. spring of the Dobra River*	R	CM	ER5	BS	45.42795	14.95681
11. spring Zeleni Vir*	L	CM	ER5	BS	45.42289	14.89573
12. spring of the Vitunjčica River	R	CM	ER5	BS	45.29117	15.14049
13. spring Izvor (Mt Bijelasica)	R	CM	ER5	BS	45.2731	14.96323
14. spring of the Plitvica stream	R	CM	ER5	BS	44.90137	15.57379
15. spring of the Napojiště stream	R	CM	ER5	BS	44.82661	15.61666
16. spring of the Crna Rijeka River	R	CM	ER5	BS	44.83086	15.61343
17. spring of the Drakulić River	R	CM	ER	BS	44.78892	15.65101
18. spring Keljevac	L	CM	ER5	BS	44.72094	15.7376
19. spring of the Una River	L	CM	ER5	BS	44.39934	16.10382
20. spring in the Sturovača* (Mt Velebit)	R	CM	ER5	BS	44.69808	15.04992
21. spring of the Cabranka River	R	CM	ER5	BS	45.60104	14.64079
22. spring of the Bječina River	R	CM	ER5	AS	45.42199	14.42127
23. spring of the Lika River (Mt Velebit)	R	CM	ER5	AS	44.42618	15.541
24. spring Majerovo vrilo (Gacka River)	L	CM	ER5	AS	44.81471	15.3588
25. spring Bračana (village Mlini)*	R	ME	ER5	AS	45.45257	13.92448
26. spring in the village of Marušići	L	ME	ER5	AS	45.42331	13.72946
27. spring Cerinjevica	R	ME	ER5	AS	45.261389	13.926111
28. spring Špilja (Rabac)	R	ME	ER5	AS	45.08494	14.13915
29. spring Grdak (Raša River)	L	ME	ER5	AS	45.0926	14.01831
30. spring of the Vrba stream*	R	ME	ER5	AS	43.72087	16.40175
31. spring of the Zrmanja River*	R	ME	ER5	AS	44.20484	16.08444
32. spring Glavaš (Cetina River)	L	ME	ER5	AS	43.97648	16.4302
33. spring Nela (Cetina River)*	R	ME	ER5	AS	43.95345	16.40573
34. spring of the Rumin	L	ME	ER5	AS	43.77979	16.6566
35. spring of the Grab River*	L	ME	ER5	AS	43.64099	16.76997
36. spring in the village of Vodovoda*	R	ME	ER5	AS	42.51763	18.42215
RESULTS AND DISCUSSION

A great number of species and specimens were collected in 36 springs in Croatia (Tab. 1) during the last 12 years, and 110 specimens belonging to 70 species, 32 genera and 15 families have been successfully DNA barcoded (Kučinić et al., 2016, 2017, 2019a, Tab. 2). A few of the specimens/species shows genetic variability when compared with data previously entered in the BOLD database (Tab. 2). There is a tendency to establish the smallest value between two different species based on the DNA barcode region (=2% in Hébert et al., 2003b), but there are no generally accepted values. Within the order Trichoptera intraspecific values range from 0.2% (Graf et al., 2015), to 9.4% (Zhou et al., 2007). For this type of taxonomical research, in addition to the use of DNA barcoding, it is necessary to make detailed analyses of morphological traits, which generally refers to adults’ genitalia for Trichoptera. If possible it is also useful to make analyses of other genes, including nuclear, which generally have a slower evolutionary rate than mitochondrial genes and show less intra- and interspecific genetic divergence values than mitochondrial genes (Geraci et al., 2010; Ibrahimí et al. 2015; Johanson & Keijsner, 2008; Saito et al. 2018; Waringer et al., 2015). The employment of species delimitation bioinformatic tools like ABGD (Puillandre et al., 2012) may also aid in taxonomic decisions (in this study for R. cabrakensis, Fig. 10). Integrative taxonomy represents the basic framework of today’s studies of taxonomic features of certain species and groups of organisms (Bilandžija et al., 2013, Previšić et al., 2014; Valladolid et al., 2018, 2019; Vitecek et al., 2017; Yánez-Muñoz et al., 2018).

In Tab. 2 we provide a short review of the DNA barcoding results according to the families and species registered in this study and literature data (Kučinić et al., 2016, 2017, 2019a, Tab. 2).
Tab. 2. List of caddisfly species discussed in this study: first column - identification according to morphological features; followed by specimens’ ID; Locality/Family; BOLD Sequence ID; last column - DNA species identification with percentage similarity to existing DNA sequences in the BOLD database (identification according to BOLD Identification Engine) (*=Rhacophila cabrakensis, **=Glossosoma discophorum, ***=Hydroptila phaon, ****=Psychomyia klapaleki, *****=Tinodes antonii, ******=Anitella apfelbecki, *******=Drusus croaticus, ********=Micropterna wageneri) (Čukić, 2019; Kučinić et al., 2016, 2017); ☼ data for the spring Rude (Kučinić et al., 2019a), here corrected as the accurate locality of spring Grab.

Species (morphologically)	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
Family Rhyacophilidae				
Rhacophila balcanica	TRBAL_1	spring of the Una River	CROTR256-19	Rhacophila balcanica 96.24%
Rhacophila cabrakensis	TRCAB_1	spring of the River Čabranka	CROAA089-18	Rhacophila vulgaris (97.61%)*
Rhacophila dorsalis	TRDOR_2	spring of the River Cabranka	CROAA060-18	Rhacophila dorsalis (100%)
Rhacophila cf. fasciata	TRFAS_1	Zeleni Vir	CROTR264-19	Rhacophila fasciata (97%)
Rhacophila laevis	TRLAE_1	spring of the Šumi stream	CROTR266-19	Rhacophila laevis (97.76%)
Rhacophila torrentium	TRTOR_1	Zeleni Vir	CROAA018-18	Rhacophila torrentium (99.54%)
Rhacophila tristis	TRTRI_4	spring in Vodovada village	CROAA098-18	Rhacophila tristis (97.15%)
Rhacophila tristis	TRTRI_5	spring in Vodovada village	CROTR011-19	Rhacophila tristis (99.47%)
Rhacophila tristis	TRTRI_7	spring in Vodovada village	CROTR031-19	Rhacophila tristis (97.71%)
Family Glossostomatidae				
Glossosoma discophorum	TGDIS_1	spring of the River Tounjčica	CROAA004-18	Glossosoma neretvae** (99.08%)
Glossosoma discophorum	TGDIS_2	spring of the River Vitunjčica	CROAA035-18	Glossosoma neretvae** (98.88%)
Glossosoma discophorum	TGDIS_3	spring of the River Slunjčica	CROAA036-18	Glossosoma neretvae** (98.88%)
Glossosoma discophorum	TGDIS_4	spring of the River Una	CROAA037-18	Glossosoma neretvae** (98.49%)
Glossosoma discophorum	TGDIS_5	spring of the River Rumin	CROAA064-18	Glossosoma neretvae** (99.54%)
Glossosoma discophorum	TGDIS_6	spring of the Plitvica stream	CROTR057-19	Glossosoma neretvae** (99.67%)
Glossosoma discophorum	TGDIS_7	spring of the River Rumin	CROTR063-19	Glossosoma neretvae** (99.84%)
Glossosoma discophorum	TGDIS_8	spring of the River Grab	CROTR090-19	Glossosoma neretvae** (100%)
Family Hydroptiliidae				
Hydroptila phaon	TPHA_1	spring Marušići	CROTR232-19	Hydroptila occulta** (85.51%)
Hydroptila sp.	THYD_5	spring of the River Rudnica (Ožanići)	CROTR087-19	Hydroptila martini (100%)
Hydroptila sp.	THYD_7	spring of the River Rudnica (Ožanići)	CROTR088-19	Hydroptila martini (100%)
Hydroptila sp.	THYD_8	spring of the River Rudnica (Ožanići)	CROTR141-19	Hydroptila martini (100%)
Species (morphologically)	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
---------------------------	-------------	----------	-----------------	-----------------------------------
Hydroptilidae	THYD_6	spring of the River Rudnica (Ožanići)	CROTR139-19	Hydroptila tineoides (100 %)
Hydroptilidae	THYD_14	spring Pecki	CROTR251-19	Hydroptila lotensis (99.84%)
Hydroptilidae	THTIN_3	spring of the River Rudnica (Ožanići)	CROTR102-19	Hydroptila tineoides (98.54%)

Family Philopotamidae

Species	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
Philopotamus montanus	TPMON_2	spring of the Šumi stream	CROAA130-18	Philopotamus montanus (99.84%)
Wormaldia copiosa	TW COP_2	spring of the River Čabranka	CROAA044-18	Wormaldia copiosa (99.84%)
Wormaldia occipitalis	TWOCL_4	spring of the Napožište stream	CROTR068-19	Wormaldia occipitalis (99.20%)
Wormaldia occipitalis	TWOC_3	spring Škodinovac	CROTR061-19	Wormaldia occipitalis (99.67%)
Wormaldia occipitalis	TWOCL_6	spring Bijela stijene	CROTR245-19	Wormaldia occipitalis (99.37%)
Wormaldia subnigra	TWSUP_2	spring Cerišnjevica	CROTR099-19	Wormaldia subnigra (99.52%)

Family Polycentropodidae

Species	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
Cyrnus trimaculatus	TCTRIL_6	spring Cerišnjevica	CROTR217-19	Cyrnus trimaculatus (99.84%)
Plectrocnemia brevis	TPBRE_1	spring of the River Dobra	CROAA071-18	Plectrocnemia brevis (98.39%)
Plectrocnemia conspersa	TPCON_2	spring Izvor (Bjelolasica Mt)	CROTR088-19	Plectrocnemia conspersa (100%)
Plectrocnemia conspersa	TPCON_4	spring of the Drakulić River	CROTR076-19	Plectrocnemia conspersa (100%)
Plectrocnemia conspersa	TPCON_5	spring of the stream Plitvica	CROTR192-19	Plectrocnemia conspersa (99.75%)
Plectrocnemia conspersa	TPCON_6	spring of the River Dobra	CROTR144-19	Plectrocnemia conspersa (99.83%)
Polycentropus flavomaculatus	TPCON_1	spring of the River Zrmanja	CROTR272-19	Polycentropus flavomaculatus (99.67%)
Polycentropus sp.	TPLE_1	spring Bračana (Mlini)	CROTR273-19	Polycentropus flavomaculatus (99.83%)
Polycentropus irroratus	TPIRR_2	spring of the River Rudnica (Ožanići)	CROTR046-19	Polycentropus irroratus (99.84%)

Family Psychomyiidae

Species	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
Lype cf. reducta	TLRED_3	spring Cerišnjevica	CROTR081-19	Lype reducta (97.97%)
Psychomyia klapalekii	TPKLA_1	spring of the River Vitunjčica	CROAA038-18	Psychomyia morisitai 86.41, Pahuniella sp. 86.41 ****
Tinodes antonioi	TTANT_1	spring in Marušići village	NIP002-16	Tinodes n. sp. nr. turanicus 89.1****
Tinodes sp., female	TTIN_1	spring in Marušići village	NIP003-16	Tinodes n. sp. nr. turanicus 89.1****
Tinodes sp., female	TTIN_2	spring in Marušići village	NIP004-16	Tinodes n. sp. nr. turanicus 88.75 ****
Tinodes dives	TTDIV_1	spring of the River Una	NIP007-16	Tinodes dives (98.37%)
Species (morphologically)	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
--------------------------	-------------	----------	------------------	----------------------------------
Tinodes pallidulus	TTPAL_1	spring in Marušići village	CROTR158-19	Tinodes pallidulus (97.82%)
Tinodes unicolor	TTUNI_1a	spring Šumi	CROTR204-19	Tinodes unicolor (100%)
Tinodes unicolor	TTUNI_2	spring of the Vrba stream	CROTR205-19	Tinodes unicolor (98.94%)
Tinodes unicolor	TTUNI_3	spring Cerišnjevica	CROTR206-19	Tinodes unicolor (99.82%)
Tinodes unicolor	TTUNI_4	spring Rabac	CROTR089-19	Tinodes unicolor (99.52%)
Tinodes unicolor	TTUNI_5	spring Cerišnjevica	CROTR207-19	Tinodes unicolor (99.82%)
Tinodes waeneri	TTWAEC_1	spring in Marušići village	NIP001-16	Tinodes waeneri (99.69%)

Family Hydropsychidae

Hydropsyche instabilis	THINS_5	spring of the River Vitunjčica	CROAA052-18	Hydropsyche instabilis (100%)
Hydropsyche instabilis	THINS_4	spring of the River Kječina	CROTR201-19	Hydropsyche instabilis (100%)
Hydropsyche instabilis	THINS_5	spring of the Plitvica stream	CROTR270-19	Hydropsyche instabilis (99.84%)
Hydropsyche instabilis	THINS_6	spring of the River Grab	CROTR091-19	Hydropsyche instabilis (100%)
Hydropsyche saxonia	THSAX_2	spring of the Vrba stream	CROTR149-19	Hydropsyche saxonia (100%)

Family Phryganeidae

| Agrypnia varia | TAVAR_2 | spring of the River Grab | CROTR078-19 | Agrypnia varia (99.84%) |
| Trichostega minor | TTMIN_1 | spring Majerovo vrilo | CROAA133-18 | Trichostega minor (98.93%) |

Family Goeridae

| Silo pallipes | TSPAL_1 | spring Braćana (Mlini) | CROTR287-19 | Silo pallipes (98.83%) |
| Silo pallipes | TSPAL_3 | spring of the River Slunjčica | CROTR065-19 | Silo pallipes (98.87%) |

Family Leptidostomatidae

Crunoea kempnyi	TCKEM_1	spring of the Napožije stream	CROTR074-19	Crunoea kempnyi (96.67%)
Lepidostoma basale	TLBAS_1	spring Pašina vrela	CROAA024-18	Lepidostoma basale (99.84%)
Lepidostoma basale	TLBAS_2	spring Pašina vrela	CROAA025-18	Lepidostoma basale (99.66%)
Lepidostoma basale	TLBAS_3	spring of the River Grab	CROTR122-19	Lepidostoma basale (99.22%)
Lepidostoma hirtum	TLHIT_2	spring of the River Rudnica	CROTR053-19	Lepidostoma hirtum (100%)

Family Limnephilidae

Allogamus auricollis	TAAUR_1	spring of the River Una	CROAA040-18	Allogamus auricollis (96.83%)
Annitella apfelbecki	TAAPF_1	spring of the River Zrmanja	CROTR290-19	Annitella eparargaeura (95.69%)
Drusus croaticus	TDCRO_1	spring of the River Vitunjčica	CROAA041-18	Drusus monticola (92.9%)
Drusus croaticus	TDCRO_2	spring Izvor (Bjelolasica Mt)	CROTR017-19	Drusus monticola (93.69%)
Species (morphologically)	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
Drusus croaticus	TDCRO_3	spring Majerovo vrilo (River Gacka)	CROTR019-19	Drusus monticola (93.63%) *******
Drusus croaticus	TDCRO_4	spring Majerovo vrilo (River Gacka)	CROTR043-19	Drusus monticola (93.43%) *******
Drusus discolor	TDDIS_1	spring of the River Čabranka	CROTR020-19	Drusus discolor (98.87%)
Drusus schmidt	TDSCH_1	spring Jankovac	CROAA021-18	Drusus schmidt (100%)
Drusus vespertinus	TDVES_1	spring of the River Una	CROTR275-19	Drusus vespertinus (97.99%)
Ecclisopteryx irvae	TEIVK_1	spring Glavaš (Cetina river)	CROAA106-18	Ecclisopteryx irvae (100%)
Glyphotaelius pellucidus	TRBAL_3	spring Nela (Cetina river)	CROTR064-19	Glyphotaelius pellucidus (99.36%)
Glyphotaelius pellucidus	TGPEL_4	spring of the Napožište stream	CROTR069-19	Glyphotaelius pellucidus (100%)
Glyphotaelius pellucidus	TGPEL_5	spring Bijela stijena	CROTR227-19	Glyphotaelius pellucidus (99.22%)
Halesus digitatus	THDIG_1	spring of the River Zrmanja	NIPM009-17	Halesus digitatus (100%)
Halesus digitatus	THDIG_2	spring of the River Rječina	CROTR038-19	Halesus digitatus (99.68%)
Halesus digitatus	THDIG_4	spring of the River Crna rijeka	CROTR221-19	Halesus digitatus (99.84%)
Limnephilus flavicornis	TLFLA_1	spring Majerovo vrilo	CROTR073-19	Limnephilus flavicornis (99.19%)
Limnephilus ignavus	TLING_2	spring Keljevac	CROTR040-19	Limnephilus ignavus (99.21%)
Limnephilus hirsutus	TLHIR_1	spring Keljevac	CROTR029-19	Limnephilus hirsutus (99.68%)
Limnephilus lunatus	TLLUN_1	spring Keljevac	CROTR009-19	Limnephilus lunatus (99.51%)
Limnephilus lunatus	TLLUN_2	spring of the stream Plitvica	CROTR071-19	Limnephilus lunatus (100%)
Limnephilus lunatus	TLLUN_3	spring of the River Grab	CROTR233-19	Limnephilus lunatus (99.84%)
Grammotaulius nigropunctatus	TGNIG_2	spring Grdak (Raša river)	CROTR276-19	Grammotaulius nigropunctatus (98.90%)
Limnephilus rhombicus	TLRHO_2	spring in the Štirovača (Mt Velebit)	CROTR023-19	Limnephilus rhombicus (99.84%)
Limnephilus rhombicus	TLRHO_5	spring Majerovo vrilo (Gacka river)	CROTR188-19	Limnephilus rhombicus (99.36%)
Limnephilus sparsus	TLSPA_1	spring of the River Lika (Mt Velebit)	CROTR001-19	Limnephilus sparsus (100%)
Limnephilus vittatus	TLVIT_1	spring Keljevac	CROTR006-19	Limnephilus vittatus (99.84%)
Mesophylax aspersus	TMASP_3	spring Špilja (Rabac)	CROTR083-19	Mesophylax aspersus (99.38%)
Mesophylax aspersus	TMASP_4	spring Špila (Rabac)	CROTR281-19	Mesophylax aspersus (100%)
Stenophylax lateralis	TMLAT_1	spring of the River Lika (Mt Velebit)	CROTR002-19	Stenophylax lateralis (98.46%)
Species (morphologically)	Specimen ID	Locality	BOLD Sequence ID	DNA species identification (BOLD)
---------------------------	-------------	----------	------------------	----------------------------------
Stenophylax lateralis	TMLAT_1f	spring of the River Lika (Mt Velebit)	CROT154-19	Stenophylax lateralis (100%)
Micropterna nycterobia	TMIC_1	spring of the River Zrmanja	NIPM003-17	Micropterna nycterobia (98.89%)
Micropterna nycterobia	TMNYC_2	spring Keljevac	CROT016-19	Micropterna nycterobia (100%)
Micropterna sequax	TMIC_2	spring of the River Una	NIPM004-17	Micropterna sequax (98.51%)
Micropterna testacea	MTES_3	spring Majerovo vrilo (River Gacka)	CROT028-19	Micropterna testacea (100%)
Micropterna wageneri	TPWAG_1	spring in the village Vodovada	NIPM002-17	Micropterna sequax (90.38%) **
Stenophylax permistus	TSPER_1	spring of the River Una	CROAA065-18	Stenophylax permistus (99.85%)
Stenophylax permistus	TSPER_2	spring Keljevac	CROT048-19	Stenophylax permistus (100%)
Family Sericostomatidae				
Sericostoma flavicorne	TSFLA_1	spring of the River Tounjčica	CROAA062-18	Sericostoma flavicorne (99.72%)
Family Odontoceridae				
Odontocerum albicorne	TOALB_3	spring of the River Rudnica (Ožanići)	CROT047-19	Odontocerum albicorne (97.4%)
Family Beraeidae				
Beraea pullata	TBPUL_1	spring of the Napožište stream	CROT080-19	Beraea pullata (99.84%)
Family Leptoceridae				
Atripsodes bilineatus	TABIL_1	spring Pašina vrela	CROAA012-18	Atripsodes bilineatus (100%)
Atripsodes cinereus	TACIN_3	spring of the River Lika (Mt Velebit)	CROT049-19	Atripsodes cinereus (99.63%)
Oecetis notata	TONOT_2	spring Majerovo vrilo (River Gacka)	CROT072-19	Oecetis notata (99.84%)
Oecetis testacea	TOTES_4	spring Zeleni vir	CROT165-19	Oecetis testacea (99.37%)

2017, 2019a). We should emphasize that data from the last column (“species identification”) in Tab. 2 are not ‘stable’ and ‘constant’ and will change when new DNA barcoding data become available, both regarding new localities and species not previously DNA barcoded will be available. For example, five species included in the current study, *Rhyacophila cabrankensis* Malicky, Previšić & Kučinić, 2007, *Glossosoma discophorum* Klapálek, 1902, *Hydroptila phaon* Malicky, 1976, *Psychia klapaleki* Malicky, 1995 and *Annitella apfelbecki* Klapálek, 1898 were not present in the BOLD database and therefore species identification showed great differences in relation to the nearest species (Tab. 2). The first entries of DNA barcodes of these species into the BOLD database provided the references for reliable species identification for all subsequent specimens belonging to those species (Čukušić, 2019; Tab. 2). For example, no data existed previously in the BOLD database for *Hydroptila phaon*, and our identification was closest to *Hydroptila occulta* Eaton, 1873 (Tab. 2). Every new entry will therefore ensure a high percentage of identity with *H. phaon* originating from this study (Tab. 2). The same applies to the other four species not present in the BOLD database so far (Tab. 2).
On the other hand, there are some interesting novelties from the DNA barcoding for eight specimens of *Glossosoma discophorum* (Fig. 6) found at seven study springs (Tab. 2). This species is distributed in part of SE Europe, i.e. the limnoecoregions ER5, ER6 (Hellenic Western Balkan), ER7 (Eastern Balkan) and ER10 (the Carpathians; Grač et al., 2020). From the ER5 it was recorded in Bosnia and Herzegovina (Stanić-Koštroman et al., 2015), Montenegro (Krušnik, 1987) and Serbia (Živić et al., 2006), being described at the beginning of the 20th century from central Bosnia (Klapálek, 1902). However, no data for this species existed in the BOLD database. All our data were grouped together with a high similarity of up to 98.49% - 100% (Tab. 2) with *Glossosoma neretvae* Marinković-Gospodnetić, 1988 which is present in the BOLD database with one, probably misidentified, specimen. According to the research so far, *G. neretvae* is a microendemic specis of Bosnia and Herzegovina, distributed only in the lower part of the Neretva River (Marinković-Gospodnetić, 1988; Stanić-Koštroman et al., 2015, M. Kučinić unpublished data). The ongoing study, which includes these two species and DNA barcoded data, shows significant differences in the DNA barcode between *G. discophorum* and *G. neretvae* at the level of ‘true’ species (unpublished data A. Ćukušić, M. Kučinić). Thus all our data in Tab. 2 are related only to *Glossosoma discophorum*, and not to *G. neretvae* as matched by the BOLD identification engine (species identification, Tab. 2). This is a very good example of potential consequences of misidentified samples in the BOLD database.

Within the family Rhyacophilidae some species included in the current study show considerable variability of DNA barcoded specimens (Tab. 2). Especially interesting is the endemic species *Rhyacophila cabrankensis* (Figs 7-8), described on specimens collected from the spring of the Čabranka River (Malicky et al., 2007). Results of the phylogenetic analysis based on COI show an unresolved pattern of divergence between this species and *R. vulgaris* Pictet, 1834 (Fig. 9), i.e. they resolved the *R. cabrankensis* and two lineages of *R. vulgaris* trichotomy (Fig. 10). According to the same phylogenetic tree (Fig. 10), *R. simulatrix* McLachlan, 1879 is highly supported as a sister taxon to *R. cabrankensis* and *R. vulgaris*. P-distance values supported the presumed close relationship of two species, *R. cabrankensis* and *R. vulgaris*, based on morphology. The value of uncorrected pairwise distance (p-distance) between *R. vulgaris* and *R. cabrankensis* (1.8%) is lower than the maximum intraspecific value of *R. vulgaris* (2.3%) (Tab. 3). In addition, the interspecific genetic distance between *R. vulgaris* and *R. cabrankensis* is
lower than the intraspecific distance reported in Morinière et al. (2017) within R. fasciata (3.86%), R. obliterata (3.64%) and R. vulgaris (3.15%), which indicates a possibility that R. cabrakenensis has subspecies status. Nevertheless, in the ABGD analysis (Fig. 10), R. cabrakenensis formed one group (Group 1), separated from group R. vulgaris (Group 3 and 4), which would indicate that R. cabrakenensis is a true species.

Fig. 7. Adult male of Rhycophilidae cabrakenensis Malicky, Previšić & Kučinić 2007, collected in the spring of the Čabranka River (photo M. Kučinić).

Fig. 8. Rhycophilidae cabrakenensis Malicky, Previšić & Kučinić, 2007, male genitalia, lateral view, left side (photo M. Kučinić).

Fig. 9. Rhycophilidae vulgaris Pictet, 1834, male genitalia, lateral view, left side (photo A. Ćukušić).
Fig. 10. Maximum likelihood (ML) phylogram based on a 658 bp long fragment of the DNA barcode region showing the relationships between *Rhyacophila* species. Numbers above the branches represent bootstrap support (BS) for Neighbor-Joining (NJ) and ML analysis (NJ/ML). The groups delineated by the Automatic Barcode Gap Discovery (ABGD) approach are shown on the right side of the tree. Specimen ID from sequences obtained in this study written in bold.

However, two lineages of *R. vulgaris* were also delineated in separate groups by ABGD analysis, which indicates the possibility of there being two species (Fig. 10), even though this is not supported by the morphology (Malicky, 2004). In order to resolve phylogenetic relationships of these species it is necessary to include additional markers, such as nuclear genes and more specimens. *Rhyacophila vulgaris* and *R. cabrankensis* are allopatric species. *Rhyacophila cabrakenensis* is endemic to the central-mountainous part of Croatia (the Gorski kotar region) while *R. vulgaris* is widespread in Europe (Fig. 11). In Croatia, *R. vulgaris* was recorded in two localities on Mt Žumberak in the northwest part of the Pannonian-peripannonian region of Croatia (Kučinić et al., 2015a, Fig. 11).

Fig. 11. Records of *R. cabrankensis* (red dots) and *R. vulgaris* (green dots) in Croatia with regions according to Bertić et al. (2001) (dark green – mountains, orange – Pannonian-peripannonian and blue – Mediterranean region) and distribution of *R. vulgaris* in Europe (green field) according to Graf et al. (2020). Fig. B represents the magnified part of Fig. A in the upper left corner.
Tab. 3. P-distance between *R. cabrankensis*, *R. simulatrix*, *R. vulgaris* and an outgroup species for the barcode COI region.

Species	*R. cabrankensis*	*R. simulatrix*	*R. vulgaris*
R. cabrankensis	-	-	-
R. simulatrix	5.9	0.3	-
R. vulgaris	1.8	6.4	0.2-2.3
Anabolia furcata	28.5	28.9	29.4

Within the family Rhyacophilidae there are further examples of relatively high intraspecific p-distances observed within DNA barcoded specimens in the current study, i.e. in *R. balcanica* Radovanović, 1953 (3.78%), *R. laevis* Pictet, 1834 (2.4%) and *R. fasciata* Hagen, 1859 (3%). *Rhyacophila balcanica* can be found mainly in springs and the upper parts of streams and rivers in southeastern Europe (ecoregions ER5, ER6, ER7; Malicky, 2005; Kučinić et al., 2011; Karaouzas et al., 2015; Krušnik, 1987; Radovanović, 1953), and because of its disjunct distribution between different populations we could well expect even higher intraspecific genetic variabilities between various populations. However, no regular or constant morphological differences among adults collected from various localities and populations have been determined. Similar data were obtained from analyses of the larvae collected from the Krka River in Croatia (Karaouzas et al., 2015).

In *R. fasciata* Hagen, 1859, unlike in *R. cabrankensis*, a significant morphological variability of the male genitalia was noted by Malicky & Sipahiler (1993) and Malicky (2004) for nominal species and 5 forms (subspecies) distributed in various parts of Europe and Asia (Malicky, 2004). In more recent research the subspecies (forma) kykladica Malicky & Sipahiler 1993 from Greece was given species rank (Valladolid et al., 2019), and similar taxonomic research has been conducted analysing populations from other parts of its distribution range, including Croatia (Valladolid et al., 2020, in press)). *Rhyacophila tristis* Pictet, 1834 was the extensively studied including morphological and genetic analyses; the results showed significant genetic differences between eastern (Carpathians) and western populations (Alps), but with no clear morphological differences (Bálint et al., 2011). Three specimens of *R. tristis* collected in the Konavle area in the south-easternmost part of Croatia exhibit intraspecific genetic distances in the range of 0.53% - 2.85% (Tab. 2).

In this study, two other interesting species from the family Rhyacophilidae were noted. One is *Rhyacophila laevis* Pictet, 1834 reported with one DNA barcoded specimen from the spring of Šumi in northwestern Croatia, which is 2.24% different from the specimen in the BOLD database (Tab. 2). The obtained values from just one DNA barcoded specimen are not enough for any conclusions to be made, but additional genetic and more extensive morphological analyses can be planned; however, we can assume that this is the case of intraspecific genetic variability of the COI genes in *R. laevis*. The record from the spring of Šumi on Mt Ivanščica is the second finding of *R. laevis* in the Pannonian-Peripannonian part of Croatia. So far, this species was reported from the Žumberačka Reka River in the western part of the Pannonian-Peripannonian region of Croatia (Čuk & Vučković, 2009) and in the spring of the Dobra River in the central-mountainous part of Croatia (Cerjanec, 2012 Previšić et al., 2012). Another species is *Rhyacophila torrentium* Pictet, 1834 recorded at the Zeleni Vir spring in the central mountainous part of Croatia. So far, this species was recorded only at the spring
of the River Kupa in the central-mountainous part of Croatia (Vučković et al., 2011). The specimen from Zeleni Vir spring matches data for R. torrentium from other parts of Europe in the BOLD database with high compatibility (99.54%) (Tab. 2).

Unlike in the mentioned families, higher degrees of genetic variability of the DNA barcoded region of the COI gene were noted in some species from the families Lepadostomatidae, Limnephilidae and Odontoceridae. For instance, a specimen of Crunoeinia kempnyi Morton, 1901 from the family Lepadostomatidae collected at the spring of the Napojsite stream in Plitvice Lakes National Park (central mountainous part of Croatia) differs considerably from the data contained in the BOLD database by 3.33% (Tab. 2) however, still indicating the intraspecific variability. Since this is a spring species with disjunct distribution, more detailed morphological analysis of the population from that locality in Plitvice Lakes National Park and comparison with other populations will be needed in the future. Plitvice Lakes is the only area in Croatia with records of this species, and the closest populations in Bosnia and Herzegovina are located more than 200 km away (Stanić-Koštroman et al. 2015).

During this research one interesting species, Allogamus auricollis (Pictet, 1834) from the family Limnephilidae was recorded with a higher level of genetic variability (Tab. 2), probably within intraspecific variability. The specimen of this species was collected at the spring of the Una River (Tab. 2) with a compatibility in the COI region of 96.83% with data from the BOLD database. This species is morphologically very variable (Malicky, 2004, 2016), and DNA barcoding confirmed its taxonomic affiliation. In this case DNA barcoding once again proved to be a useful tool for the identification of the taxonomic status of morphologically variable or similar species and confirmed the data of the Malicky study from 2016 (Malicky, 2016). In it, Malicky showed the morphology and distribution of two taxa: A. auricollis auricollis and A. auricollis braueri Kolenati, 1859. The nominal taxa were distributed in Central Europe (western and central Alps) while subspecies braueri is widespread in Europe including the Carpathians, Balkan Peninsula and British Isles (Malicky 2016). According to these data and DNA barcoding data from the current study, A. auricollis braueri is probably distributed in Croatia, which should be confirmed in future research. Allogamus auricollis is a rare species of the Croatian fauna and has been found so far only at the springs of the Una and the Dobra rivers in the central-mountainous part of Croatia (Cerjanc, 2012; Previšić et al. 2012).

A faunistically very interesting finding from the family Limnephilidae is Mesophylax aspersus (Rambur, 1842) in the Špilja spring, near the town of Rabac, in the Mediterranean part of Croatia, the second finding for this region (Malicky, 1979). M. aspersus was recorded for the first time in Croatia at the beginning of the 20th century on the island of Hvar with two collected specimens, deposited in the collection of Pater Gabriel Strobl in the Admont museum in Austria (Kučinić et al., 2019b; Malicky, 1979). Two DNA barcoded specimens of M. aspersus from the Špilja spring are compatible with the data of this species in the BOLD database with the high percentages of 99.38% and 100%, respectively (Tab. 2). The family Odontoceridae is represented in our fauna with one very common species, Odontocerum albicorne (Scopoli, 1763). One specimen of O. albicorne was collected from the spring of the Rudnica River, showing differences of 2.6% in the DNA barcoded region, which makes this finding interesting, although we can assume that it is the intraspecific genetic variability of O. albicorne.

All three mentioned species, C. kempnyi, A. auricollis and O. albicorne, should be studied further because of the differences obtained by DNA barcoding, having in mind...
the distribution, morphological and genetic characteristics of various populations of them in Europe.

Specimens within the families Glossosomatidae, Hydroptilidae, Philopotamidae, Polycentropodidae, Psychomyiidae, Hydropsychidae, Phryganeidae, Goeridae, Beraeidae and Leptoceridae that were DNA barcoded in this study indicate no large variations in comparison with corresponding species represented in the BOLD database (Tab. 2). In these families, including also the families Rhyacophilidae and Hydroptilidae, the DNA barcoding method has proved to be useful in confirming identifications of similar species (for example Hydropsyche), of small-sized specimens (for example family Hydroptilidae) or of females which could not be identified by morphology (for example genera in the families Hydrosychidae, Hydroptilidae, Psychomyiidae) (Málický, 2004) (Tab. 2).

Results from this study, in line with the results from previous faunistic research of Trichoptera in springs, proved to be interesting faunistically, taxonomically, phylogenetically and phylogeographically (for example Cianficconi et al., 1998; Ibrahimi et al., 2015; Kreiling et al., 2020; Kučinić et al., 2011, 2015; Málický et al., 2007; Pauls et al., 2006, 2009; Pauls et al., 2006; Previšić et al., 2009, 2014; Vitecek et al. 2015, 2017; Waringer et al., 2013, 2016), and it is to be expected that the research will continue and result in new valuable results.

Springs are globally, and not only in Croatia, subjected to a great deal of anthropogenic influence (for example Kučinić et al., 2015b; Vitecek et al. 2015, 2017) which ranges from low-impact to completely destructive. From the 36 springs included in this research, anthropogenic influence is visible in 13 of them, i.e. in 34% (Tab. 2). Water protection today is very important but also it is one of the key segments in protecting Earth’s biodiversity, with springs having an essential role on the global level. By protecting springs, we protect the best resources of drinking water, and their biodiversity, which is unique in most of its characteristics (e.g. endemic, rare species etc.).

CONCLUSION

DNA barcoding shows its value in its ability to reveal the species sets of certain areas or habitat types, in this case of springs, by an approach different from the morphological methodology (for example Čerjanec, 2012; Kučinić et al., 2011; Previšić et al. 2012; Waringer et al., 2009), analysing genetic characteristics of each analysed specimen, or species (for example Kučinić et al., 2019a; Szivák et al., 2017). Results obtained by this approach are very interesting either because they differ at the species level in different populations, or because they are a 100% match with analyzed specimens from different populations. Both examples in their own way show characteristics of the analyzed specimens, populations and species, i.e. the fauna of the particular area. This is the very reason that DNA barcoding of the Croatian fauna will continue in the future. On one hand, a better scientific presentation of the biodiversity is needed, and on the other, we need it to be efficiently protected. DNA barcoding of organisms – here Trichoptera from Croatian springs – is an additional contribution to the knowledge on this aspect of biodiversity, not only locally, but also as a part of global processes (for example Brehm et al., 2019; Dela Cruz et al., 2016; Hebert et al., 2003a, 2003b; Huemer et al., 2020; Léger et al., 2020; Kučinić et al., 2013; Morinière et al., 2017; Ratnavickingham & Hebert, 2007; Santos et al. 2016; Tyagi et al., 2017; Vaglia et al., 2008; Yang et al., 2015; Zhou et al., 2016).
ACKNOWLEDGMENTS

This research is a part of the scientific project “DNA barcoding of Croatian faunal biodiversity” (IP-06-2016-9988) funded by the Croatian Science Foundation and financial support of the University of Zagreb. We are very grateful to the Department of Forest Protection and Wildlife Management at the Faculty of Forestry, University of Zagreb for works in his laboratory and two anonymous reviewers.

Received August 20, 2020

REFERENCES

Amora, G., Hamada, N., Fusari, L. M. & Andrade-Souza, V., 2015: An Asiatic Chironomid in Brazil: morphology, DNA barcode and bionomics. ZooKeys 514, 129-144. doi: 10.3897/zookeys.514.9925

Balint, M., Ujvárosi, L., Dénes, A. L. & Popescu, O., 2011: European phylogeography of Rhyacophila tristis Pictet (Trichoptera: Rhyacophilidae): preliminary results. Zoosymposia 5, 19-28.

Biondić, R., Biondić, B., Rubinić, J., Meaški, H., Kapelić, S. & Tepeš, P., 2009. Ocjena stanja i rizika cjelini podzemnih voda na krškom području u Republici Hrvatskoj. Sveučilište u Zagrebu, Geotehički fakultet (studija), pp 380, Zagreb.

Bertić, I., Lampek Pavčnik, I. & Radowinović, R., 2001: Republika Hrvatska-Prirodna obilježja, stanovništvo i geografske regije. Satelitski Atlas Hrvatske. Naknada Ljevak & Gis Data, pp 336.

Bilandžija, H., Morton, B., Podnar M. & Ćetković, H., 2013: Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst. Frontiers in Zoology 10, 5. http://www.frontiersinzooology.com/content/10/1/5

Botosaneanu L. & Taticchi-Viganò, M., 1974: Description d’une nouvelle espèce du genre Timodes (Trichoptera, Psychomyiidae). Boll. Mus. Zool. Univ. Torino, 2, 9–14.

Brehim, G., Murillo-Ramos, L., Shivonen, P., Hausmann, A., Schmidt, C.B., Önunap, E., Moser, A., Mörtert, R., Bolt, D., Bodner, F., Lindt, A., Parra L.E. & Wailberg, N., 2019: New World geometrid moths (Lepidoptera: Geometridae): Molecular phylogeny, biogeography, taxonomic updates and description of 11 new tribes. Arthropod Systematic and Phylogeny 77 (3), 457-486. DOI: 10.26049/ASP77-3-2019-5

Cárdenas, P., Rapp, H. T., Kiltgaard, B. A., Best, M., Thollesson, M. & Tenda, O. S., 2013: Taxonomy, biogeography and DNA barcodes of Geodia species (Porifera, Demospongiae, Tetractinellida) in the Atlantic boreo-arctic region. Zoological Journal of the Linnean Society 169, 251–311. https://doi.org/10.1111/zoj.12056

Cerjanec, D., 2012: Ekološke i biogeografske značajke tulara (Insecta, Trichoptera) u različitim staništima porječja rijeke Dobre - Ecological and biogeographical features of caddisflies (Insecta, Trichoptera) in different types of habitats in drainage of the Dobra River. PhD Thesis (on Croatian), University of Zagreb, Zagreb, Croatia, 1-139.

Cianficoni, F., Corallini, C. & Moretti, G. P., 1998: Trichopteran fauna of the Italian springs. In: Studies in crenobiology. The biology of springs and springbrooks Botosaneanu, L. (Ed. Botosaneanu, L.). Backhuys Publishers, Leiden: 125-140.

Curtis, J., 1834: Descriptions of some hitherto nondescript British species of mayflies of anglers. Lond. Edin. Phil Mag 4, 212, 217.

Čuk, R. & Vučković, I., 2009: First record of caddisfly Rhacophila laevis Pictet, 1834 (Insecta: Trichoptera) in Croatia. Natura Croatia 18 (2), 449-453.

Čukušić, A., 2019: Određivanje bioraznolikosti faune tulara (Insecta, Trichoptera) u Hrvatskoj metodom barkodiranja [Determination of caddisflies (Insecta, Trichoptera) fauna biodiversity in Croatia using the method of DNA barcoding]. Doktorski rad (in Croatian), Prirodoslovno-matematčki fakultet, Sveučilište u Zagrebu, 1-310.

Čukušić, A., Čuk, R., Previšić, A., Podnar, M., Delić, A., Kučinić, M., 2017: DNA barcoding and first records of two rare Adiclea species (Trichoptera: Leptoceridae) in Croatia. Biologia (Slovakia) 72(7), 796-806.

Delacruz, J. N. B., Nuñez, O. M. & Lin, C-P., 2016: Description of a new Oriental stonefly species, Phanopera constanspina (Plecoptera: Perlidae) from Mindanao, Philippines and association of life stages using DNA barcoding. Zootaxa 4193 (1), 102-116.
De Barros Machado, Iszhuzka, T. K., de Freitas, P. D., Valiati, V. H. Galetti Jr., P. M., 2017: DNA barcoding reveals taxonomic uncertainty Salminus (Characiformes). Systematics and Biodiversity 15 (4), 372-382.

Di Sabatino, A., Cicolani, B. & Gerecke, R., 2003: Biodiversity and distribution of water mites (Acarii, Hydrachnidia) in spring habitats. Freshwater Biology 48, 2163-2173. https://doi.org/10.1046/j.1365-2427.2003.01151.x

Eaton, A. E., 1873: On the Hydropsyliidae, a family of the Trichoptera. Trans. Ent. Soc. Lond., pp 125–151.

Elías-Gutiérrez, M., Jerónimo, F.M., Ivanova, N.V., Valdez-Moreno, M. & Hebert, P.D.N., 2008: DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa 1839, 1-42.

Erman, N. A. & Erman, D. C., 1995: Spring permanence, Trichoptera species richness, and the role of drought. Journal of the Kansas Entomological Society 68 (2), 50-64.

Fabricius, J.C., 1793: Entomologia systematica emendata et aucta. Secundum classes, ordines, genera, species adjectis synonymis, locis, observationibus, descriptionibus (Tomus II). Impensis Christ. Gottl. Proft, Hafniae, 519 pp.

Geraci, C. J., Zhou, X., Morse, J. C. & Kjer, M., 2010: Defining the genus Hydropsyche (Trichoptera: Hydropsyliidae) based on DNA and morphological evidence. Journal of the North American Benthological Society 29 (3), 918-933.

Geraci, C. J., Al-Saffar, M. A., & Zhou, X., 2011: DNA barcoding facilitates description of unknown faunas: a case study on Trichoptera in the headwaters of the Tigris River, Iraq. Journal of the North American Benthological Society 30 (1), 163-173.

Glazier, D.S., 1998: Springs as model systems for ecology and evolutionary biology: a case study of Gammarus minus Say (Amphipoda) in mid-Appalachian springs differing in pH and ionic content. In: Botosaneanu, L. (Ed.), Studies in crenobiology. Blackheys Publishers, Leiden: 251-261.

Gmelin, J. F., 1789: Carola a Linne Systema Naturae, Leipzig - G. E. Beer, 1 (3), 1033-1516.

Govoni, D.P., Kristjánsson, B.K. & Ólafsson, J.S., 2018: Spring type influences invertebrate communities at cold spring sources. Hydrobiologia 808, 315–325. https://doi.org/10.1007/s10750-017-4344-6

Graf, W., Popijač, A., Previšić, A., Gamboa, M. & Kučinić, M., 2012: Contribution to the knowledge of Siphonoperla in Europe (Plecoptera: Chloroperlidae): Siphonoperla korab sp. n. Zootaxa 3164, 41-48.

Graf, W., Vitecek, S., Previšić, A. & Malicky, H., 2015: New species of Limnephilidae (Insecta: Trichoptera) from Europe: Alps and Pyrenees as harbours of unknown biodiversity. Zootaxa 3911 (3), 381-395.

Guo, H.F., Guan, B., Shi, F.M. & Zhou, ZJ., 2016: DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tetrigonidae). ZooKeys 596, 53–63. doi: 10.3897/zookeys.596.8869

Graf, W., Murphy, J., Dahi, J., Zamora-Muñoz, C., López-Rodriguez, M. J. & Schmid-Kloiber, A., 2020: Dataset “Trichoptera”. www.freshwaterecology.info – the taxa and autecology database for freshwater organisms, version 7.0 (access 4 March 2020)

Habdića, I. & Primić, B., 2019: Limnologija - Ekološka slatkih voda, Alfa, Zagreb, pp 352.

Hagen, H. A., 1889, Die Phryganiden Pictet’s. Stettin. ent. Zeit. 20, 153.

Hall, T.A., 1999: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95-98.

Hebert, D.N. P., Cywinska, A., Ball, S. L. & de Waard, J. R. 2003a: Biological identifications through DNA barcodes. Proceedings of the Royal Society B, 270, 313-321. doi: 10.1098/rspb.2002.2218

Hebert, P.D.N., Ratnasingham, S. & de Waard, J.R., 2003b: Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species 2003b: Proceedings of the Royal Society B: Biology letters, 270 (Supp. 1), pp. 596-599. DOI: 10.1098/rspb.2003.0025

Hinić, J., Slavesevska-Stamenkovic, V., Ibrahimii, H., Billali, A., Musliu, M., Kučinić, M., Beerman, A. & Lesse, F., 2020: The First Record of the Balkan Endemic Caddisfly Drusus osogovicus Kumanski, 1980 (Trichoptera: Limnephilidae) in the Republic of North Macedonia, with DNA barcoding of the species and comments on its ecology and distribution. Acta Zoologica Bulgarica 72 (in press). http://www.acta-zoologica-bulgarica.eu/002358

Hjalmarsson, A.E., Graf, W., Jähnig, S.C., Vitecek, S. & Pauls, S.U., 2018: Molecular association and morphological characterisation of Himalopsyche larval types (Trichoptera, Rhyacophilidae). ZooKeys 773, 79-108. doi: 10.3897/zookeys.773.24319

Huemer, P., Karsholt, O., Aarvik, L., Berggren, K., Bidzilya, O., Jumnilainen, J., Landry, JF., Mutanen, M., Nupponen, K., Segerer, A., Sumpich, J., Wieser, C., Wiesmair, B., Paul D.N., Hebert, D. N. P.,
2020: DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity. *ZooKeys* 921, 141–157. doi: 10.3897/zookeys.921.49199

Ibrahim, H., Kučinić, M., Viteček, S., Waringer, J., Graf, W., Previšić, A., Balint, M., Kerestesz, L., & Pauls, S.U., 2015: New records for the Kosovo caddisfly fauna with the description of a new species, *Drusus dardanicus* sp. nov. (Trichoptera: Limnephilidae). *Zootaxa* 4032 (5), 551-568.

Ilmonen, J. & Paasivirta, L., 2005: Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: Patterns in abundance and diversity. *Hydrobiologia*, 533, 99–113. doi: 10.1007/s10750-004-2399-4

Illies, J., 1978: Limnofauna Europaea. Gustav Fischer Verlag, Stuttgart and New York, 532 pp.

Ivković, M., Milića, M., Previšić, A., Popijač, A. & Mihaljević, Z., 2013: Environmental control of emergence patterns: Case study of changes in hourly and daily emergence of aquatic insects at constant and variable water temperatures. *International Review of Hydrobiology* 98, 104-115. doi: 10.1002/iroh.201301483

Ivković, M., Dorić, V., Baranov, V., Mihaljević, Z., Kolcsár, L-P., Kvitke, G. M., Neubova, J. & Pont, C. A., 2020: Checklist of aquatic Diptera (Insecta) of Plitvice Lakes National Park, Croatia, a UNESCO world heritage site. *ZooKeys* 918, 99–142. doi: 10.3897/zookeys.918.49648

Johanson K. A. & Keijsers, M., 2008: Phylogeny of the Helicophidae (Trichoptera), with emphasis on the New Caledonian species of *Helicopa*. *Systematic Entomology* 33 (3), 451-483.

Klapálek, F., 1902: Zur Kenntnis der Neuropteroiden von Ungarn, Bosnien und der Hercegovina. *Termész. Füzetek* 25, 161–180.

Karaoğuzas, I., Graf, W., Kučinić, M., Vučković, I. & Waringer, L., 2015: The larva of *Rhycophila balcanica* Radovanović, 1953 (Trichoptera: Rhycophilidae) with notes on ecology. *Zootaxa* 4057 (3), 444-450.

Kolenati, F., 1859: Jh Maehr Schles Ges p 36, ("1858").

Kreiling, A. K., Gislason, G. M. & Kristjánsson, B. K., 2020: Trichoptera diversity in Icelandic springs. *Zoomorphia* 18, 46-52.

Krušnik, C., 1987: Trichoptera (Insecta). Fauna Durmitora 2, 201-224.

Kučinić, M., Vučković, I., Kutnjak, H., Šerić Jelaska, L. & Marušić, D., 2011: Diversity, distribution, ecology and biogeography of caddisflies (Insecta: Trichoptera) in the Krka River (National Park "Krka", Croatia). *Zoomorphia* 5, 255-268.

Kučinić, M., Sživak, I., Pauls, S.U., Balint, M., Delić, A. & Vučković, I., 2013: *Chaeopteryx bucanii* sp. n., a new species from the *Chaeopteryx rugulosa* group from Croatia (Insecta, Trichoptera, Limnephilidae) with molecular, taxonomic and ecological notes on the group. *ZooKeys* 320, 1-28. doi: 10.3897/zookeys.320.4565

Kučinić, M., Cerjanec, D., Vučković, I., Mihoci, I., Perovic, F., Kutnjak, H., Ibrahim, H., Pelic Fixa, D., Žalac, S., Mrnjavčević Vojvoda, A. & Planat, M., 2015a: Some new and interesting species of caddisflies (Insecta, Trichoptera) found in Croatia. *Natura Croatica* 24 (2), 293-310.

Kučinić, M., Previšić, A., Graf, W., Mihoci, I., Šoufek, M., Stanic-Kostroman, S., Lebo, S., Viteček & Waringer, J., 2015b: Larval description of *Drusus bosnicus* Klapálek 1899 (Trichoptera: Limnephilidae) with distributional molecular and ecological features. *Zootaxa* 3957 (1), 85-97.

Kučinić, M., Ćukišić, A., Podnar, M., Landeka, M., Plavec, H., Planat, M., Akimberko, N., & Žalac, S., 2016: The first record of *Tinales antonii* Botosaneanu & Tatichchi-Viganò, 1974 (Insecta, Trichoptera) in Croatia with DNA barcoding and ecological data and notice of biodiversity and distribution of he genus *Tinales* in Croatia. *Natura Croatica* 25 (1), 131-149.

Kučinić, M., Ćukišić, A., Žalac, S., Podnar, M., Kambarovich Akhmetov, K., Akimberko, N., Moldazhanovna Zhumadina, S. & Vučković, I., 2017: First DNA barcoding and new records of the Mediterranean caddisfly species *Micropterna wagneri* Mal. (Trichoptera, Limnephilidae) in Croatia with note on DNA barcoding and diversity of genus *Micropterna* in Croatia. *Natura Croatica* 26 (1), 81–98.

Kučinić, M., Ćukišić, A., Cerjanec, D., Podnar, M., Planat, M., Žalac, S., Ćuk, R., Vučković, I., Ibrahim, H. & Delić, A., 2019a: DNA barcoding of the family Phryganeidae (Insecta, Trichoptera) in Croatia with particular reference to phylogeny, distribution and conservation biology. *Natura Croatica* 28 (2), 305-323.

Kučinić, M., Ćukišić, A., Plavec, H., Landeka, M., Planat, M., Vuković, M., Bukvić, V., Franjević, M., Žalac, S. & Lukač, G., 2019b: Caddisfly fauna characteristics (Insecta, Trichoptera) of four Adriatic islands with a note on DNA barcoding, *Natura Croatica* 28 (2), 403-413.

Kumanski, K.P., 1985: Trichoptera, Annullipalpia. Fauna Bulgarica 15, 1-244.

Kumanski, K.P., 1988: Trichoptera, Integripalpia. Fauna Bulgarica 19, 1-354.
Linnaeus, C., 1758: Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (in Latin) (10th ed.). Stockholm: Laurentius Salvius.

Malolli, B., Caroli, M. & Silveri, L., 2011: Ephemeroptera, Plecoptera and Trichoptera in springs in Trentino (south-eastern Alps Journal of Limnology 70 (Suppl. 1), 122-133. DOI: 10.3274/JL11-70-S1-09

Malicky, H., 1971: Eine neue Micropterna (Trichoptera, Limnephilidae) aus Italien - mit einem überblick über die Gattungen Stenophylax, Micropterna und Mesophylax? Die Hölle (Wien) 22 (1), 15-19.

Malicky, H., 1976 (“1975”): Beschreibung von 22 neuen westpaläarktischen Köcherfliegen (Trichoptera).
Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 27(3/4), 93, pl. 2 f. 6-8.

Malicky, H., 1979: Revision der Köcherfliegensammlung von Pater Gabriel Strobl im Naturlhistorischen Museum Admont (Insecta, Trichoptera). Mitt. Abt. Zool. Landesmus. Joanneum (Graz) 8, 11-42.

Malicky, H., 1995: Eine neue Psychomyia aus dem südöstlichen Mitteleuropa, mit Bemerkungen über die Gattung Metalype (Trichoptera: Psychomyiidae). – Entomologische Zeitschrift (Essen) 105, 441 - 446. – pogledati

Malicky, H., 2004: Atlas of European Trichoptera. Springer, Dordrecht, pp 384.

Malicky, H., 2005: Die Köcherfliegen Griechenlands. Denisia 17, 1–240.

Malicky, H., 2016: Die mitteleuropäische Verbreitung zweier Morphotypen von Allogamusauricollis (Trichoptera, Limnephilidae), mit phänotypischen und biotischen Notizen. Braueria 16, 29-38.

Malicky, H., 2020: Ein neuer Drusus (Trichoptera, Limnephilidae) aus dem Piemont: Drusus delmastroi n.sp. Braueria 47:38.

Malicky, H. & Sipahiler, F., 1993: Köcherfliegen (Trichoptera) aus der türkei, mit Bemerkungen zu weiteren mediterranean Köcherfliegen. Bulletin de la société entomologique Suisse 66, 457–468

Malicky, H., Previšić, A. & Kučinić, M., 2007: Rhacophila cabrankensis nov. spec, from Croatia. Braueria 34, 14.

Malicky, H. & Sipahiler, F., 1993: Köcherfliegen (Trichoptera) aus der türkei, mit Bemerkungen zu weiteren mediterranean Köcherfliegen. Bulletin de la société entomologique Suisse 66, 457–468.

Marinković-Gospodnetić, M., 1971: The species of the genus Drusus in Yugoslavia. Godišnjak Biološkog Instituta Univerziteta Sarajeva (Annual of the Institute of Biology, University of Sarajevo) 24, 105-109.

Marinković-Gospodnetić, M., 1976: The differentiation of Drusus species of the group bosnicus. In: Malicky, H. (Ed.), Proceedings of the First International Symposium on Trichoptera, Dr. W. Junk Publishers, The Hague, Netherland, pp 77-85 pp.

Marinković-Gospodnetić, M., 1979: Trichoptera (Insecta) velikih karstnih izvora u Dinaridima. Drugi Kongres Ekologa Jugoslavije (Second Congress of Ecologists of Yugoslavia). Savez društava ekologa Jugoslavije. Zagreb, pp 1837-1849.

Marinković-Gospodnetić, M., 1988: Dve nove vrste Glossosoma (Trichoptera, Insecta) u Jugoslaviji. Godišnjak Biološkog Institut 41, 41-47.

Mađi, N., Maldin, K., Tomas, D., Ćuk, R., Milović, S., Miklavčič, I. & Širac, S., 2016: Geochemical characteristics of the Gacka River karstic springs (Dinaric karst, Croatia) with macroinvertebrate assemblages overview. Environmental Earth Sciences 75 (19), 1-19. DOI:10.1007/s12665-016-6087-2

McLachlan, R., 1875 (1874-1880): A Monographic Revision and Synopsis of the Trichoptera of the European Fauna. London & Berlin, p 139-140, pl. 15, f. 1-6. p 464-465, pl 49 f 1, p 453-454, pl 48 f.

Myers, M.J. & Resh, V.H., 2002: Trichoptera and other macroinvertebrates in springs of the Great Basin: Species composition, richness, and distribution. Western North American Naturalist 62, 1–13.

Morinieri, J., Hendrich L., Balke, M., Beermann A.J., König, T., H ess, M., Koch, S., Müller, R., Leese, F., Hebert, P.D.N., Hausmann, A., Schubart, C.D. & Haszprunar, G., 2017: A DNA barcode library for Germanys mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera). Molecular Ecology Resources 17, 1293–1307. DOI: 10.1111/1755-0998.12683

Morton, K.J., 1901: Trichoptera, Neuroptera-Planipennia, Odonata, and Rhopalocera collected in Norway in the summer of 1900. The Entomologist’s monthly magazine 37: 69-71, f 1-3

Morse, J.C., 2020: Trichoptera World Checklist. http://entweb.clemson.edu/database/trichopt/index.htm (access 4 August 2020)
Nei, M., 1975: Molecular Population Genetics and Evolution. North-Holland Research Monographs. Frontiers of Biology, Vol. 40, Amsterdam, Oxford, pp 288.

OLAH, J., 2010: New species and new records of Palaeartic Trichoptera in the material of the Hungarian Natural History Museum. Annales historico-naturales Musei nationalis hungarici, 102, 65–117.

PAULS, S. U., LUMISCH, H. T. & HAASE, P., 2006: Phylogeography of the montane caddisfly Drusus disco:or: evidence for multiple refugia and periglacial survival. Molecular Ecology 15 (8), 2153-2169.

PAULS, S.U., THEISSINGER, K., UVAROSI, L., BALINT M. & HAASE, P., 2009: Patterns of population structure in two closely related, partially sympatric caddisflies in Eastern Europe: Historic introgression, limited dispersal, and cryptic diversity. Journal of the North American Benthological Society 28 (3), 517-536. DOI: 10.1899/08-100.1

PAULS, S.U., BLAHHNİK, R.J., ZHOU, X., WARDWELL, C.T. & HOLZENTHAL, R.W., 2010: DNA barcode dana confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). Journal of the North American Benthological Society 29 (3), 1058–1074. doi: 10.1899/09-108.1

PEŠIĆ, V., SAVIĆ, A., JABLOŠKA, A, MICHÔNSKI, G., GRABOWSKI, M., BANKOWSKA, A & ZAWAL, A., 2019: Environmental factors affecting water mite assemblages along eucrenon-hypocrenon gradients in Mediterranean karstic springs. Experimental and Applied Acarology 77 (4), 471-486. doi: 10.1007/s10493-019-00360-w

PICTET, F. J., 1834: Recherches pour Servir à l’histoire et à l’Anatomie des phryganides. A. Cherbuliez, Geneva. p 182-184, pl f 5a-f, pl 4 f 16-30, pl 15 f 1a-f, in part; p 187, pl 16 f 5; p 141-142, pl 8 f 1 a-f

POLLET, M. & IVKOVIC, M., 2018: Dolichopodidae of riverbeds and springs in Croatia with an updated checklist of Croatia (Diptera). Zootaxa 4455 (3), 401–428. DOI:10.11646/zootaxa.4455.3.1

POZOEVIC, I., PEŠIĆ, V., GOLDSCHMIDT, T. & GOTTSTEIN, S., 2020: Crenal Habitats: Sources of Water Mite (Acar: Hydrochaerida) Diversity. Diversity 12, 316. https://www.mdpi.com/1424-2818/12/9/316

PREVIŠIĆ, A., WALTON, C., KUČIĆ, M., MITRIKESKI, P. T. & M. KEROVEC, 2009: Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple refugia within the Balkan Peninsula. Molecular Ecology 18 (4), 634-647.

PREVIŠIĆ, A., CERJANEC, D., GRAF, W. & KUČIĆ, M., 2012: Drusus chrysotus (Rambur, 1842) (Trichoptera: Limnephilidae: Drusinae): a new caddisfly species in the Croatian fauna. Natura Croatica 21 (2), 419-425.

PREVIŠIĆ, A., GRAF, W., VITEČEK, S., KUČIĆ, M., BÁLINT, M., KERESZTES, L., PAULS S. U. & WARINGER, J., 2014: Cryptic diversity of caddisflies in the Balkans: the curious case of Ecclisopteryx species (Trichoptera: Limnephilidae). Arthropod Systematics and Phylogeny 72 (3), 309-329.

PuLLANDRE, N., LAMBERT, A., BrouLLEt, S. & ACHAZ, G., 2012: ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mocular Ecology 21 (8), 1864-1877.

RADOVANOVIĆ, M., 1953: Prilog poznavanju Trichoptera Balkanskog poluostrva, prvenstveno u pećinama i planinskim jezernima. Glas SAN, Odeljenje prirodno-matematičkih nauka 7, 11–38.

Rambur, J.P., 1842: Histoire naturelle des Insectes Nêvroptètres, pp 475, 480.

RatNasIINGHAM, S. & HEBERT, P.D.N., 2007: BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7(3), 355-364. doi: 10.1111/j.1471-8286.2007.01678.x

Saito, R., Kato, S., Kuranishi, R. B., Nozaki, T., Fujino, T. & Tojo, K., 2018: Phylogeographic analyses of the Stenopsycha caddisflies (Trichoptera: Stenopsychidae) of the Asian Region. Freshwater Science 37 (3), 562-572.

Santos, A.P.M., Nessimian, J.L. & Takiya, D.M., 2016: Revised classification and evolution of leucotrichine microcaddisflies (Trichoptera: Hydropylidae) based on morphological and molecular. Systematic Entomology 41, 458-480. DOI: 10.1111/syen.12168

ScopolI, J. A., 1763: Entomologia Carniolica exhibens insecta Carniolia indigena et distributa in ordines,genera, species, varietates. Methodo Linneanae, Vindobonae, Trattner. - pp. 1: 265.

SidOROV, D. & PALATOV, D., 2012: Taxonomy of the spring dwelling amphipod Synurella ambulans (Crustaceae: Crangonyctidae) in West Russia: with notes on its distribution and ecology. European Journal of Taxonomy 23, 1-19. http://dx.doi.org/10.5852/ejt.2012.23.

SidOROV, D., HOU, Z. & SKET, B., 2018: Three new remarkable amphipod species (Crustacea: Gammaridae) from springs and subterranean waters of Central Asia. Zootaxa 4444 (4), 437-461, DOI:10.11646/zootaxa.4444.4.5

Stanić-KoštroMan, S., PREVIŠIĆ, A., A. PLANIĆI, A., KUČIĆ, M., ŠKOBIĆ, D., A. Dedić, A. & Durbešić, P., 2015: Environmental determinants of contrasting caddisfly (Insecta, Trichoptera) biodiversity in
the Neretva and Bosna river basins (Bosnia and Herzegovina) under temperate and mediterranean climates. International Review of Hydrobiology 100, 79–95. DOI:10.1002/iroh.201301631

STEINMANN, P., 1907. Die Tierwelt der Gebirgsbäche. Eine faunistisch-biologische Studie. (Inauguraldiss.). Brüssel, Verl. F. Vanbuggenhondt.

SZIVÁK, I., MIKES, T., SZALONTAI, B., KUČINIĆ, M., VUČKOVIĆ, I., VADKERTI, E., KISFALI, P., PAULS, S. U. & BÁlint, M., 2017: Ecological divergence of Chaetopteryx rugulosa species complex (Insecta, Trichoptera) linked to climatic niche diversification, Hydrobiologia 794, 31–47. DOI 10.1007/s10750-016-3068-0

TYAGI, K., KUMAR, V., SINGH, D., CHANDRA, K., LASKAR, B.A., KUNDU, S., CHAKRABORTY R. & CHATTERJEE, S. A., 2017: Barcoding studies on Thrirs in India: Cryptic species and Species complexes. Scientific Reports 7, Article number 4898. https://doi.org/10.1038/s41598-017-05112-7

VAGLIA, T., HAXAIRE, J., KITCHING, I. J., MEUSNIER, I. & ROUGERIE, R., 2008: Morphology and DNA barcoding reveal three cryptic species within the Xylophanes neoptolemus and loelia species-groups (Lepidoptera: Sphingidae). Zootaxa 1923, 18-36.

VALLADOLID, M., ARAUZO, M., BASAGUREN, A., DORDA, B.A. & REY, I., 2018: The Rhyacophila fasciata Group in Western Europe: Confirmation of Rhyacophila denticulata McLachlan 1879 (stat. prom.) and Rhyacophila sociata Navás 1916 (stat. res.), based on morphological and molecular genetic evidence (Trichoptera: Rhyacophilidae). Zootaxa 4418(6), 526–544. https://doi.org/10.11646/zootaxa.4418.6.2

VALLADOLID, M., KARAOUSAZIS, I., ARAUZO, M., DORDA, A. B. & REY, I., 2019: The Rhyacophila fasciata Group in Greece: Rhyacophila kykladica Malicky & Sipahiler 1993 (stat. prom.) (Trichoptera: Rhyacophilidae). Morphological description, genetic and ecological features. Zootaxa 4657 (3), 503–522. DOI: http://dx.doi.org/10.11646/zootaxa.4657.3.5

VIJAYAN, K. & TSOU, H. C. 2010: DNA barcoding in plants: Taxonomy in a new perspective, Current science 99 (11), 1530-1541.

VITEČEK, S., GRAF, W., PREVIŠIĆ, A., KUČINIĆ, M., OLÁH, J., BÁlint, M., KERESZTES, L., PAULS, S.U. & WARINER, J., 2015: A hairy case: The evolution of filtering carnivorous Drusinae (Linnephilidae, Trichoptera). Molecular Phylogenetic and Evolution 93, 249-260.

VITEČEK, S., KUČINIĆ, M., PREVIŠIĆ, A., ŽIVIĆ, I., STOJANOVIĆ, K., KERESZTES, L., BÁlint, M., HOPPELER, F., WARINER, J., GRAF, W. & PAULS, U. S., 2017: Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae microendemics. BMC Evolutionary Biology, DOI 10.1186/s12862-017-0972-5

VITEČEK, S., MARTIN, J., ZITTRA, C., KUHLMANN, H., VIEIRA, A. & WARINER, J., 2020: The larva of Drusus dudor Oláh, 2017, including an updated key to larval Drusinae Banks, 1916 (Insecta, Trichoptera, Limnephilidae). Zootaxa 908, 108–115. doi: 10.3897/zookeys.908.

VUČKOVIĆ, I., PREVIŠIĆ, A. GRAF, W & KUČINIĆ, M., 2011: Description of the female and new data on the distribution of Annitella apfelbecki Klapálek, 1899 (Insecta: Trichoptera). Aquatic Insects 33 (4), 381-389.

WARINER, J., GRAF, W., KUČINIĆ, M., PREVIŠIĆ, A. & VUČKOVIĆ, I., 2009: The Larva and life cycle of Annitella apfelbecki Klapálek, 1899, including a re-description of Melanophyloga nepos McLachlan, 1880 (Trichoptera: Limnephilidae). Aquatic insects 31 (1), 71-80.

WARINER, J., GRAF, W., BÁlint, M., KUČINIĆ, M., PAULS, S.U., PREVIŠIĆ, A., KERESZTES, L. & S. VITEČEK, 2013: The larvae of Drusus franzresli Malicky 1974 and Drusus speleaus (Ulmer 1920) (Trichoptera: Limnephilidae: Drusinae) with notes on ecology and zoogeography. Zootaxa 3637, 1-16.

WARINER, J., GRAF, W., BÁlint, M., KUČINIĆ, M., PAULS, S.U., PREVIŠIĆ, A., KERESZTES, L. AND S. VITEČEK, 2015: Larval morphology and phylogenetic position of Drusus balsamicus, D. botosaneanum, D. sericus and D. tenellus (Trichoptera: Limnephilidae: Drusinae). European Journal of Entomology 112 (3), 344-361.

WARINER, J., PREVIŠIĆ, A., KUČINIĆ, M., GRAF, W., VITEČEKI, S., KERESZTES, L., BÁlint, M. & STEFFEN, U. P. 2016: Larval morphology of the Western Balkans endemic caddisflies Drusus krusniki Malicky 1981, D. vernonensis Malicky 1989, and D. vespertinus Marinković-Gospodnetić 1976 (Trichoptera, Limnephilidae, Drusinae). Zootaxa 4083 (4), 483–500.

www.freshwater.info

YANG, M., ZHAO, Q., YANG, Z. & ZHANG, Y., 2015: DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China. Mithochondrial DNA (Early online) 1-6. DOI: 10.3109/19401736.2015.1038788

YÁNEZ-Muñoz, M. H., REYES-Puig, C., REYES-Puig, J.P., VELasco, J. A., AYALA-VARELA, F. & TORRES-CARVAJAL, O., 2018: A new cryptic species of Anolis lizard from northwestern South America (Iguanidae, Dactyloidae). ZooKeys 794, 135-163. doi: 10.3897/zookeys.794.26936
ZHOU, X., KJER, K. & MORSE, J., 2007: Associating larvae and adults of Chinese Hydropsychidae caddisflies (Insecta: Trichoptera) using DNA sequencas. Journal of the North American Benthological Society 26 (4), 719-742.

ZHOU, X., FRANDSEN, P.B., HOLZENTHAL, R.W, BEET, C.R., BENNETT, K.R., BLAHNIK, R.J., BONADA, N., CARTWRIGHT, D., CHULUUNBAT, S., COCKS, G.V., COLLINS, G.E., DE WAARD, J., DEAN, J., FLINT JR., O.S., HAUSMANN, A., HENDRICH, L., HESS, M., HOGG, I.D., KONDRAIEFF, B.C., MALICKY, H., MILTON, MA., MORI-NIÉRE, J., MORSE, J.C., MWANGI, N.F., PAULS, S.U., GONZALEZ, M.R., RINNE, A., ROBINSON, J.L., SALOKANNEL, J., SHACKLETON, M., SMITH, B., STAMATAKIS, A., ST CLAIR, R., THOMAS, J.A., ZAMORA-MUNÓZ, C., ZIESMANN, T. & KJER, K.M., 2016: The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. Philosophical Transactions B 371, 20160025. doi: 10.1098/rstb.2016.0025

ŽIVIĆ, I., MARKOVIĆ, Z. & BRAJKOVIĆ, M., 2006: Contribution to the faunistical list of Trichoptera (Insecta) of Serbia. Acta Entomologica Slovenica 14 (1), 55-68.
Appendix 1. List of specimens used in the phylogenetic analysis of *Rhyacophila cabrankensis* and *R. vulgaris* in this study, showing life stage, origin, BOLD Sequence ID number, specimen ID, number of unique haplotypes. Specimens which genomic DNA extracted in this study are written in bold letters. Abbreviation used: ID = Identification number, BOLD = Barcode of Life data system, A = adult, M = male, F = female, No. = number.

Country	Location	Specimen ID	BOLD Sequence ID	Life stage
Croatia	spring of the River Čabranka	TRCAB_1	CROAA089-18	A
Rhyacophila cabrankensis Malicky, Previšić & Kučinić, 2007				
Austria	St. Konrad - Hausern	HMKKT584-10	10HMCAD-584	-
Austria	St. Konrad - Hausern	HMKKT964-11	HMCAD0111-147	A
Austria	Rohrwiesteich	BHMKK208-12	12HMCAD-042	A
Austria	St. Konrad - Hausern	HMKKT938-11	HMCAD0111-121	A
Croatia	creek Jankovac	TAFUR_1	CROAA002-18	A
Germany	Oberallgaeu: Baeche oh Grasgehren-Azw. Balderschw.	GBMIX1704-15	GBOL12189	A
Germany	Isar km 247, Hoehe Wallgau	FBAQU377-09	BC ZSM AQU 00377	A
Anabolia furcata Brauer, 1857				
Austria	Seeausrinn bei Lunz	HMKKT329-10	10HMCAD-329	A
Austria	Rankweil: Weitried/ Landesforstgarten	HMKKT330-10	10HMCAD-330	A
Austria	Flexenpass	INTAP217-17	PE256	A
Austria	Salzburg City, Thumegger Bezirk	KJTRI121-13	12HMCAD-131	A
Croatia	Kupčina, upper part, Vrabac	TRVUL_1	CROAA031-18	A