GENERALIZED SUPERELLIPTIC RIEMANN SURFACES

RUBÉN A. HIDALGO, SAÚL QUISPE, AND TONY SHASKA

Abstract. A conformal automorphism τ, of order $n \geq 2$, of a closed Riemann surface X, of genus $g \geq 2$, which is central in $\text{Aut}(X)$ and such that $X/\langle \tau \rangle$ has genus zero, is called a superelliptic automorphism of level n. If $n = 2$, then τ is called hyperelliptic involution and it is known to be unique. In this paper, for the case $n \geq 3$, we investigate the uniqueness of the cyclic group $\langle \tau \rangle$. Let τ_1 and τ_2 be two superelliptic automorphisms of level n of X. If $n \geq 3$ is odd, then $\langle \tau_1 \rangle = \langle \tau_2 \rangle$. In the case that $n \geq 2$ is even, then the same uniqueness result holds, up to some explicit exceptional cases.

1. Introduction

Let X be a closed Riemann surface of genus $g \geq 2$ and let $G = \text{Aut}(X)$ be its group of conformal automorphisms. It is well known that $\text{Aut}(X)$ is finite [23] of order at most $84(g-1)$ [16], and that the order of any conformal automorphism is bounded above by $4g + 2$. This paper considers certain cyclic subgroups of $\text{Aut}(X)$ which behave similarly to the hyperelliptic involution.

Let $\tau \in G$ be an n-gonal automorphism, that is, it has order $n \geq 2$ and $X/\langle \tau \rangle$ has genus zero. In this case, $H = \langle \tau \rangle \cong C_n$ is called an n-gonal group and X a cyclic n-gonal Riemann surface. Let N be the normalizer of $\langle \tau \rangle$ in G. It follows from the results in [10, 27], that generically $N = G$.

If $n = 2$, then τ is the hyperelliptic involution and it is known to be unique and central in G; in particular, it is central in $G = N$.

If $n \geq 3$ is a prime integer and $s \geq 3$ is the number of fixed points of τ, then H is known to be the unique n-Sylow subgroup of G if either (i) $2n < s$ [7] or (ii) $n \geq 5s - 7$ [12]. So, in this case, $N = G$; but it might be that τ is non-central.

If $n \geq 3$, not necessarily prime, such that: (i) every fixed point of a non-trivial power of τ is also a fixed point of τ, and (ii) the rotation number of τ at each of its fixed points is the same, (some authors call τ a superelliptic automorphism and X a superelliptic surface), then τ is central in N (see Corollary 1), but in general $N \neq G$. In this case, under the extra condition that $g > (n-1)^2$, it is known that $N = G$ [18] (as a consequence of results in [1]). The computation of G has been done in [22]. Superelliptic Riemann surfaces have been studied in [4, 19, 20] and those with many conformal automorphisms and with CM structures have been considered in [21].

If τ is central in G (respectively, central in N), then we call it a superelliptic automorphism of level n (respectively, generalized superelliptic automorphism of level n); we also say that $H = \langle \tau \rangle$ is a superelliptic group of level n.

2010 Mathematics Subject Classification. 14H37; 14H45; 30F10.

Key words and phrases. generalized superelliptic curves, cyclic gonal curves, automorphisms, Riemann surfaces.

The first two authors were partially supported by Projects Fondecyt 1230001 and 1220261.
\(n \) (respectively, \textbf{generalized superelliptic group of level} \(n \)), and that \(\mathcal{X} \) is a \textbf{superelliptic curve of level} \(n \) (respectively, \textbf{generalized superelliptic curve of level} \(n \)). A superelliptic automorphism of level \(n \) is automatically a generalized one; the converse is in general false (but generically true). Also, as previously noted, a superelliptic automorphism of order \(n \) is a generalized superelliptic of level \(n \) (but it might not be a superelliptic automorphism of level \(n \)).

In this paper, (i) we provide necessary and sufficient conditions for an \(n \)-gonal automorphism to be a generalized superelliptic automorphism of level \(n \) (Theorem 1) and (ii) we provide conditions for a superelliptic curve of level \(n \) to have a unique superelliptic group of level \(n \) (Theorem 2 and Corollary 2).

Before stating the above two results, let us recall some facts on \(n \)-gonal automorphisms. Let us consider a pair \((\mathcal{X}, \tau) \), where \(\tau \) is a \(n \)-gonal automorphism of \(\mathcal{X} \). Set \(H = \langle \tau \rangle \cong C_n \). Let \(\pi : \mathcal{X} \rightarrow \hat{\mathbb{C}} \) be a Galois branched covering, whose deck covering group is \(H = \langle \tau \rangle \), and let \(p_1, \ldots, p_s \in \hat{\mathbb{C}} \) be its branch values. Then there are integers \(l_1, \ldots, l_s \in \{1, \ldots, n-1\} \) satisfying that \(l_1 + \cdots + l_s \) is a multiple of \(n \) and \(\gcd(n, l_1, \ldots, l_s) = 1 \), such that \(\mathcal{X} \) can be described by an affine irreducible algebraic curve (which might have singularities) of the following form (called a \textbf{cyclic} \(n \)-gonal curve)

\[
y^n = \prod_{j=1}^{n}(x - p_j)^{l_j}.
\]

If one of the branch values is \(\infty \), say \(p_s = \infty \), then we need to delete the factor \((x - p_s)^{l_s} \) from the above equation. In this algebraic model, \(\tau \) and \(\pi \) are given respectively by \(\tau(x, y) = (x, \omega_n y) \), where \(\omega_n = e^{2\pi i/n} \), and \(\pi(x, y) = x \).

Theorem 1. Let \(\mathcal{X} \) be a cyclic \(n \)-gonal Riemann surface, described by the cyclic \(n \)-gonal curve Eq. (1), and \(N \) be the normalizer of \(H = \langle \tau(x, y) = (x, \omega_n y) \rangle \) in \(\text{Aut}(\mathcal{X}) \). Let \(\theta : N \rightarrow \overline{\mathbb{N}} = N/H \) be the canonical projection homomorphism. Then \(\tau \) is a generalized superelliptic automorphism of level \(n \) if and only if for all \(p_j \) and \(\pi_i \) in the same \(\theta(N) \)-orbit it holds that \(l_j = l_i \).

Corollary 1. Let \(\mathcal{X} \) be a cyclic \(n \)-gonal Riemann surface, described by the cyclic \(n \)-gonal curve Eq. (1). If \(l_j = l, \) for every \(j, \) where \(\gcd(n, l) = 1, \) then \(\tau(x, y) = (x, \omega_n y) \in \text{Aut}(\mathcal{X}) \) is a generalized superelliptic automorphism of level \(n \).

Remark 1. The above corollary states that a superelliptic automorphism is always a generalized superelliptic automorphism of level \(n \) (but not necessarily a superelliptic automorphism of level \(n \) as the normalizer \(N \) might be smaller than the full group of automorphisms).

Theorem 2. Let \(\mathcal{X} \) be a cyclic \(n \)-gonal Riemann surface, admitting two superelliptic automorphisms \(\tau \) and \(\eta \), both of level \(n \), such that \(\langle \tau \rangle \neq \langle \eta \rangle \). Then

(I) \(\text{Aut}(\mathcal{X})/\langle \tau \rangle \) is either a non-trivial cyclic group of even order or a dihedral group of order a multiple of four;

(II) there is an integer \(d \geq 2 \) such that \(n = 2d \) and \(\mathcal{X} \) can be represented by a cyclic \(n \)-gonal curve of the form

\[
\mathcal{X} : \quad y^{2d} = x^2 (x^2 - 1)^{l_1} (x^2 - a_2)^{l_2} \prod_{j=3}^{L}(x^2 - a_j^{2})^{2l_j},
\]

where \(l_1, l_2, 2\widehat{l}_3, \ldots, 2\widehat{l}_L \in \{1, \ldots, 2d - 1\}, \) \(l_1 \) is odd, and either one of the two conditions (a) or (b) below holds for \(l_2 \).

(a) If \(l_2 = 2\widehat{l}_2 \), then \(\gcd(2d, l_1, \widehat{l}_2, \ldots, \widehat{l}_L) = 1 \).
the finite subgroups of the group PSL of Möbius transformations. 2.1.

In these cases, $\tau(x, y) = (x, \omega_{2d}y)$, $\eta(x, y) = (-x, \omega_{2d}y)$ and $\langle \tau, \eta \rangle \cong C_{2d} \times C_2$.

Those superelliptic Riemann surfaces of level $n = 2d$, described by the cyclic $2d$-gonal curves in Theorem 2, will be called exceptional.

Remark 2. The cyclic $2d$-gonal curves X, defined by Eq. (2), are cyclic $2d$-gonal curves X admitting two commuting cyclic $2d$-gonal automorphisms, τ, η, such that $\langle \tau \rangle \neq \langle \eta \rangle$. We should note that not all of them need to be hyperelliptic of level n; the theorem only asserts that the exceptional ones are some of them. For instance, in the case (b) with $d = 2$, $l_1 = 1$ and $l_2 = 3$, the genus five curve $\bar{\tau}, \eta$-gonal automorphisms, $\rho\tau\rho^{-1} = \tau^3$.

Corollary 2. Let X be a Riemann surface admitting a superelliptic group H of level n. Then H is the unique superelliptic group of level n of X if either: (1) $n = 2$, or (2) $n \geq 3$ is odd , or (3) $n \geq 4$ is even and X/H has no cone point of order $n/2$.

Finally, in the last section, we provide some discussion on the field of moduli of these superelliptic Riemann surfaces (see Theorem 5).

Notations. We denote by C_n the cyclic group of order n, by D_n the dihedral group of order $2n$, by A_n the alternating group, and by S_n the symmetric group.

2. Preliminaries

2.1. The finite groups of Möbius transformations.

Up to $PSL_2(\mathbb{C})$-conjugation, the finite subgroups of the group $PSL_2(\mathbb{C})$ of Möbius transformations are given by (see, for instance, [3])

$$C_m := \langle a(x) = \omega_m x \rangle, \quad D_m := \langle a(x) = \omega_m x, b(x) = \frac{1}{x} \rangle, \quad A_4 := \langle a(x) = -x, b(x) = \frac{1}{x} \rangle, \quad S_4 := \langle a(x) = i x, b(x) = \frac{1}{x} \rangle, \quad A_5 := \langle a(x) = \omega_5 x, b(x) = \frac{(1-\omega^3_5)x + (\omega^3_5-1)}{(1-\omega^3_5)x + (\omega^3_5-1)} \rangle,$$

where ω_m is a primitive m-th root of unity. For each of the above finite groups A, a Galois branched covering $f_A : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, with deck group A, is given as follows

$$f_{C_m}(x) = x^m; \quad f_{D_m}(x) = x^m + x^{-m}; \quad \text{branching:} \quad (m, m).$$

$$f_{A_4}(x) = \frac{(x^4 - 2i\sqrt{3}x^2 + 1)^3}{-12i\sqrt{3}x^2(x^4 - 1)^2}; \quad f_{S_4}(x) = \frac{108x^4(x^4 - 1)^3}{108x^4(x^4 - 1)^4}; \quad \text{branching:} \quad (2, 3, 4).$$

$$f_{A_5}(x) = \frac{(-x^{20} + 228x^{15} - 494x^{10} - 228x^5 - 1)^3}{1728x^5(x^{10} + 11x^5 - 1)^5}; \quad \text{branching:} \quad (2, 3, 5).$$

see [14]. In the above, the branching corresponds to the tuple of branch orders of the cone points of the orbifold $\hat{\mathbb{C}}/A$.
2.2. Fuchsian groups. A Fuchsian group is a discrete subgroup Δ of $\text{PSL}_2(\mathbb{R})$, the group orientation-preserving isometries of the hyperbolic plane \mathbb{H}. It is called co-compact if the quotient orbifold \mathbb{H}/Δ is compact; its signature is the tuple $(g; n_1, \ldots, n_s)$, where g is the genus of the quotient orbifold \mathbb{H}/Δ, s is the number of its cone points they having branch orders n_1, \ldots, n_s. The group Δ has a presentation as follows:

$$
\Gamma = \langle a_1, b_1, \ldots, a_g, b_g, c_1, \ldots, c_s : c_1^{n_1} = \cdots = c_s^{n_s} = 1, c_1 \cdots c_s [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle,
$$

where $[a, b] = aba^{-1}b^{-1}$.

If a co-compact Fuchsian group Γ has no torsion, then $X = \mathbb{H}/\Gamma$ is a closed Riemann surface of genus $g \geq 2$ and its signature is $(g; -)$. Conversely, by the uniformization theorem, every closed Riemann surface of genus $g \geq 2$ can be represented as above. In this case, by Riemann’s existence theorem, a finite group G acts faithfully as a group of conformal automorphisms of X if and only if there is a co-compact Fuchsian group Δ and a surjective homomorphism $\theta : \Delta \to G$ whose kernel is Γ.

2.3. Cyclic n-gonal Riemann surfaces. Let X be a cyclic n-gonal Riemann surface of genus $g \geq 2$, $\tau \in \text{Aut}(X)$ be a n-gonal automorphism and $\pi : X \to \hat{\mathbb{C}}$ be a Galois branched cover whose deck group is the n-gonal group $H = \langle \tau \rangle \cong C_n$. Let $p_1, \ldots, p_s \in \hat{\mathbb{C}}$ be the branch values of π and let us denote by $n_j \geq 2$ (which is a divisor of n) the branch order of π at p_j.

Let Δ be a Fuchsian group such that (up to biholomorphisms) $\mathbb{H}/\Delta = X/\langle \tau \rangle$. Then Δ has signature $(0; n_1, \ldots, n_s)$ and a presentation

$$
\Delta = \langle c_1, \ldots, c_s : c_1^{n_1} = \cdots = c_s^{n_s} = 1, c_1 \cdots c_s = 1 \rangle.
$$

The branched Galois covering π is determined by a surjective homomorphism $\rho : \Delta \to C_n = \langle \tau \rangle$ with a torsion-free kernel Γ such that $X = \mathbb{H}/\Gamma$. (The homomorphism ρ is uniquely determined up to post-composition by automorphisms of C_n and pre-composition by an automorphism of K.) Let $\rho(c_j) = \tau^{l_j}$, where c_j is as in Eq. (4), for $l_1, \ldots, l_s \in \{1, \ldots, n-1\}$. As a consequence of Harvey’s criterion [11],

(a) $n = \text{lcm}(n_1, \ldots, n_{j-1}, n_{j+1}, \ldots, n_s)$ for all j;

(b) if n is even, then $\# \{ j \in \{ 1, \ldots, s \} : n/n_j \text{ is odd} \}$ is even.

The equality $c_1 \cdots c_s = 1$ is equivalent to have $l_1 + \cdots + l_s \equiv 0 \text{ mod}(n)$, and the condition for $\Gamma = \ker(\rho)$ to be torsion-free is equivalent to have $\gcd(n, l_j) = n/n_j$, for $j = 1, \ldots, s$. The surjectivity of ρ is equivalent to have $\gcd(n, l_1, \ldots, l_s) = 1$, which in our case is equivalent to condition (a). Condition (b) is equivalent to saying that for n even the number of l_j’s being odd is even, which trivially holds. Summarizing all the above,

\begin{align*}
(1) \quad & l_1, \ldots, l_s \in \{ 1, \ldots, n-1 \}, \quad & (3) \quad & \gcd(n, l_j) = n/n_j, \text{ for all } j, \\
(2) \quad & l_1 + \cdots + l_s \equiv 0 \text{ mod}(n), \quad & (4) \quad & \gcd(n, l_1, \ldots, l_s) = 1.
\end{align*}

The Riemann surface X can be described by the affine curve

$$
X : \quad y^n = \prod_{j=1}^{s} (x - p_j)^{l_j},
$$

where, if one of the branched values is infinity, say $p_s = \infty$, then we need to delete the factor $(x - p_s)^{l_s}$ in the above equation.
In such an algebraic model, $\tau(x, y) = (x, \omega_n y)$, where $\omega_n = e^{2\pi i/n}$, and $\pi(x, y) = x$. The branch order of π at p_j is $n_j = n/\gcd(n, l_j)$ and, by the Riemann-Hurwitz formula, the genus g of X is given by

$$g = 1 + \frac{1}{2} \left((s-2)n - \sum_{j=1}^{s} \gcd(n, l_j) \right).$$

3. PROOF OF THEOREM 1

Let X be a curve given by equation Eq. (1), $\pi(x, y) = x$, and $\tau \in G = \text{Aut}(X)$. Let N be the normalizer of $H = \langle \tau \rangle$ in G. There is a short exact sequence

$$1 \to H = \langle \tau \rangle \to N \xrightarrow{\theta} \frac{N}{H} \to 1,$$

where $\theta(\eta) \circ \pi = \pi \circ \eta$, for every $\eta \in N$.

The reduced group of automorphisms $\overline{N} = N/H < \text{PSL}_2(\mathbb{C})$ is a finite group keeping invariant the set $\{p_1, \ldots, p_s\}$.

3.1. The following describes the form of those elements of N.

Lemma 1. Let $n \in N$ and $l \in \{1, \ldots, n-1\}$ (necessarily relatively prime to n) such that $\eta \tau \eta^{-1} = \tau^l$. If $b = \theta(\eta)$, then $\eta(x, y) = (b(x), y^l Q(x))$, where $Q(x)$ is a suitable rational map.

Proof. Let us note that $\eta(x, y) = (b(x), L(x, y))$, where $L(x, y)$ is a suitable rational map. As $\eta(\tau(x, y)) = \eta(x, \omega_n y) = (b(x), L(x, \omega_n y))$ and $\tau(\eta(x, y)) = \tau^l(b(x), L(x, y)) = (b(x), \omega^l_n L(x, y))$, the condition $\eta \tau \eta^{-1} = \tau^l$ holds if and only if $L(x, \omega_n y) = \omega^l_n L(x, y)$, that is, $L(x, y) = Q(x)^l$, for a suitable rational map $Q(x) \in \mathbb{C}(x)$.

Remark 3. (1) Lemma 1 asserts that those $\eta \in N$ commuting with τ have the form $\eta(x, y) = (b(x), Q(x)y)$. (2) If $t \in \text{PSL}_2(\mathbb{C})$, then replacing π by $t \circ \pi$ only exchanges the set of branch points $\{p_1, \ldots, p_s\}$ for $\{t(p_1), \ldots, t(p_s)\}$ but keeps invariant the set of exponents l_1, \ldots, l_s.

3.2. Let $n \in N$ and assume $\theta(\eta)$ has order $m \geq 2$. As there is a suitable $t \in \text{PSL}_2(\mathbb{C})$ such that $t \theta(\eta)^{-1}(x) = \omega_m x$, we may assume (by post-composing π with t) that $\theta(\eta)(x) = \omega_m x$. So the cyclic n-gonal curve Eq. (6) can be written as

$$y^n = x^\alpha \prod_{j=1}^{L} (x - q_j)^{i_j, 1} (x - \omega_m q_j)^{i_j, 2} \cdots (x - \omega_m^{m-1} q_j)^{i_j, m},$$

where

(a) the factor x^α only appears if one of the branch values $t(p_j)$ is equal to zero, and

(b) there is the following equality of sets of exponents in Eq. (9) and Eq. (6) (where a needs to be deleted if none of the $t(p_j)$’s is equal to zero)

$$\{\alpha, l_1, \ldots, l_{1,m}, l_{2,1}, \ldots, l_{2,m}, \ldots, l_{L,1}, \ldots, l_{L,m}\} = \{l_1, \ldots, l_s\}.$$
and \(r_j = l_{j,1} + \cdots + l_{j,m} \), that is,

\[
Q(x)^n y^n = \frac{(\alpha + \sum_{j=1}^{l} r_j)x^n}{\prod_{j=1}^{L}(x-q_j)^{r_j} (x-\omega_{m} q_j)^{r_j}}.
\]

(11)

In particular,

\[
Q(x)^n y^{(l-1)n} = \frac{(\alpha + \sum_{j=1}^{l} r_j)x^n}{\prod_{j=1}^{L}(x-q_j)^{r_j} (x-\omega_{m} q_j)^{r_j}}.
\]

(12)

3.3. Let us assume \(\eta \) commutes with \(\tau \), that is, \(l = 1 \). We proceed to prove that the exponents \(l_{j,i} \) are the same for every \(i = 1, \ldots, m \). As \(\theta(\eta)^m = 1 \), it follows that \(\eta^m \in \langle \tau \rangle \), from which we must have that

\[
\left(\prod_{j=0}^{m-1} Q(\omega_{m}^j) \right)^n = 1.
\]

(13)

Claim 1. Equation Eq. (13) asserts that \(Q(x) \) is either an \(nm \)-root of unity or it has the form

\[
Q(x) = \lambda \prod_{u=1}^{A} \frac{x-\alpha_u}{x-\omega_{m}^{u} \alpha_u},
\]

where \(\lambda^{nm} = 1 \) and \(q_u \in \{1, \ldots, m-1\} \).

Proof. If we write

\[
Q(x) = \lambda \prod_{u=1}^{A} \frac{x-\alpha_u}{x-\omega_{m}^{u} \alpha_u},
\]

then

\[
\prod_{j=0}^{m-1} Q(\omega_{m}^j x) = \lambda^m \prod_{j=0}^{m-1} \omega_{m}^{(A-B)j} \prod_{u=1}^{A} \frac{\omega_{m}^{u-1}(x-\omega_{m}^{u} \alpha_u)}{\prod_{v=1}^{B} (x-\omega_{m}^{v} \beta_v)} =
\]

\[
= \lambda^m \omega_{m}^{(A-B)m(m-1)/2} \prod_{u=1}^{A} (x-\alpha_u^m) \prod_{v=1}^{B} (x-\beta_v^m).
\]

Equation Eq. (13) asserts that

\[
A = B, \quad \prod_{v=1}^{B} (x-\beta_v^m) = \lambda^{nm} \prod_{u=1}^{A} (x-\alpha_u^m).
\]

So, \(\lambda^{nm} = 1 \) and, up to a permutation of indices, we may assume \(\alpha_u^m = \beta_v^m \), for \(u = 1, \ldots, A \). \(\square \)

By Claim 1, either \(l_{j,i} - l_{j,i+1} = 0 \) or \(\omega_{m}^{i-1} q_j \) must be either a zero or a pole of order \(n \) of the left side of Eq. (12), that is, each \(l_{j,i} - l_{j,i+1} \in \{0, \pm n\} \). As \(l_{j,i} \in \{1, \ldots, n-1\} \), it follows that \(l_{j,1} = \cdots = l_{j,m} \).

3.4. In the other direction, let us assume that \(l_{j,1} = \cdots = l_{j,m} = l_j \), for every \(j = 1, \ldots, L \). In this case, \(X \) has equation

\[
y^n = x^\alpha \prod_{j=1}^{L} (x-q_j^m)^{l_j}.
\]

(14)

A lifting of \(\theta(\eta) \) under \(\pi(x, y) = x \) is of the form \(\tilde{\eta}(x, y) = (\omega_{m} x, \omega_{m}^n y) \). This asserts that \(\eta = \tilde{\eta}^k \), for some \(k \in \{0, \ldots, n-1\} \), i.e., \(\eta(x, y) = (\omega_{m} x, \omega_{m}^k \omega_{m}^\alpha y) \), that is \(l = 1 \).
3.5. **A consequence.** The above permits us to observe that, if \(\tau \) is a generalized superelliptic automorphism of level \(n \), and the reduced group \(\overline{G} \) admits an element of order \(m \), then \(X \) can be represented by a cyclic \(n \)-gonal curve of the form

\[
X : \quad y^n = x^{l_0}(x^m - 1)^{l_1} \prod_{j=2}^{L} (x^m - a_j^n)^{l_j},
\]

where any one of the following Harvey’s conditions is satisfied:

1. if \(l_0 = 0 \), then \(m(l_1 + \cdots + l_L) \equiv 0 \mod(n) \) and \(\gcd(n, l_1, \ldots, l_L) = 1 \); or
2. if \(l_0 \neq 0 \), then \(\gcd(n, l_0, l_1, \ldots, l_L) = 1 \).

Note that, in (2) above, either: (2.1) \(l_0 + m(l_1 + \cdots + l_L) \equiv 0 \mod(n) \) in case \(\infty \) is not a branch value, or (2.2) \(l_0 + m(l_1 + \cdots + l_L) \neq 0 \mod(n) \) in case \(\infty \) is a branch value.

4. **Proof of Theorem 2 and Corollary 2**

Let us assume \(X \) admits two superelliptic automorphisms \(\tau \) and \(\eta \), both of level \(n \), that is, each one being central in \(G = \text{Aut}(X) \). Let \(H = \langle \tau \rangle \) and the reduced group \(\overline{G} = G/H \). We proceed to investigate when it is possible to have that \(\eta \notin H \).

4.1. **Proof of Theorem 2.** As the case \(n = 2 \) corresponds to the hyperelliptic situation, and the hyperelliptic involution is unique, necessarily \(n \geq 3 \).

Proposition 1. If \(\overline{G} \) is either trivial, a dihedral group of order not divisible by 4 or \(A_4 \) or \(S_4 \) or \(A_5 \), then \(\eta \in H \).

Proof. Assume, to the contrary, that \(\eta \notin H \). Then \(\eta \) induces a non-trivial central element of the reduced group \(\overline{G} \). As the Platonic groups and the dihedral groups of order not divisible by 4, have no nontrivial central element, this is a contradiction.

Let us assume that \(\eta \notin H \). So, by the above, \(n \geq 3 \) and \(\overline{G} \) is either a non-trivial cyclic group or a dihedral group of order a multiple of 4. Let us consider, as before, the canonical quotient homomorphism \(\theta : G \to \overline{G} \), and let \(\pi : X \to \overline{C} \) be a Galois branched cover with deck group \(H \). As \(\tau \) is central, \(K = \langle \tau, \eta \rangle < G \) is an abelian group and \(\overline{K} = K/H = \langle \theta(\eta) \rangle \approx C_m \), where \(n = md \) and \(m \geq 2 \). Since \(\theta(\eta) \) has order \(m \), \(\eta^m \in H \) and it has order \(d \). So, replacing \(\tau \) by a suitable power (still being a generator of \(H \)) we may assume that \(\eta^m = \tau^m \). Now, as noted in Section 3.5, we may assume \(X \) to be represented by a cyclic \(n \)-gonal curve of the form

\[
X : \quad y^n = x^{l_0}(x^m - 1)^{l_1} \prod_{j=2}^{L} (x^m - a_j^n)^{l_j},
\]

where one of the following Harvey’s conditions is satisfied:

1. \(l_0 = 0, m(l_1 + \cdots + l_L) \equiv 0 \mod(n) \) and \(\gcd(n, l_1, \ldots, l_L) = 1 \); or
2. \(l_0 \neq 0 \) and \(\gcd(n, l_0, l_1, \ldots, l_L) = 1 \).

In this algebraic model, \(\tau(x, y) = (x, \omega_n y), \pi(x, y) = x \) and \(\theta(\eta)(x) = \omega_m x \) (where \(\omega_i = e^{2\pi i/i} \)). In this way, \(\eta(x, y) = (\omega_m x, \omega_m^{l_0/n} y) \). Since \(\eta^m = \tau^m \) and \(\eta \) has order \(n \), we may assume the following

\[
\begin{cases}
\text{if } l_0 \neq 0 : & \eta(x, y) = (\omega_m x, \omega_m y) \quad \text{and} \quad l_0 = m, \\
\text{if } l_0 = 0 : & \eta(x, y) = (\omega_m x, y) \quad \text{and} \quad n = m.
\end{cases}
\]

i): Case \(l_0 = m \). In this case, \(\eta(x, y) = (\omega_m x, \omega_m y) \) and we are in case (C2) above. The \(\eta \)-invariant algebra \(\mathbb{C}[x, y]^{\langle \eta \rangle} \) is generated by the monomials \(u = x^m, v = y^n \) together those of the form \(x^a y^b \), where \(a \in \{0, 1, \ldots, m-1\} \) and \(b \in \{0, 1, \ldots, n-1\} \).
we must have a branch set of \(\pi \) as its deck group. Let us observe that the values 0, \(y \) (18) curve be the trivial group nor can it be isomorphic to the Klein group \(\mathbb{Z}/2\mathbb{Z} \). In particular, (19) coordinates. The group generated by all of these automorphisms is \(\mathcal{U} = \langle T_1, \ldots, T_{m-1} \rangle \cong C_m \). The curve \(\mathcal{Y} \) admits the automorphisms \(T_1, \ldots, T_{m-1} \), where \(T_j \) is just an amplification of the \(t_j \)-coordinate by \(\omega_m \) and acts as the identity on all the other coordinates. The group generated by all of these automorphisms is

\[
\mathcal{U} = \langle T_1, \ldots, T_{m-1} \rangle \cong C_m.
\]

The Galois branched cover map \(\pi_U : \mathcal{Y} \to \hat{\mathbb{C}} : (u, v, t_1, \ldots, t_{m-1}) \mapsto u \) has \(\mathcal{U} \) as its deck group. Let us observe that the values 0, \(a_1^m, \ldots, a_n^m \) belongs to the branch set of \(\pi_U \). Since \(\mathcal{Y} = \mathcal{X}/(\eta) \) has genus zero and the finite abelian groups of automorphisms of the Riemann sphere are either the trivial group, a cyclic group or \(V_4 = \mathbb{C}_2 \), the group \(\mathcal{U} \) is one of these three types. As \(m \geq 2 \), the group \(\mathcal{U} \) cannot be the trivial group nor can it be isomorphic to the Klein group \(V_4 = \mathbb{C}_2 \). It follows that \(\mathcal{U} \) is a cyclic group; so \(m = 2 \) and, in particular, \(n = 2d \), where \(d \geq 2 \), and

\[
y^{2d} = x^2(x^2 - 1)^{l_1} \prod_{j=2}^{L}(x^2 - a_j^2)^{l_j}.
\]

Harvey’s condition (a) is equivalent to have \(\gcd(2d, l_1, \ldots, l_L) = 1 \), which is satisfied if some of the exponents \(l_j \) is odd. Without loss of generality, we may assume that \(l_1 \) is odd. In this case the curve \(\mathcal{Y} \) is given by

\[
\mathcal{Y} : \begin{cases}
t_1^2 = uv, \\
v = (u-1)^{l_1} \prod_{j=2}^{L}(u - a_j^2)^{l_j},
\end{cases}
\]

which is isomorphic to the curve

\[
w^2 = (u-1)^{l_1} \prod_{j=2}^{L}(u - a_j^2)^{l_j}.
\]

As this curve must have genus zero, and \(l_1 \) is odd, the number of indices \(j \in \{2, \ldots, L\} \) for which \(l_j \) is odd must be at most one.

(i) If \(l_1 \) is the only odd exponent and \(l_j = 2\widehat{l}_j \), for \(j = 2, \ldots, L \), then the condition \(\gcd(2d, l_1, \widehat{l}_2, \ldots, 2\widehat{l}_L) = 1 \) is equivalent to \(\gcd(d, \widehat{l}_1, \widehat{l}_2, \ldots, \widehat{l}_L) = 1 \).

(ii) If there are exactly two of the exponents being odd, then we may assume, without loss of generality, that \(l_1 \) and \(l_2 \) are the only odd exponents. This means that the curve in Eq. (22) is isomorphic to \(\hat{w}^2 = (u-1)^{l_1} \prod_{j=3}^{L}(u - a_j^2)^{l_j/2} \), where \(\hat{w} = w/\prod_{j=3}^{L}(u - a_j^2)^{l_j/2} \). If we write \(l_j = 2\widehat{l}_j \), for \(j = 3, \ldots, L \), then the condition \(\gcd(2d, 2l_1, l_2, 2\widehat{l}_3, \ldots, 2\widehat{l}_L) = 1 \) is equivalent to \(\gcd(d, l_1, l_2, \widehat{l}_3, \ldots, \widehat{l}_L) = 1 \).
ii): Case \(l_0 = 0 \). In this case, \(m = n \), \(\eta(x, y) = (\omega_n x, y) \) and we are in case (C1) above. The \(\eta \)-invariants algebra \(\mathbb{C}[x, y]_{(\eta)} \) is generated by the monomials \(u = x^n, v = y \). As a consequence of the invariant theory, the quotient curve \(\mathcal{X}/(\eta) \) corresponds to one of the following algebraic curves

\[
\mathcal{Y}_1 : \begin{cases}
 v^n = (u - 1)^{l_1}
\end{cases}
\]

or

\[
\mathcal{Y}_2 : \begin{cases}
 v^n = (u - 1)^{l_1} \prod_{j=2}^{L} (u - a_j^n)^{l_j}.
\end{cases}
\]

As \(\mathcal{Y} \) must have genus zero and \(n \geq 3 \), we should have either \(\mathcal{Y}_1 \) or \(\mathcal{Y}_2 \) with \(L = 2 \) and \(l_1 + l_2 \equiv 0 \mod (n) \). In particular, we have one of the two cases below for \(\mathcal{X} \):

\[
\begin{align*}
\text{(1)} & \quad \mathcal{X} : \quad y^n = (x^n - 1)^{l_1}, \\
\text{(2)} & \quad \mathcal{X} : \quad y^n = (x^n - 1)^{l_1}(x^n - a_2^n)^{l_2}, \quad l_1 + l_2 \equiv 0 \mod (n).
\end{align*}
\]

Note that, for situation (1) above, we may assume \(l_1 = 1 \) (this is the classical Fermat curve of degree \(n \)). As the group of automorphisms of the classical Fermat curve of degree \(n \) is \(C_n^2 \times S_3 \), we may see that \(\tau \) is not central; that is, it is not a generalized superelliptic Riemann surface of level \(n \). In case (2), Harvey’s conditions hold exactly when \(\gcd(n, l_1, l_2) = 1 \). As \(l_1 + l_2 \equiv 0 \mod (n) \) and \(l_1, l_2 \in \{1, \ldots, n - 1\} \), we have that \(l_1 + l_2 = n \). If we write \(l_2 = n - l_1 \), then

\[
\left(\frac{x^n - 1}{x^n - a_2^n} \right)^{l_1} = \frac{y^n}{(x^n - a_2^n)^{l_1}},
\]

and by writing \(l_1 = n - l_2 \) we also have that

\[
\left(\frac{x^n - a_2^n}{x^n - 1} \right)^{l_2} = \frac{y^n}{(x^n - 1)^{l_2}}.
\]

Then the Möbius transformation \(M(x) = a_2/x \) induces the automorphism

\[
\alpha(x, y) = \left(\omega_n \frac{a_2}{x}, \frac{-a_2^b(x^n - 1)(x^n - a_2^n)}{x^n y} \right),
\]

which does not commute with \(\eta(x, y) = (\omega_n x, y) \) since \(n \geq 3 \), a contradiction.

4.2. Proof of Corollary 2. Let \(\mathcal{X} \) be a cyclic \(n \)-gonal Riemann surface admitting superelliptic automorphisms \(\tau, \eta \), both of level \(n \), such that \(\langle \tau \rangle \neq \langle \eta \rangle \). By Theorem 2, \(\mathcal{X} \) has an equation of the form as in Eq. (20), where \(n = 2d \geq 4 \). The factor \(x^2 \) in such an equation asserts that \(0 \) is a branch value of order \(d = n/2 \).

5. A REMARK ON THE FIELD OF MODULI OF SUPERELLIPTIC CURVES

5.1. Field of definitions and the field of moduli. As a consequence of the Riemann-Roch theorem, every closed Riemann surface \(\mathcal{X} \) can be described as a complex projective irreducible algebraic curve, say defined as the common zeros of the homogeneous polynomials \(P_1, \ldots, P_r \). If \(\sigma \in \text{Gal}(\mathbb{C}) \), the group of field automorphisms of \(\mathbb{C} \), then \(\mathcal{X}^\sigma \) will denote the curve defined as the common zeros of the polynomials \(P_1^\sigma, \ldots, P_r^\sigma \), where \(P_j^\sigma \) is obtained from \(P_j \) by applying \(\sigma \) to its coefficients. The new algebraic curve \(\mathcal{X}^\sigma \) is again a closed Riemann surface of the same genus. Let us observe that, if \(\sigma, \tau \in \text{Gal}(\mathbb{C}) \), then \(\mathcal{X}^{\sigma \tau} = (\mathcal{X}^\sigma)^\tau \) (we multiply the permutations from left to right). A subfield \(L \) of \(\mathbb{C} \) is called a field of definition of \(\mathcal{X} \) if there is a curve \(\mathcal{Y} \), defined over \(L \), which is isomorphic to \(\mathcal{X} \) over \(\mathbb{C} \). Weil’s descent theorem [28] provides sufficient conditions for a given subfield of
to be a field of definition of X. These conditions hold if X has no non-trivial automorphisms (a generic situation for $g \geq 3$).

If G_X is the subgroup of $\text{Gal}(\mathbb{C})$ consisting of those σ so that X^σ is isomorphic to X, then the fixed field M_X of G_X is called the field of moduli of X. The notion of the field of moduli was originally introduced by Shimura [26] for the case of abelian varieties and later extended to more general algebraic varieties by Koizumi [17]. In that same paper, Koizumi observed that: (i) M_X is the intersection of all the fields of definition of X, and (ii) X has a field of definition being a finite extension of M_X.

There are examples for which the field of moduli is not a field of definition [8, 26].

In [13] the following sufficient condition for a surface to be definable over its field of moduli was obtained.

Theorem 3. Let X be a Riemann surface of genus $g \geq 2$ admitting a subgroup $L < \text{Aut}(X)$ so that X/L has genus zero. If L is unique in $\text{Aut}(X)$ and the reduced group $\text{Aut}(X)/L$ is different from trivial or cyclic, then X is definable over its field of moduli.

If X is hyperelliptic and L is the cyclic group generated by the hyperelliptic involution, then the above result is due to Huggins [15].

Another sufficient condition on a curve X to be definable over its field of moduli, which in particular contains the case of quasiplatonic curves, was provided in [2]. We say that X has odd signature if $X/\text{Aut}(X)$ has genus zero and in its signature one of the cone orders appears an odd number of times.

Theorem 4. Let X be a Riemann surface of genus $g \geq 2$. If X has an odd signature, then X can be defined over its field of moduli.

5.2. Minimal fields of definition of superelliptic curves

Let X be a superelliptic curve of level n and $H = \langle \tau \rangle \leq \text{Aut}(X)$ be a superelliptic group of level n. If X is non-exceptional, then H is unique (Corollary 2). So, if $\text{Aut}(X)/H$ is different from trivial or cyclic, then X is definable over its field of moduli by Theorem 3. By Theorem 4, the same result holds if X has odd signature.

At the level of the exceptional ones, we have seen that H is not unique. But, if η is another superelliptic automorphism of level n, then there is a power of η inside H. In this case, we have seen that the quotient of X by the abelian group $K = \langle \tau, \eta \rangle$ has an odd signature. If $\text{Aut}(X) = K$, then again X is definable over its field of moduli.

Theorem 5. Let $H \cong C_n$ be a superelliptic group of a superelliptic curve X. Then X is definable over its field of moduli if X is non-exceptional with either (i) $\text{Aut}(X)/H$ different from trivial or cyclic or (ii) $\text{Aut}(X)/H$ either trivial or cyclic and X has an odd signature.

6. Appendix A: Algebraic equations for generalized superelliptic curves

Let X be a generalized superelliptic curve of level n and $\tau \in G = \text{Aut}(X)$ be a generalized superelliptic automorphism of level n (so, it is central in its normalizer N). We proceed to describe explicit algebraic equations for X and also explicit generators for N, by making a subtle modification of the classical method done by Horiuchi in [14] for the hyperelliptic situation.
Let \(\pi : \mathcal{X} \to \hat{\mathbb{C}} \) be a Galois branched cover with deck group \(H = \langle \tau \rangle \) and let \(\mathcal{B}_\pi = \{p_1, \ldots, p_\alpha\} \subset \hat{\mathbb{C}} \) be its set of branch values. Let \(\theta : N \to \mathbb{N} \) be the surjective homomorphism satisfying \(\theta(\eta) \circ \pi = \pi \circ \eta \), for every \(\eta \in N \). Recall that \(\mathbb{N} \) is one of the finite subgroups of \(\text{PSL}_2(\mathbb{C}) \) (as described in Section 2.1) keeping the set \(\mathcal{B}_\pi \) invariant.

Let us consider the Galois branched cover \(f = f_\mathbb{N} : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) with \(\mathbb{N} \) as its deck group (as described in Section 2.1). Let \(P(x), Q(x) \in \mathbb{C}[x] \) be relatively prime polynomials such that \(f(x) = \frac{P(x)}{Q(x)} \).

The collection \(\mathcal{B}_\pi \) is \(\mathbb{N} \)-invariant and, by Theorem 1, if for \(t \in \mathbb{N} \) it holds that \(t(p_i) = p_j \), then \(l_i = l_j \). In particular, we may consider the partition \(\mathcal{B}_\pi = \mathcal{B}_\pi^{\text{crit}} \cup \mathcal{B}_\pi^s \), where \(\mathcal{B}_\pi^{\text{crit}} \) consists of those branch values with non-trivial \(\mathbb{N} \)-stabilizer. For simplicity, we assume \(\infty \notin \mathcal{B}_\pi^s \) (but it might happen that \(\infty \in \mathcal{B}_\pi^{\text{crit}} \)).

6.1. Horiuchi’s general process.

6.1.1. Computing algebraic models. There is at most \(T \leq 3 \) disjoint \(\mathbb{N} \)-orbits of the points in \(\mathcal{B}_\pi^{\text{crit}} \).

If \(\mathbb{N} \cong C_m \), then \(T \leq 2 \); each such orbit has cardinality one.

If \(\mathbb{N} \cong D_m \), then \(T \leq 3 \); at most one orbit of cardinality 2 and at most two others, each of cardinality \(m \).

If \(\mathbb{N} \cong A_4 \), then \(T \leq 3 \); at most one orbit of cardinality 6 and at most two others, each of cardinality 4.

If \(\mathbb{N} \cong S_4 \), then \(T \leq 3 \); at most one orbit of cardinality 8, one of cardinality 6 and another of cardinality 12.

If \(\mathbb{N} \cong A_5 \), then \(T \leq 3 \); at most one orbit of cardinality 20, one of cardinality 30 and another of cardinality 12.

Let us denote these orbits (eliminating \(\infty \) from its orbit if it is a branch value of \(\pi \)) by

\[
\mathcal{O}_u^{\text{crit}} = \{q_{u,1}, \ldots, q_{u,s_u}\}, \ u = 1, \ldots, T,
\]

where \(s = s_1 + \cdots + s_T \) is the cardinality of \(\mathcal{B}_\pi^{\text{crit}} \) if \(\infty \notin \mathcal{B}_\pi^{\text{crit}} \) (otherwise, this cardinality is \(s + 1 \)).

Similarly, let the disjoint \(\mathbb{N} \)-orbits of the points in \(\mathcal{B}_\pi^s \) be given by

\[
\mathcal{O}_k^s = \{p_{k,1}, \ldots, p_{k,k/|\mathbb{N}|}\}, \ k = 1, \ldots, L,
\]

(so, \(L/|\mathbb{N}| \) is the cardinality of \(\mathcal{B}_\pi^s \)).

As, for \(k = 1, \ldots, L \),

\[
\prod_{j=1}^{\mathbb{N}} (x - p_{k,j}) = P(x) - f(p_{k,1})Q(x),
\]

our curve can be written as

\[
\mathcal{X} : \quad y^n = \prod_{u=1}^{T} R_u(x)^{\tilde{\ell}_u} \prod_{k=1}^{L} (P(x) - f(p_{k,1})Q(x))^{\tilde{\ell}_k},
\]

where

(1) \(R_u(x) = \prod_{j=1}^{s_u} (x - q_{u,j}) \)

(2) \(\tilde{\ell}_u \in \{0,1, \ldots, n-1\} \) and \(\tilde{\ell}_k \in \{1, \ldots, n-1\} \).

(3) \(\text{gcd}(n, \tilde{\ell}_1, \ldots, \tilde{\ell}_T, l_1, \ldots, l_L) = 1 \) (where we eliminate a zero if appears).

(4) if \(\infty \notin \mathcal{B}_\pi^s \), then \(\sum_{u=1}^{T} s_u \tilde{\ell}_u + \sum_{k=1}^{L} |\mathbb{N}| \tilde{\ell}_k \equiv 0 \mod n \).
(5) If $\infty \in \mathcal{O}_{\nu}^{\text{crit}}$, then
\[
(1 + s_v \hat{1}_v + \sum_{u=1,u\neq v}^T s_u \hat{1}_u + \sum_{k=1}^L |N| \hat{1}_k) \equiv 0 \mod n.
\]

6.1.2. Computing the elements of N. Let $\eta \in N$ and $b = \theta(\eta)$. As τ commutes with η, by Lemma 1, $\eta(x, y) = (b(x), F(x)y)$, where $F(x) \in \mathbb{C}(x)$. Below, we sketch how to compute such $F(x)$.

Lemma 2. Let $\mathcal{O} = \{a_1, \ldots, a_r\}$ a full N-orbit (in our case, this is one of the $\mathcal{O}_{\nu}^{\text{crit}}$ or $\mathcal{O}_k^*\$). If $b \in N$, then the following hold.

(1) If $\infty \notin \mathcal{O}$, then
\[
\prod_{j=1}^{r-1} (b(x) - a_j) = (b'(x))^{r/2} \left(\prod_{j=1}^{r-1} b'(a_j) \right)^{1/2} \prod_{j=1}^{r-1} (x - a_j).
\]

(2) If $a_r = \infty$ and $b(x) = \infty$, then
\[
\prod_{j=1}^{r-1} (b(x) - a_j) = (b'(x))^{(r-1)/2} \left(\prod_{j=1}^{r-1} b'(a_j) \right)^{1/2} \prod_{j=1}^{r-1} (x - a_j).
\]

(3) If $a_r = \infty$, $b(a_{r-1}) = \infty$ and $b(\infty) = a_s$, where $s \neq r - 1$, and $b(a_t) = a_{r-1}$, then
\[
\prod_{j=1}^{r-1} (b(x) - a_j) = \frac{(a_{r-1} - a_s)^{1/2}(a_{r-1} - a_t)^{1/2}}{x - a_{r-1}} (b'(x))^{(r-1)/2} \left(\prod_{j=1}^{r-2} b'(a_j) \right)^{1/2} \prod_{j=1}^{r-1} (x - a_j).
\]

(4) If $a_r = \infty$, $b(a_{r-1}) = \infty$ and $b(\infty) = a_{r-1}$, then
\[
\prod_{j=1}^{r-1} (b(x) - a_j) = -(b'(x))^{r/2} \left(\prod_{j=1}^{r-2} b'(a_j) \right)^{1/2} \prod_{j=1}^{r-1} (x - a_j).
\]

Proof. The equalities are consequence of the fact that, for $a, b(a) \in \mathbb{C},$
\[
b(x) - b(a) = b'(x)^{1/2}b'(a)^{1/2}(x - a).
\]

\[\square\]

If, in the above lemma, we replace \mathcal{O} by $\mathcal{O}_{\nu}^{\text{crit}}$, then we obtain an equality
\[
R_u(b(x)) = \prod_{j=1}^{u-1} (b(x) - q_{u,j}) = Q_u(x) \prod_{j=1}^{u-1} (x - q_{u,j}) = Q_u(x) R_u(x).
\]

Similarly, if we replace \mathcal{O} by \mathcal{O}_k^* and set
\[
S_k(x) := P(b(x)) - f(p_{k,1}) Q(b(x)) = \prod_{j=1}^{[N]} (x - p_{k,j}),
\]
then we obtain an equality
\[
S_k(b(x)) = \prod_{j=1}^{[N]} (b(x) - p_{k,j}) = L_k(x) \prod_{j=1}^{[N]} (x - p_{k,j}) = L_k(x) S_k(x).
\]

It can be checked, by plugging directly into the equation for X, that
\[
F(x)^n = \prod_{u=1}^T Q_u(x)^{i_u} \prod_{k=1}^L L_k(x)^{i_k}.
\]
Table 1

N	Equation	Genus
C_m	Eq. (33)	Eq. (34)
D_m	Eq. (35)	Eq. (36)
A_3	Eq. (37)	Eq. (38)
S_4	Eq. (39)	Eq. (40)
A_5	Eq. (41)	Eq. (42)

6.2. *Explicit computations.* Below, for each of the possibilities for \overline{N}, we proceed to explicitly describe the above procedure. In the following, if $l_u > 0$, then we set $n_u = \gcd(n, l_u)$.

Theorem 6. Let \mathcal{X} be a generalized superelliptic curve of level n, $\tau \in G = \Aut(\mathcal{X})$ be a generalized superelliptic automorphism of order n and N be the normalizer of $H = \langle \tau \rangle$ in G. Then, up to isomorphisms, \mathcal{X}, τ and N are described as indicated in the above cases.

Proof. We will consider all cases one by one.

Case $\overline{N} \cong C_m$: In this case, $\overline{N} = \langle a(x) = \omega_m x \rangle$ and the curve \mathcal{X} has the form

\begin{equation}
\mathcal{X} : \ y^n = x^l(x^{m-1})^t \prod_{j=2}^{s}(x^m - a_j^n)^{l_j},
\end{equation}

where (i) $a_2, \ldots, a_r \in C - \{0, 1\}$, $a_i^m \neq a_j^n$ and (ii) $\gcd(n, l_0, l_1, \ldots, l_r) = 1$. If $\alpha(x, y) = (\omega_m x, \omega_m^{l_0/n} y)$, then

\[N = \langle \tau, \alpha : \tau^n = 1, \alpha^m = \tau^{l_0}, \tau \alpha = \alpha \tau \rangle. \]

The signature of \mathcal{X}/H is

\[\left\{ \begin{array}{ll}
0; \frac{n}{n_1}, \frac{m}{n_1}, \ldots, \frac{m}{n_r}, \frac{m}{n_r}, \frac{n}{n_r} & \text{if } l_0 = 0, \ m \sum_{j=1}^{r} l_j \equiv 0 \mod (n), \\
0; \frac{n}{n_0}, \frac{m}{n_1}, \ldots, \frac{m}{n_r}, \frac{m}{n_r}, \frac{n}{n_r} & \text{if } l_0 \neq 0, \ l_0 + m \sum_{j=1}^{r} l_j \equiv 0 \mod (n), \\
0; \frac{n}{n_0}, \frac{n}{n_{r+1}}, \frac{m}{n_1}, \frac{m}{n_2}, \ldots, \frac{m}{n_r} & \text{if } l_0 \neq 0, \ l_0 + m \sum_{j=1}^{r} l_j \not\equiv 0 \mod (n),
\end{array} \right. \]

where (in the last situation) $l_{r+1} \in \{1, \ldots, n-1\}$ is the class of $-(l_0 + m \sum_{j=1}^{r} l_j)$ module n. The signature of \mathcal{X}/N is

\[\left\{ \begin{array}{ll}
0; m, m, \frac{n}{n_1}, \frac{n}{n_2}, \ldots, \frac{n}{n_r} & \text{if } l_0 = 0, \ m \sum_{j=1}^{r} l_j \equiv 0 \mod (n), \\
0; m, \frac{m}{n_0}, \frac{n}{n_1}, \frac{n}{n_2}, \ldots, \frac{n}{n_r} & \text{if } l_0 \neq 0, \ l_0 + m \sum_{j=1}^{r} l_j \equiv 0 \mod (n), \\
0; \frac{m}{n_0}, \frac{m}{n_{r+1}}, \frac{n}{n_1}, \frac{n}{n_2}, \ldots, \frac{n}{n_r} & \text{if } l_0 \neq 0, \ l_0 + m \sum_{j=1}^{r} l_j \not\equiv 0 \mod (n),
\end{array} \right. \]

The genus of \mathcal{X} is

\begin{equation}
1 + \frac{1}{2} \left((rm - 2)n - m \sum_{j=1}^{r} n_j \right), \quad \text{if } l_0 = 0, \ m \sum_{j=1}^{r} l_j \equiv 0 \mod (n),
\end{equation}

\begin{equation}
1 + \frac{1}{2} \left((rm - 1)n - m \sum_{j=1}^{r} n_j \right), \quad \text{if } l_0 \neq 0, \ l_0 + m \sum_{j=1}^{r} l_j \equiv 0 \mod (n),
\end{equation}

\begin{equation}
1 + \frac{1}{2} \left(rnm - m \sum_{j=1}^{r} n_j \right), \quad \text{if } l_0 \neq 0, \ l_0 + m \sum_{j=1}^{r} l_j \not\equiv 0 \mod (n).\]
Case $\mathcal{N} \cong D_m$: In this case, $D_m := \langle a(x) = \omega_m x, b(x) = \frac{1}{x} \rangle$ and the curve \mathcal{X} has the form

$$\mathcal{X} : \ y^n = x^h(x^m - 1)^{l_{r+1}}(x^m + 1)^{l_{r+2}} \prod_{j=1}^{n}(x^{2m} - (a_j^m + a_j^{-m})x^m + 1)^{l_j},$$

where (i) $\alpha_i^{\pm m} \neq a_j^{\pm m} \neq 0, \pm 1$, (ii) $2l_0 + m(l_{r+1} + l_{r+2}) + 2m(l_1 + \cdots + l_r) \equiv 0 \mod (n)$ and (iii) gcd$(n, l_0, l_1, \ldots, l_r) = 1$. If α and β are as follows

$$\alpha(x, y) = (\omega_m x, \omega_m^{lo/n} y), \quad \beta(x, y) = \left(1, \frac{(-1)^{l_{r+1}/n}}{x^{l_{r+1}/n}(2l_0 + m(l_{r+1} + l_{r+2} + 2(l_1 + \cdots + l_r))/n)} y\right),$$

then

$$N = \langle \tau, \alpha, \beta : \tau^n = 1, \alpha^m = \tau^{l_0}, \beta^2 = \tau^{l_{r+1}}, \tau \alpha = \alpha \tau, \tau \beta = \beta \tau \rangle.$$

The signature of \mathcal{X}/H is

$$\left(0; \frac{n}{n_0}, \frac{n}{n_1}, \frac{n}{n_2}, \ldots, \frac{n}{n_r}\right),$$

and the genus of \mathcal{X} is

$$g = 1 + \frac{1}{2} \left(2m(r + 1)n - 2n_0 - m \left(n_{r+1} + n_{r+2} + 2 \sum_{j=1}^{r} n_j \right)\right).$$

Case $\mathcal{N} \cong A_4$: In this case, $A_4 := \langle a(x) = -x, b(x) = \frac{-x}{x + 1} \rangle$ and \mathcal{X} has the form

$$\mathcal{X} : \ y^n = R_1(x)^{l_{r+1}} R_2(x)^{l_{r+2}} R_3(x)^{l_{r+3}} \prod_{j=1}^{n}(R_1(x)^3 + 12b_j \sqrt{3} R_3(x)^2)^{l_j},$$

where

$$R_1(x) = x^4 - 2i \sqrt{3} x^2 + 1,$n

$$R_2(x) = x^4 + 2i \sqrt{3} x^2 + 1,$n

$$R_3(x) = x^4 - 1,$n

$$f(x) = \frac{-12i \sqrt{3} R_3(x)^2}{R_1(x)^3},$$

such that (i) $b_j \neq b_i \in \mathbb{C}\setminus\{0, 1\}$, (ii) $(l_{r+1} + l_{r+2}) + 6l_{r+3} + 12(l_1 + \cdots + l_r) \equiv 0 \mod (n)$, and (iii) gcd$(n, l_1, \ldots, l_{r+3}) = 1$. If $\alpha(x, y) = (-x, (-1)^{l_{r+3}/n} y), \quad \beta(x, y) = (b(x), F(x)y),$ where

$$F(x) = \frac{12(l_{r+1} + l_{r+2})/n(1 - 1\sqrt{3} l_{r+1} + 1\sqrt{3} l_{r+2} + 8l_{r+3})/n(-64)^{l_1 + \cdots + l_r})/n}{(x + 1)^{l_{r+1} + l_{r+2} + 3l_{r+3} + 12(l_1 + \cdots + l_r)/n}}$$

then

$$N = \langle \tau, \alpha, \beta : \tau^n = 1, \alpha^2 = \tau^{l_{r+3}}, \beta^2 = \tau^{l_{r+1} + l_{r+2} + l_{r+3} + l_{r+4} + \cdots + l_r}, \alpha \beta = \alpha \tau, \tau \beta = \beta \tau \rangle.$$

The signature of \mathcal{X}/H is

$$\left(0; \frac{n}{n_0}, \frac{n}{n_1}, \frac{n}{n_2}, \ldots, \frac{n}{n_r}\right),$$

and the genus of \mathcal{X} is

$$g = 1 + \frac{1}{2} \left(2m(r + 1)n - 2n_0 - m \left(n_{r+1} + n_{r+2} + 2 \sum_{j=1}^{r} n_j \right)\right).$$
and the genus of \mathcal{X} is
\begin{equation}
(38) \quad g = 1 - n + 2n_{r+1} + 2n_{r+2} + 3n_{r+3} - 6\sum_{j=1}^{\tau} n_j.
\end{equation}

Case $\mathbb{N} \cong S_4$: In this case, $S_4 := \langle a(x) = ix, b(x) = \bar{x}^{l_{r+2}} \rangle$ and \mathcal{X} has the form
\begin{equation}
(39) \quad \mathcal{X} : \quad y^n = R_1(x)^l R_2(x)^l R_3(x)^{l+3} \prod_{j=1}^{\tau} (R_1(x)^3 - 108b_j R_3(x)^4)^{l_j},
\end{equation}
where
\begin{align*}
R_1(x) &= x^8 + 14x^4 + 1, \\
R_2(x) &= x^{12} - 33x^8 - 33x^4 + 1, \\
R_3(x) &= x(x^4 - 1), \\
f(x) &= \frac{R_1(x)^3}{\text{dim}_{\mathbb{C}}(x)},
\end{align*}
such that (i) $b_j \neq b_i \in \mathbb{C}\backslash\{0, 1\}$, (ii) $8l_{r+1} + 12l_{r+2} + 6l_{r+3} + 24(l_1 + \cdots + l_r) \equiv 0 \mod (n)$ and (iii) $\gcd(n, l_1, \ldots, l_{r+3}) = 1$. If
\begin{align*}
\alpha(x, y) &= (ix, i^{l_{r+3}/n}y), \\
\beta(x, y) &= (b(x), F(x)y), \\
F(x) &= \frac{16l_{r+1} + (1 - 44)^{l_{r+2} + n} (48)^{l_{r+3} + n} 496^{(l_1 + \cdots + l_r) + n}}{(x + 1)^{12l_{r+1} + 2l_{r+2} + 2l_{r+3} + 24(l_1 + \cdots + l_r) + n}},
\end{align*}
then
\begin{align*}
N &= \langle \tau, \alpha, \beta : \tau^n = 1, \alpha^4 = \tau^{l_{r+3}}, \beta^3 = \tau^{l_{r+1} + l_{r+2} + l_{r+3} + l_1 + \cdots + l_r}, \\
(\alpha \beta)^2 &= \tau, \tau \alpha = \alpha \tau, \tau \beta = \beta \tau\rangle.
\end{align*}
The signature of \mathcal{X}/H is
\begin{align*}
(0; \frac{n}{l_{r+1}}, \ldots, \frac{n}{l_{r+1}}, \frac{n}{l_{r+2}}, \frac{n}{l_{r+2}}, \frac{n}{l_{r+3}}, \ldots, \frac{n}{l_{r+3}}),
\end{align*}
and the signature of \mathcal{X}/N is
\begin{align*}
(0; \frac{3n}{l_{r+1}}, \frac{2n}{l_{r+2}} \frac{4n}{l_{r+3}}, \frac{n}{l_1}, \frac{n}{l_2}, \ldots, \frac{n}{l_r}),
\end{align*}
and the genus of \mathcal{X} is
\begin{equation}
(40) \quad g = 1 + 2(1 + r)n - 4n_{r+1} - 6n_{r+2} - 3n_{r+3} - 12\sum_{j=1}^{\tau} n_j.
\end{equation}

Case $\mathbb{N} \cong A_5$: In this case,
\begin{align*}
A_5 := \langle a(x) = \omega_5 x, b(x) = \frac{(1 - \omega_5^2) x + (\omega_5^2 - \omega_3^2)}{(\omega_5 - \omega_3^2) x + (\omega_3^2 - \omega_5^2)} \rangle
\end{align*}
and \mathcal{X} has the form
\begin{equation}
(41) \quad \mathcal{X} : \quad y^n = R_1(x)^l R_2(x)^l R_3(x)^{l+3} \prod_{j=1}^{\tau} (R_1(x)^3 - 1728b_j R_3(x)^5)^{l_j},
\end{equation}
where
\begin{align*}
R_1(x) &= -x^{20} + 228x^{15} - 494x^{10} - 228x^5 - 1, \\
R_2(x) &= x^{30} + 522x^{25} - 10005x^{20} - 10005x^{10} - 522x^5 + 1, \\
R_3(x) &= x(x^{10} + 11x^5 - 1), \\
f(x) &= \frac{R_3(x)^3}{1728R_3(x)^5},
\end{align*}
such that
\begin{enumerate}
\item $b_j \neq b_i \in \mathbb{C}\backslash\{0, 1\}$,
\item $20l_{r+1} + 30l_{r+2} + 12l_{r+3} + 60(l_1 + \cdots + l_r) \equiv 0 \mod (n)$,
\item $\gcd(n, l_1, \ldots, l_{r+3}) = 1$.
\end{enumerate}
\[
N = \langle \tau, \alpha, \beta : \alpha^6 = \tau^{l+3}, \beta^3 = \tau^l, (\alpha \beta)^3 = \tau^l \rangle,
\]
such that \(\alpha(x, y) = (a(x), \omega_5^{l+3/n}y)\) and \(\beta(x, y) = (b(x), F(x)y)\), where \(F(x)\) is a rational map satisfying
\[
F(b^2(x)) = F(b(x)) \cdot F(x) = \omega_n^l,
\]
for a suitable \(l \in \{0, \ldots, n - 1\}\), and
\[
F(x)^n = T_{1}^{l+3(l_1 + \cdots + l_s)}(x)T_{2}^{l+2}(x)T_{3}^{l+3}(x),
\]
where \(T_j(x) = \frac{R_j(b(x))}{R_j(x)}\), for \(j = 1, 2, 3\).

The signature of \(\mathcal{X}/H\) is
\[
(0; \frac{n}{n}, \frac{20}{n}, \frac{n}{n}, \frac{30}{n}, \frac{\cdot}{\cdot}, \frac{12}{n}, \frac{n}{n}, \frac{\cdot}{\cdot}, \frac{n}{n}, \frac{n}{n}, \frac{\cdot}{\cdot}, \frac{n}{n}, \frac{n}{n}, \frac{\cdot}{\cdot}, \frac{n}{n})
\]
and the signature of \(\mathcal{X}/N\) is
\[
(0; \frac{3n}{n}, \frac{2n}{n}, \frac{5n}{n}, \frac{n}{n}, \frac{n}{n}, \frac{n}{n}, \frac{\cdot}{\cdot})
\]
and the genus of \(\mathcal{X}\) is
\[
g = 1 + 30(r+1)n - 10n_{r+1} - 15n_{r+2} - 6n_{r+3} - 30 \sum_{j=1}^{r} n_j.
\]

\[\square\]

\section{Appendix B: Computing cyclic \(n\)-gonal curves}

Consider the collection \(\mathcal{F}_g\) of all the tuples \((n, s; n_1, \ldots, n_s)\) satisfying the following Harvey’s conditions:
\begin{enumerate}
\item \(n \geq 2\), \(s \geq 3\), \(2 \leq n_1 \leq n_2 \leq \cdots \leq n_s \leq n\);
\item \(n_j\) is a divisor of \(n\), for each \(j = 1, \ldots, s\);
\item \(\text{lcm}(n_1, \ldots, n_{j-1}, n_{j+1}, \ldots, n_s) = n\), for every \(j = 1, \ldots, s\);
\item if \(n\) is even, then \(#\{j \in \{1, \ldots, s\} : n/n_j\ \text{is odd}\}\) is even;
\item \(2(g-1) = n \left(s - 2 - \sum_{j=1}^{s} n_j^{-1} \right) \).
\end{enumerate}

For each tuple \((n, s; n_1, \ldots, n_s) \in \mathcal{F}_g\) we consider the collection \(\mathcal{F}_g(n, s; n_1, \ldots, n_s)\) of tuples \((l_1, \ldots, l_s)\) so that
\begin{enumerate}
\item \(l_1, \ldots, l_s \in \{1, \ldots, n - 1\}\);
\item \(l_1 + \cdots + l_s \equiv 0 \ \text{mod}(n)\);
\item \(\text{gcd}(n, l_j) = n/n_j\), for each \(j = 1, \ldots, s\).
\end{enumerate}

Now, for each such tuple \((l_1, \ldots, l_s) \in \mathcal{F}_g(n, s; n_1, \ldots, n_s)\) we may consider the epimorphism
\[
\theta : \Delta = \langle c_1, \ldots, c_s : c_1^{n_1} = \cdots = c_s^{n_s} = c_1 \cdots c_s = 1 \rangle \to C_n = \langle \tau \rangle : c_j \mapsto \tau^{l_j}.
\]

Our assumptions ensure that the kernel \(\Gamma = \ker(\theta)\) is a torsion free normal cocompact Fuchsian subgroup of \(\Delta\) with \(\mathcal{X} = \mathbb{H}/\Gamma\) a closed Riemann surface of genus \(g\) admitting a cyclic group \(H \cong C_n\) as a group of conformal automorphisms with quotient orbifold \(\mathcal{X}/H = \mathbb{H}/\Delta\); a genus zero orbifold with exactly \(s\) cone points of respective orders \(n_1, \ldots, n_s\). The surface \(\mathcal{X}\) corresponds to a cyclic \(n\)-gonal curve
\[
C(n, s; l_1, \ldots, l_s; p_1, \ldots, p_s) : \ y^n = \prod_{j=1}^{s} (x - p_j)^{l_j},
\]
for pairwise different values \(p_1, \ldots, p_s \in \mathbb{C}\), and \(H\) generated by \(\tau(x, y) = (x, \omega_n y)\).

Different tuples \((l_1, \ldots, l_s), (l'_1, \ldots, l'_s) \in \mathcal{F}_g(n, s; n_1, \ldots, n_s)\) might provide isomorphic pairs \((\mathcal{X}, H)\) and \((\mathcal{X}', H')\) (i.e., there is an isomorphism between the Riemann surfaces conjugating the cyclic groups). In general this is a difficult problem.
to determine if different tuples define isomorphic pairs. But, in the non-exceptional fully generalized superelliptic situation (see Theorem 2) the uniqueness of the superelliptic cyclic group of level \(n \) permits us to see that \((X, H)\) and \((X', H')\) are isomorphic pairs if and only if the corresponding curves \(C(n, s; l_1, \ldots, l_s; p_1, \ldots, p_s) \) and \(C(n, s; l'_1, \ldots, l'_s; p'_1, \ldots, p'_s) \) are isomorphic, this last being equivalent to the existence of Möbius transformation \(t \in PSL_2(\mathbb{C}) \), a permutation \(\eta \in S_n \) and an element \(u \in \{1, \ldots, n-1\} \) with \(\gcd(u, n) = 1 \), such that

(a) \(l'_j \equiv ul_{\eta(j)} \mod (n) \), for \(j = 1, \ldots, s \),
(b) \(p'_{\eta(j)} = t(p_j) \), for \(j = 1, \ldots, s \).

The above (together with Theorem 1) may be used to construct all the possible (generalized) superelliptic curves of lower genus in a similar fashion as done in [20] for the superelliptic case.

References

[1] Robert D. M. Accola, *Strongly branched coverings of closed Riemann surfaces*, Proc. Amer. Math. Soc. 26 (1970), 315–322. MR0262485
[2] M. Artebani and S. Quispe, *Fields of moduli and fields of definition of odd signature curves*, Arch. Math. (Basel) 99 (2012), no. 4, 333–344. MR2990152
[3] A. F. Beardon, *The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR1393195
[4] L. Beshaj, V. Hoxha, and T. Shaska, *On superelliptic curves of level \(n \) and their quotients*, Albanian J. Math. 5 (2011), no. 3, 115–137. MR2846162
[5] A. Broughton, T. Shaska, and A. Wootton, *On automorphisms of algebraic curves*, Algebraic curves and their applications, 2019, pp. 175–212. MR3916740
[6] E. Bujalance, J. M. Gamboa, and G. Gromadzki, *The full automorphism groups of hyperelliptic Riemann surfaces*, Manuscripta Math. 79 (1993), no. 3-4, 267–282. MR1223022
[7] G. Castelnuovo, *Sulle serie algebriche di gruppi di punti appartenenti ad una curve algebraica*, Rendiconti della Reale Accademia dei Lincei XV (1906), no. Serie 5, 337–344.
[8] C. J. Earle, *On the moduli of closed Riemann surfaces with symmetries*, Advances in the Theory of Riemann Surfaces, 1971, pp. 119–130. MR0296282
[9] Robert D. M. Accola, *Reduced Teichmüller spaces*, Trans. Amer. Math. Soc. 126 (1967), 54–63. MR0204642
[10] L. Greenberg, *Maximal Fuchsian groups*, Bull. Amer. Math. Soc. 69 (1963), 569–573. MR0148620
[11] W. J. Harvey, *Cyclic groups of automorphisms of a compact Riemann surface*, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97. MR0201629
[12] R. A. Hidalgo, *\(p \)-Groups acting on Riemann surfaces*, J. Pure Appl. Algebra 222 (2018), no. 12, 4173–4188. MR3818299
[13] R. A. Hidalgo and S. Quispe, *Fields of moduli of some special curves*, J. Pure Appl. Algebra 220 (2016), no. 1, 55–60. MR3393450
[14] R. Horiuchi, *Normal coverings of hyperelliptic Riemann surfaces*, J. Math. Kyoto Univ. 19 (1979), no. 3, 497–523. MR553229
[15] B. Huggins, *Fields of moduli of hyperelliptic curves*, Math. Res. Lett. 14 (2007), no. 2, 249–262. MR2318623
[16] A. Hurwitz, *Über algebraische Gebilde mit eindeutigen Transformationen in sich*, Math. Ann. 41 (1892), no. 3, 403–442.
[17] S. Koizumi, *The fields of moduli for polarized abelian varieties and for curves*, Nagoya Math. J. 48 (1972), 37–55. MR0352095
[18] A. Kontogeorgis, *The group of automorphisms of cyclic extensions of rational function fields*, J. Algebra 216 (1999), no. 2, 665–706. MR1692965
[19] A. Malmendier and T. Shaska, *From hyperelliptic to superelliptic curves*, Albanian J. Math. 13 (2019), no. 1, 107–200. MR3978315
[20] R. Muço, N. Pjero, E. Ruci, and E. Zhupa, *Classifying families of superelliptic curves*, Albanian J. Math. 8 (2014), no. 1, 23–35. MR3270074
[21] A. Obus and Tanush Shaska, Superelliptic curves with many automorphisms and CM Jacobians, Math. Comp. 90 (2021), no. 332, 2951–2975. MR4305376
[22] R. Sanjeewa, Automorphism groups of cyclic curves defined over finite fields of any characteristics, Albanian J. Math. 3 (2009), no. 4, 131–160. MR2578064
[23] H. A Schwartz, Ueber diejenigen algebraischen Gleichungen zwischen zwei veränderlichen Grössen, welche eine Schaar rationaler eindeutig umkehrbarer Transformationen in sich selbst zulassen, J. Reine Angew. Math. 87 (1879), 139–145. MR1579787
[24] T. Shaska, Subvarieties of the hyperelliptic moduli determined by group actions, Serdica Math. J. 32 (2006), no. 4, 355–374. MR2287373
[25] Reduction of superelliptic Riemann surfaces, Automorphisms of Riemann surfaces, subgroups of mapping class groups and related topics, [2022] ©2022, pp. 227–247. MR4375119
[26] G. Shimura, On the field of rationality for an abelian variety, Nagoya Math. J. 45 (1972), 167–178. MR0306215
[27] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29–38. MR0322165
[28] A. Weil, The field of definition of a variety, Amer. J. Math. 78 (1956), 509–524. MR0082726

Departamento de Matemática y Estadística, Universidad de La Frontera, Temuco, Chile.
Email address: ruben.hidalgo@ufrontera.cl, saul.quispe@ufrontera.cl

Department of Mathematics, Oakland University, Rochester, MI, 48386.
Email address: shaska@oakland.edu