Introduction

Road Traffic accidents (RTA) are a significant public health issue in many countries [1], and a leading cause of death worldwide with an estimated annual death of 1.2 million and 50 million injuries [2]. There is a growing concern about the increase in the number of road traffic injury (RTI) every year [3]. In Saudi Arabia (SA), RTI is considered the third leading cause of death [4], and the World Health Organization (WHO) reported that the mortality rate due to RTA is 24.8/100,000 among Saudi citizens which is significantly greater than other countries [5].

There are many factors that may contribute to the incidence of RTA. These may include poor maintenance of roads, unsafe motor vehicles, and the dangerous behavior of drivers [6], [7]. In addition, excessive speeding, passing a red light, driving without seatbelt are common examples of traffic violations related with higher incidence of RTI worldwide and in SA [8].

Visual Function of Drivers and its Relation to the Occurrence of Road Traffic Accidents in Saudi Arabia

Sulaiman Aldakhil*, Godwin Ovenseri-Ogbomo†, Majid A. Moafa†, Waleed Alghamdi†, Muhammed Alluwimi†, Suliman Alghnam†

†Department of Optometry, College of Applied Medical Sciences, Qassim University, Saudi Arabia; †Population Health Section, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Abstract

BACKGROUND: The mortality rate due to road traffic accidents (RTA) is significantly high in Saudi Arabia (SA) compared to other countries. The visual function which includes good visual acuity (VA) and binocular vision are very important factors that can contribute to the incidence of RTA.

AIM: The aim of this study is to investigate the association between refractive errors (REs) and the RTA in SA.

METHODS: A total of 354 participants (mean age 22.67 ± 3.22 years) were recruited randomly to participate in this study from the population of Qassim district. Data collected using the questionnaire included participants’ age, sex, and education level, ocular and medical history, driving history as well as history of RTA. Ocular health examination including VA, RE measurements, and binocular vision function vision was measured and analyzed.

RESULTS: The results of this study show that 48.3% of drivers had some form of REs with 3.4% being visually impaired. 217 (61.3%) of participants have had an RTA, and 119 (54.9%) of them have had more than two accidents in the past two years. The findings show no significant association between the occurrence of RTA and uncorrected REs or binocular vision dysfunction.

CONCLUSION: Our data showed significantly higher rate of RTA among Saudi drivers which is much higher than any country in the world. The current Saudi regulations for obtaining driving license need to be modified, with implementing a comprehensive eye examination prior to acquiring or renewing drivers’ licenses.
Different studies have investigated the relationship between occurrence of RTA and visual function with no equivocal findings. A study examined the association between visual function and the occurrence of RTA in 215 Nigerian drivers (aged between 21 and 75 years old). They found that poor VA is significantly associated with occurrence of RTA [12]. Other studies have also reported an association between occurrence of RTA and visual function[10], [11]. On the other hand, studies from Ghana and elsewhere have reported no association between RTA occurrence and visual function [15], [16], [17], [18], [19]. The reason for the lack of association between occurrence of RTA and visual impairment has been attributed to certain factors. These include the multifactorial causation of RTA and unavailability of drivers with poor vision because of death from RTA or cessation of driving [19].

Recently, the WHO reported that the increasing prevalence of uncorrected refractive errors (REs) is causing a major public health issue in many developing countries [20]. Uncorrected REs have been shown to have a huge negative impact on both prosperity and quality of life [20]. A study found that individuals with uncorrected REs have increased levels of depression and increased risk of accident or death [21].

In SA, many studies have found higher prevalence of REs among Saudi populations [22], [23], [24], [25]. Al-Batanony (2016) conducted a study to determine the prevalence of the REs for 223 students aged between 17 and 23 years old. The results showed that the prevalence of uncorrected REs was 72.2% [22]. Given the high prevalence of uncorrected refracted errors and the significantly higher rates of RTA in SA, there was, therefore, a need to investigate any association between uncorrected RE and RTA. Thus, the aim of this study is to investigate the association between uncorrected REs and the RTA in SA.

Methods

This is a cross-sectional study involving 354 participants who were recruited randomly to participate in this study from the population of Qassim district. A structured questionnaire was used for data collection as well as clinical examination. Data collected using the questionnaire included participants’ age, sex, and education level, ocular and medical history, driving history as well as history of RTA in the last 2 years. Ocular health examination including measurements of VA, RE measurements, and binocular vision function vision were measured in the clinic of optometry department.

The uncorrected distance VA was measured using an Auto chart Projector with the Snellen’s chart at 6 m. Binocular vision function was assessed using a cover–uncover test at both distance (3 m) and near (40 cm), while participants were fully corrected with the distance vision correction. RE for all participants was measured using autorefractor (Nidek AR-310 a) and 3 static measurements of RE were averaged for each eye. These measurements were averaged and calculated as the mean spherical equivalent (MSE).

This study was approved by the university ethical committee and all study participants gave informed consent to participate. The study was carried out according to the tenets of the Helsinki Declaration for the conduct of medical research with human participants.

Data analysis

In this study, emmetropia was defined as a MSE RE between -0.50 D and +0.50 D; myopia as MSE > −0.50D; and hyperopia as MSE > +0.50 D; astigmatism was defined as −0.50D cylinder or worse in the better eye [26]. VA greater than 0.2 logMAR is classified as normal vision, whereas VA of less than 0.2 logMAR is considered as poor vision [15]. Data were collected from both eyes, however, only data from the right eye is presented and analyzed [27].

Data were analyzed using the (SPSS) version 21.0. Appropriate descriptive and inferential statistics were performed to report the findings of the study. For statistical significance, a p = 0.05 or less was considered to be significant. The associations between categorical data were analyzed using Chi square (χ^2) test.

Results

Study participants

A total of 354 male drivers were recruited for this study. The participants were aged 20–43 years with a mean age of 22.67 ± 3.22 years. About 91% of the respondents were aged 25 years and below. The participants who reported their ages indicated that they have been driving for between 2 and 25 years (mean = 4.78 ± 3.39), (Figure 1).
RE and history of RTA

Of the 354 participants, 141 (39.8%) had myopia, 30 (8.5%) had hyperopia while the remaining 183 (51.7%) had no significant RE (emmetropia). Of the 354 who reported whether they have had an RTA in the past 2 years, 217 (61.3%) have had an RTA while 137 (38.7%) have had more than five RTA (Table 1). The occurrence of RTA in the last 2 years among the study participants was not significantly associated with the number of years for which they have been driving (p = 0.501) and the refractive status of the respondents (p = 0.72), (Table 2)

The spherical equivalent of the participant ranged between -2.75 to +2.75 D with a mean of -0.31 ± 0.72 D (Figure 2). There was no significant association between the occurrence of RTAs in the past 2 years and the spherical equivalent RE (p = 0.73) (Table 2).

Table 1: Descriptive characteristics of the study population by prior history of traffic accidents

Variable	No history of RTA n = 137	History of RTA n = 217	Total n = 354	p-value
Age, mean (SD)	22.9 (3.9)	22.6 (3.2)	22.6 (3.2)	0.15
Educational level, count (%)	17 (12.41%)	19 (8.67%)	36 (10.17%)	0.26
Comorbidity, count (%)	120 (87.59%)	198 (91.24%)	318 (90.83%)	
Comorbidity	127 (92.70%)	210 (96.77%)	337 (95.20%)	0.08
Ocular history, count (%)	10 (7.30%)	7 (3.23%)	17 (4.80%)	
Ocular comorbidity	135 (98.35%)	211 (96.74%)	346 (97.74%)	0.49
Driving history, mean(SD)	5.1 (4)	4.5 (2.8)	4.7 (3.3)	0.13

Table 2: The association between history of RTC and VA and refractive errors

Variable	No history of RTA n = 137	History of RTA n = 217	Total n = 354	p-value
Refractive error (right eye), count (%)	68 (39.76%)	103 (60.23%)	171 (100%)	0.72
No refractive error (Right eye)	69 (37.7%)	114 (62.29%)	183 (100%)	
Mean (SD) refractive error (Right eye)	1.31 (1.60)	1.37 (1.72)	1.34 (1.65)	0.73
Normal VA (right eye), count (%)	131 (38.31%)	6 (50%)	137 (100%)	0.22
Abnormal VA (visually impaired)	6 (50%)	6 (50%)	12 (100%)	
Normal binocular vision, count (%)	125 (39.06%)	195 (60.93%)	320 (100%)	0.68
Abnormal binocular vision	12 (55.29%)	22 (64.71%)	34 (100%)	

The VA of the participants ranged from 0.00 logMAR (6/6) to 0.60 logMAR (6/24). As much as 342 (96.6%) had a VA of 0.2 logMAR (6/9.5) or better, while the remaining 12 (3.4%) had a VA of 0.3.

Discussion

The results of binocular vision function also showed that 320 (90.4%) had normal binocular vision, whereas 34 (9.6%) of them had an abnormal binocular vision. RTA of participants was not significantly associated with binocular vision dysfunctions (p = 0.68), (Table 2).

The results of this study show that the prevalence of uncorrected REs is 171 (48.3%), almost similar to the prevalence reported in previous studies amongst Saudi populations [22], [23], [24], [25].
also agrees with the data presented in Ghana, where
they found 312 (60.0%) of commercial vehicle drivers
had some form of REs [15] but higher than the 32%
reported in another Ghanaian study [16] and 16.7%
among drivers of public institutions in Nigeria [28].
For the road safety, these drivers could have their vision
improved by wearing corrective lenses which could
have minimized the possibility of road accidents.

The results further showed that the participants
who had vision less than 0.2 logMAR (moderate visual
impairment or worse) were 12 (3.4%). These findings
are in agreement with previous work found in Nigerian
drivers (3.3%) [12] and in Ghana 13 (2.5%) [15] but less
than 6.8% reported in another Ghanaian study [16]. Our
results found 12 (3.4%) of participants were visually
impaired, however, it is unsafe for them to drive their
vehicles in the road with such vision.

Our results indicated that the majority of
participants (95.2%) were in good general health with
no chronic diseases while only 4.8% of the participants
had systemic disease (4 diabetes mellitus, 11 asthma,
and 2 hypertension). The age group of the present
study shows that the majority of participants (91%)
were aged 25 years and below. This is lower than
those examined in Nigeria where almost 2/3 of drivers
were aged between 31 and 50 years old, or in Ghana
study [15], where 267 (51.3%) of drivers were adults
aged (36-59) years old. The relative younger age group
in the study may reflect the sociocultural behavior in
SA. Until August 2018, women were barred from driving
thus families relied on the male members of the family
to commute from one point to another. This had the
attendant effect of having male members engage in
driving activity relatively earlier than other countries.

Interestingly, there were 217 (61.3%)
participants who had an RTA in the last 2 years, and
119 (54.9%) of them have had more than two accidents
in the past 2 years. This high rate of RTA is significantly
greater than in Nigeria where only 57 (26.5%) drivers
had been involved in RTA [12]. It is also higher than
the number in Ghana which had reported a history
of RTA 117 (22.5%) [15]. These findings support
the previous report of the WHO which has found that
the mortality rate due to traffic accidents is significantly
higher in SA compared to other countries [5].

The findings of the present study show no
significant association between the occurrence of RTA
and uncorrected REs. Our results are comparable with
the previous studies [15], [16], [17], [18], [19], [29] where
they did not find any association between the occurrence
of RTA and REs. The lack of association between
the occurrence of RTA and visual function in this study
and previous studies may be due to the small sample
size of drivers in these studies. Furthermore, relying
on subjective report of a history of RTA may have led
to under reporting of RTA among drivers. As Adekoya
et al. [19] have pointed out, the lack of association may
reflect the non-availability of drivers who may have had
RTA for survey. These limitations should potentially be
taken into account when applying the results of this study.
The lack of the association may have also been due to
the absence of visual field and color vision data, although
several studies did not find a strong association between
these data and the RTA [12], [29]. However, other
studies indicated that there was a significant association
between the RE and the RTA [10], [11], [12]. These
controversial views in the literature lead to the high
demand of a study that investigates several components
of the visual function at a same protocol of testing in
order to accurately assess the association between the
RTA and the visual function.

Conclusion

The current study found that 48.3% of drivers
had some form of REs with 3.4% being visually
impaired. Our data showed significant high rate of
RTA among Saudi drivers which is much higher than
any country in the world. This indicates that the current
Saudi regulations for obtaining driving license need to
be modified, with implementing a comprehensive eye
examination prior to acquiring or renewing drivers' licenses.

Acknowledgments

The authors would like to thank Mr. Omar
Almushayqih, Mr. Omar Almutiq, Mr. Sulaiman Alajaji,
and Mr. Azzam Aldawish for their help in this project.

References

1. Ameratunga S, Hijar M, Norton R. Road-traffic injuries:
Confronting disparities to address a global-health problem.
Lancet. 2008;367(9531):1533-40. https://doi.org/10.1016/
s0140-6736(08)68654-6
PMid:16679167
2. Krug EG, Sharma GK, Lozano R. The global burden of
injuries. Am J Public Health. 2000;90(4):523-6.
PMid:10754903
3. Peden M, Scurfield R, Sleet D, Mohan D, Hyder AA, Jarawan E,
et al. World Report on Road Traffic Injury Prevention; 2004.
4. Memish ZA, Jaber S, Mokdad AH, AlMazroa MA, Murray CJ, Al
Rabeeah AA, et al. Burden of disease, injuries, and risk factors
in the Kingdom of Saudi Arabia, 1990-2010. Prev Chronic Dis.
2014;11(10):E169. https://doi.org/10.5888/pcd11.140176
PMid:25275806
5. Global Status Report on Road Safety 2013: Supporting a
10. Taylor JF. Vision and driving. Ophthalmic Physiol Opt. 1987;7(2):187-9. PMid:3489922

11. Ivers RQ, Mitchell P, Cumming RG. Sensory impairment and barriers to treatment among commercial vehicle drivers in the central region of Ghana. J Optom. 2016;9(1):54-61. https://doi.org/10.1016/j.optom.2015.06.001

12. Oladehinde MK, Adeoye AO, Adegbehingbe BO, Onakoya AO. Visual functions of commercial drivers in relation to road accidents in Nigeria. Indian J Occup Environ Med. 2007;11(2):71-5. https://doi.org/10.4103/0019-5278.34532

13. Bron AM, Viswanathan AC, Thelen U, de Natale R, Ferreras A, Gundag J, et al. International vision requirements for driver licensing and disability pensions: Using a milestone approach in characterization of progressive eye disease. Clin Ophthalmol. 2010;4:1361-9. https://doi.org/10.2147/opth.s15359

14. Riyadh Traffic. Driving License (Saudis - Non-Saudis). Riyadh Traffic. Ministry of Interior. 2017. Available from: https://www.moi.gov.sa/portal/home/sectors/publicsecurity/traffic/traffictrendy/dl_contents/tutp/tutp/2017/06/27/2017-06-27_top1002017/traffic_rate_2016_1.pdf

15. Boadi-Kusi SB, Kyei S, Anaya R, Lopez V. Risk factors in highway traffic accidents: A case control study. Accid Anal Prev. 2000;32(5):703-9. https://doi.org/10.1016/s0001-4575(99)00116-5

16. Ovenseri-Ogomo G, Adofo M. Poor vision, refractive errors and drivers' visual performance in the Accra metropolis. Br J Ophthalmol. 2014;98(1):111-6. https://doi.org/10.1136/bjo.2013.100500

17. Davison PA. Inter-relationships between British drivers' visual abilities, age and road accident histories. Ophthalmic Physiol Opt. 1985;5(2):195-204. https://doi.org/10.1016/0275-5408(85)90075-4

18. Silveira S, Jolly N, Heard R, Clunas NJ, Kay L. Current licensing authority standards for peripheral visual field and safe on-road senior aged automobile driving performance. Clin Exp Ophthalmol. 2007;35(7):612-20. https://doi.org/10.1111/j.1442-9001.2007.01544.x

19. Adeckoja BJ, Owoeye JF, Adepoju FG, Ajaeyeoba AI. Visual function survey of commercial intercity vehicle drivers in Ilorin, Nigeria. Can J Ophthalmol. 2009;44(3):261-4. https://doi.org/10.3129/cjo.09-049

20. Bourne RR, Flaxman SR, Braithwaite T, Cinellini MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: A systematic review and meta-analysis. Lancet Glob Health. 2017;5(9):e888-97.

21. Coleman AL, Yu F, Keeler E, Mangione CM. Treatment of uncorrected refractive error improves vision-specific quality of life. J Am Geriatr Soc. 2006;54(6):883-90. https://doi.org/10.1111/j.1532-5415.2006.00817.x

22. Al-Batanony M. Refractive errors among saudi medical and pharmacy female students: A questionnaire survey study. J Adv Med Pharm Sci. 2016;7(1):1-8. https://doi.org/10.9734/jamaps/2016/24633

23. Al-Rashidi SH, Albahouth AA, Althwini WA, Alsobibani AA, Alnghaymish AA, Alsaed AA, et al. Prevalence refractive errors among medical students of Qassim University, Saudi Arabia: Cross-sectional descriptive study. Open Access Maced J Med Sci. 2018;6(5):940-3. https://doi.org/10.3889/oamjms.2018.197

24. Aliqbaa BF, Alrashidi S, Alshahrani SS. Refractive errors among saudi college students and associated risk factors. Clin Ophthalmol. 2019;13:437-43. https://doi.org/10.2147/opth.s193213

25. Parrey MJ, Elmosry E. Prevalence and pattern of refractive errors among saudi adults. Pak J Med Sci. 2019;35(2):394-8. https://doi.org/10.12669/pjms.35.2.648

26. Rodriguez NM, Romero AF. The prevalence of refractive conditions in Puerto Rican adults attending an eye clinic system. J Optom. 2014;7(3):161-7. https://doi.org/10.1016/j.joptom.2013.06.001

27. Boadi-Kusi SB, Kyei S, Asare FA, Owusu-Ansah A, Auwaah A, Darko-Takyi C. Visual function among commercial vehicle drivers in the central region of Ghana. J Optom. 2016;9(3):54-63. https://doi.org/10.1016/j.joptom.2015.06.004

28. Davison PA. Inter-relationships between British drivers' visual abilities, age and road accident histories. Ophthalmic Physiol Opt. 1985;5(2):195-204. https://doi.org/10.1016/0275-5408(85)90074-2

29. Pepple G, Adio A. Visual function of drivers and its relationship to road traffic accidents in Urban Africa. Springerplus. 2014;3(1):47. https://doi.org/10.1186/2193-1801-3-47

30. Alsaif BA, Aljindan MY, Almulla MO, Alshahshani SS. Refractive errors among saudi medical and pharmacy female students: A questionnaire survey study. J Adv Med Pharm Sci. 2016;7(1):1-8. https://doi.org/10.9734/jamaps/2016/24633

31. Al-Rashidi SH, Albahouth AA, Althwini WA, Alsobibani AA, Alnghaymish AA, Alsaed AA, et al. Prevalence refractive errors among medical students of Qassim University, Saudi Arabia: Cross-sectional descriptive study. Open Access Maced J Med Sci. 2018;6(5):940-3. https://doi.org/10.3889/oamjms.2018.197

32. Alsaif BA, Aljindan MY, Almulla MO, Alshahshani SS. Refractive errors among saudi medical and pharmacy female students: A questionnaire survey study. J Adv Med Pharm Sci. 2016;7(1):1-8. https://doi.org/10.9734/jamaps/2016/24633

33. Al-Rashidi SH, Albahouth AA, Althwini WA, Alsobibani AA, Alnghaymish AA, Alsaed AA, et al. Prevalence refractive errors among medical students of Qassim University, Saudi Arabia: Cross-sectional descriptive study. Open Access Maced J Med Sci. 2018;6(5):940-3. https://doi.org/10.3889/oamjms.2018.197

34. Alsaif BA, Aljindan MY, Almulla MO, Alshahshani SS. Refractive errors among saudi medical and pharmacy female students: A questionnaire survey study. J Adv Med Pharm Sci. 2016;7(1):1-8. https://doi.org/10.9734/jamaps/2016/24633

35. Al-Rashidi SH, Albahouth AA, Althwini WA, Alsobibani AA, Alnghaymish AA, Alsaed AA, et al. Prevalence refractive errors among medical students of Qassim University, Saudi Arabia: Cross-sectional descriptive study. Open Access Maced J Med Sci. 2018;6(5):940-3. https://doi.org/10.3889/oamjms.2018.197

36. Alsaif BA, Aljindan MY, Almulla MO, Alshahshani SS. Refractive errors among saudi medical and pharmacy female students: A questionnaire survey study. J Adv Med Pharm Sci. 2016;7(1):1-8. https://doi.org/10.9734/jamaps/2016/24633

37. Al-Rashidi SH, Albahouth AA, Althwini WA, Alsobibani AA, Alnghaymish AA, Alsaed AA, et al. Prevalence refractive errors among medical students of Qassim University, Saudi Arabia: Cross-sectional descriptive study. Open Access Maced J Med Sci. 2018;6(5):940-3. https://doi.org/10.3889/oamjms.2018.197