Posterior Cramér-Rao Bounds for Discrete-Time Nonlinear Filtering with Finitely Correlated Noise

Zhiguo Wang and Xiaojing Shen

November 11, 2014

Abstract

In this paper, an optimal recursive formula of the mean-square error lower bound for the discrete-time nonlinear filtering problem when noises of dynamic systems are temporally correlated is derived based on the Van Trees (posterior) version of the Cramér-Rao inequality. The formula is unified in the sense that it can be applicable to the multi-step correlated process noise, multi-step correlated measurement noise and multi-step cross-correlated process and measurement noise simultaneously. The lower bound is evaluated by two typical target tracking examples respectively. Both of them show that the new lower bound is significantly different from that of the method which ignores correlation of noises. Thus, when they are applied to sensor selection problems, number of selected sensors becomes very different to obtain a desired estimation performance.

keywords: Nonlinear filtering; correlated noises; posterior Cramér-Rao bounds; target tracking; sensor networks; sensor selection

1 Introduction

The problem of discrete-time nonlinear filtering when noises of dynamic systems are temporally correlated (i.e., colored) arises in the various applications such as target tracking, navigation, adaptive control, robotics, mobile communication [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], just to name a few. For example, in maneuvering target tracking [1], the process noise and target acceleration can be characterized as temporally correlated stochastic process respectively. In tracking airborne or missile targets using radar data, the measurement noise is significantly correlated when the measurement frequency is high [2]. When a system is an airplane...
and winds are buffeting the plane. An anemometer is used to measure wind speed as an input to Kalman filter. So the random gusts of wind affect both the process (i.e., the airplane dynamics) and the measurement (i.e., the sensed wind speed). Thus, there is a correlation between the process noise and the measurement noise \cite{3}. More detailed results and discussions can be seen in Chapter 7 of the book \cite{3}, Chapter 8 of the book \cite{4}, and reference therein. As is well known, the optimal estimator for these problems cannot be obtained for nonlinear and non-Gaussian dynamic systems in general. Besides, assessing the achievable performance of suboptimal filtering techniques may be difficult. A main challenge to researchers in these fields is to find lower bounds corresponding to optimum performance recursively, which give an indication of performance limitations and can be used to determine whether imposed performance requirements are realistic or not.

The most popular lower bound is the well-known Cramér-Rao bound (CRB). In time-invariant statistical models, the estimated parameter vector is usually considered deterministic. The lower bound is given by the inverse of the Fisher information matrix. In the time-varying systems context we deal with here, the estimated parameter is modeled random. A lower bound that is analogous to the CRB for random parameters was derived in \cite{12}; this bound is also known as the Van Trees version of the CRB, or referred to as posterior CRB (PCRB) \cite{13}, where the underlying static random system is assumed to satisfy some regularity conditions which are presented in Section 2. Later, \cite{14} and \cite{15} provided a CRB derivation under less restrictive requirements. The first derivation of a sequential PCRB version applicable to discrete-time dynamic system filtering, the problem addressed in this paper, was done in \cite{16} and then extended in \cite{17,18,19,20}. Recently, the most general form of sequential PCRB for discrete-time nonlinear systems was presented in \cite{13}. Together with the original static form of the CRB, these results served as a basis for a large number of applications \cite{21,22,23,24,25,26,27}.

In this paper, we focus on a recursive derivation of the PCRB for the discrete-time nonlinear and non-Gaussian filtering problem when noises of dynamic systems are temporally correlated. The derived formula is unified in the sense that it can be applicable to the multi-step correlated process noise, multi-step correlated measurement noise and multi-step cross-correlated process and measurement noise simultaneously. The derivation differs from the other approaches that instead consider the three cases separately and assume the linear or Gaussian dynamic systems. Although the unified formula can come across the three cases of finite-step correlated noises, a few corollaries with simpler formulae follow to elucidate special cases, which may be appeared more in practice. The main results are presented in Section 3. In Section IV, the new lower bound is evaluated by two typical target tracking examples respectively. Both of them show that the new lower bound is significantly different from that of the method which ignores correlation of noises. Thus, when they are applied to sensor selection problems, number of selected sensors becomes very different to obtain a desired estimation performance. Conclusions are drawn in Section 5. In order to enhance readability, all proofs are given in Appendices.
2 Preliminaries

2.1 Problem Formulation

Consider a nonlinear dynamic system

\[ x_{k+1} = f_k(x_k, w_k) \]  
\[ z_k = h_k(x_k, v_k) \]

where \( x_k \in \mathbb{R}^r \) is the state to be estimated at time \( k \), \( r \) is the dimension of the state; \( z_k \in \mathbb{R}^n \) is the measurement vector. The function \( f_k \) and \( h_k \) are nonlinear functions in general. \( \{w_k\} \) and \( \{v_k\} \) are noises both temporally finite-step correlated respectively. We discuss the following three cases:

1. The process noises are \( l \)-step correlated if their probability density functions satisfy
\[
p(w_k, w_{k-i}) \neq p(w_k)p(w_{k-i}), \quad p(w_k, w_{k-j}) = p(w_k)p(w_{k-j}), \quad \text{for} \quad i = 1, \ldots, l, j = l + 1, \ldots, k, \quad k \geq l + 1.
\]
   We denote by 0-step correlated process noise if they are temporally independent.

2. The measurement noises are \( l \)-step correlated if
\[
p(v_k, v_{k-i}) \neq p(v_k)p(v_{k-i}), \quad p(v_k, v_{k-j}) = p(v_k)p(v_{k-j}), \quad \text{for} \quad i = 1, \ldots, l, j = l + 1, \ldots, k, \quad k \geq l + 1.
\]
   We denote by 0-step correlated measurement noise if they are temporally independent.

3. The measurement noise is backward \( l \)-step cross-correlated with process noise, if
\[
p(v_k, w_{k-i}) \neq p(v_k)p(w_{k-i}), \quad \text{and} \quad p(v_k, w_{k-j}) = p(v_k)p(w_{k-j}), \quad \text{for} \quad i = 1, \ldots, l, j = l + 1, \ldots, k, \quad k \geq l + 1;
\]
   The measurement noise is forward \( l \)-step cross-correlated with process noise, if
\[
p(v_k, w_{k+1+i}) \neq p(v_k)p(w_{k+1+i}), \quad \text{and} \quad p(v_k, w_{k+1+j}) = p(v_k)p(w_{k+1+j}), \quad \text{for} \quad i = 1, \ldots, l, j = l + 1, \ldots, k, \quad k \geq l + 1;
\]
   We denote that the measurement noise is forward and backward 0-step correlated with the process noise if they are mutually independent.

Note that if the measurement noise is finite-step correlated to the process noise, then the process noise is also finite-step correlated to the measurement noise. Thus, their recursive formulae are same and we only consider the former.

Since, in target tracking, the three correlated cases may be encountered simultaneously (see, e.g., \cite{1,2}) and the optimal estimator for these problems cannot be obtained for nonlinear and non-Gaussian dynamic systems in general, the goal of this paper is to derive a unified lower bound corresponding to optimum performance recursively, which can be used to determine whether imposed performance requirements are realistic or not.
2.2 Posterior Cramér-Rao Bounds

Let \( x \) be a \( r \)-dimensional random parameter and \( z \) be a measurement vector, let \( p_{x,z}(X, Z) \) be a joint density of the pair \((x, z)\). The mean-square error of any estimate \( \hat{x}(Z) \) of \( x \) satisfies the inequality

\[
P \triangleq E\{[\hat{x}(Z) - x][\hat{x}(Z) - x]^T\} \geq J^{-1}
\]

(3)

where \( J \) is the \( r \times r \) (Fisher) information matrix with the elements

\[
J_{ij} = E\left[\frac{-\partial^2 \ln p_{x,z}(X, Z)}{\partial X_i \partial X_j}\right] \quad i, j = 1, \ldots, r
\]

(4)

and the expectation is over both \( x \) and \( z \). The superscript \( ^T \) in (3) denotes the transpose of a matrix. The following condition are assumed to exist:

1. \( \frac{\partial \ln p_{x,z}(X, Z)}{\partial X} \) is absolutely integrable with respect to \( X \) and \( Z \).
2. \( \frac{\partial^2 \ln p_{x,z}(X, Z)}{\partial X^2} \) is absolutely integrable with respect to \( X \) and \( Z \).
3. The conditional expectation of the error, given \( X \), is

\[
B(X) = \int_{-\infty}^{+\infty} [\hat{x}(Z) - X]p_{z|x}(Z|X)dZ
\]

and assume that

\[
\lim_{x_i \to \infty} B(X)p_x(X) = 0, \quad \lim_{x_i \to -\infty} B(X)p_x(X) = 0,
\]

for \( i = 1, \ldots, r \).

The proof is given in [12].

Assume now that the parameter \( x \) is decomposed into two parts as \( x = [x_1^T, x_2^T]^T \), and the information matrix \( J \) is correspondingly decomposed into blocks

\[
J = \begin{pmatrix} J_{11} & J_{12} \\ J_{12}^T & J_{22} \end{pmatrix}
\]

(5)

It can easily be shown that the covariance of estimation of \( x_2 \) is lower bounded by the right-lower block of \( J^{-1} \), i.e.,

\[
P_2 \triangleq E\{[\hat{x}_2(Z) - x_2][\hat{x}_2(Z) - x_2]^T\}
\]

\[
\geq [J_{22} - J_{12}^T J_{11}^{-1} J_{12}]^{-1}
\]

(6)
assuming that $J_{11}^{-1}$ exists. The matrix $J_{22} - J_{12}^T J_{11}^{-1} J_{12}$ is called the information submatrix for parameter $x_2$ in [13].

Note that Equations (1) and (2) together with $p(x_0)$ determine unambiguously the joint probability densities $p(X_k, Z_k)$ of $X_k = (x_0^T, \ldots, x_k^T)^T$ and $Z_k = (z_0^T, \ldots, z_k^T)^T$ for an arbitrary $k$ [16]. The conditional probability densities $p(x_{k+1}|X_k, Z_k)$ and $p(z_{k+1}|X_{k+1}, Z_k)$ can be obtained from (1) and (2), respectively, under suitable hypotheses. In this paper, $p(X_k, Z_k)$ is denoted by $p_k$ for brevity. From a Bayesian perspective, the joint probability function of $X_k+1$ and $Z_k+1$ can be written as

$$p_{k+1} = p(X_{k+1}, Z_{k+1}) = p(X_k, Z_k)p(x_{k+1}|X_k, Z_k)p(z_{k+1}|X_{k+1}, Z_k).$$

(7)

(8)

In addition, define $\nabla$ and $\triangle$ be the first and second-order operator partial derivatives, respectively

$$\nabla_\alpha = \left( \frac{\partial}{\partial \alpha_1}, \frac{\partial}{\partial \alpha_2}, \ldots, \frac{\partial}{\partial \alpha_n} \right)^T \forall \alpha \in \mathbb{R}^n,$$

(9)

$$\triangle_\alpha = \nabla_\alpha \nabla_\alpha^T.$$

(10)

Using this notation and (7), (4) can be written as

$$J(X_k) = E \left(-\triangle X_k \ln p(X_k, Z_k)\right) = E \left(-\triangle X_k \ln p_k\right).$$

(11)

Decompose state vector $X_k$ as $X_k=(X_{k-1}^T, x_k^T)^T$ and the $(kr \times kr)$ information matrix $J(X_k)$ correspondingly as

$$J(X_k) = \begin{pmatrix} A_k & B_k \\ B_k^T & C_k \end{pmatrix}$$

(12)

where

$$A_k = E(-\triangle x_{k-1} \ln p_k),$$

$$B_k = E(-\triangle x_k \ln p_k),$$

$$C_k = E(-\triangle x_k \ln p_k).$$

Thus, the posterior information submatrix for estimating $x_k$, denoted by $J_k$, which is given as the inverse of the $(r \times r)$ right block of $[J(X_k)]^{-1}$, i.e.,

$$J_k = C_k - B_k^T A_k^{-1} B_k.$$

(13)

$J_k^{-1}$ is the PCRB of estimating state vector $x_k$.

In the following, we derive the recursive formula of the posterior information submatrices $\{J_k\}$ when the noises of dynamic systems are finite-step correlated.
3 Main results

In this section, we address the recursive formula of the posterior information submatrices \( \{J_k\} \) when the noises of dynamic systems are finite-step correlated. Let us give some remarks on the notation:

1. \( Q_{k}^{i,j}, i, j = 1, \ldots, l \) denotes the \( i \)-th row and \( j \)-th column block of the \((l \times l)\) block matrix \( Q_k \) at time \( k \);

2. If \( i \leq 0 \), or \( j \leq 0 \), then \( Q_{k}^{i,j} = 0 \);

3. If \( i > l \), or \( j > l \), then \( Q_{k}^{i,j} = 0 \).

When the measurement noise and the process noise of the dynamic system (1)-(2) are temporally correlated and cross-correlated simultaneously, we have the following unified recursion as follows.

**Theorem 3.1.** If the measurement noise is \( l_1 \)-step correlated \((l_1 \geq 0)\), the process noise is \( l_2 \)-step correlated \((l_2 \geq 0)\), and the measurement noise is backward \( l_3 \)-step and forward \( l_4 \)-step cross-correlated with the process noise \((l_3 \geq 0, l_4 \geq 0)\), then the sequence \( \{J_k\} \) of posterior information submatrices for estimating state vector \( \{x_k\} \) obeys the recursion

\[
J_{k+1} = D_{k}^{22} - D_{k}^{21} (D_{k}^{11} + E_{k})^{-1} D_{k}^{12},
\]

where the recursive terms \( E_{k}, D_{k}^{11}, D_{k}^{12}, D_{k}^{21} \) and \( D_{k}^{22} \) are calculated as the following three cases. In order to facilitate the discussion, with a slight abuse of notations, we denote by \( l_3' \equiv \max\{l_3,1\}, l_2' \equiv \max\{l_2,1\} \).

1. \( l_3' > l_2' + 1 \):

   The \( i \)-th row and \( j \)-th column block of the matrix \( E_k \) are recursively calculated as

   \[
   E_{k}^{i,j} = E_{k-1}^{i+1,j+1} + B_{k-1}^{i+l_2'-j+2, j+l_2'-l_3'+2} + C_{k-1}^{i+1,j+1} - (E_{k-1}^{i+1,1} + C_{k-1}^{i+1,1})
   \]

   \[
   \cdot (E_{k-1}^{1,1} + C_{k-1}^{1,1})^{-1}(E_{k-1}^{i,j+1} + C_{k-1}^{i,j+1})
   \]

   for \( i = 1, 2, \ldots, l_3' - 1, j = 1, 2, \ldots, l_3' - 1 \)

   where

   \[
   B_{k}^{i,j} = \begin{cases} 
   E(-\Delta x_{k-1}^{l_2'+i} \ln p(x_{k+1}|x_k, \ldots, x_{k-l_2'+1})) \\
   \text{for } i, j = 1, 2, \ldots, l_2' + 1, l_4 = 0, \\
   E(-\Delta x_{k-1}^{l_2'+i} \ln p(x_{k+1}|x_k, \ldots, x_{k-l_2'+1}, z_k, \ldots, z_{k-1} + l_4 + 1)) \\
   \text{for } i, j = 1, 2, \ldots, l_2' + 1, l_4 > 0,
   \end{cases}
   \]
\[ D_{k}^{11}, D_{k}^{12}, D_{k}^{21} \text{ and } D_{k}^{22} \text{ in (14) can be calculated as follows:} \]

\[ D_{k}^{22} = C_{k}^{l',l'} + B_{k}^{l'+1,l'+1}, \]

\[ D_{k}^{21} = \begin{pmatrix} C_{k}^{l',l'} & \ldots & C_{k}^{l_3-l_2-1} & \ldots & C_{k}^{l_3-l_2-1} \\ +B_{k}^{l'+1,l} & \ldots & +B_{k}^{l'+1,l} & \ldots & +B_{k}^{l'+1,l} \end{pmatrix} = (D_{k}^{12})^T, \]

\[ D_{k}^{11} = \begin{pmatrix} C_{k}^{1,1} & \ldots & C_{k}^{l_3-l_2-1} & \ldots & C_{k}^{l_3-l_2-1} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ C_{k}^{l_3-l_2-1} & \ldots & C_{k}^{l_3-l_2-1} & \ldots & C_{k}^{l_3-l_2-1} \\ +B_{k}^{1,1} & \ldots & +B_{k}^{1,1} & \ldots & +B_{k}^{1,1} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ C_{k}^{l_3-l_2-1} & \ldots & C_{k}^{l_3-l_2-1} & \ldots & C_{k}^{l_3-l_2-1} \\ +B_{k}^{l_3-1,l} & \ldots & +B_{k}^{l_3-1,l} & \ldots & +B_{k}^{l_3-1,l} \end{pmatrix}. \]

2. \( l'_3 < l'_2 + 1 \)

The \( i \)-th row and \( j \)-th column block of the matrix \( E_k \) are recursively calculated as

\[ E_{k}^{i,j} = E_{k-1}^{i+1,j+1} + C_{k-1}^{l_3-l_2-1,j} + B_{k-1}^{1,1} \]

\[ - (E_{k-1}^{i+1,1} + B_{k-1}^{l_3-1,l}) (E_{k-1}^{1,1} + B_{k-1}^{l_3-1,l})^{-1} - (E_{k-1}^{i+1,1} + B_{k-1}^{l_3-1,l}) \]

\[ (E_{k-1}^{i+1,1} + B_{k-1}^{l_3-1,l}) \]

\[ for \ i = 1, 2, \ldots, l'_2, \ j = 1, 2, \ldots, l'_2, \]
where $C^i,j_k$ and $B^i,j_k$ are defined in (16)-(17). $D^{11}_k$, $D^{12}_k$, $D^{21}_k$ and $D^{22}_k$ in (14) can be calculated as follows:

$$D^{22}_k = C^i_3, i + 1, j_3 + 1,$$

$$D^{21}_k = \left( \begin{array}{ccc}
B^{l_2+1,1}_k & \cdots & B^{l_2+1, l_2 - 1}_k \\
+ C_3^{l_3+1}_k & \cdots & + C_3^{l_3+1}_k \\
\end{array} \right) = (D^{12}_k)^T,$$  

$$D^{11}_k = \left( \begin{array}{ccc}
B^{l_2}_k & \cdots & B^{l_2}_k \\
\vdots & \ddots & \vdots \\
B^{l_2}_k & \cdots & B^{l_2}_k + C_3^{l_3+1, l_3+1}_k \\
\end{array} \right).$$

3. $l'_3 = l'_2 + 1$

The $i$-th row and $j$-th column block of the matrix $E_k$ are recursively calculated as

$$E^{i,j}_k = E^{i+1,j+1}_k - (E^{i+1,1}_k + B^{i+1,1}_k + C^{i+1,1}_k)$$

$$\cdot (E^{1,j+1}_k + B^{1,j+1}_k + C^{1,j+1}_k)$$

$$\cdot (E^{1,j+1}_k + B^{1,j+1}_k + C^{1,j+1}_k)$$

for $i = 1, 2, \ldots, l'_3 - 1$, $j = 1, 2, \ldots, l'_3 - 1$,

where $C^i,j_k$ and $B^i,j_k$ are defined in (16)-(17). $D^{11}_k$, $D^{12}_k$, $D^{21}_k$ and $D^{22}_k$ in (14) can be calculated as follows:

$$D^{22}_k = C^i_3, i, j_3 + 1,$$

$$D^{21}_k = \left( \begin{array}{ccc}
B^{l_2+1,1}_k & \cdots & B^{l_2+1, l_2 - 1}_k \\
+ C_3^{l_3+1}_k & \cdots & + C_3^{l_3+1}_k \\
\end{array} \right) = (D^{12}_k)^T,$$

$$D^{11}_k = \left( \begin{array}{ccc}
B^{l_2}_k & \cdots & B^{l_2}_k \\
\vdots & \ddots & \vdots \\
B^{l_2}_k & \cdots & B^{l_2}_k + C_3^{l_3+1, l_3+1}_k \\
\end{array} \right).$$
Proof: See the Appendix.

Remark 3.2. The difficulty of the recursion is the derivation of the recursive matrix $E_k$, which thanks to two lemmas about the inverse of a matrix given in Appendix and Schur complement. Although the derivation is very complicated, the final formula is not complicated. The finite-step correlation of noises is used to (16) and (17), which can be calculated by analytical or numerical methods. The initial information submatrix $E_{ij}^0$ can be calculated from the a priori probability function $p(X_{l_{\text{max}}}, Z_{l_{\text{max}}})$ where $l_{\text{max}} = \max\{l_1, l_2, l_3, l_4\}$.

Although the unified formula can come across the three cases of finite-step correlated noises, a few corollaries with simpler formulae follow to elucidate special cases, which may be appeared more in practice.

Corollary 3.3. If the measurement noise is backward $l$-step cross-correlated with the process noise ($l \geq 0$), the process noise and measurement noise are temporally independent respectively, i.e., $l_1 = 0$, $l_2 = 0$, $l_3 = l$, $l_4 = 0$, then the sequence \{J_k\} of posterior information submatrices for estimating state vector \{x_k\} obeys the recursion

\[
J_{k+1} = D_{22}^k - D_{21}^k (D_{11}^k + E_k)^{-1} D_{12}^k,
\]

where the recursive term $E_k$ is calculated as follows:

1. If $l = 1$ or $l = 0$, then

\[
E_k = B_{k-1}^{2,2} + C_{k-1}^{1,1} - B_{k-1}^{2,1} (E_{k-1} + B_{k-1}^{1,1})^{-1} B_{k-1}^{1,2},
\]

where

\[
B_{k-1}^{1,1} = E(- \triangle x_{k-1} \ln p(x_k|x_{k-1})),
\]

\[
B_{k-1}^{1,2} = E(- \triangle x_{k-1} \ln p(x_k|x_{k-1})),
\]

\[
B_{k-1}^{2,1} = E(- \triangle x_{k-1} \ln p(x_k|x_{k-1})),
\]

\[
C_{k-1}^{1,1} = E(- \triangle x_k \ln p(z_k|x_k)).
\]

$D_{11}^k$, $D_{12}^k$, $D_{21}^k$ and $D_{22}^k$ in (29) are calculated as follows

\[
D_{22}^k = B_{k}^{2,2} + C_{k}^{1,1},
\]

\[
D_{21}^k = B_{k}^{2,1} = (D_{k}^{12})^T,
\]

\[
D_{11}^k = B_{k}^{1,1}.
\]

2. If $l = 2$, then
\[ E_k = C_{k-1}^{2,2} + B_{k-1}^{2,2} - (B_{k-1}^{2,1} + C_{k-1}^{2,1})^{-1} (E_{k-1} + B_{k-1}^{1,1} + C_{k-1}^{1,1})^{-1} (C_{k-1}^{1,2} + B_{k-1}^{1,2}), \] (31)

where

\[
B_{k-1}^{m,n} = E(- \Delta x_{k-2+m}^{x_k} \ln p(x_k|x_{k-1}))
\]
for \(m, n = 1, 2,\) for \(i = 1, 2,\)

\[
C_{k-1}^{m,n} = E(- \Delta x_{k-2+m}^{x_k} \ln p(z_k|x_k, x_{k-1}))
\]
for \(m, n = 1, 2,\)

\[
D_{k}^{11}, D_{k}^{12}, D_{k}^{21} \text{ and } D_{k}^{22} \text{ in (29) are calculated as follows}
\]

\[
D_{k}^{22} = C_{k}^{2,2} + B_{k}^{2,2},
\]

\[
D_{k}^{21} = B_{k}^{2,1} + C_{k}^{2,1} = (D_{k}^{12})^T,
\]

\[
D_{k}^{11} = B_{k}^{1,1} + C_{k}^{1,1}.
\]

3. If \(l > 2,\) then the \(i\)-th row and \(j\)-th column block of the matrix \(E_k\) is recursively calculated as

\[
E_{k}^{i,j} = E_{k-1}^{i+1,j+1} + B_{k-1}^{i+3-l,j+3-l} + C_{k-1}^{i+1,j+1} - (E_{k-1}^{i+1,1} + C_{k-1}^{i+1,1})(E_{k-1}^{1,1} + C_{k-1}^{1,1})^{-1} (E_{k-1}^{1,j+1} + C_{k-1}^{1,j+1}),
\] (32)

for \(i = 1, 2, \ldots, l'_3 - 1, \) \(j = 1, 2, \ldots, l'_3 - 1\)

where

\[
C_{k-1}^{m,n} = E(- \Delta x_{k+m-n}^{x_k} \ln p(z_k|x_k, \ldots, x_{k+1-l}))
\]
for \(m, n = 1, 2 \ldots, l.\)

\[
B_{k-1}^{1,1} = E(- \Delta x_{k-1}^{x_k} \ln p(x_k|x_{k-1})),
\]

\[
B_{k-1}^{1,2} = E(- \Delta x_{k-1}^{x_k} \ln p(x_k|x_{k-1})) = (B_{k}^{2,1})^T,
\]

\[
B_{k-1}^{2,2} = E(- \Delta x_{k}^{x_k} \ln p(x_k|x_{k-1})).
\]
\( \mathbf{D}_{k}^{11}, \mathbf{D}_{k}^{12}, \mathbf{D}_{k}^{21} \) and \( \mathbf{D}_{k}^{22} \) in (29) are calculated as follows

\[
\mathbf{D}_{k}^{22} = \mathbf{C}_{k}^{l,l} + \mathbf{B}_{k}^{2,2},
\]
\[
\mathbf{D}_{k}^{21} = \left( \mathbf{C}_{k}^{l,1} \ldots \mathbf{B}_{k}^{2,1} + \mathbf{C}_{k}^{l,l-1} \right) = \left( \mathbf{D}_{k}^{12} \right)^{T},
\]
\[
\mathbf{D}_{k}^{11} = \begin{pmatrix}
\mathbf{C}_{k}^{1,1} & \ldots & \mathbf{C}_{k}^{1,l-1} \\
\vdots & \ddots & \vdots \\
\mathbf{C}_{k}^{l-1,1} & \ldots & \mathbf{B}_{k}^{1,1} + \mathbf{C}_{k}^{l-1,l-1}
\end{pmatrix}.
\]

Proof: See the Appendix.

**Corollary 3.4.** If the process noise is \( l \)-step correlated (\( l \geq 0 \)), the measurement noise is temporally independent, and the process noise and the measurement noise are mutually independent, i.e., \( l_{1} = 0, l_{2} = l, l_{3} = 0, l_{4} = 0 \), then the sequence \( \{ \mathbf{J}_{k} \} \) of posterior information submatrices for estimating state vector \( \{ \mathbf{x}_{k} \} \) obeys the recursion

\[
\mathbf{J}_{k+1} = \mathbf{D}_{k}^{22} - \mathbf{D}_{k}^{21} (\mathbf{E}_{k} + \mathbf{D}_{k}^{11})^{-1} \mathbf{D}_{k}^{12}
\]

where the \( i \)-th row and \( j \)-th column block of the matrix \( \mathbf{E}_{k} \) is calculated as follows:

\[
\mathbf{E}_{k}^{i,j} = \mathbf{E}_{k-1}^{i+1,j+1} + \mathbf{C}_{k-1}^{i+1-l_{2}',j+1-l_{2}'} + \mathbf{B}_{k-1}^{i+1,j+1}
\]

\[
- (\mathbf{E}_{k-1}^{i+1,1} + \mathbf{B}_{k-1}^{i+1,1})(\mathbf{E}_{k-1}^{1,1} + \mathbf{B}_{k-1}^{1,1})^{-1}
\]

\[
(\mathbf{E}_{k-1}^{1,j+1} + \mathbf{B}_{k-1}^{1,j+1})
\]

for \( i = 1, 2, \ldots, l_{2}', j = 1, 2, \ldots, l_{2}' \)

where

\[
\mathbf{B}_{k-1}^{i,j} = E(- \Delta \mathbf{x}_{k+i-l_{2}'-1} \ln p(\mathbf{x}_{k}|\mathbf{x}_{k-1}, \ldots, \mathbf{x}_{k-l_{2}'})}
\]

\[
\mathbf{C}_{k-1}^{i,1} = E(- \Delta \mathbf{z}_{k} \ln p(\mathbf{z}_{k}|\mathbf{x}_{k}))
\]

for \( i = 1, 2, \ldots, l_{2}', j = 1, 2, \ldots, l_{2}' + 1 \).

\( \mathbf{D}_{k}^{11}, \mathbf{D}_{k}^{12}, \mathbf{D}_{k}^{21} \) and \( \mathbf{D}_{k}^{22} \) in (33) are calculated as follows

\[
\mathbf{D}_{k}^{22} = \mathbf{B}_{k}^{l,1} + \mathbf{C}_{k}^{l,1},
\]
\[
\mathbf{D}_{k}^{21} = \left( \mathbf{B}_{k}^{l,1} + \mathbf{B}_{k}^{l,1} \right),
\]
\[
\mathbf{D}_{k}^{11} = \begin{pmatrix}
\mathbf{B}_{k}^{l,1} & \mathbf{B}_{k}^{l,1} \\
\vdots & \ddots \\
\mathbf{B}_{k}^{l,1} & \mathbf{B}_{k}^{l,1}
\end{pmatrix}.
\]
Corollary 3.5. If the measurement noise is \( l \)-step correlated (\( l \geq 0 \)), the process noise is temporally independent, and the process noise and the measurement noise are mutually independent, i.e., \( l_1 = l \), \( l_2 = 0 \), \( l_3 = 0 \), \( l_4 = 0 \), then the sequence \( \{ \mathbf{J}_k \} \) of posterior information submatrices for estimating state vector \( \{ \mathbf{x}_k \} \) obeys the recursion
\[
\mathbf{J}_{k+1} = \mathbf{D}_k^{22} - \mathbf{D}_k^{21} (\mathbf{D}_k^{11} + \mathbf{J}_k)^{-1} \mathbf{D}_k^{12}
\]
where
\[
\begin{align*}
\mathbf{D}_k^{11} &= E(- \triangle \mathbf{x}_k \ln \mathbf{p}(\mathbf{x}_{k+1} | \mathbf{x}_k)), \\
\mathbf{D}_k^{21} &= E(- \triangle \mathbf{x}_{k+1} \ln \mathbf{p}(\mathbf{x}_{k+1} | \mathbf{x}_k)) = (\mathbf{D}_k^{12})^T, \\
\mathbf{D}_k^{22} &= E(- \triangle \mathbf{x}_{k+1} \ln \mathbf{p}(\mathbf{x}_{k+1} | \mathbf{x}_k)) + \mathbf{C}_k,
\end{align*}
\]
and
\[
\mathbf{C}_k = \begin{cases} \\
E(- \triangle \mathbf{x}_{k+1} \ln \mathbf{p}(\mathbf{z}_{k+1} | \mathbf{x}_{k+1}, \\
\mathbf{z}_k, \ldots, \mathbf{z}_{k-l+1})), & l \geq 1 \\
E(- \triangle \mathbf{x}_{k+1} \ln \mathbf{p}(\mathbf{z}_{k+1} | \mathbf{x}_{k+1})), & l = 0.
\end{cases}
\]

Proof: See the Appendix.

Remark 3.6. When the process noise and the measurement noise are mutually independent and temporally independent respectively, i.e., \( l_1 = 0 \), \( l_2 = 0 \), \( l_3 = 0 \), \( l_4 = 0 \). Based on Corollary 3.5, it is easy to see that the recursion is the same as Proposition 1 in [13].

4 Numerical Examples

In this section, we consider two target tracking examples when noises of dynamic systems are temporally correlated. We compare the new PCRB with that of the method which ignores the correlation of noises and assumes temporally independent noises. Moreover, based on the PCRB, we can consider a sensor selection problem, i.e., determine how many sensors should be selected to obtain a desired tracking performance (see, e.g., [28, 29]).

4.1 Example 1

Consider a discrete time second order kinematic system driven by temporally correlated noises. This “correlated noise acceleration model” can be used in maneuvering tracking [11]. The discrete time state equation is
\[
\mathbf{x}_{k+1} = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \mathbf{x}_k + \omega_k,
\]
(41)
where the process noise is an one-step correlated moving-average model, i.e.,
\[ \omega_k = \tilde{\omega}_k + \tilde{\omega}_{k-1} = \begin{pmatrix} \omega^1_k \\ \omega^2_k \end{pmatrix} = \begin{pmatrix} \omega^1_{k-1} + \tilde{\omega}_{k-1} \\ \tilde{\omega}^2_k + \tilde{\omega}^2_{k-1} \end{pmatrix}. \] (42)
\{\tilde{\omega}_k\} is a Gaussian white noise with zero mean and variance \( \tilde{Q}_k = \begin{pmatrix} \frac{T^3}{3} & \frac{T^2}{2} \\ \frac{T^2}{2} & T \end{pmatrix} \), with power spectral density \( q = 1 \) and sampling interval \( T = 1 \).

The position-only measurement is given by
\[ z_k = \begin{pmatrix} 1 & 0 \end{pmatrix} x_k + \nu_k, \] (43)
where measurement noise is considered one-step correlated and one-step cross-correlated with process noise as discussed in [2, 3], i.e.,
\[ \nu_k = \tilde{\nu}_k + \tilde{\nu}_{k-1} + \omega^1_{k-1}, \] (44)
where \{\tilde{\nu}_k\} is a Gaussian white noise with zero mean and variance \( \sigma^2 = 15^2 \); \{\tilde{\nu}_k\} and \{\omega^1_{k-1}\} are mutually independent.

By (41)-(44), it can easily be shown that \{\nu_k\} is one-step correlated, \{\omega_k\} is one-step correlated, \{\nu_k\} is backward two-step and forward one-step correlated with \{\omega_k\}, i.e., \( l_1 = 1, l_2 = 1, l_3 = 2, l_4 = 1 \). It is the case 3 of Theorem 3.1.

From these assumptions, the conditional probability densities are given as
\[ -\ln p(x_{k+1}|x_k, z_k) = c_1 + \frac{1}{2} [x_{k+1} - g_k(x_k, z_k)]^T Q_k^{-1} [x_{k+1} - g_k(x_k, z_k)], \]
\[ -\ln p(z_{k+1}|x_{k+1}, z_k, x_k) = c_2 + \frac{1}{2} [z_{k+1} - e_k(x_{k+1}, z_k, x_k)]^T R_k^{-1} [z_{k+1} - e_k(x_{k+1}, z_k, x_k)], \]
where \( c_1 \) and \( c_2 \) are constants, and
\[ g_k(x_k, z_k) = \begin{pmatrix} 0 & T \\ 0 & 1 \end{pmatrix} x_k + \begin{pmatrix} z_k \\ 0 \end{pmatrix} - \begin{pmatrix} \tilde{\nu}_k + \tilde{\nu}_{k-1} + \tilde{\omega}_{k-2} \\ 0 \end{pmatrix}, \]
\[ e_k(x_{k+1}, z_k, x_k) = \begin{pmatrix} 2 & 0 \end{pmatrix} x_{k+1} - \begin{pmatrix} 2 & T \end{pmatrix} x_k + z_k - \tilde{\nu}_{k-1} - \omega^1_{k-1}, \]
\[ Q_k = \begin{pmatrix} \frac{T^3}{3} & \frac{T^2}{2} \\ \frac{T^2}{2} & 2T \end{pmatrix}, \quad R_k = \sigma^2. \]
Using (16)-(17), we can get

\[ B_{11}^k = \begin{pmatrix} 0 & T \\ 0 & 1 \end{pmatrix}^T Q_k^{-1} \begin{pmatrix} 0 & T \\ 0 & 1 \end{pmatrix} \]

\[ C_{11}^k = \begin{pmatrix} 2 & T \end{pmatrix}^T R_k^{-1} \begin{pmatrix} 2 & T \end{pmatrix} \]

\[ B_{12}^k = -\begin{pmatrix} 0 & T \\ 0 & 1 \end{pmatrix}^T Q_k^{-1} \]

\[ C_{12}^k = -\begin{pmatrix} 2 & T \end{pmatrix}^T R_k^{-1} \begin{pmatrix} 2 & 0 \end{pmatrix} \]

\[ B_{22}^k = Q_k^{-1}, \quad C_{22}^k = \begin{pmatrix} 2 & 0 \end{pmatrix}^T R_k^{-1} \begin{pmatrix} 2 & 0 \end{pmatrix} \]

A straightforward calculation of (26)-(28) gives

\[ D_{11}^k = B_{11}^k + C_{11}^k \]

\[ D_{12}^k = B_{12}^k + C_{12}^k \]

\[ D_{22}^k = B_{22}^k + C_{22}^k \]

Thus, we can derived the PCRB on parameter \( \{x_k\} \) by (14) and (25)-(28) of Theorem 3.1. In order to illustrate the effect of the correlation of the noises clearly, on the other hand, we also calculate the PCRB of the method that ignores the correlation of noises and assumes independent noises. In Figure 1 the PCRB is plotted as a function of the time step. For sensor selection, the average PCRB of 100 time steps is plotted as a function of number of selected sensors in Figure 2.

The Figures 1-2 show that the new PCRB is significantly different from that of the method which ignores correlation of noises. In addition, Figure 1 shows that the time-invariant character of the kinematic model implies that the PCRB converges to a constant for \( k \to \infty \). In Figure 2 it can be seen that when the number of selected sensors is increasing, the gap of PCRB becomes smaller. Figure 2 also shows that if we want to achieve the estimation error less than 20 m, 2 sensors have to be used at least. However, if we ignore the correlation of the noises, 11 sensors have to be used. Thus, we cannot ignore the correlation of the noises in practice.

4.2 Example 2

In this example, we consider a discrete time dynamic system with *nonlinear* measurements as follows. The four-dimensional state variable includes position and velocity \((x, \dot{x}, y, \dot{y})\) driven by correlated noise respec-
The PCRB of estimation error correlated noises independent noises

Figure 1: The PCRB is plotted as a function of the time step.

The average PCRB of estimation error correlated noises independent noises

Figure 2: The average PCRB of 100 time step is plotted as a function of number of selected sensors.
where the process noise is a two-step correlated moving-average model,
\[ \omega_k = \tilde{\omega}_k + \tilde{\omega}_{k-1} + \tilde{\omega}_{k-2}. \] (46)

\{\tilde{\omega}_k\} is a Gaussian white noise with zero mean and variance
\[ \tilde{\Sigma}_1 = \begin{pmatrix} T^3 & T^2 & 0 & 0 \\ \frac{T^3}{3} & \frac{T^2}{2} & T & 0 \\ 0 & 0 & \frac{T^3}{3} & \frac{T^2}{2} \\ 0 & 0 & \frac{T^3}{3} & \frac{T^2}{2} \end{pmatrix}, \] (47)

with sampling interval \( T = 2 \).

The two-dimensional nonlinear measurement vector includes range and azimuth respectively,
\[ z_k = h_k(x_k) + v_k, \] (48)

where the nonlinear measurement function is
\[ h_k(x_k) = \begin{pmatrix} h^1_k(x_k) \\ h^2_k(x_k) \end{pmatrix} = \begin{pmatrix} \sqrt{(x^1_k)^2 + (x^2_k)^2} \\ \tan^{-1}\left(\frac{x^2_k}{x^1_k}\right) \end{pmatrix}. \] (49)

\( x^i_k \) is the \( i \)-th entry of the state vector \( x_k \). \{\( v_k \)\} is a Gaussian white noise with zero mean and variance matrix
\[ \Sigma_2 = \begin{pmatrix} 100^2 & 0 \\ 0 & 0.01^2 \end{pmatrix}. \] (50)

\{\( v_k \)\} and \{\( \tilde{\omega}_k \)\} are mutually independent.

It can easily be seen that the model satisfies Corollary 3.4 and \( l = 2 \). From these assumptions, the conditional probability densities are given as
\[
- \ln p(x_{k+1}|x_k, x_{k-1}) \\
= c_3 + (x_{k+1} - g(x_k, x_{k-1}))^T \Sigma_1^{-1}(x_{k+1} - g(x_k, x_{k-1})),
\]
\[
- \ln p(z_{k+1}|x_{k+1}) \\
= c_4 + (z_{k+1} - h(x_{k+1}))^T \Sigma_2^{-1}(z_{k+1} - h(x_{k+1})),
\]
\[ g(x_k, x_{k-1}) = (I + F_k)x_k - F_k x_{k-1} - \tilde{\omega}_{k-3}, \]
Combining (51), (33) and (34), after some simplification, we have the simpler recursion
\[ B_{k}^{11} = F^{T} \Sigma_{1}^{-1} F_{k}, \quad B_{k}^{12} = -F^{T} \Sigma_{1}^{-1} (I + F_{k}), \]
\[ B_{k}^{13} = F^{T} \Sigma_{1}^{-1}, \quad B_{k}^{21} = (B_{k}^{12})^{T}, \]
\[ B_{k}^{22} = (I + F_{k})^{T} \Sigma_{1}^{-1} (I + F_{k}), \quad B_{k}^{23} = -(I + F_{k})^{T} \Sigma_{1}^{-1}, \]
\[ B_{k}^{31} = (B_{k}^{13})^{T}, \quad B_{k}^{32} = (B_{k}^{23})^{T}, \quad B_{k}^{33} = \Sigma_{1}^{-1}, \]
\[ C_{k}^{11} = E \{ [\nabla x_{k+1} h(x_{k+1})^{T}] \Sigma_{2}^{-1} [\nabla x_{k+1} h(x_{k+1})^{T}]^{T} \}. \]

\( C_{k}^{11} \) can be calculated by numerical Monte Carlo methods. Using (37)-(39), we can easily get
\[
D_{k}^{11} = \left( \begin{array}{cc} B_{k}^{11} & B_{k}^{12} \\ B_{k}^{21} & B_{k}^{22} \end{array} \right), \]
\[
D_{k}^{21} = \left( \begin{array}{c} B_{k}^{31} \\ B_{k}^{32} \end{array} \right) = (D_{k}^{12})^{T}, \]
\[
D_{k}^{22} = B_{k}^{33} + C_{k}^{11}. \]

Combining (51), (33) and (34), after some simplification, we have the simpler recursion
\[
J_{k+1} = D_{k}^{22} - D_{k}^{21} (E_{k} + D_{k}^{11})^{-1} D_{k}^{12},
\]
\[
E_{k}^{11} = E_{k-1}^{22} + B_{k-1}^{22} - (E_{k-1}^{21} + B_{k-1}^{21}) \cdot (E_{k-1}^{11} + B_{k-1}^{11})^{-1} (E_{k-1}^{12} + B_{k-1}^{12}),
\]
\[
E_{k}^{12} = B_{k-1}^{23} - (E_{k-1}^{21} + B_{k-1}^{21})(E_{k-1}^{11} + B_{k-1}^{11})^{-1} B_{k-1}^{13},
\]
\[
E_{k}^{22} = B_{k-1}^{33} + C_{k-1}^{11} - B_{k-1}^{31}(E_{k-1}^{11} + B_{k-1}^{11})^{-1} B_{k-1}^{13}. \]

Based on the above recursion, we can obtain the PCRB of the example. In Figure 3, PCRB is plotted as a function of the time step. For sensor selection, the average PCRB of 100 time steps is plotted as a function of number of selected sensors in Figure 4.

Figures 3-4 shows that the new PCRB is significantly different from that of the method which ignores correlation of noises. Thus, we may not ignore the correlation of the noises in practice. Figure 4 also shows that if we want to achieve the estimation error less than 1 \( m \), 8 sensors have to used at least. However, if we ignore the correlation of the noises, we have to select 11 sensors.

## 5 Conclusions

In this paper, we have derived a unified recursive formula of the mean-square error lower bound for the discrete-time nonlinear filtering problem when noises of dynamic systems are temporally correlated. It can be applicable to the multi-step
Figure 3: The PCRB is plotted as a function of the time step.

Figure 4: The average PCRB of 100 time steps is plotted as a function of number of selected sensors.
correlated process noise, multi-step correlated measurement noise and multi-step cross-correlated process and measurement noise simultaneously. Although the unified formula can come across the three cases of finite-step correlated noises, a few corollaries with simpler formulae follow to elucidate special cases, which may be appeared more in practice. Two typical target tracking examples have shown that the new PCRB is significantly different from that of the method which ignores correlation of noises. Thus, when the lower bounds are applied to sensor selection, number of selected sensors may be very different to obtain a desired estimation performance. Future research challenges include sensor management when noises of dynamic systems are temporally correlated for multitarget tracking and data association.

6 Appendix

Lemma 6.1. (see, e.g., [30, 10]) Consider a partitioned matrix

\[ \mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}. \]

If \( \mathbf{A} \) is invertible, then \( \mathbf{A}_{11} \) is invertible if and only if the Schur complement \( \triangle = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \) is invertible, and

\[ \mathbf{A}^{-1} = \begin{pmatrix} \mathbf{I} & -\mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\ 0 & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{A}_{11}^{-1} & 0 \\ 0 & \triangle^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{I} & 0 \\ -\mathbf{A}_{11}^{-1} \mathbf{A}_{12} & \mathbf{I} \end{pmatrix}. \]

Lemma 6.2. (see, e.g., [30, 10]) Let \( \mathbf{B} = \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix} \), \( \mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \), \( \mathbf{C} = \begin{pmatrix} \mathbf{C}_{11} \\ \mathbf{C}_{21} \end{pmatrix} \). If \( \mathbf{A} \) and \( \mathbf{A}_{11} \) are both invertible, then \( \triangle = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \) is invertible, and use the Lemma \( 6.1 \) we have

\[ \mathbf{B} \mathbf{A}^{-1} \mathbf{C} = \mathbf{B}_{11} \mathbf{A}_{11}^{-1} \mathbf{C}_{11} + (\mathbf{B}_{12} - \mathbf{B}_{11} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}) \triangle^{-1} \cdot (\mathbf{C}_{21} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{C}_{11}). \] (52)

6.1 proof of Theorem 3.1

According to the three definitions of finite-step correlated noises given in Section 2.1 and (1)-(2), it can easily be seen that \( p(x_{k+1}|x_k, z_k) \) and \( p(z_{k+1}|x_{k+1}, z_k) \) of (8) can be written as

\[ p(x_{k+1}|x_k, z_k) = \]

19
In order to derive the recursion of \( J_{k+1} \), we need to decompose vector \( X_k \) and \( X_{k+1} \). Based on (55) - (56), we find that the decomposition depends on \( l'_3 \) and \( l'_2 + 1 \). Thus, we discuss three cases \( l'_3 > l'_2 + 1 \), \( l'_3 < l'_2 + 1 \) and \( l'_3 = l'_2 + 1 \) respectively.

1. \( l'_3 > l'_2 + 1 \)

We decompose \( X_k \) as

\[
X_k = (X'_{k-l'_3+1}, \ldots, X'_{k-l'_2+1}, \ldots, X'_{k-1}, X'_k)'
\]  

and \( J(X_k) \) correspondingly as
Using (8), (55), (56) the posterior information matrix for \( \mathbf{X}_k \) is

\[
J(\mathbf{X}_k) = \begin{pmatrix}
A_{k}^{1,1} & \cdots & A_{k}^{1,l'_3-1} & \cdots & A_{k}^{1,l'_3} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
A_{k}^{l'_3-1,l'_3} & \cdots & A_{k}^{l'_3-1,l'_2} & \cdots & A_{k}^{l'_3,l'_3}
\end{pmatrix}
\]

where

\[
A_{k}^{1,1} = E(-\Delta \mathbf{x}_{k-l'_3+1} \ln p_k), \\
A_{k}^{1,j} = E(-\Delta \mathbf{x}_{k-l'_3+j} \ln p_k), \\
A_{k}^{i,1} = E(-\Delta \mathbf{x}_{k-l'_3+i} \ln p_k),
\]

for \( i, j = 2, \ldots, l'_3 \).

Using (55), (55), (56) the posterior information matrix for \( \mathbf{X}_{k+1} \) can be written in block form as

\[
J(\mathbf{X}_{k+1}) = \begin{pmatrix}
A_{k}^{1,1} & \cdots & A_{k}^{1,l'_3} & 0 \\
\vdots & \cdots & \cdots & \cdots \\
A_{k}^{l'_3-1,l'_3} & \cdots & A_{k}^{l'_3-1,l'_2} & C_{k}^{l'_3,l'_3} \\
& +C_{k}^{l'_3-1,l'_31} & +B_{k}^{l'_3-1,l'_21} & +B_{k}^{l'_3-1,l'_2}
\end{pmatrix}
\]

where 0’s stand for the zero blocks of appropriate dimensions; \( B_{k}^{i,j} \) and \( C_{k}^{i,j} \) are defined in (16)-(17).

To simplify the matrix \( J(\mathbf{X}_{k+1}) \), we denote by \( l'_3 \triangleq l'_3 - l'_2 - l'_3 - l'_2 + 1, l'_3 \triangleq l'_3 - 1, l'_2 \triangleq l'_2 + 1 \).

Moreover, the information submatrix \( J_{k+1} \) for estimating \( \mathbf{x}_{k+1} \in \mathbb{R}^r \) is given as the inverse of the
Using Lemma 6.2 and (18)-(20), it follows that

\[
J_{k+1} = C_k^{t_i' t'_j} + B_k^{t'_i, t'_j} \left( \begin{array}{ccc}
0 & C_k^{t_i' 1} & \cdots & C_k^{t_i' t'_f - 1} \\
& \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots \\
& & & & \ddots & \ddots & \ddots \\
& & & & & \ddots & \ddots & \ddots \\
0 & C_k^{t_i' 1} & \cdots & C_k^{t_i' t'_f - 1} \\
\end{array} \right) + B_k^{t_i' t'_j + 1, t'_f} \right)^{-1}
\]

\[
\begin{pmatrix}
A_{k}^{1,1} & A_{k}^{1,2} & \cdots & A_{k}^{1,t'_i} \\
A_{k}^{2,1} & A_{k}^{2,2} & \cdots & A_{k}^{2,t'_i} \\
& +C_{k}^{1,1} & \cdots & +C_{k}^{1,t'_i} \\
& & \cdots & \cdots \\
& & & \cdots \\
& & & \cdots \\
& & & \cdots \\
\end{pmatrix}
\]

Based on the recursion between \( p_k \) and \( p_{k-1} \) given in (58) which depends on (55) and (56), and using the definitions of \( A_{k}^{i,j}, B_{k}^{i,j}, C_{k}^{i,j} \) given in (58), (16), (17) respectively, it follows that

\[
\begin{pmatrix}
A_{k}^{1,1} & A_{k}^{1,j+1} \\
A_{k}^{i+1,1} & A_{k}^{i+1,j+1} \\
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A_{k-1}^{1,1} & A_{k-1}^{1,2} & \cdots & A_{k-1}^{1,j+2} \\
A_{k-1}^{2,1} & A_{k-1}^{2,2} & \cdots & A_{k-1}^{2,j+2} \\
& +C_{k-1}^{1,1} & \cdots & +C_{k-1}^{1,j+1} \\
& & \cdots & \cdots \\
& & & \cdots \\
& & & \cdots \\
& & & \cdots \\
\end{pmatrix}
\]
\[
\begin{pmatrix}
A_{k-1}^{i+2,1} & A_{k-1}^{i+2,2} & \cdots & A_{k-1}^{i+2,j+2} \\
& +C_{k-1}^{i+1,1} & \cdots & +C_{k-1}^{i+1,j+1} \\
& & \cdots & \cdots \\
& & & \cdots \\
& & & \cdots \\
& & & \cdots \\
\end{pmatrix}
\]
\[
+ B_{k-1}^{i+2-t_i', t_i'+j+2-t_i', t'_j}
\]

Using Lemma 6.2 and (18)-(20), it follows that

\[
J_{k+1} = D_k^{22} - D_k^{21}(E_k + D_k^{11})^{-1}D_k^{12},
\]

\[
E_{k}^{i,j} = A_{k}^{i+1,j+1} - A_{k}^{i+1,1} (A_{k}^{1,1})^{-1} A_{k}^{1,j+1}
\]

\[
= (E_{k}^{j,i})^t,
\]

for \( i, j = 1, \ldots, t'_i - 1 \).

Since \( D_k^{11}, D_k^{12}, D_k^{21} \) and \( D_k^{22} \) in (60) can be calculated as (18)-(20), we only needs to derive the recursion of \( E_{k}^{i,j} \).
Using Lemma 6.2, we can simplify (63). Moreover, by the definition of recursion of $J$ and $X$, we decompose Equation (62) and the Schur complement of the corresponding block of the right matrix of Equation (62) is

\[ A_{k-1}^{i+2,j+2} + C_{k-1}^{i+1,j+1} + B_{k-1}^{i+2-\ell_3'-\ell_2'-\ell_3'+\ell_2'+\ell_2'} \]

\[ - \left( A_{k-1}^{i+2,1} A_{k-1}^{i+2,2} + C_{k-1}^{i+1,1} \right) \]

\[ \cdot \left( \begin{array}{cc} A_{k-1}^{1,1} & A_{k-1}^{1,2} \\ A_{k-1}^{2,1} & A_{k-1}^{2,2} + C_{k-1}^{1,1} \end{array} \right)^{-1} \left( \begin{array}{c} A_{k-1}^{1,j+2} \\ A_{k-1}^{2,j+2} + C_{k-1}^{1,j+1} \end{array} \right). \]

Using Lemma 6.2, we can simplify (63). Moreover, by the definition of $E_{k-1}^{ij}$ in (61), we have the recursion of $E_{k}^{ij}$ as

\[ E_{k}^{ij} = E_{k-1}^{i+1,j+1} + B_{k-1}^{i+2-\ell_3'-\ell_2'-\ell_3'+\ell_2'+\ell_2'} + C_{k-1}^{i+1,j+1} \]

\[ - (E_{k-1}^{i+1,1} + C_{k-1}^{i+1,1})(E_{k-1}^{11} + C_{k-1}^{11})^{-1} \]

\[ - (E_{k-1}^{1,j+1} + C_{k-1}^{1,j+1}). \]

2. $\ell_3' < \ell_2' + 1$

We decompose $X_k$ as

\[ X_k = (X'_{k-\ell_2'}, \ldots, X'_{k-\ell_2'-2}, \ldots, X'_{k-1}, \ldots) \]

and $J(X_k)$ correspondingly as

\[ J(X_k) = \left( \begin{array}{cccc} A_{k}^{11} & \ldots & A_{k}^{1,\ell_3'} & \ldots & A_{k}^{1,\ell_2'} \\ \vdots & \ldots & \vdots & \ldots & \vdots \\ A_{k}^{\ell_3',1} & \ldots & A_{k}^{\ell_3',\ell_3'} & \ldots & A_{k}^{\ell_3',\ell_2'} \\ \vdots & \ldots & \vdots & \ldots & \vdots \\ A_{k}^{\ell_2',1} & \ldots & A_{k}^{\ell_2',\ell_3'} & \ldots & A_{k}^{\ell_2',\ell_2'} \end{array} \right) \]
where

\[
\begin{align*}
A_{k}^{1,1} & = E(- \triangle x_{k-i_2') \ln p_k), \\
A_{k}^{1,j} & = E(- \triangle x_{k-i_2'+j-1} \ln p_k), \\
A_{k}^{i,1} & = E(- \triangle x_{k-i_2'+j+1} \ln p_k), \\
A_{k}^{i,j} & = E(- \triangle x_{k-i_2'+j-1} \ln p_k) \\
\text{for } i, j & = 2, \ldots, l_2'.
\end{align*}
\]

(65)

Using (8), (55), (56), the posterior information matrix for \(X_{k+1} \) can be written in block form as

\[
J(X_{k+1}) =
\begin{pmatrix}
A_{k}^{1,1} & \ldots & A_{k}^{1,l_2'} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
A_{k}^{l_2',1} & \ldots & A_{k}^{l_2',l_2'} & C_{k}^{l_2',l_3'} \\
+ C_{k}^{l_2',l_3'} & + B_{k}^{l_2',l_2'} & C_{k}^{l_2',l_3'} & + B_{k}^{l_2',l_2'} \\
0 & \ldots & C_{k}^{l_2',l_3'} & C_{k}^{l_2',l_3'} \\
+ B_{k}^{l_2',l_2'} & + B_{k}^{l_2',l_2'} & + C_{k}^{l_2',l_3'} & + B_{k}^{l_2',l_2'}
\end{pmatrix}
\]

where \(B_{k}^{i,j} \) and \(C_{k}^{i,j} \) are defined in (16)-(17). To simplify the matrix \(J(X_{k+1}) \), we denote by \(l_2' \triangleq l_2' - l_3' + 3, l_2' \triangleq l_2' - l_3' + 2, l_3' \triangleq l_3' - 1, l_2' \triangleq l_2' + 1 \). The information submatrix \(J_{k+1} \) for estimating \(x_{k+1} \in R^n \) is given as the inverse of the \((r \times r)\) right-lower block of \([J(X_{k+1})]^{-1} \), i.e.,

\[
J_{k+1} = D_{k}^{22} - D_{k}^{21}(E_{k} + D_{k}^{11})^{-1}D_{k}^{12}, \quad (66)
\]

\[
E_{k}^{i,j} = A_{k}^{i+j+1} - A_{k}^{i+1,1} (A_{k}^{11})^{-1} A_{k}^{1,j+1} = (E_{k}^{i,j})', \quad (67)
\]

\text{for } i, j = 1, \ldots, l_2'.

Since \(D_{k}^{11}, D_{k}^{12}, D_{k}^{21} \) and \(D_{k}^{22} \) in (66) can be calculated as (18)-(20), we only needs to derive the recursion \(B_{k}^{i,j} \).

Based on the recursion between \(p_k \) and \(p_{k-1} \) given in (8) which depends on (55) and (56), and using the definitions of \(A_{k}^{i,j}, B_{k}^{i,j}, C_{k}^{i,j} \) given in (55), (16), (17) respectively, it follows that

\[
\begin{pmatrix}
A_{k}^{11} & A_{k}^{1,j+1} \\
A_{k}^{i+1,1} & A_{k}^{i+1,j+1}
\end{pmatrix}
\]
where if \( A \leq \mathbf{1} \) or \( j \leq \mathbf{1} - \mathbf{1} \), then \( \mathbf{C}^{i-\mathbf{1},j-\mathbf{1}} = \mathbf{0} \); if \( A > \mathbf{1} + \mathbf{1} \) or \( j > \mathbf{1} + \mathbf{1} \), then \( \mathbf{A}^{i,j-\mathbf{1}} = \mathbf{0} \). Moreover, similar to the derivation of Equation (64), we have the recursion of the matrix \( \mathbf{E}_k \) as

\[
\mathbf{E}^{i,j}_k = \mathbf{E}^{i+1,j+1}_k + \mathbf{C}^{i-\mathbf{1},j-\mathbf{1}} + \mathbf{B}^{i+1,j+1}_k - (\mathbf{E}^{i+1,j+1}_k + \mathbf{C}^{i+1,j+1}_k - 1)(\mathbf{E}^{1,j+1}_k + \mathbf{C}^{1,j+1}_k)^{-1}
\]

(69)

3. \( l'_2 + 1 = l'_3 \)

We decompose \( \mathbf{X}_k \) as \( \mathbf{X}_k = (\mathbf{X}_{k-l'_3+1}^{l'_3}, \ldots, \mathbf{X}_{k-l'_2}^{l'_2}) \) and \( J(\mathbf{X}_k) \) correspondingly as

\[
J(\mathbf{X}_k) = \begin{pmatrix}
\mathbf{A}_k^{1,1} & \cdots & \mathbf{A}_k^{1,l'_2} \\
\vdots & \ddots & \vdots \\
\mathbf{A}_k^{l'_3,1} & \cdots & \mathbf{A}_k^{l'_3,l'_3}
\end{pmatrix}
\]

where

\[
\begin{align*}
\mathbf{A}_k^{1,1} &= E(- \Delta \mathbf{X}_{k-l'_3+1} \ln p_k), \\
\mathbf{A}_k^{1,j} &= E(- \Delta \mathbf{X}_{k-l'_3+1} \ln p_k), \\
\mathbf{A}_k^{i,1} &= E(- \Delta \mathbf{X}_{k-l'_3+1} \ln p_k), \\
\mathbf{A}_k^{i,j} &= E(- \Delta \mathbf{X}_{k-l'_3+1} \ln p_k),
\end{align*}
\]

(70)

for \( i, j = 2, \ldots, l'_3 \).

Using (68), (55), (56), the posterior information matrix for \( \mathbf{X}_{k+1} \) can be written in block form as

\[
J(\mathbf{X}_{k+1}) =
\]
where $B_{k}^{i,j}$ and $C_{k}^{i,j}$ are defined in (16)-(17). The information submatrix $J_{k+1}$ for estimating $x_{k+1} \in R^r$ is given as the inverse of the $(r \times r)$ right-lower block of $[J(X_{k+1})]^{-1}$, i.e.,

$$
J_{k+1} = D_{k}^{22} - D_{k}^{21}(E_{k} + D_{k}^{11})^{-1}D_{k}^{12},
$$

(71)

$$
E_{k}^{ij} = A_{k}^{i+i+1} - A_{k}^{i+1,j+1}(A_{k}^{11})^{-1}A_{k}^{i,j+1},
$$

(72)

for $i, j = 1, \ldots, l^3 - 1$.

Since $D_{k}^{11}$, $D_{k}^{12}$, $D_{k}^{21}$ and $D_{k}^{22}$ in (71) can be calculated as (26)-(28), we only needs to derive the recursion $B_{k}^{i,j}$.

Based on the recursion between $p_{k}$ and $p_{k-1}$ given in (8) which depends on (55) and (56), and using the definitions of $A_{k}^{i,j}$, $B_{k}^{i,j}$, $C_{k}^{i,j}$ given in (70), (16), (17) respectively, it follows that

$$
\begin{pmatrix}
A_{k}^{1,1} & A_{k}^{1,2} & \cdots & A_{k}^{1,l^3} & 0 \\
A_{k}^{2,1} & A_{k}^{2,2} & \cdots & A_{k}^{2,l^3} & C_{k}^{1,l^3} \\
& +C_{k}^{1,1} & +C_{k}^{1,l^3-1} & +B_{k}^{1,l^3} & \\
& +B_{k}^{1,1} & +B_{k}^{1,l^3-1} & & \\
& \vdots & \vdots & \vdots & \vdots & \vdots \\
& A_{k}^{l^3,1} & A_{k}^{l^3,2} & \cdots & A_{k}^{l^3,l^3} & C_{k}^{l^3,l^3} \\
& +C_{k}^{l^3,1,1} & +C_{k}^{l^3,1,l^3-1} & +B_{k}^{l^3,1,l^3-1} & \\
& +B_{k}^{l^3,1,1} & +B_{k}^{l^3,1,l^3-1} & & \\
0 & C_{k}^{l^3,1,1} & \cdots & C_{k}^{l^3,1,l^3-1} & C_{k}^{l^3,l^3} \\
& +B_{k}^{l^3,1,1} & +B_{k}^{l^3,1,l^3-1} & +B_{k}^{l^3,l^3} & \\
\end{pmatrix}
$$

for $i = 1, \ldots, l^3 - 1, j = 1, \ldots, l^3 - 1$. 

26
where $A_{k-1}^{i'3+1,j} = 0$ and $A_{k-1}^{i,3+1} = 0$. Moreover, similar to the derivation of Equation (64), we have the recursion of the matrix $E_k$ as

$$E_{k}^{ij} = E_{k-1}^{i+1,j+1} + C_{k-1}^{i+1,j+1} + B_{k-1}^{i+1,j+1}$$

$$-(E_{k-1}^{i+1,1} + B_{k-1}^{i+1,1} + C_{k-1}^{i+1,1})$$

$$(E_{k-1}^{11} + B_{k-1}^{11} + C_{k-1}^{11})^{-1}$$

$$(E_{k-1}^{1,j+1} + B_{k-1}^{1,j+1} + C_{k-1}^{1,j+1}).$$

Based on (60), (64), (66), (69), (71) and (73), we have completed the proof of the Theorem 3.1.

### 6.2 proof of Corollary 3.3

In case of $l_1 = 0$, $l_2 = 0$, $l_4 = 0$, $l_3 = l$, by (55)-(56), Equation (8) can be written as

$$p_{k+1} =$$

$$p_k p(x_{k+1} | x_k) p(z_{k+1} | x_{k+1}),$$

for $l = 1$

or $l = 0,$

$$p_k p(x_{k+1} | x_k) p(z_{k+1} | x_{k+1}, x_k)$$

for $l = 2,$

$$p_k p(x_{k+1} | x_k) p(z_{k+1} | x_{k+1}, \ldots, x_{k-l+2})$$

for $l > 2$

Thus, we can immediately obtain the recursion (29) by Theorem 3.1. The recursion of $E_k$ can be written as the three cases of (30), (31) and (32) respectively. At the same time, the matrices $B_k$, $C_k$, and $D_k$ become correspondingly appropriate forms.

### 6.3 proof of Corollary 3.4

In case of $l_1 = 0$, $l_2 = l$, $l_3 = 0$, $l_4 = 0$, i.e., $l'_3 < l'_2 + 1$, by (55)-(56), Equation (8) can be written as

$$p_{k+1} = p_k p(x_{k+1} | x_k, \ldots, x_{k-l'_2+1}) p(z_{k+1} | x_{k+1}).$$

Thus, we can get (33)-(34) by Theorem 3.1. At the same time, the matrices $B_k$, $C_k$, and $D_k$ become correspondingly appropriate forms.
6.4 proof of Corollary 3.5

In case of $l_1 = l$, $l_2 = 0$, $l_3 = 0$, $l_4 = 0$, i.e., $l'_3 < l'_2 + 1$, by (56), Equation (8) can be simplified as

$$p_{k+1} = \begin{cases} 
  p_k p(x_{k+1} | x_k) p(z_{k+1} | x_{k+1}) & \text{for } l = 0, \\
p_k p(x_{k+1} | x_k) p(z_{k+1} | x_{k+1}, \\
& z_k, \ldots, z_{k-l+1}) & \text{for } l > 0.
\end{cases}$$

Thus, we can get (40) by Theorem 3.1. At the same time, the matrices $B_k, C_k, D_k$ become correspondingly appropriate forms.

References

[1] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part I: dynamic models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333–11364, 2003.

[2] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: A survey,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, pp. 103–123, January 1998.

[3] D. Simon, Optimal State Estimation: Kalman, $H_\infty$, and Nonlinear Approaches. Wiley-Interscience, 2006.

[4] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. New York: Wiley, 2001.

[5] S. R. Rogers, “Alpha-beta filter with correlated measurement noise,” IEEE Transactions on Aerospace and Electronic Systems, vol. 23, pp. 592–594, July 1987.

[6] Y. Halevi, “Optimal observers for systems with colored noises,” IEEE Transactions on Automatic Control, vol. 35, pp. 1075–1078, August 1990.

[7] W. D. Blair, G. A. Watson, and T. R. Rice, “Tracking maneuvering targets with an interacting multiple model filter containing exponentially correlated acceleration models,” in Proceedings of the Twenty-Third Southeastern Symposium on System Theory, pp. 224–228, 1991.

[8] I. Rapoport and Y. Oshman, “A Cramér-Rao-Type estimation lower bound for systems with measurement faults,” IEEE Transactions on Automatic Control, vol. 50, pp. 1234–1245, September 2003.

[9] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Transactions on Robotics, vol. 22, pp. 1216–1227, December 2006.
[10] P. Jiang, J. Zhou, and Y. M. Zhu, “Globally optimal Kalman filtering with finite-time correlated noises,” in *Proceedings of the 49th IEEE Conference on Decision and Control*, pp. 15–17, December 2010.

[11] S. Y. Chen, “Kalman filter for robot vision: A survey,” *IEEE Transactions on Industrial Electronics*, vol. 59, pp. 4409–4420, November 2012.

[12] H. L. Van Trees, *Detection, Estimation, and Modulation Theory, Part I*. New York: Wiley, 1968.

[13] P. Tichavský, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-Rao bounds for discrete-time nonlinear filtering,” *IEEE Transactions on Signal Processing*, vol. 46, pp. 1386–1396, May 1998.

[14] B. Z. Bobbovsky, E. Mayer-Wolf, and M. Zakai, “Some classes of global Cramér-Rao bounds,” *Annals of Statistics*, vol. 15, no. 4, pp. 1421–1438, 1987.

[15] E. Weinstein and A. J. Weiss, “A general class of lower bounds in parameter estimation,” *IEEE Transactions on Information Theory*, vol. 34, pp. 338–342, March 1988.

[16] B. Z. Bobbovsky and M. Zakai, “A lower bound on the estimation error for Markov processes,” *IEEE Transactions on Automatic Control*, vol. 20, pp. 785–788, 1975.

[17] J. H. Taylor, “The Cramér-Rao estimation error lower bound computation for deterministic nonlinear systems,” *IEEE Transactions on Automatic Control*, vol. 24, pp. 343–344, April 1979.

[18] J. I. Galdos, “A Cramér-Rao bound for multidimensional discrete-time dynamical systems,” *IEEE Transactions on Automatic Control*, vol. 25, pp. 117–119, 1980.

[19] C. B. Chang, “Two lower bounds on the covariance for nonlinear estimation problems,” *IEEE Transactions on Automatic Control*, vol. 26, pp. 1294–1297, December 1981.

[20] T. H. Kerr, “Status of CR-like lower bounds for nonlinear filtering,” *IEEE Transactions on Aerospace and Electronic Systems*, vol. 25, pp. 590–600, September 1989.

[21] P. M. Schultheiss and E. Weinstein, “Lower bounds on the localization errors of a moving source observed by a passive array,” *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 29, pp. 600–607, June 1981.

[22] V. J. Aidala and S. E. Hammel, “Utilization of modified polar coordinates for bearings-only tracking,” *IEEE Transactions on Automatic Control*, vol. 28, pp. 283–294, March 1983.

[23] T. Kirubarajan and Y. Bar-Shalom, “Low observable target motion analysis using amplitude information,” *IEEE Transactions on Aerospace and Electronic Systems*, vol. 32, pp. 1367–1384, October 1996.

[24] R. Niu, P. Willett, and Y. Bar-Shalom, “Matrix CRLB scaling due to measurements of uncertain origin,” *IEEE Transactions on Signal Processing*, vol. 49, pp. 1325–1335, July 2001.
[25] X. Zhang, P. Willett, and Y. Bar-Shalom, “The Cramér-Rao bound for dynamic target tracking with measurement origin uncertainty,” in Proceedings of the 41st IEEE Conference on Decision and Control, (Las Vegas), pp. 3428–3433, December 2002.

[26] Y. Zheng, O. Ozdemir, R. Niu, and P. K. Varshney, “New conditional posterior Cramér-Rao lower bounds for nonlinear sequential bayesian estimation,” IEEE Transactions on Signal Processing, vol. 60, pp. 5549–5556, October 2012.

[27] S. Kar, P. K. Varshney, and M. Palaniswami, “Cramér-Rao bounds for polynomial signal estimation using sensors with AR(1) drift,” IEEE Transactions on Signal Processing, vol. 60, pp. 5494–5507, October 2012.

[28] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions on Signal Processing, vol. 57, pp. 451–462, February 2009.

[29] X. Shen and P. K. Varshney, “Sensor selection based on generalized information gain for target tracking in large sensor networks,” IEEE Transactions on Signal Processing, vol. 62, pp. 363–375, January 2014.

[30] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2nd revised ed., 2012.