SEMI-PARALLEL SYMMETRIC OPERATORS FOR HOPF
HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS

DOO HYUN HWANG, HYUNJIN LEE, AND CHANGHWA WOO

Abstract. In this paper, we introduce new notions of semi-parallel shape
operators and structure Jacobi operators in complex two-plane Grassmanni-
ans \(G_2(\mathbb{C}^{m+2}) \). By using such a semi-parallel condition, we give a complete
classification of Hopf hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \).

Introduction

The classification of real hypersurfaces in Hermitian symmetric space is one of
interesting parts in the field of differential geometry. Among them, we introduce
a complex two-plane Grassmannian \(G_2(\mathbb{C}^{m+2}) \) defined by the set of all complex
two-dimensional linear subspaces in \(\mathbb{C}^{m+2} \). It is a kind of Hermitian symmetric
space of compact irreducible type with rank 2. Remarkably, the man ifolds are
equipped with both a Kähler structure \(J \) and a quaternionic Kähler structure \(\mathfrak{J} \)
satisfying \(JJ_\nu = J_\nu J \) (\(\nu = 1, 2, 3 \)) where \(J_\nu \) is an orthonormal basis of \(\mathfrak{J} \). When
\(m = 1 \), \(G_2(\mathbb{C}^3) \) is isometric to the two-dimensional complex projective space \(\mathbb{C}P^2 \)
with constant holomorphic sectional curvature eight. When \(m = 2 \), we note that
the isomorphism \(\text{Spin}(6) \cong SU(4) \) yields an isometry between \(G_2(\mathbb{C}^4) \) and the real
Grassmann manifold \(G_2^+(\mathbb{R}^6) \) of oriented two-dimensional linear subspaces in \(\mathbb{R}^6 \).
In this paper, we assume \(m \geq 3 \). (see Berndt and Suh \[2\] and \[3\]).

Let \(M \) be a real hypersurface in \(G_2(\mathbb{C}^{m+2}) \) and \(N \) a local unit normal vector field
of \(M \). Since \(G_2(\mathbb{C}^{m+2}) \) has the Kähler structure \(J \), we may define a Reeb vector
field \(\xi \) defined by \(\xi = -JN \) and a 1-dimensional distribution \(\{\xi\} = \text{Span}\{\xi\} \). The
Reeb vector field \(\xi \) is said to be a Hopf if it is invariant under the shape operator
\(A \) of \(M \). The 1-dimensional foliation of \(M \) by the integral curves of \(\xi \) is said to be a
Hopf foliation of \(M \). We say that \(M \) is a Hopf hypersurface if and if the Hopf
foliation of \(M \) is totally geodesic. By the formulas in \[10\] Section 2], it can be easily
checked that \(\xi \) is Hopf if and only if \(M \) is Hopf.

From the quaternionic Kähler structure \(\mathfrak{J} \) of \(G_2(\mathbb{C}^{m+2}) \), there naturally exists
almost contact 3-structure vector field \(\xi_1, \xi_2, \xi_3 \) defined by \(\xi_\nu = -J_\nu N, \ \nu = 1, 2, 3 \).
Put $Q^\perp = \text{Span}\{\xi_1, \xi_2, \xi_3\}$, which is a 3-dimensional distribution in a tangent vector space T_xM of M at $x \in M$. In addition, Q stands for the orthogonal complement of Q^\perp in T_xM. It becomes the quaternionic maximal subbundle of T_xM. Thus the tangent space of M consists of the direct sum of Q and Q^\perp as follows: $T_xM = Q \oplus Q^\perp$.

For two distributions $[\xi]$ and Q^\perp defined above, we may consider two natural invariant geometric properties under the shape operator A of M, that is, $A[\xi] \subset [\xi]$ and $AQ^\perp \subset Q^\perp$. By using the result of Alekseevskii [11], Berndt and Suh [2] have classified all real hypersurfaces with two natural invariant properties in $G_2(C^{m+2})$ as follows:

Theorem A. Let M be a connected real hypersurface in $G_2(C^{m+2})$, $m \geq 3$. Then both $[\xi]$ and Q^\perp are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic $G_2(C^{m+1})$ in $G_2(C^{m+2})$, or

(B) m is even, say $m = 2n$, and M is an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(C^{m+2})$.

In the case (A), we call M is a real hypersurface of Type (A) in $G_2(C^{m+2})$. Similarly in the case (B) we call M one of Type (B). Using Theorem A, many geometerians have given some characterizations for Hopf hypersurfaces in $G_2(C^{m+2})$ with geometric quantities, for example, shape operator, normal (or structure) Jacobi operator, Ricci tensor, and so on. In particular, Lee and Suh [10] gave a characterization for real hypersurfaces of Type (B) as follows:

Theorem B. Let M be a connected orientable Hopf hypersurface in $G_2(C^{m+2})$, $m \geq 3$. Then the Reeb vector field ξ belongs to the distribution Q if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(C^{m+2})$, $m = 2n$, where the distribution Q denotes the orthogonal complement of Q^\perp in T_xM, $x \in M$. In other words, M is locally congruent to real hypersurfaces of Type (B).

On the other hand, regarding the parallelism of tensor field T of type $(1,1)$, that is, $\nabla T = 0$, on M in $G_2(C^{m+2})$, $m \geq 3$, there are many well-known results. Among them, when $T = A$ where A denotes the shape operator of M, some geometerians have verified non-existence properties and some characterizations for the shape operator A with many kinds of parallelisms, such as Levi-civita parallel, \mathfrak{g}-parallel, Q^\perp-parallel, Reeb parallel or generalized Tanaka-Webster parallel, and so on (see [5], [8], [11], [15], etc.).

Furthermore, many geometricians considered such a parallelism for another tensor field of type $(1,1)$ on M, namely, the Jacobi operator R_X defined $(R_X(Y))(p) = (R(Y,X))X(p)$, where R denotes a Riemannian curvature tensor of type $(1,3)$ on M and X, Y denote tangent vector fields on M. Clearly, each tangent vector field X to M provides the Jacobi operator R_X with respect to X. When it comes to $X = \xi$, the Jacobi operator R_ξ is said to be a structure Jacobi operator. Related to the tensor field R_ξ of type $(1,1)$ on M, Pérez, Jeong, and Suh [6] considered the parallelism, that is, $\nabla_X R_\xi = 0$ for any $X \in TM$ and obtained a non-existence property.

In this paper we consider a generalized notion for parallelism of tensor field of type $(1,1)$ on M in $G_2(C^{m+2})$, namely, semi-parallelism. Actually, in [3] a tensor
field \(F \) of type \((1, s)\) on a Riemannian manifold is said to be *semi parallel* if \(R \cdot F = 0 \). It means that the Riemannian curvature tensor \(R \) of \(M \) acts as a derivation on \(F \). From this, it is natural that if a tensor field \(T \) of type \((1,1)\) is parallel, then \(T \) is said to be a *semi-parallel*. Geometricians have proved various results concerning the semi-parallelism conditions of real hypersurfaces in complex space form (see [4], [11], [13]). Recently, K. Panagiotidou and M.M. Tripathi suggested the notion of *semi-parallel normal Jacobi operator* for a real hypersurface in \(G_2(\mathbb{C}^{m+2}) \) (see [12]).

Motivated by these works, we consider semi-parallels of the shape operator and the structure Jacobi operator for real hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \), and assert the following theorems, respectively:

Theorem 1. Let \(M \) be a connected real hypersurface in complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2}), m \geq 3 \). There does not exist Hopf hypersurfaces \(M \) with semi-parallel shape operator if the smooth function \(\alpha = g(A\xi, \xi) \) is constant along the direction of \(\xi \).

Theorem 2. Let \(M \) be a connected real hypersurface in complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2}), m \geq 3 \). There does not exist Hopf hypersurfaces \(M \) with semi-parallel structure Jacobi operator if the smooth function \(\alpha = g(A\xi, \xi) \) is constant along the direction of \(\xi \).

In [12], K. Panagiotidou and M.M. Tripathi proved the following

Theorem C. There does not exist any connected Hopf hypersurface in complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2}), m \geq 3 \), with semi-parallel normal Jacobi operator if the smooth function \(\alpha = g(A\xi, \xi) \neq 0 \) and \(Q^- \) or \(Q^+ \)-component of \(\xi \) is invariant by the shape operator.

From this we consider that \(M \) has a vanishing geodesic Reeb flow when it comes to normal Jacobi operator. Hence by virtue of [9] Lemma 3.1, it gives us a extended result with respect to Theorem C as follows.

Theorem 3. Let \(M \) be a connected real hypersurface in complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2}), m \geq 3 \). There does not exist Hopf hypersurfaces \(M \) with normal Jacobi operator if the smooth function \(\alpha = g(A\xi, \xi) \) is constant along the direction of \(\xi \).

In this paper, we refer [1], [2], [3], [10] and [7], [14], [15] for Riemannian geometric structures of \(G_2(\mathbb{C}^{m+2}) \) and its geometric quantities, respectively.

1. Semi-parallel shape operator

In this section, let \(M \) represent a Hopf real hypersurface in \(G_2(\mathbb{C}^{m+2}), m \geq 3 \), and \(R \) denote the Riemannian curvature tensor of \(M \). Hereafter unless otherwise stated, we consider that \(X, Y, \) and \(Z \) are any tangent vector field on \(M \). Let \(W \) be any tangent vector field on \(Q \).

We first give the fundamental equation for the semi-parallelism of a tensor field \(T \) of type \((1,1)\) on \(M \) and prove our Theorem 1.
As mentioned in the introduction, a tensor field T on M is said to be semi-parallel, if T satisfies $R \cdot T = 0$. It is equal to

\begin{equation}
(R(X, Y)T)Z = 0.
\end{equation}

Since $(R(X, Y)T)Z = R(X, Y)(TZ) - T(R(X, Y)Z)$, the equation (1) is equivalent to the following

\begin{equation}
R(X, Y)(TZ) = T(R(X, Y)Z).
\end{equation}

Using this discussion, let us prove our Theorem 1 given in Introduction. In order to do this, suppose that M has the semi-parallel shape operator, that is, the shape operator A of M satisfies the condition $(R(X, Y)A)Z = 0$. From the relation between (1) and (2), we see that the given condition is equivalent to

\begin{equation}
R(X, Y)(AZ) = A(R(X, Y)Z).
\end{equation}

Therefore from (14) The equation of Gauss, it becomes

\begin{align*}
g(Y, AZ)X - g(X, AZ)Y + g(\phi Y, AZ)\phi X - g(\phi X, AZ)\phi Y \\
- 2g(\phi X, Y)\phi AZ + g(AY, AZ)AX - g(AX, AZ)AY + \\
\sum_{\nu} \left\{ g(\phi_{\nu} Y, AZ)\phi_{\nu} X - g(\phi_{\nu} X, AZ)\phi_{\nu} Y - 2g(\phi_{\nu} X, Y)\phi_{\nu} A\right\} \\
+ \sum_{\nu} \left\{ g(\phi_{\nu} Y, AZ)\phi_{\nu} X - g(\phi_{\nu} X, AZ)\phi_{\nu} Y \right\} \\
- \sum_{\nu} \left\{ \eta(Y)\eta_{\nu}(AZ)\phi_{\nu} X - \eta(X)\eta_{\nu}(AZ)\phi_{\nu} Y \right\} \\
- \sum_{\nu} \left\{ \eta(X)g(\phi_{\nu} Y, AZ) - \eta(Y)g(\phi_{\nu} X, AZ) \right\} \xi_{\nu}.
\end{align*}

(1.2)

\begin{align*}
= g(Y, Z)AX - g(X, Z)AY + g(\phi Y, Z)A\phi X - g(\phi X, Z)A\phi Y \\
- 2g(\phi X, Y)A\phi Z + g(AY, Z)A^{2}X - g(AX, Z)A^{2}Y + \\
\sum_{\nu} \left\{ g(\phi_{\nu} Y, Z)A\phi_{\nu} X - g(\phi_{\nu} X, Z)A\phi_{\nu} Y - 2g(\phi_{\nu} X, Y)A\phi_{\nu} Z \right\} \\
+ \sum_{\nu} \left\{ g(\phi_{\nu} Y, Z)A\phi_{\nu} X - g(\phi_{\nu} X, Z)A\phi_{\nu} Y \right\} \\
- \sum_{\nu} \left\{ \eta(Y)\eta_{\nu}(Z)A\phi_{\nu} X - \eta(X)\eta_{\nu}(Z)A\phi_{\nu} Y \right\} \\
- \sum_{\nu} \left\{ \eta(X)g(\phi_{\nu} Y, Z) - \eta(Y)g(\phi_{\nu} X, Z) \right\} A\xi_{\nu},
\end{align*}

where \sum_{ν} moves from $\nu = 1$ to $\nu = 3$.

Putting $Y = Z = \xi$ and using the condition of Hopf, the equation (1.2) can be reduced to

\begin{equation}
AX + \alpha A^{2}X
\end{equation}

\begin{align*}
- \sum_{\nu} \left\{ \eta_{\nu}(X) - \eta(X)\eta_{\nu}(\xi) \right\} A\xi_{\nu} + 3\eta_{\nu}(\phi X)A\phi_{\nu} X + \eta_{\nu}(\xi)A\phi_{\nu} X
\end{align*}

\begin{equation}
= \alpha X + \alpha^{2}AX
\end{equation}
\[-\alpha \sum_{\nu} \left\{ \eta_\nu(X) - \eta(X)\eta_\nu(\xi) \right\} \xi_\nu + 3\eta_\nu(\phi X)\phi_\nu \xi + \eta_\nu(\xi)\phi_\nu \phi X. \]

Our first purpose is to show that \(\xi \) belongs to either \(Q \) or \(Q^\perp \).

Lemma 1.1. Let \(M \) be a Hopf hypersurface with semi-parallel shape operator in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \). If the principal curvature \(\alpha = g(A\xi, \xi) \) is constant along the direction of Reeb vector field \(\xi \), then \(\xi \) belongs to either the distribution \(Q \) or the distribution \(Q^\perp \).

Proof. We consider that \(\xi \) satisfies
\[
(*) \quad \xi = \eta(X_0)X_0 + \eta(\xi)\xi_1
\]
for some unit vectors \(X_0 \in Q, \xi_1 \in Q^\perp \), and \(\eta(X_0)\eta(\xi_1) \neq 0 \).

By virtue of [7, Equation (2.10)] and the assumption of \(\xi \alpha = 0 \), we get \(AX_0 = \alpha X_0 \) and \(A\xi_1 = \alpha \xi_1 \).

In the case of \(\alpha \neq 0 \), using the equation in [2, Lemma 1],
\[
Y \alpha = (\xi \alpha)\eta(Y) - 4\sum_{\nu=1}^{3} \eta_\nu(\xi)\eta_\nu(\phi Y),
\]
we obtain that \(\xi \) belongs to either \(Q \) or \(Q^\perp \). We next consider the case \(\alpha \neq 0 \).

Substituting \(X = \phi X_0 \) in (1.3) and using basic formulas including (4), we get
\[
A\phi X_0 - 3\eta(X_0)\eta(\xi)A\phi_1 \xi + \eta(\xi)A\phi_1 X_0 - \eta(\xi)\eta(X_0)A\phi_1 \xi + \alpha A^2 \phi X_0
\]
\[
= \alpha \phi X_0 - 3\alpha \eta(X_0)\eta(\xi)\phi_1 \xi + \alpha \eta(\xi)\phi_1 X_0 - \alpha \eta(\xi)\eta(X_0)\phi_1 \xi + \alpha A^2 \phi X_0.
\]
From (4) and \(\phi \xi = 0 \), we obtain that \(\phi_1 \xi = \eta(X_0)\phi_1 X_0 \) and \(\phi X_0 = -\eta(\xi_1)\phi_1 X_0 \).

In addition, substituting \(X \) by \(X_0 \) into [7, Lemma 2.2] and applying \(AX_0 = \alpha X_0 \), we see that both vector fields \(\phi X_0 \) and \(\phi_1 X_0 \) are principal with same corresponding principal curvature \(k = \frac{\alpha^2 + 4\eta^2(X_0)}{\alpha} \).

From this, (1.5) gives
\[
-4k\eta^2(X_0)\phi X_0 + \alpha k^2 \phi X_0 - 4\alpha \eta^2(X_0)\phi X_0 - \alpha^2 k \phi X_0 = 0.
\]
Since \(\alpha \neq 0 \), multiplying \(\alpha \) to this equation, we obtain
\[
4k\eta^2(X_0)(8\eta^2(X_0) + \alpha^2)\phi X_0 = 0.
\]
By our assumptions, we get \(\eta(X_0)\eta(\xi_1) \neq 0 \) which means \(\phi X_0 = 0 \). This makes a contradiction. Accordingly, we get a complete proof of our Lemma. \(\square \)

From Lemma 1.1, we only have two cases, \(\xi \in Q \) or \(\xi \in Q^\perp \), under our assumptions. Next we further study the case \(\xi \in Q^\perp \).

Lemma 1.2. Let \(M \) be a Hopf hypersurface with semi-parallel shape operator in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \). If the Reeb vector field \(\xi \) belongs to the distribution \(Q^\perp \), then \(M \) must be a \(Q^\perp \)-invariant hypersurface.

Proof. Since \(\xi \in Q^\perp \), we may put \(\xi = \xi_1 \in Q^\perp \) for the sake of our convenience. Differentiating \(\xi = \xi_1 \) along any direction \(X \in TM \) and using fundamental formulae in [10, Section 2], it gives us
\[
\phi AX = 2\eta_3(AX)\xi_2 - 2\eta_2(AX)\xi_3 + \phi_1 AX.
\]
Taking the inner product of (1.6) with \(W \in Q \) and taking symmetric part, we also have
\[
A\phi W = A\phi_1 W.
\]
Putting $X = \xi_2$ and $X = \xi_3$ into (1.3), we get, respectively,
\[
\begin{align*}
2A\xi_2 + \alpha A^2\xi_2 &= 2\alpha\xi_2 + \alpha^2 A\xi_2, \\
2A\xi_3 + \alpha A^2\xi_3 &= 2\alpha\xi_3 + \alpha^2 A\xi_3.
\end{align*}
\]

For $\alpha = 0$, clearly Q^\perp is invariant under the shape operator, i.e., $AQ^\perp \subset Q^\perp$. Thus, let us consider $\alpha \neq 0$. Then the previous equations imply that
\[
\begin{align*}
A^2\xi_2 &= \frac{\alpha^2 - 2}{\alpha} A\xi_2 + 2\xi_2, \\
A^2\xi_3 &= \frac{\alpha^2 - 2}{\alpha} A\xi_3 + 2\xi_3.
\end{align*}
\]

Moreover, restricting $X = \xi_2$, $Y = \xi_3$ and putting $Z = W \in Q$, the equation (1.2) becomes
\[
4\eta_3(AW)\xi_2 - 4\eta_2(AW)\xi_3 + 2\phi AW - 2\phi_1 AW + \eta_3(A^2W)A\xi_2 - \eta_2(A^2W)A\xi_3 = 2A\phi W - 2A\phi_1 W + \eta_3(AW)A^2\xi_2 - \eta_2(AW)A^2\xi_3.
\]

Applying (1.6), (1.7) and (1.8) to this equation, it follows $\eta_3(AW)\xi_2 = \eta_2(AW)\xi_3$. This means $\eta_3(AW) = \eta_2(AW) = 0$ for any tangent $W \in Q$. It completes the proof.

From this lemma, we see that M satisfying the assumptions in Lemma 1.2 is locally congruent to a model space of Type (A) in $G_2(C^{m+2})$. Now, if we assume $\xi \in Q$, then M with semi-parallel shape operator is locally congruent to one of Type (B) by virtue of Theorem B.

Summing up these discussions, we conclude: let M be a Hopf hypersurface in $G_2(C^{m+2})$, $m \geq 3$. If M satisfies (1.1) and $\alpha = 0$, then M must be a model space of Type (A) or (B).

Hereafter, let us check whether the shape operator of a model space of Type (A) (or one of Type (B)) satisfies the semi-parallel condition (1.1) by [2] Proposition 3 (or [2] Proposition 2), respectively.

Let M_A be a model space of Type (A) in $G_2(C^{m+2})$. To show our purpose, we suppose that M_A has the semi-parallel shape operator. From (1.3), (2) Proposition 3, and $\xi \in Q^\perp$, we have
\[
(\lambda - \alpha)(2 + \alpha\lambda)X = 0
\]
for any tangent vector $X \in T_\lambda = \{X \in T_\lambda M | X \perp \xi_\nu, \phi X = \phi_1 X, x \in M\}$. Since $\alpha = \sqrt{8}\cot\sqrt{8}r$ and $\lambda = -\sqrt{2}\tan\sqrt{2}r$ where $r \in (0, \pi/\sqrt{8})$, it implies that every $X \in T_\lambda$ is a zero vector. This gives rise to a contradiction. In fact, the dimension of the eigenspace T_λ is $2m - 2$ where $m \geq 3$.

Now let us consider our problem for a model space of Type (B) denoted by M_B. Similarly, we assume that the shape operator of M_B is semi-parallel. By virtue of [2] Proposition 2, we see that ξ of M_B belongs to Q. Therefore we obtain $\alpha\beta(\alpha - \beta)\xi_1 = 0$, if we put X as a unit vector field $\xi_1 \in T_\beta$ into (1.3). As we know $\alpha = -2\tan(2r), \beta = 2\cot(2r)$ where $r \in (0, \pi/4)$ on M_B, we get a contradiction. This completes the proof of our Theorem 1.

Therefore we assert:

Remark 1.3. The shape operator A of a model space of Type (A) nor Type (B) in $G_2(C^{m+2})$ does not satisfy the semi-parallelism condition.
Summing up these discussions, we complete the proof of our Theorem 1 given in the introduction. \qed

2. Semi-parallel structure Jacobi operator

In this section, we give a complete prove our Theorem 2. Suppose the structure Jacobi operator of M has semi-parallelism, that is, M satisfies the condition $(R(X, Y)R_{\xi}Z) = 0$. Besides, from the relation between \ref{1} and \ref{2} we see that the given condition is equivalent to
\begin{equation}
R(X, Y)(R_{\xi}Z) = R_{\xi}(R(X, Y)Z).
\end{equation}
The structure Jacobi operator R_{ξ} is defined by $R_{\xi}(X) = R(X, \xi\xi)$, where R denotes the Riemannian curvature tensor on M. Then from the Gauss equation, it can be written as
\begin{equation}
R_{\xi}X = X - \eta(X)\xi + \eta(A\xi)AX - \eta(AX)A\xi
\end{equation}
where \sum_{ν} denotes from $\nu = 1$ to $\nu = 3$. From this, we see that $R_{\xi}\xi = 0$.

Put $Y = Z = \xi$ into (2.1), due to $R_{\xi}\xi = 0$, we get:
\begin{equation}
R_{\xi}(R_{\xi}X) = 0.
\end{equation}
Using these observation from now on we show that ξ belongs to either Q or its orthogonal complement Q^\perp such that $TM = Q \oplus Q^\perp$.

Lemma 2.1. Let M be a Hopf hypersurface in $G_2(C^{m+2})$, $m \geq 3$, with semi-parallel structure Jacobi operator. If the principal curvature $\alpha = g(A\xi, \xi)$ is constant along the direction of ξ, then ξ belongs to either the distribution Q or the distribution Q^\perp.

Proof. Put ξ satisfies \ref{1} for some unit vectors $X_0 \in Q$ and $\xi_1 \in Q^\perp$.
Substituting $X = \xi_1$ in (2.2), we have $R_{\xi}(\xi_1) = \alpha^2\xi_1 - \alpha^2\eta(\xi_1)\xi$. This gives that
\begin{equation}
R_{\xi}(R_{\xi}\xi_1) = R_{\xi}(\alpha^2\xi_1 - \alpha^2\eta(\xi_1)\xi)
\end{equation}
\begin{equation}
= \alpha^2R_{\xi}\xi_1 - \alpha^2\eta(\xi_1)R_{\xi}\xi
\end{equation}
\begin{equation}
= \alpha^4\xi_1 - \alpha^4\eta(\xi_1)\xi.
\end{equation}
So, the condition of semi-parallel structure Jacobi operator implies
\begin{equation}
\alpha^4\xi_1 - \alpha^4\eta(\xi_1)\xi = 0.
\end{equation}
From this, taking the inner product with $X_0 \in Q$, it gives $\alpha^4\eta(\xi_1)\eta(X_0) = 0$. So we obtain the following three cases: $\alpha = 0$, $\eta(X_0) = 0$ or $\eta(\xi_1) = 0$. When α is identically vanishing, by virtue of \ref{1} we conclude that ξ belongs to either Q or Q^\perp. For $\eta(\xi_1) = 0$, then ξ belongs to Q because of our notation \ref{4}. Moreover, ξ belongs to Q^\perp if $\eta(X_0) = 0$. Accordingly, it completes the proof of our Lemma. \qed

According to Lemma 2.1 we consider the case $\xi \in Q^\perp$.

Lemma 2.2. Let M be a Hopf hypersurface with semi-parallel structure Jacobi operator in $G_2(C^{m+2})$, $m \geq 3$. If the Reeb vector field ξ belongs to the distribution Q^\perp, then $g(AQ, Q^\perp) = 0$.

From this and (2.6), we obtain
\[\eta \text{ induces that } \]
\[(2.6) \]
respectively, it becomes
\[\text{Again taking the inner product with } W \]
\[(2.5) \]
\[\alpha \eta \]
for any tangent vector field \(W \)
\[(2.4) \]
function \(\text{vanishing.} \)

Proof. We may put \(\xi = \xi_1 \), because \(\xi \in Q^\perp \). Differentiating \(\xi = \xi_1 \) for any direction \(X \) on \(M \), we obtain
\[
\begin{align*}
q_2(X) &= 2 g(AX, \xi_2), \quad q_3(X) = 2 g(AX, \xi_3) \quad \text{and} \\
AX &= \eta(AX) \xi + 2 g(AX, \xi_2) \xi_2 + 2 g(AX, \xi_3) \xi_3 - \phi \phi_1 AX
\end{align*}
\]
(2.4)

(or \(AX = \eta(X) A \xi + 2 \eta_2(X) A \xi_2 + 2 \eta_3(X) A \xi_3 - A \phi \phi_1 X \)).

Putting \(X = \xi_2 \) into (2.2), it follows that \(R_\xi(\xi_2) = 2 \xi_2 + \alpha A \xi_2 \). If the smooth function \(\alpha \) vanishes, it makes a contradiction. In fact, from (2.2) we see that \(R_\xi(R_\xi \xi_2) = 4 \xi_2 = 0 \). Thus we may consider that the smooth function \(\alpha \) is non-vanishing.

On the other hand, it follows that for any \(W \in Q \) the equation (2.2) becomes
\[R_\xi(W) = W + \phi_1 \phi W + \alpha AW, \]
from this, together with the semi-parallelism of \(R_\xi \), it follows that
\[
0 = R_\xi(R_\xi W)
= 2 \alpha AW + 2 \alpha \eta_3(\alpha W) \xi_3 + 2 \alpha \eta_2(\alpha W) \xi_2 - \alpha \phi_1 \phi AW
+ \alpha^2 A^2 W + \alpha A \phi_1 \phi W.
\]
From (2.4) and \(\alpha \neq 0 \), it follows that \(2 AW + \alpha A^2 W = 0 \), where \(AW = -A \phi_1 \phi W \) for any tangent vector field \(W \in Q \). Taking the inner product with \(\xi_2 \) and \(\xi_3 \), respectively, it becomes
\[\alpha \eta_2(A^2 W) = -2 \eta_2(AW), \quad \alpha \eta_3(A^2 W) = -2 \eta_3(AW). \]
Moreover, according to (2.2), we also have \(R_\xi(A \xi_2) = 2 A \xi_2 + \alpha A^2 \xi_2 \), which induces that
\[
0 = R_\xi(R_\xi \xi_2) = R_\xi(2 \xi_2 + \alpha A \xi_2)
= 2 R_\xi(\xi_2) + \alpha R_\xi(A \xi_2)
= 4 \xi_2 + 4 \alpha A \xi_2 + \alpha^2 A^2 \xi_2.
\]
Again taking the inner product with \(W \in Q \) and using the fact \(\alpha \neq 0 \), we have
\[
\alpha \eta_2(A^2 W) = -4 \eta_2(AW).
\]
From this and (2.6), we obtain \(\eta_2(AW) = 0 \) for any tangent vector field \(W \in Q \).

Similarly, from (2.2) we get \(R_\xi \xi_3 = 2 \xi_3 + \alpha A \xi_3 \) and \(R_\xi(A \xi_3) = 2 A \xi_3 + \alpha A^2 \xi_3 \), which gives
\[
0 = R_\xi(R_\xi \xi_3) = R_\xi(2 \xi_3 + \alpha A \xi_3)
= 4 \xi_3 + 4 \alpha A \xi_3 + \alpha^2 A^2 \xi_3.
\]
From this, taking the inner product with \(W \in Q \) and using \(\alpha \neq 0 \), we have \(4 \eta_3(AX) + \alpha \eta_3(A^2 X) = 0 \). Combining this and (2.6), we get also \(\eta_3(AW) = 0 \) for any \(W \in Q \). Until now, we have proven if \(M \) satisfies our assumptions, then the distribution \(Q^\perp \) is invariant under the shape operator, that is, \(g(A Q, Q^\perp) = 0 \). This gives a complete proof of our lemma. \(\square \)

From this lemma and Theorem A given by Berndt and Suh [2], we see that a Hopf hypersurface \(M \) satisfying the assumptions in Lemma (2.2) is locally congruent to a model space of Type (A). Now, if \(\xi \) belongs to \(Q \), then by virtue of Theorem B a Hopf hypersurface \(M \) with semi-parallel structure Jacobi operator is locally congruent to a real hypersurface of Type (B) in \(G_2(C^{m+2}) \). Hence we conclude that let
Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$. If M satisfies (2.1) and $\xi\alpha = 0$, then M is a model space of Type (A) or (B).

From such a point of view, let us consider the converse problem. More precisely, we check whether the structure Jacobi operator R_ξ of a model space of Type (A) (or of Type (B), resp.) satisfies the semi-parallel condition (2.1).

In order to check our problem for a model space M_A, we suppose that M_A has the semi-parallel structure Jacobi operator. By virtue of Proposition 3 in [2], we see that $\xi = \xi_1 \in T_\alpha$ and $\xi_j \in T_\beta$ for $j = 2, 3$. From this, the semi-parallel condition for R_ξ becomes

$$R_\xi(R_\xi \xi_2) = 4\xi_2 + 4\alpha\beta\xi_2 + \alpha^2\beta^2\xi_2$$

(1.3)

when we put $X = \xi_2$ in (2.3). It implies $(\alpha\beta + 2) = 0$. But since $\alpha = \sqrt{2}\cot(\sqrt{2}r)$ and $\beta = \sqrt{2}\cot(\sqrt{2}r)$, we obtain $(\alpha\beta + 2) = 2\cot^2(\sqrt{2}r) \neq 0$ for $r \in (0, \pi/2\sqrt{2})$. Thus it gives us a contradiction.

In the sequel, we check whether R_ξ of a model space M_B of Type (B) is semi-parallel. To do this, we assume that R_ξ of M_B satisfies the condition (2.1). On a tangent vector space $T_x M_B$ at any point $x \in M_B$, the Reeb vector ξ belongs to Q. From this and (2.2), the condition of (2.1) implies that for $X = \xi_2 \in T_\beta$

$$R_\xi(R_\xi \xi_2) = \alpha^2\beta^2\xi_2 = 0.$$

On the other hand, from [2, Proposition 2], since $\alpha = -2\tan(2r)$ and $\beta = 2\cot(2r)$ where $r \in (0, \pi/4)$ on M_B, we get $(\alpha\beta)^2 = 16$. So, we consequently see that the tangent vector ξ_2 must be zero, which gives a contradiction.

Therefore we assert:

Remark 2.3. The structure Jacobi operator R_ξ of a model space of Type (A) nor Type (B) in $G_2(\mathbb{C}^{m+2})$ does not satisfy the semi-parallelism condition.

Summing up these discussions, we complete the proof of our Theorem 2 given in the introduction.

\[\square \]

3. **Semi-parallel normal Jacobi operator**

Now, we observe a Hopf hypersurface M in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with semi-parallel normal Jacobi operator, that is, the normal Jacobi operator \bar{R}_N of M satisfies

$$(R(X, Y)\bar{R}_N)Z = 0$$

for all tangent vector fields X, Y, Z on M.

In order to prove Theorem 3 mentioned in Introduction, let us consider the case that M has vanishing geodesic Reeb flow.

Lemma 3.1. Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$ with vanishing geodesic Reeb flow. If the normal Jacobi operator \bar{R}_N of M is semi-parallel, then M is locally congruent to a model space of Type (A) or Type (B).

Proof. When the function $\alpha = g(A\xi, \xi)$ identically vanishes, it can be seen directly by (1.4) that ξ can be divided into $\xi \in Q$ or $\xi \in Q^\perp$. Then we first consider the case
that ξ belongs to Q. By virtue of Theorem B, we get that M is locally congruent to a model space of Type (B).

Next, we consider the case $\xi \in Q^\perp$. Substitution of the previous two relations in [12, (4.17)] gives

$$7W + 7\alpha AW - 6\phi_1 \phi W = 2\alpha \eta_2 (AW)\xi_2 + 2\alpha \eta_3 (AW)\xi_3 + \phi_1 \phi (\phi_1 \phi W) - \alpha \phi_1 \phi AW.$$ (3.1)

Since $\alpha = 0$, it follows that $7W - 6\phi_1 \phi W = \phi_1 \phi (\phi_1 \phi W)$ for any $W \in Q$. Moreover, from $\phi \phi \nu X = \phi \nu (X) - \eta (X)\xi$, $\nu = 1, 2, 3$, we obtain $\phi \phi (\phi_1 \phi W) = W$. Thus (3.1) implies $\phi_1 \phi W = W$. It implies $AW = 0$ for any $W \in Q$, together with (2.4). It gives us a complete proof for $\alpha = 0$. □

It remains to be checked if the normal Jacobi operator \bar{R}_N of a model space M_A or M_B satisfy the semi-parallelism condition. For $\xi \in Q^\perp$, we easily get $2\xi = 0$ from [12 Equations (5.2) and (5.3)]. For $\xi \in Q$, as we know $\alpha = -2 \tan(2r)$ with $r \in (0, \pi/4)$ on a real hypersurface of Type (B), α never vanishes (see [2, Proposition 2]). So, neither the normal Jacobi operator \bar{R}_N of M_A nor M_B does not satisfy the semi-parallelism condition. Thus we get the following:

Corollary 3.2. Let M be a real hypersurface in $G_2(C^{m+2})$, $m \geq 3$, with vanishing geodesic Reeb flow. Then there does not exist any Hopf hypersurface if the normal Jacobi operator \bar{R}_N of M satisfies the condition of semi-parallelism.

Combining Theorem C and Corollary 3.2, we give a complete proof of Theorem 3 in the introduction. □

Acknowledgements. The authors would like to express their deep gratitude to Professors Y.J. Suh and J.D. Pérez for their suggestions to solve this problem and nice comments with their best effort.

References

[1] D. V. Alekseevskii, *Compact quaternion spaces*, Func. Anal. Appl. 2 (1966), 106-114.
[2] J. Berndt and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians*, Monatsh. Math. 127 (1999), 1-14.
[3] J. Berndt and Y.J. Suh, *Isometric flows on real hypersurfaces in complex two-plane Grassmannians*, Monatsh. Math. 137 (2002), 87-98.
[4] J.T. Cho and M. Kimura, *Curvature of Hopf hypersurfaces in a complex space form*, Results Math. 61 (2012), no. 1-2, 127-135.
[5] I. Jeong, H. Lee, and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with Q^\perp-parallel shape operator*, Results Math. (2013) (in press).
[6] I. Jeong, J.D. Pérez, and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator*, Acta Math. Hungar. 122 (2009), no. 1-2, 173-186.
[7] I. Jeong, C.J.G. Machado, J.D. Pérez, and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with D^\perp-parallel structure Jacobi operator*, Inter. J. Math. 22 (2011), no. 5, 655-673.
[8] H. Lee, Y.S. Choi, and C. Woo, *Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator*, Bull. Malaysian Math. Soc. (2014) (in press).
[9] H. Lee, S. Kim, and Y.J. Suh, *Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II*, Czechoslovak Math. J. (2014) (in press).
[10] H. Lee and Y.J. Suh, *Real hypersurfaces of Type B in complex two-plane Grassmannians related to the Reeb vector*, Bull. Korean Math. Soc. 47 (2010), no. 3, 551-561.
[11] R. Niebergall and P.J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J. 38 (1998), 227-234.
[12] K. Panagiotidou and M.M. Tripathi, Semi-parallelism of normal Jacobi operator for Hopf hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 172 (2) (2013), 167-178.
[13] J.D. Pérez and F.G. Santos, Real hypersurfaces in complex projective space whose structure Jacobi operator is cyclic-Ryan parallel, Kyungpook Math. J. 49 (2009), 211-219.
[14] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. Austral. Math. Soc. 68 (2003), 493-502.
[15] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II, J. Korean Math. Soc. 41 (2004), 535-565.

D.H. Hwang, H. Lee and C. Woo
DEPARTMENT OF MATHEMATICS,
KYUNGPOOK NATIONAL UNIVERSITY,
DAEGU 702-701, REPUBLIC OF KOREA
E-mail address: engus0322@knu.ac.kr
E-mail address: lhjibis@hanmail.net
E-mail address: legalgwch@knu.ac.kr