Intrinsic piezoelectricity in monolayer MSi$_2$N$_4$ (M = Mo, W, Cr, Ti, Zr and Hf)

SAN-DONG GUO$^{1,2,(a)}$, YU-TONG ZHU1, WEN-QI MU1 and WEN-CAI REN3,4

1 School of Electronic Engineering, Xi’an University of Posts and Telecommunications - Xi’an 710121, China
2 Key Laboratory of Advanced Semiconductor Devices and Materials, Xi’an University of Posts and Telecommunications - Xi’an 710121, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science 110016 Shenyang, Liaoning, China
4 School of Materials Science and Engineering, University of Science and Technology of China Shenyang 110016, China

received 22 September 2020; accepted in final form 1 December 2020
published online 30 December 2020

PACS 71.20.-b - Electron density of states and band structure of crystalline solids
PACS 77.65.-j – Piezoelectricity and electromechanical effects

Abstract – Motivated by experimentally synthesized MoSi$_2$N$_4$ (HONG Y. L. et al., Science, 369 (2020) 670), the intrinsic piezoelectricity in monolayer MSi$_2$N$_4$ (M = Mo, W, Cr, Ti, Zr and Hf) are studied by density functional theory (DFT). Among the six monolayers, CrSi$_2$N$_4$ has the best piezoelectric strain coefficient d_{11} of 1.24 pm/V, and the second is 1.15 pm/V for MoSi$_2$N$_4$. Taking MoSi$_2$N$_4$ as an example, strain engineering is applied to improve d_{11}. It is found that tensile biaxial strain can enhance d_{11} of MoSi$_2$N$_4$, and the d_{11} at 4% strain can improve by 107% with respect to the unstrained one. By replacing the N by P or As in MoSi$_2$N$_4$, the d_{11} can be raised substantially. For MoSi$_2$P$_4$ and MoSi$_2$As$_4$, the d_{11} is as high as 4.93 pm/V and 6.23 pm/V, which is mainly due to smaller $C_{11} - C_{12}$ and very small minus or positive ionic contribution to piezoelectric stress coefficient e_{11} with respect to MoSi$_2$N$_4$. The discovery of this piezoelectricity in monolayer MSi$_2$N$_4$ enables active sensing, actuating and new electronic components for nanoscale devices, and is recommended for experimental exploration.

Copyright © 2020 EPLA

Introduction. – Piezoelectric materials can convert mechanical energy into electrical energy and vice versa, and the piezoelectricity of two-dimensional (2D) materials has been widely investigated [1] in recent years. Experimentally, the existence of piezoelectricity of MoS$_2$ [2,3], MoSe$_2$ [4] and In$_2$Se$_3$ [5] has significantly promoted the development of the piezoelectricity of 2D materials. It has been reported that a large number of 2D materials have significant piezoelectric coefficients, such as transition metal dichalcogenides (TMD), Janus TMD, group IIA and IIIB metal oxides, group-V binary semiconductors and group III-V semiconductors [6–15], the monolayers SnSe, SnS, GeSe and GeS of which possess giant piezoelectricity, as high as 75–251 pm/V [12]. The intrinsic piezoelectricity has also been predicted in allotropes of phosphorus with remarkable stability [16]. Due to different crystal symmetry, an only in-plane piezoelectricity, both in-plane and out-of-plane piezoelectricity, or a pure out-of-plane piezoelectricity can exist, and the corresponding example is TMD monolayers [11], many 2D Janus materials [6,9] and penta-graphene [10]. The strain-tuned piezoelectric response of MoS$_2$ [17], AsP [7], SnSe [7] and Janus TMD monolayers [18] have been performed by the first-principle calculations, and it is proved that strain can improve the piezoelectric strain coefficients.

Recently, the layered 2D MoSi$_2$N$_4$ and WS$_2$N$_4$ have been synthesized by chemical vapor deposition (CVD) [19], which opens up a new, large family of 2D materials. Many other 2D materials with a general formula of MA$_2$Z$_4$ have been predicted by DFT calculations [19], where M represents an early transition metal (W, V, Nb, Ta, Ti, Zr, Hf, or Cr). A is Si or Ge, and Z stands for N, P, or As. And then twelve kinds of 2D family MA$_2$Z$_4$ are proposed with α_i and β_i (i = 1 to 6) phases by intercalating the MoS$_2$-type MZ$_2$ monolayer into the InSe-type A$_2$Z$_2$ monolayer [20]. In this work, the piezoelectric properties

(a)E-mail: sandongyuwang@163.com
of monolayer MSi$_2$N$_4$ ($M = \text{Ti, Zr, Hf, Cr, Mo and W}$) are studied by using density functional perturbation theory (DFPT) [21]. The independent in-plane piezoelectric constants d_{11} are predicted to be 0.777 pm/V to 1.241 pm/V, which are smaller than the ones of many other 2D materials [6,9,11–13]. Using MoSi$_2$N$_4$ as an example, strain engineering is proposed to produce improved piezoelectric properties. It is found that increasing strain can improve d_{11} due to reduced $C_{11} - C_{12}$ and enhanced e_{11}, and the band gap decreases. Calculated results show that MoSi$_2$P$_4$ and MoSi$_2$As$_4$ have much better d_{11} than MSi$_2$N$_4$ ($M = \text{Ti, Zr, Hf, Cr, Mo and W}$), which is mainly because they are much softer, and their ionic parts give much smaller negative contribution (MoSi$_2$P$_4$) or positive contribution (MoSi$_2$As$_4$) to e_{11}. Our calculations show that the MA$_2$Z$_4$ ($M = \text{Ti, Zr, Hf, Cr, Mo or W}; Z = \text{Si or Ge};$ and $Z = \text{N, P or As}$) materials may be promising candidates for piezoelectric applications.

Computational detail. – We perform DFT calculations [22] using the projector-augmented wave method as implemented in the plane-wave code VASP [23–25]. For the structural relaxation and the calculations of the elastic and piezoelectric tensors, we use the popular generalized gradient approximation of Perdew, Burke and Ernzerhof (GGA-PBE) [26] as the exchange-correlation functional. For energy band calculations, the spin orbital coupling (SOC) is also taken into account. A cutoff energy of 500 eV for the plane wave basis set is used to ensure accurate DFT calculations. A vacuum spacing of more than 32Å is adopted to reduce the interactions between the layers, which is key to attain accurate e_{ij}. The total energy convergence criterion is set to 10^{-8} eV, and the Hellmann-Feynman forces on each atom are less than 0.0001 eV Å$^{-1}$. The coefficients of the elastic stiffness tensor C_{ij} are calculated by using strain-stress relationship (SSR), and the piezoelectric stress coefficients e_{ij} are attained by the DFPT method [21]. The Brillouin zone sampling is done using a Monkhorst-Pack mesh of $15 \times 15 \times 1$ for C_{ij}, and $9 \times 16 \times 1$ for e_{ij}. The 2D elastic coefficients C_{ij}^{D} and piezoelectric stress coefficients e_{ij}^{D} have been renormalized by the length of unit cell along the z-direction (L_z): $C_{ij}^{\text{D}} = L_zC_{ij}^\text{elc}$ and $e_{ij}^{\text{D}} = L_ze_{ij}^\text{elc}$.

Symmetry analysis. – The relaxed-ion piezoelectric stress tensors e_{ijk} and strain tensor d_{ijk}, from the sum of ionic and electronic contributions, are defined as

$$e_{ijk} = \frac{\partial P_i}{\partial \varepsilon_{jk}} = e_{ijk}^\text{elc} + e_{ijk}^\text{ion},$$

and

$$d_{ijk} = \frac{\partial P_i}{\partial \sigma_{jk}} = d_{ijk}^\text{elc} + d_{ijk}^\text{ion},$$

where P_i, ε_{jk} and σ_{jk} are polarization vector, strain and stress, respectively. The d_{ijk} and e_{ijk} are related via the elastic stiffness tensor C_{ijkl}. Monolayer MSi$_2$N$_4$ belongs to the 6m_2 point group. Employing the Voigt notation, if we only consider in-plane strain components [6,11–14] for 2D materials, e_{ij}, d_{ij} and C_{ij} become

$$
\begin{pmatrix}
e_{11} & -e_{11} & 0 \\
0 & 0 & -e_{11} \\
0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
d_{11} & -d_{11} & 0 \\
0 & 0 & -2d_{11} \\
0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
C_{11} & C_{12} & 0 \\
C_{12} & C_{11} & 0 \\
0 & 0 & \frac{C_{11} - C_{12}}{2}
\end{pmatrix}.
$$

Here, the only in-plane d_{11} is derived by $e_{ik} = d_{ij}C_{jk}$:

$$d_{11} = \frac{e_{11}}{C_{11} - C_{12}}. \tag{6}$$

Main calculated results and analysis. – The geometric structure of the MSi$_2$N$_4$ monolayer is plotted in fig. 1, which consists of seven atomic layers of N-Si-N-M-N-Si-N (a MN$_2$ layer sandwiched between two Si-N bilayers). The optimized structural parameters of MSi$_2$N$_4$ ($M = \text{Ti, Zr, Hf, Cr, Mo and W}$) (in table 1) agree well with the previous calculated results [19]. The electronic band structures of these monolayers are also calculated using GGA and GGA+SOC, and the representative HSi$_2$N$_4$ and WSi$_2$N$_4$ monolayers are shown in fig. 2. The energy bands of MSi$_2$N$_4$ ($M = \text{Ti, Zr, Hf, Cr, Mo and W}$) near the Fermi level have M-d character. Compared to MSi$_2$N$_4$ ($M = \text{Ti, Zr, Hf}$), two additional electrons are added for MSi$_2$N$_4$ ($X = \text{Ti, Zr, Hf}$). For MSi$_2$N$_4$ ($M = \text{Cr, Mo and W}$) near the Fermi level have M-d character. Compared to MSi$_2$N$_4$ ($M = \text{Ti, Zr, Hf}$), two additional electrons are added for MSi$_2$N$_4$ ($X = \text{Ti, Zr, Hf}$).

1. See the SM for energy band structures of monolayer MSi$_2$N$_4$ ($X = \text{Ti, Zr, Hf, Cr, Mo, W}$) and monolayer MoSi$_2N_4$ with strain from -4% to 4%.

57002-p2
Table 1: For monolayer MSi$_2$N$_4$ (M = Ti, Zr, Hf, Cr, Mo and W), the lattice constants a_0 (Å), the height h (Å), the GGA gap Δ (eV), the GGA+SOC gap Δ_{soc} (eV), the spin-orbital splitting at K point Δ (eV), the elastic constants $C_{11} - C_{12}$ (Nm$^{-1}$), the piezoelectric coefficients e_{11} (10$^{-10}$ C/m) and d_{11} (pm/V).

- **TiSi$_2$N$_4**: $a_0 = 2.931$, $h = 6.908$, $\Delta = 1.629$, $\Delta_{soc} = 1.628$, $C_{11} - C_{12} = 326.239$, $e_{11} = 2.712$, $d_{11} = 0.831$
- **ZrSi$_2$N$_4**: $a_0 = 3.032$, $h = 7.035$, $\Delta = 1.629$, $\Delta_{soc} = 1.625$, $C_{11} - C_{12} = 287.008$, $e_{11} = 2.229$, $d_{11} = 0.777$
- **HfSi$_2$N$_4**: $a_0 = 3.022$, $h = 7.000$, $\Delta = 1.802$, $\Delta_{soc} = 1.789$, $C_{11} - C_{12} = 303.898$, $e_{11} = 4.442$, $d_{11} = 1.241$
- **CrSi$_2$N$_4**: $a_0 = 2.844$, $h = 6.869$, $\Delta = 0.498$, $\Delta_{soc} = 0.499$, $C_{11} - C_{12} = 358.021$, $e_{11} = 4.398$, $d_{11} = 1.145$
- **MoSi$_2$N$_4**: $a_0 = 2.909$, $h = 7.004$, $\Delta = 1.747$, $\Delta_{soc} = 1.746$, $C_{11} - C_{12} = 383.982$, $e_{11} = 4.398$, $d_{11} = 1.145$
- **WSi$_2$N$_4**: $a_0 = 2.912$, $h = 7.014$, $\Delta = 2.083$, $\Delta_{soc} = 2.074$, $C_{11} - C_{12} = 403.227$, $e_{11} = 3.138$, $d_{11} = 0.778$

Due to hexagonal symmetry, the two independent elastic stiffness coefficients (C_{11} and C_{12}) are calculated by SSR, and all calculated elastic coefficients satisfy the Born stability criteria [27]. The elastic stiffness coefficients (C_{11}, C_{12} and $C_{11} - C_{12}$) are shown in fig. 3. These elastic constants are larger than the ones of most 2D materials, like TMD, metal oxides, and III-V semiconductor materials [11,13], indicating that these 2D monolayers are more rigid than other 2D materials. The piezoelectric stress coefficients e_{11} of the MSi$_2$N$_4$ monolayer are calculated by DFPT, using the rectangle supercell. Based on eq. (6), the piezoelectric strain coefficients d_{11} are attained. The piezoelectric coefficients e_{11} and d_{11}, and the ionic contribution and electronic contribution to e_{11} are plotted in fig. 3. Some key data are also listed in table 1. For all six monolayers, it is clearly seen that the contribution to e_{11} between ionic and electronic parts is opposite. The entire range of calculated e_{11} is from 2.229 10^{-10} C/m to 4.442 10^{-10} C/m, while the d_{11} ranges from 0.777 pm/V to 1.241 pm/V. Their d_{11} are smaller than the ones of TMD monolayers (2.12 pm/V to 13.45 pm/V) [11,13]. For example, the e_{11} of CrSi$_2$N$_4$ (4.442 10^{-10} C/m) and MoSi$_2$N$_4$ (4.398 10^{-10} C/m) are larger than the one of MoS$_2$ (3.64 10^{-10} C/m), but their d_{11} (1.241 pm/V to 1.145 pm/V) are smaller than the one of MoS$_2$ (3.73 pm/V) [11,13], which is due to larger $C_{11} - C_{12}$. Among all studied six monolayers, the CrSi$_2$N$_4$ monolayer has the best d_{11}.

The d_{11} of the MSi$_2$N$_4$ monolayer is very small, and strain engineering is proposed to enhance their piezoelectric properties, which has been proved to be a very effective way [7,17,18]. Experimentally, biaxial strain can be achieved by exploiting the thermal expansion mismatch [28]. Here, we use the experimentally synthesized MoSi$_2$N$_4$ as an example to study the strain effects on piezoelectric properties. Due to 6m_2 symmetry, biaxial strain cannot induce polarization, not like uniaxial strain. We only consider biaxial strain effects on the piezoelectric properties of MoSi$_2$N$_4$, and the elastic constants $C_{11} - C_{12}$, piezoelectric coefficients e_{11} and d_{11}, and the ionic contribution and electronic contribution to e_{11} of monolayer MoSi$_2$N$_4$ as a function of biaxial strain are
Fig. 3: For MSi$_2$N$_4$ (M = Ti, Zr, Hf, Cr, Mo and W): the elastic constants C_{ij} (top), piezoelectric stress coefficients e_{11} and the ionic contribution and electronic contribution to e_{11} (middle), and piezoelectric strain coefficients d_{11} (bottom).

plotted in fig. 4. When the strain varies from −4% to 4%, the $C_{11} - C_{12}$ decreases, and the e_{11} increases, which gives rise to improved d_{11} based on eq. (6). At 4% strain, the d_{11} is 2.375 pm/V, which is more than twice as large as the unstrained one (1.145 pm/V). Similar biaxial strain-improved d_{11} can be found in monolayer g-C$_3$N$_4$ and MoS$_2$ with the same point group [29]. It is found that both ionic contribution and electronic contribution to e_{11} have positive influence to improve d_{11} of monolayer MoSi$_2$N$_4$, which is different from monolayer g-C$_3$N$_4$ and MoS$_2$ [29].

At applied strain, the monolayer MoSi$_2$N$_4$ exhibits piezoelectricity, which should have a band gap. The gap

Fig. 4: For the experimentally achieved monolayer MoSi$_2$N$_4$, the elastic constants C_{ij} (top), piezoelectric stress coefficients e_{11} and the ionic contribution and electronic contribution to e_{11} (middle), and piezoelectric strain coefficients d_{11} (bottom) as a function of biaxial strain.

Fig. 5: For the experimentally achieved monolayer MoSi$_2$N$_4$, the GGA+SOC gap and spin-orbital splitting at K point as a function of biaxial strain.
Intrinsic piezoelectricity in monolayer MSi$_2$N$_4$ (M = Mo, W, Cr, Ti, Zr and Hf)

Fig. 6: For monolayers MoSi$_2$N$_4$, MoSi$_2$P$_4$, MoSi$_2$As$_4$ and MoGe$_2$N$_4$: the elastic constants C_{ij} (top), piezoelectric stress coefficients e_{11} and the ionic contribution and electronic contribution to e_{11} (middle), and piezoelectric strain coefficients d_{11} (bottom).

and spin-orbital splitting Δ at K point as a function of strain are plotted in fig. 5, and the strain-related energy bands of MoSi$_2$N$_4$ are plotted in fig. S3 of the SM. It is found that the gap decreases from 2.605 eV (-4%) to 0.988 eV (4%), while Δ increases from 0.122 eV to 0.134 eV. The position of conduction band minimum (CBM) does not change from -4% to 4\%, but the position of valence band maximum (VBM) changes from K point to Γ point. The valence bands convergence can be observed at about -2% strain due to almost the same energy between K point and Γ point, which is in favour of better p-type Seebeck coefficient. Similar strain-induced bands convergence can be observed in many 2D materials like PtSe$_2$ [30].

To further enhance piezoelectric properties, using elements of group IVA and elements of group VA to replace the Si and N elements in experimentally synthesized MoSi$_2$N$_4$, the monolayers MoSi$_2$P$_4$, MoSi$_2$As$_4$ and MoGe$_2$N$_4$ are proved to be stable [19]. The elastic constants $C_{11} - C_{12}$, piezoelectric coefficients e_{11} and d_{11}, and the ionic contribution and electronic contribution to e_{11} of monolayers MoSi$_2$N$_4$, MoSi$_2$P$_4$, MoSi$_2$As$_4$ and MoGe$_2$N$_4$ are plotted in fig. 6. It is clearly seen that monolayers MoSi$_2$P$_4$ and MoSi$_2$As$_4$ have a very higher d_{11} than MoSi$_2$N$_4$, and they are 4.93 pm/V and 6.23 pm/V, which are comparable to one of most TMD monolayers [11]. One reason for the high d_{11} for monolayers MoSi$_2$P$_4$ and MoSi$_2$As$_4$ is that monolayer MoSi$_2$P$_4$ and MoSi$_2$As$_4$ have more smaller C_{11} and C_{12} than MoSi$_2$N$_4$, which leads to smaller $C_{11} - C_{12}$. Another reason is that the minus of the ionic contribution to e_{11} of monolayer MoSi$_2$P$_4$ is very small, and the ionic contribution is positive for monolayer MoSi$_2$As$_4$. The d_{11} of monolayer MoGe$_2$N$_4$ is 1.83 pm/V, which is close to the one of MoSi$_2$N$_4$.

Conclusion. — Significant progress has been achieved in synthesizing monolayer MoSi$_2$N$_4$ with a non-centrosymmetric structure, which allows it to be piezoelectric. Here, the piezoelectric properties of monolayer MSi$_2$N$_4$ (M = Ti, Zr, Hf, Cr, Mo and W) are studied by using first-principles calculations. In the considered six materials, CrSi$_2$N$_4$ is predicted to have the best d_{11} of 1.24 pm/V, and the second is 1.15 pm/V for experimentally synthesized MoSi$_2$N$_4$. It is found that strain engineering can improve d_{11} of MoSi$_2$N$_4$, and the d_{11} at 4\% biaxial strain can improve by 107\%. Compared to monolayer MSi$_2$N$_4$ (M = Ti, Zr, Hf, Cr, Mo and W), the monolayers MoSi$_2$P$_4$, MoSi$_2$As$_4$ and MoGe$_2$N$_4$ have more higher d_{11}, and the d_{11} of MoSi$_2$As$_4$ is as high as 6.23 pm/V. Owing to the recent CVD growth in monolayer MoSi$_2$N$_4$, it is expected that these monolayers MA$_2$Z$_4$ (M = Ti, Zr, Hf, Cr, Mo or W; A = Si or Ge; and Z = N, P or As) may be put to a wide practical piezoelectric use in the future.

This work is supported by the Natural Science Foundation of Shaanxi Provincial Department of Education (19JK0809). We are grateful to the Advanced Analysis and Computation Center of China University of Mining and Technology (CUMT) for the award of CPU hours and WIEN2k/VASP software to accomplish this work.

Data availability statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES

[1] Wu W. and Wang Z. L., Nat. Rev. Mater., 1 (2016) 16031.

[2] Wu W., Wang L., Li Y., Zhang F., Lin L., Niu S., Chenet D., Zhang X., Hao Y., Heinz T. F., Hone J. and Wang Z. L., Nature, 514 (2014) 470.

[3] Zhu H., Wang Y., Xiao J., Liu M., Xiong S., Wong Z. J., Ye Z., Ye Y., Yin X. and Zhang X., Nat. Nanotechnol., 10 (2015) 151.

[4] Lu A. Y., Zhu H., Xiao J., Chuu C. P., Han Y., Chiu M. H., Cheng C. C., Yang C. W., Wei K. H., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., Muller D. A., Chou M. Y., Zhang X. and Li L. J., Nat. Nanotechnol., 12 (2017) 744.

[5] Dong L., Lou J. and Shenoy V. B., Nano ACS, 11 (2017) 8242.

[6] Guo S. D., Guo X. S., Zhang Y. Y. and Luo K., J. Alloys Compd., 822 (2020) 153577.

[7] Xu Y., Li Z. Q., He C. Y., Li J., Ouyang T., Zhang C. X., Tang C. and Zhong J. X., Appl. Phys. Lett., 116 (2020) 023103.

[8] Guo S. D., Guo X. S., Liu Z. Y. and Quan Y. N., J. Phys. Chem. Solids, 151 (2021) 109896.

[9] Guo S. D. and Wang S. Q., J. Phys. Chem. Solids, 140 (2020) 109375.

[10] Blonsky M. N., Zhuang H. L., Singh A. K. and Henning R. G., Nano ACS, 9 (2015) 9885.

[11] Fei R. X., Li We. B., Li J. and Yang L., Appl. Phys. Lett., 107 (2015) 173104.

[12] Duerloo K. N., Ong M. T. and Reed E. J., J. Phys. Chem. Lett., 3 (2012) 2871.

[13] Chen Y., Liu J. Y., Yu J. B., Guo Y. G. and Sun Q., Phys. Chem. Chem. Phys., 21 (2019) 1207.

[14] Guo Y. G., Zhu H. Q. and Wang Q., ACS Appl. Mater. Interfaces, 11 (2019) 1033.

[15] Li Z. Q., He C. Y., Ouyang T., et al., Phys. Rev. Lett., 9 (2018) 044032.

[16] Jena N., Dimple, Behere S. D. and Sarkar A. D., J. Phys. Chem. C, 121 (2017) 9181.

[17] Dimple, Jena N., Rawat A., Ahamed R., Mohanta M. K. and Sarkar A. D., J. Mater. Chem. A, 6 (2018) 24885.

[18] Hong Y. L., Liu Z. B., Wang L., Zhou T. Y., Ma W., Xu C., Feng S., Chen L., Chen M. L., Sun D. M., Chen X. Q., Cheng H. M. and Ren W. C., Science, 369 (2020) 670.

[19] Wang L., Shi Y. P., Liu M. F., et al., arXiv:2008.02981 (2020).

[20] Wu X., Vanderbilt D. and Hammann D. R., Phys. Rev. B, 72 (2005) 035105.

[21] Hohenberg P. and Kohn W., Phys. Rev., 136 (1964) B864; Kohn W. and Sham L. J., Phys. Rev., 140 (1965) A1133.

[22] Kresse G., J. Non-Cryst. Solids, 193 (1995) 222.

[23] Kresse G. and Furthmüller J., Comput. Mater. Sci., 6 (1996) 15.

[24] Kresse G. and Joubert D., Phys. Rev. B, 59 (1999) 1758.

[25] Perdew J. P., Burke K. and Ernzerhof M., Phys. Rev. Lett., 77 (1996) 3865.

[26] Andrew R. C., Mapasha R. E., Ukpong A. M. and Chetty N., Phys. Rev. B, 85 (2012) 125428.

[27] Plechinger G., Castellanos-Gomez A., Buscema M., van der Zant H. S. J., Steele G. A., Heine T., Schüller C. and Korn T., 2D Mater., 2 (2015) 015006.

[28] Guo S. D., Mu W. Q. and Zhu Y. T., J. Phys. Chem. Solids, 151 (2021) 109896.

[29] Guo S. D., J. Mater. Chem. C, 4 (2016) 9366.