A Proof Technique for Skewness of Graphs

Gek L. Chiaa,c Chan L. Leeb and Yan Hao Lingb

aDepartment of Mathematical and Actuarial Sciences, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Cheras 43000 Kajang, Selangor, Malaysia
bDepartment of Mathematics, Statistics and Computing, NUS High School of Mathematics & Science, 20 Clementi Avenue 1, Singapore, 129957
cInstitute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

The skewness of a graph G is the minimum number of edges in G whose removal results in a planar graph. By appropriately introducing a weight to each edge of a graph, we determine, among other thing, the skewness of the generalized Petersen graph $P(4k, k)$ for odd $k \geq 9$. This provides an answer to the conjecture raised in [3].

Let G be a graph. The skewness of G, denoted $\mu(G)$, is defined to be the minimum number of edges in G whose removal results in a planar graph. Skewness of graph was first introduced in the 1970's (see [6] - [8] and [11]). It was further explored in [5], [9] and [10]. More about the skewness of a graph can be found in [2] and [4].

Let n and k be two integers such that $1 \leq k \leq n - 1$. Recall that the generalized Petersen graph $P(n, k)$ is defined to have vertex-set $\{u_0, u_1, \ldots, u_{n-1}\}$ and edge-set $\{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i = 0, 1, \ldots, n-1\}$ with the operations reduced modulo n.

Earlier, the authors in [3] showed that $\mu(P(4k, k)) = k + 1$ if $k \geq 4$ is even. In the same paper, they conjectured that $\mu(P(4k, k)) = k + 2$ if $k \geq 5$ is odd. We shall prove that the conjecture is true for $k \geq 9$.

We shall first describe a family of graphs which is very much related to the generalized Petersen graph $P(sk, k)$.

Let k and s be two integers such that $k \geq 1$ and $s \geq 3$. The graph $Q_s(k)$ is defined to have vertex-set $\{0, 1, \ldots, sk - 1, x_0, x_1, \ldots, x_{k-1}\}$ and edge-set $\{i(i+1), jx_j, (j+k)x_j, (j+2k)x_j, \ldots, (j+(s-1)k)x_j : i = 0, 1, \ldots, sk - 1, j = 0, 1, \ldots, k - 1\}$ with the operations reduced modulo sk and those on the subscripts reduced modulo k.
Drawings for the graphs $Q_3(k)$ and $Q_4(k)$ can be found in the papers [1] and [3] respectively. A drawing for the graph $Q_5(8)$ is depicted in Figure 1.

![Figure 1: A drawing of the graph $Q_5(8)$.](image)

Throughout this paper, if G has skewness r, then we let $\mathcal{R}(G)$ denote a set of r edges in G whose removal results in a planar graph.

In [1] and [3] it was shown that $\mu(Q_3(k)) = \lceil k/2 \rceil + 1$ and $\mu(Q_4(k)) = k + 1$ respectively. A more general result is now established by employing a proof technique that has not been used before.

Suppose G is a weighted graph and e is an edge of G with weight $w(e)$. If H is any subgraph (proper or improper) of G, we let $W(H) = \sum_{e \in E(H)} w(e)$ denote the weight of H. In particular, if G is a plane graph and F is an
face of G, we let $W(F) = \sum_{e \in E(F)} w(e)$ denote the weight of F in G.

Theorem 1 $\mu(Q_s(k)) = \lceil (s - 2)k/2 \rceil + 1$ if $k \geq 4$.

Proof: Let e be an edge of $Q_s(k)$ and let

$$w(e) = \begin{cases}
2 & \text{if } e = i(i + 1), \\
k - 2 & \text{otherwise}
\end{cases}$$

for $i = 0, 1, \ldots, sk - 1$. Then $W(Q_s(k)) = sk^2$.

Hence, if J is a graph obtained from $Q_s(k)$ by deleting a set of t edges, then $W(J) \leq sk^2 - 2t$ (because $k - 2 \geq 2$).

Let H denote a planar graph obtained from $Q_s(k)$ by deleting a set of $t' = \mu(Q_s(k))$ edges. Then the number of faces in H is $sk - k - t' + 2$. It is easy to see that $W(F) \geq 4k - 4$ for any face F in H. Since each edge is contained in 2 faces, we have the following inequality

$$2(sk^2 - 2t') \geq (4k - 4)(sk - k - t' + 2)$$

which gives $t' \geq (s - 2)k/2 + 1$. This proves the lower bound.

To prove the upper bound, we show the existence of a spanning planar subgraph $H_s(k)$ obtained by deleting a set of $\lceil (s - 2)k/2 \rceil + 1$ edges from $Q_s(k)$.

Figures 2, 3 and 4 depicts three drawings of $H_s(k)$ according to the parities on s and k. When k is even, the set of edges that have been deleted from $Q_s(k)$ is given by $(2i - 1)(2i), i = k/2, k/2 + 1, \ldots, k/2 + k(s - 2)/2$ (see Figure 2). Note also that if the 9 thick edges in the graph $Q_5(8)$ (as depicted in Figure 1) are deleted, we obtain the graph $H_5(8)$.

When k is odd, the set of edges that have been deleted from $Q_s(k)$ is given by $(sk - 1)0, (2i - 1)(2i), i = (k - 1)/2 + 1, (k - 1)/2 + 2, \ldots, (k - 1)/2 + \lceil k(s - 2)/2 \rceil$ (see Figures 3 and 4).

This completes the proof. \hfill \square

Theorem 2 $\mu(P(4k, k)) = k + 2$ if $k \geq 9$ is odd.

Proof: The upper bound $\mu(P(4k, k)) \leq k + 2$ for odd $k \geq 5$ was established in [3]. Hence we just need to show that $\mu(P(4k, k)) \geq k + 2$ for odd $k \geq 9$.

First we shall show that $\mu(P(4k, k)) \geq k + 1$ if $k \geq 9$ is odd. The proof presented here employed a new technique (which involves assigning
appropriate weights to its edges) and hence is different from the one given in [3].

Let \(e \) be an edge of \(P(4k, k) \) and let

\[
w(e) = \begin{cases}
4 & \text{if } e = u_iu_{i+1}, \\
k - 3 & \text{if } e = u_iv_i, \\
2k - 2 & \text{if } e = v_iv_{i+k}
\end{cases}
\]

for \(i = 0, 1, \ldots, n - 1 \). Then \(W(P(4k, k)) = 4k(3k - 1) \). Moreover, it is easy to see that, for any cycle \(C \) in \(P(4k, k) \), \(W(C) \geq 8k - 8 \) and that equality holds if and only if \(C \) is any of the following types.

(i) \(u_iu_{i+1}u_{i+2} \ldots u_{i+k-1}u_{i+k}v_{i+k}v_iu_i \),
(ii) \(u_iu_{i+1}v_{i+1}v_{i+k+1}u_{i+k+1}u_{i+k}v_iu_i \),
(iii) \(u_iu_{i+1}v_{i+1}v_{i-k-1}u_{i-k-1}u_{i-k}v_{i-k}v_iu_i \),
(iv) \(v_iv_{i+k}v_{i+2k}v_{i+3k}v_i \).

Let \(H \) denote a planar graph obtained by deleting a set of \(t = \mu(P(4k, k)) \) edges from \(P(4k, k) \). Then \(W(H) \leq 4k(3k - 1) - 4t \) (since \(k \geq 9 \) implies that \(k - 3 > 4 \) and \(2k - 2 > 4 \)).

From Euler’s formula for plane graph, we see that the number of faces in \(H \) is \(4k - t + 2 \). Since each edge is contained in only 2 faces, we have the following inequality

\[2(4k(3k - 1) - 4t) \geq (4k - t + 2)(8k - 8) \]

which gives \(t \geq k + 1 \).

Now suppose \(\mu(P(4k, k)) = k + 1 \). The fact that equality is tight implies the following.

(a) Only faces of the types (i) to (iv) are found in the planar graph \(H \).
(b) The tight equality \(4k(3k - 1) - 4t \) implies that \(R(P(4k, k)) \) consists of edges of the form \(u_iu_{i+1} \).
(c) Since \(P(4k, k) \) is a 3-regular graph, removing any two adjacent edges yields a pendant vertex, resulting in \(W(F) > 8k - 8 \). Hence we conclude that \(R(P(4k, k)) \) consists of only independent edges of the form \(u_iu_{i+1} \).

Now for any edge \(e \) of \(P(4k, k) \), let

\[
w'(e) = \begin{cases}
0 & \text{if } e = u_iu_{i+1}, \\
1 & \text{if } e = u_iv_i, \\
2 & \text{if } e = v_iv_{i+k}
\end{cases}
\]
for \(i = 0, 1, \ldots, n - 1 \). We note that, if \(F \) is a face of \(H \), then \(W'(F) = \sum_{e \in E(F)} w'(e) \) is equal to 4 if \(F \) is of type (i) and \(W'(F) \) is equal to 8 if \(F \) is of type (ii), (iii) or (iv).

Let \(x \) be the number of faces of type (i) in \(H \) and let \(\mathcal{F}_H \) denote the set of all faces in \(H \). Then \(\sum_{F \in \mathcal{F}_H} W'(F) = 4x + 8(3k + 1 - x) \). Since \(\mathcal{R}(P(4k, k)) \) consists of only independent edges of the form \(u_iu_{i+1} \), we see that \(W'(H) = 12k \). As such, we have

\[
4x + 8(3k + 1 - x) = 2(12k)
\]

which gives \(x = 2 \).

Now let the two faces of type (i) be

\[
F_1 = u_yu_{y+1}u_{y+2} \ldots u_{y+k-1}u_{y+k}u_y \quad \text{and} \quad F_2 = u_zu_{z+1}u_{z+2} \ldots u_{z+k-1}u_{z+k}u_z.
\]

Let \(A = \{ y + 1, y + 2, \ldots, y + k - 1 \} \cap \{ z + 1, z + 2, \ldots, y + k - 1 \} \). We assert that \(A = \emptyset \).

Suppose \(h \in A \). Then the edges \(u_{h-1}u_h, u_hu_{h+1} \) are in \(F_1 \cup F_2 \) implying that \(u_hv_h \in \mathcal{R}(P(4k, k)) \), a contradiction.

Call a vertex \(u_i \) of \(P(4k, k) \) a good vertex if all edges incident to it are not in \(\mathcal{R}(P(4k, k)) \); otherwise it is called a bad vertex. Since \(\mathcal{R}(P(4k, k)) \) consists of independent edges of the form \(u_iu_{i+1} \), the number of bad vertices is \(2\rho(P(4k, k)) \).

Since \(y + 1, y + 2, \ldots, y + k - 1, z + 1, z + 2, \ldots, y + k - 1 \) are distinct, and since \(F_1 \) and \(F_2 \) share at most one common edge (of the form \(u_nv_1 \)) in the planar graph \(H \), the number of good vertices in \(H \) is at least \(2k - 2 \) (given by the distinct vertices \(u_{y+1}, u_{y+2}, \ldots, u_{y+k-1}, u_{z+1}, u_{z+2}, \ldots, u_{z+k-1} \)) and at most \(2k - 1 \) (if \(F_1 \) and \(F_2 \) have an edge in common). Hence \(H \) has at least \(2k + 1 \) bad vertices which are either consecutive vertices of the form \(u_{n}, u_{n+1}, \ldots, u_{n+2k-1} \) or are separated into 2 sets of consecutive vertices by \(V(F_1) \cup V(F_2) \). In any case, we can find at least \(k + 1 \) consecutive bad vertices. Since we can relabel the vertices if necessary, we may assume without loss of generality that these vertices are \(u_0, u_1, \ldots, u_k \), and that \(\mathcal{R}(P(4k, k)) \) contains \(u_0u_1, u_2u_3, \ldots, u_{k-1}u_k \).

Let \(J \) denote the subgraph obtained from \(P(4k, k) \) by deleting \(u_1, u_2, \ldots, u_{k-1}, v_1, v_2, \ldots, v_{k-1} \) together with the edge \(v_{3k}v_k \). Then \(J \) is a subdivision of \(Q_3(k) \). Note that the vertices of degree-2 in \(J \) are \(u_0, v_0, u_k, v_{k+1}, v_{k+2}, \ldots, v_{2k-1}, v_{4k-1}, v_{4k-2}, \ldots, v_{3k} \). When these degree-2 vertices are suppressed, the resulting graph is isomorphic to \(Q_3(k) \) with \(v_ku_{k+1}u_{k+2} \ldots u_{4k-1}v_k \) playing role of the 3k-cycle in \(Q_3(k) \).
Recall that \(\mu(Q_3(k)) = (k + 3)/2 \). The preceding arguments imply that

\[
\mu(P(4k, k)) \geq |\{u_0u_1, u_2u_3, \ldots, u_{k-1}u_k\}| + \mu(Q_3(k)) = k + 2
\]

which is a contradiction. Hence \(\mu(P(4k, k)) = k + 2 \).

\[\square\]

References

[1] G.L. Chia and C.L. Lee, Crossing numbers and skewness of some Generalized Petersen graphs, Lecture Notes in Comput. Sci. Vol. 3330 Springer-Verlag (2005) 80–86.

[2] G.L. Chia and C.L. Lee, Skewness and crossing numbers of graphs, Bull. Inst. Combin. Appl. Vol. 55 (2009) 17–32.

[3] G.L. Chia and C.L. Lee, Skewness of generalized Petersen graphs and related graphs, Front. Math. China Vol. 7 (2012) 427–436.

[4] G.L. Chia and K.A. Sim, On the skewness of the join of two graphs, Discrete Appl. Math. Vol. 161. (2013) 2405 – 2409.

[5] R.J. Cimikowski, Graph planarization and skewness, Congr. Numer. 88 (1992) 21–32.

[6] P.C. Kainen, A lower bound for the the crossing numbers of graphs with applications to \(K_n, K_{p,q}, \) and \(Q(d) \), J. Combinat. Theory Ser. B, 12 (1972) 287–298.

[7] P.C. Kainen, A generalization of the 5-color theorem, Proc. Amer. Math. Soc., 45 (1974) 450–453.

[8] P.C. Kainen, Chromatic number and skewness, J. Combinat. Theory Ser. B, 18 (1975) 32–34.

[9] A. Liebers, Planarizing graphs - A survey and annotated bibliography, J. Graph Algorithms Appl. 5 (2001) 1–74.

[10] P.C. Liu and R.C. Geldmacher, On the deletion of nonplanar edges of a graph, Congr. Numer. 24 (1979) 727–738.

[11] H. Pahlings, On the chromatic number of skew graphs, J. Combinat. Theory Ser. B, 25 (1978) 303-306.
Figure 2: A drawing of the graph $H_s(k)$, $k \geq 4$ is even.
Figure 3: A drawing of the graph $H_s(k)$, $k \geq 5$ is odd and $s \geq 4$ is even.
Figure 4: A drawing of the graph $H_s(k)$, $k \geq 5$ is odd and $s \geq 3$ is odd.