Witness to detect quantum correlation of bipartite states in arbitrary dimension

Zhi-Hao Ma¹, Zhi-Hua Chen², Jing-Ling Chen³

¹Department of Mathematics, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
²Department of Science, Zhejiang college, Zhejiang University of technology, Hangzhou, 310024, P. R.China
³Department of Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin, 300071, P.R.China

In this work we introduce a nonlinear witness that is a sufficient condition for detecting the vanishiment of quantum correlation of bipartite states. Our result directly generalizes the result of [J. Maziero, R. M. Serra, arXiv:1012.3075] to arbitrary dimension based on the Bloch representation of density matrices.

PACS numbers: 03.67.Mn,03.65.Ud

INTRODUCTION

Entanglement is an essential resource in almost all quantum computing and informational processing tasks [1, 2]. However, there are quantum correlations beyond entanglement, i.e., entanglement is not necessarily needed to illustrate the non-localities in a quantum system. It has been shown that the quantum correlation, even without entanglement, can lead to the speedup of quantum computing[3]. Furthermore, it is more robust than entanglement in resisting environment-induced decoherence, which makes the quantum computation based on quantum correlation more robust than those based on the entanglement [9–11].

If a bipartite quantum state is in a product state, $\rho = \rho_A \otimes \rho_B$, with ρ_A (ρ_B) being the reduced density matrix of subsystem A (B), the state has no quantum correlation. However, a state with zero quantum correlation is not always a product state.

Detecting whether the quantum correlation of a bipartite state, quantified by Ollivier and Zurek’s quantum discord [12], is zero or not is fundamentally important, e.g., it has been proven that zero quantum discord between a quantum system and its environment is necessary and sufficient for describing the evolution of the system through a completely positive map [13, 14]. In addition, a quantum state can be locally broadcasted if and only if it has zero quantum discord [15, 16].

In fact, a system is classically correlated only if its state can be written as

$$\sum_{ij} p_{ij} |a_i \rangle \langle a_i| \otimes |b_j \rangle \langle b_j|,$$

with $\{|a_i \rangle\}$ and $\{|b_j \rangle\}$ forming orthonormal basis for the two subsystems and $\{p_{ij}\}$ being a probability distribution.

In this work, we will try to solve the problem of detect whether a state is classical or not.

MAIN RESULT

It is well known that every $N \times N$ density matrix can be represented by the $(N^2 - 1)$-dimensional Bloch vector as: $\rho(u) = \frac{1}{N^2} (I + \sqrt{N(N-1)-\vec{u} \cdot \vec{\lambda}}), \vec{u}$, but the converse is not true, i.e., not all operator of the form $\frac{1}{N}(I + \sqrt{N(N-1)} \vec{u} \cdot \vec{\lambda})$ is a density matrix, where \vec{u} is an arbitrary $(N^2 - 1)$-dimensional Bloch vector. Note that a density matrix must satisfy three conditions: (a). Trace unity, $\text{Tr}(\rho(u)) = 1$. (b). Hermitian, $\rho(u)^+ = \rho(u)$; and (c). positivity, i.e., all eigenvalues of $\rho(u)$ are non-negative.

Indeed, the operator $\frac{1}{N}(I + \sqrt{N(N-1)} \vec{u} \cdot \vec{\lambda})$ automatically satisfies the conditions (a) and (b). However, not every vector \vec{u}, $|\vec{u}| \leq 1$, satisfies the positive condition (c), for example, see [22-23].

In the case of bipartite quantum systems $(H = \mathbb{C}^n \otimes \mathbb{C}^n)$ composed of subsystems A and B, we can analogously represent the density operators as

$$\rho = \frac{1}{n^2} (I_n \otimes I_n + \sum_{i=1}^{n^2-1} r_i \lambda_i \otimes I_n + \sum_{j=1}^{n^2-1} s_j I_n \otimes \tilde{\lambda}_j + \sum_{i,j=1}^{n^2-1} t_{ij} \lambda_i \otimes \tilde{\lambda}_j),$$

(2)

where λ_i are the generators of $SU(n)$. Notice that $\vec{r} \in \mathbb{R}^{n^2-1}$ and $\vec{s} \in \mathbb{R}^{n^2-1}$ are the coherence vectors of the subsystems, so that they can be determined locally,

$$\rho_A = \text{Tr}_B \rho = \frac{1}{n} (I_n + r_i \lambda_i),$$

$$\rho_B = \text{Tr}_A \rho = \frac{1}{n} (I_n + s_i \tilde{\lambda}_i).$$

(3)

The coefficients t_{ij}, responsible for the possible correlations, form the real matrix $T \in \mathbb{R}^{(n^2-1) \times (n^2-1)}$, and, as before, they can be easily obtained by

$$t_{ij} = n^2 \text{Tr}(\rho \lambda_i \otimes \tilde{\lambda}_j) = n^2 \langle \lambda_i \otimes \tilde{\lambda}_j \rangle.$$

(4)

Now consider observables represented by the following set of hermitian operators:

$$\hat{O}_k = \lambda^a_k \otimes \lambda^b_k,$$

$$\hat{O}_{(n^2-1)^2+1} = \hat{X}^a \otimes \hat{I}^b + \hat{I}^a \otimes \hat{X}^b,$$

(5)
where $i, j = 1, 2, 3...n^2 - 1$, for $i = j = 1, k = 1$, for $i = 1, j = 2, k = 2$, and so on, so $k = 1, 2...(n^2 - 1)^2$. And $\vec{z}, \vec{w} \in \mathbb{R}^{n^2-1}$ with $||\vec{z}|| = ||\vec{w}|| = 1$. We observe that the directions \vec{z} and \vec{w} can be picked out randomly. Now we consider a relation among these observables as follows

$$W_\rho = \sum_{i<j} (n^2 - 1)^2 + 1 ||\langle \hat{O}_i \rangle_\rho \hat{O}_j \rangle_\rho,$$

where $\langle \hat{O}_i \rangle_\rho = \text{Tr}(\hat{O}_i \rho)$ and $|x|$ is the absolute value of x. We see that $W_\rho = 0$ if and only if the average value of at least $(n^2 - 1)^2$ of the $(n^2 - 1)^2 + 1$ observables defined above is zero.

So, if $W_\rho = 0$, then ρ must be of the following form:

$$X_{ij} = \rho = \frac{1}{n^2}(I_n \otimes I_n + t_{ij} \lambda_i \otimes \lambda_j),$$

$$X_{(n^2-1)^2+1} = \frac{1}{n^2}(I_n \otimes I_n + \sum_{i=1}^{n^2-1} r_i \lambda_i \otimes I_n + \sum_{j=1}^{n^2-1} s_j I_n \otimes \lambda_j),$$

where $i, j = 1, 2...n^2 - 1$.

The above X_i are all classical states, i.e., they are the form of Eq. (1).

1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865(2009).
2. O. Gühne, G. Toth, Phys. Rep. 474, 1(2009).
3. A. K. Ekert, Phys. Rev. Lett. 67, 661(1991).
4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895(1993).
5. Bennett C H et al 1999 Quantum nonlocality without entanglement Phys. Rev. A 59 1070
6. Knill E and Laflamme R 1998 Power of one bit of quantum information Phys. Rev. Lett. 81 5672
7. Datta A, Shaji A and Caves C M 2008 Quantum discord and the power of one qubit Phys. Rev. Lett. 100 050502
8. Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Experimental quantum computing without entanglement Phys. Rev. Lett. 101 200501
9. Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Robustness of quantum discord to sudden death Phys. Rev. A 80 024103
10. Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Non-Markovian effect on the quantum discord Phys. Rev. A 81 014101
11. Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Non-Markovian dynamics of quantum discord Phys. Rev. A 81 052107
12. Ollivier H and Zurek W H 2001 Quantum discord: a measure of the quantumness of correlations Phys. Rev. Lett. 88 017901
13. Shabani A and Lidar D A 2009 Vanishing quantum discord is necessary and sufficient for completely positive maps Phys. Rev. Lett. 102 100402
14. Rodriguez-Rosario C A et al 2008 Completely positive maps and classical correlations J. Phys. A 41 205301
15. Barnum H, Caves C M, Fuchs C A, Jozsa R and Schumacher B 1996 Noncommuting mixed states cannot be broadcast Phys. Rev. Lett. 76 2818
16. Piani M, Horodecki P and Horodecki R 2008 No-Local-Broadcasting theorem for multipartite quantum correlations Phys. Rev. Lett. 100 090502
17. Dakić B, Vedral V and Brukner Č 2010 Necessary and sufficient condition for nonzero quantum discord Phys. Rev. Lett. 105 190502
18. Jie-Hui Huang, Lei Wang, Shi-Yao Zhu, [arXiv:1102.5249]
19. M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008).
20. I. Bengtsson and K. Zyczkowski (2006), *Geometry of Quantum States: An Introduction to Quantum Entanglement*, Cambridge University Press (Cambridge).
21. U. Fano (1983), *Pairs of two-level systems*, Rev. Mod. Phys. 55, pp. 855–874.
22. Z. H. Ma, F. L. Zhang, J. L. Chen, Phys. Rev. A 78, 064305(2008).
23. J. L. Chen, L. Fu, A. A. Ungar, X. G. Zhao,Phys. Rev. A, 65, 054304(2002).
24. J. Maziero, R. M. Serra, [arXiv:1012.3075]