Abstract In traditional systems of medicine, many plants have been documented to be useful for the treatment of various respiratory disorders including asthma. In the last two decades the use of medicinal plants and natural products has been increased dramatically all over the world. Current synthetic drugs used in pharmacotherapy of asthma are unable to act at all the stages and targets of asthma. However some herbal alternatives employed in asthma are proven to provide symptomatic relief and assist in the inhibition of disease progression also. The herbs have shown interesting results in various target specific biological activities such as bronchodilation, mast cell stabilization, anti-anaphylactic, anti-inflammatory, anti-spasmodyc, anti-allergic, immunomodulatory and inhibition of mediators such as leukotrienes, lipoxygenase, cyclooxygenase, platelet activating, phosphodiesterase and cytokine, in the treatment of asthma. This paper is an attempt to classify these pharmacological and clinical findings based on their possible mechanism of action reported. It also signifies the need for development of polyherbal formulations containing various herbs acting at particular sites of the physiological cascade of asthma for prophylaxis as well as for the treatment of asthma.

Keywords Asthma · Current therapy · Herbal therapy · Poly herbal formulations · Ayurvedic drugs · Medicinal plants

Introduction

According to the National Institute of Health (NIH), asthma is defined as a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular, mast cells, eosinophils, T-lymphocytes, neutrophils and epithelial cells (NIH 1997). Asthma is caused by a very complex interaction between inflammatory cells and mediators. Herbal approaches have regained their popularity, for the treatment of asthma, with their efficacy and safety aspects being supported by controlled clinical studies (Huntley and Ernst 2000). Ongoing worldwide research has also provided valuable clues regarding the precise mechanism of action of these herbal alternatives (Goyal et al. 2007).

Pharmacotherapy of bronchial asthma

In the past most clinicians managed asthma mainly according to the patient’s symptom. Asthma was regarded primarily as a problem of bronchospasm and measures to prevent or reverse bronchospasm comprised the mainstay of therapy. However, during early 1980s when asthma emerged as an inflammatory rather than primarily a bronchospastic disorder, the basic approach switched from control of symptoms to control of underlying airway inflammation (Barns 1989). According to guidelines of The National Asthma Education and Prevention Program’s
Bronchodilators

Bronchodilator drugs have an anti-bronchoconstrictor effect that may be demonstrated directly in vitro by drug-induced relaxation of precontracted airways (Barns et al. 1988).Bronchodilators promptly reverse airway obstruction in asthmatics. This action believed to be mediated by a direct effect on airway smooth muscle. However, additional pharmacologic effects on the other airway cells (such as capillary endothelium to reduce microvascular leakage and mast cells to reduce release of bronchoconstrictor mediators) may contribute to the overall reduction in airway narrowing. Only three types of bronchodilators are in current clinical use: β-adrenergic agonists, methylxanthines, and anticholinergics.

β-adrenergic agonists

Epinephrine has been used to treat asthma since the beginning of the 20th century. β Adrenergic agonists are most widely used and effective bronchodilators for the treatment of asthma. Bronchodilation is mediated by β₂ receptors; β₂ selective drugs (Salmeterol and Formotero) have been developed that have long duration of effect. β Adrenergic agonists lead to relaxation of bronchial smooth muscle that promote bronchodilation. Activation of adenylate cyclase increases the concentration of intracellular cyclic adenosine 3′, 5′-monophosphate (cAMP), leading to activation of specific cAMP-dependent protein kinases that cause relaxation. Relaxation may also be due to inhibition of myosin phosphorylation. β-adrenergic agonists reverse bronchoconstriction irrespective of the contractile agent. β₂-adrenergic agonists prevent release of mediators from a number of inflammatory cells in vitro (Church and Hiroy 1987). In addition, β adrenergic agonists increase mucus secretion from submucosal glands and ion transport across airway epithelium. These effects enhance mucociliary clearance caused by asthma (Pavia et al. 1980).

The inhaled route of administration is preferable to the oral route because adverse effects caused by systemic action of the drug are less and also because this route may be more effective. The inhaled drug reaches surface cells (e.g., mast cells or epithelial cells), which are less accessible to the orally administered drug.

Metaproterenol, terbutaline, albuterol, formoterol, bitolterol, salmeterol, and pirbuterol are the classic examples of selective β₂-adrenergic agonists.

β₂ agonists improve respiratory symptoms and exercise tolerance despite the small improvement in spirometric measurements. The long acting β-agonists decrease infection exacerbations as an additional potential benefit. Salmeterol has been shown to reduce adherence of bacteria such as H. influenzae to airway epithelial cells.

β₂ selective agents cause tachycardia and palpitation by reflex cardiac stimulation secondary to peripheral vasodilation. Muscle tremor is caused by stimulation of β₂ adrenergic receptors in skeletal muscle and is the primary adverse effect of albuterol and bitolterol. Transient hypokalemia may be induced by high dose of these agents.

Anticholinergics

Datura plants contain the muscarinic antagonist and were smoked for relief of asthma centuries ago. Now a days, atropine and ipratropium bromide are the most commonly available anticholinergics.

Antimuscarinic agents specifically antagonize muscarinic receptors. They inhibit reflex cholinergic bronchoconstriction and do not significantly block the direct effects of inflammatory mediators such as histamine and leukotrienes on bronchial smooth muscle and vessels. When given by inhalation, anticholinergics produce bronchodilation by competitively inhibiting cholinergic receptors in bronchial...
smooth muscle. This activity blocks acetylcholine with the net effect being a reduction in cyclic guanosine monophosphate (cGMP) that normally acts to constrict bronchial smooth muscle. Anticholinergic drugs usually are less effective as bronchodilators in asthmatic subjects than β adrenergic agonists. Nevertheless, they may have an additive effect with β adrenergic agonists.

Anticholinergic agent, ipratropium bromide, even when given in high doses, has no such detectable effect either on normal subjects or in patients with airway disease (Pavia et al. 1980). Ipratropium bromide has been shown to decrease the effectiveness of voluntary cough on clearing mucus from the airways, which may affect its role in the treatment of patients who have excessive mucus production. Ipratropium has a slower onset of action and a more prolonged bronchodilator effect compared with standard β2-agonists and has been considered to be less suitable for use on an as needed basis for immediate relief of bronchospasm.

The lack of systemic absorption of ipratropium greatly diminishes the anticholinergic side effects such as blurred vision, urinary retention, nausea, and tachycardia associated with atropine. A significant unwanted effect of inhaled ipratropium bromide is dryness of mouth and throat, bitter taste, cough and nausea. Nebulized ipratropium bromide may precipitate glaucoma in elderly patients because of its direct mydriatic effect on the eye. During sleep, ipratropium also has been shown to improve arterial oxygen saturation and sleep quality.

Tiotropium bromide is a long acting quaternary anticholinergic agent. Tiotropium in human lungs shows approximately 10 fold more potency than ipratropium and protects against cholinergic bronchoconstriction for greater than 24 h.

Methylxanthines

Methylxanthines such as theophylline are related to caffeine and have been used to treat asthma since 1930. The methylxanthines may produce bronchodilation through numerous mechanisms, including,

- inhibition of phosphodiesterase, thereby increasing cAMP levels
- inhibition of calcium ion influx into smooth muscle
- prostaglandin antagonism
- stimulation of endogenous catecholamines
- adenosine receptor antagonism
- Inhibition of release of mediators from mast cells and leukocytes.

Theophylline inhibits release of mediators from mast cells, increases mucociliary clearance, and prevents the development of micro vascular leakiness, as would an “anti-inflammatory” drug (Persson and Draco 1988). Theophylline also inhibits some functions of T lymphocytes, which may be relevant to control of chronic inflammation of the airway.

For nocturnal asthma, a single dose of slow release theophylline at bedtime often is effective. This has been demonstrated to reduce overnight declines in FEV1 and morning respiratory symptoms. Taken alone it increases exercise tolerance without improving spirometry tests.

Other theophylline salts, such as choline theophyllinate, offer no advantages over theophylline. The ethylenediamine component of aminophylline has been implicated in allergic reactions. Some derivates such as acepiphylline, diprophyl- line, and proxophylline, are less effective than theophylline (Weinberger 1984). The most common adverse effects are headache, nausea and vomiting, abdominal discomfort, and restlessness.

Anti-inflammatory drugs

Although the type of inflammatory responses may differ among diseases, inflammation is a common denominator of several lung diseases. Anti-inflammatory drugs suppress the inflammatory response by inhibiting infiltration and activation of inflammatory cells as well as their synthesis or release of mediators or effects of inflammatory mediators themselves.

Corticosteroids

Since asthma is viewed as a chronic inflammatory disease and inhaled corticosteroids are known to have low toxicity, they may be considered as first line therapy (Barns 1989). Prednisolone and dexamethasone were effective when they were given systematically to treat asthma but they had no anti-asthmatic activity when they were given by inhalation. Other corticosteroids e.g. beclomethasone dipropionate (BDP), betamethasone and budesonide, were effective in treating asthma when given by inhalation. The antiasthmatic potency of an inhaled steroid is approximately proportional to its potency as an anti-inflammatory agent.

Corticosteroids inhibit the release of arachidonic acid metabolites and platelet activating factor (PAF) from lungs and macrophages by enhancing the production of proteins called lipocortins. Thereby they inhibit the formation of prostaglandins and leukotrienes. These effects occur because of ability of steroid—receptor complex to be transported to the nucleus, where it initiates DNA transcription of specific mRNAs. Corticosteroids potentially inhibit the accumulation of neutrophils, inhibit secretion of human pulmonary macrophages of leukotrienes and prostaglan-
dins; inhibit formation of interleukins (ILs) such as IL-1, IL-2, IL-3 and IL-5, inhibit degranulation and adherence of eosinophils, reduce number of circulating T lymphocytes and formation of an IgE binding suppressive factor. Steroids prevent and reverse the increase in vascular permeability due to inflammatory mediators and may therefore lead to resolution of airway edema. Corticosteroids remain the most effective therapy available for asthma but the legitimate fear of their adverse effects makes using them difficult. Steroids potentiate the effects of β adrenergic agonists on bronchial smooth muscle (Barnes 1989). Methylprednisolone is given intravenously to patients with severe acute asthma. Inhaled steroids have no proven value in the management of acute asthma. Patients with chronic bronchitis occasionally respond to steroids, possibly because some have an element of undiagnosed asthma.

Corticosteroids inhibit release of ACTH and secretion of cortisol by a negative feed back effect on the pituitary gland. Adverse effects of corticosteroids include fluid retention, increased cell mass, increased appetite, weight gain, osteoporosis, capillary fragility, hypertension, peptic ulceration, diabetes, cataract, and psychosis (Dajani et al. 1981).

Anti-leukotrienes

Leukotrienes possess potent pro-inflammatory actions resulting in increased vascular permeability, mucus secretion and bronchial hyperresponsiveness. They are derived from the 5-lipoxygenase pathways in mast cells, eosinophils and macrophages. Anti-leukotrienes improve lung function and diminish symptoms, exacerbation rate and the need for rescue bronchodilator. These are drugs of choice in case of aspirin induced asthma, in which patients have high LTE4 levels in urine and nasal secretions and even higher after taking aspirin (Christie et al. 1992).

Leukotriene modifiers are drugs that modify the response of these mediators of inflammation by one of the four ways (Drazen 1997).

a) Cysteinyl LT receptor inhibitors

C-LTs promote eosinophil influx, bronchospasm and mucus hypersecretion, all are considered hallmarks of asthma. C-LT receptor inhibitors antagonize or inhibit leukotrienes predominantly LTD4. These agents inhibit phospholipases, prostaglandins, leukotrienes, and IL-1 synthesis. Probilukast and Iralukast belong to this class (Drazen 1997; Florenani and Rennard 1999).

b) 5-lipoxygenase inhibitors

They prevent the formation of leukotrienes by blocking a 5-lipoxygenase pathway in their synthesis. Zileuton, ZD-2138, ABt-761 belongs to this class (Florenani and Rennard 1999).

c) 5-lipoxygenase activating protein (FLAP) inhibitors

MK-0591 and MK-886 attenuated the early and late asthmatic response following antigen challenge but not the attendant increase in airway responsiveness to spasmogens (Diamant et al. 1995).

d) Leukotrienes receptor antagonists

Montelukast, Zafirlukast, Pranlukast are selective and high affinity LT1 antagonists (Adcock and Matthews 1998).

Zileuton has shown efficacy in exercise-induced asthma, aspirin induced bronchospasm and following chronic administration, an improvement in pulmonary function (FEV1) and a reduction in oral and inhaled corticosteroid use (Tamaoki et al. 1997). Furthermore, in a small study, zileuton attenuated both airway and blood eosinophilia in nocturnal asthmatics (Wenzel et al. 1995).

Zafirlukast has been demonstrated to attenuate the acute airway obstructive response to allergen and exercise challenge and to improve chronic asthma control both objectively (FEV1, nocturnal awakenings, β-agonist use) and subjectively.

Montelukast has been shown to block the early and late response to allergen challenge following single dosing, to improve FEV1 in both children (6–14 years) and adults and to protect against the development of exercise induced bronchoconstriction in both children and adults. Tolerance to the bronchoprotective effects of montelukast in attenuating exercise-induced bronchospasm does not develop following at least 12 weeks of therapy.

Pranlukast increases FEV1 within 1 h of dosing, improves patient summary symptom and nighttime asthma scores and reduces the use of rescue bronchodilators. In patients with moderate persistent asthma, it prevents exacerbations of asthma during reduction of high dose inhaled corticosteroids therapy (Tamaoki et al. 1997).

Mediator release inhibitors

Cromolyn sodium

Cromolyn Sodium (Sodium cromoglycate) is a derivative of khellin, an Egyptian herbal remedy. Cromolyn inhibited the release of mediators by allergen in passively sensitized animal and human lung preparations (Cox 1967). Cromolyn was classified as mast cell stabilizer. Cromolyn has variable inhibitory actions on other inflammatory cells including macrophages and eosinophils that may participate in allergic inflammation. In vivo cromolyn can block both the early response that may be mediated by mast cells to allergens and the late response and bronchial hyper responsiveness (Cockcroft and Murdock 1987). Cromolyn Sodium is used for prophylactic treatment and consequently needs to be taken regularly. It is the first choice anti-
inflammatory drug for children because it has few adverse effects (Bernstein 1985). Cromolyn sodium is classified as an antiallergic drug because it appears to have a specific effect on allergy based inflammation. Several other drugs also may be included in this category.

Nedocromil sodium is a new drug used for prophylaxis. It has a similar pharmacologic profile of activity to cromolyn, is more potent in various tests, and may have a longer duration of action. Ketotifen also is described as a drug to be used for prophylaxis against asthma.

Newer targets in asthma therapy

The current pharmacotherapeutic approaches to asthma have several limitations. First, there is no known asthma cure and little evidence that prevention is possible in susceptible persons. Hence, patients continue to be at risk of symptoms and exacerbations. Mortality remains a severe problem. Finally, the medications have adverse effects. There is even some evidence, albeit conflicting, that cataract formation, osteoporosis and growth impairment, as associated with systemic glucocorticoids, may arise from topical steroids, depending on dosages used. New inhalation devices and new generation beta-agonists are available. At the same time, new understanding of the molecular pathology of asthma has identified several novel therapeutic targets. Agents being tested in early phase clinical trials include antagonists of IgE, cytokines, adhesion molecules and transcription factors.

TXA2 inhibitors

TXA2 is a potent bronchoconstrictor, mucus producer and blood vessel permeability inducer and causes airway hyper responsiveness. Serabenast, dimotitran and ozagrel are the

Table 1 Bronchodilators

Sr. No	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	*Adhatoda vasica* Nees	Leaves, Roots	Alkaloids	Paliwa et al. 2000
2.	*Albizia lebbeck* (Sareesha _ rakt)	Stem bark/Aqueous	Saponins	Tripathi and Das 1977
3.	*Alstonia scholari*	Leaves/Ethanol	Ditamine, Echitamine and Echitamines	Channa et al. 2003
4.	*Artemisia caerulescens*	Aerial parts/Butanol	Quercetin, isorhamnetin	Moran et al. 1989
5.	*Belamcanda chinensis*	Leaves/Ethanol	Tectorigenin	Singh and Agrawal 1990
6.	*Benincasa hispida*	Fruits/Methanol	Triterpenes, Glycosides, Sterols	Kumar and Ramu 2002
7.	*Cissampelos sympodielix*	Leaves and root bark/Aqueous	waritine, α-bisbenzylisoquinoline alkaloid	Thomas et al. 1995, 1997; Cortes et al. 1995
8.	*Clerodendron serratum*	Stem bark/Aqueous	Phenolic glycoside	Gupta 1968; Gupta and Tripathi 1973
9.	*Coleus forskholi*	Roots	Forskolin (Diterpenoid)	Marone et al. 1987
10.	*Elaeocarpus sphericus*	Fruits/Aqueous, Pet-ether, Benzene, Acetone and ethanol	Glycoside, Steroids, Alkaloid, Flavanoids	Singh et al. 2000
11.	*Galpinia glauca*	Aerial/Alcohol extract/Ethyl-acetate	Tetragalloyquinic acid, Quercetin	Campos et al. 2001
12.	*Gardenia latifolia*	Bark	Saponins	Gupta 1974
13.	*Ginko biloba*	Leaves	Ginkgolides	Puglisi et al. 1988
14.	*Mikania glomerata*	Leaves/Aqueous, hydroalcohol	Coumarin	Soares de Moura et al. 2002
15.	*Lepidium sativum*	Seeds/Ethanol fractions	Alkaloids, Flavanoids	Mali et al. 2008
16.	*Ocimum sanctum*	Leaves/Ethanol	Myrcenol, Nerol, Eugenol	Singh and Agrawal 1991
17.	*Passiflora incarnata*	Leaves/Methanol	Alkaloids	Dhawan et al. 2003
18.	*Pavetta crassipes*	Leaves/Aqueous	Flavanoids, tannins, antraquinones	Amos et al. 1998
19.	*Picrorrhiza kurroa*	Roots/	Androislin	Stuppern et al. 1991
20.	*Sarcostemma brevistigma*	Twigs/Alkaloidal fraction	Bregenin	Saraf and Patwardhan 1988b
21.	*Tephrosia purpurea*	Aerial parts/Ethanol extract	Flavanoids, Tephrosin	Gokhale et al. 2000
22.	*Tylophora indica*	Leaves/Alkaloidal fraction	Tylophorine	Nayampalli et al. 1986
23.	*Vitex negundo*	Leaves/Ethanol	Casticin, isoorientin Chrysophenol D, Luteolinc Acetic acid (CA) and Rosmarinic acid	Nair and Saraf 1995
24.	*Rosmarinus officinalis*	Shrub/Aqueous	Ephedrine	Aqel 1991
25.	*Ephedra sinica*	Stems	Ephedrine	Akiba et al. 1979
26.	*Gleditsia sinensis Lam.*	Leaves/Decocitions		Dai et al. 2002
examples of these TXA2 synthetase inhibitors. Ozagrel reduced cough sensitivity to capsaicin and bronchoconstriction due to acetaldehyde. TXA2 antagonists BAY u3405 produced a modest decrease in airways responsiveness to methacholine following 2 weeks treatment in asthmatics.

Tachykinin receptor antagonists

The first nonpeptide tachykinin receptor antagonist was CP-96345, which is a potent NK1 receptor antagonist. SR

Sr No	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	Achyranthes aspera	Aerial parts/Aqeous	Oleanolic acid	Agrawal and Mehta 2005
2.	Albizia lebbeck	Stem bark/Aqueous	Saponins	Tripathi et al. 1979
3.	Allium cepa	Bulbs/Juice	α and β unsaturated Thiophosphinates	Johri et al. 1985
4.	Aquilaria agallocha	Stem/Aqueous extract	Triterpenoids	Kim et al. 1997
5.	Azadirachta indica	Leaves/Juice	Nimbin, nimbinine, Nimbandiol, quercetin	Acharya et al. 2003
6.	Bacopa monniera	Leaves/Ethanol	Bacosides, Alkaloids, Glycosides	Samiulla et al. 2001
7.	Bidens parviflora	Aerial parts	Glycosides	Wang et al. 2001
8.	Calotropis proceras	Latex	α-amyrin,β-amyrin calotropin (Triterpenoid)	Kumar and Basu 1994
9.	Cassia alata	Leaves/Ethanol	Anthraquinones, Flavanoids	Palanichamy et al. 1991
10.	Cassia obtusifolia	Seeds/Glycosidal fraction	Anthraquinones, Betulinic acid	Kitanaka et al. 1998
11.	Cassia tansia	Seeds	Gentio biosides	Kanno et al. 1999
12.	Cedrus deodara	Wood oil	Himacholol	Shinde et al. 1999
13.	Citrus unshiu	Peels/	Flavanoids	Kim et al. 1999
14.	Clerodendron serratum	Bark/Aqueous	Phenolic glycoside	Gupta 1968
15.	Cnidium monnieri	Fruits/Ethanol	Osthol	Chen et al. 1988
16.	Coleus forskohlii	Roots	Forskolin (diterpenoid)	Marone et al. 1987
17.	Crinum glaucum	Leaves/Aqueous	Alkaloids, lycorine, crinamine	Okpo and Adeyemi 2002
18.	Curcuma longa	Rhizome	Tumorones, curcuminoids	Ammon and Wahl 1991
19.	Drymaria cordata	Methanol extracts		
20.	Elaeocarpus spatharicus	Fruits/Aqueous, Pet-ether, Benzene, Acetone and ethanol	Glycoside, Steroids, Alkaloid, Flavanoids	Singh et al. 2000
21.	Gleditsia sinensis	Fruits/Ethanol	Saponins	Dai et al. 2002
22.	Impatiens textori	Flowers/Ethanolic	Apigenin, uteolin, chrysoeriol	Ishiguro et al. 2000
23.	Inula racemosa	Roots/Alcohol	Inulolide-a new Sesquiterpen lactone	Srivastava et al. 1999
24.	Magnolia officinalis	Bark/Aqueous	Honokiol, Magnolol	Shin et al. 2001b
25.	Mentha piperita	Leaves	Flavanoidal glycosides	Inoue et al. 2002
26.	Ocimum sanctum	Leaves/Aqueous	Myrcenol, Nerol, Eugenol	Sen 1993
27.	Picrorrhiza kurroa	Roots/	Androsin	Stuppner et al. 1991
28.	Solanum xanthocarpum	Roots/Alkaloid fraction	Solasodine	Chitravanashi et al. 1990
29.	Striga orobanchioid	Aerial parts/Ethanol		
30.	Tephrosia purpurea	Aerial parts/Ethanol extract	Flavanoids, Tephrosin	Gokhale et al. 2000
31.	Terminalia chebula	Fruits/Aqueous	Ellagic acid, Tannins Chebulagic acid	Shin et al. 2001a
32.	Tinospora cordifolia	Stem/Aqueous	Tinosporin	Nayampalli et al. 1986
33.	Tylophora asthmatica	Leaves/Alkaloidal	Tylophorine	Geetha et al. 1991
34.	Vitex negundo	Leaves/Ethanol	Casticin, isoorientin Chrysophenol D, Luteolin	Nair et al. 1994
of tryptase, also attenuates antigen induced late response and bronchial hyperresponsiveness in allergic sheep.

Cytokine inhibitors

One of the novel approaches for the treatment of asthma is to target cytokines and develop cytokine modulators as drugs. Two humanized anti-IL-5 monoclonal antibodies, Sch-55700 and SB-240563 reduced blood eosinophil count for several weeks and prevented eosinophils recruitment into the airways after allergen challenge in asthmatic patients. IL-5 signaling inhibitor GCC-AP0341 inhibited IL-5 mediated survival of eosinophils. IL-4 receptor antibodies inhibited allergen induced airway hyperresponsiveness, goblet cell metaplasia and pulmonary eosinophilia in a murine model.

Chemokine inhibitors

A variety of chemokines, one of which is the chemo-attractant eotaxin, are secreted by inflamed lung tissue thereby attracting eosinophils. Eotaxin receptor blockers are being investigated, as eosinophils are believed to be major contributors to the pulmonary damage seen in asthma. Monoclonal antibody (7B11) for human CCR3 has shown to completely block the binding and signaling of the known CCR3 ligands, thus blocking the chemotactic response of human eosinophils to all chemokines.

Adhesion molecule antagonists

Interactions of eosinophils with intra cellular adhesion molecule-1 (ICAM-1) are thought to be necessary for eosinophils recruitment into airways. Antibodies to ICAM-1

Table 3 Anti-allergics

Sr. No.	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	Adhatoda vasica	Leaves/Methanol	Vasicinol, vasicine	Muller et al. 1993; Kumar Suresh 1979
2.	Albizzia lebbeck	Stem bark/Aqueous	Saponins	Baruah et al. 1997; Suresh et al. 1981
3.	Alisma orientale	Rhizomes/Aqueous, Methanol	Alisol B monoacetate, Alismaketones-B 23-acetate and –C 23-acetate	Kubo et al. 1997
4.	Aquillaria agallocha	Stem/Aqueous extract	Triterpenoids	Kim et al. 1997
5.	Asiasarum sieboldi	Roots/Methanol	Methyl Eugeneol, gamma-asarone, Elemicin, Asarinin	Hashimoto et al. 1994
6.	Camellia sinensis	Leaves	Flavanoids	Suzuki et al. 2000
7.	Centipedea minima	Aerial parts	Flavanoids, Pseudoguainolide, sesquiterpene lactones	Wu et al. 1985
8.	Citrus unshiu	Peels/	Flavanoids	Kim et al. 1999
9.	Cnidium monnieri	Fruits/Ethanol	Osthol	Matsuda et al. 2002
10.	Crinum glaucum	Leaves/Aqueous	Alkaloids, lycorine, crinamne	Okpo and Adeyemi 2002
11.	Curcuma longa	Rhizomes	Curcumin and tetrahydrocurcumin	Suzuki et al. 2000
12.	Dalbergia odorifera	Heart Wood	Flavanoids, Tannins	Chan et al. 1998
13.	Desmodium adscendens	Aqueous	Triterpenoid Saponin	Addy 1989
14.	Galphimia glauca	Aerial/Alcohol extract/Ethyl-acetate	Tetragalloylquinic acid, Quercetin	Neszmelyi et al. 1993
15.	Ginko biloba	Leaves	Ginkgolides	Touvay et al. 1985
16.	Gleditsia sinensis	Fruits/Ethanol	Saponins	Dai et al. 2002
17.	Hydrangea macrophylla	Leaves	Glycosides	Matsuda et al. 1999
18.	Inula racemosa	Roots/Alcohol	Inulolide-a new Sesquiterpene lactone	Srivastava et al. 1999
19.	Magnolia officinalis	Bark/Aqueous	Honokiol, Magnolol	Shin et al. 2001b
20.	Sarcostemma brevistigma	Twigs/Alkaloidal fraction	Bregenin	Saraf and Patwardhan 1988a
21.	Solanum xanthocarpum	Roots/Alkaloidal fraction	Solasodine	Chitravanshi et al. 1990
22.	Terminalia chebula	Fruits/Aqueous	Ellagic acid, Tannins Chebulagic acid	Shin et al. 2001a
23.	Vitex negundo	Leaves/Ethanol	Casticin, isoorientin Chrysophenol D, Luteolin	Nair and Saraf 1995
Table 4 Anti-inflammatory agents

Sr.No.	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	Asystasia gangetica	Leaves/Methanol, Ethyl Acetate	Isoflavone glycoside, dalhorinin	Akah et al. 2003
2.	Aloe vera Tourn.ex Linn. (Liliaceae)	Leaves/Aqueous, Chloroform and ethanol	Anthraquinones, sterols, saponins and carbohydrate	Vazquez et al. 1996
3.	Bryonia laciniosa	Leaves/chloroform extract	Flavonoids	Gupta et al. 2003
4.	Calotropis procera	Latex	α-amyrin, β-amyrin calotropin (Triterpenoid)	Kumar and Basu 1994
5.	Cinnamomum Zeylanicum	oil	Eugenol, cinnamic aldehyde and α-terpeniol.	
6.	Curcuma longa	Rhizomes	Tumerones, curcuminoids	Ammon and Wahl 1991
7.	Dalbergia odorifera	Heart Wood	Flavanoids, Tannins	Chan et al. 1998
8.	Elaeocarpus sphericus	Fruits/Aqueous, Pet-ether, Benzene, Acetone and ethanol	Glycoside, Steroids, Alkaloid, Flavanoids	Singh et al. 2000
9.	Nelsiona canescens	Leaf/ethanol extract	Flavonoids	Owoyele et al. 2005
10.	Indigofera tinctoria	Whole plant/methanol	Polyphenols	Oli et al. 2005
11.	Butea frondosa Koen.	Leaves/Aqueous	Flavonoid, glycosides, proteins and amino acids.	Mengi and Deshpande 1999
12.	Ocimum sanctum	Leaves/Aqueous	Myrenol, Nerol, Eugenol	Singh and Agrawal 1991
13.	Ophiopogon japonicus	Root/aqueous extract	Ruscogenin and ophiopogonin D	Kou et al. 2005
14.	Pavetta crassipes	Leaves/Aqueous	Flavanoids, tannins, anthisraquinones	Amos et al. 1998
15.	Tylophora asthmatica	Leaves/Alkaloidal	Tylophorine	Manez et al. 1990

Table 5 Anti-spasmodic agents

Sr. No.	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	Aegle marmelos	Leaves/Ethanol	Aegelin, Aegelemine,Aegeline	Arul et al. 2004
2.	Asiasarum sieboldi	Roots/Methanol	Methyleugenol, gamma-asarone, Elemicin, Asarinin	Hashimoto et al. 1994
3.	Asystasia gangetica	Leaves/Methanol, Ethyl acetate	Isoflavone glycoside, dalhorinin	Akah et al. 2003
4.	Bacopa monniera	Leaves/Ethanolic	Bacosides, Alkaloids,Glycosides	Dar and Channa 1997; Channa et al. 2003
5.	Belamcanda chinensis	Leaves/Ethanol	Tectorigenin	Singh and Agrawal 1990
6.	Cissampelos glaberrina	Leaves, Root Bark/Aqueous	Warifice, α-bisbenzylisoquinoline alkaloid	Thomas et al. 1995; Cortes et al. 1995
7.	Clerodendron serratum	Stem bark/Aqueous	Phenolic glycoside	Gupta 1968
8.	Cnidium monnieri	Fruits/Ethanol	Osthol	Chen et al. 1988
9.	Coleus forskohlii	Roots	Forskolin (diterpenoid)	Marone et al. 1987
10.	Crinum glaucum	Leaves/Aqueous	Alkaloids, lycorine, crinamine	Okpo and Adeyeme 2002
11.	Drymis winteri	Bark	Terpene	Sayah et al. 1998
12.	Ferula ovina	Aerial parts/Ethanol	Carvacrol, alpha-pinene, geranyl isovalerate and geranyl propionate	Khalil et al. 1990
13.	Ferula sinica	Roots/Ethanol	Resins	Aqel et al. 1991
14.	Pavetta crassipes	Leaves/Aqueous	Flavanoids, tannins, anthisraquinones	Amos et al. 1998
15.	Saussurea leppa	Alkaloidal fraction	Sesquiterpene lactone, Terpenoids	Dutta et al. 1968
16.	Striga orbanchioids	Aerial parts/Ethanol	??	Harish et al. 2001
17.	Thymus vulgaris	Ethanol	Flavanones	Meister et al. 1999
18.	Tylophora asthmatica	Leaves/Alkaloidal	Tylophorine	Hananath and Shyamalakumari 1975; Udapa et al. 1991
Phosphodiesterase inhibitors

Considerable interest has been generated in the potential utility of isoenzyme-selective inhibitors of cyclic nucleotide phosphodiesterase (PDE) in the treatment of asthma and other inflammatory disorders. The scientific foundation for this interest is based upon two fundamental principles. First, inhibition of PDE activity increases the cellular content of two key second messengers, cAMP and cGMP, thereby activating specific protein phosphorylation cascades that elicit a variety of functional responses. Increases in cAMP content suppress a broad array of functions in inflammatory and immune cells. Both cAMP and cGMP mediate bronchodilation. PDE3 inhibitor enoxamine was shown to decrease lung resistance and increase compliance in patients with decompensated chronic pulmonary disease. Benzafentrine administered to normal volunteers by inhalation produced bronchodilation. Zaprinast is PDE5 inhibitor; it reduced exercise-induced bronchoconstriction but not histamine-induced bronchoconstriction. Most of the work now is focused on selectively targeting PDE4, primarily because inhibitors of this isoenzyme family have a notably appealing therapeutic profile; broad-spectrum anti-inflammatory activity coupled with additional bronchodilatory and neuromodulatory action. Rolipram, LAS-31025, RP-73401 and denbufylline are selective PDE4 inhibitors. SB 207499, VII294A, CP-220 and roflumilast are PDE4 inhibitors with less gastrointestinal side effects.

Endothelin modulators

There are two approaches for ET-1 directed therapeutics- (1) Inhibitors of endothelin-converting enzyme (ECE), which mediates the synthesis of ET-1 from its precursor; (2) Receptor antagonists of the effects of ET-1 at the end organ level. These agents reverse and/or prevent the increase in pulmonary artery pressure and vascular remodeling elicited by acute or chronic hypoxia. Examples are BQ-123, SB-217242 and bosentan.

Herbal drugs in bronchial asthma

Many Ayurvedic plants have been described to be useful in the treatment of various bronchial disorders including

Table 6 Miscellaneous agents

Sr No	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	**Lipoxygenase inhibitors**			
1.	Allium cepa	Bulbs/Juice	α and β unsaturated Thiosulphinates	Bayer et al. 1989
2.	Boswellia serrata	Gum resin/Ethanol	Forskolin (diterpenoid)	Ammon et al. 1991
3.	Coleus forskohlii	Roots	B-sitosterol, quercetin and dihydroquercetin	Delporte et al. 2005
4.	Prunus pyrifolia	Whole plant/methanol		
	Platelet Activating Factor (PAF) inhibitors			
1.	Allium cepa	Bulbs/Juice	α and β unsaturated Thiosulphinates	Dorsch et al. 1987
2.	Galphimia glauca	Aerial/Alcohol extract/Ethyl-acetate	Tetragalloylquinic acid, Quercetin	Neszmelyi et al. 1993
3.	Impatiens textori	Flowers/Ethanol	Apigenin, uteolin, chrysoeriol	Ueda et al. 2003
4.	Picrorrhiza kurroa	Roots/	Androsin	Stuppner et al. 1991
	Cyclooxygenase inhibitor			
1.	Allium cepa	Bulbs/Juice	α and β unsaturated Thiosulphinates	Bayer et al. 1989
2.	Magnolia obovate	Stem bark	Magnolol and honokiol	Lee et al. 2005
3.	Crataegus pionatifida	Fruit	Flavanoids	Kao et al. 2005
	Interleukins (ILs) biosynthesis inhibitors			
1.	Calocedrus formosana	Bark/alcohol	Sugiol	Chao et al. 2005
2.	Nidularium procerum	Leaves/Aqueous extract		Vieira-de-Abreu et al. 2005
3.	Waltheria indica	Whole plant/	flavonoids	Rao et al. 2005
4.	Mahonia aquifolium Nutt. Berberidaceae	Stem bark/hydroalcohol extract	Polysaccharides Protoberberine and bisbenzylisoquinoline (BBI) alkaloids berbamine, tetrandrine	Kostalova et al. 2001
	Leukotriene biosynthesis inhibitors			
1.	Nigella sativa	Seeds oil	Thymoquinone (TQ)	El Gazzar et al. 2006
bronchial asthma (Kumar Suresh 1979). The use of medicinal plants and natural products increased dramatically in the last two decades in all over the world. More than 400 medicinal plant species have been used ethanopharmacologically and traditionally to treat the symptoms of asthmatic and allergic disorders worldwide.

Classification of antiasthmatic herbs based on mechanism of action

Some herbal alternatives employed in asthma are proven to provide symptomatic relief and assist in the inhibition of disease development as well. These herbs therefore have multifaceted roles to play in the management of asthma suggesting different sites of action within the body. Based on the possible mechanism of action reported, plant antiasthmatics may be classified as shown in tables (Tables 1, 2, 3, 4, 5, 6, 7 and 8).

Conclusion

Herbal approaches have regained their popularity, with their efficacy and safety aspects being supported by controlled clinical studies. The herbal approaches have offered effective mast cell stabilizers like sodium cromolyn and sodium cromoglycate developed from khellin and antileukotriene products like—boswellic acids. Ongoing re-

Table 7 Antianaphylactic drugs

Sr. No.	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	*Xanthii fructus*	Whole plant/Aqueous	Saponin, flavones, Caflfic acid, 1,4-dicaffeoylquinic acid, sesquiterpene lactones	Hong et al. 2003
2.	*Lycopus lucidus*	Whole plant/Aqueous	Betulinic acid, pentacyclic Triterpenes	Shin et al. 2005
3.	*Poncirus trifoliata*	Fruit/Aqueous	Flavonoids	Kim et al. 1999
4.	*Trichopus zeylanicus*	Leaves/butanol	Lipopolysaccharides/Glycolipopolysaccharides	Subramonian et al. 1999
5.	*Cryptotympana atrata*	Whole plant/Aqueous	Oleaneolic acid	Shin et al. 1999
6.	*Striga orobanchioides*	Whole plant/Aqueous, ethanolic	Flavonoids, apigenin and luteolin	Harish et al. 2001
7.	*Crumum glaucum*	Bulbs/Aqueous	Alkaloids	Okpo and Adeyemi 2002
8.	*Acanthopanax senticosus*	Stem/Aqueous	Acanthoside A, B & C, Chiisanoside, Senticoside, Saponin, flavones,	Yi et al. 2002
9.	*Syzygium aromaticum*	Flower bud/Aqueous	Flavanoids	Shin et al. 2001a
10.	*Terminalia chebula*	Fruit/Aqueous	Tannins	Shin et al. 2000
11.	*Vitex rotundifolia*	Fruit/Aqueous	Flavonoids	Shin et al. 2000

Table 8 Immunomodulatory drugs

Sr. No.	Name of plant	Part used/extract/fraction	Major chemical constituent(s)	Reference
1.	*Picrohiza scrophularisflora*	Rhizomes/Pet. ether, Diethyl ether and methanol	Apocynin, androsin and picroside II	Smit et al. 2000
2.	*Trichilia glabra*	Leaf/Aqueous	Polysaccharides	Benancia et al. 2000
3.	*Cedrela tubiflora*	Leaf/Aqueous	Gallic acid, polysaccharides	Benancia et al. 1995
4.	*Ipomoea carnea*	Leaf/Aqueous	Nortropane alkaloids, calystegines β2	Huesa et al. 2003
5.	*Withania somnifera*	Coded extracts	Glycolipids	Rasool and Varalakshmi 2006
6.	*Clausena excuata*	Wood/Aqueous	Phenolic compounds, furanocoumarins, flavanoids and carbazole alkaloid	Manosroi et al. 2005
7.	*Magnifera indica*	Bark/Alcohol, ether	Magniferin	Makare et al. 2001
8.	*Cleome viscosa*	Aerial parts/Aqueous, ethanolic	Alkaloids, saponins	Tiwari et al. 2003
9.	*Plantago ovata*	Seeds/Aqueous	Polysaccharides glycosides	Rezaiepoor et al. 2000
10.	*Typhae angustifolia*	Pollen/ethanol	Phenolic compounds, flavones Triterpenes And β-sitosterol	Qin and Sun 2005
11.	*Angelica sinensis*	Roots/Aqueous and ethanolic	Polysaccharides	Yang et al. 2006
12.	*Boerhaavia diffusa*	Roots/ethanol	Alkaloids	Mungantiwar et al. 1999
13.	*Tephrosia purpurea*	Aerial parts/Ethanol	Flavanoids	Damre et al. 2003
search worldwide has provided valuable clues regarding the precise mechanism of action of these herbal alternatives and these herbs, have shown interesting results in various target specific biological activities such as bronchodilation, mast cell stabilization, anti-anaphylactic, anti-inflammatory, anti-spasmodic, anti-allergic, immunomodulatory and inhibition of mediators viz., leukotrienes, lipooxygenase, cyclooxygenase, platelet activating, phosphodiesterase and cytokine, in the treatment of asthma.

Some herbal alternatives employed in these traditions are proven to provide symptomatic relief and assist in the inhibition of disease development as well. In nutshell, attempt should be made to develop polyherbal formulations which contain various herbs acting at particular sites of the pathophysiological cascade of asthma for prophylaxis as well as for the treatment of asthma and subsequent clinical studies on them.

References

Acharya SB, Yanpallewar SU, Singh RK (2003) A preliminary study on the effect of Azadirachta indica on bronchial smooth muscles and mast cells. J Nat Rem 3:78–82

Adcock IM, Matthews JC (1998) New drugs for asthma. Drug Discov Today 3:395–419

Addy ME (1989) Several chromatographically distinctive fractions of Desmodium adscendens inhibit smooth muscle contractions. Int J Crude Drug Res 27:81–91

Agrawal MM, Mehta AA (2005) Phyto-pharmacological investigation of Moringa oleifera and Achyranthus aspera for their anti-asthmatic activity. Ph.D. thesis, Gujarat University

Akah PA, Ezike AC, Nwafor SV, Okoli CO, Enwerem NM (2003) Evaluation of the anti-asthmatic property of Asystasia gangetica leaf extracts. J Ethnopharmacol 89:25–36

Akiba K, Onodera K, Kisara K, Fujikura H (1979) Interaction of d-pseudoephedrine with water soluble extracts of Platycodi radix on acute toxicity. Nippon Yakurigaku Zasshi 75:201–206

Ammon HP, Mack T, Singh GB, Safayhi H (1991) Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudates of Boswellia serrata. Planta Med 57:203–207

Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

Amos S, Gamanriel K, Akah P, Wambebe C (1998) Anti-inflammatory and muscle relaxant effect of aqueous extract of Pavetta crassipes leaves. Fitoterapia 69:425–429

Aqel MB (1991) Relaxant effect of the volatile oil of Romarins officinalis on tracheal smooth muscle. J Ethnopharmacol 33:57–62

Aqel MB, al-Khalil S, Afifi F, al-Eisawi D (1991) Relaxant effects of Feresa sinaica root extract on rabbit and guinea pig smooth muscle. J Ethnopharmacol 31:373–381

Arul V, Miyazaki S, Dhananjayan R (2004) Mechanisms of the contractile effect of the alcoholic extract of Aegle marmelos Corr on isolated guinea pig ileum and tracheal chain. Phytomedicine 11:679–683

Barns PJ (1989) New concept in the pathogenesis of bronchial hyper-responsiveness and asthma. J Allergy Clin Immunol 83:1013–1026

Barns PJ, Chung KE, Page CP (1988) Inflammatory mediators and asthma. Pharmacol Rev 40:49–84

Baruah CC, Gupta PP, Patnaik GK, Nath A, Kulshreshtha DK, Dhawan BN (1997) Anti-allergic and mast cell stabilizing activity of Alhizia lebbeck. Ind Veterinary Med J 21:127–132

Bayer T, Breu W, Seligmann O, Wray V, Wagner H (1989) Biologically active thiosulphinates and α-sulphinyl disulphides from Allium cepa. Phytochemistry 28:2373–2377

Benencia F, Courreges MC, Coulombie FC (2000) In vivo and in vitro immunomodulatory activities of Trichilia glabra aqueous leaf extracts. J Ethnopharmacol 69:199–205

Benencia F, Courreges MC, Nores MM, Coulombie FC (1995) Immunomodulatory activities of Cedrela tubiflora leaf aqueous extracts. J Ethnopharmacol 49:133–139

Bernstein IL (1985) Cromolyn sodium in the treatment of asthma: coming of age in the United States. J Aller Clin Immunol 76:381–388

Campos MG, Toxqui E, Tortoriello J, Oropoz MA, Ponce H, Vargas MH, Montano LM (2001) Galphimia glauca organic fraction antagonized LTD (4)-induced contraction in guinea pig airways. J Ethnopharmacol 74:15–18

Chan SC, Chang YS, Wang JP, Chen SC, Kuo SC (1998) Three new flavonoids and anti-allergic, anti-inflammatory constituents from the heartwood of Dalbergia odorifera. Planta Med 64:153–158

Channa S, Dar A, Yaqoob M, Anjum S, Sultani Z, Atta-ur-Rahman (2003) Broncho-vasodilatory activity of fractions and pure constituents isolated from Bacopa monniera. J Ethnopharmacol 86:27–35

Chao KP, Hua KF, Hsu HY, Su YC, Chang ST (2005) Anti-inflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana bark. Planta Med 71:300–305

Chen ZC, Duan XB, Liu KR (1998) The anti allergic activity of osthole extracted from the fruits of Cnidium monnieri (L.) Casson. Acta Pharmaceutica Sinica 23:96–99

Chitravanshi VC, Gupta PP, Kulshrestha DK, Kar K, Dhawan BN (1990) Anti-allergic activity of Solanum xanthocarpum. Ind J Pharmacol 22:23–24

Christie PE, Tagari P, Ford-Hutchinson AW, Black C et al (1992) Urinary leukotriene E4 after l-lysine –aspirin inhalation in asthmatic subjects. Am Rev Respir Dis 146:1531–1534

Church MM, Hiroi J (1987) Inhibition of IgE-dependant histamine release from human dispersed lung mast cells by anti-allergic drugs and salbutamol. Br J Pharmacol 90:421–429

Cockcroft DW, Murdock KY (1987) Comparative effects of inhaled salbutamol, sodium chromoglycate and beclomethasone dipropionate on allergen-induced early asthmatic responses, late asthmatic responses and increased bronchial responsiveness to histamine. J Aller Clin Immunol 79:734–740

Cortes SF, Alencar JI, Thomas G, Filho JMB (1995) Spasmolytic action of warfiteine, a bisbenzylisoquinoline alkaloid isolated from the root bark of Cissampelos sympodialis Eich. Phytother Res 9:579–583

Cox JSG (1967) Disodium chromoglycate (FPL 670) (Intal): a specific inhibitor of reaginic antibody-antigen mechanisms. Nature 216:1328–1329

Dai Y, Chan YP, Chu LM, Bu PP (2002) Antiallergic and anti-inflammatory properties of the ethanolic extract from Gleditsia sinensis. Biol Pharm Bull 5:1179–1182

Dajani BM, Sliman NA, Shubair KS, Hamzeh YS (1981) Bronchospasm caused by intravenous hydrocortisone sodium succinate (Solu-Cortef) in aspirin sensitive asthmatics. J Allergy Clin Immunol 66:201–206

Damre AS, Ghokale AB, Phadke AS, Kulkarni KR, Saraf MN (2003) Studies on the immunomodulatory activity of flavonoidal fraction of Tephrosia purpurea. Fitoterapia 74:257–261

Dar A, Channa S (1997) Relaxant effect of ethanol extract of Bacopa monniera on trachea, pulmonary and aorta from rabbit and guinea pig. Phytother Res 11:323–325

Delporte C, Backhouse N, Erazo S, Negrete R, Vidal P, Silva X, Lopez-Perez JL, Feliciano AS, Munoz O (2005) Analgesic–
antiinflammatory properties of *Prolacta pyrifolia*. J Ethnopharmacol 99:119–124

Dhawan K, Kumar S, Sharma A (2003) Anti-asthmatic activity of the methanol extract of leaves of *Passiflora incarnata*. Phytother Res 17:821–822

Diamant Z, Timmers MC, Vander Veen H, Friedman BS, De Smet M, Depre M, Hilliard D, Bel EH, Sterk PJ (1995) The effect of MK-0591, a novel 5-lipoxygenase activating protein inhibitor on leukotriene biosynthesis and allergen-induced airway responses in asthmatic subjects in vivo. J Aller Clin Immunol 95:42–51

Dorsch W, Ettl M, Hein G, Schefzner P, Weber J, Bayer T, Wagner H (1987) Anti-asthmatic effects of onions. Inhibition of platelet activating factor induced bronchial obstruction by onion oils. Int Arch Allergy App Immunol 82:535–536

Drazen JM (1997) Pharmacology of leukotriene receptor antagonists and 5-lipoxygenase inhibitors in the management of asthma. Pharmacotherapy 17:225–308

Dutta NK, Sastry M, Tamhane RG (1968) Pharmacological actions of an alkaloidal fraction isolated from *Saussurea leppa* (Clarke). Curr Sci 37:550–551

El Gazzar M, El Mezayen R, Nicoll RS, Marecki JC, Dreskin SC (2006) Downregulation of leukotriene biosynthesis by thromboxane attenuates airway inflammation in a mouse model of allergic asthma. Biochim Biophys Acta 1760:1088–1095

Floreni AA, Rennard SI (1999) The role of cigarette smoke in the pathogenesis of asthma and as a trigger for acute symptoms. Curr Opinion Pulm Med 5:38–46

Geetha VS, Viswanathan S, Kameswaran L (1981) Comparison of total alkaloids of *Tylophora indica* and disodium cromoglycate on mast cell stabilization. Ind J Pharmacol 13:199–201

Gokhale AB, Dikshit VJ, Damre AS, Kulkarni KR, Saraf MN (2000) Influence of ethanol extract of *Ephedra sinica* Linn. on mast cells and erythrocytes membrane integrity. Ind J Exp Biol 38:837–840

Goyal BR, Agrawal BB, Goyal RK, Mehta AA (2007) Pharmacological classification of herbal anti-asthmatics. Orient Pharm Exp Med 7:11–25

Gupta M, Mazumdar UK, Sivakumar T, Vamsi ML, Karki S, Sambathkumar R, Manikandan L (2003) Evaluation of anti-inflammatory activity of chloroform extract of *Bryonia laciniosa* in experimental animal models. Biol Pharm Bull 26:1342–1344

Gupta SS (1968) Development of anti-histaminic and anti-allergic activity after prolonged administration of a plant saponin from *Clerodendron serratum*. J Pharm Pharmacol 20:801–802

Gupta SS (1974) Some observations on the anti-asthmatic effect of the saponins of *Gardenia latifolia*. Aspect Aller Appl Immunol 7:198–204

Gupta SS, Tripathi RM (1973) Effect of chronic treatment of the saponin of *Clerodendron serratum* on disruption of mesenteric mast cells of rats. Aspect Aller Appl Immunol 6:177–188

Haranath PSRK, Shyamalakumari S (1975) Experimental study on the mode of action of *Tylophora asthmatica* in bronchial asthma. Ind J Med Res 63:661–670

Harish MS, Mallikarjun N, Badami S (2001) Antihistaminic and mast cell-stabilizing activity of *Striga orobanchioides*. J Ethnopharmacol 76:197–200

Hashimoto K, Yanagisawa T, Okui Y, Ikeya Y, Muruno M, Fujita T (1994) Studies on anti-allergic components in the roots of *Asiasarum sieboldii*. Planta Med 60:124–127

Hong SH, Jeong HJ, Kim HM (2003) Inhibitory effects of *Xanthii fructus* extract on mast cell mediated allergic reactions in murine model. J Ethnopharmacol 88:229–234

Hueza IM, Fonseca ESM, Paulino CA, Haraguichi M, Gorniak SL (2003) Evaluation of immunomodulatory activity of *Ipomoea carnea* on peritoneal cells of rats. J Ethnopharmacol 87:181–186

Huntley A, Ernst E (2000) Herbal medicines for asthma: a systematic review.Thorax 55:925–929

Inoue T, Sugimoto Y, Masuda H, Kamei C (2002) Antiallergic effect of flavonoids obtained from *Menhda piperita*. Biol Pharm Bull 25:256–259

Ishiguro K, Ueda Y, Iwaoaka E, Oku H (2000) Antiallergic and antipruritic effect of *Impatiens textori*. Phytomedicine 7:94–97

Johri RK, Zutshi U, Kameshwaram L, Atal CK (1985) Effect of quercetin and *Albizia saponins* on rat mast cell. Ind J Physiol Pharmacol 29:43–46

Kanno M, Shibano T, Takido M, Kitankana S (1999) Anti-allergic agent from natural sources 2. Structures and leukotriene release-inhibitory effect of *Boroside S* and *torosachrysone 5-O-6-malonyl* beta gentiobioside from *Cassia torosa* Cav. Chem Pharm Bull 47:915–918

Kao ES, Wang CJ, Lin WL, Yin YF, Wang CP, Tseng TH (2005) Antiinflammatory potential of flavonoids contents from dried fruits of *Crataeagus pinnatifida* in vitro and in vivo. J Agric Food Chem 53:430–436

Khalil SA, Aqel M, Afifi F, Eisawi DA (1990) Effect of an aqueous extract of *Ferula ovina* on rabbit and guinea pig smooth muscle. J Ethnopharmacol 30:35–42

Kim DK, Lee KT, Eun JS, Zee OP, Lim JP, Eum SS, Kim SH, Shin TY (1999) Anti-allergic components from peels of *Citrus unshiu*. Arch Pharm Res 22:642–645

Kim HM, Lee EH, Hong SH, Song HJ, Shin MK, Kim SH, Shin TY (1998) Effect of *Syzgium aromaticum* extract on immediate hypersensitivity in rats. J Ethnopharmacol 60:125–131

Kim YC, Lee EH, Lee YM, Kim HK, Song BK, Lee EJ, Kim HM (1997) Effect of the aqueous extract of *Aguillaria agallocha* stem on the immediate hypersensitivity reactions. J Ethnopharmacol 58:31–38

Kitanaka S, Nakayama T, Shibano T, Ohkoshi E, Takido M (1998) Anti-allergic agent from natural sources, structures and inhibitory effect of histamine release of naphthopyrone glycosides from seeds of *Cassia obtusifolia*. Chem Pharm Bull 46:1650–1652

Kostalova D, Bukovsky M, Kossova H, Kardosova A (2001) Anticomplement activity of *Mahonia aquagium* bisbenzilsoquinoline alkaloids and berberine extract. Ceska Slov Farm 50:286–289

Kou J, Sun Y, Lin Y, Cheng Z, Zheng W, Yu B, Xu Q (2005) Antiinflammatory activities of aqueous extract from radix *Ophiopogon japonicus* and its two constituents. Biol Pharm Bull 28:1234–1238

Kubo M, Matsuda H, Tomohiro N, Yoshikawa M (1997) Studies on *Alismatis rhizome*: Anti-allergic effects of methanol extract and six terpenic components from *Alismatis rhizoma* (Dried rhizome of *Alisma orientale*). Biol Pharm Bull 20:511–516

Kumar DA, Ramu P (2002) Effect of methanolic extract of *Benincasa hispida* against histamine and acetycholine induced broncho-spasm in guinea pigs. Ind J Pharmacol 34:365–366

Kumar Suresh (1979) Scientific Appraisal of *Adhatoda vasica* Nees (*Vasaka*) J NIMA XXIII: 257–261

Kumar VL, Basu N (1994) Anti-inflammatory activity of the latex of *Calotropis procera*. J Ethnopharmacol 44:123–125

Lee J, Jung E, Park J, Jung K, Lee S, Hong S, Park J, Park E, Kim J, Park S, Park D (2005) Antiinflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NR-Kb activation signaling. Planta Med 71:338–343

Makare N, Bodhankar S, Rangari V (2001) Immunomodulatory activity of alcoholic extract of *Mangifera indica* L. in mice. J Ethnopharmacol 78:133–137

Mali RG, Mahajan SG, Mehta AA (2008) Studies on Bronchodilatory effect of *Lepidium sativum* against allergen induced broncho-spasm in Guinea pigs. Pharmacog Mag 4:189–192
and anti-inflammatory activity of *Picrorrhiza scrophulariiflora*. J Ethnopharmacol 73:101–109

Soares de Moura R, Costa SS, Jansen JM, Silva CA, Lopes CS, Bernardo-Filho M, Nascimento da Silva V, Criddle DN, Portela BN, Rubenich LM, Araujo RG, Carvalho LC (2002) Bronchodilator activity of *Mikania glomerata* Sprengel on human bronchi and guinea-pig trachea. J Pharm Pharmacol 54:249–256

Srivastava S, Gupta PP, Prasad R, Dixit KS, Palit G, Ali B, Mishra G, Saxena RC (1999) Evaluation of anti-allergic activity (Type I hypersensitivity) of *Inula racemosa* in rats. Ind J Physiol Pharmacol 43:235–241

Stupnner H, Dorsch W, Wagner H, Gropp M, Kepler P (1991) Antiasmhtic effects of *Picrorhiza kurroa*: inhibition of allergen and PAF induced bronchial obstruction in g.pigs by Androsin. Apocynine and structurally related compounds. Planta Med 57: A62

Subramoniam A, Evans DA, Valsaraj R, Rajasekharan S, Pushpangadan P (1999) Inhibition of antigen-induced degranulation of sensitized mast cells by *Trichopus zeylanicus* in mice and rats. J Ethnopharmacol 68:137–143

Suresh Kumar, R.N. Dwivedi and G. N. Chaturvedi, (1981): Scientific Appraisal of Albizzialebbeck-Benth (Shirisha), J.NIMA XXIII, 311–316

Suzuki M, Yoshino K, Yamamoto MM, Miyase T, Sano M (2000) Inhibitory effect of Tea catechins and o-methylated derivatives of (−)–epigallocatechin –3-O-gallate on mouse type IV allergy. J Agri Food Chem 48:5649–5653

Tamaoki J, Kondo M, Sakai N (1997) Leukotriene antagonist prevents exacerbation of asthma during reduction of high dose inhaled corticosteroids. Am J Respir Crit Care Med 155:1235–1240

Thomas G, Araujo CC, Agra MF, Diniz M (1995) Preliminary studies on the hydroalcoholic extract of the root of *Cissampelos sympodialis* Eichl in guinea pig tracheal strips and bronchoalveolar leucocytes. Phytother Res 9:473–477

Thomas G, Araujo CC, Duarte JC, De souza DP (1997) Bronchodilator activity of an aqueous fraction of an ethanol extract of the leaves of *Cissampelos sympodialis* Eichl. in the guinea pig. Phytomedicine 4:233–238

Tiwari U, Rastogi B, Thakur S, Jain S, Jain NK (2003) Studies on the immunomodulatory effects of *Cleome viscosa*. Indian J Pharm Sci 66:171–176

Touvay C, Eienne A, Braquet P (1985) Inhibition of antigen induced lung anaphylaxis in the guinea pig by BN 52021 a new specific PAF-acether receptor antagonist isolated from *Ginkgo biloba*. Agents Actions 17:371–372

Tripathi RM, Das PK (1977) Studies on anti-asthmatic and anti-anaphylactic activity of *Albizia lebbeck*. Ind J Pharmacol 9:189–194

Tripathi RM, Sen PC, Das PK (1979) Studies on the mechanism of action of *Albizia lebbeck*, an Indian indigenous drug used in the treatment of atopic allergy. J Ethnopharmacol 1:385–386

Udapa AL, Udapa SL, Guruswamy MN (1991) The possible site of anti-asthmatic action of *Tylophora asthmatica* on pituitary-adrenal axis in albino rats. Planta Med 57:409–413

Ueda Y, Oku H, Imuna M, Ishiguro K (2003) Effect on blood pressure decrease in response to PAF of *Impatiens textori*. Biol Pharm Bull 26:1505–1507

Vázquez B, Avila G, Segura D, Escalante B (1996) Anti-inflammatory activity of extracts from *Aloe vera* gel. J Ethnopharmacol 55:69–75

Veirea-de-Abreu A, Amendoeira FC, Gomes GS, Zanon C, Chedier LM, Figueiredo MR, Kaplan MA, Frutuosa VS, Castro-Faria-Neto HC, Weller PF, Bandeira-Melo C, Bozza PT (2005) Anti-allergic properties of the bromeliaceae *Nidularium procera*: inhibition of eosinophil activation and influx. Int Immunopharmacol 5:1966–1974

Wang N, Yao X, Ishii R, Kitana S (2001) Antiallergic agents from natural sources: structures and inhibitory effects on nitric oxide production and histamine release of five novel polycytetene glucosides from *Bidens parviflora* Wild. Chem Pharm Bull 49:938–942

Weinberger M (1984) The pharmacology and therapeutic use of theophylline. J Allergy Clin Immunol 73:525–540

Wenzel SE, Trudeau JB, Kaminsky DA, Cohn J, Martin RJ, Westcott JY (1995) Effect of S-lipoxygenase inhibition on bronchoconstriction and airway inflammation in nocturnal asthma. Am J Respir Crit Care Med 152:897–905

Wu JB, Chun YT, Ebizuka Y, Sankawa U, (1985) Biologically active glucosides from *Centipeda minima*: isolation of a new sesquiterpenoid lactone. J Biol Pharm Bull 38:4094

Yi JM, Hong SH, Kim JH, Kim HK, Song HJ, Kim HM (2002) Effect of *Acanthopanax senticosus* stem on mast cell-dependant anaphylaxis. J Ethnopharmacol 79:347–352