Charged and Pseudoscalar Higgs production at a Muon Collider

A.G. Akeroyda, A. Arhibb,c and C. Dove

\textit{a: KEK Theory Group, Tsukuba, Ibaraki 305-0801, Japan}

\textit{b: Département de Mathématiques, Faculté des Sciences et Techniques B.P 416, Tanger, Morocco}

\textit{c: UFR–High Energy Physics, Physics Departement, Faculty of Sciences PO Box 1014, Rabat, Morocco}

Abstract

We consider single charged Higgs (H^{\pm}) and pseudoscalar Higgs (A^0) production in association with a gauge boson at $\mu^+\mu^-$ colliders. We find that the tree–level t–channel and s–channel contributions to $\mu^+\mu^- \rightarrow H^{\pm}W^{\mp}, A^0Z$ are enhanced for large values of $\tan \beta$, allowing sizeable cross–sections whose analogies at e^+e^- colliders would be very small. These processes provide attractive new ways of producing such particles at $\mu^+\mu^-$ colliders and are superior to the conventional methods in regions of parameter space.
1 Introduction

Charged Higgs bosons (H^\pm) are predicted in many favourable extensions of the Standard Model (SM), in particular the Minimal Supersymmetric Standard Model (MSSM). Their phenomenology [1] has received much attention both at e^+e^- colliders [2] and at hadron colliders [3, 4]. It is well known that e^+e^- colliders offer a much cleaner environment in which to look than hadron colliders, although recently progress has been made in the possibilities of detecting H^\pm for $M_{H^\pm} \geq m_t$ at hadron colliders [3]. At e^+e^- colliders production proceeds via the mechanism $e^+e^- \to \gamma^*, Z^* \to H^+H^-$, with higher order corrections evaluated in [4], and detection is possible for M_{H^\pm} up to approximately $\sqrt{s}/2$. The combined null–searches from all four LEP collaborations derive the lower limit $M_{H^\pm} \geq 77.3$ GeV (95% c.l) [7].

In recent years an increasing amount of work has been dedicated to the physics possibilities of $\mu^+\mu^-$ colliders [3, 4]. Such colliders offer novel ways of producing Higgs bosons, such as an s–channel resonance in the case of neutral scalars. The existing studies do not highlight any difference between the charged Higgs phenomenology at a $\mu^+\mu^-$ collider and e^+e^- collider, and state that the main production mechanism would be via $\mu^+\mu^- \to \gamma^*, Z^* \to H^+H^-$. The rate for this process is identical at both colliders. In the MSSM H^\pm becomes roughly degenerate in mass with H^0 and A^0 for masses greater than 200 GeV. It is this correlation among the masses of the Higgs bosons which disallows any large effects from a s–channel resonance (via $\mu^+\mu^- \to H^0, h^0 \to H^+H^-$) in the pair production mode, and we explicitly confirm this. In order for the above to be maximised one would require $\sqrt{s} \approx M_{h,H} \geq 2M_{H^\pm}$, a condition which requires sizeable mass splittings among the Higgs bosons and is disallowed in the MSSM.

So far unconsidered is the process $\mu^+\mu^- \to H^\pm W^\mp$ via s–channel and t–channel diagrams. Naively, this may offer greater possibilities of a large rate since the Yukawa coupling only appears at one vertex in contrast to both vertices in the pair production case. In addition, it offers the possibility of searching for M_{H^\pm} up to $\sqrt{s} - M_W$ in contrast to pair production which only probes up to $M_{H^\pm} \leq \sqrt{s}/2$. The rate for $b\bar{b} \to H^\pm W^\mp$ at hadron colliders was considered in Ref. [11] although is not expected to provide an observable signature above the background [11], at least at LHC energies. In contrast, $\mu^+\mu^- \to H^\pm W^\mp$ might give a clean signature, since backgrounds are considerably less.

In an analogous way we also consider $\mu^+\mu^- \to A^0Z$. The phenomenology of A^0 is made tricky at e^+e^- colliders due to the absence of a tree–level vertex ZZA^0 and so the standard Higgsstrahlung mechanism $(e^+e^- \to A^0Z)$ only proceeds via loops [12]. Moreover, over a wide region of parameter space in the MSSM A^0 has a suppressed rate in the channel $\mu^+\mu^- \to A^0h^0$, while $\mu^+\mu^- \to A^0H^0$ only probes up to $M_A \approx \sqrt{s}/2$. Proposed search strategies at $\mu^+\mu^-$ collider include the scanning technique and Bremsstrahlung tail method. Since both may provide a challenge for machine and detector design we consider the prospects of searching for A^0 via $\mu^+\mu^- \to A^0Z$.

Our work is organized as follows. In Section 2 we perform the full tree–level calculation of $\mu^+\mu^- \to H^+H^-, \mu^+\mu^- \to H^\pm W^\mp$ and $\mu^+\mu^- \to A^0Z$. In Section 3 we present numerical values of the cross–sections and Section 4 contains our conclusions.
2 Calculation

We now consider in turn the various production mechanisms. Our calculations are valid in both the MSSM and a general Two–Higgs–Doublet–Model (2HDM), the difference being that the MSSM Higgs sector is parametrized by just two parameters at tree–level (usually taken as M_A and $\tan \beta$), while the 2HDM contains 7 free parameters. Thus in a general 2HDM all four Higgs boson masses may be taken as independent, as well as the two mixing angles α and β, and the Higgs potential parameter λ_5 (in the notation of Ref. [13]). In addition, the Higgs trilinear couplings differ from those in the MSSM. In this paper we shall present numerical results for the MSSM. Let us summarise the couplings needed for our study:

Fermion–Fermion–Higgs couplings

$$h^0 \mu^+ \mu^- = -\frac{igm^2}{2M_W} \lambda_{h^0 \mu^+ \mu^-}, \quad H^0 \mu^+ \mu^- = -\frac{igm^2}{2M_W} \lambda_{H^0 \mu^+ \mu^-}$$

$$A^0 \mu^+ \mu^- = -\frac{igm^2}{2M_W} \gamma_5 \lambda_{A^0 \mu^+ \mu^-}, \quad H^- \mu^+ \nu_\mu = \frac{igm^2}{\sqrt{2}M_W} \lambda_{H^+ \mu^+ \nu_\mu} \frac{1 - \gamma_5}{2} \quad (1)$$

In the MSSM these couplings are given by:

$$\lambda_{h^0 \mu^+ \mu^-} = \frac{\sin \alpha}{\cos \beta}, \quad \lambda_{H^0 \mu^+ \mu^-} = \frac{\cos \alpha}{\cos \beta}$$

$$\lambda_{A^0 \mu^+ \mu^-} = \tan \beta, \quad \lambda_{H^- \mu^+ \nu_\mu} = \tan \beta \quad (2)$$

One can see from the above formula that the CP–odd A^0 and the charged Higgs bosons coupling to the μ^\pm can be enhanced for large $\tan \beta$.

The momenta of the incoming μ^+ and μ^-, outgoing gauge boson V (W^\pm or Z) and outgoing Higgs scalar S (H^\pm or A^0) are denoted by p_{μ^+}, p_{μ^-}, p_V and p_S, respectively. Neglecting the muon mass m_μ, the momenta in the centre of mass of the $\mu^+ \mu^-$ system are given by:

$$p_{\mu^-, \mu^+} = \frac{\sqrt{s}}{2} (1, 0, 0, \pm 1)$$

$$p_{V, A^0} = \frac{\sqrt{s}}{2} (1 \pm \frac{M_V^2 - M_S^2}{s}, \pm \frac{1}{s} \lambda_4^\pm (s, M_V^2, M_S^2) \sin \theta, 0, \pm \frac{1}{s} \lambda_4^\pm (s, M_V^2, M_S^2) \cos \theta),$$

Here $\lambda(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$ is the two body phase space function and θ is the scattering angle between μ^+ and S; M_V is the mass of the gauge boson V and M_S is the mass of the Higgs scalar S. In the case of $H^+ H^-$ production replace V by S. The Mandelstam variables are defined as follows:

$$s = (p_{\mu^-} + p_{\mu^+})^2 = (p_V + p_S)^2$$

$$t = (p_{\mu^-} - p_V)^2 = (p_{\mu^+} - p_S)^2 = \frac{1}{2} (M_V^2 + M_S^2) - \frac{s}{2} + \frac{1}{2} \lambda_4^\pm (s, M_V^2, M_S^2) \cos \theta$$

$$u = (p_{\mu^-} - p_S)^2 = (p_{\mu^+} - p_V)^2 = \frac{1}{2} (M_V^2 + M_S^2) - \frac{s}{2} - \frac{1}{2} \lambda_4^\pm (s, M_V^2, M_S^2) \cos \theta$$

$$s + t + u = M_V^2 + M_S^2$$

$$3$$
2.1 \(\mu^+\mu^- \to H^+H^- \)

This process proceeds via the conventional Drell–Yan mechanism \(\mu^+\mu^- \to \gamma^*, Z^* \to H^+H^- \), the analogy of \(e^+e^- \to \gamma^*, Z^* \to H^+H^- \). Since \(m_\mu \approx 200m_e \) one may consider the s–channel and t–channel diagrams (see Fig. 1), whose analogies at \(e^+e^- \) colliders would be suppressed by factors of \(m_e \). The s–channel diagrams would be maximised for \(\sqrt{s} = M_h \) or \(M_H \), although in the context of the MSSM this condition would not allow on–shell pair production of \(H^\pm \). This can seen from the fact that \(\sqrt{s} \geq 2M_{h^\pm} \) and \(\sqrt{s} \approx M_h \) or \(M_H \) cannot be simultaneously satisfied in the MSSM. In contrast, such s–channel diagrams were considered in Ref.\[14\] for squark production via the process \(\mu^+\mu^- \to \tilde{q}\tilde{q} \), and were shown to cause a doubling of the cross–section at resonance. The t–channel diagram in Fig. 1 suffers from Yukawa coupling suppression at two vertices. In the calculation we shall use the following notation:

\[
Y_V = -Y_A = \frac{m_\mu^2}{4s_W^2M_W^2}\lambda_{h^\mu^\mu}\mu^\mu
\]

\[
a_h = -\frac{g_{HH^++\mu}m_\mu\lambda_{h^\mu^\mu}}{2M_Ws_W}, \quad a_H = -\frac{g_{HH^+H^-\mu}m_\mu\lambda_{h^\mu^\mu}}{2M_Ws_W}
\]

\[
a_1 = -\frac{1}{s} - \frac{1}{2s_Wc_W^2} - \frac{Y_V}{t}
\]

\[
a_2 = \frac{1}{2s_W^2c_W^2} - \frac{Y_A}{t}
\]

\[
a_3 = \frac{a_h}{s - M_W^2 + iM_W\Gamma_h} + \frac{a_H}{s - M_H^2 + iM_H\Gamma_H} + \frac{m_\mu Y_V}{t}
\]

where \(g_V = -(1 - 4s_W^2)/2 \), \(g_A = -1/2 \) and \(g_H = -c_W^2 + s_W^2 \). The coupling \(g_{HH^+H^-} \) and \(g_{HH^+H^-} \) (normalised to electric charge e) are given by:

\[
g_{HH^+H^-} = -\frac{1}{s_W}(M_W\cos(\beta - \alpha) - \frac{M_Z}{2c_W}\cos 2\beta \cos(\beta + \alpha) + \frac{c_\alpha \cos^2 \beta}{2c_W M_Z \sin \beta})
\]

\[
g_{HH^+H^-} = -\frac{1}{s_W}(M_W\sin(\beta - \alpha) + \frac{M_Z}{2c_W}\cos 2\beta \sin(\beta + \alpha) + \frac{\sin \alpha \cos^2 \beta}{2c_W M_Z \sin \beta})
\]

Where

\[
\epsilon = \frac{3G_Fm_t^4}{\sqrt{2\pi^2}\sin^2 \beta} \log \left[\frac{m_t m_\mu}{m_t^2} \right]
\]
The ϵ term corresponds to the leading log 1–loop corrections [15] to the trilinear couplings. We will include also these leading log corrections to the Higgs–masses and to the mixing angles.

The square amplitude is given by:

$$|M|^2 = e^4 \left\{ \left(|a_1|^2 + |a_2|^2 \right) \frac{s^2}{2} \beta_H^2 \sin^2 \theta - 2|a_2|^2 m_H^2 s \beta_H + 2|a_3|^2 s \right. + 4 \Re(a_1 a_3) m_\mu s \beta_H \cos \theta \right\}$$ \hspace{1cm} (5)

with $\beta_H^2 = 1 - 4 M_H^2 s / s$. The differential cross–section is given by:

$$\frac{d\sigma}{d\Omega} = \frac{\beta_H}{64 \pi^2 s} |M|^2$$ \hspace{1cm} (6)

\subsection{2.2 $\mu^+ \mu^- \rightarrow H^\pm W^\mp$}

Single H^\pm production may proceed via an s–channel resonance mediated by h^0, H^0 or A^0, and by t–channel exchange of ν_μ (see Fig. 2). All are negligible at an $e^+ e^-$ collider due to the smallness of m_e. The loop induced contributions to $e^+ e^- \rightarrow H^\pm W^\mp$ were considered in Ref.[16] and shown to reach a few fb at very low values of $\tan \beta$, a region disfavoured in the MSSM. Potential advantages of $\mu^+ \mu^- \rightarrow H^\pm W^\mp$ over standard pair production are the following:

- $\mu^+ \mu^- \rightarrow H^\pm W^\mp$ is sensitive to the $H^\pm \mu^\mp \nu_\mu$ Yukawa coupling, which is model dependent, and hence provides information on the underlying Higgs structure. For example, we shall see that a 2HDM with the Model I type structure would not register a signal in this channel. In contrast $\mu^+ \mu^- \rightarrow \gamma^*, Z^* \rightarrow H^+ H^-$ has a model independent rate.

- Single H^\pm production is less phase space suppressed than H^\pm pair production, and would also allow greater kinematical reach at a given collider (on–shell production up to $\sim \sqrt{s} - M_W$).

- The t–channel contribution may be sizeable and does not require $\sqrt{s} \approx M_{res}$ to be significant, where M_{res} is the mass of a neutral Higgs s–channel resonance. This is in contrast to other novel production processes at $\mu^+ \mu^-$ colliders, which usually require the condition $\sqrt{s} \approx M_{res}$.

Figure.2
The differential cross-section for $\sigma(\mu^+\mu^- \rightarrow H^+W^\mp)$ may be written as follows:

$$\frac{d\sigma}{d\Omega} = \frac{\lambda^2(s, M_{H^\pm}^2, M_W^2)}{64\pi^2 s^2} |\mathcal{M}|^2$$

(7)

The matrix element squared is given by:

$$|\mathcal{M}|^2 = \frac{sg^4 m_\mu^2}{32 M_W^4} \left[(|a_V|^2 + |a_A|^2) \lambda(s, M_{H^\pm}^2, M_W^2) + 2a_t^2 (2M_W^2 p_T^2 + t^2) + 2a_t(M_{H^\pm}^2 M_W^2 - s p_T^2 - t^2) \Re(a_V - a_A) \right]$$

(8)

Where $p_T^2 = \lambda(s, M_{H^\pm}^2, M_W^2) \sin^2 \theta/4s$ and the couplings a_V, a_A and a_t are given by:

$$a_V = \left(\frac{\cos(\alpha - \beta)\lambda_{h\mu^+\mu^-}}{s - M_h^2 + i M_h \Gamma_h} + \frac{\sin(\alpha - \beta)\lambda_{H\mu^+\mu^-}}{s - M_H^2 + i M_H \Gamma_H} \right)$$

(9)

$$a_A = \frac{\lambda_{A\mu^+\mu^-}}{s - M_A^2 + i M_A \Gamma_A}$$

(10)

$$a_t = \frac{\lambda_{H^-\mu^+\nu_\mu}}{t}$$

(11)

The mixing angle dependence of the Higgs–Fermion–Fermion couplings is contained in $\lambda_{h\mu^+\mu^-}, \lambda_{H\mu^+\mu^-}, \lambda_{A\mu^+\mu^-}$ and $\lambda_{H^-\mu^+\nu_\mu}$. Our formula agrees with that for $b\bar{b} \rightarrow H^\pm W^\mp$ in Ref. [10], with the replacements $m_t \rightarrow m_{\nu_\mu}$ and $m_b \rightarrow m_\mu$. Due to CP–invariance the rate for W^+H^- and W^-H^+ production is identical. The total cross section takes the following form:

$$\sigma(\mu^+\mu^- \rightarrow W^+H^-) = \frac{G_F m_\mu^2}{16\pi s^2} \left((|a_V|^2 + |a_A|^2) \lambda(s, M_{H^\pm}^2, M_W^2) s \right)$$

$$+ 2 \tan \beta [\Re(a_A - a_V)(M_{H^\pm}^2 + M_W^2 - s) + (s - 4M_W^2) \tan \beta \lambda^2(s, M_{H^\pm}^2, M_W^2)$$

$$- 4M_W^2 \tan \beta [\Re(a_V - a_A) M_{H^\pm}^2 s + (M_{H^\pm}^2 + M_W^2 - s) \tan \beta F(s, M_{H^\pm}^2, M_W^2)]$$

with:

$$F(s, M_S^2, M_T^2) = \log \left[\frac{M_S^2 + M_T^2 - s - \lambda^2(s, M_S^2, M_T^2)}{M_S^2 + M_T^2 - s + \lambda^2(s, M_S^2, M_T^2)} \right]$$

(12)

2.3 $\mu^+\mu^- \rightarrow A^0Z$

As depicted in Fig. 3, this process proceeds in a very similar way to that for $\mu^+\mu^- \rightarrow H^\pm W^\mp$, except there are two t–channel diagrams. The process $\mu^+\mu^- \rightarrow Z\phi^0$, where ϕ^0 is the SM Higgs boson, has been considered in Ref. [17]. Our calculation differs since there is no s–channel Z exchange for $\mu^+\mu^- \rightarrow A^0Z$ in the MSSM. Instead there are two s–channel Higgs exchange diagrams of similar magnitude to the t–channel diagram, giving rise to strong interference. In addition $\tan \beta$ plays an important role. In the SM the s–channel Z exchange is the dominant diagram at the collider energy we consider ($\sqrt{s} = 500$ GeV), and so interference is minimal.
The mechanism $\mu^+ \mu^- \rightarrow A^0 Z$ would provide an alternative way of searching for A^0 whose detection is not guaranteed at the LHC or a $\sqrt{s} = 500$ GeV $e^+ e^-$ collider. At the latter this is because the conventional production mechanism $e^+ e^- \rightarrow Z^* \rightarrow A^0 H^0$ would be closed kinematically for $M_A \approx M_H \geq 250$ GeV, and $e^+ e^- \rightarrow Z^* \rightarrow A^0 h^0$ ($\sim \cos^2(\beta - \alpha)$) is strongly suppressed for $M_A \geq 200$ GeV. The proposed search at a $\mu^+ \mu^-$ collider for $M_A \geq \sqrt{s}/2$ is by doing a scan over \sqrt{s} energies, in order to find a resonance at $\sqrt{s} = M_A$, or by running the collider at full \sqrt{s} and looking for peaks in the $b \bar{b}$ mass distribution (Bremsstrahlung tail method). These methods are competitive and both may allow detection up to $M_A \approx \sqrt{s}$ as long as $\tan \beta \geq 4 - 6$. However, both may provide quite a demanding challenge for detector resolution and machine design (see Ref. [8]), and it is too early to say with certainty if they would be feasible methods in practice. With this in mind we consider the process $\mu^+ \mu^- \rightarrow A^0 Z$. With a sizeable rate for $\sigma(\mu^+ \mu^- \rightarrow AZ)$, A^0 could be discovered first in this channel, and then the beams could be adjusted to $\sqrt{s} = M_A$ for precision studies. In addition, $\mu^+ \mu^- \rightarrow A^0 Z$ probes greater masses of M_A than $e^+ e^- \rightarrow Z^* \rightarrow A^0 H^0$, and becomes another option to first discover A^0 (if discovery has been elusive at the LHC or a $\sqrt{s} = 500$ GeV $e^+ e^-$ collider).

The matrix element squared may be written as:

$$|\mathcal{M}|^2 = \frac{8g^4 m^2}{32M_W^2} \left[|a_V|^2 \lambda(s, M_A, M_Z^2) - 2a_{t1}g_A(M_A^2 M_Z^2 - sp_T^2 - t^2) \Re(a_V)
ight. $$

$$- 2a_{t2}g_A(M_A^2 M_Z^2 - sp_T^2 - u^2) \Re(a_V)$$

$$+ (g_A^2 + g_V^2) \left\{ a_{t1}^2 (2M_A^2 p_T^2 + t^2) + a_{t2}^2 (2M_Z^2 p_T^2 + u^2) \right\}$$

$$- 2(g_A^2 - g_V^2) a_{t1} a_{t2} (2M_Z^2 p_T^2 + 2M_A^2 M_Z^2 - tu) \right]$$

(13)

with a_V the same as in Section 2.2 and

$$a_{t1} = \frac{\lambda_{A\mu^+ \mu^-}}{t - m_{\mu}^2}, \quad a_{t2} = \frac{\lambda_{A\mu^+ \mu^-}}{u - m_{\mu}^2}$$

(14)

The differential cross-section follows from eq(7) with the changes $M_{H^\pm} \rightarrow M_A$ and $M_W \rightarrow M_Z$.

Figure 3
The total cross-section is given by:
\[
\sigma(\mu^+\mu^- \to A^0Z) = \frac{G_F m_e^2}{32\pi s^2} \left\{ [4s(\bar{g}_e^2 - g_\nu^2)\tan^2 \beta + 2s|a_V|^2\lambda(s, M_A^2, M_Z^2)]\lambda^\dagger(s, M_A^2, M_Z^2) \\
+ [8s\Re(a_V)g_A(M_A^2 + M_Z^2 - s)\tan \beta - 8(\bar{g}_e^2 - g_\nu^2)M_Z^2 \tan^2 \beta] \lambda^\dagger(s, M_A^2, M_Z^2) \\
+ 4(\bar{g}_e^2 + g_\nu^2)(s - 4M_Z^2)\tan^2 \beta] \lambda^\dagger(s, M_A^2, M_Z^2) \\
+ \frac{F(s, M_A^2, M_Z^2)}{(M_A^2 + M_Z^2 - s)}[-8M_Z^2 \tan \beta(-2\Re(a_V)g_A M_A^2 (M_A^2 + M_Z^2 - s)s \\
+ (2g_e^2 - g_\nu^2)M_A^2 (M_Z^2 - s) + (\bar{g}_e^2 + g_\nu^2)(M_A^2 + M_Z^2 - s)^2 \tan \beta)] \right\}
\] (15)

3 Numerical results

We now present our numerical analysis in the context of the MSSM. We take $\sqrt{s} = 500$ GeV and assume integrated luminosities of the order 50 fb$^{-1}$.

In Fig. 4 we plot $\sigma(\mu^+\mu^- \to H^\pm W^\mp)$, defined as the sum of H^+W^- and H^-W^+ production, as a function of M_{H^\pm}, varying $\tan \beta$ from 20 to 50. We also include the tree-level rate for $\sigma(e^+e^- \to H^+H^-)$ in order to show the advantage of a $\mu^+\mu^-$ collider over an e^+e^- collider. One can see that the single production mode gains in importance with increasing $\tan \beta$, and offers detection possibilities for M_{H^\pm} up to $\sqrt{s} - M_W$. This compares favourably with the reach at an e^+e^- collider.

The slight dip and rise of the curves arises due to the H^0 and A^0 mediated s-channel contributions increasing in magnitude with M_{H^\pm}, which compensates for the phase space suppression until the kinematical limit is approached. This can be seen from the fact that since $M_{H^\pm} \approx M_H \approx M_A$, larger M_{H^\pm} causes both M_H and M_A to be closer to \sqrt{s} (i.e. the resonance condition).

It is clear from the graphs that for $\tan \beta \geq 20$ one has $\sigma(\mu^+\mu^- \to H^\pm W^\mp) \geq 5$ fb, which would give a sizeable number of singly produced H^\pm for luminosities of 50 fb$^{-1}$. One would expect $H^\pm \to tb$ decays for the mass region of interest and so the main background would be from $t\bar{t}$ production. Such a background was shown to overwhelm the channel $pp \to H^\pm W^\mp$ at the LHC. However, at a $\sqrt{s} = 500$ GeV muon collider $\sigma(\mu^+\mu^- \to t\bar{t}) \sim 0.7$ pb in contrast to ~ 800 pb at the LHC. Hence we would expect much better prospects for detection at a muon collider although a full signal-background analysis is beyond the scope of this paper. Previous studies of backgrounds to $H^\pm W^\mp$ production at e^+e^- colliders have been carried out in the context of Higgs triplet models, assuming $H^\pm \to W^\pm Z$ as the main decay channel. Such studies cannot be applied to the MSSM where $H^\pm \to tb$ decays would dominate.

We note that a 2HDM with the Model I type structure would not register an observable signal in this channel. This is due to the rate being proportional to $\cot^2 \beta$, and so unacceptably small values of $\tan \beta$ would be required in order to allow observable cross-sections.

The process $\mu^+\mu^- \to A^0Z$ suffers from smaller cross-sections and these are plotted as a function of M_A in Fig. 5. Given that $\mu^+\mu^- \to A^0H^0$ probes M_A up to $\approx \sqrt{s}/2$ the
region $M_A \geq 250$ GeV is of interest. We see that cross–sections ≥ 1 fb are only attainable in this region for $\tan \beta \geq 30$ and so detection would be restricted to large values of $\tan \beta$. The smallness of the cross–sections is caused by large destructive interference between the s and t channels. Finally, we consider $\mu^+\mu^- \rightarrow H^+H^-$. We find very small deviations from the rate for $e^+e^- \rightarrow H^+H^-$, of the order a few percent for large values of $\tan \beta$. This can be traced to the fact that the s–channel Higgs exchange diagrams are far from resonance, and the t–channel diagrams are doubly Yukawa suppressed. Since the 1–loop corrections may be much larger than these deviations we do not plot a graph.

4 Conclusions

We have considered the processes $\mu^+\mu^- \rightarrow H^\pm W^\mp$ and $\mu^+\mu^- \rightarrow A^0Z$ of the MSSM in the context of a high–energy $\mu^+\mu^-$ collider ($\sqrt{s} = 500$ GeV). We showed that $\mu^+\mu^- \rightarrow H^\pm W^\mp$ production offers an attractive new way of searching for H^\pm at such colliders. The cross–section grows with increasing $\tan \beta$ with values as large as 30 fb being attainable for $\tan \beta \geq 50$. With an integrated luminosity of 50 fb$^{-1}$ a significant number of H^\pm could be produced singly up to $M_{H^\pm} \approx \sqrt{s} - M_W$. This compares favourably with the reach
Figure 5: $\sigma(\mu^+\mu^- \rightarrow A^0Z)$ as a function of M_A for various values of $\tan \beta$.

at an e^+e^- collider, which may only probe up to $M_{H^\pm} \approx \sqrt{s}/2$. The main background (assuming $H^\pm \rightarrow tb$ decays) would be from $t\bar{t}$ production, which has a cross-section of 700 fb, 3 orders of magnitude less than at the LHC. We conclude that the mechanism $\mu^+\mu^- \rightarrow H^\pm W^\mp$ represents a novel and attractive way of producing H^\pm at a $\mu^+\mu^-$ collider, and in our opinion merits a detailed signal–background analysis.

Pseudoscalar Higgs production via $\mu^+\mu^- \rightarrow A^0Z$ offers smaller cross-sections, with values of 2 fb or more only possible for large (≥ 40) $\tan \beta$. Charged Higgs pair production has essentially the same rate as that at an e^+e^- collider, with differences of the order of a few percent for large values of $\tan \beta$.

Acknowledgements

A.G. Akeroyd was supported by the Japan Society for Promotion of Science (JSPS). We thank A. Turcot for useful comments.

References

[1] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, *The Higgs Hunter’s Guide* (Addison–Wesley, Reading, 1990).
[2] S. Komamiya, Phys. Rev. D38 (1988) 2158; A. Sopczak, Z.Phys. C65 (1995) 449; S. Moretti and K. Odagiri, J. Phys. G23 (1997) 537.

[3] E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56 (1984) 579; J. Gunion, H.E. Haber, F.E. Paige, W.K. Tung and S.S.D. Willenbrock, Nucl. Phys. B294 (1987) 621; R.M. Barnett, H.E. Haber and D.E. Soper, B306 (1988) 697; D.A. Dicus, J.L. Hewett, C. Kao, and T.G. Rizzo, Phys. Rev. D40 (1989) 787; V. Barger, R.J.N. Philips and D.P. Roy, Phys. lett. B324 (1994) 236; J.L. Diaz–Cruz and O.A. Sampayo, Phys. Rev. D50 (1994) 6828.

[4] Jiang Yi, Ma Wen-Gan, Han Liang, Han Meng and Yu Zeng-hui; J. Phys. G24 (1998) 83; J. Phys. G23 (1997) 385; A. Krause, T. Plehn, M. Spira and P.W. Zerwas, Nucl. Phys. B519 (1998) 85; S. Moretti and K. Odagiri, Phys. Rev. D55 (1997) 5627; Li Gang Jin, Chong Sheng Li, R.J. Oakes and Shou Hua Zhu, hep-ph/9907482; A.A. Barrientos Bendezu and B.A. Kniehl, hep-ph/9908385; O. Brein and W. Hollik, hep-ph/9908529.

[5] K. Odagiri. Phys. Lett. B452 (1999) 327; K. Odagiri, hep-ph/9901432; D.P. Roy, Phys. Lett. B459 (1999) 607; D.J. Miller, S. Moretti, D.P. Roy and W.J. Stirling, hep-ph/9906230; M. Drees, M. Guchait and D.P. Roy, hep-ph/9909260; S. Moretti and D.P. Roy, hep-ph/9909433.

[6] A. Arhrib, M. Capdequi Peyranère and G. Moultaka, Phys. Lett. B341 (1995) 313; M.A. Diaz and Tonnis A. ter Veldhuis, hep-ph/9501315; A. Arhrib and G. Moultaka, hep-ph/9808317, to appear in Nucl. Phys. B.

[7] Combined Experimental Limits; ALEPH 99-081 CONF 99-052; DELPHI 99-142 CONF 327; L3 Note 2442; OPAL Technical Note TN–614.

[8] Proceedings of the Workshop on Physics at the First Muon Collider and front end of a Muon Collider, Fermilab, November 6-9, 1997; μ⁺μ⁻ Collider: a Feasibility Study, BNL–52503, Fermilab-Conf-96/092, LBNL–38946, July 1996; Phys. Rep. 286 (1996) 1.

[9] J. Gunion, hep-ph/9802258; V. Barger, hep-ph/9803480.

[10] A.A. Barrientos Bendezu and B.A. Kniehl, Phys. Rev. D59 (1999) 015009.

[11] S. Moretti and K. Odagiri, Phys. Rev. D59 (1999) 055008.

[12] A.G. Akeroyd, A. Arhrib and M. Capdequi Peyranère, Mod. Phys. Lett. A14 (1999) 2093.

[13] A. Djouadi, V. Driesen, W. Hollik and A. Kraft, Eur. Phys. J. C1 (1998) 163.

[14] A. Bartl, H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, W. Porod and Y. Yamada, Phys. Rev. D58 (1999) 115002.
[15] Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theo. Phys. 85 (1991) 1; H. Haber and R. Hempling, Phys. Rev. Lett. 66 (1991) 1815; J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83; R. Barbieri, F. Caravaglios and M. Frigeni, Phys. Lett. B258 (1991) 167.

[16] Shou Hua Zhou, hep-ph/9901221.

[17] V.A. Litvin and F.F. Tikhonin, hep-ph/9704417; F.F. Tikhonin, IFVE-98-18; V.A. Litvin and F.F. Tikhonin, IFVE-98-19.

[18] K. Cheung, R.J.N. Phillips and A. Pilaftsis, Phys. Rev. D51 (1995) 4731; D.K. Ghosh, R.M. Godbole and B. Mukhopadhyaya, Phys. Rev. D55 (1997) 3150.