Diacylglycerol Kinase δ Phosphorylates Phosphatidylcholine-specific Phospholipase C-dependent, Palmitic Acid-containing Diacylglycerol Species in Response to High Glucose Levels*

Received for publication, June 20, 2014, and in revised form, August 8, 2014 Published, JBC Papers in Press, August 11, 2014, DOI 10.1074/jbc.M114.590950

Hiromichi Sakai1, Sayaka Kado1, Akinobu Taketomi1, and Fumio Sakane‡†
From the 4Department of Chemistry, Graduate School of Science and 6Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 and the 8Department of General Surgery, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan

Background: Diacylglycerol (DG) kinase (DGK) δ is activated by acute high glucose stimulation.

Results: DGKδ high glucose-dependently phosphorylates 30:0-, 32:0-, and 34:0-DG and interacts with phosphatidylcholine-specific phospholipase C (PC-PLC).

Conclusion: DGKδ utilizes palmitic acid-containing DG species and metabolically connects with PC-PLC.

Significance: The newly identified PC-PLC/DGKδ pathway could play an important role in insulin signaling and glucose uptake.

Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels.

Type 2 diabetes is expected to afflict over 300 million people worldwide by 2015 (1). The characteristic features of type 2 diabetes include insulin resistance, glucose intolerance, hyperglycemia, and often, hyperinsulinemia (2). Glucose-induced insulin resistance is associated with a temporal increase in the intracellular diacylglycerol (DG) mass in skeletal muscle (3).

DG is metabolized, at least in part, by DG kinase (DGK), which phosphorylates DG to generate phosphatidic acid (PA) (4–8). To date, 10 mammalian DGK isozymes (α, β, γ, δ, η, κ, ε, ζ, ι, and θ) have been identified, and these isozymes are subdivided into five groups according to their structural features (6, 7). Type II DGKs consist of the δ, η, and κ isoforms (9, 10). Moreover, alternatively spliced forms of DGKδ (δ1 and δ2) (11) and η (η1 and η2) (12) have been found.

DGKδ is highly expressed in skeletal muscle (13), which is a major insulin-target organ for glucose disposal (14). Chibalin et al. (15) demonstrated that DGKδ regulates glucose uptake and that a decrease in DGKδ expression resulted in the aggravation of type 2 diabetes. Long term exposure (96 h) to high glucose medium decreased DGKδ protein levels in primary cultured skeletal muscle cells, and the transcription of DGKδ and the levels of DGKδ protein were also reduced in skeletal muscles from type 2 diabetes patients (15). Moreover, DGKδ haploinsufficient mice (DGKδδ−/−) exhibited decreased total DGK activity, reduced DGKδ protein levels, and the accumulation of DG in skeletal muscle. The increase in the amount of DG caused the increase in the phosphorylation of protein kinase C (PKC) δ and a reduction in the expression of the insulin receptor and insulin receptor substrate-1 proteins involved in insulin signaling (15). Furthermore, Miele et al. (16) reported that acute high glucose exposure (within 5 min) increased DGKδ activity in skeletal muscle cells followed by a reduction of PKCα activity and transactivation of the insulin receptor signal.

* This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Japan Science and Technology Agency; the Naito Foundation; the Hamaguchi Foundation for the Advancement of Biochemistry; the Daiichi-Sankyo Foundation of Life Science; the Terumo Life Science Foundation; the Futaba Electronic Memorial Foundation; the Daiba Securities Health Foundation; the Ono Medical Research Foundation; the Japan Foundation for Applied Enzymology; and the Food Science Institute Foundation.

† To whom correspondence should be addressed. Tel./Fax: 81-43-290-3695; E-mail: sakane@faculty.chiba-u.jp.

‡ The abbreviations used are: DG, diacylglycerol; DGK, DG kinase; D609, 1-(5,10,15,20-tetraacyclo[5.2.1.02,6]dec-9-yl)dithiocarbamate; FIP1, 5-fluoro-2-indolyl deschlorohalopemide; ES1, electrospray ionization; PA, phosphatidic acid; PC, phosphatidylcholine; PC-PLC, PC-specific phospholipase C; PLD, phospholipase D; TOFA, 5-(tetradecyloxy)-2-furoic acid; PI, phosphatidylinositol; DMSO, dimethyl sulfoxide; Aequorea coeruleus.

© 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
Metabolic Linkage between PC-PLC and DGKδ

Hence, these studies indicate that DG consumed by DGKδ in response to high glucose exposure is a key regulator of glucose uptake in skeletal muscle cells. DGKδ translocated from the cytoplasm to the plasma membrane in mouse myoblast C2C12 cells within 5 min of short term exposure to a high glucose concentration, whereas DGKδ2 was located in punctate vesi-

Mammalian cells contain at least 50 structurally distinct molecular DG species because DG contains a variety of fatty acyl moieties at positions 1 and 2 (18). In general, DGs containing arachidonic acid (20:4), especially 18:0/20:4-DG (38:4-DG), acyl moieties at positions 1 and 2 (18). In general, DGs contain-

medium (DMEM containing 0.1% FBS and 5

confluent C2C12 myoblasts were cultured in differentiation

sphere containing 5% CO2. For differentiation to myotubes,

100-mm dishes in DMEM (Wako Pure Chemicals) containing

EXPERIMENTAL PROCEDURES

Cell Culture—C2C12 mouse myoblasts were maintained on

100-mm dishes in DMEM (Wako Pure Chemicals) containing

10% FBS (Biological Industries-Invitrogen) at 37 °C in an atmo-
sphere containing 5% CO2. For differentiation to myotubes, confu-

cient C2C12 myoblasts were cultured in differentiation medium (DMEM containing 0.1% FBS and 5 µg/ml insulin

(Sigma-Aldrich)) for 4 days.

Establishment of a Stable Cell Line Overexpressing DGKδ—

To establish C2C12 cells stably expressing human DGKδ2, the cells were transfected with pAcGFP-DGKδ2 (11, 17) using PolyFect (Qiagen) according to the instruction manual and were selected with 800 µg/ml G418 for 2 weeks. Single colonies were isolated and then were then grown in DMEM containing

10% FBS.

RNA Interference—To silence the expression of mouse DGκ, the following Stealh RNAi duplexes (Invitrogen) were used: DGKδ-siRNA-1, 5′-GAAUGAUGCCUGAUCUUAC-

UAAA-3′ and 5′-UUUAGUAAGAUCACACAUUC-3′; DGKδ-siRNA-2, 5′-UUGCUAUUGGCUGAUGGCAAAGAUA-3′ and 5′-UAUCUUGCAUCCAGCAUGCCA-3′. The duplexes were transfected into C2C12 myoblasts by electropor-

ation (at 350 V and 300 microfarads) using the Gene Pulser XcellTM electroporation system (Bio-Rad Laboratories). The transfected cells were then allowed to grow for 48 h in DMEM containing 10% FBS.

Glucose Stimulation and Treatment with Lipid Metabolism Enzyme Inhibitors—Glucose stimulation was performed as reported previously (16). Briefly, untransfected C2C12 myo-

basts and C2C12 myoblasts transfected with Stealth RNAi
duplexes were grown on poly-l-lysine (Sigma-Aldrich)-coated culture dishes. The cells were rinsed and incubated in glucose-

free medium (16) in the absence or presence of PC-PLC inhib-

itor O-tricyclo[5.2.1.02,6]dec-9-yl diethiocarbonate (D609, 100

µM, Calbiochem) (22), acetyl-CoA carboxylase inhibitor 5-(tet-

radecyloxy)-2-furoic acid (TOFA, 20 µM, Calbiochem) (23, 24), or phospholipase D (PLD) inhibitor 5-fluoro-2-indolyl des-

chlorohalopemide (FIPI, 100 nM, Calbiochem) (25) for 3 h. The
cells were incubated for 5 min in the same buffer supplemented with 25 mM glucose.

Lipid Extraction and Western Blot Analysis—The cells grown under each culture condition were harvested and lysed in ice-
cold lysis buffer (50 mM HEPES, pH 7.2, 150 mM NaCl, 5 mM

MgCl2, 1 mM dithiothreitol, complete™ EDTA-free protease inhibitor (Roche Diagnostics)) followed by centrifugation at

1,000 × g for 5 min at 4 °C. Total lipids were extracted from the cell lysates (1.0 mg of protein), in which DGKδ expression was confirmed by Western blot analysis using an anti-DGKδ anti-

body (13), according to the method of Bligh and Dyer (26). The extracted lipids were used for subsequent MS analyses.

Analysis of PA Molecular Species—PAs in extracted cellular lipids (5 µl) containing 40 pmol of the 14:0/14:0-PA internal standard

(Sigma-Aldrich) were analyzed separately by LC/ESI-MS using an

Accela LC system (Thermo Fisher Scientific) coupled online to an

Exactive Orbitrap MS (Thermo Fisher Scientific) equipped with

an ESI source as described previously (21). The MS peaks are presented in the form of X;Y, where X is the total number of carbon atoms and Y is the total number of double bonds in both acyl chains of the PA.

For the identification of fatty acid residues in PA molecular species by ESI-MS/MS, PA molecular species (28:0–40:0-PA) were fractionated using the above LC/ESI-MS system equipped with an FC 203B fraction collector (Gilson). The mixture of these isolated PA molecular species was infused into an Exactive Orbitrap MS (Thermo Fisher Scientific) equipped with a syringe pump (an infusion rate of 5 µl/min) and an ESI source. A collision energy of 40 eV was used to obtain fragment ions.

Analysis of DG Molecular Species—The isolation of DG was performed according to previously reported procedures (27). The extracted cellular lipids (per 1 mg of protein) were developed on Silica Gel 60 high performance thin layer chromatography plates (Merck, 10 × 20 cm) using hexane/diethyl ether/

acetic acid (75:25:1, v/v). After development, DG was extracted from silica gel and redissolved in 200 µl of methanol:chloro-

form (9:1, v/v) containing 1 µg/ml 12:0/12:0-DG (Avanti Polar Lipids), and 10 µl of 100 mM sodium acetate were added to each sample (28). MS analysis was performed on an Exactive Orbitrap MS (Thermo Fisher Scientific) equipped with a Fusion 100T syringe pump (an infusion rate of 5 µl/min, Thermo Fisher Scientific) and an ESI source. The ion spray
voltage was set to 5 kV in the positive ion mode. The capillary temperature was set to 300 °C.

Measurement of DGKδ Activity—The octyl glucose–mixed micellar assay of DGK activity was performed as described previously (12). COS-7 cells transfected with p3×FLAG-DGKδ2 (29) were harvested and lysed in ice-cold lysis buffer followed by centrifugation at 1,000 × g for 5 min at 4 °C. The cell lysates were added to octyl glucose buffer containing 2 mm 16:0/16:0-0-, 16:0/18:1-, or 18:0/20:4-DG (Avanti Polar Lipids) and 10 mm phosphatidylserine (Avanti Polar Lipids).

Immunoprecipitation and Measurement of PC-PLC Activity—The glucose-stimulated cells stably expressing human DGKδ2 were harvested and lysed in ice-cold lysis buffer (50 mm HEPES, pH 7.2, 150 mm NaCl, 5 mm MgCl2, 1% Nonidet P-40, 1 mm dithiothreitol, completeTM EDTA-free protease inhibitor (Roche Diagnostics)) for immunoprecipitation. The mixtures were centrifuged at 12,000 × g for 5 min at 4 °C to yield the cell lysates. 500 μg of the cell lysates were incubated with normal rabbit IgG (2 μg, Santa Cruz Biotechnology) or rabbit anti-DGKδ antibody (2 μg) (13, 29) at 4 °C overnight and incubated with protein A/G PLUS-agarose (Santa Cruz Biotechnology) for an additional 1 h. The bead-bound proteins were washed with ice-cold wash buffer (50 mm HEPES, pH 7.2, 100 mm NaCl, 5 mm MgCl2, 0.1% Triton X-100, 10% glycerol, 20 mm NaF) four times and resolved in 70 μl of 1× reaction buffer (50 mm Tris-HCl, pH 7.4, 140 mm NaCl, 10 mm dimethylglutarate, 2 mm CaCl2) in the AmpliRed® PC-PLC assay kit (Molecular Probes-Life Technologies). In this enzyme-coupled assay, PC-PLC activity is monitored indirectly using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red reagent), a sensitive fluorescent probe for H2O2. First, PC-PLC converts PC to form phosphocholine and DG. After the action of alkaline phosphatase, which hydrolyzes phosphocholine, choline is oxidized by choline oxidase to betaine and H2O2. Finally, H2O2, in the presence of horseradish peroxidase, reacts with AmpliRed reagent in a 1:1 stoichiometry to generate the highly fluorescent product, resorufin. Resorufin has absorption and fluorescence emission maxima of ~571 nm and 585 nm, respectively. 50-μl aliquots of the mixtures were used for the measurement of PC-PLC activities, and 10 μl of the mixtures were used for Western blot analysis.

Statistics—All LC/ESI-MS data were normalized based on the protein content and the intensity of the internal standard. The data were represented as the mean ± S.D. Statistical analysis was performed using the two-tailed t test or analysis of variance followed by Tukey’s post hoc test.

RESULTS

Increase in the Amount of PA by Acute Stimulation with High Glucose—We first examined whether the amount of total PA was increased in C2C12 myoblasts stimulated with 25 mm glucose. As shown in Fig. 1A, LC/ESI-MS analysis indicated that exposure to high glucose levels (for 5 min) statistically increased the total PA amounts (1.23-fold, p < 0.005). In addition, the stimulation significantly increased the amounts of C30 to C36 PA molecular species, with the exception of 36:1-PA (Fig. 1B). However, the stimulation did not substantially affect the production of C38 to C40 PA molecular species, including 38:6-PA, with the exception of 38:6-PA.

We investigated the high glucose-dependent increases of total PA amount and PA molecular species in C2C12 myoblasts at different time points. After 5 min of glucose stimulation, the levels of total PA and PA molecular species were significantly increased (Fig. 1, C and D). However, total PA and PA molecular species levels returned close to basal levels by prolonging the incubation with high glucose concentrations for up to 15 and 30 min. We confirmed that DGK activity in vitro was increased by glucose stimulation for 5 min (data not shown). These results strongly suggest that C2C12 myoblasts and L6 myotubes (16) have essentially the same lipid metabolism pathway to produce PA in response to acute glucose stimulation.

We confirmed the changes in the amounts of PA molecular species in C2C12 myotubes in response to acute high glucose stimulation (5 min). The glucose-stimulated C2C12 myotubes showed essentially the same results (Fig. 1, E and F) as those obtained with C2C12 myoblasts (Fig. 1, A and B). The results support that C2C12 myoblasts and myotubes possess essentially the same lipid metabolism pathway to produce PA in response to high glucose stimulation. Because C2C12 myoblasts were more efficiently transfected with siRNAs than C2C12 myotubes, C2C12 myoblasts were used for identification of PA molecular species produced by DGKδ in response to high glucose stimulation.

Effects of DGKδ-specific siRNAs on High Glucose-induced Increases in PA Molecular Species—To clarify whether the glucose-stimulated production of PA molecular species is catalyzed by DGKδ, we investigated the effects of a DGKδ-specific siRNA, DGKδ-siRNA-1. Of the two alternatively spliced DGKδ products, DGKδ1 and DGKδ2 (11), C2C12 myoblasts predominantly expressed DGKδ2 (Fig. 2A). DGKδ-siRNA-1 efficiently suppressed DGKδ2 expression in C2C12 myoblasts (Fig. 2A). To facilitate comparison, averages of the relative values (+glucose versus −glucose) from four independent experiments are displayed (Fig. 2B). Interestingly, the suppression of DGKδ expression by DGKδ-siRNA-1 significantly inhibited the glucose stimulation-dependent production of saturated fatty acid-containing C30-C34 PA species, 30:0-, 32:0-, and 34:0-PA, to their basal levels. In addition, one saturated and one monounsaturated fatty acid-containing PA, 34:1-PA, decreased as well. However, the amount of arachidonic acid (20:4)-containing PA, 34:4-PA, was not markedly changed (Fig. 2B). To rule out off-target effects of DGKδ-siRNA-1, we employed an independent siRNA targeted to a different region of DGKδ mRNA (DGKδ-siRNA-2). DGKδ-siRNA-2, which suppressed DGKδ2 expression slightly less strongly than DGKδ-siRNA-1 (Fig. 2C), also statistically inhibited the production of 30:0-, 31:1-, and 34:0-PA and moderately attenuated 32:0-PA generation (Fig. 2D). These results suggest that DGKδ selectively phosphorylated 30:0-, 32:0-, 34:1-, and 34:0-DG, which contain either two saturated fatty acids or one saturated and one monounsaturated fatty acids, but not 38:4-PA.

We investigated whether the decreases in the amounts of 30:0-, 32:0-, 34:1-, and 34:0-PA by DGKδ-siRNAs were due to decreases in the substrates, the corresponding DG species, in high glucose-stimulated and unstimulated C2C12 myoblasts.
Glucose stimulation substantially increased the amounts of various DG species (Fig. 3). However, DGK\textsubscript{H9254}-siRNA-1 failed to significantly affect the amounts of 30:0-, 32:0-, 34:1-, and 34:0-DG molecular species both in the absence and in the presence of high glucose levels. Therefore, it is likely that the decreases in the amounts of 30:0-, 32:0-, 34:1-, and 34:0-PA were not caused by decreased amounts of the corresponding DG species.

Effect of Overexpression of DGK\textsubscript{H9254} on the Production of PA Molecular Species—To confirm the results of the siRNA experiments, we evaluated the result of DGK\textsubscript{H9254} overexpression on high glucose-dependent production of PA species in C2C12 cells. In response to high glucose, the levels of 30:0-, 32:0-, and 34:0-PA statistically increased in C2C12 cells stably expressing DGK\textsubscript{H9254} when compared with control cells (Fig. 4B). Moreover, 30:1- and 32:1-PA were also augmented. In contrast, 38:4-PA did not increase. Taken together with the siRNA results (Figs. 2 and 4), these results support the hypothesis that DGK\textsubscript{H9254} phosphorylated DG species with an apparent preference for 30:0-, 32:0-, and 34:0-DG, but not arachidonic acid-containing DG, 38:4-DG. Moreover, it is possible that this enzyme also generates 30:1-, 32:1-, and 34:1-PA.

Fatty Acid Composition of 30:0-, 32:0-, and 34:0-PA—We next determined the molecular identities of the two fatty acids included in 30:0-, 32:0-, and 34:0-PA, which were indicated to be selectively generated by DGK\textsubscript{H9254} in C2C12 cells. ESI-MS/MS
analysis revealed that the main fatty acid residues were as follows: 30:0 consisted of 14:0 and 16:0 (100%), 32:0 included 16:0 and 16:0 (96.6%), and 34:0 contained 16:0 and 18:0 (99.7%) (Table 1). These results indicate that 30:0-, 32:0-, and 34:0-PA consist of relatively short saturated fatty acids and commonly contain palmitic acid (16:0). It is possible that DGKδ also produces 30:1-, 32:1-, and 34:1-PA species (Figs. 2 and 4). These PA species contain saturated fatty acids, 16:0 and 14:0, and mono-unsaturated fatty acids, 16:1 and 18:1 (Table 1).

In Vitro DGKδ Activity—We examined whether the preference of DGKδ2 for palmitic acid (16:0)-containing DG species, 30:0-, 32:0-, and 34:0-DG, is an intrinsic catalytic feature of DGKδ. To this end, we measured DGKδ2 activity in vitro using 32:0 (16:0/16:0)-, 34:1 (16:0/18:1)-, or 38:4 (18:0/20:4)-DG as
substrates. As shown in Fig. 5, the levels of 32:0- and 34:1-PA generated by DGK\textsubscript{H9254} were similar to or slightly lower than that of 38:4-PA. These results indicate that DGK\textsubscript{H9254} does not exhibit intrinsic substrate selectivity for particular DG molecular species, 32:0-DG, in vitro. Therefore, we hypothesized that DGK\textsubscript{H9254} accomplishes apparent substrate selectivity in C2C12 cells by accessing a DG pool containing only 30:0-, 32:0-, and 34:0-DG, and not based on the intrinsic properties of the enzyme.

Effects of Inhibitors of Lipid Metabolism Enzymes on High Glucose Level-induced PA Production—To test this hypothesis, we next searched for the lipid metabolic pathway that supplies 30:0-, 32:0-, and 34:0-DG species as a substrate for DGK\textsubscript{H9254}. There are three pathways that produce DG, 1) the de novo pathway (30, 31), 2) the PLD/PA phosphatase pathway (32), and 3) the PC-specific PLC pathway (33). The treatment with 20 \textmu M TOFA, which inhibits acetyl-CoA carboxylase involved in the de novo synthesis of DG (23, 24), did not decrease the glucose-stimulated production of PA molecular species (Fig. 6A). Moreover, 100 nM FIPI, which inhibits PLD involved in DG generation from PC through the action of PA phosphatase (25), reduced the amounts of most of the PAs in the absence of high glucose stimulation (data not shown). However, this compound failed to attenuate the glucose-stimulated production of PA molecular species (Fig. 6B). These results strongly suggest that these pathways are not involved in the DG supply to DGK\textsubscript{H9254}.

![FIGURE 4. PA molecular species in C2C12 cells stably expressing DGK\textsubscript{H9254}. A, the stable expression of AcGFP-DGK\textsubscript{H9254} in C2C12 cells was confirmed by Western blot analysis using the anti-DGK\textsubscript{H9254} antibody. B, the major PA molecular species in the glucose-unstimulated or glucose-stimulated cells stably expressing human DGK\textsubscript{H9254} were identified and quantified using LC/ESI-MS. The results are presented as the percentage of the value of PA molecular species in glucose-unstimulated cells transfected with AcGFP alone or AcGFP-DGK\textsubscript{H9254}. Overexpression of DGK\textsubscript{H9254} did not significantly affect the value of PA molecular species in glucose-unstimulated cells. The values are presented as the mean \pm S.D. (n = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.005 (no stimulation versus glucose stimulation). #, p < 0.05; ###, p < 0.005 (no overexpression versus DGK\textsubscript{H9254} overexpression).

![FIGURE 5. In vitro DGK\textsubscript{H9254} activity. For measurement of in vitro DGK\textsubscript{H9254} activity, 2 mM (5.4 mol\%) 16:0/16:0-, 16:0/18:1-, and 18:0/20:4-DG were used as substrates. The activity of 3\times FLAG-tagged DGK\textsubscript{H9254} in COS-7 cells was compared with the control. The results are presented as the percentage of the value of activity against 18:0/20:4-DG. The values are presented as the mean \pm S.D. (n = 6).

PA molecular species	Identified acyl chains*	%
30:1	14:0/16:1 (86.0%)	16:0/14:1 (14.0%)
30:0	14:0/16:0 (100%)	
32:2	16:1/16:1 (98.5%)	14:0/18:2 (1.5%)
32:1	16:0/16:1 (88.7%)	14:0/18:1 (11.3%)
32:0	16:0/16:0 (96.6%)	14:0/18:0 (3.4%)
34:3	16:1/18:2 (67.2%)	16:2/18:1 (27.7%)
34:2	16:1/18:1 (86.3%)	16:2/18:2 (13.6%)
34:1	16:0/18:1 (93.2%)	16:2/18:0 (6.8%)
34:0	16:0/18:0 (99.7%)	14:0/20:0 (0.3%)
36:4	16:0/20:4 (83.0%)	16:1/20:3 (8.7%)
36:3	18:1/18:2 (74.9%)	16:0/20:3 (23.6%)
36:2	18:1/18:1 (91.6%)	16:0/20:2 (5.0%)
36:1	18:0/18:1 (87.8%)	16:0/20:1 (6.5%)
38:6	16:0/22:6 (68.0%)	16:1/22:5 (30.9%)
38:5	16:0/22:5 (45.0%)	18:0/20:5 (8.5%)
38:4	18:0/20:4 (80.1%)	18:1/20:3 (19.5%)
38:3	18:0/20:3 (88.6%)	18:1/20:2 (10.5%)
40:6	18:1/22:5 (51.5%)	18:0/22:6 (47.6%)
40:5	18:0/22:5 (97.4%)	18:1/22:4 (2.6%)

* The relative abundance (%) was based on the peak areas of the fragment ions (ESI-MS/MS) for each molecular ion.
D609 is an inhibitor of PC-PLC (22), which generates DG via PC hydrolysis (34). Treatment with 100 μM D609 strongly inhibited the high glucose stimulation-responsive production of 30:0-, 32:0-, and 34:0-PA to their basal levels (Fig. 7A), suggesting that DGKδ utilizes DG species supplied from the PC-PLC pathway.

We next confirmed that D609 inhibited the production of DG molecular species, including 30:0-, 32:0-, and 34:0-DG. This inhibitor statistically attenuated the amounts of 30:0-, 32:0-, and 34:0-DG in the absence of high glucose stimulation (Fig. 7B). However, D609 inhibited high glucose-dependent increases for all of the C30-C34 DG species (Fig. 7C). These results suggest that, in response to acute high glucose stimulation (5 min), DGKδ can utilize DG species that are supplied from the PC-PLC pathway, in both high glucose-independent and high glucose-dependent manners.

Linkage between PC-PLC and DGKδ—To further examine the linkage between the PC-PLC pathway and DGKδ, we determined whether D609 and DGKδ-siRNA-1 additively affected the high glucose-dependent increases of 30:0-, 32:0-, and 34:0-PA. If DGKδ utilizes DG species supplied from the PC-PLC pathway, it would be expected that reduced expression of DGKδ via DGKδ-siRNA-1 would not enhance the effect of the PC-PLC inhibitor. It was confirmed that the expression of DGKδ was substantially reduced by DGKδ-siRNA-1, even in the presence of D609 (Fig. 8A). As shown in Fig. 8B, DGKδ-siRNA-1 failed to further inhibit the glucose-dependent increases of 30:0-, 32:0-, and 34:0-PA in the presence of D609. These results strongly suggest that 30:0-, 32:0-, and 34:0-DG phosphorylated by DGKδ in response to acute high glucose exposure are generated, at least in part, by PC hydrolysis catalyzed by PC-PLC.

We next examined whether DGKδ directly or indirectly interacted with PC-PLC. To this end, we used C2C12 cells stably overexpressing DGKδ2 (Fig. 4) and stimulated the cells with high glucose. We confirmed that DGKδ2 was immunoprecipitated with the anti-DGKδ antibody (Fig. 8C). Because the molecular identity of mammalian PC-PLC remains unclear (35), its antibody is unavailable. Therefore, we determined PC-PLC activity in the immunoprecipitates using the Amplex Red® PC-PLC assay kit, which detects phosphocholine generated by PC-PLC. As demonstrated in Fig. 8D, PC-PLC activity was clearly co-immunoprecipitated with DGKδ2. The assay does not detect the activity of sphingomyelin synthase, which produces DG and sphingomyelin, but not phosphocholine. The contribution of PLD, which hydrolyzes PC to PA and choline, can be accounted for by elimination of alkaline phosphatase from the assay (see “Experimental Procedures”). However, when the assay was performed in the absence of alkaline phosphatase, the activity was not detectable. Taken together, these results strongly suggest that DGKδ2 utilizes DG species supplied from PC-PLC-dependent PC hydrolysis in response to high glucose (Fig. 9).

DISCUSSION

The increase in PA molecular species by stimulation with high glucose levels has not been identified until now. Moreover, it has not been reported that high glucose induces total PA production. The main reasons for this are that PA species are minor components and it is difficult to quantify the amounts of PA molecular species using conventional LC/ESI-MS methods. To overcome this difficulty, we recently established an LC/ESI-MS method specialized for PA species (21). In this study, we revealed for the first time that acute high glucose
Metabolic Linkage between PC-PLC and DGK\(\sigma\)

FIGURE 7. Effect of D609 on high glucose-induced increases in PA and DG molecular species in C2C12 myoblasts. A, the major PA molecular species in the glucose-unstimulated or glucose-stimulated cells treated with DMSO (control) or D609 were detected using the LC/ESI-MS method. The results are presented as the percentage of the value of PA molecular species in glucose-unstimulated cells treated with DMSO (control). The values are presented as the mean ± S.D. (n = 3), *, p < 0.05; ***, p < 0.005 (no stimulation versus glucose stimulation). ###, p < 0.005 (without D609 versus with D609). B and C, the major DG molecular species in the glucose-unstimulated or glucose-stimulated cells treated with DMSO (control) or D609 were detected using the ESI-MS method. B, comparison of +D609 versus −D609 in the absence of glucose. The results are presented as the percentage of the value of DG species in glucose-unstimulated cells treated with DMSO (control). The values are presented as the mean ± S.D. (n = 3), *, p < 0.05; ***, p < 0.005. C, comparison of +glucose versus −glucose in the absence or presence of D609. The results are presented as the percentage of the value of DG species in glucose-unstimulated cells treated with DMSO (control) or D609. D609 did not significantly affect the value of DG molecular species in glucose-unstimulated cells treated with DMSO (control) or D609 were detected using the LC/ESI-MS method. The results are presented as the percentage of the value of DG species in glucose-unstimulated cells treated with DMSO (control). The values are presented as the mean ± S.D. (n = 3). *, p < 0.05; **, p < 0.01; ***. p < 0.005 (no stimulation versus glucose stimulation). ##, p < 0.01; ###, p < 0.005 (without D609 versus with D609).

stimulation statistically increased the PA mass and number of molecular species using the newly developed method (Fig. 1). The results indicate that our LC/ESI-MS method is a powerful tool for detecting even small changes in PA molecular species.

The suppression of DGK\(\sigma\) expression by RNA silencing decreased the high glucose-induced production of 30:0-, 32:0-, 34:1-, and 34:0-PA in C2C12 myoblasts (Fig. 2). Moreover, the levels of 30:1-, 30:2-, 32:2-, 32:0-, and 34:0-PA were substantially increased in a high glucose-dependent manner in C2C12 cells stably expressing DGK\(\sigma\)2 when compared with control cells (Fig. 4). Taken together, these results strongly suggest that DGK\(\sigma\) preferentially generates 30:0-, 32:0-, and 34:0-PA, which contain two saturated fatty acids, in the cells. The main fatty acid residues of these PA species were 14:0 and 16:0 and 16:0 and 16:0, and 16:0 and 18:0, respectively (Table 1). These results suggest that DGK\(\sigma\) produces PA with an apparent preference for palmitic acid (16:0)-containing PA. Moreover, the suppression of DGK\(\sigma\) expression by siRNA-1 and -2 also decreased the high glucose-induced production of 34:1-PA (Fig. 2). The overexpression of DGK\(\sigma\)2 statistically increased the levels of 30:1- and 32:1-PA (Fig. 4). The DGK\(\sigma\) suppression also modestly attenuated 30:1- and 32:1-PA levels (Fig. 2), and the DGK\(\sigma\)2 overexpression slightly augmented 34:1-PA production (Fig. 4).

Therefore, it is possible that this enzyme also generates 30:1-, 32:1-, and 34:1-PA, which contain one saturated and one monounsaturated fatty acid, in addition to 30:0-, 32:0-, and 34:0-PA. 30:1-, 32:1-, and 34:1-PA contain one saturated and one monounsaturated fatty acid, in addition to 30:0-, 32:0-, and 34:0-PA. The DGK\(\sigma\)2-siRNAs and DGK\(\sigma\) overexpression failed to statistically affect the amounts of high glucose-induced increases of 32:2-, 34:3-, 34:2-, 36:4-, 36:3-, 36:2-, and 38:6-PA (Figs. 2 and 4), implying that these PA species were generated by other DGK isozyme(s).

DGK is a member of the PI turnover pathway and initiates resynthesis of PI (18). This fact led us to believe that DGK isozymes, including DGK\(\sigma\), also exhibit selectivity against 38:4 (18:0/20:4)-DG derived from PI turnover. Indeed, it was reported that DGK\(\sigma\) preferentially phosphorylated DGs con-
Metabolic Linkage between PC-PLC and DGKΔ

Phosphorylate 38:4-DG derived from PI turnover in a glucose-dependent manner.

DGKΔ did not exhibit selectivity against 16:0/16:0 (32:0)- or 16:0/18:1 (34:1)-DG in vitro (Fig. 5). Therefore, we hypothesized that DGKΔ exerts substrate selectivity in C2C12 cells through accessing a DG pool containing 30:0-, 32:0-, and 34:0-DG, and not via its intrinsic preference. There are three DG supply pathways, i.e. 1) de novo synthesis including acetyl-CoA carboxylase (30, 31), 2) the PLD/PA phosphatase route (32), and 3) PC hydrolysis by PC-specific PLC (33). Treatment with the PC-PLC inhibitor D609, but not inhibitors of acetyl-CoA carboxylase and PLD, strongly inhibited the high glucose stimulation-responsive production of 30:0-, 32:0-, and 34:0-PA (Fig. 7A). Moreover, RNA silencing of DGKΔ failed to further inhibit the glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA in the presence of D609 (Fig. 7B). Furthermore, PC-PLC was co-immunoprecipitated with DGKΔ2 (Fig. 8D). Taken together, these results strongly suggest that 30:0-, 32:0-, and 34:0-DG phosphorylated by DGKΔ2 in response to acute high glucose exposure are generated, at least in part, by PC hydrolysis catalyzed by PC-PLC (Fig. 9).

The role of sphingomyelin synthase as a potential PC-PLC was indicated (36). We cannot rule out the possibility that DGKΔ2 partly utilizes sphingomyelin synthase-dependent DG. However, it is likely that DGKΔ2 phosphorylates DG species generated, at least in part, by PC-PLC because the co-immunoprecipitates with DGKΔ2 contained PC-PLC activity.

The molecular identity of PC-PLC remains unclear (35). In this study, DGKΔ2 was revealed to directly or indirectly associate with PC-PLC. With the pulldown of PC-PLC activity with DGKΔ2, there may be an opportunity to identify the unidentified PC-PLC enzyme by proteomics approaches. Therefore, DGKΔ2 may serve as a good tool to search for the PC-PLC molecule.

D609 attenuated high glucose-dependent increases in various C30-C34 DG species (Fig. 7C). However, D609 strongly inhibited only the high glucose stimulation-responsive production of 30:0-, 32:0-, and 34:0-PA (Fig. 7A). Intriguingly, this inhibitor statistically reduced the amounts of 30:0-, 32:0-, and 34:0-DG in the absence of high glucose (Fig. 7B). Therefore, it is likely that, in response to acute high glucose stimulation (5 min), DGKΔ2 mainly utilizes these DG species supplied from the PC-PLC pathway in a high glucose-independent manner. Moreover, DGKΔ2 can generate 30:1-, 32:1-, and 34:1-PA, in addition to 30:0-, 32:0-, and 34:0-PA (Figs. 2 and 4). Although D609 moderately attenuated 30:1-, 32:1-, and 34:1-PA generation (Fig. 7A), this inhibitor did not affect the amounts of 30:1-, 32:1-, and 34:1-DG in the absence of high glucose stimulation (Fig. 7B). However, D609 substantially inhibited high glucose-dependent increases for 30:1-, 32:1-, and 34:1-DG (Fig. 7C). These results suggest that DGKΔ2 can utilize 30:1-, 32:1-, and 34:1-DG that are supplied from the PC-PLC pathway in a high glucose-dependent manner.

Recently, Shulga et al. (37) and Lowe et al. (38) reported that DGKΔ positively regulated lipid synthesis, including DG and PA, during adipocyte differentiation. However, unlike for acute high glucose stimulation, a significant preference against DG and PA was not found. The increases were, at least in part, a

taining arachidonic acid (e.g. 38:4 (18:0/20:4)-DG) derived from PI turnover (7, 19, 20). However, high glucose stimulation did not increase the amount of 38:4-PA (Figs. 1 and 2), which mainly consisted of 18:0/20:4-PA (Table 1). Moreover, DGKΔ-siRNAs and DGKΔ2 overexpression failed to affect the amounts of 38:4-PA in response to high glucose stimulation (Figs. 2 and 4). These results indicate that DGKΔ does not phosphorlyate 38:4-DG derived from PI turnover in a glucose-dependent manner.

FIGURE 8. Examination of the functional linkage between PC-PLC and DGKΔ. Effects of D609 and DGKΔ-siRNA-1 on high glucose-induced increases of PA molecular species in C2C12 muscle cells were compared. A, the suppression of DGKΔ expression by DGKΔ-siRNA-1 was confirmed by Western blot analysis using the anti-DGKΔ antibody. B, 30:0-, 32:0-, and 34:0-PA in the glucose-unstimulated or glucose-stimulated cells treated with DMSO (control), D609, or DGKΔ-siRNA-1 were detected using the LC/ESI-MS method. The results are presented as the percentage of the value of PA molecular species in glucose-unstimulated cells. The values are presented as the mean ± S.D. (n = 5); ***, p < 0.005 (no stimulation versus glucose stimulation); ##, p < 0.01; ###, p < 0.005 (without D609 versus with D609); †, p < 0.05; ††, p < 0.005 (control siRNA versus DGKΔ-siRNA-1). C and D, co-immunoprecipitation of PC-PLC activity with DGKΔ2. C, immunoprecipitation (IP) of DGKΔ2 using the anti-DGKΔ antibody was confirmed by Western blot analysis using the anti-DGKΔ antibody. D, PC-PLC activity in the precipitates was measured using the Amplex Red® PC-PLC assay kit. The values are presented as the mean ± S.D. (n = 4); ***, p < 0.005. When the assay was performed in the absence of alkaline phosphatase, the activity was not detectable.
result of promoting the de novo synthesis of fatty acids. However, in this study, an inhibitor of acetyl-CoA carboxylase TOFA did not decrease glucose-stimulated PA production (Fig. 6A). Because differentiation is a long term event, the difference between acute high glucose stimulation in C2C12 myoblasts and adipocyte differentiation may be due to distinct supply pathways and/or fatty acid conversion during long term culture through the remodeling pathway (Lands’ cycle) (39).

Chibalin et al. (15) previously reported that the transcription of DGKδ and the levels of DGKδ protein were also reduced in skeletal muscle from type II diabetes patients. Moreover, in DGKδ haploinsufficient mice (DGKδ+/−), the accumulation of DG, which was caused by decreases in total DGK activity and DGKδ protein levels in skeletal muscle, increased phosphorylation of PKCδ and suppressed protein expression of the insulin receptor and insulin receptor substrate-1 for insulin signaling, resulting in the aggravation of type II diabetes (15). Another study reported that the accumulation of DG molecular species such as 30:0-, 30:1-, 32:0-, 32:1-, 34:0-, and 34:1-DG containing palmitic acid (16:0) supplied from the PC-PLC pathway for glucose uptake in skeletal muscle (Fig. 9). Moreover, an unexpected linkage between PC-PLC and DGKδ emerged. The route “PC → PC-PLC → DG → DGK → PA” proposed here (Fig. 9) is a novel DG metabolic pathway. This new pathway is proposed to play an important role in glucose uptake in skeletal muscle and to be involved in the pathogenesis of type 2 diabetes.

REFERENCES

1. Zimmet, P., Alberti, K. G., and Shaw, J. (2001) Global and societal implications of the diabetes epidemic. *Nature* **414**, 782–787
2. Biddinger, S. B., and Kahn, C. R. (2006) From mice to men: insights into the insulin resistance syndromes. *Annu. Rev. Physiol.* **68**, 123–158
3. Kraegen, E. W., Saha, A. K., Preston, E., Wilks, D., Hoy, A. J., Cooney, G. J., and Ruderman, N. B. (2006) Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. *Am. J. Physiol. Endocrinol. Metab.* **290**, E471–E479
4. Goto, K., Hozumi, Y., and Kondo, H. (2006) Diacylglycerol, phosphatidic acid, and the converting enzyme, diacylglycerol kinase, in the nucleus. *Biochim. Biophys. Acta* **1761**, 535–541
5. Mérída, I., Avila-Flores, A., and Merino, E. (2008) Diacylglycerol kinases: at the hub of cell signalling. *Biochem. J.* **409**, 1–18
6. Sakane, F., Imai, S., Kai, M., Yasuda, S., and Kanoh, H. (2007) Diacylglycerol kinases: why so many of them? *Biochim. Biophys. Acta* **1771**, 793–806
7. Shulga, Y. V., Topham, M. K., and Epand, R. M. (2011) Regulation and functions of diacylglycerol kinases. *Chem. Rev.* **111**, 6186–6208
8. van Blitterswijk, W. J., and Houssa, B. (2000) Properties and functions of diacylglycerol kinases. *Cell. Signal.* **12**, 595–605
9. Sakai, H., and Sakane, F. (2012) Recent progress on type II diacylglycerol kinases: the physiological functions of diacylglycerol kinase δ, η and κ and their involvement in disease. *J. Biochem.* **152**, 397–406
10. Sakane, F., Imai, S., Kai, M., Yasuda, S., and Kanoh, H. (2008) Diacylglycerol kinases as emerging potential drug targets for a variety of diseases. *Curr. Drug Targets* **9**, 626–640
11. Sakane, F., Imai, S., Yamada, K., Murakami, T., Tsushima, S., and Kanoh, H. (2002) Alternative splicing of the human diacylglycerol kinase δ gene generates two isoforms differing in their expression patterns and in regulatory functions. *J. Biol. Chem.* 277, 43519–43526

12. Murakami, T., Sakane, F., Imai, S., Houkin, K., and Kanoh, H. (2003) Identification and characterization of two splice variants of human diacylglycerol kinase δ. *J. Biol. Chem.* 278, 34364–34372

13. Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein tyrosine kinase. *J. Biol. Chem.* 271, 8394–8401

14. DeFronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., and Felber, J. P. (1981) The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. *Diabetes* 30, 1000–1007

15. Chibalin, A. V., Leng, Y., Vieira, E., Krook, A., Björnholm, M., Long, Y. C., Kotova, O., Zhong, Z., Sakane, F., Steiler, T., Nylen, C., Wang, J., Laakso, M., Topham, M. K., Gilbert, M., Wallberg-Henriksson, H., and Zierath, J. R. (2008) Downregulation of diacylglycerol kinase δ contributes to hyperglycemia-induced insulin resistance. *Cell* 132, 375–386

16. Miele, C., Paturzo, F., Teperino, R., Sakane, F., Fiory, F., Oriente, F., Urgaro, P., Valentino, R., Beguinot, F., and Formisano, P. (2007) Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol-kinase subcellular localization. *J. Biol. Chem.* 282, 31835–31843

17. Takeuchi, M., Sakiyama, S., Usuki, T., Sakai, H., and Sakane, F. (2012) Diacylglycerol kinase ε1 transiently translocates to the plasma membrane in response to high glucose. *Biochim. Biophys. Acta* 1823, 2210–2216

18. Hodgkin, M. N., Pettitt, T. R., Martin, A., Michell, R. H., Pemberton, A. J., and Wakeland, M. J. (1998) Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? *Trends Biochem. Sci.* 23, 200–204

19. Rodriguez de Turco, E. B., Tang, W., Topham, M. K., Sakane, F., Marcheselli, V. L., Chen, C., Taketomi, A., Prescott, S. M., and Bazan, N. G. (2001) Diacylglycerol kinase ε regulates seizure susceptibility and long-term potentiation through arachidonoyl-inositol lipid signaling. *Proc. Natl. Acad. Sci. U.S.A.* 98, 4740–4745

20. Tang, W., Bunting, M., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M. (1996) Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. *J. Biol. Chem.* 271, 10237–10241

21. Mizuno, S., Sakai, H., Saito, M., Kado, S., and Sakane, F. (2012) Diacylglycerol kinase-dependent formation of phosphatidic acid molecular species during interleukin-2 activation in CTLL-2 T-lymphocytes. *FEBS Open Bio*. 2, 267–272

22. Amtmann, E. (1996) The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C. * Drugs Exp. Clin. Res.* 22, 287–294

23. Halvorson, D. L., and McCune, S. A. (1984) Inhibition of fatty acid synthesis in isolated rat adipose tissue by electrospray ionization mass spectrometry using a linear regression algorithm. *Anal. Chem.* 76, 263–272

24. Craven, P. A., Davidson, C. M., and DeRubertis, F. R. (1990) Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. *Diabetes* 39, 667–674

25. Wolf, B. A., Easom, R. A., McDaniel, M. L., and Turk, J. (1990) Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans. *J. Clin. Invest*. 85, 482–490

26. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. *Can. J. Biochem. Physiol.* 37, 911–917

27. Sakai, H., Tanaka, Y., Tanaka, M., Ban, N., Yamada, K., Matsumura, Y., Watanabe, D., Sasaki, M., Kita, T., and Inagaki, N. (2007) ABCA2 deficiency results in abnormal sphingolipid metabolism in mouse brain. *J. Biol. Chem.* 282, 19692–19699

28. Callender, H. L., Forrester, J. S., Ivanova, P., Preininger, A., Milne, S., and Brown, H. A. (2007) Quantification of diacylglycerol species from cellular extracts by electrospray ionization mass spectrometry using a linear regression algorithm. *Anal. Chem.* 79, 263–272

29. Imai, S., Yasuda, S., Kai, M., Kanoh, H., and Sakane, F. (2009) Diacylglycerol kinase δ associates with receptor for activated C kinase 1, RACK1. *Biochim. Biophys. Acta* 1791, 246–253

30. Adibhatla, R. M., Hatcher, J. F., and Gusain, A. (2012) Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. *Neurochem. Res.* 37, 671–679

31. Luberto, C., and Hannun, Y. A. (1998) Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation: Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? *J. Biol. Chem.* 273, 14550–14559

32. Luberto, C., and Hannun, Y. A. (1996) Phosphatidylcholine-specific phospholipase C. *Drugs Exp. Clin. Res.* 22, 287–294

33. Halvorson, D. L., and McCune, S. A. (1984) Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid. *Lipids* 19, 851–856

34. Pizer, E. S., Thupari, J., Han, W. F., Pinn, M. L., Chrest, F. J., Frehywot, G. L., Townsend, C. A., and Kuhajda, F. P. (2000) Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthesis inhibition in human breast cancer cells and xenografts. *Cancer Res.* 60, 213–218

35. Su, W., Yoku, O., Olepu, S., Gennu, A., Park, J. S., Ren, H., Du, G., Gelb, M. H., Morris, A. J., and Frohman, M. A. (2009) 5-Fluoro-2-indolyl deschlorohalopemide (FIP1), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. *Mol. Pharmacol.* 75, 437–446

36. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. *Can. J. Biochem. Physiol.* 37, 911–917