Envelhecimento vascular natural e acelerado. Mecanismos e fatores envolvidos

O Processo de envelhecimento vascular

Em 2006, Dzau et al. apresentaram o continuum da doença cardiovascular (DCV), representado por sucessivos eventos/etapas de progressão da doença desde a incidência de fatores de risco até a morte. Todo este conceito tinha como mecanismo nuclear da evolução para DCV subjacente a gênese e progressão da aterosclerose. Em 2010, Dzau et al. deram nova ênfase à importância das alterações estruturais da camada média da parede arterial associadas à idade (arteriosclerose) como mecanismo contributivo para o risco de desenvolvimento de DCV.2

Existe um processo natural de desgaste e modificação progressiva da estrutura da parede arterial, que advém do estresse mecânico de distensão induzido a cada ciclo cardíaco em conexão com a amplitude da onda de pulso e de pressão incidente e reflexa.3 Na ausência de qualquer outro fator, este mecanismo por si só produzirá desgaste da parede arterial, promovendo redução da espessura, fragmentação e desorganização das lâminas de elastina. Paralelamente, este componente elástico danificado é substituído por colágeno e matriz proteica, que apresenta menor capacidade de acomodar a pressão da onda de pulso incidente. Além disso, ocorre perda da conexão integradora e funcional entre as camadas de elastina e as células vasculares do músculo liso,4 resultando em redução da distensibilidade e aumento da rigidez da parede das grandes artérias, que pode ser medido por um aumento da velocidade de transmissão da onda de pulso e do retorno da onda reflexa. Com isto, ocorre influência na pressão arterial (PA) sistólica (PAS) central, na pressão de pulso central, no “índice de incremento” e em outros índices de integração ventrículo-vascular.5

Palavras-chave

Pressão Arterial; Doenças Cardiovasculares/fisiopatologia; Doença das Coronárias/fisiopatologia; Fatores de Risco; Endotélio Vascular; Aterosclerose.

Envelhecimento vascular acelerado

A identificação de indivíduos com envelhecimento vascular acelerado pode permitir uma intervenção específica mais precoce, com controle dos diversos fatores de risco. Para cada aumento de 1 m/s de velocidade da onda de pulso (VOP) carotídeo-femoral (VOPcf), o risco de morte cardiovascular, evento cardiovascular ou mortalidade por outras causas aumenta entre 14 e 15%.6 A publicação de valores de referência da VOPcf para diferentes faixas etárias veio permitir uma identificação mais fácil de indivíduos que apresentam sinais precoces de rigidez arterial. Entretanto, devem ser levados em conta na definição do “normal” os aspectos étnicos e/ou de exposição ambiental que podem também contribuir para o processo de envelhecimento arterial.8

Envelhecimento arterial: relação entre microcirculação e macrocirculação e entre arteriosclerose e aterosclerose

Podemos identificar quatro marcos essenciais no processo de envelhecimento vascular: 1) uma progressiva redução da distensibilidade das grandes artérias musculares; 2) um progressivo aumento da onda de pressão refletida, com consequente aumento dos diversos componentes da pressão arterial central; 3) uma perda do gradiente de rigidez arterial entre as artérias centrais e periféricas; 4) uma progressiva eliminação do diferencial de impedância entre a macrocirculação e microcirculação arterial.5-11 A este conjunto de modificações estruturais e funcionais da árvore arterial na sequência de deterioração da estrutura e função da camada média da parede arterial (arteriosclerose) junta-se o aparecimento e concomitante desenvolvimento de lesões de aterosclerose na parede do vaso, tendo como mecanismo unificador a disfunção endotelial.12

Medidas das pressões central e periférica: diferenças e vantagens

A PA braquial medida com esfigmomanômetro não pode ser considerada equivalente da pressão aórtica, pois esta apresenta valores invariavelmente mais baixos. A PA varia continuamente durante o ciclo cardíaco, embora na prática
sejam medidos apenas o valor máximo durante a sístole e o valor mínimo durante a diástole. Além disso, a forma da onda de pulso varia ao longo da árvore arterial. Com o avanço da onda de pulso das artérias centrais mais elásticas para as artérias periféricas mais rígidas, o pico sistólico se torna mais estreito e elevado (Figura 1). Considerando que a PA diastólica (PAD) e a PA média sejam relativamente constantes, a pressão sistólica braquial pode atingir 30 mmHg maior que a pressão central aórtica sistólica em indivíduos jovens. Este fenômeno conhecido como amplificação da pressão sistólica (ou da pressão de pulso) ocorre por diversos motivos, entre eles o menor calibre e maior rigidez das artérias periféricas. Além disso, reflexões da onda de pulso ocorrem em diversas regiões de maior gradiente colágeno/elastina, de maior tônus vasomotor e, especialmente, nos pontos de bifurcação. Múltiplas ondas de pulso refletidas se integram em uma onda refletida que se soma à onda de pulso incidente, originada pela ejeção ventricular. Quanto a onda refletida atinge mais precocemente a onda incidente, ocorre um incremento na pressão sistólica central e, consequentemente, uma redução na amplificação da pressão de pulso. De fato, este incremento de pressão depende de diversas variáveis, principalmente idade, gênero, altura e frequência cardíaca.13-15 Sexo feminino, idade avançada, baixa estatura e bradicardia estão associados com menor amplificação da pressão de pulso. Mesmo com o controle dessas variáveis, somente cerca de 70% da variabilidade na amplificação da pressão de pulso pode ser explicada em modelos de regressão múltipla.13,16 Isso indica que a pressão central não pode ser estimada com precisão e deve ser determinada diretamente através de métodos adequados.

Vantagens

A medida da pressão central poderia resultar em benefícios em relação à maior precisão para o diagnóstico da hipertensão arterial, maior segurança na decisão terapêutica e melhor definição do prognóstico.17,18 Alguns autores identificaram que a pressão central, comparada com a pressão braquial, correlaciona-se melhor com marcadores intermediários de risco cardiovascular como espessamento médio-intimal da carótida e hipertrofia ventricular esquerda.19,20 Diversos estudos relataram uma relação independente entre a pressão central e futuros eventos cardiovasculares, incluindo pacientes idosos com doença coronariana e com doença renal crônica.14,21-23 Não obstante, outros estudos não encontraram um valor preditor superior da pressão central sobre a pressão braquial.24 Esta controvérsia existe porque a metodologia ainda é heterogênea e a pressão periférica, necessária para o resultado final, explica mais de 90% da variação da pressão central. Além disso, a derivação da pressão central requer uma medida adicional, geralmente tonometria radial, também sujeita a erros que podem contribuir com os 10% restantes da variação.18 Por isso, antes da medida da pressão central ser recomendada para amplo uso clínico, a padronização do método e do sistema de calibração e as limitações técnicas dos diversos aparelhos disponíveis devem ser resolvidas.

Definição, avaliação e valores normais dos principais parâmetros centrais (pressão central aórtica e velocidade da onda de pulso carotídeo-femoral)

Os valores de PAS variam consideravelmente de acordo com o local de registro. A PAS é mais alta na artéria braquial quando comparada à aorta. Essa diferença de valores de pressões entre a aorta e a artéria braquial é consequência do fenômeno da amplificação periférica, que resulta da diferença de impedância entre as artérias de grande calibre e as de médio e pequeno calibre, especialmente nas bifurcações e, ainda, da presença de diversos fatores de interferência como idade, comorbidades (dislipidemia, tabagismo, diabetes mellitus etc.) e fatores ambientais (sódio).25 Recentemente evidências assinalam que a pressão central aórtica, o índice de incremento e a VOPcf são marcadores robustos de eventos cardiovasculares futuros.21,26

Um aspecto importante em relação à pressão sistólica central diz respeito a valores de pressão obtidos com

Figura 1 – Amplificação da pressão sistólica das artérias centrais para as artérias periféricas.
equipamentos comerciais por métodos não invasivos. Embora estes valores tenham boa correlação com estudos invasivos, não representam integralmente os valores da pressão sistólica central, mas refletem corretamente o fenômeno da amplificação. Essa mensuração estática é considerada insuficiente para validação definitiva desses métodos na estratificação de risco cardiovascular.27

A mensuração da VOPcf é um método apropriado de avaliação do envelhecimento arterial com excelente correlação com risco de morte cardiovascular, eventos cardiovasculares e mortalidade por outras causas.6 O enrijecimento da aorta distal e das grandes artérias, como as carótidas e as ilíacas, ocorre devido ao retorno precoce da onda de reflexão, secundária a alterações estruturais e funcionais da parede vascular distal.

Portanto, as grandes artérias diferem das artérias de médio e pequeno calibre em relação à histologia, fisiologia e propriedades elásticas, razão pela qual definir o alvo anatômico para ação de um medicamento e o alvo terapêutico a ser alcançado são de extrema importância. As evidências em relação ao tratamento medicamentoso apontam para uma maior facilidade de reversão das alterações em artérias de pequeno calibre (musculares) do que em grandes artérias (elásticas). Assim, resultados obtidos em um segmento arterial não podem ser extrapolados para outros segmentos da mesma árvore arterial. As Tabelas 1 e 2 mostram os valores da pressão central aórtica sistólica, índice de incremento e VOPcf na população normal.28,29

Metodologia de avaliação - equipamentos disponíveis e suas validações

A VOPcf, que reflete diretamente a rigidez arterial, tem valor preditivo na morbidade e mortalidade cardiovascular e é atualmente considerada o método padrão-ouro na avaliação da rigidez arterial.5

Os aparelhos utilizados para medição da VOPcf têm evolvido nas duas últimas décadas, e suas novas versões têm recebido validação sistemática. Têm sido publicados múltiplos estudos de comparação entre métodos invasivos e não invasivos em diferentes populações e entre vários aparelhos existentes de medição não invasiva da VOPcf, como oscilométricos, piezoelétricos e tonométricos. A maioria deles apresenta uma boa correlação com os métodos mais utilizados em estudos epidemiológicos, como por exemplo o Complior® ou o SphymoCor®, entre outros. Atualmente, esses métodos envolvem pouco treino do operador e a facilidade de uso e o tempo consumido no exame têm sido otimizados, de modo que vão se tornando mais disponíveis para utilização na prática clínica, com boas correlações intraobservador e interobservador.30

Tabela 1 – Valores de pressão central aórtica sistólica e índice de incremento em indivíduos normais26

Idade (anos)	Feminino	Masculino	Feminino	Masculino				
	Média	Percentil (10–90)						
<20	97	86 – 109	105	96 – 113	14	9 – 20	19	11 – 24
20 – 29	95	80 – 110	103	92 – 115	12	5 – 19	15	6 – 24
30 – 39	98	84 – 119	103	88 – 120	8	0 – 17	13	4 – 23
40 – 49	102	87 – 123	106	90 – 123	6	0 – 15	11	2 – 21
50 – 59	110	93 – 127	110	96 – 126	5	0 – 13	9	2 – 18
60 – 69	114	97 – 129	114	97 – 128	6	1 – 12	8	2 – 17
> 70	118	100 – 131	116	99 – 130	6	1 – 13	8	1 – 17

% = percentual de incremento.

Tabela 2 – Valores da velocidade da onda de pulso carotídeo-femoral (m/s) em indivíduos normais31

Idade	Média ± 2DP	Mediana (percentil 10 – 90)
<30 a	6,6 (4,9 – 8,2)	6,4 (5,7 – 7,5)
30 – 39 a	6,8 (4,2 – 8,4)	6,7 (5,3 – 8,2)
40 – 49 a	7,5 (5,1 – 10,0)	7,4 (6,2 – 9,0)
50 – 59 a	8,4 (5,1 – 11,7)	8,1 (6,7 – 10,4)
60 – 69 a	9,7 (5,7 – 13,6)	9,3 (7,6 – 12,1)
> 70 a	11,7 (6,0 – 17,5)	11,1 (8,6 – 15,5)

DP: desvio padrão.
Algumas diferenças têm sido encontradas em estudos de comparação entre aparelhos, com valores de parâmetros hemodinâmicos sistematicamente mais elevados obtidos com um determinado equipamento. Os modelos matemáticos utilizados nos diversos equipamentos podem levar a resultados diferentes. Porém, na maior parte dos casos, isto não tem tradução na prática clínica, uma vez que não implicam em mudança na classe de risco do indivíduo. Apesar disso, é prudente que o mesmo tipo de equipamento seja utilizado em estudos multicêntricos de investigação.\(^{31}\)

Além da validação de diferentes equipamentos, diferentes procedimentos para medição da VOPcf têm sido também propostos. Estes diferentes procedimentos, como por exemplo a medição da distância carótida-femoral, podem influenciar os resultados obtidos se não forem também padronizados. Neste caso, existem argumentos para que 80% da distância direta carótida-femoral seja a estimativa mais exata para essa mesma distância.\(^{2}\)

Parâmetros centrais: diferenças de acordo com idade, sexo e etnia

A melhor forma de se definir valores de normalidade para a pressão central aórtica seria por meio de uma correlação entre os níveis de pressão central aórtica obtidos e o risco cardiovascular, como conhecido para a PA obtida pelo método convencional ou braquial. Porém, esses dados não são ainda disponíveis como resultados de estudos prospectivos delineados para esse fim específico, embora algumas publicações tenham buscado obter essas correlações entre desfechos cardiovasculares e pressão central aórtica.\(^{21}\)

Uma estratégia seria a obtenção de correlações entre valores de pressão central aórtica que correspondessem a valores convencionados de pressão na artéria braquial casual ou de consultório. Seguindo esta estratégia, estudos populacionais sugerem que uma pressão central aórtica sistólica ótima seria representada por valores < 110 mmHg, o que seria equivalente a 120 mmHg quando obtido pela medida de PA convencional. Do mesmo modo, uma pressão central aórtica < 120 mmHg corresponderia a valor de PAS braquial de 140 mmHg, configurando-se hipertensão arterial sistêmica estágio 1 a obtenção de pressão central aórtica sistólica ≤ 120 mmHg.\(^{32}\)

Aplicabilidade e relação custo-benefício da medida dos parâmetros centrais

Apesar de não fazer parte da rotina de estratificação do hipertensão, a pressão central aórtica tem atraído interesse crescente em função do seu valor preditivo para a ocorrência de eventos cardiovasculares, bem como para a avaliação diferencial dos vários medicamentos anti-hipertensivos, quando comparada com a tradicional determinação da pressão braquial.\(^{33}\) O índice de incremento e a pressão de pulso, medidos por tonometria carotídea, foram considerados preditores independentes de mortalidade cardiovascular na doença renal terminal. Contudo, o valor preditivo da pressão central aórtica, quando comparado com o da PA braquial, não mostrou diferenças significativas.\(^{21}\)

Entretanto, a recomendação para o seu uso de rotina exige ainda mais estudios. Admite-se como exceção e como valor acrescido, a hipertensão sistólica isolada no jovem, já que nestes indivíduos pode haver uma PAS braquial aumentada em virtude de uma exagerada amplificação da onda de pressão central, que estaria normal.\(^{34}\)

Não existem dados que comprovem a relação custo-benefício da determinação da pressão central aórtica, extrapolando-se de pequenos estudos com o uso de bloqueador do receptor da angiotensina II (ex., losartan), que reduz a pressão central aórtica, podendo trazer algum benefício adicional no seu uso para além da redução da PA braquial.\(^{35}\)

Hipertensão arterial sistólica isolada no jovem: hipertensão verdadeira e hipertensão espúria

O mecanismo fisiopatológico da hipertensão arterial sistólica isolada no idoso e no jovem não é o mesmo. Adicionalmente, as informações sobre o prognóstico em ambos são escassas e as diretrizes atualmente disponíveis trazem diferentes recomendações sobre como abordar estas situações em função da faixa etária.\(^{36}\)

A hipertensão sistólica isolada no adulto jovem (HSIJ) foi descrita em 1999 como uma elevação “espúria” da PAS ou pseudoeleição da PAS (> 140 mmHg) com valores normais de pressão diastólica (< 90 mmHg) que resulta de um fenômeno de amplificação da onda de pulso arterial a nível periférico.\(^{36}\) A HSIJ é mais comum em atletas masculinos, em indivíduos com estatura mais elevada e naqueles com maior índice de massa corporal.\(^{37}\)

A prevalência da HSIJ apresenta uma variação significativa (entre 2% a 16%) em coortes exclusivamente masculinas e possui a obesidade e o tabaco como dois dos principais determinantes.\(^{38}\) A avaliação não invasiva da pressão central e da amplificação da onda de pulso no membro superior tem indicação precisa nestes casos, pois permite identificar adultos jovens com hipertensão sistólica isolada “espúria”, poupando-os de serem rotulados como “pacientes hipertensos”.\(^{39}\) A identificação dos pacientes com HSIJ deve ser complementada pela monitorização ambulatorial para a exclusão da hipertensão do avental branco.\(^{40}\)

A HSIJ tem aumentado em prevalência e, diante da pouca informação a seu respeito, há controvérsias sobre como intervir nesta situação. Se por um lado os valores da pressão central aórtica em indivíduos com HSIJ são mais baixos que os encontrados em hipertensos verdadeiros, são mais elevados que os obtidos em normotensos.\(^{39}\) O estudo de Yano et al.,\(^{41}\) em 2015, mostrou maior risco cardiovascular neste grupo, quando comparado a indivíduos com pressão ótima, mas o estudo não incluiu avaliação da pressão central para uma possível diferenciação entre os grupos. Com as informações existentes, a conduta é de acompanhamento cuidadoso com medidas não farmacológicas, com uma atuação mais agressiva reservada a situações de maior risco cardiovascular associado, pelo menos até que novos dados estejam disponíveis.\(^{42}\)
Valor prognóstico do índice ambulatorial de rigidez arterial (ambulatory arterial stiffness index)

O índice ambulatorial de rigidez arterial (ambulatory arterial stiffness index, AASI) é utilizado para a avaliação da rigidez arterial e calculado com base no declive da pressão diastólica versus valores da pressão sistólica na monitorização ambulatorial, avaliando a relação dinâmica entre a PAD e a PAS nas 24 horas.43

Assim, para qualquer aumento na distensão da parede da artéria, os valores da PAS e da PAD tendem a aumentar em paralelo, enquanto em uma artéria rígida, ocorre aumento do valor da PAS acompanhado de uma menor elevação, ou até de uma diminuição da PAD. Li et al.,44 em uma população chinesa saudável, confirmaram haver um coeficiente de correlação significativo entre o AASI e a VOPcf, que é o método padrão-ouro.44

O AASI depende do grau de integridade funcional e estrutural das artérias, e pode depender ainda do volume sistólico ejetado e das ondas de reflexão.35

Em vista do AASI ser dependente das propriedades mecânicas das pequenas artérias e das ondas de reflexão, este índice se correlaciona bem com a pressão de pulso e com os índices de incremento, além de ter boa correlação com alguns marcadores de lesões em órgãos-alvo (hipertrofia ventricular, lesão carotídea e microalbuminúria).46

Alguns estudos mostram uma relação do AASI com a mortalidade global e cardiovascular, além de uma relação com acidente vascular encefálico em indivíduos normotensos.37 Entretanto, este valor prognóstico ainda é discutível e está relacionado com o grau de descenso durante o sono e outros fatores, tais como a frequência cardíaca e a resistência vascular periférica.48 Além disso, a reprodutibilidade é sófrível e está em torno de 50–68%.49

Parâmetros centrais e risco cardiovascular

Papel da velocidade da onda de pulso carótideo-femoral como preditora de desfechos cardiovasculares

A VOPcf é o parâmetro central mais estudado; consequentemente, existe uma maior quantidade de evidências relacionadas a ela. Assim, demonstrou-se que a VOPcf tem valor preditivo independente para diferentes desfechos cardiovasculares em diferentes subgrupos, como em pacientes com hipertensão, diabetes tipo 2, idosos e naqueles com insuficiência renal terminal.37 Mesmo em indivíduos aparentemente saudáveis, a VOPcf é um preditor independente de doença coronariana e acidente vascular encefálico.56,59 Quando os valores preditivos da VOPcf e da pressão periférica foram comparados, a VOPcf mostrou uma superioridade inabalável.60 Uma revisão sistemática que incluiu 16 estudos com 17.635 participantes revelou que para cada aumento de um desvio padrão na VOPcf, a razão de risco foi de 1,35 (intervalo de confiança de 95% [IC95%] 1,22 – 1,50, p < 0,001) para a doença coronariana, 1,54 (IC95% 1,34 – 1,78, p < 0,001) para o acidente vascular encefálico e 1,45 (IC95% 1,30 – 1,61, p < 0,001) para a doença cardiovascular. Estas razões de risco foram ainda maiores nos participantes mais jovens e permaneceram significativas mesmo após ajuste para a presença de fatores de risco cardiovascular convencionais.59

Pequenos estudos têm demonstrado que a elevação persistente da VOP durante o tratamento da hipertensão arterial ou de doença cardiovascular está associada com um risco elevado para um evento cardiovascular.60

Papel da velocidade da onda de pulso carótideo-femoral na estratificação de risco cardiovascular

Estudos demonstraram que a adição da VOPcf a fatores de risco tradicionais envolvidos em escores como o de Framingham e o SCORE, e mesmo as medidas de aterosclerose, aumenta significativamente o valor preditivo para desfechos cardiovasculares.61-64 Também indicaram que a VOPcf agrega informação para a estratificação de risco cardiovascular, com potencial de aplicabilidade clínica. A utilização da VOPcf permitiu reclassificar a faixa de risco cardiovascular dos indivíduos e foi capaz de melhorar em 13% a avaliação do prognóstico de risco cardiovascular em 10 anos em indivíduos de risco intermediário, segundo uma revisão sistemática recente.65,66 Sendo assim, a presença de uma medida elevada da VOPcf adicionada a fatores de risco clásicos indica excesso de risco cardiovascular e sugere a necessidade de uma abordagem multifatorial mais rigorosa.

Papel da pressão central aórtica como preditora de desfechos cardiovasculares

Uma das primeiras publicações a chamar a atenção da comunidade científica para o papel da pressão central aórtica nos desfechos cardiovasculares, independente dos valores periféricos da PA, foi o estudo Conduit Artery Function Evaluation (CAFE) em 2006. Nesta análise, os pacientes

Arq Bras Cardiol. 2017; [online].ahead print, PP.0-0
hipertensos que apresentaram maior redução do componente sistólico da pressão central aórtica para um mesmo nível de redução dos valores de PA obtidos pela avaliação convencional, tiveram menor incidência de desfechos cardiovasculares. Naquele mesmo ano, a Sociedade Europeia de Cardiologia publicou um posicionamento chamando a atenção para o fato de que as medidas braquiais superestimam os valores centrais da PA e que o componente sistólico da pressão central aórtica, assim como a pressão de pulso central, são melhores preditores de desfechos cardiovasculares, principalmente em pacientes portadores de hipertensão e de doença renal crônica. Outras publicações também chamaram atenção para esta superioridade, inclusive quando foram comparadas as medidas centrais com as braquiais obtidas pela monitorização ambulatorial da PA (MAPA). Por outro lado, uma metanálise de 11 estudos longitudinais demonstrou que tanto a pressão central aórtica sistólica quanto a pressão de pulso central foram marcadores independentes de desfechos e mortalidade cardiovascular, mas não foram superiores aos valores obtidos por medida convencional (avaliação periférica da pressão; p = 0,057).

Relação dos parâmetros centrais com as lesões em órgãos-alvo e condições clínicas associadas

Inúmeros estudos demonstraram a medida da PA central como sendo promissora em termos de melhor correlação com eventos cardiovasculares. É difícil atribuir diferenças da pulsabilidade arterial central e periférica a eventos cardiovasculares. Nenhum estudo demonstrou, até o momento, evidência robusta que a PA central adicione um novo modelo de estratificação de risco cardiovascular em relação à medida convencional da PAS e PAD. Uma análise recente de dados do Framingham Offspring Cohort demonstrou uma forte correlação entre a pressão central aórtica e a incidência de eventos cardiovasculares. Um acompanhamento por até 6,8 anos de uma população de 2.492 indivíduos (idade média de 66 ± 9 anos) mostrou que 6% apresentaram um evento cardiovascular. Em análise multivariada, a medida da pressão central aórtica nessa população se correlacionou de maneira significativa com eventos cardiovasculares.

O estudo CAFE recrutou 2.199 pacientes a partir dos cinco centros do estudo ASCOT e realizou tonometria por aplanação da artéria radial para análise da PA central e da onda de pulso. Apesar dos dois braços do estudo terem apresentado uma redução pressórica braquial similar (diferença de 0,7 mmHg, IC95% -0,4 – 1,7, p = 0,2), houve uma redução da pressão central aórtica com significância estatística no grupo que fez uso de anlodipino (pressão sistólica aórtica central 4,3 mmHg, IC95% 3,3 – 5,4, p < 0,0001; e pressão de pulso aórtica central 3,0 mmHg, IC95% 2,1 – 3,9, p < 0,0001). Uma análise post hoc deste estudo demonstrou que a pressão arterial central se associou significativamente aos desfechos cardiovasculares combinados, de insuficiência renal (p < 0,05).

Implicação dos parâmetros centrais na estratégia de tratamento da hipertensão arterial

Apesar da adequada redução da PA (periférica) com tratamento anti-hipertensivo, os resultados sobre desfechos clínicos mostraram diferença significante atribuída a efeitos pleiotrópicos dos anti-hipertensivos sobre as propriedades elásticas das grandes artérias (aorta), sobre a pressão central aórtica e a VOPcf. A Tabela 3 mostra os efeitos de diferentes classes de anti-hipertensivos sobre a hemodinâmica central.

Betabloqueadores

O estudo CAFE comparou efeito dos betabloqueadores sobre a pressão central para o mesmo valor de PA periférica, e o grupo atenolol/tiazida mostrou maiores valores de pressão central aórtica quando comparado ao grupo anlodipina/perindopril. O nebivolol (betabloqueador com efeito vasodilatador) e o carvedilol (anti-hipertensivo com efeito alfa e beta bloqueador) em comparação com atenolol promoveram uma maior redução da pressão central aórtica e da amplificação de pulso. O nebivolol reduz a pressão central aórtica e o índice de incremento em hipertensos leves após 3 meses de tratamento.

Tabela 3 – Efeito comparativo de diferentes classes de anti-hipertensivos sobre a hemodinâmica central

Classes de anti-hipertensivos	PCaS	PCaD	Amplificação	Reflexão	VOPcf	PAP
Betabloqueadores	✆	✆	✆	✆	✆	✆
Bloqueadores dos canais de cálcio	✆	✆/◆◆	✆	✆	✆	✆
Inibidores da enzima conversora da angiotensina	✆	✆	✆	✆	✆	✆
Bloqueadores dos receptores AT1 da angiotensina	✆	✆/◆◆	✆/◆◆/◆	✆	✆	✆
Diuréticos	◆◆	◆◆	◆◆/◆◆◆	◆	◆	◆
Nitratos	✆	✆	✆	✆	✆	◆

PCaS: pressão central aórtica sistólica; PCaD: pressão central aórtica diastólica; VOPcf: velocidade da onda de pulso caróide-femoral; PAP: pressão arterial periférica.
Bloqueadores dos canais de cálcio

Os bloqueadores dos canais de cálcio reduzem o estresse oxidativo em modelos experimentais e diminuem a pressão central aórtica. O estudo AORTA comparou a adição de azelnidipina ou anlodipina em hipertensos em uso de olmesartana e demonstrou que o grupo que recebeu azelnidipina obteve uma maior redução da pressão central aórtica e do índice de incremento, e maior regressão da hipertrofia de ventrículo esquerdo e da disfunção diastólica de ventrículo esquerdo.

Inibidores da enzima conversora da angiotensina

A redução da pressão central aórtica demonstrada em estudos comparativos com inibidores da enzima conversora da angiotensina (IECAs) pode ser atribuída a possíveis mecanismos envolvendo redução da complacência, diminuição do estresse oxidativo, recomposição estrutural da parede vascular, relação colágeno/elastina, efeito anti-inflamatório e consequente relaxamento da musculatura lisa vascular.

Bloqueadores dos receptores AT1 da angiotensina II

A valsartana e o captopril reduzem de forma semelhante a pressão central aórtica e a VOPcf. O estudo EXPLOR comparou valsartana/anlodipina versus anlodipina/atenolol para redução semelhante da PA em artéria periférica. A pressão central aórtica e a VOPcf mostraram maior redução no grupo da valsartana/anlodipina. Estudos com outros bloqueadores dos receptores AT1 mostraram resultados semelhantes.

Diuréticos

Diuréticos parecem não ter nenhum efeito benéfico sobre a hemodinâmica central.

Nitratos

Os efeitos dos nitratos sobre a pressão central aórtica são atribuídos ao relaxamento da musculatura lisa vascular das artérias de médio calibre que resultam em redução da amplitude da onda de reflexão, redução da velocidade da onda de pulso e aumento da distância efetiva de reflexão. O mononitrito de isossorbida também foi avaliado em hipertensos e demonstrou maior redução da pressão central aórtica do que da PA periférica, e maior redução do índice de incremento sem modificação significante da frequência cardíaca. Por outro lado, os nitratos não influenciam VOPcf; por conseguinte, o efeito sobre a rigidez arterial é mínimo.

Contribuição dos autores

Concepção e desenho da pesquisa: Póvoa R, Vilela-Martin JF, Jardim PCBV, Brandão AA, Amoedo C, Alcântara C, Barbosa E, Pinto F, Nobre F, Yugar-Toledo JC, Mota-Gomes MA, Neves MFT, Malachias MVB, Bastos M, Rodrigues MC, Passarelli Junior O, Cunha PG, Fonseca T, Dias VP, Barroso WS, Oigman W; Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Póvoa R, Vilela-Martin JF, Jardim PCBV.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Referências

1. Dzau VJ, Antman EM, Black HR, Hayes DL, Manson JE, Plutzky J, et al. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part II: Clinical trial evidence (acute coronary syndromes through renal disease) and future directions. Circulation. 2006 19;114(25):2871-91.
2. O’Rourke MF, Safar ME, Dzau V. The cardiovascular continuum extended: agingeffects on the aorta and microvasculature. Vasc Med. 2010;15(6):461-8.
3. Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens. 2005;18(1 Pt 2):3S-10S.
4. Laurent S. Defining vascular aging and cardiovascular risk. J Hypertens. 2005;23(3):260-8.
5. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445-8.
6. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318-27.
7. Miyashita H, Aizawa A, Hashimoto J, Hirooka Y, Imai Y, Kawano Y, et al. Cross-sectional characterization of all classes of antihypertensives in terms of central blood pressure in Japanese hypertensive patients. Am J Hypertens. 2010;23(3):260-8.
8. Cunha PG, Cotter J, Oliveira P, Vila I, Boutouyrie P, Laurent S, et al. Pulse wave velocity distribution in a cohort study: from arterial stiffness to early vascular aging. J Hypertens. 2015;33(7):1438-45.
9. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35(44):3122-33.
10. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46(1):200-4.
11. Laurent S, Brient M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension. 2009;54(2):388-92.
12. Humphrey JD. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension. 2008;52(2):195-200.
13. Camacho F, Avolio A, Lovell NH. Estimation of pressure pulse amplification between aorta and brachial artery using stepwise multiple regression models. Physiol Measurement. 2004;25(4):879-89.
14. Wilkinson IB, Mohammad NH, Tyrrell S, Hall IR, Webb DJ, Paul VE, et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am J Hypertens. 2002;15(11 Pt 1):24-30.

15. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2005;46(9):1753-60.

16. McEniery CM, Yasmin, McDonnell B, Munney M, Wallace SM, Rowe CV, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension. 2008 Jun;51(6):1476-82.

17. Sharman JM, Laurent S. Central blood pressure in the management of hypertension: soon reaching the goal? J Hum Hypertens. 2013;27(7):405-11.

18. Mitchell GF. Central pressure should not be used in clinical practice. Artery Res. 2015;9:8-13.

19. Roman MJ, Okin PM, Kizer JR, Lee ET, Howard IVB, Devereux RB. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J Hypertens. 2010;28(2):384-8.

20. Wohlfart P, Wichterle D, Seidlerova J, Filipovsky J, Bruhais J, Adamkova V, et al. Relation of central and brachial blood pressure to left ventricular hypertrophy. The Czech Post-MONICA Study. J Hum Hypertens. 2012;26(1):14-9.

21. Vlachopoulos C, Aznaroudis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31(15):1865-71.

22. Pini R, Cavallini MC, Palmieri V, Marchionni N, Di Barri M, Devereux RB, et al. Central but not brachial blood pressure predicts cardiovascular events in an unselected geriatric population: the ICARe Dicomano Study. J Am Coll Cardiol. 2008;51(2):2432-9.

23. Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension. 2008;51(4):484-55.

24. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505-11.

25. Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, et al. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55(10):1032-7.

26. Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27(3):461-7.

27. Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens. 2014;32(9):1727-40.

28. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35(44):3122-33.

29. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31(19):2338-50.

30. Ring M, Eriksson MJ, Zierath JR, Caidahl K. Arterial stiffness estimation in healthy subjects: a validation of oscilometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens Res. 2014;37(11):999-1007.

31. Hickson SS, Butlin M, Broad J, Avolio AP, Wilkinson IB, McEniery CM. Validity and repeatability of the Vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res. 2009;32(12):1079-85.

32. Berberi E. Special issues in hypertension. In: Mancia A, editor. Special issues in hypertension. London: Springer; 2012.

33. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2586-605.

34. O’Rourke MF, Adjai. Guidelines on guidelines: focus on isolated systolic hypertension in young. J Hypertens. 2013;31(4):649-54.

35. Mancia G. Prevention and treatment of stroke in patients with hypertension. Clin Ther. 2004;26(5):631-48.

36. O’Rourke MF, Vlachopoulos C, Graham RM. Spurious systolic hypertension in youth. Vasc Med. 2000;5(3):141-5.

37. Shim CY, Park S, Choi D, Yang WJ, Cho JI, Choi EY, et al. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57(10):1226-33.

38. Grebla RC, Rodrigues CJ, Borrell LN, Pickering TG. Prevalence and determinants of isolated systolic hypertension among young adults: the 1999-2004 US National Health And Nutrition Examination Survey. J Hypertens. 2010;28(1):15-23.

39. Saladin F, Santonastaso M, Mos L, Benetti E, Zanatta N, Maraglino G, et al. Isolated systolic hypertension of young-to-middle-aged individuals implies a relatively low risk of developing hypertension needing treatment when central blood pressure is low. J Hypertens. 2011;29(7):1313-9.

40. Kozinski JM, Saint-Remy A. Spurious systolic hypertension in youth: what does it really mean in clinical practice? J Hypertens. 2006;24(6):999-1001.

41. Yano Y, Stamler J, Gaside DB, Davighis ML, Franklin SS, Carnethon MR, et al. Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality: the Chicago Heart Association Detection Project in Industry study. J Am Coll Cardiol. 2013;65(4):327-35.

42. Protogerou AD, Blacher J, Safar ME. Isolated systolic hypertension: ‘to treat or not to treat’ and the role of central haemodynamics. J Hypertens. 2013;31(4):655-8.

43. Dolan E, Thijs L, Li Y, Atkins N, McCormack P, McClosy S, et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension. 2006;47(3):365-70.

44. Li Y, Wang JG, Dolan E, Cao PJ, Guo HF, Nawrot T, et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension. 2006;47(3):359-64.

45. Adiyaman A, Decherling DG, Boggia J, Li Y, Hansen TW, Kikuya M, et al. Determinants of the ambulatory arterial stiffness index in 7604 subjects from 6 populations. Hypertension. 2008;52(6):1038-44.

46. Leoncini G, Ratto E, Viazzi F, Vaccaro V, Parodi A, Falqui V, et al. Increased pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol. 2008;51(25):2432-9.

47. Krzesinski JM, Saint-Remy A. Spurious systolic hypertension in youth: what does it really mean in clinical practice? J Hypertens. 2006;24(6):999-1001.

48. Protogerou AD, Blacher J, Safar ME. Isolated systolic hypertension: ‘to treat or not to treat’ and the role of central haemodynamics. J Hypertens. 2013;31(4):655-8.

49. Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, et al. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol. 2010;55(10):1032-7.

50. Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27(3):461-7.

51. Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens. 2014;32(9):1727-40.

52. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35(44):3122-33.

53. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2586-605.
61. Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, et al. Prognostic value of changes in arterial stiffness in elderly men and women. Hypertension. 2012;59(1):98-104.

62. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236-41.

63. Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C, et al. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in hypertensive men and women. Hypertension. 2010;55(6):1314-22.

64. van den Meiracker AH, Bos WJ, van der Cammen TJ, Eversman W, Marquering HA, van Boven J, et al. Aortic stiffness and the development of hypertension. The ARIC Study. Hypertension. 1999;34(2):201-6.

65. Mattace-Raso FU, van den Meiracker AH, Bos WJ, van der Cammen TJ, Westerhof BE, Elias-Smale S, et al. Arterial stiffness, cardiovascual baroreflex sensitivity and postural blood pressure changes in older adults: the Rotterdam Study. J Hypertens. 2007;25(7):1421-6.

66. Okada Y, Galbreath MM, Shibata S, Jarvis SS, VanGundy TB, Meier RL, et al. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in hypertensive patients. J Hypertens. 2008;26(2):351-6.

67. Huang CM, Wang KL, Cheng HM, Chuang SY, Sung SH, Yu WC, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortality: a community-based study. Hypertension. 2010;55(3):799-805.

68. Lakey JRH, Porte Jr DR, Brands WF, Cobelli C, Conlin PR, Goff DC Jr, et al. Abnormalities in arterial structure and function in patients with diabetes mellitus: results from the Diastolic Hypertension in the Elderly Program (DHEP) study. J Hypertens. 2005;23(5):861-6.