Model’s sparse representation based on reduced mixed GMsFE basis methods

Lijian Jiang∗ Qiuqi Li†

ABSTRACT

In this paper, we propose a model’s sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model’s outputs. The sparse representation is very efficient for evaluating the model’s outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

keywords: Mixed generalized multiscale finite element method, Basis-oriented cross-validation method, Least-squares method of snapshots, Sparse tensor approximation

∗Institute of Mathematics, Hunan University, Changsha 410082, China. Email: ljiang@hnu.edu.cn. Corresponding author
†College of Mathematics and Econometrics, Hunan University, Changsha 410082, China. Email: qiuqili@hnu.edu.cn.
1 Introduction

Many complex real-world problems of physical and engineering interests have multiple scales and uncertainties, for example, the subsurface flow models in highly heterogeneous porous media. Due to the measurement noise and the lack of knowledge about the physical properties, the model inputs usually contain some uncertainties. The uncertainties are often parameterized by random variables. Thus, parameterized partial differential equations (PPDEs) are used to characterize the models with uncertainties. One of the great challenges in these models is to efficiently and accurately solve the PPDEs with high-contrast multiple scales to predict the model’s outputs and estimate the model’s parameters. Both the multiple scales and uncertainties have great challenges for numerical simulation. To reduce computation complexity and improve simulation efficiency, model reduction methods are desirable to the complex multiscale models. In recent years, many numerical methods have been proposed to solve the complex PPDEs using multiscale methods and model reduction methods\[9, 13, 20, 28, 30, 1, 3, 15, 24\].

In many practical applications such as multiphase flow in porous media, local mass conservation is necessary for a numerical method to solve the problems. The mixed finite element methods retain local conservation of mass and have been found to be useful for solving these problems. To illustrate the main idea of our approach, we consider the following mixed formulation of an elliptic PDE with random inputs,

\[
\begin{aligned}
& k(x, \mu)^{-1}v(\mu) + \nabla p(\mu) = 0 \quad \text{in} \quad D, \\
& \nabla \cdot v(\mu) = f(x) \quad \text{in} \quad D,
\end{aligned}
\]

where \(D \in \mathbb{R}^2 \) is a bounded spatial domain, \(f(x) \) is a source term, and \(k(x, \mu) \) is a random permeability field, which may be oscillating with respect to the random parameter \(\mu \) and highly heterogeneous with respect to the spatial variable \(x \). To take account of the heterogeneities, multiscale methods [2, 3, 14, 22, 13, 16] can be used to solve the problem. In this work, our interest is to use mixed multiscale finite element methods [7, 10]. The main idea of mixed multiscale finite element methods is to compute multiscale basis functions for each interface supported in the coarse blocks sharing the common interface. In order to accurately capture complex multiscale features, a few multiscale basis functions may be required for each coarse block. This is the idea of Generalized Multiscale Finite Element Method (GMsFEM) [10, 15]. We note that the multiscale basis functions can be computed overhead and used repeatedly for the model with different source terms, boundary conditions and the coefficients with similar multiscale structures [16].

Because the coefficient \(k(x, \mu) \) in equation (1.1) varies with the realizations of random parameter \(\mu \), the GMsFE basis functions usually depend on the parameters. This significantly affects on the computation efficiency. In order to get the multiscale basis functions independent of the parameter, we build multiscale basis functions based on a set of samples in the parameter space. This will result in a high-dimensional GMsFE space for approximation and bring great challenge for simulation. To alleviate the high dimensionality of the GMsFEM space, we identify a set of optimal reduced basis functions from the high dimensional GMsFE space and develop reduced mixed GMsFE basis methods. Thus a reduced order multiscale model can be obtained by projecting the original full order model onto the reduced multiscale finite element space.
In this work, we focus on mixed GMsFEM and present reduced mixed GMsFE basis methods to solve parameterized elliptic PDEs. Reduced basis method is one of effective model order reduction methods and has been used to solve PPDEs in a low-dimensional manifold \cite{5,6,28,30}. The main idea of the reduced basis method is to construct a small set of basis functions based on a set of snapshots, which are the solutions of the PPDEs corresponding to a set of optimal parameter samples selected by some sampling strategies. An offline-online computational decomposition is achieved to improve efficiency. In offline stage, snapshots are computed and reduced basis functions are generated. In online stage, the output is computed by the resultant reduced model for many instances of parameters and the influence of the uncertainty is estimated.

When the model contains multiple scales and high-contrast information, the computation of the snapshots may be quite expensive since we are required to resolve all scales of the model in a very fine mesh. To this end, we employ mixed GMsFEM to compute snapshots in a coarse grid and develop reduced mixed GMsFE basis methods. To get a set of optimal reduced multiscale basis functions from the snapshots, we propose two sampling strategies: basis-oriented cross-validation (BOCV) and proper orthogonal decomposition (POD). For the two approaches, we select some optimal samples from a training set by a greedy algorithm \cite{19} based on mixed GMsFEM. Then we construct the snapshots for the reduced mixed GMsFE basis functions based on the optimal sample set. The optimal reduced mixed GMsFEM basis functions are identified by an incremental constructive manner from the snapshots using BOCV and POD. In the BOCV method, the optimal basis functions are searched with a minimum average error for a validation set. The POD is devoted to finding a low rank approximation to the space spanned by snapshots, and has been widely used in model reduction. We use the two different approaches to generate a set of optimal reduced basis functions, and construct a reduced order model by projecting the full order model to the space spanned by the optimal reduced basis functions. We carefully compare BOCV with POD and find that BOCV can achieve better accuracy and robustness than POD in the reduced mixed GMsFE basis methods.

Although the reduced mixed GMsFE basis model needs much less computation effort than original full order model, it may be not a very small-scale problem because the reduced order model still involves many unknowns. This is still not desirable for the online computation in a many-query situation. In order to significantly improve the online computation, we want to get a reduced model representation for the solution and model outputs, which can accurately express the reduced model and can be used to estimate the influence of the uncertainty directly. To get the representation, we propose two methods: least-squares method of snapshots (LSMOS) and sparse tensor approximation (STA). They attempt to construct the representation with a form of variable-separation, which has been explored in many applications \cite{4,20,11,12}. STA is particularly useful when the model suffers from the difficulty of high-dimensionality.

LSMOS is based on Karhunen-Loève expansion (KLE) \cite{27} and can extract most important information from a set of snapshots. When it is difficult to get the knowledge of a covariance function for the model’s ouputs, we can use method of snapshots \cite{21} to construct a KL expansion for the model’s outputs. In LSMOS, the coefficient functions of random variables in the KLE are the functions of the random parameters of inputs. We can use orthogonal polynomial basis functions to express the coefficient functions of the random
variables. To determine the coordinates of the orthogonal polynomial basis functions, we take a few snapshots and use least-squares methods. If the dimension of the random parameters is high, a large number of snapshots are required for the least-squares methods. Thus, the computation may be expensive. To overcome the difficulty, we here propose a sparse tensor approximation method to obtain a sparse representation of the model’s outputs instead of using LSMOS. The sparse tensor approximation exploits the inherent sparsity of the model and the reduced GMsFE basis. The number of the effective basis functions for many practical models is often small. We use the optimization methods from compressive sensing [31] to extract the effective basis functions and obtain a sparse representation. There are roughly two classes of approaches to obtain the sparse representation: optimization based on l_0-norm and convex optimization [33, 3, 31]. The typical methods of the l_0 optimization include orthogonal matching pursuit (OMP) and iterative hard thresholding. The convex optimization based on l_1-norm includes least angle regression, coordinate descent and proximal methods.

In this work, we get the sparse tensor approximation using orthogonal matching pursuit, i.e., STAOMP. We integrate the reduced mixed GMsFE basis methods and STAOMP together to get the model’s sparse representation in coarse scale. The proposed model’s sparse representation method can significantly enhance the computation efficiency for the multiscale models with high-dimensional random inputs. The Figure 1.1 illustrates the procedure to get the model’s sparse representation based on reduced mixed GMsFE basis methods.

![Figure 1.1: Schema of model’s sparse representation based on reduced mixed GMsFE basis methods](image)

The paper is organized as follows. In the next section, we give some preliminaries and notations for the paper. Section 3 is devoted to developing LSMOS and STAOPM to represent a generic random field. In Section 4 we present the construction of the mixed GMsFE basis functions and introduce the reduced mixed GMsFE basis methods. Section 5 is to present two approaches for constructing the optimal reduced basis: BOCV and POD. In Section 6 we combine STAOMP with the reduced mixed GMsFE basis methods together and get
the model’s sparse representation. A few numerical examples are provided in Section 7 to illustrate the performance of all the methods developed above. In the last section, we make some comments and conclusions.

2 Preliminaries and notations

In this section, we present some preliminaries and notations for the rest of the paper. Let $L^2(D)$ be the space of square integrable functions over a domain D with the L^2-norm $\| \cdot \|_{L^2(D)}^2 = (\cdot, \cdot)$. We define the space

$$V := H(\text{div}, D) = \{ u \in [L^2(D)]^d : \text{div}(u) \in L^2(D) \}.$$

The space V is a Hilbert space with the norm given by $\| u \|_{H(\text{div}, D)}^2 = \| u \|_{L^2(D)}^2 + \| \text{div}(u) \|_{L^2(D)}^2$.

We consider parameterized elliptic PDEs in mixed formulation (1.1) with the Neumann boundary condition $k \nabla p \cdot n = g$ on ∂D, where n is the outward unit-normal vector on ∂D.

For a simplicity of notation, we denote $L^2(D)$ by Q and $V_0 := H_0(\text{div}, D)$:= \{ $u \in H(\text{div}, D) : u \cdot n = 0$ on ∂D \}.

The problem (1.1) leads to the variational problem: for any parameter $\mu \in \Gamma \subset \mathbb{R}^p$, we find \(\{ v(\mu), p(\mu) \} \in V \times Q \) such that

\[
\begin{align*}
 a(v(\mu), u; \mu) - b(u, p(\mu); \mu) &= 0 \quad \forall \, u \in V^0, \\
 b(v(\mu), q; \mu) &= l(q) \quad \forall \, q \in Q.
\end{align*}
\]

where

$$a(v, w) := \int_D k(x, \mu)^{-1}(v \cdot w)dx, \quad b(v, w) := \int_D \nabla \cdot (v)qdx, \quad \text{and} \quad l(q) := \int_D fqdx.$$

For any parameter $\mu \in \Gamma$, $a(\cdot, \cdot; \mu) : V \times V \to \mathbb{R}$ is a symmetric bilinear form, $b(\cdot, \cdot; \mu) : V \times Q \to \mathbb{R}$ is bilinear form, and $l(\cdot; \mu)$ is a bounded linear functional over Q. Given $\mu \in \Gamma$, we evaluate the output $G(x, \mu)$ of the model (2.2),

$$G(x, \mu) = L(v(x, \mu)),$$

where L is an operator on V.

For well-posedness of (2.2), we assume that $a(\cdot, \cdot; \mu)$ is continuous and coercive over V for all $\mu \in \Gamma$, i.e., there exist $\gamma > 0$ and $\alpha > 0$ such that

\[
\gamma(\mu) := \sup_{u \in V} \sup_{v \in V} \frac{a(u, v; \mu)}{\| u \|_V \| v \|_V} < \infty, \quad \forall \mu \in \Gamma,
\]

(2.3)

\[
\alpha(\mu) := \inf_{u \in V} \frac{a(u, u; \mu)}{\| u \|_V^2} > 0, \quad \forall \mu \in \Gamma,
\]

(2.4)
and $b(\cdot, \cdot; \mu)$ is continuous
\[
b(u, q) \leq \gamma_b \|u\|_V \|q\|_Q, \quad \forall u \in V, \; q \in Q, \; \forall \mu \in \Gamma,
\]
and satisfies the inf-sup condition
\[
\beta(\mu) := \inf_{q \in Q} \sup_{u \in V} \frac{b(u, q; \mu)}{\|u\|_V \|q\|_Q} > 0, \quad \forall \mu \in \Gamma. \tag{2.5}
\]

To fulfill offline-online computation, we assume that the parametric bilinear form $a(\cdot, \cdot; \mu)$ is affine with respect to μ, i.e.,
\[
a(u, v; \mu) = \sum_{i=1}^{m_a} k^i(\mu) a^i(u, v), \quad \forall u, v \in V, \; \forall \mu \in \Gamma, \tag{2.6}
\]
where $k^i : \Gamma \rightarrow \mathbb{R}$ is a μ-dependent function and $a^i : V \times V \rightarrow \mathbb{R}$ is a symmetric bilinear form independent of μ, for each $i = 1, \cdots, m_a$. The affine assumption (2.6) is crucial to achieve the decomposition of offline-online computation for many queries to model’s outputs.

When $a(\cdot, \cdot; \mu)$ is not affine with regard to μ, such an expansion can be obtained by using some variable separation methods for $a(\cdot, \cdot; \mu)$, e.g., EIM [17], LSMOS and STAOMP. The LSMOS and STAOMP will be introduced in Section 3.

Let $V_h \times Q_h$ be the pair of standard Raviart-Thomas space for the approximation of (2.2) on a fine grid \mathcal{K}^h. Then the standard mixed FEM of problem (2.2) reads: given any $\mu \in \Gamma$, we find \(\{v_h(\mu), p_h(\mu)\} \in V_h \times Q_h \) such that
\[
\begin{aligned}
a(v_h(\mu), u; \mu) - b(u, p_h(\mu); \mu) &= 0 \quad \forall u \in V_h^0, \\
b(v_h(\mu), q; \mu) &= l(q) \quad \forall q \in Q_h,
\end{aligned} \tag{2.7}
\]
where $V_h^0 = V_h \cap \{v \in V_h : v \cdot n = 0 \text{ on } \partial D\}$. We remark that the fine-grid solution is considered as a reference solution in the paper.

3 Variable-separation strategies

In order to achieve offline-online computation, we want to represent model’s inputs (e.g., coefficients and source terms) and outputs by a form of variable-separation. Let $G(x, \mu)$ be a generic function parameterized by μ. In this section, we introduce two strategies, i.e., LSMOS and STAOMP, to construct an approximation in the form
\[
G(x, \mu) \approx G_N(x, \mu) := \sum_{i=1}^{N} \zeta_i(\mu) g_i(x), \tag{3.8}
\]
where $\zeta_i(\mu)$ only depends on μ and $g_i(x)$ only depends on x. Let $L_2(\Gamma)$ be the space of square integrable functions over the parameter space Γ. We consider the approximation in the tensor space $\mathcal{H} \otimes L_2(\Gamma)$, where \mathcal{H} is a Hilbert space with regard to the spatial space. We define an inner product on $\mathcal{H} \otimes L_2(\Gamma)$ by
\[
(w, u)_{\mathcal{H} \otimes L_2(\Gamma)} = E[(w, u)_{\mathcal{H}}] := \int_\Gamma (w, u)_{\mathcal{H}} \rho(\mu) d\mu,
\]
where $\rho(\mu)$ is the density function for the random parameter μ. The norm is defined by

$$\|u\|_{\mathcal{H} \otimes L^2(\Gamma)}^2 := (u, u)_{\mathcal{H} \otimes L^2(\Gamma)}.$$

We assume that $S_N \subset \mathcal{H} \otimes L^2(\Gamma)$ is a finite dimensional subspace space, and $\{\Psi_i\}_{i=1}^N$ is a set of basis functions for S_N. We want to find an approximation of $G(x, \mu)$ in S_N such that

$$\|G(x, \mu) - \sum_{j=1}^N c_j \Psi_j(x, \mu)\|_{\mathcal{H} \otimes L^2(\Gamma)} \leq \delta,$$

where δ is a given threshold.

3.1 Least-squares method of snapshots

In this subsection, we introduce a least-squares method of snapshots to get the approximation (3.9). Let Ξ_t be a collection of a finite number of samples in Γ and the cardinality $|\Xi_t| = n_t$. For $\forall \mu \in \Xi_t$, we can split $G(x, \mu)$ into two parts, i.e.,

$$G(x, \mu) = \bar{G}(x) + \tilde{G}(x, \mu),$$

where $\bar{G}(x) := E[G(x, \cdot)] = \frac{1}{n_t} \sum_{i=1}^{n_t} G(x, \mu_i)$ is the mean, and $\tilde{G}(x, \mu) = G(x, \mu) - \bar{G}(x)$ is a random fluctuating part. To obtain $\tilde{G}(x, \mu)$, we take a set of snapshots $\{\tilde{G}(x, \mu_i)\}_{i=1}^{n_t}$ and compute a covariance matrix C, whose entries can be defined by

$$C_{n,m} := \frac{1}{n_t} \left(\tilde{G}(x, \mu_n), \tilde{G}(x, \mu_m) \right)_{\mathcal{H}}.$$

Let $\{\lambda_k, e_k\}$ be the eigen-pairs (normalized) of C, $1 \leq k \leq n_t$. Set $(e_k)_j = e_j^k$, we define the functions

$$g_k(x) := \frac{1}{\sqrt{\lambda_k n_t}} \sum_{j=1}^{n_t} e_j^k \tilde{G}(x, \mu_j).$$

(3.10)

It is easy to get $(g_k, g_l)_{\mathcal{H}} = \delta_{k,l}$, $1 \leq k, l \leq n_t$. Then it holds that

$$\tilde{G}(x, \mu) \approx \sum_{i=1}^{n_t} \sqrt{\lambda_i} \zeta_i(\mu) g_i(x),$$

where $\{\zeta_i(\mu)\}_{i=1}^{n_t}$ are given by

$$\zeta_i(\mu) := \frac{1}{\sqrt{\lambda_i}} (\tilde{G}(\cdot, \mu), g_i)_{\mathcal{H}}.$$

(3.11)

Thus we get the decomposition

$$G(x, \mu) \approx \bar{G}(x) + \sum_{i=1}^{M} \sqrt{\lambda_i} \zeta_i(\mu) g_i(x).$$

(3.12)
Because the equation (3.11) involves $\tilde{G}(\cdot, \mu)$, it can not be directly used to compute the functions $\{\zeta_i(\mu)\}_{i=1}^{n_t}$ for arbitrary μ. We will apply least-squares methods to approximate $\{\zeta_i(\mu)\}_{i=1}^{n_t}$ based on orthogonal polynomials. Let $\{p_i(\mu)\}_{i=1}^{M_g}$ be the set of orthogonal polynomials basis functions with total degree less than N_g regarding to the parameter variable μ. We rearrange the set of basis functions from the first to the last one and place them in the following row vector,

$$[p_1(\mu), p_2(\mu), \ldots, p_{M_g}(\mu)], \quad \text{where } M_g = \left(\frac{N_g + p}{N_g} \right).$$

For the sample date Ξ_t, we compute $[p_1(\mu_j), p_2(\mu_j), \ldots, p_{M_g}(\mu_j)]$ and $\zeta_i(\mu_j) = \frac{1}{\sqrt{\lambda_i}}(\tilde{G}(\cdot, \mu_j), g_i)_H$ ($j = 1, \ldots, n_t$). They are putted in the following matrix A and vector F, respectively,

$$A := \begin{bmatrix} p_1(\mu_1) & \cdots & p_{M_g}(\mu_1) \\ \vdots & \ddots & \vdots \\ p_1(\mu_{n_t}) & \cdots & p_{M_g}(\mu_{n_t}) \end{bmatrix},$$

$$F := [\zeta_1(\mu_1) \cdots \zeta_{n_t}(\mu_{n_t})]^T.$$ (3.13)

We obtain the approximation of the parameter functions $\zeta_i(\mu)$ by solving the following least square problem,

$$d = \arg \min_\alpha \|A\alpha - F\|_2.$$ (3.15)

Thus we get $\zeta_i(\mu) \approx \sum_{i=1}^{M_g} d_i p_i(\mu)$, and $d_i = (d)_i$.

3.2 Sparse tensor approximation

In this subsection, we are devote to seeking the optimal solution c for (3.9) with the minimum number of non-zero terms. This can be formulated as the optimization problem:

$$\arg \min_c \|c\|_0 \quad \text{subject to} \quad \|G(x, \mu) - \sum_{j=1}^{N} c_j \Psi_j(x, \mu)\|_{\mathcal{H} \otimes L_2(\Gamma)} \leq \delta,$$ (3.16)

where

$$c = (c_1, \ldots, c_N), \quad \text{and} \quad \|c\|_0 = \#\{j : c_j \neq 0\}.$$

Thus the sparse solution can be constructed as follows.

- **Step 1**: Find the optimal N-dimensional subspace $\mathcal{H}_N \subseteq \mathcal{H}$

 With the snapshots $\{G(x, \mu_i)\}_{i=1}^{n_t}$, we can use methods of snapshots or POD to construct the optimal N-dimensional subspace

 $$\mathcal{H}_N = \text{span}\{g_j(x) : 1 \leq j \leq N\}.$$

- **Step 2**: Choose orthogonal polynomials for $L_2(\Gamma)$ and construct the finite dimensional approximation space $S_{N \times M} \subseteq \mathcal{H} \otimes L_2(\Gamma)$
For the parameter, we introduce approximation spaces X_M for $L_2(\Gamma)$,
\[X_M = \text{span}\{p_i(\mu) : 1 \leq i \leq M\}. \]
A finite dimensional approximation space $S_{N \times M} \subseteq \mathcal{H} \otimes L_2(\Gamma)$ is then obtained by
\[S_{N \times M} := \mathcal{H}_N \otimes X_M = \text{span}\{p_i(\mu)g_j(x) : 1 \leq i \leq M, 1 \leq j \leq N\}. \]
To simplify notation, we use the following single-index notation
\[S_{N \times M} = \{w(x, \mu) = \sum_{i \in I} w_i \Psi_i(x, \mu); w_i \in \mathbb{R}\}, \]
where $I = \{1, \ldots, N\} \times \{1, \ldots, M\}$ and $\Psi_i(x, \mu) = p_i(\mu)u_{i_2}(x)$.

- **Step 3: Construct the sparse solution based on Orthogonal-Matching-Pursuit**

 In general, the optimization problem (3.16) is an NP-hard problem. We attempt to seek efficient algorithms to approximately solve (3.16). There are a few approaches [31] to solve the problem (3.16). In the paper, we focus on Orthogonal Matching Pursuit (OMP) algorithm [33] to get a sparse solution.

 We place the basis functions $\{\Psi_i(x, \mu)\}_{i=1}^{M \times N} \subseteq S_{N \times M}$ in the following row vector,
 \[\Psi := [\Psi_1, \Psi_2, \ldots, \Psi_{M \times N}] \]
 Assume that $n = n_x \times n_\mu$ sample data $\{(x_i, \mu_j)\} \subseteq D \times \Gamma$ $(1 \leq i \leq n_x, 1 \leq j \leq n_\mu)$ are chosen to solve the optimization problem (3.16). For the sample date, we compute $\Psi(x_i, \mu_j)$ and $G(x_i, \mu_j)$, and they are putted in the following matrix $\Pi \in \mathbb{R}^{n \times (M \times N)}$ and vector $b \in \mathbb{R}^{n \times 1}$, respectively,
 \[\Pi := \begin{bmatrix}
 \Psi_1(x_1, \mu_1) & \ldots & \Psi_{M \times N}(x_1, \mu_1) \\
 \vdots & \ddots & \vdots \\
 \Psi_1(x_{n_x}, \mu_{n_\mu}) & \ldots & \Psi_{M \times N}(x_{n_x}, \mu_{n_\mu})
\end{bmatrix}, \quad \begin{bmatrix}
 G(x_1, \mu_1) \\
 \vdots \\
 G(x_{n_x}, \mu_{n_\mu})
\end{bmatrix}. \tag{3.17} \]

 The coefficient vector can be solved by the following optimization problem,
 \[\arg \min_c \|c\|_0 \text{ subject to } \|b - \Pi c\|_2 \leq \delta. \tag{3.18} \]

 The main idea of OMP is to pick columns in a greedy manner. At each iteration, we choose the column of Π that is most strongly correlated with the remaining part of b, i.e., the residual r_k in Algorithm 1. Then we subtract off the contribution to b and iterate with regard to the updated residual. After k iterations, the algorithm can identify the correct set of columns. The OMP is described in Algorithm 1. The residual is always orthogonal to the columns that have been selected. In fact, we can get the conclusion from step 4 in Algorithm 1 by vanishing the derivative of $\|b - \Pi_k c\|_2$, i.e.,
 \[-\Pi_k^T (b - \Pi_k c) = -\Pi_k^T r_k = 0. \]

 Thus, OMP never selects the same column twice. Provided that the residual is nonzero, the algorithm selects a new atom at each iteration and the matrix Π_k has full column rank.

 Remark 3.1. For the classical least-squares method, it is required that the number of parameter sample scales quadratically with the number of unknowns [3]. However, STAOMP can provide an accurate approximation by a much fewer number of samples.
Algorithm 1 Orthogonal-Matching-Pursuit

Input: A matrix Π, the vector b and the error tolerance ε
Output: The sparse solution c and the solution support $I := \text{supp}(c)$

1. Initialize the residual $r_0 = b$, the index set $I^0 = \emptyset$, the iteration counter $k = 1$, and Π_0 is an empty matrix;
2. Find the index j_0 that solves the easy optimization problem:

 $j_0 = \arg \max_{j=1,\ldots,M \times N} |\langle r_k, \Psi_j \rangle|$

3. Update the index set $I^k = I^{k-1} \cup \{j_0\}$, the matrix $\Pi_k = [\Pi_{k-1} \Psi_{j_0}]$;
4. Solve a least-squares problem to obtain a new estimate:

 $c^k = \arg \min_c \|b - \Pi_k c\|_2$;
5. Calculate the new residual: $r_k = b - \Pi_k c^k$;
6. $k \rightarrow k + 1$, return to Step 2 if $\|r_k\|_2 / \|b\|_2 \geq \varepsilon$, otherwise terminate.
7. $m = k$, $I = I^k$, and $c = c^k$.

4 Reduced mixed GMsFE basis method

Let \mathcal{K}^H be a conforming coarse partition for the computational domain D, where H is the coarse mesh size. Each coarse-grid block is further partitioned into a connected union of fine-grid blocks, we get the fine grid partition \mathcal{K}^h. Let $\varepsilon^H := \bigcup_{i=1}^{N_e} \{E_i\}$ be the set of all edges/interfaces of coarse mesh \mathcal{K}^H and N_e the number of coarse edges. The coarse neighborhood w_i corresponding to the coarse edge E_i is defined by

$$w_i = \bigcup \{K_j \in \mathcal{K}^H; E_i \in \partial K_j\}.$$

In the mixed GMsFEM, the velocity field is approximated by using mixed GMsFE basis functions, while piecewise constant functions over \mathcal{K}^H are used to approximate the pressure field. Let Q_H be the space of piecewise constant functions over the coarse grid \mathcal{K}^H. Let $\{\phi_j\}_{j=1}^{L_i}$ be the set of GMsFE basis functions corresponding to edge E_i. We define the GMsFE space for the velocity field as the linear span of all local basis functions, i.e.,

$$V_H = \bigoplus_{\varepsilon^H} \{\phi_j\}_{j=1}^{L_i}.$$

Let $V^0_H = V_H \bigcap \{u \in V_H : u \cdot n = 0 \text{ on } \partial D\}$ be a subspace of V_H. Thus the mixed GMsFEM is to find $\{v_H(\mu), p_H(\mu)\} \in V_H \times Q_H$ such that

$$\begin{cases}
 a(v_H(\mu), u; \mu) - b(u, p_H(\mu); \mu) = 0 \quad \forall \; u \in V^0_H, \\
 b(v_H(\mu), q; \mu) = l(q) \quad \forall \; q \in Q_H,
\end{cases}$$

where $v_H(\mu) \cdot n = g_H$ on ∂D, and for each coarse edge $E_i \in \partial D$,

$$\int_{E_i} (g_H - g) \phi_j \cdot n = 0, \; j = 1, \ldots, L_i.$$

It is easy to see that $Q_H \subset Q_h$ and $V_H \subset V_h$ in the mixed GMsFEM. We will briefly present the mixed GMsFEM and introduce reduced mixed GMsFE basis methods.
4.1 Mixed GMsFE space

In this section, we follow mixed GMsFEM \[10\] and present the construction of the GMsFE space \(V_H\) for the approximation of the velocity field. We first generate the snapshot space and then use spectral decomposition to obtain a lower-dimensional offline space.

Let \(E_i \in \mathcal{E}^H\) be a coarse edge and \(e_j \subset E_i\) a fine edge, and define a piecewise constant function \(\delta^i_j\) on \(E_i\) as

\[
\delta^i_j = \begin{cases}
1, & \text{on } e_j, \\
0, & \text{on other fine edges of } E_i.
\end{cases}
\]

We solve the following problem on the coarse neighborhood \(w_i\) corresponding to the edge \(E_i\),

\[
\begin{aligned}
k(x, \mu)^{-1}v^i_j(\mu) + \nabla p^i_j(\mu) &= 0 \quad \text{in } w_i, \\
\nabla \cdot v^i_j(\mu) &= \alpha^i_j \quad \text{in } w_i, \\
v^i_j(\mu) \cdot n_i &= 0 \quad \text{on } \partial w_i,
\end{aligned}
\]

(4.20)

where the constant \(\alpha^i_j\) satisfies the compatibility condition \(\int_{K_n} \alpha^i_j = \int_{E_i} \delta^i_j\) for all \(K_n \subset w_i\), and \(n_i\) denotes the outward unit normal vector on \(\partial w_i\). The local problem (4.20) is solved separately in the coarse-grid blocks of \(w_i\). We need an extra boundary condition on \(E_i\) for well-posedness. Let \(J_i\) be the total number of fine-grid edges on \(E_i\) and \(E_i = \bigcup_{j=1}^{J_i} e_j\), where \(e_j\) denotes a fine-grid edge. The remaining boundary condition on the coarse edge \(E_i\) for the local problem (4.20) is taken as

\[
v^i_j(\mu) \cdot m_i = \delta^i_j \quad \text{on } E_i,
\]

where \(m_i\) is a fixed unit-normal vector on \(E_i\). See Figure 4.2 for illustration of a coarse neighborhood. Then we define the snapshot space \(V_{\text{snap}}\) space by

\[
V_{\text{snap}} = \text{span}\{v^i_j(\mu) : 1 \leq j \leq J_i, 1 \leq i \leq N_e\}.
\]

After the construction of the snapshot space, the offline space is constructed by performing some local spectral problem on the snapshot space. Let \(V^i_{\text{snap}}\) be the snapshot space corresponding to the coarse edge \(E_i\), i.e.,

\[
V^i_{\text{snap}} = \text{span}\{v^i_j(\mu) : 1 \leq j \leq J_i\}.
\]

We consider the local spectral problem: find eigenpair \(\{\lambda, v\} (v \in V^i_{\text{snap}})\) such that

\[
a_i(v, w) = \lambda s_i(v, w) \quad \forall \ w \in V^i_{\text{snap}},
\]

(4.21)

where

\[
a_i(v, w) = \int_{E_i} k(x, \mu)^{-1}(v \cdot m_i)(w \cdot m_i)dx,
\]

\[
s_i(v, w) = \int_{w_i} k(x, \mu)^{-1}v \cdot wdx + \int_{w_i} (\nabla \cdot v)(\nabla \cdot w)dx.
\]
Suppose that the eigenvalues of (4.21) are arranged in increasing order, the corresponding eigenvectors are denoted by z^i_r. We take the eigenfunctions $\{\phi^i_r(\mu)\}_{r=1}^{l_i(\mu)}$ corresponding to the first $l_i(\mu)$ eigenvalues to form the local reduced snapshot space,

$$V^i_{\text{off}} = \text{span}\{\phi^i_j(\mu) : 1 \leq j \leq l_i(\mu)\}.$$

Then the offline space is

$$V_{\text{off}} = \text{span}\{\phi^i_j(\mu) : 1 \leq j \leq l_i(\mu), 1 \leq i \leq N_e\}.$$

To simplify notation, we use the following single-index notation

$$V_{\text{off}} = \text{span}\{\phi_k(\mu) : 1 \leq k \leq n_{\text{off}}\},$$

where $n_{\text{off}} = \sum_{i=1}^{N_e} l_i(\mu)$.

4.2 Reduced mixed GMsFE space

In the reduced basis method, we construct a set of reduced basis for arbitrary parameter μ based on a set of snapshots. If the snapshots have strong multiscale features, we have to use a very fine mesh to resolve the features in all scales. This computation may be very expensive. To overcome the difficulty, we use mixed GMsFEM to compute the snapshots. Let Ξ_{op} be an optimal parameter set, which is a collection of a finite number of samples in Γ. In the paper, we will use a greedy algorithm to identify Ξ_{op}, which will be discussed in Section 5.3.

The reduced mixed GMsFEM is devoted to approximating the solution $\{v(\mu), p(\mu)\}$ of the problem (2.2) by a set of pre-computed basis functions $\{\psi^i_j : 1 \leq j \leq N, 1 \leq i \leq N_e\}$, which are selected from

$$\Sigma := \{\phi^i_j(\mu) : \mu \in \Xi_{\text{op}}, 1 \leq j \leq l_i, 1 \leq i \leq N_e\}$$
with some optimal strategies. Let V^N_H be an $(N \times N_e)$-dimensional subspace of V and define

$$\mathcal{F} := \{v(\mu) \in V_h : \mu \in \Gamma\}.$$

To assess approximation property, it is natural to compare the subspace V^N_H with the best $N \times N_e$-dimensional subspace spanned by some elements of Σ, which minimizes the projection error for the Σ over all $N \times N_e$-dimensional subspaces of V. This minimal error can be described by the Kolmogorov width

$$d_{N \times N_e}(Y_{N \times N_e}, \mathcal{F}) := \inf \{E(\mathcal{F}; Y_{N \times N_e}) : Y_{N \times N_e} \text{ is an } N \times N_e\text{-dimensional subspace of } V\},$$

where $E(\mathcal{F}; Y_{N \times N_e})$ is the angle between \mathcal{F} and $Y_{N \times N_e}$ under a metric. We construct a finite dimensional space, which is spanned by elements of Σ with good approximation. The procedure is described as follows:

- $V^1_H = \arg \min_{Y_{1 \times N_e} \subset V} d_{1 \times N_e}(Y_{1 \times N_e}, \mathcal{F})$,

- Assume that V^{N-1}_H have been constructed. Then $V^N_H = \arg \min_{V^{N-1}_H \subset Y_{N \times N_e} \subset V} d_{1 \times N_e}(Y_{N \times N_e}, \mathcal{F})$.

A sequence of reduced GMsFE approximation spaces for velocity are obtained as follow,

$$V^1_H \subset V^2_H \subset \ldots \subset V^N_H \subset V_h,$$

and a set of basis functions $\{\varphi^n_i : 1 \leq i \leq N_e, 1 \leq n \leq N\}$ are available. To obtain a set of $(\cdot, \cdot)_V$-orthonormal basis functions, we apply the Gram-Schmidt process to $\{\varphi^n_i : 1 \leq i \leq N_e, 1 \leq n \leq N\}$ in the $(\cdot, \cdot)_V$ inner product. The set of orthonormal basis functions is denoted by

$$\{\psi_i : 1 \leq i \leq N \times N_e\}. \quad (4.22)$$

We note that the support of each basis function ψ_i in (4.22) is on a coarse block.

We apply Galerkin projection to construct a reduced model with the reduced multiscale basis functions defined in (4.22). Let $\{v^N_H(\mu), p^N_H(\mu)\} \in V^N_H \times Q^N_H$ solve

$$\begin{cases}
 a(v^N_H(\mu), u; \mu) - b(u, p^N_H(\mu); \mu) = 0 & \forall u \in V^N_H, \\
 b(v^N_H(\mu), q; \mu) = l(q) & \forall q \in Q_H,
\end{cases} \quad (4.23)$$

where $v^N_H(\mu) \cdot n = g_H$ on ∂D.

Suppose that $\{\psi_i\}_{i=1}^{N_e \times N}$ is the set of basis functions for V^N_H, and $\{\eta_r\}_{r=1}^{N_{el}}$ is the basis functions for Q_H, where N_{el} is the number of the coarse element. Then solutions $\{v^N_H(\mu), p^N_H(\mu)\}$ can be represented by

$$v^N_H(\mu) = \sum_{i=1}^{N_e \times N} v^N_i(\mu)\psi_i, \quad p^N_H(\mu) = \sum_{r=1}^{N_{el}} p^N_r(\mu)\eta_r. \quad (4.24)$$
By plugging \(u = \psi_j, 1 \leq j \leq N \times N_e \) and \(q = \eta_n, 1 \leq n \leq N_{el} \) into (4.23), we have

\[
\begin{aligned}
&\sum_{i=1}^{N_e \times N} a(\psi_i, \psi_j; \mu) v_i^N(\mu) - \sum_{r=1}^{N_{el}} b(\psi_j, \eta_r) p_r^N(\mu) = 0, \quad 1 \leq j \leq N \times N_e, \\
&\sum_{i=1}^{N_e \times N} b(\psi_i, \eta_n) v_i^N(\mu) = l(\eta_n), \quad 1 \leq n \leq N_{el}.
\end{aligned}
\]

(4.25)

Then the output of the model can be evaluated by

\[
G_H^N(\mu) = L(v_h^N(\mu)).
\]

4.3 Offline-online computation decomposition for reduced mixed GMsFE basis method

The equation (4.25) implies a linear algebraic system with \(N \times N_e + N_{el} \) unknowns. It involves the computation of inner products with entities \{\psi_i\}_{i=1}^{N \times N_e} \) and \{\eta_n\}_{n=1}^{N_{el}}\), each of which is represented by fine grid finite element basis functions of \(V_h \times Q_h \). This will lead to substantial computation for the input-output evaluation \(\mu \rightarrow G_H^N(\mu) \). With the assumption (2.6) of affine decomposition, the equation (4.25) can be rewritten by

\[
\begin{aligned}
&\sum_{i=1}^{N_e \times N} \sum_{q=1}^{m_q} k^q(\mu) a^q(\psi_i, \psi_j) v_i^N(\mu) - \sum_{r=1}^{N_{el}} b(\psi_j, \eta_r) p_r^N(\mu) = 0, \quad 1 \leq j \leq N \times N_e, \\
&\sum_{i=1}^{N_e \times N} b(\psi_i, \eta_n) v_i^N(\mu) = l(\eta_n), \quad 1 \leq n \leq N_{el}.
\end{aligned}
\]

This gives rise to the matrix form

\[
\begin{aligned}
&\sum_{q=1}^{m_q} k^q(\mu) M_N^q v_N + B_N^T p_N = 0, \\
&B_N v_N = F_N,
\end{aligned}
\]

(4.26)

where \((M_N^q)_{ij} = a^q(\psi_i, \psi_j), \quad (B_N)_{in} = b(\psi_i, \eta_n), \quad (F_N)_n = l(\eta_n), \quad (v_N)_i = v_i^N, \quad (p_N)_r = p_r^N, \quad 1 \leq i, j \leq N \times N_e, \quad 1 \leq n \leq N_{el}, \quad 1 \leq r \leq N_{el}.

Because basis functions \{\psi_i, \eta_n\} belong to the standard Raviart-Thomas space \(V_h \times Q_h \), we can express them by

\[
\psi_i = \sum_{k=1}^{N_{el}^f} Z_{ik} \xi_k, 1 \leq i \leq N \times N_e, \quad \eta_n = \sum_{k=1}^{N_{el}^f} I_{nk} \gamma_k, 1 \leq n \leq N_{el},
\]

14
where \(N^f_e \) is the number of fine edges and \(N^f_{el} \) is the number of fine elements. Let \((Z)_{ki} = Z_{ki}\) and \((I)_{ki} = I_{ki}\). Then we get

\[
M_N^q = Z^T M_{N_f}^q Z, \quad B_N = I^T B_{N_f} Z, \quad F_N = I^T F_{N_f},
\]

where \((A_{N_f})_{ij} = a^q(\xi_j, \xi_i), (B_{N_f})_{ij} = b(\xi_i, \gamma_j), (F_{N_f})_i = l(\gamma_i)\). The matrices \(A_{N_f}, B_{N_f}\) and the vectors \(F_{N_f}\) are independent of parameter \(\mu\), and their computation is once and in offline phase. The online computation is to solve equation (4.26) and evaluate the output \(G^N_H(\mu)\) for any \(\mu \in \Gamma\). The system (4.26) involves \(N \times N_e + N_{el}\) unknowns, where \(N \times N_e + N_{el} < N^f_e + N^f_{el}\).

We will present details of the two sampling strategies used for constructing the reduced mixed GMsFE basis: basis-oriented cross-validation and POD.

5 Strategies for constructing reduced mixed GMsFE basis functions

We construct the set of snapshots for reduced basis by computing the mixed GMsFE basis functions for each \(\mu \in \Xi_{op}\), and denote them by

\[
\Sigma^i = \{\phi^i_j(\mu_k) : 1 \leq j \leq l_i(\mu_k), \forall \mu_k \in \Xi_{op}\}, \quad 1 \leq i \leq N_e.
\]

To simplify notation, we use the following single-index notation

\[
\Sigma^i = \{\phi^i_n : 1 \leq n \leq n^i_{\text{snap}}\}, \quad 1 \leq i \leq N_e,
\]

where \(n^i_{\text{snap}} = \sum_{j=1}^{\Xi_{op}} l_i(\mu_j), \mu_j \in \Xi_{op}\). Let \(\Sigma = \{\Sigma^i\}_{i=1}^{N_e}\) be the set of the snapshots for reduced mixed GMsFE basis and \(n_{\text{snap}} = \min_{1 \leq i \leq N_e} \{n^i_{\text{snap}}\}\).

5.1 Basis-oriented cross-validation method for reduced mixed GMsFE basis

The cross-validation method is devoted to selecting the optimal parameters for multiscale basis in [25]. In the paper, we will extend the idea to identify reduced mixed GMsFE basis functions from the snapshots \(\Sigma\). Thus we call it as basis-oriented cross-validation (BOCV).

Let \(\Xi_{\text{validate}} \subset \Gamma\) be a given validation set, and \(\varepsilon^*\) a tolerance for the stopping criterion for the greedy algorithm. The main steps of the basis-oriented cross-validation method are as follows:

- Split the snapshots \(\Sigma\) into \(n_{\text{snap}}\) disjoint subset \(\Gamma^n = \{\phi^i_n : 1 \leq i \leq N_e\}, n = 1, \ldots, n_{\text{snap}}\);
- For each subset \(\Gamma^n\), we solve the equation (4.26) in the corresponding space \(\text{span}\{\phi^i_n : 1 \leq i \leq N_e\}\) for each \(\mu \in \Xi_{\text{validate}}\), and compute the mean errors for the validation set;
- Detect the subset \(\Gamma^n\) with the minimum mean error, and update the reduced pace with \(V_H^{N,\text{CV}} = V_H^{N-1,\text{CV}} \cup \text{span}\{\phi : \phi \in \Gamma^n\}\). Here we initialize the \(V_H^{0,\text{CV}} = \emptyset\);
- Repeat the process until the prescribed error tolerance \(\varepsilon^*\) is satisfied.

We describe the details of BOCV in Algorithm 2. Here \(M_C\) is the number of local basis functions for velocity.
Algorithm 2 Basis-oriented cross-validation for reduced mixed GMsFEM

Input: Some snapshots $\Sigma = \{\Gamma_n\}_{n=1}^{n_{\text{snap}}}$, a validating set $\Xi_{\text{validate}} \subset \Gamma$, n_{snap} and a tolerance ε^*

Output: the reduced mixed GMsB space: $V^N_{H, CV}$

1: Initialization: $N = 1$, $V^0_{H, CV} = \emptyset$
2: for $j = 1 : n_{\text{snap}}$
3: $e^j(\mu) = v_h(\mu) - v^N_{H,j}(\mu)$, where $v^N_{H,j} (\mu)$ solves (4.23) \(\forall u \in V^N_{H,j} \),
4: and $V^N_{H,j} = V^N_{H} \cup \text{span}\{\phi : \phi \in P^j\}$;
5: $\mathcal{E}^N_{\text{mean}}(j) = \text{mean} \mu \in \Xi_{\text{validate}} | e^j(\mu)|_V$;
6: index $\leftarrow \arg\min_j \mathcal{E}^N_{\text{mean}}(j)$;
7: $V^N_{H, CV} = V^N_{H} \cup V^N_{H, \text{index}} := \text{span}\{\phi^i_j, 1 \leq j \leq N, 1 \leq i \leq N_e\}$;
8: $\varepsilon = \max_j \mathcal{E}^N_{\text{mean}}(j)$;
9: update Σ with $\Sigma = \Sigma \setminus f^{\text{index}}$;
10: n_{snap} $\leftarrow n_{\text{snap}}$ $-$ 1;
11: N $\leftarrow N + 1$;
12: if $\varepsilon \leq \varepsilon^*$
13: Go back to step 2;
14: end if
15: $M_C = N$;

According to Algorithm 2, we get the reduced mixed GMsB space using BOCV

$V^M_{H, CV} := \text{span}\{\varphi_i^n : 1 \leq i \leq N_e, 1 \leq n \leq N_{MC}\}$.

To obtain a set of $(\cdot, \cdot)_V$-orthonormal basis functions, we apply the Gram-Schmidt process to the set $\{\varphi_i^n : 1 \leq i \leq N_e, 1 \leq n \leq N_{MC}\}$ in the $(\cdot, \cdot)_V$ inner product, denote them by

$\{\psi_i : 1 \leq i \leq M_C \times N_e\}$. \hspace{1cm} (5.27)

5.2 POD method for reduced mixed GMsFE basis

POD can be used to construct a low rank approximation for a Hilbert space (ref. [32]). Now we consider to use POD for sampling reduced mixed GMsFE basis functions. The POD multiscale basis can be constructed based on the given local snapshots Σ^i.

For each $1 \leq i \leq N_e$, we consider a set of snapshots: $\Sigma^i = \{\phi_i^n : 1 \leq n \leq n_{\text{snap}}^i\}$, which can be written as

$\phi_i^n = \sum_{k=1}^{N_{f,i}} y_{ki}^n \xi_k = \tilde{\xi} y_i^n, 1 \leq n \leq n_{\text{snap}}^i$,

where $\tilde{\xi} = [\xi_1, \cdots, \xi_{N_{f,i}}]$ is the set of mixed FE basis functions for velocity supporting on w_i, $N_{f,i}$ is the number of the corresponding basis functions, and $\tilde{y}_i^n = [y_1^n, \cdots, y_{N_{f,i}}^n]^T \in \mathbb{R}^{N_{f,i}}$.

The matrix of the snapshot coefficients is defined by

$Y_i = (y_{ki}^n) = [\tilde{y}_i^n, \cdots, \tilde{y}_i^n] \in \mathbb{R}^{N_{f,i} \times n_{\text{snap}}^i}, 1 \leq n \leq n_{\text{snap}}^i, 1 \leq k \leq N_{f,i}$.
The POD method for sampling reduced mixed GMsFEM basis is described in Algorithm 3.

Algorithm 3 POD method for sampling reduced mixed GMsFEM basis

Input: Some snapshot \(\Sigma = \{ \Sigma^n \}_{n=1}^{N_e} \) and \(M_P \)

Output: the reduced mixed GMsB space: \(V_{H, POD}^{N} \)

\(\triangleright \) For each \(1 \leq i \leq N_e \), based on the snapshots \(\Sigma = \{ \Sigma^n \}_{n=1}^{N_e} \), the POD basis functions can be constructed as follows.

\(\triangleright \) Construct a matrix \(\mathbb{N} \) using the inner product of the snapshots.

\[\mathbb{N} = ((\phi_m^i, \phi_n^j)_v) = Y_i^T M^i_h Y_j \in \mathbb{R}^{n_{\text{snap}} \times n_{\text{snap}}}, \quad \text{where} \quad M^i_h = [(\xi_k, \xi_{k'}) x] \in \mathbb{R}^{N^i \times N^i}. \]

\(\triangleright \) Compute \(M_P \) eigenvectors of \(\mathbb{N} \) corresponding the first \(M_P \) largest eigenvalues, i.e.,

\[\mathbb{N} z_j = \lambda_j z_j, \quad j = 1, \cdots, M_P, \quad \text{where} \quad z_j \in \mathbb{R}^{n_{\text{snap}}} \text{ and } \lambda_1 \geq \lambda_2, \cdots, \lambda_{M_P}. \]

\(\triangleright \) For any \(1 \leq j \leq M_P \), the POD basis functions \(\psi^j_i \) are given by:

\[\psi^j_i(x) = \frac{1}{\sqrt{\lambda_j}} \sum_{n=1}^{n_{\text{snap}}} (z_j)_n \phi_n^i. \]

\(\triangleright \) We get the reduced mixed GMsB space using POD: \(V_{H, POD}^{M_P} := \text{span}\{ \psi^j_i : 1 \leq i \leq N_e, 1 \leq j \leq M_P \} \).

5.3 Selecting \(\Xi_{op} \) by a greedy algorithm

Let \(\Xi_{\text{train}} \) be a training set, which is a collection of a finite number of samples in \(\Gamma \). Typically the training set is chosen by Monte Carlo methods. It is required that the samples in \(\Xi_{\text{train}} \) are sufficiently scattered in the domain \(\Gamma \). We apply a greedy algorithm to get a few optimal samples from the training set, and denote the set of the optimal samples by \(\Xi_{op} \).

We use \(\Xi_{op} \) instead of \(\Xi_{\text{train}} \) to construct the set of snapshots for reduced mixed GMsFEM, which can significantly improve computation efficiency since \(|\Xi_{op}| \ll |\Xi_{\text{train}}| \). We consider an error bound for mixed GMsFEM. There are two basic ingredients of the error bound: residual error and stability information of the corresponding bilinear form \(a(\cdot, \cdot; \mu) \) and \(b(\cdot, \cdot; \mu) \).

First we consider the residual error for mixed GMsFEM, which is important for posteriori analysis. Let

\[e_v(\mu) := v_h(\mu) - v^N_h(\mu), \quad e_p(\mu) := p_h(\mu) - p^N_h(\mu). \]

By equation (2.7), we get

\[
\begin{align*}
 a(e_v(\mu), u; \mu) - b(u, e_p(\mu); \mu) &= -a(v^N_h(\mu), u; \mu) + b(u, p^N_h(\mu); \mu), \quad \forall \ u \in V_h, \\
 b(e_v(\mu), q; \mu) &= l(q) - b(v^N_h(\mu), q; \mu), \quad \forall \ q \in Q_h.
\end{align*}
\]

Let \(r_1(u; \mu) \in V^*_h \) (the dual space of \(V_h \)) and \(r_2(q; \mu) \in Q^*_h \) be the residual

\[
\begin{align*}
 r_1(u; \mu) &:= -a(v^N_h(\mu), u; \mu) + b(u, p^N_h(\mu); \mu), \quad \forall \ u \in V_h, \\
 r_2(q; \mu) &:= l(q) - b(v^N_h(\mu), q; \mu), \quad \forall \ q \in Q_h.
\end{align*}
\]

Then we get

\[
\begin{align*}
 a(e_v(\mu), u; \mu) - b(u, e_p(\mu); \mu) &= r_1(u; \mu), \quad \forall \ u \in V_h, \\
 l(q) - b(e_v(\mu), q; \mu) &= r_2(q; \mu), \quad \forall \ q \in Q_h.
\end{align*}
\]

(5.28)
By Riesz representation theory, there exist $\hat{e}_v(\mu) \in V_h$ and $\hat{e}_p(\mu) \in Q_h$ such that

\[
\begin{cases}
(e_v(\mu), u)_V = r_1(u; \mu), & \forall u \in V_h, \\
(e_p(\mu), q)_Q = r_2(q; \mu), & \forall q \in Q_h.
\end{cases}
\] (5.29)

Then we can rewrite the error residual equation \(5.28\) as

\[
\begin{cases}
a(e_v(\mu), u; \mu) - b(u, e_p(\mu); \mu) = (\hat{e}_v(\mu), u)_V, & \forall u \in V_h, \\
l(q) - b(e_v(\mu), q; \mu) = (\hat{e}_p(\mu), q)_Q, & \forall q \in Q_h.
\end{cases}
\]

Consequently, the dual norm of the residual $r_1(u; \mu)$ and $r_2(q; \mu)$ can be evaluated through the Riesz representation,

\[
\begin{cases}
\|r_1(u; \mu)\|_{V^*} := \sup_{u \in V_h} \frac{r_1(u; \mu)}{\|u\|_V} = \|\hat{e}_v(\mu)\|_V, \\
\|r_2(q; \mu)\|_{Q^*} := \sup_{q \in Q_h} \frac{r_2(q; \mu)}{\|q\|_Q} = \|\hat{e}_p(\mu)\|_Q.
\end{cases}
\] (5.30)

Secondly, we need a lower bound and an upper bound for the continuity constant in (2.3) and coercivity constant in (2.4),

\[
0 < \gamma_{LB}(\mu) \leq \gamma(\mu) \leq \gamma_{UB}(\mu), \quad \forall \mu \in \Gamma,
\]

\[
0 < \alpha_{LB}(\mu) \leq \alpha(\mu) \leq \alpha_{UB}(\mu), \quad \forall \mu \in \Gamma,
\]

and for the inf-sup constant in (2.5),

\[
0 < \beta_{LB}(\mu) \leq \beta(\mu) \leq \beta_{UB}(\mu), \quad \forall \mu \in \Gamma.
\]

Based on these bounds, we define an error estimator \([19, 30]\) for the solution of equation \(5.28\) by

\[
\Delta^v_N(\mu) := \frac{\|\hat{e}_v(\mu)\|_V}{\alpha_{LB}(\mu)} + \left(1 + \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)}\right)\frac{\|\hat{e}_p(\mu)\|_Q}{\beta_{LB}(\mu)},
\]

\[
\Delta^p_N(\mu) := \frac{\|\hat{e}_v(\mu)\|_V}{\beta_{LB}(\mu)} + \frac{\gamma_{UB}(\mu)}{\beta_{LB}(\mu)}\Delta^v_N(\mu).
\] (5.31)

An efficient method for computing $\alpha_{LB}(\mu)$, $\gamma_{UB}(\mu)$ and $\beta_{LB}(\mu)$ is the Successive Constraint Method (ref. \([19, 23, 30]\)). Note that $\Delta^v_N(\mu)$ and $\Delta^p_N(\mu)$ are the upper bounds for the errors $\|e_v(\mu)\|_V$ and $\|e_p(\mu)\|_Q$ such that

\[
\|e_v(\mu)\|_V \leq \Delta_N^v(\mu), \quad \|e_p(\mu)\|_Q \leq \Delta_N^p(\mu), \quad \forall \mu \in \Gamma.
\]

In this paper, the velocity is what we are particularly interested in. Thus we introduce the associated effectivity with the error estimator $\Delta^v_N(\mu)$,

\[
\eta^v_N(\mu) := \frac{\Delta^v_N(\mu)}{\|e_v(\mu)\|_V}.
\]
The effectivity is a measure of the quality of the proposed estimator. Following the references [19, 29, 30], the effectivity satisfies

\[1 \leq \eta_N^v(\mu) \leq \frac{\gamma(\mu)}{\alpha_{LB}(\mu)} + \frac{\gamma_b}{\alpha_{LB}(\mu)} \| e_p(\mu) \|_Q + \left(1 + \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)} \right) \frac{\gamma_b}{\beta_{LB}(\mu)}, \ \forall \mu \in \Gamma. \]

In the process of iteration, we just update the reduced mixed GMsFEM basis for velocity, the pressure space is constructed by piecewise constant functions on the coarse grid. Thus the inequality \(\| e_v(\mu) \|_V \leq \| e_p(\mu) \|_Q \) holds in general. Then the associated effectivity satisfies

\[1 \leq \eta_N^r(\mu) \leq \frac{\gamma(\mu) + \gamma_b}{\alpha_{LB}(\mu)} + \left(1 + \frac{\gamma_{UB}(\mu)}{\alpha_{LB}(\mu)} \right) \frac{\gamma_b}{\beta_{LB}(\mu)} , \ \forall \mu \in \Gamma. \]

We note that the \(\hat{e}(\mu) \) is related to \(r(v; \mu) \) by the equation (5.30). By (4.24) and (2.6), the residual can be expressed by

\[
\begin{align*}
 r_1(u; \mu) &= -a(v^N_v(\mu), u; \mu) + b(u, p^N_p(\mu); \mu) \\
 &= - \sum_{i=1}^{N_e \times N_m} \sum_{j=1}^{m_a} k^j(\mu)v^N_i(\mu)a^j(\psi_i, u) + \sum_{r=1}^{N_a} p^N_r(\mu)b(u, \eta_r), \ \forall u \in V_h, \\
 r_2(q; \mu) &= l(q) - \sum_{i=1}^{N_e \times N} v^N_i(\mu)b(\psi_i, q) \ \forall q \in Q_h.
\end{align*}
\]

By (5.32) and (5.29), we have

\[
\begin{align*}
 \langle \hat{e}_v(\mu), u \rangle_V &= - \sum_{i=1}^{N_e \times N_m} \sum_{j=1}^{m_a} k^j(\mu)v^N_i(\mu)a^j(\psi_i, u) + \sum_{r=1}^{N_a} p^N_r(\mu)b(u, \eta_r), \ \forall u \in V_h, \\
 \langle \hat{e}_p(\mu), q \rangle_Q &= l(q) - \sum_{i=1}^{N_e \times N} v^N_i(\mu)b(\psi_i, q) \ \forall q \in Q_h.
\end{align*}
\]

This implies that

\[\hat{e}_v(\mu) = \sum_{i=1}^{N_e \times N} \sum_{j=1}^{m_a} k^j(\mu)v^N_i(\mu)\mathcal{L}^p_i + \sum_{r=1}^{N_a} p^N_r(\mu)\mathcal{X}^r, \]

\[\hat{e}_p(\mu) = C + \sum_{i=1}^{N_e \times N} v^N_i(\mu)\mathcal{X}_i, \]

where \(\mathcal{L}^j_i \) is the Riesz representation of \(a^j(\psi_i, u) \), i.e., \((\mathcal{L}^j_i, u)_V = -a^j(\psi_i, u) \) for any \(u \in V_h \), \(\mathcal{X}^r \) is the Riesz representation of \(b(u, \eta_r) \), i.e., \((\mathcal{X}^r, u)_V = b(u, \eta_r) \) for any \(u \in V_h \), \(\mathcal{X}_i \) is the Riesz representation of \(b(\psi_i, q) \), i.e., \((\mathcal{X}_i, q)_Q = -b(\psi_i, q) \) for any \(q \in Q_h \), and \(C \) is the Riesz
representation of l, i.e., $(\mathcal{C}, q)_\lambda = l(q)$ for any $q \in Q_h$, where $1 \leq j \leq m_\alpha$, $1 \leq i \leq N \times N_e$, and $1 \leq r \leq N_{el}$. The equations (5.33) and (5.34) give rise to

$$
\|\hat{e}_v(\mu)\|_V^2 = \sum_{r=1}^{N_{el}} \sum_{r'=1}^{N_{el}} \bar{p}_r^N(\mu) \bar{p}_{r'}^N(\mu) (X^r, X^{r'})_V + \sum_{i=1}^{N_e \times N} \sum_{j=1}^{m_\alpha} k^i(\mu) v_i^N(\mu)
\times \left\{ 2 \sum_{r=1}^{N_{el}} \bar{p}_r^N(\mu) (X^r, \mathcal{L}_i^j)_V + \sum_{j'=1}^{N_e \times N} \sum_{\nu'=1}^{N_{el}} k^{i'}(\mu) v_i^N(\mu) (\mathcal{L}_i^j, \mathcal{L}_i^{j'})_V \right\}.
$$

To efficiently compute $\|\hat{e}_v(\mu)\|_V$ and $\|\hat{e}_p(\mu)\|_Q$, we apply an offline-online procedure. In the offline stage we compute and store the parameter-independent quantities. In particular, we compute \mathcal{C}, \mathcal{X}^r, \mathcal{X}_{λ}, and \mathcal{L}_i^j, and store $(\mathcal{X}^r, \mathcal{X}^{r'})_V$, $(\mathcal{X}^r, \mathcal{L}_i^j)_V$, $(\mathcal{L}_i^j, \mathcal{L}_i^{j'})_V$, $(\mathcal{C}, \mathcal{C})_Q$, $(\mathcal{C}, \mathcal{X})_Q$, and $(\mathcal{X}, \mathcal{X})_Q$, where $1 \leq i, i' \leq N \times N_e$, $1 \leq j, j' \leq m_\alpha$, $1 \leq r, r' \leq N_{el}$. In the online stage, for any μ, we compute $v_i^N(\mu) \ (1 \leq i \leq N \times N_e)$ and use (5.35) to compute $\|\hat{e}_v(\mu)\|_V$ and $\|\hat{e}_p(\mu)\|_Q$.

In summary, we describe the greedy algorithm for selecting Ξ_{op} in Algorithm 4.

Algorithm 4 Greedy algorithm for selecting Ξ_{op}

Input: A training set $\Xi_{train} \subset \Gamma$, $\mu_1 \in \Xi_{train}$, and N_p

Output: The optimal set $\Xi_{op} \in \Xi_{train}$

1. Initialize $N = 1$, $\Xi_{op} = \{\mu_1\}$ and $\mu_N = \mu_1$.
2. Construct the snapshots Σ for reduced mixed GMsFEM by computing the mixed GMsFEM basis for each $\mu \in \Xi_{op}$, and construct reduced basis space $V_{H}^{N_p}$ by POD;
3. Update Ξ_{train} with $\Xi_{train} = \Xi_{train} \setminus \mu_N$;
4. For each $\mu \in \Xi_{train}$, compute the reduced basis approximation $v_{H}^{N_p}$ by (4.26) in $V_{H}^{N_p}$;
5. For each $\mu \in \Xi_{train}$, evaluate the error estimator $\Delta_{N_p}^{u}(\mu)$ by (3.31);
6. Choose $\mu_{N+1} = \arg \max_{\mu \in \Xi_{train}} \Delta_{N_p}^{u}(\mu)$, and set $\varepsilon_N = \max_{\mu \in \Xi_{train}} \Delta_{N_p}^{u}(\mu)$;
7. Update Ξ_{op} with $\Xi_{op} = \Xi_{op} \cup \{\mu_N\}$;
8. $N \leftarrow N + 1$
9. Return to Step 2 if $\varepsilon_N \leq \varepsilon_{N-1}$, otherwise **terminate**.

Remark 5.1 We can use the cross-validation method in [25] to choose the first optimal sample μ_1 from the training set Ξ_{train}. This choice can improve the accuracy.

6 Reduced model representation method

The reduced order model defined in (4.26) for mixed GMsFEM is a linear algebraic system with $N \times N_e + N_{el}$ unknowns. Although the reduced model needs much less computation effort than original full order model, it may be not a very small-scale problem because the reduced order model defined in (4.26) for mixed GMsFEM involves $N \times N_e + N_{el}$ unknowns. In order to significantly improve the online computation efficiency, we want to get a representation
like the form (3.8) for the solution and model outputs. We call this by reduced model representation method, which allows online computation by direct evaluation. We employ LSMOS and STAOMP presented in Section 3 to get the reduced model representation. Let Ξ_t be a collection of a finite number of samples in Γ, and $\{v(x, \mu_i), p(x, \mu_i)\}_{i=1}^{n_t}$ are the snapshots solved by the reduced model (4.26), where $n_t = |\Xi_t|$.

Algorithm 5 outlines the reduced model representation method by LSMOS.

Algorithm 5 Least-squares method of snapshots for reduced model representation

Input: A training set $\Xi_t \subset \Gamma$ and a tolerance ε^{on}

Output: Reduced model representation $G(x, \mu) \approx \sum_{i=1}^{M} c_i \zeta_i(\mu) v_i(x)$

1. Compute the snapshots $\{v(x, \mu_i)\}_{i=1}^{n_t}$ by (4.26) for all $\mu_i \in \Xi_t$ and construct the covariance matrix C;
2. Solve the eigenvalue problem and determine M such that $\frac{\sum_{i=1}^{M} \lambda_i}{\sum_{i=1}^{n_t} \lambda_i} \leq \varepsilon^{on}$;
3. Assemble A based on GPC basis functions and Ξ_t by (3.13);
4. Construct the functions $\{g_i(x)\}_{i=1}^{M}$ by (3.10), for each $i = 1, \ldots, M$, assemble F by (3.11);
5. For each $i = 1, \ldots, M$, solve problem (3.13) by least square procedure to obtain d_i and then get $\zeta_i(\mu) \approx \sum_{i=1}^{M} d_i p_i(\mu)$;
6. Return the representation $G(x, \mu) \approx \sum_{i=1}^{M} \sqrt{\lambda_i} \zeta_i(\mu) g_i(x) \approx \sum_{i=1}^{M} \sqrt{\lambda_i} d_i p_j(\mu) g_i(x)$.

Algorithm 6 combines reduced mixed GMsFE basis methods and STAOMP together and provides a sparse representation for the model. STAOMP needs much fewer samples than LSMOS. Thus, the cardinality of the training set in Algorithm 6 is much less than the cardinality of the training set in Algorithm 5. The whole process for STAOMP based on reduced mixed GMsFE basis methods is illustrated in Figure 1.1.

Algorithm 6 Sparse tensor approximation based on Orthogonal-Matching-Pursuit for reduced model representation

Input: A training set $\Xi_t \subset \Gamma$, the sample data $\{(x_i, \mu_j)\} \subseteq D \times \Gamma$ ($1 \leq i \leq n_x$, $1 \leq j \leq n_\mu$), the number of the training set M_t and a tolerance ε^{on}

Output: Reduced model representation $G(x, \mu) \approx \sum_{i=1}^{M_t} c(I(i)) \Psi_{I(i)}(x, \mu)$

1. Compute the snapshots $\{v(x, \mu_i)\}_{i=1}^{n_t}$ by (4.26) for all $\mu_i \in \Xi_t$ and construct the optimal basis functions $\{v_j(x)\}_{j=1}^{N}$ for $\mathcal{N} \subseteq \mathcal{H}$;
2. Choose orthogonal polynomials basis functions $\{p_i(\mu)\}_{i=1}^{M}$ for $L_2(\Gamma)$, and construct the finite dimensional approximation space $S_{N \times M} = \{\sum_{i \in I} w_i \Psi_i(x, \mu); w_i \in \mathbb{R}\}$
3. Assemble matrix Π and vector b by (3.17);
4. Solve the optimization problem (3.18) by Algorithm 4 with $\varepsilon = \varepsilon^{on}$ and get the sparse solution c and the solution support I;
5. Return the representation $G(x, \mu) \approx \sum_{i=1}^{M_t} c(I(i)) \Psi_{I(i)}(x, \mu)$.

21
7 Numerical results

In this section, we present a few examples to illustrate the performance of the proposed reduced mixed GMsFE basis methods and make comparisons for different strategies for the model reduction. In Section 7.1, we consider an example to illustrate performance of the different reduced mixed GMsFE basis methods for elliptic PDEs with one-dimensional parameters. In Section 7.2, we study reduced model representation method for multiscale elliptic PDEs with multivariate parameters. In Section 7.3, we consider a two-phase flow problem in random porous media. We apply reduced mixed GMsFE basis methods to the flow equation and integrate STAOMP into the model outputs (water saturation and water-cut) for uncertainty quantification.

For the numerical examples, the models are defined in the spatial domain \(D = (0,1)^2 \). Let \(v(x,\mu_i) \) and \(p(x,\mu_i) \) be the reference solutions for velocity and pressure, respectively, which are solved by mixed FEM on a fine grid. Let \(v_H(x,\mu_i) \) and \(p_H(x,\mu_i) \) be solved by the reduced mixed GMsFE basis methods. Then the relative mean errors for velocity and pressure are defined, respectively, by

\[
\varepsilon_v = \frac{1}{N} \sum_{i=1}^{N} \frac{\|v(x,\mu_i) - v_H(x,\mu_i)\|_{L^2(D)}}{\|v(x,\mu_i)\|_{L^2(D)}}, \tag{7.36}
\]

\[
\varepsilon_p = \frac{1}{N} \sum_{i=1}^{N} \frac{\|p(x,\mu_i) - p_H(x,\mu_i)\|_{L^2(D)}}{\|p(x,\mu_i)\|_{L^2(D)}}. \tag{7.37}
\]

In all of the examples, we will consider the models with high-contrast fields, which are depicted in Figure 7.3.

![High-contrast fields](image)

Figure 7.3: High-contrast fields in the numerical experiments.
7.1 Numerical results for reduced mixed GMsFE basis methods

In this subsection, we consider the elliptic equation in mixed formulation (1.1), where the coefficient function \(k(x, \mu) \) is defined by

\[
k(x, \mu) = \frac{10000}{10 \sin(20\mu + x_1 x_2) + (\cos(\mu) + 1.2)\kappa_1 + 25},
\]

where \(\kappa_1 \) is a high-contrast field and depicted in Figure 7.3 (left), and the source function \(f(x, \mu) \) is

\[
f(x, \mu) = (x_2 - 0.5) \cos(\pi(x_1 - 0.5)).
\]

Here \(x := (x_1, x_2) \in D \) and the random parameter \(\mu \sim U(-1, 1) \). The diffusion coefficient \(k(x, \mu) \) is oscillating with respect to the random parameter \(\mu \) and highly heterogeneous with respect to the spatial variable \(x \). We apply EIM for \(k^{-1}(x, \mu) \) to achieve offline-online computation decomposition. For the discretization of the spatial domain, we use 80 \(\times \) 80 uniform fine grid, where the reference solution is computed by the mixed FEM with the lowest Raviart-Thomas FE space. The mixed GMsFEM is implemented on the 8 \(\times \) 8 coarse grid. We choose \(|\Xi_{\text{train}}| = 200 \) parameter values, and select \(|\Xi_{\text{op}}| = 10 \) optimal samples from the training set \(\Xi_{\text{train}} \) by the greedy algorithm (Algorithm 4). The mixed GMsFEM is used to compute the snapshots, we take \(l_i(\mu) = 5 \) for each coarse block \(\omega_i \) and each \(\mu \in \Xi_{\text{op}} \), thus the number of the snapshot is \(n_{\text{snap}}^i = \sum_{j=1}^{n_t} l_i(\mu_j) = 50 \) for each coarse block \(\omega_i \). To show the efficacy of greedy algorithm for selecting the optimal sample set \(\Xi_{\text{op}} \), we use two methods to select \(\Xi_{\text{op}} \): the greedy algorithm and random selection, and then compare the results. For the numerical example, we consider the four different reduced GMsFE basis methods: reduced mixed GMsFE basis method using greedy algorithm and BOCV (RmGMsB-GBOCV), reduced mixed GMsFE basis method using greedy algorithm and POD (RmGMsB-GPOD), reduced mixed GMsFE basis method using random selection and BOCV (RmGMsB-RBOCV), and reduced mixed GMsFE basis method using random selection and POD (RmGMsB-RPOD). The first two methods use the greedy algorithm to select \(\Xi_{\text{op}} \), while the last two methods are performed by randomly choosing 10 parameter samples from \(\Xi_{\text{train}} \).

To compare the approximation accuracy of the four reduced mixed GMsFE basis methods, we randomly choose 1000 samples from the parameter space and compute the average of relative error defined in (7.36) and (7.37) for the four methods. In Figure 7.3, we depict average relative velocity error versus number of local basis functions for the four reduced mixed GMsFE basis methods. By the figure we have three observations: (1) as the number of local basis functions increases, the approximation becomes more accurate for all methods; (2) RmGMsB-GBOCV method always achieves better approximation than RmGMsB-RBOCV, and RmGMsB-GPOD gives better approximation than RmGMsB-RPOD when the number of local GMsFE basis functions is more than 3; (3) BOCV approach renders better accuracy than POD approach. To visualize the individual errors of the first 100 samples, we plot the relative errors for the four methods in Figure 7.5, which shows that: (1) the error of RmGMsB-GBOCV is much less sensitive to the parameter samples compared with RmGMsB-RBOCV, and the POD approaches have the same situation; (2) BOCV approaches generally gives better approximation than POD approaches. Figure 7.6 shows the velocity...
solution profile of the example for the three methods: mixed FEM on fine grid (reference solution), RmGMsB-GBOCV and RmGMsB-GPOD. The figure shows all the velocity profiles have very good agreement and the reduced mixed GMsFE basis methods provide accurate approximation to the original fine scale model.

![Figure 7.4: The average relative error for velocity versus number of local basis functions for RmGMsB-GBOCV, RmGMsB-GPOD, RmGMsB-RBOCV and RmGMsB-RPOD, 80 × 80 fine grid, and 8 × 8 coarse grid.]

7.2 Numerical results for reduced model’s representation method

In this section, we consider two examples to illustrate the performance of reduced model representation using LSMOS and STAOMP. In the first example, we use a multivariate function to highlight the differences between LSMOS and STAOMP. For the second example, we consider an elliptic PDE with multi-dimensional parameters and apply LSMOS and STAOMP to obtain a reduced model representation for solution.

7.2.1 Numerical example I: a multivariate function

Let us consider the function

\[u(x, \mu) := \sum_{i=1}^{2} x_i \mu_i + \sin \left(\frac{\pi}{4} \left(x_1 + \frac{1}{3} \prod_{i=1}^{3} \mu_i \right) \right) + \cos \left(\frac{\pi}{4} \left(x_2 + \frac{1}{3} \prod_{i=4}^{6} \mu_i \right) \right), \]

For the discretization of the spatial domain, we use 50 × 50 uniform grid and will consider the two variable-separation methods: LSMOS and STAOMP. With regard to LSMOS, we take \(\varepsilon_{\text{on}} = 1.3 \times 10^{-3} \) in Algorithm 5 and take 900 parameter samples for snapshots, the representation (3.12) can be obtained by Algorithm 5 with \(M = 6 \). We use Legendre polynomials with degree up to \(N_g = 5 \) to approximate \(\{ \zeta_i(\mu) \}_{i=1}^{M} \) based on least square methods. Hence, the number of the total orthogonal polynomial basis is \(M_g = 462 \). For STAOMP, we take 160 parameter samples for snapshots, i.e., \(n_t = 160 \), and construct 10
Figure 7.5: The relative error for 100 samples by RmGMsB-GBOCV, RmGMsB-GPOD, RmGMsB-RBOCV and RmGMsB-RPOD, 80 × 80 fine grid, and 8 × 8 coarse grid.
Figure 7.6: The mean of velocity profile, 5 local GMsFE basis functions on each coarse edge, the first row are the velocity in x-axis direction and the second row are the velocity in y-axis direction.

optimal basis functions \(\{ v_j(x) \}_{j=1}^{6} \) for spatial space, and set \(\varepsilon^{on} = 1.3 \times 10^{-3} \) in Algorithm 6. 160 parameter samples and 100 spatial coordinates are selected for snapshots, then we apply Algorithm 6 to construct the representation \(u(x, \mu) \approx \sum_{i=1}^{M_t} c(I(i)) \Psi_{R(i)}(\mu, x) \) with \(M_t = 41 \). Based on these representations, we choose 1000 samples and compute the average relative error, which is defined as follows,

\[
\varepsilon_u = \frac{1}{N} \sum_{i=1}^{N} \frac{\| u(x, \mu_i) - \tilde{u}(x, \mu_i) \|_{L^2}}{\| u(x, \mu_i) \|_{L^2}},
\]

where \(N = 1000 \) and \(\tilde{u}(x, \mu_i) \) is the solution by LSMOS or STAOMP. We list the average relative errors in Table 1 along with the average online CPU time. From the table, we find that: (1) for LSMOS, the approximation error decays fast when the number of terms increases; (2) using much fewer terms, STAOMP can achieve the same accuracy as LSMOS; (3) the magnitude of CPU time for STAOMP is much smaller than that of LSMOS.

7.2.2 Numerical example II: an elliptic PDE with multi-dimensional parameters

In this subsection, we consider the elliptic equation (1.1) with the source term

\[
f(x) = (x_1 + 1) \cos(\pi x_2), \quad x \in (0, 1)^2.
\]
Let \(a(x, \mu) \) be a random field, which is characterized by a two point exponential covariance function \(\text{cov}[a] \), i.e.,

\[
\text{cov}[a](x_1, y_1; x_2, y_2) = \sigma^2 \exp \left(- \frac{|x_1 - x_2|^2}{2l_x^2} - \frac{|y_1 - y_2|^2}{2l_y^2} \right),
\]

where \((x_i, y_i) (i = 1, 2)\) is spatial coordinate in \(D \). Here the variance \(\sigma^2 = 1 \), correlation length \(l_x = l_y = 0.2 \). The random coefficient \(a(x, \mu) \) is obtained by truncating a Karhunen-Loève expansion, i.e.,

\[
a(x, \mu) := E[a] + \sum_{i=1}^{N} \sqrt{\gamma_i} b_i(x) \mu_i,
\]

where \(E[a] = 6 \) and the random vector \(\mu := (\mu_1, \mu_2, \ldots, \mu_N) \in \mathbb{R}^N \). Each \(\mu_i (i = 1, \ldots, N) \) is uniformly distributed in the interval \((-1, 1)\). The diffusion coefficient \(k(x, \mu) \) in (1.1) is defined as follows,

\[
k(x, \mu) = a(x, \mu) k_{hc},
\]

where \(k_{hc} = \frac{10^4}{\kappa_1} \) and \(\kappa_1 \) is depicted in Figure 7.3 (left), \(a(x, \mu) \) take the first thirteen terms of \(a(x, \mu) \), i.e., \(N = 12 \) in KLE (7.39). We note that \(k^{-1} \) is not affine with respect to the parameter \(\mu \). Here we apply STAOMP to \(k^{-1} \) to get affine expression and achieve offline-online computation decomposition. The reference solutions are computed by the mixed FEM on \(60 \times 60 \) fine grid. We compute the mixed GMsFE basis on \(10 \times 10 \) coarse grid.

For example, 500 parameter samples are selected for the training set \(\Xi_{\text{train}} \). Then we use the greedy algorithm (Algorithm 4) to select \(|\Xi_{op}| = 40 \) optimal samples from the training set \(\Xi_{\text{train}} \), and take \(l_i(\mu) = 5 \) for each coarse block \(\omega_i \) and each \(\mu \in \Xi_{op} \), so the number of the snapshots is \(n_{\text{snap}} = 200 \) for each coarse block \(\omega_i \). Then we use RmGMsB-GBOCV to get the reduced multiscale basis and apply LSMOS and STAOMP to the reduced model representation. For LSMOS, we randomly choose 2000 parameter samples for the snapshots, which are computed by RmGMsB-GBOCV model with 7 local basis functions. For LSMOS, we take the first \(M \) KLE terms in (3.12). Here we take \(M = 3, 4, 5 \), respectively. They are corresponding to the third, forth and fifth row in Table 2. Then use Legendre polynomials with total degree up to \(N_g = 4 \) to approximate the KLE coefficients \(\{ \zeta_i(\mu) \}_{i=1}^{M} \), and the total number of the Legendre polynomial basis functions is \(M_g = 1820 \). For STAOMP, we use POD to construct 6 optimal global basis functions for spatial space, and choose
70 parameter samples and 100 spatial coordinates to get the reduced model representation by Algorithm 6, where the tolerance error $\varepsilon_{on} = 1 \times 10^{-4}$ for both velocity and pressure. To assess the approximation by the model reduction methods, we randomly choose 1000 samples and compute the average relative errors defined as (7.36), (7.37). The results are listed in Table 2 along with the average online CPU time per sample. In the table, ε^1_v and ε^1_p are the relative errors based on the reference solutions computed by mixed FEM on fine grid, while ε^2_v and ε^2_p are the relative errors based on the reference solution computed by RmGMsB-GBOCV. From Table 2, we can see: (1) from the fourth and sixth column of the table, we can see that the approximation by the three approaches is almost identical, which means that RmGMsB-GBOCV model can be accurately expressed by the reduced model representation using LSMOS or STAOMP; (2) the average CPU time per sample by STAOMP is the smallest among all of the approaches. The numerical example shows that the STAOMP method achieves a good trade-off in both approximation accuracy and computation efficiency. We note that the average online CPU time per sample is 21.4444 seconds using mixed FEM on fine grid. This time is much larger than the reduced model methods.

Strategies	M_t^v	M_t^p	ε^1_v	ε^2_v	ε^1_p	ε^2_p	CPU time
RmGMsB	5460	5460	0.63×10^{-2}	7.52×10^{-5}	2.76×10^{-2}	2.50×10^{-3}	0.3841s
LSMOS	7280	7280	0.64×10^{-2}	6.27×10^{-6}	2.76×10^{-2}	1.70×10^{-3}	1.68 $\times 10^{-2}$s
STAOMP	36	40	0.63×10^{-2}	5.98×10^{-5}	2.76×10^{-2}	6.60×10^{-3}	1.84 $\times 10^{-2}$s

7.3 Example of two-phase flow in random porous media

In this numerical example, we consider the following two-phase flow problem (in the absence of gravity and capillary effects) with zero Neumann boundary condition

\[
\begin{cases}
 v = \eta(S)k(x,\mu)\nabla p & \text{in } D, \\
 -\nabla \cdot v = q & \text{in } D, \\
 \frac{\partial S}{\partial t} + \nabla \cdot (f_w(S)v) = q_s & \text{in } D, \\
\end{cases}
\]

(7.40)

where the total mobility $\eta(S)$ is defined by $\eta(S) = S^2/\mu_w + (1-S)^2/\mu_o$ and v refers to total velocity. Here $\mu_w/\mu_o = 0.1$ is the ratio between viscosity of water and oil, the fractional flow function $f_w(S)$ is given by

\[
f_w(S) = \frac{S^2}{S^2 + \mu_w/\mu_o(1-S)^2},
\]
where S is the saturation of water and q is the source term for pressure equation and the source term for the saturation equation is expressed by

$$q_s = \max(q, 0) + f_w(S) \min(q, 0).$$

We consider a logarithmic random field,

$$k(x, \mu) := \exp\left(\kappa_2 + a(x, \mu)\right),$$

where κ_2 is depicted in Figure 7.3 (right), and $a(x, \mu)$ is a stochastic field, which is characterized by a two point exponential covariance function $\text{cov}[a]$ in (7.38). Here the variance $\sigma_2^2 = 1$, correlation length $l_x = l_y = 0.02$. The random field $a(x, \mu)$ is obtained by truncating Karhunen-Loève expansion (7.39), where $E[a] = 0$ and the random vector $\mu := (\mu_1, \mu_2, \ldots, \mu_N) \in \mathbb{R}^N$ and $\mu_i \sim N(0, 1)$ ($i = 1, \ldots, N$), i.e, normal distribution with zero mean and unit variance. We truncate the KLE (7.39) after the first 20 terms to represent the random field $a(x, \mu)$. To fulfil offline-online computation decomposition, we use EIM for $k^{-1}(x, \mu)$ and get an affine expression.

The reference solution is computed on a 56×56 fine grid. The mixed GMsFEM is performed on a 7×7 coarse grid. We solve the flow equation on the coarse grid using RmGMsB-GBOCV first and then reconstruct the fine-scale velocity field as a superposition of the GMsFE basis functions. The reconstructed velocity field is used to solve the saturation equation with a finite volume method on the fine grid. We use an Implicit Pressure Explicit Saturation (IMPES) formulation for the coupled system (7.40).

Let S^n_i be the saturation at the ith fine element K^h_i at time $t_n = t_0 + n\Delta t$, where t_0 is the initial time. Then the saturation equation can be discretized by

$$|K^h_i| S^{n+1}_i - S^n_i \Delta t + \int_{\partial K^h_i} f_w(\hat{S}^n)(v \cdot n) = |K^h_i|(q_s)_i,$$

where $(q_s)_i$ is the average value of q_w on K^h_i, and \hat{S}^n is the upwind flux. For numerical test, we take q to be zero except for the top-left and bottom-right coarse-grid elements, where q takes the values 1 and -1, respectively. This is a traditional two-spot problem, in which the water is injected at the top-left corner and oil is produced at the bottom-right corner. Moreover, we set the initial saturation to be zero.

For the pressure equation in (7.40), we construct the multiscale finite element space $V^{MC,CV}_H$ by RmGMsB-GBOCV at initial time, and use it for all the time levels. We randomly choose $n_t = |\Xi_{\text{train}}| = 200$ parameter samples and select $|\Xi_{\text{op}}| = 40$ optimal samples by greedy algorithm to compute the snapshots. For each coarse block ω_i and each $\mu \in \Xi_{\text{op}}$, we take $l_i(\mu) = 7$ local basis functions to construct snapshots ($n^i_{\text{snap}} = \sum_{j=1}^{n_t} l_i(\mu_j) = 280$ for each coarse block ω_i) for the reduced GMsFE basis. Then we employ RmGMsB-GBOCV to simulate the flow equation and get the following weak formulation,

$$\begin{cases}
a(v^N_H(\mu), u; \mu) - b(u, p^N_H(\mu); \mu) = 0 & \forall u \in V^{MC,CV}_H, \\
b(v^N_H(\mu), q; \mu) = l(q) & \forall q \in Q_H, \\
|K^h_i| \frac{S^{n+1}_i - S^n_i}{\Delta t} + \int_{\partial K^h_i} f_w(\hat{S}^n)(v \cdot n) = |K^h_i|(q_s)_i,
\end{cases}$$

(7.41)
Figure 7.7: The mean of water saturation profiles at $t = 600$ (the first row) and $t = 1000$ (the second row), 56×56 fine grid, and 7×7 coarse grid, the number of local multiscale basis functions is 4.

Table 3: Comparison of the average online CPU time for water saturation per sample at different time levels for the two approaches: STAOMP and RmGMsB-GBOCV, the number of local multiscale basis functions is 4.

Strategies	$t = 500$	$t = 1000$	$t = 1500$	$t = 2000$
STAOMP	1.60×10^{-3} s	1.50×10^{-3} s	1.40×10^{-3} s	1.50×10^{-3} s
RmGMsB-GBOCV	1.7837	5.0227	6.6340	7.8311
Figure 7.8: The variance of water saturation profiles at $t = 600$ (the first row) and $t = 1000$ (the second row), 56×56 fine grid, 7×7 coarse grid, the number of local multiscale basis functions is 4.
Water saturation is an important quantity for the model. We utilize STAOMP to represent the water saturation $S(x,t,\mu)$ of the reduced model (7.41). To this end, we choose the set of parameter samples $\Xi_t = \{\mu_i\}_{i=1}^{600}$ and apply POD to the snapshots associated with Ξ_t and get the optimal global basis functions $\{\hat{S}_i(x,t)\}_{i=1}^4$. To approximate random parameter space, we use Hermite polynomial basis functions with total degree up to $N_g = 3$ and denote the basis set by $\{p_i(\mu)\}_{i=1}^{1771}$. A finite dimensional approximation space for $\{S(x,t,\mu_i); \mu_i \in \Gamma\}$ is then obtained by

$$S_{4 \times 1771} := \text{span}\{p_i(\mu)\hat{S}_j(x,t) : 1 \leq i \leq 1771, 1 \leq j \leq 4\}.$$

To get a model reduction representation using STAOMP, we randomly choose 600 parameter samples, 64 spatial points and 18 time levels for snapshots, and then use Algorithm 6 to construct a sparse representation $S(x,t,\mu) \approx \sum_{j=1}^{M_t} c(I(i)) \Psi_i(x,t,\mu)$, where $M_t = 160$, $I = \{1,\cdots,1771\} \times \{1,\cdots,4\}$ and $\Psi_i(x,t,\mu) = p_i(\mu)\hat{S}_i(x,t)$.

To calculate the approximation errors by RmGMsB-GBOCV and STAOMP, we randomly choose 1000 samples and compute the RmGMsB-GBOCV model (7.41) and evaluate the reduced model representation by STAOMP for each sample. The relative mean errors for saturation S is defined by

$$\varepsilon_s(t) = \frac{1}{N} \sum_{i=1}^{N} \frac{\|S(x,t,\mu_i) - S_H(x,t,\mu_i)\|_{L^1(D)}}{\|S(x,t,\mu_i)\|_{L^1(D)}}, \quad (7.42)$$

where $N = 1000$, $S(x,t,\mu_i)$ is the solution of fine scale model, and $S_H(x,t,\mu_i)$ is the solution of (7.41) by RmGMsB-GBOCV or STAOMP.

Figure 7.9: The average relative error for water saturation versus different time levels. the number of local multiscale basis functions is 4.

Figure 7.7 shows the mean of water saturations at $t = 600$ and $t = 1000$ for the different methods. Here the reference solution is computed by mixed FEM on fine grid. By the figure, we see that the model reduction methods provide accurate approximation to the reference saturation in the average sense. Figure 7.8 demonstrates the variance of water saturation...
at \(t = 600 \) and \(t = 1000 \) for the different methods. By the figure, we can find: (1) the largest variance occurs along the advancing water front; (2) there is no clear difference for the variance profiles between the reference solution and RmGmsB-GBOCV solution; (3) compared with reference solution, the STAOMP approach renders some clear difference for the variance approximation around the water front. Table 3 lists the average online CPU time per sample for the water saturation by the different approaches. We find that the STAOMP method significantly improves computation efficiency especially for the later time levels. Moreover, the online CPU time of STAOMP method is almost independent of the time level. This is an important advantage of the STAOMP method for two-phase flow simulation. Figure 7.9 shows the average relative error for water saturation defined by (7.42) versus different time levels for the different methods. By the figure, we find that the error by STAOMP decays after the water break-through time and then tends to be stable.

Figure 7.10: The expectation (left) and variance (right) of water-cut curves

Water-cut is also an important quantity for the water-oil two-phase flow. The water-cut is defined as the fraction of water in the produced fluid and is given by \(q_w/q_t \), where \(q_t = q_o + q_w \) with \(q_o \) and \(q_w \) being the flow rates of oil and water at the production edge of the model. In particular, \(q_w = \int_{\partial D^{\text{out}}} f_w(S) v \cdot nds \), \(q_t = \int_{\partial \Omega^{\text{out}}} v \cdot nds \), where \(\partial D^{\text{out}} \) is the out-flow boundary.

For the water-cut, we utilize STAOMP to approximate the water-cut of the reduced model (7.41). We use the set of parameter samples \(\Xi_t = \{ \mu_i \}_{i=1}^{600} \) and apply POD to the snapshots associated with \(\Xi_t \) to obtain 6 optimal global basis functions \(\{ \hat{w}_i(t) \}_{i=1}^{6} \). We use the same polynomial basis functions as the water saturation, and get a finite dimensional approximation space

\[
W_{6 \times 1771} := \text{span}\left\{ p_i(\mu)\hat{w}_j(t) : 1 \leq i \leq 1771, 1 \leq j \leq 6 \right\}.
\]

To get a model reduction representation using STAOPM, we randomly choose 600 parameter samples and 10 time levels for snapshots, and then use Algorithm 6 to construct a sparse representation \(W(t, \mu) \approx \sum_{i=1}^{M_t} c(I(i))\Psi_{I(i)}(t, \mu) \) with \(M_t = 195 \), where \(I = \{ 1, \ldots, 1771 \} \times \{ 1, \ldots, 6 \} \) and \(\Psi_i(t, \mu) = p_{i_1}(\mu)\hat{w}_{i_2}(t) \).
Figure 7.10 shows the expectation (left) and variance (right) of the water-cut curves with the different approaches. The figure shows that the expectation curves of the water-cut are all nearly identical. This implies a good mean approximation for water-cut using RmGMsB-GBOCV and STAOMP; The variance of water-cut rises rapidly at the break-through time, and then decays fast after a while. The error of water-cut variance by STAOMP is slightly larger around the water break-through time than other time instances.

8 Conclusions

In the paper, we presented two variable-separation representations for random fields: LSMOS and STAOMP. The LSMOS is devoted to constructing a KL expansion and building a relation between the random inputs and the stochastic basis functions based on least-squares methods. The STAOMP provides a tensor product for the random field and achieves a sparse approximation by using orthogonal-matching-pursuit method. The two methods can be applied to get a variable-separation approximation for any generic functions with random inputs. For the multiscale problems with high-dimensional random inputs, the computation would be prohibitive if we directly solve the problems for a many-query situation. To overcome the difficulty, we developed reduced mixed GMsFE basis methods to improve the computation efficiency. To this end, we have chosen a few optimal parameters from the parameter space by a greedy algorithm. Then we use the optimization methods BOCV and POD to obtain reduced multiscale basis functions and get a reduced order model. In the reduced multiscale basis methods, the whole computation admits offline-online decomposition. In the online phase, a reduced model is solved for each parameter sample. Although the offline computation may be expensive, the online computation is efficient. We have carefully compared the performance of the different reduced mixed GMsFE basis methods, and found that BOCV may lead to the reduced model with better accuracy and robustness than POD does. The dimension of the space spanned by the set of reduced multiscale basis functions is much smaller than the dimension of the original full order model, but it depends on the size of coarse grid. When the size of coarse grid is large, the computation of the reduced order model may be still expensive. To further improve the efficiency of the online computation, we construct a sparse representation for model’s outputs by combining the reduced mixed GMsFE basis methods and STAOMP. This is very desirable for predicting the model’s outputs for arbitrary parameter values and quantifying the uncertainty propagation. We applied the proposed reduced mixed GMsFE basis methods and the model’s sparse representation method to a few numerical models with multiscale and random inputs. Careful numerical analysis is carried out for these computational models.

Although the proposed methods significantly reduces the online computation, it takes much effort in offline computation stage. In future, we will explore novel methods to substantially decrease the offline computation burden as well.

Acknowledgments

We would like to thank the helpful discussion with Prof. Yalchin Efendiev for the work. We acknowledge the support of Chinese NSF 11471107.
References

[1] J. Aarnes, Y. Efendiev and L. Jiang, \textit{Mixed multiscale finite element methods using limited global information}, Multiscale Modeling and Simulation, 7 (2008), pp. 655–676.

[2] G. Allaire and R. Brizzi, \textit{A multiscale finite element method for numerical homogenization}, Multiscale Modelling and Simulation, 4 (2005), pp. 790-812.

[3] T. Arbogast, G. Pencheva, M.F. Wheeler, and I. Yotov, \textit{A multiscale mortar mixed finite element method}, Multiscale Modelling and Simulation, 6 (2007), pp. 319-346.

[4] G. Beylkin and M. Mohlenkamp, \textit{Algorithms for numerical analysis in high dimensions}, SIAM Journal on Scientific Computing, 26 (2005), pp. 2133–2159.

[5] A. Buffa, Y. Maday, A. Patera, C. Prudhomme, and G. Turinici, \textit{A priori convergence of the greedy algorithm for the parametrized reduced basis method}, ESAIM: Mathematical Modelling and Numerical Analysis, 46 (2012), pp. 595–603.

[6] Y. Chen, J.S. Hesthaven, Y. Maday, and J. Rodríguez, \textit{Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations}, SIAM Journal on Scientific Computing, 32 (2010), pp. 970–996.

[7] Z. Chen and T. Hou, \textit{A mixed multiscale finite element method for elliptic problems with oscillating coefficients}, Mathematics of Computation, 72 (2003), pp. 541–576.

[8] M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai, \textit{A least-squares method for sparse low rank approximation of multivariate functions}, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), pp. 897–921.

[9] F. Chinesta, P. Ladeveze, and E. Cueto, \textit{A short review on model order reduction based on proper generalized decomposition}, Arch. Comput. Methods Eng, 18 (2011), pp. 395–404.

[10] E. Chung, Y. Efendiev, and C. Lee, \textit{Mixed generalized multiscale finite element methods and applications}, Multiscale Modelling and Simulation, 13 (2015), pp. 338–366.

[11] A. Doostan and G. Iaccarino, \textit{A least-squares approximation of partial differential equations with high-dimensional random inputs}, J. Comput. Phys, 228 (2009), pp. 4332–4345.

[12] A. Doostan, G. Iaccarino, and N. Etemadi, \textit{A least-squares approximation of high-dimensional uncertain systems}, Annual Research Briefs, Center for Turbulence Research, Stanford University, (2007), pp. 121–132.

[13] P. Dostert, Y. Efendiev, and T. Hou, \textit{Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification}, Comput. Methods Appl. Mech. Engrg. 197 (2008), pp. 3445-3455.
[14] W. E and B. Engquist, *The heterogeneous multi-scale methods*, Comm. Math. Sci., 1 (2003), pp. 87–133.

[15] Y. Efendiev, J. Galvis, and T.Y. Hou, *Generalized multiscale finite element methods (gmsfem)*, J. Comput. Phys, 251 (2013), pp. 116–135.

[16] Y. Efendiev and T. Hou, *Multiscale finite element methods: Theory and Applications*, Springer Science and Business Media, 2009.

[17] J. Eftang, M. Grepl, and A. Patera, *A posteriori error bounds for the empirical interpolation method*, Comptes Rendus Mathematique, 348 (2010), pp. 575-579.

[18] M. Elad, *Sparse and redundant representations: from theory to applications in signal and image processing*, Springer, 2009.

[19] A. L. Gerner and K. Veroy, *Certified reduced basis methods for parametrized saddle point problems*, SIAM Journal on Scientific Computing, 34 (2012), pp. A2812–A2836.

[20] D. González, A. Ammar, F. Chinesta, and E. Cueto, *Recent advances on the use of separated representations*, Int. J. Numer. Meth. Engng, 81 (2010), pp. 637–661.

[21] R. Handler, K. Housiadas, and A. Beris, *Karhunen–loeve representations of turbulent channel flows using the method of snapshots*, International journal for numerical methods in fluids, 52 (2006), pp. 1339–1360.

[22] T. Hughes, G. Feijoo, L. Mazzei, and J. Quincy, *The variational multiscale method - a paradigm for computational mechanics*, Comput. Methods Appl. Mech. Engrg, 166 (1998), pp. 3–24.

[23] D. Huynh, G. Rozza, S. Sen, and A. Patera, *A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants*, Comptes Rendus Mathematique, 345 (2007), pp. 473-478.

[24] L. Jiang, I. Mishev, and Y. Li, *Stochastic mixed multiscale finite element methods and their applications in random porous media*, Comput. Methods Appl. Mech. Engrg. 199 (2010), pp. 2721-2741.

[25] L. Jiang and Q. Li, *Reduced multiscale finite element basis methods for elliptic pdes with parameterized inputs*, Journal of Computational and Applied Mathematics, 301 (2016), pp. 101–120.

[26] L. Jiang and M. Presho, *A resourceful splitting technique with applications to deterministic and stochastic multiscale finite element methods*, Multiscale Modelling and Simulation, 10 (2012), pp. 954-985.

[27] M. Loeve, *Probability theory*, Graduate texts in mathematics, 46 (1978), pp. 0–387.

[28] N. Nguyen, *A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales*, J. Comput. Phys. 227 (2008), pp. 9807-9822.
[29] A. Quarteroni, G. Rozza, and A. Manzoni, *Certified reduced basis approximation for parametrized partial differential equations and applications*, Journal of Mathematics in Industry, 1 (2011), pp. 1–49.

[30] G. Rozza, D. Huynh, and A. Patera, *Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations*, Arch Comput Methods Eng. 15 (2008), pp. 229-275.

[31] I. Rish, and G. Grabarnik, *Sparse modeling: theory, algorithms, and applications*, CRC Press, 2014.

[32] W. Schilders, H. van der Vorst, and J. Rommes, *Model Order Reduction: Theory, Research Aspects and Applications*, Springer, 2008.

[33] J. Tropp and A. Gilbert, *Signal recovery from random measurements via orthogonal matching pursuit*, Information Theory, IEEE Transactions on. 53 (2007), pp. 4655–4666.