Research Article

Ultra-Low-Voltage CMOS-Based Current Bleeding Mixer with High LO-RF Isolation

Gim Heng Tan,¹,² Roslina Mohd Sidek,¹ Harikrishnan Ramiah,³ Wei Keat Chong,³ and De Xing Lioe¹

¹ Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia
² Department of Electrical and Electronic Engineering, Segi University, 47810 Petaling Jaya, Selangor, Malaysia
³ Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Harikrishnan Ramiah; hrkhari@um.edu.my

Received 13 June 2014; Accepted 27 July 2014; Published 14 August 2014

Academic Editor: Changzhi Li

Copyright © 2014 Gim Heng Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture complements a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 μW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm².

1. Introduction

Various low-power front-end receivers had been widely reported for application such as wireless sensor network (WSN). WSN application which requires low-power operation often adopts ZigBee standard with the operating frequency ranging from 2.4 to 2.4835 GHz [1]. Direct conversion receiver (DCR) has been in the heat of discussion in recent years due to its inherent low power consumption and the simplicity in realization [2]. One of the major setbacks associated with DCR is the LO to RF port-to-port isolation. An incurred mismatch in the device physical dimension would potentially couple the LO leakage to the RF port through the gate-drain capacitance, Cgd of the RF transconductance stage. This leakage component will mix with RF signal, resulting in a detrimental phenomenon known as self-mixing [3] which in effect produces DC offset that degrades the performance of the overall receiver. In preference, high isolation between the LO-RF ports is crucial in alleviating self-mixing. The typical LO-RF isolations of the standard Gilbert cell mixer are in the range of 40–50 dB [4]. In this paper, the conventional current bleeding architecture which has a high conversion gain and low noise figure is modified by integrating a combination of NMOS-based current bleeding transistor, PMOS-based LO switch, and integrated inductors, thus improving the isolation between the LO and RF port.

2. Proposed Design

Previous design: Figure 1 shows the conventional CMOS current bleeding mixer that integrates a combination of PMOS-based current bleeding stage and NMOS-based local oscillator, LO switching stage [5]. In effect to the mismatch in the switching stage, the LO leakage component at nodes X₁ and X₂ will directly couple to the RF port through the gate-drain capacitance, Cgd, of the RF transconductance stage (M₁–M₂). This will adversely reduce the isolation between the LO and RF ports.

Figure 2 shows that the proposed mixer consists of a RF transconductance stage (M₁–M₂), a PMOS-based LO switching input (M₃–M₄), a NMOS-based current bleeding stage (M₇–M₈), and the output load (R₁₁–C₁₁ and R₁₂–C₁₂). Inductors L₁ and L₂ act as a RF choke in alleviating the RF
signal leakage into the voltage supply, V_{DD}. The RF frequency is mixed with the LO frequency at node X_1 and X_2. The differential output current, neglecting the higher order spurs, can be derived as follows:

$$i_{HF} = \frac{2}{\pi} \cdot g_{m1,2} \cdot v_{RF} \left[\sin(\omega_{RF} - \omega_{LO}) t - \sin(\omega_{RF} + \omega_{LO}) t \right], \quad (1)$$

where $g_{m1,2}$ is the transconductance for M_1 and M_2, and v_{RF} is the input RF signal, while ω_{RF} and ω_{LO} are the RF and LO frequency, respectively. At the IF output, the combination of $R_{L1}C_{L1}$ and $R_{L2}C_{L2}$ forms a low pass filter (LPF), which filters out the high-order spurs at the output such as the upconverted frequency component $\sin(\omega_{RF} + \omega_{LO})$.

An incurred mismatch in the LO switching transistor physical dimension would result in a feed-through of LO leakage at nodes X_1 and X_2 to the RF port as described in Figure 2. The dotted arrowhead illustrates the LO leakage path from the LO ports to nodes X_1 and X_2.

Other than for providing a desirable bleeding path for the DC current, transistor M_7-M_8 is optimized to enhance the LO-RF isolation. Transistors M_7 and M_8 are cascaded in series, thus observing high impedance, R_x, referring to the drain terminal of the bleeding transistor M_7, expressed as

$$R_x = g_{m7} \cdot r_{o1} \cdot r_{o7}, \quad (2)$$

where g_{m7} and r_{o7} are the transconductance and output resistance for M_7, while r_{o1} is the output resistance for transistor M_1. Accordingly, this high impedance node minimizes the LO leakage from nodes X_1 and X_2 to the RF port. As a bench of comparison to the design in Figure 1, the LO leakage component at nodes X_1 and X_2 would directly couple to the RF port through parasitic capacitance C_{gd} in the absence of additional shielding between LO-RF port. The proposed mixer on the other hand utilizes the bleeding transistor (M_7 and M_8) as the shielding element between LO and RF port to improve the LO-RF isolation. In addition, the high frequency LO leakage at the output node of V_{IF+} and V_{IF-} as shown in Figure 2 is insignificant as it is directed towards the ground rail via the low impedance path of capacitor C_{L1} and C_{L2} in contrary to the conventional architecture where the leakage component couples to the RF port. Additionally any LO leakage at the IF output port is further attenuated by load resistor R_{L1} before reaching the RF port, in a goal of improving the LO-RF isolation.

Along with the presence of the cascaded configuration between transconductance and the bleeding stage, this mixer is able to work down to 0.45V of supply headroom. The conventional current bleeding mixer as shown in Figure 1 requires an LO bias of

$$V_{LO} = V_{gs3} + V_{dd1(sat)}, \quad (3)$$

where V_{LO} is the DC voltage to bias the switching transistors, V_{gs3} is the gate to source voltage of transistor M_3, and $V_{dd1(sat)}$ is the overdrive voltage of transistor M_1. By adapting PMOS-based LO switching stage (M_7-M_8), coupled together with inductors L_{di} and L_{d2} as illustrated in Figure 2, the DC voltage required to bias the gate of transistor M_3-M_8 is reduced to only V_{sg} (source-gate voltage) which approximate to the threshold voltage, V_{th} of the PMOS transistor, whereas the DC voltage at nodes X_1 and X_2 approaches to V_{DD}. The LO bias voltage V_{LO} is given as

$$V_{LO} = V_{dd} - V_{th3}, \quad (4)$$

where V_{th3} is the threshold voltage of transistor M_3. The DC voltage required to turn on the LO switching stage no longer depended on the overdrive voltage, $V_{dd1(sat)}$ of the transconductance stage (M_1-M_2) as given in (3). In this proposed mixer, the DC voltage for V_{LO} moves towards the positive rail providing a bottleneck in operating the mixer at low supply headroom.
3. Measurement Result

The proposed mixer is implemented on a 0.13 \(\mu \)m standard CMOS technology. The mixer consumes only 1.27 mA of DC current from 0.45 V of supply voltage. The LO-RF isolation in dB is given as

\[
P_{\text{Isolation}}(\text{dBm}) = P_{\text{flo}}(\text{LO})(\text{dBm}) - P_{\text{flo}}(\text{RF})(\text{dBm}), \tag{5}
\]

where \(P_{\text{Isolation}} \) is the isolation between LO and RF port due to the leakage component from LO port, \(P_{\text{flo}}(\text{LO}) \) is the injected LO power at LO port, and \(P_{\text{flo}}(\text{RF}) \) is the observed LO power coupled to the RF port. The LO-RF isolation has been measured at a difference discrete LO power as described in Figure 3. It can be observed that from the frequency of 2 GHz to 5 GHz, the isolation achieved is more than 55 dB and at 2.4 GHz, the LO-RF isolation is measured at 60 dB. The isolation technique adapted in this circuit has improved the LO-RF shielding significantly while operating at ultra-low supply voltage down to 0.45 V. Figure 4 shows the results for LO-IF isolation which measures more than 64 dB at 2.4 GHz. Two-tone test with an input frequency of 2.443 GHz and 2.442 GHz is applied to the RF port with the corresponding LO frequency of 2.439 GHz to quantify the linearity of the mixer. The conversion gain of the proposed mixer is observed to be 7.5 dB with an IIP3 of 1 dBm as shown in Figure 5. Inductors \(L_{d1} \) and \(L_{d2} \) in the proposed mixer of Figure 2 not only function as the DC current source but concurrently resonate out the parasitic capacitance at nodes \(X_1 \) and \(X_2 \) to improve the IIP3. The noise figure (NF) is observed to be around 18 dB as illustrated in Figure 6.

Table 1 summarizes the design parameters for the proposed mixer and the performance comparison of the proposed architecture respective to other reported works is given in Table 2. The designed mixer has the highest LO-RF isolation and among the lowest in DC power consumption. The measured conversion gain and linearity, IIP3, of the mixer is 7.5 dB and 1 dBm, respectively. The dynamic performance of the architecture is evaluated adapting a figure of merit (FOM) expression, which is highlighted in the following equation, given as [11]:

\[
FOM = 10 \log \left(\frac{10^{G/20} \cdot 10^{(\text{IIP3}-10)/20}}{10^{\text{NF}/10} \cdot P} \right), \tag{6}
\]

where \(G \) is the conversion gain in dB, IIP3 is the third order linearity in dBm, NF is the noise figure in dB, and \(P \) is the power in mW. In reasoning out the performance comparison respective to other reported recent work, the proposed architecture exhibits the highest FOM of 16.67 while relating to power dissipation well below 1 mW. In the loop of recent reported work, the proposed architecture process to be the lowest in power consumption. The photomicrograph of the chip is illustrated in Figure 7, with a corresponding chip area of 0.97 x 0.88 mm\(^2\).
4. Conclusion

The proposed mixer is successfully designed and verified in 0.13 μm standard CMOS technology. The implemented CMOS-based current bleeding mixer topology, which consists of a combination of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors, has significantly improved the LO-RF isolation while operating at supply voltage headroom down to 0.45 V. The design observes a considerable high LO-RF isolation of 60 dB and consuming merely 572 μW of power, which is a promising performance metric for ZigBee application.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This research is supported by the UM High Impact Research Grant UM.C/HIR/MOHE/ENG/51 from the Ministry of Higher Education Malaysia.

References

[1] G. H. Tan, R. M. Sidek, H. Ramiah, and W. K. Chong, "Design of ultra-low voltage 0.5V CMOS current bleeding mixer," IEICE Electronics Express, vol. 9, no. 11, pp. 990–997, 2012.
[2] T. Song, H.-S. Oh, E. Yoon, and S. Hong, "A low-power 2.4-GHz current-reused receiver front-end and frequency source for wireless sensor network," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1012–1022, 2007.
[3] B. Razavi, "Design considerations for direct-conversion receivers," IEEE Transactions on Circuits and Systems, vol. 44, no. 6, pp. 428–435, 1997.
[4] H. Chiou, K. Lin, and W. Chen, "A 1-V 5-GHz self-bias folded-switch mixer in 90-nm CMOS for WLAN receiver," IEEE Transactions on Circuits and Systems, vol. 59, no. 6, pp. 1215–1227, 2012.
[5] J. Park, S. Member, C.-H. Lee, B.-S. Kim, and J. Laskar, "Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4372–4380, 2006.
[6] H.-M. Hsu and T.-H. Lee, "High LO-RF isolation of zero-IF mixer in 0.18 μm CMOS technology," *Analog Integrated Circuits and Signal Processing*, vol. 49, no. 1, pp. 19–25, 2006.

[7] W. Liou, M. Yeh, C. Tsai, and S. Chang, "Design and implementation of a low-voltage 2.4-GHZ CMOS RF receiver frontend for wireless communication," *Journal of Marine Science and Technology*, vol. 13, no. 3, pp. 170–175, 2005.

[8] H. Lee and S. Mohammadi, "A 500 μW 2.4 GHz CMOS subthreshold mixer for ultra low power applications," in *Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC ’07)*, pp. 325–328, Honolulu, Hawaii, USA, June 2007.

[9] B. Wei and Y. Dai, "Analysis and design of a 1.0-V CMOS mixer based on variable load technique," *Microelectronics Journal*, vol. 43, no. 12, pp. 1003–1009, 2012.

[10] H. Ramiah, J. Kanesan, and T. Z. A. Zulkifli, "A CMOS upconversion mixer in 0.18 μm technology for IEEE 802.11a WLAN application," *IETE Journal of Research*, vol. 59, no. 4, pp. 454–460, 2013.

[11] K.-H. Liang and H.-Y. Chang, "0.5-6 GHz low-voltage low-power mixer using a modified cascode topology in 0.18 μm CMOS technology," *IET Microwaves, Antennas & Propagation*, vol. 5, no. 2, pp. 167–174, 2011.