First occurrences of square-free gaps and an algorithm for their computation

Louis Marmet

November 14th, 2007

1 Abstract

This paper reports the results of a search for first occurrences of square-free gaps using an algorithm based on the sieve of Eratosthenes. Using $Qgap(L)$ to denote the starting number of the first gap having exactly the length L, the following values were found since August 1999: $Qgap(10) = 262,315,467$, $Qgap(12) = 47,255,689,915$, $Qgap(13) = 82,462,576,220$, $Qgap(14) = 1,043,460,553,364$, $Qgap(15) = 79,180,770,078,548$, $Qgap(16) = 3,215,226,335,143,218$, $Qgap(17) = 23,742,453,640,900,972$ and $Qgap(18) = 125,781,000,834,058,568$. No gaps longer than 18 were found up to $N = 125,870,000,000,000,000$.

2 Introduction

2.1 Square-free numbers

A number is said to be square-free if its prime decomposition contains no repeated factors. For example, 30 is square-free since its prime decomposition $2 \times 3 \times 5$ contains no repeated factors. However, 18 is not square-free since the factor 3 appears twice in its prime decomposition $2 \times 3 \times 3$.

The first few square-free numbers give the sequence: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, etc. (Sloane’s A005117 1.)

More details on square-free numbers can be found at mathworld.wolfram.com/Squarefree.html. If a square-free number is used as the argument of the Möbius function2, a non-zero value (+1 or −1) is obtained.

2.2 Gaps between square-free numbers

A square-free gap is a series of L consecutive numbers missing from the sequence of square-free numbers. The first square-free gap in the sequence of square-free numbers starts at $N = 4$ and has a length of one. The next gap starts at $N = 8$ and has a length $L = 2$ (since 8 and 9 are non-square-free). The following table lists the first few gaps and their lengths.

Gap starts at N	4	8	12	16	18	20	24	27	32	36	40	44	48	52	54	56
Length of gap L	1	2	1	1	1	1	2	2	1	1	1	2	3	1	1	1

1 oeis.org/A005117
2 mathworld.wolfram.com/MoebiusFunction.html
For any L, it can be shown that there exist infinitely many gaps of length greater than L in the sequence of square-free numbers. Longer lists of square-free gaps and recent results are available in Appendices B, C and D. These gaps are series of consecutive squareful numbers (Sloane’s A013929).

Note that the term “squarefull” sometimes denotes a positive integer n such that if p is a prime dividing n, then p^2 divides n. (See the selected Preprints of Michael Filaseta.)

The smallest integer of the first gap having exactly the length L is denoted here as $Qgap(L)$ (for “Quadratfrei”, or squarefree). Thus $Qgap(1) = 4$, $Qgap(2) = 8$, $Qgap(3) = 48$, etc.

2.3 Upper limits for $Qgap(16)$ to $Qgap(24)$

Erick Bryce Wong found upper limits for $Qgap(L)$ for $L = 16$ to 24. His idea was to find them by prescribing a repeated prime factors for each term and using the Chinese Remainder Theorem to obtain a number. More precisely, he prescribed all but five of the moduli and then tested the last moduli, up to the first 1000 primes, to check if the number is squarefree. He tried this over millions of permutations. His impressive results are:

$Qgap(L)$	Upper limit	Found on
$Qgap(16)$	$46\,717\,595\,829\,767\,167$	Feb. 17th 2000
$Qgap(17)$	$23\,742\,453\,640\,900\,972$	Feb. 21st 2000
$Qgap(18)$	$125\,781\,000\,834\,058\,568$	June 26th 2000
$Qgap(19)$	$31\,310\,794\,237\,768\,728\,712$	July 18th 2000
$Qgap(20)$	$148\,372\,453\,443\,663\,297\,638\,331$	July 10th 2000
$Qgap(21)$	$321\,362\,101\,382\,225\,854\,472$	Feb. 17th 2000
$Qgap(22)$	$213\,922\,449\,434\,979\,698\,424\,416$	Aug. 4th 2000
$Qgap(23)$	$687\,445\,369\,966\,391\,012\,821\,156\,868$	July 18th 2000
$Qgap(24)$	$28\,548\,715\,276\,566\,524\,078\,226\,797\,585\,011$	Sept. 4th 2000

2.4 First occurrence of a gap of length L

$Qgap(L)$ is listed in the following table for L up to 18. The third column gives the prime factors that are repeated for each number in the gap. The values of $Qgap(L < 10)$ and $Qgap(11)$ have been confirmed by different sources. (See for example, “Sloane’s On-Line Encyclopedia of Integer Sequences” sequence A045882.) The sequence $Qgap(L)$ is listed under A051681 in the Encyclopedia of Integer sequences.
2.4.1 Basic algorithm: the sieve of Eratosthenes

The square-free gaps can be calculated by finding consecutive numbers that are not square-free. A simple method to show that \(N \) is not squarefree is to find a prime factor of \(N \) whose square divides \(N \). By trying every prime up to the square root of \(N \), one can establish whether \(N \) is square-free or not. However, this is a very inefficient way to test billions of numbers.

A faster algorithm is used by “Mathematica” to determine if a number is square-free. The method is quite interesting\(^{14}\).

However, to determine which of many consecutive numbers are square-free, an algorithm based on to the sieve of Eratosthenes\(^{15}\) is much faster. It uses a list of numbers from which each composite number is removed. Once the process is finished, only the prime numbers are in the list.

To find the square-free numbers using a sieve, a similar technique is used but the algorithm eliminates numbers that are not square-free. Starting with a list of integers, first cross out the multiples of 4:

\[
\begin{array}{c|c|c|c}
N & Q_{\text{gap}}(N) & \text{Repeated prime factors of each number in the gap} & \text{Gap reported by} \\
--- & --- & --- & --- \\
1 & 4 & 2 & E. Friedman \\
2 & 8 & 2, 3 & E. Friedman \\
3 & 48 & 2, 7, 5 & E. Friedman \\
4 & 242 & 11, 3, 2, 7 & E. Friedman \\
5 & 844 & 2, 13, 3, 11, 2 & E. Friedman \\
6 & 22020 & 2, 19, 11, 3, 2, 5 & E. Friedman \\
7 & 217070 & 7, 3, 2, 113, 11, 5, 2 & E. Friedman \\
8 & 1092747 & 19, 2, 7, 5, 11, 2, 3, 13 & E. Friedman \\
9 & 8870024 & 2, 5, 11, 29, 2, 7, 31, 3, 2 & P. De Geest \\
10 & 262315467 & 3, 2, 29, 2957, 79, 2, 7, 17, 5, 2 \times 3 & D. Bernier \\
11 & 221167422 & 3, 31, 2, 5, 37, 13, 2, 7, 11, 3, 2 & P. De Geest \\
12 & 47255689915 & 7, 2, 3, 103, 43, 2, 29, 17, 13, 2, 5, 3 & L. Marmet \\
13 & 82462576220 & 2, 3, 13, 23, 2, 5, 17, 41, 2, 19, 3, 7, 2 & L. Marmet \\
14 & 104346055364 & 2, 3, 7, 19, 2, 13 \times 59, 67, 43, 2, 181, 3, 5, 2, 11 & L. Marmet \\
15 & 7918077078548 & 2, 3, 5, 29, 2, 13, 17, 53, 2, 19, 3, 41, 2, 31, 67 & L. Marmet \\
16 & 3215226335143218 & 11, 23, 2, 3, 269, 53, 2, 5, 17, 163, 2, 101, 3, 19, 2, 137 & Z. McGregor-Dorsey \\
17 & 23742453640900972 & 2, 11 \times 23, 127, 5, 2, 3, 53, 37, 2, 7, 13, 17, 2, 19, 3, 29, 2 & E. Wong \\
18 & 125781000834058568 & 2, 3, 37, 31, 2, 19, 29, 5, 2, 7 \times 23, 3, 139, 2, 11, 17, 13, 2, 199 & L. Marmet \\
\end{array}
\]

The first gaps reported in this work were found on the following dates.

\[
\begin{array}{c|c|c|c}
Q_{\text{gap}}(10) & = & 262315467 & \text{August 1999} & \text{D. Bernier}, \\
Q_{\text{gap}}(12) & = & 47255689915 & \text{October 19th 1999} & \text{L. Marmet}, \\
Q_{\text{gap}}(13) & = & 82462576220 & \text{October 20th 1999} & \text{L. Marmet}, \\
Q_{\text{gap}}(14) & = & 104346055364 & \text{October 25th 1999} & \text{L. Marmet}, \\
Q_{\text{gap}}(15) & = & 7918077078548 & \text{November 29th 1999} & \text{L. Marmet}, \\
Q_{\text{gap}}(16) & = & 3215226335143218 & \text{July 22nd 2000} & \text{Z. McGregor-Dorsey et al.}, \\
Q_{\text{gap}}(17) & = & 23742453640900972 & \text{July 8th 2001} & \text{E. Wong et al.}, \\
Q_{\text{gap}}(18) & = & 125781000834058568 & \text{September 9th 2005} & \text{L. Marmet et al.} \\
\end{array}
\]

\(^{14}\)reference.wolfram.com/mathematica/ref/SquareFreeQ.html

\(^{15}\)mathworld.wolfram.com/SieveofEratosthenes.html
then the multiples of 9, 25, etc., up to the last number in the list:

1 2 3 X 5 6 7 X X 10 11 X 13 14 15 X 17 X 19 X 21 22 23 X X 26 ...

The remaining numbers are square-free numbers; the gaps are indicated by the series of consecutive “X”.

2.4.2 Improvements of the algorithm

The following improvements were implemented in a computer program and are presented in the same order they were added to the program.

2.4.3 Improvement I

“Lists of squared-primes and the next non-square-free number use less memory.”

To implement this algorithm on a computer, it is not necessary to keep the entire list of integers in memory. An improvement of the algorithm uses instead two shorter arrays to calculate the next non-square-free number after \(N \):

- the first array, called \(p2 \), gives the squares of the prime numbers up to the largest number to be tested \(N_{\text{max}} \).
- the second array, called \(\text{nsqf} \), gives for each \(p2[i] \) the next non-square-free number, that is, the smallest number larger than \(N \) that is a multiple of \(p2[i] \). This array can easily be calculated using modulo arithmetic.

These arrays will have approximately \(2\sqrt{N_{\text{max}}}/\ln N_{\text{max}} \) elements\(^{16}\).

To find square-free gaps, one finds sequences of non-square-free numbers. The following example shows the arrays used to find gaps starting from \(N = 20 \)\(^{17}\).

Index	i	0	1	2	3	4	5	6	7	8
Squared prime	\(p2[i] \)	4	9	25	49	121	169	289	361	529
Next non-square-free	\(\text{nsqf}[i] \)	24	27	25	49	121	169	289	361	529

Using this table, it is easy to find the next non-square-free number: it is the smallest number in the array \(\text{nsqf} \), that is, 24. We set \(N = 24 \) and recalculate the array. This is easy since the only needed operation is to add the corresponding squared-prime to the multiple: \(24 + 4 = 28 \). The following table is obtained:

Index	i	0	1	2	3	4	5	6	7	8
Squared prime	\(p2[i] \)	4	9	25	49	121	169	289	361	529
Next non-square-free	\(\text{nsqf}[i] \)	28	27	25	49	121	169	289	361	529

Again, the next non-square-free number is the smallest \(\text{nsqf}[i] \). By repeating this procedure, \(N \) takes the values of all the non-square-free numbers. It is advantageous to sort \(\text{nsqf} \) in increasing order at each step. This way, the smallest is always \(\text{nsqf}[0] \). We set \(N = 25 \) and recalculate the array to obtain:

\(^{16}\text{www.utm.edu/research/primes/howmany.shtml}\)

\(^{17}\text{The notation used in the programming language C is used here, where the index of an array starts at 0.}\)
The order of the array $p^2[i]$ has also been changed so that each number $p^2[i]$ always corresponds to its multiple $nsqf[i]$. Repeating the procedure will generate the non-square-free numbers $N = 27, 28, 32, 36, 40, \ldots$. Note that special care has to be taken when some numbers in $nsqf$ are equal - each of these has to be increased by the value of its corresponding $p^2[i]$.

The sort is relatively efficient since after $nsqf[0]$ is given its new value, $nsqf[1], nsqf[2]$ and the following elements are still in increasing order. The new value is moved up the array until its proper place is found.

2.4.4 Improvement II

"Many non-square-free numbers can be skipped."

If gaps of a given length L_{min} or more are searched, some $nsqf[i]$ can be skipped. To show this, one finds first the minimum number of squared-primes $NP2_{min}$ \(\text{18}\) required in a gap of length L:

| Gap length L | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | ...
|---------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|...
| $NP2_{min}[L]$ | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 7 | 7 | 8 | 9 | 9 | 10 | 11 | 12 | 12 | ...

For example if we choose $L = 7$, $NP2_{min}[L] = 6$ prime factors are required for the gap starting at $N = 217070$ (in this case, the prime factors are 2, 3, 5, 7, 11 and 113).

Continuing with the example given above, we now specifically search gaps with length $L_{min} = 7$ or longer. There is no gap of length $L_{min} = 7$ in the interval starting at $nsqf[0]$ and ending at $nsqf[5]$, if $nsqf[5] > nsqf[0] + 7$. (In general, there is no gap of length L_{min} in the interval starting at $nsqf[0]$ and ending at $nsqf[NP2_{min}[L_{min} - 1]]$, if $nsqf[NP2_{min}[L_{min} - 1]] > nsqf[0] + L_{min}$.)

With $N = 40$, we have:

| Index | i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ...
|-------|---|---|---|---|---|---|---|---|---|---|...
| Squared prime $p^2[i]$ | 4 | 9 | 49 | 25 | 121 | 169 | 289 | 361 | 529 | ...
| Next non-square-free $nsqf[i]$ | 44 | 45 | 49 | 50 | 121 | 169 | 289 | 361 | 529 | ...

Since $nsqf[5] = 169 > nsqf[0] + 7 = 51$, there is no gap of length 7 in the interval starting at 44 and ending at 169. We can therefore safely set $N = nsqf[5] - L_{min} + 1 = 163$ and recalculate the following table:

| Index | i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ...
|-------|---|---|---|---|---|---|---|---|---|---|...
| Squared prime $p^2[i]$ | 4 | 169 | 9 | 25 | 49 | 121 | 289 | 361 | 529 | ...
| Next non-square-free $nsqf[i]$ | 164 | 169 | 171 | 175 | 196 | 242 | 289 | 361 | 529 | ...

This cuts down on the number of non-square-free that have to be tested and the speed of the calculation is increased. A factor five in speed was obtained when this was implemented in the program which was used to find $Qgap(14)$ and $Qgap(15)$.

\(\text{18}\)\url{http://oeis.org/A107079}
2.4.5 Improvement III

"The smallest squared-primes are not needed to calculate the sieve."

This variation on Improvement II was suggested by Joseph Wetherell. It turns out to be more efficient when it is combined with Improvements IV and V. The trick is to consider the smallest squared-primes separately from the large squared-primes. Most of the time in the algorithm is spent on the process of taking the smallest elements off of \(n_{sqf} \) and sorting them back into the array. If one can reduce the number of non-square-free numbers which are tested, the speed of the algorithm will improve.

This is actually possible since the smallest squared-primes are not needed to calculate the sieve. If we have a gap of, say, \(L = L_{min} = 7 \) non-square-free numbers, then at least \(N P_{2_{min}}[7] = 6 \) different primes are found in the gap. This means that the smallest \(k_1 = N P_{2_{min}}[L_{min}] - 1 = 5 \) squared-primes can be left out of the calculation. If we search for the 6th squared-prime, every gap of length \(L = 7 \) (or more) will be found.

This method therefore separates the small squared-primes from the large ones, creating a base with \(k_1 \) elements. The table for \(N = 163 \) would now look like this:

Index	\(i \)	0	1	2	3	4	\(k_1 \)	6	7	8	...
Squared prime	\(p_2[i] \)	4	9	25	49	121	169	289	361	529	...
Next non-square-free	\(n_{sqf}[i] \)	--	--	--	--	--	169	289	361	529	...

with the base shown as -- for the values of \(n_{sqf}[i] \). From the table, one sees that one must test for a gap having \(L_{min} = 7 \) around \(N = 169 \). If none is found, then \(n_{sqf}[k_1] \) is increased by 169 and sorted back into the array of large squared-primes to get:

Index	\(i \)	0	1	2	3	4	\(k_1 \)	6	7	8	...
Squared prime	\(p_2[i] \)	4	9	25	49	121	289	169	361	529	...
Next non-square-free	\(n_{sqf}[i] \)	--	--	--	--	--	289	338	361	529	...

The sort is faster since it is only done on the large squared-primes. The process is then continued at \(N = 289 \).

2.4.6 Improvement IV

"The values of the small modulos can be computed ahead of time."

To test if there is a gap of \(L_{min} \) around \(N \), one must still know about multiples of the \(k_1 \) small squared-primes near \(N \). As suggested by Joseph Wetherell, this can be done by trial division; even if trial division is slow, it is faster than resorting the base array. One can also optimize the trial divisions, because the trial divisions for, say, \(N + 1 \) and \(N + 2 \) are related to each other. For each small prime \(p \), compute \(N \% p_2 \) and store it in a list \(\text{mod} \) (the "%" symbol is the modulo function in the C language). Now to see if \(p_2 \) divides \(N + 1 \), we just test if this stored value is \(-1 \mod p_2\). To see if \(p_2 \) divides \(N + 2 \), we test if this stored value is \(-2 \mod p_2\). (We also precompute the value of \(-1 \mod p_2\), \(-2 \mod p_2\), etc., for the small set of values which we will possibly need to test.) Note that it is also necessary to test \(N - 1, N - 2, \) etc. For \(N = 289 \), we have the following arrays:

Index	\(i \)	0	1	2	3	4	\(k_1 \)	6	7	8	...
Squared prime	\(p_2[i] \)	4	9	25	49	121	289	169	361	529	...
Next non-square-free	\(n_{sqf}[i] \)	--	--	--	--	--	289	338	361	529	...
\(N \% p_2[i] \)	\(\text{mod}[i] \)	1	1	14	44	47	...				
We see that \(p_2[0] \) and \(p_2[1] \) divide \(N - 1 = 288 \), but this is the only other non-square-free number for this gap of length 2. We can therefore increase \(\text{nsqf}[k1] \) by 289, sort it back into the array (reordering \(p_2 \) accordingly) and continue with \(N = 338 \):

Index	i	0	1	2	3	4	k1	6	7	8	...
Squared prime	\(p_2[i] \)	4	9	25	49	121	169	361	529	289	...
Next non-square-free	\(\text{nsqf}[i] \)	--	--	--	--	--	--	338	361	529	578
\(N \% p_2[i] \)	\(\text{mod}[i] \)	2	5	13	44	96					

2.4.7 Improvement V

"Two large primes-squared that are too far cannot result in a gap."

If we include \(p_2[4] \) in the array of large squared-primes, (so there are only \(k2 = \text{NP2}_{min}[L_{min}] - 2 = 4 \) elements in the base), then we know that a number \(N = \text{nsqf}[k2] \) we are testing can be part of a gap only if the next number in \(\text{nsqf} \) is close to \(N \), that is, if \(\text{nsqf}[k2+1] \) is not larger than \(N + L_{min} - 1 \). Based on this suggestion by Joseph Wetherell, the arrays become with \(N = 338 \):

Index	i	0	1	2	3	4	k2	5	6	7	8	...
Squared prime	\(p_2[i] \)	4	9	25	49	169	361	121	529	289	...	
Next non-square-free	\(\text{nsqf}[i] \)	--	--	--	--	--	338	361	363	529	578	...
\(N \% p_2[i] \)	\(\text{mod}[i] \)	--	--	--	--	--						

Since \(\text{nsqf}[k2+1] = 361 \) is larger than \(N + L_{min} - 1 = 344 \), we can skip to \(N = 361 \). Since \(N \) does not pass the closeness test, we do not have to do any computations with the base, saving us a lot of time.

2.4.8 Improvement VI

"A chained list is faster for the sort."

A chained list can be built with a set of numbers that specify an order for the elements of an array, as suggested by Joseph Wetherell. If we use a chained list represented by the array called \(\text{next} \) such that \(\text{nsqf}[\text{next}[i]] \geq \text{nsqf}[i] \), we can sort the array \(\text{nsqf} \) without moving any data within the arrays \(\text{nsqf} \) or \(p_2 \). For a reason that will become obvious later, we choose to have \(p_2 \) sorted in increasing order. With \(N = 361 \), the arrays would be:

Index	i	0	1	2	3	4	k2	5	6	7	8	...
Chained list	\(\text{next}[i] \)	--	--	--	--	k2	5	8	9	4	6	...
Squared prime	\(p_2[i] \)	4	9	25	49	121	169	289	361	529	...	
Next non-square-free	\(\text{nsqf}[i] \)	--	--	--	--	363	507	578	361	529	...	
\(N \% p_2[i] \)	\(\text{mod}[i] \)	1	1	11	18							

We use an additional variable, \(\text{head} \), which points to the smallest item in the array \(\text{nsqf} \). For the table above, we have \(\text{head} = 7 \) (\(\text{next[head]} \) is highlighted). Since we only need to change two values in the array next to perform a sort, this method is faster. Searching through the array \(\text{nsqf} \) now consists of going through the data in the following order:

\[
\text{for (i=head; tempnsqf>=nsqf[\text{next}[i]]; i=\text{next}[i])...}
\]
There is another advantage to this method: since the array \(p2 \) is sorted in increasing order, we know that if we have to sort item \(nsqf[\text{head}] \), then \(nsqf[\text{head}-1] \leq nsqf[\text{head}] + p2[\text{head}] \). This means we can jump immediately to \(\text{head}-1 \) and start searching from there. In general, this cuts the search in half! Searching through the list now consists of:

for (\(\text{head}-1; \text{tempnsqf} = nsqf[\text{head}] + p2[\text{head}]; \text{head} = \text{head}-1 \)) ...

We continue the example with the above table. Since \(nsqf[\text{next[head]}] \) = 363 is not larger than \(N + L_{\text{min}} - 1 = 367 \), we calculated the modulus. Clearly, there is only a gap of length \(L = 2 \) starting at 360. We therefore set \(N = 363 \) and sort \(\text{tempnsqf} = nsqf[\text{head}] = nsqf[\text{head}] + p2[\text{head}] = 722 \). We start with \(\text{head} = 6 \) and the sort requires only one comparison! The following arrays are obtained:

Index	\(i \)	0	1	2	3	5	6	7	8			
Chained list	next[\(i \)]	--	--	--	--	\(k2 \)	5	8	7	9	6	...
Squared prime	\(p2[i] \)	4	9	25	49	121	169	289	361	529	...	
Next non-square-free	\(nsqf[\(i \)] \)	--	--	--	--	363	507	578	722	529	...	
\(N \% p2[i] \)	mod[\(i \)]	--	--	--	--	...						

with \(\text{head} \) now equal to 4.

A factor three in speed was obtained when this algorithm was implemented in the program.

2.4.9 Improvement VII

“Look for the largest spacing between two of three large squared-primes.”

Instead of having \(k2 \) elements in the base and look for two large squared-primes that are not too far apart, we can use a base with \(k3 = NP_{2_{\text{min}}}[L_{\text{min}}] - 3 = 3 \) squared-primes, but look to see if \(nsqf[\text{head}] \) and \(nsqf[\text{next[next[head]]}] \) are not more than \(L_{\text{min}} \) apart.

Index	\(i \)	0	1	2	3	4	5	6	7	8	9	6	...
Chained list	next[\(i \)]	--	--	--	--	\(k3 \)	5	8	7	9	6	...	
Squared prime	\(p2[i] \)	4	9	25	49	121	169	289	361	529	...		
Next non-square-free	\(nsqf[\(i \)] \)	--	--	--	--	392	363	507	578	722	529	...	
\(N \% p2[i] \)	mod[\(i \)]	--	--	--	--	...							

In this example, we look at the difference between \(nsqf[\text{head}] = 363 \) and \(nsqf[\text{next[next[head]]}] = 507 \). Since the difference between the two values is larger than \(L_{\text{min}} - 1 \), there is no gap of length \(L_{\text{min}} \) or longer.

This improvement gives the program a 37% speed increase with \(L_{\text{min}} = 14 \).

The program becomes slower if four or more large squared-primes are considered (this was confirmed in tests for \(L > 13, N = 10^{14} \) to \(10^{14} + 10^{9} \)).

2.4.10 Evaluation of order of algorithm

This evaluation applies to the first improvement of the algorithm. It was found empirically that for a given value of \(L_{\text{min}} \), the other improvements increased the speed of the calculation by a constant factor.

To calculate if \(N \) is a square-free number, the algorithm takes advantage of the known remainders for \(N - 1 \). Each time \(N \) is tested, a new non-square-free number is calculated using \(nsqf[0] = nsqf[0] + p2[0] \). This new value has to be moved up the list to keep \(nsqf \) in increasing order. It is that operation that requires most
of the computation time. To evaluate the speed of the algorithm, it is necessary to find the average number of moves \(m \) that will be required to bring the new value \(\text{nsqf}[0] \) to its correct position in the list, above the number \(\text{nsqf}[m] \). This is done by evaluating, for every \(i \), the probability that \(\text{nsqf}[0] > \text{nsqf}[i] \), and then summing over \(i \).

First, consider the case when \(p^2[0] = 4 \) which occurs with a probability of \(1/4 \). Since \(\text{nsqf}[0] \) has been increased by 4, there is a probability of \(4/9 \) that it will have to be moved above \(\text{nsqf}[j] \) (if \(p^2[j] = 9 \)). There is an additional probability of \(4/25 \) that \(\text{nsqf}[0] \) will have to be moved above \(\text{nsqf}[k] \) (if \(p^2[k] = 25 \)), etc. We therefore get the average number of steps required to place the new \(\text{nsqf}[0] \) to its correct position:

\[
S(1) = 1/4 \times (4/9 + 4/25 + 4/49 + 4/121 + ...) = \sum_{i=2}^{\infty} \frac{1}{p^2(i)}
\]

where \(p(i) \) is the ith prime number (\(p(1) = 2, p(2) = 3, p(3) = 5, \) etc.) and \(p^2(i) = p(i) \times p(i) \).

In the case when \(p^2[0] = 9 \) (which occurs with a probability of \(1/9 \)), one move is always necessary to bring \(\text{nsqf}[0] \) above \(\text{nsqf}[j] \) (if \(p^2[j] = 4 \)). There is a probability of \(9/25 \) that \(\text{nsqf}[0] \) will have to be moved above \(\text{nsqf}[k] \) (if \(p^2[k] = 25 \)), etc. We therefore get:

\[
S(2) = 1/9 \times (1 + 9/25 + 9/49 + 9/121 + ...) = \frac{1}{p^2(2)} + \sum_{i=3}^{\infty} \frac{1}{p^2(i)}
\]

In general, when \(p^2[0] = p^2(m) \), the average number of moves is:

\[
S(m) = \frac{m-1}{p^2(m)} + \sum_{i=m+1}^{\infty} \frac{1}{p^2(i)}
\]

The sum over all the \(S(m) \) gives the average number of moves required to place \(\text{nsqf}[0] \) to its correct position in the list:

\[
\sum_{m=1}^{\infty} S(m) = 2 \times \sum_{i=2}^{\infty} \frac{i-1}{p^2(i)}
\]

This series converges, as determined with a convergence test\(^{19}\). It converges very slowly to approximately 1.30... Therefore, given the remainders for \(N-1 \), the number of operations required to find out if \(N \) is square-free is independent of the value of \(N \).

2.5 Acknowledgements

Contributed to find \(Qgap(10) \): David Bernier.

Contributed to find \(Qgap(16) \): Zach McGregor-Dorsey, Louis Marmet, Joe Wetherell, Gunnard Engebret, D. Bernier, Erick Wong, Alan Simpson and Nicolas Marmet.

\(^{19}\)Suppose that \(f(x) \) is a positive decreasing function and that

\[
\lim_{k \to \infty} \frac{e^k f(e^k)}{f(k)} = q
\]

for natural \(k \). If \(q < 1 \), the series \(\sum_{k=1}^{\infty} f(k) \) converges. If \(q > 1 \), this series diverges. (Ermakov)” Equation 0.224, “Table of Integrals, Series, and Products,” Gradshteyn and Ryzhik (Academic Press, Inc., p. 5)
Contributed to find Qgap(17): E. Wong, Z. McGregor-Dorsey, L. Marmet, Jean-Pierre Bernier, D. Bernier, Nancy Robertson, N. Marmet, Charles Ward and G. Engebreth.

Contributed to find Qgap(18): D. Bernier, L. Marmet, E. Wong, J. Wetherell, Z. McGregor-Dorsey, G. Engebreth, A. Simpson, N. Marmet, N. Robertson, J.-P. Bernier, C.R. Ward, Bruno Le Tual and Horand Gassmann.

This project started from an idea that was initially suggested to me by David Bernier.

2.6 Related web pages and references

M. Filaseta, O. Trifonov, “The distribution of squarefull numbers in short intervals,” Acta Arith., 67 (1994), 323-333.

M. Filaseta, “On the distribution of gaps between squarefree numbers,” Mathematika, 40 (1993), 88-101.

M. Filaseta, O. Trifonov, “On gaps between squarefree numbers II,” Journal of the London Math. Soc. (2), 45 (1992), 215-221.

C. Rivera, “The Prime Puzzles and Problems Connection,” www.primepuzzles.net/problems/prob_028.htm (not updated since Nov. 1999).

B. de Weger, C.E. van de Woestijne, “On the powerfree parts of consecutive integers,” Acta Arithmetica 90 (1999), 387-395, http://www.win.tue.nl/~bdeweger/onderzoek.html.

A translation of this paper is available in Belorussian at www.webhostinghub.com/support/by/edu/index-marmet-be.

This article was first published at www.marmet.org/louis/sqfgap/index.html.

Copyright ©1999 Louis Marmet
Appendix A

The following graph shows an estimation of how large we can expect $Q_{gap}(L)$ to be.

![Graph of $Q_{gap}(L)$ for L=1 to 25](image)

Figure 1: Known values of $Q_{gap}(L)$ (squares) and estimated values (empty circles).

The empirical estimation, based on the calculated values for $L < 16$, uses an approximation of the probability of obtaining the minimum number of primes required to produce a gap with length L. The upper limits for $Q_{gap}(L > 16)$ were obtained by E. Wong. The values of $Q_{gap}(L)$ lie within the ranges indicated by the gray lines.
Appendix D

Square-free gaps and their length ≥ 16, up to 125,870,000,000,000,000

Gap Length	Initial Gap	Length	Gap Length	Final Gap	Length
16	3215226335143218:	16	50374378394286240:	17	
17	23742453640900972:	17	52806946967186660:	17	
16	28696958943616635:	16	55039310568335610:	16	
16	31401976920688950:	16	58042999008997036:	17	
17	36985881099122836:	17	58511100456350360:	17	
16	46717595829767167:	16	63057303299988150:	16	
16	48772582754041310:	16	64287162889072035:	16	
16	49428341049041863:	16	65191494685146343:	16	
17	50011847799468448:	17	79132612264348838:	16	
Appendix E

Completed ranges computed on 44 different processors by 14 different users.

User Name	(Computer Name)	Range	DateCompleted
L. Marmet	(neurone5 Linux .8GHz)	125.7×10^{15} to 125.8×10^{15}	September 12th, 2005
H. Gassmann	(Gus’s beast)	125.3×10^{15} to 125.7×10^{15}	August 19th, 2005
L. Marmet	(neurone3 .8GHz)	125.1×10^{15} to 125.3×10^{15}	August 19th, 2005
N. Marmet	(Poisson.51)	124.7×10^{15} to 125.1×10^{15}	August 19th, 2005
N. Marmet	(Poisson.35)	124.4×10^{15} to 124.7×10^{15}	August 19th, 2005
N. Marmet	(Poisson.141)	124.1×10^{15} to 124.4×10^{15}	August 19th, 2005
N. Marmet	(Poisson.142.Brain1)	123.8×10^{15} to 124.1×10^{15}	August 19th, 2005
N. Robertson	(Laika.Droica)	123.4×10^{15} to 123.8×10^{15}	August 20th, 2005
L. Marmet	(neurone2 .8GHz)	122.7×10^{15} to 123.4×10^{15}	August 10th, 2005
L. Marmet	(neurone1 .8GHz)	122.1×10^{15} to 122.7×10^{15}	August 7th, 2005
N. Marmet	(Poisson.94)	121.6×10^{15} to 122.1×10^{15}	August 19th, 2005
N. Marmet	(Poisson.63)	121.3×10^{15} to 121.6×10^{15}	August 19th, 2005
L. Marmet	(neurone5 Linux .8GHz)	120.9×10^{15} to 121.3×10^{15}	July 26th, 2005
N. Robertson	(Laika.Droica)	120.5×10^{15} to 120.9×10^{15}	July 16th, 2005
L. Marmet	(neurone4 .8GHz)	119.3×10^{15} to 120.5×10^{15}	August 13th, 2005
N. Marmet	(Poisson.142.Brain2)	118.0×10^{15} to 119.3×10^{15}	September 8th, 2005
N. Marmet	(Poisson.107)	116.3×10^{15} to 118.0×10^{15}	September 2nd, 2005
N. Marmet	(Poisson.31)	115.7×10^{15} to 116.3×10^{15}	August 29th, 2005
N. Marmet	(Poisson.30)	114.9×10^{15} to 115.7×10^{15}	August 28th, 2005
J.-P. Bernier	(Pentium 600MHz)	114.0×10^{15} to 114.9×10^{15}	August 24th, 2005
L. Marmet	(neurone0 W95 .233GHz)	113.5×10^{15} to 114.0×10^{15}	August 16th, 2005
L. Marmet	(neurone5 Linux .8GHz)	113.1×10^{15} to 113.5×10^{15}	June 30th, 2005
N. Robertson	(Laika.Droica)	112.7×10^{15} to 113.1×10^{15}	June 24th, 2005
N. Marmet	(Poisson.29)	111.5×10^{15} to 112.7×10^{15}	August 28th, 2005
H. Gassmann	(Gus’s beast)	111.0×10^{15} to 111.5×10^{15}	July 27th, 2005
N. Marmet	(Poisson.44)	110.4×10^{15} to 111.0×10^{15}	August 24th, 2005
N. Marmet	(Poisson.37)	109.6×10^{15} to 110.4×10^{15}	September 1st, 2005
N. Marmet	(Poisson.34)	108.8×10^{15} to 109.6×10^{15}	September 3rd, 2005
J.-P. Bernier	(Athlon 2000)	106.3×10^{15} to 108.8×10^{15}	August 5th, 2005
B. Le Tual	(Celeron 2.4GHz)	105.3×10^{15} to 106.3×10^{15}	July 16th, 2005
User Name	(Computer Name)	Range	Date Completed
--------------	-------------------------------------	------------------	----------------
B. Le Tual	(Celeron .9GHz)	104.9×10^{15} to 105.3×10^{15}	July 16th, 2005
L. Marmet	(neurone2 .8GHz)	103.2×10^{15} to 104.9×10^{15}	July 8th, 2005
B. Le Tual	(Celeron 2.4GHz)	102.7×10^{15} to 103.2×10^{15}	May 13th, 2005
L. Marmet	(neurone4 .8GHz)	101.1×10^{15} to 102.7×10^{15}	June 25th, 2005
L. Marmet	(neurone1 .8GHz)	99.5×10^{15} to 101.1×10^{15}	July 2nd, 2005
L. Marmet	(Poisson.63)	98.8×10^{15} to 99.5×10^{15}	July 12th, 2005
H. Gassmann	(Gus’s beast)	98.4×10^{15} to 98.8×10^{15}	June 1st, 2005
N. Robertson	(Laika.Droica)	98.0×10^{15} to 98.4×10^{15}	May 9th, 2005
J.-P. Bernier	(Athlon 2000)	96.2×10^{15} to 98.0×10^{15}	May 24th, 2005
L. Marmet	(neurone0 W95 .233GHz)	95.7×10^{15} to 96.2×10^{15}	June 10th, 2005
N. Marmet	(Poisson.142.Brain2)	94.2×10^{15} to 95.7×10^{15}	June 13th, 2005
N. Marmet	(Poisson.94)	92.7×10^{15} to 94.2×10^{15}	July 12th, 2005
J.-P. Bernier	(Pentium 600MHz)	91.7×10^{15} to 92.7×10^{15}	June 12th, 2005
N. Marmet	(Poisson.142.Brain1)	89.7×10^{15} to 91.7×10^{15}	July 21st, 2005
N. Marmet	(Poisson.34)	88.9×10^{15} to 89.7×10^{15}	May 30th, 2005
N. Marmet	(Poisson.107)	86.8×10^{15} to 88.9×10^{15}	June 13th, 2005
N. Marmet	(Poisson.29)	85.5×10^{15} to 86.8×10^{15}	June 2nd, 2005
N. Marmet	(Poisson.31)	84.7×10^{15} to 85.5×10^{15}	June 13th, 2005
N. Marmet	(Poisson.51)	82.4×10^{15} to 84.7×10^{15}	July 25th, 2005
N. Marmet	(Poisson.30)	81.4×10^{15} to 82.4×10^{15}	May 13th, 2005
N. Marmet	(Poisson.45)	80.8×10^{15} to 81.4×10^{15}	May 30th, 2005
N. Marmet	(Poisson.37)	80.0×10^{15} to 80.8×10^{15}	May 30th, 2005
L. Marmet	(neurone5 Linux .8GHz)	79.2×10^{15} to 80.0×10^{15}	June 9th, 2005
L. Marmet	(neurone5 Linux .8GHz)	78.8×10^{15} to 79.2×10^{15}	April 21st, 2005
J.-P. Bernier	(Athlon 2000)	78.1×10^{15} to 78.8×10^{15}	April 9th, 2005
N. Marmet	(Poisson.94)	77.6×10^{15} to 78.1×10^{15}	April 5th, 2005
N. Marmet	(Poisson.142.Brain2)	77.1×10^{15} to 77.6×10^{15}	April 5th, 2005
N. Marmet	(Poisson.142.Brain1)	76.6×10^{15} to 77.1×10^{15}	March 31st, 2005
N. Marmet	(Poisson.107)	76.1×10^{15} to 76.6×10^{15}	March 30th, 2005
N. Marmet	(Poisson.51)	75.6×10^{15} to 76.1×10^{15}	March 29th, 2005
N. Marmet	(Poisson.63)	75.1×10^{15} to 75.6×10^{15}	April 26th, 2005
N. Marmet	(Poisson.30)	74.9×10^{15} to 75.1×10^{15}	March 28th, 2005
N. Marmet	(Poisson.31)	74.7×10^{15} to 74.9×10^{15}	March 30th, 2005
N. Marmet	(Poisson.34)	74.5×10^{15} to 74.7×10^{15}	March 30th, 2005
N. Marmet	(Poisson.37)	74.4×10^{15} to 74.5×10^{15}	March 23rd, 2005
N. Marmet	(Poisson.45)	74.3×10^{15} to 74.4×10^{15}	March 25th, 2005
N. Robertson	(Laika.Droica)	73.8×10^{15} to 74.3×10^{15}	April 5th, 2005
H. Gassmann	(Gus’s beast)	73.5×10^{15} to 73.8×10^{15}	April 27th, 2005
L. Marmet	(neurone4 .8GHz)	71.9×10^{15} to 73.5×10^{15}	April 30th, 2005
L. Marmet	(neurone2 .8GHz)	70.2×10^{15} to 71.9×10^{15}	May 4th, 2005
User Name	(Computer Name)	Range	Date Completed
-------------	----------------------------------	------------------------	----------------
L. Marmet	(neurone1 .8GHz)	6.8×10^{15} to 7.0×10^{15}	April 28th, 2005
J.-P. Bernier	(Pentium 600MHz)	6.8×10^{15} to 6.8×10^{15}	April 3rd, 2005
B. Le Tual	(Celeron .9GHz)	6.8×10^{15} to 6.8×10^{15}	May 15th, 2005
B. Le Tual	(Celeron 2.4GHz)	6.7×10^{15} to 6.8×10^{15}	May 1st, 2005
J.-P. Bernier	(Athlon 2000)	6.7×10^{15} to 6.8×10^{15}	March 17th, 2005
N. Robertson	(Poisson.29)	6.6×10^{15} to 6.7×10^{15}	March 30th, 2005
J.-P. Bernier	(Athlon 2000)	6.6×10^{15} to 6.6×10^{15}	January 1st, 2004
J.-P. Bernier	(Pentium 600MHz)	6.6×10^{15} to 6.6×10^{15}	January 12th, 2004
B. Le Tual	(Celeron 2.4GHz)	6.5×10^{15} to 6.6×10^{15}	January 4th, 2004
B. Le Tual	(Celeron .9GHz)	6.5×10^{15} to 6.5×10^{15}	January 9th, 2004
J.-P. Bernier	(Athlon 2000)	6.5×10^{15} to 6.5×10^{15}	December 19th, 2003
J.-P. Bernier	(Pentium 600MHz)	6.4×10^{15} to 6.5×10^{15}	December 14th, 2003
J.-P. Bernier	(Athlon 2000)	6.4×10^{15} to 6.4×10^{15}	December 4th, 2003
B. Le Tual	(Celeron 2.4GHz)	6.4×10^{15} to 6.4×10^{15}	December 9th, 2003
L. Marmet	(neurone0 W95 .233GHz)	6.3×10^{15} to 6.4×10^{15}	April 11th, 2005
J.-P. Bernier	(Athlon 2000)	6.3×10^{15} to 6.3×10^{15}	November 13th, 2003
B. Le Tual	(Celeron .9GHz)	6.3×10^{15} to 6.3×10^{15}	December 5th, 2003
J.-P. Bernier	(Pentium 600MHz)	6.3×10^{15} to 6.3×10^{15}	November 24th, 2003
D. Bernier	(Gecko)	6.2×10^{15} to 6.2×10^{15}	December 27th, 2003
J.-P. Bernier	(Athlon 2000)	6.2×10^{15} to 6.2×10^{15}	November 1st, 2003
N. Robertson	(Laika.Droica)	6.1×10^{15} to 6.2×10^{15}	March 9th, 2005
L. Marmet	(neurone5 Linux .8GHz)	6.1×10^{15} to 6.1×10^{15}	March 27th, 2005
J.-P. Bernier	(Athlon 2000)	6.0×10^{15} to 6.1×10^{15}	October 15th, 2003
L. Marmet	(Riyadh)	6.0×10^{15} to 6.0×10^{15}	November 9th, 2003
J.-P. Bernier	(Pentium 600MHz)	6.0×10^{15} to 6.0×10^{15}	October 31st, 2003
B. Le Tual	(Celeron 2.4GHz)	6.0×10^{15} to 6.0×10^{15}	November 12th, 2003
B. Le Tual	(Celeron .9GHz)	5.9×10^{15} to 6.0×10^{15}	November 1st, 2003
N. Robertson	(Laika.Droica)	5.9×10^{15} to 5.9×10^{15}	October 1st, 2003
B. Le Tual	(Celeron .9GHz)	5.8×10^{15} to 5.9×10^{15}	September 28th, 2003
B. Le Tual	(Celeron 2.4GHz)	5.8×10^{15} to 5.8×10^{15}	October 5th, 2003
J.-P. Bernier	(Pentium 600MHz)	5.8×10^{15} to 5.8×10^{15}	October 7th, 2003
L. Marmet	(Riyadh)	5.8×10^{15} to 5.8×10^{15}	October 7th, 2003
D. Bernier	(Gecko)	5.7×10^{15} to 5.8×10^{15}	October 29th, 2003
N. Robertson	(Maya)	5.7×10^{15} to 5.7×10^{15}	September 19th, 2003
N. Robertson	(Laika.Droica)	5.7×10^{15} to 5.7×10^{15}	September 10th, 2003
J.-P. Bernier	(Pentium 600MHz)	5.6×10^{15} to 5.7×10^{15}	September 10th, 2003
N. Robertson	(Maya)	5.6×10^{15} to 5.6×10^{15}	August 4th, 2003
N. Robertson	(Laika.Droica)	5.6×10^{15} to 5.6×10^{15}	July 29th, 2003
L. Marmet	(Riyadh)	5.5×10^{15} to 5.6×10^{15}	August 13th, 2003
J.-P. Bernier	(Pentium 600MHz)	5.5×10^{15} to 5.5×10^{15}	August 4th, 2003
User Name	(Computer Name)	Range	Date Completed
----------------	--------------------------	---------------------	---------------
J.-P. Bernier	(Pentium 600MHz)	5.53 x 10^15 to 5.56 x 10^15	July 10th, 2003
J.-P. Bernier	(Pentium 600MHz)	5.50 x 10^15 to 5.53 x 10^15	June 15th, 2003
L. Marmet	(Riyadh)	5.47 x 10^15 to 5.50 x 10^15	June 28th, 2003
N. Robertson	(Maya)	5.44 x 10^15 to 5.47 x 10^15	June 10th, 2003
N. Robertson	(Laika.Droica)	5.41 x 10^15 to 5.44 x 10^15	July 9th, 2003
J.-P. Bernier	(Pentium 600MHz)	5.38 x 10^15 to 5.41 x 10^15	May 14th, 2003
D. Bernier	(Gecko)	5.33 x 10^15 to 5.38 x 10^15	August 23rd, 2003
N. Robertson	(Maya)	5.30 x 10^15 to 5.33 x 10^15	May 12th, 2003
N. Robertson	(Laika.Droica)	5.27 x 10^15 to 5.30 x 10^15	May 7th, 2003
L. Marmet	(Riyadh)	5.24 x 10^15 to 5.27 x 10^15	May 16th, 2003
J.-P. Bernier	(Pentium 600MHz)	5.21 x 10^15 to 5.24 x 10^15	April 23rd, 2003
N. Robertson	(Maya)	5.18 x 10^15 to 5.21 x 10^15	March 31st, 2003
L. Marmet	(Riyadh)	5.15 x 10^15 to 5.18 x 10^15	April 6th, 2003
N. Robertson	(Laika.Droica)	5.12 x 10^15 to 5.15 x 10^15	March 22nd, 2003
D. Bernier	(Gecko)	5.11 x 10^15 to 5.12 x 10^15	April 20th, 2003
D. Bernier	(Gecko)	5.07 x 10^15 to 5.11 x 10^15	April 2nd, 2003
J.-P. Bernier	(Pentium 600MHz)	5.04 x 10^15 to 5.07 x 10^15	March 24th, 2003
D. Bernier	(Gecko)	5.01 x 10^15 to 5.04 x 10^15	February 26th, 2003
L. Marmet	(Riyadh)	4.98 x 10^15 to 5.01 x 10^15	March 9th, 2003
J.-P. Bernier	(Pentium 600MHz)	4.95 x 10^15 to 4.98 x 10^15	February 25th, 2003
L. Marmet	(Riyadh)	4.92 x 10^15 to 4.95 x 10^15	January 31st, 2003
J.-P. Bernier	(Pentium 600MHz)	4.90 x 10^15 to 4.92 x 10^15	January 25th, 2003
J.-P. Bernier	(Pentium 600MHz)	4.88 x 10^15 to 4.90 x 10^15	December 26th, 2002
L. Marmet	(Riyadh)	4.85 x 10^15 to 4.88 x 10^15	December 22nd, 2002
N. Robertson	(Maya)	4.82 x 10^15 to 4.85 x 10^15	November 28th, 2002
N. Robertson	(Laika.Droica)	4.79 x 10^15 to 4.82 x 10^15	January 11th, 2003
N. Robertson	(Arthurus)	4.78 x 10^15 to 4.79 x 10^15	February 13th, 2003
J.-P. Bernier	(Pentium 600MHz)	4.75 x 10^15 to 4.78 x 10^15	December 6th, 2002
D. Bernier	(Pentium 500MHz)	4.72 x 10^15 to 4.75 x 10^15	November 6th, 2002
J.-P. Bernier	(Pentium 600MHz)	4.69 x 10^15 to 4.72 x 10^15	November 7th, 2002
D. Bernier	(Pentium 500MHz)	4.66 x 10^15 to 4.69 x 10^15	October 14th, 2002
J.-P. Bernier	(Pentium 600MHz)	4.63 x 10^15 to 4.66 x 10^15	October 13th, 2002
L. Marmet	(Riyadh)	4.60 x 10^15 to 4.63 x 10^15	October 15th, 2002
N. Robertson	(Maya)	4.57 x 10^15 to 4.60 x 10^15	November 3rd, 2002
N. Robertson	(Laika.Droica)	4.54 x 10^15 to 4.57 x 10^15	October 30th, 2002
J.-P. Bernier	(Pentium 600MHz)	4.51 x 10^15 to 4.54 x 10^15	September 12th, 2002
D. Bernier	(Pentium 500MHz)	4.48 x 10^15 to 4.51 x 10^15	September 15th, 2002
J.-P. Bernier	(Pentium 600MHz)	4.45 x 10^15 to 4.48 x 10^15	August 13th, 2002
D. Bernier	(Pentium 500MHz)	4.42 x 10^15 to 4.45 x 10^15	August 12th, 2002
L. Marmet	(Riyadh)	4.39 x 10^15 to 4.42 x 10^15	August 7th, 2002
User Name (Computer Name)	Range	Date Completed	
---------------------------	------------------	----------------	
N. Robertson (Maya)	43.6×10^{15} to 43.9×10^{15}	July 31st, 2002	
N. Robertson (Laika.Droica)	43.3×10^{15} to 43.6×10^{15}	July 27th, 2002	
J.-P. Bernier (Pentium 600MHz)	43.0×10^{15} to 43.3×10^{15}	July 23rd, 2002	
D. Bernier (Pentium 500MHz)	42.7×10^{15} to 43.0×10^{15}	July 11th, 2002	
L. Marmet (Riyadh)	42.4×10^{15} to 42.7×10^{15}	July 11th, 2002	
J.-P. Bernier (Pentium 600MHz)	42.1×10^{15} to 42.4×10^{15}	June 24th, 2002	
N. Robertson (Laika.Droica)	41.8×10^{15} to 42.1×10^{15}	June 17th, 2002	
L. Marmet (Riyadh)	41.5×10^{15} to 41.8×10^{15}	June 14th, 2002	
N. Robertson (Maya)	41.2×10^{15} to 41.5×10^{15}	June 9th, 2002	
N. Robertson (Laika.Droica)	40.9×10^{15} to 41.2×10^{15}	May 28th, 2002	
J.-P. Bernier (Pentium 600MHz)	40.6×10^{15} to 40.9×10^{15}	June 5th, 2002	
D. Bernier (Pentium 500MHz)	40.3×10^{15} to 40.6×10^{15}	May 26th, 2002	
N. Robertson (Maya)	40.0×10^{15} to 40.3×10^{15}	March 6th, 2003	
J.-P. Bernier (Pentium 600MHz)	39.7×10^{15} to 40.0×10^{15}	May 2nd, 2002	
D. Bernier (Pentium 500MHz)	39.4×10^{15} to 39.7×10^{15}	May 1st, 2002	
N. Robertson (Maya)	39.1×10^{15} to 39.4×10^{15}	April 23rd, 2002	
N. Robertson (Laika.Droica)	38.8×10^{15} to 39.1×10^{15}	April 18th, 2002	
L. Marmet (Riyadh)	38.5×10^{15} to 38.8×10^{15}	April 26th, 2002	
N. Robertson (Maya)	38.2×10^{15} to 38.5×10^{15}	March 25th, 2002	
N. Robertson (Laika.Droica)	37.9×10^{15} to 38.2×10^{15}	March 20th, 2002	
L. Marmet (Riyadh)	37.6×10^{15} to 37.9×10^{15}	March 27th, 2002	
J.-P. Bernier (Pentium 600MHz)	37.3×10^{15} to 37.6×10^{15}	March 6th, 2002	
D. Bernier (Pentium 500MHz)	37.0×10^{15} to 37.3×10^{15}	March 12th, 2002	
N. Robertson (Maya)	36.7×10^{15} to 37.0×10^{15}	March 4th, 2002	
N. Robertson (Laika.Droica)	36.4×10^{15} to 36.7×10^{15}	February 28th, 2002	
D. Bernier (Pentium 500MHz)	36.2×10^{15} to 36.4×10^{15}	June 17th, 2002	
N. Robertson (Arthurus)	36.0×10^{15} to 36.2×10^{15}	October 2nd, 2002	
L. Marmet (Riyadh)	35.7×10^{15} to 36.0×10^{15}	February 18th, 2002	
C.R. Ward (Cosmos)	35.4×10^{15} to 35.7×10^{15}	March 10th, 2002	
J.-P. Bernier (Pentium 600MHz)	35.1×10^{15} to 35.4×10^{15}	February 5th, 2002	
D. Bernier (Pentium 500MHz)	34.8×10^{15} to 35.1×10^{15}	February 2nd, 2002	
L. Marmet (Riyadh)	34.5×10^{15} to 34.8×10^{15}	January 6th, 2002	
N. Robertson (Maya)	34.2×10^{15} to 34.5×10^{15}	December 30th, 2001	
N. Robertson (Laika.Droica)	33.9×10^{15} to 34.2×10^{15}	December 25th, 2001	
J.-P. Bernier (Pentium 600MHz)	33.6×10^{15} to 33.9×10^{15}	January 10th, 2002	
C.R. Ward (Cosmos)	33.3×10^{15} to 33.6×10^{15}	January 16th, 2002	
L. Marmet (Riyadh)	33.0×10^{15} to 33.3×10^{15}	December 8th, 2001	
N. Robertson (Maya)	32.7×10^{15} to 33.0×10^{15}	December 4th, 2001	
N. Robertson (Laika.Droica)	32.4×10^{15} to 32.7×10^{15}	November 27th, 2001	
D. Bernier (Pentium 500MHz)	32.1×10^{15} to 32.4×10^{15}	December 26th, 2001	
User Name	(Computer Name)	Range	DateCompleted
-----------------	------------------------------	------------------	---------------
J.-P. Bernier	(Pentium 600MHz)	3.18×10^{15} to 3.21×10^{15}	December 6th, 2001
J.-P. Bernier	(Pentium 600MHz)	3.15×10^{15} to 3.18×10^{15}	November 1st, 2001
C.R. Ward	(Cosmos)	3.12×10^{15} to 3.15×10^{15}	November 25th, 2001
L. Marmet	(Riyadh)	3.09×10^{15} to 3.12×10^{15}	November 2nd, 2001
N. Robertson	(Maya)	3.06×10^{15} to 3.09×10^{15}	October 26th, 2001
N. Robertson	(Laika.Droica)	3.03×10^{15} to 3.06×10^{15}	October 20th, 2001
J.-P. Bernier	(Pentium 600MHz)	3.00×10^{15} to 3.03×10^{15}	September 29th, 2001
N. Robertson	(Maya)	2.97×10^{15} to 3.00×10^{15}	September 18th, 2001
N. Robertson	(Laika.Droica)	2.94×10^{15} to 2.97×10^{15}	September 16th, 2001
L. Marmet	(Riyadh)	2.91×10^{15} to 2.94×10^{15}	September 19th, 2001
N. Robertson	(Rosette.Droica)	2.89×10^{15} to 2.91×10^{15}	December 12th, 2001
N. Robertson	(Laika.Droica)	2.86×10^{15} to 2.89×10^{15}	August 28th, 2001
J.-P. Bernier	(Pentium 600MHz)	2.83×10^{15} to 2.86×10^{15}	September 2nd, 2001
N. Robertson	(Maya)	2.80×10^{15} to 2.83×10^{15}	August 28th, 2001
C.R. Ward	(Cosmos)	2.77×10^{15} to 2.80×10^{15}	September 22nd, 2001
L. Marmet	(Riyadh)	2.74×10^{15} to 2.77×10^{15}	August 22nd, 2001
N. Robertson	(Maya)	2.71×10^{15} to 2.74×10^{15}	August 7th, 2001
J.-P. Bernier	(Pentium 600MHz)	2.68×10^{15} to 2.71×10^{15}	August 8th, 2001
D. Bernier	(Pentium 500MHz)	2.65×10^{15} to 2.68×10^{15}	April 6th, 2002
C.R. Ward	(Cosmos)	2.62×10^{15} to 2.65×10^{15}	April 29th, 2002
D. Bernier	(Pentium 500MHz)	2.59×10^{15} to 2.62×10^{15}	November 2nd, 2001
N. Robertson	(Maya)	2.56×10^{15} to 2.59×10^{15}	July 16th, 2001
J.-P. Bernier	(Pentium 600MHz)	2.53×10^{15} to 2.56×10^{15}	July 15th, 2001
L. Marmet	(Riyadh)	2.50×10^{15} to 2.53×10^{15}	July 23rd, 2001
C.R. Ward	(Cosmos)	2.47×10^{15} to 2.50×10^{15}	August 2nd, 2001
J.-P. Bernier	(Pentium 600MHz)	2.44×10^{15} to 2.47×10^{15}	April 8th, 2002
Z. McGregor-Dorsey	(Abzug)	2.41×10^{15} to 2.44×10^{15}	July 7th, 2001
N. Robertson	(Arthurus)	2.39×10^{15} to 2.41×10^{15}	November 30th, 2001
L. Marmet	(Riyadh)	2.36×10^{15} to 2.39×10^{15}	June 14th, 2001
N. Robertson	(Maya)	2.33×10^{15} to 2.36×10^{15}	June 18th, 2001
Z. McGregor-Dorsey	(Hayduke)	2.30×10^{15} to 2.33×10^{15}	July 7th, 2001
J.-P. Bernier	(Pentium 600MHz)	2.27×10^{15} to 2.30×10^{15}	June 16th, 2001
J.-P. Bernier	(Pentium 600MHz)	2.24×10^{15} to 2.27×10^{15}	May 26th, 2001
D. Bernier	(Pentium 500MHz)	2.21×10^{15} to 2.24×10^{15}	June 19th, 2001
Z. McGregor-Dorsey	(Castalia)	2.18×10^{15} to 2.21×10^{15}	June 5th, 2001
C.R. Ward	(Cosmos)	2.15×10^{15} to 2.18×10^{15}	June 7th, 2001
J.-P. Bernier	(Pentium 600MHz)	2.12×10^{15} to 2.15×10^{15}	May 8th, 2001
L. Marmet	(Riyadh)	2.09×10^{15} to 2.12×10^{15}	May 16th, 2001
D. Bernier	(Pentium 500MHz)	2.06×10^{15} to 2.09×10^{15}	May 3rd, 2001
L. Marmet	(Fontaine)	2.03×10^{15} to 2.06×10^{15}	May 8th, 2001
User Name	(Computer Name)	Range	Date/Completed
------------------	---------------------	------------------	----------------
J.-P. Bernier	(Pentium 600MHz)	20.0 x 10^{15} to 20.3 x 10^{15}	April 20^{th}, 2001
C.R. Ward	(Cosmos)	19.8 x 10^{15} to 20.0 x 10^{15}	April 20^{th}, 2001
L. Marmet	(Riyadh)	19.6 x 10^{15} to 19.8 x 10^{15}	April 18^{th}, 2001
Z. McGregor-Dorsey	(Abzug)	19.4 x 10^{15} to 19.6 x 10^{15}	May 27^{th}, 2001
Z. McGregor-Dorsey	(Hayduke)	19.2 x 10^{15} to 19.4 x 10^{15}	May 10^{th}, 2001
D. Bernier	(Pentium 500MHz)	19.0 x 10^{15} to 19.2 x 10^{15}	April 11^{th}, 2001
L. Marmet	(Fontaine)	18.8 x 10^{15} to 19.0 x 10^{15}	April 7^{th}, 2001
D. Bernier	(Pentium 500MHz)	18.6 x 10^{15} to 18.8 x 10^{15}	April 4^{th}, 2001
J.-P. Bernier	(Pentium 600MHz)	18.4 x 10^{15} to 18.6 x 10^{15}	March 27^{th}, 2001
L. Marmet	(Riyadh)	18.2 x 10^{15} to 18.4 x 10^{15}	April 1^{st}, 2001
D. Bernier	(Pentium 500MHz)	18.0 x 10^{15} to 18.2 x 10^{15}	March 18^{th}, 2001
L. Marmet	(Fontaine)	17.8 x 10^{15} to 18.0 x 10^{15}	March 21^{st}, 2001
L. Marmet	(Riyadh)	17.6 x 10^{15} to 17.8 x 10^{15}	March 15^{th}, 2001
J.-P. Bernier	(Pentium 600MHz)	17.4 x 10^{15} to 17.6 x 10^{15}	March 14^{th}, 2001
D. Bernier	(Pentium 500MHz)	17.2 x 10^{15} to 17.4 x 10^{15}	March 5^{th}, 2001
J.-P. Bernier	(Pentium 600MHz)	17.0 x 10^{15} to 17.2 x 10^{15}	March 2^{nd}, 2001
L. Marmet	(Fontaine)	16.8 x 10^{15} to 17.0 x 10^{15}	March 3^{rd}, 2001
L. Marmet	(Riyadh)	16.6 x 10^{15} to 16.8 x 10^{15}	February 26^{th}, 2001
D. Bernier	(Pentium 500MHz)	16.4 x 10^{15} to 16.6 x 10^{15}	February 19^{th}, 2001
J.-P. Bernier	(Pentium 600MHz)	16.2 x 10^{15} to 16.4 x 10^{15}	February 17^{th}, 2001
N. Robertson	(Arthurus)	16.0 x 10^{15} to 16.2 x 10^{15}	May 27^{th}, 2001
L. Marmet	(Fontaine)	15.8 x 10^{15} to 16.0 x 10^{15}	February 11^{th}, 2001
Z. McGregor-Dorsey	(Castalia)	15.6 x 10^{15} to 15.8 x 10^{15}	April 25^{th}, 2001
Z. McGregor-Dorsey	(Abzug)	15.4 x 10^{15} to 15.6 x 10^{15}	April 17^{th}, 2001
L. Marmet	(Riyadh)	15.2 x 10^{15} to 15.4 x 10^{15}	February 8^{th}, 2001
Z. McGregor-Dorsey	(Hayduke)	15.0 x 10^{15} to 15.2 x 10^{15}	April 5^{th}, 2001
J.-P. Bernier	(Pentium 600MHz)	14.8 x 10^{15} to 15.0 x 10^{15}	February 4^{th}, 2001
L. Marmet	(Riyadh)	14.6 x 10^{15} to 14.8 x 10^{15}	January 22^{nd}, 2001
Z. McGregor-Dorsey	(Castalia)	14.4 x 10^{15} to 14.6 x 10^{15}	April 3^{rd}, 2001
Z. McGregor-Dorsey	(Abzug)	14.2 x 10^{15} to 14.4 x 10^{15}	March 19^{th}, 2001
Z. McGregor-Dorsey	(Hayduke)	14.0 x 10^{15} to 14.2 x 10^{15}	March 19^{th}, 2001
L. Marmet	(Strontium)	13.8 x 10^{15} to 14.0 x 10^{15}	December 17^{th}, 2000
L. Marmet	(Riyadh)	13.6 x 10^{15} to 13.8 x 10^{15}	January 5^{th}, 2001
L. Marmet	(Strontium)	13.4 x 10^{15} to 13.6 x 10^{15}	December 11^{th}, 2000
L. Marmet	(Fontaine)	13.2 x 10^{15} to 13.4 x 10^{15}	December 13^{th}, 2000
L. Marmet	(Strontium)	13.0 x 10^{15} to 13.2 x 10^{15}	December 4^{th}, 2000
L. Marmet	(Riyadh)	12.8 x 10^{15} to 13.0 x 10^{15}	December 9^{th}, 2000
L. Marmet	(Strontium)	12.6 x 10^{15} to 12.8 x 10^{15}	November 26^{th}, 2000
L. Marmet	(Fontaine)	12.4 x 10^{15} to 12.6 x 10^{15}	November 24^{th}, 2000
Z. McGregor-Dorsey	(Abzug)	12.2 x 10^{15} to 12.4 x 10^{15}	January 21^{st}, 2001
User Name	(Computer Name)	Range	Date Completed
---------------	-----------------	----------------------	------------------------
L. Marmet	(Riyadh)	12.0×10^{15} to 12.2×10^{15}	November 22nd, 2000
L. Marmet	(Strontium)	11.8×10^{15} to 12.0×10^{15}	November 17th, 2000
Z. McGregor-Dorsey	(Castalia)	11.6×10^{15} to 11.8×10^{15}	January 22nd, 2001
L. Marmet	(Riyadh)	11.4×10^{15} to 11.6×10^{15}	November 7th, 2000
Z. McGregor-Dorsey	(Haydude)	11.2×10^{15} to 11.4×10^{15}	January 21st, 2001
L. Marmet	(Riyadh)	11.0×10^{15} to 11.2×10^{15}	November 1st, 2000
Z. McGregor-Dorsey	(Haydude)	10.8×10^{15} to 11.0×10^{15}	December 10th, 2000
Z. McGregor-Dorsey	(Castalia)	10.6×10^{15} to 10.8×10^{15}	December 10th, 2000
L. Marmet	(Riyadh)	10.4×10^{15} to 10.6×10^{15}	October 13th, 2000
N. Robertson	(Arthurus)	10.2×10^{15} to 10.4×10^{15}	January 27th, 2001
N. Marmet	(Computer)	10.0×10^{15} to 10.2×10^{15}	October 21st, 2000
L. Marmet	(Riyadh)	9.8×10^{15} to 10.0×10^{15}	September 27th, 2000
Z. McGregor-Dorsey	(Castalia)	9.6×10^{15} to 9.8×10^{15}	November 16th, 2000
Z. McGregor-Dorsey	(Haydude)	9.4×10^{15} to 9.6×10^{15}	January 26th, 2001
L. Marmet	(Fontaine)	9.2×10^{15} to 9.4×10^{15}	January 26th, 2001
Z. McGregor-Dorsey	(Castalia)	9.0×10^{15} to 9.2×10^{15}	October 24th, 2000
Z. McGregor-Dorsey	(Castalia)	8.8×10^{15} to 9.0×10^{15}	September 27th, 2000
Z. McGregor-Dorsey	(Haydude)	8.6×10^{15} to 8.8×10^{15}	September 11th, 2000
L. Marmet	(Riyadh)	8.4×10^{15} to 8.6×10^{15}	September 11th, 2000
Z. McGregor-Dorsey	(Castalia)	8.2×10^{15} to 8.4×10^{15}	September 3rd, 2000
Z. McGregor-Dorsey	(Abzug)	8.0×10^{15} to 8.2×10^{15}	October 16th, 2000
Z. McGregor-Dorsey	(Haydude)	7.8×10^{15} to 8.0×10^{15}	October 16th, 2000
Z. McGregor-Dorsey	(Abzug)	7.6×10^{15} to 7.8×10^{15}	September 27th, 2000
Z. McGregor-Dorsey	(Haydude)	7.4×10^{15} to 7.6×10^{15}	August 26th, 2000
N. Marmet	(Computer)	7.2×10^{15} to 7.4×10^{15}	September 17th, 2000
L. Marmet	(Riyadh)	7.0×10^{15} to 7.2×10^{15}	August 25th, 2000
G. Engebreth	(Computer)	6.8×10^{15} to 7.0×10^{15}	August 28th, 2000
Z. McGregor-Dorsey	(Haydude)	6.6×10^{15} to 6.8×10^{15}	August 17th, 2000
Z. McGregor-Dorsey	(Abzug)	6.4×10^{15} to 6.6×10^{15}	September 2nd, 2000
Z. McGregor-Dorsey	(Abzug)	6.2×10^{15} to 6.4×10^{15}	August 26th, 2000
Z. McGregor-Dorsey	(Abzug)	6.0×10^{15} to 6.2×10^{15}	August 7th, 2000
G. Engebreth	(Computer)	5.8×10^{15} to 6.0×10^{15}	August 10th, 2000
L. Marmet	(Riyadh)	5.6×10^{15} to 5.8×10^{15}	August 6th, 2000
Z. McGregor-Dorsey	(Abzug)	5.4×10^{15} to 5.6×10^{15}	August 26th, 2000
Z. McGregor-Dorsey	(Haydude)	5.2×10^{15} to 5.4×10^{15}	July 28th, 2000
Z. McGregor-Dorsey	(Castalia)	5.0×10^{15} to 5.2×10^{15}	August 16th, 2000
Z. McGregor-Dorsey	(Castalia)	4.8×10^{15} to 5.0×10^{15}	July 28th, 2000
N. Marmet	(Computer)	4.6×10^{15} to 4.8×10^{15}	August 15th, 2000
E. Wong	(Computer)	4.4×10^{15} to 4.6×10^{15}	September 27th, 2000
Z. McGregor-Dorsey	(Haydude)	4.2×10^{15} to 4.4×10^{15}	July 14th, 2000
User Name	Computer Name	Range	Date Completed
--------------------	---------------	---------------	----------------
L. Marmet	Riyadh	4×10^{15} to 4.2×10^{15}	July 20th, 2000
Z. McGregor-Dorsey	Abzug	3.8×10^{15} to 4.0×10^{15}	July 18th, 2000
Z. McGregor-Dorsey	Castalia	3.6×10^{15} to 3.8×10^{15}	July 10th, 2000
Z. McGregor-Dorsey	Abzug	3.4×10^{15} to 3.6×10^{15}	July 10th, 2000
Z. McGregor-Dorsey	Hayduke	3.2×10^{15} to 3.4×10^{15}	July 1st, 2000
L. Marmet	Riyadh	3.0×10^{15} to 3.2×10^{15}	June 29th, 2000
Z. McGregor-Dorsey	Castalia	2.8×10^{15} to 3.0×10^{15}	June 18th, 2000
G. Engebrith	Computer	2.6×10^{15} to 2.8×10^{15}	July 22nd, 2000
Z. McGregor-Dorsey	Castalia	2.4×10^{15} to 2.6×10^{15}	June 8th, 2000
N. Marmet	Computer	2.2×10^{15} to 2.4×10^{15}	July 5th, 2000
L. Marmet	Riyadh	2.0×10^{15} to 2.2×10^{15}	June 9th, 2000
Z. McGregor-Dorsey	Abzug	1.8×10^{15} to 2.0×10^{15}	May 27th, 2000
A. Simpson	Computer	1.6×10^{15} to 1.8×10^{15}	June 30th, 2000
Z. McGregor-Dorsey	Hayduke	1.4×10^{15} to 1.6×10^{15}	May 13th, 2000
L. Marmet	Riyadh	1.2×10^{15} to 1.4×10^{15}	May 16th, 2000
G. Engebrith	Computer	1.1×10^{15} to 1.2×10^{15}	June 1st, 2000
E. Wong	Computer	1.0×10^{15} to 1.1×10^{15}	May 31st, 2000
L. Marmet	Lion	9×10^{14} to 10×10^{14}	June 13th, 2000
L. Marmet	Riyadh	8×10^{14} to 9×10^{14}	April 5th, 2000
Z. McGregor-Dorsey	Castalia	7×10^{14} to 8×10^{14}	May 1st, 2000
L. Marmet	Fontaine	6×10^{14} to 7×10^{14}	April 22nd, 2000
E. Wong	Computer	5×10^{14} to 6×10^{14}	April 8th, 2000
L. Marmet	Fontaine	4×10^{14} to 5×10^{14}	March 5th, 2000
D. Bernier	Pentium 500MHz	3×10^{14} to 4×10^{14}	March 24th, 2000
L. Marmet	Riyadh	2×10^{14} to 3×10^{14}	February 4th, 2000
D. Bernier	Pentium 500MHz	1.5×10^{14} to 2.0×10^{14}	January 24th, 2000
L. Marmet	Lion	4×10^{9} to 1500×10^{11}	December 20th, 1999