Electrochemical gating-induced reversible and drastic resistance switching in VO$_2$ nanowires

Tsubasa Sasaki, Hiroki Ueda, Teruo Kanki & Hidekazu Tanaka

Reversible and drastic modulation of the transport properties in vanadium dioxide (VO$_2$) nanowires by electric field-induced hydrogenation at room temperature was demonstrated using the nanogaps separated by humid air in field-effect transistors with planer-type gates (PG-FET). These PG-FETs allowed us to investigate behavior of revealed hydrogen intercalation and diffusion aspects with time and spatial evolutions in nanowires. These results show that air nanogaps can operate as an electrochemical reaction field, even in a gaseous atmosphere, and offer new directions to explore emerging functions for electronic and energy devices in oxides.

The transport characteristics of transition metal oxides are sensitive to redox reactions because the valence numbers of the transition metal ions are easily changed by the reactions, which affect the carrier density and/or stabilization of the crystal structure$^{1-4}$. Of the prototypical materials, VO$_2$ is promising as it undergoes a metal-insulator transition (MIT) and the resistance changes by orders of magnitude around 340 K. In VO$_2$ nano to microstructures$^{5-13}$, the coupling of the MIT with mechanical$^{7-9}$, optical13, thermal12 and electronic properties9,11 can be used in tunable resonators, optical switches, electronic and thermo-sensing devices. Furthermore, only a few atomic percent of the hydrogen- or oxygen-intercalation and -desorption in VO$_2$ cause drastic changes in the transport properties, equal to that caused by inducing the MIT$^{14-20}$. Conventionally, controlling the amount of hydrogen/oxygen ions in an oxide has been conducted by annealing the samples under redox gas atmospheres1,4,13,16, in an aqueous solution17,18 and with a hydrogen spillover method14,19. Every method requires high temperatures of at least 150°C. Recently, on the other hand, an electric field has been shown to be a means of both hydrogenation and oxidization in oxides at room temperature$^{20-23}$. For example, a strong electric field in ionic liquid (IL) gates induces oxygen vacancy formation in VO$_2$22. In IL or CAN (amorphous 12CaO·7Al$_2$O$_3$ with a nanoporous structure) gates including water21,24, furthermore, hydrogen ions can be intercalated by positive electric field. Thus electrochemical gating including water electrolysis has a full potential to allow tuning of doping level at room temperature. In this paper, we report investigation of systematic transport modulation in VO$_2$ nanowires by electrochemical gating via air gap under humid condition and establishment of the ion diffusion model, giving the hydrogen ion intercalation and diffusion aspects with time and spatial evolutions in VO$_2$.

Results

Proposed device structure. As a proper device structure to perform this experiment, we have prepared planer-type field effect transistor with side gates and a nanoscaled wire channel separated by air nanogaps (PG-FET) illustrated in Fig. 1a. This type of device has following advantages: An electric field can be applied under various different gas and vapor atmospheres through the air nanogap. In this study, air with various humidity levels and dry air were used. Secondly, the electric-field induced ion intercalation and diffusion aspects with the time and spatial evolutions in the vicinity of interface can be systematically investigated because ions are intercalated from channel edges of both side and diffuse...
from the sides in VO₂. Especially a narrower channel often enhances interface effect. An atomic force microscope image of a device is shown in Fig. 1a and the height profile is in Fig. 1b. The thicknesses of the channels and the gap distance were roughly 35 nm and 400 nm, respectively. The channel widths (w) were systematically changed from 3 μm to 400 nm (see Methods and Supplementary Information section A for details). Figure 1c shows a cross-sectional electric field-map, obtained using a Finite Element simulation using typical experimental parameters (see Supplementary Information section B). The electric field converged at the edges of the channels, providing the strongest effect on the electrochemical reaction. Thus the field-induced ion intercalation begins at the lateral sides of the nanowires

Drastic resistance modulation by electrochemical induced-hydrogenation. Figure 2a shows the reversible and non-volatile resistance modulation in a VO₂ nanowire channel (w = 500 nm), found by applying a positive and negative V_G at 300 K under a humidity of around 50%. The normalized resistance (R/R₀), where R and R₀ are the resistance and the pristine resistance before applying a V_G at 300 K, respectively, slowly continued to drop during the application of V_G = 100 V down to the saturation line at roughly R/R₀ = 0.75. This state was held after removal of the V_G. Namely, it exhibited a non-volatile memory effect. In contrast, the resistance increased again at V_G = −100 V. Regarding slow resistive drops by an electric field, it is suggested that the origin would be related to mechanical relaxation or slow traps according to some reports. In our PG-FET devices, on the other hand, such slow changes in the resistance were not observed under dry air condition (Fig. 2b). A steep resistance-switching of 0.06% occurred without any non-volatile memory effects, as shown in the inset of Fig. 2b. Approximately 10¹² cm⁻² electrons should be accumulated at V_G = 100 V and 400 nm-gap distance. From Hall measurements in VO₂ thin films on Al₂O₃ substrates, the carrier density was evaluated at ~4 x 10¹⁸ cm⁻³, equivalent to the Debye length of ~2 nm. Given modulation of resistivity in both lateral sides in our device geometry, the calculated modulation rate would be ideally 0.4%. Thus, it is considered that a pure carrier accumulation acts at lateral sides in dry air condition though the efficiency on the electrostatic effects was not so high compared with the ideal case. From the presence of the steep resistive switching in Fig. 2b, the origin of slow resistive drops under humid air conditions is not likely to attribute to the mechanical relaxation or slow traps as mentioned above, but rather to electrochemical reaction with intercalation of hydrogen ions, which can significantly reduce resistivity in 3d-orbital sensitive systems (see Supplementary Information).
Information C for the intercalation ($V_G = 100\, \text{V}$) and non-intercalation ($V_G = 0\, \text{V}$) cases in detail) and/or color-switching properties known as electrochromism. In VO$_2$, intercalated hydrogen ions, a strong H-O bond induces electron transfer from hydrogen onto the oxygen atom, resulting in higher 3d-orbital occupancy of vanadium from $\text{V}^{4+}(3d^1)$ to $\text{V}^{3+}(3d^2)$. Figure 2c shows V_G dependence of R/R_0 20 minutes after applying the V_G to investigate the magnitude of resistance changes with variety of V_G. The threshold voltage starting to the reduction (V_{th}) was approximately 20\, \text{V} and the magnitude of the resistance changes was enhanced with increasing V_G. The resistance fluctuation in over 20\, \text{V} would be due to fluctuation for level of humidity. The resistance modulation is sensitive to the level of humidity. In addition, repetitive intercalation and desorption of hydrogen ions may slightly change crystallinity of VO$_2$ channels, causing the resistive fluctuation. In response with the resistance changes, the current between the gate and source electrodes (I_{GS}) suddenly increased at around 20\, \text{V} as seen in Fig. 2d, corresponding to the V_{th} in Fig. 2c. Subtracting the current recorded under humid conditions from that recorded under dry conditions gives the current generated by the electrolysis of water. Accordingly, the density of generated hydrogen ions increases with increasing V_G and the number of intercalated hydrogen ions in VO$_2$ increases. Additionally, Fig. 2e shows the ratio of hydrogen elements in a device after applying $V_G = 100\, \text{V}$, investigated by ToF-SIMS (time-of-flight secondary ion mass spectrometer). It can be indicated that hydrogen content in VO$_2$ channel is higher than that in other area in a device after applying the V_G, though the hydrogen content is roughly averaged because spatial resolution in the measurement is several hundred nanometer at most, whereas the hydrogen contents remain unchanged in a pristine device in Fig. 2f (see Supplementary Information section D in detail).
Establishment in ion diffusion model by electrochemical gating. It is known that a 1% hydrogen intercalation per VO₂ unit cell induces almost one order of magnitude reduction in resistivity. Based on the empirical facts and the intercalation from the channel edge by applying electric gate from lateral sides, the amount of intercalated hydrogen ions and the effect on the diffusive aspect in VO₂ can be evaluated by investigating the resistive behavior with a variety of V₆ values. Figure 3 shows the time dependence of the resistive modulations with various V₆ values under a humidity of 60%. The resistance began to decrease above V₆ = 22 V, approximately corresponding to the V₆ in. In the characteristic features, the magnitude of resistance reduction rate increases with increasing V₆ and the initial reduction speed is faster in the larger V₆, while the reduction speed became slower with time.

To understand such transport behaviors in a variety of VO₂, theoretical investigations have been carried out with a combination of chemical reaction kinetics at the interface and ion diffusion model under an electric field. The external hydrogen ions stochastically react with VO₂ at the interface. The reaction rate depends on the external hydrogen ion concentration (n_H⁺) generated by electrolysis of the absorbed water. The n_H⁺ tends to increase with increasing current between the gate and channel electrodes (I_G), promoting formation of HVO₂. While at the same time, desorption of hydrogen, namely return to VO₂, would occur because of the natural recovery of resistivity by the thermal energy as seen in Supplementary Information section E. Thus assuming the reversible reaction, the time evolution-dependence of the concentration of intercalated ions inside VO₂ at the interface (n_inter) can be written as a differential equation with respect to time (t):

\[
\frac{d n_{\text{inter}}}{dt} = k_1 n_{\text{H}^+} - k_2 n_{\text{inter}}
\]

(1)

where k₁ and k₂ are the forward and reverse reaction rate constants, depending on the activation energy at the interface and temperature. Next, we consider how the intercalated ions diffuse in VO₂. Theoretically, for ion diffusion, the ionic fluxes likely arise from the gradients of the ion concentration and the electric field in solid-state materials. Thus, as n_HVO₂ is the hydrogen ion concentration in VO₂, the hydrogen ion flux (J_HVO₂) can be described as:

\[
J_{HVO_2} = -D \nabla n_{HVO_2} + \mu n_{HVO_2} E_{\text{in}}
\]

where D is the diffusivity, \(\mu\) is the mobility and \(E_{\text{in}}\) is the internal electric field in VO₂. The first and second terms represent ion diffusion by the ion concentration gradient and by an electric field, respectively. The E resulting from V₆ is screened by mobile electrons in VO₂ according to Poisson’s equation, given as a function of the distance (x) from the interface (x = 0), namely:

\[
\frac{d}{dx} \left(\varepsilon \varepsilon_0 \frac{d}{dx} E(x) \right) = \frac{N_e}{\varepsilon \varepsilon_0} (x_0 - x)
\]

(2)

where \(\varepsilon\) is the elementary charge, \(N_e\) is the carrier density in VO₂, and \(\varepsilon\) and \(\varepsilon_0\) are the relative permittivity of VO₂ and the permittivity of a vacuum, respectively. \(x_0\) can be expressed as:

\[
\frac{\partial}{\partial x} (\varepsilon \varepsilon_0 \frac{d}{dx} E(x)) = \frac{N_e}{\varepsilon \varepsilon_0} (x_0 - x)
\]

To conduct the unsteady state analysis, we use Fick’s second law in the one dimensional case, namely:

\[
\frac{\partial n_{HVO_2}}{\partial t} = -D \frac{\partial^2 n_{HVO_2}}{\partial x^2} + \frac{\mu \varepsilon_0 N_e}{\varepsilon \varepsilon_0} [n_{HVO_2} - (x_0 - x)] \frac{\partial}{\partial x} n_{HVO_2}
\]

(2)
Furthermore, using a parallel resistor model for the resistivity in the intercalated (ρ_{IH}) and non-intercalated (ρ_0) parts in Fig. 4a and assuming a 1% hydrogen intercalation per VO$_2$ unit cell induces one order of magnitude reduction in the resistivity17,18, R/R_0 could be evaluated as the following equation:

$$\left(\frac{R}{R_0}\right)^{-1} = \left[4\sum_{m=0}^{m} \frac{1}{\rho_{IH}} + (w - 4x_0) \frac{1}{\rho_0}\right] \times \frac{\rho_0}{w}$$

(3)

where ρ_{IH}^i is the part of the spatially divided resistivity in the diffuse area taking 2×6 in consideration of ion diffusion by the ion concentration gradient, which is divided into i, and is given as: $\rho_0 \times 10^{-n_{HVO}^i}$, where n_{HVO}^i represents the hydrogen concentration in segment i (i: integral), derived using the finite difference method in equation (2) and the boundary conditions in equation (1). A more detailed derivation is outlined in the Supplementary Information section F.

The experimental results in Fig. 3 are significantly reproduced in Fig. 4b as k_1, k_2, and μ are fitting constants, though the more perfect reproduction requires more consideration efforts in the setting parameters, for example, considering k_1 and k_2 parameters depending on V_G, which make enhanced the reduction rate of resistivity with increasing V_G, and more precise resistive simulation like a random resistor network. Furthermore, this simulation enough includes the important essence of ion diffusion behavior, time and spatial evolutions of the ion diffuse in VO$_2$ are shown in Fig. 4c,d, which are in the cases at $V_G = 27$ and 38 V, respectively, where $x = 0$ indicates a channel edge. Hydrogen ions expand with time and the concentration increase with increasing V_G. Within the frame work of this model, interestingly, hydrogen ions accumulate in an inner area, clearly observed at $V_G = 38$ V in Fig. 4d. This is caused by the continuous non-equilibrium states of the ion intercalation and diffusion by an electric field. In more detail, this accumulation is induced by the slower ion-diffusion rate in the inner part, depending on deduction of internal electric field with increasing x. As a token of this scenario, following the removal of any V_G, this accumulation fades away in time due to the ion-diffusion by concentration gradient and finally the concentration become homogeneous and equilibrium states. This diffusion behavior at $V_G = 0$ is significantly reproducible for the persisting resistance decrease even after removal of the V_G in Fig. 2a, shown by the simulation in Supplementary Information section G. Thus this device suggests to be a kind of proton pumps in solid-state system.

Drastic resistance modulation in narrower nano-channel. Moreover, this model predict that the magnitude of resistance reduction rate enhance with decreasing the channel width (w) because the effect on the interface diffusion due to the electrochemical gating from lateral sides become more prominent.
in narrower \(w \). Figure 5 shows the time dependence of \(R/R_0 \) with a variety of wire widths (\(w = 400, 1500 \) and \(3000 \) nm) at \(V_G = 100 \) V and \(300 \) K. The saturation values for \(R/R_0 \) were enhanced with decreasing \(w \) and the sharpness of the resistance deduction in the initial process differs among the three devices as seen in the left inset of Fig. 5, magnified view from 0 to 2 minutes of Fig. 5. This behavior is in agreement with the simulation in the right inset of Fig. 5. Thus the further narrower channel will provide perfect electrochemical gating causing metal-insulator transition in whole channel area.

Discussion

These results show that an air nanogap significantly works as an electrochemical reaction field, even in a gaseous atmosphere, and it is expected that the intercalated elements have an impact on reversibly changing in the physical properties of \(\text{VO}_2 \). This interfacial effect was more enhanced in smaller nanoscaled channels. This offers a new way to both investigate the fundamental physical properties on the effect of intercalation and non-equilibrium ion diffusion for a wide range of materials and may lead to the realization of new gas-sensing, storage applications and also ion pumps in solid-state materials.

Methods

Thin film growth. 35-nm-thick \(\text{VO}_2 \) films were prepared on \(\text{Al}_2\text{O}_3(0001) \) single crystal substrates by pulsed laser deposition using an ArF excimer laser at 450 °C under an oxygen pressure of 1.0 Pa. Using X-ray diffraction measurements, it was confirmed that the films were \(b \)-axis-oriented without any impurity phases.

Device fabrication. The films were patterned into nanowire channels with planer-type field gates by nanoimprint lithography and reactive ion etching using \(\text{O}_2 \) and \(\text{SF}_6 \) gases. As advantages of this method, we can easily obtain 200 nm to 400 nm-air gaps between \(\text{VO}_2 \) gate electrodes and \(\text{VO}_2 \) channels, and fabricate many PG-FETs at one process. Also, since the resistivity of \(\text{VO}_2 \) is roughly 1 ohm cm even in insulating region at room temperature, \(\text{VO}_2 \) gate should enough work as gate electrodes in electrostatic effect. Pt/Cr electrodes were deposited by radio-frequency sputtering. Ohmic contacts between the \(\text{VO}_2 \) films and electrodes were confirmed.

Electrical measurements. The transport characteristics were measured using a two terminal method with a Keithley 2635A. \(V_G \) was applied using a Keithley 236 and the currents between the gate and source electrodes were monitored simultaneously. The temperature of the device was controlled by a Peltier-based temperature stage (T95, Linkam). The gaseous conditions, from dry air to 80% humidity were controlled in a glovebox. The humidity fluctuation was within ±2%.

References

1. Malavasi, L., Mozzati, M. C., Azzoni, C. B., Chiodelli, G. & Flor, G. Role of oxygen content on the transport and magnetic properties of \(\text{La}_{1-x}\text{Ca}_x\text{MnO}_3 \) manganites. *Solid State Commun.* 123, 321–326 (2002).
2. Nagashima, M., Wada, H., Tanikawa, K. & Shirahata, H. The electronic behaviors of oxygen-deficient \(\text{VO}_2 \) thin films in low temperature region. *Ipn. J. Appl. Phys.* 37, 4433–4438 (1998).
3. Zhao, Y. *et al.* Electrical transport and magnetic properties of \(\text{La}_{0.5}\text{Ca}_0.5\text{MnO}_3-y \) with varying oxygen content. *Phys. Rev. B* 65, 144406 (2002).
4. Poulsen, F. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of \((\text{La}_{1-x}\text{Sr}_x)\text{MnO}_3 \). *Solid State Ionics* 129, 143–162 (2000).
5. Wu, J. *et al.* Strain-Induced Self Organization of Metal-Insulator Domains in Single-Crystalline \(\text{VO}_2 \) Nanobeams. *Nano Lett.* 6, 2313–2317 (2006).
6. Cheng, C. *et al.* Heat Transfer across the Interface between Nanoscale Solids and Gas. *ASC Nano* 5, 10102–10107 (2011).
Electrochemical gating-induced reversible and drastic et al.

Competing financial interests: The authors declare no competing financial interests.

how to cite this article: Sasaki, T. et al. Electrochemical gating-induced reversible and drastic resistance switching in VO₂ nanowires. Sci. Rep. 5, 17080; doi: 10.1038/srep17080 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/