Abstract

Location Prediction is an estimate of a location in which a user will be at a particular place at a particular time within a certain probability. Location Prediction has gained prominence over the past decade which is due to improved technology in mobile communication. Classification of mobile users can be regular or random which can be used to ascertain the pattern of the user over a period of time which also helps in planning the movement of the user.

This paper places emphasizes on the relevance of location prediction models in mobile users. A review of various location prediction model is carried out showing the effectiveness of each model, limitations, and also future work of some research works. Although this article does not give an exhaustive survey of all techniques and applications but it gives a description of several types of algorithms and models used for location prediction.
An Analysis of Location Prediction Models

1. Bahl, P., Padmanabhan, V. N., and Balachandran, A. (2000). Enhancements to the RADAR user location and tracking system. Microsoft Research, 2(MSR-TR-2000-12), 775-784.

2. Gambs, S., Killijian, M. O., and Prado Cortez, M. N. (2012,). Next place prediction using mobility markov chains. In Proceedings of the First Workshop on Measurement, Privacy, and Mobility (p. 3). ACM.

3. Gomes, J. B., Phua, C., & Krishnaswamy, S. (2013). Where will you go? mobile data mining for next place prediction. In International Conference on Data Warehousing and Knowledge Discovery (pp. 146-158). Springer, Berlin, Heidelberg.

4. Han, B., Cook, P., & Baldwin, T. (2014). Text-based twitter user geolocation prediction. Journal of Artificial Intelligence Research, 49, 451-500.

5. Herder, E., Siehndel, P., and Kawase, R. (2014). Predicting user locations and trajectories. In International Conference on User Modeling, Adaptation, and Personalization (pp. 86-97). Springer, Cham.

6. Keles, I., Ozer, M., Toroslu, I. H., and Karagoz, P. (2014). Location prediction of mobile phone users using apriori-based sequence mining with multiple support thresholds. In International Workshop on New Frontiers in Mining Complex Patterns (pp. 179-193). Springer, Cham.

7. Liu, Q., Wu, S., Wang, L., and Tan, T. (2016). Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts. In AAAI (pp. 194-200).

8. Mathew, W., Raposo, R., & Martins, B. (2012, September). Predicting future locations with hidden Markov models. In Proceedings of the 2012 ACM conference on ubiquitous computing (pp. 911-918).

9. Noulas, A., Scellato, S., Lathia, N., and Mascolo, C. (2012). Mining user mobility features for next place prediction in location-based services. In Data mining (ICDM), 2012 IEEE 12th international conference on (pp. 1038-1043). IEEE.

10. Lee, Y., Choi, J. W., and Lertlakkhanakul, J. (2005). Developing a user location prediction model for ubiquitous computing. In Proceedings of CAAD Futures (pp. 215-224).

11. Qiao, Y., Yang, J., He, H., Cheng, Y., and Ma, Z. (2015). User location prediction with energy efficiency model in the Long Term-Evolution network. International Journal of Communication Systems, 29(14), 2169-2187.

12. Wen, L., Shi-Xiong, X., Feng, L., and Lei, Z. (2014). Improving location prediction by exploring spatial-temporal-social ties. Mathematical Problems in Engineering, 2014.

13. Zhang, Y., Hu, J., Dong, J., Yuan, Y., Zhou, J., and Shi, J. (2009). Location prediction model based on Bayesian network theory. In Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE (pp. 1-6). IEEE.

14. Zhang, H., Chen, Z., Liu, Z., Zhu, Y., and Wu, C. (2016). Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset. PloS one, 11(8), e0160629

15. Saygin, Y., & Ulusoy, Ö. (2002). Exploiting data mining techniques for broadcasting data in mobile computing environments. IEEE Transactions on Knowledge and Data Engineering, 14(6), 1387-1399.

Index Terms

Computer Science
Information Systems
Keywords

Location Prediction, Semantic, Markov Chain