A systematic review and meta-analysis of diagnostic test accuracy studies of self-report screening instruments for common mental disorders in Arabic-speaking adults

Anne M. de Graaff, Pim Cuijpers, Mariska Leeflang, Irene Sferra, Jana R. Uppendahl, Ralph de Vries and Marit Sijbrandij

Background. Self-report screening instruments are frequently used as scalable methods to detect common mental disorders (CMDs), but their validity across cultural and linguistic groups is unclear. We summarized the diagnostic accuracy of brief questionnaires on symptoms of depression, anxiety and posttraumatic stress disorder (PTSD) among Arabic-speaking adults.

Methods. Five databases were searched from inception to 22 January 2021 (PROSPERO: CRD42018070645). Studies were included when diagnostic accuracy of brief (maximally 25 items) psychological questionnaires was assessed in Arabic-speaking populations and the reference standard was a clinical interview. Data on sensitivity/specificity, area under the curve, and data to generate 2 x 2 tables at various thresholds were extracted. Meta-analysis was performed using the diagmeta package in R. Quality of studies was assessed with QUADAS-2.

Results. Thirty-two studies (Nparticipants = 4042) reporting on 17 questionnaires with 5–25 items targeting depression/anxiety (n = 14), general distress (n = 2), and PTSD (n = 1) were included. Seventeen studies (53%) scored high risk on at least two QUADAS-2 domains. The meta-analysis identified an optimal threshold of 11 (sensitivity 76.9%, specificity 85.1%) for the Edinburgh Postnatal Depression Scale (EPDS) (nstudies = 7, nparticipants = 711), 7 (sensitivity 81.9%, specificity 87.6%) for the Hospital Anxiety and Depression Scale (HADS) anxiety subscale and 6 (sensitivity 73.0%, specificity 88.6%) for the depression subscale (nstudies = 4, nparticipants = 492), and 8 (sensitivity 86.0%, specificity 83.9%) for the Self-Reporting Questionnaire (SRQ-20) (nstudies = 4, nparticipants = 459).

Conclusion. We present optimal thresholds to screen for perinatal depression with the EPDS, anxiety/depression with the HADS, and CMDs with the SRQ-20. More research on Arabic-language questionnaires, especially those targeting PTSD, is needed.

Introduction

Common mental disorders (CMDs) such as depression, anxiety, and posttraumatic stress disorder (PTSD) affect millions of people globally. A meta-analysis across 39 countries indicated a lifetime prevalence of 29.2%, although this estimate varies across subgroups (Demyttenaere et al., 2004; Steel et al., 2014). Particularly high prevalence rates have been estimated for specific populations, such as refugees and asylum seekers (Steel et al., 2009; Charlson et al., 2019). Some disorders may be more prevalent because of specific circumstances or group characteristics, however these differences could also reflect the performance of questionnaires across cultures (Gureje and Stein, 2012).

There is a large variety of brief, self-report screening instruments for symptoms of CMDs, such as the Hopkins Symptoms Checklist (HSCL), the Hospital Anxiety and Depression Scale (HADS), and the PTSD Checklist (PCL). Brief instruments can be useful for routine screening in primary and stepped care (Kagee et al., 2013; Olin et al., 2017), especially where the application of time-consuming, clinician-administered structured interviews is not feasible, such as in low-resource settings (Kohrt et al., 2011). Furthermore, the ease of administration of most self-report measures makes them attractive for use in research (Kagee et al., 2013). However, these instruments are usually developed and evaluated in specific (Western, Anglo-Saxon) settings (Saxena et al., 2006; Ali et al., 2016), while psychometric properties may vary across settings, cultures, and languages. For example, in a study on the validity of the HSCL-25 in...
Lebanon, the optimal cut-off score for anxiety and depression was found to be higher (2.00–2.10) than the widely accepted threshold of 1.75 (Mahfoud et al., 2013). This example illustrates the importance of cross-cultural validation of screening tools. The use of thresholds determined in other populations may lead to misclassification and misinterpretation (Steel et al., 2009). However, literature on the psychometric properties of screening instruments in cultural contexts outside those for which they were developed is limited (Mutumba et al., 2014; Carroll et al., 2020; Donnelly and Leavey, 2021).

The ability of a questionnaire (‘index test’) to identify individuals with a CMD compared to individuals without a disorder is called diagnostic accuracy (Leeflang et al., 2013). Diagnostic accuracy is determined by comparing the outcomes of the index test with the outcomes of a reference standard in the same research subjects. The reference standard is regarded as the best available method to establish the presence or absence of the target condition (Rutjes, 2017). A (semi-structured) clinical interview is the standard for diagnosing mental disorders in clinical practice and mental health research (De Joode et al., 2019).

Previous systematic reviews on the validity of screening instruments have focused on a specific instrument (e.g. Edinburgh Postnatal Depression Scale; EPDS) (Gibson et al., 2009), outcome (e.g. depression) (Chorwe-Sungani and Chipps, 2017), or income group (e.g. low- and middle-income countries; LAMIC) (Ali et al., 2016), but to our knowledge, no systematic review on test performance of brief screening instruments for CMDs in Arabic-speaking populations has been published. Despite the fact that Arabic is one of the most spoken languages in the world, with over 30 dialects and 274 million people that speak Arabic, research on Arabic-language questionnaires is limited (Easton et al., 2017; Karnouk et al., 2021). Furthermore, last decades have known a steep increase in the number of Arabic-speaking refugees into other parts of the world, such as the Horn of Africa and Europe (UNHCR, 2019, 2021). Psychometrically sound and brief case-finding instruments are vital to scale-up mental health services for an adequate response to the mental health needs of Arabic-speaking refugees worldwide (Jefe-Bahloul et al., 2016).

In this systematic review and meta-analysis, we provide an overview of the diagnostic accuracy of Arabic-language psychological distress screening instruments, based on all available evidence in Arabic-speaking adult populations.

Methods
This review was pre-registered in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42018070645). We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA-DTA) checklist (McInnes et al., 2018); see online Supplementary Appendix 1.

Search strategy
We systematically searched EBSCO/APA PsycINFO, PubMed, Embase.com, Cochrane Library, and Scopus from inception until 22 January 2021, without language restrictions. The search was carried out by a medical information specialist. The following terms were used (including synonyms and closely related words) as index terms or free-text words: ‘Sensitivity and Specificity’, ‘Reference Standards’, ‘Diagnostic Self Evaluation’, ‘Common Mental Disorders’, and ‘Arabic speaking populations’. The full search strategy is attached as online Supplementary Appendix 2.

We restricted the search to articles, proceeding papers, conference papers, and electronic collections. We also identified studies by screening literature lists of included studies (Prinsen et al., 2018).

Inclusion criteria
The full search yield was reviewed for inclusion by two independent reviewers (AdG/fU) on the basis of title and abstract. Both reviewers assessed full-texts of the remaining articles. Discrepancies were resolved by discussion, and remaining queries were discussed with a third reviewer (MS). The following inclusion criteria had to be met: Population – Arabic-speaking adults with no restrictions on setting. Index test – brief self-report questionnaires in Arabic on psychological distress, with no restrictions in terms of administration mode or administrator. We defined ‘brevity’ as 25 items or less, based on commonly used screening instruments (e.g. HSCL-25). We did not base our definition on, e.g. ‘time of administration’, given that time to complete a measure might vary among groups and literacy levels. Reference standard – a diagnosis made through a structured clinical interview or by a clinician based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric Association, 2013) or International Statistical Classification of Diseases and Related Health Problems (ICD) (WHO, 2019). Outcome – any CMD. CMDs refer to DSM/ICD diagnoses of anxiety, depressive (excluding bipolar), and stress-related disorders. Anxiety disorders include generalized anxiety disorder (GAD), panic disorder, phobia, agoraphobia, or social anxiety disorder. PTSD and acute stress disorder are included (as anxiety disorders in DSM-IV or as trauma- and stress-related disorders in DSM-5). We excluded papers in which the diagnosis was based on a questionnaire, observation checklist, chart review, or self-reported diagnosis. We also excluded studies that did not provide data to calculate sensitivity/specificity.

Data extraction
Data were extracted independently from each study by two reviewers (AdG/IS) using a coding scheme (The Cochrane Collaboration, 2020). Extracted data included study design (design and study dates), participant characteristics (eligibility criteria, setting, sample size, age, gender, nationality, and comorbidities), index test characteristics (description, time points, mode of administration, setting, translation, scale properties, and psychometric properties), reference test characteristics (description, time points, mode of administration, binding, setting, translation, prevalence, and psychometric properties), and relevant outcomes measured (target condition, thresholds with corresponding diagnostic accuracy properties, i.e. sensitivity, specificity, area under the receiver-operating characteristic (ROC) curve (AUC), PPV and NPV, and data to generate 2 × 2 tables). Discrepancies were resolved by discussion.

Quality assessment
Risk of bias was independently assessed by two reviewers (AdG/IS) using the quality assessment tool of diagnostic accuracy studies (QUADAS-2) (Whiting et al., 2011). QUADAS-2 is a generic set of criteria consisting of four key domains: patient selection, index test, reference standard, and flow of patients through the study and timing of the index test and reference standard.
Signaling questions are included to judge risk of bias across all domains (Whiting et al., 2011). We added three items to account for biases specific to the use of (semi-)structured clinical interviews. These extra items concerned (1) whether studies used a semi-structured interview vs. clinician diagnosis (domain 3), (2) whether data on interviewer variation (e.g. inter-rater reliability) for the (semi)structured interview fell within an acceptable range (domain 3), and (3) whether all participants received a reference standard (domain 4). See online Supplementary Appendix 3 for item specifications.

Data synthesis and statistical analysis

We provided a narrative synthesis structured around the type of index test (i.e. questionnaire) and type of outcome. For every study, we tabulated the questionnaire, reported cut-off scores and outcome measures. In this review, we present cut-off scores as rounded numbers (e.g. 5’), whereby individuals are considered positive cases if they have that score at minimum (e.g. 5 or above). Meta-analysis was performed when at least three studies with a comparable outcome for a specific questionnaire were included. Multiple thresholds were modelled for studies reporting a range of cut-off scores (Steinhauser et al., 2016) using the diagmeta package (Rucker et al., 2020) in R v3.6.1 (R Core Team, 2019). This approach incorporates the following issues relevant for diagnostic reviews: (1) imprecision by which the sensitivity or specificity has been measured within each study, (2) variation beyond chance in the sensitivity and specificity between studies, and (3) correlation that might exist between sensitivity and specificity. It also estimates the sensitivity and specificity for a range of cut-off scores and determines the optimal threshold, based on the cut-off with the highest combination of sensitivity and specificity using the Youden index. We plotted the estimates of sensitivity and specificity for each reported cut-off and the optimal threshold of all studies in the meta-analysis in ROC space.

Results

Study inclusion and characteristics of included studies

The search yielded 3246 unique references (Fig. 1). Of these, 704 were identified as potentially relevant based on title/abstract screening. The full-text articles were obtained and assessed for inclusion. Thirty-two studies reporting on 30 unique datasets met the inclusion criteria. Of those, 17 studies were eligible for meta-analysis.

Seventeen different questionnaires on depression, anxiety, PTSD, and general distress were identified (Table 1). The number of items ranged from 5 to 25. Online Supplementary Appendix 4 provides a brief description of each questionnaire.

One study was conducted among a sub-sample of Arabic-speaking migrants in Australia (Barnett et al., 1999), while all other studies (n = 31) were conducted in Arab countries. Participants (N = 4042; range 26–407), with mean age range 28–82 years, were selected from clinical settings (n = 21, 65.6%), community settings (n = 5, 15.6%), or both (n = 4, 12.5%). Nine (28.1%) studies included only women, two (6.3%) only men, 17 (53.1%) mixed samples, and two (6.9%) did not report gender (6.9%). None of the questionnaires were locally developed, but all were translations of English-language instruments: in the majority of studies, questionnaires (n = 20, 62.5%) were locally translated, five (15.6%) used/adapted already existing translations, and seven (21.9%) did not report on translation. In 20 studies (62.5%), questionnaires were administered by interviewers.

Twenty-two studies (68.7%) used a (semi-)structured clinical interview as reference standard. Seven studies used the Mini International Neuropsychiatry Inventory (MINI), five the Structured Clinical Interview for DSM (SCID), four the Composite International Diagnostic Interview (CIDI), three the Clinical Interview Schedule (CIS), two the Present State Examination (PSE), and one the Diagnostic Interview Schedule (DIS). These (semi-)structured interviews were conducted by a clinician (n = 13) or lay-interviewer (n = 3); six studies did not report on the type of interviewer. In the other 10 studies (31.3%), a clinician diagnosis according to the DSM/ICD was made. El-Hachem et al. (2014) combined the clinical interview with (readministration of) the index test.

Results of the systematic review

Nine depression-specific questionnaires were compared to a depression diagnosis (Table 1). The sensitivity in seven studies evaluating the EPDS ranged from 73% to 92%; its specificity ranged from 48% to 96%. The nine-item Patient Health Questionnaire (PHQ-9) was evaluated in four studies, with sensitivity ranging from 62% to 88%, and specificity from 46% to 96%. Three studies evaluated the Geriatric Depression Scale (GDS-15), with sensitivity ranging from 80% to 84%, and specificity from 87% to 91%. The other depression-specific instruments were evaluated by single studies. The Beck Depression Inventory-II (BDI-II) had a sensitivity of 96% and a specificity of 73%, the Center for Epidemiologic Studies Depression Scale (CES-D) had a sensitivity of 82% and a specificity of 83%, the Major Depression Inventory (MDI) had a sensitivity of 88% and a specificity of 79%, the Apathy Evaluation Scale (AES) had a sensitivity of 65% and a specificity of 63%, and the five-item WHO Well-being Index (WHO-5) had a sensitivity of 78% and a specificity of 83%. The Premenstrual Symptoms Screening Tool (PSST) was compared to a diagnosis of premenstrual dysphoric disorder and had a sensitivity of 27% and a specificity of 96%.

We found two anxiety-specific questionnaires. One study compared the seven-item Generalized Anxiety Disorder (GAD-7) to any anxiety disorder, with a sensitivity of 57% and a specificity of 53%, and one study compared the PHQ modules panic, with a sensitivity of 47% and a specificity of 96%, and GAD, with a sensitivity of 37% and a specificity of 96%, to corresponding DSM-IV criteria.

We found three instruments targeting combined anxiety/depression that were compared to a diagnosis of anxiety and/or depression. The HADS was evaluated in four studies. The sensitivity of the anxiety subscale ranged from 62% to 85%, and its specificity from 62% to 91%. The sensitivity range of the depression subscale was 54–90%, and specificity range 70–99%. One study evaluated the HSCL-25. The sensitivity of the anxiety subscale was 84%, and its specificity 59%. The sensitivity of the depression subscale was 82%, and its specificity 70%. The Primary Care Anxiety and Depression scale was evaluated in one study, which found a sensitivity of 82% and a specificity of 77%.

We found one instrument targeting PTSD symptoms. The Screen for Posttraumatic Stress Symptoms (SPTSS) had a sensitivity of 89% and a specificity of 89% compared to a PTSD diagnosis.

Lastly, we identified two general distress instruments that were compared to a diagnosis of any CMD. The 20-item Self-Reporting Questionnaire (SRQ-20) was investigated in six studies, of which one study also included a psychosis item. The sensitivity range was 71–100%; the specificity range 70–95%. The 12-item
General Health Questionnaire (GHQ-12) was evaluated in one study and had a sensitivity of 83% and a specificity of 80%.

Online Supplementary Appendix 5 presents a visual representation for all instruments for which we included at least three studies.

Quality of studies

The QUADAS-2 results are evaluated at item-level and do not incorporate an overall quality score (Table 2). Eleven studies scored high risk of bias on one domain, 14 on two domains, three on three domains, and none on all four domains. Four studies did not score high risk on any of the domains.

Risk of bias for **Patient Selection** was low in the majority of studies. Studies scored high risk if a case-control design was used (Fawzi et al., 2012) if participants were not recruited at random (Ghubash et al., 2000; Caspi et al., 2007; Mahfoud et al., 2013), or in case of inappropriate exclusions (Al-Adawi et al., 2004, 2007; Alsuwaida and Alwahhabi, 2006; Al-Asmi et al., 2012; Mahfoud et al., 2013, 2019; Shaheen et al., 2019). Risk was unclear in three studies, because the method of recruitment was unclear (Chaaya et al., 2008; Sibai et al., 2009; Hashim, 2018).

Studies were rated high risk for **Index Test**, because the questionnaire was completed after the reference standard and/or because the threshold was not pre-defined (El-Rufaie and Absodd, 1994, 1995; El-Rufaie and Daradkeh, 1996; El-Rufaie et al., 1997; Al-Subaie et al., 1998, 1999; Barnett et al., 1999; Ghubash et al., 2000; Agoub et al., 2005; Alsuwaida and Alwahhabi, 2006; Caspi et al., 2007; Chaaya et al., 2008; Sibai et al., 2009; Al-Asmi et al., 2012; Fawzi et al., 2012; Mahfoud et al., 2013; El-Hachem et al., 2014; Karam et al., 2018; Naja et al., 2019; Alzahrani et al., 2020).
Index test	Study	Study setting	Population	Sample size, N	Gender, % male	Age, M	Target condition	Reference test	Optimal/ predefined cut-off [range reported]	Sensitivity	Specificity	PPV	NPV	AUC [95% CI]	Administration reference test; index test	Translation index test	Other psychometric properties index test				
Depression																					
EPDS	Ghubash et al., 1997	UAE, clinic	Post-partum women	95	0	28.6	MDD	PSE	107-127 [10, 12]	91%	73%	84%	90%	44%	50%	99%	96%	N/R	N/R; N/R	Own translation using back-translation by bilingual psychiatrists	Cronbach’s alpha = 0.84; Split-half reliability = 0.82
EPDS	Barnett et al., 1999	Australia, clinic	Pregnant women (Arabic speaking migrants)	98	0	N/R	MDD	DIS	107 [8-13]	77.8%	80.2%	29.2%	N/R	N/R	Lay-interviewer; Interviewer (part) (partly in English)	Own translation using back-translation followed by pilot-testing, involvement of focus groups at each stage consisting of bilingual ethnic health workers.	N/R				
EPDS	Agoub et al., 2005	Morocco, clinic	Post-partum women	144	0	30.3	MDD	MINI	12 [10-13]	92%	96%	86%	N/R	N/R	N/R; Interviewer (part)	Ghubash et al (1997)	N/R				
EPDS	El-Hachem et al., 2014	Lebanon, clinic	Post-partum women	149	0	31.7	MDD	Clinician diagnosis (DSM-IV-TR) + EPDS >8	7 [5-12]	89.5%	47.7%	N/R	N/R	.82	[72–92]	Clinician; Self	N/R	N/R			
EPDS	Khalifa et al., 2015	Sudan, clinic	Pregnant women	40	0	N/R	MDD	MINI	12† [1-15]	88.9%	81.8%	33.3%	98.8%	.89	[78–99]	Clinician; Interviewer (all)	N/R	N/R			
EPDS	Naja et al., 2019	Qatar, clinic	Pregnant women	128	0	28.8	MDD	MINI	13 [8-14]	87%	90%	75%	N/R	.95	[91–99]	Clinician; Self	Own translation using back-translation by bilingual clinicians, discussion in a panel, and a pilot test of the questionnaire on a sample of n = 20 pregnant women.	Cronbach’s alpha = 0.87; EPDS with BDI-II r = .6			
EPDS	Shaheen et al., 2019	Saudi Arabia, clinic	Fathers	57 (sub-sample of 290)	100	35.0 (based on full IV)	MDD	Clinician diagnosis (DSM 5)	9† [5-13/14]	77.8%	81.3%	N/R	N/R	.81	Clinician; Self	Ghubash et al (1997)	N/R				

(Continued)
Index test	Study	Study setting	Population	Sample size, N	Gender, % male	Age, M	Target condition	Reference test	Sensitivity	Specificity	PPV	NPV	AUC [95% CI]	Administration reference test; index test	Other psychometric properties index test		
PHQ-9	Becker et al., 2002	Saudi Arabia, clinic	Primary care patients	173	44.5	N/R	Depression	SCID-R	3% [3 using diagnostic scoring system]	62%	95%	N/R	N/R	N/R	Clinician; Interviewer (part)	Own translation using back-translation by clinicians	N/R
PHQ-9	Hobfoll et al., 2011	Israel, community	Palestinian adults	75 (sub-sample of N = 150)	N/R	N/R	MDD	CIDI	5 (incl. depressed mood or lack of interest)	76%	96%	90%	89%	N/R	Interviewer (all)	N/R	
PHQ-9	Sawaya et al., 2016	Lebanon, clinic	Psychiatric outpatients	176	46.4	35.6	Any mood disorder	Clinician diagnosis (DSM-IV)	107 [10]	77%	46%	N/R	N/R	.70	Clinician; Self	Own translation using back-translation by psychologists + discussion	Cronbach's alpha = 0.88
PHQ-9	Alzahrani et al., 2020	Saudi Arabia, clinic	Cancer patients	407	42.8	49.1	MDD	MINI	9 [5–10]	88.3% [76.8–94.8]	80.1% [75.4–84.1]	43.4%	97.5%	.91 [0.82–0.96]	Clinician; Self	Use of AlHadi et al. (2017)	Cronbach's alpha = .80
GDS-15	Chaaya et al., 2008	Lebanon, community & clinic	Community-dwelling elderly and primary care outpatients	105	25.0	69.8	MDD and Dysthymia	Clinician diagnosis (DSM-IV)	8 [5–9]	83%	91%	89%	87%	.89 [0.72–0.96]	Clinician; Interviewer (part)	Own translation using back-translation by a translator and psychiatrists + discussion + piloted among n = 10 older adults	Cronbach's alpha = 0.83, Spearman's correlation (test-retest, n = 38, 7 days interval) = 0.79
GDS-15	Hashim, 2018	Iraq, community & clinic	Elderly	279	49.5	71.8	MDD	Clinician diagnosis (ICD-10)	6 [6]	83.8%	90.6%	93.5%	77.4%	N/R	Clinician; Interviewer (part)	Own translation using back-translation by psychologists/psychiatrists	N/R
GDS-15	Karam et al., 2018	Lebanon, clinic	Psychiatric patients	57 (sub-sample of N = 132)	34.0	81.9	MDD	SCID-I	7 [6–7]	80%	87%	N/R	N/R	.90	Clinician; N/R	Own translation using back-translation by psychologists/psychiatrists + panel discussions	Cronbach's alpha = 0.84, Correlation GDS with other scales for sub-sample n = 57 r = 0.74 (Cornell Scale for Depression in Dementia) & 0.87 (HADS)
Scale	Study	Location	Population	Sample Size	Age (Mean or Range)	Gender (M/F)	Depression Category	Measurement	Study Methodology	Reliability & Validity	Notes						
-------	-------	----------	-------------	-------------	---------------------	--------------	---------------------	-------------	-------------------	----------------------	-------						
BDI-II	Naja et al., 2019	Qatar, clinic	Pregnant woman	128	0	28.8	Antenatal depression	MINI	19 [18-24]	96%	73%	54%	N/R	.91	Clinician; Self (own translation using back-translation by bilingual clinicians, discussion in a panel, and a pilot test of the questionnaire in a sample of n = 20 pregnant women.)	Cronbach’s alpha = 0.90; EPDS with BDI-II r = .6; ICC r (based on pilot sample n = 20) = 0.59	
CES-D	Ghubash et al., 2000	UAE, community	Medical students	30	0	N/R	Depression	SCID + self-evaluation of depression	21 [0-46]	82%	83%	N/R	N/R	.84	N/R; Self (own translation using back-translation by bilingual psychiatrists and senior medical students, and a pilot test of the questionnaire in a medical student sample (pilot n = N/R).)	Cronbach’s alpha = 0.88; split-half r = 0.83; ICC r (2 weeks interval) = 0.69	
MDI	Fawzi et al., 2012	Egypt, clinic	Depressed outpatients and healthy controls	100	39.0	N/R	Any mood disorder	SCID-I	5, incl. depressed mood or decreased interest† [5]	88.4%	78.9%	76%	90%	N/R	Clinician; Self (own translation using back-translation by psychiatrists and non-clinical translators + discussion + pilot test of the questionnaire among n = 5)	Cronbach’s alpha = 0.91; ICC r (2 weeks interval) = 0.98	
AES	Al-Adawi et al., 2004	Oman, clinic	TBI patients	80	66.3	31.0	Depression	CIDI	23 [18-72]	64.5%	62.8%	N/R	N/R	N/R	N/R; Interviewer (part) (own translation by experienced staff members)	Inter-rater agreement r = 0.86	
WHO-5	Sibai et al., 2009	Lebanon, community & clinic	Community-dwelling elderly and primary care outpatients	105	24.8	69.8	Depression	Clinician diagnosis (DSM-IV)	12 [12-16]*	78.3%	82.8%	78.7%	82.5%	.84 [.754-.920]	Clinician; Interviewer (part) (own translation using back-translation by professional translators + discussed with psychiatrists + piloted among n = 10 older adults)	Cronbach’s alpha = 0.88; Spearman’s correlation (test-retest, n = 38, 7 day-interval) = 0.73	

(Continued)
Table 1. (Continued.)

Index test	Study	Study setting	Population	Sample size, N	Gender, % male	Age, M	Target condition	Reference test	Optimal/†pre-defined cut-off [range reported]	Sensitivity	Specificity	PPV	NPV	AUC [95% CI]	Administration reference test; index test	Translation index test	Other psychometric properties index test	
PSST	Mahfoud et al., 2019	Qatar Primary care patients	179	0	32.1		Premenstrual dysphoric disorder	MINI	≥1 of #1–4 is severe & ≥8 of #1–14 are moderate to severe & ≥1 of A–E is severe †	26.7%	95.6%	85.2%	58.3%	N/R	Clinician; Interviewer (all)	Own translation using back-translation by bilingual psychiatrist + piloted among n = 20 women	Cronbach’s alpha = 0.92; Kappa (test-retest, n = 21, 7 day-interval) = 0.25	
Anxiety	GAD-7	Sawaya et al., 2016	Lebanon, clinic	Psychiatric outpatients	176	46.4	35.6	Aniexy (GAD, panic disorder, phobia, and anxiety NOS)	Clinician diagnosis (DSM-IV)	10† [10]	57%	53%	N/R	N/R	.57	Clinician; Self	Own translation using back-translation by psychologists + discussion	Cronbach’s alpha = 0.95
Anxiety modules PHQ (Panic/GAD)	Becker et al., 2002	Saudi Arabia, clinic	Primary care patients	173	44.5	N/R	Panic disorder	SCID-R	7† [7]	47%	96%	N/R	N/R	N/R	N/R	Clinical; Interviewer (part)	Own translation using back-translation by clinicians	Other psychometric properties: N/R
Combined depression/anxiety	HADS	El-Rufaie & Alsaood, 1995	UAE, clinic	Primary care patients	217	36.4 (median)	Anxiety	CIS (+OSR)	HADS-A: 7 (for economic reasons) [5–12]	78.0%	80.7%	N/R	N/R	N/R	Clinician; N/R	Adaptation of El-Rufaie et al. (1998) using back-translation by a bilingual psychiatrist + discussion	Cronbach’s alpha = 0.78 (anxiety) & 0.88 (depression); Inter-rater reliability; Kappa range = 0.27–0.59 (anxiety) & 0.36–0.69 (depression)	
Depression	HADS	El-Rufaie et al., 1998	Oman, clinic	TBI patients	68	69.1	N/R	Anxiety	CIDI (ICD-10)	HADS-A: 5 [1–11]	61.8%	61.8%	N/R	N/R	.53	N/R; Interviewer (all)	Own translation using back-translation by ‘experienced staff members’	Cronbach’s alpha = 0.95
Depression	HADS	Al-Adawi & et al., 2007	Oman, clinic	TBI patients	68	69.1	N/R	Anxiety	CIDI (ICD-10)	HADS-A: 5 [1–11]	61.8%	61.8%	N/R	N/R	.53	N/R; Interviewer (all)	Own translation using back-translation by ‘experienced staff members’	Cronbach’s alpha = 0.95
Measure	Country	Type	Domain	Sample Size	Mean	SD	MIN	MAX	Validity	Reliability	Notes							
---------	---------	------	--------	-------------	------	----	-----	-----	----------	-------------	-------							
HADS	Al-Asmi et al., 2012	Oman, clinic	Patients with epilepsy	150	55.3	28.4				84.85%	N/R	N/R	.95	Interviewer (all)	Own translation using back-translation by 'experienced staff members'			
MDD																		
HADS	Karam et al., 2018	Lebanon, clinic	Psychiatric patients	57	34	81.9				85%	N/R	N/R	.92	Clinician; N/R	Own translation using back-translation by psychologists/psychiatrists + panel discussions			
															N/R			
																Continued		
Index test	Study	Study setting	Population	Sample size, N	Gender, % male	Age, M	Target condition	Reference test	Optimal/ Pre-defined cut-off [range reported]	Sensitivity	Specificity	PPV	NPV	AUC [95% CI]	Administration reference test; index test	Translation index test	Other psychometric properties index test	
------------	-------	---------------	------------	---------------	---------------	--------	-----------------	---------------	--	-------------	-------------	-----	-----	-------------	-------------------------------------	------------------	---	
SRQ-20	El-Rufaie & Absood, 1994	UAE, clinic	Primary care patients	217	36.4	33 (median)	Any psychiatric diagnosis according to the mental disorders section of ICD-9	CIS (+OSR) + clinical judgment (ICD-9)	Whole scale: 6 [6]	78.3%	75.2%	54.7%	90.1%	N/R	Clinician; N/R	Adaptation of existing translation (reference N/R)	N/R	
SRQ-20	Al-Subaie et al., 1998	Saudi Arabia, clinic	Patients referred for endoscopy	292	56.8	35.0	All affective, anxiety and somatoform disorders	Clinician diagnosis (DSM III-R)	7 [5–14]	93%	70%	75%	91%	N/R	Clinician; Interviewer (part)	Cronbach’s alpha = 0.81	N/R	
SRQ-20	Al-Arabi et al., 1999	Saudi Arabia, clinic	Primary care patients with diabetes	49 (sub-sample of N = 226)	46.0	51.3	Mental disorders	Clinician diagnosis (DSM-IV)	10 [10]	70.6%	71.9%	57.1%	82.1%	N/R	Clinician; Interviewer (all)	Correlation between SRQ and Somatization Subscale of the RADS r = 0.74; Inter-rater reliability: mean Kappa (n = 68, 50% diabetic patients) = 0.84	N/R	
SRQ-20	Llosa et al., 2017	Lebanon, community	Refugees/ migrants	55 (sub-sample of N = 748)	49.1	39.0	CHD; excl. substance use/eating/ antisocial personality disorders	MINI	6T [1, 4, 6–7]	100%	82.5%	14.3%	100%	.91	Clinician; Interviewer (all)	Cronbach’s alpha = 0.87	N/R	
SRQ-20 + psychosis item	Alsuwaida & Alwahhabi, 2006	Saudi Arabia, clinic	Patients with end-stage renal disease on hemodialysis	26	58.0	48.1	MOD	Clinician diagnosis (DSM-IV)	13 [6–18]	100%	83%	50%	N/R	.96	Clinician; N/R	N/R	N/R	
GHQ-12	El-Rufaie & Daradkeh, 1996	UAE, clinic	Primary care patients	157	55.4	28.7	Any psychiatric diagnosis	CIS (+OSR)	13 [13]	83%	80%	87%	N/R	N/R	Clinician; Interviewer (all)	Own translation using back-translation by psychiatrists + discussion	N/R	

*A lower score indicates less well-being, and participants with a cut-off score of 12 or below are considered case positives; AUC = area under the Receiver Operating Curve; CI = Confidence Interval; PPV = positive predictive value; NPV = negative predictive value; EPDS = Edinburgh Postnatal Depression Scale; PHQ-9 = Patient Health Questionnaire; GDS-15 = Geriatric Depression Scale; BDI-II = Beck Depression Inventory; CES-D = Center for Epidemiological Studies Depression Scale; MDI = Major Depression Inventory; AES = Apathy Evaluation Scale; WHO-5 = WHO Well-being Index; PSST = Premenstrual Symptoms Screening Tool; GAD-7 = Generalized Anxiety Disorder-7; HADS = Hamilton Anxiety and Depression Scale; HSCL-25 = Hopkins Symptoms Checklist; PCAD = Primary Care Anxiety and Depression; SPTSS = Screen for Posttraumatic Stress Symptoms; SRQ-20 = Self-Reporting Questionnaire; GHQ-12 = General Health Questionnaire
Index test	Study	Risk of bias	Applicability concerns					
Depression		Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard
EPDS	Agoub et al. (2005)	☺ ☹ ☹ ☺ ☺ ☺						
EPDS	Barnett et al. (1999)	☺ ☹ ☹ ☺ ☺						
EPDS	El-Hachem et al. (2014)	☺ ☹ ☹						
EPDS	Ghubash et al. (1997)	☺ ☹ ☹						
EPDS	Khalifa et al. (2015)	☺ ☹ ☹						
EPDS	Shaheen et al. (2019)	☺						
EPDS	Naja et al. (2019)	☺						
PHQ-9	Becker et al. (2002)	☺						
PHQ-9	Hobfoll et al. (2011)	☺						
PHQ-9	Sawaya et al. (2016)	☺						
PHQ-9	Alzahrani et al. (2020)	☺						
GDS-15	Chaaya et al. (2008)	?	☺					
GDS-15	Hashim (2018)	?	?	☺		?		
GDS-15	Karam et al. (2018)	☺						
BDI-II	Naja et al. (2019)	☺						
CES-D	Ghubash et al. (2000)	☺						
MDI	Fawzi et al. (2012)	☺						
AES	Al-Adawi et al. (2004)	☺						
WHO-5	Sibai et al. (2009)	?	☺					
PSST	Mahfoud et al. (2019)	☺						
Anxiety								
GAD-7	Sawaya et al. (2016)	☺						
Anxiety modules PHQ (Panic and GAD)	Becker et al. (2002)	☺						
Combined depression/anxiety								
HADS	El-Rufaie and Absood (1995)	☺						
HADS	Al-Adawi et al. (2007)	☺						
HADS	Al-Asmi et al. (2012)	☺						
HADS	Karam et al. (2018)	☺						
HSCL-25	Mahfoud et al. (2013)	☺						
PCAD	El-Rufaie et al. (1997)	☺						
PSTD								
SPTSS	Caspi et al. (2007)	☺						
Psychological distress								
SRQ-20	Climent et al. (1989)	☺	?					
SRQ-20	El-Rufaie and Absood (1994)	☺						
SRQ-20	Al-Subaie et al. (1998)	☺						
SRQ-20	Al-Arabi et al. (1999)	☺						
SRQ-20	Llosa et al. (2017)	☺		?				

(Continued)
Fourteen studies were rated high risk for Reference Test, because an unstructured clinician diagnosis rather than a semi-structured interview was used (El-Rufaie et al., 1997; Al-Subaie et al., 1998; Al-Arabi et al., 1999; Chaya et al., 2008; Sibai et al., 2009; El-Hachem et al., 2014; Sawaya et al., 2016; Hashim, 2018; Shaheen et al., 2019), and/or because interviewers were not blinded (Agoub et al., 2005; Ghubash et al., 1997; Barnett et al., 1999). None of the studies reported interrater reliability.

In Flow and Timing, risk was high in eight studies, because of an inappropriate time interval between index and reference test (Ghubash et al., 1997), and/or because not all participants were included in the analysis (El-Hachem et al., 2014; Khalifa et al., 2015; Sawaya et al., 2016; Karam et al., 2018; Shaheen et al., 2019).

Supplementary data and clarification were provided for three studies (Becker et al., 2002; Alsuwaida and Alwahhab, 2006; Al-Asmi et al., 2012) after correspondence with authors.

Discussion

Brief psychological screening instruments are commonly used in research and clinical practice for the measurement of symptom severity, but also as inexpensive, easy-to-administer tools for case-finding (Kagge et al., 2013; Olin et al., 2017). This systematic review and meta-analysis investigated the diagnostic performance of brief, Arabic-language screening instruments in detecting the symptoms of CMDs.

We synthesized the current evidence of 17 questionnaires, including instruments targeting depression, anxiety, general distress, and PTSD. A first finding is that, while the majority of studies reported on depression-specific questionnaires, the evidence for PTSD-specific instruments is limited. We must note, however, that we excluded several papers on the validity of PTSD screening tools in mixed-language populations (Søndergaard et al., 2003; Jakobsen et al., 2011; Ibrahim et al., 2018), since they did not separately report data on Arabic-speaking sub-samples. Another general finding is that we did not identify locally developed screening tools, and this review only synthesized evidence on Arabic translations of screeners originally developed in other settings.

The studies included in this review differed in many ways from each other. Studies varied with regard to target condition (e.g. major depressive disorder v. any mood disorder), population (e.g. pregnant women v. elderly), and setting (e.g. clinical sample in Sudan v. community sample in Lebanon). Although this review focused on Arabic-speaking populations, the global Arabic-speaking community cannot be considered as one monolithic cultural group with identical idioms of distress or manifestations of psychological distress (e.g. Hassan et al., 2016). Modern Standard Arabic (formal Arabic) is the only standardized form of written Arabic and is commonly understood among Arabic-speakers. Questionnaires in written form should thus be applicable across Arabic-speaking populations. However, in the majority of studies, questionnaires were administered by an interviewer, and thus read aloud. Even if

Table 2 (Continued.)

Index test	Study	Risk of bias	Applicability concerns
SRQ-20 + psychosis item	Alsuwaida and Alwahhabi (2006)	☀ ☀ ☀ ☀	☀ ☀ ☀
GHQ-12	El-Rufaie and Daradkeh (1996)	☀ ☀ ☀ ☀	☀ ☀ ☀
The present review found that a cut-off of 11 on the EPDS maximized combined sensitivity (76.9%)/specificity (85.2%). This threshold is lower compared to the original cut-off of 13 in English-speaking populations (Cox et al., 1987). A recent meta-analysis of individual participant data (IPDMA) on the EPDS also found that a threshold of 11 maximized combined sensitivity (81%)/specificity (88%) (Levis et al., 2020). Earlier reviews found the EPDS to be valid for non-English-speaking populations (Zubaran et al., 2016). The EPDS is one of the most frequently studied instruments in perinatal populations in LAMICs (Chorwe-Sungani and Chipps, 2017). Ali et al. (2016) conclude that the instrument generally performs well in LAMICs, while a systematic review in low- and lower-middle income countries, without Arabic-speaking samples, found that none of the studies had an accuracy of >80% on all three accuracy parameters (sensitivity/specificity/PPV) (Shrestha et al., 2016). The optimal cut-off score in our meta-analysis would miss almost a quarter of individuals with depression. Clinicians may therefore consider using a lower cut-off to identify potential cases for the purpose of triage (e.g. positive cases will be further assessed with a clinical interview). For example, a cut-off score of 9 would miss 15.6% of individuals with depression, but at the cost of screening 26.2% of non-cases as cases. However, in low-resourced settings where there is no capacity to assess all positive cases with a clinical interview, a high number of false positives (resulting from low specificity), is likely to overburden local health systems (Andersen et al., 2020). In these settings, a higher cut-off with improved specificity might be preferable.

Questionnaire	Cut-off	Studies n	Participants n	Sensitivity % (95% CI)	Specificity % (95% CI)	Pooled AUC (95% CI)*
EPDS	9	5	472	84.4 (72.9–91.5)	74.0 (65.7–80.8)	0.873 (0.791–0.930)
	10	7	711	80.9 (67.1–89.8)	80.1 (72.5–86.1)	
	11b	6	616	76.9 (60.6–87.7)	85.2 (78.4–90.1)	
	12	7	711	72.3 (53.6–85.4)	89.1 (83.3–93.0)	
	13	5	467	67.2 (46.4–82.9)	92.1 (87.2–95.2)	
HADS-A	5	3	431	86.4 (63.9–95.8)	52.5 (38.3–66.2)	0.813 (0.619–0.924)
	6	4	488	80.1 (53.1–93.5)	66.7 (53.1–78.0)	
	7c	3	431	71.9 (41.9–90.1)	78.5 (67.3–86.6)	
HADS-D	4	3	435	84.4 (65.4–940)	67.2 (45.4–83.5)	0.856 (0.701–0.940)
	5	3	435	79.3 (57.4–91.6)	80.0 (61.8–90.8)	
SRQ-20	6	4	492	73.0 (48.9–88.4)	88.6 (75.7–95.1)	
	7	3	435	65.6 (40.3–84.3)	93.8 (85.7–97.4)	
	8	3	435	57.4 (32.3–79.2)	96.7 (92.0–98.7)	
SRQ-20	6	3	564	91.8 (86.3–95.3)	73.5 (42.5–91.3)	0.917 (0.876–0.945)
	7	2	347	89.3 (82.6–93.6)	79.2 (50.3–93.5)	
	8*	1	292	86.0 (78.0–91.4)	83.9 (58.1–95.1)	
	9	1	292	82.0 (72.6–88.6)	87.7 (65.4–96.4)	
	10	2	341	77.1 (66.2–85.2)	90.7 (72.0–97.4)	

EPDS, Edinburgh Postnatal Depression Scale; SRQ-20, Self-Reporting Questionnaire.

*We reported the 95% CI of the AUC for sensitivity given specificity.

1The model estimated an optimal threshold for the EPDS of 11.08 (sensitivity = 76.5% and specificity = 85.5%).
2The model estimated an optimal threshold for the HADS-A of 7.17 (sensitivity = 70.3% and specificity = 80.1%).
3The model estimated an optimal threshold for the HADS-D of 5.97 (sensitivity = 73.2% and specificity = 88.4%).
4The model estimated an optimal threshold for the SRQ-20 of 8.36 (sensitivity = 86.0% and specificity = 83.9%).

Bold values signifies the best cut-off.
et al. (2020) found the commonly used cut-off of 8 ('doubtful cases') significantly overestimated depression prevalence, while a cut-off of 11 ('definite cases') may either over- or underestimate depression prevalence. Ali et al. (2016) conclude that the HADS-A is an adequate screener in LAMICs, but reported strong to very strong validity for primary studies that used the English (with Yoruba) version of HADS-A, and weak to strong validity for other language versions (Portuguese and Chinese) (Ali et al., 2016). Based on our meta-analyses and in line with Brehaut et al. (2020), the evidence for the validity of the Arabic HADS is questionable.

The SRQ-20 as a screener for CMDs maximized combined sensitivity/specificity at a cut-off of 8 (86.0% and 83.9%, respectively). In other words, 14% of individuals with a disorder will remain undetected, while 16.1% of individuals without a disorder screen positive. The CIs for specificity were relatively wide. We therefore suggest that the SRQ-20 cut-off of 8 is useful for screening purposes to rule out the presence of any CMD, but that the questionnaire might be less reliable for ruling in because of uncertainty about the pooled specificity. A cut-off of 8 is commonly used (Harpham et al., 2003), although prior research has shown that optimal thresholds for the SRQ-20 differ considerably across settings, languages, cultures, and gender (e.g. Harding et al. 1980; Ventevogel et al. 2007). For example, a cut-off score of 6 gave the best sensitivity/specificity balance in two studies in low-resource primary care settings in Eritrea and South Africa. Both studies also found that performance improved among men by using an even lower cut-off (Van der Westhuizen et al., 2017; Netsereab et al., 2018).

This review has several strengths and limitations. A strength is that it provides researchers and clinicians working with Arabic-speaking populations with an overview of the validity of brief screening tools, and empirically grounded recommendations for thresholds. We provided the results of multi-threshold models, rather than bivariate models in which only one threshold per study can be pooled. In doing so, we were able to provide the pooled accuracy statistics at different cut-off scores, allowing researchers and clinicians to decide which threshold is most suitable (e.g. for epidemiological studies v. screening in stepped care).

A limitation of this paper concerns the wide range of reference standards used, including both (semi-)structured interviews and (unstructured) clinician diagnoses. Clinician diagnoses may be less reliable than (semi-)structured interviews (Segal and Williams, 2014). The literature, however, also highlights the
limitations of structured interviews. For example, the MINI may overestimate the presence of mental disorders (Levis et al., 2018; Wu et al., 2020). Another limitation is related to the quality of studies, with 17 studies scoring high risk of bias on at least two QUADAS-2 domains. The majority of studies did not pre-specify a cut-off score, which may lead to overestimation of the accuracy estimates (Whiting et al., 2011). Furthermore, for some questionnaire, primary studies differed with respect to target condition and reported thresholds, due to which we could not meta-analyze those studies (e.g. PHQ-9). Due to low numbers of studies per questionnaire, we could not perform further subgroup analyses. Consequently, we included both antenatal and postnatal, as well as female-only and male-only samples in our meta-analysis on the EPDS, while these sub-samples may require different thresholds (Matthey et al., 2006; Gibson et al., 2009; Ali et al., 2016). We were also not able to investigate differences across Arabic-speaking populations (e.g. by country).

The clinical implications of this review are that a cut-off of 11 on the Arabic-language EPDS could be used as a screener for depression in perinatal populations to optimize a balance between sensitivity/specificity. For ruling out the presence of any CMD with the SRQ-20, we recommend using a cut-off score of 8. The evidence for the HADS to screen for depression and/or anxiety was not convincing as results were substantially heterogeneous.

This review also stresses the paucity of evidence on anxiety and PTSD screeners. Future studies are needed to investigate the diagnostic accuracy of questionnaires to detect anxiety and PTSD in Arabic-speaking populations given the amount of Arabic-speaking refugees at risk for developing stress-related disorders (Peconga and Hogh Thøgersen, 2020). According to our QUADAS-2 assessment, future studies can be improved by using semi-structured interviews as reference standard, such as the SCID, and report on the interrater reliability. We recommend pre-defining thresholds to prevent the overestimation of accuracy estimates.

Conclusions

This review identified 17 brief questionnaires in the Arabic language that were investigated on diagnostic performance, with limited availability of evidence for PTSD instruments. The meta-analysis provided optimal cut-off scores for the EPDS, HADS, and SRQ-20.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/gmh.2021.39

Data. The data that support the findings of the meta-analysis are available in the online Supplementary material of this article.

Financial support. This review was funded by ZonMw (The Netherlands Organisation for Health Research and Development; project number 636601004) and Horizon 2020 the Framework Programme for Research and Innovation (2014–2020). The content of this article reflects only the authors’ views and the European Community is not liable for any use that may be made of the information contained therein.

Conflict of interest. None.

References

Agoub M, Moussaoui D and Battas O (2005) Prevalence of postpartum depression in a Moroccan sample. Archives of Women’s Mental Health 8, 37–43.

Al-Adawi S, Dorvlo ASS, Burke DT, Huynh CC, Jacob L, Knight R, Shah MK and Al-Hussaini A (2004) Apathy and depression in cross-cultural survivors of traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences 16, 435–442.

Al-Adawi S, Dorvlo ASS, Al-Naamani A, Glenn MB, Karamouz N, Chae H, Zaidan ZAJ and Burke DT (2007) The ineffectiveness of the Hospital Anxiety and Depression Scale for diagnosis in an Omani traumatic brain injured population. Brain Injury 21, 385–393.

Al-Arab AM, Rahim SI, Al-Bar AA, AbuMadiny MS and Karim AA (1999) Validity of self-reporting questionnaire and Rahim anxiety depression scale. Saudi Medical Journal 20, 711–716.

Al-Asmi A, Dorvlo ASS, Burke DT, Al-Adawi S, Al-Zaabi A, Al-Zadjali HAM, Al-Sharbati Z, Al-Sharbati Z and Al-Adawi S (2012) The detection of mood and anxiety in people with epilepsy using two-phase designs: experiences from a tertiary care centre in Oman. Epilepsy Research 98, 174–181.

Al-Subaie AS, Mohammed K and Al-Malik T (1998) The Arabic self-reporting questionnaire (SRQ) as a psychiatric screening instrument in medical patients. Annals of Saudi Medicine 18, 308–310.

Al-Hadi AN, Al-Atteeq DA, Al-Sharif E, Bawazeez HM, Al-Anazi H, AlShomani AT, Shugdar RM and AlOwaidy R (2017) An Arabic translation, translation, reliability, and validation of Patient Health Questionnaire in a Saudi sample. Annals of General Psychiatry 16(1), 190. http://dx.doi.org/10.1186/s12991-017-0155-1.

Ali G, Ryan G and DeSilva MJ (2016) Validated screening tools for common mental disorders in low and middle income countries: a systematic review. PLoS ONE 11, e0156939.

Alsuwaida A and Alwahhabi F (2006) The diagnostic utility of Self-Reporting Questionnaire (SRQ) as a screening tool for major depression in hemodialysis patients. Saudi Journal of Kidney Diseases and Transplantation 17, 503–510.

Alzahrani AS, Demiroz YY, Alabudulwahab AS, Alshareef RA, Badri AS, Alharbi BA, Tawakkul HS and Aljaed KM (2020) The diagnostic accuracy of the 9-item patient health questionnaire as a depression screening instrument in Arabic-speaking cancer patients. Neurology Psychiatry and Brain Research 37, 110–115.

American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. Washington, DC: American Psychiatric Association.

Andersen LS, Joska JA, Magidson JF, O’Cleirigh C, Lee JS, Kagee A, Witten JA and Safren SA (2020) Detecting depression in people living with HIV in South Africa: the factor structure and convergent validity of the South African Depression Scale (SADS). AIDS and Behavior 24, 2282–2289.

Barnett B, Matthey S and Gyaneshwar R (1999) Screening for postnatal depression in women of non-English speaking background. Archives of Women’s Mental Health 2, 67–74.

Becker S, Al Zaid K and Al Faris E (2002) Screening for somatization and depression in Saudi Arabia: a validation study of the PHQ in primary care. Journal of Psychiatry in Medicine 32, 271–283.

Brehaut E, Neupane D, Levis D, Wu T, Sun Y, Krishnan A, He C, Bhandari PM, Negeri Z, Riehm KE, Rice DB, Azar M, Yan XW, Imran M, Chiwittti MJ, Saadat N, Cuijpers P, Ioanidzis JPA, Markham S, Patten SB, Ziegelstein RC, Henry M, Ismail Z, Loiselie CG, Mitchell ND, Tomelli M, Boruff JT, Kloda LA, Bezdillic A, Breaen APMB, Carter G, Clover K, Conroy RM, Cukor D, da Rocha e Silva CE, De Souza J, Downing MG, Feinstein A, Ferentinos PP, Fischer FH, Flint AJ, Fujimori M, Gallagher P, Goebel S, Jette N, Juliao M, Keller M, Kjaergaard M, Love AW, Loeve B, Martin-Santos R, Michopoulos I, Navines R, O’Rourke SJ, Ozturk A, Pintor L, Ponsford JL, Rooney AG, Sanchez-Gonzalez R, Schwarzbard ML, Sharpe M, Simard S, Singer S, Stone J, Tung K, Turner A, Walker J, Walterfang M, White J, Benedetti A and Thoms BD (2020) Depression prevalence using the HADS-D compared to SCID major depression classification: an individual participant data meta-analysis. Journal of Psychosomatic Research 139, 110256.

Carroll HA, Hook K, Perez OFR, Denckla C, Vince CG, Ghebrehiwet S, Ando K, Touma M, Borba CPC, Frichione GL and Henderson DC (2020) Establishing reliability and validity for mental health screening
instruments in resource-constrained settings: systematic review of the PHQ-9 and key recommendations. Psychiatry Research 291, 113236.

Caspi Y, Carlson EB and Klein E (2007) Validation of a screening instrument for posttraumatic stress disorder in a community sample of Bedouin men serving in the Israeli Defense Forces. Journal of Traumatic Stress 20, 517–527.

Chaaya M, Silai AM, El Roucheb Z, Chemaitelly H, Chahine LM, Al-Amin H and Mahfoud Z (2008) Validation of the Arabic version of the short Geriatric Depression Scale (GDS-15). International Psychogeriatrics 20, 571–581.

Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H and Saxena S (2019) New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. The Lancet 394, 240–248.

Chorwe-Sungani G and Chippis J (2017) A systematic review of screening instruments for depression for use in antenatal services in low resource set-

tings. BMC Psychiatry 17, 1–10.

Climent CE, Hardin TW, Ibrahim HH and Wig N (1989) El cuestionario de sintomas para la detección de problemas en adultos. Acta psiquiatr. psicol. Am. Lat. 35, 124–131.

Cox JL, Holden JM and Sagovsky R (1987) Detection of postnatal depression: development of the 10-item Edinburgh Postnatal Depression Scale. British Journal of Psychiatry 150, 782–786.

De Jonghe JW, Van Dijk SEM, Walburg FS, Bosmans JE, Van Marwijk HWJ, de Boer MR, Van Tulder MW and Adriaanse MC (2019) Diagnostic accuracy of depression questionnaires in adult patients with diabetes: a system-

tatic review and meta-analysis. PLoS ONE 14, 1–16.

Demetynnaere K, Bruffaets R, Posada-Villa J, Cornett J, Whiteford H and Saxena S (2019) New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. The Lancet 394, 240–248.

El-Rufaie OEF, Absood GH and Abou-Saleh MT (2020) Validation of the Arabic Mini International Neuropsychiatric Interview (M.I.N.I.-AR) and validation of the depression module. BMC Psychiatry 20, 241.

El-Rufaie OEF and Daradkeh TK (2017) Development of a culturally sensitive screening instrument with Kurdish and Arab displaced populations living in the Kurdistan region of Iraq. BMC Psychiatry 18, 259.

El-Rufaie OEF and Daradkeh TK (2017) Development of a culturally sensitive screening instrument with Kurdish and Arab displaced populations living in the Kurdistan region of Iraq. BMC Psychiatry 18, 259.

El-Rufaie OEF and Daradkeh TK (2017) Development of a culturally sensitive screening instrument with Kurdish and Arab displaced populations living in the Kurdistan region of Iraq. BMC Psychiatry 18, 259.

Johansen L, Bjelland I, Dahl A, Haug T and Neckelmann D (2015) Development and validation of a new brief screening depression scale: the PHQ-9. Journal of Affective Disorders 176, 20–27.

Kagee A, Tsai AC, Lund C and Tomlinson M (2013) Screening for common mental disorders in low resource settings: reasons for caution and a way for-

ward. International Health 5, 11–14.

Karam GE, Khandakji MN, Sarkis Sahakian N, Dandan JC and Karam EG (2018) Diagnostic assessment and prognosis validation of geriatric depres-
sion and anxiety rating scales into Arabic. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 10, 791–795.

Karnour C, Boge K, Lindheimer N, Churbaji D, Abdelmagid S, Mohamad S, Hahn E and Bajbouj M (2021) Development of a culturally sensitive Arabic version of the Mini International Neuropsychiatric Interview (M.I.N.I.-AR) and validation of the depression module. International Journal of Mental Health Systems 15, 24.

Khalifa DS, Glavin K, Bjerntess E and Lien L (2015) Postnatal depression among Sudanese women: prevalence and validation of the Edinburgh Postnatal Depression Scale at 3 months postpartum. International Journal of Women's Health 7, 677–684.

Kohrt BA, Jordans MJ, Tol WA, Luitel NP, Maharjan SM and Upadhyay N (2011) Validation of cross-cultural child mental health and psychosocial research instruments: adapting the Depression Self-Rating Scale and Child PTSD Symptom Scale in Nepal. BMC Psychiatry 11, 1–17.

Leeffang MMG, Deeks JJ, Takwoingi Y and Macaskill P (2013) Cochrane diagnostic test accuracy reviews. Systematic Reviews 2, 82.

Levis B, Benedetti A, Erieh KE, Saadaat N, Levis AW, Azar M, Rice DB, Chiovitti MJ, Sanchez TA, Cuijpers P, Gilbody S, Ioannidis JPA, Kluza LA, McMillan D, Patton SB, Shrier I, Steele RJ, Ziegelstein RC, Akena DH, Arroll B, Ayalon L, Baradaran HR, Baron M, Beraldi A, Bombardier CH, Butterworth P, Catter G, Chagas MH, Chan JCN, Choler R, Chowdhary N, Clever K, Connell Y, de Man-van Ginkel JM, Delgalillo J, Fann JR, Fischer FH, Fischer B, Fung D, Gelaye B, Goodyear-Smith F, Greeno CG, Hall BJ, Harbridge M, Harrison PA, Hegerl U, Hides L, Hoboll SE, Hudson M, Hyphantis T, Inagaki M, Ismail K, Jetté N, Khamseh ME, Kiely KM, Lamers F, Liu S, Lotrakul M, Loureiro SB, Lowe B, Marsh L, McGuire A, Sidik SM, Munoz TN, Muramatsu K, Osório FL, Patel V, Pembre BW, Persoons P, Picardi A,
speaking Lebanese psychiatric outpatient sample. Psychiatry Research 239, 245–252.

Saxena S, Paraje G, Sharan P, Karam G and Sadana R (2006) The 10/90 divide in mental health research: trends over a 10-year period. The British Journal of Psychiatry 188, 81–82.

Segal DL and Williams KN (2014) Structured and semistructured interviews for differential diagnosis: fundamental issues, applications, and features. In Beidle DC, Frueh BC and Hersen M (eds), Adult Psychopathology and Diagnosis. Hoboken, NJ: John Wiley & Sons Inc., pp. 103–129.

Shaheen NA, AlAtiq Y, Thomas A, Alanazi HA, AlZahrani ZE, Younis SAR and Hussein MA (2019) Paternal postnatal depression among fathers of newborns in Saudi Arabia. American Journal of Men’s Health 13, 1–12.

Shrestha SD, Pradhann R, Tran TD, Gualano RC and Fisher JW (2016) Reliability and validity of the Edinburgh Postnatal Depression Scale (EPDS) for detecting perinatal common mental disorders (PMCDs) among women in low- and middle-income countries: a systematic review. BMC Pregnancy and Childbirth 16, 72.

Sibai AM, Chaaya M, Tohme RA, Mahfoud H and Al-Amin H (2009) Validation of the Arabic version of the 5-item WHO Well Being Index in elderly population. International Journal of Geriatric Psychiatry 24, 106–107.

Söndergaard HP, Ekblad S and Theorell T (2003) Screening for post-traumatic stress disorder among refugees in Stockholm. Nordic Journal of Psychiatry 57, 185–190.

Steel Z, Chey T, Silove D, Marnane C, Bryant RA and Van Ommeren M (2009) Association of torture and other potentially traumatic events with mental health outcomes among refugees exposed to mass conflict and displacement: a systematic review and meta-analysis. Journal of the American Medical Association 302, 537–549.

Steel Z, Marnane C, Irapour C, Chey T, Jackson JW, Patel V and Silove D (2014) The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. International Journal of Epidemiology 43, 476–493.

Steinhauser S, Schumacher M and Rücker G (2016) Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Medical Research Methodology 16, 1–15.

The Cochrane Collaboration (2020) Handbook DTA reviews. Available at https://methods.cochrane.org/sdt-handbook-dta-reviews (Accessed 16 April 2021).

UNHCR (2019) Mid-year trends 2018. Available at https://www.unhcr.org/statistics/unhcrstats/5c52e0a84/mid-year-trends-2018.html (Accessed 16 April 2021).

UNHCR (2021) Regional overview of the South Sudanese refugee population, 2021 South Sudan regional RRRP as of 30 June 2021. Available at https://data.unhcr.org/en/dataviz/62?sv=&geo=0 (Accessed 31 July 2021).

van der Westhuizen C, Wyatt GE, Williams JK, Stein DJ and Sorsdahl K (2017) Validation of the Self Reporting Questionnaire 20-item (SRQ-20) for use in a low- and middle-income country emergency centre setting. International Journal of Mental Health and Addiction 14, 37–48.

Ventevogel P, De Vries G, Scholte WF, Shinwari NR, Faiz H, Nassery R, van den Brink W, van den Brink W and Offl M (2007) Properties of the Hopkins symptom checklist-25 (HSCL-25) and the Self-Reporting Questionnaire (SRQ-20) as screening instruments used in primary care in Afghanistan. Social Psychiatry and Psychiatric Epidemiology 42, 328–335.

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MMG, Sterne JAC, Bossuyt PMM and on behalf of the QUADAS-2 group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 155, 529–536.

WHO (2019) International Statistical Classification of Diseases and Related Health Problems. Available at https://icd.who.int/ (Accessed 16 April 2021).

Wu Y, Levis B, Sun Y, Krishnan A, He C, Riehm KE, Rice DB, Azar M, Yan XY, Neumane D, Bhandari PM, Imran M, Chiovitti MJ, Saadat NA, Boruff JT, Cujiopers P, Gilboby S, McMillan D, Ioannidis JPA, Kloda LA, Patten SB, Shirer J, Zieligsen RC, Henry M, Ismail Z, Loiselle CG, Mitchell ND, Tonelli M, Al-Adawi S, Beraldi A, Braeken APBM, Bijel-Drane N, Bunevicius A, Carter G, Chen C, Cheung G, Copher K, Conroy RM, Cukor D, da Rocha e Silva CE, Dabscheck E, Daray FM, Douven E, Downing MG, Feinstein A, Ferentinos PP, Fischer FH, Flint AJ, Fujimoto M, Gallagher P, Gandy M, Goebel S, Grassi L, Härter M, 2021. Published online by Cambridge University Press

https://doi.org/10.1017/gmh.2021.39
Jenewein J, Jetté N, Julião M, Kim J, Kim S, Kjærgaard M, Köhler S, Loosman WL, Löwe B, Martin-Santos R, Massardo I, Matsuoka Y, Mehnert A, Michopoulos I, Misery L, Navines R, O’Donnell ML, Öztürk A, Pceceliuniene J, Pintor L, Ponsford JL, Quinn TJ, Remé SE, Reuter K, Rooney AG, Sánchez-González R, Schwarzbold ML, Cankorur VS, Shaaban J, Sharpe L, Sharpe M, Simard S, Singer S, Stafford L, Stone J, Sultan S, Teixeira AL, Tiringer I, Turner A, Walker J, Walterfang M, Wang L, White J, Wong DK, Benedetti A and Thombs BD (2020) Probability of major depression diagnostic classification based on the SCID, CIDI and MINI diagnostic interviews controlling for Hospital Anxiety and Depression Scale – Depression subscale scores: an individual participant data meta-analysis of 73 primary. *Journal of Psychosomatic Research* 129, 109892.

Zubaran C, Schumacher M, Roxo MR and Foresti K (2010) Screening tools for postpartum depression: validity and cultural dimensions. *African Journal of Psychiatry* 13, 357–365.