GUT-constrained supersymmetry and dark matter in light of the new $(g - 2)_\mu$ determination

Manimala Chakraborti\(^1\), Leszek Roszkowski\(^{1,2}\), Sebastian Trojanowski\(^{1,2}\)

\(^1\) Astrocent, Nicolaus Copernicus Astronomical Center Polish Academy of Sciences, ul. Rektorska 4, 00-614, Warsaw, Poland

\(^2\) National Centre for Nuclear Research, ul. Pasteura 7, 02-093 Warsaw, Poland

Abstract

The recent confirmation by the Fermilab-based Muon g-2 experiment of the $(g - 2)_\mu$ anomaly has important implications for allowed particle spectra in softly broken supersymmetry (SUSY) models with neutralino dark matter (DM). Generally, the DM has to be quite light, with the mass up to a few hundred GeV, and bino-dominated if it is to provide most of DM in the Universe. Otherwise, a higgsino or wino dominated DM is also allowed but only as a strongly subdominant component of at most a few percent of the total density. These general patterns can easily be found in the phenomenological models of SUSY but in GUT-constrained scenarios this proves much more challenging. In this paper we revisit the issue in the framework of some unified SUSY models with different GUT boundary conditions on the soft masses. We study the so-called non-universal gaugino model (NUGM) in which the mass of the gluino is disunified from those of the bino and the wino and an $SO(10)$ and an $SU(5)$ GUT-inspired models as examples. We find that in these unified frameworks the above two general patterns of DM can also be found, and thus the muon anomaly can also be accommodated, unlike in the simplest frameworks of the CMSSM or the NUHM. We show the resulting values of direct detection cross-section for points that do and do not satisfy the muon anomaly. On the other hand, it will be challenging to access those solutions at the LHC because the resulting spectra are generally very compressed.
I. Introduction

The persistent discrepancy of the determination of the anomalous magnetic moment of the muon \(a_\mu \equiv (g - 2)_\mu / 2 \) between the experimental measurement of the Brookhaven experiment E821 [1] and the Standard Model (SM) value [2] has arguably been the \emph{only} significant data-based argument pointing towards a sub-TeV scale of beyond the Standard Model (BSM) physics. The discrepancy \(\delta a_{\mu}^{\text{BNL}} = a_{\mu}^{\text{BNL}} - a_{\mu}^{\text{SM}} = (28.1 \pm 7.6) \times 10^{-10} \) of about 3.7\(\sigma \) has remained at roughly that level for several years amid various improvements and updates in the various contributions to the SM value. For a recent review, see Ref. [2] which summarises a large volume of work on the subject. An eagerly expected new measurement by the Fermilab-based Muon g-2 experiment has just been announced that, when combined with the BNL result gives [3]

\[
\delta a_\mu = a_{\mu}^{\text{FNAL+BNL}} - a_{\mu}^{\text{SM}} = (25.1 \pm 5.9) \times 10^{-10},
\]

which gives a 4.2\(\sigma \) discrepancy with the SM value\(^1\). The result can easily be explained in a number of BSM scenarios but only for very specific patterns and choices of parameters. In this sense the \((g - 2)_\mu \) result has far reaching consequences for our projections for BSM physics as a strong BSM pattern discriminator.

It is well known that current LHC limits still easily allow SUSY corrections to \(\delta a_\mu \) to be quite large but only in phenomenological frameworks of SUSY with all parameters defined at the electroweak (EW) scale, like the Minimal Supersymmetric Standard Model (MSSM) [5–16]. The situation is generally very different in unified, i.e., based on grand unification theories (GUTs), or – in other words – GUT-constrained, SUSY models, where electroweakly interacting states (EW-inos) are usually tied up to the coloured sector and often cannot be arbitrarily light.

The level of contribution to \(\delta a_\mu \) clearly depends on the spectrum of the model at hand. In a simple framework of the Constrained MSSM (CMSSM) the contribution to \((g - 2)_\mu \) is very small and it can reproduce neither the previous nor the new value of \((g - 2)_\mu \); see, e.g., [17–24]. This is so due to the combination of direct lower limits on coloured sparticles at the LHC and the mass of the Higgs boson which both push the favoured parameter space for the unified masses of scalars and gauginos, \(m_0 \) and \(m_{1/2} \), respectively, to the multi-TeV regime, as stated above. This prevents light sleptons, binos, and winos from being light enough.

It has been known that this pattern can be easily relaxed in other GUT-based models with less stringent unification assumptions. For instance, as was initially shown in [25], this can be achieved when the condition of gaugino unification is relaxed. In this case, when the high-scale value of the gluino soft mass, \(M_3 \), is much larger than the values of the bino and wino masses, \(M_1 \) and \(M_2 \), respectively, the renormalization group equations (RGEs) can drive coloured sparticle masses to values of a few-TeV, or even larger, consistent with the LHC limits. Instead, EW-inos are allowed to be light enough to contribute to \(\delta a_\mu \) [26, 27]; see also [28–33].

In this paper we revisit the situation in some GUT-constrained SUSY models in light

\(^1\) It is, however, worth stressing that recently a lattice computation of the leading order SM hadronic vacuum polarization (LO-HVP) contribution has appeared [4] which largely reduces the tension between the theoretical and experimental results.
of the new data from the Fermilab Muon g-2 experiment2. We focus in particular on the models that allow light enough EW-inos \cite{27}. As an additional ingredient, we require that the lightest superpartner (LSP) is neutral. We will examine when its relic density is consistent with cosmic determinations of dark matter (DM) \cite{51}. In unified models this condition is typically very constraining, especially at the low LSP mass in a few hundred GeV regime implied by the δa_μ result, and allowing for bino-like LSP only. For this reason we will also examine cases when the LSP can be only a subdominant component of DM. This will allow for light higgsino-like and wino-like cases as well.

We will examine in particular some models that not only have the potential to resolve the $(g - 2)_\mu$ anomaly but in addition show less fine tuning than the simplest unified models, like the CMSSM. Specific unification patterns and mass relations can lead to a significant lowering of the fine tuning due to gauginos, scalars, and the \(\mu \) parameter, relative to the simplest unification conditions \cite{52}. In particular, for a nearly pure higgsino with mass of about 1 TeV the fine tuning can be reduced to the level of a few percent, while the scalars and gauginos have masses in the multi-TeV regime.

The paper is organised as follows. In Sec. II we give an estimate of SUSY contribution to $(g - 2)_\mu$ for MSSM scenarios featuring light higgsinos in the spectrum. In Sec. IIIA we describe the specific GUT-constrained SUSY scenarios considered in this work. Our numerical setup and parameter scanning procedure is discussed in Sec. IIIB. In Sec. IIIC we give a description of our results. Finally, we conclude in Sec. IV.

II. Supersymmetric contributions to $(g - 2)_\mu$

Dominant SUSY contribution to $(g - 2)_\mu$ at one loop comes from diagrams involving chargino-sneutrino and neutralino-smuon in the loop. In the mass insertion approximation the five main contributions can be given as \cite{53, 54}

\begin{align}
\Delta_{\chi^+_1 \tilde{\nu}_\mu} &= \frac{g^2}{(4\pi)^2} \frac{m^2_\mu \tan \beta}{\mu M_2} F_{[\chi^+_1 \tilde{\nu}_\mu]} \left(\frac{\mu^2}{m^2_{\tilde{\nu}_\mu}}, \frac{M^2_2}{m^2_{\tilde{\nu}_\mu}} \right), \\
\Delta_{\chi^0_{\tilde{\mu}}} &= -\frac{1}{2} \frac{g^2}{(4\pi)^2} \frac{m^2_\mu \tan \beta}{\mu M_2} F_{[\chi^0]} \left(\frac{\mu^2}{m^2_{\tilde{\mu}}}, \frac{M^2_2}{m^2_{\tilde{\mu}}} \right), \\
\Delta_{\chi^0_{\tilde{\mu}}} &= \frac{1}{2} \frac{g^2}{(4\pi)^2} \frac{m^2_\mu \tan \beta}{\mu M_1} F_{[\chi^0_{\tilde{\mu}}]} \left(\frac{\mu^2}{m^2_{\tilde{\mu}}}, \frac{M^2_1}{m^2_{\tilde{\mu}}} \right), \\
\Delta_{\chi^0_{\tilde{\mu}}} &= -\frac{g^2}{(4\pi)^2} \frac{m^2_\mu \tan \beta}{\mu M_1} F_{[\chi^0_{\tilde{\mu}}]} \left(\frac{\mu^2}{m^2_{\tilde{\mu}}}, \frac{M^2_1}{m^2_{\tilde{\mu}}} \right), \\
\Delta_{\chi^0_{\tilde{\mu}}} &= \frac{g^2}{(4\pi)^2} \frac{m^2_\mu M_1 \mu}{m^2_{\tilde{\mu}L} m^2_{\tilde{\mu}R}} \tan \beta F_{[\chi^0_{\tilde{\mu}}]} \left(\frac{m^2_{\tilde{\mu}R}}{M^2_1}, \frac{m^2_{\tilde{\mu}L}}{M^2_1} \right),
\end{align}

2 The impact of the new muon g-2 result on the parameter space of SUSY models has been discussed in several recent works, see e.g. \cite{34–49}. A very recent exhaustive review on the topic can be found in \cite{50}.
FIG. 1: The plots show the SUSY contributions to $(g - 2)_\mu$ as a function of μ for the mixed LSP scenario corresponding to the parameter choice $M_1 = M_2 = \mu + 20$ GeV, $m_{\tilde{\mu}_L} = \mu + 10$ GeV, $m_{\tilde{\mu}_R} = 2.5$ TeV. The results are shown in red and orange for $\tan \beta = 10$ and 60, respectively. The central value and its ±2σ limits for the deviation based on the combined experimental measurement (Eq. 1) are shown as a cyan band.

In the limit of degenerate SUSY masses, the dominant contribution to $(g - 2)_\mu$ comes from the chargino-sneutrino loop of Eq. 2. This is true for scenarios involving a light higgsino in the spectrum. As the value of μ increases, the contribution from neutralino-smuon loop, as given in Eq. 6 may become the dominant one provided both $m_{\tilde{\mu}_L}$ and $m_{\tilde{\mu}_R}$ are sufficiently small.

To give an estimate of the SUSY contributions to $(g - 2)_\mu$, we plot in Fig. 1 $(g - 2)_\mu$ as a function of μ. Fig. 1 corresponds to the parameter choice $M_1 = M_2 = \mu + 20$ GeV. This choice ensures that the LSP is predominantly higgsino-like with significant wino and bino admixture in it. The smuon masses are chosen so as to maximize the contribution from Eq. 2, namely, $m_{\tilde{\mu}_L} = \mu + 10$ GeV and $m_{\tilde{\mu}_R}$ is taken to be decoupled from the spectrum. The relatively small values of μ and the decoupled $\tilde{\mu}_R$ in this scenario implies that the contribution from the neutralino-smuon loops in this case is negligibly small. Thus, a significantly large contribution to $(g - 2)_\mu$ requires the sneutrino mass to be sufficiently small, which is ensured by this choice. It is observed that the $(g - 2)_\mu$ anomaly can be explained for values of $m_{\chi} \sim \mu$ up to ~ 900 GeV for $\tan \beta = 60$, considering the 2σ uncertainty on the central value.
III. GUT-constrained supersymmetry and \((g-2)_\mu\)

A. Selected GUT-constrained scenarios

We perform our analysis in the framework of six specific GUT-constrained models that are described below. We start with the most unified scenarios and then move to the less constrained ones in order to illustrate the impact of loosening the GUT constraints on the allowed range of \(\delta a_\mu\). The relevant parameters and their ranges are given in Tables I and II.

A prototype GUT-constrained scenario is the **constrained MSSM (CMSSM)** [55] in which all the soft scalar and gaugino masses are unified to their respective common parameters, \(m_0\) and \(m_{1/2}\). Similarly, all the trilinear couplings are taken as equal to a single \(A_0\) parameter at the GUT scale and we will assume that the same is true for all the other models considered below. We also vary the ratio of the Higgs vacuum expectation values (vevs), \(\tan \beta\), while we keep the sign of the \(\mu\) parameter positive, \(\text{sgn}(\mu) > 0\). The last choice is favored by the sign of \(\delta a_\mu\). As is well-known, already in this minimal GUT-constrained model, one can accommodate for the SM-like Higgs boson with the mass \(m_h \simeq 125\) GeV [19] and simultaneously obtain the DM relic density either for the bino- or higgsino-like lightest neutralino [56]; cf. also Refs [18, 24, 57, 58] for other analyses.

An alternative, slightly less unified scenario, is to assume that the soft mass parameters in the Higgs sector, \(m_{H_d}\) and \(m_{H_u}\), can run freely, independently of the other soft scalar masses. In this, so-called **non-universal Higgs model (NUHM)** [59, 60], the \(\mu\) parameter is also less constrained, since both \(\mu\) and the Higgs pseudoscalar mass \(m_A\) are determined by \(m_{H_d}\) and \(m_{H_u}\) via the conditions of the electroweak symmetry breaking. In particular, this gives one more freedom in satisfying both the DM relic density and flavor observables [21, 24, 56, 57, 61–63].

On other hand, a simultaneous fitting of the constraints from \(\delta a_\mu\), \(m_h\) and \(\Omega_\chi h^2\), favors GUT-constrained scenarios with **non-universal gaugino masses (NUGM)** [27] (see also recent study [64]). In this case, for large values of the soft gluino mass \(M_3\), the Higgs boson mass \(m_h\) can be driven to \(m_h \simeq 125\) GeV via loop-induced corrections and the running of the stop mass. At the same time, the bino- or wino-like lightest neutralino can be much lighter, as required by \(\delta a_\mu\). Specific gaugino mass unification patterns can also lead to reduced fine-tuning in supersymmetric models [65–68] and simultaneously allow one to fit the DM relic density constraint [52]. In our scans, we analyze two such respective scenarios, in which the soft bino and wino masses are either kept equal at the GUT scale \(M_1 = M_2 \neq M_3\) (**NUGM1**), or are all varied independently (**NUGM2**); cf. Ref. [27].

Finally, in addition to treating \(M_1\), \(M_2\) and \(M_3\) as free parameters, we allow the soft squark and slepton masses to acquire non-universal values at the GUT scale. We first consider the model in which the NUHM boundary conditions are further modified by an inclusion of a small D-term contribution \(m^2_D\) [69, 70] such that \(m^2_Q = m^2_U = m^2_E = m^2_{16} + m^2_D\), \(m^2_D = m^2_{17} = m^2_{16} - 3M^2_D\) and \(m^2_{H_u,H_d} = m^2_{10} = 2M^2_D\). Here, we have assumed an **SO(10)-inspired** [71, 72] GUT-constrained framework in which the universal masses in the fermionic \(16\) and bosonic \(10\) representations are denoted by \(m^2_{16}\) and \(m^2_{10}\), respectively. All the three gaugino masses are allowed to vary freely. The same is true for the last model that we

3 We keep the same choice of \(\text{sgn}(\mu)\) also for less minimal scenarios discussed below. We note that, in general, the sign of the supersymmetric contribution to \(\delta a_\mu\) is driven by \(\text{sgn}(M_{1,2}\mu)\). When presenting our results below, we focus on scenarios predicting a positive BSM contribution to \(\delta a_\mu\).
consider which we call an SU(5)-inspired model \cite{73}. In this case, the Higgs sector soft masses m_{H_u} and m_{H_d} are set free. Other soft scalar masses are set by the common masses of the $\bar{5}$ and 10 representations m_5 and m_{10}, respectively, to be $m_{2Q}^2 = m_{2U}^2 = m_{2L}^2 = m_{210}^2$ and $m_{1D}^2 = m_{1L}^2 = m_{15}^2$.

B. Parameter scan

In our simulations, we use the Multinest \cite{74, 75} package and generate points in the parameter space with flat priors. The scans are driven by the likelihood functions that contain the observables listed in Table III. We employ SOFTSUSY to obtain the supersymmetric spectrum \cite{76} and decay branching fractions \cite{77}. The Higgs boson mass is calculated with the Himalaya package \cite{78}, which includes three-loop corrections following Ref. \cite{79}. The properties of the lightest SM-like Higgs boson are further constrained with the use of Higgsbounds \cite{80, 81} and Higgssignals \cite{82, 83}.

Model	Parameters
CMSSM	$m_0, m_{1/2}, A_0, \tan \beta$
NUHM	$m_0, m_{H_d}^2, m_{H_u}^2, m_{1/2}, A_0, \tan \beta$
NUGM1	$m_0, M_1 = M_2, M_3, A_0, \tan \beta$
NUGM2	$m_0, M_1, M_2, M_3, A_0, \tan \beta$
SO(10)-inspired	$m_{16}, m_{10}, M_D, M_1, M_2, M_3, A_0, \tan \beta$
SU(5)-inspired	$m_{10}, m_5, m_{H_d}^2, m_{H_u}^2, m_{10}^2, M_1, M_2, M_3, A_0, \tan \beta$

TABLE I: Model parameters of the GUT-constrained scenarios examined in this paper.

Parameter	Range
Scalar masses	$100 < m_0, m_{16}, m_{10}, SU(5), m_5 < 4000$
$-10000^2 < m_{H_d}^2, m_{H_u}^2, m_{10, SO(10)}^2 < 10000^2$	
$0 < 3M_D^2 < m_{16}^2 - (100 \text{ GeV})^2$	
Gaugino masses	$100 < m_{1/2} < 4000$
$-4000 < M_1, M_2 < 4000$	
$700 < M_3 < 10000$	
Trilinear couplings	$-10000 < A_0 < 10000$
Higgs vev ratio	$2 < \tan \beta < 62$

TABLE II: The ranges of the model parameters that we scan over (all dimensionful parameters given in GeV). In our scans we use flat priors.
We use Micromegas [84–86] to calculate the relic density of the lightest neutralino DM and to include direct detection constraints from PICO-60 [87] and Xenon1T [88]. When comparing the DM relic density to the Planck data [51], we assume 10% theoretical uncertainty. We study both scenarios with $\Omega_{\chi} h^2 \simeq \Omega_{\text{DM}} h^2$ and $\Omega_{\chi} h^2 \lesssim \Omega_{\text{DM}} h^2$. In the latter case, we assume that the lightest neutralino contributes only partially to the total DM relic density. Superiso Relic [92] is employed to test the points in the parameter space against the searches for DM-induced γ-rays in FermiLAT [93] and to analyze the cosmic-ray anti-proton bounds from the AMS-02 experiment [94]; cf. also Refs [95, 96].

Superiso Relic [92] is also used to calculate flavor observables. In our analysis, we include the leptonic $B_s \to \mu^+\mu^-$ and radiative $B \to X_s \gamma$ decays. In the former case, we follow Ref. [97] and employ the updated world average value of the relevant branching fraction after recent LHCb measurement [98]. For the radiative decay, we use the average value as determined by the HFLAV collaboration [99]. Instead, we do not take into account observables related to semi-leptonic B meson decays (for recent discussion, see Ref. [100] and references therein). In particular, these can lead to lepton flavor universality violation and the corresponding measured R_K factor is now in a 3.1σ tension with the SM prediction [101]. It is known, however, that all these deviations, if fully confirmed with the future data, cannot be simultaneously resolved in the framework of the MSSM [102]. Since our focus in this study is on δa_μ, we leave an updated analysis of the semi-leptonic B-meson-decay anomalies for future studies related to scenarios going beyond the MSSM.

Direct LHC searches play an important role in constraining the allowed values of δa_μ in supersymmetric models. We treat them with CheckMATE [103, 104] and employ the analyses implemented in version 2.0.23 of the package; cf. Ref. [15] for further discussion about relevant analyses. In addition, we test our scenarios against the search for compressed supersymmetric spectra [105] by applying the cuts in the (m_χ, m_{χ^\pm}) and ($m_\chi, m_{\nu_{\pm}}$) planes for the degenerate chargino and slepton cases; cf. Ref. [15] for a recent discussion. If the lightest neutralino is wino-like with the mass $m_\chi \sim$ a few hundred GeV and a very small mass splitting, $m_{\chi^\pm} - m_\chi \sim \mathcal{O}(100 \text{ MeV})$ then further important bounds come from searches for disappearing tracks [106, 107]. Such scenarios do not typically play a dominant role in determining the allowed range of δa_μ in the GUT-constrained models of our interest. However, we incorporate them in our analysis, as they could become important for the fully degenerate gaugino mass patterns and the DM relic density constraint treated as an upper limit. To this end, we rely on the approximate parametrization of the wino neutralino-chargino mass splitting at the two-loop level [108] and apply the cuts following Ref. [16].

Last but not least, we calculate δa_μ with the GM2Calc [113] code which employs two-loop corrections following Refs [114–116]. This is not included in the likelihood function that drives the numerical scans. Instead, we store the relevant values for each point in the simulations and later analyze the allowed ranges of δa_μ that are favored by other constraints listed in Table III.

4 In the regions of the parameter space that correspond to sub-TeV neutralino DM with its relic density set by co-annihilations with sleptons, the Sommerfeld enhancement (SE) [89, 90] has typically an impact on $\Omega_{\chi} h^2$ of order up to a few percent [91]. This is within the theoretical uncertainty that we impose on $\Omega_{\chi} h^2$ in our scans. A larger effect could be observed for light wino DM, but in this case, the present-day indirect bounds can be avoided thanks to suppressed relic density.
Collider: $m_h = (125.10 \pm 0.14 \text{ [109]±2 [th.]}) \text{ GeV}$

Higgsbounds [80, 81], Higgssignal [82, 83]

CheckMATE [103, 104] + Refs [105–107]

DM: $\Omega_{\text{DM}}^{\text{tot}} h^2 = 0.12 \pm 0.001 \text{ [51]±10\% [th.]}$

bounds from direct & indirect searches (see text)

Flavor: $\text{BR}(B \to X_s \gamma) = (3.32 \pm 0.15) \times 10^{-4} \text{ [99]}$

$\text{BR}(B_s \to \mu^+ \mu^-) = (2.93 \pm 0.35) \times 10^{-9} \text{ [97]}$

Nuisance: $m_t = 172.80 \pm 0.40 \text{ [110–112]}$

TABLE III: The constraints included in the global likelihood function in our scans. The top quark mass in the bottom row is treated as a nuisance input parameter, which is drawn from a Gaussian distribution with the central value and error as indicated in the table.

C. Results

In this section we present results of our numerical analysis. We begin with a general discussion about the GUT-constrained models considered in this paper. Next we focus on the models NUGM1 and the SU(5)-inspired model, as they represent, respectively, the cases of a minimum and a maximum number of relevant parameters (compare Table I) that allow one to obtain large enough corrections to the anomalous magnetic moment of the muon.

a. GUT-constrained supersymmetry and δa_{μ}

In Fig. 2 we present a histogram showing a range of values of δa_{μ} for scan points in the models examined in this paper. We select the points by applying a combined 2σ cut on the observational constraints included in the global likelihood function. The figure confirms the known result that in the CMSSM and the NUHM the δa_{μ} result cannot be explained because the sleptons are too heavy. In contrast, in the two versions of the NUGM, the SO(10)-inspired and the SU(5)-inspired models some light EW-inos are allowed and can provide sufficient contribution to δa_{μ}.

As mentioned above, the improvement in fitting δa_{μ} in the latter four models is primarily a result of additional freedom in setting the gluino mass at the GUT scale independent of the masses of the wino and the bino. This allows one to satisfy the LHC bounds from direct searches for colored superpartners and from the measurements of the properties of the Higgs boson, which both favor the supersymmetric color sector to lie in the few-TeV mass scale. In fact, in our scans the largest values of δa_{μ} correspond to large gluino and squark masses, typically $m_{\tilde{g}} \gtrsim 5 \text{ TeV}$ and $m_{\tilde{q}} \gtrsim 4 \text{ TeV}$. On the other hand, values of δa_{μ} within the current ±2σ bound can be obtained also for significantly smaller gluino and squark masses, between 2 and 3 TeV. At the same time, the slepton and neutralino sector of the models can be kept much lighter as required by fitting the anomaly.

Additional smaller differences between the models come from introducing more freedom in the scalar or gaugino masses that go beyond the simplest NUGM scenario; cf. Table I, and by treating the relic density constraint only as an upper bound (the difference between red and green histograms in the plot). Notably, these changes do not drastically affect the
allowed ranges of δa_μ, and the minimal NUGM1 model could already be sufficient to satisfy the bound given current uncertainties. On the other hand, less universal models allow one to find more fine-tuned solutions to the anomaly by employing specific mass patterns between neutralinos of different composition, charginos and sleptons.

b. The lightest neutralino composition and mass

In Fig. 3 we display the composition of the neutralino LSP in a $(m_{\chi}, \delta a_\mu)$ plane for the same selection of points as in Fig. 2 but two models only: the NUGM1 with the requirement that the LSP provides all the DM in the Universe (left window) and the $SU(5)$-inspired model with the LSP being possibly a subdominant DM component (right window). In the NUGM1 model only a bino-like LSP with mass $m_{\chi} \lesssim 300 \text{ GeV}$ is consistent with Eq. 1. Since the higgsino is subdominant DM when its mass is less than 1 TeV, it appears in the plot only for $m_{\chi} \gtrsim 1 \text{ TeV}$ and below the 2σ bound on δa_μ. The wino DM is not present in this model, since we assume $M_1 = M_2$ at the GUT scale. If we relaxed the DM density constraint to an upper limit only, the δa_μ fit could be slightly improved in this model for the bino LSP, as it is clear from Fig. 2.

The correct value of the DM relic density for bino DM in the NUGM1 model can be obtained because of coannihilations with light sleptons. Although typically the lightest of them is the lighter stau, the other sleptons, including smuons and a muon sneutrino, also have similar masses, as dictated by the common scalar mass at the GUT scale. Hence, for sufficiently light binos, in this scenario the points minimizing the global likelihood, in particular due to the correct value of the DM relic density, also naturally predict an increased value of δa_μ. This can be seen in the left panel of Fig. 3. In this plot, the upper bound on δa_μ as a function of m_{χ} is mainly driven by the maximum contributions to the anomaly that one can obtain in the neutralino-slepton coannihilation channel and by the requirement to fit $\Omega_{\chi} h^2$.

In the right window of Fig. 3 the general pattern (compare Fig. 1) seen in the NUGM1 is
FIG. 3: In a \((m_\chi, \delta a_\mu)\) plane we present a scatter plot of points from our scan that survive a global 2\(\sigma\) cut on the constraints given in Table III, showing different predominant compositions of the neutralino LSP: bino (grey stars), higgsino (beige squares) and wino (red circles) in the NUGM1 model (left window) and the \(SU(5)\)-inspired model (right window). The ±2\(\sigma\) range of \(\delta a_\mu\) has also been marked.

Found also in the \(SU(5)\)-inspired model but now we can additionally see some higgsino and wino LSP cases that can fit \(\delta a_\mu\). They correspond, however, to very subdominant DM. This can be clearly seen in the left panel of Fig. 4 for the \(SU(5)\)-inspired model in which we present the results of our scans in a \((\Omega_\chi h^2, \delta a_\mu)\) plane. While a light LSP neutralino is required in order to give sufficient contribution to \(\delta a_\mu\), only bino-like LSP can at the same time explain the whole DM in the Universe. This is so mainly due to bino-slepton coannihilations, while in this model we also find cases of the lightest bino-like neutralino DM with important wino admixture, or bino-wino DM, that are also known to be able to satisfy the \(\delta a_\mu\) anomaly in the general MSSM; see, e.g., Ref. [16] for a recent discussion.

In our analysis for the \(SU(5)\)-inspired model, the best fit points in the global likelihood correspond to \(m_\chi \lesssim 400\) GeV. We note, however, that if we relax the requirement to fit the global 2\(\sigma\) constraint used in our analysis and focus on fitting \(\delta a_\mu\) only, then already in this GUT-constrained scenario we find good points in the parameter space with \(m_\chi\) up to even 730 GeV. Notably, this is close to the upper limit on the neutralino DM mass that can fit the anomaly which can be seen in Fig. 1. We note, however, that in specific scenarios predicting, e.g., a large gap between the stau and the other slepton masses, the neutralino DM mass can even exceed 1 TeV while still contributing enough to \(\delta a_\mu\); cf. Ref. [47].

The allowed DM mass range will further shrink when the future Fermilab Muon g-2 experiment data would allow one to reduce the current uncertainty on \(\delta a_\mu\). In particular, assuming the same central value but a reduced experimental error by a factor of two would render \(m_\chi \lesssim 320\) GeV for good global fit points in our scans, in contrast to \(m_\chi \lesssim 670\) GeV for points outside our global 2\(\sigma\) cut which explain the anomaly. Eventually, even stronger reduction of the uncertainty would have a strong impact on the allowed region of the parameter space. This would, however, depend also on the progress in reducing the theoretical uncertainty in the SM prediction of this observable.
In the discussion above, we have focused on the NUGM1 model which is the most con-
strained scenario studied in this paper that still allows one to fit δa_μ, as well as on the least
constrained case, the $SU(5)$-inspired model, that also has this property. It is worth men-
tioning, though, that a general discussion about the allowed DM scenarios relevant for the
latter case remains also valid in the NUGM2 and the $SO(10)$-inspired models. In particular,
already in NUGM2 we can find the low DM relic density points with predominantly wino
DM. This is due to relaxing the unification condition between the bino and wino masses at
the GUT scale, $M_1 \neq M_2$. Smaller differences between these models, seen in Fig. 2, are
caused by an increasingly easier accommodation of the global 2σ bounds in increasingly less
unified scenarios. These details are, however, not crucial for our discussion.

c. Discovery prospects in DM and LHC searches

The observed pattern of χ mass and relic density has strong implications for neutralino
DM searches. In the right panel of Fig. 4 we present the prospects for detecting such DM
in direct detection searches. We focus on the spin-independent cross section, σ_P^{SI}, which is
additionally rescaled by the ratio of (possibly subdominant) neutralino DM relic density to
the total DM relic density, $\Omega_\chi h^2/\Omega_{\text{tot}}$. As can be seen, from all the points in the $SU(5)$-
inspired model that satisfy the global 2σ constraints discussed in section III B, only scenarios
predicting low DM mass survive the δa_μ constraint and these are marked with color.

Even though such higgsino and wino points correspond to only $\mathcal{O}(1\%)$ of the total DM
relic density, their DD interaction rates are still large enough to be within the reach of the
forthcoming Xenon-nT detector [117]. In contrast, bino-like DM (dark-grey crosses in right
panel of Fig. 4) will generally remain beyond the reach of detectors like Xenon-nT. They
can even give signal rates below the expected background from atmospheric and diffuse
supernova neutrinos [118].

On the other hand, it will be challenging to detect underabundant higgsino or wino DM in
indirect detection experiments due to too low annihilation rates. The same remains typically
true for bino-dominated points with low annihilation cross section, σv, for which the correct
value of Ωh^2 is obtained thanks to coannihilations with light sleptons. In few cases, in which
the present-day annihilation cross section of bino DM is increased due to e.g. a resonance via
the pseudoscalar exchange, the detection rates might become within the reach of future γ-ray
searches, although this would depend on the shape of the DM profile towards the Galactic
Center. See Refs [95, 119] for further relevant discussions about such searches employing
cosmic-ray and γ-ray observations.

The nearly degenerate ($m_\chi, m_{\chi_1^\pm}$) and (m_χ, m_{ℓ^\pm}) spectra in the higgsino/wino- and bino-
dominated LSP cases imply that searches specifically designed to look for compressed spec-
tra [105] at future colliders may probe these scenarios further. A projected reach for various
future colliders for the higgsino case can be found in [120]. Depending on the masses of the
sleptons in the higgsino case, the improved slepton pair production searches [121] leading to
two leptons and missing energy in the final state may also become important. Similarly, for
the bino case, stronger bounds on gaugino pair-production searches [122] looking for three
leptons and missing energy in the final state can prove to be crucial. Prospects for various
EW SUSY searches at the HL-LHC and HE-LHC can be found in [123].
IV. Conclusions

The muon anomalous magnetic moment anomaly has been providing the only hint for a low scale of BSM physics in a few hundred GeV regime, which has been at odds with the general trend of pushing it up to, and above, the TeV scale. For this reason it has been difficult to accommodate in the simplest models of SUSY defined in terms of the smallest number of parameters, like the CMSSM or the NUHM. The recent confirmation of δa_{μ} gives it a more solid ground and brings very strong implications for SUSY searches at the LHC and for DM. In the models discussed in this paper the SUSY spectra are quite compressed, making them difficult to access at the LHC. The $(g-2)_{\mu}$ anomaly can be consistent with bino-like DM being all DM. Alternatively, the same can be achieved for higgsino-like LSP but only when it is very subdominant, constituting only a few per cent of the DM in the Universe. These implications for DM are quite general and applicable to the general MSSM. In this paper we showed that these solutions can be realised in some GUT-inspired models featuring gaugino mass non-unification, but not (as has been well known) in the simplest
frameworks of the CMSSM or the NUMH.

NOTE ADDED: After our analysis had been completed, we became aware of Refs. [39, 41] which partly overlap with our paper. In Ref. [41] in a seven-parameter model with non-universal gaugino masses the case of the wino-higgsino for $M_1 \gg M_2 \sim \mu$ was mostly considered which is only a very specific, and rather fine tuned, case. In Ref. [39] some specific non-universal gaugino mass patterns were considered but no implications for DM composition and prospects for direct detection were examined.

Acknowledgments

This work is supported by the project AstroCeNT, Particle Astrophysics Science and Technology Centre, carried out within the International Research Agendas programme of the Foundation for Polish Science financed by the European Union under the European Regional Development Fund. LR is also supported in part by the National Science Centre, Poland, research grant No. 2015/18/A/ST2/00748. ST is supported in part by the Polish Ministry of Science and Higher Education through its scholarship for young and outstanding scientists (decision no 1190/E-78/STYP/14/2019). The use of the CIS computer cluster at the National Centre for Nuclear Research in Warsaw is gratefully acknowledged.

[1] Muon g-2 collaboration, G. W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003, [hep-ex/0602035].

[2] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1–166, [2006.04822].

[3] Muon g-2 collaboration, B. Abi et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801, [2104.03281].

[4] S. Borsanyi et al., Leading hadronic contribution to the muon 2 magnetic moment from lattice QCD, 2002.12347.

[5] A. Fowlie, K. Kowalska, L. Roszkowski, E. M. Sessolo and Y.-L. S. Tsai, Dark matter and collider signatures of the MSSM, Phys. Rev. D 88 (2013) 055012, [1306.1567].

[6] M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta and S. Poddar, The Electroweak Sector of the pMSSM in the Light of LHC - 8 TeV and Other Data, JHEP 07 (2014) 019, [1404.4841].

[7] A. Choudhury and S. Mondal, Revisiting the Exclusion Limits from Direct Chargino-Neutralino Production at the LHC, Phys. Rev. D 94 (2016) 055024, [1603.05502].

[8] M. Chakraborti, A. Datta, N. Ganguly and S. Poddar, Multilepton signals of heavier electroweakinos at the LHC, JHEP 11 (2017) 117, [1707.04410].

[9] E. Bagnaschi et al., Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data, Eur. Phys. J. C 78 (2018) 256, [1710.11091].

[10] K. Hagiwara, K. Ma and S. Mukhopadhyay, Closing in on the chargino contribution to the muon g-2 in the MSSM: current LHC constraints, Phys. Rev. D 97 (2018) 055035, [1706.09313].
P. Cox, C. Han and T. T. Yanagida, *Muon g − 2 and dark matter in the minimal supersymmetric standard model*, Phys. Rev. D 98 (2018) 055015, [1805.02802].

M. Carena, J. Osborne, N. R. Shah and C. E. M. Wagner, *Supersymmetry and LHC Missing Energy Signals*, Phys. Rev. D 98 (2018) 115010, [1809.11082].

M. Abdughani, K.-I. Hikasa, L. Wu, J. M. Yang and J. Zhao, *Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond*, JHEP 11 (2019) 095, [1909.07792].

M. Endo, K. Hamaguchi, S. Iwamoto and T. Kitahara, *Muon g − 2 vs LHC Run 2 in supersymmetric models*, JHEP 04 (2020) 165, [2001.11025].

M. Chakraborti, S. Heinemeyer and I. Saha, *Improved (g − 2)µ Measurements and Supersymmetry*, Eur. Phys. J. C 80 (2020) 984, [2006.15157].

M. Chakraborti, S. Heinemeyer and I. Saha, *Improved (g − 2)µ Measurements and Wino/Higgsino Dark Matter*, 2103.13403.

J. Cao, Z. Heng, D. Li and J. M. Yang, *Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM*, Phys. Lett. B 710 (2012) 665–670, [1112.4391].

P. Bechtle et al., *Constrained Supersymmetry after two years of LHC data: a global view with Fittino*, JHEP 06 (2012) 098, [1204.4199].

A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E. M. Sessolo et al., *The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs*, Phys. Rev. D 86 (2012) 075010, [1206.0264].

O. Buchmueller et al., *The CMSSM and NUHM1 in Light of 7 TeV LHC, B_s → µ^+µ^- and XENON100 Data*, Eur. Phys. J. C 72 (2012) 2243, [1207.7315].

C. Strege, G. Bertone, F. Feroz, M. Fornasa, R. Ruiz de Austri and R. Trotta, *Global Fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints*, JCAP 04 (2013) 013, [1212.2636].

P. Bechtle et al., *Killing the cMSSM softly*, Eur. Phys. J. C 76 (2016) 96, [1508.05951].

C. Han, K.-i. Hikasa, L. Wu, J. M. Yang and Y. Zhang, *Status of CMSSM in light of current LHC Run-2 and LUX data*, Phys. Lett. B 769 (2017) 470–476, [1612.02296].

GAMBIT collaboration, P. Athron et al., *Global fits of GUT-scale SUSY models with GAMBIT*, Eur. Phys. J. C 77 (2017) 824, [1705.07935].

S. Akula and P. Nath, *Gluino-driven radiative breaking, Higgs boson mass, muon g-2, and the Higgs diphoton decay in supergravity unification*, Phys. Rev. D 87 (2013) 115022, [1304.5526].

K. Kowalska, L. Roszkowski, E. M. Sessolo, S. Trojanowski and A. J. Williams, *Looking for supersymmetry: ~1 TeV WIMP and the power of complementarity in LHC and dark matter searches*, in 50th Rencontres de Moriond on QCD and High Energy Interactions, 7, 2015, 1507.07446.

K. Kowalska, L. Roszkowski, E. M. Sessolo and A. J. Williams, *GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV*, JHEP 06 (2015) 020, [1503.08219].

S. Mohanty, S. Rao and D. P. Roy, *Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models*, JHEP 09 (2013) 027, [1303.5830].

J. Chakrabortty, S. Mohanty and S. Rao, *Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints*, JHEP 02 (2014) 074, [1310.3620].

I. Gogoladze, F. Nasir, Q. Shafi and C. S. Un, *Nonuniversal Gaugino Masses and Muon g-2*, Phys. Rev. D 90 (2014) 035008, [1403.2337].
[31] M. Adeel Ajaib, I. Gogoladze and Q. Shafi, *GUT-inspired supersymmetric model for \(h \to \gamma\gamma \) and the muon g-2*, Phys. Rev. D 91 (2015) 095005, [1501.04125].

[32] P. Cox, C. Han, T. T. Yanagida and N. Yokozaki, *Gaugino mediation scenarios for muon g – 2 and dark matter*, JHEP 08 (2019) 097, [1811.12699].

[33] H. M. Tran and H. T. Nguyen, *GUT-inspired MSSM in light of muon g – 2 and LHC results at \(\sqrt{s} = 13 \) TeV*, Phys. Rev. D 99 (2019) 035040, [1812.11757].

[34] M. Abdughani, Y.-Z. Fan, L. Feng, Y.-L. Sming Tsai, L. Wu and Q. Yuan, *A common origin of muon g-2 anomaly, Galaxy Center GeV excess and AMS-02 anti-proton excess in the NMSSM*, 2104.03274.

[35] J. Cao, J. Lian, Y. Pan, D. Zhang and P. Zhu, *Improvised \((g - 2)_\mu\) Measurement and Singlino dark matter in the general NMSSM*, 2104.03284.

[36] M. Chakraborti, S. Heinemeyer and I. Saha, *The new "MUON G-2" Result and Supersymmetry*, 2104.03287.

[37] M. Ibe, S. Kobayashi, Y. Nakayama and S. Shirai, *Muon g-2 and CP violation in Gauge Mediation without SUSY CP Problem*, 2104.03289.

[38] C. Han, *Muon g-2 and CP violation in MSSM*, 2104.03292.

[39] F. Wang, L. Wu, Y. Xiao, J. M. Yang and Y. Zhang, *Gut-scale constrained susy in light of e989 muon g-2 measurement*, 2021.

[40] S. Heinemeyer, E. Kpatcha, I. n. Lara, D. E. López-Fogliani, C. Muñoz and N. Nagata, *The new \((g - 2)_\mu\) result and the \(\mu\nu\)SSM*, 2104.03294.

[41] J.-L. Yang, H.-B. Zhang, C.-X. Liu, X.-X. Dong and T.-F. Feng, *Muon \((g - 2)\) in the B-LSSM*, 2104.03542.

[42] K. Kowalska, L. Roszkowski, E. M. Sessolo and S. Trojanowski, *Low fine tuning in the MSSM with higgsino dark matter and unification constraints*, JHEP 04 (2014) 166, [1402.1328].
[53] T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565–6575, [hep-ph/9512396].

[54] S. P. Martin and J. D. Wells, Muon Anomalous Magnetic Dipole Moment in Supersymmetric Theories, Phys. Rev. D 64 (2001) 035003, [hep-ph/0103067].

[55] G. L. Kane, C. F. Kolda, L. Roszkowski and J. D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173–6210, [hep-ph/9312272].

[56] K. Kowalska, L. Roszkowski and E. M. Sessolo, Two ultimate tests of constrained supersymmetry, JHEP 06 (2013) 078, [1302.5956].

[57] L. Roszkowski, E. M. Sessolo and A. J. Williams, What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection, JHEP 08 (2014) 067, [1405.4289].

[58] P. Athron, C. Balazs, B. Farmer, A. Fowlie, D. Harries and D. Kim, Bayesian analysis and naturalness of (Next-to-)Minimal Supersymmetric Models, JHEP 10 (2017) 160, [1709.07895].

[59] V. Berezinsky, A. Bottino, J. R. Ellis, N. Fornengo, G. Mignola and S. Scopel, Neutralino dark matter in supersymmetric models with nonuniversal scalar mass terms, Astropart. Phys. 5 (1996) 1–26, [hep-ph/9508249].

[60] P. Nath and R. L. Arnowitt, Nonuniversal soft SUSY breaking and dark matter, Phys. Rev. D 56 (1997) 2820–2832, [hep-ph/9701301].

[61] L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L. S. Tsai and T. A. Varley, Global fits of the Non-Universal Higgs Model, Phys. Rev. D 83 (2011) 015014, [0903.1279].

[62] J. Ellis, K. A. Olive and P. Sandick, Update on the Direct Detection of Dark Matter in MSSM Models with Non-Universal Higgs Masses, New J. Phys. 11 (2009) 105015, [0905.0107].

[63] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162–169, [1112.3028].

[64] F. Wang, K. Wang, J. M. Yang and J. Zhu, Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses, JHEP 12 (2018) 041, [1808.10851].

[65] G. L. Kane and S. F. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113–122, [hep-ph/9810374].

[66] M. Bastero-Gil, G. L. Kane and S. F. King, Fine tuning constraints on supergravity models, Phys. Lett. B 474 (2000) 103–112, [hep-ph/9910506].

[67] H. Abe, T. Kobayashi and Y. Omura, Relaxed fine-tuning in models with non-universal gaugino masses, Phys. Rev. D 76 (2007) 015002, [hep-ph/0703044].

[68] D. Horton and G. G. Ross, Naturalness and Focus Points with Non-Universal Gaugino Masses, Nucl. Phys. B 830 (2010) 221–247, [0908.0857].

[69] Y. Kawamura, H. Murayama and M. Yamaguchi, Low-energy effective Lagrangian in unified theories with nonuniversal supersymmetry breaking terms, Phys. Rev. D 51 (1995) 1337–1352, [hep-ph/9406245].

[70] C. F. Kolda and S. P. Martin, Low-energy supersymmetry with D term contributions to scalar masses, Phys. Rev. D 53 (1996) 3871–3883, [hep-ph/9503445].

[71] H. Georgi, The State of the Art—Gauge Theories, AIP Conf. Proc. 23 (1975) 575–582.

[72] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193–266.
H. Georgi and S. L. Glashow, *Unity of All Elementary Particle Forces*, Phys. Rev. Lett. 32 (1974) 438–441.

F. Feroz and M. P. Hobson, *Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis*, Mon. Not. Roy. Astron. Soc. 384 (2008) 449, [0704.3704].

F. Feroz, M. P. Hobson and M. Bridges, *MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics*, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601–1614, [0809.3437].

B. C. Allanach, *SOFTSUSY: a program for calculating supersymmetric spectra*, Comput. Phys. Commun. 143 (2002) 305–331, [hep-ph/0104145].

B. C. Allanach and T. Cridge, *The Calculation of Sparticle and Higgs Decays in the Minimal and Next-to-Minimal Supersymmetric Standard Models: SOFTSUSY4.0*, Comput. Phys. Commun. 220 (2017) 417–502, [1703.09717].

R. V. Harlander, J. Klappert and A. Voigt, *Higgs mass prediction in the MSSM at three-loop level in a pure DR context*, Eur. Phys. J. C 77 (2017) 814, [1708.05720].

P. Kant, R. V. Harlander, L. Mihaila and M. Steinhauser, *Light MSSM Higgs boson mass to three-loop accuracy*, JHEP 08 (2010) 104, [1005.5709].

P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. E. Williams, *HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron*, Comput. Phys. Commun. 181 (2010) 138–167, [0811.4169].

P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein et al., *HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era*, Eur. Phys. J. C 80 (2020) 1211, [2006.06007].

P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, *HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC*, Eur. Phys. J. C 74 (2014) 2711, [1305.1933].

P. Bechtle, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein and J. Wittbrodt, *HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era*, Eur. Phys. J. C 81 (2021) 145, [2012.09197].

G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, *MicrOMEGAs: A Program for calculating the relic density in the MSSM*, Comput. Phys. Commun. 149 (2002) 103–120, [hep-ph/0112278].

G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, *micrOMEGAs: Version 1.3*, Comput. Phys. Commun. 174 (2006) 577–604, [hep-ph/0405253].

G. Bélanger, A. Mjallal and A. Pukhov, *Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios*, Eur. Phys. J. C 81 (2021) 239, [2003.08621].

PICO collaboration, C. Amole et al., *Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber*, Phys. Rev. D 100 (2019) 022001, [1902.04031].

XENON collaboration, E. Aprile et al., *Dark Matter Search Results from a One Ton-Year Exposure of XENON1T*, Phys. Rev. Lett. 121 (2018) 111302, [1805.12562].

A. Sommerfeld, *Über die Beugung und Bremsung der Elektronen*, Annalen Phys. 403 (1931) 257.
[90] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner, *A Theory of Dark Matter*, *Phys. Rev. D* **79** (2009) 015014, [0810.0713].

[91] A. Hryczuk, *The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions*, *Phys. Lett. B* **699** (2011) 271–275, [1102.4295].

[92] A. Arbey, F. Mahmoudi and G. Robbins, *SuperIso Relic v4: A program for calculating dark matter and flavour physics observables in Supersymmetry*, *Comput. Phys. Commun.* **239** (2019) 238–264, [1806.11489].

[93] Fermi-LAT, DES collaboration, A. Albert et al., *Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT*, *Astrophys. J.* **834** (2017) 110, [1611.03184].

[94] AMS collaboration, M. Aguilar et al., *Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station*, *Phys. Rev. Lett.* **117** (2016) 091103.

[95] A. Cuoco, J. Heisig, M. Korsmeier and M. Krämer, *Constraining heavy dark matter with cosmic-ray antiprotons*, *JCAP* **04** (2018) 004, [1711.05274].

[96] M. Boudaud, M. Cirelli, G. Giesen and P. Salati, *A fussy revisitation of antiprotons as a tool for Dark Matter searches*, *JCAP* **05** (2015) 013, [1412.5696].

[97] W. Altmannshofer and P. Stangl, *New Physics in Rare B Decays after Moriond 2021*, [2103.13370].

[98] LHCb collaboration, M. Santimaria, *LHC Seminar “New results on theoretically clean observables in rare B-meson decays from LHCb”, 23 March, 2021*, https://indico.cern.ch/event/976688/attachments/2213706/3747159/santimariaLHC_seminar_2021.pdf.

[99] HFLAV collaboration, Y. S. Amhis et al., *Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018*, [1909.12524].

[100] C. Cornella, D. A. Faroughy, J. Fuentes-Martín, G. Isidori and M. Neubert, *Reading the footprints of the B-meson flavor anomalies*, [2103.16558].

[101] LHCb collaboration, R. Aaij et al., *Test of lepton universality in beauty-quark decays*, [2103.11769].

[102] W. Altmannshofer and D. M. Straub, *New physics in b → s transitions after LHC run 1*, *Eur. Phys. J. C* **75** (2015) 382, [1411.3161].

[103] M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J. S. Kim, *CheckMATE: Confronting your Favourite New Physics Model with LHC Data*, *Comput. Phys. Commun.* **187** (2015) 227–265, [1312.2591].

[104] D. Dercks, N. Desai, J. S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, *CheckMATE 2: From the model to the limit*, *Comput. Phys. Commun.* **221** (2017) 383–418, [1611.09856].

[105] ATLAS collaboration, G. Aad et al., *Searches for electroweak production of supersymmetric particles with compressed mass spectra in √s = 13 TeV pp collisions with the ATLAS detector*, *Phys. Rev. D* **101** (2020) 052005, [1911.12606].

[106] ATLAS collaboration, M. Aaboud et al., *Search for long-lived charginos based on a disappearing-track signature in pp collisions at √s = 13 TeV with the ATLAS detector*, *JHEP* **06** (2018) 022, [1712.02118].

[107] CMS collaboration, A. M. Sirunyan et al., *Search for disappearing tracks in proton-proton collisions at √s = 13 TeV*, *Phys. Lett. B* **806** (2020) 135502, [2004.05153].
[108] M. Ibe, S. Matsumoto and R. Sato, *Mass Splitting between Charged and Neutral Winos at Two-Loop Level*, *Phys. Lett. B* **721** (2013) 252–260, [1212.5989].

[109] PARTICLE DATA GROUP collaboration, P. A. Zyla et al., *Review of Particle Physics*, *PTEP* **2020** (2020) 083C01.

[110] CDF, D0 collaboration, *Combination of CDF and D0 results on the mass of the top quark using up 9.7 fb\(^{-1}\) at the Tevatron*, [1608.01881].

[111] ATLAS collaboration, M. Aaboud et al., *Measurement of the top quark mass in the \(t\bar{t}\rightarrow\text{lepton+jets} \) channel from \(\sqrt{s} = 8\) TeV ATLAS data and combination with previous results*, *Eur. Phys. J. C* **79** (2019) 290, [1810.01772].

[112] CMS collaboration, A. M. Sirunyan et al., *Measurement of the top quark mass in the all-jets final state at \(\sqrt{s} = 13\) TeV and combination with the lepton+jets channel*, *Eur. Phys. J. C* **79** (2019) 313, [1812.10534].

[113] P. Athron, M. Bach, H. G. Fargnoli, C. Gnendiger, R. Greifenhagen, J.-h. Park et al., *GM2Calc: Precise MSSM prediction for \((g-2)\) of the muon*, *Eur. Phys. J. C* **76** (2016) 62, [1510.08071].

[114] P. von Weitershausen, M. Schafer, H. Stockinger-Kim and D. Stockinger, *Photonic SUSY Two-Loop Corrections to the Muon Magnetic Moment*, *Phys. Rev. D* **81** (2010) 093004, [1003.5820].

[115] H. Fargnoli, C. Gnendiger, S. Paßehr, D. Stöckinger and H. Stöckinger-Kim, *Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: detailed results*, *JHEP* **02** (2014) 070, [1311.1775].

[116] M. Bach, J.-h. Park, D. Stöckinger and H. Stöckinger-Kim, *Large muon \((g-2)\) with TeV-scale SUSY masses for \(\tan\beta \rightarrow \infty\)*, *JHEP* **10** (2015) 026, [1504.05500].

[117] XENON collaboration, E. Aprile et al., *Projected WIMP sensitivity of the XENONnT dark matter experiment*, *JCAP* **11** (2020) 031, [2007.08796].

[118] J. Billard, L. Strigari and E. Figueroa-Feliciano, *Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments*, *Phys. Rev. D* **89** (2014) 023524, [1307.5458].

[119] A. Hryczuk, K. Jodlowski, E. Moulin, L. Rinchiuso, L. Roszkowski, E. M. Sessolo et al., *Testing dark matter with Cherenkov light - prospects of H.E.S.S. and CTA for exploring minimal supersymmetry*, *JHEP* **10** (2019) 043, [1905.00315].

[120] M. Berggren, *What pp SUSY limits mean for future e\(^{+}\)e\(^{-}\) colliders*, in *International Workshop on Future Linear Colliders*, 3, 2020, [2003.12391].

[121] ATLAS collaboration, G. Aad et al., *Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \(\sqrt{s} = 13\) TeV pp collisions using the ATLAS detector*, *Eur. Phys. J. C* **80** (2020) 123, [1908.08215].

[122] ATLAS collaboration, M. Aaboud et al., *Search for electroweak production of supersymmetric particles in final states with two or three leptons at \(\sqrt{s} = 13\) TeV with the ATLAS detector*, *Eur. Phys. J. C* **78** (2018) 995, [1803.02762].

[123] X. Cid Vidal et al., *Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC*, *CERN Yellow Rep. Monogr.* **7** (2019) 585–865, [1812.07831].

18