BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Cost-effectiveness of adding a non-invasive acoustic rule-out test in the evaluation of patients with symptoms suggestive of coronary artery disease. Rationale and design of the prospective, randomized, controlled, parallel-group multicenter FILTER-SCAD trial.

Journal:	*BMJ Open*
Manuscript ID	bmjopen-2021-049380
Article Type:	Protocol
Date Submitted by the Author:	24-Jan-2021
Complete List of Authors:	Bjerking, Louise; Bispebjerg Hospital, Department of cardiology Hansen, Kim; Bispebjerg Hospital, Dept. of Cardiology; Herlev Hospital, Cardiology Biering-Sørensen, Tor; Bispebjerg Hospital, Department of Cardiology; Gentofte Hospital, Department of Cardiology Brønnum-Schou, Jens; Amager Hospital, Department of cardiology Engblom, Henrik; Skåne University Hospital Lund, Department of Clinical Physiology Erlinge, David; Skåne University Hospital Lund, Clinical science Haahr-Pedersen, Sune; Gentofte Hospital, Department of Cardiology Heitzmann, Merete; Bispebjerg Hospital, Department of Cardiology Hove, Jens; Hvidovre Hospital, Department of Cardiology; Hvidovre Hospital, Center of Functional Imaging and Research, Jensen, Magnus; Hvidovre Hospital, Department of Cardiology Kruse, Marie; Syddansk Universitet, Räder, Sune; Nordsjællands Hospital Strange, Søren; The Danish Association of Practicing Medical Specialists Galatius, Søren; Bispebjerg Hospital, Department of Cardiology Prescott, Eva; Bispebjerg Hospital, Department of Cardiology
Keywords:	Coronary heart disease < CARDIOLOGY, CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Trial design

Cost-effectiveness of adding a non-invasive acoustic rule-out test in the evaluation of patients with symptoms suggestive of coronary artery disease. Rationale and design of the prospective, randomized, controlled, parallel-group multicenter FILTER-SCAD trial.

Short title: The FILTER-SCAD Trial Design

Authors: Louise H Bjerking, MD¹, Kim W Hansen, MD PhD¹,², Tor Biering-Sørensen, MD PhD³, Jens Brønnum-Schou, MD⁴, Henrik Engblom, MD PhD⁵, David Erlinge, MD PhD⁶, Sune A Haahr-Pedersen, MD PhD⁵, Merete Heitmann, MD PhD¹, Jens D Hove, MD PhD MSc⁴,⁷, Magnus T Jensen, MD PhD⁴, Marie Kruse, PhD⁸, Sune Räder, MD PhD⁹, Søren Strange, MD¹⁰, Søren Galatius, MD DMSc*¹ & Eva IB Prescott, MD DMSc*¹

*Shared last authorship

¹ Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Denmark
² Department of Cardiology, Herlev Gentofte University Hospital, Denmark
³ Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen
⁴ Department of Cardiology, Amager Hvidovre University Hospital, Denmark
⁵ Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden
⁶ Department of Cardiology, Skåne University Hospital, Lund, Sweden
⁷ Center of Functional Imaging and Research, Amager Hvidovre Hospital, Denmark
⁸ Danish Centre for Health Economics (DaCHE), University of Southern Denmark, Denmark
⁹ Department of Cardiology, Nordsjælland Hospital, Denmark
¹⁰ The Danish Association of Practicing Medical Specialists, Denmark

Corresponding author:
Louise H Bjerking, Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark.
Email: louise.hougesen.bjerking@regionh.dk

Trial sponsor:
Professor Eva Prescott, Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark.
Email: Eva.Irene.Bossano.Prescott@regionh.dk

Word count: 3892 (excepting title page, abstract, references, and tables).
ABSTRACT

Introduction
Most patients with symptoms suggestive of chronic coronary syndrome (CCS) have no obstructive coronary artery disease (CAD) and better selection of patients to be referred for diagnostic tests is needed. The CAD-score is a non-invasive acoustic measure that, when added to pre-test probability of CAD, has shown good rule-out capabilities. We aimed to test whether implementation of CAD-score in clinical practice reduces the use of diagnostic tests without increasing major adverse cardiac events (MACE) rates in patients with suspected CCS.

Methods and analysis
FILTER-SCAD is a randomized, controlled, multicenter trial aiming to include 2000 subjects ≥30 years without known CAD referred for outpatient assessment for symptoms suggestive of CCS. Subjects are randomized 1:1 to either the control group; standard diagnostic examination (SDE) according to current guidelines, or the intervention group; SDE plus a CAD-score. The subjects are followed for 12 months for the primary endpoint of cumulative number of diagnostic tests and a safety endpoint (MACE). Angina symptoms, quality of life, and risk factor modification will be assessed with questionnaires at baseline, 3 months, and 12 months after randomization. The study is powered to detect superiority in terms of a reduction of ≥15% in the primary endpoint between the two groups with a power of 80%, and non-inferiority on the secondary endpoint with a power of 90%. The significance level is 0.05. The non-inferiority margin is set to 1.5%. Randomization began October 2019. Follow-up is planned to be completed December 2022.

Ethics and dissemination
The study has been approved by the Danish Medical Agency (2019024326.), Danish National Committee on Health Research Ethics (H-19012579), and Swedish Ethical Review Authority (Dnr 2019-04252). All patient participating in the study will sign an informed consent. All study results will be attempted published as soon as possible.

Registration details
ClinicalTrials.gov identifier: NCT04121949.
STRENGTH AND LIMITATIONS OF THIS STUDY

- Multicenter randomized controlled trial of a novel acoustic-based risk stratification CAD-score for coronary artery disease.
- First randomized controlled trial to investigate the safety of CAD-score and the impact of the CAD-score in clinical practice.
- Study design follows newest international guidelines on Chronic Coronary Syndrome.
- The study is unblinded as the treatment is based on the value of the CAD-score.

KEYWORDS (3-10 keywords)
Stable Angina Pectoris, Stable Coronary Artery Disease, Chronic Coronary Syndrome, Acoustic Diagnostic Device, CAD-score, Diamond-Forrester Score, Pre-test Probability.
Trial design

ABBREVIATIONS

ACC/AHA = American College of Cardiology/American Heart Association

BMI = Body mass index

CABG = Coronary artery bypass graft

CAD = Coronary artery disease

CCS = Chronic coronary syndrome

CCTA = Coronary computed tomographic angiography

CEC = Clinical event committee

CMRI = Cardiac magnetic resonance imaging

ECG = Electrocardiogram

eCRF = electronic Case Report Form

ESC = European Society of Cardiology

GP = General Practitioner

HF = Heart Failure

ICA = Invasive coronary angiography

ICD = Implantable Cardioverter Defibrillator

IQR = Interquartile range

ITT = Intention-to-treat

MACE = Major adverse cardiac events

MI = Myocardial infarction

MPI = myocardial perfusion imaging

NICE = National Institute for Health and Care Excellence
Trial design

NIT = Non-invasive test

NPV = Negative predictive value

PCI = Percutaneous coronary intervention.

PTP = Pre-test probability

QOL = Quality of life

RCT = Randomized clinical trial

REDCap = Research Electronic Data Capture

SAE = Serious adverse events

SAQ = Seattle Angina Questionnaire

SDE = Standard diagnostic examination

SPECT = Single-photon emission computed tomography

UAP = Unstable angina pectoris
Trial design

BACKGROUND

Chest discomfort is a common symptom leading to cardiological assessment for chronic coronary syndrome (CCS) (1). According to European Society of Cardiology (ESC) and American College of Cardiology/American Heart Association (ACC/AHA) guidelines, the diagnostic work-up should be based on the pre-test probability (PTP) of obstructive coronary artery disease (CAD) estimated from sex, age and symptoms (2,3), as originally suggested by the Diamond-Forrester model (4,5). However, in clinical practice PTP models have limited sensitivity and specificity. In recent large studies, less than 10% of patients referred with symptoms suggestive of CAD needed revascularization, and their prognosis was good (6,7). The addition of risk factors to improve PTP precision have minor impact on prediction abilities (6,8). The current test strategy exposes patients to unnecessary procedure-related risks, medication, and radiation and the costs of diagnostic work-up may be unnecessarily high. Consequently, better methods of identifying patients with low probability of obstructive CAD and no need for diagnostic testing are needed.

The CAD-score is a risk stratification score for CAD obtained by the non-invasive acoustic device, CADScor®System (Acarix A/S), which has shown good rule-out capabilities in patient with suspected CAD (9). The device is approved for medical use, and mentioned in a Medtech innovation briefing in the NICE-guidelines as a rule-out test early in the diagnostic CAD work up before CCTA (10). However, the CAD-score has never been tested as a rule-out test in a clinical setting. Hence, the FILTER-SCAD trial will examine whether adding CAD-score to the standard diagnostic work-up reduces the number of diagnostic tests and associated health care costs without compromising safety in the outpatient assessment of patients with symptoms suggestive of CCS.
Trial design

OBJECTIVES

The primary objective of the FILTER-SCAD trial is to compare an initial diagnostic strategy based on a PTP according to guidelines plus CAD-score to a standard PTP-guided strategy when selecting patients with suspected CSS for diagnostic testing. The key secondary objective is to assess whether this strategy is non-inferior in terms of major adverse cardiac events (MACE). We hypothesized that an initial rule-out strategy guided by a PTP plus a CAD-score will reduce overall number of diagnostic procedures without compromising the safety when compared with a PTP-guided strategy alone over a follow-up period of 1 year.
Trial design

METHODS

Trial design

Figure 1 shows an overview of the study design. The FILTER-SCAD trial is an investigator-initiated, prospective, randomized, controlled, parallel-group, multicenter trial planned to include 2000 subjects ≥30 years of age without known CAD referred for outpatient evaluation of symptoms suggestive of CCS at five-six sites; four-five in Denmark and one in Sweden. The protocol is available as supplementary material.

Study population

Study subjects are men and women ≥30 years of age without known CAD referred for evaluation of symptoms suggestive of suspected CAD in planned 5-6 cardiology outpatient clinics in Denmark and Sweden. Inclusion and exclusion criteria are listed in *table 1*.

Randomization and blinding

Randomization is done in a randomization module in the electronic CRF (eCRF) and will be unblinded as the physician must act on the given CAD-score and PTP. Eligible subjects are allocated in a 1:1 manner to control or intervention group using permuted block randomization stratified by study site and PTP-value (very low vs. low-intermediate) by a computer-generated allocation table.

The study was designed based on the 2013 ESC guidelines on the management of stable coronary artery disease (11). However, the ESC guidelines were updated in 2019 downgrading the PTP for obstructive CAD considerably (2), and the FILTER-SCAD trial protocol was adjusted to be in accordance with these state-of-the-art recommendations. The first 78 subjects in the FILTER-SCAD trial were randomized according to the first protocol based on the 2013 ESC guidelines. The remaining subjects will be enrolled in consistency with the updated protocol.

Standard diagnostic examination

Subjects randomized to the control group will undergo a standard diagnostic examination (SDE) according to ESC 2019 guidelines including clinical examination, PTP assessment based on age, sex and type of angina, risk factor assessment and echocardiography (2). The echocardiography will be done during the clinical investigation for CAD, but not necessarily on the day of
Trial design

randomization. The SDE will be followed by non-invasive tests (NIT) if indicated (figure 2) according to current European guidelines on CCS (2); Patients with very low PTP ≤ 5% should not receive further diagnostic testing, in patients with PTP 6-15% NIT may be considered based on the overall clinical likelihood, and patients with PTP > 15% should be offered NIT as standard first choice of diagnostic test. Invasive coronary angiography (ICA) may be offered to selected patients with very high clinical likelihood, but no patients should receive ICA based on their PTP alone.

Intervention (CAD-score)

Patients randomized to the intervention group will receive a CAD-score measurement in addition to the SDE. The CAD-score is measured using the acoustic device CADScor® System (Acarix A/S).

The CAD-score is a risk stratification score scaled from 0 to 99 for obstructive CAD measured from advanced analysis of sounds originating from blood flow turbulence in the coronary arteries and myocardial motion combined with the patients age, sex, and blood pressure (9,12). The measurements are done by a non-invasive acoustic device, CADScor® System (Acarix A/S), which has shown good rule-out capabilities in patient with suspected CAD (9).

During a three minutes period with the patient lying in supine position, a transcutaneous recording of heart sounds is done by a microphone attached by a patch at the left fourth intercostal space (IC4) (13). Four times during the recording, the patient is asked to hold his/her breath for eight seconds. From eight acoustic features, a fully automatic algorithm estimates (software version 3.2) an acoustic score which combined with the risk factors sex, age, and hypertension by logistic regression results in the CAD-score (9,13). The CAD-score measurements are done by specially trained study staff. If the measurement fails, up to four measurement are attempted.

Success of the new strategy depends critically on the physician’s knowledge of strength and weakness of the CAD-score measure. At study start, each site will be trained in the CAD-score background literature and method. The training will be repeated after 3-6 months after enrollment of first patient. Moreover, every physician is provided written information about the study and the CAD-score. The training of the physicians is intended to made physicians comfortable with the CAD-score and its strengths and weaknesses.
Trial design

Further diagnostic pathway

All treating physicians are trained in the study protocol including the CAD-score. The physician is provided with a decision sheet with PTP, CAD-score and the recommended further diagnostic pathway (NIT or no further assessment) (figure 1). Based on the available information, the physician decides whether to follow the recommended diagnostic pathway or not. A crossover could be justified by the presence of cardiac risk factors with a higher perceived clinical likelihood.

Diagnostic tests for both intervention and control group

Patients with intermediary-high PTP in the control group or high CAD-score > 20 in the intervention group are referred for further standard diagnostic testing including NIT and ICA, and this is done as standard procedure of each site. All decisions regarding diagnostic testing, including choice of testing modality, and medical/surgical treatment of the patient is done at the discretion of the treating physician, and is not a part of the study protocol.

Study periods

A run-in period with an expected duration of three months at each site is intended to serve as a training period where the study staff and attending cardiologists will be made familiar with performing and interpreting the CAD-score measurement by obtaining CAD-score around 50-100 subjects at each participating site.

The planned duration of the study is 24 months; 12 months for the inclusion period, defined as first patient first visit to last patient first visit, for the main study starting after the run-in period, and approximately 12 months for the follow-up period. However, due to the COVID-19 pandemic and associated study delay, the enrollment period is extended with 15 months. Hence, follow-up is planned to be completed December 2022.

End of study will be when all the following have occurred: 1) at least 2000 patients have been randomized, and 2) 12±1 month (1 year) have elapsed since the last patient was randomized.

The study population will be followed for one year after randomization.

Endpoints

Primary endpoint
Trial design

The primary endpoint defined as the cumulative number of NIT and invasive procedures after one year. NITs include exercise electrocardiogram (ECG), Coronary computed tomographic angiography (CCTA), Rubidium-PET CT, myocardial perfusion imaging (MPI), Cardiac magnetic resonance imaging (CMRI), and stress echocardiography. Invasive procedures include ICA only.

If the analysis shows a significant difference in the primary endpoint, a cost-effectiveness analysis will be conducted alongside the trial. The potential cost-effectiveness analysis will be based on information from the trial, as well as data from health registers. The register linkage will provide information at individual level on health care utilization, including general practice, medication, etc.; as well as labour market consequences and other societal costs. The cost-effectiveness analysis will apply two different effectiveness measures: procedures avoided, cf. the primary endpoint, and quality adjusted life-years (QALY’s) based on the reporting of EQ-5D in the trial (14).

Secondary endpoints
The key secondary endpoint is the safety endpoint MACE; a combined endpoint of all-cause mortality, non-fatal myocardial infarction (MI), hospitalization for unstable angina pectoris (UAP), heart failure (HF), ischemic stroke and major complication of cardiovascular procedures or diagnostic testing at one year after end of randomization. An independent clinical event committee (CEC) will adjudicate MACE endpoints blinded to the allocated intervention. Definitions of all-cause mortality, MI, UAP, HF and ischemic stroke follow the ACC/AHA description of key data elements and definitions for cardiovascular endpoint events in clinical trials (15). Major complication of cardiovascular procedures or diagnostic testing is defined as major bleeding, renal failure, stroke, or anaphylaxis that occurred within 72 hours in accordance with the PROMISE Trial’s definition (7). Other individual secondary endpoints are 1) clinical endpoints: all-cause mortality, MI, hospitalization for UAP, HF and ischemic stroke, medication, time to CAD diagnosis, repeat referrals, and bleeding requiring hospitalization assessed one year after randomization, 2) procedure related endpoints: Numbers of first NITs, numbers of ICA, number of downstream tests (NITs and ICAs done after the first NIT), contrast dose, radiation dose, and adverse events related to the CAD-score measurement at one year after randomization, and 3) questionnaire endpoints: Change in chest pain assessed by the Seattle Angina
Trial design

Questionnaire (SAQ) (16), quality of life assessed by the EuroQol-5D (17), and lifestyle assessed by the HeartDiet Questionnaire (18). Questionnaires are collected at baseline, three months, and 12 months after randomization.

All endpoints are listed in supplementary table 1.

Data handling

Data is collected in the eCRF REDCap (Research Electronic Data Capture 10.3.3(19,20)) by trained study staff. Blood samples, ECG, and echocardiography data at baseline are standard test for ambulatory patients and will be collected from medical records and entered in the eCRF. Data on diagnosis, medications, diagnostic testing, repeat referrals, safety endpoints, and bleeding requiring hospitalization will be collected. All diagnostic test will be classified as positive, negative or inconclusive. This will be done at each individual site according to local criteria/guidelines.

Monitoring will be carried out by an external monitor and will include 100% monitoring of all potential serious adverse events (SAE) related to the CAD-score measurement, informed consent forms and power of attorneys, and 20% monitoring of inclusion and exclusion criteria.

Statistical methods

The study is powered to detect superiority in terms of a reduction of $\geq 15\%$ in the cumulative number of diagnostic tests (primary endpoint) between the intervention and control groups with a power of 80% and a significance level of 0.05 with a sample size of 521 subjects in each randomization group. The study is powered for non-inferiority on the secondary safety endpoint (MACE) with a power of 90% and a significance level of 0.05 with a sample size of 1914 subjects (957 in each randomization group). The non-inferiority margin is set to 1.5%.

The final sample size was chosen to be 2000 patients (1000 in each randomization group), allowing for a 4% loss to follow-up and drop-out. The power calculation remains unchanged after updating the study protocol to reflect the latest 2019 ESC guidelines on CCS.

The main analysis will be intention-to-treat (ITT) analysis. Analysis of the cumulative numbers of diagnostic test will be done with Poisson based test and visualized by Nelson-Aalen nonparametric estimator. The secondary safety endpoint MACE will be analyzed using a continuity-corrected modification of the Wilson’s score method.
Trial design

Pre-specified subgroup analysis will be performed investigating the following subgroups: PTP (≤5% vs. 5-15% vs. >15%), PTP (≤5% vs. >5%), PTP (≤5% vs. 5-15%), age (<65 years vs. ≥65 years), sex (male vs. female), hypertension (yes vs. no), dyslipidemia (yes vs. no), diabetes mellitus (yes vs. no), smoking (yes vs. no), family history of CAD (yes vs. no), and BMI (<30 kg/m2 vs. ≥30 kg/m2). An interim analysis for futility will be done after enrollment of at least 20% of the expected 2000 patients. We expect approximately 25% of the population to have low PTP or CAD-score ≤ 20 (table 2). The study is considered futile if more than 90% of the overall population undergo further NIT or ICA after the initial SDE.

All statistical tests will be made using statistical software R and will have a two-sided significance level of 0.05.

Trial registration

The trial is registered on ClinicalTrials.gov (identifier: NCT04121949).

Patient and public involvement

Patients and the public were not involved in the phase of the study, as the study addresses the physician’s decision-making in the diagnostic strategy for ischemic heart disease. However, the results will be relevant for both patients and the general public, and the result will be attempted published through patient organizations and public media. The study results will be distributed directly to the study participants.
ETHICS AND DISSEMINATION

The FILTER-SCAD trial is conducted in compliance to the principles of the Declaration of Helsinki of the World Medical Association, and laws of Denmark and Sweden. The study has been approved by the Danish Medical Agency (2019024326.), Danish National Committee on Health Research Ethics (H-19012579), and Swedish Ethical Review Authority (Dnr 2019-04252). All patient participating in the study will sign an informed consent. All study results will be attempted published as soon as possible.
RESULTS

Three study sites are currently enrolling. Our preliminary baseline data with of the first 300 enrolled subjects shows successful randomization with even distribution of baseline characteristic between the two groups including sex, age, and PTP. First subject was randomized on October 22, 2019, and by December 20, 2020 489 patients (24% of planned total) have been enrolled. Follow-up is planned to be completed December 2022. Table 2 shows the baseline characteristics on the first 300 (59% women) with a median age of 63 years IQR (53.00-72.00) years and. Among the enrolled patients 16.3% were classified as low PTP (≤5%), and 42.6% of the intervention group had a CAD-score ≤ 20. Hence our preliminary data confirm the potential of reducing the number of patients referred to NIT with up to one third by adding a CAD-score to the SDE in patients with suspected CCS.
DISCUSSION

The FILTER-SCAD trial will investigate whether adding a CAD-score to the SDE is a feasible way to reduce use of excess diagnostic testing without compromising safety in the assessment of patients with symptoms suggestive of CCS.

CAD-score probabilities

The diagnostic performance of the CAD-score has been thoroughly examined (9,12,13).

In a retrospective pooled study of 2245 patients undergoing CCTA the diagnostic sensitivity and specificity for obstructive CAD of the CAD-score were 88.7% and 41.5%, respectively, with ≥ 50% stenosis on ICA as gold standard (12). In this population with a 9.4% prevalence of obstructive CAD verified on ICA, the negative predictive value (NPV) was 96% at a CAD-score cut-off ≤ 20, which stresses the potential of the CAD-score as a rule-out test for obstructive CAD (12). In addition, the CAD-score’s capability of reclassifying patients was simulated in the study; by adding a CAD-score to the patients with intermediate PTP of obstructive CAD, one third of the patients were downgraded to the low likelihood of CAD group, and might accordingly have been ruled-out at that step without any further excess NIT, potentially reducing the accompanying risks and costs (12). This reclassification only slightly insignificantly increased the CAD-prevalence in the low-risk group from 3.1% to 4.0% (12). The previous CAD-score studies are based on the former ECS 2013 PTP. However, the non-invasive sound-based CAD-score tool, remains effective as a rule-out test also following implementation of the adjusted PTP in the recent 2019 ESC guidelines on CCS; four out of 10 patients evaluated by the latest PTP were reclassified to low likelihood of obstructive CAD after adding a CAD-score (21). The FILTER-SCAD trial will, to our knowledge, be the first study to test the CAD-score’s ability in a clinical setting as a rule-out tool in patients with suspected CCS, testing both the efficacy and the safety in a randomized prospective study. Thereby, the current study may enhance and simplify the diagnostic pathway for patients referred with suspected CCS, possibly allowing a reduction in excess use for NIT and ICA.

Safety

We are aware of the risk of incorrectly ruling out patient with CAD with a (false negative) low CAD-score. As for all other diagnostic tests, there will always be a risk of false negative test; Sensitivity of exercise stress echocardiography, exercise stress SPECT, and CCTA are 80-85%,
Trial design

73-92%, and 95-99%, respectively, and false negative test will occur (11). However, these tests are more comprehensive and expensive than a simple CAD-score measurement. Also, current ESC guidelines recommend no further investigation with NIT in patients with PTP ≤ 5%. Thus, guidelines accept ruling out a proportion of patient with unacknowledged obstructive CAD to avoid large numbers of false positive tests and unnecessary exposure of patients to diagnostic test and accompanying risk. Moreover, the prognosis of patients referred with symptoms suggestive of CSS appears good (7,22,23), especially among the patients classified with low PTP (6), but also in both suspected CCS and confirmed CAD (24). The good prognosis is independent of treatment with percutaneous coronary intervention (PCI) or optimal medical therapy including antianginal medication (25).

In the FILTER-SCAD study, risks are mitigated in several ways; The participants are contacted by the study nurse after three months and one year, where angina symptoms are assessed. In case of worsening of symptoms, the nurse can contact the treating physician who can decide to schedule a follow-up visit. Also, the patients are instructed to contact the study nurse or their general practitioner if their symptoms continues or worsens. Finally, the treating physician may choose to disregard the recommended action according to protocol and cross the patient over to NIT despite a CAD-score ≤ 20 if e.g. cardiovascular risk factors deemed to increase the patient’s likelihood for CAD, the treating physician require further investigation, or choose to schedule a follow-up visit.

Notably, the CAD-score system is CE-marked and approved for clinical use in patients ≥ 40 years of age, and is stated as a rule-out test early in the diagnostic CAD work up in the NICE-guidelines Medtech innovation briefing (10). Thus, the FILTER-SCAD trial aims to test the implementation of an already approved clinical rule-out device in a clinical setting and its impact as an add-on device in the current diagnostic work up, and not to test the diagnostic accuracy of the device.

Endpoints
The low diagnostic yield of the current work up for patients with suspected CCS has questioned the value of the currently recommended diagnostic test strategy (26–28). Many patients may be exposed to unnecessary procedure-related risks, medication, and radiation without achieving any benefits, and the costs of diagnostic work-up may be unnecessarily high. This study aims to investigate if a CAD-score added as a rule-out test in patients with suspected CCS will reduce
Trial design

unnecessary testing and thus increase the cost-effectiveness of the diagnostic workup. Hence, comparison of the cumulative number of NIT and ICA in two groups with and without CAD-score as rule-out test is relevant. Moreover, not compromising safety for patients by adding a CAD-score as a rule-out test is essential. Therefore, a key secondary composite safety endpoint MACE of numbers of all-cause death, myocardial infarction, unstable angina pectoris, heart failure, ischemic stroke, and major complication of cardiovascular procedures or diagnostic within 72 is relevant and will enlighten the accuracy of excluding obstructive disease in patient groups with and without CAD-score measurement.

Another important secondary endpoint is angina symptom control, quality of life and patients’ satisfaction with the diagnostic work up. These are assessed with validated questionnaires (16,17). Other secondary endpoints in the study include medication, time to diagnosis, contrast and radiation dose, and adverse events related to the CAD-score measurement.

CONCLUSION

The FILTER-SCAD trial study will investigate the cost-effectivity and safety in a clinical setting of adding an advanced acoustic tool; the CAD-score as a rule-out test in the diagnostic work up of patients with symptoms suggestive of CCS.

AUTHORS’ CONTRIBUTIONS

EP, SG and KWH designed and initiated the study. LBH, KWH, EP, and SG obtained funding. LBH performed data analysis and wrote the report. All authors approved the final version of the report after revision.
Trial design

COMPETING INTEREST
LHB: None.

KWH: None.

TBS: Steering Committee member of the Amgen financed GALACTIC-HF trial; Advisory Board: Sanofi Pasteur; Advisory Board: Amgen; Speaker Honorarium: Novartis; Speaker Honorarium: Sanofi Pasteur; Research grant: GE Healthcare; Research grant: Sanofi Pasteur.

JBS: None.

HE: None.

DE: Advisory board for Acarix A/S.

SAHP: None.

MH: None.

JDH: None.

MK: None.

MTJ: None.

SR: None.

SS: None.

SG: None.

EP: None.

FUNDING STATEMENT
Unrestricted grants for the study was provided by Acarix A/S, Kai Hansens Fond, Kai Houmann Nielsen Fond, and Fonden for Faglig Udvikling i Speciallægepraksis (A3068).

AUTHORS’ NOTE
The CADScor®System and analysis relating hereto will be offered freely by Acarix A/S.
REFERENCE

1. Jordan KP, Timmis A, Croft P, van der Windt DA, Denaxas S, González-Izquierdo A, et al. Prognosis of undiagnosed chest pain: linked electronic health record cohort study. BMJ. 2017 Apr 3:j1194.

2. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2019 Aug 31;

3. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol. 2012 Dec;60(24):e44–164.

4. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979 Jun 14;300(24):1350–8.

5. Genders TSS, Steyerberg EW, Alkadhi H, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011 Jun;32(11):1316–30.

6. Reeh J, Therming CB, Heitmann M, Højberg S, Sørum C, Bech J, et al. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. 2018 Dec 18 [cited 2019 Mar 21]; Available from: https://dx.doi.org/10.1093/eurheartj/ehy806

7. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015 Apr 2;372(14):1291–300.

8. Winther S, Nissen L, Westra J, Schmidt SE, Bouteldja N, Knudsen LL, et al. Pre-test probability prediction in patients with a low to intermediate probability of coronary artery disease: a prospective study with a fractional flow reserve endpoint. Eur Heart J - Cardiovasc Imaging. 2019 Nov 1;20(11):1208–18.

9. Winther S, Schmidt SE, Holm NR, Toft E, Struijk JJ, Bøtker HE, et al. Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. Int J Cardiovasc Imaging. 2016 Feb;32(2):235–45.

10. The National Institute for Health and Care Excellence (2019). CADScor system for ruling out coronary artery disease in people with symptoms of stable coronary artery disease (NICE Medtech innovation briefing 174) [Internet]. [cited 2020 Jun 30]. Available from: https://www.nice.org.uk/advice/mib174/chapter/summary

11. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force
on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013 Oct;34(38):2949–3003.

12. Schmidt SE, Winther S, Larsen BS, Groenhoej MH, Nissen L, Westra J, et al. Coronary artery disease risk reclassification by a new acoustic-based score. Int J Cardiovasc Imaging. 2019 Nov;35(11):2019–28.

13. Winther S, Nissen L, Schmidt SE, Westra JS, Rasmussen LD, Knudsen LL, et al. Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification. Heart Br Card Soc. 2018;104(11):928–35.

14. Drummond M, Sculpher M, Torrance G, O’Brien B, Stoddart G. Methods for the economic evaluation of health care programme. New York: Oxford University Press; 2005.

15. Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cuthlip DE, Farb A, et al. 2014 ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). J Am Coll Cardiol. 2015 Jul 28;66(4):403–69.

16. Spertus JA, Winder JA, Dewhurst TA, Deyo RA, Prodzinski J, McDonell M, et al. Development and evaluation of the Seattle Angina Questionnaire: a new functional status measure for coronary artery disease. J Am Coll Cardiol. 1995 Feb;25(2):333–41.

17. Janssen MF, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Qual Life Res Int J Qual Life Asp Treat Care Rehabil. 2013 Sep;22(7):1717–27.

18. Laursen UB, Rosenkilde LB, Haugaard A-M, Obel T, Toft U, Larsen ML, et al. Validation of the HeartDiet questionnaire. Dan Med J. 2018 Nov;65(11).

19. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009 Apr 1;42(2):377–81.

20. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019 Jul 1;95:103208.

21. Schmidt SE, Winther S, Boettcher M. Coronary artery disease risk reclassification using an acoustic-based score in view of the new European Society of Cardiology 2019 guidelines on Chronic Coronary Syndromes. Int J Cardiovasc Imaging. 2020 Mar;36(3):383–4.

22. SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018 06;379(10):924–33.
Trial design

23. Fordyce CB, Douglas PS, Roberts RS, Hoffmann U, Al-Khalidi HR, Patel MR, et al. Identification of Patients With Stable Chest Pain Deriving Minimal Value From Noninvasive Testing: The PROMISE Minimal-Risk Tool, A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2017 01;2(4):400–8.

24. Olesen K, Botker H, Sørensen H, Maeng M. Ten-year cardiovascular risk in patients with stable angina pectoris but without coronary artery disease by coronary angiography. ESC Congr 2020 - Digit Exp. 2020;

25. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal Medical Therapy with or without PCI for Stable Coronary Disease. N Engl J Med. 2007 Apr 12;356(15):1503–16.

26. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010 Mar 11;362(10):886–95.

27. Patel MR, Dai D, Hernandez AF, Douglas PS, Messenger J, Garratt KN, et al. Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J. 2014 Jun;167(6):846-852.e2.

28. Therming C, Galatius S, Heitmann M, Højberg S, Sørum C, Bech J, et al. Low diagnostic yield of non-invasive testing in patients with suspected coronary artery disease: results from a large unselected hospital-based sample. Eur Heart J Qual Care Clin Outcomes. 2018 01;4(4):301–8.
Trial design

TABLES

Table 1 – Inclusion and exclusion criteria

Inclusion criteria	Exclusion criteria
- Signed informed consent form.	Related to pre-test likelihood of obstructive CAD:
- Male or female, aged 30 years or above.	- Prior non-invasive testing for stable CAD or ICA within 6 months of randomization.
- Patients able and willing to comply with the clinical investigational plan.	Related to feasibility of performing a CAD-score measurement:
- Symptoms suggestive of stable coronary artery disease.	- Implanted donor heart, mechanical heart, mechanical heart pump.
- No history of coronary artery disease (prior MI, PCI or CABG).	- Pacemaker or Cardioverter Defibrillator (ICD).

Exclusion criteria

Related to pre-test likelihood of obstructive CAD:

- Prior non-invasive testing for stable CAD or ICA within 6 months of randomization.

Related to feasibility of performing a CAD-score measurement:

- Implanted donor heart, mechanical heart, mechanical heart pump.
- Pacemaker or Cardioverter Defibrillator (ICD).
- Implanted electronic equipment in the area above and around the heart.
- Significant operation scars, abnormal body shape, fragile or compromised skin in the fourth left intercostal space recording area.
- Receiving same day treatment with nitroglycerine on the day of randomization.

Related to women of childbearing potential:

- Pregnancy.

The exclusion criteria “Diamond-Forrester score > 85%” was removed after updating the study according to the 2019 ESC guidelines on CCS.

Legend:

- **CAD** = Coronary artery disease
- **CABG** = Coronary artery bypass graft
- **ICA** = Invasive coronary angiography
- **MI** = Myocardial infarction
- **PCI** = Percutaneous coronary intervention
Table 2 – Baseline characteristics

Description	Count (%)
Number of patients	300
Allocated group, intervention	148 (49.3)
Age (median [IQR])	63.00 [53.00, 72.00]
Sex, female	177 (59.0)
Symptom characteristics	
Typical angina	54 (18.0)
Atypical angina	81 (27.0)
Non-anginal chest pain	149 (49.7)
Dyspnea on exertion	16 (5.3)
Hypertension	120 (40.0)
Hypercholesterolemia*	218 (72.7)
Family history of IHD**	65 (21.7)
Smoking status	
Never smoker	91 (30.3)
Current smoker	61 (20.3)
Former smoker	148 (49.3)
Diabetes mellitus	26 (8.7)
Low PTP***	49 (16.3)
Intermediate PTP****	251 (83.7)
CAD-score, median [IQR]	23.00 [12.00; 37.00]
CAD-score ≤ 20	63 (42.6+)

Table 2. Preliminary data – baseline characteristics: Numbers are counts (%) unless otherwise stated. IHD = Ischemic heart disease; IQR = interquartile range; PTP = pre-test probability. *Medical treatment or totaled cholesterol > 5 mmol/L. **Coronary artery disease among 1st degree relatives (male < 55 years, female < 65 years). ***Low PTP defined as <15% according to Diamond Forrester calculation in the 2013 ESC guidelines and PTP ≤ 5% according to the 2019 ESC guidelines. ****Intermediate PTP defined as 15-85% according to Diamond Forrester calculation in the 2013 ESC guidelines and PTP > 5% according to the 2019 ESC guidelines. †% of intervention group.
Trial design

FIGURE LEGENDS

Figure 1. Study design. CAD = Coronary artery disease; MACE = Major adverse cardiac event; NIT = Non-invasive test; SDE = Standard diagnostic examination.

Figure 2. Flow chart. ICA = Invasive coronary angiography; NIT = Non-invasive test; PTP = Pre-test probability.
Figure 1

Subject eligibility:
Age ≥ 30 years, referred for outpatient assessment of symptoms suggestive of CAD, no known heart disease
N ~ 2000

Screening and consent

Visit 1:
Questionnaires (SAQ, QOL, and lifestyle)
Randomization 1:1

Standard diagnostic examination (SDE)

Intervention group:
SDE + CAD-score

Follow-up:
Contact at 3 and 12 months

Primary endpoint
Numbers of NIT at 1 year

Secondary endpoint
MACE at 1 year
Figure 2

Randomization 1:1

Control group

PTP ≤ 5%

PTP > 5% - ≤ 15%

PTP > 15%

Clinical examination and risk factor evaluation

Ruled out

No further diagnostic testing. Risk factor optimization

NIT

Not ruled out by first NIT: Decision for 2nd NIT test or ICA.

Intervention group

PTP ≤ 5%

PTP > 5% - ≤ 15%

PTP > 15%

CAD-score assessment

CAD-score ≤ 20

CAD-score > 20

Ruled out

Not ruled out by first NIT: Decision for 2nd NIT test or ICA.

NIT

No further diagnostic testing. Risk factor optimization
Supplementary table 1

Supplementary table 1 – Endpoints
Primary endpoint
NITs and invasive procedures
Key secondary endpoint
MACE (All-cause death, non-fatal MI, UAP, HF or ischemic stroke)
Other secondary endpoints
All-cause death
MI
UAP
HF
Ischemic stroke
Symptoms/type of chest pain
Quality of life
Change in basic lifestyle
NIT
ICA
Time to CAD diagnosis
Medication
Contrast dose
Radiation dose
Bleeding requiring hospitalization
Adverse events related to the CADScor®System
Repeat referrals

Supplementary table 1. Endpoints: CAD = Coronary artery disease; HF = Heart failure; ICA = Invasive coronary angiography; MACE = Major adverse cardiac event; MI = Myocardial infarction; NIT = Non-invasive test; UAP = Unstable angina pectoris.
SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/item	Item No	Description	Page Number on which item is reported
Administrative information			
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	Page 1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	P. 2 & 13
	2b	All items from the World Health Organization Trial Registration Data Set	-
Protocol version	3	Date and version identifier	Supplementary material; protocol v. 5.0: title page
Funding	4	Sources and types of financial, material, and other support	P. 21
Roles and responsibilities	5a	Names, affiliations, and roles of protocol contributors	P. 1 & 21
	5b	Name and contact information for the trial sponsor	P. 1
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	P. 21
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	P. 8, 11 & 12
Introduction			
---	---		
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	P. 6-7, 16-18
6b	Explanation for choice of comparators	P. 8-10	
Objectives	7	Specific objectives or hypotheses	P. 6-7
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	P. 8-13
Methods: Participants, interventions, and outcomes			
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	P. 8
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	P. 8 & 24 (table 1)
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	P. 8-10
11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	Supplementary material; protocol	
11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	Supplementary material; protocol	
11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	NA	
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	P. 10-11, 17-18 & 28 (supplementary table 2)
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	P. 10 & 26 (Figure 1)
----------------------	---	--	------------------
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	P. 12-13
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	P. 8-10

Methods: Assignment of interventions (for controlled trials)

Allocation:			
Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	P. 8
Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	P. 8
Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	P. 8-10 + Supplementary material; protocol
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	P. 8
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant’s allocated intervention during the trial	NA
Methods: Data collection, management, and analysis			
--			
Data collection methods			
18a Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	P. 12		
18b Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	Supplementary Supplementary material; protocol section 7.6		
Data management			
19 Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	P. 12		
Statistical methods			
20a Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	P. 12-13		
20b Methods for any additional analyses (eg, subgroup and adjusted analyses)	P. 13		
20c Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	P. 12 + Supplementary Supplementary material; protocol section 13.3.3.		
Methods: Monitoring			
Data monitoring			
21a Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	P. 12		
21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	P. 13	
22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	P. 12	
23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	NA	

Ethics and dissemination

Research ethics approval	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	P. 2 & 14	
Protocol amendments	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	Supplementary material; protocol	
Consent or assent	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	Supplementary material; protocol section 10.5.	
26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	NA	
Confidentiality	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	P. 12 + supplementary material; protocol section 12	
Declaration of interests	Financial and other competing interests for principal investigators for the overall trial and each study site	P. 22-23	
Access to data	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	Supplementary material; protocol section 12	
Ancillary and post-trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	Supplementary material; protocol section 14.3.
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	P. 12-16 + supplementary material; protocol
31b	Authorship eligibility guidelines and any intended use of professional writers	Supplementary material; protocol section 15.	
31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	-	

Appendices

| Informed consent materials | 32 | Model consent form and other related documentation given to participants and authorised surrogates | P. 10 |
| Biological specimens | 33 | Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable | NA |

It is strongly recommended that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons “Attribution-NonCommercial-NoDerivs 3.0 Unported” license.
Cost-effectiveness of adding a non-invasive acoustic rule-out test in the evaluation of patients with symptoms suggestive of coronary artery disease. Rationale and design of the prospective, randomized, controlled, parallel-group multicenter FILTER-SCAD trial.

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049380.R1
Article Type:	Protocol
Date Submitted by the Author:	02-Jun-2021
Complete List of Authors:	Bjerking, Louise; Bispebjerg Hospital, Department of cardiology Hansen, Kim; Bispebjerg Hospital, Dept. of Cardiology; Herlev Hospital, Cardiology Biering-Sørensen, Tor; Bispebjerg Hospital, Department of Cardiology; Gentofte Hospital, Department of Cardiology Brønnum-Schou, Jens; Amager Hospital, Department of cardiology Engblom, Henrik; Skåne University Hospital Lund, Department of Clinical Physiology Erlinge, David; Skåne University Hospital Lund, Clinical science Haahr-Pedersen, Sune; Gentofte Hospital, Department of Cardiology Heitmann, Merete; Bispebjerg Hospital, Department of Cardiology Hove, Jens; Hvidovre Hospital, Department of Cardiology; Hvidovre Hospital, Center of Functional Imaging and Research, Jensen, Magnus; Hvidovre Hospital, Department of Cardiology Kruse, Marie; Syddansk Universitet, Räder, Sune; Nordsjællands Hospital Strange, Søren; The Danish Association of Practicing Medical Specialists Galatius, Søren; Bispebjerg Hospital, Department of Cardiology Prescott, Eva; Bispebjerg Hospital, Department of Cardiology
Primary Subject Heading:	Cardiovascular medicine
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Coronary heart disease < CARDIOLOGY, CARDIOLOGY, Ischaemic heart disease < CARDIOLOGY
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Trial design

Cost-effectiveness of adding a non-invasive acoustic rule-out test in the evaluation of patients with symptoms suggestive of coronary artery disease. Rationale and design of the prospective, randomized, controlled, parallel-group multicenter FILTER-SCAD trial.

Short title: The FILTER-SCAD Trial Design

Authors: Louise H Bjerking, MD1, Kim W Hansen, MD PhD1,2, Tor Biering-Sørensen, MD PhD1,2,3, Jens Brønnum-Schou, MD4, Henrik Engblom, MD PhD5, David Erlinge, MD PhD6, Sune A Haahr-Pedersen, MD PhD2, Merete Heitmann, MD PhD1, Jens D Hove, MD PhD5, Magnus T Jensen, MD PhD4, Marie Kruse, PhD8, Sune Räder, MD PhD9, Søren Strange, MD10, Søren Galatius, MD DMSc*1 & Eva IB Prescott, MD DMSc*1

*Shared last authorship

1Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Denmark
2Department of Cardiology, Herlev Gentofte University Hospital, Denmark
3Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen
4Department of Cardiology, Amager Hvidovre University Hospital, Denmark
5Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden
6Department of Cardiology, Skåne University Hospital, Lund, Sweden
7Center of Functional Imaging and Research, Amager Hvidovre Hospital, Denmark
8Danish Centre for Health Economics (DaCHE), University of Southern Denmark, Denmark
9Department of Cardiology, Nordsjællands Hospital, Denmark
10The Danish Association of Practicing Medical Specialists, Denmark

Corresponding author:
Louise H Bjerking, Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark.
Email: louise.hougesen.bjerking@regionh.dk

Trial sponsor:
Professor Eva Prescott, Department of Cardiology, Bispebjerg Frederiksberg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark.
Email: Eva.Irene.Bossano.Prescott@regionh.dk

Word count: 3786 (excepting title page, abstract, references, and tables).
ABSTRACT

Introduction
Most patients with symptoms suggestive of chronic coronary syndrome (CCS) have no obstructive coronary artery disease (CAD) and better selection of patients to be referred for diagnostic tests is needed. The CAD-score is a non-invasive acoustic measure that, when added to pre-test probability of CAD, has shown good rule-out capabilities. We aimed to test whether implementation of CAD-score in clinical practice reduces the use of diagnostic tests without increasing major adverse cardiac events (MACE) rates in patients with suspected CCS.

Methods and analysis
FILTER-SCAD is a randomized, controlled, multicenter trial aiming to include 2000 subjects ≥30 years without known CAD referred for outpatient assessment for symptoms suggestive of CCS. Subjects are randomized 1:1 to either the control group; standard diagnostic examination (SDE) according to current guidelines, or the intervention group; SDE plus a CAD-score. The subjects are followed for 12 months for the primary endpoint of cumulative number of diagnostic tests and a safety endpoint (MACE). Angina symptoms, quality of life, and risk factor modification will be assessed with questionnaires at baseline, 3 months, and 12 months after randomization. The study is powered to detect superiority in terms of a reduction of ≥15% in the primary endpoint between the two groups with a power of 80%, and non-inferiority on the secondary endpoint with a power of 90%. The significance level is 0.05. The non-inferiority margin is set to 1.5%. Randomization began October 2019. Follow-up is planned to be completed December 2022.

Ethics and dissemination
The study has been approved by the Danish Medical Agency (2019024326.), Danish National Committee on Health Research Ethics (H-19012579), and Swedish Ethical Review Authority (Dnr 2019-04252). All patient participating in the study will sign an informed consent. All study results will be attempted published as soon as possible.

Registration details
ClinicalTrials.gov identifier: NCT04121949.
STRENGTH AND LIMITATIONS OF THIS STUDY

- Multicenter randomized controlled trial of a novel acoustic-based risk stratification CAD-score for coronary artery disease.
- First randomized controlled trial to investigate the safety of CAD-score and the impact of the CAD-score in clinical practice.
- Study design follows newest international guidelines on Chronic Coronary Syndrome.
- The study is unblinded as the treatment is based on the value of the CAD-score.

KEYWORDS (3-10 keywords)
Stable Angina Pectoris, Stable Coronary Artery Disease, Chronic Coronary Syndrome, Acoustic Diagnostic Device, CAD-score, Diamond-Forrester Score, Pre-test Probability.
Trial design

ABBREVIATIONS

ACC/AHA = American College of Cardiology/American Heart Association

BMI = Body mass index

CABG = Coronary artery bypass graft

CAD = Coronary artery disease

CCS = Chronic coronary syndrome

CCTA = Coronary computed tomographic angiography

CEC = Clinical event committee

CMRI = Cardiac magnetic resonance imaging

ECG = Electrocardiogram

eCRF = electronic Case Report Form

ESC = European Society of Cardiology

GP = General Practitioner

HF = Heart Failure

ICA = Invasive coronary angiography

ICD = Implantable Cardioverter Defibrillator

IQR = Interquartile range

ITT = Intention-to-treat

MACE = Major adverse cardiac events

MI = Myocardial infarction

MPI = myocardial perfusion imaging

NICE = National Institute for Health and Care Excellence
Trial design

NIT = Non-invasive test

NPV = Negative predictive value

PCI = Percutaneous coronary intervention.

PTP = Pre-test probability

QOL = Quality of life

RCT = Randomized clinical trial

REDCap = Research Electronic Data Capture

SAE = Serious adverse events

SAQ = Seattle Angina Questionnaire

SDE = Standard diagnostic examination

SPECT = Single-photon emission computed tomography

UAP = Unstable angina pectoris
Trial design

BACKGROUND
Chest discomfort is a common symptom leading to cardiological assessment for chronic coronary syndrome (CCS) (1). According to European Society of Cardiology (ESC) and American College of Cardiology/American Heart Association (ACC/AHA) guidelines, the diagnostic work-up should be based on the pre-test probability (PTP) of obstructive coronary artery disease (CAD) estimated from sex, age and symptoms (2,3), as originally suggested by the Diamond-Forrester model (4,5). However, in clinical practice PTP models have limited sensitivity and specificity. In recent large studies, less than 10% of patients referred with symptoms suggestive of CAD needed revascularization, and their prognosis was good (6,7). The addition of risk factors to improve PTP precision have minor impact on prediction abilities (6,8). The current test strategy exposes patients to unnecessary procedure-related risks, medication, and radiation and the costs of diagnostic work-up may be unnecessarily high. Consequently, better methods of identifying patients with low probability of obstructive CAD and no need for diagnostic testing are needed.

The CAD-score is a risk stratification score for CAD obtained by the non-invasive acoustic device, CADScor®System (Acarix A/S), which has shown good rule-out capabilities in patient with suspected CAD (9). The device is approved for medical use, and mentioned in a Medtech innovation briefing in the NICE-guidelines as a rule-out test early in the diagnostic CAD work up before CCTA (10). However, the CAD-score has never been tested as a rule-out test in a clinical setting. Hence, the FILTER-SCAD trial will examine whether adding CAD-score to the standard diagnostic work-up reduces the number of diagnostic tests and associated health care costs without compromising safety in the outpatient assessment of patients with symptoms suggestive of CCS.
OBJECTIVES
The primary objective of the FILTER-SCAD trial is to compare an initial diagnostic strategy based on a PTP according to guidelines plus CAD-score to a standard PTP-guided strategy when selecting patients with suspected CSS for diagnostic testing. The key secondary objective is to assess whether this strategy is non-inferior in terms of major adverse cardiac events (MACE). We hypothesized that an initial rule-out strategy guided by a PTP plus a CAD-score will reduce overall number of diagnostic procedures without compromising the safety when compared with a PTP-guided strategy alone over a follow-up period of 1 year.
Trial design

METHODS

Trial design

Figure 1 shows an overview of the study design. The FILTER-SCAD trial is an investigator-initiated, prospective, randomized, controlled, parallel-group, multicenter trial planned to include 2000 subjects ≥30 years of age without known CAD referred for outpatient evaluation of symptoms suggestive of CCS at five-six sites; four-five in Denmark and one in Sweden. The protocol is available as supplementary material.

Study population

Study subjects are men and women ≥30 years of age without known CAD referred for evaluation of symptoms suggestive of suspected CAD in planned 5-6 cardiology outpatient clinics in Denmark and Sweden. Inclusion and exclusion criteria are listed in table 1.

Randomization and blinding

Randomization is done in a randomization module in the electronic CRF (eCRF) and will be unblinded as the physician must act on the given CAD-score and PTP. Eligible subjects are allocated in a 1:1 manner to control or intervention group using permuted block randomization stratified by study site and PTP-value (very low vs. low-intermediate) by a computer-generated allocation table.

The study was designed based on the 2013 ESC guidelines on the management of stable coronary artery disease (11). However, the ESC guidelines were updated in 2019 downgrading the PTP for obstructive CAD considerably (2), and the FILTER-SCAD trial protocol was adjusted to be in accordance with these state-of-the-art recommendations. First subject was randomized on October 22, 2019. The first 78 subjected in the FILTER-SCAD trial were randomized according to the first protocol based on the 2013 ESC guidelines. The remaining subjects will be enrolled in consistency with the updated protocol.

Standard diagnostic examination

Subjects randomized to the control group will undergo a standard diagnostic examination (SDE) according to ESC 2019 guidelines including clinical examination, PTP assessment based on age, sex and type of angina, risk factor assessment and echocardiography (2). The echocardiography will be done during the clinical investigation for CAD, but not necessarily on the day of
Trial design

randomization. The SDE will be followed by non-invasive tests (NIT) if indicated (figure 2) according to current European guidelines on CCS (2); Patients with very low PTP ≤ 5% should not receive further diagnostic testing, in patients with PTP 6-15% NIT may be considered based on the overall clinical likelihood, and patients with PTP > 15% should be offered NIT as standard first choice of diagnostic test. Invasive coronary angiography (ICA) may be offered to selected patients with very high clinical likelihood, but no patients should receive ICA based on their PTP alone.

Intervention (CAD-score)

Patients randomized to the intervention group will receive a CAD-score measurement in addition to the SDE. The CAD-score is measured using the acoustic device CADScor®System (Acarix A/S).

The CAD-score is a risk stratification score scaled from 0 to 99 for obstructive CAD measured from advanced analysis of sounds originating from blood flow turbulence in the coronary arteries and myocardial motion combined with the patients age, sex, and blood pressure (9,12). The measurements are done by a non-invasive acoustic device, CADScor®System (Acarix A/S), which has shown good rule-out capabilities (cut-off: CAD-score ≤ 20) in patient with suspected CAD (9). In a population with a prevalence of obstructive CAD on 9.4% (n=2245) the sensitivity, specificity, negative predictive value and positive predictive value were 88.7%, 41.5%, 97.2% and 13.7%, respectively (12).

During a three minutes period with the patient lying in supine position, a transcutaneous recording of heart sounds is done by a microphone attached by a patch at the left fourth intercostal space (IC4) (13). Four times during the recording, the patient is asked to hold his/her breath for eight seconds. From eight acoustic features, a fully automatic algorithm estimates (software version 3.2) an acoustic score which combined with the risk factors sex, age, and hypertension by logistic regression results in the CAD-score (9,13). The CAD-score measurements are done by specially trained study staff. If the measurement fails, up to four measurement are attempted.

Success of the new strategy depends critically on the physician’s knowledge of strength and weakness of the CAD-score measure. At study start, each site will be trained in the CAD-score background literature and method. The training will be repeated after 3-6 months after
Trial design

enrollment of first patient. Moreover, every physician is provided written information about the study and the CAD-score. The training of the physicians is intended to made physicians comfortable with the CAD-score and its strengths and weaknesses.

Further diagnostic pathway

All treating physicians are trained in the study protocol including the CAD-score. The physician is provided with a decision sheet with PTP, CAD-score and the recommended further diagnostic pathway (NIT or no further assessment) (figure 1). Based on the available information, the physician decides whether to follow the recommended diagnostic pathway or not. A crossover could be justified by the presence of cardiac risk factors with a higher perceived clinical likelihood.

Diagnostic tests for both intervention and control group

Patients with intermediary-high PTP in the control group or high CAD-score > 20 in the intervention group are referred for further standard diagnostic testing including NIT and ICA, and this is done as standard procedure of each site. All decisions regarding diagnostic testing, including choice of testing modality, and medical/surgical treatment of the patient is done at the discretion of the treating physician, and is not a part of the study protocol.

Study periods

A run-in period with an expected duration of three months at each site is intended to serve as a training period where the study staff and attending cardiologists will be made familiar with performing and interpreting the CAD-score measurement by obtaining CAD-score around 50-100 subjects at each participating site.

The planned duration of the study is 24 months; 12 months for the inclusion period, defined as first patient first visit to last patient first visit, for the main study starting after the run-in period, and approximately 12 months for the follow-up period. However, due to the COVID-19 pandemic and associated study delay, the enrollment period is extended with 15 months. Hence, follow-up is planned to be completed December 2022.

End of study will be when all the following have occurred: 1) at least 2000 patients have been randomized, and 2) 12±1 month (1 year) have elapsed since the last patient was randomized. The study population will be followed for one year after randomization.
Trial design

Endpoints

Primary endpoint

The primary endpoint defined as the cumulative number of NIT and invasive procedures one year after randomization. NITs include exercise electrocardiogram (ECG), Coronary computed tomographic angiography (CCTA), Rubidium-PET CT, myocardial perfusion imaging (MPI), Cardiac magnetic resonance imaging (CMRI), and stress echocardiography. Invasive procedures include ICA only.

If the analysis shows a significant difference in the primary endpoint, a cost-effectiveness analysis will be conducted alongside the trial. The potential cost-effectiveness analysis will be based on information from the trial, as well as data from health registers. The register linkage will provide information at individual level on healthcare utilization, including general practice, medication, etc.; as well as labour market consequences and other societal costs. The cost-effectiveness analysis will apply two different effectiveness measures: procedures avoided, cf. the primary endpoint, and quality adjusted life-years (QALY’s) based on the reporting of EQ-5D in the trial (14).

Secondary endpoints

The key secondary endpoint is the safety endpoint MACE; a combined endpoint of all-cause mortality, non-fatal myocardial infarction (MI), hospitalization for unstable angina pectoris (UAP), heart failure (HF), ischemic stroke, and major complication from cardiovascular procedures or diagnostic testing at one year after end of randomization. An independent clinical event committee (CEC) will adjudicate MACE endpoints blinded to the allocated intervention. Definitions of all-cause mortality, MI, UAP, HF and ischemic stroke follow the ACC/AHA description of key data elements and definitions for cardiovascular endpoint events in clinical trials (15). Major complication from cardiovascular procedures or diagnostic testing is defined as major bleeding, renal failure, stroke, or anaphylaxis that occurred within 72 hours in accordance with the PROMISE Trial’s definition (7). Other individual secondary endpoints are 1) clinical endpoints: all-cause mortality, MI, hospitalization for UAP, HF and ischemic stroke, medication, time to CAD diagnosis, repeat referrals, and bleeding requiring hospitalization assessed one year after randomization, 2) procedure related endpoints: Numbers of first NITs, numbers of ICA, number of downstream tests (NITs and ICAs done after the first NIT), contrast dose, radiation
Trial design

dose, and adverse events related to the CAD-score measurement at one year after randomization, and 3) questionnaire endpoints: Change in chest pain assessed by the Seattle Angina Questionnaire (SAQ) (16), quality of life assessed by the EuroQol-5D (17), and lifestyle assessed by the HeartDiet Questionnaire (18). Questionnaires are collected at baseline, three months, and 12 months after randomization.

All endpoints are listed in supplementary table 1.

Data handling

Data is collected in the eCRF REDCap (Research Electronic Data Capture 10.3.3(19,20)) by trained study staff. Blood samples, ECG, and echocardiography data at baseline are standard test for ambulatory patients and will be collected from medical records and entered in the eCRF. Data on diagnosis, medications, diagnostic testing, repeat referrals, safety endpoints, and bleeding requiring hospitalization will be collected. All diagnostic test will be classified as positive, negative or inconclusive. This will be done at each individual site according to local criteria/guidelines.

Monitoring will be carried out by an external monitor and will include 100% monitoring of all potential serious adverse events (SAE) related to the CAD-score measurement, informed consent forms and power of attorneys, and 20% monitoring of inclusion and exclusion criteria.

Statistical methods

The study is powered to detect superiority in terms of an absolute reduction of ≥ 15% in the cumulative number of diagnostic tests (primary endpoint) between the intervention and control groups with a power of 80% and a significance level of 0.05 with a sample size of 521 subjects in each randomization group. The study is powered for non-inferiority on the secondary safety endpoint (MACE) with a power of 90% and a significance level of 0.05 with a sample size of 1914 subjects (957 in each randomization group). The non-inferiority margin is set to 1.5%.

The final sample size was chosen to be 2000 patients (1000 in each randomization group), allowing for a 4% loss to follow-up and drop-out. The power calculation remains unchanged after updating the study protocol to reflect the latest 2019 ESC guidelines on CCS.

The main analysis will be intention-to-treat (ITT) analysis. Analysis of the cumulative numbers of diagnostic test will be done with Poisson based test and visualized by Nelson-Aalen
nonparametric estimator. The secondary safety endpoint MACE will be analyzed using a continuity-corrected modification of the Wilson’s score method.

Pre-specified subgroup analysis will be performed investigating the following subgroups: PTP (≤5% vs. 5-15% vs. >15%), PTP (≤5% vs. >5%), PTP (≤5% vs. 5-15%), age (<65 years vs. ≥65 years), sex (male vs. female), hypertension (yes vs. no), dyslipidemia (yes vs. no), diabetes mellitus (yes vs. no), smoking (yes vs. no), family history of CAD (yes vs. no), and BMI (<30 kg/m2 vs. ≥30 kg/m2). An interim analysis for futility will be done after enrollment of at least 20% of the expected 2000 patients. We expect approximately 25% of the population to have low PTP or CAD-score ≤ 20. The study is considered futile if more than 90% of the overall population undergo further NIT or ICA after the initial SDE.

All statistical tests will be made using statistical software R and will have a two-sided significance level of 0.05.

Trial registration

The trial is registered on ClinicalTrials.gov (identifier: NCT04121949).

Patient and public involvement

Patients and the public were not involved in the phase of the study, as the study addresses the physician’s decision-making in the diagnostic strategy for ischemic heart disease. However, the results will be relevant for both patients and the general public, and the result will be attempted published through patient organizations and public media. The study results will be distributed directly to the study participants.
ETHICS AND DISSEMINATION

The FILTER-SCAD trial is conducted in compliance to the principles of the Declaration of Helsinki of the World Medical Association, and laws of Denmark and Sweden. The study has been approved by the Danish Medical Agency (2019024326.), Danish National Committee on Health Research Ethics (H-19012579), and Swedish Ethical Review Authority (Dnr 2019-04252). All patient participating in the study will sign an informed consent. All study results will be attempted published as soon as possible.
DISCUSSION

The FILTER-SCAD trial will investigate whether adding a CAD-score to the SDE is a feasible way to reduce use of excess diagnostic testing without compromising safety in the assessment of patients with symptoms suggestive of CCS.

CAD-score probabilities

The diagnostic performance of the CAD-score has been thoroughly examined (9,12,13). In a retrospective pooled study of 2245 patients undergoing CCTA the diagnostic sensitivity and specificity for obstructive CAD of the CAD-score were 88.7% and 41.5%, respectively, with ≥ 50% stenosis on ICA as gold standard (12). In this population with a 9.4% prevalence of obstructive CAD verified on ICA, the negative predictive value (NPV) was 97.2% at a CAD-score cut-off ≤ 20, which stresses the potential of the CAD-score as a rule-out test for obstructive CAD (12). In addition, the CAD-score’s capability of reclassifying patients was simulated in the study; by adding a CAD-score to the patients with intermediate PTP of obstructive CAD, one third of the patients were downgraded to the low likelihood of CAD group, and might accordingly have been ruled-out at that step without any further excess NIT, potentially reducing the accompanying risks and costs (12). This reclassification only slightly insignificantly increased the CAD-prevalence in the low-risk group from 3.1% to 4.0% (12). The previous CAD-score studies are based on the former ECS 2013 PTP. However, the non-invasive sound-based CAD-score tool, remains effective as a rule-out test also following implementation of the adjusted PTP in the recent 2019 ESC guidelines on CCS; four out of 10 patients evaluated by the latest PTP were reclassified to low likelihood of obstructive CAD after adding a CAD-score (21). The FILTER-SCAD trial will, to our knowledge, be the first study to test the CAD-score’s ability in a clinical setting as a rule-out tool in patients with suspected CCS, testing both the efficacy and the safety in a randomized prospective study. Thereby, the current study may enhance and simplify the diagnostic pathway for patients referred with suspected CCS, possibly allowing a reduction in excess use for NIT and ICA.

Safety

We are aware of the risk of incorrectly ruling out patient with CAD with a (false negative) low CAD-score. As for all other diagnostic tests, there will always be a risk of false negative test; Sensitivity of exercise stress echocardiography, exercise stress SPECT, and CCTA are 80-85%,
Trial design

73-92%, and 95-99%, respectively, and false negative test will occur (11). However, these tests are more comprehensive and expensive than a simple CAD-score measurement. Also, current ESC guidelines recommend no further investigation with NIT in patients with PTP ≤ 5%. Thus, guidelines accept ruling out a proportion of patient with unacknowledged obstructive CAD to avoid large numbers of false positive tests and unnecessary exposure of patients to diagnostic test and accompanying risk. Moreover, the prognosis of patients referred with symptoms suggestive of CSS appears good (7,22,23), especially among the patients classified with low PTP (6), but also in both suspected CCS and confirmed CAD (24). The good prognosis is independent of treatment with percutaneous coronary intervention (PCI) or optimal medical therapy including antianginal medication (25).

In the FILTER-SCAD study, risks are mitigated in several ways; The participants are contacted by the study nurse after three months and one year, where angina symptoms are assessed. In case of worsening of symptoms, the nurse can contact the treating physician who can decide to schedule a follow-up visit. Also, the patients are instructed to contact the study nurse or their general practitioner if their symptoms continues or worsens. Finally, the treating physician may choose to disregard the recommended action according to protocol and cross the patient over to NIT despite a CAD-score ≤ 20 if e.g. cardiovascular risk factors deemed to increase the patient’s likelihood for CAD, the treating physician require further investigation, or choose to schedule a follow-up visit.

Notably, the CAD-score system is CE-marked and approved for clinical use in patients ≥ 40 years of age, and is stated as a rule-out test early in the diagnostic CAD work up in the NICE-guidelines Medtech innovation briefing (10). Thus, the FILTER-SCAD trial aims to test the implementation of an already approved clinical rule-out device in a clinical setting and its impact as an add-on device in the current diagnostic work up, and not to test the diagnostic accuracy of the device.

Endpoints
The low diagnostic yield of the current work up for patients with suspected CCS has questioned the value of the currently recommended diagnostic test strategy (26–28). Many patients may be exposed to unnecessary procedure-related risks, medication, and radiation without achieving any benefits, and the costs of diagnostic work-up may be unnecessarily high. This study aims to investigate if a CAD-score added as a rule-out test in patients with suspected CCS will reduce
unnecessary testing and thus increase the cost-effectiveness of the diagnostic workup. Hence, comparison of the cumulative number of NIT and ICA in two groups with and without CAD-score as rule-out test is relevant. Moreover, not compromising safety for patients by adding a CAD-score as a rule-out test is essential. Therefore, a key secondary composite safety endpoint MACE of numbers of all-cause death, myocardial infarction, unstable angina pectoris, heart failure, ischemic stroke, and major complication from cardiovascular procedures or diagnostic within 72 is relevant and will enlighten the accuracy of excluding obstructive disease in patient groups with and without CAD-score measurement.

Another important secondary endpoint is angina symptom control, quality of life and patients’ satisfaction with the diagnostic work up. These are assessed with validated questionnaires (16,17). Other secondary endpoints in the study include medication, time to diagnosis, contrast and radiation dose, and adverse events related to the CAD-score measurement.

CONCLUSION

The FILTER-SCAD trial study will investigate the cost-effectivity and safety in a clinical setting of adding an advanced acoustic tool; the CAD-score as a rule-out test in the diagnostic work up of patients with symptoms suggestive of CCS.

AUTHORS’ CONTRIBUTIONS

EP, SG and KWH designed and initiated the study. LHB, KWH, EP, and SG obtained funding. LHB wrote the manuscript. LHB, KWH, TBS, JBS, HE, DE, SAHP, MH, JDH, MTJ, MK, SR, SS, SG and EP revised and approved the final version of the article.
Trial design

COMPETING INTEREST
LHB: None.
KWH: None.

TBS: Steering Committee member of the Amgen financed GALACTIC-HF trial; Advisory Board: Sanofi Pasteur; Advisory Board: Amgen; Speaker Honorarium: Novartis; Speaker Honorarium: Sanofi Pasteur; Research grant: GE Healthcare; Research grant: Sanofi Pasteur.

JBS: None.
HE: None.
DE: Advisory board for Acarix A/S.
SAHP: None.
MH: None.
JDH: None.
MK: None.
MTJ: None.
SR: None.
SS: None.
SG: None.
EP: None.

FUNDING STATEMENT
Unrestricted grants for the study was provided by Acarix A/S, Kai Hansens Fond, Kai Houmann Nielsen Fond, and Fonden for Faglig Udvikling i Speciallægepraksis (A3068).

AUTHORS’ NOTE
The CADScor® System and analysis relating hereto will be offered freely by Acarix A/S.
Trial design

REFERENCES

1. Jordan KP, Timmis A, Croft P, van der Windt DA, Denaxas S, González-Izquierdo A, et al. Prognosis of undiagnosed chest pain: linked electronic health record cohort study. BMJ. 2017 Apr 3;j1194.

2. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2019 Aug 31;

3. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol. 2012 Dec;60(24):e44–164.

4. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979 Jun 14;300(24):1350–8.

5. Genders TSS, Steyerberg EW, Alkadhi H, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011 Jun;32(11):1316–30.

6. Reeh J, Therming CB, Heitmann M, Højberg S, Sørum C, Bech J, et al. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. 2018 Dec 18 [cited 2019 Mar 21]; Available from: https://dx.doi.org/10.1093/eurheartj/ehy806

7. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015 Apr 2;372(14):1291–300.

8. Winther S, Nissen L, Westra J, Schmidt SE, Bouteldja N, Knudsen LL, et al. Pre-test probability prediction in patients with a low to intermediate probability of coronary artery disease: a prospective study with a fractional flow reserve endpoint. Eur Heart J - Cardiovasc Imaging. 2019 Nov 1;20(11):1208–18.

9. Winther S, Schmidt SE, Holm NR, Toft E, Struijk JJ, Bøtker HE, et al. Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. Int J Cardiovasc Imaging. 2016 Feb;32(2):235–45.

10. The National Institute for Health and Care Excellence (2019). CADScor system for ruling out coronary artery disease in people with symptoms of stable coronary artery disease (NICE Medtech innovation briefing 174) [Internet]. [cited 2020 Jun 30]. Available from: https://www.nice.org.uk/advice/mib174/chapter/summary

11. Task Force Members, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force
Trial design

on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013 Oct;34(38):2949–3003.

12. Schmidt SE, Winther S, Larsen BS, Groenhoej MH, Nissen L, Westra J, et al. Coronary artery disease risk reclassification by a new acoustic-based score. Int J Cardiovasc Imaging. 2019 Nov;35(11):2019–28.

13. Winther S, Nissen L, Schmidt SE, Westra JS, Rasmussen LD, Knudsen LL, et al. Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification. Heart Br Card Soc. 2018;104(11):928–35.

14. Drummond M, Sculpher M, Torrance G, O’Brien B, Stoddart G. Methods for the economic evaluation of health care programme. New York: Oxford University Press; 2005.

15. Hicks KA, Tcheng JE, Bozkurt B, Chairman BR, Cutlip DE, Farb A, et al. 2014 ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). J Am Coll Cardiol. 2015 Jul 28;66(4):403–69.

16. Spertus JA, Winder JA, Dewhurst TA, Deyo RA, Prodzinski J, McDonell M, et al. Development and evaluation of the Seattle Angina Questionnaire: a new functional status measure for coronary artery disease. J Am Coll Cardiol. 1995 Feb;25(2):333–41.

17. Janssen MF, Pickard AS, Golicki D, Gudex C, Niewada M, Scalone L, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. Qual Life Res Int J Qual Life Asp Treat Care Rehabil. 2013 Sep;22(7):1717–27.

18. Laursen UB, Rosenkilde LB, Haugaard A-M, Obel T, Toft U, Larsen ML, et al. Validation of the HeartDiet questionnaire. Dan Med J. 2018 Nov;65(11).

19. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009 Apr 1;42(2):377–81.

20. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019 Jul 1;95:103208.

21. Schmidt SE, Winther S, Boettcher M. Coronary artery disease risk reclassification using an acoustic-based score in view of the new European Society of Cardiology 2019 guidelines on Chronic Coronary Syndromes. Int J Cardiovasc Imaging. 2020 Mar;36(3):383–4.

22. SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018 06;379(10):924–33.
Trial design

23. Fordyce CB, Douglas PS, Roberts RS, Hoffmann U, Al-Khalidi HR, Patel MR, et al. Identification of Patients With Stable Chest Pain Deriving Minimal Value From Noninvasive Testing: The PROMISE Minimal-Risk Tool, A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2017 01;2(4):400–8.

24. Olesen K, Botker H, Sørensen H, Maeng M. Ten-year cardiovascular risk in patients with stable angina pectoris but without coronary artery disease by coronary angiography. ESC Congr 2020 - Digit Exp. 2020;

25. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal Medical Therapy with or without PCI for Stable Coronary Disease. N Engl J Med. 2007 Apr 12;356(15):1503–16.

26. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010 Mar 11;362(10):886–95.

27. Patel MR, Dai D, Hernandez AF, Douglas PS, Messenger J, Garratt KN, et al. Prevalence and predictors of nonobstructive coronary artery disease identified with coronary angiography in contemporary clinical practice. Am Heart J. 2014 Jun;167(6):846-852.e2.

28. Therming C, Galatius S, Heitmann M, Højberg S, Sørum C, Bech J, et al. Low diagnostic yield of non-invasive testing in patients with suspected coronary artery disease: results from a large unselected hospital-based sample. Eur Heart J Qual Care Clin Outcomes. 2018 01;4(4):301–8.
Trial design

TABLES

Table 1 – Inclusion and exclusion criteria
Inclusion criteria
- Signed informed consent form.
- Male or female, aged 30 years or above.
- Patients able and willing to comply with the clinical investigational plan.
- Symptoms suggestive of stable coronary artery disease.
- No history of coronary artery disease (prior MI, PCI or CABG).
Exclusion criteria
Related to pre-test likelihood of obstructive CAD:
- Prior non-invasive testing for stable CAD or ICA within 6 months of randomization.
Related to feasibility of performing a CAD-score measurement:
- Implanted donor heart, mechanical heart, mechanical heart pump.
- Pacemaker or Cardioverter Defibrillator (ICD).
- Implanted electronic equipment in the area above and around the heart.
- Significant operation scars, abnormal body shape, fragile or compromised skin in the fourth left intercostal space recording area.
- Receiving same day treatment with nitroglycerine on the day of randomization.
Related to women of childbearing potential:
- Pregnancy.

Table 1. Inclusion and exclusion criteria: *The exclusion criteria “Diamond-Forrester score > 85%” was removed after updating the study according to the 2019 ESC guidelines on CCS. CAD = Coronary artery disease; CABG = Coronary artery bypass graft; ICA = Invasive coronary angiography; MI = Myocardial infarction; PCI = Percutaneous coronary intervention.*
Trial design

FIGURE LEGENDS

Figure 1. Study design. CAD = Coronary artery disease; MACE = Major adverse cardiac event; NIT = Non-invasive test; SDE = Standard diagnostic examination.

Figure 2. Flow chart. ICA = Invasive coronary angiography; NIT = Non-invasive test; PTP = Pre-test probability.
Figure 1

Subject eligibility:
Age ≥ 30 years, referred for outpatient assessment of symptoms suggestive of CAD, no known heart disease
N ~ 2000

Screening and consent

Visit 1:
Questionnaires (SAQ, QOL, and lifestyle)
Randomization 1:1

Standard diagnostic examination (SDE)

Intervention group:
SDE + CAD-score

Follow-up:
Contact at 3 and 12 months

Primary endpoint
Numbers of NIT at 1 year

Secondary endpoint
MACE at 1 year
Figure 2

Randomization 1:1

Control group
- PTP ≤ 5%
- PTP > 5% - ≤ 15%
- PTP > 15%

Intervention group
- PTP ≤ 5%
- PTP > 5% - ≤ 15%
- PTP > 15%

Clinical examination and risk factor evaluation

Ruled out
- No further diagnostic testing.
- Risk factor optimization

NIT
- Not ruled out by first NIT:
 - Decision for 2nd NIT test or ICA.

Ruled out
- Not ruled out by first NIT: Decision for 2nd NIT test or ICA.

CAD-score assessment
- CAD-score ≤ 20
- CAD-score > 20
Supplementary table 1

Primary endpoint	NITs and invasive procedures
Key secondary endpoint	MACE (All-cause death, non-fatal MI, UAP, HF or ischemic stroke)
Other secondary endpoints	All-cause death
	MI
	UAP
	HF
	Ischemic stroke
	Symptoms/type of chest pain
	Quality of life
	Change in basic lifestyle
	NIT
	ICA
	Time to CAD diagnosis
	Medication
	Contrast dose
	Radiation dose
	Bleeding requiring hospitalization
	Adverse events related to the CADScor®System
	Repeat referrals

Supplementary table 1. Endpoints: CAD = Coronary artery disease; HF = Heart failure; ICA = Invasive coronary angiography; MACE = Major adverse cardiac event; MI = Myocardial infarction; NIT = Non-invasive test; UAP = Unstable angina pectoris.
SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents

Section/item	Item No	Description	Page Number on which item is reported
Administrative information			
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	Page 1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	P. 2 & 13
	2b	All items from the World Health Organization Trial Registration Data Set	-
Protocol version	3	Date and version identifier	Supplementary material; protocol v. 5.0: title page
Funding	4	Sources and types of financial, material, and other support	P. 21
Roles and responsibilities	5a	Names, affiliations, and roles of protocol contributors	P. 1 & 21
	5b	Name and contact information for the trial sponsor	P. 1
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	P. 21
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	P. 8, 11 & 12
Introduction			
---	--	--	
Background and rationale	Description of research question and justification for	P. 6-7, 16-18	
	undertaking the trial, including summary of relevant studies		
	(published and unpublished) examining benefits and harms for		
	each intervention		
6b	Explanation for choice of comparators	P. 8-10	
Objectives	Specific objectives or hypotheses	P. 6-7	
Trial design	Description of trial design including type of trial (eg,	P. 8-13	
	parallel group, crossover, factorial, single group, allocation		
	ratio, and framework (eg, superiority, equivalence, noninferior		
	ity, exploratory)		

Methods: Participants, interventions, and outcomes

Study setting	Description of study settings (eg, community clinic, academic	P. 8
	hospital) and list of countries where data will be	
	collected. Reference to where list of study sites can be	
	obtained	
Eligibility criteria	Inclusion and exclusion criteria for participants. If applicable,	P. 8 & 24
	eligibility criteria for study centres and individuals who will	(table 1)
	perform the interventions (eg, surgeons, psychotherapists)	
Interventions	Interventions for each group with sufficient detail to	P. 8-10
	allow replication, including how and when they will be	
	administered	
11b	Criteria for discontinuing or modifying allocated interventions	Supplementary material; protocol
	for a given trial participant (eg, drug dose change in	
	response to harms, participant request, or improving/worsening	
	disease)	
11c	Strategies to improve adherence to intervention protocols, and	Supplementary material; protocol
	any procedures for monitoring adherence (eg, drug tablet return,	
	laboratory tests)	
11d	Relevant concomitant care and interventions that are permitted	NA
	or prohibited during the trial	
Outcomes	Primary, secondary, and other outcomes, including the specific	P. 10-11, 17-18 & 28 (supplementary table 2)
	measurement variable (eg, systolic blood pressure), analysis	
	metric (eg, change from baseline, final value, time to event),	
	method of aggregation (eg, median, proportion), and time point	
	for each outcome. Explanation of the clinical relevance of	
	chosen efficacy and harm outcomes is strongly recommended	
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	P. 10 & 26 (Figure 1)
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	P. 12-13
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	P. 8-10

Methods: Assignment of interventions (for controlled trials)

Allocation:

| Sequence generation 16a | Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions | P. 8 |

| Allocation concealment mechanism 16b | Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned | P. 8 |

| Implementation 16c | Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions | P. 8-10 + Supplementary material; protocol |

| Blinding (masking) 17a | Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how | P. 8 |

| 17b | If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant’s allocated intervention during the trial | NA |
Methods: Data collection, management, and analysis
Data collection methods
18b
Data management
Statistical methods
20b
20c

Methods: Monitoring
Data monitoring
Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial
Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial
Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct
Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor
Plans for seeking research ethics committee/institutional review board (REC/IRB) approval
Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)
Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)
Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable
How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial
Financial and other competing interests for principal investigators for the overall trial and each study site
Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators
Ancillary and post-trial care

Dissemination policy

Appendices

Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	P. 10
Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	NA

*It is strongly recommended that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the items. Amendments to the protocol should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons "Attribution-NonCommercial-NoDerivs 3.0 Unported" license.