In such a scenario, it becomes difficult to determine the exact etiology of the cyst, whether congenital or cystic degeneration of the mediastinal lymph node. Herein, we report a case with a mediastinal cyst that proved to be a bronchogenic cyst secondarily infected with Mycobacterium tuberculosis.

CASE REPORT

A 45-year-old gentleman presented with progressive breathlessness and noisy breathing of 2 months’ duration. There was no fever, cough, chest pain, anorexia, or weight loss. He had no prior history of asthma, atopy, and smoking.
On auscultation, there was bilateral diffuse expiratory wheeze. Spirometry revealed obstructive ventilatory defect with no significant bronchodilator reversibility [Table 1]. He was diagnosed as a case of bronchial asthma and was prescribed a combination of inhaled formoterol and budesonide. However, there was no relief in his symptoms after 6 weeks despite good compliance and correct inhaler technique.

On reevaluation, the chest radiograph revealed subtle mediastinal widening [Figure 1a]. Contrast-enhanced computed tomography (CECT) of thorax revealed a cystic lesion in the subcarinal location that was causing extraluminal compression of the airways at the level of carina and both main bronchi [Figure 1b]. Flexible bronchoscopy revealed a splayed carina, with dynamic airway collapse on expiration and narrowing of bilateral main stem bronchi. With a clinical suspicion of a congenital bronchogenic cyst, the patient was subjected to endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA), and 50 mL of turbid pus-like material was aspirated. The aspirated material was sent for analysis, including Gram stain, bacterial culture, mycobacterial cultures, and cytological examination. There was significant resolution of symptoms and normalization of the spirometric lung functions following therapeutic aspiration of the cyst [Table 1]. CECT thorax showed a reduction in size of the cyst [Figure 1c]. Stain for acid-fast bacilli was positive [Figure 2] from the fluid with no evidence of bronchial epithelial cells. A diagnosis of tuberculous lymphadenitis with cystic degeneration was considered, and the patient was treated with anti-tuberculosis therapy for 6 months. After completing treatment, a follow-up CECT thorax showed significant resolution as compared to the baseline [Figure 1c]; however, the lesion did not disappear completely. The patient underwent surgical excision of the mediastinal cyst. The histopathological examination demonstrated ciliated columnar lining epithelium [Figure 3a] and surrounding mediastinal lymph nodes showing granulomatous inflammation [Figure 3b] that confirmed the diagnosis of bronchogenic cyst.

DISCUSSION

The index case highlights few important points. First, it can be difficult to distinguish a congenital mediastinal cyst from cystic degeneration of mediastinal lymph nodes. Second, an obstructive pattern on spirometry is not always asthma or chronic obstructive pulmonary disease.

Mediastinal cysts can have varied etiologies. Congenital foregut cysts are the most common, with bronchogenic cysts constituting 50% of all mediastinal cysts in adults.\[^{1}\] Majority of these cysts localize in the anterior or middle mediastinum. When the anomaly associated with cyst formation is delayed, the cysts can also localize to the lung parenchyma and become susceptible to secondary infections.\[^{1,2}\] About two-third of patients with mediastinal cyst remain asymptomatic; however, they may develop symptoms if the cyst increases in size or becomes

Parameters	At presentation	After therapeutic aspiration
FVC in L	3.52 (90)	3.82 (98)
FEV₁ in L	1.17 (38)	3.05 (98)
FEV₁/FVC	33.2	79.8
PEFR L/min	219 (43)	450.6 (89)
FEF 25–75 L/min	68.4 (33)	181 (88)

The percentage of predicted values of the spirometric variable is mentioned in parentheses. FEV₁: Forced expiratory volume in the first second, FVC: Forced vital capacity, PEFR: Peak expiratory flow rate, FEF 25–75: Forced expiratory flow rate between 25%–75% of FVC.
secondarily infected. Infection of cysts and related symptoms such as fever and chest pain are more common with cysts situated in the lungs in comparison to those in the mediastinum.1,2 In addition, obstructive symptoms similar to the index case are usually reported in children owing to the narrow and pliable airway.3 However, adults may present with symptoms of airway obstruction if the cyst is large and is situated around the tracheal bifurcation or is retrotracheal.4 In symptomatic individuals with suspicious chest radiographs, CECT thorax or magnetic resonance imaging of thorax can confirm the presence of cysts and can delineate anatomy. EBUS-guided TBNA serves as a diagnostic as well as a therapeutic modality. The diagnosis of bronchogenic cyst can be confirmed by cytological examination of aspirated material that reveals the presence of mucus or bronchial epithelial cells without polymorphonuclear leukocytes or lymphocytes or malignant cells.5 In the presence of a secondary infection, it is not possible to confirm or refute a diagnosis of a bronchogenic cyst only by aspiration. The persistence of the cystic lesion in the index case after treating for tuberculosis led us to suspect an underlying bronchogenic cyst. Histological examination of the surgically resected cyst confirmed the diagnosis.

Tuberculosis presenting as a primary mediastinal cystic lesion is extremely rare with only few reports [Table 2]. The possible mechanism of cyst formation due to tuberculosis per se involves conglomeration and extensive necrosis of affected tubercular lymph nodes or contiguous spread from bony structures (vertebrae).6 To the best of our knowledge, secondary tuberculous infection of a mediastinal bronchogenic cyst has not been reported previously, although tuberculous involvement of intraparenchymal bronchogenic cysts has been reported [Table 3]. While intrapulmonary bronchogenic cyst can get secondarily infected with tuberculosis by contiguous spread from the lung parenchyma, in the case of a mediastinal cyst, the source of infection could be the surrounding mediastinal lymph nodes. In the index case, the surgical specimen revealed enlarged lymph nodes around the cysts which showed the presence of epithelioid granulomas on histological examination, thus indicating the potential source.

Table 2: Summary of previously reported cases of tuberculosis presenting as cystic lesions in the mediastinum

Author/year	Age (years)/sex	Location of cyst	Mode of diagnosis	Final diagnosis
Verma and Narayan[6] 2008	21/female	Anterior mediastinum	Guided percutaneous FNA	Mycobacterium tuberculosis
Sahin Yildiz[6] 2011	30/female	Middle mediastinum	Thoracotomy	Mycobacterium tuberculosis
Varik et al.[6] 2012	0.4/male	Posterior mediastinum	Thoracotomy	Mycobacterium tuberculosis
Dhoria et al.[6] 2015	14/male	Posterior mediastinum	EBUS-TBNA	Mycobacterium tuberculosis

FNA: Fine needle aspiration, EBUS-TBNA: Endobronchial ultrasound-guided transbronchial needle aspiration

Table 3: Summary of previously reported cases of bronchogenic cysts with secondary tubercular infection

Author	Number of patients	Patient profile	Location of cyst	Mode of diagnosis	Final diagnosis
Andrews et al.[7]	3	NA	Intraparenchymal	Bronchogram followed by surgical excision	Mycobacterium tuberculosis
Houser et al.[7]	1	9 years/female	Intraparenchymal (right lower lobe)	Right lower lobectomy	Mycobacterium tuberculosis
Lin et al.[7]	1	39 years/female	Intraparenchymal (right lower lobe)	VATS-assisted resection	Mycobacterium avium
Liman et al.[7]	2	a) 20 years/male, b) 34 years/female	a) Intraparenchymal (right lower lobe), b) Horizontal fissure	Thoracotomy, Surgical excision	Mycobacterium tuberculosis
Frye and Decou[7]	1	13 years/male	Intraparenchymal (right lower lobe)	Right lower lobectomy	Atypical mycobacteria
Chu et al.[7]	1	34 years/female	Intraparenchymal (left upper lobe)	Thoracotomy, Surgical excision	Mycobacterium tuberculosis
Kwon et al.[7]	1	21 years/male	Intraparenchymal (right upper lobe)	Right upper lobectomy	Mycobacterium avium

NA: Not available, VATS: Video-assisted thoracoscopic surgery

Figure 3: Photomicrographs from mediastinal mass showing bronchogenic cyst with ciliated columnar lining epithelium (a) and surrounding mediastinal lymph nodes showing granulomatous inflammation (b)
CONCLUSION

Mediastinal cysts can masquerade obstructive airway disease. Mediastinal cysts associated with tuberculosis are rare; they could represent either a necrotic lymph node or a bronchogenic cyst with secondary infection. Surgical excision is definitive both in diagnosis and management of a bronchogenic cyst.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Takeda S, Miyoshi S, Minami M, Ohta M, Masaoka A, Matsuda H, et al. Clinical spectrum of mediastinal cysts. Chest 2003;124:125‑32.
2. Ribet ME, Copin MC, Gosselin B. Bronchogenic cysts of the mediastinum. J Thorac Cardiovasc Surg 1995;109:1003‑10.
3. Takeda S, Miyoshi S, Inoue M, Omori K, Okumura M, Yoon HE, et al. Clinical spectrum of congenital cystic disease of the lung in children.
4. St. Georges R, Deslauriers J, Durancourt R, Vaillancourt R, Deschamps C, Beaucoup G, et al. Clinical spectrum of bronchogenic cysts of the mediastinum and lung in the adult. Ann Thorac Surg 1991;52:6‑13.
5. Haller JA Jr., Golladay ES, Pickard LR, Tepas JJ 3rd, Shorter NA, Shermer WA, et al. Surgical management of lung bud anomalies: Lobar emphysema, bronchogenic cyst, cystic adenomatoid malformation, and intralobar pulmonary sequestration. Ann Thorac Surg 1979;28:33‑43.
6. Maturu VN, Dhooria S, Agarwal R. Efficacy and safety of transbronchial needle aspiration in diagnosis and treatment of mediastinal bronchogenic cysts: Systematic review of case reports. J Bronchology Interv Pulmonol 2015;22:195‑203.
7. Dhooria S, Muthu V, Agarwal R. An unusual cause of posterior mediastinal cyst. Lung India 2015;32:609‑10.
8. Verma S, Narayan K. Superior tuberculous mediastinal cyst presenting as a neck mass. Internet J Pulmonary Med 2008;10:1‑4.
9. Sahin F, Yildiz P. Mediastinal tuberculous lymphadenitis presenting as a mediastinal mass with dysphagia: A case report. Iran J Radiol 2011;8:107‑11.
10. Varik RS, Shubha AM, Lewin M, Alexander B, Kini U, Das K, et al. Infantile pulmonary tuberculosis: The great mimic. Pediatr Surg Int 2012;28:627‑33.
11. Andrews NC, Pratt PC, Christoforidis AJ. Bronchogenic cysts in patients presumed to have pulmonary tuberculosis. Dis Chest 1959;36:353‑60.
12. Houser WC, Dorff GJ, Rosenzweig DY, Aussem JW. Mycobacterial infection of a congenital bronchogenic cyst. Thorax 1980;35:312‑3.
13. Lin SH, Lee LN, Chang YL, Lee YC, Ding LW, Hsu LH, et al. Infected bronchogenic cyst due to Mycobacterium avium in an immunocompetent patient. J Infect 2005;51:e131‑3.
14. Liman ST, Dogan Y, Topcu S, Karabulut N, Demirkan N, Kesen Z, et al. Mycobacterial infection of intraparenchymal bronchogenic cysts. Respir Med 2006;100:2060‑2.
15. Frye SA, Decou JM. Pediatric bronchogenic cyst complicated by atypical mycobacterial infection: A case report. Cases J 2009;2:8070.
16. Chu H, Yi X, Zhao L, Gui T, Fang X, Sun X, et al. Atypical lung parenchymal bronchogenic cyst complicated by tuberculosis infection. Can Respir J 2012;19:301‑2.
17. Kwon YS, Han J, Jung KH, Kim JH, Koh WJ. Mycobacterium avium lung disease combined with a bronchogenic cyst in an immunocompetent young adult. Korean J Intern Med 2013;28:94‑7.