A Non-canonical Function of BMAL1 Metabolically Limits Obesity-Promoted Triple-Negative Breast Cancer

Circadian regulator BMAL1 rewires metabolism in a chronic insulin-treated TNBC model

Pyruvate links BMAL1 to mitochondrial bioenergetics

BMAL1 suppresses tumor proliferation and metastasis in hyperinsulinemic obese mice

BMAL1 influences tumor microenvironment in high-fat-diet-fed mice
A Non-canonical Function of BMAL1 Metabolically Limits Obesity-Promoted Triple-Negative Breast Cancer

Cassandra A. Ramos,1,2 Ching Ouyang,3,4 Yue Qi,1 Yiyin Chung,1 Chun-Ting Cheng,1 Mark A. LaBarge,2,5 Victoria L. Seewaldt,2,5 and David K. Ann1,2,6,*

SUMMARY
The epidemiological association between disrupted circadian rhythms and metabolic diseases is implicated in increased risk of human breast cancer and poor therapeutic outcomes. To define a metabolic phenotype and the underlying molecular mechanism, we applied chronic insulin treatment (CIT) to an in vitro model of triple-negative breast cancer to directly address how BMAL1, a key circadian transcription factor, regulates cancer cell respiration and governs tumor progression. At the cellular level, BMAL1 suppresses the flexibility of mitochondrial substrate usage and the pyruvate-dependent mitochondrial respiration induced by CIT. We established an animal model of diet-induced obesity/hyperinsulinemia and observed that BMAL1 functions as a tumor suppressor in obese, but not lean, mice. Downregulation of BMAL1 is associated with higher risk of metastasis in human breast tumors. In summary, loss of BMAL1 in tumors confers advantages to cancer cells in both intrinsic mitochondrial metabolism and extrinsic inflammatory tumor microenvironment during pre-diabetic obesity/hyperinsulinemia.

INTRODUCTION
Rhythmic oscillations in cellular activity are coordinated by genes that comprise the core circadian machinery (Bell-Pedersen et al., 2005). The notion that circadian rhythm disruptions lead to an increased likelihood of mammary tumor development is supported by studies that female workers taking frequent night shifts have disrupted internal clocks and an increased risk of developing breast cancer (BC) (Davis et al., 2001; Schernhammer et al., 2001; Wegryn et al., 2017). It has been reported that circadian genes have anti-tumor roles in multiple cancer types (de Assis et al., 2018; Papagiannakopoulos et al., 2016; Tang et al., 2017) and may act as tumor suppressors by regulating a wide variety of pathophysiological events, including cellular metabolism and pathogenesis of cancer (Cederroth et al., 2019; Lesicka et al., 2018; Lin and Farkas, 2018). Indeed, disrupted circadian rhythm likely affects multiple hallmarks of cancer, including proliferative signaling maintenance, cell death resistance, replicative immortality, invasion and metastasis activation, and energy metabolism reconfiguration (Hanahan and Weinberg, 2011).

Epidemiological data also suggest that disrupted circadian rhythm is strongly associated with metabolic syndrome (Vernland and Masri, 2019). Multiple factors common to metabolic syndrome and its related disorders have been shown to promote BC tumor growth and progression (Hurting et al., 2012). For example, hyperinsulinemia, or elevated circulating insulin levels, is a hallmark of obesity and pre-diabetes and is associated with higher BC incidence and poor prognosis (Del Giudice et al., 1998; Goodwin et al., 2002; Gunter et al., 2009; Lawlor et al., 2004; Lipscombe et al., 2006; Tsujimoto et al., 2017). Moreover, multiple reports indicate that metabolic diseases differentially impact individual subtypes of BC (Capasso et al., 2014; Garcia-Estevez and Moreno-Bueno, 2019; Yang et al., 2011). Overall, despite current studies demonstrating a close relationship among circadian disruption, metabolic syndrome, and cancer progression, the mechanisms linking these together are not yet systematically established.

Circadian clocks are orchestrated by a gene network through transcriptional regulation (Partch et al., 2014). Circadian-controlled genes are transcribed after initiation by the transcription factor heterodimer complex comprising Brain and Muscle Amt-Like (BMAL) and Circadian Locomotor Output Cycles Kaput (CLOCK) (Sahar and Sassone-Corsi, 2009). Together with BMAL1 (gene name: ARNTL) and CLOCK, the core circadian genes comprise the machinery that implements the oscillations in cellular activity (Bell-Pedersen et al., 2005).
et al., 2005). Therefore, BMAL1 is an essential clock gene affecting all rhythmic behaviors as the loss of BMAL1 ensures that the circadian heterodimer is disrupted (Bunger et al., 2000). A number of reports have documented the crosstalk between BMAL1 function and insulin signaling, mitochondrial function, and lipid metabolism in non-cancer tissues (Breit et al., 2018; Dang et al., 2016; Jacobi et al., 2015; Liu et al., 2016; Luciano et al., 2018; Luo et al., 2019; Marcheva et al., 2010; McGinnis et al., 2017; Zhang et al., 2014). In addition, BMAL1 transcriptionally activates genes important for its own feedback loop (Sato et al., 2006) as well as many cellular processes, including mitochondrial dynamics, cell cycle regulation, and stress responses (Hatanaka et al., 2010; Jacobi et al., 2015; Rey et al., 2011). Global and liver-specific knockout of BMAL1 resulted in hyperlipidemia and increased lipoprotein production (Pan et al., 2016). However, the functional role of BMAL1 in BC cell metabolism and tumor progression remains largely unknown.

Understanding how circadian disruption and metabolic dysregulation influence BC can help elucidate the underlying biological mechanisms, especially in the basal-like (BL)/triple-negative BC (TNBC) subtype for which there is currently no effective therapeutic target. In this study, we developed two independent cell models, in vitro and in vivo, to investigate how the deficiency of intrinsic BMAL1 affects cellular metabolic homeostasis and tumor progression of TNBC. We demonstrate a previously unrecognized effect by tumor-intrinsic BMAL1 on shaping the mitochondrial fuel flexibility and anti-tumor landscape. Our observations provide insights into the mechanism underlying BMAL1-mediated TNBC suppression and evidence that BMAL1 downregulation in combination with hyperinsulenic obesity exacerbates TNBC progression and aggressiveness. We discuss the implications of using BMAL1 as a marker, along with diet management, for cancer prevention and therapeutics.

RESULTS

Developing an In Vitro Cell Model to Investigate BMAL1 Function in TNBC

Circadian rhythms not only vary among different organisms but also can be unique in different tissue organs within the same organism (Yoo et al., 2004). Investigation across cancers originated from different tissues suggested that altered expression of clock genes often shows cancer type-specific pattern and is associated with oncogenic pathways, clinical outcomes, and molecular subtypes (Ye et al., 2018). To examine the expression profile of canonical core circadian genes across different cancer types, we investigated the Cancer Genome Atlas (TCGA) Pan-Cancer datasets. Consistent with the corroborated link between circadian disruption and BC (Blakeman et al., 2016), the expression of ARNTL/BMAL1 was significantly down-regulated in primary tumor samples compared with normal tissues in multiple cancer types, including BC (Figure S1A). As BC is highly heterogeneous and can be classified into different molecular subtypes (Perou et al., 2000), subsequent analysis using unsupervised hierarchical clustering revealed that the BL subtype has a distinct circadian gene expression profile among the PAM50 molecular subtypes (Figure 1A). Most tumors of BL subtype do not express receptors for estrogen, progesterone, and HER2, the major characteristics of TNBC. This subtype is more aggressive and has a poorer prognosis than other BC subtypes (Subik et al., 2010; Tott and Cryns, 2011). The average expression of the core circadian genes (Figure 1B) and ARNTL/BMAL1 (Figure 1C) in the BL and HER2-enriched subtypes was significantly lower compared with the other subtypes. We thereby sought to further study BMAL1 deficiency with the focus on BL/TNBC because circadian rhythm disruption may affect BC in a subtype-dependent manner.

To identify a suitable in vitro cell model, we evaluated a panel of 51 BC cell lines. The gene expression profiles are in general agreement with our observations from the TCGA clinical samples, confirming that circadian gene expression levels differ among the BC subtypes. Among the BL/TNBC cell lines, MDA-MB-231 was selected for its low- to mid-range abundance of circadian gene expression (Figure S1B) and ARNTL message (Figure S1C). Next, to develop a metabolic phenotype, MDA-MB-231 cells were continuously passaged in media supplemented with insulin for more than 10 passages, referred to as chronic insulin treatment (CIT). To mimic the insulin levels in a post-meal, fed state during pre-diabetes (high insulin with normal glucose), CIT cells treated with 10 or 100 nM insulin were assayed to verify that these cells were no longer sensitive to additional insulin stimulation. As shown in Figure 1D, no strong increase in insulin signaling activation was observed in serum/insulin-deprived (24 h) CIT cells stimulated with a high concentration of insulin at 100 nM, indicating the development of insulin resistance. To examine the effect of CIT on circadian outputs, a serum shock procedure was applied to stimulate and synchronize oscillations of circadian genes (Balsalobre et al., 1998). Cells grown without insulin exhibited a standard ARNTL mRNA oscillation, whereas we observed decreased amplitude for short-term insulin treatment and an early peak
Figure 1. Expression of Core Circadian Genes Is Altered in BC

(A) The 1,097 BC patient samples from the TCGA database were analyzed via unsupervised hierarchical clustering to show circadian expression profiles among the PAM50 subtypes: Basal-like, HER2-enriched, Luminal A, Luminal B, and Normal-like.

(B and C) The patient samples were analyzed for average expression of circadian genes (B) and ARNTL expression (C), grouped by BC subtypes.

(D) Immunoblot analysis (left panel) of markers of active insulin signaling—phosphorylated AKT and phosphorylated IRβ—were examined to reflect relative levels of insulin signaling. GAPDH serves as a loading control. Quantification of
for CIT (Figure 1E). Of note, we also tested the same assay with additional cell lines having different abundance of endogenous BMAL1 (Figure S2A). Alteration of ARNTL mRNA oscillation was again observed in another TNBC cell line BT549 (Figure S2B), as well as progesterone receptor-positive MCF7 cells (Figure S2C), suggesting that the effect of short-term insulin and CIT on ARNTL mRNA oscillation is common. However, the alteration pattern may vary with different cell types.

The Interplay between BMAL1 and Mitochondrial Adaptations to CIT

The molecular interplay between circadian rhythms and cellular metabolism has been delineated as circadian genes control the nicotinamide adenine dinucleotide (NAD+) salvage pathway (Nakahata et al., 2009). Thus, we conducted oscillating circadian-controlled NAD+ assays (Ramsey et al., 2009) with untreated and CIT cells. CIT cells showed a faster peak time and a higher steady-state NAD+/NADH ratio than those in insulin-responsive MDA-MB-231 cells (Figure S3A), demonstrating the links among insulin signaling, circadian output, and cellular metabolism. Also, the oxidation of NADH to NAD+ links the tricarboxylic acid (TCA) cycle to ATP generation in mitochondria. Based on the above results, we tested the hypothesis that mitochondrial activity may partake in BMAL1 regulation. In r0 cells (depleted of mitochondrial DNA), we observed a significant decrease in the steady-state BMAL1 protein levels (Figure S3B) and mRNA levels of ARNTL/BMAL1, along with its direct target NAMPT, irrespective of CIT (Figure S3C). Unlike in MDA-MB-231 cells (Figure 1E), there was no detectable difference in ARNTL message oscillation between untreated and CIT r0 cells (Figure S3D). We concluded that the mitochondrial activity is indispensable for the expression and CIT-mediated regulation of BMAL1 and its downstream NAD+-regulating target gene.

Next, we tested the state of mitochondrial respiration in the context of decreased BMAL1 expression. ARNTL-targeting small interfering RNA (siRNA) (siBMAL1) was designed and used to decrease BMAL1 abundance by nearly 90% (Figure 2A). In both untreated and CIT MDA-MB-231 cells, ARNTL-knockdown produced higher levels of intracellular ATP (Figure 2B). Moreover, following CIT, BMAL1-knockdown cells produced a higher mitochondria-specific reactive oxygen species signal (reflecting electrons leaking from the electrochemical gradient) compared with control cells (Figure 2C). Together, these data suggested that BMAL1 regulates bioenergetic homeostasis and possibly other respiration outputs.

To pinpoint the involvement of BMAL1 in mitochondrial bioenergetics, oxygen consumption rate (OCR) was measured in untreated or CIT MDA-MB-231 cells. In control-knockdown cells, CIT increased OCR in a dose-dependent manner (Figure S3E), and an opposite OCR pattern was observed in BMAL1-knockdown cells (Figure S3F). BMAL1 knockdown increased basal respiration over control knockdown in untreated cells (Figure S3G, left panel). Also, BMAL1 was required for CIT to increase maximum respiration, a measurement of respiratory capacity, in a dose-dependent manner (Figure S3G, right panel). Given the fact that BMAL1 suppresses basal OCR in untreated cells and promotes maximal OCR in CIT cells, BMAL1 conceivably plays a key role in the mitochondrial metabolic adaptation to CIT.

We then investigated how BMAL1-mediated mitochondrial adaptations affect other metabolic parameters by measuring the levels of neutral lipid droplets, a nutrient source for cancer (Petan et al., 2018). Before assaying, MDA-MB-231 cells were starved of glucose to promote fatty acid mobilization (Rambold et al., 2015). We observed that BMAL1 knockdown increased the amounts of lipid droplets in both untreated and CIT cells (Figure S4A). Also, another functional consequence of CIT and BMAL1 knockdown was an increase in the sensitivity to metformin (Figure S4B), a biguanide that causes oxidative stress by inhibiting mitochondrial complex I (Mayer et al., 2015). Last, by measuring extracellular acidification rate, we concluded that neither BMAL1 nor CIT impacted glycolytic activity (Figures S4C–S4E) in MDA-MB-231 cells.

Pyruvate Links BMAL1 to Mitochondrial Bioenergetics

Pyruvate is a key link between glycolysis and TCA cycle (Figure S5A). Based on the above-mentioned results, we hypothesized that BMAL1 serves a distinct role in regulating pyruvate utilization in untreated and CIT cells. To
Figure 2. BMAL1 Mediates Pyruvate Utilization during Chronic Insulin Treatment

(A) Representative immunoblot showing the CIT effect on BMAL1 in MDA-MB-231 cells. BMAL1-targeting or control siRNA was transiently transfected into untreated or CIT cells. Owing to different levels of protein abundance, BMAL1 blot with longer exposure time, compared with GAPDH blot, is shown.

(B and C) (B) Intracellular levels of ATP and (C) mitochondrial superoxide were assayed in MDA-MB-231 cells grown without insulin (Untreated) or over 10 passages of insulin (100 nM, CIT) and then transiently transfected with control or BMAL1-targeting siRNA. Measurements are normalized to cell number. n = 3; independent samples t test.
address this possibility in different BC cells, intracellular pyruvate levels were measured in MDA-MB-231, along with BT549 and MCF7 cells. As we observed in MDA-MB-231 cells (shown in Figure 2A), CIT did not affect steady-state level of BMAL1 in either BT549 or MCF7 cells (Figure S5B). However, CIT increased pyruvate levels in control (without BMAL1 knockdown) MDA-MB-231 (Figure 2D) and BT-549 (Figure S5C) cells compared with their untreated cells. Also, pyruvate level was not affected by BMAL1 knockdown in untreated MDA-MB-231 cells (Figure 2D). In contrast, BMAL1 knockdown in CIT cells decreased pyruvate levels in all three (MDA-MB231, BT549, and MCF7) cell lines (Figures 2D, S5C, and S5E), suggesting that BMAL1 suppresses pyruvate utilization during CIT adaptation. We then measured OCR in the presence and absence of external pyruvate in MDA-MB-231 cells (Figure 2E). As expected, the increased maximal respiration by BMAL1 knockdown depended on external pyruvate availability (Figure 2F).

Because BMAL1 is a transcription factor, we posited that BMAL1 regulates genes that metabolize pyruvate (Deng et al., 2018). We found that BMAL1 knockdown reduced the expression of pyruvate kinase (PKM) and pyruvate carboxylase (PC) (converting phosphoenolpyruvate to pyruvate and converting pyruvate to oxaloacetate, as shown in Figure S5A) in untreated MDA-MB-231 cells (Figure 2G). In comparison, BMAL1 knockdown also markedly decreased PKM, PC, and PDK4 mRNA levels in CIT BT549 (Figure S5D), but only showed relatively minor effect in MCF7 cells (Figure S5F), suggesting a context-dependent role of BMAL1 in regulating pyruvate metabolism enzyme expression in different BC cells. To test if the effects of BMAL1 on OCR are mediated through its regulation of PKM abundance, we applied PKM-targeting siRNA to lower PKM expression in MDA-MB-231 cells and assayed for mitochondrial respiration activity. Consistently, PKM knockdown increased OCR in untreated cells, but decreased OCR in CIT MDA-MB-231 cells, mimicking the effects seen in BMAL1 knockdown (Figure 2H). The decreased PC activity could also render pyruvate less available to mitochondria (Perry et al., 2015). Together, these findings underscored a specific role of BMAL1 in regulating pyruvate metabolism.

To corroborate that BMAL1 affects substrate utilization, specific inhibitors were used to block three major mitochondrial fuels: glutamine, long-chain fatty acids, and pyruvate. Mito Fuel Flex assays demonstrated that BMAL1 knockdown altered substrate capacity, or the ability of cells to increase oxidation of particular fuel to compensate for inhibition of alternative fuels. Specifically, BMAL1 knockdown increased glutamine and fatty acid oxidation capacity in both untreated and CIT cells (Figure 2I, middle and right panels), indicating that BMAL1 suppresses glutamine and fatty acid utilization in MDA-MB-231 cells. However, BMAL1 knockdown increased the capacity of pyruvate oxidation under CIT, but decreased it in the insulin-sensitive cells (Figure 2I, left panel). Finally, compromised BMAL1 decreased pyruvate (Figure S6A), but not glutamine (Figure S6B) and fatty acid (Figure S6C), dependency in mitochondria of CIT cells. These results demonstrated that BMAL1 regulates substrate usage and that CIT cells require BMAL1 to suppress substrate flexibility. This is consistent with our observations that BMAL1 knockdown mediates reduction of message abundance of key pyruvate metabolism-regulating enzymes (Figure 2G). Altogether, we surmised that CIT and BMAL1 counterbalanced the regulation of mitochondrial activity. This observed dual regulation of pyruvate by both BMAL1 and insulin would explain how insulin context alters the effect by BMAL1 on tumor cell metabolism.

BMAL1 Suppresses HFD-Induced Tumor Growth In Vivo

To further establish whether BMAL1 regulates tumor progression in vivo, we used wild-type female C57BL/6 mice coupled with mouse mammary tumor E0771 cells orthotopically implanted in syngeneic lean and obese mice (Figure S7A). The advantage of using an allografted syngeneic mouse tumor model...
Figure 3. BMAL1 Suppresses HFD-Promoted Tumor Growth
(A) Palpable parental (left panel) or shBMAL1 (right panel) tumors were measured in LFD- and HFD-fed mice. n = 4–6; independent samples’ t test at each time point. Inset features immunoblot analysis of parental E0771 and E0771 with stable knockdown of BMAL1. Italicized numbers indicate relative BMAL1 expression level.
(B) Tumor volumes from parental and BMAL1-knockdown E0771 cells in LFD- and HFD-fed mice were analyzed at day 28 after implantation (left panel). Representative tumor images are shown (right panel). n = 4–6.
(C) Formalin-fixed tissue sections from tumors derived from parental and BMAL1-knockdown E0771 cells in LFD- and HFD-fed mice were stained with anti-Ki67 antibody. % Ki67+ cells were calculated as Ki67-positive cells divided by total cells (left panel). Representative images of stained tumor tissues are shown (right panel). n = 3. Scale bar, 200 μm; red scale bar, 100 μm (inset).
over an MDA-MB-231-xenografted NSG mouse model is that C57BL/6 mice are better responsive to high-fat diet (HFD) feeding (NSG mice are, but only with litter reduction, Behan et al., 2013) and that we are able to study the interaction between cancer cells and their surrounding tumor microenvironment in an immunocompetent animal model. The E0771 cells were derived from a spontaneously developed TNBC in C57BL/6 mice (Ewens et al., 2005; Yang et al., 2017). Parental E0771 cells are poorly metastatic when compared with 4T1 cells (Johnstone et al., 2015) and have homozygous mutations in Trp53 and Kras genes (Yang et al., 2011) with a detectable BMAL1 expression (Figure 3A, inset). When mice reached young adulthood at the age of 8 weeks, they were separated into two groups: HFD or low-fat diet (LFD) (Dutta and Sen-gupta, 2016). These two diets had equal calories and sucrose for consistent chow palatability and to ensure consistent caloric intake. HFD comprised 60% fat, whereas LFD had 10%. Fasting insulin and glucose levels were measured before starting the diets and 4 weeks after consuming either HFD or LFD. The results showed that LFD did not cause a notable change in fat mass and fasting insulin levels compared with measurements before starting the diet; however, both increased in HFD-fed mice without affecting fasting glucose levels (Figure S7B). To test whether the lack of hyperglycemia in HFD-fed mice is due to hyperinsulinemia, which mimics pre-diabetic state, an oral glucose tolerance test was performed. Following glucose feeding after a starvation period, blood glucose levels spiked faster and remained high longer in HFD-fed mice compared with the mice with LFD (Figure S7C). The HFD-fed mice also displayed higher body weight gained than LFD-fed mice, even though food intake did not differ (Figures S7D and S7E).

After confirming HFD-induced obesity/hyperinsulinemia, the fourth mammary fat pad on the right side of lean or obese mice was implanted with parental E0771 cells or E0771 cells with stable BMAL1 knockdown. The mice were maintained on their respective diet for an additional 4 weeks. In general, HFD accelerated tumor progression over LFD (Figure 3A). Upon tumor harvest, BMAL1-knockdown E0771 tumors were not significantly different in size from parental tumors in lean mice, whereas they were larger than the corresponding tumors of parental cells in hyperinsulinemic mice (Figure 3B). The E0771/shBMAL1-derived tumors from HFD-fed mice showed the largest sizes among these four groups (Figure 3B, right panel). There was no notable difference in Ki67, a marker for cell proliferation, signals between tumors from the parental E0771 cells of LFD- and HFD-fed mice; however, BMAL1 knockdown decreased Ki67 signals in tumors harvested from lean, but not hyperinsulinemic, obese mice (Figure 3C). E0771/shBMAL1-derived tumors from LFD-fed mice had the least proliferative potential. We next examined whole lungs from obese and lean tumor-harboring mice as lungs are a common site of metastasis from E0771-derived mammary tumors (Youssefi et al., 2018). Likewise, the obese tumor-bearing mice harbored more lung tumor nodules than the lean group (Figure 3D). In addition, BMAL1 knockdown decreased the lung tumor nodules in LFD-fed tumor-bearing mice, yet significantly increased it in HFD-fed mice. Altogether, BMAL1 serves a non-canonical role of BMAL1 to suppress tumor progression and/or metastasis under hyperinsulinemic obese context.

Last, primary tumor cells from the orthotopically engrafted E0771 tumors were isolated, cultured, and assessed for mitochondrial respiratory function. It is important to note that, recapitulating findings in MDA-MB-231 cells in vitro, BMAL1 knockdown increased OCR in E0771 cells recovered from tumors of lean mice, whereas BMAL1 knockdown decreased OCR in E0771 cells from hyperinsulinemic obese mice (Figure 3E). This observation validates the importance of the combined effect of BMAL1-mediated metabolic adaptation and hyperinsulinemia as a determinant of TNBC progression and aggressiveness. In addition, using two different knockdown approaches in cells from two different species yielded comparable conclusion about the role of BMAL1 on mitochondrial bioenergetics, and these separate approaches likely ruled out potential off-target effect(s) of BMAL1 knockdown.

BMAL1 Influences Tumor Microenvironment in Hyperinsulinemic Obese Mice

To further explore how BMAL1 and HFD-induced obesity interactively regulate tumor progression, we examined how the tumor was influenced by the microenvironment. Infiltration of F4/80 macrophage, a
Figure 4. Tumor-Expressed BMAL1 Influences Immune Cell Infiltration

(A) F4/80 signal was quantified as the average area of F4/80 staining in non-overlapping sections of entire tumor and compared with other samples at the same magnification. n = 4 (left panel). Representative images of tissue sections are shown (right panel). Scale bar, 500 μm. Red scale bar, 125 μm (inset).

(B) CD8 signal was quantified as the average area of CD8 staining in non-overlapping sections of entire tumor section and compared with other samples at the same magnification. n = 4. (A and B) Data shown as mean ± SEM; *p < 0.05; **p < 0.01; one-way ANOVA with Tukey’s post hoc. Representative images of stained tissue are shown (right panel). Scale bar, 250 μm. Red scale bar, 100 μm (inset).

(C) Gene Set Enrichment Analysis shows that expression of hallmark OxPhos gene set in TCGA BC primary tumors (n = 1,097) is inversely correlated with BMAL1 expression.

(D and E) Kaplan-Meier curves show distal metastasis-free survival rate of patients selected according to BMAL1 expression from two independent datasets GEO: GSE20685 (D) and GSE11121 (E).
major component of the tumor microenvironment, was assessed by immunohistochemistry (Goswami et al., 2017; Hu et al., 2016; Netea-Maier et al., 2018). Inside the parental E0771-derived tumors, there were no notable differences in F4/80 signals regardless of diet; however, the E0771/shBMAL1-derived tumors in the hyperinsulinemic obese mice, compared with lean mice, exhibited significantly increased F4/80 signals (Figure 4A). Other prominent immune cells featured inside tumors are the CD8+ T cells, which play a protective role and are associated with better cancer prognoses and outcomes (Fu and Jiang, 2018). Tumors from hyperinsulinemic obese mice exhibited significantly decreased CD8+ T cell signals in the parental tumors than those in the lean mice (Figure 4B). Notably, there were no differences in CD8+ T cell recruitment in shBMAL1 tumors regardless of diet (Figure 4B).

We further performed Gene Set Enrichment Analysis of human primary breast tumor data from TCGA and found that the oxidative phosphorylation (OxPhos) pathway is significantly upregulated in patient tumors with downregulated ARNTL (Figure 4C). Such observation is consistent with our findings of increased OCR during BMAL1 knockdown (Figures S3E and S3F). Together with Figure S1C, our previously reported increase in OxPhos gene expression in TNBC and HER2-enriched BCs (Cheng et al., 2016) could be attributed to decreased ARNTL expression. In addition, although the metabolic states were not available, our analyses of two independent public datasets for human BC (Kao et al., 2011; Schmidt et al., 2008) revealed that reduced ARNTL expression is associated with worse distal metastasis-free survival (Figures 4Da and 4E).

DISCUSSION
Although HFD-induced obesity drives tumor growth through multiple mechanisms (Nunez et al., 2008), our findings support a new paradigm that reduced expression of ARNTL, a key component of the circadian clock, accelerates TNBC tumor growth and lung metastasis in an HFD-induced hyperinsulinemic obese context. Virtually, circadian clock disruption is detrimental to metabolic homeostasis in all cells. To underscore the importance of BMAL1 in the adaptation to hyperinsulinemia in BC cells, here we report that in two different TNBC cells in two distinct models, in vitro and in vivo, BMAL1 loss (BMAL1 crisis) decreases or increases mitochondrial respiration depending on hyperinsulinemia. In parallel, intrinsic BMAL1 oscillation is suppressed by short-term insulin exposure in a mitochondria-dependent manner in MDA-MB-231 cells. We propose a model in which the reduced BMAL1 expression cooperates with HFD-induced hyperinsulinemic obesity to accelerate TNBC tumor progression and lung metastasis through increased mitochondrial fuel flexibility and reshaped recruitment of macrophages and CD8+ T cells (Figure 4F).

Cancer cells exhibit metabolic plasticity, rewiring their metabolism to satisfy the demands of rapid cell proliferation and survival (Ghaffari et al., 2015). Mitochondria comprise a metabolic hub that is responsible for energy production, and also produce building blocks for cell growth by catabolizing glucose, amino acids, and fatty acids. Although we observed that circadian gene expression and mitochondrial activity appear to be interactive and counter-balanced, the detailed underlying mechanism is still not clear. It is plausible that metabolites from the mitochondria directly affect the transcriptional regulation of circadian genes. In addition, post-translational modifications also play a key role in regulating the expression of circadian genes, such as histone acetylation being required at promoters of BMAL1-CLOCK target genes (DiTacchio et al., 2011). Here, we introduce a link between circadian signaling and mitochondrial function by showing that BMAL1 transcriptionally regulates PKM expression. It hints that endogenous pyruvate production functions as a linchpin for BMAL1-mediated metabolic adaptations. As such, the combined effect of BMAL1 and hyperinsulinemic obesity on reshaping the tumor microenvironment is conceivably mediated by regulating intracellular pyruvate utilization. Our model on the combined effect of intracellular pyruvate and on promoting tumor progression is supported by reports that pyruvate metabolism is important in maintaining colon cancer stem cell proliferation (Schell et al., 2017) and that PKM2-null mice display increased HFD-induced metabolic stress (Dayton et al., 2016).

Inflammation plays a key role in hyperinsulinemic obesity and metabolic disease (Chawla et al., 2011; Lumeng and Saltiel, 2011). In our model, it appears that cancer cell-intrinsic BMAL1 acts as a critical suppressor
of F4/80 macrophage tumor infiltration under hyperinsulinemic obesity. Cancer cell BMAL1-mediated suppression of F4/80 macrophage infiltration thus has important implications for how anti-tumor immunity is impaired during hyperinsulinemic obesity. A causative role of immune cells in promoting tumor progression has been demonstrated (Wellenstein and de Visser, 2018) as depleting inflammatory immune cells leads to rapid improvement in insulin sensitivity and glucose tolerance, which is associated with decreased local and systemic inflammation in obese mice (Nishimura et al., 2009). The role of BMAL1 in immune cell recruitment is not yet elucidated. The observed decrease in CD8+ T cell recruitment in tumors harvested from HFD-fed mice is in agreement with findings in another report (Wang et al., 2019). Considering such a decrease was not observed in BMAL1-knockdown tumors, one plausible function of BMAL1 is to prevent T cell exhaustion during obesity. Together, these data show that the immune cells surrounding the tumor are likely affected by the tumor cells’ metabolic flexibility. Cancer-associated fibroblasts have been shown to secrete pyruvate to support metabolism in the tumor (Sakamoto et al., 2019) and the BMAL1-suppressed pyruvate utilization we observed in CIT cells may contribute to the tumor microenvironment landscape. Furthermore, macrophages consume exogenous pyruvate, resulting in increased PD-L1 expression and suppressed anti-tumor immune cells (Watanabe et al., 2017), providing a plausible mechanism of tumor-secreted pyruvate and uptake by immune cells.

In summary, our experimental results showed that BMAL1 suppresses TNBC progression in multiple ways: by maintaining the clock machinery and circadian rhythms, by suppressing hyperinsulinemia-dysregulated mitochondrial activity and pyruvate utilization, and by suppressing pro-inflammatory components of the immune microenvironment in the obese context. The latter roles could be attributed to non-canonical circadian functions of BMAL1. In this context, our results provide a compelling case for BMAL1 expression to be examined in patients with TNBC who also present with hyperinsulinemia in the clinic. TNBC tumors with BMAL1 crisis are predicted to have worse outcomes, especially during obesity/hyperinsulinemia. BMAL1 appears to act as a tumor suppressor in TNBC during obesity/hyperinsulinemia, underscoring the importance of understanding BMAL1-mediated mitochondrial metabolic reprogramming during CIT adaptation, which could be exploited pharmacologically or with diet management for better patient outcomes in the future.

Limitations of the Study
There is ample evidence that the cellular circadian clock regulates more than just cell-intrinsic metabolic processes. Based on consistent observations using two distinct models of TNBC, both in vitro and in vivo, we propose a paradigm that BMAL1 serves as a metabolic switch on hyperinsulinemia-regulated mitochondrial activity to govern TNBC tumor progression. Indeed, there is a need to better link circadian biology to cancer risk. Although our findings provide insights regarding the non-canonical BMAL1 function, additional studies are needed to validate how BMAL1 loss (BMAL1 crisis) influences most cases of BC in different metabolic states and whether these insights can be leveraged into an effective therapy. Also, although we demonstrated that BMAL1 crisis confers advantages to cancer cells in both intrinsic metabolism and extrinsic inflammatory microenvironment during hyperinsulinemia, the underlying signaling mechanism among BMAL1 crisis, hyperinsulinemia, and tumorogenesis in vivo remains to be established.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100839.

ACKNOWLEDGMENTS
We thank the members of Dr. Ann’s laboratory and Drs. Rama Natarajan and Lei Jiang for helpful discussions on the manuscript. We thank Dr. Joe Gray (Oregon Health & Science University) for providing breast cancer cell line gene expression data. This work was supported in part by funds from the National Cancer Institute of United States grant R01CA220693 (D.K.A. and V.L.S.), Department of Defense of United States grant BC141351 (M.A.L.), City of Hope Center for Cancer and Aging predoctoral fellowship (C.A.R.), and P30CA033572 (supporting research work carried out at City of Hope Core Facilities).
AUTHOR CONTRIBUTIONS

Conceptualization, C.A.R. and D.K.A.; Methodology, C.A.R., C.O., Y.C., V.L.S., and D.K.A.; Investigation, C.A.R., C.O., Y.Q., and C.-T.C.; Data analysis, C.A.R., C.O., Y.Q., and Y.C.; Resources, M.A.L. and D.K.A.; Manuscript Writing, C.A.R., C.O., Y.Q., M.A.L., V.L.S., and D.K.A.; Funding Acquisition, C.A.R., M.A.L., V.L.S., and D.K.A.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 20, 2019
Revised: September 3, 2019
Accepted: January 9, 2020
Published: February 21, 2020

REFERENCES

Balsalobre, A., Damiola, F., and Schibler, U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937.

Behan, J.W., Ehsanipour, E.A., Sheng, X., Pramanik, R., Wang, X., Hsieh, Y.T., Kim, Y.M., and Mittelman, S.D. (2013). Activation of adipose tissue macrophages in obese mice does not require lymphocytes. Obesity 21, 1380–1388.

Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., and Zoran, M.J. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6, 544–556.

Blakeman, V., Williams, J.L., Meng, Q.J., and Streuli, C.H. (2016). Circadian clocks and breast cancer. Breast Cancer Res. 18, 89.

Breit, A., Miek, L., Schredelseker, J., Geibel, M., Merrow, M., and Gurdermann, T. (2018). Insulin-like growth factor-1 acts as a zeitgeber on hypothalamic circadian clock gene expression via glycosyn synthase kinase-3beta signaling. J. Biol. Chem. 293, 17278–17290.

Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendinnen, C., Radcliffe, L.A., Hoganes, J.B., Simon, M.C., Takahashi, J.S., and Bradfield, C.A. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017.

Capasso, I., Esposito, E., de Laurentis, M., Maurea, N., Cavalcanti, E., Botti, G., Petrillo, A., Montella, M., D’Aiuto, M., Coppola, C., et al. (2014). Metabolic syndrome-breast cancer link varies by intrinsic molecular subtype. Diabetol. Metab. Syndr. 6, 105.

Cederroth, C.R., Albrecht, U., Bass, J., Brown, S.A., Dyhrfjeld-Johnsen, J., Gachon, F., Green, C.B., Hastings, M.H., Helfrich-Forster, C., Hogenesch, J.B., et al. (2019). Medicine in the fourth dimension. Cell Metab. 30, 236–250.

Chawla, A., Nguyen, K.D., and Goh, Y.P. (2011). Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11, 738–749.

Cheng, C.T., Kuo, C.Y., OuYang, C., Li, C.F., Chung, Y., Chan, D.C., Kung, H.J., and Ann, D.K. (2016). Metabolic stress-induced phosphorylation of KAP1 Ser473 blocks mitochondrial fusion in breast cancer cells. Cancer Res. 76, 5006–5018.

Dang, F., Sun, X., Ma, X., Wu, R., Zhang, D., Chen, Y., Xu, Q., Wu, Y., and Liu, Y. (2016). Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat. Commun. 7, 12696.

Davis, S., Mirick, D.K., and Stevens, R.G. (2001). Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 93, 1557–1562.

Dayton, T.L., Gocheva, V., Miller, K.M., Israelens, W.I., Bhukar, A., Closh, C.B., Davidson, S.M., Luengo, A., Bronson, R.T., Jacks, T., et al. (2016). Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma. Genes Dev. 30, 1000–1033.

de Assis, L.V.M., Kinker, G.S., Moraes, M.N., Markus, R.P., Fernandes, P.A., and Castrucci, A.M.L. (2018). Expression of the circadian clock gene Bmal1 positively correlates with antitumor immunity and patient survival in metastatic melanoma. Front. Oncol. 8, 185.

Del Giudice, M.E., Fantus, I.G., Ezzat, S., McKeown-Eysen, G., Page, D., and Goodwin, P.J. (1998). Insulin and related factors in premenopausal breast cancer risk. Breast Cancer Res. Treat. 47, 111–120.

Deng, W., Zhu, S., Zeng, L., Liu, J., Kang, R., Yang, M., Cao, L., Wang, H., Biliar, T.R., Jiang, J., et al. (2018). The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep. 24, 366–378.

DiTacchio, L., Le, H.D., Vollmers, C., Hatori, M., Witcher, M., Sekombe, J., and Panda, S. (2011). Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333, 1881–1885.

Dutta, S., and Sengupta, P. (2016). Men and mice: relating their ages. Life Sci. 152, 244–248.

Ewens, A., Mihich, E., and Erhke, M.J. (2005). Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res. 25, 3905–3915.

Fu, C., and Jiang, A. (2018). Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front. Immunol. 9, 3059.

Garcia-Estevez, L., and Moreno-Bueno, G. (2019). Updating the role of obesity and cholesterol in breast cancer. Breast Cancer Res. 21, 35.

Ghaifari, P., Marding, A., and Nielsen, J. (2015). Cancer metabolism: a modeling perspective. Front. Physiol. 6, 382.

Goodwin, P.W., Ennis, M., Pritchard, K.I., Trudeau, M.E., Koo, J., Mandaras, Y., Hartwick, W., Hoffman, B., and Hood, N. (2002). Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J. Clin. Oncol. 20, 42–51.

Goswami, K.K., Ghosh, T., Ghosh, S., Sarkar, M., Bose, A., and Baral, R. (2017). Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 316, 1–10.

Gunter, M.J., Hoover, D.R., Yu, H., Wassertheil-Smoller, S., Rohan, T.E., Manson, J.E., Li, J., Ho, G.Y., Xue, X., Anderson, G.L., et al. (2009). Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst. 101, 48–60.

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

Hatanaka, F., Matsubara, C., Myung, J., Yotaka, T., Kamimura, N., Tsutsumi, S., Kanai, A., Suzuki, Y., Sassone-Corsi, P., Aburatani, H., et al. (2010). Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell. Biol. 30, 5636–5648.

Hu, W., Li, X., Zhang, C., Yang, Y., Jiang, J., and Wu, C. (2016). Tumor-associated macrophages in cancers. Clin. Transl. Oncol. 18, 251–258.

Hursting, S.D., Digiovanni, J., Dannenberg, A.J., Azad, M., Leroith, D., Dernark-Wahnefried, W., Kakarala, M., Brodie, A., and Berger, N.A. (2012). Obesity, energy balance, and cancer: new opportunities for prevention. Cancer Prev. Res. 5, 1260–1272.

Jacobi, D., Liu, S., Burkewitz, K., Kory, N., Kruiderink, N.H., Alexander, K., Unluturk, U., Li, X., Kong, X., Hyde, A.L., et al. (2015). Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 22, 709–720.
Johnstone, C.N., Smith, Y.E., Cao, Y., Burrows, A.D., Cross, R.S., Ling, X., Reynolds, R.P., Doherty, J.P., Eckhardt, B.L., Natoli, A.L., et al. (2015). Functional and molecular characterisation of E0771 LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis. Model. Mech. 8, 237–251.

Kao, K.J., Chang, K.M., Hou, H.C., and Huang, A.T. (2011). Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer 11, 143.

Lawlor, D.A., Smith, G.D., and Ebrahim, S. (2004). Hyperinsulinaemia and increased risk of breast cancer: findings from the British Women’s Heart and Health Study. Cancer Causes Control 15, 267–275.

Lesicka, M., Jablonska, E., Wieczorek, E., Lawlor, D.A., Smith, G.D., and Ebrahim, S. (2004). Mitigating the link between obesity and breast cancer. J. Clin. Pathol. 57, 80–95.

Liu, J., Zhou, B., Yan, M., Huang, R., Wang, Y., He, Z., Yang, Y., Dai, C., Wang, Y., Zhang, F., et al. (2016). CLOCK and BMAL1 regulate muscle accumulation and circadian gene expression in peripheral tissues. J. Biol. Chem. 293, 9126–9136.

Luciano, A.K., Zhou, W., Santana, J.M., Kyniakides, C., Velazquez, H., and Sessa, W.C. (2018). Increased prevalence of type 2 diabetes in women with newly diagnosed diabetes. Breast Cancer Res. Treat. 167, 2295–2299.

Lumeng, C.N., and Saltiel, A.R. (2011). Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117.

Luo, Q., Xiao, Y., Alex, A., Cummings, T.R., and Bhatwadekar, A.D. (2019). The diurnal rhythm of insulin receptor substrate-1 (IRS-1) and Krf4 in mice: implications for a clock gene Bmal1. Invest. Ophthalmol. Vis. Sci. 60, 1926–1936.

Marcheva, B.K., and Driscoll, K.A. (2018). CLOCK and BMAL1 are master regulators of circadian rhythmicity in neurons. Neuron 98, 303–309.

Mayer, M.J., Klotz, L.H., and Venkateswaran, V. (2015). Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer Prostata Dis. 18, 303–309.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.

McGinnis, G.R., Tang, Y., Brewer, R.A., Brahma, M.K., Stanley, H.L., Shamgunog, G., dispersible cells and circadian clock function. J. Biol. Chem. 295, 6627–631.
Wegrzyn, L.R., Tamimi, R.M., Rosner, B.A., Brown, S.B., Stevens, R.G., Eliassen, A.H., Laden, F., Willett, W.C., Hankinson, S.E., and Schernhammer, E.S. (2017). Rotating night-shift work and the risk of breast cancer in the nurses’ health studies. Am. J. Epidemiol. 186, 532–540.

Wellenstein, M.D., and de Visser, K.E. (2018). Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416.

Yang, X.R., Chang-Claude, J., Goode, E.L., Couch, F.J., Nevanlinna, H., Milne, R.L., Gaudet, M., Schmidt, M.K., Broeks, A., Cox, A., et al. (2011). Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J. Natl. Cancer Inst. 103, 250–263.

Yang, Y., Yang, H.H., Hu, Y., Watson, P.H., Liu, H., Geiger, T.R., Anver, M.R., Haines, D.C., Martin, P., Green, J.E., et al. (2017). Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget 8, 30621–30643.

Ye, Y., Xiang, Y., Ozguc, F.M., Kim, Y., Liu, C.J., Park, P.K., Hu, Q., Diao, L., Lou, Y., Lin, C., et al. (2018). The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst. 6, 314–328.e2.

Yoo, S.H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka, S.M., Hong, H.K., Oh, W.J., Yoo, O.J., et al. (2004). PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U S A 101, 5339–5346.

Yousefi, M., Nosrati, R., Salmaninejad, A., Dehghani, S., Shahryari, A., and Saberi, A. (2018). Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell. Oncol. 41, 123–140.

Zhang, D.Q., Tong, X., Arthurs, B., Guha, A., Rui, L.Y., Kamath, A., Inoki, K., and Yin, L. (2014). Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J. Biol. Chem. 289, 25925–25935.
Supplemental Information

A Non-canonical Function of BMAL1

Metabolically Limits Obesity-Promoted

Triple-Negative Breast Cancer

Cassandra A. Ramos, Ching Ouyang, Yue Qi, Yiyin Chung, Chun-Ting Cheng, Mark A. LaBarge, Victoria L. Seewaldt, and David K. Ann
Figure S1

A

![Box plot showing Log10 ARNTL expression across different cancer types.](image)

B

![Box plot showing Log(Average Expression of Circadian Genes).](image)

C

![Box plot showing Log10 ARNTL expression across different subtypes.](image)
Figure S1. Expression of core circadian gene ARNTL is altered in BC. Related to Figure 1.

(A) Standard boxplots are applied to visualize the log2-transformed ARNTL expression levels (RSEM+1) between normal tissues (blue) and primary tumors (red) across 17 cancer types in TCGA Pan-Cancer study. Cancer types having more than five samples of normal tissues were included in this analysis. The number of samples and fold change (FC) of normalized expression values are labeled at the bottom. Statistical p-values between groups were determined by Welch’s t-tests. ***: $p<0.001$; **: $p<0.01$; *: $p<0.05$; N/S: $p>0.05$. BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; ESCA: Esophageal carcinoma; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; PRAD: prostate adenocarcinoma; READ: rectal adenocarcinoma; STAD: Stomach adenocarcinoma; THCA: Thyroid carcinoma; UCEC: uterine corpus endometrial carcinoma. (B-C) RNA-seq data from 51 BC cell lines, grouped by BC subtypes, were analyzed for the average expression of circadian genes (B) and ARNTL (C).
Figure S2

A

BMAL1
GAPDH
short expo.
long expo.

B

BT549
- Untreated
- Short-term Insulin
- CIT

Relative ARNTL level

C

MCF7
- Untreated
- Short-term Insulin
- CIT

Relative ARNTL level

Time after entrainment (h)
Figure S2. Alteration of ARNTL mRNA oscillation upon insulin treatment in BT549 and MCF7 cells. Related to Figure 1. (A) Western blots comparing BMAL1 in MCF7, BT549, and MDA-MB231 cells before (Untreated) and after CIT (at least 10 passages of 100 nM insulin). (B-C) ARNTL expression in untreated, short-term insulin treated, and CIT BT549 (B) and MCF7 cells (C). ARNTL mRNA oscillation pattern was analyzed by qRT-PCR after serum shock. After serum shock, cells were kept in DMEM and harvested for total RNA extraction every 4 h. GAPDH expression serves as the internal control and ARNTL expression of untreated cells at 0 h is set to 1. Data are shown as mean±SD; n=3.
Figure S3
Figure S3. Insulin-regulated mitochondrial activity and BMAL1 are closely linked. Related to Figure 2. (A) Untreated and CIT cells were entrained by serum shock and cell lysate was collected every 4 h and assayed for NAD$^+$ and NADH levels (left panel). Untreated and CIT cells were assayed for steady state levels of NAD$^+$ and NADH (right panel). NAD$^+$ and NADH levels were normalized to cell number and the NAD$^+$/NADH ratio of untreated cells is set to 1. n=2. (B) Immunoblot analysis of protein from parental and ρ0 MDA-MB-231 cells grown without insulin (Untreated) or chronic insulin treatment (CIT). (C) mRNA levels of BMAL1 and its target gene NAMPT are shown from parental and ρ0 cells either untreated or after CIT. Data are normalized to GAPDH and shown as mean±SEM; n=4. (D) Untreated and CIT MDA-MB-231 ρ0 cells with deficient mitochondria were entrained by serum shock, and mRNA was collected every 4 h and subjected to qRT-PCR analyses. Transcript levels are normalized to constitutively-expressed GAPDH and mRNA of untreated cells at 0 h is set to 1. Data are shown n=4; p>0.05 at all time points. (E-F) Representative Mito Stress Test profile of CIT (10, 100 nM or not)-treated MDA-MB-231 cells. Mitochondrial oxygen consumption rate was measured before and after treatments with ATP synthase inhibitor oligomycin (O), mitochondria membrane uncoupler FCCP (F), and mitochondrial complex I inhibitor rotenone (R) in control- (E) or BMAL1-knockdown (F) MDA-MB-231 cells. (G) Basal respiration (left panel) and maximum respiration (right panel) calculated from (E-F). (A, C, G) Data are shown as mean±SD; n=3; *: p<0.05; **: p<0.01; ***: p<0.001; independent samples t test.
Figure S4
Figure S4. BMAL1-mediated adaptation to CIT impacts glycolytic activity. Related to Figure 2. (A) MDA-MB-231 cells were grown without insulin (Untreated) or chronically treated with insulin (100 nM, CIT) and transiently transfected with control or BMAL1-targeting siRNA. Levels of neutral lipids were assayed after glucose starvation to assess ability to mobilize lipids during nutrient stress; n=3. (B) Cell viability was assayed after treatment with metformin (1 mM) in glucose-free media for 48 h. Data are shown as mean±SD; n=2. (C) One representative profile demonstrating Glycolysis Stress Test measuring ECAR before and after addition of glucose (G), ATP synthase inhibitor oligomycin (O), and glucose analog 2-deoxyglucose (D) in MDA-MB-231 cells were transiently transfected with BMAL1-targeting siRNA (or not) and seeded in glucose-free media. (D) Glycolysis and Glycolytic Reserve were calculated from panel C. Data are shown as mean±SD; n=2. (E) Glycolysis Stress Test profile is shown where ECAR was measured before and after glucose (G), oligomycin (O), and 2-deoxyglucose (D) treatment in MDA-MB-231 cells were grown without insulin (Untreated), with a 24 h pretreatment (Short-term) or over 10 passages with insulin (100 nM, CIT). ECAR is normalized to cell number. Data are shown as mean±SD; n=5; (A, B, D) N/S: p >0.05; *: p<0.05.
Figure S5

A

B

C

D

E

F

BT549 cells

Intracellular Pyruvate

Untreated

CIT

siControl

siBMAL1

Relative pyruvate level

p = 0.05

MCF7 cells

Intracellular Pyruvate

Untreated

CIT

siControl

siBMAL1

Relative pyruvate level

p = 0.05

Figure S5. BMAL1 affects pyruvate metabolism of cells adapted to CIT in BT549 and MCF7 cells. Related to Figure 2. (A) A general schematic diagram displaying the roles of the PKM, PC, and PDK enzymes in regulating intracellular pyruvate levels. (B) Immunoblots of BMAL1 in siControl- or siBMAL1-trasfected CIT (10 nM and 100 nM insulin) BT549 and MCF7 cells. (C, E) Relative intracellular pyruvate level in untreated and CIT (100 nM insulin) BT549 (C) and MCF7 (E) cells transfected with siControl or siBMAL1 for 16 h. Cells were treated with medium contain 10 mM glucose, no pyruvate, and 10% FBS for 48 h. (D, F) Relative mRNA level of pyruvate-regulating enzymes from untreated or CIT BT549 (D) and MCF7 (F) with or without BMAL1 knockdown by siRNAs, analyzed by qRT-PCR with GAPDH as loading control. (C-F) Data are shown as mean±SEM; n≥3; N/S: p>0.05; *: p<0.05; **: p<0.01; ***: p<0.001.
Figure S6
Figure S6. Influence of BMAL1 on mitochondria fuel dependency of chronic insulin treated cells. Related to Figure 2. (A-C) Control or siBMAL1-transfected MDA-MB-231 cells either without insulin treatment (Untreated) or CIT (100 nM insulin) were assayed for their respiratory dependence on pyruvate (A), glutamine (B), and fatty acids (C) in the Mito Fuel Flex Test. Data are shown as mean±SEM; n≥3; *: p<0.05; **: p<0.01.
Figure S7

A

8-week-old female C57BL/6 mice

Metabolic phenotyping

Parental or shBMAL1 E0771 cells implanted in mammary fat pad

Metabolic phenotyping

Begin Low-Fat or High-Fat Diet

5 weeks

4 weeks

4 weeks

All tumors harvested when any one group reaches 1500 mm3 volume

B

	Low-Fat Diet	High-Fat Diet
Before Diet	p=0.18, N/S	p=0.0002, ***
4 Weeks on Diet	p=0.31, N/S	p=0.026, *
% Fat Mass		
Fasting Insulin (ng/ml)	p=0.62, N/S	p=0.28, N/S
Fasting Glucose (mg/dl)		

C

Blood Glucose (mg/dl)

Time (min) after glucose feeding

**

*

N/S

D

Weight (g)

Duration (weeks) of Diet

*

*

N/S

E

Food intake per day (g/mouse)

	Low-Fat	High-Fat
0.5		
1		
1.5		
2		
2.5		

N/S
Figure S7. HFD increases fat mass percentage and fasting insulin levels. Related to Figure 3. (A) Schematic diagram of animal experiment design. (B) Mouse body mass was measured by functional magnetic resonance imaging and fat mass percentage was calculated as fat mass divided by total mass (upper panels). Mice were fasted for five hours before serum was collected and assayed for insulin levels (middle panels) and glucose levels (lower panels). Measurements were taken before the controlled diet and after 4 weeks of low-fat diet (LFD) or high-fat diet (HFD). Data are shown as median values; n=6; paired samples t-test. (C) OGTT shows blood glucose levels measured in LFD- and HFD-fed mice at regular intervals 2 h after feeding; n=5. (D) Body weight of mice fed LFD or HFD was measured every week during the first four weeks of the diets; n=6. (E) Food intake per mouse was measured throughout the first four weeks of the LFD or HFD; n=6. (C-E) data are shown as mean±SD; N/S: p>0.05; *: p<0.05; **: p<0.01; ***: p<0.001; independent samples t test.
Transparent Methods

Cell Culture

Human cell line MDA-MB-231 (Cat No. HTB-26) was purchased from American Type Culture Collection (ATCC, Manassas, VA, USA). MDA-MB-231 cells were grown in Dulbecco's modified Eagle's medium (DMEM) with high glucose (25 mM), L-glutamine (4 mM), and sodium pyruvate (1 mM) (Corning, 10-013) at 37°C, 5% CO₂ in a humidified chamber. All media were supplemented with heat-inactivated fetal bovine serum (10%, v/v) (Thermo Fisher, 10437028) and 1X antibiotics containing penicillin and streptomycin (Corning, 30-002-CI). No. 25-512, Genesee). MDA-MB-231 were cultured in the same media as the MDA-MB-231 cells with a supplement of uridine (50 µg/ml) and ethidium bromide (50 ng/ml). The cells were grown in incubators set at 37 °C at 5% CO₂. All cells used in this study were tested and found to be mycoplasma negative. Prior to insulin treatment, MDA-MB-231 cells were serum depleted in DMEM high glucose (25 mM) medium containing BSA (0.2%, serum-free medium) for 24 h and then stimulated with Insulin (100 nM, Cat No. I9278; Sigma-Aldrich, St. Louis, MO) or left untreated for indicated time periods. For metformin treatment and cell viability assay, cells were seeded in equal numbers in plates with glucose-free media containing metformin (0 or 1 mM, Sigma, PHR1054) and incubated at 37 °C with CO₂ for 48 h. Cells were counted using a hemocytometer and trypan blue dye as well as with the Cytation 5 Imaging Reader (Biotek). Viability was calculated as a percentage of live cells in metformin-treated wells compared to live cells in wells without metformin.

Parental E0771 cells were obtained from CH3 BioSystems (Cat No. 940001). Parental and stably transduced E0771 shBMAL1 cells were grown in RPMI 1640 media with glutamine (2.05 mM; GE Life Sciences, SH30027) and supplemented with fetal bovine serum (5%) and HEPES (10 mM). DNA encoding shRNA targeting mouse Arntl in a pLKO.1 lentiviral backbone was obtained the Broad Institute RNAi Consortium. pΔ8.7 and pVSV-G were transfected with the pLKO.1 plasmid using Lipofectamine 2000 reagent (Thermo Fisher, 11668) into HEK 293T cells to generate lentivirus. To transduce E0771 cells with lentivirus, the cells were grown in virus-infected media with polybrene (2 µg/ml). Successfully transduced cells were selected by puromycin as described previously (Cheng et al., 2016).

Short-term insulin treated cells were first starved with serum-free DMEM for 24 h and incubated with insulin (100 nM)-containing medium for 24 h. To establish cells subjected to chronic insulin treatment (CIT), cells were cultured in growth medium containing human recombinant insulin (100 nM; Thermo Fisher, 12585014) for at least 10 passages. For cell entrainment, cells were grown overnight in serum-free media, then incubated in DMEM with fetal bovine serum (50%)
for 2 h using a previously described serum shock procedure (Balsalobre et al., 1998). The entrained cells were washed with phosphate buffered saline after the serum shock and were grown in serum-free media for the remainder of the experiments. For culturing cells from excised tumor, tumor mass was minced and digested with 1X collagenase/hyaluronidase (Stem Cell Technologies, 07912) at 37 °C for 1 h, with pipetting through a 10-ml serological pipet every 15 min. Cell suspension was passed through a 70-µm strainer and red blood cells were lysed with ACK Lysing Buffer (Thermo Fisher, A1049201) for 1 min. After centrifugation, cells in supernatant were cultured in media for E0771 cells.

Western Blot
Cells were seeded at a density of 5×10^5 cells per well in six well plates. The medium was changed to serum-free medium at 48 h post-seeding. Insulin (100 nM in serum-free medium) was added at 24 h following serum/insulin removal for indicated time periods. Cells were collected by scraping and centrifugation at 800×g for 5 mins at 4°C. Cell pellet was washed once with PBS and resuspended in 20 cell volumes of 1X SDS sample buffer. Cell lysates were prepared by performing two iterations of vortexing and heating at 95°C for 5 mins. Western blotting was performed by running cell lysates on a gradient SDS-PAGE gel and transferring onto a PVDF membrane. Western blots were probed with antibodies specific to BMAL1, GAPDH (Santa Cruz, sc-365645 and sc-25778, respectively), p-Akt-S473, Akt, p-Insulin Receptor-Y1150/1151, Insulin Receptor β, tubulin (Cell Signaling Technology, 9271, 9272, 3024, 3025 and 2125S, respectively), NAMPT (Novus, 2361), Actin (Millipore, MAB1501R), and MitoProfile OXPHOS Cocktail (Abcam, ab110411). Images were obtained and analyzed using ChemiDoc Touch Imaging System and Image Lab software (Bio-Rad). After primary antibody incubation, blots were incubated with HRP-conjugated anti-rabbit or anti-mouse secondary antibodies (1:5000 dilution; Abcam, ab6721 and ab6789) and protein bands were visualized using chemiluminescence detection. The intensity of desired non-saturated protein bands was quantified and normalized to Actin.

ATP measurement
For ATP measurement, MDA-MB-231 cells untreated or treated with insulin in 12-well plates. Cells were lysed in 1% trichloroacetic acid and 0.1% tris-acetate. The lysate was clarified by centrifugation at 16000×g for 10 mins at 4°C. ATP levels were measured using the luciferase-based ENLITEN ATP Assay System (Promega, FF2000) and detected using the Synergy H1 Microplate Reader (Biotek). Measurements were normalized to cell number.
Quantitative RT-PCR analysis

RNAs were isolated by homogenizing cells with QIAshredder columns (QIAGEN, 79654) and purifying RNA using the Quick-RNA Kit (Zymo, R1054). cDNA was synthesized using the iScript Kit (Bio-Rad, 1708890) and the qRT-PCR reaction utilized the components contained in the iTaq Universal SYBR Green Supermix (Bio-Rad, 1725120). Reaction was performed in the iQ5 Thermal Cycler (Bio-Rad) and data was analyzed by the $2^{ΔΔCt}$ method and normalized to GAPDH. The sequences of primer pairs used are:

- **ARNTL** (5'-GCTCAGGAGAACCAGGTATC and 5'-GCATCTGCTCCAAGAGGCTCA),
- **GAPDH** (5'-CCCCTTCCATTGACCTCAACTA and 5'-CTCCTGGAAAGATGGGTGATGG),
- **NAMPT** (5'-CCAGAGCTCCAGACTGC and 5'-GTGGCCAGGAGATGTTGAA),
- **PKM** (5'-ATGGCTGACACATTCCTGGAGC and 5'-CCTTCAACGTCTCCACTGATCG),
- **PC** (5'-GCCATGTGACATGGGTAACGGGCC and 5'-GCAGGATGTCTCTGAAACCAGC),
- **PDK2** (5'-TGCCCTACGACATGGCTAAGCTC and 5'-GACGTAGACCATGTGAATCGGC).

NADH and NAD$^+/NADH$ analysis

Samples were prepared using reagents from the NAD/NADH-Glo Assay Kit (Promega, 9071). Briefly, the siRNA-transfected MDA-MB-231 cells were seeded in 96-well white opaque plates, and sets of cells underwent serum shock every 4 h so that all time points of NAD$^+$ and NADH samples were harvested at the same time. Cells were lysed using solution containing Trizma base, hydrochloric acid, and dodecyltrimethylammonium bromide per the instructions in assay kit. Luminescence was detected using the Synergy H1 Microplate Reader (Biotek).

Genetic knockdown by siRNAs

The siRNAs are pooled sets of three target-specific siRNAs that are 19 to 25 nucleotides long. siRNAs were used to knock down expression of BMAL1/ARNTL and PKM (Santa Cruz, sc-38165 and sc-62820, respectively). The control siRNA (Santa Cruz, sc-37007) contains a scrambled sequence and served as a negative control. The transfection reaction used Lipofectamine RNAiMAX (Thermo Fisher, 13778150) and the manufacturer-recommended protocol using Opti-MEM I Reduced Serum Medium (Thermo Fisher, 11058021).

Mito Stress Test assay

One day prior to assay, cells were counted and seeded 5x10^4 on assay plate in XF Assay Medium (Agilent, 102365) supplemented with glucose (25 mM) and pyruvate (1 mM) overnight. During assay, cells were sequentially injected to obtain final concentrations of oligomycin (1 µM), trifluoromethoxy carbonyl cyanide phenylhydrazone (0.5 µM, FCCP), and rotenone (2.5 µM) according to manufacturer's protocol. Oxygen consumption rate (OCR) was measured using the
Seahorse Extracellular XFe96 Analyzer (Agilent) and normalized to cell number. Basal respiration is calculated as the OCR measurement prior to oligomycin injection subtracted by the measurement after rotenone injection. Maximum respiration is the OCR measurement after FCCP injection subtracted by the measurement after rotenone injection.

Glycolysis Stress Test assay
Cells were seeded as in OCR assays. During the assay, cells were sequentially injected to obtain final concentrations of glucose (10 mM), oligomycin (1 µM), and 2-deoxyglucose (50 mM) according to manufacturer’s protocol. Extracellular acidification rate was measured using the Seahorse Extracellular XFe96 Analyzer (Agilent) and normalized to cell number. Glycolysis is calculated as the ECAR measurement after glucose injection subtracted by the measurement before glucose injection. Glycolytic reserve is the ECAR measurement after oligomycin injection subtracted by the measurement after glucose injection.

Neutral lipid assay
Cells were harvested by trypsinization, and incubated for 30 mins in the dark with BODIPY 493/503 (5 ng/ml, Thermo Fisher, D3922) solution for dyeing neutral lipids. Fluorescent-labeled lipids were detected using BD Accuri C6 Cytometer. Results are reported as relative fluorescence.

Pyruvate assay
Cells were harvested by scraping and lysed with reagents from Pyruvate Assay Kit (Abcam, ab65342). The probe and enzyme from the kit catalyzed a fluorescent with the pyruvate in the sample, and fluorescence was detected at 535/587 nm using the Synergy H1 Microplate Reader (Biotek). Measurements were normalized to cell number.

Mitochondrial ROS assay
Cells were incubated with MitoSOX (3 µM, Thermo Fisher, M36008) for 10 mins at 37 °C to stain mitochondria-specific superoxide. After staining, the cells were fixed with 2% paraformaldehyde on ice. Fluorescent-labeled mitochondrial superoxide was detected using BD Accuri C6 Cytometer.

Viability assay
To assess viability of cells, cells were stained with trypan blue dye and counted using a hemocytometer. Dead cells were identified as those whose membranes were permeated by the blue dye. Viability is indicated as the percentage of live cells out of total cells.
Mito Fuel Flex Test assay
Substrate utilization in cells was measured using the Seahorse XF Mito Fuel Flex Test Kit (Agilent Technologies, 103260) as previously described. On day of assay the cells were seeded in XF Base Medium (Agilent, 102353) supplemented with glucose (25 mM), sodium pyruvate (1 mM), and L-glutamine (2 mM). For this assay, BPTES (4 μM), Etomoxir (10 μM) or UK5099 (5 μM) were used to inhibit glutamine, FA or glucose oxidation. OCR was measured using the Seahorse Extracellular XFe96 Analyzer (Agilent). To calculate fuel dependence percentage, or the cell’s reliance on a particular fuel pathway, this equation was used: (basal OCR – OCR after treatment with target inhibitor)/(basal OCR – OCR after treatment with all fuel inhibitors). To calculate fuel capacity percentage, or the cell’s ability to oxidize a fuel when other pathways are inhibited, this equation was used: 1 – [(basal OCR – OCR after treatment with other two inhibitors)/(basal OCR – OCR after treatment with all fuel inhibitors)]. Fuel flexibility was calculated as the absolute value of the difference between capacity and dependence.

Gene expression profile analysis
Gene expression data from the TCGA Pan-Cancer project (Cancer Genome Atlas Research Network et al., 2013) was applied to this study. Log2-transformed RNA-Seq by Expectation-Maximization (RSEM) expression values were used for boxplots, clustering analysis and GSEA. Morpheus software by Broad Institute (https://software.broadinstitute.org/morpheus/) was used for heatmap generation and unsupervised hierarchical clustering analysis with one minus Pearson correlation distance. GSEA (http://software.broadinstitute.org/gsea) was performed based on a ranked gene list derived from the correlation of expression between ARNTL and genes from Gene Ontology biological process gene sets (Molecular Signatures Database v6.2). The RNA-Seq data from BC cell lines was obtained from Heiser et al (Heiser et al., 2012) and unpublished observations kindly provided by Joe Gray (Oregon Health & Science University). Kaplan-Meier curves representing the distal metastasis-free of patient groups were plotted according to the expression of the BMAL1. Log-rank statistics were applied to identify the optimal cut-point for transforming the continuous variable of BMAL1 gene expression into categorical high and low expression groups in a survfit model. Each curve represents the percentage (Y-axis) of the population that exhibits distal metastasis along time (X-axis, in months). Vertical ticks indicate censored patients. A Log-rank test is performed to compare the differences in the two groups.
Animals

Animal experiments were approved by the Institutional Animal Care and Use Committee at City of Hope (IACUC 10024). Female C57BL/6-Tg(UBC-GFP)30Scha/J mice were obtained from Jackson Laboratory. The 8-week-old mice were divided into four groups with at least six animals in each group. Two groups were fed with high-fat diet (HFD, 60% of total calories as dietary fat; Research Diets, D12492) or low-fat, sucrose-matched diet (LFD, 10% of total calories as dietary fat; Research Diets D12450J) for five weeks. Both HFD- and LFD-fed of mice were then randomly separated into two equal groups and each group was injected with E0771 parental or shBMAL1 cells (2x10⁵) at the right 4th mammary fat pad and fed with same diet until euthanization. Tumor size, mouse body weight, and food intake were measured twice per week. Tumor size was calculated with the equation \(\text{length} \times \text{width}^2 / 2 \). Tumor masses and lung tissue were excised *en bloc*. Part of tumor mass was fixed in neutral-buffered formalin (10%) for at least three days. Tissue embedding, sectioning, and Ki67 immunohistochemistry staining were performed by the City of Hope Molecular Pathology Core. Lung tissue was fixed in formalin for at least three days before counting nodules.

Metabolic phenotyping

Body composition analysis, oral glucose tolerance test, fasting insulin, and fasting glucose measurements were performed by the City of Hope Comprehensive Metabolic Phenotyping Core. Fat mass and weight were measured with an EchoMRI a body composition analyzer. For oral glucose tolerance test, mice were fasted for five hours, orally fed glucose and tail vein blood drawn every hour to measure glucose levels. For fasting blood glucose, mice were fasted for five hours and tail vein blood was drawn to measure glucose levels. For fasting insulin, mice were fasted for five hours and tail vein blood was drawn to measure insulin in an enzyme-linked immunosorbent assay.

Statistical analyses

Data are represented as mean and standard error of mean (Mean ± SEM). Statistical analyses were performed using GraphPad Prism 7.0 software (GraphPad Prism Software Inc., San Diego, CA) and R. Normal distribution was confirmed using Shapiro-Wilk normality test before performing statistical analyses. For normally distributed data, comparison between two means were assessed by unpaired two-tailed Student’s t test and that between three or more groups were evaluated using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. In animal studies, paired t test was performed to analyze metabolic measurements of individuals before and after HFD or LFD feeding regimen. Brown-Forsythe test confirmed that the variance
in the groups compared were not significantly different. All data followed a normal distribution and have equal variances. A p-value lower than 0.05 was considered statistically significant. Figures were generated using Adobe Illustrator software (San Jose, CA, USA). Power analysis was performed by Power and Sample Size Calculations program (Dupont and Plummer, 1990). In each of the independent sample groups containing at least six mice, there is about a 25% standard deviation between tumor sizes. An effect size of 0.5 between groups with this sample size will detected with over 87% power.

Supplemental References

Balsalobre, A., Damiola, F., and Schibler, U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929-937.

Cancer Genome Atlas Research Network, Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J.M. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113-1120.

Cheng, C.T., Kuo, C.Y., Ouyang, C., Li, C.F., Chung, Y., Chan, D.C., Kung, H.J., and Ann, D.K. (2016). Metabolic stress-induced phosphorylation of KAP1 Ser473 blocks mitochondrial fusion in breast cancer cells. Cancer Res. 76, 5006-5018.

Dupont, W.D., and Plummer, W.D., Jr. (1990). Power and sample size calculations. A review and computer program. Control. Clin. Trials 11, 116-128.

Heiser, L.M., Sadanandam, A., Kuo, W.L., Benz, S.C., Goldstein, T.C., Ng, S., Gibb, W.J., Wang, N.J., Ziyad, S., Tong, F., et al. (2012). Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 109, 2724-2729.