Comparison of different measures for quantum discord under non-Markovian noise

Z Y Xu1,2,3, W L Yang1,2, X Xiao4 and M Feng1,2

1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s Republic of China
2 Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People’s Republic of China
3 Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
4 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, People’s Republic of China

E-mail: zhenyuxu.wipm@gmail.com and mangfeng@wipm.ac.cn

Received 27 April 2011, in final form 8 August 2011
Published 8 September 2011
Online at stacks.iop.org/JPhysA/44/395304

Abstract

Two geometric measures for quantum discord were recently proposed by Modi et al (2010 Phys. Rev. Lett. \textbf{104} 080501) and Dakić et al (2010 Phys. Rev. Lett. \textbf{105} 190502). We study the similarities and differences for total quantum correlations of Bell-diagonal states using these two geometry-based quantum discord and the original quantum discord. We show that, under non-Markovian dephasing channels, quantum discord and one of the geometric measures remain constant for a finite amount of time, but not the other geometric measure. However, all the three measures share a common sudden change point. Our study on critical point of sudden transition might be useful for keeping long-time total quantum correlations under decoherence.

PACS numbers: 03.65.Yz, 03.65.Ud, 03.65.Ta, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

Entangled states cannot be prepared by local operations and classical communication [1, 2]. One may think that the exchange of classical information would not add any quantum correlation to the state. This is true for pure states but not for a general mixed state, because quantum correlations also exist in some mixed separable states and have played important roles in some quantum tasks, such as in deterministic quantum computation with one pure qubit [3]. To capture the total quantum correlations, a measure called quantum discord has been first proposed by Olliver and Zurek [4] and by Henderson and Vedral [5], and then widely studied [6–27].

Quantum discord is spoiled due to unavoidable interaction between the quantum system and the surrounding environment. The dynamics of quantum discord has been investigated
under both Markovian [18–23] and non-Markovian [24] environments. Of particular interest is that, for a special class of quantum Bell-diagonal states, there exists sudden change of quantum discord under Markovian environment [19]. Moreover, the constant quantum discord under Markovian phase-damping channels was observed experimentally [20] and intensively studied theoretically [21, 22].

Quantum discord has also been explored from the aspect of geometry, where two measures have been recently proposed based on, respectively, the relative entropy [25] and the square of Hilbert–Schmidt norm [26]. This work concentrates on the comparison of these two geometric measures with the originally defined quantum discord. Since some interesting features, such as suddenly changing and constant total quantum correlations, have been discovered by the quantum discord with respect to Bell-diagonal states, we wonder if these features remain in the two geometric measures. We will focus on non-Markovian environments, from which we could obtain some insights into the protection of total quantum correlations from decoherence.

Quantum discord is defined as a measure of the discrepancy between two different quantum analogs of the classical mutual information [4, 5]. For a bipartite system ρ_{AB}, the quantum discord is given by

$$D(\rho_{AB}) = I(\rho_{AB}) - C(\rho_{AB}) ,$$

where $I(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ is the quantum mutual information (also called total correlations [5]), with $S(\rho) = -\text{Tr}(\rho \log_2 \rho)$ the von Neumann entropy of ρ and ρ_{AB}. The reduced density matrix of ρ_{AB} by tracing out $B(A)$, $C(\rho_{AB}) = \max_{B_i} \{ S(\rho_A) - \sum_k q_k S(\rho_A^k) \}$ is considered as the classical correlation, where $\rho_A^k = \text{Tr}_B[B_k \rho_{AB} B_k^\dagger]/q_k$ is the resulting state after the measurement $[B_k]$ on B, and $q_k = \text{Tr}_A[B_k \rho_{AB} B_k^\dagger]$. Note that quantum discord is not symmetric with respect to exchanging A and B; however, for the Bell-diagonal states under consideration, it is [26].

From the relative entropy perspective, the geometric measure Q_R quantifies how distinguishable a given state ρ is from the closest classical state υ [25]:

$$Q_R(\rho) = \min_{\upsilon \in \mathcal{G}} S(\rho || \upsilon) ,$$

where \mathcal{G} is the set of classical states and $S(\rho || \upsilon) = -\text{Tr}(\rho \log_2 \upsilon) - S(\rho)$ is the relative entropy.

Another geometric measure Q_S is defined based on the fact that almost all quantum states have non-vanishing quantum discord [12, 26]. The distance between a given state ρ and the nearest zero-discord state ϱ is defined as [26]

$$Q_S(\rho_{AB}) = \min_{\varrho \in \Omega} ||\rho - \varrho||^2 ,$$

where Ω denotes the set of quantum states with zero discord (see footnote 5) and $||\rho - \varrho||^2 = \text{Tr}(\rho - \varrho)^2$ is the square of Hilbert–Schmidt norm of Hermitian operators [26, 27]. For a two-qubit system $\rho_{AB} = (I \otimes 1 + \sum_{j=1}^3 \alpha_j \sigma_j^A \otimes 1 + \sum_{j=1}^3 \beta_j 1 \otimes \sigma_j^B + \sum_{j,k=1}^3 \lambda_{jk} \sigma_j^A \otimes \sigma_k^B)/4$, with I and $\{\sigma_j\}$ being the identity and Pauli operators, equation (3) can be simplified as

$$Q_S(\rho_{AB}) = \frac{1}{2} (||\vec{a}||^2 + ||M||^2 - \delta_{\text{max}}) ,$$

where $\vec{a} = (\alpha_1, \alpha_2, \alpha_3)^T$ is a column vector, $M = (M_{jk})$ is a matrix, and δ_{max} is the largest eigenvalue of matrix $\vec{a} \vec{a}^T + M M^T$. Here, the superscript T represents the transpose of vectors or matrices.

5 For bipartite quantum systems as an example, the classical state is of the form $\rho_{AB} = \sum_j p_j \Pi_j^A \otimes \Pi_j^B$, where $\{p_j\}$ is some probability distribution and $\{|\Pi_j^A\rangle\}$ ({$|\Pi_j^B\rangle$}) is the eigeprojectors of $\rho_A = \text{Tr}_B \rho_{AB}$ ($\rho_B = \text{Tr}_A \rho_{AB}$). On the other hand, the semiquantum state (zero-discord state) is of the form $\rho_{AB} = \sum_j p_j \Pi_j^A \otimes \rho_j^B$. For more details about the classical and semiquantum states, see [28].
We start our analysis by considering two identical qubits A and B initially in a Bell-diagonal state with the density operator as

$$\rho_{AB}(0) = \frac{1}{4} \left(1 + \sum_{j=1}^{3} c_j \sigma_j \otimes \sigma_j^B \right) = \sum_{a,b=0,1} \lambda_{ab} |\chi_{ab}\rangle \langle \chi_{ab}|, \quad (5)$$

where the eigenstates are four Bell states $|\chi_{ab}\rangle = (|0, b\rangle + (-1)^a |1, 1 \oplus b\rangle) / \sqrt{2}$ with eigenvalues $\lambda_{ab} = (1 + (-1)^a c_1 - (-1)^a c_2) / 4$ for $(a, b = 0, 1)$ [9], and (c_1, c_2, c_3) are three parameters of the Bell-diagonal states. Considering $\lambda_{ab} \geq 0$, all Bell-diagonal states should be confined within a tetrahedron in three-dimensional space spanned by c_1, c_2, and c_3 [29].

In what follows, we consider the situation of the qubits under independent Ornstein–Uhlenbeck phase noises [30]. The Ornstein–Uhlenbeck process is a useful approach to modeling non-Markovian relaxation with a finite reservoir memory time scale [30, 31]. The dynamics of the qubits can be characterized by time-local master equations [30, 31]. However, in the following, we will employ the Kraus representation: $\rho_{AB}(t) = \sum_{\mu} K_{\mu}(t) \rho_{AB}(0) K_{\mu}^\dagger(t)$, where the Kraus operators satisfy $\sum_{\mu} K_{\mu}^\dagger(t) K_{\mu}(t) = 1$. The Kraus operators for this non-Markovian model are given by $K_{0}(t) = \kappa_{0}(t) \otimes \kappa(t) (a, b = 0, 1)$, where $\kappa_{0}(t) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right)$ and $\kappa(t) = \left(\begin{array}{cc} \nu(t) & 0 \\ 0 & 0 \end{array} \right)$, with $\omega(t) = \exp(-f(t))$, $f(t) = \Gamma t + (e^{-\gamma t} - 1)/\gamma$, $\nu(t)$ denotes the environmental noise bandwidth and Γ is the Markovian decay rate. Explicitly, the time evolution of the system can be expressed as $\rho_{AB}(t) = \sum_{a,b=0,1} \lambda_{ab}(t) |\chi_{ab}\rangle \langle \chi_{ab}|$, where $\lambda_{ab}(t) = (1 + (-1)^a c_1 (1) - (-1)^a c_2) / 4$, $c_1(t) = c_1(0) \omega^2 / 2$, $c_2(t) = c_2(0) \omega / 2$, and $c_3(t) = c_3(0) \omega / 2$ is constant during the evolution. For simplicity, we denote in the following by $c_2(t) = \epsilon c_1(t)$, with $\epsilon = c_2(0) / c_1(0)$. In addition, the above results could return to the Markovian situation by setting $\nu(t) \to \Gamma t / 2$ in the Markovian limit $\gamma \to \infty$.

According to [9], the classical correlation is calculated as

$$C(\rho_{AB}(t)) = \frac{1}{2} \sum_{l=0,1} 1 + (-1)^l m \log_2 (1 + (-1)^l m),$$

$$= 1 - H_{\text{bin}} \left(\frac{1 + m}{2} \right), \quad (6)$$

where $m = \max(|c_1(t)|, |c_2(t)|, |c_3|)$ and $H_{\text{bin}}(p) = -p \log_2 p - (1-p) \log_2 (1-p)$ is the binary entropy [2]. In addition, the total correlation is $I(\rho_{AB}(t)) = \sum_{a,b=0,1} \lambda_{ab}(t) \log_2 \lambda_{ab}(t)$ [9], which, for the initial conditions $|c_1(0)| \geq |c_2(0)|, |c_3|$ and $\epsilon = -c_3 / c_1$, can be expressed as

$$I(\rho_{AB}(t)) = \sum_{l=0,1} \frac{1}{2} \sum_{x=c_1, c_2(t)} 1 + (-1)^x \log_2 (1 + (-1)^x x),$$

$$= 2 - H_{\text{bin}} \left(\frac{1 + c_1(t)}{2} \right) - H_{\text{bin}} \left(\frac{1 + c_3}{2} \right). \quad (7)$$

Therefore, according to equation (1), the quantum discord is given by

$$D(\rho_{AB}(t)) = \begin{cases} 1 - H_{\text{bin}} \left(\frac{1 + c_3}{2} \right), & t \leq \tau, \\ 1 - H_{\text{bin}} \left(\frac{1 + c_1(t)}{2} \right), & t > \tau, \end{cases} \quad (8)$$

6 Provided the initial conditions $|c_2(0)| \geq |c_1(0)|, |c_3|$ and $\epsilon = -1/c_3$, we will have equations (7)–(9) and (12) with $c_1(0) [c_2(0)]$ replaced by $c_2(t) [c_1(t)]$.

where

$$\tau = \frac{1 + \eta \gamma + \mathcal{W}(-e^{-1-\eta \gamma})}{\gamma}$$ \hspace{1cm} (9)$$

is the critical point with $\eta = -\frac{\ln(|c_3|)}{\Gamma}$ and $\mathcal{W}(\cdot)$ the Lambert \mathcal{W} function. This is really an interesting phenomenon, since it seems to exist a ‘decoherence-free’ area of total quantum correlations when $t \leq \tau$ [20–22] (shown in figure 1(a)).

In figure 1(c), we have plotted the critical point $T = \Gamma \tau$ as a function of dimensionless scaled reservoir noise bandwidth γ / Γ. We found that the critical point T grows with the decrease of the reservoir bandwidth. This implies that the non-Markovian behavior would prolong the quantum correlation under decoherence. When $\gamma \to \infty$ (Markovian limit), τ reduces to the cases studied in [21].

To calculate Q_R, we denote the eigenvalues of Bell-diagonal states in a decreasing order by $\lambda_1(t) \geq \lambda_2(t) \geq \lambda_3(t) \geq \lambda_4(t)$. Therefore, the closest classical states of $\rho_{AB}(t)$ are of the form $\nu = \frac{1}{4} \left(\langle \lambda_1(t) \rangle | \lambda_1(t) \rangle \langle \lambda_1(t) | + | \lambda_2(t) \rangle \langle \lambda_2(t) | + \frac{1}{2} \lambda_3(t) \right) | \lambda_3(t) \rangle \langle \lambda_3(t) | + | \lambda_4(t) \rangle \langle \lambda_4(t) | \right)$ [32], with $\Lambda = \lambda_1(t) + \lambda_2(t)$. So, the relative entropy-based quantum discord is given by

$$Q_R(\rho_{AB}(t)) = \sum_{a,b=0,1} \lambda_{ab}(t) \log_2 \lambda_{ab}(t) + H_{\text{bon}}(\Lambda) + 1.$$ \hspace{1cm} (10)$$

We may find $H_{\text{bon}}(\Lambda) = H_{\text{bon}}\left(\frac{1+|\rho_{AB}(t)|}{2}\right)$ in both Markovian and non-Markovian regimes, which implies that Q_R and D are equivalent for Bell-diagonal states.

On the other hand, for the Bell-diagonal states under non-Markovian dephasing channels, the geometric measure of quantum discord based on the square of Hilbert–Schmidt norm can be obtained exactly as follows [26]:

$$Q_S(\rho_{AB}(t)) = \frac{1}{4} \left(c_1^2(t) + c_2^2(t) + c_3^2(t) - \max \{c_1^2(t), c_2^2(t), c_3^2(t)\} \right).$$ \hspace{1cm} (11)$$

Clearly, with the initial conditions $|c_1(0)| \geq |c_2(0)|, |c_3|$ and $\epsilon = -c_3$, $c_2^2(t)$ will not be larger than $c_1^2(t)$ and Q_S is strongly dependent on the relation between $|c_1(t)|$ and $|c_3|$. Therefore, the geometric quantum discord in such a case can be written as

$$Q_S(\rho_{AB}(t)) = \begin{cases} (c_1^2(t) + c_3^2(t))/4, & t \leq \tau, \\ (c_1^2(t) + c_2^2(t))/4, & t > \tau, \end{cases}$$ \hspace{1cm} (12)$$

which involves no constant total quantum correlations, as shown in figure 1(b).
Figure 2. Contour maps for total quantum correlations of Bell-diagonal states using the definitions of (a) D or Q_R, and (b) Q_S, respectively. The red straight lines $c_2(t) = \epsilon c_1(t)$ with $\epsilon = c_2(0)/c_1(0)$ represent the trajectories of the Bell-diagonal state under non-Markovian dephasing channels with the initial conditions $(c_1(0), c_2(0), c_3(0)) = (0.8, -0.4, 0.5)$. The red-dotted circular arrows represent the possible distribution of other lines through the origin of coordinate, corresponding to trajectories of Bell-diagonal states with other possible initial conditions.

This phenomenon is quite different from the cases measured by D or Q_R. Although they share a common critical point τ, the original ‘decoherence-free’ area of total quantum correlations discovered by D or Q_R [20–22] does not appear in the measure of Q_S.

To be more clear, we have plotted in figure 2 the contour maps of quantum discord in a two-dimensional coordinate space with $c_3 = 0.5$. Recalling $c_2(t) = \epsilon c_1(t)$ with $\epsilon = c_2(0)/c_1(0)$, the possible trajectories under the non-Markovian dephasing channels should be the straight lines crossing the origin of coordinate (the red-dotted circular arrows represent the distribution of line’s slope, i.e. different initial conditions). For a special case of $c_1(0) = 0.8$ and $c_2(0) = -0.4$, the trajectory of the Bell-diagonal states under decoherence is depicted as the red lines in figure 2. Clearly, the red line coincides with the straight contour line in figure 2(a), which means that the quantum discord will not be spoiled in this ‘decoherence-free’ area [20–22]. In addition, there are three other ‘decoherence-free’ areas (see the black straight contour lines: one for $\epsilon = -c_3$ and the other two for $\epsilon = -1/c_3^7$) as depicted in figure 2(a). For other values of ϵ (initial conditions), the red line will always cross the contour lines and no constant quantum discord will take place. However, in figure 2(b), the red straight lines always definitely go through the contour lines, which is a direct illustration of no constant quantum discord by Q_S.

Since all the three quantities are to measure the total quantum correlations, we wonder why Q_S is incompatible with D and Q_R in describing the dynamics of Bell-diagonal states under non-Markovian dephasing channels? As both Q_R and Q_S are defined from geometric perspective, we guess that the incompatibility is from the fact that the nearest zero-discord state, belonging to an arbitrary Bell-diagonal state and measured by the square of Hilbert–Schmidt norm, is different from the closest classical state quantified by the relative entropy.

The guess is checked below. As demonstrated in [26], the set of zero discord in a three-dimensional space spanned by (c_1, c_2, c_3) includes three mutually perpendicular lines

\[\text{See footnote 6.} \]
The set of Bell-diagonal states with three parameters \((c_1, c_2, c_3)\). The red lines represent zero-discord states. The blue-dashed lines connect to the possible nearest zero-discord states for a given Bell-diagonal state \((C_1, C_2, C_3)\).

\[
\{ c_j \in [-1, 1] \mid c_k = 0, k \neq j \ (j = 1, 2, 3) \} \text{ (red lines in figure 3) and the zero-discord states can be written as } \Omega = (1 + c_j \sigma_j \otimes \sigma_j)/4 \ (j = 1, 2, 3). \text{ For an arbitrarily given Bell-diagonal state } \rho \text{ denoted by } (C_1, C_2, C_3), \text{ the distance to the zero-discord states measured by the square of Hilbert–Schmidt norm can be calculated as}
\]

\[
||\rho - \Omega||^2 = \text{Tr} \left\{ \frac{(C_j - c_j) \sigma_j \otimes \sigma_j + C_k \sigma_k \otimes \sigma_k + C_l \sigma_l \otimes \sigma_l}{4} \right\}^2 \right.
\]

\[
= \frac{(C_j - c_j)^2 + C_k^2 + C_l^2}{4} (j \neq k \neq l).
\]

Clearly, \(||\rho - \Omega||^2\) reaches the minimum only when \(C_j - c_j = 0\). Therefore, the possible nearest zero-discord states should be from \((C_1, 0, 0)\), \((0, C_2, 0)\) and \((0, 0, C_3)\), dependent on the magnitude among \(|C_1|, |C_2|, |C_3|\). For example, when \(C_1 > C_2 > C_3 > 0\), the nearest zero-discord state is \((C_1, 0, 0)\).

On the other hand, as \(\lambda_{00}\) and \(\lambda_{01}\) are larger than \(\lambda_{10}\) and \(\lambda_{11}\) in the case of \(C_1 > C_2 > C_3 > 0\) (in other cases with arbitrary ordinal relation for \(|C_1|, |C_2|, |C_3|\), the proof is similar), we have \(\Lambda = \lambda_{00} + \lambda_{01} = (1 + C_1)/2\). Recalling the requirements for the closest classical state measured by the relative entropy [32], we can obtain \(\lambda_{00} = \lambda_{01} = \Lambda/2\) and \(\lambda_{10} = \lambda_{11} = (1 - \Lambda)/2\), i.e. \(C_2 = C_3 = 0\). Therefore, the closest classical state measured by the relative entropy is also \((C_1, 0, 0)\), which coincides with the nearest zero-discord state measured by the square of Hilbert–Schmidt norm.
Since for an arbitrary Bell-diagonal state, the nearest zero-discord state measured by Q_S is just the closest classical state quantified by Q_R, the discrepancy we discovered in this work must result from the intrinsic nature of the square of Hilbert–Schmidt norm and the relative entropy.

We would like to emphasize that we do not intend to discourage the use of Q_S, which indeed provides a useful tool to analyze some interesting problems such as for the problem of quantum speedup of deterministic quantum computation with one qubit [26]. Instead, we would like to point out that the use of Q_S for quantum correlation may lead to a different result compared to the use of the originally defined quantum discord D or the relative entropy-based Q_R. In addition, although we mainly focus on the phase-damping channel in above discussions, similar conclusions still hold for the bit flip and bit-phase flip cases with c_1 and c_2 replacing c_3, respectively.

To summarize, we have investigated quantum discord of Bell-diagonal states under decoherence by three different definitions. The differences and similarities by using the three measures have been presented and discussed. The study of critical point under non-Markovian environment might be helpful for prolonging total quantum correlations under decoherence, which may have important applications in designing robust quantum protocols based on quantum correlations.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant no 10774163.

References

[1] Horodecki R et al 2009 Rev. Mod. Phys. 81 865
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
Datta A et al 2008 Phys. Rev. Lett. 100 050502
Lanyon B P et al 2008 Phys. Rev. Lett. 101 200501
Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[4] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[5] Henderson L and Vedral V 2001 J. Phy. A: Math Gen. 34 6899
[6] Oppenheim I et al 2002 Phys. Rev. Lett. 89 180402
[7] Zurek W H 2003 Phys. Rev. A 67 012320
Brodutch A and Terno D R 2010 Phys. Rev. A 81 062103
[8] Groisman B et al 2005 Phys. Rev. A 72 032317
[9] Luo S 2008 Phys. Rev. A 77 042303
[10] Dillenschneider R 2008 Phys. Rev. B 78 224413
Sarandy M S 2009 Phys. Rev. A 80 022108
Chen Y X and Li S W 2010 Phys. Rev. A 81 032120
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
Maziero J et al 2010 Phys. Rev. A 82 012106
Werlang T et al 2010 Phys. Rev. Lett. 105 095702
Sun Z-Y et al 2010 Phys. Rev. A 82 032310
[11] Piani M et al 2008 Phys. Rev. Lett. 100 090502
Luo S and Sun W 2010 Phys. Rev. A 82 012338
[12] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
Ferraro A et al 2010 Phys. Rev. A 81 052318
[13] Datta A 2009 Phys. Rev. A 80 052304
Wang J et al 2010 Phys. Rev. A 81 052120
[14] Xu Y Y et al 2010 Europhys. Lett. 92 10005
[15] Ali M et al 2010 Phys. Rev. A 81 042105
[16] Soares-Pinto D O et al 2010 Phys. Rev. A 81 062118
[17] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
 Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
 Vasile R et al 2010 Phys. Rev. A 82 012313
[18] Werlang T et al 2009 Phys. Rev. A 80 024103
[19] Maziero I et al 2009 Phys. Rev. A 80 044102
[20] Xu J-S et al 2010 Nature Commun. 1 7
[21] Mazzola L et al 2010 Phys. Rev. Lett. 104 200401
[22] Lang M D and Caves C M 2010 Phys. Rev. Lett. 105 150501
[23] Lu X-M et al 2010 Quantum Inf. Comput. 10 0994
[24] Wang B et al 2010 Phys. Rev. A 81 014101
 Fanchini F F et al 2010 Phys. Rev. A 81 052107
[25] Modi K et al 2010 Phys. Rev. Lett. 104 080501
[26] Dakić B et al 2010 Phys. Rev. Lett. 105 190502
[27] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[28] Luo S 2008 Phys. Rev. A 77 022301
[29] Horodecki R and Horodecki M 1996 Phys. Rev. A 54 1838
[30] Yu T and Eberly J H 2010 Opt. Commun. 283 676
[31] Rajagopal A K et al 2010 Phys. Rev. A 82 042107
[32] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619