Systematic review on alternative methods for caries removal in permanent teeth

Vijayapriyangha Senthilkumar, Sindhu Ramesh
Department of Conservative Dentistry and Endodontics, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India

Abstract

Introduction: Dental caries is the most common chronic dental disease in the world. It is defined as a multifactorial infectious disease characterized by demineralization of the inorganic and destruction of the organic substance of the tooth. The host, flora, and the substrate should be there for the formation of dental caries. There are various microorganisms responsible for caries. The treatment for caries is essential to prevent teeth from involving pulp, leading to further damage. There are various methods in removing caries such as minimally invasive technique, rotary method with different types of burs, chemomechanical caries removal, and lasers. There are no data in literature for various methods of removing caries in permanent teeth.

Materials and Methods: Research question was formulated based on the PICO strategy. A comprehensive electronic literature search was conducted, independently by two reviewers. Based on the specified inclusion and exclusion criteria’s, the selected articles were subjected to quality assessment and the risk of bias was evaluated.

Objective: The objective of this study was to evaluate the efficiency of caries removal by various methods in permanent teeth.

Search Strategy: A search was performed in electronic database (i.e. PubMed and Medline) using search terms alone and in combination by means of PubMed search builder from January 1985 to January 2018.

Selection Criteria: Studies were selected if they met the following criteria: in vivo studies comparing various methods of caries removal in permanent teeth.

Results: The search identified 338 publications, out of which 328 were excluded after examination of the title and 2 were excluded after examination of the abstract. Through the hand search, three articles were included. Eight articles were retrieved for more detailed evaluation from the search. A total of 11 publications fulfilled all the criteria for inclusion.

Conclusion: With the available evidence, this review concludes that the studies included in this review have a high risk of quality evidence.

Keywords: Caries; chemomechanical; infected dentin; permanent teeth; type of burs

INTRODUCTION

Dental caries is one of the most prevalent chronic diseases, which may lead to pulpal infection if left untreated. Caries may lead to infection of the dental pulp. Most of the clinicians’ objective is to remove only the infected layer, leaving the unaffected dentin intact.[1] It is important to remove the infected layer to prevent the unnecessary removal of tooth structure.[1,2]

The affected dentin is left unremoved so that remineralization may take place.[3] Previously conventional
rotary method was used for tooth preparation and the cavities were designed in specific dimension for the restorative material employed. But, the current concept is to preserve as much of tooth structure as possible. Hence, the concept of minimally invasive dentistry came in.

The rotary or conventional method is not much preferred as it removes a lot of tooth structure, noise, discomfort, fear, excessive cutting of uninfected dentin, and pain. Hence, the removal of caries with minimal pain given rise to various alternative methods such as air abrasion, sono-abrasion, chemomechanical caries removal, lasers, and atraumatic restorative method fluorescence aided caries excavation.[4-10]

In the conventional method or rotary method, the high-speed handpiece is used to gain access to cavity lesion and low-speed handpiece is used to remove carious dentine.[11] Steel bur and conventional rotary methods remove a large amount of sound tissue, over preparation. It may cause pressure or heat on the pulp, noise, and pain stimulus and may need local anesthesia in many patients.[12]

In the year 2003, Boston developed new polymer prototype burs as an alternative to conventional burs. It is the self-limiting polymer bur, which is the new version of SmartPrep, now called SmartBurs. It can be used with slow speed handpiece. It removes only infected dentin, and it does not remove healthy dentin. It is claimed to be disposable once the cutting portion of the bur wears off. Hence, these cannot be used repeatedly for tooth preparations.[13,14]

The chemomechanical system was developed 30 years back. But it was gained into attention only in the late 1990s by the introduction of Carisolv in the market.[15,16] It can able to dissolve collagen fibers, so that caries is easy to remove with hand instruments.[15,16] Chemomechanical caries removal (CMCR) method is a noninvasive technique, avoids pulp irritation and patient discomfort, eliminates infected tissues, and preserves healthy structures. It has antibacterial, anti-inflammatory effects. Chemomechanical method is a minimally invasive method.

In Brazil 2003, it was the first time they introduced papain gel commercially known as Papacarie for CMCR agent.[17-19] Papain is a proteolytic enzyme. It has bactericide, anti-inflammatory, and bacteriostatic characteristics.[20] It is extracted from the latex of leaves and fruits of adult green papaya. It acts only in infected tissue because infected tissue lacks a plasmatic antiprotease called antitrypsin.[20]

Structured question
Does efficiency of removing caries in permanent teeth with conventional method and other alternative methods have any difference?

PICO analysis

- Population – Caries in permanent teeth
- Intervention – Alternative methods for caries removal
- Comparison – Conventional method
- Outcome – Efficiency of caries removal.

Null hypothesis
There is no significant difference in removing caries by alternative methods when compared to conventional method in permanent teeth.
Table 1: Search methodology

Search Query	Items found	Time
#81 Search ((((((((((((caries) OR tooth decay) OR tooth decay in adult teeth) OR tooth decay in permanent teeth) OR dental caries) OR dental caries in adult teeth) OR dental caries in permanent teeth) OR permanent tooth) OR permanent tooth or secondary tooth) OR secondary tooth) OR adult tooth) OR adult tooth or adolescence) OR cavities) OR tooth cavity) OR cavity) OR decay) OR mature teeth) OR tooth demineralisation in adult teeth) OR tooth demineralisation in permanent teeth) OR carious lesions in permanent teeth) OR carious lesions in adult teeth) OR dental decay in adult teeth) OR dental decay in permanent teeth) AND (((((((((((chickochemical) OR polymer bur) OR air abrasion) OR air abrasion) OR laser) OR ART) OR atraumatic restorative treatment) OR fluorescence aided caries excavation) OR FACE) OR MID) OR minimal invasive dentistry OR carisolv OR caridex OR CMCR OR carica papaya) OR chemomechanical caries removal OR micro invasive treatment) OR nonrotary) OR air polishing) OR ultra sonication) OR enzymes) OR photo ablation) OR ultra sonic)) AND (((((((((((conventional method) OR airrotor) OR burs) OR bur) OR rotary) OR mechanical) OR drilling) OR rotary drill) OR rotary instruments) OR dental handpiece) OR dental burs) OR dental bur) OR drill) OR conventional drill) OR traditional drill) OR conventional drilling) OR conventional rotary method) OR traditional treatment of removing decay) AND ((((((efficiency of caries removal) OR assessment of caries removal) OR evaluation of caries removal) OR remaining decay) OR absence of soft caries) OR removal of decay) OR removal of caries) OR effectiveness of caries removal) OR removal of infected caries)	338	0:16:23
#80 Search (((((((((efficiency of caries removal) OR assessment of caries removal) OR evaluation of caries removal) OR remaining decay) OR absence of soft caries) OR removal of decay) OR removal of caries) OR effectiveness of caries removal) OR removal of infected caries)	4044	0:15:18
#79 Search removal of infected caries	94	0:14:15
#78 Search effectiveness of caries removal	111	0:13:47
#77 Search removal of caries	1427	0:13:19
#76 Search removal of decay	1854	0:13:05
#75 Search absence of soft caries	24	0:12:52
#74 Search remaining decay	836	0:12:36
#73 Search evaluation of caries removal	226	0:12:22
#72 Search assessment of caries removal	127	0:12:02
#71 Search efficiency of caries removal	56	0:11:45
#70 Search ((((((((((conventional method) OR airrotor) OR burs) OR bur) OR rotary) OR mechanical) OR drilling) OR rotary drill) OR rotary instruments) OR dental handpiece) OR dental burs) OR dental bur) OR drill) OR conventional drill) OR traditional drill) OR conventional drilling) OR conventional rotary method) OR traditional treatment of removing decay) AND ((((((efficiency of caries removal) OR assessment of caries removal) OR evaluation of caries removal) OR remaining decay) OR absence of soft caries) OR removal of decay) OR removal of caries) OR effectiveness of caries removal) OR removal of infected caries)	662749	0:11:16
#69 Search traditional treatment of removing decay	2	0:07:02
#68 Search conventional rotary method	500	0:06:38
#67 Search traditional drilling	226	0:06:18
#66 Search conventional drilling	467	0:06:05
#65 Search traditional drill	189	0:05:45
#64 Search conventional drill	378	0:05:31
#63 Search drill	6418	0:05:17
#62 Search dental bur	1655	0:05:02
#61 Search dental burs	923	0:04:45
#60 Search dental handpiece	862	0:04:35
#59 Search rotary instruments	3138	0:04:11
#58 Search rotary drill	63	0:03:55
#57 Search drilling	6861	0:03:42
#56 Search mechanical	392034	0:03:34
#55 Search rotary	9978	0:03:23
#54 Search bur	3057	0:03:10
#53 Search burs	1112	0:03:03
#52 Search airtor	13	0:02:55
#51 Search conventional method	258403	0:02:43
#50 Search (((((((((((((((((((chemomechanical) OR polymer bur) OR air abrasion) OR sono abrasion) OR laser) OR ART) OR atraumatic restorative treatment) OR fluorescence aided caries excavation) OR FACE) OR MID) OR minimal invasive dentistry OR carisolv OR caridex OR CMCR OR carica papaya) OR chemomechanical caries removal OR micro invasive treatment) OR nonrotary) OR air polishing) OR ultra sonication) OR enzymes) OR photo ablation) OR ultra sonic	3725353	0:02:22
#49 Search ultra sonic	107	23:59:56
#48 Search photo ablation	194	23:59:45
#47 Search enzymes	2951421	23:59:26
#46 Search ultra sonication	255	23:59:13
#45 Search air polishing	528	23:58:55
#44 Search nonrotary	3660	23:58:41
#43 Search micro invasive treatment	1542	23:58:29

Contd...
Table 1: Contd...

Search	Query	Items found	Time
#42	Search chemomechanical caries removal	67	23:58:10
#41	Search cariica papaya	1492	23:57:50
#40	Search CMCR	82	23:57:31
#39	Search caridex	78	23:57:16
#38	Search carisolv	167	23:57:08
#37	Search minimal invasive dentistry	413	23:56:53
#36	Search MID	116063	23:56:30
#35	Search FACE	299027	23:56:20
#34	Search fluorescence aided caries excavation	12	23:56:11
#33	Search atraumatic restorative treatment	466	23:55:36
#32	Search ART	119201	23:55:16
#31	Search laser	294059	23:55:06
#30	Search sono abrasion	13	23:54:48
#29	Search air abrasion	1229	23:54:34
#28	Search polymer bur	666	23:54:22
#27	Search chemomechanical	701	23:54:08
#26	Search ((((((((((((caries) OR tooth decay) OR tooth decay in adult teeth) OR tooth decay in permanent teeth) OR dental caries) OR dental caries in adult teeth) OR dental caries in permanent teeth) OR permanent teeth) OR permanent tooth) OR secondary teeth) OR secondary tooth) OR adult teeth) OR adult tooth) OR adolescence) OR cavities) OR tooth cavity) OR cavity) OR decay) OR mature teeth) OR tooth demineralisation in adult teeth) OR tooth demineralisation in permanent teeth) OR carious lesions in permanent teeth) OR carious lesions in adult teeth) OR dental decay in adult teeth) OR dental decay in permanent teeth)	2279061	23:53:50
#25	Search dental decay in permanent teeth	4703	23:49:02
#24	Search dental decay in adult teeth	6461	23:48:41
#23	Search carious lesions in adult teeth	648	23:48:25
#22	Search carious lesions in permanent teeth	532	23:48:01
#21	Search tooth demineralisation in permanent teeth	16	23:47:23
#20	Search tooth demineralisation in adult teeth	52	23:46:55
#19	Search mature teeth	1479	23:46:29
#18	Search decay	67453	23:46:16
#17	Search cavity	227046	23:46:06
#16	Search tooth cavity	68953	23:45:54
#15	Search cavities	82421	23:45:41
#14	Search adolescence	1942154	23:45:28
#13	Search adult tooth	50664	23:45:14
#12	Search adult teeth	61851	23:45:05
#11	Search secondary tooth	9629	23:44:46
#10	Search secondary teeth	5942	23:44:27
#9	Search permanent tooth	19882	23:44:11
#8	Search permanent teeth	17916	23:43:55
#7	Search dental caries in permanent teeth	4665	23:43:42
#6	Search dental caries in adult teeth	6334	23:43:22
#5	Search dental caries	54758	23:43:01
#4	Search tooth decay in permanent teeth	4700	23:42:48
#3	Search tooth decay in adult teeth	4690	23:42:25
#2	Search tooth decay	55351	23:42:08
#1	Search caries	56870	23:41:42

Alternate hypothesis

There is a significant difference in removing caries by alternative method when compared to conventional method in permanent teeth.

MATERIALS AND METHODS

Sources used

For identification of studies included or considered for this review, detailed search strategies were developed for the database searched. The Medline search used the combination of controlled vocabulary and free text terms [Table 1].

Searched databases

- PubMed
- PubMed advanced search
- Cochrane database of systematic review
- Science direct.

Language

There were no language restrictions.

Hand search

The following journals were hand searched:

- International Endodontic Journal
- Journal of Endodontics
Table 2: General information - results

Author	Years	Country	Study design	Sample size	Type of teeth	Follow up period	Caries removal methods used	Factors analyzed	Method of evaluation	Outcome measures
A.H. Ali et al.	2018	London	In vivo study	101	Permanent posterior teeth with symptoms of reversible pulpitis	12 months	Group 1: Rotary burs without magnification Group 2: Carisolv with operating microscope	1. Bacterial reduction 2. Periapical health of teeth after restoration	1. Polymerase chain reaction 2. Periapical radiograph	1. Periapical radiograph was taken in month 0 and month 12. At the end of month 12, periapical radiograph showed 92% (Group 1) and 98.6% (Group 2) as healthy. 2. Bacterial tissue reduction after excavation of caries is about 96.5% in total
AR Yazici et al.	2010	Turkey	In vivo study	108	Occlusal noncavitated superficial carious lesions, first and second permanent molars	24 months	Group 1: Diamond bur Group 2: Er, Cr: YSGG laser	1. Retention of restoration 2. Marginal discoloration 3. Marginal adaptation	Restorations evaluated according to Cva/r/Rye criteria	Clinically evaluated at baseline, 6, 12, 18, and 24 months using modified Cva/r/Rye criteria
Prabhakar et al.	2009	India	In vivo study	40	Bilateral occlusal carious lesions on mandibular permanent molars	6 months	Group 1: Polymer bur Group 2: Carbon steel round bur (conventional)	1. Time required for caries removal 2. Patient comfortness 3. Evaluation of restoration 4. Visual and tactile	Radiographic evaluation of restoration	
Hosein and Hasan	2008	Pakistan	In vivo study	60	Permanent mandibular molar, Class 1 caries	-	Group 1: Steel bur Group 2: Carisolv	1. Time required 2. Completeness of caries removal	Visual and tactile method	
Henrik Dommisch et al.	2008	Germany	In vivo study	102	Caries in permanent teeth	-	Group 1: Fluorescence-Controlled Er: YAG laser Group 2: Rotary carbide bur	1. Microbiological analysis 2. Treatment time 3. Pain 4. Vibration and sound intensity Anxiety level	1. CFU Of Streptococcus Mutans and lactobacilli 2. Visual Analog Scale 1. MDAS 2. Visual Analog Scale	
S Rafique et al.	2003	London	In vivo study	22	Class 1/5 cavities on premolar and molar teeth and Class 3 carries on incisors, contralateral teeth	-	Group 1: Tungsten carbide bur Group 2: Air-abrasion and Carisolv gel			1. 86% of participants showed some level of anxiety, 59% are moderately anxious during LA or drill 2. Time taken for cavity preparation with Group 1 was 6.3 min and 5.4 min for Group 2
Table 2: Contd...

Author	Years	Country	Study design	Sample size	Type of teeth	Follow up period	Caries removal methods used	Factors analyzed	Method of evaluation	Outcome measures
Hadley et al.	2000	San Francisco	In vivo study	66	Class 1, Class 3, or Class 5 in permanent teeth	6 months	Group 1: Conventional air turbine/bur dental surgery	1. Pulp vitality	1. Vitalometer	1. Both groups remained vital at the evaluation at the 6th months of restoration
							Group 2: Er, Cr: YSGG laser-powered system	2. Recurrent caries	2. Restoration retention	2. There was no discomfort in 87.9% in Group 1 and 98.5% in Group 2 during the
							Group 1: Chemomechanical treatment (Carisolv)	3. Pain and discomfort	3. Discomfort scale	day 1 of procedure
							Group 2: Conventional drill	4. Restoration retention	4. Evaluation of restoration	1. One-year follow up showed 29 intact restorations in Group 1, out of which 2
										were lost during follow up visits and one reported secondary caries
										2. 31 teeth in Group 1 were sensitive and 24 were found to be sensitive in
										Group 2 3. Anesthesia was not preferred by patients in Group 1 and 12 out of 20
										preferred anesthesia in Group 2
S Fure et al.	2000	Sweden	In vivo study	60	Primary root carious lesions	1 year	Group 1: Chemomechanical treatment (Carisolv)	1. Pain during treatment	Three-score evaluation scheme	The mean preparation time by laser was 7.3 min. The mean preparation time by
							Group 2: Conventional drill	2. Treatment time		mechanical means was 3 min
Keller et al.	1998	Cross-over study (5 German universities)	In vivo study	206	Any type of permanent teeth	1 year	Group 1: Conventional mechanical preparation	3. Evaluation of restoration	Questionnaire	21% of patients requested for LA during caridex treatment and 37% during
							Group 2: Er: YAG laser preparation			conventional treatment
										85.3% of patients responded that they did not require LA for CRS procedure
										in future. 29.4% would allow the
										conventional treatment without anesthetic
JH Zinck et al.	1988	New Orleans	In vivo study	60	Vital permanent teeth either previously restored or unrestored	-	Group 1: Caridex	1. Patient preference		
							Group 2: Conventional rotary bur	2. Time required for treatment		
KJ Anusavice and JE Kincheloe	1987	Florida	In vivo study	47	Carious lesions in vital teeth	3 months	Group 1: Chemomechanical caries removal system (GK-101E Solution)	1. Preference for local anesthetic		
							Group 2: Conventional method	2. Evaluation of pain		

LA for CRS: Cytoreductive surgery, MDAS: Modified dental anxiety scale, CFU: Colony forming unit, Er: YAG: Erbium: yttrium-aluminum-garnet, Er, Cr: YSGG: Erbium, chromium-doped yttrium, scandium, gallium, and garnet

Inclusion criteria
Criteria for considering studies for this review

Types of studies
1. Randomized controlled trials, clinical trials, retrospective clinical trials, or observational studies
2. *In vivo* studies assessing the efficiency of caries removal in permanent teeth.

Types of participants
• Studies having patients with permanent teeth
• Teeth with caries.

Types of interventions
Studies in which caries removal is done by alternative methods other than conventional method.

Types of outcome measure
Efficiency of caries removal.

Exclusion criteria
The following studies were excluded:
• Case reports or series
• Animal studies
• *In vitro* studies
• Studies not meeting inclusion criteria.

RESULTS

Description of studies
The search identified 338 publications, out of which 330 publications were excluded after removing the duplicates, reviewing the title or abstract, and for the reason of being retracted by the journal. Three articles were obtained after hand searching specified journals. A total of 11 publications fulfilled all criteria for inclusion [Flow Chart 1].

DISCUSSION

The purpose of this review was to determine the efficacy of alternative methods of caries removal in permanent teeth. Eleven *in vivo* studies fulfilled the criteria for being included in this review (A. H. Ali et al., 2018; AR Yazici et al., 2010; Prabhakar et al., 2009; Hosein and Hasan, 2008; Henrik Dommisch et al., 2008; S. Rafique et al., 2003; Hadley et al., 2000; S. Fure et al., 2000; Keller et al., 1998; J. H. Zinck et al., 1988; and K. J. Anusavice and J. E. Kincheloe, 1987) [Table 2]. The sample size distribution of included studies is presented in Figure 1.

Interpretation of the results
Of these 11 studies, all were clinical trials (A. H. Ali et al., 2018; AR Yazici et al., 2010; Prabhakar et al., 2009; Hosein and Hasan, 2008; Henrik Dommisch et al., 2008; S. Rafique et al., 2003; Hadley et al., 2000; S. Fure et al., 2000; Keller et al., 1998; J. H. Zinck et al., 1988; and K. J. Anusavice and J. E. Kincheloe, 1987), and they evaluated the alternative method of caries removal in permanent teeth.

According to A. H. Ali et al., at the end of month 12, periapical radiograph showed 92% (rotary burs) and 98.6% (Carisolv) showed as healthy, and bacterial tissue reduction after excavation of cavities is about 96.5% in total.

According to AR Yazici et al., both diamond bur and erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er: Cr: YSGG) laser performed equally in all the parameters such as marginal discoloration and marginal adaptation.

According to Prabhakar et al., polymer group showed complete caries removal in 76% of the cases analyzed and partial removal in 24%. Among these 30% of the patients reported no discomfort and 70% of them showed mild discomfort. Whereas, carbon steel round bur group showed complete caries removal in 46.6% of cases and partial removal in 53.4%. Among these 47.5% of the patients reported no discomfort and 52.5% of them showed mild discomfort.

According to Hosein and Hasan, the mean time for caries removal with Carisolv was 12.19 min in 27 cases. The mean time for caries removal was 7.4 min with steel bur group.

According to Henrik Dommisch et al., colony-forming unit (CFU) for lactobacilli after laser treatment was 0.00–2.11 and after bur treatment was 0.00–1.68. CFU for *Streptococcus mutans* was around 0.00-0.70 after laser treatment and ranged from 0.00-1.52, when the rotary bur was used for preparation.

According to S. Rafique et al., 86% of participants showed some level of anxiety, 59% are moderately anxious during Local Anesthesia (LA) or drill. Time taken for cavity preparation with tungsten carbide bur was 6.3 min and 5.4 min for air-abrasion and Carisolv groups, respectively.

According to Hadley et al., both conventional bur and Er: Cr: YSGG laser groups remained vital at the evaluation at the 6th month of restoration. There was no discomfort in 87.9% in conventional bur group and 98.5% in Er: Cr: YSGG laser group during day 1 of procedure.
According to S. Fure et al., 21% of patients responded that they did not require LA for CRS procedure in the future. 29.4% would allow the conventional treatment without anesthetic.

Conclusion

With the available evidences, this review concludes that alternative methods for caries removal are not as effective as other commercially available conventional burs.

However, a good number of clinical trials are needed to establish their potency as an effective caries removal agent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Fusayama T, Kurosaki N. Structure and removal of carious dentin. Int Dent J 1972;22:401-11.
2. Beeley JA, Yip HK, Stevenson AG. Chemochemical caries removal: A review of the techniques and latest developments. Br Dent J 2000;188:427-30.
3. Pai VS, Nadig RR, Jagadeesh T, Usha G, Karthik J, Sridhara K. Chemical analysis of dentin surfaces after Carisolv treatment. J Conserv Dent 2009;12:118-22.
4. Banerjee A, Kidd EA, Watson TF. Scanning electron microscopic observations of human dentine after mechanical caries excavation. J Dent 2000;28:179-86.
5. Goldstein RE, Parkins FM. Air-abrasive technology: Its new role in restorative dentistry. J Am Dent Assoc 1994;125:551-7.
6. Frencken JE, Pilot T, Songpaiphan Y, Phantumvanit P. Atraumatic restorative treatment (ART): Rationale, technique, and development. J Public Health Dent 1996;56:135-40.
7. Keller U, Hibst R, Geurtsen W, Schilke R, Heidemann D, Klaiber B, et al. Erbium: YAG laser application in caries therapy. Evaluation of patient perception and acceptance. J Dent 1998;26:649-56.
8. Air Abrasive Some Fundamentals Black. Available from: https://www.google.co.in/search?client=firefox-a&q=air+abrasive+funda.+black+&oq=air+abrasive+funda.+black+&gs_l=psy-ab.3...217184.221362.0.222067.7.7.0.0.0.0.233.1275.0.437.0....0..1.64.psy-ab..0.3.515...33i160k1j33i21k1.0.9CxdA74kn6M.
9. Goldstein RE, Parkins FM. Air-abrasive technology: Its new role in restorative dentistry. J Am Dent Assoc 1994;125:551-7.
10. Zhang X, Tu R, Yin W, Zhou X, Lü X, Hu D. Micro-computerized tomography assessment of fluorescence aided caries excavation (FACE) technology: Comparison with three other caries removal techniques. Aust Dent J 2013;58:461-7.
11. Elkholany NR, Abdelaziz KM, Zaghloul NM, Aboulenine N. Chemo-mechanical removal of caries. A multi-centre study. Caries Res 2009;53:1149-53.
12. Celiberti P, Francescut P, Lussi A. Performance of four dentine excavation methods in deciduous teeth. Caries Res 2006;40:117-23.
13. Corrêa FN, Rocha RO, Filho LE, Muench A, Rodrigues CR. Chemical versus conventional caries removal techniques in primary teeth: A microhardness study. J Clin Pediatr Dent 2007;31:187-92.
14. Meller C, Welk A, Zeligowski T, Splieth C. Comparison of dentin caries excavation with polymer and conventional tungsten carbide burs. Quintessence Int 2008;39:565-9.
15. Ericson D, Zimmerman M, Raber H, Göttricke B, Bornstein R, Thorell J. Clinical evaluation of efficacy and safety of a new method for chemo-mechanical removal of caries. A multi-centre study. Caries Res 1999;33:171-7.
16. Fure S, Lingström P. Evaluation of the chemomechanical removal of dentine caries in vivo with a new modified Carisolv gel. Clin Oral Investig 2004;8:139-44.
17. Lopes MC, Mascarini RC, da Silva BM, Flório FM, Basting RT. Effect of a papain-based gel for chemomechanical caries removal on dentin shear bond strength. J Dent Child (Chi) 2007;74:93-7.
18. Piva E, Ogliari FA, Moraes RR, Corá F, Henn S, Correr-Sobrinho L. Papain-based gel for biochemical caries removal: Influence on microtensile bond strength in dentin. Braz Oral Res 2008;22:366-70.
19. Bussadori SK, Castro LG, Galvão AC. Papain gel: A new chemo-mechanical caries removal agent. J Clin Pediatr Dent 2005;29:115-9.
20. Papacarie: A Chemomechanical Caries Removal Agent. Available from: https://www.semanticscholar.org/paper/Papacarie-A-Chemomechanical-Caries-Removal-Agent-Jain-Bardia/304b08fc990cb09c9cbabe68943828b7c9a59378f. [Last accessed on 2018 Jan 13].