Research Article

Implementing an Oxygen Supplementation and Monitoring Protocol on Inpatient Pediatric Bronchiolitis: An Exercise in Deimplementation

Brian LeCleir, Leslie Jurecko, Alan T. Davis, Nicholas J. Andersen, Dominic Sanfilippo, Surender Rajasekaran, and Anthony Olivero

1. Introduction

Lower respiratory tract infections such as bronchiolitis and viral pneumonia place tremendous strain on the health of young children and the healthcare system. The propensity of these viral infections to affect the most vulnerable of pediatric populations along with their highly variable clinical course leads to frequent hospital admissions that often occur regardless of severity [1]. The respiratory syncytial virus (RSV) alone affects roughly 800,000 children in the United States leading to approximately 20% of the annual birth cohort requiring medical attention yearly [2]. This results in $500 million of direct hospital costs in the United States alone [3]. Hypoxemia requiring supplemental oxygen (O₂) is a key determinant in the decision to hospitalize infants with bronchiolitis and contributes to increased length of stay (LOS) [4]. Updated clinical practice guidelines released by the American Academy of Pediatrics (AAP) in 2014 identify O₂ supplementation and hydration as the mainstay of treatment for bronchiolitis [5]. They establish a blood O₂ saturation (spO₂) of <90%, measured by pulse oximetry as a threshold for initiating O₂ therapy and encourage discontinuing O₂ supplementation and spO₂ monitoring after improvement.
Table 1: Clinical practices discouraged on initiation of protocol.

| Discouraged                                      | Encouraged                                      |
|--------------------------------------------------|------------------------------------------------|
| Chest radiography                               | Weaning O₂ flow and FIO₂                        |
| Viral panel testing                              | Accepting saturation of >90% if child does not appear distressed |
| Blood draws for laboratory testing               | Discontinuing supplemental gas flow when patient is on room air |
| β-Agonist therapy                                | Calling the physician for any perception of deterioration |
| Steroids                                         | Spot checks in pulse oximetry                   |
| Antibiotic therapy                               |                                                |

[6]. However, the integration of those guidelines can be quite challenging as they require ongoing “deimplementation,” a term describing the practice of discouraging care not supported by evidence-based research [7, 8]. These practices are difficult to discourage and often need a concerted effort to eliminate, even in the face of well-executed collaboration [9]. While there are numerous studies evaluating the impact of deimplementing interventions such as chest X-rays, antibiotics, and corticosteroids [10–16], few studies specifically evaluate the impact of a protocol based O₂ supplementation practice [17–19]. Our institution developed and implemented an inpatient pediatric O₂ supplementation and pulse oximetry protocol based on AAP guidelines [5] that aligns with the realities of our clinical practice. We hypothesize that the implementation of this protocol and deimplementation of certain practices lead to a significant decrease in hospital LOS for children admitted with bronchiolitis.

2. Methods

2.1. Intervention. A multidisciplinary team of clinicians at Helen DeVos Children’s Hospital, a tertiary care pediatric hospital, designed and implemented a standardized O₂ supplementation and continuous pulse oximetry protocol (Figure 1) in February 2013. Significant changes to prior medical practice included lowering the threshold for O₂ supplementation from 94% to 90% and clearly defining both the steps and duration over which O₂ supplementation would be titrated and discontinued. This protocol created a formal algorithm that was in clear contrast to a previously highly variable system that was driven by individual care providers. We performed education in the form of online modules, didactics, and formalized multidisciplinary rounds with respiratory therapists, nurses, and providers at the hospital. We also used education to stress and deemphasize some of the practices that were not supported by clinical evidence (Table 1).

2.2. Study Sample. In order to assess this quality initiative, we performed a retrospective review of the medical charts of infants and children (≤24 months of age) hospitalized with bronchiolitis during the preintervention study period of November 1, 2011, through April 30, 2012 (control group), and during the postintervention study period of November 1, 2013, through April 30, 2014 (O₂ protocol group). Exclusion criteria included hospital admission directly to the pediatric intensive care unit (PICU), home O₂ used immediately before or after hospitalization, presence of a tracheostomy tube, congenital heart disease, sickle cell disease, severe anemia, hypotonia, cystic fibrosis, and age > 24 months.

2.3. IRB Statement. Spectrum Health Institutional Review Board reviewed the study as a quality improvement (QI) project and thus was exempted from full review.

2.4. Data Sources. The medical records of patients who met the entry criteria with discharge diagnoses of “acute bronchiolitis” were reviewed. Patients were identified using electronic medical record search queries for International Classification of Diseases, Ninth Revision (ICD-9), primary or secondary diagnosis codes 466.1 (acute bronchiolitis), 466.11 (acute bronchiolitis due to respiratory syncytial virus), and 466.19 (acute bronchiolitis due to other infectious organisms).

2.5. Study Variables. Patient age at admission, gender, respiratory distress score (RDS), duration of supplemental O₂, LOS, seven-day readmission rate, rate of PICU transfer, and coexisting medical problems were collected. LOS, as noted in hours, was determined as the period from the time of admission to the inpatient unit until the time of discharge. We evaluated bronchiolitis illness severity at the time of the first respiratory therapist evaluation by using a modified RDS tool, an evaluation tool based on respiratory rate, accessory muscle use, wheezing, O₂ requirement, and inspiratory to expiratory ratio (Table 2) [20]. RDS values ≥ 3 were considered to be indicative of moderate to severe bronchiolitis.

2.6. Statistical Methods. The data was analyzed using IBM Statistics SPSS v. 21 (Armonk, New York). Quantitative data was compared using a t-test and was reported as the mean ± SD. Nominal data was compared using the χ² test and Fisher’s exact test (when appropriate) and was reported as percentages. Due to the nonnormal distribution of LOS and duration of O₂ supplementation, both of these variables were transformed prior to analysis, while the summary statistics shown are for the untransformed data. The LOS was transformed using the natural log, while the duration of O₂ supplementation was transformed using the inverse hyperbolic sine. In addition, a multiple regression analysis was performed, using the log transformed LOS as the dependent variable, with patient age, O₂ protocol group versus control group,
If oxygen saturation is lower than 90% with spot check, trial suctioning and repositioning. If saturation remains less than 90%, restart oxygen therapy, continuous pulse oximetry, and weaning protocol.

Is patient maintaining oxygen saturation at or above 90%?

Yes

Use global minimum oxygen saturation goal of 90%.

Nursing and/or respiratory therapy should assess patient every 4 hours minimum, attempt oxygen wean, and document trial.

Does patient have an ordered minimum oxygen saturation goal other than 90%?

Yes

Provide therapy according to specific oxygen saturation order. Diagnoses to consider a specific goal include the following: cyanotic heart disease, sickle cell crisis, severe anemia, flap/tissue healing, cystic fibrosis, chronic lung disease, severe hypotonia.

No

Use global minimum oxygen saturation goal of 90%.

Wean oxygen

(i) Increase oxygen to obtain adequate saturation.
(ii) Notify physician if oxygen flow rate doubles from baseline or significant increase in work of breathing.

During the weaning process, patients with rapid clinical improvement may have a 5-minute trial of weaning directly to room air.

Once patient reaches room air, if patient maintains saturations above 90% for 2 hours, may discontinue continuous pulse oximetry. Continue oxygen saturation spot checks with routine vital signs.

Figure 1: Standardized O₂ supplementation and continuous pulse oximetry protocol.
significant difference in LOS between the control and O2 protocol groups. However, the O2 protocol may have a negative affect when bronchiolitis is more severe. However, no direct conclusive relationship between LOS and the protocol could be inferred for moderate to severe disease due to the disproportionately higher RDS patients in the O2 protocol.

We performed a multiple regression analysis to independently assess each subject group and variables affecting the LOS (Table 5). We found age, RDS, and PICU transfer all had a significant correlation with LOS. A one-month increase in age significantly decreased LOS. RDS significantly impacted LOS, whereas a one-unit increase in RDS significantly increased LOS by 11.3% and a two-unit increase in RDS increased LOS by 23.9%. Transfer to the PICU significantly increased LOS by 2.9 fold. The O2 protocol had a significant inverse association with LOS compared to the control group; patients in the O2 protocol group had a 19.7%, decrease in LOS (Table 4).

4. Discussion

High variability in clinical care often contributes to higher healthcare costs and poor adherence to evidence-based practices [21]. For this reason, health care professionals have developed protocols to drive therapies and reduce the lack of concordance. Studies have shown clinical outcomes from nonphysician directed protocols compare favorably with physician driven interventions in multiple settings [22–24]. Such protocols used in the PICU have the potential to save money and reduce resource allocation when used in the non-ICU setting. Our study suggests that this is potentially true. We reduced LOS for patients with mild bronchiolitis (initial RDS < 3) after the implementation of the O2 protocol and deimplementation of unnecessary practices. However, LOS appeared to increase for patients with higher RDS following protocol implementation. The actual impact of RDS on LOS is somewhat confounded by the fact that RDS was higher in the postimplementation years even though the rates of assessment were similar in both groups. When we controlled for the RDS effect by using multivariate regression analysis there was a demonstrable aggregate benefit that was more than compensated for the increased LOS in sicker patients.

Deimplementation and deinnovation are quality improvement (QI) terms that emphasize the abandonment of unnecessary care that is not supported by evidence-based research [7, 8]. These terms focus on the ideal of discouraging use rather than discouraging underuse and have been used in the context of eliminating nonevidence-based practices in bronchiolitis [9]. We paired the initiation of O2 use protocol along with deimplementation of unnecessary practices and hypothesized that a collective approach would have specific value in reducing unnecessary care. This provided a mechanism to overcome the inertia of so-called “established” clinical practice and increase the provider’s sense of efficacy.

The AAP prioritizes the prevention of unnecessary care [5, 6], and a recent study showed benefit to eliminating practices such as X-rays and alpha-agonist therapy in community hospital settings [9]. The deimplementation of such practices requires constant education. It was our experience that the respiratory therapists were the strongest advocates for
will require a more involved escalation of care [26, 27]. For untransformed data.

There is wide variation in the clinical course of bronchiolitis and thus it is difficult to distinguish which patients will require only titration of O
2-agonist therapy and/or hypertonic saline were rarely tried, and when attempted, they were discontinued once lack of efficacy was established. Such an approach has benefit in saving money, eliminating unnecessary interventions, and focusing care on the sickest during the time of the year that hospitals are busiest [25].

Table 3: Demographic and clinical variables.

| Variable                      | Control group (n = 141) | O
2 protocol group (n = 122) | p value |
|-------------------------------|-------------------------|---------------------------|---------|
| Age (months)                  | 6.2 ± 5.5               | 7.0 ± 6.3                 | 0.31    |
| Gender: male/female           | 77 (54.6%)/64 (45.4%)   | 70 (57.4%)/52 (42.6%)     | 0.65    |
| RDS assessed                  | 125/141 (88.7%)         | 110/122 (90.2%)           | 0.69    |
| RDS                           | 2.0 ± 1.5               | 2.7 ± 1.6                 | <0.001  |
| LOS (h)                       | 69.6 ± 67.5             | 72.5 ± 77.4               | 0.374   |
| LOS: RDS < 3                 | 70.6 ± 60.3             | 51.6 ± 42.6               | 0.005   |
| LOS: RDS ≥ 3                | 74.0 ± 53.4             | 95.2 ± 95.7               | 0.535   |
| Duration of O
2 supplementation (h)   | 38.3 ± 58.4             | 40.9 ± 62.9               | 0.638   |
| Number requiring supplemental O
2           | 134/141 (95.0%)         | 113/122 (92.6%)           | 0.414   |
| PICU transfer                 | 10/141 (6.7%)           | 13/122 (9.7%)             | 0.310   |
| 7-day readmission             | 1/141 (0.7%)            | 2/122 (1.6%)              | 0.598   |

Data are presented as the mean ± SD or as percentages; O
2, oxygen; LOS, length of stay; RDS, respiratory distress score; PICU, pediatric intensive care unit. a Data were analyzed using log transformed data, values shown are untransformed data. b Control group n = 87; oxygen protocol group n = 49. c Control group n = 38; oxygen protocol group n = 61.

Table 4: Study group LOS* and PICU transfer compared by RDS.

| Outcome measure                | RDS < 3 (n = 141) | RDS ≥ 3 (n = 99) | p value |
|-------------------------------|-------------------|-----------------|---------|
| Control group LOS (h) b        | 70.6 ± 60.3       | 74.0 ± 53.4     | 0.697   |
| O
2 protocol group LOS (h) f    | 51.3 ± 41.4       | 92.4 ± 94.3     | 0.005   |
| PICU transfer                  | 9/136 (6.6%)      | 12/99 (12.1%)   | 0.144   |

Data are presented as the mean ± SD or as percentages; O
2, oxygen; LOS, length of stay; RDS, respiratory distress score; PICU, pediatric intensive care unit. a Data analyzed using log transformed data, values shown are untransformed data. b RDS < 3 group n = 87; RDS ≥ 3 group n = 38; c RDS < 3 group n = 49; RDS ≥ 3 group n = 61.

Table 5: Multiple regression analysis, with log transformed length of stay (LOS) as the dependent variable.

| Variable                      | β-Coefficient | 95% CI | p value |
|-------------------------------|---------------|--------|---------|
| O
2 protocol group a           | −0.22         | −0.42 to −0.02 | 0.030   |
| Age                           | −0.02         | −0.04 to −0.01 | 0.008   |
| RDS                           | 0.11          | 0.04 to 0.17  | 0.001   |
| PICU Transfer                 | 1.06          | 0.72 to 1.41  | <0.001  |

CI, confidence interval; O
2, oxygen; RDS, respiratory distress score; PICU, pediatric intensive care unit. a Control group (reference group) versus the O
2 protocol group.

avoiding such unnecessary therapy. Applications of nebulized β-agonist therapy and/or hypertonic saline were rarely tried, and when attempted, they were discontinued once lack of efficacy was established. Such an approach has benefit in saving money, eliminating unnecessary interventions, and focusing care on the sickest during the time of the year that hospitals are busiest [25].

This study does have limitations in that the single center retrospective design with historical controls limits our ability to conclusively state that there is benefit to the O
2 supplementation protocol. This study design by nature is an observational study. It is possible that natural cycle of viral virulence, unknown changes to childhood immunity, and other unknown variations may affect this study. In addition, other interventions independent of this oxygen protocol may have played a role in these outcomes, in particular LOS. One criticism for our study might be that the RDS score we used is more of an amalgam of other scores available in the literature rather than a validated score. However, the score was uniformly applied to all patients, and clearly an increase in the score was associated with an increase in respiratory distress. Also, the RDS scores were notably higher on average in the O
2 protocol group. It is possible this is due to a true difference in illness severity between the seasons evaluated, or the increased frequency of respiratory therapist monitoring mandated by the O
2 protocol resulted in increased provider confidence in keeping patients with higher illness severity on general inpatient floors. Regardless, we presented data that the weaning protocol might have benefit in a selected group of milder bronchiolitis cases.

5. Conclusion

This study is unique in that it highlights both the benefit and the unforeseen effect of applying protocols to patient care. Our application of the AAP guidelines in a collaborative manner saw a decrease in LOS of children with milder bronchiolitis while LOS for the sicker patients increased.
However, the overall effect was one of the benefits with potential to exert an impact on appropriate hospital triage and cost. This translates into a benefit for both patients and their families.

**Abbreviations**

RSV: Respiratory syncytial virus  
O2: Oxygen  
LOS: Length of stay  
AAP: American Academy of Pediatrics  
spO2: Blood oxygen saturation  
PICU: Pediatric intensive care unit  
QI: Quality improvement  
ICD-9: International Classification of Diseases, Ninth Revision  
RDS: Respiratory distress score.

**Conflicts of Interest**

The authors declare that they have no conflicts of interest.

**Acknowledgments**

The authors thank Matthew Pridgeon, MD, who helped to conceive and implement the oxygen supplementation protocol, and Stephanie Raymundo, MD, who aided in data acquisition and in conceptualizing this study.

**References**

[1] A. Norwood, J. M. Mansbach, S. Clark, M. Waseem, and C. A. Camargo Jr., "Prospective multicenter study of bronchiolitis: Predictors of an unscheduled visit after discharge from the emergency department," *Academic Emergency Medicine*, vol. 17, no. 4, pp. 376–382, 2010.

[2] C. B. Hall, G. A. Weinberg, M. K. Iwane et al., "The Burden of respiratory syncytial virus infection in young children," *The New England Journal of Medicine*, vol. 360, no. 6, pp. 588–598, 2009.

[3] K. Hasegawa, Y. Tsugawa, D. F. M. Brown, J. M. Mansbach, and C. A. Camargo Jr., "Trends in bronchiolitis hospitalizations in the United States, 2000–2009," *Pediatrics*, vol. 132, no. 1, pp. 28–36, 2013.

[4] A. R. Schroeder, A. K. Marmor, R. H. Pantell, and T. B. Newman, "Impact of pulse oximetry and oxygen therapy on length of stay in bronchiolitis hospitalizations," *Archives of Pediatrics & Adolescent Medicine*, vol. 158, no. 6, pp. 527–530, 2004.

[5] S. Ralston, A. Lieberthal, H. Meissner et al., "Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis," *Pediatrics*, vol. 134, no. 5, pp. e1474–e1502, 2014.

[6] R. A. Quinonez and A. R. Schroeder, " Safely doing less and the new AAP bronchiolitis guideline," *Pediatrics*, vol. 135, no. 5, pp. 793–795, 2015.

[7] V. Prasad and J. P. A. Ioannidis, "Evidence-based de-implementation for contradicted, unproven, and aspiring healthcare practices," *Implementation Science*, vol. 9, no. 1, article no. 1, 2014.

[8] P. A. Ubel and D. A. Asch, "Creating value in health by understanding and overcoming resistance to de-innovation," *Health Affairs*, vol. 34, no. 2, pp. 239–244, 2015.

[9] S. L. Ralston, M. D. Garber, E. Rice-Conboy et al., "A multicenter collaborative to reduce unnecessary care in inpatient bronchiolitis," *Pediatrics*, vol. 137, no. 1, Article ID e20150851, 2016.

[10] S. Schuh, A. Lalani, U. Allen et al., "Evaluation of the utility of radiography in acute bronchiolitis," *Journal of Pediatrics*, vol. 150, no. 4, pp. 429–433, 2007.

[11] K. Purcell and J. Fergie, "Lack of usefulness of an abnormal white blood cell count for predicting a concurrent serious bacterial infection in infants and young children hospitalized with respiratory syncytial virus lower respiratory tract infection," *The Pediatric Infectious Disease Journal*, vol. 26, no. 4, pp. 311–315, 2007.

[12] J. D. Kellner, A. Ohlsson, A. M. Gadomski, and E. E. L. Wang, "Efficacy of bronchodilator therapy in bronchiolitis: a meta-analysis," *Archives of Pediatrics & Adolescent Medicine*, vol. 150, no. 11, pp. 1166–1172, 1996.

[13] A. M. Gadomski and M. B. Scribani, "Bronchodilators for bronchiolitis," *Cochrane Database of Systematic Reviews*, vol. 6, Article ID CD001266, pp. 1–74, 2014.

[14] L. Hartling, N. Wiebe, K. Russell, H. Patel, and T. P. Klassen, "A meta-analysis of randomized controlled trials evaluating the efficacy of epinephrine for the treatment of acute viral bronchiolitis," *Archives of Pediatrics & Adolescent Medicine*, vol. 157, no. 10, pp. 957–964, 2003.

[15] R. M. Fernandes, L. M. Bialy, B. Vandermeer et al., "Glucocorticoids for acute viral bronchiolitis in infants and young children," *Cochrane Database of Systematic Reviews*, no. 6, Article ID CD004878, 2013.

[16] R. Farley, G. K. P. Spurling, L. Eriksson, and C. B. Del Mar, "Antibiotics for bronchiolitis in children under two years of age," *Cochrane Database of Systematic Reviews*, vol. 10, Article ID CD005189, 2014.

[17] J. Cheney, S. Barber, L. Altamirano et al., "A clinical pathway for bronchiolitis is effective in reducing readmission rates," *Journal of Pediatrics*, vol. 147, no. 5, pp. 622–626, 2005.

[18] S. Cunningham, A. Rodriguez, T. Adams et al., "Oxygen saturation targets in infants with bronchiolitis (BIDS): A double-blind, randomised, equivalence trial," *The Lancet*, vol. 386, no. 9998, pp. 1041–1048, 2015.

[19] S. Cunningham and A. McMurray, "Observational study of two oxygen saturation targets for discharge in bronchiolitis," *Archives of Disease in Childhood*, vol. 97, no. 4, pp. 361–363, 2012.

[20] J. J. Downes, D. Vidyasagar, G. M. Morrow, and T. R. Boggs, "Respiratory distress syndrome of newborn infants: I. New clinical scoring system (RDS score) with acid-base and blood-gas correlations," *Clinical Pediatrics*, vol. 9, no. 6, pp. 325–331, 1970.

[21] D. F. Willson, S. D. Horn, J. O. Hendley, R. Smout, and J. Gassaway, "Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness," *Pediatrics*, vol. 108, no. 4, pp. 851–855, 2001.

[22] S. Martin, J. Martin, and T. Seigler, "Evidence-based protocols to guide pulse oximetry and oxygen weaning in inpatient children with asthma and bronchiolitis: a pilot project," *Journal of Pediatric Nursing*, vol. 30, no. 6, pp. 888–895, 2015.

[23] N. D. Werre, E. L. Boucher, and W. D. Beachey, "Comparison of therapist-directed and physician-directed respiratory care in COPD subjects with acute pneumonia," *Respiratory Care*, vol. 60, no. 2, pp. 151–154, 2015.
[24] F. Hermeto, M. N. Bottino, K. Vaillancourt, and G. M. Sant’Anna, “Implementation of a respiratory therapist-driven protocol for neonatal ventilation: Impact on the premature population,” *Pediatrics*, vol. 123, no. 5, pp. e907–e916, 2009.

[25] S. L. Ralston, E. C. Atwood, M. D. Garber, and A. V. Holmes, “What works to reduce unnecessary care for bronchiolitis? A qualitative analysis of a national collaborative,” *Academic Pediatrics*, vol. 17, no. 2, pp. 198–204, 2017.

[26] M. G. Roback and M. N. Baskin, “Failure of oxygen saturation and clinical assessment to predict which patients with bronchiolitis discharged from the emergency department will return requiring admission,” *Pediatric Emergency Care*, vol. 13, no. 1, pp. 9–11, 1997.

[27] L. Brown, D. G. Reiley, A. Jeng, and S. M. Green, “Bronchiolitis: can objective criteria predict eligibility for brief hospitalization?” *Canadian Journal of Emergency Medicine*, vol. 5, no. 04, pp. 239–244, 2003.