Factors predicting amoxicillin prescribing in primary care among children: a cohort study

Abstract

Background Antibiotic prescribing during childhood, most commonly for respiratory tract infections (RTIs), contributes to antimicrobial resistance, which is a major public health concern.

Aim To identify factors associated with amoxicillin prescribing and RTI consultation attendance in young children in primary care.

Design and setting Cohort study in Bradford spanning pregnancy to age 24 months, collected 2007–2013, linked to electronic primary care and air pollution data.

Method Amoxicillin prescribing and RTI consultation rates/1000 child-years were calculated. Mixed-effects logistic regression models were fitted with general practice (GP) surgery as the random effect.

Results The amoxicillin prescribing rate among 2493 children was 710/1000 child–years during year 1 (95% confidence interval [CI] = 677 to 744) and 780/1000 (95% CI = 745 to 816) during year 2. During year 1, odds of amoxicillin prescribing were higher for boys [adjusted odds ratio (aOR) 1.36, 95% CI = 1.14 to 1.61], infants from socioeconomically deprived households [aOR 1.36, 95% CI = 1.00 to 1.86], and infants with a Pakistani ethnic background [with mothers born in the UK [aOR 1.44, 95% CI = 1.06 to 1.94] and outside [aOR 1.42, 95% CI = 1.07 to 1.90)]. During year 2, odds of amoxicillin prescribing were higher for infants with a Pakistani ethnic background [with mothers born in the UK [aOR 1.46, 95% CI = 1.10 to 1.94] and outside [aOR 1.56, 95% CI = 1.19 to 2.04]] and those born <39 weeks gestation [aOR 1.20, 95% CI = 1.04 to 1.40]. Additional risk factors included caesarean delivery, congenital anomalies, overcrowding, birth season, and childcare attendance, with GP surgery explaining 7%–9% of variation.

Conclusion Socioeconomic status and ethnic background were associated with amoxicillin prescribing during childhood. Efforts to reduce RTI spread in household and childcare settings may reduce antibiotic prescribing in primary care.

Keywords anti-bacterial agents; drug prescriptions; drug resistance; medical record linkage; paediatrics; respiratory tract infections.

INTRODUCTION

Antimicrobial resistance is a public health emergency, to which prescribing of antibiotics contributes. In the UK most antibiotics are prescribed in primary care. Several studies have found that patient-level factors including gender, flu vaccination status, obesity, smoking, previous antibiotic receipt, and comorbidities increase antibiotic prescribing among adults. Prescribing rates also vary geographically according to area-level deprivation and the proportion of patients with comorbidities. Few studies have examined antibiotic use among children, despite a third of children aged <5 years being prescribed at least one antibiotic annually. Childhood antibiotic prescribing in the UK peaks between the ages of 1 and 4 years, and three-quarters of antibiotics prescribed to children in primary care are for respiratory tract infections (RTIs). Furthermore, antibiotic prescribing in childhood is linked with adverse health outcomes in later childhood, including asthma and obesity.

The severity of presenting illness determines the likelihood of being prescribed an antibiotic for common childhood infections. Therefore, the authors expect antibiotic prescribing rates among children to differ according to the factors that increase the risk of contracting common infections, including overcrowding and having older siblings, and factors that reduce the immune system’s ability to fight infections if exposed, such as prematurity, exposure to air pollution, and lack of breastfeeding. Furthermore, qualitative studies suggest parent–clinician communication may have an impact on childhood antibiotic prescribing. However, few studies have examined risk factors for antibiotic prescribing among children.

This study set out to establish child, family, and environmental factors that were associated with prescribing of amoxicillin to children aged <2 years, to inform antimicrobial stewardship efforts among children. In order to examine the importance of individual and primary care-level factors, the proportion of total variation in amoxicillin prescribing attributed to GP surgery-level variation was calculated.

This study focused on amoxicillin because it is the most commonly prescribed antibiotic in UK primary care. As amoxicillin is most commonly prescribed for RTIs, the risk factors associated with primary care consultation rates for RTIs were also examined.

METHOD

Data sources Data from the Allergy and Infection (ALL-IN) substudy of the Born in Bradford (BiB) cohort was used in this study. ALL-IN and BiB were associated with amoxicillin prescribing during childhood.
have been described in detail elsewhere.18,19 Briefly, pregnant women attending the Bradford Royal Infirmary for an oral glucose tolerance test (offered to all women booked for delivery at the Bradford Royal Infirmary at 26–28 weeks of pregnancy) between March 2007 and November 2010 were invited to participate in BiB. Parents completed baseline questionnaires, and details about the birth were extracted from hospital electronic maternity records. Details of congenital anomalies were obtained from a local register linked to the cohort.20 Linkage to routinely collected electronic primary care data facilitated follow-up.18

Children born from March 2008 whose parents had completed the BiB baseline questionnaires were invited to participate in the ALL-IN subcohort when aged 11 months.19 Families who agreed to participate in ALL-IN completed questionnaires at ages 12 and 24 months [completed February 2009 to September 2013]. The study used openly available data on annual average levels of fine particulate matter (≤2.5 µm, PM2.5) modelled at a 1 × 1 km grid across the UK using atmospheric transport models, from the Department for Environment, Food and Rural Affairs. PM2.5 levels were mapped to lower super output areas (LSOA, a small geographical area with an average population of 1500 people) and linked to the cohort via LSOA of the infant’s home address.21–23

Outcome variables
The primary outcome was the receipt of at least one amoxicillin prescription in primary care during the first and second year of life [see Supplementary Table S1].21 The secondary outcomes were at least one primary care consultation for upper RTIs [URTIs] or lower RTIs [LRTIs]. Diagnostic information from electronic primary care records were recorded using Read codes version 3 (CTV3; see Supplementary Table S2).24–26

Exposure variables
Table 1 summarises the source and characteristics of all outcome and exposure variables. Gestational age was coded as a binary variable for being born preterm/early-term (<39 weeks) or term (≥39 weeks). Initially 37 weeks was used to define a variable for preterm/term, however, the number of infants born <37 weeks was low (n = 112/2493, 4.5%). The five-category variable defining socioeconomic status had previously been derived from the BiB baseline questionnaire.27 Information on whether the child had spent any time in formal childcare (for example, at a nursery or with a childminder), lived in a household with ≥6 people, or had exposure to indoor household pollutants (such as mould/damp or gas cookers) was collected via parental questionnaires.

The 1 × 1 km annual ambient PM2.5 levels were mapped to the LSOA of the child’s residence at birth and age 1 year. PM2.5 exposure during pregnancy was calculated using the average PM2.5 level in the calendar year(s) covering the gestation period, weighted by the number of days’ gestation during each calendar year. PM2.5 exposure during the first year of life was also weighted by the number of days spanning each calendar year. The authors calculated annual quartiles of average PM2.5 levels across the Bradford postcode area and derived two variables to indicate weighted PM2.5 exposures at the child’s LSOA, relative to the distribution of PM2.5 exposures in the Bradford area, throughout gestation and the first year of life. As few children lived in lower pollution areas, a three-category variable was created to indicate PM2.5 exposure during pregnancy and the first year of life: first/second quartile, third quartile, and fourth quartile of BD postcode area levels. Summary statistics for the absolute levels of PM2.5 exposure corresponding to each group can be found in Supplementary Table S3.

Statistical analyses
Amoxicillin prescribing rates, and rates of consultations for URTIs and LRTIs per 1000 child-years for the first and second years of life, overall and according to each exposure variable of interest were calculated. The 95% confidence intervals (CIs) were calculated to compare rates...
Crude and mutually adjusted mixed-effects logistic regression models (‘xtlogit’ function in Stata) were fitted to determine factors associated with receiving at least one amoxicillin prescription in the first and second years of life. GP surgery was included as the random intercept to determine surgery- and child-level variation in prescribing. For the small number of children who changed GP surgery during the year, they were assigned to the surgery they were registered with for longest.

Table 1. Source and characteristics of each variable included in the analysis

Variable	Source	Type	Coding	
Primary outcome	Electronic primary care records	Binary	≥1 prescription each year: yes/no	
Secondary outcome	Electronic primary care records	Binary	≥1 consultation each year: yes/no	
Exposure	Maternity records	Binary	Male, Female	
Sex of infant	Maternity records	Binary	Vaginal, Caesarean	
Delivery mode	Maternity records	Categorical	January–March, April–June, July–September, October–December	
Quarter of birth	Maternity records	Categorical	<39 weeks, ≥39 weeks	
Gestational age	Maternity records	Binary	0 congenital anomalies, ≥1 congenital anomaly	
Congenital anomalies	Congenital anomaly register at Bradford Royal Infirmary	Binary	White British, Pakistan, UK-born, Pakistan, non-UK born, Other	
Ethnic background	BiB baseline questionnaire	Categorical	Least deprived and most educated, Employed not materially deprived, Employed with no access to money, On benefits but coping, Most deprived	
Socioeconomic status	BiB baseline questionnaire	Categorical	Smoked during pregnancy: yes/no, 1 month, >1 month	<6 months, ≥6 months
Maternal smoking during pregnancy	BiB baseline questionnaire	Binary	Child in formal childcare: yes/no	
Breastfeeding duration	ALL-IN 12-month questionnaire	Categorical	Child in overcrowded (≥6 people) dwelling: yes/no	
Childcare	ALL-IN 12-month and 24-month questionnaires	Binary	Child in dwelling with visible mould/damp: yes/no	
Number of people in household	ALL-IN 12-month and 24-month questionnaires	Binary	Gas cooking only, Gas and electric cooking, Electric cooking only	
Household mould/damp	ALL-IN 12-month and 24-month questionnaires	Binary	1st/2nd quartile, 3rd quartile, 4th quartile	

ALL-IN = allergy and infection. BiB = Born in Bradford. LRTI = lower respiratory tract infection. LSOA = lower super output area. PM$_{2.5}$ = particulate matter ≤2.5 µm. URTI = upper respiratory tract infection.

across exposures. Crude and mutually adjusted mixed-effects logistic regression models (‘xtlogit’ function in Stata) were fitted to determine factors associated with receiving at least one amoxicillin prescription in the first and second years of life. GP surgery was included as the random intercept to determine surgery- and child-level variation in prescribing. For the small number of children who changed GP surgery during the year, they were assigned to the surgery they were registered with for longest.

Based on a priori knowledge, all mutually adjusted models included ethnic background, socioeconomic status, and sex as core
Table 2. Summary of cohort characteristics, and amoxicillin prescribing rates

Baseline characteristic	Cohort, n/N(%)	Amoxicillin prescribing rate/1000 child–years, rate (95% CI)	
		Year 1	Year 2
Total		710 (677 to 744)	780 (745 to 816)
Sex of infant			
Male	1264/2481 (50.9)	776 (728 to 827)	823 (774 to 875)
Female	1217/2481 (49.1)	642 (597 to 689)	735 (688 to 786)
Missing	12/2493 (0.5)	-	-
Mother’s ethnic background			
White British	920/2491 (36.9)	529 (483 to 579)	638 (587 to 692)
Pakistani, UK born	438/2491 (17.6)	845 (760 to 936)	900 (813 to 994)
Pakistani, not UK born	782/2491 (31.4)	969 (901 to 1042)	935 (868 to 1006)
Other	351/2491 (14.1)	436 (369 to 512)	659 (576 to 751)
Missing	8/2493 (0.3)	-	-
Socioeconomic status			
Least deprived and most educated	507/2483 (20.4)	608 (541 to 680)	704 (632 to 782)
Employed not materially deprived	443/2491 (17.8)	505 (440 to 576)	711 (632 to 795)
Employed with no access to money	446/2485 (17.9)	641 (558 to 728)	786 (705 to 871)
On benefits but coping	717/2485 (28.9)	872 (805 to 944)	881 (813 to 953)
Most deprived	372/2485 (15.0)	856 (763 to 956)	774 (688 to 872)
Missing	8/2493 (0.3)	-	-
Mother smoking during pregnancy			
No	2147/2491 (86.2)	724 (688 to 761)	794 (758 to 835)
Yes	344/2491 (13.8)	617 (536 to 706)	682 (596 to 777)
Missing	2/2493 (0.1)	-	-
Congenital anomalies			
No	2409/2493 (96.6)	702 (669 to 737)	763 (728 to 799)
Yes	84/2493 (3.4)	940 (743 to 1173)	1270 (1039 to 1537)
Missing	0/2493 (0.0)	-	-
Gestational age			
Term/late-term	1796/2481 (72.4)	703 (665 to 744)	749 (710 to 791)
Early/preterm	685/2481 (27.6)	729 (666 to 796)	862 (793 to 935)
Missing	12/2493 (0.5)	-	-
Quarter of birth			
January–March	643/2493 (25.8)	696 (632 to 764)	731 (665 to 801)
April–June	601/2493 (24.1)	833 (741 to 910)	775 (706 to 850)
July–September	608/2493 (24.4)	694 (629 to 765)	805 (735 to 880)
October–December	641/2493 (25.7)	624 (565 to 690)	810 (741 to 883)
Missing	0/2493 (0.0)	-	-
Delivery mode			
Vaginal	1964/2481 (79.2)	693 (656 to 731)	768 (729 to 808)
Caesarean	517/2481 (20.8)	778 (703 to 859)	829 (751 to 912)
Missing	12/2493 (0.5)	-	-
Breastfeeding duration, months			
<1	1096/2482 (44.2)	774 (723 to 829)	841 (787 to 898)
1–<6	598/2482 (24.1)	706 (639 to 777)	765 (696 to 839)
≥6	788/2482 (31.7)	622 (547 to 698)	714 (656 to 774)
Missing	11/2493 (0.4)	-	-

...continued

confounders. Due to the exploratory nature of this study, additional exposure variables were selected for inclusion if they improved model fit, determined using likelihood ratio tests (P-value < 0.05). Likelihood ratio tests were conducted until no further variables improved model fit. Variables were dropped from the final model if they no longer improved fit in the fully adjusted model. Model fitting and selection procedures were repeated for having at least one URTI or LRTI consultation during the first and second years of life.

In total, 491 participants did not attend the ALL-IN 24-month follow-up. Therefore, multiple imputation using chained equations (MICE; `mi` function in Stata; 30 imputed datasets) was used to impute data for the 24-month follow-up. The MICE model included all variables in the substantive model (including outcome variables), variables from the 12-month questionnaires, additional variables predictive of missingness, and GP surgery. To avoid perfect prediction, in which categorical outcomes are predicted almost perfectly resulting in instability during estimation, all GP surgeries with <10 participants were combined into one group (n = 68/2493, 2.7%). Models for the second year of life were undertaken with and without MICE as a sensitivity analysis. All analyses were undertaken in Stata (version 16.1).

RESULTS

The cohort included 2493 singleton children. In total, 2002 (80.3%) attended the 24-month follow-up [see Supplementary Figure S1]. In total, 48.9% of all mothers had a Pakistani ethnic background (n = 1220/2493) and 43.7% were from the two most deprived socioeconomic groups (n = 1089/2493) (Table 2).

Amoxicillin prescribing

A total of 1594/2493 children (63.9%) received ≥1 amoxicillin prescription during the first 2 years of life; 42.5% (n = 1060/2493) during the first year, and 46.9% (n = 1169/2493) during the second year (see Supplementary Table S4). Prescribing rates were 710 (95% CI = 677 to 744) per 1000 child-years during their first year of life, and 780 (95% CI = 745 to 816) during the second year (Table 2). Table 3 displays the best-fitting model for amoxicillin prescribing during the first and second years of life. Compared with children of White British mothers, the odds of receiving at least one amoxicillin prescription during the first year of life were higher for children with mothers with a Pakistani ethnic background, regardless of their country of birth (UK-born Pakistani mothers: adjusted odds ratio [aOR] 1.44, 95% CI = 1.06 to 1.94; Pakistani mothers born outside UK: aOR 1.42, 95% CI = 1.07 to 1.90) and lower for those with ‘other’ ethnic backgrounds (aOR 0.70, 95% CI = 0.52 to 0.96). Infants from the most deprived households had...
Table 2 continued. Summary of cohort characteristics, and amoxicillin prescribing rates

Characteristics collected at 12 months and 24 months	Cohort, n/N% (N=2493)	Amoxicillin prescribing rate/1000 child-years, rate (95% CI)
Quartile of PM$_{2.5}$ in relation to Bradford level		
1st/2nd quartile	904/2493 (36.3)	839/2476 (33.9)
		623 (573 to 678)
		802 (742 to 865)
3rd quartile	1116/2493 (44.8)	1039/2476 (42.0)
		769 (718 to 822)
		784 (731 to 840)
4th quartile	473/2493 (19.0)	598/2476 (24.2)
		738 (662 to 821)
		750 (681 to 824)
Missing	22493 (0.0)	172493 (0.7)
Formal childcare attendance		
No	2038/2493 (82.4)	1511/1935 (78.1)
		746 (708 to 784)
		793 (748 to 839)
Yes	444/2493 (17.6)	423/1935 (21.9)
		553 (485 to 627)
		852 (766 to 943)
Missing	11/2493 (0.4)	598/2452 (22.4)
Household mould/damp		
No mould or damp	1912/2493 (77.3)	1571/2001 (78.5)
		702 (665 to 741)
		808 (764 to 854)
Mould or damp	563/2493 (22.7)	430/2001 (21.5)
		746 (674 to 822)
		803 (720 to 893)
Missing	18/2493 (0.7)	492/2493 (19.7)
Number of people in household		
2–5	1719/2482 (69.3)	134/1994 (67.4)
		593 (557 to 631)
		705 (666 to 747)
≥6	763/2482 (30.7)	651/1994 (32.6)
		977 (908 to 1050)
		948 (880 to 1020)
Missing	11/2493 (0.4)	499/2493 (20.0)
Cooking type		
Electric cooking only	312/2481 (12.6)	226/2002 (11.3)
		560 (480 to 651)
		635 (534 to 750)
Electric and gas cooking	467/2481 (18.8)	361/2002 (18.0)
		569 (502 to 643)
		699 (614 to 791)
Gas cooking only	1702/2481 (68.6)	1415/2002 (70.7)
		777 (735 to 821)
		862 (814 to 912)
Missing	122493 (0.5)	491/2493 (19.7)

aAmoxicillin prescribing rates per 1000 child–years during the first 2 years of life for the total cohort, and summarised according to exposure categories. bPM$_{2.5}$ exposure for year 1 represents exposure in utero and year 2 to Bradford level. cIQR = interquartile range. PM$_{2.5}$ = particulate matter ≤2.5 µm.

higher odds of being prescribed amoxicillin (aOR 1.36, 95% CI = 1.00 to 1.86) compared with the least deprived.

Odds were also higher for infants who were male, had at least one congenital anomaly, born in April–June (compared with January–March), born via caesarean section, living in a household with ≥6 people, and attending formal childcare. Based on the intraclass correlation coefficient, GP surgery-level variation explained 9% (95% CI = 6 to 15) of the residual variation in amoxicillin prescribing during year 1.

The odds of receiving at least one amoxicillin prescription during the second year of life were higher for children with mothers with a Pakistani ethnic background (regardless of whether mothers were born within [aOR 1.46, 95% CI = 1.10 to 1.94] or outside of [aOR 1.56, 95% CI = 1.19 to 2.04] the UK) compared with children with White British mothers. Children born preterm/early-term and those attending formal childcare also had higher odds of amoxicillin prescribing (aOR 1.20, 95% CI = 1.00 to 1.45 and 1.45, 95% CI = 1.12 to 1.87, respectively).

GP surgery-level variation explained 7% (95% CI = 4 to 11) of the residual variation in amoxicillin prescribing during year 2.

No significant associations were observed between amoxicillin prescribing and maternal smoking during pregnancy, breastfeeding duration, nor exposure to environmental PM$_{2.5}$, household mould or damp, or household gas cooking during either year. Model results based on complete cases were comparable (see Supplementary Table S5).

DISCUSSION

Summary

This study found that 42.5% (n = 1060/2493) of children were prescribed amoxicillin at least once during their first year of life and 46.9% (n = 1169/2493) during their second year.

Having a mother with a Pakistani ethnic background, irrespective of their country...
Variable	Crude	Mutually adjusted (n = 2450)	Crude	Mutually adjusted (n = 2476)
Sex of infant				
Male	1.33 (1.13 to 1.58)	1.36 (1.14 to 1.61)	1.13 (0.96 to 1.33)	1.14 (0.96 to 1.34)
Female	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Mother’s ethnic background				
White British	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Pakistani, UK born	1.44 (1.09 to 1.89)	1.44 (1.06 to 1.94)	1.36 (1.04 to 1.77)	1.46 (1.10 to 1.94)
Pakistani, not UK born	1.48 (1.16 to 1.91)	1.42 (1.07 to 1.90)	1.40 (1.10 to 1.77)	1.56 (1.19 to 2.04)
Other	0.68 (0.51 to 0.90)	0.70 (0.52 to 0.96)	0.68 (0.67 to 1.15)	0.98 (0.74 to 1.31)
Socioeconomic status				
Least deprived and most educated	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Employed not materially deprived	0.82 (0.62 to 1.09)	0.79 (0.59 to 1.06)	1.15 (0.88 to 1.50)	1.13 (0.85 to 1.50)
Employed with no access to money	0.95 (0.72 to 1.25)	0.92 (0.69 to 1.22)	1.16 (0.88 to 1.50)	1.11 (0.85 to 1.44)
On benefits but coping	1.13 (0.88 to 1.45)	0.92 (0.70 to 1.21)	1.38 (1.08 to 1.76)	1.26 (0.97 to 1.64)
Most deprived	1.41 (1.06 to 1.87)	1.36 (1.00 to 1.86)	1.28 (0.96 to 1.69)	1.26 (0.93 to 1.70)
Mother smoking during pregnancy				
No	1.00 [ref]	—	1.00 [ref]	—
Yes	1.02 (0.80 to 1.32)	—	1.00 (0.78 to 1.27)	—
Congenital anomalies				
No	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Yes	1.78 (1.12 to 2.83)	1.63 (1.01 to 2.63)	1.78 (1.11 to 2.83)	1.57 (0.98 to 2.51)
Gestational age				
Term/late-term	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Early/preterm	0.99 (0.82 to 1.20)	0.97 (0.80 to 1.18)	1.22 (1.01 to 1.46)	1.20 (1.00 to 1.45)
Quarter of birth				
January–March	1.00 [ref]	1.00 [ref]	1.00 [ref]	—
April–June	1.26 (0.99 to 1.60)	1.33 (1.04 to 1.69)	1.13 (0.89 to 1.42)	—
July–September	0.99 (0.78 to 1.28)	0.99 (0.77 to 1.26)	1.20 (0.95 to 1.51)	—
October–December	0.94 (0.74 to 1.18)	0.91 (0.71 to 1.15)	1.27 (1.01 to 1.59)	—
Delivery mode				
Vaginal	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Caesarean	1.21 (0.99 to 1.49)	1.23 (1.00 to 1.53)	1.10 (0.90 to 1.35)	1.08 (0.88 to 1.32)
Breastfeeding duration, months				
<3	1.29 (1.05 to 1.57)	1.21 (0.97 to 1.50)	1.29 (1.07 to 1.57)	1.22 (0.99 to 1.50)
1–<6	1.17 (0.93 to 1.47)	1.11 (0.87 to 1.41)	1.06 (0.85 to 1.33)	0.98 (0.78 to 1.24)
≥6	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Quartile of PM2.5 in relation to Bradford level				
1st/2nd quartile	1.00 [ref]	—	1.00 [ref]	1.00 [ref]
3rd quartile	1.11 (0.91 to 1.37)	—	0.99 (0.81 to 1.23)	0.94 (0.76 to 1.16)
4th quartile	1.03 (0.78 to 1.36)	—	1.03 (0.80 to 1.32)	0.97 (0.75 to 1.26)
Formal childcare				
No	1.00 [ref]	1.00 [ref]	1.00 [ref]	1.00 [ref]
Yes	0.99 (0.79 to 1.25)	1.29 (1.00 to 1.66)	1.22 (0.97 to 1.53)	1.45 (1.12 to 1.87)
Household mould/damp				
No mould or damp	1.00 [ref]	1.00 [ref]	1.00 [ref]	—
Mould or damp	1.01 (0.82 to 1.23)	0.90 (0.80 to 1.21)	0.90 (0.79 to 1.21)	—
Number of people in household				
2–5	1.00 [ref]	1.00 [ref]	1.00 [ref]	—
≥6	1.54 (1.27 to 1.86)	1.41 (1.14 to 1.74)	1.23 (1.02 to 1.49)	—

... continued

Table 3. Associations between exposures and amoxicillin prescribing during the first 2 years of life.
of birth, and childcare attendance were associated with amoxicillin prescribing across both years. Socioeconomic status, birth characteristics, and household overcrowding were significantly associated with amoxicillin prescribing during the first year only, whereas prematurity was significantly associated with amoxicillin prescribing during the second year only. Less than 10% of the total variance was attributed to GP surgery-level variation in amoxicillin prescribing.

Ethnic background and childcare attendance were significantly associated with having at least one primary care consultation for URTIs and LRTIs. Breastfeeding status was associated with URTI consultation attendance only, whereas socioeconomic status, congenital anomalies, and delivery mode were associated with LRTI consultation attendance only. In total, 11%–15% of the variation in the probability of attending at least one RTI consultation was attributed to GP surgery-level variation.

Strengths and limitations

A strength of this study is the comprehensive analysis of risk factors for amoxicillin prescribing, enabled by linking rich, longitudinal questionnaire data to routinely collected maternity and primary care records, and air pollution data. The ethnic diversity of the BiB cohort makes it particularly well suited to study ethnic differences in child health outcomes.

However, first, the data include children growing up in Bradford, and a limitation is therefore that this may not be representative of all children in England. Second, some environmental exposures were collected by parental report and may be subject to recall bias. Third, the indications for antibiotic prescribing were not examined, as these are inconsistently recorded in primary care.29 Further, this study focused on prescribing in primary care, excluding prescribing for more severe indications in hospitals.2 Lastly, the prescribing data were collected between 2008 and 2013, before the development of the UK 5-year antimicrobial resistance strategy to reduce overprescribing of antibiotics.2 Despite these limitations, these data are well suited to provide new insights on amoxicillin prescribing patterns among children in England.

Comparison with existing literature

Rates of amoxicillin prescribing in the current study are considerably higher than previous estimates, which may reflect the characteristics of the BiB cohort (see Supplementary Table S8).3,6 These findings of an increased likelihood of amoxicillin prescribing for more deprived children and children with mothers with a Pakistani ethnic background mirror findings in adults.4,5,19 Ethnic differences in prescribing may reflect differences in the severity of presenting illness, which is a key determinant for antibiotic prescribing, or differences in population mixing, parental expectation, or clinician response.30 Increased odds of amoxicillin prescribing during the first year of life for the most deprived children was observed.

Table 3 Continued. Associations between exposures and amoxicillin prescribing during the first 2 years of life*

Variable	Crude (n = 2450)	Mutually adjusted (n = 2450)	Crude (n = 2476)	Mutually adjusted (n = 2476)
Cooking type				
Electric cooking only	1.00 [ref]	—	1.00 [ref]	—
Electric and gas cooking	1.14 (0.84 to 1.56)	—	1.18 (0.84 to 1.66)	—
Gas cooking only	1.17 (0.90 to 1.54)	—	1.40 (1.05 to 1.86)	—
Intra-GP surgery correlation coefficient	0.09 (0.06 to 0.15)	—	0.07 (0.04 to 0.11)	—

*Crude and mutually adjusted models for amoxicillin prescribing during the first and second years of life. All models included GP surgery as the mixed-effect. Mutually adjusted models were adjusted for the mother’s ethnic background, socioeconomic status, and infant sex a priori, as well as: (a) first year of life: congenital anomalies, gestational age, quarter of birth, delivery mode, breastfeeding duration, formal childcare attendance, household mould or damp, and household overcrowding; (b) second year of life: congenital anomalies, gestational age, delivery mode, breastfeeding duration, $PM_{2.5}$ exposure, and formal childcare attendance.19 Models for year 2 include variables imputed using multivariate imputation.17 The median and IQR for the absolute $PM_{2.5}$ levels corresponding to each quartile are displayed in Supplementary Table S3. OR = odds ratio. $PM_{2.5}$ = particulate matter ≤2.5 µm. ref = reference.
Funding
This work is supported by the National Institute for Health Research [NIHR; grant number NIHR200116] to Applied Research Collaboration Yorkshire and Humber, and to University College London Great Ormond Street Institute of Child Health, ActEarly UK Prevention Research Partnership Consortium [grant number: MR/S037527/1], and Medical Research Council [grant number: MR/N013867/1 to Faith Miller]. Views expressed are those of the author[s] and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Ethical Approval
Parents in Born in Bradford (BiB) and Allergy and Infection (ALL-IN) gave informed consent for use of cohort data and electronic records for research studies. The ALL-IN study has been approved by the Bradford Research Ethics Committee [reference number: 08/H1302/21].

Data
The data that support the findings of this study are available from several different sources, some of which are openly available, others available only on request. Restrictions apply to the availability of data from the BiB and ALL-IN cohorts, which are not publicly available and used under license for the study. Data are available from authors on reasonable request and with permission of BiB. PM$_{2.5}$ data are available at: https://uk-air.defra.gov.uk/data/pcrn-data.

Provenance
Freely submitted; externally peer reviewed.

Competing interests
The authors have declared no competing interests.

Acknowledgements
BiB is only possible due to the enthusiasm and commitment of the children and parents in BiB. The authors are grateful to all participants, health professionals, and researchers who have made BiB happen. They gratefully acknowledge the contribution of TPP and the TPP ResearchOne team in completing study participant matching to primary care records and in providing ongoing informatics support.

Open access
This article is Open Access: CC BY 4.0 licence (http://creativecommons.org/licenses/by/4.0/).

Discuss this article
Contribute and read comments about this article: bjgp.org/letters

socioeconomic differences were also observed in GP consultation attendance for LRTIs but not URTIs, suggesting infection severity differs by socioeconomic background. The socioeconomic disparity may be more significant than the current study’s results suggest, as poorer BiB mothers are less likely to consult primary care once health status is taken into account.

Socioeconomic differences were found to be more profound for LRTI consultations compared with amoxicillin prescribing, which may indicate that antibiotic prescribing guidelines reduce socioeconomic differences in prescribing, but not incidence of infection.

Primary care physicians play a vital role in reducing antibiotic prescribing. A modest but significant variation in amoxicillin prescribing was identified between practices [7%–9%]. This is smaller than previous estimates, which range from 32.0% to 65.0%.

However, previous studies have included data from across England, whereas the GP surgeries in this study all reside within the Bradford District and Craven Clinical Commissioning Group. Residual variation in antibiotic prescribing may reflect differences in provider services and prescribing practices, or differences in health need. This study also found higher variation in childhood RTI consultation attendance between GP surgeries, hinting that GP surgery-level variation in prescribing may be driven by differences in health need or individual access to services, rather than the GP surgery’s prescribing practices. Although previous studies suggest that targeting physician behaviour can reduce antibiotic prescribing, these findings highlight the importance of interventions at the population level. Further research considering detailed individual-level characteristics and indicators of infection risk (including overcrowding and childcare attendance) would determine where population-level antimicrobial stewardship efforts are best targeted.

Surprisingly, associations between maternal smoking or outdoor air pollution and RTI consultation attendance or amoxicillin prescribing were not observed. Regarding maternal smoking, this may be unique to the Bradford population because of the disparity between smoking habits observed between mothers of White British and Pakistani ethnic background. Furthermore, self-report of maternal smoking may not represent true behaviours; research has shown that mothers from less deprived areas are less likely to report their smoking during pregnancy. PM$_{2.5}$ has previously been found to increase the risk of URTIs and LRTIs. However, given that small effect sizes are expected, larger studies over broader geographical areas with greater variation in PM$_{2.5}$ exposure are required to address its role in RTIs and antibiotic prescribing.

Environmental exposures to newly available national primary care dispensing data could aid in these studies.

Implications for research and practice
These findings highlight the need for policies addressing the population-level inequalities associated with RTIs when addressing antimicrobial stewardship efforts among children, particularly ethnic background and socioeconomic status. Primary care networks, through which primary care practices link with other health and social care providers, provide an opportunity for GPs to promote handwashing and improved ventilation in homes (particularly those that are overcrowded) and childcare settings to prevent the spread of infection. Partnerships with pharmacies and voluntary sector organisations, for example, could help facilitate these efforts. Furthermore, this study found that children who were breastfed for <1 month were more likely to attend consultations for URTIs. There are useful published resources to aid GPs when providing breastfeeding support, including those published by the UK GP Infant Feeding Network. Primary care networks could also play a role in linking primary care to local breastfeeding support groups. Larger, national studies investigating the effect of environmental exposures on childhood respiratory health and antibiotic prescribing are recommended.
REFERENCES

1. World Health Organization. Global action plan on antimicrobial resistance. 2015. https://www.who.int/publications/i/item/9789241509763 (accessed 30 Jun 2022).

2. Department of Health, Department for Environment, Food and Rural Affairs. UK Five Year Antimicrobial Resistance Strategy 2013 to 2018. 2013. https://www.gov.uk/government/publications/uk-5-year-antimicrobial-resistance-strategy-2013-to-2018 (accessed 30 Jun 2022).

3. Sun X, Guillford MC. Reducing antibiotic prescribing in primary care in England from 2014 to 2017: population-based cohort study. BMJ Open 2019; 9(7): e023989.

4. Pain V, Moller A, Belmonte M, et al. Antibiotic prescribing for common infections in UK general practice: variability and drivers. J Antimicrob Chemother 2019; 74(8): 2440–2450.

5. Shallcross L, Beckley N, Rait G, et al. Antibiotic prescribing frequency among patients in primary care: a cohort study using electronic health records. J Antimicrob Chemother 2017; 72(6): 1818–1824.

6. Pouwels KB, Dolk FCK, Smith DRM, et al. Explaining variation in antibiotic prescribing between general practices in the UK. J Antimicrob Chemother 2018; 73(6): suppl_2:i27–i35.

7. Moller A, Belmonte M, Pain V, et al. Antibiotic prescribing patterns in general medical practices in England: does area matter? Health Place 2018; 53: 10–16.

8. Schneider-Lindner V, Quash C, Hanley JA, Sussa S. Secular trends of antibacterial prescribing in UK paediatric primary care. J Antimicrob Chemother 2010; 66(2): 424–433.

9. O’Brien K, Bellis TW, Kelson M, et al. Clinical predictors of antibiotic prescribing for acutely ill children in primary care: an observational study. Br J Gen Pract 2015; DOI: https://doi.org/10.3399/bjgp15X686497.

10. Souza da Cunha S, Santorelli G, Pearce N, et al. Evidence for causal associations between prenatal and postnatal antibiotic exposure and asthma in children. Clin Exp Allergy 2021; 51(11): 1438–1448.

11. Bailey LC, Forrest CB, Zhang P, et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 2014; 168(11): 1063–1069.

12. Hardeil P, Verfuerden M, McMenamin J, et al. The contribution of child, family and health service factors to respiratory syncytial virus (RSV) hospital admissions in the first 3 years of life: birth cohort study in Scotland, 2009 to 2015. Euro Surveill 2019; 24(11): 1800046.

13. Hardeil P, Verfuerden M, McMenamin J, Gilbert R. Risk factors for admission to hospital with laboratory-confirmed influenza in young children: birth cohort study. Eur Respir J 2017; 50(3): 1700489.

14. West J, Kelly B, Collings PJ, et al. Is small size at birth associated with early childhood morbidity in white British and Pakistani origin UK children aged 0–37 Findings from the born in Bradford cohort study. BMC Pediatr 2018; 18(1): 22.

15. MacIntyre EA, Gehring U, Molter A, et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environ Health Perspect 2014; 122(11): 107–113.

16. Di Mario S, Gagliotti C, Donatini A, et al. Formula feeding increases the risk of antibiotic prescriptions in children up to 2 years: results from a cohort study. Eur J Pediatr 2019; 178(12): 1867–1874.

17. Cabral C, Horwood J, Symonds J, et al. Understanding the influence of parent–clinician communication on antibiotic prescribing for children with respiratory tract infections in primary care: a qualitative observational study using a conversation analysis approach. BMC Fam Pract 2019; 20(1): 102.

18. Wright J, Small N, Raynor P, et al. Cohort profile: the Born in Bradford multi-ethnic family cohort study. Int J Epidemiol 2013; 42(4): 798–991.

19. Pembrey L, Waiblinger D, Griffiths P, et al. Cytomegalovirus, Epstein-Barr virus and varicella zoster virus infection in the first two years of life: a cohort study in Bradford, UK. BMC Infect Dis 2017; 17(11): 220.

20. Sheridan E, Wright J, Small N, et al. Risk factors for congenital anomaly in a multithreshold birth cohort: an analysis of the Born in Bradford study. Lancet 2013; 382(9910): 1350–1359.

21. Ricardo Energy & Environment. Technical report an UK supplementary assessment under The Air Quality Directive (2008/50/EC), The Air Quality Framework Directive (96/62/EC) and Fourth Daughter Directive (2004/107/EC) for 2017. 2019. https://uk-air.defra.gov.uk/assets/documents/technical_reports/cat09/1903021606_AQ6052017_MAAQ_technical_report.pdf (accessed 30 Jun 2022).

22. Department for Environment, Food and Rural Affairs. Modelled background pollution data. 2019. https://uk-air.defra.gov.uk/data/pcm-data (accessed 30 Jun 2022).

23. Khan NF, Harrison SE, Rose PW. Validity of diagnostic coding within the General Practice Research Database: a systematic review. Br J Gen Pract 2010; DOI: https://doi.org/10.3399/bjgp10X435862.

24. Benson T. The history of the Read codes: the inaugural James Read Memorial Lecture 2011. In: Inborn Prem Care 2011; 19(3): 173–182.

25. Davé S, Petersen I. Creating medical and drug code lists to identify cases in primary care databases. Pharmacoepidemiol Drug Saf 2009; 18(9): 704–707.

26. Hardeil P, Rait G, Gilbert R, Petersen I. Recording of influenza-like illness in UK primary care 1995–2013: cohort study. PLos One 2015; 10(9): e013869.

27. Fairley L, Cabieses B, Small N, et al. Using latent class analysis to develop a model of the relationship between socio-economic status and ethnicity cross-sectional analyses from a multi-ethnic birth cohort study. BMC Public Health 2016; 14: 835.

28. van Buuren S, Groothuis-Oudshorn K. MICE: multivariate imputation by chained equations in R. J Stat Softw 2011; 45(3): 1–77.

29. Thompson PL, Sypridis N, Sharland M, et al. Changes in clinical indications for community antibiotic prescribing for children in the UK from 1996 to 2006: will the new NICE prescribing guidance on upper respiratory tract infections just be ignored? Arch Dis Child 2009; 94(5): 337–340.

30. Kelly B. Ethnic mixing in Bradford. Local dynamics of diversity: evidence from the 2011 Census. Manchester: ESRC Centre on Dynamics of Ethnicity (CoDE), 2015.

31. Kelly B, Mason D, Petherick ES, et al. Maternal health inequalities and GP provision: investigating variation in consultation rates for women in the Born in Bradford cohort. J Public Health 2017; 39(2): e48–e55.

32. Cook R, Davidson P, White A. Physicians prescribe antibiotics for childhood respiratory tract infection based on assessment, rather than parental expectation. BMJ 2020; 366: m4768.

33. Willems S, De Maesschalck S, Deveugele M, et al. Socio-economic status of the patient and doctor–patient communication: does it make a difference? Patient Educ Couns 2005; 56(12): 139–146.

34. Hawker JI, Smith S, Smith GE, et al. Trends in antibiotic prescribing in primary care for clinical syndromes subject to national recommendations to reduce antibiotic resistance, UK 1995–2011: analysis of a large database of primary care consultations. J Antimicrob Chemother 2014; 69(12): 3423–3430.

35. Guilford MC, Dregan A, Moore MV, et al. Continued high rates of antibiotic prescribing to adults with respiratory tract infection: survey of 568 UK general practices. BMJ Open 2014; 4(10): e006245.

36. O’Brien MA, Rogers S, Jamtvedt G, et al. Educational outreach visits: effects on professional practice and health care outcomes. Cochrane Database Syst Rev 2007; 2007(4): CD003409.

37. Shipston D, Tappin DM, Vadiveloo T, et al. Reliability of self reported smoking status by pregnant women for estimating smoking prevalence: a retrospective, cross sectional study. BMJ 2009; 339: b4347.

38. Brauer M, Hoek G, Van Vliet P, et al. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med 2002; 164(8): 1092–1098.

39. Carr C, Lurnley T, Schreuder A, et al. Effects of subchronic and chronic exposure to ambient air pollutants on infant bronchiolitis. Am J Epidemiol 2007; 165(5): 553–560.

40. Wright J, Hayden A, West J, et al. ActEarly: A City Collaboratory approach to early promotion of good health and wellbeing. Wellcome Open Res 2019; 4: 156.

41. NHS Digital. Medicines dispensed in Primary Care NHS Business Services Authority data. 2021. https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/medicines-dispensed-in-primary-care-nhsbsa-data (accessed 30 Jun 2022).

42. Marshall J, Ross S, Buchanan P, Oxame A. Providing effective evidence based support for breastfeeding women in primary care. BMJ 2021; 375: e065927.

43. Santhanam L. Breastfeeding support. 2019. https://gpfn.org.uk/ breastfeeding-support (accessed 30 Jun 2022).