Data Article

Spatially continuous dataset at local scale of Taita Hills in Kenya and Mount Kilimanjaro in Tanzania

Sizah Mwalusepo a,b,⁎, Estomih S. Massawe c, Tino Johansson a,d

a icipe—African Insect Science for Food and Health, P.O. Box 30772-00100, Nairobi, Kenya
b Department of General Studies, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
c Department of Mathematics, University of Dar es Salaam, P.O. Box 35062, Dar es Salaam, Tanzania
d Department of Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014, Finland

ARTICLE INFO

Article history:
Received 13 June 2016
Received in revised form 11 July 2016
Accepted 19 July 2016
Available online 26 July 2016

Keywords:
Spatial climate data
Climate change
Modeling
Local scale

ABSTRACT

Climate change is a global concern, requiring local scale spatially continuous dataset and modeling of meteorological variables. This dataset article provided the interpolated temperature, rainfall and relative humidity dataset at local scale along Taita Hills and Mount Kilimanjaro altitudinal gradients in Kenya and Tanzania, respectively. The temperature and relative humidity were recorded hourly using automatic onset HOBO data loggers and rainfall was recorded daily using GENERAL wireless rain gauges. Thin plate spline (TPS) was used to interpolate, with the degree of data smoothing determined by minimizing the generalized cross validation. The dataset provide information on the status of the current climatic conditions along the two mountainous altitudinal gradients in Kenya and Tanzania. The dataset will, thus, enhance future research.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area Agriculture, environmental science and climate change
More specific subject area Spatial continuous dataset

⁎ Corresponding author at: icipe—African Insect Science for Food and Health, P.O. Box 30772-00100, Nairobi, Kenya.
E-mail addresses: mwalusepo@yahoo.com, smwalusepo@icipe.org (S. Mwalusepo).
Type of data: Figures
How data was acquired:
- Thin Plate spline algorithm was fitted; with Computer program written in R software
Data format: Interpolated, analyzed

Experimental factors:
- Automatic onset THOBO data loggers and GeneralR wireless rain gauges were installed at different altitude to track temperatures, Rainfall and relative humidity.

Experimental features:
- Thin plate spline (TPS) interpolation was carried out using R software link with GIS software (ArcGIS version 10.1) to generate interpolation maps showing the spatially continuous data over the study areas.

Data source location:
- Taita Hills, Kenya; Mount Kilimanjaro, Tanzania.

Data accessibility:
Data are available in this article

Value of the data

- The data provide information on the status of the climatic conditions along the two mountain altitudinal gradients in Kenya and Tanzania, and includes data accessible for reuse.
- The data are important to farming communities, agricultural extension agents, government institutions, international and local non-governmental organizations engaged in agricultural interventions, including useful data to researchers, students and academics.
- The data can be used for mapping and spatial modeling in a geographical information system (GIS).
- The data is valuable for improvements computational facilities, insufficient climate data and reliable downscaling at a local scale.
- The data are important in making confidently informed decisions, giving scientists accurate spatially continuous data cross a region for making justified interpolation.

1. Data

Figs. 1 and 2 show the data on sample collection and how the data loggers and rain gauges have been installed along the altitudinal gradients. Fig. 3 presents spatially continuous data for temperatures (A); rainfall (B); and relative humidity (C) along Taita Hills. Fig. 4 presents spatially continuous...
Fig. 2. Raingauges.

Fig. 3. Mean annual temperature (A); annual rainfall (B); relative humidity (C) along Taita Hills.
The details of the sites have been described in our previous study [1]. In brief, the dataset collections are localized in Kenya and Tanzania. In Kenya, was situated in Taita Hills in South-Eastern Kenya (coastal region), between latitude 3°25’ and longitude 38°20’. In Tanzania, was situated in the Pangani river basin in North East (NE) Tanzania with a focus on the small catchment areas on the South Eastern slope of Mount Kilimanjaro approximately located between latitude 3°4’ and longitude 37°4’. The temperature, relative humidity and rainfall required for carrying out the spatial interpolation were obtained from local weather stations. Automatic onset™HOBO data loggers (hourly records) and GENERALR wireless rain gauges were installed at station across study sites to keep track of daily temperatures, relative humidity and rainfall, respectively [1,2]. The x–y coordinates position and altitudes were recorded using a Global Positioning System (GPS) (German eTrex Vista(R)). The thin plate spline (TPS) algorithm [3] was used to interpolate temperature, rainfall and relative humidity dataset. Data processing and analysis were carried out with a computer program written in R software [4] and linked with Geographic Information System (GIS). The accuracy of the environmental variables surface was assessed by comparing surface values withheld from the interpolation.

![Fig. 4. Mean annual temperature (D); annual rainfall (E); relative humidity (F) along Mount Kilimanjaro.](image)

Data for temperatures (D); rainfall (E); and relative humidity (F) along Mount Kilimanjaro under current climatic condition.
procedure. Three statistical criteria were used to evaluate accuracy namely: (i) R-square (R^2); (ii) the Root Mean Square Error (RMSE); and (iii) the Relative Root Mean Square Error (RMSEr).

Acknowledgments

This work was supported by the Ministry for Foreign Affairs of Finland, under the Climate Change Impacts on Ecosystem Services and Food Security in Eastern Africa (CHIESA) project. Authors wish to thank the entire members of the Noctuid Stem Borer Biodiversity (NSBB) team, Environmental health team of the African Insect Science for Food and Health (icipe), and Dar es Salaam Institute of Technology for their support. The authors are grateful to Dr. George F. Obiero for his numerous constructive comments on the manuscript.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.07.041.

References

[1] S. Mwalusepo, H.E.Z. Tonnang, E.S. Massawe, G.O. Okuku, N. Khadioli, P.A. Calatayud, T. Johansson, B.P. LeRu, Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African mountain gradients using phenology models, PLoS One 10 (6) (2015) e0130427.

[2] E. Njuguna, M. Gathara, S. Nadir, S. Mwalusepo, D. Williamson, P.E. Mathe, J. Kimani, T. Landmann, G. Juma, G. Ong’a’amo, E. Gatebe, B. Le Ru, P.A. Calatayud, Characteristics of soil in selected maize growing sites along altitudinal gradients in east African highlands, Data Br. 5 (2016) 138–144.

[3] M.F. Hutchinson, Interpolation of mean rainfall using thin plate smoothing splines., Int. J. Geogr. Inf. Syst. 9 (1995) 385–403.

[4] R Core Team 2012 R: A language and Environmental for statistical Computing. R foundation for statistical Computing, Vienna. (http://www.r-project.org/; version 3.0.2).