Simultaneous detection of multiple fly-borne bacterial pathogenic microorganisms by the reverse line blot hybridization assay

CURRENT STATUS: UNDER REVIEW

Yonghua Ma
Gansu Agricultural University
mayh517@163.com
Corresponding Author

Huitian Gou
Gansu Agricultural University

Xiaolin Sun
Gansu Agricultural University

Zexiang Wang
Gansu Agricultural University

Mei Li
Gansu Agricultural University

Yuxiao Teng
Gansu Agricultural University

DOI:
10.21203/rs.2.21814/v1

SUBJECT AREAS
Applied & Industrial Microbiology
General Microbiology

KEYWORDS
Reverse line blot, fly-borne, hybridisation assay, bacterial pathogens, probes
Abstract

Background: As a widespread health pest, flies can carry more than 100 kinds of pathogenic microbes to threat human health, resulting in a wide range of disease infection and transmission. The aim of this study was to develop a sensitive, reliable and rapid method for the simultaneous detection of multiple fly-borne bacterial pathogenic microorganisms, in order to effectively prevent and control fly-borne bacterial diseases.

Results: PCR-RLB method could directly and accurately detect fly-borne bacteria species corresponding of 7 species-specific probes. At the same time, the membrane binding oligonucleotide species-specific probes prepared in RLB detection technology can be reused for detection of bacteria after washing with 0.5 M EDTA, which greatly improves the detection efficiency. In 106 groups of samples, the numbers of samples carrying seven different bacterial strains were 2 (S. aureus), 52 (S. flexneri), 0 (A. caviae), 3% (V. vulnificus), 56 (S. enterica), 1 (P. vulgaris) and 33 (Y. enterocolitica), respectively. Their proportions of 7 bacterial strains carried by houseflies were 1.23% (S. aureus), 32.1% (S. flexneri), 0% (A. caviae), 1.85% (V. vulnificus), 34.57% (S. enterica), 0.62% (P. vulgaris) and 20.37% (Y. enterocolitica), respectively. It was found that the worse the hygienic condition, the higher the bacteria carrying rate of houseflies was. S. enterica, S. flexneri and Y. enterocolitica accounted for the overwhelming majority of the seven pathogenic strains carried by houseflies from four different environments in Lanzhou. This indicated that houseflies played an important role in the transmission of intestinal diseases, which was mainly related to the breeding and reproduction of houseflies in feces, carrion and food. S. aureus was carried by houseflies in the hospital area indicates that hospitals should do well in killing and controlling flies and further strengthen the prevention and control of fly-borne bacterial diseases.

Conclusion: The RLB assay appeared to have potential clinical application in the simultaneous detection of fly-borne bacterial species.

Background

As an important vector for insect-vector diseases, flies carry or disseminate a variety of bacterial pathogenic microorganisms to cause human diarrhea, food poisoning and various bacterial diseases
such as cholera, bacteremia, tuberculosis, anthrax, and the like [1-8]. There are a wide variety of
flies, among which only a few species are the most common in the human family and around the
farm, including housefly, stomoxys calcitrans, lucilia sericata, sarcophagidae and so on. Flies feed and
reproduce in animal feces, organic wastes and carcasses, being one of the important threats to
human health [9-18]. On February 24, 2005, the Science Times reported that flies spread of
Enterohemorrhagic E. coli and avian influenza in Japanese. In China, flies are also included in the key
prevention and control target of insect-borne diseases.

Insect-borne bacterial disease detection is mainly based on traditional bacterial culture and isolation.
Identification of each strain takes at least a week or so. This method is time and labor-consuming and
has strict requirements on the laboratory environment, which leads to the isolation and cultivation of
bacteria cannot be carried out in areas without large laboratories, and seriously affect the prevention
and treatment of insect-borne diseases. The rapid and efficient detection of insect-borne bacterial
diseases has become a hot field in the prevention and control of insect-borne diseases. Reverse line
blot (RLB) is a sensitive and high-throughput detection method, which can simultaneously detect
various pathogenic microorganisms carried by insects. Its essence is the combination of PCR product
single chain and species-specific probe to determine the difference of the amplified sequence. PCR-
RLB technology has high sensitivity and specificity. It can distinguish various strains of mixed
infection, and even identify species. So it was widely used in the detection of various diseases, such
as Kaufhold et al. (1994) for the first time to use PCR-RLB in serotype identification of streptococcus
[19]; O'Sullivan et al. (2011) used PCR-RLB technology to analyze the drug resistant strains of
Staphylococcus aureus [20]; Nijhof et al. (2005) applied this method to analyze four species of Taylor
in Africa [21].

The aim of this study was to develop an optimized PCR-RLB hybridization assay which could
simultaneously detect 7 kinds of bacteria including Staphylococcus aureus, Shigella flexneri,
Aeromonas caviae, Vibrio vulnificus, Salmonella enterica subsp. entericaserovar typhimurium, Proteus
vulgaris and Yersinia enterocolitica subsp. enterocolitica efficiently and quickly. And this method was
used to gather information on the bacteria carried by houseflies randomly obtained from four
different environment including residential area, slaughterhouse, garbage and hospital in Lanzhou, China. The effects of different urban environments on the fly-borne bacteria were preliminarily discussed.

Methods
Standard bacterial strains
Standard strains of 7 bacterial species used to develop the assay were purchased from Shanghai Bioplus Biotech Co., Ltd (Shanghai, China), and their sources are shown in Table 1. The standard strains were identified by VITEK 2 Compact automatic bacterial identification and analysis system from the microbiology laboratory of the Quarantine Service (Gansu Provincial Center for Disease Control and Prevention (GSCDC), Lanzhou, Gansu province, China).

Species	Strain ID number
Staphylococcus aureus	ATCC 25923
Shigella flexneri	ATCC 12022
Aeromonas caviae	ATCC 15468
Vibrio vulnificus	ATCC 17802
Salmonella enterica subsp. enteric serovar typhimurium	ATCC 13311
Proteus vulgaris	ATCC 29905
Yersinia enterocolitica subsp. Enterocolitica	ATCC 17802
ATCC, American Type Culture Collection	

Collection And Treatment Of Housefly Samples
A total of 1060 houseflies were randomly collected from four different environments in Lanzhou of China, including residential area (n = 380), slaughterhouse (n = 330), garbage transfer station (n = 200), hospital (n = 150) in June and July 2016. Ten samples per group were packed into autoclaved triangular flasks, 10 ml physiological saline was added, and washed by shaking for 10 min for subsequent DNA extraction.

DNA Extraction
DNA was extracted from the overnight cultures of the bacteria using DNA extraction kit for Gram-negative bacteria (ABT) according to the manufacturer’s instructions. The extracted DNA was stored at -20 °C until the subsequent analysis. Briefly, 1 ml of the overnight bacterial culture was centrifuged for 5 min at 10000 rpm, the supernatant was discarded. 1 ml physiological saline was added in the precipitate, and the above mixture was shocked to disperse bacteria and then centrifuged for 5 min at 10000 rpm, the supernatant was discarded. 200 μl of sterilized ddH₂O was then added, mixed
thoroughly and the supernatant was discarded after centrifuging for 3 min at 13000 rpm. After adding
50 µl nucleic acid extract into the bacteria precipitate, mixed thoroughly and centrifuged
instantaneously, the hanging wall liquid was flung to the bottom of the EP tube. The EP tube
containing the bacteria solution was heated in water bath at 100 °C for 10 min, and then centrifuged
for 10 min at 13000 rpm, the supernatant was used as the DNA template in subsequent amplification
experiments.

Primer And Probe Design
The 16S RNA was found out to be highly conservative, according to the literature [22] and the
GenBank database. The sequence alignment of the ribosome 16S RNA of 7 bacterial species (S.
aureus, S. flexneri, A. caviae, V. vulnificus, S. enterica, P. vulgaris, Y. enterocolitica) was carried out.
Universal primer (RLB-F, RLB-R) for PCR amplification of genomic DNA samples used in PCR-RLB
hybridization assay, species-specific probe and universal probe (Catch-all) were designed using
DNAStar and Primer premier software. To test for theoretical specificity, all the primers and probes
used were aligned with the sequence databases of the National Center for Biotechnology Information
(NCBI) using the Basic Local Alignment Search Tool (BLASTn). Universal primers were labelled at the
5’-end with biotin to allow PCR products to be detected by hybridisation with a streptavidin-
peroxidase substrate in the RLB assay. All probes were labelled at the 5’-end with an amine group to
facilitate covalent linkage to nylon membranes and to allow membranes to be stripped and reused
repeatedly. The primers and probes were synthetized by Sangon Biotech Company, China (Table 2).
Table 2
Sequence and concentration of Primers and probes used in the study

Primer-Probe	Primer-probe sequence (5’-3’)	base number	Total provision (O.D)	Optimal concentrations (µM)	Purification method
RLB-F	AGYGGCGGACG GGTGAGTAA	20	5	50	ULTRAPAGE
RLB-R	Biotin-CCATTTGAGCAG GTGTGAGCC	23	5	50	ULTRAPAGE
Catch-all	(NH₂)-CAGGATTAGATA CCGTTGAGTCC	24	10	50	HPLC
S. aureus-1	(NH₂)-TCAAAAGTGAAA GACGGTCCTTG	23	10	----	HPLC
S. aureus-2	(NH₂)-CAACATATGTGT AAGTAACTGTGC AC	23	10	50	HPLC
S. flexneri-1	(NH₂)-GGAGTAAAGGTA CATACCGTTGC	22	10	----	HPLC
S. flexneri-2	(NH₂)-CTGATACCTGGCA AGCCTTGCTC	26	10	50	HPLC
A. caviae-1	(NH₂)-CGAGGAGGAAA GGTCAGTACG	21	10	----	HPLC
A. caviae-2	(NH₂)-GGAATCAGAACA CAGGTCAGCT	20	10	100	HPLC
V. vulnificus	(NH₂)-AGAGAATTCTAG CCGGAGACCG	22	10	100	HPLC
S. enterica	(NH₂)-AGAAGATCCGAG AGATGGATTG	22	10	100	HPLC
P. vulgaris-1	(NH₂)-GGTGATCAAAGTT ATACCGTTGC AA	26	10	100	HPLC
P. vulgaris-2	(NH₂)-CGAATCCTTAG AGATAGAGGA	22	10	----	HPLC
Y. enterocolitica-1	(NH₂)-GGCCAAATACCTT AATAGGGTTG	21	10	----	HPLC
Y. enterocolitica-2	(NH₂)-AGAACTTAGCA GATGCTTGC	22	10	100	HPLC

PCR Amplification

Genomic DNA (100 ng) was added to a reaction mixture (final volume of 25 µl) containing 40M of both primer RLB-F and RLB-R. PCR amplification was performed in an automatic DNA thermocycler (Eppendorf). The reaction was incubated at 94 °C for 5 min to denature genomic DNA and the thermal cycle reaction programme was: 30 s at 94 °C, 30 s at 63 °C and 45 s at 72 °C for 35 cycles with a final
extension step of 72 °C for 10 min. Samples were held at 12 °C until analysis.

RLB Hybridization

The RLB protocol was performed as described previously [23]. Briefly, a Biodyne C blotting membrane (BNBCH5R, Pall BioSupport) was activated at room temperature by incubating in 16% EDAC (E7750, Sigma) for 10 min, then washed in distilled water, and placed in a MN45 miniblotter (FZB, Germany). Species-specific oligonucleotide probes were diluted to different concentrations (25, 50, 100, 200, 500, 800, 1000 µM) in 500 mM NaHCO₃ (pH 8.4), added to the miniblotters slots, and incubated for 2 min. Then, the membrane was incubated in 100 mM NaOH for 10 min and rinsed with demineralized water at 60 °C for 5 min in 2 × SSPE/0.1% SDS. The membrane was then placed perpendicular to the probe orientation in the miniblotter. Twenty microliters of each PCR product was diluted in 2 × SSPE with SDS 10% w/v to a final volume of 150 µl, heated to 99 °C for 10 min, and then cooled immediately on ice. The denatured PCR products were then added to the slots in the miniblotters and incubated for 60 min at 60 °C, and the membrane was washed twice at 60 °C for 10 min in 2 × SSPE with SDS 0.5%. Additionally, the membrane was treated at 42 °C for 60 min with peroxidase-labeled streptavidin diluted 1:4000 in 2 × SSPE/0.5% SDS and washed twice at 42 °C for 10 min in 2 × SSPE/0.5% SDS and twice at room temperature for 5 min in 2 × SSPE. Finally, chemiluminescence detection was performed according to standard procedures (Amersham).

Specificity And Sensitivity Of RLB

For specificity studies, DNA was extracted from standard strains (Table 1) using a DNA extraction kit for Gram-negative bacteria (ABT) according to the manufacturer’s instructions, and was tested against all probe sets.

To assess RLB sensitivity, the genomic DNA content of the standard strains was determined by nucleic acid concentration meter (NanoDrop ND-2000). Serial ten-fold dilutions of genomic DNA (starting at 100 ng/µl) were prepared into 10⁻¹-10⁻¹² in distilled water and then used as template for the RLB sensitivity analysis.

Results

Selection of probes and primers

A pair of primers (RLB-F, RLB-R) 20–23 bp in length was designed for amplification of all standard
strains, with amplicon sizes in the range 104–1270 bp. The result of PCR amplification was shown in Fig. 1. The size of PCR amplification products is about 1100 bp, consisted with the amplicon sizes of the designed primers, which reveals the designed primers can successfully amplified the target sequence fragments.

Twelve different oligonucleotide probes directed against 7 bacterial species were designed. In addition, a universal probe targeting the 16S rRNA gene was used as a control. A. caviae-1 probe, P. vulgaris-2 probe did not show any cross-reaction with 7 standard strains. In addition, S. aureus-1, S. flexneri-1, Y. enterocolitica-1 probe simultaneously identified two bacterial species. Therefore these five oligonucleotide probes cannot be used in PCR-RLB experiments. The finally selected oligonucleotide probes were S. aureus-2, S. flexneri-2, A. caviae-2, V. vulnificus, S. enterica, P. vulgaris-1, Y. enterocolitica-2 probe (Fig. 2).

Initial evaluation experiments revealed that the optimal primer concentration of RLB-F and RLB-R was 50 µM; the optimal probe concentration was 50 µM for Catch-all, S.aureus-2 and S.flexneri-2 probe, and 100 µM for other selected probes (Table 2).

Specificity Of RLB
All selected probes bound only to their respective target sequence, resulting in the recognition of individual bacterial species. The nucleotide probes did not show any cross-reaction with water used as a blank control. The catch-all probe specifically detected any standard strains present. Each standard strain was identified by two oligonucleotide probes: the catch-all probe and species-specific probes for either 7 bacterial species (Fig. 3).

Sensitivity Of RLB
The RLB assay is capable of detecting about 10^{-8} ng/µL (S. aureus), 10^{-8} ng/µL (S. flexneri), 10^{-6} ng/µL (A.caviae), 10^{-6} ng/µL (V. vulnificus), 10^{-11} ng/µL (S. enterica), 10^{-6} ng/µL (P. vulgaris), and 10^{-11} ng/µL (Y. enterocolitica) (Fig. 4). To test the capacity of the developed PCR-RLB assay to detect 7 bacterial species, subjected to PCR and subsequently evaluated. The sensitivity of traditional PCR was shown in Fig. 5: 10^{-4} ng/µL (S. aureus), 10^{-2} ng/µL (S. flexneri), 10^{-4} ng/µL (A.caviae), 10^{-4} ng/µL (V. vulnificus), 10^{-7} ng/µL (S. enterica), 10^{-4} ng/µL (P. vulgaris), 10^{-3} ng/µL (Y. enterocolitica).
The results showed that the sensitivity of PCR-RLB was significantly higher (about 100 times) than that of PCR.

Simultaneous detection of 7 fly-borne bacterial pathogenic microorganisms by PCR-RLB

In summary, 1060 housefly samples (divided into 106 groups) from four different environments in Lanzhou of China were detected for 7 fly-borne bacterial pathogenic microorganisms by using RLB. Compared with traditional PCR, the PCR-RLB method can accurately detect different bacterial species corresponding to species-specific oligonucleotide probes, and the unknown bacterial species can be detected by universal probes. The results shown in Fig. 6 can not only clearly display the bacterial carrying status of samples, but also analyze the carrying and carrier rate of bacteria corresponding to different probes in different environments. The detail of the analysis results was shown in Fig. 7 and Table 3.

	residential area	Slaughterhouse	Garbage transfer station	hospital	total	carrier rate (%)
S. aureus	0	0	0	2	2	1.23
S. flexneri	19	18	6	9	52	32.1
A. caviae	0	0	0	0	0	0.0
V. vulnificus	0	0	0	3	3	1.85
S. enterica	22	17	13	4	56	34.57
P. vulgaris	0	0	0	1	1	0.62
Y. enterocolitica	10	7	8	8	33	20.37
Others	5	6	3	1	15	9.26
Total	56	48	30	28	162	

The proportions of 7 pathogenic species carried by all samples from four different environments (106 groups of samples) were 1.23% (S. aureus), 32.1% (S. flexneri), 0% (A. caviae), 1.85% (V. vulnificus), 34.57% (S. enterica), 0.62% (P. vulgaris), 20.37% (Y. enterocolitica), respectively. In general, A. caviae is not carried by all samples. S. flexneri, S. enteric, Y. enterocolitica are the most prevalent pathogenic species carried by houseflies. It is worth noting that houseflies near hospital carried almost all these pathogenic species except A. caviae. The carrier rates of Y. enterocolitica carried by houseflies in residential areas and garbage transfer station are the highest. And S. flexneri carried by houseflies is the most popular in slaughterhouse and hospital.

Discussion
In all kinds of bacterial detection experiments, the first thing is to clarify the source of bacterial strain, and confirm that bacterial strain did not mutate, so all the standard strains used in this study have been identified. Sequence alignment of 16S RNA gene sequences of 7 standard bacterial strains with clear background was carried out, universal primers and species-specific oligonucleotide probes were successfully designed. The target sequences of all bacterial strains were successfully amplified by using universal primers for PCR amplification. And species-specific probes (S. aureus-2, S. flexneri-2, A. caviae-2, V. vulnificus, S. enteric, P. vulgaris-1, Y. enterocolitica-2) aimed at the target gene sequences were successfully screened out. The common primers were used for PCR amplification. The target sequences of all strains were successfully amplified, and the target sequences were successfully screened out. A simultaneous detection method of 7 bacteria species by PCR-RLB was successfully established. The sensitivity of the PCR amplification products with different concentration prepared by serial ten-fold dilutions was tested. The results showed that the sensitivity of PCR-RLB was significantly higher (about 100 times) than that of PCR, which is consistent with literature reports [23–29].

In summary, a high specificity and sensitivity method for the simultaneous detection of 7 bacteria strains by PCR-RLB was successfully established in this study. This method was used to detect 7 bacteria species carried by housefly in four different environments in Lanzhou. PCR-RLB method could directly and accurately detect fly-borne bacteria species corresponding of 7 species-specific probes. At the same time, the membrane binding oligonucleotide species-specific probes prepared in RLB detection technology can be reused for detection of bacteria after washing with 0.5 M EDTA, which greatly improves the detection efficiency. In 106 groups of samples, the numbers of samples carrying seven different bacterial strains were 2 (S. aureus), 52 (S. flexneri), 0 (A. caviae), 3% (V. vulnificus), 56 (S. enterica), 1 (P. vulgaris) and 33 (Y. enterocolitica), respectively. Their proportions of 7 bacterial strains carried by houseflies were 1.23% (S. aureus), 32.1% (S. flexneri), 0% (A. caviae), 1.85% (V. vulnificus), 34.57% (S. enterica), 0.62% (P. vulgaris) and 20.37% (Y. enterocolitica), respectively. It was found that the worse the hygienic condition, the higher the bacteria carrying rate of houseflies was. S. enterica, S. flexneri and Y. enterocolitica accounted for the overwhelming majority of the
seven pathogenic strains carried by houseflies from four different environments in Lanzhou. This indicated that houseflies played an important role in the transmission of intestinal diseases, which was mainly related to the breeding and reproduction of houseflies in feces, carrion and food. S. aureus was carried by houseflies in the hospital area indicates that hospitals should do well in killing and controlling flies and further strengthen the prevention and control of fly-borne bacterial diseases. The above results indicate that we should improve the urban environment and block the source of vector transmission, so as to effectively control the spread of insect-borne diseases.

Conclusion

The aim of this study was to develop a sensitive, reliable and rapid method for the simultaneous detection of multiple fly-borne bacterial pathogenic microorganisms, in order to effectively prevent and control fly-borne bacterial diseases. A PCR-based reverse line blot (PCR-RLB) hybridisation assay was developed. All species-specific probes designed for the RLB hybridised with amplified DNA only from the corresponding species. The sensitivity of the PCR amplification products with different concentration prepared by serial ten-fold dilutions was tested, and the results showed that the sensitivity of PCR-RLB was significantly higher (about 100 times) than that of PCR. This method was then used to gather information on the bacteria carried by houseflies randomly obtained from four different environments in Lanzhou, China. The effects of different urban environments on the fly-borne bacteria were preliminarily discussed. The RLB assay appeared to have potential clinical application in the simultaneous detection of fly-borne bacterial species.

Abbreviations

PCR: polymerase chain reaction; PCR-RLB: PCR-based reverse line blot hybridization; EDTA: ethylene diamine tetraacetic acid.

Declarations

Acknowledgments

Pro. Jianxiong Luo, Dr. Qingli Niu, and Dr. Qiaoyun Ren are thanked for their support of and assistance with the experiment and the collection of specimens.

Authors’ contributions

Yonghua Ma, Huitian Gou and Xiaolin Sun conceived and designed the experiments. Zexiang Wang,
Mei Li and Yuxiao Teng were instrumental in the acquisition of data. Yonghua Ma, Huitian Gou and Xiaolin Sun analysed the data and wrote the manuscript. All authors read and approved the final manuscript.

Funding
The project was supported by the fund of Gansu Agricultural University (GAU-KYQD-2017RCZX-11, GAU-XKJS-2018-073), Gansu Province natural sciences fund (18JR3RA167), Key research and development projects in gansu province (18YF1FA080), Lanzhou science and technology plan project (2017-4-103), Biotechnology Project of Gansu Agriculture and Animal Husbandry Department (GNSW-2014-9), National Natural Science Regional Foundation Project (CN) (31460659) and Open Fund of State Key Laboratory of Pathogenic Biology of Livestock Epidemic Diseases (SKLVEB2014KFKT002). No information has been provided by the authors concerning the existence or absence of conflicting or dual interests.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Wasala L, Talley JL, Desilva U, Fletcher J, Wayadande A. Transfer of Escherichia coli O157:H7 to Spinach by House Flies, Musca domestica (Diptera: Muscidae). Phytopathology. 2013; 103: 373-380.

2. Brits D, Brooks M, Villet MH. Diversity of Bacteria Isolated from the Flies Musca domestica (Muscidae) and Chrysomya megacephala (Calliphoridae) with Emphasis on Vectored Pathogens. Afr Entomol. 2016; 24: 365-375.
3. Monzon RB, Sanchez AR, Tadiaman BM, Najos OA, Valencia EG, et al. A comparison of the role of Musca domestica (Linnaeus) and Chrysomya megacephala (Fabricius) as mechanical vectors of helminthic parasites in a typical slum area of Metropolitan Manila. Southeast Asian J Trop Med Public Health. 1991; 22: 222-228.

4. Adeyemi O, Dipeolu OO. The numbers and varieties of bacteria carried by filth flies in sanitary and unsanitary city area. International Journal of Zoonoses. 1984; 11: 195-203.

5. Graczyk TK, Fayer R, Knight R, Mhangami-Ruwende B, Trout JM, Da Silva AJ, et al. Mechanical transport and transmission of Cryptosporidium parvum oocysts by wild filth flies. American Journal of Tropical Medicine & Hygiene. 2000; 63: 178-183.

6. Szalanski AL, Owens CB, Mckay T, Steelman CD. Detection of Campylobacter and Escherichia coli O157:H7 from filth flies by polymerase chain reaction. Medical & Veterinary Entomology. 2010; 18: 241-246.

7. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clincal Microbiology Reviews. 2015; 28: 603-661.

8. Lissant CG, Lewis FC, Glynn EE. The Number and Varieties of Bacteria carried by the Common House-fly in Sanitary and Insanitary City Areas. Epidemiology and Infection. 1912; 12: 290-319.

9. Ostrolenk M, Welch H. The House Fly as a Vector of Food Poisoning Organisms in Food Producing Establishments. American Journal of Public Health and the Nations Health. 1942; 32: 487-494.

10. Levine OS. House flies (Musca domestica) as mechanical vectors of shigellosis. Reviews of Infectious Diseases. 1991; 13: 688-696.

11. Förster M, Klimpel S, Sievert K. The house fly (Musca domestica) as a potential vector
of metazoan parasites caught in a pig-pen in Germany. Vet Parasitol. 2009; 160: 163-167.

12. Rosef O, Kapperud G. House flies (Musca domestica) as possible vectors of Campylobacter fetus subsp. jejun. Applied and Environmental Microbiology. 1983; 45: 381-383.

13. Steinhaus EA. THE MICROBIOLOGY OF INSECTS : With Special Reference to the Biologic Relationships between Bacteria and Insects. Bacteriological Reviews. 1940; 4: 17-57.

14. Malik A, Singh N, Satya S. House fly (Musca domestica): A review of control strategies for a challenging pest. J Environ Sci Heal B. 2007; 42: 453-469.

15. Butler JF, Garcia-Maruniak A, Maruniak MJE. Wild florida house flies (musca domestica) as carriers of pathogenic bacteria. The Florida Entomologist. 2010; 93: 218-223.

16. Chaiwong T, Srivoramas T, Sueabsamran P, Sukontason K, Sanford MR, Sukontason KL. The blow fly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand. Trop Biomed. 2014; 31: 336-346.

17. Kassiri H, Akbarzadeh K, Ghaderi A. Isolation of Pathogenic Bacteria on the House Fly, Musca domestica L. (Diptera: Muscidae), Body Surface in Ahwaz Hospitals, Southwestern Iran. Asian Pac J Trop Bio. 2012; 2: S1116-S1119.

18. Nazni WA, Seleena B, Lee HL, Jeffery J, Rogayah T, Sofian MA. Bacteria Fauna from the House Fly, Musca domestica (L.). Trop Biomed. 2005; 22: 225.

19. Kaufhold A. Rapid typing of group A streptococci by the use of DNA amplification and non-radioactive allele-specific oligonucleotide probes. FEMS Microbiol Lett. 1994; 119: 19-25.
20. O'Sullivan MVN, Zhou F, Sintchenko V, Kong F, Gilbert GL. Multiplex PCR and Reverse Line Blot Hybridization Assay (mPCR/RLB). J Vis Exp. 2011; 54:2781.

21. Nijhof AM, Pillay V, Steyl J, Prozesky L, Stoltsz WH, Lawrence JA, Penzhorn BL, Jongejan F. Molecular Characterization of Theileria Species Associated with Mortality in Four Species of African Antelopes. J Clin Microbiol. 2005; 43: 5907-5911.

22. Allsopp MTEP, Hattingh CM, Vogel SW, Allsopp BA. Comparative Evaluation of 16S, map1 and pCS20 Probes for the Detection of Cowdria and Ehrlichia Species in Ticks†. Ann NY Acad Sci. 2010; 849: 78-84.

23. Gubbels MJ, de Vos S, van der Weide M, Viseras J, Schouls LM, de Vries E, et al. Simultaneous detection of bovine Theileria and Babesia species using reverse line blot hybridization. J Clin Microbiol. 1999; 37: 1782–1789.

24. Sanguinetti M, Posteraro B, Ardito F, Zanetti SAL, Cingolani A, Sechi L, et al. Routine use of PCR-reverse cross-blot hybridization assay for rapid identification of Mycobacterium species growing in liquid media. J Clin Microbiol. 1998; 36: 1530–1533.

25. Schouls LM, Ingrid VDP, Rijpkema SGT, Schot CS. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol. 1999; 37: 2215–2222.

26. Brigido C, Fonseca IPD, Parreira R, Fazendeiro I, Virgílio E do Rosário, Sónia Centeno-Lima. Molecular and phylogenetic characterization of Theileria spp. Parasites in autochthonous bovines in Portugal. Vet Parasitol. 2004; 123: 17–23.

27. Nijhof AM, Penzhorn BL, Lynen G, Mollel JO, Morkel P, Bekker CP, et al. Babesia bicornis sp. nov. and Theileria bicornis sp. nov.: tick-borne parasites associated with mortality in the black rhinoceros (Diceros bicornis). J Clin Microbiol. 2003; 41:2249–2254.
28. Oura CA, Bishop RP, Wampande EM, Lubega GW, Tait A. Application of a reverse line blot assay to the study of haemoparasites in cattle in Uganda. International Journal of Parasitology. 2004; 34: 603–613.

29. Rijpkema G, Molkenboer MJCH, Schouls LM, Jongejan F, Schellekens JFP. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995; 33: 3091–3095.

Figures
Figure 1

The PCR amplification result of 7 standard strains. Lane: M, DL2000 DNA marker; lane 1-7: S. aureus, S. flexneri, A. caviae, V. vulnificus, S. enterica, P. vulgaris, Y. enteroclitica.
Figure 2

1
Catch-all
2
S. aureus-1
3
S. aureus-2
4
S. flexneri-1
5
S. flexneri-2
6
A. caviae-1
7
A. caviae-2
8
V. vulnificus
9
S. enterica
10
P. vulgaris-1
11
P. vulgaris-2
12
Y. enterocolitica-1
13
Y. enterocolitica-2
14
Catch-all
Figure 2

The selection of probe. Oligonucleotides probes are applied in horizontal rows and PCR products are applied in vertical lanes. Lanes: PCR product hybridization with probe. 1 to 7 indicate PCR products of 7 standard strains (S. aureus, S. flexneri, A. caviae, V. vulnificus, S. enterica, P. vulgaris and Y. enterocolitica, respectively); Rows 1 and 14 indicate catch-all, 2-13 indicate S. aureus-1, S. aureus-2, S. flexneri-1, S. flexneri-2, A. caviae-1, A. caviae-2, V. vulnificus, S. enterica, P. vulgaris-1, P. vulgaris-2, Y. enterocolitica-1, Y. enterocolitica-2 probe, respectively.
Figure 3

PCR-RLB specificity experiment results of seven strains. Oligonucleotides probes are applied in horizontal rows and PCR products are applied in vertical lanes. Lanes: PCR product hybridization with probe. 1 to 7 indicate PCR products of 7 standard strains (S. aureus, S. flexneri, A. caviae, V. vulnificus, S. enterica, P. vulgaris and Y. enterocolitica, respectively), 8 indicates blank control; Rows 1 and 9 indicate catch-all, 2-8 indicate S. aureus-2, S. flexneri-2, A. caviae-2, V. vulnificus, S. enterica, P. vulgaris-1, Y. enterocolitica-2 probe, respectively.
PCR-RLB sensitivity experiment results of seven strains. Oligonucleotides probes are applied in vertical lanes, and serial ten-fold dilutions of genomic DNA (starting at 100 ng/µl) prepared into 10-1-10-12 in distilled water are applied in horizontal rows 1-12, respectively. The assay detected concentration of about 10-8 ng/µL (S. aureus), 10-8 ng/µL (S. flexneri), 10-6 ng/µL (A. caviae), 10-6 ng/µL (V. vulnificus), 10-11 ng/µL (S. enterica), 10-6 ng/µL (P. vulgaris), and 10-11 ng/µL (Y. enterocolitica).
Figure 5

PCR sensitivity experiment results of seven strains. Serial ten-fold dilutions of genomic DNA (starting at 100 ng/µl) were prepared into 10^-1-10^-12 in distilled water and amplified by PCR, and the results are shown in lanes 1-12, respectively; lane M, DL2000 DNA marker. (a)-(g) show the detection of 7 standard strains (S. aureus, S. flexneri, A. caviae, V. vulnificus, S. enterica, P. vulgaris and Y. enterocolitica, respectively) by PCR.

Figure 6
The detection of bacteria carried by 106 groups (10 samples/group) houseflies from four different environments in Lanzhou. Oligonucleotides probes are indicated on the y-axis, and samples are indicated on the x-axis. (a) The assay detected samples collected from residential area, lanes 1-38 are indicated 38 groups of samples, respectively. (b) The assay detected samples collected from Slaughterhouse, lanes 1-33 are indicated 33 groups of samples, respectively. (c) The assay detected samples collected from garbage transfer station, lanes 1-20 are indicated 20 groups of samples, respectively. (d) The assay detected samples collected near hospital, lanes 1-15 are indicated 15 groups of samples, respectively.
Figure 7

The statistical result of detection bacteria carried by houseflies collected from four different environments of Lanzhou using PCR-RLB method.