Design Optimisation of Four Wheel Drive Tractor Front Axle Housing

Shivaji Nilak
SP Pune University
India

Prof. Milind Ramgir
SP Pune University
India

Idris Poonawala
SP Pune University
India

Abstract— Four wheel drive tractors are used for high torque demand applications in field and subjected to severe load conditions. Front axle is one of the most critical aggregate of the Tractor. Design of front axle is more important and critical in application stand point. Specific applications like front bucket, bunt preparation and paddy field demand very rigid axle design. Front axle endures the most in tractor aggregate. Front axle housing has failed in field from housing shoulder location in initial proto test axles. The objective of the study is to analyse and optimise the design of the axle housing. Compare the modified design with old design for improvement. Comparison study between hand calculations, FEA and test results. Improvement of the shoulder of the axle is a major area to address the failure of the shoulder in field testing. The housing shoulder required attention during design for a fail safe operation in service. The various design formulas of mechanical elements of shafts and beam are used for design and analysis of the shoulder

Keywords— MFWD- Mechanical four wheel drive, 4WD-Four wheel drive, Stress concentration factor, Axle housing, structural strength, Von misses stress, Goodman equation,

I. INTRODUCTION

During field testing of the front axle there was a shoulder failure reported at the lower king pin bearing area. As per the analysis the design was acceptable for the given load goals and no metallurgical non-conformance was reported. This led to a data acquisition activity on the front axle which reported more severe loading than initially specified.

The main purpose of the project is to analyze the existing design of the tractor front axle housing for service load conditions and redesign the axle housing with the updated load conditions. The existing geometry of the front axle is modified to the optimum size which suits for functional life requirements. In this analysis, the geometry of the front axle is modified and a new design is proposed. The objective of this study is to improve the existing design with a higher cross section at the spindle of the axle housing resulting in better performance of the tractor. Finite element simulation is carried out for the existing front axle. The critical location identified and redesigned to ensure life goals are met for the structural components.

In this analysis, the spindle is a critical structural member and the complete load passes through the spindle. In this paper we will design the axle housing. The major advantage in using MFWD tractor is that it can deliver 10 - 15 % more power for the same fuel consumption.

II. METHODOLOGY

The load on the axle is transferred through the lower king pin bearing. The vertical load and the tractive effort put a combined load on the axle of reversible nature. The stress in the shoulder reverses from tensile to compression in certain sections with varying severity depending on the track of the vehicle and the tire radius. The spindle and the kingpin bearing bearings support the complete load of the tractor. If the load on the spindle is within the range of 66% of the yield of the material the housing will give infinite life. In case the stress values in the spindle exceeds the 66% limit the life of the component needs to be calculated for the life and determined if sufficient life is available on the part. Similarly when the stress exceeds its ultimate tensile strength the housing will fracture.

The process begins with preliminary analysis of failed part followed by baseline design analysis, new design of housing, stress /strain analysis, FEA approach. Experimental data collection and validation of the of the front axle housing.

A. Process

Failure analysis
Analytical approach / Calculations
FEA
Field Test
Comparison and improvement

(This work is licensed under a Creative Commons Attribution 4.0 International License.)
III. FAILURE ANALYSIS

A. Material for axle housing,

Material specification ductile iron, grade SAE D5506

Mechanical Properties:

Hardness: - 187-241 BHN (MS 75 B),
Tensile strength: - 550 N/mm²
Yield Strength: - 380N/mm²
Elongation: 6%

| TABLE I. | INSPECTION REPORT |
#	CHARACTERISTIC	SPECIFICATION	OBSERVED
1	GRADE - 550/6 or MS-75B Chemistry	C: 3.20 - 4.10 %	C:3.8 %
		Mn :0.10 -1.00 %	Mn : 0.6 %
		Si : 1.80 - 3.00 %	Si : 2.55 %
		S : 0.005 - 0.035 %	S : 0.004 %
		P : 0.015 - 0.10 %	P : 0.025 %
2	Surf Hardness	187 - 255 BHN	210 BHN
3	Tensile Strength	> 552 N/mm²	637 N/mm²
	Yield Strength	> 379 N/mm²	430 N/mm²
	Elongation %	> 6 %	> 8.50 %
4	Matrix Structure	Pearlite: 80 +/-15%	57.72%
		Ferrite : 20 +/- 15%	20.62%
		Graphite %	21.66%
		Nodularity > 85 %	88.30%

B. Component Geometry

Failure observed at neck of the shoulder where cross section of the housing changes. (Fig. 1). It is observed that low cycle fatigue phenomenon of the failure.

C. Application / loading cycle

In a front axle the forces are applied through the rear and front Trunnion and transmitted through the housing to the kingpin bearings and to the knuckles. These forces give rise reversible stress in the shoulder spindle which leads to fatigue failure. The spindle is a critical structural member and the complete load passes through the spindle.

The existing geometry of the front axle is modified to the optimum size which suits for functional life requirements. In this analysis, the geometry of the front axle is modified and a new design is proposed. The objective of this study is to improve the existing design with a higher cross section at the spindle of the axle housing resulting in better performance of the tractor.

D. Analytical calculations

The section modulus is directly related to the strength of a corresponding housing. It is expressed in units of volume m³, mm³. For design, the Elastic section modulus is used, applying up to the Yield point for most metals and other common materials. The elastic modulus is denoted by Z. Now Section modulus is calculated by using following formula,

TABLE II.	MECHANICAL PROPERTIES OF HOUSING	
PARAMETER	BEFORE	AFTER
Section ID	26 mm	26 mm
Section OD	35 mm	40 mm
Step OD	41 mm	46 mm
Transition radius	3 mm	3 mm
Stress concentration factor	1.68 N	1.68 N
Young modulus	210000 N/mm²	210000 N/mm²
Yield of material	380 N/mm²	380 N/mm²
Vertical load is divided into the resulting components at tractor tire center line.

By drawing Free body diagram, Shear force diagram and Bending moment diagram as like below Free body diagram and calculating the forces,

\[
\text{Section modulus (Z)} = \frac{\text{Bending moment (M)}}{\text{Ultimate tensile strength of the material (F)}}
\]

Where,
- \(Z\) = Section modulus
- \(M\) = Bending Moment
- \(F\) = Ultimate tensile strength of material

E. Original Design + old Loads (18KN) on axle

For the area of the spindle we can find out using,

\[
A = \frac{\pi}{4} (D^2 - d^2)
\]

\[
= \frac{\pi}{4} (35^2 - 26^2)
\]

\[= 431.18 \text{ mm}^2\]

Moment of inertia (I)

\[
I = \frac{\pi}{4} (D^4 - d^4)
\]

\[= \frac{\pi}{4} (35^4 - 26^4)
\]

\[= 51204.03 \text{ mm}^4\]

Section Modulus at lower Bearing

\[= \frac{I}{y}\]

\[= \frac{\pi(35^4 - 26^4)}{32 - 35}
\]

\[= 2925.245 \text{ mm}^3\]

F. Original design + Revised load goals (22KN) on axle

For the area of the spindle we can find out using,

\[
A = \frac{\pi}{4} (D^2 - d^2)
\]

\[
= \frac{\pi}{4} (40^2 - 26^2)
\]

\[= 725.34 \text{ mm}^2\]

Moment of inertia (I)

\[
I = \frac{\pi}{4} (D^4 - d^4)
\]

\[= \frac{\pi}{4} (40^4 - 26^4)
\]

\[= 103179.6 \text{ mm}^4\]

Section Modulus at lower Bearing

\[= \frac{I}{y}\]

\[= \frac{\pi(40^4 - 26^4)}{32 - 35}
\]

\[= 5158.98 \text{ mm}^3\]

G. New Design + Revised loads (22KN) on axle

For the area of the spindle we can find out using,

\[
A = \frac{\pi}{4} (D^2 - d^2)
\]

\[
= \frac{\pi}{4} (40^2 - 26^2)
\]

\[= 725.34 \text{ mm}^2\]

Moment of inertia (I)

\[
I = \frac{\pi}{4} (D^4 - d^4)
\]

\[= \frac{\pi}{4} (40^4 - 26^4)
\]

\[= 103179.6 \text{ mm}^4\]

Section Modulus at lower Bearing

\[= \frac{I}{y}\]

\[= \frac{\pi(40^4 - 26^4)}{32 - 35}
\]

\[= 5158.98 \text{ mm}^3\]

H. Endurance strength & Stress Concentration factor

Laboratory endurance strength \((S_e')\) of the materials obtained from S-N diagram are therefore corrected for actual conditions by using correction factors,

\[
S_e = K_a x K_b x K_c x K_d x K_t x K_f x S_e'
\]

Where,
- \(K_a\) = Surface Correction factor
- \(K_b\) = Size Correction factor
- \(K_c\) = Loading factor
- \(K_d\) = Temperature Correction factor
- \(K_t\) = Stress concentration Correction factor
- \(S_e'\) = Endurance Strength of material specimen under laboratory condition
- \(S_e\) = Endurance Strength of material

Stress concentration factor

\(K_t\) = Normal Stress

\(K_{ts}\) = For Shear Stresses

\(K_t = \sigma_{max}/\sigma_0\)

\(K_{ts} = \sigma_{max}/\tau_0\)

From table A-15\(^{[8]}\)

Size factor \((K_b)\) from 2.79 ≤ \(d\) ≤ 51 mm

So for 35 mm dia.

\[= \frac{(d/7.62)}{0.107}\]

\[= \frac{35/7.62}{0.107}\]

\[= 0.85\]

So for 40 mm dia.

\[= \frac{(d/7.62)}{0.107}\]

\[= \frac{40/7.62}{0.107}\]

\[= 0.837\]

Surface factor \((K_a)\)

\[= a*S_{ut}^b\]

\[K_a=4.51 \text{ Mpa, and } b = -0.265\]

For machined component

\[= 4.51 * (580)^{-0.265}\]

\[K_a=0.8353\]

Loading factor \(K_c\) for bending is 1

I. Stress calculation

Moment \((P_e) = \text{Resultant load} \times \text{Load distance from flanges}\)

\[= 8769.3 \text{ N} \times 116.5 \text{ mm}\]

\[= 1021627 \text{ N-mm}\]
TABLE III. PARAMETERS

Parameter	Value
Dist. of Horizontal load (mm)	262.49
Span of bearings (mm)	50.5
Coefficient	0.7
Vertical Load (N)	9000
Horizontal Load (N)	6300
King pin angle (deg)	13
Parallel component Vp (N)	8769.3
Normal component Vn (N)	2024.6
Check	TRUE
Vertical load Couple (N-mm)	1021627
SLR (mm)	376

TABLE IV. STRESS CALCULATIONS

Dist of radius point from Bearing	Lower Brg
Bending Moment	653957 Nmm
Section ID	26 mm
Section OD	35 mm
Moment of Inertia	51230 mm^4
Stress	223 Mpa
Size corr. Factor Kb	1.68
Actual stress	375 Mpa

NEW DESIGN

Dist of radius point from Bearing	Lower Brg
Bending Moment	653957 Nmm
Section ID	26 mm
Section OD	40 mm
Moment of Inertia	103232 mm^4
Stress	127 Mpa
Size corr. Factor Kb	1.68
Actual stress	213 Mpa

J. Using modified Goodman equation

After calculating the maximum and minimum for each stresses the alternating and mean effective stresses calculated. The following equations are used.

Mean Stress \(\sigma_m = (\sigma_{\text{max}} + \sigma_{\text{min}}) / 2 \) \hspace{1cm} (11)

Range of Stress \(\sigma_a = (\sigma_{\text{max}} - \sigma_{\text{min}}) \) \hspace{1cm} (12)

Stress Amplitude \(\sigma_t = \sigma_a / 2 = (\sigma_{\text{max}} - \sigma_{\text{min}}) / 2 \) \hspace{1cm} (13)

Stress Ratio \(R = \sigma_{\text{min}} / \sigma_{\text{max}} \) \hspace{1cm} (14)

The alternating stress must then have various size, load, and stress concentration factors applied to it. This is necessary because these values are different for each loading mode. In addition, because these factors are applied to each stress they are not factored into endurance limit in the Marin equation.

The no of cycle for failure are calculated by using through calculations using the following equations

\[N_f = \left[\frac{\sigma_a}{a} \right]^{1/b} \] \hspace{1cm} (15)

Where \(a = (0.9*\text{Sut})^2 / \text{Se} \) \hspace{1cm} (16)

And \(b = -1/3 \log [0.9*\text{Sut} / \text{Se}] \) \hspace{1cm} (17)

TABLE V. LIFE CALCULATIONS

Parameter	Original Design + Original loads	Original design + Revised load	New design +Revised load
Torsion	0	0	0
Bending	375	459	213
Axial	0	0	0
Alternating stress	375	459	213
Mean stress	0	0	0
Max stress	375	459	213
Min Stress	-375	-459	-213
Stress Amplitude	375	459	213
Reversible	375	459	213
Slope	6	6	6
Fatigue limit	165	165	163
Life (No of cycles)	728	216	20225
Ultimate Stress Nmm	580	580	580
Yield Stress N mm	380	380	380
Endurance ratio	0.5	0.5	0.5
Size factor Kb	0.85	0.85	0.837
Surface Ka	0.67	0.67	0.67
Load	1	1	1

Fig. 5 Stress amplitude curve [8]

The alternating stress must then have various size, load, and stress concentration factors applied to it. This is necessary because these values are different for each loading mode. In addition, because these factors are applied to each stress they are not factored into endurance limit in the Marin equation.

The no of cycle for failure are calculated by using through calculations using the following equations

\[N_f = \left[\frac{\sigma_a}{a} \right]^{1/b} \] \hspace{1cm} (15)

Where \(a = (0.9*\text{Sut})^2 / \text{Se} \) \hspace{1cm} (16)

And \(b = -1/3 \log [0.9*\text{Sut} / \text{Se}] \) \hspace{1cm} (17)
It is observed the life, No of cycles has increased drastically to cater the field application requirement. The design life of housing has improved by multiple times. This is because the next available suitable bearing is of dia.40 mm, so by changing the section modulus with the same material of housing the duty cycle of axle accomplished.

Fig.6. New Housing with 40 mm diameter

Fig.7. Optimisation geometry comparison

K. FEA analysis

FEA analysis is carried out using Abaqus 6.13-1 with SimLab 9.0. The results of analytical and FEA compared with each other and it is found that both correlate to each other. Tie rod, hydraulic cylinder and axle shaft are simulated with beam elements. Beam release is provided to simulate the ball joint. It was observed that panic stop and breakout are causing the maximum damage to the housing. With new design the panic stop stress 358 Mpa reduced to 300 Mpa. And loader breakout application stresses 313Mpa to 294 Mpa.

Fig.8. Panic Stop Old housing

Fig.9. Panic Stop New housing

Fig.10. Enlarged view of stress damage

Fig.11. Loader Breakout Old Housing
ACKNOWLEDGMENT

I would like to give my sincere thanks to my guide Prof. M.S. Ramgir, who accepted me as his student and being a mentor for me. He offered me so much advice, patiently supervising and always guiding in right direction. I have learnt a lot from him and he is truly a dedicated mentor. His encouragement and help made me confident to fulfill my desire and overcome every difficulty I encountered. Also I would like to mention my sincere thanks to senior Mr. Idris Poonawala who guided me thru all steps of design and helped to complete the project and understand the design in detail.

I also highly obliged to the organization and management, for giving me an opportunity to continue my education and enhance my knowledge.

REFERENCES

[1] Amrit Om Nayak, G. Ramkumar, T. Manoj, M. A. Kannan, D. Manukkanand and Sibi Chakravarthy, “Holistic design and software aided finite element analysis (FEA) of an All-Terrain Vehicle”, 2012, Journal of Mechanical Engineering Research Vol. 4(6), pp. 199-212.
[2] Atayil koyuncu, “development of design verification methodology including strength and fatigue life prediction for agricultural tractors” Springer & international journal adv. Manuf. Technology, 2012 60:777-785
[3] Frank M Zoz, Robert D Grisso, “Traction and Tractor performance” Presentation ASAE 2003 the Agricultural Equipment Technology conference
[4] Frank M. Zoz, “Predicting tractor field performance”, ASAE1970 Paper No. 70-118
[5] G.D. Satisha, N.K. Singhb, I. R. K. Ohdarb, + , “Preform optimization of pad section of front axle beam using DEFORM”, Elsevier, 2008 , pp.-102–106
[6] I. D. Paul, G.P.Bhole, J.R.Chaudhari, “Optimization of Tractor Trolley Axle for Reducing the Weight and Cost Using Finite Element Method”, Journal of Engineering, Computers & Applied Sciences, 2013, Vol. 2, No.3, pp – 31-35.
[7] Javad Tarighi, Seyed Raeid Mohtasebi, Reza Alimardani, “Static and dynamic analysis of front axle housing of tractor using finite element methods”, AJAE, 2011, pp 45-49
[8] Joseph Edward Shigley, Mechanical Engineering Design. McGraw-Hill Book Company, New York (1977)
[9] M. Khalid and J. L. Stan!, “Axle torque Distributions in 4WD Tractors”, 1981, Terramechanics, Vol. 18, No. 3, pp. 157-167
[10] Mehmet Firat, “A computer simulation of four-point bending fatigue of a rear axle assembly” Elsevier, 2011, pp- 2137–2148.
[11] Mehrdad Zoroufi, Ali Fatemi, “Fatigue Life Comparisons of Competing Manufacturing processes., 2003 SAE International
[12] Nang Nguyen Van, Takaaki Matsuo, Tastuya Koumoto and Shigeki Inaba, “Transducers for measuring dynamic axle load of farm tractor” Bull. Fac. Agr., Saga Univ. 2009 No 23 to 35
[13] Pokorný, P.a,b, Náhlík, L.a, Hutař, P.a “Comparison of different load spectra on residual fatigue lifetime of railway axle” science direct, 2014 , pp .313 – 316
[14] R. Oyyaravelu, K.Annamalai, M.Senthil Kumar, C.D. Naidu, Joel Michael “Design and analysis of Front Axle for Two Wheel Drive Tractor” Advanced material research Vol. 488-489 (2012)