Hollowness in pp scattering* **

WOJCIECH BRONIOWSKI1,2† and ENRIQUE RUÍZ ARRIOLA3‡

1The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Cracow, Poland

2Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland

3Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain

It is argued that the hollowness effect (depletion in the absorptive part of the scattering cross section at small values of the impact parameter) in the proton-proton scattering at the LHC energies finds its origin in the quantum nature of the process, resulting in large values of the real part of the eikonal phase. The effect cannot be reconciled with an incoherent superposition of the absorption from the proton constituents, thus suggests the change of this basic paradigm of high-energy scattering.

PACS: 13.75.Cs, 13.85.Hd

In this talk we discuss the significance of the recent pp scattering results from the Large Hadron Collider for our understanding of the underlying physical processes in highest-energy collisions. In particular, we argue that the hollowness in the inelastic cross section treated as a function of the impact parameter b, i.e., its depletion at low b, must necessarily originate from quantum coherence, precluding a probabilistic folding interpretation. More details of our analysis can be found in [1, 2], where we also analyze the effect in 3-dimensions via the optical potential interpretation.

* Talk presented by WB at XXIII Cracow EPIPHANY Conference, 9-12 January 2017.

** Supported by Polish National Science Center grant 2015/19/B/ST2/00937, by Spanish Mineco Grant FIS2014-59386-P, and by Junta de Andalucía grant FQM225-05.

† Wojciech.Broniowski@ifj.edu.pl

‡ earriola@ugr.es
The TOTEM \cite{3} and ATLAS (ALFA) \cite{4} Collaborations have measured the differential elastic cross section for the pp collisions at $\sqrt{s} = 7$ TeV, later repeated for $\sqrt{s} = 8$ TeV \cite{5, 6}. When the data are used to obtain the inelastic cross section in the impact-parameter representation, a striking feature appears: there is more inelasticity when the two protons are separated by about half a fermi in the traverse direction than for the head-on collisions. We term this phenomenon *hollowness*. This unusual feature has been brought up and interpreted by other authors \cite{7–15}. A model realization of the effect was implemented via hot-spots in \cite{16}.

We use the parametrization of the pp scattering data \cite{17} based on the Barger-Phillips model (modified BP2) \cite{18}, with the form

$$A(s,t) \equiv \frac{f(s,t)}{p} = \sum_n c_n(s) F_n(t) s^{\alpha_n(t)} = \frac{i \sqrt{A_\rho} e^{\frac{D_\rho}{2}}}{\left(1 - \frac{t}{t_0}\right)^4} + i \sqrt{C_\rho} e^{\frac{D_\rho}{2} + i \phi},$$

where $f(s,t)$ is the quantum mechanical scattering amplitude. The modified BP2 model deals with the t dependence, and the s-dependent parameters are fitted separately to the differential elastic pp cross sections at $\sqrt{s} = 23.4$, 30.5, 44.6, 52.8, 62.0, and 7000 GeV. A typical quality of the fit, from the ISR \cite{19} at $\sqrt{s} = 23.4$ GeV to the LHC at $\sqrt{s} = 7$ TeV, can be appreciated from Fig. 1(a). These fits are not sensitive to the phase of the scattering amplitude.

The $\rho(s)$ parameter is defined as the ratio of the real to imaginary parts of the amplitude at $t = 0$:

$$\rho(s) = \frac{\text{Re}A(s,0)}{\text{Im}A(s,0)}$$

This parameter has been recently determined for the LHC energy of $\sqrt{s} = 8$ TeV in \cite{20}. To agree with this experimental constraint we replace the parametrization of the scattering amplitude of Eq. (1) with

$$A(s,t) \rightarrow \frac{i + \rho(s)}{\sqrt{1 + \rho(s)^2}} |A(s,t)|.$$

This procedure assumes a t-independent ratio of the real to imaginary parts of the scattering amplitude for all t-values, which is the simplest choice. More general prescriptions have been analyzed in detail in Ref. \cite{20}. Our results presented below are similar if we take, e.g., the Bailly et al. \cite{21} parametrization $\rho(s,t) = \rho_0(s)/(1 - t/t_0(s))$, where $t_0(s)$ is the position of the diffractive minimum. However, admittedly, there is some dependence...
on the choice of the model of $\rho(s,t)$. Moreover, the problem is linked to the separation of the Coulomb and strong amplitudes. The issue is crucial for the proper extraction of the physical results and the ambiguity has a long history since the early diagrammatic work of West and Yennie [22], which is consistent with the eikonal approximation [23, 24] but becomes sensitive to internal structure from electromagnetic information such as form factors (see, e.g., [25] and references therein).

Our prescription (3) maintains by construction the quality of the fits shown in Fig. 1, but also the experimental values for $\rho(s)$ are reproduced, which would not be the case if Eq. (1) were used. Basic physical quantities

Table 1. Basic scattering observables for several collision energies obtained from Eq. (3), compared to experimental values (lower rows). B is the slope parameter of the differential elastic cross section.

\sqrt{s} [GeV]	σ_{el} [mb]	σ_{in} [mb]	σ_T [mb]	B [GeV$^{-2}$]	ρ
23.4	6.6	31.2	37.7	11.6	0.00
[19]	6.7(1)	32.2(1)	38.9(2)	11.8(3)	0.02(5)
200	10.0	40.9	50.9	14.4	0.13
[26] [27]	54(4)	16.3(25)			
7000	25.3	73.5	98.8	20.5	0.140
[3]	25.4(11)	73.2(13)	98.6(22)	19.9(3)	0.145(100)

Fig. 1. (a) The data for the ISR energy of $\sqrt{s} = 23.4$ GeV [19] and the LHC energy of $\sqrt{s} = 7$ TeV [3] with overlaid fits according to Eq. (1). (b) Plot of the integrand of Eq. (6), showing that the range of the experimental data in q is sufficient to carry out the Fourier-Bessel transform for the values of b of interest.
stemming from our method are listed in Table 1, with good agreement with the data supporting the used parametrization.

We now recall the relevant formulas from scattering theory: The pp elastic differential cross section is given by

\[
\frac{d\sigma_{el}}{dt} = \frac{\pi}{p^2} \frac{d\sigma_{el}}{d\Omega} = \frac{\pi}{p^2} |f(s,t)|^2 = \pi |A(s,t)|^2 ,
\]

(4)

with \(p = \sqrt{s/4 - M^2} \) the CM momentum and the partial wave expansion of the scattering amplitude (we neglect spin effects) equal to

\[
f(s,t) = \sum_{l=0}^{\infty} (2l + 1) f_l(p) P_l(\cos \theta).
\]

(5)

The total cross section is given by the optical theorem,

\[
\sigma_T = \frac{4\pi}{p} \text{Re} f(s,0) = 2 \int d^2 b \text{Re} h(b,s) = 2 \int d^2 b \left[1 - \text{Im} e^{i\chi(b)} \right],
\]

(7)

\[
\sigma_{el} = \int d\Omega |f(s,t)|^2 = 4p^2 \int d^2 b |h(b,s)|^2 = \int d^2 b |1 - e^{i\chi(b)}|^2 ,
\]

(8)

\[
\sigma_{in} \equiv \sigma_T - \sigma_{el} = \int d^2 b \sigma_{in}(b) = \int d^2 b \left[1 - e^{-2\text{Im} \chi(b)} \right],
\]

(9)

In Fig. 1(b) we demonstrate that the range of the TOTEM data in \(q \) is sufficient to carry out this transform to a satisfactory accuracy needed in our analysis.

The standard formulas for the total, elastic, and inelastic cross sections (in our analysis we treat all the components to the inelastic scattering jointly, not discriminating, e.g., the diffractive components) in the \(b \) representation can be parameterized with the eikonal phase \(\chi(b) \) and have the form [28]

\[
\sigma_T = \frac{4\pi}{p} \text{Im} f(s,0) = 4p \int d^2 b \text{Im} h(b,s) = 2 \int d^2 b \left[1 - \text{Re} e^{i\chi(b)} \right],
\]

(6)
Fig. 2. Real (lower curves) and imaginary (upper curves) parts of the eikonal scattering amplitude $2p h(b)$ for several collision energies. We note that for the LHC energies, at the origin $2p \text{Im} h(0) > 1$.

with the integrands $\sigma_{\text{in}}(b)$, $\sigma_{\text{el}}(b)$ and $\sigma_T(b)$ being dimensionless quantities that can be interpreted as the corresponding b-dependent relative number of collisions. For instance, accordingly to Eq. (9), the inelasticity profile is defined as

$$\sigma_{\text{in}}(b) = 4p \text{Im} h(b, s) - 4p^2 |h(b, s)|^2.$$ \hspace{1cm} (10)

While unitarity implies $\sigma_{\text{in}}(b) > 0$, one also has $\sigma_{\text{in}}(b) \leq 2k(b, s) - k(b, s)^2$, with $k(b, s) \equiv 2p \text{Im} h(b, s)$, and hence one also has the upper bound $\sigma_{\text{in}}(b) \leq 1$.

Now we come to our results. In Fig. 2 we present the real and imaginary parts of the eikonal amplitude $2p h(b)$ for several collision energies. The real parts are smaller from the corresponding imaginary parts, as their ratio is given by the (constant) ρ parameter. The important observation here is that the imaginary parts go above 1 near the origin for the LHC collision energies. We will come back to this issue shortly.

In Fig. 3 we collect the results for the impact-parameter representations of the total, elastic, and inelastic cross sections, as well as for the edge function $[29, 30]$, defined as $\sigma_{\text{in}}(b) - \sigma_{\text{el}}(b)$. The most important feature, visible from Fig. 3 and more accurately form the close-up of Fig. 4, is the hollowness: the inelastic cross section develops a minimum at $b = 0$ at the LHC collision energies.

To better understand these results, one should resort to the formulas
expressed with the eikonal phase, plotted in Fig. 5. We have

\begin{align}
2p\text{Im } h(b) &= 1 - e^{-\text{Im} \chi(b)} \cos \text{Re} \chi(b), \\
2p\text{Re } h(b) &= e^{-\text{Im} \chi(b)} \sin \text{Re} \chi(b), \\
\sigma_T(b) &= 2 - 2e^{-\text{Im} \chi(b)} \cos \text{Re} \chi(b), \\
\sigma_{el}(b) &= 1 + e^{-2\text{Im} \chi(b)} - 2e^{-\text{Im} \chi(b)} \cos \text{Re} \chi(b), \\
\sigma_{in}(b) &= 1 - e^{-2\text{Im} \chi(b)}, \\
\sigma_{el}(b) - \sigma_{in}(b) &= 2e^{-\text{Im} \chi(b)} \left[\cos \text{Re} \chi(b) - e^{-\text{Im} \chi(b)} \right].
\end{align}
Fig. 4. A close-up of Fig. 3(c).

Fig. 5. Imaginary (a) and real (b) part of the eikonal scattering phase, plotted as functions of the impact parameter for several collision energies. We note that at the LHC energies $\text{Re} \chi(b = 0)$ goes above $\pi/2$.

We note several facts following from the above relations:

1. Going of $2p \text{Im} h(b)$ above 1 and $\sigma_T(b)$ above 2 are caused by $\text{Re} \chi(b) > \pi/2$, where $\cos \text{Re} \chi(b) < 0$ (cf. Figs. 2(a), 3(a), and 5(b)).

2. In addition, if $\chi(b) > \pi/2$, the edge function is negative and $\sigma_{el}(b) > 1$.

3. The departure of $2p \text{Im} h(b)$ from 1 is of similar order as $2p \text{Re} h(b)$, with both suppressed with $e^{-\text{Im} \chi(b)}$.
Fig. 6. Illustration of Eq. (17). The solid line corresponds to the experimental values of the ratio of the elastic to total pp cross section. Values of $\sigma_{el}/\sigma_{tot} > 1/4$ correspond to hollowness in the Gaussian model.

We see that this is the real part of the eikonal phase which controls the behavior related to hollowness.

One may give a simple criterion for $\sigma_{in}(b)$ to develop a minimum at $b = 0$. From Eqs. (10) and (3) we get

$$\frac{d\sigma_{in}(b)}{db^2} = 2p \frac{d\text{Im}h(b)}{db^2} \left[1 - (1 + \rho^2)2p\text{Im}h(b) \right],$$

which is negative at the origin if

$$2p\text{Im}h(0) > \frac{1}{1 + \rho^2} \sim 1.$$

(13)

Since $\rho = 0.14$ at the LHC, the departure of $1/(1 + \rho^2)$ from 1 is at a level of 2%.

We also find from Eq. (11) that

$$\frac{d\sigma_{in}(b)}{db^2} = 2e^{-2\text{Im}\chi(b)} \frac{d\text{Im}\chi(b)}{db^2},$$

thus the appearance of the dip at the origin in $\sigma_{in}(b)$ is associated with the dip in $\text{Im}\chi(b)$. This is manifest between Fig. 4 and Fig. 5(a).

Dremin [8-10] proposed a simple Gaussian model of the amplitude which one may adapt to the presence of the real part of the amplitude (which is crucial for maintaining unitarity with the hollowness effect). One can parametrize the amplitude at low values of b (which is the numerically relevant region) as

$$\text{Im}(2p h(p)) = A e^{-\frac{b^2}{2\pi}}, \quad A = \frac{4\sigma_{el}}{(1 + \rho^2)\sigma_{tot}}, \quad B = \frac{(1 + \rho^2)\sigma_{tot}^2}{16\pi \sigma_{el}}.$$

(15)
The curvature of the inelasticity profile at the origin is
\[\frac{1}{2} \left. \frac{d^2 \sigma_{\text{in}}(b)}{db^2} \right|_{b=0} = \frac{64\pi \sigma_{\text{el}}^2 (4\sigma_{\text{el}} - \sigma_{\text{tot}})}{(\rho^2 + 1)^2 \sigma_{\text{tot}}}, \]
(16)

We note it changes sign when \(\sigma_{\text{el}} = \frac{1}{4} \sigma_{\text{tot}} \), with the value at the origin
\[\sigma_{\text{in}}(0) = \frac{8\sigma_{\text{el}}}{(1 + \rho^2)\sigma_{\text{tot}}} \left(1 - 2\frac{\sigma_{\text{el}}}{\sigma_{\text{tot}}} \right). \]
(17)

As predicted by Dremin, the hollowness effect emerges when \(\sigma_{\text{el}} > \frac{1}{4} \sigma_{\text{tot}} \), which is the case of the LHC collision energies. We illustrate relation (17) in Fig. 6.

The final point, very important from the conceptual point of view and for the understanding of the effect, is the impossibility of hollowness to emerge from incoherent folding of inelasticities of collisions of the protons’ partonic constituents. In many models incoherent superposition is assumed, i.e., the inelasticity of the \(pp \) process is obtained from the folding formula shown below. These ideas have been implemented in microscopic models based on intuitive geometric interpretation \[30–35\]. Folding involves
\[
\sigma_{\text{in}}(b) \propto \int d^2 b_1 d^2 b_2 \rho(\vec{b}_1 + \vec{b}/2) w(\vec{b}_1 - \vec{b}_2) \rho(\vec{b}_2 - \vec{b}/2)
\]
\[= \int d^3 b_1 d^3 b_2 \rho(\vec{b}_1) w(\vec{b}_1 - \vec{b}_2) \rho(\vec{b}_2)
\]
\[- \frac{1}{2} \int d^3 b_1 d^3 b_2 [\vec{b} \cdot \nabla \rho(\vec{b}_1)] w(\vec{b}_1 - \vec{b}_2) [\vec{b} \cdot \nabla \rho(\vec{b}_2)] + \ldots, \]
(18)

where \(w(\vec{b}_1 - \vec{b}_2) \) is a positive-definite kernel (folding models usually take \(w(\vec{b}_1 - \vec{b}_2) \propto \delta(\vec{b}_1 - \vec{b}_2) \)) and \(\rho(\vec{b}) \) describes the (possibly correlated) transverse distribution of components in the proton. By passing to the Fourier space it is simple to show that \(\sigma_{\text{in}}(b) = \alpha^2 - \beta^2 b^2 + \ldots \), with real constants \(\alpha \) and \(\beta \), therefore \(\sigma_{\text{in}}(b) \) has necessarily a local maximum at \(b = 0 \), in contrast to the phenomenological hollowness result at the LHC energies. An analogous argument holds for the 3D-hollowness unveiled in our work 1, 2, which takes place already at lower energies.

In conclusion, we stress that the hollowness effect in \(pp \) scattering at the LHC energies has necessarily a quantum origin. As just shown, it cannot be obtained by an incoherent folding of inelasticities of collisions of partonic constituents. Moreover, we have demonstrated that the real part of the scattering amplitude plays a crucial role in generating hollowness: the
effect appears when the real part of the eikonal phase becomes larger than \(\pi/2\). Per se, there is nothing unusual in that fact. If coherence occurs, the phases of amplitudes from the constituents may add up (as is the case, e.g., in the Glauber model \[36\]) and at some point the value of \(\pi/2\) may be crossed. A microscopic realization of this quantum mechanism remains, however, a challenge. Finally, we note that in \[1,2\] we have presented a three-dimensional interpretation of the effect, which offers an even more pronounced hollowness feature.

REFERENCES

[1] E. Ruiz Arriola and W. Broniowski, *Proceedings, Theory and Experiment for Hadrons on the Light-Front (Light Cone 2015): Frascati, Italy, September 21-25, 2015*, Few Body Syst. **57**, 485 (2016), arXiv:1602.00288 [hep-ph].

[2] E. Ruiz Arriola and W. Broniowski, (2016), arXiv:1609.05597 [nucl-th].

[3] G. Antchev et al. (TOTEM), *Europhys. Lett.***101**, 21002 (2013).

[4] G. Aad et al. (ATLAS), *Nucl. Phys. B889*, 486 (2014) [arXiv:1408.5778 [hep-ex]].

[5] G. Antchev et al. (TOTEM), *Phys. Rev. Lett.***111**, 012001 (2013).

[6] M. Aaboud et al. (ATLAS), *Phys. Lett. B761*, 158 (2016), arXiv:1607.06605 [hep-ex].

[7] A. Alkin, E. Martynov, O. Kovalenko, and S. M. Troshin, *Phys. Rev. D89*, 091501 (2014), arXiv:1403.8036 [hep-ph].

[8] I. M. Dremin, *Bull. Lebedev Phys. Inst.***42**, 21 (2015), [Kratk. Soobshch. Fiz.42,.no.1,8(2015)], arXiv:1404.4142 [hep-ph].

[9] I. M. Dremin, *Phys. Usp.***58**, 61 (2015), arXiv:1406.2153 [hep-ph].

[10] I. M. Dremin, (2016), arXiv:1610.07937 [hep-ph].

[11] I. M. Dremin, (2017), arXiv:1702.06304 [hep-ph].

[12] V. V. Anisovich, V. A. Nikonov, and J. Nyiri, *Phys. Rev. D90*, 074005 (2014), arXiv:1408.0692 [hep-ph].

[13] S. M. Troshin and N. E. Tyurin, *Mod. Phys. Lett. A31*, 1650079 (2016), arXiv:1602.08972 [hep-ph].
[14] S. M. Troshin and N. E. Tyurin, Eur. Phys. J. A53, 57 (2017), arXiv:1701.01815 [hep-ph].

[15] S. M. Troshin and N. E. Tyurin, (2017), arXiv:1704.00443 [hep-ph].

[16] J. L. Albacete and A. Soto-Ontoso, (2016), arXiv:1605.09176 [hep-ph].

[17] D. A. Fagundes, A. Grau, S. Pacetti, G. Pancheri, and Y. N. Srivastava, Phys. Rev. D88, 094019 (2013), arXiv:1306.0452 [hep-ph].

[18] R. Phillips and V. D. Barger, Phys. Lett. B46, 412 (1973).

[19] U. Amaldi and K. R. Schubert, Nucl. Phys. B166, 301 (1980).

[20] G. Antchev et al. (TOTEM), Eur. Phys. J. C76, 661 (2016), arXiv:1610.00603 [nucl-ex].

[21] J. L. Bailly et al. (EHS-RCBC), Z. Phys. C37, 7 (1987).

[22] G. B. West and D. R. Yennie, Phys. Rev. 172, 1413 (1968).

[23] R. Cahn, Z. Phys. C15, 253 (1982).

[24] M. M. Block and R. N. Cahn, Rev. Mod. Phys. 57, 563 (1985).

[25] J. Prochazka and V. Kundrat, (2016), arXiv:1606.09479 [hep-th].

[26] G. Aielli et al. (ARGO-YBJ), Phys. Rev. D80, 092004 (2009), arXiv:0904.4198 [hep-ex].

[27] S. L. Bueltmann et al., Phys. Lett. B579, 245 (2004), arXiv:nucl-ex/0305012 [nucl-ex].

[28] R. Blankenbecler and M. Goldberger, Phys. Rev. 126, 766 (1962).

[29] M. M. Block, L. Durand, F. Halzen, L. Stodolsky, and T. J. Weiler, Phys. Rev. D91, 011501 (2015), arXiv:1409.3196 [hep-ph].

[30] M. M. Block, L. Durand, P. Ha, and F. Halzen, Phys. Rev. D92, 014030 (2015), arXiv:1505.04842 [hep-ph].

[31] T. T. Chou and C.-N. Yang, Phys. Rev. 170, 1591 (1968).

[32] T. T. Chou and C.-N. Yang, Phys. Rev. 175, 1832 (1968).

[33] H. Cheng and T. T. Wu, Expanding protons: Scattering at high energies (Mit Press, 1987).
[34] C. Bourrely, J. Soffer, and T. T. Wu, Phys. Rev. D19, 3249 (1979).

[35] M. M. Block, Phys. Rept. 436, 71 (2006), arXiv:hep-ph/0606215 [hep-ph].

[36] R. Glauber, *High energy collision theory*, Vol. 1 in Lectures in theoretical physics (Interscience, NewYork, 1959).