Rare event-triggered transitions in aerodynamic bifurcation

Ariane Gayout, Mickaël Bourgoin, and Nicolas Plihon
Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
(Dated: November 3, 2020)

The transitions between two states of a bistable system are investigated experimentally and analyzed in the framework of rare-event statistics. Considering a disk pendulum swept by a flow in a wind tunnel, bistability between two aerodynamic branches is observed, with spontaneous transitions from one branch to the other. The waiting times before spontaneous transition are distributed following a double-exponential as a function of the control parameter, spanning four orders of magnitude in time, for both transitions. Inspired by a model originally applied to the transition to turbulence, we show that, for the disk pendulum, both transitions are controlled by rare events of the aerodynamic forces acting on the disk which we propose to link in particular to the vortex shedding-induced fluctuations. Beyond the aerodynamic aspects, this work has interesting fundamental outcomes regarding the broad field of rare events in out-of-equilibrium systems.

Introduction.— Turbulent flows are canonical out-of-equilibrium random systems in which transitions between large-scale modes can be triggered by rare events. Such phenomena have been investigated in laboratory experiments, including thermal convection [1–3], Couette flows [4], von Kármán swirling flows [5, 7], rotating turbulence [8], or the dynamo instability [9]. It is also observed in the atmosphere [10–12], with dramatic consequences on climate, or in industrial systems [13–18], with implications on energy efficiency and fatigue of the structures. In spite of their variety, these systems share the feature of exhibiting spontaneous transitions between multi-stable large-scale modes, with waiting times ahead of transitions exponentially distributed [1–3, 6, 7, 19], and characteristic times several orders of magnitude larger than any hydrodynamic time of the underlying flow. This places such transitions in the field of rare events. Theoretical approaches inspired from statistical thermodynamics accurately predict the multi-stable large-scale modes, imposed by conservation laws and symmetry considerations [20–23]. Large deviation theory [24] offers a framework to compute rare events of climate dynamics [25] or the turbulent wake of a body immersed in a flow [26]. An alternative approach is related to the computation of instantons [27], with verifications in experiments [28] and direct numerical simulations [29].

Among the variety of bifurcations observed in turbulent flows, the long standing question of the transition to turbulence in pipe flows, first introduced by Reynolds more than a century ago [30], was only recently elucidated [31]. Recent thorough experiments showed that the transition is triggered by local fluctuations of the turbulence intensity, within localized intermittent puffs [32]. The lifetime of turbulent puffs and their splitting time are distributed following a double exponential as a function of the Reynolds number, and the critical Reynolds number is defined from equiprobability [19, 32]. This led to the development of a simple model linking the observed statistics for the transition to turbulence to the phenomenology of extreme fluctuations of the kinetic energy within the localized turbulent puffs [32]. Numerous careful numerical investigations legitimated this framework of rare-event dynamics [33, 34]. In this Letter, we present a simple canonical configuration to experimentally investigate rare events triggered transition in out-of-equilibrium systems: a simple pendular disk subject to a flow displays a well-characterized bi-stable dynamics [27], for which transitions occur as the pendulum interacts with the flow. These spontaneous transitions exhibit rare-event statistics, successfully described in the framework introduced in Ref [33] for pipe flows. We propose a phenomenology based on the extreme fluctuations of the aerodynamic torque. From the fundamental point of view, this study brings a simple configuration for a systematic investigation of rare-event statistics, and adds up to previous observations of double-exponential distributions of turbulent lifetimes [35, 10].

Experimental setup.— A sketch of the experimental setup is provided in Fig. 1. A pendulum made of a thin aluminium disk of surface $S = 13 \, \text{cm}^2$ is fixed at the end of a sanded saw blade of length 30 cm. The pendulum is swept by a flow in a wind tunnel, and is free to rotate around the horizontal axis in the span-wise direction, at point O. The angular position θ with respect to the vertical is recorded from a friction-less potentiometer. The center of mass G of the pendulum is such that $OG = l = 5.7 \, \text{cm}$, and the center of the disk D, where the aerodynamic forces acting on the disk apply, is such that $OD = L = 19.5 \, \text{cm}$. The total mass of the pendulum is $m = 17.01 \, \text{g}$. Here, we neglect the aerodynamic forces acting on the blade and the influence of the disk thickness (0.3 mm) on the aerodynamic forces exerted by the flow on the disk. The wind tunnel is a closed channel with a square cross-section of size 51 cm. Before impacting the pendulum, the flow is conditioned through a 6 mm-diameter honeycomb. The turbulence rate is constant for all flow velocities U and is equal to 1.5%. The physical control parameter of the experiment is the dynamic pressure ρU^2 (which controls the amplitude of the aerodynamic forces acting on the disk), with ρ the density of air, while our experimental control parameter is the rotation rate of the wind turbine generating the flow, and...
thus the velocity U.

\begin{equation}
J\ddot{\theta} = -mgl\sin(\theta) + \Gamma_{\text{aero}}(t),
\end{equation}

where J is the moment of inertia of the pendulum.

In the steady state regime, the flow creates a drag force $D = \frac{1}{2}C_D\rho U^2 S$ and a lift force $L = \frac{1}{2}C_L\rho U^2 S$ on the disk (see Fig. 1), with a drag coefficient C_D and a lift coefficient C_L. These aerodynamic forces result in a time-averaged aerodynamic torque at point O expressed as $\frac{1}{2}\rho L S U^2 C_N(\theta)$ where the normal coefficient C_N is the projection of C_D and C_L, along the direction normal to the disk. Note that the aerodynamic coefficients C_D, C_L, and C_N depend on the angle θ [41]. In the steady state regime, the torque induced by the weight of the pendulum balances the aerodynamic torque:

\begin{equation}
-\Gamma_{\text{weight}} = mgl\sin(\theta) = \frac{1}{2}\rho L S U^2 C_N(\theta) = \Gamma_{\text{aero}}.
\end{equation}

Hysteresis and spontaneous transitions.— The black curve on the left panel of Fig. 2 shows the angular position of the pendulum as a function of the wind velocity, clearly evidencing the subcritical bifurcation between two equilibrium branches [37]. This curve was obtained by slowly sweeping the wind velocity over the full range of interest at a low frequency (1 mHz), preventing dynamic stall [12,13]. The lower (resp. upper) branch is referred to as the D (resp. L)-branch, as related to the predominance of drag or lift in the torque balance. Increasing U from low velocities, the pendulum stays in the D-branch, suddenly jumps in the L-branch at $U = 6.4 \text{ m/s}^{-1}$ (for the present experimental parameters) and stays on the L-branch as long as the velocity is not decreased below 5.7 m/s^{-1}. The origin of the bistability was shown to be linked to the sharp stall of $C_N(\theta)$ at $\theta \approx 50^\circ$ [37]. In the remaining of this Letter, the transitions in the upward (resp. downward) direction will be referred to as D→L (resp. L→D) transitions. In order to probe the statistical properties of the transitions, we developed a specific experimental protocol, sketched in the right panel of Fig. 2 for the case of D→L transitions. Indeed, as the system is bistable, when the pendulum jumps from the D to the L-branch at $U = 6.4 \text{ m/s}^{-1}$, it stays in the L-branch as long as the control parameter is kept constant; in our protocol the flow velocity is modulated in order to aggregate the statistics of thousands of transitions. At time $t = 0$, the wind velocity, initially at $U_{\text{test}} = 5 \text{ m/s}^{-1}$, below the bistable region, is set to a fixed test velocity U_{test}, within the bistable region (e.g. 6.4 m/s^{-1}). After a short transient (dynamics displayed in green in Fig. 2), the pendulum reaches the initial average equilibrium angle θ_i (in the D-branch), and spontaneously jumps to the L-branch after a time τ, finally reaching a final average equilibrium angle θ_f (displayed in orange in Fig. 2). A few seconds after the transition, the flow velocity is decreased back to U_{test} where it is maintained for typically two minutes in order to restore the global flow structure in the wind tunnel (displayed in light blue in Fig. 2) before repeating the cycle.

During the time interval τ, the equilibrium position of the pendulum fluctuates around the average equilibrium angle θ_i, with a standard deviation $\Delta \theta$. Note that $\Delta \theta \ll |\theta_f - \theta_i|$, so that there is no ambiguity between the occurrence of a transition and simple natural fluctuations. This protocol is repeated hundreds of times (typically 200 times) for several values of the test velocities U_{test}, allowing to analyse the statistics of the waiting times τ as a function of the control parameter of the bifurcation. A similar protocol is used for probing the L→D transition, for which U_{trans} lies in the L-branch, above the bistable region (e.g. 7 m/s^{-1}), and is slowly decreased down to a prescribed test velocity U_{test} within the bistable region (e.g. 5.7 m/s^{-1}).

The above-detailed protocol gives access to the statis-
tional distribution of the waiting times τ as a function of the test velocity U_{test}, simply referred to as U in the sequel for clarity. Note that Eq. 2 shows that the actual physical control parameter controlling the evolution of θ is the dynamic pressure ρU^2, as previously mentioned. We thus chose to present our experimental results as a function of the initial angle θ_i, which is a proxy for the physical control parameter. Because of small variations of atmospheric pressure, and hence air density ρ, a series of measurements at constant velocity U results in a series of θ_i values typically spanning 0.1° around a mean value $\bar{\theta}_i$, from which the series are labeled. For both the D\rightarrowL and the L\rightarrowD transitions, the cumulative density function of waiting times τ (Fig. 3) shows that the probability for the pendulum to undergo a transition after a given time t follows an exponential law: $P(t \geq t) = \exp(-t/\tau_0)$, as observed in other multi-stable systems [44]. A striking feature is that the characteristic time-scale τ_c strongly depends on $\bar{\theta}_i$: it spans nearly four orders of magnitude when $\bar{\theta}_i$ spans only a few degrees.

![Image](image.png)

FIG. 3. Cumulative distribution function of the waiting time τ for different values of $\bar{\theta}_i$ for the (top) D\rightarrowL and (bottom) L\rightarrowD transition. Dotted lines represent the exponential fits.

A closer look at Fig. 4 shows deviations from the exponential law for some experiments, in particular in the long term behavior (e.g. $\bar{\theta}_i = 46.9^\circ$ for the D\rightarrowL transition) – likely due to finite size sampling, as observed for similar distributions [44] or small deviations of the physical control parameter ρU^2 during a series of measurements at constant velocity U due to meteorological variations.

Double-exponential distribution.— We will show in the remaining of this Letter that the dynamics of the spontaneous transitions is governed by rare fluctuations of the aerodynamic torque Γ_{aero}, which, according to Eq. 2, is proportional to $\sin(\theta)$. Figure 4 thus shows all individual events τ for the 2596 recorded spontaneous transitions as a function of $\sin(\theta_i)$. The colorbar of Fig. 4 corresponds to the joint probability of the variables $\sin(\theta_i)$ and τ, computed as the local density of the experimental points in the $(\sin(\theta_i), \tau)$ space. As expected, the characteristic times $\tau_c(\bar{\theta}_i)$ computed from the exponential fits for several values of $\bar{\theta}_i$ are located close to the brightest spots in Fig. 4 (not displayed for legibility).

![Image](image.png)

FIG. 4. Waiting time τ as a function of $\sin(\theta_i)$ for both transitions. Dash-dotted corresponds to the best fits according to Eq. 3. Inset: Evolution of $\ln(\ln(\tau/\tau_0))$ as a function of $\sin(\theta_i)$. See text for details.

Weighting the experimental points with their joint probability, the distribution of waiting times for each transition T (D\rightarrowL or L\rightarrowD) is fitted with excellent agreement following a double-exponential evolution as:

$$
\tau = \tau_0^T \exp \left[\exp \left(\frac{\sin(\theta_i) - \sin(\theta_0^T)}{\eta^T} \right) \right].
$$

Note that in the fitting procedure, only $\sin(\theta_0^T)$ and η^T are free fitting parameters, while τ_0^T (which, according to previous studies reporting similar double exponential statistics, is expected to be a characteristic time scale of the problem) is taken based on the spectral signature of the pendulum fluctuations as the frequency inverse of the first peak in the power spectral density of θ (see Supplementary Fig. 1). The best fits are shown as dash-dotted lines in Fig. 4 for both transitions.

Similar double-exponential statistics were reported for the characteristic lifetime of turbulent puffs as a function of the Reynolds number Re during the transition to turbulence in pipe flows [31, 45] and were analyzed in the framework of rare-event dynamics [33, 34, 36]. In the sequel, we analyze the statistics of the waiting times of the pendulum in a similar framework. Briefly, for pipe flows, the phenomenology assumes that the turbulent state cannot be sustained when the turbulent kinetic energy lies below a given threshold; hence turbulence dies if all local maxima of the kinetic energy lie below this threshold. Maxima of the turbulent kinetic energy follow a Gumbel distribution, leading to a double-exponential statistics for the lifetime of turbulent puffs.
propose the following mechanism: the pendulum jumps when the L state cannot be sustained, or equivalently when all maxima of the aerodynamic torque lie below a given threshold. The aerodynamic torque $\Gamma_{\text{aero}}(t)$ is computed from the time series $\theta(t)$ following Eq. 1. The probability density functions (pdf) of the torque fluctuations $\delta \Gamma = \Gamma_{\text{aero}}(t) - \langle \Gamma_{\text{aero}}(t) \rangle$ (where $\langle \Gamma_{\text{aero}}(t) \rangle$ is the time-averaged torque) display exponential tails (see Supplementary Fig. 2), allowing the application of rare-event statistics. The pdf of the maxima $\delta \Gamma_{\text{max}}$ of $\delta \Gamma$, computed over time intervals $\tau_{0}^{\text{L-D}}$ for each θ_i, are displayed in Fig. 3(b)). They are in excellent agreement with Gumbel distributions $P(\delta \Gamma_{\text{max}}) = \frac{1}{\beta} \exp \left[- \frac{X}{\beta} + \exp \left(- \frac{X}{\beta} \right) \right]$, where $X = \delta \Gamma_{\text{max}} - \mu$ and μ and β are calculated from the mean and the standard deviation of the distribution $\delta \Gamma_{i}$, as shown in Fig. 3(a) (and further checked on the cumulative distribution function in Supplementary Fig. 3). Assuming that a L \rightarrow D transition occurs when the maximum $\delta \Gamma_{\text{max}}$ of torque fluctuations lies below a threshold $\delta \Gamma_{c}$ during a time $\tau_{0}^{\text{L-D}}$, we now apply the statistical model developed for turbulent puffs $\delta \Gamma_{i}$ to our experimental data in order to compute $\delta \Gamma_{c}$ as a function of $\sin(\theta_{i})$. For a given value of θ_{i}, the probability p that the transition occurs during $\tau_{0}^{\text{L-D}}$ is given as $p = \tau_{0}^{\text{L-D}}/\tau_{c}(\theta_{i})$, and is linked to the pdf of the maxima of $\delta \Gamma$ as $p = P(\delta \Gamma_{\text{max}} < \delta \Gamma_{c})$.

Using the parameters β and μ extracted from the pdf of $\delta \Gamma_{\text{max}}$, the threshold $\delta \Gamma_{c}$ can then be estimated from the relation

$$p(\theta_{i}) = \frac{\tau_{0}}{\tau_{c}(\theta_{i})} = \exp \left[- \exp \left(- \frac{\delta \Gamma_{c}(\theta_{i}) - \mu(\theta_{i})}{\beta(\theta_{i})} \right) \right] \quad (4)$$

The evolution of $\delta \Gamma_{c}/\beta$ as a function of $\sin(\theta_{i})$ is shown in Fig. 3(c). The best linear regression (dash-dotted lines) matches the slope of the double-exponential fit following Eq. 3, and, more generally, the linear evolution is understood from the fact that $\mu(\theta_{i})/\beta(\theta_{i})$ is observed constant for the L \rightarrow D transition (see Supplementary Fig. 4). As $\sin(\theta_{i})$ decreases from 0.82 to 0.79, the threshold normalized to the torque standard deviation decreases, which corresponds to more probable transitions, and thus shorter waiting times. On the other hand, the standard deviation of the torque fluctuations strongly increases as $\sin(\theta_{i})$ decreases (see Supplementary Fig. 4), which is reminiscent of the increase of standard deviation of the pendulum angular position $\Delta \theta$, as color-coded in the inset of Fig. 4.

The analysis proposed for the L \rightarrow D transition also applies to the D \rightarrow L transition. A transition occurs when the D state cannot be sustained, or equivalently when the minimum aerodynamic torque during time $\tau_{0}^{\text{D-L}}$ lies above a given threshold. This transition is thus controlled by the pdf of the minima $\delta \Gamma_{\text{min}}$ of $\delta \Gamma$, computed over $\tau_{0}^{\text{D-L}}$, and displayed in Fig. 3(a) to be in excellent agreement with Gumbel distributions. A similar application of the rare-event statistical model leads to conclusions similar to the ones drawn for the L \rightarrow D transition and summarized in Fig. 3(c) for $\sin(\theta_{i})$ between 0.725 and 0.745 (see also Supplementary Fig. 4). Note that, for both transitions, the linear best fits of $\delta \Gamma_{c}/\beta$ as a function of $\sin(\theta_{i})$ shown as dash-dotted lines in Fig. 3(c) are in excellent agreement with those shown in the inset of Fig. 4, a strong asset for the validity of the proposed phenomenology.

Conclusion.— We have presented a simple out-of-equilibrium bistable system which exhibits canonical rare-event statistics which were successfully interpreted under the light of a phenomenological model inspired by previous studies on the transition to turbulence. This work extends the previous approach to the case of turbulent wakes, what may pave the way towards the modeling of other situations (transition between large-scale modes in Rayleigh-Bénard, zonal flows, swirling flows, etc.). However, the origin of the aerodynamic fluctuations triggering the transitions requires further investigations, that require time-resolved 3D visualization of the structure of the flow around the pendulum, a task well-beyond the scope of the present study. Indeed, the aerodynamic torque applied to the pendulum strongly depends upon the structure of the boundary layer upstream and downstream of the disk, controlled by vortex shedding. The characteristic times τ_{0}^{D} identified in the present work correspond to Strouhal numbers $St \approx 0.07$ and recall values reported in previous studies for transverse vortex shedding (in the $x-y$ plane) for a disk at non zero incidence θ. We thus conjecture that transverse vortex shedding controls the structure of the boundary layer and thus of rare events of the aerodynamic torque. This would point toward a leading role of transverse vortices, with potential important implications on a broader range of fluid-structure applications, as for instance such rare transitions may therefore strongly depend on the as-
pect ratio of the immersed body. Finally, the simplicity of implementation of the experimental system together with the generic observations reported on its rare-event behavior, makes it an ideal configuration to test theoretical models for out-of-equilibrium bistable systems, crucial for major applications, such as climate change.

ACKNOWLEDGMENTS

This work was supported by Initiative d’Excellence de Lyon (IDEXLYON) of the University of Lyon in the framework of the Programme Investissements d’Avenir (ANR-16- IDEX-0005).

[1] K. R. Sreenivasan, A. Bershadskii, and J. J. Niemela, Phys. Rev. E 65, 056306 (2002).
[2] K. Sugiyama, R. N. R. J. Stevens, T. S. Chan, S. Q. Zhou, H. D. Xi, C. Sun, S. Grossmann, K. Q. Xia, and D. Lohse, Phys. Rev. Lett. 105, 034503 (2010).
[3] P. K. Mishra, A. K. De, M. K. Verma, and V. Eswaran, J. Fluid Mech. 668, 480 (2011).
[4] D. S. Zimmerman, S. A. Triana, and D. P. Lathrop, Phys. Fluids 23, 065104 (2011).
[5] S. Douard, Y. Coulard, and M. E. Brachet, Phys. Rev. Lett. 67, 983 (1991).
[6] E. Ravelet, L. Marié, A. Chiffaudel, and F. Daviaud, Phys. Rev. Lett. 93, 164501 (2004).
[7] A. De La Torre and J. Burguete, Phys. Rev. Lett. 99, 054101 (2007).
[8] Y. Tian, E. R. Weeks, K. Ide, J. S. Urbach, C. N. Baroud, M. Ghil, and H. L. Swinney, J. Fluid Mech. 438, 129–157 (2001).
[9] D. Faranda, M. Bourgoin, S. Miralettes, P. Odier, J. F. Pinton, N. Pilthon, F. Daviaud, and D. Dubrulle, New J. Phys. 16, 083001 (2014).
[10] M. J. Schneits and H. A. Dijkstra, J. Phys. Oceanogr. 31, 3435 (2001).
[11] M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, Rev. Geophys. 39, 179 (2001).
[12] E. R. Weeks, Y. Tian, J. S. Urbach, K. Ide, H. L. Swinney, and M. Ghil, Science 278, 1598 (1997).
[13] S. Ahmed, G. Ramm, and G. Faltin, in SAE Technical Paper (SAE International, 1984).
[14] M. G. Goman, S. B. Zakharov, and A. N. Khрабров, Dokl. Akad. Nauk SSSR, Tech. Rep. 1 (1985).
[15] O. Cadot, A. Evrard, and L. Pastur, Phys. Rev. E 91, 063005 (2015).
[16] A. Evrard, O. Cadot, V. Herbet, D. Ricot, R. Vignon, and J. Delery, J. Fluid Struct. 61, 99 (2016).
[17] G. Bonnivain and O. Cadot, J. Fluid Mech. 854, 196 (2018).
[18] Y. Haffner, J. Borée, A. Spohn, and T. Castelain, Journal of Fluid Mechanics 894, A14 (2020).
[19] B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, Nature 443, 59 (2006).
[20] R. Robert and J. Sommeria, J. Fluid Mech. 229, 291 (1991).
[21] J. Miller, B. Weichman, and M. C. Cross, Phys. Rev. A 45, 2328 (1992).
[22] A. Naso, R. Monchaux, and P.-h. Chavanis, Phys. Rev. E 81, 066318 (2010).
[23] F. Bouchet and A. Venaille, Phys. Rep. 515, 227 (2012).
[24] A. Vulpiani, F. Cecconi, M. Cencini, A. Puglisi, and D. Vergni, Large Deviations in Physics, The Legacy of the Law of Large Numbers (Springer, Berlin, 2014).
[25] F. Ragone, J. Wouters, and F. Bouchet, P. Natl. Acad. Sci. USA 115, 24 (2018).
[26] T. Lestang, P. Ragout, C. E. Bréhier, C. Herbert, and F. Bouchet, J. Stat. Mech. - Theory E 2018, 043213 (2018).
[27] G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).
[28] G. Dematteis, T. Grafe, M. Onorato, and E. Vanden-Eijnden, Phys. Rev. X 9, 41057 (2019).
[29] T. Grafe, R. Grauer, and T. Schäfer, J. Phys. A - Math. Theor. 48, 333001 (2015).
[30] O. Reynolds, Proc. R. Soc. Lond. Ser. A 85, 84 (1883).
[31] D. Barkley, J. Fluid Mech. 803, P1 (2016).
[32] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof, Science 333, 192 (2011).
[33] N. Goldenfeld, N. Gutenberg, and G. Gioia, Phys. Rev. E 81, 036304 (2010).
[34] T. Nemoto and A. Alexakis, Phys. Rev. E 97, 022207 (2018).
[35] T. Schikarski, H. Tzischiock, W. Peukert, and M. Avila, React. Chem. Eng. 4, 559 (2019).
[36] T. Nemoto and A. Alexakis, (2020) arXiv:2005.03530.
[37] M. Obligado, M. Puy, and M. Bourgoin, J. Fluid Mech. 728, R2 (2013).
[38] M. F. Linkmann and A. Morozov, Phys. Rev. Lett. 115, 134502 (2015).
[39] L. Shi, M. Avila, and B. Hof, Phys. Rev. Lett. 110, 204502 (2013).
[40] S. Gomé, L. S. Tuckerman, and D. Barkley, Phys. Rev. Fluids 5, 083005 (2020).
[41] O. Flachsbart, in Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen - IV. Lieferung (Verlag von R. Oldenbourg, München und Berlin, 1932) pp. 96–100.
[42] L. E. Ericsson and J. P. Reding, J. Aircraft 17, 136 (1980).
[43] W. J. McCroskey, L. W. Carr, and K. W. McAlister, AIAA J. 14, 57 (1976).
[44] M. Avila, A. P. Willis, and B. Hof, J. Fluid Mech. 646, 127 (2010).
[45] B. Hof, A. De Lozar, D. J. Kuilk, and J. Westerweel, Phys. Rev. Lett. 101, 214501 (2008).
[46] The mean value being $\mu + \beta \gamma$, with $\gamma \approx 0.577$ the Euler-Mascheroni constant and the standard deviation being $\beta \pi / 15$. For each value of γ, β and μ have been extracted from experimental signals.
[47] S. Gao, L. Tao, X. Tian, and J. Yang, J. Fluid Mech. 851, 687 (2018).