New diploid populations of
Chrysanthemum indicum L. (Asteraceae) from Korea

Jung Hyun KANG and Jung Sung KIM*

Department of Forest Science, Chungbuk National University, Cheongju 28644, Korea

(Received 21 November 2019; Revised 23 January 2020; Accepted 23 January 2020)

ABSTRACT: *Chrysanthemum indicum* (Asteraceae) is a perennial plant belonging to the genus *Chrysanthemum*. The basic chromosome number of *Chrysanthemum sensu stricto* is *x* = 9, and it consists of a series of polyploids ranging from diploid to decaploid. However, *C. indicum*, which occurs in Korea, is known to consist of only tetraploids, except for two diploid populations that are sympatric with *C. zawadskii* and *C. boreale*. During the collection of plant materials as part of a study to ascertain the diversity of *Chrysanthemum* in Korea, we found new diploid populations (2* n* = 18) of *C. indicum* in the southern region of Korea and describe them here in detail.

Keywords: *Chrysanthemum indicum*, diploid, tetraploid, chromosome number

The genus *Chrysanthemum* (subfamily Asteroideae of Asteraceae) comprises 41 recognized species, mainly distributed across East Asia including Korea, China, and Japan (Bailey and Bailey, 1976; Ohwi, 1984; Fu et al., 2005; Oberprieler et al. 2007). It is characterized by the obovoid and generally mucilaginous cypselae without pappus and involucral bracts with dark brown margins (Bremer and Humphries, 1993; Lee, 2006; Zhao et al., 2009). Historically the genus *Chrysanthemum* distributed in Asia was especially separated from *Chrysanthemum* s. l. of the broad sense by Kiramura (1940), and was recognized as an independent genus *Dendranthema* (DC.) Des Moul. of the narrow sense (Bremer and Humphries, 1993). However, it was changed again and back to the *Chrysanthemum* (Trehane, 1995; Nicolson, 1999). *Chrysanthemum indicum* L. is a perennial plant and it has commonly yellow ray flower as well as *C. boreale*.

Kim and Tobe (2009) had reported that the leaf shape of *C. boreale* and *C. indicum* were similar to each other though the thickness were slightly different. However, Jeong (2011) and Song et al. (2012) found a wide variation of leaf shape within both species and sometimes it was difficult to distinguish each species because of overlapped variation. They suggested that an adaptation to their native habitats leads the similar external feature appearance between both species. Although it is obviously difficult to distinguish these closely related species to each other clearly, the head flower size has been regarded as one of key characters to classify two species. According to Lee (2003), the *C. boreale*’s head flower is 1.5 cm and the *C. indicum* is 2.5 cm in diameter. Kim et al. (2003) described that *C. boreale*’ head flowers was less than 1.5 cm and *C. indicum* was 1.5–2.5 cm in diameter. Therefore, for a long time, they have been accepted the diagnostic characters for classifying both species.

Polyploidization has played an important role in plant evolution and speciation, and it is prevalent in the genus *Chrysanthemum* (Dowrick, 1952; Shimotomai et al., 1956; Tanaka, 1959, 1960; Nakata and Tanaka, 1987; Tsukaya, 2002; Kim et al., 2003). From the accumulated data of cytological studies for long time, it was clear that the basic chromosome number of the genus *Chrysanthemum* is *x* = 9 and it has a successive ploids in the species level (Grant, 1981; Oberprieler et al. 2007). For the example, *C. zawadskii* has 2x, 4x, 6x, 8x, and 10x (Nakata and Kumagai, 1999; Kim et al., 2004), *C. indicum* has 2x, 4x, and 6x (Lee and Oh, 1976; Nakata et al. 1987; Taniguchi 1987; Du et al., 1989). Since Lee and Oh (1976) found two cytotypes of yellow-flowered wild chrysanthemum in Korea, one is *C. boreale* which has numerous small heads and 18 chromosomes and the other is...
C. indicum which has a few larger heads of 1.5–2.3 cm in
diameter and 36 chromosomes in the mitotic cells. The
information of the C. indicum (2n = 36) population reported
by Lee and Oh (1976) is not detailed and is known as a total
of 59 populations. C. indicum had been known to be composed
of only tetraploid population in Korea until the sympatric
diploid populations (Fig. 1, Table 1) were reported by Kim et
al. (2003).

For the purpose of understanding the diversity in the genus
Chrysanthemum, we re-investigated the ploidy of
C. indicum populations and found new diploid populations are widely
distributed in Korea. Therefore, we described the details of the
population information in the present study for the advanced
research.

Materials and Methods

Plant materials

A total of 167 living individuals were collected from
seventeen populations of C. indicum (Fig. 1, Table 1) which
are native and composed of over 20 individuals, and identified
by external morphological characters of the head size and color.
After collecting from the national habitats, they were managed
for sufficient water supply in the greenhouse of Chungbuk
Table 1. Collection sites information and chromosome number of Chrysanthemum indicum populations investigated in the study.

Pop. No.	Locality	Coordinate (Elevation)	Voucher specimen	Chromosome number
1	Songgye-ri, Hansu-myeon, Jecheon-si, Chungcheongbuk-do	36.80°N, 128.08°E (360)	CBNU2018-0267	2n = 18
2	Songnisan-myeon, Boeun-gun, Chungcheongbuk-do	36.53°N, 127.82°E (338)	CBNU2019-0225	2n = 18
3	Mudengsan, Geumgok-dong, Gwangju, Jeollanam-do	35.13°N, 126.98°E (520)	CBNU2019-0226	2n = 18
4	Beagisan Mt., Nam-myeon, Jeongseon-gun, Gangwon-do	37.17°N, 128.42°E (380)	CBNU2019-0227	2n = 18
5	Gwangjin-ri, Hyeonnam-myeon, Yangyang-gun, Gangwon-do	37.96°N, 128.76°E (65)	CBNU2019-0209	2n = 18
6	Baekdal-ri, Ucheon-myeon, Hoengseong-gun, Gangwon-do	37.44°N, 128.06°E (220)	CBNU2018-0206	2n = 18
7	Cheokcheon-ri, Jinbu-myeon, Pyeongchang-gun, Gangwon-do	36.79°N, 128.50°E (970)	CBNU2018-0220	2n = 18
8	Binggyegyegok, Chunsan-myeon, Uiseong-gun, Gyeongsangbuk-do	36.22°N, 128.75°E (120)	CBNU2019-0216	2n = 18
9	Josa-ri, Songna-myeon, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.22°N, 129.38°E (28)	CBNU2019-0214	2n = 18
10	Docheon-ri, Namjeong-myeon, Yangdeok-gun, Gyeongsangbuk-do	36.31°N, 129.35°E (34)	CBNU2019-0213	2n = 18
11	Deogyusan Mt., Seolcheon-myeon, Muju-gun, Jeollabuk-do	35.88°N, 127.78°E (717)	CBNU2019-0221	2n = 18
12	Mapo-ri, Byeonsan-myeon, Buan-gun, Jeollabuk-do	35.64°N, 126.47°E (20)	CBNU2019-0220	2n = 18
13	Yadalsan Mt., Mokwon-dong, Mokpo-si, Jeollanam-do	34.78°N, 126.36°E (32)	CBNU2018-0396	2n = 18
14	Sangjinbu-ri, Jinbu-myeon, Pyeongchang-gun, Gangwon-do	37.65°N, 128.57°E (540)	CBNU2018-0221	2n = 36
15	Cheonjeyeon, Jungmun-dong, Seogwipo-si, Jeju-do	33.24°N, 126.42°E (17)	CBNU2018-0398	2n = 36
16	Yongbongsan Mt., Sangha-ri, Hongbuk-myeon, Hongseong-gun, Chungcheongnam-do	36.64°N, 126.64°E (139)	CBNU2019-0197	2n = 36
17	Gageodo-gil, Heulsan-myeon, Sinan-gun, Jeollanam-do	34.05°N, 125.07°E (215)	CBNU2019-0228	2n = 36

★ Kwangha-ri, Jeongsan-eup, Jeongsan-gun, Gangwon-do
☆ Baekun-ri, Mitan-myeon, Pyeongchang-gun, Gangwon-do

Previously reported diploid (2n = 18) population (Kim et al., 2003)

Fig. 1. Map showing the localities of the populations which were
described in the Table 1. ●, The diploid population (2n = 18); ○,
the tetraploid population (2n = 36); ★ & ☆, The previously
reported diploid populations.
National University. The voucher specimens were deposited in the herbarium of Department of Forest Science, Chungbuk National University (CBNU).

Root fixation

According to Kim et al. (2003), fresh root tips were collected from the planted living materials and pre-treated with 0.002 M 8-hydroxyquinolin solution for 2 h at 20°C. It was then washed with distilled water, and fixed with Carnoy’s solution (45% acetic acid:99% ethanol = 1:3) for 30 min on ice. And they were stored in 70% cold ethanol at -20°C for the mitotic chromosome observation.

Mitotic chromosome observations

To observe the mitotic metaphase chromosomes, the squash method was performed with the same condition of Kim et al.’s study (2003). The root tips were dissociated at 65°C for 1 min pre-heated 1 N HCl solution and stained by 1% aceto-orcein solution. It was repeated at least five times per individual, and the chromosome numbers were observed under the optical microscope (Olympus BX50, Tokyo, Japan) to verify their chromosome number.

Results and Discussion

We found that *C. indicum* showed various leaf shapes (Fig. 2) even though they were identified as *C. indicum* based on the head flower size and leaf shape. Based on the observation of mitotic metaphase chromosome, we found that new diploid populations of *C. indicum* are distributed in Korea. Out of 17 populations which were investigated in the present study, 13 populations were diploid of 2\(n = 18\) (pop No. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13) and 4 populations were tetraploid of 2\(n = 36\) (pop No. 14, 15, 16, and 17) (Fig. 3, Table 1). These newly reported diploid populations of *C. indicum* could be used as an important material for understanding the
evolution patterns of *C. indicum* in Korea. The most important mechanisms for understanding plant evolution are hybridization and polyploidization (Dowrick, 1952; Shimotomai et al., 1956; Tanaka, 1959, 1960; Lee, 1975; Nakata and Tanaka, 1987; Nakata et al., 1987; Hotta et al., 1996; Tsukaya, 2002; Kim et al., 2003). The *C. zawadskii* complex has been reported from 2x (2n = 18) to 10x (2n = 90), whereas *C. indicum* is composed of diploid and tetraploid, and *C. boreale* is specifically known only diploid (Lee and Oh, 1976; Nakata et al. 1987; Taniguchi 1987; Du et al. 1989; Nakata and Kumagai 1999; Kim et al. 2004; Kim et al. 2008). From the result, *C. indicum* should be recognized as a species complex as well as *C. zawadskii* complex composed of different ploid level of diploid and tetraploid for the further study. It needs extensive cytological studies of *C. indicum* for clarifying the diversification mechanism and relationship among the populations. Also it is suggested the probability that the expression of polyploidization is differ depend on the species. In addition, the presence of intermediate type of both species, *C. indicum* and *C. boreale*, revealed the interspecific hybrids have naturally and repeatedly generated among the species and it makes to difficult and complicate to understand the evolutionary history in the genus.

ORCID: Jung Hyun KANG (https://orcid.org/0000-0003-4544-5647); Jung Sung KIM (https://orcid.org/0000-0002-7658-6330)

Acknowledgments

This study was supported by Basic Science Research Program through National Research Foundation of Korea (NRF) the funded by the Ministry of Education (No. 2017R1D1A1A02018573).

Conflict of Interest

The authors declare that there are no conflicts of interests.

Literature Cited

Bailey, L. H. and E. Z. Bailey. 1976. A concise dictionary of plants cultivated in the United States and Canada. Macmillan Publishing Company, New York, USA. Pp. 266–269.

Bremer, K. and C. J. Humphries. 1993. Genetic monograph of the Asteraceae-Anthemideae. Bulletin of the Natural History Museum, Botany Series 23: 71–177.

Dowrick, G. J. 1952. The chromosome of *Chrysanthemum*, I: the species. Heredity 6: 365–375.

Du, B. Q. Lin, C. Zhu and S. Ke. 1989. Karyotype studies of two species of *Dendranthema*. Journal of Wuhan Botanical Research 7: 293–296.

Fu, L., T. Chen, K. Lang, H. Tao and Q. Lin. 2005. Higher Plants of China. Vol. 11. Qingdao Publishing House, Beijing. Pp. 341–348.

Grant, V. 1981. Plant Speciation. 2nd ed. Columbia University Press, New York, 432 pp.

Hotta, M., N. Yamagawa, Y. Hirai and T. Shiuchi. 1996. Taxonomical notes on plants of southern Japan III. Distribution and taxonomy of the *Dendranthema ornatum* group around southern Kyushu. Acta Phytotaxonomica et Geobotanica 47: 91–104.

Jeong, E. H. 2011. Morphological characteristics and relationships of Korean native *Chrysanthemum* indicum collections. PhD dissertation, Gyeongsang National University, Jinju, Korea, 113 pp.

Kim, J. S., K. Oginuma and H. Tobe. 2008. Analysis of meiotic chromosome behaviour in diploid individuals of *Chrysanthemum zawadskii* and related species (Asteraceae): evidence for chromosome rearrangements. Cytologia 73: 425–435.

Kim, J. S., J.-H. Pak, B.-B. Seo and H. Tobe. 2003. Karyotypes of metaphase chromosomes in diploid populations of *Dendranthema zawadskii* and related species (Asteraceae) from Korea: diversity and evolutionary implications. Journal of Plant Research 116: 47–55.

Kim, J. S., J.-H. Pak and H. Tobe. 2004. Chromosome number of *Dendranthema coreana* (Asteraceae). Acta Phytotaxonomica et Geobotanica 55: 63–64.

Kim, J. S. and H. Tobe. 2009. Variations of leaf thickness in the *Chrysanthemum zawadskii* complex and in two related Korean species: *C. boreale* and *C. indicum* (Asteraceae). Korean Journal of Plant Taxonomy 39: 29–34.

Kitamura, S. 1940. Compositae Japonicae. Memoirs of the College of Science, Kyoto Imperial University, Series B Biology 15: 316–375.

Lee, Y. N. 1975. Taxonomic study on white flowered wild *Chrysanthemum* in Asia. Korean Journal of Botany 14: 63–73.

Lee, Y. N. and Y. G. Oh. 1976. Taxonomic study on yellow-flowered wild *Chrysanthemum* in Korea. Journal of Korean Research Institute for Better Living 17: 143–154. (in Korean)

Lee, T. B. 2003. Coloured Flora of Korea. Hyangmunsa, Seoul, 2096 pp. (in Korean)

Lee, Y. N. 2006. New Flora of Korea II. Kyohaksa, Seoul. Pp. 318–325.

Nakata, M. and A. Kumagai. 1999. Octoploid cytotype of *Dendranthema zawadskii* (Asteraceae) found in Iwate prefecture and its implications in evolutionary history. Bulletin of the
New diploid populations of *Chrysanthemum indicum* 21

Nakata, M. and R. Tanaka. 1987. Species of *Chrysanthemum* in Japan in the study of chromosomes. In Proceedings of the Sino-Japan Symposium on plant chromosomes research. Tanaka, R. and R. Chen (eds.), Hiroshima, Nichiki. Pp. 17–22.

Nakata, M., R. Tanaka, K. Taniguchi and N. Shimotomai. 1987. Species of wild *Chrysanthemum* in Japan: cytological and cytogenetical views on its entity. Acta Phytotaxonomica et Geobotanica 38: 241–259.

Nicolson, D. H. 1999. Report of the general committee: 8. Taxon 48: 373–378.

Oberprieler, C. H., R. Vogt and L. E. Watson. 2007. Tribe Anthemideae. In The Families and Genera of Vascular Plants. Vol. 8. Flowering Plants. Eudicots: Asterales. Kadereit, J. W. and C. Jeffrey (eds.), Springer, Berlin. Pp. 342–374.

Ohwi, J. 1984. Flora of Japan. Smithsonian Institution, Washington, DC. Pp. 889–893.

Shimotomai, N., R. Tanaka, S. Masumori and M. Ishiguro. 1956. Über die Polyploidie und geographische Verbreitung bei *Chrysanthemum* japonense Nakai. Botanical Magazine 69: 514–518.

Song, H. S., S. M. Kim and Y. J. Park. 2012. Comparison of vegetation and habitat condition of *Dendranthema boreale* and *Dendranthema indicum* in Korea. Korean Journal of Medici-
nal Crop Science 20: 20–26.

Tanaka, R. 1959. On the speciation and karyotypes in diploid and tetraploid species of *Chrysanthemum boreale*×*Ch. makinoi*. Journal of Science of the Hiroshima University, Series B, Division 2, Botany 9: 31–40.

Tanaka, R. 1960. On the speciation and karyotypes in diploid and tetraploid species of *Chrysanthemum, V. Chrysanthemum* yoshinaganthum (2n=36). Cytologia 25: 43–58.

Taniguchi, K. 1987. Cytogenetical studies on the speciation of tetraploid *Chrysanthemum indicum* L. with special reference to C-bands. Journal of Science of the Hiroshima University, Series B, Division 2, Botany 21: 105–157.

Trehane, P. 1995. Proposal to conserve *Chrysanthemum* L., with a conserved type (Compositae). Taxon 44: 439–441.

Tsukaya, H. 2002. Leaf anatomy of a reophyte, *Chrysanthemum yoshinaganthum* (Asteraceae), and of hybrids between *D. yoshinaganthum* and a closely related nonreophyte, *D. indicum*. Journal of Plant Research 115: 329–333.

Zhao, H. E., Z. H. Liu, X. Hu, J. L. Yin, W. Li, G Y. Rao, X. H. Zhang, C. L. Huang, N. Anderson, Q. X. Zhang and J. Y. Chen. 2009. *Chrysanthemum* genetic resources and related genera of *Chrysanthemum* collected in China. Genetic Resources and Crop Evolution 56: 937–946.