The Effect of Refractive Error on Melanopsin-Driven Pupillary Responses

Donald O. Mutti,1 Shane P. Mulvihill,2 Danielle J. Orr,1 Patrick D. Shorter,3 and Andrew T. E. Hartwick1

1The Ohio State University College of Optometry, Columbus, Ohio, United States
2Blount County Eye Center, Maryville, Tennessee, United States
3Optical Radiation Bioeffects Branch, Tri-Service Research Laboratory, Fort Sam Houston, Texas, United States

Purpose. Human and animal studies suggest that light-mediated dopamine release may underlie the protective effect of time outdoors on myopia development. Melanopsin-containing retinal ganglion cells may be involved in this process by integrating ambient light exposure and regulating retinal dopamine levels. The study evaluates this potential involvement by examining whether melanopsin-driven pupillary responses are associated with adult refractive error.

Methods. Subjects were 45 young adults (73% female, 24.1 ± 1.8 years) with refractive errors ranging from −6.33 D to +1.70 D. The RAPDx (Konan Medical) pupillometer measured normalized pupillary responses to three forms of square-wave light pulses alternating with darkness at 0.1 Hz: alternating long wavelength (red, peak at 608 nm) and short wavelength (blue, peak at 448 nm), followed by red only and then blue only.

Results. Non-myopic subjects displayed greater pupillary constriction in the blue-only condition and slower redilation following blue light offset than subjects with myopia (P = 0.011). Pupillary responses were not significantly different between myopic and non-myopic subjects in the red-only condition (P = 0.15). More hyperopic/less myopic refractive error as a continuous variable was linearly related to larger increases in pupillary constriction in response to blue-only stimuli (r = 0.48, P = 0.001).

Conclusions. Repeated light exposures to blue test stimuli resulted in an adaptation in the pupillary response (more constriction and slower redilation), presumably due to increased melanopsin-mediated input in more hyperopic/less myopic adults. This adaptive property supports a possible role for these ganglion cells in the protective effects of time outdoors on myopia development.

Keywords: ipRGCs, myopia, melanopsin

An increasing prevalence of myopia in children, particularly in Asia, has sparked considerable interest in identifying environmental risk factors for myopia onset and its rate of progression.1–5 Heredity is clearly important in the etiology of myopia,6–9 but an increasing prevalence over time is inconsistent with a trait being solely genetic. Near work has been the variable classically associated with myopia. The balance of cross-sectional evidence supports the view that children with myopia engage in greater amounts of near work.10 However, the more important question is longitudinal—namely, whether more near work results in an increase in the risk of myopia onset or the rate of myopia progression. Several studies find no substantial increase in risk of onset or rate of progression associated with more near work.9,11–15 In contrast, time outdoors has been associated with a decreased risk of myopia onset more often than not in longitudinal cohort studies and clinical trials, along with inconsistent or little effect on myopia progression.12,14–19 One of the mechanisms proposed for the protective effects of time outdoors is that exposure to higher irradiance sunlight stimulates the release of more dopamine from the retina which results in inhibition of axial elongation.20–22 Many animal models suggest that retinal dopamine plays an important role in the regulation of eye growth and refractive error. Induction of experimental myopia by form deprivation or minus lenses reduces levels of retinal dopamine,23,24 and the application of dopamine agonists significantly inhibits the induction of myopia.25,26 Exposure to high-intensity illumination in the laboratory also inhibits the induction of form-deprivation myopia in the chick, monkey, and mouse.20–28 Introduction of the D2 receptor antagonist spiperone inhibits both the recovery from form-deprivation myopia25,29,30 and the protective effect of high-intensity illumination in the chick.31 Given their ability to integrate high-intensity outdoor light exposure over time and to stimulate the release of retinal dopamine, it has been hypothesized that intrinsically...
photoreceptive retinal ganglion cells (ipRGCs) play an important role in mediating the protective effects of light exposure on myopia.21,22 These melanopsin-expressing ganglion cells generate action potentials in direct response to light exposure,34 but their sparse representation makes them better suited for detection of ambient illumination than for image resolution.35 Like other ganglion cells, ipRGCs receive excitatory and inhibitory input from retinal bipolar and amacrine cells.36,37 However, there is also evidence for a presynaptic role for ipRGCs in providing excitatory, light-evoked input to sustained-firing dopaminergic amacrine cells.36,37 The central projections of ipRGC axons are diverse,38 with one major target being the pretectal olivary nucleus involved in controlling the pupillary light reflex.39 Clinical tests of the contribution of melanopsin to the pupillary response take advantage of two characteristics of this photopigment: its peak spectral sensitivity at 480 nm (as opposed to 420 nm, 534 nm, and 564 nm for S-, M-, and L-cones, respectively)40 and the sluggish and sustained temporal firing properties of ipRGCs.31 Sustained pupillary constriction with limited pupillary escape during the light response and a slower rate of redilation following light offset characterize melanopsin-mediated pupillary responses, whereas pupillary escape and brisk redilation are more typical of cone-mediated input.41-44

Assessment of the melanopsin-driven contribution to the pupillary response as a function of refractive error would be one test of ipRGC involvement in the protective effect of time outdoors. Longitudinal studies during the development of refractive error would be a more direct test; however, studies that have investigated ipRGC-mediated pupillary responses to small numbers (two or three pulses) of red and blue light have not found associations with refractive error in adults or children.45-47 These results suggest that the subjects’ refractive errors do not significantly influence the initial dark-adapted melanopsin-driven pupillary responses. However, prior work with different testing protocols has shown that ipRGC-mediated pupillary responses can be enhanced to show greater pupillary constriction and slower redilation by exposure to a larger number of repeated light pulses.48 The purpose of the current study is to determine whether this adaptation in ipRGC-mediated pupillary responses that develops following repeated light and dark pulses is related to refractive error in adults.

Methods

Subjects were 45 young adults, 35 (73.3%) of whom were female, with an average age (± SD) of 24.1 ± 1.8 years (range, 21.4–29.7 years). Refractive error was measured using the open-view Grand Seiko WR-5100K (Grand Seiko Co., Ltd., Hiroshima, Japan; distributed by AIT Industries, Bensenville, IL, USA). Ten readings were taken on each eye without cycloplegia but with the use of a Badal lens and track to relax accommodation and provide a clear target while subjects viewed the smaller lines on an acuity card within 10 minutes of arrival for testing after subjects’ ordinary daily activity. Subjects were positioned in front of the pupillometer without refractive correction after 5 minutes of dark adaptation (0.01 lux) before each of three separate trials. The length of time chosen for dark adaptation was somewhat arbitrary but was within the range of the 2 to 10 minutes used in other studies.41,45,46 The light stimuli were presented in a 20.5° circular field to both eyes for 5 seconds interleaved with 5 seconds of dark (0.1 Hz). The light stimuli in the three trials were (1) pulses alternating between red and blue, (2) red only, and (3) blue only. The alternating presentation lasted for 2 minutes (six presentations of red interleaved with six of blue) and each of the single-color conditions lasted for 1 minute (six presentations of either red or blue). The order of presentation was the same for all subjects: the alternating red/blue stimulus was applied
Table 1. Descriptive Statistics for Cumulative Light Exposure and for Time Outdoors (Illuminance Exposure > 1000 lux) at Various Intervals for the Whole Sample and for Myopic and Non-Myopic Subjects by Group

Time Period	All Subjects N = 45	Myopic Subjects n = 28	Non-Myopic Subjects n = 16
Average light exposure (log₁₀ lux-min), mean ± SD			
1 h	4.60 ± 0.80	4.36 ± 0.82	4.97 ± 0.60
3 h	5.04 ± 0.66	4.93 ± 0.72	5.22 ± 0.52
12 h	5.31 ± 0.59	5.22 ± 0.66	5.44 ± 0.46
1 d	5.87 ± 0.54	5.80 ± 0.57	5.92 ± 0.43
3 d	6.45 ± 0.50	6.36 ± 0.45	6.55 ± 0.53
5 d	6.69 ± 0.47	6.59 ± 0.46	6.81 ± 0.43
Average time outdoors (log₁₀ min), mean ± SD			
1 h	1.13 ± 0.35	1.01 ± 0.32	1.25 ± 0.31
3 h	1.28 ± 0.46	1.18 ± 0.50	1.41 ± 0.39
12 h	1.35 ± 0.51	1.24 ± 0.53	1.53 ± 0.45
1 d	1.94 ± 0.37	1.87 ± 0.37	2.02 ± 0.35
3 d	2.39 ± 0.40	2.32 ± 0.38	2.47 ± 0.43
5 d	2.63 ± 0.38	2.57 ± 0.39	2.71 ± 0.35

Neither light exposure nor time outdoors was significantly different between groups (P = 0.055 and P = 0.14, respectively; repeated-measures ANOVA).
FIGURE 2. The pattern of pupillary responses for the myopic subjects during the alternating pulses of red and blue (A) and during the presentation of red only and blue only (B). The pattern of pupillary responses for the non-myopic subjects during the alternating pulses of red and blue (C) and during the presentation of red only and blue only (D). Solid lines represent the single-color presentation of blue or red; dashed lines represent the alternating-color presentation. Pupillary constriction was greater in non-myopic subjects than in myopic subjects during the presentation of blue only compared to blue alternated with red. Pupillary constriction was not significantly different between non-myopic and myopic subjects during the presentation of red only compared to the alternating presentation of red. Error bars represent 95% CIs.

Statistical analysis was performed using SPSS Statistics 21 (IBM, Armonk, NY, USA). Non-myopic and myopic subject characteristics were compared using independent t-tests or Fisher’s exact test. The t-test P values were not adjusted for multiple testing. The six time periods for light exposure and time outdoors were compared between myopic and non-myopic subjects in separate repeated-measures ANOVA. The four pupillary response outcomes (ΔBlue, ΔRed, ExpBlue, and ExpRed) were also analyzed using repeated-measures ANOVA with color (red or blue) and outcome type (Δ or Exp) as repeated factors. Myopic or non-myopic was a between-subject factor. Bivariate correlations were examined among the pupillary outcomes, light exposure, and SEQ using SPSS. Significant linear relationships were fit using the orthogonal regression procedure in JMP 10 (SAS Institute, Cary, NC, USA). General linear models were then used to examine multivariate associations among SEQ, environmental light exposure, age, and sex, including all two-way interactions. P < 0.05 was considered significant.

RESULTS

Myopic and non-myopic subjects were similar in average age and percent who were female (P = 0.46 and P = 0.54, respectively). There were also no significant differences between groups with respect to time of day or season of testing, birth month or season of birth, or percent time wearing sunglasses when outdoors (P values between 0.20 and 0.81; Supplementary Table). As shown in Table 1, subjects had an average light exposure during 5 days of 4.9 million lux-min (6.69 ± 0.47 log10 lux-min) and spent an average of 427 minutes...
FIGURE 3. The data in Figure 2 averaged across pulses for the myopic subjects during the alternating pulses of blue and blue only (A) and during the alternating pulses of red and red only (B). The pattern of pupillary responses for the non-myopic subjects during the alternating pulses of blue and blue only (C) and during the alternating pulses of red and red only (D). Solid lines represent the presentation of blue only or red only; dashed lines represent the alternating-color presentation. The gap between the single-color and the alternating presentation of blue (ΔBlue) is greater in non-myopic subjects than in myopic subjects (see Table 2 for quantification of effect). Error bars represent 95% CIs. (E, F) Normalized pupillary responses during the last 3 seconds of redilation (seconds 2–5) for each 5-second period of dark following blue-only stimulation (E) and red-only stimulation (F), averaged over the six pulses. Results are displayed by refractive error group. The rate of redilation was significantly slower for non-myopic subjects (open symbols) compared to myopic subjects (closed symbols) for the blue-only condition. Error bars represent 95% CIs.
Table 2. Descriptive Statistics for the Pupillary Response Variables for the Sample as a Whole and for Myopic and Non-Myopic Subgroups

Pupillary Response Variable	Mean ± SD	All Subjects N = 45	Myopic Subjects n = 28	Non-Myopic Subjects n = 16	P
ΔBlue	0.086 ± 0.062	0.071 ± 0.064	0.11 ± 0.050	0.038	
ΔRed	-0.017 ± 0.065	-0.027 ± 0.069	0.00040 ± 0.058	0.18	
ExpBlue	-0.079 ± 0.052	-0.091 ± 0.053	-0.056 ± 0.045	0.029	
ExpRed	-0.16 ± 0.098	-0.17 ± 0.097	-0.14 ± 0.10	0.26	

P values refer to independent t-tests comparing myopic and non-myopic subjects.

(2.63 ± 0.38 log₁₀ minutes) outdoors. Myopic and non-myopic subjects spent similar amounts of time outdoors and had similar light-exposure histories over the sampled time intervals (P = 0.055 and P = 0.14, respectively, for light exposure and time outdoors between myopic and non-myopic subjects; repeated-measures ANOVA). None of the four pupil outcome variables was related to light exposure in any of the time intervals (P values between 0.054 and 0.98).

The RAPDx recorded pupil size prior to the first pulses of alternating red and blue. These baseline pupil diameters were similar between myopic and non-myopic subjects (5.25 ± 1.16 mm and 5.11 ± 0.88 mm, respectively; P = 0.66). The pupillary responses for non-myopic and myopic subjects are shown with results for each of the six pulses in Figure 2 and as the average of those six pulses by stimulus color for easier comparison in Figure 3. Pupillary constriction increased in both refractive error groups during the alternating presentation of red and blue. Pupillary responses differed, however, as a function of refractive error during the subsequent blue-only test condition. As shown in Figures 2 and 3, non-myopic subjects displayed greater pupillary constriction compared to myopic subjects during presentation of blue as a single color (ΔBlue in Table 2, P = 0.038). As shown in Figures 2 and 3, and in detail in Figure 3E, pupillary redilation was also slower following blue-only light offset in non-myopic subjects (ExpBlue in Table 2; P = 0.029). Neither ΔRed nor ExpRed was significantly different between non-myopic and myopic subjects (P = 0.18 and P = 0.26, respectively) (Table 2). When ΔBlue and ExpBlue were considered together as a repeated factor (blue), non-myopic subjects had greater pupillary constriction and slower redilation compared to myopic subjects (P = 0.11). Pupillary responses to red as a repeated factor were not significantly different between non-myopic and myopic subjects (P = 0.15). Stimulus outcome type (Δ or Exp) was not a significant factor (P < 0.11).

The four pupillary response outcomes ΔBlue, ΔRed, ExpBlue, and ExpRed were also analyzed with refractive error treated as a continuous variable. Linear correlations were significant between SEQ and three of the four pupil outcomes (Fig. 4). ExpRed was not associated with SEQ (P = 0.26). The four pupil outcomes were positively correlated with each other. Correlation coefficients ranged from 0.34 to 0.79, with P values ranging from <0.0001 to 0.021. Because of their intercorrelation, the three pupil outcomes associated with SEQ were evaluated in a multivariate regression model (Table 3). Only ΔBlue retained a significant association with SEQ. Age, sex, light exposure, day of the week of testing, time of day of testing, season of testing, wearing sunglasses, or birth month were not associated with SEQ in a regression model with ΔBlue. We also evaluated whether the positive association between more hyperopic/less myopic refractive errors and larger values for ΔBlue was the result of the pupil normalization. Results for blue were similar when pupil sizes were analyzed using raw pupil diameters in millimeters. The pupil size became smaller (more constricted) during exposure to the blue-only condition compared to during the alternating red/blue sequence by 0.30 ± 0.20 mm (P < 0.0001),
and this change (ΔBlue in mm) was associated with SEQ (r = −0.37, P = 0.012). ΔRed in millimeters (r = −0.21, P = 0.17) and ExpBlue calculated using millimeters (r = −0.20, P = 0.19) were not associated with SEQ.

DISCUSSION

Pupillary responses displayed greater constriction and slower rates of redilation following repeated stimulation by short-wavelength blue light, consistent with increasing activation of melanopsin-containing ipRGCs over the course of testing. The largest degree of constriction and slowest redilation occurred during the final blue-only condition relative to those elicited by the same blue light in the alternating-color condition administered about 13 minutes earlier (Table 2; Figs. 2 and 3). Interestingly, this adaptive change between the alternating and single-color presentations of blue shows that the intervening 5 minutes of dark adaptation did not produce the expected return of the pupillary response to baseline. More hyperopic and less myopic subjects displayed the greatest shifts toward more constriction and slower, reduced rates of redilation during the blue-only condition. There were associations between two other pupil outcomes (ΔRed, ExpBlue) and refractive error as a continuous variable, but these were no longer significant when adjusted for ΔBlue in a multivariate model (Table 3).

The positive association between refractive error and these adaptive changes in pupillary responses following stimulation with blue only may seem at odds with the negative results observed in three previous studies. Abbott et al. reported on post-illumination pupillary responses following two exposures to 1- and 5-second pulses of blue or red light in 19 emmetropic and 31 myopic adult subjects. Adhikari et al. used the same RAPDx instrumentation as in the current study to measure peak constriction and postillumination pupillary responses following two exposures to 1- and 10-second pulses of blue or red light in three hyperopic, 25 emmetropic, and 13 myopic adult subjects. Ostrin et al. reported on post-illumination pupillary responses to three 1-second pulses each of red and blue in 37 children. None of these studies found an association between pupillary responses and refractive error, suggesting that melanopsin is a tristable molecule in which there is little spectral separation between the signal- and the silent states where photon absorption is not linked to phototransduction. Furthermore, it is difficult to reconcile the invertebrate model of photopigment bistability with the findings of the current study that the pupil became progressively smaller in response to both red and blue stimulation during the alternating portion of the protocol.

A second possibility is that the adaptive change is mediated through the effects of retinal neuromodulators such as dopamine. Dopamine D1 receptors are expressed by ipRGCs in rodents, and pharmacologic activation of D1 receptors results in a rise in intracellular cyclic AMP (cAMP) levels through stimulation of adenylyl cyclase. The application of forskolin or a cell-permeable cAMP analog increases cAMP within rodent ipRGCs, resulting in stronger and prolonged light-evoked responses. If these results hold true for human ipRGCs, then the repeated light stimulation in this testing protocol may have had similar effects: increased levels of retinal dopamine resulting in increased cAMP within ipRGCs, more pupillary constriction, and slower post-stimulus redilation. The cAMP elevation peaks 10 to 15 minutes after D1 receptor activation in rodent striatal neurons, consistent with the time course.

Table 3. Univariate Regression Coefficients and Multivariate Regression Coefficients Associated with SEQ

Pupillary Response Variable	Univariate (P)	Multivariate (F, P) df = 1, 41	Univariate, Pupil Diameters (mm, F, P) df = 1, 43
ΔBlue	15.7 (0.001)	18.5 (6.4; 0.015)	–3.7 (6.9; 0.012)
ΔRed	9.5 (0.042)	–6.1 (0.8; 0.37)	–
ExpBlue	12.9 (0.027)	6.3 (1.2; 0.28)	–
Age (yr)	–0.025 (0.89)	–	–
Sex (female = 1, male = 0)	0.58 (0.40)	–	–

All three pupillary outcome variables were placed into the multivariate model for normalized pupillary response. Age and sex were not placed into the multivariate models due to their lack of significance in the univariate analysis. Coefficients with P < 0.05 are indicated in bold.
of the change in the pupillary responses observed in the present study. The smaller adaptive change in the pupillary responses of myopes to multiple blue stimuli suggests that either the light-evoked rise in retinal dopamine levels is reduced in myopes or ipRGCs in this subject group exhibit less responsiveness to dopamine or to other relevant neuro-modulators.

The contribution of outer retinal photoreceptors to these adaptive changes should also be considered. The outer retina certainly contributes to the pupillary response, and the peak spectral sensitivity of melanopsin is close to that of S-cones (480 nm and 420 nm, respectively). Human and mouse data show that an intact outer retina is necessary for the pupillary response to be able to track temporally modulated stimuli, including the 0.1-Hz frequency used in the current study. The outer retina can stimulate a release of retinal dopamine independent of ipRGC input by driving transient dopaminergic amacrine cell responses through connections with ON-bipolar cells. Adaptive changes in pupillary response hypothesized to be due to dopamine could therefore result from stimulation of either ipRGCs or outer retinal photoreceptors, or both. The question arises whether all cone types contribute to this adaptation, S-cones in particular given the importance of short-wavelength stimulation in the results for ΔBlue. The cone contribution seems more likely to come from L- and M-cone input, however, as S-cone input to the pupillary response appears to be inhibitory. S-cone-driven pupillary responses to temporally modulated stimuli are substantially out of phase relative to L+M and melanopsin-driven pupillary responses. No activity attributed to S-cones after light offset appears to be prolonged, neither spikes recorded from the olivary pretectal nucleus of mice lacking melanopsin nor human pupillary constriction using a silent substitution paradigm.

Therefore, the enhanced pupillary constriction and slower post-stimulus redilation resulting from repeated short-wavelength stimulation seems more likely due to changes in the melanopsin-driven pathway than in S-cone inputs. This discussion assumes that the source of the adaptation in pupillary responses to multiple short-wavelength light exposures is local at the retinal level, but adaptation at the level of the olivary pretectal nucleus cannot be ruled out. This possibility could be tested by examining whether or not the adaptation displays interocular transfer.

Previous results suggest that prior light exposure might influence post-illumination pupillary responses to blue light stimulation. However, no pupil outcome was correlated with light exposure in any time interval. This inconsistency among studies may be due to the difference in stimulus protocols. The current study protocol may not be the optimal one for eliciting these adaptive changes related to refractive error. Future studies should evaluate protocol parameters such as duration and number of exposures, effects of stimulation at different wavelengths either alone or in sequence, and the effects of varying periods of dark or light adaptation. Light exposure and time outdoors were not different between refractive error groups and were not related to refractive error in any multivariate model with SEQ. These adult subjects did not follow the expected pattern for refractive error, where myopic children tend to spend less time outdoors than non-myopic children. The lack of control over the time of day of testing may have limited the ability to find any significant correlation. It is not known what the subjects’ habits were earlier in life or how infant or childhood exposures to light while outdoors might influence the development of these pupillary responses. Early exposure to more time outdoors between ages 3 and 8.5 years has been shown to be effective at reducing later risk of myopia onset between 10 and 15 years of age. The current results were cross-sectional and therefore limited to only showing associations between pupillary responses and the degree of current adult refractive error. It is unknown without longitudinal data whether any of the myopic subjects will progress or if any of the emmetropic subjects will become myopic in the future. Longitudinal data would also clarify whether differences in ipRGC-driven pupillary responses are a cause or simply a consequence of refractive error. Retinal stretching in longer, more myopic eyes could conceivably compromise the function of ipRGCs due to increased mechanical stress. Future studies could also help determine if this adaptive property of the pupillary response is an important part of the benefit of time outdoors in childhood, whether it changes with age, is altered by myopia onset, or can be enhanced by increasing early light exposure.

In summary, repeated stimulation with red and blue light resulted in adaptive changes in the pupillary response characterized by greater constriction and slower redilation in response to blue light. There was a positive association between the magnitude of these changes and refractive error, with more hyperopic/less myopic individuals exhibiting larger changes in their pupillary responses to repeated pulses of blue light. Although the following is speculative without the required longitudinal evidence, this positive association suggests that more hyperopic/less myopic individuals may have a greater ability to take advantage of light exposure, such as during time outdoors, and its accompanying protective effect on refractive error development.

Acknowledgments

Supported by grants from the National Center for Research Resources (UL1RR025755) and the National Eye Institute, National Institutes of Health (T35-EY007151). It was also funded by the Office of the Director, National Institutes of Health, and supported by the National Institutes of Health Roadmap for Medical Research.

Disclosure: D.O. Mutti, None; S.P. Mulvihill, None; D.J. Orr, None; P.D. Shorter, None; A.T.E. Hartwick, None

References

1. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004;33(1):27–33.
2. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379(9827):1730–1748.
3. Pan CW, Dirani M, Cheng CY, Wong TY, Saw SM. The age-specific prevalence of myopia in Asia: a meta-analysis. Optom Vis Sci. 2015;92(3):258–266.
4. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2020. Ophthalmology. 2016;123(5):1036–1042.
5. Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. 2018;62:134–149.
6. Teikari JM, Kaprio J, Koskenvuo MK, Vannas A. Heritability estimate for refractive errors—a population-based sample of adult twins. Gen Epidemiol. 1988;9(3):171–181.
myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012;53(1):421–428.
28. Chen S, Zhi Z, Ruan Q, et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the on pathway in retina. Invest Ophthalmol Vis Sci. 2017;58(4):2306–2316.
29. Nickla DL, Tontonoz Y. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp Eye Res. 2011;93(5):782–785.
30. Pendrak K, Nguyen T, Lin T, Capehart C, Zhu X, Stone RA. Retinal dopamine in the recovery from experimental myopia. Curr Eye Res. 1997;16(2):152–157.
31. Ashby RS, Schaeffel F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci. 2010;51(10):5247–5253.
32. Hartwick AT, Bramley JR, Yu J, et al. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci. 2007;27(9):13468–13480.
33. Do MTH, Yau K-W. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 2010;90(4):1547–1581.
34. Belenky MA, Smerasaki CA, Provencio I, Sollars PJ, Pickard GE. Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J Comp Neurol. 2003;460(3):380–393.
35. Wong KY, Dunn FA, Graham DM, Berson DM. Synchronous influences on rat ganglion-cell photoreceptors. J Physiol. 2007;582:279–296.
36. Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA. 2008;105(37):14181–14186.
37. Zhang DQ, Belenky MA, Sollars PJ, Pickard GE, McMahon DG. Melanopsin mediates retrograde visual signaling in the retina. PLoS One. 2012;7(8):e26427.
38. Hattar S, Kumar M, Park A, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol. 2006;497(3):326–349.
39. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299(5604):245–247.
40. Thoreson WB, Dacey DM. Diverse cell types, circuits, and mechanisms for color vision in the vertebrate retina. Physiol Rev. 2019;99(3):1527–1573.
41. Park JC, Moura AL, Raza AS, Rhee DW, Kardon RH, Hood DC. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci. 2011;52(9):6624–6635.
42. Zhu Y, Tu DC, Denner D, Shane T, Fitzgerald CM, Van Gelder RN. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. Invest Ophthalmol Vis Sci. 2007;48(3):1268–1275.
43. Gooley JJ, Ho Mien I, St Hilaire MA, et al. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans. J Neurosci. 2012;32(41):14242–14253.
44. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007;47(7):946–954.
45. Abbott KS, Queener HM, Ostrin LA. The ipRGC-driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci. 2018;95(4):323–331.
46. Adhikari P, Pearson CA, Anderson AM, Zele AJ, Feigl B. Effect of age and refractive error on the melanopsin mediated post-illumination pupil response (PIPR). Sci Rep. 2015;5:17610.
47. Ostrin LA. The ipRGC-driven pupil response with light exposure and refractive error in children. *Ophtalmic Physiol Opt*. 2018;38(5):503–515.

48. Yuhas PT, Shorter PD, McDaniel CE, Earley MJ, Hartwick AT. Blue and red light-evoked pupil responses in photophbic subjects with TBI. *Optom Vis Sci*. 2017;94(1):108–117.

49. Sheppard AL, Davies LN. Clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500. *Ophtalmic Physiol Opt*. 2010;30(2):143–151.

50. Munch M, Ladaigue M, Roemer S, Hashemi K, Kawasaki A. Melanopsin-mediated acute light responses measured in winter and in summer: seasonal variations in adults with and without cataracts. *Front Neurol*. 2017;8:464.

51. Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal ganglion cells. *PLoS One*. 2011;6(3):e17860.

52. Munch M, Leon L, Crippa SV, Kawasaki A. Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses. *Invest Ophthalmol Vis Sci*. 2012;53(8):4546–4555.

53. Mandel Y, Grotto I, El-Yaniv R, et al. Season of birth, natural light, and myopia. *Ophtalmology*. 2008;115(4):686–692.

54. Dharani R, Lee CF, Theng ZX, et al. Comparison of measurements of time outdoors and light levels as risk factors for myopia in young Singapore children. *Eye (Lond)*. 2012;26(7):911–918.

55. Schmid KL, Leyden K, Chiu YH, et al. Assessment of daily light and ultraviolet exposure in young adults. *Optom Vis Sci*. 2013;90(2):148–155.

56. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. *Science*. 2002;295(5557):1070–1073.

57. Peirson SN, Halford S, Foster RG. The evolution of irradiance detection: melanopsin and the non-visual opsins. *Philos Trans R Soc Lond B Biol Sci*. 2009;364(1531):2849–2865.

58. Rollag MD. Does melanopsin bistability have physiological consequences? *J Biol Rhythms*. 2008;23(5):396–399.

59. Mure LS, Cornut PL, Rieux C, et al. Melanopsin bistability: a fly’s eye technology in the human retina. *PLoS One*. 2009;4(6):e5991.

60. Emanuel AJ, Do MT. Melanopsin tristability for sustained and broadband phototransduction. *Neuron*. 2014;92(2):220–242.

61. Koehn L, Hartwick ATE. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors through a CAMP-mediated pathway. *J Physiol*. 2012;592:507–518.

62. Solheim F, Konradi C, Douglass J, Hyman SE. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. *Neuron*. 1995;14(4):813–823.

63. Allen AE, Brown TM, Lucas RJ. A distinct contribution of short-wavelength-sensitive cones to light-evoked activity in the mouse pretectal olivary nucleus. *J Neurosci*. 2011;31(46):16833–16843.

64. WILEDERS T, Leenheers T, Gordijn MCM, Hut RA, Beersma DGM, Wams EJ Melanopsin- and L-cone-induced pupil constriction is inhibited by S- and M-cones in humans. *Proc Natl Acad Sci USA*. 2018;115(4):792–797.

65. Spitschan M, Jain S, Brainard DH, Aguirre GK. Opponent melanopsin and S-cone signals in the human pupillary light response. *Proc Natl Acad Sci USA*. 2014;111(43):15568–15572.

66. Zele AJ, Adhikari P, Cao D, Feigl B. Melanopsin and cone photoreceptor inputs to the afferent pupil light response. *Front Neurol*. 2019;10:529.

67. Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children’s refractive error. *Invest Ophthalmol Vis Sci*. 2002;43(12):3633–3640.

68. Shah RL, Huang Y, Guggenheim JA, Williams C. Time outdoors at specific ages during early childhood and the risk of incident myopia. *Invest Ophthalmol Vis Sci*. 2017;58(2):1158–1166.