Teaching the Central Dogma through an Inquiry-Based Project Using GFP

Cynthia Bujanda, Nadja Anderson

ABSTRACT

The Central Dogma is a crucial concept needed to understand biotechnology and molecular biology. High school students often struggle with a meaningful understanding of this abstract concept. This paper presents an inquiry-based approach to increase critical thinking and understanding of the Central Dogma. Commonly used in high school classrooms is Bio-Rad pGLO plasmid containing green fluorescent protein (GFP), because of its accessibility and the fluorescence it emits when exposed to ultraviolet light. We use the expression of GFP in a high school hands-on class project so that students can visualize and understand the abstract concepts of the Central Dogma. Students will also explore protein structure and its importance for a functional protein. During the entire project, students will be guided by the instructor to build hypotheses and design experiments to test those hypotheses, exercising the scientific method.

Key Words: central dogma; GFP; inquiry; transformation.

Introduction

Green fluorescent protein (GFP), a protein isolated from a bioluminescent jellyfish, Aequorea victoria, is of interest to researchers because of its bright fluorescence when exposed to ultraviolet (UV) light (Prasher et al., 1992). Historically, GFP has been used in high school classrooms since the mid-1990s; this was made possible after GFP was cloned and expressed in E. coli in 1994 (Ward et al., 2000), making it accessible for biotechnology education. Commonly used in the classroom is the transformation of E. coli using the Bio-Rad pGLO plasmid, which contains GFP as well as a gene for ampicillin resistance (bla) and a regulatory protein that binds to the promoter side pBAD (AraC) (Crameri et al., 1995; Deutch, 2019). In the presence of arabinose, the bound regulator on the promoter (AraC) changes shape, allowing RNA polymerase to bind to the promoter. This facilitates the gene expression of GFP by the production of mRNA, followed by the translation of mRNA into protein.

We can use the expression of GFP to explain the Central Dogma, which was first described by Francis Crick in 1970 to explain the transfer of information within cells (Figure 1). The Central Dogma states that the information in DNA is transferred to RNA and that in turn is transferred to a specific sequence of amino acids to produce a polypeptide. This concept is crucial in the understanding of biotechnology and molecular biology. However, biology education research has shown that, when taught under conventional modes of instruction, students have a difficult time understanding the abstract concepts of gene expression and protein translation that are core to the Central Dogma (Lewis & Kattmann, 2004; Newman et al., 2016; Reinagel & Bray Speth, 2016).

Part of the teachers’ challenge to maximize students’ learning of abstract concepts is that students are being asked to understand concepts, objects, and processes that are not visible (Hinze et al., 2013). Additionally, using technical vocabulary to convey genetic concepts proves burdensome for students (Reinagel & Bray Speth, 2016). Student understanding of abstract concepts is significantly increased with hands-on, kinesthetic learning (Fyfe et al., 2014; Hayes & Kraemer, 2017); this is even more apparent for ESL students (Llosa et al., 2016; National Academies of Sciences, Engineering, and Medicine, 2018). By broadening students’ knowledge on genetic concepts and molecular biology, we educate students in scientific literacy. In today’s society this becomes increasingly important because of the relevance of DNA techniques used in medicine, laboratory diagnostics, and criminology (Duncan & Reiser, 2007).

To efficiently teach the Central Dogma, it is important that we present lessons that mirror scientific research by inquiry-based exploration and meaningful reflection on results (Burnette &
We report a lesson in which students will develop their own hypothesis and conduct experiments with the guidance of the instructor in order to reach conclusions and maximize their learning. The main objective of this lesson is to teach the abstract concepts of one of the most important lessons in molecular biology, the Central Dogma, targeting transcription and translation in a way that students experience the concepts rather than merely reading and hearing them.

We further expand our lesson by exploring protein structure and examining how the information flow from DNA will eventually be correctly expressed in proteins. Proteins are complex molecules, their structure being crucial to their function and regulation of cells, and are essential in all biological processes. Their function is dependent on their properly folded three-dimensional structure, which is dictated by the translated sequence of amino acids in the protein. The importance of protein structure can be seen by comparing denatured proteins and native proteins, which is accomplished in this lesson as a secondary objective.

These activities are accessible to schools with polymerase chain reaction (PCR) and electrophoresis materials and flexible to adjust to high school schedules. Teachers can use the pBADgfpuv plasmid, which is readily available through Bio-Rad Laboratories (as pGLO).

Objective
Engage students in an inquiry-based hands-on project that will broaden their knowledge of the Central Dogma in molecular biology.

Secondary Objectives
1. Students will hypothesize and experimentally test their hypotheses.
2. Students will be introduced to transformation, sterile technique, DNA extraction, PCR, electrophoresis, DNA sequencing, BLAST, and SDS-PAGE protein gels.
3. Students will observe the functional differences between denatured and native GFP.

Methods, Materials & Results
This set of lab activities takes approximately 10 days of class time. It can be broken up into different segments to fit the class schedule and curriculum. The details of the protocols and student guides are available on the BIOTECH Project website: http://biotech.bio5.org/publications. Overview of the entire class project can be seen in Figure 2.

Transformation of pBADgfpuv Plasmid
Teachers will provide students with an agar plate previously transformed with pBADgfpuv. Students begin the transformation process by extracting the plasmid DNA from glowing *E. coli* (Figure 3A). A single colony of glowing *E. coli* is grown in a liquid LB-plus-ampicillin culture to grow enough cells to extract plasmid DNA. Any plasmid DNA extraction kit can be used; we used Omega BIO-TEK EZDNA Plasmid DNA Mini Kit and followed the manufacturer’s instructions. The students can visualize the characteristics of the gene that is being expressed in the initial colonies and show that DNA is the genetic material involved in the transformation process. They should be able to hypothesis that if DNA is the genetic material seen in the transformation, the glowing characteristic will be transferred to the transformed *E. coli*. As an extension, students can further confirm that DNA is the genetic material by adding protease or DNAase to their transformation, much as Oswald Avery did to confirm Fred Griffith’s results (Avery et al., 1944; Griffith, 1928). Between 20 and 50 ng of the extracted plasmid DNA can be used for bacterial transformation. Most plasmid DNA extraction kits will yield between 50 and 100 ng/µl.

Students introduce the transformed *E. coli* onto LB and LB-plus-ampicillin plates using a standard chemically competent cells transformation protocol (Green & Rogers, 2013). The following day, students analyze the results and observe transformed colonies (based on ampicillin selection, ampicillin resistance being another gene on the plasmid). At this point, students should wonder why their colonies are not glowing (Figure 3B), since they used plates without arabinose. This being the big question, students will need to find the answer by testing different hypotheses.

The instructor should remind students that their hypothesis of DNA being the genetic material seen in transformation was supported due to the selection of colonies on ampicillin. They should encourage the students to hypothesize as to why their colonies are not glowing, as was seen in the original colonies they used to extract DNA (Figure 3A), and provide guidance as to how they can test each hypothesis. This is a crucial step.
that builds the next set of experiments conducted by the students. Table 1 lists potential hypotheses students may propose. Hypothesis 5 requires students to have more background information, but the others are generally proposed by students (Table 1). It is essential that the instructor guide the students into formulating their thoughts into hypotheses.

Table 1. Student hypothesis—five common hypotheses proposed by students.

Hypothesis	How to Test Hypothesis (Teacher Guided)
GFP gene is mutated	PCR/DNA sequence
GFP gene is not in plasmid	PCR/gel electrophoresis
Plasmid/DNA is not present	Can be eliminated—ampicillin selection was seen
GFP gene is not expressed	Look for presence of mRNA (northern blot, Q-PCR)
Protein is not produced or is improperly folded	Protein extraction/SDS-PAGE

○ DNA Analysis: PCR & Gel Electrophoresis

To test Hypotheses 1 and 2 in Table 1, the instructor guides students to utilize PCR to look for the presence of GFP. The PCR product can then be sequenced and analyzed for mutations. If the students do not have any previous PCR experience, the instructor should dedicate time to give an overview of the technique. There are many animations to help students understand the process, including the DNA Learning Center PCR Animation on YouTube (https://www.youtube.com/watch?v=JRAA4C2OPwQ).

To set up the PCR reactions, students can use any scientific supply company's master mix; we used Promega GoTaq, which contains the Taq polymerase, dNTPs, Mg²⁺, and buffers to simulate the cellular conditions. Each reaction will need forward and reverse primers (GFP Forward: 5’TCCCATACCCGTTTTTTTG3’ and GFP Reverse: 5’CGTTTTTATCAGACCGCCTTC3’) with nuclease-free water making up the remaining volume. A small dab of an E. coli colony will be used for the students' template DNA. PCR cycles for amplification of GFP are as follows:

One cycle of:
- 94°C for 5 minutes (initial denaturation and E. coli cell disruption)

30 cycles of:
- 94°C for 30 seconds (denaturation of DNA)
- 55°C for 45 seconds (primer annealing)
- 72°C for 1.5 minutes (DNA extension)

One cycle of:
- 72°C for 7 minutes (final extension)

Students will also need to run positive and negative controls to compare their PCR product. A small volume (0.5 μl) of plasmid DNA will be added for the positive control, and either 0.5 μl of water or nothing will be added as the negative control. We have found that a typical class time best allows student groups to set up two reactions; all the groups run a PCR of their nonglowing colony, one group can amplify a positive control, another can amplify the negative control, and two groups can view their results together on an electrophoresis gel. Alternatively, with longer class periods, teachers can choose to have each group run both positive and negative controls. An example of PCR results can be seen in Figure 4.

PCR products are analyzed by gel electrophoresis and compared to a molecular weight (MW) marker (Invitrogen 1 Kb Plus). If there is a band corresponding to the MW of GFP (~800 bp), then GFP was amplified and can be sequenced (Figure 4). At the end of the DNA analysis, students will have experience in molecular techniques, pipetting, DNA extraction, transformation, PCR, and gel electrophoresis. While students are waiting for the sequencing results, another hypothesis can be investigated. Most high schools do not have the ability to conduct a northern blot or have access to a Q-PCR, potentially making it difficult to test Hypothesis 4, though gene expression will be revisited at the end of the lesson. As an alternative, students can focus on testing for the presence and structure of the protein.

Figure 4. Gel electrophoresis of PCR of GFP, 0.8% agarose in TAE, stained with methylene blue.
Protein Analysis: Protein Extraction, Bradford Assay, & SDS-PAGE

To analyze GFP, students can extract cellular proteins from both the original glowing and nonglowing *E. coli* (Figure 1). We will refer to the glowing sample as green and the nonglowing as white. Students should collect half the colonies on each plate with a 10μl loop and resuspend the bacteria colonies in a microcentrifuge tube containing 500μl of LB broth by twirling the loop in the broth. Centrifuge the samples, discard the supernatant, and resuspend the bacteria pellet in 400μl of Camilo buffer. Aliquot half of each sample to a new tube and heat at 95°C for 5 minutes to ensure complete denaturation of the proteins. At this point, each group should have four samples, green heated (G+), green unheated (G-), white heated (W+), and white unheated (W-). An introduction to protein folding and protein structure can be used to illustrate the denaturation process expected with high temperatures (https://youtu.be/8k6D8ajTRlc). Using a Bradford assay, students will determine the protein concentration of each sample. They will make the appropriate dilutions with Laemml buffer for a final concentration of 0.5 mg/ml of protein in a final volume of 0.1 ml.

Protein analysis is conducted with SDS-PAGE, which separates proteins by size; this is based on an adaptation of “Biotechnology Explorer Protein Electrophoresis of GFP” from Bio-Rad Laboratories. Once the samples have migrated into the gel and the dye front is at the bottom, observation of the gel cassette with UV light will allow students to see one green, structurally functional GFP band glowing at a size of approximately 50 kD (Figure 5B). We recommend using a fluorescent marker, such as BioRad's Precision Plus Protein Kaleidoscope (product 1610375), to assess the size of the glowing band. Students should see the difference between green heated and unheated samples. The instructor can help students interpret that in order to have the functional protein it needs to be folded properly. Students will also see that properly folded, functional, glowing GFP proteins are not visible in the white colony samples.

In order to address whether nonfunctional GFP is present in the students’ white colonies, stain the gel with Coomassie blue and visualize the protein profiles of these samples. An example of the Coomassie stained gel can be seen in Figure 5A. Comparing G+ and G-, we can see the contrast in that G+ has abundant protein at ~27 kD (marked with a white arrow), which is interpreted to be the denatured variant of GFP. Folded and denatured proteins can migrate at vastly different “sizes” in the gel, hence the size difference. The predicted size of GFP monomer is 27 kD. Additionally, the functional glowing protein may be migrating as a dimer. The denatured variant of GFP is absent in the white colony samples (W+ and W-). The G-lane shows abundant protein (marked with the red arrow) at the same size as the fluorescent band, which is also absent in the W- or W+. Students may notice that other proteins are expressed in both white colony samples that are not seen in the GFP expressing samples. This is not uncommon, since the expression of GFP is taking up much of the cells resources and therefore they are not able to express their normal abundance of other proteins. These, however, are seen in the white colonies where resources are not being taxed by the overexpression of a nonessential protein. After finishing the protein analysis, students should conclude that the GFP wasn’t being produced by their nonglowing, transformed colonies.

Sequence Analysis of GFP: NCBI/BLAST

Instructors can find the document with DNA sequence information on the BIOTECH Project website. We recommend doing the protein analysis before the sequence analysis. Returning to the hypothesis of whether the GFP gene was mutated, students will analyze the sequence of the PCR product. Students are introduced to the NCBI website, specifically the BLAST tool. In this program, the sequence query (PCR product) will be compared to sequences in the database to find similarities. In the BLAST results, an option of “cloning vector pBAD-GFPuv, complete sequence” will display. The query alignment to the subject (pBAD-GFPuv Accession U62637) will show no apparent mutations, thus refuting the first hypothesis (Table 1). Looking at the sequence entry of the entire plasmid sequence, three genes are features in this plasmid: araC, gfpuv, and bla. Further investigation of the genes allows students to determine that bla provides ampicillin resistance and that araC encodes for the araC protein. At this point, students should question the purpose of araC. Students can Google araC, leading them to the AraC Wikipedia page (https://en.wikipedia.org/wiki/AraC). The information on this page indicates that araC is a component of the L-arabinose operon in *E. coli*. Further investigation of the L-arabinose link will allow the students to elucidate that arabinose is necessary to activate the genes of the L-arabinose operon. The instructor helps the students identify that AraC acts as a repressor on the promoter of these genes by blocking the DNA binding site for RNA polymerase, thus blocking the expression of the BAD genes (genes on the L-arabinose operon). In the presence of arabinose, AraC protein is altered, allowing the binding of RNA polymerase and expression of the BAD genes. AP biology classes will be able to relate this to Lac-operon gene expression.

The students should hypothesize that pBAD-GFPuv is using this regulated promoter for GFP expression and, if so, that the addition of arabinose to these cells will allow GFP to be expressed and the colonies to glow. By discovering the function of AraC on BAD promoter expression, they are tying together the concepts of the Central Dogma. The instructor provides arabinose to be added to their transformed nonglowing plates (which have been stored at 4°C to avoid overgrowth of colonies). After incubation at 37°C overnight, students can see glowing colonies. This reinforces that DNA is the
instruction manual that has the information. To produce a protein, DNA must transcribe its information in RNA so that the translation to amino acids (the language of proteins) can occur.

Conclusion

This lab project aims to explain gene expression and how information transfers within cells. The most important takeaway from this project is the Central Dogma of molecular biology, in a way that students can experience through an inquiry-based project rather than lecture-based instruction. Additionally, protein folding/denaturation and protein function were addressed. Using heat to alter the shape of the protein, rendering it nonfunctional, students can learn how important protein structure is for proper function.

The role of the instructor is to ignite curiosity and engagement in the students, to guide in students' development of hypotheses and apply the scientific method. This inquiry-based project will promote critical thinking to an abstract concept—the Central Dogma.

References

Avery, O.T., Macleod, C.M. & Mc Carty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction or transformation A Deoxyribonucleic acid fraction isolated from pneumococcus type III. *Journal of Experimental Medicine*, 79(2), 379–84. https://doi.org/10.1084/jem.79.2.379.

Bio-Rad laboratories. (2017). *Bio-Rad Explorer Protein Electrophoresis of GFP: A pGLOTM Bacterial Transformation Kit Extension*. https://www.bio-rad.com/webroot/web/pdf/lse/literature/M1660023.pdf.

Burnette, J.M. & Wessler, S.R. (2013). Transposoning from the laboratory to the classroom to generate authentic research experiences for undergraduates. *Genetics*, 193(2), 367–75. https://doi.org/10.1534/genetics.112.147355.

Cramer, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P.C. (1995). Improved Green Fluorescent Protein DNA Shuffling. 315–19. https://doi.org/10.1038/nbt0306-315.

Deutch, C.E. (2019). Transformation of Escherichia coli with the pGLO plasmid: going beyond the kit. *American Biology Teacher*, 81(1), 52–55. https://doi.org/10.1525/abt.2019.81.1.52.

Duncan, R.G. & Reiser, B.J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. *Journal of Research in Science Teaching*, 44(7), 938–59. https://doi.org/10.1002/tea.20186.

Fyfe, E.R., McNeil, N.M., Son, J.Y. & Goldstone, R.L. (2014). Concreteness fading in mathematics and science instruction: a systematic review. *Educational Psychology Review*, 26, 9–25. https://doi.org/10.1007/s10649-014-9249-3.

Green, R. & Rogers, E.J. (2013). Chapter twenty eight - transformation of chemically competent *E. coli*. *Methods in Enzymology*, 529, 329–36. https://doi.org/10.1016/B978-0-12-418687-3.00028-8.

Griffith, F. (1928). The significance of pneumococcal types. *Journal of Hygiene*, 27(2), 113–59. https://doi.org/10.1016/s1235-016–0046-z.

Hayes, J.C. & Kraemer, D.J.M. (2017). Grounded understanding of abstract concepts: the case of STEM learning. *Cognitive Research: Principles and Implications*, 2(1). https://doi.org/10.1186/s11159-016–0046-z.

Hinze, S.R., Rapp, D. N., Williamson, V.M., Shultz, M.J., Deslongchamps, G. & Williamson, K.C. (2013). Beyond ball-and-stick: Students’ processing of novel STEM visualizations. *Learning and Instruction*, 26, 12–21. https://doi.org/10.1016/j.learninstruc.2012.12.002.

Lewis, J. & Kattmann, U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. *International Journal of Science Education*, 26(2), 195–206. https://doi.org/10.1080/095006903200007282.

Llosa, L., Lee, O., Jiang, F., Haas, A., O’Connor, C., Van Booven, C.D. & Kieffer, M.J. (2016). Impact of a large-scale science intervention focused on English language learners. *American Educational Research Journal*, 53(2), 395–424. https://doi.org/10.1177/0021935415620268.

National Academies of Sciences, Engineering, and Medicine. (2018). *Engaging in STEM Subjects: Transforming Classrooms, Schools, and Lives*. Washington, DC: National Academies Press. https://doi.org/10.17226/25182.

Newman, D.L., Snyder, C.W., Fisk, J.N. & Wright, L.K. (2016). Development of the central dogma concept inventory (CDCI) assessment tool. *CBE Life Sciences Education*, 15(2). https://doi.org/10.1187/cbe.15-06-0124.

Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. (1992). GFP cloned and sequenced. *Gene*, 111, 229–33. https://doi.org/10.1016/0378-1119(92)90691-h.

Reinagel, A. & Bray Speth, E. (2016). Beyond the central dogma: model-based learning of how genes determine phenotypes. *CBE—Life Sciences Education*, 15(1), 4–7. https://doi.org/10.1187/cbe.15-04-0105.

Ward, W.W., Swiatek, G.C. & Gonzalez, D.G. (2000). *Green Fluorescent Protein in Biotechnology Education*, 305, 672–80.

Zacharia, Z.C., Manoli, C., Xenofontos, N., de Jong, T., Pedaste, M., van Riesen, S.A.N., Kamp, E.T., Määots, M., Siiman, L. & Tsurilidze, E. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review. *Educational Technology Research and Development*, 63(2), 257–302. https://doi.org/10.1007/s11423-015-9370-0.

CYNTHIA BUJANDA is a designated campus colleague in the Department of Molecular and Cellular Biology at the University of Arizona and a high school teacher at Sunnyside High School; e-mail: cindybjd@email.arizona.edu. NADJA ANDERSON is the director of the Biotech Project in the Department of Molecular and Cellular Biology at the University of Arizona; e-mail: nadja@bio5.org.
ABT AUTHORS & PHOTOGRAPHERS

Guidelines

We encourage our readers, biologists with teaching interests, and biology educators in general, to write for *The American Biology Teacher*. This peer-reviewed journal includes articles for practitioners at every level, with a special focus on high school and post-secondary biology instruction.

Article Categories

A note about article word count: Please recognize that tables, figures, and photographs add to the overall length of the article. One page of text has approximately 1,000 words, therefore a 1/4-page graphic will count for 250 words. More extensive graphics should be budgeted accordingly. References are also included in the final article word count.

Feature Article (up to 4,500 words) includes topics of general interest to readers of *ABT*. Consider the following examples of content that would be suitable for the feature article category:

- Research on teaching alternatives, including evaluation of a new method, cooperative learning, concept maps, learning contracts, investigative experiences, educational technology, simulations and games, and biology and life science education standards
- Social and ethical implications of biology and how to teach such issues as genetic modification, energy production, agriculture, climate change, health care, nutrition, and cultural responsiveness
- Reviews and updates of recent advances in the life sciences in the form of an “Instant Update” that brings readers up-to-date in a specific area
- Imaginative views of the future of biology education and suggestions for adjusting to changes in schools, classrooms, and student populations
- Other timely, relevant, and interesting content such as discussions of the role of the Next Generation Science Standards in biology teaching, considerations of the nature of science with implications for the classroom, considerations of the continuum of biology instruction from K–12 to post-secondary teaching environments, or contributions that consider the likely/ideal future of science and biology instruction

Research on Learning (up to 4,500 words) includes reports of original research on innovative teaching strategies, learning methods, or curriculum comparisons. Studies should be based on sound research questions, hypotheses, discussion of appropriate design and procedures, data and analysis, discussion on study limitations, and recommendations for improved learning outcomes.

Inquiry and Investigations (up to 3,500 words) is the section of *ABT* that features discussion of innovative laboratory and field-based strategies. Strategies in this section should be original, engaging, practical, and related to either a particular program such as AP and/or linked to standards such as NGSS. Submissions should also be focused at a particular grade/age level of student and must include all necessary instructions, materials list, worksheets, and assessment tools. Other appropriate contributions in this category are laboratory experiences that engage students in inquiry.

Tips, Tricks and Techniques (up to 1,500 words but may be much shorter) features a range of suggestions useful for teachers including laboratory, field, and classroom activities; motivational strategies to assist students in learning specific concepts; modifications of traditional activities; new ways to prepare some aspect of laboratory instruction; etc.

Writing & Style Guidelines

The *Chicago Manual of Style, 17th Edition* is the guide for questions of punctuation, abbreviation, and style. List all references in alphabetical order on a separate page at the end of the manuscript. Please review a past issue for examples. Use first person and a friendly tone whenever appropriate. Use concise words to emphasize your point rather than capitalization, underlining, italics, or boldface. Use the SI (metric) system for all weights and measures.

While calls for specific themed issues of *ABT* are infrequent, February and April are traditionally themed editions on Evolution and the Environment, respectively.

Preparing Tables, Figures, and Photographs

General Requirements

- When your article is accepted, we will require that figures be submitted as individual figure files in higher resolution format. See below for file format and resolution requirements.
- Authors should be aware that color is limited within the journal. All artwork, figures, tables, etc. must be legible in black and white. If color is important to understanding your figures, please consider alternative ways of conveying the information.

Article Photographs

Digital files must meet the following guidelines:

- Minimum resolution of 300 DPI, 600 DPI is preferred
- Acceptable file formats are TIFF and JPEG
- Set to one-column (3.5” wide) or two-column size (7” wide)
- If figure originates from a website, please include the URL in the figure caption. Please note that screen captures of figures from a website are normally too low in resolution for use.

Tables and Figures

- Minimum resolution of 600 DPI, 1200 DPI is preferred
- Acceptable file formats are TIFF, BMP, and EPS
- Set to one-column (3.5” wide) or two-column size (7” wide)

If you have any questions, contact Valerie Haff at managingeditor@nabt.org.

continued
Submission Guidelines

NOTE: All authors must be current members of NABT or a charge of $100 per page is due before publication.

All manuscripts must be submitted online at http://mc.manuscriptcentral.com/ucpress-abt

- Authors will be asked to register the first time they enter the site. Upon receiving a password, authors can proceed to upload their manuscripts through a step-by-step process. Assistance is available in the “Author Help” link found in the menu on the left side of the page. Additional assistance is available from the Managing Editor (managingeditor@nabt.org).

- Manuscripts must be submitted as Word or WordPerfect files.

- Format manuscripts for 8.5 x 11-inch paper, 12-point font, double-spaced throughout, including tables, figure legends, and references.

- Please place figures (including photos) and tables where they are first cited in the text along with appropriate labels. Make sure to include figure and table citations in the text, as it is not always obvious where they should be placed. At the time of initial submission, figures, tables and images should be low resolution so that the final file size remains manageable.

- If your article is accepted, the editors will require that figures be submitted as figure files in higher resolution form. See section on Preparing Tables, Figures, and Photographs.

Supplemental Materials

In order to maintain the word count for individual articles, we are pleased to facilitate publication of supplemental materials accompanying the online issue. If authors have materials (figures, examples, worksheets, appendices, multimedia files, etc.) that support but are not essential to the printed text of the article, authors can include those as separate files with their article submission.

Editorial Procedures

- Communications will be directed only to the first author of multiple-authored articles.

- Typically, three individuals who have expertise in the respective content area will review each article.

- The editors attempt to make decisions on articles as soon as possible after receipt, but the process can take six to eight months, with the actual date of publication to follow. Authors will be emailed editorial decisions as soon as they are available.

- Accepted manuscripts will be forwarded to the Copy Editor for editing. This process may involve making changes in style and content. However, the author is ultimately responsible for scientific and technical accuracy. Page proofs will be sent to authors for final review before publication at which time only minor changes can be made.

Submitting Images

Cover Images

Submissions of cover photographs from NABT members are strongly encouraged. Covers are selected based on the quality of the image, originality, composition, and overall interest to life science educators. ABT has high standards for cover image requirements and it is important for potential photographers to understand that the required size of the cover image generally precludes images taken with cell phones, point-and-shoot cameras, and even some older model digital SLR cameras.

Please follow the requirements listed below.

- Email possible cover images to Kathleen Westrich at kmwestrich@yahoo.com.

- ABT covers feature an almost-square image with a slight vertical orientation.

- Choose an image with a good story to tell. Do not crop the subject too tightly. It is best to provide an area of background around the subject.

- Include a brief description of the image, details of the shot (i.e., circumstances, time of day, location, type of camera, camera settings, etc.), and your biographical information in an email message.

- Include your name, home and email addresses, and phone numbers.

- Please ensure that the image meets the minimum standards for publication listed below and has not been edited or enhanced in any way. The digital file must meet the minimum resolution of 300 pixels per inch (PPI)—preferred is 400 PPI—and a size of 8.5 x 11.25”. We accept TIFF or JPEG images only.

Thank you for your interest in The American Biology Teacher. We look forward to receiving your manuscripts.

William McComas, Editor-in-Chief
ABTEditor@nabt.org

Valerie Haff, Managing Editor
managingeditor@nabt.org