Photodetachment study of He$^-$ quartet resonances below the He(n=3) thresholds

A E Klinkmüller$^\$ G Haeffler$^\$, D Hanstorp$^\$, I Yu Kiyan$^\$, U Berzinsh$^\$ † and D J Pegg$^\$

$^\$Department of Physics, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden
$^\#$Department of Physics, University of Tennessee, Knoxville, Tennessee 37 996, USA

March 31, 2022

The photodetachment cross section of He$^-$ has been measured in the photon energy range 2.9...3.3 eV in order to investigate doubly excited states. Measurements were made channel specific by selectively detecting the residual He atoms left in a particular excited state following detachment. Three Feshbach resonances were found in the He(1s2p$^3\!P^o$)$+e^-$ partial cross section: a 4S resonance below the He(1s3s$^3\!S$) threshold and two 4P resonances below the He(1s3p$^3\!P^o$) threshold. The measured energies of these doubly excited states are 2.959 260(6) eV, 3.072(7) eV and 3.264 87(4) eV. The corresponding widths are found to be 0.20(2) meV, 50(5) meV and 0.61(5) meV. The measured energies agree well with recent theoretical predictions for the 1s3s4s$^4\!S$, 1s3p$^2\!4\!P$ and 1s3p4p$^4\!P$ states, respectively, but the widths deviate noticeably from calculations for 1s3p$^2\!4\!P$ and 1s3p4p$^4\!P$ states.

PACS number: 32.80.Fb

1 Introduction

Doubly excited states of two-electron atomic systems provide us with an opportunity to investigate the interplay of electron-electron and electron-core interactions. Negative ions are of particular interest because here the normally dominant Coulomb interactions between the electrons and the core are suppressed, thus enhancing the role of the interelectronic interaction. Pioneering photodetachment experiments on the pure two-electron negative ion H$^-$ were first performed by Bryant and co-workers [1]. Several experiments have been performed on Li$^-$ [2,3], which
can be considered an effective two-electron ion since the two valence electron move in a spherically symmetric potential created by the inert Li$^+$ core. The three-electron He$^-$ ion is also an effective two-electron system at low photon energies since the 1s core electron remains inert up to energies of 40 eV and only slightly perturbs the motion of the two active outer electrons.

The He$^-$ ion is the prototype of an unusual class of negative ions that are not stable, but rather metastable, against decay via autodetachment. The lowest energy state of this ion is the 1s2s2p $^4\text{P}_0$ state, which is bound by 77.516(6) meV relative to the 1s2s ^3S state of He $^\text{II}$. This state can autodetach into the ground 1s21S state of the He atom via the relatively weak magnetic interactions. The J=5/2 level, for example, has a measured lifetime of 350(15) μs, making the He$^-$ ion sufficiently long lived to survive a transit through a typical ion beam apparatus.

There have been several previous experimental investigations of the photodetachment of He$^-$ at photon energies in the visible. Calculations of the He$^-$ photodetachment cross section and resonance parameters have also been made. In this paper we present the results of a recent photodetachment study of double excitation in the He$^-$ ion in the energy range 2.9...3.3 eV. We have observed one resonance below the He(1s3s ^3S) threshold and two resonances below the He(1s3p $^3\text{P}_0$) threshold. We have identified the resonances with the 1s3s4s ^4S, 1s3p2 ^4P and 1s3p4p ^4P states by comparing their measured energies with the results of a recent MCHF calculation of Xi and Froese Fischer.

Doubly excited states of He$^-$ have also been studied in electron impact experiments on helium targets. Their presence is manifested as resonance structure in scattering cross sections. Many resonance states of doublet symmetry have been observed as transient intermediate states in the electron scattering process. Data on quartet states, however, are sparse. Such states appear as resonances in the cross section of photodetachment from the ground quartet state of the He$^-$ ion. The energy resolution in photodetachment experiments is typically much higher than in electron scattering experiments. Thus, the energies and widths of quartet states can, in principle, be measured more accurately than the corresponding doublet states. Selection rules on phototexcitation of He$^-$ from the 1s2s2p $^4\text{P}_0$ ground state limit, however, the study of doubly excited states to those with ^4S, ^4P and ^4D symmetry.

2 Experiment

2.1 Procedure

The present measurements were made using a collinear laser-ion beam apparatus. The experimental method has been previously used in studies of partial photodetachment cross sections for He$^-$ and Li$^-$. It consists of several sequential steps. A doubly excited state of a negative ion is first produced by photoexcitation from its ground state. The excited ion then autodetaches leaving the residual atom, in general, in an excited state. By selectively detecting those atoms left in a particular state one can isolate the corresponding decay channel and investigate the partial cross section. The excited residual atoms are selected by use of the method of resonance ionization spec-
Figure 1: Excitation scheme: selected states of He/He−. The horizontal dashed lines show the positions of the three measured doubly excited states. The diagonal dashed line indicates autodetachment of one of these states via the He(1s2p3Po)+e− (ep) channel and the wavy line represents electric-field ionization.

troscopy, i.e. they are further photoexcited to a Rydberg state which is subsequently field ionized in a static electric field. The resulting positive ion signal is proportional to the partial cross section for the selected decay channel.

The investigation of doubly excited states of He− in the present experiment is based on measurements of resonance structure in the partial photodetachment cross section for the He(1s2p3Po)+e− (ep) channel. The excitation-detection scheme used is shown in figure [1]. In the first step, metastable He− ions are photodetached in a laser field of frequency ω1:

\[
\text{He}^-(1s2s2p^4Po) + h\omega_1 \rightarrow \text{He}(1s2p^3Po) + e^- (ep) .
\]

If, in addition, the above process proceeds via an intermediate doubly excited state of He−, resonance structure will appear in the photodetachment cross section. This structure, which, in general, has an asymmetric shape, is the result of an interference between the resonant and non-resonant photodetachment processes.

In the second step, He atoms, produced in the 1s2p3Po state, as a result of photodetachment, are resonantly excited into the 24d state by a laser field of frequency ω2, sufficiently strong to saturate the transition. These Rydberg atoms are subsequently ionized in a static electric field of about 200 kV/m:

\[
\text{He}(1s2p^3Po) + h\omega_2 \rightarrow \text{He}(1s24d^3D) ,
\]

\[
\text{He}(1s24d^3D) \rightarrow \text{He}^+ (1s^2S) + e^- ,
\]

where \(\rightarrow\) represents field ionization.

The yield of the \(\text{He}^+\) ions produced in this state-selective detection scheme was recorded as a function of the frequency \(\omega_1\), while the frequency \(\omega_2\) was held constant on the transition to the Rydberg state. The signal was proportional to the population of helium atoms left in the 1s2p3Po state after the photodetachment step. Since the intensity of laser \(\omega_2\) and the ion beam current were constant during a scan, the \(\text{He}^+\) signal, normalized to the intensity of laser \(\omega_1\), was proportional to the He(1s2p3Po)+e− (ep) partial photodetachment cross section. We experimentally determined that this signal changed linearly with respect to the power of laser \(\omega_1\), thus excluding the possibility of higher order processes.

The detection scheme, based on the selective detection of residual He(1s2p3Po) atoms, was effective in eliminating a potential background source arising from He.
atoms produced in the ion beam via autodetachment of the metastable ground state of He\(^-\). These atoms, created in the \(1s^2\) \(^1\)S ground state, were not photoionized by laser \(\omega_2\).

2.2 Experimental arrangement

The He\(^-\) beam was produced from a mass-selected \(^4\)He\(^+\) ion beam via charge exchange in a Cs vapor cell. The beam energy was 3.1 keV and the ion current was typically 1 nA.

In the interaction region, shown schematically in figure 2, the laser and ion beams were coaxially superimposed over a distance of 50 cm between the two electric quadrupole deflectors (QD1, QD2). The beam paths were defined by apertures of 3 mm diameter at both ends of the interaction region. The apparatus has previously been described in more detail [26, 27].

One source of background of He\(^+\) ions arises from double detachment collisions of He\(^-\) with the residual gas. This contribution was reduced significantly by installing a pair of deflection plates (DP) just before the second quadrupole deflector (QD2). The transverse electric field between the deflection plates was insufficient to field ionize the Rydberg atoms, but strong enough to sweep collisionally-created He\(^+\) ions out of the beam. To monitor the He\(^-\) beam current, the deflection plates were periodically grounded.

The highly excited Rydberg atoms of He were field ionized by the static electric field of the second quadrupole deflector (QD2). The resulting He\(^+\) ions were, in turn, deflected by this quadrupole into the positive ion detector (PD), where they impinged on a metal plate (MP) and produced secondary electrons. These electrons were detected with a channel electron multiplier (CEM).

The two laser frequencies \(\omega_1\) and \(\omega_2\) used in the experiment were produced by two dye lasers pumped by a common XeCl excimer laser that delivered pulses of about 15 ns duration. The laser light of frequency \(\omega_2\) was generated by PTP dye with a pulse energy of typically 1 mJ. The tunable laser light of frequency \(\omega_1\) was generated by Exalite 416, Exalite 411 and BBQ dyes with pulse energies of typically 1 mJ. The signal was normalized to the power of laser \(\omega_1\).

For the measurement of the narrow resonances associated with the \(1s3s4s\) \(^4\)S and \(1s3p4p\) \(^4\)P states the frequency \(\omega_1\) was calibrated by combining Fabry-Perot fringes with reference lines generated in a hollow cathode lamp. The Fabry-Perot fringes served as frequency markers whereas the reference transitions in argon and ura-

![Figure 2: The interaction and detection regions: QD1, QD2, electrostatic quadrupole deflectors; CEM, channel electron multiplier; DP, deflection plate; PD, positive ion detector; FC, Faraday cup; MP, metal plate.](image.png)
nium provided an absolute calibration of the energy scale. In the measurement of the broad resonance associated with the 1s3p\(^2\)4P state the energy scale was calibrated using our measured position of the 1s3s4s\(^4\)S state situated only 887 cm\(^{-1}\) away. In this case a relative scale was established by use of the reading of the laser which has an accuracy of better than 0.03 cm\(^{-1}\) [27].

3 Results and discussion

Typical spectral scans of the three resonances in the He(1s2p\(^3\)Po)\(+e^-\) partial cross section are shown in figure 3.

In the case of the 1s3s4s\(^4\)S resonance spectrum shown in figure 3(a) there is a small background due mainly to the population of the 1s2p\(^3\)Po state of He by (a) collisional detachment of He\(^-\) ions and (b) non-resonant photodetachment of He\(^-\) by laser \(\omega_2\):

\[\text{He}^- (1s2s2p\(^4\)Po) + h\omega_2 \rightarrow \text{He}(1s2p\(^3\)Po) + e^- (ep)\]

The He atoms formed in the 1s2p\(^3\)Po state by either (a) or (b) will be resonantly ionized according to the processes described in equation (1). The collisional detachment contribution (a) was reduced by maintaining a pressure of 5×10\(^{-7}\) Pa (5×10\(^{-9}\) mbar) in the interaction chamber. The contribution (b) was reduced by strongly attenuating the output of laser \(\omega_2\). The output remained sufficiently strong, however, to saturate the Rydberg transition.

A third source of background (c) can, in principle, make a contribution. The non-resonant photodetachment of He\(^-\) via the He(1s3s\(^3\)S)\(+e^-\) channels will populate the 1s3s\(^3\)S state of He. This state

Figure 3: Yield of He\(^+\) ions vs. photon energy \(\omega_1\). The solid line is a fit to the experimental data (dots) using equation (2). The three curves show the (a) 1s3s4s\(^4\)S; (b) 1s3p\(^2\)4P and (c) 1s3p4p\(^4\)P resonances. The figures show the measured data without corrections for the Doppler shift (see text). Note that the energy scale in (a), (b) and (c) is different.
will subsequently radiatively decay to the $1s2p^3P^o$ state with a lifetime of 36 ns \[28\]. This process was found to be negligible when induced by laser ω_2 due to the previously mentioned attenuation of the output of this laser. It can, however, make a contribution when induced by laser ω_1. An exception is the $1s3s4s^4S$ spectrum where the photon energy ω_1 is insufficient to populate the $1s3s^3S$ state of the He atom. The relatively short lifetime of the $1s3s^3S$ state makes (c) an efficient process for populating the $1s2p^3P^o$ state. Unfortunately, this contribution is proportional to the intensity of laser ω_1, and attenuation of this intensity cannot be used to improve the signal-to-background ratio. It, however, remains constant across the scan region of the spectra shown in figure 3(b) and figure 3(c). The signal-to-background ratio is lower for the $1s3p4p^4P$ spectrum because the peak photodetachment cross section for this resonance is smaller than for the $1s3p^24P$ resonance \[29\].

The cross section $\sigma(E)$ in the vicinity of a resonance can be parametrized as \[30\]:

$$
\sigma(E) = a + \frac{b\epsilon + c}{1 + \epsilon^2},
$$

where E_0 is the resonance energy, Γ is the resonance width, E is the photon energy, a is the background cross section, and b,c are the Shore parameters. This function is least-square fitted to the weighted signal and shown as a solid line in figure 3. More than 20 measured spectra were analyzed for each resonance. The background was assumed to be constant over the scan region for all the resonance spectra.

In the case of the narrow $1s3s4s^4S$ and $1s3p4p^4P$ resonances data were recorded with both co- and counter-propagating laser ω_1 and ion beams. The geometric mean of the measured blue- and red-shifted resonance energies $E_{0r}^{b,r}$ yields the Doppler-free resonance energy $E_0 = \sqrt{E_{0r}^b E_{0r}^r}$. (The energy of the 4S resonance was found to be $E_0^{4S} = 23,868,031(42) \text{ cm}^{-1}$ including our previous measurements \[11\], and the $1s3p4p^4P$ resonance energy was determined to be $E_0^{4P} = 26,332.97(40) \text{ cm}^{-1}$.)

For the relatively broad $1s3p^24P$ resonance, it was sufficient to record data with counter-propagating laser ω_1 and ion beams only. The previously measured $1s3s4s^4S$ resonance was, in this case, used to calibrate the laser wavelength scale and to account for the Doppler shift.

All measured resonance energies and widths are also given in table 1, together with recent theoretical predictions. In addition, the experimental values of Klinkmüller et al \[11\] measured in another partial channel of photodetachment are given. The quoted uncertainties include both the energy calibration uncertainty and the statistical scatter of the fitted resonance parameters.

The table shows that there is a good agreement between the measured and calculated resonance energies. However there is a noticeable difference between the measured and calculated widths. All four calculations are in essential agreement and all predict the $1s3p^24P$ state to be narrower than is measured. In the case of the $1s3p4p^4P$ state, the two calculations that predict the width disagree with each other and both values are larger than the measured one.

Footnote: \footnote{The text in brackets is not part of the printed version of this publication.}
Le Dourneuf and Watanabe [14] have calculated both doublet and quartet doubly excited He$^-$ resonances below the He(n=3) thresholds using an adiabatic hyperspherical formalism for the two active electrons. They found that the He$^+(1s)$ core only slightly perturbed the motion of the outer pair of electrons. In fact, the wavefunctions of the pair displayed correlation patterns very similar to those found in H$^-$. It was suggested that this correspondence allows a rovibrational classification of the doubly excited states of He$^-$. Many resonance states were labeled in this manner, including two that could be identified with the 1s3s4s 4S and the 1s3p2 4P states observed in the present experiment. The measured width of the 4S state is very small while that of the 1s3p2 4P is large. This observation confirms the radial correlation label $^-$ for the 4S state and $^+$ for the 4P state used by Le Dourneuf and Watanabe.

4 Conclusion

In the present experiment the photodetachment cross section of He$^-$ has been studied in the photon energy range 2.9 . . . 3.3 eV. Three Feshbach resonances associated with the 1s3s4s 4S, 1s3p2 4P and 1s3p4p 4P doubly excited states have been observed. The measured energy positions of these states agree well with recent theoretical predictions, but the widths deviate noticeably from calculations.

We hope to continue this work at higher levels of excitation. It will be interesting to observe the evolution of states such as 1snpn$'$ 4P with increasing values of n, n'. Of special interest are the intrashell resonance states 1snp 4P since it is believed that the ladder of such states with increasing n leads to double detachment. The 1s2p2 4P state appears as a shape resonance [10] but for n>2 the state is bound with respect to the excited atom and a series of Feshbach resonances appear. These states are the lowest lying in a manifold of 4P states below the excited state thresholds. Bylicki [14] and Themelis et al [16,17] have calculated the energies and widths of these intrashell resonance states up to n=7. Both groups predict a narrowing of the states with increasing n. Themelis and Nicolaides show that the configurational composition of these 4P states changes significantly with n. For example, in the case of the present work, the resonance at 3.072 eV photon energy has been labeled by the dominant configuration, the 1s3p2 configuration. This is a reasonably valid label since, in this case, 1s3p2 configuration amounts to about 79% of the total composition. As a result of increased angular correlation, however, the contribution from the 1snd2 and other configurations grow with n. For n>4 the 1snp2 configuration no longer dominates and the label becomes invalid. In this manner we can investigate the gradual breakdown of the independent electron model due to the increased role of correlation in the determining the motion of the active pair of electrons.

Acknowledgements

J. Xi and C. Froese Fischer are acknowledged for providing us with unpublished data. Financial support for this research has been provided by the Swedish National Science Council (NFR). Personal support has been received for I.K from the Wennergren Center Foundation and for U.B from the Swedish Institute. D.J.P acknowledges support from the Royal Swedish Academy.
of Sciences through its Nobel Institute of Physics and the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences.
Table 1: Experimental and theoretical resonance energies E_0 (in eV) and widths Γ (in meV). The resonance energies were converted from cm$^{-1}$ to eV using the recommended factor 8.065.541 0 cm$^{-1}$ eV [31].

	1s3s4s1S	1s3p22P	1s3p4p3P			
Experiment:						
This work	2.959 260(6)	0.20(2)	3.072(7)	50(5)	3.264 87(4)	0.61(5)
Klinkmüller et al (1997)	2.959 255(7)	0.19(3)	—	—	—	—
Theory:						
Bylicki (1997)	—	—	3.074 24	37	3.264 78	2.45
Xi et al (1996)	—	—	2.959 07	0.19	3.074 70	37.37
length form	—	—	2.959 08	0.18	3.074 71	37.37
velocity from	—	—	3.096 6	34.6	—	—
Themelis et al. (1995)	—	—	3.086 8	33		
Davis et al. (1990)	—	—	—	—		

References

[1] H. C. Bryant, B. D. Dieterle, J. Donahue, H. Sharifian, H. Tootoonchi, D. M. Wolfe, P. A. M. Gram, and M. A. Yates-Williams. Observation of resonances near 11 eV in the photodetachment cross section of the H$^-$ ion. *Phys. Rev. Lett.*, 38(5):228–230, January 1977.

[2] U. Berzinsh, G. Haeffler, D. Hanstorp, A. Klinkmüller, E. Lindroth, U. Ljungblad, and D. J. Pegg. Resonance structure in the Li$^-$ photodetachment cross section. *Phys. Rev. Lett.*, 74(24):4795–4798, June 1995, physics/9703015.

[3] U. Ljungblad, D. Hanstorp, U. Berzinsh, and D. J. Pegg. Observation of doubly excited states in Li$^-$. *Phys. Rev. Lett.*, 77(18):3751–3754, October 1996.

[4] P. Kristensen, U. V. Pedersen, V. V. Petrunin, T. Andersen, and K. T. Chung. Binding energy of the metastable He$^-$ ion. *Phys. Rev. A*, 55(2):978–983, February 1997.

[5] T. Andersen, L. H. Andersen, P. Balling, H. K. Haugen, P. Hvelplund, W. W. Smith, and K. Taulbjerg. Metastable-ion lifetime studies utilizing a heavy-ion storage ring: Measurements on He$^-$. *Phys. Rev. A*, 47(2):890–896, February 1993.

[6] R. N. Compton, G. D. Alton, and D. J. Pegg. Photodetachment cross sections for He$^-(4P)$. *J. of Phys. B: At., Mol. Opt.*, 13:L651–L655, 1980.

[7] R. V. Hodges, M. J. Coggiola, and J. R. Peterson. Photodetachment cross sections for He$^- 4P$. *Phys. Rev. A*, 23(1):59–63, January 1981.

[8] J. R. Peterson, Y. K. Bae, and D. L. Huestis. Threshold behavior near an electronic shape resonance: Analysis of the He(^3P) threshold in He$^-$ photodetachment and
determination of the He\((2^3S)\) electron affinity. *Phys. Rev. Lett.*, 55(7):692–695, August 1985.

[9] D. J. Pegg, J. S. Thompson, J. Dellwo, R. N. Compton, and G. D. Alton. Partial cross sections for the photodetachment of metastable He\(^-\). *Phys. Rev. Lett.*, 64:278–281, 1990.

[10] C. W. Walter, J. A. Seifert, and J. R. Peterson. Re-examination of the He\(^-\) 1s2p\(^2\) 4\(P_e\) shape resonance: Details of its properties and a precise electron affinity for He 2 \(^3S\). *Phys. Rev. A*, 50(3):2257–2262, September 1994.

[11] Andreas E. Klinkmüller, Gunnar Haeffler, Dag Hansjörg, Igor Yu. Kiyan, Uldis Berzins, Christopher Ingram, David J. Pegg, and James R. Peterson. Photodetachment study of the 1s3s4s \(^4S\) resonance in He\(^-\). *Phys. Rev. A*, 56(4):2788–2791, October 1997, physics/9703011.

[12] A. U. Hazi and K. Reed. Theoretical photodetachment cross section for He\(^-\)(4\(P_o\)). *Phys. Rev. A*, 24(4):2269–2272, October 1981.

[13] H. P. Saha and R. N. Compton. Theoretical studies of the photophysics of He\(^-\)(1s2s2p)\(^4P_o\). *Phys. Rev. Lett.*, 64(13):1510–1513, March 1990.

[14] Maryvonne Le Dourneuf and Shinichi Watanabe. Grandparent model of the doubly excited He\(^--\)** resonances from a hyperspherical viewpoint. *J. of Phys. B: At., Mol. Opt.*, 23:3205–3224, 1990.

[15] Brian F. Davis. Energy and auto-ionization width of the 1s3s3p \(^4P_o\) and the 1s3p3p \(^4P\) states in lithium-like ions. *Phys. Rev. A*, 41(11):5844–5855, June 1990.

[16] Spyros I. Themelis and Cleanthes A. Nicolaides. Effect of interchannel coupling on the partial and total auto-ionization widths: Application to the 1s3s3p \(^4P_o\) and 1s3p\(^2\) \(^4P\) states for \(Z=2–5, 10\). *Phys. Rev. A*, 49(3):1618–1622, March 1994.

[17] Spyros I. Themelis and Cleanthes A. Nicolaides. Energies, widths and \(l\)-dependence of the H\(^--\) \(^3P\) and He\(^-\) \(^4P\) \(TE\) states. *J. of Phys. B: At., Mol. Opt.*, 28:L379–L385, 1995.

[18] Jinhua Xi and Charlotte Froese Fischer. Cross section and angular distribution for the photodetachment of He\(^-\)(1s2s2p \(^4P_o\)) below the He\((n = 4)\) threshold. *Phys. Rev. A*, 53(5):3169–3177, May 1996.

[19] Miroslaw Bylicki. Spectrum of doubly excited \(^4P_e\) resonances in He\(^-\). *J. of Phys. B: At., Mol. Opt.*, 30:189–201, 1997.

[20] Dae-Soung Kim, Hsaio-Ling Zhou, and Steven T Manson. Photodetachment of 1s2s2p \(^4P\) in He\(^-\) in the vicinity of the 1s threshold. *J. of Phys. B: At., Mol. Opt.*, 30:L1–L7, 1997.
[21] John N. H. Brunt, George C. King, and Frank H. Read. A study of resonance structure in Helium using metastable excitation by electron impact with high energy resolution. *J. of Phys. B: At. and Mol.*, 10(3):433–448, 1977.

[22] S. J. Buckman, P. Hammond, F. H. Read, and G. C. King. Highly excited double Rydberg states of He\(^{-}\). *J. of Phys. B: At. and Mol.*, 16:4039–4047, 1983.

[23] Stephen J. Buckman and D. S. Newman. A further study of highly excited resonances in He\(^{-}\). *J. of Phys. B*, 20:L711–L715, 1987.

[24] Stephen J. Buckman and Charles W. Clark. Atomic negative-ion resonances. *Rev. Mod. Phys.*, 66(2):539–655, April 1994.

[25] Gunnar Haeffler, Dag Hanstorp, Igor Kiyan, Andreas E. Klinkmüller, Ulric Ljungblad, and David J. Pegg. Electron affinity of Li: A state-selective measurement. *Phys. Rev. A*, 53(6):4127–4131, June 1996, physics/9703013.

[26] Dag Hanstorp. An ion beam apparatus for collinear photodetachment experiments. *Nucl. Instrum. Methods B*, 100:165–175, 1995.

[27] Andreas E. Klinkmüller. *On doubly excited states in negative ions*. PhD thesis, Göteborgs Universistet och Chalmers Tekniska Högskola, September 1997, physics/9709010.

[28] W. L. Wiese, M. W. Smith, and B. M. Glennon. *Atomic transition probabilities, Hydrogen through Neon*, volume 1 of *National Standard Reference Data Series National Bureau of Standards 4*. United States Department of Commerce, 1966.

[29] Jinhua Xi and Charlotte Froese Fischer. private communication, 1996.

[30] Bruce W. Shore. Parametrization of absorption line profiles. *Phys. Rev.*, 171(1):43–54, July 1968.

[31] E. Richard Cohen and Barry N. Taylor. The 1986 CODATA recommended values of the fundamental physical constants. *J. Phys. Chem. Ref. Data*, 17(4):1795–1803, 1988.