Low-temperature nodal-quasiparticle transport in lightly doped YBa$_2$Cu$_3$O$_y$ near the edge of the superconducting doping regime

X. F. Sun, Kouji Segawa, and Yoichi Ando

Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511, Japan.

(Dated: September 16, 2018)

In-plane transport properties of nonsuperconducting YBa$_2$Cu$_3$O$_y$ ($y = 6.35$) are measured using high-quality untwinned single crystals. We find that both the a- and b-axis resistivities show log$(1/T)$ divergence down to 80 mK, and accordingly the thermal conductivity data indicate that the nodal quasiparticles are progressively localized with lowering temperature. Hence, both the charge and heat transport data do not support the existence of a “thermal metal” in nonsuperconducting YBa$_2$Cu$_3$O$_y$, as opposed to a recent report by Sutherland et al. [Phys. Rev. Lett. 94, 147004 (2005)]. Besides, the present data demonstrate that the peculiar log$(1/T)$ resistivity divergence of cuprate is not a property associated with high-magnetic fields.

PACS numbers: 74.25.Fy, 74.25.Dw, 74.72.Bk

The electronic properties of underdoped cuprates have been extensively studied in recent years, with the aim of understanding how the strong electron correlations in these materials manifest themselves and lead to high-T_c superconductivity. Most notably, it has been elucidated that the electronic density of states near the Fermi energy E_F is gradually suppressed from above T_c in underdoped cuprates, causing a “pseudogap” in the normal state. The pseudogap opens anisotropically in the Brillouin zone and has four nodes along the zone diagonals, similar to the d-wave superconducting (SC) gap. Furthermore, the pseudogap is formed through partial destruction of the Fermi surface from the antinodes, leaving “Fermi arcs” near the zone diagonals. These Fermi arcs are observed not only in the normal state of moderately underdoped superconductors but also in lightly doped nonsuperconducting (NSC) samples, which has lead to the idea that the Mott-insulating state of parent cuprates turns into a metal-like state through creation of nodal quasiparticles on the Fermi arcs. Intriguingly, the “metallic” transport supported by the Fermi arcs in lightly doped cuprates has surprisingly good mobility at moderate temperatures and shows a behavior reminiscent of ordinary Fermi liquids (T^2 inelastic scattering rate and T-independent Hall coefficient).

It should be noted, however, that those nodal quasiparticles in lightly doped cuprates are bound to be localized in the $T → 0$ limit, giving rise to variable-range hopping (VRH) behavior at low temperatures. The nodal quasiparticles in the SC state, on the other hand, are known to be delocalized in the $T → 0$ limit and can carry heat, which has been documented by the measurements of the thermal conductivity $κ$ at milli-Kelvin temperatures that find a finite T-linear term expected for fermionic excitations throughout the superconducting doping regime of various cuprates. Notably, it is also known that the normal state of sufficiently underdoped cuprates becomes “insulating” in the $T → 0$ limit when the superconductivity is suppressed with a high magnetic field. In fact, the magnetic-field (H) dependence of $κ$ in the SC state is indicative of a magnetic-field-induced quasiparticle localization at sufficiently low doping, which seems to be consistent with the insulating normal state under high magnetic fields.

However, Sutherland et al. have recently argued that the ground state of lightly-doped YBa$_2$Cu$_3$O$_y$ (YBCO) in the NSC regime is a “thermal metal”, proposing that the nodal quasiparticles can remain delocalized in the underdoped NSC regime of a clean cuprate. This claim implies that $ρ_c$ falls into the NSC doping regime in YBCO, which questions the universality of the hidden MI transition in the SC regime. Naturally, if the nodal quasiparticles indeed remain delocalized in a NSC sample, one should be able to confirm the metallic nature by measuring the resistivity, since there is no superconductivity that short-circuits the dc charge transport; unfortunately, Sutherland et al. relied only on heat transport measurements for drawing their conclusion. Indeed, the intrinsic resistivity behavior of YBCO near the edge of the SC doping regime has been notoriously difficult to be elucidated, mostly because the resistivity data are easily contaminated by filamentary superconductivity at such doping.

In this paper, we critically examine whether there is really a thermal metal phase in clean YBCO in the NSC regime, by measuring both the charge and heat transport properties on untwinned single crystals down to 70–80 mK. We have succeeded in preparing samples that are free from filamentary superconductivity and found that at $y = 6.35$, which is very close to the SC doping regime ($y ≥ 6.40$), the temperature dependences of the a- and b-axis resistivities ($ρ_a$ and $ρ_b$) are both well described by log$(1/T)$ in zero field, which obviously indicates that the
nodal quasiparticles are localized in the zero-temperature limit. Also, this charge-transport behavior signifies that the nodal quasiparticles are *inelastically* scattered down to the lowest temperature, and hence dictates that one should never assume the electronic thermal conductivity to be linear in T, an assumption that was employed in the analysis by Sutherland et al.12 but is only valid in the elastic scattering regime of fermionic excitations. In fact, the behavior of the a- and b-axis thermal conductivities (κ_a and κ_b) indicates that the nodal quasiparticles are progressively localized upon lowering temperature.

The high-quality single crystals of YBa$_2$Cu$_3$O$_y$ are grown by a flux method using Y$_2$O$_3$ crucibles to avoid inclusion of impurity atoms20,21 using elaborate procedures to reliably control the oxygen content y described in Ref. 10; the samples are carefully annealed and detwinned. Note that our samples are quenched after the high-temperature annealing to avoid long-range oxygen ordering, although formations of short-range Cu-O chain fragments always take place in low-doped YBCO samples at room temperature after quenching — this is the cause of the “room-temperature annealing” (RTA) effect12,13. The y values of the samples reported here are 6.45, 6.40, and 6.35, for which the zero-resistivity T_c’s are 20, 7.5, and 0 K, respectively. The SC samples ($y = 6.45$ and 6.40) are measured after one week of RTA, after which the change of T_c almost saturates. On the other hand, the $y = 6.35$ samples are measured within one day of RTA, because the one-week RTA tends to cause a filamentary superconductivity which contaminates the resistivity data below 2 K; thus, the present $y = 6.35$ samples can be considered to be essentially oxygen-order free. The resistivity and thermal conductivity are independently measured by using the conventional four-probe method and a steady-state technique20,21, respectively.

The inset to Fig. 1(a) shows the temperature dependences of ρ_a and ρ_b for $y=6.35$ below 300 K, where one can see that the resistivity shows a metallic behavior down to 70 K (40 K) along the a (b) axis, but a steep upturn sets in at lower temperature. The main panel of Fig. 1(a) zooms in on the data below 20 K; here, one can clearly see that both ρ_a and ρ_b are apparently diverging at low temperature and it is difficult to assert some definite resistance value for their $T \to 0$ limit. In fact, as shown in Fig. 1(b), the T dependences of both ρ_a and ρ_b are well described by $\log(1/T)$ below ~20 K down to 80 mK (more than two decades), and the $\log(1/T)$ dependence mathematically suggests that the resistivity grows infinitely large for $T \to 0$. Note that this behavior is the same as that found in the normal state of underdoped cuprate superconductors under high magnetic fields13,16, but this is the first time that a clear $\log(1/T)$ behavior is observed in zero magnetic field: When T_c is suppressed to zero by Zn doping in underdoped samples, the resistivity shows a divergence quicker than $\log(1/T)$22,23. Incidentally, we found that application of a 16-T magnetic field causes negligible change in the resistivity data of the present samples. Hence, the present data demonstrate that the $\log(1/T)$ resistivity divergence of cuprates is *not* a property associated with high-magnetic fields; also, the $\log(1/T)$ behavior in clean YBCO suggests that this peculiar behavior is not merely a result of disorder-induced localization but is fundamentally related to the strong-correlation physics.

Figure 1(c) shows the T dependence of the in-plane anisotropy, ρ_a/ρ_b, for $y=6.35$. As we have reported previously22, ρ_a/ρ_b grows to as large as ~2.5 at this doping, even though the orthorhombicity is very weak (0.2%) and is about to disappear — this is arguably the most convincing evidence that the electrons self-organize into a macroscopically anisotropic state (such as a nematic charge-stripe phase25) in lightly-doped YBCO16. In Fig. 1(c), one can see that ρ_a/ρ_b becomes nearly T-independent when the resistivity is showing the $\log(1/T)$ divergence. This is rather reminiscent of the behavior of the out-of-plane anisotropy, ρ_c/ρ_{ab}, in underdoped LSCO, which also shows a saturation when the resistivities individually show the $\log(1/T)$ divergence12.

Figure 2 shows the corresponding κ_a and κ_b data for $y=6.35$. In Fig. 2(a), κ/T is plotted versus T^2, which would allow one to separate the electronic contribution κ_e ($\sim T$ in the elastic-scattering regime) from the phononic contribution κ_p ($\sim T^3$ in the boundary-scattering regime), provided that the data at the lowest temperatures [usually below 100–200 mK (Refs. 3,15,26)] fall onto a straight line; however, one can easily see in Fig. 2(a) that both the κ_a and κ_b data are continuously curved in this plot down to our lowest temperature, 70 mK, and one cannot make a linear fitting for any reasonably extended temperature range. In fact, the data look as if κ/T is heading to zero at $T=0$. Note
that, by choosing some fractional power of T for the horizontal axis, one could make a plot that shows an almost linear behavior [Fig. 2(b)], and this fact corroborates the observation that the data are nowhere linear in the ordinary κ/T vs T^2 plot. Actually, as we discuss later, when the resistivity shows a log(1/T) divergence and hence an inelastic scattering process is affecting the electron transport, there is no reason to believe that the electronic part of κ/T is constant, and therefore it is not meaningful to play around with the data to try to separate κ_p by making a plot like Fig. 2(b). In other words, the absence of the linear behavior in the κ/T vs T^2 plot in the present case does not mean that the boundary-scattering regime of phonons (where $\kappa_p \sim T^3$) is never achieved nor the proper power for κ_p is different from 3, but it means that κ_e never behaves as $\sim T$ due to the log(1/T) localization behavior. We note that in our experiments both the resistivity and thermal conductivity results for $y=6.35$ are confirmed to be essentially reproduced in at least one more set of samples.

It should be remarked that there is a notable difference in the thermal conductivity behavior between SC samples and NSC samples; namely, for SC samples there is always a finite range of temperature where the data are linear in the κ/T vs T^2 plot with a finite intercept at $T=0$, as shown in Fig. 3(a), while for NSC samples the data in such a plot are curved all the way down to the lowest T. To make it easier to judge the rationality of the linear fittings for the SC samples, Fig. 3(b) shows the difference between the data and the fits; here, one can see that the linear fitting is very reasonable below 0.013 and 0.010 K2 (i.e., 115 and 100 mK) for $y = 6.45$ and 6.40, respectively. Physically, the observed change in the thermal conductivity behavior across the superconductivity boundary is a manifestation of the fact that the nodal quasiparticles are localized on the NSC side of this boundary, while they are delocalized in the SC state.

In passing, we note that the linear fittings in Fig. 3 for $y = 6.45$ and 6.40 are very consistent with what is expected for κ_p: In the boundary-scattering regime, κ_p is given by $\frac{1}{3}(v_p l_p)^2 T^3$, with β the phonon specific heat coefficient, $\langle v_p \rangle$ the averaged sound velocity, and l_p the phonon mean-free path; in perfect crystals l_p takes the maximum value $1.12\bar{w}$ with \bar{w} the geometric mean width of the sample. Using the parameters for YBCO cited in Ref. 8 and \bar{w} of 0.356 (0.245) mm for $y = 6.45$ (6.40), we obtain $l_p/1.12\bar{w}$ of 0.85 (0.92).

Let us now discuss the most important question of whether the ground state at $y=6.35$ is a metal or an insulator. For this discussion, it is crucial to examine the meaning of the log(1/T) resistivity divergence. Although this behavior is not completely equivalent to the log T behavior of the conductivity σ in 2D weak localization,[27] it is instructive to recall the basic physics behind the weak localization. According to the scaling theory of weak localization,[26] the inelastic diffusion length L_i (which grows upon lowering T) sets the length scale to determine the size-dependent conductivity $g(L_i)$, which depends logarithmically on L_i and vanishes for $L_i \rightarrow \infty$; this dependence on L_i is the essential source of the log T behavior.[26] Therefore, when the log T weak localization behavior is observed, the transport is governed by the inelastic scattering process and one can never assume κ_e to behave as $\sim T$ as in the elastic-scattering regime. In fact, since all the electrons are eventually localized in the log T regime, κ_e/T is bound to vanish for $T \rightarrow 0$.

In the case of the log(1/T) resistivity behavior in
cuperates, although the exact mechanism to produce the logarithmic dependence would be different from the weak localization, the system is certainly not in the elastic-scattering regime and some inelastic process continues to be effective for \(T \to 0 \), causing the ground state at \(T=0 \) to be a correlated insulator. This means that it makes best sense to interpret our data for \(y=6.35 \) to be indicative of a progressive localization of electrons and vanishing \(\kappa_e/T \) for \(T \to 0 \). Also, the \(\log(1/T) \) resistivity behavior implies that it is not reasonable to assert \(\kappa_e/T \) to be constant and hence the \(\kappa/T \)-vs-\(T \) analysis like that in Fig. 2(b) is essentially meaningless. In this context, it is also pointless to examine the validity of the Wiedemann-Franz (WF) law in the \(\log(1/T) \)-insulating regime, because the WF law holds only in the elastic-scattering regime.\(^{20}\)

Having discussed that the data for \(y=6.35 \) are indicative of a vanishing \(\kappa_e/T \) for \(T \to 0 \), we can now draw a diagram for the doping dependence of the \(T=0 \) residual electronic term, \(\kappa_0/T \), as shown in Fig. 3(c), where the data obtained in our previous work\(^{10}\) for \(6.50 \leq y \leq 7.00 \) are also plotted. Altogether, there is a good systematics in the doping dependence of \(\kappa_0/T \), which is essentially consistent with that for LSCO\(^{12}\) giving confidence that the simultaneous disappearance of the superconductivity and delocalized nodal quasiparticles is a fundamental nature of the cuprates. The present result also indicates that even in the cleanest cuprate YBCO the ground state of the lightly-doped NSC regime is an insulator, though the nature of the insulating state, which is characterized by the \(\log(1/T) \) resistivity divergence here, is different from that in lightly doped LSCO where it is due to the disorder-driven localization.\(^{5}\)

Lastly, let us briefly discuss the possibility that, while the charges are localized and cannot give rise to a thermal metal phase in the NSC regime of YBCO, some exotic fermionic excitations might be alternatively responsible for a thermal metal in the charge insulating state. One can easily see that this scenario is very unlikely, because, as shown in Fig. 3(a), \(\kappa_0/T \) decreases notably and systematically from \(y=6.45 \) to \(6.35 \), which speaks against the idea that some new fermions start to carry heat for \(y \leq 6.35 \) and contribute a sizable \(\kappa_0/T \).

In conclusion, we find that in clean, unwinned single crystals of nonsuperconducting (NSC) YBCO at \(y = 6.35 \), the temperature dependences of both \(\rho_a \) and \(\rho_b \) show \(\log(1/T) \) divergence in zero magnetic field, which indicates that the nodal quasiparticles in the NSC regime are localized for \(T \to 0 \) and that they are inelastically scattered down to the lowest temperature. The latter means that the electronic thermal conductivity \(\kappa_e \) cannot be linear in \(T \) even at the lowest temperature, and accordingly the data for \(\kappa_a \) and \(\kappa_b \) at \(y = 6.35 \) are indicative of a \(T \)-dependent \(\kappa_e/T \) that appears to vanish for \(T \to 0 \). Hence, the critical examination of the heat transport at \(y = 6.35 \) in the light of the charge-transport behavior leads to a conclusion that the ground state of clean underdoped cuprate in the NSC regime is not a thermal metal but is a peculiar insulator characterized by the \(\log(1/T) \) resistivity divergence.

We thank Louis Taillefer for useful discussions and sharing preprints prior to publication. This work was supported by the Grant-in-Aid for Science provided by the Japanese Society for the Promotion of Science.

1. J. Orenstein and A. J. Millis, Science 288, 468 (2000).
2. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
3. M. R. Norman et al., Nature (London) 392, 157 (1998).
4. T. Yoshida et al., Phys. Rev. Lett. 91, 027001 (2003).
5. Y. Ando et al., Phys. Rev. Lett. 92, 197001 (2004).
6. Y. Ando et al., Phys. Rev. Lett. 87, 017001 (2001).
7. A. C. Durst and P. A. Lee, Phys. Rev. B 62, 1270 (2000).
8. L. Taillefer et al., Phys. Rev. Lett. 79, 483 (1997).
9. J. Takeya, Y. Ando, S. Komiya, and X. F. Sun, Phys. Rev. Lett. 88, 077001 (2002).
10. X. F. Sun, K. Segawa, and Y. Ando, Phys. Rev. Lett. 93, 107001 (2004).
11. Y. Ando et al., Phys. Rev. Lett. 92, 247004 (2004).
12. M. Sutherland et al., Phys. Rev. Lett. 94, 147004 (2005).
13. Y. Ando et al., Phys. Rev. Lett. 75, 4662 (1995).
14. G. S. Boebinger et al., Phys. Rev. Lett. 77, 5417 (1996).
15. P. Fournier et al., Phys. Rev. Lett. 81, 4720 (1998).
16. S. Ono et al., Phys. Rev. Lett. 85, 638 (2000).
17. X. F. Sun, S. Komiya, J. Takeya, and Y. Ando, Phys. Rev. Lett. 90, 117004 (2003); D. G. Hawthorn et al., Phys. Rev. Lett. 90, 197004 (2003).
18. K. Segawa and Y. Ando, Phys. Rev. Lett. 86, 4907 (2001).
19. K. Segawa and Y. Ando, Phys. Rev. B 69, 104521 (2004).
20. Y. Zhang et al., Phys. Rev. Lett. 86, 890 (2001).
21. R. W. Hill et al., Phys. Rev. Lett. 92, 027001 (2004).
22. Y. Hanaki, Y. Ando, S. Ono and J. Takeya, Phys. Rev. B 64, 172514 (2001).
23. S. Komiya and Y. Ando, Phys. Rev. B 70, 060503(R) (2004).
24. Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
25. S. A. Kivelson et al., Rev. Mod. Phys. 75, 1201 (2003).
26. S. Nakamae et al., Phys. Rev. B, 63, 184509 (2001).
27. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
28. The log \(T \) behavior of weak localization should saturate at low enough \(T \) in a finite system, where the sample size sets the upper limit for \(L_i \); in our data in Fig. 1(b), the slight saturation tendency discernible at the lowest \(T \) could be a similar finite-size effect, and it does not automatically suggest a conceptually metallic ground state.
29. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia, 1976), p. 323.