Boundary Modes from Periodic Magnetic and Pseudomagnetic Fields in Graphene
Võ Tiến Phong and E. J. Mele
Phys. Rev. Lett. 128, 176406 — Published 29 April 2022
DOI: 10.1103/PhysRevLett.128.176406
Boundary Modes from Periodic Magnetic and Pseudomagnetic Fields in Graphene

Võ Tiến Phong and E. J. Mele

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA 19104

(Dated: March 3, 2022)

Single-layer graphenes subject to periodic lateral strains are artificial crystals that can support boundary spectra with an intrinsic polarity. These are analyzed by comparing the effects of periodic magnetic fields and strain-induced pseudomagnetic fields that respectively break and preserve time-reversal symmetry. In the former case, a Chern classification of the superlattice minibands with zero total magnetic flux enforces single counter-propagating modes traversing each bulk gap on opposite boundaries of a nanoribbon. For the pseudomagnetic field, pairs of counter-propagating modes migrate to the same boundary where they provide well-developed valley-helical transport channels on a single zigzag edge. We discuss possible schemes for implementing this situation and their experimental signatures.

Atomically-thin materials are versatile platforms for creating new artificial crystals defined by imposing laterally-periodic potentials. A celebrated example is twisted bilayer graphene where a small interlayer twist modulates the atomic registry on large moiré scales \(L \sim 10 - 20 \) nm and yields structurally-tunable superperiodic solids with flattened minibands [1, 2]. When the bandwidth is made much smaller than the energy gaps separating manifolds, the electronic physics projected into the spectrally-isolated minibands can be controlled by various many-body effects [3, 4]. Fractured spectra can be produced even for a monolayer material by other mechanisms that introduce Bragg reflections on a superlattice, such as by periodic patterning of an electrostatic gate or a perpendicular magnetic field [5, 6]. The latter situation is interesting even if the spatially-averaged flux vanishes, the applied magnetic field breaks time-reversal symmetry \(\mathcal{T} \), and can generate gapped minibands with non-zero Chern numbers [7, 8, 9]. However, experimentally realizing the anomalous Hall effect via this route is daunting because of the large magnetic fields required to produce sufficiently large minigaps. Nonetheless, it suggests an alternate approach where instead a periodic strain field in monolayer graphene is coupled to electronic motion and masquerades as a valley-antisymmetric pseudomagnetic field on a much larger energy scale. This has been demonstrated experimentally for a sheet of graphene contacted with NbSe\(_2\) [9]. The properties of nearly flat bands in this system have been probed for possible correlated-electron physics [9-13].

Pseudomagnetic fields induce fascinating electronic phenomena even at the single-particle level associated with the symmetries of the superlattice minigaps [14-21]. Unlike a real magnetic field, the pseudofield is \(\mathcal{T} \)-symmetric and changes its sign in two momentum-space valleys. Each valley can host nontrivial Chern minibands, but this is exactly compensated in the time-reversed valley. Naively, one might expect this to exclude any interesting structure in the boundary spectra. However, we find that this setup still supports rich edge-state physics in its boundary spectra without topological protection [22]. Robust transport in edge channels on selected boundaries is generically produced by a competition between bulk and surface symmetries when such an artificial crystal is terminated. Below, we analyze the resulting edge modes, demonstrate how they produce an intrinsic polarity on a generic terminated superlattice, and suggest how these features can be probed in transport and spectroscopic measurements.

Before analyzing the band structure of monolayer graphene in a periodic strain field, we begin by considering the closely-related system of spinless electrons in a real but periodic magnetic field. In this case, the superlattice bands admit a Chern topological classification even without requiring valley projection. Consequently, this allows us to identify robust edge modes that cannot be gapped out by intervalley coupling. We choose a real magnetic field that is spatially varying with a periodic profile and zero total flux, \(\mathbf{B}(\mathbf{r}) = B_0 \hat{z} \sum_{i=1}^{3} \cos (\mathbf{G}_i \cdot \mathbf{r}) \), where \(\mathbf{G}_i \) are the superlattice primitive reciprocal lattice vectors specified in Fig. [1]. For simplicity, the superlattice translation vectors, \(\mathbf{L}_i = N \mathbf{a}_i \), are chosen to be commensurate with the graphene translation vectors, \(\mathbf{a}_i \), for some integer \(N \).

In the presence of a periodic potential, the microscopic Brillouin zone (BZ) folds back to a smaller superlattice Brillouin zone (sBZ). For small \(N \), there are two classes of structures: if \(\text{mod} (N, 3) = 0 \), \(K_+ \) and \(K_- \) are mapped to \(\bar{\Gamma} \), and otherwise, \(K_+ \) and \(K_- \) are mapped to different points. For large \(N \), it becomes impractical to distinguish between these two classes of structures because of an emergent valley symmetry that allows us to approximately label states by a valley index. In this limit, we obtain a series of isolated flat bands near charge neutrality. Within a single valley, there is one two-dimensional manifold that crosses \(E = 0 \), and one-dimensional manifolds elsewhere near \(E = 0 \). We use \(N = 14 \) for efficient numerical calculations throughout this work, though conclusions reached here are applicable to other cases of larger \(N \) as well. A representative band structure in this limit for \(N = 14 \) is shown in Fig. [1]. To characterize the band topology of this \(\mathcal{T} \)-broken system, we calculate the Chern number associated with every insulating gap close to charge neutrality numerically using a finite difference method [23, 24]. In our case, since the gaps induced by intervalley hybridization are quite small, a sufficiently fine k-space mesh is necessary in order to obtain convergent results. We find that all the insulating bulk gaps near charge neutrality carry \(C = \text{sign}(B_0E) \).
The presence of a nonzero Chern number requires the existence of a dispersive band in the bulk gap at every boundary termination for a macroscopic sample. In an armchair termination, K_+ and K_- are mapped onto the same wavevector of the ribbon Hamiltonian, so we do not expect edge modes to carry definite valley character. In a zigzag termination, K_+ and K_- are well separated in the boundary-projected crystal momentum. Consequently, we expect edge modes in this case to be valley-polarized close to charge neutrality. This is confirmed numerically, as shown in Fig. 1(c) and (d). Interestingly, because $C = \pm 1$ for all the relevant insulating gaps, there is only one topological edge mode per boundary in each bulk gap. The boundary states in a zigzag nanoribbon from different valleys belong to opposite edges. This situation is very similar to the edge modes associated with the famous $n = 0$ Landau level of a Dirac Hamiltonian where each valley contributes an edge state at a different edge [25, 26]. However, the present system with a periodic magnetic field is distinct from the Landau-level scenario because of the absence of prominent insulating gaps with higher Chern numbers. In the Landau-level problem, each band carries a nonzero Chern number, and the number of edge modes thus increases in the higher gaps. The valley-polarized edge states associated with these higher-Chern-number Landau-level gaps occur on both boundaries of a zigzag nanoribbon.

Using the insights from studying a periodic magnetic field, we now examine graphene under a periodic strain field. Under such a field, the bond strengths between carbon atoms are periodically modulated in space. Again, in the limit $N \gg 1$, we expect emergent superlattice-scale symmetries to dominate the low-energy physics. For a sufficiently smooth superlattice potential, it is useful to approximate the physics near charge neutrality by considering independent valley Dirac fermions at K_+ and K_-. Throughout this work, we neglect the scalar contribution of the strain field by assuming that only nearest-neighbor hoppings are significant and the substrate is chemically and electronically inert [27]. In this theory, the strain field enters the Hamiltonian as a spatially-dependent pseudomagnetic field. Inspired by a recent experiment [9], we choose the pseudomagnetic field to be the same as before in one of the valleys, $B_\nu(r) = \nu B_0 \frac{2}{3} \sum_{i=1}^{3} \cos(G_i \cdot r)$, where $\nu = \pm$ denotes valleys. The valley-projected, long-wavelength Hamiltonian is

$$\hat{\mathcal{H}}_\nu = \hbar v_F \int d^2 r \hat{\psi}^\dagger (r) \left(-i \nabla r + \frac{e}{\hbar} \hat{A}_\nu(r) \right) \cdot (\nu \sigma_x, \sigma_y) \hat{\psi}(r),$$

where $\hat{\psi}^\dagger (r) = \left(\hat{\psi}^\dagger_A(r), \hat{\psi}^\dagger_B(r) \right)$ are the sublattice creation operators and σ_j act on the sublattice degrees of freedom. In our convention, the charge q is $q = -e$. Under a gauge transformation $A_\nu(r) \mapsto A_\nu(r) - \nabla f(r)$, the wavefunctions simply acquire a local $U(1)$ phase $\psi(r) \mapsto \exp(ie f(r) / \hbar) \psi(r)$. This valley-projected Hamiltonian is invariant under the magnetic point symmetry group $3M_2$, with three classes $\{E, C_{3z}, TM_x\}$ [28, 30]. When both valleys are considered, then the full Hamiltonian respects C_{3z}, M_x, and T. Importantly, C_{3z} is broken in this configuration.

Just as in the case of a real magnetic field, the presence of a periodic potential produced by strain fractures the energy spectrum into a series of narrow bands. In the limit of exact valley symmetry, we learn from the case of a real magnetic field that each valley contributes a single edge mode at the insulating gaps away from $E = 0$ on a particular boundary of a

Figure 1. Graphene in a periodically-modulated magnetic field. (a) Real-space and (b) reciprocal-space representations of graphene in a periodic magnetic field. (c) Band structure for $N = 14$ and $\delta t = 0.3$. The energy eigenstates are color-coded by their valley expectation value $\langle \nu \rangle$ as in Ref. [11]. We observe that the bands close to $E = 0$ are exceptionally well valley-polarized. Within each valley, there is a doublet band at $E = 0$, and singlet bands elsewhere. Band structures on a finite zigzag (d) and armchair (e) nanoribbon showing protected topological edge states at every insulating gap shown. In the zigzag configuration, we see that the edge states are highly valley-polarized. Electron density distributions for some representation edge states are shown below each band structure. Here, each ribbon has 175 carbon atoms across its width.
modes must also exist in graphene under a periodic strain. However, due to \mathcal{T} symmetry, the two edge modes coming from both valleys now must populate the same zigzag boundary. In other words, the sign change of the pseudomagnetic field between valleys is realized by having the edge states reside on only one side of a zigzag nanoribbon. Of course, valley symmetry is not strictly exact in a microscopic theory. However, one can effectively suppress intervalley scattering by increasing the superlattice period and operating in the ballistic limit, both of which are achievable in graphene-based platforms. For these reasons, we expect these edge modes to be robust and allow their experimental detection and manipulation although they are not topologically protected.

To confirm the existence of these boundary states numerically, we construct a tight-binding representation of Hamiltonian (1) which respects all of the aforementioned symmetries. Practically, the exact strain field is seldom determined in an experiment. So we use a desired pseudomagnetic field as the starting point and find a suitable corresponding tight-binding parameterization. To do so, we employ the following approximation $e v_F [A_x(R_j) + i A_y(R_j)] \approx -\sum_i^{3} \delta t_i (R_j) e^{-iK_+ \delta t_i}$, where $\delta t_i (R_j)$ is the bond strength modulation along the δ_t direction as shown in Fig. [1] [31]-[33]. Among the many possible choices for $\delta t_i (R_j)$, we adopt the following gauge that respects all the spatial symmetries of the continuum model, $\delta t_i (R_j) = t_0 \delta t \sin (G_i \cdot R_j)$, where $t_0 \delta t = \sqrt{3} v_F e B_0 L/4 \pi$ [11][12]. A realization in this gauge is shown in Fig. [2], where it is immediately clear that C_{3z} and M_x are preserved. Importantly, C_{2z} is broken explicitly. If it were preserved, the accumulation of edge modes on only one edge would be impossible when the edge termination is C_{2z}-symmetric. This would render the existence of the boundary-selective edge modes dependent on the precise width of a zigzag nanoribbon.

At low energies, we have confirmed numerically that the bands calculated from the continuum model qualitatively match those produced by the tight-binding model. We then diagonalize the Hamiltonian on finite ribbons with zigzag and armchair terminations. Indeed, in the zigzag configuration where intervalley scattering is suppressed, we find edge states residing in the insulating gaps away from charge neutrality, as shown in Fig. [2b]. The branches from opposite valleys have small avoided crossings at \mathcal{T}-invariant momenta. These one-sided boundary states can be detected in a transport measurement using a four-terminal setup as shown in Fig. [2c]: when the chemical potential is in a bulk gap, one of the two edges acts as an insulator while the other is a conductor. Because of this, while the phase with a real magnetic field is characterized by quantized Hall conductivity, this time-reversal symmetric phase necessarily has zero Hall conductivity, but carries quantized longitudinal conductance on the active edge in the clean limit. Another possible detection is by measuring the edge asymmetry in the local density of states (LDoS). Within each of the bulk gaps, the LDoS will be strongly enhanced on only one side of a zigzag sample for almost all energies throughout that gap, as shown in Fig. [2e]. This surface charge accumula-

Figure 2. Graphene in the presence of a periodic strain. (a) Lattice realization of the gauge field defined in the text with the bond strength indicated by the thickness of the bonds. In this gauge, C_{3z} and M_x are evidently preserved. Band structures on a finite zigzag (b) nanoribbon showing edge states at every insulating gap. These edge states sometimes meet at \mathcal{T}-invariant momenta and form small avoided crossings. There are no corresponding edge modes in the armchair configuration (c). The bands are colored according to their valley character, as detailed in Fig. [1]. Here, $N = 14$, $\delta t = 0.3$, and each ribbon has 175 carbon atoms across its width. (d) A four-terminal setup to measure the existence of the one-sided boundary states when the chemical potential resides within one of the bulk gaps. When a potential difference is applied across V_1 and V_2, a current flows across the two terminals. On the other hand, when a potential difference is applied across V_3 and V_4, no current is detected. (e) Local density of states as a function of energy E and position y. The midgap states shown in blue are localized to only one edge. The bulk states shown in yellow are extended throughout the sample. For this simulation, the ribbon has 150 carbon atoms across its width. zigzag nanoribbon. If valley mixing is prohibited, these edge
We can alternatively obtain the desired pseudo-gauge field by lifting the model into the third dimension and imposing an appropriate height profile \(h(\mathbf{r}) \). This approach offers more experimental control because the height profile can be engineered simply by placing graphene on a substrate designed to produce a desired height profile \(h(\mathbf{r}) \). As the graphene membrane conforms to the substrate topography, it deforms not only vertically but laterally as well to minimize elastic energy. Taking into account relaxation in all three directions

\[
G \cdot \mathbf{u} \propto \cos(G_z \cdot \mathbf{r}) - \sqrt{3} \cos(G_x \cdot \mathbf{r}) + \cos(G_y \cdot \mathbf{r}) - 2 \cos(G_1 \cdot \mathbf{r})
\]

We thank Antonio L. R. Manesco, Eva Andrei, Francisco Guinea, and Martin Claassen for useful discussions. VTP acknowledges support from the NSF Graduate Research Fellowships Program and the P.D. Soros Fellowship for New Americans. EJM is supported by the Department of Energy under

Figure 3. Designing strain fields. (a) \(h(\mathbf{r}) \) and (b) its Gaussian curvature with \(\phi = -\pi/4 \) as defined in the text. Following Ref. [10], we show (c) the estimated bandwidth of the energy manifold at charge neutrality and (d) the estimated magnitude of the first insulating gap above charge neutrality. The yellow and cyan lines show the Coulomb energy scale \(\sim 14.4 \text{eV}/\ell L \) for \(\epsilon = 4 \) and \(\epsilon = 10 \) respectively. The color maps have units \(\log_{10}(\text{eV}) \).
P. Jarillo-Herrero, D. Xiao, and M. Rothschild, Valleytronics: opportunities, challenges, and paths forward, Small 14, 1801483 (2018).

[43] H. Suzuura and T. Ando, Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002).

[44] J. L. Mañes, Symmetry-based approach to electron-phonon interactions in graphene. Phys. Rev. B 76, 045430 (2007).

[45] F. de Juan, J. L. Mañes, and M. A. H. Vozmediano, Gauge fields from strain in graphene. Phys. Rev. B 87, 165131 (2013).

[46] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig, All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).