Astragalus membranaceus root supplementation improves average daily gain, rumen TVFA production and immunity and antioxidant factors of Tibetan sheep

CURRENT STATUS: POSTED

Xianju Wang
Lanzhou University

Luming Ding
Lanzhou University
d dinglm@lzu.edu.cn
Corresponding Author

Haiyan Wei
Lanzhou University

Cuixia Jiang
Lanzhou University

Qi Yan
Lanzhou University

Changsheng Hu
Lanzhou University

Gongxue Jia
Northwest Institute of Plateau Biology Chinese Academy of Sciences

Yuqing Zhou
Haibei comprehensive experimental station

Zalmen Henkin
Agricultural Research Orgniazton

Allan Degen
Ben-Gurion University of the Negev

DOI:
SUBJECT AREAS
Animal Science Biotechnology and Bioengineering

KEYWORDS
Astragalus membranaceus, Tibetan sheep, growth performance, rumen fermentation, immunity, antioxidant factors
Abstract
Background: The use of antibiotics as supplements in animal feed is restricted due to possible health hazards associated with them. Consequently, there is increasing interest in exploiting natural products as antibiotics with no detrimental side effects. In this study, we examined the effect of Astragalus membranaceus root (AMT) supplementation on dry matter intake, growth performance, rumen fermentation and immunity of Tibetan sheep.

Materials and methods: Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9 months old) were assigned randomly to one of four dietary treatments with different levels of AMT: 0 g/kg, 20 g/kg, 50 g/kg and 80 g/kg dry matter (A0, A2, A5 and A8, respectively) in addition to their basal diets. A0 acted as a control group and measurements were recorded over a 56-d feeding period.

Results: Sheep fed with AMT had a higher average daily gain (ADG) and a lower feed:gain ratio (F:G) than controls (P < 0.001). Rumen concentrations of NH3-N (P < 0.001), total volatile fatty acids (TVFA) (P = 0.028), acetate (P = 0.017) and propionate (P = 0.031) in A5 and A8 were higher than in A0. The addition of AMT in the feed significantly increased serum antioxidant and immunity factors of the sheep and increased the concentrations of serum interleukin, immunoglobulin and tumour necrosis factor-α (TNF-α) (P = 0.010).

Conclusions: We concluded that AMT can be used as a feed additive to improve growth performance and rumen fermentation and enhance the immunity of Tibetan sheep. Some responses exhibited a dose-dependent response, whereas other did not exhibit a pattern, with an increase in AMT. The addition of 50 g/kg and 80 g/kg AMT of total DMI showed the most promising results.

Background
The high-altitude Qinghai-Tibetan Plateau (QTP) is characterized by low air temperature, low air oxygen content, a short growing season and sparse vegetation of poor quality during the winter [1]. As one of the major livestock species on the QTP, numbering over 50 million head, Tibetan sheep are well adapted to the harsh environment and provide meat and income for most nomadic and semi-nomadic peoples in these regions [2].

Feeding antibiotics to livestock to increase production and improve livelihoods is a common practice
in many countries [3]. However, the use of antibiotics as supplements in animal feed is often restricted due to residues and resistant strains of bacteria, and the rising awareness of hazards associated with antibiotics [4]. Consequently, there is increasing interest to exploit natural products that have no public health hazards.

Many Chinese herbs, with low toxicity, have been used as feed additives for livestock to improve growth performance and/or reduce mortality [5]. For example, Angelica sinensis (root), Epimedium brevicornu (full plant), Schisandra chinensis (fruit) and Acanthopanax senticosus (root) can enhance immune functions, Isatis indigotica (root), Rheum palmatum (stem and root) can reduce pathogenic microorganisms, and Citrus reticulata (peel) and Crataegus pinnatifida (fruit) can increase animal appetite and improve feed conversion rate [6].

Astragalus membranaceus, a legume, is widely distributed throughout the temperate regions of the world [7]. The dried root of Astragalus membranaceus (AMT) contains polysaccharides, saponins and other biological active substances, which have been used in Chinese traditional medicine for nearly 2000 years as a booster of the immune system [8, 9]. Pharmacological studies have shown that AMT possesses immuno-stimulant, tonic, hepato-protective, diuretic, antidiabetic, analgesic and sedative properties [10, 11]. In addition, it has been reported that AMT and its extracts can improve growth performance and immunity of chickens and pigs [12]. However, little is known on the effects of AMT on ruminants. The aim of this study is to fill this gap by determining the effects of dietary AMT supplementation on growth performance, rumen fermentation and immunity and antioxidant factors in Tibetan sheep.

Materials And Methods
Study site and preparation of Astragalus membranaceus
The study was conducted between October 20 and December 30, 2018, at the Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China (N36°55′, E100°57′, 3170 m a. s. l.). During the experimental period, the average air temperature was – 4.4 °C. All procedures were approved by the Animal Ethics Committee of Lanzhou University, China.

Dried roots of Astragalus membranaceus were purchased from the Gansu Hebo Chinese Herbal
Medicine (Long) Science and Technology Co., Ltd, China. The roots were washed, dried, ground and passed through a 1 mm sieve. The contents of AMT, determined by the ultraviolet branch photometer method, included 125.8 g/kg astragalus polysacharin, 0.12 g/kg calycosin-7-glucoside and 0.87 g/kg astragaloside IV. The main bioactive ingredients in AMT conforms to Pharmacopopoeia of the People’s Republic of China [13].

Experimental design
Twenty-four 9-month-old male Tibetan sheep (31 ± 1.4 kg), with similar genetic backgrounds, were used in a completely randomized design. Each sheep was penned individually (each pen = 2.5 × 3.5 m) and had free access to fresh water. The sheep were offered 450 g concentrate (Menyuan Yongxing Ecological Agriculture and Animal Husbandry Development Co. LTD, Haibei, China) and ad libitum oat hay daily, at 07:00 and 17:00. The compositions of the feed are presented in Table 1. After a 2-week adaptation period, the sheep were assigned randomly to one of four treatments (n = 6 per treatment) that differed in the level of AMT: control – 0 g/kg (A₀), 20 g/kg (A₂), 50 g/kg (A₅) and 80 g/kg (A₈) dry matter intake (DMI) for 56 days. The AMT, mixed with 10 g concentrate, was fed separately to each sheep at 07:00, and the amount fed each sheep was based on DM intake from pre-trial feed intakes, when the sheep consumed approximately 800 g DM oat hay along with the 450 g concentrate, and the amount of AMT was then adjusted weekly.

Table 1
Composition (DM basis) of the concentrate, oat hay and Astragalus membranaceus root (AMT)

Ingredient¹ (g/kg DM)	Concentrate	Oat hay	AMT
CP	201	84	194
Ash	78	85	50
EE	46	09.7	10.3
NDF	485	523	
ADF	392	416	
Ca	9.8	4.5	6.1

¹CP, crude protein; EE, ether extract; NDF, neutral detergent fibre; ADF, acid detergent fibre; Ash, crude ash; GE, gross energy.
²“-” not detected

Data collection and sampling
The sheep were weighed at the beginning and end of the trial before morning feeding. Dry matter intake (DMI), which included the AMT, was recorded every day by weighing DM offered and DM refusals. Average daily gain (ADG) was calculated by the difference between initial and final BW and
the feed:gain (F:G) ratio was calculated from the DMI and ADG. Feed samples and refusals (only oat hay) were collected every 2 weeks, mixed thoroughly and ground to pass through a 1-mm screen (Wiley mill, Arthur H. Thomas, Philadelphia, PA, USA) before chemical analyses. Dry matter (DM) was determined by oven drying at 105 °C for 48 hours. Crude protein (CP; method 984.13), ether extract (EE; method 920.29) and ash content (method 942.05) were measured according to AOAC (1990) [14]. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of the feed samples were measured using fiber analyzer (ANKOM A2000i, NY, USA) following Van Soest et al. (1991) [15]. Jugular vein blood samples were collected into vacuum tubes before the morning feeding on days 14, 28 and 56. The tubes were centrifuged at 3000 g (4 °C) for 15 min within 2 h of sampling, and the serum was stored at -80 °C for subsequent analysis. Serum concentrations of tumour necrosis factor-α (TNF-α), interleukin (IL)-2, -4, -6 and – 10, growth hormone (GH), insulin (INS) and soluble CD14 (sCD14) were measured using commercial ELISA kits (Beijing Sinoouk Institute of Biological Technology, Beijing, China) and serum immunoglobulin (IgA, IgG and IgM), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were measured using commercial colorimetric assay kits (Beijing Sinoouk Institute of Biological Technology, Beijing, China).

A rumen fluid sample was collected from each sheep every two weeks before morning feeding using rumen fluid collection tubes (Anscitech, Wuhan, China). Approximately 80 mL were collected from each sheep of which the first 30 mL were discarded to minimize contamination from saliva. After the pH was measured by a pH meter (M90; Corning Inc., Corning, NY, USA), the rumen fluid was strained through four layers of cheesecloth, and stored in 10 mL tubes at -80 °C until further analysis. Volatile fatty acids (VFA) were determined using a chromatograph (BEIFEN SP-3420A, Beijing, China) following the method of Zhang et al. (2016) [16] and ammonia-N (NH₃-N) was determined following Hristov et al. (2001) [17].

Statistical analysis

Results are presented as means ± SEM. Two-week values (time) of dry matter intake, TVFAs, and immune factors for each sheep were analyzed by repeated measures ANOVA using the mixed
procedure of SAS (Version 9.1; SAS Institute) with day as the independent variable. A Tukey’s test was used to separate means where a treatment x period interaction was significant.

Orthogonal contrasts were used to evaluate differences due to level of AMT and test the linear, quadratic, and cubic effect of an increasing proportion of AMT. The results are presented as least square means. Correlation analysis of variables was done using bivariate correlation analysis (SPSS correlation analysis). Statistical significance was accepted at P < 0.05.

Results

Effect of AMT on dry matter intake and average daily gain

Body weight (BW) did not differ among groups (P = 0.973) at the beginning of the study (day 0), but was higher (P < 0.001) in sheep supplemented with AMT on day 56 than in controls (Table 2). The addition of AMT increased the average DMI of sheep (P = 0.001). All the supplemented concentrate was consumed by the sheep in each treatment, therefore the differences in total DMI reflected mainly the differences in oat hay intake. The groups consuming AMT all had higher ADG than controls (P < 0.001) and there was a linear increase (P < 0.001) with an increase in AMT. The ADG of groups A_8, A_2 and A_5 were 79%, 21% and 25%, higher, respectively, than group A_0. The highest feed:gain (F:G) ratio occurred in the A_0 group, and the lowest ratio in the A_8 group (P < 0.001), and there was a linear decrease (P < 0.001) with an increase in AMT.

Items^1	Treatment^2	SEM	P-value^3						
	A_0	A_2	A_5	A_8	L	Q	C	Treatment (T)	
BW, initial (kg)	32.0	31.8	31.5	31.2	0.59	0.644	0.998	0.975	0.975
BW, final (kg)	35.6^a	36.9^b	37.2^b	37.8^b	0.25	0.137	0.689	0.713	0.005
DMI (kg/day)	1.23^a	1.28^b	1.27^b	1.31^b	0.040	0.198	0.766	0.096	0.001
ADG (g/day)	64.3^a	91.1^b	101.8^b	117.9^c	5.55	< 0.001	< 0.001	< 0.001	< 0.001
F:G ratio (g:g)	18.0^c	13.8^b	12.6^b	11.0^a	0.751	< 0.001	0.182	0.026	< 0.001

- a-c, means within a row followed by different lower-case letters differ significantly (P < 0.05).
- BW = body weight; DMI = dry matter intake; ADG = average daily gain; F:G ratio = feed to gain ratio.
- A_0 contains 0 g/kg AMT in diet (dry matter basis); A_2 contains 20 g/kg AMT in diet (dry matter basis); A_5 contains 50 g/kg AMT in diet (dry matter basis); A_8 contains 80 g/kg AMT in diet (dry matter basis).

Table 2

The effect of Astragalus membranaceus root (AMT) on body weight (BW), average daily gain (ADG) and feed:gain (F:G) ratio and dry matter intake (DMI) of Tibetan sheep

Effect of AMT on rumen pH and volatile fatty acids

7
Rumen pH decreased ($P = 0.016$) on days 28 and 56 in the AMT fed groups when compared to controls (Table 3) and was lower on day 56 than on days 14 and 28 in all groups ($P = 0.003$). Rumen acetate concentration was higher ($P = 0.017$) in sheep consuming AMT than in controls on days 28 and 56 and acetate was also higher on day 56 than day 14 in all four treatment groups ($P = 0.022$). Generally, AMT increased rumen propionate concentration ($P = 0.031$) and there was a linear increase ($P < 0.001$) with an increase in AMT. There was no consistent trend in rumen butyrate concentration in relation to the level of AMT ($P = 0.059$). The concentration of TVFA in the rumen was higher in the AMT fed sheep than controls ($P = 0.028$), was higher on day 56 than days 14 and 28 ($P = 0.041$) and increased linearly ($P < 0.007$) with an increase in AMT. The A:P ratio was lower in A_2, A_5 and A_8 groups than in A_0 on day 56 ($P < 0.001$), with the lowest value in the A_8 group. The addition of AMT increased ($P < 0.001$) rumen NH$_3$-N concentration on days 28 and 56, the NH$_3$-N concentration increased significantly ($P < 0.001$) with days and the treatment x day interaction was significant ($P = 0.041$) (Table 3).
Table 3

The effect of AMT on rumen pH and VFA on days 14, 28 and 56 in Tibetan sheep

Items	Day	Treatment	SEM	p-value								
		A0	A2	A5	A8		L	Q	C	Day (D)	Treatment (T)	T × D
pH	14	6.63B	6.6B	6.65B	6.62B	0.011	0.542	0.638	0.781	0.003	0.016	0.266
	28	6.63bbB	6.57abB	6.57abB	6.56abB	0.011						
	56	6.52aabA	6.45aaA	6.42aaA	6.45aaA	0.013						
Acetate (mmol/L)	14	32.4A	31.9A	32.5A	34.5A	0.347	0.282	0.779	0.677	0.022	0.017	0.923
	28	33.7aaA	35.4bbB	34.2bbA	37.4cbA	0.455						
	56	36.4abB	37.9bcb	38.0bcb	38.1bbb	0.271						
Propionate (mmol/L)	14	6.57a	6.94a	7.54b	8.08c	0.192	0.002	0.811	0.528	0.022	0.031	0.960
	28	6.85a	7.62a	7.49b	8.51c	0.183						
	56	6.87a	8.18bb	8.48bb	8.96b	0.276						
Butyrate (mmol/L)	14	6.00	4.40	5.53	4.76	0.193	0.900	0.423	0.667	0.344	0.200	0.692
	28	4.52	5.97	5.54	5.32	0.214						
	56	5.20	7.39	6.57	5.43	0.322						
TVFA (mmol/L)	14	47.0aaA	48.9aaA	50.4baA	52.2caA	0.540	0.007	0.8061	0.835	0.041	0.028	0.971
	28	48.1aaA	51.3bbB	52.1bbB	54.5cbB	0.682						
	56	52.8abB	55.2acB	61.0bbB	60.6bcB	1.342						
A/P	14	4.20A	4.08	4.40	4.30	0.052	0.431	0.961	0.404	<0.001	0.144	1.144
	28	4.55A	4.62	4.70	4.58	0.054						
	56	5.30bcB	4.67b	4.79b	4.27a	0.093						
NH3-N (mg/L)	14	20.9A	22.0A	21.6A	21.7A	0.230	0.543	0.885	0.803	<0.001	<0.001	0.041
	28	24.6abB	24.4abB	28.4bbB	29.1bbB	0.540						
	56	31.5abcA	33.0cbc	35.9bcC	34.3bcC	0.480						

a-c, means within a row followed by different lower-case letters differ significantly (P < 0.05). A-C, means within a column followed by different capital letters differ significantly (P < 0.05).

TVFA = total volatile fatty acids; A/P = Acetate/Propionate; NH3-N = ammonia-N.

Effect of AMT on serum immune factors

The serum concentrations of IgA (P = 0.016) and IgG (P = 0.045) were higher in A5 and A8 than in A0 and A2 on day 56 (Table 4). In addition, serum concentrations of IgA (P = 0.004), IgG (P = 0.006) and IgM (P = 0.020) in the AMT fed lambs were higher on day 56 than on 14. The interaction between treatment x day was significant for IgA (P = 0.028) and IgM (P = 0.014). The serum concentration of IL-2 (groups A2, A5 and A8) was higher in the AMT fed lambs than in controls, and the treatment x day interaction was significant (P = 0.029), with the highest concentration in group A8 (P = 0.014). With
days, serum IL-2 concentration decreased in all groups \((P = 0.029)\), except for the \(A_8\) group \((P = 0.146)\), and IL-4 concentration increased in \(A_0\), \(A_2\) and \(A_5\) groups \((P = 0.022)\), but not in the \(A_8\) group \((P = 0.273)\), and increased linearly \((P < 0.034)\) with an increase in AMT. There was no significant treatment effect on serum IL-6 concentration \((P = 0.093)\), but its concentration was significantly lower on day 56 than on days 14 and 28 in all four groups \((P = 0.032)\); while, in contrast, the highest IL-10 concentration occurred on day 56 in all four groups \((P = 0.028)\). No significant treatment of sampling date was found for serum sCD14 concentration \((P = 0.366)\). The concentration of serum TNF-\(\alpha\) in \(A_8\) group was higher \((P = 0.010)\) than in the other three groups on days 14, 28 and 56, was lower \((P = 0.044)\) on day 56 than on day 14 and 28 in the four treatments and increased linearly \((P < 0.047)\) with an increase in AMT.
The effect of Astragalus membranaceus root (AMT) on serum immune factors on days 14, 28 and 56 in Tibetan sheep

Items¹	Day	Treatment²	SEM	p-value³
IgA (g/L)	14	A₀: 0.60, A₂: 0.55, A₅: 0.64, A₈: 0.60⁴	0.017	0.2582, 0.2124, 0.5646, 0.0047
	28			
	56			
IgG (g/L)	14	A₀: 14.52, A₂: 14.07, A₅: 14.50, A₈: 14.90⁴	0.377	0.1440, 0.6863, 0.3735, 0.0066
	28			
	56			
IgM (g/L)	14	A₀: 15.66a, A₂: 15.96a, A₅: 18.99c, A₈: 20.41b⁴	0.036	0.3593, 0.1832, 0.1141, 0.0200
	28			
	56			
IL-2 (pg/mL)	14	A₀: 295c, A₂: 286b, A₅: 290c, A₈: 287⁴	0.072	0.6677, 0.3465, 0.2133, 0.0290
	28			
	56			
IL-4 (pg/mL)	14	A₀: 3.97a, A₂: 6.45a, A₅: 6.08c, A₈: 9.05⁴	0.034	0.0304, 0.7595, 0.5010, 0.0223
	28			
	56			
IL-6 (pg/mL)	14	A₀: 145b, A₂: 142b, A₅: 143b, A₈: 146b⁴	0.093	0.0852, 0.8580, 0.9663, 0.0324
	28			
	56			
IL-10 (pg/mL)	14	A₀: 11.26aa, A₂: 12.36aa, A₅: 12.25aa, A₈: 15.49b⁴	0.156	0.4310, 0.6430, 0.8560, 0.0280
	28			
	56			
sCD14 (ng/mL)	14	A₀: 1.49, A₂: 1.48, A₅: 1.39, A₈: 1.34⁴	0.045	0.9157, 0.7330, 0.8170, 0.3660
	28			
	56			
TNF-α (pg/mL)	14	A₀: 75.9ab, A₂: 74.7ab, A₅: 75.5ab, A₈: 82.1bb⁴	1.659	0.0470, 0.7400, 0.6170, 0.0440
	28			
	56			

a-c, means within a row followed by different lower-case letters differ significantly (P < 0.05). A-C, means within a column followed by different capital letters differ significantly (P < 0.05).

1 Ig = immunoglobulin; IL = interleukin; sCD14 = soluble CD14; TNF-α = tumour necrosis factor-α.
2 A₀ contains 0 g/kg AMT in diet (dry matter basis); A₂ contains 20 g/kg AMT in diet (dry matter basis); A₅ contains 50 g/kg AMT in diet (dry matter basis); A₈ contains 80 g/kg AMT in diet (dry matter basis).
3 L = Linear response of AMT; Q = Quadratic response of AMT; C = Compound response of AMT.

Effect of AMT on serum hormones and antioxidant properties

AMT fed to sheep did not show an effect on serum INS (P = 0.06) and SOD (P = 0.997) concentrations (Table 5). The concentration of serum GH was significantly higher (P = 0.015) in the A₈ group than the other three groups on days 28 and 56. The concentrations of T-AOC in the A₅ and A₈ groups were higher than in the A₀ and A₂ groups on day 56. Concentrations of SOD did not differ among
treatments \((P = 0.997)\), but the interaction between treatment \times day was significant \((P < 0.010)\), Serum concentrations of INS \((P = 0.011)\), GH \((P = 0.049)\), T-AOC \((P = 0.030)\) and SOD \((P < 0.001)\) increased with time in all four groups.

Table 5
The effect of Astragalus membranaceus root (AMT) supplementation on serum hormones and antioxidant factors on days 14, 28 and 56 in Tibetan sheep

Items\(^1\)	Day	Treatment\(^2\)	SEM	p-value\(^3\)								
		A\(_0\)	A\(_2\)	A\(_5\)	A\(_8\)	L	Q	C	Day (D)	Treatment (T)	T \(\times\) D	
INS \((\text{ulU/mL})\)	14	8.64\(^A\)	11.24\(^A\)	9.94\(^A\)	9.35\(^A\)	0.440	0.805	0.707	0.512	0.011	0.060	0.099
	28	10.61\(^A\)	15.62\(^B\)	12.95\(^B\)	13.92\(^B\)	0.806	0.236	0.350	0.207	0.026	0.012	0.068
	56	17.05\(^B\)	16.07\(^C\)	12.13\(^C\)	16.74\(^C\)	0.340	0.860	0.214	0.210	0.022	0.019	0.038
GH \((\text{ng/mL})\)	14	3.49\(^A\)	3.90\(^B\)	3.90\(^A\)	3.73\(^A\)	0.135	0.051	0.219	0.512	0.049	0.015	0.050
	28	3.69\(^aA\)	3.77\(^aA\)	3.68\(^aA\)	4.09\(^aB\)	0.291	0.076	0.135	0.512	0.049	0.015	0.050
	56	4.39\(^aB\)	4.24\(^abc\)	4.25\(^abc\)	6.23\(^bC\)	0.255	0.064	0.135	0.512	0.049	0.015	0.050
T-AOC \((U/mL)\)	14	6.68\(^A\)	6.84\(^A\)	7.64\(^B\)	7.44\(^B\)	0.204	0.034	0.598	0.757	0.030	0.227	0.138
	28	8.04\(^B\)	7.11\(^A\)	7.19\(^A\)	9.14\(^B\)	0.352	0.051	0.135	0.512	0.049	0.015	0.050
	56	8.78\(^B\)	8.86\(^B\)	9.62\(^C\)	9.32\(^B\)	0.110	0.034	0.598	0.757	0.030	0.227	0.138
SOD \((U/mL)\)	14	68.9\(^A\)	73.6\(^A\)	76.8\(^A\)	66.1\(^A\)	2.506	0.792	0.592	0.969	< 0.001	0.997	0.010
	28	76.6\(^B\)	83.9\(^A\)	83.6\(^B\)	86.1\(^B\)	3.052	0.792	0.592	0.969	< 0.001	0.997	0.010
	56	94.0\(^C\)	95.9\(^C\)	96.5\(^C\)	94.9\(^c\)	1.654	0.792	0.592	0.969	< 0.001	0.997	0.010

\(^a-c\), means within a row followed by different lower-case letters differ significantly \((P < 0.05)\). A-C, means within a column followed by different capital letters differ significantly \((P < 0.05)\).

\(^1\)INS = insulin; GH = growth hormone; T = total antioxidant capacity; SOD = superoxide dismutase.

\(^2\)A\(_0\) contains 0 g/kg AMT in diet (dry matter basis); A\(_2\) contains 20 g/kg AMT in diet (dry matter basis); A\(_5\) contains 50 g/kg AMT in diet (dry matter basis); A\(_8\) contains 80 g/kg AMT in diet (dry matter basis).

\(^3\)L = Linear response of AMT; Q = Quadratic response of AMT; C = Compound response of AMT.

Discussion

Effect of AMT on dry matter intake and average daily gain

Supplementation of AMT in the current study resulted in a higher ADG, a better feed conversion and an increase in DMI in the Tibetan sheep, which is in contrast with the findings of Zhong et al. (2012) [18], who reported no change in DMI, ADG and feed conversion in Ujumqin male lambs receiving AMT at 50 g/kg DMI for 30 days. The increase in DMI in the present study did not increase linearly with an increase in AMT, but increased only at 80 g/kg AMT, while ADG and feed conversion improved linearly with an increase in AMT intake. These different patterns illustrated the importance of testing different levels of AMT on the responses of sheep. Our results, however, were consistent with reports in monogastrics in which ADG and feed conversion in early weaned piglets [12] and ADG and DMI in chickens [19] increased with AMT. In these studies, the improvements were attributed mainly to astragalus polysaccharide, which ranged between 2.4 and 9.6 mg/kg AMI in the three groups of the present study. It was reported that astragalus polysaccharide accelerates muscle growth and
increases carcass weight through the expressions of related genes and proteins [20]. In addition, an in vitro study with rumen fluid showed that supplementary AMT can improve feed digestibility in steers [3].

Effect of AMT supplementation on rumen fermentation

Optimal fibrolytic bacteria growth was found to be at a pH between 6.2 and 7.2 [21] and its activity was inhibited at a pH below 6.0 [22]. Although the pH of the rumen fluid decreased with the addition of AMT, the pH of all groups fell within the optimal range for sheep. The pH was negatively correlated with the concentration of TVFA, as was reported previously for ruminants [23].

The TVFA produced in the rumen provides about 75 percent of the ruminants' energy [24]. In the current study, the concentration of rumen TVFA and propionic and acetic acids increased with AMT supplementation, indicating that AMT enhanced rumen fermentation. The increase in propionic acid was linear with an increase in AMT, but acetic acid increased with time but did not show a pattern of increase with an increase in AMT and as a result, the A:P ratio was reduced with AMT supplement.

Similar results were shown in an in vitro study by Deng et al. (2007) who reported that AMT extract stimulated ruminal fermentation and modified the pattern of rumen fermentation by increasing rumen TVFA production and the molar proportion of propionate [3]. Zhong et al. (2012) also reported an increase in propionic acid, and as a consequence, a reduction in the A:P ratio, with supplementary AMT at 50 g/kg DMI [18].

Francis et al. (2002) [25] reported that saponins in plants have an inhibitory effect on rumen protozoa, while Wallace et al. (1994) [26] demonstrated that saponins have antimicrobial properties that can inhibit the activity of bacteria, which are normally acetate producers. Consequently, saponin or saponin-like substances in AMT may inhibit the activity of rumen protozoa and bacteria, resulting in an accumulation of propionate and reduction in the molar proportion of acetate in the rumen [3], which could explain the decrease in the A:P ratio in the Tibetan sheep with the addition of AMT in the current study. In addition, a number of plant extracts and secondary plant metabolites were shown to improve rumen fermentation characteristics by influencing the composition and activity of ruminal microorganisms [27].
NH$_3$-N is an intermediate product of protein metabolism and one of the main components for microbial protein synthesis in the rumen [26]. The increase of rumen NH$_3$-N concentration with the addition of AMT in this study was also reported in a previous report by Zhong et al. (2012) [18], which indicated that AMT can play a role in promoting dietary protein degradation and microbial protein synthesis.

Effect of AMT supplementation on immune factors in the serum

A number of herbs are immunologically active, functioning as excellent immuno-modulating agents. Astragalus polysaccharides and saponins stimulate macrophages and B cell activation [28], promote antibody formation, activate complement and increase T lymphocyte proliferation [29], while astragaloside increases T, B lymphocyte proliferation and promotes antibody production [30]. Bioactive fractions, isolated from AMT, were found to be the most potent with respect to its mitogenicity on murine splenocytes [8]. The addition of 50 and 80 g/kg DMI AMT in this study showed the strongest effect in increasing serum IgA, IgG and IgM concentrations, especially toward the latter stages of the study; IgA, IgG and IgM are important indicators of humoral immunity. Immunoglobulin is an antibody-active animal protein secreted by plasma cells and plays an important role in both specific and non-specific immunity [31, 32]. Immune enhancement was also observed in lambs with a supplementation of 50 g/kg DMI AMT [18].

Interleukin (IL) plays an important role in transmitting information, activating and regulating immune cells and mediating T and B cell activation, proliferation and differentiation. In the present study, the concentration of serum interleukin (IL-2, IL-4, IL-10) generally increased with an increase in the level of AMT. The increase in IL-4 was linear with an increase in AMT, whereas a definite pattern of increase was not detected for IL-2 and IL-10. A study by Hou et al. (2015) showed that AMT increased the percentage of IL-4-expressing T helper (Th) cells in the blood and prevented the decline in IL-6 mRNA expressions in spleen of mice [33]. The cytokine IL-2 is produced by activated T cells, and stimulates both the innate and acquired immune responses, including the release of secondary cytokines such as TNF, IL-1 and IL-6 [34]. IL-4 and IL-10 enhances the B-cell response and alternative activation of macrophages to promote tissue repair [35]; whereas, IL-6 functions as a differentiation factor on B
cells and an activation factor on T cells [36]. Kurashige et al. (1999) observed that AMT protects against the reduction of IL-2 production in mice lymphocytes treated with a carcinogen [37].

Astragalus polysaccharides have important immuno-stimulating effects by promoting IL-2 production and splenocyte proliferation in vitro [38], while saponins have been shown to have high IL-2 inducing activity [34].

Serum TNF-α, which plays an important role in antigen enhancing and inflammatory regulation of macrophages [11], increased in concentration linearly with an increase in AMT consumed. TNF-α is induced mainly by activated peritoneal macrophages, which are important cells of the innate immune response that can eliminate invading microorganisms through phagocytosis [18, 39]. In vitro studies reported an increased production of TNF-α by peritoneal macrophages of C3H/HeN mice when cells were cultured with an aqueous extract of AMT [40]. Bedir et al. (2000) [41] found that astragaloside enhanced mRNA expression of IL-1β and TNF-α, while Wei et al. (2016) [42] reported that astragalus polysaccharide increased gene expression and production of NO, TNF-α, and IL-6 in RAW264.7 cells. Consequently, the current results demonstrated that adding AMT to Tibetan sheep diet can booster the immune system as it increases serum immunoglobulins and regulates the secretion of a number of cytokines.

Effect of AMT on serum hormones and antioxidant properties

In the present study, the addition of 80 g/kg DMI AMT increased serum GH concentration in the sheep, as was also observed in broilers offered AMT [43]. However, this response was not found in lambs fed AMT at 50 g/kg DMI [18]. Growth hormone (GH) promotes metabolism and growth by regulating the secretion of insulin-like growth factor to stimulate the entry of amino acids into cells and to accelerate the synthesis of DNA and RNA, thereby promoting the synthesis of proteins [44].

Oxidative stress is believed to be a primary factor contributing to animal diseases [45]. Astragalus polysaccharides have been shown to enhance antioxidant status and to scavenge free radicals [46] and at a dietary concentration of 5 g/kg DMI enhanced serum antioxidant enzymatic activity and improved antioxidant status of broilers [47]. In addition, flavonoids and saponins extracted from AMT possessed antioxidative activities [48]. The main parameters for assessing oxidative status in animals
are T-AOC and T-SOD [49]. In this study, the addition of 80 g/kg DM AMT increased T-AOC concentration on day 56. In other studies, the addition of 50 g/kg AMT to lamb diet [18] and 10 g/kg AMT to broiler diet [50] increased liver T-AOC concentration. The addition of AMT did not affect SOD in the present study but there was an increase in concentration with time for every treatment.

Conclusions
This study demonstrated that supplementary AMT increased DMI and improved ADG and feed conversion rates in Tibetan sheep. AMT had beneficial effects on rumen fermentation and improved the immunity and antioxidant activities of Tibetan sheep. Some responses were dose dependent and increased with an increase in AMT, while other responses increased without a pattern. Based on the present study, we concluded that best results for Tibetan sheep could be obtained at 50 g/kg to 80 g/kg DMI of AMT.

Abbreviations
AMT: Astragalus membranaceus root; CP: crude protein; EE: ether extract; NDF: neutral detergent fibre; ADF: acid detergent fibre; GE: gross energy; BW: body weight; DMI: dry matter intake; ADG: average daily gain; F:G ratio: feed:gain ratio; TVFA: total volatile fatty acids; A/P: Acetate/Propionate; NH3-N: ammonia-N; Ig: immunoglobulin; IL: interleukin; sCD14: soluble CD14; TNF-α: tumour necrosis factor-α; INS: insulin; GH: growth hormone; T-AOC: total antioxidant capacity; SOD: superoxide dismutase

Declarations

Acknowledgements
The authors gratefully acknowledge the support by the barn staff for the care of animals.

Authors’ contributions
LD conceived and designed the experiment. XW and HW performed the experiment; XW, HW, CJ, QY, CH Gj and YZ collected samples; XW performed laboratory analysis and analyzed the data; XW and LD wrote the manuscript; and ZH and AAD revised the manuscript. All authors read and approved the final manuscript.

Funding
This research was funded by the Qinghai Provincial Science and Technology Major Project (2018-NK-
A2), Platform of Adaptive Management on Alpine Grassland-livestock System (2020-ZL-T07), National Key R&D Program of China (2018YFD0502302), Qinghai Key Research and Development Project (2017-NK-114), Key Lab Project of Qinghai Province (2013-Z-Y03) and China Agriculture Research System: National Modern Agriculture (Beef and Yak) Industrial Technology System Project (CARS-37).

Availability of data and materials

All data generated or analyzed are available from the corresponding author on request.

Ethics approval and consent to participate

The research protocol was approved by the Animal Ethics committee of Lanzhou University.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 State Key Laboratory of Grassland Agro-ecosystem, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Gansu Lanzhou 730000, China. 2 Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Qinghai Xining 810016, China. 3 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China. 4 Haibei Comprehensive Experimental Station of National Beef Cattle & Yak Industrial Technology System, Haibei 810299, China. 5 Beef Cattle Section, Department of Natural Resources, Agricultural Research Organization, Newe-Ya’ar Research Center, POB 1021, Ramat Yishay 30095, Israel. 6 Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

References

1. Long RJ, Dong SK, Wei XH, Pu XP. The effect of supplementary feeds on the body
1. Weight of yaks in cold season. Livest Sci. 2005;93:197-204.

2. Xin GS, Long RJ, Guo X., Irvine J, Ding LM, Ding LL, Shang ZH. Blood mineral status of grazing Tibetan sheep in the Northeast of the Qinghai-Tibetan Plateau. Livest Sci. 2011;136:102-107.

3. Deng DJ, Wang J, Ren LP, Zhou ZM, Meng QX. The effect of different doses of astragalus root extract on in vitro rumen fermentation of steam-flaked maize grains used as an only substrate. J Anim Feed Sci. 2007;16:172-177.

4. Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol. 2014;2:333-334.

5. Liu HW, Tong JM, Zhou DW. Utilization of Chinese Herbal Feed Additives in Animal Production. Agr Sci China. 2011;10:1262-1272.

6. Huang WH. Testing Research of Chinese Herbal Medicine on Fujian Yellow Rabbit's immune Performance and Meat Quality. Fujian Agriculture and University (in Chinese); 2011.

7. Elabd H, Wang HP, Shaheen A, Yao H, Abbass A. Astragalus membranaceus (AM) enhances growth performance and antioxidant stress profiles in bluegill sunfish (Lepomis macrochirus). Fish Physiol Biochem. 2016;42:955-966.

8. Cho WCS, Leung KN. In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. J Ethnopharmacol. 2007;113:0-141.

9. Galina J, Yin G, Ardó L, Jeney Z. The use of immunostimulating herbs in fish. An overview of research. Fish Physiol Biochem. 2009;35:669-676.

10. Gui SY, Wei W, Wang H, Wu L, Sun WY, Chen WB, Wu CY. Effects and mechanisms of crude astragalosides fraction on liver fibrosis in rats. J Ethnopharmacol. 2006;103:154-159.

11. Huang H, Luo SH, Huang DC, Cheng SJ, Cao CJ, Chen GT. Immunomodulatory activities
of proteins from *Astragalus membranaceus* J Sci Food Agr. 2019;99:4174-4181.

12. Yin FG, Liu YL, Yin YL, Kong XF, Li TJ, Wu CY, Hou YQ. Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids. 2009;37:263-270.

13. Chinese Pharmacopopoeia Commission. Pharmacopopoeia of the People’s Republic of China (English Edition, Volume I). People’s Medical Publishing House, Beijing. 2015

14. Official methods of analysis, 15th ed. Arlington, VA: Association of Official Analytical Chemists. 1990.

15. Van Soest PJ, Robertson JB, Lewi, BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-3597.

16. Zhang ZG, Xu DM, Wang L, Hao JJ, Wang JF, Zhou X, Wang WW, Qiu Q, Huang XD, Zhou JW, Long RJ, Zhao FQ, Shi P. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;26:1873-1879.

17. Hristov AN, Ivan M, Rode LM, Mcallister TA. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. J Anim Sci. 2001;79:515-524.

18. Zhong RZ, Yu M, Liu HW, Sun HX, Cao Y, Zhou DW. Effects of dietary astragalus polysaccharide and *Astragalus membranaceus* root supplementation on growth performance, rumen fermentation, immune responses, and antioxidant status of lambs. Anim Feed Sci Tech. 2012;174:60-67.

19. Wang HF, YangWR, Yang HW, Yang ZB, Jiang SZ, Zhang GG. Effect of *Astragalus membranaceus* on growth performance, carcass characteristics and antioxidant status of broiler chickens. Acta Agr Scand A-An. 2010;60:151-

20. Min L, Jian Q, Yarong H, Min L, Jun L, Tao L, Wei L. Astragalus polysaccharide
suppresses skeletal muscle myostatin expression in diabetes: involvement of ROS-ERK and NF-κB pathways. Oxid Med Cell Longev. 2013;2013:1-10.

21. Van Soes, PJ. Nutritional ecology of the ruminant. Cornell University Press, 1994;44:2552-2561. https://doi.org/10.2514/1.18760.

22. Sung HG, Kobayashi Y, Chang J, Ha A, Hwang IH. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian Austral J Anim. 2007;20:200-207.

23. Gäbel G, Aschenbach JR, Müller F. Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev. 2002;3:15-30.

24. Keady TWJ, Mayne CS. The effects of concentrate energy source on feed intake and rumen fermentation parameters of dairy cows offered a range of grass silages. Anim Feed Sci Tech. 2001;90:117-129.

25. Francis G, Kerem Z, Makka, HPS, Becker K. The biological action of saponins in animal systems: a review. Brit J Nutr. 2002;88:587-605.

26. Wallace RJ, Arthaud L, Newbold CJ. Influence of yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl Environ Microb. 1994;60:1762-1767.

27. Busquet M, Calsamigila S, Ferret A, Kamel C. Plant extracts affect in vitro rumen microbial fermentation. J Dairy Sci. 2006;89:761-771.

28. Shao BM, Xu W, Dai H, Tu PF, Li ZJ, Gao XM. A study on the immune receptors for polysaccharides from the roots of *Astragalus membranaceus*, a Chinese medicinal herb. Biochem Bioph Res Co. 2004;320:1103-1111.

29. Li XY. Immunomodulating Chinese herbal medicines. Mem I Oswaldo Cruz. 1991;86:159-164.

30. Wang YP, Li XY, Somh CQ, Hu ZB. Effect of astragaloside IV on T, B lymphocyte
proliferation and peritoneal macrophage function in mice. Acta Pharmacol Sin. 2002;23:263-266.

31. Yuan SL, Piao XS, Li DF, Kim SW, Lee HS Guo, PF. Effects of dietary astragalus polysaccharide on growth performance and immune function in weaned pigs. Anim Sci. 2006;82:501-507.

32. Paantjens AW, Vande GEA, Kwakkel-Van EJM, Hoefnagel T, Van GWG, Farzia F, Van KDA, Van BJM, Otten HG. The induction of IgM and IgG antibodies against hla or mica after lung transplantation. Pulm Med. 2011;2011:1-9.

33. Hou YC, Wu JM, Wang MY, Wu MH, Chen KY, Yeh SL, Lin MT. Modulatory Effects of Astragalus Polysaccharides on T-Cell Polarization in Mice with Polymicrobial Sepsis. Mediat Inflamm. 2015;2015:1-10.

34. Song XM, Hu SH. Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine. 2009;27:4883-4890.

35. Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. Impact of sepsis on CD4 T cell immunity. J Leukocyte Biol. 2014;96:767-777.

36. Zong AZ, Cao HZ, Wang FS. Anticancer polysaccharides from natural resources: a review of recent research. Carbohyd Polym. 2012;90:1395-37.

37. Kurashige S, Akuzawa Y, Endo F. Effects of astragali radix extract on carcinogenesis, cytokine production, and cytotoxicity in mice treated with a carcinogen, N-butyl-N’-butanolnitrosoamine. Cancer Invest. 1999;17:30-35.

38. Chen HL, Li DF, Chang BY, Gong LM, Dai JG, Yi GF. Effects of chinese herbal polysaccharides on the immunity and growth performance of young broilers. Poult Sci. 2003a;82:364-370.

39. Bonafini C, Marzotto M, Bellavite P. In vitro effects of zinc in soluble and homeopathic formulations on macrophages and astrocytes. Homeopathy.
Yoshida Y, Wang MQ, Liu JN, Shan BE, Yamashita U. Immunomodulating activity of Chinese medical herbs and *Oldenlandia diffusa* in particular. Int Immunopharmacol. 1997;19:359-370.

Bedir E, Pugh N, Calis I, Pasco DS, Khan IA. Immunostimulatory effects of cycloartane-type triterpene glycosides from astragalus species. Biol Pharm Bull. 2000;23:834-837.

Wei W, Xiao HT, Bao WR, Ma DL, Leung CH, Han XQ, Ko CH, Iau CBS, Wong CK, Fung KP, Leung P., Bian ZX, Han QB. TLR-4 may mediate signaling pathways of Astragalus polysaccharide RAP induced cytokine expression of RAW264.7 cells. J Ethnopharmacol. 2016;179:243-252.

Deng BX. Effects of Astragalus Ultramicro Powder on Growth Performance and Mechanism Study of Three-yellow Chicken. Fujian Agriculture and Forestry University. (in Chinese); 2014.

Chen J. Livestock physiology (fourth edition). China Agriculture Press; 2003b. p. 369-372. (in Chinese).

Jin L, Yan SM, Shi BL, Bao HY, Gong J, Guo XY, Li JL. Effects of vitamin a on the milk performance, antioxidant functions and immune functions of dairy cows. Anim Feed Sci Tech. 2014;192:15-23.

Ding LJ, Wu QP. Extraction of polysaccharide from *Astragalus membranaceus* and effects of scavenging free radicals. Food and Machinery. 2003;2003:7-9. (in Chinese)

Zhang GG, Yang ZB, Wang Y, Yang WR. Effects of *Astragalus membranaceus* root processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult Sci. 2013;92:178-183.

Wang DQ, Shen WM, Tian YP. The effect of the three components isolated from
astragalus mongholicus bunge on scavenging free radical. Chin Pharmacol Bull. 1994;10:129-131. (in Chinese)

49. Wang YZ, Xu CL, An ZH, Liu JX, Feng J. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim Feed Sci Tech. 2008;140:326-336.

50. Yang HW. Effects of *Astragalus membranaceus* on growth performance, immune performance and antioxidant status in broilers. Shandong Agricultural University; 2010. (in Chinese).