Deep-red circularly polarised luminescent C\textsubscript{70} derivatives

Haruka Kano1, Hironobu Hayashi2, Kyohei Matsuo1, Michiya Fujiki2, Hiroko Yamada1,3 & Naoki Aratani1,2,*

Optically active fullerenes, including C\textsubscript{60} and C\textsubscript{70} derivatives carrying organic substituents, are used in a range of applications because of their unique spectroscopic, catalytic, and chiral recognition properties. However, their inherent photoexcited chirality is yet to be elucidated because of their very poor fluorescence quantum yield (\(\Phi_f\)). We synthesised a new chiral C\textsubscript{70} derivative, X70A, with 20% yield, by reacting bis-borylated xanthene with C\textsubscript{70} in a one-step double addition reaction, followed by a successful optical resolution. The isolation of two separate X70A enantiomers was confirmed by mirror-image circular dichroism spectroscopy in the range of 300–750 nm. In toluene, the enantiomeric pair of X70A clearly revealed mirror-image circularly polarised luminescence (CPL) spectra with a high \(|g_{\text{lum}}|\) value of 7.0 \(\times 10^{-3}\) at 690 nm. The first fullerene-based deep-red CPL of X70A should provide a new guideline for the design of chiral nanocarbon materials.

Achiral buckminsterfullerene (C\textsubscript{60}) and [5,6]-fullerene (C\textsubscript{70}) adopt highly symmetrical spherical and elliptical structures, respectively, allowing them to be utilised as \(n\)-type molecular semiconductors and building blocks of molecular conductors/magnets owing to the uniqueness of their energetically low-lying lowest unoccupied molecular orbitals (LUMOs)1,2. The LUMO characteristics of C\textsubscript{60} and C\textsubscript{70} in solution permit reversible acceptance and release of up to six electrons via an electrochemical redox process3. In addition, K\textsubscript{3}C\textsubscript{60}4 and Rb\textsubscript{3}C\textsubscript{60}5 have been shown to exhibit superconductivity at critical temperatures (\(T_c\)) of ~20 and 30 K, respectively. In addition, a recent study indicated the possibility of \(T_c\) = ~150 K when femtosecond laser pulses excite the phonon modes of K\textsubscript{3}C\textsubscript{60} at 0.3 GPa6. Furthermore, the charge-transfer (CT) complex of C\textsubscript{60} with an electron-donating molecule has been reported to undergo a paramagnetic-ferromagnetic transition at \(T_c\) = ~17 K7. Moreover, photoinduced CT processes between fullerene derivatives and \(\pi\)-conjugated polymers have been found to efficiently generate electron and hole carriers with enhanced mobilities, thereby improving the performances of organic photovoltaic solar cells8,9.

Early photoluminescence (PL) studies have elucidated that fullerenes can emit fluorescence (FL), but in very low quantum yields (\(\Phi_f\))10–13, and that the singlet (\(S_1\))–triplet (\(T_1\)) intersystem crossing (ISC) occurs nearly quantitatively due to large spin–orbit coupling (SOC)14. Thus, a thermally activated delayed FL (TADF) is possible owing to the small \(S_1\)–\(T_1\) energy gap (\(\Delta E_{S-T}\))15–19. However, the lack of a high \(\Phi_f\) at the \(S_1\)–\(S_0\) transition remains an obstacle when fullerene derivatives are applied to several photonic applications.

Molecular chirality and helicity play key roles in biomolecular and human-made materials science, facilitating the introduction of a perturbation to the photoexcited and ground states. In solution, the majority of chiral organic luminophores exhibit circularly polarised luminescence (CPL) in the UV–visible region20–28. For example, a few helicenes, as helical nanocarbon molecules, have been shown to emit CPL in the visible region up to 800 nm21,22. However, nanocarbon materials that exhibit a large dissymmetry factor over long wavelength regions, such as the deep-red region, have rarely been investigated. This is due to the fact that the molecular design that can simultaneously achieve chirality and an effective \(\pi\)-conjugation whose absorption reaches the deep-red region is still unexplored. In this context, we attempt the rational design of the \(\pi\) surfaces of C\textsubscript{70}23–25 to produce chiral deep-red luminophores. As a result, a chiral C\textsubscript{70} derivative, X70A, was synthesised by reacting bis-borylated xanthene with C\textsubscript{70} in a one-step double addition reaction, followed by successful purification by high performance liquid chromatography (HPLC) using a chiral separation column.

Thus, we herein report the first deep-red mirror-image CPL spectra at 690 nm, originating from a pair of chiral fullerene derivatives, which are associated with the corresponding mirror-image circular dichroism (CD) spectra upon the dissolution of left-handed and right-handed X70A in toluene. We believe that the results obtained for this CPL-exhibiting X70A will provide useful guidelines for the future material design of nanocarbon light-emitting materials that emit in the deep-red to near infrared (NIR) region with high \(g_{\text{lum}}\) values26–28.

1Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan. 2Division of R&D, True2Materials PTE. Ltd., 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan. *email: hyamada@ms.naist.jp; aratani@ms.naist.jp
Results

Molecular and reaction design. Due to the fact that C70 possesses five non-equivalent carbon atoms (a–e, see Fig. 1a), the a and b atoms, which have a high angular distortion because of their proximities to the two poles, inherently exhibit a high reactivity toward several nucleophiles. The reactivities of the α-site (a–b double bond) and the β-site (c–c double bond) are higher than those of other sites, facilitating the rational design of double bond-selective reactions. It should be noted here that when two C–C double bonds are inequivalent to a symmetrical plane, C60 and C70 form chiral electronic structures due to symmetry breaking. In 1998, Diederich et al. synthesised racemic mixtures of bis-adducts of C60 and C70 by the Bingel reaction, leading to the successful resolution of enantiomerically pure compounds.

Following a nucleophilic reaction of the substrate on the most reactive carbon a of C70, the second addition reaction can be performed regioselectively on the successive β-site, which produces a chiral bis-adduct. This tether-directed remote functionalisation was first achieved for the selective preparation of a tris-adduct of C60. In this study, we reacted two boronic acids, with a fixed short distance, on C70 with a rhodium catalyst using Itami’s method. The xanthene skeleton was selected as a very short-tethered boronic acid. Bis-borylated xanthene 1 was prepared from 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene in 72% yield.

Isolation and characterisation of the X70 family. Bis-borylated xanthene 1 was reacted with C70 in the presence of a catalytic amount of [Rh(cod)(MeCN)2]BF4 in H2O/o-dichlorobenzene (1/4) at 60 °C for 6 h to yield the desired xanthene adducts (Fig. 1c). The obtained chromatogram (toluene/hexane = 1:1, v/v, COSMOSIL Buckyprep column, Nacalai Tesque Inc.) of the reaction mixture is shown in Supplementary Fig. S1. Mass spectrometric analysis of the products revealed that the first eluent contained bis-xanthene adducts, while the subsequent fractions contained the six mono-xanthene adducts (Supplementary Figs. S2–S7), i.e., X70A, X70B, X70C, X70D, X70E, and X70F. The obtained yield of X70A was moderately high (~ 20%).

The 1H and 13C nuclear magnetic resonance (NMR) spectra of X70A, X70B, and X70F are shown in Fig. 2 and Supplementary Figs. S8–S13. In Fig. 2, the red and blue circles indicate the proton peaks of xanthene and fullerene, respectively. Asymmetric X70A was characterised by four doublet peaks arising from the xanthene component, and two singlet peaks originating from the fullerene framework. The two singlet peaks observed for the fullerene framework indicate that the C70 carbon atoms at the 1,3-positions (carbons a and c) reacted preferentially. Formation of the highly symmetric X70B was confirmed by the observation of two doublet peaks cor-
Figure 2. \(^1\)H NMR spectra of a series of X70n and illustration of the replacement positions on C\(_{70}\). (a) X70A in CDCl\(_3\), (b) X70B in CDCl\(_3\), and (c) X70F in CDCl\(_3\). * indicates an impurity peak. Red circles are assigned to the peaks of xanthene, blue circles are assigned to the peaks of the fullerene protons, and a purple circle is assigned to the peak of the hydroxy group. C\(_a\), C\(_b\), and C\(_c\) represent the xanthene carbon atoms; H\(_a\), H\(_b\), and H\(_c\) represent the hydrogen atoms attached to carbons a, b, and c, respectively. The structures of X70A, X70B, and X70F determined by the single-crystal X-ray analysis are shown in Fig. 3.

Figure 3. Structures of X70A, X70B, and X70F. Molecular structures of (a) X70A, (b) X70B, and (c) X70F and their ORTEP diagrams for single-crystal X-ray structures of (d) X70A, (e) X70B, and (f) X70F with 25% thermal ellipsoids. Solvent molecules and disordered parts are omitted for clarity.
responding to xanthene, and one singlet peak originating from the fullerene framework, indicating that the equivalent carbon \(b \) had reacted.

The structures of \(\text{X70A} \) and \(\text{X70B} \) were determined by single-crystal X-ray structure analysis (Fig. 3a,b,d,e, and Supplementary Tables S1–S2). \(\text{X70A} \) is a product of double addition reactions at the 1,3-positions of the top six-membered ring of \(\text{C}_{70} \), which results in the generation of a chiral structure. Alternatively, \(\text{X70B} \) was formed from the addition reaction at carbon \(b \) at the 1,4-positions of \(\text{C}_{70} \), as supported by the \(^1\text{H} \) NMR results. \(\text{X70A} \) and \(\text{X70B} \) were named using the official fullerene IUPAC nomenclature\(^25\), as indicated in Fig. 4 and Supplementary Fig. S14.

High-resolution matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (HR–MALDI–TOF–MS) of \(\text{X70E} \) and \(\text{X70F} \) detected \(\text{X70A} \) plus 16 and 32 mass units, respectively, suggesting that one and two oxygen atoms are inserted into the mono-xanthene adducts. The \(^1\text{H} \) NMR spectrum of \(\text{X70F} \)

Figure 4. Schlegel diagrams of \(\text{X70A} \), \(\text{X70B} \), and \(\text{X70F} \) with enantiomeric numbering schemes: systematic numbering recommended by IUPAC; arrows indicate the direction of the numbering commencement. The full names for these compounds are listed in the Supplementary Information.

\[^1\text{H} \) NMR spectrum of \(\text{X70F} \) detected \(\text{X70A} \) plus 16 and 32 mass units, respectively, suggesting that one and two oxygen atoms are inserted into the mono-xanthene adducts. The \(^1\text{H} \) NMR spectrum of \(\text{X70F} \)
X70A and X70F, the characteristic peaks of C70 were greatly suppressed and the UV–visible absorption spectra of X70A and X70F were subjected to enantiomeric resolution using chiral separation column chromatography. Although the chromatogram of X70A in hexane/i-PrOH (4:1) did not show well-separated peaks after 24 cycles of the racemate, the first and second halves of the peaks clearly provided mirror-signed CD spectral profiles, indicating that enantiomeric resolution was possible (Supplementary Figs. S23, S24). As a result, X70A was obtained using chiral separation column chromatography. Although the chromatogram of X70A in hexane/i-PrOH (4:1) did not show well-separated peaks after 24 cycles of the racemate, the first and second halves of the peaks clearly provided mirror-signed CD spectral profiles, indicating that enantiomeric resolution was possible (Supplementary Fig. S21). Furthermore, four repetitions of the enantiomeric resolution process using the first half of the peak provided mirror-signed CD spectral profiles, indicating that enantiomeric resolution was possible (Supplementary Fig. S21). Furthermore, four repetitions of the enantiomeric resolution process using the first half of the peak revealed ideal mirror-image CD spectra between 300 and 750 nm (Fig. 5b). The first and second fractions of X70A and X70F were named X70A1 and X70F1, respectively (Fig. 5c).

Although the formation mechanism of X70F remains unclear, we observed the conversion of X70A to X70F in solution under air, and so, X70F is considered to be produced by the air oxidation of X70A following its degassing toluene at 20 °C for comparison. As indicated, and X70F were named X70A1 and X70F1, respectively (Fig. 5c).

The FL spectra of X70A and X70F are depicted in Fig. 6a along with that of C70 excited at 500 nm in degassed toluene at 20 °C for comparison. As indicated, X70A and X70F exhibit similar broad FL bands with vibronic shoulders in the range 600–850 nm. Based on a previous report that the Φ of C70 in toluene at 20 °C

Photophysical properties of the enantiomerically purified X70A and X70F. The UV–visible absorption spectra of X70A, X70F, and pristine C70 are shown in Fig. 5a and Supplementary Table S4. In the UV–visible absorption spectra of X70A and X70F, the characteristic peaks of C70 were greatly suppressed and broadened, exhibiting the typical absorption shape of monosubstituted fullerenes, as reported in the literature.

Subsequently, the racemates of X70A and X70F were subjected to enantiomeric resolution using chiral separation column chromatography. Although the chromatogram of X70A in hexane/i-PrOH (4:1) did not show well-separated peaks after 24 cycles of the racemate, the first and second halves of the peaks clearly provided mirror-signed CD spectral profiles, indicating that enantiomeric resolution was possible (Supplementary Fig. S21). Furthermore, four repetitions of the enantiomeric resolution process using the first half of the peak revealed ideal mirror-image CD spectra between 300 and 750 nm (Fig. 5b). The first and second fractions of X70F were named X70F1 and X70F2, respectively (Fig. 5c).

To determine the absolute structures of chiral fullerenes X70A and X70F, we compared the experimental CD spectra with the density functional theory (DFT)-calculated spectra between 300 and 750 nm using the SpecDis software package (Supplementary Figs. S25–S27; Supplementary Tables S5–S7). Both CD spectra (i.e. for X70A and X70F) were simulated with high similarity factors (0.89 for X70A and 0.81 for X70F, respectively) and, thus, the absolute structure of the second eluent X70A2 was determined with high accuracy as (f,s)-7,25-xantheno-7,8,22,25-tetrahydro(C70-D60)[5,6]fullerene, and the first eluent X70A1 was determined as (f)-7,25-xantheno-7,8,22,25-tetrahydro(C70-D60)[5,6]fullerene (Fig. 4). In addition, the absolute structure of the second eluent X70F2 was determined as (f,s)-7,25-(5'-hydroxyxanthenyl)-7,22-epoxy-7,8,22,25-tetrahydro(C70-D60)[5,6]fullerene, while the first eluent X70F1 was determined to be (f,s)-7,25-(5'-hydroxyxanthenyl)-7,22-epoxy-7,8,22,25-tetrahydro(C70-D60)[5,6]fullerene.

The FL spectra of X70A and X70F are depicted in Fig. 6a along with that of C70 excited at 500 nm in degassed toluene at 20 °C for comparison. As indicated, X70A and X70F exhibit similar broad FL bands with vibronic shoulders in the range 600–850 nm. Based on a previous report that the Φ of C70 in toluene at 20 °C

![Figure 5](https://doi.org/10.1038/s41598-021-91451-5)
was ~ 0.06%\(^{13}\), the relative \(\Phi_f\) values of \(X70A\) and \(X70F\) were determined to be 0.1 and 0.2%, respectively (Fig. 6a). These enhancements are probably due to a lowering symmetry accompanying a weak polarity led by two substituents of the fullerene \(\pi\)-systems; \(C_{70}\) adopts achiral \(D_{5h}\) while \(X70A\) and \(X70F\) are chiral \(C_2\)-symmetry. Although the FL emission at ~ 700 nm cannot be detected with the naked eye, photosensitivity experiments carried out using a crystal silicon-based digital camera with detection up to 950 nm allowed the deep-red emission to be captured (inset of Fig. 6a). The FL lifetimes of \(X70A\) and \(X70F\) in deaerated toluene (3.0 × 10\(^{-5}\) M) were determined to be 0.99 and 1.31 ns, respectively, from which, we can determine the radiative \((k_f)\) and non-radiative \((k_{nr})\) rate constants to be 1.0 × 10\(^6\) s\(^{-1}\) and 1.0 × 10\(^9\) s\(^{-1}\) for \(X70A\) and 1.5 × 10\(^6\) s\(^{-1}\) and 1.5 × 10\(^9\) s\(^{-1}\) for \(X70F\), respectively.

\(X70A1\) and \(X70A2\) clearly display mirror-image CPL spectra (Fig. 6b). To the best of our knowledge, these CPL spectra are the first ones observed for fullerene-based compounds, although optically active \(C_{76}\)\(^4\) and \(C_{60}\) adducts\(^46\) were previously found to exhibit FL. The absolute \(g_{\text{abs}}\) values of \(X70A1\) and \(X70A2\), \([g_{\text{abs}}]\), were moderately high: 7.0 × 10\(^{-3}\) (\(\lambda_{\text{ex}}=410\) nm, \(\lambda_{\text{em}}=690\) nm). It should be noted here that this \(g_{\text{abs}}\) value is among the highest in the deep-red to NIR regions for purely organic compounds that do not contain lanthanide metals\(^{47}\). No obvious CPL signals were observed for \(X70F1\) and \(X70F2\) (Fig. 6c). To account for this observation, we calculated the intersection of the electric and magnetic transition dipole moments of \(X70A\) and \(X70F\). Interestingly, although \(X70F\) possesses two orthogonal electric and magnetic dipole moments, \(X70A\) does not (Supplementary Fig. S28). The orthogonal electric and magnetic dipole moments should result in the cancellation of the \(|g_{\text{abs}}|\) values, thereby accounting for the reduced CPL observed for these compounds\(^48\). Since the \(\pi\)-conjugated systems of both \(X70A\) and \(X70F\) are identical, the reason for the difference in the angles between the two types of moments can be attributed to the subtle electronic and steric effects of the substituents. In recent years, molecular design to control the angle and strength of the two transition moments has been studied intensively\(^{49,50}\).

Discussion

To date, investigations into the photochemistry of fullerenes have mainly focused on subsequent electron transfer after photoexcitation and triplet energy transfer, for example, through the generation of singlet oxygen. In this study, we successfully synthesised and characterised a family of xanthene-attached \(C_{70}\) derivatives, \(X70n\), via a facile one-step reaction from \(C_{70}\). Furthermore, enantiomeric separation from the racemates of \(X70A\) and \(X70F\) was also achieved, and these compounds were found to exhibit significantly strong emission properties than \(C_{70}\). The enantiomeric pair of \(X70A\) clearly revealed ideal mirror-image CPL spectra ranging from the deep-red to NIR regions with a high \([g_{\text{abs}}]\) value of 7 × 10\(^{-3}\) at 690 nm as a purely organic fluorophore. The corresponding \(\Phi_f\) values are small because the singlet excited state of \(C_{70}\) is converted to the triplet excited state with an efficiency close to 100%. Also, the deep-red emission \(\Phi_f\) of the fluorophores is small, owing to the smooth non-radiative pathway; hence, it is reasonable to aim for a molecular design that gives a large dissymmetry factor (g-value) for the deep-red luminescence.

It is well known that the transition electric dipole moment (\(\mu\)) is larger than the transition magnetic dipole moment (\(m\)), and the \(g_{\text{abs}}\) value is inversely proportional to the absolute value of \(\mu\) from the following relationship:

\[
g_{\text{abs}} = \frac{\mu^2}{2\hbar} \frac{1}{k_f}
\]

where \(\hbar\) is the reduced Planck constant and \(k_f\) is the radiative rate constant. Therefore, the large \(g_{\text{abs}}\) values associated with \(X70A\) and \(X70F\) are expected to be responsible for the large CPL signals detected for these compounds.
As can be seen from this equation, the molar absorption coefficient, which is directly proportional to the absolute value of \(\mu\), and the \(g\)-value generally have a trade-off relationship\(^{31}\). Thus, fullerenes with smaller molar absorption coefficients should be used for the \(S_0\rightarrow S_1\) forbidden transitions to achieve chiral luminesophores with high \(g\)-values.

Although the \(g_\text{factor}\) value of X70A is small, this is the first step in developing chiral fullerene luminescence. In this study, by comparing X70A with X70B and X70F, we have found that the improvement of fluorescence quantum yield can be achieved by a lower symmetrization on the fullerene \(\pi\)-system associated with an introduction of polar substituent(s), and that the difference of substituted pattern on the fullerene also changes the strength and angle of electric and magnetic transition dipole moments (Supplementary Fig. S28) and thus greatly affects the dissymmetry factor. We believe that the strategy for developing a molecule that can exhibit a high \(g\)-value in the deep-red region is valuable and can be applied for molecular design in the near future\(^{26–28}\).

Methods

General methods. C\(_{70}\) (purchased from SES Research Inc.) was purified using a Buckyprep column and degassed at 20 °C prior to carrying out any spectroscopic measurements. See the Supplementary Methods for further details.

Syntheses of X70A–X70F. A Schlenk flask was flame-dried under vacuum and filled with argon. Dry o-dichlorobenzene (140 mL) and \(H_2\)O (36 mL) were added to this flask under a stream of argon. After performing three freeze–pump–thaw cycles, [Rh(cod)(MeCN)\(_2\)]BF\(_4\) (45 mg, 0.18 mmol), C\(_{70}\) (500 mg, 0.59 mmol), and 2,7-di-tert-butyl-9,9-dimethylenethane-4,5-diboronic acid (275 mg, 0.71 mmol) were added to the flask under a stream of argon. After stirring the mixture at 60 °C for 6 h, it was cooled to 20 °C. The organic layer was separated, passed through a pad of Celite and silica gel, and washed with toluene. The filtrate was concentrated and purified using a Buckyprep column (toluene/hexane = 1:1 eluent) to afford X70A (140 mg, 20%), X70B (0.8 mg, 0.1%), X70C (12 mg, 1.0%), X70D (13 mg, 1.1%), X70E (0.7 mg, 0.1%), and X70F (3.1 mg, 0.3%) as brown solids. Spectral data for all compounds are provided in the Supplementary Information.

HPLC purification. Preparative HPLC system was constructed using a \(\Phi\times 10 \times 250 \text{ mm Buckyprep column}\) (Nacalai Tesque Inc., Kyoto, Japan), a JASCO UV-2075 Plus detector, and a JASCO PU-2086 Plus pump. Eluent: toluene/hexane = 1:1, \(v/v\), Temperature: 20 °C, flow rate: 3.0 mL/min, injection volume: 3.0 mL, and detection: UV absorption at 326 nm. Chiral resolutions of X70A and X70F were performed at 20 °C using a \(\Phi\times 10 \times 250 \text{ mm Cholesterol column}\) (Nacalai Tesque Inc.) fitted to a recycling preparative HPLC system, which was constructed using a JASCO UV-2075 Plus detector and a JASCO PU-2086 Plus pump. Eluent: hexane/\(i\)-PrOH = 4/1 \((v/v)\), flow rate: 4.5 mL/min, injection volume: 3.0 mL, and detection: UV absorption at 326 nm.

CD measurements. The CD spectra were recorded using a JASCO J-820 spectropolarimeter.

CPL measurements and analysis. Artefact-free PL and CPL spectra were obtained using a JASCO CPL-200 spectrotorpolarmeter, which allowed us to avoid second- and third-order stray light due to diffraction grating. The spectrotorpolarmeter was designed as a prism-based spectrometer with a forward scattering angle of 0°, and it was equipped with focusing and collecting lenses. In addition, a movable cuvette holder fitted on an optical rail enabled adjustment of the best focal point to maximise the PL and CPL signals. Simultaneous CPL and PL measurements allowed the quantitative evaluation of the degree of CPL efficiency relative to the PL, known as Kuhn's dissymmetry factor (\(g_\text{lum}\)), which is defined as \(g_\text{lum} = [\text{ellipticity} (\text{mdeg})/32,980/\ln 10]/\text{PL amplitude} (\text{Volts})\) at the CPL extremum.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information file. For full characterisation of new compounds and experimental details, see Supplementary Methods and Figures in the Supplementary Information file. The X-ray crystallographic coordinates for structures X70A, X70B, and X70F reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2013940–2013942. These data can be obtained free of charge from the CCDC via https://doi.org/10.1038/s41598-021-91451-5. All other data are available from the authors upon request.

Received: 14 April 2021; Accepted: 27 May 2021
Published online: 08 June 2021

References

1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C\(_{70}\) Buckminsterfullerene. Nature 318, 162–163 (1985).
2. Hirsch, A. & Brettreich, M. Fullerenes: Chemistry and Reactions (Wiley, 2005).
3. Echegoyen, L. & Echegoyen, L. E. Electrochemistry of fullerenes and their derivatives. Acc. Chem. Res. 31, 593–601 (1998).
4. Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., Murphy, D. W. & Glarum, S. H. Superconductivity at 18 K in potassium-doped C\(_{70}\). Nature 350, 600–601 (1991).
5. Rosseinsky, M. J. et al. Superconductivity at 28 K in RbC\(_{70}\). Phys. Rev. Lett. 66, 2830–2832 (1991).
Umeyama, T. & Imahori, H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells. J. Am. Chem. Soc. **113**, 8886–8889 (1991).

Kim, D., Lee, M., Suh, Y. D. & Kim, S. Observation of fluorescence emission from solutions of C60 and C70 and measurement of their excited-state lifetimes. J. Am. Chem. Soc. **114**, 4429–4430 (1992).

Catalán, J. & Elguero, J. Fluorescence of C60 and C70. J. Am. Chem. Soc. **115**, 9249–9252 (1993).

Sun, Y.-P. & Bunker, C. E. Structural aspects of fullerene chemistry—a journey through fullerene chirality. Angew. Chem. Int. Ed. **54**, 13793–13803 (2015).

118. Liu, B., Böckmann, M., Jiang, W., Doltunis, N. L. & Wang, Z. Perylene diimide-embedded double [8]helicenes. J. Am. Chem. Soc. **142**, 7092–7099 (2020).

119. Hawkins, J. M., Meyer, A. & Nambu, M. Asymmetric biosymilation of C60: Novel chiral n-systems. J. Am. Chem. Soc. **115**, 9844–9845 (1993).

23. Thilgen, C., Grosse, I. & Diederich, F. Chirality in fullerene chemistry. In Topics in Stereochemistry, Vol 23 (ed. Denmark, S. E.) 1–124 (Wiley, 2003).

24. Thilgen, C. & Diederich, F. Structural aspects of fullerene chemistry—a journey through fullerene chirality. Chem. Rev. **106**, 5049–5135 (2006).

25. Sánchez-Carnerero, E. M. et al. Circularly polarized luminescence by visible-light absorption in a chiral O-BODIPY dye: Unexpected design of CPL organic molecules from achiral chromophores. J. Am. Chem. Soc. **136**, 3346–3349 (2014).

26. Sánchez-Carnerero, E. M. et al. Circularly polarized luminescence from simple organic molecules. Chem. Eur. J. **21**, 13488–13500 (2015).

27. Tanaka, H. et al. Symmetry-based rational design for boosting chiroptical responses. Commun. Chem. **1**, 38 (2018).

28. Birgul, C. Cyclopropanierung von fullereren. Chem. Ber. **126**, 1957 (1993).

29. Heymann, D., Bachilo, S. M. & Grashaon, R. B. Oxidanes, epoxides, and oxidonaanules of C60. J. Am. Chem. Soc. **124**, 6317–6323 (2002).

30. Vidal, S. et al. Photoesoteric site-selective synthesis of [70]mexanofullerenes. Chem. Commun. **52**, 12733–12736 (2016).

31. Uneyama, T. et al. Regiosomer effects of [70]fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem. Sci. **8**, 181–188 (2017).

32. Uneyama, T. & Imahori, H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells. Acc. Chem. Res. **52**, 2046–2055 (2019).

33. Goto, H., Harada, N., Crassous, J. & Diederich, F. Absolute configuration of fullerene derivatives. J. Am. Chem. Soc. **113**, 6317–6323 (2002).

34. Nambo, M., Noyori, R. & Itami, K. Rh-catalyzed arylation and alkenylation of C60 using organoboron compounds. Angew. Chem. Int. Ed. Engl. **38**, 223–226 (2000).

35. Issacs, L., Haldmann, R. F. & Diederich, F. Tether-directed remote functionalization of buckminsterfullerene: Regiospecific isomer effects of [70]fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem. Sci. **8**, 181–188 (2017).

36. Vidal, S. et al. Photoesoteric site-selective synthesis of [70]mexanofullerenes. Chem. Commun. **52**, 12733–12736 (2016).

37. Uneyama, T. et al. Regiosomer effects of [70]fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells. Chem. Sci. **8**, 181–188 (2017).

38. Uneyama, T. & Imahori, H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells. Acc. Chem. Res. **52**, 2046–2055 (2019).

39. Goto, H., Harada, N., Crassous, J. & Diederich, F. Absolute configuration of fullerene derivatives and covalent derivatives from their calcuated circular dichroism spectra. J. Chem. Soc. Perkin Trans. 2, 1719–1723 (1998).

40. Iaike, Y., Tashiro, K. & Aida, T. Synthesis of a dinucleating ligand xanthene-bis(tris(2-pyridyldimethyl)amine) and its manganese complex. Inorg. Chem. Acta **306**, 223–226 (2000).

41. Aikawa, K. & Nagata, T. Synthesis of a dinucleating ligand xanthene-bis(tris(2-pyridyldimethyl)amine) and its manganese complex. Inorg. Chem. Acta **306**, 223–226 (2000).

42. Shoji, Y., Tashiro, K. & Aida, T. One-step enantioselective extraction of fullerene C60 using a cyclic host carrying an asymmetrically distorted, highly n-basic porphyrin module. J. Am. Chem. Soc. **132**, 5928–5929 (2010).

43. Bruhn, T., Schaußlöffel, A., Hemberger, Y. & Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality **25**, 243–249 (2013).

44. Bruhn, T. & Pescitelli, G. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality **28**, 466–474 (2016).

45. Guldi, D. M., Liu, D. & Kamar, P. V. Excited states and reduced and oxidized forms of C60([D1]) and C60([C8]). J. Phys. Chem. A **101**, 6195–6201 (1997).

46. Liu, K.-Q., Wang, J.-J., Yan, X.-X., Niu, C. & Wang, G.-W. Regioselective electrochemistry of tetra- and hexafunctionalized [60]fullerene derivatives with unprecedented addition patterns. J. Phys. Chem. **111**, 384–388 (2007).

47. MacKenzie, L. E., Pålsson, L.-O., Parker, D., Reeye, A. & Pal, R. Rapid time-resolved circular polarization luminescence (CPL) emission spectroscopy. Nat. Commun. **11**, 1676 (2020).

48. Sato, S. et al. Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity. Proc. Natl. Acad. Sci. **114**, 13097–13101 (2017).

49. Kubo, H. et al. Tuning transition electric and magnetic dipole moments: [7]helicenes showing intense circularly polarized luminescence. J. Phys. Chem. Lett. **12**, 686–695 (2021).

50. Mori, T. Chirotopical properties of symmetric double, triple, and multiple helicenes. Chem. Rev. **121**, 2373–2412 (2021).
51. Dekkers, H. P. M. & Closs, L. E. The optical activity of low-symmetry ketones in absorption and emission. J. Am. Chem. Soc. 98, 2210–2219 (1976).

Acknowledgements
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant nos. JP20H02816 (H.H.), JP19H04584, JP19K22112, JP20H02711 (N.A.), JP20H00379, JP20H05833 (H.Y.), and CREST JST (no. JPMJCR15F1, H.Y.). We thank Yoshiko Nishikawa and Yasuo Okajima (NAIST) for the MS and FL lifetime measurements, respectively. We would like to thank Editage (www.editage.com) for English language editing.

Author contributions
H.K. performed the synthetic experiments and collected the central data. M.F. conducted the CPL measurements. N.A. determined the crystal structures. H.K. and K.M. performed the detailed DFT and TD-DFT calculations. N.A. and H.Y. designed and directed the project. H.H., K.M., H.Y., and N.A. conducted the methodology and validation. N.A. wrote the manuscript, and all authors discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-91451-5.

Correspondence and requests for materials should be addressed to H.Y. or N.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021