Determination of Phytochemical Compounds, and Tyrosinase Inhibitory and Antimicrobial Activities of Bioactive Compounds from *Streblus ilicifolius* (S Vidal) Corner

Sukanya Dej-adisai*, Kedsaraporn Parndaeng and Chatchai Wattanapiromsakul
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

*For correspondence: Email: sukanya.d@psu.ac.th; Tel. & Fax: +66-74-428220

Received: 15 March 2015 Revised accepted: 7 January 2016

Abstract

Purpose: To determine the phytochemical content, and tyrosinase inhibitory and antimicrobial activities of the wood from *Streblus ilicifolius* (S. Vidal) Corner

Methods: The dried wood of *S. ilicifolius* (8.70 kg) was extracted by maceration to give petroleum ether, ethyl acetate, ethanol and water extracts, respectively. Dopachrome method was used to determine antityrosinase activity. Agar disc diffusion and modified broth microdilution methods were used to determine antimicrobial activity. Chromatographic techniques were used for phytochemical investigation. The structures elucidation of isolated compounds were identified by physical properties and spectroscopic data including UV, IR, NMR and MS data and confirmed by comparison with previously reports.

Results: The ethanol extract exhibited tyrosinase inhibition and antimicrobial activity against the Gram-positive bacteria, *Staphylococcus epidermidis* and *S. aureus*. Phytochemical investigation showed five compounds, namely, (E)-2,4-dihydroxy-3-(3,7-dimethyl-2,6-octadienyl) benzaldehyde (1), p-hydroxybenzoic acid methyl ester (2), umbelliferone (3), moracin M (4), trans-resveratrol (5). Compound 4 exhibited tyrosinase inhibition with half maximal inhibitory concentration (IC$_{50}$) of 67.69 µg/ml, while compound 1 displayed strong activity against *S. epidermidis*, *S. aureus* and methicillin-resistant *S. aureus* (MRSA) with minimum inhibitory concentration (MIC) of 8, 4 and 8 µg/ml, respectively and minimum bactericidal concentration (MBC) of 32, 16 and 64 µg/ml, respectively.

Conclusion: This is the first report of the biological activities and phytochemical composition of *S. ilicifolius* and the results indicate the high potentials of the plant for commercial applications such as in facial whitening and anti-acne cream.

Keywords: *Streblus ilicifolius*, Moraceae, Tyrosinase inhibition, Antimicrobial, Anti-acne, Methicillin-resistant *Staphylococcus aureus*

INTRODUCTION

Melanin biosynthesis or melanogenesis initiated from L-tyrosine hydroxylated to L-dihydroxyphenylalanine (L-Dopa), then oxidation of L-Dopa to its corresponding o-dopaquinone, catalyzed by tyrosinase enzyme. o-Dopaquinone can be divided into two different types of reaction
to produce eumelanin and pheomelanin [1,2]. The major function of melanin is to protect against ultraviolet (UV) radiation. However, excessive level of melanin or hyperpigmentation due to a darker or uneven of skin color, age spots, melasma and sites of actinic damage [1].

Tyrosinase inhibitors are becoming increasingly important contain in the treatment products of some dermatological disorders, associate with melanin hyperpigmentation and contain in cosmetic for skin whitening products [1]. Many problems from current whitening cosmetics such as ochronosis, allergic and irritant contact dermatitis, melanocyte toxicity and carcinogenicity [3] cause to find out the new natural whitening agents.

Pathogenic bacteria and dermatophyte fungus are a major cause of human skin disease. Moreover, some microorganisms can be stimulating the melanogenesis [4-7]. Antibiotics are the choice of treatment. However, the use of antibiotics may lead to drug resistance of many bacterial strains. Development of new antimicrobial compounds for resistant organisms is becoming critically important [8].

It is prompt search to find alternative agents from plants that have already been used topically to treat hyperpigmentation in skin of color [1,3,9]. The discovery of tyrosinase inhibition from medicinal plants is alternatives may provide leads for anti-pigmentation compounds and development to whitening and anti-browning agents.

In Thailand, there are many species of the plants in the genus Streblus, but only S. asper has been reported in traditional uses, and also their pharmacological activities and chemical constituents. However, in this study we have the focus on biological activities of S. ilicifolius wood extract. The extract showed the potential of antityrosinase and antimicrobial activities. The aim of this study was to evaluate some biological activities and chemical constitution of S. ilicifolius.

EXPERIMENTAL

Plant material

140 samples from 79 Thai medicinal plant extracts of Rajjaprabha Dam, Surat Thani Province were screened for antityrosinase activity.

EXPERIMENTAL

General experimental procedures

The structure of compounds was characterized by NMR spectroscopy and mass spectrometry.
Determination of antityrosinase activity

Dopachrome method was used to determine antityrosinase activity, using L-Dopa as the substrate [10]. Dopachrome is one of the intermediate substrate in melanogenesis, this method used the L-Dopa as a substrate. The red color of dopachrome from the oxidation of L-Dopa can be detected by visible light at 492 nm. Antityrosinase activity was performed in 96 well microplate. The samples were dissolved in DMSO to concentration of 200 µg/ml. The first 20 µL of the samples solution were mixed with phosphate buffer (pH 6.8) and 20 µL of mushroom tyrosinase solution (203.3 U/ml) and incubated at 25 °C for 10 min. Then 20 µL of L-Dopa (0.85 mM) was added. The visible absorption was measured at 492 nm. The solution was incubated at 25 °C for 20 min. After incubation the amount of dopachrome in the reaction was measured at 492 nm again. Tyrosinase inhibition (T) was calculated as in Equation 1.

\[
T(\%) = \frac{[(A - B) - (C - D)]}{(A - B)} \times 100 \quad (1)
\]

where A is the difference of optical density before and after incubation of control, B is the difference of optical density before and after incubation of blank control, C is the difference of optical density before and after incubation of test sample, and D is the difference of optical density before and after incubation of blank sample.

The concentration of the pure compound was measured which caused a 50 % inhibition of tyrosinase activity (IC50). Kojic acid and water extract of Artocarpus lakoocha wood were used as positive controls while DMSO was used as negative control.

Determination of antimicrobial activity

Microorganisms; Staphylococcus aureus (ATTC 25923), Staphylococcus epidermidis (TISTR 517), Propionibacterium acnes (DMST 14916) and Methicillin-resistant Staphylococcus aureus (MRSA 1350II 06) were alternate for gram positive bacteria. Escherichia coli ATCC35218 and Pseudomonas aeruginosa ATCC10145 were alternate for gram negative bacteria. Candida albicans (TISTR 5779) was alternate for yeast and Microsporum gypseum, Trichophyton rubrum and Trichophyton mentagrophytes were alternate for fungi. The preliminary screening of antimicrobial activity was used agar disc diffusion method [11]. The pure compounds were determined for minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in 96 well microplate by modified broth microdilution method [12,13]. Oxacillin, norfloxacin, amphotericin B and ketoconazole were used as positive controls for gram positive bacteria (except MRSA using vancomycin), gram negative bacteria, yeast and fungi, respectively.

RESULTS

Antityrosinase activity

From 140 samples, S. ilicifolius ethanol wood extract showed the highest activity of antityrosinase with 69.05 ± 5.00 %.

Antimicrobial activity

The ethanol extract of the wood from S. ilicifolius showed the potential antibacterial effects against S. epidermidis and S. aureus with inhibition zone 9.25 ± 0.56 and 8.47 ± 0.31 mm, respectively (Table 1).
Extraction of *S. ilicifolius* wood

The dry weight, % yield (base on dried wood) and % tyrosinase inhibition of these crude extracts from the wood of *S. ilicifolius* are shown in Table 2. The ethanol extract was the most interesting fraction because of the potential effects of antityrosinase and antimicrobial activities. So it was selected for isolation of the chemical constituents.

Structure of isolated compounds

Five pure compounds were isolated from ethanol extract of *S. ilicifolius* (Figure 1). The structures of the isolated compounds, identified by physical properties and spectroscopic data, including UV, IR, NMR and MS data and confirmed by comparison with previously reports are as (E)-2,4-dihydroxy-3-(3,7-dimethyl-2,6-octadienyl) benzaldehyde (1); (E)-2,4-Dihydroxy-3-(3,7-dimethyl-2,6-octadienyl) benzaldehyde (Compound 1); C₁₇H₂₂O₃

Compound 1 was obtained as colorless needles, soluble in chloroform. The melting point showed at 72.33 °C (Differential scanning calorimeter). The EI mass spectrum of compound 1 exhibited a molecular ion at m/z 274.1566. The UV spectrum in chloroform demonstrated absorption maximum in chloroform at λ_{max} (absorbance) 228 (0.180), 242 (0.235), 286(0.593) and 396(0.007) nm. The IR spectrum exhibited maximum absorption bands at 3401, 2923, 2851 and 1622 cm⁻¹. The ¹H and ¹³C NMR spectra of compound 1 are showed as:

- H NMR (500 MHz, CDCl₃): 1.57 (3H, s, H-9'), 1.65 (3H, s, H-10'), 1.80 (3H, s, H-4'), 2.06 (4H, m, H-5', H-6'), 3.43 (2H, d, J=7.3 Hz, H-1'), 5.02 (1H, m, H-7'), 5.24 (1H, t, J=7.3, 1.1 Hz, H-2'), 6.28 (1H, s, 4-OH), 6.46 (1H, d, J=8.4 Hz, H-5), 7.28 (1H, d, J=8.4 Hz, H-6), 9.66 (1H, s, 1-COH), 11.75 (1H, s, 2-OH);

Microorganism	Diameter^a of inhibition zone (mm)	Positive control			
	Pet. ether	EtOAc	ETOH	Water	
Gram-positive bacteria					
S. epidermidis	-	9.25±0.56	-	-	28.01±0.55^b
S. aureus	-	8.47±0.31	-	-	18.73±0.40^b
P. acnes	-	-	-	-	37.83±2.84^b
Gram-negative bacteria					
E. coli	-	-	-	-	28.42±3.42^c
P. aeruginosa	-	-	-	-	29.75±0.21^c
Yeast					
C. albicans	-	-	-	-	15.77±1.13^a
Fungi					
M. gypseum	-	-	-	-	20.97±1.25^b
T. rubrum	-	-	-	-	38.50±2.12^b
T. mentagrophyts	-	-	-	-	31.01±1.43^b

^a = no inhibition zone, at concentration of extracts = 2 mg/disc; ^b = includes diameter of disc (6 mm); ^c = oxacillin, ^d = norfloxacin, ^e = amphotericin B, ^f = ketoconazole; Pet. ether = petroleum ether extract, EtOAc = ethyl acetate extract, ETOH = ethanol extract, Water = water extract

Table 2: Yield and tyrosinase inhibitory activity of *S. ilicifolius* crude extract (at final concentration 20 μg/ml)

Crude extract	Dry weight (g)	Yield (%)	Tyrosinase inhibition (%)
Petroleum ether	9.75	0.11	2.45±5.90
Ethyl acetate	23.21	0.27	24.38±1.04
Ethanol	109.78	1.26	75.52±5.42
H₂O	103.96	1.19	3.17±5.24
Kojic acid^f	-	-	80.86±2.62
Artocarpus lakoocha^f	-	-	87.62±1.52

^f = positive control
(E)-2,4-Dihydroxy-3-(3,7-dimethyl-2-furan-2-yl) benzaldehyde (1)

\[
\begin{align*}
\text{p-Hydroxybenzoic acid methyl ester (2)}
\end{align*}
\]

\[
\begin{align*}
\text{umbelliferone (3)}
\end{align*}
\]

\[
\begin{align*}
\text{trans-resveratrol (5)}
\end{align*}
\]

Figure 1: Pure compounds isolated from ethanol extract of *Streblus ilicifolius* wood

\[^{13}C\text{ NMR (125 MHz, CDCl}_3\text{): }16.23\text{ (C-16',} \]
\[17.69\text{ (C-9'),} 21.33\text{ (C-1'),} 25.65\text{ (C-10'),} 26.26\text{ (C-6'),} 39.67\text{ (C-7'),} 109.04\text{ (C-5),} 113.50\text{ (C-3),} 115.02\text{ (C-1),} 120.55\text{ (C-2'),} 123.60\text{ (C-7),} 132.16\text{ (C-8'),} 133.50\text{ (C-6)}, 140.06\text{ (C-3'}, 161.65\text{ (C-4),} 162.70\text{ (C-2'),} 194.63\text{ (C-1').} \]

\[\begin{align*}
The compound 2 was obtained as a colorless needles, soluble in methanol and dimethyl sulfoxide. The melting point showed at 118 °C. The % abundance GC-MS of compound 2 exhibited a molecular ion at 152 m/z, consistent with a molecular formula of
\[C_{8}H_{10}O_{3}.\text{ The UV spectrum in methanol demonstrated absorption maximum in methanol at } \lambda_{\text{max}}\text{ (absorbance) }255\text{ (0.837) and }314\text{ (0.121) nm. The IR spectrum exhibited maximum absorption bands at }3355, 1681, 1609, 1585\text{ and }1513\text{ cm}^{-1}.\text{ The }^1H\text{ and }^{13}C\text{ NMR spectra of compound 2 are showed as:}
\end{align*}\]

\[\begin{align*}
\text{H-NMR (300 MHz, DMSO-d}_6\text{): }3.78\text{ (3H, s, 7-OCH}_3\text{),} 6.84\text{ (2H, d, }J=8.70\text{ Hz, H-2, H-6),} 7.80\text{ (2H, d, }J=8.68\text{ Hz H-3, H-5),} 10.34\text{ (1H, brs, 4-}
\end{align*}\]

\[\begin{align*}
\text{O-H);}
\end{align*}\]

\[\begin{align*}
\text{C-NMR (75 MHz, DMSO-d}_6\text{): }52.06\text{ (7-OCH}_3\text{),} 115.78\text{ (C-2, C-6),} 120.68\text{ (C-1),} 131.86\text{ (C-3, C-5),} 162.39\text{ (C-4),} 166.50\text{ (C-7).}
\end{align*}\]

\[\begin{align*}
\text{Umbelliferone (Compound 3); }C_{8}H_{12}O_{3}
\end{align*}\]

The compound 3 was obtained as a yellowish crystalline, soluble in methanol and dimethyl sulfoxide. The melting point showed at 230 °C. It gave a molecular ion at 162 m/z in the % abundance GC-MS, suggesting a tentative molecular formula of
\[C_{9}H_{12}O_{3}.\text{ The UV spectrum in methanol displayed absorptions maximum in methanol at } \lambda_{\text{max}}\text{, }216\text{, }258\text{ and }332\text{ nm. The }^1H\text{ and }^{13}C\text{ NMR spectra of compound 3 are showed as:}
\end{align*}\]

\[\begin{align*}
\text{H-NMR (500 MHz, DMSO-d}_6\text{): }6.20\text{ (1H, t, }J=2.05\text{ Hz, H-4'),} 6.67\text{ (2H, d, }J=2.05\text{ Hz, H-2', H-6'),} 6.72\text{ (1H, dd, }J=8.46\text{, }2.06\text{ Hz, H-5),} 6.91\text{ (1H, ddd, }J=2.06\text{, }0.91\text{ Hz, H-7),} 7.05\text{ (1H, d, }J=0.91\text{ Hz, H-3'),} 7.37\text{ 1H, d, }J=8.25\text{ Hz, H-4'),} 9.39\text{ (2H, brs, 3'-OH, 5'-OH),} 9.95\text{ (1H, brs, 6-}
\end{align*}\]

\[\begin{align*}
\text{O-H);}
\end{align*}\]

\[\begin{align*}
\text{C-NMR (125 MHz, DMSO-d}_6\text{): }97.62\text{ (C-7),} 101.69\text{ (C-3),} 102.47\text{ (C-2', C-6'),} 102.81\text{ (C-4'),} 112.61\text{ (C-5),} 120.94\text{ (C-3a),} 121.26\text{ (C-4),}
\end{align*}\]

\[\begin{align*}
\text{Trop J Pharm Res, March 2016; 15(3): 501}
\end{align*}\]
Table 3: Tyrosinase inhibitory activity (IC\textsubscript{50}) of pure compounds isolated from *S. ilicifolius*

Compound	IC\textsubscript{50} (µg/ml)
(E)-2,4-Dihydroxy-3-(3,7-dimethyl-2,6-octadienyl) benzaldehyde (1)	> 200
p-Hydroxybenzoic acid methyl ester (2)	> 200
Umbelliferone (3)	NT
Moracin M (4)	67.69
Trans-resveratrol (5)	NT
Kojic acida	38.67
Artocarpus lakoochawp	8.73

w = water wood extract; p = positive control; NT = not tested

Table 4: MIC and MBC of isolated compounds against *S. epidermidis*, *S. aureus* and MRSA

Compound	*S. epidermidis*	*S. aureus*	MRSA	
	MIC (µg/ml)	MBC (µg/ml)	MIC (µg/ml)	MBC (µg/ml)
1	8	>256	4	>256
2	256	NT	NT	NT
3	64	>256	NT	>256
4	67	NT	NT	NT
5	Oxacininp	0.5	0.25	NT
	Vancomycinp	-	-	0.5

NT = not tested; p = positive control; Oxacinin for *S. epidermidis* and *S. aureus*, Vancomycin for MRSA

131.82 (C-1'), 154.13 (C-2'), 155.42 (C-7a), 155.88 (C-6), 158.94 (C-3', C-5').

trans-Resveratrol (Compound 5); C\textsubscript{14}H\textsubscript{12}O\textsubscript{3}

The compound 5 was obtained as a brownish crystalline, soluble in methanol and dimethyl sulfoxide. The melting point showed at 265 °C. It gave a molecular ion at 228 m/z in the % abundance GC-MS, suggesting a tentative molecular formula of C\textsubscript{14}H\textsubscript{12}O\textsubscript{3}. The UV spectrum in methanol, showed absorptions at \(\lambda_{\text{max}} \) (absorbance) 207 (0.647), 315 (0.531) and 328 (0.450) nm. The IR spectrum exhibited maximum absorption bands at 3234, 1618, 1578, 1508 and 1485 cm-1. The \(^1\)H and \(^{13}\)C NMR spectra of compound 5 are showed as:

\(^1\)H-NMR(300 MHz, DMSO-\textsubscript{d}\textsubscript{6}): 6.10 (1H, brs, \(J=2.10 \) Hz, H-4), 6.37 (2H, d, \(J=2.13 \) Hz, H-2, H-6), 6.74 (2H, d, \(J=8.58 \) Hz, H-3', H-5'), 6.80 (1H, d, \(J=16.22 \) Hz, H-\(\alpha' \)), 6.93 (1H, d, \(J=16.35 \) Hz, H-\(\alpha \)), 7.38 (2H, d, \(J=8.55 \) Hz, H-2', H-6'), 9.20 (2H, brs, 3-OH, 5-OH), 9.56 (1H, brs, 4'-OH);

\(^{13}\)C-NMR (75 MHz, DMSO-\textsubscript{d}\textsubscript{6}): 102.19 (C-4), 104.72 (C-2, C-6), 115.94 (C-3', C-5'), 126.07 (C-\(\alpha \)), 128.29 (C-2', C-6', C-\(\alpha' \)), 128.49 (C-1'), 139.69 (C-1), 157.65 (C-4'), 158.93 (C-3, C-5).

GC-MS (EI): \textit{m/z} (%) = 228.1[M+] (100), 211.1 (10), 181.1 (17), 157.1 (12), 115.0 (9), 44.0(12).

Antityrosinase activity of isolated compounds

Determination of tyrosinase inhibitory activity by dopachrome method of isolated compounds was showed in Table 3.

Antimicrobial activity of isolated compounds

From the screening of antimicrobial activity, *S. ilicifolius* ethanol extract displayed an inhibition zone against *S. aureus* and *S. epidermidis*. MIC and MBC of isolated compounds were determined with *S. epidermidis*, *S. aureus* and methicillin-resistant *S. aureus* (MRSA). The MIC and MBC values of isolated compounds are showed in Table 4.

DISCUSSION

Five pure compounds were isolated from *S. ilicifolius* for the first time although all of them are known compounds. Compound 1 and 2 were inactive with antityrosinase activity. While, compound 4 was found to exhibit a high antityrosinase activity. The hydroxyl group at the 6 position of moracin M has been reported that it might mediate the inhibitory activity [19]. Moracin M is 2-arylbenzofuran, the hydroxyl group at the 6 position might mediate the inhibitory activity, compared with two 2-arylbenzofurans; moracin N and moracin O.
Moracin N and moracin O belong to isoprenyl-substituted 2-arylbenzofuran which showed the activity against tyrosinase with IC\textsubscript{50} 30.52 µM and 93.58 µM, respectively. In moracin O, the isoprenyl group forms a five-membered ring with the hydroxyl group at the 6 position, whereas in moracin N, the isoprenyl group remains intact which might contribute to its higher tyrosinase inhibitory activity than moracin O [19].

The activity of tyrosinase inhibitors are classified into four types, including competitive inhibitors, uncompetitive inhibitors, mixed type (competitive/uncompetitive) inhibitors, and non-competitive inhibitors [26]. Resveratrol is a polyphenolic phytoalexin that belongs to the stilbenes, which have demonstrated potent tyrosinase inhibitory activity [27]. This substance acts as a “suicide substrate” for tyrosinase [28]. While, umbelliferone is a coumarin analog with hydroxyl group at C7 could be competitive potent tyrosinase inhibitory activity like the other coumarin, esculetin [29]. Moreover moracin M, the arylbenzofuran showed competitive potent tyrosinase inhibitory activity [30].

(Figure 2). (E)-2,4-Dihydroxy-3-(3,7-dimethyl-2,6-octadienyl) benzaldehyde (1) showed strong inhibitory effect against \textit{S. epidermidis}, \textit{S. aureus} and MRSA. Friedman \textit{et al} [25]. reported that 2, 3-dihydroxybenzaldehyde was highly active against four bacteria (\textit{Campylobacter jejuni}, \textit{Escherichia coli}, \textit{Listeria monocytogenes} and \textit{Salmonella enterica}) because hydroxyl group at the position 2 and 3 enhance the antimicrobial activities of benzaldehyde. Then, hydroxyl group at the position 2 and 3 of 2, 3- dihydroxy-4-geranyl benzaldehyde might mediate the inhibitory activity.

Moracin M (4) is the arylbenzofuran, showed weak inhibitory effect against, \textit{S. epidermidis}, \textit{S. aureus} and MRSA. Mazimba \textit{et al} [30] reported moracin M against \textit{S. aureus} (MIC 62.5 µg/mL), \textit{B. subtilis} (MIC 31.25 µg/mL), \textit{M. flavus} (MIC 125 µg/mL), \textit{S. faecalis} (MIC 62.5 µg/mL), \textit{S. abony} (MIC 62.5 µg/mL) and \textit{P. aeruginosa} (MIC 125 µg/mL). Moreover, Kuetu \textit{et al} [32] reported that all tested microbial species (Gram-positive, Gram-negative bacteria and fungi) were inhibited by non-prenylated arylbenzofurans; moracin M and moracin Q (Figure 4) weaker than prenylated arylbenzofurans; moracin T and moracin C (Figure 4) because prenyl increases the antimicrobial activity of arylbenzofurans.

\textit{p}-hydroxybenzoic acid methyl ester (2) showed very low MIC against \textit{S. epidermidis}. It is one of a homologous series of parabens used to exert antimicrobial affect especially, useful against molds and yeasts. It againsts \textit{A. oryzae} (MIC 600 µg/mL), \textit{T. lignorum} (MIC 250 µg/mL), \textit{S. lutea} (MIC 4000 µg/mL), \textit{E. cloacae} (MIC 1000 µg/mL), \textit{P. vulgaris} (MIC 2000 µg/mL) (Kibbe, 2000), \textit{E. coli} (wild type) (MIC 1400 µg/mL), \textit{E. coli} (envelope mutant) (MIC 1000 µg/mL), \textit{P. aeruginosa} (wild-type) (MIC 1800 µg/mL) and \textit{P. aeruginosa} (envelope mutant) (MIC 1000 µg/mL) [33].

(Figure 2): Structure of moracin M, moracin N and moracin O

(Figure 3): Structure of umbelliferone, esculetin, daphnetin and daphnin
Some of the isolated compounds; umbelliferone (3) and trans-resveratrol (5) did not test because they have trace amount. However, they have been reported of anti-microbial activity. Resveratrol showed activity against Gram-positive bacteria higher than Gram-negative bacteria. It had the highest activity against *Bacillus cereus* followed by *Staphylococcus aureus*, MRSA and *Enterococcus faecalis* [34]. Moreover, Kukric and Topalic-Trivunovic [35] reported that trans-resveratrol showed antimicrobial activity against test organisms (*E. coli, B. subtilis, Staphylococcus* sp. and *S. lutea*) higher than cis-resveratrol. In addition, trans-resveratrol displayed potent antifungal activity against human pathogenic fungi (*C. albicans, S. cerevisiae* and *T. beigelii* with MIC 10, 10-20 and 10 µg/mL), respectively [36].

Umbelliferone (Figure 5), which has a free hydroxyl at the position 7, did not possess good antibacterial activity while, daphnetin which has free hydroxyl at the position 7 and 8, is the most active compound out of all the coumarins tested. Moreover, daphnin and rhodonetin which has free hydroxyl at the position 8, showed better activity than rhodonetin glucoside which the glycoside at the position 8 and rhodonin which methoxyl at the position 8. From the data concluded that coumarins with free hydroxyl at the position 8 possess better antibacterial activity [37].

However, these results will be useful for further study for pharmaceutical cosmetics or application for skin treatment of hyperpigmentation and infectious diseases such as the formulations of cream, serum, mask and so on.

CONCLUSION

Five pure compounds were isolated from the wood of *S. ilicifolius*. This is the first report on the biological activities and phytochemical profile of *S. ilicifolius*. Also, (E)-2,4-Dihydroxy-3-(3,7-dimethyl-2,6-octadienyl) benzaldehyde from natural products, which has been investigated here for the first time, shows good antimicrobial activity. Moracin M has antityrosinase activity. However, further studies ascertain the actual therapeutic potentials of the compounds in the management of infectious diseases and hyperpigmentation.

ACKNOWLEDGEMENT

This research was supported by Plant Genetic Conservation Project under The Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn (RSPG project) and Prince of Songkla University, Thailand.
REFERENCES

1. Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 2005; 62: 1707-1723.

2. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84: 1155-1228.

3. Konda S, Geria AN, Halder RM. New horizons in treating disorders of hyperpigmentation in skin of color. Semin Cutan Med Surg 2012; 31: 133-139.

4. Athikomkulchai S, Watthanachayingcharoen R, Tunvichien S, Vayumhasuwan P, Karnsomkiet P, Sae-Jong P, Ruangrungsi N. The development of anti-acne products from Eucalyptus globulus and Psidium guajava oil. J Health Res 2008; 22: 109-113.

5. Kumar GS, Jayaveera KN, Kumar CKA, Sanjay UP, Swamy BMV, DKVM. Antimicrobial effects of Indian medicinal plants against acne inducing bacteria. Trop J Pharmp Res 2007; 6: 712-733.

6. Machado AP, Vivi VK, Tavares JR, Filho FJG, Fischman O. Antibiosis and dark-pigments secretion by the phytopathogenic and environmental fungal species after interaction in vitro with a Bacillus subtilis isolate. Brazilian Arch Biol Technol 2010; 53: 997-1004.

7. Petit L, Piérad GE. Skin-lightening products revisited. Int J Cosmetic Sci 2003; 25: 169-181.

8. Devienne KF, Raddi G, Coelho RG, Vilegas W. Structure-antimicrobial activity of some natural isocoumarins and their analogues. Phytoemed 2005; 12: 378-383.

9. Kakita LS, Lowe NJ. Azelaic acid and glycolic acid combination therapy for facial hyperpigmentation in darker-skinned patients: a clinical comparison with hydroquinone. Clin Ther 1998; 20: 960-970.

10. Srilutarak B, De-Eknamkul W, Likhitwitayawud K. Tyrosinase inhibitors from Artocarpus lakoocha. Thai J Pharm Sci 1998; 22: 149-155.

11. Lorien V. Antibiotics in laboratory medicine, 5th ed., USA: Lippincott Williams & Wilkins; 2005.

12. Clinical and Laboratory Standards Institute (CLSI), Methods for dilution antimicrobial susceptibility tests for bacterial that grow aerobically; approved standards, 7th ed. USA: Clinical and Laboratory Standards Institute, Wayne, Pennsylvania; 2006.

13. Kummee S, Intaraksa N. Antimicrobial activity of Desmos chinensis leaf and Maclura cochinchinensis wood extract. Songklanakarin J Sci Technol 2008; 30: 635-639.

14. Saimoto H, Kita K, Yabu Y, Yamamoto M. Novel dihydroxybenzene derivatives and antiprotozoal agent comprising same as active ingredient. Arigen Pharmaceuticals, Inc. WO2012060387 A1. 2012. (Patent).

15. Chan LW, Kurup TR, Muthaiah A, Thenmozhiyal JC. Interaction of p-hydroxybenzoic esters with beta-cyclodextrin. Int J Pharm 2000; 195: 71-79.

16. Yan J, Tong S, Sheng L, Lou J, Liq J. Preparative isolation and purification of two coumarins from Edgeworthia chrysantha Lindl. by high speed countercurrent chromatography. Chromatogr R T 2006; 29: 1307-1315.

17. Zhang M, Chen M, Zhang HQ, Sun S, Xia B, Wu FH. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia 2009; 80: 475-477.

18. Commodari F, Khat A, Ibrahim S, Brizius AR, Kalkstein N. Comparison of the phytoestrogen trans-resveratrol (3′,5′-dihydroxystilbene) structures from x-ray diffraction and solution NMR. Magn Reson Chem 2005; 43: 567-572.

19. Zheng ZP, Cheng KW, Zhu Q, Wang XC, Lin ZX, Wang M. Tyrosinase inhibitory constituents from the roots of Morus nigra: a structure-activity relationship study. J Agr Food Chem 2010; 58: 5368-5373.

20. Srilutarak B. Chemical constituents of Artocarpus lakoocha and A. gomezianus, Master’s thesis, Department of Pharmacognosy, Graduate School, Chulalongkorn University, Bangkok., 1998.

21. Soilai F, Zucca P, Sanjust E, Steri D, Recsigno A. Umbelliferone and esculetin: inhibitors or substrates for polyphenol oxidases? Biol Pharm Bull 2008; 31: 2187-2193.

22. Masamoto Y, Murata Y, Baba K, Shimoishi Y, Tada M, Takahata K. Inhibitory effects of esculetin on melanin biosynthesis. Biol Pharm Bull 2004; 27: 422-425.

23. Fais A, Corda M, Era B, Fadda MB, Matos MJ, Quezada QE, et al. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules 2009; 14: 2514-2520.

24. Matos MJ, Santana L, Uriarte E, Delogu G, Corda M, Fadda MB, Era B, Fais A. New halogenated phenylcoumarins as tyrosinase inhibitors. Bioorg Med Chem Lett 2011; 21: 3342-3345.

25. Friedman M, Henika PR, Mandrell RE. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Protect 2003; 66: 1811-1821.

26. Chang T-S. An updated review of tyrosinase inhibitors. Int J Molecul Sci 2009; 10 (6): 2440-2475.

27. Franco DCZ, Carvalho GSGd, Rocha PR, Teixeira RdS, Silva ADd, Raposo NRB. Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules 2012; 17: 11816-11825.

28. Bernard P, Berthon YJ. Resveratrol: an original mechanism on tyrosinase inhibition. International J Cosmet Sci 2000; 22: 219-226.

29. Masamoto Y, Ando H, Murata Y, Shimoishi Y, Tada M, Takahata K. Tyrosinase inhibitory polyphenols from roots of Morus alba. J Agric Food Chem 2009; 57: 1195-1203.
31. Mazimba O, Majinda RRT, Motlhanka D. Antioxidant and antibacterial constituents from Morus nigra. Afric J Pharm Pharmacol 2011; 5(6): 751-754.
32. Kuete V, Fozing DC, Kapche WF, Mbaveng AT, Kuiate JR, Ngadjui BT, Abegaz BM. Antimicrobial activity of the methanolic extract and compounds from Morus mesozygia stem bark. J Ethnopharmacol 2009; 124(3): 551-555.
33. El-Falaha BM, Russell AD, Furr JR. Sensitivities of wild-type and envelope-defective strains of Escherichia coli and Pseudomonas aeruginosa to antibacterial agents. Microbios 1983; 38(152): 99-105.
34. Paulo LS, Ferreira S, Gallardo E, Queiroz JOAN, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J Microbiol Biotechnol 2010; 26: 1533-1538.
35. Kukric ZZ, Topalic-Trivunovic LN. Antibacterial activity of cis- and trans-resveratrol isolated from Polygonum cuspidatum rhizome. BIBLID 2006, 37:131-136.
36. Jung HJ, Hwang IA, Sung WS, Kang H, Kang BS, Seu YB, Lee DG. Fungicidal effect of resveratrol on human infectious fungi. Arch Pharmacal Res 2005; 28(5): 557-560.
37. Rehman SU, Khan R, Bhat KA, Raja AF, Shawl AS, Alam MS. Isolation, characterisation and antibacterial activity studies of coumarins from Rhododendron lepidotum Wall. ex G. Don, Ericaceae. Braz J Pharmacogn 2010; 20(6):886-890.