Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides

Zebo Zheng, Jianing Chen, Yu Wang, Ximiao Wang, Xiaobo Chen, Pengyi Liu, Jianbin Xu, Weiguang Xie,* Huanjun Chen,* Shaozhi Deng,* and Ningsheng Xu*

Phonon polaritons (PhPs), quasiparticles induced by coupling of electromagnetic fields with optical phonons in polar crystals, can strongly confine the free-space light field deeply below the incidence wavelength. In comparison with the well-documented metallic plasmon polaritons, the PhPs can achieve improved light confinements, significantly reduced optical losses, and much higher quality factors. These characteristics enable a wealth of potential applications, such as sensing, thermal management, and ultramicroscopy, especially in the mid-infrared range, with a damping rate as low as 0.08. The electromagnetic confinements can reach $\approx \alpha_0/120$, which can be tailored by altering the thicknesses of the α-MoO$_3$ 2D flakes. Furthermore, spatial control over the PhPs is achieved with a metal-ion-intercalation strategy. The results demonstrate α-MoO$_3$ as a new platform for studying hyperbolic PhPs with tunability, which enable switchable mid-infrared nanophotonic devices.

2D van der Waals (vdW) layered polar crystals sustaining phonon polaritons (PhPs) have opened up new avenues for fundamental research and optoelectronic applications in the mid-infrared to terahertz ranges. To date, 2D vdW crystals with PhPs are only experimentally demonstrated in hexagonal boron nitride (hBN) slabs. For optoelectronic and active photonic applications, semiconductors with tunable charges, moderate bandgaps are preferred. Here, PhPs are demonstrated with low loss and ultrahigh electromagnetic field confinements in semiconducting vdW α-MoO$_3$. The α-MoO$_3$ supports strong hyperbolic PhPs in the mid-infrared range, with a damping rate as low as 0.08. The electromagnetic confinements can reach $\approx \alpha_0/120$, which can be tailored by altering the thicknesses of the α-MoO$_3$ 2D flakes. Furthermore, spatial control over the PhPs is achieved with a metal-ion-intercalation strategy. The results demonstrate α-MoO$_3$ as a new platform for studying hyperbolic PhPs with tunability, which enable switchable mid-infrared nanophotonic devices.

Phonons polaritons (PhPs), quasiparticles induced by coupling of electromagnetic fields with optical phonons in polar crystals, can strongly confine the free-space light field deeply below the incidence wavelength. In comparison with the well-documented metallic plasmon polaritons, the PhPs can achieve improved light confinements, significantly reduced optical losses, and much higher quality factors. These characteristics enable a wealth of potential applications, such as sensing, thermal management, and ultramicroscopy, especially in the mid-infrared and terahertz spectral ranges where most of the plasmon polaritons cannot access. For those reasons, the PhPs have been thoroughly explored in a variety of bulk polar dielectric crystals, such as SiC, SiO$_2$, GaAs, InP, CaF$_2$, and hexagonal boron nitride (hBN).

In recent years, 2D vdW atomic crystals have attracted much attention due to the exotic optical and optoelectronic responses originated from their atomically thin thicknesses. In particular, the weak vdW forces between adjacent layers and strong covalent bonding within a specific layer can give rise to highly anisotropic lattice vibrations along the in- and out-of-plane directions of the crystals. As a result, the optical responses along these two directions are distinctly different, making the 2D vdW materials natural hyperbolic materials. The propagating waves within such crystals can have much high momentum which leads to PhPs with extremely high electromagnetic confinements. For that reason, the 2D vdW polar crystals have been considered as promising platforms for studying nanoscale light–matter interactions involving the PhPs. To date, 2D vdW crystals sustaining PhPs have only been demonstrated in thin hBN slabs. In comparison with the insulating and wide-band-gap hBN, 2D materials with semiconducting characteristics are more preferred for practical optoelectronic device applications in terms of their rich electronic structures, excellent electrical transportation characteristics, tunable optoelectronic properties upon doping, strong light absorption...
and emission as well as high optical-to-electrical conversion efficacy. These properties can provide new opportunities for the PhPs in active applications of nanophotonics and optoelectronic devices. However, to the best of our knowledge, experimental demonstration of the PhPs in semiconducting 2D vdW crystals remains unexplored.

As a typical vdW semiconductor, α-MoO₃ has drawn considerable attention in recent years due to its rich electronic and crystalline structures that are significant in various optoelectronic applications. The large separation between adjacent layers and large octahedron unit can greatly facilitate the injection/extraction of extrinsic atoms (Figure 1a, left), allowing the electronic band structure and phonon modes of the α-MoO₃ to be tailored in a wide range via ion intercalation. This tunability makes it very advantageous in tunable optoelectronic devices. Most importantly, the α-MoO₃ can exhibit negative permittivity in specific spectral ranges where different types of polaritons can exist. For example, MoO₃ flake with appropriate stoichiometry can sustain plasmon polaritons. On the other hand, the rich phonon modes in the α-MoO₃ can result in various “Reststrahlen” bands, spectral ranges bracketed by the longitudinal optical (LO) and transverse optical (TO) phonon frequencies. Within these bands the α-MoO₃ are foreseen to support PhPs at their surfaces. Moreover, in comparison with the most studied hBN and SiC, the significant difference in the masses of the Mo and oxygen atoms can lead to a large frequency gap between the optical and acoustic phonons, which can significantly reduce the PhPs damping rates. Whereas the plasmon polaritons have been demonstrated in sub-stoichiometric 2D α-MoO₃ nanoflakes, the PhPs within this type of vdW crystals remain completely unexplored.

Here, with state-of-the-art real-space nanoimaging techniques, we for the first time unveil the hyperbolic PhPs with low loss and ultrahigh electromagnetic field confinements in the 2D vdW α-MoO₃. The PhPs are strongly dependent on the thicknesses of the α-MoO₃. Additionally, we demonstrated the spatial control of the α-MoO₃ PhPs through artificial boundaries, which were established by metal ion intercalations.

The α-MoO₃ samples used in our study are 2D flakes with orthorhombic crystalline structure (Figure 1b, inset, Section S1, Figures S1 and S2, Supporting Information). The longitudinal direction of a specific flake is along the [001] direction (Section S1 and Figure S3, Supporting Information). They are typical semiconductors with energy bandgap of ≈2.93 eV, which is extracted from the Kubelka–Munk transformed diffuse reflectance spectrum (Figure 1b). The semiconducting nature of the α-MoO₃ samples can also be manifested from the X-ray photoelectron spectroscopy (XPS) characterizations, which provide the information about their valance band electronic structures. The pristine α-MoO₃ samples show an electronic valance

Figure 1. Crystalline structure and dispersion of the α-MoO₃ 2D flake. a) Scheme of the crystalline structure of the α-MoO₃. The three different oxygen sites are indicated by O₁–O₃, respectively. b) Kubelka–Munk transformed diffuse reflectance spectrum of the as-grown α-MoO₃ sample. The extracted energy bandgaps is ≈2.93 eV. Inset: Optical microscopy image of typical α-MoO₃ 2D flakes. c) Real parts of the in- and out-of-plane permittivities of the α-MoO₃. Types I and II Reststrahlen bands are shaded in purple and green, respectively. d) Schematic showing the isofrequency surfaces of a Type I (left) and II (right) hyperbolic material.
band at −3.1 eV, which confirms that they are n-type semiconductors (Figure S4, Supporting Information). In addition, the pristine α-MoO₃ 2D flake exhibits a Schottky-type electrical transportation behavior (Figure S5, Supporting Information), which is due to the energy barrier formed at the interface between the semiconductor MoO₃ and metal electrodes. The current is relatively small due to the moderate bandgap of the 2D flake. The lattice of the α-MoO₃ is composed of octahedron unit cells with nonequivalent Mo−O bonds along the three principal crystalline axes (Figure 1a, right). Such a low-symmetry crystalline structure gives rise to asymmetric phonon modes that are infrared-active along different crystalline directions. In particular, in the spectral regime between 810 and 1010 cm⁻¹ there are four infrared-active phonon modes. Two of them correspond to in-plane vibrations perpendicular to the b-axis of the α-MoO₃ (B₃u modes), which are respectively the TO and LO phonon modes with resonance frequencies of 962 cm⁻¹ (ω₅) and 974 cm⁻¹ (ω₆). The other two are the B₂u modes with resonances at 962 cm⁻¹ (ω₆) and 1010 cm⁻¹ (ω₇), which are associated with out-of-plane vibrations parallel to the b-axis. These phonon modes give rise to two Reststrahlen bands where the real parts of the in-plane (Reε⊥) and out-of-plane (Reε∥) permittivities exhibit opposite signs (Figure 1c and Section S2, Supporting Information), indicating that the layered α-MoO₃ is a type of material with intrinsic hyperbolic isofrequency surface (Figure 1d). Specifically, the upper band (962–1010 cm⁻¹) corresponds to Type I hyperbolic response with Reε∥ < 0 and Reε⊥ > 0, while the lower one (818–974 cm⁻¹) of Type II hyperbolic response exhibits Reε∥ > 0 and Reε⊥ < 0. In such a material with its surface normal to the b-axis, the PhPs waves can be restricted to a specific direction of angle θ = arctan(√ε∥/ε⊥) with respect to the b-axis, resulting in very-large-momentum extraordinary rays guided within the flake.

To unveil the hyperbolic PhPs of the α-MoO₃, we utilized the scattering-type scanning near-field optical microscope (s-SNOM) to excite and image the sample in the mid-infrared regime. Briefly, a sharp metal-coated probe (curvature radius r ≈ 20 nm) was employed as a nanoantenna to focus the free-space infrared light into the gap between the tip and sample. The strongly confined electromagnetic field thereafter provided sufficient momentum to launch the propagating PhPs wave with wavelength of λₚ₂ₕ along the surface of the α-MoO₃. The PhPs can subsequently form standing waves due to the interference with the reflected waves by the sample edges (Figure 2a), with the period of the standing-wave corresponding to λₚ₂ₕ/2. The near-field distributions associated with the PhPs can be readily imaged by scanning the probe across the edges of a 2D α-MoO₃ flake.

Figure 2b shows the s-SNOM image of a typical 2D α-MoO₃ flake (thickness t = 102 nm) upon the illumination with frequency ω₀ of 986 cm⁻¹ (wavelength λ₀ = 10.14 µm). The normalized near-field amplitudes S(ω₀)/S₀ are monitored to accurately study the pristine near-field properties of the α-MoO₃ flake corresponded to (b). The scale bars are 500 nm. e) Dispersion of the PhPs in the α-MoO₃ flake. Symbols indicate experimental data extracted from the e2 profiles under varied excitation frequencies. The false color image delegates the imaginary part of the complex reflectivity, Imr₂(q, ω₀), of the air/α-MoO₃/SiO₂ multilayer structure obtained from theoretical calculations.
of the PhPs, with S_{MO} and S_{SO} the scattering amplitudes of the α-MoO$_3$ and SiO$_2$ substrate, respectively. Evident periodic fringes parallel to the sample edges can be observed from the image. In addition, a variety of bright and dark spots can be clearly found at the intersects of the fringes, which are originated from the multibeam interferences of the PhPs reflected from the edges.$^{[25,41]}$

To analyze the fringes in detail, line profiles of the near-field amplitudes were extracted along the directions perpendicular to the two identical flake edges (dashed green lines e1 and e2 in Figure 2b). As shown in Figure 2c, the profiles are strongest close to the edges, followed by a series of annihilated peaks away from the edges. The degradation of the fringes suggests dissipation of the PhPs along with their propagation. The plasmon wavelength can therefore be determined as $\lambda_{\text{PhPs}} = 470 \text{ nm}$, which is $\approx 1/21$ of the incidence wavelength ($\lambda_0 = 10.14 \text{ m}$). In addition, the propagation lengths of the PhPs can also be estimated according to the near-field profiles as $\approx 7\lambda_{\text{PhPs}}$, which is twice that of the plasmon polariton reported in graphene at similar operation frequencies.$^{[19,40]}$ This result suggests that the α-MoO$_3$ flake can sustain PhPs with very low dissipation.

An interesting observation is that “even–odd” oscillations appear in all of the extracted profiles from the s-SNOM image (Figure 2b,c). Instead of a monotonic decay behavior, the intensities of the annihilated peaks exhibit consecutive oscillations, with the odd peaks in the fringe profiles larger than the adjacent even ones. To separate the harmonic components in these profiles, we performed 2D Fourier transformation analysis on the near-field optical image. The result indicated that the total near-field image is constructed by two harmonic components entangled with each other, which are respectively the fundamental oscillation with momentum q_1 and high-order one with momentum $q_2 = 2q_1$ (Figure S6, Supporting Information). This interesting phenomenon has also been observed previously in the near-field images of plasmon polariton in graphene sandwiched between the hBN flakes, where the even–odd peak oscillations could be ascribed to interference between the polariton and evanescent waves reflected at the sample edge.$^{[42]}$

Another observation one should pay attention to is that the fringe spacings along the e1 and e2 directions are the same, while those along the e3 direction (perpendicular to the short edge) exhibit smaller values (Figure 2b,c). We owe such a discrepancy to two origins. The first one is the geometry of the PhPs wave using a phenomenological cavity model (Figure 2c and Section S3, Supporting Information).$^{[41,42]}$ which further corroborates the propagating nature of the PhPs in the 2D α-MoO$_3$ flake. More insights of the PhPs can be obtained from its dispersion, which can be readily derived and visualized via the 2D false color plot of the imaginary part of the complex reflectivity $\text{Im} \epsilon(q, \omega)$ (Section S5 and Figure S7, Supporting Information).$^{[25]}$ As shown in Figure 2e, series of bands with strong reflection appear in the spectral range of $810–1010 \text{ cm}^{-1}$, indicating that multimode PhPs waves can be guided by the α-MoO$_3$ flake. The dispersion of the PhPs in the upper (Type I) Reststrahlen band is flatter than that in the lower one (Type II), suggesting a wider tuning range for the PhPs wavelengths of the former upon varying the incidence frequencies. More interestingly, the slope ($\partial \omega / \partial k$) in the Type I Reststrahlen band is negative, while that in the Type II band is positive. Similar Type I hyperbolic PhPs bands with negative slopes have previously been reported in the hBN slabs.$^{[24,44,45]}$ With time-domain interferometry and near-field data processing, it was demonstrated that the negative dispersion could give rise to hyperbolic PhPs propagating with negative phase velocity, rather than the negative group velocity.$^{[45]}$ We therefore reason that the negative slope of the dispersion in the Type I band observed in our current study suggests a negative phase velocity to occur. To experimentally verify this issue one needs to perform time-resolved nanoimaging on the PhPs to measure the sign of the phase velocity. However, at present such a technique is beyond the capability of our s-SNOM microscope. The calculated dispersions can be further verified by the s-SNOM imagings upon illuminations with different frequencies (Figure S8, Supporting Information). The extracted dispersions from the experimental measurements along the e2 line are overlaid on the false color map, which agree very well with the lowest-order branch of both of the upper and lower bands.
The strong electromagnetic confinement, $\beta = \lambda_0/\lambda_{\text{PhPs}}$, of the PhPs in the α-MoO$_3$ can be clearly revealed from the dispersion of the Type II band, with a value as high as 87 at 953 cm$^{-1}$.

Due to the long-range vdW interactions between different layers, the electronic and photonic properties of the vdW materials are strongly dependent on their thicknesses. This merit allows the PhPs to be tailored by controlling the sample thicknesses. The s-SNOM images and corresponding line profiles of the α-MoO$_3$ flakes with different thicknesses are displayed in Figure 3a,b, which show similar spatial evolutions of the near-field intensities under illumination of 982 cm$^{-1}$. In addition, the extracted PhPs wavelengths monotonically decrease upon reducing the flake thicknesses (Figure 3c). These results clearly demonstrate that the PhPs waves can persist in the α-MoO$_3$ down to tens of nanometers thick, whereby the electromagnetic confinements can be tailored by precisely controlling the thicknesses of the 2D α-MoO$_3$ flake. One should note that for the flake thinner than 10 nm, the PhPs interference patterns are very weak in comparison with those of the thicker ones. This can be ascribed to two aspects. On the one hand, the phonons from the SiO$_2$ substrate can scatter and smear out the PhPs waves for α-MoO$_3$ flakes with small thicknesses. On the other hand, as the thickness of the α-MoO$_3$ flakes is reduced, the lattice vibrations become weak and therefore the PhPs intensity is lower.

The PhPs can be tailored not only by controlling the thicknesses of the α-MoO$_3$ via manipulating the growth conditions but also by stacking individual thin flakes into multilayer structures. For example, in a stacked α-MoO$_3$ double-layer with a 28 nm thick flake on top of a 32 nm thick one, the PhPs is distinctly modified from the two individual ones (Figure 3a, lower panel). Such a property can open new avenues for studying and tuning of the PhPs by stacking vdW crystals with different PhPs characteristics.

The thickness dependence of the PhPs can be manifested from their dispersion relationships. Instead of calculating the 2D plots of the $\text{Im}r_\parallel(q, \omega)$, we referred to a simplified yet analytical dispersion model, whereby more physical insights of the PhPs can be revealed. Specifically, under the approximation of $\lambda_{\text{PhPs}} < \lambda_0$, the dispersion can be expressed as $4, 25$,

$$\tilde{q}(\omega) + iq'(\omega) = \frac{2}{d \tan \theta} (l \pi + \Delta \varphi)$$

where l, d, and θ respectively delegate the PhPs mode order ($l = 0$ in this study), flake thickness, and the angle between the PhPs propagation direction and the b-axis. The factor $\Delta \varphi = \arctan(\varepsilon_0/\varepsilon_\perp \tan \theta) + \arctan(\varepsilon_{\text{sub}}/\varepsilon_\perp \tan \theta)$ is the phase shift associated with total internal reflection of the PhPs waves at the two interfaces of the α-MoO$_3$ flake. The parameters ε_0, ε_{sub}, and ε_\perp are the permittivities of air, substrate, and the α-MoO$_3$ (for direction perpendicular to the b-axis), respectively. As shown in Figure 3d, the α-MoO$_3$ with different thicknesses all exhibit similar dispersions with Types I and II Reststrahlen bands, which are similar to the $l = 0$ mode shown in Figure 2e. Additionally, for a fixed illumination frequency, the Equation (1) clearly indicates that the PhPs wavelength (proportional to $1/q$) scales linearly with the flake thickness, which agrees well with the experimental measurements (Figure 3c). Such a behavior corroborates that strong electromagnetic confinements can be
achieved with thin α-MoO₃ flakes. For example, the β can be up to ~120 for a 10 nm thick α-MoO₃, which has been verified experimentally with an excitation of 996 cm⁻¹ (Figure S9, Supporting Information). This value is comparable and even better than the thin hBN slabs can offer, where a maximum confinement of ~50 is expected for monolayer sample.[25] From the analytical dispersion model one can also evaluate the polariton damping rates, which is defined as γ = |q'/q|. The calculation shows that considerable low damping rate (γ = 0.08) can be achieved for Type I PhPs, while for the Type II ones, their losses are relatively larger (Figure 3e).

Active control over the polaritons is very important for their applications in switchable nanophotonic devices. Usually this is challenging for the PhPs because the lattice vibrations of the polar crystals are inert to external stimulus. A very recent study has shown that reversible tailoring of the PhPs in the SiO₂ can be realized by switching the dielectric environment via tuning the structure of a phase-change material coated onto the SiO₂ surface.[46] To preserve the pristine characteristics of the PhPs, tuning strategies without introducing extraneous coating are preferred.

For the vdW α-MoO₃, the relatively large interlayer separation makes it ideal host for extrinsic metal ions. The lattice structure of the MoO₃ can be distorted through metal ion intercalation. Furthermore, more charge carriers will also be injected into the crystalline matrix. Both of these two mechanisms can modify the phonon structures of the MoO₃ and thereafter provide opportunity for tuning of its PhPs. To this end, the α-MoO₃ flake was subjected to Sn ion intercalation via chemical approaches. Upon the intercalation, two regions of different colors can be observed in a typical α-MoO₃ flake. They are separated by a clear boundary of ~47° with respect to the [001] direction (Figure S10, inset, Supporting Information). These two regions exhibit distinctly different Raman spectra, indicating that the lattice vibrations of the intercalated region were altered (Figure S10, Supporting Information). In contrast, the intercalated ions will not deteriorate the surface morphology of the sample (Figure 4a), which guarantee the subsequent optical characterizations. The semiconducting nature of the flake will not be deteriorated. Upon the Sn-intercalation, a gap state centering at ~1 eV appears (Figure S4, Supporting Information), which can contribute more electrons to the flake. In addition, due to these doped electrons, the conductance of the sample is strongly improved (Figure S5, Supporting Information).

To demonstrate the switching of the PhPs by the metal intercalation, we imaged and compared the near-field optical distributions of the pristine and intercalated regions of the MoO₃ flake. As shown in Figure 4b, the near-field intensity becomes much weaker upon intercalation. The bright fringes can be hardly found in the intercalated region, while in the pristine region, strong bright fringes can be observed not only at the sample edges but also at the boundary between the pristine and colored regions. Because there are no distinct morphology changes during the intercalation, we can ascribe these boundary fringes to the interferences of the tip-launched polariton waves with those reflected by the boundary. The near-field characteristics can be more clearly seen by extracting the profiles from the SNOM images (Figure 4c). The PhPs waves propagating along the [100] direction (profile associated with e1) in the pristine region show long propagation length, which is consistent with the results shown in Figure 2b,c. However, the PhPs waves in the intercalated region exhibit much shorter propagation lengths (profiles along e2). Only one interference maximum can be found, indicating that the damping of the PhPs is higher than that in the pristine region. On the other hand, the PhPs dispersions are also modified. The wavelengths of the PhPs in the intercalated α-MoO₃ are a little shorter (209 nm) than those of the pristine one (212 nm). Moreover,

Figure 4. Spatial control on the PhPs upon metal ion intercalations. a) Atomic force microscopy (AFM) image of a typical Sn-intercalated α-MoO₃ flake. The thickness of the flake is 56 nm. b) s-SNOM image of the Sn-intercalated α-MoO₃ flake. c) Near-field profiles extracted along the e1 and e2 dashed lines shown in (b). d) Interference pattern of the PhPs in an MoO₃ triangular cavity formed by the metal ion intercalation. Left: AFM image showing no morphological features. Right: s-SNOM image with strong interference patterns inside the triangular cavity. The incidence frequency was 982 cm⁻¹.
In contrast, the other hand, it is possible that the strong doping of the MoO$_3$ indicating a higher damping rate of the PhPs there. On the two aspects. First, the Sn ions can lead to expansion of the Mo-O1 bond and distortion of the MoO$_3$ lattice, which can therefore modify the phonon frequencies associated with the PhPs. As a result, the dispersion of the PhPs will be modulated accordingly. The discontinuity of the crystalline structure across the two regions can lead to reflection of the PhPs waves and therefore produce the fringes observed near the boundary (Figure 4b). Second, the Sn ions can also act as scattering centers for the PhPs waves, giving rise to stronger damping rates in the intercalated region. To quantitatively compare the damping rates of the pristine and intercalated MoO$_3$, we employed the ratio R between the first maximum of their interference fringes (S_m) and near-field amplitudes (S_n) in the inner part of the flake.$^{[47]}$ For the PhPs in the pristine region, $R = 1.19$. In contrast, the R decreases to \approx1.04 in the intercalated region, indicating a higher damping rate of the PhPs there. On the other hand, it is possible that the strong doping of the MoO$_3$ can lead to plasmon resonances, which could damp the PhPs by plasmon–phonon coupling. According to previous studies, the doped MoO$_3$ with a carrier density as high as 10^{22} cm$^{-3}$ can generate plasmons in the visible and infrared regions.$^{[35,37]}$ Although it is difficult to precisely determine the carrier density in the intercalated region, we can still get some preliminary insights on the plasmons in it. We measured the near-field distributions of the pristine and intercalated regions using 1550 nm excitation (Figure S12, Supporting Information). Upon the Sn-intercalation, the near-field intensity of the MoO$_3$ was significantly enhanced. We owe such an enhancement to the excitation of the plasmons, which can induce stronger polarization and therefore the light scattering intensity. This result suggests that the operation wavelengths of the plasmons in the intercalated MoO$_3$ should locate in the near-infrared region. In contrast, the excitation wavelengths of the PhPs are in the mid-infrared regions, which are far away from that of the plasmons. In view of this, the coupling between the plasmons and PhPs should be very small due to such a discrepancy in their respective operation wavelength. Therefore we believe that the damping of the PhPs in the intercalated region should be governed by scattering from the Sn ions but not the plasmon–phonon coupling.

The spatial control over the PhPs can be further manifested by investigating the near-field distribution of a “cavity structure,” where a specific pristine region was enclosed by the metal-intercalated ones. The PhPs waves will experience multiple reflections at the cavity boundaries. The interferences between the reflected waves and tip-launched one can produce standing-wave patterns with bright and dark spots, which correspond to the constructive and destructive superposition of the polariton waves.$^{[41,48]}$ The β and γ of the PhPs in the α-MoO$_3$ are comparable to the state-of-the-art 2D vdW materials with polaritonic properties.$^{[6,7]}$ In particular, the γ is among the lowest values in polar materials with hyperbolicity that is phonon in origin.$^{[7]}$ These characteristics can significantly benefit the light–matter interactions at the nanometer scale. The large β is associated with the in- and out-of-plane permittivities of the α-MoO$_3$, which lead to a small propagating angle θ for the PhPs waves within the flake and therefore a short PhPs wavelength. The small γ can be ascribed to two mechanisms. First, the pristine MoO$_3$ samples used in our study were single crystalline of very high quality.$^{[49]}$ There are few defects or impurities that can scatter the PhPs waves. Second, the mass differences between the Mo and oxygen atoms are relatively large, which can induce a large frequency gap between the optical an acoustic phonons. Such a gap will greatly suppress the intrinsic phonon–phonon scattering in the MoO$_3$, which therefore give rise to the low damping rate of the PhPs waves.

To conclude, we have successfully revealed the mid-infrared PhPs in the semiconducting vdW α-MoO$_3$ flakes with the help of nanoimaging technique. The strong longitudinal and transverse phonon resonances in the α-MoO$_3$ can give rise to two Reststrahlen bands in the frequency range of 818–1010 cm$^{-1}$, where low-loss hyperbolic PhPs with strong electromagnetic confinements can be sustained. The electromagnetic confinements can reach as high as $\Delta_\rho/120$, which is strongly dependent on the thicknesses of the α-MoO$_3$ flakes. We further show that by taking advantage of the crystalline structure of the semiconducting α-MoO$_3$, the PhPs characteristics can be switched off by the metal-ion-intercalation approach. We believe that these results have provided a new natural platform for studying the hyperbolic PhPs, which constitutes potential candidate for future optoelectronic devices operating in the mid-infrared regime.

Experimental Section

Growth of the α-MoO$_3$ 2D flakes: The α-MoO$_3$ 2D flakes were synthesized by thermal physical deposition method.$^{[49]}$ Briefly, an alumina crucible with MoO$_3$ powder (0.1 g) as source was placed at the center of a quartz tube. The SiO$_2$ substrate was cleaned and placed at the low temperature region of 580 °C. The separation between the source and substrate was 13.0–14.5 cm. The source was heated up to 780 °C in 70 min and then kept at that temperature for another 120 min. During the thermal treatment the MoO$_3$ powder was sublimated and recrystallized onto the SiO$_2$ substrate. Subsequently the quartz tube was cooled down naturally to room temperature, whereby numerous α-MoO$_3$ 2D flakes with different thicknesses were found on the SiO$_2$ substrate.

Intercalation of Sn ions into the α-MoO$_3$ 2D flakes: Metal ion intercalation was performed under a microscope integrated with a hotplate.$^{[48]}$ Specifically, the SiO$_2$ substrate with the 2D α-MoO$_3$ flakes was put into a quartz groove that was kept onto the hotplate. Afterward, SnCl$_2$ aqueous solution (10×10^{-3} M) was mixed with tartaric acid (100×10^{-3} M) and then dropped onto the MoO$_3$ sample. A cover glass was placed onto the groove to form a liquid layer of \approx1 mm thick. The hotplate was subsequently heated up to 65 °C to allow the diffusion of the Sn ions into the MoO$_3$. The intercalation process was monitored in situ from the optical microscope. Once the metal intercalation was initiated, vivid color changes from both sides of a specific MoO$_3$ flake along the [001] direction can be readily observed from the microscope. The sample was washed with deionized water and dried in air to stop the intercalation.

Characterizations: The Raman spectra of the α-MoO$_3$ flakes were collected using a Renshaw inVia Reflex system with a microscope.
The excitation laser (532 nm) was focused onto the samples with a diameter of ~1 μm through a 50 × objective (numerical aperture 0.8). The back-scattered Raman signals were collected by the same objective and transferred to a spectrometer with grating of 1800 lines mm⁻¹.

The diffuse reflectance spectra were measured using a Shimadzu UV 2550 UV/visible/near-infrared spectrophotometer equipped with an integrating sphere. The as-grown MoO₃ flakes were dissolved in isopropanol and then subjected to vacuum filtration, whereby a compact solid film was formed on the filter membrane. The solid thin film was then peeled off and cut into 1 × 1 cm² for the reflectance measurements. A BaSiO₄ flake was used as reference. The XPS characterizations on the pristine and metal ion-intercalated α-MoO₃ flakes were performed on an ESCALAB 250Xi (Thermo-VG) X-ray photoelectron spectrometer.

The s-SNOM nanoimagings were conducted using a scattering-type near-field optical microscope (NeaSNOM, Neaspec GmbH). To image the PhDs in real-space, a mid-infrared laser (Access Laser) with tunable wavelengths from 9.20 to 10.99 μm (910–1087 cm⁻¹) was focused onto the PhPs in real-space, a mid-infrared laser (Access Laser) with tunable wavelengths from 9.20 to 10.99 μm (910–1087 cm⁻¹) was focused onto the samples with a 50 × objective (numerical aperture 0.8). The back-scattered light from the tip was demodulated around 280 kHz. The back-scattered Raman signals were collected by the same objective and transferred to a spectrometer with grating of 1800 lines mm⁻¹.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 15290271, 11474364, 11474350, and 11574119), the National Key Basic Research Program of China (Grant No. 2013CB933601), the National Key Research and Development Program of China (Grant No. 2016YFA0203500), the Guangdong Natural Science Fund for Distinguished Young Scholars (Grant No. 2014A030306017), Pearl River S&T Nova Program of Guangzhou (Grant No. 20161000084), and the Guangdong Special Support Program (Grant No. 2014280004).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
hyperbolicity, mid-infrared, phonon polaritons, transition metal oxides, vdW materials

Received: September 15, 2017
Revised: December 8, 2017
Published online: February 22, 2018

[1] K. Huang, Nature 1951, 167, 79.
[2] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford 1954.
[3] L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, UK 2012.
[4] J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owurtsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, S. A. Maier, Nano Lett. 2013, 13, 3690.
[5] T. Wang, P. Li, B. Hauer, D. N. Chigrin, T. Taubner, Nano Lett. 2013, 13, 5051.
[6] D. N. Basov, M. M. Fogler, F. J. García de Abajo, Science 2016, 354, aag1992.
[7] T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, F. Koppens, Nat. Mater. 2016, 16, 182.
[8] B. Neuner III, D. Korobkin, C. Fietz, D. Carole, G. Ferro, G. Shvets, J. Phys. Chem. C 2010, 114, 7489.
[9] J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, Nature 2002, 416, 61.
[10] S. Shen, A. Narayanaswamy, G. Chen, Nano Lett. 2009, 9, 2909.
[11] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Science 2006, 313, 1595.
[12] P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussiahn, T. Taubner, Nat. Commun. 2015, 6, 5707.
[13] A. Boltasseva, H. A. Atwater, Science 2011, 331, 290.
[14] R. Hillenbrand, T. Taubner, F. Keilmann, Nature 2002, 418, 159.
[15] D. Z. A. Chen, G. Chen, Appl. Phys. Lett. 2007, 91, 121906.
[16] T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, F. Keilmann, Phys. Rev. Lett. 2003, 90, 055508.
[17] F. Ganikhanov, F. Valle, Phys. Rev. B 1997, 55, 15614.
[18] P. Halevi, Surf. Sci. 1978, 76, 64.
[19] R. Geick, C. H. Perry, G. Rupprecht, Phys. Rev. 1966, 146, 543.
[20] K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
[21] G. Fiori, F. Bonuccorso, G. Ianniacccone, T. Palacios, D. Neumaier, A. Seabough, S. K. Banerjee, L. Colombo, Nat. Nanotechnol. 2014, 9, 768.
[22] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nat. Photonics 2014, 8, 899.
[23] E. E. Narimanov, A. V. Kildishev, Nat. Photonics 2015, 9, 214.
[24] J. D. Caldwell, A. V. Kretinin, Y. G. Chen, V. Giannini, M. M. Fogle, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, Nat. Commun. 2014, 5, 5221.
[25] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov, Science 2014, 343, 1125.
[26] M. B. Rahmani, S. H. Keshmiri, J. Yu, A. Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. X. Li, W. Wlodarski, K. Kalantar-Zadeh, Sens. Actuators, B 2010, 145, 13.
[27] S. Balendhran, S. Walla, M. Alsaif, E. P. Nguyen, J. Z. Ou, S. Zhuiykov, S. Siriram, M. Bhaskaran, K. Kalantar-zadeh, ACS Nano 2013, 7, 9753.
[28] S. Balendhran, S. Jeng, J. Z. Ou, S. Walla, J. Scott, J. Tang, K. L. Wang, M. R. Field, S. Russo, S. Zhuiykov, M. S. Strano, N. Medhekar, S. Siriram, M. Bhaskaran, K. Kalantar-zadeh, Adv. Mater. 2013, 25, 109.
[29] P. R. Huang, Y. He, C. Cao, Z. H. Lu, Sci. Rep. 2014, 4, 7131.
[30] M. Wang, K. J. Koski, ACS Nano 2015, 9, 3226.
[31] W. G. Xie, M. Z. Su, Z. B. Zheng, Y. Wang, L. Gong, F. Y. Xie, W. H. Zhang, Z. Luo, J. Y. Luo, P. Y. Liu, N. S. Xu, S. Z. Deng, H. J. Chen, J. Chen, ACS Nano 2015, 10, 1662.
[32] K. Eda, J. Solid State Chem. 1991, 95, 64.
[33] M. A. Py, P. E. Schmid, J. T. Vallin, Il Nuovo Cimento B 1977, 38, 271.
[34] J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, O. J. Glembocki, Nanophotonics 2015, 4, 44.
[35] M. M. Alsaif, K. Latham, M. R. Field, D. D. Yao, N. V. Medehkar, G. A. Beane, R. B. Kaner, S. P. Russo, J. Z. Ou, K. Kalantar-Zadeh, Adv. Mater. 2014, 26, 3931.
[36] Q. Huang, S. Hu, J. Zhuang, X. Wang, Chem. Eur. J. 2012, 18, 15283.
[37] H. F. Cheng, X. F. Qian, Y. Kuwahara, K. Mori, H. Yamashita, Adv. Mater. 2015, 27, 4616.
[38] M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, Z.-H. Lu, Adv. Funct. Mater. 2012, 22, 4557.
[39] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov, Nature 2012, 487, 82.
[40] J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, F. H. L. Koppens, Nature 2012, 487, 77.
[41] Z. B. Zheng, J. T. Li, T. Ma, H. L. Fang, W. C. Ren, J. Chen, J. C. She, Y. Zhang, F. Liu, H. J. Chen, S. Z. Deng, N. S. Xu, Light: Sci. Appl. 2017, 6, e17057.
[42] J.-H. Kang, S. Wang, Z. Shi, W. Zhao, E. Yablonovitch, F. Wang, Nano Lett. 2017, 17, 1768.
[43] J. A. Gerber, S. Benwege, B. T. O’Callahan, M. B. Raschke, Phys. Rev. Lett. 2014, 113, 055502.
[44] S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov, Nat. Commun. 2015, 6, 6963.
[45] E. Yoxall, M. Schnell, A. Y. Nikitin, O. Tsoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. L. Koppens, R. Hillenbrand, Nat. Photonics 2015, 9, 674.
[46] P. Li, X. Yang, T. W. W. Mass, J. Hansss, M. Lewin, A. K. U. Michel, M. Wuttig, T. Taubner, Nat. Mater. 2016, 15, 870.
[47] A. M. Dubrovkin, J. Tao, X. C. Yu, N. I. Zheludev, Q. Wang, Sci. Rep. 2015, 5, 09837.
[48] A. Y. Nikitin, P. Alonso-Gonzalez, S. Velez, S. Mastel, A. Centeno, A. Pesquera, A. F. Casanova, L. E. Hueso, F. H. L. Koppens, R. Hillenbrand, Nat. Photonics 2016, 10, 239.
[49] Y. Wang, X. Du, J. Wang, M. Su, X. Wan, H. Meng, W. Xie, J. Xu, P. Liu, ACS Appl. Mater. Interfaces 2017, 9, 5543.