Abstract—Terahertz technology is largely dependent upon planar on-chip antennas that radiate downwards through the substrate, and so an effective means to interface these antennas with integrated waveguides is an attractive prospect. We present a viable methodology for backside coupling between a terahertz oscillator chip and a broadband all-intrinsic-silicon dielectric waveguide. Our investigation employs resonant tunneling diodes as compact two-terminal electronic terahertz oscillators, and terahertz waves are observed from 270 GHz to 404 GHz. The fact that this power is accessed via a curved length of silicon waveguide validates successful backside coupling.

Index Terms—Oscillator, photonics, resonant tunneling diode, terahertz, transfer process, waveguide.

I. INTRODUCTION

SUBSTRATELESS, all-intrinsic-silicon passive micro-scale photonics (henceforth “all-silicon microphotonics”) is receiving rapidly increasing interest as a general-purpose terahertz platform [1], [2], [3], [4]. Devices of this sort are intrinsically efficient because of the near-negligible absorption of high-resistivity intrinsic silicon in the terahertz range [5], in contrast to metals, for which loss increases with frequency [6]. The absence of a supporting material necessitates patterned cladding for physical support. Photonic crystal originally served this purpose [1], [7], and subsequent demonstrations employed effective methodological backside coupling between a terahertz oscillator substrate, and so an effective means to interface these antennas with integrated waveguides is an attractive prospect. We present a viable methodology for backside coupling between a terahertz oscillator chip and a broadband all-intrinsic-silicon dielectric waveguide. Our investigation employs resonant tunneling diodes as compact two-terminal electronic terahertz oscillators, and terahertz waves are observed from 270 GHz to 404 GHz. The fact that this power is accessed via a curved length of silicon waveguide validates successful backside coupling.

Manuscript received 16 June 2022; revised 7 October 2022; accepted 15 October 2022. Date of publication 25 October 2022; date of current version 4 November 2022. The work of Daniel Jonathan Headland was supported by Universidad Carlos III de Madrid through CONEX-Plus Programme and in part by Marie Skłodowska-Curie Actions through European Union’s Horizon 2020 Research and Innovation Programme under Grant 801538. This work was supported in part by Japan Science and Technology Agency through the Core Research for Evolutional Science and Technology (CREST) Program under Grants JPMJCR1554 and JPMJCR21C4, in part by the National Institute of Information and Communications Technology (NICT), Japan under Grant 03001, and in part by KAKENHI, Japan under Grant 20H00249. (Corresponding author: Masayuki Fujita.)

Daniel Jonathan Headland was with the Information Photonics Group, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan. He is now with the Optoelectronics and Laser Technology Group, Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Leganés, Spain (e-mail: dheadlan@ing.uc3m.es).

Yosuke Nishida is with the ROHM Co., Ltd., Kyoto 615-8585, Japan (e-mail: yosuke.nishida@dsn.rohm.co.jp).

Xiongbin Yu, Masayuki Fujita, and Tadao Nagatsuma are with the Information Photonics Group, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan (e-mail: yxiongbin2021@yeah.net; fu-jita@ee.es.osaka-u.ac.jp; nagatsuma@ee.es.osaka-u.ac.jp).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/JSTQE.2022.3215524.

Digital Object Identifier 10.1109/JSTQE.2022.3215524
on III-V semiconductor substrates [13], [16], [17], [18]. One of the key challenges faced by this chip-access scheme is the interface between the fast-wave mode of the hollow waveguide and the high-index semiconductor substrate. This requires advanced fabrication techniques such as substrate removal [19], and transfer to lower-index materials [16]. It would therefore be beneficial to connect the terahertz diode directly with micro-scale all-silicon passive photonics, from a thick high-index III-V substrate to a high-index silicon waveguide, and thereby avoid the hollow metallic waveguide entirely. This concept is a form of “hybrid integration;” a direct connection between heterogeneous integration technologies.

In recent years, considerable effort has been devoted to the concept of terahertz-range hybrid integration, most notably with resonant tunneling diodes (RTDs) [20], [21], [22], [23]. The choice of RTDs to pilot this development is owed to their simplicity, as it is an all-electronic, two-terminal mesa that is capable of producing terahertz-range power in response to applied DC bias [24], [25], [26], [27], [28], [29], [30], [31]. The absence of complicated oscillator circuitry affords significant design freedom; the physical dimensions of the chip substrate can be made very small in order to correspond to the cross-section of the waveguide, and when patterning the surface, we may concentrate our efforts on the geometry of the coupler. And furthermore, RTDs are versatile, as the free-running oscillator can be combined with the device’s innate nonlinearity in order to yield a highly compact coherent terahertz receiver [23], [30].

A planar on-chip metallic coupler is required to make electrical contact with the RTD mesa, and to extract terahertz waves therefrom. It is reasonable to view this coupler as a kind of antenna, both in terms of its physical geometry and in the sense that it interfaces from the chip to the external world, and this paradigm allows us to draw upon the extensive, ongoing effort that is dedicated to planar on-chip antennas [32]. The associated literature frequently reports a phenomenon that is of critical importance to the present study: the fields generated by an on-chip antenna are drawn downwards into the high-index substrate. This can cause undesired standing waves in the dielectric cavity that is formed by the chip substrate’s volume, which negatively impacts bandwidth and front-to-back ratio, and produces sidelobes in radiation patterns. For this reason, antenna-bearing terahertz-range integrated sources and detectors are generally backside-coupled directly to a silicon lens at the underside of the chip substrate [25], [27], [28], [30], [31], [33], [34], [35]. The close match between the substrate’s refractive index and that of the silicon lens allows fields to pass naturally through the underside of the chip, thereby suppressing standing waves.

Backside coupling has not previously been applied to hybrid integration with silicon microphotonics, owing to challenges in assembly and positioning. For this reason, end-fire on-chip antennas have taken precedence [20], [21], [22], [23], as it is convenient to rest both constituents together upon a single planar surface. Although this approach has enabled significant progress, it does pose certain disadvantages. The aforementioned phenomenon whereby generated fields are drawn into the substrate can produce asymmetry in the fields that are output by the antenna, and this translates to mode mismatch with the silicon waveguide. Another potential issue is that, as the thickness of the substrate determines the relative alignment of the antenna and the waveguide, chip substrates must be thinned to a precise value, making the device sensitive to fabrication tolerances.

In this work, we demonstrate a viable technique to backside-couple a terahertz oscillator-bearing integrated circuit to an all-silicon microphotonics waveguide. The oscillator itself is implemented using a micro-scale RTD mesa that is coupled directly to a planar slot dipole antenna. Terahertz power is accessed from the waveguide, and oscillations are observed from 270 GHz to 404 GHz using a range of different antenna and RTD mesa sizes. In this way, we aim to apply the key lessons from previous efforts in the field of planar, lens-coupled on-chip antennas [25], [27], [28], [30], [31], [33], [34], [35] to a promising emerging passive platform for terahertz waves [4].

II. COUPLER DESIGN

The main subject of this work is the connection between an active terahertz-range chip and a micro-scale dielectric waveguide. This section will describe the structure of both components, present their physical arrangement, and give numerical analysis of functionality.

A. Oscillator Chip

The RTD-bearing oscillator chip is illustrated in Fig. 1(a). The substrate is a $200 \times 200 \times 200 \, \mu m^3$ cube of semi-insulating indium phosphide (InP), and the diode mesa is defined on the top surface. This epitaxial structure, which is illustrated in Fig. 1(b), consists of a gallium indium arsenide (GaInAs) quantum well that is sandwiched between two aluminum arsenide (AlAs) tunnel barriers. All layers shown are nominally between 1 nm and a few tens of nm-thick. The resultant double-barrier tunneling region produces negative differential conductance in the I-V characteristic, thereby enabling spontaneous terahertz-range oscillation [36].

The RTD is housed within a rectangular slot dipole antenna. This particular choice of antenna is well suited to RTDs as it simultaneously serves as resonator and radiator, and it is for this reason that the overwhelming majority of noteworthy RTD devices reported in the literature employ some form of slot dipole antenna [24], [25], [26], [27], [28], [29]. The antenna is also innately compact, as slot dipoles tend to be inductive when they are under-sized, i.e. operated below the frequency at which the fundamental half-wave mode of resonance occurs [37], and this is beneficial to compensate for the capacitance of the diode mesa. This is why we have chosen not to use more-broadband bowtie antennas, despite their proven compatibility with RTDs [30], as they require a shorted tuning stub that must be placed outside the antenna, leading to a larger device footprint that is not amenable to the stringent chip-area limitations of this work. On the other hand, the closed metallic resonator structure will concentrate matter-field interaction with the lossy metal, leading to Ohmic dissipation. That said, this strong concentration of fields in the slot renders the mode of resonance robust against
Fig. 1. An illustration of the backside-coupling concept, showing (a) the design of the oscillator chip surface, (b) the epitaxial quantum-well structure of diode mesa [36], showing mesa area, \(A\), and, (c) coupling to a broadband all-intrinsic-silicon terahertz microphotonic waveguide.

detuning effects caused by any materials that are situated outside of the slot itself. This choice of antenna therefore presents a multi-faceted tradeoff pertaining to radiation efficiency, stability, compactness, and matching.

The RTD mesa is situated in the center of the slot dipole’s length. We wish to remark that, although offset-fed slot antennas have previously been proven to offer greater output power [25], here we choose a center-fed configuration in order that the fields that appear at the chip’s underside will be symmetrical in the z-dimension, for greatest correspondence to the fundamental mode of a substrateless silicon waveguide.

In order to allow for biasing, the RTD mesa must make electrical contact with both sides of the slot, which must also be insulated from each other. Thus, we define two metal layers, namely top- and bottom metal, which are separated by a thin silicon dioxide (SiO\(_2\)) spacer. The underside of the RTD mesa makes contact with the bottom layer of metal on the right side of the slot, and a narrow SiO\(_2\)-supported bridge extends from the left side of the slot to make contact with the top of the RTD mesa. There is potential for loss due to high concentration of current within this bridge, and so its length is minimized by making the slot narrow, at just 5 µm-wide. The slot length, \(l\), is left variable in order to tune the resonance frequency. Aside from the RTD mesa, the only other conductive pathway between the top- and bottom-metal layers is a pair of shunt resistors that are intended to suppress undesired parasitic oscillation at lower frequencies.

B. Silicon Waveguide

The all-silicon microphotonic constituent of the design employs 200 µm-thick high-resistivity float-zone silicon. The waveguide track is 300 µm-wide, and is clad on both sides with a triangular lattice of cylindrical through-holes. The pitch of this lattice is 120 µm, which is subwavelength over our frequency range of interest, and hole radius is 50 µm, thereby removing the majority of the silicon to realize a low-index effective medium [2]. Terahertz waves are confined within the waveguide core by means of total internal reflection. Semi-cylindrical holes are situated on either side of the waveguide in order to reduce longitudinal modulation of modal index, as this has the potential to introduce Bragg-mirror effects at high frequencies [3].

The waveguide is terminated with a 250 µm-wide, 100 µm-deep rectangular cup that serves as receptacle for the small RTD-bearing chip, as illustrated in Fig. 1(c). There is a 25 µm-wide margin on either side of the chip to accommodate fabrication tolerances. The base of the cup is oriented towards the direction of propagation in the waveguide, i.e. the positive-z direction, to allow terahertz waves generated by the RTD oscillator to pass naturally through the substrate and into the silicon waveguide core, as they are both composed of high-index semiconductor materials, and are of similar cross-sectional dimensions.

C. Small-Signal Simulation

Full-wave simulations using the commercially available CST Studio Suite software package are employed to investigate the operation of the RTD chip in isolation. A 50 Ω discrete port substitutes for the RTD mesa, and absorbing boundaries are affixed to all other surfaces of the substrate in order to prevent nonphysical reflections from confounding the result. We simulate a variety of slot lengths, \(l\), and the resultant \(E\)-field distributions given in Fig. 2 show strong concentration of electric fields inside the slot dipole in a roughly symmetrical distribution that is centered upon the RTD mesa. It can also be seen that interaction with the shunt resistors is minimal. Encouraged by this result, we attach the silicon waveguide to the base of the InP chip, and the results of this simulation are shown in Fig. 3. These field patterns
Fig. 2. Electric field distribution beneath the chip surface, derived from full-wave simulations of the RTD chip in isolation. Plots are in logarithmic scale, with a common scale bar shown below, and each is normalized to its own respective maximum.

Fig. 3. Field pattern results derived from full-wave simulations that include both the chip and the silicon waveguide. Plots are in logarithmic scale, with a common scale bar shown below, and each is normalized to its own respective maximum.

qualitatively indicate that a significant proportion of the fields injected by the source are indeed commuted into the fundamental waveguide mode, and over a broad bandwidth. Some radiation loss is also observed, especially at lower frequencies. This is to be expected, as the modal fields within dielectric waveguides tend to de-localize into the surrounding space as frequency is decreased, making low frequencies more liable to scattering loss due to irregularities in the surrounding structure.

It is desirable to quantitatively estimate the yield of terahertz power that is conveyed into the waveguide, i.e. the coupling efficiency. To this end, a hollow metallic waveguide of inner conductor dimensions $710 \times 355 \, \mu \text{m}^2$ is attached to the termination of the dielectric waveguide in order to extract terahertz power. The silicon waveguide is linearly tapered to a 2 mm-long spike, which is inserted directly into the hollow waveguide for index-matching purposes. The fundamental, dominant mode of both waveguides closely correspond, and hence the yield of power in the hollow metallic waveguide’s fundamental mode is a good proxy for the power that is confined within the fundamental mode of the dielectric waveguide. Note that this hollow guide is not illustrated in this article as it is simply a convenient means of interfacing with the simulation model; it is not part of the actual design.

A 2×2 Z-matrix is extracted from the two-port full-wave simulation, and as this representation does not depend upon port impedance, it decouples the RTD mesa from the fictional 50-Ω source that represents it in simulation. Thereafter, the Z-parameters may be converted into an S-parameter representation with an arbitrary combination of complex impedances at both terminations [38]. The hollow-waveguide port is terminated with its own wave impedance in order to suppress any reflections therefrom. For the discrete port, we employ conjugate matching to the slot antenna, as the cancellation of reactance is one of the required conditions for RTDs to oscillate. This also represents an ideal case of matching between the diode and the slot, allowing us to concentrate upon the coupling mechanism between the slot antenna and the silicon waveguide, which is the primary focus of this work.

In order to achieve conjugate matching, we must first evaluate the input impedance of the slot antenna. To this end, the frequency-dependent complex impedance is extracted from the single-port simulations shown in Fig. 2, is subsequently conjugated, and is used to terminate the 2-port network. The resultant value of S_{21} is normalized against the minor coupling loss at the interface between the hollow waveguide and the dielectric waveguide in order to yield the coupling efficiency, and the results are given in Fig. 4(a). It can be seen that more efficient transfer of power is achieved in the case of larger slots; peak coupling efficiency is 71% for $l = 120 \, \mu \text{m}$, and is 47% when $l = 80 \, \mu \text{m}$. In the case of all antenna sizes considered, the upper-frequency limit of the 3-dB bandwidth exceeds the 410 GHz maximum of the simulated frequency range of interest. The lower-frequency limit of the 3-dB bandwidth is at least 28% in all cases.
Insight is sought into the causes of loss, and so the relative absorption and radiation loss are extracted from the full-wave simulations, and re-scaled by the total power that is lost to the network in the S-parameter calculation. The resultant approximate loss-breakdowns are given in Fig. 4(b)–(d). It can be seen that radiation and absorption are equivalent for large slots, and that absorption dominates for small slots, especially at lower frequencies. This is because smaller slot dipoles will generally have greater radiation conductance [37]. Under conjugate-matching conditions, this increases the overall current, and hence dissipation, in the metal. The high-index substrate exacerbates this phenomenon by further decreasing radiation impedance. This absorption may also be viewed as the result of concentration of matter-field interaction with the lossy metal in an electrically-small closed resonator.

D. Nonlinear Device Simulation

The nonlinear RTD component model developed by Diebold et. al. [36] is employed to to verify that the proposed chip can generate terahertz waves, by incorporating it into a circuit model in parallel combination with the slot dipole antenna. There are two conditions that must be met in order for the RTD to spontaneously produce terahertz-range oscillations. Firstly, the imaginary component of the RTD and the slot antenna admittance must cancel out, as this is the definition of resonance in any given circuit. By approximately linearizing the RTD’s component model using a small AC test voltage, we are able to determine that the RTD’s positive (i.e. capacitive), susceptance spans \sim10 to \sim50 mS over the frequency and bias ranges of interest. This is consistent with the slot antenna’s negative (i.e. inductive) susceptance, which is extracted from the single-port simulations of the antenna in isolation. Oscillations will be produced at the specific frequency at which these opposite-sign susceptances are of equal magnitude. The second condition for oscillation is that the negative-differential conductance of the RTD must be greater than the positive-valued conductance of the slot. Whilst simulations show that the slot’s conductance is less than 5 mS, the RTD’s negative-valued differential conductance can reach eight-times this value. As a consequence, the RTD injects more current into the circuit than the antenna removes from the circuit, leading to progressive amplification of oscillating current at the resonance frequency up until the RTD reaches saturation. Physically, this saturation can be understood as a nonlinear process whereby the upper- and lower-edges of the voltage swing reach areas of the RTD’s I-V characteristic that exhibit reduced local negative-differential conductance.

Complex Z-parameters are extracted from the two-port full-wave simulations that are presented in Section II-C, and are subsequently imported into harmonic balance simulations that are implemented with the commercially available software package Keysight Advanced Design System. This technique iteratively searches for the assumed-sinusoidal solution to the nonlinear system that incorporates the RTD and the Z-parameters of the slot in steady-state. A selection of antenna sizes is simulated in this way, the area of the square RTD mesa, A, is also varied, and the applied DC voltage, V_{bias}, is swept for each combination.

We compute the overall coupling efficiency by comparison of the power generated by the RTD with the power delivered to the waveguide port, and the result is shown in Fig. 5(a) alongside the conjugate-matching-based results that are reproduced from Fig. 4(a). It can be seen that the two methods attain reasonably close agreement, with the nonlinear simulation yielding slightly higher efficiency. This result is somewhat unexpected, as conjugate matching is generally thought of as the ideal case. To explain this result, we observe that conjugate matching delivers the maximum power to the lumped impedance of the slot antenna, which incorporates non-negligible losses to conduction and radiation. Thus, the source impedance that maximizes power transfer into the slot may not necessarily correspond exactly to the ideal case for coupling efficiency.

The output power for every combination of mesa area and antenna length is given in Fig. 5(b). It can be seen that, for any
given configuration considered, both oscillation frequency and output power tend to increase with respect to bias voltage. In the case of power, we ascribe this to the asymmetrical nature of the I-V curve of the RTD device [39], and the change in frequency is due to variation in the mesa capacitance with respect to applied bias. Across different design configurations, larger mesas and slot sizes are associated with lower oscillation frequencies, as anticipated. Larger mesas also tend to produce higher output power, as there is a greater area to support the flux of current density, and hence greater negative-differential conductance, and the combination of these two facts results in an overall increase in peak achievable output power with respect to decrease in frequency.

III. HANDLING

Fabrication of the heterogeneous integration technologies is performed using different processes, and at separate foundries. The silicon device is fabricated from a high-resistivity float-zone intrinsic silicon wafer of nominal resistivity >10 kΩ·cm using DRIE, which produces high-aspect-ratio through-holes using a single mask [2], [3], [4]. The result is binary; the silicon is either etched-through entirely, or it is left at full thickness. On the other hand, the fabrication process of the oscillator chip is more complicated. The substrate of the RTD chip is semi-insulating InP upon which the epitaxy, which is shown in Fig. 1(b), is grown in GaInAs and AlAs. The epitaxy is then removed everywhere except for the desired location of the mesa. A 150 nm-thick bottom-metal layer is formed through a lift-off process. A 600 nm-thick silicon dioxide layer is deposited onto the surface of the chip, and is selectively removed using reactive ion etching. The silicon dioxide insulates the bottom-metal layer from a 800 nm-thick top-metal layer, which is the last to be deposited and patterned onto the surface of the chip. Finally, the substrate is reduced to its desired thickness of 200 μm, and the individual chips are diced apart using a diamond saw. Microscope images of both the chip and the silicon component are given in Fig. 6.

Following fabrication, the two components are subsequently coupled together in the arrangement that is shown in Fig. 1(c). However, this configuration is not trivial to achieve, as it requires precise placement of fragile, micro-scale components—without the option of assembling them together on a single flat surface, as was performed in previous hybrid integration efforts that employed end-fire antennas [20], [21], [22], [23]. We therefore deem it prudent to give a detailed description of practical issues concerning the placement of the oscillator chip in the cup, as well as the convenient extraction of terahertz power from the silicon waveguide, in this section.

A. Measurement Apparatus

The surface of the chip must face upwards in order to allow for electrical connection, with the base of the substrate resting upon the cup. Thus, the silicon waveguide must be oriented downwards and held firmly in this position, and the apparatus illustrated in Fig. 7(a) is devised to serve this purpose. A large void is cut into an aluminum holder that is intended to bear the silicon component. Following the example of [4], an un-etched frame surrounds the silicon waveguide, however in this work, the frame is extended to form a pair of rectangular “brace tabs” that are level with the cup. The undersides of both brace tabs rest upon the flat surface of the aluminum holder, on either side of the void, allowing the waveguide to protrude downwards. The silicon cup will therefore face upwards, and be capable of receiving the chip in the correct orientation, as intended.

The oscillator chip must be secured with walls on all four sides in order to prevent it from falling out of the cup, and the silicon component is only capable of providing two such walls, i.e. in the positive- and negative-x directions. To address this, we deploy a pair of rectangular Cyclic Olefin Copolymer (COC) slides as the remaining two walls, and this particular material is selected as it is both low-loss and low-index in the terahertz range [40]. As shown in Fig. 7(a), the silicon component is sandwiched between
the edges of the two COC slides, thereby completing the walls of the cup. Care is taken to ensure that the thickness of the slides is close to the height of the silicon brace tabs, such that roughly-equal-height walls enclose the chip on all sides. It is also noted that the full-wave simulations presented in Section II-C account for the presence of these COC slides, and furthermore, additional simulations that omit these slides (not shown) indicate that their presence does not produce any noteworthy frequency de-tuning effect, which is to be expected because of the high concentration of fields within slot resonator structure on-resonance. The COC slides are fixed to the aluminum holder with nylon screws.

After the waveguide passes through the metal holder and protective frame, the effective-medium cladding is omitted, leaving a simple silicon microbeam that is both substrateless and unsupported [4]. This is convenient to allow for bending and routing without disturbing the regularity of the through-hole lattice that comprises the effective medium. The width of the silicon microbeam is 300 µm at this point, and modal analysis [41] reveals that undesired higher-order modes are able to propagate within this structure for frequencies above ∼308 GHz. The presence of these modes is clearly undesirable. In order to address this, a 3 mm-long linear taper is employed to gradually reduce the waveguide width to 200 µm. At the output of the taper, the undesired higher-order modes exhibit cut-off at ∼363 GHz, and are leaky below ∼388 GHz [4], and hence power that is confined within undesired higher-order modes will progressively leak from the waveguide for frequencies below ∼388 GHz. Although this is a form of loss, we deem it preferable to the presence of undesired propagating modes.

The fact that the silicon waveguide is oriented downwards renders the extraction and detection of terahertz power inconvenient in a laboratory setting because, if we were to maintain a straight waveguide, then the terahertz detector would need to be placed below the chip assembly. To rectify this, the waveguide is routed through a 90° circular bend of radius 4.5 mm. The output is directed towards the positive-x direction, which is parallel to the laboratory table. Within the frame, the total uncurled length of the waveguide is 11.5 mm. Finally, the waveguide is passed through the protective frame a second time, with effective medium cladding to prevent interaction with the frame, and is subsequently tapered to a 2 mm-long spike for progressive index matching as an interface to the external world.

In order to estimate the losses of the bend structure, a second silicon sample is fabricated that bears a tapered coupling spike in place of the cup. As shown in Fig. 8(a), each spike is inserted directly into a hollow waveguide for broadband transfer of terahertz power, and the sample rests upon a metal pedestal that only makes contact with the protective frame. Alignment is achieved using micrometer-driven translation stages guided by the naked eye, and we wish to note that this cannot be repeated identically between different measurements. Terahertz waves are generated with a ×9 multiplier that is connected to a mm-wave signal generator, and then coupled to the silicon sample. Following transit through the bend, the terahertz power is detected using an electronic mixer that is coupled together with a ×36 multiplier. This is connected to the local-oscillator port of a microwave spectrum analyzer for demodulation and detection of terahertz power. Transmission magnitude is normalized by that of an equivalent measurement taken with a straight silicon waveguide that uses the same frame-and-coupler arrangement (not shown).
in order to isolate the impact of the bend itself. The result is given in Fig. 8(b). It can be seen that bending loss is close to 0 dB over the measurable bandwidth. There is also non-negligible variation in the measured results, of a scale that is larger than the bending loss. We ascribe this to imperfect calibration, as alignment cannot be repeated identically between the measurement of the two silicon samples. This variation is increased for frequencies below ~310 GHz due to innate reduction in the dynamic range of the measurement setup, as well as increased standing waves. Additional to that, higher-order modes are able to propagate above this frequency in the thicker sections of the waveguide prior to tapering, as stated above. Slight alignment asymmetry may therefore cause minor, frequency-dependent excitation of these undesired modes, which are subsequently radiated at the taper. We believe that this causes a pattern of narrowly-spaced fades that is not consistent across the reference- and sample-measurements, and is therefore enhanced by normalization. The results are compared to full-wave simulations that are implemented with CST Studio Suite, and the absence of confounding variation renders it possible to observe that bending loss is less than 0.9 dB over the measurable frequency range. These simulations also indicate that reflection magnitude is below −10 dB. We therefore conclude that bending loss is not significant.

B. Positioning the RTD Chip

In our previous work [20], [21], [22], [23], we used ordinary tweezers to manually maneuver the chip into a corresponding recess in the silicon device. However, this approach is not possible here due to the small size of the chip. In practice, we have found that opening the tweezers does not reliably release the chip, likely because the force of the chip’s weight cannot overcome the minor electrostatic attraction between the chip and the tweezer. It must therefore be knocked off by another object, rendering precise placement essentially impossible. Furthermore, human hands tend to exhibit minor involuntary tremors—even in the case of experienced experimental scientists—and this proved sufficient to damage the silicon cup when direct manual placement was attempted. Thereafter, we placed the chip on the slide surface adjacent to the cup, with the aim of nudging it into the cup with the tip of the tweezers. This solved the problem of involuntary tremors, but the chip unfortunately tended to tilt and rotate as it fell. As a consequence, one of the sides of the chip substrate would make contact with the top of one of the walls of the cup, leaving it in an improper, diagonal orientation, without flush contact between the bottom of the chip and the base of the cup. Any attempt to rectify this by applying tweezer-pressure would either result in damage, or to the chip itself catapulting away and being lost.

Due to the challenges of ordinary-tweezer placement, we develop an alternative, vacuum-tweezer-based technique to place the chip into the cup, as illustrated in Fig. 9. A 130 μm-diameter polyoxymethylene vacuum-tweezer tip is attached to a micrometer-actuated 6-axis manual translation stage that is placed adjacent to the aluminum holder, and a diagonally-oriented microscope camera observes the top surface of the COC slides. During placement, a given chip is retrieved from its storage case, and placed upon one of the COC slides using ordinary hand-held tweezers. The RTD chip is released from the tweezer by gently brushing it against the slide. Thereafter, the same hand-held tweezers are employed to re-orient the chip such that the antenna faces upwards, and with the correct rotation relative to the cup. Thereafter, the translation stage is employed to bring the tip of the vacuum tweezer into the vicinity of the chip. Once contact is made with the top surface of the chip, vacuum suction is switched on, and the translation stage raises it upwards (i.e. the negative-z direction). The chip is then positioned above the silicon component, and gradually lowered into the cup. Finally, the suction of the vacuum tweezer is switched off, and the chip is released in its desired position.

Adequate visibility is vital for the success of the chip-positioning procedure. The naked eye is unable to perceive the relevant micro-scale features, and hence the microscope camera is an essential component of the experimental setup that is illustrated in Fig. 9. In our previous work [20], [21], [22], [23], the camera was oriented directly downwards, and so the setup was viewed from above. Here, however, the vacuum-tweezer tip would block the view of the chip. We therefore orient the microscope camera diagonally, but this arrangement presents its own challenges, as it projects the y- and z-dimensions onto each other, thereby introducing visual confusion. The operator of the experiment must therefore rely on visual cues such as reflections and shadows in order to resolve the ambiguity.

IV. Experiment

We aim to verify the span of frequencies that may be extracted from the RTD chip and conveyed through the waveguide’s bend and tapered termination, and in doing so, validate successful backside-coupling. Thus, having positioned the chip into the cup, the vacuum tweezer stage is removed, and is replaced with an 150 μm-pitch RF GS probe that provides an electrical
connection. The tapered spike coupler at the output of the dielectric waveguide is oriented towards a diagonal horn antenna, which is coupled to the electronic terahertz-range receiver that is described in Section III-A. A photograph of this experiment is shown in Fig. 10(a).

In previous related work [2], [3], [4], the tapered spike has been inserted directly into a single-mode hollow metallic waveguide, offering significantly more efficient coupling. However, a horn antenna is preferred here, as the silicon component may shift slightly during chip positioning, which could lead to breakage if the tapered tip were situated within a hollow metallic waveguide; the tip may actually snap off inside the hollow waveguide, not only rendering the silicon part unusable, but also introducing damaging foreign objects into the receiver module itself. Thus, the use of the horn antenna facilitates safe and rapid probing of several different chips consecutively, which we consider preferable to more-efficient coupling, especially considering that we intend to probe a large number of RTD chips.

The RF probe supplies DC voltage to the chip, causing spontaneous terahertz-range oscillations in the RTD, and resultant spectra are observed. A total of 132 chips of several different antenna and mesa sizes were tested in this way, and 46 were found to oscillate—a yield of 35%. The existence of non-oscillating chips is ascribed to tolerances associated with the nano-scale RTD mesa structure itself. Any deviation in the multi-layer epitaxy across the wafer surface, as well as the shape and area of the mesa, can cause changes in the I-V characteristic and capacitance that break the conditions for oscillation. We therefore consider the yield to be entirely adequate if a third of the RTDs to exhibit terahertz-range oscillations, especially considering that we can fabricate large numbers due to the small area chip of an individual chip. A selection of acquired spectra were smoothed with a 1-GHz raised cosine window (0.5 GHz frequency resolution), and the result is shown in Fig. 10(b). It can be seen that terahertz-range oscillations are observed over a 134-GHz span from 270 GHz to 404 GHz. Due to the usage of a diagonal horn antenna, it is not possible to calibrate these measurements, and hence the spectra are presented in arbitrary units. Nevertheless, these relative-power measurements do offer some insights. It can be seen that output power is greater for oscillations below ~350 GHz. This may be related to reduced coupling efficiency for smaller antennas, as shown in Figs. 4(a) and 5(a), as well as with the presence of undesired higher-order leaky modes that begin to propagate at ~360 GHz. It is also noted that high-frequency oscillation necessitates smaller RTD mesa areas, which generate less power due to reduced overall flux of current density, as shown in Fig. 5(b).

V. Conclusion

We have experimentally demonstrated backside-coupling between a terahertz oscillator chip and a broadband, unclad, un-supported all-intrinsic-silicon microphotonic waveguide. The chip is placed into a silicon cup at the termination of the silicon waveguide using a specialized handling procedure that we have reported in detail. Terahertz waves between 270 GHz and 404 GHz were extracted from the termination of the silicon waveguide, thereby confirming transfer of power from the chip, and validating this proof-of-concept for terahertz-range backside-coupled hybrid integration.

The all-silicon microphotonic component that we deploy in this work is a simple 90° waveguide bend, for routing purposes. This can be viewed as the simplest possible passive component that one may integrate with a waveguide, as the capacity to change the direction of guided propagation is the minimum requirement to construct circuits of any sort. It is therefore
our hope that the inclusion of this component will be seen as a starting point to incorporate more-sophisticated and useful devices that are currently available. For instance, frequency-division multiplexers [4], [9], [23] may be employed for channelization, and all-silicon wide-aperture antennas [11], [12] can offer an interface to free space. The resultant system would be a multi-channel wireless transceiver module for terahertz-range high-speed communications, as illustrated in Fig. 11.

In principle, this backside-coupling technique is applicable to frequencies as high as 1 THz, as both RTD oscillators [27] and substrateless all-silicon microphonics [1] have been demonstrated at higher frequencies than those observed in the present work. That said, this will necessitate a reduction in chip size and waveguide cross-section dimensions, which may render placement more difficult. Further investigation is therefore required in order to determine the practical upper-limit of high-frequency operation in this manner of backside-coupling arrangement.

Although our present investigation primarily concerns RTD devices, the assembly technique is applicable to any given terahertz two-terminal active device, including Schottky barrier diodes [16], [18] and laser-excited optoelectronic devices [34], [35], [42]. Likewise, there is no special significance to the slot dipole antenna other than its suitability to RTDs. Instead, we may enhance bandwidth and efficiency by using log-periodic [43], ring [33], or bow-tie antennas [35]. As such, this article has reported a pilot study of a general-purpose terahertz hybrid-integration strategy to combine diverse active source and detector terahertz chips with broadband and efficient all-silicon microphonics.

ACKNOWLEDGMENT

The authors wish to thank Mr Yuichi Yamagami and Mr Shuya Iwamatsu for their preliminary efforts towards manual chip placement.

REFERENCES

[1] C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett., vol. 94, no. 15, 2009, Art. no. 154104.
[2] W. Gao et al., “Effective-medium-clad dielectric waveguides for terahertz waves,” Opt. Exp., vol. 27, no. 26, pp. 38721–38734, 2019.
[3] D. Headland, M. Fujita, and T. Nagatsuma, “Bragg-mirror suppression for enhanced bandwidth in terahertz photonic crystal waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 2, Mar./Apr. 2020, Art. no. 4900109.
[4] D. Headland, W. Withayachumnankul, X. Yu, M. Fujita, and T. Nagatsuma, “Unclad microphonics for terahertz waveguides and systems,” J. Lightw. Technol., vol. 38, no. 24, pp. 6853–6862, Dec. 2020.
[5] J. Dai, J. Zhang, W. Zhang, and D. Grischkowski, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, flat-zone silicon,” J. Opt. Soc. Amer. B, vol. 21, no. 7, pp. 1379–1386, 2004.

P. Drude, “Zur elektronentheorie der metaelle,” Annalen der Physik, vol. 312, no. 3, pp. 687–692, 1902.

K. Tsudo, M. Fujita, and T. Nagatsuma, “Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,” Opt. Exp., vol. 23, no. 25, pp. 31977–31990, 2015.

W. Gao, W. S. Lee, C. Fumeaux, and W. Withayachumnankul, “Effective-medium-clad Bragg grating filters,” APL Photon., vol. 6, no. 7, 2021, Art. no. 076105.

D. Headland, W. Withayachumnankul, M. Fujita, and T. Nagatsuma, “Gratingless integrated tunneling multiplexer for terahertz waves,” Optica, vol. 8, no. 5, pp. 621–629, 2021.

D. Headland, A. K. Klein, M. Fujita, and T. Nagatsuma, “Dielectric slew-coupled half-well fin-tip lasers as octave-bandwidth beam expander for terahertz-range applications,” APL Photon., vol. 6, no. 9, 2021, Art. no. 096104.

W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “All-dielectric rod antenna array for terahertz communications,” APL Photon., vol. 3, no. 5, 2018, Art. no. 051707.

D. Headland, W. Withayachumnankul, R. Yamada, M. Fujita, and T. Nagatsuma, “Terahertz multi-beam antenna using photonic crystal waveguide and luneburg lens,” APL Photon., vol. 3, no. 12, 2018, Art. no. 126105.

J. L. Hesler, Y. Duan, B. Foley, and T. W. Crowe, “THz vector network analyzer measurements and calibration,” in Proc. 21st Int. Symp. Space Terahertz Technol., 2010, pp. 23–25.

A. Malekabadi, S. A. Charlebois, D. Deslandes, and F. Boone, “High-resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 4, pp. 447–453, Jul. 2014.

S. M. Hanham, M. M. Ahmad, S. Lucyshyn, and N. Klein, “LED-switchable high-Q packaged THz microbeam resonators,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 2, pp. 199–208, Mar. 2017.

S. M. Marazita et al., “Integrated GaAs Schottky diodes by spin-on-dielectric wafer bonding,” IEEE Trans. Electron. Devices, vol. 47, no. 6, pp. 1155–1167, Jun. 2000.

T. W. Crowe, W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle, “Opening the terahertz window with integrated diode circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2104–2110, Oct. 2005.

B. T. Bulcha et al., “Design and characterization of 1–3.2 THz Schottky-based harmonic mixers,” IEEE Trans. Terahertz Sci. Technol., vol. 6, no. 5, pp. 737–746, Sep. 2016.

P. H. Siegel, R. P. Smith, M. Graidis, and S. C. Martin, “2–5 THz GaAs monolithic membrane-diode mixer,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 5, pp. 596–604, May 1999.

X. Yu, R. Yamada, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Integrated circuits using photonic-crystal slab waveguides and resonant tunneling diodes for terahertz communication,” in Proc. Prog. Electromagnetics Res. Symp., 2018, pp. 599–605.

X. Yu, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terahertz applications,” Opt. Exp., vol. 27, no. 20, pp. 28707–28721, 2019.

X. Yu, T. Ohira, J.-Y. Kim, M. Fujita, and T. Nagatsuma, “Waveguide-input resonant tunneling diode mixer for THz communications,” Electron. Lett., vol. 56, no. 7, pp. 342–344, 2020.

X. Yu et al., “Hybrid integration between resonant tunneling diodes and unclad microphononic diplexer for dual-channel coherent terahertz receiver,” IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 3, May/Jun. 2022, Art. no. 8500210.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature,” Appl. Phys. Lett., vol. 97, no. 24, 2010, Art. no. 242102.

S. Suzuki, M. Shiraishi, H. Shibayama, and M. Asada, “High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 1, Jan./Feb. 2013, Art. no. 8500108.

K. Okada, K. Kasagi, N. Oshima, S. Suzuki, and M. Asada, “Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation,” IEEE Trans. Terahertz Sci. Technol., vol. 5, no. 4, pp. 613–618, Jul. 2015.

T. Maekawa, H. Kanaya, S. Suzuki, and M. Asada, “Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss,” Appl. Phys. Exp., vol. 9, no. 2, 2016, Art. no. 024101.

N. Oshima, K. Hashimoto, S. Suzuki, and M. Asada, “Terahertz wireless data transmission with frequency and polarization division multiplexing using resonant-tunneling-diode oscillators,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 5, pp. 593–598, Sep. 2017.

K. Kasagi, S. Suzuki, and M. Asada, “Large-scale array of resonant-tunneling-diode terahertz oscillators for high output power at 1 THz,” J. Appl. Phys., vol. 125, no. 15, 2019, Art. no. 151601.

Y. Nishida et al., “Terahertz coherent receiver using a single resonant tunneling diode,” Sci. Rep., vol. 9, no. 1, 2019, Art. no. 18125.
Daniel Jonathan Headland received the Ph.D. degree in 2017 from The University of Adelaide, Adelaide, Australia. His thesis was the recipient of the Doctoral Research Medal and Dean’s Certificate of Doctoral Thesis Excellence. Thereafter, he completed a short-term Endeavour Postdoctoral Fellowship with the University of Wuppertal, Wuppertal, Germany. From 2018 to 2021, he was with Osaka University, Suita, Japan, exploring micro-scale integrated photonics for terahertz waves. Thereafter, he returned to his Alma Mater, The University of Adelaide, before undertaking a CONEX-Plus Marie Curie Fellowship with Universidad Carlos III de Madrid, Leganés, Spain. His research interests include terahertz-range passive devices, beamforming, and integrated systems.

Youseke Nishida received the B.E. and M.E. degrees in engineering science from Osaka University, Suita, Japan, in 2016 and 2018, respectively. In 2018, he joined ROHM Co., Ltd., Japan. His research interests include terahertz integrated circuits for imaging and wireless communication applications based on resonant tunneling diodes.

Xiongbin Yu received the B.E. degree from the Nagoya Institute of Technology, Nagoya, Japan, in 2017, and the Ph.D. degree from the Osaka University, Suita, Japan, in 2020. He was the recipient of various awards during his Doctoral Program, including the Best Student Paper Award from the 40th International Progress in Electromagnetics Research Symposium (2018) and the Best Oral Presentation from the 41th International Symposium on Optical Communications (2018). From 2020 to 2021, he was a specially appointed Assistant Professor with the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Ookayama, Japan. He is currently based with Huawei’s Institute of Strategic Research.

Masayuki Fujita (Member, IEEE) received the Ph.D. degree from Yokohama National University, Yokohama, Japan, in 2002. Subsequently, he joined the Department of Electronic Science and Engineering with Kyoto University, Kyoto, Japan. Next, he moved to Osaka University, Suita, Japan, in 2011 and was appointed the Research Director of the strategic basic research program CREST, Development of terahertz integrated technology platform through fusion of resonant tunneling diodes and photonic crystals and Development of integrated devices and systems to control time domain and space distribution of terahertz waves of the Japanese Science and Technology Agency. He is currently an Associate Professor with the Graduate School of Engineering Science, Osaka University, Toyonaka, Japan. His research interests include terahertz materials and devices, photonic nanostructures and microstructures, and their applications.

Tadao Nagatsuma (Fellow, IEEE) received the Ph.D. degree in electronic engineering from Kyushu University, Fukuoka, Japan, in 1986. From 1986 to 2007, he was with Nippon Telegraph and Telephone Corporation (NTT), Atsugi, Kanagawa, Japan. Since 2007, he has been with Osaka University, Suita, Japan, where he is a Professor with the Graduate School of Engineering Science. His research interests include millimeter-wave and terahertz photonics and their applications to wireless communications, sensing, and measurement.