Fungal Planet description sheets: 785–867

P.W. Crous1,2, J.J. Luangsara-ard3, M.J. Wingfield4, A.J. Carnegie5, M. Hernández-Restrepo1, L. Lombard1, J. Roux4, R.W. Barreto1, I.G. Baseia1, J.F. Cano-Lira8, M.P. Martín9, O.V. Morozova10, A.M. Stichigl8, B.A. Summerell11, T.E. Brandrud12, B. Dimas13, D. García8, A. Giraldo14, J. Guarro8, L.F.P. Gusmão15, P. Khamsumton3, M.E. Noordeloos16, S. Nuankaew17, U. Pinruan3, E. Rodriguez-Andrade6, C.M. Souza-Motta18, R. Thangavel19, A.L. van Iperen1, V.P. Abreu20, T. Accioly21, J.L. Alves6, J.P. Andrade15, M. Bahram22,27, H.O. Baral23, E. Barbier24, C.W. Barnes25, E. Bendiksen13, E. Bernard24, J.D.P. Bezerra18, J.L. Bezerra18, E. Bizio26,27, J.E. Blair28, T.M. Bulyonkova29, T.S. Cabral30, M.V. Caiafa31, T. Cantillo15, A.A. Colmán18, L.B. Conceição15, S. Cruz21, A.O.B. Cunha18, B.A. Darveaux32, A.L. da Silva33, G.A. da Silva33, G.M. da Silva17, R.M.F. da Silva18, R.J.V. de Oliveira18, R.L. Oliveira18, J.T. De Souza33, M. Dueñas9, H.C. Evans34, F. Epifani35, M.T.C. Felipe18, J. Fernández-López21, B.W. Ferreira6, C.N. Figueiredo36, N.V. Filippova37, J.A. Flores38, J. Gené8, G. Ghobrani39, T.B. Gibertoni20, A.M. Glushakova18, R. Healy31, S.M. Huhndorf42, I. Iturrieta-González4, M. Javan-Nikhkah39, R.F. Juciano43, Ž. Jurjevic44, A.V. Kachalkin41, K. Keochanpheng19, E. Bizio26,27, J.E. Blair41, K. Koohjavanov46, Y.-C. Li47, A.A. Lima48, J.A. Limas41, A.R. Machado18, H. Madrid48, O.M.C. Magalhães18, P.A.S. Marbach36, G.C.S. Melanda43, A.N. Miller49, S. Mongkolsumrit50, R.P. Nascimento15, T.G.L. Oliveira18, M.E. Ordoñez38, R. Orzes51, M.A. Palma52, C.J. Pearce52, O.L. Pereira8, G. Perrone35, S.W. Peterson53, T.H.G. Pham54, E. Pionte15, A. Porder59, L. Quijada56, H.A. Raja57, E. Rosas de Paz58, L. Ryvarden59, A. Saitta60, S.S. Salcedo8, M. Sandoval-Denis1,14, T.A.B. Santos15, K.A. Seifen81, B.D.B. Silva62, M.E. Smith31, A.M. Soares40, S. Sommai31, J.O. Sousa21, S. Sucétrong17, A. Susca65, L. Tedersoo22, M.T. Telleria8, D. Thanakitpipatana3, N. Valenzuela-Lopez6,63, C.M. Visagie64, M. Zapata65, J.Z. Groenewald1

Key words
ITS nrDNA barcodes
LSU
new taxa
systematics

Abstract Novel species of fungi described in this study include those from various countries as follows: Angola, Australia, Brazil, China, Costa Rica, Cuba, Ecuador, France, Ghana, Hungary, Italy, Laos, Malaysia, Mexico, Netherlands, New Zealand, Nigeria, Puerto Rico, South Africa, Thailand, United States, Venezuela, and Vietnam. The following taxa are described for the first time: Absidia terrestris in Peru; Afrophialinae in South Africa; Amanita paludosa in New Zealand; Aspergillus parasiticus in Costa Rica; A. rubescens in India; A. terrestris in China; A. xylinus in Ecuador; A. zatkovae in Italy; A. zonierantherae in South Africa; A. zonierantherae in Taiwan; A. zonierantherae in United States; A. zonierantherae in Vietnam; and A. zonierantherae in Australia. The following taxa are redescribed: A. terrestris (as Absidia terrestris) in Peru; A. terrestris (as Absidia terrestris) in China; A. terrestris (as Absidia terrestris) in Ecuador; A. terrestris (as Absidia terrestris) in India; A. terrestris (as Absidia terrestris) in Taiwan; A. terrestris (as Absidia terrestris) in United States; A. terrestris (as Absidia terrestris) in Vietnam; and A. terrestris (as Absidia terrestris) in Australia. The following taxa are reviewed: A. terrestris (as Absidia terrestris) in Peru; A. terrestris (as Absidia terrestris) in China; A. terrestris (as Absidia terrestris) in Ecuador; A. terrestris (as Absidia terrestris) in India; A. terrestris (as Absidia terrestris) in Taiwan; A. terrestris (as Absidia terrestris) in United States; A. terrestris (as Absidia terrestris) in Vietnam; and A. terrestris (as Absidia terrestris) in Australia.
Abstract (cont.)

fam. nov. and Neomelanconiella gen. nov.) on Combretum sp., Polyphialocephala natalensis on unidentified plant host, Pseudodibellaira bolusanthi on Bolusanthus speciosus, Thelonectra pelargonii on Pelargonium sp. Spain, Vermiculariopsiella lauraeaurum and Anungitopsis lauri on Laurus novocanariensis, Geosmithia xerotolerans from a darkened wall of a house, Pseudopediophila gallicata on leaf litter. Thailand, Corynespora thailandica on wood, Laneunomonospora loeiensis on leaf litter, Neocochlearomyces chromolaenae (incl. Neocochlearomyces gen. nov.) on Chromolena odorata, Neomymecridium septatum (incl. Neomymecridium gen. nov.), Pararamichloridium cariicolae on Carex sp., Xenodactylaria thailandica (incl. Xenodactylariae fam. nov. and Xenodactylaria gen. nov.), Neomymecridium aasiaticum and Cymostachys thailandica from unidentified vine, USA, Carolinigaster bonitoi (incl. Carolinigaster gen. nov.) from soil, Penicillium fortitum from house dust, Phaeotheca shathenatiana (incl. Phaeothecaeeae fam. nov.) from twig and cone litter, Pythium wohtseniorum from stream water, Superstratomyces tardicrescens from human eye, Talaromyces iowaense from office air, Vietnam, Fistulinella olivaeoalba on soil. Morphological and culture characteristics along with DNA barcodes are provided.

Article info
Received: 20 October 2018; Accepted: 15 November 2018; Published: 13 December 2018.

1 Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands;
corresponding author e-mail: p.crous@westerdijkinstitute.nl.
2 Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa.
3 Microbe Interaction and Ecology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
4 Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
5 Forest Health & Biosecurity, NSW Department of Primary Industries – Forestry, Level 12, 10 Valentine Ave, Parramatta NSW 2150, NSW 2124, Australia.
6 Departamento de Fitopatologia, Universidad Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
7 Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brazil.
8 Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain.
9 Department of Mycology, Real Jardín Botánico RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
10 Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia.
11 Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia.
12 Norwegian Institute for Nature Research Gaustadalléen 21, NO-0349 Oslo, Norway.
13 Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary.
14 Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
15 Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900. Feira de Santana, BA, Brazil.
16 Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands.
17 Fungal Biodiversity Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
18 Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, Brazil.
19 Programa de Pós-graduação em Biotecnologia, Universidade Federal de Pernambuco, Recife, Brazil.
20 Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand.
21 Departamento de Microbiologia, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brazil.
22 Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Santa Catalina, Panamericana Sur Km 1, Sector Cutuglahua, Pichincha, Ecuador.
23 Società Veneziana di Micologia, S. Croce 1730, 30135, Venezia, Italy.
24 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
25 Department of Biology, Franklin & Marshall College, 415 Harrisburg Avenue, Lancaster, PA 17603 USA.
26 A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences, 630090, 6 Acad. Lavrentieva pr., Novosibirsk, Russia.
27 Departamento de Biología Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
28 Department of Plant Pathology & Florida Museum of Natural History, 2527 Fifield Hall, Gainesville FL 32611, USA.
29 Mycosynthex, Inc., 505 Meadowlands Dr., Suite 103, Hillsborough, North Carolina, 27278 USA.
30 Federal University of Lavras, Minas Gerais, Brazil.
31 CAB International, Bakenhame Lane, Egham, TW20 9TY, Surrey, UK.
32 Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy.
33 Recóncavo da Bahia Federal University, Bahia, Brazil.
34 Yugra State University, 16, Chekhova Str., 628012, Khanty-Mansiysk, Russia.
35 Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador.
36 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 31987-77871, Iran.
37 Department of Micologica, Universidade Federal de Pernambuco, Avenida da Engenharia, S/N – Cidade Universitária, Recife, PE, Brazil.
38 Lomonosov Moscow State University, Moscow / All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia.
39 The Field Museum, Department of Botany, 1400 South Lake Shore Drive, Chicago, Illinois, 60605-2496, USA.
40 Instituto de Ciencias de Fungos, Departamento de Micología, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil.
41 EML, Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA.
42 Department of Botany and Biodiversity Research, University of Vienna, Remweg 14, 1030 Wien, Austria.
43 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtung, Kunming 650201, Yunnan, China.
44 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5700, Huechuraba, Santiago, Chile.
45 University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA.
46 Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
47 Grupo Micológico Bresadola di Belluno, Via Bries 25, Agordo, 32021, Italy.
48 Servicio Agrícola y Ganadero, Laboratorio Regional Valparaíso, Unidad de Fitopatología, Varas 120, Código Postal 2360451, Valparaíso, Chile.

© 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute
Acknowledgements

Tatiana M. Bulyonkova and colleagues are grateful to Dr Rodham Tulloss for his patient guidance and help, and to Dr Torbjorn Borgen Lindhardt for his invaluable advice. Thays G.L. Oliveira, Maria T.C. Felipe, Jadson D.P. Bezerra and Oliane M. C. Magalhães acknowledge financial support and/or scholarships from the CAPES (Finance Code 001), CNPq and FACEPE. Aline O.B. da Cunha, Alexandre R. Machado, Edier Barbier, Enrico Bernard and Cristina M. Souza-Motta acknowledge financial support and/or scholarships from the CAPES (Finance Code 001), CNPq, FACEPE, CECAV and ICMBio from Brazil. Rejane M.F. da Silva and colleagues express their gratitude to the Coordenación de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a scholarship to Rejane M.F. da Silva and to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research fellowship and/or financial support to Gladstone A. da Silva, Cristina M. Souza-Motta, José L. Bezerra and Rafael J.V. de Oliveira (Processes 458622/2014-1 and 312186/2016-9). Olinto L. Pereira, Vanessa P. Abreu, Jackeline P. Andrade and colleagues would like to thank the CNPq, CAPES and FAPEMIG for financial support. The study of Olga V. Morozova was carried out within the framework of a research project of the Komarov Botanical Institute RAS ‘Herbarium funds of the BIN RAS’ (AAAA-A18-11802200978-2) with the support of the molecular work by the Russian Foundation for the Basic Research (project no. 15-29-02622). Anna M. Glushakova and Aleksey V. Kachalkin were supported by the Russian Foundation for Basic Research (RFBR), project no. 16-04-00624a. Janet Luangsa-ard and colleagues were supported by The Promotion Project on Science, Technology and Innovation Collaboration with ASEAN Member Countries under the Office of International Cooperation, MOST-Thailand. They would also like to thank Ms Duangkaew Chongkachornphong, Ms Papawee Nupason (International Section, BIOTEC) and Ms Bakeo Souvannalath (Director of Biotechnology Division, Biotechnology and Ecotology Institute, BEI) for their kind cooperation. Javier Fernández-López and colleagues are grateful to Marian Glenn for checking the text, and were supported by DGICT projects CGL2012-35559 and CGL2015-67459-P. Javier Fernández-López was also supported by Predoctoral Grants (BES-2013-066429) from the Ministerio de Economía y Competitividad (Spain).

Maria E. Ordóñez and colleagues acknowledge Pontificia Universidad Católica del Ecuador for financial support for project M13415. Taímy Cantillo is thankful to PEC-PG/CAPES for the PhD grant (proc. 12636134/2014) (Finance Code 001) and to the International Association for Plant Taxonomy (IAPT) for the Research Grant. Luis F.P. Gumião is grateful to CNPq for Grant support (Proc. 303062/2014-2). Hugo Madrid was partially funded by Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), Chile, project no. 11140562. Tor Erik Brandrud, Bård Dima, Machiel E. Noordeloos and Egil Bendiksen thank the financial support of the Norwegian Taxonomy Initiative, with funding from the Norwegian Biodiversity Information Centre (NBIC); the majority of the Oslofjord material was sequenced through NorBOL (collections labelled NOBAS, CAFUN), and we thank Gunnhild Marthinsen and Katrinna Bendiksen, NHM, University of Oslo as well as Rakel Bialaid, NINA, for performing the major work with the barcoding; the Kits van Verween Foundation (Rijksherbariumfonds Dr E. Kits van Verween, Leiden, Netherlands) contributed substantially to the costs of sequencing Types. The Austrian Entoloma material (by Irmgard Krissal-Greihuber) was sequenced within ABOL, subproject HRSFM University of Vienna, supported by the Austrian Federal Ministry of Education, Science and Research. Adrienne M. Soares and colleagues would like to thank the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and the Instituto Brasileiro de Meio Ambiente (IBAMA) for support during field trips and R.L.M. Alvarenga for the figures. They also acknowledge CAPES for the Ph.D. scholarship of Adrienne M. Soares, and CNPq (307601/2015-3), CAPES (CAPES-SIU 008/13), and FACEPE (APQ-0375-2.03/15) for financial support. Angus J. Carnegie acknowledges support from the Forestry Corporation of NSW, and David Sargeant for assistance with site photos. Adel Pordel and colleagues thank the University of Tehran for financial support. Luis Guijida acknowledges support from Fundación Ramón Areces. Robert W. Barreto and colleagues thank the World Coffee Research/Texas A&G for financial support, as well as the Consejo Nacional de Desarrollo Científico e Tecnológico (CNPq), the Coordenación de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Sara Salcedo-Sarmiento was supported by the ‘Programa de Estudiante-Convivente de Pós-Graduação’ (PEC-PG) from CAPES. The research of Cobus M. Visagie and Keith A. Seifert was supported by grants from the Alfred P. Sloan Foundation Program on the Microbiology of the Built Environment. Blaise A. Darvaxx acknowledges Keith A. Seifert for help with identification, Nicholas Mauriello for validating the Latin name, Maria Lawrence and Meagan Tillotson for help with material preparation. We are grateful to Gavin Phillips, Seed Bank Officer, Australian Botanic Garden, Mt Annan for field assistance and identification of plant species collected in New South Wales, Australia. Collection of specimens from Mungo National Park was supported by the ABRS Bush Blitz program, a partnership between the Australian Government, BHP and Earthwatch Australia. The National Geographic Okavango Wilderness Project is acknowledged for assistance and funding to J. Roux for material collected in Angola.
Overview Dothideomycetes phylogeny – part 1

Consensus phylogram (50% majority rule) of 2478 trees resulting from a Bayesian analysis of the LSU sequence alignment (206 taxa including outgroup; 801 aligned positions; 464 unique site patterns) using MrBayes v. 3.2.6 (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. GenBank accession and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Candida broadrunensis (GenBank KY106372.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID S23436).
Overview Dothideomycetes phylogeny (cont.) – part 2
Name	Accession
Neodevriesia tabebuiae sp. nov. - Fungal Planet 797	
Neodevriesia lagerstroemiae	GU214415.1
Neodevriesia matroderi sp. nov. - Fungal Planet 812	
Neodevriesia poagena NG_058176.1	
Neodevriesia knoxdaviesi EU707865.1	
Neodevriesia pakkiae NG_058169.1	
Neodevriesia streilizei GU301810.1	
Neodevriesia cladorhopae KU578114.1	
Neodevriesia coccoloba sp. nov. - Fungal Planet 796	
Neodevriesia queenslandica JF951168.1	
Neodevriesia shakazului NG_042753.1	
Neodevriesia imbrexigena JX915749.1	
Neodevriesia stringiae NG_042755.1	
Neodevriesia agapanthi NG_042688.1	
Neodevriesia fallana GU214414.1	
Neodevriesia xanthorrhoeae HQ599606.1	

Mycosphaerellaceae

Name	Accession
Zasmidium corymbiae	
Zasmidium anthuriicola	FJ839662.2
Zasmidium citri	GQ852733.1
Zasmidium citrigreum	GU214499.1
Zasmidium musae	MF951272.1
Zasmidium arthunicola	FJ839662.2
Zasmidium ctenii	GU214499.1
Zasmidium cteni-griseum	GU214499.1
Zasmidium scabrolium	MH875754.1
Zasmidium senegalense	K677939.1
Zasmidium nocoxi	MH874955.1
Zasmidium pseudoparkii	MH874457.1

Name	Accession
CPC 33349 Zasmidium corymbiae sp. nov. - Fungal Planet 787	
CPC 33350 Zasmidium corymbiae sp. nov. - Fungal Planet 787	
CPC 33640 Zasmidium corymbiae sp. nov. - Fungal Planet 787	
Cercoспорa api	GQ852583.1
Cercoспорa campi-sali	KX286965.1
Cercoспора diloсореa-pyrнфоlе	JN941165.1
Cercoспора kikuclhi	MH86395.1
Cercoспора rodmanii	HQ84186.1

Name	Accession
Cercospora solani-betacea sp. nov. - Fungal Planet 826	
Cercospora zebrina	GU214406.1
Sonderhenia eucalypticina	DQ267574.1
Sonderhenia eucalyptorum	DQ923536.1
Pallidocercospora ventiNago NG_058047.1	
Pallidocercospora heinmi NG_05848.1	
Pallidocercospora heinmiodes KF935890.1	
Pallidocercospora acaciens GU253897.1	
Pallidocercospora crystallina EU167579.1	
Pallidocercospora holalaoana JF770467.1	
Pallidocercospora irregularramosa GU214441.1	
Pseudocercospora macrospora GU214478.1	
Pseudocercospora luzardi GU214477.1	
Pseudocercospora bicae KT290180.1	
Pseudocercospora trachynkoko KT037565.1	
Pseudocercospora nogaeksi JQ324960.1	
Pseudocercospora norchensis KF902005.1	
Pseudocercospora purpurea GU253804.1	
Pseudocercospora sordida GU253798.1	

Overview Dothideomycetes phylogeny (cont.) – part 3
Overview Orbiliomycetes, Leotiomycetes, Lecanoromycetes and Eurotiomycetes phylogeny

Consensus phylogram (50 % majority rule) of 12 452 trees resulting from a Bayesian analysis of the LSU sequence alignment (78 taxa including outgroup; 829 aligned positions; 360 unique site patterns) using MrBayes v. 3.2.6 (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families, orders and classes are indicated with coloured blocks to the right of the tree. GenBank accession and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Candida broadrunensis (GenBank KY106372.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID S23436).
Overview Stramenopiles, Mucoromycota and Basidiomycota phylolgy – part 1

Consensus phylogram (50% majority rule) of 113,852 trees resulting from a Bayesian analysis of the LSU sequence alignment (141 taxa including outgroup; 980 aligned positions; 654 unique site patterns) using MrBayes v. 3.2.6 (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families, orders, classes, subdivisions and phyla are indicated with coloured blocks to the right of the tree. The tree was rooted to the Stramenopiles clade and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID S23436).
Overview Stramenopiles, Mucoromycota and Basidiomycota phylogeny (cont.) – part 2

- Boletus speciosus
- Butyriboletus taughannokensis
- Caloboletus peckii
- Pulveroboletus retipes
- Fistulinella prunicolor

- Mucilopilus castaneiceps
- Carolinigaster bonitoi gen. et sp. nov. - Fungal Planet 825

- Amanita paludosa sp. nov. - Fungal Planet 822
- Amanita triabils KU248121.1

- Inocybe pallidicremea HJ2201357.1
- Inocybe fuscofusca AY830376.1
- Inocybe whitei FNS50915.1
- Inocybe whitei EU486441.1
- Inocybe praeox AY038311.1
- Inocybe godeyi FNS50897.1
- Inocybe godeyi AY038316.1
- Inocybe phaeoleuca KJ399958.1
- Inocybe griseolilacina AY380378.1
- Inocybe whitei AY380384.1
- Inocybe hystrix AY380380.1
- Inocybe roseascens sp. nov. - Fungal Planet 847
- Inocybe melanopus MH220276.1
- Inocybe melanopus AM892725.2

- Falkomycota, Agaricomycotina (continued)
- Boletales
- Agaricales
- Agaricaceae
- Amanitaceae
- Inocybaceae

- Fungi
- Basidiomycota (continued)

- Fusarium oxysporum
- Aspergillus niger
- Penicillium chrysogenum
- Trichoderma viride
- Neurospora crassa
- Rhizopus oryzae

- Mucoromycota
- Stramenopiles

- Carcinocystis tumefaciens
- Eremothecium ashbyii
- Cryptococcus neoformans
- Saprolegnia ferax
- Chytridiomycota
- Oomycota

- Overview

- Boletaceae
- Entolomataceae
- Agaricaceae
- Amanitaceae
- Inocybaceae
Overview Diaporthales (Sordariomycetes) phylogeny

Consensus phylogram (50 % majority rule) of 1 052 trees resulting from a Bayesian analysis of the LSU sequence alignment (71 taxa including outgroup; 768 aligned positions; 176 unique site patterns) using MrBayes v. 3.2.6 (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. GenBank accession and/or Fungal Planet numbers are indicated after the species names. The tree was rooted to Saccharata proteae (GenBank EU552145.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face.

The alignment and tree were deposited in TreeBASE (Submission ID S23436).
Overview Hypocreales (Sordariomycetes) phylogeny – part 1

Consensus phylogram (50 % majority rule) of 3078 trees resulting from a Bayesian analysis of the LSU sequence alignment (110 taxa including outgroup; 820 aligned positions; 339 unique site patterns) using MrBayes v. 3.2.6 (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. GenBank accession and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Saccharata proteae (GenBank EU552145.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID S23436).
Overview Hypocreales (Sordariomycetes) phylogeny (cont.) – part 2
Overview other orders (Sordariomycetes) phylogeny – part 1

Consensus phylogram (50 % majority rule) of 452 trees resulting from a Bayesian analysis of the LSU sequence alignment (102 taxa including outgroup; 782 aligned positions; 396 unique site patterns) using MrBayes v. 3.2.6 (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. GenBank accession and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Saccharata proteae (GenBank EU552145.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face.

The alignment and tree were deposited in TreeBASE (Submission ID S23436).
Overview other orders (Sordariomycetes) phylogeny (cont.) – part 2
Clathrus natalensis
Clathrus natalensis
G.S. Medeiros, Melanda, T.S. Cabral, B.D.B Silva & Baseia, sp. nov.

Eymology. Named in reference to the type locality, Natal City.

Classification — Clathraceae, Phallales, Phallomyceciidae.

Immature basidiomata subglobose, 13–18 × 16–22 mm, greyish white (12A1–12B1 KW) with a single and thick rhizomorph greyish white (12A1–12B1 KW). Expanded basidiomata obovate to subglobose 46–95 × 24–71 mm. Arm meshes pentagonal to hexagonal, rugose at the beginning of development, becoming smooth afterwards, 32–90 × 20–70 mm, dull red to pinkish white (BB3–BA2), transverse section of an arm shows 3–4 tubes subglobose, elongated to piriiform. Pseudostipe absent. Gloe vaginae, in all inner part of arms, olive brown (KW 4F4), with an unpleasant smell. Volva 50–140 × 10–40 mm, greyish white (12A1–12B1 KW), with thick rhizomorph, greyish white (12A1–12B1 KW). Basidiospores cylindrical, 4.6–5.6 × 1.9–2.7 µm (5.2 ± 0.4 × 2.3 ± 0.3 µm; Qm = 2.29; n = 30 spores), wall ≤ 0.7 µm, smooth, hyaline in KOH. Arms exhibiting subglobose to globose and pyriform cells, 19.5–45.6 × 13–33.5 µm, wall ≤ 2.2 µm diam, hyaline. Volva composed of filamentous hyphae, 2.7–5.2 µm diam, wall ≤ 1.1 µm diam. Rhizomorph composed of filamentous hyphae, 3.2–4.7 µm diam, wall ≤ 0.9 µm diam.

Typus. BRAZIL, Rio Grande do Norte, Natal, Centro de Biociências, on soil with litter, 5 Apr. 2017, G.S. Medeiros (holotype UFRN-Fungos 2948, isotype UFRN-Fungos 2947, paratype UFRN-Fungos 2946, ITS and LSU sequences GenBank MH107232 and MH107235, MycoBank MB824737).

Notes — Clathrus natalensis was found in a remnant of Atlantic rainforest at the Universidade Federal do Rio Grande do Norte (UFRN) and is characterised by robust basidiomata, a pale red colouration, rugose arms at the beginning of development, becoming smooth afterwards, with the presence of 3–4 tubes in transverse section. This species presents similarities with Clathrus crisatus with the colour of the arms and mesh arrangement, but that presents basidiomata with crests along the arm edges (Fazolino et al. 2010), a characteristic absent in C. natalensis. In a BLASTn search, the ITS sequence obtained in this study has 94 % similarity to Clathrus ruber (GenBank GQ981501). However, C. ruber can easily be distinguished by the bright red colour, smaller meshes, and the immature basidiome marked by reticulations (Dring 1980). In the phylogenetic analysis, C. natalensis does not group with any species available on GenBank; in fact, they are clearly morphologically different. Clathrus columnatus and C. archeri show distinct receptacle arrangements, columnar in the first, and united arms below with pointed tips initially attached in the latter (Bosc 1811, Dring 1980); C. crysomycei us and C. delicatus have white basidiomata, the first differs by a glebifer attached at the junction of the arms, and the second by a smaller receptacle (up to 25 mm high × 15 mm wide) and deep grooves in the outer face of the arms (Möller 1895, Dring 1980) – characteristics absent in C. natalensis. Thus, both morphological characters and the phylogenetic analysis separate C. natalensis from the already known species.

Phylogenetic tree obtained with MrBayes v. 3.1.2. (Huelsenbeck & Ronquist 2001) using ITS, nuc-LSU and atp6 (MK035869), under GTR+G (ITS/nucLSU) and HKY+G models (atp6), for 20 M generations. The type specimen is marked with a rectangle. Posterior probability values are indicated on the branches. TreeBASE submission ID 22520.

Colour illustrations. Brazil, Universidade Federal do Rio Grande do Norte, Centro de Biociências, locality where the type species was collected; basidiomata, transverse section of an arm showing the tubes, subglobose to globose and pyriform cells on arm, smooth spores, and filamentous hyphae in the rhizomorph. Scale bars = 20 mm (basidiomata), 2 mm (tubes), 10 µm (cells on arm, spores and rhizomorph hyphae). All morphology photos from the holotype UFRN-Fungos 2948.

© 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute
REFERENCES

Abarca GH, Castañeda-Ruiz RF, Arias-Mota RA, et al. 2011. A new species of Heliocephalia from México with an assessment of the systematic positions of the anamorpha genera Heliocephalia and Holobovarrania. Mycologia 103: 631–640.

Alessio CL, Rebaudengo E. 1980. Inocybe, Iconographia Mycologica 29, Suppl. 3, Bd. 1 (Generalia et Descriptiones), Bd. 2 (Tabulae), Trento.

Alfenas RF, Maia H da Silva 1959. Uma nova doença fúngica de peixe or Valbelluna. Tipografia Milani, Verona.

Alvarez LV, Groenewald JZ, Crous PW. 2016. Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella and Schizoparme. Studies in Mycology 95: 301–304.

Baral HO, Weber E, Gams W, et al. 2017. Generic names in the Orbiliaceae. Mycological Progress 16: 553–564.

Bakhshi M, Arzanlou M, Babai-Ahari A, et al. 2014. Multi-gene analyses of Cryptosporiopsis eucalypti and Cryptosporiopsis-like species occurring on Eucalyptus. Fungal Diversity 44: 89–105.

Baksishi M, Arzanlou M, Babai-Ahari A, et al. 2014. Multi-gene analyses of Pseudocercospora spp. from Iran. Phytotaxa 184: 245–264.

Baseia IG, Calonge FD. 2006. Geastrum hirsutum: a new earthstar fungus. Boletín de la Sociedad de Biología de Pernambuco 16: 153–159.

Benson JC, Bierne N, de Mestral B. 2009. A new fungal gynoecium of Tylophora. Mycological Progress 8: 1–27.

Biss L. 1811. Mémoire sur quelques espèces de Champignons des parties méridionales de l’Amérique septentrionale. Magazin der Gesellschaft Naturforschenden Freunde Berlin 5: 83.

Bose T, Reynolds DR, Berbee ML. 2014. Common, unsightly and now new. Fungi on Eucalyptus. Fungal Diversity 44: 787–799.

Braun U, Nakashima C, Crous PW. 2016. Cercosporoid fungi (Mycosphaerellaceae) 5. Species on dicots (Anacardiaceae to Annonaceae). IMA Fungus 7: 181–216.

Braun U, Nakashima C, Crous PW. 2013. Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. IMA Fungus 4: 265–345.

Cannone P, Budde BI, Bridge PD, et al. 2012. Lectera, a new genus of the Pleotaphoasphaerellaceae for the legume pathogen Volutella colletotrichoides. Mycologia 104: 23–36.

Cantrall SA, Hartlin RT, Emiliano A. 2007. Periconia varicolor sp. nov., a new species from Puerto Rico. Mycologia 99: 482–487.

Chachula P, Vončina G, Kozík J. 2011. Ophiocordycips stylophora (Asco- mycota, Hypocreales), new species for Poland. Polish Botanical Journal 56: 321–326.

Chaveewangkoon R, Groenewald JZ, Verkley GJM, et al. 2010. Re-evaluation of Cryptosporiopsis eucalypti and Cryptosporiopsis-like species occurring on Eucalyptus. Fungal Diversity 44: 89–105.

Chen CC, Wu SH, Chen CY. 2017. Three new species of Hyphodontia s.l. (Basidiomycota) with poroid or raduloid hymenophore. Mycological Progress 16: 555–567.

Chua celebrated his 50th birthday in 1962, Gasteromycetes of Congo. Bulletin du Jardin Botanique de l’Etat a Bruxelles 32: 325–416.

Chupp C. 1954. A monograph of the fungus genus Cercospora. Published by the author, Ithaca, New York, USA.

Coker WC, Couch NC. 1928. The gasteromycetes of the eastern United States and Canada. Dover Publications, Inc. New York.

Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, et al. 2018. Two new cellulolytic fungal species isolated from a 19th-century art collection. Scientific Reports 8: 7492.

Crous PW. 2002. Taxonomy and pathology of Cylindrocladium (Coniella) and allied genera. APS Press, St. Paul, Minnesota, USA.

Crous PW, Braun U. 2003. Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. CBS Biodiversity Series 1: 1–57.

Crous PW, Groenewald JZ, Shivas RG. 2010. Phaeothecoidea melaleuca and Dothiora. IMA Fungus 8: 131–152.

Crous PW, Groenewald JZ, Himman W, et al. 2007. Fungal Planet description sheets: 214–280. Persoonia 32: 184–306.

Crous PW, Summerrall BA, Shivas RG, et al. 2012a. A re-appraisal of Harknessia (Diaporthales), and the introduction of Harknessiaceae fam. nov. Persoonia 28: 49–65.

Crous PW, Summerrall BA, Shivas RG. 2012b. Fungal Planet description sheets: 107–127. Persoonia 28: 138–182.

Crous PW, Wingfield MJ, Affenas CA, et al. 1994. Cylerasphaeraceae nuclivula- tion sp. nov., and two new vesiculate Hyphomycete genera, Falcocladium and Vesicadactyla. Mycotaxon 50: 441–458.

Crous PW, Wingfield MJ, Burgess TI, et al. 2016a. Fungal Planet description sheets: 469–557. Persoonia 37: 218–403.

Crous PW, Wingfield MJ, Burgess TI, et al. 2017a. Fungal Planet description sheets: 558–624. Persoonia 38: 240–345.

Crous PW, Wingfield MJ, Burgess TI, et al. 2017b. Fungal Planet description sheets: 625–715. Persoonia 39: 270–467.

Crous PW, Wingfield MJ, Burgess TI, et al. 2018b. Fungal Planet description sheets: 716–784. Persoonia 40: 240–393.

Crous PW, Wingfield MJ, Guarro J, et al. 2015b. Fungal Planet description sheets: 320–370. Persoonia 34: 167–266.

Crous PW, Wingfield MJ, Richardson DM, et al. 2016b. Fungal Planet description sheets: 400–468. Persoonia 36: 316–458.

Crous PW, Wingfield MJ, Schumacher RK, et al. 2014b. Fungal Planet description sheets: 281–319. Persoonia 33: 212–289.

Damm U, Cannon PF, Woudenberg JHC, et al. 2012. The Colletotrichum acutatum species complex. Studies in Mycology 73: 37–113.

Dorsett D, Taboada GL, Doallo R, et al. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

De Hoog GS. 1985. Taxonomy of the Dothylaria and Dactylaria complexes. I. Dactylaria, Neta, Subulispora and Scolecobasidium. Studies in Mycology 26: 1–60.

De Hoog GS, Bagnini V, Bartenburg-De Vegte WH. 1997. Phaeothecaria triangularis, a new meristematic black yeast from a humidifier. Antonie van Leeuwenhoek 71: 289–295.

DesRochers P, Ouellette GB. 1998. Phaeotheca dimorphospora sp. nov.: description et caractéristiques culturales. Canadian Journal of Botany 72: 808–817.

Dissing H, Lange M. 1962. Gasteromycetes of Congo. Bulletin du Jardin Botanique de l’Etat a Bruxelles 32: 325–416.
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 75: 785–771.

Stangl J. 1989. Die gattung Inocybe in Bayern. Hoppea 46: 1–394.

Stuntz DE. 1954. Studies on the genus Inocybe II. New and noteworthy species from Michigan. Papers of the Michigan Academy of Sciences, Arts & Letters 39: 53–84.

Subramanian CV. 1955. Some species of Periconia from India. Journal of the Indian Botanical Society 34: 339–361.

Summerbell RC, Guédan C, Guerio J, et al. 2018. The Protean Acremonium. A. sclerotigenum/egyptiacum: Revision, food contaminant, and human disease. Microorganisms 6: 88.

Summerell BA, Groenewald JZ, Carnegie AJ, et al. 2006. Eucalyptus microfungi known from culture. Z. Alysioidea. Fusculina and Phlogicylindrium genera nova, with notes on some other poorly known taxa. Fungal Diversity 23: 323–350.

Sung GH, Hywel-Jones NL, Sung JM, et al. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59.

Sunhede S. 1989. Geastraeomyces (Basidiomycotina): Morphology, ecology, and systematics with a special emphasis of the North European species. Synopsis Fungorum 1: 1–534.

Sutton BC. 1973. Hypomycescrites from Manitoba and Saskatchewan, Canada. Mycological Papers 132: 1–143.

Sutton BC. 1980. The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. CMI, Kew, England.

Sutton BC, Sarbhoy AK. 1976. Revision of Chaetomella, and comments upon Verrucariales and Thrycrioachetes. Transactions of the British Mycological Society 66: 297–303.

Swofford DL. 2003. PAUP*: Phylogenetic analysis using parsimony (*and tree methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

Takahashi H. 1988. A new species of Boletus sect. Luridi and a new com

Tanaka K, Hirayama K, Yonezawa H, et al. 2015. Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136.

Tichelaar GM. 1972. Acremonium gamsii nov. sp. (Hypomycescrites). Acta Botanica Neerlandica 21: 197–199.

Trappe JM, Castellano MA, Halling RE, et al. 2013. Australasian sequestrate fungi 18: Scoliciosus polychrous gen. & sp. nov., a richly colored, tropical to subtropical, hypogeous fungus. Mycologia 105: 888–895.

Tsuneda A, Davey ML, Suneda I, et al. 2010. Two new dothideomycetes endoconidial genera from declining larch. Botany 88: 471–487.

Tulloss RE. 2018. Amanita friabiliis: description tabs. Available at: http://www. amanitaeae.org/?Amanita+friabiliis (accessed: 2018.03.20).

Udagawa S, Toyazaki N. 1985. A new species of Leptodiscella. Mycotaxon 22: 407–413.

Van der Aa HA, Van Oorschot CAN. 1985. A redescriptions of some genera with stauropsores. Persoonia 12: 415–425.

Van Nieuwenhuijzen EJ, Miadlikowska J, Houbraken J, et al. 2015. Wood staining fungi revealed taxonomic novelties in Pezizomycotina: New order Superstratomycetales and new species Cyano dermatella oleiligni. Studies in Mycology 85: 107–124.

Videira SIR, Groenewald JZ, Nakashima C, et al. 2017. Mycosphaerellaceae – Chaos or clarity? Studies in Mycology 87: 257–421.

Vilgás AP. 1945. Alguns fungos do Brasil. X: Gasteromictos. Bragança 5: 583–595.

Visagie CM, Hirooka Y, Tanney JB, et al. 2014a. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology 78: 63–139.

Visagie CM, Houbraken J, Frisvad JC, et al. 2014b. Identification and nomenclature of the genus Penicillium. Studies in Mycology 78: 343–371.

Visagie CM, Houbraken J, Seifert KA, et al. 2015. Four new Penicillium species isolated from the fynbos biome in South Africa, including a multigene phylogeny of section Lanata-Divaricata. Mycological Progress 14: 96.

Voglmayr H, Jaklitsch WM. 2017. Corynespora, Exosporium and Helminthosporium revisited – new species and generic reclassification. Studies in Mycology 87: 43–76.

Voglmayr H, Rossman AY, Castlebury LA, et al. 2012. Multigene phylogeny and taxonomy of the genus Melanconia (Diaporthales). Fungal Diversity 57: 1–44.

Vu D, Groenewald M, De Vries M, et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135–154.

Vujanovic V, St-Arnaud M. 2003. A new species of Pseudobolbodila, an endophyte from Thuja occidentalis in Canada, and a key to the species. Mycologia 95: 956–958.

Walker DM, Castlebury LA, Rossman AY, et al. 2010. Systematics of genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations and morphology. Mycologia 102: 1479–1496.

Warthow F, Silva SM. 2007. Primeira ocorrência de Calvatia cyathiformis (Basidiomycota) em Caatinga. Estudo de Pernambuco, Brasil. Sistentibus Série Ciências Biológicas 7: 176–177.

Watling R. 1969. Colour Identification Chart. Edinburgh, Her Majesty’s Stationery Office.

Whiteside JO. 1966. A revised list of plant diseases in Rhodesia. Kirkia 5: 87–196.

Woudenberg JHC, Sandoval-Denis M, Houbraken J, et al. 2017. Cephalothrix and related synnematous fungi with notes on species from the built environment. Studies in Mycology 88: 137–159.

Wu G, Feng B, Xu J, et al. 2014. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity 69: 93–115.

Wu G, Li YC, Zhu XT, et al. 2016. One hundred noteworthy boletes from China. Fungal Diversity 81: 25–188.

Wu SH. 1990. The Corticiaceae (Basidiomycetes) subfamilies Phlebiodeae, Phanerochaetodeae and Hyphodermaeae in Taiwan. Acta Botanica Taiwanica 142: 1–123.

Wu WP, Sutton BC. 1995. Fumagopsis complexa sp. nov., a species with complicated conidial morphology. Mycological Research 99: 1450–1452.

Wu YM, Xu JJ, Kong JH, et al. 2015. New species of Graphium and Periconia from China. Mycotaxon 129: 397–401.

Zare R, Gams W. 2001. A revision of Verticillium section Prostrata. IV. The genera Lecaniiellum and Simplicillium gen. nov. Nova Hedwigia 71: 1–50.

Zare R, Gams W, Starink-Willemse M, et al. 2007. Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musciullium, a new genus for V. theo- bromae. Nova Hedwigia 85: 483–489.

Zeller SM, Ahl Smith. 1964. The genus Calvatia in North America. Lloydia 27: 148–186.

Zelski SE, Raja HA, Miller AN, et al. 2015. Coniothyrium peruhensis sp. nov., its phylogenetic placement based on 28S rRNA gene, and a report of Coniothyrium gracilis comb. nov. from Peru. Mycology 56: 319–325.

Zhukova EA, Morozova OV, Volobuev SV, et al. 2017. Basidiomycetous macrocytomes and their impact on the state of green plantations of the State Russian Museum Gardens (Saint Petersburg). Mikologiya i Fitolpatologiya 51: 328–339.