**Atherosclerosis** is a chronic inflammatory process in the intima of conduit arteries, which disturbs the endothelium-dependent regulation of the vascular tone by the labile liposoluble radical nitric oxide (NO) formed by the constitutive endothelial nitric oxide synthase (eNOS). This defect predisposes to coronary vasospasm and cardiac ischaemia, with anginal pain as the typical clinical manifestation. It is now appreciated that endothelial dysfunction is an early event in atherogenesis and that it may also involve the microcirculation, in which atherosclerotic lesions do not develop. On the other hand, the inflammatory environment in atherosclerotic plaques may result in the expression of the inducible NO synthase (iNOS) isozyme. Whether the dysfunction in endothelial NO production is causal to, or the result of, atherosclerotic lesion formation is still highly debated. Most evidence supports the hypothesis that constitutive endothelial NO release protects against atherogenesis e.g. by preventing smooth muscle cell proliferation and leukocyte adhesion. Nitric oxide generated by the inducible isozyme may be beneficial by replacing the failing endothelial production but excessive release may damage the vascular wall cells, especially in combination with reactive oxygen intermediates.

**Key words:** Atherosclerosis, Endothelial cell, eNOS, iNOS, Intimal thickening, Nitric oxide, Peroxynitrite, Superoxide anion

---

**Atherosclerotic Lesion Development**

The intima is the soil for atherosclerosis

Atherosclerotic lesions develop in the inner coat (or tunica intima) of the aorta, the large elastic arteries, e.g. the carotid arteries and the arteries supplying the lower extremities, and the medium-sized muscular arteries, such as the coronary arteries. At birth, the intima consists solely of endothelial cells, but soon after birth focal and circumferential thickening occurs. This spontaneously developing intima consists of smooth muscle cells, connective tissue and isolated macrophages, and is considered an adaptation to mechanical wall stress. Although not pathologic at this stage, the thickened intima marks locations where atherosclerosis tends to develop later in life under the influence of atherogenic stimuli e.g. hypercholesterolaemia.

**Features of human atherosclerosis**

Early atherosclerotic lesions are characterized by the deposition of lipids and the appearance of macrophages and T lymphocytes in the intima. As macrophages and a few smooth muscle cells underneath the endothelial cells accumulate lipid, they acquire a ‘foamy’ appearance. Clusters of lipid-laden cells become macroscopically visible as fatty streaks. Progressively, these flat, fatty lesions transform to raised fibrolipid plaques, as intimal smooth muscle cells proliferate and deposit extracellular matrix, mainly collagen. In a subsequent stage, the advanced lesion has a characteristic microanatomy with a core of extracellular lipid separated from the media by smooth muscle cells and covered at the luminal side by a thick fibrous cap. Surrounding the lipid core are lipid-filled foam cells. The ischaemia in the necrotic core initiates angiogenesis. This type of plaque may cause narrowing of the lumen once the compensatory vascular remodelling process which
increases the external diameter of the vessel becomes exhausted. Only then, lesions become angiographically visible. The final stage, the complicated plaque, may arise either from fissure of the fibrous cap or from intra-plaque haemorrhage. The thromboembolic events following plaque fissure are a major cause of clinically manifest acute ischaemic syndromes. If the thrombus is not occlusive, it becomes incorporated into the plaque and is organized by invading macrophages and smooth muscle cells, thereby further compromising the lumen of the vessel. The sequence of fissure, thrombus formation, organization and incorporation into the plaque may occur repeatedly.

Models of atherosclerosis and intimal thickening

Models of atherosclerosis
Current knowledge of the initiation of the atherogenic process is largely based on rabbit or primate models of hypercholesterolaemia, which may be diet-induced or genetically determined as in Watanabe heritable hyperlipidaemic (WHHL) rabbits. Hypercholesterolaemia provokes intravascular lipid infiltration leading to the formation of fatty streaks, which resemble early human lesions. Protracted cholesterol feeding eventually results in advanced fibrolipid plaques containing necrotic debris, as in advanced human disease.

Models of intimal thickening
Intimal thickening can be induced experimentally by creating a modest mechanical injury of the smooth muscle cells of the media. The most extensively investigated model involves balloon denudation of the intima of the rat carotid artery with an embolectomy catheter. The discrete mechanical injury of the underlying media evokes smooth muscle cell proliferation in the media, followed by migration to the intima and an extended phase of intimal proliferation. The endothelial cells are completely removed by the initial insult and regrowth of the endothelial cells from the lesion edges is virtually absent. The removal of the endothelial cells is not essential nor sufficient for the process of intimal hyperplasia.

Placing a flexible collar around the rabbit carotid artery does not create direct endothelial injury, but induces smooth muscle cell proliferation in the media, followed by migration and prolonged proliferation in the intima. Both models illustrate the three wave paradigm for the involvement of smooth muscle cells in the formation of intimal cushions.

The inflation of an angioplasty balloon in arteries of rabbits, pigs or other experimental animals is used to mimic restenosis due to accelerated intimal thickening after percutaneous transluminal coronary angioplasty (PTCA). The vessel wall distension by the repeated inflation of a slightly oversized balloon creates a much more extensive injury of the media and the lamina elastica interna than the gentle passage of an embolectomy catheter. Unlike balloon denudation, the balloon angioplasty thus predisposes to thrombus formation. In accordance with restenosis after PTCA in humans, the incorporation and organization of the non-occlusive thrombus adds to the bulk of neointima formation. A further difference with balloon denudation is the quick and often complete recovery of the endothelial cell layer through outgrowth from patches of cells which remained present after the angioplasty.

Atherosclerosis is a Chronic Inflammatory Process

The long-standing and continuously refined ‘response-to-injury’ hypothesis considers the lesions as the result of an excessive inflammatory-fibroproliferative response to various forms of insults to the endothelium and smooth muscle. Moreover, the presence of T-lymphocytes in atherosclerotic lesions at all stages of development points to an important immunologic component in atherogenesis. T-lymphocytes and macrophages are capable of producing numerous inflammatory mediators and growth factors, and have been demonstrated to be in an activated state in atherosclerotic lesions.

Pathogenetic mechanisms in hypercholesterolaemia-induced atherogenesis

Several different sources of injury to the endothelium can lead to endothelial dysfunction and initiate the disease process. In hypercholesterolaemia-induced atherosclerosis, the major causal agent is now assumed to be oxidized LDL (oxLDL). Oxidation of lipoproteins by the metal-catalysed production of free radicals from lipid hydroperoxides contained in the modified lipoprotein particle. Furthermore, oxLDL is chemotactic for monocytes and T-lymphocytes. Newly formed epitopes in oxLDL elicit cell-mediated and humoral immune re-
Minimally oxidized LDL stimulates the endothelial cells and smooth muscle cells to secrete monocyte chemotactic protein-1 (MCP-1) and growth factors involved in the differentiation and proliferation of monocytes, and oxLDL may, synergistically with cytokines, promote mononuclear leukocyte adhesion to the endothelium through the induction of vascular cell adhesion molecule-1 (VCAM-1). The oxidative stress-sensitive nuclear transcription factor NF-κB (NF-κB) may be a crucial intermediate in the inflammatory activation of the endothelium. Monocyte-derived macrophages internalize oxLDL through scavenger receptors. As these receptors are not down-regulated by the intracellular cholesterol level, massive cholesterol accumulation occurs and the macrophages transform to foam cells.

Thus, it appears that endothelial cells, through the oxidation of LDL, recruit macrophages to remove the invaded lipoprotein particles. This attractive hypothesis also implies that a chronic inflammatory response will develop if the macrophages are unable to eliminate oxLDL sufficiently.

Atherosclerosis and Nitric Oxide Signalling

The nitric oxide signalling pathway in normal arteries

A major step forward in the understanding of blood vessel physiology was the discovery by Furchgott and Zawadzki of a factor released by the endothelium that relaxed the underlying smooth muscle. This endothelium-derived relaxing factor (EDRF) was later identified as nitric oxide (NO) or a related nitrosylated compound e.g. S-nitrosocysteine. Nitric oxide is formed by a five-electron oxidation of a terminal guanidino nitrogen atom of the amino acid L-arginine, with concomitant formation of L-citrulline, by an enzyme known as nitric oxide synthase (NOS). There are two major classes of NO synthases: constitutive and inducible (iNOS) enzymes. Constitutive isoforms are expressed in endothelial cells (eNOS), in neuronal cells (nNOS) and in certain other cell types. The activity of these isoforms is strictly calcium-calmodulin dependent and is present both in the cytosol and associated with membranes.
Stimulation of the appropriate receptors on the endothelial cell by physical (shear stress resulting from increased flow, mechanical deformation) or chemical (acetylcholine, bradykinin, substance P, ATP) stimuli raises the cytoplasmic calcium levels, with concomitant eNOS activation and formation of NO. Serotonin (5-hydroxytryptamine, 5-HT), although a potent vasoconstrictor through activation of 5-HT1 receptors on the vascular smooth muscle cells, also mediates dilatation by the EDRF/NO-dependent mechanism, through activation of 5-HT1-like receptors on the endothelium. In biological systems, the dominant reactions of NO will be with another free radical such as superoxide anion, transition metals such as haem iron, or oxygen. In the vessel wall, NO diffuses into the underlying smooth muscle cells to react with the haem group of a cytoplasmic guanylate cyclase. The formation of cyclic GMP then causes vasodilatation. Nitric oxide also raises cyclic GMP in the endothelial cells themselves, which inhibits the production of the potent endothelium-derived contracting factor endothelin. Inhibitors of NOS and guanylyl cyclase revealed an inhibitory role of NO but not of cyclic GMP in endothelin secretion by porcine aortic endothelial cells.

Nitric oxide signalling in atherosclerosis

It has been recognized for a long time that atherosclerotic blood vessels are very susceptible to the development of vasospasm in vivo and are hyperreactive to contractile agonists in vitro. Because coronary vasospasm can be provoked by several stimuli with different mechanisms of action, it has been proposed that dysfunction or denudation of the endothelium in atherosclerosis may contribute to that phenomenon by leaving constrictor responses unopposed. Even before it was realized that NO accounts for the biological activity of endothelium-derived relaxing factor, it was indeed demonstrated that artery segments obtained from atherosclerotic animals showed a loss of endothelium-dependent relaxation in organ bath experiments. From then on, numerous in vitro studies confirmed the defect in the NO signalling pathway in isolated atherosclerotic blood vessels in rabbits, pigs, rats, primates and humans. Basal as well as stimulated NO release appeared to be affected. Urinary nitrate, an index metabolite for NO formation in vivo, is decreased in cholesterol-fed rabbits. Catheterization-based studies in patients with coronary artery disease also demonstrated the impairment of endothelium-dependent coronary vasodilatation to acetylcholine or increased flow, particularly at atherosclerosis-prone branch points. The deterioration of endothelium-dependent vasodilatation is an early event, as it can be observed in patients with typical angina or cardiac risk factors but with angiographically smooth coronary arteries. The current weight of evidence suggests that impaired endothelium-dependent vasodilatation is the predominant mechanism underlying inappropriate constriction leading to ischaemic manifestations. The instantaneous relief of the ischaemic attacks by the NO donor nitroglycerin points to a defect in the endogenous NO pathway. Unopposed vasoconstrictor responses in general, but also the loss of the EDRF-component in the net reaction to some agonists, e.g. serotonin and norepinephrine in the pig and dog, and increased endothelin release in the absence of EDRF may contribute to the occurrence of vasospastic events in atherosclerotic vessels.

The systemic nature of the defect in NO signalling

The EDRF/NO pathway is also active in the small vessels determining the resistance of the vascular tree, thus contributing to blood pressure regulation. Several studies (reviewed by Anderson et al.) demonstrated that atherosclerosis in conduit vessels is accompanied by impaired endothelium-dependent vasodilatation in the microcirculation e.g. in the coronary and peripheral resistance vessels. Also the mere presence of cardiovascular risk factors was associated with dysfunctional microvascular endothelium. While the expected hypertensive effect might contribute to the progression of cardiovascular disease, this also implies that, besides a dysfunctional endothelial NO pathway, other factors are involved in the initiation and progression of atherosclerotic plaques, since lesions do not develop in these microvessels. The systemic nature of the endothelial dysfunction could be of use in the non-invasive evaluation of endothelial function in readily accessible arteries.

In summary, established atherosclerosis or the presence of risk factors e.g. hypertension, hypercholesterolaemia, and even male gender, decrease the activity of the EDRF/NO pathway. Endothelium-dependent dilatation is...
lost progressively as atherogenesis continues. Conduit vessels with lesions as well as resistance vessels in which lesions do not develop are affected, the latter apparently to a lesser extent.\textsuperscript{65,93}

Explanations for the Defective NO Signalling Pathway

The mechanisms underlying the dysfunctional endothelial NO signalling pathway in atherosclerosis and hypercholesterolaemia are multifactorial (reviewed in Refs 99 and 100). Atherosclerotic arteries demonstrating disturbed endothelium-dependent relaxation are still capable of dilating to the NO donor nitroglycerin which provides the smooth muscle with NO upon enzymatic or thiol-dependent bioconversion.\textsuperscript{101} As this demonstrates that the smooth muscle is still responsive to the dilatory action of NO, defective endothelial EDRF/NO release or increased NO inactivation after release appear to be involved. This is supported by the decreased release of bioactive NO from isolated perfused atherosclerotic arteries as assessed by a superfusion bioassay.\textsuperscript{101,44,50,102,103}

Endothelial receptor dysfunction

Endothelium-dependent dilatation is lost in a progressive, hierarchical fashion.\textsuperscript{82} Vasodilator responses to acetylcholine and serotonin are lost early, before impairment of the dilatation to other receptor agonists e.g. substance P, to the receptor-independent stimulus calcium ionophore A-23178 or to mechanical stimuli. The agonist specificity of the early dysfunction suggests that it is not caused by a nonspecific impairment of the ability of the endothelial cells to produce NO, but points to selective alterations in endothelial receptor function or post-receptor effector pathways. This view is strengthened by the observation that the receptor-induced release of other endothelial products, such as prostacyclin, is attenuated as well.\textsuperscript{104,105} In this respect, it has been demonstrated that the pertussis toxin-sensitive $G_i$ protein signalling pathway, which is employed by serotonin to elicit endothelium-dependent relaxation in the pig coronary artery, is impaired in the early stages of the atherosclerotic process.\textsuperscript{106} Several studies have demonstrated that incubation of vessel segments with lipoproteins, and in particular with oxLDL, inhibited endothelium-dependent relaxation in a way similar to hypercholesterolaemia \textit{in vivo} (reviewed by Flavahan\textsuperscript{99}). Lysophosphatidylcho-

Expression of eNOS activity

The receptor selectivity (see above) argues against a reduced expression of eNOS activity in endothelial cells overlying atherosclerotic lesions. This assumption has recently been confirmed by \textit{in situ} hybridization of eNOS mRNA and immunohistochemistry of eNOS protein in the aorta of hypercholesterolaemic rabbits. The results suggested that the expression of eNOS mRNA and protein was even increased in endothelial cells overlying fibro-fatty plaques.\textsuperscript{112} Studies of the expression and the activity of eNOS after \textit{in vitro} exposure of endothelial cells to LDL, oxLDL or cholesterol yielded contradictory results, ranging from initial upregulation, via no effect to downregulation of eNOS expression. After acute exposure of the isolated rabbit carotid artery to cholesterol-rich liposomes, acetylcholine-induced release of EDRF/NO was evaluated functionally in a superfusion bioassay and appeared to be enhanced.\textsuperscript{113} This could be due to augmentation of the release and/or prolongation of the half-life of NO. Exposure of endothelial cell membranes to liposomal cholesterol raised the activity of plasma membrane bound eNOS at low cholesterol concentrations, but had the opposite effect at higher concentrations.\textsuperscript{114} The effects were attributed to modulations of the lipid environment of the membrane bound eNOS. Cholesterol was without effect on the activity of eNOS in the cytosol of endothelial cells. Interestingly, the increased activity of particulate eNOS was accompanied by a concentration-dependent increase in superoxide anion production, but the authors did not investigate whether eNOS was the source (see below). Low concentrations of oxLDL have been reported both to increase\textsuperscript{115} and to decrease\textsuperscript{116} the expression of mRNA, protein and activity of eNOS in cultured endothelial cells. The upregulation of eNOS mRNA was mimicked by lysophosphatidylcholine, one of the many constituents of oxLDL. This discrepancy between both reports could be due to large variability among different preparations of oxLDL with respect to biological activities. Downregulation of the expression of mRNA of eNOS by higher concentrations of oxLDL appears to be a more consistent finding.\textsuperscript{115,116}
Native LDL was without effect on eNOS mRNA levels and eNOS activity, although exposure of cultured endothelial cells to LDL may promote superoxide anion formation by eNOS (see below).

**Arginine availability**

Although arginine availability seems to be sufficient initially in view of the receptor-selectivity of the endothelial dysfunction (see above), studies on endothelium-dependent vasodilatation suggest that Larginine depletion may occur. It should be noted, however, that the studies addressing the effect of the NO precursor show discordant results. In this respect, the behaviour of conduit arteries with overt atherosclerosis appears to be different from arterioles in the microcirculation, in which atherosclerosis does not develop.

**Conduit arteries with atherosclerosis**

Most authors agree that in vitro Larginine addition fails to restore the endothelium-dependent relaxations in the aorta, femoral artery with cholesterol-induced atherosclerotic lesions. One report showed that acute in vivo Larginine administration to hypercholesterolaemic rabbits improved the endothelium-dependent relaxations in isolated large vessels in vitro, but it should be noted that responses to nitroglycerin were affected to a very similar extent. Also prolonged in vivo Larginine treatment ameliorated endothelium-dependent relaxations of isolated segments only marginally. As the endothelial dysfunction is strictly dependent on the size of the lesions in rabbit conduit arteries, the marked antiatherogenic effect of prolonged Larginine supplementation (see below) most likely explains the improved endothelium-dependent relaxations. In patients with coronary or peripheral artery occlusive disease, a positive effect of Larginine on endothelium-dependent dilatation of the conduit arteries was lacking.

**Conduit arteries without overt atherosclerosis**

Although the rabbit basilar artery develops neither atherosclerotic lesions nor a clear endothelial dysfunction after prolonged hypercholesterolaemia, an improvement of the endothelium-dependent relaxations has been reported after in vitro exposure to Larginine. In addition, Larginine also attenuated the augmented vasoconstrictor responses to potassium chloride, serotonin and endothelin. The authors suggested that the normalization by Larginine of both the endothelium-dependent relaxation and the constrictor responses was the result of increased EDRF production. However, as cyclic GMP-mediated relaxation induced by endothelium-independent agonists was not studied, and as the contraction to a depolarizing potassium chloride solution is not affected by basal EDRF release, it is not entirely clear whether the actions of Larginine can be attributed solely to enhanced endothelial NO production. Lefer and Ma measured constrictions evoked by the NO inhibitor L-NAME as an index of basal NO release by the endothelial cells of rabbit coronary arteries isolated after three weeks of cholesterol diet. A reciprocal relationship existed between L-NAME evoked contractions and plasma cholesterol, suggesting that basal NO release by the segments became compromised in the absence of overt atherosclerosis. In vitro addition of Larginine almost totally restored this index of basal NO production. However, as non-endothelial iNOS may be induced in arteries of cholesterol-fed rabbits, it cannot be excluded that the vasoconstrictor responses to L-NAME resulted from inhibition of iNOS rather than eNOS.

**Arterioles without overt atherosclerosis**

The results obtained in conduit arteries suggest that Larginine may upregulate the impaired eNOS activity only if the cholesterol-exposed arteries are still lesion-free. Accordingly, all studies, except one, reported that Larginine infusion resulted in marked improvement to complete restoration of endothelium-dependent vasodilatation in the coronary and peripheral microcirculation in hypercholesterolaemic rabbits, pigs and humans. The mechanism of the amelioration of endothelium-dependent relaxations by Larginine is not yet clear, and could be due to an interaction with smooth muscle cells or other effects. In view of plasma levels of Larginine in the range of 150 to 250 µM and a K_m of 5 to 10 µM for NOS isoforms, it is indeed surprising that Larginine availability can ever limit NO biosynthesis. Larginine enters cells by facilitated diffusion via the y^+ transporter. As exogenous Larginine addition neither induces endothelium-dependent relaxations by itself, nor enhances agonist-induced endothelium-dependent relaxations in normal isolated vessel rings, the intracellular stores appear to be sufficient for maximal eNOS activity in physiological circumstances. The increase in membrane cholesterol associated with hypercholesterolaemia might impair endothelial Larginine transport, thus eventually depleting the intracellular stores. The latter may also result
from the increased output of inactive nitrogen oxides, as demonstrated in hypercholesterolaemic rabbit aorta. However, reversal by L-arginine of hypercholesterolaemic endothelial dysfunction may not simply reflect the replenishment of the substrate for NO production. The observation that the effect of L-arginine administration to hypercholesterolaemic rabbits is not sustained and depends on the anatomic site and sex indeed supports a more complex mechanism of action.

As the best results are obtained in the microcirculation after L-arginine treatment in vivo, other less well characterized systemic effects of the amino acid e.g. its secretagogue effects on the adrenals and pituitary gland, may prevail. This is illustrated by observations in healthy persons, where L-arginine infusion stimulated basal and acetylcholine-induced relaxation in the peripheral circulation and decreased the systemic blood pressure. The concomitant increase in urinary nitrate and cyclic GMP could not simply be attributed to a direct stimulating effect of L-arginine on eNOS, as prostaglandin E2-induced dilatation also increased these parameters in the urine. Furthermore, intravenous L-arginine administration increased urinary flow, which by itself resulted in enhanced excretion of nitrate and CGMP in the absence of elevated nitrate plasma levels.

Endothelial NO synthase inhibition

L-arginine may be effective in conditions where endogenous NOS inhibitors are formed. Dimethylarginine (DMA) has been found in the urine and plasma of humans and inhibited macrophage and vascular NO synthesis in vivo and in vitro in animals and humans, suggesting the existence of endogenous mechanisms to regulate NO synthesis. Recently, DMA was reported to be increased in the serum of cholesterol-fed rabbits. All classes of NO synthases are liable to feedback inhibition by NO, probably by the interaction of NO with the haem protein group. Hence, high output NO production by iNOS (see below) might downregulate eNOS activity. This is supported by the observation that chronic in vivo administration of large doses of an NO donor to rabbits depressed the ex vivo output of EDRF/NO in response to acetylcholine, as assessed by means of bioassay. Endothelial NOS may also be suppressed by other locally produced inflammatory mediators e.g. the T lymphocyte-derived mediator interferon-γ.

Inactivation of NO by superoxide anion

Superoxide anion is known to inactivate EDRF/NO. Generation of superoxide anion in normal vessels reduced endothelium-dependent relaxation. Under normal conditions, inactivation of EDRF by superoxide radicals is prevented by cytosolic Cu-Zn superoxide dismutase (SOD) and by extracellular SOD type C associated with heparan sulphate proteoglycans on the endothelial cell surface and in the interstitium.

Hypercholesterolaemia in the rabbit increased the intimal production of reactive oxygen species, resulting in increased degradation of NO (reviewed by Harrison and Ohara). The tunica media beneath the atheromatous plaque in WHHL rabbits also inactivated EDRF/NO by an SOD-sensitive mechanism. Increased vascular production of reactive oxygen species may result from enhanced xanthine oxidase activity in the endothelium or from production by infiltrated monocytes. In addition to direct inactivation of EDRF/NO by oxLDL and lysophosphatidylcholine, oxLDL has been shown to stimulate the respiratory burst in neutrophils, and lysophosphatidylcholine induced superoxide production in vascular smooth muscle cells via protein kinase C activation. Endothelial NADPH oxidase systems, activated by protein kinase C may also be involved. Protracted endothelial cell exposure to atherogenic native LDL concentrations increased superoxide anion production by three independent oxidative systems—cyclooxygenase, P450 isozyme and eNOS—of which the latter appeared to be the greatest source. Nitrotyrosines, hallmarks of peroxynitrite formation from superoxide and NO, were detected intracellularly.

Furthermore, a striking feature of NOS is its ability to generate superoxide anion when either L-arginine or the cofactor tetrahydrobiophterin is limiting. Under these circumstances, NADPH oxidation is uncoupled from synthesis of NO, and oxygen becomes the electron acceptor, resulting in superoxide formation. This has been demonstrated to occur in the constitutive NOS of the brain. Whether the low arginine levels needed for superoxide biosynthesis occur in intact endothelial cells in vivo is unclear. Arginine depletion of eNOS might occur from high local L-arginine consumption by iNOS (see below). Arginine availability may also be reduced by impediment of cellular uptake or delivery to eNOS, as has been suggested to occur in endothelial cell cultures.
treated with native LDL. In the latter experiments, LDL-exposed cells produced significantly more superoxide anion than untreated cells, which was reversed by arginine supplementation. Inducible NOS did not seem to be involved, as Ca\(^{2+}\)-independent arginine-to-citrulline conversion under apparent \(V_{\text{max}}\) conditions was low. Nevertheless, in conditions where iNOS, which is much more demanding for substrate than eNOS, is induced, insufficient L-arginine might result in superoxide anion release. This would also explain the benefit of providing L-arginine, i.e. to promote re-coupling, thus reducing vascular superoxide production and prolonging the half-life of EDRF/NO. These findings provide new insight into the mechanisms by which hypercholesterolaemia might both stimulate superoxide production and decrease functional NO levels.

The disturbed balance between vascular superoxide and endothelial nitric oxide production, resulting in the loss of functional NO, may be compensated for by iNOS activity in the vascular wall (see below) and/or by upregulation of endogenous SOD. Addition in the organ bath of CuZn SOD, which does not penetrate cells, or preincubation with extracellular SOD type C, which binds extracellularly to vascular structures, also protected against the detrimental effects of superoxide radicals on endothelium-dependent relaxation. Conversely, exhaustion of these protective mechanisms, which may be time-, species-, or vessel-dependent, may tip over the balance towards a net decrease in functional EDRF/NO.

In rabbits, but not in pigs, hypercholesterolaemia alone did not impair the endothelial dilator function in large vessels, but only occurred in arteries with intimal plaques with the exception of the coronary arteries. Apparently, the rabbit is capable of keeping the superoxide and nitric oxide production in balance, as long as lesions do not develop. Superoxide production in the media beneath the plaque or the presence of fatty streaks containing large amounts of macrophages and lipids, may disturb the balance by the high local superoxide production and the trapping of the lipophilic NO molecule.

Raising the antioxidant capacity in the vessel wall by the administration of CuZn superoxide dismutase, polyethylene-glycolated or liposome-entrapped to ensure cell entrance, partly restored the endothelium-dependent relaxation in the isolated aorta of the cholesterol-fed rabbit. In keeping with these findings, it has been shown that addition of antioxidant vitamins in the diet of cholesterol-fed rabbits preserved the endothelium-dependent dilatation in the absence of an effect on lesion formation. Also, dietary correction of hypercholesterolaemia in the rabbit normalized both the endothelial superoxide production and dramatically improved the vasodilator response to acetylcholine. Oral administration of 2 g ascorbic acid produced marked improvement in the forearm vascular response to hyperaemia in patients with coronary artery disease. However, short-term treatment with antioxidants in patients with hypercholesterolaemia did not improve the forearm vascular responses to acetylcholine.

Eventually, atherosclerotic plaques, in particular when lipid-rich, may trap NO and may also mechanically disturb the normal dilatation of the medial smooth muscle. At this stage, the relaxation to exogenous NO donors e.g. nitroglycerin, and to endothelium-independent dilator substances e.g. atrial natriuretic peptide also becomes impaired.

### Atherosclerosis and Inducible Nitric Oxide Synthase Expression

Animal and human macrophages, smooth muscle cells and endothelial cells are capable of expressing iNOS after stimulation with endotoxin or cytokines. In contrast to eNOS, iNOS produces high amounts of NO for a sustained period. In early reports, the presence of a constitutive NOS in vascular smooth muscle cells has been suggested, but these observations were probably related to the induction of iNOS during the isolation and manipulation of the cells or tissue.

### Atherosclerosis and iNOS

Only recently, functional and biochemical evidence suggested that cholesterol feeding of rabbits induced iNOS expression in the aorta and in the lungs. The addition of NOS inhibiting L-arginine analogues caused endothelium-independent contractions in the isolated atherosclerotic rabbit aorta, pointing to the continuous formation of NO by subendothelial iNOS. The observation that the NOS inhibitors nitro-L-arginine methyl ester (L-NAME) and monomethyl-L-arginine (L-NMMA) were equipotent in this respect further supported the involvement of iNOS. The expression of iNOS may account for the increased output of nitrogen oxides in arteries of cholesterol-fed rabbits. Histochemical studies in WHHL rabbits confirmed the expression of iNOS in medial and intimal smooth muscle cells, and showed...
significant enhancement of endotoxin-induced 
iNOS expression in atherosclerotic rabbits com-
pared with normal New Zealand White 
rabbits. In a chronic rejection model of trans-
plant atherosclerosis in the rat, both macro-
phages and smooth muscle cells stained 
positive for iNOS. More recently, it has been 
reported that iNOS is present within human 
atherosclerotic lesions and co-localizes with 
nitrotyrosine in macrophages and smooth 
muscle cells. Induction of iNOS was also 
observed in the endothelium and smooth muscle 
of intramyocardial vessels of patients with 
ischaeic heart disease.

The observation that iNOS induction in vas-
cular smooth muscle cells, as in macrophages, is 
accompanied by upregulation of L-arginine 
transport, may contribute to the stimulating 
effect of L-arginine on vessel relaxation in some 
experimental settings.

Mechanical injury and iNOS

The hypocontractility to several agonists ob-
served after balloon denudation of rat 
or balloon angioplasty of rabbit arteries 
was also attributed to the induction of iNOS in the vessel 
wall and was already noticeable 6 h post-
injury. Unlike the case in normal arteries, L-
arginine evoked significant relaxation in deen-
thelialized balloon-injured vessel segments, 
which was reversed by the NOS inhibitor L-
NAME. In the balloon-injured rat carotid 
artery, reverse transcription and polymerase 
chain reaction amplification showed the appear-
ance of iNOS mRNA already 24 h post surgery, and in situ 
hybridization located iNOS mRNA in 
neointimal smooth muscle cells, particularly at the 
liminal side of the vessel, conferring a 
nonthrombogenic surface.

Cytokines introduced in the affected vessel by 
infiltrating monocytes and T lymphocytes may 
provide the stimulus for iNOS induction in the 
smooth muscle cells. Also, oxLDL and 
LDL have been shown to upregulate iNOS 
activity in macrophages and vascular smooth 
muscle cells under certain conditions. On the 
other hand, mediators that inhibit iNOS induc-
tion e.g. heat shock proteins or NO itself, may 
determine the final output of NO.

NO: A Radical with Anti-
atherogenic Properties

Since the impairment in the EDRF/NO pathway 
occurring early or even precedes the development 
of visible lesions in the process of atheroscle-
sis, many authors have speculated on a causal 
role of this functional defect. This view is 
supported by a number of in vitro studies 
demonstrating the suppression by NO, pro-
duced endogenously or derived from NO 
donors, of several key processes involved in 
atherogenesis (Table 1).

In vitro studies

Interference with oxidative processes

Since superoxide anion contributes to oxidative 
stress, LDL modification and inflammatory 
gene transcription via the activation of NF-
κB, the decreased formation or inactivation of 
superoxide by NO may be considered protec-
tive. In this respect, it has been shown that the 
NO derived from iNOS inhibits xanthine oxy-
dase in interferon-γ-stimulated macrophages 
and that authentic exogenous NO inhibits 
xanthine oxidase in a cell-free system, possibly 
by reversible alteration of the flavin prosthe-
site. Nitric oxide also inhibits neutrophil 
superoxide anion production via a direct action 
on the NADPH oxidase. The NO donors 
known as NONOates abrogate the cytotoxic 
effects of superoxide on Chinese hamster lung 
fibroblasts. Moreover, NO also protected 
against cellular damage by other reactive oxy-
gen species e.g. hydrogen peroxide and alkyl 
peroxides, by several mechanisms such as pre-
vention of haem oxidation, inhibition of Fenton-
type oxidation of DNA, and abatement of lipid

| Table 1. Anti-atherogenic properties of nitric oxide in vitro |
| --- |
| **Interference with oxidative processes** |
| Cytoprotection against oxidative stress | 198–200 |
| Inhibition of cell-mediated LDL oxidation | 201–205, 210 |
| Inhibition of lipoxygenase activity | 207 |
| Inhibition of oxLDL cytotoxicity | 211 |
| Inactivation of xanthine oxidase | 195–197 |
| Inhibition of NADPH oxidase | 196 |
| Reduction of endothelial hyperpermeability | 212 |
| **Interference with leukocyte recruitment** |
| Suppression endothelial adhesion molecules | 214, 217 |
| Inhibition of monocyte chemotaxis | 219 |
| Inhibition of monocyte adhesion | 217, 219, 220 |
| Inhibition of neutrophil adhesion | 60, 213–216 |
| Inhibition of MCP-1 expression | 218 |
| Inhibition of NF-κB activation | 217, 218 |
| **Antiproliferative actions** |
| Inhibition of smooth muscle cell proliferation | 221–227 |
| Inhibition of smooth muscle cell migration | 228, 229 |
| Inhibition of T-cell proliferation | 230–232 |
| Stimulation of endothelial repair | 233 |
| **Inhibition of platelet activation** | 234–236 |
peroxidation. Activation of the stress protein haem oxygenase by NO may contribute to its cytoprotective effect. Furthermore, NO reduced the oxidative modification of LDL by macrophages and endothelial cells by acting as a potent terminator of radical chain propagation reactions. Also, as 15-lipoxygenase has been implicated in LDL oxidation, NO might protect LDL by inhibiting lipoxygenase activity. Conversely, the decreased expression of iNOS activity in oxLDL-laden foam cells has been implicated in the accelerated oxidation of LDL by these macrophages. Furthermore, NO released by donor compounds inhibited the cellular toxicity of the lipid hydroperoxides contained in oxLDL, presumably by scavenging the propagatory free radicals generated during peroxidation of the endothelial cell membranes. NO donors also blocked the hydrogen peroxide-related increase in endothelial permeability by a cyclic GMP-mediated mechanism.

Interference with leukocyte recruitment
Inhibition of NO synthase in endothelial cells by L-NAME increased the intracellular oxidative stress, resulting in enhanced adhesion of neutrophils via CD18/ICAM-1 interaction or the upregulation of P-selectin on the endothelium. Neutrophil adhesion to the endothelium was augmented by hypercholesterolaemia and this increase was prevented by the NO donor SPM 5185. Inhibition of NO biosynthesis also induced the expression of VCAM-1 and upregulated MCP-1 mRNA and protein in cultured human endothelial cells, whereas addition of the NO donor SIN-1 dose-dependently decreased MCP-1 mRNA expression and secretion, presumably by suppressing a NF-κB-like transcriptional regulator. Authentic NO gas inhibited monocyte adhesion and chemotaxis and exposure to shear stress inhibited monocyte adhesion by an NO-dependent mechanism. Furthermore, NO donors decreased the cytokine-induced expression of the endothelial adhesion molecules VCAM-1, ICAM-1 and E-selectin.

Antiproliferative action of nitric oxide
As the proliferation of vascular smooth muscle cells, macrophages and T lymphocytes contributes to the progression of intimal lesions, cell growth inhibition by NO could significantly reduce lesion formation. Nitric oxide has been shown by several investigators to inhibit smooth muscle cell proliferation as well as migration in vitro. Both effects were cyclic GMP-mediated. T-cell proliferation is also reduced by NO.

Interestingly, the effect of NO appeared to be quite different in endothelial cells, in that it induced endothelial cell growth and motility in vitro and mediated the mitogenic effect of vascular endothelial growth factor.

Antiplatelet effects of nitric oxide
Although the inhibitory effect of NO on platelet adhesion and aggregation (reviewed by Bassenge) is often considered an anti-atherogenic effect of NO, platelets are minimally involved during the early stages of the atherogenic process. However, the endothelial surface over advanced human plaques often shows focal loss of cells and platelet adhesion may promote the progression of those lesions, eventually leading to plaque fissuring and thrombosis. Also following gross mechanical injury evoked by balloon angioplasty, platelet-derived products have been proposed to contribute to neointima formation.

Inhibition of atherosclerosis by NO in vivo
Several in vivo studies (Table 2) support the concept that NO may suppress both atherosclerosis and intimal thickening. Oral L-arginine...
supplementation caused a striking inhibition of fatty streak formation in hypercholesterolaemic rabbits. Since the adhesion of monocytes to endothelial cells is imperative to lesion formation in this model, the authors further addressed the effects of the NO precursor on the adhesion of a murine monocytic cell line to the aortic endothelium of cholesterol-fed rabbits ex vivo. The enhanced endothelial adhesiveness for monocytes in hypercholesterolaemic aortas was significantly reduced if the rabbits had received supplemental dietary arginine and significantly increased in rabbits treated with L-NMMA. This was associated with, respectively, increased or decreased elaboration of vascular nitrogen oxides as measured by chemiluminescence. The observation that hypercholesterolaemia-induced impairment in endothelium-dependent relaxation was only marginally improved by Larginine treatment while lesion formation was significantly reduced, suggests that the beneficial effect of Larginine may primarily infer from the increased activity of iNOS. However, it should be noted again that arginine and other basic amino acids are potent hormonal secretagogues in adrenals and many other endocrine organs. Hence, part of the anti-atherosclerotic effect of systemic arginine administration might be related to the release of glucocorticoids or other immunosuppressive hormones which are known to suppress intimal thickening and experimental atherosclerosis.

The ambiguity of results obtained with L-arginine is avoided in studies with NO donor compounds or NOS inhibitors. LNMMA and LNAME increased leukocyte adhesion in vivo by a CD11/CD18-dependent mechanism. Conversely, the NO donor SIN-1 prevented leukocyte adhesion. The observation that both SOD and SIN-1 inhibited leukocyte adhesion only under conditions associated with superoxide formation suggests that the anti-adhesive properties of NO may relate to its ability to inactivate the superoxide anion. Another NO donor attenuated leukocyte endothelial interaction in an in vivo model of ischaemia-reperfusion, and this appeared to be in part mediated through a decreased expression of endothelial P-selectin. Pentaerythrityl tetranitrate, an organic nitrate, has been documented to inhibit cholesterol-induced fatty streak formation in rabbits, but the beneficial effect was not seen with isosorbide mononitrate, another organic nitrate. This could be due to differences with respect to the development of tolerance or the NO releasing capacity between the two organic nitrates. Conversely, treatment with molsidomine, whose active metabolite is the spontane-ous NO donor SIN-1, actually enhanced lesion formation in the hypercholesterolaemic rabbit. This may relate to the generation of superoxide anion from SIN-1, which could abrogate the beneficial effects of the simultaneously released NO.

Moreover, oral or parenteral treatment with the NO synthase inhibitor LNAME for 4 to 12 weeks enhanced fatty streak formation significantly. Therefore, the data suggest that vascular NO, produced by eNOS or iNOS, inhibits de novo formation of intimal lesions. However, this conclusion is somewhat confounded by the observation that LNAME augmented plasma cholesterol levels in these rabbits, particularly after prolonged treatment. Since hypercholesterolaemia is the ultimate driving force for the lesions in this model, it is conceivable that this contributed to the accelerated atherosclerosis.

The inhibitory effect of NO on atherosclerosis may result from the above described in vitro actions, but NO-mediated decrease of endothelin production may also be involved. Endothelin is a potent mitogen and inducer of collagen synthesis in vascular smooth muscle cell cultures, and its production may be increased in atherosclerosis.

Inhibition of intimal thickening by NO

The interferences with cholesterol absorption or metabolism are circumvented in studies of intimal thickening in animals with normal plasma cholesterol levels. Oral Larginine supplementation suppressed intimal hyperplasia in experimental vein grafts and after balloon denudation of the rat carotid artery. The NOS inhibitor LNAME reversed the effect of arginine, indicating that the attenuation of the intimal hyperplasia was mediated by NO. The NO is presumably formed by iNOS, since regrowth of the endothelial cells is virtually absent, and eNOS activity does not recover. Moreover, the endogenous biosynthesis of NO appears to modulate the process, since systemic or local, perivascular administration of LNAME aggravated intimal thickening in response to balloon denudation. Increasing the flow in the injured carotid artery by ligating the contralateral artery significantly reduced intimal thickening, and this effect was in part mediated by endogenous NO. Likewise, the protective effect of angiotensin converting enzyme (ACE) inhibitors, which also block kinin degradation, may be mediated in part by stimulation of the endogenous production of NO by bradykinin.
Conversely, treatments with exogenous NO by oral administration of the cysteine-containing NO donor SPM5185 or by chronic inhalation of NO were effective in reducing the size of intimal lesions after injury of the rat carotid artery. Nitroglycerin treatment only decreased the initial medial smooth muscle cell proliferation without affecting the thickness of the neointima after 3 weeks. This may be due to insufficient NO formation as a result of the well known development of tolerance associated with this class of nitrovasodilators. A single local treatment of the denuded rabbit femoral artery with a protein adduct of NO inhibited platelet deposition and neointimal proliferation in the injured rabbit femoral artery. In vivo eNOS gene transfer in the vessel wall after denudation of the rat carotid artery provided further evidence for the inhibition of smooth muscle cell accumulation by NO. Transfection of the eNOS gene in the media not only restored the calcium-dependent NO production and concomitant relaxations of the denuded artery, it also inhibited neointima formation at day 14 after balloon injury by 70%.

This experiment provides direct evidence that NO is an endogenous inhibitor of vascular lesion formation in vivo. Furthermore, these experiments suggest the possibility of eNOS transfection or local delivery of long-lived NO adducts as potential therapeutic approaches to treat neointimal hyperplasia.

The inhibition of intimal thickening by NO is not restricted to models characterized by endothelial denudation, but is also seen when intimal thickening is induced in rabbit arteries by the perivascular placement of a collar. Oral treatment with the NO donor SPM5185 reduced the collar-induced intimal thickening, whereas only a tendency towards inhibition was observed by treatment with molsidomine, whose active metabolite is the NO donor SIN-1. It is not clear whether the difference between the two drugs was related to the dose, or different characteristics of the NO donors, i.e. the presence of sulphhydryl groups in SPM5185 or the release of superoxide anion from SIN-1.

Finally, there are indications that NO inhibits neointima formation induced by balloon angioplasty of lesion-free animal arteries. The vessel wall distension by the balloon creates a much more extensive injury of the media, predisposition to thrombus formation and accelerated intimal thickening. Although the endothelial cells regenerate quickly, vascular reactivity studies show that the eNOS pathway remains dysfunctional, whereas iNOS is induced in non-endothelial vascular cells. Oral Larginine supplementation improved the endothelium-dependent vasorelaxation and suppressed the intimal hyperplasia after balloon angioplasty of rabbit iliac arteries. In accordance with the finding in the collar model, treatment with the NO donor SIN-1 did not influence intimal thickening following porcine carotid angioplasty, although the compound was effective in inhibiting medial smooth muscle cell proliferation.

Also in two other models of intimal thickening a clear relationship between inhibition of smooth muscle cell mitosis and neointima formation is lacking. Smooth muscle cell mitosis was influenced less than intimal thickening after eNOS gene transfer in denuded rat arteries and after NO donor treatment of rabbit collared arteries. This suggests that NO exerts its major effect on smooth muscle cell migration, which is a crucial event in intimal thickening. Whether inhibition of migration is of importance to human atherosclerosis remains to be determined, as atherosclerosis develops in an existing intima and migration of smooth muscle cells from media to intima is not considered a major determinant in atherogenesis.

NO: A Radical Promoter of Atherosclerosis (Table 3)

| Oxidation of LDL | Cytotoxic effects | Induction of apoptosis | Increased matrix breakdown |
|------------------|-------------------|-----------------------|--------------------------|
| 201, 204, 263–267| 20, 268, 272–274  | 276, 277, 286         | 282–284                  |

Table 3. Pro-atherogenic properties of NO
Cytotoxic effects

The concept that peroxynitrite formation occurs in atherosclerosis is strongly supported by the immunohistochemical demonstration of extensive nitration of protein tyrosines in advanced human lesions. The presence of 3-nitro-L-tyrosine, quantified in the human brain by high-performance liquid chromatography, is also considered indicative of oxidative stress induced by reactive oxygen intermediates and nitric oxide. Excessive NO synthesis and peroxynitrite formation have been implicated in cytotoxic effects in endothelial cells and smooth muscle cells and macrophages. Cell damage results from the inhibition of mitochondrial respiration, aconitase activity and DNA synthesis, as well as from iron loss. On the other hand, nitric oxide-induced p53 accumulation safeguarded against DNA damage through p53-mediated suppression of iNOS gene expression, thus reducing the potential for NO-induced DNA damage. The release of basic fibroblast growth factor from damaged vascular smooth muscle cells may counteract the toxic effects on the endothelium by stimulating endothelial cell proliferation. In view of these findings, the protective effects of antioxidants in several models of atherosclerosis may in part derive from the prevention of NO breakdown by oxygen radicals.

Induction of apoptosis

Nitric oxide has also been reported to cause apoptosis or programmed cell death in macrophages and smooth muscle cells. Apoptosis participates in the regulation of the cellularity of intimal lesions in balloon-injured arteries and human atherosclerosis. Theoretically, augmentation of apoptosis by NO could retard plaque growth, which may be considered beneficial. However, an imbalance between proliferation and apoptosis has been suggested to underlie the development of the cell-poor, necrotic core. The size of the core determines the stability of the plaque. Stimulation of apoptotic cell death by NO or other molecules may thus increase the risk of plaque fissure and thromboembolic complications.

Matrix breakdown

Enhanced matrix breakdown by the activation of matrix metalloproteinases by NO or the inactivation of the tissue inhibitor of metalloproteinase-1 by peroxynitrite may contribute to the destabilization of the lesions and may promote the development of a necrotic core in advanced plaques.

In summary, it has been known for a decade that the loss of endothelial NO production impairs endothelium-dependent dilatation and promotes vasospasm in atherosclerotic arteries. More recent evidence indicates that dysfunction of the endothelial NO pathway may promote atherosclerosis in view of the described protective effects of NO against leukocyte adhesion, oxidative processes, smooth muscle cell migration and proliferation. On the other hand, there is ample evidence to consider NO as a molecular aggressor in chronic inflammatory processes like atherosclerosis.

References

1. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wassler RW. A definition of the intima of human arteries and of its atherosclerosis-prone regions. Circulation 1992; 85: 391–405.
2. Thubrikar MJ, Robicsek F. Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 1995; 59: 1594–1603.
3. Davies MJ, Woolf N. Atherosclerosis: what is it and why does it occur? Br Heart J 1999; 69 (suppl): S5–S11.
4. Jackson CJ. Animal models of restenosis. Trends Cardiovasc Med 1994; 4: 122–130.
5. Kockx MM, De Meyer GRY, Jacobs WA, Bult H, Herman AG. Triphasic sequence of neointimal formation in the cuffed carotid artery of the rabbit. Arterioscler Thromb 1992; 12: 1447–1457.
6. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809.
7. Libby P, Hansson GK. Biology of disease. Involvement of the immune system in human atherosclerosis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5–15.
8. Witztum JL. Role of oxidised low density lipoprotein in atherogenesis. Br Heart J 1995; 69 (suppl): S12–S18.
9. Holvoet P, Collien D. Oxidized lipoproteins in atherosclerosis and thrombosis. Br Med J 1994; 8: 1279–1284.
10. Thomas JP, Geiger PG, Grotti AW. Lethal damage to endothelial cells by oxidized low density lipoprotein: role of selekneroxenases in cytoprotection against lipid hydroperoxide- and iron-mediated reactions. J Lipid Res 1993; 34: 479–490.
11. Kume N, Cybulsky MI, Gimbrone MA Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leucocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992; 90: 1138–1144.
12. Khan BV, Parthasarathy SS, Alexander RW, Meldford BM. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 1995; 95: 1262–1270.
13. Collins T. Biology of disease. Endothelial nuclear factor-kB and the initiation of the atherosclerotic lesion. Lab Invest 1993; 68: 499–508.
14. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.
15. Ignarro LJ, Baga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265–9269.
16. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.
17. Feilisch M, te Poel M, Zamora R, Dussens A, Mencada S. Understanding the controversy over the identity of EDRF. Nature 1994; 368: 62–65.
18. Myers PR, Minor RL Jr, Guerra R Jr, Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor closely resemble S-nitrosothiols nitrogen oxide. Nature 1990; 345: 161–163.
19. Rubanyi GM, Johns A, Wilcox D, Bates FN, Harrison D. Evidence that a S-nitrosothiol, but not nitric oxide, may be identical with endothelium-derived relaxing factor. J Cardiovasc Pharmacol 1991; 17 (suppl 3): S41–S46.
20. Gross SS, Wolin MS. Nitric oxide: pathophysiological mechanisms.
21. Busse R, Milsch A, Heming J, Hecker M. Mechanisms of nitric oxide release from the vascular endothelium. Circulation 1993; 87 (suppl I): 18–20.
22. Martin GR. Vascular receptors for 5-hydroxytryptamine: distribution, function and classification. Pharmacol Ther 1994; 62: 283–324.
23. Warner TD, Mitchell JA, Sheng H, Marad E. Effects of cyclic GMP on smooth muscle contraction. Arterioscler Thromb 1994; 14: 170–176.
24. Marad E. Regulation of cytosolic guanyl cyclase by nitric oxide: the NO-cyclic GMP signal transduction system. Adv Pharmacol 1994; 26: 19–33.
25. O'Brien PM, Deanin MB, Marad E. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 1996; 380: 174–176.
26. Boulanger C, Lüscher TE. Release of endothelin from the porcine aorta. Inhibition by endothelin-derived nitric oxide. J Clin Invest 1997; 95: 1587–1593.
27. Yangasawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Matsu Y, Yazaki Y, Goto K, Masaki T. A novel potent von Willebrand factor receptor peptide with endothelial cell activity. Nature 1998; 332: 411–415.
28. Boroujerdi F, Sevel J, Kukovetz WR. Nucleotide cyclase inhibitor, ODQ reveals role of nitric oxide, but not of cyclic GMP in endothelin-1 secretion. FASEB J 1998; 376: 262–266.
29. Schroeder JS, Bolen JL, Quin TA, Clark DA, Hayden W, Higgins, DJ. Weiler L. Provocation of coronary spasm with ergonovine maleate. Nature 1975; 257: 262–266.
30. Yamaoka M, Abe T, Nakanuma T, Hatazono K, Shimokawa H. Hyperreactivity of coronary arterial smooth muscles in response to ergonovine from rabbits with hereditary hyperlipidemia. Circ Res 1983; 53: 63–70.
31. Henry PD, Yokoyama M. Supersensitivity of atherosclerotic rabbit aorta to ergonovine. J Clin Invest 1980; 66: 306–313.
32. Verbeuren TJ, Jordens FH, Zonnekeyn LL, Van Hove CE, Coene M-C, Herman AG. Effect of hypercholesterolemia on vascular reactivity in isolated arteries of control and hypercholesteremic rabbits. Circ Res 1986; 58: 552–564.
33. Cohen PA, Shepherd JT, Vanhoutte PM. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelet thromboxane. Circ Res 1985; 56: 771–778.
34. Goks T, Angus JA. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 1983; 305: 627–630.
35. Heistad DD, Armstrong ML, Marcus ML, Piegors DJ, Mark AL. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res 1986; 54: 711–718.
36. Freeman PC, Mitchell G, Heistad DD, Armstrong ML, Harrison GD. Atherosclerosis impairs endothelium-dependent vasoconstriction to acetylcholine and thrombin in primates. Circ Res 1986; 58: 783–789.
37. Jaffe WR, Severs NJ, Thompson AB. Kapopatka CE. Cholesterol feeding impairs endothelium-dependent relaxation of rabbit aorta. Can J Physiol Pharmacol 1985; 63: 1206–1209.
38. Sreeharan N, Jayakody RL, Senaratne MJ, Thomson AR, Kapopatka CE. Endothelium-dependent relaxation in treadmill experimental atherosclerosis in the rabbit aorta. Can J Physiol Pharmacol 1986; 64: 1451–1453.
39. Habib BB, Bossaller C, Wells S, Williams C, Merrisett JD, Henry PD. Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker 201100. Circ Res 1986; 58: 771–778.
40. Bossaller C, Habib BB, Yamamoto H, Williams C, Wells S, Henry PD. Impaired muscular endothelium-dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary arteries and aorta. J Clin Invest 1979; 73: 170–174.
41. Tagawa H, Tomoike H, Nakamura M. Protective mechanism of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 1986; 58: 380–386.
42. Jayakody L, Senaratne M, Thomson A, Kapopatka T. Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res 1987; 60: 251–264.
43. Galle J, Buus R, Bussenc E. Hypercholesterolaemia and atherosclerosis change vascular reactivity in rabbits by different mechanisms. Arterioscler Thromb 1991; 11: 1712–1718.
44. Chappell SP, Lewis MJ, Henderson AH. Effect of lipid feeding on endothelium dependent relaxation in rabbit aortic preparations. Cardiovasc Res 1987; 21: 34–38.
45. Kolodgie FD, Virmani R, Rice HE, Mergner WJ. Vascular reactivity during the progression of atherosclerotic plaque. A study in Watanabe Heritable Hyperlipidemic rabbits. Circ Res 1986; 66: 1113–1126.
46. Kanamura K, Waga S, Tochih N, Nagatani K. The effect of atherosclerosis on endothelium-dependent relaxation in the aorta and intracranial arteries of rabbits. J Neurosurg 1989; 70: 793–798.
47. Shiotani K, Itoh H, Nakamura M. Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis. Circ Res 1988; 64: 900–914.
48. Cohen RA, Zimny AJ, McCall SD, Nishishita CC, Cunningham LD. Loss of selective endothelial cell vasoactive functions caused by hypercholesterolemia in pig coronary arteries. Circ Res 1988; 63: 903–910.
49. Yamamoto Y, Tomoike H, Egashira K, Nakamura M. Attenuation of endothelin-related relaxation and enhanced responsiveness of vascular smooth muscle to perfusion pressure in coronary arterial segments from miniature pigs. Circ Res 1987; 61: 772–778.
50. Komori K, Shimokawa H, Vanhuette PM. Hypercholesterolaemia impairs endothelium-dependent relaxations to aggregating platelets in the rabbit aorta. J Vasc Surg 1989; 10: 318–325.
51. Yu SM, Huang ZS, Wang CY, Tseng CM. Effects of hyperlipidaemia on the vascular reactivity in the Wistar-Kyoto and spontaneously hyper-tensive rats. Eur J Pharmacol 1993; 248: 289–295.
52. Harrison DC, Freiman PG, Armstrong ML, Muncy CL, Heistad DD. Alterations in vascular responses in atherosclerosis. Circ Res 1987; 61 (suppl II): I74–I180.
53. Förstermann U, Mügge A, Alheid U, Haverich A, Frohlich JC. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Circ Res 1983; 52: 63–70.
54. Drexler H, Zeiher AM, Wollschläger H, Meinertz T, Just H, Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation 1990; 81: 674–680.
Cox DA, Vita JA, Treasure CB, Fish RD, Alexander RW, Ganz P, Selwyn AP. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989; 80: 438–469.

Kawashima T, Yoshio A, Nandate H, Hameno E, Oga Y, Kaku T, Nishimasa Y, Maeda Y. Impaired function of angiographically smooth left anterior descending coronary artery to an impairment of vasoresponsiveness to acetylcholine, and the relation between impaired vasoresponsiveness and low-density lipoprotein cholesterol level. Am J Med 1991; 90: 53–61.

Vita JA, Treasure CB, Nabel EG, McNenach JM, Fish RD, Yeung AC, Ganz P. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81: 491–497.

Atherosclerosis. Circulation. 1991; 83: 391–401.

Kawashima T, Yoshio A, Nandate H, Erman AG, Snieckus V, Ganz P. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Am J Med 1991; 90: 53–61.

Cox DA, Vita JA, Treasure CB, Fish RD, Alexander RW, Ganz P, Selwyn AP. Early evidence of endothelial vasodilator dysfunction at coronary branch points. Circulation 1990; 82: 1169–1173.

Hayashi T, Futaka JM, Igarashi J, Chaudhuri G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: implications for atherosclerosis. Proc Natl Acad Sci USA 1993; 90: 1615–1619.

Hashimoto M, Akihita M, Murohara T, Saito T, Kashiwada Y, Goda Y. Impaired function of the coronary endothelium in atherosclerosis. J Am Coll Cardiol 1991; 18: 1265–1271.

Steinbrecher TJ, Jordans FH, Van Hove CE, Van Hoydonck AE, Erman AG. Release and vasculare activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol 1990; 191: 109–114.

Mori R, Myer PR, Guerra R Jr, Bates JN, Harrison DG. Determination of circulating nitric oxide in patients with coronary heart disease. Circulation 1990; 82: 2106–2116.

Beets JR, Coene MC, Verheyen A, Zonneknecht LL, Erman AG. Vitamin C increases the prostacyclin production and decreases the vascular lesion area in experimental atherosclerosis in rabbits. Prostaglandins 1986; 32: 335–352.

Beets JR, Coene MC, Verheyen A, Zonneknecht LL, Erman AG. Biphasic response of interstitial platelet aggregation to nitric oxide donors in the development of experimental atherosclerosis. Prostaglandins 1986; 32: 319–334.

Shimokawa H, Hlavana NA, Vanhoutte PM. Low density lipoprotein causes atherosclerosis in porcine coronary arteries. Circulation 1991; 83: 653–660.

Mangan EJ Jr. Kugiyama K, Yoh:>sugiyama S, Ohta Y, Yasue H. IPC in oxidized LDL elicits vasorelaxation and endothelial-dependent relaxation of rabbit aorta. Circ Res 1993; 72: 161–166.

Kugiyama K, Kerns SA, Morrice JD, Roberts R, Hendrickson PE. Effects of lipopolysaccharide and oxidized low density lipoprotein on the coronary artery. Circ Res 1993; 73: I-61–I-67.

Kanazawa K, Kawashima S, Mikami S, Miwa Y, Hirata K-I, Sue, Matsu M, Hayashi Y, Itoh H, Yokoyama M. Endothelial constitutive nitric oxide synthase protein and mRNA increased in rabbit atherosclerotic aortas despite impaired endothelium-dependent vasodilation. Circ Res 1994; 75: 612–620.

Verbeuren TJ, Jordaens FH, Van Hove CE, Van Hoydonck AE. Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol 1990; 191: 173–184.

Kugiyama K, Kerns SA, Morrice JD, Roberts R, Hendrickson PE. Effects of lipopolysaccharide and oxidized low density lipoprotein on the coronary artery. Circ Res 1993; 72: 161–166.
intermediate. *Biochemistry* 1988; 27: 8706–8711.

169. Denis M Tumor necrosis factor and granulocyte macrophage colony-stimulating factor simulate human macrophages to restrict growth of virulent *Mycobacterium avium* and to kill avirulent *M. avium* killer effect mechanism depends on the generation of reactive nitrogen intermediates. *J Leukoc Biol* 1991; 49: 380–387.

170. Busse R, Malch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. *FEBS Lett* 1993; 317: 87–90.

171. MacNaul KI, Hutchinson NL. Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. *Biochem Biophys Res Commun* 1993; 196: 1380–1385.

172. Berrazaeta JR, Salas E, Amado JA, Sanchez de Vega MJ, Poveda JJ. Induction of nitric oxide synthase in human mammary arteries in vitro. *Eur J Pharmacol* 1994; 251: 303–305.

173. Lamas S, Michel T, Brenner BM, Marsden PA. Nitric oxide synthase in endothelial cells: a source for a pathway inducible by TNFα. *Am J Physiol* 1991; 263: C634–C641.

174. Radomski MW, Vallance P, Whitley G, Foxwell N, Moncada S. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. *Cardiovasc Res* 1993; 27: 1380–1382.

175. Wood KS, Buga GM, Byrns RE, Ignarro LJ. Vascular smooth muscle nitric oxide synthase-derived relaxing factor (MRRF) and its close similarity to nitric oxide. *Biochem Biophys Res Commun* 1990; 170: 80–88.

176. Mollace V, Stimilli P, Anggard E, Vanhoutte PM. Nitric oxide from vascular smooth muscle cells: regulation of platelet reactivity and smooth muscle cell guanylate cyclase. *Br J Pharmacol* 1991; 104: 633–638.

177. Fleming I, Gray GA, Schott C, Stoelting JC. Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. *Eur J Pharmacol* 1991; 200: 375–376.

178. Schini VB, Russe R, Vanhoutte PM. Inducible nitric oxide synthase in vascular smooth muscle. *Drug Res* 1994; 44: 432–435.

179. Lang D, Smith JA, Lewis MJ. Induction of a calcium-independent NO synthase by hypercholesterolaemia in the rabbit. *Br J Pharmacol* 1993; 108: 290–292.

180. Sobey CG, Brooks RM, Heistad DD. Evidence that expression of inducible nitric oxide synthase in response to endotoxin is augmented in atherosclerotic rabbits. *Graz Med Wschr* 1993; 135: 356–359.

181. Russell ME, Wallace AE, Wyner LR, Newell JB, Karmovsky MJ. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. *Circ Res* 1995; 72: 457–467.

182. Buttery LDL, Springall DR, Chester AH, Evans TJ, Sandfield N, Parums DV, Yacoub MH, Polak JM. Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. *Lab Invest* 1996; 75: 77–85.

183. Habib EM, Springall DR, Davies CJ, Osikowicz YM, Polak JM. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. *Lancet* 1996; 347: 1151–1155.

184. Wileman SM, Mann GE, Baydour AD. Induction of L-arginine transport and nitric oxide synthase by cytokines in vascular smooth muscle cells: synergistic actions of proinflammatory cytokines and bacterial lipopolysaccharide. *Br J Pharmacol* 1995; 116: 3243–3250.

185. Douglas SA, Vickery-Clark LM, Ohlstein EH. Functional evidence that balloon angioplasty results in transient nitric oxide synthase induction. *Atherosclerosis* 1995; 114: 81–89.

186. Joly GA, Schini VB, O’Rourke P, Vanhoutte PM. Balloon injury and interleukin-1β modulate NO synthase gene expression in rat aortic endothelial cells. *Br J Pharmacol* 1995; 116: 145–155.

187. Lang D, Smith JA, Lewis MJ. Induction of a calcium-independent NO synthase by hypercholesterolaemia in the rabbit. *Br J Pharmacol* 1993; 108: 290–292.

188. Steenbrecher UP. Role of superoxide in endothelial-cell modulation of low-density lipoproteins. *Atherosclerosis* 1994; 106: 213–223.

189. Siegfried MR, Carey C, Xu L, Lefer AM. Beneficial effects of SPM-5185, a cysteine-containing NO donor in myocardial ischemia reperfusion promotes neutrophil adherence to coronary endothelium. *Circ Res* 1993; 73: 403–409.

190. Rinaldo JE, Clark M, Parinello J, Shepard VL. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in vitro. *FEBS Lett* 1990; 258: 1–6.

191. Lamas S, Michel T, Brenner BM, Marsden PA. Nitric oxide synthase in endothelial cells: a source for a pathway inducible by TNFα. *Am J Physiol* 1991; 263: C634–C641.

192. Fratzl-Petry T, Morgenstern C, Girgis SK, Ignarro LJ. Inhibition of nicotinic acid synthase mRNA expression. Suppression by exogenous nitric oxide *J Biol Chem* 1995; 270: 26731–26735.

193. Steinbrecher UP. Role of superoxide in endothelial cell modulation of low-density lipoproteins. *Biochim Biophys Acta* 1988; 959: 20–30.

194. Rinaldo JE, Clark M, Parinello J, Shepherd VL. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in vitro. *FEBS Lett* 1990; 258: 1–6.
Zeiher AM, Fisslthaler B, Schrây-Munske A, Grothe B, Zopp S, Smolka H, Seeger W. Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation 1995; 92: 3513–3519.

Scott-Burden T, Vanhouptte PM. The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 1993; 87 (suppl V): V51–V55.

Moordrain DJ, Huttel TC, Keef S. Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 1995; 25: 674–678.

Anderer JW, Boudreau K, Newby WE. Does nitric oxide inhibit smooth muscle proliferation? J Cardiovasc Pharmacol 1991; 17 (suppl 3): S104–S107.

Garg UC, Hassid A. Nitric oxide generating vasodilators and 8-bromo-cyclic guanosine monophosphate in monogenetics and proliferation of cultured rabbit vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1777.

Cornwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cyclic GMP-dependent protein kinase in canine aorta. J Am Coll Cardiol 1994; 36: 405–414.

Nakaki T, Nakayama M, Kato R. Inhibition by nitric oxide and nitric oxide producing vasodilators of DNA synthesis in vascular smooth muscle cells. Atherosclerosis 1989; 80: 134–147.

Kawara K, Kawahara K, Sakiyama F, Hattori G, Yamanaka M, Sakamoto E. Antiproliferative action of cyclic GMP-elevating vasodilators in cultured rabbit aortic smooth muscle cells. Atherosclerosis 1989; 80: 134–147.

Sarkar R, Meinberg EG, Stanley JC, Gordon D, Webb RC. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. J Clin Invest 1993; 92: 225–230.

Dibey RK, Jackson EK, Lüscher TF. Nitric oxide inhibits angiogenesis induced migration of rat aortic smooth muscle cells. J Clin Invest 1995; 96: 141–145.

Fu Y, Blankenhorn EP. Nitric oxide induced anti-angiogenic effects in high and low responder rat strains. J Immunol 1992; 148: 2217–2222.

Kawabe T, Inobe KI, Hasegawa Y, Nakashima I, Shimokata K. Immunosuppressive activity of nitric oxide in cultured supernatants of activated rat alveolar macrophages. Immunology 1992; 76: 72–78.

Merryman PE, Clancy RM, HX, Abramson SB. Modulation of human T cell responses by nitric oxide and its derivative, S-nitrosothiol. Arthritis and Rheumatism 1993; 36: 1414–1422.

Mouradillo J, Ding CH, Douglas K, Granger H, Ledda E, Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 1999; 37: H111–H115.

Schafer AI, Alexander RW, Handin RI. Inhibition of platelet function by organic nitrate vasodilators. J Am Coll Cardiol 1987; 2: 649–655.

Radomski MW, Palmer RMJ, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987; 92: 181–187.

Bassenge E. Antiprotein effect of endothelium-derived relaxing factor. Nitric oxide. Eur Heart J 1992; 13 (suppl D): D12–D15.

Gooke JP, Singer AH, Tsao P, Zena P, Rowan RA, Billings ME. Antithrombotic effect of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992; 90: 1168–1172.

Davies ME, Dilen TS, Galbraith TE, Svendsen E, Hagen PO. Suppression of intimal hyperplasia in experimental vein grafts by oral L-nitroarginine supplementation and single ex vivo immersion in deferoxamine manganese. J Vasc Surg 1996; 20: 410–420.

McNamara LB, Bedi B, Aurora H, Ignarro L, Kadovitz PJ, Akers DL. L-arginine inhibits endothelial dysfunction by a non-thromboxane mechanism. Biochem Biophys Res Commun 1993; 219: 291–296.

Taguchi J, Abe J, Okazaki H, Takuwa Y, Kurokawa K. Larginine inhibits neointimal formation following balloon injury. Life Sci 1993; 87: 307–314.

Ellenby M, Ernst CB, Carretero OA, Sciclui AG. Role of nitric oxide in the effect of blood flow on neointima formation. J Vasc Surg 1995; 23: 314–322.

Palfrad R, Carretero OA, HX, Sciclui AG. Role of kinins and nitric oxide in the effect of angiotensin converting enzyme inhibitors on neointima formation. Circ Res 1993; 72: 1202–1210.

Van Belle B, Vallet B, Auffray JL, Bauters C, Hamon M, M-Felden EL, Lablanche JM, Dupuis E, Bertrand ME. NO synthesis is involved in structural and functional alterations of MAC inhibitors in injured arteries. Am J Physiol 1996; 39: H208–H205.

Guo JP, Milhoan KA, Tian RS, Lefl AM. Beneficial effect of SPM-5185, a cytosine containing nitric oxide donor, in rat carotid artery injury. J Surg Res 1997; 63: 77–84.

Lee JS, Adrie C, Jacob H, Roberts JRJ, Zapol WM, Bloch KD. Chronic inhibition of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res 1996; 78: 357–368.

Wolf YG, Rasmussen LM, Sherman Y, Bundens WP, Hye RJ. Nitroglycerin decreases smooth medial smooth muscle cell proliferation after arterial balloon injury. J Surg Res 1995; 21: 499–504.

Marke DS, Vita J, Folds JD, Keane JF, Welch GN, Loscalzo J. Inhibition of neointimal proliferation in rabbits after vascular injury by the single tritocation of the nitric oxide donor of an adduct of nitric oxide. J Invest 1995; 96: 2630–2638.

von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Keneda Y, Gooke JP, Dzau VJ. Gene therapy inhibiting neointimal vascular lesion in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–1141.

De Meyer GR, Bult H, Ustéines L, Kokms MM, Feltis HC, Benmartman K. Effect of nitric oxide donors on neointima formation and vascular reactivity in the carotid arteries. Circ Res 1996; 30: 87–90.

FitzGerald GA, Dwyermonole, N Engl J Med 1987; 316: 1247–1257.

Grovès PH, Banning AP, Penny W, Newby AC, Cheadle HA, Lewis MI. The effects of exogenous nitric oxide on smooth muscle cell proliferation following porcine carotid angioplasty. Cardiovasc Res 1993; 30: 87–90.

Chang CJ, Wuo P, Honda HM, Ignarro LJ, Young I, Bernstein JL, Derrm LL. Oxidation of LDL to a biologically active form by derivatives of nitric oxide and nitrite in the absence of superoxide. Dependence on pH and oxygen. Arterioscler Thromb Vase Biol 1994; 14: 1808–1814.

Darley-Ursell LM, Hogg N, O’Leary VJ, Wilson MC, Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Rad Res Comms 1992; 17: 9–20.

Darley-Ursell LM, Hogg N, O’Leary VJ, Wilson MC, Moncada S. The oxidation of alpha-tocopherol in human low density lipoprotein by the simultaneous generation of superoxide and nitric oxide. FEBS Lett 1993; 326: 90–95.

do Grooth H, Hegi U, Sies H. Loss of alpha-tocopherol upon exposure to nitric oxide or the syndrome SIN-1. FEBS Lett 1993; 315: 139–142.

Graham A, Hogg N, Kalyanaraman B, O’Leary V, Darley-Ursell LM, Moncada S. Peroxynitrite modification of low-density lipoprotein leads to its recognition by the macrophage scavenger receptor. FEBS Lett 1993; 350: 181–185.

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial function and thrombosis. J Biol Chem 1991; 266: 4244–4250.

Beckman JS, Ye Y, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe-Seyler 1994; 375: 81–88.
271. Maruyama W, Hashizume Y, Matsubara K, Naoi M. Identification of 3-nitro-L-tyrosine, a product of nitric oxide and superoxide, as an indicator of oxidative stress in the human brain. *J Chromatography* 1996; 676: 153-158.

272. Palmer RM, Bridge L, Foxwell NA, Moncada S. The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. *Br J Pharmacol* 1992; 105: 11-12.

273. Fukuo K, Iino T, Morimoto S, Nakahashi T, Yasuda O, Kitano S, Sasada R, Oghara T. Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. *J Clin Invest* 1995; 95: 669-676.

274. Seabo C, Zingarelli B, O’Connor M, Salzman AL. DNA strand breakage, activation of poly(ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. *Proc Natl Acad Sci USA* 1996; 93: 1753-1758.

275. Forrester K, Ambi S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley Bosco E, Wang XW, Geller DA, Tseng E, Billiar TR, Harris CC. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. *Proc Natl Acad Sci USA* 1996; 93: 2442-2447.

276. Albina JE, Cui S, Mäuse RB, Reichner JS. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. *J Immunol* 1993; 150: 5080-5085.

277. Sudh M, Souvannavong V, Adam A. Nitric oxide synthase induces macrophage death by apoptosis. *Biochem Biophys Res Commun* 1993; 191: 503-508.

278. Fukuo K, Hata S, Suhara T, Nakahashi T, Shinto Y, Tsujimoto Y, Morimoto S, Oghara T. Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. *Hypertension* 1996; 27: 823-826.

279. Bochaton-Piallat ML, Gabbiani F, Redard M, D’Amourcier A, Gabbiani G. Apoptosis participates in cellularity regulation during rat aortic intimal thickening. *Am J Pathol* 1995; 146: 1059–1064.

280. Isner JF, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. *Circulation* 1995; 91: 2703–2711.

281. Koebr MM, De Meyer GR, Mahring J, Balt H, Bulsink J, Herman AG. Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. *Atherosclerosis* 1996; 120: 115–124.

282. Trachman H, Futterweit S, Garg P, Reddy K, Singhai PC. Nitric oxide stimulates the activity of a 72-kDa neutral matrix metalloproteinase in cultured rat mesangial cells. *Biochem Biophys Res Commun* 1996; 218: 704–708.

283. Murrell GAC, Jung D, Williams RJ. Nitric oxide activates metalloprotease enzymes in articular cartilage. *Biochem Biophys Res Commun* 1995; 206: 15–21.

284. Frears ER, Zhang Z, Blake DR, O’Connell JP, Winyard PG. Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. *FEBS Lett* 1996; 381: 21–24.

285. Miller MS, Grisham MB. Nitric oxide as a mediator of inflammation? You had better believe it. *Med Inflammation* 1995; 4: 387–396.

286. Meismer UK, Brune B. Nitric oxide (NO) in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO donor exposure, NAD(+) content, and p53 accumulation. *Arch Biochem Biophys* 1996; 327: 1–10.

ACKNOWLEDGEMENTS. The authors wish to thank Mr. L. Van Den Eynde for secretarial assistance. The work was supported by the Belgian Programme on Interuniversity Poles of Attraction, Prime Minister’s Office, Science Policy Planning.

Received 10 July 1996

accepted in revised form 29 August 1996