Indoleamine Analogs as Probes of the Substrate Selectivity and Catalytic Mechanism of Serotonin N-Acetyltransferase*

(Received for publication, June 9, 1998, and in revised form, August 12, 1998)

Ehab M. Khalil, Jacqueline De Angelis, and Philip A. Cole‡

From the Laboratory of Bioorganic Chemistry, Rockefeller University, New York, New York 10021

Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) catalyzes the reaction of serotonin (or tryptamine) with acetyl-CoA to form N-acetylserotonin (or N-acetyltryptamine) and is responsible for the melatonin circadian rhythm in vertebrates. This study evaluates a series of indoleamine analogs as alternate substrates of AANAT. 3-Indolepropylamine and 3-indolebutylamine were chemically synthesized and found to be processed by AANAT, although 20- and 60-fold less efficiently compared with the natural substrate serotonin, respectively. Racemic α-methyltryptamine and N′-methyltryptamine were also shown to be substrates for AANAT, again with reduced κcat and κcat/Km compared with serotonin. The enzyme did exhibit 9:1 stereoselectivity for the R-enantiomer of α-methyltryptamine versus the S-enantiomer. By measuring the enzymatic rates versus increasing buffer microviscosity, it was demonstrated that diffusion release of product is most likely the principal rate-determining step for the enzymatic transformation of tryptamine (which has similar κcat and κcat/Km versus pH for the poor substrate N′-methyltryptamine showed that an ionizable group on the enzyme with pKα ~ 7, required to be in its deprotonated form, may be important in catalysis. The α-methyltryptamine analog α-trifluoromethyltryptamine was not processed by the enzyme, but served as a modest competitive inhibitor. Taken together with the pH-rate analysis, these results favor a model in which the serotonin substrate binds to the enzyme as the positively charged ammonium salt, and nucleophilicity of the amine is important in enzyme-catalyzed acetyl transfer.

EXPERIMENTAL PROCEDURES

Materials—Tryptamine, racemic α-methyltryptamine, N′-methyltryptamine, 5,5′-dithiobis(2-nitrobenzoic acid), Mops, Mes, and Epps were purchased from Sigma. 3-Bromo-1,1,1-trifluoroacetone, O-benzyl hydroxylamine, 3-indolepropionic acid, 3-indolebutyric acid, LiAlH4, dimethylformamide, and tetrahydrofuran (anhydrous) were purchased from Aldrich. Succrose was purchased from Bio-Rad. Recombinant glutathione S-transferase-AANAT was overexpressed and purified as described previously (3). All reagents and solvents were used as purchased without further purification. Preparatory TLC was performed on 1000-μm silica gel plates (20 x 20 cm; Analtech Uniplate®). Silica gel (200–425 mesh) for column chromatography was purchased from Fisher.

Instruments—1H, 13C, and 19F NMR experiments were performed on a Bruker 400-MHz spectrometer. Optical rotations were measured using a Jasco DIP-370 digital polarimeter.

3-Indolepropionyl-O-benzylhydroxamate (5)—To a solution of 3-indolepropionic acid (3; 2.0 g, 10.6 mmol) in dimethylformamide (100 ml) was added Et3N (4.4 ml, 31.8 mmol) and O-benzylhydroxylamine hydrochloride (3.4 g, 21.1 mmol). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (4.0 g, 21.1 mmol) was added to the solution at 0 °C, and the resulting mixture was allowed to warm up to room temperature. After 48 h of stirring under an atmosphere of N2, undisolved material was removed from the reaction mixture by filtration, and the filtrate was concentrated in vacuo to remove dimethylform-
amide. The resulting residue was partitioned between 0.5 N HCl (100 ml) and EtOAc (200 ml). The organic layer was washed with 100 ml of 1 N NaHCO₃ and brine; dried over MgSO₄ and concentrated in vacuo to give fairly pure product as a white solid (1.8 g, 58%), which was recrystallized from hot MeOH to give 1.2 g (first crop) of pure compound 5. TLC Rₐ = 0.24 (EtOAc/hexanes, 1:1). ¹H NMR (400 MHz, Me₂SO-d₆) δ 2.33 (t, J = 7.6 Hz, 2 H), 2.94 (t, J = 7.6 Hz, 2 H), 4.74 (s, 2 H), 6.98 (t, J = 7.3 Hz, 1 H), 7.05–7.10 (m, 2 H), 7.28–7.41 (m, 6 H), 7.53 (d, J = 7.8 Hz, 1 H), and 10.78 (br s, 1 H); ¹³C NMR (100 MHz, Me₂SO-d₆) δ 22.97, 35.57, 79.04, 113.61, 115.67, 120.46, 120.62, 123.20, 124.57, 129.27, 130.48, 130.56, 131.13, 138.38, 138.54, and 171.38. HRMS calculated for C₁₉H₁₃NO₂⁺H⁺: 295.1448; found: 295.1448.

3-Indolebutyl-O-benzylidrazone (6)—Following the procedure described above for the preparation of compound 5, reaction of 3-indolebutyric acid (4.0 g, 41.1 mmol), O-benzylidrazone hydrochloride (1.3 g, 8.1 mmol), Et₃N (1.7 ml, 12.3 mmol), and 1-(3-dimethylaminopropy1)-3-ethoxy carbonyl hydrozide (1.5 g, 8.1 mmol) in dimethylformamide (75 ml) for 3 days afforded the crude product as a tan oil (1.0 g, 77%). Purification of this material on silica gel using a mixture of EtOAc/hexanes (1:1) as the eluent afforded 0.7 g (54%) of pure compound 6. TLC Rₐ = 0.27 (EtOAc/hexanes, 1:1). ¹H NMR (400 MHz, CDCl₃) δ 1.92 (m, 4 H), 2.65 (m, 2 H), 4.77 (s, 2 H), 7.65 (d, J = 7.8 Hz, 1 H), 10.78 (br s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 28.5, 31.9, 32.2, 56.0 (2 s), 120.46, 120.62, 123.20, 124.57, 129.27, 130.48, 130.56, 131.13, 138.38, 138.54, and 171.38. HRMS calculated for C₁₉H₁₃NO₂⁺H⁺: 309.1605; found: 309.1612.

3-Indolepropanoyl (1) (5)—To a solution of compound 5 (400 mg, 1.4 mmol) in dry tetrahydrofuran (25 ml) was added LiAlH₄ (41.1 mmol, 1.0 m in tetrahydrofuran), and the resulting mixture was refluxed under nitrogen for 2 h. TLC showed that reaction was complete. The mixture was cooled to room temperature, treated with 3 m M NaOH, and then extracted with EtOAc/hexanes (1:1). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, J = 7.4 Hz, 3 H), 1.81 (s, 3 H), 7.24 (d, J = 5.9 and 1.8 Hz, 2 H), 4.22–4.36 (m, 1 H), 5.67 (br d, J = 7.8 Hz, 1 H), 6.90 (s, 1 H), 7.02 (t, J = 7.9 Hz, 1 H), 7.09 (t, J = 7.9 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.53 (d, J = 7.9 Hz, 1 H), and 8.52 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.62, 22.77, 31.07, 45.16, 116.60, 119.99, 118.70, 121.24, 122.26, 122.73, 135.65, and 169.17. HRMS calculated for C₁₉H₁₃NO₂⁺O⁺: 216.1264; found: 216.1260.

With 3 m M acetic anhydride. A sample for analysis was purified using preparative TLC. TLC Rₐ = 0.49 (CH₃Cl/MeOH, 10:1). ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, J = 6.6 Hz, 3 H), 1.81 (s, 3 H), 2.84 (dd, J = 5.9 and 1.8 Hz, 2 H), 4.22–4.36 (m, 1 H), 5.67 (br d, J = 7.8 Hz, 1 H), 6.90 (s, 1 H), 7.02 (t, J = 7.9 Hz, 1 H), 7.09 (t, J = 7.9 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 7.53 (d, J = 7.9 Hz, 1 H), and 8.52 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.62, 22.77, 31.07, 45.16, 116.60, 119.99, 118.70, 121.24, 122.26, 122.73, 135.65, and 169.17. HRMS calculated for C₁₉H₁₃NO₂⁺O⁺: 216.1264; found: 216.1260.

Acetyltransferase Kinetic Assays of Amine Analogs—Preparation of purified recombinant sheep glutathione S-transferase-AANAT has been described, and it has shown to be nearly identical in its kinetic properties to the recombinant sheep glutathione S-transferase-free AANAT (3). Assays of the amine analog substrates were performed essentially as previously reported using a spectrophotometric assay in which CoASH levels were monitored indirectly by reaction with 5,5′-dithiobis(2-nitrobenzoic acid) (3). To verify that N′-methyltryptamine was forming the acetylated product, a large-scale reaction (20 mm, 3 ml) was performed, and N′-acetyl-N′-methyltryptamine was isolated and shown to have identical spectral and physical properties to the authentic material. For Kₘ measurements, at least five amine substrate concentrations ranging from <0.3 Kₘ to >3 Kₘ were employed in the presence of near-saturating concentrations of acetyl-CoA (>3 Kₘ). Rates were measured under initial conditions (<10% turnover of the limiting substrate). All assays were performed in duplicate, and rate values generally agreed within 10%. Kₘ constants were calculated by fitting the data to the Michaelis-Menten equation using a nonlinear curve fit (Kaleidograph), and the values are shown as means ± S.E in Table I.

1α-Tri fluoromethyltryptamine (9) Inhibition Experiment—After showing that α-trifluoromethyltryptamine was not processed by AANAT (kcat/Kₘ at least 1000-fold lower than for compound 7), it was tested as a competitive inhibitor using a Dixon analysis versus the substrate N′-methyltryptamine. A range of five concentrations of compound 9 (up to 10 μM) was used in the inhibition experiment. The assay conditions were similar to those described previously (3) with minor modifications. MeOH (final concentration of 5%) was included in the assay to improve the solubility of compound 9. Controls demonstrated that this concentration of MeOH had no detectable effect on turnover rate. In addition, 1 mM NaOH (pH 6.1) with 0.1 mM NaCl was used in place of the standard phosphate buffer (3). Two different sets of assay were performed using mixed saturating concentrations (4 and 6 μM) of N′-methyltryptamine (Kₘ = 4 μM). The concentration of acetyl-CoA (Kₘ = 0.4 μM) was kept constant and near-saturating (2 μM). Dixon plots were fit using linear regression. The Kₘ was calculated assuming a competitive inhibition model (versus N′-methyltryptamine) from the slope of the line using the steady-state kinetic equation (Equation 1).
The calculated K values from both experiments were in good agreement, and the values are shown as means ± S.E. in Table I.

Stearoschimical Studies—α-Methyltryptamine (20 mM) and acetyl-CoA (20 mM) were reacted with AANAT (10 μM) in a 3 ml reaction volume using previously described acetyltransferase conditions (pH 6.8 and sodium phosphate buffer) (3), and reaction progress was monitored with 5,5′-dithio-bis(2-nitrobenzoic acid). After 20 min, when the reaction was shown to be ~50% complete, the reaction mixture was vortexed vigorously for 2 min. A white precipitate formed, which was removed by centrifugation (3000 × g, swinging bucket). The resulting solution was diluted with CH2Cl2 (10 ml) and H2O (10 ml). The aqueous layer (pH ~7) was separated and extracted with additional CH2Cl2 (3 × 10 ml). The combined organic layers were dried (MgSO4) and concentrated in vacuo to give 6.8 mg (54%) of N-acetyl-α-methyltryptamine. The neutral aqueous layer was basified to pH ~11 using 1 N NaOH and then extracted with CH2Cl2 (3 × 10 ml). The combined extracts were dried (MgSO4) and concentrated in vacuo to give 5.5 mg (44%) of recovered α-methyltryptamine. The identity and purity of both materials (>95%) were verified by 1H NMR. The concentrations of the solutions used for measuring optical rotations were verified independently by measuring UV absorption at λ = 279 nm. The specific rotations are shown under “Results” and gave similar results on two separate occasions. To rule out the possibility that transfer of the acetyl group had occurred non-enzymatically at these concentrations of α-methyltryptamine and acetyl-CoA, the assay mixture, in the absence of AANAT, was stored at 30 °C for 2 h. No acetyl transfer could be detected (<5%) under these conditions.

Viscosity Studies—All assays were performed with the added viscosogen sucrose to achieve the desired viscosity. Relative viscosities were previously measured with a Canon-Fenske viscometer at 30 °C as determined previously (8). Sucrose solutions used to achieve the viscosities were employed. Under these conditions in the presence of saturating (MgSO4) and concentrated HCl, the relative viscosities were measured optically at these concentrations of sucrose; measurements of acetyl-CoA in the absence of sucrose was found to be 0.12 mM with added sucrose. The relative viscosities were verified independently by measuring optical rotations were verified independently by measuring UV absorption at λ = 279 nm. The specific rotations are shown under “Results” and gave similar results on two separate occasions. To rule out the possibility that transfer of the acetyl group had occurred non-enzymatically at these concentrations of α-methyltryptamine and acetyl-CoA, the assay mixture, in the absence of AANAT, was stored at 30 °C for 2 h. No acetyl transfer could be detected (<5%) under these conditions.

Rate Versus pH Profile—Using N'-methyltryptamine as substrate, the measurements for kcat and Km were performed in the pH range 6–8.6 following the general spectrophotometric assay procedures previously described (3). Accurate rate measurements were not possible above pH 8.6 because of high background aminolysis/hydrolysis rates of acetyl-CoA. All reactions were initiated with enzyme (which was maintained at pH 6.8, but did not significantly affect the final pH), and the activities proved to be linear for at least 3 min, suggesting that altered kinetics were not caused by protein instability under the assay conditions. Enzyme assays showed Michaelis-Menten kinetic behavior at each pH investigated. All assays were performed with near-saturating concentrations of acetyl-CoA (>3 Km), verified at each pH throughout the pH range. The following buffers were used to obtain the pH values described in the experiments: pH 6.1–6.7 (Mes), pH 6.7–7.6 (Mops), and pH 7.7–8.6 (Epps). Fits for the kcat data were performed using Equation 2,

\[\log(k_{\text{cat}}/K_m) = \log(k_{\text{cat}}/1 + H/K_m) \]

where H is the proton concentration and K is the dissociation constant for the ionizable group that facilitates the reaction in its deprotonated form. Fits for the kcat/Km data were performed using Equation 3,

\[\log(k_{\text{cat}}/K_m)_{\text{app}} = \log(k_{\text{cat}}/K_m(1 + H/K_m + K/H)) \]

where H is the proton concentration, K is the dissociation constant for the ionizable group that facilitates the reaction in its deprotonated form, and K is the dissociation constant for the ionizable group that facilitates the reaction in its protonated form. Both equations were fit using the computer program Kinetasys II (Intellikinetics), and the kinetic constants ± S.E. are shown under “Results.”

RESULTS

Homologated Tryptamines—The known substrates serotonin and tryptamine contain an ethyl side chain extending from the indole 3-position. The initial objective of these studies was to determine the tolerance of AANAT for substrate alky chain length variations. We thus set out to prepare the alkyl chain-extended propylamine (1) and butylamine (2) analogs of tryptamine (5). Synthesis of these compounds was achieved in two steps, starting from the corresponding commercially available carboxylic acids 3 and 4 (Fig. 2). The carboxylic acids were converted to the hydroxamic acid derivatives 5 and 6 and then exhaustively reduced with LiAlH4 to afford the desired amines 1 and 2.

Kinetic analysis of these compounds was carried out with recombinant sheep AANAT in the presence of saturating levels of acetyl-CoA and with an indirect spectrophotometric assay that monitors CoASH formation. Both of the chain-extended indoleamine substrates 1 and 2 were found to be AANAT substrates and displayed normal Michaelis-Menten kinetic behavior, although with somewhat reduced catalytic efficiency compared with serotonin (Table I). Propylamine analog 1 was 20-fold reduced in catalytic efficiency, exhibiting both a higher Km and lower kcat compared with serotonin. Butylamine analog 2 was only 3-fold less active as a substrate compared with propylamine analog 1, and the difference was primarily in Kcat. These results show that AANAT has an optimal preference for indole substrates with 3-ethylamine side chains, corresponding to the natural substrate, but is reasonably tolerant of side chain extension by at least two more methylene groups from the indole ring.

Methyl-substituted Tryptamine Analogs—Another important issue related to AANAT selectivity is the ability to accommodate α-branching or nitrogen substitution (secondary amines). Tryptophan (both d- and l-isomers) was shown not to be processed by AANAT. The commercially available racemic α-methyltryptamine (7) and N'-methyltryptamine (8) were next evaluated as AANAT substrates (Fig. 3). Both of these analogs were utilized as substrates by AANAT and displayed Michaelis-Menten behavior, although again with diminished catalytic efficiency compared with tryptamine (Table I). In addition to monitoring amine-induced CoA hydrolysis in the presence of AANAT, direct characterization of the acetamide product derivatives of compounds 7 and 8 was accomplished using TLC and 1H NMR, ruling out indoleamine-promoted acetyl-CoA hydrolysis. Racemic α-methyltryptamine (7) exhibited kcat = 16 ± 0.4 s⁻¹ and Km = 2.7 ± 0.2 mM. N'-methyltryptamine (8) was still a less efficient substrate, showing kcat = 2.0 ± 0.1 s⁻¹ and Km = 3.8 ± 0.7 mM. Although the catalytic efficiency (kcat/Km)
enzyme reaction was found to be with racemic stereochemical selectivity. A larger scale reaction of AANAT assay described above was insufficient to reveal potential rotation (acted starting material were isolated in pure form. The specific processed more efficiently than the reoselectivity for These results establish unequivocally that AANAT shows ste-

for compound 8 with AANAT compared with the standard substrate tryptamine was ~300-fold reduced, it was still much greater (>300-fold) than the non-enzyme-catalyzed background acetylation rate. That α-methyltryptamine and N\(^{\alpha}\)-methyltryptamine were AANAT substrates allowed further investigation into active-site stereochemical accessibility and enzymatic rate-determining step(s).

Stereochemical Studies—Most enzyme reactions demonstrate stereoselectivity because of the well defined structure of enzyme active sites. Although racemic α-methyltryptamine (7) was shown to be a substrate for AANAT, the spectrophotometric assay described above was insufficient to reveal potential stereochemical selectivity. A larger scale reaction of AANAT with racemic α-methyltryptamine (7) was allowed to proceed to ~50% completion over 20 min, and the product and the unreacted starting material were isolated in pure form. The specific rotation (\([\alpha]_D^{25}\)) of the recovered α-methyltryptamine from the enzyme reaction was found to be \(+26° \pm 3°\) (\(+32° = 100% S\)-enantiomer (9)), indicating that it was a 9:1 mixture of S/R-isomers. Furthermore, the specific rotation of the enzymatic product N-acetyltryptamine (+8°) confirmed it to be principally the R-enantiomer by demonstrating its similar magnitude to and opposite sign from (−8.4°) the chemical acetylation product of the enantiomerically enriched (S)-α-methyltryptamine (i.e. the recovered starting material from the AANAT reaction). These results establish unequivocally that AANAT shows stereoselectivity for α-substituted tryptamine analogs and, in the case of α-methyl substitution, that the R-enantiomer is processed more efficiently than the S-enantiomer.

Viscosity Studies—Previous studies have shown that for many enzyme reactions, the rate-determining step can be diffusional release of product rather than the chemical transformation step (10). A particularly effective method for elucidating the nature of the rate-determining step(s) is to examine the effect of increasing viscosity on the kinetics of the reaction (10). By increasing the viscosity of the solution with a microviscogen such as sucrose, rates of diffusional steps are slowed, whereas unimolecular processes are theoretically unaffected. However, large quantities of compounds such as sucrose can cause conformational or other “artifactual” effects on enzyme reactions by interacting with the enzyme, substrate(s), or both. To control for these non-diffusional effects, it is helpful to have “poor substrates” for which the rate-determining step can be reason-

Tryptamine analog	\(K_m\)	\(k_{cat}\)	\(K_i\)
Serotonin	0.24 ± 0.03	34 ± 1	
Tryptamine	0.17 ± 0.01	25 ± 1	
Compound 1	0.77 ± 0.07	5.5 ± 0.2	
Compound 2	1.7 ± 0.1	4.2 ± 0.1	
(\(\pm\))-Methyl-tryptamine (7)	2.7 ± 0.2	16 ± 0.4	
\(N^{\alpha}\)-Methyl-tryptamine (8)	3.8 ± 0.7	2.0 ± 0.1	
(\(\pm\))-α-Trifluoromethyltryptamine (9)	3 ± 1		

FIG. 3. Methyl-substituted tryptamine analogs.

FIG. 4. Plot of \(log(k_{cat-control}/k_{cat-viscogen})\) versus relative viscosity ratio for acetyl transfer catalyzed by serotonin N-acetyltransferase with tryptamine and \(N^{\alpha}\)-methyltryptamine as substrates. The slope for the tryptamine data is 0.75 ± 0.08, and the slope for the \(N^{\alpha}\)-methyltryptamine data is 0.16 ± 0.03. See “Experimental Procedures” for experimental conditions.
Analyzes of k_{cat} versus pH generally reveal pK_a values of ionizable groups in the bound enzyme-substrate complex, whereas plots of $\log(k_{cat}/K_m)$ versus pH should reflect pK_a values of ionizable groups present in the free enzyme and/or substrate (12). Measurements of rate versus pH were carried out with the poor substrate N-methy tryptamine to maximize the possibility of identifying groups that play a role in the chemical step. The results shown in Fig. 5 indicate that there is an ionizable group with $pK_a = 7$ (pK_1) present in both the free and bound complexes that is required to be in its deprotonated form. This group (with pK_1) facilitates acetyl transfer in its deprotonated form. This is very likely to be an enzymatic group since there are no groups on compound 8 in free solution with such a pK_a (the secondary amine of compound 8 should have a pK_a of ~10 in free solution). In addition, in the plot of $\log(k_{cat}/K_m)$ versus pH, there was evidence of a second group (pK_2) with $pK_2 = 8.5$. However, the value of pK_2 is near the upper limit of the pH range where it was technically feasible to perform kinetic studies, somewhat limiting its reliability.

α-Trifluoromethyltryptamine—Information about electronic requirements of the tryptamine substrate is important for understanding catalysis and potentially of great use for inhibitor design. Lowering the amine pK_a by electronegative atom substitution in the substrate would result in a larger concentration of the neutral amine at pH ~7. Depending on the mechanism of AANAT, this could lead to a substrate with a reduced K_m, or it could lead to an inhibitor since a neutral amine with a reduced pK_a is generally less nucleophilic than a neutral amine with a higher pK_a. Since the atomic radius of fluorine is only 0.2 Å greater than that of hydrogen, fluorine is close to isosteric with hydrogen, but can significantly change electronic properties because of its strong electronegativity. The use of fluorine substitution in substrate analogs has been a powerful way to probe enzyme mechanism and to generate inhibitors (13). α-Trifluoromethyltryptamine (9) was synthesized as shown in Fig. 6.

The synthesis of α-trifluoromethyltryptamine was achieved following the method of Zimmer and Reissig (6). Commercially available 3-bromo-1,1,1-trifluoroacetone was converted to the corresponding oxime 10 by reaction with hydroxylamine hydrochloride. The oxime was used to generate the vinylnitroso derivative, which was used in situ to react in a 4 + 2 cycloaddition and to produce the 3-substituted indole 11. Reduction of this material with LiAlH$_4$ led to generation of racemic α-trifluoromethyltryptamine (9). The α-amine pK_a for compound 9 was measured to be 5.4 ± 0.1, ~4.4 units lower than that of a corresponding unsubstituted amine (e.g. serotonin with $pK_a = 9.8$ (14)).

In contrast to the isosteric α-methylyptamine, there was no detectable AANAT-catalyzed acetyl transfer to α-trifluoromethyltryptamine (at least 1000-fold lower than the k_{cat}/K_m for α-methyltryptamine). It was thus tested as a potential competitive inhibitor and was found to be a modest inhibitor with $K_i = 3$ μM, a value similar to the K_m for α-methyltryptamine (Table I). This suggests that α-trifluoromethyltryptamine can bind about as well as α-methyltryptamine to AANAT, but may lack the nucleophilicity to undergo reaction.

DISCUSSION

Homologated Tryptamines—Analysis of the effects on catalytic processing of alkyl chain extension of the ethylamine function of tryptamine contributes to an understanding of the geometric constraints enforced by the AANAT active site. Although a 20-fold decreased catalytic efficiency with the propylamine versus the ethylamine function may seem considerable, it is much less than is observed in perturbing many other enzyme-substrate interactions by the addition of an extra methylene to a functional group undergoing reaction. For example, methylene insertion achieved by an aspartate-to-gluamate substitution in a protein-tyrosine kinase was shown to reduce catalytic efficiency by 10,000-fold (15). Moreover, further extension of the alkyl side chain of the propylamine analog by an extra methylene as present in the butylamine analog (2) resulted in a lowering of the k_{cat}/K_m by only 3-fold more. It can reasonably be speculated that relatively weak hydrophobic interactions are involved in holding the tryptamine substrate in place for nucleophilic attack.

The lack of strict side chain recognition allows a more flexible approach to inhibitor design. For example, substitution of the β-position of tryptamine with a halide would be very unstable because it would be in the “benzylic” position (16). The corresponding halide substitution of the β-position in compound 1 would not be complicated by the same problem. The scaffolds of compounds 1 and 2 thus show promise for the development of mechanistic probes and potent inhibitors of AANAT.

Methyltryptamine Analogs—Both α-branching and N-methyl substitution create steric bulk around the nucleophilic amine without significantly affecting basicity. The methyl substitutions present in compounds 3 and 4 reduce the catalytic efficiency of AANAT processing, but still allow for acetyltransferase reaction. The R-enantiomer of compound 3 is much better tolerated than the S-enantiomer for enzyme processing.
These studies demonstrate that even a fairly accommodating active site can have well defined stereochemical preferences that need to be considered in designing inhibitors. Furthermore, the stereoselectivity of AANAT could have preparative applications in the production of pharmacoologically active α-methyltryptamine congeners (17).

Rate-determining Step(s)—The observation that Nα-methyltryptamine is a poor substrate for AANAT was used along with viscosity experiments to establish that the product release step for standard substrates like tryptamine and serotonin is likely slower than the chemical step. Assuming a kinetic scheme (Fig. 7) in which the ternary complex is fully saturated with substrates and that two steps follow, the chemical step (k2) in which the ternary complex is fully saturated with substrate, so the estimated rate constants for tryptamine would hardly be affected.

Based on the calculated rate constants of k2 and k3 for tryptamine, the Kd for tryptamine binding to the AANAT-acetyl-CoA complex would likely be significantly greater than the Km for tryptamine (18). Such a relationship needs to be borne in mind when considering the affinity of a series of tryptamine analogs for the enzyme. Another important point is that mechanistic studies designed to probe the chemical step catalyzed by AANAT may be simpler to interpret by studying the poor substrate Nα-methyltryptamine.

Activation of the Amine Nucleophile—That α-trifluoromethyltryptamine was not a substrate for the enzyme could imply that reduced nucleophilicity of the neutral species compared with neutral tryptamine slows the rate of the chemical step. The straightforward possibility that the fluorines prevent binding of the analog seems to be unlikely since the reduced nucleophilicity of the neutral species compared with neutral tryptamine favors this possibility.

The straightforward possibility that the fluorines prevent binding of the analog seems to be unlikely since the reduced nucleophilicity of the neutral species compared with neutral tryptamine favors this possibility.

An alternative interpretation of the rate versus pH profiles is that two different ionizable groups are being titrated in the Kd and Km plots that coincidentally have pK values near 7 in the free enzyme and enzyme-substrate complex, respectively. For this to be true, the pK values of each of the two groups would have to shift dramatically or be offset by other ionizable groups upon substrate binding. This model is not favored because of its complexity, but cannot be formally ruled out at this time.
cleophilicity in the enzyme reaction. Assume that the β_{nuc} for the chemical step is 0.8, similar to related chemical model reactions (21). The difference in pK_a values of the amines of the trifluoromethyl-substituted compound 7 compared with α-methyltryptamine (7) is 4.4 units, so the predicted rate reduction due to decreased basicity of compound 9 would be $10^{3.5}$-fold. Disruption in binding and/or orientation due to fluorines could further reduce the rate. Even a $10^{3.5}$-fold reduction is below the background experimental detection level (10^{-3}-fold lower than for compound 7) and is consistent with the experimental inability to detect turnover with substrate 9, assuming a transition state with $\beta_{\text{nuc}} = 0.8$. Arylamines such as aniline ($pK_a = 4.7$) have been reported not to be substrates for AANAT, whereas the related compound phenethylamine ($pK_a = 9.8$) is an effective substrate (1). Based on the arguments above, the decreased nucleophilicity of arylamines would be insufficient to permit efficient AANAT-catalyzed acetyl transfer.

The pH-rate analyses did reveal an ionizable group with $pK_a \sim 7$ (pK_a) for both the free and bound enzyme complexes.

Although the role and identity of this residue are not known at present, a reasonable speculation is that it might be an enzyme histidine imidazole. Such a pK_a would be consistent with a previously proposed histidine in catalysis whose role was suggested based on mutagenesis studies (1). Further analysis will be necessary to clarify this connection.

Conclusions—Recombinant sheep AANAT catalyzes acetyl transfer to a diverse array of tryptamine analogs. This relatively liberal acceptance of amine substrates offers hope for the generation of potent AANAT inhibitors. Despite this flexibility, AANAT can show stereoselectivity for α-branched substrates. Such behavior is useful knowledge for inhibitor design. It may also have utility in the preparation of enantiomerically pure tryptamine analogs. With physiologic substrates, it is likely that the chemical step is fast and that product release is largely rate-determining. This kinetic feature needs to be taken into account in the interpretation of mutagenesis and other perturbations of catalytic mechanism and substrate affinity. It could also be important in studies of biological regulation of acetyltransferase activity. Based on studies with the α-trifluoromethyltryptamine analog and pH-rate profiles, the favored model for the catalytic mechanism of AANAT involves binding of the positively charged serotonin ammonium species, which subsequently becomes deprotonated and converted to a strong nucleophile during catalysis.

Acknowledgments—We thank S. Danishefsky for access to a polarimeter. We are grateful to J. Blanchard and K. Collins for helpful suggestions and to J. Blanchard for critical reading of the manuscript.

REFERENCES
1. Klein, D. C., Coon, S. L., Roseboom, P. H., Weller, J. L., Bernard, M., Gastel, J. A., Zatz, M., Ivonne, P. M., Rodrigues, J. R., Begay, V., Falcon, J., Cahill, G. M., Cassone, V. M., and Baler, R. (1997) Recent Prog. Horm. Res. 52, 307–357
2. Gastel, J. A., Roseboom, P. H., Rinaldi, P. A., Weller, J. L., and Klein, D. C. (1998) Science 279, 1358–1360
3. De Angelis, J., Gastel, J., Klein, D. C., and Cole, P. A. (1998) J. Biol. Chem. 273, 3045–3050
4. Coon, S. L., Roseboom, P. H., Baler, R., Weller, J. L., Namboodiri, M. A. A., Koonin, E. V., and Klein, D. C. (1995) Science 270, 1681–1683
5. Kayumov, V., Smushkevich, Y. I., and Suvorov, N. N. (1973) Zh. Vses. Khim. Obshchest. 6, 342
6. Zimmer, R., and Reissig, H.-U. (1992) J. Org. Chem. 57, 339–347
7. Markley, J. L. (1975) Acc. Chem. Res. 8, 70–80
8. Cole, P. A., Burn, P., Takacs, B., and Walsh, C. T. (1994) J. Biol. Chem. 269, 30880–30887
9. Kitaguchi, H., Fitzpatrick, P. A., Huber, J. E., and Klibanov, A. M. (1989) J. Am. Chem. Soc. 111, 3094–3095
10. Blacklow, S. C., Rainer, R. T., Linn, W. A., Zamore, P. D., and Knowles, J. R. (1988) Biochemistry 27, 1158–1167
11. Brouwer, A. C., and Kirsch, J. F. (1982) Biochemistry 21, 1302–1307
12. Dixon, M., and Webb, E. C. (1964) Enzymes, Academic Press, New York
13. Walsh, C. T. (1985) Adv. Enzymol. Relat. Areas Mol. Biol. 55, 197–269
14. Budarvai, S. (ed) (1996) Merck Index, 12th Ed., 1454, Merck & Co., Rahway, NJ
15. Grace, M. R., Walsh, C. T., and Cole, P. A. (1997) Biochemistry 36, 1874–1881
16. Preobrazhenskaya, M. N., Rozhkov, I. I., Lazhko, E. I., and Kirolov, A. M. (1998) Tetrahedron Lett. 39, 109–112
17. Repele, D. B., and Ferguson, W. J. (1976) J. Heterocycl. Chem. 13, 775–778
18. Cook, P. F., Neville, M. E., Vrana, K. E., Hartl, F. T., and Roskoski, R. (1982) Biochemistry 21, 5794–5799
19. Xiao, G., Parsons, J. F., Armstrong, R. N., and Gilliland, G. L. (1997) J. Am. Chem. Soc. 119, 9325–9326
20. Bollinger, J. M., Jr., Kwon, D. S., Huisman, G. W., Kolter, R., and Walsh, C. T. (1995) J. Biol. Chem. 270, 14031–14041
21. Jenecks, W. P., and Carriuolo, J. (1960) J. Am. Chem. Soc. 82, 1778–1786