The Hop Cassette of the PAC1 Receptor Confers Coupling to Ca\(^{2+}\) Elevation Required for Pituitary Adenylate Cyclase-activating Polypeptide-evoked Neurosecretion*

Received for publication, October 12, 2006, and in revised form, December 28, 2006 Published, JBC Papers in Press, January 9, 2007, DOI 10.1074/jbc.M609638200

Tomris Mustafa\(^{1,1}\), Maurizio Grimaldi\(^{1,5}\), and Lee E. Eiden\(^{1,2}\)

From the \(^{1}\)Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892 and the \(^{2}\)Laboratory of Neuropharmacology, Department of Biochemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205

We have identified the single PAC1 receptor variant responsible for Ca\(^{2+}\) mobilization from intracellular stores and influx through voltage-gated Ca\(^{2+}\) channels in bovine chromaffin cells and the domain of this receptor variant that confers coupling to [Ca\(^{2+}\)]\(_i\) elevation. This receptor (bPAC1\(_{hop}\)) contains a 28-amino acid “hop” insertion in the third intracellular loop, with a full-length 171-amino acid N terminus. Expression of the bPAC1\(_{hop}\) receptor in NG108-15 cells, which lack endogenous PAC1 receptors, reconstituted high affinity PACAP binding and PACAP-dependent elevation of both cAMP and intracellular Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]\(_i\)). Removal of the hop domain and expression of this receptor (bPAC1\(_{null}\)) in NG108-15 cells reconstituted high affinity PACAP binding and PACAP-dependent cAMP generation but without a corresponding [Ca\(^{2+}\)]\(_i\) elevation. PC12-G cells express sufficient levels of PAC1 receptors to provide PACAP-saturable coupling to adenylyl cyclase and to drive PACAP-dependent differentiation but do not express PAC1 receptors at levels found in postmitotic neuronal and endocrine cells and do not support PACAP-mediated neurosecretion. Expression of bPAC1\(_{hop}\) but not bPAC1\(_{null}\) at levels comparable with those of bPAC1\(_{hop}\) in bovine chromaffin cells resulted in acquisition by PC12-G cells of PACAP-dependent [Ca\(^{2+}\)]\(_i\), increase and extracellular Ca\(^{2+}\) influx. In addition, PC12-G cells expressing bPAC1\(_{hop}\) acquired the ability to release \(^{3}\)H)norepinephrine in a Ca\(^{2+}\) influx-dependent manner in response to PACAP. Expression of PACAP receptors in neuroendocrine rather than nonneuroendocrine cells reveals key differences between PAC1\(_{hop}\) and PAC1\(_{null}\) coupling, indicating an important and previously unrecognized role of the hop cassette in PAC1-mediated Ca\(^{2+}\) signaling in neuroendocrine cells.

Pituitary adenylate cyclase-activating polypeptide (PACAP)\(^3\) stimulates hormone secretion from adrenomedullary chromaffin cell complete medium; DMEM, Dulbecco’s modified Eagle’s medium; GFP, green fluorescent protein; GPCR, G-protein-coupled receptor; IC3, third intracellular loop; ICS, intracellular stores; IP\(_3\), inositol trisphosphate; KRB, Krebs-Ringer buffer; PLC, phospholipase C; TM, transmembrane; TTX, tetrodotoxin; VGCC, voltage-gated calcium channel; ORF, open reading frame.

\(^{*}\)This work was supported by a grant from the National Institute of Mental Health-Intramural Research Program. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

\(^{1}\)A Julius Axelrod Fellow in the National Institute of Mental Health Intramural Research program.

\(^{2}\)To whom correspondence should be addressed: Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institutes of Mental Health, Bldg. 49, Rm. 5A-68, 9000 Rockville Pike, Bethesda, MD 20892.

\(^{3}\)The abbreviations used are: PACAP, pituitary adenylate cyclase-activating polypeptide; AC, adenylyl cyclase; BCC, bovine chromaffin cell; CCCM,
region four has been reported to mediate Ca2+ influx in CHO cells, without coupling to AC (26), although the existence of this variant in other species is in doubt (14). Thus, the structural basis for PAC1 receptor coupling to cytosolic Ca2+ mobilization and extracellular influx in neuronal and endocrine cells remains unresolved, significantly impeding progress in understanding this crucial aspect of class II GPCR-Ca2+ coupling.

Determining receptor variant specificity unambiguously with respect to second messenger coupling is key to understanding the mechanisms of PACAP-evoked exocytosis, since stimulation of exocytosis by PACAP and other neurotransmitters may be modulated by cAMP and interactions between cAMP and Ca2+ in addition to the required rise in cytosolic Ca2+ concentration ([(Ca2+)\textsubscript{i}]) that triggers the final step of exocytosis (27). PACAP-mediated secretion from bovine chromaffin cells (BCCs) and rat pheochromocytoma (PC12) cells is reported to require Ca2+ influx through voltage-gated Ca2+ channels (VGCCs), with predominant contributions from either L-type or non-L-type channels depending on the time frame of secretion and the type of cell (1, 2, 5, 8, 28, 29). Since all PAC1 receptor variants elevate cAMP, various laboratories have investigated CAMP involvement in potentiating PACAP-induced [(Ca2+)\textsubscript{i}], elevation or otherwise contributing to PACAP-induced secretion from chromaffin cells (30–33). PACAP also causes depolarization of pituitary cells, pituicytes, and sympathetic neurons through Na+ channels or Ca2+ influx through nonspecific cation or transient receptor potential channels (17, 34–36), pathways that may also contribute to Ca2+ influx required for exocytosis.

PAC1 receptor activation could therefore stimulate secretion both directly and indirectly through Ca2+ mobilization from intracellular stores, Ca2+ influx, and cAMP generation. Evidence for PACAP coupling to these second messengers through PAC1 comes from a variety of endocrine and nonendocrine cells, however, and may be specific to both the cell type and receptor variant. Therefore, identifying the mechanism of secretion triggered by PACAP at the adenomedullary synapse, at which PACAP is the major physiologically relevant slow transmitter, requires (a) identification of the PAC1 variant or variants present in chromaffin cells, (b) reconstitution of PACAP-dependent calcium signaling and secretory competence in a neuroendocrine cell background, and (c) determination of the structural motifs responsible for reconstituted signaling leading to secretion. We demonstrate here that BCCs express a single PACAP receptor, bPAC1\textsubscript{hop}, and reveal the structural requirements for coupling to intracellular Ca2+ mobilization, Ca2+ influx, and neurosecretion through reconstitution in PC12-G cells.

EXPERIMENTAL PROCEDURES

Materials—PACAP-38 and PACAP-27 were purchased from Phoenix Pharmaceuticals (Mountain View, CA). The radioligand, [125]IPACAP-27 (specific activity 2200 Ci/mmol) was obtained from PerkinElmer Life Sciences. Tetrodotoxin (TTX), veratridine, and forskolin were purchased from Calbiochem-EMD Biosciences. All tissue culture reagents were purchased from Invitrogen unless otherwise specified. All other reagents used were purchased from Sigma-Aldrich.

Chromaffin Cell Cultures—Steer adrenal glands were used to isolate chromaffin cells as previously described (37, 38). Freshly isolated chromaffin cells were seeded into 162-cm2 tissue culture flasks and cultured for 24 h in high glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% heat-inactivated fetal calf serum, 25 mM HEPES, 100 units/ml penicillin/streptomycin, 2 mM glutamine, 10 μg/ml cytisine β-d-arabinofofranoside (chromaffin cell complete medium; CCCM) with 100 units/ml nystatin prior to differential plating into 24-well plates. For radioimmunoassays, chromaffin cells were replated at a density of 500,000 cells/well on 0.1 mg/ml poly-d-lysine-coated 24-well plates (Costar-Corning) 24 h prior to treatments or harvesting.

Measurement of Met-Enkephalin Release—Release studies were performed on chromaffin cells 24 h after differential plating. Briefly, cells were pretreated for 30 min with 500 μl of CCCM containing 30 μM D600, 1 μM TTX, 10 μM nimodipine, vehicle, or Ca2+-free CCCM (Ca2+ concentration from serum alone, ~100 μM). A further 500 μl of CCCM or Ca2+-free CCCM, either with or without 200 nM PACAP-38 or 20 μM veratridine, was then added to each well containing each of the above inhibitors, resulting in a final concentration of 100 nM PACAP or 10 μM veratridine/1000-μl final well volume. Following 1 h of treatment, Met-enkephalin was assayed from medium aliquots or 0.1 N HCl-lyophilized cell extracts by radioimmunoassay (37). The statistical difference between control and treatment groups was determined using one-way analysis of variance by Tukey’s multiple comparison test using GRAPHPAD PRISM, version 4 (GraphPad Software).

Preparation of cDNA—Bovine chromaffin, NG108-15, or PC12-G cells grown in Costar 162-cm2 flasks (Corning) were harvested, washed once with phosphate-buffered saline, rapidly resuspended in Trizol (Invitrogen), snap-frozen, and stored at ~80 °C. Total RNA was then isolated using the RNeasy® Mini total RNA isolation kit (Qiagen) according to the manufacturer’s instructions with the following modifications. Samples were thawed on ice and extracted with a final concentration of 20% chloroform. Following centrifugation at 12,000 rpm for 10 min at 4 °C, an equal volume of 70% ethanol was added to the aqueous phase, and the sample was applied to the RNeasy Mini spin column and processed according to Ref. 69. First strand cDNA was synthesized from 5 μg of total RNA using the Superscript™ First-Strand Synthesis System according to the manufacturer’s instructions (Invitrogen). Reverse transcription-PCR reactions were carried out using 1 μl (~250 ng) of the first-strand cDNA synthesis reaction as described below.

Identification and Cloning of the BCC PAC1 Receptor—The previously published sequence of the cloned bovine brain PAC1 receptor (accession number D17290) (39) was used to design a series of primers to amplify the receptor in overlapping segments and test for splice variants as described in Fig. 3. Primers (5′-ATGAGAGCCGGGCGACACTG-3′ and 5′-CCAACCTG-TGTACAGGGGCTTCACTG-3′) were used to isolate the N-terminal region of the PAC1 receptor. The entire transmembrane 1–7 region, including the third intracellular loop known to contain inserts, was amplified using primers (5′-GCCCCTG-TACACGTGGGCACA-3′ and 5′-TTGATCCGCTG-CACCTC-3′). The C terminus of the receptor was finally ampli-
PAC1 Hop Cassette Confers Ca^{2+} Coupling

fied using primers (5’-AGAGGGTGCAGGGCGAG-3’ and 5’-TCAGTGGCAGTTGTCG-3’), resulting in the generation of three overlapping amplicons representing the full-length PAC1 receptor. To further investigate the presence of third intracellular loop variants containing either hip, hop, or hiphop cassette insertions, transmembrane region 5–6 was amplified with primers (5’-GCCCCTGATTTGGCCTCATATGG-3’ and 5’-GGAGAAGAAGCAAGGACTG-3’). To determine which cassette was present in the IC3 region located between TM regions 5 and 6, the TM5 forward primer (5’-AGAGATTGACATGGTCTGACA-3’) was used in combination with reverse primers designed to anneal within the bovine hop (5’-AGAGAATAGGGTTCAGTTGAC-3’) or rat hop (5’-AGGAAAGGGGTGAATGCTG-3’) cassettes. All PCRs contained a 0.25 μM concentration of each primer, 1 mM dNTPs, 2.5 mM MgCl₂, and 2.5 units of high fidelity Pfu Turbo DNA polymerase (Stratagene), and ~250 ng of DNA template. Amplification consisted of an initial denaturation step of 95 °C for 5 min followed by 36 cycles of 95 °C for 30 s, 65 °C for 1 min, 72 °C for 1 min with a final extension step of 72 °C for 10 min.

The entire open reading frame of the bovine PAC1 receptor was obtained using primers (5’-ATGAGGAGGCGGCGG-GACCTG-3’ and 5’-TCAGTGGCAGTTGTCG-3’) under the PCR conditions specified above. The amplified bovine chromaffin PAC1 receptor cDNA was then directly cloned into the pCR®II-TOPO plasmid (Invitrogen) according to the manufacturer’s instructions. Recombinant plasmids containing the entire open reading frame (ORF) or various segments of the receptor were sequenced using M13 reverse and 5′ sequencing (DNA Sequencing Facility, NINDS, National Institutes of Health). Following multiple sequence verification, the bovine chromaffin receptor cDNA was then directly cloned into the pCR®II-TOPO plasmid (Invitrogen) according to the manufacturer’s instructions. Recombinant plasmids containing the entire open reading frame (ORF) or various segments of the receptor were sequenced using M13 reverse and 5′ sequencing (DNA Sequencing Facility, NINDS, National Institutes of Health). Following multiple sequence verification, the bovine chromaffin cell PAC1 receptor cDNA was subcloned into a mammalian expression vector, pcDNA3, and used for all subsequent studies.

Removal of the Hop Cassette—The entire hop cassette was removed from the bovine PAC1 receptor using PCR-mediated deletion mutagenesis based on a previously described method (40, 41). Briefly, first round PCR was carried out using one chimeric and one nonchimeric primer to amplify the upstream and downstream regions immediately surrounding the hop cassette to be deleted. The PCR amplicons were then diluted 1:1000, and 1 μl of the upstream and downstream amplicons were combined and used as template for a second round of ligation PCR using the outermost primer pairs (forward primer, 5’-GAAT-GAGGGCCGGCGCAGA-3’; reverse primer, 5’-GGCTCAGTGGCAGTTGTCG-3’). PCRs were carried out according to the conditions described above. The final single amplicon was purified and cloned into pcDNA3, and deletion of the hop cassette was confirmed through multiple sequencing reactions.

Cell Culture—NG108-15 cells (rat neuroblastoma × mouse glioma) obtained from the American Type Culture Collection (Manassas, VA) were cultured in high glucose DMEM supplemented with 10% heat-inactivated fetal calf serum (HyClone), 100 units/ml penicillin/streptomycin, 2 mM glutamine, and 1× HAT (sodium hypoxanthine, aminopterin, and thymidine) supplement. PC12-G rat pheochromocytoma cells (42) were cultured in high glucose DMEM supplemented with 7% heat-inactivated fetal calf serum (HyClone), 7% horse serum (Bio-Whittaker-Cambrex, Walkersville, MD), 25 mM HEPES, 100 units/ml penicillin/streptomycin, and 2 mM l-glutamine. All cells were used between passages 6 and 30.

Stable and Transient Transfection Studies—NG108-15 cells were transfected (24-well plate, 2-cm² surface area) with a mixture of 0.8 μg of DNA (pcDNA3 alone; pcDNA3 containing the bovine PAC1 receptor (bPAC1hop) cDNA; pcDNA3 containing the bovine PAC1 receptor deletion mutant (bPAC1null) cDNA; or pRT43.2, a cytomegalovirus promoter-driven GFP reporter plasmid, and 2 μl of Lipofectamine²⁰⁰⁰™ (Invitrogen) in the absence of serum according to the manufacturer’s instructions. For creation of bPAC1hop stable cell lines, NG108-15 cells were transfected with PvuI (New England Biolabs)-linearized pcDNA3 containing bPAC1hop receptor cDNA as described above. Cells were then selected using 500 μg/ml G418 and continuously maintained in 300 μg/ml G418 thereafter. Stable cell lines were screened through receptor binding studies and selected based on their ability to bind [125I]PACAP-27. For creation of bPAC1hop stable cell lines, NG108-15 cells were transfected with PvuI (New England Biolabs)-linearized pcDNA3 containing bPAC1hop receptor cDNA as described above and selected and continuously maintained using 500 μg/ml G418. PC12-G cells stably expressing the bPAC1hop receptor were selected based on gain of [125I]PACAP-27 binding and Ca^{2+} mobilization compared with mock-transfected naive PC12-G cells. All transiently transfected cells were assayed 48 h post-transfection, whereas stable cell lines were plated 24 h prior to experimentation.

Preparation of Crude Cell Membranes—Crude membranes were prepared as previously described (43). Briefly, subconfluent cells were harvested in hypotonic buffer (50 mM Tris–HCl and 5 mM EDTA, pH 7.4), homogenized with a hand-held tissue homogenizer (Tissuemizer; Fisher Scientific) for 10 s, and centrifuged at 600 × g for 5 min to remove cellular debris. The supernatant was centrifuged at 25,000 rpm for 20 min, and the membrane pellet was resuspended in PACAP wash buffer (50 mM Tris–HCl, 5 mM MgCl₂, pH 7.4) supplemented with Roche cocktail inhibitor tablets (Roche Applied Science). Total protein concentration was determined using the Bio-Rad DC protein colorimetric assay according to the manufacturer’s instructions (Bio-Rad).

Receptor Binding Studies—NG108-15 or PC12-G cell membranes (30 μg) were incubated in the presence of 150 pM [125I]PACAP-27 and increasing concentrations of unlabeled PACAP-38, PACAP-27, and VIP in PACAP binding buffer (50 mM Tris–HCl, 5 mM MgCl₂, pH 7.4) supplemented with 0.5 mg/ml bacitracin, 200 μM phenylmethylsulfonyl fluoride, 100 μM aprotinin, and 1% bovine serum albumin) for 1.5 h at 37 °C. All assays were set up and incubated in Multiscreen™ glass fiber plates (Millipore), precoated for 2 h at 4 °C with 0.1% polyethyleneimine prepared in PACAP wash buffer as described above. Free and bound radioligand were then separated by filtration using the multiscreen vacuum manifold according to
PAC1 Hop Cassette Confers Ca\(^{2+}\) Coupling

the manufacturer's instructions. Plates were washed four times with ice-cold PACAP wash buffer, filters were punched, and the retained radioactivity was measured on a gamma counter. The radioligand binding data were analyzed using version 4 of the GRAPHPAD PRISM program.

Intracellular cAMP Measurements—Stably transfected NG108-15 cells were plated onto 24-well plates (Costar-Corning) coated with poly-l-lysine (0.1 mg/ml in phosphate-buffered saline) at a density of 70,000 cells/well 24 h prior to being serum-deprived for 24 h. For transient transfection studies, cells were plated at a density of 70,000 cells/well 24 h post-transfection according to the conditions described above and serum-deprived 24 h prior to treatments. The NG108-15 cells were then treated with varying concentrations (10\(^{-7}\) to 10\(^{-11}\) M) of PACAP-38, PACAP-27, or VIP for 20 min at 37 °C in DMEM containing 100 units/ml penicillin/streptomycin, 2 mM glutamine, 1× HAT supplement, 1 mM isobutylmethylxanthine, and 0.1% bovine serum albumin. Intracellular cAMP was then measured using the Biotrak nonacetylation enzyme immunoassay system with the supplied lysis reagent according to manufacturer's instructions (Amersham Biosciences). 24 h post-transfection, PC12-G cells were plated into 24-well plates coated with 0.1 mg/ml poly-l-lysine in a density of 250,000 cells/well, allowed to adhere for 24 h, and then treated with varying concentrations (10\(^{-7}\) to 10\(^{-11}\) M) of PACAP-38, PACAP-27, or VIP for 20 min at 37 °C. Intracellular cAMP content was determined as described above.

Single Cell [Ca\(^{2+}\)]\(_{i}\) Measurements—[Ca\(^{2+}\)]\(_{i}\) was measured as previously described (44). Briefly, 150,000 (NG108-15) or 400,000 (PC12-G) cells were seeded onto 1.5-cm diameter glass coverslips (Assistent) coated with 0.5 mg/ml poly-l-lysine in 12-well plates (Costar-Corning). Transiently transfected cells were plated 24 h post-transfection on the cell densities specified above. For transient transfection studies, cells were cotransfected at a ratio of 1:3 (bPAC1hop or bPAC1null in pcDNA3:pRT43.2GFP) in 162-cm\(^2\) flasks and plated 24 h post-transfection under the specified conditions. 24 h postseeding, cells were washed once with Krebs-Ringer buffer (KRB) containing 125 mM NaCl, 5 mM KCl, 1 mM Na\(_2\)HPO\(_4\), 1 mM MgSO\(_4\), 1 mM CaCl\(_2\), 5.5 mM glucose, and 20 mM HEPES, pH 7.3. The cells were then loaded with 4 \(\mu\)M Fura-2/AM (Invitrogen) in 400 \(\mu\)l of KRB (24 h) secretion from bovine chromaffin cells using endogenous Met-enkephalin as a marker of release from large dense core vesicles (46). The ability of PACAP to cause Met-enkephalin release from BCCs was not dependent on Na\(^{+}\) influx-evoked cellular depolarization, since TTX, which inhibits voltage-dependent Na\(^{+}\) influx leading to action potential generation and opening of VGCCs, failed to block PACAP-evoked secretion (Fig. 1). Treatment of cells with 25 \(\mu\)M forskolin did not mimic the acute secretagogue effects of PACAP under conditions (Met-enkephalin secretion during 60 min of stimulation) in which 40 mM KCl or 100 nM PACAP gave a 3–5-fold stimulation over basal level (data not shown), indicating that the ability of PACAP to elevate intracellular cAMP by coupling to adenylate cyclase through Go\(_{\alpha}\) is insufficient on its own to stimulate acute secretion from large dense core vesicles in BCCs. PACAP-evoked secretion of Met-enkephalin was abolished in Ca\(^{2+}\)-free medium (Fig. 1) and by exposure of BCCs to 30 \(\mu\)M D600, a pan-specific inhibitor of VGCCs (Fig. 1), consistent with previous reports that PACAP-dependent Ca\(^{2+}\) influx occurs through one or more VGCCs in BCCs (1, 36). Blockade of PACAP-evoked acute secretion, unlike regulation of neu-
PAC1 Hop Cassette Confers Ca2+ Coupling

 Exposure of chromaffin cells (resting 70 ± 0.09 nM [Ca2+]) to PACAP results in a large elevation of [Ca2+], that is characterized by a fast and large peak (516 ± 55 nM [Ca2+]), followed by a plateau phase (272 ± 19 nM [Ca2+]) (Fig. 2A; see Ref. 8), corresponding to PACAP-evoked acute secretion. Consistent with our secretion studies, the presence of 1 μM TTX did not block PACAP-induced [Ca2+]i elevation (Fig. 2B) (PACAP + TTX peak, 2100 ± 335 nM [Ca2+]), confirming that the effects of PACAP on [Ca2+]i do not occur through voltage-dependent Na+ channel-mediated membrane depolarization. In the absence of extracellular Ca2+, PACAP still caused a transient increase of [Ca2+]i, (143 ± 19 nM [Ca2+]), which rapidly returned to base-line levels (Fig. 2C), showing that the effect of PACAP on [Ca2+]i occurs through both Ca2+ mobilization from ICS and extracellular influx. This was confirmed by complete abolition of [Ca2+]i elevation when BCC ICS were depleted by thapsigargin prior to PACAP treatment in the presence of nimodipine, an inhibitor of L-type VGCCs (Fig. 2D) (resting, 58 ± 7 nM; Nimo base line, 73 ± 4.2 nM; Thap + Nimo, 211 ± 20 nM; PACAP + Nimo + Thap, 85 ± 5 nM [Ca2+]).

BCCs Express a Single Isoform of the PAC1 Receptor—We next examined the molecular forms of the PAC1 receptor(s) responsible for PACAP-mediated [Ca2+]i elevation and secretion in BCCs. The PAC1 receptor variant(s) expressed by BCCs was identified and cloned using the previously published sequence of the bovine brain PAC1 receptor (accession number D17290) (39) to design a set of primers to amplify the entire open reading frame (ORF) of the receptor in three overlapping segments: the N terminus, transmembrane regions 1–7, and the C terminus (Fig. 3). First, amplification of the N terminus region indicated the presence of a full-length transcript without the 21- or 57-amino acid truncations reported in some PAC1 transcripts (20, 21) or insertion of 24 amino acids in others (47). Generation of an 857-bp transcript following amplification of the TM1 to -7 region of the receptor could be accounted for only by the presence of a single hip or hop cassette, but not both, in the third intracellular loop of the receptor (22, 48). The use of internal primers to the hop or hip cassettes confirmed that the bovine PAC1 receptor contained the hop cassette within its IC3 region.

Importantly, the hop variant was the only PAC1 receptor species present in BCCs (Fig. 3B). No C terminus receptor variants of the PAC1 receptor were identified in bovine chromaffin cells, as shown by the single amplicon of the expected length of 193 bp in Fig. 3B. Following multiple sequence verifications, our results indicated that BCCs express a single splice variant of the receptor with the hop cassette in the IC3 loop. Finally, multiple sequencing of amplicons encompassing the fourth transmembrane domain failed to identify the reported transmembrane variant responsible for PAC1 receptor coupling to Ca2+ influx reported previously (26), consistent with the absence of this sequence in either the human or rodent PAC1 gene loci (14). Since it is the only form of the PAC1 receptor expressed in bovine chromaffin cells, bPAC1\textsubscript{hop} can be identified unambiguously with PACAP coupling to both cAMP generation and Ca2+ mobilization and influx in these cells. This receptor was next expressed in homologous (neural and neuroendocrine) cells to recapitulate PACAP-dependent Ca2+ signaling required for secretion.

Expression of the bPAC1\textsubscript{hop} Receptor in NG108-15 Cells

Reconstitutes High Affinity PACAP Binding, PACAP-stimulated cAMP Generation, and Elevation of [Ca2+]—bPAC1\textsubscript{hop} was expressed in NG108-15 cells, a mouse neuroblastoma × rat glioma cell line, which lacks endogenous expression of either PACAP or VIP receptors but is capable of GPCR-mediated responses to other neurotransmitters (49). [125I]PACAP-27 binding was specifically competed by unlabeled PACAP-38 and PACAP-27 with IC\textsubscript{50} values of 3 and 18 nM, respectively, and VIP did not compete for [125I]PACAP-27 binding (Fig. 4A). Both PACAP-38 and PACAP-27 stimulated the accumulation of intracellular cAMP in a concentration-dependent manner, with EC\textsubscript{50} values of 0.14 and 0.05 nM, respectively, in NG108-15 cells stably transfected with bPAC1\textsubscript{hop} indicating that coupling...
to AC, presumably through Gs, was reconstituted in these cells (Fig. 4). Exposure of NG108-15 cells stably expressing the bPAC1hop receptor to 100 nM PACAP resulted in a rapid rise in [Ca2+]i.

FIGURE 2. Effect of Na+ channel blockade, extracellular Ca2+ withdrawal, and L-type VGCC blockade on PACAP-induced [Ca2+]i elevation in BCCs. A, exposure of Fura-2-loaded chromaffin cells to 100 nM PACAP, leading to a rapid Ca2+ rise followed by a sustained plateau phase (resting, 70 ± 2.09 nM; peak, 516 ± 55 nM; plateau, 272 ± 19 nM [Ca2+]). B, lack of effect of 1 \textmu M TTX on PACAP-evoked [Ca2+]i elevation (peak, 516 ± 55 nM [Ca2+]i). C, removal of extracellular Ca2+ abolishes the plateau phase but still results in an initial rise in [Ca2+], that is, however, strongly reduced in amplitude in response to PACAP-38 (peak, 143 ± 19 nM [Ca2+]i). Effects of ICS depletion with thapsigargin and blockade of L-type VGCCs abolishes PACAP-evoked Ca2+ elevation in BCCs (resting, 58 ± 7 nM; Nimo, 73 ± 4.2 nM; Thap + Nimo, 211 ± 20 nM; PACAP + Nimo + Thap, 85 ± 5 nM [Ca2+]i). Plots represent the average ± S.E. of all cells (50–130 cells) recorded from three or four independent experiments. Calibrated [Ca2+], values (nM) have been generated by converting 340/380-nm ratio values according to the method described by Grynkiewicz et al. (45).

FIGURE 3. Schematic representation of PCR-based identification and cloning of the BCC PAC1 receptor. A, the previously published bovine brain PAC1 receptor sequence was used to design a series of primers that could amplify the receptor in three major overlapping segments that results in the generation of the entire open reading frame of the receptor. B, primer set 1 (1f-1r) was used to amplify the segment of the receptor from the start of the ORF to the beginning of transmembrane region 1. This resulted in the generation of a single 530-bp amplicon, indicating a full-length N terminus. Primer set B (2f-2r) was used to amplify TM regions 1–7, that includes both extracellular and intracellular loop regions of the receptor. An amplicon of 857 bp was generated, indicating a receptor variant with either a hop or hip cassette in the IC3 region. This was confirmed by the generation of a 271-bp amplicon using primer set 4 (4f-4r) designed to amplify the region between TM5 and TM6. To discriminate between the two cassettes, a reverse primer was designed to bind within either the hop (5r) or hip cassettes (6r). This resulted in a generation of a 200 bp using the hop specific primer (4f-5r), whereas no amplification was detected using the hip-specific primer (4f-6r), demonstrating that the bovine PAC1 receptor contains the hop cassette within the IC3 region. The C terminus region of the receptor from the TM7 to the end of the ORF was amplified using primer set C (3f-3r) and resulted in the generation of a 193-bp fragment. Sequence verification of the overlapping segments allowed the construction of a full-length sequence identical to the previously identified bovine brain PAC1hop receptor. The entire ORF was then amplified (1f-3r), and the full-length, 1542-bp cDNA was cloned into mammalian expression vector pcDNA3.
(resting, 48 ± 1.9 nM; peak, 742.2 ± 61 nM; plateau, 53.5 ± 2.96 nM [Ca^{2+}]) that was not observed in control untransfected NG108-15 cells (47 ± 1.09 nM [Ca^{2+}]), confirming this as a bPAC1hop receptor-mediated event (Fig. 4C). Removal of extracellular Ca^{2+} did not affect the rapid initial rise of [Ca^{2+}], following PACAP (resting, 61.9 ± 8.6 nM; resting Ca^{2+}-free KRB, 63.9 ± 4.1 nM; peak, 598.7 ± 58 nM; plateau, 68.6 ± 2.3 nM [Ca^{2+}]), indicating that the bulk of the Ca^{2+} release into the cytoplasm was contributed by intracellular stores (Fig. 4C) with no obvious Ca^{2+} influx "plateau phase" as observed in the
TABLE 1

Cell type	Receptor	PACAP-38 \(K_d \)	PACAP-27 \(K_d \)	PACAP-38 \(B_{max} \)
NG108-15	bPAC1hop	4	18	11
	bPAC1null	4	28	12
	bPAC1hop	4	27	11
	bPAC1null	8	38	21
PC12-G	bPAC1hop	4	18	11
	bPAC1null	4	28	12

PAC1 Hop Cassette Confers \(\text{Ca}^{2+} \) Coupling

Expression of the bPAC1hop or bPAC1null receptors in PC12-G cells reconstituted high density and high affinity \([125I]\text{PACAP-27}\) binding that could be specifically competed for by unlabeled PACAP-38 and PACAP-27 with IC\(_{50}\) values of 4.8 and 26 nm, respectively, for bPAC1hop (Fig. 5A) and 7.5 and 38 nm, respectively, for bPAC1null (Fig. 5B). VIP did not compete for \([125I]\text{PACAP-27}\) binding to either the endogenous rat or either of the bovine receptors. Mock-transfected PC12-G cells expressed high affinity but very low density \([125I]\text{PACAP-27}\) binding (<10% of total specific binding measured in PC12-G cells transfected with bPAC1hop data not shown). Treatment of either naive, bPAC1hoptransfected, or bPAC1null-transfected PC12-G cells with varying concentrations of PACAP-38 resulted in a potent concentration-dependent elevation of intracellular cAMP levels at comparable levels with EC\(_{50}\) values of 0.78 nm (PC12-G), 1.2 nm (bPAC1hop), and 3 nm (bPAC1null) (Fig. 5, B and D). These data indicate that PC12-G cells are capable of appropriate trafficking, expression, and G-protein coupling of PAC1 receptors. The endogenous PAC1 receptor appeared to be maximally efficiently coupled to \(\text{AC} \) through \(\text{Gs} \) in PC12-G cells, since cAMP production induced by 100 nm PACAP-38 in PC12-G cells was not further increased by the >10-fold increase in PACAP-27 binding after expression of bPAC1hop or bPAC1null and is equivalent to that generated by direct supramaximal stimulation of adenylate cyclase with 25 \(\mu M \) forskolin (results not shown).

\(\text{Ca}^{2+} \) signaling was next examined in bPAC1hop-expressing, bPAC1null-expressing, or naive PC12-G cells following transient transfection. A GFP expression vector served as a marker of transfection efficiency to discriminate between bPAC1- and non-bPAC1-expressing PC12-G cells for single cell \(\text{Ca}^{2+} \) imaging (Fig. 6). Following Fura-2 loading, GFP-positive and -negative cells were identified (Fig. 6, inset A). Expression of GFP alone affected neither basal \(\text{Ca}^{2+} \), nor elevation of \(\text{Ca}^{2+} \), elicited by either 100 nm PACAP or 40 nm KCl (data not shown), bPAC1hop-expressing (GFP-positive) cells responded to exposure to 100 nm PACAP with a large and rapid rise in \(\text{Ca}^{2+} \), typical of \(\text{Ca}^{2+} \) release from ICS (resting, 64.6 ± 3.95 nm; peak, 731 ± 58 nm; plateau, 213 ± 26 nm) \([\text{Ca}^{2+}]_i\)). This phase was followed by a prolonged phase of \([\text{Ca}^{2+}]_i\) elevation, attributable to extracellular \(\text{Ca}^{2+} \) influx (Fig. 6), as shown previously in BCCs (Fig. 2A; see Ref. 8). Untransfected cells responded to PACAP treatment with very small increases in \(\text{Ca}^{2+} \), that reflect the limited coupling of endogenous PAC1 receptors expressed in PC12-G cells with \(\text{Ca}^{2+} \) mobilization and influx (Fig. 6) (resting, 65.3 ± 3.8 nm; peak, 175 ± 16 nm; plateau, 153 ± 11.3 nm) \([\text{Ca}^{2+}]_i\)).

We next investigated whether reconstitution of \(\text{Ca}^{2+} \) elevation by bPAC1 was specifically dependent on the presence of the hop cassette in PC12-G cells, as observed in NG108-15 cells. Expression of bPAC1null in PC12-G cells, with GFP as a marker for transfection, allowed Fura-2 visualization of \(\text{Ca}^{2+} \), following exposure to PACAP-38, which was not elevated beyond the small rise observed in untransfected PC12-G cells (Fig. 6). Thus, removal of the hop cassette uncoupled the PAC1 receptor from its ability to promote \(\text{Ca}^{2+} \) mobilization from ICS as well as \(\text{Ca}^{2+} \) influx, implicating the hop cassette within ICS as a critical determinant in PAC1 receptor coupling to both \(\text{Ca}^{2+} \) mobil-
zation from ICS and Ca\(^{2+}\) influx (resting, 65.8 ± 3.4 nM; peak, 115 ± 8.7 nM; plateau, 90 ± 4.6 nM [Ca\(^{2+}\)]). PACAP stimulation of bPAC1\(_{hop}\)-expressing PC12-G cells in Ca\(^{2+}\)-free medium prevented the plateau phase of [Ca\(^{2+}\)]\(_e\) elevation, indicating its dependence on extracellular Ca\(^{2+}\) influx following Ca\(^{2+}\) mobilization (Fig. 7). These findings indicate that PC12-G cells express molecular components required for PAC1\(_{hop}\) coupling to [Ca\(^{2+}\)]\(_e\) elevation through Ca\(^{2+}\) mobilization from ICS and via extracellular Ca\(^{2+}\) entry, provided that the receptor is expressed at sufficient density (Ca\(^{2+}\)-free KRB: resting, 70.23 ± 4.9 nM; peak, 259.33 ± 21 nM; plateau, 67.27 ± 12.17 nM; Ca\(^{2+}\)-KRB: resting, 62.3 ± 2.5 nM; peak, 424.31 ± 23.6 nM; plateau, 233.1 ± 4 nM [Ca\(^{2+}\)]). These results are further confirmed by expression of the rat PAC1\(_{hop}\) receptor under the control of the cytomegalovirus promoter, which increased rPAC1\(_{hop}\) expression in PC12-G cells around 10-fold and also reconstituted both PACAP-mediated Ca\(^{2+}\) mobilization from ICS (Ca\(^{2+}\) peak) and influx (Ca\(^{2+}\) plateau) in PC12-G cells (data not shown).

Expression of bPAC1\(_{hop}\) Confers PACAP-evoked [\(^{3}H\)]Norepinephrine Release in PC12-G Cells—PC12-G cells express very low levels of PAC1 and do not exhibit either Ca\(^{2+}\) mobilization or a substantial Ca\(^{2+}\) influx following exposure to PACAP in KRB (Fig. 6). We hypothesized that these cells might lack competence for PACAP-evoked secretion, unlike some PC12 cell lines that are competent for both PACAP-evoked Ca\(^{2+}\) influx and catecholamine secretion (28), and would therefore represent an effective model for reconstitution of PAC1-dependent catecholamine secretion.

As demonstrated in Fig. 8A, PC12-G cells efficiently accumulate [\(^{3}H\)]norepinephrine yet fail to release it in response to PACAP-evoked secretion in KRB, suggesting that the low density of endogenously expressed PAC1 receptors in PC12-G cells do not generate a sufficient Ca\(^{2+}\) signal for regulated exocytosis. Membrane depolarization of naive PC12-G with 55 mM KCl caused significant secretion of norepinephrine (30% of total content) (Fig. 8A), thus confirming sufficient uptake/loading of cells with [\(^{3}H\)]norepinephrine. In contrast, bPAC1\(_{hop}\)-express-
PAC1 Hop Cassette Confers Ca\(^{2+}\) Coupling

FIGURE 6. Expression of the bPAC1\(_{\text{hop}}\) receptor reconstitutes intracellular Ca\(^{2+}\) mobilization and influx in PC12-G cells that can be abolished by removing the hop domain of the bovine PAC1 receptor. PC12-G cells were transiently transfected with bPAC1\(_{\text{hop}}\) or bPAC1\(_{\text{null}}\) expression vectors and a GFP expression marker vector and loaded with Fura-2. Cells were preidentified as untransfected or transfected based on GFP fluorescence (inset A) and monitored for changes in [Ca\(^{2+}\)]\(_i\), measured as the 510-nm emission ratio after excitation at 340 and 380 nm. Exposure of bPAC1\(_{\text{hop}}\) (GFP-positive) cells to 100 nM PACAP resulted in a rapid rise in Ca\(^{2+}\) that was followed by a persisting plateau phase (resting, 64.6 ± 3.95 nM; plateau, 213 ± 26 nM [Ca\(^{2+}\)]\(_i\)) (black circle) that was not observed in naive untransfected (GFP-negative) PC12-G cells (gray circle) (resting, 65.3 ± 3.8 nM after PACAP exposure, 175 ± 16 nM; plateau, 53 ± 11.3 nM [Ca\(^{2+}\)]\(_i\)). As demonstrated in inset B, only cells expressing GFP (circled) exclusively responded to PACAP. GFP-positive PC12-G cells expressing the bPAC1\(_{\text{null}}\) receptor, created by removing the hop domain, stimulated with 100 nM PACAP failed to mediate both Ca\(^{2+}\) mobilization or influx (open circle) in PC12-G cells (resting, 65.8 ± 3.4 nM PACAP exposure, 115 ± 8.7 nM; plateau, 90 ± 4.6 nM [Ca\(^{2+}\)]\(_i\)). All images were taken using a 40× objective with oil immersion. Plots represent the average ± S.E. of 40–100 cells recorded from three or four independent experiments. Calibrated [Ca\(^{2+}\)]\(_i\), values (nM) were generated by converting 340/380-nm ratio values according to the method described by Grynkiewicz et al. (45).

FIGURE 7. PACAP-evoked Ca\(^{2+}\) elevation in bPAC1\(_{\text{hop}}\)-expressing PC12-G consists of both Ca\(^{2+}\) mobilization from ICS and extracellular Ca\(^{2+}\) influx. Treatment of Fura-2-loaded PC12-G cells stably expressing the bPAC1\(_{\text{hop}}\) receptor with 100 nM PACAP in the presence (filled circle) or absence (open circle) of extracellular Ca\(^{2+}\) indicates that PACAP-evoked Ca\(^{2+}\) elevation consists of two events: intracellular Ca\(^{2+}\) mobilization from intracellular stores (base line, 62.3 ± 2.5 nM; peak, 424.3 ± 23.6 nM [Ca\(^{2+}\)]\(_i\)) and extracellular influx (plateau, 233 ± 4 nM [Ca\(^{2+}\)]\(_i\)) as indicated by the presence of the initial Ca\(^{2+}\) spike (resting, 70.23 ± 4.9 nM peak, 259.33 ± 21 nM [Ca\(^{2+}\)]\(_i\)) and absence of the persistent plateau phase (67.27 ± 12.17 nM [Ca\(^{2+}\)]\(_i\)) in experiments carried out in Ca\(^{2+}\)-free KRB buffer. All images were acquired using a ×40 oil immersion lens. Plots represent the average ± S.E. of 60–120 cells recorded from three or four independent experiments. Calibrated [Ca\(^{2+}\)]\(_i\), values (nM) have been generated by converting 340/380-nm ratio values according to the method described by Grynkiewicz et al. (45).

Ca\(^{2+}\) from the medium (Fig. 8C), demonstrating that expression of the bPAC1\(_{\text{hop}}\) receptor in PC12-G cells confers Ca\(^{2+}\) influx-dependent secretion evoked by PACAP, as previously demonstrated in BCCs.

DISCUSSION

The structural basis for PAC1 receptor coupling to Ca\(^{2+}\) mobilization and influx has not been previously addressed in a heterologous neuroendocrine cell culture system; nor has the structural basis for PAC1-dependent Ca\(^{2+}\) mobilization from ICS been investigated, which along with elevation of intracellular cAMP, is the hallmark of combinatorial signaling by the slow transmitter PACAP. The bPAC1\(_{\text{hop}}\) receptor isolated from BCCs contains an intact full-length N terminus and a hop cassette in IC3 as previously identified in rat and human tissues and bovine brain. This receptor variant binds PACAP with high affinity and activates second messenger systems, such as AC and presumably PLC. This phenotype is common to most of the known PAC1 receptor splice variants, which have been examined upon expression in nonneuroendocrine heterologous cell lines (22, 50). Expression of the PAC1\(_{\text{hop}}\) variant is sufficient for coupling PAC1 receptor occupancy to Ca\(^{2+}\) signaling, leading to exocytosis. The ability to couple to Ca\(^{2+}\) influx has been previously ascribed to a transmembrane domain 4 variant of PAC1 (26), but this variant has never been demonstrated to cause Ca\(^{2+}\) influx in a neuroendocrine cell, and the possibility of its natural occurrence has been challenged on structural and genetic grounds (14). In contrast, transfer of the bPAC1\(_{\text{hop}}\) receptor to PC12-G cells simultaneously conferred PACAP-dependent Ca\(^{2+}\) coupling and catecholamine secretion. The ability of PACAP to cause large and long lasting changes in [Ca\(^{2+}\)]\(_p\) required to trigger regulated exocytosis, provides a mechanism for the physiological role of PACAP as a slow transmitter subserving long lasting adrenal catecholamine secretion in response to metabolic and other stressors (9). We have further shown that transfer of PACAP-dependent secretory competence is specific for PAC1 receptor expression at levels found at or near physiological receptor density (i.e. that found in bovine chromaffin cells) and that Ca\(^{2+}\) coupling, but not coupling to AC, is highly specific for the hop cassette in IC3 of the receptor.

The hop and null forms of the PAC1 receptor are the major variants found in rats and humans, whereas systematic comparison of variants present in bovine tissues has not been carried out except in the adrenal medulla (i.e. this study). With respect to studies in heterologous cells, no dif-
PAC1 Hop Cassette Confers Ca\(^{2+}\) Coupling

FIGURE 8. Expression of the bPAC1hop receptor in PC12-G cells reconstitutes PACAP-evoked Ca\(^{2+}\) influx-dependent catecholamine secretion. Naive PC12-G cells loaded with \(^{3}H\)norepinephrine were stimulated with 100 nM PACAP or 55 mM KCl. In comparison with KCl-evoked norepinephrine secretion through membrane depolarization and opening of VGCCs, PACAP did not stimulate the secretion of norepinephrine in naive PC12-G cells (A). Transfection of PC12-G cells with the bPAC1hop receptor reconstituted PACAP-evoked norepinephrine secretion that was significantly higher compared with naive PC12-G cells (B). Removal of extracellular Ca\(^{2+}\) abolished PACAP-evoked norepinephrine secretion without affecting basal secretion (C). Values represent the mean ± S.E. of triplicate wells obtained from 3–7 independent experiments. Differences between control and treatment groups were determined using one-way analysis of variance followed by post hoc Tukey’s multiple comparison test. **, \(p < 0.001\) compared with corresponding control; ###, \(p < 0.001\) compared with corresponding treatment.

There are differences between these two major variants that have been demonstrated that should account for their differential involvement in neurosecretion. Thus, the human and rat hop and null receptors have both been shown to be efficacious in coupling PAC1 receptor occupancy to PLC-mediated IP\(_3\) generation, presumably through G\(_{q}\) in nonneuroendocrine cell lines (22–25). Our current findings, however, demonstrate that in neural cell lines, such as NG108-15 and PC12-G, loss of the hop cassette results in a PAC1 receptor that is clearly deficient in coupling to Ca\(^{2+}\) mobilization and influx, although it is fully competent for PACAP-dependent coupling to activation of AC.

PC12 cells are a commonly employed cellular model for investigating the neurotrophic effects of PACAP (51). Unlike some other PC12 cell variants, binding studies demonstrated that the PC12-G cells used here expressed very low levels of PAC1 receptors (~10 times less, as measured by \(^{125}\)IPACAP-27 binding, than in bPAC1hop-transfected PC12-G cells and severalfold less than in BCCs) and displayed only small elevations in [Ca\(^{2+}\)], following exposure to PACAP. Previous studies have demonstrated the ability of PACAP to induce relatively large Ca\(^{2+}\) transients in some PC12 cell lines, perhaps due to higher levels of expression of PAC1hop than in PC12-G (52–54) and similar commonly employed PC12 cell lines (55). Reverse transcription-PCR analysis of the naive PC12-G cells used in our studies revealed the presence of two PAC1 receptor variants, PAC1hop and PAC1hip, which are expressed at similar but very low levels (56). We found that increasing the expression of the endogenous rat PAC1hop receptor to levels similar to those of bPAC1hop in BCCs or in bPAC1hop-PC12-G cells also reconstituted coupling to both intracellular Ca\(^{2+}\) mobilization and Ca\(^{2+}\) influx. Endogenous PAC1 expression in neurons in vivo can vary significantly in response to pathological and pathophysiological stimuli (55, 57). The ability of PAC1hop to couple to Ca\(^{2+}\) mobilization and influx in combination with cAMP, rather than to cAMP alone, upon up-regulation of receptor expression in vivo, may correspondingly alter the postsynaptic slow neurotransmitter properties of PACAP, uncovering a new type of GPCR functional regulation through expression level-dependent coupling to cAMP alone (at low receptor density) or cAMP and Ca\(^{2+}\) mobilization and influx (at higher receptor density).

One mechanism suggested for PACAP action on secretion through PAC1 receptors in various cell types is via cAMP/protein kinase A-mediated protein phosphorylation (31, 32, 53, 58), possibly of VGCCs themselves, with a resultant potentiation of ion channel opening probability and duration (59–63). However, as reported here, cAMP elevation alone following exposure to forskolin failed to mimic PACAP-evoked secretion or Ca\(^{2+}\) elevation in BCCs or PC12-G cells, suggesting that bPAC1hop-mediated cAMP generation alone is insufficient for initiating PACAP-stimulated Ca\(^{2+}\) elevation, influx, or acute secretion. However, a modulatory role of cAMP in conjunction with [Ca\(^{2+}\)], to maintain long term PACAP-evoked secretion from chromaffin cells is plausible and likely, based on partial inhibition of PACAP-stimulated secretion from perfused adrenal medulla by inhibition of protein kinase A (30).

Two major hypotheses have been proposed for initiation of [Ca\(^{2+}\)]\(_i\) elevation by PACAP and other GPCR ligands in excitable (neuroendocrine) cells. The first is that receptor occupancy mediates membrane depolarization and subsequent facilitation of VGCC opening. PACAP has been variously shown to influence membrane potentials in supraoptic neurons (64), pinealocytes (34), sympathetic neurons (17), suprachiasmatic nuclear neurons (65), and chromaffin cells (36), through

4 T. Mustafa, unpublished results.
mechanisms proposed to involve Na\(^+\) influx through Na\(^+\) channels, Na\(^+\) or Ca\(^{2+}\) entry through nonselective cation channels, or inhibition of outwardly directed K\(^+\) channels leading to depolarization sufficient to voltage-gate the opening of VGCCs (17, 34–36, 62, 63). The second hypothesis is that PACAP affects Ca\(^{2+}\) entry via prior activation of PLC-mediated Ca\(^{2+}\) release from IP\(_3\)-sensitive ICS (17), perhaps also requiring co-activation of protein kinase C (65), with PACAP-mediated Ca\(^{2+}\) influx dependent on PLC-IP\(_3\)-mediated Ca\(^{2+}\) mobilization from ICS. This mechanism is the one most strongly supported by our results with bPAC1\(_{hop}\) due to the association of the hop cassette with Ca\(^{2+}\) mobilization in NG108-15 cells and with both mobilization and influx of Ca\(^{2+}\) in PC12-G cells. Our identification of the specific PAC1 variant and the relevant IC3 domain, which supports PACAP-mediated Ca\(^{2+}\) mobilization and influx in chromaffin cells, provides an important mechanistic insight into PAC1-Ca\(^{2+}\) coupling and an experimental avenue for further exploration of the steps underlying initiation of Ca\(^{2+}\) influx via this important class II GPCR.

We have provided evidence that removal of the hop cassette from the IC3 region of the bPAC1 receptor eliminates its ability to mediate PACAP-evoked Ca\(^{2+}\) mobilization from ICS in both PC12-G and NG108-15 cells despite retention of high affinity binding and cAMP generation by PACAP. The requirement for a discrete region of the IC3 loop of the PAC1 receptor to activate Ca\(^{2+}\) mobilization, Ca\(^{2+}\) influx, and excitocytic secretion suggests the possibility that several components required for regulated exocytosis may be brought into close proximity through the hop-dependent formation of a specific signaling complex to trigger PACAP-dependent neurosecretion. Ronaldson and co-workers (25) have demonstrated that the small GTP-binding protein ARF6 (ADP-ribosylation factor-6) specifically interacts with the hop cassette to activate phospholipase D (24, 25), and the role of ARF6 in membrane trafficking, synaptic vesicle biogenesis (66), and Ca\(^{2+}\)-dependent large dense core vesicle exocytosis in both PC12 and chromaffin cells has been well established (67, 68). ARF6 or a related GTPase may have a role in PAC1\(_{hop}\)-mediated exocytosis through formation of such a complex.

In conclusion, we have demonstrated that a single PAC1 receptor variant, bPAC1\(_{hop}\), exists in BCCs and couples PAC1 receptor occupancy by PACAP to Ca\(^{2+}\) mobilization, influx, and neurotransmitter release from large dense core vesicles. This mode of signaling appears to be neuroendocrine cell-specific and probably depends on the presence of specific signaling molecules in neuroendocrine cells. The demonstration that Ca\(^{2+}\) coupling for secretion absolutely requires the hop cassette should allow rapid elucidation of the molecular bases for the sequential processes of Ca\(^{2+}\) mobilization and influx preceding exocytosis evoked by PACAP through the class II G-protein-coupled receptor, PAC1.

Acknowledgments—We thank Chang-Mei Hsu for expert technical assistance with the preparation of all bovine chromaffin culture, James Nagle and Debbie Kaufman (NINDS, National Institutes of Health (NIH)) for carrying out sequencing of all DNA samples, and James T. Russell and Tamas Balla (NICHD, NIH-Intramural Research program) for advice and consultation in preparation of this report.

REFERENCES

1. O’Farrell, M., and Marley, P. D. (1997) Naunyn-Schmiedeberg’s Arch. Pharmacol. 356, 536–542
2. Hahn, S. H., Hsu, C.-M., and Eiden, L. E. (1998) J. Mol. Neurosci. 11, 1–15
3. Watanabe, T., Massou, Y., Matsumoto, H., Suzuki, N., Ohtaki, T., Masuda, Y., Kitada, C., Tsuda, M., and Fujino, M. (1992) Biochem. Biophys. Res. Commun. 182, 403–411
4. Isobe, K., Hakai, T., and Takuwa, Y. (1993) Endocrinology 132, 1757–1765
5. Geng, G., Gaspo, R., Trabelsi, F., and Yamaguchi, N. (1997) Ann. J. Physiol. 273, R1339–R1345
6. Lamouche, S., Martineau, D., and Yamaguchi, N. (1999) Am. J. Physiol. 276, R162–R170
7. Mazzocchi, G., Malendowicz, L. K., Rebuffat, P., Gottardis, L., and Nussdorfer, G. G. (2002) J. Clin. Endocrinol. Metab. 87, 2575–2580
8. Hamelink, C., Lee, H.-W., Grimaldi, M., and Eiden, L. E. (2002) J. Neurosci. 22, 5310–5320
9. Hamelink, C., Tjurmina, O., Damadzic, R., Young, W. S., Weihe, E., Lee, H.-W., and Eiden, L. E. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 461–466
10. Marley, P. D., Cheung, C. Y., Thomson, K. A., and Murphy, R. (1996) J. Autonom. Nerv. Syst. 60, 141–146
11. Babinski, K., Bodart, V., Roy, M., De Léan, A., and Ong, H. (1996) Neuropeptides 30, 572–582
12. Lee, H.-W., Hahn, S. H., Hsu, C.-M., and Eiden, L. E. (1999) J. Neurochem. 73, 1769–1772
13. Hamelink, C., Weihe, E., and Eiden, L. E. (2003) in Pituitary Adenylate Cyclase-activating Polypeptide (Vaudry, H., and Arimura, A., eds) pp. 227–249, Kluwer-Academic Press, New York
14. Mustafa, T., and Eiden, L. E. (2006) in Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Peptides and Proteins (Lim, R., ed) pp. 463–498, Springer, Heidelberg
15. Sabin, E. L., Hiremagalur, B., Nankova, B., and Kvetcansky, R. (1995) Ann. N. Y. Acad. Sci. 771, 327–338
16. Beaudet, M. M., Braas, K. M., and May, V. (1998) J. Neurobiol. 36, 325–336
17. Beaudet, M. M., Parsons, R. L., Braas, K. M., and May, V. (2000) J. Neurosci. 20, 7353–7361
18. Braas, K. M., and May, V. (1996) Ann. N. Y. Acad. Sci. 805, 204–216
19. Braas, K. M., and May, V. (1999) J. Biol. Chem. 274, 27702–27710
20. Pantaloni, C., Brabet, P., Bilanges, B., Dumuis, A., Houssami, S., Spengler, D., Bockaert, J., and Journot, L. (1996) J. Biol. Chem. 271, 22146–22151
21. Dautzenberg, F. M., Mevenkamp, G., Wille, S., and Hauger, R. L. (1999) J. Neuroendocrinol. 11, 941–949
22. Spengler, D., Bweber, C., Pantaloni, C., Hlsboer, F., Bockaert, J., Seeburg, P. H., and Journot, L. (1993) Nature 365, 170–175
23. Piscina, J. R., and Wank, S. A. (1996) J. Biol. Chem. 271, 17267–17274
24. McCulloch, D. A., Lutz, E. M., Johnson, M. S., Robertson, D. N., MacKenzie, C. J., Holland, P. J., and Mitchell, R. (2001) Mol. Pharmacol. 59, 1523–1532
25. Ronaldson, E., Robertson, D. N., Johnson, M. S., Holland, P. J., Mitchell, R., and Lutz, E. M. (2002) Regul. Pept. 109, 193–198
26. Chatterjee, T. K., Sharma, R. V., and Fisher, R. A. (1996) J. Biol. Chem. 271, 32226–32232
27. Eiden, L. E. (2003) Signaling during Exocytosis in Handbook of Cell Signaling (Bradshaw, B., and Dennis, E., eds) pp. 375–392, Academic Press, Inc., New York
28. Taupenot, L., Mahata, M., Mahata, S. K., and O’Connor, D. T. (1999) Hypertension 34, 1152–1162
29. Fukushima, Y., Nagayama, T., Kawashima, H., Hikichi, H., Yoshida, M., Suzuki-Kusaba, M., Hisa, H., Kimura, T., and Satoh, S. (2001) J. Aut. Physiol. 281, R495–R501
30. Przywara, D. A., Xi, G., Angelilli, L., Wakade, T. D., and Wakade, A. R. (1996) J. Biol. Chem. 271, 10545–10550
31. Tanaka, K., Shibuya, I., Harayama, N., Nomura, M., Kabashima, N., Ueta, Y., and Yamashita, H. (1997) Endocrinology 138, 4086–4095
32. Shiota, S., Yada, T., Muroya, S., Uramura, S., Nakajo, S., Ohtaki, H., Hori, T., Shimoda, Y., and Funahashi, H. (2000) Ann. N. Y. Acad. Sci. 921, 211–217
33. Turquier, V., Yon, L., Grumolato, L., Alexandre, D., Fournier, A., Vaudry, H., and Anouar, Y. (2001) Mol. Pharmacol. 60, 42–52
34. Darvish, N., and Russell, J. T. (1998) J. Neurophysiol. 79, 2546–2556
35. May, V., Beaudet, M. M., Parsons, R. L., Hardwick, J. C., Gauthier, E. A., Durda, J. P., and Braas, K. M. (1998) Ann. N. Y. Acad. Sci. 865, 164–175
36. Tanaka, K., Shibuya, I., Nagamoto, T., Yamasha, H., and Kanno, T. (1996) Endocrinology 137, 956–966
37. Eiden, L. E., Giraud, P., Affolter, H.-U., Herbert, E., and Hotchkiss, A. J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 3949–3953
38. Fenwick, E. M., Fajdiga, P. B., Howe, N. B. S., and Livett, B. G. (1978) J. Cell Biol. 76, 12–30
39. Miyamoto, Y., Habata, Y., Ohtaki, T., Masuda, Y., Ogi, K., Onda, H., and Fujino, M. (1994) Biochim. Biophys. Acta 1218, 297–307
40. Horton, R. M., Cai, Z. L., Ho, S. N., and Pease, L. R. (1990) BioTechniques 8, 528–535
41. Lee, J., Lee, H. J., Shin, M. K., and Ryu, W. S. (2004) BioTechniques 36, 398–400
42. Rausch, D. M., Iacangelo, A. L., and Eiden, L. E. (1988) Mol. Endocrinol. 2, 921–927
43. Mustafa, T., Iacangelo, A. L., and Eiden, L. E. (1988) Mol. Endocrinol. 2, 921–927
44. Grimaldi, M., Maratos, M., and Verma, A. (2003) J. Neurosci. 23, 4737–4745
45. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450
46. Eiden, L. E., Iacangelo, A., Hsu, C.-M., Hotchkiss, A. J., Bader, M.-F., and Aunis, D. (1987) J. Neurochem. 49, 65–74
47. Daniel, P. B., Kieffer, T. J., Leech, C. A., and Habener, J. F. (2001) J. Biol. Chem. 276, 12938–12944
48. Pisegna, J. R., and Wank, S. A. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6345–6349
49. Hamprecht, B., Glaser, T., Reiser, G., Bayer, E., and Propst, F. (1985) Methods Enzymol. 109, 316–341
50. Pisegna, J. R., Moody, T. W., and Wank, S. A. (1996) Ann. N. Y. Acad. Sci. 805, 54–64
51. Vaudry, D., Stork, P. J., Lazarovici, P., and Eiden, L. E. (2002) Science 296, 1648–1649
52. Aoyagi, K., and Takahashi, M. (2001) Biochem. Biophys. Res. Commun. 286, 646–651
53. Osipenko, O. N., Barrie, A. P., Allen, J. M., and Gurney, A. M. (2000) J. Biol. Chem. 275, 16626–16631
54. Taupenot, L., Ciesielski-Treska, J., Ulrich, G., Chasserot-Golaz, S., Aunis, D., and Bader, M. F. (1996) Neuroscience 72, 377–389
55. Cavallaro, S., D’Agata, V., Durda, J. P., Travali, S., Stivala, F., and Canonico, P. L. (1995) Mol. Pharmacol. 48, 56–62
56. Ravni, A., Eiden, L. E., Vaudry, H., Gonzalez, B. J., and Vaudry, D. (2006) J. Neurochem. 98, 1229–1241
57. Brandish, P. E., Su, M., Holder, D. J., Hodor, P., Szumiloski, J., Kleinhanz, R. R., Forbes, J. E., McWhorter, M. E., Duenwald, S. J., Parrish, M. L., Na, S., Liu, Y., Phillips, R. L., Renger, J. J., Sankaranarayanan, Simon, A. J., and Scohnick, E. M. (2005) Neuron 45, 861–872
58. Wong, A. O., Li, W., Leung, C. Y., Huo, L., and Zhou, H. (2005) Endocrinology 146, 5407–5424
59. Baldelli, P., Hernandez-Guijo, J. M., Carabelli, V., Novara, M., Cesetti, T., Andres-Mateos, E., Montiel, C., and Carbone, E. (2004) Mol. Neurobiol. 29, 73–96
60. Carbone, E., Carabelli, V., Cesetti, T., Baldelli, P., Hernandez-Guijo, J. M., and Giusta, L. (2001) Pflugers Arch. 442, 801–813
61. Dolphin, A. C. (2003) Pharmacol. Rev. 55, 607–627
62. Marley, P. D. (2003) Pharmacol. Ther. 98, 1–34
63. Wallace, D. J., Chen, C., and Marley, P. D. (2002) J. Physiol. 540, 921–939
64. Shibuya, I., Noguchi, J., Tanaka, K., Hayama, N., Inoue, U., Kabashima, N., Ueta, Y., Hattori, Y., and Yamashita, H. (1998) J. Neuroendocrinol. 10, 31–42
65. Dziema, H., and Obrietan, K. (2002) J. Neurophysiol. 88, 1374–1386
66. Powelka, A. M., and Buckley, K. M. (2001) FEBS Lett. 501, 47–50
67. Caumont, A. S., Vitale, N., Gensse, M., Galas, M. C., Casanova, J. E., and Bader, M. (2000) J. Biol. Chem. 275, 15637–15644
68. Galas, M. C., Helms, J. B., Vitale, N., Thierse, D., Aunis, D., and Bader, M. F. (1997) J. Biol. Chem. 272, 2788–2793
69. Qiagen, Inc. RNeasy® Mini Handbook, (2001) 3rd Ed., pp. 31–35, Qiagen Inc.
70. Motulsky, H. J., and Christopoulos, A. (2003) Fitting Models to Biological Data Using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting, pp. 222–232, GraphPad Software, Inc., San Diego, CA