Supplemental information

Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals

Alison Tarke, John Sidney, Nils Methot, Esther Dawen Yu, Yun Zhang, Jennifer M. Dan, Benjamin Goodwin, Paul Rubiro, Aaron Sutherland, Eric Wang, April Frazier, Sydney I. Ramirez, Stephen A. Rawlings, Davey M. Smith, Ricardo da Silva Antunes, Bjoern Peters, Richard H. Scheuermann, Daniela Weiskopf, Shane Crotty, Alba Grifoni, and Alessandro Sette
Fig. S1. SARS-COV-2 serology, DMSO controls, and ancestral Spike MP responses for all the cohorts analyzed in this study, related to Figures 1, 2 and 3 and Table 1.

(A) Spike RBD serology in COVID-19 convalescents (n=28, filled circles) and COVID-19 vaccinees (Pfizer/BioNTech BNT162b2 (n=14, open triangles) and Moderna COVID-19 vaccines (n=15, open circles)). Unexposed donors (n=23, not plotted) were seronegative or collected prior to the emergence of SARS-CoV-2. (B-C) AIM+ CD4+ (B) or CD8+ (C) T cells stimulated with DMSO or the ancestral S MP at 1ug/mL. (D) IFNγ SFC per million PBMC stimulated with DMSO or the ancestral S MP at 1ug/mL. (E-F) AIM+ CD4+ (E) or CD8+ (F) T cells stimulated with the ancestral S MP at 1ug/mL. Dotted black lines indicate the threshold of positivity calculated based on median +2 SD of the DMSO controls (>80). Data is plotted after background subtraction and SI>2. (G) IFNγ SFC per million PBMC stimulated with the ancestral S MP at 1ug/mL. Data is plotted after background subtraction, SI>2, and p value <0.05 by Poisson or T test.
Fig. S2. Fold-change analyses of convalescent COVID-19 and unexposed donor responses to variant MPs, Related to Figures 1 and 2.

(A-G) Convalescent COVID-19 (n = 28) and (H-M) unexposed (n = 23) donors were stimulated with SARS-CoV-2 MPs corresponding to the ancestral reference strain (black) and the B.1.1.7 (grey), B.1.351 (red), P.1 (orange) and CAL.20C (light blue) SARS-CoV-2 variants. (A-B) Fold-change of AIM⁺ CD4⁺ (A) and CD8⁺ (B) T cells with S MPs at 1μg/mL. (C) Fold-change of total IFNγ SFC/10⁶ PBMC with S MPs at 1μg/mL. (D-E) Fold-change of AIM⁺ CD4⁺ (D) and CD8⁺ (E) T cells with Spike MPs at 0.1 and 0.01 μg/mL. (F-G) Fold-change of the sum of AIM⁺ CD4⁺ (F) and CD8⁺ (G) T cells for all SARS-CoV-2 antigens. (H-I) Percentages of AIM⁺ (OX40⁺CD137⁺) CD4⁺ T cells (H) and AIM⁺ (CD69⁺CD137⁺) CD8⁺ T cells (I) for the total reactivity. (J-K) Percentages of AIM⁺ (OX40⁺CD137⁺) CD4⁺ T cells (J) and AIM⁺ (CD69⁺CD137⁺) CD8⁺ T cells (K) for each MP. Bars represent the geometric mean. (L-M) Fold-change of the sum of AIM⁺ CD4⁺ (L) and CD8⁺ (M) T cells for all SARS-CoV-2 antigens in unexposed donors. p values listed at the top of graphs correspond to the discrepancy and were calculated by one sample Wilcoxon Signed Rank test compared to the lower bound fold change threshold of 0.47 for CD4 AIM⁺, 0.55 for CD8 AIM⁺, and 0.6 for IFNγ SFC/10⁶ PBMC.
Figure S3. Fold-change analyses of COVID-19 vaccinees tested with the variant MPs, related to Figure 3. PBMCs of Pfizer/BioNTech BNT162b2 (n=14, triangles) and Moderna COVID-19 vaccines (n=15, circles) were stimulated with the Spike MPs corresponding to the ancestral reference strain (black) and the B.1.1.7 (grey), B.1.351 (red), P.1 (orange) and CAL.20C (light blue) SARS-CoV-2 variants. (A-B) Fold-change of AIM⁺ CD4⁺ (A) and CD8⁺ (B) T cells with Spike MPs at 1 µg/mL. (C) Fold-change of total IFNγ SFC/10⁶ PBMC with Spike MPs at 1 µg/mL. (D-E) Fold-change of AIM⁺ CD4⁺ (D) and CD8⁺ (E) T cells with Spike MPs at 0.1 and 0.01 µg/mL. p values listed at the top of graph correspond to the discrepancy and were calculated by one sample Wilcoxon Signed Rank test compared to the lower bound fold change threshold of 0.47 for CD4 AIM⁺, 0.55 for CD8 AIM⁺, and 0.6 for IFNγ SFC/10⁶ PBMC.
Figure S4. Memory phenotype of COVID-19 convalescent and vaccinated donors, related to Figures 1, 2, and 3.
(A-B) The memory phenotype of COVID-19 convalescent donors (n = 28) was analyzed to determine the makeup of naïve (CD45RA⁺CCR7⁺), central memory (CD45RA⁻CCR7⁺), effector memory (CD45RA⁻CCR7⁻), and terminally differentiated effector memory (CD45RA⁺CCR7⁻) in the bulk and SARS-CoV-2 AIM⁺ populations for CD4⁺ (A) and CD8⁺ (B) T cells. (C-D) The memory phenotype was also analyzed for the COVID-19 vaccinees (n = 29) for CD4⁺ (C) and CD8⁺ (D) T cells. The violin plots represent the bulk CD4⁺ or CD8⁺ T cell populations (white) or the subsets of AIM⁺ T cells positive for the ancestral reference strain (black) and the B.1.1.7 (grey), B.1.351 (red), P.1 (orange) and CAL.20C (light blue) SARS-CoV-2 variants. p values were calculated comparing the bulk population to the AIM⁺ populations separately for each variant by two-tailed Wilcoxon test.
Figure S5. Gating strategy for AIM assay and memory phenotyping, related to Figures 1, 2, and 3.
Representative graphs illustrating the gating strategy used in the flow cytometry AIM assays in order to define antigen-specific CD4+ (outlined in blue) and CD8+ (outlined in red) T cells by the expression of OX40+CD137+ and CD69+CD137+, respectively. The memory compartment was analyzed by gating naïve (CD45RA+CCR7+), central memory (CD45RA−CCR7+), effector memory (CD45RA−CCR7+), and terminally differentiated effector memory (CD45RA−CCR7−) cells on the bulk CD4+ and CD8+ T cells as well as the AIM+ subsets, overlaid in blue and red, respectively. These graphs depict one of the COVID-19 convalescent donors from this study tested with each of the VOCs S MP and are representative of the gating strategy utilized with all donors tested.
Protein	Amino acid position	Ancestral (Wu)	B.1.1.7 (UK)	B.1.351 (SA)	P.1. (BR)	CAL.20C (CA)																																						
S	13	S		F	F																																							
S	20	T			N																																							
S	26	P			S																																							
S	69	H	Del																																									
S	70	V	Del																																									
S	80	D	A																																									
S	138	D	Y																																									
S	145	Y	Del																																									
S	152	W	C																																									
S	190	R	S																																									
S	215	D	G/H																																									
S	241	L	Del																																									
S	242	L	Del																																									
S	243	A	Del																																									
S	417	K	N	T																																								
S	452	L			R																																							
S	484	E	K	K																																								
S	501	N	Y	Y	Y																																							
S	570	A	D																																									
S	614	D	G	G	G	G																																						
S	655	H	Y																																									
S	681	P	H																																									
S	701	A	V																																									
S	716	T	I																																									
S	938	L		F																																								
S	982	S	A																																									
S	1027	T		I																																								
S	1118	D	H																																									
S	1176	V	F																																									
S	1191	K				N																																						
M	162	K		N																																								
N	3	D	L																																									
N	13	P	S																																									
N	32	R	H																																									
N	80	P		R																																								
N	203	R	K	K																																								
N	204	G	R	R																																								
N	205	T	I	I																																								
N	212	G		C																																								
N	234	M		I																																								
N	235	S	F																																									
E	71	P		L																																								
ORF3a	57	Q	H	H																																								
ORF3a	131	W	L																																									
ORF3a	171	S	L																																									
ORF3a	253	S	P																																									
ORF7a	93	V	F																																									
Protein	27	92	ORF8	121	109	85	339	366	427	563	183	186	370	778	837	890	926	977	1180	1412	1778	395	90	193	106	107	108	125	135	149	167	65	105	323	53	209	260	341	588	177	326	328	91	
---------	----	----	------	-----	-----	----	-----	-----	-----	-----	-----	-----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	----	----	-----	-----	-----	-----	-----	----	-----	-----	-----	-----	-----	-----	----	-----	-----	-----				
Protein	Aminoacid position (Start)	Aminoacid position (End)	SARS-CoV-2 strain	Sequence																																								
---------	---------------------------	--------------------------	-------------------	----------																																								
nsp3	173	187	B.1.1.7	QDGEDNQTITRPT																																								
nsp3	178	192	B.1.1.7	DNIQEEITPTEVQF																																								
nsp3	183	197	B.1.1.7	RHIQDTEVPQGQMLD																																								
nsp3	878	892	B.1.1.7	QDAYYRARAGEADNFI																																								
nsp3	883	897	B.1.1.7	RARAEADNFCALII																																								
nsp3	888	902	B.1.1.7	EADNFCAALIAYCN																																								
nsp3	1398	1412	B.1.1.7	NYLKLPSNFKLIDE																																								
nsp3	1403	1417	B.1.1.7	PNFKLNIHITWFL																																								
nsp3	1408	1422	B.1.1.7	LNIHTWFLILLSVCL																																								
nsp6	92	106	B.1.1.7	MRMJMTWLMVDVTSILK																																								
nsp6	97	111	B.1.1.7	WLDMDVTDLSKLKDCV																																								
nsp6	102	116	B.1.1.7	DTSLLKLDCCVYMAASA																																								
nsp6	107	121	B.1.1.7	KLKDCKMVASAVLVE																																								
nsp12	309	323	B.1.1.7	HCANCNFNYLFSYFVPL																																								
nsp12	314	328	B.1.1.7	NVLPSYTVFPLTSGF																																								
nsp12	319	333	B.1.1.7	TVNFPLTSGFPLYRKO																																								
nsp12	66	80	B.1.1.7	MLGMPGNQGNAPAHL																																								
nsp12	191	205	B.1.1.7	RNSRNSPFGYK	-																																							
Donor	MP 1	MP 2	MP 3	MP 4	MP 5	MP 6	MP 7	MP 8	MP 9	MP 10	MP 11																																	
---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------																																	
	MP 1	MP 2	MP 3	MP 4	MP 5	MP 6	MP 7	MP 8	MP 9	MP 10	MP 11																																	
	0.381	0.2116	0.125	0.1312	0.1412																																							
4801	0.231	0.1616	0.171	0.0626																																								
4837	0.2255	0.2745	0.1555	0.0575																																								
4842	0.1478	0.1443	0.16674																																									
4851	0.13846	0.039																																										
4863	0.53843	0.71211																																										
4866	0.17948	0.106																																										
4867	0.36489	0.335	0.064	0.22567																																								
4868	1.81486	1.1895	0.40857																																									
4878	0.16885	0.0455	0.158																																									
4882	0.12956	0.6415	0.104																																									
4963	0.324	0.5052	0.29933																																									
4972	0.318	0.5625																																										
4995	0.27203	0.2833																																										
4973	0.10415	0.1414	0.08613																																									
5329	0.047	0.082																																										
5328	0.5267	0.7097																																										
5476	0.022	0.125																																										
5475	0.067	0.091																																										
5502	0.035																																											
5530	0.057	0.059																																										
5520	0.055	0.005																																										
5521	0.024	0.041																																										
5451	0.032	0.023																																										

Table S3. Related to Figures 1, 2, and 3. Technical replicates for the AIM and FluoroSPOT assays testing multiple donors in repeated assays with the same SARS-CoV-2 MPs.
Origin	Ancestral reference sequence	Protein Start	Mutation	Mutated sequence	HLA restriction (IC_{50} nM)	WT (IC_{50} nM)	Mutant (IC_{50} nM)	Fold difference	Effect	
CAL.20C	LPLVSSVC	S8		S13I	LPLVSSVC	B*05:01	402	272	0.68	Neutral
CAL.20C	YYYHNNKSW	S144	W152C		SCMESEFRV	A*29:02	49	980	20	Decrease
CAL.20C	KVGGNNYL	S444	L452R	KVGGNNYL	A*29:02	101	505	5.0	Decrease	
CAL.20C	VGGNNYN	S445	L452R	VGGNNYN	A*29:02	94	519	5.5	Decrease	
CAL.20C	UNNYLRLF	S448	L452R	UNNYLRLF	A*29:02	21	108	5.1	Decrease	
CAL.20C	YQQVNCET	S612	D164G	YQQVNCET	A*20:06	18	57	3.2	Decrease	
CAL.20C	QSAKII	ORF3a		Q57H	HAISGTNGTK	A*68:01	55	44	0.8	Neutral
CAL.20C	WFFSNYLKR	nsp4		S395T	WFFSNYLKR	A*31:01	70	98	1.4	Neutral

a) Mutation noted as ancestral residue-position-variant residue. Del refers to deletion of the corresponding residue.

b) For deletion mutants, the peptide sequence shown represents the variant encompassing the same region that has the highest predicted binding affinity for the corresponding restricting allele.

c) Indicates predicted IC_{50} for the corresponding reported restricting allele. Predictions were performed using the NetMHCpan BA 4.1 algorithm, hosted by the IEDB.

d) Increase/decrease in affinity defined by a two-fold difference in predicted IC_{50} nM.