Variable optical polarization during high state in γ-ray loud, narrow-line Seyfert 1 galaxy 1H 0323+342

Ryosuke ITOH, ¹,∗ Yasuyuki T. TANAKA, ²,∗ Hiroshi AKITAYA, ²
Makoto UEUMURA, ² Yasushi FUKAZAWA, ¹ Yoshiyuki INOUE, ³ Akihiro DOI, ³
Akira ARAI, ⁴ Hidekazu HAYASHI, ⁵ Osamu HASHIMOTO, ⁶
Masahiko HAYASHI, ⁷ Hideyuki IZUMIURA, ⁸ Yuka KANDA, ¹ Koji S. KAWABATA, ²
Kenji KAWAGUCHI, ¹ Nobuyuki Kawai, ⁹ Kenzo KINUGASA, ¹⁰ Daisuke KURODA, ⁸
Takeshi MIYAJI, ⁵ Yuki MORITANI, ² Tomoki MOROKUMA, ¹¹
Katsuhiro L. MURATA, ¹² Takahiro NAGAYAMA, ¹³ Yumiko OASA, ¹⁴
Tomohito OHSHIMA, ¹⁵ Takashi OHSUGI, ² Yoshihiko SAITO, ⁹
Shuuichiro SAKATA, ¹³ Mahito SASADA, ¹⁵ Kazuhiro SEKIGUCHI, ⁷
Yuhei TAKAGI, ⁴Jun TAKAHASHI, ⁴ Katsutoshi TAKAKI, ¹ Takahiro UI, ¹
Makoto WATANABE, ¹⁶,¹⁷ Masayuki YAMANAKA, ¹⁸ Satoshi YAMASHITA, ¹³
and Michitoshi YOSHIDA ²

¹Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
²Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
³Institute of Space and Astronautical Science (ISAS) Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
⁴Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313, Japan
⁵Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024, Japan
⁶Gunma Astronomical Observatory, 6860-86 Nakayama, Takayama, Agatsuma, Gunma 377-0702, Japan
⁷National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
⁸Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Honjo 3037-5, Kamogata, Asakuchi, Okayama 719-0232, Japan
⁹Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
¹⁰Nobeyama Radio Observatory, National Astronomical Observatory of Japan, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan
¹¹Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
¹²Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
¹³Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
¹⁴Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, Saitama 338-8570, Japan
¹⁵Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan

© The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan.
All rights reserved. For Permissions, please email: journals.permissions@oup.com
Abstract

We present results of optical polarimetric and multi-band photometric observations for γ-ray loud, narrow-line Seyfert 1 galaxy 1H 0323+342. This object has been monitored by the 1.5-m Kanata telescope since 2012 September, but following a γ-ray flux enhancement detected by Fermi Large Area Telescope (Fermi-LAT) on MJD 56483 (2013 July 10), dense follow-up was performed by 10 0.5–2.0-m telescopes in Japan over one week. The 2-yr R_C-band light curve showed clear brightening corresponding to the γ-ray flux increase, and then decayed gradually. The high state as a whole lasted for ~ 20 d, during which we clearly detected optical polarization from this object. The polarization degree (PD) of the source increased from 0%–1% in quiescence to $\sim 3\%$ at maximum and then declined to the quiescent level, with the duration of the enhancement being less than 10 d. The moderate PD around the peak allowed us to precisely measure the daily polarization angle (PA). As a result, we found that the daily PAs were almost constant and aligned to the jet axis, suggesting that the magnetic field direction at the emission region is transverse to the jet. This implies either a presence of helical/toroidal magnetic field or transverse magnetic field compressed by shock(s). We also found small-amplitude intra-night variability during the 2-hr continuous exposure on a single night. We discuss these findings based on the turbulent multi-zone model recently advocated by Marscher (2014, ApJ, 780, 87). Optical to ultraviolet (UV) spectrum showed a rising shape in the higher frequency and the UV magnitude measured by Swift/UVOT (UV and Optical Telescope) was steady even during the flaring state, suggesting that thermal emission from accretion disk is dominant in that band.

Key words: galaxies: active — galaxies: jets — galaxies: individual (1H 0323+342) — galaxies: Seyfert — radiation mechanisms: non-thermal

1 Introduction

Narrow-line Seyfert 1 galaxy (NLS1) is a sub-class of active galactic nuclei (AGN) and identified by the following criteria in optical emission lines: (1) narrow Hβ line of FWHM (Hβ) < 2000 km s$^{-1}$, (2) the flux ratio [O III] $\lambda 5007$/H$\beta < 3$, (3) presence of emission lines from Fe II or high ionization lines such as [Fe VII] $\lambda 6087$ and [Fe X] $\lambda 6375$ (Goodrich 1989). The second and third criteria are to select Seyfert 1 galaxies and the first criterion is to choose objects of “narrow-line” feature among the selected Seyfert 1 galaxies. The central black hole (BH) mass is usually derived as $M_{BH} = v^2 R_{BLR}/G$, where v is the measured velocity dispersion, R_{BLR} is the radius of the broad line region (BLR), and G is the gravitational constant, under the assumption that the BLR line-emitting materials are virialized. Here the BLR radius R_{BLR} can be derived from optical luminosity L at e.g., 5100 Å or Hβ based on a robust power-law relationship between R_{BLR} and L established by reverberation mapping techniques (e.g., Peterson et al. 2004; Kaspi et al. 2005). From these studies, it is widely believed that NLS1s have relatively small BH masses of 10^6–10^8 M$_{\odot}$ (e.g., Komossa et al. 2006), which is also supported by rapid X-ray variability (e.g., Leighly 1999).

Estimation of the central BH mass allows us to derive the accretion rate in Eddington units based on the bolometric luminosity inferred from the optical luminosity at 5100 Å.
and a bolometric correction factor of 9 \((L_{\text{bol}} = 9L_{\text{Edd}}) \), suggests that NLS1s have high accretion rates as a class \((\text{e.g., Zhou et al. } 2006) \). Combined with the small BH mass, an NLS1 is considered to be a growing BH with a high accretion rate, namely, in the early phase of their evolution. It is essential to study this class in this regard, because this provides important information about how quasars are produced in the early Universe \((\text{e.g., Mathur } 2000; \text{Grupe } \& \text{Mathur } 2004) \).

Recent Fermi Large Area Telescope (Fermi-LAT) discovery of MeV/GeV \(\gamma \)-ray emission from five radio-loud NLS1s confirmed the presence of relativistic jets aligned toward us \((\text{Abdo et al. } 2009; \text{D'Ammando et al. } 2012) \), which were originally speculated on by some authors mainly through very long baseline interferometer (VLBI) radio observations \((\text{e.g., Doi et al. } 2006, 2007; \text{Komossa et al. } 2006; \text{Yuan et al. } 2008) \). It is also found that spectral energy distributions (SEDs) of the Fermi-detected NLS1s are dominated by non-thermal emission across the whole frequency and consist of two broad humps, similarly to blazars \((\text{Abdo et al. } 2009) \). It is therefore believed that the low-energy hump seen in the SED of the \(\gamma \)-ray loud NLS1s which extends from radio to optical or X-ray is synchrotron, while the higher-energy one is inverse Compton scattering of photons from synchrotron emission itself or an external radiation field. Indeed, Itoh et al. \((2013b) \) detected highly variable and significantly polarized optical emission from the \(\gamma \)-ray loud NLS1 PMN J0948+0022, which unambiguously indicates synchrotron origin of the optical emission, rather than the host galaxy or accretion disk, at least during the high state of this object. However, we are still lacking knowledge of the optical emission mechanism for other \(\gamma \)-ray loud NLS1s.

It is known that NLS1s reside in spiral galaxies while blazars and radio galaxies which possess powerful relativistic jets are hosted by giant ellipticals \((\text{e.g., Marscher } 2010) \). Therefore, recent VLBI and Fermi-LAT confirmation of presence of strong jets in some NLS1s is surprising and intriguing, because it suggests that such powerful relativistic jets can emerge also from spiral galaxies and seems to violate the well-known (though empirical) association between giant ellipticals and powerful jets. In this regard, detailed study of \(\gamma \)-ray loud NLS1s is important and expected to shed light on understanding the jet formation mechanism, in particular a physical link between the jet production and host galaxy environment.

1H 0323+342 is located at \(z = 0.063 \) \((\text{Zhou et al. } 2007) \), nearest to us, and brightest in optical band, among the known \(\gamma \)-ray loud NLS1s, and hence it is the best target and has been subject to multi-wavelength studies already. For example, a Hubble Space Telescope snapshot image revealed the possible presence of a one-armed spiral around the active nucleus \((\text{Zhou et al. } 2007) \), while Antón, Browne, and Marchá \((2008) \) claimed from the 2.6-m Nordic Optical Telescope \(B \)- and \(R \)-band images that the structure seen around the nucleus is ring-like and that it may be thermal emission from star formation triggered by interactions and mergers. A few separate methods for the estimation of the central BH mass for this object provided a consistent result of \((1-3) \times 10^8 M_\odot \) \((\text{Zhou et al. } 2007) \).

Here we show Kanata 2-yr polarimetric monitoring results since 2012 September as well as optical and infrared dense follow-up results following the \(\gamma \)-ray flux enhancement in 2013 July detected by Fermi-LAT. \(^1\) The latter consists of daily long-duration polarimetric and multi-band photometric observations performed by several small-diameter \((0.5-2.0 \text{m}) \) telescopes all over Japan. We also present results of Swift-UVOT (Ultraviolet and Optical Telescope) data taken at the corresponding period. We describe the observation in section 2 and the results are presented in section 3. We discuss interpretations and implications of our findings in section 4.

2 Observation

1H 0323+342 has been included as one of the targets of the blazar polarimetric monitoring program performed since 2012 September by the HOWPol instrument attached to the 1.5-m Kanata telescope located at the Higashi-Hiroshima Observatory, Japan \((\text{Kawabata et al. } 2008) \). This object was also observed as a Target of Opportunity (ToO) program of Optical and Infrared Synergetic Telescopes for Education and Research \((\text{OISTER}; \text{see Itoh et al. } 2013a) \) for detailed description of the available telescopes, instruments and observation frequencies. The seven available telescopes are located all over Japan, which allows us to observe the target continuously, without interruption from e.g., bad weather. This OISTER ToO observation of 1H 0323+342 was conducted from MJD 56485 to 56493 (corresponding to 2013 July 12 to 20) following a daily flux enhancement in the MeV/GeV \(\gamma \)-ray band detected by Fermi-LAT. The result presented here were derived from \(g^-, R^-, \) and \(I^+ \)-band photometric data taken by MITSuME \((\text{Multicolor Imaging Telescopes for Survey and Monstrous Explosions}) \) detector systems attached to the 0.5-m telescopes located at Okayama Astrophysical Observatory \((\text{OAO}) \) and Akeno Observatory in Japan \((\text{Kotani et al. } 2005) \). The same MITSuME system is also equipped with the 1.05-m Murikabushi telescope located on Ishigaki island. The \(R^+ \) and

\(^1\) Weekly Fermi-LAT information on flaring objects is available at \(\text{http://fermikey.blogspot.jp/} \). See also \(\text{http://fermi.gsfc.nasa.gov/ssc/data/access/lat/msl_lc/} \) for further reference.
V-band photometric as well as R_C-band polarimetric data were taken by the 1.5-m Kanata telescope.

In addition to these ground-based telescope materials, we analyzed the data taken by UVOT on board the Swift satellite. Swift/UVOT provides optical and ultraviolet (UV) data which covers the wavelength range between 170–650 nm by utilizing six filters (UVW2, UVM2, UVW1, U, B, V bands). The UVOT data analyzed here are taken on MJDs 56485, 56489, 56491, and 56492 and they are downloaded from the Swift Data Center. The Swift observation IDs are 00036533038, 00036533039, 00036533040, 00036533041, and 00036533042.

2.1 Photometry

We reduced the data following the standard procedure of CCD photometry. We performed differential aperture photometry using a comparison star located at RA = 03h24m39.6s, Dec = +34 11 29.8 (J2000.0). The magnitudes of $g' = 14.314$ mag, $V = 13.510$ mag, and $R_C = 13.496$ mag are taken from the SDSSdatabase (Adelman-McCarthy et al. 2007). The Galactic extinction for the direction of 1H 0323+342 of $A_V = 0.680$ was taken from the NASA/IPAC Extragalactic Database (NED) (Schlafly & Finkbeiner 2011), and then applied to derive the intrinsic magnitudes. The systematic difference of the R_C-band magnitude among the observatories is calibrated within $\Delta R_C \sim 0.05$ mag, which was added to the photometric error.

A photometric error consists of statistical and systematic ones. The R_C-band magnitudes shown in figures 1 and 2 were measured at various observatories and so we included a systematic error of ~ 0.05 mag in each data point, as is described above. On the other hand, for Ishigaki data shown in figure 3, we do not need to take into account the systematic uncertainty among observatories and hence only statistical errors are included. The statistical error comes from the uncertainty of photon numbers measured from a circular region centered at the source position. This is derived from the APPHOT task in the PYRAF package. The statistical photometric errors of Ishigaki three-band data are mostly 0.01–0.02 mag, and they are used for calculation of excess variance (see section 3 for details). Here, we checked a systematic photometric uncertainty caused by, e.g., bad weather and the temporal variation of a comparison star by making a light curve of a comparison star during the same time interval. We fitted the light curve with a constant value and derived a variance in each band. As a result, we obtained that the g'-, R_C-, and I_C-band standard deviations (namely, systematic uncertainties) are 0.004, 0.002, and 0.003 mag, respectively, which are all smaller than the statistical photometric errors of 0.01–0.02 mag derived by APPHOT. In addition, it is known that the host galaxy of 1H 0323+342 is present in the Hubble Space Telescope image and it is as bright as the central core (Zhou et al. 2007). This may cause an additional photometric error in the flux measurement of the central AGN. According to Cellone, Romero, and Combi (2000), when magnitudes of the central AGN and the host spiral galaxy are the same ($V = 16$ mag), the photometric error of the central AGN is less than 0.01 mag if the aperture radius for photometry is larger than 3.3 and seeing change during exposure is less than 1". In our photometry, the aperture radius is set to 10". We also checked the seeing during the Ishigaki 2-hr exposure and found that the seeing is mostly between 2"75 and 3"75. Hence, we can utilize the result described in Cellone, Romero, and Combi (2000) (see their figures 8 and 9 and table 2) and robustly claim that the photometric error of the central AGN caused by host galaxy contamination is less than 0.01 mag and negligibly small. The same conclusion is also derived by Paliya et al. (2013) (see subsection 4.1 of their paper).

Data reduction of the Swift/UVOT data was also performed under the standard procedure of CCD photometry using APPHOT packaged in PYRAF. For each filter system, the conversion factor is well calibrated by the UVOT team. We extracted a source count from a circular region of 5" radius centered at the source position and converted them to fluxes using the standard zero-points (Poole et al. 2008). Then, the Galactic extinction was corrected [e.g., $A_{(UVW2)} = 0.65$; see Schlegel et al. 1998].

2.2 Polarimetry

We performed continuous photo-polarimetric observations for 1H 0323+342 using the HOWPol with durations of several hours on MJDs 56486, 56488, 56489, 56491, and 56492. We obtained both the Stokes parameters Q and U in a single-shot 100-s exposure thanks to the double Wollaston prism installed inside the HOWPol. However, since these continuous observations were often interrupted by bad weather, the data qualities were not enough to search for any significant intra-night (hour-scale or minute-scale) variation. We therefore averaged all the data taken on the same night and derived the daily polarization degree (PD) and angle (PA) to find out their possible temporal variations. We carefully checked the systematics of the PD and PA in our HOWPol measurements and confirmed that the systematic errors of the PD and PA are less than 0.5% and

1. (http://swift.gsfc.nasa.gov/sdc/).
2. (http://ned.ipac.caltech.edu/).
3. (http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/uvot/index.html).

2", respectively, from observations of strongly-polarized and unpolarized stars. We further checked the systematic errors of the Stokes parameters by using a comparison star within the field of view of 1H0323+342. As a result, we obtained the systematic errors of $\Delta Q \sim 0.003$ and $\Delta U \sim 0.003$, and these errors were added to the statistical ones.

3 Result

Figure 1 shows the daily-binned R_C-band light curve of 1H0323+342, together with the PD and PA measured by Kanata/HOWPol. The optical flux was almost constant and probably in quiescence until clear brightening on MJD 56481 and the subsequent ~ 20 d, although the monitoring frequency was not very dense. During the low state, the R_C-band emission is almost unpolarized and the PD was between 0%–1% (at most 1.4% \pm 0.8% on MJD 56243), consistent with past measurements made by Ikejiri et al. (2011) and Eggen, Miller, and Maune (2011), while the PAs have large errors because of the very low PD. In contrast, we detected a clear increase of the PD up to 2.9% \pm 0.5% during the high state which starts on MJD 56482. To see the temporal variations in detail, we show in figure 2a close-up view of figure 1 during the flaring state. Although a complete rising profile was not obtained, the R_C-band light curve showed rapid dimming on MJD 56482, a peak on MJD 56484, and subsequent gradual decay. The PD reached a maximum on MJDs 56486 and 56488, several days after the peak of the R_C-band flux. During the PD increase, we were able to precisely measure the PA and found that it was scattered somewhat but roughly constant at 105°–145° around the PD peak.

Using the 1.05-m Murikabushi telescope, we obtained continuous (2 hr) and simultaneous g'-, R_C-, and I_C-band light curves of 1H0323+342 on MJD 56488, which are shown in figure 3. All the light curves showed a common trend during the exposure, i.e., gradual dimming (18–19.1 UT) followed by constant flux (19.1–19.6 UT), and then small brightening peaking around 19.8 UT. Small-amplitude fluctuations superposed on the trend are also visible. We also find from figure 3 that the flux variation in g'-band seems to be smaller than that of I_C-band, and hence in order to quantify the amplitude of variability in each band we calculated the normalized “excess variance” [σ_{rms}^2; see Nandra et al. (1997) for the calculation method] for the g'-, R_C-, and I_C-band light curves. Here we removed several (three at most) data points which have large errors of the order of 0.1 mag in each light curve. The results are tabulated in table 1. The higher frequency light curve showed lower variability amplitude, implying that variable synchrotron emission is more contaminated by
thermal emission from accretion disk in higher frequency. Here we note that synchrotron emission from the jet is highly variable due to relativistic beaming effect, while disk emission can be safely assumed to be steady at least during the 2-hr exposure, as is verified from the Swift/UVOT measurement of constant flux in UVW2 band during high state. To check this possibility as well as spectral evolution, we constructed daily optical–UV SEDs and they are displayed in figure 4. The higher frequency portion of the SEDs clearly shows a rising shape, indicating again the presence of disk emission. The lack of significant flux variation in the highest frequency at 1.5 × 10^{15} Hz (UVW2 band) also supports the disk origin.

4 Discussion

The broad-band SED of 1H0323+342 is reasonably modeled by a one-zone synchrotron plus inverse Compton scenario, as is the case for blazars (Abdo et al. 2009). The optical emission was therefore believed to be synchrotron radiation, but the very low PDs of 0%–1% from past studies (Ikejiri et al. 2011; Eggen et al. 2011) challenged the synchrotron origin to some extent. One of the new findings presented here is the first clear detection of variable polarized emission from this object, and the observed PD was moderate (∼3% at most). This positive detection undoubtedly indicates the synchrotron origin for the optical emission. The \(R_C \)-band light curve during high state showed gradual decay of typical e-folding timescale of several days and if we interpret this as the synchrotron cooling time of relativistic electrons emitting optical photons, we can roughly estimate the magnetic field strength at the emission region as \(B \approx 0.25\left(\frac{t_{\text{decay}}}{3\,\text{d}}\right)^{-1/3}\left(\frac{E_{\text{obs}}}{1\,\text{eV}}\right)^{-1/3}\left(\frac{\delta}{10}\right)^{-1/3} \text{ G} \), where \(t_{\text{decay}} \) and \(E_{\text{obs}} \) are measured in the observer’s frame, and \(\delta \) is a relativistic beaming factor and 10 is assumed here as usual for blazars. The derived magnetic field is lower than that inferred from SED fitting for the multi-wavelength data (Abdo et al. 2009), where long-term non-simultaneous data were used.

The PAs measured reliably during the PD enhancement were scattered between 105°–145° but were roughly constant, and did not show significant temporal variation such as rotation/swing seen in some blazars (e.g., Marscher et al. 2008; Abdo et al. 2010). Here we note a similarity that the PAs were always almost constant whenever polarized flux flares were observed by the Kanata telescope. See figure 1 of Itoh et al. (2013a) for the case of a famous flat-spectrum radio quasar CTA 102, and figure 2 of Itoh et al. (2013b) for the γ-ray loud NLS1 PMN J0948+0022. In light of the turbulent multi-zone model recently proposed by Marscher (2014), this can be naturally understood by brightening of a single highly ordered magnetic field cell (or emission region) among multiple radiating cells. In contrast, the \(R_C \)-band flux enhancement with low PD at e.g., MJD 56491 would be caused by the superposition of the brightening of multiple cells, because the random orientation of the magnetic field in each cell would cancel the polarization in total and result in a low PD, as observed. The small-amplitude intra-night rapid variability observed during the high state [see figure 3 and also Paliya et al. (2013) for past detection from the same object] would also be explained by twinkling multiple small cells within the framework of this multi-zone scenario.

The parsec-scale structure of the jet has been resolved by VLBI observation and the position angles of the innermost components (i.e., jet direction at the inner region accessible by VLBI) are measured as 111°–131° (see table 5 of Wajima et al. 2014). Hence, the optical PAs of 105°–145° observed during the high state roughly correspond to the jet direction under a reasonable assumption that the jet direction at sub-parsec scale is the same as the that of parsec-scale structure resolved by VLBI. This implies that the magnetic field direction at the optical emission region is roughly perpendicular to the jet axis, because the magnetic field direction is assumed to be perpendicular to the observed PA. The inferred magnetic field direction transverse to the jet axis may indicate the presence of helical/toroidal magnetic field at the emission site. However, the non-detection of PA
rotation seems to contradict with this hypothesis. An alternative and more plausible option would be a “shock-in-jet” scenario where magnetic field is compressed and aligned to the direction perpendicular to the jet axis by a transverse shock propagating downstream (e.g., Laing 1980; Hughes et al. 1985; Hagen-Thorn et al. 2008). We speculate that the ordered magnetic field within the single cell responsible for the PD enhancement would be formed by well-known internal shocks, i.e., blobs (or shells) that are intermittently emitted from the central BH collide, thus a shock is formed there, and particle acceleration and ordering of the magnetic field in the direction transverse to the jet take place. The colliding blobs may merge into single ones, which corresponds to the cell described above. However, it would be difficult to discriminate the helical/toroidal magnetic field and “shock-in-jet” scenarios based only on the optical results. In this regard, measurement of the Faraday rotation measure gradient across the jet provides direct evidence for the presence of a helical/toroidal magnetic field (e.g., Asada et al. 2002; Gabuzda et al. 2004), but this technique does not allow us to investigate the magnetic field structure inside the radio core.

From the analysis of the Ishigaki three-band simultaneous and continuous 2-hr light curves, we found a clear trend of smaller variability amplitude for the higher frequency light curve. This can be naturally interpreted as the steady disk emission being dominant over variable synchrotron emission in higher frequencies. We note that the disk emission is also variable in principle, but at least during the high state analyzed here we did not find any significant flux variation in the Swift/UVOT data in the UVW2 band, where the disk emission is most dominant compared to all the other band data. Hence we can safely assume the UV flux as constant during the Ishigaki 2-hr exposure and this validates the above interpretation. We also found that the UV spectrum of the source showed a rising shape. All of these findings presented here indicates that the UV radiation of 1H 0323+342 is dominated by thermal emission from an accretion disk.

In summary, we detected optical polarized emission from 1H 0323+342 during a high state, providing clear evidence of a synchrotron origin for the optical emission. The PAs measured during the high state were roughly aligned to the jet axis. This indicates that the magnetic field direction at the optical emission region was roughly transverse to the jet axis, which implies either that helical/toroidal magnetic field is there or that the magnetic field is compressed by transverse shocks propagating down the jet. The UV spectrum of 1H 0323+342 showed a rising shape and did not show significant variability during the high state. This would suggest that the UV radiation of the source is dominated by thermal emission from an accretion disk. This is also supported by our finding that higher frequency light curves showed less variability amplitude during the Ishigaki 2-hr continuous exposure.

The central BH mass of radio-loud NLS1s is still controversial. Radio-loud NLS1s may have heavy BHs, above $10^8 M_\odot$, comparable to typical blazars, under the assumption of standard disk spectra for these objects (Calderone et al. 2013). If so, Eddington ratios reduce to 0.04–0.2 and are not extreme. Here we note that our conclusions presented in this paper are not affected by the uncertainty of the central black hole mass estimation.

Finally we mention that a new optical-infrared instrument HONIR [Hiroshima Optical and Near-InfraRed camera; see Sakimoto et al. (2012)] and Akitaya et al. (2014) for a detailed description has been attached to the Kanata telescope, and HONIR observation in polarization mode has been in operation since 2014 January. Multi-band simultaneous polarimetry is now feasible and HONIR observation of the optical and infrared polarization, together with OISTER facilities, will provide important information on blazar science in the near future.

Acknowledgments

We appreciate the referee’s critical reading and valuable comments. RI, YTT, and HA led this project. RI has led the daily Kanata blazar monitoring program, and RI and HA led the OISTER observation after the ToO trigger by YTT. RI led the overall data analysis. YTT led the interpretation of the results as well as drafting the manuscript.

References

Abdo, A. A., et al. 2009, ApJ, 707, L142
Abdo, A. A., et al. 2010, Nature, 463, 919
Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Akitaya, H., et al. 2014, Proc. SPIE, 9147, 91474O
Antón, S., Browne, I. W. A., & Marcha, M. J. 2008, A&A, 490, 583
Asada, K., Inoue, M., Uchida, Y., Kameno, S., Fujisawa, K., Iguchi, S., & Mutoh, M. 2002, PASJ, 54, L39
Calderone, G., Ghisellini, G., Colpi, M., & Dotti, M. 2013, MNRAS, 431, 210
Cellone, S. A., Romero, G. E., & Combi, J. A. 2000, AJ, 119, 1534
D’Ammando, F., et al. 2012, MNRAS, 426, 317
Doi, A., Nagai, H., Asada, K., Kameno, S., Wajima, K., & Inoue, M. 2006, PASJ, 58, 829
Doi, A., et al. 2007, PASJ, 59, 703
Eggen, J., Miller, H. R., & Maune, J. 2011, in Proc. Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, PoS(NLS1), ed. L. F. Board et al. (Trieste: SISSA), 49
Gabuzda, D. C., Murray, E., & Cronin, P. 2004, MNRAS, 351, L89
Goodrich, R. W. 1989, ApJ, 342, 224
Grupe, D., & Mathur, S. 2004, ApJ, 606, L41
Hagen-Thorn, V. A., Larionov, V. M., Jorstad, S. G., Arkharov, A. A., Hagen-Thorn, E. I., Efimova, N. V., Larionova, L. V., & Marscher, A. P. 2008, ApJ, 672, 40

References

Abdo, A. A., et al. 2009, ApJ, 707, L142
Abdo, A. A., et al. 2010, Nature, 463, 919
Adelman-McCarthy, J. K., et al. 2007, ApJS, 172, 634
Akitaya, H., et al. 2014, Proc. SPIE, 9147, 91474O
Antón, S., Browne, I. W. A., & Marchá, M. J. 2008, A&A, 490, 583
Asada, K., Inoue, M., Uchida, Y., Kameno, S., Fujisawa, K., Iguchi, S., & Mutoh, M. 2002, PASJ, 54, L39
Calderone, G., Ghisellini, G., Colpi, M., & Dotti, M. 2013, MNRAS, 431, 210
Cellone, S. A., Romero, G. E., & Combi, J. A. 2000, AJ, 119, 1534
D’Ammando, F., et al. 2012, MNRAS, 426, 317
Doi, A., Nagai, H., Asada, K., Kameno, S., Wajima, K., & Inoue, M. 2006, PASJ, 58, 829
Doi, A., et al. 2007, PASJ, 59, 703
Eggen, J., Miller, H. R., & Maune, J. 2011, in Proc. Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, PoS(NLS1), ed. L. F. Board et al. (Trieste: SISSA), 49
Gabuzda, D. C., Murray, E., & Cronin, P. 2004, MNRAS, 351, L89
Goodrich, R. W. 1989, ApJ, 342, 224
Grupe, D., & Mathur, S. 2004, ApJ, 606, L41
Hagen-Thorn, V. A., Larionov, V. M., Jorstad, S. G., Arkharov, A. A., Hagen-Thorn, E. I., Efimova, N. V., Larionova, L. V., & Marscher, A. P. 2008, ApJ, 672, 40
Hughes, P. A., Aller, H. D., & Aller, M. F. 1985, ApJ, 298, 301
Ikejiri, Y., et al. 2011, PASJ, 63, 639
Itoh, R., et al. 2013a, ApJ, 768, L24
Itoh, R., et al. 2013b, ApJ, 775, L26
Kaspi, S., Maoz, D., Netzer, H., Peterson, B. M., Vestergaard, M., & Jannuzi, B. T. 2005, ApJ, 629, 61
Kawabata, K. S., et al. 2008, Proc. SPIE, 7014, 70144
Komossa, S., Voges, W., Xu, D., Mathur, S., Adorf, H.-M., Lemson, G., Duschl, W. J., & Grupe, D. 2006, AJ, 132, 531
Kotani, T., et al. 2005, Nuovo Cimento C, 28, 755
Laing, R. A. 1980, MNRAS, 193, 439
Leighly, K. M. 1999, ApJS, 125, 297
Marscher, A. P. 2010, in the Jet Paradigm, ed. T. Belloni (Berlin: Springer), 173
Marscher, A. P. 2014, ApJ, 780, 87
Marscher, A. P., et al. 2008, Nature, 452, 966
Mathur, S. 2000, MNRAS, 314, L17
Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yaqoob, T. 1997, ApJ, 476, 70
Paliya, V. S., Stalin, C. S., Kumar, B., Kumar, B., Bhatt, V. K., Pandey, S. B., & Yadav, R. K. S. 2013, MNRAS, 428, 2450
Peterson, B. M., et al. 2004, ApJ, 613, 682
Poole, T. S., et al. 2008, MNRAS, 383, 627
Sakimoto, K., et al. 2012, Proc. SPIE, 8446, 844673
Schlegel, D. J., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Wajima, K., Fujisawa, K., Hayashida, M., Isobe, N., Ishida, T., & Yonekura, Y. 2014, ApJ, 781, 75
Warner, C., Hamann, F., & Dietrich, M. 2004, ApJ, 608, 136
Yuan, W., Zhou, H. Y., Komossa, S., Dong, X. B., Wang, T. G., Lu, H. L., & Bai, J. M. 2008, ApJ, 685, 801
Zhou, H., et al. 2007, ApJ, 658, L13