Quantum relative modular functions

Alexandru Chirvasitu

Abstract

Let $H \trianglelefteq G$ be a closed normal subgroup of a locally compact quantum group. We introduce a strictly positive group-like element affiliated with $L^\infty(G)$ that, roughly, measures the failure of G to act measure-preservingly on H by conjugation. The triviality of that element is equivalent to the condition that G and G/H have the same modular element, by analogy with the classical situation. This condition is automatic if $H \leq G$ is central, and in general implies the unimodularity of H.

We also describe a bijection between strictly positive group-like elements δ affiliated with $C_0(G)$ and quantum-group morphisms $G \to (\mathbb{R}, +)$, with the closed image of the morphism easily described in terms of the spectrum of δ. This then implies that property-(T) locally compact quantum groups admit no non-obvious strictly positive group-like elements.

Key words: locally compact quantum group; modular element; modular function; unimodular

MSC 2020: 46L67; 20G42; 22D05; 22D25; 22D55

Introduction

The initial motivation for the present paper was the well-known result that nilpotent locally compact groups are unimodular (e.g. [18, p.318, Corollary 2]). Several proofs exist in the literature (with more references cited in Section 2), but one naive strategy that comes to mind would be as follows: given that nilpotence means that the ascending central series

$$\{1\} \leq Z(G) \leq \cdots \leq G$$

is finite, perhaps one can employ induction by starting with the abelian group $Z(G)$ (which is of course unimodular) and then lifting unimodularity along cocentral quotients $G \to G/H$ (i.e. quotients by a central closed subgroup). In short, one would need

Claim A cocentral quotient G/H of a locally compact group is unimodular if and only if G is.

Since unimodularity simply means that the modular function [15, §2.4] is trivial, this suggests possible generalization:

Claim For any cocentral quotient $\pi : G \to G/H$, the modular function of G is obtained from that of G/H by restriction along π.

All of this is true and follows easily enough from standard material on modular functions (e.g. from [15, Theorem 2.51]), though I have not seen these precise statements. Couched in these terms, though, the statements generalize easily to the framework of locally compact quantum groups [24, 25, 23, 39, 31, 32, 26], since all of the ingredients are present. To summarize, postponing the notation and terminology until Section 1:
• For a locally compact quantum group G there is a modular element δ_G [24, §7] affiliated with the von Neumann algebra $L^\infty(G)$, to be thought of as the inverse of the usual modular function (see Remark 2.2 for why this convention is convenient).

• There are notions of (closed [36, Definition 2.6]) normal [37, Definition 2.10] and central [20, Definition 2.3] quantum subgroups $H \leq G$.

• As well as quotient groups G/H by closed normal quantum subgroups [37, Theorem 2.11].

All of this allows the formulation of one of the main results below (see Section 2 and Corollary 2.3):

Theorem Given a closed central quantum subgroup $H \leq G$ of a locally compact quantum group, the modular elements of G and G/H coincide.

In particular, a cocentral quotient G/H is unimodular if and only if G is. ■

More generally, there is a very satisfying way of measuring the discrepancy from the previous theorem’s conclusion. Summarizing Theorems 2.12 and 2.14 and Propositions 2.16 and 2.17:

Theorem Let $H \leq G$ be a closed normal quantum subgroup. The modular elements δ_G and $\delta_{G/H}$ strongly commute, so their ratio $\delta := \delta_G\delta_{G/H}^{-1}$ is again a strictly positive element affiliated with $L^\infty(G)$, group-like in the sense that $\Delta_G(\delta) = \delta \otimes \delta$.

That element is trivial precisely when two canonical operator valued weights from $L^\infty(G)$ to its von Neumann subalgebra $L^\infty(G/H)$ coincide. This condition

• is the quantum analogue of G acting measure-preservingly by conjugation on H;

• is automatic when $H \leq G$ is central;

• and entails the unimodularity of H. ■

The element δ in the statement above is the relative modular function alluded to in the title of the paper (see Definition 2.13): the phrase is meant to indicate that it is relative to an embedding $H \leq G$ rather than absolute, attached to G alone.

On a different note but still on the topic of strictly positive group-like elements δ affiliated with $L^\infty(G)$, we have (Proposition 3.2, Proposition 3.5 and Theorem 3.7)

Theorem Every strictly positive group-like element δ affiliated with $L^\infty(G)$ induces a quantum-group morphism $G \to \mathbb{R}$ whose closed image is precisely the closed subgroup

$$\{ \log t \mid 0 < t \in \text{Sp}(\delta) \} \subseteq (\mathbb{R}, +).$$ ■

An immediate consequence (Theorem 3.9 below) is the following generalization of the unimodularity of property-(T) quantum groups [9, Theorem 6.1]:

Theorem If the LCQG G has property (T) then the only strictly positive group-like element affiliated with $L^\infty(G)$ is 1. ■

Acknowledgements

This work is partially supported by NSF grant DMS-2001128.

I am grateful for insightful comments and pointers to the literature from A. Skalski, P. Kasprzak, P. Sołtan, G. Folland and A. Deitmar.
1 Preliminaries

Inner products are linear in the second variable, and for vectors \(v, w \) in a Hilbert space \((\mathcal{H}, \langle \cdot | \cdot \rangle)\) and an operator \(A \in B(\mathcal{H}) \) we write

\[
\omega_{v,w}(A) := \langle v | Aw \rangle = \langle vA | w \rangle = \langle A^*v | w \rangle.
\]

Any number of sources cover the needed operator-algebra background: [4, 29], etc. Assorted standard notation:

- \(B(\cdot) \) and \(K(\cdot) \) denote the algebras of bounded and respectively compact operators on a Hilbert space.
- \(M(\cdot) \) is the multiplier algebra of a \(C^* \)-algebra [4, §II.7.3].
- For \(C^* \)-algebras \(A \) and \(B \) the space \(\text{Mor}(A,B) \) of morphisms from \(A \) to \(B \) consists (as in [38, Introduction], [11, §1.1], [12, §2], etc.) of those linear, bounded, multiplicative \(* \)-maps \(f : A \to M(B) \) that are non-degenerate in the sense that \(f(A)B \) is norm-dense in \(B \).

We also depict \(\pi \in \text{Mor}(A,B) \) as arrows:

\[A \xrightarrow{\pi} B. \]

- \(M_* \) is the predual [4, §III.2.4] of a von Neumann algebra, \(M_+ \) its positive cone (set of positive elements), and \(\tilde{M}_+ \) its extended positive part [16, Definition 1.1].
- the tensor-product symbol ‘\(\otimes \)’ has contextual meaning: between \(C^* \)-algebras it denotes the minimal (or spatial) \(C^* \) tensor product [4, §II.9.1.3], between \(W^* \)-algebras it is the von-Neumann-flavored spatial tensor product of [4, §III.5.1.4], the Hilbert-space tensor product when appropriate, etc.

For the needed material on locally compact quantum groups we refer mainly to [24, 25, 23] (with more precise citations below, as needed). The first of these also has an introductory overview of the necessary weight and modular theory; [34, 33] are other good sources for this latter topic. Of particular interest are the operator-valued weights of [16, 17], covered also in [34, §IX.4].

To recall, briefly, the main concept of interest ([25, Definition 1.1]):

Definition 1.1 A locally compact quantum group \(\mathbb{G} \) (occasionally abbreviated LCQG) is a pair \((M, \Delta)\) where

- \(M \) is a von Neumann algebra, \(M_* \), denoted also by \(L^\infty(\mathbb{G}) \),
- \(\Delta = \Delta_\mathbb{G} \) is a \(W^* \) morphism \(M \to M \otimes M \), coassociative in the sense that
 \[
 (\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta : M \to M \otimes M \otimes M.
 \]
- we assume the existence of
 - (a) a *left Haar weight* on \(M \): a normal, semifinite and faithful (n.s.f. for short) weight \(\varphi = \varphi_\mathbb{G} \), left-invariant in the sense that
 \[
 \varphi((\omega \otimes \text{id})\Delta(x)) = \omega(1)\varphi(x)
 \]
 for all \(\omega \in M_* \) and
 \[
 x \in M_+^\varphi := \{ x \in M_+ | \varphi(x) < \infty \}.
 \]
(b) similarly, a right Haar weight \(\psi = \psi_G \), right-invariant:

\[
\psi((\text{id} \otimes \omega)\Delta(x)) = \omega(1)\psi(x), \forall \omega \in M_\ast, \forall x \in m^+_\psi.
\]

Also central to the discussion is the following object ([24, Terminology 7.16]).

Definition 1.2 The modular element \(\delta = \delta_G \) of an LCQG \(G \) is the unique (possibly unbounded) operator that is

- **strictly positive** in the sense that its spectral resolution [30, Theorem 13.30] assigns the zero projection to \(\{0\} \) (equivalently: it has dense range [24, p.841]);
- **affiliated** with \(L^\infty(G) \) in the sense that its spectral projections belong to that von Neumann algebra;

and such that

\[
\psi_G(\cdot) = \varphi_{G,\delta}(\cdot) := \varphi_G\left(\delta^{1/2} \cdot \delta^{1/2}\right).
\] (1-1)

Other notation pertinent to quantum groups:

- \(L^2(G) = L^2(G, \varphi_G) \) is the Hilbert space carrying the GNS representation attached to the left Haar weight \(\varphi \), equipped with \(\Lambda = \Lambda_G : n_\varphi \rightarrow L^2(G) \).
- \(C_0(G) \subset L^\infty(G) \) is the reduced function algebra of \(G \), associated to \(L^\infty(G) \) in [25, §1.2] (with the notation \(M = L^\infty(G), M_u = C_0(G) \)) and studied extensively in [24].
- \(C_0^u(G) \) is the universal function algebra, constructed in [23, §4].
- \(\hat{G} \) is the dual LCQG: [25, §1.1] for the von Neumann version and [24, §8] for the \(C^* \) counterpart.
- \(W \in W_G \) is the multiplicative unitary of [24, Proposition 3.17]: it is defined as an operator on \(L^2(G) \otimes L^2(G) \) by

\[
W^*(\Lambda(x) \otimes \Lambda(y)) = \Lambda \otimes \Lambda(\Delta(y)(x \otimes 1)),
\]

it implements the comultiplication by

\[
\Delta(x) = W^*(1 \otimes x)W,
\]

and belongs to

\[
M(C_0(G) \otimes C_0(\hat{G})) \subset L^\infty(G) \otimes L^\infty(\hat{G}).
\]

- \(S = S_G \) and \(R = R_G \) are the antipode and unitary antipode of \(G \) respectively [24, Terminology 5.42].

Remark 1.3 [24, Proposition 7.10] says that \(\delta_G \) is in fact also affiliated with the \(C^* \)-algebra \(C_0(G) \) in the sense of [38, Definition 1.1]. Furthermore, it lifts along the surjection \(C_0^u(G) \rightarrow C_0(G) \) to a strictly positive element \(\delta_u = \delta_{u,G} \) affiliated with the universal function algebra [23, Proposition 10.1].

Notation 1.4 We denote the affiliation relation, in either the \(C^* \) or \(W^* \) setting, by primed containment symbols: \(\in' \) and \(\ni' \).
1.1 Morphisms

LCQG morphisms have many incarnations; for a review of the theory the reader can consult, for instance, [27] (where many of the issues were initially settled), [23, §12] or [11, §1.3]. In particular, attached to such a morphism $\pi : \mathbb{H} \to \mathbb{G}$ we have a right action

$$\pi_r : L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H})$$

as well as a left one,

$$\pi_l : L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H}).$$

Throughout the paper, closed quantum subgroups $\mathbb{H} \leq \mathbb{G}$ are as in [36, Definition 2.6], referred to as closed in the sense of Vaes in [11, Definition 3.1] (to distinguish from a formally weaker version due to Woronowicz): those for which the dual morphism $\widehat{\mathbb{G}} \to \widehat{\mathbb{H}}$ corresponds to a comultiplication-intertwining embedding

$$L^\infty(\widehat{\mathbb{H}}) \subseteq L^\infty(\widehat{\mathbb{G}}).$$

The centrality of a quantum subgroup (or more generally, of a morphism) can be cast as the following paraphrase of [20, Definition 2.3]:

Definition 1.5 A morphism $\pi : \mathbb{H} \to \mathbb{G}$ is central if the diagram

$$\begin{array}{ccc}
L^\infty(\mathbb{G}) & \xrightarrow{\pi_r} & L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H}) \\
\pi_l & \downarrow & \downarrow \text{id} \\
L^\infty(\mathbb{H}) & \xrightarrow{\pi_r} & L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H}) \\
\end{array}$$

commutes. ♦

For a closed quantum subgroup $\iota : \mathbb{H} \leq \mathbb{G}$ one can define the left and right quantum homogeneous \mathbb{G}-spaces (e.g. [36, Definition 4.1]):

$$L^\infty(\mathbb{G}/\mathbb{H}) := \{ x \in L^\infty(\mathbb{G}) \mid \iota_r(x) = x \otimes 1 \}$$

$$L^\infty(\mathbb{H}\backslash\mathbb{G}) := \{ x \in L^\infty(\mathbb{G}) \mid \iota_l(x) = 1 \otimes x \}.\quad (1-3)$$

Morphisms of locally compact quantum groups preserve unitary antipodes; this is well known, but we set out the claim here in precisely the form needed below (see e.g. [21, equation (2.2b)]).

Lemma 1.6 For an LCQG morphism $\pi : \mathbb{H} \to \mathbb{G}$ the diagrams

$$\begin{array}{ccc}
L^\infty(\mathbb{G}) & \xrightarrow{\pi_r} & L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H}) \\
R_G & \downarrow & R_G \otimes R_H \\
L^\infty(\mathbb{G}) & \xrightarrow{\pi_l} & L^\infty(\mathbb{H}) \otimes L^\infty(\mathbb{G}) \\
\pi_l & \downarrow \text{flip} & \downarrow \text{flip} \\
L^\infty(\mathbb{H}) & \xrightarrow{\pi_r} & L^\infty(\mathbb{H}) \otimes L^\infty(\mathbb{H}) \\
\end{array}$$

and

$$\begin{array}{ccc}
L^\infty(\mathbb{G}) & \xrightarrow{\pi} & L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H}) \\
R_G & \downarrow & R_H \otimes R_G \\
L^\infty(\mathbb{G}) & \xrightarrow{\pi_r} & L^\infty(\mathbb{G}) \otimes L^\infty(\mathbb{H}) \\
\pi_l & \downarrow \text{flip} & \downarrow \text{flip} \\
L^\infty(\mathbb{H}) & \xrightarrow{\pi_l} & L^\infty(\mathbb{H}) \otimes L^\infty(\mathbb{G}) \\
\end{array}$$

commute.
Proof This follows from [27, Theorems 5.3 and 5.5], which describe \(\pi_r \) and \(\pi_l \) in terms of a single object attached to the morphism \(\pi \) (a bicharacter, in the language of [27, §3]).

In the discussion below, we follow [24] in denoting by

- \(\sigma_t \) (or \(\sigma_{G,t} \) when wishing to emphasize the group) the modular automorphism group of a left Haar weight [24, §1.3];
- \(\sigma'_t = \sigma'_{G,t} \) the modular group of a right Haar weight [24, p.846];
- \(\tau_t = \tau_{G,t} \) the scaling group of \(G \) [24, Terminology 5.42] and by \(\nu = \nu_G \) its scaling constant [24, Terminology 7.16].

In addition to the antipode-intertwining properties noted in Lemma 1.6, it will also be useful to record the compatibility between \(\pi_{l,r} \) and these one-parameter groups.

Lemma 1.7 For an LCQG morphism \(\pi : \mathbb{H} \to G \) we have

\[
\pi_l \sigma_{G,t} = (\tau_{\mathbb{H},t} \circ \sigma_{G,t}) \pi_l : L^\infty(G) \to L^\infty(\mathbb{H}) \otimes L^\infty(G). \tag{1-4}
\]

\[
\pi_r \sigma'_{G,t} = (\sigma'_{G,t} \circ \tau_{\mathbb{H},-t}) \pi_r : L^\infty(G) \to L^\infty(G) \otimes L^\infty(\mathbb{H}). \tag{1-5}
\]

\[
\pi_l \tau_{G,t} = (\tau_{\mathbb{H},t} \circ \tau_{G,t}) \pi_l : L^\infty(G) \to L^\infty(\mathbb{H}) \otimes L^\infty(G). \tag{1-6}
\]

\[
\pi_r \tau_{G,t} = (\tau_{G,t} \circ \tau_{\mathbb{H},t}) \pi_r : L^\infty(G) \to L^\infty(G) \otimes L^\infty(\mathbb{H}). \tag{1-7}
\]

Proof The style of proof is the same for all of these, so we focus on (1-4).

All three one-parameter groups lift to the universal quantum-group function algebras \(C_0^u(G) \) (and analogue for \(\mathbb{H} \)) of [23]: see [23, §8] for the modular groups \(\sigma \) and \(\sigma' \) and [23, §9] for \(\tau \).

At the universal level we have [23, Proposition 9.2]

\[
\Delta_G \sigma_{G,t}^u = (\tau_{G,t}^u \circ \sigma_{G,t}^u) \Delta_G : C_0^u(G) \to M(C_0^u(G) \otimes C_0^u(G)). \tag{1-8}
\]

Now apply the universal incarnation

\[
\pi^u : C_0^u(G) \to M(C_0(\mathbb{H})^u)
\]

of \(\pi \) ([27, §4], [23, §12]) to the left leg of (1-8) to obtain

\[
\pi_l^u \sigma_{G,t}^u = (\pi^u \tau_{G,t}^u \circ \sigma_{G,t}^u) \Delta_G : C_0^u(G) \to M(C_0(\mathbb{H})^u \otimes C_0^u(G)),
\]

where

\[
\pi_l^u := (\pi^u \circ \text{id}) \Delta_G.
\]

Next, use the scaling-group-intertwining property

\[
\pi^u \tau_{G,t}^u = \tau_{\mathbb{H},t}^u \pi^u
\]

of \(\pi^u \) (which follows, for instance, from [27, Proposition 3.10]) on the right-hand side to produce

\[
\pi_l^u \sigma_{G,t}^u = (\tau_{\mathbb{H},t}^u \pi^u \circ \sigma_{G,t}^u) \Delta_G
\]

\[
= (\tau_{\mathbb{H},t}^u \circ \sigma_{G,t}^u) \pi_l^u.
\]
Finally, to conclude, note that this reduces precisely to the desired identity (1-4), because

\[
\begin{array}{ccc}
C_0^u(\mathbb{G}) & \xrightarrow{\pi^u} & M(C_0(\mathbb{H})^u \otimes C_0^u(\mathbb{G})) \\
\downarrow & & \downarrow \\
L^\infty(\mathbb{G}) & \xrightarrow{\pi_l} & L^\infty(\mathbb{H}) \otimes L^\infty(\mathbb{G})
\end{array}
\]

commutes [23, Proposition 12.1].

An immediate consequence of Lemma 1.7 and the definitions of the quantum homogeneous spaces \mathbb{G}/\mathbb{H} and $\mathbb{H}\backslash\mathbb{G}$:

Corollary 1.8 For any closed locally compact quantum subgroup $\mathbb{H} \leq \mathbb{G}$

1. $L^\infty(\mathbb{G}/\mathbb{H}) \subseteq L^\infty(\mathbb{G})$ is invariant under $\tau_{\mathbb{G},t}$ and $\sigma'_{\mathbb{G},t}$;
2. and similarly, $L^\infty(\mathbb{H}\backslash\mathbb{G}) \subseteq L^\infty(\mathbb{G})$ is invariant under $\tau_{\mathbb{G},t}$ and $\sigma_{\mathbb{G},t}$.

\[\blacksquare\]

2 Relative modular elements

One of the main results of this section (to be strengthened later, when more language has been introduced) is

Theorem 2.1 Let $\mathbb{H} \leq \mathbb{G}$ be a closed central subgroup of a locally compact quantum group. The modular element of \mathbb{G} coincides with that of \mathbb{G}/\mathbb{H}.

Remark 2.2 To put Theorem 2.1 into some perspective, with centrality being the last of a series of progressively more stringent conditions, note that

- If $\mathbb{H} \leq \mathbb{G}$ is a closed normal subgroup then the modular element $\delta_{\mathbb{G}}$ of \mathbb{G} restricts to $\delta_{\mathbb{H}}$ in the sense of [5, Definition 3.3] (by [5, Theorem 3.4 and Corollary 3.9]).

The restriction terminology employed there is chosen so that classically it specializes back to what one would guess. The modular function of a locally compact group \mathbb{G} is typically denoted by $\Delta_{\mathbb{G}}$ or plain Δ ([3, §A.3], [13, §1.4], [15, §2.4], etc.). Here, in order to avoid confusion with the comultiplication, we write

$$
\delta_{\mathbb{G}}(x) := \Delta(x)^{-1}, \ x \in \mathbb{G}.
$$

This is compatible with the previous use of the symbol δ, in the general context of quantum groups: on the one hand we have the relation (1-1) between left and right Haar weights, while on the other hand, classically, we have

$$
d\mu_{\text{right}}(x) = \Delta(x)^{-1}d\mu_{\text{left}}(x)
$$

by [15, Proposition 2.31].

As the name suggests, then, $\delta_{\mathbb{G}}$ restricting to $\delta_{\mathbb{H}}$ as in [5, Definition 3.3] means precisely that $\delta_{\mathbb{H}} = \delta_{\mathbb{G}}|_{\mathbb{H}}$ for ordinary locally compact groups.
• If furthermore \(H \leq G \) is unimodular, it follows that the modular function \(f \) factors through \(G \to G/H \), in the sense that
\[
\delta_G^H \in L^\infty(G/H), \forall t \in \mathbb{R};
\]
in other words, \(\delta \) is affiliated with the von Neumann subalgebra \(L^\infty(G/H) \subseteq L^\infty(G) \). This follows from [5, Theorem 3.4, condition (2)] and classically it means that the morphism
\[
\delta_G : G \to (\mathbb{R}^\times, \cdot)
\]
factors through \(G/H \).

• Finally, it takes centrality to ensure that that factorization in fact coincides with the modular function
\[
\delta_{G/H} : G/H \to (\mathbb{R}^\times, \cdot).
\]

Before moving on to the proof of Theorem 2.1, note the following immediate consequence.

Corollary 2.3 If \(H \leq G \) is a closed central subgroup of a locally compact quantum group then \(G \) is unimodular if and only if \(G/H \) is.

As yet another consequence, we have the unimodularity of nilpotent locally compact (classical) groups. The result is well known, but the proofs one encounters tend to be different in flavor: [18, Corollary 2, p.318] leverages some structure results on nilpotent groups, while [3, Example A.3.7] uses (via [3, Exercise A.8.10]) the fact that nilpotent groups have subexponential growth.

Corollary 2.4 Nilpotent locally compact groups are unimodular.

Proof Filter the nilpotent group \(G \) with its ascending central series
\[
\{1\} \leq Z(G) \leq \cdots \leq G
\]
(finite, by the nilpotence assumption), and proceed by induction on the length of that series: the base case of abelian groups is trivial, and the induction step passes from a quotient to a central extension using Corollary 2.3.

For a closed quantum subgroup \(H \leq G \) we will work with the two operator-valued weights \(\pi_l \) and \(\pi_r \) defined by
\[
L^\infty(G) \xrightarrow{\pi_l} L^\infty(G) \otimes L^\infty(H) \xrightarrow{id \otimes \phi_H} L^\infty(G)_+, \tag{2-1}
\]
with the ‘l’ subscript indicating left invariance or mapping to the left coset space, and similarly,
\[
L^\infty(G) \xrightarrow{\pi_r} L^\infty(H) \otimes L^\infty(G) \xrightarrow{\psi_H \otimes id} L^\infty(G)_+, \tag{2-2}
\]

Lemma 2.5 For a closed quantum subgroup \(H \leq G \) of a closed quantum subgroup we have
\[
R_G \circ \pi_l = \pi_r \circ R_G \quad \text{and} \quad R_G \circ \pi_r = \pi_l \circ R_G.
\]
Proof That R_G interchanges $L^\infty(G/\mathbb{H})_+$ and $L^\infty(\mathbb{H}ackslash G)_+$ follows from Lemma 1.6 (applied to the embedding morphism $\iota: \mathbb{H} \leq G$) and the definition (1-3) of the two quantum homogeneous spaces (see also [21, Proposition 3.3]).

As for the substance of the statement, it too is an immediate consequence of Lemma 1.6: to obtain $R_G \circ T_l = T_r \circ R_G$, for instance, apply $\psi_\mathbb{H}$ to the right-hand leg of the top diagram in Lemma 1.6 and use the fact that (by definition!) $\varphi_\mathbb{H}$ is nothing but $\psi_\mathbb{H} \circ R_\mathbb{H}$. The other equation follows similarly from the second diagram.

For a closed normal quantum subgroup $\mathbb{H} \leq G$ the two homogeneous spaces coincide (and this in fact characterizes normality; [21, §4], [37, Theorem 2.11]):

$$\mathbb{H} \text{ normal} \iff L^\infty(G/\mathbb{H}) = L^\infty(\mathbb{H}\backslash G).$$

In that case G/\mathbb{H} is an LCQG in its own right and R_G restricts to $R_{G/\mathbb{H}}$. Lemma 2.5 thus implies

Lemma 2.6 For a closed normal quantum subgroup $\mathbb{H} \trianglelefteq G$ of a closed quantum subgroup we have

$$R_{G/\mathbb{H}} \circ T_l = T_r \circ R_G \quad \text{and} \quad R_{G/\mathbb{H}} \circ T_r = T_l \circ R_G.$$

Recall [8, Proposition] also that for closed normal quantum subgroups we have a Weyl-type “disintegration formula”

$$\varphi_G = \varphi_{G/\mathbb{H}} \circ T_l.$$

(2-3)

Naturally, since left Haar weights are only determined up to positive scaling, the content of this claim is that the right-hand side of (2-3) is left-invariant. Having fixed a left Haar weight φ though, we are making the convention that the corresponding right Haar weight ψ is determined by it: $\psi = \varphi \circ R$. The following observation says that this switch from left to right Haar weights is compatible with the operator-valued weights T.

Lemma 2.7 For a closed, normal quantum subgroup $\mathbb{H} \trianglelefteq G$ of a locally compact quantum group we have

$$\varphi_G = \varphi_{G/\mathbb{H}} \circ T_l \iff \psi_G = \psi_{G/\mathbb{H}} \circ T_r.$$

(2-4)

Proof This follows from the various intertwining properties of the unitary antipode(s), already noted above: suppose we have scaled the left Haar weights so that the left hand equation holds. We then have

$$\psi_G = \varphi_G \circ R_G \quad \text{by convention}$$

$$= \varphi_{G/\mathbb{H}} \circ T_l \circ R_G \quad \text{by assumption}$$

$$= \varphi_{G/\mathbb{H}} \circ R_{G/\mathbb{H}} \circ T_r \quad \text{Lemma 2.6}$$

$$= \psi_{G/\mathbb{H}} \circ T_r \quad \text{again by convention}.$$

This concludes the proof.

Proof of Theorem 2.1 Under the centrality assumption \mathbb{H} will in particular be abelian (in the sense that $L^\infty(\mathbb{H})$ is cocommutative) and hence unimodular, so its left and right Haar weights coincide: $\varphi_\mathbb{H} = \psi_\mathbb{H}$. \mathbb{H} is furthermore normal so that

$$L^\infty(\mathbb{H}\backslash G) = L^\infty(G/\mathbb{H}),$$
and the two operator-valued weights T_l and T_r introduced in (2-1) and (2-2) coincide:

$$T := T_l = T_r.$$

According to Lemma 2.7 we can scale the various Haar weights so that

$$\varphi_{G/H} \circ T = \varphi_G \quad \text{and} \quad \psi_{G/H} \circ T = \psi_G. \quad (2-5)$$

We have

$$\nu_G^{\frac{1}{2}it^2} \delta_G^t = (D\psi_G : D\varphi_G) t \quad [35, \text{Proposition 4.4}] \quad \text{and} \quad [24, \text{Proposition 7.12 (6)}]$$

$$= (D\psi_{G/H} \circ T : D\varphi_G \circ T) t \quad \text{by (2-5)}$$

$$= (D\psi_{G/H} : D\varphi_{G/H}) t \quad [16, \text{Theorem 4.7}]$$

$$= \nu_{G/H}^{\frac{1}{2}it^2} \delta_{G/H}^t \quad \text{analogous to the first equality.}$$

This is already sufficient to draw the desired conclusion

$$\delta_G^t = \delta_{G/H}^t,$$

since given a positive real λ and a positive (possibly unbounded) operator δ, the latter can be recovered from $u_t := \lambda^{it^2} \delta^t$: the logarithm $\log \delta$ (obtained by applying \log to the positive operator δ as usual, via functional calculus [30, Theorem 13.24]) can be obtained [34, §A.3] as

$$i \log \delta \xi = \lim_{t \to 0} \frac{\delta^t - 1}{t} \xi = \lim_{t \to 0} \frac{u_t - 1}{t} \xi$$

for ξ ranging over a dense subspace of the ambient Hilbert space. ■

We also record the following remark, obtained in passing in the course of the above proof.

Corollary 2.8 If $H \leq G$ is a central, closed, normal quantum subgroup of a locally compact quantum group the scaling constants of G and G/H coincide.

Proof The proof of Theorem 2.1 actually shows that

$$\nu_G^{\frac{1}{2}it^2} \delta_G^t = \nu_{G/H}^{\frac{1}{2}it^2} \delta_{G/H}^t, \forall t \in \mathbb{R}$$

and then concludes that the δ factors coincide: $\delta_G^t = \delta_{G/H}^t$. The ν factors must thus also coincide:

$$\nu_G^{\frac{1}{2}it^2} = \nu_{G/H}^{\frac{1}{2}it^2}, \forall t \in \mathbb{R},$$

which of course implies $\nu_G = \nu_{G/H}$. ■

Remark 2.9 By way of bolstering the intuitive plausibility of Theorem 2.1, it might be instructive to consider the classical setup whereby G is a connected Lie group. In that case we know [15, Proposition 2.30] that

$$\delta_G(x) = \Delta_G(x)^{-1} = \det Ad(x),$$

10
where \(Ad : G \to GL(Lie(G)) \) is the adjoint action. Choose a decomposition
\[
Lie(G) = Lie(H) \oplus V
\]
and a compatible basis that will give matrix expressions for adjoint-action operators. The centrality of \(H \) then ensures that
\[
Ad(x) = \begin{pmatrix} I & * \\ 0 & Ad(\pi) \end{pmatrix},
\]
where
\[
G \ni x \mapsto \pi \in G/H.
\]
Plainly, the determinant of (2-6) equals that of its lower right-hand block, hence Theorem 2.1 in this case.

Remark 2.9 also suggests what is needed in order to extend Theorem 2.1 to normal (non-central) closed quantum subgroups. In that case, (2-6) takes the form
\[
Ad(x) = \begin{pmatrix} Ad(x|_H) & * \\ 0 & Ad(\pi) \end{pmatrix},
\]
where \(Ad(x|_H) \) denotes the adjoint action by \(x \) on \(Lie(H) \). Taking determinants we thus have
\[
\delta_G(x) = \det Ad(x) = \det Ad(x|_H) \cdot \det Ad(\pi) = \det Ad(x|_H) \cdot \delta_{G/H}(\pi).
\]
The “correction factor” away from Theorem 2.1 is thus \(\det Ad(x|_H^{-1}) \). Its quantum counterpart, for normal \(H \leq G \), will be a measure of how far apart the two operator-valued weights \(T_l, T_r \) are from each other; it was their coincidence that captured the triviality of the upper left-hand block in (2-6). Measuring this discrepancy between \(T_r \) and \(T_l \) is precisely what the Radon-Nikodym derivative \((DT_r : DT_l)_t \) of [17, Definition 6.2] is designed to do, so that construction features below.

As [35, Proposition 5.5] makes clear, such Radon-Nikodym derivatives ought to be intimately related to how one of the operator-valued weights \(T_{l,r} \) evolves under the modular group of the other. The following result examines this.

Lemma 2.10 For a closed locally compact quantum group \(H \leq G \) we have
\[
T_l \sigma'_{G,t} = \nu_{H}^{t} \sigma'_{G,t} T_l
\]
and similarly,
\[
T_r \sigma_{G,t} = \nu_{H}^{t} \sigma_{G,t} T_r
\]

Proof Note first that the right-hand sides actually make sense: by Corollary 1.8 the modular group \(\sigma'_{G,t} \) leaves the codomain
\[
L^\infty(G/H)_+ \subseteq L^\infty(G)_+
\]
of \(T_l \) invariant, and similarly for \(T_r \). The two arguments being entirely parallel, we only run through the first. Denoting by \(\pi : H \to G \) the embedding:
\[
T_l \sigma'_{G,t} = (id \otimes \varphi_H) \pi_r \sigma'_{G,t} \quad \text{by definition}
\]
\[
= (id \otimes \varphi_H)(\sigma'_{G,t} \otimes \tau_{H,-t}) \pi_r \quad (1-5)
\]
\[
= \nu_{H}^{t} (\sigma'_{G,t} \otimes \varphi_H) \pi_r \quad [24, \text{Proposition 6.8 (3)}]
\]
\[
= \nu_{H}^{t} \sigma'_{G,t} T_l \quad \text{by the definition of } T_l \text{ again}.
\]
This concludes the proof of (2-9).
Note, in passing, that for normal quantum subgroups Weyl disintegration transports over to scaling constants.

Proposition 2.11 For a closed, normal quantum subgroup $H \subseteq G$ of a locally compact quantum group we have

$$\nu_G = \nu_H \nu_{G/H}.$$

Proof Throughout the proof we assume we have fixed Haar weights on G and G/H so that both conditions in (2.4) hold (as that result says we may):

$$\varphi_{G/H} \circ \mathcal{T}_l = \varphi_G \quad \text{and} \quad \psi_{G/H} \circ \mathcal{T}_r = \psi_G.$$

By definition ([24, Proposition 6.8 and Terminology 7.16]), $\nu_{G/H}$ can be expressed by

$$\varphi_{G/H} \circ \sigma'_{G/H,t} = \nu_{G/H} \varphi_{G/H}.$$

Now precompose both sides with \mathcal{T}_l:

$$\nu_{G/H} \varphi_G = \nu_{G/H} \varphi_{G/H} \mathcal{T}_l \quad (2.11)$$

$$= \varphi_{G/H} \circ \sigma'_{G/H,t} \mathcal{T}_l \quad (2.12)$$

$$= \varphi_{G/H} \circ \sigma'_{G,H,t} \mathcal{T}_l \quad [16, \text{Theorem 4.7}]$$

$$= \nu^{-1}_H \varphi_{G/H} \circ \mathcal{T}_l \sigma'_{G,t} \quad (2.9)$$

$$= \nu^{-1}_H \varphi_G \sigma'_{G,t} \quad (2.11) \text{again}$$

$$= \nu^{-1}_H \nu_{G} \varphi_G \quad [24, \text{Proposition 6.8 (3)}].$$

This gives the desired result $\nu_{G/H} = \nu^{-1}_H \nu_G$. □

In light of [35, Proposition 5.5], Lemma 2.10 is strongly suggestive of Theorem 2.12 below. In the statement, we refer to the modular group σ^T_t of an operator-valued weight T on $L^\infty(G)$; recall that for an operator-valued weight $T : M \to \hat{N}$ that modular group is

$$\sigma^T_t := \sigma_t^\theta \circ T |_{N^\circ}, \theta \text{ any n.s.f. weight on } N.$$

this is [17, Definition 6.2 (1)], relying on the fact that by [17, Proposition 6.1 (1)] the definition does not depend on θ.

Theorem 2.12 Let $H \subseteq G$ be a closed, normal locally compact quantum subgroup. There is a strictly positive element $\delta = \delta_{G/H}$ affiliated with the relative commutant

$$L^\infty(G/H)^c = L^\infty(G) \cap L^\infty(G/H)'$$

such that

$$(D\mathcal{T}_r : D\mathcal{T}_l)_t = \nu_H \delta_{G/H}^t$$

(2.13)

and

$$\sigma^T_{G,s}(\delta^t) = \nu_H \delta^t, \forall s, t \in \mathbb{R}.$$

(2.14)
Proof By [17, Definition 6.2], the Radon-Nikodym derivative \((DT^t : DT)_t\) between two operator-valued weights is simply \((D\omega T^t : D\omega T)_t\) for any n.s.f. weight \(\omega\) (since that derivative does not depend on \(\omega\) [17, Proposition 6.1]). We are thus free to choose the weight conveniently:

\[
(DT_r : DT_l)_t = (D\varphi_{G/H} \circ T_r : D\varphi_{G/H} \circ T_l)_t, \quad t \in \mathbb{R}.
\]

Assuming (2-11) (as we will), the right-hand weight is nothing but \(\varphi_G\), and its modular group is \(\sigma_{G,t}\). Under that group, the other weight evolves as follows:

\[
\varphi_{G/H} \circ T_r \sigma_{G,t} = \nu^{-t}_{H} \varphi_{G/H} \circ \sigma_{G,t} T_r \quad (2-10)
\]

\[
= \nu^{-t}_{H} \varphi_{G/H} \circ \varphi_{G/H} \circ T_r \quad [16, \text{Theorem 4.7}]
\]

\[
= \nu^{-t}_{H} \varphi_{G/H} \circ T_r \quad (\varphi_{G/H} \text{ invariant under its own modular group}).
\]

Now [35, Proposition 5.5, (ii) \(\Rightarrow\) (iv)] shows that

\[
(D\varphi_{G/H} \circ T_r : D\varphi_{G/H} \circ T_l)_t = \nu^{\frac{1}{2}u^2 \delta_{it}},
\]

i.e. (2-13). That these elements are actually in the relative commutant of \(L^\infty(G/H)\) is a general feature of cocycle derivatives between operator-valued weights ([17, Proposition 6.1] again).

As for (2-14), it follows from (2-13) and the cocycle property of the Radon-Nikodym derivatives [17, Proposition 6.3 (2)]:

\[
(DT_r : DT_l)_{s+t} = (DT_r : DT_l)_s \sigma_T^T (DT_r : DT_l)_t.
\]

We now have the object, alluded to in the discussion following Remark 2.9, that captures the discrepancy between \(T_r\) and \(T_l\):

Definition 2.13 Let \(H \trianglelefteq G\) be a closed, normal, locally compact quantum subgroup.

The **relative modular element** \(\delta_{G,H}\) is the positive element affiliated with

\[
L^\infty(G/H)^c = L^\infty(G) \cap L^\infty(G/H)' \quad (\text{provided by Theorem 2.12, determined by})
\]

\[
(DT_r : DT_l)_t = \nu^{\frac{1}{2}u^2 \delta_{it}}_{H}.
\]

We are now ready to generalize Theorem 2.1 to non-central quantum subgroups and provide the quantum counterpart to (2-8).

Theorem 2.14 For a closed, normal, locally compact quantum subgroup \(H \trianglelefteq G\) we have

\[
\delta_G = \delta_{G,H} \delta_{G/H}. \quad (2-16)
\]

Proof Since

- \(\delta_{G/H}\), which is affiliated with \(L^\infty(G/H)\);
- and \(\delta_{G,H}\), affiliated with the relative commutant \(L^\infty(G/H)^c\) by Theorem 2.12,
the two strongly commute \[2, \S 11.5\] in the sense that the spectral projections of one commute with those of the other. The strong product of \[34, \text{discussion following Definition IX.2.11}\] thus makes sense and is again a positive (unbounded, typically) operator; this is the meaning of the right-hand side of (2-16).

On the one hand, we have

\[(D\psi_G : D\varphi_G)_t = \nu_G^{\frac{1}{2}it^2} \delta_G^t \]

(2-17)

by \[35, \text{Propositoin 5.5}\] and \[24, \text{Proposition 6.8 (3)}\]. On the other,

\[(D\psi_G : D\varphi_G)_t = (D\psi_G/H \circ \mathcal{T}_r : D\varphi_G/H \circ \mathcal{T}_l)_t \quad \text{Lemma 2.7} \]

\[(= (DT_r : DT_l)_t(D\psi_G/H \circ \mathcal{T}_r : D\varphi_G/H \circ \mathcal{T}_l)_t) \quad \text{[34, Theorem VIII.3.2]} \]

\[(= (DT_r : DT_l)_t(D\psi_G/H : D\varphi_G/H)_t) \quad \text{[16, Theorem 4.7 (2)]} \]

\[= \nu_G^{\frac{1}{2}it^2} \delta_G^t \]

(2-15)

\[= \nu_G^{\frac{1}{2}it^2} \delta_G^t G \oplus \nu_G^{\frac{1}{2}it^2} \delta_G^t H \quad \text{as in (2-17), applied to } G/H \]

\[= \nu_G^{\frac{1}{2}it^2} \delta_G^t G \oplus \nu_G^{\frac{1}{2}it^2} \delta_G^t H \quad \text{Proposition 2.11.} \]

A comparison with (2-17) delivers the conclusion.

\vspace{1cm}

Remark 2.15 Proposition 2.11 was not, strictly speaking, necessary in the proof of Theorem 2.14, for we could have reversed the implication as in the proof of Theorem 2.1: upon obtaining the equality

\[\nu_G^{\frac{1}{2}it^2} \delta_G^t = \nu_H^{\frac{1}{2}it^2} \nu_G^{\frac{1}{2}it^2} \delta_G^t G \oplus \nu_G^{\frac{1}{2}it^2} \delta_G^t H \]

the quadratic and linear factors automatically separate to give

\[\nu_G^{\frac{1}{2}it^2} = \nu_H^{\frac{1}{2}it^2} \nu_G^{\frac{1}{2}it^2} \nu_G^{\frac{1}{2}it^2} G \oplus \nu_G^{\frac{1}{2}it^2} \delta_G^t H \]

(i.e. Proposition 2.11) and the target equation (2-16).

It will be convenient, for future reference, to collect a few assorted general remarks on relative modular elements.

Proposition 2.16 Let \[\iota : H \triangleleft G\] be a closed, normal locally compact quantum subgroup and \[\delta = \delta_G \oplus H\] the relative modular element of Definition 2.13. The following assertions hold.

1. \[\Delta_G(\delta) = \delta \otimes \delta.\]

2. \[\tau_{G, t}(\delta) = \delta \text{ and } R_G(\delta) = \delta^{-1}.\]

3. \[L^\infty(G) \ni \delta \xrightarrow{\iota^*} \delta \otimes \delta_H \oplus \delta \in' L^\infty(G) \otimes L^\infty(H), \]

where primed belonging symbols denote affiliation, per Notation 1.4.

4. similarly,

\[L^\infty(G) \ni \delta \xrightarrow{\iota^*} \delta_H \otimes G \in' L^\infty(H) \otimes L^\infty(G). \]

(2-18)

(2-19)
\[
\begin{align*}
\sigma_{G,t}^T(\delta) &= \sigma_{G,t}^T(\delta) = \nu_G^t \delta. \tag{2-20} \\
\sigma_{G,t}^T &= \delta^i t \sigma_{G,t}^T(\cdot) \delta^{-i t}. \tag{2-21}
\end{align*}
\]

Proof Item (1) follows from

- the analogous statement ([24, Proposition 7.12 (1)]) for the plain modular elements \(\delta_G \) and \(\delta_{G/H} \), which in the context of Theorem 2.14 strongly commute;
- together with (2-16);
- and the fact that the embedding

\[
L^\infty(G/H) \subseteq L^\infty(G)
\]

intertwines the comultiplications \(\Delta_{G/H} \) and \(\Delta_G \).

The argument is very similar for part (2): analogous statements hold for \(\delta_G \) and \(\delta_{G/H} \) [24, Proposition 7.12 (2)], the inclusion (2-22) intertwines both scaling groups and unitary antipodes [1, Proposition A.5], and we can again apply (2-16).

To obtain (2-18), note that

- \(\iota_r(\delta_G) = \delta_G \otimes \delta_H \) [5, Theorem 3.4, Corollary 3.9];
- \(\iota_r(\delta_{G/H}) = \delta_G \otimes 1 \) because \(\delta_{G/H} \) is affiliated with (1-3);
- hence the conclusion, per (2-16).

(2-19) is a consequence of (2-18), Lemma 1.6 and the fact that unitary antipodes turn all modular elements (absolute or relative) into their inverses ([24, Proposition 7.12 (2)] and part (2) of this proposition).

The last equality in (2-20) is nothing but (2-14), whereas the first equality will follow once we have (2-21); it thus remains to prove the latter. For that purpose, note that for

\[
a \in L^\infty(G/H)^c
\]

we have

\[
\begin{align*}
\sigma_{G,t}^T(a) &= \sigma_{G,t}^T(a) \quad \text{by [17, Definition 6.2]} \\
&= \sigma_{G,t}^T(a) \quad (2-11) \tag{2-21} \\
&= \delta_G^i t \sigma_{G,t}^T(a) \delta_{G/H}^{-i t} \quad [24, Proposition 7.12 (5)] \\
&= \delta_G^i t \sigma_{G,H}^{\delta_G^T}(a) \delta_{G/H}^{-i t} \quad (2-11) \text{ again} \\
&= \delta_G^i t \sigma_{G,t}^T(a) \delta_{G/H}^{-i t} \quad \text{once more [17, Definition 6.2]} \\
&= \delta_G^i t \sigma_{G,H}^{\delta_G^T}(a) \delta_{G/H}^{-i t} \delta^{-i t} \quad \text{Theorem 2.14} \\
&= \delta^i t \sigma_{G,t}^T(a) \delta^{-i t} \quad \text{because the middle factor is in the commutant}\ L^\infty(G/H)^c.
\end{align*}
\]

This concludes the proof of (6) and the result as a whole. ■
The block decomposition (2-7) suggests that Theorem 2.1 ought to generalize past central subgroups, to the case when the upper left-hand block has trivial determinant. We isolate that situation.

Proposition 2.17 For a closed, normal locally compact quantum subgroup \(\iota : \mathbb{H} \subseteq G \) the two operator-valued weights

\[
T_l, T_r : L^\infty(G) \to L^\infty(G/\mathbb{H})_+ = L^\infty(\mathbb{H}\backslash G)_+
\]

coincide if and only if the relative modular element \(\delta_{G \mathbb{H}} \) of Definition 2.13 is 1.

Furthermore, in that case \(\mathbb{H} \) is unimodular.

Proof The two operator-valued weights coincide precisely when \((DT_r : DT_l)_t = 1 \) [17, Theorem 6.5]. That this is equivalent to

\[
\delta^t_{G \mathbb{H}} = 1, \quad \forall t \in \mathbb{R} \iff \delta = 1
\]

then follows from (2-13) and (2-14).

As for the unimodularity of \(\mathbb{H} \), it too follows from \(\delta_{G \mathbb{H}} = 1 \) by (2-18).

Definition 2.18 Let \(\mathbb{H} \subseteq G \) be a closed, normal locally compact quantum subgroup. We say that the conjugation (or adjoint) action of \(G \) on \(\mathbb{H} \) is measure-preserving if the equivalent conditions of Proposition 2.17 hold.

Alternative phrasing: \(G \) acts measure-preservingly (by conjugation).

As hinted above, we have the following immediate consequence of Theorem 2.14 (and Definition 2.18):

Corollary 2.19 Let \(\mathbb{H} \subseteq G \) be a closed normal quantum subgroup of an LCQG.

\(G \) acts measure-preservingly on \(\mathbb{H} \) if and only if \(G \) and \(G/\mathbb{H} \) have the same modular element.

Remark 2.20 Once more, the terminology of Definition 2.18 is meant to convey the analogy to the classical case. To see this, let \(\mathbb{H} \subseteq G \) be a closed normal subgroup of an ordinary locally compact group and denote left Haar measures by \(\mu \) and as before, the classical modular function \(\Delta \) by \(\delta(\cdot^{-1}) \).

The disintegration formula (2-3) and the relation

\[
d\mu_G(y \cdot y^{-1}) = \delta_G(y)d\mu_G, \quad y \in G
\]

(and its analogue for \(G/\mathbb{H} \)) easily show that

\[
d\mu_{\mathbb{H}}(y \cdot y^{-1}) = \frac{\delta_G(y)}{\delta_{G/\mathbb{H}}(y)}d\mu_{\mathbb{H}} = \delta_{G \mathbb{H}}(y)d\mu_{\mathbb{H}} \quad (2-16).
\]

This delivers the classical version of Corollary 2.19, with the phrase ‘acts measure-preservingly’ being assigned its straightforward meaning.

3 Modular elements as morphisms

Classically, the inverse modular function \(\delta_G \) is a continuous morphism \(G \to (\mathbb{R}_{>0}, \cdot) \). This is also true in the quantum setting, for \(\delta_G, \delta_{G \mathbb{H}}, \) and more broadly. Echoes of these remark can be seen in [5, Remark 5.2] or the proof of [9, Theorem 6.1], though not quite stated as such. We outline the matter here with some elaboration for future reference, including one application appearing below.

Following the terminology of [24, §7], and by analogy with the standard phrase in use in the theory of Hopf algebras (e.g. [28, Definition 1.3.4]):
Definition 3.1 Let G be an LCQG. A strictly positive element δ affiliated with $L^\infty(G)$ or $C_0(G)$ or $C^*_0(G)$ is group-like if $\Delta(\delta) = \delta \otimes \delta$.

In terms of bounded operators only, this is equivalent to
$$\Delta(\delta^it) = \delta^it \otimes \delta^it, \forall t \in \mathbb{R}.$$ ♦

The following observation merely collects together a number of ready-made results.

Proposition 3.2 Let G be a locally compact quantum group. The following sets of objects are in mutual bijection

(a) morphisms $G \to (\mathbb{R}, +)$;

(b) strictly positive group-like elements affiliated with $C^*_0(G)$;

(c) strictly positive group-like elements affiliated with $C_0(G)$;

(d) strictly positive group-like elements affiliated with $L^\infty(G)$.

Proof Recall Notation 1.4: ε' denotes the affiliation relation. C^* morphisms extend to affiliated operators [38, Theorem 1.2]; we will use this implicitly in the sequel.

(a) \leftrightarrow (b). There is an comultiplication-preserving isomorphism
$$C_0(\mathbb{R}) \ni \exp \overset{\varepsilon'}{\mapsto} \text{id}_{\mathbb{R}_{>0}} \in' C_0(\mathbb{R}_{>0})$$ (dual to the usual exponential identification of the groups $(\mathbb{R}, +)$ and $(\mathbb{R}_{>0}, \cdot)$).

Because δ is strictly positive there is also a unique morphism $C_0(\mathbb{R}_{>0}) \rightsquigarrow C^*_0(\mathbb{G})$ sending $\text{id}_{\mathbb{R}_{>0}}$ to δ [22, Proposition 6.5]. Composing with (3-1) this gives, for every strictly positive group-like $\delta \in' C^*_0(\mathbb{G})$, a unique morphism
$$\pi^u : C_0(\mathbb{R}) \rightsquigarrow C^*_0(\mathbb{G})$$

sending $\exp \mapsto \delta$ and intertwining the comultiplications $\Delta_\mathbb{R}$ and Δ_G in the sense that
$$\Delta_G \pi^u = (\pi^u \otimes \pi^u) \Delta_\mathbb{R}.$$ Such a map π^u is one of the equivalent ways of specifying a quantum-group morphism $G \to \mathbb{R}$ [27, Theorem 4.8], so we are done.

(b) \leftrightarrow (c). Strictly positive group-likes affiliated with $C^*_0(\mathbb{G})$ project to such along the surjection $C^*_0(\mathbb{G}) \twoheadrightarrow C_0(\mathbb{G})$. Conversely, they lift uniquely along the same map as explained in the proof of [23, Proposition 10.1].

(c) \leftrightarrow (d). One direction is clear, $C_0(\mathbb{G})$ being contained in $L^\infty(\mathbb{G})$ via a coproduct-preserving inclusion. Conversely, strictly positive group-likes affiliated with $L^\infty(\mathbb{G})$ are in fact C^*-affiliated with $C_0(\mathbb{G})$, as in the proof of [24, Proposition 7.10].

This concludes the proof. ■

Notation 3.3 For a strictly positive group-like δ affiliated with $L^\infty(\mathbb{G})$ or $C_0(\mathbb{G})$ or $C^*_0(\mathbb{G})$ we write δ for the corresponding morphism $G \to \mathbb{R}$ attached to it via Proposition 3.2. ♦

Corollary 3.4 Let G be an LCQG. Strictly positive group-like elements $\delta \in' C_0(\mathbb{G})$ are invariant under the scaling group and satisfy $R_G(\delta) = \delta^{-1}$. ♦
We know from Proposition 3.2 that δ is the image of the canonical group-like $\exp \in' C_0(\mathbb{R})$ through a comultiplication-intertwining morphism

$$C_0(\mathbb{R}) \rightarrow C_0(G).$$

Such morphisms also intertwine the scaling groups and unitary antipodes [23, Remark 12.1], so it suffices to verify the claim for the universal strictly positive group-like

$$\delta := \exp \in' C_0(\mathbb{R});$$

that verification is immediate, hence the conclusion.

$\mathbf{C^*}$-affiliated elements have an accompanying notion of spectrum [38, equation (1.20)], which by [38, discussion following Theorem 1.6] specializes back to the usual concept for concrete unbounded, normal operators on Hilbert spaces (which is the situation we are concerned with here).

For positive group-likes the spectrum has some very pleasant properties.

Proposition 3.5 For an LCQG G the strictly positive portion

$$\text{Sp}_{>0}(\delta) := \text{Sp}(\delta) \setminus \{0\}$$

of the spectrum of a strictly positive group-like $\delta \in' C_0(G)$ is a closed subgroup of the multiplicative group $(\mathbb{R}_{>0}, \cdot)$.

Proof The spectrum of a positive (possibly unbounded) operator is a closed subset of $\mathbb{R}_{\geq 0}$, hence the (topological) closure claim. It remains to argue that $\text{Sp}_{>0}(\delta)$ is closed under multiplication and inversion.

It is a simple application of the spectral theorem (e.g. [30, Theorem 13.30]) to show that for a strictly positive $T \in' B(\mathcal{H})$

- the positive spectrum $\text{Sp}_{>0}(T^{-1})$ is

$$\text{Sp}_{>0}(T)^{-1} := \{t^{-1} \mid t \in \text{Sp}_{>0}(T)\}$$

- and similarly, the spectrum $\text{Sp}(T \otimes T)$ is the closure of

$$\{st \mid s, t \in \text{Sp}(T)\}.$$

Since

- we have a morphism $\Delta_G \in \text{Mor}(C_0(G), C_0(G)^{\otimes 2})$ sending δ to $\delta \otimes \delta$;

- and a morphism R_G sending $\delta \mapsto \delta^{-1}$ by Corollary 3.4 (R_G is anti-multiplicative, but this makes no difference here);

- for a morphism $\pi \in \text{Mor}(A, B)$ the spectrum of an image $\pi(T)$ is contained in that of T for any A-affiliated T [38, equation (1.21)],

the conclusion follows.
Let $\delta \in \ell' C_0(G)$ be a strictly positive group-like. The closed subgroup
\[\text{Sp}(\delta)_{>0} \leq (\mathbb{R}_{>0}, \cdot) \] (3-2)
of Proposition 3.5 has an alternative interpretation as a group-theoretic invariant attached to the morphism $\hat{\delta} : G \to \mathbb{R}$ in Notation 3.3. Every quantum-group morphism has a closed image, introduced in [19, Definition 4.2]; we paraphrase that discussion as follows.

Definition 3.6 Let $\pi : \mathbb{H} \to G$ be a morphism of LCQGs. The closed image $\text{im} \pi$ of π is the smallest closed quantum subgroup $\iota : \text{im} \pi \leq G$ for which π admits a factorization
\[\text{H} \xrightarrow{\pi} \text{im} \pi \xrightarrow{\iota} G. \]

Theorem 3.7 Let G be an LCQG, $\delta \in \ell' C_0(G)$ a strictly positive group-like, and $\hat{\delta} : G \to \mathbb{R}$ the morphism associated to it as in Notation 3.3.

The closed image $\overline{\text{im} \delta} \leq (\mathbb{R}, +)$ is precisely $\log \text{Sp}_{>0}(\delta)$, i.e. the image of the closed subgroup (3-2) under the logarithm isomorphism $(\mathbb{R}_{>0}, \cdot) \cong (\mathbb{R}, +)$.

Proof Since δ is strictly positive, its functional calculus allows the application of the logarithm to produce a self-adjoint element $\log \delta$ [22, Definition 7.16]. The same goes for $\log \exp = \text{id}_\mathbb{R} \in \ell' C_0(\mathbb{R})$, and since $\hat{\delta}$ intertwines these logarithm operations [22, Proposition 6.17] and by definition sends $\exp \mapsto \delta$, we have
\[\hat{\delta}(\text{id}_\mathbb{R}) = \log \delta. \]
In short, then, $\hat{\delta}$ is the unique [22, Proposition 6.5] morphism sending $\text{id}_\mathbb{R}$ to $\log \delta$.

Write
\[\mathbb{H} := \log \text{Sp}_{>0}(\delta) \leq \mathbb{R}. \]
[22, Result 6.16] says that \mathbb{H} is precisely the spectrum of $\log \delta$, so that by [22, Theorem 3.4] $\hat{\delta}$ factors as
\[C_0(\mathbb{R}) \xrightarrow{\delta} C_0(\mathbb{H}) \xrightarrow{\hat{\delta}} M(C^*_0(G)), \]
where the top left arrow is the obvious restriction map and the top right map is one-to-one. That injectivity in particular means that there is no further factorization through any smaller quotients of $C_0(\mathbb{R})$, meaning precisely what was sought: $\mathbb{H} \leq \mathbb{R}$ the smallest close subgroup factoring $\hat{\delta}$. ■

The application alluded to at the beginning of the section has to do with property (T) for LCQGs; this is a quantum version of the classical familiar concept (e.g. [3, Definition 1.1.3]). Early references in the quantum setting are [14, Definition 3.1] for discrete quantum groups and, say, [7, Definition 3.1] and [10, §6] for the general concept. We also refer to [12, 9] (which will be cited more heavily shortly) and their sources for further information. In brief ([7, Definitions 2.3 and 3.1]):
Definition 3.8 Let G be an LCQG.

(1) Let $U \in M(C_0(G) \otimes K(H))$ be a unitary G-representation in the sense, say, of [12, Definition 2.1]. A net $\zeta_i \in H$ of unit vectors is almost invariant (also: constitutes an almost-invariant vector) if

$$\|U(\eta \otimes \zeta_i) - \eta \otimes \zeta_i\| \to 0$$

for all $\eta \in L^2(G)$.

(2) Similarly, having fixed U again, a vector $\zeta \in H$ is invariant if

$$U(\eta \otimes \zeta) = \eta \otimes \zeta, \ \forall \eta \in L^2(G).$$

(3) G has property (T) if every unitary representation that has almost-invariant vectors in fact has non-zero invariant vectors.

Theorem 3.9 below is a slight generalization of the fact that property-(T) quantum groups are unimodular. This latter result has appeared before a number of times: [14, Proposition 3.2] proves the claim for discrete quantum groups, [6, Theorem 6.3] handles second-countable locally compact quantum groups, and [9, Theorem 6.1] proves the general result for arbitrary property-(T) LCQGs. These all deal with the specific group-like element δ_G; among them, the first and third both bear similarities to the argument below.

Theorem 3.9 For an LCQG G with property (T) the only strictly positive group-like $\delta \in' C_0(G)$ is 1.

Proof Consider $\delta \in' C_0(G)$ as in the statement. Proposition 3.2 and Theorem 3.7 provide us with a morphism $G \to \mathbb{R}$ whose closed image is

$$\mathbb{H} := \{\log t | 0 \neq t \in \text{Sp}(\delta)\} \leq (\mathbb{R}, +).$$

But the closed image of the resulting morphism $G \to \mathbb{H}$ is then all of \mathbb{H} essentially by definition. It follows that $G \to \mathbb{H}$ has dense image in the sense of [12, Definition 2.8] (see [12, discussion following the statement of Theorem A.1]), and hence \mathbb{H} also has property (T) by [12, Theorem 5.7].

Being classical abelian and property-(T), \mathbb{H} must be compact [3, Theorem 1.1.6] and hence trivial because it is a subgroup of $(\mathbb{R}, +)$. We are now done: the spectrum of the strictly-positive operator δ is $\{1\}$, so $\delta = 1$. ■

References

[1] Saad Baaj and Stefaan Vaes. Double crossed products of locally compact quantum groups. *J. Inst. Math. Jussieu*, 4(1):135–173, 2005.

[2] Asim O. Barut and Ryszard Rączka. *Theory of group representations and applications*. World Scientific Publishing Co., Singapore, second edition, 1986.

[3] Bachir Bekka, Pierre de la Harpe, and Alain Valette. *Kazhdan’s property (T)*, volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.

[4] B. Blackadar. *Operator algebras*, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Theory of C^*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.
[5] Michael Brannan, Alexandru Chirvasitu, and Ami Viselter. Actions, quotients and lattices of locally compact quantum groups. *Doc. Math.*, 25:2553–2582, 2020.

[6] Michael Brannan and David Kerr. Quantum groups, property (T), and weak mixing. *Comm. Math. Phys.*, 360(3):1043–1059, 2018.

[7] Xiao Chen and Chi-Keung Ng. Property T for locally compact quantum groups. *Internat. J. Math.*, 26(3):1550024, 13, 2015.

[8] Alexandru Chirvasitu, Souleiman Omar Hoche, and Paweł Kasprzak. Fundamental isomorphism theorems for quantum groups. *Expo. Math.*, 35(4):390–442, 2017.

[9] Biswarup Das, Matthew Daws, and Pekka Salmi. Admissibility conjecture and Kazhdan’s property (T) for quantum groups. *J. Funct. Anal.*, 276(11):3484–3510, 2019.

[10] Matthew Daws, Pierre Fima, Adam Skalski, and Stuart White. The Haagerup property for locally compact quantum groups. *J. Reine Angew. Math.*, 711:189–229, 2016.

[11] Matthew Daws, Paweł Kasprzak, Adam Skalski, and Piotr M. Sołtan. Closed quantum subgroups of locally compact quantum groups. *Adv. Math.*, 231(6):3473–3501, 2012.

[12] Matthew Daws, Adam Skalski, and Ami Viselter. Around property (T) for quantum groups. *Comm. Math. Phys.*, 353(1):69–118, 2017.

[13] Anton Deitmar and Siegfried Echterhoff. *Principles of harmonic analysis*. Universitext. Springer, Cham, second edition, 2014.

[14] Pierre Fima. Kazhdan’s property T for discrete quantum groups. *Internat. J. Math.*, 21(1):47–65, 2010.

[15] Gerald B. Folland. *A course in abstract harmonic analysis*. Textbooks in Mathematics. CRC Press, Boca Raton, FL, second edition, 2016.

[16] Uffe Haagerup. Operator-valued weights in von Neumann algebras. I. *J. Functional Analysis*, 32(2):175–206, 1979.

[17] Uffe Haagerup. Operator-valued weights in von Neumann algebras. II. *J. Functional Analysis*, 33(3):339–361, 1979.

[18] Roger E. Howe. The Fourier transform for nilpotent locally compact groups. I. *Pacific J. Math.*, 73(2):307–327, 1977.

[19] Paweł Kasprzak, Fatemeh Khosravi, and Piotr M. Sołtan. Integrable actions and quantum subgroups. *Int. Math. Res. Not. IMRN*, (10):3224–3254, 2018.

[20] Paweł Kasprzak, Adam Skalski, and Piotr Mikolaj Sołtan. The canonical central exact sequence for locally compact quantum groups. *Math. Nachr.*, 290(8-9):1303–1316, 2017.

[21] Paweł Kasprzak and Piotr M. Sołtan. Quantum groups with projection and extensions of locally compact quantum groups. *J. Noncommut. Geom.*, 14(1):105–123, 2020.

[22] Johan Kustermans. The functional calculus for regular operators in hilbert c^*-modules revisited, 1997. http://arxiv.org/abs/funct-an/9706007v1.
[23] Johan Kustermans. Locally compact quantum groups in the universal setting. *Internat. J. Math.*, 12(3):289–338, 2001.

[24] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups. *Ann. Sci. École Norm. Sup. (4)*, 33(6):837–934, 2000.

[25] Johan Kustermans and Stefaan Vaes. Locally compact quantum groups in the von Neumann algebraic setting. *Math. Scand.*, 92(1):68–92, 2003.

[26] T. Masuda, Y. Nakagami, and S. L. Woronowicz. A C^*-algebraic framework for quantum groups. *Internat. J. Math.*, 14(9):903–1001, 2003.

[27] Ralf Meyer, Sutanu Roy, and Stanisław Lech Woronowicz. Homomorphisms of quantum groups. *Münster J. Math.*, 5:1–24, 2012.

[28] S. Montgomery. *Hopf algebras and their actions on rings*, volume 82 of *CBMS Regional Conference Series in Mathematics*. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.

[29] Gert K. Pedersen. *C^*-algebras and their automorphism groups*. Pure and Applied Mathematics (Amsterdam). Academic Press, London, 2018. Second edition of [MR0548006], Edited and with a preface by Søren Eilers and Dorte Olesen.

[30] Walter Rudin. *Functional analysis*. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.

[31] P. M. Sołtan and S. L. Woronowicz. A remark on manageable multiplicative unitaries. *Lett. Math. Phys.*, 57(3):239–252, 2001.

[32] Piotr M. Sołtan and Stanisław L. Woronowicz. From multiplicative unitaries to quantum groups. II. *J. Funct. Anal.*, 252(1):42–67, 2007.

[33] Şerban Strătilă. *Modular theory in operator algebras*. Editura Academiei Republicii Socialiste România, Bucharest; Abacus Press, Tunbridge Wells, 1981. Translated from the Romanian by the author.

[34] M. Takesaki. *Theory of operator algebras. II*, volume 125 of *Encyclopaedia of Mathematical Sciences*. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6.

[35] Stefaan Vaes. A Radon-Nikodym theorem for von Neumann algebras. *J. Operator Theory*, 46(3, suppl.):477–489, 2001.

[36] Stefaan Vaes. A new approach to induction and imprimitivity results. *J. Funct. Anal.*, 229(2):317–374, 2005.

[37] Stefaan Vaes and Leonid Vainerman. On low-dimensional locally compact quantum groups. In *Locally compact quantum groups and groupoids (Strasbourg, 2002)*, volume 2 of *IRMA Lect. Math. Theor. Phys*., pages 127–187. de Gruyter, Berlin, 2003.

[38] S. L. Woronowicz. Unbounded elements affiliated with C^*-algebras and noncompact quantum groups. *Comm. Math. Phys.*, 136(2):399–432, 1991.
[39] S. L. Woronowicz. From multiplicative unitaries to quantum groups. *Internat. J. Math.*, 7(1):127–149, 1996.

Department of Mathematics, University at Buffalo, Buffalo, NY 14260-2900, USA
E-mail address: achirvas@buffalo.edu