Recovering Preferences from Finite Data

Christopher Chambers1, Federico Echenique2, Nicolas Lambert3

1Georgetown University \hfill 2California Institute of Technology \hfill 3MIT

NYU Theory Workshop

October 7th 2020
This paper

- In a *revealed preference* model: When can we uniquely recover the data-generating preference as the dataset grows large?
- In an *statistical model*: Propose a consistent estimator.
- Unifying framework for both.

Applications:
- Expected utility preferences.
- Intertemporal consumption with discounted utility.
- Choice on commodity bundles.
- Choice over menus.
- Choice over dated rewards.
- ...
Model

Alice (an experimenter)

Bob (a subject)
Model

- Alice presents Bob with choice problems:

 “Hey Bob would you like x or y?”

 x vs. y

- Bob chooses one alternative.
- Rinse and repeat \rightarrow dataset of n choices.
Model

- Alternatives: A topological space X.
- Preference: A complete and continuous binary relation \succeq over X.
- \mathcal{P} a set of preferences.

A pair (X, \mathcal{P}) is a preference environment.
Examples

Expected utility preferences:

- There are \(d \) prizes.
- \(X \) is the set of lotteries over the prizes, \(\Delta^{d-1} \subset \mathbb{R}^d \).
- An EU preference \(\succeq \) is defined by \(v \in \mathbb{R}^d \) such that \(p \succeq p' \) iff \(v \cdot p \geq v \cdot p' \).
- \(\mathcal{P} \) is set of all the EU preferences.

Preferences on commodity bundles:

- There are \(d \) commodities.
- \(X \equiv \mathbb{R}_+^d \), the \(i \)-th entry of a vector is quantity consumed of \(i \)-th good.
- \(\mathcal{P} \) is set of all monotone preferences on \(X \).
Experiment

Alice wants to recover Bob’s preference from his choices.

- Binary choice problem: \(\{x, y\} \subset X \).
- Bob is asked to choose \(x \) or \(y \).
 Behavior encoded by a choice function \(c(\{x, y\}) \in \{x, y\} \).
- Partial observability: indifference is not observable.
Alice gets finite dataset.

- Experiment of length n: $\Sigma_n = \{ B_1, \ldots, B_n \}$ with $B_k = \{ x_k, y_k \}$.
- Set of growing experiments: $\{ \Sigma_n \} = \{ \Sigma_1, \Sigma_2, \ldots \}$ with $\Sigma_n \subset \Sigma_{n+1}$.
Literature

Afriat’s theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011)

Consistency: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)
What’s new?

Unified framework: rev. pref. and econometrics.
What’s new?

- Binary choice
- Finite data
- “Consistency” – Large sample theory
- Unified framework: RP and econometrics.
OK, so far:

- (X, \mathcal{P}) preference env.
- c encodes choice
- Σ_n seq. of experiments
Rationalization/ Estimation

- Revealed Preference: A preference \succeq rationalizes the observed choices on Σ_n if $\{x, y\} \in \Sigma_n$, $c(\{x, y\}) \succeq x$ and $c(\{x, y\}) \succeq y$.

- Statistical model: preference estimate ...
Topology on preferences

Choice of topology: closed convergence topology.

- Standard topology on preferences (Kannai, 1970; Mertens (1970); Hildenbrand, 1970).

- $\succeq_n \to \succeq$ when:
 1. For all $(x, y) \in \succeq$, there exists a seq. $(x_n, y_n) \in \succ_n$ that converges to (x, y).
 2. If a subsequence $(x_{n_k}, y_{n_k}) \in \succeq_{n_k}$ converges, the limit belongs to \succeq.

- If X is compact and metrizable, same as convergence under the Hausdorff metric.

- X Euclidean and \mathcal{B} the strict parts of cont. weak orders. Then it’s the smallest topology for which the set

$$\{(x, y, \succ) : x \in X, y \in X, \succ \in \mathcal{B} \text{ and } x \succ y\}$$

is open.
Examples

Set of alternatives $X = [0, 1]$.

- Left: the subject prefers x to y iff $x \geq y$.
- Right: the subject is completely indifferent.
n=1
n=2
n=4
n=16
n=32
Moral

Discipline matters.
Non-closed \(\mathcal{P} \)
Non-closed \mathcal{P}
Moral

\(\mathcal{P} \) must be closed, and some standard models are \emph{not} closed.
Assumption on the set of alternatives

Assumption 1: X is a locally compact, separable, and completely metrizable space.
Topology on preferences

Lemma

The set of all continuous binary relations on X is a compact metrizable space.
Assumption on the class of preferences

\(\succeq \) is locally strict if

\[x \succeq y \implies \text{ in every nbd. of } (x, y), \text{ there exists } (x', y') \text{ with } x' \succeq y' \]

(Border and Segal, 1994).
Assumption 2 : \mathcal{P} is a closed set of locally strict preferences.
Assumption on the set of experiments

A set of experiments \(\{\Sigma_n\} \), with \(\Sigma_n = \{B_1, \ldots, B_n\} \), is exhaustive when:

1. \(\bigcup_{k=1}^{\infty} B_k \) is dense in \(X \).
2. For all \(x, y \in \bigcup_{k=1}^{\infty} B_k \) with \(x \neq y \), there exists \(k \) such that \(B_k = \{x, y\} \).

Assumption 3 : \(\{\Sigma_n\} \) is an exhaustive growing set of experiments.
To sum up:

Assumption 1: X is a locally compact, separable, and completely metrizable space.

Assumption 2: \mathcal{P} is a closed set of locally strict preferences.

Assumption 3: $\{\Sigma_n\}$ is an exhaustive growing set of experiments.
First main result

Theorem 1

Suppose c is an arbitrary choice function.
When Assumptions (1), (2) and (3) are satisfied:

1. If, for every n, the preference $\succeq_n \in \mathcal{P}$ rationalizes the observed choices on Σ_n, then there exists a preference $\succeq^* \in \mathcal{P}$ such that $\succeq_n \rightarrow \succeq^*$.

2. The limiting preference is unique: if, for every n, $\succeq'_n \in \mathcal{P}$ rationalizes the observed choices on Σ_n, then the same limit $\succeq'_n \rightarrow \succeq^*$ obtains.

So, if the subject chooses according to some preference $\succeq^* \in \mathcal{P}$, then $\succeq_n \rightarrow \succeq^*$.
Ideas behind the thm

Lemma

The set of all continuous binary relations on X is a compact metrizable space.

Lemma

If $A \subseteq X \times X$, then $\{ \geq \in X \times X : A \subseteq \geq \}$ is closed.
Consider an exhaustive set of experiments with binary choice problems \(\{x_k, y_k\}, \ k \in \mathbb{N} \). Let \(\succeq \) be any complete binary relation, and \(\succeq_A \) and \(\succeq_B \) be locally strict preferences. If, for all \(k \), \(x_k \succeq_A y_k \) and \(x_k \succeq_B y_k \) whenever \(x_k \succeq y_k \), then \(\succeq_A = \succeq_B \).
Statistical model

Given \((X, \mathcal{P})\). We change:

- How subjects make choices: they do not exactly follow a preference, but randomly deviate from it.
- How experiments are generated.
Statistical model

1. In a choice problem, alternatives drawn iid according to sampling distribution λ.

2. Subjects make “mistakes.”
 Upon deciding on $\{x, y\}$, a subject with preference \succeq chooses x over y with probability $q(\succeq; x, y)$ (error probability function).

3. Only assumption: if $x \succ y$ then $q(\succeq; x, y) > 1/2$.

4. “Spatial” dependence of q on x and y is arbitrary.
Kemeny-minimizing estimator: find a preference in \mathcal{P} that minimizes the number of observations inconsistent with the preference.

- “Model free:” to compute estimator don’t need to assume a specific q or λ.
- May be computationally challenging (depending on \mathcal{P}).
Assumption 3’ : λ has full support and for all $\preceq \in \mathcal{P}$,
$\{(x, y) : x \sim y\}$ has λ-probability 0.
Second main result

Theorem 2 (Part A)
Under Assumptions (1), (2), (3’), if the subject’s preference is \(\succeq^* \in \mathcal{P} \) and \(\succeq_n \) is the Kemeny-minimizing estimator for \(\Sigma_n \), then, \(\succeq_n \to \succeq^* \) in probability.
Finite data

- Our paper is about finite data.
- Finite data but large samples
- How large?
Convergence rates: Digression

The VC dimension of \mathcal{P} is the largest cardinality of an experiment that can always be rationalized by \mathcal{P}.

A measure of how flexible \mathcal{P}; how prone it is to overfitting.
Think of a game between Alicia and Roberto
Alicia defends \mathcal{P}; Roberto questions it.
Given is k
Alicia proposes a choice experiment of size k
Roberto fills in choices adversarily.
Alicia wins if she can rationalize the choices using \mathcal{P}.
The VC dimension of \mathcal{P} is the largest k for which Alicia always wins.
Convergence rates

- Let ρ be a metric on preferences.

Theorem 2 (Part B)

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C \sqrt{\text{VC}(\mathcal{P})} \right)^2$$
Convergence rates

- Let ρ be a metric on preferences.
- $N(\eta, \delta)$: smallest value of N such that for all $n \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$
\Pr(\rho(\succeq_n, \succeq^*) < \eta) \geq 1 - \delta.
$$

Theorem 2 (Part B)

Under the same conditions as in Part A,

$$
N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\frac{\sqrt{2/\delta}}{1} + C \sqrt{\text{VC}(\mathcal{P})} \right)^2
$$
Convergence rates

- Let ρ be a metric on preferences.
- $N(\eta, \delta)$: smallest value of N such that for all $n \geq N$, and all subject preferences $\succeq^* \in \mathcal{P}$,

$$\Pr(\rho(\succeq_n, \succeq^*) < \eta) \geq 1 - \delta.$$

- $\mu(\succeq'; \succeq)$: probability that the choice of a subject with preference \succeq is consistent with preference \succeq'.

$$r(\eta) = \inf \{ \mu(\succeq; \succeq) - \mu(\succeq'; \succeq) : \succeq, \succeq' \in \mathcal{P}, \rho(\succeq, \succeq') \geq \eta \}.$$

Theorem 2 (Part B)

Under the same conditions as in Part A,

$$N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\frac{\sqrt{2/\delta}}{\delta} + C \sqrt{\text{VC}(\mathcal{P})} \right)^2$$
Convergence rates

- Let \(\rho \) be a metric on preferences.
- \(N(\eta, \delta) \): smallest value of \(N \) such that for all \(n \geq N \), and all subject preferences \(\succeq^* \in \mathcal{P} \),

\[
\Pr(\rho(\succeq_n, \succeq^*) < \eta) \geq 1 - \delta.
\]

- \(\mu(\succeq'; \succeq) \): probability that the choice of a subject with preference \(\succeq \) is consistent with preference \(\succeq' \).

\[
r(\eta) = \inf \{ \mu(\succeq; \succeq) - \mu(\succeq'; \succeq) : \succeq, \succeq' \in \mathcal{P}, \rho(\succeq, \succeq') \geq \eta \}.
\]

- \(\mathcal{V}C(\mathcal{P}) \) the VC dimension of the class \(\mathcal{P} \).

Theorem 2 (Part B)

Under the same conditions as in Part A,

\[
N(\eta, \delta) \leq \frac{2}{r(\eta)^2} \left(\sqrt{2/\delta} + C \sqrt{\mathcal{V}C(\mathcal{P})} \right)^2
\]
Expected utility

1. X is the set of lotteries over d prizes.

2. P is the set of nonconstant EU preferences: there are always lotteries p, p' such as p is strictly preferred to p'.

This preference environment satisfies Assumptions 1 and 2.

Suppose: there is $C > 0$ and $k > 0$ s.t

$$q(x, y; \succeq) \geq \frac{1}{2} + C(v \cdot x - v \cdot y)^k,$$

when $x \succeq y$ and v represents \succeq.
Under these assumptions, we can bound $r(\eta)$ and $\text{VC}(\mathcal{P})$, which implies

$$N(\eta, \delta) = O \left(\frac{1}{\delta \eta^{4d-2}} \right).$$

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and intertemporal choice with discounted, Lipschitz-bounded utilities.
Monotone preferences

- K be a compact set in $X \equiv \mathbb{R}^d_+$, and fix $\theta > 0$.
- \mathcal{P} has finite VC-dimension and is identified on K.
- λ is the uniform probability measure on $K^{\theta/2}$.
- q satisfies: probability of choosing y instead of x when $x \succ y$ is a function of $\|x - y\|$,

Proposition

The Kemeny-minimizing estimator is consistent and, as $\eta \to 0$ and $\delta \to 0$,

$$ N(\eta, \delta) = O \left(\frac{1}{\eta^{2d+2}} \ln \frac{1}{\delta} \right). $$
A set \mathcal{P} is defined from utilities when there is a class \mathcal{U} of utility functions such that for all $\succeq \in \mathcal{P}$

$$x \succeq y \iff U(x) \geq U(y)$$

for some $U \in \mathcal{U}$.

Proposition 1

Under Assumption 1, if \mathcal{U} is compact and represents locally strict preferences, then Assumption 2 is met.

Implied by the continuity theorem of Border and Segal (1994).
Revisit the case of expected utility preferences:

1. X is the set of lotteries over d prizes.
2. \mathcal{P} is the set of nonconstant EU preferences: there are always lotteries p, p' such as p is strictly preferred to p'.

This preference environment satisfies Assumptions 1 and 2. When the probability of error of choosing y instead of x when $x \succ y$ is a function of $\|x - y\|$, we can bound $r(\eta)$ and $\text{VC}(\mathcal{P})$, which implies

$$N(\eta, \delta) = O\left(\frac{1}{\delta\eta^{4d-2}}\right).$$

Other examples: Cobb-Douglas, CES, and CARA subjective EU preferences, and intertemporal choice with discounted, Lipschitz-bounded utilities.
Literature

Afriat's theorem and revealed preference tests: Afriat (1967); Diewert (1973); Varian (1982); Matzkin (1991); Chavas and Cox (1993); Brown and Matzkin (1996); Forges and Minelli (2009); Carvajal, Deb, Fenske, and Quah (2013); Reny (2015); Nishimura, Ok, and Quah (2017)

Recoverability: Varian (1982); Cherchye, De Rock, and Vermeulen (2011)

Approximation: Mas-Colell (1978); Forges and Minelli (2009); Kübler and Polemarchakis (2017); Polemarchakis, Selden, and Song (2017)

Identification: Matzkin (2006); Gorno (2019)

Econometric methods: Matzkin (2003); Blundell, Browning, and Crawford (2008); Blundell, Kristensen, and Matzkin (2010); Halevy, Persitz, and Zrill (2018)
Applications: monotone preferences

- Call a dominance relation any binary relation on X that is not reflexive.

- Say that \succeq is strictly monotone wrt \triangleright if $x \triangleright y$ implies $x \succ y$.

- Say that \succeq is Grodal-transitive if $x \succeq y \succ z \succeq w$ implies $x \succeq w$.

Proposition 2

Take a set of alternatives X that meets Assumption 1, and suppose:

1. \triangleright is a dominance relation that is open,
2. for each x, there are y, z arbitrarily close to x such that $y \triangleright x$ and $x \triangleright z$.

Then the class of preferences that are Grodal-transitive and strictly monotone wrt \triangleright meets Assumption 2.
Example: back to preferences over commodity bundles.

- There are d commodities.
- $X \equiv \mathbb{R}^d_{++}$, where for $(x_1, \ldots, x_d) \in X$, x_i is quantity of good i consumed.
- $x \gg y$ iff $x_i > y_i$ for all $i = 1, \ldots, d$.

The set of all preferences that are Grodal-transitive and strictly monotone wrt \gg meets Assumption 2.

Other examples: choice over menus of lotteries, dated rewards, intertemporal consumption, non-EU choice over lotteries.
Conclusion

- Binary choice
- Finite data
- “Consistency” – Large sample theory
- Unified framework: RP and econometrics.

Applicable to:

- Large-scale (online) experiments/surveys.
- Voting (roll-call data).