The C-compact-open topology on function spaces

Alexander V. Osipov

Ural Federal University, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S. Kovalevskaja street, 620219, Ekaterinburg, Russia

MSC:
54C40
54C35
54D60
54H11
46E10

Keywords:
Set-open topology
C-compact subset
Compact-open topology
Topological group
Submetrizable

1. Introduction

The set-open topology (the λ-open topology) is a generalization of the compact-open topology and of the topology of pointwise convergence. This topology was first introduced by Arens and Dugundji [1]. Let λ be a collection of some subsets of a Tychonoff space X, then the set-open topology on $C(X)$ generated by λ is as follows. All sets of the form $\{F, U\} = \{f \in C(X) : f(F) \subseteq U\}$, where $F \in \lambda$ and U is an open subset of real line \mathbb{R}, form a subbase of the λ-open topology on $C(X)$.

The topology of uniform convergence is given by a base at each point $f \in C(X)$. This base consists of all sets $\{g \in C(X) : \sup_{x \in X} |g(x) - f(x)| < \varepsilon\}$. The topology of uniform convergence on elements of a family λ (the λ-topology), where λ is a fixed family of non-empty subsets of the set X, is a natural generalization of this topology. All sets of the form $\{g \in C(X) : \sup_{x \in F} |g(x) - f(x)| < \varepsilon\}$, where $F \in \lambda$ and $\varepsilon > 0$, form a base of the λ-topology at a point $f \in C(X)$.

Note that a λ-open topology coincides with a λ-topology, when the family λ consists of all finite (compact, countable compact, pseudocompact, sequentially compact, C-compact) subsets of X. Therefore $C(X)$ with the topology of pointwise convergence (compact-open, countably compact-open, sequentially compact-open, pseudocompact-open, C-compact-open topology) is a topological vector space (TVS).

Moreover, if a λ-open topology coincides with a λ-topology, then λ consists of C-compact subsets of space X and the space $C_\lambda(X)$ is a topological algebra under the usual operations of addition and multiplication (and multiplication by scalars).

2. Main definitions and notation

In this paper, we consider the space $C(X)$ of all real-valued continuous functions defined on a Tychonoff space X. We denote by λ a family of non-empty subsets of the set X. We use the following notation for various topological spaces with
the underlying set $C(X)$:

$$C_\lambda(X)$$ for the λ-open topology,

$$C_{\lambda,u}(X)$$ for the λ-topology.

The elements of the standard subbases of the λ-open topology and λ-topology will be denoted as follows:

$$[F, U] = \{ f \in C(X): f(F) \subseteq U \},$$

$$(f, F, \varepsilon) = \{ g \in C(X): \sup_{x \in F} |f(x) - g(x)| < \varepsilon \},$$ where $F \in \lambda$, U is an open subset of \mathbb{R} and $\varepsilon > 0$.

If X and Y are any two topological spaces with the same underlying set, then we use the notation $X = Y$, $X \leq Y$, and $X < Y$ to indicate, respectively, that X and Y have the same topology, that the topology on Y is finer than or equal to the topology on X, and that the topology on Y is strictly finer than the topology on X.

The closure of a set A will be denoted by \overline{A}; the symbol \emptyset stands for the empty set. As usual, $f(A)$ and $f^{-1}(A)$ are the image and the complete preimage of the set A under the mapping f, respectively. The constant zero function defined on X is denoted by f_0. We call it the constant zero function in $C(X)$.

We denote by \mathbb{R} the real line with the natural topology.

We recall that a subset of X is compact in $C(X)$ is called a zero-set. A subset O of a space X is called functionally open (or a cozero-set) if $X \setminus O$ is a zero-set. A family λ of non-empty subsets of a topological space (X, τ) is called a π-network for X if for any non-empty open set $U \in \varpi$ there exists $A \in \lambda$ such that $A \subseteq U$.

Throughout this paper, a family λ of non-empty subsets of the set X is a π-network. This condition is equivalent to the space $C_\lambda(X)$ being a Hausdorff space.

Recall that a subset A of a space X is a C-compact subset of X if, for any real-valued function f continuous on X, the set $f(A)$ is compact in \mathbb{R}. Note that if a subset A of X is such that every image $f(A)$ under a continuous real function f on X is closed in \mathbb{R}, then every continuous real image of A is in fact closed and bounded in \mathbb{R}; hence compact. Indeed, let $f(A)$ be closed and unbounded in \mathbb{R}. We take $h(t) = \arctg(t)$. Then, $h(f(A))$ is not closed. So the notion of C-compactness ("every image compact") in fact reduces to "every image closed in \mathbb{R}".

Note (see Theorem 3.9 in [8]) that the set A is a C-compact subset of X if and only if every countable functionally open (in X) cover of A has a finite subcover.

Let λ be a family of non-empty C-compact subsets of the set X and $\overline{\lambda} = \{ A: A \in \lambda \}$, then note that the same set-open topology is obtained if λ is replaced by $\overline{\lambda}$. This is because for each $f \in C(X)$ we have $f(\overline{A}) \subseteq \overline{f(A)} = f(A)$. Consequently, $C_\overline{\lambda}(X) = C_\lambda(X)$. From now on, λ denotes a family of non-empty closed C-compact subsets of the set X.

The set-open topology does not change when λ is replaced with the finite unions of its elements. Therefore we assume that λ is closed under finite unions of its elements.

The remaining notation can be found in [2].

3. Topological-algebraic properties of function spaces

Interest in studying the C-compact-open topology was generated by a Theorem 3.3 in [7] which characterizes some topological-algebraic properties of the set-open topology. It turns out that if $C_\lambda(X)$ is a paratopological group (TVS, locally convex TVS) then the family λ consists of C-compact subsets of X.

Given a family λ of non-empty subsets of X, let $\lambda(C) = \{ A \in \lambda: \text{for every } C \text{-compact subset } B \text{ of the space } X \text{ with } B \subseteq A, \text{the set } [B, U] \text{ is open in } C_\lambda(X) \text{ for any open set } U \text{ of the space } R \}$.

Let λ_m be a maximal π-network (with respect to inclusion) of closed sets such that $C_{\lambda_m}(X) = C_\lambda(X)$. Note that a family λ_m is simply the union of all such families μ that $C_\mu(X) = C_\lambda(X)$.

A family λ of C-compact subsets of X is said to be hereditary with respect to C-compact subsets if it satisfies the following condition: whenever $A \in \lambda$ and B is a C-compact (in X) subset of A, then $B \in \lambda$ also.

We look at the properties of the family λ which imply that the space $C_\lambda(X)$ is a topological algebra under the usual operations of addition and multiplication (and multiplication by scalars).

The following theorem is a generalization of Theorem 3.3 in [7].

Theorem 3.1. For a space X, the following statements are equivalent.

1. $C_\lambda(X) = C_{\lambda,u}(X)$.
2. $C_\lambda(X)$ is a paratopological group.
3. $C_\lambda(X)$ is a topological group.
4. $C_\lambda(X)$ is a topological vector space.
5. $C_\lambda(X)$ is a locally convex topological vector space.
6. $C_\lambda(X)$ is a topological ring.
7. $C_\lambda(X)$ is a topological algebra.
8. λ is a family of C-compact sets and $\lambda = \lambda(C)$.
9. λ_m is a family of C-compact sets and it is hereditary with respect to C-compact subsets.

Proof. Equivalence of the statements (1), (3), (4), (5) and (8) proved in [7, Theorem 3.3].

Note that the proof of Lemmas 3.1 and 3.2 in [7] used only the condition that the space X is a paratopological space. Thus (2) \Rightarrow (8).

(8) \Rightarrow (7). As (8) \Leftrightarrow (4), we only need to show that the operation of multiplication is continuous. Indeed, let β be the neighborhood filter of the zero function in $C(X)$. Let $W = [A, V] \in \beta$, where $A \in \lambda$ and V is an open set of the space \mathbb{R}. Then there is an open set V_1 such that $V_1 \cup V_1 \subseteq V$. Show that $W_1 = [A, V_1] \subseteq W$. Indeed $W_1 = [V_1 \cup V_1, V] = [f * g : f \in V_1, g \in V_1] = [f * g : f(A) \subseteq V_1 \text{ and } g(A) \subseteq V_1]$. Clearly $f(x) \ast g(x) \subseteq V_1 \ast V_1$ for each $x \in A$. Therefore $(f \ast g)(A) \subseteq V$ and $W_1 \ast W_1 \subseteq V$.

It remains to prove that if $W = [A, V] \in \beta$ and $f \in C(X)$ then there is an open set $V_1 \ni 0$ such that $f(A) \ast V_1 \subseteq V$ and $V_1 \ast f(A) \subseteq V$. Indeed let $g = f * h$ and $g_1 = h_1 * f$ where $h, h_1 \in W_1$. Then $g(x) = f(x) \ast h(x) \in f(A) \ast V_1$ and $g_1(x) = h_1(x) \ast f(x) \subseteq V_1 \ast f(A)$ for each $x \in A$. Note that $g(A) \subseteq V$ and $g_1(A) \subseteq V$.

(8) \Rightarrow (9). Since $C_{\lambda_m}(X) = C_{\lambda}(X)$, the space $C_{\lambda_m}(X)$ is a topological group and λ_m is a family of C-compact sets and consequently, $\lambda_m = \lambda_m(C)$. But if the set $[B, U]$ is open in $C_{\lambda_m}(X)$ for any open set U of the space \mathbb{R} then $B \in \lambda_m$.

The remaining implications are obvious and follow from Theorem 3.3 in [7] and the definitions. \square

4. Comparison of topologies

In this section, we compare the C-compact-open topology with several well-known and lesser-known topologies.

We use the following notations to denote the particular families of C-compact subsets of X.

- $F(X)$ — the collection of all finite subsets of X.
- $MC(X)$ — the collection of all metrizable compact subsets of X.
- $K(X)$ — the collection of all compact subsets of X.
- $SC(X)$ — the collection of all sequentially compact subsets of X.
- $CC(X)$ — the collection of all countably compact subsets of X.
- $PS(X)$ — the collection of all pseudocompact subsets of X.
- $RC(X)$ — the collection of all countable-compact subsets of X.

Note that $F(X) \subseteq MC(X) \subseteq K(X) \subseteq SC(X) \subseteq PS(X) \subseteq RC(X)$ and $MC(X) \subseteq SC(X) \subseteq CC(X)$. When $\lambda = F(X)$, $MC(X)$, $K(X)$, $SC(X)$, $CC(X)$, $PS(X)$ or $RC(X)$, we call the corresponding λ-open topologies on $C(X)$ point-open, metrizable compact-open, compact-open, sequentially compact-open, countable-compact-open, pseudocompact-open and C-compact-open, respectively. The corresponding spaces are denoted by $C_{\lambda}(X)$, $C_{mc}(X)$, $C_{k}(X)$, $C_{cc}(X)$, $C_{cc}(X)$, $C_{ps}(X)$ and $C_{rc}(X)$, respectively.

We obtain from Theorem 3.1 the following result.

Theorem 4.1. For any space X and $\lambda \in \{F(X), MC(X), K(X), SC(X), CC(X), PS(X), RC(X)\}$, the λ-open topology on $C(X)$ is the same as the topology of uniform convergence on elements of a family λ, that is, $C_{\lambda}(X) = C_{\lambda, u}(X)$. Moreover, $C_{\lambda}(X)$ is a Hausdorff locally convex topological vector space (TVS).

When X is equipped with the topology of uniform convergence on X, we denote the corresponding space by $C_u(X)$.

Theorem 4.2. For any space X,

$$
C_p(X) \subseteq C_{mc}(X) \subseteq C_k(X) \subseteq C_{cc}(X) \subseteq C_{ps}(X) \subseteq C_{rc}(X) \subseteq C_u(X)
$$

and

$$
C_{mc}(X) \subseteq C_{sc}(X) \subseteq C_{cc}(X).
$$

Now we determine when these inequalities are equalities and give examples to illustrate the differences.

Example 4.3. Let X be the set of all countable ordinals $[\alpha : \alpha < \omega_1]$ equipped with the order topology. The space X is sequentially compact and collectionwise normal, but not compact. For this space X, we have $C_{cc}(X) > C_k(X)$.

Indeed, let $f = f_\alpha$ and $U = (\alpha, 1)$. Consider the neighborhood $[X, U]$ of f. Assume that there are a family of neighborhoods $([A_i, U_i])_{i=1}^n$, where A_i is compact, and $f \in \bigcap_{i=1}^n[A_i, U_i] \subseteq [X, U]$. Then $\exists \alpha < \omega_1$ such that $\forall \beta < \alpha$. Define function $g : g(\beta) = 0$ for $\beta \leq \alpha$ and $g(\beta) = 1$ for $\beta > \alpha$. Then $g \in \bigcap_{i=1}^n[A_i, U_i]$, but $g \notin [X, U]$, a contradiction.

Note that for this space X, we have:

$$
C_p(X) < C_{mc}(X) < C_k(X) < C_{cc}(X) = C_{cc}(X) = C_{ps}(X) = C_{rc}(X) = C_u(X).
$$
Example 4.4. Let $Y = \beta\mathbb{N}$ be Stone–Čech compactification of natural numbers \mathbb{N}. Note that every sequentially compact subset of $\beta\mathbb{N}$ is finite. For this space Y, we have:

$$C_p(Y) = C_{mc}(Y) = C_{sc}(Y) < C_k(Y) = C_{cc}(Y) = C_{ps}(Y) = C_{te}(Y) = C_u(Y).$$

Example 4.5. Let $Z = X \oplus Y$ where X is the space of Example 4.3 and Y is the space of Example 4.4. Then the sequentially compact-open topology is incomparable with the compact-open topology on the space $C(Z)$.

Example 4.6. Let $X = I^c$ be the Tychonoff cube of weight c. The space X is compact and contains a dense sequentially compact subset. Thus, we have:

$$C_p(X) < C_{mc}(X) < C_k(X) = C_{sc}(X) = C_{cc}(X) = C_{ps}(X) = C_{te}(X) = C_u(X).$$

Example 4.7. Let $X = \omega_1 + 1$ be the set of all ordinals $\leq \omega_1$ equipped with the order topology. The space X is compact and sequentially compact but not metrizable. Then, for space X we have:

$$C_p(X) < C_{mc}(X) < C_k(X) = C_{sc}(X) = C_{cc}(X) = C_{ps}(X) = C_{te}(X) = C_u(X).$$

The following example is an example of the space in which every sequentially compact and every compact subset is finite.

Example 4.8. Let $K_0 = \mathbb{N}$. By using transfinite induction, we construct a subspace of $\beta\mathbb{N}$. Suppose that $K_\beta \subset \beta\mathbb{N}$ is defined for each $\beta < \alpha$ and $|K_\beta| \leq c$. Then for each $A \in [\bigcup_{\beta<\alpha}K_\beta]^{\omega_1}$ choose x_A such that $\{x_A: A \in \bigcup_{\beta<\alpha}K_\beta]^{\omega_1}\}$. The space $M = \bigcup_{\beta<\alpha}K_\beta$ is a countably compact space in which every sequentially compact and every compact subset is finite. Thus, we have:

$$C_p(M) = C_{mc}(M) = C_{sc}(M) = C_k(M) < C_{cc}(M) = C_{ps}(M) = C_{te}(M) = C_u(M).$$

Example 4.9. Let \mathcal{M} be a maximal infinite family of infinite subsets of \mathbb{N} such that the intersection of any two members of \mathcal{M} is finite, and let $\Psi = \mathbb{N} \cup \mathcal{M}$, where a subset U of Ψ is defined to be open provided that for any set $M \in \mathcal{M}$, if $M \in U$ then there is a finite set F of M such that $\{M\} \cup M \setminus F \subset U$. The space Ψ is then a first-countable pseudocompact Tychonoff space that is not countably compact. The space Ψ is due independently to J. Isbell and S. Mrówka.

Every compact, sequentially compact, countable compact subset of Ψ has the form $\bigcup_{i=1}^m([x_i] \cup (x_i \setminus S_i)) \cup S$, where $x_i \in E$, $|S_i| < \omega$, $|S| < \omega$. We thus obtain the following relations:

$$C_p(\Psi) < C_{mc}(\Psi) = C_{sc}(\Psi) = C_k(\Psi) = C_{cc}(\Psi) < C_{ps}(\Psi) = C_{te}(\Psi) = C_u(\Psi).$$

Example 4.10. Let $X = \beta\mathbb{N} \oplus (\omega_1 + 1) \oplus M \oplus \Psi$, where M is the space of Example 4.8 and Ψ is the space of Example 4.9. We have the following relations:

$$C_p(X) < C_{mc}(X) < C_{sc}(X) < C_k(X) < C_{cc}(X) < C_{ps}(X) = C_{te}(X) = C_u(X).$$

Example 4.11. Let $G = \omega_1 \oplus M \oplus \Psi \oplus I^c$, where M is the space of Example 4.8 and Ψ is the space of Example 4.9. We have the following relations:

$$C_p(G) < C_{mc}(G) < C_k(G) < C_{sc}(G) < C_{cc}(G) < C_{ps}(G) = C_{te}(G) = C_u(G).$$

Example 4.12. Let $Y = [0, \omega_2] \times [0, \omega_1] \setminus \{(\omega_2, \omega_1)\}$, with the topology τ generated by declaring open each point of $[0, \omega_2] \times [0, \omega_1]$, together with the sets $U_p(\beta) = \{\beta, s\}: s \in ([0, \omega_1]) \setminus P$, where P is finite and $\beta, \omega_1 \notin P$ and $V_\alpha(s) = \{\gamma, s\}: \alpha < \gamma < \omega_2$. Let $A = \{(\omega_2, s): 0 \leq s < \omega_1\}$ and $f \in C(Y)$.

Suppose that $f(A)$ is not a closed set, then there are $c \in f(\bar{A}) \setminus f(A)$ and sequence $\{a_n\} \subset A$ such that $\{f(a_n)\} \to c$. Since $a_n = (\omega_2, s_n)$, there is α_n such that $f(\alpha, s_n) = f(a_n)$ for each $\alpha > \alpha_n$. Moreover, there exists $\beta \in \omega_2$, such that $f(\alpha, s) = f(\omega_2, s)$ for each $s \in [0, \omega_1]$ and $\alpha > \beta$. Clearly $f(\beta, \omega_1) = c$. Then there exists $\delta \in \omega_1$, such that $f(\beta, s) = c$ for each $s \geq \delta$. It follows that $f(\omega_2, s) = c$, but $(\omega_2, s) \in A$ and $c \notin f(A)$, a contradiction. Thus, the set A is a C-compact subset of the space Y.
Let B be a non-empty pseudocompact subset of Y. Since $\alpha \times [0, \omega_1]$ is a clopen set (functionally open) for each $\alpha < \omega_2$, $((0, \omega_2) \times \{s\}) \cap B$ has at most a finite number of points for each $s \leq \omega_1$. It follows that B is a compact subset of Y.

As A is infinite set and closed and the pseudocompact subsets of Y are compact and have at most a finite intersection with A, A provides an example of a C-compact subset which is not contained in any closed pseudocompact subset of Y. Since Y has infinite compact subsets, for this space we have

$$C_k(Y) = C_{ps}(Y) < C_{rc}(Y).$$

Example 4.13. Let $Z = Y \oplus G$, where Y is the space of Example 4.12 and G is the space of Example 4.11. We have the following relations:

$$C_p(Z) < C_{mc}(Z) < C_k(Z) < C_{sc}(Z) < C_{cc}(Z) < C_{ps}(Z) < C_{rc}(Z).$$

Recall that a space X is called submetrizable if X admits a weaker metrizable topology.

Note that for a subset A in a submetrizable space X, the following are equivalent:

1. A is metrizable compact,
2. A is compact,
3. A is sequentially compact,
4. A is countably compact,
5. A is pseudocompact,
6. A is C-compact subset of X.

Theorem 4.14. Let X be a submetrizable space, then

$$C_{mc}(X) = C_k(X) = C_{sc}(X) = C_{cc}(X) = C_{ps}(X) = C_{rc}(X).$$

Similarly to Corollary 3.7 in [3] on the bounded-open topology we have

Theorem 4.15. For every space X,

1. $C_k(X) = C_{rc}(X)$ iff every closed C-compact subset of X is compact.
2. $C_{rc}(X) = C_{u}(X)$ iff X is pseudocompact.

Proof. (1) Note that for a subset A of X, $(f, A, \varepsilon) \subseteq (f, A, \varepsilon)$. So if every closed C-compact subset of X is compact, then $C_{rc}(X) \subseteq C_k(X)$. Consequently, in this case, $C_{rc}(X) = C_k(X)$.

Conversely, suppose that $C_k(X) = C_{rc}(X)$ and let A be any closed C-compact subset of X. So $(0, A, 1)$ is open in $C_k(X)$ and consequently, there exist a compact subset K of X and $\varepsilon > 0$ such that $(0, K, \varepsilon) \subseteq (0, A, 1)$. If possible, let $x \in A \setminus K$. Then there exists a continuous function $g : X \mapsto [0, 1]$ such that $g(x) = 1$ and $g(y) = 0 \ \forall y \in K$. Note that $g \in (0, K, \varepsilon) \setminus (0, A, 1)$ and we arrive at a contradiction. Hence, $A \subseteq K$ and consequently, A is compact.

(2) First, suppose that X is pseudocompact. So for each $f \in C(X)$ and each $\varepsilon > 0$, (f, X, ε) is a basic open set in $C_{rc}(X)$ and consequently, $C_{u}(X) = C_{rc}(X)$.

Now let $C_{rc}(X) = C_{u}(X)$. Since $(0, X, 1)$ is a basic neighborhood of the constant zero function 0 in $C_{u}(X)$, there exist a C-compact subset A of X and $\varepsilon > 0$ such that $(0, A, \varepsilon) \subseteq (0, X, 1)$. As before, by using the complete regularity of X, it can be shown that we must have $X = A$. But the closure of a C-compact set is also a C-compact set. Hence, X is pseudocompact. \)

Note that for a closed subset A in a normal Hausdorff space X, the following are equivalent:

1. A is countably compact,
2. A is pseudocompact,
3. A is C-compact subset of X.

Corollary 4.16. For any normal Hausdorff space X, $C_k(X) = C_{rc}(X)$ iff every closed countably compact subset of X is compact.

5. Submetrizable and metrizable

One of the most useful tools in function spaces is the following concept of induced map. If $f : X \mapsto Y$ is a continuous map, then the induced map of f, denoted by $f^* : C(Y) \mapsto C(X)$ is defined by $f^*(g) = g \circ f$ for all $g \in C(Y)$.

Recall that a map \(f : X \mapsto Y \), where \(X \) is any non-empty set and \(Y \) is a topological space, is called almost onto if \(f(X) \) is dense in \(Y \).

Theorem 5.1. Let \(f : X \mapsto Y \) be a continuous map between two spaces \(X \) and \(Y \). Then

1. \(f^* : C_{rc}(Y) \mapsto C_{rc}(X) \) is continuous;
2. \(f^* : \mathcal{C}(Y) \mapsto \mathcal{C}(X) \) is one-to-one if and only if \(f \) is almost onto;
3. if \(f^* : \mathcal{C}(Y) \mapsto C_{rc}(X) \) is almost onto, then \(f \) is one-to-one.

Proof. (1) Suppose \(g \in C_{rc}(Y) \). Let \((f^*(g), A, \varepsilon) \) be a basic neighborhood of \(f^*(g) \) in \(C_{rc}(X) \). Then \(f^*(\langle g, f(A), \varepsilon \rangle) \subseteq \langle f^*(g), A, \varepsilon \rangle \) and consequently, \(f^* \) is continuous. (2) and (3) See Theorem 2.2.6 in [6].

Remark 5.2. (1) If a space \(X \) has a \(G_\delta \)-diagonal, that is, if the set \(\{(x, x) : x \in X\} \) is a \(G_\delta \)-set in the product space \(X \times X \), then every point in \(X \) is a \(G_\delta \)-set. Note that every metrizable space has a zero-set diagonal. Consequently, every submetrizable space has also a zero-set-diagonal.

(2) Every compact set in a submetrizable space is a \(G_\delta \)-set. A space \(X \) is called an \(E_\delta \)-space if every point in the space is a \(G_\delta \)-set. So the submetrizable spaces are \(E_\delta \)-spaces.

For our next result, we need the following definitions.

Definition 5.3. A completely regular Hausdorff space \(X \) is called \(\sigma \)-\(C \)-compact if there exists a sequence \(\{A_n\} \) of \(C \)-compact sets in \(X \) such that \(X = \bigcup_{n=1}^{\infty} A_n \). A space \(X \) is said to be almost \(\sigma \)-\(C \)-compact if it has a dense \(\sigma \)-\(C \)-compact subset.

Theorem 5.4. For any space \(X \), the following are equivalent.

1. \(C_{rc}(X) \) is submetrizable.
2. Every \(C \)-compact subset of \(C_{rc}(X) \) is a \(G_\delta \)-set in \(C_{rc}(X) \).
3. Every compact subset of \(C_{rc}(X) \) is a \(G_\delta \)-set in \(C_{rc}(X) \).
4. \(C_{rc}(X) \) is an \(E_\delta \)-space.
5. \(X \) is almost \(\sigma \)-\(C \)-compact.
6. \(C_{rc}(X) \) has a zero-set-diagonal.
7. \(C_{rc}(X) \) has a \(G_\delta \)-diagonal.

Proof. (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4) are all immediate.

(4) \(\Rightarrow \) (5). If \(C_{rc}(X) \) is an \(E_\delta \)-space, then the constant zero function 0 defined on \(X \) is a \(G_\delta \)-set. Let \(\{0\} = \bigcap_{n=1}^{\infty} (0, A_n, \varepsilon) \) where each \(A_n \) is a \(C \)-compact subset in \(X \) and \(\varepsilon > 0 \). We claim that \(X = \bigcup_{n=1}^{\infty} A_n \).

Suppose that \(x_0 \in X \setminus \bigcup_{n=1}^{\infty} A_n \). So there exists a continuous function \(f : X \mapsto [0, 1] \) such that \(f(x) = 0 \) for all \(x \in \bigcup_{n=1}^{\infty} A_n \) and \(f(x_0) = 1 \). Since \(f(x) = 0 \) for all \(x \in A_n, f \in (0, A_n, \varepsilon) \) for all \(n \) and hence, \(f \in \bigcap_{n=1}^{\infty} (0, A_n, \varepsilon) = \{0\} \). This means \(f(x) = 0 \) for all \(x \in X \). But \(f(x_0) = 1 \). By this contradiction, we conclude that \(X \) is almost \(\sigma \)-\(C \)-compact.

(5) \(\Rightarrow \) (1). By Theorem 4.10 in [4] and Theorem 5.1.

By Remark (1) \(\Rightarrow \) (6) \(\Rightarrow \) (7) \(\Rightarrow \) (4). □

Corollary 5.5. Suppose that \(X \) is almost \(\sigma \)-\(C \)-compact. If \(K \) is a subset of \(C_{rc}(X) \), then the following are equivalent.

1. \(K \) is metrizable compact.
2. \(K \) is compact.
3. \(K \) is sequentially compact.
4. \(K \) is countably compact.
5. \(K \) is pseudocompact.
6. \(K \) is \(C \)-compact subset of \(C_{rc}(X) \).

A space \(X \) is said to be of (pointwise) countable type if each (point) compact set is contained in a compact set having countable character.

A space \(X \) is a \(q \)-space if for each point \(x \in X \), there exists a sequence \(\{U_n : n \in \mathbb{N}\} \) of neighborhoods of \(x \) such that if \(x_0 \in U_n \) for each \(n \), then \(\{x_0 : n \in \mathbb{N}\} \) has a cluster point. Another property stronger than being a \(q \)-space is that of being an \(M \)-space, which can be characterized as a space that can be mapped onto a metric space by a quasi-perfect map (a continuous closed map in which inverse images of points are countably compact). Both a space of pointwise countable type and an \(M \)-space are \(q \)-spaces.
Theorem 5.6. For any space X, the following are equivalent.

1. $C_{rc}(X)$ is metrizable.
2. $C_{rc}(X)$ is of first countable.
3. $C_{rc}(X)$ is of countable type.
4. $C_{rc}(X)$ is of pointwise countable type.
5. $C_{rc}(X)$ has a dense subspace of pointwise countable type.
6. $C_{rc}(X)$ is an M-space.
7. $C_{rc}(X)$ is a q-space.
8. X is hemi-C-compact; that is, there exists a sequence of C-compact sets $\{A_n\}$ in X such that for any C-compact subset A of X, $A \subseteq A_n$ holds for some n.

Proof. From the earlier discussions, we have $(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (7)$, $(1) \Rightarrow (6) \Rightarrow (7)$, and $(1) \Rightarrow (2) \Rightarrow (7)$.

$(4) \Leftrightarrow (5)$. It can be easily verified that if D is a dense subset of a space X and A is a compact subset of D, then A has countable character in D if and only if A is of countable character in X. Now since $C_{rc}(X)$ is a locally convex space, it is homogeneous. If we combine this fact with the previous observation, we have $(4) \Leftrightarrow (5)$.

$(7) \Rightarrow (8)$. Suppose that $C_{rc}(X)$ is a q-space. Hence, there exists a sequence $\{U_n : n \in \mathbb{N}\}$ of neighborhoods of the zero-function 0 in $C_{rc}(X)$ such that if $f_n \in U_n$ for each n, then $\{f_n : n \in \mathbb{N}\}$ has a cluster point in $C_{rc}(X)$. Now for each n, there exists a closed C-compact subset A_n of X and $\varepsilon_n > 0$ such that $0 \in (0, A_n, \varepsilon_n) \subseteq U_n$.

Let A be a C-compact subset of X. If possible, suppose that A is not a subset of A_n for any $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, there exists $a_n \in A \setminus A_n$. So for each $n \in \mathbb{N}$, there exists a continuous function $f_n : X \mapsto [0, 1]$ such that $f_n(a_n) = n$ and $f_n(x) = 0$ for all $x \in A_n$. It is clear that $f_n \in (0, A_n, \varepsilon_n)$. But the sequence $\{f_n\}_{n \in \mathbb{N}}$ does not have a cluster point in $C_{rc}(X)$. If possible, suppose that this sequence has a cluster point f in $C_{rc}(X)$. Then for each $k \in \mathbb{N}$, there exists a positive integer $n_k > k$ such that $f_{n_k} \in (f, A, 1)$. So for all $k \in \mathbb{N}$, $f(a_{n_k}) > f_{n_k}(a_{n_k}) - 1 = n_k - 1 \geq k$. But this means that f is unbounded on the C-compact set A. So the sequence $\{f_n\}_{n \in \mathbb{N}}$ cannot have a cluster point in $C_{rc}(X)$ and consequently, $C_{rc}(X)$ fails to be a q-space. Hence, X must be hemi-C-compact.

$(8) \Rightarrow (1)$. Here we need the well-known result which says that if the topology of a locally convex Hausdorff space is generated by a countable family of seminorms, then it is metrizable. Now the locally convex topology on $C(X)$ generated by the countable family of seminorms $\{p_{A_n} : n \in \mathbb{N}\}$ is metrizable and weaker than the C-compact-open topology. However, since for each C-compact set A in X, there exists A_n such that $A \subseteq A_n$, the locally convex topology generated by the family of seminorms $\{p_{A_n} : A \in SC(X)\}$, that is, the C-compact-open topology, is weaker than the topology generated by the family of seminorms $\{p_{A_n} : n \in \mathbb{N}\}$. Hence, $C_{rc}(X)$ is metrizable.

6. Separable and second countability

Theorem 6.1. For any space X and $\lambda \in \{MC(X), SC(X), CC(X), PS(X), RC(X)\}$, the following are equivalent.

1. $C_\lambda(X)$ is separable.
2. $C_k(X)$ is separable.
3. X has a weaker separable metrizable topology.
4. $C_\lambda(X)$ is separable.

Proof. First, note by Corollary 4.2.2 in [6] that (1), (2), and (3) are equivalent. Also, since $C_p(X) \subseteq C_\lambda(X)$, for $\lambda \in \{MC(X), SC(X), CC(X), PS(X), RC(X)\}$, $(4) \Rightarrow (1)$.

$(3) \Rightarrow (4)$. If X has a weaker separable metrizable topology, then X is submetrizable. By Theorem 4.14, $C_{mc}(X) = C_k(X) = C_{cc}(X) = C_{cc}(X) = C_{ps}(X) = C_{rc}(X)$. Since $(3) \Rightarrow (2)$, $C_\lambda(X)$ is separable for each $\lambda \in \{MC(X), SC(X), CC(X), PS(X), RC(X)\}$.

Corollary 6.2. If X is pseudocompact and $\lambda \in \{MC(X), K(X), SC(X), CC(X), PS(X), RC(X)\}$, then the following statements are equivalent.

1. $C_\lambda(X)$ is separable.
2. $C_\lambda(X)$ has ccc.
3. X is metrizable.

Proof. $(1) \Rightarrow (2)$. This is immediate.

$(2) \Rightarrow (3)$. By Corollary 4.8 in [7], X is metrizable.

$(3) \Rightarrow (1)$. If X is metrizable, then X, being pseudocompact, is also compact. Hence X is separable and consequently by Theorem 6.1, $C_\lambda(X)$ is separable.

Recall that a family of non-empty open sets in a space X is called a π-base for X if every non-empty open set in X contains a member of this family.
The following theorems are analogues of Theorem 4.6 and Theorem 4.8 in [5].

Theorem 6.3. For a space X and $\lambda \in \{MC(X), K(X), SC(X), CC(X), PS(X), RC(X)\}$, the following statements are equivalent.

1. $C_\lambda(X)$ contains a dense subspace which has a countable π-base.
2. $C_\lambda(X)$ has a countable π-base.
3. $C_\lambda(X)$ is second countable.
4. X is hemicompact and \aleph_0-space.

Theorem 6.4. For a locally compact space X and $\lambda \in \{MC(X), K(X), SC(X), CC(X), PS(X), RC(X)\}$, the following statements are equivalent.

1. $C_\lambda(X)$ is second countable.
2. X is hemicompact and submetrizable.
3. X is Lindelöf and submetrizable.
4. X is the union of a countable family of compact metrizable subsets of X.
5. X is second countable.

References

[1] R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5–31.
[2] R. Engelking, General Topology, PWN, Warsaw, 1977, Mir, Moscow, 1986.
[3] S. Kundu, A.B. Raha, The bounded-open topology and its relatives, Rend. Istit. Mat. Univ. Trieste 27 (1995) 61–77.
[4] S. Kundu, P. Garg, The pseudocompact-open topology on $C(X)$, Topology Proc. 30 (2006) 279–299.
[5] S. Kundu, P. Garg, Countability properties of the pseudocompact-open topology on $C(X)$: A comparative study, Rend. Istit. Mat. Univ. Trieste 39 (2007) 421–444.
[6] R.A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., vol. 1315, Springer-Verlag, Berlin, 1988.
[7] A.V. Osipov, Topological-algebraic properties of function spaces with set-open topologies, Topology Appl. 159 (3) (2012) 800–805.
[8] A.V. Osipov, The set-open topology, Topology Proc. 37 (2011) 205–217.