On the slice genus of quasipositive knots in indefinite 4-manifolds

David Baraglia

Accepted: 22 June 2023 / Published online: 31 July 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Let X be a closed indefinite 4-manifold with $b_+(X) = 3 \pmod 4$ and with non-vanishing mod 2 Seiberg–Witten invariants. We prove a new lower bound on the genus of a properly embedded surface in $X \setminus B^4$ representing a given homology class and with boundary a quasipositive knot $K \subset S^3$. In the null-homologous case our inequality implies that the minimal genus of such a surface is equal to the slice genus of K. If X is symplectic then our lower bound differs from the minimal genus by at most 1 for any homology class that can be represented by a symplectic surface. Along the way, we also prove an extension of the adjunction inequality for closed 4-manifolds to classes of negative self-intersection without requiring X to be of simple type.

Mathematics Subject Classification 57K10 · 57K41

1 Introduction
An important problem in the study of smooth 4-manifolds is to determine the minimal genus of an embedded surface representing a given homology class. The relative version of this problem for 4-manifolds with boundary has also received considerable attention [7, 8, 16, 18–20, 23, 24, 26, 28, 33].

Consider a closed, connected, oriented smooth 4-manifold X and let X_0 be the 4-manifold with boundary obtained by removing an open ball from X. Given an oriented knot $K \subset S^3 = \partial X_0$ and a relative homology class $a \in H_2(X_0, \partial X_0; \mathbb{Z}) \cong H_2(X; \mathbb{Z})$, we seek the minimal genus of a properly embedded oriented surface $\Sigma \subset X$ with $\partial \Sigma = K$ and $[\Sigma] = a$. We define the slice genus of K with respect to (X, a) to be the minimum genus of such a surface and denote it by $g_4(K, X, a)$ or $g_4(K, X_0, a)$. Of particular interest is the case that $[\Sigma]$ is null-homologous. In this case we call the minimal genus of such a surface the H-slice genus of K in X and denote it by $g_H(K, X)$.

1 School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
or $g_H(K, X_0)$. In the case that $X = S^4$, $X_0 = B^4$ is the 4-ball and $g_H(K, X) = g_4(K)$ is the usual slice genus of K.

To motivate our results we first recall the following relative genus bound for surfaces in definite 4-manifolds:

Theorem 1.1 (Ozsváth–Szabó [28]) Let X_0 be a smooth, compact, oriented, negative-definite 4-manifold with $b_1(X_0) = 0$ and $\partial X_0 = S^3$. For any smooth, properly embedded surface $\Sigma \subset X_0$ bounding a knot K, we have

$$2g(\Sigma) \geq [\Sigma]^2 + ||\Sigma|| + 2\tau(\Sigma).$$

Here $||\Sigma||$ is defined as $\sum_{i=1}^n \langle [\Sigma], e_1 \rangle$, where e_1, \ldots, e_n is an orthonormal basis for $H^2(X_0; \mathbb{Z})$, (which exists by Donaldson’s diagonalisation theorem) and $\tau(K)$ is the Ozsváth–Szabó tau-invariant, defined in [28]. Taking Σ to be null-homologous, we obtain a lower bound on the H-slice genus of K:

$$g_H(K, X_0) \geq \tau(K). \quad (1.1)$$

A surprising feature of this bound is that it does not depend on the 4-manifold X_0.

Suppose now that K is quasipositive. This means that K is the braid closure of a braid that is a product of the standard generators $\sigma_1, \ldots, \sigma_{n-1}$ and their conjugates [30]. It is shown in [15] that as a consequence of the inequality given in [29], one has $\tau(K) = g_4(K)$ for any quasipositive knot. For instance, if $T_{p,q}$ denotes the (p, q)-torus knot for positive coprime integers p, q, then $\tau(T_{p,q}) = g_4(T_{p,q}) = (p - 1)(q - 1)/2$. Thus for quasipositive knots the inequality (1.1) gives $g_H(K, X) \geq g_4(K)$. But we obviously have $g_H(K, X) \leq g_4(K)$ and so we deduce that the H-slice genus of any quasipositive knot in any negative definite 4-manifold with $b_1(X) = 0$ is equal to the slice genus.

In this paper we prove an analogue of Theorem 1.1 for quasipositive knots and links in a large class of indefinite 4-manifolds. Let $L \subset S^3 = \partial B$ be an oriented link. Define the Murasugi characteristic $\chi_4(L)$ of L to be the maximum of the Euler characteristic of any smooth, properly embedded, oriented surface in B bounding L and having no closed components [4, 25]. If L is a knot, then $\chi_4(L) = 1 - 2g_4(L)$, where $g_4(L)$ is the slice genus.

Given a spinc-structure s on a compact, oriented smooth 4-manifold X with $b_+(X) > 1$, we let $SW(X, s) \in \mathbb{Z}$ denote the Seiberg–Witten invariant of (X, s). We also let

$$d(X, s) = \frac{c_1(s)^2 - \sigma(X)}{4} - 1 + b_1(X) - b_+(X)$$

denote the expected dimension of the Seiberg–Witten moduli space.

Theorem 1.2 Let X be a smooth, closed, oriented 4-manifold with $b_1(X) = 0$ and $b_+(X) = 3 \pmod{4}$. Suppose that there is a spinc-structure s with $SW(X, s) = 1 \pmod{2}$. Let X_0 be the 4-manifold with boundary S^3 obtained by removing an open
ball from X and let $L \subset S^3$ be a quasipositive link. Then for any connected, smooth, oriented, properly embedded surface $\Sigma \subset X$ bounding L, we have

$$-\chi(\Sigma) \geq [\Sigma]^2 + |\langle [\Sigma], c_1(s) \rangle| - \chi_4(L).$$

In particular, if $L = K$ is a quasipositive knot, then

$$2g(\Sigma) \geq [\Sigma]^2 + |\langle [\Sigma], c_1(s) \rangle| + 2g_4(K).$$

Taking Σ in Theorem 1.2 to be null-homologous and L to be a knot, we obtain:

Corollary 1.3 Let X and K be as in Theorem 1.2. Then $g_H(K, X) = g_4(K)$.

In the case that $a \in H_2(X; \mathbb{Z})$ can be represented by a closed surface S for which the adjunction inequality is sharp in the sense that $2g(S) - 2 = a^2 + \langle a, c_1(s) \rangle$, we find that the lower bound given by Theorem 1.2 differs from the minimal genus by at most 1:

Corollary 1.4 Let X, s and K be as in Theorem 1.2. If there exists a closed embedded surface $S \subset X$ representing the homology class $a \in H_2(X; \mathbb{Z})$ and satisfying $2g(S) - 2 = a^2 + \langle a, c_1(s) \rangle$, then we have

$$0 \leq g_4(K, X, a) - \frac{a^2 + \langle a, c_1(s) \rangle}{2} - g_4(K) \leq 1$$

for any quasipositive knot.

Example 1.5 Consider the elliptic surface $X = E(2n)$. We have $b_+(X) = 4n - 1$ [13, Proposition 3.1.11], so $b_+(X) = 3 \pmod{4}$. Suppose that $a \in H_2(X; \mathbb{Z})$ is orthogonal to the canonical class and $a^2 \geq -2$. Then according to [14, Theorem 1.1], a can be represented by a surface of genus g, where $2g - 2 = a^2$. Thus Corollary 1.4 gives

$$0 \leq g_4(K, E(2n), a) - \frac{1}{2}a^2 - g_4(K) \leq 1$$

for any quasipositive knot.

When X is symplectic and the class $a \in H_2(X; \mathbb{Z})$ can be represented by a symplectic surface, we can apply the positive solution of the symplectic Thom conjecture [27] to Corollary 1.4:

Theorem 1.6 Let X be a smooth, closed symplectic 4-manifold with $b_1(X) = 0$ and $b_+(X) = 3 \pmod{4}$. If the homology class $a \in H_2(X; \mathbb{Z})$ can be represented by a closed embedded symplectic surface, then for any quasipositive knot K, we have

$$0 \leq g_4(K, X, a) - \frac{a^2 + \langle a, K_X \rangle}{2} - g_4(K) \leq 1,$$

where K_X is the canonical class of X.
Proof Let s be the anti-canonical spinc-structure, so $c_1(s) = K_X$. Recall that for a symplectic 4-manifold with $b_+(X) > 1$, one has $\text{SW}(X, s) = \pm 1$. Let $S \subset X$ be a closed symplectic surface representing a. Then by the adjunction formula, we have $2g(S) - 2 = a^2 + \langle a, K_X \rangle$. Hence we may apply Corollary 1.4. □

Remark 1.7 In addition to the smooth H-slice genus $g_H(K, X)$, one can also define the topological H-slice genus $g_H^\text{top}(K, X)$ of K in X, defined as the minimal genus of a connected, properly embedded, topologically locally flat, null-homologous surface in $X_0 = X \setminus B^4$ bounding K. When $X = S^4$, $g_H^\text{top}(K, S^4) = g_4^\text{top}(K)$ is the topological 4-genus of K. For a torus knot $K = T_{p, q}$ where p, q are positive coprime integers, it is known that $g_4^\text{top}(K) < g_4(K)$, except in the cases $K = T_{2, n}, T_{3, 4}$ and $T_{3, 5}$ [1, 31]. In fact, for such knots one has $g_4^\text{top}(K) \leq \frac{6}{7} g_4(K)$ [1]. From this and Corollary 1.3 we deduce the following: let K be a torus knot other than $T_{2, n}, T_{3, 4}$ or $T_{3, 5}$ and let X be a smooth, closed 4-manifold with $b_1(X) = 0, b_+(X) = 3 \mod 4$ and having a non-vanishing mod 2 Seiberg–Witten invariants. Then

$$g_H^\text{top}(K, X) \leq g_4^\text{top}(K) \leq \frac{6}{7} g_4(K) = \frac{6}{7} g_H(K, X).$$

In particular, for such an X the difference $g_H(K, X) - g_H^\text{top}(K, X)$ can be arbitrarily large.

Taking L to be the unknot, Theorem 1.2 also implies an extension of the adjunction inequality to classes of negative self-intersection without requiring X to be of simple type:

Theorem 1.8 Let X be a smooth, closed, oriented 4-manifold with $b_1(X) = 0$ and $b_+(X) = 3 \mod 4$. Let s be a spinc-structure on X with $\text{SW}(X, s) = 1 \mod 2$. Suppose Σ is a compact, connected, smoothly embedded surface in X of genus $g(\Sigma)$. Then

$$2g(\Sigma) \geq [\Sigma]^2 + |\langle \Sigma, c_1(s) \rangle|.$$

Note that this is slightly weaker than the usual adjunction inequality when $[\Sigma]^2 > 0$, which takes the form $2g(\Sigma) - 2 \geq [\Sigma]^2 + |\langle \Sigma, c_1(s) \rangle|$. When X is of simple type the adjunction inequality in the stronger form with $2g(\Sigma) - 2 \geq [\Sigma]^2 + |\langle \Sigma, c_1(s) \rangle|$ was proven in [27].

Lastly, applying the same type of argument used in the proof of Theorem 1.2 to a negative definite 4-manifold, we obtain an extension of the Ozsváth–Szabó inequality to quasipositive links.

Theorem 1.9 Let X be a smooth, compact, oriented negative-definite 4-manifold with $b_1(X) = 0$ and $\partial X = S^3$. Let $L \subset S^3$ be a quasipositive link. Then for any connected, smooth, properly embedded surface $\Sigma \subset X$ bounding L, we have

$$-\chi(\Sigma) \geq [\Sigma]^2 + |\Sigma| - \chi(S(L)).$$
We note here that an extension of the Ozsváth–Szabó τ invariant for links was defined in [6] and one has that $-\chi(\Sigma) \geq 2\tau(L) - n$ for a smooth, connected, properly embedded surface Σ in X bounding L, where n is the number of components of the link [6, Proposition 1.4]. This suggests that there should be a generalisation of the Ozsváth–Szabó inequality to arbitrary links taking the form $-\chi(\Sigma) \geq |\Sigma|^2 + |[\Sigma]| + 2\tau(L) - n$.

1.1 Remark on orientations

Throughout the paper knots and links are oriented. If Σ_1 is a properly embedded surface bounding a knot or link L, then we require Σ_1 to be oriented and that the induced orientation on $\partial \Sigma_1$ agrees with the given orientation on L.

1.2 Structure of the paper

In Sect. 2 we prove some results concerning surfaces in $\mathbb{CP}^2 \setminus B^4$ bounding the mirror \overline{L} of a quasipositive link $L \subset S^3$, leading to Lemma 2.2. In Sect. 3 we first prove an extension of the Seiberg–Witten adjunction inequality to the case of non-vanishing Bauer–Furuta invariant (Proposition 3.1). We then use this and Lemma 2.2 to prove the main results of the paper.

2 Quasipositive links

Let B_n denote the braid group on n strands and $\sigma_1, \ldots, \sigma_{n-1}$ the standard generators. A link L is said to be quasipositive if it can be realised as the braid closure of a braid β which is a product of $\sigma_1, \ldots, \sigma_{n-1}$ and their conjugates [30]. Every quasipositive link can be realised as the transverse intersection of a plane algebraic curve $\Gamma \subset \mathbb{C}^2$ with a 3-sphere $S^3 = \partial B \subset \mathbb{C}^2$ bounding a ball $B \subset \mathbb{C}^2$ [30]. Conversely, any link $L \subset S^3$ constructed in this manner is quasipositive [5].

Let $L \subset S^3$ be a quasipositive link. Hence we can realise L as the transverse intersection $L = \partial B \cap \Gamma$ of a plane algebraic curve $\Gamma \subset \mathbb{C}^2$ with an open ball $B \subset \mathbb{C}^2$. Let $\overline{\Gamma} \subset \mathbb{CP}^2$ be the projective completion of Γ. Here we identify \mathbb{C}^2 as the complement $\mathbb{C}^2 = \mathbb{CP}^2 \setminus L_\infty$ of a projective line L_∞ in \mathbb{CP}^2.

Lemma 2.1 There exists a non-singular sextic curve $\Sigma \subset \mathbb{CP}^2$ which is disjoint from $\overline{B} \cup Sing(\overline{\Gamma})$ and which meets $\overline{\Gamma}$ transversally.

Proof Let $P = \mathbb{P}(H^0(\mathbb{CP}^2, O(1)))$ be the dual projective space of \mathbb{CP}^2, the space of lines in \mathbb{CP}^2. Let $U \subset P$ be the set of lines disjoint from \overline{B}. This is an open subset of P and is non-empty, since the line at infinity is disjoint from \overline{B}. For each $x \in Sing(\overline{\Gamma})$, let $\ell_x \subset P$ be the set of lines passing through x. Then ℓ_x is a projective line in P. Now since $Sing(\overline{\Gamma})$ is finite, it follows that $V = P \setminus \left(\bigcup_{x \in Sing(\overline{\Gamma})} \ell_x \right)$ is a dense open subset of P. Hence $W = U \cap V$ is non-empty. So there exists a non-empty open subset W of lines in \mathbb{CP}^2 disjoint from \overline{B} and $Sing(\overline{\Gamma})$.

© Birkhäuser
Now consider the linear system \(R = \mathbb{P}(H^0(\mathbb{C}P^2, O(6))) \) of sextic curves in \(\mathbb{C}P^2 \). Let \(U_1 \subset R \) denote the open subset of sextic curves disjoint from \(\overline{B} \cup \text{Sing}(\Gamma) \). Then \(U_1 \) is non-empty. Indeed, let \(N \) be a projective line in \(\mathbb{C}P^2 \) disjoint from \(\overline{B} \) and \(\text{Sing}(\Gamma) \). Then the sextic with divisor \(6N \) belongs to \(U_1 \).

Choose a point \(p \in \mathbb{C}P^2 \) not lying \(\Gamma \). The space of lines in \(\mathbb{C}P^2 \) through \(p \) can be identified with \(\mathbb{C}P^1 \) and this determines a regular map \(\rho : \Gamma \rightarrow \mathbb{C}P^1 \) which sends a point \(q \in \Gamma \) to the line joining \(p \) and \(q \). Let \(T \subset \mathbb{C}P^1 \) be the finite set \(\rho(\text{Sing}(\Gamma)) \). Then \(\rho : \Gamma \setminus \rho^{-1}(T) \rightarrow \mathbb{C}P^1 \setminus T \) is a branched covering. Any point in \(\mathbb{C}P^1 \setminus T \) which is not a branch point of \(\rho \) corresponds to a line in \(\mathbb{C}P^2 \) such that each point of intersection with \(\overline{\Gamma} \) has multiplicity 1. Let \(U_2 \subset R \) be the set of sextics whose intersection multiplicities with \(\overline{\Gamma} \) all equal 1. Then \(U_2 \) is a non-empty open subset of \(R \) because we can take a sextic which is the union of six lines corresponding to six distinct non-branch points of \(\rho \) in \(\mathbb{C}P^1 \setminus T \). So \(U_1 \cap U_2 \) is a non-empty open subset of \(R \). Bertini’s theorem implies that there exists a non-singular sextic which belongs to \(U_1 \cap U_2 \).

Let \(S \subset \mathbb{C}P^2 \) be a non-singular sextic curve which is disjoint from \(\overline{B} \cup \text{Sing}(\Gamma) \) and which meets \(\overline{\Gamma} \) transversally. Note that \(S \) is connected, since any two distinct components of \(S \) would intersect in a singular point. Suppose \(\overline{\Gamma} \) has degree \(d \). Then \(\overline{\Gamma} \) and \(S \) meet in exactly \(6d \) points, by Bézout’s theorem. Let \(W = \mathbb{C}P^2 \setminus B \). Then \(W \) is a 4-manifold with boundary \(\partial W = S^3 \). Consider \(\Gamma_0 = \overline{\Gamma} \setminus B \). Then \(\Gamma_0 \) is a properly embedded surface in \(X \) meeting \(\partial X \) in the link \(\overline{L} = \partial W \cap \Gamma_0 \) (we obtain the mirror \(\overline{L} \) of \(L \), because the orientation on \(S^3 = \partial W \) is opposite to the orientation obtained by viewing \(S^3 \) as the boundary of \(B \)).

Lemma 2.2 There exists a smoothly embedded, connected, oriented surface \(C_0 \subset W \) having the following properties:

1. \(C_0 \) meets \(\partial W \) transversally in \(\overline{L} \),
2. \(C_0 \) meets \(S \) transversally in \(6d \) points,
3. \(\chi(C_0) = 3d - d^2 - \chi_4(L) \),
4. The homology class of \(C_0 \) in \(H_2(W, \partial W; \mathbb{Z}) \cong \mathbb{Z} \) is \(d[\ell] \), where \([\ell] \) is the class of a projective line,
5. Each connected component of \(C_0 \) meets \(\overline{L} \).

Proof First note that it is enough to find a smoothly embedded, connected oriented surface \(C_0 \subset W \) satisfying (2)–(5) and such that \(C_0 \) meets \(\partial W \) transversally in a link which is isotopic to \(\overline{L} \), for then we can perform an isotopy on \(C_0 \) supported in a neighbourhood of \(\partial W \) so as to satisfy (1) while still maintaining conditions (2)–(5).

Let \(C \subset \mathbb{C}P^2 \) be a non-singular algebraic curve of degree \(d \), obtained by deforming \(\overline{\Gamma} \) within the space of degree \(d \) algebraic curves. In particular, \(C \) is connected. By choosing \(C \) to be sufficiently close to \(\overline{\Gamma} \), we can assume that the intersection of \(C \) with \(S^3 = \partial B \) remains transverse and that \(C \cap \partial B \) is isotopic to \(L \). Similarly, we can assume that \(C \) meets \(S \) transversally. Now take \(C_0 = C \setminus B \). Then \(C_0 \) meets \(\partial W \) transversally in a link which is isotopic to \(\overline{L} \).

We claim that \(C_0 \) satisfies (5). For if not, \(C_0 \) contains a connected component \(U \) which has no boundary. Then \(U \) is a complex submanifold of \(\mathbb{C}P^2 \). Chow’s theorem implies that \(U \) is algebraic, so \(U \) is an irreducible component of \(C \). But \(C \) is irreducible, which implies \(C = U \). But this is impossible as \(C \) has non-empty intersection with \(\overline{B} \).
C is an algebraic curve of degree d, so C and S meet in $6d$ points. Since S is disjoint from \overline{B}, it follows that C_0 satisfies (2). Moreover, this implies (4), since S represents $6[\ell]$ and all the intersections of S and C_0 are positive.

As C is an algebraic curve of degree d, we have $\chi(C) = 3d - d^2$ by the degree-genus formula and hence $\chi(C_0) = 3d - d^2 - \chi(C \cap \overline{B})$. So to prove (3) it remains to show that $\chi(C \cap \overline{B}) = \chi_4(L)$. In fact, this proven in [32].

3 Adjunction inequalities

We will need an extension of the adjunction inequality to the case of non-vanishing Bauer–Furuta invariants. Recall that to a compact oriented smooth manifold M with $b_1(M) = 0$ and a spinc-structure s, one may define an invariant called the Bauer–Furuta invariant, which takes values in a certain equivariant stable cohomotopy group [2]. In what follows, we will concern ourselves only with the corresponding non-equivariant Bauer–Furuta invariant

$$BF(M, s) \in \pi_{d(M, s)+1}^{st},$$

where π_k^{st} denotes the kth stable homotopy group of spheres and

$$d(M, s) = \frac{c_1(s)^2 - \sigma(M)}{4} - 1 + b_+(M)$$

is the expected dimension of the Seiberg–Witten moduli space.

The following result is the adjunction inequality for Bauer–Furuta invariants. Special cases of this result have appeared in [10–12, 23].

Proposition 3.1 Let M be a smooth, compact oriented 4-manifold with $b_1(M) = 0$ and $b_+(M) > 1$. Let s be a spinc-structure on M for $BF(M, s) \neq 0$. Suppose Σ is a compact, connected, smoothly embedded surface in M and that $[\Sigma]^2 \geq 0$. Then:

1. If $g \geq 1$ then

$$2g(\Sigma) - 2 \geq [\Sigma]^2 + |\langle [\Sigma], c_1(s) \rangle|$$

2. If $g = 0$, then $[\Sigma]$ is a torsion class.

Proof The proof is similar to the case where the Seiberg–Witten invariant of (M, s) is non-zero. The main point is that since $BF(M, s) \neq 0$, it follows that the Seiberg–Witten equations for (M, s) admits a solution for any metric and any perturbation.

Consider first the case that $g \geq 1$ and $[\Sigma]^2 = 0$. The standard neck stretching argument of Kronheimer–Mrowka [22] implies that there exists a translation invariant solutions to the Seiberg–Witten equations on $\Sigma \times \mathbb{R}$, where Σ is given a constant scalar curvature metric and \mathbb{R} the standard Euclidean metric. As in [22], this implies that $2g(\Sigma) - 2 \geq |\langle [\Sigma], c_1(s) \rangle|$. Reversing orientation on Σ if necessary, we obtain $2g(\Sigma) - 2 \geq |\langle [\Sigma], c_1(s) \rangle|$, which proves the result in this case.
The case $g = 0$ was proven in [23, Theorem 4.5] (note however that the condition $[\Sigma] \neq 0$ in the statement of [23, Theorem 4.5] should be replaced with the stronger condition that $[\Sigma]$ is non-torsion. This can be seen by examination of the proof of [9, Lemma 5.1], on which the proof of [23, Theorem 4.5] is based).

Lastly, suppose that $g \geq 1$ and $[\Sigma]^2 = n > 0$. By possibly reversing orientation on Σ, we can assume that $(|\Sigma|, c_1(s)) \geq 0$. Let M_n be manifold obtained by blowing up M at n points disjoint from Σ. So M_n is diffeomorphic to $M\#^n \mathbb{CP}^2$. Let \tilde{s}_i be a spinc-structure on the ith copy of \mathbb{CP}^2 such that $\tilde{s}_i = c_1(\tilde{\sigma}_i)$ represents the ith exceptional divisor and let Σ_n denote the connected sum of Σ with the 2-spheres representing $-S_1, \ldots, -S_n$. Then Σ_n has the same genus as Σ and $[\Sigma_n]^2 = 0$. Define a spinc-structure \tilde{s} on M_n by gluing together the spinc-structures s_i, s_1, \ldots, s_n. Then $c_1(\tilde{\sigma}) = c + S_1 + \cdots + S_n$. Since \mathbb{CP}^2 is negative definite, has vanishing first Betti number and $d(\mathbb{CP}^2, s_i) = -1$, it follows that $BF(\mathbb{CP}^2, s_i) \in \pi_0^{st}$ is the identity map. The connected sum formula for Bauer–Furuta invariants [3, Theorem 1.1], implies that $BF(M_n, \tilde{s}) \neq 0$. Therefore, we are in the self-intersection zero case, so as shown above we have

$$2g(\Sigma) - 2 \geq |(\Sigma_n, c_1(s))| = |(\Sigma, c_1(s))| + n = |(\Sigma, c_1(s))| + [\Sigma]^2,$$

where we used $(|\Sigma|, c_1(s)) \geq 0$ and $[\Sigma]^2 = n$. This is the adjunction inequality. \hfill \Box

Theorem 3.2 Let X be a smooth, compact, oriented 4-manifold with $b_1(X) = 0$ and $b_+(X) = 3 \pmod 4$. Suppose that there is a spinc-structure s with $SW(X, s) = 1 \pmod 2$. Let X_0 be the 4-manifold with boundary S^3 obtained by removing an open ball from X. Let $L \subset S^3$ be a quasipositive link. Then for any connected, oriented, smooth, properly embedded surface $\Sigma \subset X_0$ bounding L, we have

$$-\chi(\Sigma) \geq [\Sigma]^2 + |(\Sigma, c_1(s))| - \chi_4(L).$$

Proof First note that by blowing up X at points disjoint from Σ, we can assume $d(X, s) = 0$. Doing this does not alter the value of $[\Sigma]^2 + |(\Sigma, c_1(s))|$. Let $Y = X\# \mathbb{CP}^2$ be the connected sum of \mathbb{CP}^2 and X. More precisely, we obtain Y by identifying $W = \mathbb{CP}^2 \setminus B$ and X_0 along their boundary S^3. Here we orient S^3 so that it is an ingoing boundary of \mathbb{CP}^2 and an outgoing boundary of X_0. Since S is disjoint from \overline{B}, we may regard it as an embedded surface in Y. Let $\pi : \overline{Y} \to Y$ be the double cover of Y branched over S. To see that the branched cover exists, first consider the double cover $\pi_Z : Z \to \mathbb{CP}^2$ branched along S. In fact Z is a $K3$ surface [13, Corollary 7.3.25] (Z is a compact complex surface with $b_1(Z) = 0$ and using the adjunction formula, one finds that the canonical bundle of Z is trivial). Then $\pi_Z^{-1}(B)$ consists of two balls in Z. By removing these balls and gluing in two copies of X_0, we obtain \overline{Y}. Further, this shows that \overline{Y} is diffeomorphic to the connected sum $Z\#X\#X$ of a $K3$ surface and two copies of X.

Recall that $\pi_1^{st} \cong \mathbb{Z}_2$ and is generated by the Hopf map $\eta : S^3 \to S^2$. According to [3, Proposition 4.4], if $b_+(M) = 3 \pmod 4$ and $SW(M, s) = 1 \pmod 2$, then $BF(M, s) = \eta \in \pi_1^{st}$. In particular, this is the case for (X, s) and also for the $K3$
surface Z, equipped with the unique spinc structure s_Z which comes from a spin-structure. Let $s_{\tilde{Y}}$ denote the spinc-structure on $\tilde{Y} = Z\#X\#X$ obtained by gluing together the spinc-structures s_Z, s, s. The connected sum formula for Bauer–Furuta invariants implies that $BF(\tilde{Y}, s_{\tilde{Y}}) = \eta^3 \in \pi_3^s$. Now since $\eta^3 \neq 0$, we have that the Bauer–Furuta invariant of $(\tilde{Y}, s_{\tilde{Y}})$ is non-zero.

Let $C_0 \subset W$ be as in Lemma 2.2 and let $\Sigma' = \Sigma \cup L C_0$ be the surface in Y obtained by attaching Σ and C_0 along their boundaries. We have that Σ' is connected, since Σ is connected and every component of C_0 meets L. Let $\hat{\Sigma} = \pi^{-1}(\Sigma')$. Since C_0 meets S transversally, it follows that $\hat{\Sigma}$ is a smooth, compact, embedded surface in \tilde{Y} and that the restriction of $\pi : \hat{\Sigma} \to \Sigma$ is a branched double cover with $6d$ branch points.

We have that

$$[\hat{\Sigma}]^2 = 2[\Sigma']^2 = 2[C_0]^2 + 2[\Sigma] = 2d^2 + 2[\Sigma]^2.$$

Now we observe that for any given quasipositive link L, we can choose the algebraic curve Γ to have arbitrarily large degree. Indeed, we can replace Γ by the union of Γ with any number of lines which are disjoint from B. Thus we can take d large enough that $[\hat{\Sigma}]^2 = 2d^2 + 2[\Sigma]^2 > 0$. Having chosen such a Γ, we may apply Proposition 3.1 to obtain

$$-\chi(\hat{\Sigma}) \geq [\hat{\Sigma}]^2 + |\langle [\hat{\Sigma}], c_1(s_{\tilde{Y}}) \rangle|$$

$$\geq 2[\Sigma]^2 + 2d^2 + 2|\langle [\Sigma], c_1(s) \rangle|.$$

Furthermore, by Riemann–Hurwitz, we have

$$\chi(\hat{\Sigma}) = 2\chi(\Sigma') - 6d = 2\chi(\Sigma) + 2\chi(C_0) - 6d = 2\chi(\Sigma) - 2d^2 - 2\chi_4(L),$$

where we used that $\chi(C_0) = 3d - d^2 - \chi_4(L)$ from Lemma 2.2. Putting these together, we get

$$-\chi(\Sigma) + d^2 + \chi_4(L) \geq [\Sigma]^2 + d^2 + |\langle [\Sigma], c_1(s) \rangle|,$$

which gives the result. \hspace{1cm} \Box

Remark 3.3 The proof of Theorem 3.2 can be thought of as a generalisation of the proof of [21, Corollary 1.3].

Corollary 3.4 Let X be a smooth, compact, oriented 4-manifold with $b_1(X) = 0$ and $b_+(X) = 3 \pmod 4$. Suppose that there is a spinc-structure s with $d(X, s) = 0$ and $SW(X, s) = 1 \pmod 2$. Let X_0 be the 4-manifold with boundary S^3 obtained by removing an open ball from X. Let $K \subset S^3$ be a quasipositive knot. Then for any connected, oriented, smooth, properly embedded, homologically trivial surface $\Sigma \subset X_0$ bounding K, we have $g(\Sigma) \geq g_4(K)$. Thus $g_4(K)$ is the minimal genus of a homologically trivial surface in X bounding K.

Remark 3.5 We make some comments on the proof of Theorem 3.2:
In the proof of Theorem 3.2 it is essential that we pass to the branched cover of $Y = X \# \mathbb{CP}^2$. This is because $b_+(\mathbb{CP}^2) = 1 \pmod{4}$ and so the adjunction inequality Proposition 3.1 cannot be directly applied to Y.

To obtain a bound on $\chi(\Sigma)$, one may consider a simpler strategy of capping off X_0 with a 4-ball B^4 and closing up Σ with a surface in B^4 with Euler characteristic equal to $\chi_4(L)$. This will give

$$-\chi(\Sigma) \geq [\Sigma]^2 + \langle [\Sigma], c_1(s) \rangle + \chi_4(L)$$

provided $[\Sigma]^2 \geq 0$ and $[\Sigma]$ is non-torsion. Notice that this differs from Theorem 3.2 in that the right hand side has $+\chi_4(L)$ whereas in Theorem 3.2 we have $-\chi_4(L)$. This inequality is usually a much weaker bound on $\chi(\Sigma)$ than Theorem 3.2. For example, if L is a knot then $\chi_4(L) = 1 - 2\nu_4(L)$, so $-\chi_4(L) \geq \chi_4(L)$, except when $g_4(L) = 0$.

Our inequality may be compared with similar adjunction-type inequalities in [23]. For each spinc-structure for which the Ozsváth–Szabó mixed invariant $\Phi_{X,s}$ is non-zero, we get

$$2g(\Sigma) - 2 \geq [\Sigma]^2 + \langle [\Sigma], c_1(s) \rangle - 2\nu^+(\overline{K})$$

provided either $[\Sigma]^2 \geq 2\nu^+(\overline{K})$ or X has Ozsváth–Szabó simple type [23, Theorem 1.1]. Here $\nu^+(\overline{K})$ is the concordance invariant constructed by Hom and Wu [17]. Note that ν^+ is always non-negative, so this inequality is weaker than Theorem 3.2, unless $2 - 2\nu^+(\overline{K}) > 2g_4(K)$ which can only happen if K is slice.

In the proof of Theorem 3.2, it is crucial that L is quasipositive. This ensures that the number of intersection points of $\Sigma' = \Sigma \cup_L C_0$ with S is exactly $6d = \langle [\Sigma'], [S] \rangle$. For non-quasipositive knots, Lemma 2.2 must generally fail since there are knots which do not satisfy Theorem 3.2. For example, the left handed trefoil $K = \overline{T_{2,3}}$ is H-slice in $K\mathbb{Z}$ [23, Example 2.5], but $g_4(K) = 1$. This implies that Lemma 2.2 fails for K.

Proof of Corollary 1.4 Suppose a can be represented by a surface $S \subset X$ satisfying $2g(S) - 2 = a^2 + \langle a, c_1(s) \rangle$. Now let $X_0 = X \setminus B$, where the ball B is chosen with ∂B disjoint from S. Let $K \subset S^3$ be a quasipositive knot. Choose a connected, smooth, properly embedded surface $\Sigma \subset X_0$ bounding K, supported in a collar neighbourhood of ∂X_0 and having genus equal to $g_4(K)$. Let $\Sigma' \subset X_0$ be the surface obtained by attaching a handle joining Σ to S. Then $g(\Sigma') = g(S) + g_4(K)$ and Σ' is a properly embedded surface representing the class a and bounding K. Therefore

$$g_4(K, X, a) \leq g(\Sigma') = g(S) + g_4(K) = \frac{a^2 + \langle a, c_1(s) \rangle}{2} + g_4(K) + 1.$$

The inequality $g_4(K, X, a) \geq \frac{a^2 + \langle a, c_1(s) \rangle}{2} + g_4(K)$ is obtained by applying Theorem 3.2. \qed
Proof of Theorem 1.9 Let s be a spinc-structure on X such that $d(X, s) = -1$. Since X is negative definite this is equivalent to $c_1(s)^2 = -b_2(X)$. Consider the 4-manifold $X' = K3 \# X$ with spinc-structure $s' = s_0 \# s$, where s_0 is the unique spinc-structure on $K3$ coming from the spin-structure. Then $b_+(X') = 3$ and $SW(X', s') = SW(K3, s_0) = 1$, by the blowup formula for Seiberg–Witten invariants. So we may apply Theorem 3.2 to deduce the inequality

$$-\chi(\Sigma) \geq [\Sigma]^2 + |\langle [\Sigma], c_1(s) \rangle| - \chi_4(L),$$

for any spinc-structure s on X for which $c_1(s)^2 = -b_2(X)$. By Donaldson’s diagonalisation theorem, the intersection form on X is diagonalisable. From this, it is easily seen that the maximum of $|\langle [\Sigma], c_1(s) \rangle|$ over all such spinc-structures on X equals $|[\Sigma]|$. Thus we find that

$$-\chi(\Sigma) \geq [\Sigma]^2 + |[\Sigma]| - \chi_4(L).$$

\[\square\]

Acknowledgements We thank Hokuto Konno for comments on a draft of this paper.

References

1. Baader, S., Feller, P., Lewark, L., Liechti, L.: On the topological 4-genus of torus knots. Trans. Am. Math. Soc. **370**(4), 2639–2656 (2018)
2. Bauer, S., Furuta, M.: A stable cohomotopy refinement of Seiberg–Witten invariants. I. Invent. Math. **155**(1), 1–19 (2004)
3. Bauer, S.: A stable cohomotopy refinement of Seiberg–Witten invariants. II. Invent. Math. **155**(1), 21–40 (2004)
4. Boileau, M., Fourrier, L.: Knot theory and plane algebraic curves. Chaos Solitons Fractals **9**(4–5), 779–792 (1998)
5. Boileau, M., Orevkov, S.: Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe. C. R. Acad. Sci. Paris Sér. I Math. **332**(9), 825–830 (2001)
6. Cavallo, A.: The concordance invariant tau in link grid homology. Algebr. Geom. Topol. **18**(4), 1917–1951 (2018)
7. Cochran, T.D., Harvey, S., Horn, P.: Filtering smooth concordance classes of topologically slice knots. Geom. Topol. **17**(4), 2103–2162 (2013)
8. Conway, A., Nagel, M.: Stably slice disks of links. J. Topol. **13**(3), 1261–1301 (2020)
9. Fintushel, R., Stern, R.J.: Immersed spheres in 4-manifolds and the immersed Thom conjecture. Turk. J. Math. **19**(2), 145–157 (1995)
10. Furuta, M., Kametani, Y., Matsue, H.: Spin 4-manifolds with signature $= -32$. Math. Res. Lett. **8**(3), 293–301 (2001)
11. Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Homotopy theoretical considerations of the Bauer–Furuta stable homotopy Seiberg–Witten invariants. Proceedings of the Nishida Fest (Kinosaki 2003), pp. 155–166, Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry (2007)
12. Furuta, M., Kametani, Y., Minami, N.: Stable-homotopy Seiberg–Witten invariants for rational cohomology $K3^{\#k3}$'s. J. Math. Sci. Univ. Tokyo **8**(1), 157–176 (2001)
13. Gompf, R.E., Stipsicz, A.: 4-manifolds and Kirby calculus. Graduate Studies in Mathematics, vol. 20, xvi+558 pp. American Mathematical Society, Providence, RI (1999)
14. Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces. Israel J. Math. **200**(1), 127–140 (2014)
15. Hedden, M.: Notions of positivity and the Ozsváth–Szabó concordance invariant. J. Knot Theory Ramif. **19**(5), 617–629 (2010)
16. Hedden, M., Raoux, K.: Knot Floer homology and relative adjunction inequalities. arXiv:2009.05462 (2020)
17. Hom, J., Wu, Z.: Four-ball genus bounds and a refinement of the Ozsváth–Szabó tau invariant. J. Symplectic Geom. 14(1), 305–323 (2016)
18. Iida, N., Mukherjee, A., Taniguchi, M.: An adjunction inequality for the Bauer–Furuta type invariants, with applications to sliceness and 4-manifold topology. arXiv:2102.02076 (2021)
19. Kjuchukova, A., Miller, A.N., Ray, A., Sakalli, S.: Slicing knots in definite 4-manifolds. arXiv:2112.14596 (2021)
20. Konno, H., Miyazawa, J., Taniguchi, M.: Involutions, knots, and Floer K-theory. arXiv:2110.09258 (2021)
21. Kronheimer, P.B., Mrowka, T.S.: Gauge theory for embedded surfaces. I. Topology 32(4), 773–826 (1993)
22. Kronheimer, P.B., Mrowka, T.S.: The genus of embedded surfaces in the projective plane. Math. Res. Lett. 1(6), 797–808 (1994)
23. Manolescu, C., Marengon, M., Piccirillo, L.: Relative genus bounds in indefinite four-manifolds. arXiv:2012.12270 (2020)
24. Manolescu, C., Marengon, M., Sarkar, S., Willis, M.: A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds. Duke Math. J. (to appear). arXiv:1910.08195 (2019)
25. Murasugi, K.: On a certain numerical invariant of link types. Trans. Am. Math. Soc. 117, 387–422 (1965)
26. Nouh, M.A.: Genera and degrees of torus knots in \(\mathbb{C}P^2 \). J. Knot Theory Ramif. 18(9), 1299–1312 (2009)
27. Ozsváth, P., Szabó, Z.: The symplectic Thom conjecture. Ann. Math. (2) 151(1), 93–124 (2000)
28. Ozsváth, P., Szabó, Z.: Knot Floer homology and the four-ball genus.Geom. Topol. 7, 615–639 (2003)
29. Plamenevskaya, O.: Bounds for the Thurston–Bennequin number from Floer homology. Algebr. Geom. Topol. 4, 399–406 (2004)
30. Rudolph, L.: Algebraic functions and closed braids. Topology 22(2), 191–202 (1983)
31. Rudolph, L.: Some topologically locally-flat surfaces in the complex projective plane. Comment. Math. Helv. 59(4), 592–599 (1984)
32. Rudolph, L.: Quasipositivity as an obstruction to sliceness. Bull. Am. Math. Soc. (N.S.) 29(1), 51–59 (1993)
33. Sato, K.: Topologically slice knots that are not smoothly slice in any definite 4-manifold. Algebr. Geom. Topol. 18(2), 827–837 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.