Statistical properties of sites visited by independent random walks

E Ben-Naim\(^1\) and P L Krapivsky\(^2,3,\ast\)

\(^1\) Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
\(^2\) Department of Physics, Boston University, Boston, MA 02215, United States of America
\(^3\) Santa Fe Institute, Santa Fe, NM 87501, United States of America
E-mail: pkrapivsky@gmail.com

Received 2 August 2022
Accepted for publication 21 September 2022
Published 31 October 2022

Abstract. The set of visited sites and the number of visited sites are two basic properties of the random walk trajectory. We consider two independent random walks on hyper-cubic lattices and study ordering probabilities associated with these characteristics. The first is the probability that during the time interval \((0, t)\), the number of sites visited by a walker never exceeds that of another walker. The second is the probability that the sites visited by a walker remain a subset of the sites visited by another walker. Using numerical simulations, we investigate the leading asymptotic behaviors of the ordering probabilities in spatial dimensions \(d = 1, 2, 3, 4\). We also study the time evolution of the number of ties between the number of visited sites. We show analytically that the average number of ties increases as \(a_1 \ln t\) with \(a_1 = 0.970508\) in one dimension and as \((\ln t)^2\) in two dimensions.

Keywords: Brownian motion, persistence

Contents

1. Introduction ... 2

\ast Author to whom any correspondence should be addressed.
1. Introduction

Random walk is an elementary random process which is ubiquitous in several branches of mathematics, physics, chemistry, biology, finance, etc [1–5]. Questions involving large deviations, persistence, and geometrical characteristics of random walks continue to emerge [6, 7]. Here, we investigate ordering probabilities associated with the set of sites visited by independent random walks.

The maximum position attained by the walk is a basic characteristic of the set of visited sites. The maxima of two one-dimensional random walks remain ordered up to time \(t \) with a probability that decays as \(t^{-1/4} \) [8, 9]. In general, it is difficult to compute ‘persistence’ exponents for non-Markovian quantities such as the maximal position of a random walk [10, 11]. Nevertheless, the persistence exponent \(1/4 \) can be derived analytically [8, 9]. Further, it can also be shown that the average number of lead changes \(A(t) \) grows logarithmically with time [12]

\[
A(t) \simeq \pi^{-1} \ln t.
\]

(1)

The maximal position is (i) not uniquely defined in higher dimensions, and (ii) does not [13, 14] necessarily increase by equal amounts [15]. In this study, we focus on the total number \(\mathcal{N}(t) \) of distinct sites visited by a random walk, range in short; in one dimension, \(\mathcal{N}(t) = M(t) - m(t) + 1 \) where \(M(t) \) is the maximum, and \(m(t) \) is the minimum. Unlike the maximum, the range is well-defined in arbitrary dimension; moreover, it is a piecewise constant function of time that increases by one.

We investigate the ‘competition’ between the ranges of, as well as the sets of sites visited by, two independent random walks. Specifically, we consider two identical random walks with the same starting position on hyper-cubic lattices \(\mathbb{Z}^d \) in dimension \(d \). In each step, each random walk moves to one of its \(2d \) neighboring sites, a site that is selected randomly and independently. We study survival probabilities associated with the number of visited sites and the set of visited sites in dimensions \(d = 1, 2, 3, 4 \). (We expect that the asymptotic behavior for \(d = 4 \) holds for all \(d > 4 \).) Our extensive numerical simulations reveal a diverse set of asymptotic behaviors ranging from power laws and stretched exponentials to simple exponentials. We also find asymptotic behaviors varying logarithmically with time.

https://doi.org/10.1088/1742-5468/ac9619
Let $N_j(t)$ be the number of sites visited by the jth walker: $N_j(t) = N_j(t-1) + 1$ if at time t the jth walker hops to a previously unvisited site. Initially $N_1(0) = N_2(0) = 1$. The ordering probability associated with the ranges N_1 and N_2 is (see figure 1)

$$P(t) = \text{Prob}[N_1(\tau) \leq N_2(\tau) \mid 0 \leq \tau \leq t].$$

In other words, $P(t)$ is the probability that a random walker never visits more sites than another independent random walker up time t. The random quantities N_1 and N_2 are independent and non-Markovian, and this feature makes determination of the ordering probability $P(t)$ challenging [10, 11].

One can also compare the sets of sites visited by the two walkers, denoted by $S_1(t)$ and $S_2(t)$. For the sets of visited sites, the natural ordering is inclusion [16]. The ordering probability associated with the sets $S_1(t)$ and $S_2(t)$ is

$$Q(t) = \text{Prob}[S_1(\tau) \subseteq S_2(\tau) \mid 0 \leq \tau \leq t].$$

Hence, $Q(t)$ is the probability that a walker never visits a site that has not been previously visited by another independent walker up to time t. One can visualize this condition as a ‘matryoshka’ arrangement with the set S_1 always remaining a subset of S_2 throughout the time interval $(0, t)$, see figure 2.

Since $N_j = |S_j|$, where $|S|$ denotes the number of elements in set S, the probability $Q(t)$ is bounded from above by $P(t)$:

$$Q(t) \leq P(t)$$

for all $t \geq 0$. Our simulations show that the ordering probabilities $P(t)$ and $Q(t)$ decay algebraically in one dimension

$$P(t) \sim t^{-\beta}, \quad Q(t) \sim t^{-\gamma}$$

with $\beta = 0.667 \pm 0.002$ and $\gamma = 1.45 \pm 0.03$. The algebraic decays (5) are consistent with the asymptotic behavior of the ordering probability associated with maxima [8, 9].
We also study the number of distinct ties, that is, instances when N_1 equals N_2 and vice versa. Our theoretical results suggest that the average number of ties during the time interval $(0, t)$ grows as

$$A(t) \simeq \begin{cases}
 a_1 \ln t & d = 1 \\
 a_2 (\ln t)^2 & d = 2 \\
 a_3 t^{1/2} (\ln t)^{-1/2} & d = 3 \\
 a_d t^{1/2} & d \geq 4.
\end{cases} \tag{6}$$

In section 2, we recall a few basic results about statistics of the range of a random walk. In section 3 we present the asymptotic behaviors of the ordering probabilities $P(t)$ and $Q(t)$ suggested by numerical simulations, and we also provide heuristic arguments supporting some of these behaviors. In section 4, we study the average number of ties and obtain the growth laws (6) theoretically. Generalizations to multiple independent random walks are outlined in section 5. We conclude with a discussion (section 6).

2. Range of a random walk

The number of distinct sites visited by a random walk, namely the range, has been the subject of considerable research [17–21]. Statistical properties of the range are well understood in one dimension [22–25], but remain incomplete in higher dimensions [26–37].

We now summarize key statistical properties of the range, which we later use to analyze the growth laws (6). These results apply to a symmetric nearest-neighbor random walk on the hyper-cubic lattice \mathbb{Z}^d in dimension d. The overall hopping rate is set to unity so that the variance in the displacement \mathbf{r} equals time, $\langle r^2 \rangle - \langle r \rangle^2 = t$. The leading
asymptotic behaviors of the average range \(N(t) = \langle N(t) \rangle\) are

\[
N(t) \simeq \begin{cases} \\
\sqrt{\frac{8t}{\pi}} & d = 1 \\
\frac{\pi t}{\ln t} & d = 2 \\
t/W_d & d > 2
\end{cases}
\] (7)

where \(W_d\) are the so-called Watson integrals [38–41]. For hyper-cubic lattices

\[
W_d = \int_0^{2\pi} \cdots \int_0^{2\pi} \left[1 - \frac{1}{d} \sum_{i=1}^{d} \cos q_i \right]^{-1} \prod_{i=1}^{d} \frac{dq_i}{2\pi}
\] (8)

when \(d \geq 3.\) For the cubic lattice, the Watson integral can be expressed [39] via the gamma function,

\[
W_3 = \frac{\sqrt{6}}{32\pi^3} \Gamma\left(\frac{1}{24}\right) \Gamma\left(\frac{5}{24}\right) \Gamma\left(\frac{7}{24}\right) \Gamma\left(\frac{11}{24}\right)
\] (9)

The asymptotic behavior of the variance, \(V = \langle N^2 \rangle - \langle N \rangle^2,\) is also known

\[
V(t) \simeq \begin{cases} \\
(4 \ln 2 - 8/\pi)t & d = 1 \\
V_2 t^2/(\ln t)^4 & d = 2 \\
V_3 t \ln t & d = 3 \\
V_d t & d \geq 4
\end{cases}
\] (10)

The amplitudes for square and cubic lattices are

\[
V_2 = \pi^2 - \frac{\pi^4}{6} - 2\pi^2 \int_0^1 dx \frac{\ln x}{1 - x + x^2} = 16.768193 \ldots
\]

\[
V_3 = 4\pi^{-2}(1 - 1/W_3)^4 = 0.005450284 \ldots
\]

where \(W_3\) is given by (9), see [27–29, 34] for derivations of the amplitudes \(V_2\) and \(V_3.\) However, no compact formulas are available for the amplitude \(V_d\) when \(d \geq 4.\)

Equations (7) and (10) imply that the random quantity \(N(t)\) is non-self-averaging in one dimension and self-averaging when \(d \geq 2.\) Further, \(N(t)\) is weakly self-averaging in two dimensions since the ratio \(\sqrt{V/N}\) vanishes very slowly as \((\ln t)^{-1}.\)

The random variable \(N\) is fully characterized by the distribution \(P_n(t) = \text{Prob}[N(t) = n].\) In one dimension, the range distribution converges to [22–25]

\[
P_n(t) \simeq \frac{8}{\sqrt{2\pi t}} \sum_{j \geq 1} (-1)^{j-1} j^2 \exp \left[-\frac{j^2 n^2}{2t}\right].
\] (11)

For a random walk on a square lattice, the range distribution is non-Gaussian [31], and a closed explicit expression for the asymptotic range distribution remains elusive. When
$d \geq 3$, the range distribution is asymptotically Gaussian [27–29]

$$P_n(t) \simeq \frac{1}{\sqrt{2\pi V(t)}} \exp \left\{ -\frac{[n - N(t)]^2}{2V(t)} \right\}$$

with $N(t)$ and $V(t)$ given by (7) and (10).

The number of common sites $C = |S_1 \cap S_2|$ quantifies the overlap between the sites visited by two independent random walkers. The average number of common sites, $C(t) = \langle C(t) \rangle$, grows according to

$$C(t) \sim \begin{cases}
 t^{1/2} & d = 1 \\
 t/(\ln t)^2 & d = 2 \\
 t^{1/2} & d = 3 \\
 \ln t & d = 4 \\
 1 & d \geq 5.
\end{cases}$$

See [42, 43] for the derivation of (13) and generalization to common sites visited by m walkers with arbitrary m. Figure 3 illustrates the number of common sites visited by two walkers on the square lattice.

3. Ordering probabilities

Here, we analyze the evolution of the ordering probabilities $P(t)$ and $Q(t)$ using numerical simulations. We implement the random walk process in the standard way:

(a) Initially, the random walk is at the origin.
(b) At each time step, the walker hops to one of its $2d$ neighboring sites, a site that is chosen at random. Therefore, throughout the evolution, the average displacement remains equal to zero.

(c) Time is augmented by one after each step.

With this implementation, the variance of the displacement $r(t)$ equals time, $\langle r^2(t) \rangle = t$.

In one dimension, we keep track of three quantities: the current position of the walk, the leftmost position $m(t)$ and the rightmost position $M(t)$; the total number of visited sites is given by $N(t) = M(t) - m(t) + 1$. Hence, the required computer memory is minimal. In higher dimensions, it is necessary to maintain a physical lattice to indicate which sites were visited by the walker and which remain unvisited. The simulations can be still performed efficiently by keeping track of all sites visited by the walk and resetting only the visited sites on the indicator lattice at the end of each run. This approach is especially well suited for measuring survival probabilities.

The Monte Carlo simulation results suggest the following asymptotic behaviors for the ordering probability $P(t)$ associated with the range (2) (see figures 4–6):

$$P(t) \sim \begin{cases}
 t^{-\beta} & d = 1 \\
 t^{-\beta} \ln t & d = 2 \\
 t^{-1/2}(\ln t)^{-1/2} & d = 3 \\
 t^{-1/2} & d = 4
\end{cases} \quad (14)$$

Simulations suggest a simple rational value $\beta = 2/3$ for the persistence exponent; specifically, we measure

$$\beta = 0.667 \pm 0.002 \quad (15)$$

in one dimension (see figure 4). In two dimensions, the effective exponent is only slightly smaller than $2/3$, and moreover, the quantity $-\ln P/\ln t$ increases slowly with time. These observations indicate a possible logarithmic correction, and indeed, the simulations support the decay $P \sim t^{-2/3} \ln t$, see figure 5. A simple $t^{-1/2}$ decay emerges in four dimensions, and we expect this behavior extends to $d > 4$. In three dimensions, the effective exponent is slightly larger than $1/2$. Moreover, the quantity $-\ln P/\ln t$ decreases slowly with time, again indicating a logarithmic correction. The numerical results support the decay law $P \sim t^{-1/2}(\ln t)^{-1/2}$, see figure 6.

When $d \geq 4$, the ranges $N_1(t)$ and $N_2(t)$ perform independent directed random walks, so $P \sim t^{-1/2}$. The logarithmic correction to the $t^{-1/2}$ asymptotic in three dimensions is due to the temporal behavior of the variance, see equation (10). Comparing equation (14) with the variance in the number of visited sites, equation (10), we observe that $P \propto V^{-1/2}$ when $d \geq 3$. The first-passage probability for a broad class of one-dimensional Markovian random variables decays as $(\text{variance})^{-1/2}$, see [44–46]. Therefore, the first-passage probability for the random variable $N_1 - N_2$, namely $P(t)$, is expected to have this property when $d \geq 3$ as N_1 and N_2 become uncorrelated and Markovian in the asymptotic limit.

https://doi.org/10.1088/1742-5468/ac9619
Figure 4. The ordering probability $P(t)$ versus time t in one dimension. An average over 2^{38} independent runs has been performed. Also shown for reference is a line with slope 0.667. The inset shows the local slope $\beta \equiv -\frac{\ln P}{\ln t}$.

Figure 5. The quantity $t^{2/3}P(t)$ versus time t on a square lattice. Simulation results represent an average of 2^{34} independent realizations.

In one dimension, the algebraic decay of $P(t)$ is consistent with the behavior found for the maxima [8]. It would be interesting to find a heuristic explanation for the logarithmic enhancement of the ordering probability $P(t)$ in two dimensions. We note that logarithmic terms arise in equations (7), (10), and also characterize the support of the two-dimensional random walk, see [47–56].

The ordering probability associated with the set of visited sites $Q(t)$ is bounded from above by the quantity $P(t)$, as stated in equation (4). Indeed, the condition in (3) is significantly more stringent than the condition in (2). In one dimension

$$Q(t) \sim t^{-\gamma}, \quad \gamma = 1.45 \pm 0.03.$$ \hspace{1cm} (16)

Both $P(t)$ and $Q(t)$ decay algebraically in one dimension. The inequality $\gamma > \beta$ follows from equation (4), yet a more stringent relation, $\gamma > 1 > \beta$, holds. These two inequalities

https://doi.org/10.1088/1742-5468/ac9619
Figure 6. The quantity \([t^{1/2}P(t)]^{-1} \) versus \(\sqrt{\ln t} \) on a cubic lattice. Simulation results represent an average of 2\(^{30}\) runs.

imply that average first-passage time associated with the survival probability \(P(t) \) is infinite, while that associated with the quantity \(Q(t) \) is finite.

When \(d \geq 2 \), the ordering probability \(Q(t) \) decays faster than any power law. Numerical simulations (figures 7–9) support stretched exponential behaviors:

\[
\ln\left[\frac{1}{Q(t)}\right] \sim \begin{cases}
 t^{1/2} & d = 2 \\
 t^{3/4} & d = 3 \\
 t & d \geq 4.
\end{cases}
\] (17)

The temporal range probed by the simulations is much larger in dimension \(d = 2 \) compared with that in dimensions \(d = 3 \) and \(d = 4 \). In \(d = 2 \), the simulation results provide evidence in support of the stretched exponential decay in (17) as the quantity \(\nu \equiv \frac{\ln \ln [1/Q(t)]}{\ln t} \) saturates at the value \(\nu = 0.50 \pm 0.01 \); see inset to figure 7, the region \(t > 80 \) was excluded because of poor statistics. The sharp decay of the quantity \(Q(t) \) in \(d = 3 \) and \(d = 4 \) dimensions makes it difficult to assess the asymptotic behavior and the decays stated in (17) represent our best estimates based on extensive Monte Carlo simulations. For instance, in \(d = 3 \), the asymptotic behavior quoted in (17) is only slightly better aligned with the simulation results than the decay \(\ln[1/Q(t)] \sim -t/\ln t \).

Establishing the asymptotic behaviors stated in (17) theoretically is a formidable challenge. In \(d \geq 3 \), a random walk hops to an unvisited site with a non-vanishing probability in the long-time limit, suggesting \(Q(t) \) decays exponentially [57]. However, we find purely exponential decay only when \(d \geq 4 \).

To appreciate the plausibility of the exponential decay, consider two random walks with identical trajectories. In this scenario, the sets of sites visited by the two walkers are identical, \(S_1 \equiv S_2 \). Such a time evolution is realized with probability \((2d)^{-t} \). This argument provides the lower bound \(Q(t) \geq (2d)^{-t} \) and the upper bound \(b_d \leq \ln(2d) \).
Figure 7. A semi-log plot of $Q(t)$ versus $t^{1/2}$ in two dimensions. Simulation results represent an average of 2^{45} independent runs. The inset displays the quantity $\nu \equiv d\ln \ln \frac{1}{Q}/d\ln t$ versus time t.

Figure 8. A semi-log plot of $Q(t)$ versus $t^{3/4}$ in three dimensions. Simulation results represent an average of 2^{46} independent runs.

In $d = 4$, the numerical simulations give $b_4 = 1.05 \pm 0.05$, while the upper bound is $\ln 8 = 2.079$. We stress that the bound $b_d \leq \ln(2d)$ applies to a discrete-time random walk.

4. The number of ties

We now study ties between the ranges $N_1 = |S_1|$ and $N_2 = |S_2|$, i.e. instances when the number of sites visited by the two random walkers become equal. The random quantity $N_1 - N_2$ is piecewise constant, and changes by unit increments or decrements. Specifically, we are interested in distinct ties that occur when $N_1 - N_2$ resets to zero. Let $T(t)$ be the number of distinct ties during the time interval $(0, t)$. The initial condition is $T(0) = 1$. We define $\Phi_n(t) = \text{Prob}[T(t) = n]$ to be the probability the number of distinct
ties at time t equals n. Our focus is the average number of ties,

$$A(t) = \sum_{n \geq 1} n\Phi_n(t) \quad (18)$$

To obtain the asymptotic behavior of the average number of ties, we use the general formula [12]

$$\frac{dA}{dt} = 2\sum_{n \geq 2} P_n \frac{dP_n}{dt} \quad (19)$$

This equation relates the growth of the average number of ties to the range distribution P_n and its corresponding cumulative distribution

$$P_n = \sum_{k \geq n} P_k \quad (20)$$

To derive (19) we note that N_1 and N_2 are independent variables. The number of ties can increase only when: (i) these quantities differ by one, say $N_1 = n - 1$ and $N_2 = n$, and (ii) the smaller quantity N_1 increases, $n - 1 \rightarrow n$. The factor 2 in (19) accounts for the fact that either random walk may be in the lead. The rate by which the trailing walker makes the jump $n - 1 \rightarrow n$, denoted by $W_{n-1,n}$, is the gain term in $\frac{dP_n}{dt}$, viz

$$\frac{dP_n}{dt} = W_{n-1,n} - W_{n,n+1} \quad (21)$$

Similarly, we have

$$\frac{dP_{n+1}}{dt} = W_{n,n+1} - W_{n+1,n+2},$$

$$\frac{dP_{n+2}}{dt} = W_{n+1,n+2} - W_{n+2,n+3},$$

$$\frac{dP_{n+3}}{dt} = W_{n+2,n+3} - W_{n+3,n+4}, \quad (22)$$
etc. By summing (21) and all the successive equation (22) we obtain

\[
\frac{dP_n}{dt} = \sum_{k \geq n} \frac{dP_k}{dt} = W_{n-1,n}
\]

(23)

thereby leading to (19). The rate equation (19), which utilizes continuous time, is suitable for describing the long-time asymptotic behavior.

Using the asymptotic formula (11) and replacing summation with integration, we find

\[
P_n \simeq \frac{8}{\sqrt{2\pi t}} \sum_{j \geq 1} (-1)^{j-1} j^2 \int_0^\infty dk \exp\left[-\frac{j^2 k^2}{2t}\right]
\]

\[
= 4 \sum_{j \geq 1} (-1)^{j-1} j \operatorname{Erfc}\left(\frac{jn}{\sqrt{2t}}\right)
\]

(24)

where \(\operatorname{Erfc}(y) = \frac{2}{\sqrt{\pi}} \int_y^\infty dz e^{-z^2}\) is the error function. Differentiating (24) yields

\[
\frac{dP_n}{dt} \simeq t^{-1} \frac{4}{\sqrt{\pi}} \sum_{j \geq 1} (-1)^{j-1} j^2 e^{-j^2 \nu^2}
\]

(25)

Substituting (11) and (25) into (19) and replacing summation over \(n\) with integration over \(\nu = n/\sqrt{2t}\) we arrive at

\[
\frac{dA}{dt} \simeq 2 \frac{\sqrt{V}}{\sqrt{\pi}} N \int_{-\infty}^{\infty} d\sigma \left[\mathcal{P}_d(\sigma)\right]^2
\]

(29)

to leading order.

The simulation results are in excellent agreement with this theoretical prediction: the numerically measured amplitude, \(a_1 = 0.970 \pm 0.001\), is within 0.05% of the theoretical value (see also figure 10).

When \(d \geq 2\), the range is a self-averaging quantity with the asymptotic distribution

\[
P_n(t) \simeq \frac{1}{\sqrt{V}} \mathcal{P}_d(\sigma), \quad \sigma = \frac{n - N}{\sqrt{V}}.
\]

(28)

By inserting (28) into (19) we obtain

\[
\frac{dA}{dt} \simeq 2 \frac{\sqrt{V}}{\sqrt{\pi}} \frac{dN}{dt} \int_{-\infty}^{\infty} d\sigma \left[\mathcal{P}_d(\sigma)\right]^2
\]

(29)
Figure 10. The average number of ties A versus time t in one dimension. We compare simulation results with theory. Fitting to the form $A \simeq a_1 \ln t$ in the range $10^6 < t < 10^8$ yields the estimate $a_1 = 0.970 \pm 0.001$. The inset compares simulation results for the quantity $a_1(t) \equiv dA/d\ln t$ with theoretical prediction, equation (27). Simulation results represent an average of 2^{20} independent runs.

In two dimensions, $\frac{dN}{dt} \simeq \frac{\pi}{\ln t}$ and $V \simeq V_3^2 / (\ln t)^4$, and therefore, equation (29) leads to the asymptotic behavior $A(t) \simeq a_2 (\ln t)^2$ in (6) with

$$a_2 = \frac{\pi}{\sqrt{V_2}} \int_{-\infty}^{\infty} d\sigma [P_2(\sigma)]^2$$

(30)

The range distribution P_2 is not Gaussian in two dimensions, but it has been probed numerically in [58] and was found to be close to Gaussian [59]. Substituting $P_2^{\text{Gauss}} = (2\pi)^{-1/2} e^{-\sigma^2/2}$ into (30) yields the uncontrolled approximation (see figure 11)

$$a_2^{\text{Gauss}} = \sqrt{\frac{\pi}{4V_2}} = 0.216\ldots$$

(31)

Numerically we measured $a_2 = 0.227 \pm 0.001$, a value within 5% of (31). Thus, the uncontrolled Gaussian approximation yields a close estimate for the amplitude a_2.

When $d = 3$, the range distribution is Gaussian. Using $P_3 = (2\pi)^{-1/2} e^{-\sigma^2/2}$, $\frac{dN}{dt} \simeq \frac{1}{W_3}$ and $V = V_3 t \ln t$ we recast equation (29) into

$$\frac{dA}{dt} \simeq \frac{1}{W_3 \sqrt{\pi} V_3 t \ln t}.$$

(32)

Performing the integration yields $A(t) \simeq a_3 \sqrt{t / \ln t}$ with

$$a_3 = \frac{2}{W_3 \sqrt{\pi} V_3} = \frac{\sqrt{\pi} W_3}{(W_3 - 1)^2} = 10.079423\ldots$$

(33)

However, numerically we find that $A \sim \sqrt{t / \ln t}$ provides a significantly better fit to simulation results than the theoretical prediction $A \sim \sqrt{t / \ln t}$, see figure 12.

https://doi.org/10.1088/1742-5468/ac9619
Figure 11. The average number of ties A versus $(\ln t)^2$ in two dimensions. Simulation results are compared with the theoretical prediction. The inset compares simulation results for the pre-factor $a_2(t) \equiv dA/d(\ln t)^2$ with the approximate value (31). An average over 2^{10} independent runs has been performed.

Figure 12. The quantity \sqrt{t}/A versus time in three dimensions.

When $d \geq 4$, equation (29) becomes

$$\frac{dA}{dt} \simeq \frac{1}{W_d \sqrt{\pi V_d t}}$$

leading to $A(t) \simeq a_d \sqrt{t}$ as in (6) with the amplitude

$$a_d = \frac{2}{W_d \sqrt{\pi V_d}}.$$ \hspace{1cm} (35)

This completes the derivation of the asymptotic behaviors (6) with the amplitudes (27), (33), and (35). However, the numerical simulation results are at odds with the theoretical prediction for a_4. Numerically, we measured $W_4 = 1.24 \pm 0.01$ in agreement
with $W_4 = 1.239\,467$ [60] that follows from (8). Numerical simulations yield the amplitude $V_4 = 0.26 \pm 0.01$ for the variance. Accordingly, equation (35) gives $a_4 = 1.78$ but the numerical simulations yield $a_4 = 1.04 \pm 0.01$.

The diffusive growth $A(t) \sim \sqrt{t}$ for $d \geq 4$, which we verified numerically for $d = 4$, can be deduced using heuristic arguments. In the limit $d \to \infty$, the quantities N_1 and N_2 become Markovian. These two quantities reduce to directed random walks: each directed walk undergoes $+1$ hops with unit rate. Hence, the difference $N_1 - N_2$ performs a one-dimensional symmetric random walk as it undergoes ± 1 jumps, both with unit rate. Consequently, the number of ties is equivalent to the number of times a symmetric random walk returns to the origin. As a result, the average number of ties grows diffusively, $A(t) \sim \sqrt{t}$, in the limit $d \to \infty$. While this diffusive growth is formally justified only in infinite dimension, we expect this behavior to hold for all $d \geq 4$.

The logarithmic growth of the number of ties in one dimension resembles the growth law (1) corresponding to ties between maxima. The probability to observe n ties between maxima of two random walks during the time interval $(0, t)$ was found to be Poissonian $\sim t^{-1/4}(\ln t)^n$ [12]. We anticipate a similar functional form holds for ties between the ranges of two random walks,

$$\Phi_n(t) \sim t^{-2/3}(\ln t)^n. \quad (36)$$

Numerically, we confirmed (36) for $n = 0, 1, 2, 3$.

5. Multiple random walks

The probability $P_m(t)$ that the ranges of m random walks remain perfectly ordered till time t, defined by

$$P_m(t) = \text{Prob}[\mathcal{N}_1(\tau) \leq \cdots \leq \mathcal{N}_m(\tau) | 0 \leq \tau \leq t] \quad (37)$$

is a straightforward generalization of (2). We compare this quantity with the probability

$$\Pi_m(t) = \text{Prob}[x_1(\tau) \leq \cdots \leq x_m(\tau) | 0 \leq \tau \leq t] \quad (38)$$

that the positions of m one-dimensional random walks remain ordered till time t, When $t \to \infty$, these ordering probabilities decay algebraically with time [61–63],

$$\Pi_m(t) \sim t^{-\beta_m}, \quad \beta_m = \frac{1}{4}m(m - 1). \quad (39)$$

In high dimensions, the range of a random walk undergoes a one-dimensional directed random walk. Hence, the asymptotic behavior of the ordering probability $P_m(t)$ when $d \geq 4$ is specified in equation (39). Based on the asymptotic behaviors of $P_2(t)$ given in
Table 1. The exponents α_m and β_m obtained from numerical simulations of m one-dimensional random walks for $m = 2, \ldots, 6$. The exponents $\overline{\alpha}_m$ and $\overline{\beta}_m$ characterizing similar ordering of the positions of one-dimensional random walks are listed as a reference. The exponents $\overline{\alpha}_2 = \frac{1}{2}$, $\overline{\alpha}_3 = \frac{2}{3}$ are known analytically. The leading large m behaviors is shown in the last column. The asymptotic behavior $\beta_m \simeq Bm^2$ is conjectural, the amplitude B is unknown.

m	2	3	4	5	6	$m \gg 1$
α_m	0.667	0.947	1.103	1.233	1.315	$(\ln m)/4$
$\overline{\alpha}_m$	1/2	3/4	0.913	1.03	1.11	$(\ln m)/4$
β_m	0.667	1.91	3.65	6.0	8.3	Bm^2
$\overline{\beta}_m$	1/2	3/2	3	5	15/2	$m(m-1)/4$

The set of algebraic exponents β_m characterizes $P_m(t)$ in one dimension (see table 1), and additionally, the logarithmic exponents h_m and g_m characterize this ordering probability when $d = 2$ and $d = 3$.

We also studied the probability $L_m(t)$ that the range of one walk (the leader) exceeds that of every other walk during the time interval $(0, t)$, that is,

$$L_m(t) = \text{Prob}[N_1(\tau) \geq N_j(\tau) | j = 2, \ldots, m; 0 \leq \tau \leq t].$$

Numerically, we find that the ordering probability exhibits an algebraic decay in one dimension (see table 1)

$$L_m(t) \sim t^{-\alpha_m}.$$ (41)

This algebraic decay is similar to that of the ordering probability $P_m(t)$, see equation (40). In table 1, we also list the set of exponents $\overline{\alpha}_m$ characterizing the decay of the probability that a random walker remains in the lead position [64–70], that is

$$\text{Prob}[x_1(\tau) \geq x_j(\tau) | j = 2, \ldots, m; 0 \leq \tau \leq t] \sim t^{-\overline{\alpha}_m}.$$ (42)

The exponents presented in table 1 indicate $\alpha_m > \overline{\alpha}_m$ and $\beta_m > \overline{\beta}_m$ for all $m \geq 2$. The growth of the exponents α_m and β_m with m resembles that of $\overline{\alpha}_m$ and $\overline{\beta}_m$. The asymptotic growth is $\overline{\alpha}_m \simeq \frac{1}{4} \ln m$ for $m \gg 1$, see [65–67].

Using heuristic arguments, it is possible to show that the leading large-m behaviors of α_m and $\overline{\alpha}_m$ are the same. First, we recall the known derivation for the quantity $\overline{\alpha}_m$. The boundaries of the region visited by random walks other than the leader become

\begin{equation}
P_m \sim \begin{cases}
t^{-\beta_m} & d = 1 \\
 t^{-\beta_m} (\ln t)^{h_m} & d = 2 \\
 t^{-m(m-1)/4} (\ln t)^{-g_m} & d = 3 \\
 t^{-m(m-1)/4} & d \geq 4.
\end{cases}
\end{equation} (40)
more and more deterministic as $m \to \infty$. The region is asymptotically symmetric with respect to the origin, $(-x, x)$, with x estimated from the criterion

$$\int_0^\infty dx \frac{m - 1}{\sqrt{2\pi t}} \exp\left[-\frac{x^2}{2t}\right] \sim 1. \quad (42)$$

An elementary asymptotic analysis yields

$$x_s \simeq \sqrt{2Ct}, \quad C = \ln m. \quad (43)$$

The leader must stay in the region $x > x_s = \sqrt{C\tau}$ during the time interval $0 < \tau < t$. This problem admits an exact solution \([65–67]\) for arbitrary $C > 0$, namely, the survival probability decays as $t^{-\alpha}$ with $\alpha = \alpha(C)$. We are interested in the $m \gg 1$ behavior, and generally, the deterministic description of the boundaries is asymptotically exact only when $m \gg 1$. Thus $C \gg 1$, and in this situation $\alpha \simeq (C - 1)/4$, see \([65–67]\), with our choice of the diffusion coefficient $D = \frac{1}{2}$. From (42) we obtain $C \simeq \ln m$. Thus, we recover $\alpha_m \simeq \frac{1}{4} \ln m$ for $m \gg 1$.

The range distribution (11) simplifies to

$$P_n(t) \simeq \frac{8}{\sqrt{2\pi t}} \exp\left[-\frac{n^2}{2t}\right] \quad (44)$$

in the limit $n \gg \sqrt{t}$. The probability of finding a random walk of range n and other $m - 2$ random walks of smaller range is

$$(m - 1)P_n(1 - P_n)^{m - 2} \simeq (m - 1)P_n e^{-(m - 2)P_n} \quad (45)$$

with P_n given by (44). The criterion

$$\sum_{n \geq n_s} (m - 1)P_n e^{-(m - 2)P_n} \sim 1 \quad (46)$$

gives $n_s \simeq \sqrt{2Ct}$ and the same $C \simeq \ln m$ in the leading order. The range is anomalously large, so the leader must stay in the region $x > x_s = n_s = \sqrt{C\tau}$. Thus, we arrive at the same leading behavior $\alpha_m \simeq \frac{1}{4} \ln m$.

We have also investigated the average number of distinct complete ties for three random walks, i.e. instances when $N_1 = N_2 = N_3$. Using the rate equation approach, we have found that the number of ties saturates at a finite value when $d \leq 2$, while for $d \geq 3$, it grows indefinitely with time. Numerical simulations confirm these qualitative behaviors. For $m \geq 4$ random walks, the number of complete ties remains finite in any dimension.

6. Discussion

We investigated the competition between sets visited by two identical random walks on hyper-cubic lattices. We also studied the race between the ranges of the walks. Using

https://doi.org/10.1088/1742-5468/ac9619
analytic methods, we studied the asymptotic behaviors (6) for the average number of ties between the ranges of the two walks. We found that the average number of ties grows as $\ln t$ in one dimension and as $(\ln t)^2$ in two dimensions.

We also studied ordering probabilities associated with the number of sites and the set of visited sites. In general, the ordering probabilities decay algebraically in one dimension, and a challenge for future work is an analytic determination of the decay exponents β and γ. The behavior of the ordering probabilities in higher dimensions is much richer. Of special interest is the ordering probability $Q(t)$ associated with the sets of visited sites, viz, the probability that the set of sites visited by one random walker remains a subset of the sites visited by another. Numerically, we find that the ordering probability $Q(t)$ decays as a stretched exponential in $d \geq 2$. Determining the quantity $Q(t)$ analytically is a formidable challenge.

The probabilities $P(t)$ and $Q(t)$ may be also studied for Brownian motions [56, 71]. To have well-defined ordering probabilities, we postulate that $S_1(0) \subset S_2(0)$, e.g., $S_2(0) = [-\epsilon, \epsilon]$ and $S_1(0)$ is the origin. The ranges $|S_j(t)|$ are now positive real numbers, and the probabilities $P(t)$ and $Q(t)$ are well defined by (2) and (3). The decay laws (15) and (16) acquire dimensionally consistent form

$$P(t) \sim \left(\frac{\epsilon^2}{Dt} \right)^\beta, \quad Q(t) \sim \left(\frac{\epsilon^2}{Dt} \right)^\gamma,$$

where D is the diffusion coefficient. For Brownian motion in $d \geq 2$, one can consider a Wiener sausage containing all points within a fixed distance from the Brownian trajectory, i.e. a domain visited by a spherical Brownian particle. For Wiener sausages, the average visited volume and its variance are thoroughly understood [72–79], and qualitatively similar to (7) and (10).

In this study, we addressed the probability that one random walk never visits a site that was not previously visited by another walk. A complementary and related question involves non-intersection probabilities [6, 80, 81] describing realizations when trajectories do not intersect, i.e. any two walks never visit the same site. Conformal field theory, two-dimensional quantum gravity, and Schramm–Löwner evolution have been applied [82–88] to study non-intersection probabilities in two dimensions. Methods used for the analysis of non-intersection probabilities in higher dimensions [6, 80, 81] could perhaps be adapted to the analysis of the ordering probabilities.

In addition to the average number of ties between the ranges of two random walks, one can study further statistical properties of the number of ties. Another natural direction for future work is to investigate ties between the sets of visited sites.

Appendix A. Derivation of equation (27)

To simplify the right-hand side of (26) let us reverse the order of summation and integration, i.e. first integrate term by term. The sum in

$$a_1 = \frac{32}{\pi} \sum_{i,j \geq 1} (-1)^{i+j} \frac{i^2 j^2}{i^2 + j^2},$$

(A1)

https://doi.org/10.1088/1742-5468/ac9619
is formally divergent. Regularization allows us to deduce a finite answer. Rearranging the terms in the sum yields

$$\sum_{i,j \geq 1} (-1)^{i+j} \frac{i^2 j^2}{i^2 + j^2} = \sum_{i,j \geq 1} (-1)^{i+j} \frac{i^2 + j^2 - j^2}{i^2 + j^2}$$

$$= \sum_{i,j \geq 1} (-1)^{i+j} \left[j^2 - \frac{j^4}{i^2 + j^2} \right]$$

$$= -\sum_{i,j \geq 1} (-1)^{i+j} \frac{j^4}{i^2 + j^2}. \quad (A2)$$

In the last step, we used $\sum_{j \geq 1} (-1)^j j^2 = 0$. Indeed, the sum is equal to $7\zeta(-2) = 0$, with zeta function $\zeta(s) = \sum_{j \geq 1} j^{-s}$ at $s = -2$ viewed as an analytic continuation of $\zeta(s)$ defined when $\text{Re}(s) > 1$. The zeta function vanishes at all even negative integers, $\zeta(-2p) = \sum_{j \geq 1} j^{2p} = 0$, as discovered by Euler, see [89, 90].

We now perform the summation in (A2) over $i \geq 1$ using the identity

$$\sum_{i \geq 1} (-1)^i \frac{i}{i^2 + j^2} = \frac{\pi j \sinh(\pi j)}{2j^2} - \frac{1}{2j^2}. \quad (A3)$$

Inserting (A2) and (A3) into (A1) we obtain

$$a_1 = \frac{16}{\pi} \sum_{j \geq 1} (-1)^j \left[j^2 - \frac{\pi j^3}{\sinh(\pi j)} \right]. \quad (A4)$$

Using the identity $\sum_{j \geq 1} (-1)^j j^2 = 0$ again we simplify (A4) to equation (27).

References

[1] Chandrasekhar S 1943 Stochastic problems in physics and astronomy Rev. Mod. Phys. 15 1–89
[2] Feller W 1977 An Introduction to Probability Theory and Its Applications 3rd edn vol. 1 (New York: Wiley)
[3] Berg H C 1993 Random Walks in Biology (Princeton, NJ: Princeton University Press)
[4] Van Kampen N G 2007 Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland)
[5] Wilmott P and Orrell D 2017 The Money Formula: Dodgy Finance, Pseudo Science, and How Mathematicians Took over the Markets (New York: Wiley)
[6] Chen X 2010 Random Walks Intersections: Large Deviations and Related Topics (Providence, RI: American Mathematical Society)
[7] Popov S 2021 Two-Dimensional Random Walk: From Path Counting to Random Interlacements (Cambridge: Cambridge University Press)
[8] Ben-Naim E and Krapivsky P L 2014 Slow kinetics of Brownian maxima Phys. Rev. Lett. 113 030604
[9] Randon-Furling J 2015 From Markovian to non-Markovian persistence exponents Europhys. Lett. 109 40015
[10] Bray A J, Majumdar S N and Schehr G 2013 Persistence and first-passage properties in nonequilibrium systems Adv. Phys. 62 225–361
[11] Aurzada F and Simon T 2015 Persistence probabilities and exponents Lévy Matters V Lecture Notes in Mathematics vol 2149 ed L N Andersen and S Asmussen (Cham: Springer) pp 183–224
[12] Ben-Naim E, Krapivsky P L and Randon-Furling J 2016 Maxima of two random walks: universal statistics of lead changes J. Phys. A: Math. Theor. 49 205003
[13] Edery Y, Kostinski A and Berkowitz B 2011 Record setting during dispersive transport in porous media Geophys. Res. Lett. 38 L16403

https://doi.org/10.1088/1742-5468/ac9619
Statistical properties of sites visited by independent random walks

[14] Godrèche C and Luck J-M 2021 On sequences of records generated by planar random walks J. Phys. A: Math. Theor. 54 325003

[15] For instance, the maximal radial distance from the starting point is a piecewise constant function, but the lengths vary from jump to jump; the range of feasible jump lengths remains \(\leq 1 \) and increases with time.

[16] In contrast to the linear order between, e.g. integers (any two integers are comparable), inclusion is a partial order: Two sets \(U \) and \(V \) can be either comparable (\(U \subseteq V \), or \(U = V \), or \(V \subseteq U \)), or \(U \) and \(V \) can be incomparable.

[17] Pólya G 1921 On a theorem of probability calculus concerning wandering in a network of streets Math. Ann. 13 149–60

[18] Pólya G 1938 On random walk in a network of streets Colloque Consacré à la Théorie des Probabilités ed M Fréchet (Paris: Actualités Scientifiques) pp 25–44

[19] Dvoretzky A and Erdős P 1951 Some problems on random walk in space Proc. 2nd Berkeley Symp. Math. Stat. Probab. ed J Neyman (University of California Press) pp 353–67

[20] Montroll E W and Weiss G H 1965 Random walks on lattices: II J. Math. Phys. 6 167–81

[21] Weiss G H 1994 Aspects and Applications of the Random Walk (Amsterdam: North-Holland)

[22] Daniels H E and Smithies F 1941 The probability distribution of the extent of a random chain Math. Proc. Camb. Phil. Soc. 37 244–51

[23] Kuhn H 1948 Aussere Abmessung einer statistisch geknäuelten Fadenmolekel in beliebiger Richtung Helv. Chim. Acta 31 1677–90

[24] Feller W 1951 The asymptotic distribution of the range of sums of independent random variables Ann. Math. Stat. 22 427–32

[25] Rubin R J 1972 Span of a polymer chain J. Chem. Phys. 56 5747–57

[26] Jain N C and Pruitt W E 1974 Further limit theorems for the range of random walk J. Anal. Math. 24 369–93

[27] Jain N C and Pruitt W E 1972 The law of the iterated logarithm for the range of random walk J. Math. Anal. Appl. 37 149–60

[28] Hamana Y 1997 The fluctuation result for the multiple point range of two-dimensional recurrent random walks Ann. Probab. 25 598–639

[29] Hughes B D 1996 Random Walks and Random Environments, Vol. 1: Random Walks (Oxford: Clarendon)

[30] Asselah A, Schapira B and Sousi P 2018 Capacity of the range of random walk on \(\mathbb{Z}^d \) Trans. Am. Math. Soc. 370 7627–45

[31] Asselah A, Schapira B and Sousi P 2019 Capacity of the range of random walks on \(\mathbb{Z}^d \) Ann. Probab. 47 1447–97

[32] J. Phys. A: Math. Theor. 43 16002–7

[33] Z. Phys. B: Condensed Matter 153 220602

[34] J. Stat. Mech. (2022) 103208

https://doi.org/10.1088/1742-5468/ac9619
Statistical properties of sites visited by independent random walks

[49] Erdős P and Taylor S J 1960 Some intersection properties of random walk paths Acta Math. Acad. Sci. Hung. 11 231–48

[50] Brummelhuis M J A M and Hilhorst H J 1991 Covering of a finite lattice by a random walk Physica A 176 387–408

[51] Brummelhuis M J A M and Hilhorst H J 1992 How a random walk covers a finite lattice Physica A 185 35–44

[52] Caser S and Hilhorst H J 1996 Topology of the support of the two-dimensional lattice random walk Phys. Rev. Lett. 77 992–5

[53] Wijland F, Caser C S and Hilhorst H J 1997 Statistical properties of the set of sites visited by the two-dimensional random walk J. Phys. A: Math. Gen. 30 507–31

[54] Dembo A, Peres Y, Rosen J and Zeitouni O 2001 Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk Acta Math. 186 239–70

[55] Dembo A, Peres Y, Rosen J and Zeitouni O 2006 Late points for random walks in two dimensions Ann. Probab. 34 219–63

[56] Morters P and Peres Y 2010 Brownian Motion (Cambridge: Cambridge University Press)

In three and higher dimensions, the random walker hops to an unvisited site with probability approaching $1/W_d$ as $t \to \infty$. This explains the asymptotic growth (7) of the average range, $N \approx t/W_d$.

[57] Yang D-Y, Makhnovskii Y A, Sheu S-Y and Lin S H 2000 Simulation of the wiener sausage Phys. Rev. E 62 3116–20

Rather than the random walk on the square lattice, a Wiener sausage in the plane was studied in [58]. A Wiener sausage is a fattened Brownian trajectory; the standard Wiener sausage is a domain covered by a spherical Brownian particle. The volume of the Wiener sausage is analogous of the range of the random walk.

[58] Griffin P 1990 Accelerating beyond the third dimension: returning to the origin in simple random walk Math. Sci. 15 24–35

[59] Karlin S and McGregor J 1959 Coincidence probabilities Pacific J. Math. 9 1141–64

[60] Fisher M E 1984 Walks, walls, wetting, and melting J. Stat. Phys. 34 667–729

[61] Krapivsky P L and Redner S 1996 Life and death in an expanding cage and at the edge of a receding cliff Am. J. Phys. 64 546–52

[62] Ben-Naim E and Krapivsky P 2010 First-passage exponents of multiple random walks J. Phys. A: Math. Theor. 43 495008

[63] Itô K and McKean H P 1996 Diffusion Processes and Their Sample Paths (Berlin: Springer)

Le Gall J-F 1988 Fluctuation results for the Wiener sausage Ann. Probab. 16 991–1018

[64] van den Berg M, Bolthausen E and den Hollander F 2004 On the volume of the intersection of two Wiener sausages Ann. Math. 159 741–82

[65] Liu J and Vogel Q 2021 Large deviations of the range of the planar random walk on the scale of the mean J. Theor. Probab. 34 2315–45

[66] Hamana Y 2016 Asymptotic expansion of the expected volume of the Wiener sausage in even dimensions Kyushu J. Math. 70 167–96

[67] Asselah A, Schapira B and Sousi P 2019 Strong law of large numbers for the capacity of the Wiener sausage in dimension four Probab. Theory Relat. Fields 173 813–58

https://doi.org/10.1088/1742-5468/ac9619
Statistical properties of sites visited by independent random walks

[80] Lawler G F 1982 The probability of intersection of independent random walks in four dimensions *Commun. Math. Phys.* **86** 539–54
[81] Duplantier B 1988 Intersections of random walks. A direct renormalization approach *Commun. Math. Phys.* **117** 279–329
[82] Duplantier B and Kwon K-H 1988 Conformal invariance and intersections of random walks *Phys. Rev. Lett.* **61** 2514–7
[83] Duplantier B 1998 Random walks and quantum gravity in two dimensions *Phys. Rev. Lett.* **81** 5489–92
[84] Lawler G F, Schramm O and Werner W 2001 Values of Brownian intersection exponents: I. Half-plane exponents *Acta Math.* **187** 237–73
[85] Lawler G F, Schramm O and Werner W 2001 Values of Brownian intersection exponents: II. Plane exponents *Acta Math.* **187** 275–308
[86] Duplantier B 2003 Higher conformal multifractality *J. Stat. Phys.* **110** 691–738
[87] Lawler G F 2005 *Conformally Invariant Processes in the Plane* (Providence, RI: American Mathematical Society)
[88] Duplantier B 2006 Course 3 Conformal random geometry *Les Houches, Session LXXXIII, 2005, Mathematical Statistical Physics* ed A Bovier, F Dunlop, F den Hollander, A van Enter and J Dalibard (New York: Elsevier) pp 101–217
[89] Kato K, Kurokawa N and Saito T 2000 *Number Theory 1: Fermat’s Dream* (Providence, RI: American Mathematical Society)
[90] Varadarajan V S 2007 Euler and his work on infinite series *Bull. Am. Math. Soc.* **44** 515–39

https://doi.org/10.1088/1742-5468/ac9619