Characterization and phylogenetic analysis of the complete mitochondrial genome of *Mytella strigata* (Hanley 1843) (Bivalvia: Mytiloida: Mytilidae)

Chia-Hsuan Sung¹,², Chih-Hsun Lin³, Chang-Wen Huang² and Liang-Jong Wang⁴

¹Planning and Information Division, Fisheries Research Institute, Keelung, Taiwan; ²Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; ³Mariculture Research Center, Fisheries Research Institute, Tainan, Taiwan; ⁴Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan

ABSTRACT

We sequenced and assembled the complete mitochondrial genome (mitogenome) sequence of the American brackish water mussel *Mytella strigata*. The mitogenome, reaching 16,302 bp in length, includes 13 protein-coding genes, 2 ribosomal RNA genes, and 23 transfer RNA genes. The overall nucleotide composition of mitogenome was 25.17% A, 41.86% T, 11.83% C, and 21.13% G. The most common start and stop codons were GTG and TAA, respectively. The phylogenetic analysis based on mitogenomes showed that the families Mytilidae, Ostreidae, and Veneridae are a monophyletic group. The phylogenetic position of *M. strigata* is sister to *P. canaliculus* and *P. viridis*. In this study, mitogenomic sequence data will provide a better understanding for future studies of population genetics, biogeography, and pest surveillance of *M. strigata*.

The American brackish water mussel (*Mytella strigata*) is native to Central and South America from Guaymas, Sonora, Mexico, Ecuador to the Galapagos Islands (Cardenas and Aranda 2000). Since 2014, its presence has been reported in Southeast Asia, including the Philippines (Michael et al. 2016), Singapore (Lim et al. 2018), Thailand (Sanpanich and Aranda 2000). Since 2014, its presence has been reported in Mexico, Ecuador to the Galapagos Islands (Cardenas and Aranda 2000). Since 2014, its presence has been reported in Mexico, Ecuador to the Galapagos Islands (Cardenas and Aranda 2000). Since 2014, its presence has been reported in Mexico, Ecuador to the Galapagos Islands (Cardenas and Aranda 2000). The male mussels carry both matrilinear and patrilinear mtDNA and female mussels only carry the matrilin-ear mtDNA. In this study, female *M. strigata* was collected from a hard clam brackish-water pond site in Yulin (32°46′36″N; 130°36′42″E), Taiwan, and stored in a Fisheries Research Institute in Keelung, Taiwan, with accession number FRIM10501 (contact person: CH Sung, chsung@mail.tfrin.gov.tw). Total genomic DNA was extracted from the foot of the mussel using the QIAamp DNA Mini Kit (QIAGEN) following the manufacturer’s instructions. The total DNA was sequenced using the Miseq sequencing platform (Illumina). The CLC Genomics Workbench V20 (QIAGEN) was used for sequencing reads quality analysis, reads trimming, and de novo assembling. The assembled mitogenome sequence was verified by the polymerase chain reaction (PCR) and Sanger approaches. PCR was amplified using three primer sets (Mst-L1F: 5’-TGTGGTACGGCGAGTGAAA-3′, Mst-L1R: 5’-CAATCAGACACCGCCTATTCG-3′, Mst-L2F: 5’-GAGTGGGCTATCTACTAT-3′, Mst-L2R: 5’-AGGACCTAACATCTCCTTGACAC-3′, Mst-L3F: 5’-TC TTGCTGGCGGAATCACT-3′, and Mst-L3R: 5’-TCTGGAGGACACACACGTC-3′) with the following cycle: initial denaturation at 94 °C for 2 min, 35 cycles at 94 °C for 30 s, followed by annealing at 64 °C for 30 s, extension at 72 °C for 8 min, and a final extension at 72 °C for 10 min. The locations of the protein-coding genes, ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs) were predicted by using MITOS Web Server (Bernt et al. 2013) and identified by alignment with other mitogenome sequence of Mytilidae mussel. The AT and GC skew was calculated according to the following formulas: AT skew = (A – T)/(A + T) and GC skew = (G – C)/(G + C) (Perna and Kocher 1995).

The complete DNA sequence of the *M. strigata* mitochondrial reaching 16,302 bp in length (GenBank Accession No. MT991018) includes 13 protein-coding genes, 2 rRNA genes, and 23 tRNA genes. The overall nucleotide composition of mitogenome was 25.17% A, 41.86% T, 11.83% C, and 21.13% G.
The AT and GC skewness of mitogenome sequence was −0.2490 and 0.2819, showing the T-skew and G-skew. The most common shared start codon between the 13 protein-coding genes was GTG (atp6, cox2, nd1, nd4l, nd3, nd5, nd4), followed by ATG (cytb, cox3, cox1), ATT (nd6, atp8), and ATA (nd2). The most common termination codons was TAA (atp6, cytb, cox2, nd1, nd3, cox3, nd2, atp8, cox1), followed by TAG (nd4l, nd6, nd5, nd4). The mitogenome of *M. strigata* contains 2 tRNA-Met genes, the same as most Mytilidae mussels.

We reconstructed the phylogenetic relationships of 23 Bivalvia species and the *Babylonia lutosa* as outgroup based on 12 protein-coding genes (excluding the atp8 gene) DNA sequences with maximum likelihood (ML) method (Figure 1). The clade including species attributing to Mytilidae was highly supported (100%). The families Mytilidae, Ostreidae, and Veneridae are a monophyletic group based on our result. The phylogenetic position of Mytilidae is sister to Ostreidae. The result is consistent with the previous study of the green-lipped mussel (Ranjard et al. 2018). The phylogenetic position of *M. strigata* is sister to the group of *P. canaliculus* (GMG766134) and *P. viridis* (NC_018362). The phylogenetic analysis based on DNA sequencing of cox1 gene showed a close relationship between the Taiwan-acquired mussels and mussels from Singapore, India, and the Philippines (Huang et al. 2021). Our results shall provide a better understanding in the evolutionary histories of the Mytilidae and relative species. In this study, mitogenomic sequence data will provide useful information for future studies for population genetics, biogeography, and pest surveillance of *M. strigata*.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Council of Agriculture, Executive Yuan, Taiwan. (grant number 108AS-9.5.2-AI-A1).

ORCID

Liang-Jong Wang http://orcid.org/0000-0001-5540-2021

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, accession number MT991018.
References

Alves FAS, Beasley CR, Hoeh WR, Rocha RM, Simone LRL, Tagliaro CH. 2012. Detection of mitochondrial DNA heteroplasmy suggests a doubly uniparental inheritance pattern in the mussel *Mytella charruana*. Rev Bras Biocienc Porto Alegre. 10:176–185.

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.

Cardenas EB, Aranda DA. 2000. A review of reproductive patterns of bivalve mollusks from Mexico. Bull Mar Sci. 66:13–27.

Coyne KJ, Qin XX, Waite JH. 1997. Extensible collagen in mussel byssus: a natural block copolymer. Science. 277(5333):1830–1832.

de Souza TO, dos Santos-Alves FA, Beasley CR, Simone LRL, Marques-Silva NS, Santos-Neto GC, Tagliaro CH. 2015. Population structure and identification of two matrilin and one patrilin mitochondrial lineages in the mussel *Mytella charruana*. Estuar Coast Shelf Sci. 156:165–174.

Huang YC, Li ZK, Chen WL, Chan CC, Hsu HY, Lin YT, Huang YS, Han YS. 2021. First record of the invasive biofouling mussel *Mytella strigata* (Hanley, 1843) (Bivalvia: Mytilidae) from clam ponds in Taiwan. Bioinvasions Rec. 10(2):304–312.

Jayachandran PR, Aneesh BP, Oliver PG, Philomina J, Jima M, Harikrishnan K, Nandan SB. 2019. First record of the alien invasive biofouling mussel *Mytella strigata* (Hanley, 1843) (Mollusca: Mytilidae) from Indian waters. BIR. 8(4):828–837.

Lim JY, Tay TS, Lim CS, Lee SSC, Teo SLM, Tan KS. 2018. *Mytella strigata* (Bivalvia: Mytilidae): an alien mussel recently introduced to Singapore and spreading rapidly. Molluscan Res. 38(3):170–186.

Michael AR, Paul OR, Ashley DS, Westly RR. 2016. Identification and salinity tolerance of the Western Hemisphere mussel *Mytella charruana* (d’Orbigny, 1842) in the Philippines. J Shellfish Res. 35:865–887.

Perna NT, Kocher TD. 1995. Patterns of nucleotide composition at four-fold degenerate sites of animal mitochondrial genomes. J Mol Evol. 41(3):353–358.

Ranjard L, Wong TKF, Külheim G, Rodrigo AG, Ragg NLC, Patel S, Dunphy BJ. 2018. Complete mitochondrial genome of the green-lipped mussel, *Perna canaliculus* (Mollusca: Mytiloidea), from long nanopore sequencing reads. Mitochondrial DNA Part B. 3(1):175–176.

Sanpanich K, Wells FE. 2019. *Mytella strigata* (Hanley, 1843) emerging as an invasive marine threat in Southeast Asia. BIR. 8(2):343–356.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics Analysis version 6.0. Mol Biol Evol. 30(12):2725–2729.