Proton-neutron symmetry in 92Zr, 94Mo with Skyrme interactions in a separable approximation

A. P. Severyukhin, N. N. Arsenyev, and N. Pietralla

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
2Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

(Dated: 01.06.2012)

Starting from a Skyrme interaction we study the properties of the low-energy spectrum of quadrupole excitations in 90,92Zr, 92,94Mo. The coupling between one- and two-phonon terms in the wave functions of excited states are taken into account. We use the finite-rank separable approximation which enables one to perform the QRPA calculations in very large two-quasiparticle spaces. Our results from the SGII Skyrme interaction in connection with the volume pairing interaction are in reasonable agreement with experimental data. In particular, we present the successful description of the $M1$ transition between low-energy quadrupole excitations.

PACS numbers: 21.60.Jz, 23.20.-g, 21.60.Ev, 27.60.+j

I. INTRODUCTION

Properties of the quadrupole-collective isovector excitations of the valence shell of heavy nuclei reflect three main aspects: collectivity, shell structure, and the isospin degree of freedom. The balance between these aspects has been studied within a series of experiments on so-called mixed-symmetry (MS) states. There is a rather complete list of references on that subject in review [1]. These isovector excitations were predicted in the proton-neutron version of the interacting boson model (IBM-2) [2], where the proton-neutron symmetry of the wave functions is quantified by the bosonic analog of isospin, F spin [3–5]. In particular, there are the symmetric states with maximum F-spin ($F = F_{\text{max}}$) and the MS ones with $F < F_{\text{max}}$. One of the well-known examples is the MS quadrupole state with $F = F_{\text{max}} - 1$ in the nucleus 94Mo which was indentified by the measured strong $M1$ transitions and weakly-collective $E2$ transitions to low-lying symmetric states [6–8]. In contrast to the case for 94Mo, the next lighter even-even $N = 52$ isotope, 92Zr has the proton subshell closure $Z = 40$ and the collectivity of the 2^+_1 state decreases. As a result, the collective MS structure and the structures showing the considerable F-spin breaking have been observed experimentally [9,11]. This sensitivity makes the MS states highly appealing objects for studies in microscopic approaches.

The results of the large-scale shell-model calculations [9,10,12,13] have indicated the occurrence of MS quadrupole states in 94Mo, 92Zr and the breaking of F-spin symmetry in 92Zr. For the case of 94Mo, the wave functions, the $M1$ and $E2$ matrix elements support the MS assignments for the 2^+_1 state and the consistency with the IBM-2 predictions proves the collective character of the observed low-lying levels. For 92Zr, the calculated 2^+_1 states are predominantly the pure neutron and isovector excitations, respectively. This means that the single particle and collective degrees of freedom are present in the low-energy spectrum.

An alternative powerful microscopic approach is the quasiparticle-phonon model (QPM) [14]. The model Hamiltonian is diagonalized in a space spanned by states composed of one, two and three phonons which are generated in quasiparticle random phase approximation (QRPA). The separable form of the residual interaction is the practical advantage of the QPM which allows one to perform the structure calculations in large configurational spaces. For 94Mo, the QPM confirms the IBM-2 level scheme, selection rules and, in particular, the dominant one-phonon structure of the transitions to the first and third 2^+ states [8,15]. Also, the QPM gives a satisfactory and comprehensive description of the large variety of data measured for 92Zr [11,16,17]. The QPM wave functions of the two lowest 2^+ states are dominated by the lowest neutron and proton two-quasiparticle components and the structures are very similar to results of the shell model calculations. Thus, the QPM can provide a microscopic support to the IBM-2 scheme. However, it is difficult to extrapolate the model parameters to new regions of nuclei.

The properties of MS states are particularly sensitive to the proton-neutron interaction [18,19]. On the other hand, the dominance of the proton-neutron attraction is one of the main characteristics of the effective nucleon-nucleon interaction. It can be traced back to the cooperation of its $T = 0$ and $T = 1$ channels. This is a good possibility to examine microscopic approaches using effective nucleon-nucleon interactions. One of the successful tools for nuclear structure studies is the QRPA with the Skyrme interaction [20,21]. These QRPA calculations allow to relate the properties of the ground states and excited states through the same energy density functional. Although such an approach describes the properties of the low-lying states less accurately than more phenomenological ones, the results are still in a reasonable agreement with experimental data, in particular, with respect to qualitative features of the properties of the 2^+ states of predominantly one-phonon excitations, see for example [22,24].

The complexity of calculations taking into account the
coupling between one-phonon and more complex states increases rapidly with the size of the configurational space. Making use of the finite rank separable approximation (FRSA) \[26, 27\] for the residual interaction enables one to perform QRPA calculations in very large two-quasiparticle spaces. Taking into account the basic QPM ideas, the approach has been generalized to take into account the coupling between one- and two-phonon components of the wave functions \[25\]. The FRSA has been used to study the electric low-lying states and giant resonances within the QRPA and beyond \[26–30\]. Alternative schemes to factorize the residual interaction have also been considered in Refs. \[31–33\].

Before to investigate the occurrence of MS states in neutron-rich nuclei one needs to be sure that the approach is sufficiently good to reproduce characteristics of the low-energy spectrum of quadrupole excitations of nuclei in the mass range \(A \approx 90\), in particular, the \(M1\) transitions between the excitations. This initial paper gives an illustration of our approach for \(^{92}\text{Zr}, \ ^{94}\text{Mo}\) in comparison to the \(N = 50\) isotones \(^{90}\text{Zr}, \ ^{92}\text{Mo}\) with closed neutron shell. Preliminary results of our studies for \(^{94}\text{Mo}\) are reported already in Ref. \[34\].

This paper is organized as follows. In Sec. II, we sketch the method allowing to consider the phonon-phonon coupling. In particular, the QRPA equations in the case of the finite rank separable form of the residual interaction are discussed in Sec. IIA. The coupling between one- and two-phonon terms in the wave functions of excited states are taken into account in Sec. IIB. In Sec. III, we discuss the details of our calculations and show how this approach can be applied to treat the proton-neutron mixed-symmetry states. Results of our calculations for properties of the quadrupole states in \(^{90,92}\text{Zr}, \ ^{92,94}\text{Mo}\) are given in Sec.IV. Sec. IVA is devoted to QRPA analysis, while the effects of the phonon-phonon coupling are discussed in Sec. IVB. Conclusions are finally drawn in Sec. V.

II. THE METHOD

This method has already been introduced in Refs. \[26–29\]; hence, let us briefly summarize the different steps. For the present study, the anharmonicity of the low-energy vibrations is constrained by the coupling between one- and two-phonon terms in the wave functions of excited states.

A. Implementation of QRPA

The starting point of the method is the HF-BCS calculation \[35\] of the ground state, where spherical symmetry is imposed on the quasiparticle wave functions. The continuous part of the single-particle spectrum is discretized by diagonalizing the Skyrme HF Hamiltonian on a harmonic oscillator basis. As effective interactions, Skyrme interaction are used in the particle-hole (p-h) channel, and the pairing correlations are generated by a density-dependent zero-range force

\[
V_{\text{pair}}(\mathbf{r}_1, \mathbf{r}_2) = V_0 \left(1 - \eta \left(\frac{\rho(r_1)}{\rho_0}\right)^\alpha\right) \delta(\mathbf{r}_1 - \mathbf{r}_2),
\]

where \(\rho(r_1)\) is the particle density in coordinate space; \(\rho_0\) is equal to the nuclear saturation density; \(\alpha, \eta\) and \(V_0\) are model parameters. We use \(\alpha=1; \eta=0, 0.5, \) and \(\eta=1\) are the cases of a volume interaction, a mixed interaction and a surface-peaked interaction, respectively. The strength \(V_0\) is fitted to reproduce the odd-even mass difference in the region of nuclei considered here. In order to limit the pairing single-particle space, we have used the smooth cutoff at 10 MeV above the Fermi energies \[27, 36, 37\].

The residual interaction in the p-h channel \(V_{\text{res}}^{\text{ph}}\) and in the p-p channel \(V_{\text{res}}^{\text{pp}}\) can be obtained as the second derivative of the energy density functional with respect to the particle density and the pair density, accordingly. As proposed in Ref. \[28\], we simplify \(V_{\text{res}}^{\text{pp}}\) by approximating it by its Landau-Migdal form. All Landau parameters with \(l > 1\) are equal to zero in the case of Skyrme interactions. We keep only the \(l = 0\) terms in \(V_{\text{res}}^{\text{ph}}\). In this work we study only normal parity states and one can neglect the spin-spin terms since they play a minor role \[22, 29\]. Also, the two-body Coulomb and spin-orbit residual interactions are dropped. Therefore we can write the residual interaction as

\[
V_{\text{res}}(\mathbf{r}_1, \mathbf{r}_2) = N_0^{-1} \left[F_0^{\text{ph}}(r_1) + F_0^{\text{pp}}(r_1)\right] \tau_1 \cdot \tau_2 \delta(\mathbf{r}_1 - \mathbf{r}_2),
\]

where \(a\) is the channel index \(a = \{ph, pp\}; \tau_i\) are the isospin operators, and \(N_0 = 2k_Fm^*/\pi^2\hbar^2\) with \(k_F\) and \(m^*\) standing for the Fermi momentum and nucleon effective mass.

The expressions for \(F_0^{\text{ph}}, F_0^{\text{ph}}\) and \(F_0^{\text{pp}}, F_0^{\text{pp}}\) can be found in Ref. \[35\] and in Ref. \[27\], respectively. Since the definition of the pairing force \[1\] involves the energy cutoff of the single-particle space to restrict the active pairing space within the mean-field approximation, this cutoff is still required to eliminate the p-p matrix elements of the residual interaction in the case of the subshells that are far from the Fermi energies as in Ref. \[27\].

The p-h matrix elements and the antisymmetrized p-p matrix elements can be written as the separable form in the angular coordinates \[26, 27\]. After integrating over the angular variables we use a \(N\)-point integration Gauss formula for the radial integrals. Thus, the residual interaction can be expressed as the sum of \(N\) terms in FRSA for the Skyrme residual interaction \[26, 27\].

We introduce the phonon creation operators

\[
Q_{\lambda \mu}^+ = \frac{1}{2} \sum_{jj'} \left(X_{jj'}^\lambda A^+(jj'; \lambda \mu) + (-1)^{\lambda - \mu} Y_{jj'}^{\lambda \mu} A^+(jj'; \lambda - \mu)\right),
\]

\[
A^+(jj'; \lambda \mu) = \sum_{mm'} \langle jmjm'\mid \lambda \mu \rangle \alpha_{jm}^+ \alpha_{jm'}^+, \quad (3)
\]

\[
Q_{\lambda \mu}^+ = \frac{1}{2} \sum_{jj'} \left(X_{jj'}^\lambda A^+(jj'; \lambda \mu) + (-1)^{\lambda - \mu} Y_{jj'}^{\lambda \mu} A^+(jj'; \lambda - \mu)\right),
\]

\[
A^+(jj'; \lambda \mu) = \sum_{mm'} \langle jmjm'\mid \lambda \mu \rangle \alpha_{jm}^+ \alpha_{jm'}^+, \quad (4)
\]
where \(\lambda \) denotes the total angular momentum and \(\mu \) is its z-projection in the laboratory system. \(\alpha_{jm} (\alpha_{jm}) \) is the quasiparticle creation (annihilation) operator and \(jm \) denote the quantum numbers \(nljm \). One assumes that the ground state is the QRPA phonon vacuum \(|0\rangle \) and the one-phonon excited states are \(Q_{\lambda \mu i}^+ |0\rangle \) with the normalization condition

\[
0 | Q_{\lambda \mu i} Q_{\lambda' \mu' i'}^+ | 0 \rangle = \delta_{\lambda \lambda'} \delta_{\mu \mu'} \frac{1}{2} \sum_{jj'} (X_{jj'}^{\lambda i} X_{jj'}^{\lambda'} - Y_{jj'}^{\lambda i} Y_{jj'}^{\lambda'}) = \delta_{ii'}.
\] (5)

Making use of the linearized equation-of-motion approach one can get the QRPA equations [35]. Solutions of this set of linear equations yield the one-phonon energies \(\omega_{\lambda i} \) and the amplitudes \(X_{jj'}^{\lambda i}, Y_{jj'}^{\lambda i} \) of the excited states. There are two types of QRPA matrix elements: the \(A^{(\lambda)}_{(jj')_1,(jj')_2} \) matrix related to forward-going graphs and the \(B^{(\lambda)}_{(jj')_1,(jj')_2} \) matrix related to backward-going graphs, and the dimension of these matrices is the space size of the two-quasiparticle configurations. Using the FRSA for the residual interaction, the eigenvalues of the QRPA equations can be obtained as the roots of a relatively simple secular equation, where the matrix dimensions never exceed \(6N \times 6N \) independently of the two-quasiparticle configuration space size [20] [27]. The studies [27][29] enable us to conclude that \(N=45 \) for the rank of our separable approximation is enough for the electric excitations \(J \leq 6 \) in nuclei with \(A \leq 208 \).

B. Phonon-phonon coupling

In the next stage, we construct the wave functions from a linear combination of one-phonon and two-phonon configurations

\[
\Psi_\nu (\lambda \mu) = \left(\sum_i R_i (\lambda \nu) Q_{\lambda \mu i}^+ \right) + \sum_{\lambda_1 \lambda_2 \lambda_3 \lambda_4} P_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} \left(Q_{\lambda_2 \mu \lambda_1}^+, Q_{\lambda_3 \mu \lambda_2}^+, Q_{\lambda_4 \mu \lambda_3}^+ \right) X_{\lambda_4 \lambda_3} \langle 0 |.
\] (6)

with the normalization condition

\[
\sum_i R_i^2 (\lambda \nu) + 2 \sum_{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (P_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4})^2 = 1.
\] (7)

Because of the completeness and orthogonality conditions for the phonon operators, the bifermion operators \(A^{(j j'; \lambda \mu)} \) and \(B^{(j j'; \lambda \mu)} \) can be expressed by the phonon ones. The Hamiltonian can be rewritten in terms of quasiparticle and phonon operators [14][28].

The amplitudes \(R_i (\lambda \nu) \) and \(P_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (\lambda \nu) \) are determined from the variational principle

\[
\delta \left(\langle \Psi_\nu (\lambda \mu) | H | \Psi_\nu (\lambda \mu) \rangle - E_\nu \langle \Psi_\nu (\lambda \mu)|\Psi_\nu (\lambda \mu)\rangle \right) = 0,
\] (8)

which leads to a set of linear equations [14][28]

\[
(\omega_{\lambda i} - E_\nu) R_i (\lambda \nu) + \sum_{\lambda_1 \lambda_2 \lambda_3 \lambda_4} U_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (\lambda \nu) P_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (\lambda \nu) = 0,
\] (9)

\[
2 (\omega_{\lambda_1 i_1} + \omega_{\lambda_2 i_2} - E_\nu) P_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (\lambda \nu) + \sum_i U_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (\lambda \nu) R_i (\lambda \nu) = 0.
\] (10)

The Pauli principle corrections are dropped here since the effect on the lowest excited states is small [14].

The rank of the set of linear equations \((9, 10)\) is equal to the number of one- and two-phonon configurations included in the wave function \((6)\). Its solution requires to compute the matrix elements coupling one- and two-phonon configurations

\[
U_{\lambda_2 \lambda_1}^{\lambda_1 \lambda_2 \lambda_3 \lambda_4} (\lambda \nu) = \langle 0 | Q_{\lambda i} H \left(Q_{\lambda_1 \mu}^+ Q_{\lambda_2 \mu}^+ \right) | 0 \rangle.
\] (11)

Eqs. \((9, 10)\) have the same form as the QPM equations \([14]\), but the single-particle spectrum and the parameters of the residual interaction are calculated with the Skyrme forces.

III. DETAILS OF CALCULATIONS

We apply the approach to study the low-energy spectrum of \(2^+ \) excitations in the nuclei \(^{90,92}Zr, \, ^{92,94}Mo \). In our calculations the single-particle continuum is discretized by diagonalizing the HF Hamiltonian on a basis of 12 harmonic oscillator shells and cutting off the single-particle spectra at the energy of 100 MeV. This is sufficient to exhaust practically all the energy-weighted sum rule. Because of the large configurational space, we do not use effective charges.

The single-particle structure around the Fermi level is a key ingredient in the microscopic analysis. For the investigation, we adopt five Skyrme interactions, namely, SGII [38], SLy4 [39], SLy5 [39], SLy5+T [40], and T44 [41]. The SGII parameterization is the successful attempt to describe the spin-dependent properties from a standard Skyrme force. In particular, one obtains a good description of experimental energies of the Gamow-Teller resonance of \(^{90}Zr\) [38]. The parameters of the forces SLy4 and SLy5 have been adjusted to reproduce nuclear matter properties, as well as nuclear charge radii, binding energies of doubly magic nuclei. The forces SLy5+T and T44 involve the tensor terms added with (T44) and without (SLy5+T) refitting the parameters of the central interaction. These five parametrizations describe correctly the subshell order near the Fermi level of \(^{90,92}Zr, \, ^{92,94}Mo\). To see this, the calculated neutron and proton single-particle energies for the case of \(^{92}Zr\) and the experimental data [42] are plotted in Fig. 1. The calculations with SGII reproduce well the experimental data.
FIG. 1: Neutron (top) and proton (bottom) single-particle energies (in MeV) near the Fermi energies for 92Zr calculated with SGII, SLy4, SLy5, SLy5+T, and T44. The experimental spectra are taken from Ref. [42].

FIG. 2: Energies (in MeV) of lowest two-quasiparticle states in 92Zr. The results of calculations with the volume, the mixed, and the surface-peaked pairing interactions are shown.

and other choices of the Skyrme forces do not improve the agreement.

We employ the isospin-invariant pairing force (1), with the value $\rho_0 = 0.16$ fm$^{-3}$ of the nuclear saturation density corresponding to the SGII force. The strength V_0 is fitted to get a reasonable description of the experimental neutron and proton pairing energies of 90,92Zr, 92,94Mo,

$$P_N = \frac{1}{2} (B(N,Z) + B(N-2,Z) - 2B(N-1,Z))$$

for neutrons, and similarly for protons. Thus, the strength V_0 is taken equal to -270 MeVfm3, -420 MeVfm3, and -870 MeVfm3 for the cases of the volume, the mixed and the surface-peaked interaction, respectively. In order to make the choice of the pairing interaction, it is
very useful to analyze the three lowest two-quasiparticle states in 92Zr. Since the $2d_{5/2}$ neutron subshell is partially filled and the $2p_{1/2}$ proton subshell is filled, one can expect that the first level is the $\{2d_{5/2}, 2d_{5/2}\}$ neutron state while the second level is the $\{1g_{9/2}, 1g_{9/2}\}$ proton one, see for example [15–17]. As it is seen from Fig. 2 the different choices have a strong impact on the unperturbed two-quasiparticle excitations. Only the volume pairing interaction gives the $\{1g_{9/2}, 1g_{9/2}\}$ proton state as the second level. Thus, hereafter we use the Skyrme interaction SGII in the particle-hole channel together with the volume zero-range force acting in the particle-particle channel.

The Landau parameters F_0^{ph}, $F_0^{ph'}$ expressed in terms of the Skyrme force parameters S_{58} depend on k_F. As it is pointed out in our previous works [26, 29] one needs to adopt some effective value for k_F to give an accurate representation of the original p-h Skyrme interaction. For the present calculations we use the value $k_F = 1.45 f^{-1}$ adjusted so as to have the spurious center-of-mass state at zero energy.

It is worth to mention the effect of the residual p-p interaction within the QRPA. Fig. 3 shows the effect on the $2_{1,2}^+$ energies and the $B(E2)$ values of 92Zr. Including the quadrupole p-p interaction results in a decrease of the $2_{1,2}^+$ energies (about 0.1 MeV) and the $B(E2)$-values do not change practically.

Finally, we discuss the extension of the space for one- and two-phonon configurations. To construct the wave functions $|\psi\rangle$ of the low-lying 2^+ states up to 4 MeV we use only the 2^+ phonons, and all one- and two-phonon configurations with energies up to 8 MeV are included. We have checked that the inclusion of the high-energy configurations plays a minor role in our calculations.

IV. RESULTS

A. QRPA analysis

First, properties of the low-lying quadrupole states are studied within the one-phonon approximation. Results of our calculations for the $2_{1,2}^+$ states in 90,92Zr, 92,94Mo: the energies, the $B(E2)$, $B(M1)$ values, and the contributions greater than 10% to the normalization conditions $\langle 0 | 0 \rangle$ are given in Table I. Note that the $B(M1)$ values have been calculated with the g-factors of free protons and neutrons.

One can see that we find a satisfactory description of the isotopic dependence of the 2_1^+ energies near closed shells. The closure of the neutron subshell $1g_{9/2}$ in 90Zr, 92Mo leads to the vanishing of the neutron pairing and as a result energies of the first two-quasiparticle poles, $\{1g_{9/2}, 1g_{9/2}\}$ in 90Zr, 92Mo are larger than energies of the first poles, $\{2d_{5/2}, 2d_{5/2}\}$ in 92Zr, 94Mo. This yields that the 2_1^+ state has collective (noncollective) structure with the domination of the proton configuration $\{1g_{9/2}, 1g_{9/2}\}$ for the case of 90Zr (92Mo). On the other hand, in 92Zr the leading neutron configuration $\{2d_{5/2}, 2d_{5/2}\}$ gives a contribution of 79% that is almost twice larger than in 94Mo. The structure peculiarities are reflected in the $B(E2; 0^+ g.s. \rightarrow 2_1^+)$ values, as is shown in Table I. The 2_1^+ states in 92Zr, 94Mo have an isoscalar character since the dominant neutron and proton phonon amplitudes X, Y of the 2_1^+ state are in phase.

There are the second 2^+ states in 92Zr, 94Mo below 3 MeV within the one-phonon approximation. The dominant neutron and proton amplitudes of the fairly collective 2_2^+ state are out of phase. As a consequence, the isovector character of the 2_2^+ states are reflected in the remarkable values of $B(M1; 2_2^+ \rightarrow 2_2^+)$, as given in Table I. The first calculations of the isovector behavior of 2_2^+ QRPA excitations in 92Zr, 94Mo based on the analysis of the phonon amplitudes within the QPM have been done in [19,17].

We turn now to the structures of the 2_2^+ states of 90,92Zr, 92,94Mo. The proton configurations exhaust about 99% and 56% of the wave function normalization in 90Zr and 92Mo, respectively. It means that the second pole, $\{2p_{1/2}, 2p_{3/2}\}$ in 92Mo is closer to the neutron poles than that in 90Zr. As expected, the negligible size of the $B(M1; 2_2^+ \rightarrow 2_1^+)$ value of 90Zr is obtained. The 2_2^+ state in 92Mo has the main neutron and proton phonon amplitudes in phase (Table I) and this results in the comparable $B(M1)$ value of the $M1$ transitions between the noncollective 2_1^+ state and the isoscalar 2_2^+ state.

This analysis within the one-phonon approximation can help to identify the MS state, but it is only a rough estimate. Some overestimate of the experimental energies (Table II) indicates that there is room for two-phonon effects.
TABLE I: Energies, transition probabilities, and structures of the QRPA quadrupole states in 90,92Zr and 92,94Mo. Phonon amplitude contributions greater than 10% are given.

State	Energy (MeV)	$B(M1; 2^+_1 \rightarrow 2^+_1)$ (μ_N^2)	$B(E2; 0^+_g \rightarrow 2^+_1)$ $(e^2f_m^4)$	$\{n_1l_1j_1, n_2l_2j_2\}$	X	Y	%	
90Zr	2^+_1	2.8	630	$\{2d_{5/2}, 1g_{9/2}\}$	-0.37	-0.11	13	
				$\{1g_{9/2}, 1g_{9/2}\}$	1.03	0.06	53	
				$\{2p_{3/2}, 2p_{3/2}\}$	-0.52	-0.03	26	
	2^+_2	3.4	000	10	$\{2p_{1/2}, 2p_{3/2}\}$	0.79	0.00	63
				$\{1g_{9/2}, 1g_{9/2}\}$	0.85	0.00	36	
92Zr	2^+_1	1.7	410	$\{2d_{5/2}, 2d_{5/2}\}$	1.26	0.12	79	
				$\{1g_{9/2}, 1g_{9/2}\}$	-0.63	0.09	20	
				$\{3s_{1/2}, 2d_{5/2}\}$ & -0.45 & -0.04 & 20				
				$\{1g_{9/2}, 1g_{9/2}\}$ & 0.85 & 0.04 & 36				
	2^+_2	2.9	0.53	310	$\{2p_{1/2}, 2p_{3/2}\}$	-0.36	-0.02	13
93Mo	2^+_1	1.9	1170	$\{2d_{5/2}, 1g_{9/2}\}$	-0.35	-0.16	10	
				$\{1g_{9/2}, 1g_{9/2}\}$	1.32	0.19	86	
	2^+_2	4.4	0.25	230	$\{2d_{5/2}, 1g_{9/2}\}$	-0.65	-0.07	42
				$\{2p_{1/2}, 2p_{3/2}\}$	-0.63	-0.02	40	
				$\{1g_{9/2}, 1g_{9/2}\}$	-0.49	0.10	11	
94Mo	2^+_1	1.2	1730	$\{2d_{5/2}, 2d_{5/2}\}$	0.92	0.27	39	
				$\{1g_{9/2}, 1g_{9/2}\}$	0.99	0.37	42	
	2^+_2	2.4	1.23	160	$\{2d_{5/2}, 2d_{5/2}\}$	-1.08	0.07	58
				$\{1g_{9/2}, 1g_{9/2}\}$	0.89	0.02	40	

TABLE II: Energies, transition probabilities and dominant components of phonon structures of the low-lying quadrupole states in 90,92Zr and 92,94Mo. Experimental data are taken from Refs. [6, 7, 10, 43, 44].

$\lambda^+_c = 2^+_1$	Energy (MeV)	Structure	$B(E2; 0^+_g \rightarrow 2^+_1)$ $(e^2f_m^4)$	$B(M1; 2^+_1 \rightarrow 2^+_1)$ (μ_N^2)				
Expt.	Theory							
90Zr	2^+_1	2.186	2.6	93$\%[2^+_1]_{QRPA}$	643±22	600		
	2^+_2	3.308	3.2	95$\%[2^+_1]_{QRPA}$	53±14	1	0.088±0.025	0.00
92Zr	2^+_1	0.934	1.6	96$\%[2^+_1]_{QRPA}$	790±62	420		
	2^+_2	1.847	2.7	87$\%[2^+_1]_{QRPA}$	419±49	230	0.37±0.04	0.41
	2^+_3	2.067	2.6	45$\%[2^+_1]_{QRPA}$+37$\%[2^+_1 \otimes 2^+_1]_{QRPA}$	< 0.62	50	<0.024	0.17
93Mo	2^+_1	1.509	1.9	99$\%[2^+_1]_{QRPA}$	1036±62	1160		
	2^+_2	3.091	3.8	91$\%[2^+_1 \otimes 2^+_1]_{QRPA}$	254±20	50	0.043±0.007	0.03
94Mo	2^+_1	0.871	0.5	73$\%[2^+_1]_{QRPA}$	2031±25	1280		
	2^+_2	1.864	1.8	53$\%[2^+_1 \otimes 2^+_1]_{QRPA}$+21$\%[2^+_1]_{QRPA}$	32±7	170	0.06±0.02	0.07
	2^+_3	2.067	2.3	87$\%[2^+_1]_{QRPA}$	279±25	310	0.56±0.05	0.68
B. Effects of the phonon-phonon coupling

Let us now discuss the extension of the space to one- and two-phonon configurations. The calculated 2^+ state energies, the largest contributions of the wave function normalization \([7]\), the \(B(E2)\), \(B(M1)\) values and the experimental data \([6, 7, 10, 33, 43, 44]\) are shown in Table II. It is worth pointing out that we get the wrong energy order of the second and third 2^+ states in the case of ^{92}Zr. On the other hand, the energy difference equal to 0.1 MeV is close to the expected accuracy of our calculations.

One can see that the inclusion of the two-phonon terms results in a decrease of the 2^+ energies and in a reduction of the $B(E2; 0^{gs}_{gs} \rightarrow 2^+_1)$ values, except for ^{92}Zr. Our calculations reproduce well a general behavior for energies and transition probabilities. There is some underestimation of the $B(E2)$ values of the N=52 isotones in comparison with the experimental data, this probably points to a particular problem due to the effective interaction rather than to a deficiency of our variational space. In all four nuclei, the crucial contribution in the wave function structure of the first 2^+ state comes from the $[2^+_1]_{QRPA}$ configuration, but the two-phonon contributions are appreciable. This means that the structures of the first 2^+ states do not change practically due to the effects of the phonon-phonon coupling. As a result, we get the isoscalar collective structure of the 2^+_1 state in ^{92}Mo and the neutron dominated 2^+_1 excitation of ^{92}Zr which indicates the F-spin breaking.

The second 2^+ state contains a dominant two-phonon configuration $[2^+_1 \otimes 2^+_1]_{QRPA}$ in $^{92,94}\text{Mo}$ and such contribution leads to the small $B(E2)$ values. Moreover, the calculated $B(M1)$ value is sensitive to the phonon composition: the two-phonon configuration composed of the isoscalar collective phonons in the case ^{94}Mo and the non-collective phonons of ^{92}Mo. In $^{90,92}\text{Zr}$, the wave function of the 2^+_1 state is dominated by the $[2^+_1]_{QRPA}$ configuration and we can follow the QRPA estimate discussed in Sec. IVA. For the case of ^{92}Zr we obtain the isovector collective 2^+_1 state and the dominant one-phonon structure of the $M1$ transition between the first and second 2^+ states in ^{92}Zr. The results are close to those that were previously calculated in the shell model $[9,10,13]$ and in the QPM $[11,16,17]$.

Finally, we examine the occurrence at low energy (below 3 MeV) of the third 2^+ states. One can see that the collective state in ^{94}Mo is dominated by the isovector one-phonon $[2^+_1]_{QRPA}$ structure. The calculated values of the 2^+_1 energy and the transition probabilities are in reasonable agreement with the experimental data. In other words, we reproduce the IBM-2 level scheme and the calculated $B(M1; 2^+_1 \rightarrow 2^+_1)$ value supports the MS assignments observed experimentally and theoretically for the first time in Ref. $[3]$. It is noteworthy that this conclusion for ^{94}Mo remains valid for the SLy5+T parameter set $[34]$. For the 2^+_3 state of ^{92}Zr, one of the main components of the wave function is the $[2^+_1 \otimes 2^+_1]_{QRPA}$ configuration. As can be seen from Table II, the two-phonon contribution is reflected in the small values of the transition probabilities, but there is some overestimation in comparison with the experimental data. One can expect an improvement if the variational space is enlarged by the phonon composition with hexadecapole multipolarity and the three-phonon configurations are taken into account. Such calculations are now in progress.

Thus the microscopic approach $[20,28]$ describes the properties of the low-lying states in ^{92}Zr, ^{94}Mo less accurately than more phenomenological ones $[8,15,17]$, but the results are still in a reasonable agreement with the experimental data $[6,7,10,33,44]$.

V. CONCLUSIONS

Starting from the Skyrme mean-field calculations, we have studied the effects of the phonon-phonon coupling on the properties of the low-energy spectrum of 2^+ excitations and, in particular, on the $M1$ transitions between the excited states of nuclei in the mass range $A \approx 90$. The finite-rank separable approach for the QRPA enables one to perform the calculations in very large configurational spaces.

The parametrization SGII of the Skyrme interaction is used for all calculations in connection with the volume zero-range pairing interaction. Using the same set of parameters we have studied the behaviour of the energies, the $B(E2; 0^+_gs \rightarrow 2^+_1)$ and $B(M1; 2^+_1 \rightarrow 2^+_1)$ values of the lowest 2^+ states in $^{90,92}\text{Zr}$, $^{92,94}\text{Mo}$. Among our initial motivation was the search for MS states in ^{92}Zr, ^{94}Mo in comparison to the $N = 50$ isotones ^{90}Zr, ^{92}Mo with closed neutron shell. Our results indicate indeed the occurrence of MS states in our calculation for the nuclei ^{92}Zr and ^{94}Mo that were successfully predicted within the IBM-2 before. Our results from the Skyrme interaction are in reasonable agreement with experimental data. We stress that they represent the first successful comparison between experimental $M1$ transition values and those calculated with the Skyrme interaction. The coupling between one- and two-phonon terms in the wave functions of excited states is essential. The QRPA results tend to overestimate the 2^+_1 energies and the inclusion of the two-phonon configurations results in a decrease of the energies. There is a clear influence on the structure of the 2^+_3 states. The structure of the low-lying 2^+ states calculated in our approach are close to those that were calculated within the QPM before. We conclude that the present approach may provide a valuable globally applicable microscopic analysis of the properties of the lowest quadrupole excitations.

Our model would probably be improved by enlarging the variational space for the 2^+ states with the inclusion of the two-phonon configurations constructed from phonons with hexadecapole multipolarity and taking into account the three-phonon configurations. The computational developments that would allow us to conclude on this point are still underway.
Acknowledgments

We are grateful to R.V. Jolos, Nguyen Van Giai, V.Yu. Ponomarev, Ch. Stoyanov and V. V. Voronov for useful discussions. A.P.S. and N.N.A. thank the hospitality of Institut für Kernphysik, Technische Universität Darmstadt where a part of this work was done. This work was partly supported by the Heisenberg-Landau program, by the DFG under grant No. SFB634, and by the RFBR grant No. 110291054.

[1] N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008).
[2] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, UK, 1987).
[3] A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. B 166, 205 (1977).
[4] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A309, 1 (1978).
[5] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
[6] N. Pietralla, C. Fransen, D. Belic, P. von Brentano, C. Frießner, U. Kneissl, A. Linnemann, A. Nord, H. H. Pitz, T. Otsuka, I. Schneider, V. Werner, and I. Wiedenhöver, Phys. Rev. Lett. 83, 1303 (1999).
[7] C. Fransen, N. Pietralla, Z. Ammar, D. Bandypadhyay, N. Boukharouba, P. von Brentano, A. Dewald, J. Gableseke, A. Gade, J. Jolie, U. Kneissl, S. R. Lesher, A. F. Lisetskiy, M. T. McEllistrem, M. Merrick, H. H. Pitz, N. Warr, V. Werner, and S. W. Yates, Phys. Rev. C 67, 024307 (2003).
[8] O. Burda, N. Botha, J. Carter, R.W. Fearick, S.V. Fortsch, C. Fransen, H. Fujita, J. D. Holt, M. Kuhar, A. Lenhardt, P. von Neumann-Cosel, R. Neveling, N. Pietralla, V. Yu. Ponomarev, A. Richter, O. Scholten, E. Sideras-Haddad, F. D. Smit, and J. Wambach, Phys. Rev. Lett. 99, 092503 (2007).
[9] V. Werner, D. Belic, P. von Brentano, C. Fransen, A. Gade, H. van Garrel, J. Jolie, U. Kneissl, C. Kohstall, A. Linnemann, A. F. Lisetskiy, N. Pietralla, H. H. Pitz, M. Scheck, K.-H. Speidel, F. Stedil, and S. W. Yates, Phys. Lett. B 550, 142 (2002).
[10] C. Fransen, V. Werner, D. Bandypadhyay, N. Boukharouba, S. R. Lesher, M. T. McEllistrem, J. Jolie, N. Pietralla, P. von Brentano, and S. W. Yates, Phys. Rev. C 71, 054304 (2005).
[11] C. Walz, H. Fujita, A. Krugmann, P. von Neumann-Cosel, N. Pietralla, V. Yu. Ponomarev, A. Scheilkh-Obeid, and J. Wambach, Phys. Rev. Lett. 106, 062501 (2011).
[12] A.F. Lisetskiy, N. Pietralla, C. Fransen, R.V. Jolos, and P. von Brentano, Nucl. Phys. A677, 100 (2000).
[13] J. D. Holt, N. Pietralla, J. W. Holt, T. T. S. Kuo, and G. Rainovski, Phys. Rev. C 76, 034325 (2007).
[14] V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol and Philadelphia, 1992).
[15] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 62, 047302 (2000).
[16] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 69, 044312 (2004).
[17] N. Lo Iudice and Ch. Stoyanov, Phys. Rev. C 73, 037305 (2006).
[18] T. Ahn, L. Coquard, N. Pietralla, G. Rainovski, A. Costin, R. V. F. Janssens, C. J. Lister, M. Carpenter, S. Zhu, and K. Heyde, Phys. Lett. B 679, 19 (2009).
[19] L. Coquard, N. Pietralla, G. Rainovski, T. Ahn, L. Betermann, M. P. Carpenter, R. V. F. Janssens, J. Leske, C. J. Lister, O. Möller, W. Rother, V. Werner, and S. Zhu, Phys. Rev. C 82, 024317 (2010).
[20] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 71, 034310 (2005).
[21] N. Paar, D. Vretenar, E. Khan, and G. Colò, Rep. Prog. Phys. 70, 691 (2007).
[22] E. Khan, N. Sandulescu, M. Grasso, and Nguyen Van Giai, Phys. Rev. C 66, 024309 (2002).
[23] G. Colò, P. F. Bortignon, D. Sarchi, D. T. Khoa, E. Khan and Nguyen Van Giai, Nucl. Phys. A722, 111e (2003).
[24] J. Terasaki and J. Engel, Phys. Rev. C 74, 044301 (2006).
[25] J. Terasaki and J. Engel, Phys. Rev. C 84, 014332 (2011).
[26] Nguyen Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).
[27] A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Phys. Rev. C 77, 024322 (2008).
[28] A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Eur. Phys. J. A22, 397 (2004).
[29] A. P. Severyukhin, Ch. Stoyanov, V. V. Voronov, and Nguyen Van Giai, Phys. Rev. C 66, 034304 (2002).
[30] A. P. Severyukhin, N. N. Arsenyev, V. V. Voronov, and Nguyen Van Giai, Physics of Atomic Nuclei 72, 1149 (2009).
[31] T. Suzuki and H. Sagawa, Prog. Theor. Phys. 65, 565 (1981).
[32] P. Sarriguren, E. Moya de Guerra and A. Escuderos, Nucl. Phys. A658, 13 (1999).
[33] V. O. Nesterenko, J. Kvasil and P.-G. Reinhard, Phys. Rev. C 66, 044307 (2002).
[34] A. P. Severyukhin, N. N. Arsenyev, V. V. Voronov, N. Pietralla, and Nguyen Van Giai, Journal of Physics: Conference Series 321, 012050 (2011).
[35] P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer, Berlin, 1980).
[36] P. Bonche, H. Flocard, P.-H. Heenen, S. Krieger, and M. S. Weiss, Nucl. Phys. A443, 39 (1985).
[37] S. J. Krieger, P. Bonche, H. Flocard, P. Quentin, and M. S. Weiss, Nucl. Phys. A517, 275 (1990).
[38] Nguyen Van Giai and H. Sagawa, Phys. Lett. B106, 379 (1981).
[39] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998).
[40] G. Colò, H. Sagawa, S. Fracasso, and P. F. Bortignon, Phys. Lett. B 646, 227 (2007).
[41] T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev. C 76, 014312 (2007).
[42] F. Malaguti, A. Uguzzoni, E. Verondini, and P. E. Hodgson, Nuovo Cimento A 53, 1 (1979).
[43] C. M. Baglin, Nucl. Data Sheets 91, 423 (2000).
[44] P. E. Garrett, W. Younes, J. A. Becker, L. A. Bernstein, E. M. Baum, D. P. DiPrete, R. A. Gatenby, E. L. Johnson, C. A. McGrath, S. W. Yates, M. Devlin, N. Fotiades.
R. O. Nelson, and B. A. Brown, Phys. Rev. C 68, 024312 (2003).