EIMERIA TENELLA INFECTION MODULATES THE
EXPRESSION LEVELS OF INTESTINAL EPITHELIAL
BARRIER–RELATED GENES IN CHICKEN

Hung Hoang Son PHAM¹, Toshimitsu HATABU²*

¹ Graduate School of Environmental and Life Science, Okayama University
(1-1-1, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan)
E-mail: phamhoangsonhung@huaf.edu.vn

²* Correspondence: Associate Professor, Graduate School of Environmental and Life Science, Okayama University
(1-1-1 Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan)
E-mail: hatabu@okayama-u.ac.jp.

Eimeria tenella infection causes coccidiosis, which induces diarrhea and bloody stool in chicken. This infection impairs the epithelial barrier that lines the intestinal tract. The intercellular junctions are key factors for maintaining barrier integrity. However, information on the gene expression modulation of junctional molecule–related genes is still limited. This study aimed to elucidate the association between disease symptoms and the regulation of target genes. Intestinal function was evaluated using biomarker measurements. Gene expression regulation was determined by real-time quantitative polymerase chain reaction. The disruption of the intestinal barrier might be induced by lower levels of claudin-1, claudin-3, E-cadherin, occludin, and ZO-1 but higher levels of claudin-2. Our results might suggest the association between the modulation of junctional barrier molecules and major symptoms of E. tenella infection.

Key Words: bloody stool, diarrhea, Eimeria tenella, epithelial barrier, junctional molecules

1. INTRODUCTION

Coccidiosis caused by Eimeria tenella is a serious intestinal disease in chickens. Diarrhea and bloody stool are the major symptoms of this disease. Infected chickens experience depressed feed consumption, weight loss, and decreased performance. Coccidiosis has become a large concern in the worldwide poultry industry because of expensive investments in disease prevention and treatment. More seriously, in settings of a high mortality rate, loss of production aggravates economic distress¹).

E. tenella is an obligate intracellular protozoan parasite with a complex life cycle, consisting of an exogenous phase in the environment and an endogenous phase in the host intestine. In the exogenous phase, unsporulated oocysts are released from chicken droppings and undergo sporulation at the right temperature, humidity, and oxygen level. Subsequently, oocysts, which form four sporocysts that are covered with two sporozoites, are considered to be infectious. The endogenous stage begins when a chicken ingests an oocyst through drinking or eating off the ground contaminated with feces from other infected chicks. When the sporozoites attach themselves to the intestinal lining, the parasites penetrate into the epithelial barrier. Epithelial cells are destroyed after several rounds of asexual and sexual reproduction. Finally, fertilization and formation of unsporulated oocysts create the next generation of oocysts²).

The chicken intestine is lined by an epithelial barrier, which is of great importance to food digestion and nutrient absorption. The integrity of the intestinal epithelial barrier is sustained by the balance of the intercellular junction molecule complexes. These molecules are crucial for the regulation of the paracellular passage, which prevents proinflammation molecules from penetrating the mucosal tissue³). However, understanding of the gene expression modulation of the intestinal epithelial barrier in the chicken with E. tenella infection is limited. Thus, this study aims to identify the correlation between symptoms and the regulation of junctional molecular genes involved in the intestinal epithelial barrier.

2. MATERIALS AND METHODS
(1) Parasite, animals, and experimental design

White Leghorn chickens (n = 45) were randomly
Hung Hoang Son PHAM & Toshimitsu HATABU

were maintained in a coccidia-free environment. All
procedures were approved by the Animal Care and
Use Committee, Okayama University (OKU-2018561) and were conducted in accordance
with the Policy on the Care and Use of the
Laboratory Animals, Okayama University.

At 14 days of age, chickens in the infected group
were orally administered 1×10^4 oocysts/chick of
mature sporulated oocysts of the E. tenella NIAH
strain, which was maintained at the Laboratory
of Animal Physiology in Okayama University
(Ookayama, Japan). Three chicks from each group
were sacrificed via cervical dislocation for cecum
collection. One piece of cecum was immediately
frozen at −80 °C for gene expression analysis, and
another piece was fixed with 10% buffered formalin
for histopathological assay.

(2) Fecal collection and oocyst counting
To count oocysts, feces were monitored daily from
5 to 10 days postinfection (dpi). Oocysts per gram of
feces were identified by the fecal flotation method
using the saturated sucrose solution.

(3) Histopathological observation
The paraffin-embedded tissue block was sectioned
at a thickness of 6 μm and deparaffinized. Sectioned
specimens were stained using a hematoxylin–eosin
(HE) solution. To evaluate the inflammation levels of
decca, histopathological observation was performed
under a digital optical microscope (Olympus
FSX100, Olympus, Tokyo, Japan). We used an
inflammation scoring system ranging from 0 to 4,
which was modified according to the method
described previously).

(4) Measurement of intestinal permeability
The plasma concentration of fluorescein
isothiocyanate–dextran (FITC-d; molecular weight
4000 Da; Sigma-Aldrich Co., St. Louis, MO, USA)
determined according to the method of
Kuttappan et al.5) The fluorescence concentration in
plasma was evaluated using a Multimode Microplate
Reader (SH-9000 Serial, Corona Electric Co., Ltd)
with an excitation of 485 nm and an emission
wavelength of 528 nm. Levels of fluorescence in the
samples were converted to respective FITC-d
micromgram per milliliter.

(5) Gene expression analysis
We used RNAzol RT Reagent (COSMO BIO Co.,
Ltd., Tokyo, Japan) to extract total RNA from the
teca following the manufacturer's instructions.
Complementary DNAs were synthesized using 1 μg
of total RNA as the template, with oligo dT primer
and the ReverTra Ace Master Mix kit (Toyobo Co.,
Ltd, Osaka, Japan).

We performed quantitative real-time polymerase
chain reaction using the Mini Opticon Real-Time
PCR System (Bio-Rad Laboratories Inc., Hercules,
CA, USA) with the Brilliant III Ultra-Fast SYBR®
Green QPCR Master Mix (Agilent Technologies,
West Cedar Creek, TX, USA). The relative mRNA
level was estimated by the comparative CT method5).

(6) Statistical analysis
Experiment data are represented by at least three
repeat experiments. We statistically analyzed data
using one-way analysis of variance with Tukey's
multiple comparison test; results are presented as
mean ± standard error of the mean.

3. RESULTS

(1) Oocyst shedding and gross observation
Evaluation of the number of oocysts in feces
indicated that the oocysts began shedding at 6 dpi
and reached a maximum at 7 dpi (data not shown). In
the E. tenella group, all chickens had diarrhea from 3
to 7 dpi. Diarrhea with blood occurred from 4 to 6 dpi
(Table 1). In all uninfected chickens, the cecum had a
smooth and glossy margin, filled with feces and
without bleeding or enteritis. In contrast, the cecum
of infected chickens showed atrophy as a result of
dehydration. Mucus and clotted blood were observed
from 4 to 6 dpi in the lumen of the cecum (data not
shown).

(2) Histopathological examination
The epithelial monolayer was normal until 5 dpi
(Fig. 1A–C) but became detached at 6 dpi (Fig. 1D).
HE-stained cecum specimens indicated villous
atrophy, severe inflammation, hemorrhage, a
proliferation of epithelial cells around intestinal
crypts, and epithelial desquamation. The lesion score
increased to the maximum of 3.78 ± 0.11 at 7 dpi
(Table 1).

(3) FITC-d levels in plasma
During the experiment, the plasma FITC-d level in
the E. tenella group was persistently significantly
Table 1. Observation of feces and evaluation of
histomorphology lesion score.

DPI	2	3	4	5	6	7	8
Blooding	-	+		-	-	-	-
Diarrhea			-	+	+		+
Lesion score	0.83	1.22	2.44	3.5	3.56	3.78	3.67
	+	+	+	+	+		
	0.17	0.11	0.22	0.10	0.11	0.11	0.19

*Different superscripts indicate statistical differences between
dpi (p < 0.05).
higher than that of the control group. In particular, the concentration of FITC-d in the blood of *E. tenella*–infected chickens was sharply increased at 5 dpi (Fig. 2). However, the plasma FITC-d levels were not elevated in the fasting and control groups throughout the different time courses of the experiment.

(4) **mRNA expression in cecum with *E. tenella***

The comparison between the control and infected groups indicated that, in the latter group, the relative mRNA level of claudin-2 (CLDN-2) was significantly upregulated in the cecum at 3, 4, and 5 dpi (Fig. 3B). In contrast, the mRNA levels of CLDN-3, E-cadherin (E-cad), occludin (OCDN), and ZO-1 were noticeably reduced (Fig. 3C, D, E, F). Interestingly, CLDN-1 mRNA levels were initially decreased at 3 and 4 dpi but then increased at 5 and 6 dpi (Fig. 3A).

4. DISCUSSION

A single layer of stacked columnar epithelial cells lines the intestine and is the key factor in the maintenance of epithelial barrier integrity. In this layer, the extended lateral surfaces of adjacent cells form close contacts via apical junctional complexes, called the tight and adherens junctions.

Claudin proteins are the main components of the tight junctions, and they form a seal to modulate paracellular transport in the intestinal epithelium. It is known that CLDN-1 and CLDN-3 are sealing claudins, the increased expression of which leads to a tight epithelium. In this study, we recorded a notable downregulation of CLDN-3 mRNA level in *E. tenella*–infected chicks as compared with uninfected chicks. Reports showed that a low level of sealing proteins was the reason for the epithelial barrier leakage and detrimental movement of luminal contents through the paracellular space. Similarly, we noted a downregulated tendency in CLDN-1 expression from 2 to 4 dpi, which contributed to the barrier dysfunction, leading to diarrhea and bloody feces. However, at 5 dpi, there was a sharp increase in the gene expression of CLDN-1, which could be associated with the recovery mechanism at the intestinal epithelium to restore barrier function and return to homeostatic functioning. Further experiments should be conducted in the future to clarify this speculation. In contrast to sealing claudins, pore-forming proteins such as CLDN-2 have higher expressions that facilitate paracellular permeability by allowing more luminal contents to translocate to the systemic circulation. CLDN-2 proteins, which have the ability to form paracellular pores and water channels, give rise to leaky epithelia once they are predominantly expressed, by allowing the passage of solute ions. An increased level of CLDN-2 is also responsible for inflammation and infection. In our study, the level of CLDN-2 mRNA was especially higher in chicks infected with *E. tenella* than in noninfected chicks. In addition, the parasitic infection induced a remarkable upregulation of CLDN-2 mRNA expression from 3 to 5 dpi. Consequently, a higher level of FITC-d in blood was found at 3 dpi, with the highest level recorded at 5 dpi, indicating an increasing absorption via the disrupted intestinal barrier, which resulted in the diarrhea as observed from 3 dpi.

Another important component of the tight junction barrier is OCDN, which involves the regulation of paracellular transport and leaky pathways. In our study, the mRNA expression level of OCDN in the infected chickens was significantly lower than in controls at 4 and 5 dpi. In agreement with our result, Cani et al. showed that the downregulated expression of OCDN coincided with the onset of diarrhea and the increased plasma level of FITC-d. This

Fig 1. Photomicrograph of the cecum of *E. tenella*–infected chickens showing hyperplasia of the intestinal crypts (square) at 3 dpi (A). The presence of coccidia schizont (arrows) associated with a proliferation of epithelial cells (cycle) around crypts at 4 dpi (B). Heavy infestation of crypts (stars) and schizonts (arrows) lining the epithelium at 5 dpi (C). Abundance of oocysts (arrowheads) in the lamina propria, with inflammation and epithelial desquamation (asterisks) at 6 dpi (D).

Fig 2. Plasma FITC-d levels in the chickens. Different superscripts show the significance between groups at $p < 0.05$.

15
Evidence indicated a close relation between OCDN and the integrity of the epithelial barrier.

E-cadherin molecules on the surfaces of epithelial cells are components of the adherens junctions\(^7\). In this experiment, we found that the mRNA expression level of E-cad was significantly downregulated from 2 to 6 dpi in response to *E. tenella* infection, which contributed to barrier dysfunction. During this period, merozoites might transmigrate along with epithelial cells and destroy the junction structure on the side, including E-cad. Similar to our results, previous studies have indicated that the infections of *E. vermiformis*\(^13\) and *Cryptosporidium parvum*\(^14\) contribute to the diarrhea and bloody stool observed in *E. tenella*–infected chicks.

ZO-1, a membrane-associated guanylate kinase, has been reported to be critical for the formation of tight junction (CLDNs and OCDN) and the beltlike adherens junction complexes at cell–cell contacts\(^4\). It is worth noting that the effects of ZO-1 on CLDNs and OCDN occur at the posttranslational level rather than the transcriptional level. From our results, we found that the expression level of ZO-1 in infected chicks was considerably decreased, reaching the bottom at 5 dpi. Depletion of ZO-1 obstructed the formation of junctional complexes, which might be linked to the diarrhea and bloody stool observed in *E. tenella*–infected chicks.

5. CONCLUSION

The disruption of barrier function via the downregulation of CLDN-1, CLDN-3, E-cad, OCDN, and ZO-1 and the upregulation of CLDN-2 might contribute to *E. tenella* infection induced diarrhea. The present findings might reveal that the expression levels of junctional molecule genes are related to the symptoms of *E. tenella* infection.

ACKNOWLEDGMENT: This research was supported by the Graduate School of Environmental and Life Science, Okayama University, under a Research Grant for Encouragement of Students.

REFERENCES

1) Chapman, H. D.: Milestones in avian coccidiosis research: A review, Poultry Science, Vol. 93, no. 3, pp. 501-511, 2014.
2) Lal, K., Bromley, E., Oakes, R., Prieto, J. H., Sanderson, S. J., Kurian, D., Hunt, L., Yates, J. R., Westling, J. M., Sinden, R. E. and Tomley, F. M.: Proteomic comparison of four *Eimeria tenella* life-cycle stages: Unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite, Proteomics, Vol. 9, no. 19, pp. 4566-4576, 2009.
3) Groschwitz, K. R. and Hogan, S. P.: Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis, *J Allergy Clin Immunol*, Vol 124, no. 1, pp. 3-22, 2009.
4) Erben, U., Loddenkemper, C., Doerfel, K., Spieckermann, S., Haller, D., Heimesaat, M. M., Zeitz, M., Siegmund, B. and Kühl, A. A.: A guide to histomorphological evaluation of intestinal inflammation in mouse models, *Int J Clin Exp Pathol*, Vol. 7, no. 8, pp. 4557-4576, 2014.
5) Kuttappan, V. A., Berghman, L. R., Vicuna, E. A., Latore, J. D., Menconi, A., Wolchok, J. D., Wolfendend, A. D., Faulkner, A. B., Tellez, G. I., Hargis, B. M. and Biekle, L. R.: Poultry enteric inflammation model with dextran sodium sulfate mediated chemical induction and feed restriction in broilers, *Poult. Sci.*, Vol. 94, no. 6, pp. 1220-1226, 2015.
6) Livak, K. J. and Schmittgen, T. D.: Analysis of relative gene expression data using 2−ΔΔCT Methods, *Vol. 25*, pp. 402-408, 2001.
7) Lechuga, S. and Ivanov, A. I.: Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms, *Molecular Cell Research*, Vol. 1864, no. 7, pp. 1183-1194, 2017.
8) Van Itallie, C. M. and Anderson, J. M.: Claudins and epithelial paracellular transport, *Annu. Rev. Physiol.*, Vol. 68, no. 1, pp. 403-429, 2006.
9) Chelakkot, C., Ghim, J. and Ryu, S. H.: Mechanisms regulating intestinal barrier integrity and its pathological implications, *Exp. and Mol. Med.*, Vol. 50, no. 8, pp. 2-9, 2018.
10) Kumar, A., Chatterjee, I., Ambazaghen, A. N., Jayawardena, D., Priyamvada, S., Alrefai, W. A., Sun, J., Borthakur, A. and Dudeja, P. K.: *Cryptosporidium parvum* disrupts intestinal epithelial barrier function via altering expression of key tight junction and adherens junction proteins, *Cell. Microbiol.*, Vol. 20, no. 6, pp. 1-13, 2018.
11) France, M. M. and Turner, J. R.: The mucosal barrier at a glance, *J. Cell Sci.*, Vol. 130, no. 2, pp. 307-314, 2017.
12) Cani, P. D., Possemiers, S., Van De Wiele, T., Guzy, I., Everard, A., Rottier, O., Geurts, L. and Naslain, D.: GLP-2-driven improvement in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, *Gut*, Vol. 58, no. 8, pp. 1091-1103, 2009.
13) Inagaki-Ohara, K., Dewi, F. N., Hisaeda, H., Smith, A. L., Jimi, F., Miyahira, M., Horii, Y. and Nawa, Y.: Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against *Eimeria vermiformis* infection, *Infect. Immun.*, Vol. 74, no. 9, pp. 5292-5301, 2006.
14) Ikennouchi, J., Umeda, K., Tsukita, S., Furuse, M. and Tsukita, S.: Requirement of ZO-1 for the formation of belt-like adherens junctions during epithelial cell polarization, *J. Cell Biol.*, Vol. 176, no. 6, pp. 779-786, 2007.