The new TNM classification of lymph node metastasis minimises stage migration problems in gastric cancer patients

G de Manzoni*,1, G Verlato2, F Roviello1, P Morgagni4, A Di Leo1, L Saragoni3, D Marrelli3, H Kurihara6 and F Pasini7

1 1st Division of General Surgery, University of Verona, Verona, Italy; 2 Unit of Epidemiology and Medical Statistics, University of Verona, Verona, Italy; 3 Division of Surgical Oncology, University of Siena, Siena, Italy; 4 Division of Surgery, Forlì Hospital, Forlì, Italy; 5 Division of Pathology, Forlì Hospital, Forlì, Italy; 6 Division of Surgery, University of Milan, Milan, Italy; 7 Chair of Medical Oncology, University of Verona, Verona, Italy for the Italian Research Group for Gastric Cancer (IRGGC)

The present study aimed at investigating whether in gastric cancer patients stage migration occurs with extension of lymphadenectomy, when node metastases are staged according to the new pN classification (UICC 1997). The investigation involved 921 patients, who underwent R0 gastric resection for gastric cancer between 1988 and 1998 in three different Italian centres: Verona (n=236), Forlì (n=409), Siena (n=276). The relation among lymphadenectomy and pN category was assessed by Kendall’s partial rank-order correlation coefficient, controlling for depth of tumour invasion. A direct evaluation of the Will Rogers phenomenon was accomplished in the Verona series, by comparing the number of positive nodes actually observed with the number of positive nodes which would have been retrieved by a less extended lymphadenectomy (D1). The number of positive nodes increased remarkably with the enlargement of lymphadenectomy, especially in pT2 patients (from 2.2±3.9 in D1 to 3.9±5.0 in D3) and in pT3/pT4 patients (from 5.1±5.9 in D1 to 11.3±12.6 in D3). Non-parametric statistics highlighted a weak (Kendall’s partial T=0.128) but significant (P<0.001) correlation between pN category and extension of lymphadenectomy. In the direct analysis of the Verona series, 22 patients out of 230 (9.6%) migrated to a lower pN tier when ignoring positive nodes retrieved from the second and third level. This percentage increased to 39.1% (90 out of 230) when adopting the TNM 87 classification. In conclusion stage migration is of minor importance in gastric cancer patients, staged according to the new pN classification. British Journal of Cancer (2002) 87, 171 – 174. doi:10.1038/sj.bjc.6600432 www.bjcancer.com © 2002 Cancer Research UK

Keywords: gastric cancer; TNM-UICC classification; lymph node metastasis; stage migration; Will Rogers phenomenon

In the past, all staging systems for gastric cancer defined N stage by location of node metastases relative to the primary (Hermanek and Sobin, 1992; JRSGC, 1995). In order to simplify the pN classification, to reduce methodological errors and to achieve a higher reproducibility, the UICC has presented in 1997 a new classification system based on the number of involved nodes (Sobin and Wittekind, 1997).

In the last 3 years many authors compared the new classification with the previous one and showed that both the site and the number of the positive lymph nodes is independent prognostic factors in gastric cancer patients; however the pN categories (especially pN2 and pN3) based on the number are prognostically more homogenous. Moreover the new TNM system seems to identify a group of high risk patients (pN3 category) with poor long term survival (Hermanek et al, 1998; Roder et al, 1998; de Manzoni et al, 1999; Yoo et al, 1999; Katai et al, 2000; Klein Krankenharg et al, 2001).

Some authors maintain that the number of positive lymph nodes does not increase further when more than 15 lymph nodes are excised (Hermanek, 1991; Siewert et al, 1993). If this statement was correct, another advantage of the new pN classification would be the prevention of stage migration (the so-called Will Rogers phenomenon) (Feinstein et al, 1985) which affected the previous pN classification, as shown by Bunt et al (1995).

To verify the independence of the new pN classification from the Will Rogers phenomenon, we investigated whether the pN staging is influenced by the surgical procedure adopted, and in particular we addressed the relation between the number of positive nodes and the extension of lymphadenectomy.

PATIENTS AND METHODS

Between January 1988 and December 1998, 1147 patients underwent gastric resection in three different Italian centres: Verona and Forlì in the north, Siena in central Italy, and, of these, 921 underwent potentially curative resection with complete macroscopic and microscopic removal of the tumour (Verona n=236; Forlì n=409; Siena n=276). Patients were aged 67.2±11.8 years (means±s.d.; range 23–93), 554 were men and 367 were women.

An additional analysis involved the relation between retrieved and metastatic nodes in each of the three tiers. This analysis was feasible in 261 patients from Verona, who underwent gastrectomy between 1988 and 1999 with separate collection of nodes from each tier, as defined by the Japanese Gastric Cancer Association (JGCA, 1998).
Tumours were staged according to both the 1987 and 1997 pathologic classifications (pTNM) of the International Union Against Cancer: the two classifications diverge as lymph node metastases are staged according to the location relative to the primary tumour in pTNM-1987 and according to the number of involved nodes in pTNM-1997 (Hermanek and Sobin, 1992; Sobin and Wittekind, 1997). The histological classification followed the criteria of Lauren. The resection margins were evaluated according to the Western rules assessing the circumferential resection margins (Hermanek, 1995). Lymph node dissection was prospectively classified according to JGCA rules: D1 lymphadenectomy (dissection of all group 1 nodes), D2 lymphadenectomy (dissection of all the group 1 and group 2 nodes) and D3 lymphadenectomy (dissection of all the group 1, group 2 and group 3 nodes) (JGCA, 1998). The demographic and main baseline clinical characteristics of the two cohorts under study are summarised in Table 1.

Statistical analysis

The relation among the number of positive nodes and the number of excised nodes was evaluated through non-parametric statistics, since the distribution of positive nodes was far from normal, being almost half of the patients N0. First of all, the relation between the two variables was investigated by Kendall’s rank-order correlation coefficient T, which ranges from -1 (perfect inverse correlation) to 0 (no correlation at all) and to 1 (perfect direct correlation). As surgeons tend to dissect more lymph nodes in advanced cases, which in turn present higher numbers of metastatic nodes, excised nodes and positive nodes could be related simply because they are both markers of disease progression. To take into account this potential source of bias, the correlation between excised and positive nodes was tested by Kendall’s partial rank-order correlation coefficient (Siegel and Castellan, 1988), taking into account also depth of tumour invasion.

To verify whether the extent of lymphadenectomy could elicit a Will Rogers phenomenon, the bi-variate and tri-variate analyses were repeated after replacing the number of excised nodes with the number of metastatic nodes.

To quantify the Will Rogers phenomenon in terms of stage migration, the analyses were repeated after recording metastatic nodes according to the new and old pN classifications.

The results of the non-parametric statistics were validated in the series from Verona, where information on excised and positive nodes was available for each of the three tiers. Out of 261 cases resected in Verona from 1988 to 1999, 230 had nodes removed in the second and third levels. In these 230 patients the number of positive nodes (and hence the pN97 category) actually observed was compared with the number of positive nodes which would have been retrieved by skipping the second and third levels. As shown in Table 2, a strict relation existed between level of node dissection and extension of lymphadenectomy: D1 were confined to the first (56% of cases) and second (43%) levels, while nearly all D3 (98%) removed nodes from all levels. Thus skipping the second and third levels was nearly equivalent to reducing the extension of lymphadenectomy to D1 and stage migration could be directly evaluated for different extensions of node dissection.

Analyses were performed using the Statistical Product and Service Solutions, SPSS 10.0 for Windows, 2000, SPSS Inc., Chicago IL (Noruris, 1993).

RESULTS

In the series of 921 patients, the total number of dissected lymph nodes was 23 288, with an average of 25.3±16.3 (means±s.d.) dissected nodes per case (median 21, range 1–108). The mean number of metastatic nodes was 4.3±7.5 (median 1, range 0–74) in the overall series and 8.3±8.7 (median 5, range 1–74) in pN+ patients. A mean of 13.5±7.5 (median 12, range 1–51) nodes were removed by D1 lymphadenectomy, 28.2±12.4 (median 26, range 7–88) by D2 and 49.8±15.7 (median 47, range 19–108) by D3. Of the 921 patients, 250 (27.1%) had less than 15 nodes examined and therefore they did not completely fulfil the new TNM classification guidelines (Sobin, 2001). These cases were mainly restricted to the subgroup undergoing D1 dissection: indeed, the number of excised lymph nodes was less than 15 in 62.4% (226 out of 362) of D1 lymphadenectomy, but only in 5.5% (24 out of 438) of D2 lymphadenectomy and in none of D3.

Non-parametric analysis revealed a significant correlation between the number of excised nodes and the number of positive nodes (Table 3). This correlation (Kendall’s $T=0.192$), although highly significant ($P<0.001$), was rather weak just for a comparison, the correlation between depth of tumour invasion and positive nodes presented a Kendall’s T of 0.525. After controlling for depth of tumour invasion in multivariate analysis, the correlation became even weaker (Kendall’s partial $T=0.134$) but remained statistically significant ($P<0.001$). The number of excised nodes affected to a larger extent the pN category, especially when computed according to the 87 UICC classification. When the number of dissected nodes was replaced by lymphadenectomy, results were similar, with the only exception of the correlation...
Stage migration was amplified when using the TNM 87 instead of TNM 97. In the 230 patients with nodes excised from the second and third levels, node excision confined to the first level would have resulted in stage migration in the 39.1% of the series (90 out of 230).

DISCUSSION

The main finding of the present study is that stage migration takes place in some gastric cancer patients in the absence of at least D2 lymphadenectomy. This is suggested by the observation that the number of positive nodes slightly (Kendall’s partial T=0.132) but significantly (P<0.001) increases with the extension of lymphadenectomy, also when controlling for depth of tumour invasion, and hence for disease progression. This result is further confirmed by the observation that N tier is reduced by one level in 9.6% of Verona patients when skipping the second and third level lymph nodes.

Stage migration increased with the level of nodal involvement (from 3.8% in pN1 tier to 50% in pN3 tier) and with depth of tumour invasion (from 1.5% in the pT1 class to 15.7% in the pT3/pT4 class).

Anyway, the importance of the Will Rogers phenomenon should not be overestimated, as this phenomenon is restricted to a minority of patients and migration involves adjacent pN categories. In this respect the new TNM classification is superior to the old one, which would have allowed stage migration in 40% of patients without dissection of second and third level nodes.

Stage migration was extremely rare when ignoring positive nodes in the third level, with only 2.5% of patients migrating to a lower tier. It was more common when excluding the second level, with 8.3% of patients migrating to a lower level. Hence, the minimum requirement to adequately stage cancer patients is D2 lymphadenectomy. This is suggested by the observation that number of positive nodes slightly (Kendall’s partial T=0.132) but significantly (P<0.001) increases with the extension of lymphadenectomy, also when controlling for depth of tumour invasion, and hence for disease progression. This result is further confirmed by the observation that N tier is reduced by one level in 9.6% of Verona patients when skipping the second and third level lymph nodes.

Stage migration increased with the level of nodal involvement (from 3.8% in pN1 tier to 50% in pN3 tier) and with depth of tumour invasion (from 1.5% in the pT1 class to 15.7% in the pT3/pT4 class).

Anyway, the importance of the Will Rogers phenomenon should not be overestimated, as this phenomenon is restricted to a minority of patients and migration involves adjacent pN categories. In this respect the new TNM classification is superior to the old one, which would have allowed stage migration in 40% of patients without dissection of second and third level nodes.

Stage migration was extremely rare when ignoring positive nodes in the third level, with only 2.5% of patients migrating to a lower tier. It was more common when excluding the second level, with 8.3% of patients migrating to a lower level. Hence, the minimum requirement to adequately stage cancer patients is D2 lymphadenectomy. This is suggested by the observation that number of positive nodes slightly increases with the extension of lymphadenectomy, also when controlling for depth of tumour invasion, and hence for disease progression. This result is further confirmed by the observation that N tier is reduced by one level in 9.6% of Verona patients when skipping the second and third level lymph nodes.

Stage migration increased with the level of nodal involvement (from 3.8% in pN1 tier to 50% in pN3 tier) and with depth of tumour invasion (from 1.5% in the pT1 class to 15.7% in the pT3/pT4 class).

Anyway, the importance of the Will Rogers phenomenon should not be overestimated, as this phenomenon is restricted to a minority of patients and migration involves adjacent pN categories. In this respect the new TNM classification is superior to the old one, which would have allowed stage migration in 40% of patients without dissection of second and third level nodes.

The authors are not aware of any other studies addressing the Will Rogers phenomenon in gastric cancer after the adoption of the new TNM classification. In an investigation performed with the old pN classification (Bunt et al, 1995) the results were similar.

Table 2 Correlation between level of dissected lymph nodes and lymphadenectomy in 261 patients from Verona series

Type of lymphadenectomy	Level dissected			
	Level 1	Level 1–2	Level 1–2–3	Total
D1	30	23	1	54
(55.6%)	(42.6%)	(1.9%)		
D2	1	85	28	114
(0.9%)	(74.6%)	(24.6%)		
D3	2	2	91	93
(2.2%)	(2%)	(97.8%)		
Total	31	110	120	261

Numbers are absolute frequency with row percentage in parentheses.

Table 3 Non-parametric correlation between a variable related to the surgical procedure (histologically examined nodes or lymphadenectomy) and a variable related to pN category (positive nodes, pN according to the UICC classifications of 1987 and 1997). In the first column, showing Kendall’s rank-order correlation coefficient T, the correlation was evaluated without controlling for any other variable. In the second column, showing Kendall’s partial rank-order correlation coefficients, the analysis was repeated controlling for a marker of disease progression (depth of tumour invasion).

Correlation under study	Kendall’s T	Kendall’s T controlling for depth of tumour invasion
Histologically examined	0.192	0.134
Histologically examined	0.234	0.186
Histologically examined	0.225	0.174
Lymphadenectomy	0.147	0.132
Lymphadenectomy	0.164	0.151
Lymphadenectomy	0.144	0.128

All correlations were highly significant (P<0.001), maybe for the high statistical power (N=921).
Table 4 Mean number of histologically examined nodes and positive nodes according to the type of node dissection and to the pT class

Depth of tumour invasion	Type of lymphadenectomy	Mean number of histologically examined nodes (s.d.)	Mean number of positive nodes (s.d.)
pT1	D1 (135 out of 312=43.3%)	123 (6.9)	0.25 (0.93)
	D2 (163 out of 312=52.2%)	247 (9.1)	0.53 (1.62)
	D3 (14 out of 312=4.5%)	42.6 (9.5)	0.21 (0.58)
pT2	D1 (68 out of 199=34.2%)	137.8 (4.4)	2.2 (3.9)
	D2 (88 out of 199=44.2%)	29.2 (14.1)	3.6 (5.5)
	D3 (43 out of 199=21.6%)	52.2 (13.6)	3.9 (5.0)
pT3 – pT4	D1 (159 out of 410=38.8%)	14.5 (7.5)	5.1 (5.9)
	D2 (187 out of 410=45.6%)	30.8 (13.3)	8.9 (10.2)
	D3 (64 out of 410=15.6%)	49.7 (17.7)	11.3 (12.6)

Frequency of stage migration

N tiera	T1	T2	T3/T4
N0	3.8% (3 out of 97)	14.3% (5 out of 35)	50% (14 out of 28)
N1	50% (1 out of 2)	8.3% (5 out of 60)	15.7% (16 out of 102)
N2	3.8% (3 out of 79)	14.3% (5 out of 35)	50% (14 out of 28)
N3	50% (14 out of 28)	15.7% (16 out of 102)	32% (2 out of 6)

*N0 tier (88 pts) where stage migration to a lower level cannot occur was not presented. aThree N1 patients had metastases only in the second level with skipping of the first level.

Table 5 Stage migration in 230 patients from Verona, undergoing D2 or D3 lymphadenectomy, when excluding positive nodes retrieved from the second and third levels. Per cent frequencies, with absolute frequencies in parentheses, are reported for different N and T tiers (TNM 1997) and for the whole series

T class	N tier	Frequency of stage migration
T1	N0	3.8% (3 out of 97)
	N1	50% (1 out of 2)
	N2	3.8% (3 out of 79)
	N3	50% (14 out of 28)
T2	N0	3.8% (3 out of 79)
	N1	50% (14 out of 28)
	N2	15.7% (16 out of 102)
	N3	32% (2 out of 6)
T3/T4	N0	3.8% (3 out of 79)
	N1	50% (14 out of 28)
	N2	15.7% (16 out of 102)
	N3	32% (2 out of 6)

REFERENCES

Bunt AMG, Hermans J, Smit VTHBM, van de Velde CH, Fleuren GJ, Bruijn JA (1995) Surgical/Pathologic-stage migration confounds comparisons of gastric cancer survival rates between Japan and Western countries. J Clin Oncol 13: 19 – 25

de Manzoni G, Verlato G, Guglielmi A, Laterza E, Genna M, Cordiano C (1996) Prognostic significance of lymph node dissection in gastric cancer. Br J Surg 83: 1604 – 1607

de Manzoni G, Verlato G, Guglielmi A, Laterza E, Tomerzolli A, Pelosi G, Di Leo A, Cordiano C (1999) Classification of lymph nodes metastases in the carcinoma of the Stomach: comparison between the old and the new TNM systems. World J Surg 23(7): 664 – 669

Feinstein AR, Sosin DM, Wells CK (1985) The Will Rogers Phenomenon. Br J Cancer 51: 19 – 25

Hermanek P (1995) pTNM and residual tumor classifications: problems of systems. World J Surg 19: 184 – 190

Hermanek P, Sobin LH (1992) UICC TNM Classification of malignant tumours. 4th edition, 2nd revision. Berlin: Springer-Verlag

Hermanek P, Altendorf-Hofmann A, Mansmann U, Dworak O, Wittekind C, Hoenberger W (1998) Improvements in staging of gastric carcinoma from using the new edition of TNM classification. Eur J Surg Oncol 24: 536 – 541

Japanese Gastric Cancer Association (1998) The new Japanese classification of Gastric Carcinoma. Second English Edition. Gastric Cancer 1: 10 – 24

Japanese Research Society for Gastric Cancer (1995) Classification of Gastric Carcinoma. First English Edition, Tokyo: Kanehara & Co Ltd

Karpeh MS, Leon L, Klisman D, Brennan MF (2000) Lymph node staging in gastric cancer: is location more important than number. An analysis of 1038 patients. Ann Surg 232: 362 – 371

Katai H, Yoshimura K, Maruyama K, Sasaki M, Sano T (2000) Evaluation of the new international union against cancer TNM staging for gastric carcinoma. Cancer 88: 1796 – 1800

Klein Kranenbarg E, Hermans J, Van Krieken JH, van de Velde CJ (2001) Evaluation of the 5th edition of the TNM classification for gastric cancer: improved prognostic value. Br J Cancer 84: 64 – 71

Noruris MJ (1995) SPSS for Windows Base System: User’s guide release 6.0. SPSS Inc, Chicago

Roder JD, Botcher K, Busch R, Hermank P, Siewert JR (1998) Classification of regional lymph node metastasis from gastric carcinoma. Cancer 82: 621 – 631

Siegel J, Castellam Jr NJ (1988) Nonparametric statistics for the behavioral sciences, pp 245 – 262. New York, NY: McGraw-Hill

Siewert JR, Botcher K, Roder JD, Busch R, Hermanek P, Meyer HJ (1993) Prognostic relevance of lymph node dissection in gastric carcinoma. German Gastric Carcinoma Study Group. Br J Surg 80: 1015 – 1018

Sobin LH, Wittekind C (1997) TNM Classification of malignant tumours. 5th edition. New York: John Wiley & Sons

Sobin LH (2001) TNM classification: clarification of number of regional lymph nodes for pN0. Br J Cancer 83: 780

Tepper JE, O’Connel MJ, Niedzwiecki D, Hollis D, Compton C, Benson AB, Cummins B, Gunderson L, Macdonald JS, Mayer RJ (2001) Impact of number of nodes retrieved on outcome of patients with rectal cancer. J Clin Oncol 19: 157 – 163

Yoo W, Noh SH, Kim YI, Min JS (1999) Comparison of prognostic significance of nodal staging between old (4th edition) and new (5th edition) UICC TNM classification for gastric carcinoma, gastric cancer. World J Surg 23: 492 – 497