Regulation of cell signaling pathways by Wogonin in different cancers: Mechanistic review

Ghazala Butt¹, Ulku Ozbey², Durr-e-shahwar Malik³, Ruksat Attar⁴, Lara Youssef⁵, Ammad Ahmad Farooqi⁶*

¹ Department of Botany, GCU, Lahore, Pakistan
² Department of Nutrition and Dietetics, Faculty of Health Sciences, Munzur University, Turkey
³ Institute of Pharmaceutical Sciences, PUMHSW, Nawabshah, Pakistan
⁴ Department of Obstetrics and Gynecology, Yeditepe University, Turkey
⁵ Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand (UOB), Al-Kurah, Lebanon
⁶ Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan

*Correspondence to: farooqiammadahmad@gmail.com

Received May 14, 2021; Accepted June 1, 2021; Published June 30, 2021

Abstract: Natural products have historically been invaluable as a premium source of therapeutic agents. Recent advancements in genomics and structural biology have portrayed a high-resolution landscape of the diversity of proteins targeted by pharmacologically active products from natural sources. Natural product research has generated valuable wealth of information and cutting-edge research-works have leveraged our conceptual knowledge altogether to a new level. Wogonin (5,7-dihydroxy-8-methoxyflavone) is an O-methylated flavone and has attracted noteworthy appreciation because of its ability to pharmacologically target plethora of cell signaling pathways in different cancers. In this mini-review, we have gathered scattered pieces of available scientific evidence to summarize how wogonin pharmacologically targets Wnt/β-catenin, JAK/STAT, VEGF/VEGFR and TRAIL-driven apoptotic pathways in wide variety of cancers. We have also critically analyzed how wogonin prevented carcinogenesis and metastasis in tumor-bearing mice. Although researchers have uncovered pleiotropic role of wogonin in the regulation of different oncogenic signaling cascades but there are visible knowledge gaps in our understanding related to regulation of non-coding RNAs by wogonin. Future studies must converge on the unraveling of additional drug targets for wogonin to achieve a fuller and realistic understanding of the chemopreventive properties of wogonin.

Key words: Cancer; Apoptosis; Signaling.

Introductory overview of Wogonin

Accumulating evidence from epidemiological studies has suggested that the consumption of various phytochemicals can not only reduce the incidence of cancer but can significantly enhance the sensitivity of chemotherapies (1,2). Carcinogenesis is a complicated process that involves multiple pathways and phytochemicals have pleiotropic effects that make them an ideal candidate to target tumors. However, the true anticancer potential of phytochemicals cannot be harnessed without understanding the underlying mechanism (2,3). This review aims to provide a mechanistic insight on the molecular pathways modulated by a phytochemical, wogonin that can help to utilize its chemopreventive and therapeutic effects.

Flavonoids are bioactive secondary metabolites synthesized by a plant that provides protection against environmental stress and possess several pharmacological activities (4). A number of in-vitro and in-vivo studies have shown that flavonoids possess potent anti-inflammatory, anti-oxidative and anti-tumorigenic effects (4). Wogonin is an active constituent extracted from the roots of Scutellaria baicalensis and is chemically 5,7-dihydroxy-8-methoxy flavon. It is also found as wogonoside in four different species of Scutellaria genus (5). S. baicalensis is one of the most widely used herb in traditional therapies and has shown potential therapeutic effects against a number of pathological disorders as cardiovascular, diabetes, bacterial and viral infections. Its anticancer activities have also been extensively studied (5). Among a number of active constituents found in S. baicalensis, wogonin displays remarkable pharmacological activities *i.e* anti-inflammatory (6,7), anti-oxidative/anti-radical (8), neuroprotective (9,10,11), cardioprotective (12,13), induction of autophagy, apoptosis, cellular senescence in cancer cells (9), antiproliferative effect on tumor cells (14) and increasing in the sensitivity of various chemotherapeutic agents (15,16). However, the use of wogonin is limited by its poor bioavailability and poor solubility (17,18).

In this review we have provided an overview of the pharmacological properties of wogonin. We have partitioned this review into various sub-sections. We will exclusively discuss how wogonin regulated Wnt/β-catenin and JAK/STAT pathways in different cancers. We have also discussed how wogonin modulated HIF proteins and VEGF/VEGFR signaling axis. In the last section, we will conclude with a discussion of areas of current interest and challenges in the field, and opinions about how progress may be made to deepen our understanding about the pleiotropic roles of wogonin in different cancer tissues.
mice transplanted with A549 cancer cells. Wogonin ef-
p-JAK2. Wogonin induced regression of the tumors in
A549 cancer cells. Wogonin also reduced the levels of
mation which triggered STAT-driven signaling in
rin and vimentin. Interleukin-6 was present in the condi-
upregulation of E-cadherin and repression of N-cadhe-
N-cadherin and vimentin. However, wogonin induced
in A549 cancer cells mainly through upregulation of
ned media caused epithelial-to-mesenchymal transition
 migration of A549 cancer cells (24). THP-1 condi-
wogonin inhibited THP-1 conditioned media-mediated
induced migration of A549 cancer cells. However,
stant role in tumorigenesis. THP-1 conditioned media
macrophages have been demonstrated to play domi-

cancers.

**Regulation of Wnt/β-catenin Pathway**

WNT ligands interacted with Frizzled receptors and
the co-receptors to induce β-catenin-mediated canonical
WNT transduction cascade. β-catenin interacted with
the T-cell factor (TCF)-LEF complex in WNT-mediated
regulation of gene networks.

Wogonin caused marked reduction in the phospho-
rylated levels of GSK-3β (Serine residue 9) and downre-
gulated β-catenin levels (19). Activation of GSK-3β is
mainly because of inhibition of AKT by wogonin. Im-
portantly, inhibition of GSK-3β activity by LiCl (activa-
tor of β-catenin signaling) abolished wogonin mediated
repressive effects on β-catenin (19).

Wogonoside effectively suppressed the levels of p-
PI3K, p-AKT and p-β-catenin in the SCL-1 and SCC12
cells (20). Wogonoside notably reduced p-β-catenin
levels in the tumor tissues of the mice subcutaneously
injected with SCL-1 cells (20).

Moreover, LW-213 not only reduced phosphorylated
levels of AKT and GSK-3β but also restricted the ac-
cumulation of β-catenin in the nucleus in breast cancer
cells (21).

Levels of p-GSK-3β at Serine 9 were noted to be
reduced in wogonin-treated ER-negative cancer cells
(22).

Unquestionably, there are missing parts of the puzzle
that remain to be solved. However, these important re-
search works have given us a better understanding of
the underlying mechanisms.

**Regulation of JAK/STAT Pathway**

JAK/STAT pathway has been shown to play criti-
cal role in tumorigenesis. Pharmacological targeting of
STAT proteins has been reported to be effective in can-
cer chemoprevention.

FV-429, a derivative of wogonin was found to be
effective against STAT-driven oncogenic signaling (23). FV-429 not only reduced the levels of p-STAT3 but also
inhibited its nuclear accumulation in ovarian cancer
cells. Studies have shown that active STAT3 moved into
the nucleus and transcriptionally upregulated HIF1α.
However, paclitaxel and FV-429 worked with effective
synergy and markedly reduced the levels of p-STAT3 and
HIF1α in the tumor tissues of mice injected with
A2780 cancer cells (23).

Inflammatory cells, particularly tumor-associated
macrophages have been demonstrated to play domi-
nant role in tumorigenesis. THP-1 conditioned media
induced migration of A549 cancer cells. However,
wogonin inhibited THP-1 conditioned media-mediated
migration of A549 cancer cells (24). THP-1 condi-
tioned media caused epithelial-to-mesenchymal transition
in A549 cancer cells mainly through upregulation of
N-cadherin and vimentin. However, wogonin induced
upregulation of E-cadherin and repression of N-cadhe-
rin and vimentin. Interleukin-6 was present in the condi-
tioned media which triggered STAT-driven signaling in
A549 cancer cells. Wogonin also reduced the levels of
p-JAK2. Wogonin induced regression of the tumors in
mice transplanted with A549 cancer cells. Wogonin ef-
fectively reduced p-STAT3, N-cadherin and vimentin in
the tumor tissues of xenografted mice (24).

IL-6 stimulated PDL1 (Programmed death Ligand-1)
expression in SGC-7901 cancer cells, but wogonin si-
nificantly inhibited PDL1 (25). Moreover, wogonin ef-
ficiently reduced IL-6 mediated activation of STAT3 in
SGC-7901 cancer cells. Wogonin enhanced infiltration
of lymphocytes to retard tumor growth in tumor-bearing
mice (25). PDL1/PD1 signaling has attracted notewor-
ty attention because of its ability to “switch-off” natu-
ral killer cells. Therefore, future studies must converge
on a comprehensive analysis of the ability of wogonin
to pharmacologically target PDL1-driven signaling.

Wogonin also reduced p-STAT3 levels in colorectal
cancer cells (26).

Seemingly, wogonin effectively modulates different
STAT proteins for cancer chemoprevention, but there is
still a need to comprehensively analyze how wogonin
interferes with JAK/STAT signaling to inhibit or pre-
vent cancer.

**Regulation of HIF by Wogonin**

HIFα (Hypoxia-inducible factor) subunits frequently
undergo oxygen-dependent hydroxylation on specified
proline residues (27). Hydroxylated HIFα subunits
are recognized by VHL (von Hippel–Lindau) protein
degraded by the polyubiquitination/proteosomal
pathway. Prolyl hydroxylase domain (PHD) proteins
induced hydroxylation of HIF subunits. Wogonin in-
creased the expression of PHD1, 2, and 3 under both
hypoxic and normoxic conditions. Wogonin increased
the levels of hydroxylated HIF1α. Wogonin stimu-
lated the expression of VHL. Wogonin failed to reduce
the levels of HIF1α in VHL-silenced-MCF-7 cells. Wogo-
in potentiated the interaction between VHL and HIF1α
in MCF-7 cancer cells. Wogonin not only prevented the
association between HSP90 and HIF1α but also inhib-
ited nuclear translocation of HIF1α (27).

Importantly, c-MYC has been reported to enhance
the stability of HIFα (28). However, wogonin notably
reduced the levels of HIFα in c-MYC-overexpressing
RPMI 8226 cells (28).

PI3K/AKT pathway was also found to be neces-
sary for HIFα stabilization (29). Hypoxia induced an
increase in levels of p-AKT and PI3K. However, wogo-
nin reduced the levels of p-AKT and PI3K. There was
a marked reduction in the expression levels of PI3K,
AKT and HIFα in the tumor tissues of mice treated with
wogonin (29).

Wogonin significantly decreased HIF1α and MCT4
(Monocarboxylate transporter-4) levels in SGC-7901
cells (30).

**Regulation of VEGF/VEGFR Signaling**

VEGF is the fundamental regulator of angiogenesis.
VEGF has a pivotal role in the regulation of physiologi-
cal and pathological growth of any type of blood vessels
during vasculogenic and angiogenic processes. More
importantly, studies had shown that VEGF played a
central role in the neovascularization of tumors. Depriva-
tion of oxygen in the interiors of rapidly-growing tu-
mors generated hypoxic areas. Consequently, hypoxia
induced VEGF upregulation by increasing the transcriptional rates and/or the stability of VEGF mRNAs.

Choroidal membrane (CAM) assay is useful for the assessment of anti-angiogenic effects of different natural products (31). Wogonin inhibited LPS-induced formation of the new vessels in the CAM model. Wogonin induced reduction in the protein levels of VEGF and VEGFR2 (31).

CW-251, a derivative of wogonin was found to be effective against angiogenesis (32). Sprouting of microvessels from rat aortic ring and CAM model also clearly indicated that CW-251 effectively suppressed angiogenesis. CW-251 markedly reduced VEGF-induced phosphorylation of VEGFR2 (32). Wogonin inhibited protein levels of VEGFR1 and suppressed angiogenesis (33).

Wogonin also exerted inhibitory effects on VEGF-induced migration and tube formation of HUVECs (34). Wogonin also blocked VEGF-induced phosphorylation of VEGFR2 (34).

**Regulation of Matrix Metalloproteinases**

Wogonin inhibited the mobility of CD133+ osteosarcoma cells via downregulation of MMP9 (35).

Wogonin concentration-dependently inhibited the activities of MMP2 and MMP9 (36). Wogonin considerably inhibited phorbul 12-myristate 13-acetate (PMA)-induced expression and activity of MMP9 in MDA-MB-231 cancer cells (36).

ERK (Extracellular signal-regulated kinase) activation is involved in the TPA (12-O-tetradecanoylphorbol-13-acetate)-induced MMP9 activation and migration of GBM8401 cells (37). TPA enhanced migratory potential of GBM8401 cells through the activation of NFκB. However, wogonin was found to be effective against TPA-induced MMP9 activation (37).

Nicotine induced upregulation of MMP2 and MMP9 mRNA, whereas these effects were reversed by baikalin, baicaeline or wogonin in lung cancer cells (38).

Wogonin also notably inhibited the activities of MMP2 and MMP9 in gallbladder cancer cells (39).

Interestingly, a study revealed that wogonin directly interacted with MMP9 and inhibited its activity (40).

**Regulation of Cyclin-dependent Kinases**

During the past two decades, emerging wealth of information has unraveled the instrumental role of cell cycle deregulation in a wide variety of human cancers. Cyclin-dependent kinases (CDKs) are a well-characterized family of serine/threonine kinases that play a fundamental role in the regulation of cell cycle progression. The integral part that CDKs and other kinases play in the regulation of the cell cycle and its checkpoints underscores the opportunity of the design and development of therapeutic strategies based on the druggability of these molecules.

Retinoblastoma protein Rb, a tumor suppressor has the ability to prevent cell cycle progression via binding to E2F transcriptional factors (41). Rb phosphorylation during G1 phase caused by cyclin D and E dependent kinases resulted in the de-repression and eventual release of E2F1. Wogonin reduced the levels of cyclin D1 and CDK4. However, wogonin did not exert inhibitory effects on cyclin E and CDK2. Furthermore, phosphorylation of Rb was also found to be reduced by wogonin. Wogonin also induced an increase in the levels of p21\(^{Cip1}\) (41).

Wogonin markedly decreased the levels of p-RB, Cyclin D1 and CDK4 in renal cell carcinoma cells (42). Wogonin and sunitinib synergistically inhibited the levels of p-RB, Cyclin D1 and CDK4 in the tumor tissues of the mice injected with 786-O/ sunitinib-resistant cancer cells (42).

Wogonin concentration dependently reduced the levels of cyclin D1, cyclin E and CDK4/6 in hepatocellular carcinoma cells (43).

Wogonin directly binds to the ATP-binding pocket of CDK9 (44). One of the wogonin derivatives was also noticed to be effective against CDK9 (45).

Wogonin-based PROTACs have also shown notable efficacy against CDK9. Wogonin-based PROTACs markedly enhanced the degradation of CDK9 (46).

**ROS-modulating role of Wogonin**

Wogonin robustly induced H\(_2\)O\(_2\) accumulation in A549 and HeLa cells (47). Wogonin sensitized A549 and HeLa cells to cisplatin by increasing the levels of ROS (47).

Wogonin induced apoptosis in CD133+ Cal72 osteosarcoma stem cells by inhibition of survivin (48). Wogonin severely reduced the self-renewal capacity of CD133+ Cal72 cells. Wogonin dose-dependently reduced stem cell markers CD133 and OCT3/4. Wogonin downregulated the levels of PRX5 and blocked PRX5-mediated elimination of ROS in cytosol and mitochondria. Wogonin caused significant inhibition of p-STAT3 and p-AKT. However, wogonin induced an increase in ERK phosphorylation in CD133+ Cal72 cells (48).

**Regulation of TRAIL-driven pathway**

Irrespective of the underlying biology and the fascinating conceptual questions about apoptotic cell death, therapeutic manipulations of cell death pathways have tremendous potential. Excitingly, the development of effective therapeutics targeting cell death pathways is exceedingly complex and researchers have witnessed ground-breaking discoveries in the underlying mechanisms of apoptosis. Different molecular mediators of classical caspase-triggered apoptotic pathways were categorized extensively during the past three decades. More importantly, recent mechanistic findings have ushered in a new era in the field of molecular oncology. Death receptor signaling is activated by ligand-induced receptor trimerization (49-54). Particularly fascinating is how signals originating from the release of cytochrome c from the mitochondria are translated into the activation of the death cascades. Now there is growing understanding of how this critical mechanism is intricately handled by a cytosolically located signaling platform known as the apoptosome. Importantly, formation of the apoptosome and the subsequent activation of caspase-9 revealed a sophisticated mechanism for the initiation of apoptotic cell death.

Levels of c-FLIP\(_{\text{i}}\), XIAP, cIAP1/2 were found to be...
considerably reduced in A549 cancer cells combinatorially treated with TRAIL and wogonin (55). Wogonin reduced antiapoptotic proteins through proteasomal degradation and sensitized resistant cancer cells to TRAIL-induced apoptotic cell death. Furthermore, wogonin and TRAIL synergistically induced regression of the tumors in the mice subcutaneously injected with A549 cancer cells (55).

PUMA (p53 upregulated modulator of apoptosis) is transcriptionally controlled by p53 (56). High levels of PUMA and p53 are essential to maximize TRAIL-mediated apoptotic cell death. Wogonin synergized with TRAIL and induced an increase in the levels of p53 and PARP1 cleavage in p53 wt colorectal cancer cells, but not in p53−/− colorectal cancer cells. Wogonin potentiated TRAIL-mediated cell death and PARP1 cleavage in PUMA+/+ cancer cells, but not in PUMA−/− cancer cells (56).

TRAIL-resistant human T cell leukemia virus type 1 (HTLV-1)-associated adult T cell leukemia/lymphoma (ATL) cells regained TRAIL sensitivity upon treatment with wogonin, chrysin and apigenin (57). Wogonin chrysin and apigenin displayed remarkable potential to cause transcriptional downregulation of c-FLIP. Wogonin chrysin and apigenin also enhanced p53 mediated upregulation of TRAIL-R2 (57).

AML cells isolated from AML patients were used to analyze if wogonin and TRAIL combinatorially induced apoptotic cell death. Results clearly indicated that wogonin and TRAIL worked with effective synergy and potently induced apoptotic cell death (58).

Regulation of Protein networks

RAP1 has a central role in the integrity of the glioma perivascular niche and aggressiveness of glioma (59). Baicalein, baicalin and wogonin considerably increased RAP1-GTP binding. RAP1 is regulated by α7nACHR. α7nACHR enhanced the phosphorylation of Src and AKT and also inhibited Rap1 activation. Whereas, α7nACHR inhibition not only effectively promoted Rap1 activation but also simultaneously reduced phosphorylated levels of Src and AKT. Id1 is a member of helix-loop-helix (HLH) transcriptional factors. Baicalein, baicalin and wogonin dose-dependently inhibited Id1 protein expression. Invasive potential of Id1-silenced H1299 and A549 cancer cells was found to be notably reduced. However, invasive and migratory capacity of Id1-overexpressing-H1299 and A549 cancer cells was noted to be significantly enhanced (59).

Carcinogenesis and Metastasis in Mice

Wogonin enhanced GSK3β-mediated phosphorylation and degradation of Cyclin D1 in MHCC97L and HepG2 cells (60). Wogonin and sorafenib induced regression of the tumors in mice orthotopically transplanted with MHCC97L cancer cells (60).

Wogonoside is an important metabolite of wogonin (61). Wogonoside reduced the levels of TNFα, TRAF2 and TRAF4. Wogonoside reduced the expression of MMP2, MMP9, CD44v6 and vimentin in MDA-MB-231 and MDA-MB-435 cells. TNFα-induced TWIST1 in breast cancer cells. Moreover, TWIST1 overexpression promoted metastasis and increased the expression of MMP9, MMP2, CD44v6 and vimentin in cancer cells. Wogonoside reduced the levels of TWIST1. Wogonoside inhibited TNFα-induced NF-κB cascade through suppression of TRAF2/4. Wogonoside inhibited TWIST1 through suppression of TRAF2/4 in MCF7 cells. Wogonoside suppressed the formation of metastases in brain, lung, liver and bone. Wogonoside increased the levels of E-cadherin and simultaneously reduced MMP9, vimentin and TWIST1 (61).

Wogonin inhibited the VEGF-mediated phosphorylation of VEGFR3 (62). The chemokine MCP-1 (monocyte chemoattractant protein-1) and cytokine IL-1 are key agonists that attract macrophages to the tumors. Accordingly, tumor-associated macrophages promoted the growth of tumors and metastasis through angiogenesis and lymphangiogenesis. Wogonin inhibited the levels of IL-1β production and COX-2 expression induced by lipopolysaccharides in THP-1 macrophages. Pulmonary metastatic nodules were noted to be reduced in mice transplanted with LMB8 osteosarcoma cells (62).

Wogonin has been shown to induce senescence in breast cancer cells (63). Interestingly, accumulating evidence has revealed that senescence is often accompanied by discrete alterations of the chromatin structure, commonly known as senescence-associated heterochromatin foci (SAHF). Some senescent cells formed SAHF in the nuclei. Likewise, H3K9Me3 foci were noted in wogonin-treated cancer cells. Levels of TXNRD2 (Thioredoxin reductase-2) were noted to be reduced in MDA-MB-231 cells treated with wogonin. Wogonin caused reduction in the enrichment of histone-3 lysine-9 acetylation (H3K9ac) within the regulatory regions of TXNRD2. Wogonin efficiently reduced the volume and weight of the tumors derived from 4T1 and MDA-MB-231 cancer cells in xenografted mice. Conditioned media from wogonin-treated MDA-MB-231 cancer cells potently enhanced M1 polarization of macrophages. Conditioned media from wogonin-treated MDA-MB-231 cancer cells enhanced the migratory potential of THP-1-derived macrophages. Wogonin-induced senescent breast cancer cells triggered the polarization of M1 macrophages and increased the recruitment of M1-like macrophages and natural killer cells (63).

Wogonin induced apoptosis in HCT-116 cell through increased endoplasmic reticulum stress (64). Importantly, ER stress induced an increase in the cytoplasmic accumulation of p53 by increasing the phosphorylation at 315th serine and 376th serine. Wogonin was highly effective against azoxymethane (AOM)/dextran sodium sulfate (DSS) animal model. Wogonin effectively reduced tumor multiplicity in animal models (64).

Wogonin inhibited the invasive capacity of MDA-MB-231 cancer cells by downregulation of IL-8 and MMP9 (65). Wogonin caused repression of leukotriene B4 receptor 2 (BLT2). Wogonin also exerted inhibitory effects on the synthesis of its ligand mainly through inhibition of 5-lipoxygenase in LPS-stimulated MDA-MB-231 cancer cells. BLT2 depletion reduced LPS-induced invasive potential of MDA-MB-231 cancer cells. Moreover, BLT2 depletion suppressed mRNA and protein levels of IL-8 and MMP9 in MDA-MB-231 cancer cells. Wogonin inhibited the production of IL-8/
MMP9 in LPS-stimulated MDA-MB-231 cells mainly through the activation of ERK. Metastatic nodules were noted to be significantly reduced in the mice transplanted with wogonin pre-treated MDA-MB-231 cancer cells (65).

Concluding remarks

The inventory of natural molecules remains incomplete and full of exciting questions. Therefore, groundbreaking discoveries of novel pharmacologically active structures and functions are likely to continue as underexplored and untapped sources of natural products are evaluated more scientifically and systematically. In this review, we have summarized most recent updates related to wogonin-mediated targeting of oncogenic signaling cascades. However, we still have incomplete understanding about regulation of SHH/Gli, Notch and Hippo pathways by wogonin in different cancers. Similarly, wogonin-mediated regulation of non-coding RNAs in wider variety of cancers has also been incompletely understood. SPI1 (Spleen focus forming virus proviral integration oncogene) can be directly targeted by miR-155. NF-κB-mediated upregulation of miR-155 and blocked apoptosis. Wogonin impaired NF-κB-driven upregulation of miR-155 and induced apoptotic cell death66.

Therefore, there is a need to drill down deep into the underlying mechanisms utilized by wogonin to inhibit/ prevent carcinogenesis and metastasis.

References

1. Ashraf, M. A. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature’s Bounty. BioMed Research International. Biomed Res Int. 2020; 2020:8602879.
2. Singh, S., Sharma, B., Kanwar, S. S. & Kumar, A. Lead phytochemicals for anticancer drug development. Front Plant Sci. 2016; 7: 1667.
3. Dutt, R., Garg, V., Khatri, N. & Madan, A. K. Phytochemicals in Anticancer Drug Development. Anticancer Agents Med Chem. 2019;19(2):172-183.
4. Kopustinskienė, D. M., Jakstas, V., Savickas, A. & Bernatoniene, J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457.
5. Huynh, D. L., Ngau, T. H., Nguyen, N. H., Tran, G. B. & Nguyen, C. T. Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep. 2020;47(12):9779-9789.
6. Lee, W., Ku, S. K. & Bae, J. S. Anti-inflammatory Effects of an updated review. Mol Biol Rep. 2020;47(12):9779-9789.
7. Lee, J. Y. & Park, W. Anti-inflammatory effect of wogonin on RAW 264.7 mouse macrophages induced with polyinosinic-polyic- tidecid acid. Molecules. 2015;20(4):6888-900.
8. Wozniak, D., Drys, A. & Matkowski, A. Antiradical and antioxidiant activity of flavonoids from Scutellariae baicalensis radix. Nat Prod Res. 2015;29(16):1567-70.
9. Li, S. J., Sun, S. J., Gao, J. & Sun, F. B. Wogonin induces beclin-1/PI3K and reactive oxygen-species-mediated autophagy in human pancreatic cancer cells. Oncol Lett. 2016;12(6):5059-5067.
10. Ji, Y. et al. Neuroprotective Effects of Baicalein, Wogonin, and Oroxylin A on Amyloid Beta-Induced Toxicity via NF-κB/MAPK Pathway Modulation. Molecules. 2020;25(21):5087.
11. Jiao, D., Jiang, Q., Liu, Y. & Ji, L. Neuroprotective effect of wogonin against cadmium-induced nephrotoxicity via inhibition of oxidative stress-induced MAPK and NF-κB pathway in Sprague Dawley rats. Hum Exp Toxicol. 2019;38(9):1082-1091.
12. Lee, Y. M., Cheng, P. Y., Chen, S. Y., Chung, M. T. & Sheu, J. R. Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J Cardiovasc Pharmacol. 2011;58(2):133-42.
13. Bei, W., Jing, L. & Chen, N. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloids Surf B Biointerfaces. 2020;185:110635.
14. Zhao, Q., Chang, W., Chen, R. & Liu, Y. Anti-proliferative effect of wogonin on ovary cancer cells involves activation of apoptosis and cell cycle arrest. Med Sci Monit. 2019; 25: 8465-8471.
15. He, F. et al. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncol Rep. 2012;28(2):601-5.
16. Fu, P. et al. Wogonin increases doxorubicin sensitivity by downregulation of igf-1/akt signaling pathway in human breast cancer. Cell Mol Biol (Noisy-le-grand). 2015;61(7):123-7.
17. Talbi, A. et al. Pharmacokinetics, tissue distribution, excretion and plasma protein binding studies of wogonin in rats. Molecules. 2014;19(5):5538-49.
18. Zahr, G., Khadidje, B., Mortaza, K. & Ali, S. Potential Therapeutic Effects and Bioavailability of Wogonin, the Flavone of Baikal Skullcap. J. Nutr. Med. Diet Care. 2019, 5:039.
19. Wang Y, Zhang Y, Qian C, Cai M, Li Y, Li Z, You Q, Wang Q, Hu R, Guo Q, GK3β/β-catenin signaling is correlated with the differentiation of glioma cells induced by wogonin. Toxicol Lett. 2013 ;222(2):212-23.
20. Wang X, Chang Y, Gao M, Zhang F. Wogonoside Attenuates Cutaneous Squamous Cell Carcinoma by Reducing Epithelial-Mesenchymal Transition/Invasion and Cancer Stem-Like Cell Property. Onco Targets Ther. 2020 ;13:10097-10109.
21. Zhao L, Miao HC, Li WJ, Sun Y, Huang SL, Li ZY, Guo QL. LW-213 induces G2/M cell cycle arrest through AKT/GSK3β/β-catenin signaling pathway in human breast cancer cells. Mol Carcinog. 2016;55(5):778-92.
22. Chung H, Jung YM, Shin DH, Lee JY, Oh MY, Kim HJ, Jang KS, Jeon SJ, Son KH, Kong G. Anticancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int J Cancer. 2008 ;122(4):816-22.
23. Guo Q, Lu L, Liao Y, Wang X, Zhang Y, Liu Y, Huang S, Sun H, Li Z, Zhao L. Influence of c-Src on hypoxic resistance to paclitaxel in human ovarian cancer cells and reversal of FV-429. Cell Death Dis. 2018 ;9(1):e3178.
24. Zhao Y, Yao J, Wu XP, Zhao L, Zhou YX, Zhang Y, You QD, Guo QL, Lu N. Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL-6/STAT3 signaling pathway. Mol Carcinog. 2015;54 Suppl 1:E81-93.
25. Xiao W, Wu K, Yin M, Han S, Ding Y, Qiao A, Lu G, Deng B, Bo P, Gong W. Wogonin Inhibits Tumor-derived Regulatory Molecules by Suppressing STAT3 Signaling to Promote Tumor Immunity. J Immunother. 2015;38(5):167-84.
26. Tan H, Li X, Yang WH, Kang Y. A flavone, Wogonin from Scutellaria baicalensis inhibits the proliferation of human colorectal cancer cells by inducing of autophagy, apoptosis and G2/M cell cycle arrest via modulating the PI3K/akt and STAT3 signalling pathways. J BUON. 2019;24(3):1143-1149.
27. Song X, Yao J, Wang F, Zhou M, Zhou Y, Wang H, Wei L, Zhao L, Li Z, Lu N, Guo Q. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein. Toxicol Appl Pharmacol. 2013 ;271(2):144-55.
28. Fu R, Chen Y, Wang XP, An T, Tao L, Zhou YX, Huang YJ, Chen BA, Li ZY, You QD, Guo QL, Wu ZQ. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget. 2016;7(5):5715-27.

29. Wang H, Zhao L, Zhu LT, Wang Y, Pan D, Yao J, You QD, Guo QL. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog. 2014;53 Suppl 1:E107-18.

30. Wang SJ, Zhao JK, Ren S, Sun WW, Zhang WJ, Zhang JN. Wogonin affects proliferation and the energy metabolism of SGC-7901 and A549 cells. Exp Ther Med. 2019;17(1):911-918.

31. Lin CM, Chang H, Chen YH, Li SY, Wu IH, Chiu JH. Proactive role of wogonin against lipopolysaccharide-induced angiogenesis via VEGFR-2, not VEGFR-1. Int Immunopharmacol. 2006;6(11):1690-8.

32. Zhao K, Yuan Y, Lin B, Miao Z, Li Z, Guo Q, Lu N. LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene. 2018;642:533-541.

33. Lin CM, Chang H, Chen YH, Wu IH, Chiu JH. Wogonin inhibits IL-6-activated angiogenesis via down-regulation of VEGF and VEGFR-1, not VEGF-2. Planta Med. 2006;72(14):1305-10.

34. Lu N, Gao Y, Ling Y, Chen Y, Yang Y, Gu HY, Qi Q, Liu W, Wang XT, You QD, Guo QL. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sci. 2008;82(17-18):956-63.

35. Huynh DL, Kwon T, Zhang JJ, Sharma N, Gera M, Ghosh M, Kim N, Kim Cho S, Lee DS, Park YH, Jeong DK. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metalloproteinase-9 expression. BMC Complement Altern Med. 2017;17(1):304.

36. Chen P, Lu N, Ling Y, Chen Y, Hui H, Lu Z, Song X, Li Z, You Q, Guo Q. Inhibitory effects of wogonin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Toxicology. 2011;282(3):122-8.

37. Lin CW, Shen SC, Chien CC, Yang LY, Shia LT, Chen YC. 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKCalpha/ERK/NF-kappaB-dependent MMP-9 expression. J Cell Physiol. 2010;225(2):472-81.

38. Gong WY, Wu JF, Liu BJ, Zhang HY, Cao YX, Sun J, Ly YB, Wu X, Dong JC. Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int J Oncol. 2014;44(5):1561-70.

39. Dong P, Zhang Y, Gu J, Wu W, Li M, Yang J, Zhang L, Lu J, Mu J, Chen L, Li S, Wang J, Liu Y. Wogonin, an active ingredient of Chinese herb medicine Scutellaria baikalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol. 2011;137(3):1373-80.

40. Hong M, Cheng H, Song L, Wang W, Wang Q, Xu D, Xing W. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma. Molecules. 2018;23(2):384.

41. Yang L, Zhang HW, Hu R, Yang Y, Qi Q, Lu N, Liu W, Chu YY, You QD, Guo QL. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 coconmitant with an elevation in p21cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol. 2009;87(6):933-42.

42. Wang Y, Chen S, Sun S, Liu G, Chen L, Xia Y, Cui J, Wang W, Jiang X, Zhang L, Zhu Y, Zou Y, Shi B. Wogonin Induces Apoptosis and Reverses Sunitinib Resistance of Renal Cell Carcinoma Cells via Inhibiting CDK4-RB Pathway. Front Pharmacol. 2020;11:1152.

43. Liu X, Tian S, Liu M, Jian L, Zhao L. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF-κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling. Int J Mol Med. 2016;38(4):1250-6.

44. Polier G, Ding J, Konkimalla BV, Eick D, Ribeiro N, Köhler R, Giaisi M, Efferth T, DesaUBY L, Krammer PH, Li-Weber M. Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of McI-1. Cell Death Dis. 2011;2(7):e182.

45. Wang J, Li T, Zhao T, Wu T, Liu C, Ding H, Li Z, Bian J. Design of wogonin-inspired selective cyclic-dependent kinase 9 (CDK9) inhibitors with potent in vitro and in vivo antitumor activity. Eur J Med Chem. 2019;178:782-801.

46. Bian J, Ren J, Li Y, Wang J, Xu X, Feng Y, Tang H, Wang Y, Li Z. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem. 2018;81:373-381.

47. He F, Wang Q, Zheng XL, Yan JQ, Yang L, Sun H, Hu LN, Lin Y, Wang X. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncol Rep. 2012;28(2):601-5.

48. Koh H, Sun HN, Xing Z, Liu R, Chandimani N, Kwon T, Lee DS. Wogonin Inhibits Osteosarcoma Stem Cell Stemness Through ROS-dependent Signaling. In Vivo. 2020;34(3):1077-1084.

49. Petti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271(22):12687-90.

50. Walczak H, Miller RE, Ariail K, Glianiak B, Giffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5(2):157-63.

51. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM. The receptor for the cytotoxic ligand TRAIL. Science. 1997;276(5309):111-3.

52. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res. 1999;59(11):2747-53.

53. Gliniak B, Le T. Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res. 1999;59(24):6153-8.

54. Roth W, Isenmann S, Naumann U, Kögler S, Bähr M, Dichtig A, Ashkenazi A, Weller M. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun. 1999;265(2):479-83.

55. Yang L, Wang Q, Li D, Zhou Y, Zheng X, Sun H, Yan J, Zhang L, Lin Y, Wang X. Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins. Apoptosis. 2013;18(5):618-26.

56. Lee DH, Rhee JG, Lee YJ. Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. Br J Pharmacol. 2009;157(7):1189-202.

57. Ding J, Polier G, Köhler R, Giaisi M, Krammer PH, Li-Weber M. Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J Biol Chem. 2012;287(1):641-649.

58. Fas SC, Baumann S, Zhu JY, Giaisi M, Treiber MK, Mahlknecht U, Krammer PH, Li-Weber M. Wogonin sensitizes resistant malignant cells to TNF-alpha and TRAIL-induced apoptosis. Blood. 2006;108(12):3700-6.
59. Zhao Z, Liu B, Sun J, Lu L, Liu L, Qiu J, Li Q, Yan C, Jiang S, Mohammadtrsun N, Ma W, Li M, Dong J, Gong W. Scutellaria Flavonoids Effectively Inhibit the Malignant Phenotypes of Non-small Cell Lung Cancer in an Id1-dependent Manner. Int J Biol Sci. 2019;15(7):1500-1513.

60. Hong M, Almutairi MM, Li S, Li J. Wogonin inhibits cell cycle progression by activating the glycogen synthase kinase-3 beta in hepatocellular carcinoma. Phytomedicine. 2020 Mar;68:153174.

61. Yao Y, Zhao K, Yu Z, Ren H, Zhao L, Li Z, Guo Q, Lu N. Wogonoside inhibits invasion and migration through suppressing TRAF2/4 expression in breast cancer. J Exp Clin Cancer Res. 2017;36(1):103.

62. Kimura Y, Sumiyoshi M. Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine. 2013;20(3-4):328-36.

63. Yang D, Guo Q, Liang Y, Zhao Y, Tian X, Ye Y, Tian J, Wu T, Lu N. Wogonin induces cellular senescence in breast cancer via suppressing TXNRD2 expression. Arch Toxicol. 2020;94(10):3433-3447.

64. Feng Q, Wang H, Pang J, Ji L, Han J, Wang Y, Qi X, Liu Z, Lu L. Prevention of Wogonin on Colorectal Cancer Tumorigenesis by Regulating p53 Nuclear Translocation. Front Pharmacol. 2018;9:1356.

65. Go JH, Wei JD, Park Ji, Ahn KS, Kim JH. Wogonin suppresses the LPS-enhanced invasiveness of MDA-MB-231 breast cancer cells by inhibiting the 5-LO/BLT2 cascade. Int J Mol Med. 2018;42(4):1899-1908.

66. Wu X, Liu P, Zhang H, Li Y, Salmani JM, Wang F, Yang K, Fu R, Chen Z, Chen B. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-kB/miR-155/PU.1 pathway. BMC Cancer. 2017;17(1):147.