Efficient synthesis of chiral 2,3-dihydro-benzo[b]thiophene 1,1-dioxides via Rh-catalyzed hydrogenation†

Gongyi Liu, a Heng Zhang, a Yi Huang, a Zhengyu Han, a Gang Liu, a Yuanhua Liu, a Xiu-Qin Dong b, a and Xumu Zhang a, b

Rh-catalyzed asymmetric hydrogenation of prochiral substituted benzo[b]thiophene 1,1-dioxides was successfully developed, affording various chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxides with high yields and excellent enantioselectivities (up to 99% yield and >99% ee). In particular, for challenging substrates, such as aryl substituted substrates with sterically hindered groups and alkyl substituted substrates, the reaction proceeded smoothly in our catalytic system with excellent results. The gram-scale asymmetric hydrogenation proceeded well with 99% yield and 99% ee in the presence of 0.02 mol% (S/C = 5000) catalyst loading. The possible hydrogen-bonding interaction between the substrate and the ligand may play an important role in achieving high reactivity and excellent enantioselectivity.

Introduction

The 2,3-dihydro-benzo[b]thiophene 1,1-dioxides and derivative motifs are widely distributed with significant applications in many biologically active compounds, such as the inhibitor of tumour necrosis factor-α converting enzyme (TACE),2 antidiabetics3 and HIF-2α inhibitors. Other examples include benzo-thiophene scaffolds, such as 2,3-dihydraloxifene as raloxifene’s analogue with selective estrogen receptor modulator activity3 and a potential HIV-1 reverse transcriptase inhibitor (NSC-380292).4 In addition, they are important synthetic intermediates in the field of organic synthesis.

Although chiral 2,3-dihydro-benzo[b]thiophene 1,1-dioxides and their derivatives showed great potential, the development of highly efficient asymmetric synthetic methodologies to construct these compounds still remains very challenging. In 2017, Pfaltz and co-workers developed the asymmetric hydrogenation of prochiral benzo[b]thiophene 1,1-dioxides by using the Ir/pyridyl phosphinite ligand complex with moderate to excellent enantioselectivities, whereas for some aryl substituted substrates with slightly sterically hindered groups and alkyl substituted substrates it remained difficult to achieve both high reactivity and excellent enantioselectivity (Scheme 1).† Although some progress was achieved, it is extremely necessary to develop highly efficient asymmetric catalytic systems to prepare chiral 2,3-dihydro-benzo[b]thiophene 1,1-dioxides and their derivatives. Transition metal-catalyzed asymmetric hydrogenation of prochiral unsaturated heterocyclic compounds is a powerful and important method to synthesize chiral heterocyclic compounds.6,10 Meanwhile, chiral ferrocenyl phosphine ligands have emerged as a class of important and privileged ligands, which exhibited excellent performance in asymmetric catalytic reactions.11 Recently, our group successfully developed a series of bifunctional ferrocenyl bisphosphine-thiourea ligands, which were applied in some Rh-catalyzed asymmetric hydrogenation of unsaturated functionalized substrates.12 We envisaged that the asymmetric hydrogenation of prochiral

Scheme 1 Asymmetric hydrogenation of prochiral benzo[b]thiophene 1,1-dioxides.
substituted benzo[\textit{b}]thiophene 1,1-dioxides could proceed well with high reactivity and excellent enantioselective control with the aid of the possible hydrogen-bonding interaction between the sulfonyl group of the substrate and the thiourea motif of the ligand. Herein, we realized Rh-catalyzed asymmetric hydrogenation of prochiral benzo[\textit{b}]ene 1,1-dioxides with \textit{N}-methylated bisphosphine-thiourea ZhaoPhos L2 as the ligand, affording various chiral 2,3-dihydro-benzo[\textit{b}]thiophene 1,1-dioxides with up to \textgreater99\% conversion, \textgreater99\% ee and 5000 TON (Scheme 1). Challenging substrates, such as aryl substituted substrates with sterically hindered groups and alkyl substituted substrates, also performed well in our catalytic system with excellent results.

Results and discussion

The initial investigation of the Rh-catalyzed asymmetric hydrogenation of 2-phenylbenzo[\textit{b}]thiophene 1,1-dioxide (1a)13 as a model substrate was conducted with different metal sources using ligand ZhaoPhos L1 (S/C = 100) under 50 atm H\textsubscript{2} in CH\textsubscript{2}Cl\textsubscript{2} at 50 °C for 40 h (Table 1, entries 1–4). The Rh(NBD)\textsubscript{2}BF\textsubscript{4} afforded the best result with high conversion and excellent enantioselectivity (94\% conversion, 93\% ee, Table 1, entry 1). The conversion can be improved to 99\%, when the reaction temperature is increased from 50 °C to 70 °C (Table 1, entry 5). In order to achieve good solubility of the Rh(NBD)\textsubscript{2}BF\textsubscript{4}/ZhaoPhos L1 catalytic system, the catalyst was generated \textit{in situ} by mixing Rh(NBD)\textsubscript{2}BF\textsubscript{4}/ZhaoPhos L1 in CH\textsubscript{2}Cl\textsubscript{2}. The solvent effect of this asymmetric hydrogenation was investigated in various solvents. Excellent enantioselectivities can be obtained in mixed solvents of dichloroethane, CHCl\textsubscript{3}, MeOH, EtOH, \textit{t}PrOH or tetrahydrofuran in CH\textsubscript{2}Cl\textsubscript{2} with the volume ratio of 10:1, but the reactivities were very poor (15–51\% conversion, 90–99\% ee, Table 1, entries 6–7, 9–11, and 14). Good to excellent reactivities and enantioselectivities were observed in the mixed solvents of CF\textsubscript{3}CH\textsubscript{2}OH, ethyl acetate or toluene in CH\textsubscript{2}Cl\textsubscript{2} (87–\textgreater99\% conversion, 87–\textgreater99\% ee, Table 1, entries 8 and 12–13). And the mixed solvent CF\textsubscript{3}CH\textsubscript{2}OH/CH\textsubscript{2}Cl\textsubscript{2} (10 : 1) was chosen as the best reaction solvent with full conversion and \textgreater99\% ee (Table 1, entry 8).

A series of bisphosphine-thiourea ligands were then investigated in this Rh-catalyzed asymmetric hydrogenation (Fig. 1). As shown in Table 2, ZhaoPhos ligand L1 and \textit{N}-methylated ZhaoPhos ligand L2 provided the same result with \textgreater99\% conversion and \textgreater99\% ee (Table 2, entries 1 and 2), which indicates that one hydrogen bond is sufficient to obtain high reactivity and excellent enantioselectivity in this asymmetric transformation. The ligand L3 without the CF\textsubscript{3} group on the phenyl ring provided poor results (73\% conversion, 56\% ee,

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Entry & Metal source & Solvent & Conv.\([\%]\) & ee\([\%]\) \\
\hline
1d & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & CH\textsubscript{2}Cl\textsubscript{2} & 94 & 93 \\
2d & Rh(COD)\textsubscript{2}BF\textsubscript{4} & CH\textsubscript{2}Cl\textsubscript{2} & 92 & 87 \\
3d & [Rh(COD)Cl]\textsubscript{2} & CH\textsubscript{2}Cl\textsubscript{2} & 44 & 95 \\
4d & Rh(COD)\textsubscript{2}CF\textsubscript{3}SO\textsubscript{3} & CH\textsubscript{2}Cl\textsubscript{2} & NR & NA \\
5 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & CHCl\textsubscript{3} & 99 & 93 \\
6 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & DCE : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 23 & 95 \\
7 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & CHCl\textsubscript{3} : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 15 & 95 \\
8 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & TFE : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & \textgreater99 & \textgreater99 \\
9 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & MeOH : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 34 & 95 \\
10 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & EtOH : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 44 & 90 \\
11 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & \textit{t}PrOH : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 39 & 98 \\
12 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & EA : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 87 & 87 \\
13 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & Toluene : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 99 & 93 \\
14 & Rh(NBD)\textsubscript{2}BF\textsubscript{4} & THF : CH\textsubscript{2}Cl\textsubscript{2} = 10 : 1 & 51 & 99 \\
\hline
\end{tabular}
\caption{Screening metal sources and solvents for asymmetric hydrogenation of 2-phenylbenzo[\textit{b}]thiophene 1,1-dioxide 1aa}
\end{table}

aUnless otherwise noted, all reactions were carried out with a [Rh]/ligand L1/substrate 1a (0.1 mmol) ratio of 1 : 1 : 100 at 70 °C in 1.0 mL solvent under 50 atm H\textsubscript{2} for 40 h, and the catalyst was pre-complexed in CH\textsubscript{2}Cl\textsubscript{2} (0.1 mL for each reaction vial). bDetermined by 1H NMR analysis. cDetermined by HPLC on a chiral phase. dReaction temperature is 50 °C. NR = no reaction, NA = not available. DCE is dichloroethane. TFE is CF\textsubscript{3}CH\textsubscript{2}OH. EA is ethyl acetate. THF is tetrahydrofuran.
Table 2 Screening bisphosphine ligands for asymmetric hydrogenation of 2-phenylbenzo[b]thiophene 1,1-dioxide 1a

Entry	Ligand	Conv. [%]	ee [%]
1	ZhaoPhos L1	>99	>99
2	L2	>99	>99
3	L3	73	56
4	L4	NR	NA
5d	ZhaoPhos L1	81	96
6d	L2	95	98

* Unless otherwise mentioned, all reactions were carried out with a [Rh(NBD)2BF4]/ligand/substrate 1a (0.1 mmol) ratio of 1 : 1 : 100 in 1.0 mL CF3CH2OH under 50 atm H2 at 70 °C for 40 h, and the catalyst was pre-complexed in CH2Cl2 (0.1 mL for each reaction vial).

* Determined by 'H NMR analysis.

* The ee value was determined by HPLC on a chiral phase.

* Catalyst loading is 0.5 mol%, 12 h. NR = no reaction, NA = not available.

Table 3 Scope study of the Rh-catalyzed asymmetric hydrogenation of 2-substituted benzo[b]thiophene 1,1-dioxides

Entry	Ligand	Conv. [%]	ee [%]
2a		>90%	98%
2b		>90%	98%
2c		>90%	98%
2d		>90%	98%
2e		>90%	98%
2f		>90%	98%
2g		>90%	98%
2h		>90%	98%
2i		>90%	98%
2j		>90%	98%
2k		>90%	98%
2l		>90%	98%

* 0.1 mmol substrate 1, substrate 1/Rh(NBD)2BF4/L2 = 1.0/0.01/0.01 at 70 °C under 50 atm H2 in 1.0 mL CF3CH2OH for 40 h, and the catalyst was pre-complexed in CH2Cl2 (0.1 mL for each reaction vial).

Encouraged by the success in the highly enantioselective hydrogenation of various 2-substituted benzo[b]thiophene 1,1-dioxides catalyzed by Rh(NBD)2BF4/L2, we turned our attention to investigate the substrate generality of 3-substituted benzo[b]thiophene 1,1-dioxides. As shown in Table 4, a variety of 3-substituted benzo[b]thiophene 1,1-dioxides were reduced efficiently, providing the desired hydrogenation products (2m–2x) with excellent results (>99% conversion, 97–98% yields, and 94–99% ee). We found that the electronic properties and position of the substituted group on the phenyl ring of 3-aromatic substituted benzo[b]thiophene 1,1-dioxides have little influence on the reactivity and enantioselectivity. In addition, the substrate (1u) with a bulky 2-naphthyl group also worked well to afford the product (2u) with >99% conversion, 99% yield and >99% ee. Furthermore, when the 3-substituted aromatic group was changed to an alkyl group, the Rh-catalyzed asymmetric hydrogenation of 3-alkyl substituted benzo[b]thiophene 1,1-dioxides (1v–1x) proceeded smoothly with excellent results (>99% conversion, 97–98% yields, and 96–98% ee).

In addition, the gram-scale asymmetric hydrogenation of 3-phenyl benzo[b]thiophene 1,1-dioxide (1m) proceeded efficiently with only 0.02 mol% (S/C = 5000) catalyst, affording the...
desired product (2m) with >99% conversion, 99% yield and 99% ee (Scheme 2). This result showed that this Rh/ligand L2 catalytic system possessed very high activity in this reaction. It is very challenging to realize the asymmetric hydrogenation of tetrasubstituted cyclic olefins owing to their unfavorable bulky steric hindrance. The tetrasubstituted cyclic olefins 2,3-disubstituted benzo[b]thiophene 1,1-dioxides were applied in this Rh-catalyzed asymmetric hydrogenation to further investigate the substrate generality. As shown in Scheme 3, the desired product 3-fluoro-2-phenyl-2,3-dihydrobenzo[b]thiophene 1,1-dioxide (4a) can be obtained with good conversion, high diastereoselectivity and excellent enantioselectivity (83% conversion, >25:1 dr, and 98% ee). In addition, no reaction was detected with more challenging substrates, 3-methyl-2-phenylbenzo[b]thiophene 1,1-dioxide (3b) and 2,3-dimethylbenzo[b]thiophene 1,1-dioxide (3c).

A nonlinear effect suggests that the potential dimerization or high-order aggregation of catalysts should exist in catalytic asymmetric reactions. In order to verify the possible catalytic model, the asymmetric hydrogenation of substrate 1m was performed in the presence of ligand L2 with different ee values. And no nonlinear effect was observed in this transformation, which revealed that there should be no catalyst self-aggregation or ligand–substrate agglomeration in this catalytic system. Furthermore, a Job plot was drawn and the curve suggests a 1:1 binding pattern between ligand L2 and substrate 1m. On the basis of these observations and the reaction results, 3D catalytic models for the asymmetric hydrogenation of substrates 1a and 1m were built through DFT calculations to account for the possible hydrogen bonding interaction between the Rh-catalyst and the substrate (summarized in the ESI†).

Conclusions

In summary, a highly efficient synthetic methodology for the construction of various chiral 2,3-dihydro-benzo[b]thiophene 1,1-dioxides was successfully developed through Rh/N-methylated ZhaoPhos ligand L2-catalyzed asymmetric hydrogenation. Our catalytic system possessed wide tolerance of substrate scope, both aromatic and alkyl substituted groups at the 2-position or the 3-position of prochiral benzo[b]thiophene 1,1-dioxides worked well in this asymmetric hydrogenation to provide the desired products with high yields and excellent enantioselectivities (up to 99% yield and >99% ee). In addition, our catalytic system showed very high activity, and the gram-scale asymmetric hydrogenation of 3-phenyl benzo[b]thiophene 1,1-dioxide proceeded well catalyzed by only 0.02 mol% (S/C = 5000) Rh/ligand L2 catalyst loading with >99% conversion, 99% yield and 99% ee. The possible hydrogen-bonding interaction between the substrate and the thiourea motif of the ligand may make an important contribution to achieving

Table 4 Scope study of the Rh-catalyzed asymmetric hydrogenation of 3-substituted benzo[b]thiophene 1,1-dioxides

Substrates	Conversion	Yield	ee
2m	>99%	>99%	99%
2n	>99%	>99%	99%
2o	>99%	>99%	99%
2p	>99%	>99%	99%
2v	>99%	>99%	99%
2w	>99%	>99%	99%
2x	>99%	>99%	99%

Scheme 2 Gram-scale asymmetric hydrogenation with high TON.

Scheme 3 Rh-catalyzed asymmetric hydrogenation of 2,3-disubstituted benzo[b]thiophene 1,1-dioxides.
high reactivity and excellent enantioselectivity in this reaction. Further investigations toward a catalytic asymmetric variant of this reaction process are under way.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
We are grateful for financial support from the National Natural Science Foundation of China (Grant No. 21432007, 21502145), Wuhan Morning Light Plan of Youth Science and Technology (Grant No. 2017050304010307), Shenzhen Nobel Prize Scientists Laboratory Project (Grant No. C17783101) and Fundamental Research Funds for and the Central Universities (Grant No. 2042018k0202). The Program of Introducing Talents of Discipline to Universities of China (111 Project) is also appreciated. The numerical calculations in this paper have been carried out on the supercomputing system in the Supercomputing Center of Wuhan University.

Notes and references
1 (a) M. Saitou, H. Sekiguchi and S. Ogawa, WO 2000069853, 2000; (b) M. Saitou, H. Sekiguchi and S. Ogawa, WO 2000020408, 2000; (c) R. G. Hall, O. Loiseleur, J. Pabba, S. Pal, A. Jeanguenat, A. Edmunds and A. Stoller, WO 2009010260, 2009; (d) A. Edmunds, M. Mghlebach, A. Stoller, O. Loiseleur, A. Buchholz, O. F. Hueter, A. Bigot, R. G. Hall, D. Emery, P. Jung, L. Lu, Y. Wu and R. Chen, WO 2015000715, 2015.
2 L. Aigars, L. Gundars, K. Ivars, B. Daniel, F. Paul and K. Nagma, WO 2008142376, 2008.
3 F. Wendelin, G. Heiner, T. Stefan and E. Ralf, WO 2011107494, 2011.
4 (a) D. Dixon, J. Grina, J. A. Josey, J. P. Rizzi, S. T. Schlachtzer, E. M. Wallace, B. Wang, P. Wehn, R. Xu and H. Yang, WO 2015095048, 2015; (b) P. Wehn and P. Yang, US 20160362390, 2016.
5 A. L. Glaesbrook, J. W. Misner, G. A. Stephenson and C. R. Schmid, Bioorg. Med. Chem. Lett., 1999, 9, 1137–1140.
6 K. Krajewski, Y. J. Zhang, D. Parrish, J. Deschamps, P. Roller and V. K. Pathak, Bioorg. Med. Chem. Lett., 2006, 16, 3034–3038.
7 (a) S. Urban, B. Beiring, N. Ortega, D. Paul and F. Glorius, J. Am. Chem. Soc., 2012, 134, 15241–15244; (b) D. Janssen-Müller, M. Fleige, D. Schünß, M. Wollenburg, C. G. Daniluc, J. Neugebauer and F. Glorius, ACS Catal., 2016, 6, 5735–5739; (c) P. Tosatti and A. Pfaltz, Angew. Chem., Int. Ed., 2017, 56, 4579–4582; (d) H. Deng, F.-S. He, C.-S. Li, W.-L. Yang and W.-P. Deng, Org. Chem. Front., 2017, 4, 2343–2347.
8 F. Toda, H. Miyamoto and S. Kikuchi, J. Am. Chem. Soc., 1996, 118, 11315–11316.
9 Selected recent reviews: (a) D.-S. Wang, Q.-A. Chen, S.-M. Lu and Y.-G. Zhou, Chem. Rev., 2012, 112, 2557–2590; (b) Z. Yu, W. Jin and Q. Jiang, Angew. Chem., Int. Ed., 2012, 51, 6060–6072; (c) Y.-M. He, F.-T. Song and Q.-H. Fan, Top. Curr. Chem., 2014, 343, 145–190; (d) Z.-P. Chen and Y.-G. Zhou, Synthesis, 2016, 1769–1781; (e) D. Zhao, L. Candish, D. Paul and F. Glorius, ACS Catal., 2016, 6, 5978–5988.
10 Selected examples, see: (a) A. Baeza and A. Pfaltz, Chem.–Eur. J., 2010, 16, 2036–2039; (b) D.-S. Wang, Q.-A. Chen, W. Li, C.-B. Yu, Y.-G. Zhou and X. Zhang, J. Am. Chem. Soc., 2010, 132, 8909–8911; (c) D.-S. Wang, J. Tang, Y.-G. Zhou, M.-W. Chen, C.-B. Yu, Y. Duan and G.-F. Jiang, Chem. Sci., 2011, 2, 803–806; (d) N. Ortega, S. Urban, B. Beiring and F. Glorius, Angew. Chem., Int. Ed., 2012, 51, 1710–1713; (e) C. Li, J. Chen, G. Fu, D. Liu, Y. Liu and W. Zhang, Tetrahedron, 2013, 69, 6839–6844; (f) Y. Duan, L. Li, M.-W. Chen, C.-B. Yu, H.-J. Fan and Y.-G. Zhou, J. Am. Chem. Soc., 2014, 136, 7688–7700; (g) L. Pauli, R. Tannert, R. Scheil and A. Pfaltz, Chem.–Eur. J., 2015, 21, 1482–1487; (h) T. Touge and T. Arai, J. Am. Chem. Soc., 2016, 138, 11299–11305; (i) Z. Yang, F. Chen, Y. He, N. Yang and Q.-H. Fan, Angew. Chem., Int. Ed., 2016, 55, 13863–13866.
11 Selected examples: (a) T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto and M. Kumada, Bull. Chem. Soc. Jpn., 1980, 53, 1138–1151; (b) T. Hayashi, N. Kawamura and Y. Ito, J. Am. Chem. Soc., 1987, 109, 7876–7878; (c) T. Hayashi, K. Kanehira, T. Hagihara and M. Kumada, J. Org. Chem., 1988, 53, 113–120; (d) T. Hayashi and A. Yamazaki, J. Organomet. Chem., 1991, 413, 295–302; (e) M. Sawamura and Y. Ito, Chem. Rev., 1992, 92, 857–871; (f) J. W. Han and T. Hayashi, Tetrahedron: Asymmetry, 2010, 21, 2193–2197; (g) T. J. Colacot, Chem. Rev., 2003, 103, 3101–3118; (h) P. Barbaro, C. Bianchini, G. Giambastiani and S. L. Parise, Coord. Chem. Rev., 2004, 248, 2131–2150; (i) A. Yanagisawa and T. Arai, Chem. Commun., 2008, 1165–1172; (j) W. Zeng, G.-Y. Chen, Y.-G. Zhou and Y.-X. Li, J. Am. Chem. Soc., 2007, 129, 750–751; (k) R. G. Arrayáis, J. Adrio and J. C. Carretero, Angew. Chem., Int. Ed., 2006, 45, 7674–7715; (l) R. C. J. Atkinson, V. C. Gibson and N. J. Long, Chem. Soc. Rev., 2004, 33, 313–328; (m) H. B. Kagan, P. Diter, A. Gref, D. Guillaneux, A. Masson-Szymczak, F. Rebière, O. Riant, O. Samuel and S. Taudien, Pure Appl. Chem., 1996, 68, 29–36.
12 (a) Q. Zhao, S. Li, K. Huang, R. Wang and X. Zhang, Org. Lett., 2013, 15, 4014–4017; (b) Q. Zhao, J. Wen, R. Tan, K. Huang, P. Metola, R. Wang, E. V. Anslyn and X. Zhang, Angew. Chem., Int. Ed., 2014, 53, 8467–8470; (c) P. Li, M. Zhou, Q. Zhao, W. Wu, X. Hu, X.-Q. Dong and X. Zhang, Org. Lett., 2016, 18, 40–43; (d) Z. Han, P. Li, Z. Zhang, C. Chen, Q. Wang, X.-Q. Dong and X. Zhang, ACS Catal., 2016, 6, 6214–6218; (e) P. Li, X. Hu, X.-Q. Dong and X. Zhang, Chem. Commun., 2016, 52, 11677–11680; (f) J. Wen, R. Tan, S. Liu, Q. Zhao and X. Zhang, Chem. Sci., 2016, 7, 3047–3051; (g) P. Li, Y. Huang, X. Hu, X.-Q. Dong and X. Zhang, Org. Lett., 2017, 19, 3855–3858; (h) Z. Han, R. Wang, G. Gu, X.-Q. Dong and...
X. Zhang, *Chem. Commun.*, 2017, **53**, 4226–4229; (i) J. Wen, J. Jiang and X. Zhang, *Org. Lett.*, 2016, **18**, 4451–4453; (j) X. Li, C. You, Y. Yang, Y. Yang, P. Li, G. Gu, L. Wang, H. Lv and X. Zhang, *Chem. Sci.*, 2018, **9**, 1919–1924.

13 D. Antonow, T. Marrafa, I. Dawood, T. Ahmed, M. R. Haque, D. E. Thurston and G. Zinzalla, *Chem. Commun.*, 2010, **46**, 2289–2291.

14 D. Guillaneux, S.-H. Zhao, O. Samuel, D. Rainford and H. B. Kagan, *J. Am. Chem. Soc.*, 1994, **116**, 9430–9439.