The Evidence for Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Neutrophil Disorders: A Comprehensive Review by the Inborn Errors Working Party Group of the EBMT

Shahrzad Bakhtiar¹, Bella Shadur²,³,⁴ and Polina Stepensky²*

¹ Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany,
² Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel,
³ Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,
⁴ Graduate Research School, University of New South Wales, Kensington, NSW, Australia

Congenital disorders of the immune system affecting maturation and/or function of phagocytic leucocytes can result in severe infectious and inflammatory complications with high mortality and morbidity. Further complications include progression to MDS/AML in some cases. Allogeneic stem cell transplantation is the only curative treatment for most patients with these diseases. In this review, we provide a detailed update on indications and outcomes of alloHSCT for congenital neutrophil disorders, based on data from the available literature.

Keywords: neutrophils, neutropenia, leukemia, granulocyte colony-stimulating factor, hematopoietic stem cell transplantation

INTRODUCTION

Congenital neutrophil disorders as a category of primary immunodeficiency (PID) can be classified in many ways, but a key point of distinction is whether the disorder is quantitative, or qualitative (1). The 2017 International Union of Immunological Societies (IUIS) Phenotypic Classification for Primary Immunodeficiencies divides neutrophil disorders into four broad categories: congenital neutropenia associated with or without syndromic disease, and functional neutrophil defects with or without syndromic disease (2). Affected patients can present with variable symptoms including recurrent infections, failure to thrive, and overwhelming septic episodes leading to high morbidity and mortality. Early and severe respiratory infections (e.g., Burkholderia cepacia, Aspergillus spp.), visceral abscesses, cellulitis, lymphadenitis, and granulomatous lesions are observed in patients suffering from CGD (3, 4). Some patients develop severe autoinflammatory complications underlining the role of neutrophils in autoinflammatory processes beyond microbial defense (5, 6). In many of these diseases there is a recognized risk of progression to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) (1, 2, 7, 8). Treatment for neutrophil disorders classically comprises anti-microbial therapy, granulocyte-colony stimulating factor (G-CSF), and allogeneic hematopoietic stem cell transplantation (alloHSCT) (8).
In this review we provide an update on the evidence, indications and modalities of alloHSCT for the various congenital neutrophil disorders based on data from the available literature, excluding CGD which will be discussed elsewhere in this special edition. Also beyond the scope of this manuscript is neutropenia that features in predominantly lymphocyte immune deficiencies (e.g., some forms of severe combined immune deficiency, CD40L deficiency, etc.).

MATERIALS AND METHODS

We used the 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies as the basis for this review (2). Data were gathered via an English-language Pubmed literature search whereby the name of each disorder in figure five of the IUIS classification was searched individually, and together with the terms “alloHSCT” and “transplantation.” We searched for case reports and case series on each disorder, focusing on the question of treatability of the disease by alloHSCT.

RESULTS

Group 1: Syndrome-Associated Neutropenia

This group of diseases is dominated by conditions defined by bone marrow failure (BMF), predisposition to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), as well as additional non-hematological manifestations such as neurodevelopmental delay (Table 1). Disease control can be achieved for some patients with G-CSF in combination with antibiotic prophylaxis (40, 41). However, the refractoriness of the disease and the predisposition to myeloid malignancies raise the question of if and when curative treatment by alloHSCT is indicated. A lack of evidence regarding long-term outcomes both with and without transplantation, the lack of genotype-phenotype correlation, and the persistence of neurodevelopmental disorders, make recommendations difficult for many of these diseases (Table 1). In some cases only case reports are available, such as in the case of successful transplant of Glycogen Storage Disease type 1b using reduced intensity conditioning (18, 42). On the contrary, more data is available on Schwachman Diamond Syndrome and deficiency of VPS45 protein, and is presented here (43).

Schwachman Diamond Syndrome (SDS)

Schwachman Diamond Syndrome is caused by mutations in the SDS gene at chromosome 7q11.21. Mutations in this gene lead to impaired RNA metabolism and ribosomal function, with clinical features as described in Table 1 (10). One third of patients develop major hematological complications (9), and alloHSCT is indicated in cases of bone marrow failure (with subsequent transfusion-dependent anemia, bleeding and severe, recurrent infections), MDS, or AML (11, 12, 44, 45). Numerous studies have shown that alloHSCT is able to correct hematological abnormalities in patients with SDS, however most studies are limited by small sample numbers and/or short follow-up time. A 2005 study by Cesaro et al. (44) reviewed 26 patients with SDS who underwent alloHSCT and demonstrated overall survival of 64.5% at 1 year follow-up. Fifty-six percent of patients who were transplanted following the development of MDS/AML died post-transplant, compared to 19% who were transplanted for BMF; although the difference was not statistically significant. Patients transplanted with total body irradiation (TBI) appeared to do worse than those transplanted with busulfan and fludarabine conditioning, with 67 vs. 20% mortality (P = 0.03) (44). In 2002 Hsu reviewed 15 cases of SDS alloHSCT patients and found that transplantation following the development of MDS/AML was associated with a worse outcome; overall survival in this series was 40% (12).

A 2005 review of French registry data found 10 patients who had been transplanted for SDS, five because of bone marrow failure (BMF) and five following development of MDS/AML. They found a 5 years event-free survival of 60% with two patients failing to engraft, one dying 17 months post-HSCT from a respiratory illness, and one death from relapsed MDS. This study noted that patients transplanted prior to the development of malignancy had improved transplant outcomes, and that patients transplanted for BMF demonstrated sustained engraftment with myeloablative regimens based on busulfan and cyclophosphamide. The authors felt that more intense conditioning for BMF-SDS is not warranted, but reduced intensity conditioning for patients with MDS/AML would be insufficient (45). In contrast, Burroughs et al. document three SDS patients transplanted from matched unrelated donors (MUD) with treosulfan and fludarabine conditioning regimens and no serotherapy; these patients underwent transplantation for BMF and achieved sustained engraftment with acute graft vs. host disease (GvHD) developing in two of the three (13).

Thus, for patients with SDS, alloHSCT can correct the hematopoietic aspects of the disease with improved outcomes if transplantation is undertaken prior to development of MDS/AML. Regular monitoring for cytogenetic abnormalities is thus recommended, although some appear to be indolent or transient and are not an automatic indication for HSCT [e.g., i7(q10) and del(20q)]. Larger studies are required before recommendations can be made regarding ideal conditioning regimens (treosulfan or busulfan) and need for serotherapy (particularly when using MUDs) (12, 13, 44, 45).

Abbreviations: AD, Autosomal Dominant; aGVHD, Acute Graft vs. Host Disease; alloHSCT, Allogeneic Hematopoietic Stem Cell Transplant; AML, Acute Myeloid Leukemia; AR, Autosomal Recessive; BMF, Bone Marrow Failure; CGD, Chronic Granulomatous Disease; cGVHD, Chronic Graft vs. Host Disease; CHD, Congenital Heart Disease; EBMT, European Society for Bone Marrow Transplantation; ESID, European Society for Immunodeficiencies; G-CSF, Granulocyte Colony Stimulating Factor; GOF, Gain of Function; GVHD, Graft vs. Host Disease; HSCT, Hematopoietic Stem Cell Transplantation; iEWP, Inborn Errors Working Party; IUIS, International Union of Immunological Studies; LAD, Leukocyte Adhesion Deficiency; MAC, Myelopoietic Conditioning; MDS, Myelodysplastic Syndrome; MUD, Matched Unrelated Donor; PID, Primary Immune Deficiency; RIC, Reduced Intensity Conditioning; SAA, Severe Aplastic Anemia; SCETIDE, Stem Cell Transplant for Immunodeficiencies in Europe; SCN, Severe Congenital Neutropenia; SDS, Schwachman Diamond Syndrome; TBI, Total Body Irradiation.
Disease	Gene chromosome inheritance	Clinical features	G-CSF responsive	Risk of progression to MDS/AML	Evidence of successful HSCT	References
Schwachman Diamond Syndrome (SDS)	SBDS 7q11.21 AR	Bone marrow failure, Exocrine pancreas dysfunction, Malabsorption, Skeletal abnormalities, Neurocognitive deficit, Recurrent infections (ii)	Yes	Yes	Yes (see text)	(10–14)
G6PC3 deficiency	G6PC3 17q21 AR	SCN, Intermittent thrombocytopenia, Congenital heart disease, Urogenital anomalies, Dysmorphism, Growth and developmental delay, Gastrointestinal disease (Crohn’s Disease, chronic diarrhea with steatorrhea)	Yes	Yes	Yes	(15–17)
Glycogen storage disease type 1b	G6PT1 11q23 AR	Neutropenia, Hypoglycemia, Recurrent infections, Inflammatory bowel disease, Liver diseases and hepatosplenomegaly, Hypertriglyceridemia	Yes	None	No	(18, 19)
Cohen syndrome (also called COH1)	VPS13B (8q22.2 AR)	Decreased fetal activity and low birth weight, Neutropenia/SCN, Obesity (truncal with normal BMI), Hypotonia, Dysmorphisms, dental anomalies, poor vision, and limb abnormalities, Intellectual disability (severe in 22% of cases)	Yes	None	No	(20)
Barth syndrome	TAZ Xq28 X-linked	Neutropenia (fluctuating) with occasional monocytosis, Dilated cardiomyopathy and rhythm abnormalities, Skeletal myopathy, Growth delay, Developmental delay, Hypoglycemia, Early death	Yes	None	No	(21–23)
Clericuzio syndrome (Poikiloderma with neutropenia)	USB1 16q21 AR	Inflammatory eczematous rash (6–12 months), Post-inflammatory Poikiloderma (>2 years), Neutropenia, Recurrent sinopulmonary infections and bronchiectasis, Nail dystrophy, palmar/plantar hyperkeratosis, Reactive airway disease, Hypogonadotropic hypogonadism, Mid-facial retrusion, Calciosis cutis, Non-healing skin ulcers	Yes	Yes	No	(24, 25)
VPS45 deficiency (See text)	VPS45 1q21-22 AR	BMF, Neutropenia non-responsive to G-CSF, Recurrent, severe bacterial, and fungal infections, Extramedullary hematopoiesis with hepatosplenomegaly, Nephromegaly	No	Unknown	Yes (see text)	(26–30)
P14/LAMTOR2	LAMTOR2/ MAPBP iP 3′ UTR p14	SCN, Partial albinism, B-cell deficiency, CD8 deficiency, Coarse facial features	Yes	None	No	(31)

(Continued)
TABLE 1 | Continued

Disease	Gene chromosome inheritance	Clinical features	G-CSF responsive	Risk of progression to MDS/AML	Evidence of successful HSCT	References
JAGN1	JAGN1 3p25.3 AR	SCN with increased apoptosis of neutrophils (variable)	Variable	Yes	Yes (conditioning regimen not specified in literature)	(32, 33)
JAGN1		Recurrent infections Bone, dental, pancreatic insufficiency Failure to thrive Developmental delay				
3-methylglutaconic acid	CLBP 11q13.4 AR	SCN	Yes	Yes	No	(34)
SMARC2	SMARC2 17q23.3 AR	Neutropenia Delayed separation of the umbilical cord Recurrent infection Chronic diarrhea Developmental delay Dysmorphic features	No	Yes	No	(35)
WDR1	WDR1 4p16.1 AR	Neutropenia with impaired lymphoid function Mild learning disability Aphthous stomatitis and skin ulcers Pneumonia Gout Pancreatitis Glioblastoma Dysmorphic features in some patients	Unclear	Yes	No (36–38)	
HYOU	HYOU1 11q23.3 AR	Neutropenia Recurrent oral herpes infection Hypoglycemia Autoimmunity	Yes	None reported	No	(39)

Deficiency of VPS45 Protein

Deficiency of VPS45 protein leads to impaired trafficking of endosomes and lysosomes, with impaired degranulation, release of inflammatory mediators, and neutrophil migration. Patients present very early in life (before 1 year of age) with severe, recurrent, deep-seated bacterial and fungal infections, and a severe neutropenia unresponsive to G-CSF therapy. Bone marrow biopsy classically demonstrates primary myelofibrosis with a dry tap (26–29). HSCT is indicated for severe neutropenia unresponsive to G-CSF and for recurrent, severe infections (27, 30). alloHSCT should be undertaken as early as possible with a myeloablative regimen including busulfan (27). A total of nine transplants have been performed for children with biallelic mutations in the VPS45 gene, with three deaths and six patients surviving. Surviving patients were transplant-independent with resolution of the extramedullary hematopoiesis if full donor chimerism was achieved (27).

Group 2: Neutropenia Without Syndromic Disease

This group includes congenital neutropenia caused by mutations in ELANE, GFI1, HAX1, WAS (X-linked neutropenia), CSF3R, and SRP54 genes (Table 2) (40, 43, 46). Several reports on successful alloHSCT are available for both reduced intensity conditioning (RIC), and myeloablative conditioning (MAC) transplantation for this group of diseases (Table 2) and patients younger than 10 years of age appear to have favorable outcomes (7).

Severe infections are seen in ELANE and HAX1 mutations, thus alloHSCT is indicated in these patients, particularly if they require high-dose G-CSF to maintain their neutrophil count, or progress to MDS/AML (it has been found that patients who require more than 8 mcg/kg/day of G-CSF to maintain a neutrophil count above 0.5 × 10⁹/L have an increased risk of sepsis and MDS/AML) (43, 46, 55). With regard to HAX1, patients with mutations in exon 2 encoding isoform A develop isolated congenital neutropenia, whereas other mutations encoding both isoform A and B cause hematological and neurological manifestations (neurological delay, epilepsy). Thus, the degree of neurological impairment should be taken into account when considering alloHSCT (48, 49). Patients with GFI1 and WAS gain of function (GOF) mutations are very rare and seem to present with mild to moderate neutropenia, and there are no reports on alloHSCT in these patients (40, 47). WAS GOF (X-linked neutropenia) is a distinct clinical entity from Wiskott Aldrich Syndrome (caused by WAS loss of function) with male patients exhibiting variable neutropenia, recurrent infections, and lymphopenia, with normal platelet counts and
TABLE 2 | Neutropenia without syndromic disease.

Disease	Gene	Clinical features	G-SCF responsive	Risk of progression to MDS/AML	Evidence of successful HSCT	References
Severe congenital neutropenia 1 (SCN1)	ELANE	Neutropenia	Yes	No	Yes (indicated if high doses of GCSF needed) (see text)	(43)
		Recurrent bacterial skin infections				
		Abscess formation				
		Gingivitis				
		Failure to thrive				
		Can also cause cyclic neutropenia				
Severe congenital neutropenia 2 (SCN2)	GFI1	Neutropenia	Yes	None reported	Not reported	(40, 46, 47)
		Recurrent bacterial skin infections				
		Abscess formation				
		Gingivitis				
		Failure to thrive				
		Mild lymphopenia				
Severe congenital neutropenia 3 (SCN3)	HAX1	Neutropenia	Yes	Yes	Yes	(43, 48–50)
		Recurrent bacterial skin infections				
		Gingivitis				
		Failure to thrive				
		Abscess formation				
		Neurological impairment				
X-linked neutropenia	WAS GOF	Neutropenia	Yes	Possible (myelodysplasia noted in some patients)	Not reported	(43, 51–53)
		Bacterial infections				
		Lymphopenia and monocytopenia				
		Autoimmune enteropathy				
G-SCF receptor deficiency	CSF3R	Cases of acquired somatic mutation in AML/MDS	No	Yes	Annual mutational screening of CSF3R and consideration of HSCT if a mutation was detected.	(43)
		AR/acquired in cases of SCN				
Neutropenia with combined immune deficiency	MKL1	Severe bacterial and fungal infections	Not reported	Not reported	Not reported	(54)
		BCG-related disease				
		Abscess formation				
		Mild thrombocytopenia				
		Failure to thrive				

no eczema. Transient myelodysplastic changes have been seen in the bone marrow of some patients, resolving in most cases but progressing to AML at an elderly age in one case (51–53). In contrast, patients with acquired mutations in CSF3R present very often with MDS/AML, therefore yearly screening for receptor mutations is indicated, as is pre-emptive alloHSCT (Table 2) (43).

Group 3: Phagocyte Function With Syndromic Disease

This group of disease is characterized by defective neutrophil function with normal or elevated neutrophil numbers that is part of a broader syndrome (Table 3). For patients with Papillon-Lefèvre, localized juvenile periodontitis, and β-ACTIN-deficiency there is no need and no evidence for alloHSCT. Patients suffering from leucocyte adhesion deficiencies I and III (LAD) can be cured by alloHSCT, however patients with LADII are not candidates for transplantation. For patients with LADI and III, it appears preferable to transplant early, prior to the development of life-threatening infections. Both RIC and MAC regimens have been successful, although it appears myeloablative reduced toxicity regimens (fludarabine-based, combined with treosulfan, or targeted busulfan dosing) are preferable, with RIC regimens more suitable for sicker patients with reduced Lansky score (61–65). However, a recent study of the EBMT/IEWP on 83 transplanted LAD patients shows no significant benefit in patients receiving MAC vs. non-myeloablation. Furthermore, regardless of the conditioning regimen, a relatively high frequency of severe inflammatory complications (graft rejection and severe aGVHD) during alloHSCT was observed. This cohort included a few LAD III patients, and their outcome was not significantly different from that of the LAD I patients. Early transplantation using anti-inflammatory treatment pre-alloHSCT and the additional use of thiopeta in the conditioning protocol might be beneficial [unpublished data of author SB, (66)]. Following on from successful gene therapy trials for other primary immune deficiencies, a gene therapy phase I/II trial for LAD-1 has been announced for the end of 2019 whereby autologous CD34+ stem cells of patients with LAD1 will be transduced using a lentiviral vector; stem cells successfully transduced will be transplanted following conditioning with a low dose of busulfan (Rocket Pharma, USA; https://clinicaltrials.gov/ct2/show/NCT03812263, https://clinicaltrials.gov/ct2/show/NCT03825783) (67).
Table 3: Phagocyte dysfunction with syndromic disease.

Disease	Gene chromosome inheritance	Clinical features	G-SCF responsive	Risk of progression to MDS/AML	Evidence of successful HSCT	References
Cystic fibrosis transmembrane conductance regulator (CFTR)—dependent Leukocyte adhesion deficiency type IV (LAD IV)	CFTR 7q31.2 AR	Clinical features of cystic fibrosis	No	No	No	(56, 57)
Papillon-Lefèvre	CTSC 11q14.2 AR	Palmoplantar keratoderma, Periodontitis, Premature loss of dentition, Liver abscess, Pneumonia	Unknown	No	No	(58)
Localized juvenile periodontis	FPR-1 11q14.1 AR	Palmoplantar keratoderma, Periodontitis, Premature loss of dentition, Liver abscess	Yes	No	No	(59)
β-ACTIN	ACTB 7p22.1 AD	Developmental delay, Recurrent infections, Photosensitivity, Thrombocytopenia, Stomatitis	Unknown	Unknown	No	(60)
Leukocyte adhesion deficiency type I (LAD I)	ITGB 12q13.13 AR	Severe leucocytosis, Severe recurrent bacterial infections, Impaired pus formation, Delayed wound healing, Delayed umbilical cord detachment	No	No	Yes Complicated by aGVHD Indicated in young patients with MSD, RIC/MAC both used Additional Thiotepa beneficial	(61–63)
Leukocyte adhesion deficiency type II (LAD II) Also known as CDG2C	SLC35C1 11p11.2 AR	Severe leucocytosis, Recurrent bacterial infection, Moderate to severe psychomotor retardation, Mild to severe dysmorphism, Impaired neutrophil motility, Bombay blood group	No	No	No	(61–63)
Leukocyte adhesion deficiency type III (LAD III)	FERMT3 11q13.1 AR	Severe leucocytosis, Recurrent bacterial infection, Bleeding tendency	No	No	Yes Complicated by aGVHD, good in young patients with MSD, RIC/MAC both used, additional thiotepa indicated	(61–64)

Group 4: Phagocyte Dysfunction Without Syndromic Disease

Excluding CGD, the only disease in this group with evidence of successful bone marrow transplantation is MonoMAC (monocytopenia and mycobacterial infections syndrome) (Table 4). This disease is characterized by profoundly decreased or absent monocytes, B lymphocytes, natural killer (NK) cells, and circulating and tissue dendritic cells (DCs), with little, or no effect on T-lymphocyte numbers. Patients are susceptible to mycobacterial, viral and opportunistic fungal infections. Bone marrow dysfunction is prominent and variable with progressive aplastic and dysplastic changes. Stem cell transplantation is curative and can be performed pre-emptively in cases where a matched donor is available (68). Anti-inflammatory pre-treatment and proper infection control might result in lower transplant related mortality in these patients.

DISCUSSION

The list of neutrophil disorders is varied and expanding rapidly with the increasing availability of next generation gene sequencing. As our ability to establish a genetic diagnosis is improved, the challenge of linking genotype to phenotype arises, a challenge that is made difficult by the small numbers of patients diagnosed with each individual disease. There is much we still do not understand about the pathomechanism of these diseases, and this makes prognostication and treatment decisions difficult. Serious infectious complications and neutropenia are life threatening but can be treated with anti-microbial therapy and G-CSF, respectively, however inflammatory complications of these diseases are likely underappreciated and undertreated (5, 6). Furthermore, the decision to undertake alloHSCT, with all its inherent risks and potential complications, is made difficult by the lack of published data for most diseases.
In 2015, the EBMT and SCETIDE released the findings of the largest retrospective cohort of patients with severe congenital neutropenia to undergo alloHSCT. The 136 patients in that study demonstrated an overall 3 years survival of 82%, with transplant related mortality at 17%. It concluded that transplantation should be considered in patients with severe infections or unresponsiveness to G-CSF or requiring high doses of G-CSF (over 8 mcg/kg/day to maintain an absolute neutrophil count over $0.5 \times 10^9/L$). Both MAC and RIC conditioning was effective and transplant outcomes were improved if patients were transplanted before 10 years of age and before the development of MDS/AML (7). Despite the wide range of disease we have covered in this review, those findings appear to hold true, although in diseases where evidence is lacking family choice and center-specific expertise must also be taken into account.

In diseases where the need to transplant has been established (e.g., deficiency of VPS45 protein, LAD, SDS), there is little to guide decision making as to the method of transplantation. The need to achieve stable myeloid engraftment, often into an impaired bone marrow environment, may well call for the use of toxicity reduced MAC over the RIC regimens that have become established practice for PIDs characterized by loss-of-function lymphoid deficiencies (e.g., severe combined immunodeficiency, or SCID) (27). Again, evidence is lacking regarding side effects, long-term outcomes, and the degree of chimerism required to maintain cure. Secondary graft failure or graft insufficiency in the case of mixed chimerism with a reappearance of post-transplant neutropenia has been reported in the literature and observed by the authors in some of the quantitative phagocytic disorders (73–75).

We recommend that all physicians treating patients with neutrophil disorders submit their data to the EBMT and SCETIDE, as it is only through the ordered collection of data that clinical experience can be gathered, studied and shared. It is our hope that in the coming years many disease mechanisms will be uncovered and long-term treatment data accumulated, which will be of great benefit to physicians, patients, and their families.

AUTHOR CONTRIBUTIONS

SB, BS, and PS designed the study, collected data, performed review, wrote the manuscript.

FUNDING

BS position was supported by the Australian Government Research Training Program Scholarship and Hadassah Australia. PS was supported by DFG grant W-A 1597/4-2.

ACKNOWLEDGMENTS

We would like to thank our patients and their families, as well as departmental nursing and administrative staff for their tireless commitment to patient care. We would also like to thank Prof. Zeev Rotstein, Director of The Hadassah Medical Center for his support of the department and the patients.

REFERENCES

1. Sullivan K. Neutropenia as a sign of immunodeficiency. *J Allergy Clin Immunol.* (2019) 143:96–100. doi: 10.1016/j.jaci.2018.09.018

2. Bousfiha A, Jeddane L, Picard C, Ailal F, Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary immunodeficiencies. *J Clin Immunol.* (2018) 38:129–43. doi: 10.1007/s10875-017-0465-8
42. Pierre G, Chakupurakal G, McKiernan P, Hendriks C, Lawson S, Chakrapani A. Bone marrow transplantation in glycosogen storage disease type Ib. J Pediatr. (2008) 152:286–8. doi: 10.1016/j.jpeds.2007.09.031

43. Donadieu J, Beupain B, Fenneteau O, Bellanne-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol. (2017) 179:557–74. doi: 10.1111/bjh.14887

44. Cesaro S, Oneto R, Messina C, Gibson B, Buzyn A, Steward C, et al. Haematopoietic stem cell transplantation for Shwachman-Diamond disease: a study from the European Group for blood and marrow transplantation. Br J Haematol. (2005) 131:231–6. doi: 10.1111/j.1365-2141.2005.05758.x

45. Record J, Malinova D, Zenner H, Plagnol V, Nowak K, Syed F, et al. A constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Rev Dis Primers. (2017) 3:17032. doi: 10.1038/nrdp.2017.32

46. Person R, Li F, Duan Z, Benson K, Wachslser J, Papadaki H, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. (2003) 34:308–12. doi: 10.1038/ng1170

47. Gershemsen A, Grudzien M, Zeidler C, Abdollahpour H, Yetgin S, Rezaei N, et al. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood. (2008) 111:9954–7. doi: 10.1182/blood-2007-11-120667

48. Boztug K, Ding X-Q, Hartmann H, Ziesenis E, Schaffer A, Diestelhorst J, et al. HAX1 mutations causing SCN and neurological disease lead to microstructural abnormalities revealed by quantitative MRI. Am J Med Genet. (2010) 152A:3157–63. doi: 10.1002/ajmg.a.33748

49. Klein C. Kostmann’s disease and HCLS1-associated protein X-1 (HAX1). J Clin Immunol. (2017) 37:117–22. doi: 10.1007/s10875-016-0538-2

50. Devriendt K, Kim A, Mathijs G, Frints S, Schwartz M, Van den Oord J, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. (2001) 27:313–7. doi: 10.1038/85886

51. Ancliff P, Blundell M, Cory G, Calle Y, Worth A, Kempski H, et al. Allogeneic hematopoietic stem cell transplantation for GATA2 deficiency using a busulfan-based regimen. Biol Blood Marrow Transplant. (2018) 24:1250–9. doi: 10.1016/j.bbmt.2018.01.030

52. Parta M, Shah N, Baird K, Rafei H, Calvo K, Hughes T, et al. Allogeneic hematopoietic stem cell transplantation for GATA2 deficiency using a busulfan-based regimen. Biol Blood Marrow Transplant. (2018) 24:1250–9. doi: 10.1016/j.bbmt.2018.01.030

53. Hashem H, Abu-Arja R, Auletta J, Rangarajan H, Varga E, Rose M, et al. Successful second hematopoietic cell transplantation in severe congenital neutropenia. Pediatr Transplant. (2018) 22:e13289. doi: 10.1111/petr.13289

54. Markel M, Haut P, Renbarger J, Robertson K, Goebel W. Unrelated cord blood transplantation for severe congenital neutropenia: report of two cases with very different transplant courses. Pediatr Transplant. (2008) 12:896–901. doi: 10.1111/j.1399-3046.2008.00951.x

55. Oshima K, Hanada R, Kobayashi R. Hematopoietic stem cell transplantation in patients with severe congenital neutropenia: an analysis of 18 Japanese cases. Pediatr Transplant. (2010) 14:657–63. doi: 10.1111/j.1399-3046.2010.01319.x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor, AG, declared a collaboration with one of the authors, SB.