RANK-CRANK TYPE PDE’S FOR HIGHER LEVEL APPELL FUNCTIONS

SANDER ZWEGERS

Abstract. In this paper we consider level \(l \) Appell functions, and find a partial differential equation for all odd \(l \). For \(l = 3 \) this recovers the Rank-Crank PDE, found by Atkin and Garvan, and for \(l = 5 \) we get a similar PDE found by Garvan.

1. Introduction and statement of results

Dyson in [5] introduced the rank of a partition, to explain the first two of the three Ramanujan-congruences

\[
\begin{align*}
p(5n + 4) &\equiv 0 \pmod{5}, \\
p(7n + 5) &\equiv 0 \pmod{7}, \\
p(11n + 6) &\equiv 0 \pmod{11}.
\end{align*}
\]

Here \(p(n) \) denotes the number of partitions of \(n \). He defined the rank of a partition as the largest part minus the number of its parts and conjectured that the partitions of \(5n + 4 \) (resp. \(7n + 5 \)) form \(5 \) (resp. \(7 \)) groups of equal size when sorted by their ranks modulo \(5 \) (resp. \(7 \)). This was later proven by Atkin and Swinnerton-Dyer in [3]. We are interested here in the generating function

\[
R(w; q) := \sum_{\lambda} w^{\text{rank}(\lambda)} q^{||\lambda||} = \frac{(1 - w)}{(q)_{\infty}} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{\frac{3n^2 + 1}{2}}}{1 - wq^n},
\]

where \((q)_{\infty} := \prod_{n=1}^{\infty}(1 - q^n)\). In the first sum the \(\lambda \) run over all partitions, \(\text{rank}(\lambda) \) denotes the rank of \(\lambda \) and \(||\lambda|| \) denotes the size of the partition (the sum of all the parts).

Another partition statistic is the so called crank of a partition. For the generating function we have

\[
C(w; q) := \sum_{\lambda} w^{\text{crank}(\lambda)} q^{||\lambda||} = \prod_{n=1}^{\infty} \frac{(1 - q^n)}{(1 - wq^n)(1 - w^{-1}q^n)}
= \frac{(1 - w)}{\sum_{n \in \mathbb{Z}}(-1)^n q^{\frac{2n(n-1)}{2}}w^n}.
\]

The crank was introduced by Andrews and Garvan in [1] to explain the Ramanujan congruence (1.1) with modulus 11.

Date: August 27, 2009.

2000 Mathematics Subject Classification. 11F11, 11F27, 11F50.
In the setting of Jacobi forms it is more natural to consider the following modified rank and crank generating functions

\[R(z; \tau) := \frac{w^{1/2} q^{-1/24}}{1 - w} R(w, q), \]
\[C(z; \tau) := \frac{w^{1/2} q^{-1/24}}{1 - w} C(w, q). \]

Here we use \(w = \exp(2\pi i z) \) and \(q = \exp(2\pi i \tau) \), with \(z \in \mathbb{C} \) and \(\tau \) in the complex upper half plane \(\mathbb{H} \).

Remark 1.1. \(C \) is a meromorphic Jacobi form of weight \(1/2 \) and index \(-1/2 \) and in [7] it is shown that \(R \) is mock Jacobi form of weight \(1/2 \) and index \(-3/2 \).

The two (modified) generating functions are related by a partial differential equation, which we will refer to as the Rank-Crank PDE.

Theorem 1.2 (see [2]). If we define the heat operator \(H \) by

\[H := \frac{3}{\pi i} \frac{\partial}{\partial \tau} + \frac{1}{(2\pi i)^2} \frac{\partial^2}{\partial z^2}, \]

then

\[H R = 2\eta^2 C^3, \]

where \(\eta \) is the Dedekind \(\eta \)-function, given by \(\eta(\tau) = q^{1/24}(q)_{\infty} \).

Note that the identity found in [2] is slightly different, because they use a different normalization. However, the two are easily seen to be equivalent. In [4] it is explained how the Rank-Crank PDE arises naturally in the setting of certain non-holomorphic Jacobi forms and a generalization is given to partial differential equations for an infinite family of related functions.

The method in [4] works only in certain special cases and no results are found for the level \(l \) Appell functions

\[A_l(z; \tau) := w^{l/2} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{\frac{l}{2}(n+1)}}{1 - wq^n}, \quad l \in \mathbb{Z}_{>0}, \quad \tag{1.2} \]

for values of \(l \) higher than 3.

Garvan ([6]), however, found the following PDE for a level 5 Appell function

Theorem 1.3 (Garvan). Let

\[G_5(z; \tau) := \frac{A_5(z; \tau)}{\eta(\tau)^5}, \]

and define the heat operator

\[H := \frac{5}{\pi i} \frac{\partial}{\partial \tau} + \frac{1}{(2\pi i)^2} \frac{\partial^2}{\partial z^2}, \]

then

\[(H^2 - E_4) G_5 = 24\eta^2 C^5, \]

where \(E_4 \) is the usual Eisenstein series

\[E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \left(\sum_{d|n} d^3 \right) q^n. \]
Note that the identity found by Garvan is slightly different, because he uses a different normalization. However, the two are easily seen to be equivalent.

This theorem is a special case of the following

Theorem 1.4. Let \(l \) be an odd positive integer. Define

\[
\mathcal{H}_k := \frac{l}{\pi i} \frac{\partial}{\partial \tau} + \frac{1}{(2\pi i)^2} \frac{\partial^2}{\partial z^2} - \frac{l(2k - 1)}{12} E_2,
\]

\[
\mathcal{H}^k := \mathcal{H}_{2k-1} \mathcal{H}_{2k-3} \cdots \mathcal{H}_3 \mathcal{H}_1,
\]

where \(E_2(\tau) = 1 - 24 \sum_{n=1}^{\infty} \left(\sum_{d|n} d \right) q^n \) is the usual Eisenstein series in weight 2. Then there exist holomorphic modular forms \(f_j \) (\(j = 0, 2, 4, \ldots, l-1 \)) on \(\text{SL}_2(\mathbb{Z}) \) of weight \(j \), such that

\[
(l-1)^j \sum_{k=0}^{(l-1)/2} f_{l-2k-1} \mathcal{H}^k A_l = (l-1)! f_0 \eta^l C^l.
\]

Remark 1.5. In the proof of the theorem we will see an explicit construction for the \(f_j \)'s for given \(l \).

In the next section we will proof Theorem 1.4 and in section 3 we will look at the first few cases and in particular we’ll see that the theorem for \(l = 5 \) is equivalent to Theorem 1.3.

ACKNOWLEDGEMENTS

The author wishes to thank Frank Garvan and Karl Mahlburg for helpful discussions.

2. Proof of Theorem 1.4

Throughout we assume that \(l \) is an odd positive integer. We (trivially) have

\[
A_l(z + 1; \tau) = -A_l(z; \tau),
\]

and if we replace \(z \) by \(z + \tau \) and \(n \) by \(n - 1 \) in (1.2) we find

\[
e^{-2\pi i lz - \pi il \tau} A_l(z + \tau; \tau) = -w^{-l/2} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2} n(n-1)} \frac{1}{1 - w q^n},
\]

and so

\[
A_l(z; \tau) + e^{-2\pi i lz - \pi il \tau} A_l(z + \tau; \tau) = -w^{-l/2} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2} n(n-1)} \left(1 - w^{1/2} q^n \right)
\]

\[
= -w^{-l/2} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2} n(n-1)} \sum_{r=0}^{l-1} w^r q^{nr}
\]

\[
= - \sum_{r=0}^{l-1} w^{r-1/2} q^{\frac{1}{4} (r-1/2)^2} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{1}{2} (n-1/2 + r/l)^2}
\]

\[
= - \sum_{r=0}^{l-1} e^{2\pi i (r-1/2)z - \frac{\pi i}{4} (r-1/2)^2} \vartheta_{1,r}(\tau),
\]
with

$\vartheta_{l,r}(\tau) := \sum_{n \in \mathbb{Z}} (-1)^n q^{2(n-1/2+r/l)^2}$.

It is easy to check that

$$\left(\frac{l}{\pi i} \frac{\partial}{\partial \tau} + \frac{1}{(2\pi i)^2} \frac{\partial^2}{\partial z^2} \right) e^{2\pi i (r-l/2)z - \frac{\pi i}{4}(r-l/2)^2 \tau} = 0,$$

and that for functions $F : \mathbb{C} \times \mathbb{H} \to \mathbb{C}$

$$\mathcal{H}_k \left(F(z+1; \tau)\right) = \left(\mathcal{H}_k F\right)(z+1; \tau),$$

$$\mathcal{H}_k \left(e^{-2\pi i l z - \pi i l \tau} F(z+\tau; \tau)\right) = e^{-2\pi i l z - \pi i l \tau} \left(\mathcal{H}_k F\right)(z+\tau; \tau),$$

with \mathcal{H}_k as in the theorem. Hence we get from applying \mathcal{H}_1 to equations (2.1) and (2.2)

$$(\mathcal{H}_1 A_l)(z+1; \tau) = -(\mathcal{H}_1 A_l)(z; \tau),$$

and

$$(\mathcal{H}_1 A_l)(z; \tau) + e^{-2\pi i l z - \pi i l \tau} (\mathcal{H}_1 A_l)(z+\tau; \tau)
= -2l \sum_{r=0}^{l-1} e^{2\pi i (r-l/2)z - \frac{\pi i}{4}(r-l/2)^2 \tau} \left(D_{l/2} \vartheta_{l,r}\right)(\tau),$$

with the operator D_k defined by

$$D_k := \frac{1}{2\pi i} \frac{\partial}{\partial \tau} - \frac{k}{12} E_2.$$

If we now apply $\mathcal{H}_3, \mathcal{H}_5, \ldots,$ upto \mathcal{H}_{2k-1} we find

$$(\mathcal{H}_k A_l)(z+1; \tau) = -(\mathcal{H}_k A_l)(z; \tau),$$

and

$$(\mathcal{H}_k A_l)(z; \tau) + e^{-2\pi i l z - \pi i l \tau} (\mathcal{H}_k A_l)(z+\tau; \tau)
= -(2l)^k \sum_{r=0}^{l-1} e^{2\pi i (r-l/2)z - \frac{\pi i}{4}(r-l/2)^2 \tau} \left(D_k \vartheta_{l,r}\right)(\tau),$$

with

$$D^k := D_{2k-3/2} D_{2k-7/2} \cdots D_{5/2} D_{1/2}.$$

We need the following

Lemma 2.1. Let l be an odd positive integer, then there exist holomorphic modular forms F_j ($j = 0, 2, 4, \ldots, l-1$) on $SL_2(\mathbb{Z})$ of weight j, such that

$$\sum_{k=0}^{(l-1)/2} F_{l-2k-1} D^k \vartheta_{l,r} = 0$$

for all $r \in \mathbb{Z}$.

If we now define
\[P = \sum_{k=0}^{(l-1)/2} f_{l-2k-1} \mathcal{H}^k A_l, \]
with \(f_{l-2k-1} = (2l)^{-k} F_{l-2k-1} \) and \(F_j \) as in the lemma, then we see from equation (2.3) and (2.4)
\[P(z + 1; \tau) = e^{-2\pi i l z - \pi i l \tau} P(z + \tau; \tau) = -P(z; \tau). \] (2.6)

Now consider the Jacobi theta function
\[\vartheta(z; \tau) := \sum_{n \in \mathbb{Z}} (-1)^n w^{n+1/2} q^{1/2 (n+1)^2} = w^{1/2} q^{1/8} \prod_{n=1}^{\infty} (1 - q^n)(1 - w q^n)(1 - w^{-1} q^{n-1}) = -\frac{\eta(\tau)^2}{\mathcal{C}(z; \tau)}. \]

This function satisfies
\[\vartheta(z + 1; \tau) = e^{2\pi i z + \pi i \tau} \vartheta(z + \tau; \tau) = -\vartheta(z; \tau), \] (2.7)
\(z \mapsto \vartheta(z; \tau) \) has simple zeros in \(\mathbb{Z} \tau + \mathbb{Z} \) and
\[\frac{1}{2\pi i} \frac{\partial}{\partial z} \vartheta(z; \tau) = \eta(\tau)^3. \] (2.8)

Since the poles of \(z \mapsto A_l(z; \tau) \) are simple poles in \(\mathbb{Z} \tau + \mathbb{Z} \), the function \(z \mapsto P(z; \tau) \) has poles of order \(l \) in \(\mathbb{Z} \tau + \mathbb{Z} \), and so the function
\[p(z; \tau) := \frac{\partial}{\partial z} P(z; \tau), \]
is a holomorphic function as a function of \(z \). Using (2.6) and (2.7) we find that
\[p(z + 1; \tau) = p(z + \tau; \tau) = p(z; \tau), \]
from which we get that \(p \) is constant (as a function of \(z \)). To determine the constant, we consider the behaviour for \(z \to 0 \). From (1.2) we easily see that for \(z \to 0 \)
\[A_l(z; \tau) = -\frac{1}{2\pi i z} + \mathcal{O}(1), \]
and so
\[P(z; \tau) = -f_0(\tau) \frac{(l-1)!}{(2\pi i)^l} \frac{1}{z^l} + \mathcal{O}\left(\frac{1}{z^{l-1}}\right). \]

Combining this with (2.8) we see
\[p(z; \tau) = -f_0(\tau) (l-1)! \eta(\tau)^3, \]
and so
\[P(z; \tau) = -f_0(\tau) (l-1)! \frac{\eta(\tau)^3}{\vartheta(z; \tau)} = (l-1)! f_0(\tau) \eta(\tau)^3 \mathcal{C}(z; \tau)^l, \]
which finishes the proof.
Proof of Lemma 2.7. Throughout, let \(l \) be an odd integer. Because of the trivial relations
\[
\begin{align*}
\vartheta_{l,r+l} &= -\vartheta_{l,r} \\
\vartheta_{l,-r} &= -\vartheta_{l,r}
\end{align*}
\]
it suffices to consider \(\vartheta_{l,r} \) for \(r = 1, 2, \ldots, (l-1)/2 \). Define
\[
\Theta_l = \begin{pmatrix}
\vartheta_{l,1} \\
\vartheta_{l,2} \\
\vdots \\
\vartheta_{l,(l-1)/2}
\end{pmatrix},
\]
then \(\Theta_l \) transforms as a (vector-valued) modular form of weight 1/2 on the full modular group \(\text{SL}_2(\mathbb{Z}) \):
\[
\begin{align*}
\Theta_l(\tau+1) &= \text{diag} \left(\zeta_{8l}^{j(l-2j)^2} \right)_{1 \leq j \leq (l-1)/2} \Theta_l(\tau), \\
\Theta_l(-1/\tau) &= (-1)^{(l+1)/2} \sqrt{\tau/\ell} \left(2\sin 2\pi r k / l \right)_{1 \leq r,k \leq (l-1)/2} \Theta_l(\tau).
\end{align*}
\]
Using
\[
E_2 \left(\frac{a \tau + b}{c \tau + d} \right) = (c \tau + d)^2 E_2(\tau) + \frac{6}{\pi i} c (c \tau + d) \quad \text{for} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}),
\]
we can easily verify that
\[
D_k \left((c \tau + d)^{-k} f \left(\frac{a \tau + b}{c \tau + d} \right) \right) = (c \tau + d)^{-k-2} \left(D_k f \right) \left(\frac{a \tau + b}{c \tau + d} \right),
\]
and so
\[
D^k \left((c \tau + d)^{-1/2} \Theta_l \left(\frac{a \tau + b}{c \tau + d} \right) \right) = (c \tau + d)^{-2k-1/2} \left(D^k \Theta_l \right) \left(\frac{a \tau + b}{c \tau + d} \right).
\]
Now define the \((l-1)/2 \times (l-1)/2 \)-matrix
\[
T_l = \begin{pmatrix}
\Theta_l & D^1 \Theta_l & D^2 \Theta_l & \cdots & D^{(l-3)/2} \Theta_l
\end{pmatrix},
\]
then \(T_l \) transforms as a (matrix-valued) modular form on the full modular group \(\text{SL}_2(\mathbb{Z}) \):
\[
\begin{align*}
T_l(\tau+1) &= \text{diag} \left(\zeta_{8l}^{j(l-2j)^2} \right)_{1 \leq j \leq (l-1)/2} T_l(\tau), \\
T_l(-1/\tau) &= (-1)^{(l+1)/2} \sqrt{\tau/\ell} \left(2\sin 2\pi r k / l \right)_{1 \leq r,k \leq (l-1)/2} T_l(\tau) \text{diag} \left(\tau^{2j-2} \right)_{1 \leq j \leq (l-1)/2}.
\end{align*}
\]
From this we see that
\[
\begin{align*}
\det(T_l(\tau+1)) &= \zeta_{24}^{(l-1)(l-2)/2} \det(T_l(\tau)), \\
\det(T_l(-1/\tau)) &= (-i\tau)^{(l-1)(l-2)/4} \det(T_l(\tau)),
\end{align*}
\]
and so \(\det(T_l) \) is a multiple of \(\eta^{(l-1)(l-2)/2} \). We determine what that multiple is by looking at the lowest order terms:
First observe that by doing elementary column operations we get
\[
\det(T_l(\tau)) = \det \left(\Theta_l \quad \partial_\tau \Theta_l \quad \partial_\tau^2 \Theta_l \quad \cdots \quad \partial_\tau^{(l-3)/2} \Theta_l \right),
\]
with \(\partial_\tau := \frac{1}{2\pi i} \frac{\partial}{\partial \tau} \).
For \(1 \leq r \leq (l-1)/2 \) we have

\[
\partial_{l,r}(\tau) = q^{(l-2r)^2/8l} (1 + \mathcal{O}(q)),
\]

so

\[
\begin{pmatrix}
\Theta_l & \partial_\tau \Theta_l & \partial_{\tau}^2 \Theta_l & \cdots & \partial_{\tau}^{(l-3)/2} \Theta_l
\end{pmatrix}
= \text{diag} \left(q^{(l-2i)^2/8l} \right)_{1 \leq i \leq (l-1)/2} \cdot \left(\frac{(l-2i)^2}{8l} \right)^{j-1} + \mathcal{O}(q) \right)_{1 \leq i,j \leq (l-1)/2},
\]

\[
\det \begin{pmatrix}
\Theta_l & \partial_\tau \Theta_l & \partial_{\tau}^2 \Theta_l & \cdots & \partial_{\tau}^{(l-3)/2} \Theta_l
\end{pmatrix}
= q^{(l-1)(l-2)/48} (\det(B) + \mathcal{O}(q)),
\]

and hence

\[
\det(T_l(\tau)) = \det(B) \eta(\tau)^{(l-1)(l-2)/2},
\tag{2.10}
\]

with

\[
B_{ij} = \left(\frac{(l-2i)^2}{8l} \right)^{j-1} \quad \text{for} \quad 1 \leq i, j \leq (l-1)/2.
\]

\(B \) is a Vandermonde matrix: an \(m \times n \) matrix \(V \), such that \(V_{ij} = \alpha_i^{j-1} \) with \(\alpha_i \in \mathbb{R} \). Since a square Vandermonde matrix is invertible if and only if the \(\alpha_i \) are distinct, we see that \(B \) is invertible. From (2.10) and the fact that \(\eta \) has no zeros on \(\mathbb{H} \) we then get that \(T_l(\tau) \) is invertible for all \(\tau \in \mathbb{H} \). We can rewrite the condition that (2.5) holds for \(1 \leq r \leq (l-1)/2 \) as

\[
T_l \begin{pmatrix} F_{l-1} \\ F_{l-3} \\ \vdots \\ F_2 \end{pmatrix} + F_0 D^{(l-1)/2} \Theta_l = 0.
\]

If we take \(F_0 = 1 \) we get the other \(F_j \)'s by inverting \(T_l \)

\[
\begin{pmatrix} F_{l-1} \\ F_{l-3} \\ \vdots \\ F_2 \end{pmatrix} = -T_l^{-1} D^{(l-1)/2} \Theta_l.
\tag{2.11}
\]

What remains to be shown is that the \(F_j \) found this way are holomorphic modular forms of weight \(j \) on \(\text{SL}_2(\mathbb{Z}) \). The modular transformation properties follow easy from (2.9) and those of \(D^{(l-1)/2} \Theta_l \)

\[
D^{(l-1)/2} \Theta_l(\tau + 1) = \text{diag} \left(\left(\frac{(l-2j)^2}{8l} \right) \right)_{1 \leq j \leq (l-1)/2} D^{(l-1)/2} \Theta_l(\tau),
\]

\[
D^{(l-1)/2} \Theta_l(-1/\tau) = (-1)^{(l+1)/2} \sqrt{\tau/l} \tau^{(l-1)/2} (2\sin 2\pi r k/l)_{1 \leq r,k \leq (l-1)/2} D^{(l-1)/2} \Theta_l(\tau).
\]
Since \(\det T_l \) has no zeros on \(\mathbb{H} \) we get that \(F_j \) is a holomorphic function on \(\mathbb{H} \). That it also doesn’t have a pole at infinity follows from

\[
D^{(l-1)/2} \Theta_l = \text{diag} \left(q^{(l-2i)^2/8l} \right)_{1 \leq i \leq (l-1)/2} \cdot \begin{pmatrix} \mathcal{O}(1) \\ \mathcal{O}(1) \\ \vdots \\ \mathcal{O}(1) \end{pmatrix},
\]

\[
T_l = \text{diag} \left(q^{(l-2i)^2/8l} \right)_{1 \leq i \leq (l-1)/2} \cdot (C_{ij} + \mathcal{O}(q))_{1 \leq i,j \leq (l-1)/2},
\]

for some \((l-1)/2 \times (l-1)/2\)-matrix \(C \), with

\[
\det(C) = \det(B) \neq 0.
\]

\[\square\]

3. Some examples

From (2.11) we can calculate the first few coefficients in the Fourier expansion of the \(F_j \)’s and since they are holomorphic modular forms on \(\text{SL}_2(\mathbb{Z}) \), that means that we can easily identify them.

For \(l = 3 \), we have

\[
\Theta_l = (\vartheta_{3,1}) = (\eta).
\]

Using

\[
D_{k/2} \left(\eta^k \right) = 0,
\]

which follows from

\[
E_2 = \frac{12 \eta'}{\pi i \eta},
\]

we see

\[
D_{1/2} \Theta_l = 0,
\]

and so we find

\[
F_0(\tau) = 1 \quad \text{and} \quad F_2(\tau) = 0,
\]

and

\[
f_0(\tau) = 1/6 \quad \text{and} \quad f_2(\tau) = 0.
\]

If we put this into Theorem 1.4 and multiply by 6 we get

\[
\mathcal{H}_1 A_3 = 2\eta^3 C^3.
\]

Using

\[
\mathcal{R}(z; \tau) = \frac{A_3(z; \tau)}{\eta(\tau)} + e^{\pi iz - \pi i\tau/12},
\]

we see

\[
\mathcal{H}_{1/2} \mathcal{R} = \mathcal{H}_{1/2} \left(\frac{A_3}{\eta} \right) = \frac{\mathcal{H}_1 A_3}{\eta} + 6 A_3 D_{-1/2} \left(\frac{1}{\eta} \right) = 2\eta^2 C^3,
\]

which is the Rank-Crank PDE.

For \(l = 5 \), we find from (2.11) \((F_0 = 1)\)

\[
F_4(\tau) = \frac{-11}{3600} - \frac{11}{15}q + \mathcal{O}(q^2),
\]

\[
F_2(\tau) = \mathcal{O}(q^2),
\]
and hence we can identify them as

\[F_4 = -\frac{11}{3600} E_4 \quad \text{and} \quad F_2 = 0. \]

So

\[f_0 = \frac{1}{100}, \quad f_2 = 0 \quad \text{and} \quad f_4 = -\frac{11}{3600} E_4. \]

If we put this into Theorem 1.4 and multiply by 100 we get

\[\left(\mathcal{H}_3 \mathcal{H}_1 - \frac{11}{36} E_4 \right) A_5 = 24 \eta^5 c^5. \]

We now rewrite this in terms of \(G_5 \):

\[\mathcal{H}_1 A_5 = \mathcal{H}_1 (\eta^3 G_5) \]

\[= 10 \left(D_{3/2} \eta^3 \right) G_5 + \eta^3 \mathcal{H}_{-1/2} G_5 = \eta^3 \mathcal{H}_{-1/2} G_5, \]

\[\mathcal{H}_3 \mathcal{H}_1 A_5 = \mathcal{H}_3 (\eta^3 \mathcal{H}_{-1/2} G_5) \]

\[= 10 \left(D_{3/2} \eta^3 \right) \mathcal{H}_{-1/2} G_5 + \eta^3 \mathcal{H}_{3/2} \mathcal{H}_{-1/2} G_5 = \eta^3 \mathcal{H}_{3/2} \mathcal{H}_{-1/2} G_5, \]

and so we get

\[\left(\mathcal{H}_{3/2} \mathcal{H}_{-1/2} - \frac{11}{36} E_4 \right) G_5 = 24 \eta^2 c^5. \]

Using

\[\mathcal{H}_{3/2} \mathcal{H}_{-1/2} = \mathcal{H}^2 + \frac{25}{3} \left(\frac{1}{2\pi i} E'_2 - \frac{1}{12} E_2^2 \right) \]

and

\[\frac{1}{2\pi i} E'_2 - \frac{1}{12} E_2^2 = -\frac{1}{12} E_4 \]

we see that is equivalent to the statement of Theorem 1.3.

For \(l = 7 \) we find

\[F_6 = \frac{85}{74088} E_6, \quad F_4 = -\frac{5}{252} E_4, \quad F_2 = 0 \quad \text{and} \quad F_0 = 1. \]

For \(l = 9 \)

\[F_8 = -\frac{253}{559872} E_8, \quad F_6 = \frac{53}{5832} E_6, \quad F_4 = -\frac{13}{216} E_4, \quad F_2 = 0, \quad F_0 = 1. \]

For \(l = 11 \)

\[F_{10} = -\frac{7888}{39135393} E_{10}, \quad F_8 = -\frac{6151}{1724976} E_8, \quad F_6 = \frac{295}{8712} E_6, \]

\[F_4 = -\frac{53}{396} E_4, \quad F_2 = 0, \quad F_0 = 1. \]

And for \(l = 13 \)

\[F_{12} = -\frac{1462986875}{14412774445056} E_{12} + \frac{170060275}{5683867488} \Delta, \quad F_{10} = \frac{377735}{296120448} E_{10}, \]

\[F_8 = -\frac{62165}{45556992} E_8, \quad F_6 = \frac{3281}{36504} E_6, \quad F_4 = -\frac{459}{1872} E_4, \quad F_2 = 0, \quad F_0 = 1. \]
References

[1] G.E. Andrews and F.G. Garvan, *Dyson’s crank of a partition*, Bull. Amer. Math. Soc. (N. S.) 18 No. 2 (1988), pages 167–171.

[2] A.O.L. Atkin and F.G. Garvan, *Relations between the ranks and the cranks of partitions*, Ramanujan Journal 7, pages 137–152.

[3] A.O.L. Atkin and H.P.F. Swinnerton-Dyer, *Some properties of partitions*, Proc. London Math. Soc. 4 (1954), pages 84–106.

[4] K. Bringmann and S.P. Zwegers, *Rank-crank type PDE’s and non-holomorphic Jacobi forms*, Math. Res. Lett., accepted for publication.

[5] F. Dyson, *Some guesses in the theory of partitions*, Eureka (Cambridge) 8 (1944), pages 10–15.

[6] F.G. Garvan, personal communication.

[7] S.P. Zwegers, *Mock theta functions I: Appell functions and the Mordell integral*, in preparation.

School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
E-mail address: sander.zwegers@ucd.ie