PURPOSE
To examine the trends and quality metrics of publications by radiation oncologists in Saudi Arabia.

METHODS
PubMed was searched using names of all Saudi radiation oncologists to retrieve published articles between January 2010 and December 2019. International collaboration, journal impact factor and country of origin, and number of citations were collected. Each article was assessed for epidemiologic type and independently assigned a level of evidence (LOE) by two authors. The trend in publications was examined and compared in the first and second 5-year periods (2010-2014 and 2015-2019) using relevant parameters.

RESULTS
A total of 186 publications were found and included. The most common type of research was cohort studies followed by case reports and case series in 24%, 14%, and 13% of all publications, respectively. Dosimetry, clinical, and preclinical studies formed 7%, 8.6%, and 7.5% of the total publications, respectively. The LOE was I, II, III, IV, and not applicable in 8.6%, 22%, 25.8%, 29%, and 14.5% of the included publications, respectively. Comparing the first and second 5-year periods, there was an increase in international collaboration (P < .001) in the second period. The number of citations (P < .001) and journal impact factor (P = .028) were lower in the second period. LOE and publications in international journals were not statistically different between the two periods.

CONCLUSION
Although radiation oncology research activity in Saudi Arabia has gained momentum in terms of volume and international collaboration over time, the LOE has not improved. This calls for a national effort to make the contribution to the literature a priority, allocate adequate resources, and apply appropriate measures to enhance research productivity and quality.

INTRODUCTION
Radiation therapy is an essential treatment modality for patients with cancer. Around 50% of all patients with cancer require radiation treatment during their disease trajectory. The global increasing incidence of cancers is also observed in Saudi Arabia (SA). Between 1994 and 2000, a total of 39,209 incident cancer cases were reported during the 6-year period according to the first national cancer registry report. More recently, a total of 16,210 patients were diagnosed with cancer over a 1-year period according to the most recent report in 2015. As cancer incidence, natural history, and outcomes vary between countries, it is imperative to study cancers in the local population. Furthermore, the engagement of developing countries in oncology research may facilitate research collaboration with developed countries and ultimately improve patient enrollment to clinical trials. However, the availability of oncology research infrastructure in these countries is often limited.

SA represents a unique country in that it is considered a developing country yet classified as a high-income country by the World Bank. The improving healthcare system in SA provides better research opportunities, especially for cancer. A recent study found that the quality of oncology research in SA did not change over time despite the overall increase in the number of publications. In this study, we aimed to examine the research productivity specific to radiation oncology in SA and compare some quality metrics over time.

METHODS
A list of the names of all practicing Saudi radiation oncologists (ROs) was obtained from the Saudi Assembly for Radiation Oncology (SARO). We searched PubMed for all studies published in English by at least one Saudi RO between January 1, 2010 and December 2019.
This study may serve as a benchmark for research activity of ROs in developing countries, and it calls for improving research quality in these countries through more effective national and international collaborations.

CONTEXT

Key Objective
What are the quantity and quality of radiation oncologists’ (RO) contribution in developing counties to the literature?

Knowledge Generated
ROs in Saudi Arabia (as an example of high-income developing country) contributed to the literature by publishing 186 studies over a 10-year period. Despite the increase in the publication volume and international collaboration over time, the level of evidence remained the same.

Relevance
This study may serve as a benchmark for research activity of ROs in developing countries, and it calls for improving research quality in these countries through more effective national and international collaborations.

31, 2019. This study was associated with minimal risk and did not require full institutional review board approval.

All abstracts were assessed by two authors of this article, and all types of publications were included except editorials, duplicates, and commentaries. All included publications were thoroughly reviewed, and information about articles and authors were collected, including the study title, date of publication, journal impact factor and country of origin, authors’ affiliations, presence of international collaboration, and number of citations. Journal impact factor at the time of publication was extracted from the journal website or Google Scholar, if not available in the website. Number of citations was retrieved from Google Scholar as of June 10, 2020.

Level of evidence (LOE) was independently assessed by two authors using the 2011 Oxford Center of Evidence-Based Medicine (OCEBM) LOEs. Additionally, each study was examined for epidemiologic type by the same two authors. Dosimetry and preclinical studies were classified as separate study types. All discrepancies in LOE or type of study were resolved through discussion or by consulting an expert in epidemiology. Additionally, Hirsch index (H-index) was retrieved from ref. 14 for all currently practicing Saudi ROs.

The trend in publications was examined and compared in the first and second 5-year periods (2010-2014 and 2015-2019). The comparison of the two time periods was performed using chi-square tests for independence for categorical variables (international collaboration [present v absent], LOE [I/II v III/IV], and country of journal [Saudi v international]) and a Mann-Whitney test for continuous variables (journal impact factor and citations) as these data were not normally distributed.

\(P < .05 \) was chosen as the level of statistical significance, and SPSS software (version 22, IBM Corporation, Armonk, NY) was used for analyses.

RESULTS
We found a total of 186 publications. The most frequent types of studies were cohort studies (45 [24%]), case reports (26 [14%]), and case series (25 [13%]). Dosimetry, clinical, and preclinical studies formed 7%, 8.6%, and 7.5% of the total, respectively. Clinical trials were 16 in total: two phase I, 11 phase II, and three phase III clinical trials. Only five trials were conducted in a randomized fashion. In total, there were 14 prospective studies. Types of studies are summarized in Figure 1. The overall median journal impact factor and number of citations were 1.14 and 6, respectively. Most of the publications were from two cancer centers: 24.7% from King Faisal Specialist Hospital and Research Center and 24.4% from King Fahad Medical City. International collaboration was observed in 100 publications (54%). A total of 169 studies were published in international journals (91%).

In regard to LOE, it was I, II, III, IV, and not applicable in 16 (8.6%), 41 (22%), 48 (25.8%), 54 (29%), and 27 (14.5%) of the included publications, respectively. The overall trend of publications over time is shown in Figure 2. Clinical trials were two in the first period and 14 in the second period. Comparing the two periods, there was an increase in international collaboration in the second period (\(P < .001 \)). However, the number of citations and journal impact factor were lower in the second period, with \(P < .001 \) and \(P = .02 \), respectively. LOE (I/II v III/IV) and publishing in international journals versus Saudi journals were not statistically different between the two periods. This comparison is shown in Table 1. In addition, the type of research was not statistically different between the two periods (\(P = .29 \)).

Furthermore, a higher LOE (\(P = .02 \)) and more publications in international journals (\(P < .001 \)) were observed when international collaboration was present. In contrast, journal impact factor and number of citations were not statistically different in regard to the presence or absence of international collaboration (\(P = .11 \) and \(P = .46 \), respectively).

The Saudi ROs’ H-index mean (standard deviation) and median (interquartile range) were 2.84 (2.68) and 2 (0-12), respectively.
DISCUSSION

Healthcare facilities in SA, including cancer care, have expanded significantly over the last 2 decades.10,11 Despite the significant expansion, many challenges are being faced.15,16 The national vision of 2030 has recognized the major shortcomings and opportunities in healthcare system and prioritized specific healthcare reforms toward achieving a goal of 6-year gain in life expectancy at birth.17 Cancer incidence in SA is estimated to rise by 63% in 2030.18 The associated economic burden will likely be significant.18 Notably, about 58% of Saudi nationals are age \textless;30 years, which predicts an increasing demand for cancer care facility expansion in the future.19

Improving research collaboration between developing and developed countries is generally encouraged to expand enrolling patients to clinical trials.5,7,20 It requires adequately advanced research facilities in developing countries to accomplish this task.20 SA is a strong candidate to play the role model for this collaboration, especially with improved research funding.21

In this study, we aimed to examine the research productivity of ROs in SA (as an example of a developing country). Overall, we found 186 articles published by at least one Saudi RO over a 10-year period from 2010 to 2019. Only 16 clinical trials were found. Most of the publications came from only two hospitals. Unsurprisingly, these two hospitals have dedicated and well-developed research centers that provide required expertise and funding for cancer research. Furthermore, we found that about 31% of these two hospitals’ publications included at least one statistician or

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Study types, \%, of all publications by Saudi radiation oncologists (2010-2019).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Publications by Saudi radiation oncologists (2010-2019).}
\end{figure}
Conversely, most of the ROs in SA are included being a senior RO and practicing in a larger department.23 Conversely, most of the ROs in SA are currently junior nonacademic staff with 5 years of practice or less and most radiation oncology facilities are not affiliated with universities and are relatively new and small (according to SARO).

Our findings should be interpreted in the context of existing radiotherapy and research facilities in SA. According to SARO, the total number of radiotherapy centers increased from two in 1980 to 12 in 2020. The current number of linear accelerators in SA is 32. This translates into one linear accelerator per 627,549 nationals, considering the total Saudi population of 20,081,582 according to the 2016 report by General Authority for Statistics.19 This figure is far less than the estimate of required linear accelerators in Europe at 5.9 machines per one million.24 However, the cancer incidence in SA differs significantly from that in Europe, which may likely affect the adequate number of required linear accelerators.

Research facilities vary between hospitals but largely depend on the department and hospital resources. Some of the difficulties in conducting healthcare research in SA are concerning funding and availability of biostatisticians.25 Moreover, cultural beliefs in regard to cancer and its treatment represent a challenge to patients in accepting a standard cancer treatment.26 Thus, investigational treatment is unlikely to be accepted by patients. However, there may be a relatively significant proportion of patients with cancer willing to participate in clinical trials if presented in the right setup.27 Nevertheless, overall healthcare and oncology research productivity have increased in SA over time.12,28 The strategies that could improve the quality metrics of RO research such as LOE, journal impact factor, and number of citations in SA should include better interdisciplinary, national, and international collaborations. These levels of collaborations may be achieved through motivating ROs to engage in research activities and providing dedicated research staff, better logistics, and more funding.

Limitations of this study include its retrospective design, unavailable information in regard to individual ROs’ research background, or institutional research resources or funding. The possibility of missing some publications is another limitation. Additionally, the manual collection of impact factor and number of citations was prone to error. Although Oxford Center of Evidence-Based Medicine LOE is commonly used, it cannot be considered a stand-alone measure of publication impact and quality. There are more robust but less practical measures.29

In conclusion, radiation oncology research in SA improved over time in terms of quantity and international collaboration. However, LOE did not change. Furthermore, only a few clinical trials were found. These findings warrant the application of more measures to improve radiation oncology research in SA. Nonetheless, the improving research funding and increasing number of ROs create potential opportunities for research.

Table 1: Comparison of Quality Parameters for Publications by Saudi Radiation Oncologists Between 2010-2014 and 2015-2019

Parameter	2010-2014	2015-2019	P
LOE	.24a		
I/II	19	38	
III/IV	48	54	
NA	11	16	
International collaboration	< .001a		
Yes	30	70	
No	48	38	
Journal	.13a		
Saudi	10	7	
International	68	101	
Citations (median)	9	4	< .001a
Impact factor (median)	1.47	.92	.02b

Abbreviation: LOE, level of evidence.

aChi-square test for independence.
bMann-Whitney test.
REFERENCES

1. Atun R, Jaffray DA, Barton MB, et al: Expanding global access to radiotherapy. Lancet Oncol 16:1153-1186, 2015
2. Fitzmaurice C, Allen C, Barber RM, et al: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol 3:524-548, 2017
3. Ministry of Health SCR: Cancer Incidence Report, Saudi Arabia, 1999-2000. https://mhc.gov.sa/eServices/Documents/Incidence%20Report%201999-2000.pdf
4. Saudi Health Council: National Health Information Center, Saudi Cancer Registry, Cancer Incidence Report, Saudi Arabia, 2015. https://mhc.gov.sa/eServices/Documents/E%20SCR%20final%2006%20NGV.pdf
5. Anderson BO: Cancer research in low- and middle-income countries: Consortiums, implementation science and healthcare delivery. Ann Surg Oncol 24:624-626, 2017
6. Panda PK, Jalali R: Global cancer clinical trials-cooperation between investigators in high-income countries and low- and middle-income countries. JAMA Oncol 4:765-766, 2018
7. Grover S, Xu M, Jhingran A, et al: Clinical trials in low and middle-income countries—Successes and challenges. Gynecol Oncol Rep 19:5-9, 2017
8. United Nations: World economic situation prospects, 2019. https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2019_BOOK-ANNEX-en.pdf
9. World Bank: World bank country and lending groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
10. Almalki M, Fitzgerald G, Clark M: Health care system in Saudi Arabia: A perspective. East Mediterr Health J 17:784-793, 2011
11. Sebai ZA, Mlaat WA, Al-Zulaibani AA: Health care services in Saudi Arabia: Past, present and future. J Fam Community Med 8:19-23, 2001
12. Alghamdi MA, Alzahrani RA, Alhashemi HH, et al: Oncology research in Saudi Arabia over a 10-year period. A synopsis. Saudi Med J 41:261-266, 2020
13. OCEBM Levels of Evidence Working Group: The Oxford 2011 levels of evidence. Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index.aspx?o=5653
14. Hirsch index. www.scopus.com
15. Al-Hanawi MK, Khan SA, Al-Borie HM: Healthcare human resource development in Saudi Arabia: Emerging challenges and opportunities—A critical review. Public Health Rev 40:1, 2019

AUTHOR CONTRIBUTIONS

Conception and design: Majed A. Alghamdi, Mushabbab A. Asiri, Adnan S. Alhebshi, Majid O. Alothman, Abdulaziz A. Alghamdi, Mohammed O. Aqeeli, Abdullah A. Alsuhaihani, Saleem M. Alshehri, Ibrahim M. Alotain, Hossam A. Alassaf, Ameen S. Al-omair

Administrative support: Yasir A. Bahadur, Mushabbab A. Asiri

Provision of study materials or patients: Abdulaziz A. Alghamdi, Ibrahim M. Alotain, Noor K. Maal

Collection and assembly of data: Majed A. Alghamdi, Abdulaziz A. Alghamdi, Ahmed S. Qanat, Mohammed O. Aqeeli, Abdullah A. Alsuhaihani, Ibrahim M. Alotain

Data analysis and interpretation: Majed A. Alghamdi, Suliman M. Alghamdi, Yasir A. Bahadur, Hussain A. AlHussain, Abdulaziz A. Alghamdi, Ahmed S. Qanat, Mohammed O. Aqeeli, Abdullah A. Alsuhaihani, Ibrahim M. Alotain, Noor K. Maal, Hashem H. Alhashemi, Hossam A. Alassaf, Majid O. Alothman

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/authors/author-center.

Mushabbab A. Asiri

Employment: Saudi Particle Therapy Company

Leadership: SPTC

No other potential conflicts of interest were reported.
16. Al-Hanawi MK, Qattan AM: An analysis of public-private partnerships and sustainable health care provision in the kingdom of Saudi Arabia. Health Serv Insights 12:117863291989008, 2019

17. Bah S: How feasible is the life expectancy target in the Saudi Arabian vision for 2030? East Mediterr Health J 24:401-404, 2018

18. Jazieh AR, Da’ar OB, Alkaiyat M, et al: Cancer incidence trends from 1999 to 2015 and contributions of various cancer types to the overall burden: Projections to 2030 and extrapolation of economic burden in Saudi Arabia. Cancer Manag Res 11:9665-9674, 2019

19. General Authority for Statistics KoSA: Population in Saudi Arabia by gender, age, nationality (Saudi/non-Saudi)—mid 2016 A.D. https://www.stats.gov.sa/en/866-0

20. Kingham TP, Alatise OI: Establishing translational and clinical cancer research collaborations between high- and low-income countries. Ann Surg Oncol 22:741-746, 2015

21. Alabdula’aly Al: Experience of King Abdul-Aziz City for science and technology in funding medical research in Saudi Arabia. Saudi Med J 25:S8-S12, 2004 (1 suppl)

22. Mohanti BK, Bansal M, Sharma DN, et al: Publications by radiation oncologists from India: A brief survey. Natl Med J India 17:197-199, 2004

23. Zhang C, Murata S, Murata M, et al: Factors associated with increased academic productivity among US academic radiation oncology faculty. Pract Radiat Oncol 7:e59-e64, 2017

24. Bentzen SM, Heeren G, Cotter B, et al: Towards evidence-based guidelines for radiotherapy infrastructure and staffing needs in Europe: The ESTRO QUARTS project. Radiother Oncol 75:355-365, 2005

25. Al Dalbihi S, Alodhayani A, Alghamdi Y, et al: Difficulties in conducting clinical research among healthcare practitioners in Saudi Arabia: A cross-sectional survey. J Fam Med Prim Care 8:1877-1883, 2019

26. Al-Wassia R, Al-Zaben F, Gamal Sehlo M, et al: Beliefs of cancer patients in Saudi Arabia. J Psychosoc Oncol 38:358-374, 2020

27. Bazarbashi S, Hassan A, Eldin AM, et al: Awareness and perceptions of clinical trials in cancer patients and their families in Saudi Arabia. J Cancer Educ 30:655-659, 2015

28. Meo SA, Hassan A, Usmani AM: Research progress and prospects of Saudi Arabia in global medical sciences. Eur Rev Med Pharmacol Sci 17:3265-3271, 2013

29. Cruz Rivera S, Kyte DG, Aiyegbusi OL, et al: Assessing the impact of healthcare research: A systematic review of methodological frameworks. PLoS Med 14:e1002370, 2017