Toxicological profile of *Amanita virosa* – A narrative review

Milad Tavassoli\(^a,1\), Asma Afshari\(^a,1\), Andree Letiția Arsene\(^b\), Bruno Mégarbane\(^c\), Josef Dumanov\(^d\), Monica Maria Bastos Paoliello\(^e,f\), Aristidis Tsatsakis\(^g\), Félix Carvalho\(^h\), Mahmoud Hashemzaei\(^i\), Gholamreza Karimi\(^j,k\), Ramin Rezaee\(^l\)*

\(^a\) Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
\(^b\) Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956, Bucharest, Romania
\(^c\) Department of Medical and Toxicological Critical Care, Paris-Diderot University, INSERM UMRS-1144, Paris, France
\(^d\) Mycological Institute USA EU, SubClinical Research Group, Sparta, NJ 07871, United States
\(^e\) Graduate Program in Public Health, Center of Health Sciences, State University of Londrina – UEL, Londrina, Paraná, Brazil
\(^f\) Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
\(^g\) Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
\(^h\) UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
\(^i\) Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
\(^j\) Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
\(^k\) Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
\(^l\) Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

ARTICLE INFO

Keywords: Mushroom poisoning
Epidemiology
Phalloidin
Amanitin
Amanita virosa

ABSTRACT

Mushrooms account for a part of human diet due to their exquisite taste and protein content as well as their promising health effects unveiled by scientific research. Toxic and non-toxic mushrooms frequently share considerable morphological similarities, which mislead the collectors/consumers, resulting in mycotoxicity. Numerous mushroom species are considered “poisonous” as they produce dangerous toxins. For instance, members of the genus *Amanita*, especially *A. phalloides*, *A. virosa* and *A. verna*, are responsible for severe and even life-threatening noxious consequences. Globally, mushroom poisoning is a crucial healthcare issue as it leads to a considerable number of deaths annually. However, no definite antidote has been introduced to treat this poisoning. The present article discusses the characteristics of *A. virosa* in terms of epidemiology, mechanisms of toxicity, poisoning features and management.

1. **Introduction**

Mushrooms are increasingly found in human diet due to their exquisite taste and protein content as well as their health-promoting effects revealed by numerous scientific studies [1–6]. In this regard, several pharmacologically active compounds have been characterized in mushrooms [7]. Historically, it was noted that athletes in the 3\(^{rd}\) century BC consumed mushrooms to enhance their performance [8]. In many countries, including Iran, collection and consumption of wild mushrooms found in forests and grasslands are traditional social activities [4,9–12]. Different types of wild mushrooms are routinely picked and eaten by local inhabitants. Of more than 2000 mushroom species, about 50 are toxic to humans [13]. Despite marked morphologic similarities, discrimination between toxic and non-toxic mushrooms is usually based on experience-related knowledge and observation. However, increasing interest in wild edible mushrooms has led to frequent collection and ingestion of poisonous species leading to poisonings with persistent issues in diagnosis and management [4,9,14].

Information on mushrooms poisoning in Iran has not been thoroughly recorded. It is therefore hard to retrieve informative data. However, recent reports showed that *A. virosa* is the most-prevalent *Amanita* species in Iran, consistent with reports from East Asian and European countries [15,16]. Additionally, in 2018, an outbreak of mushroom poisoning, later found to be caused by *A. virosa*, took lives of people in Western Iran [17]. Since our preliminary literature search showed no recent comprehensive review on *A. virosa* toxicological
profile, we aimed to review the toxic effects of Amanita mushrooms, with a special focus on A. virosa.

2. Epidemiology of mushroom poisonings

Mushrooms poisoning is known as a major problem in Western countries [16,18] representing about 5.8% of the total poisonings in the US [11]. According to a report published by Litovitz et al. in 2002, 8996 mushroom poisoning cases were documented by the American Association of Poison Control Centers (AAPCC). Of these, 576 cases had mild poisoning, 56 had severe clinical conditions and six individuals died [19]. The Annual Report of the National Register of poisoning (U.S., 2009) reported 4083 (73.9%) children with mushroom poisoning with 3012 (54.5%) of them being < 6 years old [20]. Later, in 2016, 6421 mushroom-poisoned cases were reported to AAPCC, including 39 severe and two fatal cases [21]. In Turkey, 143 mushroom-poisoned patients were admitted over a four-year period (between 1996 and 2000) to the central hospital of Osmangazi University, of which four patients died [4]. Another report from Turkey, reported 62 deaths in children aging 0–18 years, between 2009 and 2013 in Trabzon. It was found that 4 children (6.5%) were died due to mushroom poisoning; 3 of them were 0–3 years old [22].

In Switzerland, in a retrospective study conducted on 6307 patients with mushroom exposure (from 1995 to 2009), A. virosa was regarded as the cause of toxicity in one mild and 1 moderate cases. Generally, it was described that fatal poisonings were caused by amatoxin-containing species [23].

In Iran, Amanita species grow in many forested regions such as Mazandaran and Gilan, Northern Iran, as well as Azerbaijan (northwestern Iran) and Western provinces [15,20,22–27], but scarce information is available concerning mushrooms poisoning [24,25]. In 1993, three cases of A. virosa poisoning were reported from Hamadan, Western Iran, where one patient died [15]. The epidemiological pattern of mushroom poisoning among children aged 11–15 years admitted between 1988 and 1993, to Loghman Hakim Hospital, Tehran, Iran showed a mortality rate of 71% [24,28]. Another report from the same hospital indicated that from eight mushroom-poisoning cases, two patients (25%) died due to hepatic encephalopathy and gastrointestinal bleeding [29]. In a study conducted in 2006 in Iran, 72,421 suspected cases were examined and 37 patients (68% male and 32% female with an average age of 31 years old) were found to be intoxicated by poisonous mushrooms [24]. Another study reported 32 mushroom-poisoned patients (with an average age of 24.6 years old) referred to the

Fig. 1. Amanita virosa.

Fig. 2. Phalloidin attacks the cell membranes causing leakage of calcium atoms, followed by loss of potassium ions. Reproduced based on a previously published report [60] with permission from the Estate of Bunji Tagawa.
Toxicology Center of Mashhad, Khorasan Razavi, Eastern Iran, from 2005 to 2011. Mushroom intoxication represented 0.1% of all intoxication cases admitted to the hospital [26].

In the most recent outbreak of mushroom poisoning in Iran, 1200 intoxicated individuals were referred to hospitals in 13 Western and Northwestern cities of Iran (over 90% of patients were from Kermanshah, Lorestan, Kordestam, and West Azerbaijan provinces) [25]. Of these patients, 8.9% were hospitalized and 1.5% died. Early signs and symptoms included abdominal pain, nausea, vomiting, and diarrhea. Though 50 toxic species of mushrooms grow in Iran, this recent report held *Lepiota brunneioncarnata*, *Hypholoma fascicalare*, and *Coprinopsis atramentaria* responsible for this outbreak [25]. Nevertheless, according to Food and Drug Administration, Health Ministry of Iran (available at https://www.tehrantimes.com/news/423947/Mushroom-poisoning-kills-18-in-Iran), *A. virosa* was the cause of poisoning in this scenario [17].

Variations in the mortality rate can usually be attributed to the type of mushroom species ingested, different levels of included toxins, and the vulnerability of poisoned subjects [26]. In most studies, spring and autumn were shown to have the highest incidence rates of mushroom poisoning [17,23,27,30,31].

3. Classification and toxicity of *Amanita* mushrooms

Numerous toxic mushrooms are found around the world, including those containing cyclopeptides, usually regarded as the most toxic species [32]. The genus *Amanita* belongs to the family *Amanitaceae* and includes the majority of mushrooms that are toxic to humans [18]. *Amanita* genus has about 900 to 1000 species, of which nine are known to produce poisonous amatoxins. Although the genus *Lepiota* has the largest number of amatoxin-producing species, the species from the *Amanita* genus are responsible for most of mushroom-poisoning deaths [32–35]. The most well-known species of *Amanita* are *A. phalloides*, *A. virosa*, and *A. verna*; also, *A. muscaria*, *A. smithiana*, *A. thiersii*, *A. ocreata*, *A. suballiiacea*, *A. tenuifolia*, *A. nauseosa*, *A. virgineoides* and *A. bisporigera* are other members of this genus. Among these different species, *A. phalloides*, *A. verna*, and *A. virosa* exert the highest toxicity, mainly involving the liver, kidneys and central nervous system [33,36,37]. More than 90% of the mushroom-related fatalities that are attributed to these *Amanita* mushrooms in Central Europe and North America, result from life-threatening acute hepatitis. Three other species, *A. exitialis*, *A. fuliginea* and *A. subjuncuilea*, found in East Asia, contain cyclopeptides and have also been shown to cause liver failure and death
Major toxin classes found in the genus *Amanita* are amatoxins, phallo-
toxins and virotoxins, all classified as cyclopeptides with a sulfur-linked
tryptophan and some unusual hydroxylated amino-acids [51]. Amatoxins
are at least eight related toxic compounds of eight amino-acid residues
arranged in a conserved pentacyclic structure. Phalloxins are at least
seven compounds, all of which are bicyclic heptapeptides. Virotoxins are
monocyclic peptides formed by at least five different compounds. Their
structure and biological activity are similar to those of phalloxins, thus
suggesting that they share common precursor pathways.

The two main toxins of *A. phalloides* are named phalloidin and
amanitin. Phalloidin (MW of 900 Da) was first identified by Wieland in
1937 [52] in *A. phalloides* while phalloxins were found in *A. virosa* for
the first time in 1974 [53]. Amanitin, mainly alpha-amanitin with MW of
around 900 Da [16], was discovered in *A. virosa* in 1966 [54], though its
presence in this species remained controversial [55]. Interestingly,
while amanitamide may be found in *A. virosa*, γ-amanitin is produced
by *A. phalloides* and other *Amanita* species [37,56]. To date, the
majority of the studies considered that *A. virosa* contains two major
amanitoxins namely alpha-amanitin and beta-amanitin, and two phallo-
toxins namely phalloidin and phallacidin [18,57,58]. However, in a
study performed by Buku in 1980, amanitamide and alpha-amanitin
but not beta- amanitin, were found in *A. virosa*. These results were
supported by the findings reported by Yokum and Simons, following the
chemical characterization of *A. virosa* mushrooms collected from dif-
ferent US regions [55,57,59]. Phalloidin and alpha-amanitin mechan-
isms of action are presented in Figs. 2 and 3.

Virotoxins are monocylic peptides, and in terms of biological ac-
tivity they are similar to phalloxins [61–63]. Some articles indicated
that virotoxins are only present in *A. virosa*, but other studies found
virotoxins in *A. subpallidorosea* and *A. virosa* species. *A. subpallidorosea*
and *A. virosa* are clustered according to phylogenetic analysis. Also,
according to previous studies, the characteristics of toxin cyclopeptide
are consistent with phylogenetic molecular relationships [56,57,64].
Virotoxins were mainly found in mushrooms collected from Europe and
North-America. Toxovirin isolated from *A. virosa* has no mono-
and diamino-oxidase activity but high oxidase activity for specific amino
acids. Toxovirin-related effect on L-amino acids is double than that for
DL-racemic mixtures. This toxin is chemically and structurally similar
to toxophallin isolated from *A. phalloides* [65]. Virotoxin cyclopeptide, a
monocylic peptide, was first detected in 2016 in *A. virosa* [57]. Like *A.
phalloides* and *A. virosa*, other *Amanita* species like *A. bisporigera* and *A.
verna* can also produce toxic peptides (amatoxin, phalloxins, and
virotoxin) [55,66,67]. Amatoxins have eight amino acids instead of
seven. Again, sulfur atom joins two side chains; hydroxyl group (out-
lined) is essential for toxicity. Alpha-amanitin phalloidin structures
(Figs. 4 and 5) were worked out by Theodor Hermann Felix Wieland
(1913–1995) at The Max Plack Institute for Medical Research in Hei-
dleberg in 1974 [68].

Fig. 5. Eight amino acids of amatoxin. Reproduced based on a previously published report [60] with permission from the Estate of Bunji Tagawa.

Fig. 6. Thiotic Acid chemical structure. Reproduced based on a previously published report [60] with permission from the Estate of Bunji Tagawa.

[10,33,37–43]. The other *Amanita* mushrooms mainly cause neo-
phrotoxicity [44–47]. Interestingly, *A. muscaria* and *A. pantherina*
contain ibotenic acid and muscimol, which produce hallucinogenic ef-
facts in addition to acute renal failure [37,44,48,49]. Among the rare
edible species of *Amanita* mushrooms, *A. lanei* is frequently mistaken
by species of the genus *Agaricus* [34]. *A. virosa* has a pure white appear-
ance, like a veil of angels, and its roots are smoother compared to *A.
verna*, but due to its deadly nature, it has been called “The destroying
angel” (Fig. 1) [18]. Like other *Amanita*’s mushrooms, it has a sweet
smell and taste. The color of *A. virosa* cap is white and the color of the
center becomes yellow or brown as it matures. *A. virosa* has white
spores of 8–10mm in diameter, with a length-to-width ratio <1.25
(Fig. 1) [18,34]. One of the most beautiful and widespread species of
Amanita is the red and white *A. muscaria* also known as ‘fly agaric’ [50].

Since a long time, three types of mushrooms namely, *A. virosa*,
Russula vesca and *Russula persicina*, have been identified in Iran [27].
Recent studies have shown that in Iran, *A. virosa* is more prevalent than
A. phalloides [15,24–27].
Table 1
Features of *Amanita virosa* toxins.

Type of toxin	Chemical structure	Target organ	Mechanism of action	Similar toxins	References
Amatoxin	Cyclic heptapeptides	Liver and kidney	Inhibition of DNA-dependent RNA polymerase II	α -amanitin, β -amanitin [64]	[59]
Phallotoxin	Cyclic heptapeptides	Liver and kidney	Inhibition of RNA polymerase II	Amatoxins (10–20 times more toxic and are responsible for observed fatalities [37,50]. Amatoxins are potent and selective inhibitors of RNA polymerase II, a vital enzyme in the synthesis of mRNA, microRNA, and small nuclear RNA, leading to protein synthesis interruption and cell death. The lethal dose of orally-administered alpha-amanitin in humans is 0.1 mg/kg [26,69]. Amanitins including those produced by *A. virosa*, can damage the liver, kidneys and brain, eventually causing mortality [65,70,71]. Phallotoxins, although highly toxic to the liver and muscular cells, strongly bind actin [57], but mildly contribute to amanita-related toxicity since they are not absorbed by the gastrointestinal tract. Like phallotoxins, virotoxins have limited toxic effects after oral exposure. Their interaction with actin, which is even weaker than that of phallotoxins, stabilizes the bonds between actin monomers and prevents microfilaments depolymerization. *A. phalloides* and *A. virosa* also produce toxic lecints, differing in their carbohydrate moieties but leading to similar hemolysis [65,72]. Additionally, two amino-acids namely, 2,3-trans-3,4-dihydroxy-l-proline and 20-(methylsulphonyl)-l-tryptophan, were identified in *A. virosa*. The physicochemical properties of the majority of these toxins make them heat-resistant and food processing methods like grilling, boiling, frying, and steaming cannot completely eliminate them [4,73,74]. Ingestion of toxin-containing *Amanita* mushrooms leads to challenging hepatotoxicity although additional disturbances like allergic gastroenteritis may also result [14,24,52,75–77]. Interestingly, nephrotoxic effects were also demonstrated in different studies [33,78–81], which may have an important impact on the renal excretion of absorbed toxins. Therefore, the final observed clinical toxicity is related to the type and amount of ingested mushrooms, i.e. the content and specific toxicity of the involved cyclopeptides [82]. Different toxins found in *A. virosa* along with their mode(s) of action are presented in Table 1. From a toxicokinetic point of view, the liver can excrete about 60% of the toxins in the bile [83] but returns to the liver through enterohepatic recirculation. Alpha-amanitin is quickly cleared from the serum by the kidneys [84]. A large amount of amatoxin is taken by the hepatocytes and undergoes extensive enterohepatic circulation [52,72]. The duration of action of these toxins is about 10–15 h in humans [50].	

5. Toxic features and management

Most of *Amanita* poisonings are related to *A. phalloides*, *A. virosa* and *A. verna*, respectively. Nonetheless, since the incidence of *A. virosa* intoxication is increasing, more studies should be performed on this species [85]. Most mushroom intoxications are initially presented with gastrointestinal symptoms alone and usually resolve over time, mimicking viral gastroenteritis, but potentially lethal liver dysfunction may occur with *Amanita*. In *A. virosa*-poisoned patients, nausea and vomiting are the most common symptoms [17,23,26,27,30,31]; abdominal pain, diarrhea, irritability, vertigo and hepatitis may also occur. *A. virosa* poisoning develops in three clinical stages, starting 8–12, 12–48 and 72 h after the ingestion, respectively. The pancreas, testicles and blood are also affected by this intoxication. During the first stage the gastrointestinal tract is stimulated this effect is generally attributed to the phalloidin toxin and its active metabolites. The second stage of *Amanita* poisoning presents marked reduction of abdominal symptoms; however, hepatic and renal failure may occur. During the third phase, death happens because of coagulopathy (epistaxis, hematuria, melena and hematemesis), encephalopathy (muscular twiching, delirium, coma, seizures) and infrequently cardiomyopathy [86]. High Performance Liquid Chromatography (HPLC) has been the most common method used for the quantitative and qualitative analysis of *Amanita* mushroom toxins in biological specimens [87–90].
Nevertheless, inconsistencies in methods of extraction of toxins and HPLC conditions do not allow drawing conclusions based on information reported by different laboratories. For instance, deadly cyclopeptidic toxins of *A. fuligineoides* and *A. rimosa* are yet to be discovered [37].

Mushrooms with incubation period < 6 h contain muscarine, caffeine, ibotenic acid and psilocybin toxins, cause mild clinical symptoms that disappear in a short time [26]. By contrast, this time delay was found to be a major and independent predictor of fatality in amatoxin poisoning [23,26,91,92].

Management of *Amanita* mushroom poisoning is mainly supportive in combination to gastrointestinal decontamination. Activated charcoal efficacy and/or gastric lavage is most useful if attempted within 1 h after the ingestion of a potentially life threatening poison. Of note, activated charcoal (20–40 g every 3–4 h) has also been administered routinely because it may also interrupt the enterohepatic circulation of amatoxins and potentially reduce their toxicity. On the other hand, gastric lavage is contraindicated in patients with loss of airway protective reflexes [93]. The main current goals of mushroom poisoning treatment are to reduce the serum concentrations of mushroom toxins in order to limit the extent of exposure and lessen the risks of organ damage [36,94,95]. Intravenous fluids should be given for forced diuresis and also to replenish fluids and electrolytes lost during the gastrointestinal phase [93]. The use of different extracorporeal techniques to enhance the toxin elimination was successfully reported including plasmapheresis, hemoperfusion, Molecular Absorbent Re-generating System (MARS®) dialysis and the fractionated plasma separation and adsorption system (Prometheus®). In the presence of acute liver failure caused by *Amanita* poisoning, indication of urgent liver transplantation should be considered, based on the standard King’s College Criteria [96].

No specific life-saving approach exists. Various pharmacotherapies have been tested including intravenous penicillin G, thiocetic acid, N-acetylcysteine, citidine, steroids, polymixin B, vitamin C, silymarin, and silibinin (Table 2) [32,34,36,84,97–100]. Thiocetic acid, an antioxidant used in cosmetics and anti-aging products due to its ability to scavenge free-radicals, was successfully used to treat amanitin poisoning [26,32,34].

For amatoxin poisoning, A. phalloides, A. virosa are responsible for life-threatening toxic liver failure and even death. These two Amanita species share similar toxins, including amatoxins, phalloxins and virotoxins. Poisoning management is supportive, although various specific therapies have been used with currently low-level evidence of usefulness to reduce the risks of morbidities and death. Prevention is thus essential and mainly based on information and education.

Conflicts of interest
None.

References

[1] P.C.K. Cheung, The nutritional and health benefits of mushrooms, Nutr. Bull. 35 (2010) 292–299.

[2] C.B. Fischbein, G.M. Mueller, P.R. Leacock, M.S. Wahl, S.E. Aks, Digital imaging: a promising tool for mushroom identification, Acad. Emerg. Med. 10 (2003) 808–811.

[3] S. Felice, Chemical constituents of some mushrooms, J. Sci. Food Agric. 58 (1992) 499-503.

[4] I. Urechiglu, M. Tayfur, Mushroom poisoning: an analysis of the data between 1996 and 2000, Eur. J. Emerg. Med. 10 (2003) 25–26.

[5] D. Grotto, M. Gerenutti, V. Souza, F. Barbosa Jr, Deficiency of macro-and micro-nutrients induced by Lentinula edodes, Toxicol. Rep. 2 (2015) 401–404.

[6] C.-C. Lin, K.S. Kumar, J.-W. Liao, Y.-H. Kuo, S.-Y. Wang, Gerotoxic, teratotoxic and oral toxic assessments of *Antrodia cinnamomea* health food product (Leader Deluxe Antrodia cinnamomea*), Toxicol. Rep. 2 (2015) 1409–1417.

[7] E.T. Ogbohmda, K. Omofonwen, I. Aganmwonyi, I.P. Fasipe, A. Enuneku, L.I. Ezemonye, Bioactive profiling and therapeutic potential of mushroom (Pleurotus tuberregium) extract on Wistar albino rats (*Ratus norvegicus*) exposed to arsenic and chromium toxicity, Toxicol. Rep. 5 (2018) 401–410.

[8] A. Tsatsakis, L. Vasiliopoulou, L. Kovats, C. Tsitsimpikou, M. Karamanou, G. Leon, J. Lieszuvi, A. Hayes, D. Spandidos, The dose response principle from philosophy to modern toxicology: the impact of ancient philosophy and medicine in modern toxicology science, Toxicol. Rep. 5 (2018) 1107–1113.

[9] D. Pilz, R. Molina, Commercial harvests of edible mushrooms from the forests of the Pacific Northwest United States: issues, management, and monitoring for sustainability, For. Ecol. Manage. 155 (2002) 3–16.

[10] T. Wieland, Poisonous principles of mushrooms of the genus amanita, Science 159
M. Ergin, Z.D. Dundar, I. Kilinc, T. Colak, P. Oltulu, A.S. Girisgin, Alpha-Amanitin poisoning, nephrotoxicity and oxidative stress: an experimental mouse model, Iran. Red Crescent Med. J. 17 (2015) e28068-e.

J.H. Diaz, Evolving global epidemiology, syndromic classification, general management, and prevention of unknown mushroom poisonings, Crit. Care Med. 33 (2005) 419–426.

H. Faulstich, K. Kirchner, M. Derenzini, Strongly enhanced toxicity of the mushroom toxin α-amanitin by an amatoxin-specific Fab or monoclonal antibody, Toxicon 26 (1988) 491–499.

M.P. Barbato, Poisoning from accidental ingestion of mushrooms, Med. J. Aust. 158 (1993) 842–847.

H. Faulstich, New aspects of Amanita poisoning, Klin. Wochenschr. 57 (1979) 1143–1152.

C.E. Becker, T.G. Tong, R.L. Roe, R.A.T. Scott, M.B. MacQuarrie, U. Boerner, F. Bartter, Diagnosis and treatment of Amanita phalloides-type mushroom poisoning: use of thioctic acid, West. J. Med. 125 (1976) 100–109.

Y. Ye, Z. Liu, Management of Amanita phalloides poisoning: a literature review and update, J. Crit. Care 46 (2018) 17–22.

R. Das, S. Parajuli, J.Jayakumar, “Last supper with mushroom soup”: a case report of amatoxin poisoning, McGill J. Med. 10 (2007) 93.

F. Enjalbert, C. Gallion, F. Jehl, H. Monteil, H. Faulstich, Simultaneous assay for amatoxins and phallotoxins in Amanita phalloides Fr. by high-performance liquid chromatography, J. Chromatogr. A 598 (1992) 227–236.

C. Defendenti, E. Bonacina, M. Mauroni, L. Gelosa, Validation of a high performance liquid chromatographic method for alpha amanitin determination in urine, Forensic Sci. Int. 92 (1998) 59–68.

T.A. McKnight, K.B. McKnight, M.C. Skeels, Matoxin and phallotoxin concentration in Amanita bisporigera spores, Mycologia 102 (2010) 763–765.

H. Jinsong, Z. Ping, Z. Jun, C. Zushong, Determination of amatoxins in different tissues and development stages of Amanita exitialis, J. Sci. Food Agric. 92 (2012) 2664–2667.

L. Escudifé, C. Francies, J.-P. Vinel, R. Moretti, M. Cournot, V. Paradis, A. Sauvanet, J. Belghiti, D. Valla, J. Berman, F. Durand, Amanita phalloides poisoning: reassessment of prognostic factors and indications for emergency liver transplantation, J. Hepatol. 46 (2007) 466–473.

K. Healey, O.F. Woo, K.R. Olson, S.M. Pond, J. Seward, C.E. Becker, Amanita phalloides-type mushroom poisoning, West. J. Med. 137 (1982) 282–289.

R. Saller, R. Meier, R. Brignoli, The use of silymarin in the treatment of liver diseases, Drugs 61 (2001) 2035–2063.

J. Garcia, V.M. Costa, A.T.P. Carvalho, R. Silvestre, J.A. Duarte, Dourado DFAR, M.D. Arbo, T. Baltazar, R.J. Dinis-Oliveira, P. Baptista, M. de Lourdes Bastos, F. Carvalho, A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B, Arch. Toxicol. 89 (2015) 2305–2323.

W.C. Chen, M. Kassi, U. Saeed, C.T. Frenette, A rare case of amatoxin poisoning in the state of Texas, Case Rep. Gastroenterol. 6 (2012) 350–357.

K.D. Kroncke, G. Fricker, P.J. Meier, W. Gerok, T. Wieland, G. Kurz, α-Amanitin uptake into hepatocytes. Identification of hepatic membrane transport systems used by amatoxins, J. Biol. Chem. 261 (1986) 12562–12567.