Groundwater quality assessment using principal component analysis and hierarchical cluster analysis in Alaçam, Turkey

Mehmet Taşan,*, Yusuf Demir and Sevda Taşan

Abstract

This study assessed groundwater quality in Alaçam, where irrigations are performed solely with groundwaters and samples were taken from 35 groundwater wells at pre and post irrigation seasons in 2014. Samples were analyzed for 18 water quality parameters. SAR, RSC and %Na values were calculated to examine the suitability of groundwater for irrigation. Hierarchical cluster analysis and principal component analysis were used to assess the groundwater quality parameters. The average EC value of groundwater in the pre-irrigation period was 1.21 dS/m and 1.30 dS/m after irrigation in the study area. It was determined that there were problems in two wells pre-irrigation and one well post-irrigation in terms of RSC, while there was no problem in the wells in terms of SAR. Piper diagram and cluster analysis showed that most groundwaters had CaHCO₃ type water characteristics and only 3% was NaCl as the predominant type. Seawater intrusion was identified as the primary factor influencing groundwater quality. Multivariate statistical analyses to evaluate polluting sources revealed that groundwater quality is affected by seawater intrusion, ion exchange, mineral dissolution and anthropogenic factors. The use of multivariate statistical methods and geographic information systems to manage water resources will be beneficial for both planners and decision-makers.

Key words: Alaçam town, multivariate statistical techniques, piper diagram, seawater intrusion

Highlights

• Multivariate statistical analysis was used to evaluate the groundwater quality.
• According to the Piper diagram, 83% of the groundwater was of the CaHCO₃ type in both periods.
• The effect of seawater was observed in some wells located 4 km inland from the sea in the post-irrigation period.
• Seawater intrusion has been detected in coastal areas.
• Well number 28 should not be used for irrigation purposes.

Introduction

Groundwater is used for irrigation, drinking and domestic uses. It is a natural and limited source of water. Groundwater also plays an important role in both ecosystem and economy of developing countries like Turkey (Twarakavi & Kaluarachchi 2006; Arslan 2013). In places where most agricultural water needs are supplied from groundwaters, water quality assessment is crucial for sustainable use of these resources in irrigations. Groundwater quality largely depends on hydro-chemical processes realized through regional hydrogeological and anthropogenic activities under saturated and unsaturated soil conditions (Kazakis et al. 2017). Besides, chemical processes between the soil and aquifer minerals, up-down water flow within the soil profile and flowing duration continuously influence groundwater quality. As well as such natural processes, anthropogenic factors including excessive irrigations and leakage of harmful substances from unconsciously fertilizer-treated soil surface also negatively affect groundwater quality. Additionally, excessive groundwater withdrawals for irrigations from deep aquifers bring groundwater to upper layers or surfaces. Such withdrawals result in seawater intrusion into groundwater in coastal zones and thus end up with groundwater salination and pollution (Boniol 1996).

Irrigation water quality is one of the most crucial problems affecting plant production. The good quality of irrigation water used in agricultural production will lead to an increase in crop yield with proper water management and soil applications...
investigate the suitability of groundwater in coastal areas for irrigation and the status of seawater intrusion. Khan (2020) evaluated the suitability of groundwater for irrigation in Pakistan. Singh et al. (2020) evaluated the suitability of groundwater quality for irrigation in the Punjab region of India. The study results determined that 5 percent of the samples in the whole area were ‘harmful’ in terms of %Na and RSC and 100% of them were in the ‘unsuitable’ class according to MR values. Kamaraj et al. (2021) conducted a study to determine the suitability of groundwater in coastal aquifers in South India for irrigation and determined that 56% of the samples by %Na and 5% by SAR were unsuitable for irrigation.

Recently, with the increasing number of physical and chemical variables of groundwater, a wide variety of statistical methods are now used for accurate analysis and interpretation of data (Subyani & Al Ahmadi 2010). Multivariate statistical analysis methods have been used frequently in fields such as soil and water resources in the last years (Masoud et al. 2018; Chaudhry et al. 2019; Dash & Kalamhdad 2021). Cluster analysis (CA), factor analysis (FA), principal components analysis (PCA), discriminant analysis (DA) and several other multivariate statistical analyses are widely used to present spatial variations in groundwater quality and to determine impact factors (Ma et al. 2014). Yidana (2010) used multivariate statistical analyses (hierarchical cluster analysis) to assess groundwater quality and obtained four cluster representing three main types of groundwater. It was also determined that groundwater chemistry was designated by three primary factors. Arslan (2013) classified groundwaters in coastal ones of Bafra plain with multivariate statistical techniques. Cluster analysis revealed three clusters for groundwaters of the research site (A, B and C) and factor analysis revealed that 12 variables explained 89.64% of total variation and three factors were identified as the primary ones. Ma et al. (2021) used piper diagram and multivariate statistical analysis methods to designate irrigation water quality, hydro-chemical properties, water type and water-rock interactions. Bodrud-Doza et al. (2019) investigated the spatial and temporal distribution of groundwater pollution sources in Dhaka province of Bangladesh using GIS and multivariate statistical analysis methods. Silva et al. (2021) used multivariate statistical techniques to determine the water quality index and the integration of groundwater quality with geographic information systems in a semi-arid basin and principal component analysis to calibrate the water quality index. They also reported that the physical, chemical and biological involvement affecting the water quality of the principal components analysis play a role in determining the relationships between the variables. Seawater intrusion and anthropogenic activities lead to the danger of salinization in groundwater resources in coastal areas (Jayathunga et al. 2020). Kumar et al. (2020) revealed that hydro-chemical analysis and multivariate statistical methods can be combined in the determination of seawater intrusion. Prusty & Farooq (2020) applied mathematical and statistical (HCA) methods to classical hydro-chemical data in their study to investigate the suitability of groundwater in coastal areas for irrigation and the status of seawater intrusion. Khan et al. (2021) utilized hydro-chemical and statistical techniques to present the relationships between seawater intrusion and groundwater geochemical properties. While the principal component analysis was used to determine the hydro-chemical relationships from the obtained data and they benefited from Pearson correlation to explain the factors affecting salinity.

Management of groundwater in coastal areas is very crucial. In case of excessive water withdrawal from this type of water, the water will become salty and unusable. For this reason, the relations between groundwater and seawater should be revealed in coastal areas clearly. Paddy farming is carried out intensively and only groundwater is used as irrigation water in the Alaçam region. There has not been any study on the determination of irrigation groundwater quality so far in the study area. Therefore, whether the groundwater is affected by the salinization process in a paddy-growing area close to the coast and the effects of seasonal changes on the groundwater’s hydro-chemical properties were investigated using multivariate statistical techniques in the Alaçam region. Identification of the results of excessive groundwater utilizations in irrigations and passing such results efficiently and instantly to the decision-makers are significant issues to take timely measures and for sustainability of agricultural practices.

MATERIALS AND METHODS

The study area

Present research site (Alaçam) is located in the Middle Black Sea Region of Turkey between 41° 36’–41° 40’ North latitudes and 35° 33’–35° 47’ East longitudes. Alaçam is located 80 km west of Samsun province. The town has a semi-humid climate,
December is the most precipitated (120.6 mm) and July is the driest months (39.0 mm). The long-term annual average total precipitation is 784.7 mm. Kızılırmak river, Alaçam, Yenice and Bedes creeks constitute the primary water resources. According to 2015 data, there were not any irrigation systems within the boundaries of Alaçam town and existing drainage canals were not efficiently operating. The location of the research site is presented in Figure 1.

Sampling and analysis
In this study, groundwater samples were collected from 35 different bore and hand pumps in April and September 2014. Figure 1 shows the study area and the sampling points. Wells were operated for 10 minutes, then samples were taken into polyethylene bottles. Samples were preserved at +4 °C until the time of analysis. Before the analyses, samples were filtered through 0.45 μm acetate cellulose filter papers. Samples were subjected to EC, pH, TDS (Total Dissolved Solids), Na⁺, K⁺, Ca²⁺, Mg²⁺, CO₃²⁻, HCO₃⁻, SO₄²⁻, NO₃, DO, temperature, Cl⁻ and hardness analyses. Additionally, SAR (Sodium Adsorption Ratio), RSC (Residual Sodium Carbonate) and Na% were calculated. A pH meter (Mettler Toledo S20 Seven Easy) was used to measure pH of groundwater samples. A conductivity meter (Jenway 4510) was used to measure temperature, EC and TDS of the samples. All quality parameters were determined in the laboratory using American Public Health Association standard methods (APHA 1999). The Ca²⁺ and Mg²⁺ concentrations were determined with EDTA titration. Total hardness (TH) was calculated from Mg²⁺ and Ca²⁺ concentrations identified as calcium carbonate. Na⁺ and K⁺ were determined in a flame photometer. Phenolphthalein indicator was used for carbonate (CO₃²⁻) and methyl orange indicator was used for bicarbonate (HCO₃⁻) and sulphuric acid titration method was used to determine CO₃²⁻ and HCO₃⁻ concentrations. Chlorine (Cl⁻) concentration was determined with the use of potassium chromate indicator and silver nitrate titration. Sulfate (SO₄²⁻) and nitrate (NO₃⁻) concentrations were determined with the use of a UV-visible spectrophotometer (APHA 1999). Dissolved oxygen (DO) was determined in accordance TS 5677 EN25814 standards (TSE 1996). Accuracy of the analysis results on
The physicochemical parameters were checked for Ionic Balance Error (IBE) (Equation (1)). In the following equations, all cations and anions were expressed in meq/L.

\[
IBE = \frac{\sum Cations - \sum Anions}{\sum Cations + \sum Anions} \times 100
\]

Calculated ionic balance error was within ±10% acceptable limits (Domenico & Schwartz 1990).

SAR (Richards 1954), RSC (Eaton 1950) and %Na (Wilcox 1955) values were calculated with the use of the following equations (respectively with Equations (2)–(4)). In these equations, Na\(^+\), K\(^+\), Ca\(^{2+}\) and Mg\(^{2+}\) concentrations were expressed in meq/L.

\[
SAR = \frac{Na^+}{\sqrt{Ca^{2+} + Mg^{2+}}}
\]

\[
RSC = (CO_3^- + HCO_3^-) - (Ca^{2+} + Mg^{2+})
\]

\[
Na\% = \frac{Na^- + K^+}{Na^- + K^+ + Ca^{2+} + Mg^{2+}}
\]

The evaluation criteria and references of the quality of water used for irrigation are shown in Table 1.

The hydro-chemical properties of the groundwater in the study area were classified by a Piper-Trilinear diagram (Piper 1944). Piper trilinear diagram was drawn using Rockware AqQA (version AqQA1.5) software (Rockware AqQA Software 2015).

Multivariate statistical analysis

Multivariate statistical methods are commonly used in hydrological and environmental researches to define and assess soil characteristics, groundwater and surface water quality (Belkhiri & Narany 2015; Singh et al. 2017a; Kumar et al. 2019). In this study, principal component analysis and cluster analysis were applied on 35 groundwater samples (70 in total) taken in two different periods. Multivariate statistical analyses were performed using Windows SPSS 21.

Parameter	Range	Irrigation water quality	Parameter	Range	Irrigation water quality
EC (Ayers & Westcot 1985) (dS/m)	0–0.25	Low	pH (Acatay 1996)	6.6–7.3	Notr
0.25–0.75	Medium		7.4–7.8	Slightly alkaline	
0.75–2.25	High		7.9–8.4	Alkaline	
>2.25	Very high		8.5–9.1	Strong alkaline	
Na (Ayers & Westcot 1985) (mg/L)	<70	Suitable	Na% (Wilcox 1955)	<20	Excellent
>70	Unsuitable		20–40	Good	
70–200	permissive		40–60	Permissible	
>200	Unsuitable		60–80	Doubtful	
NO\(_3\) (Anonymous 1975)	<5	No problem	Cl (Wilcox & Magistad 1943) (mg/L)	<178	Good
5–30	Increasing problem		178–355	Permissible	
>30	Severe problem		>355	Doubtful	
RSC (California Fertilizer Committee 1975)	<1.25	Good	TDS (Heath 1983) (mg/l)	<1,000	Fresh
1.25–2.5	Medium		1,000–3,000	Slightly saline	
>2.5	Unsuitable		3,000–10,000	Moderately saline	
SAR (Mandel & Shiftan 1981)	0–10	Excellent			
10–18	Good		3,000–10,000	Moderately saline	
18–26	Doubtful		10,000–30,000	High saline (sea)	
>26	Unsuitable				
Datasets were normalized to eliminate effects from differences in units before analysis (Equation (5)).

\[Z = \frac{(x - \bar{x})}{S} \tag{5} \]

where; \(Z \) is standardized value; \(x \), is measurement value, \(\bar{x} \), is mean and \(S \) is standard deviation.

The multivariate statistical analysis methods used in the study are summarized below.

Cluster analysis (CA)
Cluster analysis is one of the multivariate techniques that group objects according to their properties. Euclidean distance was used to measure the similarity between water quality variables and ward’s method was used as the joining rule. The resultant clusters of cluster analysis (groups) were used to comprehend hydro-chemical processes encountered in the region.

Factor analysis/principal component analysis
Principal component analysis (PCA) is used to reduce the large data sets with a minimum loss of information (Singh et al. 2017b). In present study, principal component analysis and factor analysis were used to get correlations between hydro-chemical components of groundwater samples with the use of factor-score values. The first principal component explains the majority of the total variance in a data set, while the remainder of the variance is then explained by the other components. In PCA, only components with an eigenvalue >1 were selected and then subjected to the varimax rotation before being used for interpretation (Kaiser 1960; Ganiyu et al. 2021).

Statistical analysis
The results were processed using the basic descriptive statistics such as minimum, maximum, mean and standard deviation (SD). Spatial distribution maps of different factor scores were generated with the use of ArcGIS 10.0 software. Inverse Distance Weighted (IDW) interpolation method was used while generating these maps.

RESULTS AND DISCUSSION
Groundwater chemistry
Descriptive statistics for pre and post-irrigation groundwater samples are presented in Table 2. Except for EC, TDS and Cl, the other parameters were not significantly different during the pre- and post-irrigation periods. The EC values were ranged from 0.60 to 5.45 dS/m with an average 1.21 dS/m in the pre-irrigation period and from 0.49 to 6.13 dS/m with an average 1.30 dS/m in the post-irrigation period. The EC value was lower than 0.75 dS/m in 14% of the water samples analyzed in both periods and it was found to be moderately saline according to Ayers & Westcot (1985). EC values had between 0.75 and 2.25 dS/m (high level) in 83 and 80% of the water samples, and 3 and 6% had greater than 2.25 dS/m (very high) in the pre-and post-irrigation periods, respectively. The increase in the EC values of groundwater in the post-irrigation period can be attributed to seawater intrusion in coastal areas. Callender et al. (2011) indicated that seawater had quite greater chemical components than freshwater; thus, seawater intrusion should continuously be monitored as a reliable indicator of changes in groundwater chemistry. While low-salinity waters could be used for almost all plants and soils, highly saline waters could only be used for salt-tolerant plants.

TDS values were ranged from 381.54 to 3,489.29 mg/L with an average of 773.461 mg/L in the pre-irrigation period and from 310.28 to 3,922.03 mg/L with an average of 830.838 mg/L in the post-irrigation period (Table 2). In both periods, the TDS value was found to be greater than 3,000 mg/L in 3% of the sampled points in the study area. These waters are not recommended for irrigation (Freeze & Cherry 1979). The average TDS value increased by approximately 8% in the post-irrigation period compared to the pre-irrigation period. The reason for this is the influence of seawater on the groundwater wells. As a result of excessive groundwater use in the post-irrigation period, TDS values exceeding 1,000 mg/L were obtained in some wells located approximately 4 km inland from the coast, and the effects of seawater were observed in these wells.

In addition, the level of Cl⁻ ions in all groundwater samples were measured and found with an average of 120.02 mg/L in the pre-irrigation period and 170.80 mg/L in the post-irrigation period (Table 2). The average Cl⁻ ion concentrations increased by 42% in the post-irrigation period. High Cl⁻ ion concentration is used as a pollution index and is commonly used in groundwater quality monitoring (Loizidou & Kapetanios 1993). Total hardness is one of the important influencing parameters on the suitability of groundwater for drinking (Ghaffari et al. 2021). Total hardness (TH) values were ranged from 297.02 to
1,235.97 mg/L in the pre-irrigation period and from 336.36 to 1,580.76 mg/L in the post-irrigation period. According to the classification made by Sawyer & McCarty (1967), almost all of the groundwater in the study area is classified as ‘very hard’ because it is greater than TH \(> 300 \) mg/L. Although acceptable limit of hardness is 300 mg/L, the value may be extended up to 600 mg/L if there is no alternative source of water (WHO 1990). Dewandel et al. (2006) reported that mainly the hardness of the water is due to the contact of groundwater with rock formations. pH values of the groundwater were ranged from 7.09 to 7.97 in the pre-irrigation period and from 7.16 to 7.66 in the post-irrigation period, thus showing that these groundwaters are slightly alkaline (Acatay 1996).

Among the cations examined, the concentrations of Na, K, Ca, and Mg ions showed a wide variation from 14.10 to 759.00 mg/L, from 0.70 to 29.10 mg/L, from 59.69 to 281.84 mg/L and from 11.63 to 130.29 mg/L in the pre-irrigation period, and from 14.40 to 740.00 mg/L, from 1.10 to 36.60 mg/L, from 34.96 to 359.44 mg/L and from 23.27 to 167.26 mg/L in the post-irrigation period, respectively (Table 2). The permissible limit for sodium concentration is 200 mg/L for irrigation waters (Ayers & Westcot 1985) and a quite low number of samples (6%) passed this limiting value. Since groundwaters with high sodium concentrations tend to spoil soil structure, they should be used for agricultural purposes. In natural waters, potassium concentrations are generally below 10 mg/L (WHO 1990). The K values of 97% of the samples in the pre-irrigation period and 86% of the samples in the post-irrigation period was below 10 mg/L. High potassium concentrations of groundwaters are attributed to anthropogenic sources and saline water intrusion (Ghalib 2017). Akshitha et al. (2021) reported that seawater intrusion may cause high concentrations of potassium and magnesium values in groundwaters in coastal areas. Hence, the water of well number 28 in the study area has the highest K and Mg values. Calcium and magnesium are the most abundant elements in surface and groundwaters and these elements exist primarily in bicarbonate form and slightly in sulfate and chloride forms (Sarath Prasanth et al. 2012). Among the cations, Ca\(^{2+}\) contents may exhibit seasonal variations long-term agricultural practices may directly or indirectly influence mineral dissolution in groundwaters (Böhle 2002; Kumar 2016).

The concentrations of anions such as CO\(_3\), HCO\(_3\), and SO\(_4\) were ranged between 0 and 79.2 mg/L, 274.59 and 661.46 mg/L and 1.71 and 593.81 mg/L in the pre-irrigation period, and between 8.40 and 124.80 mg/L, 152.55 and 805.46 mg/L and 2.66 and 167.26 mg/L in the post-irrigation period, respectively.

Table 2 | Descriptive statistics of groundwater samples

Parameters	Unit	Pre-irrigation	Post-irrigation						
Parameters	**Unit**	**Minimum**	**Maximum**	**Mean**	**Std. Dev.**	**Minimum**	**Maximum**	**Mean**	**Std. Dev.**
pH	/	7.09	7.97	7.58	0.24	7.16	7.66	7.37	0.13
EC	dS/m	0.60	5.45	1.21	0.80	0.48	6.13	1.30	0.96
TDS	mg/L	381.54	3,489.29	773.46	513.65	310.28	3,922.03	830.84	612.84
Na\(^+\)	mg/L	14.10	759.00	90.34	130.14	14.40	740.00	91.42	126.60
K\(^+\)	mg/L	0.70	29.10	5.80	6.15	1.10	36.60	6.41	6.91
Ca\(^{2+}\)	mg/L	59.69	281.84	135.25	43.46	34.96	359.44	137.98	51.87
Mg\(^{2+}\)	mg/L	11.63	130.29	38.78	21.34	23.27	167.26	50.84	26.36
TH	mg/L	297.02	1,235.97	495.78	175.84	336.36	1,580.76	552.02	211.48
CO\(_3\)\(^2-\)	mg/L	0.00	79.20	48.31	21.59	8.40	124.80	54.77	38.79
HCO\(_3\)\(^-\)	mg/L	274.59	661.46	439.17	76.71	152.55	805.46	440.42	132.11
Cl\(^-\)	mg/L	14.41	1,347.39	120.02	222.48	18.01	1,567.15	170.79	277.70
SO\(_4\)\(^2-\)	mg/L	1.71	593.81	87.62	111.19	2.66	233.81	64.67	54.25
NO\(_3\)\(^-\)	mg/L	4.00	40.00	12.97	11.61	0.00	42.00	9.93	9.30
Temperature	°C	18.50	24.50	20.97	1.74	17.00	24.00	20.45	1.73
DO	mg/L	2.23	9.90	6.10	1.74	2.23	15.20	7.12	3.41
%Na	%	9.27	66.83	24.03	13.67	7.14	51.09	22.65	10.57
SAR	–	0.34	9.37	1.66	1.85	0.30	8.08	1.53	1.47
RSC	meq/L	0.00	3.16	0.36	0.77	0.00	2.38	0.16	0.49
to 233.81 mg/L in the post-irrigation period, respectively (Table 2). Nitrate (NO₃) concentrations were ranged from 4 to 40 mg/L in the pre-irrigation period and from 0 to 42 mg/L in the post-irrigation period (Table 2). In some parts of the study area (7 wells pre-irrigation and two wells post-irrigation), the NO₃ value was determined to be above 30 mg/L. Ayers & Westcot (1985) reported that these wells may cause problems if they are used for irrigation purposes. Since there were not any lithological NO₃ sources in the present research site, such high NO₃ concentrations were mostly attributed to applied nitrogenous fertilizers, seepage from domestic wastewaters and septic tanks (Cushing et al. 1973; Todd 1980).

Dissolved oxygen (DO) values of the groundwater samples ranging from 2.23 to 9.90 mg/L in pre-irrigation period and from 2.23 to 15.20 mg/L in post-irrigation period. Groundwater temperatures were measured with showing the values ranging from 18.5–24.5 °C in the pre-irrigation period and from 17 to 24 °C in the post-irrigation period.

Groundwater suitability for irrigation was assessed through %Na, SAR and RSC of the samples. The %Na values ranging from 9.27 to 66.83% (average 24.03%) in pre-irrigation period and from 7.14 to 51.09% (average 22.65%) in post-irrigation period (Table 2). The %Na values of the majority of the underground wells were found in the ‘good’ class in both periods (Wilcox 1955). The only one well located in the middle of the study area and close to the sea had a % Na value above 60% in the pre-irrigation period. High %Na levels result in soil deflocculating and spoil soil permeability. The SAR values of the samples varied between 0.34 and 9.37 (average 1.66) in the pre-irrigation period and between 0.30 and 8.08 (average 1.53) in the post-irrigation period (Table 2). SAR is commonly used to assess the availability of water resources for irrigation (Singh et al. 2012) and indicates the absorbed Na level of the soil. Present samples were all classified as ‘very good’ (Mandel & Shiftan 1981). Residual sodium carbonate (RSC) designates hazardous effects of carbonate and bicarbonate on water quality for agricultural purposes (Saha et al. 2019). RSC values varied between 0–3.16 meq/L (mean 0.36 meq/L) in pre-irrigation period and between 0–2.38 meq/L (mean 0.16 meq/L) in post-irrigation period (Table 2). Two water wells in the study area are not suitable for irrigation in terms of RSC in the pre-irrigation period (RSC ≥2.5, California Fertilizer Committee 1975). It has been determined that the waters of the other wells have RSC values suitable for irrigation except for these two wells.

Piper trilinear diagram

A Piper trilinear diagram was drawn to determine the hydro-chemical composition of the water samples in the study area and to understand the different processes affecting the groundwater (Piper 1944). Figure 2 shows the hydro-chemical components of water samples pre and post irrigation period in 2014. According to this diagram, there were 3 different types of water in the pre-irrigation period and 2 different types of water in the post-irrigation period (Figure 2). The diagram showed that calcium was the predominant cation and bicarbonate was the predominant anion. Majority of water samples are composed of bicarbonate-type freshwaters. In both pre and post-irrigation periods, the majority of the samples were placed into section 1 of the

![Figure 2](http://iwaponline.com/ws/article-pdf/doi/10.2166/ws.2021.390/964066/ws2021390.pdf)

Figure 2 | Piper diagram of groundwater samples; (a) Pre-irrigation, (b) Post-irrigation.
diamond-shaped area and this section indicated CaHCO$_3$ type water. Calcium bicarbonate water is mainly due to the dissolution of limestone (Frisbee et al. 2016). In the pre-irrigation period, 9% of the samples were placed into section 4 indicating CaMgCl$^-$ type mixture waters. The groundwater samples of wells 14 and 28 had NaCl$^-$ type water. In the post-irrigation period, 14% of the samples were placed into section 4 of the diagram. Piper diagrams are able to assess water quality only in terms of small and large ions. They may be insufficient in the assessment of potential impacts of agricultural practices and seawater intrusion. Güler et al. (2002) reported that the combined use of graphical and statistical techniques allowed the better presentation of classical graphics and offered a reliable and objective tool for the classification of a large number of samples. In this study, use of multivariate statistical techniques (cluster analysis and factor analysis) for hydrochemical data eliminated the limitations of Piper diagrams.

Multivariate statistical analysis

Hierarchical cluster analysis

Hierarchical cluster analysis (HCA) was performed with Square Euclidean distance and Ward method to classify wells with similar chemical properties in the study area. The resulting dendrograms of the cluster analysis (CA) grouped the studied samples into four main clusters (Cluster A, Cluster B, Cluster C and Cluster D) in the pre-irrigation period and in three main clusters (Cluster A, Cluster B and Cluster C) in the post-irrigation period (Figure 3). In pre-irrigation period, Cluster A was composed of 17 sampling points, Cluster B was composed of 10, Cluster C was composed of 1 and Cluster D was composed of 7 sampling points. In post-irrigation period, Cluster A was composed of 14, Cluster B was composed of 20 and Cluster C was composed of 1 sampling point. In addition, it was determined that the clusters were influenced by seawater intrusion, ion exchange, mineral dissolution and anthropogenic activity, as explained below.

According to cluster analysis results, mean concentrations of analyzed water quality parameters were categorized under 4 main groups in the pre-irrigation period and 3 main groups in the post-irrigation period (Table 3).
In the pre-irrigation period, Cluster A had the least concentrations of EC, TDS, Na\(^+\), K\(^+\), Ca\(^{2+}\), Mg\(^{2+}\), TH, HCO\(_3\)/C\(_0\), Cl\(^-\)/C\(_0\), %Na and SAR parameters. Mean EC of this cluster was 0.89 dS/m. Water type of Cluster A is CaHCO\(_3\) (Table 3). CaHCO\(_3\) fields in the piper diagram are indicative of anthropogenic influences and irrigation return flow (Jeevanandam et al. 2007). This group is the freshest group of the study. Wells of this group were not influenced by seawater intrusion.

Cluster B had medium concentrations of EC, TDS, Na\(^+\), Cl\(^-\)/C\(_0\) and SO\(_4\)^{2-}/C\(_0\) parameters. Mean EC of this group was 1.13 dS/m which was greater than Cluster A and less than Cluster C (Table 3). Majority of wells of Cluster B had water type of CaHCO\(_3\) without any dominant ions. In this period, only well 27 with a high Na content had CaNaHCO\(_3\) water type. The wells 6, 29, 30, 31, 32 and 35 of this cluster had greater NO\(_3\)/C\(_0\) contents than the other wells. These wells are mostly located on the east side of the study area around the drainage canals. Excessive nitrogenous fertilizer treatments are the primary reason for nitrate pollution in groundwaters (Zhou et al. 2015). Wells of this Cluster was mostly influenced by excessive nitrogenous fertilizers used in paddy farming.

There was only one well (well 28) in Cluster C. The EC, Na\(^+\), Cl\(^-\), SO\(_4\)^{2-} and SAR values of this group were greater than the values of the other Clusters. Mean EC was 5.45 dS/m, Na\(^+\) was 759 mg/L, Cl\(^-\) was 1,347.39 mg/L, SO\(_4\)^{2-} was 593.81 mg/L and SAR was 9.37. The NO\(_3\) values of this cluster was 40 mg/L (Table 3). According to Piper diagram, this Cluster had NaCl water type. This group was dominant in sodium and chlorine ions. This well is located northeast of the study area close to the sea and largely influenced by seawater intrusion.

The wells of Cluster D had greater EC, Na\(^+\), Ca\(^{2+}\), Cl\(^-\), HCO\(_3\), TH and SO\(_4\)^{2-} values than the Cluster A and B and lower than the value of Cluster C (Table 3). Majority of the wells of this cluster had CaHCO\(_3\) type of water. The wells 10 and 11 had CaNaHCO\(_3\) type of water and well 14 had mixed type of water. The wells of this cluster were slightly influenced by seawater intrusion.

In the post-irrigation period, Q-mode cluster analysis revealed three main clusters (Figure 3(b)). Clusters A, B and C included 57.14, 40 and 2.86% of total sampling points, respectively. Wells of Cluster A are located in inner and western
sections of the study area, wells of Cluster B are located in middle and eastern sections of the study area and the single well of Cluster C is located on north-eastern sections of the study area (Figure 3(b)).

Mean EC value of the wells of Cluster A was 0.83 dS/m which was lower than the other two clusters. Majority of the samples in Cluster A had CaHCO₃ type of water and HCO₃⁻ was the dominant component. As can be seen in Figure 2, majority of the samples were bicarbonate-type freshwaters. The wells of this cluster had the freshest waters and were not influenced by seawater intrusion. The wells of 6, 22, 25 and 27 in this cluster had greater NO₃⁻ contents than the other clusters.

The EC, Na⁺, TDS and the other parameters of Cluster B were greater than Cluster A and lower than Cluster C (Table 3). According to Piper diagram, majority of wells in Cluster B had CaHCO₃ type of water. The wells 17, 30 and 32 had CaNaHCO₃ type of water. The Cl⁻ contents of wells 16, 17, 24, 30, 32 and 34, located in the middle and eastern sections of the study area, had greater Cl⁻ contents than the Cl⁻ contents of the other wells of the same cluster. The wells of this cluster were slightly influenced by seawater intrusion.

Similar to the pre-irrigation period, only well 28 was placed into Cluster C. The EC, Na⁺, Cl⁻ and SAR values of this well were greater than the other clusters. Mean EC value of the well was 6.13 dS/m, Na⁺ was 740 mg/L, Cl⁻ was 1,567.15 mg/L and SAR was 8.08 (Table 3). According to Piper diagram, this cluster was placed into section 2 and had NaCl type of water with dominant Cl⁻ ions. The well 28 was moderately influenced by seawater intrusion.

Factor analysis/principal component analysis

Factor analysis and principal component analysis were conducted to obtain correlations between the hydro-chemical components of the groundwater samples (Mondal et al. 2010; Arslan 2013). In both pre and post-irrigation periods, the first four factors with an eigenvalue of greater than 1 were selected to represent groundwater hydro-chemical processes without a significant loss of information. The results of factor analysis and principal component analysis performed with 18 parameters for 35 groundwater wells in the study area are given in Table 4.

Table 4 | Varimax-rotated factor loadings of groundwater quality parameters

Variables	Varimax-rotated components (Pre-irrigation)	Varimax-rotated components (Post-irrigation)						
	PC1	PC2	PC3	PC4	PC1	PC2	PC3	PC4
TDS	0.980	−0.018	−0.043	0.135	0.976	0.108	0.068	−0.100
EC	0.980	−0.018	−0.043	0.135	0.976	0.108	0.068	−0.100
Cl⁻	0.969	−0.014	−0.101	0.013	0.961	0.079	−0.017	−0.153
Na⁺	0.959	0.227	−0.031	−0.033	0.980	0.037	−0.001	−0.030
SO₄²⁻	0.944	−0.019	−0.109	0.022	0.432	−0.206	−0.546	−0.394
SAR	0.857	0.472	−0.004	−0.083	0.946	0.065	0.055	0.021
Mg²⁺	0.854	−0.157	−0.236	0.169	0.853	0.057	−0.208	−0.166
TH	0.858	−0.349	−0.042	0.400	0.930	0.116	0.059	−0.259
K⁺	0.721	0.247	−0.111	0.026	0.810	−0.086	−0.020	0.276
Ca²⁺	0.672	−0.441	0.124	0.514	0.809	0.143	0.271	−0.285
NO₃⁻	0.527	−0.276	−0.345	0.096	−0.130	−0.366	−0.559	0.303
RSC	−0.034	0.869	0.187	0.110	−0.027	0.146	−0.002	0.885
%Na	0.638	0.709	0.016	−0.057	0.760	0.092	0.186	0.219
Temperature	−0.027	0.571	0.363	0.173	0.145	0.554	0.212	0.009
CO₂⁻	−0.085	0.198	0.950	0.121	0.223	0.828	−0.176	0.077
pH	−0.154	0.132	0.874	−0.295	−0.159	0.568	−0.217	0.396
HCO₃⁻	0.228	0.063	−0.107	0.802	0.543	−0.358	0.563	0.151
DO	−0.057	0.115	−0.007	0.657	0.019	−0.128	0.681	−0.020
Eigen values	8.580	2.412	2.075	1.730	8.760	1.745	1.682	1.562
Variance (%)	47.668	13.402	11.526	9.612	48.665	9.695	9.343	8.676
Cumulative (%)	47.668	61.070	72.596	82.207	48.665	58.360	67.703	76.378
In the pre-irrigation period, four factors with an eigenvalue of greater than 1 explained 82.207% of the total variance. In the pre-irrigation period, 47.668% of the total variance was constituted by Factor 1. The EC, TDS, Mg\(^{2+}\), Na\(^{+}\), Cl\(^{-}\), SO\(_4^{2-}\), Na\(^{+}\), TH and SAR had high positive factor loadings (Table 4). This situation is an indication of the mixing of salty seawater and fresh groundwater (Akshitha et al. 2021). The SO\(_4^{2-}\) sources in water resources may include atmospheric storage (Wayland et al. 2003) and oxidation of SO\(_2\) containing fertilizer and sulfur compounds (Sidle et al. 2000). Medium levels of positive loading of Ca\(^{2+}\), K\(^{+}\) and NO\(_3\) may be related to domestic (sewage) effects and fertilizer uses (Aravinthasamy et al. 2019). This factor is defined as the salinity factor because it includes parameters that could create salinity in the water, and Cl\(^{-}\) is known as a sign of seawater intrusion into groundwater (Huang et al. 2010). The waters in this factor are salty water and the investigation shows that groundwater could have seawater intrusion.

Factor scores were used to assess which parameters were more effective in which wells (Arslan 2013). Spatial distribution of factor scores was interpolated with the use of Inverse Distance Weighted (IDW) geostatistical method (Figure 4). In the pre-irrigation periods, the sections indicated with darker colors had greater scores and these areas represented high salinity areas (Figure 4(a)). The sections with lighter colors had low factor scores and represented low-salinity areas. The greatest PCI values were marked on northern sites of the study area close to the sea and especially around the well 28. This well represents the Cluster C in the pre-irrigation period and this well is not recommended to be used in irrigations. There might be medium loadings around the wells 29, 30, 31, 32 and 27 of Cluster B with high NO\(_3\) content located on the east and middle sections of the study area and the wells 8, 9, 11, 12, 14 and 15 of Cluster D with high Na contents (Figure 4). In brief, some members of Cluster B and D and the single member of Cluster C might be influenced by Factor 1 in the pre-irrigation period.

Factor 2 constituting 13.402% of the total variance is primarily related to %Na, RSC and temperature. The %Na and RSC are commonly used to assess the suitability of waters for irrigation (Wilcox 1955; Raju 2007). Na\(^{+}\) reduces soil permeability and largely used for the classification of irrigation waters. Total carbonate and bicarbonate concentrations greater than total calcium and sodium contents influence the potential use of groundwaters in irrigation. When the total HCO\(_3\) and CO\(_3^{2-}\) exceeded total Ca\(^{2+}\) and Mg\(^{2+}\), Ca\(^{2+}\) and Mg\(^{2+}\) precipitate. Therefore, greater sodium adsorption is encountered and such a case then increases sodium damage (Saha & Paul 2019). This factor is also called as ‘sodium hazard’ factor. Spatial distribution of scores of Factor 2 is presented in Figure 4(a). The sections with greater %Na and RSC values had greater scores and these sections were indicted with dark colors. Lower scores were indicated with lighter colors. The greatest PC2 values were observed in northern sections of the study area stating from the seasides and extending toward inner sections. The well 14 of Cluster D had %Na and RSC values quite greater than the allowable limits. This well should not be used in irrigations. Also, the wells 14, 18 and 19 of Cluster D had RSC values greater than the suitable value of 1.25 meq/L. The %Na value of the well 27 of Cluster B was within allowable limits.

Factor 3 constituted 11.526% of total variation and had strong positive correlations with CO\(_3^{2-}\) and pH (Figure 4(a)). The pH of groundwater in the study area was found to be greater than 7. According to Sharma et al. (2015), water may be alkaline due to carbonates and bicarbonates added to water while passing through soil or rock. This factor (Factor 3) could be defined as the alkalinity factor. Spatial distribution of factor scores is presented in Figure 4(a). Dark color sections were more influenced by alkalinity and light-color sections were less influenced by alkalinity. Members of Cluster D and A were influenced by Factor 3 (Figure 4(a)). Except of the well 14, groundwater wells of this group could have seawater intrusion.

Factor 4 constituting 9.612% of total variation had strong positive factor scores for HCO\(_3\) and DO. Spatial distribution of factor scores is presented in Figure 4(a). Greater scores were distributed in wells 7, 10, 11, 18, 19, 21, 32 and 35. HCO\(_3\) may come from carbonate degradation and bacterial destruction of organic pollutant (Selvam et al. 2016). Water dissolved oxygen levels partially depend on chemical, physical and biochemical activities. Oxygen is directly related to atmospheric pressure, inversely proportional to water temperature and salinity and has limited solubility in water (Trick et al. 2008). This factor (Factor 4) could be defined as ‘ionic exchange’ factor. Groundwater chemistry of the study area were controlled by silicate degradation, ion exchange, sea water intrusion, mineral decomposition and anthropogenic factors (fertilizer and pesticide use in agriculture, sewage and etc.).

In post-irrigation period, there were four factors with eigenvalues greater than 1. These four factors explained 76.378% of the total variation. Eigenvalue of the first factor constituting 48.6655 of total variation was 8.760. Eigenvalues of the second, third and fourth factors were respectively calculated as 1.745, 1.682 and 1.562 and these factors respectively explained 9.695%, 9.534% and 8.676% of total variation (Table 3).

Factor 1 explained 48.665% of the total variance and loaded strongly by EC, TDS, TH, Ca\(^{2+}\), Mg\(^{2+}\), Na\(^{+}\), K\(^{+}\), Cl\(^{-}\), %Na, and SAR (Table 3). This factor is so-called as salinity factor. Dark-color sections of Figure 4(b) had greater scores and represented
Figure 4 | Spatial distribution of factor scores for the factor analysis (a) PC1 (salinization), PC2 (sodium hazard), PC3 (alkalinity) and PC4 (ionic exchange), (b) PC1 (salinization), PC2 (alkalinity), PC3 (anthropogenic) and PC4 (sodium hazard).
highly saline areas. Light-color sections had smaller scores representing low-salinity areas. Factor 1 was marked mainly around well 28 located in the north-eastern section of the study area. Similar to the pre-irrigation period, this well represented Cluster C in the post-irrigation period and is not recommended to be used in irrigation. If the Cl⁻ content of shore waters increases, Na/Cl ratio decreases and aquifer is then subjected to salinity increase through seawater intrusion (Tasan 2017). Huang et al. (2010) indicated that over-pumping spoiled groundwater quality via seawater intrusion. It is recommended that wells of this group (Cluster B) should be used for irrigation in a controlled fashion.

Factor 2 explained 9.695% of the variance and was the best represented by pH, CO₃²⁻ and temperature. In the post-irrigation period, the pH value of groundwater was found to be greater than 7. This factor could be defined as alkalinity factor. Spatial distribution of scores of Factor 2 is presented in Figure 4(b). Dark-color sections indicate highly alkaline areas and the light-color sections indicate low-alkalinity areas. Members of Cluster B were influenced by Factor 2 (Figure 4(b)). Groundwaters of this group can be used for irrigation.

Factor 3 is responsible for 9.343% of the total variance and is represented by NO₃⁻, SO₄²⁻, HCO₃⁻ and DO. Spatial distribution of the scores of Factor 3 is presented in Figure 4(b). Wells 3 and 18 had quite high SO₄²⁻ contents and indicated by dark color. The sources of dissolved SO₄²⁻ in natural waters may include dissolution of sedimentary sulfates, oxidation of both sulfide minerals and organic materials, and anthropogenic inputs (Nagaraju et al. 2017). Zghibi et al. (2013) reported that sulfate-containing fertilizers and livestock manure significantly increased NO₃ concentrations. This factor is also called as ‘anthropogenic’ factor. Members of Cluster A were influenced by Factor 3. Groundwaters of Factor 3 could be used for irrigation purposes.

Factor 4 constituted 8.676% of total variation and largely represented by RSC. This factor could be defined as ‘sodium hazard’ factor. Spatial distribution of factor scores is illustrated in Figure 4(b). Dark-color sections had high RSC scores and light-color sections had low RSC scores. The well 19 of Cluster B had a RSC value greater than the suitable value 1.25 meq/L, but still was at a level that could be used for irrigation (<2.5 meq/L).

CONCLUSIONS

In this study, multivariate statistical analyses (cluster analysis, principal component/factor analysis) were used to determine the factors controlling quality and sustainability of groundwaters in Alaçam town of Samsun province located in Black Sea region of Turkey. In addition, the suitability of using groundwater for irrigation was evaluated by using EC, SAR, Na% and RSC parameters. It has been identified that most of the groundwater in the study area is in the appropriate range for use for irrigation purposes. The results showed that the groundwater quality in the area close to the sea and the east of the study area was poorer compared with the other areas. The effect of the seasonal change was found to be significant in terms of some quality parameters (such as EC, TDS, Cl). EC, K and Mg concentrations of groundwater increased in the post-irrigation period based on seawater intrusion. Piper diagram showed that most of the water samples consisted of Ca-HCO₃ type freshwaters. While well no 14 showed NaCl-type water characteristic pre-irrigation, well no 28 showed this characteristic both pre and post irrigation periods. According to the cluster analysis results, in both the pre-irrigation and post-irrigation periods, the member of cluster C (well no.28) was significantly affected by the seawater intrusion. It was suggested that this well should not be used for irrigation purposes. Group D members in the pre-irrigation period and group B members in the post-irrigation period were slightly affected by seawater intrusion. Wells in other clusters provided marginal quality groundwater for irrigation. High nitrate concentrations were determined in 6 (Cluster B) wells pre-irrigation and 4 (Cluster A) wells post-irrigation. These wells were located in the east of the study area and around the surface drainage channels. The use of chemical fertilizers should be reduced for sustainable groundwater quality management. When the principal component analysis results are considering, the first factor (PC1) is strongly associated with the increase in salinity caused by seawater intrusion in both periods. Anthropogenic activities that affected some wells in the study area have been determined (well no. 8, 9 and 18). Factor scores were illustrated in spatial distribution maps. The spatial distribution maps make an important contribution in determining the areas most affected by water quality parameters. Also, these maps have shown that seawater intrusion and anthropogenic effects are locally present in the study area.

It was concluded based on present findings that multivariate statistical techniques could reliably be used in the assessment of groundwater quality, identification of important factors designating water quality and analysis and interpretation of complex datasets. The lack of irrigation facilities has forced the farmers to use groundwaters for irrigation. Excessive use of groundwaters in areas close to the sea accelerated seawater intrusion and ended up with spoilage of groundwater quality. Therefore, groundwaters of such areas should be used in a controlled fashion.
ACKNOWLEDGEMENTS

The authors acknowledge The Scientific and Technological Research Council of Turkey for financial support.

FUNDING

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Grant No. 214O706).

CONFLICT OF INTERESTS

The authors of this article declare that they have no conflict of interests.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Acatay, S. T. 1996 Irrigation Engineering. Dokuz Eylul University Foundation, Âzmir, Turkey.
Aksit, V., Balakrishna, K. & Udayashankar, H. N. 2021 Assessment of hydrogeochemical characteristics and saltwater intrusion in selected coastal aquifers of southwestern India. Marine Pollution Bulletin 173, 112989. https://doi.org/10.1016/j.marpolbul.2021.112989.
Anonymous. 1975 Guidelines of Quality of Water for Irrigation. University of California Committee of Consultants. Coop. Extension Mimeo., University of California, Davis, pp. 1–3.
APHA 1999 Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington DC.
Aravintasamy, P., Karunanidhi, D., Subramani, T., Anand, B., Roy, P. D. & Srinivasamoorthy, K. 2019 Fluoride contamination in groundwater of the Shanmuganadhi River basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry 125555. https://doi.org/10.1016/j.chemer.2019.125555.
Aravintasamy, P., Karunanidhi, D., Rao, N. S., Subramani, T. & Srinivasamoorthy, K. 2020 Irrigation risk assessment of groundwater in a non-perennial river basin of south India: implication from irrigation water quality index (IWQI) and geographical information system (GIS) approaches. Arabian Journal of Geosciences 13 (21), 1–14. https://doi.org/10.1007/s12517-020-06103-1.
Arslan, H. 2013 Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environmental Monitoring and Assessment 185 (5), 2439–2452. https://doi.org/10.1007/s10661-012-2722-x.
Ayers, R. S. & Westcot, D. W. 1985 Water Quality for Agriculture FAO Irrigation and Drain. Paper No: 29 (1), 1-109. Rome.
Belkhi, L. & Narany, T. S. 2015 Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management 29 (6), 2073–2089. https://doi.org/10.1007/s11269-015-0929-7.
Bodrud-Doza, M., Bhuiyan, M. A. H., Islam, S. D. U., Rahman, M. S., Haque, M. M., Fatema, K. J. & ... Rahman, M. A. 2019 Hydrogeochemical investigation of groundwater in Dhaka City of Bangladesh using GIS and multivariate statistical techniques. Groundwater for Sustainable Development 8, 226–244. https://doi.org/10.1016/j.gsd.2018.11.008.
Bühlke, J. K. 2002 Groundwater recharge and agricultural contamination. Hydrogeology Journal 10 (1), 153–179.
Bonil, D. 1996 Summary of Groundwater Quality in the St. Johns River Water Management District. Special Publication SJ96-SP13. St. Johns River Water Management District, Palatka.
California Fertilizer Committee. 1975 Western Fertilizer Hand-Book. The Interstate Printers and Publishers Inc., Danville, Illinois.
Callender, P., Lough, H. & Steffens, C. 2011 New Zealand Guidelines for the Monitoring and Management of Sea Water Intrusion Risk on Groundwater. Patte Delamore Partners LTD, New Zealand.
Chaudhry, A. K., Kumar, K. & Alam, M. 2019 Groundwater contamination characterization using multivariate statistical analysis and geostatistical method. Water Supply 19(8), 2309–2322. https://doi.org/10.2166/ws.2019.111.
Cushing, E. M., Kantrowitz, I. H. & Taylor, K. R. 1973 Water Resources of the Delmarva Peninsula. U. S. Geological Survey Professional Paper 822, Washington DC, p. 58.
Dash, S. & Kalamdhad, A. S. 2021 Hydrochemical dynamics of water quality for irrigation use and introducing a new water quality index incorporating multivariate statistics. Environmental Earth Sciences 80 (3), 1–21. https://doi.org/10.1007/s12665-020-09360-1.
DeWandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C. & Krishnamurthy, N. S. 2006 A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology 330 (1–2), 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026.
Domenico, P. A. & Schwartz, F. W. 1990 Physical and Chemical Hydrology. Wiley, New York.
Eaton, F. M. 1950 Significance of carbonates in irrigation waters. Soil Science 69 (2), 123–134.
Freeze, R. A. & Cherry, J. A. 1979 Groundwater. Pre Hall, Englewood Cliffs, NJ. (No. 629.1 F7).
Frissbee, M. D., Tysor, E. H., Stewart-Maddox, N. S., Tsinnajinnie, L. M., Wilson, J. L., Granger, D. E. & Newman, B. D. 2016 Is there a geomorphic expression of interbasin groundwater flow in watersheds? interactions between interbasin groundwater flow, springs, streams, and geomorphology. Geophysical Research Letters 43 (5), 1158–1165. https://doi.org/10.1002/2015GL067082.

Ganiyu, S. A., Olurin, O. T., Azeez, M. A., Jegede, O. A., Okeh, A. & Kuforiji, H. I. 2021 Evaluation of major anions, halide ions, nitrogen, and phosphorus contents in groundwater from shallow hand-dug wells near Ona River, Ibadan, Nigeria. International Journal of Environmental Science and Technology 1–18. https://doi.org/10.1007/s13762-021-03475-z.

Ghaafari, M., Chavoshbashi, A. A., Eslami, A., Hatami, M. H., Pourakbar, M. & Hashemi, M. 2021 Spatial and temporal variation of groundwater quality around a volcanic mountain in northwest of Iran. Groundwater for Sustainable Development 100627. https://doi.org/10.1016/j.gsd.2021.100627.

Ghalibi, H. B. 2017 Groundwater chemistry evaluation for drinking and irrigation utilities in east Wasit province, Central Iraq. Applied Water Science 7 (7), 3447–3467. https://doi.org/10.1007/s13201-017-0575-8.

Güler, C., Thyne, G., McCray, J. E. & Turner, A. K. 2002 Evaluation of the graphical and multivariate statistical methods used for classification of water-chemistry data. Hydrogeology Journal 10, 455–474. https://doi.org/10.1007/s10040-002-0196-6.

Heath, R. C. 1983 Basic Groundwater Hydrology. U.S. Geological Survey Water-Supply. Paper 2220, 84.

Huang, Y. C., Yang, C. P., Lee, Y. C., Tang, P. K., Hsu, W. M. & Wu, T. N. 2010 Variation of groundwater quality in seawater intrusion area using cluster and multivariate factor analysis. In 2010 Sixth International Conference on Natural Computation (6):3021–3025. IEEE.

Jayathunga, K., Dijabalangan, S., Frank, A. H., Chandrajith, R. & Barth, J. A. 2020 Influences of seawater intrusion and anthropogenic activities on shallow coastal aquifers in Sri Lanka: evidence from hydrogeochemical and stable isotope data. Environmental Science and Pollution Research 27 (18), 23002–23014. https://doi.org/10.1007/s11356-020-08759-4.

Jeevanandam, M., Kannan, R., Srinivasulu, S. & Rammohan, V. 2007 Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India. Environmental Monitoring and Assessment 132 (1–3), 263–274. https://doi.org/10.1007/s10661-006-9535-y.

Kamaraj, J., Sekar, S., Roy, P. D., Senapathi, V., Chung, S. Y., Perumal, M. & Nath, A. V. 2021 Groundwater pollution index (GPI) and GIS-based appraisal of groundwater quality for drinking and irrigation in coastal aquifers of Tiruchendur, South India. Environmental Science and Pollution Research 1–19. https://doi.org/10.1007/s11356-021-12702-6.

Kazakis, N., Mattas, C., Pavlou, A., Patrikaki, O. & Voudouris, K. 2017 Multivariate statistical analysis for the assessment of groundwater quality under different hydrogeological regimes. Environmental Earth Sciences 76 (9), 349. https://doi.org/10.1007/s12665-017-6665-y.

Khan, A. F., Srinivasamoothy, R., Prakash, R. & Rabina, C. 2021 Hydrochemical and statistical techniques to decode groundwater geochemical interactions and saline water intrusion along the coastal regions of Tamil Nadu and Puducherry, India. Environmental Geochemistry and Health 43 (2), 1051–1067. https://doi.org/10.1007/s10653-020-00713-0.

Khanoranga & Khalid, S. 2019 An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration 197, 14–26. https://doi.org/10.1016/j.jgeoexp.2018.11.007.

Kumar, M. R., Kumar, R. V., Sreejani, T. P., Sravya, P. V. R. & Rao, G. S. 2019 Multivariate statistical analysis of water quality of Godavari river at polavaram for irrigation purposes. Water Resources and Environmental Engineering II 115–124.

Kumar, P. S., Jegathambal, P., Babu, B., Kokkat, A. & James, E. J. 2020 A hydrogeochemical appraisal and multivariate statistical analysis of seawater intrusion in point calimere wetland, lower Cauvery region, India. Groundwater for Sustainable Development 11, 100392. https://doi.org/10.1016/j.gsd.2020.100392.

Loizidou, M. & Kapetanios, E. G. 1993 Effect of leachate from landfills on underground water quality. Science of the Total Environment 128 (1), 69–81. doi:10.1016/0048-9697(93)90180-E.

Ma, R., Shi, J., Liu, J. & Gai, C. 2014 Combined use of multivariate statistical analysis and hydro-chemical analysis for groundwater quality evolution: a case study in north chain plain. Journal of Earth Science 25 (3), 587–597. https://doi.org/10.1007/s12583-014-0446-2.

Ma, J., Chen, S., Ding, D. & Zhao, J. 2021 Hydrochemical characteristics and groundwater quality appraisal for irrigation uses in Lan-gan, Northern Anhui Province, East China. Water Supply. https://doi.org/10.2166/ws.2021.241.

Mandel, S. & Shiflin, Z. I. 1981 Groundwater Resources Investigation and Development. Academic Press.

Masoud, A. A., El-Horiny, M. M., Atwia, M. G., Gemail, K. S. & Koike, K. 2018 Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses. Dakhla Oasis, Egypt. Journal of African Earth Sciences 172, 103982. https://doi.org/10.1016/j.jafrearsci.2020.103982.

Masoud, A. A., El-Horiny, M. M., Atwia, M. G., Gemail, K. S. & Koike, K. 2018 Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses. Dakhla Oasis, Egypt. Journal of African Earth Sciences 172, 103982. https://doi.org/10.1016/j.jafrearsci.2018.03.009.

Mondal, N., Singh, V., Singh, V. & Saxena, V. 2010 Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology 388 (1–2), 100–111. https://doi.org/10.1016/j.jhydrol.2010.04.032.

Nagaraju, A., Sreedhar, Y., Thejaswi, A. & Sayadi, M. H. 2017 Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques. Applied Water Science 7 (6), 2767–2777. https://doi.org/10.1007/s13201-016-0504-2.

Piper, A. M. 1944 A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union 25 (6), 914–928. https://doi.org/10.1029/TR025i006p00914.
Yidana, S. M. 2010 Groundwater classification using multivariate statistical methods: Birimian Basin, Ghana. *Journal of Environmental Engineering* 136 (12), 1379–1388. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000291.

Zghibi, A., Tarhouni, J. & Zouhri, L. 2013 Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the korba coastal plain of Cap-Bon (North-east of Tunisia). *Journal of African Earth Sciences* 87, 1–12. https://doi.org/10.1016/j.jafrearsci.2013.07.009.

Zhou, Z., Ansems, N. & Torfs, P. 2015 A Global Assessment of Nitrate Contamination in Groundwater. International Groundwater Resources Assessment Center. Internship report.

First received 2 September 2021; accepted in revised form 5 November 2021. Available online 17 November 2021