Investigation of ATG16L1 rs2241880 Polymorphism with Cancer Risk: A Meta-Analysis

Abdolkarim Moazeni-Roodi 1, Farhad Tabasi 2, Saeid Ghavami 3,4 and Mohammad Hashemi 5,6,*

1 Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr 9916643535, Iran
2 Student Research Committee, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
3 Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
4 Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
5 Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
6 Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran

*Correspondence: mhd.hashemi@gmail.com or hashemim@zaums.ac.ir

Received: 25 June 2019; Accepted: 30 July 2019; Published: 31 July 2019

Abstract: Background and Objectives: Previous studies have investigated the impact of the ATG16L1 rs2241880 (Thr300Ala) polymorphism on individual susceptibility to cancer, but the conclusions are still controversial. To get a more precise evaluation of the correlation between ATG16L1 rs2241880 polymorphism and cancer susceptibility, we performed a meta-analysis of the association of all eligible studies. Materials and Methods: Searches were performed in the Web of Science, PubMed, Scopus and Google Scholar databases up to November 2018. A total of 12 case-control studies from 9 articles comprising 2254 cases and 4974 controls were included. Statistical analysis was achieved by STATA 14.1 and Review Manager 5.3 software. The odds ratios (ORs) with 95% confidence intervals (95% CIs) under five genetic models were used to determine the strength of association among rs2241880 polymorphism and cancer susceptibility. Results: The findings did not support an association between the rs2241880 variant in either the overall study population or the subgroups, based on cancer types and ethnicity in any of the genetic models. As far as we know, our study is the first meta-analysis of the association between rs2241880 polymorphism and cancer risk. Conclusions: In conclusion, the findings of this meta-analysis proposes that the ATG16L1 rs2241880 polymorphism may not play a role in cancer development. Further well-designed studies are necessary to clarify the precise role of the ATG16L1 rs2241880 polymorphism on cancer risk.

Keywords: ATG16L1; polymorphism; rs2241880; Thr300Ala; cancer; meta-analysis

1. Introduction

Cancer is one of the main public health problem worldwide with about 18.1 million new cancer cases and 9.6 million cancer deaths in 2018 [1]. The precise mechanisms of cancer initiation and progression has remained largely unknown [2]. Mounting evidence has suggested that genetic predisposition plays a significant role in the risk of individual cancer development [3,4].

Autophagy, an evolutionarily conserved process, is important for survival, differentiation, development, and homeostasis through degrading damaged organelles and long-lived proteins [5–8]. Autophagy is a tightly regulated mechanism, regulated by several autophagy related genes (ATGs), and is classified into three subgroups, including macroautophagy (hereafter autophagy),
microautophagy, and chaperon-mediated autophagy [9–13]. It has been documented that autophagy is involved in multiple diseases, including cancers, infectious diseases, fibrotic diseases, neurodegeneration and aging [14–21]. During cancer development, autophagy is considered a double edge sword because it can support or prevent cancer development through different mechanisms, including apoptotic cell death, chemo-resistance, tumorigenesis and metastasis [16,22–26].

The autophagy-related 16-like 1 gene (ATG16L1) is located on the long arm of chromosome 2 (2q37.1) [27]. It encodes ATG16L1, which is a component of a large protein complex essential for autophagy [28]. ATG16L1 plays an essential role in regulation of LC3 lipidation, and formation and insertion of lipidated LC3 into double membrane autophagosomes [29]. ATG16L1 is also involved in regulation of carcinogenesis in many cancers. As an example, it has been reported that the Thr300Ala variant of ATG16L1 is associated with a decrease in brain metastasis of non-small cell lung cancer [30]. The nonsynonymous rs2241880 (Thr300Ala) polymorphism in the ATG16L1 gene is situated on coding exon 9.

Several studies that have investigated the relationship between the rs2241880 (Thr300Ala) polymorphism in ATG16L1 and several cancers among different ethnic populations have had conflicting outcomes [31–39]. Therefore, for the first time, we aimed to conduct a meta-analysis of all available studies published to date to examine the impact of the ATG16L1 rs2241880 polymorphism on cancer susceptibility.

2. Methods

2.1. Literature Search

In order to identify eligible articles, we comprehensively searched the Web of Science, PubMed, and Scopus databases, up to April 2019, for the relationship between the ATG16L1 rs2241880 polymorphism and susceptibility to cancer. The search terms used were “ATG16L1 or autophagy related 16 like 1” and “cancer or malignant or tumor” and “polymorphism or variant or rs2241880 or T300A or +898A > G” or Thr300Ala. The selection process of eligible studies is shown in Figure 1. Studies consistent with the following criteria were included in the meta-analysis: case-control studies that focused on the correlation between the ATG16L1 polymorphism and risk of cancer, with sufficient information for estimation of the odds ratios (ORs) and their 95% confidence intervals. Studies were excluded from consideration if not correlated to ATG16L1 polymorphism and cancer risk; conference papers, reviews, meta-analyses; and studies without detailed genotyping data.

2.2. Data Extraction

Two authors screened and extracted the data from eligible studies independently. Any disagreements were discussed with the third author. The following data were extracted from each study including the first author’s name, year of publication, country, ethnicity, type of cancer, source of control, genotyping methods, sample size, as well as genotype and allelic frequencies of the cases and controls.

2.3. Statistical Analysis

The Hardy–Weinberg equilibrium (HWE) of control genotypes was inspected using a χ2 test. We used pooled odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association of the ATG16L1 polymorphism with cancer risk in five genetic models. The significance of the pooled OR was determined by the z-test, and a p < 0.05 was considered statistically significant.

Heterogeneity among the studies was assessed by using the Q statistic and the I² statistic. p < 0.10 was considered statistically significant. The random effects model was applied if heterogeneity was observed among studies; otherwise, the fixed effects model was used.
Publication bias was inspected visually by a funnel plot and an asymmetric plot suggested a possible publication bias. Funnel plot asymmetry was measured further using the Egger and Begg tests. A \(p \) value < 0.05 was considered significant publication bias.

Sensitivity analysis was conducted to evaluate whether the findings were affected significantly by a single study by neglecting each study in turn to determine the effect on the pooled analysis. Statistical analyses were achieved using the STATA 14.1 software and Review Manager 5.3.

3. Results

3.1. Study Characteristics

Through the literature search and selection in accordance with the inclusion criteria, nine articles, including 12 case-control studies, comprising 2254 cases and 4974 controls, were ultimately included in the quantitative analysis (Table 1). The genotype distributions of the \(\text{ATG16L1} \) rs2241880 polymorphism in all subjects are shown in Table 1. The genotype distributions in the controls of the 12 studies were fitted into the HWE, except for two studies [31,35].

![Flow chart](flowchart.png)

Figure 1. Flow chart shows the detailed study selection process of this meta-analysis.
Table 1. Characteristics of all studies included in the meta-analysis.

First Author	Year	Country	Ethnicity	Cancer Type	Source of Control	Genotyping Method	Case/Control	Cases	Controls	HWE (P)								
Al-Ali et al. [39]	2017	Spain	Caucasian	Lung cancer	PB	TaqMan	165/144	38	95	32	171	159	35	67	42	137	151	0.420
Budak Diler et al. [31]	2018	Turkey	Asian	Prostate cancer	PB	PCR-RFLP	62/113	22	21	19	65	59	30	48	35	108	118	0.114
Budak Diler et al. [31]	2018	Turkey	Asian	Bladder cancer	PB	PCR-RFLP	69/156	24	28	17	76	62	50	62	44	162	150	0.011
Burada et al. [32]	2016	Romania	Caucasian	Gastric cancer	HB	TaqMan	108/242	34	46	28	114	102	47	122	73	216	268	0.755
Cao et al. [38]	2016	China	Asian	Colorectal cancer	HB	Illumina	96/891	384	463	117	1231	697	377	399	115	1153	629	0.558
Castano-Rodriguez et al. [33]	2015	Singapore	Asian	Gastric cancer	HB	MassARRAY iPLEX	86/217	28	49	9	105	67	109	81	27	299	135	0.057
Fernandez-Mateos et al. [34]	2017	Spain	Caucasian	Larynx cancer	HB	TaqMan	213/253	58	108	47	224	202	72	130	51	274	232	0.580
Fernandez-Mateos et al. [34]	2017	Spain	Caucasian	Pharynx cancer	HB	TaqMan	165/253	44	81	40	169	161	72	130	51	274	232	0.580
Fernandez-Mateos et al. [34]	2017	Spain	Caucasian	Oral cavity cancer	HB	TaqMan	72/253	18	31	23	67	77	72	130	51	274	232	0.580
Huijbers et al. [35]	2012	Netherlands	Caucasian	Thyroid cancer	PB	-	139/1964	38	69	32	145	133	378	1029	557	1785	2143	0.012
Nicoli et al. [36]	2014	Romania	Caucasian	Colorectal cancer	HB	TaqMan	109/357	14	52	43	80	138	70	179	108	319	395	0.787
Wisetsathorn et al. [37]	2017	Thailand	Asian	HCC	HB	PCR-RFLP	102/131	65	33	4	163	41	55	65	11	175	87	0.175
3.2. Main Analysis Results

As shown in Figure 2 and Table 2, the findings did not support a correlation between the \textit{ATG16L1} rs2241880 polymorphism and cancer risk. Overall, no significant associations were found for AG vs. AA (OR = 0.94, 95% CI = 0.74–1.20, \(p = 0.63 \), Figure 2A), CG vs. AA (OR = 0.93, 95% CI = 0.72–1.20, \(p = 0.58 \), Figure 2B), AG + GG vs. AA (OR = 0.94, 95% CI = 0.94–1.19, \(p = 0.60 \), Figure 2C), GG vs. AG + AA (OR = 0.98, 95% CI = 0.81–1.18, \(p = 0.80 \), Figure 2D), and G vs. A (OR = 0.97, 95% CI = 0.84–1.12, \(p = 0.65 \), Figure 2E).

Table 2. The pooled ORs and 95% CIs for the association between \textit{ATG16L1} rs2241880 polymorphisms and cancer susceptibility.

Genetic Model	Association Test	Heterogeneity Test	Test of Publication Bias					
	OR (95% CI)	Z	\(\chi^2 \)	\(\alpha^2 \) (%)	\(p \)	Egger’s Test	Begg’s Test	
AG vs. AA	0.94 (0.74–1.20)	0.48	0.63	33.17	67	0.000	0.425	0.411
GG vs. AA	0.93 (0.72–1.20)	0.55	0.58	22.30	51	0.022	0.726	0.891
AG + GG vs. AA	0.94 (0.74–1.19)	0.53	0.60	35.55	69	0.000	0.523	0.891
GG vs. AG + AA	0.98 (0.81–1.18)	0.25	0.80	17.76	38	0.087	0.677	0.493
AG vs. GG + AA	0.97 (0.80–1.17)	0.36	0.72	27.55	60	0.004	0.321	0.411
G vs. A	0.97 (0.84–1.12)	0.45	0.65	31.99	66	0.001	0.567	0.583

Figure 2. Cont.
3.3. Subgroup Analysis

Stratified analysis was achieved by cancer types and ethnicity (Table 3). The stratified analysis revealed no association between the $ATG16L1$ rs2241880 variant and either cancer types or ethnicities.
Table 3. Stratified analysis of the ATG16L1, rs2241880 polymorphism on cancer susceptibility.

Type of Cancer	N	AG vs. AA OR (95% CI)	P	GG vs. AA OR (95% CI)	P	AG + GG vs. AA OR (95% CI)	P	GG vs. AG + AA OR (95% CI)	P	AG vs. GG + AA OR (95% CI)	P	G vs. A OR (95% CI)	P
Digestive tract system	4	1.19 (0.71–1.98)	0.51	1.05 (0.65–1.70)	0.85	1.17 (0.72–1.92)	0.52	1.00 (0.81–1.22)	0.98	1.12 (0.78–1.62)	0.54	1.09 (0.80–1.41)	0.51
Colorectal cancer	2	1.16 (0.96–1.40)	0.12	1.32 (0.68–2.55)	0.42	1.21 (0.87–1.67)	0.25	1.06 (0.84–1.34)	0.62	1.10 (0.93–1.30)	0.26	1.16 (0.88–1.54)	0.30
Gastric cancer	2	1.11 (0.25–4.86)	0.89	0.79 (0.33–1.88)	0.59	1.05 (0.27–4.06)	0.95	0.81 (0.53–1.25)	0.35	1.27 (0.43–3.77)	0.67	1.00 (0.52–1.94)	0.99
Head and neck squamous cell carcinoma	3	1.01 (0.76–1.34)	0.94	1.32 (0.94–1.85)	0.11	1.10 (0.84–1.44)	0.49	1.31 (0.99–1.74)	0.06	0.89 (0.70–1.13)	0.35	1.14 (0.97–1.35)	0.12
Ethnicity													
Caucasian	7	0.92 (0.76–1.11)	0.37	1.00 (0.68–1.47)	0.98	0.95 (0.72–1.25)	0.70	1.04 (0.78–1.39)	0.77	0.94 (0.80–1.09)	0.40	1.00 (0.83–1.21)	0.99
Asian	5	0.94 (0.57–1.57)	0.81	0.92 (0.72–1.17)	0.47	0.91 (0.57–1.46)	0.69	0.89 (0.71–1.11)	0.30	1.00 (0.65–1.54)	0.99	0.91 (0.69–1.20)	0.50
3.4. Heterogeneity and Publication Bias

There were significant heterogeneities in all genetic models examined except for the recessive model (Table 2). Begg’s funnel plot and Egger’s linear regression test revealed no apparent publication bias in our overall analysis in any genetic models (Table 2 and Figure 3).

![Begg's funnel plot](image)

Figure 3. Begg’s funnel plot on publication bias for association between the \textit{ATG16L1} rs2241880 polymorphism and cancer risk for AG vs. AA (A), GG vs. AA (B), AG + GG vs. AA (C), GG vs. AG + AA (D), and G vs. A (E).

3.5. Sensitivity Analysis

A sensitivity analysis was done to inspect the impact of an individual study on the pooled ORs. The results indicated that the pooled ORs were not significantly affected by a single study, suggesting that the pooled results are reliable (Figure 4).
4. Discussion

It has been shown that the nonsynonymous rs2241880 (Thr300Ala) polymorphism of the \textit{ATG16L1} gene affects the autophagy process \cite{40} and also modulates the production of interleukin-1 beta (IL-1β) in human cells \cite{41}. The exact effect of the \textit{ATG16L1} rs2241880 polymorphism on the pathogenesis of cancer is not fully understood. Several studies investigated the impact of the \textit{ATG16L1} rs2241880 polymorphism on susceptibility to cancer. Al-Ali et al. \cite{39} reported that the rs2241880 variant significantly decreased the risk of lung cancer in a Spanish population. Budak Diler et al. \cite{31} showed that the rs2241880 variant was not associated with the risk of prostate cancer or bladder cancer in a Turkish population. Burada et al. \cite{32} found that the rs2241880 polymorphism was associated with protection against gastric cancer in a Romanian population. Cao et al. \cite{38} found no significant association between the rs2241880 variant and colorectal cancer in a Chinese population. Castano-Rodriguez \cite{33} reported that the rs2241880 polymorphism significantly increased the risk of gastric cancer in a Singaporean population. Fernandez-Mateos et al. \cite{34} showed that the rs2241880 variant significantly increased the risk of oral cavity cancer but the variant was not associated with the risk of laryngeal cancer or pharyngeal cancer in a Spanish population. Huijbers et al. \cite{35} revealed that the rs2241880 variant was associated with protection against thyroid cancer in a Netherlander population. Nicoli et al. \cite{36} showed that rs2241880 variant significantly increased the risk of colorectal cancer in a Romanian population. Wisetsathorn et al. \cite{37} observed that the rs2241880 variant significantly increased the risk of hepatocellular carcinoma in a Thai population. Figlioli et al. \cite{42} proposed that...
the ATG16L1 rs2241880 variant significantly decreased the risk of thyroid cancer. Due to insufficient data this study was excluded from the meta-analysis.

To the best of our knowledge, this is the first meta-analysis that aimed to investigate the possible association between the ATG16L1 rs2241880 gene polymorphism and overall cancer susceptibility. Our findings showed no significant association between the rs2241880 polymorphism of the ATG16L1 gene and cancer susceptibility in any genetic models. The results of this meta-analysis are not consistent with some previous studies [32–34,36,37]. The discrepancy between studies may be attributed to small sample sizes, type of cancer and different genetic backgrounds among the diverse ethnicities of the above-mentioned studies.

How the rs2241880 (Thr300Ala) polymorphism alters the biology of ATG16L1 is not yet known. Yuan et al. [43] showed that the ATG16L1 rs2241880 polymorphism was significantly associated with survival in lung adenocarcinoma patients.

In spite of the heterogeneity across studies, no evidence of publication bias was detected by either Begg’s or Egger’s tests. In addition, the sensitivity analysis did not significantly alter the overall results for all genetic models, which implies stability and reliability for our findings.

This meta-analysis has some limitations that should be taken into account. First, only published articles in English were included in the pooled analysis because data in other languages and data from other ongoing studies were not available. Second, heterogeneity was observed among the studies, which have distorted the conclusion. The heterogeneity among studies may be due to differences in cancer types and ethnicities. Third, we calculated crude ORs, which were unadjusted estimations. Fourth, due to the lack of raw data, we were unable to perform gene–environment interactions. Finally, the number of individual studies for each cancer type was inadequate for stratified analysis. Our findings should therefore be interpreted with caution.

5. Conclusions

In conclusion, the current study is the first meta-analysis to evaluate the association between the ATG16L1 rs2241880 polymorphism and the risk of cancer. Our results did not support an association between the ATG16L1 rs2241880 polymorphism and cancer risk. Larger well-designed studies are needed to elucidate the exact role of the ATG16L1 rs2241880 polymorphism on cancer risk.

Author Contributions: Data curation, Formal analysis, Funding acquisition, Writing—review and editing, A.M.-R., F.T., S.G. and M.H. All authors read and approved the final manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Global Burden of Disease Cancer; Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018, 4, 1553–1568. [CrossRef] [PubMed]
3. Lichtenstein, P.; Holm, N.V.; Verkasalo, P.K.; Iliadou, A.; Kaprio, J.; Koskenniemi, M.; Pukkala, E.; Skytthe, A.; Hemminki, K. Environmental and heritable factors in the causation of cancer—Analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 2000, 343, 78–85. [CrossRef] [PubMed]
4. Moazeni-Roodi, A.; Ghavami, S.; Hashemi, M. Association Between miR-423 rs6505162 Polymorphism and Susceptibility to Cancer. Arch. Med. Res. 2019, 50, 21–30. [CrossRef] [PubMed]
5. Martini-Stoica, H.; Xu, Y.; Ballabio, A.; Zheng, H. The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci. 2016, 39, 221–234. [CrossRef] [PubMed]
6. Eskelinen, E.L.; Saftig, P. Autophagy: A lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta 2009, 1793, 664–673. [CrossRef] [PubMed]

7. Huang, Y.H.; Al-Aidaroos, A.Q.; Yuen, H.F.; Zhang, S.D.; Shen, H.M.; Rozycka, E.; McCrudden, C.M.; Tergaonkar, V.; Gupta, A.; Lin, Y.B.; et al. A role of autophagy in PTP4A3-driven cancer progression. Autophagy 2014, 10, 1787–1800.

8. Hombach-Klonisch, S.; Mehrpour, M.; Shojaei, S.; Harlos, C.; Pitz, M.; Hamai, A.; Siemianowicz, K.; Likus, W.; Wiechec, E.; Toyota, B.D.; et al. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol. Ther. 2018, 184, 13–41.

9. Ghavami, S.; Gupta, S.; Ambrose, E.; Hnatowich, M.; Freed, D.H.; Dixon, I.M. Autophagy and heart disease: Implications for cardiac ischemia-reperfusion damage. Curr. Mol. Med. 2014, 14, 616–629. [CrossRef]

10. Klonisky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.; Adams, P.D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016, 12, 1–222. [CrossRef]

11. Wasik, A.M.; Grabarek, J.; Pantovic, A.; Cieslar-Pobuda, A.; Asgari, H.R.; Bundgaard-Nielsen, C.; Rafat, M.; Dixon, I.M.; Ghavami, S.; Los, M.J. Reprogramming and carcinogenesis–parallels and distinctions. Int. Rev. Cell Mol. Biol. 2014, 308, 167–203. [PubMed]

12. Ghavami, S.; Sharma, P.; Yeganeh, B.; Ojo, O.O.; Jha, A.; Mutawe, M.M.; Kashani, H.H.; Los, M.J.; Klonisch, T.; Unruh, H.; et al. Airway mesenchymal cell death by mevalonate cascade inhibition: Integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim. Biophys. Acta 2014, 1843, 1259–1271. [CrossRef] [PubMed]

13. Nikseresht, M.; Shahverdi, M.; Dehghani, M.; Abidi, H.; Mahmoudi, R.; Ghalamfarsa, G.; Manzouri, L.; Ghavami, S. Association of single nucleotide autophagy-related protein 5 gene polymorphism rs2245214 with susceptibility to non-small cell lung cancer. J. Cell. Biochem. 2018, 120, 1924–1931. [CrossRef] [PubMed]

14. Baehrecke, E.H. Autophagy: Dual roles in life and death? Nat. Rev. Mol. Cell Biol. 2005, 6, 505–510. [CrossRef] [PubMed]

15. Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 1845–1846. [CrossRef] [PubMed]

16. Mokarram, P.; Albokashy, M.; Zarghooni, M.; Moosavi, M.A.; Sephehri, Z.; Chen, Q.M.; Hudecki, A.; Sargazi, A.; Alizadeh, J.; Moghadam, A.R.; et al. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy 2017, 13, 781–819. [CrossRef] [PubMed]

17. Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoﬁersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 2014, 112, 24–49. [CrossRef] [PubMed]

18. Yeganeh, B.; Ghavami, S.; Kroeker, A.L.; Mahood, T.H.; Stelmack, G.L.; Klonisch, T.; Coombs, K.M.; Halayko, A.J. Suppression of inﬂuenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L270–L286. [CrossRef] [PubMed]

19. Yeganeh, B.; Rezaei Moghadam, A.; Tran, A.T.; Rahim, M.N.; Ande, S.R.; Hashemi, M.; Coombs, K.M.; Ghavami, S. Asthma and inﬂuenza virus infection: focusing on cell death and stress pathways in inﬂuenza virus replication. Iran. J. Allergy Asthma Immunol. 2013, 12, 1–17.

20. Ghavami, S.; Yeganeh, B.; Zeki, A.A.; Shojaei, S.; Kenyon, N.J.; Ott, S.; Samali, A.; Patterson, J.; Alizadeh, J.; Moghadam, A.R.; et al. Autophagy and the unfolded protein response promote proﬁbrotic effects of TGF-bet1 in human lung ﬁbroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L493–L504. [CrossRef]

21. Alizadeh, J.; Glogowska, A.; Thlideris, J.; Kalantari, F.; Shojaei, S.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Autophagy modulates transforming growth factor beta 1 induced epithelial to mesenchymal transition in non-small cell lung cancer cells. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 749–768. [CrossRef]

22. Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 2005, 5, 726–734. [CrossRef] [PubMed]

23. Mathew, R.; Karantza-Wadsworth, V.; White, E. Role of autophagy in cancer. Nat. Rev. Cancer 2007, 7, 961–967. [CrossRef] [PubMed]
24. Jiang, X.; Overholtzer, M.; Thompson, C.B. Autophagy in cellular metabolism and cancer. *J. Clin. Investig.* 2015, 125, 47–54. [CrossRef] [PubMed]

25. Alizadeh, J.; Shojaei, S.; Sepanjnia, A.; Hashemi, M.; Eftekharpour, E.; Ghavami, S. Simultaneous Detection of Autophagy and Epithelial to Mesenchymal Transition in the Non-small Cell Lung Cancer Cells. *Methods Mol. Biol.* 2019, 1854, 87–103.

26. Moosavi, M.A.; Sharifi, M.; Ghafary, S.M.; Matsubae, M.; Takao, T.; Natsume, T.; Ohsumi, Y.; Yoshimori, T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. *J. Cell Sci.* 2003, 116, 1679–1688. [CrossRef]

27. Zheng, H.; Ji, C.; Li, J.; Jiang, H.; Ren, M.; Lu, Q.; Gu, S.; Mao, Y.; Xie, Y. Cloning and analysis of human Apg16L. *DNA Seq.* 2004, 15, 303–305. [CrossRef]

28. Mizushima, N.; Kuma, A.; Kobayashi, Y.; Yamamoto, A.; Matsubae, M.; Takao, T.; Natsume, T.; Ohsumi, Y.; Yoshimori, T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. *J. Cell Sci.* 2003, 116, 1679–1688. [CrossRef]

29. Fletcher, K.; Ulferts, R.; Jacquin, E.; Veith, T.; Gammoeh, N.; Arasteh, J.M.; Mayer, U.; Carding, S.R.; Wileman, T.; Beale, R.; et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. *EMBO J.* 2018, 37, e97840. [CrossRef]

30. Li, Q.X.; Zhou, X.; Huang, T.T.; Tang, Y.; Liu, B.; Peng, P.; Sun, L.; Wang, Y.H.; Yuan, X.L. The Thr300Ala variant of ATG16L1 is associated with decreased risk of brain metastasis in patients with non-small cell lung cancer. *Autophagy* 2017, 13, 1053–1063. [CrossRef]

31. Budak Diler, S.; Aybuga, F. Association of Autophagy Gene ATG16L1 Polymorphism with Human Prostate Cancer and Bladder Cancer in Turkish Population. *Asian Pac. J. Cancer Prev.* 2018, 19, 2625–2630.

32. Burada, F.; Ciurea, M.E.; Nicoli, R.; Streata, I.; Vilcea, I.D.; Rogoveanu, I.; Ioana, M. ATG16L1 T300A Polymorphism is Correlated with Gastric Cancer Susceptibility. *Pathol. Oncol. Res.* 2016, 22, 317–322. [CrossRef]

33. Castano-Rodriguez, N.; Kaakoush, N.O.; Geh, K.L.; Fock, K.M.; Mitchell, H.M. Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. *Helicobacter* 2015, 20, 353–369. [CrossRef]

34. Fernandez-Mateos, J.; Seijas-Tamayo, R.; Klain, J.C.A.; Borgonon, M.P.; Perez-Ruiz, E.; Mesia, R.; Del Barco, E.; Coloma, C.S.; Dominguez, A.R.; Daroqui, J.C.; et al. Analysis of autophagy gene polymorphisms in Spanish patients with head and neck squamous cell carcinoma. *Sci. Rep.* 2017, 7, 6887. [CrossRef]

35. Huijbers, A.; Plantinga, T.S.; Joosten, L.A.; Aben, K.K.; Gudmundsson, J.; den Heijer, M.; Kiemeney, L.A.; Netea-Maier, R.T. The effect of the ATG16L1 Thr300Ala polymorphism on susceptibility and outcome of patients with epithelial cell-derived thyroid carcinoma. *Endocr. Relat. Cancer* 2012, 19, L15–L18. [CrossRef]

36. Nicoli, E.R.; Dumitrescu, T.; Uscatu, C.D.; Popescu, F.D.; Streata, I.; Serban Sosoi, S.; Ivanov, P.; Dumitrescu, A.; Barbalan, A.; Lungulescu, D.; et al. Determination of autophagy gene ATG16L1 polymorphism in human colorectal cancer. *Rom. J. Morphol. Embryol.* 2014, 55, 57–62.

37. Wisetsathorn, S.; Tantithavorn, V.; Hirankarn, N.; Tangkijvanich, P.; Saethang, T.; Kimkong, I. Gene polymorphisms of autophagy machinery and the risk of hepatitis B virus-related hepatocellular carcinoma in a Thai population. *Scienceasia* 2017, 43, 362–368. [CrossRef]

38. Cao, H.; Li, Z.L.; Zhou, D.; Wan, L.D.; Yu, D.; Zhang, J.; Xu, E.P.; Zhang, D.D.; Lai, M.D. ATG16L1 rs2241880 polymorphism predicts unfavorable clinical outcomes for colorectal cancer patients in the Chinese population. *Int. J. Clin. Exp. Pathol.* 2016, 9, 8586–8595.

39. Al-Ali, R.; Fernandez-Mateos, J.; Gonzalez-Sarmiento, R. Association of autophagy gene polymorphisms with lung cancer. *Gene Rep.* 2017, 7, 74–77. [CrossRef]

40. Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.; Campbell, B.J.; Jewell, D.; Simmons, A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. *Nat. Med.* 2010, 16, 90–97. [CrossRef]

41. Plantinga, T.S.; Crisan, T.O.; Oosting, M.; van de Veerdonk, F.L.; de Jong, D.J.; Philpott, D.J.; van der Meer, J.W.; Girardin, S.E.; Joosten, L.A.; Netea, M.G. Crohn’s disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. *Gut* 2011, 60, 1229–1235. [CrossRef]
42. Figlioli, G.; Elisei, R.; Romei, C.; Melaiu, O.; Cipollini, M.; Bambi, F.; Chen, B.; Kohler, A.; Cristaudo, A.; Hemminki, K.; et al. A Comprehensive Meta-analysis of Case-Control Association Studies to Evaluate Polymorphisms Associated with the Risk of Differentiated Thyroid Carcinoma. *Cancer Epidemiol. Biomark. Prev.* **2016**, *25*, 700–713. [CrossRef]

43. Yuan, J.; Zhang, N.; Yin, L.; Zhu, H.; Zhang, L.; Zhou, L.; Yang, M. Clinical Implications of the Autophagy Core Gene Variations in Advanced Lung Adenocarcinoma Treated with Gefitinib. *Sci. Rep.* **2017**, *7*, 17814. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).