Characterization of Peripheral Blood TCR in Patients with Type 1 Diabetes Mellitus by BD Rhapsody™ VDJ CDR3 Assay

Takuro Okamura 1, Masahide Hamaguchi 1, Hiroyuki Tominaga 1, Noriyuki Kitagawa 1, Yoshitaka Hashimoto 1, Saori Majima 1, Takaumi Senmaru 1, Hiroshi Okada 1, Emi Ushigome 1, Naoko Nakanishi 1, Shigeyuki Shichino 2 and Michiaki Fukui 1,*

1 Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; d04sm012@koto.kpu-m.ac.jp (T.O.); mhama@koto.kpu-m.ac.jp (M.H.); hтомmy@koto.kpu-m.ac.jp (H.T.); nori-kgw@koto.kpu-m.ac.jp (N.K.); y-hashi@koto.kpu-m.ac.jp (Y.H.); saori-m@koto.kpu-m.ac.jp (S.M.); semmarut@koto.kpu-m.ac.jp (T.S.); conti@koto.kpu-m.ac.jp (H.O.); emis@koto.kpu-m.ac.jp (E.U.); naoko-n@koto.kpu-m.ac.jp (N.N.)
2 Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; s_shichino@rs.tus.ac.jp
* Correspondence: michiaki@koto.kpu-m.ac.jp; Tel.: +81-75-251-5505

Abstract: The sequence of complementarity-determining region 3 of the T-cell receptor (TCR) varies widely due to the insertion of random bases during V-(D)-J recombination. In this study, we used single-cell VDJ sequencing using the latest technology, BD Rhapsody, to identify the TCR sequences of autoreactive T-cells characteristic of Japanese type 1 diabetes mellitus (T1DM) and to clarify the pairing of TCR of peripheral blood mononuclear cells from four patients with T1DM at the single-cell level. The expression levels of the TCR alpha variable (TRAV) 17 and TRAV21 in T1DM patients were higher than those in healthy Japanese subjects. Furthermore, the Shannon index of CD8+ T cells and FOXP3+ cells in T1DM patients was lower than that of healthy subjects. The gene expression of PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7 was increased, while the expression of CD4, CD7, CD5, HLA-A, CD27, and IL-32 was decreased in the CD8+ T cells of T1DM patients. The upregulated gene expression was IL4R and TNFRSF4 in FOXP3+ cells of T1DM patients. Overall, these findings demonstrate that TCR diversity and gene expression of CD8+ and FOXP3+ cells are different in patients with T1DM and healthy subjects.

Keywords: single-cell RNA sequencing; type 1 diabetes; genetic research; genetic screening; T-cell receptor

1. Introduction

T-cell receptors (TCRs) contain a stationary region (C region) and a variable region (V region), and the structure of the variable region acquires remarkable diversity by reconfiguration of the TCR and immunoglobulin genes. In the case of TCRβ, TCRδ, and immunoglobulin H chains (heavy chains), three complementarity-determining regions called complementarity-determining region (CDR) 1, CDR2, and CDR3 are formed by the recombination of the V, D, and J gene segments. In both TCR and B-cell receptors (BCRs), CDR1 and CDR2 are encoded in the V segment, and the same gene sequences as in the germline are used. Conversely, the CDR3 sequence can have significant diversity, even when the same V, D, and J segments are used, due to the insertion of random bases (N sequences) during V-(D)-J reconstruction.

It is widely known that abnormalities in B- and T-cell repertoires are involved in the development and progression of both autoimmune and allergic diseases, but the details have not been fully elucidated. Recently, comprehensive immunosequencing has been used to analyze the pathogenesis of type 1 diabetes mellitus (T1DM), rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis [1]. One research group conducted a comprehensive immunosequencing analysis of TCRs and BCRs using lymphocytes isolated...
from the peripancreatic lymph nodes and spleens of T1DM donors registered with the Network for Pancreatic Organ Donors with Diabetes (nPOD). They reported the isolated lymphocytes to have a high frequency of T-cells expressing the TCR beta chain, similar to GAD14.3, a known glutamic acid decarboxylase 65 (GAD65)-reactive T-cell clone, in the lymphoid tissues of patients with T1DM [2].

The appearance of effector T-cells that respond to autologous islet antigens is considered a critical factor in T1DM. It is assumed that effector T-cells with a unique TCR that reacts with autologous islet antigens are monoclonal and activated [3]. Moreover, cytotoxic CD8+ T cells are thought to play a major role in the destruction of beta cells during the development of T1DM [4,5], and TCR variability of regulatory T-cells (Tregs) has been proposed to be beneficial for the maintenance of self-tolerance [6]. Therefore, it is important to clarify the variability of TCRs in CD8+ T cells and Tregs in order to elucidate the pathogenesis of T1DM. The antigen-binding sites for TCRs are determined by genetic rearrangements and have acquired diversity in the order of 10^{10} combinations. In the past, it was difficult to determine the full extent of these vast repertoires of antigen receptors; however, with the dramatic development of next-generation sequencing (NGS) technology, it is now possible to identify the gene sequences of TCRs expressed in a desired cell population at the individual clone level. Currently, such comprehensive immunosequencing technology is being applied to the in vivo monitoring of immune responses and drug discovery of antibody drugs, vaccines, and cellular drugs and is expected to bring about significant innovations in various medical fields in the future.

In this study, we will reveal the TCR sequences of characteristic autoreactive T-cells in Japanese patients with T1DM by single-cell VDJ sequencing.

2. Materials and Methods

2.1. Study Design and Participants

The KAMOGAWA-DM cohort study is an ongoing prospective cohort study that was approved by the Ethics Committee of the Kyoto Prefectural University of Medicine in 2013 (Kyoto, Japan, RBMR-E-466) [7]. Informed consent was obtained from all patients involved in the KAMOGAWA-DM cohort study. We randomly selected 4 patients with T1DM who visited our diabetes outpatient clinic from April to May 2021. In addition, PBMCs were collected on the day of the visit, and the experiment was conducted on the same day using fresh specimens without cryopreservation. In addition, none of those four patients had any apparent infection during the study period. T1DM was diagnosed based on the criteria of the American Diabetes Association [8]. According to the recommendation of the Committee of Experts of the American Diabetes Association, T1DM was divided into type 1A diabetes (i.e., immune-mediated), type 1B (i.e., other forms of diabetes with severe insulin deficiency but without proof of autoimmune etiology, also known as idiopathic) [9], and slowly progressive insulin-dependent diabetes mellitus (SPIDDM) at all participating institutions in this study [10–13].

Furthermore, we used the scRNA-seq data generated from a healthy subject in a previous study from the NCBI’s Gene Expression Omnibus under accession number GSE150060 [14].

2.2. Data Collection

Information regarding patients’ background demographics (i.e., age, sex, disease duration, and smoking habits) was gathered from their medical records. Blood pressure was measured in an outpatient clinic. After an overnight fast, venous blood samples were collected to measure fasting plasma levels of glucose, C-peptide, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, creatinine, and uric acid. The hemoglobin A1c level was determined by high-performance liquid chromatography and presented herein using the National Glycohemoglobin Standardization Program unit.
2.3. BD Rhapsody Single Cell Analysis System

Heparin was added to the syringe when peripheral blood was collected. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation, counted, and resuspended in 650 µL of cold sample buffer for loading on a BD Rhapsody cartridge. Targeted scRNA-seq with TCR analysis was performed using the BD Rhapsody Express system (BD Biosciences, Piscataway, NJ, USA). Cell capture and library preparation were performed using the BD Rhapsody Targeted mRNA and AbSeq Reagent Kit (BD Biosciences), according to the manufacturer’s instructions. Briefly, 1×10^4 cells from each fresh blood sample were captured in a microwell plate with beads. This was followed by cell lysis, bead retrieval, cDNA synthesis, template switching, Klenow extension, and library preparation (a targeted gene library using a human T-cell expression panel and a TCR gene library) following the BD Rhapsody VDJ CDR3 protocol. The final pooled libraries were spiked with 20% PhiX control DNA to increase the sequence complexity and subsequently sequenced (75 bp \times 225 bp paired-end) on a HiSeq X Ten sequencer (Illumina, San Diego, CA, USA). In this study, HLA typing was not tested because the number of cells in each sample was not sufficient.

2.4. Data Analyses

The FASTQ files obtained from the sequences were processed using the BD Rhapsody Targeted Analysis Pipeline with V(D)J processing incorporated (BD Biosciences) in the Seven Bridges Platform (https://www.sevenbridges.com/, accessed on 20 October 2021). First, low-quality read pairs were removed based on read length, average base quality score, and highest single-base frequency. High-quality R1 reads were analyzed to identify cell labels and unique molecular identifier (UMI) sequences. The high-quality R2 reads were aligned with the reference panel sequences (Human T cell Expression panel) and TCR gene segments from the international ImMunoGeneTics information system® (IMGT.org) using the program Bowtie2. IGBlast was utilized for CDR3 determination. Reads with identical cell labels, identical UMI sequences, and identical genes were folded into a single molecule. The obtained counts were subjected to error correction algorithms (recursive substitution error correction (RSEC) and distribution-based error correction (DBEC)) developed by BD Biosciences. The DBEC-adjusted number of molecule data obtained from the Rhapsody pipeline was imported into SeqGeq version 1.6.0, and quality control was then performed to gate out cells that were significantly smaller and with low numbers of expressed genes (dead cells). Subsequently, dimensional reduction and unbiased clustering in SeqGeq were performed using the Seurat plug-in. Briefly, Seurat was set up to include all genes used, and the QC function, log normalization, and UMAP (uniform manifold approximation and projection) were used for dimensionality reduction. These plug-ins output data, including UMAP, lists of upregulated and downregulated genes, and annotation information, using the PBMC gene model. Further clustering analysis was completed with manual curation. Integration of the cluster information and TCR CDR3 information in each cell was performed using the VDJExplorer plug-in of SeqGeq. As a parameter for the structural diversity of the genes, the Shannon index H' was calculated [15].

$$H' = - \sum_{i=1}^{S} p_i \ln p_i$$

S: Number of genes observed in the sample

p_i: Ratio of genes i to the total sample

2.5. Detection of CD8$^+$ Cells and FOXP3 Expression in Tregs Using Whole Transcriptome scRNA-seq Data

FOXP3 expression was assessed in two publicly available genomic datasets, combining 3 mRNA and surface protein expression datasets. Then, 10k PBMC datasets were generated using v3 chemistry (7865 cells passing QC, average reads per cell of mRNA library 10k
PBMC dataset generated using v3 chemistry (7865 cells passing QC, average reads per cell for mRNA libraries: 35,433) and the 5k PBMC dataset generated using NextGEM chemistry (5527 cells passing QC, average reads per cell for mRNA libraries: 30,853). See https://support.10xgenomics.com/single-cell-gene-expression/datasets/, accessed on 20 October 2021). CD8+ or FOXP3+ T cells were defined as cells expressing one or more copies of CD8 or FOXP3 (UMI).

2.6. TCR CDR3 Motif Identification

All TCR CDR3 amino acid sequences from the current study were aligned using the MEME suite (https://meme-suite.org/meme/tools/meme) [16].

3. Results

3.1. Single-Cell mRNA Immunophenotyping Identifies Distinct Trajectories of T-Cell Differentiation in Blood

Sample 1 (S1) was from a male patient with type 1A T1DM, Sample 2 (S2) was from a female patient with type 1B T1DM, Sample 3 (S3) was from a patient with type 1B T1DM, and Sample 4 (S4) was obtained from a patient with SPIDDM (Table 1). Using immunosequencing, we attempted to comprehensively analyze the TCRs expressed by T-cells in the peripheral blood of patients.

Table 1. Clinical characteristics of the study patients.

Sample	1	2	3	4
Sex	Male	Female	Male	Male
Type	1A	1B	1B	SPIDDM
Age, yrs	71	68	47	49
Disease duration	16	46	19	7
Height, cm	169	150.2	181	168.4
Body weight, kg	57	45	100	76
Body mass index, kg/m²	20.0	19.9	30.5	26.8
Fasting plasma glucose, mmol/L	7.2	4.3	11.3	7.3
Hemoglobin A1c, %	8.1	7.5	7.5	8.5
C-peptide, mmol/L	<0.01	<0.01	<0.01	0.301
Creatinine, mmol/L	65.4	66.3	86.6	84.9
Estimated GFR, mL/min/1.73 m²	79.4	58.5	66.1	66.8
Urine albumin to creatinine ratio, mg/gCr	3673	64	8	19
Anti-GAD antibody	237	<5	<5	18.1

Cr, creatinine; GAD, glutamic acid decarboxylase; GFR, glomerular filtration rate; SPIDDM, slowly progressive insulin-dependent diabetes mellitus.

First, to determine the usage rate of TCR variable (TRV) and TCR joining (TRJ) genes, we counted the number of copies (reads) of USRs containing each TRV and TRJ. For the TCR alpha (TRA) repertoire, eight pseudogenes (AV8-5, AV11, AV15, AV28, AV31, AV32, AV33, and AV37) were not expressed in each patient. AV8-7 was classified as an ORF (defined by IMGT based on the sequence of splicing sites, recombination signals, and regulatory elements), which was also not expressed. Moreover, AV7, AV8-6-1, AV8-7, AV9-1, AV14-1, AV18, and AV46 were not expressed in any patient. The majority of TRA in S1, S2, and S3 was AV9-2, AV12-1, AV12-3, AV13-1, and AV17, whereas in S4, AV12-1, AV12-3, and AV13-1 were common to S1, S2, and S3; however, AV-2 and AV13-2 had specifically high rates (Figure 1).
3, and AV13-1 were common to S1, S2, and S3; however, AV-2 and AV13-2 had specifically high rates (Figure 1).

Figure 1. The frequency of TRAV. (A–D) Usage of TRAV in patients with T1DM (S1-S4). The numbers of TCR sequences bearing the respective TRAVs were counted. The percentage frequencies of TRAV were calculated and are shown.

None of the patients expressed any of the three pseudogenes AJ51, AJ55, and AJ60, while AJ1, AJ2, AJ14, AJ19, AJ25, AJ59, and AJ61 were not expressed in any of the patients. In S1, S2, and S3, the expression of AJ9, AJ20, AJ29, AJ34, and AJ49 had high rates, whereas
in S4, AJ9 was common to S1, S2, and S3; however, AJ11, AJ40, AJ42, and AJ53 had specifically high rates (Figure 2).

Figure 2. The frequency of TRAJ. (A–D) Usage of TRAV in patients with T1DM (S1–S4). The number of TCR sequences bearing the respective TRAJ was counted. The percentage frequencies of TRAJ were calculated and are shown.

As for TCR beta (TRB) genes, out of the 5 pseudogenes (BV1, BV3-2, BV12-1, BV12-2, and BV21-1), BV1, BV3-2, BV12-2, and BV21-1 were expressed. Of the six ORF genes (BV5-3, BV5-7, BV6-7, BV7-1, BV17, and BV23-1), only BV23-1 was expressed (Figure 3).
Figure 3. The frequency of TRBV. (A–D) Usage of TRBV in patients with T1DM (S1-S4). The number of TCR sequences bearing respective TRBV's was counted. The percentage frequencies of TRBV were calculated and are shown.

Of BJ, in each patient, BJ1-1, BJ2-1, BJ2-2, BJ2-3, and BJ2-7 were in the majority (Figure 4).
3.2. Recombination of TRAV and TRAJ

The genetic recombination of 41 TRAVs and 50 TRAJs (excluding pseudogenes, ORFs, and low-expressed genes) resulted in a total of 2050 AV-AJ recombinants. Notably, the AV1-1-AV6 gene did not preferentially combine with the AJ50-AJ58 gene, and similarly, little recombination was observed between the AV35-AV41 gene and AJ3-AJ16. For TRB, 650 genetic recombinations occurred in 50 BV genes (excluding 11 pseudogenes and 5 ORFs) and 13 BJ genes (excluding pseudogenes). There were no restrictions on the combination of TRBV and TRBJ, as observed in the TRA. The Shannon index H' was used as a diversity index to evaluate the diversity of TRA and TRB. Shannon-index H' of TRA and TRB in S1 was 10.80 and 10.83, that in S2 was 11.62 and 11.69, that in S3 was 10.26 and 10.57, and that in S4 was 11.37 and 11.25, respectively (Table 2).

Table 2. Shannon-index H'.

	TRA	TRB
S1	10.80	10.83
S2	11.62	11.69
S3	10.26	10.57
S4	11.37	11.25
S1 FOXP3*	5.37	5.57
S2 FOXP3*	6.27	6.35
S3 FOXP3*	5.62	6.14
S4 FOXP3*	5.84	5.77
S1 CD8*	9.17	9.14
S2 CD8*	9.74	9.77
S3 CD8*	8.24	8.61
S4 CD8*	9.44	9.37

TRA, T-cell receptor alpha; TRAB, T-cell receptor beta.
No significantly high repertoires were identified in S1, but AV12-1/AJ45, AV12-3/AJ49, AV12-3/AJ54, and AV9-2/AJ57 in S2, AV1-2/AJ33, AV12-2/AJ21, AV21/AJ20, and AV12-3/AJ40 in S3, and AV12-1/AJ11, AV2/AJ40, and AV13-2/AJ56 in S4 were expressed at a significantly high rate (Figure 5).

![3D images of TRA repertoires](image)

Figure 5. 3D images of TRA repertoires. (A–D) The number of TCR sequence reads bearing a given gene recombination of TRAV with TRAJ was counted. The mean percentage frequencies are shown in the 3D bar graph. The X-axis and Y-axis indicate the TRAJ and TRAV, respectively.

BV24-1/BJ2-1 in S1; BV28/BJ2-1, BV5-1/BJ2-7, BV29-1/BJ2-7, and BV29-1/BJ2-1 in S2; BV7-8/BJ2-1, BV7-2/BJ2-7, BV29-1/BJ2-1, BV29-1/BJ2-1, BV29-1/BJ2-3 in S3; and BV20-1/BJ2-7, BV5-1/BJ2-1, BV7-7/BJ2-2, and BV9/BJ2-2 in S4 were expressed at a significantly high rate, respectively (Figure 6). Taken together, there was no common pattern among each of the four samples and healthy controls.

3.3. TCR Clonotypes of CD8+ T Cells and FOXP3+ T Cells

Next, we investigated the genetic recombination of TRAVs and TRAJs and that of TRBVs and TRBJs in CD8+ T cells and FOXP3+ T cells, and we have shown the top ten TCR clonotypes in Tables 3 and 4. The most frequently observed CDR3 of TRA and TRB in CD8+ T cells in S1 were AGAISNNDMR and ASSVVGSGTDEQF; those of S2 were VVRARPPLWSSGGADGLT and ASTPPSPGYEQQ, those of S3 were AFSSGGYQKV and ASSLAGEGSGTGELF, and those of S4 were VVSAFFSGGYQ and ASSSSRDRGNYEQQ (Table 3).
Figure 6. 3D images of TRB repertoires. (A–D) The number of TCR sequence reads bearing a given gene recombination of TRBV with TRBJ was counted. The mean percentage frequencies are shown in the 3D bar graph. The X-axis and Y-axis indicate the TRBV and TRBJ, respectively. The names of high repertoires of more than 1% are listed.

In the FOXP3+ T cells of S1 were AMRFKSGYNKLI and ASSPPTSGASYEQY; those of S2 were ALSSNDYKLS and ASTLDPGSPPLH, those of S3 were GFSSGSARQLT and ASSFGRYEQY, and those of S4 were AAGRGNRLRA and ASSRTGGGYGYT (Table 4).

3.4. T-Cells in Blood of Patients with T1DM Have Phenotypic Hallmarks

Next, we performed an unbiased analysis of gene expression using Seurat and identified T-cell clusters in four T1DM patients (Figure S1). Heatmaps of gene expression in each cluster are shown, with 10 clusters in S1, 11 clusters in S2, 19 clusters in S3, and 11 clusters in S4 (Figure 7).

The rank of the CDR3 repertoires is shown in Figure S2. In addition, we performed clustering analyses using Seurat in CD8+ T cells or FOXP3+ T cells (Figures S3 and S4).

CDR3 motifs and clustering were shown in Figure S2. In addition, the motif-based sequence analysis tool, Multiple Em for Motif Elicitation (MEME), was then used to identify the consensus amino acids for the grouped CDR3 sequences. The top five CDR3 motifs of TRA and TRB are shown in Figure S5. We further examined which cluster CD8+ and Foxp3+ T cells with the top five CDR3 motif sequences detected belonged to (Tables S5–S8).
Clone ID	Frequency (%)	TRAV	CDR3	TRAJ	TRBV	TRB		
1-1	7.9	V27	AGAISNNDMR	J43	V9	ASSVCGSTQDF	J2-1	
1-2	7.4	V13-1	AAGCSSASK	J3	V6-5	ASSYCSQSYT	J1-2	
1-3	4.0	V17	ATDSGSGYQKV	J13	V19	ASRLTGAGANLT	J2-6	
1-4	3.6	V1-1	AVRDDLGGFKTI	J9	V10-3	ASIEPEGNETAF	J1-1	
1-5	3.4	V14//DV4	AMRPPSNNKNKLI	J4	V19	ASNAGYNEQF	J2-1	
1-6	3.1	V13-1	AASWHDNAGNMLT	J39	V12-3	ASSDNGYQEQY	J2-7	
1-7	2.7	V12-2	AVNPRRFGKTI	J9	V27	ASSGLAGQEQF	J2-1	
1-8	2.6	V6	ARASYGATNKL	J32	V9	ASSVTFQVPANGNL	J2-6	
1-9	2.6	V1-1	APDTCRALT	J5	V20-1	SAVRTGSSYEQY	J2-7	
1-10	2.6	V17	ATDMERGSSQNL	J42	V19	ASNAGYNEQF	J2-1	
S1								
2-1	18.1	V12-1	VVRARPPLPSGCGADGLT	J45	V7-2	ASTPPSGEQYEQ	J2-7	
2-2	10.3	V12-3	VPQGSASK	J3	V20-1	SARGRPAGEQF	J2-1	
2-3	9.1	V6	ALKGYSGQYKVT	J31	V28	ASSFSRDVNYEQ	J1-5	
2-4	8.1	V17	ATEGDSNYQ	J33	V7-3	ASSSGTDQLH	J1-6	
2-5	8.0	V12-3	AMSDYCGSNKL	J32	V19	ASSPCAARQEQQ	J2-7	
2-6	5.2	V21	AVSPSLSGSRQLT	J22	V7-2	ASLSVQGTEEQY	J2-7	
2-7	4.8	V9-2	AFDCGGATNKL	J32	V4-2	ASSPLQGPEQ	J1-5	
2-8	4.4	V5	SESSTGCGL	J37	V24-1	ATSDPAAGRTQY	J2-3	
2-9	4.3	V12-1	VPNPSTGLRGLY	J18	V10-2	ASSAGQCEAF	J1-1	
2-10	3.5	V14//DV4	AMQIDSWDGKLI	J24	V7-2	SVEPDHMPTQY	J2-3	
S2								
3-1	5.6	V38-1	AFSGGYQKVT	J13	V7-9	ASSLAGECSTGELF	J2-2	
3-2	3.4	V2	AVEGHNSGSTOLT	J11	V6-2	ASSLRDSSEYQ	J2-7	
3-3	3.3	V21	AGAQAYKL	J20	V7-6	ASSPREAEQY	J2-7	
3-4	2.7	V14//DV4	AMREUGCSGSLT	J14	V29	ASSDRCGTQYQ	J2-3	
3-5	2.5	V27	GLN	J14	V29-1	ASRSTFQVDQY	J2-3	
3-6	2.4	V12-3	AMSGNVQFY	J49	V28	ASRFTFQVDQY	J2-3	
3-7	2.3	V12-3	AMTAGTYKYI	J40	V29-1	SADSQVHNFQY	J2-1	
3-8	2.3	V14//DV4	AMREYGQNYQ	J49	V5-4	ASSRSGPQSEYQ	J2-7	
3-9	2.2	V12-2	AVNQGQATL	J15	V4-3	ASSQDLGANTEF	J1-1	
3-10	2.1	V38-2//DV8	AYRRSDGMR	J43	V27	ASSFLAGATELF	J2-2	
S3								
4-1	9.3	V10	VVSASFSGSYSIPT	J6	V5-1	ASSSSDRCNGEYQ	J2-7	
4-2	5.5	V21	AVKGGSEKVL	J57	V7-8	ASSLVGLESYEQ	J2-1	
4-3	3.7	V12-1	AVNLNTGFQKL	J8	V2	ASSGYSSEYQ	J2-7	
4-4	3.1	V12-3	AMVRAGGYNKL	J4	V6-6	ASSRERSPENQEYQ	J2-7	
4-5	3.1	V5	AALSQGSYIPT	J6	V4-3	ASSQCLREGLEQ	J2-7	
4-6	3.1	V14//DV4	AMRNKSWGKFQ	J24	V3-1	ASSQIEVTRSGLEF	J2-2	
4-7	3.0	V6	ALCHSSASK	J3	V20-1	SARDRSSSEYQ	J2-7	
4-8	2.9	V21	AVASNFGNEKL	J48	V29-1	SVAAGAQTQY	J2-7	
4-9	2.3	V2	AVEERMTQKYI	J40	V20-1	SARGVANPYEQ	J2-7	
4-10	2.3	V12-1	VVPYNTDKLI	J34	V5-6	ASKPPGSYEQ	J2-7	

Table 3. TCR clonotype of CD8+ T cells.

CDR3, complementarity-determining region 3; TRA, T-cell receptor alpha; TRAJ, TRA joining; TRAV, TRA variable; TRB, T-cell receptor beta; TRBJ, TRB variable; TRBV, TRB variable.
Table 4. TCR clonotype of FOXP3+ T cells.

Clone ID	Frequency (%)	TRAV	CDR3	TRAJ	TRBV	TRBJ	
S1							
1-1	6.7	V12-3	AMRFKSGYNKLI	J4	V18	ASSPTSGASEYQY	J2-7
1-2	6.3	V12-2	AVNIRDSSYKLI	J12	V20-1	SARSRLAVGELF	J2-2
1-3	6.0	V12-3	AMSDSQCGGEDGLT	J45	V3-1	ASSQRGGATQY	J2-3
1-4	5.9	V12-1	VGLTNACKSI	J27	V11-2	ASSLGQTTNKEF	J1-4
1-5	5.6	V2	AVEGGSGNTGKLI	J37	V2	ASEEGNTEAF	J1-1
1-6	4.6	V9-2	ATTRYGACGYSQYLT	J28	V28	ASTGTTGSEYQY	J2-7
1-7	4.1	V16	ARNPQGENKLK	J48	V12-3	ASSRGQDNQPOH	J1-5
1-8	3.2	V25	GRSGSARQLT	J22	V30	AWNRQGANTGELF	J2-2
1-9	3.1	V13-1	AAPTIGRSKLT	J56	V7-3	ASSPLQSGANVLT	J2-6
1-10	3.0	V4	LVAFDTRGRALT	J5	V23-1	ASSPPKQELLRAV	J2-7
S2							
2-1	17.2	V9-2	ALSSNDYKLS	J20	V12-3	ASTLQDPGSPHL	J1-6
2-2	9.3	V9-2	ALSGRNTGFKTI	J9	V2	ASSRTKTDLTQY	J2-3
2-3	7.2	V35	ACPYSGCGSYQLT	J28	V28	ASSSPRSGRSEYQY	J2-7
2-4	5.4	V41	AVNAGNMNL	J39	V7-9	ASSSLRDNQIJOY	J2-4
2-5	4.5	V13-1	AASRPQQR*RTH	J45	V7-9	ASRDLATNEKLF	J1-4
2-6	4.3	V38-2/DV8	AYRSGACGNMLT	J39	V28	ASSQGQRQETQY	J2-5
2-7	3.5	V12-1	VVRLNCTGGKTL	J20	V19-1	SARVGSTKELF	J1-4
2-8	2.9	V41	AVSTSPARQLT	J22	V6-6	ASSYSGGSGRRKHEQY	J2-7
2-9	2.8	V38-2/DV8	APLGAGSYQLT	J28	V20-1	SASLMAVSYEQQY	J2-7
2-10	2.5	V12-1	VVNVKRTGANLFL	J36	V28	ASSRKGQGTTGELF	J2-2
S3							
3-1	3.2	V21	GFSSGSGARQLT	J22	V7-2	ASSFGRSEYQY	J2-7
3-2	2.6	V22	AANTFLY	J29	V12-3	ASSGLYDQTQY	J2-3
3-3	2.5	V21	AYTTGKST	J27	V21-1	ASSGQKDQTQY	J2-1
3-4	2.1	V12-1	VVNMGGGGFKTI	J19	V20-1	SASSGPGYNEQQ	J2-1
3-5	2.1	V13-1	AAGPMDSYYKLI	J12	V6-1	ASRALTNYEQQ	J2-1
3-6	1.9	V13-1	AARGTSYKGL	J52	V20-1	SARQPSGLYNEQQ	J2-1
3-7	1.7	V21	AVRQDDYKLS	J20	V20-1	SAPGCLAGYQQPQ	J2-1
3-8	1.6	V6	ALEDRTGRRALT	J5	V25-1	ASTAPLGLKQLY	J2-3
3-9	1.5	V21	AVYTGSSARQLT	J22	V6-5	ASSQGQNGTTIY	J1-3
3-10	1.5	V9-2	ALISSGSAQRLT	J22	V10-2	ASSERSGSNNQPOH	J1-5
S4							
4-1	4.4	V13-1	AAGRGQNNRLA	J7	V12-3	ASSKRGGNNYGYT	J1-2
4-2	4.3	V10	AARIAASNTGKL	J37	V24-3	SASSHTGQGNYGT	J1-2
4-3	3.8	V12-2	AVNGENFKFYL	J21	V21-2	ASSLACTGQGYT	J1-2
4-4	3.8	V2	AVEQDRSQGAGSYQLT	J28	V28	ASSFCQSNTEAF	J1-1
4-5	3.8	V13-1	AADVNNQOGKLI	J23	V3-1	ASSQVRGAYSNQPOH	J1-5
4-6	3.7	V3-1	AASHGQSGQNL	J42	V9	ASSHVEShSYNEQF	J2-1
4-7	3.4	V21	AAGYNNDMR	J43	V4-1	ASSQGQNGYGT	J1-2
4-8	3.1	V1-1	ADRMDSNYQGL	J33	V20-1	SASPGQADGTYQ	J2-3
4-9	2.9	V13-2	AVRQDGQYQKVT	J13	V21-2	SAPPQGTEAFF	J1-1
4-10	2.8	V13-1	AASHGQSGQNL	J42	V27	ASSFGQGSSQYQY	J2-4

CDR3, complementarity-determining region 3; TRA, T-cell receptor alpha; TRAJ, TRA joining; TRAV, TRA variable; TRB, T-cell receptor beta; TRBJ, TRB variable; TRBV, TRB variable.
Figure 7. Seurat analyses of PBMCs. The Seurat plug-in in SeqGeq was used to cluster all PBMC data from patients with T1DM and project the clusters onto UMAP. A heatmap displaying expressed genes within the identified clusters, UMAP, and clusters is shown. (A,B) Heatmap, UMAP, and cluster name of S1 are shown. (C,D) Heatmap, UMAP, and cluster name of S2 are shown. (E,F) Heatmap, UMAP, and cluster name of S3 are shown. (G,H) Heatmap, UMAP, and cluster name of S4 are shown.

For further analysis, we investigated the upregulated gene expression in CD8$^+$ or FOXP3$^+$ T cells of four samples compared to that in healthy subjects (S0). The legalism of
all gene expressions compared to S0 is shown in the heatmaps (Figure S3). The upregulated gene expressions in CD8+ T cells of S1 were PRF1, GZMH, ITGB2, NKG7, and SELPLG; those of S2 were GZMH, ITGB2, PRF1, NKG7, and GNLY; those of S3 were ITGB2, GZMH, SEL, PRF1, and SELPLG; and those of S4 were GZMH, CTSW, PRF1, ITGB2, and CX3CR1, respectively. Conversely, the downregulated gene expressions in CD8+ T cells of S1 and S2 were CD7, CD4, CD5, CD27, and CD69, and those of S3 and S4 were CD7, CD4, CD5, CD27, and TRAC, respectively. The upregulated gene expressions in FOXP3+ T cells of S1 were HLA-DMA, IL4R, LIF, TNFRSF4, IL31, HLA-DMA, IL4R, TRIB2, LIF, and TNFRSF4; those of S3 were HLA-DMA, IL4R, TNFRSF4, LIF, and PRDM1, and those of S4 were HLA-DMA, IL4R, TRIB2, LIF, and TNFRSF4, respectively. The downregulated gene expressions in FOXP3+ cells of S1 were CD4, CD7, CD5, HLA-A, and IL32, while those of S2, S3, and S4 were CD4, CD7, CD5, HLA-A, and CD27 (Figure 8) and clustering was shown in Figure S4.

Figure 8. Upregulated and downregulated gene expression in CD8+ T cells and FOXP3+ T cells. The top 10 upregulated and downregulated genes of CD8+ T cells and FOXP3+ T cells in patients with T1DM compared to those in healthy subjects are shown. Gene expression was generated on a logarithmic scale. (A–D) Top 10 upregulated and downregulated genes of CD8+ T cells in S1-4. (E–H) Top 10 upregulated and downregulated genes of FOXP3+ T cells in S1-S4.
4. Discussion

We used adapter ligation-mediated PCR, a bias-free PCR technique, for TCR repertoire analysis using NGS. This method uses a single set of primers to avoid PCR bias due to primer competition. This method is, therefore, suitable for accurately estimating the abundance of each TCR gene in a wide variety of samples. In the present study, we comprehensively investigated the TRA and TRB repertoires from four patients with T1DM at the clonal level and evaluated a large amount of sequence data. This is the first study to reveal the TRA and TRB repertoires of patients with T1DM using BD Rapsody. Moreover, this integrated analysis makes it easy to detect the preferential use of specific TRVs and TRJs, which may be useful in studying immune responses by antigen-specific T-cells.

There are several single-cell sequencing platforms that have been widely used around the world in recent years. BD Rhapsody, which was used in this study, uses microwells and magnetic beads to isolate cells and perform bead-based 3′ RNA-Seq, thus realizing highly accurate sample preparation with low doublets and cross-contamination rates. Compared to the widely used 10× Genomics, the library cost is lower, and cell viability demand does not need to be as high as 50%, cell loading can be up to 40,000 cells, and the frequency of doublets is lower [17]. Therefore, information on a large number of cells can be obtained.

The expression levels of TRAV17, a variable gene known to be enriched in a population of CD1b-restricted T-cells [18,19], and TRAV21 in patients with T1DM were higher than those in healthy Japanese subjects investigated in a previous study [20]. Conversely, the expression levels of TRAJ in patients with T1DM were not different from those of healthy subjects. The majority of TRBV in the healthy Japanese subjects was TRBV 29-1, whereas, in the patients with T1DM, there was no clear majority compared to the healthy subjects. The Shannon indices of TRA and TRB in healthy subjects in the previous report were both approximately 7, which were clearly smaller than those of the patients with T1DM observed in this study. Moreover, we surveyed the diversity index of CD8+ and FOXP3+ T cells, and the Shannon index of the cells in the patients with T1DM was lower than those of healthy subjects [21,22]. TCR variability of Tregs has been proposed to be beneficial in the maintenance of self-tolerance [6]; therefore, the findings in this study indicate that the reduced TCR diversity in Tregs of patients with T1DM in this study may indicate reduced immune tolerance in patients with T1DM.

Upregulated genes in CD8+ T cells of T1DM patients included cytotoxicity-associated genes, such as PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7, whereas the expression of CD4, CD7, CD5, HLA-A, CD27, and IL-32 was downregulated. Cytotoxic CD8+ T cells are considered to be the primary mediators of β-cell injury, based on the predominance of CD8 T-cells in pancreatic islet infiltration [23,24], as well as numerous studies using animal models of T1DM caused by β-cell injury by CD8 T-cells [25,26]. In addition, several human studies have reported an expanded pool of memory T-cells in the peripheral blood of patients with type 1 diabetes [27] and resistance of effector T-cells to Treg suppression, and our results are consistent with these previous reports [28].

Upregulated genes in FOXP3+ T cells in T1DM patients included IL4R. Interleukin 4 (IL-4) has been reported to be involved in several signaling pathways in the regulation of Treg cell development and function [29–33]. IL-4 is a cytokine that defines the type 2 immune response, while IL-4 receptor alpha (IL-4Rα) suppresses Treg cell function during type 2 disease [34,35]. Recent reports have shown that enhanced IL-4Rα signaling by gain-of-function mutations [32,35] or chronic type 2 inflammation [36] drastically reduces the number of Foxp3+ Treg cells, impairs the suppressive function of Treg cells, and promotes their reprogramming to T helper 2 (Th2)-like or T helper 17 (Th17)-like cells. This receptor is further thought to play a role in suppressing Treg cell function. Although no difference in the frequency of Tregs in peripheral blood isolated from T1D patients has been reported, defects in the phenotype and suppressive capacity of Tregs have been reported [37–41]. In this study, we used single-cell sequencing for the first time in the world to reveal that IL4R expression is upregulated in the Tregs of patients with type 1 diabetes. As previously reported, this result suggests that the function of Tregs in T1DM is impaired. In addition,
TNFRSF4 was upregulated in FOXP3+ T cells in patients with T1DM. TNFRSF4 is one of the most highly expressed genes in Tregs \cite{42,43}. In addition, TNFRSF4 is one of the most highly expressed genes in tumor-invasive Tregs compared to those in healthy tissues \cite{44,45}. While there have been no reports on the expression of TNFRSF4 in relation to Tregs in patients with type 1 diabetes, this has been reported to be significantly increased in patients with relapsed acute myeloid leukemia compared to healthy donors \cite{46}. TNFRSF4 mediates TRAF2 and TRAF5 to activate the NF-κB pathway of TNFRSF4, and the PI3K/PKB and NFAT pathways have also been identified \cite{47,48}. The most important function of TNFRSF4 is to promote T-cell division, proliferation, survival, and cytokine production by activating the aforementioned pathways. In this study, we found that the expression of TNFRSF4 was upregulated in T1DM regulatory T-cells, suggesting that these cells may have some immune abnormalities.

The strength of this study is that it is the first to use the BD Rhapsody system, a state-of-the-art technology for single-cell sequencing of TCR repatriation and gene expression in peripheral blood T-cells from patients with T1DM. However, this study has several limitations. First, we analyzed CD8- and FOXP3+ T cells as cells with more than one read, and Tregs as FOXP3+ T cells could also be activated T-cells and not Tregs; it would have been more accurate if we sorted each positive cell by cell sorter and performed the same analysis. Second, peripheral blood of healthy subjects was used as a control, but this data was obtained by another research group and was not analyzed simultaneously in this study. Therefore, we should prepare our own samples for future studies. Third, the subjects in this study have had diabetes for many years and may not have autoreactive T-cells in the peripheral blood collected. On the other hand, Tregs have been reported to suppress GAD-responsive T-cells in patients with type 1 diabetes who have had the disease for more than 5 years \cite{49}. Therefore, it has been reported that Tregs suppress GAD-reactive T-cells in patients with type 1 diabetes mellitus more than 5 years after onset, and it is possible that some immune abnormalities may still be present in PBMCs over time. Finally, we randomly selected patients who visited an outpatient clinic within a limited time. Therefore, we did not match background factors such as age, gender, duration of disease, and diabetes type, which are limitations of this study.

5. Conclusions

In conclusion, in this study, we used the latest technology, BD Rhapsody, to analyze the pairing of α and β chains that constitute the TCR of PBMCs from patients with type 1 diabetes at the single-cell level. In this study, we identified genes that are upregulated in T-cells as well as TRB repairs. scRNA-seq has greatly improved our understanding of heterogeneity in various biological processes and has led to significant breakthroughs in the fields of immunology, oncology, and developmental biology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/cells11101623/s1, Table S1: Clinical characteristics of the study patients, Table S2: Shannon-index H’, Table S3: TCR clonotype of CD8+ cells, Table S4: TCR clonotype of FOXP3+ cells, Table S5: Top five CDR3 motif of TRA in CD8+ cells and clustering, Table S6: Top five CDR3 motif of TRB in CD8+ cells and clustering, Table S7: Top five CDR3 motif of TRA in FOXP3+ cells and clustering, Table S8: Top five CDR3 motif of TRB in FOXP3+ cells and clustering, Figure S1: nFeatures_RNA and nCount_RNA of Seurat object, Figure S2: Motifs of CDR and clustering, Figure S3: The heatmaps of gene expressions in CD8+ cells and FOXP3+ cells, Figure S4: Seurat analyses of FOXP3+ cells, Figure S5: The top five CDR3 motifs of TRA and TRB.

Author Contributions: T.O. originated and designed the study, researched the data, and wrote the manuscript. M.H. originated and designed the study, researched the data, and reviewed the manuscript. H.T., N.K., Y.H., S.M., T.S., H.O., E.U. and N.N., researched the data and contributed to the discussion. S.S. analyzed the data. M.F. originated and designed the study, researched the data, and reviewed and edited the manuscript. M.F. is the guarantor of this work and, as such, had full access to all of the data in the study and takes responsibility for the integrity of the data and
the accuracy of the data analysis. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from the Japan IDDM network, The Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care, Foundation Kyoto Health Care Society, and the Uehara Memorial Foundation. This work was supported by KAKENHI, Grant-in-Aid for Young Scientists (20K17497). This work was supported by the Japan Agency for Medical Research and Development PRIME program (S.S., JP21gm6210025).

Institutional Review Board Statement: This study was approved by the Ethics Committee of Universal Hospital Kyoto Prefectural University of Medicine (RBMR-E-466).

Informed Consent Statement: Written informed consent was obtained from all the patients.

Data Availability Statement: The new high throughput sequencing (HTS) datasets in this study have been deposited in the GEO database (GSE197456, [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197456, accessed on 30 April 2022](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197456)). The data presented in this study are openly available in [FigShare](https://doi.org/10.6084/m9.figshare.19744570.v1).

Acknowledgments: We thank BioStream Co., Ltd and all of the staff members of the Kyoto Prefectural University of Medicine.

Conflicts of Interest: Masahide Hamaguchi has received grants from Asahi Kasei Pharma, Nippon Boehringer Ingelheim Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Daiichi Sankyo Co., Ltd., Sanofi K.K., Takeda Pharmaceutical Company Limited, Astellas Pharma Inc., Kyowa Kirin Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Novo Nordisk Pharma Ltd., and Eli Lilly Japan K.K., outside the submitted work. Yoshitaka Hashimoto has received grants from Asahi Kasei Pharma, personal fees from Mitsubishi Tanabe Pharma Co., Astellas Pharma Inc., Kyowa Hakko Kirin Co., Ltd., Sanofi K.K., MSD K.K., Kowa Pharma Co., Ltd., Taisho Toyama Pharma Co., Ltd., Takeda Pharma Co., Ltd., Kissei Pharma Co., Ltd., Novo Nordisk Pharma Ltd., and Eli Lilly Japan K.K. outside the submitted work. Emi Ushigome has received grants from the Japanese Study Group for Physiology and Management of Blood Pressure and the Astellas Foundation for Research on Metabolic Disorders (grant number: 4024). Donated Fund Laboratory of Diabetes Therapeutics is an endowment department, supported by an unrestricted grant from Ono Pharmaceutical Co., Ltd., and it has received personal fees from AstraZeneca plc, Astellas Pharma Inc., Daiichi Sankyo Co., Ltd., Kyowa Hakko Kirin Company Ltd., Kowa Pharmaceutical Co., Ltd., MSD K.K., Mitsubishi Tanabe Pharma Corp., Novo Nordisk Pharma Ltd., Taisho Toyama Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., Nippon Boehringer Ingelheim Co., Ltd., and Sumitomo Dainippon Pharma Co., Ltd., outside the submitted work. Michiaki Fukui has received grants from Nippon Boehringer Ingelheim Co., Ltd., Kissei Pharma Co., Ltd., Mitsubishi Tanabe Pharma Co, Daiichi Sankyo Co., Ltd., Sanofi K.K., Takeda Pharma Co., Ltd., Astellas Pharma Inc., MSD K.K., Kyowa Hakko Kirin Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Kowa Pharmaceutical Co., Ltd., Novo Nordisk Pharma Ltd., Ono Pharma Co., Ltd., Sanwa Kagaku Kenkyusho Co., Ltd., Eli Lily Japan K.K., Taisho Pharma Co., Ltd., Terumo Co., Teijin Pharma Ltd., Nippon Chemiphar Co., Ltd., Johnson & Johnson K.K. Medical Co., and Abbott Japan Co., Ltd. and received personal fees from Nippon Boehringer Ingelheim Co., Ltd., Kissei Pharma Co., Ltd., Mitsubishi Tanabe Pharma Corp., Daiichi Sankyo Co., Ltd., Sanofi K.K., Takeda Pharma Co., Ltd., Astellas Pharma Inc., MSD K.K., Kyowa Kirin Co., Ltd., Sumitomo Dainippon Pharma Co., Ltd., Kowa Pharma Co., Ltd., Novo Nordisk Pharma Ltd., Ono Pharma Co., Ltd., Sanwa Kagaku Kenkyusho Co., Ltd., Eli Lilly Japan K.K., Taisho Pharma Co., Ltd., Bayer Yakuhin, Ltd., AstraZeneca K.K., Mochida Pharma Co., Ltd., Abbott Japan Co., Ltd., Medtronic Japan Co., Ltd., Arkley Inc., Teijin Pharma Ltd. and Nipro Cor., outside the submitted work.

References

1. Maecker, H.T.; Lindstrom, T.M.; Robinson, W.H.; Utz, P.J.; Hale, M.; Boyd, S.D.; Shen-Orr, S.S.; Fathman, C.G. New Tools for Classification and Monitoring of Autoimmune Diseases. *Nat. Rev. Rheumatol.* 2012, 8, 317–328. [CrossRef] [PubMed]

2. Tarbell, K.V.; Lee, M.; Ranheim, E.; Chao, C.C.; Sanna, M.; Kim, S.K.; Dickie, P.; Teyton, L.; Davis, M.; Medevitt, H. CD4+ T Cells from Glutamic Acid Decarboxylase (GAD)65-Specific T Cell Receptor Transgenic Mice Are Not Diabetogenic and Can Delay Diabetes Transfer. *J. Exp. Med.* 2002, 196, 481–492. [CrossRef] [PubMed]
3. Cole, D.K.; Bulek, A.M.; Dolton, G.; Schauernberg, A.J.; Szomolay, B.; Rittase, W.; Trimby, A.; Jothikumar, P.; Fuller, A.; Skowera, A.; et al. Hotspot Autoimmune T Cell Receptor Binding Underlies Pathogen and Insulin Peptide Cross-Reactivity. J. Clin. Investig. 2016, 126, 2191–2204. [CrossRef] [PubMed]

4. Roep, B.O.; Peakman, M. Diabetogenic T Lymphocytes in Human Type 1 Diabetes. Curr. Opin. Immunol. 2011, 23, 746–753. [CrossRef]

5. Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 Diabetes. Lancet 2014, 383, 69–82. [CrossRef]

6. Wing, J.B.; Sakaguchi, S. TCR Diversity and T Cells, Sometimes More Is More. Eur. J. Immunol. 2011, 41, 3097–3100. [CrossRef]

7. Sakai, R.; Hashimoto, Y.; Usuhgome, E.; Miki, A.; Okamura, T.; Matsugasumi, M.; Fukuju, T.; Majima, S.; Matumoto, S.; Senmaru, T.; et al. Late-Night-Dinner Is Associated with Poor Glycemic Control in People with Type 2 Diabetes: The KAMOGAWA-DM Cohort Study. Endocr. J. 2018, 65, 395–402. [CrossRef]

8. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2003, 26 (Suppl. 1), S5–S20. [CrossRef]

9. Kahn, R. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997, 20, 1183–1197. [CrossRef]

10. Kobayashi, T.; Nakanishi, K.; Sugimoto, T.; Ihoh, T.; Murase, T.; Kosaka, K.; Tsuji, K. Maleness as Risk Factor for Slowly Progressive IDDM. Diabetes Care 1989, 12, 7–11. [CrossRef]

11. Kobayashi, T.; Tamemoto, K.; Nakanishi, K.; Kato, N.; Okubo, M.; Kajio, H.; Sugimoto, T.; Murase, T.; Kosaka, K. Immunogenetic and Clinical Characterization of Slowly Progressive IDDM. Diabetes Care 1993, 16, 780–788. [CrossRef] [PubMed]

12. Kobayashi, T. Subtype of Insulin-Dependent Diabetes Mellitus (IDDM) in Japan: Slowly Progressive IDDM—The Clinical Characteristics and Pathogenesis of the Syndrome. Diabetes Res. Clin. Pract. 1994, 29, 595–599. [CrossRef]

13. Kobayashi, T.; Ihoh, T.; Kosaka, K.; Sato, K.; Tsuji, K. Time Course of Islet Cell Antibodies and β-Cell Function in Non-Insulin-Dependent Stage of Type I Diabetes. Diabetes 1987, 36, 510–517. [CrossRef] [PubMed]

14. Trzupek, D.; Dunstan, M.; Cutler, A.J.; Lee, M.; Godfrey, L.; Jarvis, L.; Rainbow, D.B.; Aschenbrenner, D.; Jones, J.L.; Uhlig, H.H.; et al. Discovery of CD80 and CD86 as Recent Activation Markers on Regulatory T Cells by Protein-RNA Single-Cell Analysis. Genome Med. 2020, 12, 55. [CrossRef]

15. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

16. Gao, C.; Zhang, M.; Chen, L. The Comparison of Two Single-Cell Sequencing Platforms: BD Rhopshody and 10x Genomics Chromium. Curr. Genom. 2020, 21, 602–609. [CrossRef]

17. Reinitik, P.; Shahine, A.; Gras, S.; Cheng, T.-Y.; Farquhar, R.; Lopez, K.; Suliman, S.A.; Reineveld, J.F.; le Nours, J.; Tan, L.L.; et al. A TCR β-Chain Motif Biases toward Recognition of Human CD1 Proteins. J. Immunol. 2019, 203, 3395–3406. [CrossRef]

18. Van Rhijn, I.; Gherardin, N.A.; Kasmar, A.; de Jager, W.; Pellicci, D.G.; Kostenko, L.; Tan, L.L.; Bhati, M.; Gras, S.; Godfrey, D.I.; et al. TCR Bias and Affinity Define Two Compartments of the CD1b–Glycolipid-Specific T Cell Repertoire. J. Immunol. 2014, 192, 4054–4060. [CrossRef]

19. Kitaura, K.; Shini, T.; Matsutani, T.; Suzuki, T. A New High-Throughput Sequencing Method for Determining Diversity and Similarity of T Cell Receptor (TCR) α and β Repertoires and Identifying Potential New Invariant TCR α Chains. BMC Immunol. 2016, 17, 38. [CrossRef]

20. Henderson, L.A.; Volpi, S.; Frugoni, F.; Janssen, E.; Kim, S.; Sundel, R.P.; Dedeoglu, F.; Lo, M.S.; Hazen, M.M.; Beth Son, M.; et al. Next-Generation Sequencing Reveals Restriction and Clonotypic Expansion of Treg Cells in Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2016, 68, 1758–1768. [CrossRef]

21. Ritter, J.; Zimmermann, K.; Jöhrns, K.; Mende, S.; Seegerbeath, A.; Siegmund, B.; Hennig, S.; Todorova, K.; Rosenwald, A.; Daum, S.; et al. T-Cell Repertoires in Refractory Coeliac Disease. Gut 2018, 67, 644–653. [CrossRef] [PubMed]

22. Bottazzzo, G.F.; Dean, B.M.; McNally, J.M.; MacKay, E.H.; Swift, P.G.; Gamble, D.R. In Situ Characterization of Autoimmune Phenomena and Expression of HLA Molecules in the Pancreas in Diabetic Insulitis. N. Engl. J. Med. 1985, 313, 353–360. [CrossRef]

23. Willcox, A.; Richardson, S.J.; Bone, A.J.; Foulis, A.K.; Morgan, N.G. Analysis of Islet Inflammation in Human Type 1 Diabetes. Clin. Exp. Immunol. 2009, 155, 173–181. [CrossRef] [PubMed]

24. Wicker, L.S.; Leiter, E.H.; Todd, J.A.; Renjlian, R.J.; Peterson, E.; Fischer, P.A.; Podolin, P.L.; Zijlstra, M.; Jaensch, R.; Peterson, L.B. B2-Microglobulin-Deficient NOD Mice Do Not Develop Insulitis or Diabetes. Diabetes 1994, 43, 500–504. [CrossRef] [PubMed]

25. Liblau, R.S.; Wong, F.S.; Mars, L.T.; Santamaria, P. Autoreactive CD8 T Cells in Organ-Specific Autoimmunity: Emerging Targets for Therapeutic Intervention. Immunity 2002, 17, 1–6. [CrossRef]

26. Peakman, M.; Warnock, T.; Vats, A.; McNab, G.L.; Underhill, J.; Donaldson, P.T.; Vergani, D. Lymphocyte Subset Abnormalities, Autoantibodies and Their Relationship with HLA DR Types in Children with Type 1 (Insulin-Dependent) Diabetes and Their First Degree Relatives. Diabetologia 1994, 37, 155–165. [CrossRef]

27. Schneider, A.; Rieck, M.; Sanda, S.; Pihoker, C.; Greenbaum, C.; Buckner, J.H. The Ectector T Cells of Diabetic Subjects Are Resistant to Regulation via CD4+ FOXP3+ Regulatory T Cells. J. Immunol. 2008, 181, 7350–7355. [CrossRef]

28. Maerten, P.; Shen, C.; Bullens, D.M.A.; van Assche, G.; van Gool, S.; Geboes, K.; Rutgeerts, P.; Ceuppens, J.L. Effects of Interleukin-4 on CD25+ CD4+ Regulatory T Cell Function. J. Autoimmun. 2005, 25, 112–120. [CrossRef]

29. Dardalhon, V.; Awasthi, A.; Kwon, H.; Galileos, G.; Gao, W.; Sobel, R.A.; Mitsdoerffer, M.; Strom, T.B.; Elyaman, W.; Ho, I.C.; et al. IL-4 Inhibits TGF-β-Induced Foxp3+ T Cells and, Together with TGF-β, Generates IL-9+ IL-10+ Foxp3- Ectector T Cells. Nat. Immunol. 2008, 9, 1347–1355. [CrossRef]
