Optimization of Flow Shop Scheduling Problem using Tabu Search Algorithm: A Case Study

SS Dewi1*, Andriansyah1,2 and Syahriza1
1Industrial Engineering Department, Faculty of Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23114, Indonesia
2Laboratory of Industrial Computation and Optimization, Universitas Syiah Kuala, Darussalam, Banda Aceh 23114, Indonesia

*Corresponding author: susysiladewi@gmail.com

Abstract. This study discusses about scheduling of dining chair processing in a company. Products have been completed according to customer wishes. The problem is classified as flow shop scheduling problem. This paper considers a special case of a six machines of general flow shop scheduling problem which processing time of each job has the longest idle time and waiting time which causes makespan of dinning chair to be high. The goal of this problem is to minimize makespan of product processing. tabu search (TS) algorithm is used to solve this problem. Then performance of tabu search algorithm is compared with Campbell Dudek Smith (CDS) algorithm from literatures. Result shows that tabu search algorithm can improve the makespan in 1968 seconds. This result more effective compare to CDS algorithm that takes longer times 2064 seconds. Tabu search algorithm saving 4.6% makespan with the fastest computing time.

1. Introduction
Flowshop scheduling problem with the minimization makespan criterion has always been a problem that most attracted the attention of researchers. This is a due to the issues that concerns how to produce products with right on time so that it is able to fulfill customer satisfaction [1]. Companies that do not consider schedule production will be reduce customer trust then switch to another competitor firms. Many activities are carried out using the same machine, the completion of work that does not use the right pattern causes problems when the resources work on other tasks, the problem usually triggers a lot of raw materials waiting for the work process which results in too large makespan [2,3].

Many researchers have conducted a study of this scheduling, with the aim of managing flow time, makespan, machine waiting time using the heuristic method using the Campell Dudek Smith (CDS) method which uses the concept of trial and error, solving problems like this usually tends to be fast but the quality of the solution produced low and less optimal [4]. To overcome this limitation, many researchers eventually turned to methods such as the Metaheuristic Algorithms Tabu Search (TS), where this method was inspired by natural events. This method of use is easier because it is applied to computer programming languages so as to provide a better solution than the heuristic method [5-8].

The case in this paper discusses PT XYZ which is a manufacturing company engaged in the manufacture of furniture, the company produces various kinds of component products such as chair dining products and doing a lot of work using the same machine. production at this company has a waste of time which causes the machine schedule to be less efficient, so the total effect of the completion time...
of all work is late from 1 to 5 working days[9]. This flowshop scheduling problem will be solved by searching for algorithms.

2. Research Methodology
In this research conducted, there are several steps that will be shown in figure 1 below:

![Flowchart on research methodology tabu search TS algorithm](image)

Figure 1. Flowchart on research methodology tabu search TS algorithm
Based on flowchart, this can explained clearly as details below:

i. Step 1 is the secondary data collection which obtained from previous research using CDS.

ii. Step 2 is the design of TS algorithm. TS algorithm is designed using MATLAB 2013a programming language by determination the initial solution set several parameters in solution search and continued with calculate aspiration criteria.

iii. Step 3 is the numerical example. A numerical example is done manually on the TS algorithm using initial solution from CDS.

iv. Step 4 is the verification of the TS Algorithm. TS algorithm is verified if the solution obtained does not change and the combination of parameters changes. Verification is done to check the results obtained from the TS algorithm meet the parameters and according to the manual calculation.

v. Step 5 is the experiment and computing results: The experimental results are carried out by running the programs for 20 times to get the best solution and calculating the standard deviation to see the performance of the TS algorithm and see the computation time.

vi. Step 6 is the comparison of results of TS and CDS algorithms: Results done to find out how big the levels of reliability of the method inside produce solutions.

3. Numerical Examples and Computational Analysis

3.1 Design of TS algorithm
TS algorithm is an optimization method based on local search where the solution of the problem is using the history solution which is used as a search neighborhood Search to get a solution better in the next search. Besides, TS algorithm also applies restricted area system so that the solution produced not repeated a second time and the solution produced does not produce a solution that is worse than the value for initial solution. The parameters of TS algorithm are shown in table 1.

Parameter	Value
Tabu List	10
Iteration	100
Makespan Early	2064 Seconds
Early job sequence solutions	g-d-c-l-i-j-a-b-k-h-e-f

3.2 Numerical Examples
Numerical examples that are performed by using data from previous studies. As for TS design steps are as follows:

i. Input cycle time data used by the job when passing through each machine.

ii. Generate the initial solution in the form of a sequence the initial job obtained uses CDS. The job order is g-d-c-l-i-j-a-b-k-h-e-f.

iii. Determine the cost of early makespan solution is 2064 seconds.

iv. Determine maximum iteration is for 100 times.

v. Tabu list is 10.

Hence, calculating aspiration criteria as shown in table 2.
Table 2. Calculation of the TS Algorithm Manual

Machine/Work Center	Job sequencing (seconds)												
	G	d	c	L	i	j	A	b	k	h	e	f	
Cutting machine	Start	0	119	243	375	503	678	853	1120	1271	1400	1535	1662
	Finish	119	243	375	503	678	853	1120	1271	1400	1535	1662	1797
Planer machine	Start	119	243	375	503	678	869	1120	1319	1456	1586	1705	1816
	Finish	227	354	491	629	869	1086	1319	1456	1586	1705	1816	1922
Planers Machines (Press)	Start	227	354	491	629	869	1086	1319	1456	1586	1705	1816	1922
	Finish	227	354	491	629	869	1086	1319	1456	1586	1705	1816	1922
Spindle Machine	Start	-	-	-	-	-	-	1319	1477	-	-	-	-
	Finish	-	-	-	-	-	-	1319	1477	-	-	-	-
Grinding Machine	Start	227	354	491	629	1086	1303	1632	1710	1774	1859	1932	1999
	Finish	292	421	559	715	1180	1397	1710	1774	1859	1932	1999	2064
Drilling Machine	Start	-	-	-	-	-	-	1710	1852	-	-	-	-
	Finish	-	-	-	-	-	-	1710	1852	-	-	-	-

vii. Take an alternative step, move the alternative to do by moving one or two work sequences alternately as many as the specified iteration. But what must be remembered in the TS algorithm is that there is no possibility of repeating the sequence of work that occurs.

viii. Determining the candidate list the solution used, the candidate solution is the result of an alternative step that has a sequence of jobs with the lowest makespan. How it be processed is given in table 3 below.

Table 3. List of Candidate Solutions

Iteration	Job sequencing	Makespan
1	g-d-c-l-i-j-a-b-k-h-e-f	2064
2	d-g-c-l-i-j-a-b-k-h-e-f	2064
3	c-d-g-l-i-j-a-b-k-h-e-f	2064
4	l-c-d-g-i-j-a-b-k-h-e-f	2064
5	i-l-c-d-g-j-a-b-k-h-e-f	2064
6	j-i-l-c-d-g-a-b-k-h-e-f	2064
7	a-j-i-l-c-d-g-b-k-h-e-f	1977
8	g-c-d-l-i-j-a-b-k-h-e-f	2064
9	g-l-c-d-i-j-a-b-k-h-e-f	2064
10	g-i-l-c-d-j-a-b-k-h-e-f	2064
ix. Choose the order of jobs that have the lowest makespan that is the best solution.

3.3 Verification of TS algorithm results

The results of TS algorithm solutions obtained from MATLAB will check whether the solution does not violate. The Tabu list and the iteration determined and calculated according to the method manually. Based on table 4, the results obtained from design do not violate the boundaries specified parameters.

Parameter	Value	Unfulfilled Constrain
Tabu list	10	X
Iteration	100	X
Early Makespan	2064 seconds	X

Table 4. Verification of TS Algorithm

3.3 Results of experiment and computing

Table 5 below is the experimental results from TS stochastic and 20 attempts were made to find out level of TS algorithm data dissemination.

Experiments	Makespan (seconds)
1	1970
2	1970
3	1968
4	1968
5	1968
6	1975
7	1970
8	1968
9	1970
10	1968
11	1968
12	1968
13	1970
14	1968
15	1968
16	1968
17	1968
18	1968
19	1968
20	1968

Mean	1968.85
Standard Deviation	1.69
The standard deviated values are obtained to find out the level of data dissemination as shown in figure 2. The smaller the standard deviation obtained, the results of the experiment are the best.

![Standard Deviation Graph](image)

Figure 2. Standard deviation graph

The graph that shows the value of these 20 experiments spread evenly and there was no significant change from the solution what is obtained means that the algorithm has have good performance in producing solution. In each experiments, also presented the best solution chart used to find out in what iterations solutions that have the best value found based on the graph, the job sequence is selected produced to be the best solution as shown in figure 3.

![Best Solution Graph](image)

Figure 3. Best solution graph.

The graph shows that the data are in the 16 to 100 constant range and no more changes. That is, at the iteration value of the solution obtained has been convergent. The appearance of the job sequence and makespan of TS algorithm will be presented in figure 4.
The best makespan =

1968

The best sequences =

12 9 1 7 11 5 10 2 3 8 4 6

Figure 4. The best makespan and job sequences.

Next, is the scheduling repair Gantt chart using the TS algorithm So, this can be show in figure 5 as visualize.

Figure 5. Gantt chart scheduling repair using TS algorithm.

Figure 5, on the improved Gantt chart done using TS looks to occur the initial reduction in makespan value 2064 seconds to 1968 seconds.
3.4 Comparison of CDS Result and TS algorithm

Method	Job Sequence	Makespan
CDS	g-d-c-l-i-j-a-b-k-h-e-f	2064 Seconds
TS	l-i-a-g-k-e-j-b-c-h-d-f	1968 Seconds

From table 6, it can be concluded that scheduling completion using TS algorithms is much better than the CDS method. TS algorithm can be shortening the completion time by 4.6%.

4. Conclusion

This paper aims to reduce the makespan of dining chair and compare between the TS method with CDS method. The result of this paper is scheduling using the TS method produces makespan about 1968 seconds, where the makespan value is 96 seconds or 4.6% smaller than compared to results scheduling using the CDS method. Also this shows that the scheduling dining chair use tabu search (TS) algorithm is better than use CDS method.

References

[1]. Siburian R. and Ginting A. SS. 2013 Penjadwalan produksi job shop dengan menggunakan algoritma Tabu Search pada PT. XYZ. 8(2) pp. 1–5
[2]. Nakandhrakumar R.S, Seralathan S, Azarudeen A and Narendran V. 2014 Optimization of Job Shop Scheduling Problem using Tabu Search Optimization Technique. 3(3) pp. 1241–1244
[3]. Eksioğlu, B., Eksioğlu S. D. and Jain P. 2008 A Tabu Search algorithm for the flowshop scheduling problem with changing neighborhoods. Computers & Industrial Engineering, pp. 1–11
[4]. Solimanpur M., Vrat P. and Shankar R. 2004 A neuro-tabu search heuristic for the flow shop scheduling problem. Computers and Operations Research.31(13) pp. 2151–2164
[5]. Baker K. R. and Dan T. 2009 Principles Of Sequencing and Scheduling, New Jersey:John Wiley & Sons Inc. Hoboken
[6]. Ben-Daya M. and Al-Fawzan M. 1998 A tabu search approach for the flowshop scheduling problem. European Journal of Operational Research. 109(1) pp. 88–95
[7]. Cesaret B., Oğuz C. and Sibel Salman F. 2012 A tabu search algorithm for order acceptance and scheduling. Computers and Operations Research. 39(6) pp. 1197–1205
[8]. Wang C., Lig X. and Wang Q. 2010 Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion. European Journal of Operational Research. 206(1) pp. 64–72
[9]. Hilmi T. M. J. 2017 Identifikasi dan Minimasi Time Waste dengan Pendekatan Value Stream Mapping dan Optimasi Penjadwalan Mesin Menggunakan Metode CDS pada Proses Produksi Dining Chair