Environmental Research Communications

PAPER

Annual effective dose of radon in groundwater samples for different age groups in Obuasi and Offinso in the Ashanti Region, Ghana

Irene Opoku-Ntim1,2, Aba Bentil Andam1, Tetteh T Akiti1, JJ Fletcher3 and Vicenzo Roca3

1 School of Nuclear and Allied Sciences, P.O.Box AE1, Atomic Accra, Ghana
2 Nuclear Application Centre, NNRI, GAEC, P.O. Box LG80, Legon Accra, Ghana
3 Dipartimento di Fisica, Universita’ degli Studi di Napoli Federico II, Naples, Italy, Sezione di Napoli, Istituto Nazionale di Fisica Nucleare (INFN), Naples, Italy
4 University of Development Studies, Tamale, Ghana
5 Author to whom any correspondence should be addressed.

E-mail: ina82ma@gmail.com

Keywords: effective dose, inhalation dose, ingestion, groundwater, radon

Abstract

The study presents radon (222Rn) activity concentration in the groundwater samples and their annual effective dose exposure in Offinso and Obuasi in the Ashanti Region for different age groups. Radon measurement was made using Durridge RAD-7 H2O technique. In Obuasi, mean 222Rn concentration in groundwater was 0.09 ± 0.01 Bq l−1, mean annual effective dose due to ingestion for adult, child and infant were 0.64 ± 0.11 μSv yr−1, 1.28 ± 0.21 μSv yr−1 and 4.46 ± 0.73 μSv yr−1 respectively and the mean annual effective dose due to inhalation was 0.28 ± 0.05 mSv yr−1 for the dry season whereas in the rainy season the mean 222Rn concentration in groundwater was 0.08 ± 0.01 Bq l−1, the mean annual effective dose due to ingestion for adult, child and infant was 0.56 ± 0.09 μSv yr−1, 1.13 ± 0.18 μSv yr−1, 3.94 ± 0.62 μSv yr−1 respectively and the annual effective dose due to inhalation was 0.24 ± 0.04 mSv yr−1. In Offinso, the mean 222Rn concentration in groundwater was 0.14 ± 0.05 Bq l−1, mean annual effective dose due to ingestion for adult, child and infant was 1.03 ± 0.37 μSv yr−1, 2.06 ± 0.74 μSv yr−1, and 7.20 ± 0.74 μSv yr−1 respectively and the mean annual inhalation dose a mean of 0.46 ± 0.16 mSv yr−1 for the dry season. In the rainy season, the mean indoor 222Rn concentration in groundwater was 0.13 ± 0.04 Bq l−1, mean annual effective dose due to ingestion for adult, child and infant was 1.26 ± 0.31 μSv yr−1, 1.89 ± 0.61 μSv yr−1 and 6.62 ± 2.15 μSv yr−1 respectively and the mean annual effective dose due to inhalation was mean of 0.41 ± 0.13 mSv yr−1. The mean annual effective doses of all the samples are lower than the reference level of 0.1 mSv yr−1 for drinking water of WHO and EU Council. It has been concluded that drinking water of the study area is generally safe as far as radon related health hazards are concerned apart from a few isolated cases. It has been found that radon levels within the region have a positive correlation with depth of the water sources.

Introduction

The quality of water is an important parameter for environmental studies and thus it is necessary to have regulations guiding natural radioactivity in drinking water [1]. The existence of radionuclides in drinking water gives rise to internal exposure, directly via their decay processes, through ingestion and inhalation and indirectly, when they are combined as part of the food chain [2]. Measurement of radioactivity in drinking water helps to ascertain the risk of exposure to radiation from daily consumption of water [1]. Radon is a radioactive, colorless, odorless, and tasteless gas that is formed through the breakdown of uranium in soil and rocks.

Studies on radon and its correlation with the type of geology is ongoing in different parts of the world [3–5]. In big cities, water processing in large municipal systems aerates the water, which allows radon to escape, and delays the use of water until most of the remaining radon has decayed [6]. Groundwater has become the source
of drinking water for most inhabitants of both rural and urban settlements due to water shortage which has been hitting most parts of cities [7]. It has been estimated that lack of clean drinking water and sanitation services leads to water-related diseases globally and between five to ten million deaths occur annually, primarily of small children [8]. Population growth and urbanization have put a lot of pressure on water resources in the world. This has resulted in adequate public water supply. Drilling of boreholes has now become the norm in most urban areas [7].

The presence of radon in groundwater is predominantly due to the decay of radium (226Ra) found in rock and soils. Radon can also be generated within water distribution systems with high radium concentrations from radium adsorbed iron pipe scales [9]. Public exposure to waterborne 222Rn and its short-lived decay products may occur through ingestion (drinking water containing 222Rn) and by inhalation (breathing 222Rn gas in indoor/outdoor air which has been released from household water), both mechanisms posing a potential health risk [10–15]. Once in the building, water with an elevated level of radon can cause radon to diffuse into the indoor atmosphere and increase the overall radon levels [16]. There is also evidence from epidemiology and modeling studies that ingestion of radon can cause stomach cancer [17–20]. To protect the public from consequences of excessive exposure to radiation due to radon in their environment [21], mainly from the risk of lung cancer, it is necessary to understand the levels of radon in each source including household water, particularly water from groundwater sources.

The four main sources of water in the Offinso municipality are borehole (groundwater), river, stream and pipe borne water. Majority of households (43.0%) drink water from pipe borne and that of Obuasi municipality are borehole, protected well, public tap and pipe borne water. About half of households (53.3%) drink water from boreholes [22]. Radon gas released from water will contribute to the total concentration of indoor air with about 1%–2%. Due to the more contact of groundwater water with igneous and sedimentary rocks, concentration of radioactive contents in these waters can be higher than surface water sources [23–25].

Many international organizations have introduced some regulations concerning permissible concentrations of this radionuclide in drinking water. The maximum contamination level (MCL) for radon in drinking water is 11 Bq L−1 [26] and a guidance level of 100 Bq L−1 by World Health Organization [27]. In this work RAD7 manufactured by Durridge, USA was used for radon in water measurement [28]. The equipment RAD7 is a versatile instrument that can be used as the basis of a measurement system specific to radon. There are several methods already developed for measurements of radon in water. Examples are Gamma Spectroscopy (GS), Lucas cell (LC) and Liquid Scintillation (LS). In comparison with the methods mentioned above, the RAD H2O provides a method as accurate as the method Liquid Scintillation. It is portable, read faster and does not require intense studies. The use of equipment RAD7 also eliminates the need to use toxic chemicals [28].

The purpose of this survey is to contribute to the data compilation concerning the presence radon–222 in groundwater in various regions of Ghana. Among the specific objectives is to determine the radon in groundwater in Obuasi, a mining town and Offinso, a non-mining town in the Ashanti Region and the risk associated with the different age groups.

Study area

Offinso municipality

Offinso Municipality lies between longitudes 10° 60 W and 10° 45 E as well as latitudes 70° 20 N and 60° 50 s as shown in Figure 1. It shares common boundaries with Techiman Municipal Assembly to the North, Sunyani Municipal Assembly to the West, Ejura Sekyere Odumasi District Assembly to the East and the Offinso Municipal Assembly to the South. The land has three main underlying rock types upon which soil is formed. They are of the Voltain, Birimian and the Granite rock types. The Voltain rock type is found in the northeastern part of the Municipality whilst the Birimian rock type, mainly schist and gneiss, is found in the south-western part around Bonsua, Kensere, Gambia and Wawase. Granite is found in the southern and south-eastern portions, stretching from Nyamebekyere through Anyinasuso to Tutuase [22].

Obuasi municipality

The Municipality is located between latitudes 5 °35N and 5 °65N, and longitudes 6°35′W and 6°90′W. It covers a total land area of 220.7 square km. It is in the South-Western part of the Ashanti Region as shown in Figure 2. It is 64 km from Kumasi, the regional capital. The Municipality is bounded on the south by Upper Denkyira District of the Central Region, East by Adansi South, West by Amansie Central, and North by Adansi North. Obuasi is the Administrative Capital where the famous and rich Obuasi Gold Mine, now Anglo Gold Ashanti is located.

Rocks in the Municipality are mostly of Tarkwain (Pre-cambrian) and Upper Birimian formation which are noted for their rich mineral bearing potentials. Areas around Birimian and Tarkwain zones known as reefs are noted for gold deposits [31].
Materials and method

Sixty-four (64) groundwater samples from each town was sampled during the dry season in the month of February 2014 and June 2014 for the rainy season. Samples were taken after five-ten minutes of operating the wells using the submerged bottle method. Well-washed bottles of 250 ml were used for sampling and sealed with a cap underwater immediately so that radon may not get out of it. All bottles were labelled with date and time of sample collection. Samples were then placed in Ziplock bags and stored in an ice chest to maintain the field temperature of the sample. Information such well name, well number, site, date of sample collection and exposure period. The collected samples were immediately transported to Nuclear Track Detection Laboratory (NTD) of National Nuclear Research Institute (NNRI).

A calibrated portable continuous radon monitor, RAD7 (Durridge Company, USA) [28] was used for measurements. Figure 3 shows the schematic diagram of the RAD7 setup for radon in water measurements [28].

In the setup, 250-mL sample bottle was connected to RAD-7 detector via bubbling kit and desiccant tube to establish a closed air loop. An internal air pump (with flow rate of about 1 L min$^{-1}$) in the RAD-7 was activated every 5 min for 1 min to purge/degass/aerate and circulate radon present in the water into the closed air loop, so that radon released to air stream can finally enter RAD-7 analyzer after passing through desiccant tube and air filter. An air filter is used at the entrance of the RAD-7 to prevent dust particles and charged ions from entering the radon chamber.

The detection efficiency of the RAD-7 decreases with increase in relative humidity, owing to the neutralization of Po ions by water particles. Hence, RAD H$_2$O requires that the desiccant, anhydrous CaSO$_4$ (which is commercially sold as Passive Drystick (model no. 12) by Durridge Co.), can be used to maintain humidity at level lower than 6%–10% in the radon chamber and also to dry the air stream before it enters the RAD-7 detector.

To ensure the quality control and reliability of the sampling and measurement methods, each sample was analyzed in 4cycles of 5 min each, with an initial aeration time of 5 min.

Initially, the pump runs for 5 min, aerating the sample and delivering the radon to the RAD-7. The system will wait a further 5 min and then it starts counting. During the 5 min of aeration, more than 95% of the available

Figure 1. Map of Ghana showing Offinso Municipality [29].
Figure 2. Map of Ghana showing Obuasi study area. Reprinted from [30], with permission from authors.

Figure 3. A schematic diagram of the RAD7. With permission from the Durridge Company, Inc [28].
The start

From the tables 1 and 2, 222Rn concentration in groundwater varied from 0.04 Bq l$^{-1}$ to 8 SvBq l$^{-1}$. Annual effective dose due to ingestion for adult, child and infant varied from 0.09 ± 0.16 Bq l$^{-1}$ to 8 SvBq l$^{-1}$. UNSCEAR has estimated that the conversion factor for ingestion of radon in water is 10^{-5} for an adult, 10^{-4} for a child and 7×10^{-4} SvBq l$^{-1}$ for an infant [34]. According to UNSCEAR, doses to children and infants for similar consumption rates could be a factor of 2 and 7 higher, respectively [35].

Radon decay correction

During the radon in water analysis or if a sample is taken and analyzed some time later (rather than immediately), the sample’s radon concentration will decline due to the radioactive decay. Hence, it is essential that the resulting activity concentrations were decay-corrected back from the time the sample was drawn (time of sampling) to the time the sample was counted. The decay correction is a simple exponential function with a time constant of 132.4 h. The time elapsed for the sample collection and analysis will be corrected using the equation

$$C = C_0 e^{-\lambda t}$$

de where C = measured concentration,

C_0 = initial concentration (to be calculated after the decay correction),

t = time elapsed since collection (days).

Usually decay correction is required to correct the radon result back to the sampling time. However, in the present study, the collected samples were immediately analyzed after the collection without any delay and hence decay correction was not calculated.

Annual effective dose calculation, ingestion (H_{ing}) and inhalation (H_{inh})

The annual effective dose due to the ingestion of radon from groundwater (H_{ing}), was calculated according to equation (1) [32, 33]:

$$H_{ing}(mSv/yr) = C_{Rn} \times D_{ing} \times L$$

(1)

Where

H_{ing}—committed effective dose, mSv$^{-1}$

C_{Rn}—radon concentration in water, Bq$^{-1}$

D_{ing}—conversion factor, 1×10^{-8} SvBq$^{-1}$

L—is annual water consumption by an adult in liters.

The daily water consumption by an adult of 2 l (730 litres per year) was used [34]. The conversion factor for ingestion of radon in water is 10^{-8} SvBq$^{-1}$ for an adult, 2×10^{-8} SvBq$^{-1}$ for a child and 7×10^{-8} SvBq$^{-1}$ for an infant [34].

The annual effective dose due to the inhalation of radon (H_{inh}), resulting from the radon concentration in drinking water, was calculated using the following relation by [25, 36]

$$H_{inh}(nSv/yr) = C_{Rn} \times R \times F \times T \times D$$

(2)

Where

C_{Rn}—radon concentration in water, in Bq$^{-1}$

R—air to water concentration (10^{-4}),

F—Equilibrium factor between indoor radon and its progeny (0.4),

T—Exposure time in hours (8670 h$^{-1}$),

D—Dose conversion factor 9 nSv (Bq$^{-1}$ m$^{-3}$)$^{-1}$ [35].

Results and discussion

From the tables 1 and 2, 222Rn concentration in groundwater varied from 0.04 Bq l$^{-1}$ to 0.16 Bq l$^{-1}$ and a mean of 0.09 ± 0.01 Bq l$^{-1}$. Annual effective dose due to ingestion for adult, child and infant varied from 0.28μSv yr$^{-1}$ to 1.14μSv yr$^{-1}$, 0.57μSv yr$^{-1}$ to 2.28μSv yr$^{-1}$ and 1.98μSv yr$^{-1}$ to 7.92μSv yr$^{-1}$ respectively with a mean of $0.64 \pm 0.11 \mu$Sv yr$^{-1}$, $1.28 \pm 0.21 \mu$Sv yr$^{-1}$ and $4.46 \pm 0.73 \mu$Sv yr$^{-1}$ respectively. The annual
The annual effective dose due to inhalation varied from 0.12 mSv yr\(^{-1}\) to 0.45 mSv yr\(^{-1}\) with a mean of 0.28 ± 0.05 mSv yr\(^{-1}\) for the dry season.

In the rainy season, \(^{222}\text{Rn}\) concentration in groundwater varied from 0.03 Bq l\(^{-1}\) to 0.13 Bq l\(^{-1}\) with a mean of 0.08 ± 0.01 Bq l\(^{-1}\) the annual effective dose due to ingestion for adult, child and infant varied from 0.22 μSv yr\(^{-1}\) to 0.96 μSv yr\(^{-1}\), 0.44 μSv yr\(^{-1}\) to 1.91 μSv yr\(^{-1}\), 1.53 μSv yr\(^{-1}\) to 6.69 μSv yr\(^{-1}\) respectively with a mean of 0.56 ± 0.09 μSv yr\(^{-1}\), 1.13 ± 0.18 μSv yr\(^{-1}\), 3.94 ± 0.62 μSv yr\(^{-1}\) respectively. The annual effective dose due to inhalation varied from 0.09 μSv yr\(^{-1}\) to 0.41 μSv yr\(^{-1}\) with a mean of 0.24 ± 0.04 μSv yr\(^{-1}\) for the Obuasi municipality.

Descriptive statistics of \(^{222}\text{Rn}\) concentrations, the annual effective dose due to ingestion (\(H_{\text{ing}}\)) and inhalation (\(H_{\text{inh}}\)) of radon in groundwater in the dry and rainy seasons are shown in tables 1 and 2 for Obuasi and tables 2 and 3 for Offinso.

From tables 3 and 4, \(^{222}\text{Rn}\) concentration in groundwater varied from 0.04 Bq l\(^{-1}\) to 0.47 Bq l\(^{-1}\) with a mean of 0.14 ± 0.05 Bq l\(^{-1}\), the annual effective dose due to ingestion for adult, child and infant varied from 0.28 μSv yr\(^{-1}\) to 3.42 μSv yr\(^{-1}\), 0.56 μSv yr\(^{-1}\) to 6.83 μSv yr\(^{-1}\), and 1.97 μSv yr\(^{-1}\) to 23.91 μSv yr\(^{-1}\) respectively with a mean of 1.03 ± 0.37 μSv yr\(^{-1}\), 2.06 ± 0.74 μSv yr\(^{-1}\), and 7.20 ± 0.74 μSv yr\(^{-1}\) respectively. The annual inhalation dose varied from 0.12 mSv yr\(^{-1}\) to 1.48 mSv yr\(^{-1}\) and a mean of 0.46 ± 0.16 mSv yr\(^{-1}\) for the dry season.
222Rn concentration in groundwater in the rainy season varied from 0.04 Bq l\(^{-1}\) to 0.40 Bq l\(^{-1}\) with a mean of 0.13 ± 0.04 Bq l\(^{-1}\). The annual effective dose due to ingestion for adult, child and infant varied from 0.28 μSv yr\(^{-1}\) to 2.91 μSv yr\(^{-1}\), 0.55 μSv yr\(^{-1}\) to 5.81 μSv yr\(^{-1}\), and 1.94 μSv yr\(^{-1}\) to 20.34 μSv yr\(^{-1}\) respectively and a mean of 1.26 ± 0.31 μSv yr\(^{-1}\), 1.89 ± 0.61 μSv yr\(^{-1}\) and 6.62 ± 2.15 μSv yr\(^{-1}\) respectively. The annual effective dose due to inhalation varied from 10.12 mSv yr\(^{-1}\) to 1.26 mSv yr\(^{-1}\) and a mean of 0.41 ± 0.13 mSv yr\(^{-1}\).

The seasonal average for RAD7 was 0.08 ± 0.01 Bq l\(^{-1}\) and 0.14 ± 0.05 Bq l\(^{-1}\) respectively for Obuasi and Offinso.

The reason for this low level is in the groundwater is attributed to the fact that, radon gas is easily released by the agitation in groundwater. Boreholes in the sampled areas had handheld pumps that were used to pump the water into a sampling bucket before sample bottles were filled. Through this process, part of the radon gas de-emanates during the flow of water from its source to the sampling bucket. Comparatively radon concentrations in groundwater for Offinso was higher than Obuasi for the two seasons. This high concentrations in Offinso as compared to Obuasi is due to the geology of the area which has granitic underlying rocks mainly granite as these types of rocks has appreciable amount of uranium as compared to the underlying rocks in Obuasi which is Birimian and has low amount of uranium [37]. Also, the geological structure, porosity of the soil, meteorological parameters can also be a contributory factor.

Table 3.
A table showing 222Rn concentrations, the annual effective dose due to ingestion (H\(_{ing}\)) and inhalation (H\(_{inh}\)) of radon in ground water in the Offinso Municipality during the dry season using RAD7.

Sampling location	Radon concentration in Bq l\(^{-1}\)	H\(_{ing}\) (μSv/yr)	H\(_{inh}\) (mSv/yr)						
	Adults	Child	Infant	Adults	Child	Infant	Adults	Child	Infant
BS 1	0.16	1.14	2.28	7.97	0.49				
BS2	0.47	3.42	6.83	23.91	1.48				
D1	0.15	1.12	2.25	7.86	0.49				
D2	0.04	0.28	0.57	1.98	0.12				
AN1	0.08	0.57	1.14	3.99	0.25				
AN2	0.04	0.28	0.57	1.99	0.12				
ANT1	0.16	1.13	2.263	7.92	0.49				
ANT2	0.04	0.28	0.56	1.97	0.12				
AM	0.14	1.03	2.06	7.20	0.46				
GM	0.10	0.71	1.42	4.97	0.31				
Min	0.04	0.28	0.56	1.97	0.12				
Max	0.47	3.42	6.83	23.91	1.48				
SE	0.05	0.37	0.74	2.58	0.16				

GM: Geometric mean, AM: Arithmetic Mean Min: Minimum, Max: Maximum, SE: Standard Error, BS: Bonsua, D: Dome, AN-Anyankaso, ANT: Antoa.

Table 4.
A table showing 222Rn concentrations, the annual effective dose due to ingestion (H\(_{ing}\)) and inhalation (H\(_{inh}\)) of radon in ground water in the Offinso Municipality during the rainy season using RAD7.

Sampling location	Radon concentration in Bq l\(^{-1}\)	H\(_{ing}\) (μSv/yr)	H\(_{inh}\) (mSv/yr)						
	Adults	Child	Infant	Adults	Child	Infant	Adults	Child	Infant
BS 1	0.15	1.06	2.12	7.41	0.46				
BS2	0.40	2.91	5.81	20.34	1.26				
D1	0.16	1.13	2.26	7.92	0.49				
D2	0.04	0.28	0.57	1.99	0.12				
AN1	0.10	0.72	1.45	5.06	0.31				
AN2	0.04	0.28	0.57	1.99	0.12				
ANT1	0.12	0.9	1.8	6.29	0.39				
ANT2	0.04	2.77	0.55	1.94	0.12				
AM	0.13	1.26	1.89	6.62	0.41				
GM	0.09	0.69	1.38	4.82	0.39				
Min	0.04	0.28	0.55	1.94	0.12				
Max	0.40	2.91	5.81	20.34	1.26				
SE	0.04	0.31	0.61	2.15	0.13				

GM: Geometric mean, Min: Minimum, Max: Maximum, SE: Standard Error, BS: Bonsua, D: Dome, AN: Anyankaso, ANT: Antoa.
From Table 5, a comparison of the radon concentrations obtained in this research with other parts of the world indicates that ^{222}Rn activity concentration of the ground samples were lower. Therefore, radon in groundwater in the selected study area no threat to the lives of the people in this locality.

Table 5. Radon concentrations in various types of waters from other countries as compared to present study.

Country	Type of water (Bq L$^{-1}$)	Groundwater/well water	Tap water (public water)	Surface water	Rain water	References
China		1.45–49.00	LLD-29.00			[27]
Turkey		1.42–53.64	0.91–12.58			[38]
Poland		0.42–10.32	0.5–129.3			[39]
Romania		1.5–4.4	0.3–129.3			[40]
Czech Republic				0.5–1865		[40]
Japan		0.03–29 500	0.07–157			[40]
Sweden		1–947	1–845			[40]
		0–9289				
Palestine		0.42–0.89	0.25–1.23	0.46–1.14	0.26–1.51	[40]
Nigeria		1.67–49.47	2.1			[41]
India		0.9–5.1	1.6			[7]
Pakistan		3.56–8.56				[42]
Malaysia		9.3				[43]
Ghana		2.15–28.70				[44]
Ghana		5.40–46.7				[45]
Present Work		0.04–0.16e				Present study
		0.03–0.13f				
		0.04–0.47g				
		0.04–0.40h				

* a hand dug well.
* b drilled well.
* c Temperature of water at 5 °C.
* d Temperature of water at 15 °C.
* e Obuasi Dry season RAD7.
* f Obuasi rainy season RAD7.
* g Ofinso dry season RAD7.
* h Ofinso Rainy Season RAD7.

From Table 5, a comparison of the radon concentrations obtained in this research with other parts of the world indicates that ^{222}Rn activity concentration of the ground samples were lower. Therefore, radon in groundwater in the selected study area no threat to the lives of the people in this locality.

Conclusions

^{222}Rn concentrations in groundwater from Obuasi Municipality was lower than Offinso Municipality for both seasons. ^{222}Rn concentrations in groundwater from the two municipalities were below the permissible value of 11 Bq L$^{-1}$ recommended by the USEPA and 100 Bq L$^{-1}$ recommended by the European Union and World Health Organization (WHO). The mean annual effective dose due to ingestion of ^{222}Rn in groundwater for infants and children were higher than adults. The annual effective dose due to inhalation of radon in groundwater was one order higher than radon from ingestion of groundwater. Therefore, it could be concluded that it is not the ingestion of radon in groundwater but inhalation of the radon escaping from groundwater which is a substantial part of radiological hazard due to the presence of the natural radionuclides from the uranium and thorium series in the groundwater. Although the mean values obtained from both municipalities were lower than the recommended value of 1 mSv$^{-1}$ (Villalba et al 2005), Bonsua in the Offinso Municipality had values of 1.48 mSv$^{-1}$ and 1.26 mSv$^{-1}$ for RAD7 in the dry and rainy season respectively.

Acknowledgments

The authors are grateful to L’Oreal UNESCO and Instituto Nazionale di Fisica, Napoli for the research grant. Authors are also grateful to the inhabitants of Obuasi and Offinso for their support.
Funding
This work was funded by INFN, Sezione di Napoli, Italy and L’oreal UNESCO for Women in Science programme.

ORCID iDs
Irene Opoku-Ntim https://orcid.org/0000-0002-7151-2746

References
[1] Ravikumar P and Somashekar R K 2014 Determination of the radiation dose due to radon ingestion and inhalation Int. J. Environ. Sci. Technol. 11 493–508
[2] Duenas C, Fernandez M C, Carretero J, Liger E and Canete S 1999 222Rn and 220Rn concentrations and doses in bottled waters in Spain J. Environ. Radiol. 45 283–90
[3] Tanner AB 1986 Geological factors that influence radon availability Indoor radon levels (Open-File Report 86-222) (Pittsburg, PA: U.S Geological Survey) pp 1–12
[4] Ramola R C, Sandhu A S, Singh M and Virk H S 1989 Geochemical exploration of uranium using radon measurement techniques Nucl Geophys 3 57–69
[5] Choueby V M, Ramola R C and Sharma K K 1994 Soil Gas and Indoor radon studies in Doon valley, India Nucl. Geophys. 8 49–54
[6] Orton J K 1992 The geology of radon (United States of America: General Interest Publication) The geology of radon: U.S. Geological Survey (https://pubs.usgs.gov/gip/700018/report.pdf)
[7] Nyarko A A 2008 Assessment of groundwater quality and urban water provision: a case of Taifa township in the Ga-East district of the Greater Accra Region, Ghana MS Environmental Science (Kumasi, Ghana: KNUST)
[8] Snyder J D and Merson M H 1982 The magnitude of the global problem of acute diarrheal disease: a review of active surveillance data Bulletin of the World Health Organization pp 605–613
[9] Field R W, Fisher E L, Valentine R L and Kross B C 1995 Radium-bearing pipe scale deposits: implications for national waterborne radon sampling methods Ann J Public Health 85 567–70
[10] National Research Council 1998 Assessment of radon in drinking water, committee on the assessment of exposures to radon in drinking water Board on radiation effects research (Washington, D.C.: National Academy Press)
[11] Yu K N, Guan Z J, Stokes M J and Young E C M 1994 A preliminary study on the radon concentrations in water in Hong Kong and the associated health effects Appl. Radiat. Isot. 45 809–10
[12] Barnett J M, Holbert K E, Stewart B D and Hood W K 1995 Lung dose estimates from 222Rn in Arizona groundwater based on liquid scintillation measurements Health Phys. 68 699–703
[13] Tayyeb Z A, Kinsara A R and Farid S M 1998 A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects J. Environ. Radiol. 38 97–104
[14] Somashekar R K and Ravikumar P 2010 Radon concentration in groundwater of Varahi and Markandeya river basins, Karnataka state, India J. Radioanal. Nucl. Chem. 285 343–51
[15] Arora V, Bajwa B S and Singh S 2011 Measurements of radon concentrations in ground water samples of tectonically active areas of Himachal Pradesh, North West Himalayas, India Radiat Prot Environ 34 50–54 (http://www.rpce.org.in/text.asp/2011/34/1/50/93955)
[16] Appleton J D 2005 Radon in air and water essentials of Medical Geology: Impacts of the Natural Environment on Public Health ed O Selinus (Amsterdam: Elsevier) pp 227–262
[17] National Research Council 1999 Risk Assessment of Radon in Drinking Water (Washington, DC, United States of America: National Academy Press, National Research Council) 978-0-309-17367-4 (https://doi.org/10.17226/6287)
[18] Hopke P K et al 2000 Health risks due to radon in drinking water Environ. Sci. Technol. 34 921–6
[19] Tabasum N and Majitba S 2012 Measurement of annual effective doses of radon from drinking water and dwellings by CR-39 track detectors in Kulachi city of Pakistan J, Basic Appl. Sci. 8 528–36
[20] Thabayneh K M 2015 Measurement of 222Rn concentration levels in drinking water and the associated health effects in the Southern part of West Bank—Palestine Appl. Radiat. Isot. 103 48–53
[21] Gillmore G K, Grattan J, Pratt F B, Phillips P S and Pearce G 2002 Radon, water and abandoned metalliferous mines in the UK: environmental and human health implications Ch: Uranium in the Aquatic Environment (Proceedings of the International Conference on Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium) ed B J Merkel et al (Berlin: Springer, Berlin, Heidelberg) pp 55–76
[22] Ghana Statistical Service 2010 Population and Housing Census. District Analytical Report. Offinso Municipality I 1–2 Population and Housing Census. District Analytical Report. Offinso Municipality. 2014 (http://www2.statsghana.gov.gh/docfiles/2010_District_Report/Ashtani/OFFINSO%20MUNICIPAL.pdf)
[23] Akawwi E 2014 Radon–222 concentrations in the groundwater along eastern Jordan Rift Journal of Applied Sciences 14 309–16
[24] Kam E and Bozkurt A 2007 Environmental radioactivity measurements in Kastamouni region of northern. Turkey Appl. Radiat. Isot. 65 440–4
[25] Rangel J D, Lopez del Rito H, Garciala F M, Torresa L Q, Villalbab M, Sujib L C and Cabrerab M M 2002 Radioactivity in bottled waters sold in Mexico Appl. Radiat. Isot. 56 931–6
[26] United States Environmental Protection Agency (USEPA) 1991 Guidelines for Developmental Toxicity Risk Assessment. EPA/600/FR–91/001
[27] World Health Organization (WHO) 2011 Radiological Aspects 4th edn (Geneva, Switzerland: Guidelines for drinking-water quality) Chap 9
[28] Durridge Company Inc 2009 RAD H2O Radon in Water Accessory for the RAD7 (United States of America: Durridge Company) RAD7 RAD H2O–radon in water accessory owner’s manual (http://durridge.com/documentation/RADH₁-₂/RADH₁-₂MU.pdf)
[29] Edmund Nii Laryea Brownie 2019 (https://researchgate.net/figure/Map-of-Offinso-District-showing-the-study-towns-Source-Prepared-using-ArcGIS-software_fig1_51970547) (https://www.researchgate.net/publication/51970547_The_effectiveness_and_perception_of_the_use_of_sulphadime-zyrimethamine_in_intermittent_preventive_treatment_of_malaria_in_pregnancy_programme_in_Offinso_District_of_Ashanti_Region_Ghana_figures?lo=1)
[30] Bansah Kenneth and Suglo Raymond 2012 Physico-Chemical and Microbiological Analysis of Wastewater in Stabilisation Pond 2nd UMaT Biennial International Mining and Mineral Conference (Tarkwa, Ghana) pp 36–44 (https://researchgate.net/figure/Map-of-Ghana-showing-Obuasi-in-the-Adansi-West-District-of-the-Ashanti-Region_fig1_280808218)

[31] Ghana Statistical S 2010 Population and Housing Census. District Analytical Report. Obuasi Municipality. 2014

[32] Tabassum N and Mujtaba S 2012 Measurement of annual effective doses of radon from drinking water and dwellings by CR-39 track detectors in Kulachi City of Pakistan J. Basic Appl. Sci. 8 528–36

[33] Thabayneh Khalil M 2015 Measurement of 222Rn concentration levels in drinking water and the associated health effects in the Southern part of Westbank—Palestine Appl. Radiat. Isot. 103 48–53

[34] United Nations Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 1993 Report to the General Assembly, with Scientific Annexes (New York: United Nations sales publication E.94.IX.2. United Nations)

[35] United Nations Scientific Committee on the Effect of Atomic Radiation, Sources and Effects of Ionizing Radiation 2000 Sources and Effects of Ionizing Radiation (UNSCEAR Report to the General Assembly, with Scientific Annexes) (New York: United Nations Publication)

[36] Sujo L et al 2004 Uranium-238 and thorium-232 series concentrations in soil, radon-222 indoor and drinking water concentrations and dose assessment in the city of Aldama Chihuahua, Mexico J. Environ. Radioact. 77 05–219

[37] Kesse G O 1985 The republic of Ghana—Geography, physiography, geology and geohydrology The mineral and rock resources of Ghana 14 (Boston: A.A. Balkema) 9–42

[38] Akar T U, Gurler O, Akkaya G, Kilic N, Yalcin S, Kaynak G and Gundogdu O 2012 Evaluation of radon concentration in well and tap waters in Bursa, Turkey Radiat. Prot. Dosim. 150 207–12

[39] Bern H, Plota U, Staniszewska M, Bern E M and Mazurek D 2013 Radon (222Rn) in underground drinking water supplies of the southern greater Poland region J. Radioanal. Nucl. Chem. 299 1307–12

[40] IAEA (International Atomic Energy Agency) 1996 Basic safety standards for protection against ionizing radiation and for safety of radiation sources Safety series No 115 (Vienna: IAEA) 92–0-104295-7

[41] Ademola J A and Oyeleke O A 2017 Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan, Nigeria J. Radiol. Prot. 37 189–200

[42] Ahmad N, Uddin Z, Rehman J U, Bakhsh M and Ullah H 2019 Evaluation of radon concentration and heavy metals in drinking water and their health implications to the population of Quetta, Balochistan, Pakistan Int. J. Environ. Anal. Chem. 99 1–10

[43] Ahmad N, Rehman J, ur Rehman J and Nasar G 2019 Assessments of 226Ra and 222Rn concentration in well and tap water from Sik, Malaysia, and consequent dose estimates Human and Ecological Risk Assessment: An International Journal 25 1–10

[44] Asumadu-Sakyi A B, Oppon O C, Quashie F K, Adjei C A, Akortia E, Nsiah-Akoto I and Appiah K 2012 Levels and potential effect of radon gas in groundwater of some communities in the Kassena Nankana district of the Upper East region of Ghana Proceedings of the International Academy of Ecology and Environmental Sciences 2 223–33

[45] Darko E O, Adakpo O K, Fletcher J J, Awudu A R and Otoo F 2010 Preliminary studies on Rn-222 concentration in ground water from selected areas of the Accra metropolis in Ghana J. Radioanal. Nucl. Chem. 283 507–12