Fermin, D. J., Celorio, V., Calvillo, L., Dann, E., Granozzi, G., Aguadero, A., ... Kramer, D. (2016). Oxygen Reduction Reaction at LaxCa1-xMnO3 Nanostructures: Interplay between A-site Segregation and B-site Valency. Catalysis Science and Technology, 6(19), 7231-7238. https://doi.org/10.1039/C6CY01105E
Supporting Information

Oxygen Reduction Reaction at La$_x$Ca$_{1-x}$MnO$_3$ Nanostructures:

Interplay between A-site Segregation and B-site Valency

Verónica Celorio, Laura Calvillo, Ellie Dann, Gaetano Granozzi, Ainara Aguadero, Denis Kramer, Andrea Russell, and David J. Fermin
Figure S1. Characteristic TEM images of CaMnO$_3$ (a), La$_{0.37}$Ca$_{0.63}$MnO$_3$ (b) La$_{0.60}$Ca$_{0.40}$MnO$_3$ (c) and LaMnO$_3$ (d) oxide nanoparticles.
Figure S2. Particle size distributions obtained from TEM images of LaMnO$_3$ (a), La$_{0.81}$Ca$_{0.19}$MnO$_3$ (b), La$_{0.60}$Ca$_{0.40}$MnO$_3$ (c), La$_{0.37}$Ca$_{0.63}$MnO$_3$ (d) and CaMnO$_3$ (e) oxide nanoparticles. Mean nanoparticle diameters are indicated in the corresponding figures.
Figure S3. High resolution TEM images for CaMnO$_3$ (a) and La$_{0.81}$Ca$_{0.19}$MnO$_3$ (c) oxide nanoparticles. Figures b and d show the measured lattice spacing for CaMnO$_3$ (b) and La$_{0.81}$Ca$_{0.19}$MnO$_3$ (d). The distances between the planes equal 2.803 nm and 3.869 nm for CaMnO$_3$ and La$_{0.81}$Ca$_{0.19}$MnO$_3$, respectively, ascribed to the \{121\} plane.
Figure S4. C 1s region (a) and enlargement of the Mn 2p$_{3/2}$ peak (b) for the La$_x$Ca$_{1-x}$MnO$_3$ samples. In Fig. S4b, it can be seen that there is a shift towards lower BE as x increases, indicating that the Mn$^{3+}$/Mn$^{4+}$ ratio increases. This fact is in good agreement with the expected Mn$^{4+}$ and Mn$^{3+}$ oxidation states in the CaMnO$_3$ and LaMnO$_3$ samples, respectively.
Figure S5. Normalised XANES spectra at the Mn K-edge of the standards Mn$_3$O$_4$, Mn$_2$O$_3$ and MnO$_2$ samples. The inset shows the pre-edge feature.
Figure S6. Calculation of the number of Mn atoms at the surface for La$_{0.81}$Ca$_{0.19}$MnO$_3$ (a) and CaMnO$_3$ (b) by integration of the cathodic responses employing a linear background subtraction. The number of electrons in the reduction process \((n)\) per Mn atom is given by the difference in the initial oxidation state (estimated from XANES, Table S5) and the final oxidation state which correspond to Mn$^{2+}$ in all cases.
Figure S7. Overlay of the cyclic voltammograms measured in Ar-saturated 0.1 M KOH (top panels) and the disc current recorded at 1600 rpm in O$_2$-saturated 0.1 M KOH for LaMnO$_3$ (a) and CaMnO$_3$ (b) nanoparticles.
Figure S8. RRDE data of CaMnO$_3$ oxide nanoparticles at different rotation rates at 10 mV s$^{-1}$. The electrolyte was O$_2$-saturated containing 0.1 M KOH.
Figure S9. Number of electrons transferred, \(n \) (a) and \(HO_2^- \) yield (b) calculated from measurements of \(i_{RING} \) and \(i_{DISK} \) for CaMnO\(_3\), La\(_{0.34}\)Ca\(_{0.66}\)MnO\(_3\), La\(_{0.5}\)Ca\(_{0.5}\)MnO\(_3\), La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_3\) and LaMnO\(_3\) electrodes in O\(_2\)-saturated 0.1 M KOH at 1600 rpm. The potential range correspond to the diffusion limiting region. All of the catalysts mainly operates through the 4\(e^- \) process. The contributions to the peroxide formation are mostly related to thin mesoporous carbon layer.
Figure S10. Koutecky-Levich plots for ORR at Vulcan supported LaMnO$_3$ (a), La$_{0.81}$Ca$_{0.19}$MnO$_3$ (b), La$_{0.60}$Ca$_{0.40}$MnO$_3$ (c), La$_{0.37}$Ca$_{0.63}$MnO$_3$ (d) and CaMnO$_3$ (e) nanoparticles in O$_2$-saturated 0.1 M KOH solution at different potentials. Dashed line shows the theoretical slope corresponding to the 4e$^-$ ORR process (note this is not a fit to the data). Activities of the different catalysts at 10 mV s$^{-1}$ calculated from the experimental data (f).
Figure S11. Kinetically limiting current at 0.80 V vs RHE normalised by the effective number of Mn atoms at the surface (a), mass of oxide at the electrode (b) and the area of oxide present at the electrode (c).
Table S1. Unit-cell parameters and statistics obtained from Rietveld refinement of the XRD patterns.

Space Group	LaMnO$_3$	La$_{0.81}$Ca$_{0.19}$MnO$_3$	La$_{0.60}$Ca$_{0.40}$MnO$_3$	La$_{0.37}$Ca$_{0.63}$MnO$_3$	CaMnO$_3$
a [Å]	3.8873(3)	5.4553(6)	5.4230(4)	5.390(8)	5.2784(3)
b [Å]	7.696(2)	7.6522(11)	7.593(2)	7.4464(9)	7.4464(9)
c [Å]	5.441(2)	5.4484(9)	5.405(2)	5.2710(5)	5.2710(5)
La$_{occ}$	1.00	0.81(7)	0.60(2)	0.37(2)	---
Ca$_{occ}$	---	0.19(7)	0.40(2)	0.63(2)	1.00
Unit Cell Volume [Å3]	58.74(7)	228.46(9)	226.098(5)	221.20(10)	207.20(3)
χ^2	3.21	2.76	1.22	2.97	1.36
R_p [%]	2.05	2.03	1.72	2.20	1.49
R_{exp} [%]	2.75	2.70	2.20	2.92	1.90
R_{exp} [%]	1.53	1.63	1.98	1.70	1.63
R_{Bragg} [%]	2.93	2.49	1.54	7.09	1.16
Table S2. Atomic composition of the various La$_x$Ca$_{1-x}$MnO$_3$ samples obtained by Energy-dispersive X-ray spectroscopy (EDX-SEM). The Mn signal is used as reference.

Composition (%) Atomic	La	Ca	Mn
LaMnO$_3$	1.05 ± 0.05	---	1.00
La$_{0.81}$Ca$_{0.19}$MnO$_3$	0.79 ± 0.02	0.20 ± 0.07	1.00
La$_{0.60}$Ca$_{0.40}$MnO$_3$	0.50 ± 0.09	0.50 ± 0.08	1.00
La$_{0.37}$Ca$_{0.63}$MnO$_3$	0.34 ± 0.04	0.66 ± 0.06	1.00
CaMnO$_3$	---	1.01 ± 0.02	1.00
Table S3. Density (ρ) obtained from XRD refinement and mean particle diameters (d) measured from TEM images of the various oxide nanoparticles materials. The specific surface area (SSA) was calculated assuming that the oxide nanoparticles are spherical,

$$\text{SSA (m}^2\text{ g}^{-1}) = 6 \times 10^3/(\rho \times d)$$

where d is the mean particle size determined by TEM (nm), and ρ is the theoretical density (g cm$^{-3}$).

Material	ρ / g cm$^{-3}$	d / nm	*SSA / m2 g$^{-1}$
LaMnO$_3$	6.81	32.8 ± 5.9	27.8 ± 7.1
La$_{0.81}$Ca$_{0.19}$O$_3$	6.27	24.6 ± 5.2	40.7 ± 12.3
La$_{0.60}$Ca$_{0.40}$O$_3$	5.65	23.3 ± 5.4	47.4 ± 14.4
La$_{0.37}$Ca$_{0.63}$O$_3$	5.40	27.8 ± 5.0	41.3 ± 10.5
CaMnO$_3$	4.59	25.9 ± 4.3	51.9 ± 12.2

*Note this calculation does not consider the so-called internal porosity of the materials.
Table S4. Analysis of the single chemical components of the Ca 2p region. For each single chemical component, the BE (eV) of the Ca 2p$_{3/2}$ and amount (at. %) values are given. Peak 1 is assigned to lattice Ca, while peak 2 corresponds to CaO / CaCO$_3$.

Peak	1	2
CaMnO$_3$	344.8 eV	346.7 eV
	64.4 %	35.6 %
La$_{0.37}$Ca$_{0.63}$MnO$_3$	345.9 eV	347.2 eV
	63.4 %	36.6 %
La$_{0.60}$Ca$_{0.40}$MnO$_3$	346.1 eV	347.2 eV
	63.2 %	36.8 %
La$_{0.81}$Ca$_{0.19}$MnO$_3$	346.3 eV	347.4 eV
	58.6 %	41.4 %
Table S5. Analysis of the single chemical components of the O 1s region. For each single chemical component, the BE (eV) and amount (at. %) values are given. Peak 1 is assigned to lattice oxygen, peak 2 to La$_2$O$_3$, peak 3 to hydroxyl species, peak 4 to carbonyl groups and CaO/CaCO$_3$ species, and peak 5 to adsorbed molecular water.

Peak	1	2	3	4	5
CaMnO$_3$	528.5 eV	---	530.9 eV	532.0 eV	533.7 eV
	47.5 %	27.1 %	18.3 %	7.1 %	
La$_{0.37}$Ca$_{0.63}$MnO$_3$	528.5 eV	529.3 eV	531.1 eV	532.1 eV	533.1 eV
	6.3 %	47.1 %	24.7 %	13.4 %	7.4 %
La$_{0.60}$Ca$_{0.40}$MnO$_3$	528.5 eV	529.3 eV	531.1 eV	532.1 eV	533.6 eV
	5.4 %	44.6 %	22.5 %	24.0 %	3.5 %
La$_{0.81}$Ca$_{0.19}$MnO$_3$	528.5 eV	529.3 eV	531.2 eV	532.2 eV	533.7 eV
	8.8 %	50.3 %	21.7 %	16.3 %	2.9 %
LaMnO$_3$	528.5 eV	529.2 eV	530.9 eV	532.2 eV	533.7 eV
	5.4 %	54.6 %	22.1 %	11.2 %	6.7 %
Table S6. A:B (A = La+Ca and B = Mn) and La:Ca atomic surface ratios for the various La\textsubscript{x}Ca\textsubscript{1-x}MnO\textsubscript{3} samples as estimated by XPS.

	A : B	La : Ca
LaMnO\textsubscript{3}	73 : 27	---
La\textsubscript{0.81}Ca\textsubscript{0.19}MnO\textsubscript{3}	75 : 25	77 : 23
La\textsubscript{0.60}Ca\textsubscript{0.40}MnO\textsubscript{3}	71 : 29	73 : 27
La\textsubscript{0.37}Ca\textsubscript{0.63}MnO\textsubscript{3}	66 : 34	54 : 46
CaMnO\textsubscript{3}	61 : 39	---
Table S7. Effective Mn oxidation state obtained by XANES, faradaic charge associated with the reduction of surface Mn sites, and effective number of Mn atoms at the electrocatalyst surface.

Mn oxidation state	Charge / C	Mn atoms at the surface	
LaMnO₃	2.803 ± 0.002	(6.81±0.4) ×10⁻⁴	(4.9 ± 0.3) ×10¹⁵
La₀.8₁Ca₀.₁₉MnO₃	3.175 ± 0.002	(6.00±0.2) ×10⁻⁴	(3.4 ± 0.4) ×10¹⁵
La₀.₆₀Ca₀.₄₀MnO₃	3.515 ± 0.001	(7.52±0.3) ×10⁻⁴	(4.1 ± 0.3) ×10¹⁵
La₀.₃₇Ca₀.₆₃MnO₃	3.699 ± 0.002	(8.92±0.2) ×10⁻⁴	(7.4 ± 0.2) ×10¹⁵
CaMnO₃	4.008 ± 0.004	(4.00±0.1) ×10⁻³	(1.3 ± 0.04) ×10¹⁶