Brandenburg, Franz J.

Straight-line drawings of 1-planar graphs. (English) Zbl 07738814
Comput. Geom. 116, Article ID 102036, 17 p. (2024)

Summary: A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. However, there are 1-planar graphs that do not admit a straight-line 1-planar drawing. We show that every 1-planar graph has a straight-line drawing with a two-coloring of the edges such that edges of the same color do not cross. Thus 1-planar graphs have geometric thickness two. In addition, the drawing is nearly 1-planar, that is, it is 1-planar if all fan-crossed edges are removed. An edge is fan-crossed if it is crossed by edges with a common vertex if it is crossed more than twice. The drawing algorithm uses high precision arithmetic with numbers with $O(n \log n)$ digits and computes the straight-line drawing from a 1-planar drawing in linear time on a real RAM.

MSC:

05C62 Graph representations (geometric and intersection representations, etc.)
05C10 Planar graphs; geometric and topological aspects of graph theory
05C85 Graph algorithms (graph-theoretic aspects)

Keywords:

graph drawing; straight-line drawings; shift method; 1-planar graphs; geometric thickness

Full Text: DOI arXiv

References:

[1] Ackerman, E.; On a note on 1-planar graphs, Discrete Appl. Math., 175, 104-108 (2014) - Zbl 1298.05081
[2] Ackerman, E.; Fox, J.; Pach, J.; Suk, A., On grids in topological graphs, Comput. Geom., 47, 7, 710-723 (2014) - Zbl 1292.05087
[3] Aggarwal, A.; Klawe, M. M.; Shor, P. W., Multilayer grid embeddings for VLSI, Algorithmica, 6, 1, 129-151 (1991) - Zbl 0703.68044
[4] Alam, M. J.; Brandenburg, F. J.; Kobourov, S. G., Straight-line drawings of 3-connected 1-planar graphs, (Wismath, S.; Wolff, A., Proc. GD 2013. Proc. GD 2013, LNCS, vol. 8242 (2013), Springer), 83-94 - Zbl 1406.68054
[5] Alekseev, V.; Gončakov, V., The thickness of arbitrary complete graphs, Math. Sb., 30, 2, 187-202 (1976) - Zbl 0381.05034
[6] Bárány, I.; Rote, G., Strictly convex drawings of planar graphs, Doc. Math., 11, 369-391 (2006) - Zbl 1108.05065
[7] Bekos, M. A.; Bruckdorfer, T.; Kaufmann, M., The book thickness of 1-planar graphs is constant, Algorithmica, 79, 2, 444-465 (2017) - Zbl 1372.05049
[8] Bekos, M. A.; Kaufmann, M.; Raftopoulou, C. N., On optimal 2- and 3-planar graphs, (Aronov, B.; Katz, M. J., SoCG 2017. SoCG 2017, LIPIcs, vol. 77 (2017), Schloss Dagstuhl - Leibniz-Zentrum für Informatik), 16:1-16:16 - Zbl 1435.05057
[9] Bekos, M. A.; Kaufmann, M.; Klute, F.; Pupyrev, S.; Raftopoulou, C. N.; Ueckerdt, T., Four pages are indeed necessary for planar graphs, J. Comput. Geom., 11, 1, 332-353 (2020) - Zbl 1486.05055
[10] Bodendiek, R.; Schumacher, H.; Wagner, K., Bemerkungen zu einem Sechsfarbenproblem von G. Ringel, Abh. Math. Semin. Univ. Hamb., 53, 41-52 (1983) - Zbl 0495.05020
[11] Bodendiek, R.; Schumacher, H.; Wagner, K., Über 1-optimale Graphen, Math. Nachr., 117, 323-339 (1984) - Zbl 0558.05017
[12] Bouchet, C.; Felsner, S.; Mosbah, M., Convex drawings of 3-connected plane graphs, Algorithmica, 47, 4, 399-420 (2007) - Zbl 1118.68100
[13] Brandenburg, F. J., 1-visibility representation of 1-planar graphs, J. Graph Algorithms Appl., 18, 3, 421-438 (2014) - Zbl 1301.05238
[14] Brandenburg, F. J., A first order logic definition of beyond-planar graphs, J. Graph Algorithms Appl., 22, 1, 51-66 (2018) - Zbl 1377.05028
[15] Brandenburg, F. J., T-shape visibility representations of 1-planar graphs, Comput. Geom., 69, 16-30 (2018) - Zbl 1381.05048
[16] Brandenburg, F. J., On fan-crossing and fan-crossing free graphs, Inf. Process. Lett., 138, 67-71 (2018) - Zbl 1458.68139
[17] Brandenburg, F. J., Characterizing and recognizing 4-map graphs, Algorithmica, 81, 5, 1818-1843 (2019) - Zbl 1423.05030
[18] Brandenburg, F. J., On fan-crossing graphs, Theor. Comput. Sci., 841, 39-49 (2020) - Zbl 1461.68145
[19] Brandenburg, F. J., Fan-crossing free graphs and their relationship to other classes of beyond-planar graphs, Theor. Comput.

20. Brandenburg, F. J.; Eppstein, D.; Gleißner, A.; Goodrich, M. T.; Hanauer, K.; Reislhuber, J., On the density of maximal 1-planar graphs, (van Kreveld, M.; Speckmann, B., Proc. GD 2012. Proc. GD 2012, LNCS, vol. 7704 (2013), Springer), 327-338

21. Chen, Z.; Grigni, M.; Papadimitriou, C. H., Recognizing hole-free 4-map graphs in cubic time, Algorithmica, 45, 2, 227-262 (2006) · Zbl 1095.68076

22. Cheong, O.; Har-Peled, S.; Kim, H.; Kim, H., On the number of edges of fan-crossing free graphs, Algorithmica, 73, 4, 673-695 (2015) · Zbl 1330.05048

23. Chiba, N.; Yamanouchi, T.; Nishizeki, T., Linear time algorithms for convex drawings of planar graphs, (Progress in Graph Theory (1984), Academic Press), 153-173

24. Chiba, N.; Onoguchi, K.; Nishizeki, T., Drawing plane graphs nicely, Acta Inform., 22, 2, 187-201 (1985) · Zbl 0545.68057

25. Chrobak, M.; Kant, G., Convex grid drawings of 3-connected planar graphs, Int. J. Comput. Geom. Appl., 7, 3, 211-223 (1997) · Zbl 0875.68452

26. Chrobak, M.; Payne, T., A linear-time algorithm for drawing a planar graph on a grid, Inf. Process. Lett., 54, 241-246 (1995) · Zbl 0851.68086

27. de Fraysseix, H.; Pach, J.; Pollack, R., How to draw a planar graph on a grid, Combinatorica, 10, 41-51 (1990) · Zbl 0728.05016

28. Di Battista, G.; Eades, P.; Tamassia, R.; Tollis, I. G., Graph Drawing: Algorithms for the Visualization of Graphs (1999), Prentice Hall · Zbl 1057.68653

29. Didimo, W., Density of straight-line 1-planar graph drawings, Inf. Process. Lett., 113, 7, 236-240 (2013) · Zbl 1259.05107

30. Dillencourt, M. B.; Eppstein, D.; Hirschberg, D. D., Geometric thickness of complete graphs, J. Graph Algorithms Appl., 4, 3, 5-15 (2000) · Zbl 0955.05028

31. Eppstein, D., Separating thickness from geometric thickness, (Kobourov, S. G.; Goodrich, M. T., Proc. GD 2002. Proc. GD 2002, LNCS, vol. 2528 (2002), Springer), 150-161 · Zbl 1037.68582

32. Fáry, I., On straight line representation of planar graphs, Acta Sci. Math. Szeged, 11, 229-233 (1948) · Zbl 0032.52501

33. Gabow, H. N.; Westermann, H. H., Forests, frames, and games: algorithms for matroid sums and applications, Algorithmica, 7, 465-497 (1992) · Zbl 0771.05026

34. Harary, F., Research problem, Bull. Am. Math. Soc., 67, 542 (1961)

35. Harvey, D.; van der Hoeven, J., Integer multiplication in O(n logn), Ann. Math., 193, 2, 563-617 (2021) · Zbl 1480.11162

36. Hong, S.; Nagamochi, H., Re-embedding a 1-plane graph for a straight-line drawing in linear time, Theor. Comput. Sci., 892, 132-154 (2021) · Zbl 1514.68219

37. Hong, S.-H.; Eades, P.; Liotta, G.; Poon, S.-H., Fáry’s theorem for 1-planar graphs, (Gudmundsson, J.; Mestre, J.; Viglas, T., COCOON 2012. COCOON 2012, LNCS, vol. 7434 (2012), Springer), 335-346 · Zbl 1364.68308

38. Hutchinson, J. P.; Shermer, T.; Vince, A., On representations of some thickness-two graphs, Comput. Geom., 13, 161-171 (1999) · Zbl 0953.68116

39. Kainen, P., Thickness and coarseness of graphs, Abh. Math. Semin. Univ. Hamburg, 39, 88-95 (1973) · Zbl 0264.05108

40. Kant, G., Drawing planar graphs using the canonical ordering, Algorithmica, 16, 4-32 (1996) · Zbl 0851.68086

41. Kaufmann, M.; Ueckerdt, T., The density of fan-planar graphs, J. Comput. Geom. 7, 465-497 (2016) · Zbl 0875.68452

42. Kobourov, S. G.; Liotta, G.; Montecchiani, F., An annotated bibliography on 1-planarity, Comput. Sci. Rev., 25, 45-67 (2017) · Zbl 1398.68402

43. Kainen, P.; Grigni, M.; Papadimitriou, C. H., Recognizing hole-free 4-map graphs in cubic time, Algorithmica, 45, 2, 227-262 (2006) · Zbl 1095.68076

44. Mutzel, P.; Odenthal, T.; Scharbrodt, M., The thickness of graphs: a survey, Graphs Comb., 14, 1, 59-73 (1998) · Zbl 0896.05020

45. Nash-Williams, C. S. J., A., Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc., 36, 1, 445-450 (1961) · Zbl 0102.38805

46. Nash-Williams, C. S. J., A., Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc., 36, 1, 445-450 (1961) · Zbl 0102.38805

47. Preparata, F., Shamos, M., Computational Geometry: An Introduction (1985), Springer · Zbl 0759.68037

48. Schnyder, W., Embedding planar graphs on the grid, (ACM-SIAM Symposium on Discrete Algorithms, SODA 1990 (1990), SIAM), 138-147 · Zbl 0786.05029

49. Stein, S., Convex maps, Proc. Am. Math. Soc., 2, 464-466 (1951) · Zbl 0042.42004

50. Steinhardt, E., Rademacher, H., Vorlesungen über die Theorie der Polyeder (1934), Julius Springer: Julius Springer Berlin · Zbl 0042.42004

51. Thomassen, C., Rectilinear drawings of graphs, J. Graph Theory, 12, 3, 335-341 (1988) · Zbl 0649.05051

52. Tutte, H., How to draw a graph, Proc. Lond. Math. Soc., 13, 743-768 (1963) · Zbl 0115.40805

53. Tutte, H., The thickness of a graph, Indag. Math., 25, 567-577 (1963) · Zbl 0123.17002

54. Tutte, W. T., Convex representations of graphs, Proc. Lond. Math. Soc., 10, 302-320 (1960) · Zbl 0094.36301

55. Wagner, K., Bemerkungen zum Vierfarbenproblem, Jahresber. Dtsch. Math.-Ver., 46, 26-32 (1936) · Zbl 0695.05020

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2023 FIZ Karlsruhe GmbH
[56] Yannakakis, M., Embedding planar graphs in four pages, J. Comput. Syst. Sci., 31, 1, 36-67 (1989) · Zbl 0673.05022
[57] Yannakakis, M., Planar graphs that need four pages, J. Comb. Theory, Ser. B, 145, 241-263 (2020) · Zbl 1448.05055

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.