Interrelationships between Seed Yield and 16 Related Traits of 81 Garden Cress Landraces

Mehdi Mohebodini
Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran

Naser Sabaghnia and Mohsen Janmohammadi
Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh 5311155181, Iran

Abstract. This research uses path analysis to determine the interrelationships among seed yield and 16 related morphological traits. Eighty-one garden cress accessions from IPK (Department of Leibniz Institute of Plant Genetics and Crop Plant Research) were grown in two growing seasons (2012–13) to determine the important components of seed yield. Observations were recorded on 20 other canola traits. Correlation coefficient analysis revealed that seed yield was positively correlated with all traits except plant height (PH) in the first year and except main axis length (MAL) and PH in the second year. Sequential path analysis (SPA) identified the thousand-seed weight (TSW), number of siliques per plant (NSP) and height of first siliques (HFS) as important first order traits influenced seed yield in the first year. Plant height, NSP, and the TSW were important first-order traits that influenced seed yield in the second year. This indicates that breeding programs should be based on these traits for further improvement of the garden cress. All direct effects were significant, as indicated by bootstrap analysis. The results suggest that TSW and NSP could be used as a selection criterion in selecting for increased seed yield in garden cress.

Garden cress has gained more interest from different food consumers and vegetable producers worldwide, and can be a good choice for health promoting substances such as glucotropaeolin. It is native to Southwest Asia and probably Iran and is cultivated in North America, parts of Europe, and as an ornamental vegetable all over Asia (Doke and Guha, 2014). Since ancient times, garden cress has been used in local traditional medicine and so it also highlights the good potential of garden cress seeds and its extracts for various medicinal uses and industrial uses for edible oil (Rehman et al., 2012).

The common path analysis approach might result in multicollinearity for variables, particularly when associations among some of the traits are high. Samonte et al. (1998) adopted a new method as SPA for determining interrelationships among seed yield and related traits. The abovementioned model has several benefits over the commonly used path analysis model in discerning actual effects of different predictor variables and can provide a better fit for various data sets. However, collinearity of predictor variables was not tested before organization of the variables into different path orders. Therefore, this investigation has been initiated in view of filling such an information gap in garden cress genotype and to investigate direct and indirect effects of yield components on seed yield via path coefficient analysis in 81 international germplasm collections of garden cress for 16 traits.

Materials and Methods

Trials. A total of 77 accessions were chosen from the garden cress germplasm in the IPK in Gatersleben, Germany. Also, four Iranian accessions named as Birjand, Tabriz, Kerman, and Shiraz genotypes were used in this research. The sources of the accessions are shown in Sabaghnia et al. (2015). Each accession was grown in a plot of 3.6 m² (six 2-m long rows), planted 10 cm apart in a row spacing of 30 cm. Standard agricultural practice was followed. For each trial, a replicated 9 × 9 simple lattice design with four replications was used and sowing was performed in the first week of May which is the optimal sowing time.

Morphological measurements. The 10 individuals were chosen randomly and marked for each accession to measure the height of the first branch (HFB), HFS, MAL, number of lateral branches (NLB), number of siliques per lateral branch (NSL), number of siliques per main axis (NSM), NSP, number of seeds per siliques of lateral branches (SLB), number of seeds per siliques per main axis (SMA), number of seeds of siliques per plant (NSSP), and PH. Also, days to emergence (DE), days to flowering (DF), and flowering period (FP) were recorded as was as possible. Days to flowering were recorded when 50% of the plants in the plot had at least one open flower. The TSW was measured on a subsample of seed harvested from each plot. The middle four rows (1.8 m²) were harvested to determine biological and seed yield.

Data analysis. Stepwise multiple regression models were performed to determine the predictor variables into first, second, and third order paths. The level of multicollinearity in each component was measured from the tolerance value and the variance inflation factor (VIF). Thus, very small tolerance values (much lower than 0.1) or high VIF values (>10) indicate high collinearity. Partial coefficients of determination were computed from the path coefficients for all predictor variables. To estimate the standard error of path coefficients, bootstrap analysis was performed.

Results

The adjusted coefficient of determination (Adjusted $R^2 = 0.93$) represents the influence of the TSW, NSP, and HFS traits as first-order variables involved in the research of total variability of seed yield in the first year (Table 1), whereas the TSW, NSP, and PH traits, as first-order variables, accounted for nearly 86% of the variation in seed yield in the second year (Table 1). In the year 2012 among the TSW, NSP, and HFS traits, the TSW had the greater direct effect (2.32) than other two traits on seed yield. The indirect effect of the TSW was high and negative (–1.135) via NSP but the indirect effect of the TSW was low and negative (–0.506) via HFS in the first year. Also, the indirect effect of the NSP was high and positive (2.007) via TSW but the indirect effect of the TSW was low and negative (–0.373) via HFS. The indirect effect of the HFS was high and positive (1.694) via TSW but the indirect effect of the NSP was moderate and negative (–0.692) via NSP in the first year. The results of SPA, when the second-order variables were used as predictors and the first-order variables as response variables, indicated that NSSP and NLB positively impressed the TSW and accounted for more than 77% of the observed variation in the year 2012 (Table 1). The NSSP, NLB, and NSL positively influenced NSP and accounted for more than 98% of the total variation, whereas DE and HFB positively influenced the HFS and accounted for more than 60% of the observed variation in the first year.

In the year 2013 among the TSW, NSP, and PH traits, TSW had the greater direct effect (1.31) than the other two traits on seed yield (Table 2). The indirect effect of TSW was moderate and positive (0.783) via NSP but low and positive (0.134) via PH in the second year, and the indirect effect of NSP was low and positive (0.074) via PH but high and positive (1.125) via TSW in the second year. The indirect effect of the PH was low and negative (–0.176) via NSP but moderate...
Table 1. Measures of collinearity values [tolerance and variance inflation factor (VIF)] for predictor variables in conventional path analysis (CPA; all predictor variables as first-order variables) and sequential path analysis (SPA; predictors grouped into first-, second-, and third-order variables).

	TSW	SY	2012	Tolerance	VIF
	CPA	SPA	CPA	CPA	CPA
TSW	0.086	0.151	11.6	6.6	
SY	0.030	0.637	32.9	1.9	
NSP	0.020	0.511	49.3	2.0	
HFS	0.030	0.637	32.9	1.6	
NSSP	0.122	0.367	8.2	2.7	
NLB	0.086	0.487	11.6	2.1	
SMA	0.086	0.487	11.6	2.1	
SLB	0.086	0.487	11.6	2.1	
MAL	0.356	0.795	2.8	1.3	
NSM	0.028	0.717	4.8	1.4	
SMA	0.042	0.637	4.8	1.4	
DF	0.055	0.795	3.6	2.1	
NSM	0.017	0.515	15.9	1.6	
SMA	0.042	0.717	4.8	1.4	
DF	0.017	0.515	15.9	1.6	
FP	0.103	0.977	9.7	1.0	
DF	0.017	0.515	15.9	1.6	
PH	0.103	0.977	9.7	1.0	
MAL	0.017	0.515	15.9	1.6	

Table 2. Direct and indirect effects for the predictor variables in sequential path analysis (grouped into first-, second- and third-order variables) in the first year (2012).

	TSW	NSP	HFS	SY	VIF
	CPA	SPA	CPA	CPA	CPA
TSW	2.316	−1.135	−0.506		
NSP	2.007	−1.310	−0.373		
HFS	1.694	−0.706	−0.492		
SMA	0.123	0.406	0.303		
NLB	0.083	0.603	0.119		
NSL	0.069	0.133	0.537		
SSA	0.632	0.182	−0.109		
SMA	0.325	0.354	−0.165		
DFA	0.286	0.243	−0.240		
DE	0.905	0.044			
DF	0.137	0.289			
TSW	0.641	0.190			
NSP	0.361	0.337			
SMA	0.466	0.306			
MAL	0.380	−0.326			

Discussion

The investigation presented in this article shows the results of high association between seed yield with two important yield component characteristics (TSW and NSP) in both years, but HFS and PH characters had an important role only in 1 year. For future breeding and making selection programs, it is essential to ascertain the variation available for plant structure and yield components in garden cress regarding TSW and NSP. A better understanding of how yield components affect seed yield formation in different crops can be obtained by using path analysis to determine the direct and indirect effects of primary, secondary, and tertiary traits on seed yield formation. We found some morphological and yield component traits such as NSSP, NSL, NLB, DE, HFB, FP, and SMA characters as secondary traits through path analysis. The advantage of path analysis is not only the identification of the most important traits directly influencing important characteristics such as seed yield, but also indicating how...
Table 3. Direct and indirect effects for the predictor variables in sequential path analysis (grouped into first-, second- and third-order variables) in the second year (2013).

SY	PH	TSW	NSP
PH	0.385	0.455	−0.176
TSW	0.131	1.310	−0.783
NSP	0.074	1.125	−0.912

PH	FP	HFS	NSSP
FP	0.461	−0.138	0.073
HFS	0.158	−0.404	0.110
NSSP	0.107	−0.141	0.315

TSW	SMA	NLB	NSL
SMA	0.436	0.178	0.145
NLB	0.179	0.432	0.106
NSL	0.220	0.159	0.287

FP	MAL	DE	DF
MAL	0.183	0.454	−0.183
DE	0.034	2.415	−2.123
DF	0.015	2.275	−2.251

NSP	NLB	SLB
NLB	0.612	0.214
SLB	0.226	0.580

HFS	DE	HFB
DE	0.410	0.131
HFB	0.180	0.299

NSSP	DE	SLB
DE	0.480	0.099
SLB	0.138	0.344

PH = plant height; MAL = main axis length; TSW = thousand-seed weight; NSP = number of siliques per plant; HFS = height of first silique; NSSP = number of seeds of silique per plant; NSL = number of silique per lateral branches; NLB = number of lateral branches; SMA = number of seeds per silique of main axis; DE = days to emergence; DF = days to flowering; FP = flowering period; HFB = height of first branch; NSM = days to emergence; MAL = days to flowering; DE = days to flowering; SLB = number of silique per lateral branches.

Traits affect the characteristics indirectly through other traits (Kozak and Kang, 2006). Previous investigations showed that path coefficient analysis provides more information on the interrelationships between target yield and its components and other morphological traits than correlation coefficients in vegetable crops (Asghari-Zakaria et al., 2007). This analysis helps to determine yield component compensation which occurs when two, or more, yield components affecting yield or any other yield component act inversely in their effects.

Bedassa et al. (2013) reported the highest strong direct effect of number of seeds per plant, DF initiation, biomass yield, harvest index, and TSW on garden cress seed yield regarding common path coefficient analysis. Similarly, we found highest strong direct effect of TSW, NSP, HFS, and PH on seed yield and there are relatively similar reports for path analysis of rapeseed and Indian mustard (Tuncturk and Ciftci, 2007; Ul-Hasan et al., 2014). Other yield components or important traits such as NSSP, NLB, NSL, and NSM influenced indirectly as the second-order or the third-order variables. In a study of Uddin et al. (1995), on Indian mustard, TSW and primary branches were found to have high positive direct effects on seed yield, which supports the result of the this research. However, our study demonstrated the utility of SPA over common path analysis in discerning the direct and indirect effects of various yield-related traits and it could be concluded that the traits SMA, NLB, NSL, FP, NSSP, SLB, NSM, MAL, DF, and HFB were identified as the first-, second-, and third-order variables in both years.

Conclusions

The study revealed that TSW, NSP, PH, and HFS traits had direct effects on seed yield based on path analysis. These three traits were the key contributors to seed yield suggesting the need of more emphasis on these traits for genetic improvement of the seed grain yield in garden cress. Therefore, improvement of seed yield in garden cress could be brought through selection of component traits directly concerned with final seed yield like TSW and NSP which showed positive direct effects and could serve as selection criteria in garden cress breeding programs.

Literature Cited

Asghari-Zakaria, R., A. Fathi, and D. Hasan-Panah. 2007. Sequential path analysis of yield components in potato. Potato Res. 49:273–279.

Bedassa, T., M. Andargie, and M. Esthete. 2013. Genetic variability and association among yield, yield related traits and oil content in Ethiopian garden cress (Lepidium sativum L.) genotypes. J. Plant Breed. Crop Sci. 5:141–149.

Doke, S. and M. Guha. 2014. Garden cress (Lepidium sativum L.) seed—An important medicinal source: A Review. J. Nat. Prod. Plant Res. 4:69–80.

Kozak, M. and M.S. Kang. 2006. Note on modern path analysis in application to crop science. Commun. Biom. Crop Sci. 1:32–34.

Rehman, N., A.U. Khan, K.M. Alkharfy, and A.H. Gilani. 2012. Pharmacological basis for the medicinal use of Lepidium sativum in airways disorders. Evid. Compl. Alter. Med. 17:1–8.

Sabaghnia, N., A. Aghaeezad, and M. Jannamohammadi. 2015. Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genet. Resources Crop Evol. 62:733–745.

Samonte, S.O.P.B., L.T. Wilson, and A.M. Meclung. 1998. Path analyses of yield and yield related traits of fifteen diverse rice genotypes. Crop Sci. 38:1130–1136.

Tuncturk, M. and V. Ciftci. 2007. Relationships between yield and some yield components in rapeseed (Brassica napus ssp. oleifera L.) cultivars by using correlation and path analysis. Pak. J. Bot. 39:81–84.

Uddin, M.J., M.A.Z. Chowdhury, and M.F.U. Mia. 1995. Genetic variability, character association and path analysis in Indian mustard (Brassica juncea L.). Annu. Bang. Agr. 5:51–54.

Ul-Hasan, E., H.S.B. Mustafa, T. Bibi, and T. Mahmood. 2014. Genetic variability, correlation and path analysis in advanced lines of rapeseed (Brassica napus L.) for yield components. Agron. Res. Mold. 15:7–14.