Catalog of spiral arm tangents (Galactic longitudes) in the Milky Way, and the age gradient based on various arm tracers

Jacques P Vallée
Herzberg Astronomy and Astrophysics Research Center, National Research Council of Canada

ADDRESS 5071 West Saanich Road, Victoria, British Columbia, Canada V9E 2E7
ORCID http://orcid.org/0000-0002-4833-4160
EMAIL jacques.p.vallee@gmail.com

KEYWORDS astrophysics - Galaxy - Milky Way - spiral arms - symmetries – age gradient

Abstract. An updated catalog of 205 observed tangents to the spiral arms (in Galactic longitudes) since 1980 is presented. This represents an addition of 80 arm tangents in 6 years (since 2016). Most arm tangents are observed at telescopes in the radio régime.

In this study, the separation of each arm tracer from the dust lane is analysed to obtain the relative spe...
Galactic disk, telescopes scan in Galactic longitude using a known tracer (CO, HI, dust, star count, etc) and can thus record the precise Galactic longitude when a peak intensity is observed in that tracer. This peak occurs when the telescope looks along a long distance inside the arm, corresponding to the line-of-sight being tangential to the spiral arms. Published observations of telescope scans, in Galactic longitude, have shown a peak intensity when being tangents to a spiral arm, as seen from the Sun’s position. The scans show a consistent value, when taken with similar but individual telescopes, provided that the angular telescope beam is similar from one telescope to the next – in order to collect emission from the same physical properties of the arm tracer under study.

The arrival of new observations of the arm tangents, in new arm tracers, in the literature can help find more precise locations, and thus more precise timescale (observed age gradient, period for the Sun to cross from one spiral arm to the next spiral arm, etc) and new fitting of theoretical predictions of arm formations (location of magnetic sectors in the Milky Way, etc), etc.

In Section 2, here we update and augment these tables (Tables 1 to 11) for different tracers with newly published arm tangents in the refereed literature. This catalog can be used for statistical studies, and is a valuable source for comparison with theoretical predictions. Some results are displayed (Figures 1, 2, 3) in Section 3. The conclusion follows in Section 4.

2. Selection criteria and data collection
Why build a catalog? A catalog of similar objects can tell us more, by doing simple statistics on their properties (tracer offset x from the CO tracer, say), by testing predictions from theories on these objects (tracer ordering, say), by working up numerical experiments (maser tracer and its increasing offset from the shock lane with a time model, say), by correlations (comparing how a tracer property X changes when we observe a change in another property Y, say).

2.1 Small past catalogs
The catalogue of Englmaier & Gerhard (1999 – their Table 1) had 32 entries of the mean Galactic longitude of each arm tangent, covering 5 arm segments, with a total of 9 different arm tracers.

The catalogue of Vallée (2008 - Table 2) had 39 Galactic longitude scans of arm tangents, covering 6 arm segments, with a total of 9 arm tracers (HII, HI, CO, 13CO, dust 2.4µm, dust 60 µm, 26Al, 408 MHz relativistic electrons, thermal electrons); it allowed a more precise model of the spiral arms (fitted to the CO tracer) and the resulting more precise velocimetry maps: radial velocity versus distance from the Sun (Its Fig. 2) and radial velocity versus Galactic longitude (its Fig. 3).

A newer catalogue of Vallée (2014a - Table 3) had 43 entries, also with 6 arm segments and adding longitude scans from arm tangents using methanol masers. That catalogue allowed us to see, for the first time, the ‘ordering’ of arm tracers from the position of the CO tracer, in each arm segment (its Fig. 1), and its similarity when separating arm segments in 2 sets of alternating arms (its Fig. 3).

The catalogue of Vallée (2014b - Table1) had an appendix (Tables 3, 4, 5) totalling 107 Galactic longitude scans of arm tangents, covering 7 arm segments, adding new arm tracers (dust 240µm, dust 870 µm, FIR [CII] & [NII] lines, warm cores); it confirmed the separation of each arm tracer inside an arm at the arm tangent point, and their ordering from hot dust to cold broad diffuse CO gas (its Fig. 2), with the hot dust nearer the inside arm edge toward the Galactic Center.

A catalogue by Hou & Han (2015) had 78 Galactic longitudes, gathered from 15 tracers in 7 arm segments.

The catalogue of Vallée (2016b – Table 3) with its separate tables for different tracers (Tables 4 to 10) totalled 125 Galactic longitude scans of arm tangents, covering 8 arm segments, and some 19 different arm tracers; it depicted the mirror-image of the dust lane being closest to the Galactic Meridian (its Fig. 1) than the broad diffuse CO peak, for each spiral arm.

2.2 Biggest new catalog
We searched the literature for new published tangents for the spiral arms, and we verified previously published data. Our new catalog is composed of a master table (Table 1), and associated catalogues (Tables 2 to 8), as well as scientific products (Tables 9 to 11).

Here, after searching the literature, we now present an catalog of the mean Galactic longitude (l) of arm tangents, covering 8 arm segments (Carina l ~ 283°, Crux-Centaurus l ~ 310°, Norma l ~ 328°, Perseus start l ~ 338°, Sagittarius start l ~
346°, Norma start l ~ 018°, Scutum l ~ 030°, Sagittarius l ~ 050°), using 21 different arm tracers (dust, masers, stars, gas, etc), at different wavelengths (radio, infrared, optical, etc).

Table 1 shows the updated statistical mean Galactic longitude, for each arm tracer, and for each arm (with 50 single individual entries, and 47 entries being the means of individual entries from Tables 2 to 8). Following each tables 2 to 8, the last row gives the statistical mean and root mean square r.m.s. of the above rows (Galactic longitudes; radial velocities), with an equal weight for two entries or more. The linear separation between arm tracers is calculated, from the distance to the tangential point (given in column 5 of Table 1, at the row for 12CO at 8′ beamwidth), and the angular separation from 12CO Galactic longitude (column 4 in Table 1); their product gives the linear separation.

Individual arm tracer tangents are given for 13CO (Table 2 with 7 individual entries), 12CO (Table 3 with 51 entries), for HII complexes (Table 4 with 20 entries), for radio masers (Table 5 with 36 entries), for the HI atom (Table 6 with 19 entries), for 870µm dust (Table 7 with 13 entries), and for 1 to 8 µm diffuse old stars and NIR star counts (Table 8 with 9 entries).

Thus, in all these tables 1 to 8, we catalogued over two-hundreds single individual entries, nearly doubling the number in the last catalogue. Now this new catalog of ‘ArmTangents’ displays 205 Galactic longitude values of arm tangents, covering 8 arm segments and some 21 arm tracers, being roughly quintupling the old number of 43 entries in Vallée (2014a).

The arrival of many new individual entries has improved the means of the arm tangents. Thus comparing from Table 5 in Vallée (2016b) and from Table 3 (here) the mean tangent longitude of the Sagittarius arm in the CO tracer went from 50.5° ±0.9° to 50.7° ±0.5°. The mean longitude in the CO tracer did not change outside their errors. Some seldom used arm tracers, having less individual scans in Galactic longitude, have changed slightly.

Table 9 shows the linear separation (from the angular separation in Table 1) of each mean longitude tracer, from the mean longitude for broad diffuse CO, at each arm tangent. As seen before (Vallée 2016b), the linear separation can be regrouped into one near 0 pc (CO, etc), one near 100 pc (electrons, etc), one near 150 pc (masers, etc), and one near 300 pc (hot dust).

Table 10 shows the mean radial velocity of an arm tracer, at each arm tangent, from data in Table 1 (when available).

Table 11 shows the individual arm tracers used in each spiral arm segment. As seen in this table, most arm tangents were observed in the radio regime (149 / 205 = 73%).

3. Results.

In this study, we presented an updated catalog of spiral arm tangents. Some results from the catalog are as follows. A spiral arm review of the disk of the Milky Way galaxy was given in Vallée (2017b). Here we employed our global symmetric (top-down) 4-arm spiral model, based on fitting the Galactic-wide locations of the CO arm tangents in disk space (see Table 1 for the mean CO arm tangents), with a pitch angle of -13.1° for the arm, a distance of the Sun to the Galactic Center of 8.1 kpc, and each arm starting at 2.2 kpc from the Galactic Center (ignoring the small Local Arm).

A word about the Local Arm: it is not spiral, and it is not an arm – it is more like a grouping of segments. Vallée (2018a) has collated most tracers for these Local segments, showing numerous ‘fingers’ and ‘bridges’ (all imagined with scant data - see his Fig.2) – in no way can it be called ‘spiral’. The peak position of each different tracer is shown to be random – in no way can it be called arm-like (masers are not aligned near a dust lane as in a long arm). Recent Gaia EDR3 data confirms the smallness of this Local arm segment: from open star clusters (Fig.5a in Hao et al 2021); from red clump stars (Fig.3a in Lin wet al 2022); from Giant Molecular Clouds (Fig.2 in Hou 2021); from local stars (Fig.3a in Martnez-Medina et al 2022). Their origin and formation have been discussed elsewhere, and possibly to be due to tidal encounters with a nearby dwarf galaxy (see section 2.2 in Vallée 2021b).

We employ a flat rotation curve, from a Galactic radius of 2.2 to 13 kpc (see Drimmel & Poggio 2018 - their equation 3).
More model details have been given in Vallée (2017a; 2017c). This model has been updated for the circular velocity of the local standard of rest (233 km/s) and updated for the distance from the Sun to the Galactic Center (8.1 kpc; see Abuter et al 2019) – the model was refitted to the CO gas tangent in Table 1 as described in Figure 3 in Vallée (2022).

The CO arm tangents are selected because of the more numerous observations, giving a better precision in the statistics done for the mean and r.m.s. of the arm tangent's longitude. A constant pitch angle was sought for all the arms, and he value was fitted and found Galactic to be 13 degrees (see Figure 4 in Vallée 2022).

Figure 1 shows this spiral arm model, for Galactic Quadrant IV, toward the inner segment of the long Perseus arm. The observed arm tangent in CO is shown (dashed line), along with the model spiral arm (in yellow). Independently, the observed arm tangent in 2.4µm dust is shown (dashed line), and it is observed to be at an offset from the CO arm tangent; this offsetted dust tangent is closer to the direction of the Galactic Center. The orbiting gas flows (arrows) will reach the dust lane first, going clockwise around the Galactic Centre. The theoretical orbits of the gas are not exactly circular, as each theory predicts a small eccentricity (fig. 3 in Roberts 1975; Gittins & Clarke 2004, fig. 3 in Dobbs & Pringle 2010).

A similar but mirror-reversed figure was done for the spiral arms in Galactic Quadrant I (see Vallée 2021b – his fig.3).

We can see in Table 1 that the arms in Galactic Quadrant IV (left of the Galactic Meridian) have offsets reversed from those seen in the arms in Galactic Quadrant I.

Location of arm tracers. Figure 2 shows the arms in Galactic Quadrant IV (Carina, Crux-Centaurus, Norma, Inner Perseus), and in Galactic Quadrant I (Sagittarius, Scutum, Norma), beyond a Galactic radius of 3.1 kpc. All data are given in Table 1 above. The results for Fig.2a (Galactic quadrant IV) are the mean separation of an arm tracer for all arms in Galactic quadrant IV (from Table 1). The results for Fig.2b (Galactic quadrant IV) are the mean separation of an arm tracer for all arms in Galactic quadrant I (from Table 1).
Figure 2(a). Mean offsets of arm tracers in Galactic Quadrant IV. The direction to the Galactic Center is to the right. The orbital gas flow comes from the right, and the approximate location of the compressed area is shown in yellow. The distance, from the NIR dust to the broad diffuse CO peak, is about 360 pc.

Figure 2(b). Mean offsets of arm tracers in Galactic Quadrant I. The direction to the Galactic Center is to the left. The orbital gas flow comes from the left, and the
approximate location of the compressed area is shown in yellow. The distance, from the NIR dust to the broad diffuse CO peak, is about 340 pc.

This figure is made using arms in the Galactic radius range from 3.1 kpc up to 8.1 kpc (Sun’s location). This implies that the co-rotations is beyond the Galactic radius of the location of the Sun.

Figure 2a and 2b constitute a confirmation of what was found 6 years ago, then having about half as many observed data. Thus our new results are a confirmation of earlier results (fig. 2a and 2b in Vallée 2016b); even the distance from the NIR dust and the broad diffuse CO peak has not changed, then in 2016 being in Galactic Quadrant IV (about 360 pc) and in Galactic Quadrants I (about 340 pc). We can be confident that if we could double again the total number of longitudinal arm tangents, the picture will not change much (or at all).

It is important to realize that a tracer may be in a different state at different locations in Figure 2 – thus the broad diffuse CO 1-0 gas (hpbw near 8') appears near the potential minimum / outer arm edge in Figure 2, while the clumpy narrow CO gas (hpbw near 50') appears near the dust lane / inner arm edge in Figure 2. Hence one should avoid talking about a ‘gas arm’ - instead, there is a narrow ‘clumpy CO gas arm’ near the shock (inner arm edge), and a broad ‘diffuse CO gas arm’ near the potential minimum (outer arm edge). Similarly, one should avoid talking of a homogeneous ‘stellar arm’ - instead, there is a ‘protostellar arm’ near the maser lane (inner arm edge) in Figure 2, and an ‘old HII region arm and old star arm’ near the potential minimum (outer arm edge).

Arm width (NIR dust to broad diffuse CO peak). We can compare the tracer offsets in both Galactic Quadrants. From Figure 2 for Galactic quadrant IV (Fig. 2a), we find a mean distance from NIR dust to broad diffuse CO peak of 360 pc, which is about 4.2% of the distance to the next spiral arm (0.25 x 2 π R_Gal, with a median R_Gal = 5.4 kpc). From a similar figure for Galactic quadrant I (Fig. 2b), we find a mean distance from NIR dust to broad diffuse CO peak of 320 pc, which is about 3.9% of the distance to the next spiral arm (0.25 x 2 π R_Gal, with a median R_Gal = 5.2 kpc).

In the literature, we can find the separation between NIR dust (density wave shock) and broad diffuse CO peak (density wave potential minimum), in percent of the arm separation from the next arm. This observed 3.9% to 4.2% arm width (NIR dust to broad diffuse CO) can be compared to the theoretically predicted arm width (between the compressed or shocked entrance of the orbiting gas, up to the ‘potential minimum’), as compared to the arm separation (from the potential minimum up to the next potential minimum of the next arm), assuming 4 arms around a circle. Thus one reads 3.1% in Fig. 6 and 5.0% in Fig. 5 of Roberts (1969). It is read as 3.7% in Fig. 11 of Gittins & Clarke (2004). It is read as 3.7% in Fig. 2 in Roberts (1975). It is read as 6.4% in Fig. 2 in Tosa (1973). It is read as 7.3% in Figure 1 of Wielen (1979). Hence our observations fit nicely in the middle of the range of predictions, which averages 4.9 ±1.7 % (3.1, 5.0, 3.7, 3.7, 6.4, 7.3)

Elsewhere in 24 nearby spiral galaxies, a rough separation between a tracer near the dust lane and one near the potential minimum gave a median of 326 pc (Table 3 in Vallée 2020b) at a median Galactic radius of 4 kpc, or an arm width of 5.1% (for 4 arms).

Age gradient. With the help of published theoretical models (from the literature), we ascertain masers at 0.7 - 1.0 Myrs (orange zone), ionised radio recombination lines at 2 - 2.2 Myrs (green zone), and the diffuse broad CO peak at 3.6 - 4.0 Myrs (blue zone). Predicted ages of ultracompact HII regions are 0.7 Myrs (Xie et al 1996) and 0.4 Myrs (Wood & Churchwell 1989), while those of optically visible young compact HII regions are 2.2 Myrs (Reggiani et al 2011) and 1.5 Myrs (Hunt & Hirashita 2009).

Figure 3 shows the results. In each colored zone, we found a model age from the literature and assumed each tracer in that colored zone to be at about the same age (see above). The dashed line is the age gradient, with a slope of 11.3 ± 2 Myr/kpc obtained by least-squares-fitting of the observational data specified just above; the fit is done with 2 variables (tracer separation from dust in pc; time since tracer birth in Myr) over 4 data (origin/red 0.0, masers/orange 190; 0.7, HII regions/green 210; 2.0, CO/blue 320; 3.8).

Taking the inverse of the age gradient yields the relative speed away from the dust/shock zone; this gradient yields a relative speed of 88 ± 10 pc/Myrs = 87 ± 10 km/s. This new value compares well with earlier data (Vallée 2021b had 81 ± 10 km/s; Vallée 2022 had 76 ± 10 km/s), within the errors, and the different methods used (linear, least-squares fit).
Figure 3. The distribution of each arm tracer, across a typical spiral arm (about 320 parsecs). The orbital gas flow comes from the right. The inner arm edge starts at right (red zone, compression or shock lane, hot dust), followed by the orange zone (radio masers, colder dust), then the green zone (thermal and relativistic electrons, recombination lines from HII regions), and finally the blue zone (potential minimum, broad diffuse CO gas, older stars). Individual tracer data located beyond a Galactic radius of 3.1 kpc (Tables 1 to 8) are averaged over all arms (Sagittarius-Carina, Scutum-Crux-Centaurus, Norma, Inner Perseus), to give Table 9 employed in this figure. The orbiting gas flowing around the Galactic Center in a roughly circular orbit enters the dust lane from the right, in this figure. The vertical coordinate, in Myrs, gives the elapsed time since the birth of a tracer. The black dashed line is the fitted age gradient (right to left).

In future works, it might be possible to compare/verify this calculated relative speed with astrometry measurements, such as Gaia OB stars, or other type of stars with different ages.

4. Conclusion
Here we have assembled over two hundred published measurements of the Galactic longitudes of arm tangents, improving on previous smaller published tables. The master table (Table 1) with all tracers and their mean longitudes, and the individual tracer tables (Tables 2 to 8), together constitute our catalog of the tangents to the spiral arms. These tables 1 to 8 provide the largest catalog of arm tangents published so far. The mean radial velocity offset of different arm tracers (Table 10) and the contribution of all arm tracers with wavelengths (Table 11) are given.

As mentioned in Figure 1 and Table 9, there is a separation of some arm tracers among each others (CO versus dust). As mentioned in Figure 2, there is a mirror-image of this separation in Galactic Quadrants IV (shock at right) versus I (shock at
left). As mentioned in Figure 3, there is an age gradient from the shock to the dust lane, within 320pc, at 11.3 Myrs/kpc, giving by inversion a relative gas speed of about 87 km/s from the dust lane.

Elsewhere, results published so far include these: a) an estimate of the angular speed of the density wave spiral pattern (shock front) – Vallée (2021a); b) an estimate and variation of the spiral arm width, from multi-tracers, with increasing Galactic radius – Vallée (2020a); c) an estimate of the co-rotation radius in the disk of the Milky Way – Vallée (2019); d) an estimate of the large-scale pitch angle of each spiral arm, using arm tangents from two Galactic quadrants – Vallée (2017a), Vallée (2015); e) an estimate of the starting point of each spiral arm, near the Galactic nucleus – Vallée (2016a); f) a location of a mirror image of arms, across the Galactic Meridian - Vallée (2016b); g) a comparison of 4 different theories for the formation of spiral arms – Vallée (2022); h) mapping the terrestrial impacts (extinctions) in time onto the passage of spiral arm structures (arm tracers) – Gillman et al (2019).

In the future, one could compare the arm tangent at the maximum intensity of the synchrotron emission and its location inside a spiral arm, as well as the radial distance of a spiral arm segment and whether there the azimuthal magnetic field is clockwise or inversed (counterclockwise). The publication of this catalog may spur other researches, and comparisons with other catalogues (Gaia, etc), so that new results may emerge in the future.

Acknowledgements.

Figure production made use of the PGPLOT software at the NRC Herzberg Astro & Astro Research Centre in Victoria, BC, Canada. I thank a referee for numerous clarifications.

Declarations.

Funding: the facilities of the National Research Council of Canada in Victoria BC were employed. Conflicts of interest: None. Availability of data and material (data transparency): All data underlying this article are available in this article, and/or will be shared upon reasonable request. Code availability (software application or custom code): Basic software tools were employed, in FORTRAN.

References

Abuter, R., Amorim, A., et al 2019, A geometric distance measurement to the Galactic Center black hole with 0.3% uncertainty. Astron. & Astrophys., 625, L10.

Alvarez, H. May, J., Bronfman, L., 1990, "The rotation of the Galaxy within the solar circle". Astrophys. J., 348, 495-502.

Bajaja, E., Amal, E., Larrarte, J, and 3 others, 2005, "A high sensitivity HI survey of the sky at dec < -25°. Final data release". A&A, 440, 767-773.

Benjamin, R.A., 2008, "The spiral structure of the Galaxy: something old, something new". ASP Conf. Ser., 387, 375-380.

Beuermann, K., Kanbach, G., Berkhuysen, E.M., 1985,. "Radio structure of the Galaxy – Thick disk and thin disk at 408 MHz". A&A, 153, 17-34

Beuther, H., Tackenberg, J., Linz, H., Henning, Th., Schuller, F., Wyrowski, F., Schilke,P., Menten, K., Robitaille, T.P., Wlamsley, C.M., Bronfman, L., Motte, F., Nguyen-Luong, Q., Bontemps, S., 2012, "Galactic structure based on the Cataloggal 870 μm survey". ApJ, 747, 43 (1-8).

Bloemen, J.B., Deul, E.R., Thaddeus, P., 1990, "Decomposition of the FIR Milky Way observed by IRAS". A&A, 233, 437-455.

Bronfman, L., 1992, "Molecular clouds and young massive stars in the Galactic disk". Astroph Space Sci Lib., 180, 131-154.

Bronfman, L. 2008. "Massive star formation in the southern Milky Way". Ap Sp Sci., 313, 81-85

Bronfman, L., Alvarez, H., Cohen, R.S., Thaddeus, P., 1989, "A deep CO survey of molecular clouds in the southern Milky Way". Apj Suppl Ser., 71, 481-548.

Bronfman, L., Casassus, S., May, J., Nyman, L.-A., 2000a, "The radial distribution of OB star formation in the Galaxy". Astron. & Astrophys., 358, 521-534.

Bronfman, L., Cohen, R.S., Alvarez, H., May, J., Thaddeus, P., 1988, "A CO survey of the southern Milky Way: the mean radial distribution of molecular clouds within the solar circle". ApJ, 324, 248-266.

Bronfman, L., May, J., Luna, A., 2000b, "A CO survey of the southern Galaxy". ASP Confer. Ser., 217, 66-71.

Caswell, J.L., Fuller, G.A., Green, J.A., Avison, A., Breen, S.L., Ellingsen, S.P., Gray, M.D., Pestalozzi, M.R., Quinn, L., Thompson, M.A., Voronkon, M.A., 2011, The 6GHz methanol multibeam maser catalogue – III. Galactic longitudes 330° to 345°. MNRAS, 417, 1964-1995.

Chen, W., Gehrels, N., Diehl, R., Hartmann, D., 1996, "On the spiral arm interpretation of Comptel
Al map features. A&A Suppl., 120, 315-316.

Chiar, J.E., Kutner, M.L., Verter, F., Leous, J., 1994, "A comparison of CO (J=1-0) and CO (J=2-1) emission in the Milky Way molecular ring". ApJ, 431, 658-673.

Cohen, R.S., Cong, H., Dame, T.M., Thaddeus, P., "Molecular clouds and Galactic spiral structure", 1980, ApJ, 239, L53-L56.

Dame, T.M., Elmegreen, B.G., Cohen, R.S., Thaddeus, P., 1986, "The largest molecular cloud complexes in the first Galactic quadrant". ApJ, 305, 892-908

Dame, T., Hartmann, D., Thaddeus, P. 2001, The Milky Way in molecular clouds: A new complete CO survey. ApJ, 547, 792-813.

Dame, T.M., Thaddeus, P., 2008, "A new spiral arm of the Galaxy: the Far 3kpc arm". ApJ, 683, L143-L146

Dame, T.M., Thaddeus, P., 2011 "A molecular spiral arm in the far outer galaxy", ApJL, 734, L24 (1-4).

Dobbs, C.L., Pringle, J.E. 2010. Age distributions of star clusters in spiral and barred galaxies as a test for theories of spiral structure. MNRAS, 409, 396-404

Downes, D., Wilson, T.L., Bieging, J., Wink, J., 1980, "H110α and H2CO survey of Galactic radio sources". A&A Suppl., 40, 379-394.

Drimmel, R., 2000, "Evidence for a 2-armed spiral in the Milky Way". A&A, 358, L13-L16

Englmaier, P., Gerhard, O. 1999, Gas dynamics and large-scale morphology of the Milky Way galaxy. MNRAS, 304, 512-534.

Garcia, P., Bronfman, L., Nyman, L.-A., Dame, T.M., Luna, A., 2014, “Giant molecular clouds and massive star formation in the southern Milky Way”. AstrophysJ.Suppl.Ser., 212, 2 (1-33).

Gillman, M.P., Erenier, H.E., Sutton, P.J. 2019, Mapping the location of terrestrial impacts and extinctions onto the spiral arm structure of the Milky Way. Internat. J. Astrobiology, 18, 323-328.

Gittins,D.M., Clarke, C.J. 2004..Constraining corotation from shocks in tightly wound spiral galaxies. MNRAS, 349, 909-921

Grabelsky, D.A., Cohen, R.S., Bronfman, L., Thaddeus, P., May, J., 1987, “Molecular clouds in the Carina arm – largescale properties of molecular gas and comparison with HI”. Astrophysical journal, 315, 122-141.

Grabelsky, D.A., Cohen, R.S., Bronfman, L., Thaddeus, P. 1988, “Molecular clouds in the Carina arm – the largest objects, associated regions of star formation, and the Carina arm in the Galaxy”. Astrophysical journal, 331, 181-196

Green, J.A., Caswell, J.L., McClure-Griffiths, N.M., Avison, A., Breen, S.L., Burton, M.G., Ellingsen, S.P., Fuller, G.A., et al., 2011, “Major structures of the inner Galaxy delineated by 6.7GHz methanol masers”. ApJ, 733, 27 (1-17)

Green, J.A., Caswell, J.L., McClure-Griffiths, N.M., Avison, A., Breen, S.L., Burton, M.G., Ellingsen, S.P., Fuller, G.A., Gray, M.D., Pestalozzi, et al., 2012a, “Tracing major structures of the inner Galaxy with 6.7GHz methanol masers. EPJ Web of conferences, 19, 06007 (1-3)

Green, J.A., Avison, S.L., Fuller, G.A., et al. 2017. The 6-GHz multibeam maser survey. II. Statistical analysis and Galactic distribution of 6668-MHz methanol masers. MNRAS, 469, 1383-1402.

Green, J.A., McClure-Griffiths, N.M., Caswell, J.L., et al 2012b. MAGMO: coherent magnetic fields in star-forming regions of the Carina-Sagittarius spiral arm tangent. MNRAS, 425, 2530-2547

Hartmann, D., Burton, W., 1997, “Catalog of Galactic neutral Hydrogen”. Cambridge Univ. Press, Cambridge, UK, p243.

Hayakawa, S., Matsumoto, T., Murakami, H., Uyama, K., Thomas, J.A., Yamagami, T., 1981, “Distribution of near infrared sources in the Galactic disk”. A&A, 100, 116-123

Hao, C., Xu, Y., et al 2021. Evolution of the local spiral structure of the Milky Way revealed by open clusters. A&A, 652, 102 (1-9).

Hou, L.G. 2021. The spiral structure in the solar neighbourhood. Frontiers in Astro. Space Science, 8, 671670 (1-16).

Hou, L.G., Han, J.L., 2015, “Offset between stellar spiral arms and gas arms of the Milky Way”. MNRAS, 454, 626-636

Hunt, I.K., Hirashita,H. 2009. The size-density relation of extragalactic Hil regions A&A, 507, 1327-1343.

Kretschmer, K., Diehl, R., Krause, M., Burkert, A., Fierlinger, K., Gerhard, O., Greiner, J., Wang, W., 2013, “Kinematics of massive star ejecta in the Milky Way as traced by 26Al”. A&A, 559, 99 (1-11)

Lin, Z., Xu, Y., et al 2022. Local spiral structure traced by red clump stars. ApJ 931, 72 (1-8).

Martinez-Medina L., Perez-Villegas, A., Peimbert, A. 2022. Kinematical footprint of the Milky Way spiral arm in Gaia EDR3. MNRAS, 512, 1574-1583.

Nakanishi, H., Sofue, Y., 2016 “Three-dimensional distribution of the ISM in the Milky Way galaxy. III. The total neutral gas disk” Pub Astr Soc Japan, 68, 5 (1-14).

Pandian, J.D., Goldsmith, P.E., 2007, “The Arecibo methanol maser Galactic plane survey. II. Statistical and multiewavelength counterpart analysis”. ApJ, 669, 435-445.

Reid, M.J., Dame, T.M., Menten, K.M., Brunthaler, A., 2016. A parallax-based distance estimator for spiral arm sources. ApJ, 823, 77 (1-11)

Reid, M.J., Menten, K.M., Brunthaler, A., Zheng, X.W., Dame, T.M., Xu, Y., et al., 2014, “Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way”. ApJ, 783, 130 (1-14).
Reid, M.J., Menten, K.M., Brunthaler, A., Zheng, X.W., et al. 2019. “Trigonometric parallaxes of high mass star forming regions: our view of the Milky Way”. ApJ, 885, 131 (1-18).

Reggiani, M., Robberto, M., et al 2011., Quantitative evidence of an intrinsic luminosity spread in the Orion nebula cluster. A&A, 534,a83 (1-12).

Roberts, W.W. 1969.. Large-scale shock formation in spiral galaxies and its implication on star formation. ApJ, 158, 123-143

Roberts, W.W. 1975. Theoretical aspects of Galactic research. Vistas in Astron., 19, 91-109.

Russell, D., 2003, “Star-forming complexes and the spiral structure of our Galaxy”. A&A, 397, 133-146.

Russell, D., Adami, C., Georgelin, Y.M., 2007, “Revised distances of Northern HII regions” A&A, 470, 161-171..

Sanders, D.B., Scoville, N.Z., Solomon, P.M., 1985., “Giant molecular clouds in the Galaxy. II. Characteristics of discrete features”. ApJ, 289, 373-387

Sanna, A., Reid, M.J., Menten, K.M., Dame, T.M., Zhang, B., Sato, M., Brunthaler, A., Moscadelli, L., Immer, K., 2014, “Trigonometric parallaxes to star-forming regions within 4 kpc of the Galactic Center”. ApJ, 781, 108 (1-13).

Sato, M., Wu, Y.W., Immer, K., Zhang, B., Sanna, A., Reid, M.J., Dame, T.M., Brunthaler, A., Menten, K.M., 2014, ApJ, v793, a72, p1-15. “Trigonometric parallaxes of star forming regions in the Scutum spiral arms”.

Schuller, F., Urquhart, J., Csengeri, T., Colombo, D., et al. 2021.. The sedigism survey: first data release and overview of the Galactic structure. MNRAS, 500, 3064-3082

Shanahan, R., Lemmer, S.J., Stil, J.M., Beuther, H, et al. 2019. Strong excess Faraday rotation on the inside of the Sagittarius spiral arm. ApJ Letters, 887., L7 (1-9).

Solomon, P.M., Sanders, D.B., Rivolo, A.R., 1985, “The Massachusetts-Stony-Brook Galactic plane CO survey: disk and spiral arm molecular cloud populations” ApJ, 292, L19-L24.

Stark, A.A., Lee, Y.,, 2006, “Giant molecular clouds are more concentrated toward spiral arms than smaller clouds”. ApJ, 641, L113-L116.

Steiman-Cameron, T.Y., Wolfire, M., Hollenbach, D., 2010. “COBE and the gGlactic interstellar medium: geometry of the spiral arms from FIR cooling lines”. ApJ, 722, 1460-1473

Taylor, J.H., Cordes, J.M., 1993, “Pulsar distances and the Galactic distribution of free electron”. ApJ, 411, 674-684.

Tosa, M. 1973. The Galactic three-dimensional shock waves and its effect on the formation of stars. Publ. Astr. Soc. Japan, 25, 191-205.

Vallée, J.P. 2005, The spiral arms and interarm separation of the Milky Way: an updated statistical study A.J., 130, 569-575.

Vallée, J.P. 2008, New velocimetry and revised cartography of the spiral arms in the Milky Way – a consistent symbiosis. A.J., 135, 1301-1310.

Vallée, J.P. 2014a, The spiral arms of the Milky Way : the relative location of each different arm tracer within a typical spiral arm width. AJ., 148, 5 (1-9).

Vallée, J.P. 2014b, Catalog of observed tangents to the spiral arms in the Milky Way galaxy. ApJ Suppl. Ser., 215, 1 (1-9).

Vallée, J.P. 2015, Different studies of the global pitch angle of the Milky Way’s spiral arms. MNRAS, 450, 4277-4284.

Vallée, J.P., 2016a, The start of the Sagittarius spiral arm (Sagittarius origin) and the start of the Norma spiral arm (Norma origin) – model-computed and observed arm tangents at Galactic longitudes -20° <= +23°. Astron. J., v151, 55 (1-16).

Vallée, J.P. 2016b, A substructure inside spiral arms, and a mirror image across the Galactic Meridian. ApJ, 821, 53 (1-12)

Vallée, J.P. 2017a, The Norma spiral arm : large-scale pitch angle. Ap Sp Sci., 362, 173 (1-5)

Vallée, J.P. 2017b. A guided map to the spiral arms in the Galactic disk of the Milky Way. Astr Rev., 13, 113-146.

Vallée, J.P. 2017c. Constraining the pitch angle of the Galactic spiral arms in the Milky Way. New Astr Rev., 79, 49-58

Vallée, J.P. 2018a. Meta-analysis from different tracers of the small Local Arm around the Sun – extent, shape, pitch, origin. Ap . Space Sci., 363, 243 1-9.

Vallée, J.P. 2018b. Offsets of masers with respect to the middle of the Perseus arm and the Co-rotation radius in the Milky Way. Ap. J., 863, 52 (6 pp).

Vallée, J.P. 2019, Spatial and velocity offsets of Galactic masers from the centres of spiral arms. MNRAS, 489, 2819-2829

Vallée, J.P. 2020a, A new multitracer approach to defining the spiral arm width in the Milky Way. Ap J., 896, 19 (1-10).

Vallée, J.P. 2020b, Statistics on 24 spiral galaxies having different observed arm locations using different arm tracers. New Astron., 76, 101337 (1-13).

Vallée, J.P. 2021a, A low density wave’s spiral pattern speed, from the tracer separations (age gradient) across a spiral arm in the Milky Way. MNRAS, 506, 523-530.

Vallée, J.P. 2021b, Arm tangents and the spiral structure of the Milky Way – the Age gradient. Internat. Journ. Astron. &
Vallée, J.P. 2022, The observed age gradient in the Milky Way – as a test for theories of spiral structure. Astrophys. Space Sci., 367, 26 (1-10).

Velusamy, T., Langer, W., Pineda, J., Goldsmith, P. 2012. [CII] 158µm line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency. A&A, 541, L10-L13.

Velusamy, T., Langer, W.D., Goldsmith, P.F., Pineda, J.L. 2015, "Internal structure of spiral arms traced with [CII]: unraveling the WIM, HI, and molecular emission lanes", A & A, 578, 135 (1-12).

Wielen, R. 1979. The density-wave theory confronted by observations. IAU Symp., 84, 133-144.

Wood, D.O., Churchwell, E. 1989. The morphologies and physical properties of ultracompact HII regions. ApJ SS, 69,831-895.

Wu, Y.W., Sato, M., Reid, M.J., Moscadelli, L., Zhang, B., Xu, Y., Brunthaler, A., Menten, K.M., Dame, T.M., Zheng, X.W., 2014, "Trigonometric parallaxes of star forming regions in the Sagittarius spiral arm", A&A, 566, 17 (1-26)

Wu, Y.W., Reid, M.J., Sakai, N., Dame, T.M., et al. 2019, Trigonometric parallaxes of the star forming regions beyond the tangent point of the Sagittarius spiral arm, ApJ, 874, 94 (1-13).

Xie, T., Mundy, L., et al. 1996, On turbulent pressure confinement of ultracompact HII regions ApJ, 473, L131-L134.
Spiral arm name	Chemical tracer	Tangent galactic longitude (degree)	Angular dist. to 12CO (degree)	Linear separation from 12CO (pc)	Tangent radial vel. V_{rad} (km/s)	References
Carina	28Al	280°	-1.0°	-125 pc	-	Chen et al (1996 – fig.1)
	12CO at 8’	281.8°	0.0°	0 pc, at 4.0 kpc	-8.8	mean in Table 3
	HI atom	281.9°	0.1°	7 pc	-9	mean in Table 6
	Thermal electron	283°	1.2°	84 pc	-	mean in Table 4
	HII complex	283.8°	2.0°	140 pc	-	mean in Table 7
	Dust 240µm	284°	2.2°	154 pc	-	Drimmel (2000 – fig.1)
	Dust 60µm	284°	2.2°	154 pc	-	Bloemen et al (1990 – fig.5)
	Dust 870 µm	284.2°	2.4°	168 pc	-	mean in Table 7
	1.4GHz RRL	284.3°	2.5°	175 pc	-	Hou & Han (2015 – table 1)
	Masers	284.8°	3.0°	209 pc	+10	mean of Table 5
	FIR [CII] & [NII]	287°	5.2°	363 pc	-	Steiman-Cameron et al (2010 – sect. 2.1)
Crux-	12CO	306.5°	-3.0°	-314pc	-35	mean of Table 2
Cen- taurus	Old stars (1-8 µm)	307.3°	-2.2°	-230 pc	-	mean in Table 8
	FIR [CII] & [NII]	309°	-0.5°	-52 pc	-	mean in Table 3
	NH 1-1 2’ cores	309.1°	-0.4°	-42 pc	-	mean in Table 4
	12CO at 8’	309.5°	0.0°	0 pc, at 6.0 kpc	-46.6	mean in Table 3
	HI atom	309.6°	0.1°	10 pc	-56.5	mean of Table 5
	HII complex	309.9°	0.4°	42 pc	-	mean in Table 4
	Thermal electron	310°	0.5°	52 pc	-	mean in Table 4
	28Al	310°	0.5°	52 pc	-	mean in Table 7
	Sync. 408 MHz	310°	0.5°	52 pc	-	mean in Table 7
	HI atom	310.4°	0.9°	94 pc	-44	mean of Table 6
	Dust 240µm	311°	1.5°	157 pc	-	Drimmel (2000 – fig. 1)
	Dust 60µm	311°	1.5°	157 pc	-	Bloemen et al (1990 – fig.5)
	1.4GHz RRL	311.2°	1.7°	178 pc	-	Hou & Han (2015 – table 1)
	Dust 870µm	311.4°	1.9°	199 pc	-	mean of Table 7
Norma	28Al	326°	-2.4°	-314 pc	-	Chen et al (1996 – fig.1)
	HII complex	326.4°	-2.0°	-262 pc	-	mean in Table 4
	12CO	327.5°	-0.9°	-118 pc	-85	mean of Table 2
	NH 1-1 2’ cores	327.8°	-0.6°	-78 pc	-	mean in Table 6
	HI atom	327.9°	-0.5°	-65 pc	-79	mean in Table 6
	Sync. 408 MHz	328°	-0.4°	-52 pc	-	mean in Table 3
	12CO at 8’	328.8°	0.0°	0 pc, at 7.5 kpc	-97.6	mean of Table 3
	Thermal electron	329°	0.6°	78 pc	-	Taylor & Cordes (1993 – fig.4)
	1.4GHz RRL	329.3°	0.9°	118 pc	-	Hou & Han (2015 – table 1)
	Dust 870µm	329.6°	1.2°	177 pc	-	mean of Table 7
	[CII] at 80°	330°	1.6°	209 pc	-99	Velusamy et al (2015 – fig.7a)
	Dust 60µm	330°	1.6°	209 pc	-	Bloemen et al (1990 – fig.5)
	Masers	330.4°	2.0°	262 pc	-102	mean in Table 5
	Dust 240µm	332°	3.6°	471 pc	-	Drimmel (2000 – fig. 1)
	Dust 2.4µm	332°	3.6°	471 pc	-	Hayakawa et al (1981 – fig.2a)
Start of	28Al	335°	-2.0°	-262 pc	-	Chen et al (1996 – fig.1)
Perseus	13CO	335.5°	-1.5°	-196 pc	-115	mean of Table 2
	HI atom	336.8°	-0.2°	-26 pc	-	mean in Table 6
Table 1: Galactic Parameters

Parameter	Value	Reference
1.4GHz RRL		Hou & Han (2015 – table 1)
13CO at 8’	336.9o	-13 pc
[CII] at 80’	337o	0 pc, at 7.5 kpc
HII complex	337.2o	26 pc
Masers	337.3o	39 pc, at 106.7 pc
Dust 870μm	337.8o	105 pc
FIR [CII] & [NII]	338o	131 pc
Old stars (1-8 μm)	338.3o	170 pc
NH$_3$ 1-1 2’ cores	338.4o	183 pc
Sync. 408 MHz	339o	262 pc, at 120 pc
Dust 2.4μm	339o	262 pc
Dust 60μm	340o	393 pc
Dust at 8’		mean in Table 7
Dust 870μm	342o	0 pc, at 7.5 kpc
Sagitarrius		mean in Table 3
Dust 870μm	343o	60 pc, at 7.5 kpc
26Al	346o	524 pc
Masers	348o	785 pc
Old stars (1-8 μm)	348o	120 pc
Dust at 8’		mean in Table 8
Dust 870μm	032o	0 pc, at 7.5 kpc
Norma		mean in Table 3
13CO at 8’	032.4o	38 pc, at 95.0 pc
[13CO] at 8’	032o	38 pc, at 95.0 pc
13CO	031.8o	58 pc, at 95.0 pc
Old stars (1-8 μm)	031.3o	106 pc, at 95.0 pc
HII complex	031.3o	106 pc, at 95.0 pc
Dust 240μm	031o	144 pc
Dust 870μm	030.9o	154 pc, at 95.0 pc
Scutum		mean in Table 7
1.4GHz RRL	030.8o	230 pc, at 95.0 pc
Warm 13CO cores	030o	230 pc, at 95.0 pc
[CII] at 12’	030o	230 pc, at 95.0 pc
F8R [CII] & [NII]	030o	230 pc, at 95.0 pc
Dust 60μm	030o	230 pc, at 95.0 pc
Masers	029.6o	269 pc, at 95.0 pc
Dust 2.4μm	029.4o	326 pc
Sagitarrius		mean in Table 3
Old stars (1-8 μm)	055.0o	43 pc, at 95.0 pc
13CO at 8’	050.7o	0 pc, at 95.0 pc
HII complex	050.7o	0 pc, at 95.0 pc
13CO	050.7o	0 pc, at 95.0 pc
HI atom	050.6o	6 pc, at 95.0 pc
Masers	050.2o	29 pc, at 95.0 pc
Dust 240μm	050o	40 pc, at 95.0 pc
F8R [CII] & [NII]	050o	40 pc, at 95.0 pc
1.4GHz RRL	049.2o	86 pc, at 95.0 pc
Dust 870μm	049.1o	92 pc, at 95.0 pc
Warm 13CO cores	049o	98 pc, at 95.0 pc
Sync. 408 MHz	049o	98 pc, at 95.0 pc
Excess Faraday RM	048.2o	144 pc, at 95.0 pc
Thermal electron 048° 2.7° 156 pc - Taylor & Cordes (1993 – fig.4)

Notes:
(a): Published since 1980. Updating Table 3 in Vallée (2016b)
(b): When there are 2 or more published reports for a given arm tracer in a given spiral arm, then a separate table is provided.
(c): Angular distance from arm center, being positive towards arm's inner edge (towards the Galactic Center), and negative in other direction (towards the Galactic anti-center).
(d): Linear separation from the arm center (^12CO), after converting the angular separation at the arm distance from the sun; using 8.1 kpc for the distance of the Sun to the Galactic Center (see Fig. 1 in Vallée 2020a).
Table 2 - Observed tangent longitude and velocity for the 13CO J=1-0 and 2-1 tracers (a)(b)

Arm name	Tangent Galactic longitude (degree)	Telescope HPBW (arc)	Survey name	Tangent radial vel. V_{rad} (km/s)	Reference
Crux-Centaurus	306.5°	30’’	Catalog 12m J=2-1	-35	Schuller et al (2021 – fig.6)
Norma	327.5°	30’’	Catalog 12m J=2-1	-85	Schuller et al (2021 – fig.6)
Perseus start	335.5°	30’’	Catalog 12m J=2-1	-115	Schuller et al (2021 – fig.6)
Scutum	030.5° 46’’		Galactic Ring J=1-0	-	Hou & Han (2015- table 1)
	033° 3’	Bell Labs J=1-0	+95		Stark & Lee (2006 – fig.1, $v= +95$ km/s)
	031.8° ±1.8° mean and r.m.s.			+95	
Sagittarius	049.4° 46’’		Galactic Ring J=1-0	-	Hou & Han (2015- table 1)
	052° 3’	Bell Labs J=1-0	+60		Stark & Lee (2006 – fig.1, $v= +60$ km/s)
	050.7° ±1.8° mean and r.m.s.			+60	

Notes:
(a): Published since 1980.
(b): updating a similar table in Vallée (2016b).
Table 3 - Observed tangent longitude and velocity for the diffuse broad 12CO J=1-0 tracer

Arm name	Tangent Galactic longitude (degree)	Telescope name	HPBW (arc)	Survey name	Tangent radial vel. V_{rad} (km/s)	Reference
Carina	280°	Columbia	8.8’	-10	Alvarez et al (1990 – tables 4 and 1)	
	282°	Columbia	8.8’	-8	Grabelsky et al (1987 – fig.4 and 6)	
	282°	Columbia	8.8’	-8	Grabelsky et al (1988 – fig.1 and 4)	
	282°	Columbia	8.8’	-10	Bronfman et al (2000b – tab. 2, fig.2)	
	282.0	Columbia	-	-8	Hou & Han (2015- table 1)	
	283°	Columbia	8.8’	-8	Bronfman et al (2000a – Sect. 3.4, Fig.5)	
	281.8° ±1.0°	mean and r.m.s.	-9.8 ±1.1			
Crux-Cen-Taurus	308°	Columbia	8.8’	-48	Bronfman et al (2000a – sect. 3.4, fig.5)	
	308°	Columbia	8.8’	-8	Bronfman (2008 – sect. 4)	
	309°	CfA	8.4’	-42	Dame & Thaddeus (2011 – fig.4, fig.2)	
	309°	Columbia	8.8’	-40	Bronfman et al (2000b – table 2, fig.2)	
	309°	Columbia	8.8’	-44	Bronfman et al (1988 – fig. 6)	
	310°	Columbia	8.8’	-	Alvarez et al (1990 – table 4)	
	310°	Columbia	8.8’	-50	Bronfman et al (1989 – sect. 4, fig.8)	
	310°	Columbia	8.8’	-52	García et al (2014 – table 3, fig.9)	
	311°	Columbia	8.8’	-50	Grabelsky et al (1987 – fig.4 and 6)	
	311.0°	Columbia	8.8’	-	Hou & Han (2015- table 1)	
	309.5° ±1.1°	mean and r.m.s.	-46.6 ±4.6			
Norma	328°	Columbia	8.8’	-108	Alvarez et al (1990 – tab. 4 and 1)	
	328°	Columbia	8.8’	-90	Bronfman et al (1988 – fig. 7)	
	328°	Columbia	8.8’	-95	Bronfman et al (1989 – sect. 4, fig.7)	
	328°	Columbia	8.8’	-	Bronfman (1992 – fig.6)	
	328°	Columbia	8.8’	-105	Bronfman et al (2000a – sect. 3.4, fig.5)	
	328°	Columbia	8.8’	-	Bronfman et al (2000b – table 2)	
	328°	Columbia	8.8’	-	Bronfman (2008 – sect. 4)	
	328.3	Columbia	8.8’	-	Hou & Han (2015- table 1)	
	330°	Columbia	8.8’	-90	García et al (2014 – table 3, fig.2)	
	330°	Columbia	8.8’	-	Grabelsky et al (1987 – sect. 3.1.2)	
	328.4° ±0.8°	mean and r.m.s.	-97.6 ±8.4			
Start of Perseus	336°	Columbia	8.8’	-	Bronfman et al (1989 – sect. 4)	
	336°	Columbia	8.8’	-	Bronfman (2008 – sect. 4)	
	336.7	Columbia	8.8’	-	Hou & Han (2015- table 1)	
Region	Start Angle	Distance	Source	Notes		
------------	-------------	----------	-------------------------	---		
Sagittarius	340°	8.8'	Columbia	-130 Alvarez et al (1990 – tab. 1 and 4)		
	344°	8.8'	Columbia	-140 Bronfman et al (2000a – sect. 3.4, fig.5)		
			-	Bronfman et al (2000a - table 2)		
			-	Dame & Thaddeus (2008 – sect. 1)		
			-110	García et al (2014 – tab. 2 and 3)		
	337° ±0.8°			Mean and r.m.s.		
	-126.7 ±15.3					
	338° ±0.8°					
	342.0° ±0.2°					
	-136.0					
Norma	023.5	8.8'	Columbia	-136 Dame & Thaddeus (2008 – sect.1)		
	023.5	8.4'	CfA	+125 Reid et al (2016 –fig.7)		
	023.5° ±0°			Mean and r.m.s.		
	+125.0					
Scutum	030.5° ±1.7°					
	+95.0 ±8.2					
	031° ±1°					
	031°	7.5'	Columbia	+90 Dame et al (1986 – fig.4)		
	032° ±1°		NRAO	+100 Sanders et al (1985 – fig.5b, 5a)		
	033° ±1°		CfA	+96 Reid et al (2016 – fig.7)		
	034° ±2°		Columbia	-8 Cohen et al (1980 – fig.3)		
	035° ±1°		Texas	+84 Chiar et al (1994 – Sect. 3, Tab.1)		
	032.4° ±1.7°			Mean and r.m.s.		
	+95.0 ±8.2					
Sagittarius	049° ±1°					
	050° ±1°		NRAO	+62 Sanders et al (1985 – fig.5b)		
	051° ±1°		Columbia	-8 Cohen et al (1980 – fig.3)		
	051° ±1°		Columbia	+50 Dame et al (1986 – fig.9 and 3)		
	051° ±1°		Columbia	-8 Grabelski et al (1989 – fig.3)		
	052° ±1°		CfA	+54 Reid et al (2016 – fig.7)		
	050.7° ±0.9°			Mean and r.m.s.		
	+55.3 ±6.1					

Notes:
(a): Published since 1980.
(b): updating a similar table in Vallée (2016b).
Table 4: Observed tangent longitude and velocity for the HII region tracer

Arm name	Tangent Range	Tangent Reference	Galactic Longitude (degree)	Tangent radial vel. V_{rad} (km/s)
Carina	283.3° radio-IR-opt.	Hou & Han (2015 – table 1)	283.3°	-
	284° optical	Russeil (2003 – table 6)	284°	-
	284° radio	Downes et al (1980 – fig.4)	284°	-
	283.8° ±0.3° mean and r.m.s.	-		-
Crux-Centaurus	309° optical	Russeil (2003 – table 6)	309°	-
Norma	323° optical	Russeil (2003 – table 6)	323°	-
	328° radio	Downes et al (1980 – fig.4)	328°	-
	328.1° radio-IR-opt.	Hou & Han (2015 – table 1)	328.1°	-
	326.4° ±2.9° mean and r.m.s.	-		-
Start of Perseus	337.2° radio-IR-opt.	Hou & Han (2015 – table 1)	337.2°	-
Scutum	030.6° radio-IR-opt.	Hou & Han (2015 – table 1)	030.6°	-
	031° optical	Russeil et al (2007 – fig.4)	031°	-
	031° radio	Downes et al (1980 – fig.4)	031°	+95
	032° optical	Russeil (2003 – table 6)	032°	-
	032° radio	Sanders et al (1985 – fig.5a)	032°	+105
	031.3° ±0.6° mean and r.m.s. +100.0 ±7.1	-		-
Sagittarius	046° radio	Downes et al (1980 – fig.4 and 1)	046°	+60
	049.4° radio-IR-opt.	Hou & Han (2015 – table 1)	049.4°	-
	051° optical	Russeil et al (2007 – fig.4)	051°	-
	051° radio	Sanders et al (1985 – fig.5a)	051°	+62
	056° optical	Russeil (2003 – table 6)	056°	-
	050.7° ±3.6° mean and r.m.s. +61.0 ±1.4	-		-

Notes:
(a): Published since 1980.
(b): updating a similar table in Vallée (2016b).
Arm name	Galactic longitude (degree)	Maser name	Tangent radial vel. V_{rad} (km/s)	Reference
Carina	284.5°	methanol	-	Hou & Han (2015 – table 1)
	285°	methanol	+10	Green et al (2012b – fig.1)
	284.8° ±0.4°	mean & r.m.s.	+10	
Crux-Centaurus	306°	methanol	-55	Green et al (2012b – fig.1)
	310.5°	methanol	-58	Green et al (2017 – fig.4)
	312.2°	methanol	-	Hou & Han (2015 – table 1)
	309.6° ±3.2°	mean & r.m.s.	-56.5° ±2.1°	
Norma	329.3°	methanol	-	Hou & Han (2015 – table 1)
	330.5°	methanol	-102	Green et al (2017 – fig.4)
	331.5°	methanol	-	Caswell et al (2011 – Sect. 4.6.2)
	330.4° ±1.1°	mean & r.m.s.	-102	
Start of Perseus	336°	methanol	-115	Green et al (2017 – fig.4)
	337.0°	methanol	-	Hou & Han (2015 – table 1)
	337.0°	radio kink	-115	Reid et al (2019 – tab.2 and fig.3)
	337.5°	methanol	-90	Caswell et al (2011 – sect. 4.6.1; fig.4)
	338°	methanol	-	Green et al (2011 – sect. 3.3.1)
	338°	methanol	-	Green et al (2012a – Sect.2)
	337.3° ±0.8°	mean & r.m.s.	-106.7 ±14.4	
Start of Sagittarius	344°	H$_2$O; methanol	-	Sanna et al (2014 – fig. 6)
	348°	methanol	-120	Green et al (2017 – fig.4)
	352°	methanol	-	Green et al (2011 – sect.4)
	348.0° ±4.0°	mean & r.m.s.	-120	
Start of Norma	012°	methanol	-	Green et al (2012a – sect.2)
	012°	methanol	-	Green et al (2011 – sect.4)
	013°	methanol	+100	Green et al (2017 – fig.4)
	025°	radio kink	+110	Reid et al (2019 –fig.3)
	015.5° ±6.4°	mean & r.m.s.	+105.0 ±7.1	
Scutum	026°	methanol	-	Green et al (2012a – Sect.2)
	026°	methanol	+100	Green et al (2011 – sect. 3.3.1)
	030°	H$_2$O & methanol	-	Sanna et al (2014 – fig.6)

(a) or range

H methanol
mean & r.m.s.
+105.0 ±7.1
Angle	Species	Value	Reference
030°	meth., water		Reid et al (2014 – fig.1)
030.8°	methanol		Hou & Han (2015 – table 1)
031°	meth., water	+99	Sato et al (2014 – fig.3, and tab.3)
031°	methanol	+110	Green et al (2017 – fig.4)
031°	meth., water	+95	Reid et al (2019 - fig.3)
031°	radio masers	+100	Wu et al (2019 – fig.5)
			029.6° ±2.1° mean & r.m.s. +100.8 ±5.5

Sagittarius

Angle	Species	Value	Reference
049°	methanol	+71	Green et al (2017 – fig.4)
049.3°	methanol		Hou & Han (2015 – table 1)
049.6°	methanol	+68	Pandian & Goldsmith (2007 – sect.4, fig.4)
050°	meth., water		Reid et al (2014 – fig.1)
051°	meth., water	+68	Wu et al (2014 – sect. 4.2, fig.3)
052°	meth., water	+55	Reid et al (2019 – fig.3)
			050.2° ±1.1° mean & r.m.s. +65.5 ±7.1

Notes:
(a): Published since 1980
(b): updating a similar table in Vallée (2016b).
Table 6 - Observed tangent longitude and velocity for the HI atom tracer

Arm name	Tangent Galactic Longitude (degree)	Telesc-cope name	HPBW (arc)	Survey	Tangent radial vel. V_{rad} (km/s)	Reference
Carina	281.2°	36'	Leiden	-	Nakanishi & Sofue (2016- fig.7)	(b)
	281.5°	48'	Parkes 18m	-9	Grabelsky et al (1987 – fig.11)	
	283.0°	36'	LAB	-	Hou & Han (2015 – Table 1)	
	281.9° ±1.0° mean and r.m.s.			-9		
Crux-Centaurus	309.3°	36'	Leiden	-	Nakanishi & Sofue (2016- fig.7)	(b)
	310°	15'-36'	Hat Creek;Parkes	-	Englmaier & Gerhard (1999- table 1)	
	310.4°	36'	LAB	-	Hou & Han (2015 – Table 1)	
	312.0°	48'	Parkes 18m	-44	Grabelsky et al (1987 – fig.11)	
	310.4° ±1.1° mean and r.m.s.			-44		
Norma	327.5°	48'	Parkes 18m	-79	Grabelsky et al (1987 – fig.11)	
	328.0°	36'	LAB	-	Hou & Han (2015 – Table 1)	
	328.0°	15'-36'	Hat Creek;Parkes	-	Englmaier & Gerhard (1999- table 1)	
	328.4°	36'	Leiden	-	Nakanishi & Sofue (2016- fig.7)	(b)
	327.9° ±0.4° mean and r.m.s.			-79		
Start of	336.8°	36'	LAB	-	Hou & Han (2015 – Table 1)	
Perseus	336.9°	36'	Leiden	-	Nakanishi & Sofue (2016- fig.7)	(b)
	336.8° ±0.1° mean and r.m.s.			-		
Scutum	029°	15'-36'	Hat Creek;Parkes	-	Englmaier & Gerhard (1999 – table 1)	
	030.8°	36'	LAB	-	Hou & Han (2015 – Table 1)	
	033.2°	36'	Leiden	-	Nakanishi & Sofue (2016- fig.7)	(b)
	031.0° ±2.1° mean and r.m.s.			-		
Sagittarius	050°	15'-36'	Hat Creek;Parkes	-	Englmaier & Gerhard (1999 – table 1)	
	050.8°	36'	LAB	-	Hou & Han (2015 – Table 1)	
	051.0°	36'	Leiden	-	Nakanishi & Sofue (2016- fig.7)	(b)
	050.6° ±0.5° mean and r.m.s.			-		
Notes:						
(a): Published since 1980.						
(b): Nakanishi & Sofue (2016) reassessed the published HI catalogs from Hartmann & Burton (1997) and Bajaja et al (2005); they added the CO survey of Dame et al (2001).						
(c): updating a similar table in Vallée (2016b).						
Arm name	Tangent Galactic longitude (degree)	Telescope name	Survey HPBW (arc)	Tangent radial vel. V_{rad} (km/s)	Reference	
----------	-----------------------------------	----------------	------------------	------------------------------------	-----------	
Carina	284.2.0°	19"	Atlasgal	-	Hou & Han (2015 – Table 1)	
	284.2° mean			-		
Crux-Centaurus	311°	19"	Atlasgal	-	Beuther et al (2012 – fig.2)	
	311.7°	19"	Atlasgal	-	Hou & Han (2015 – Table 1)	
	311.4° ±0.5° mean and r.m.s.			-		
Norma	327.2°	19"	Atlasgal	-	Hou & Han (2015 – Table 1)	
	332°	19"	Atlasgal	-	Beuther et al (2012 – fig.3)	
	329.6° ±3.4° mean and r.m.s.			-		
Start of	337.5°	19"	Atlasgal	-	Hou & Han (2015 – Table 1)	
Perseus	338°	19"	Atlasgal	-	Beuther et al (2012 – fig.3)	
	337.8° ±0.3° mean and r.m.s.			-		
Start of	343°	19"	Atlasgal	-	Beuther et al (2012 – fig.3)	
Sagittarius	343°	19"	Atlasgal	-		
	343° mean			-		
Start of	025°	19"	Atlasgal	-	Beuther et al (2012 – fig.3)	
Norma	025°	19"	Atlasgal	-		
	025° mean			-		
Scutum	030.7°	19"	Atlasgal	-	Hou & Han (2015 – Table 1)	
	031°	19"	Atlasgal	-	Beuther et al (2012 – fig.3)	
	030.9° ±0.2° mean and r.m.s.			-		
Sagittarius	049°	19"	Atlasgal	-	Beuther et al (2012 – fig.3)	
	049.2°	19"	Atlasgal	-	Hou & Han (2015 – Table 1)	
	049.1° ±0.2° mean and r.m.s.			-		

Notes:
(a): Published since 1980. (b): updating a table in Vallée (2016b).
Table 8 - Observed tangent longitude and velocity for the 1 to 8 µm diffuse old stars (NIR star counts) tracer (a) (b)

Arm name	Tangent Galactic longitude (degree)	Telescope HPBW (arc)	Survey	Tangent radial vel. V_{rad} (km/s)	Reference
Crux-Centaurus	307°	21'	COBE K-band 2µm	-	Drimmel (2000 – Sect.3)
	307.5°	1.2;2”	GLIMPSE; 2MASS	-	Hou & Han (2015 – Table 1)
Start of Perseus	338.3°	1.2”;2”	GLIMPSE; 2MASS	-	Hou & Han (2015 – Table 1)
	338.3°	mean	-		
Start of Sagittarius	348°	21’	J,H,K COBE 2µm	-	Benjamin (2008 – Fig.2)
	348°	mean	-		
Start of Norma	019°	21’	J,H,K COBE 2µm	-	Benjamin (2008 – Fig.2)
	019°	1.2;2”	4.5µm GLIMPSE	-	Benjamin (2008 – Fig.2)
Scutum	030°	21’	COBE K-band 2µm	-	Drimmel (2000 – Sect.3)
	032.6°	1.2”;2”	GLIMPSE; 2MASS	-	Hou & Han (2015 – Table 1)
Sagittarius	055.0°	1.2”;2”	GLIMPSE; 2MASS	-	Hou & Han (2015 – Table 1)
	055.0°	mean	-		

Notes:
(a): published since 1980.
(b): updating a similar table in Vallée (2016b).
Table 9 – Mean linear separation (S) of each arm tracer from diffused broad 12CO, at each arm tangent (a) (g)

Mean tangent Longit.	283°	310°	328°	338°	346°	018°	030°	050°	-
At Gal. radius (kpc)	8.0	6.3	4.5	3.2	2.5	2.8	4.2	6.3	-

Chemical Tracer	S in Carina arm	S in Crux- Taurus arm	S in Norma arm	S in Start of Perseus arm	S in Start of Sagittarius arm	S in Scutum arm	Mean separation ±s.d.m. (b)
(pc)	(pc)	(pc)	(pc)	(pc)	(pc)	(pc)	(pc)

blue group:								
12CO at 8''	0	0	0	0	0	0	0 ± (c)	
12CO	-	-114	-118	-196	-	58	0	-114 ±67
Old stars (NIR)	-230	-	170	785	510	106	-248	-50 ±110 (f)
26Al	-125	52	-314	-262	524	-38	-	-14 ±124
HII complex	140	42	-262	26	-	106	-7	8 ±58
NH$_3$ 1-1 cores	-42	-78	183	-	-	134	6	25 ±6
HII atom	7	94	-65	-26	-	134	6	25 ±6
[CII] at 80''	-	-26	0	-	0	230	-	68 ±81

green group:								
Thermal electron	84	52	78	-	-	38	156	82 ±21
Synch. 408 MHz	-	52	-52	262	-	38	98	80 ±52
1.4GHz RRL	175	178	118	-13	-	154	86	116 ±5

orange group:									
Masers	209	10	262	39	785	907	269	29	136 ±50 (f)
FIR [CII] & [NII]	363	-52	131	-	131	230	40	142 ±12	
Cold dust 870µm	168	199	177	105	131	-170	144	92	148 ±11 (f)
Warm 12CO cores	-	-	-	-	-	-	-220	98	159 ±61
Cold dust 240µm	154	157	471	-	-	-	134	40	191 ±13

red group:							
Hot dust 60µm	154	157	209	393	-	230	-229 ±41
Hot dust 2.4µm	-	-2	471	262	-	326	-353 ±62

| Combined cold dust (d) | 161 | 178 | 324 | 105 | 131 | -170 | 135 | 66 | 162 ±36 (f) |
| Combined hot dust (e) | 154 | 157 | 340 | 328 | - | 278 | - | 251 ±41 |

Notes:
(a): All data from Table 1 here.
(b): The s.d.m.(standard deviation of the mean) is from the external scatter.
(c): There is a median internal scatter of 40 pc, from the CO data in Table 3 (1.0° rms, sdm 0.3°, at 7 kpc).
(d): Statistical means made on cold dust tracers at 240µm and 870µm.
(e): Statistical means made on hot dust tracers at 2.4µm and 60µm.
(f): Excluding the two tangent arms, nearest the Galactic Meridian (Start of Sagittarius, Start of Norma).
(g): updating a similar table in Vallée (2016b).
Table 10 – Mean radial velocity of each arm tracer, at each arm tangent \(^{(a)}\)

Mean tangent Longit.	283°	310°	328°	338°	346°	018°	030°	050°
At Gal. radius (kpc)	8.0	6.3	4.5	3.2	2.5	2.8	4.2	6.3

Chemical Tracer	Carina arm	Crux-Centaurus arm	Norma arm	Start of Perseus Sagittarius arm	Start of Scutum Sagittarius arm	(km/s)	(km/s)	(km/s)	(km/s)	(km/s)	(km/s)
blue group:						+125	125	95.0	115	100	61
\(^{12}\)CO at 8'	-8.8	-46.6	-97.6	-126.7	-136	+125		95.0	115	100	61
[CII] at 80''	-	-106	-127	-		+117					
HI atom	-9	-44	-79	-							
HII complex	-	-	-	-							
\(^{13}\)CO	-	-35	-85	-115	-						

orange group:						+95	95	+60			
Warm \(^{12}\)CO cores	-	-	-	-							
Masers	+10	-56.5	-102	-106.7	-120	+105		100.8	65.5		

Mean radial velocity: -3 ±6, -44 ±5, -94 ±5, -119 ±5, -128 ±5, +115 ±10, +100 ±4, +60 ±3

Notes:
(a): All data from Table 1 here.
Table 11 – All arm tracers across the wavelength range – contribution to each arm \(^{(a)}\)

Chemical Tracer	Wave-length	No. in Carina arm	No. in Crux-Centaurus arm	No. in Norma arm	No. in Start of Perseus arm	No. in Start of Sagittarius arm	No. in Scutum arm	Sum of No.			
Gamma rays:	26\(^{Al}\)	0.7µµm	1	1	1	0	1	0	6		
Optical régime:	HII complex	0.5µµm	1	1	1	0	0	2	2	7	
Infrared régime:	Old stars (NIR)	1-8µµm	0	2	0	1	1	2	2	1	9
	Dust	2.4µµm	0	0	1	1	0	1	0	3	
	Dust	60µµm	1	1	1	1	0	1	0	5	
	[CII] at 80"	158µµm	0	0	1	1	0	1	0	3	
	FIR [CII]&[NII]	158-205µµm	1	1	0	1	0	1	1	5	
	Dust	240µµm	1	1	1	0	0	1	1	5	
	Dust	870µµm	1	2	2	2	1	2	2	13	
Radio régime:	\(^{12}\)CO at 8'	3mm	6	10	10	8	2	2	7	6	51
	\(^{13}\)CO	3mm	0	1	1	1	0	0	2	2	7
	Warm \(^{12}\)CO cores	3mm	0	0	0	0	0	1	1	2	
	NH\(_{3}\) 1-1 cores	1.2cm	0	1	1	1	0	0	0	3	
	Masers	4cm	2	3	3	6	3	4	9	6	36
	Synch 6 GHz	5cm	0	0	0	0	0	1	0	1	
	HII complex	6cm	2	2	2	1	0	0	3	3	13
	Thermal electron	6cm	1	1	1	0	0	1	1	5	
	Faraday RM	15cm	0	0	0	0	0	0	1	1	
	HI atom	21cm	3	4	4	2	0	0	3	3	19
	1.4GHz RRL	21cm	1	1	1	1	0	0	1	1	6
	Synch. 408 MHz	74cm	0	1	1	1	0	0	1	1	5
Grand total:	-	21	33	32	29	8	10	40	32	205	

Notes:
(a): All data from Tables 1 to 8 here.