Inheritance and the CCG lexicon

Mark McConville
University of Edinburgh

Postgraduate Conference in Linguistics at Manchester
4 March 2005
The Chomsky hierarchy

- type 0: recursively enumerable languages
- type 1: context-sensitive languages
- type 2: context-free languages
- type 3: regular languages

Containment hierarchy

- type 3 ⊂ type 2, type 2 ⊂ type 1, ...
Natural classes and automata

• type 0: Turing machines

• type 1: linear bounded automata

• type 2: pushdown automata

• type 3: finite state machines

Also a containment hierarchy
Phrase structure grammars

- type 0: $\phi \rightarrow \psi$
- type 1: $\phi \rightarrow \psi$ where $|\phi| < |\psi|$
- type 2: $X \rightarrow \phi$
- type 3: $X \rightarrow a \phi$
Formal languages and human languages

- the human languages: a natural class of formal language
- the language faculty ("universal grammar"): a family of automata/grammars
Human languages?

- type 0: recursively enumerable languages
- type 1: context-sensitive languages
- type 2: context-free languages
- type 3: regular languages?
Human languages?

- type 0: recursively enumerable languages
- type 1: context-sensitive languages
- type 2: context-free languages?
- type 3: regular languages
Recap: Formal languages and human languages

• the human languages: a natural class of formal language

• the language faculty ("universal grammar"): a family of automata/grammars

• human languages \subseteq context-free languages

BUT . . .

• context-free languages \nsubseteq human languages
Left-gapping languages

• John loves Mary and Bill loves Kate

• John LOVES Mary and Bill loves Kate

• John – Mary and Bill loves Kate
Ross’ observation

- SOV languages

- left-gapping vs. non-left-gapping languages

- two combinations — both context-free
 - SOV and left-gapping — many
 - SOV and non-left-gapping — few
Formal languages and human languages

- the human languages: a natural class of formal language

- the language faculty ("universal grammar"): a family of automata/grammars

- human languages \subseteq context-free languages

- context-free languages $\not\subseteq$ human languages
 - SOV/left-gapping languages are "more human" than SOV/non-left-gapping languages

SO . . . context-free grammars/pushdown automata overgenerate
A solution: Markedness

- languages are ranked
- e.g. by the “size” of the smallest grammar
- AIM: a family of grammars which ranks probable human languages more highly than improbable human languages
CFGs and human language competence

- \(X \rightarrow \emptyset \)

- the smallest CFG for an SOV/left-gapping language is no smaller than the smallest CFG for the corresponding SOV/non-left-gapping language

- the smallest CFG for an SOV/left-gapping language is \textit{bigger} than the smallest CFG for the corresponding SOV/non-left-gapping language
SOV/non-left-gapping

\[
\begin{align*}
S & \rightarrow \text{NP} \text{ VP} \\
\text{VP} & \rightarrow \text{NP} \text{ V}
\end{align*}
\]

\[
\text{John} \rightarrow \text{Mary loves}
\]
SOV/left-gapping

\[
\begin{align*}
S & \rightarrow \ NP \ VP \\
VP & \rightarrow \ NP \ V \\
S & \rightarrow \ NC \ V \\
NC & \rightarrow \ NP \ NP
\end{align*}
\]
CFGs and human language competence

- the smallest CFG for an SOV/left-gapping language is bigger than the smallest CFG for the corresponding SOV/non-left-gapping language

- CFG family: SOV/non-left-gapping languages are “more human” than SOV/left-gapping languages
Alternative: Combinatory categorial grammars

- CCGs generate all and only the context-free languages
- CCGs assume flexible constituency
CCGs and flexible constituency

John ⊢ NP
Mary ⊢ NP
loves ⊢ S\NP\NP

\[
\begin{array}{c}
\text{John} \\
\text{Mary} \\
\text{loves}
\end{array}
\quad
\begin{array}{c}
\text{loves} \\
\text{John} \\
\text{Mary}
\end{array}
\]
Combinatory categorial grammars

• CCGs generate all and only the context-free languages

• CCGs assume flexible constituency

• the CCG for an SOV/left-gapping language is the CCG for an SOV language

• CCG family: SOV/left-gapping languages are “more human” than SOV/non-left-gapping languages
Summary so far

• the human languages are a natural class of formal language

• human languages \subseteq context-free languages

• context-free languages $\not\subseteq$ human languages

• families of grammars rank the languages they generate

• AIM: family of grammars which ranks probable human languages more highly than improbable ones

• Ross’ observation: flexible categorial grammars are better than traditional phrase structure grammars
My project

• many statistical universals of human language are NOT captured by flexible categorial grammars
 – Greenbergian basic word order correlations
A Greenberg universal

4. “With overwhelmingly greater than chance frequency, languages with normal SOV order are postpositional”

- OV languages

- OP languages vs. PO languages

- two possibilities
 - OV/OP — many
 - OV/PO — few

- PROBLEM: the smallest CCG of an OV/OP language is NO SMALLER than the smallest CCG of the equivalent OV/PO language
My project

- many statistical universals of human language: NOT captured by flexible
categorial grammars
 - Greenbergian basic word order correlations

- SOLUTION: organising the CCG lexicon as an inheritance hierarchy
OV/PO languages

- **Verb**
 - Category: ARGUMENT = [NP]
 - RESULT = VP

- **Postposition**
 - Category: ARGUMENT = [NP]
 - RESULT = PP

- **Preposition**
 - Category: ARGUMENT = [NP]
 - RESULT = PP
My project

• many statistical universals of human language: NOT captured by flexible categorial grammars
 – Greenbergian basic word order correlations

• SOLUTION: organising the CCG lexicon as an inheritance hierarchy

• inheritance hierarchies: independently necessary for optimal encoding of lexical information

• explanatory aspects — incremental processability