Different property rights regimes in the Lake Victoria multiple species fishery

GARDNER BROWN
University of Göteborg, University of Washington and Resources for the Future, University Fellow. E-mail: gbrown@u.washington.edu

BRETT BERGER
Federal Reserve Board, Washington.

MOSES IKIARA
Kenya Institute for Public Policy, Research and Analysis.

ABSTRACT. Greater ecosystem complexity is recognized by studying a two species predator–prey model under two property rights regimes: free entry and a system such as individual quotas which execute an economically optimal solution. A bottom-up management experiment is discussed in the context of Lake Victoria fisheries.

Introduction
In the real world it is more likely and therefore more empirically relevant that there is species interaction than to assume a single species (lumped parameter) model, which dramatically dominates the fishery economics literature. The focal point then for the research presented herein is a predator–prey fishery, whose fate is determined either by free entry or by a property rights structure, such as individual quotas designed to facilitate an optimal economic solution.

Natural scientists have given some attention to the study of multiple interacting species (Larkin, 1966; May, 1974; Pielou, 1969; Maynard-Smith, 1974), but there has been less study of multiple species in an optimization framework, particularly from a bioeconomic perspective. Multiple species models are not generous in the results produced. Clark (1990) concludes that, while optimal steady state values often can be determined, exact solutions for the optimal path to the steady state are not known and may not exist for some problems. The simpler the model, the more likely clean results will emerge. Solow’s analysis of a Volterra model is insightful, but the model has no intraspecific competition; that is, natural resource capital has no diminishing returns. Still, he concludes that, even in the two species models, there are no easily obtained qualitative results resembling those gleaned from single species models.

1 The authors thank the very helpful comments of two anonymous reviewers.
Wilen and Brown (1986) make some progress in characterizing the solution to a predator–prey optimization problem. Modest success comes at the cost of assuming a unidirectional coupled system. The lower organism enhances the growth of the upper-level organism but the predator has no effect on the prey. This assumption seems to be rather strong and is not empirically credible for the perch–dagaa population dynamics studied below. Ragozin and Brown (1985) established the existence of a steady state and described the unique approach to it for a predator–prey system in which only the predator species is harvested. Hannesson (1983) studies the same bioeconomic model analytically as we do, but does not compare the bioeconomic model with a free entry model and has limited analytical comparative statics analysis. Flaaten (1989) follows May et al. (1979) in the population dynamics of the predator–prey model which differs from ours, compares the optimal solution to the open access solution and derives comparative statics results for price and interest rate changes on stocks. We compare these results with ours below.

In the model below, we assume that the prey enhances the predator’s growth in proportion to both the stock of predator and prey. The alternative is to assume that the predator’s carrying capacity is proportional to the size of the prey population. In such a model, the predator has specialized on a single species for its food supply. Gut samples indicate that the predator (perch) feeds on a variety of species, and fisheries biologists in the Lake Victoria region (Kulindwa et al., 2001) accepted the model as specified. The choice of model is not inconsequential as the subsequent discussion of comparative statics indicates.

The model
Perch (predator) population dynamics is given by

\[
\frac{dR}{dt} = \dot{R} = f(R) - h_1 + \alpha RD
\]

where

R = the stock of perch at time t; time subscripts are suppressed, \(f(R) \) is logistic (see below),

\(h_1 \) = harvest of perch,

D = the stock of dagaa, and

\(m_{sy} \) = maximum sustained yield (single stock definition).

The dagaa enter the perch population dynamics linearly. \(\alpha \) is the effect of a unit change in dagaa on the percent growth rate of perch.

In particular, assume the underlying population dynamics for the perch is logistic

\[
\dot{R} = r_1 R \left[1 - \frac{R}{K} \right] - h_1 + \alpha RD
\]

\(2 \) For an excellent treatment of competing species where \(\alpha < 0 \), see Flaaten (1991) and Schulz (1997).
where
\[r_1 = \text{the intrinsic rate of growth for the perch}, \]
\[\bar{R} = \text{the carrying capacity for the perch}. \]

The logistic is introduced for illustrative purposes, but both biological and economic reasoning require any candidate growth function to exhibit diminishing returns.

Dagaa (prey) population dynamics is specified as
\[\frac{dD}{dt} = \dot{D} = g(D) - h_2 - \beta DR \] (3)
where
\[g(D) \text{ is logistic (see below)}, \]
\[h_2 = \text{harvest of dagaa}. \]

Adopting the logistic form again
\[\dot{D} = r_2 D \left[1 - \frac{D}{\bar{D}} \right] - h_2 - \beta DR \] (4)

In this primitive model, it is assumed that the marginal cost of harvest is constant (perhaps 0), independent of the population size. The goal in the introductory model is to maximize the present value of profit (\(\Pi \))
\[\Pi = \int_0^{\infty} e^{-\rho t} \left[P_i h_1 + P_2 h_2 \right] dt \]
where
\[\rho = \text{the discount rate}, \]
\[P_i = \text{the unit profit of harvested fish, } i = 1(\text{perch}), 2(\text{dagaa}). \]

It is understood that harvest cannot exceed a certain maximum
\[0 \leq h_1 \leq h_{1\text{max}} \]
\[0 \leq h_2 \leq h_{2\text{max}}, \]
at any moment, an assumption made for mathematical convenience.

Forming the current value Hamiltonian for the simple maximization problem
\[H = P_1 h_1 + P_2 h_2 + \lambda_1 \left[f(R) - h_1 + \alpha RD \right] + \lambda_2 \left[g(D) - h_2 - \beta DR \right] \] (5)
with \(\lambda_1 \) and \(\lambda_2 \) the adjoint variables for (1) and (2).

For a maximum of \(H \), either we use the following bang bang controls
\[h_1 = 0 \text{ if } \lambda_1 > P_1, \]
\[h_1 = h_{1\text{max}} \text{ if } \lambda_1 < P_1 \] (6)
or singular controls when
\[\lambda_i = P_i \] (7)
The adjoint equations are
\[
\begin{align*}
\dot{\lambda}_1 - \rho \lambda_1 &= -\lambda_1 [f'(R) + \alpha D] + \lambda_2 \beta D \\
\dot{\lambda}_2 - \rho \lambda_2 &= -\lambda_2 [g'(D) - \beta R] - \lambda_1 \alpha R
\end{align*}
\] (8) (9)

In a steady state interior equilibrium, from (8) (9) and (7).
\[
\rho = f'(R) + \alpha D - \frac{P_2}{P_1} \beta D, \quad (10)
\]
\[
\rho = g'(D) - \beta R + \frac{P_1}{P_2} \alpha R. \quad (11)
\]

In equilibrium, according to the right-hand side of (10) and (11), the real marginal rate of return on each species has to earn the market rate of return (ρ).

Elsewhere we have worked out the comparative statics results for the optimal control solutions (Brown et al., 2002). The derivations are here summarized in the Appendix. Not surprisingly, general results are limited but there are important special cases, which are presented below. The species interaction terms create a biological technical externality that creates a term in the steady state conditions for the optimal population of both stocks (see (10) and (11)), $\alpha P_1 - \beta P_2$. Assume this term is positive as it fortunately is in the case of Lake Victoria. We expect it to be positive because αP_1 is basically the value of the marginal product in converting dagaa to perch which should not be less than the marginal cost or opportunity cost (βP_2) of forgone dagaa harvest. Moreover, the empirical evidence supports the necessary conditions to sign the response of harvest to price changes
\[
R^* < \frac{1}{2} \bar{R},
\]
\[
D^* > \frac{1}{2} \bar{D}
\]

From (10) and (11) it can be seen that the biological externality, $\alpha P_1 - \beta P_2$, enhances the optimal stocks of both species. So when the price of perch rises, the equilibrium stock of both fish rises, as does perch harvest. Dagaa harvest decreases. When the price of dagaa rises, both populations decrease as does perch harvest but dagaa harvest increases (see table 1).

Free entry
The obvious alternative property rights case is the observed free entry. Under free entry, harvesters enter each fishery until total revenue equals total cost. Adopting a Schaefer production function for each species for illustration
\[
\begin{align*}
h_1 &= E_1 R, \quad (12) \\
h_2 &= E_2 D, \quad (13)
\end{align*}
\]

where E_i is the level of effort devoted to each fishery. Effort is obtained at a constant unit cost of w. The total cost of harvesting perch, using (12) is $\frac{w h_1}{R}$.

Table 1. Comparative statics

Direction of change	Free entry	Optimal*
dR	$-$	$+$
dR	0	$-$
dD	0	$+$
dD	$-$	$-$
dh_2	$-/+	$+$
dh_2	$+$	$-$
dh_1	$-/+	$+$
dh_1	$-$	$-$

Note: *See conditions in the text, under which these signs hold.

The equilibrium conditions of total revenue and total cost equality results in

$$R = \frac{w}{P_1}, \quad (14)$$

$$D = \frac{w}{P_2}, \quad (15)$$

and from (14), (15), (2) and (4), in equilibrium

$$h_1 = r_1 \frac{w}{P_1} \left(1 - \frac{w}{RP_1}\right) + \frac{\alpha w^2}{P_1 P_2} \quad (16)$$

$$h_2 = r_2 \frac{w}{P_2} \left(1 - \frac{w}{DP_2}\right) - \frac{\beta w^2}{P_1 P_2} \quad (17)$$

The comparative statics for the free entry property right option is easily computed from equations (14)–(17) and are illustrated in table 1. When the price of perch (dagaa) rises, its equilibrium population falls as we would expect. Dagaa harvest increases because harvest substitutes for decreased predation. Perch harvest responds to own price change in an ambiguous way because the original equilibrium population could be to the right of maximum sustained yield (msy) and when stock falls, due to price change, harvest increases. The sign is reversed if $R < R_{msy}$. The same explanation...
underlies the ambiguous sign in the case of dagaa. The interesting result is that exogenous price changes affect harvest and stocks differently under the two property right options in four of the eight possible comparisons and for a further two more cases when the cost–price ratio results in low equilibrium populations. Thus, for example, introducing or increasing a landing tax is equivalent to a price reduction for that fishery. It increases perch (dagaa) harvest under free entry when stocks are relatively low but decreases perch (dagaa) harvest under optimal management or on individual quota system. Thus a national tax policy would have opposite consequences if some fisheries are operated under a free entry property rights regime and others are subject to individual quotas. Mixed property rights systems are common in many countries today and call for non-uniform management policies.

A politically feasible implementation of the optimal solution
There are two parts to this paper. The analytical first part tells us where to go. The second part is a design of how to get there in the real world.

Using an optimal control formulation to determine the optimal harvest rates of both the predator and prey directly produces a rental rate or user cost for each species. It is a small step made by most economists to immediately recommend a policy of charging the rental rate for harvesting each species. It is a very large step to implement such a policy, evidently because it is rarely observed. The dual to the charge or rental rate is the standard or a specified harvest level per period. A standard is not very operational in this world because in the real world there are harvesters that are missing in the model. Additionally, a standard in the form of an overall quota typically has not had either biologically or economically favorable outcomes over time. So, more structure bearing on individual harvesters is required, when we move toward stylized policy making. In what follows, the subject matter lends itself to a qualitative rather than a very formal treatment.

In most parts of the world, for most fisheries and for a very long time, it has not been politically feasible to charge a landing tax or its equivalent per unit of fish harvested; that is, a tax reflecting the social opportunity cost of fishing. Given its low probability of viability, we pass from a charge policy to individual tradable quotas (ITQs) to be discussed below.

The sad history of fisheries management throughout the world is familiar to most so we will not dwell on details. Only 25 per cent of the fisheries throughout the world are under exploited; many of the exploited fisheries have been harvested to the point of extinction (FAO, 2002). Individual policies to control open access, such as trip limits, season closures, total harvest quotas for fisheries and a variety of restrictions on gear very rarely have prevented the social waste of natural and human resources, as well as wasted manufactured capital that accompanies over fishing – fishing too fast at the wrong times in the wrong places. Limiting total catch per season has had wondrously bad consequences in North America. A halibut season in the Pacific Northwest of more than 200 days was reduced to a couple of days (Wilen, 1994). The sable fish season in the same region was reduced to three weeks in order to prevent gross over fishing (Hanna, 1995). It is unlikely that fishery-wide input and output control policies can
effectively manage Lake Victoria Fisheries, although one or two, such as area and seasonal closures to protect nurseries or particularly vulnerable periods, can play an important partial role. The economic analogues, such as a landing fee that varies with location of catch, have high monitoring and enforcement costs.

The success of management policies depends vitally on how they are developed and implemented. Success is likely to require the co-evolution of the management tools and the process by which they are created, implemented and sustained (Ostrom, 1990). At one extreme, top–down management refers to a situation in which the central government dictates policy and executes it in some decentralized bureaucratic fashion. This is a loser from the start. It surely has not worked previously in Lake Victoria and the mere enunciation of new policy tools is unlikely to be a panacea.

A promising place to begin is at the other end of the spectrum with bottom–up management. In this case, the local community determines who fishes, how and when they fish, together with the other modalities of fishery management, including total catch and catch per harvester. Bottom–up management works well when the human and physical environment is homogeneous, a condition strikingly not satisfied in the Lake Victoria fishery under study. Over the relevant range, the more fish for the perch harvesters, the less for the dagaa harvester. This allocation decision has critical ramifications for the perch processing, largely export industry, which does not have deep, shared cultural roots with the harvesters. Moreover, the three nations contiguous to Lake Victoria have an interest in pursuing national objectives, such as foreign exchange earnings, which are antithetical to the interests of the dagaa harvesters (Kulindwa et al., 2001).

For some time to come, the scientific analysis supporting the population dynamics, hence, in part, the determination of annual allowable catch within an ITQ framework, will be done at the level of one or more regional agencies, in all likelihood. Finally, there may be technical externalities between other resources; for example, the threatened cichlids (Kitchell et al., 1997), over which national governments have jurisdiction, and the perch. National responsibility for these other parts of the ecosystem require some form of intervention by legal entities higher than the local community in the political hierarchy.

It is not surprising that some sort of co-management structure has the best chance of success. Under co-management, authority is shared between local communities, perhaps public regional organizations and national governments. Actual day-to-day management will be largely in the domain of the users and their local beach associations or fishermen cooperatives.

Illustratively, regardless of the particular policies chosen, some cost-effective means of monitoring and enforcing must be devised by the co-management structure. Here user participation is essential for reducing cost, and for success they must be involved in establishing policy in order to legitimate the regulations. In all likelihood it will be necessary to monitor and enforce individual harvest levels. In addition, perhaps restrictions on
mesh size or some policy to manage discards and prevent fishing in specific areas at specific times will be necessary.

Stiglitz (1990) has written about the importance of peer monitoring in the context of credit markets, where self-formed groups made up of a small number of farmers are mutually responsible for ensuring that the loans each member has borrowed are repaid. In this case, the incentive for one’s peers to enforce the contracts is quite direct. A similar arrangement holds promise at the beach association–fisherman’s cooperative level. Elinor Ostrom (1990) and others have studied self-government of common property. In successful cases, the costs of monitoring and enforcement are reasonable because the existing social and cultural fabric of the community is essentially a free resource relied upon to induce conformance to the rules of the game. Top-down management does not have access to this free resource. If the local harvesters go to the same church, shop in the same markets, their children go to the same schools and play sports together, a harvester may feel less inclined to cheat because it betrays the community’s trust in him. He may be less inclined to cheat if he knows that it will hurt his friendly neighbors. If caught, he faces both formal punishment and social opprobrium.

Our proposal embraces the idea of individual tradable quotas (ITQs). The economic advantages of ITQs have been discussed elsewhere (Arnason and Gissurarson, 1999). Some have argued that co-management and private property rights systems, such as individual tradable quotas, ‘are based on very different theoretical perspectives’ (McCay, 1995). We see no reason for fundamental incompatibility between the two concepts. Co-management is the institutional framework in which ITQs are the instrument for allocating catch among harvesters. Deciding who should be endowed with the ITQs is a time-consuming and terribly controversial process. It can and has been accomplished in a bottom–up fashion, by the harvesters in the fishery (Arnason, 1996, 1997). Some are concerned that the lifestyles of fishing communities will be changed if ITQs are introduced. Communities own commons, museums, and other natural and man-made treasures thought to be in the community’s interest. Fishing rights can be another community asset and distributed by the community as it sees fit. The Community Development Program (CDQ) in Alaska is a living expression of this idea. Since 1992, 50 native villages have been allocated 7.5 per cent of the Bering Sea Pollock annual allowable harvest, a quota estimated to be worth more than 20 million dollars annually (National Research Council, 1999). More than 16 other species are covered under the CDQ.

Who acquires individual rights and how many is a large hurdle to overcome. So too is the disposal of the rights. Communities, regions and the three countries may not be as enthralled with the level of economic efficiency that goes with the unrestricted trade of the ITQs. Concentration, a general concern about ITQs, can be readily addressed by limiting ownership. However, one can imagine a reluctance of Uganda, Tanzania, and Kenya to allow unrestricted trade of the rights across countries, arising from concern about some losers going uncompensated or for other reasons. One can also imagine smaller geographic entities, such as communities or even local fishing cooperatives, as agreeable to sales of rights within its members, but opposing sales outside its domain unless it is convinced
that both efficiency and equity considerations are well served by such an exchange. The individual countries may also want to put alternative dates on the duration of the ITQs to provide flexibility in the future for addressing problems arising from inherent uncertainty.

Since there is a spatial dimension of the fisheries because there are different stocks, a feature omitted in the formal model, it is not economically efficient for there to be unfettered trade of rights across biologically distinct regions.

Economists will describe the narrow efficiency losses when some types of ITQ sales are restricted and biologists will stress the importance of restricting exchange of rights to within specific fisheries. However, in the end, the preferences of those engaged in the bottom–up deliberative process will determine who can sell to whom.

We lay out an experiment below for rationalizing the fishery. For concreteness, it is specified in terms of ITQs.

Demonstration project

We propose an experiment on a small scale that should serve as a demonstration, not only to fishermen, but also to policy makers. The demonstration effect, if successful, should lead to widespread support for broader intervention and the formulation of more complex policies to encompass all of Lake Victoria by the policy makers. The ability of a demonstration project to remove suspicion and convert ideas and concepts into reality should not be underestimated. For example, the British Columbia (Canada) Ministry of Fisheries adopted its individual quota program for halibut in 1991. It was immediately successful with landing prices more than 50 per cent higher than their nearby neighbors in the US because smoothed harvest over time favored fresh over processed fish. US halibut fishermen immediately saw the gains from privatization and, just one year later, the North Pacific Management council (US) approved an individual quota system, an idea fruitlessly debated to no avail for more than a decade previously.

The feasibility of an ITQ system would be demonstrated at a landing beach, fishing bay, or a small inland fishery from each of the three East African countries. Several considerations should constitute the criteria for the site or fishery selection. The fishery should resemble the species in Lake Victoria, or close to it. It should be currently over-fished, it should not have very many fishermen; the fisher community should be as cohesive as possible; and the fish should not migrate beyond the beach, bay or inland water body. Illustratively, Lake Kanyaboli in Kenya and Lake Nabugabo in Uganda are good candidates. The governments of the three countries would be persuaded to allocate property rights of the selected fisheries to the fishing communities. The Lake Victoria Fisheries Organization (LVFO)

3 Actual players may want actual not hypothetical compensation to those made use of by trade. A referee wisely recommended more discussion about constraints on sales of ITQs.

4 Personal communication, Gregory Williams, International Pacific Halibut Commission 1/13/04.
has indicated that it could lobby for political support of this rights allocation (Kulindwa et al., 2001). A non-government organization or other financing body such as the World Bank would pay fishermen to exit the fisheries. Exit is necessary for the stocks to build back up and it is very likely that payments to the harvesters are necessary for the experiment to be politically feasible.

Before the fishermen are paid to leave or forgo fishing for a period of time, they should be involved in the monitoring of their catch. The purpose of this is to ensure that fishermen will believe that select catch is declining. Consequently, they will be able to compare/observe these data with the change of sample harvest productivity over time and attribute improved performance to the intervention. The preliminary data collected with the help of the fishermen could, additionally, be used to update the estimation of optimal yield and harvest rate.

The stock rebuilding process plus restriction on harvest levels to the optimal level would result in the catch per unit of effort increasing substantially. Since the fishermen will continue being involved in the recording of their catch data over the life of the experiment, once harvesting begins they will be able to directly observe the benefits associated with the restricted access regime. Other fishermen in Lake Victoria, on observing the benefits, could be expected to lend support to a similar intervention designed for the entire lake. Discussions with fishery resource scientists indicate that this experiment could succeed (Kulindwa et al., 2001).

To be a bit more specific, the first step regarding ITQs is to have a record for several years of individual harvest, since ITQs historically have been allocated, for the most part, on the basis of catch history. For political feasibility, a determination must be made about how much to pay existing harvesters per year who will be forced to leave the fishery. Excluding harvesters involuntarily will be interpreted as confiscating prescriptive property rights, rights actually or perceived to have been acquired by active engagement in the fishery for a number of years. The payment is likely to be a high fraction of current income, since alternative opportunities are limited and because of political necessity.

The funding agency will make clear how much of the payments, if any, must be paid back by those receiving the rights when the fishery returns to good health and the terms of repayment must be made clear. If there are charges, they can be regarded as a partial future payment for capital acquired through the ITQ property rights institution at the time the ITQs are distributed. Alternatively, one can consider the payments as a tax which achieves a joint ownership of the fishery capital shared by the harvesters and the recipients of the tax revenues. The recipients could be the state or the funding agency if there is a difference. In any event, the tax rate would be a fraction of the rental rate on the fish capital. At the cost of a delayed recovery, large numbers of marginal fishermen might be paid to leave at low cost and the remainder left to harvest some specified quantity annually.

Conclusion
This paper is one of a small class of papers that takes a small step into the realm of ecological complexity through bioeconomic analysis of two
Interdependent predator–prey species instead of the usual single species model. We have analytically described the present open access equilibrium using a population dynamics model suitable for the two key income generation species in Lake Victoria. The population dynamics model satisfies the biological stylized facts for that ecological system and in this sense it is unique in the literature. At least one other form of population dynamics describing a predator–prey relationship has been analyzed by economists. The comparative statics analysis sometimes differs between these two characterizations. Not surprisingly, the results from comparative statics analysis also differ between a property rights system of free entry compared with one in which a fishery is managed as if there was an owner of that fishery.

Since population and harvest levels for predator–prey species respond differently to policies which directly or indirectly impinge on ex-vessel prices and the cost of effort, depending on the property rights structure and the biology, the welfare effects of such policies will differ. This is one more case where a uniform policy is unlikely to be appropriate in a heterogeneous setting. It also means that policy makers must be informed of the institutional, biological and economic facts if they are to make good policy, conditions often not met even in developed economies.

Monitoring and enforcement are essential features of a successful fishery and have been notably lacking in the Lake Victoria fishery. The many possible landing sites and scarce money for management are two reasons for adopting bottoms–up management. Transferring harvest rights to the fishermen gives the individuals an incentive to protect what is now their fishery resource. They can rely on the existing social and cultural fabric to provide social pressure not to cheat and thereby reduce the monitoring and enforcement costs.

Shifting property rights structures is not easy. It creates uncertainty and suspicions about what the unknown is like. Demonstration projects are a way to ameliorate these natural reservations, in moving away from free entry toward ITQs for Lake Victoria. In smaller lakes nearby, the location of demonstration projects, an investment project would pay existing harvesters to leave the fishery. Future harvest would begin following the optimal bioeconomic path. Resources would be devoted to organizing a workable institutional structure for managing a restricted entry fishery and allocating rights. Successful demonstration projects make a change in the property rights structure for the more complex Lake Victoria fisheries more feasible.

References
Arnason, R. (1996), ‘Property rights as an organizational framework in fisheries: the cases of six fishing nations’, In Brian Lee Crowley (ed.), Taking Ownership: Property Rights and Fishery Management on the Atlantic Coast, Halifax, NS, Canada: Atlantic Institute for Market Studies.
Arnason, R. and Hannes H. Gissurarson (1999), Individual Transferable Quotas in Theory and Practice, Reykjavik: The University of Iceland Press.
Brown, G., B. Berger, and M. Ikiara (2002), ‘Lake Victoria fisheries policy conflicts created by predator–prey relations’, unpublished manuscript.
Clark, C.W. (1976), *Mathematical Bioeconomics*, New York: Wiley.
Clark, C.W. (1990), *Mathematical Bioeconomics*, New York: Wiley.
FAO (Food and Agriculture Organization). 'The state of the world fisheries and aquaculture 2002', FAO Fisheries Publication, Rome, Italy, 168 pp.
Flaaten, O. (1989), 'The economics of predator–prey harvesting', in P.A. Neher, R. Arnason, and N. Mollett (eds), *Rights Based Fishing*, Nordrecht: Kluwer Academic, pp. 485–503.
Flaaten, O. (1991), 'Bioeconomics of sustainable harvest of competing species', *Journal of Environmental Economics and Management* 20: 163–180.
Gwazani, R. (undated), 'The creation of property rights along Lake Kariba through the formation of a fisherman’s association', See http://www.fao.org/DOCREP/003/X8985E/x8985eo6.htm
Hanna, S.S. (1995), 'User participation and fishery management performance with the Pacific fishery management Council', *Ocean and Coastal Management* 28: 23–45.
Hannesson, R. (1983), 'Optimal harvesting of ecologically interdependent fish species', *Journal of Environmental Economics and Management* 10: 329–345.
Kitchell, J.F., D.E. Schindler, R. Ogutu-Ohwayo, and P.N. Reinthal (1997), 'The Nile Perch in Lake Victoria: interactions between predation and fisheries', *Ecological Applications* 7: 653–664.
Kulindwa, K., M. Ikiara, and C. Kazoora (2001), 'Proceedings of the Regional Research Planning Workshop on Environmental and Economic Policy Analysis of Fisheries and Forest Resource Management’, 30–31 May, Lake Victoria Basin Policy Analysis Network, Nairobi.
Larkin, P.A. (1966), 'Exploitation in a type of predator–prey relationship', *Journal of the Fisheries Research Board of Canada* 23: 349–356.
McCay, B.J. (1995), 'Social and ecological implications ITQs: an overview’, *Ocean and Coastal Management* 28: 3–22.
May, R.M. (1974), *Model Ecosystems*, Princeton, NJ: Princeton University Press.
May, R.M., J.R. Beddington, C.W. Clark, S.J. Holt, and R.M. Laws (1979), 'Management of multispecies fisheries’, *Science* 205 (20 July): 267–277.
Maynard-Smith, J. (1974), *Mathematical Ideas in Biology*, Cambridge: Cambridge University Press.
National Research Council (1999), 'The Community Development Quota Program in Alaska', Washington, DC: National Academy Press.
Ogutu, G.E.M. (ed.) (1988), 'Artisanal fisheries of Lake Victoria, Kenya: options for management, production and marketing', Proceedings of a workshop held in Kisumu, Kenya.
Ostrom, E. (1990), *Governing the Commons: The Evolution of Institutions for Collective action*, Cambridge: Cambridge University Press.
Pielou, E.C. (1969), *An Introduction to Mathematical Ecology*, New York: Wiley.
Ragozin, D.L. and G. Brown (1985), 'Harvest policies and nonmarket valuation in a predator–prey system', *Journal of Environmental Economics and Management* 12: 155–168.
Schulz, C.E. (1997), 'Trade sanctions and effects on long-run stocks of marine mammals’, *Marine Resource Economics* 12: 159–178.
Solow, R. (1976), 'Optimal fishing with a natural predator’, in R. Grieson (ed.), *Public and Urban Economics, Essays in Honor of W.S. Vickrey*, Lexington, MA: Lexington Books.
Stiglitz, J.E. (1990), 'Peer monitoring and credit markets’, *The World Bank Economic Review* 14: 351–366.
Wilen, J. (1994), 'Transferable harvest quota in fisheries’, Presented at the Western Economics Association International Conference, Vancouver, British Columbia, 2 July.
Appendix: Derivation of comparative statics results

How do the optimal stocks and harvest of perch and dagaa respond to changes in the price of each species? From (8), (9), (1), and (2), in equilibrium one obtains

\[R = \frac{\bar{R}}{2} \left(1 - \frac{\rho}{r_1} \right) + \frac{\bar{R} D}{2r_1} \left(\frac{\alpha P_1 - \beta P_2}{P_1} \right), \]
\[D = \frac{\bar{D}}{2} \left(1 - \frac{\rho}{r_2} \right) + \frac{\bar{D} R}{2r_2} \left(\frac{\alpha P_1 - \beta P_2}{P_2} \right). \]

Differentiate (A.1) and (A.2) with respect to \(P_1 \), simplify to one equation and rearrange

\[\frac{\partial D}{\partial P_1} = \frac{\bar{R} \bar{D} D \beta P_2 (\alpha P_1 - \beta P_2)}{4r_1 r_2 P_1 P_2} + \frac{\bar{D} R \alpha}{2r_2 P_2} \left(1 - \frac{\bar{R} \bar{D} (\alpha P_1 - \beta P_2)^2}{4r_1 r_2 P_1 P_2} \right) \]
\[\text{(A.3)} \]

Assume \((\alpha P_1 - \beta P_2) \geq 0\), which makes the numerator > 0. Optimum \(R^* \) and \(D^* \) solved from (A.1) and (A.2) requires \(4r_1 r_2 P_1 - D \bar{R} (\alpha P_1 - \beta P_2)^2 P_2^{-1} > 0 \) for \(R^* > 0 \). Therefore the denominator of (A.3) is positive. Thus \(\frac{\partial D}{\partial P_1} > 0 \). A similar proof establishes \(\frac{\partial R}{\partial P_1} > 0 \).

From (1), in equilibrium

\[h_1 = r_1 R - \frac{r_1}{\bar{R}} R^2 + \alpha RD. \]
\[\text{(A.4)} \]

Differentiating (A.4) with respect to \(P_1 \) and rearranging terms

\[\frac{\partial h_1}{\partial P_1} = \left(r_1 \left(1 - 2 \frac{R}{\bar{R}} \right) + \alpha D \right) \frac{\partial R}{\partial P_1} + \alpha R \frac{\partial D}{\partial P_1} > 0 \]

if \(\frac{R}{\bar{R}} < \frac{1}{2} \), and undetermined otherwise. A similar proof using (2) establishes that

\[\frac{\partial h_2}{\partial P_1} = \left(r_2 \left(1 - 2 \frac{D}{\bar{D}} \right) - \beta R \right) \frac{\partial D}{\partial P_1} - \beta D \frac{\partial R}{\partial P_1} < 0 \]

if \(\frac{D}{\bar{D}} > \frac{1}{2} \) and undetermined otherwise.

The signs of \(\frac{\partial R}{\partial P_2}, \frac{\partial D}{\partial P_2}, \frac{\partial h_1}{\partial P_2}, \frac{\partial h_2}{\partial P_2} \) are obtained by following the same strategy employed above.