Search for decays of B^0 mesons into e^+e^-, $\mu^+\mu^-$, and $e^\pm\mu^\mp$ final states

B. Aubert,1 M. Bona,1 D. Boutigny,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 X. Prudent,1 V. Tisserand,1 A. Zghiche,1 J. Garra Tico,2 E. Graugès,2 L. Lopez,3 A. Palano,3 M. Pappagallo,3 G. Eigen,4 B. Stugu,4 L. Sun,4 G. S. Abrams,4 M. Battaglia,4 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,5 Y. Grosjean,5 R. G. Jacobsen,6 J. A. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 D. Lopes Pegna,5 G. Lynch,5 L. M. Mir,5 T. J. Orimoto,5 I. L. Osipenkov,5 M. T. Ronan,5 K. Tackmann,5 T. Tanabe,5 W. A. Wenzel,5 P. del Amo Sanchez,6 C. M. Hawkes,6 A. T. Watson,6 H. Koch,7 T. Schroeder,7 D. Walker,8 D. J. Asgeirsson,9 T. Cuhadar-Donszelmann,9 B. G. Fulsom,9 C. Hearty,9 T. S. Mattison,9 J. A. McKenna,9 M. Barrett,10 A. Khan,10 M. Saleem,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Buki,11 V. P. Druzhinin,11 V. B. Golubev,11 A. P. Onuchin,11 S. I. Serednyakov,11 Yu. I. Skovpen,11 E. P. Solodov,11 K. Yu. Todyshkov,11 M. Bondioli,12 S. Curry,12 I. Eschrich,12 D. Kirkby,12 A. J. Lankford,12 P. Lund,12 M. Mandelkern,12 E. C. Martin,12 D. P. Stoker,12 S. Abachi,13 C. Buchanan,13 S. D. Foulkes,14 J. W. Gary,14 F. Liu,14 O. Long,14 B. C. Shen,14 G. M. Vitug,14 L. Zhang,14 H. P. Paar,15 S. Rahatlou,15 V. Sharma,15 J. W. Berryhill,16 C. Campagnani,16 A. Cunha,16 B. Dahmes,16 T. M. Hong,16 D. Kovalskyi,16 J. D. Richman,16 T. W. Beck,17 A. M. Eisner,17 C. J. Flacco,17 C. A. Heusch,17 J. Kroseberg,17 W. S. Lockman,17 T. Schalk,17 B. A. Schummi,17 A. Seiden,17 M. G. Wilson,17 L. O. Winstrom,17 E. Chen,18 C. H. Cheng,18 F. Fang,18 D. G. Hitlin,18 I. Narsky,18 T. Piatenko,18 F. C. Porter,18 R. Andreassen,19 G. Mancinelli,19 B. T. Meadows,19 K. Mishra,19 M. D. Sokoloff,19 F. Blanc,19 P. C. Bloom,20 S. Chen,20 W. T. Ford,20 J. F. Hirschauer,20 A. Kreisel,20 M. Nagel,20 U. Nauenberg,20 A. Olivas,20 J. G. Smith,20 K. A. Ulmer,20 S. R. Wang,20 J. Zhang,20 A. M. Gabareen,21 A. Soffer,21 W. H. Toki,21 R. J. Wilson,21 W. Finkemeier,21 D. D. Altenburg,22 E. Feltresi,22 A. Hauke,22 H. Jasper,22 J. Merkel,22 A. Petzold,22 B. Spaan,22 K. Wacker,22 V. Klose,23 M. J. Kobel,23 H. M. Lacker,23 W. F. Mader,23 R. Nogowski,23 J. Schubert,23 K. R. Schubert,23 R. Schwierz,23 J. E. Sundemann,23 A. Volk,23 D. Bernard,24 G. R. Bonneau,24 E. Latour,24 V. Lombardo,24 Ch. Thiebaux,24 M. Verderi,24 P. P. Krall,25 W. Gradel,25 F. Muheim,25 S. Playfer,25 A. I. Robertson,25 J. E. Watson,25 Y. Xie,26 M. Andreotti,26 D. Bettoni,26 C. Bozzi,26 R. Calabrese,26 A. Cecchi,26 G. Cibinetto,26 P. Franchini,26 E. Luppi,26 M. Negri,26 A. Petrella,26 L. Piemontese,26 R. Prisciapica,26 V. Santoro,26 F. Amulli,27 R. Baldini-Ferroli,27 A. Calcetta,27 R. de Sangro,27 G. Finocchiaro,27 S. Pacetti,27 P. Patteri,27 I. M. Peruzzi,27 M. Piccolo,27 M. Rama,27 A. Zallo,27 A. Buzzo,28 R. Contrri,28 M. Lo Vetere,28 M. M. Macri,28 M. R. Monge,28 S. Passaggio,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 T. S. Lai,28 K. S. Chaisanguanthum,29 M. Morii,29 J. Wu,29 R. S. Dubitzky,29 J. Marks,30 S. Schenck,30 U. Uwer,30 D. J. Bard,31 P. D. Dauncey,31 R. L. Flack,31 J. A. Nash,31 W. Panduro Vazquez,31 M. Tibbonet,32 X. Chai,32 M. J. Charles,32 U. Mallik,32 J. Cochran,33 H. B. Crawley,33 L. Dong,33 V. Egyes,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 A. E. Rubin,33 Y. Y. Gao,33 A. V. Gritsan,34 Z. J. Guo,34 C. K. Lai,34 G. Denig,35 M. Fritsch,35 G. Schott,35 N. Arnaud,36 J. Béqueilleux,36 A. D’Orazio,36 M. Davier,36 G. Grosdidier,36 A. Höcker,36 V. Lepeltier,36 F. Le Diberder,36 A. M. Lutz,36 S. Pr closet,36 S. Rodier,36 P. Roudeau,36 M. H. Schune,36 J. Serrano,36 V. Sordini,36 A. Stocchi,36 W. F. Wang,36 G. Wormser,36 D. J. Lange,37 D. M. Wright,37 I. Bingham,38 J. P. Burke,38 C. A. Chavez,38 J. R. Fry,38 E. Gabathuler,38 R. Gamet,38 D. E. Hutchcroft,38 D. J. Payne,38 K. C. Schofield,38 C. Touramanis,38 A. J. Bevan,39 K. A. George,39 F. Di Lodovico,39 R. Sacco,39 G. Cowan,40 H. U. Flaecher,40 D. A. Hopkins,40 S. Paramesvaran,40 F. Salvatore,40 A. C. Wren,40 D. N. Brown,41 C. L. Davis,41 J. Allison,42 D. Bailey,42 N. Barlow,42 R. J. Barlow,42 Y. M. Chia,42 C. E. Edgar,42 G. D. Lafferty,42 T. J. West,42 J. I. Yi,42 J. Anderson,43 C. Chen,43 A. Jawahery,43 D. A. Roberts,43 G. Simi,43 J. M. Tuggle,43 G. Blaylock,44 C. Dallapiccola,44 S. S. Hertzbach,44 X. Li,44 T. B. Moore,44 E. Salvati,44 S. Saremi,44 R. Cowan,45 D. Dujmic,45 P. H. Fisher,45 K. Koenke,45 G. Sciolla,45 M. Spitznagel,45 F. Taylor,45 R. K. Yamamoto,45 M. Zhao,45 Y. Zheng,45 S. E. Melachilin,46 P. M. Patel,46 S. H. Robertson,46 A. Lazzaro,47 F. Palombo,47 J. M. Bauer,48 L. Crema,48 V. Eschenburg,48 R. Godang,48 R. Kroeger,48 D. A. Sanders,48 D. J. Summers,48 H. W. Zhao,48 S. Brunet,49 D. Côté,49 M. Simard,49 P. Taras,49 F. B. Vinaud,49 H. Nicholson,50 G. De Nardo,51
Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy

Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

Università di Genova, Dipartimento di Fisica e INFN, I-16146 Genova, Italy

Harvard University, Cambridge, Massachusetts 02138, USA

Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany

Imperial College London, London, SW7 2AZ, United Kingdom

University of Iowa, Iowa City, Iowa 52242, USA

Iowa State University, Ames, Iowa 50011-3160, USA

Johns Hopkins University, Baltimore, Maryland 21218, USA

Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany

Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 ORSAY Cedex, France

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3A 2T8

Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

University of Notre Dame, Notre Dame, Indiana 46556, USA

Ohio State University, Columbus, Ohio 43210, USA

University of Oregon, Eugene, Oregon 97403, USA

Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

Princeton University, Princeton, New Jersey 08544, USA

Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy

Universität Rostock, D-18051 Rostock, Germany

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

University of South Carolina, Columbia, South Carolina 29208, USA

Stanford Linear Accelerator Center, Stanford, California 94309, USA

Stanford University, Stanford, California 94305-4060, USA

State University of New York, Albany, New York 12222, USA

University of Tennessee, Knoxville, Tennessee 37996, USA

University of Texas at Austin, Austin, Texas 78712, USA

University of Texas at Dallas, Richardson, Texas 75083, USA

Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

IFIC, Universitat de Valencia-CSIC, E-46071 València, Spain

University of Victoria, Victoria, British Columbia, Canada V8W 3P6

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

University of Wisconsin, Madison, Wisconsin 53706, USA

Yale University, New Haven, Connecticut 06511, USA

(Dated: February 2, 2008)
We present a search for the decays \(B^0 \rightarrow e^+e^- \), \(B^0 \rightarrow \mu^+\mu^- \) and \(B^0 \rightarrow e^+\mu^- \) using data collected with the \(\text{BABar} \) detector at the PEP-II \(e^+e^- \) collider at SLAC. Using a dataset corresponding to \(384 \times 10^6 \, B\bar{B} \) pairs, we do not find evidence of any of the three decay modes. We obtain upper limit on the branching fractions, at 90\% confidence level, of \(\mathcal{B}(B^0 \rightarrow e^+e^-) < 11.3 \times 10^{-8} \), \(\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 5.2 \times 10^{-8} \), and \(\mathcal{B}(B^0 \rightarrow e^+\mu^-) < 9.2 \times 10^{-8} \).

PACS numbers: 13.20.He,14.40.Nd

The standard model (SM) of particle physics does not allow flavor changing neutral currents at tree-level, and decays of this kind are predicted to have very small branching fractions. This makes rare decays particularly interesting for the detection of possible new physics (NP) beyond the SM, such as supersymmetry \(\text{SU}(5) \) (SUSY); loop contributions from heavy partners of the SM particles predicted in these models might induce, for certain decay modes, branching fractions significantly larger than the values predicted by the SM.

The leptonic decays \(B^0 \rightarrow \ell^+\ell^- \) (where \(\ell^+\ell^- \) stands for \(e^+e^- \), \(\mu^+\mu^- \) or \(e^+\mu^- \); charge conjugation is implied throughout) are particularly interesting among rare decays, since a prediction of the decay rate in the context of the SM can be obtained with a relatively small error, due to the limited impact of long-distance hadronic corrections. In the SM, \(B^0 \rightarrow \ell^+\ell^- \) decays proceed through diagrams such as those shown in Fig. 1. These contributions are highly suppressed since they involve a \(b \rightarrow d \) transition and require an internal quark annihilation within the \(B \) meson. The decays are also helicity suppressed by factors of \((m_t/m_B)^2 \), where \(m_t \) is the mass of the lepton and \(m_B \) the mass of the \(B \) meson.

In addition, \(B^0 \) decays to leptons of two different flavors violate lepton flavor conservation, so they are forbidden in the SM. This feature provides a handle to discriminate among different NP models.

The \(B^0 \rightarrow \ell^+\ell^- \) decays are sensitive to NP also in a large set of models with Minimal Flavor Violation (MFV), in which the NP Lagrangian is flavor blind at the typical mass scale of new heavy states, with reduced effects on flavor physics at the \(B \) mass scale. In the context of MFV models, NP corrections to \(B^0 \rightarrow \ell^+\ell^- \) are characterized by interesting correlations with other rare decays for a particular choice of some fundamental parameters (as in the case of small \(\tan \beta \) or large \(\tan \beta \)). The determination of the decay rate of \(B^0 \rightarrow \ell^+\ell^- \) would allow different NP scenarios to be disentangled.

As shown in Table I, the present experimental limits on \(B^0 \rightarrow \ell^+\ell^- \) are several orders of magnitude larger than SM expectations. Nevertheless, improved experimental bounds will restrict the allowed parameter space of several NP models.

The search for the \(B^0 \rightarrow \tau^+\tau^- \) decay has been presented in a previous paper. In this paper, we present a search for \(B^0 \rightarrow \ell^+\ell^- \) decay using data collected with the \(\text{BABar} \) detector at the PEP-II \(e^+e^- \) storage ring at SLAC. The collider is operated at the \(\Upsilon(4S) \) resonance with asymmetric beam energies, producing a boost \((\beta\gamma \approx 0.56) \) of the \(\Upsilon(4S) \) along the collision axis.

The dataset used consists of \(384 \times 10^6 \, B\bar{B} \) pairs accumulated at the \(\Upsilon(4S) \) resonance ("on-resonance"), equivalent to an integrated luminosity of 347 fb\(^{-1}\), and 37 fb\(^{-1}\) accumulated at a center-of-mass (CM) energy about 40 MeV below the \(\Upsilon(4S) \) resonance ("off-resonance"). The latter sample is used to characterize background contributions not originating from \(B \) decays.

Hadronic two body decays of \(B \) mesons such as \(B^0 \rightarrow \pi^+\pi^- \) and \(B^0 \rightarrow K^+\pi^- \) have the same event topology as the leptonic ones and are therefore the main source of background from \(B \) decays. We use Monte Carlo (MC) simulations of \(B^0 \rightarrow e^+e^- \), \(B^0 \rightarrow \mu^+\mu^- \), \(B^0 \rightarrow e^+\mu^- \) decays (signal) and \(B^0 \rightarrow \pi^+\pi^- \) and \(B^0 \rightarrow K^+\pi^- \) (background) of approximately \(3 \times 10^5 \) events each to optimize event selection criteria and to estimate efficiencies.

Charged particles are detected and their momenta measured by the combination of a silicon vertex tracker, consisting of five layers of double-sided silicon detectors, and a 40-layer central drift chamber, both operating in the 1.5-T magnetic field of a solenoid. The tracking system covers 92\% of the solid angle in the CM frame.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Decay mode & \(B^0 \rightarrow e^+e^- \) & \(B^0 \rightarrow \mu^+\mu^- \) & \(B^0 \rightarrow e^+\mu^- \) \\
\hline
SM prediction & \(1.9 \times 10^{-9} \) & \(8.0 \times 10^{-11} \) & 0 \\
BABar & \(6.1 \times 10^{-8} \) & \(8.3 \times 10^{-8} \) & \(18 \times 10^{-8} \) \\
BELLE 10 & \(1.9 \times 10^{-7} \) & \(1.6 \times 10^{-7} \) & \(1.7 \times 10^{-7} \) \\
CDF 11 & - & \(2.3 \times 10^{-8} \) & - \\
CLEO 12 & \(8.3 \times 10^{-7} \) & \(6.1 \times 10^{-7} \) & \(15 \times 10^{-7} \) \\
\hline
\end{tabular}
\caption{The expected branching fractions in the Standard Model (MFV) and the available upper limits (UL) at 90\% C.L.}
\end{table}
Identification of charged hadrons is provided by the average energy loss $\langle dE/dx \rangle$ in the tracking devices and by an internally-reflecting ring-imaging Cherenkov detector. For lepton identification, we also use the energy deposit in the electromagnetic calorimeter consisting of 6580 CsI(Tl) crystals and the pattern of hits in resistive plate chambers (partially upgraded to limited streamer tubes for a subset of the data used in this analysis) interleaved with the passive material comprising the solenoid magnetic field return.

We reconstruct B^0 meson candidates from two oppositely charged tracks originating from a common vertex. Signal events are characterized by two kinematic quantities:

$$m_{ES} \equiv \sqrt{(s/2 + p_0 \cdot p_B)^2 / E_0^2 - p_B^2}$$

(1)\[m_{ES} = \sqrt{E_B^2 - s/2}, \]

(2)

where $\sqrt{s}/2$ is the beam energy in the CM frame, the subscripts 0 and B refer to the initial $\Upsilon(4S)$ and to the B candidate in the laboratory frame, respectively, and the asterisk denotes the $\Upsilon(4S)$ rest frame. In Eq. (1), the variable s is used as opposed to E_B^0 because s is known with much greater precision and the resulting correlation between m_{ES} and ΔE is nearly zero. For correctly reconstructed B^0 mesons, m_{ES} peaks at the mass of the B^0 meson with RMS of about 2.5 MeV/c2, and ΔE peaks at zero with RMS of about 25 MeV. We require $|\Delta E| < 150$ MeV and $m_{ES} > 5.2$ GeV/c2.

Since we use the pion mass hypothesis for the reconstruction of tracks, the distribution of ΔE peaks near zero for the $\pi^+\pi^-$ and leptonic modes and at -50 MeV for $K^\pm\pi^\mp$. The mass hypothesis does not affect the distribution of m_{ES}.

Energy loss by electrons due to final state radiation or Bremsstrahlung in detector material leads to tails in the ΔE and m_{ES} distributions, in particular for the $B^0 \rightarrow e^+e^-$ decay mode. We partially correct for this effect by adding the momentum of a photon emitted at a small angle from the track to the electron momentum.

We apply stringent requirements on particle identification (PID) to reduce the contamination from misidentified hadrons and leptons. In this way, we retain $\sim 93\%$ ($\sim 73\%$) of the electrons (muons), with a misidentification rate for pions of less than $\sim 0.1\%$ ($\sim 3\%$).

According to the information provided by the PID, we separate our dataset into three samples, $2e$, 2μ, and $1\mu 1e$, containing events with two electrons, two muons and one muon and one electron, respectively. The rest of the dataset h^+h^- comprises two oppositely charged hadrons and is used to characterize background contamination to the three signal samples.

Based on MC simulations, we expect negligible cross feed of events between the leptonic and hadronic data samples.

Contamination from non-resonant $q\overline{q}$ ($q = u, d, s, c$) and $\pi^+\pi^-$ production is reduced by exploiting their different event topology with respect of that of the signal events. In particular, we examine the distribution of final-state particles in the rest frame of the $\Upsilon(4S)$ candidate, in which the fragmentation of a $B\overline{B}$ pair (non-resonant event) produces an isotropic (jet-like) angular distribution of the particles.

Non-$B\overline{B}$ events are rejected by requiring the cosine of the sphericity angle $\cos \theta_{4\ell}$ to be $|\cos \theta_{4\ell}| < 0.8$, and the second normalized Fox-Wolfram moment to be $R_2 < 0.95$. In addition, we use a Fisher discriminant (F) in the maximum likelihood (ML) fit to separate the residual background from signal events. F is constructed from the CM momentum p_i and angle θ_i of each particle i in the rest of the event (ROE) with respect to the thrust axis of the B candidate.

$$F \equiv 0.5319 - 0.6023 L_0 + 1.2698 L_2,$$

(3)

where $L_0 \equiv \sum_i^{ROE} p_i$ and $L_2 \equiv \sum_i^{ROE} p_i \cos^2 \theta_i$. The coefficients of the linear combination have been optimized on samples of signal and background simulated events. Since the variable F depends only on the ROE, we use the same coefficients for the three leptonic decays in the ML fit.

The background from other $B\overline{B}$ events is found to be negligible after applying the PID requirements. Backgrounds originating from QED events (electrons and muons coming from e^+e^- interactions) are rejected by requiring more than four charged tracks in the event.

To ensure the quality of the measurement of the Cherenkov angle θ_c, we require more than five detected Cherenkov photons and $\theta_c > 0$. For pion or lepton candidates, in order to reject protons, we require $\theta_c < 4\pi$ of the value expected for pions. For kaon candidates, we require θ_c to be within 4π of the expected value for kaons.

Applying the criteria described above, we select 67 events in the $2e$ sample, 56 in the 2μ sample, 86 in the $1\mu 1e$ sample and $\approx 94 \times 10^3$ in the h^+h^- sample.

Among these events, the three signal yields are independently determined by ML fits on the $2e$, 2μ and $1\mu 1e$ samples. Each likelihood function is based on the variables m_{ES}, ΔE and F. The probability density functions (PDFs) for the signal m_{ES} and ΔE distributions are parameterized as:

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma_{\Delta E}} \exp \left(-\frac{(x - \mu)^2}{2 \sigma_{\Delta E}^2} \right),$$

(4)

where μ is the maximum, $\sigma_{\Delta E}$ and $\sigma_{\Delta E}$ represent the standard deviation of the Gaussian component and describe the non-Gaussian tails of the PDF for $x > \mu$ (R) and $x < \mu$ (L). The F distribution for signal events is described by a Gaussian function with different RMS on the left and right side. The PDF of the background m_{ES}
distribution is parameterized by an ARGUS function, the background ΔE distribution by a second order polynomial and the background \mathcal{F} distribution by the sum of two Gaussian functions. Figure 2 shows the estimated background distributions for the three subsamples (solid lines) and, just for comparison, the corresponding signal PDFs obtained from Monte Carlo (dotted lines) with arbitrary normalization.

We find that the residual background distributions of m_{ES}, ΔE and \mathcal{F} are the same in the three leptonic samples. This has been verified using data in the off-resonance sample and on-resonance events populating the kinematic sidebands ($m_{ES} < 5.27$ GeV/c^2 or $|\Delta E| > 150$ MeV).

In the fit the shape parameters for the $B^0 \rightarrow l^+l^-$ (signal) PDFs are obtained from the MC simulation with a correction factor that accounts for differences between data and MC, while the background PDF shape parameters are determined on data with a procedure described below.

We determine the parameters of the background PDFs by fitting their distribution on the h^+h^- sample, where we use the Cherenkov angle to separate $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^{\pm}\pi^{\mp}$.

The yields of $B^0 \rightarrow \pi^+\pi^-$ and $K^{\pm}\pi^{\mp}$ in our h^+h^- sample are consistent with the results of the previous BABAR analysis. We find ~ 600 signal and $\sim 3.5 \times 10^4$ background events for $\pi^+\pi^-$, ~ 2200 signal and $\sim 2.3 \times 10^4$ background events for $K^{\pm}\pi^{\mp}$.

The background shape parameters in the $B^0 \rightarrow l^+l^-$ fit are fixed to the central values obtained in the fit to $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow K^{\pm}\pi^{\mp}$ samples, and their errors are used to estimate the associated systematic uncertainties on the leptonic yields.

We find no bias in the background shape parameters determined by the procedure described above on a large number of MC simulated h^+h^- event samples.

We correct for discrepancies between data and MC in the $B^0 \rightarrow l^+l^-$ signal shape parameters by rescaling the PDF parameters obtained from the simulation by the ratio between the values of the $B^0 \rightarrow \pi^+\pi^-$ PDF parameters in data and MC.

The knowledge of the rescaled shapes is limited by the size of the $B^0 \rightarrow \pi^+\pi^-$ component in data, which causes a strong correlation among the parameters of each signal PDF. In order to avoid double-counting of these effects, we take the largest observed deviation as the systematic error induced on the leptonic yields. The errors on the signal yields due to the PDF shapes are ~ 1.1, ~ 0.4 and ~ 0.2 events for the e^+e^-, $\mu^+\mu^-$ and $e^+\mu^+$ channels, respectively.

Our results are summarized in Table II. We find no evidence of signal in any of the three modes. Using a bayesian approach, a 90% probability upper limit (UL) on the branching fraction BF is calculated as

$$\int_0^{UL} \mathcal{L}(BF) dBF / \int_0^{\infty} \mathcal{L}(BF) dBF = 0.9.$$ (5)

The BF is calculated as

$$BF = \frac{N_{l\ell} - \epsilon_{l\ell} N_{B\mathcal{B}}}{\epsilon_{l\ell} N_{e\mathcal{B}}},$$ (6)

with $N_{l\ell}$ indicating the signal yield, $\epsilon_{l\ell}$ the reconstruction efficiency, and $N_{B\mathcal{B}}$ the number of BB' pairs in the dataset, $N_{B\mathcal{B}} = (383.6 \pm 4.2) \times 10^3$. We make the assumption that the $T(4S)$ branching fractions to B^+B^- and $B^0\bar{B}^0$ are equal.

The likelihood $\mathcal{L}(BF)$ is obtained by including in the likelihood function for the signal yield $\mathcal{L}(N_{l\ell})$ the systematic errors on $N_{l\ell}$ and the total number of BB' pairs, and the statistical and systematic errors on the efficiency $\epsilon_{l\ell}$. We use the relation of Eq. (6) and assume Gaussian shapes for the errors. Figure 3 shows the likelihood distributions of the three leptonic decays.

We evaluate the efficiencies for individual selection criteria from MC simulation and correct the results for small differences between the simulation and the data. We take these observed differences as a measure of the systematic uncertainties on the efficiencies.

The efficiency of PID requirements is calculated by using MC simulations of signal events. It is then corrected with efficiency ratios computed on data and MC, as function of track charge, momentum, and polar angle. We take into account the systematic error associated to this correction.

The total systematic error on the efficiencies is $\sim 4\%$, calculated as the sum in quadrature of all these contributions.

In summary, we find no evidence of signal for $B^0 \rightarrow l^+l^-$ and place 90% confidence level upper limits on the branching fractions of $B^0 \rightarrow e^+e^-$, $\mu^+\mu^-$ and $e^+\mu^+$.

Table II reports the efficiency, the number of signal events and the UL expected in each of these modes based on MC simulation for a sample of the size of our data sample.

The present result on $B^0 \rightarrow e^+\mu^+$ and $B^0 \rightarrow \mu^+\mu^-$ improve the previous BABAR upper limits based on 111 fb$^{-1}$.

The upper limit reported here for $B^0 \rightarrow e^+e^-$ is higher than the value obtained in [6]. In our previous paper we used a largely frequentist approach that does not explicitly require a non-negative signal. The present results supercede our previous results: the analysis has a higher sensitivity, estimated from the value of the expected UL, and is based on a larger dataset that includes the sample used in [6].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and
FIG. 2: Distribution of events in m_{ES} (a,b,c), ΔE (d,e,f) and F (g,h,i) for $B^0 \rightarrow e^+ e^−$ (left), $B^0 \rightarrow \mu^+ \mu^−$ (middle) and $B^0 \rightarrow e^\pm \mu^\mp$ (right). The overlaid solid curves in each plot are the background distributions obtained when the corresponding component is ignored in the maximum likelihood fit and the likelihood maximized with respect to all the other components. The dotted line is the PDF obtained from signal Monte Carlo with arbitrary normalization.

TABLE II: Efficiency (ϵ_{ll}), number of signal events (N_{ll}), 90% C.L. Upper Limit on the BF ($UL(BF)$) for the three leptonic decays $B^0 \rightarrow e^+ e^-$, $B^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow e^\pm \mu^\mp$ and the corresponding expected value based on MC simulation.

Decay	ϵ_{ll} (%)	N_{ll}	$UL(BF) \times 10^{-8}$	$Exp(UL)$
$B^0 \rightarrow e^+ e^-$	16.6 ± 0.3	0.6 ± 2.1	11.3	7.4
$B^0 \rightarrow \mu^+ \mu^-$	15.7 ± 0.2	-4.9 ± 1.4	5.2	5.9
$B^0 \rightarrow e^\pm \mu^\mp$	17.1 ± 0.2	1.1 ± 1.8	9.2	6.3

for the substantial dedicated effort from the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
1 Now at Tel Aviv University, Tel Aviv, 69978, Israel
2 Also with Universit`a della Basilicata, Potenza, Italy
3 Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
4 [1] K. S. Babu and C. F. Kolda, Phys. Rev. Lett. 84, 228 (2000); P. H. Chankowski and L. Slawianowska, Phys. Rev. D 63, 054012 (2001); C. Bobeth et al., Phys. Rev. D 64, 074014 (2001).
5 [2] M. Misiak and J. Urban, Phys. Lett. B 451, 161 (1999); G. Buchalla and A. J. Buras, Nucl. Phys. B 548, 309 (1999).
6 [3] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 96, 231802 (2006).
7 [4] M. Blanke et al., JHEP 0705, 013 (2007); R. A. Diaz,
FIG. 3: Distribution of the likelihood as function of the BF for \(e^+e^-\) (a), \(\mu^+\mu^-\) (b) and \(e^\pm\mu^\mp\) (c) decays.

Eur. Phys. J. C 41, 305 (2005); A. Ilakovac Phys. Rev. D 62, 036010 (2000).

[5] A. J. Buras, Acta Phys. Polon. B 34, 5615 (2003); G. D’Ambrosio et al., Nucl. Phys. B 645, 155 (2002).
[6] A. J. Buras et al., Phys. Lett. B 500, 161 (2001).
[7] C. Bobeth et al., Nucl. Phys. B 726, 252 (2005).
[8] G. Isidori and A. Retico, JHEP 0111, 001 (2001); G. Isidori and P. Paradisi, Phys. Lett. B 639, 499 (2006).
[9] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 94, 221803 (2005).
[10] Belle Collaboration, M.-C. Chang et al., Phys. Rev. D 68, 111101(R) (2003).
[11] CDF Public note #8176. http://www-cdf.fnal.gov/physics/new/bottom/060316.blessed-bsm.
[12] CLEO Collaboration, T. Bergfeld et al., Phys. Rev. D 62, 091102(R) (2000).
[13] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods A 479, 1 (2002).
[14] S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003).
[15] S. L. Wu, Phys. Rep. 107, 59 (1984).
[16] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[17] R. A. Fisher, Annals Eugen. 7, 179 (1936).
[18] S. Brandt et al. Phys. Lett. 12, 57 (1964); E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
[19] H. Albrecht et al., [ARGUS Collaboration], Phys. Lett. B 241, 278 (1990)
[20] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A 555, 356 (2005).
[21] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 75, 012008 (2007).
[22] R. Barlow, Comput. Phys. Commun. 149, 97 (2002).