On closures of cycle spaces of flag domains

Jaehyun Hong and Alan Huckleberry

January 16, 2022

Abstract

Open orbits D of noncompact real forms G_0 acting on flag manifolds $Z = G/Q$ of their semisimple complexifications G are considered. Given D and a maximal compact subgroup K_0 of G_0, there is a unique complex K_0–orbit in D which is regarded as a point $C_0 \in C_q(D)$ in the space of q-dimensional cycles in D. The group theoretical cycle space \mathcal{M}_D is defined to be the connected component containing C_0 of the intersection of the G–orbit $G(C_0)$ with $C_q(D)$. The main result of the present article is that \mathcal{M}_D is closed in $C_q(D)$. This follows from an analysis of the closure of the universal domain U in any G-equivariant compactification of the affine symmetric space G/K, where K is the complexification of K_0 in G.

1 Background and notation

Throughout this article G_0 denotes a noncompact simple Lie group of adjoint type. Generalizations of our results to the semisimple case require only formal adjustments and will not be discussed. Having fixed a maximal compact subgroup K_0 of G_0, we will make use of Iwasawa decompositions $G_0 = K_0A_0N_0$.

We regard G_0 as a closed subgroup of its universal complexification G. Therefore the complexification K of K_0 is a closed complex subgroup of G and we consider the affine symmetric space $\Omega = G/K$. Certain G-equivariant projective algebraic compactifications X of Ω
play an important role in our work. These arise as follows.

Let $Z = G/Q$ be a G-flag manifold, i.e., Q is a complex parabolic subgroup of G. Starting with the basic work ([W1]) there has been substantial interest in complex geometric objects related to the G_0-action on Z (see [ETHW] for a systematic presentation). In particular there are only finitely many G_0-orbits in Z and therefore there are open orbits D which merit study from the complex geometric viewpoint.

Each such D contains a unique K_0-orbit C_0 which is a complex submanifold of Z. We let $q := \dim_{\mathbb{C}} C_0$ be the dimension of this base cycle and regard it as a point $C_0 \in C_q(D)$ in the full cycle space of D. Without further notation we replace $C_q(D)$ by its connected component containing C_0 in the irreducible component which contains C_0 in the full cycle space $C_q(Z)$.

In ([WeW]) a group theoretical cycle space \mathcal{M}_D was introduced. For this consider the G-orbit $\mathcal{M}_Z := G(C_0)$ of the base cycle in $C_q(Z)$. Since the induced G–action on $C_q(Z)$ is algebraic, \mathcal{M}_Z is Zariski open in its closure and its intersection $\mathcal{M}_Z \cap C_q(D)$ with the semialgebraic open set $C_q(D)$ consists of at most finitely many components. The cycle space \mathcal{M}_D is defined to be the connected component of this intersection which contains C_0.

2 The main result

Our goal here is to present a proof of the following result. It will be reliant on the more technical results of the following sections.

Theorem 2.1. The group theoretical cycle space \mathcal{M}_D is closed in the full cycle space $C_q(D)$.

Let us attempt to put this in perspective. First of all \mathcal{M}_D is a locally closed complex submanifold of $C_q(D)$. The representation of the G–isotropy group on the tangent space of $C_q(D)$ at the base cycle C_0 has been calculated in detail (see Part IV in [ETHW]). In particular, even for a fixed G_0, there is a great variety of representations depending on D and the flag manifold Z, and, for example, the codimension of \mathcal{M}_D in $C_q(D)$ can vary wildly.
In the case where \mathcal{M}_D is open in $C_q(D)$ Theorem 2.1 states that $\mathcal{M}_D = C_q(D)$. This is particularly useful in situations where the cycles have meaning in complex geometry, e.g., in the case of period domains such as the moduli space of marked K3-surfaces: Any two cycles differ only by a transformation in the complex group G and no degeneration is possible.

In the future we hope that the full cycle space $C_q(D)$ can be explicitly computed and that it will be of use in representation theory. We already know that in many cases it is a Stein space and it is very likely that it is Kobayashi hyperbolic. Since \mathcal{M}_D is closed, it is quite possible that recently developed G_0–invariant theory (see [HSch, HSt]) can be applied to show that $C_q(D)$ is a Luna-slice type bundle over \mathcal{M}_D. Since \mathcal{M}_D has already been described with great precision (see below) and there are good Ansätze for describing the fiber, this could very well lead to the desired precise description of $C_q(D)$.

Now let us recall the description of \mathcal{M}_D. For a certain well–understood special class of domains which are said to be of Hermitian holomorphic type, where in particular G_0 is of Hermitian type, \mathcal{M}_D is just the associated bounded symmetric domain \mathcal{B}. In this case the stabilizer of C_0 in G is a parabolic group P so that $\mathcal{M}_Z = G/P$ is the compact dual of \mathcal{B} (see e.g. [FHW]). Since \mathcal{M}_Z compact, it is a direct consequence of the definitions that \mathcal{M}_D is closed in $C_q(D)$. Thus we may assume that D is not of Hermitian holomorphic type, and the following result is applicable ([HW, FH], see also [FHW]).

Theorem 2.2. If D is not of Hermitian holomorphic type, then \mathcal{M}_D is naturally biholomorphic to the universal domain \mathcal{U} contained in the affine symmetric space $\Omega = G/K$.

Before going into the details of the definition of \mathcal{U} (first introduced in a representation theoretical context by Akhiezer and Gindikin), we emphasize that \mathcal{U} is defined independent of which flag manifold Z and domain D is under consideration. For this reason and since \mathcal{U} occurs in a number of contexts, several of which are important in this article, we refer to it as being universal.

The domain \mathcal{U} is defined as follows. If $g_0 = \mathfrak{t}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$ is an Iwasawa decomposition at the Lie algebra level, then one defines the
polytope $\omega_0 \subset a_0$ as follows:

$$\omega_0 = \bigcap_\alpha \{ \xi \in a_0 : |\alpha(\xi)| < \frac{\pi}{2} \},$$

where α runs over the restricted roots. Then

$$\mathcal{U} := G_0 \exp(i\omega_0)(x_0),$$

where x_0 is a base point with isotropy group K.

Since we have eliminated the Hermitian holomorphic case from discussion, the G-isotropy group \tilde{K} at C_0 is just a finite extension of the connected group K, and the cycle space M_D lifts biholomorphically to \mathcal{U} in $\Omega = G/K$ (FHW). In our discussion of closures the finite cover $G/K \to G/\tilde{K}$ plays no role. Hence, for notational convenience we simply assume that $M_D \subset \Omega$. Since it is quite difficult to know anything specific about the closure of M_Z, we consider all possible situations

$$M_D = \mathcal{U} \subset \Omega \subset X = \text{cl}(\Omega),$$

where X is an arbitrary projective algebraic G-equivariant compactification of $\Omega = G/K$.

One of the main methods used in proving Theorem 2.2 is that of Schubert incidence geometry. We make strong use of this in the present article, and therefore we now sketch the basics (for details see FHW or the original papers HW, FH). Given a Borel subgroup $B \subset G$, a B-Schubert variety S in Z is the closure $S = O \cup Y$ of a B-orbit O in Z. Here q-codimensional Schubert varieties of Iwasawa-Borel subgroups, i.e., those which contain a component A_0N_0 of an Iwasawa-decomposition $G_0 = K_0A_0N_0$, are important.

If B is an Iwasawa-Borel subgroup and S is an associated q-codimensional Schubert variety with $S \cap C_0 \neq \emptyset$, then $S \cap C \neq \emptyset$ for every $C \in M_D$. Furthermore, the complement Y of the open orbit O in S is contained in the complement of D. In particular, the incidence variety

$$I_Y := \{ C \in \mathcal{C}_q(Z) : C \cap Y \neq \emptyset \}$$

is contained in the complement of the cycle space M_D.

4
The intersection $H_{Y,\Omega} := I_Y \cap \Omega$ is a B-invariant complex algebraic hypersurface which is contained in the complement of $\mathcal{M}_D = \mathcal{U}$ in Ω. A final step in the proof of Theorem 2.2 can be formulated as follows. For this, in the Hermitian case the Schubert variety S must be chosen appropriately, but otherwise it only required to have the properties described above.

Theorem 2.3. For every point p in the boundary $\text{bd}_\Omega(\mathcal{M}_D) = \text{bd}_\Omega(\mathcal{U})$ there exists $k \in K_0$ with $p \in k(H_{Y,\Omega})$.

We now state our main technical result which is proved in \[4\,2\].

Theorem 2.4. Let X be an arbitrary G-equivariant compactification of the affine symmetric space $\Omega = G/K$. Then the interior of the closure $\text{cl}_X(\mathcal{U})$ of the universal domain \mathcal{U} in X is \mathcal{U} itself and

$$\text{bd}_X(\mathcal{U}) = \text{cl}_X(\text{bd}_\Omega(\mathcal{U})).$$

The essential point of this theorem is that the interior of $\text{cl}_X(\mathcal{U})$ is \mathcal{U}. The second statement, $\text{bd}_X(\mathcal{U}) = \text{cl}_X(\text{bd}_\Omega(\mathcal{U}))$, is a direct consequence of this fact. To see this, note that $\text{cl}_X(\mathcal{U}) \setminus \text{cl}_X(\text{bd}_\Omega(\mathcal{U}))$ is open in $\text{cl}_X(\mathcal{U})$ and contains \mathcal{U}. Therefore, by the first statement in the theorem this open set is exactly \mathcal{U} and we have have the decomposition

$$\text{cl}_X(\mathcal{U}) = \mathcal{U} \cup \text{cl}_X(\text{bd}_\Omega(\mathcal{U}))$$

which is equivalent to the desired result.

Using Theorem 2.4 we can now give the

Proof of Theorem 2.1. Applying Theorem 2.4 if H_X denotes the closure in X of the hypersurface $H_{Y,\Omega}$ of Theorem 2.3 then, since K_0 is compact, it follows that every $p \in \text{bd}_X(\mathcal{U})$ is contained in some translate $k(H_X)$.

Since Y is closed, every cycle in $k(H_X)$ also has nonempty intersection with $k(Y)$. Thus if $p \in \text{bd}_X(\mathcal{U})$ is regarded as a cycle C, then $C \not\subset D$. Therefore $\mathcal{M}_D = \mathcal{U}$ is closed in $\mathcal{C}_q(D)$. \[Q.E.D.\]

From this proof one sees that the main new ingredients for this result are to be found in Theorem 2.4. The proof of this result is in turn heavily reliant on particular properties of special G-equivariant compactifications X of Ω. In the Hermitian case we choose $X = X_+ \times X_-$.

5
to be the product of the two compact Hermitian symmetric spaces (see §3) and in the nonhermitian case we make strong use of the DeConcini-Procesi compactification (see §4.1 and §4.2).

The desired result for an arbitrary equivariant compactification of Ω follows from the fact that any two such compactifications are equivariantly birationally equivalent. In the case where M_D is actually contained in a finite (algebraic) quotient $\tilde{\Omega} = G/\tilde{K}$ of Ω, the quotient map extends to an equivariant rational map of the special compactification of Ω under consideration to the closure \tilde{X} of M_Z in the cycle space $C_q(Z)$. The arguments that show that the birational maps which arise from the various compactifications of Ω play no role in the discussion show that such generically finite rational maps also play no role. Thus, as stated above, we simply assume that $M_Z = \Omega = G/K$ from the beginning.

3 The Hermitian case

In this section it is assumed that G_0 is of Hermitian type. In this case the parabolic subgroups of G containing K_0 are $P_+ = KS_+$ and $P_- = KS_-$, where S_+ and S_- are unipotent part of P_+ and P_-. They correspond to Hermitian symmetric spaces $X_+ = G/P_+$ and $X_- = G/P_-$ with the base point x_+ and x_-. Consider the diagonal action of G on $X_+ \times X_-$. Then the isotropy group at $x = (x_+, x_-)$ is K and the affine symmetric space $\Omega = G(x_+, x_-) = G/K$ is open dense in $X_+ \times X_-$. Write $E = X_+ \times X_- \setminus \Omega$. It is known that the universal domain U is equal to $B_+ \times B_- = G_0 x_+ \times G_0 x_-$. The following Lemma is proved in the proof of Theorem 3.8 of [WZ].

Lemma 3.1. bd$_{X_+}(B_+) \times B_-$ and $B_+ \times$ bd$_{X_-}(B_-)$ are contained in $G/K = G(x_+, x_-)$.

Proposition 3.2. For any G-orbit \mathcal{O} in E, cl$_{X_+ \times X_-}(B_+ \times B_-) \cap \mathcal{O}$ has no interior point in \mathcal{O}.

Proof. The boundary bd$_{X_+ \times X_-}(B_+ \times B_-)$ is the union (bd$_{X_+}(B_+) \times B_-) \cup (B_+ \times$ bd$_{X_-}(B_-)) \cup (bd_{X_+}(B_+) \times$ bd$_{X_-}(B_-))$. By Lemma 3.1 the first two subsets bd$_{X_+}(B_+) \times B_-$ and $B_+ \times$ bd$_{X_-}(B_-)$ are contained in $G/K = G(x_+, x_-)$. So cl$_{X_+ \times X_-}(B_+ \times B_-) \cap \mathcal{O}$ is contained in bd$_{X_+}(B_+) \times$ bd$_{X_-}(B_-)$.

If cl$_{X_+ \times X_-}(B_+ \times B_-) \cap \mathcal{O}$ has an interior point in \mathcal{O}, then the image π (cl$_{X_+ \times X_-}(B_+ \times B_-) \cap \mathcal{O}$) under the projection $\pi : \mathcal{O} \to X_+$ would...
have an interior point in X_+ because π is G-equivariant and surjective. But $\pi(\cl_{X_+ \times X_-}(\mathcal{B}_+ \times \mathcal{B}_-) \cap \mathcal{O})$ is contained in $\pi(\bd_{X_+}(\mathcal{B}_+)) = \bd_{X_+}(\mathcal{B}_+)$ which has no interior point in X_+. \hfill \Box$

Let us now turn to the

Proof of Theorem 2.4 in the case where G_0 is of Hermitian type. Let $E = X \setminus \Omega$. We will show that $\cl_X(U) \cap E$ has no interior point in E. Let $X_0 = X_+ \times X_-$ be the G-equivariant compactification of Ω considered above and put $E_0 = X_0 \setminus \Omega$. Since X is G-equivariantly birationally equivalent to X_0, we have the following diagram:

$$
\begin{array}{ccc}
\mathcal{X} & \xrightarrow{\pi} & \mathcal{X}_0 \\
\downarrow \downarrow & & \downarrow \downarrow \\
\mathcal{X} & \xrightarrow{\pi} & \mathcal{X}_0 \\
\end{array}
$$

Let $\pi : \mathcal{X} \to \mathcal{X}_0$ and $p : \mathcal{X} \to \mathcal{X}$ denote the respective proper modifications.

Assume that $\bd_X(U) \cap E$ has an interior point in E. Then $\bd_X(U) \cap \mathcal{O}$ has an interior point in \mathcal{O} for some G-orbit \mathcal{O} in E of codimension 1 in X. Therefore the restriction $p : \mathcal{O} := p^{-1}(\mathcal{O}) \to \mathcal{O}$ is biholomorphic, because the indeterminant locus of p has codimension ≥ 2. The other projection $\pi(\mathcal{O}) : \mathcal{O} \to \mathcal{X}_0 \subset \mathcal{X}. Since $\pi(\mathcal{O})$ is an open map, $\pi(\bd_X(U) \cap \mathcal{O})$ has an interior point in \mathcal{O}_0, contrary to Proposition 3.2 \hfill \Box$

4 Non-Hermitian case

For the remainder of this paper we assume that G_0 is not of Hermitian type. Our work is devoted to proving Theorem 2.4 in that case. Here we let $X := X^W$ be the DeConcini-Procesi compactification of $\Omega = G/K$ (DeCP). Orbits in the boundary $E := X^W \setminus \Omega$ are denoted by O_I, where I is a subset of $\{1, \ldots, r\}$, and $S_I := \cl(O_I)$. Recall that for every such I the compactification X^W is realized in $\mathbb{P}(V_I) \times P(V_J)$ where $J = \{1, \ldots, r\} \setminus I$, and that the projection on the first factor defines a G-equivariant morphism $\pi_I : X \to \mathbb{P}(V_I)$ to the projective space of the irreducible representation space V_I.

7
The restriction $\pi_I|S_I : S_I \to C_I = G/P_I$ is a fiber bundle whose fiber is the DeConcini-Procesi compactification of an affine symmetric space of a root theoretically distinguished Levi-factor of P_I.

Since we have supposed that G_0 is not of Hermitian type, the image $X_I := \text{Im}(\pi_I)$ is another G-equivariant compactification of the affine symmetric space G/K. In this case we denote by Ω_I the open G-orbit in X_I.

4.1 Extending sections

Let H_I be the restriction to X_I of the hyperplane bundle H of $\mathbb{P}(V_I)$. Since the vector space of sections of H is an irreducible G-representation space, it follows that the restriction map defines isomorphisms

$$\Gamma(\mathbb{P}(V_I), H) \cong \Gamma(X_I, H_I) \cong \Gamma(C_I, H|C_I).$$

If $L_I := \pi_I^*H_I$, then, using the isomorphism $\Gamma(S_I, L_I|S_I) \cong \Gamma(C_I, H_I|C_I)$, we see that the restriction map

$$R_I : \Gamma(X, L_I) \to \Gamma(S_I, L_I|S_I)$$

is surjective. We note that R_I is G-equivariant. Therefore we may choose a G-invariant irreducible representation subspace of $\Gamma(X, L_I)$ which is mapped isomorphically onto $\Gamma(S_I, L_I|S_I)$. In particular, if B is a Borel subgroup of G and s_0 is a B-eigenvector in $\Gamma(S_I, L_I|S_I)$, then there is a B-eigenvector $t_0 \in \Gamma(X, L_I)$ with $R_I(t_0) = s_0$.

Proposition 4.1. If $s \neq 0 \in \Gamma(S_I, L_I|S_I)$ is the restriction $s = R_I(t)$, then the intersection of the support $|t|$ with Ω is not empty.

Proof. If not, then $|t|$ is the union of certain irreducible components of $X \setminus \Omega$. But $t|S_I = \pi_I^*(t_I)$ and t_I is the restriction to C_I of a unique section $\tilde{t}_I \in \Gamma(X_I, H_I)$. However, $\pi_I^*(\tilde{t}_I) = t$, and since $\pi_I|\Omega : \Omega \to \Omega_I$ is an isomorphism, it follows that $|t_I|$ is a union of certain components of $X_I \setminus \Omega_I$. Now, each such component contains the closed orbit $C_I = G/P_I$. Therefore $t_I = 0$ and consequently $s = 0$, contrary to assumption. \qed
4.2 Iwasawa-envelopes

Here we complete the proof of our main Theorem 2.1 by using properties of the Iwasawa-envelope of the universal domain. In order to this in $\Omega = G/K$, we fix an Iwasawa-Borel subgroup B of G and let $x_0 \in \Omega$ be a base point with $\Omega_0 := G_0(x_0) = G_0/K_0$ being the real symmetric space of basic interest.

Let H_Ω be the complement in Ω of the open B-orbit $B(x_0)$, consider the closed G_0-invariant set

$$F_\Omega := \bigcup_{k \in K_0} k(H_\Omega) = \bigcup_{g \in G_0} g(H_\Omega), \quad (1)$$

and define the Iwasawa-envelope $E_I(\Omega)$ to be the connected component containing x_0 of the complement of F_Ω in Ω. We regard $E_I(\Omega)$ as an envelope of U in Ω, because every hypersurface $k(H_\Omega)$ is contained in its complement (11). In fact, the opposite inclusion also holds (13) and we have the following alternative description of U which in fact holds even if G_0 is of Hermitian type.

Proposition 4.2. The Iwasawa-envelope $E_I(\Omega)$ agrees with the universal domain U.

Now we give the analogous definition of the Iwasawa-envelope for an arbitrary (algebraic) G-compactification X of Ω. For this let H_X be the closure in X of the hypersurface H_Ω, and, replacing H_Ω by H_X, define F_X in the same way as F_Ω. Then $E_I(X)$ is defined to be the connected component containing x_0 of the complement of F_X in X.

Theorem 4.3. If X is an arbitrary G-equivariant compactification of Ω, then $E_I(X) = E_I(\Omega)$.

This follows from Theorem 2.4 and Proposition 4.2 in the same way that Theorem 2.1 follows from Theorem 2.4 and Theorem 2.3. But when G_0 is not of Hermitian type, Theorem 4.3 is an immediate consequence of the following result.

Theorem 4.4. If X is an arbitrary equivariant compactification of Ω and G_0 is not of Hermitian type, then

$$F_X = \bigcup_{k \in K_0} k(H_X) = \bigcup_{g \in G_0} g(H_X)$$

contains the full complement $E = X \setminus \Omega$.
Before turning to the proof, let us first prove a preparatory result which strongly uses the assumption that G_0 is not of Hermitian type.

Lemma 4.5. Assume that G_0 is not of Hermitian type and let G/P be a G-flag manifold. If B is an Iwasawa-Borel subgroup of G and H is the complement of the open B-orbit in G/P, then

$$F := \bigcup_{k \in K_0} k(H) = \bigcup_{g \in G_0} g(H)$$

is equal to G/P.

Proof. Recall that in every open G_0–orbit γ in G/P there exists a unique complex K_0–orbit C. Since G_0 is not of Hermitian type, such cycles C are positive-dimensional.

Now the complement of H in G/P is algebraically equivalent to an affine space \mathbb{C}^n which contains no positive dimensional subvarieties. Thus $H \cap C \neq \emptyset$ for every base cycle C in every open G_0–orbit γ. The desired result then follows from the facts that the union of the open G_0–orbits is dense and F is closed.

The DeConcini-Procesi compactification X^W of $\Omega = G/K$ plays a special role in the proof of Theorem 4.4.

Proof of Theorem 4.4 for $X = X^W$. Given I as in §4.1, we show that $F_{X^W} \supset S_I$. For this let H be the complement of the open B-orbit in $C_I = G/P_I$ as in the above Lemma. By Proposition 4.1 (and the brief discussion previous to it) its pullback H_I to S_I is the zero-set of the restriction of a B-eigensection $t \in \Gamma(X^W, L_I)$ with $|t| \cap \Omega \neq \emptyset$.

Since $|t| \cap \Omega$ is contained in H_Ω, it follows that $H_I \subset H_{X^W}$. Now by Lemma 4.5 we know that $\bigcup_{k \in K_0} k(H) = C_I$. Thus it is immediate that

$$F_{X^W} = \bigcup_{k \in K_0} k(H_{X^W}) \supset \bigcup_{k \in K_0} k(H_I) = S_I$$

which completes the proof for X^W.

Now let X be any (algebraic) G-equivariant compactification of Ω. Since it is G-equivariantly birationally equivalent to X^W, we have the following diagram:

$$\begin{array}{ccc}
\hat{X} & \leftarrow & X^W \\
\downarrow & & \downarrow \\
X & & X
\end{array}$$
Let \(\pi : \tilde{X} \to X^W \) and \(p : \tilde{X} \to X \) denote the respective proper modifications.

Proof of Theorem 4.4 for arbitrary \(X \). It is enough to prove this for \(\tilde{X} \), because \(p(F_{\tilde{X}}) = F_X \). Now \(\pi : \tilde{X} \to X^W \) is a \(G \)-equivariant proper modification. Since every Borel subgroup \(B \) in \(G \) also has an open orbit in \(\tilde{X} \), there are also only finitely many \(G \)-orbits in \(\tilde{X} \) and it follows that the preimage \(\tilde{S}_I = \pi^{-1}(S_I) \) is also the closure of a \(G \)-orbit.

Furthermore, if \(H_I = |t| \cap S_I \) is a \(B \)-invariant hypersurface which is defined by a \(B \)-eigenvector \(t \in \Gamma(X^W, L_I) \) as in the proof for \(X^W \), then the corresponding section \(|\tilde{t}| \in \Gamma(\tilde{X}, \tilde{L}_I) \) of the pullback bundle \(\tilde{L}_I := \pi^*L_I \) has the analogous properties. Namely, the intersection \(|\tilde{t}| \cap \tilde{\Omega} \) of its support with the open \(G \)-orbit in \(\tilde{\Omega} \) is nonempty, and \(|\tilde{t}| \cap \tilde{S}_I \) is a \(B \)-invariant hypersurface \(\tilde{H}_I \) in \(\tilde{S}_I \). Thus \(\tilde{H}_I \) is a subset of the hypersurface \(\tilde{H}_I \) which defines the Iwasawa-envelope in \(\tilde{\Omega} \).

Finally, since the hypersurfaces \(k(H_I) \) cover \(O_I \) (and therefore \(S_I \)) as \(k \) runs over \(K_0 \) and the hypersurfaces \(k(\tilde{H}_I) \) are just their \(\pi \)-preimages, it follows that the hypersurfaces \(k(\tilde{H}_I), k \in K_0 \), cover \(\tilde{S}_I \). This shows that \(F_{\tilde{X}} \supset \tilde{S}_I \) which completes the proof in the case of an arbitrary compactification \(X \). \(\square \)

As a consequence of Theorem 4.4 we are now able to give the

Proof of Theorem 2.4 in the case where \(G_0 \) is not of Hermitian type. Let \(V \) be the interior of the closure \(\text{cl}_X(\mathcal{U}) \) and observe that \(V \cap \Omega = \mathcal{U} \). In particular, the intersection \(V \cap k(H_X) = \emptyset \) for all \(k \in K_0 \). On the other hand, if \(p \in V \cap \Omega \), it follows from Theorem 4.4 that \(p \) is in some such \(k(H_X) \) and \(V \cap k(H_X) \neq \emptyset \). Thus no point of \(V \) is in \(E \) and the first statement of Theorem 2.4 follows. As we explained directly after the statement of Theorem 2.4, the second statement is an immediate consequence of the first. \(\square \)

As we explained in \(\square \) Theorem 2.4 implies that for every open \(G_0 \)-orbit \(D \) of an arbitrary real form \(G_0 \) in an arbitrary \(G \)-flag manifold \(Z \) the group theoretically defined cycle space \(\mathcal{M}_D \) is closed in the full cycle space \(\mathcal{C}_q(D) \) and therefore the proof of our main result is complete.

Acknowledgements. The research for this paper took place dur-
ing the 2005 Fukuoka conference on differential geometry and the authors’ visit to Osaka University. They would like to thank Professors A. Fujiki, R. Kobayashi and Y. Suyama for making this possible. The second author would also like to thank the Deutsche Forschungsgemeinschaft for longterm support.

References

[B] Barchini, L.: Stein extensions of real symmetric spaces and the geometry of the flag manifold, Math. Annalen 326 (2003), 331-346.

[DeCP] DeConcini, C. and Procesi, C.: Complete Symmetric Varieties, In Invariant Theory, Conference Proceedings, Montecatini 1982, Springer LNM 996, 1-44

[FH] Fels, G. and Huckleberry, A.: Characterization of cycle domains via Kobayashi hyperbolicity, Bull. Soc. Math. de France 133 (2005), 121-144 (AG/020434)

[FHW] Fels, G., Huckleberry, A. and Wolf, J. A.: Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint (362 pages of ms., to appear 2005 as a volume of Progress Reports in Mathematics, Birkhäuser Verlag)

[HSch] Heinzner, P. and Schwarz, G.W.: Cartan decomposition of the moment map, (CV/0502515)

[HSSt] Heinzner, P. and Stötzle, H.: Semistable points with respect to real forms (preprint)

[H] Huckleberry, A.: On certain domains in cycle spaces of flag manifolds, Math. Annalen 323 (2002), 797–810.

[HW] Huckleberry, A. and Wolf, J. A.: Schubert varieties and cycle spaces, Duke Math. J. 120 (2003), 229–249 (AG/0204033)

[WeW] Wells, R. O. and Wolf, J. A.: Poincaré series and automorphic cohomology on flag domains. Annals of Math. 105 (1977), 397–448.

[W1] Wolf, J. A.: The action of a real semisimple Lie group on a complex manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.
Wolf, J. A.: The Stein condition for cycle spaces of open orbits on complex flag manifolds, Annals of Math. **136** (1992), 541–555.

Wolf, J. A. and Zierau, R.: Linear cycles spaces in flag domains, Math. Ann. **316** (2000), 529-545.

Jaehyun Hong
Research Institute of Mathematics
Seoul National University
San 56-1 Shinrim-dong
Kwanak-gu
Seoul 151-747, Korea
jhhong@math.snu.ac.kr

Alan Huckleberry
Fakultät und Institut für Mathematik
Ruhr-Universität Bochum
D-44780 Bochum, Germany
ahuck@cplx.rub.de