Standing on slopes – how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task

Journal of NeuroEngineering and Rehabilitation (2017) 14:117.

Products

\((\text{Meridium, Elan, Proprio, TSA, Raize}) \text{ vs conventional prosthetic feet}\)

Major Findings

- **Only Meridium**
 - Joint angles and joint torques are closest to non-amputees for
 - Standing on an upward slope of 10°
 - Standing on a downward slope of 10°
 - Autoadaptive dorsiflexion stop and sufficient range of motion improve symmetric loading
 - Clear superiority for Meridium compared to other microprocessor-controlled feet (MPFs)

- **With microprocessor-controlled prosthetic feet (MPFs) compared to conventional prosthetic feet:**
 - Full adjustment of the ankle joint improves symmetry of vertical ground reaction forces
 - Compensatory posture necessary for transtibial and transfemoral amputees, when prosthetic foot has no automatic ankle angle adaptation

![Differences in ankle angles when standing on a downward slope (10°)](image)

Figure 1: Differences in ankle angles when standing on a downward slope (10°) are illustrated for Meridium, other MPFs, conventional prosthetic feet and non-amputees.
Standing on slopes – how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task

Population

Subjects: 4 unilateral transtibial amputees (TT)
4 unilateral transfemoral amputees (TF)
20 non-Amputees (control group)

Previous prosthesis foot: Conventional prosthetic feet (Non-MPF)
Amputation causes: not reported
Mean age: 4 TT: 56.2 yrs ± 12 yrs; 4 TF: 44.5 yrs ± 3 yrs
20 non-Amputees: 22.5 yrs ± 3 yrs
Mean time since amputation: > 3 yrs
MFCL: K3 and K4

Study Design

Interventional, crossover design:

Transtibial (N = 4) and transfemoral* (N = 4) amputees

![Diagram showing the order of wearing the MPFs.](image)

The order of wearing the MPFs was randomized for each subject. The graph shows an example, where Meridium is selected as the third MPF.

* Transfemoral amputees were not equipped with the Raize foot, which reduced the number of data collection session from 6 to 5.

Results

Category	Outcomes	Results for prosthetic TT and TF vs. non-Amp	Sig.*	Results for sound TT and TF vs. non-Amp	Sig.*
Level walking	Ankle torque	Positive values: Dorsiflexion; Negative values: Plantarflexion			
		No sig. differences for all feet.	0	TT:	
		Elan: +0.34 ±0.08	++		
	Knee torque	Positive values: Knee extension; Negative values: Knee flexion			
		TT:	No sig. differences for all feet.	0	
		Elan: -0.01 ± 0.06	--		
	Hip torque	Positive values: Hip flexion; Negative values: Hip extension			
		TT:	No sig. differences for all feet.	0	
		Proprio: +0.07 ± 0.06	--		
Standing on slopes – how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task

(Meridium, Elan, Proprio, TSA, Raize) vs conventional prosthetic feet

Category	Outcomes	Results for prosthetic TT and TF vs. non-Amp	Sig.*	Results for sound TT and TF vs. non-Amp	Sig.*
Ramps, Hills	Ankle torque				
		Positive values: Dorsiflexion; Negative values: Plantarflexion			
Down (10°)					
	TT:				
Elan	-0.10 ± 0.08	--			
Proprio	+0.04 ± 0.02	++			
TSA	+0.06 ± 0.03	++			
Raize	-0.05 ± 0.07	--			
TF:				Everyday Feet: +0.43	++
Elan	-0.05 ± 0.07	--		+0.39 ± 0.08	++
Proprio	+0.04 ± 0.04	++		+0.39 ± 0.03	++
Up (10°)					
	TT:				
Everyday foot:	+0.62 ± 0.15	++			
Elan	+0.23 ± 0.01	++			
Proprio	+0.46 ± 0.02	++			
Raize	+0.52 ± 0.15	++			
TF:				+0.42 ± 0.14	++
Everyday foot:	+0.66 ± 0.07	++			
Elan	+0.48 ± 0.09	++			
Proprio	+0.52 ± 0.04	++			
TSA	+0.61 ± 0.08				
Knee torque					
Down (10°)					
	TT:	Everyday feet: -0.16 ± 0.04	--	Elan: -0.07 ± 0.11	--
		Elan: -0.17 ± 0.04	--		
		Proprio: -0.16 ± 0.06	--		
		Raize: -0.03 ± 0.07			
	TF:				
		Everyday feet: -0.21 ± 0.28	--		
		Elan: -0.21 ± 0.05	--		
		Proprio: -0.24 ± 0.03	--		
		TSA: -0.09 ± 0.09	--		
Up (10°)					
	TT:				
Elan	+0.26 ± 0.04	++			
Proprio	+0.38 ± 0.06	++			
TF:					
Elan	+0.29 ± 0.07	++			
Proprio	+0.31 ± 0.09	++			
TSA	+0.31 ± 0.04	++			

No sig. differences for all feet.
Author’s Conclusion

“A prosthetic foot that combines both key features – an auto-adaptive dorsiflexion stop and sufficient ROM to completely adapt to inclinations - enables lower limb amputees to stand on slopes in an almost natural manner. The biomechanical parameters indicate that this concept is superior to conventional passive feet or feet which provide only one key design feature such as a sufficient ROM. Finally, the results indicate that both, TT and TF amputees, benefit from such a foot.” (Ernst et al, 2017)