Sequential Monitoring of a Bernoulli Sequence when the Pre-change Parameter is Unknown

Gordon J. Ross · Dimitris K. Tasoulis · Niall M. Adams

Received: date / Accepted: date

Abstract The task of monitoring for a change in the mean of a sequence of Bernoulli random variables has been widely studied. However most existing approaches make at least one of the following assumptions, which may be violated in many real-world situations: 1) the pre-change value of the Bernoulli parameter is known in advance, 2) computational efficiency is not paramount, and 3) enough observations occur between change points to allow asymptotic approximations to be used. We develop a novel change detection method based on Fisher’s Exact Test which does not make any of these assumptions. We show that our method can be implemented in a computationally efficient manner, and is hence suited to sequential monitoring where new observations are constantly being received over time. We assess our method’s performance empirically via using simulated data, and find that it is comparable to the optimal CUSUM scheme which assumes both pre- and post-change values of the parameter to be known.

1 Introduction

We are concerned with the task of detecting changes in the mean of an equally spaced, discrete-time sequence of Bernoulli(θ_t) random variables. In most traditional work on this problem, the observed data is assumed to be a fixed length sequence of realizations x_1, \ldots, x_t from the independent random variables X_1, \ldots, X_t. Here, t is a known integer and is usually interpreted as denoting the time at which the observation was made. Recently, much work
has instead focused on the case where \(t \) is not fixed \(^{[1]}\text{Woodall, 1997}^\)\), and the observations instead constitute a **data stream** \(^{[2]}\text{Domingos and Hulten, 2003}^\) of an unknown and potentially infinite length. This data stream setting arises when new observations are being constantly received over time, for example in high frequency finance \(^{[3]}\text{Chen and Gupta, 1997}^\), or more traditional industrial monitoring problems where the task is to continually monitor the output of a manufacturing process to detect an increase in the number of defective items \(^{[4]}\text{Yeh et al., 2008}^\). When working with data streams it is not known in advance how many observations will be received, and the fixed length assumption is hence inappropriate. We will refer to this data stream setting as **sequential monitoring**, and the remainder of the paper focuses on this case. As a point of terminology, we will refer to the \(i^{th} \) observation as being a **success** if \(X_i = 1 \), and a **failure** if \(X_i = 0 \).

We assume that the value of the Bernoulli parameter \(\theta_t \) is constant but unknown between each change point, and that the distribution of each of the \(X_i \) variables can hence be written as:

\[
X_t \sim \text{Bernoulli}(\theta_t), \quad \theta_t = \begin{cases}
\theta_0, & \text{if } t \leq \tau_1 \\
\theta_1, & \text{if } \tau_1 < t \leq \tau_2 \\
\theta_2, & \text{if } \tau_2 < t \leq \tau_3 \\
...
\end{cases}
\]

where each value of \(\tau_i \) denotes a change point. The task is to detect any changes which take place, as soon after they occur as possible, and to accurately estimate the location of each change point. In sequential change detection, it is standard to try and detect each change point in sequence. A change detector is run until the first change is encountered. After this has been found, the detector is restarted and monitoring for the second change point begins. In this way, the task is reduced to the successive detection of individual change points, and the problems associated with attempting to detect multiple change points simultaneously are avoided. Therefore for the remainder of the paper we will treat the stream as if it contained at most a single change point, with the understanding that our techniques could also be deployed on streams containing several.

The performance of sequential change detectors is usually measured using two criteria \(^{[5]}\text{Basseville and Nikiforov, 1993}^\): the expected time between false positive detections (denoted \(ARL_0 \), for Average Run Length), and the mean delay until a change is detected (denoted \(ARL_1 \)). If \(\tau \) denotes the true location of the change point, and \(\hat{\tau} \) is the time at which the change detector signalled for a change, then we can define these formally as:

\[
ARL_0 = E(\hat{\tau}|\theta = \theta_0), \quad ARL_1 = E(\hat{\tau} - \tau|\theta = \theta_1).
\]

When \(\hat{\tau} < \tau \), a false positive is said to have occurred. These quantities play a similar role to the Type I and Type II errors in traditional hypothesis testing. It is considered very important \(^{[5]}\text{Basseville and Nikiforov, 1993}^\) for a sequential change detector to have a known bound on the \(ARL_0 \) so that change points
can be assessed for statistical significance, for the same reason that hypothesis
tests are required to have a bound on the Type I error probability.

Within the traditional statistics literature, the analysis of the Bernoulli change detection problem has mainly focused on the case where the sequence X_1, \ldots, X_t has a fixed length [Pettitt, 1980; Hinkley and Hinkley, 1970]. These approaches suffer from several limitations which makes them inappropriate tools for the sequential monitoring problem. First, they can be computationally inefficient when used in such a context, since they require all previous data to be stored in memory, with test statistics being recomputed from scratch whenever a new observation is received. Second, although these approaches do provide a way to bound the Type I error when testing for a change in a fixed length sequence, this does not easily translate into a method for bounding the ARL_0, which is required in sequential monitoring problems. Finally, they often use test statistics which only asymptotically have known distributions. Using asymptotic theory is valid when it can be assumed that there are many observations between each change point. However when changes are occurring frequently, the asymptotic distribution may diverge substantially from the exact small-sample distribution.

Much work on the non-fixed length problem comes from the Quality Control literature. When the Bernoulli random variables can be naturally split up into groups of size $n > 1$ and hence treated as Binomial random variables, the p-chart is the standard tool used to monitor for change (Montgomery, 2005). However, the p-chart is not ideal when the observations are arriving individually and $n = 1$, a situation commonly referred to as continuous inspection.

Existing change detection methods for the $n = 1$ case can be categorized into those which are transformation-based, and those which use the untransformed observations. An example of the former is Nelson (1994), which treats the time between failures as defining a sequence of Geometric random variables, and then uses a transformation to make this approximately Gaussian. Standard tools for detecting a change in the parameters of a Gaussian sequence can then be deployed. Several approaches have been proposed which do not rely on transformations. Versions of the popular CUSUM chart which can be deployed on untransformed observations are proposed in Reynolds and Stoumbos (1999) and Chang and Gan (2001). A method using EWMA charts is also considered in Yeh et al. (2008).

A key limitation of these existing approaches is that they assume the pre-change value of the Bernoulli parameter, θ_0, is known exactly. However this is an idealization that may not be applicable in several real world situations, including those mentioned above. Although in some situations it may be possible to estimate θ_0 from a reference sample which is known to come from the pre-change distribution, this will not always be the case. The performance of change detection algorithms under misspecification of the pre-change distribution has been studied by Braun (1999), who find that this can have a significant effect on performance.

In this paper, we are concerned with the task of monitoring for changes in the parameter θ when there is no prior knowledge available regarding ci-
ther its pre- or post-change value. We use a test statistic which has an easily computable exact null distribution, which makes it suitable for monitoring sequences which may not have a large number of available observations between each change point. Further, our method is highly computationally efficient and is hence suitable for deployment in situations where observations are being received at high frequencies, such as the aforementioned data stream setting. We will focus on detecting an increase in the Bernoulli parameter since this tends to be more important in practice, although our methods are trivially extendable to two-sided change detection.

Our work is based on the Change Point Model (CPM) framework described in Hawkins et al. (2003), as a tool to extend traditional methods designed for fixed-length sequences to the sequential monitoring setting. The CPM was originally introduced to monitor for changes in a Gaussian mean, but was later extended to Gaussian variances (Hawkins and Zamba, 2005), and non-parametric distributional shifts (Ross et al., 2011). We propose to extend this work to monitor a Bernoulli proportion. We have made R code implementing our method publicly available: details on this can be found in the Software Implementation section at the end of this paper.

The remainder of the paper proceeds as follows. Section 2 begins with the problem of testing for a change in a Bernoulli parameter when dealing with a fixed length sequence. Section 3 then shows how the technique we develop can be extended to sequential monitoring, where observations are being received over time. A discussion of implementation issues follows in Section 4 and an empirical evaluation of performance is carried out in Section 5.

2 The Bernoulli Change Point Model: Fixed Length Sequence

We first consider the problem of detecting a change point in a fixed length sequence. In this case there are \(t \) Bernoulli observations, \(X_1, \ldots, X_t \). We stress again that neither the pre- or post-change value of \(\theta_t \) is assumed to be known, and we assume for now that the sequence contains at most one change point.

For a specified point \(k \) in this sequence, we can use a standard two-sample hypothesis test to assess whether a change point occurs at \(\tau = k \), with the null hypothesis being that there is no change and that all \(t \) observations are identically distributed.

Several such tests exist in the statistics literature. We choose to use Fisher’s Exact Test (Agresti, 1992) (FET) since its null distribution can be computed exactly, rather than relying on Gaussian approximations which only hold asymptotically. This property is important since we would like our change detector to be deployable in situations where only a small number of observations are available between change points. Another important property of FET is that its null distribution does not depend on the true value of \(\theta_t \).

The idea behind FET is as follows: suppose the observations at time \(t \) are broken up into two samples \(x_1, \ldots, x_k \) and \(x_{k+1}, \ldots, x_t \). Let the null hypothesis be that there are no change points in the sequence, which implies that...
both samples have been generated by the same Bernoulli distribution with a fixed parameter θ_0. Under this assumption, the X_i variables are identically distributed, with $P(X_i = 1) = \theta_0$, and $P(X_i = 0) = 1 - \theta_0$ for all i. Let S_t be a random variable defined as the number of failures in the first t observations, i.e:

$$S_t = \sum_{i=1}^{t} X_i.$$

Then, conditional on $S_t = s_t$, FET uses a combinatorics argument to reason about how the number of observed failures are distributed between the two samples. Let S_k be the number of failures in the first sample. Under the null hypothesis, the probability that $S_k = s_k$ follows a hypergeometric distribution:

$$P(S_k = s_k | S_t = s_t) = \binom{s_t}{s_k} \binom{t-s_t}{k-s_k},$$

where $\binom{t}{k}$ is the binomial coefficient. A fundamental property of the FET is that this probability does not depend on the unknown parameter θ_0. By conditioning on the value of the sufficient statistic S_t, this dependency has been removed. Therefore the p-values of the FET under the null hypothesis are independent of θ_0, which makes this test suitable for situations where this parameter is not known. Now, as noted in the Introduction, we will generally be more interested in detecting an increase in θ_t, which corresponds to an unusually small number of failures occurring within the first k observations. The probability of there being s_k or less failures in the first k observations under the null hypothesis that there is no change point and all observations are identically distributed is:

$$p_{k,t} = \sum_{i=1}^{k} P(S_k = s_i), \quad p_{k,t} \in [0, 1].$$

This is the one-sided p-value of the FET. For convenience, we will instead work with the statistic $F_{k,t}$, defined as:

$$F_{k,t} = 1 - p_{k,t}, \quad F_{k,t} \in [0, 1].$$

Finally, the null hypothesis that no change occurs at k is rejected if $F_{k,t} > h_{k,t}$ for some appropriately chosen threshold $h_{k,t}$.

Of course, since we have no prior knowledge of where the change point is located, we do not know which value of k to use for testing. The null hypothesis is now that there is no change point in the data, while the alternative hypothesis is that a change point exists at any location. To perform this test, we can use a method analogous to the procedure followed in generalized likelihood ratio testing (Pettitt, 1981). We compute $F_{k,t}$ at every point $1 < k < t$, and use the maximum value. This leads to the statistic:
\[F_t = \max_k F_{k,t}, \quad 1 < k < t. \]

If \(F_t > h_t \) for some suitably chosen threshold \(h_t \), then the null hypothesis is rejected, and we conclude that a change occurred at some point in the data. In this case, the best estimate \(\hat{\tau} \) of the location of the change point is at the value of \(k \) which maximized \(F_t \). If \(F_t \leq h_t \), then we do not reject the null hypothesis, and hence conclude that no change has occurred. The choice of this \(h_t \) threshold will be discussed further in the following section.

3 The Bernoulli Change Point Model: Sequential Monitoring

We now consider the task of change detection when new observations are being received in discrete time. Let \(X_t \) be the \(t^{th} \) observation where \(t \in 1, 2, \ldots \) is growing and perhaps unbounded.

For each value of \(t \), we can treat the sequence \(X_1, \ldots, X_t \) as being of a fixed length, compute \(F_t \), and use the methodology from the previous section to test whether a change point has occurred. If a change is detected, we give a signal and stop monitoring. If no change is detected, then we wait until the next observation \(X_{t+1} \) is received and repeat this process, computing \(F_{t+1} \) and again testing for a change. In other words, we propose computing \(F_t \) at each time point, and signalling that a change has occurred when \(F_t > h_t \). In the case where the sequence may contain multiple change points, the monitoring process is then restarted immediately at the observation following the change, with all previous observations being discarded.

Although recomputing \(F_t \) whenever a new observation is received may seem computationally expensive, it can actually be computed in a very efficient manner, as will be discussed in Section 4.

The key issue with this approach then becomes determining the sequence of thresholds \(\{ h_t \} \). As mentioned in the Introduction, an important requirement for sequential monitoring algorithms is that the rate of false alarms can be bounded, where a false alarm constitutes flagging that a change has occurred when no change has taken place. In other words, assuming that no change has occurred, we ideally would have:

\[
P(F_t > h_t | F_{t-1} \leq h_{t-1}, \ldots, F_1 \leq h_1, \theta_t = \theta_0) = \alpha, \tag{2}\]

where \(\alpha \) is some user-specified constant. In this case, the expected time between false alarms (again denoted as the \(ARL_0 \), for Average Run Length) is equal to \(1/\alpha \). Because the finite-sample conditional distribution of \(F_t \) cannot generally be computed analytically, the usual approach when working with change point models is to use Monte Carlo simulation to compute the sequence of \(h_t \) values corresponding to the desired \(ARL_0 \). This can be a computationally expensive procedure which is not feasible to carry out in real-time as data is being received, therefore the usual solution is to compute the \(h_t \) values corresponding to many different choices of the \(ARL_0 \) in advance, and then store these in a
lookup table so they can be easily used (Hawkins and Zamba, 2005; Ross et al., 2011).

However, a problem arises – unlike the examples considered in the existing CPM literature, the FET test involves conditioning on the observed number of successes, as can be seen from Equation 1. This implies that the thresholds h_t used in the CPM should be conditional on the particular data sequence $\{X_t\}$ that been observed, with different sequences requiring different thresholds. Since a collection of n Bernoulli random variables has 2^n possible realisations, it is hence not possible to use the sort of precomputed lookup table which is used in Hawkins and Zamba (2005) and Ross et al. (2011).

As a solution to this problem we design the CPM in a conservative fashion. In general, p_t is smallest (with F_t being largest) when $\theta_0 = 0.5$. Therefore, in order to generate a threshold sequence h_t that will an give an ARL_0 of at least $1/\alpha$, we simulate Bernoulli sequences under the assumption that $\theta_0 = 0.5$ (full details of this simulation follow below). Because other values of θ_0 result in lower values of F_t, this will result in an ARL_0 which is greater than $1/\alpha$, i.e. we will have the more conservative criteria:

$$P(F_t > h_t | F_{t-1} \leq h_{t-1}, \ldots, F_1 \leq h_1, \theta_t = \theta_0) \leq \alpha. \quad (3)$$

One final complication which can arise is the discreteness of the test statistic F_k. Because the sequence of X_t random variables has a Bernoulli distribution, there is only a finite number of values which F_k can achieve. This can potentially add a further degree of conservativeness to the procedure.

In order to reduce the discreteness of the test statistic, we borrow an idea from Zhou et al. (2009) and recommend smoothing the F_k values. Specifically, we define a new statistic Y_t which is formed by applying exponential smoothing to the $F_{k,t}$ statistics,

$$Y_{1,t} = F_{1,t}$$

$$Y_{k,t} = (1 - \lambda)Y_{k-1,t} + \lambda F_{k,t}$$

$$Y_t = \max_{k} Y_{k,t}, \quad \lambda \in [0, 1]. \quad (4)$$

The underlying idea is that if a change point occurs at τ, then the values of $F_{k,t}$ should be high whenever k is close to τ. Therefore, smoothing the $F_{k,t}$ statistics in this way should not negatively impact performance. Further, by using the smoothing, the range of possible values for each $Y_{k,t}$ is significantly increased compared to the $F_{k,t}$ statistics, hence Y_t has more possible values than F_t. This allows a sequence of thresholds to be chosen which give an ARL_0 closer to the desired value. We are now faced with the issue of choosing λ; generally, a value close to 0 results in more smoothing and produces a change detector which is slightly better at detecting smaller shifts in θ_t, while a higher value results in more smoothing and is hence more suitable for detecting larger shifts. In our Experiments section we will explore several different choices of λ and show that the performance difference is not overly large.
We now return to the original problem of finding a sequence of thresholds which satisfies Equation 3. This is non-trivial; the marginal distribution of the F_t and Y_t statistics is complex, and the conditional distribution in Equation 2 moreso. Since it does not seem possible to determine the thresholds analytically, we instead compute them using a Monte Carlo technique. In order to compute the thresholds for some choice of α, we simulate one million streams each containing 2000 Bernoulli(0.5) observations. For each stream, we compute Y_t at each observation. The required values of h_t can then be found successively, by starting with the first observation and choosing h_1 to make the proportion of Y_1 values exceeding h_1 equal to α. The streams which exceed α are then discarded, and h_2 can then be chosen so that the proportion of remaining Y_2 values exceeding h_2 is equal to α, and so on. In this way, the conditional distributions are successively approximated, allowing the threshold sequence to be found.

Although this simulation is computationally expensive and may require several hours of processing, this is not a problem since it only needs to be performed a single time, and can hence be performed in advance. Then, once we have computed these values, we can store them in a lookup table which can be accessed with no computational overhead. We present such a lookup table in Table 5 in the Appendix, which gives the threshold sequences corresponding to several choices of α. It can be seen that these thresholds seem to slowly converge towards constant values, so it seems reasonable to use the value of h_{2000} as an approximation of h_t for $t > 2000$.

Since we have computed these thresholds under the assumption that $\theta_0 = 0.5$, the CPM will be conservative when the parameter of the Bernoulli sequence is not equal to this value, causing the ARL_0 to be higher than desired. In order to investigate just how conservative this procedure is, Table 1 shows the actual empirical ARL_0 values that are achieved by a CPM designed to have $ARL_0 = 500$, when θ_0 takes on a variety of other values. It can be seen that the degree of conservativeness is quite small, unless p_0 takes on a very small value (<0.01). The CPM hence seems suitable for use on most Bernoulli streams, which we will investigate further in Section 5.
4 Implementation Issues

Having completed the description of the Bernoulli CPM, we now turn towards its implementation. In many important real world scenarios, computational resources are limited so it is important to have a change detection algorithm which can be computed efficiently. For the CPM, the majority of computation time is spent calculating the $F_{k,t}$ statistics. From Equation (1) we can see that this is equivalent to evaluating the probability mass function of the hypergeometric distribution. Most common statistical packages will provide a highly optimized routine for this. However, we can increase computational efficiency by exploiting the high level of correlation between the $F_{k,t}$ statistics.

Consider a fixed length sequence containing t observations, of which s_t are failures. Let s_k be the number of failures observed before observation k. Write:

$$d_{k,t} = \binom{s_t}{s_k} \frac{(t-s_k)}{(n)}.$$

Now, rather than computing $d_{k+1,t}$ from scratch, we can compute it recursively from $d_{k,t}$. We make use of the following identities for the binomial coefficient:

$$\binom{n}{k+1} = \binom{n}{k} \frac{n-k}{k+1} \binom{n+1}{k} = \binom{n}{k} \frac{n+1}{n-1}.$$

From this, algebraic manipulation shows that:

$$d_{k,t+1} = \begin{cases} \frac{d_k(s_{k+1})(t-s_{k+1})(t+1-s_k)}{(k+1-s_k)(t-s_k-k-s_k+1)(t+1)} & \text{if } X_{t+1} = 1 \\ \frac{d_k(t-s_k-k-s_k+1)(t+1)}{(t-s_k-k-s_k+1)(t+1)} & \text{if } X_{t+1} = 0 \end{cases}$$

(5)

And similarly:

$$d_{k+1,t} = \begin{cases} \frac{d_k(s_{k+1})(k+1)}{(s_k+1)(t-k)} & \text{if } X_{k+1} = 1 \\ \frac{d_k(t-s_k-k-s_k+1)(t+1)}{(k-s_k+1)(t-k)} & \text{if } X_{k+1} = 0 \end{cases}$$

(6)

Using these recursive formulations significantly decreases the processing time required to compute each value of $F_{k,t}$. Recall that $F_{k,t}$ is defined as:

$$F_{k,t} = 1 - \sum_{i=1}^{k} d_{i,t}.$$

Therefore for all $k < t$, the value of $d_{k,t}$ can be calculated from $d_{k-1,t}$ using Equation (5) without the need to evaluate any factorials. When $i = t$ this does not apply, since $d_{t,t-1}$ is not defined. In this case, $d_{k,t}$ can be computed from $d_{k-1,t}$ using Equation (6).

However even though this recursive formulation allows efficient computation of F_k, and hence the smoothed Y_t statistics, the time required to compute these values still grows linearly over time as more observations are received. Further, it also requires all previous data points to be retained in memory. In situations where this is not feasible due to constraints on processing...
power/memory, we can use a further efficiency device where only the previous w observations are stored in memory, with the previous \(t - w \) discarded.

We define a **window** \(W_{w,t} \) of length \(w \) to be the set of the \(w \) most recently observed points, i.e. \(W_{w,t} = \{x_{t-w+1}, \ldots, x_t\} \). Only the points in this window are stored in memory, with older points discarded. The \(F_t \) statistic is now calculated by maximising \(F_{k,t} \) over only the observations in the window, rather than over the whole stream. Therefore, the memory only needs to be large enough to contain the previous \(w \) points, and the computational cost of computing \(F_t \) is constant rather than growing over time.

A naive implementation of windowing where old points are discarded would have a significant negative effect on the performance of the change detector. Therefore, we do not discard old points entirely, but instead summarise them in the sufficient statistic \(s_{t-w} \) which maintains the sum of the observations too old to be included in the window.

In other words, suppose that at time \(t \), there have been \(s_{t-w} \) failures outside the current window. We define:

\[
S_k = s_{t-w} + \sum_{i=t-w+1}^{k} X_i, \quad t - w < k < t.
\]

The \(F_{k,t} \) statistics are then defined for \(t - w < k < t \), and maximisation is carried out only in this range. Because \(s_{k,t} \) is a sufficient statistic for \(X_1, \ldots, X_w \), no information is lost by discarding these points, and values of \(F_t \) at each point in the window is identical to the value when no windowing is used, meaning that no information is lost, so no loss in performance will occur. Also because older points are summarised in \(s_{t-w} \), the choice of the window size \(w \) is not critical since it only determines the points at which a change may be detected.

5 Performance Analysis

Having introduced the Bernoulli CPM, we now proceed to evaluate its performance. We compare it to the Bernoulli CUSUM chart introduced in Reynolds and Stoumbos (1999). Unlike the CPM, the CUSUM requires both the pre- and post-change values of \(\theta_t \) to be known, and is the optimal change detector under this assumption, in the sense of minimising the worst case detection delay (Lorden, 1971). Since our CPM assumes nothing about \(\theta_t \), we would expect its performance to be inferior, so we consider the CUSUM as a benchmark which defines optimal performance. Because designing an optimal CUSUM is unrealistic since generally the values of \(\theta_0 \) and \(\theta_1 \) will not be known, we also investigate the effect that misspecification of these parameters has on the CUSUM.

Following standard practice in the change detection literature (Basseville and Nikiforov, 1993), we evaluate performance by setting the \(ARL_0 \) of both methods to be equal, and then compare the expected delay taken to detect changes of various magnitudes. In order to this we need to choose some value for the \(ARL_0 \), so
we choose $ARL_0 = 500$ for both methods. Our results apply without loss of generality to other choices of the ARL_0.

Since our CPM assumes no prior knowledge of the pre-change parameter θ_0 and instead require it to be learned from the data, the location of the change point will affect their performance. A change which occurs early will be more difficult to detect than one which occurs late, since fewer observations are available to allow θ_0 to be estimated accurately. We therefore consider two different change point locations, $\tau = \{50, 300\}$, which correspond to early and moderately located changes. In the case of sequences containing multiple change points, this corresponds to how far apart the change points are located.

We now briefly review the CUSUM before proceeding with the performance comparison.

5.1 CUSUM

Our implementation of the CUSUM chart follows Reynolds and Stoumbos (1999). Given a sequence of Bernoulli observations x_1, x_2, \ldots with known parameter θ_0 before the change point and θ_1 after, we define:

$$C_0 = 0$$

$$C_t = \max(0, C_{t-1} + x_t - k),$$

where k is a reference value defined as $k = r_1/r_2$, where:

$$r_1 = -\log \left(\frac{1 - \theta_1}{1 - \theta_0} \right), \quad r_2 = \log \left(\frac{\theta_1(1 - \theta_0)}{\theta_0(1 - \theta_1)} \right).$$

A change is flagged when $C_t > h(\theta_0, \theta_1)$ for some appropriately chosen control limit $h(\theta_0, \theta_1)$, which is chosen in order to give the CUSUM a specified ARL_0. This can be done using (for example) the approximation scheme discussed in Reynolds and Stoumbos (1999), or by Monte-Carlo simulation. We note that due to the discreteness of the test statistic, it will generally not be possible to achieve a target ARL_0 exactly. Although we previously discussed this problem in the context of our CPM, it is more serious for the CUSUM since the C_t statistic is more discrete. For each choice of θ_0 and θ_1, we computed control limits which gave the CUSUM the minimum possible ARL_0 greater than 500. In practice however, the achieved ARL_0s were in the range 500-600, but for cases where the test statistic is especially discrete, most notably when $\theta_0 = 0.1$ and $\theta_1 = 0.9$, it is not possible to find any threshold greater between 400 and 800.

5.2 Results and Discussion

We wish to compare the expected delay taken by both the CPM and the CUSUM to detect changes of various magnitudes in a Bernoulli parameter.
We consider cases where the pre-change value of the Bernoulli parameter θ_0 takes values from the set \{0.1, 0.2, 0.3, 0.4\}, and the post-change value is $\theta_1 \in \{\theta_0 + 0.1, \theta_0 + 0.2, \ldots, 0.9\}$. By the symmetry of the Bernoulli distribution, the results for $\theta_0 = \gamma$ will be identical to those for $\theta_0 = 1 - \gamma$, so we do not consider cases where $\theta_0 > 0.5$.

For each choice of the parameters θ_0 and θ_1, and the change time τ, we generated 20000 sequences of Bernoulli(θ_t) observations where $\theta_t = \theta_0$ when $t < \tau$, and $\theta_t = \theta_1$ when $t \geq \tau$. We then configured the CUSUM to be optimal for these parameter values, by choosing k as described in Section 5.1. The CPM of course does not have any knowledge of these parameter values. For each sequence, we then ran both the CPM and the CUSUM, and found the time T at which a change was flagged. The expected delay is then $E[T | T > \tau]$. Recall that the CPM uses a parameter λ which controls the degree of smoothing applied to the $F_{k,t}$ statistics; we ran the CPM using both $\lambda = 0.1$ and $\lambda = 0.3$ to investigate the effect this has on performance.

Table 2: Expected delay taken to detect a change from θ_0 to θ_1 when the change occurs at point $\tau = 300$. Standard deviations are provided in the Appendix.

Detector	θ_0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
CUSUM	0.1	43.9	19.6	12.0	8.0	6.1	5.0	4.1	3.5
	0.2	0.00	58.5	25.7	15.5	10.3	7.4	5.7	4.5
	0.3	0.00	0.00	66.6	29.2	16.8	12.0	9.7	8.0
	0.4	0.00	0.00	0.00	70.8	31.0	17.6	11.4	8.4
FET CPM, $\lambda = 0.1$	0.1	55.6	21.4	13.2	9.5	7.4	6.1	5.2	4.5
	0.2	0.00	77.7	28.2	16.5	11.7	9.0	7.4	6.2
	0.3	0.00	0.00	90.0	33.1	21.0	13.0	9.9	8.1
	0.4	0.00	0.00	0.00	96.1	34.1	19.4	13.4	11.4
FET CPM, $\lambda = 0.3$	0.1	57.4	21.0	12.3	8.6	6.6	5.3	4.5	3.9
	0.2	0.00	81.0	28.1	15.7	10.7	8.0	6.4	5.3
	0.3	0.00	0.00	90.0	32.4	17.7	11.8	8.7	6.9
	0.4	0.00	0.00	0.00	96.1	34.1	19.4	13.4	11.4

Table 3: Expected delay taken to detect a change from θ_0 to θ_1 when the change occurs at point $\tau = 50$. Standard deviations are provided in the Appendix.

Detector	θ_0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
CUSUM	0.1	43.7	19.4	12.0	8.0	6.1	5.0	4.1	3.5
	0.2	0.00	58.2	25.5	15.5	10.2	7.4	5.7	4.5
	0.3	0.00	0.00	66.1	29.5	16.8	12.0	8.7	6.0
	0.4	0.00	0.00	0.00	70.5	30.8	17.6	11.4	8.5
FET CPM, $\lambda = 0.1$	0.1	163.2	41.8	17.8	11.3	8.5	6.8	5.7	4.9
	0.2	0.00	201.5	63.0	23.8	13.9	10.0	7.9	6.6
	0.3	0.00	0.00	224.3	75.5	27.9	15.5	10.9	8.4
	0.4	0.00	0.00	0.00	238.8	84.0	29.3	15.7	11.0
FET CPM, $\lambda = 0.3$	0.1	169.8	43.5	17.0	10.2	7.4	5.8	4.8	4.1
	0.2	0.00	210.1	68.1	24.0	13.0	9.0	6.8	5.5
	0.3	0.00	0.00	237.0	85.3	28.4	14.6	9.6	7.3
	0.4	0.00	0.00	0.00	252.8	96.8	30.7	14.8	9.8
The expected delays are presented in Table 2 for the case where \(\tau = 300 \), and Table 3 for \(\tau = 50 \). Several aspects of these results deserve comment:

- As expected, the CPM performs substantially better when the change occurs after 300 observations, than when it occurs after only 50. This will be the case with any change detection algorithm which does not have full knowledge of the pre-change distribution and must instead learn it online. When only 50 observations are available, it is difficult to form an accurate estimate of \(\theta_0 \) and performance suffers.

- The CPM does not seem overly sensitive to the choice of \(\lambda \) used for smoothing. When \(\lambda = 0.1 \), the CPM is slightly better at detecting small changes, while being worse at detecting larger ones, since the increased smoothing causes the large jump in the test statistic to be partially flattened out. As in the case of EWMA charts, the ‘best’ choice of \(\lambda \) will depend on the magnitude of change for which it is most important to minimize the detection delay.

- The performance of the CPM is very close to the CUSUM when the change occurs after 300 observations, demonstrating its usefulness. However, it is markedly worse when the change occurs after only 50 observations. It is important not to read too much into the relatively poor performance of the CPM in the latter case, since the CUSUM is of course designed under full knowledge of the Bernoulli parameters. It is hence only a measure of the best possible performance, when everything is known exactly. We will explore this further in the following section.

5.3 Effect of Parameter Misspecification on the CUSUM

The CUSUM used above was designed based on complete knowledge of the true values of \(\theta_0 \) and \(\theta_1 \), and under these assumptions it is the optimal sequential change detector, in the minimax sense described by Lorden (1971). However in practice this optimality is of dubious value, since it is rare that these parameters will be known exactly, and practical deployments of the CUSUM must take into account the possibility of parameter misspecification.

In order to get a more realistic picture of how the CPM compares to the CUSUM, we now investigate the effect that such parameter misspecification
has on the performance of the CUSUM. This is most likely to happen when the change occurs early during the monitoring, since there may be insufficient observations to allow \(\theta_0 \) to be accurately estimated. We therefore consider the case where the change occurs at observation \(\tau = 50 \). Suppose that instead of being designed based on the true value of \(\theta_0 \), the CUSUM is instead designed based on \(\hat{\theta}_0 = \theta_0 + 0.1 \), which corresponds to a small degree of misspecification of the pre-change parameter. In this case, the CUSUM will be using a slightly higher value for the control limit \(h \) than is optimal, and there should hence be a decrease in performance. Similarly, we assume that the post-change value of the parameter is also misspecified, and that the CUSUM is designed under the assumption that \(\hat{\theta}_1 = \theta_1 + 0.1 \). So for example, in a situation where the parameter changes from a value of 0.3 to 0.6, the CUSUM is designed under the false assumption that it is changing from 0.4 to 0.7. This is a relatively small degree of misspecification which could easily occur in practice.

The expected delay was computed in the same way as in the previous section, and the results are shown in Table 4. Comparing this to Table 3 in the previous section shows that the performance of the misspecified CUSUM is substantially worse than the CPM across every value of \(\theta_0 \) and \(\theta_1 \). The CPM therefore seems to be a more appropriate change detector in situations where \(\theta_0 \) may not be estimated accurately, and where the exact magnitude of the change is unknown.

6 Conclusions

We developed a change point model for Bernoulli sequences where new observations are being received over time, and the pre-change value of the parameter is unknown. Several computational devices were introduced which allows the relevant test statistics to be computed recursively in a very efficient manner. Our method has very favorable performance compared to the optimal CUSUM chart. When the change occurs relatively late in the stream, the CPM gives comparable performance to the CUSUM chart which had full knowledge of the pre- and post-change Bernoulli parameters. But when the change occurs early in the stream, the CPM method performs poorly compared to CUSUM. However, in many data stream settings there will not be full knowledge of these parameters, and hence this optimal CUSUM is not very realistic. When we investigated how the CUSUM performs under small degrees of parameter misspecification, it’s performance is seen to decline drastically, and the CPM seems the best tool in this unknown parameter situation.

7 Software Implementation

An implementation of the CPM methodology described in this paper can be found in the cpm R package, which is available either from CRAM (http://cran.r-project.org), or from the first author’s website (http://gordonjross.co.uk).
8 Acknowledgements

This research was undertaken as part of the ALADDIN (Autonomous Learning Agents for Decentralised Data and Information Systems) project and is jointly funded by a BAE Systems and EPSRC (Engineering and Physical Research Council) strategic partnership, under EPSRC grant EP/C548051/1.

References

Agresti, A. (1992), “A Survey of Exact Inference for Contingency Tables,” *Statistical Science*, 7, 131–153.

Basseville, M. and Nikiforov, I. V. (1993), *Detection of Abrupt Change Theory and Application*, Prentice Hall.

Braun, W. J. (1999), “Run length distributions for estimated attributes charts,” *Metrika*, 50, 121–129.

Chang, T. C. and Gan, F. F. (2001), “Cumulative sum charts for high yield processes,” *Statistica Sinica*, 11, 791–805.

Chen, J. and Gupta, A. (1997), “Testing and locating variance changepoints with application to stock prices,” *Journal of the American Statistical Association*, 92, 739–747.

Domingos, P. and Hulten, G. (2003), “A General Framework for Mining Massive Data Streams,” *Journal of Computational and Graphical Statistics*, 12, 945–949.

Hawkins, D. M., Qiu, P. H., and Kang, C. W. (2003), “The Changepoint Model for Statistical Process Control,” *Journal of Quality Technology*, 35, 355–366.

Hawkins, D. M. and Zamba, K. D. (2005), “A Change-Point Model for a Shift in Variance,” *Journal of Quality Technology*, 37, 21–31.

Hinkley, D. and Hinkley, E. (1970), “Inference About Change-Point in a Sequence of Binomial Variables,” *Biometrika*, 57, 477–488.

Lorden, G. (1971), “Procedures for Reacting to a Change in Distribution,” *Annals of Mathematical Statistics*, 42, 1897–1908.

Montgomery, D. C. (2005), *Introduction to Statistical Quality Control*, Wiley.

Nelson, L. S. (1994), “A Control Chart for Parts-Per-Million Nonconforming Items,” *Journal of Quality Technology*, 26, 239–240.

Pettitt, A. N. (1980), “A Simple Cumulative Sum Type Statistic for the Change-Point Problem With Zero-One Observations,” *Biometrika*, 67, 79–84.

Reynolds, M. and Stoumbos, Z. (1999), “A CUSUM chart for monitoring a proportion when inspecting continuously,” *Journal of Quality Technology*, 31, 87–108.

Ross, G. J., Adams, N. M., Tasoulis, D. K., and Hand, D. J. (2011), “A Nonparametric Change Point Model for Streaming Data,” *Technometrics*, 53, 379–389.

Woodall, W. (1997), “Control charts based on attribute data: Bibliography and review,” *Journal of Quality Technology*, 29, 172–183.
Yeh, A. B., McGrath, R. N., Sembower, M. A., and Shen, Q. (2008), “EWMA Control Charts for Monitoring High-Yield Processes Based on Non-Transformed Observations,” *International Journal of Production Research*, 46, 5679–5699.

Zhou, C., Zou, C., Zhang, Y., and Wang, Z. (2009), “Nonparametric Control Chart Based on Change-Point Model,” *Statistical Papers*, 50, 13–28.
A Additional Tables

t	370	500	1000	5000	370	500	1000	5000
20	0.9232	0.9284	0.9474	0.9620	0.9700	0.9735	0.9801	0.9867
21	0.9144	0.9247	0.9318	0.9524	0.9657	0.9703	0.9774	0.9872
22	0.9091	0.9138	0.9221	0.9531	0.9627	0.9684	0.9767	0.9870
23	0.9048	0.9156	0.9254	0.9590	0.9626	0.9672	0.9766	0.9888
24	0.8999	0.9109	0.9249	0.9501	0.9622	0.9679	0.9769	0.9892
25	0.9009	0.9071	0.9273	0.9500	0.9631	0.9686	0.9783	0.9890
26	0.8971	0.9087	0.9247	0.9517	0.9640	0.9695	0.9792	0.9902
27	0.8974	0.9066	0.9250	0.9523	0.9642	0.9702	0.9797	0.9911
28	0.8964	0.9051	0.9259	0.9522	0.9645	0.9706	0.9809	0.9912
29	0.8958	0.9071	0.9260	0.9538	0.9650	0.9706	0.9812	0.9920
30	0.8966	0.9057	0.9268	0.9549	0.9658	0.9718	0.9817	0.9931
40	0.9057	0.9179	0.9392	0.9643	0.9712	0.9771	0.9857	0.9956
50	0.9199	0.9317	0.9509	0.9742	0.9759	0.9809	0.9886	0.9966
60	0.9303	0.9411	0.9597	0.9817	0.9777	0.9826	0.9904	0.9976
70	0.9381	0.9489	0.9657	0.9859	0.9794	0.9842	0.9918	0.9979
80	0.9430	0.9536	0.9698	0.9888	0.9807	0.9854	0.9923	0.9983
90	0.9470	0.9575	0.9738	0.9904	0.9812	0.9860	0.9929	0.9984
100	0.9486	0.9591	0.9758	0.9918	0.9821	0.9867	0.9934	0.9985
200	0.9599	0.9696	0.9840	0.9962	0.9844	0.9892	0.9945	0.9990
300	0.9631	0.9728	0.9860	0.9971	0.9848	0.9891	0.9950	0.9992
400	0.9637	0.9731	0.9868	0.9974	0.9852	0.9888	0.9952	0.9992
500	0.9652	0.9735	0.9876	0.9976	0.9854	0.9897	0.9953	0.9992
600	0.9654	0.9743	0.9873	0.9977	0.9847	0.9889	0.9954	0.9994
700	0.9639	0.9747	0.9876	0.9978	0.9856	0.9896	0.9954	0.9993
800	0.9668	0.9757	0.9881	0.9979	0.9858	0.9896	0.9953	0.9993
900	0.9669	0.9761	0.9885	0.9981	0.9859	0.9897	0.9953	0.9993
1000	0.9671	0.9763	0.9881	0.9982	0.9860	0.9897	0.9954	0.9994
2000	0.9679	0.9767	0.9892	0.9984	0.9861	0.9899	0.9955	0.9994

Table 5: Value of the threshold h_t achieving various values of the ARL_0 for the Bernoulli CPM
Table 6: Standard deviations accompanying Table 1, for changes from θ_0 to θ_1 occurring at location $\tau = 300$.

Detector	θ_0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
CUSUM	35.2	14.2	8.0	5.1	3.5	2.6	1.8	1.2	
	0.2	47.6	18.8	10.1	6.1	4.3	2.8	1.6	
	0.3	0.00	52.6	19.6	10.5	6.8	4.1	2.5	
	0.4	0.00	0.00	56.1	21.6	10.7	6.2	3.6	
FET CPM, $\lambda = 0.1$	0.1	53.7	15.3	8.1	5.1	3.6	2.6	2.0	1.5
	0.2	0.00	80.4	20.5	9.7	6.0	4.2	3.0	2.2
	0.3	0.00	101.6	23.4	10.5	6.4	4.3	2.9	
	0.4	0.00	0.00	99.7	25.7	10.9	6.2	4.0	
FET CPM, $\lambda = 0.3$	0.1	64.9	16.1	8.2	5.0	3.4	2.3	1.7	1.2
	0.2	0.00	89.6	22.5	10.1	5.9	3.8	2.5	1.8
	0.3	0.00	115.2	25.9	11.0	6.2	3.8	2.3	
	0.4	0.00	0.00	113.2	28.5	11.6	5.9	3.3	

Table 7: Standard deviations accompanying Table 2, for changes from θ_0 to θ_1 occurring at location $\tau = 50$.

Detector	θ_0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
CUSUM	35.2	14.2	8.0	5.1	3.5	2.6	1.8	1.2	
	0.2	47.6	18.8	10.1	6.1	4.3	2.8	1.6	
	0.3	0.00	52.6	19.6	10.5	6.8	4.1	2.5	
	0.4	0.00	0.00	56.1	21.6	10.7	6.2	3.6	
FET CPM, $\lambda = 0.1$	0.1	186.0	70.1	19.3	8.1	4.9	3.4	2.5	1.9
	0.2	0.00	204.2	101.3	30.2	10.3	5.9	3.8	2.7
	0.3	0.00	212.2	114.5	38.3	12.2	6.1	3.8	
	0.4	0.00	0.00	217.1	122.2	37.2	11.0	5.4	
FET CPM, $\lambda = 0.3$	0.1	192.2	73.5	21.6	7.8	4.6	3.0	2.1	1.4
	0.2	0.00	212.4	111.5	30.6	10.5	5.7	3.2	2.1
	0.3	0.00	216.5	127.4	42.5	12.3	5.6	3.1	
	0.4	0.00	0.00	227.6	130.2	45.8	11.0	4.7	

Table 8: Standard deviations accompanying Table 3, for changes from θ_0 to θ_1 occurring at location $\tau = 50$.

Detector	θ_0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
CUSUM	35.2	14.2	8.0	5.1	3.5	2.6	1.8	1.2	
	0.2	47.6	18.8	10.1	6.1	4.3	2.8	1.6	
	0.3	0.00	52.6	19.6	10.5	6.8	4.1	2.5	
	0.4	0.00	0.00	56.1	21.6	10.7	6.2	3.6	
FET CPM, $\lambda = 0.1$	0.1	186.0	70.1	19.3	8.1	4.9	3.4	2.5	1.9
	0.2	0.00	204.2	101.3	30.2	10.3	5.9	3.8	2.7
	0.3	0.00	212.2	114.5	38.3	12.2	6.1	3.8	
	0.4	0.00	0.00	217.1	122.2	37.2	11.0	5.4	
FET CPM, $\lambda = 0.3$	0.1	192.2	73.5	21.6	7.8	4.6	3.0	2.1	1.4
	0.2	0.00	212.4	111.5	30.6	10.5	5.7	3.2	2.1
	0.3	0.00	216.5	127.4	42.5	12.3	5.6	3.1	
	0.4	0.00	0.00	227.6	130.2	45.8	11.0	4.7	
