Supplementary Data: The source of topography across the Cumberland Peninsula, Baffin Island, Arctic Canada: differential exhumation of a North Atlantic rift flank

Thermal models

Isostatic modelling
Thermal history models

Each sample includes the expected, max-likelihood and max-mode model outputs, fission track and (U-Th)/He predictions and a plot showing the comparison between observed and predicted ages.
Ec1

TLA O: 372.1 P: 384.3 SP: 367.1 + 8.224
MTL Op: 13.30 P: 13.53 SP: 13.42 + 0.113
VR P: 0.546534
HeO: 721.0 P: 63.43 SP: 56.92 + 13.49 tc: 487.0
HeO: 206.0 P: 52.49 SP: 47.97 + 12.11 tc: 487.0
HeO: 179.0 P: 70.69 SP: 62.71 + 14.22 tc: 487.0

MTL microns
0 5 10 15 20
Ec2

Ec2_Run1 : Expected
FT Age
0
AHe Age
0
Predicted Age (Ma)
0
200
400
Observed Age (Ma)
0 200 400

LL= -549.48
Ec2_Run1 : Expected

FT Age
0
AHe Age
0
Predicted Age (Ma)
0
200
400
Observed Age (Ma)
0 200 400

LL= -571.18
Ec3

EC3_Run2: EC 3 AFT 3rd

Temperature (°C)

Time (Ma)

Max Like. Model
Max. Post. Model
Expected Model
Max. Mode Model

LL = -499.62
FTA O: 322.0 P: 322.3 SP: 320.1 +13.85 Oldest track: 388.0
MTL O: 13.17 P: 12.90 SP: 12.92 +0.169
VR P: 0.681294

EC 3_Run2: Expected

No. of tracks (m)

MTL microns

LL = -500.43

EC 3_Run2: Expected

FT Age

Predicted Age (Ma)

Observed Age (Ma)

LL = -500.43

EC 3_Run2: Expected
Ec5a

Temperature (°C)

Time (Ma)

LL = -471.75
FTA O: 213.0 P: 236.5 SP: 232.6 + 5.057 Oldest track: 280.0
MTL Op: 14.02 P: 14.18 SP: 14.11 + 0.053
VR P: 0.919138

Ec5_run1 : Expected

FT Age
0
0
AHe Age
Predicted Age (Ma)
0
200
400
Observed Age (Ma)
0
200
400

Ec10

LL = -516.45
FTA O: 279.2 P: 284.5 SP: 279.9 + 7.707
Oldest track: 357.0

MTL Op: 13.92 P: 13.98 SP: 14.01 + 0.152

VR P: 0.703916

EC10_AFT_Run2: EC 10 AFT.txt

Predicted Age (Ma)
Observed Age (Ma)

LL = -520.48

EC10_AFT_Run2: Expected

Ec13

EC13_Run1 : EC13 AFT + AHe.txt 0.000m : Expected

No. of tracks (m)

MTL microns

LL= -601.58
FTA O:296.4 P:320.0 SP: 304.1+7.958 Oldest track:356.0
MTL Op : 13.90 P: 14.36 SP: 14.21+0.143
VR P: 0.876198
HeO: 210.0 P:201.2 SP: 172.8+23.71 tc: 346.0
HeO: 278.1 P:203.5 SP: 175.4+23.57 tc: 347.0
HeO: 187.6 P:192.0 SP: 162.4+24.29 tc: 345.0
HeO: 202.1 P:172.2 SP: 140.9+25.12 tc: 342.0
HeO: 222.6 P:182.4 SP: 151.8+24.76 tc: 343.0

FT Age
AHe Age
P predicted Age (Ma)
Observed Age (Ma)
Ec14

EC14_RGau_Run2 : EC 14A AFT + AHe.txt 0.000m : Expected

FT Age
0
AHe Age
Predicted Age (M a)
0
200
400
Observed Age (M a)
0 200 400

LL = -392.64
Ec16a
Ec16b

Max. Like. Model
Max. Post. Model
Expected Model
Max. Mode Model

No. of tracks (m)	MTL microns
0	0
10	5
20	10
30	15
40	20
50	25

LL = -631.55
FTA O: 409.3 P: 458.9 SP: 426.2 + 9.071
Oldest track: 541.0

MTL Op: 13.74 P: 13.99 SP: 13.93 + 0.065

VR P: 1.075730

HeO: 510.4 P: 240.5 SP: 218.4 + 7.394 tc: 533.0
HeO: 290.5 P: 153.4 SP: 128.5 + 5.769 tc: 522.0
HeO: 257.9 P: 164.8 SP: 139.8 + 5.590 tc: 523.0
HeO: 157.0 P: 180.1 SP: 155.2 + 5.542 tc: 525.0

Ec16_BP_Run1: Expected

No. of tracks (m)
0
10
20
30
40
50

MTL microns
0 5 10 15 20

LL = -1282.88

Ec16_BP_Run1: Expected

FT Age
0
0
0

AHe Age

Predicted Age (Ma)
0
250
500

Observed Age (Ma)
0 250 500
Max Like. Model	Max. Post. Model	Expected Model	Max. Mode Model
120	60	0	400 200 0

LL = -555.67
FTA O: 329.0 P: 341.7 SP: 333.3 + 8.993
Oldest track: 397.0
MTL Op: 13.94 P: 14.16 SP: 14.01 + 0.094
VR P: 0.868821
HeO: 194.8 P: 212.1 SP: 178.9 + 8.495 tc: 372.0
HeO: 182.6 P: 217.0 SP: 186.4 + 8.063 tc: 372.0
HeO: 277.0 P: 174.5 SP: 141.6 + 8.803 tc: 363.0
HeO: 256.1 P: 170.7 SP: 140.3 + 8.044 tc: 362.0
HeO: 262.0 P: 171.5 SP: 136.0 + 9.974 tc: 363.0

Ec17_Run1 EC 17 AFT + AHe.txt 0.000m : Expected
No. of tracks (m)
0
10
20
30
40
50
MTL microns
0 5 10 15 20

LL = -549.00
Ec17_Run1 : Expected
FT Age
0
AHe Age
Predicted Age (Ma)
0
200
400
Observed Age (Ma)
0 200 400
Ec18

LL = -406.34
FTA O: 292.1 P: 286.5 SP: 279.7 + 12.81 Oldest track: 334.0
MTL Op: 13.78 P: 14.02 SP: 13.94 + 0.153
VR P: 0.872255
HeO: 195.4 P: 229.3 SP: 217.5 + 16.77 tc: 339.0

Ec18_Run1: Expected

FT Age
0
AHe Age
P Predicted Age (Ma)
0
200
400
Observed Age (Ma)
0 200 400
Ec19

c19_Run1 : EC 19 A/F + AHe.txt

FTA O:271.8 P:290.9 SP: 275.3+7.092 Oldest track:338.0

MTL Op : 13.71 P: 14.01 SP: 13.80+0.110

VR P: 0.898527

HeO: 196.7 P:163.8 SP: 137.2+14.60 tc: 328.0
HeO: 232.4 P:175.0 SP: 148.5+14.30 tc: 328.0
HeO: 214.6 P:189.4 SP: 160.2+14.76 tc: 331.0
HeO: 204.4 P:130.1 SP: 104.9+13.49 tc: 324.0
HeO: 210.3 P:178.9 SP: 152.1+14.21 tc: 328.0

No. of tracks (m)
0
10
20
30
40
50

MTL microns
0 5 10 15 20

LL= -562.53 c19_Run1 : Expected

FT Age
0
AHe Age

P Predicted Age (Ma)
0
200
400

Observed Age (Ma)
0 200 400

18
Ec20

LL = -615.46
FTA O: 420.8 P: 428.9 SP: 422.0 + 10.69 Oldest track: 533.0
MTL Op : 13.84 P: 13.91 SP: 13.87 + 0.144
VR P: 0.802052
HeO: 277.1 P: 285.1 SP: 264.7 + 13.17 tc: 522.0
HeO: 52.70 P: 228.9 SP: 211.5 + 12.41 tc: 502.0
HeO: 326.6 P: 299.4 SP: 281.2 + 12.70 tc: 527.0
HeO: 249.8 P: 260.9 SP: 241.4 + 13.36 tc: 516.0
HeO: 156.9 P: 261.1 SP: 241.8 + 12.97 tc: 514.0

Ec20_Run1: EC 20 AFT + AHe.txt 0.000 m: Expected

No. of tracks (m)	MTL microns
0	5
10	10
20	15
30	20
40	25

FT Age

0

AHe Age

0

Predicted Age (Ma)

0
250
500

Observed Age (Ma)

0
250
500

Graphs

- **Temperature vs. Time (Ma)**
- **Age vs. Error**
 - Predicted Age vs. Error
 - Observed Age vs. Error

19
Ec21

Ec21_Run1 : Expected

FT Age
0
AHe Age
P predicted Age (Ma)
0
200
400
Observed Age (Ma)
0 200 400

LL= -584.03
FTA O:286.7 P:287.7 SP: 279.6+6.446 Oldest track:341.0
MTL Op : 13.84 P: 13.85 SP: 13.83+0.104
VR P: 0.560008
HeO: 141.4 P:149.6 SP: 141.7+2.113 tc: 337.0
HeO: 226.9 P:175.6 SP: 165.0+2.132 tc: 339.0
HeO: 179.3 P:191.6 SP: 179.8+2.385 tc: 341.0
HeO: 211.1 P:128.5 SP: 122.7+2.205 tc: 334.0
Ec23

Ec23_Run1: EC 23 AFT + AHe.txt

No. of tracks (m)

MTL microns

LL = -548.91
FTA O: 278.6 P: 274.5 SP: 273.9 + 5.667 Oldest track: 340.0
MTL Op: 13.98 P: 14.04 SP: 14.02 + 0.129
VR P: 0.858207
HeO: 216.9 P: 153.0 SP: 146.0 + 2.299 tc: 315.0
HeO: 261.8 P: 192.4 SP: 185.1 + 3.585 tc: 340.0
HeO: 156.4 P: 162.7 SP: 155.8 + 1.993 tc: 320.0
HeO: 142.4 P: 152.0 SP: 144.9 + 2.539 tc: 315.0

Ec23_Run1: Expected

FT Age

AHe Age

Predicted Age (Ma)

Observed Age (Ma)

LL = -551.13
Ec24

FT Age
Predicted Age (Ma)
0
200
400
Observed Age (Ma)
0 200 400

LL = -470.25
EC24_Run2 : Expected

Temperature (°C)

Time (Ma)

Max. Like. Model
Max. Post. Model
Expected Model
Max. Mode Model

No. of tracks (m)
0 5 10 15 20 25 30

MTL microns
0 5 10 15 20
Isostatic modelling

Flexure of the lithosphere from loading was calculated using Flex2D (Allmendinger et al., 2011). This script was used in conjunction with MATLAB and calculates the deflection of the lithosphere under a defined load, using the solution from Hetenyi (1946). The lithosphere is treated as continuous, underlain by a fluid asthenosphere. The model requires three defined variables (outlined in the table below) and the geometry of the load, a series of point loads separated by a set interval (600 m).

Variable	Value
Effective elastic thickness	25 km (Pilkington, 1991)
Density of Asthenosphere (ρ_a)	3300 kg m$^{-3}$
Density of eroded mass (ρ_r)	2800 kg m$^{-3}$

Table 1: values of each variable within model

![Graphs showing topography, load profile, and deflection](image)

Figure 1: Three graphs outlining the line of topography across the Cumberland Peninsula, the fill of the fjords, load profile and the resulted deflection calculated through Flex2D.