Aberrant Expression of Long Non-Coding RNAs in Schizophrenia Patients

Shengdong Chen*

Xinyang Sun*

Wei Niu

Lingming Kong

Mingjun He

Wanshuai Li

Aifang Zhong

Jim Lu

Liyi Zhang

* These authors contributed equally to this work

Corresponding Authors:

Liyi Zhang, e-mail: lzhang2015_2mmu@163.com; Jim Lu, e-mail: luzb88@hotmail.com

Source of support:

Departmental sources

Background:

Dysfunction of long non-coding RNAs (lncRNAs) has been demonstrated to be involved in psychiatric diseases. However, the expression patterns and functions of the regulatory lncRNAs in schizophrenia (SZ) patients have rarely been systematically reported.

Material/Methods:

The lncRNAs in peripheral blood mononuclear cells (PBMCs) were screened and compared between the SZ patients and demographically-matched healthy controls using microarray analysis, and then were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) method. Three verified significantly dysregulated lncRNAs of PBMCs were selected and then measured in SZ patients before and after the antipsychotic treatment. SZ symptomatology improvement was measured by Positive And Negative Syndrome Scale (PANSS) scores.

Results:

One hundred and twenty-five lncRNAs were significantly differentially expressed in SZ patients compared with healthy controls, of which 62 were up-regulated and 63 were down-regulated. Concurrent with the significant decrease of the PANSS scores of patients after the treatment, the PBMC levels of lncRNA NONHSAT089447 and NONHSAT041499 were strikingly decreased (P<0.05). Down-regulation of PBMC expression of NONHSAT041499 was significantly correlated to the improvement of positive and activity symptoms of patients (r=−0.444 and −0.423, respectively, P<0.05, accounting for 16.9% and 15.1%, respectively), and was also significantly associated with better outcomes (odds ratio 2.325 for positive symptom and 12.340 for activity symptom).

Conclusions:

LncRNA NONHSAT089447 and NONHSAT041499 might be involved in the pathogenesis and development of SZ, and the PBMC level of NONHSAT041499 is significantly associated with the treatment outcomes of SZ.

MeSH Keywords:

Drug Therapy • Microarray Analysis • RNA, Long Noncoding • Schizophrenia

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/896927
Background

Schizophrenia (SZ) is one of the most severely disabling mental disorders, which usually begins in early adulthood and features disordered symptoms such as hallucinations, delusions, disturbed communication, reduced motivation, and blunted affect. SZ has been estimated to have a median lifetime prevalence of 4.0 per 1000 persons worldwide [1], and is a global devastating health and socioeconomic burden. Current evidence demonstrates that SZ is attributable to the interactions between environmental and genetic factors [2]; however, the mechanisms of the pathogenesis of SZ are still unclear. We currently lack reliable and simple biomarkers for the diagnosis of SZ and prognosis of antipsychotic treatment, which hampers the early diagnosis and effective treatment of SZ patients [3,4].

LncRNAs are non-coding transcripts of longer than 200 nucleotides, and were previously often considered to be transcriptional ‘noise’ [5]. Recently, accumulating evidence has revealed that a number of lncRNAs play critical roles in the regulation of gene expression, and cell proliferation and differentiation, and participate in the pathogenesis and development of various diseases [6–9], especially neuropsychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease [10], major depressive disorder [11], Parkinson’s disease [12], and autism spectrum disorders [13]. Barry et al. showed that dysregulation of lncRNA Gomafu led to defective alternative splicing patterns which link to SZ, implying the role of Gomafu in SZ [8]. Rao et al. reported that lncRNA MIAT was significantly associated with paranoid SZ among the Chinese Han population [14]. Recently, Ren et al. demonstrated that 2 lncRNA modules were significantly associated with early-onset SZ [15]. However, few studies have investigated lncRNA expression profiles in the peripheral blood cells of SZ patients, and the response of lncRNAs to the antipsychotic medications is unclear.

The present study systematically screened the differentially expressed lncRNAs in the peripheral blood mononuclear cells (PBMCs) from SZ patients compared with healthy controls, using microarray method. We then observed the changes in the PBMC levels of 3 verified significantly dysregulated lncRNAs in response to antipsychotic treatment in SZ patients, and analyzed the association of the variation of the lncRNA expression with the improvement of symptoms. This study provides new insights into the mechanisms underlying the pathogenesis of SZ, and suggests that lncRNAs might be considered as novel biomarkers for the diagnosis of SZ and prognosis of the related treatment, and potentially as therapeutic targets.

Material and Methods

Patients

A total of 106 SZ patients aged 20–50 years who met the diagnostic criteria based on the Diagnostic and Statistical Manual of Mental Disorders by American Psychiatric Association [16] were prospectively enrolled between December 2013 and May 2015 at the No. 102 Hospital of the People’s Liberation Army (Changzhou, China). All patients were of Han ethnicity and did not take any antipsychotic medications for at least 3 months before the enrollment. Patients with history of severe medical diseases, structural brain disorders, cognitive disability, other psychiatric disorders, unstable psychiatric features, or movement disorders were excluded. In addition, patients who had post-traumatic amnesia for over 24 h or received blood transfusion therapy within 1 month or electroshock therapy within 6 months were also excluded from the study.

Forty-eight age-, gender-, and ethnicity-matched healthy control subjects without any family history of major psychiatric disorders (e.g., SZ, major depressive disorder and bipolar disorder) within the last 3 generations, and without any history of blood transfusion therapy or severe traumatic injury within 1 month, were recruited. All the control subjects were also of Han ethnicity.

The study was approved by the Institutional Review Board of No. 102 Hospital of the People’s Liberation Army. Written informed consent was obtained from each subject.

RNA extraction

Whole blood (5 ml) from each subject was collected in EDTA-containing anticoagulant tubes and processed within 1 h. PBMCs were isolated from the blood samples through density gradient centrifugation, collected and stored at –80°C until use. Total RNA was isolated from PBMCs using Trizol regent (Invitrogen, Carlsbad, CA, USA) and RNeasy kit (Qiagen, Hilden, Germany) according to the manufacturers’ protocols, followed by Turbo DNase treatment (Life Technologies, Carlsbad, CA, USA), quantification by NanoDrop ND-2000 (Thermo Scientific, Delaware, ME, USA), RNA integrity detection by gel electrophoresis, and reverse transcription (Superscript III; Invitrogen).

LncRNA microarray

RNA samples from 3 SZ patients (patient #1: male, 23 years old; patient #2: male, 31 years old; patient #3: female, 28 years old) and 3 healthy controls (patient #1: male, 20 years old; patient #2: male, 33 years old; patient #3: female, 26 years old) were used for lncRNA microarray profiling. The RNA sample labeling, microarray hybridizing, and washing were conducted...
according to the manufacturer’s standard protocols. Briefly, to-
tal RNA was transcribed to double-stranded cDNA, synthesized
into cRNA, labeled with Cyanine-3-CTP, and then hybridized
onto the Agilent Human lncRNA array v4.0 (4X180 K, Design
ID: 062918, Agilent Technologies, Santa Clara, CA, USA). After
washing, the arrays were then scanned by the Agilent Scanner
G2505C (Agilent Technologies). Array images were analyzed us-
ing Feature Extraction software 10.7.1.1 (Agilent Technologies)
to extract the raw data, which were further normalized with the
quantile algorithm using Genespring software (Version 12.5;
Agilent Technologies). The probes that were all flagged as “P”
in at least 1 out of the 2 groups were chosen for further data
analysis. lncRNAs data were shown as fold-changes relative
to the controls. Differentially expressed lncRNAs were identified
by fold-changes and P values through t-test. The thresh-
hold for up- and down-regulated expression was a fold-change
≥2.0 and a P value ≤0.05. Finally, hierarchical clustering was
conducted to display the distinguishable lncRNA expression
patterns among samples.

Real-time quantitative reverse-transcription PCR (qRT-PCR)

According to the microarray results, the 10 most dysregulated
lncRNAs were chosen for further validation by qRT-PCR in 106
SZ patients versus 48 healthy controls. Blood samples were
collected and PBMCs were isolated. Total RNAs were isolat-
ed from PBMCs using Trizol reagent (Invitrogen), and com-
plementary DNA was synthesized using the Reverse Transcription
TaqMan RNA Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, USA) according to the manufacturer’s instruc-
tions. Real-time PCR was performed using a 7900HT Real-Time
PCR System (Applied Biosystems). Data were analyzed using
the SDS 2.3 software (Applied Biosystems) and DataAssist v3.0
software. The expression levels of lncRNAs were normalized to
β-actin and were calculated using 2^(-ΔΔCt) method.

Medical intervention and symptom assessment

According to the microarray and qRT-PCR results, 3 verified sig-
ificantly dysregulated lncRNAs were further measured the ex-
pression variation in the PBMCs of 30 SZ patients before and
after the antipsychotic treatment by qRT-PCR. Among these
patients, 5 were treated with risperidone (starting dosage 2
mg, average dosage 3.9 mg, range 2–6 mg), 7 with ziprasi-
done (starting dosage 40 mg, average dosage 125 mg, range
40–140 mg), 8 with quetiapine (starting dosage 100 mg, average
dosage 520 mg, range 100–800 mg), and 10 with olanzapine
(starting dosage 5 mg, average dosage 12 mg, range 5–20 mg).

Positive and Negative Syndrome Scale (PANSS) is commonly
used to evaluate the severity of symptoms of patients with
SZ [17]. PANSS contains 33 items, including 3 for aggressiv-
ness, 7 for positive symptoms, 7 for negative symptoms, and
16 for general psychopathological symptoms [17]. In this study,
symptoms of patients were assessed at baseline and at 6
weeks after the antipsychotic treatment by experienced psy-
chiatrists using the PANSS. The symptom improvement was
reflected by the variation of the symptomatology scores and
total score before and after the treatment. The reduction rate
of symptomatology scores was calculated as the variation of
symptomatology score before and after the medication treat-
ment relative to the pre-medication symptomatology score.

Statistical analysis

Data are expressed as the mean ± standard deviation or per-
centages where appropriate, and were compared between SZ
patient and healthy control groups using the Statistical Package
for Social Sciences for Windows 22.0 (SPSS Inc. Chicago, IL,
USA). The chi-square test was used to compare the categori-
decimal demographic variables, and the t test was used to com-
pare quantitative demographic variables. The Mann-Whitney
U test was used to compare the PBMC levels of the top 10 dif-
ferentially expressed lncRNAs by microarray between SZ and
healthy controls subjects. The paired-sample t test was for the
comparison of the expression levels of lncRNAs in SZ patients
between before and after the treatment. Pearson correlation
analysis was performed to evaluate the correlation of change
of the lncRNA expression level with the improvement of sym-
ptomatology scores. Regression analysis was then carried out
using the variation of lncRNA NONHSAT041499 expression
as independent variable and improvement of PANSS positive
and activity symptoms as dependent variables. Stepwise regres-
sion analysis was to determine the lncRNA NONHSAT041499 ac-
countability of symptomatological improvement in SZ patients.
ΔR² was assessed to show the percentage of the variation of
positive and activity subscales with the NHSAT041499 varia-
tion. Then, according to the reduction rate of symptomatology
scores before and after the medication, SZ patients were di-
vided into better (score reduction rate equal to or more than
50%) and worse (score reduction rate less than 50%) treat-
mment outcome subgroups. Logistic regression analysis was
then conducted to observe the association of NHSAT041499
with the treatment outcomes of patients, which was assessed
by odds ratio (OR) and P values. P<0.05 (2-tailed) was consid-
ered statistically significant.

Results

Microarray analysis

Microarray analysis showed there were 125 lncRNAs signifi-
cantly differentially expressed in SZ patients compared with healthy
controls (fold change ≥2, P<0.05), among which 62 were up-reg-
ulated and 63 were down-regulated (Supplementary Table 1).
The top 20 differentially expressed lncRNAs are shown in Table 1. In hierarchical clustering analysis, the normalized expression of the 125 significantly differentially expressed lncRNAs was recorded to generate a heat map, from which a general difference of the lncRNA expression in blood samples from SZ patients versus healthy control subjects were clearly displayed (Figure 1).

Clinical characteristics of the patients

As shown in Table 2, the mean age of patients and healthy controls was 30.49±12.86 and 29.61±12.32 years, respectively. There was no significant difference in age, gender, residential location, sibling status, education, marital status, or family history of mental disorders between SZ patients and healthy controls (P>0.05, Table 2).

Table 1. Top 20 aberrantly expressed lncRNAs in peripheral blood mononuclear cells from Schizophrenia patients versus healthy controls by microarray analysis.

lncRNA	Fold-change	P-value	Style	Chromosome start end
ENST00000394742	5.6865215	0.001366189	Down	Chr12 13100085 13106891
TCONS_I2_00025502	5.130027	0.016324849	Down	Chr6 143360562 143363461
NONHSAT041499	5.1150675	0.004036811	Up	Chr15 32806172 32819079
NONHSAT098126	4.610542	0.047743667	Up	Chr4 121606074 121631566
NONHSAT030974	4.4428	0.006958588	Up	Chr1 75428997 75430802
ENST00000519337	4.2703557	0.020613242	Up	Chr10 103866683 103868303
ENST00000563823	3.775364	0.012856864	Down	Chr1 67255723 72661585
NONHSAT021545	3.6979194	0.023714427	Up	Chr11 59570202 59573350
ENST00000496491	3.6021621	0.026623152	Up	Chr3 149095565 149104370
ENST00000521622	3.5583007	0.00341083	Down	Chr8 106810555 107072719
NONHSAT089447	3.514152	0.038919978	Up	Chr4 46598887 46601178
TCONS_I2_00021339	3.4050841	0.010671916	Down	Chr4 147030377 147043080
TCONS_I2_00024969	3.370955	0.01709879	Up	Chr1 147182804 147240209
NONHSAT104778	3.2426178	0.03928101	Up	Chr5 157174512 157174715
ENST00000581634	3.080865	0.024413016	Up	Chr18 76265165 76266410
TCONS_I2_00000563	2.9737065	0.030129751	Down	Chr1 143398221 143401768
NONHSAT074892	2.9536893	0.03315027	Down	Chr2 149666582 149685052
NONHSAT005508	2.947432	0.030145906	Up	Chr1 118628601 118629785
TCONS_I2_00012438	2.896232	0.027099133	Down	Chr1 28409545 28447647
NONHSAT106970	2.8774061	0.04668065	Up	Chr10 129849591 129850501

qRT-PCR validation

To validate the results of the microarray assay, 10 of the top 20 significantly differentially expressed lncRNAs (including 5 up-regulated lncRNAs: NONHSAT098126, NONHSAT089447, NONHSAT021545, NONHSAT041499, and NONHSAT104778, and 5 down-regulated lncRNAs: ENST00000394742, TCONS_I2_00025502, ENST00000563823, ENST00000521622, and TCONS_I2_00021339) were chosen for further validation in larger blood samples from 106 patients versus 48 healthy controls using qRT-PCR method. Results showed that the expression of lncRNAs NONHSAT089447, NONHSAT021545, NONHSAT041499, NONHSAT098126, and NONHSAT104778 was consistent with the microarray results, of which the first 3 lncRNAs exhibited significant difference of expression between patients and healthy controls (P<0.05) (Figure 2). These first 3 up-regulated lncRNAs were then chosen for further study.
LncRNA expression, and symptomatology scores and total score before and after the treatment in SZ patients

As shown in Table 3, ΔCT values of lncRNAs NONHSAT089447 and NONHSAT041499 were significantly increased in patients after the treatment (P<0.001), indicating the significant down-regulation of these lncRNA expression by the treatment. Consistently, the symptomatology scores and total score were significantly decreased after the treatment (P<0.001, Table 3).

Down-regulation of lncRNA NONHSAT041499 expression was correlated with symptom improvement in SZ patients

Pearson correlation analysis revealed that the down-regulation of the lncRNA NONHSAT041499 expression was significantly correlated with the improvement of positive and activity symptoms after the treatment (r=−0.444 and −0.423, respectively, P<0.05, Table 4).
LncRNA NONHSAT041499 down-regulation was significantly associated with improvement of treatment outcomes of SZ patients

Step-wise regression analysis revealed that the down-regulation of lncRNA NONHSAT041499 expression as independent variable accounted for 16.9% ($R^2=0.169$) and 15.1% ($R^2=0.151$) of the improvement of positive and activity symptoms, respectively (Table 5).

To further validate the association of NONHSAT041499 with the antipsychotic treatment outcomes, SZ patients were divided into better and worse treatment outcome subgroups according to the symptomatology score reduction rate. Taking the down-regulation of NONHSAT041499 expression as an independent variable, and the improvement of positive and activity symptoms as dependent variables, logistic regression analysis was carried out. The results showed that for positive symptom, the OR determined by NONHSAT041499 down-regulation (calculated as the increase of CT value, ΔCT) of better treatment outcome subgroup against worse treatment outcome subgroup was 2.325, and for activity symptom the OR was 12.340 (Table 6).

Discussion

Current treatment for SZ mainly comprises dopamine receptors system [18,19], 5-HT receptors [20], and GABA system [21] drugs, but the pharmacological mechanisms remain elusive. This makes it difficult for more effective treatment and prognosis of the outcomes. LncRNAs play important roles in various pathologic processes, including neuropsychiatric disorders and neurodegenerative diseases [11,13]. To date, only a few studies reported that lncRNAs were significantly associated with SZ [14,15]. There have been few reports on lncRNA expression profiling in SZ patients. Only a recent study demonstrated a microarray profiling of lncRNAs of SZ patients, with the focus on the analysis of co-expression network of lncRNAs and mRNAs and their correlation [15]. The association between these lncRNAs and the treatment outcomes of SZ patients is still unclear.

This study systematically screened the differentially expressed lncRNAs in SZ patients in comparison to healthy controls and demonstrated that lncRNAs NONHSAT089447, NONHSAT021545, and NONHSAT041499 were significantly up-regulated...
in SZ patients. Down-regulation of NONHSAT089447 and NONHSAT041499 was concurrent with the improvement of symptoms of patients after the anti-psychotropic medication. These results suggest that these lncRNAs might be involved in the pathogenesis and development of SZ and could be considered as novel potential treatment targets. Reportedly, lncRNAs are transcribed in complex patterns (e.g., intergenic, overlapping, and antisense patterns) relative to the adjacent protein-coding genes [9], and participate in the regulation of the target gene expression by inducing chromatin remodeling and targeting transcription factors [7,22], suggesting the complexity of the regulatory pathways of lncRNAs. An integrated co-expression network analysis revealed significant correlation between lncRNAs and mRNAs, and that the lncRNAs, together with mRNAs, constructed co-expressed modules, some of which were associated with early-onset SZ [15]. Barry et al. showed that lncRNA Gomafu directly binds to the splicing factors, such as serine/arginine-rich splicing factor 1, to regulate the alternative splicing patterns whose defection is linked to SZ [8]. Ishizuka et al. reported that lncRNA Gomafu indirectly modulated RNA-binding protein Celf3 and other splicing factors to regulate the functions of the SZ-related genes, thus playing roles in SZ [23]. How these lncRNAs modulate these SZ-related genes to regulate SZ warrants further investigation.

Traditionally, diagnosis of SZ is based on the clinical symptoms [16,17]. Functional neuroimaging techniques have been developed to detect the neurotransmitters (e.g., dopamine and

Figure 2. Validation of the expression of lncRNAs by qRT-PCR analysis in the peripheral blood mononuclear cells from schizophrenia patients (n=106) and normal controls (n=48). The line represents the median value, and the plots were constructed by using GraphPad Prism 5 software. Statistical difference was analyzed using the Mann-Whitney U test.
Table 3. LncRNA expression, symptomatology scores and total score before and after the antipsychotic treatment in schizophrenia patients.

Item	Baseline (n=30)	After treatment (n=30)	t	P
NONHSAT089447 (ΔCT)	3.23±4.26	5.13±3.51	–4.577	<0.001
NONHSAT021545 (ΔCT)	3.67±4.12	4.04±4.55	–0.858	0.398
NONHSAT041499 (ΔCT)	4.56±3.92	6.77±3.13	–5.056	<0.001
Positive subscale	19.94±5.98	9.32±4.78	8.993	<0.001
Negative subscale	21.29±8.24	10.58±4.56	8.778	<0.001
General psychopathology subscale	40.90±10.85	19.71±5.05	11.29	<0.001
Total score	81.84±18.13	39.61±7.64	13.80	<0.001
Lack of response	10.10±4.57	6.00±2.42	5.507	<0.001
Disturbance of thought	12.42±3.97	3.64±2.59	9.455	<0.001
Activity	5.84±2.19	3.29±2.12	7.289	<0.001
Paranoid	7.16±2.78	3.58±1.03	7.271	<0.001
Depression	10.68±3.30	5.74±2.62	8.093	<0.001
Aggressiveness	13.03±3.73	7.07±2.02	9.276	<0.001

Table 4. Correlation between the down-regulation of LncRNA expression and improvement of symptoms in schizophrenia patients.

Item	NONHSAT089447 (r value)	NONHSAT041499 (r value)
Positive subscale	–0.122	–0.444*
Negative subscale	–0.160	–0.065
General psychopathology subscale	–0.093	–0.107
Total score	–0.146	–0.216
Lack of response	–0.143	–0.064
Disturbance of thought	0.139	0.116
Activity	–0.193	–0.423*
Paranoid	–0.172	–0.016
Depression	–0.035	0.149
Aggressiveness	–0.323	–0.110

* P<0.05 represented significant difference for the correlation between the LncRNA with the symptoms.

Table 5. LncRNA NONHSAT041499 down-regulation accountability of symptomatology improvement of schizophrenia patients by step-wise regression analysis.

Dependent variables	Regression model	Partial regression coefficient	Standard error	Standard coefficient	t	ΔR²	P value
Δ Positive symptom	Constant	–7.965	1.464	–0.444	–5.440	0.000	
Δ Activity symptom	Constant	–1.800	0.438	–0.423	–4.106	0.000	

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
glutamate) implicated in SZ, and SZ-associated regional brain activity [24]. However, at present it is difficult to diagnose SZ because neither single clinical symptoms nor neurotransmitters are unique for SZ. Symptoms or SZ-related brain activity are usually manifested or detected when SZ is developed to a certain stage, which means such symptoms or brain activity-based diagnosis might lead to the delay of the SZ treatment. Accurate and early diagnosis of SZ is very important. This study demonstrates that lncRNAs NONHSAT089447, NONHSAT021545, and NONHSAT041499 were significantly up-regulated in SZ patients and that NONHSAT089447 and NONHSAT021545 down-regulation was significantly correlated with improvement of symptoms by the anti-psychotropic treatment, suggesting these lncRNAs could be used as new non-invasive biomarkers for the diagnosis of SZ. Particularly, based on the findings that lncRNAs play roles in SZ via upstream regulating the SZ-related genes [8,15,23], it is anticipated that lncRNAs could be even considered as early diagnostic biomarkers for SZ, which will be beneficial for the early treatment of SZ. Our next study, with larger patient numbers, will be carried out to validate the diagnostic value of NONHSAT041499 in SZ.

At present, although drugs (mainly dopamine receptor system) have been employed, SZ is difficult to treat. For more effective treatment, it is therefore necessary to predict the treatment outcomes. In this study, through Pearson correlation, and step-wise and logistic regression analysis, we revealed that NONHSAT041499 down-regulation was significantly correlated to the improvement of positive and activity symptoms of patients after the medication treatment, and was also significantly associated with better outcomes. This result implies NONHSAT041499 might be considered as a potent prognosis factor for the treatment outcome. To the best of our knowledge, similar studies have not been reported yet. Recently, we reported that down-regulation of plasma miRNA-181b predicted symptom improvement of SZ patients after antipsychotic treatment [25]. These results suggest potential non-invasive molecular markers for the prognosis of SZ patients. Further studies with larger sample sizes are needed to confirm the potential of NONHSAT041499 as a prognostic factor for the treatment of SZ.

LncRNAs closely interact with the regulated mRNAs. LncRNA NONHSAT089447, NONHSAT021545, and NONHSAT041499 were found to be co-expressed with many mRNAs that regulate various biological processes, including neuron apoptosis, learning, memory, behavior, sensory perception of sound, synapse organization and activity, layer formation in the cerebral cortex, stress-activated protein kinase signaling pathway, Ras protein signal transduction, and small GTPase-mediated signal transduction (unpublished data). The detailed bioinformatics study of the above-mentioned lncRNAs is under investigation, and molecular mechanisms whereby these lncRNAs participate in the pathogenesis and development of SZ need to be extensively explored.

A limitation of this study is that the sample size is relatively small for the regression analysis. Small patient numbers in the control group relative to the SZ group might decrease the statistical power for the comparison of the lncRNA expression levels between SZ and control groups. Further studies with more patients and more variables are needed to validate the present results.

Conclusions

We systematically screened the differentially expressed lncRNAs in the PBMCs of SZ patients, and demonstrated that down-regulation of NONHSAT041499 was significantly associated with the symptom improvement and better treatment outcomes of SZ patients. This study will be beneficial for the investigation of the mechanisms underlying the pathogenesis and development of SZ, and suggests the potential usefulness of lncRNA NONHSAT041499 as a novel biomarker for the diagnosis of SZ and prognosis of the treatment, as well as being a potential treatment target.

Acknowledgement

We wish to thank all the individuals who participated in the study. We also acknowledge the great assistance we received from numerous mental health professionals in different clinical departments within and outside the No. 102 Hospital of PLA. In particular, we wish to convey sincere thanks to Gopath Global LLC, Chicago, USA for their professional laboratory services and No. 102 Hospital clinical laboratory of PLA for professional laboratory assistance.

Table 6. Association between lncRNA NONHSAT041499 down-regulation and treatment outcomes of schizophrenia patients by logistic regression analysis.

Dependent variables	Regression model	B	Standard error	Wals	Odds ratio	Determination coefficient	P value
Δ Positive symptom	Constant	−1.912	0.800	5.717	0.148		0.017
Δ NONHSAT041499		0.844	0.319	7.018	2.325	0.366	0.008
Δ Activity symptom	Constant	−4.347	1.831	5.637	0.013		0.013
Δ NONHSAT041499		2.513	1.010	6.186	12.340	0.607	0.018

Supplementary Table 1. Differentially expressed lncRNAs in peripheral blood mononuclear cells from Schizophrenia patients versus healthy controls by microarray.

lncRNA	Fold-change	P-value	Style
TCONS_00005825	2.018402	0.007859874	Up
FR234312	2.5046852	0.019613983	Up
FR214369	2.795938	0.006778212	Up
NONHSAG012869	2.7815604	0.048556764	Down
NONHSAG0300059	2.4375992	0.04930478	Up
NONHSAT140778	3.2462178	0.03928101	Up
NONHSAT016970	2.8774261	0.04668065	Up
NONHSAT0006265	2.72496	0.00357456	Down
NONHSAT059514	2.416889	0.034944758	Down
NONHSAT041499	5.1150675	0.004036861	Up
NONHSAT092334	2.22519	0.045767088	Down
TCONS_00029153	2.2907384	0.00575978	Up
NONHSAT089147	3.514152	0.038919978	Up
ENST0000519337	4.2703557	0.020613242	Up
FR2139481	2.519167	0.043539975	Down
NONHSAG016047	2.8309715	0.03872216	Up
ENST0000563832	3.775364	0.012858684	Down
NONHSAT121750	2.3670413	0.028498909	Up
ENST0000518163	2.3467489	0.020457517	Down
NONHSAT021545	3.6979194	0.023714427	Up
NONHSAT021949	2.8012006	0.047748405	Up
NONHSAT059202	2.1078913	0.003934796	Down
TCONS_00013573	2.01661	0.02145337	Down
NONHSAT123001	2.2459533	0.04912253	Up
NONHSAG034605	2.0021873	0.013193308	Up
ENST0000518163	3.0800865	0.024433016	Down
ENST0000552249	2.1406422	0.009605092	Up
NONHSAT120864	2.6869043	0.047440874	Down
NONHSAT081917	2.201703	0.02585361	Down
NONHSAG010469	2.170598	0.02606947	Down
NONHSAT040479	2.4519546	0.049309734	Down
ENST0000488480	2.2488601	0.04426648	Up
NONHSAT054481	2.1365309	0.03978045	Up
NONHSAT131231	2.2493892	0.022191135	Down
NONHSAT103275	2.7648053	0.026773857	Up
NONHSAT000569024	2.3368568	0.048376054	Up
NONHSAT133180	2.255505	0.039863095	Up
ENST0000422040	2.246702	0.034511745	Up
NONHSAT113409	2.6231997	0.006450792	Up
NONHSAT000552378	2.0455449	0.039099984	Up
NONHSAT098126	4.610542	0.047743667	Up
NONHSAT105615	2.6867616	0.037940864	Down
NONHSAT119525	2.5023258	0.041274253	Down
NONHSAT000565759	2.545508	0.038889498	Down
NONHSAT0001316	2.401271	0.017750448	Down
NONHSAT003974	4.44422	0.006958588	Up
NONHSAT101077	2.382952	0.025674935	Up
TCONS_00002344	2.021424	0.013821459	Up
XR_2441311	2.320134	0.005847468	Up
NR_0279282	2.035199	0.010459018	Down
NR_0276775	2.707323	0.068040853	Down
TCONS_00024969	3.370955	0.017096879	Down
TCONS_00021339	3.4050841	0.01067916	Down
TCONS_00112111	2.2752113	0.03912576	Down
TCONS_00001488	2.42877	0.016129335	Down
ENST0000593429	2.664398	0.005580793	Down
NONHSAT126140	2.4100482	0.026816849	Down
ENST0000413650	2.50962	0.010103071	Down
NONHSAG002664	2.5878246	0.046584073	Down
ENST0000512287	2.095495	0.00460248	Down
NONHSAT058495	2.0634727	0.04672545	Down
ENST0000416150	2.0931425	0.029960617	Up
XR_2473331	2.482382	0.01222255	Down
NR_0272701	2.7393317	0.023086803	Down
NONHSAT012542	2.0278077	0.03747045	Up
ENST0000594676	2.0075424	0.007863165	Up
FR291472	2.8738906	0.045134224	Down
NR_1035541	2.3072157	0.048855953	Up
NONHSAT102138	2.3331935	0.035092298	Down
Differentially expressed lncRNAs in peripheral blood mononuclear cells from Schizophrenia patients versus healthy controls by microarray.

lncRNA	Fold-change	P-value	Style
NONHSAT095774	2.0473397	0.03872717	Down
XR_244653.1	2.6912992	0.01806327	Up
ENST00000521622	3.5583007	0.00341083	Down
TCONS_12_00002997	2.1203494	0.02414698	Up
NONHSAT114311	2.045813	0.03477732	Down
ENST00000586630	2.2811098	0.00958868	Up
NONHSAT024224	2.280496	0.00124722	Down
NONHSAT060439	2.0503778	0.03933156	Down
ENST0000044376	2.5501273	0.00642168	Down
NONHSAT017342	2.0388417	0.02797052	Down
NONHSAG031481	2.6192472	0.04883049	Down
NONHSAT097861	2.0948513	0.03657174	Down
ENST00000524610	2.7294452	0.03419223	Down
NONHSAT047869	2.046003	0.01486278	Up
ENST0000394742	5.6865215	0.00136618	Down
TCONS_12_00008524	2.0070338	2.13E-04	Up
NONHSAT136398	2.4874713	0.04623908	Up
NR_024472.1	2.0437649	0.02797072	Up
NONHSAG011033	2.3757823	0.0297605	Up
ENST0000033348	2.0016566	0.00321352	Up
NONHSAT114275	2.109495	0.03771031	Up
ENST00000606447	2.0563893	0.01161517	Up

References:

1. Saha S, Chant D, Welham J, McGrath J: A systematic review of the prevalence of schizophrenia. PLoS Med, 2005; 2: e411
2. van Os J, Kapur S: Schizophrenia. Lancet, 2009; 374: 635–45
3. Schwarz E, Brawn S: Biomarker discovery in psychiatric disorders. Electrophoresis, 2008; 29: 2884–90
4. Lakhani SE, Kramer A: Schizophrenia genomics and proteomics: Are we any closer to biomarker discovery. Behav Brain Funct, 2009; 5: 2
5. Ponting CP, Oliver PL, Reik W: Evolution and functions of long noncoding RNAs. Cell, 2009; 136: 629–41
6. Guttman M, Rinn JL: Modular regulatory principles of large non-coding RNAs. Nature, 2012; 482: 339–46
7. Wu P, Zuo X, Deng H et al: Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull, 2013; 97: 69–80
8. Barry G, Briggs JA, Vanichkina DP et al: The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry, 2014; 19(4): 486–94
9. Qureshi IA, Mattick JS, Mehler MF: Long non-coding RNAs in nervous system function and disease. Brain Res, 2010; 136: 20–35
10. Arist I, Donofrio M, Brand R et al: Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimer’s Dis, 2011; 24: 721–33
11. Liu Z, Li X, Sun N et al: Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One, 2014; 9: e93388
12. Sai Y, Zou Z, Peng K, Dong Z: The Parkinson’s disease-related genes act in mitochondrial homeostasis. Neuosci Biobehav Rev, 2012; 36: 2038–43
13. Ziets MN, Rennert OM: Aberrant expression of long noncoding RNAs in autism brain. J Mol Neurosci, 2013; 49(3): 589–93
14. Rao SQ, Hu HL, Ye N et al: Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr Res, 2015; 166(1–3): 125–30
15. Ren Y, Cui Y, Li X et al: A co-expression network analysis reveals lncRNA abnormalities in peripheral blood in early-onset schizophrenia. Preg Neupropsycharmacol Biol Psychiatry, 2015; 63: 1–5
16. American Psychiatric Association Diagnostic and statistical manual of mental disorders. 4th ed. Text Revision American Psychiatric Association; Washington, DC, 2000
17. Kay SR, Fiszbein A, Opler LA: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull, 1997; 13: 261–76
18. Garsya V, Forbes IT, Gribble AD et al: Studies towards the identification of a new generation of atypical antipsychotic agents. Bioorganic Med Chem Lett, 2007; 17: 400–5
19. Roth BL, Sheffler DJ, Kroeze WK: Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov, 2004; 3: 336–9
20. Lewis DA, Gonzalez-Burgos G: Pathophysiologically based treatment interventions in schizophrenia. Neurobiol Learn Mem, 2006; 86: 406–12
21. Reynolds GP, Beasley CL: GABAergic neuronal subtypes in the human frontal cortex. Development and deficits in schizophrenia. J Chem Neuroanatomy, 2001; 22: 95e100.
22. Ng SY, Lin L, Soh BS, Stanton LW: Long noncoding RNAs in development and disease of the central nervous system. Trends Genet, 2013; 29: 461–68
23. Ishizuka A, Hasegawa Y, Ishida K et al: Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cells, 2014; 19(9): 704–21
24. McGuire P, Howes OD, Stone J, Fusar-Poli P: Functional neuroimaging in schizophrenia: diagnosis and drug discovery. Trends Pharmacol Sci, 2008; 29(2): 91–98
25. Song HT, Sun XY, Zhang L et al: A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res, 2014; 54: 134–40