Incidence of carbapenem-resistant *Pseudomonas aeruginosa* in clinical samples

Bimla Banjare * and Rekha Barapatre

Department of Microbiology, Pt. J. N. M. Medical College, Raipur, India

Correspondence Info:
Dr. Bimla Banjare,
Assistant Professor
Department of Microbiology,
Pt. J. N. M. Medical College, Raipur, India
E-mail: bimlabanjare@gmail.com

Abstract

Background: Pseudomonas aeruginosa have been reported to show resistance to carbapenem drugs. Detection of carbapenem resistance pseudomonas is now important to prevent their spread as discriminates of these bacteria could be fatal to the hospitalized patients. The main objective of this study was to detection of carbapenem resistant pseudomonas aeruginosa. We also aimed to search for the treatment option for this multidrug resistant *P.aeruginosa*.

Method: A present study was conducted over a period of 6 months. 239 isolates of Pseudomonas aeruginosa were obtained from the samples from hospitals of Pt. J. N. M. Medical College, Raipur (C.G.) from January 2015 to June 2015. These isolates were tested for susceptibility to antipseudomonal drugs and considered to be resistant to carbapenem. Antibiogram generated by disc diffusion susceptibility testing was used for clinically relevant antibiotics.

Results: Out of total 239 Pseudomonas aeruginosa isolates, 25(10.46%) were found to be carbapenem resistant. All imipenem resistant isolates were sensitive to polymyxin B (300µg) and colistin (10µg).

Conclusion: The rapid dissemination of carbapenem resistance is worrisome and calls for the implementation of surveillance studies as well as judicious use of antibiotics. This is a therapeutic challenge to the clinicians and also need proper selection of antibiotics especially carbapenem.

Keywords: Carbapenem resistance, Metallo β-lactamase, *Pseudomonas aeruginosa*, MDRPs

1. Introduction

Pseudomonas aeruginosa has been described as the most common and serious cause of infections and one of the most infectivity among all pathogenic microorganism. Problems of MDRPs are due to intrinsic as well as acquired resistance to many effective groups of antibiotics. In the past few decades, MDRPs increasing worldwide recognized as a pathogens in a variety of serious infections in hospitalized patients.[1-3]

The carbapenemes have been drug of choice for the treatment of serious infection caused by gram negative bacterial infections.[4] Pseudomonas shows resistance to carbapenem due to decrease outer membrane permeability, increased efflux system, alteration penicillin binding protiens and carbapenem hydrolyzing enzymes carbapenemase.[5]

The introduction of carbapenem, of great help to the clinician for the treatment of serious bacterial infections caused by beta lactam resistant bacteria, Carbapenem, due to their stability to hydrolysis by the most beta lactamase, have been the drug of choice for treatment of infection caused by penicillin resistant or carbapenem resistant gram negative infections.[6]

Carbapenem resistance is due to the Metallo β-lactamase producing *P.aeruginosa*. Acquired MBLs have started spreading worldwide as a broad spectrum activity to resistance of β- lactam antibiotics.

In view of the paucity of information on carbapenem resistance *Pseudomonas aeruginosa* infection in hospitalized patient, we undertook the present study to determine its incidence.
2. Material and Method

The study was conducted in the department of microbiology, Pt. J.N.M. Medical College, Raipur (C.G.) from January 2015 to June 2015. Total no. of 239 isolates of Pseudomonas aeruginosa obtained from various samples collected with universal safety precautions. The entire clinical sample received in the microbiology department where processed without delay. Sample were processed and identified by standard laboratory technique.[7]

Sample processed were blood, urine, pus, wound swab, CSF, body fluids, respiratory secretion, sputum and throat swab. Blood cultures were processed using a conventional method. Antimicrobial sensitivity testing was performed on Mueller Hinton Agar plates with commercially available discs (Hi Media Pvt. Ltd, India) by the Kirby bauer disc diffusion method.[8]

The routine antibiotic sensitivity test put up for amikacin (30 µg), gentamicin (10 µg), netilmicin (30 µg), tobramycin (10 µg), cefoperazone (75 µg), ceftazidime (30 µg), ceftazidime (30 µg), ciprofloxacin (5 µg), ciprofloxacin (5 µg), imipenem (10 µg), imipenem (10 µg), polymyxin – B (300µg), colistin (10µg), piperacillin (10µg) and piperacillin tazobactum (100/10µg).

3. Results

239 isolates of Pseudomonas aeruginosa from various samples were collected over 6 month of period. Out of 239 Pseudomonas aeruginosa isolates of 25 were found to be resistant to carbapenem.

Table No. 1: Distribution of P. aeruginosa from various clinical samples.

Samples	Total sample no. (%)	Total No. of P. aeruginosa (%)	Carbenapen Resistant P. aeruginosa no. (%)
Urine	1666 (41.78)	48 (20.08)	05 (19.23)
Pus	1103 (27.66)	99 (41.42)	06 (23.07)
Blood	995 (24.95)	38 (15.89)	04 (15.38)
Sputum	120 (3.00)	07 (2.92)	01 (3.84)
CSF	41 (1.02)	19 (7.94)	03 (11.53)
Vaginal Swab	12 (0.30)	04 (1.67)	01 (3.84)
Pleural Fluid	10 (0.25)	02 (0.83)	00 (00)
Endotrachial tube	12 (0.30)	07 (2.92)	02 (7.69)
Throat swab	12 (0.30)	03 (1.25)	00 (00)
Cather Tip	16 (0.40)	12 (5.02)	03 (11.53)
Total No.	3987	239	25 (10.46)

4. Discussion

Pseudomonas aeruginosa is one of the most frequent nosocomial pathogens and the infections due to these are often difficult to treat due to antibiotic resistance. [6] carbapenem are beta lactam antibiotics, presently considered as the most potent agents of treatment of multidrug resistant gram negative bacterial infection due to the stability of these agents against the majority of β-lactamases and their high rate of permeation through bacterial outer membranes.[9]

In various studies across the world, varying rates of resistance (4-60%) have been reported for imipenem and meropenem.[10] Of the Indian workers, Gladestone et al reported 42.8% carbapenem resistance among P. aeruginosa isolates.[5] Taneja et al reported that 36.4% of nosocomial urinary tract infections were caused by nonfermenters resistance to imipenem.[11] In the present study, of the 239 P. aeruginosa isolates, we found that 10.46% were resistant to imipenem.

Because of its unique antipseudomonal activity ceftazidime is a reserved drug for P. aeruginosa infections. In CLSI guidelines [5] also this is included in group A drugs. In our study, 10.46% resistance was observed against ceftazidime (Table 3) which is correlate with 11% resistance observed in the study of Sarkar et al.[12] In the study of Shahid et al[13] and Pitt et al[14] ceftazidime resistance was 20% and 39.6% respectively. Piperacillin is another β-lactam

Table No. 2: Antibiotic pattern of P. aeruginosa strain in clinical isolates

Antibiotics	P. aeruginosa (n = 239) (%)	P. aeruginosa (n = 239) (%) resistant
Amikacin	145 (60.66)	94 (39.33)
Cefazidime	169 (70.71)	70 (29.28)
Netilmicin	130 (54.39)	109 (46.60)
Cepofloxacin	171 (71.54)	68 (28.40)
Piperacillin	198 (82.84)	41 (17.45)
Tobramycin	178 (74.47)	61 (25.20)
Gentamicin	132 (55.23)	112 (44.86)
Gatifloxacin	199 (83.26)	40 (16.73)
Ceftazidime	179 (74.85)	60 (25.10)
Aztreonem	101 (42.25)	178 (57.74)
Piperacillin/tazobactum	220 (92.05)	19 (7.94)
Imipenem	214 (89)	25 (10.46)
Polymyxin – B	239 (100)	0 (00)
Colistin	239 (100)	0 (00)

Table no. 3: Resistant pattern of P. aeruginosa to imipenem

Total no. of P. aeruginosa isolates	Total no. of P. aeruginosa sensitive to imipenem	Total no. of P. aeruginosa resistant to imipenem
239	214 (89%)	25 (10.46%)
antibiotic included in group A. We observed 17.40% resistance against these antibiotics. Sarkar et al[12] and Pitt et al[14] observed 12% and 31.9% resistance respectively against piperacillin. Among aminoglycosides, amikacin showed resistance in our study 39.37%. Sarkar et al[12] found resistance in amikacin 40.90% as compared to gentamicin 46.60%, Tobramycin 25.20% and Netilmicin 46.67%.

In the study of Nagoba et al[15] and Veenu et al[16] amikacin was found to be most effective antipseudomonal agents. Quinolones in particular ciprofloxacin is still active against 60% of P. aeruginosa.

We conclude the polymyxin B or colistin represent the best treatment option. However, colistin is very expensive and this limits its use. After that the best treatment options a combination of gatifloxacin, amikacin and piperacillin /tazobactam. And the last this rapid dissemination of carbapenem resistance is worrisome and calls for the implementation of surveillance studies and the judicious selection of antibiotics in clinical practice.

References
[1] Agrawal G, Lodhi RB, Kamalakar UP, Khadse RK, Jalgaonkar SV. Study of Metallo-β-lactamase production in clinical isolates of Pseudomonas aeruginosa. Indian J Med Microbial 2008; 26(4): 349-51.
[2] Upadhaya S, Shenoy R, Shetty V, Lamsal A, Lamichhane P and Pokhrel S. Multidrug Resistant Pseudomonas aeruginosa Isolated from Intensive Care Burn Unit. Int J Biomed Res 2014; 05(04):271-273.
[3] Rberta Migliavacca, Jean-Denis Docquier, Claudia Mugnaioli, Gainfranco Amincosante, Rossana Daturi, Kyungwon Lee, Gian Maria Rossolini, and Laura Pagani. Simple Microdilution test for detection of metallo-β-lactamase production in Pseudomonas aeruginosa. Journal of Clinical Microbiology, Nov. 2002, p. 4388-4390.
[4] Awari A, Nighute S. Incidence of Mettalo-Beta Lactamase producing aeruginosa in Kesar Sal Medical College and Hospital. Indian J Biomed Res 2012; 3 (01): 32-35.
[5] Gladstone P, Rajendran P, Brahmadathan KN. Incidence of carbapenem resistant nonfermenting gram-negative bacilli from patients with respiratory infections in the intensive care unit. Indian J Microbial 2005; 23:189-91.
[6] Varaiya Ami, Kulkarni Nikhil, Kulkarni Manasi, Bhalekar Pallavi & Jyotsana Dogra. Incidence of Metallo-β-lactamase producing Pseudomonas aeruginosa in ICU patients. Indian J Med Res 127, April 2008 pp 398-402.
[7] Forbes B A, Sham D F, Weissfeld A S, editors. Overview of conventional method for the bacterial identification, chapter 13. In: Bailey and Scott’s Diagnostic Microbiology, 10th ed. St Louis: The C V Mosby Co: 1998; pp167.
[8] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk tests; Approved Standards, 9th ed. CLSI Document M2-A9, Vol. 26 No 1. Wayne PA 2006.
[9] Behera B, Mathur P, Das A, Kapil A, Sharma V. An evaluation of four different phenotypic techniques for detection of metallo-β-lactamase producing Pseudomonas aeruginosa. Indian J Med Microbial 2008; 26(3): 233-37.
[10] Gonlugur U, Bakiri MZ, Akkurt I, Efeoglu T. Antibiotic susceptibility patterns among respiratory isolates of gram-negative bacilli in a Turkish University Hospital. BMC Microbial 2004; 4:32-6.
[11] Taneja N, Aharwal SM, Sharma M, Imipenem resistance in nonfermenters causing nosocomial urinary tract infection. Indian J Med Sci 2003; 57:294.
[12] Sarkar B, Biswas D, Prasad R. A clinico microbiological study on the importance of Pseudomonas in nosocomially infected ICU patients with special reference to metallo-β-lactamase production. Indian J Pathol Microbial 2006; 49: 44-8.
[13] Shahid M, Malik A. Plasmid Mediated amikacin resistance in clinical isolates of Pseudomonas aeruginosa. Indian J Med Microbial 2004; 22: 182-4.
[14] Pitt TL, Sparrow M, Warner M, Stefanidou M. Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents. Thorax 2003; 58: 794-6.
[15] Nagoba BS, Deshmukh SR, Gude UG, Gomashe AV. In vitro susceptibility of Pseudomonas aeruginosa to different antibiotics. Indian J Med Microbial 1997; 15: 185-6.
[16] Veenu, Sikka R, Arora DR. Isolation and susceptibility pattern of nonfermenting gram negative bacilli from clinical samples. Indian J Med Microbial 1999; 17: 14-7.