Sustainability and resiliency objectives in performance building regulations

Brian J. Meacham

Worcester Polytechnic Institute, 50 Prescott Street, Worcester, MA 01609, US
E-mail: bmeacham@wpi.edu

Building regulatory agencies worldwide are grappling with how to define and implement appropriate mandatory and voluntary measures for new and existing buildings that address societal and political demands for increased environmental and resource sustainability and resiliency to the effects of climate change without lessening the historical building regulatory focus on health, safety and welfare of building occupants. It can be argued that a transition from prescriptive to performance-based building regulatory regimes, coupled with the introduction of new policy objectives for sustainability and resiliency, in a rather short period of time, without full assessment of how they interact with existing building regulatory objectives, and without broadly agreed holistic solutions, has led to the introduction of new objectives that have the potential to result in increased hazards and risks to occupants. To explore the current situation and future needs associated with performance building regulatory regimes and the inclusion of sustainability and resiliency objectives for new and existing buildings, the literature was reviewed and a survey of building regulatory bodies and institutions in 12 countries was conducted to obtain perspectives on whether and how sustainability and resiliency objectives are being incorporated into their building regulations and if any challenges have been identified.

Keywords: building regulation, governance, performance based, resilience, sustainability

Introduction and context

Historically, building regulations have focused on the health, safety and welfare of building occupants. They emerged in response to widespread illness, death and destruction that occurred in urban centres as a result of unsanitary conditions and significant hazard events, and the social and political mandate to mitigate these hazards as part of urban redevelopment. A social compact (contract) developed between government and the citizenry in which it became acceptable for the government to collect taxes in return for the regulation and enforcement of minimum levels of safety and sanitary conditions. As such, early building regulations addressed such issues as minimum requirements for fire separation and resistance of materials, structural resiliency to natural hazards, and safe heating and sanitation systems for occupants. Over time, needs such as standardized testing and listing to assure minimum performance, industry standards for compatibility of systems and components, minimum competency of practitioners, and mechanisms to assure compliance of constructed buildings with stated designs gave rise to the other components within the building regulatory system, all based around a culture of facilitating a built environment that delivered minimum levels of safety and health to building occupants (Cheit, 1990; Field & Rivkin, 1975; Geschwind, 2001; Hemenway, 1975; ICC, 2007; Imrie & Street, 2011; Meacham, 2014; Wermeil, 2000; Yatt, 1998).

Generally speaking, changes to the regulations and supporting regulatory system occurred slowly as new materials, products, systems and methods of analysis, design and construction were developed, tested, introduced and adopted as acceptable into the regulatory system. The process can take many years, as with the development and implementation of the single burning item (SBI) test (van Mierlo, 2005) or even decades, such as with the development and implementation of the Eurocodes for structural design (Eurocode, 2015). In other cases, change occurred rapidly, but nearly always in response to some significant hazard event which resulted in unacceptable damage, injury or death. In these situations change was often made to the building regulations first, with changes
to standards and other instruments following, with the intent of avoiding similar losses in the future. When this type of change occurred, however, it was primarily focused on new construction, and even when upgrade of some of the existing building stock was required, it was often not to the same level of new construction: a trend that continues today (e.g., IREM, 2013; Stannard, 2014). There are obvious reasons for this, primarily the cost of retrofitting all existing building stock in comparison with the overall risk and benefits. In order to provide options to legislated provisions, voluntary standards or guidelines (e.g., NFPA 101A, 2013; FEMA 356, FEMA 114) and/or market instruments (e.g., insurance industry requirements, such as FM Global Data Sheets (e.g., FM Global 1–28) are used to encourage building owners to increase the safety performance of existing buildings.

While there have always been some challenges in addressing issues within the historical building regulatory system as outlined above, the focus on health and safety, and the development of regulatory infrastructure and generally common understanding of those issues amongst stakeholders around these topics, had created an environment where many of the issues were able to be addressed proactively and cooperatively. In recent years, however, three concurrent activities have emerged within building regulatory systems that have placed pressure on the ability of the systems to adapt and respond in as successful a manner as in the past: a relatively rapid transition to performance-based regulations, new policy objectives in the area of sustainability, some of which appear to be difficult to harmonize with traditional health and safety objectives, and a desire to address, but lack of clarity as to how, climate change impacts on buildings.

When the transition to performance-based (function-based) building regulatory systems and regimes began, health and safety was still the focus. The motivation for change was related to reducing regulatory burden, reducing costs to the industry and the public, increasing innovation and flexibility in design, and being better positioned to address emerging issues (BRRTF, 1991; May, 2003; Meacham, 2009; Meacham, Moore, Bowen, & Traw, 2005; Meijer & Visscher, 1998; 2006). All this was to be achieved while maintaining tolerable levels of safety and performance.

In some cases the transition has worked reasonably well: in other cases there have been issues, including some significant system failures (Lundin, 2005; May, 2003; Meacham, 2010; Mumford, 2010). With respect to failures, contributing factors include lack of agreed performance measures (criteria) and means to predict performance in use, lack of test methods that yield data that can be used in engineering analysis, limited availability and quality of data, inadequate competency and accountability in the market and of those in oversight (compliance checking) roles, insufficient product certification/means to assure the performance of products, lack of transferring knowledge between regulatory regimes, lack of having persons with the right expertise and experience involved, and challenges with insurance, liability assignment and limitation, and consumer protection mechanisms (Lundin, 2005; May, 2003; Meacham, 2010; Mumford, 2010). These shortcomings become particularly important when one considers that buildings have been constructed under these systems for some 25 years, and now might reflect a significant contribution to the existing building stock in many countries. As such, if performance issues exist, the impact could be significant. The ‘leaky building’ scenario that unfolded in New Zealand is probably the highest profile example of what could happen (May, 2003), but there may be other latent problems as well.

Part of the challenge is that performance-based building regulatory systems, while similar in structure, can vary significantly in implementation. While the structure of the building code (regulation) itself follows the general format outlined by the Nordic Building Code Committee (NKB) in the 1970s (Meacham 2004; Meacham et al., 2005), there can be significant variation in the means for demonstrating compliance with the mandatory provisions (Meacham, 2009) (Figure 1).

In some countries there are no mandatory means of demonstrating compliance, and it is the designer’s choice to follow ‘deemed to comply’ documents, which may reference national or international standards, or to take a ‘first principles’ (performance-based) approach. England and New Zealand are examples. In other countries there are mandatory compliance documents, which in turn reference national or international standards, and variance from the requirements is by exception. There are also situations in which performance criteria and means of verification are built into the code (regulation). A good example here is Japan.

In addition to the transition to performance-based systems, building regulations and regulatory systems have increasingly become complicated by the establishment of policy mandates and the introduction of voluntary assessment and rating instruments originating from environmental sustainability and climate change resiliency concerns, which have historically been outside the realm of building regulation. While a social compact between government and the populace has developed around the understanding that we need to do more to protect the environment, resulting in the proliferation of environmental regulation and enforcement legislation which nominally began in the 1970s, it is only recently that the connection of the
built environment to negative impacts on the environment, and the need to make buildings more resilient to climate change, have come onto the political agenda. A result is new pressures on building regulations from new actors, inside and outside of government. These new pressures pose a significant challenge, not just because the traditional building regulatory environment is itself undergoing change and has structural challenges to overcome, but because the success of recent governmental policies and market approaches aimed at increasing the sustainability of the built environment has arguably been limited (Simmons, 2015; Van Bueren & de Jong, 2007). Whereas a robust approach to engaging stakeholders in issues of health and safety developed over decades in the historical building regulatory system, new stakeholders have emerged around sustainability objectives, and the different groups are fragmented and not working effectively together (Cole, 2011; du Plessis & Cole, 2011; Foxell & Cooper, 2015; IPCC, 2007; Simmons, 2015; Van Bueren & de Jong, 2007). In addition, the introduction of voluntary measures have resulted in inconsistent levels of performance being realized (Newsham, Mancini, & Birt, 2009; Scofield, 2009), in part because it rests outside the realm of regulatory oversight. The situation is further complicated because there are incomplete building performance measures, monitoring and enforcement mechanisms for sustainability (Van Bueren & de Jong, 2007) as well as increasing liability concerns (Brinson & Dolan, 2008). As noted by Foxell and Cooper (2015, p. 403),

The gap between policy intent and effective solutions remains difficult to close. This serves to increase the number of challenges that the built environment sector needs to address successfully. This fragmented regulatory approach, not necessarily having the right persons involved, and the introduction of new social objectives has led to unintended consequences being introduced, some of which could present considerable risk to building occupants. This includes structural hazards due to moisture-related failures of enclosed structural systems (May, 2003; Mumford, 2010), health hazards related to mould and indoor air quality due to weather-tight buildings (Mudarrakas et al., 2012; Simonson McNamee, Blomqvist, & Andersson, 2011), fire and health hazards due to the flammability of thermal insulating materials (Babrauskas et al., 2012; Simonson McNamee, Blomqvist, & Andersson, 2011), fire and smoke spread potential through the use of double-skinned facades (Chow, Hung, Gao, Zou, & Dong, 2007), and fire hazards and impediments to emergency responders associated with interior and exterior use of vegetation, photovoltaic panels, and other ‘green’ features and elements (Meacham, Poole, Echeverria, & Cheng, 2012).

Finding a suitable balance between sustainability and fire safety objectives can be particularly complex due to the multidimensional aspects of each. Timber is ‘sustainable’ but also is combustible, so if not addressed appropriately can present a significant fire safety hazard (Meacham et al., 2012; UL, 2008). High-strength concrete requires less material and is more sustainable than regular-strength concrete, but can be highly susceptible to spalling during a fire (Kodur & Phan, 2007). Insulation and alternative energy sources are good for sustainability, but photovoltaic panels that can cause an ignition, and flammable insulation material, can be a catastrophic combination (Meacham et al., 2012).

Tightly coupled with goals to increase environmental sustainability through better energy efficiency, reduction in/reuse of construction materials, incorporation of alternative energy sources and related measures in the built environment are goals to increase the resiliency of the built environment to climate change effects. In recent years we have seen devastating hurricane, cyclone, flood, snowfall, drought and wildland fire events and seasons. Each has resulted in significant impacts on the built environment, including widespread building damage associated with moisture, wind, snow load and fire. This is not unexpected, as it has been predicted as a real possibility for some time (e.g., IPCC, 2007; Steenbergen, Geurts, & van Bentum, 2009; Wilby, 2007).

However, there are no easy answers in terms of developing comprehensive resiliency strategies, since while the problems are easy to recognize, the solutions are difficult to agree and implement. In many cases there is not a single policy area that has responsibility for avoiding or mitigating the impacts. Planning, zoning, environmental and resource legislation have a significant effect on the susceptibility of buildings to flooding.
and wildland fire (as is said in real estate (property) valuation: location, location, location). In some cases, policy-makers wish to avoid moving people or restricting expansion into hazard-prone areas if that has an impact on economic development. That places a burden on building regulation. Some of this can be addressed in regulations for new construction; however, affordability then becomes a concern. The challenges become even more amplified when addressing existing buildings, as there is less regulatory oversight and often less economic capacity to manage from the ownership side (i.e., older buildings, particularly residential, house a higher percentage of lower-income families).

In summary, the literature suggests that advancing sustainability and resiliency objectives in the built environment is necessary, in addition to traditional occupant health and safety objectives. However, challenges exist in that sustainability and resiliency are not yet being viewed as having the same level of importance, or equivalent level of social compact between government and the public, as providing for minimum levels of health and safety in buildings. As such, the rather sudden entry of these new policy objectives has created a wide range of challenges, from regulatory development to enforcement, with potentially the most significant issues around existing building stock and trying to assure regulatory and market instruments adequately address the spectrum of policy objectives without increasing hazards, risks or costs, or decreasing building performance. As a means to begin assessing just how significant the issues are in practice, a survey was conducted of representatives of lead building regulatory agencies and research institutions in 12 countries to benchmark the situation in a number of areas. Select outcomes from the survey and preliminary analysis, along with select outcomes from a 2009 survey of the same group, are presented below. It should be noted that the information provided represents the author’s interpretation of the survey responses and materials provided in the countries cited, and do not reflect official government or organizational policies or positions.

Performance, sustainability and resiliency in IRCC member countries

In 1997, six countries that were developing or had implemented performance-based building regulations created a forum where they, and countries with similar interests, could discuss experiences, issues and opportunities associated with performance-based building regulatory systems. This forum, the Inter-jurisdictional Regulatory Collaboration Committee (IRCC), has grown considerably since then and now has members from 12 countries – Australia, Austria, Canada, China, Japan, New Zealand, Norway, Scotland, Singapore, Spain, Sweden and the US – with affiliated organizations participating from England and the Netherlands (see www.IRCC.info). Over the years, the IRCC has hosted several workshops and published a number of documents addressing a wide range of topics related to performance building regulatory systems (e.g., Meacham, 2010; Meacham et al., 2005). In 2009, a report was prepared that reinforced the principles underlying the need for building regulation, the benefits that IRCC members see with performance-based approaches, and the building regulatory situation in the IRCC member countries at that time (Meacham, 2009). A general conclusion is that all IRCC member countries support performance-based building regulatory regimes, acknowledging that there are challenges with current systems and that more needs to be done to facilitate the full potential of such systems, including the following:

- Mechanisms are needed to define and quantify better levels of tolerable building performance, be they in terms of health, safety, welfare, risk, sustainability or other measures.

- Quantified performance metrics must be developed and incorporated into regulations. Recognizing that some metrics may be best addressed prescriptively (e.g., rise and run of a stair), there remains significant scope for performance measures, for which associated verification methods are needed.

- Tools and methods for helping with the enforcement of performance-based building regulations are still lacking. In part related to the lack of quantified performance measures, those responsible for approval of designs and enforcement of regulations are faced with the challenge of making decisions in the face of significant uncertainty.

In 2014, several IRCC members presented papers at the World Sustainable Building Conference SB14 in Barcelona, Spain, on topics related to sustainability and resiliency objectives and issues for building regulations (e.g., Dodds, 2014; McDonald, 2014; Neng Kwei Sung, 2014; Serra, Tenorio, Echeverria, & Sanchez-Ostiz, 2014). These were complemented by contributions of members of CIB Task Group 79, Building Regulations and Control in the face of Climate Change (e.g., Chan, Chan, & Quim, 2014; Laubscher, 2014; Visscher & Meijer, 2014). Collectively, these papers, as well as other literature which was reviewed, identified several issues worthy of additional investigation around this topic.

To begin exploring some of the issues in more detail, from a building regulatory perspective, a survey was conducted of the IRCC members to obtain additional
information about current policies, activities and concerns around sustainability, resiliency and building regulation. The survey consisted of 30 questions within three primary topic areas:

- The relative importance/priority of sustainability and resiliency principles and policies to the government – in general and with respect to the built environment.
- How concepts of sustainability and resiliency are addressed within building regulations, and within the built environment, for new and existing buildings.
- How well the performance- (objective-, function-) based building regulatory system has been working, with a particular emphasis on aspects that have been identified as somehow lacking (or failed, or could be significantly improved), why the challenges exist, whether actions are underway to change the system going forward, and what ‘the next generation’ of the regulatory system might include.

An open-ended question to provide for additional feedback was also provided.

Surveys were sent by e-mail to each IRCC member and affiliated organization and responses were consolidated. The survey questions are given in Appendix A in the supplemental data online. Due to the small sample size (12 reporting entities), no statistical analysis of the responses is provided. Rather, summary data in terms of whether or not a country addresses the issue at question are presented.

Due to space limitations, the focus of the discussion that follows is limited to feedback received as related to top-level government policy/perspective on sustainability and resiliency and how these topics are addressed within the building regulatory system. Furthermore, not all responses from each country are included, and only examples from some countries are provided. It is anticipated to present more outcomes in future.

It should be noted that sustainability and resiliency were not defined in the survey, and countries were free to interpret the terms. This was felt to be important to gauge commonality and differences. In many countries, sustainability encompasses the management of resources (water, energy, materials, etc.), and resiliency reflects the ability to withstand and recover from impacts – from earthquake to climate change impacts, such as drought, increased storm frequency and severity, changing snow locations and amounts, and similar. While the entire paper could be focused on the definitions and broad government policy responses, it was decided to keep the focus limited to which countries have policies to address sustainability and resiliency concerns, and how it manifests within the building regulatory system.

From a top-level (overarching) national government policy perspective, is sustainability a guiding principle for legislative/regulatory development?

Yes	No	Variable
Australia, China, England, Japan, Netherlands, Norway, Scotland, Singapore, Spain, Sweden	New Zealand	US

The clear message here is that sustainability has become embodied as a guiding principle in most countries at the national government level. While sustainability is embodied in many legislated areas in New Zealand, there is no ‘top of government’ sustainability guidelines or policy. The reason that the US is listed as ‘variable’ is that the priorities can change with administrations, and while the Barack Obama administration has a strong climate change and sustainability focus, subsequent administrations may not. This is not to say that other countries are not also susceptible to shifts in policy and politics, but in many countries policy guidance has been implemented, which reflects a firmer position, at least for the moment.

In Australia, it was recognized that significant benefits could be achieved through improvements in energy efficiency, so in 2004 the Australian Ministerial Council on Energy (which comprises representatives from all levels of Australian government) endorsed the National Framework for Energy Efficiency (NFEE) and agreed to the implementation of a number of energy efficiency packages. The Ministerial Council on Energy anticipated that the NFEE would comprise more than one stage, and activities under the NFEE continued for the next several years. In July 2009, the Council of Australian Governments (COAG) agreed to the comprehensive, 10-year National Strategy on Energy Efficiency (NSEE), to accelerate energy efficiency improvements and deliver cost-effective energy efficiency gains across all sectors of the Australian economy. The overarching National Partnership Agreement on Energy Efficiency (NPAEE) is the Intergovernmental Agreement that gives effect to the NSEE and sets out specific action to be taken by the commonwealth, state and territory...
governments to maximize cost-effective energy efficiency gains across the economy.

The NSEE aims to streamline roles and responsibilities across government by providing a nationally consistent and coordinated approach to energy efficiency. The NSEE is framed around the following four key themes: assisting households and businesses to transition to a low-carbon future, reducing impediments to the uptake of energy efficiency, making buildings more energy efficient, and government working in partnership and leading the way, which was published in 2009 (NSEE, 2009).

In Japan, the Basic Environment Law sets out the overall mandate for environmental conservation and sustainability, the Purpose of which is stated in Article 1:

> The purpose of this law is to comprehensively and systematically promote policies for environmental conservation to ensure healthy and cultured living for both the present and future generations of mankind, through articulating the basic principles, clarifying the responsibilities of the State, local governments, corporations and citizens, and prescribing the basic policy considerations for environmental conservation. (BEL, 1993)

The stated purpose of the Scottish government is to focus government and public services on creating a more successful country, with opportunities for all Scotland to flourish, through increasing sustainable economic growth (Scotland, 2015). The Scottish parliament passed the world-leading Climate Change (Scotland) Act 2009 (CCSA, 2009), committing to reduce Scotland’s greenhouse gas emissions by at least 42% by 2020 and by 80% by 2050 compared with 1990 levels. In addition, the Scottish government has committed to the equivalent of 100% of Scotland’s electricity demand to be generated from renewable energy by 2020. Sections 63 and 64 specifically relate to making regulations for improving the energy efficiency of existing non-domestic and domestic buildings respectively (CCSA, 2009).

Sweden was the first country to adopt the goals of a global development policy in 2003 (Sweden, 2003). In brief, global development policy encompasses all political decisions that directly or indirectly affect poor people in developing countries or countries undergoing transition to a market economy, one of which is sustainable development, which encompasses sustainable use of natural resources and environmental concern, economic growth, and social development and security. Beginning in spring 2016, all Swedish ministries will develop action plans around the global development policy.

From a top-level (overarching) national government policy perspective, is resiliency a guiding principle for legislative/regulatory development?

Yes	No
Australia, China, England, Japan, Netherlands, New Zealand, Norway, Scotland, Singapore, Sweden, US	Spain

While the majority response to this question is also yes, the definition and interpretation of 'resiliency' varies much more than with sustainability, as well as resiliency against what hazards or events. In some cases there is a focus on specific natural hazards (e.g., earthquake), in others all natural hazards, and in some cases all disasters, including deliberate events. Only in some countries, such as Norway, is climate change resiliency a clear focus. Even in Spain, it can be argued sustainability policy is a climate change resiliency policy, even if not stated precisely as such.

In Australia, the Council of Australian Governments (COAG) agreed in 2007 to the National Climate Change Adaptation Framework (NCCAF). The NCCAF covered a range of cooperative actions between all Australian governments to begin to address key demands from business and the community for targeted information on climate change impacts and adaptation options (NCCAF, 2007). In 2009, the COAG agreed to adopt a whole-of-nation resilience-based approach to disaster management, which recognizes that a national, coordinated and cooperative effort is needed to enhance Australia’s capacity to prepare for, withstand and recover from disasters. The National Emergency Management Committee subsequently developed the National Strategy for Disaster Resilience (NSDR, 2009), which was adopted by the COAG in 2011. The purpose of the NSDR is to provide high-level guidance on disaster management, with a focus on priority areas necessary for building disaster resilient communities across Australia.

In China there are several policies and laws related to resiliency against natural hazards, including protection and mitigation of earthquake disasters and meteorological disasters, and on disaster prevention and planning. While earthquake and meteorological disasters are important in Japan as well, the Fundamental Plan for National Resilience speaks to being committed to promoting initiatives for building national resilience with the aim of creating safe and secure national lands, regions and economic society that have strength and flexibility in the event of any disaster (NRPO, 2015). The guiding principles include prevent human
loss by any means, avoid fatal damage to important functions for maintaining administration as well as social and economic systems, mitigate damage to property of the citizenry and public facilities, and achieve swift recovery and reconstruction.

New Zealand has a long standing focus on resiliency to earthquakes, with renewed thinking and discussion following the Canterbury earthquakes, and is also a signatory to the international Sendai framework (formerly Hyogo), monitoring and reporting on the disaster risk reduction objectives of the framework. In the Netherlands, climate change resiliency has been a focus for a long time, given the potential susceptibility to sea level rise. There is also a focus on infrastructure and security resiliency. This is also the case in the US, which under the Obama administration there are Executive Branch initiatives on climate change resiliency and on infrastructure resiliency, with several government departments and agencies having legislation and guidance on these topics.

A national assessment of the impacts of climate change on Norway has been produced and published as an Official Norwegian Report, Adapting to a changing climate (NOU, 2010). As noted in the report, the Norwegian government appointed a committee to study society’s vulnerability and the need to adapt to the effects of climate change. Various climate change effects were identified, including higher temperatures, increased precipitation and potential sea level rise and effects on the coasts and fjords. Impacts to infrastructure and buildings were identified as needed to be addressed, and the committee recommended that adaptation considerations be incorporated into new regulations associated with the Planning and Building Act.

From a building regulatory policy perspective, is sustainability addressed within the building regulations?

All countries report some aspects of sustainability being embodied in building regulations. In Australia, sustainability was included as a specific objective of the Building Code of Australia (BCA) in 2007. In the European Union (EU), the Energy Performance of Buildings Directive (EPBD, 2010) and the Energy Efficiency Directive (EED, 2012) provide common direction and expectations, which in general are adopted in member states’ legislation, although other legislation may be promulgated as well.

In New Zealand, even though sustainability is not an overarching objective of the current government, it is one of four purposes of the Building Act, so that ‘buildings are designed, constructed, and able to be used in ways that promote sustainable development’. The act also requires certain principles to be taken into account, including: the need to facilitate the efficient use of energy and energy conservation and the use of renewable sources of energy in buildings, the need to facilitate the efficient and sustainable use in buildings of material […] and material conservation, the need to facilitate the efficient use of water and water conservation, and the need to facilitate the reduction in the generation of waste during the construction process. The Building Code has a specific code clause related to energy efficiency, H1 (DBH, 2011).

In Scotland, sustainability was first explicitly addressed in the Building (Scotland) Act 2003, which speaks to ‘furthering the achievement of sustainable development’. However, sustainability has been a focus of the national building regulations since the Building (Scotland) Act 1959, predating the term ‘sustainable development’. The current approach to development of standards and guidance within the Scottish building regulations framework looks to embed sustainability into the minimum measures that apply to new building work. However, this is always tempered by cost, as it could be considered unsustainable to have new buildings that are very environmentally friendly and accessible but the capital construction cost is elevated to such a level that means they become unaffordable. As such, within the Scottish system, a sustainability labelling system (with clearly defined measures) exists that enables those who wish to go further and demonstrate their ‘green’ credentials to do so (Dodds, 2014).

In 2005, Singapore’s Building and Construction Authority (BCA), a statutory board under the Ministry of National Development, kick-started its drive to green Singapore’s physical landscape by launching the BCA Green Mark: a rating system to evaluate a building’s environmental impact and recognize its sustainability performance (Neng Kwei Sung, 2014). The BCA Green Mark scheme forms the backbone of the first Green Building Masterplan (GBMP) which was introduced in 2006 to encourage, enable and engage industry stakeholders to step up efforts in environmental sustainability, with a first focus on greening new buildings. This included legislation, financial incentives, industry training programmes and a public outreach campaign to place green buildings in the forefront of industry and consumer awareness. Under the legislation, Singapore’s Building Control Act was amended in April 2008 to impose minimum standards on environmental sustainability for buildings (BCESR, 2008). In January 2008, an Inter-Ministerial Committee on Sustainable Development (IMCSD) was also set up to formulate a national strategy for Singapore’s sustainable development. A Sustainable Development Blueprint was developed by the IMCSD and released in 2009 to outline key targets and initiatives to improve resource efficiency and enhance Singapore’s...
urban environment for the next 10–20 years. One of the key targets set by the IMCS for Singapore’s built environment, is to green at least 80% of the buildings in Singapore by 2030. This would reduce the city-state’s carbon footprint in the long term, whether in terms of energy and water efficiency, waste reduction or the use of sustainable materials.

In the US, 13 states and the District of Columbia have adopted the International Green Construction Code (IgCC) (2015). The IgCC is the first model code to include sustainability measures for the entire construction project and its site – from design through construction, certificate of occupancy and beyond. This code is expected to make buildings more efficient, reduce waste, and have a positive impact on health, safety and community welfare. It is in addition to other codes, such as the International Energy Conservation Code (IECC) (2015), which focuses of energy-efficiency measures in new buildings.

From a building regulatory policy perspective, is resiliency, as reflected in general government policy, addressed within the building regulations?

Yes

Australia, China, England, Japan, Netherlands, New Zealand, Norway, Scotland, Singapore, Spain, Sweden, US

While it is noted that ‘resiliency’ is addressed in building regulations in all countries, the situation here is somewhat complex, as with the case of national resiliency policy. In all countries, resiliency against ‘normal’ loads such as wind, snow, earthquake and the like, as appropriate to the country, is included. However, fewer countries have explicit infrastructure and security resiliency clauses beyond these, and countries addressing resiliency to climate change impacts through building regulations are even fewer. In some cases, this is not because of lack of interest, but more related to lack of knowledge and data from the experts.

In Australia, for example, the Australian Building Codes Board (ABCB) recognizes that they are not the experts on climate change, but need input from experts and other stakeholders, and released a Discussion Paper in 2014 to inform and seek feedback from stakeholders on the resiliency of new buildings to extreme weather events (ABCB, 2014). Some of the issues are identified by McDonald (2014) as including the fact that the National Construction Code of Australia (NCC) currently does not cover hail, storm tide or have specific requirements relating to heat stress, but that some of the largest insurance property losses result from hail damage, and that storm tide is potentially a very high risk in low-lying coastal communities, especially those subject to the risk of cyclones. However, it is acknowledged that any proposed changes would need to pass regulation impact analysis, and it is unlikely that requiring all external building materials to resist hail impact would be cost effective, and it would be very costly and restrictive to design and construct buildings to resist storm surge because of the significant water forces involved. Ultimately, the feedback to be obtained from stakeholders is expected to inform the ABCB on strategic advice it provides to governments in identifying future areas to focus its activities.

In the Netherlands, which has a significant coastal flooding concern, flooding is not regulated within the Building Regulations, but is part of the Act ‘Deltawet waterveiligheid en zoetwatervoorziening,’ which addresses flood protection and care of fresh water in relation to the expected climate change, under the responsibility of the Ministry of Infrastructure and the Environment. However, potentially surprising to some, the Building Decree will be addressing earthquake in the future, to address man-induced earthquakes which occurs frequently in the Northern part of the Netherlands due to gas production for many decades.

The examples from Australia and the Netherlands are reflective of challenges that other countries face as well – with numerous stakeholders providing input and various regulatory bodies having jurisdiction over resiliency, it can be difficult to craft holistic policies and legislation for the built environment. Climate change science is still developing. People live in areas of changing hazards. As will be highlighted later, it is challenging to upgrade existing buildings. These are but a few areas which need to be addressed.

Are building regulations in your country applicable to existing buildings?

Building regulations have traditionally been developed to apply to new construction. As a growing percentage of the construction activity is with the renovation, transformation, extension and upgrading of existing buildings more countries are engaged in developing regulatory tools for existing buildings (Meacham, 2009). In 2007, the IRCC conducted a survey of member countries with respect to building regulation and existing buildings. A summary of the 2007 survey results was published by Bergeron (2008).
Some of the key outcomes of the survey include the following:

- An important aspect of regulation for existing buildings is the determination of the performance level required from building upgrades. In many countries this is achieved by comparing existing building upgrades to the performance levels required for new construction.

- A fundamental difficulty encountered is the unavailability of sufficient knowledge to express the performance target of building regulations in quantified measurable terms that can be verified. Developing tools and methods to help develop these performance parameters is essential to the success of this approach.

- In some countries the regulations make allowance for risk-based approaches for determining what constitutes an acceptable level of performance. With the rapid expansion of the scope of regulations from the traditional fire and safety issues, to emerging social objectives such as accessibility and resource conservation, new decision-making tools need to be developed to support this approach.

From the 2015 survey, the situation appears to be generally unchanged. It was reiterated by several countries that regulations for new buildings are applicable to existing buildings, but whenever any intervention takes place in an existing building (expansion, renovation or change of use) due consideration should be given to proportionality, flexibility and no worsening of the conditions. How this is done, however, varies, and tools are sought to help make reasonable risk–cost–performance decisions.

The challenges have become highlighted when considering building retrofit for energy performance, which can have an impact on other building performance objectives (e.g., Meacham et al., 2012; Sanchez-Ostiz, Meacham, Echeverria, & Pietroforte, 2014). This is especially true given that most countries have voluntary (market-based) mechanisms aimed at helping to increase sustainability in buildings, for which regulatory oversight may not occur.

Challenges are also highlighted for existing buildings within areas impacted by climate-related events, such as drought and subsequent wildland (bush) fire (e.g., Australia and parts of the US), coastal storm surge and flooding (e.g., Netherlands et al., Australia, US), increased snow load (e.g., New Zealand) and more. In concept the challenge is not new – we have to deal with earthquake and other hazards, and adjust the building regulations as needed. However, in this case, numbers of buildings/people at risk may be higher, while ability to predict impact is not as reliable. Data, tools and methods for predicting a broad range of impacts, at a regional level to a building level, remain needed.

In your country, have any sustainability measures been mandated for existing buildings through regulation?

Country	Yes	No	Variable
Netherlands, Scotland, Singapore, Spain, Sweden	China, England, New Zealand, Norway	Australia, Japan, US	

While the summary indicates significant movement in addressing sustainability measures in existing buildings, many of the legislated requirements are associated with energy performance certification, or are only triggered if significant renovation is being undertaken (see the above section on existing buildings).

In Australia the Department of Industry, Innovation and Science delivers the Commercial Building Disclosure (CBD) Programme which mandates the disclosure of energy efficiency information for commercial office spaces of 2000 m2 or more (CBD, 2015). Disclosure of this information before sale or lease assists prospective buyers and tenants to make informed decisions. The CBD Programme is an initiative of the Council.
of Australian Governments (COAG). The Australian Capital Territory (ACT) introduced under the ACT’s House Energy Rating Scheme (ACTHERS) in 1999 a requirement for the disclosure of an existing dwelling’s energy rating in all advertisements for sale, and that the contract of sale includes information about the buildings Energy Efficiency Rating. Minimum Energy Performance Standards (MEPS) Regulations apply in Australia for individual domestic appliances. MEPS is regulated through Commonwealth legislation, i.e., the Greenhouse and Energy Minimum Standards (GEMS) Act 2012. It allows consumers to make informed decisions regarding the performance of individual domestic appliances.

As noted above, for EU member countries, the 2010 Energy Performance of Buildings Directive and the 2012 Energy Efficiency Directive are principal pieces of legislation. Under the Energy Performance of Buildings Directive:

- Energy performance certificates are to be included in all advertisements for the sale or rental of buildings.
- EU countries must establish inspection schemes for heating and air conditioning systems or put in place measures with equivalent effect.
- All new buildings must be nearly zero energy buildings by 31 December 2020 (public buildings by 31 December 2018).
- EU countries must set minimum energy performance requirements for new buildings, for the major renovation of buildings and for the replacement or retrofit of building elements (heating and cooling systems, roofs, walls, etc.).
- EU countries have to draw up lists of national financial measures to improve the energy efficiency of buildings.

Under the Energy Efficiency Directive:

- EU countries make energy efficient renovations to at least 3% per year of buildings owned and occupied by central government
- EU governments should only purchase buildings which are highly energy efficient
- EU countries must draw-up long-term national building renovation strategies which can be included in their National Energy Efficiency Action Plans

In Japan, Article 11 of the Act for the Improvement of the Energy Saving Performance of Buildings states that the owner of a building undergoing major renovations exceeding a certain size is obliged to make them comply with the energy consumption performance standard. In the US, existing buildings undergoing major renovations are required to meet current building codes, including for energy performance.

Are there market-based approaches to enhance sustainability in existing buildings?

Yes

Australia, China, England, Japan, Netherlands, New Zealand, Norway, Scotland, Singapore, Spain, Sweden, US

As one might expect, all countries have voluntary mechanisms to help enhance sustainability in existing buildings. A representative sampling includes:

- Australia: *Green Star* is a national, voluntary, industry-developed sustainability rating system for buildings and communities. The National Australian Built Environment Rating System (NABERS) is a government-developed national rating system that measures the environmental performance of Australian buildings, tenancies and homes. NABERS is mandatory where required to comply with the Commercial Building Disclosure (CBD) Programme.
- England: BREEAM is voluntary, sustainability rating system for buildings, and is used mainly in commercial buildings. The Code for Sustainable Homes ceases to have effect in October, to be replaced by the Home Quality Mark system.
- Japan: Energy saving performance can be indicated in BELS: Building Energy-efficiency Labeling System, overall environmental performance can be indicated in CASBEE: Comprehensive Assessment System for Built Environment Efficiency, and energy-saving performance of housing can be indicated in the housing performance indicator system.
- New Zealand: The New Zealand Green Building Council (NZGBC) promotes several green star rating systems, including greenstar, homestar and NABERS/NZ.
- Singapore: The BCA *Green Mark* is a rating system to assess a building’s environmental
impact and recognize its sustainability performance, designed specifically for buildings in the tropics.

- **Sweden**: Miljöbyggnad is a voluntary Swedish environmental assessment system developed by Boverket a few years ago and now managed by the Sweden Green Building Council.

- **US**: There are several systems, including LEED, a green building certification programme that recognizes best-in-class building strategies and practices and the Energy Star system for homes and businesses.

Have any resiliency measures been mandated for existing buildings through regulation?

Yes	No	Variable
Australia, China, Japan, Netherlands, New Zealand, Scotland	England, Norway, Singapore, Spain, Sweden	US

The answer to this question closely tracks the responses with national resiliency policy and existing building policy outlined above. In most cases, mandated resiliency upgrades are for specific hazards, such as earthquake, with upgrades associated with resiliency requirements associated with climate change effects less prevalent. This seems likely due to the complexity of the problem. As noted by Thompson, Cooper, and Gething (2015; as cited in Foxell & Cooper, 2015, p. 403), ‘climate change is the prime example of a well-recognized but still intractable policy issue for almost all sectors and certainly for the built environment’.

As an example of earthquake upgrade requirements for existing buildings, New Zealand focuses on ‘earthquake-prone buildings’, which are defined as those having one-third the capacity of a new building at that location. While some changes are underway to the legislation, most seismic assessment of buildings is conducted by following New Zealand Society for Earthquake Engineering (NZSEE) guidelines (NZSEE, 2014; 2015). These too are currently undergoing a major revision based on the new proposed legislation and the lessons from Canterbury. In addition, New Zealand is also reviewing requirements for snow loading and flooding, based on recent events.

Are there voluntary regulatory measures, or voluntary market mechanisms, to enhance resiliency in existing buildings?

Yes	No
New Zealand, Norway, Scotland, Sweden	Australia, China, England, Japan, Netherlands, Singapore, Spain

Here again, the mechanisms are largely related to long-known natural hazards, such as earthquake. However, there are some mechanisms for flooding, which is a potential climate change effect.

For example, in Japan, voluntary seismic retrofitting under the Law for Promotion of Seismic Retrofitting of Buildings exempts the owners from application of other requirements. In New Zealand, NZSEE has a rating scheme to encourage building owners to upgrade to a higher level, which has seen an uptake in use since the Canterbury earthquakes. This is having a significant impact on the market, particularly in Wellington where the seismic hazard is greater.

In Scotland there are a number of guidance documents available for flood protection, as well as industry guidance and advice. The same is the case in the US, where guidelines on seismic rehabilitation of buildings, flood protection and protection against other hazards is available from the Federal Emergency Management Agency (FEMA), the American Society of Civil Engineers (ASCE) and others (e.g., FEMA 114,1986; FEMA 356, 2000; and FM Global 1–28, 2012).

Have there been any failures of/gaps in/challenges to your system, particularly as related to sustainability or resiliency policies or issues?

Yes	No
Australia, England, Netherlands, New Zealand, Scotland, Spain, US	China, Japan, Norway, Singapore, Sweden

This question is actually quite complex, and a yes or no answer is not that simple. Many countries have identified existing buildings as presenting building regulatory policy challenges for sustainability and resiliency. Existing buildings are not specifically a new challenge, but the new objectives, and assessment of actual versus intended performance, is providing new focus.
In Australia, the Commonwealth Scientific and Industrial Research Organization (CSIRO) was contracted to evaluate the effectiveness of the 5-star energy efficiency standard for houses introduced in 2006, compared with the previous 3.5–4-star standard. The resulting report, The Evaluation of the 5-Star Energy Efficiency Standard for Residential Buildings, is the first evaluation of energy efficiency standards for houses in Australia based on comparison of actual energy use (Ambrose, James, Law, Osman, & White, 2013). The study monitored the energy use of more than 400 houses (with around half the houses undergoing more detailed monitoring of heating and cooling) in Brisbane, Melbourne and Adelaide, from June 2012 to February 2013. One of the findings was that the expected energy ratings of the houses in the sample have not increased in line with the changes in building regulation. This tracks with published research about the how well voluntary rating schemes do at actually delivering cost savings and expected performance (e.g., Newsham et al., 2009; Oates & Sullivan, 2012; Scofield, 2009), the point being that both mandatory and voluntary approaches appear to have difficulty in delivering on projected outcomes.

Comments from England and Scotland suggest growing concern that increasing the energy efficiency of buildings will lead to problems of poor air quality in homes, moisture damage to fabric, and overheating in summer. The moisture and indoor air quality issues were seen with New Zealand’s ‘leaky building’ problem (May, 2003; Meacham, 2010), and similar issues have been observed in Sweden and the US as well (Hagentoft, 2011; Odom et al., undated). In Scotland, survey feedback indicates that there is evidence that either poorly designed or extremely well built air tight buildings are causing poor indoor air quality and leading to the increase in respiratory diseases. With the ever increasing drive to improve energy efficiency this is likely to acerbate the IAQ issue. There is also evidence that poorly executed energy efficiency retrofitting projects have led to fire and moisture issues with existing buildings. There are numerous reports of fires related to energy retrofits and alternative energy installations on buildings (Meacham et al., 2012), which supports these concerns.

For several countries, issues associated with how to address sustainability and resiliency in existing buildings – to what level should they perform, what is the basis of the performance analysis, and what is an appropriate regulatory instrument – was identified as a significant concern. Tied closely to this is the need for quantitative performance metrics in the building regulations, which several countries identified as well. This is not only for sustainability and resiliency, but across regulation. It becomes focused when new objectives, such as energy performance of buildings, compete with safety objectives, such as fire performance of buildings.

Conclusions

A review of the literature and responses to survey of IRCC members (Table 1) reflect that challenges exist with performance-based building regulatory systems due to lack of clear performance criteria, verification methods and related issues. Outcomes also indicate that challenges exist in incorporating sustainability and resiliency into building regulation, for both new and existing buildings, because these social objectives are not yet being viewed as having the same level of importance, or equivalent level of social compact between government and the public, as providing for minimum levels of health and safety in buildings.

While a review of the literature and responses from the survey reflect sustainability objectives are being included in building regulations, it has also been found that their inclusion has been triggered from outside of the ‘traditional’ building regulatory system actors, and it appears that holistic or integrated performance has not been fully assessed (i.e., making sure that adding a new objective does not result in an unanticipated impact somewhere else). This failure fully to assess potential impacts has resulted in observable, if not fully measured, reduction in performance for some areas, such as fire safety, structural safety and occupant health.

While the literature suggests that resiliency to climate change effects, narrowly viewed as resulting in hazards such as drought, increased rain, wind and snow loads, sea level rise and storm surge, should be addressed at all levels of government, survey results indicate that such objectives are generally not explicitly addressed in the building regulations of the responding countries.

Overall, the literature review and survey responses suggest that addressing sustainability and resiliency objectives for existing buildings is the greatest challenge, since regulatory oversight is low, building modifications associated with increasing sustainability (e.g., more insulation, alternative energy sources) is becoming a concern, and it is extremely costly to increase the overall performance of existing buildings to that expected for new construction.

To address these issues, research suggests that a better understanding of holistic building performance is needed, along with the data and tools to assess performance, and more integrated regulatory and market measures are needed to achieve societal expectations for safe, healthy, sustainable and resilient buildings.
Table 1 Summary responses to selected survey questions

	Australia	Canada	England	Japan	Netherlands	New Zealand	Norway	Scotland	Singapore	Spain	Sweden	US
1	✓	✓	✓	✓	✓	X	✓	✓	✓	✓	✓	✓
2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
4	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
6	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
7	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
8	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
9	X	X	X	X	X	✓	✓	✓	X	✓	✓	✓
10	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Notes: ✓ = yes; X = no; V = varies.
Acknowledgements
The author sincerely thanks the members and affiliates of the Inter-jurisdictional Regulatory Collaboration Committee (IRCC) for their assistance in responding to the survey referenced in this paper, and for their continued collaboration in sharing experiences, challenges and future directions related to the building regulatory systems in their countries. The author also thanks the referees for their insightful comments, which helped to improve the quality of this paper.

Disclosure statement
No potential conflict of interest was reported by the author.

Supplementary data
Supplemental data for this article can be accessed at: 10.1080/09613218.2016.1142330.

References
ABCBS. (2014). Resilience of buildings to extreme weather events – ABCB discussion paper. Canberra, Australia: Australian Building Codes Board. Retrieved November 15, 2015 from http://www.abcb.gov.au/work-program/Natural%20Disaster%20Mitigation.aspx

Ambrose, M. D., James, M., Law, A., Osman, P., & White, S. (2013). The evaluation of the 5-star energy efficiency standard for RESIDENTIAL buildings – final report. Canberra, Australia: Department of Industry. Retrieved from http://www.industry.gov.au/Energy/Documents/Evaluation5StarEnergyEfficiencyStandardResidentialBuildings.pdf

Babrauskas, V., Lucas, D., Eisenberg, D., Singla, V., Dedeo, M. and Blum, A. (2012). Flame retardants in building insulation: A case for re-evaluating building codes. Building Research & Information, 40(6), 738–755. doi:10.1080/09613218.2012.744533

BCESR. (2008). Building Control (Environmental Sustainability) Regulations 2008. Building Control Act, Chapter 29, Ministry for National Development, Singapore.

BEL. (1993). The basic environment law. Tokyo: Ministry of the Environment, Government of Japan. Retrieved November 15, 2015, from http://www.env.go.jp/en/laws/policy/basic/index.html

Bergeron, D. (2008). Codes for existing buildings: Different approaches for different countries. Proceedings. 7th International Conference on Performance-Based Codes and Fire Safety Design Methods. Society of Fire Protection Engineers, Bethesda, MD, pp. 15–23.

Boverket. (2011). Boverket’s mandatory provisions on the amendment to the Board’s building regulations (2011:6) – mandatory provisions and general recommendations. Sweden: Author. Retrieved November 15, 2015, from http://www.boverket.se/globalassets/publikationer/dokument2012/bbr-engelsk/bfs-2011-26_introduktion.pdf

Brinon, R. A. and Dolan, J. B. (2008). Emerging risks of green construction. Structural Engineering Magazine, NCSEA/SEI, June 2008.

BRRTF. (1991). Microeconomic reform building regulation (Report of the Building Regulation Review Taskforce). Dr. John Nutt, Chair, Canberra, ACT, Australia, 1991.

CBD. (2015). Commercial Building disclosure – A national energy efficiency program. Canberra, ACT, Australia:

Department of Industry and Science, Australian Government. Retrieved November 15, 2015, from http://www.cbd.gov.au/

CCSA. (2009). Climate change (Scotland) Act 2009. Edinburgh, Scotland: Scottish Government.

Chan, C.-K., Chan, E. H. W., & Quin, Q. K. (2014). Building regulatory control in facing the challenge of climate change: A case of Hong Kong. Proceedings, WSB14. Green Building Council Espana, Madrid, Spain.

Cheit, R.E. (1990). Setting safety standards: Regulation in the public and private sectors. Berkeley, CA: University of California Press.

Chow, W. K., Hung, W. Y., Gao, Y., Zou, G., & Dong, H. (2007). Experimental study on smoke movement leading to glass damages in double-skinned façade. Construction and Building Materials, 21, 556–566. doi:10.1016/j.conbuildmat.2005.09.005

Cole, R. J. (2011). Motivating stakeholders to deliver environmental change. Building Research & Information, 39(5), 431–435. doi:10.1080/09613218.2011.599057

DBH. (2011). Compliance document for New Zealand building code, clause H1, energy efficiency (3rd ed.). Wellington, New Zealand: Department of Building and Housing (now incorporated into the Ministry of Business, Innovation and Employment).

Dodds, B. (2014). Sustainability labelling for building standards. Proceedings, WSB14, Green Building Council Espana, Madrid, Spain.

du Plessis, C., & Cole, R. J. (2011). Motivating change: Shifting the paradigm. Building Research & Information, 39(5), 436–449. doi:10.1080/09613218.2011.582697

Energy Efficiency Directive (EED). (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency. Brussels.

Energy Performance of Buildings Directive (EPBD). (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Brussels.

Eurocode. (2015). Retrieved November 15, 2015, from http://www.eurocode-online.eu/en/eurocode-information/history-of-eurocodes

FEMA 114. (1986). Design manual for retrofitting floodprone residential structures. Washington, DC, US: Federal Emergency Management Agency, Department of Homeland Security.

FEMA 356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Washington, DC, US: Federal Emergency Management Agency, Department of Homeland Security.

Field, C. G., & Rivkin, S. R. (1975). The building code Burden. Lexington, MA: Lexington Books, D.C. Heath and Company.

FM Global 1–28. (2012). Wind design. Johnston, RI, US: FM Global Property Loss Prevention Data Sheet 1–28, FM Global.

Foxell, S., & Cooper, I. (2015). Closing the policy gaps. Proceedings, WSB14. Green Building Council Espana, Madrid, Spain.

Foxell, S., & Cooper, I. (2015). Closing the policy gaps. Proceedings, WSB14. Green Building Council Espana, Madrid, Spain.

Geschwind, C. H. (2001). California earthquakes: Science, risk and the politics of hazard mitigation. Baltimore, MD, US: The Johns Hopkins University Press.

Hagentoft, C.-E. (2011). Probabilistic analysis of hygrothermal conditions and mould growth potential in cold attics: Impacts of weather, building systems and constructions design characteristics. International Conference on Durability of Building Materials and Components, Porto, Portugal, 12–15 April. Retrieved November 15, 2015, from http://www.irbnet.de/daten/iconda/CIB22349.pdf

Hemenway, D. (1975). Industrywide voluntary product standards. Cambridge, MA: Ballinger Publishing Company.

487
Scofield, J. H. (2009). Do LEED-certified buildings save energy? Not really… Energy and Buildings, 41(12), 1386–1390. doi:10.1016/j.enbuild.2009.08.006

Serra, J., Tenorio, J. A., Echeverria, J. B., & Sanchez-Ostiz, A. (2014). Perspective of the building sustainability regulatory evolution in Spain: From prescription to performance. Proceedings, WSB14. Green Building Council Espana, Madrid, Spain.

Simmons, R. (2015). Constraints on evidence-based policy: Insights from government practices. Building Research & Information, 43(4), 407–419. Retrieved from http://dx.doi.org/10.1080/09613218.2015.1002355

Simonson McNamee, M., Blomqvist, P., & Andersson, P. (2011). Evaluating the impact of fires on the environment. Proceedings, 10th International Association of Fire Safety Science.

Stannard, M. (2014). Sustainability, resilience and risk in earthquake-prone areas: Lessons for building regulators from the Canterbury earthquakes. Proceedings, WSB14. Green Building Council Espana, Madrid, Spain.

Steenbergen, R. D. J. M., Geurts, C. P. W., & van Bentum, C. A. (2009). Climate change and its impact on structural safety. HERON, 54(1), 3–36.

Sweden. (2003). Policy on global development, Swedish parliament (Riksdag). Retrieved November 15, 2015, from http://www.regeringen.se/contentassets/6e3e3737190234406ace1a3796b8a8ed9/ud-info—fact-sheet—swedens-policy-for-global-development

Thompson, M., Cooper, I., & Gething, B. (2015). The business case for adapting buildings to climate change. Niche or mainstream, Legacy Document, Design for Future Climate Programme, UK Innovate (formerly Technology Strategy Board) Swindon, UK (as cited in Foxell and Cooper, 2015, p. 403).

UL. (2008). Report on structural stability of engineered lumber in fire conditions. Project Number 07CA42520, Underwriters Laboratories, Northbrook, IL, US. Retrieved November 15, 2015 http://ul.com/global/documents/offering/industries/buildingmaterials/fireservice/NC9140-20090512-Report-Independent.pdf

Van Bueren, E., & de Jong, J. (2007). Establishing sustainability: Policy successes and failures. Building Research and Information, 35(5), 543–556. doi:10.1080/09613210701203874

Visscher, H. J., & Meijer, F. M. (2014). Impact of energy efficiency goals on systems of building regulations and control. Proceedings, WSB14. Green Building Council Espana, Madrid, Spain.

Wermeil, A. E. (2000), The fireproof building: Technology and public safety in the nineteenth-century American city. Baltimore, MD, US: The Johns Hopkins University Press.

Wilby, R. L. (2007). A review of climate change impacts on the built environment. Built Environment, 33(1), Climate Change and Cities, 31–45. doi:10.2148/benv.33.1.31

Yatt, B. D. (1998). Cracking the codes: An architect’s guide to building regulations. New York, NY: Wiley.

Endnotes

1In Sweden, essentially the same requirements are applied for both the construction of a new building as well as the alteration. For alterations, however, one should always take into account the scope of the alteration in accordance with Chapter 8, Article 7 of the Planning and Building Act and with Chapter 3, Article 23 of Planning and Building Ordinances as well as the building’s conditions when the requirements apply. The requirements for new constructions are never directly applicable to alterations. However, one can often obtain some guidance from these for assessing the implications of the requirements for the alterations. For alterations, however, the requirements are often met through other solutions than for the construction of new buildings (Boverket, 2011).

2To comply with EU regulations on energy efficiency as part of the 20/20/20 plan, a system of energy certification of buildings for both new construction and for existing buildings that are sold or rented was implemented in 2013.