Exploring cation disorder in mixed-metal pyrochlore ceramics using 17O NMR spectroscopy and first-principles calculations

Arantxa Fernandes1 | Robert F. Moran1 | David McKay1 | Ben L. Griffiths1 | Anna Herlihy1 | Karl R. Whittle2 | Daniel M. Dawson1 | Sharon E. Ashbrook1

1School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, St Andrews, UK
2School of Engineering, University of Liverpool, Liverpool, UK

Correspondence
Daniel M. Dawson and Sharon E. Ashbrook, School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK.
Email: dmd7@st-andrews.ac.uk; sema@st-andrews.ac.uk

Present address
David McKay, EPCC, University of Edinburgh, Bayes Building, 47 Potterrow, Edinburgh, EH8 9BT, UK.

Funding information
Engineering and Physical Sciences Research Council, Grant/Award Number: EP/M022501/1; FP7 Consolidator: European Research Council, Grant/Award Number: 614290; University of Reading: Wolfson Foundation, Grant/Award Number: Wolfson Merit Award

Abstract
Characterising the local structures (e.g., the cation distribution) of mixed-metal ceramics by NMR spectroscopy is often challenging owing to the unfavourable properties (low γ, large quadrupole moment and/or low abundance) of many metal nuclei. 17O is an attractive option owing to the prevalence of oxygen within ceramics. The moderate γ and small quadrupole moment of 17O mean that the greatest barrier to accessing the information available from this nucleus is isotopic enrichment. We explore the challenges of ensuring uniform isotopic enrichment with 17O$_2$(g) for the pyrochlore solid solutions, Y$_2$Sn$_{x}$Ti$_{2-x}$O$_7$, La$_2$Sn$_x$Zr$_{2-x}$O$_7$ and La$_2$Sn$_x$Hf$_{2-x}$O$_7$, demonstrating that high enrichment temperatures (900 °C for 12 hr) are required. In addition, for sites with very high symmetry (such as the tetrahedral OY$_4$ and OLa$_4$ sites with $C_Q \approx 0$ present here), we demonstrate that quantitative 17O NMR spectra require correction for the differing contributions from the centreband of the satellite transitions, which can be as high as a factor of \sim3.89. It is common to use first-principles calculations to aid in interpreting NMR spectra of disordered solids. Here, we use an ensemble modelling approach to ensure that all possible cation arrangements are modelled in the minimum possible number of calculations. By combining uniform isotopic enrichment, quantitative NMR spectroscopy and a comprehensive computational approach, we are able to show that the cation distribution in Y$_2$Sn$_{x}$Ti$_{2-x}$O$_7$ is essentially random, whereas in La$_2$Sn$_x$Zr$_{2-x}$O$_7$ and La$_2$Sn$_x$Hf$_{2-x}$O$_7$, OLa$_2$SnZr and OLa$_2$SnHF sites are slightly energetically disfavoured, leading to a weak preference for clustering of like cations.
1 | INTRODUCTION

Oxides play an important role in technology and industry, with applications in catalysis, as electrode materials, in the energy arena, as pigments and ceramics, and in the immobilization of radioactive waste. The crystal chemical flexibility of oxide structures allows the fine tuning of their physical and chemical properties upon substitution of iso- or aliovalent ions. However, structural characterization of such disordered systems can be challenging; only information on the average structure is provided by techniques based on Bragg diffraction, but the local chemical structure has a significant impact on how a material behaves. Understanding the number and distribution of species within the crystal lattice is a vital step in understanding the structure–property relationship and, ultimately, in the future design of novel and improved functional materials. NMR spectroscopy provides an ideal tool for the characterisation of disordered solids, with its sensitivity to the local environment, and the recent combination of experiment with computation (often referred to as NMR crystallography) has facilitated the interpretation of the complex spectral lineshapes that are often encountered.

For oxides, oxygen NMR spectroscopy should be expected to be a useful (perhaps even routine) tool, potentially providing insight into the cation distribution in mixed-metal systems. However, such measurements are limited by the low natural abundance of the only NMR-active isotope of O, 17O (0.037%), while its high spin quantum number ($I = 5/2$) leads to spectra affected by second-order quadrupolar broadening, limiting both sensitivity and resolution. Solutions to the latter problem include the use of higher magnetic fields and two-dimensional approaches such as multiple-quantum MAS (MQMAS) NMR experiments. In the former case, the easiest solution is isotopic enrichment. However, this is typically very costly, often requiring the adaption of synthetic methods to ensure the enrichment is cost effective and atom efficient, with recent work exploiting ionothermal synthesis, dry gel conversion reactions, solvent steaming, reversible small scale hydrolysis and ionothermal synthesis, dry gel conversion reactions, effective and atom efficient, with recent work exploiting synthetic methods to ensure the enrichment is cost effective and atom efficient. However, such measures are expected to be a useful (perhaps even routine) tool, allowing (assuming quantitative measurements can be made) the composition and distribution of cations to be investigated. Periodic planewave density functional theory (DFT) calculations on a suite of disordered structural models are used alongside 17O NMR experiments on isotopically enriched materials, to aid interpretation and assignment of the spectral signals and to provide insight into the origin of the changes in the NMR parameters that are observed. This complementary approach should offer new insight into disorder in these important materials and allow the evaluation of the value of such measurements to oxides more generally.

2 | METHODS

2.1 | Synthesis and X-ray diffraction

Materials were prepared using a conventional mixed metal oxide process. Stoichiometric quantities of commercially available Y_2O_3 (Sigma Aldrich, 99%), La_2O_3 (Sigma Aldrich 99.9%), SnO_2 (Sigma Aldrich, 99.9%), TiO_2 (Sigma-Aldrich 99%), ZrO_2 (Sigma-Aldrich 99%) or HfO_2 (Sigma Aldrich, 99%) were heated at 800–850 °C for 10 hr to dry, before being ball milled in ZrO_2 media (600 rpm) with acetone. After drying, the resultant powders were pressed into pellets using a uniaxial press. $Y_2Sn_2Ti_2-xO_7$, $La_2Sn_2Zr_2-xO_7$ and $La_2Sn_2Hf_{2-x}O_7$. For $Y_2Sn_2Ti_{2-x}O_7$, ^{89}Y and ^{119}Sn (both I = 1/2) NMR spectroscopy have been used previously for structural characterization of $Y_2Sn_2Ti_{2-x}O_7$. MAS NMR experiments, first-principles calculations (and more recently ensemble-based modelling approaches), revealed that the ^{89}Y and ^{119}Sn isotopic chemical shifts are sensitive to small changes in the local environment (in the number of Sn/Ti next nearest neighbours (NNN) and in their spatial arrangement). However, the resulting NMR spectra contain complex and overlapped resonances (particularly for ^{119}Sn), which cannot be easily be unambiguously decomposed, limiting quantitative analysis. Comparison of the experimental spectra to those simulated using an ensemble of all possible models suggested that the cation distribution was close to random; however, there was some evidence for low levels of clustering/ordering of like cations. In principle, the large shift range of ^{17}O and the presence of both the chemical shielding and quadrupolar interactions should make this nucleus a sensitive probe of the local structure, allowing (assuming quantitative measurements can be made) the composition and distribution of cations to be investigated. Periodic planewave density functional theory (DFT) calculations on a suite of disordered structural models are used alongside 17O NMR experiments on isotopically enriched materials, to aid interpretation and assignment of the spectral signals and to provide insight into the origin of the changes in the NMR parameters that are observed. This complementary approach should offer new insight into disorder in these important materials and allow the evaluation of the value of such measurements to oxides more generally.
cooled, reground, pressed into pellets and heated at 1400 °C for a further 24 hr.

Samples were studied by powder X-ray diffraction (PXRD) to determine phase purity using a PANalytical Empyrean Diffractometer, with CuKα1 (λ = 1.540598 Å) radiation operating at 45 mA, and 40 kV, with an X’celerator linear detector. Patterns were collected over the 2θ range of 10° to 80°, with a step size of 0.02°, and step duration of 0.4 s per step (total experimental time 1–2 hr). For the end members, patterns were compared with those from the ICSD. All mixed-metal materials were confirmed to be single phase pyrochlore using PXRD. See Supporting Information for further information.

2.2 | Isotopic enrichment

Samples were enriched by condensing ~0.03 L of 70% 17O2(g) (Cortecnet) into a pre-evacuated quartz vial containing ~0.20 g of oxide, before heating in a tube furnace at temperatures of 900 °C for 12 h (unless otherwise stated). A ramp rate of 5 °C min−1 was used for heating and cooling. No significant changes were seen in PXRD patterns after enrichment. Enrichment levels were estimated to be ~5%–7% by comparison to NMR spectra of a sample of 17O-enriched Y2Sn2O7, determined in previous work,[27] containing secondary ion mass spectrometry to be enriched to 5%.

2.3 | NMR spectroscopy

17O NMR spectra were acquired using a Bruker Avance III 600 MHz spectrometer, equipped with a wide-bore 14.1 T magnet, at a Larmor frequency of 81.4 MHz. Powdered samples were packed into 3.2 mm thin-walled ZrO2 rotors and rotated at 18–21 kHz, using a 3.2 mm HX probe. Spectra were acquired using a radiofrequency nutation rate, ν1, of ~71 kHz, a pulse duration of 0.5 μs (π/14) and a recycle interval of 5 s (except where otherwise stated), and are the result of averaging between 1024 and 2048 transients. Chemical shifts are given in ppm relative to distilled H2O(l). T1 measurements were performed using a saturation recovery experiment (also with a short flip angle pulse), with a typical saturation train of 100 pulses separated by intervals of 10 ms. 17O MQMAS spectra were acquired using a z-filtered pulse sequence[26] with ν1 of ~71 kHz for the excitation and conversion pulses and a CT-selective (ν1 of ~3 kHz) π/2 pulse. Spectra are shown after shearing and the δ1 axis is referenced according to the convention of Pike et al.[27]

Fitting of the spectral lineshapes was carried out using the SOLA program (available within the Topspin software). Experimental intensities were compared to those in spectra simulated using the density matrix simulation program SIMPSON[28] as described by Fernandes et al.[16] Spectra were simulated at 14.1 T (under the experimental conditions described above) using detection operators of I1x (i.e., all single-quantum coherences from the central transition (CT) and satellite transitions (ST)) or I1c (i.e., only CT coherences), using 250 × 320 angles.

2.4 | Calculations

Calculations were carried out using the CASTEP DFT code (version 8.0 or version 16.0),[24] employing the gauge-including projector augmented wave (GIPAW)[25] approach to reconstruct the all-electron wavefunction in the presence of a magnetic field. Calculations were performed using the GGA PBE functional,[29] with core-valence interactions described by ultrasoft pseudopotentials, and accounting for scalar relativistic effects using ZORA.[30,31] A planewave energy cutoff of 60 Ry (~816 eV) was used, and integrals over the first Brillouin zone were performed using a Monkhorst-Pack grid[32] with a reciprocal space grid spacing of 0.04 2π Å−1. In the geometry optimisation all atomic coordinates and unit cell parameters were allowed to vary, with a geometry optimization energy tolerance of 1 × 10−5 eV per atom and an decreased electronic structure energy tolerance of 1 × 10−9 eV per atom, as discussed in more detail in previous work.[23] For each solid solution, a complete set of 279 symmetry unique structural models (containing a total of 15,624 unique O sites) was generated as described by Moran et al.[23] using the site occupancy disorder (SOD) program,[33] and the geometry of each model was then optimised using CASTEP. See the Supporting Information for more detail.

Diagonalisation of the absolute shielding tensor, σ, yields the three principal components, σ11, σ22 and σ33, from which the isotropic shielding is given by σiso = (σ11 + σ22 + σ33)/3. The corresponding computed chemical shift tensor, δ, and isotropic chemical shift, δiso, can be determined from σ to aid comparison to experiment. The details of the referencing procedures used in this work are given in the Supporting Information. Diagonalisation of the electric field gradient tensor, V, gives the principal components VXX, VYY and VZZ, from which the magnitude of the quadrupolar interaction, CQ = eQVZZ/h, and the asymmetry parameter, ηQ = (VXX − VYY)/VZZ, can be determined. Q is the nuclear quadrupole moment, for which a value of 25.58 mb was
used for 17O.$^{[34]}$ The quadrupolar product is defined as $P_Q = C_Q(1 + \eta_Q^2/3)^{1/2}$.

3 RESULTS AND DISCUSSION

As shown in Figure 1, the $A_2B_2O_7$ pyrochlore structure (space group $Fd\bar{3}m$) is based on a supercell of AO_2 fluorite, with the ordered removal of 1/8th of the oxygen anions.$^{[35–37]}$ In addition to an eight-coordinate A site and six-coordinate B site, this results in two crystallographically distinct O species; O_{1}, coordinated by four A cations and O_{2}, coordinated by two A and two B cations, which occupy the Wyckoff 8a and 48f sites, respectively. (Note that in some pyrochlore crystal structures in the literature the definition of O_{1} and O_{2} is reversed, but here we follow the nomenclature of Brisse and Knop$^{[38]}$). A pyrochlore phase is formed when the ratio of the radii of the A and B cations (r_A/r_B) is between 1.46 and 1.78 (with defect fluorite and layered perovskite phases usually formed if the ratio is lower or higher, respectively).$^{[35–37]}$

The pyrochlore structure is able to incorporate a diverse range of elements, can tolerate both cation and anion disorder, and supports variable oxidation states, resulting in over 500 known synthetic compositions. Lanthanide and actinide pyrochlores are of particular interest for use in the safe long-term disposal of radioactive waste, and are often found as components within ceramic wasteforms such as Synroc.$^{[39]}$ Titanate pyrochlores exhibit high chemical durability, while the substitution of elements such as Zr or Hf increases the resistance of the system to amorphization.$^{[39]}$ The ability to mix cations, and thus modify the properties of the pyrochlore materials, is key to the design of improved materials.

Figure 2 shows 17O MAS NMR spectra of five pyrochlore end members, $Y_2Sn_2O_7$, $Y_2Ti_2O_7$, $La_2Sn_2O_7$, $La_2Zr_2O_7$ and $La_2Hf_2O_7$, isotopically enriched in 17O at 700°C for 12 hr. All show two distinct O signals, corresponding to O_{1} and O_{2} sites, and the NMR parameters extracted are given in Table 1. Also shown in Table 1 are the NMR parameters predicted from DFT

Figure 1 (A) Structure of an $A_2B_2O_7$ pyrochlore, and local environments of (B) O_{1} (8a) and (C) O_{2} (48f) sites. Atoms are coloured with $A =$ blue, $B =$ green, $O_{1} =$ orange and $O_{2} =$ red.

Figure 2 17O (14.1 T) NMR spectra of (A) $Y_2Sn_2O_7$, (B) $Y_2Ti_2O_7$, (C) $La_2Sn_2O_7$, (D) $La_2Zr_2O_7$ and (E) $La_2Hf_2O_7$. Spectra were recorded with MAS rates of (A–D) 21 and (e) 18 kHz. Spinning sidebands are marked with asterisks (*)
calculations. Spectra for Y₂Sn₂O₇, Y₂Ti₂O₇ and La₂Sn₂O₇ are in good agreement with those in the previous literature.[16,40] By symmetry, the CQ for O₁ in all structures should be zero (reflecting the 8/m point symmetry at the 8a site), although very small quadrupolar couplings are observed experimentally (extracted by fitting the ST sideband manifold in a slow MAS spectrum[16]), resulting from defects and/or surface effects, as discussed previously.

For the La-containing pyrochlores, the O₁ signal is broader, with a complex and asymmetric lineshape seen upon expansion (see Supporting Information). As shown previously for La₂Sn₂O₇,[16] this is thought to result from the existence not only of a J coupling to four equivalent ¹³⁹La (I = 7/2, 99.9% abundance) nuclei, but also to the existence of a quadrupolar-dipolar cross term (or residual dipolar coupling).[41,42] This second-order interaction, resulting from a dipolar coupling to a nucleus with a very large CQ, cannot be removed by MAS, owing to its more complex angular dependence. As shown in the Supporting Information, ¹³⁹La CQ values for La₂Zr₂O₇ and La₂Hf₂O₇ (obtained from wideline NMR experiments[41] and supported by DFT calculations) are slightly larger (~87 MHz) than that previously observed for La₂Sn₂O₇ (~79 MHz), confirming a similar cross term is likely to be present, perturbing the intensities and spacings of the J multiplet. For O₂, larger CQ values are predicted by DFT calculations (ranging from 0.6 to 3.8 MHz), reflecting the lower symmetry of this site (and its OA₂B₂ coordination environment). Good agreement is also observed with the experimental values (and where it exists, with previous literature[16,40]).

Table 1: Experimental and calculated ¹⁷O NMR parameters (isotropic chemical shift, δiso, quadrupolar coupling constant, CQ, and asymmetry parameter, ηQ) for Y₂Sn₂O₇, Y₂Ti₂O₇, La₂Sn₂O₇, La₂Zr₂O₇ and La₂Hf₂O₇ pyrochlores

Composition	O site	δiso (ppm)	CQ/MHz	ηQ	δiso calc (ppm)	CQ calc/MHz	ηQ calc
Y₂Sn₂O₇	O₁	384.0 (5)	~0.02 (2)	n.d.	388.2a	0.0b	—
	O₂	172.5 (5)	3.2 (1)	0.4 (1)	174.9a	3.52b	0.35b
Y₂Ti₂O₇	O₁	386.1 (5)	~0.02 (2)	n.d.	374.5a	0.0b	—
	O₂	454.6 (5)	0.7 (1)	0.5 (1)	459.6a	0.64b	0.75b
La₂Sn₂O₇	O₁	641.5 (5)	~0.02(2)	n.d.	631.0b	0.0c	—
	O₂	222.0 (5)	3.3 (1)	0.9 (1)	208.5b	3.79c	0.99c
La₂Zr₂O₇	O₁	626.3 (5)	~0.02(2)	n.d.	622.9b	0.0c	—
	O₂	394.0 (5)	1.5 (1)	0.4 (1)	421.5b	1.08c	0.98c
La₂Hf₂O₇	O₁	629.9 (5)	~0.02(2)	n.d.	626.3	0.0c	—
	O₂	350.8 (5)	1.4 (1)	0.6 (1)	343.8b	1.03c	0.58c

*n.d. = not determined.

CASTEP version 8.0.

CASTEP version 16.0.

Figure 3 shows ¹⁷O MAS NMR spectra of three mixed-metal pyrochlore solid solutions; Y₂Sn₂₋ₓTiₓO₇, La₂Sn₂₋ₓZrₓO₇ and La₂Sn₂₋ₓHfₓO₇. Samples were enriched at 900°C for 12 hr. In all three cases, additional resonances are seen when compared to the respective end members, confirming the formation of mixed-metal materials. Signals at ~290, ~390 and ~350 ppm can be tentatively assigned to OY₂SnTi, OLa₂Zr₂ and OLa₂Hf₂ environments, respectively. Note that as substitution is thought only to occur at the B site, this affects the local coordination of only the O₂ site (OA₂B₂), and not that of O₁ (OA₄), meaning that local environments such as OA₃B and OAB₃ will not occur unless antisite disorder is present.

The assignment of the additional signals seen experimentally can be confirmed by DFT calculations on a suite of structural models of all possible atomic arrangements of B site cations in a pyrochlore unit cell (see Supporting Information). For Y₂Sn₂₋ₓTiₓO₇,[23] as shown in Figure 4A, DFT calculations predict isotropic chemical shifts of 260–340 ppm for the range of OY₂SnTi environments seen throughout the solid solution, with predicted CQ values between 2.5 and 3.1 MHz. While the shifts are in good agreement with the new signal seen in the experimental ¹⁷O MAS NMR spectra, it is difficult to determine CQ experimentally owing to the additional broadening arising from the distribution of NMR parameters that results from the increased disorder. However, information on the average PQ and δiso values can be obtained.
the centre-of-gravity of the signal in an MQMAS spectrum. As shown in the Supporting Information, for Y_2SnTiO_7, this gave P_Q and δ_{iso} of ~2.4 MHz and ~300 ppm, respectively, in reasonable agreement with the predicted values. Calculated NMR parameters for OY4, OY2Sn2 and OY2Ti2 species in mixed-metal materials are also in good agreement with the experimental results.

As shown in Figure 3, there are small changes in the position of the ^{17}O resonances as a function of composition, resulting from changes in both δ_{iso} and C_Q, as shown in the Supporting Information. Experimentally, for $Y_2Sn_{2-x}Ti_xO_7$, relatively little change in shift is seen for O1 (OY4), although for the mixed-metal materials this signal is significantly broader, with a range of δ_{iso} values predicted by DFT. The lowering of symmetry upon cation substitution also results in a non-zero C_Q in many cases. Although, in principle, this will also lead to increased broadening, this is small in comparison to the distribution of δ_{iso} (typically ~0.6 ppm at 14.1 T for $C_Q = 0.6$ MHz). As shown in the Supporting Information, for the three types of O2 species seen in mixed-metal materials, significant ranges of δ_{iso} and C_Q are predicted (particularly for OY2Ti2 and OY2SnTi), explaining the broadened lineshapes seen experimentally, and the lack of features characteristic of quadrupolar broadening. As shown in the histograms in the Supporting Information, for the three types of O2 species seen in mixed-metal materials, significant ranges of δ_{iso} and C_Q are predicted (particularly for OY2Ti2 and OY2SnTi), explaining the broadened lineshapes seen experimentally, and the lack of features characteristic of quadrupolar broadening. As shown in Figure 3, the range of shifts seen is in good agreement with the width of the lineshapes seen in the experimental ^{17}O MAS NMR spectra, suggesting it is this distribution that dominates the spectrum. This is also in good agreement also with the ^{17}O MQMAS spectrum of Y_2SnTiO_7 shown in the Supporting Information, where significant broadening is observed along the axis (+17/31) associated with a distribution of chemical shifts.

For $La_2Sn_{2-x}Zr_xO_7$ and $La_2Sn_{2-x}Hf_xO_7$, the calculated δ_{iso} and C_Q values (shown in Figure 4B,C, respectively) confirm the assignment of the OLa_2SnZr and OLa_2SnHf
O₂ species (with average calculated values of 315 ppm/3.2 MHz and 276 ppm/3.1 MHz, respectively). In general, smaller ranges of calculated parameters are seen as a function of composition for both materials relative to Y₂SnₓTi₂⁻ₓO₇, (see Supporting Information), leading to lineshapes with features more characteristic of quadrupolar broadening for the sites with larger C_Q. Experimentally, the most significant change in δ_iso is seen for O₁ (OLA4), where an increase in shift is observed with increasing Sn content (as shown in Figure 3). This is supported by the DFT calculations (see Supporting Information), which show a shift increase (but relatively little shift distribution) for O₁ in both La₂SnₓZr₂⁻ₓO₇ and La₂SnₓHf₂⁻ₓO₇. Interestingly, for all O₂ species, δ_iso decreases with increasing Sn content, although larger distributions of shift are seen. For the quadrupolar interaction, the lowering of the O₁ point symmetry in the mixed-metal compounds again leads to non-zero C_Q values. However, these are still very small (~0.1 MHz) and considerably smaller than the corresponding values seen in Y₂SnₓTi₂⁻ₓO₇. The larger C_Q values predicted for OLa₂SnZr and OLa₂SnHf species (3.2 and 3.1 MHz) are also seen experimentally, where ⟨P_Q⟩ values of ~2.7 and ~2.6 MHz can be extracted from ¹⁷O MQMAS NMR spectra (as shown in the Supporting Information).

In principle, the relative amounts of each type of O species present can be determined from the integrated intensities of the signals in the ¹⁷O MAS NMR spectra, potentially providing insight into the cation distribution. However, in practice, this requires uniform enrichment of the chemically different O species and the acquisition of quantitative NMR spectra, the latter being potentially challenging for quadrupolar nuclei such as ¹⁷O. Previous work on ¹⁷O NMR of A₂B₂O₇ materials (including Y₂Sn₂O₇, Y₂Ti₂O₇ and La₂Sn₂O₇)[16] showed that uniform relative enrichment of O₁ and O₂ sites was only achieved at higher enrichment temperatures or longer enrichment times. For the pyrochlore end members studied, preferential enrichment of O₂ was observed for enrichment temperature below ~850 °C (for 12 h heating). Although significant changes in spectral intensities were seen with longer heating times at 600 °C, uniform relative enrichment was not observed at this temperature for all end members even after 96 hr. Possible origins for this observation were suggested to be the difference in bond strengths between O₁ (surrounded only by A cations) and O₂ (surrounded by 2 A and 2 B cations), or differences arising from the mechanism of enrichment (including the ability to create split vacancies) as proposed by prior computational work.[44–46] For La₂Zr₂O₇ and La₂Hf₂O₇ (which were not studied in the original work), ¹⁷O enrichment was carried out in this work at a variety of temperatures and times. The resulting ¹⁷O MAS NMR spectra reveal that for both materials the overall signal intensity increases as the enrichment temperature is raised, with higher levels of ¹⁷O incorporated. Preferential enrichment of O₂ is seen at the lowest temperatures, with an approximately constant O₁:O₂ ratio observed above ~700 °C (for 12-hr heating), in good agreement with earlier studies.

FIGURE 4 Plots of calculated ¹⁷O |C_Q| against δ_iso for (A) Y₂SnₓTi₂⁻ₓO₇, (B) La₂SnₓZr₂⁻ₓO₇ and (C) La₂SnₓHf₂⁻ₓO₇.
agreement with the previous results for other pyrochlore end members.\[16\] At 500 °C, a similar O1:O2 ratio is not observed even with much longer heating times (up to 72 h for La$_2$Hf$_2$O$_7$). As an example of a mixed-metal material, Figure 5 shows 17O MAS NMR spectra of Y$_2$SnTiO$_7$, enriched for 12 hr at 600 °C, 700 °C and 900 °C. Each O2 species (i.e., OY2Ti2, OY2Sn2 and OY2SnTi) has a similar absolute level of enrichment at the three temperatures, but there is a significant increase in the relative level of enrichment of O1 between 600 °C and 700 °C (with little additional change on moving to 900 °C). To ensure the most uniform relative enrichment of all O species in all mixed-metal materials, therefore, enrichment of mixed-metal materials was carried out at 900 °C for 12 hr.

For the end member pyrochlores, the theoretical O1:O2 ratio is 1:6, reflecting the Wyckoff 8a and 48f positions. For mixed metal materials there are three types of O2 present in the disordered system (OA2B2, OA2BB' and OA2B2'), but a ratio of 1:6 (0.1667) would still be expected when all O2 sites were considered together. This, however, is not what is seen experimentally. Figure 6 plots the integrated O1/O2 ratios (black points), extracted from the 17O MAS NMR spectra of Y$_2$Sn$_{1-x}$Ti$_2$O$_7$, La$_2$Sn$_{1-x}$Zr$_2$O$_7$ and La$_2$Sn$_{1-x}$Hf$_2$O$_7$ in Figure 3. The ratios are relatively constant as a function of composition, suggesting the temperature of enrichment is sufficient to ensure consistent relative

![Figure 5](image)

Figure 5 17O (14.1 T, 21 kHz MAS) NMR spectra of Y$_2$SnTiO$_7$ enriched in 17O$_2$ gas at the indicated temperatures for 12 hr. Asterisks denote spinning sidebands. Spectra are normalized to the most intense resonance

![Figure 6](image)

Figure 6 Plots showing the (integrated) intensity ratio, OA4/OA2(B,B')2, extracted from the 17O MAS NMR spectra of (A) Y$_2$Sn$_{1-x}$Ti$_2$O$_7$, (B) La$_2$Sn$_{1-x}$Zr$_2$O$_7$ and (C) La$_2$Sn$_{1-x}$Hf$_2$O$_7$, enriched at 900 °C for 12 hr (shown in Figure 3). Red points and axes correspond to the OA4/OA2(B,B')2 ratio obtained after correction for the effects of T1 relaxation and the contribution of the STs

enrichment of all chemically distinct species. However, O1/O2 is 0.4–0.5 for Y$_2$Sn$_{1-x}$Ti$_2$O$_7$ and ~0.6 for La$_2$Sn$_{1-x}$Zr$_2$O$_7$ and La$_2$Sn$_{1-x}$Hf$_2$O$_7$, rather than the 0.1667 expected. As 17O is quadrupolar, the relative spectral intensities need to be corrected for any differences in nutation for species with different quadrupolar couplings, and for any contribution of the STs to the CT centreband. Furthermore, any differences in T1 relaxation between different sites would also need to be accounted for to ensure quantitative spectral acquisition.
Saturation recovery experiments were performed to measure T₁ times for the pyrochlore end members, with results given in Table 2. A very wide range of T₁ values are seen, with notably smaller values (i.e., faster relaxation) for the La-based materials. This perhaps reflects the presence of the high-γ, high abundance, quadrupolar 139La cation on the A sites (and so directly bound to both O species), rather than the low-γ, spin I = 1/2 ⁸⁹Y cation present on the A site in Y₂Sn₂O₇ and Y₂Ti₂O₇. Table 2 shows that for fully quantitative spectra to be obtained a very long recycle interval would be required (e.g., 5 T₁ for O₁ in Y₂Sn₂O₇ is ~1800 s). In order to avoid this problem, spectra were acquired using a shorter recycle interval (5 s) and corrected for the relative differences in relaxation of all species.

In order to ensure that any differences in nutation and any contributions of the ST are correctly taken into account, accurate CQ values must be obtained. As described earlier this can be challenging experimentally (if characteristic quadrupolar lineshapes are not observed), but the magnitude of the quadrupolar interaction can be estimated either by fitting the ST sideband manifold (when CQ is small) or from the position of resonances in MQMAS experiments (when lineshapes are broadened by disorder). Simulations using SIMPSON[28] (shown in the Supporting Information) reveal that there are no differences in relative excitation efficiency for species with CQ values up to 3.2 MHz for the short flip angles used in the spectral acquisition (formally π/14). However, when CQ is very small, some of the signal intensity attributed to the CT in experimental spectra actually results from the centreband of the STs[2,3,16]. As CQ increases, the increasingly diverging second-order isotropic quadrupolar shifts of the STs and CT ensure that these signals are separated, hence enabling integrated intensities of signals to be unambiguously determined.

Table 2

Composition	O site	T₁/s
Y₂Sn₂O₇[16]	O₁	367 (5)
	O₂	295 (5)
Y₂Ti₂O₇[16]	O₁	230 (5)
	O₂	71 (3)
La₂Sn₂O₇[16]	O₁	12 (2)
	O₂	17 (2)
La₂Zr₂O₇	O₁	7 (2)
	O₂	9 (2)
La₂Hf₂O₇	O₁	5 (2)
	O₂	5 (2)

The ST contribution to any signal can be predicted from density matrix simulations and relative spectral intensities corrected accordingly, as shown in the Supporting Information for Y₂SnTiO₇. The O₁/O₂ ratios, corrected both for T₁ differences and ST contributions, are shown by the red axis in Figure 6, for all three series. After corrections have been applied, all ratios are much closer to the theoretical value of 0.1667, suggesting uniform relative enrichment is obtained under the experimental conditions chosen. It is interesting to note that there is a larger variation (both before, but particularly after, correction) for Y₂Sn₂Ti₂₋ₓO₇. This reflects the need to apply significant corrections to both the O₁ and the O₂ OY₂Ti₂ signals for this series (unlike La₂Sn₂Zr₂₋ₓO₇ and La₂Sn₂Hf₂₋ₓO₇ where a significant correction is only applied to O₁), and the much greater variation in the quadrupolar parameters predicted by DFT as the composition varies (see Figure 4). This would lead, in principle, to a greater variation in the correction factors required, and so a larger error when applied to the experimental (summed) signal.

Once the relative spectral intensities have been corrected as described above, it is possible to compare these to the intensities that would be obtained should the B cations be distributed completely randomly. For O₂, it can be shown using simple statistics that the probability of finding n Sn neighbours is P(n Sn) = Ω (x/2)n (1 – (x/2))²⁻ⁿ, where Ω is the number of possible permutations and x is taken from the formula. These probabilities are plotted, with the experimental values for Y₂Sn₂Ti₂₋ₓO₇, La₂Sn₂Zr₂₋ₓO₇ and La₂Sn₂Hf₂₋ₓO₇, in Figure 7. All three show good agreement between experimental data and predicted intensities, suggesting that the B site cation distribution is close to random in all. For Y₂Sn₂Ti₂₋ₓO₇, this is consistent with previous work using ⁸⁹Y and ¹¹⁹Sn NMR spectroscopy.[23] Agreement between experimental spectra and spectra simulated using NMR parameters calculated from an ensemble of structural models was better at higher temperatures, indicating all atomic arrangements were likely to contribute equally, that is, suggesting a random distribution of B site cations. Small deviations between the experimental and simulated spectra were noted for the less substituted materials, but while these were potentially attributed to a weak preference for clustering or ordering, it was shown they could also result from the limitations of using a single unit cell in the ensemble-based modelling.[23] The overlap of the signals in the ⁸⁹Y and ¹¹⁹Sn NMR spectra make it impossible to easily determine the relative intensities of specific spectral signals and necessitates a comparison of the whole spectrum to evaluate (qualitative) agreement between experiment and theory. However, as shown in Figure 3, the good spectral resolution between...
chemically different O2 species in the 17O NMR spectra allows (after corrections have been applied) the straightforward extraction of relative intensities and an easy comparison to theory.

The good agreement seen in Figure 7A suggests a random distribution of B site cations is present for Y2SnxTi2–xO7, with no evidence for any substantial clustering or ordering. The plots for La2SnxZrxO7 and La2SnxHfxO7 in Figure 7B,C, respectively, also show good agreement between the experimental data and theoretical predictions, but in both cases the deviation between the two is greater than for Y2SnxTi2–xO7, with a small underestimation of OLa2SnX (where X = Zr or Hf) relative to OLa2Sn2 and OLa2X2, across much of the compositional range. This could suggest there is a weak preference for clustering, with the substitution of two like cations (i.e., Sn2 or X2) preferred over the mixed (SnX) substitution. For each composition studied, a complete set of structural models (i.e., all possible B site cation arrangements within a single unit cell) have been generated, and so it is possible to consider whether there is any significant difference in energy between models with a more random distribution of Sn and Zr/Hf cations (i.e., with more OLa2SnX, where X = Zr or Hf) and those exhibiting clustering of like cations (i.e., with more OLa2Sn2 and OLa2X2 species). As an example, Figure 8 plots of the enthalpy of mixing (ΔHmix) for a particular structural model against the number of O2 OA2BB’ species (i.e., OY2SnTi, OLa2SnZr and OLa2SnHf) for the

FIGURE 7 Plots of corrected experimental integrated intensities of OA2B2 signals as a function of x (points) and expected integrated intensities for a random distribution of cations (dashed lines) for (A) Y2SnxTi2–xO7, (B) La2SnxZrxO7 and (C) La2SnxHfxO7

FIGURE 8 Plots of ΔHmix against number of OA2BB’ species per unit cell for structural models of (A) Y2SnTiO7, (B) La2SnZrO7 and (C) La2SnHfO7
$x = 1$ compositions of each series. (Full data for all compositions is given in Figure S5.7 in the Supporting Information). For La$_2$SnZrO$_7$ and La$_2$SnHfO$_7$, a correlation is clearly seen, with those models having fewer of these species (and therefore more OLa$_2$Sn2 and OLa$_2$X2) having lower energy (by \sim8–9 meV/O atom). This suggests that there is a small preference for local clustering of like cations in these two solid solutions. Interestingly, for Y$_2$Sn$_{x}$Ti$_{2-x}$O$_7$, very little correlation between the number of OY$_2$SnTi species and mixing enthalpy is seen, confirming a more random cation distribution is expected, in good agreement with the experimental results in Figure 7A.

One significant advantage of an NMR crystallographic approach that combines experiment and computation is the possibility to gain additional insight into the origin of the NMR parameters and their detailed dependence on the atomic-scale environment. Figures 9 and 10 show how the 17O NMR parameters (δ_{iso} and C_Q) vary with changes to the local geometry (including the average O-X bond length), $\langle r_{O-X} \rangle$, the distortion index, DI, and the average electronegativity of the neighbouring cations, $\langle \chi_X \rangle$. Figure 9A shows that in most cases there is very little variation in $\langle r_{O-X} \rangle$ and DI for a particular type of O species (though these parameters vary significantly between chemically different O), and little correlation more generally with δ_{iso}. However, larger variation in both $\langle r_{O-X} \rangle$ and DI is observed for all O species in Y$_2$Sn$_x$Ti$_{2-x}$O$_7$, with particularly large changes seen for OY$_2$Ti$_2$, with increases in both parameters resulting in an increase in 17O δ_{iso}. These substantial changes to the local geometry (not seen for La$_2$Sn$_x$Zr$_{2-x}$O$_7$ and La$_2$Sn$_x$Hf$_{2-x}$O$_7$) result from the size mismatch in the B site cations (with ionic radii of 0.69 Å for Sn$^{4+}$ and 0.61 Å for Ti$^{4+}$, compared to 0.72 Å and 0.71 Å for Zr$^{4+}$ and Hf$^{4+}$). Previous work$^{[23]}$ showed that it is energetically less favourable to substitute the smaller Ti$^{4+}$ cation into Y$_2$Sn$_2$O$_7$ than vice versa, with this cation too small to satisfy the bonding requirements of all surrounding oxygens, leading to significant distortions of the local environment and a wide distribution of Ti-O bond lengths.

Figure 9C shows a reasonable correlation between 17O δ_{iso} and $\langle \chi_X \rangle$, with an increase in $\langle \chi_X \rangle$ leading to a decrease in δ_{iso}. This is in contrast to the conclusion in Ashbrook and Smith8, where it was shown that there was little correlation between 17O δ_{iso} and $\langle \chi_X \rangle$. However, this earlier work compiled many results for general X-O-X bonding arrangements for a wide variety of materials, where much greater structural variation is present. The structural similarity of the pyrochlore systems considered here (which all have similar numbers and arrangements of the surrounding atoms for each type of O site) allows the dependence of δ_{iso} on $\langle \chi_X \rangle$ to be more clearly revealed. (It should be noted that the largest deviations from the line of best fit are for O species that are coordinated by Ti$^{4+}$, likely reflecting the larger structural distortions seen in these materials, as discussed above). The dependence of δ_{iso} on $\langle \chi_X \rangle$ allows shifts for environments such as OA$_3$B and OAB$_3$, which would result from antisite mixing (i.e., A cations occupying B sites within the structure and vice versa) to be predicted. Signals at these shifts
are clearly not seen in the experimental spectra, suggesting that such mixing is not present (at least at levels observable at these signal-to-noise ratios).

As noted above, very different 17O CQ values are observed for the chemically different O2 species, with those that are coordinated by Sn usually much greater (typically 3–4 MHz) than those that are not (typically 0–1 MHz). Notably, O2 17O CQ values for OY2Sn2 and OLa2Sn2 species are larger than those for the arguably less symmetrical OY2SnTi, OLa2SnZr and OLa2SnHf environments. Figure 10 reveals this difference does not stem from any significant difference in the arrangement of neighbouring cations, with very similar $\langle r_{O-X}\rangle$ and DI for all O2 environments in each of the Y- and La-based materials, respectively. Instead, it is likely the differences in CQ results from significantly increased covalency of the Sn-O bond, leading to more directional bonding and an amplification of the electric field gradient. The dependence of 17O CQ on $\langle \chi_X \rangle$, which can be viewed as a proxy for ionicity/covalency, is shown in Figure 10C, with an increase in $\langle \chi_X \rangle$ leading to an increased CQ. This is in good agreement with the conclusions of previous work considering a wide range of O-containing compounds, which showed a correlation between CQ and the average ionicity, I, of the O-M bonds (with CQ (in MHz) $= -0.203 I(\%) + 14.78$). As the electronegativity of the coordinated cations increases (i.e., is closer to that of O) there is an increase in covalency and a decrease in ionicity, leading to an increased CQ.

4 | CONCLUSIONS

In this work, we have combined isotopic enrichment, quantitative 17O NMR spectroscopy and first-principles calculations on a suite of structures resulting from ensemble-based modelling, in an NMR crystallographic approach to investigating cation disorder in pyrochlore ceramics. Although the quadrupolar nature of 17O ($I = 5/2$) offers advantages, with both the shielding and quadrupolar parameters able to distinguish between different O species and providing additional detail on the local structure, this also poses challenges for extracting accurate and quantitative information, while the low γ and low natural abundance hinders sensitivity. We have shown that mixed-metal pyrochlores can be uniformly enriched post synthesis, by exchange with 17O2 gas, but that high temperatures (800–900 °C) are required to ensure this enrichment is uniform between distinct O species. Quantitative 17O NMR spectra can be acquired using pulses with short flip angles to minimize any differences in nutation behaviour between sites with different CQ. However, it is also vital to correct spectral intensities both for any differences in relative T1 relaxation rates (which can be very long for some O species in oxides) and for species with very low CQ to account for any contribution of the centreband of the STs to the CT signal. This correction (determined here using density matrix simulations) requires a knowledge of the quadrupolar coupling which is not always straightforward to extract if little second-order broadening is seen or if lines are inhomogeneously broadened by the distribution of NMR
parameters arising from disorder. Information on C_0 can be obtained through experiments (from the ST sideband manifolds or from MQMAS spectra) but can also be determined using first-principles calculations. Here, we exploit an ensemble-based modelling approach that allows us to generate all possible atomic arrangements for a specific composition, while ensuring symmetry-related models are not considered, minimising the computational cost. The predicted NMR parameters help to assign and interpret the spectral lineshapes obtained.

The 17O NMR spectra of the pyrochlore solid solutions show good resolution of chemically different oxygens, allowing straightforward and accurate integrated spectral intensities to be determined (in contrast to the overlapped spectral lineshapes seen for 89Y and 119Sn NMR spectra in previous work on one of the systems studied). These intensities can then be compared to those expected from the probability of finding different atomic arrangements if the distribution of B site cations was completely random (obtained from simple statistics). Good agreement is found for $Y_2Sn_xTi_{2-x}O_7$, while for $La_2Sn_xZr_{2-x}O_7$ and $La_2Sn_xHf_{2-x}O_7$ the results suggest that while a random distribution of B site cations is present, there is also a weak preference for the clustering of like cations (i.e., with an increase in the intensities of $OLa2Sn_2$ and $OLa2X2$ environments at the expense of $OLa2SnX$). This conclusion is supported by the DFT calculations, which show a correlation between the lower energy of a structural model and the lower number of mixed metal $OLa2SnX$ environments. Such a clear correlation is not observed for $Y_2Sn_xTi_{2-x}O_7$, explaining the observation of a more random cation distribution in these materials, most likely owing to the more significant structural distortions present as a result of the greater size mismatch between the B site cations. We show that both the 17O isotropic chemical shift and quadrupolar coupling depend on the average electronegativity of the coordinated cations. In the former case, this provides additional support for the lack of any signals resulting from antisite disorder (i.e., the substitution of B cations onto A sites and vice versa). In the latter, larger C_0 values are seen for O species that are coordinated by Sn. This does not result from any distortion in the local structures but from the increased covalency of the Sn-O bond.

Despite the challenges of enrichment and quantitative spectral acquisition, 17O NMR has great potential in the study of atomic-scale structure and disorder in ceramics. In many cases, 17O may be the only feasible option for study, particularly when metals with very low receptivity or very large quadrupole moments, such as 91Zr, $^{177/179}$Hf and 139La, are present. The large shift resolution seen for chemically different O species will also be an advantage when studying more complex systems (e.g., with substitution of multiple cations onto multiple crystallographically distinct sites). The complementary application of experiments and computation is clearly advantageous in assigning 17O spectra and interpreting and analysing the results obtained. When combined with information from other multinuclear NMR experiments (where possible) and from diffraction and/or microscopy, 17O NMR spectroscopy should be considered as a vital tool in the arsenal of the chemist for providing a detailed structural picture of a material over different lengthscales and timescales.

ACKNOWLEDGEMENTS

We are grateful to EPSRC for support through the Collaborative Computational Project on NMR Crystallography (CCP-NC), via EP/M022501/1, and to the ERC (EU FP7 Consolidator Grant 614290 ‘EXONMR’). SEA would also like to thank the Royal Society and Wolfson Foundation for a merit award. Ricardo Grau-Crespo (University of Reading) is thanked for useful discussions. The research data (and/or materials) supporting this publication can be accessed at https://doi.org/10.17630/d2389085-e6cf-46f2-8753-c582cf926ce.[46]

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/mrc.5140.

ORCID

David McKay https://orcid.org/0000-0003-0362-7848
Karl R. Whittle https://orcid.org/0000-0002-8000-0857
Daniel M. Dawson https://orcid.org/0000-0002-8110-4535
Sharon E. Ashbrook https://orcid.org/0000-0002-4538-6782

REFERENCES

[1] M. Lorenz, M. S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F. K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. DasGupta, D. J. Rogers, F. H. Teherani, E. V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziris, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N. A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenga, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentecheva, P. Gegenwart, F. Milettos Granazio, J. Fontcuberta, N. Prisd, J. Phys. D 2016, 49, 433001.

[2] S. E. Ashbrook, D. M. Dawson, J. M. Griffin, Solid-state NMR spectroscopy, in Local Structural Characterisation, (Eds: D. W. Bruce, D. O’Hare, R. I. Walton), John Wiley & Sons Ltd, Chichester 2014.

[3] D. C. Apperley, R. K. Harris, P. Hodgkinson, Solid State NMR Basic Principles and Practice, Momentum Press, New York 2012.
[4] R. F. Moran, D. M. Dawson, S. E. Ashbrook, Int. Rev. Phys. Chem. 2017, 36, 39.
[5] C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azais, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 2012, 112, 5733.
[6] S. E. Ashbrook, D. McKay, Chem. Commun. 2016, 52, 7186.
[7] K. J. D. MacKenzie, M. E. Smith, Multinuclear Solid-State NMR of Inorganic Materials, Pergamon, Oxford, UK 2002.
[8] S. E. Ashbrook, M. E. Smith, Chem. Soc. Rev. 2006, 35, 718.
[9] L. Frydman, J. S. Harwood, J. Am. Chem. Soc. 1995, 117, 5367.
[10] J. M. Griffin, L. Clark, V. R. Seymour, D. W. Aldous, D. M. Dawson, D. Iuga, R. E. Morris, S. E. Ashbrook, Chem. Sci. 2012, 3, 2293.
[11] P. He, J. Xu, V. V. Terskikh, A. Sutrisno, H.-Y. Nie, Y. Huang, J. Phys. Chem. C 2013, 117, 16953.
[12] G. P. M. Bignami, Z. H. Davis, D. M. Dawson, S. A. Morris, S. E. Russell, D. McKay, R. E. Parke, D. Iuga, R. E. Morris, S. E. Ashbrook, Chem. Sci. 2018, 9, 850.
[13] A. Flambard, L. Montagne, L. Delevoye, Chem. Commun. 2006, 3426.
[14] S. M. Pugh, P. A. Wright, D. J. Law, N. Thompson, S. E. Ashbrook, J. Am. Chem. Soc. 2020, 142, 900.
[15] T.-X. Metro, C. Gervais, A. Martinez, C. Bonhomme, D. Laurencin, Angew. Chem. Int. Ed. 2017, 56, 6803.
[16] A. Fernandes, R. F. Moran, S. Sneddon, D. M. Dawson, D. McKay, G. P. M. Bignami, F. Blanc, K. R. Whittle, S. E. Ashbrook, RSC Adv. 2018, 8, 7089.
[17] C. P. Grey, C. M. Dobson, A. K. Cheetham, R. J. B. Jakeman, J. Am. Chem. Soc. 1989, 111, 505.
[18] C. P. Grey, M. E. Smith, A. K. Cheetham, C. M. Dobson, R. Dupree, J. Am. Chem. Soc. 1990, 112, 4670.
[19] S. E. Ashbrook, K. R. Whittle, G. R. Lumpkin, I. Farnan, J. Phys. Chem. B 2006, 110, 10358.
[20] S. W. Reader, M. R. Mitchell, K. E. Johnston, C. J. Pickard, K. R. Whittle, S. E. Ashbrook, J. Phys. Chem. C 2009, 113, 18874.
[21] M. R. Mitchell, S. W. Reader, K. E. Johnston, C. J. Pickard, K. R. Whittle, S. E. Ashbrook, J. Phys. Chem. Phys. 2011, 13, 488.
[22] M. R. Mitchell, D. Carnevale, R. Orr, K. R. Whittle, S. E. Ashbrook, J. Phys. Chem. C 2012, 116, 4273.
[23] R. F. Moran, D. McKay, P. C. Tornstrom, A. Aziz, A. Fernandes, R. Grau-Crespo, S. E. Ashbrook, J. Am. Chem. Soc. 2019, 141, 17838.
[24] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567.
[25] C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 63, 245101.
[26] J.-P. Amoureux, C. Fernandez, S. Steuernagel, J. Magn. Reson. A 1996, 123, 116.
[27] K. J. Pike, R. P. Malde, S. E. Ashbrook, J. McManus, S. Wimperis, Solid State Nucl. Magn. Reson. 2000, 16, 203.
[28] M. Bak, J. T. Rasmussen, N. Nielsen, J. Magn. Reson. 2011, 213, 366.
[29] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
[30] J. R. Yates, C. J. Pickard, F. Mauri, Phys. Rev. B 2007, 76, 024401.
[31] J. R. Yates, C. J. Pickard, M. C. Payne, F. Mauri, J. Chem. Phys. 2003, 118, 5746.
[32] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
[33] R. Grau-Crespo, S. Hamad, C. R. A. Catlow, N. H. de Leeuw, J. Phys. Condens. Matter 2007, 19, 256201.
[34] P. Pyykko, Mol. Phys. 2018, 116, 1328.
[35] B. C. Chakoumakos, J. Solid State Chem. 1984, 53, 120.
[36] B. J. Kennedy, Mater. Sci. Forum 1996, 228, 753.
[37] M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem. 1983, 15, 55.
[38] F. Brisse, O. Knop, Can. J. Chem. 1968, 46, 859.
[39] D. R. Rittman, K. M. Turner, S. Park, A. F. Fuentes, J. Yan, R. C. Ewing, W. L. Mao, J. Appl. Phys. 2017, 121, 045902.
[40] N. Kim, C. P. Grey, J. Solid State Chem. 2003, 175, 110.
[41] R. K. Harris, A. C. Olivieri, Prog. Nucl. Magn. Reson. Spectrosc. 1992, 24, 435.
[42] S. E. Ashbrook, J. McManus, M. J. Thrippleton, S. Wimperis, Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 160.
[43] R. W. Schurko, Acc. Chem. Res. 2013, 46, 1985.
[44] M. Pirzada, R. W. Grimes, J. Maguire, K. Sickafus, J. Mater. Res. 2002, 17, 2041.
[45] P. Wilde, Solid State Ion. 1998, 112, 173.
[46] M. P. van Dijk, A. J. Burggraaf, A. N. Cormack, C. R. A. Catlow, Solid State Ion. 1985, 17, 159.
[47] R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.
[48] A. Fernandes, R. F. Moran, D. McKay, B. Griffiths, A. Herlihy, K. R. Whittle, D. M. Dawson, S. E. Ashbrook, Exploring cation disorder in mixed-metal pyrochlore ceramics using 17O NMR spectroscopy and first-principles calculations. Dataset. University of St Andrews Research Portal. https://doi.org/10.17630/2389085-e6cf-46f2-8753-c582cfe926ce

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Fernandes A, Moran RF, McKay D, et al. Exploring cation disorder in mixed-metal pyrochlore ceramics using 17O NMR spectroscopy and first-principles calculations. Magn Reson Chem. 2021;1–14. https://doi.org/10.1002/mrc.5140