Recombinant GRA4 or ROP2 Protein Combined with Alum or the
gra4 Gene Provides Partial Protection in Chronic Murine Models
of Toxoplasmosis

Valentina Martin,1 Alicia Supanitsky,1 Pablo C. Echeverria,1,2 Silvana Litwin,3 Tamara Tanos,1
Adolfo R. De Roodt,3 Eduardo A. Guarnera,1 and Sergio O. Angel1,2,*

Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas,1 and Instituto Nacional de Producción de
Biológicos,3 ANLIS Dr. Carlos G. Malbran, Ciudad de Buenos Aires, and Laboratorio de Parasitología Molecular,
UB2, IIB-INTECH, CONICET-UNSAM, Chascomús, Provincia Buenos Aires,2 Argentina

Received 9 January 2004/Returned for modification 17 February 2004/Accepted 7 April 2004

Toxoplasma gondii is an obligate intracellular parasite, capable
of infecting a variety of mammals and birds. Infection of
immunocompetent humans is usually asymptomatic, with clinical
disease largely confined to risk groups. Primary infection
during pregnancy, especially in sheep, often results in abortion,
plasmosis is also of veterinary importance, since infection dur-
ing pregnancy, especially in sheep, often results in abortion,
plasmosis is also of veterinary importance, since infection dur-
ing pregnancy, especially in sheep, often results in abortion,
plasmosis is also of veterinary importance, since infection dur-
ing pregnancy, especially in sheep, often results in abortion,
plasmosis is also of veterinary importance, since infection dur-

* Corresponding author. Mailing address: Laboratorio de Parasitología Molecular, UB2, IIB-INTECH, CONICET-UNSAM, Camino
de Circunvalación Laguna Km. 6, C.C. 164 (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina. Phone: 54 2241 430323, Fax: 54 2241
424048. E-mail: sangel@intech.gov.ar.
examined the efficacy of rGRA4 and rROP2 to confer immunity when combined with alum. In the future this would allow the generation of a multiantigen vaccine based on the use of alum as the adjuvant. In the present study, we used two different strains of inbred mice with different major histocompatibility haplotypes and different levels of susceptibility to T. gondii-induced morbidity and mortality: C57BL/6 (H-2b) and C3H (H-2k). C57BL/6 mice are highly susceptible, and oral infection with low numbers of encysted bradyzoites leads to a high mortality rate in the acute phase (31). C3H mice can survive oral infection (4), and the cyst load in the brains of these infected mice is high (6, 45). In addition, a DNA vaccine vector expressing the whole GRA4 protein was designed and used in an immunization assay to compare the protective value of the vaccine to rGRA4 plus alum.

MATERIALS AND METHODS

Parasites. T. gondii tissue cysts of the ME49 strain were used to challenge mice. Brain tissue cysts of this strain were obtained by passage through C57BL/6 mice and maintained by passage of 20 tissue cysts administered by intraperitoneal injection.

Recombinant protein and plasmid constructions. rROP2 (residues 196 to 561) and rGRA4 protein (residues 163 to the end, residue 345) were generated by the fusion of a six-histidine-linked tag at the N-terminal part of the truncated forms (30, 38). rROP2 has been constructed containing all of the three potential T-cell epitopes (previously described (41); rGRA4 comprises the C-terminal region and contains all of the B-cell epitopes as well as the T-cell epitope (positions 326 to 334) already described (32, 33). To obtain the plasmid encoding the GRA4 gene, the DNA sequence of the gat4 gene (32) was obtained from the GenBank database (accession number M76432). The entire gene in Cos-7 cells was performed by calcium phosphate transfection of the pGEM3zf(+)/H9262, with an additional recognition sequence for the endonuclease EcoRI, were added from fi (Gra4-F, 5’-CCGGGGAATCATACGGACGACATGCTGGTTTTG-3’), with an additional recognition sequence for the endonuclease EcoRI, were synthesized. The PCR product was digested with Kpn I and EcoRI restriction enzymes, purified from an agarose gel (Qiagen II; QIAGEN), cloned into the corresponding sites of pcDNA3 (pGRA4), and sequenced.

Expression and purification of recombinant proteins. The recombinant proteins were expressed in Escherichia coli strain M15 (QIAGEN) and purified by nondenaturing conditions on nitrilotriacetic acid-Ni2+/H9262 gels in the Mini-Protean system (Bio-Rad) and stained with Coomassie blue. Recombinant proteins were quantified recombinant antigens (R
cation of recombinant proteins.

Cytokine analysis. Two weeks after the last booster injection, culture supernatants from spleen cells stimulated in vitro with 10 μg of rROP2 or rGRA4 or with concanavalin A were collected at 27 h (5 × 106 cells/ml) of complete medium by duplicate in flat-bottom 24-well microplate (Costar, Cambridge, Mass.) in 200 μl of culture medium alone or with an optimal concentration of 10 μg of rGRA4 or rROP2 or 5 μg of concanavalin A/ml as a positive control for proliferation. The plates were incubated in 5% CO2 at 37°C for 4 days and 1 μg of [3H]thymidine (speci activity, 5 Ci/mmol; Amersham Corp.)/well was added for the final 24 h of culture. The cells were harvested, and radioactivity incorporation was measured in a liquid scintillation counter (LKB, Gaithersburg, Md.). Results were expressed as the stimulation index (SI), which is the mean value of counts per minute for recombinant antigen-stimulated cells/mean value of counts per minute for nonstimulated cells. This analysis was performed in three independent experiments.

Statistical analysis. For statistical evaluation of data from proliferation assays, IFN-γ and IL-4 production, and brain cyst loads, results from vaccinated mice were compared to those from controls by a Student t test with Prism 2.01 software (GraphPad).
Protection efficacy of rGRA4- and rROP2-alum vaccination in mice. To evaluate the immunoprotective value of rGRA4 and rROP2 combined with alum against *T. gondii* infection, C57BL/6 and C3H mice were immunized intramuscularly with rGRA4- or rROP2-alum. Untreated mice or those that received PBS plus alum were used as negative controls. To determine whether the vaccination would provide any protection against the formation of *T. gondii* tissue cysts in the brain, vaccinated mice were challenged with a low dose of tissue cysts by peroral administration of 20 ME49 tissue cysts (Fig. 1). In these experiments, mice from both control and vaccinated groups survived for 4 weeks, at which time the animals were killed and their brains were removed for *T. gondii* tissue cyst enumeration. Control and vaccinated mice did not show any differences either in morbidity or in their mortality rates until the end of the experiment. C57BL/6 mice vaccinated with rGRA4 showed a significantly lower brain cyst burden (P < 0.01) than the control group (Fig. 1A), whereas vaccination with rROP2 failed to provide significant protection (P > 0.05). Mice receiving a mix of rGRA4 and rROP2 exhibited a significant resistance to cyst formation compared to the PBS-alum-vaccinated group (P < 0.01), but this resistance was not significantly different from that induced by rGRA4 alone (P > 0.05).

On the other hand, the brain cyst burden from C3H mice vaccinated with rGRA4 or rROP2 was significantly lower than that of the control group (P < 0.01) (Fig. 1B). Although rROP2-vaccinated mice showed fewer brain cysts than mice immunized with rGRA4, the difference between both groups was not significant. Coimmunization with rGRA4 and rROP2 also induced a significantly lower number of brain cysts than in the control group (P < 0.01), and this reduction had results similar to those of the rROP2-vaccinated mice. A parallel analysis of two infected naive mice showed a number of brain cysts similar to that of PBS-alum-immunized animals (data not shown).

In addition to determining whether it is possible to produce protection against chronic infection, we determined whether these vaccinations would provide any protection against mortality from acute toxoplasmosis. For these experiments, rGRA4-, rROP2-, or rGRA4-rROP2-immunized C57BL/6 and C3H mice were challenged perorally with a lethal dose of 100 ME49 tissue cysts. There were no significant differences in the survival rates from both strains of immunized mice compared to the control groups (data not shown).

Since DNA vaccines showed induction of both humoral and cell-mediated immune responses with a Th1 pattern that could potentially provide protection against toxoplasmosis, we analyzed a *gra* gene (pGRA4) vaccination. Western blot analysis of a lysate from transfected Cos-7 cells indicated a band of the expected size for the complete protein (40 kDa) only in cells transfected with pGRA4 (Fig. 2A). Figure 2B shows that pGRA4-vaccinated C3H mice presented a significantly lower brain cyst burden than the control mice vaccinated with pcDNA3 alone (P < 0.01), and this protection result was similar to that induced by rGRA4-alum.

Humoral responses. To examine the vaccine potential of the recombinant proteins adsorbed to alum, blood samples were obtained 14 days after the immunization schedule was completed and IgG antibody titers were determined by ELISA, with the corresponding antigen as the bound target. All immunized C57BL/6 and C3H mice showed high IgG titers against rGRA4 and rROP2 (ranging from 48,600 to 97,200), whereas control groups did not react. Four weeks after the challenge with cysts (56 days after the last booster), all immunized mice showed increased levels of IgG titers (higher than 145,800) against the respective recombinant antigen used for the immunization. Control groups also showed reactivity to the recombinant antigens at this time (ranging from 24,300 to 145,800). Figure 3A shows that, before the challenge (day 28 after the last booster), C57BL/6 mice immunized with rROP2 alone or with rROP2-rGRA4 exhibited a predominant anti-rROP2 IgG1 antibody response. In contrast, rGRA4- and rROP2-rGRA4-immunized mice showed similar anti-rGRA4 IgG1 and IgG2a isotype profiles (Fig. 3A). After the challenge (day 56), a remarkable anti-rROP2 IgG2a response was fired off in rROP2- and rROP2-rGRA4-vaccinated mice, changing the isotype pattern in mice immunized with rROP2 alone (Fig. 3A). Similarly, anti-rGRA4 IgG2a levels increased after infection compared to the IgG1 levels in both rGRA4- and rROP2-rGRA4-immunized mice (Fig. 3A). All groups of vaccinated C3H mice exhibited a predominant anti-rROP2 and -rGRA4 IgG1 antibody response after the last booster (Fig. 3B). The analysis of the response after the challenge showed an increase in the IgG2a levels for both proteins that was less pronounced against rGRA4 (Fig. 3B) and similar to the pattern observed in C57BL/6 mice (Fig. 3A). In contrast, the IgG1 levels from all immunized groups showed a slight increase or remained
the highest splenocyte proliferative responses, with the SI ranging from 14.3 to 20.5. Specific but less vigorous proliferative responses were also observed in spleen cell cultures from vaccinated C3H mice (data not shown).

IL-4 and IFN-γ released from immune spleen cells stimulated in vitro with the recombinant antigens were measured in the culture supernatants. Following stimulation with rROP2, significant levels of IL-4 (Fig. 4B) and low levels of IFN-γ (Fig. 4C) were observed in supernatants of rROP2- and rROP2-rGRA4-vaccinated splenocytes compared to unstimulated cells. In contrast, in response to rGRA4, stimulated rGRA4- and rROP2-rGRA4-vaccinated splenocytes were found to produce lower IL-4 (Fig. 4B) and higher IFN-γ amounts (Fig. 4C) than cells from rROP2-immunized mice. In the same experiment, concanavalin A induced the highest cytokine release levels (120 pg/ml) for IL-4 and for IFN-γ (1,021 ng/ml). On the other hand, no IL-4 and IFN-γ release was evident in supernatants from spleen cells of immunized C3H mice after in vitro stimulation (data not shown).

DISCUSSION

This study has shown that vaccination with recombinant forms of GRA4 and ROP2 proteins of T. gondii and the mix of both combined with alum can elicit both humoral and cellular responses in mice. The responses elicited by rGRA4 are capable of reducing the levels of tissue cysts in the brains of infected mice with different genetic backgrounds, whereas those elicited by rROP2 result in protection only in the C3H strain. In addition, we show that in the C3H strain, gra4 gene vaccination reduces the parasite load to a similar level as rGRA4-alum vaccination.

Regarding ROP2 antigen, Vercammen et al. (49) showed that immunization with the rop2 gene, as well as with the gra1 and gra7 genes, protected C3H mice against a lethal challenge but not BALB/c or C57BL/6 mice. Similarly, in our study we observed that rROP2 vaccination resulted in protection in C3H but not in C57BL/6 mice after a nonlethal challenge with cysts. These results make evident the importance of using several mouse strains in the analysis of a vaccine against toxoplasmosis.

Vaccination of both mouse strains with rGRA4 leads to a substantial reduction in the cyst burden. These results are consistent with those of the study by Mëvélec et al. (33) in which C57BL/6 mice were orally immunized with an rGRA4 combined with cholera toxin. In addition, Desolme et al. (12) observed that vaccination with the gra4 gene induced a protective immunity in C57BL/6 mice against a lethal challenge with tissue cysts, suggesting protection against acute infection. In our study, gra4 gene vaccination induces partial protection against a nonlethal challenge for C3H mice. These data suggest that GRA4 is a good candidate for the development of a vaccine against toxoplasmosis.

Fachado et al. (16) have recently shown that immunization with a mix of sag1 and rop2 genes induced higher protection against the highly virulent RH strain than single-gene vaccination of BALB/c mice. However, in our study, immunization with a mix of rGRA4 and rROP2 results in significant protection in both mouse strains compared to the control groups, but the level of protection is similar to that obtained after immu-
organization with the single antigens. Moreover, both proteins elicit a complementary immune response: rGRA4 induces higher protection in C57BL/6 mice and rROP2 induces higher protection in C3H mice. One possible explanation for this could be that the immune response elicited against each of the parasite antigens differs with the mouse strain. Recently, it was observed that 22 women with documented exposure to *T. gondii* showed a heterogeneous cellular stimulatory response against GRA1, GRA6, GRA7, and SAG1 (17).

Adjuvants are an essential part in the design of a vaccine due to both the immunoadjuvant effect and the possible use for animals and humans. DNA vaccines have been shown to elicit a predominant Th1 response (47), suitable for the requirements to generate immunity against toxoplasmosis. In fact, several studies regarding systemic DNA vaccination against *T. gondii* were conducted with mice (see reference 5). However, DNA vaccines were not shown to be very immunogenic in humans (43). In contrast, aluminum compounds have been used as human vaccine adjuvants for more than 70 years. Although alum has been associated with the induction of high levels of antibodies and Th2-type responses (22), rSAG1 combined with alum (40), and here, rGRA4 and rROP2, was shown to induce partial immunity against *T. gondii* infection in mice. An expected strong humoral response against rGRA4 and rROP2 was generated for both mouse strains. Immunization of C57BL/6 mice with rGRA4-alum leads to the production of similar IgG1 and IgG2a levels, whereas rROP2-alum immunization results in a predominant IgG1 production characteristic of a Th2-type response. The same isotype pattern is observed with coimmunization with both antigens. In contrast, the response in vaccinated C3H mice was polarized towards a Th2-type response for each antigen and the mix. In addition, the results of cytokine production by in vitro-stimulated splenocytes from immunized C3H mice support the conclusion that vaccination with rGRA4 preferentially induces a Th1 response and rROP2 induces a Th2 response. In fact, little

FIG. 3. Serum IgG subclass profiles from C57BL/6 (A) and C3H (B) mice vaccinated with rROP2, rGRA4, R + G (mix of rROP2 and rGRA4), or PBS combined with alum were determined 2 weeks after the last booster (day 28) and 4 weeks after oral infection with *T. gondii* cysts (day 56). Serum samples were analyzed by rROP2 or rGRA4 ELISA for the detection of IgG1 (▲ and dashed line) and IgG2a (■). Sera were used in a 1:2,000 optimal dilution, as established in previous assays. Preimmune sera, obtained on day 0, were used in a 1:100 dilution, and no reactivity was observed. (C) Serum IgG subclass determination in sera from C3H mice immunized with the gra4 gene was analyzed by rGRA4 ELISA in a 1:100 dilution. All of the results were expressed as the A450 and are representative of one of two similar experiments.
production of IFN-γ was observed in C57BL/6 mice immunized with rGRA4. We consider that immunity can be due, in part, to the presence of IFN-γ and/or by a specific B-cell response induction. Recently, the B cell contribution to protection against parasite infection was further demonstrated (23, 24, 42). In our study, even though immunization of C3H mice with the recombinant antigens induced protection, we were unable to detect IFN-γ in cultured splenocytes; and although both C57BL/6 and C3H mice vaccinated with rROP2 elicited an IgG1-polarized humoral response, significant protection was observed only in C3H animals. It could be that T-cell presentation of rROP2 is under haplotype restriction. So other factors might be taken into account to explain these results.

Alum has been shown to increase the expression of major histocompatibility complex class II and costimulatory or adhesion molecules (ICAM-1, LFA-3, and CD40) associated with mature dendritic cells (DCs) (48). In addition, stimulation of peripheral blood monocytes with alum induced an increase in IL-1α, IL-1β, and tumor necrosis factor mRNA expression as well as IL-4 and IL-6 (48). Dimier-Poisson et al. (13) have recently demonstrated that mesenteric lymph node DCs pulsed ex vivo with T. gondii antigens led to a Th2 cytokine secretion pattern, eliciting strong protection either in C57BL/6 or CBA/J mice, whereas spleen DCs led to a Th1 cytokine pattern, also protecting but with lower rates than mucosal DCs. On one hand, it is likely that a more efficient antigenic presentation due to the immunoadjuvant effect of alum could also be an important factor in conferring immunity, possibly allowing the host to induce a faster increase of systemic IFN-γ production after infection. Interestingly, in this study, immunized mice show an important postchallenge increase of anti-recombiant antigen IgG2a antibodies but not of the IgG1 isotype. On the other hand, a Th2-related response could have a certain protective value. Interestingly, these data suggest that the immune response generated by immunization with alum does not seem to interfere with the immune response generated by T. gondii, nor does it produce adverse pathological effects after infection.

Our results and those obtained by Petersen et al. (40) suggest that rGRA4, rROP2, and rSAG1 should be components of an alum-based multiantigen vaccine against toxoplasmosis. Finally, our results reinforce the value of alum as a possible adjuvant to be used in immunization against T. gondii, allowing the development of a vaccine for wide application for either humans or animals. We consider that combinations with other effective antigens that generate immunity by different strategies should also be taken into account in the future.

ACKNOWLEDGMENTS

This work was supported by an ANPCyT grant (BID802/OC-ARP/C 05-04831) and INEI (ANLIS Dr. Carlos G. Malbran). S.O.A. (Researcher), V.M. (Fellow), and P.E. (Fellow) are members of the National Council of Research (CONICET). S.O.A. is also member of the University of Buenos Aires (Departamento de Fisiología, Biología Molecular y Celular, FCyN). V.M. (Fellow) is also a member of the Fundación Antorchas.

We thank Mara Rosenzvit for critical reading of the manuscript and helpful suggestions. We acknowledge the contribution of Angel Sinagra (animal manipulation assistance).

REFERENCES

1. Alexander, J., H. Jebbari, H. Blutehmann, A. Satoaskar, and C. W. Roberts. 1996. Immunological control of Toxoplasma gondii vaccine design. Curr. Top. Microbiol. Immunol. 219:183−195.
2. Angus, C. W., D. Klivington-Evans, J. P. Dubey, and J. A. Kovacs. 2000. Immunization with a DNA plasmid encoding the SAG1 (P30) protein of Toxoplasma gondii is immunogenic and protective in rodents. J. Infect. Dis. 181:317−324.
3. Assai, F., H.-S. Mun, K. Norose, M. Chen, H. Hata, M. Kobayashi, M. Kiuchi, H. J. Stauss, and A. Yano. 1999. Protective immunity induced by vaccination with SAG1 gene-transfected cells against Toxoplasma gondii infection in mice. Microbiol. Immunol. 43:87−91.
4. Blackwell, J. M., C. W. Roberts, and J. Alexander. 1993. Influence of genes within the MHC on mortality and brain cyst development in mice infected with Toxoplasma gondii: kinetics of immune regulation in BALB/c-congenic mice. Parasite Immunol. 15:317−324.
5. Bou, D. T., M.-N. Ménécel, F. Velge-Roussel, I. Dimier-Poisson, and M. Lebrun. 2002. Prospects for a human Toxoplasma vaccine. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2:227−234.
6. Brown, C. R., C. A. Hunter, R. G. Estes, E. Beckmann, J. Forman, C. David, J. S. Remington, and R. McLeod. 1995. Definitive identification of a gene that confers resistance against toxoplasmosis. Immunology 88:419−428.
7. Bulow, R., and J. C. Boothroyd. 1991. Protection of mice from fatal Toxoplasma gondii infection by immunization with p30 antigen in liposomes. J. Immunol. 147:3496−3500.
8. Buxton, D., K. Thomson, S. Maley, S. Wright, and H. J. Box. 1991. Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant. Vet. Rec. 129:99−103.
9. Cooper, K. N., H. V. Nielsen, E. Petersen, F. Roberts, C. W. Roberts, and J.
