Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Zhang, Xiaolong, Jiaming Liu, Keke Jin, Haifeng Xu, Chuang Wang, Zhuang Zhang, Mimi Kong, Zhengzheng Zhang, Qingyi Wang, and Fangyan Wang. 2017. “Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes.” Journal of Diabetes Investigation 9 (1): 83-90. doi:10.1111/jdi.12674. http://dx.doi.org/10.1111/jdi.12674.

Published Version
doi:10.1111/jdi.12674

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34868932

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes

Xiaolong Zhang¹, Jiaming Liu², Keke Jin³, Haifeng Xu³, Chuang Wang⁴, Zhuang Zhang³, Mimi Kong³, Zhengzheng Zhang³, Qingyi Wang⁵, Fangyan Wang*⁶
¹Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, ²Department of Preventive Medicine, School of Environmental Science and Management, Wenzhou Medical University, ³Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, ⁴Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China, and ⁵Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Keywords
Diabetic nephropathy, Hydrogen, Subcutaneous administration

*Correspondence
Fangyan Wang
Tel.: +86-577-8668-9817
Fax: +86-577-8668-9817
E-mail address: wzxywyfy@126.com

J Diabetes Investig 2018; 9: 83–90
doi: 10.1111/jdi.12674

INTRODUCTION
Type 2 diabetes mellitus, the predominant form of diabetes, is characterized by high levels of blood sugar and insulin resistance. Approximately 170 million people in the world suffer from diabetes, a number expected to double by 2030¹. Although effective drugs are available for clinical use, including insulin, metformin and glucagon-like peptide-1, the World Health Organization reported 1.5 million deaths from diabetes in 2012, making it the eighth most prevalent cause of death². Most diabetes deaths occur in developing countries³, and were associated with an estimated cost of $612 billion in 2014⁴.

The anti-oxidant properties of hydrogen gas (H₂) have been recognized in recent years⁵,⁶, and it has been used extensively to treat various conditions including ischemia/reperfusion⁷, sepsis⁸ and acute lung injury⁹. H₂ has also shown to inhibit diabetes¹⁰,¹¹ and related diseases¹². The low solubility of H₂ renders therapeutic administration, and various routes have been used for specific treatments including high-content (saturated) H₂ water¹⁰,¹², inhalation⁷,¹³,¹⁴, electrically reduced water¹¹ and H₂-producing intestinal bacteria¹⁵.

In the present study, we used a classical mouse model of type 2 diabetes mellitus to investigate the therapeutic effects of subcutaneously injected H₂ by examining blood glucose, insulin and lipid levels, oxidative stress, and kidney function.

MATERIALS AND METHODS
Drugs and chemicals
Streptozotocin (STZ) was purchased from Sigma (St. Louis, Missouri, USA). The 40% high-fat diet was obtained from Slac Laboratory Animal Ltd. (Shanghai, China). The radioimmunoassay kits of β2-microglobulin and insulin were purchased...
from Beijing North Institute of Biological Technology (Beijing, China). Urine total protein assay kit was purchased from Beijing Great Wall Clinical Reagents Co., Ltd. (Beijing, China). Detection kits for total superoxide dismutase (T-SOD), catalase (CAT) and malondialdehyde (MDA) were purchased from Jiancheng Bioengineering Institute (Nanjing, China). Masson staining kit was obtained from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China).

Animals
The 4-week-old male C57/BL6J mice were obtained from Slac Laboratory Animal Ltd. The animals were bred under standard conditions (12-h light–dark cycle, 24°C), with free access to water and standard laboratory chow. All mice were carefully fed according to the standards of the Guide for the Care and Use of Laboratory Animals.

Diabetic induction and animal grouping
Diabetes induction was carried out according to a previously reported protocol16. Briefly, mice were fed a high-fat diet for 4 weeks and then intraperitoneally injected with 100 mg/kg STZ (Sigma) or an equal volume of vehicle as the control (n = 8). After 2 weeks of high-fat diet feeding, glucose levels in the plasma were determined by a blood glucose meter (Andon Health Co., Ltd., Tianjin, China). Mice with glucose levels ≥84 mg/dl were considered diabetic, and were used for experiments if they continuously maintained hyperglycemia (≥10 mmol/L) over 10 days.

Mice were divided into three groups: mice without diabetes induction (normal control [NC], n = 8); diabetic mice receiving subcutaneous injection of air (DM; n = 15); diabetic mice receiving subcutaneous injections of H2 (SAH; n = 15). The SAH group was injected subcutaneously with H2 at a dose of 1 mL/mouse/week for 4 weeks. The same dose of air was given to the DM group by subcutaneous injection. In each group, the bodyweight was monitored daily, and blood glucose level was checked weekly.

Insulin tolerance test and glucose tolerance test
The insulin tolerance test (ITT) and glucose tolerance test (GTT) were carried out at the end of the experiment. For ITT, the mice were intraperitoneally injected with insulin at a dose of 0.5 U/kg bodyweight (Wanbang Biopharmaceuticals, Jiangsu, China) after a 15-h fast. Blood samples (10 μL) were collected at 0, 30, 60 and 120 min after insulin administration. For GTT, the mice received oral glucose at 2 g/kg bodyweight of glucose after a 12-h fast. Blood samples (10 μL) were taken at 0, 30, 60 and 120 min after glucose treatment. The ITT and GTT were carried out on mice without anesthetization. Glucose levels in the plasma were determined as described above.

Measurements of biochemical parameters
All measurements were carried out after 6 h of fasting. Blood samples from the common carotid artery were collected under anesthesia into chilled tubes treated with ethylenediamine tetraacetate acid disodium salt, immediately centrifuged and supernatants stored at −80°C. Plasma low-density lipoprotein (LDL), triglyceride (TG), total cholesterol and high-density lipoprotein levels were measured with the automatic biochemistry analyzer. Plasma insulin level was detected according to the instructions of the kit.

24-h urine volume collection, and measurement of urinary total protein and β2-microglobulin
Mice were fasted and supplied with water ad libitum for 24-h urine collection. Urinary total protein and β2-microglobulin were determined following the instructions supplied with the commercial kits.

Calculation of kidney weight/bodyweight ratio and examination of renal fibrosis
Under anesthesia, the kidneys were isolated and weighed to calculate the kidney weight/bodyweight ratio (Kw/Bw [mg/g]). The right kidney was fixed in 4% paraformaldehyde for paraffin embedding. Then, 4-μm sections were stained with Masson and observed by microscopy.

Detection of oxidative stress indicator
The MDA content, T-SOD, and CAT activities in the plasma and kidney tissue were determined by the thiobarbituric acid method17, xanthine oxidase18 and the ammonium molybdate colorimetric method19, respectively. The assays were carried out according to the instructions supplied with the commercial kits. The bicinchoninic acid assay was used to normalize the levels in kidney tissue.

Statistical analysis
All data are expressed as mean ± SD. Significant differences were determined by the Bonferroni test. A P-value <0.05 was considered statistically significant.

RESULTS
Subcutaneous administration of H2 improved hyperglycemia in diabetic mice induced by high-fat diet and STZ
To initially investigate the effects of H2 on diabetic mice, bodyweight was tracked throughout the experimental period. Weight gains in all groups were similar without statistical significance (P > 0.05), suggesting that H2 administration does not affect bodyweight (Figure 1a).

We carried out biochemical analysis on blood samples to further investigate the antidiabetic effects of H2. Glucose plasma levels were significantly reduced by H2 injection (P < 0.01 or P < 0.05; Figure 1b). ITT and GTT were carried out at day 28. As shown in Figure 1c,d, blood glucose levels in the diabetic group reached the maximum at 30 min, and then gradually decreased. In contrast, blood glucose in the H2-treated mice declined faster. Serum glucose levels in the diabetic mice were significantly increased compared with the control animals, and...
Subcutaneous administration of H2 improved hyperglycemia in diabetic mice induced by a high-fat diet and a low dose of STZ

Hyperlipemia is an important feature of type 2 diabetes mellitus. We examined plasma lipids in diabetic mice after subcutaneous H2 administration. Levels of LDL and TG, but not total cholesterol, were significantly attenuated, whereas the level of high-density lipoprotein was increased after H2 treatment in the SAH group (**P < 0.01; Figure 2). These observations show significant improvement of hyperlipemia by subcutaneous
H₂ administration in diabetic mice induced by a high-fat diet and a low dose of STZ.

Subcutaneous administration of H₂ reduced the oxidative stress of diabetic mice induced by a high-fat diet and a low dose of STZ.

The effect of H₂ on oxidative stress was examined by measuring the levels of T-SOD, CAT and MDA in plasma (Figure 3a–c). The MDA level in plasma was significantly reduced in the H₂-administered mice (P < 0.01). The activity of T-SOD and CAT in plasma was prominently reduced in the diabetic mice compared with the NC group, whereas these changes were reversed by subcutaneous administration of H₂ (P < 0.01 or P < 0.05). Thus, H₂ suppressed oxidative stress in the diabetic mice. We also measured the levels of T-SOD, CAT and MDA to evaluate the oxidative stress in the kidney after H₂ administration (Figure 3d). H₂ administration significantly reduced MDA compared with the DM group. The activity of T-SOD and CAT in the kidney tissue of diabetic mice was prominently attenuated, which was enhanced by subcutaneous administration of H₂. These data show that H₂ inhibited renal oxidative stress in the diabetic mice.

Subcutaneous administration of H₂ reduced diabetic renal injury

Because the kidney was sensitive to injury induced by diabetes, we evaluated 24-h urine volume, total urine protein and β₂-microglobulin, Kw/Bw, and renal fibrosis in the experimental and control groups. As shown in Figure 4a, the 24-h urine volume of mice in the DM group was significantly increased, and this was ameliorated by subcutaneous injection of H₂ (P < 0.01). The levels of total urinary protein and β₂-microglobulin, and the ratio of K w/Bw were significantly higher in the DM vs NC mice, and subcutaneous administration of H₂ attenuated all DM-associated parameters (P < 0.01; Figure 4b–d). The fibrosis observed in the kidneys of diabetic mice (blue) was alleviated by H₂ treatment (Figure 4e). These data strongly show that subcutaneous administration of H₂ is able to reduce renal injury in diet- and STZ-induced diabetic mice.

DISCUSSION

Previous studies showed that H₂-water is able to attenuate oxidative stress in patients with type 2 diabetes mellitus and metabolic syndrome20–22. Although ingesting H₂-water is a convenient route of administration, the absorptive dose of H₂ is extremely limited because of low saturation (0.8 mmol/L at atmospheric pressure). In the present study, we showed for the first time that subcutaneous injection of H₂, which is locally stored in tissue and subsequently stably diffused, has significant effects on type 2 diabetes mellitus-associated disease features.

In preliminary experiments, we found that it took approximately 1 week to completely absorb 1 mL of subcutaneously injected H₂, and these observations were used to design the H₂ administration schedule. Based on the H₂ solubility coefficient

![Figure 2](image-url)
(0.0182 at 20°C) and international standard atmosphere (101.3 kPa), 55 mL of water is required to dissolve 1 mL of H2. At an ingestion rate of 5–7 mL/mouse/day, it would require 8 days to consume 1 mL of H2. In the digestive tract, the absorption of H2 into the body is even less efficient. Furthermore, injection of saturated-H2 saline at a dose of 0.6 mL/mouse/day would require approximately 91 days to consume 1 mL of H2. Although previously reported H2 administration routes have been shown to have significant anti-oxidative effects, our studies suggest that subcutaneous H2 injection is an efficient way to enhance H2 absorption by tissues and thereby improve therapeutic efficacy.

Hyperlipemia is a typical clinical feature of metabolic syndrome induced by diabetes. Other studies showed that the plasma TG level of diabetic mice was especially oxidized LDL, of type 2 diabetes patients, were suppressed by drinking H2-water. However, this improvement in hyperlipemia by drinking H2-water was not observed in type 2 diabetic mice by Haruka. The present experiments show that subcutaneous administration of H2 for 4 weeks (1 mL/week) in diabetic mice significantly decreased the serum levels of LDL and TG. In particular, we showed the high-density lipoprotein content was increased by subcutaneous injection of H2, which was not previously reported. The results show that subcutaneous administration is a more effective method for H2 treatment.

Another important finding of the present study was that subcutaneous administration of H2 ameliorated hyperglycemia. Furthermore, the data of GTT and ITT showed that glucose homeostasis and insulin sensitivity in diabetic mice were also significantly improved by subcutaneous H2 treatment. However, these effects were not stably achieved through ingestion of H2 water. Haruka et al. reported that hyperglycemia attenuation from drinking H2 water was effective only for type 1, but not type 2, diabetic mice.

Oxidative stress, involved in the pathogenesis of various diseases, is a process of imbalance between increased ROS and impaired anti-oxidant defenses to induce cellular injury. Most of the superoxide anion radical (O2) is produced by electron leakage from the electron transport chain and the Krebs

Figure 3 | Levels of malondialdehyde (MDA), total superoxide dismutase (T-SOD) and catalase (CAT) activity in the plasma and kidney of mice with diabetes mellitus (DM) induced by a high-fat diet and a low dose of streptozotocin. Subcutaneous administration of hydrogen gas (H2) to the mice decreased the levels of MDA, and promoted the activities of (b) T-SOD and (c) CAT in plasma. After 4 weeks of H2 treatment, the plasma samples from each group were collected to detect the levels of indicators for plasma oxidative stress. The oxidative stress was significantly reduced in the subcutaneous administration of H2 group (SAH) group compared with the DM group. Subcutaneous administration of H2 reduced the content of MDA and promoted the activities of (e) T-SOD and (f) CAT in the kidney. Renal tissues were homogenized to examine T-SOD and CAT activity, and MDA content. Bicinchoninic acid assay was used to determine protein levels in renal samples to normalize oxidative parameters. The data are expressed as mean ± SD (n = 8–16). *P < 0.05; **P < 0.01. NC, normal control group.
cycle. SOD converts O$_2^-$ into hydrogen peroxide (H$_2$O$_2$), which is detoxified into H$_2$O by either glutathione peroxidase or CAT. Excessive O$_2^-$ reduces transition metal ions, such as Fe$^{3+}$ and Cu$^{2+}$, which in turn react with H$_2$O$_2$ to produce hydroxyl radicals (OH$^-$), the strongest of the oxidant species without an especially targeted detoxification system, reacts easily with nucleic acids, lipids and proteins. Therefore, scavenging OH$^-$ is a critical anti-oxidant process. Oxidative stress is an important mechanism underlying diabetes mellitus24,30,31, which impacts millions of people worldwide. Oxidative stress can cause pancreatic β-cell damage32, and induce insulin resistance in fat cells and liver cells33,34, thus affecting glycolipid metabolism. As an anti-oxidant gas, H$_2$ can reduce oxidative damage in multiple tissues and organs. Previous studies have shown that H$_2$ can improve diabetes and diabetes-associated complications35. Therefore, we believe that H$_2$ improves glucose and lipid metabolism, likely through reducing oxidative damage in the liver, adipose tissue and pancreatic β-cells.

H$_2$ is a promising scavenger of reactive oxygen species, and shows remarkable protective effects in various diseases5,7. Ohsawa et al.5 showed that H$_2$ is a novel anti-oxidative gas molecule to selectively address OH$^-$. In the present study, we examined oxidative stress-related parameters including T-SOD, CAT and MDA levels in plasma, and found that subcutaneous injection of H$_2$ strikingly alleviated the oxidative stress of diabetes, which is consistent with previous studies35. Here, we also showed that subcutaneous injection of H$_2$ improved diabetic nephropathy (DN) through anti-oxidative stress. DN is one of the most common complications of diabetes. We examined multiple parameters to evaluate anti-DN effects of subcutaneous injection of H$_2$ including 24-h urine volume, urinary total protein, β2-microglobulin, kidney weight/bodyweight ratio (Kw/Bw) and renal fibrosis resulting from diabetes. After 4 weeks of H$_2$ treatment, (a) 24-h urine volume, (b) urinary total protein, (c) β2-microglobulin and (d) Kw/Bw were detected, and (e) kidney tissues were fixed for Masson staining. The 24-h urine volume, urinary total protein, β2-microglobulin, Kw/Bw and renal fibrosis in the group with H$_2$ treatment were significantly reduced, compared with the diabetes mellitus (DM) group ($n=16$ for each group). The data are expressed as mean ± SD ($n=8–16$). **$p<0.01$. NC, normal control group; SAH, subcutaneous administration of H$_2$ group.

Figure 4 | Subcutaneous administration of hydrogen gas (H$_2$) reduced 24-h urine volume, urinary total protein, β2-microglobulin, kidney weight/bodyweight ratio (Kw/Bw) and renal fibrosis resulting from diabetes. After 4 weeks of H$_2$ treatment, (a) 24-h urine volume, (b) urinary total protein, (c) β2-microglobulin and (d) Kw/Bw were detected, and (e) kidney tissues were fixed for Masson staining. The 24-h urine volume, urinary total protein, β2-microglobulin, Kw/Bw and renal fibrosis in the group with H$_2$ treatment were significantly reduced, compared with the diabetes mellitus (DM) group ($n=16$ for each group). The data are expressed as mean ± SD ($n=8–16$). **$p<0.01$. NC, normal control group; SAH, subcutaneous administration of H$_2$ group.
lipid and glucose metabolism, and DN in diabetic mice by providing protection against oxidative stress. These observations support the potential clinical application of this novel route of H₂ administration for the treatment of type 2 diabetes mellitus.

ACKNOWLEDGMENTS
We gratefully acknowledge Xiaoyi Qin and Youpei Wang (Department of Pathology, Eye Hospital of Wenzhou Medical University) for instruction in pathological examination. This work was supported by the Zhejiang Province Natural Science Foundation of China (NO. LY14H070005), Zhejiang Province Medical Science and Technology Project of China (NO. 2013C37005). The funders are not involved in study design, data collection and analysis, and manuscript preparation.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest 2007; 117: 1219–1222.
2. Death rates fall for 8 of 10 top causes; Alzheimer’s up to no. 6. Hosp Health Netw 2008; 82: 127.
3. Mansor LS, Gonzalez ER, Cole MA, et al. Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovasc Diabetol 2013; 12: 136.
4. L’Heveder R, Nolan T. International Diabetes Federation. Diabetes Res Clin Pract 2013; 101: 349–351.
5. Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13: 688–694.
6. Wood KC, Gladwin MT. The hydrogen highway to reperfusion therapy. Nat Med 2007; 13: 673–674.
7. Buchholz BM, Kaczorowski DJ, Sugimoto R, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant 2008; 8: 2015–2024.
8. Xie K, Yu Y, Pei Y, et al. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock 2010; 34: 90–97.
9. Xie K, Yu Y, Huang Y, et al. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock 2012; 37: 548–555.
10. Amitani H, Asakawa A, Cheng K, et al. Hydrogen improves glycemic control in type1 diabetic model by promoting glucose uptake into skeletal muscle. PLoS One 2013; 8: e55913.
11. Shirahata S, Harnasaki T, Haramaki K, et al. Anti-diabetes effect of water containing hydrogen molecule and Pt nanoparticles. BMC Proc 2011; 5(Suppl 8): P18.
12. Kamimura N, Nishimaki K, Ohsawa I, et al. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring) 2011; 19: 1396–1403.
13. Fukuda K, Asoh S, Ishikawa M, et al. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 2007; 361: 670–674.
14. Xiang L, Tan JW, Huang LJ, et al. Inhalation of hydrogen gas reduces liver injury during major hepatectomy in swine. World J Gastroenterol 2012; 18: 5197–5204.
15. Kajiyama M, Sato K, Silva MI, et al. Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 2009; 386: 316–321.
16. Xue J, Ding W, Liu Y. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010; 81: 173–177.
17. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351–358.
18. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972; 247: 3170–3175.
19. Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121–126.
20. Kajiyama S, Hasegawa G, Asano M, et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 2008; 28: 137–143.
21. Nakao A, Toyoda Y, Sharma P, et al. Effectiveness of hydrogen rich water on antioxidative status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr 2010; 46: 140–149.
22. Eo H, Lee HJ, Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun 2016; 478: 1021–1027.
23. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997; 272: 20313–20316.
24. Wolff SP. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 1993; 49: 642–652.
25. Dong K, Ni H, Wu M, et al. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem Biophys Res Commun 2016; 476: 204–211.
26. Araki E, Nishikawa T. Oxidative stress: a cause and therapeutic target of diabetic complications. J Diabetes Investig 2010; 1: 90–96.
27. Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. J Diabetes Investig 2014; 5: 623–634.
28. Siewert S, Gonzalez II, Lucero RO, et al. Association of cholesteryl ester transfer protein genotypes with paraoxonase-1 activity, lipid profile and oxidative stress in type 2 diabetes mellitus: a study in San Luis, Argentina. J Diabetes Investig 2015; 6: 67–77.

29. Hsu YC, Lee PH, Lei CC, et al. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways. J Diabetes Investig 2015; 6: 24–34.

30. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405–412.

31. West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000; 17: 171–180.

32. Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in beta-cell dysfunction in diabetes. J Mol Endocrinol 2016; 56: R33–R54.

33. Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: causes and Therapeutic Strategies. Metab Syndr Relat Disord 2015; 13: 423–444.

34. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6: 456–480.

35. Fan M, Xu X, He X, et al. Protective effects of hydrogen-rich saline against erectile dysfunction in a streptozotocin induced diabetic rat model. J Urol 2013; 190: 350–356.

36. Viberti GC, Hill RD, Jarrett RJ, et al. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1982; 1: 1430–1432.

37. Sugimoto H, Grahovac G, Zeisberg M, et al. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 2007; 56: 1825–1833.

38. Cardinal JS, Zhan J, Wang Y, et al. Oral hydrogen water prevents chronic allograft nephropathy in rats.Kidney Int 2010; 77: 101–109.