The Modulatory Role of Serotonin on Human Impulsive Aggression

Sofi da Cunha-Bang and Gitte Moos Knudsen

ABSTRACT
The hypothesis of chronically low brain serotonin levels as pathophysiological linked to impulsive aggression has been around for several decades. Whereas the theory was initially based on indirect methods to probe serotonin function, our understanding of the neural mechanisms involved in impulsive aggression has progressed with recent advances in neuroimaging. The review integrates evidence based on data from several neuroimaging domains in humans. In vivo molecular neuroimaging findings demonstrate associations between impulsive aggression and high serotonin 1B and serotonin 4 receptor binding, high serotonin transporter levels, and low monoamine oxidase A levels, suggesting that low interstitial serotonin levels are a neurobiological risk factor for impulsive aggressive behavior. Imaging genetics suggests that serotonergic-related genetic polymorphisms associate with antisocial behavior, and some evidence indicates that the low-expressing monoamine oxidase A genotype specifically predisposes to impulsive aggression, which may be mediated by effects on corticolimbic function. Interventions that (presumably) alter serotonin levels have effects on brain activity within brain regions involved in impulsive aggression, notably the amygdala, dorsal striatum, anterior cingulate, insula, and prefrontal cortex. Based on these findings, we propose a model for the modulatory role of serotonin in impulsive aggression. Future studies should ensure that clinical features unique for impulsive aggression are appropriately assessed, and we propose investigations of knowledge gaps that can help confirm, refute, or modify our proposed model of impulsive aggression.

https://doi.org/10.1016/j.biopsych.2021.05.016

Impulsive aggression as a result of impaired prefrontal inhibition of the amygdala has long been attributed to deficient serotonin signaling (1,2). The theory of low brain serotonin levels in the etiology of impulsive aggression has influenced the field for more than 3 decades. However, the evidence linking low serotonin levels with impulsive aggression has been based on indirect methods to probe serotonin function, and a meta-analysis of such studies has questioned the validity of this hypothesis (3). Our understanding of the neural mechanisms involved in impulsive aggression has progressed with recent advances in neuroimaging. This review synthesizes evidence on serotonergic function in human impulsive aggression, integrating data from several domains including imaging genetics, positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and multimodal and pharmaco-neuroimaging. We operationalize human aggression as “any behavior directed toward another individual that is carried out with the proximate (immediate) intent to cause harm, the perpetrator must believe that the behavior will harm the target and the target should be motivated to avoid the behavior” (4). Studies that link serotonin markers with suicide or self-directed aggression have been reviewed elsewhere (5,6).

ASSESSMENT OF ANGER AND IMPULSIVE AGGRESSION
A common categorical approach divides human aggression into two subtypes: impulsive (reactive) and premeditated (proactive) aggression (7). Whereas impulsive aggression has harm as an end goal, is unplanned, and is associated with emotional arousal, premeditated aggression has harm as the means to some other end and is considered planned and cold (4). Even though there is neurobiological support for a bimodal classification of human aggression (8), the two types of aggression can sometimes be expressed in the same act and therefore difficult to distinguish: for example, when an individual frustrated by a conflict becomes angry (reactively) and later plots the revenge (proactively) (7).

Exaggerated aggression is present across several disorders; intermittent explosive disorder (IED) and borderline personality disorder (BPD) mainly present with impulsive aggression (9), whereas individuals with psychopathy often exert both impulsive and premeditated aggression (10). Investigating diagnostically heterogeneous patient groups can make it difficult to tease out features specific for impulsive aggression. We propose that impulsive aggression is best conceptualized as a behavioral trait along a spectrum and that, when addressing specific categorical diagnoses, assessments of specific traits should be included.

Aggression and related constructs can be determined based on self-report questionnaires. Figure 1 shows intercorrelations between traits related to impulsive aggression, indicating that such psychometric items are manifestations of a unidimensional latent construct, whereas the trait cold-heartedness (included for comparison) clearly captures something different. We recently integrated these self-report
Serotonin and Impulsive Aggression

Extensive research on animals supports a role of serotonin in aggression, involving several components of the serotonin system (12). A “serotonin deficiency hypothesis” in humans emerged from early studies demonstrating lower concentrations of the serotonin metabolite 5-HIAA (5-hydroxyindoleacetic acid) in cerebrospinal fluid from impulsive violent offenders compared with violent offenders acting instrumentally (13). One of these initial studies found an inverse association between aggression scores and 5-HIAA with a large effect size ($r = -0.78$) (14), but a meta-analysis published 34 years later found only a weak negative correlation ($r = -0.12$) between aggression and serotonin across several methodologies assessing serotonin levels in various diagnostic groups (3). However, this meta-analysis did not include in vivo studies of cerebral serotonergic receptors.

Serotonin-Related Genetic Modifiers

Several genes related to serotonin function have been tested for associations with aggression, including variants of the genes encoding for serotonin 1B and 2A (5-HT$_1$B, 5-HT$_2$A) receptors and tryptophan hydroxylase, but sample sizes have been small and the outcomes conflicting (15,16). The serotonin transporter (5-HTT) linked polymorphic region (5-HTTLPR) is a polymorphism of the gene coding for 5-HTT and is associated with brain serotonin levels (17). A meta-analysis demonstrates significant interaction effects between the 5-HTTLPR and early adversity on level of antisocial behavior, but not impulsive aggression specifically (18).

So far, the most robust evidence is the association between the low-activity monoamine oxidase A (MAOA) genotype and antisocial behavior, an association moderated by early-life adverse experience (19–23). Antisociality captures several behavioral domains, and MAOA degrades serotonin, dopamine, and norepinephrine. Therefore, the genetic association cannot necessarily be attributed to serotonin and impulsive aggression only. One review based on both preclinical and human work highlights that the low-activity MAOA variant (MAOA-L) predisposes the risk for impulsive aggression specifically and suggests that these effects are due to dysregulated serotonin signaling during a critical developmentally sensitive period (24).

The link between MAOA-L and antisocial behavior could be explained by effects of MAOA on corticolimbic function. For example, in a mixed-sex sample of 142 healthy individuals, MAOA-L carriers showed heightened amygdala reactivity and reduced anterior cingulate cortex (ACC), orbitofrontal cortex, and insula reactivity in response to angry and fearful faces (25). In 60 healthy male MAOA-L carriers, there was a negative coupling between the amygdala and ventromedial prefrontal cortex (vmPFC), and amygdala–vmPFC connectivity was correlated with trait harm avoidance (26). In a mixed-sex sample of 219–254 healthy individuals, MAOA-L associated with hyperconnectivity between lobes, with pronounced involvement of frontotemporal connections in the context of implicit emotion processing, resting-state, and diffusion tensor imaging, but not other cognitive domains (27).

Molecular In Vivo Imaging of Serotonin in Impulsive Aggression

PET studies have identified several serotonergic components associated with constructs related to impulsive aggression, including 5-HT$_{1A}$ (28,29), 5-HT$_{1B}$ (30,31), 5-HT$_{2A}$ (32–37), and 5-HT$_{4}$ receptors (38), the 5-HTT (36,39–41), and MAOA (42–44); their distribution in the brain is shown in Figure 2. Even though evidence from PET studies is based on relatively few and often small studies, PET is state-of-the-art in assaying in vivo serotonin signaling in humans. Table 1 summarizes PET studies of the serotonergic system in aggression, excluding...
study populations with Axis I psychiatric comorbidity (e.g., major depressive disorder).

The two 5-HT1A receptor studies of healthy control subjects show opposite associations with aggression scores (28,29). Two studies of BPD patients with comorbid depressive symptomatology found higher hippocampal 5-HT2A receptor levels in BPD (32,33), which did not correlate with trait aggression (33). Another study found higher 5-HT2A receptor binding in IED subjects with current physical aggression compared with IED subjects without current aggression (35). However, several studies in healthy control subjects (33,34,36) and impulsive aggressive subjects without current comorbidity (35,36) do not support the 5-HT2A receptor as a trait marker of impulsive aggression.

One study found higher brainstem 5-HTT in impulsive aggressive males meeting criteria for BPD or antisocial personality disorder (ASPD), with positive correlations between brainstem 5-HTT and trait aggression, impulsivity, and anger (36). By contrast, studies that included patients with psychiatric comorbidities, such as past major depressive disorder (40,41) or current alcoholism (39), did not find such an association.

One study used global 5-HT4 receptor binding as a proxy for serotonergic tonus (chronic levels of interstitial serotonin levels) (45) and found that healthy men with low serotonergic tonus scored high on self-reported trait aggression (38).

Given the established effects of MAOA genotype on antisocial behavior, we find it reassuring that three PET studies consistently show inverse associations between cortical and subcortical MAOA levels and trait measures of aggression in healthy control subjects (42,43) and in male violent offenders with ASPD (44). In addition, orbitofrontal cortex and ventral striatum (VS) MAOA was lower in the offenders compared with control subjects (44).

In summary, some evidence indicates that impulsive aggression is related to high brainstem 5-HTT, high global 5-HT4 and striatal 5-HT1B receptor binding, and low global MAOA levels. Collectively, these findings support an inverse association between serotonin and impulsive aggression, as considered in the following.

A high receptor binding potential as measured with PET could reflect an increased receptor density as a trait marker of impulsive aggression, or it could be explained by a reduction in interstitial serotonin. Low serotonin levels reduce the occupancy of the receptors, which may induce a compensatory upregulation of the receptor if the reduction is (semi-)chronic (46). In either case, the observed increases in 5-HT1B and 5-HT4 receptor binding support the serotonin deficiency theory of impulsive aggression, further supported by low brain levels of MAOA, which may be interpreted as an index of low serotonin turnover. A high brainstem 5-HTT presumably leads to more efficient reuptake of serotonin and thus lower brainstem interstitial serotonin. This leads to less firing from the 5-HT1A autoreceptors, resulting in higher serotonin production and subsequently higher postsynaptic release of serotonin, unless, of course, brainstem 5-HTT density is increased in response to chronically low brainstem serotonin levels.

In general, the relationship between serotonin levels and its receptors seems to be dynamically regulated. The cerebral 5-HT4 receptor desensitizes in response to subchronically (weeks) elevated serotonin levels, as measured with
Target	Subjects	Radioligand	Aggression Assessment	Main Finding	References
5-HT_{1A} Receptors	25 healthy subjects (12 female/13 male)	(Carbonyl-¹¹C)WAY-100635	BGLA	Negative association between 5-HT_{1A} receptor binding and lifetime aggression score within raphe, amygdala, cingulate, and prefrontal cortex.	Parsey et al., 2002 (28)
5-HT_{1A} Receptors	33 healthy subjects (16 female/17 male)	(Carbonyl-¹¹C)WAY-100635	Questionnaire for Measuring Factors of Aggression	Positive correlation between anterior cingulate and frontal 5-HT_{1A} receptor binding and total aggression score.	Witte et al., 2009 (29)
5-HT_{2A} Receptors	Fourteen IED subjects with current physical aggression (4 female/10 male), 15 IED subjects without current physical aggression (3 female/12 male) and 25 healthy subjects (10 female/15 male)	[¹¹C]MDL100907	BPAQ, BDHI, OAS-M	Increased orbitofrontal 5-HT_{2A} receptor availability in patients with current physical aggression compared with patients without current physical aggression and healthy control subjects. Positive correlation between state irritability and orbitofrontal 5-HT_{2A} In IED subjects combined.	Rosell et al., 2010 (35)
5-HT_{2A} Receptors	94 healthy subjects (34 female/60 male)	[¹⁸F]altanserin	BPAQ, BIS	No significant association between frontal 5-HT_{2A} receptor binding and trait aggression or trait impulsivity.	da Cunha-Bang et al., 2013 (34)
5-HT_{2A} Receptors and 5-HTT	14 subjects with high impulsive aggression (ASPD or BPD), and 13 subjects with low levels of impulsive aggression (27 male)	[¹¹C]DASB and [¹¹C]MDL100907	EAQ, PPI, IVE, BIS, STAXI, BDHI	Higher brainstem/midbrain and lower cortical 5-HTT in men with impulsive aggression. Positive correlation between brainstem 5-HTT and impulsivity, aggression, and anger scores across all subjects. No significant group differences or associations between 5-HT_{2A} and impulsive aggression.	Rylands et al., 2012 (36)
5-HT₄ Receptors	61 healthy subjects (14 female/47 male)	[¹¹C]SB207145	BPAQ, BIS	Positive correlation between global 5-HT₄ receptor binding and trait aggression among male subjects.	da Cunha-Bang et al., 2016 (39)
5-HT_{1B} Receptors	19 violent offenders and 24 healthy subjects (43 male)	[¹¹C]AZ1045	BPAQ, BIS, PCL-R, STAXI, PPI	Positive correlation between dorsal striatum 5-HT_{1B} receptor binding and trait anger and level of psychopathy in the violent offender group.	da Cunha-Bang et al., 2017 (30)
MAOA	27 healthy subjects (27 male)	[¹¹C]clorgyline	MPQ	Inverse correlation between global MAOA levels and trait aggression.	Alia-Klein et al., 2006 (42)
MAOA	37 healthy subjects (17 female/20 male)	[¹¹C]harmine	NEO PI-R	Negative correlation between prefrontal MAOA binding and trait angry-hostility.	Soliman et al., 2011 (43)
Impulsive aggression is suggested to be mediated by the hypothalamus [the acute threat response (53,54)]. Whereas aggression can vary substantially across studies (Box 1 in the Supplement).

Anger can be triggered by other stimuli such as provocations, threats, or verbal descriptions or outward expressions of the emotional experience. A review including 13 fMRI studies that induced anger internally or externally (Box 1 in the Supplement) identified activation patterns relevant to the self-regulation, mentalizing, and saliency network, but it concluded that there is not enough evidence to substantiate a region-specific uniqueness to anger (57). When measuring a subjective experience such as feelings, we must rely on verbal descriptions or outward expressions of the emotional response. In addition, emotions may change quickly, which can affect the description of a previous emotional experience. Although measuring emotions can be difficult, it is possible in humans, as opposed to animals, which has obvious implications for translational research.

Table 1. Continued

Target	Subjects	Radioligand	Aggression Assessment	Main Finding	References
MAOA	18 ASPD subjects and 18 healthy subjects (36 male)	[11C]harmine	The Iowa gambling task, NEO PI-R, PCL-R	Lower orbitofrontal and ventral striatum MAOA levels in ASPD patients compared with control subjects. Inverse correlation between ventral striatum MAOA-A levels and trait impulsivity in ASPD subjects.	Kolla et al., 2015 (44)

- 5-HT, serotonin; 5-HTT, serotonin transporter; ASPD, antisocial personality disorder; BPD, borderline personality disorder; BDHI, Buss-Durkee Hostility Index; BGLA, Brown-Goodwin Lifetime Aggression Score; BIS, Barratt Impulsiveness Scale; BPAQ, Buss-Perry Aggression Questionnaire; BPD, borderline personality disorder; EAQ, Expression Aggression Questionnaire; IED, intermittent explosive disorder; IVE, Impulsiveness-Venturesomeness-Empathy Questionnaire; MAOA, monoamine oxidase A; MPQ, Multidimensional Personality Questionnaire; NEO PI-R, NEO Personality Inventory Revised; OAS-M, Overt Aggression Scale Modified; PCL-R, Psychopathy Checklist Revised; PPI, Psychopathic Personality Inventory; STAXI, State-Trait Anger Expression Inventory.

[11C]SB207145 PET (49), whereas an acute intervention with a selective serotonin reuptake inhibitor (SSRI) does not change receptor binding (47). Binding of [11C]AZ1041934 to 5-HT1B receptors decreases after acute administration of fenfluramine (a potent serotonin releaser) in nonhuman primates (48) and pigs (49). In humans, [11C]AZ1041934 binding decreases in response to visual stimuli (50), whereas it increases in response to an acute dose of SSRI (51), possibly because of stimulation of serotonin autoreceptors. That is, the concept of a sustained serotonin deficiency may be too simple, and perhaps, serotonin exerts a more dynamic modulation of the behavior.

In addition to acute or chronic serotonergic brain levels, specific serotonin receptors may regulate impulsive aggression via interaction with other neurotransmitter systems. For example, 5-HT1B receptors are located presynaptically on axon terminals of serotonergic neurons and postsynaptically as heteroreceptors on neurons from other neurotransmitter systems: dopamine, GABA (gamma-aminobutyric acid), glutamate, and acetylcholine (52).

In conclusion, current evidence based on in vivo molecular imaging supports the hypothesis that low endogenous serotonin levels are a neurobiological trait risk factor in impulsive aggression. It would be reassuring to see replications with focus on the assessments of impulsive aggression, as considered in the first section. Moreover, more knowledge is warranted regarding how serotonin dynamically modulates impulsive aggression.

NEURAL CIRCUITS OF ANGER AND IMPULSIVE AGGRESSION

fMRI and Emotional States Related to Impulsive Aggression

The context in which impulsive aggression in fMRI has been investigated and the impact of a subjective emotional state vary substantially across studies (Box 1 in the Supplement). Impulsive aggression is suggested to be mediated by the same neural circuit as fear—amygdala, periaqueductal gray, hypothalamus [the acute threat response (53,54)]. Whereas threat is a situational trigger of fear and anger, anger can also be triggered by other stimuli such as provocations, frustrations, or unfairness. What is the role of discrete emotion categories? One theory is that the subjective feeling of fear is not a product of the subcortical circuits underlying defensive responses but instead depends on circuits that underlie any form of conscious experience: the cortical general network of cognition, including the lateral and medial PFC, ACC, insula, and parietal cortex (55). It is argued that the subcortical circuits underlying defensive responses process threats subconsciously and do not themselves generate an emotional experience, but can rather modulate conscious feelings (55,56). In this view, a subjective feeling of anger would depend on brain circuits within the general network of cognition, which is in line with activation of several cortical regions during anger-induction in fMRI (57). A meta-analysis of laboratory-induced aggression in fMRI found convergent activity within the ACC and anterior insula/inferior frontal gyrus, which was related to state anger (58). However, many of the included studies did not ask the participants whether they felt angry during the tasks (58). Not all neuroimaging studies focus on the subjective experience of anger. Even though angry and fearful faces may represent a signal of threat, and “real” social interactions (e.g., PSAP and TAP) are used to elicit provocations, these stimuli are also generally salient and do not necessarily lead to a subjective feeling of anger. Some, but far from all, studies measure state anger before and after and a task [e.g., (59–61)], and we believe that correlating brain activity with such assessments will help tease out whether task-related brain activations can be attributed to the emotional experience. A review including 13 fMRI studies that induced anger internally or externally (Box 1 in the Supplement) identified activation patterns relevant to the self-regulation, mentalizing, and saliency network, but it concluded that there is not enough evidence to substantiate a region-specific uniqueness to anger (57). When measuring a subjective experience such as feelings, we must rely on verbal descriptions or outward expressions of the emotional response. In addition, emotions may change quickly, which can affect the description of a previous emotional experience. Although measuring emotions can be difficult, it is possible in humans, as opposed to animals, which has obvious implications for translational research.
Functional Neuroimaging Evidence for Brain Circuit Involvement

The dominant conceptual framework of how neural circuits regulate impulsive aggression is that the PFC modulates or inhibits subcortical activity mediating the aggressive response (1,2,8,53,62). That is, reduced PFC activity combined with heightened subcortical activity in the context of aggression-inducing stimuli poses an increased risk for impulsive aggression. Studies showing reduced functional connectivity between the amygdala and prefrontal regions in aggressive individuals putatively reflect such framework (63–67). High levels of impulsive aggression (or constructs closely linked to it) have repeatedly been associated with heightened amygdala reactivity in the context of angry faces (63,64,68–70), fearful faces (1,11), and provocations in the PSAP (67,71). A recent review suggested that brain regions involved in threat sensitivity (amygdala, hypothalamus, periaqueductal gray) and frustrative nonreward (amygdala, VS, caudate nucleus) represent activation conditions, and regions involved in cognitive control (PFC, insula, inferior parietal lobules) represent regulating conditions for impulsive aggression (72). This is in line with another review of nine IMRI TAP studies concluding that a neural circuitry mediating emotional reactivity and cognitive control is implicated in reactive aggression (73), although a meta-analysis revealed that the left postcentral gyrus was the only region consistently activated across these TAP studies (74).

The vmPFC is often highlighted in studies of impulsive aggression because of its role in inhibiting negative emotion (75). The vmPFC also subserves other domains of psychological function, including value-based decision making (75). Indeed, Blair (53,54) argues that the vmPFC shapes representation of expected rewards and punishments associated with an action. A person impaired with respect to decision making owing to poor prefrontal function might fail to recognize when aggression is disadvantageous based on anticipated consequences and therefore be more likely to engage in aggression (9). Although impulsive aggression may be an automatic response to an extreme threat, this view suggests that it may also be a selected response (as the aggressive responses in the TAP and PSAP are), which places an instrumental component in some impulsive aggressive acts (53). We believe that this view in many cases is the most compatible with “real-life” impulsive violent acts.

Serotonergic Effects on Aggression-Related Brain Circuits

Serotonin signaling has repeatedly been implicated in emotional processing in the context of aversive faces through its effects on corticolimbic function (76). Multimodal neuroimaging studies in healthy control subjects demonstrate associations between low amygdala reactivity to aversive emotional faces and high dorsal raphe 5-HT1A receptor binding (77,78), although one recent study revealed opposing directionality in the association (79). Interventions that presumably increase (SSRI) or decrease (acute tryptophan depletion [ATD]) brain serotonin levels influence amygdala reactivity and/or amygdala–prefrontal connectivity in the context of aversive faces (80–88). The interpretation is complicated by opposing directionalities in the findings; some studies show increased amygdala reactivity (80–83), whereas other studies find decreased amygdala reactivity (84,85) after SSRI intervention. 5-HT2A receptor neuroimaging in healthy control subjects suggests that as serotonin levels increase after 3-week intervention with SSRI, amygdala reactivity decreases (89).

Evidence from other paradigms related to anger, impulsivity, and aggression is limited. To our knowledge, only one study has directly investigated in vivo serotonin signaling and amygdala reactivity during provocations, revealing that male subjects with high global 5-HT1B receptor levels had heightened amygdala reactivity to PSAP-elicited provocations (90). Another multimodal neuroimaging study found a positive correlation between VS MAOA density and resting-state functional coupling with the VS and dorsomedial PFC in male patients with ASPD (91). In a TAP study, ATD-induced lowering of brain serotonin levels reduced anterior insula reactivity during a phase in which the participants decided the punishment level for the opponent, but there was no effect on task-related behavior (92). Depleting serotonin levels with ATD in a mixed-sex sample of healthy participants resulted in higher rejection rates to unfair (but not to fair) offers in the Ultimatum Game (93). ATD increased activity in the bilateral DS during rejection of unfair offers when healthy male and female participants played the Ultimatum Game, which was specific to costly punishment and not to fairness preferences (94). In contrast to the effects of ATD on retaliation, enhancing serotonin levels with SSRI increased harm aversion in a task in which healthy subjects could decide to inflict pain on themselves or others for financial gain (95). Moreover, intervention with SSRI made healthy subjects more likely to judge harmful actions as forbidden in a set of moral dilemmas pitting utilitarian outcomes (e.g., saving five lives) against aversive harmful actions (e.g., killing an innocent person), but only in cases when harms were emotionally salient (96). Other effects of ATD include reduced connectivity between the amygdala and bilateral supramarginal gyrus in healthy males during violent versus nonviolent actions in a video game (97).

Some limitations to the use of SSRI and ATD should be mentioned. It is possible that acute changes in raphé serotonin levels induce a 5-HT1A receptor–mediated autoinhibition, thereby increasing serotonin levels in projection areas after ATD and decreasing levels after SSRI, that is, exerting the opposite effect of expected. Moreover, there is large interindividual variation in serotonin levels after intervention with SSRI (98). In light of these limitations, the effects of ATD and SSRI should be interpreted with caution.

In conclusion, interventions that (presumably) alter serotonin levels have effects on brain activity within brain regions implicated in impulsive aggression, notably the amygdala, DS, ACC, insula, and PFC.

PHARMACOLOGICAL SEROTONERGIC INTERVENTIONS

If impulsive aggression is caused by low brain serotonin levels, one would expect that pharmacological enhancement of serotonin levels would reduce impulsive aggression. The few studies that have directly assessed the effects of SSRI on impulsive aggression were open label and included only 11 to
49 impulsive aggressive individuals (e.g., IED or BPD patients) and suggest that SSRI treatment reduces impulsive aggression (99–104). One double-blind, randomized, placebo-controlled trial of 100 patients with IED (of which 55 completed the study) found significant reductions in aggressive behavior after treatment with the SSRI fluoxetine (105).

The effects of interventions targeting specific serotonergic receptors have also been studied. In a small open-label study of 10 patients with IED, treatment with the 5-HT2C receptor agonist lorcaserin reduced TAP-induced aggression compared with placebo (106). Numerous animal studies have convincingly shown that pharmacological compounds that activate 5-HT1A/1B and antagonize 5-HT2A/2C receptor subtypes suppress aggression (107). The recent findings of altered 5-HT1B receptor levels in human aggression support that this receptor represents a relevant molecular target in antiaggressive treatment. In a study of 11 healthy individuals, the 5-HT1B agonist zolmitriptan decreased PSAP-induced aggression, although only after intake of alcohol (108). Replications are needed, preferentially with 5-HT1B agonists with higher blood-brain barrier penetrance (109).

In conclusion, the quality of evidence is low for both SSRI and other serotonergic agents in treating impulsive aggression, and much more work is needed to identify suitable pharmacological treatments.

A SUGGESTED MODEL FOR SEROTONERGIC EFFECTS ON IMPULSIVE AGGRESSION

Collectively, data from in vivo molecular imaging findings support that low brain interstitial serotonin levels are a neurobiological trait risk factor for impulsive aggression. The MAOA and 5-HTTLPR genetic variants predispose one to the risk for antisocial behavior, which may be due to low serotonin levels, but that remains to be further experimentally verified.

How do low serotonin levels contribute to impulsive aggression? The main view has been that serotonin facilitates prefrontal inhibition of amygdala reactivity, as suggested 20 years ago (1). Subsequent research combining fMRI with PET or serotonin-modulating interventions demonstrates serotonergic effects on brain activity not only within the amygdala but also within the DS, ACC, insula, and PFC.

Given the wealth of preclinical evidence supporting 5-HT1B receptors in impulsivity and aggression (110,111), we find it intriguing that 5-HT1B receptors are involved in human aggression; high global 5-HT1B receptor binding, putatively reflecting low serotonergic tonus, associates with heightened amygdala reactivity to provocations (90), in line with several

Figure 3. Systems involved in impulsive aggression and their putative roles. A situational trigger (e.g., provocations, frustrations) activates a neural circuit comprising the amygdala, GNC, DS, and PFC. Serotonergic tonus modulates amygdala and DS reactivity, which may also be modulated by the PFC. DS 5-HT1B receptors facilitate heightened DS reactivity, which may modulate anger, harm aversion, and retaliatory motives. Activation of the GNC induces a subjective experience of anger, which may be modulated by amygdala and/or DS, or vice versa: subjective experience of anger induces amygdala and/or DS activation. This is integrated in the PFC, in particular, the ventromedial PFC that can evaluate and regulate the behavior accordingly by either inhibiting amygdala/DS activity or by shaping representations of expected rewards and punishments associated with the action. Impulsive aggression may sometimes be an automatic response to extreme threat, mediated by the same neural circuit as fear (acute threat response). The figure was created with BioRender.com. 5-HT, serotonin; 5-HTTLPR, serotonin-transporter-linked promoter region; Amy, amygdala; DS, dorsal striatum; GNC, general network of cognition; HYP, hypothalamus; MAOA, monoamine oxidase A; PAG, periaqueductal gray; PFC, prefrontal cortex; vmPFC, ventromedial PFC.
studies showing effects of interventions that alter serotonin levels on amygdala reactivity (80–88). Moreover, individuals scoring high on measures linked to impulsive aggression (trait anger and self-centered impulsivity) have both high DS reactivity to provocations (67) and high DS 5-HT$_{1B}$ receptor binding (30). The DS is activated when rejecting unfair offers in the Ultimatum Game, and depleting serotonin levels leads to increased DS reactivity (9–4). Serotonin is thus thought to modulate DS responses to retaliatory motives, and enhancing serotonin levels (with SSRIs) increases aversion to harming others (35,96). This implies that serotonin promotes prosocial behavior by enhancing aversion to harming others (36). We suggest a model in which low serotonergic tonus facilitates heightened amygdala reactivity, whereas DS 5-HT$_{1B}$ receptors modulate DS activity during anger, harm aversion, and retaliatory motives. A subjective feeling of anger is generated in the general network of cognition (56), which may be modulated by the amygdala and/or DS, or vice versa; the subjective feeling of anger induces amygdala and/or DS activation. This is integrated in the PFC, in particular the vmPFC, which can evaluate and regulate the behavior accordingly. Below, we propose a model that integrate these key findings (Figure 3).

FUTURE DIRECTIONS

Future research should emphasize the context in which impulsive aggression is studied, for example, in relation to acute threat or in relation to experienced anger elicited by aggression-inducing stimuli. This may help determine whether anger is a prerequisite for neural mechanisms that contribute to impulsive aggression. Studying resilient individuals—people frequently experiencing subjective feelings of anger but without responding with aggression—will also be helpful to understand which factors modulate impulsive aggression. Multimodal neuroimaging studies with hybrid PET/fMRI of responses to provocations as evaluated during serotonin-modulating interventions, in particular specific serotonin receptor agonists or antagonists, can critically help elucidate the relationship between the dynamics of brain serotonin function and brain circuits in aggression. To investigate the role of specific serotonergic subsystems, we suggest pharmacological interventions that target the 5-HT$_{1B}$ Receptor. Until such selective compounds have been developed, repurposing of approved drugs could be tested: eltoprazine, a mixed 5-HT$_{1A}$/1B receptor agonist with antiaggressive effects in animals, or zolmitriptan, although it has low blood-brain barrier penetrance (103). Given that the 5-HT$_{1B}$ has an inhibitory effect on serotonin release, it would also be relevant to block 5-HT$_{1B}$ receptors, but we are not aware of any 5-HT$_{1B}$ antagonists approved for clinical use. The dynamics of serotonin signaling can be tested with drugs that release serotonin (e.g., dexamphetamine) in conjunction with PET radioligands sensitive to changes in serotonin levels, such as $[^{11}C]$Cimbi-36 (112). Such future studies could help to critically support, refute, or refine our proposed model of brain mechanisms involved in impulsive aggression.

ACKNOWLEDGMENTS AND DISCLOSURES

The research reported in this article was supported by grants from the Independent Research Fund Denmark (Grant No. 20038570 [to SdC-B]).

and The Research Fund of the Mental Health Services—Capital Region of Denmark (Grant No. 20038570 [to SdC-B]).

GMK reports having received honoraria from Sage Therapeutics and Sanos. SdC-B reports no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From the Neurobiology Research Unit (SdC-B, GMK), Copenhagen University Hospital Rigshospitalet, Faculty of Health and Medical Sciences (GMK), University of Copenhagen, Copenhagen; and Psychiatric Center North Zealand (SdC-B), Mental Health Services in the Capital Region of Denmark, Hillerød, Denmark.

Address correspondence to Sofi da Cunha-Bang, M.D., Ph.D., at sofi@nru.dk.

Received Feb 26, 2021; revised Apr 29, 2021; accepted May 16, 2021. Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2021.05.016.

REFERENCES

1. Davidson RJ, Putnam KM, Larson CL (2000): Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science 289:591–594.
2. Siever LJ (2008): Neurobiology of aggression and violence. Am J Psychiatry 165:429–442.
3. Duke AA, Bègue L, Bell R, Eisenlohr-Moul T (2013): Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychol Bull 139:1148–1172.
4. Bushman BJ, Anderson CA (2001): Is it time to plug the plug on the hostile versus instrumental aggression dichotomy? Psychol Rev 108:273–279.
5. Sudol K, Marin JJ (2017): Biomarkers of suicide attempt behavior: Towards a biological model of risk. Curr Psychiatry Rep 19:31.
6. van Heeringen K, Mann JJ (2014): The neurobiology of suicide. Lancet Psychiatry 1:63–72.
7. Wrangham RW (2018): Two types of aggression in human evolution. Proc Natl Acad Sci U S A 115:245–253.
8. Nelson RJ, Trainer BC (2007): Neural mechanisms of aggression. Nat Rev Neurosci 8:536–546.
9. Cocco EF, Srípadas CS, Yanowitch RN, Phan KL (2011): Cortico-limbic function in impulsive aggressive behavior. Biol Psychiatry 69:1153–1159.
10. Blair RJ (2010): Psychopathy, frustration, and reactive aggression: The role of ventromedial prefrontal cortex. Br J Psychol 101:383–399.
11. da Cunha-Bang S, Fisher PM, Hjordt LV, Holst K, Knudsen GM (2019): Amygdala reactivity to fearful faces correlates positively with impulsive aggression, Soc Neurosci 14:162–172.
12. Takahashi A, Quadros IM, de Almeida RM, Mieczek KA (2011): Brain serotonin receptors and transporters: Initiation vs. termination of escalated aggression. Psychopharmacology 213:183–212.
13. Linnola M, Vikkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983): Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior, Life Sci 33:2609–2614.
14. Brown GL, Goodwin FK, Balinger JC, Goyer PF, Major LF (1979): Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1:131–139.
15. Xiang C, Liu S, Fan Y, Wang X, Jia Y, Li L, et al. (2019): Single nucleotide polymorphisms, variable number tandem repeats and allele influence on serotonergic enzyme modulators for aggressive and suicidal behaviors: A review. Pharmaco Develop Behav 180:74–82.
16. Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV (2016): Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 171B:3–43.
17. Fisher PM, Holst KK, Mc Mahon B, Haahr ME, Madsen K, Gillings N, et al. (2012): 5-HTTLPR status predictive of neocortical 5-HT4
Serotonin and Impulsive Aggression

binding assessed with [11C]SB207145 PET in humans. NeuroImage 62:130–136.

18. Tielbeek JJ, Karlsson Linnér R, Beers K, Posthumus D, Popma A, Polderman TJ (2016): Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. Am J Med Genet B Neuropsychoiatr Genet 171:745–760.

19. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006): MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: New evidence and a meta-analysis. Mol Psychiatry 11:903–913.

20. Byrd AL, Manuck SB (2014): MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biol Psychiatry 75:9–17.

21. Caspi A, McCleary J, Moffitt TE, Mill J, Martin J, Craig IW, et al. (2002): Role of genotype in the cycle of violence in maltreated children. Science 297:851–854.

22. Godar SC, Fite PJ, McFarlin KM, Bortolato M (2016): The role of monoamine oxidase A in aggression: Current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatry 69:90–100.

23. Tihonen J, Rautainen MR, Ollila HM, Repo-Tihonen E, Virkkunen M, Palotie A, et al. (2015): Genetic background of extreme violent behavior. Mol Psychiatry 20:786–792.

24. Dorfman HM, Meyer-Lindenberg A, Buckholtz JW (2014): Neurobiological mechanisms for impulsive-aggression: The role of MAOA. Curr Top Behav Neurosci 17:297–315.

25. Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Goldberg TE, Genderson M, et al. (2008): Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in impulsive aggression. Mol Psychiatry 13:313–324.

26. Hameit A, Braun U, Geiger LS, Zang Z, Hakobjan M, van Donkelaar MMJ, et al. (2019): MAOA-VNTR genotype affects structural and functional connectivity in distributed brain networks. Hum Brain Mapp 40:5202–5212.

27. Parsley RV, Quednau MA, Simpson NR, Ogden RT, Van Heerum R, Arango V, Mann JJ (2002): Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res 954:173–182.

28. Witte AV, Fölej P, Stein P, Savil M, Linck MK, Wadaisk W, et al. (2009): Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum Brain Mapp 30:2558–2570.

29. da Cunha-Bang S, Hjordt LV, Perfalk E, Beliveau V, Bock C, Lehel S, et al. (2017): Serotonin 1B receptor binding is associated with trait anger and level of psychopathy in violent offenders. Biol Psychiatry 81:100–107.

30. da Cunha-Bang S, Hjordt LV, Dem M, Kühn M, Hultcrantz C, et al. (2014): Central 5-HT4 receptor binding as biomarker of serotonin tone in humans: A [11C]SB207145 PET study. Mol Psychiatry 19:427–432.

31. Haahr ME, Fisher PM, Jensen CG, Frokjaer VG, Mahon BM, Madsen K, et al. (2014): Central 5-HT4 receptor binding as biomarker of serotonin tone in humans: A [11C]SB207145 PET study. Mol Psychiatry 19:427–432.

32. Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM (2010): Measuring endogenous 5-HT-9 release by emission tomography: Promises and pitfalls. J Cereb Blood Flow Metab 30:1682–1706.

33. Mamer L, Gilling N, Madsen K, Erritzoe D, Baare WF, Svarer C, et al. (2010): Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. NeuroImage 50:855–861.

34. Finnema SJ, Varrone A, Hwang TJ, Gulyás B, Pierson ME, Halldin C, et al. (2020): Visual stimuli induce serotonin release in the primate brain. Synapse 64:575–577.

35. Jorgensen LM, Weikop P, Svarer C, Feng L, Keller SH, Knudsen GM (2020): [11C]DASB and [11C]MDL100907. Biol Psychiatry 72:1004–1011.

36. Meyer JH, Wilson AA, Rusjan P, Clark M, Houle S, Woodsise S, et al. (2008): Serotonin2A receptor binding potential in people with aggressive and violent behaviour. J Psychiatry Neurosci 33:499–508.

37. da Cunha-Bang S, Mc Mahon B, Fisher PM, Jensen PS, Svarer C, Knudsen GM (2016): High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT1A receptor binding. Soc Cogn Affect Neurosci 11:548–555.

38. Brown AK, George DT, Fujita M, Liow JS, Ichise M, Hibblen J, et al. (2007): PET [11C]DASB imaging of serotonin transporters in patients with alcoholism. Alcohol Clin Exp Res 31:28–32.

39. van de Giessen E, Rosell DR, Thompson JL, Xu X, Girgis RR, Ehrlich Y, et al. (2014): Serotonin transporter availability in impulsive aggressive disorder: A PET study with [11C]DASB. J Psychiatry Res 58:147–154.

40. Frankle WG, Lombardo I, New AS, Goodman M, Talbot PS, Huang Y, et al. (2005): Brain serotonin transporter distribution in subjects with impulsive aggression: A positron emission study with [11C]McN 5652. Am J Psychiatry 162:915–923.

41. Alia-Klein N, Goldstein RZ, Kirpani A, Logan J, Tomasi D, Williams B, et al. (2006): Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 26:5099–5104.

42. Soliman A, Bagby RM, Wilson AA, Miller L, Clark M, Rusjan P, et al. (2011): Relationship of monoamine oxidase A binding to adaptive and maladaptive personality traits. Psychol Med 41:1051–1060.

43. Kolla NJ, Matthews B, Wilson AA, Houle S, Bagby RM, Links P, et al. (2015): Lower monoamine oxidase-A total distribution volume in impulsive and violent male offenders with antisocial personality disorder and high psychopathic traits: An [11C]harmine positron emission tomography study. Neuropsychopharmacology 40:2596–2603.

44. Haahr ME, Fisher PM, Jensen CG, Frokjaer VG, Mahon BM, Madsen K, et al. (2014): Central 5-HT4 receptor binding as biomarker of serotonin tone in humans: A [11C]SB207145 PET study. Mol Psychiatry 19:427–432.

45. Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM (2010): Measuring endogenous 5-HT-9 release by emission tomography: Promises and pitfalls. J Cereb Blood Flow Metab 30:1682–1706.

46. Mamer L, Gilling N, Madsen K, Erritzoe D, Baare WF, Svarer C, et al. (2010): Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. NeuroImage 50:855–861.

47. Finnema SJ, Varrone A, Hwang TJ, Gulyás B, Pierson ME, Halldin C, et al. (2010): Fenfluramine-induced serotonin release decreases [11C]AZ10419369 binding to 5-HT1B-receptors in the primate brain. Synapse 64:575–577.

48. Jorgensen LM, Weikop P, Svarer C, Feng L, Keller SH, Knudsen GM (2020): [11C]DASB and [11C]MDL100907. Biol Psychiatry 72:1004–1011.

49. Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, et al. (2020): Subcortical 5-HT1B receptor binding in the pig brain. J Cereb Blood Flow Metab 38:1243–1252.

50. Hansen HD, Lindberg U, Ozenne B, Fisher PM, Johansen A, Svarer C, et al. (2020): Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study. Hum Brain Mapp 41:4753–4763.

51. Nord M, Finnema SJ, Halldin C, Farde L (2013): Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain. Int J Neuropsychopharmacol 16:1577–1586.

52. San Y (2004): Serotonin1B receptors: From protein to physiological function and behavior. Neurosci Biobehav Rev 28:565–582.

53. Blair RJ (2016): The neurobiology of impulsive aggression. J Child Adolesc Psychopharmacol 26:4–9.

54. Blair RJ (2004): The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn 55:198–208.
55. LeDoux JE, Pine DS (2016): Using neuroscience to help understand fear and anxiety: A two-system framework. Am J Psychiatry 173:1083–1093.

56. LeDoux JE, Brown R (2017): A higher-order theory of emotional consciousness. Proc Natl Acad Sci U S A 114:E2016–E2025.

57. Alia-Klein N, Gan G, Gilam G, Bezek J, Bruno A, Denson TF, et al. (2020): The feeling of anger. From brain networks to linguistic expressions. Neurosci Biobehav Rev 108:480–497.

58. Puiu AA, Wunderczuk O, Kohls G, Bzdok D, Herpertz-Dahlmann B, Konrad K (2020): Meta-analytic evidence for a joint neural mechanism underlying response inhibition and state anger. Hum Brain Mapp 41:3147–3160.

59. Repple J, Pawliczek CM, Voss B, Siegel S, Schneider F, Kohn N, Habel U (2017): From provocation to aggression: The neural network. BMC Neurosci 18:73.

60. Siep N, Tonnera F, van de Ven V, Amtz A, Raine A, Cima M (2019): Anger provocation increases limbic and decreases medial prefrontal cortex connectivity with the left amygdala in reactive aggressive violent offenders. Brain Imaging Behav 13:1311–1323.

61. Repple J, Habel U, Wagels L, Pawliczek CM, Schneider F, Kohn N (2018): Sex differences in the neural correlates of aggression. Brain Struct Funct 223:4111–4125.

62. Rosell DR, Siever LJ (2015): The feeling of anger. From brain networks to linguistic expressions. Neurosci Biobehav Rev 108:480–497.

63. McCloskey MS, Phan KL, Angstadt M, Fettich KC, Keedy S, Rosell DR, Siever LJ (2015): The neurobiology of aggression and violence. Biol Psychiatry 83:638–649.

64. Coccaro EF, McCloskey MS, Fitzgerald DA, Phan KL (2007): Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol Psychiatry 62:168–178.

65. White SF, VanTieghem M, Brialin SJ, Sypher I, Sinclair S, Pine DS, et al. (2016): Neural correlates of the propensity for retaliatory behavior in youths with disruptive behavior disorders. Am J Psychiatry 173:282–290.

66. Varkevisser T, Gladwin TE, Heesink L, van Honk J, Geuze E (2017): Prefrontal-amygdala connectivity with the left amygdala in reactive aggressive violent offenders. Brain Imaging Behav 11:1576–1587.

67. da Cunha-Bang S, Fisher PM, Hjordt LV, Perfalk E, Hjort N, Perfalk E (2017): (S)-citalopram in antisocial personality disorder. J Psychiatr Res 83:290–297.

68. Carré JM, Murphy KR, Hariri AR (2013): What lies beneath the face of anger provocation? Soc Cogn Affect Neurosci 8:224–238.

69. New AS, Hszllet EA, Newmark RE, Zhang J, Treb wasser J, Meyerson D, et al. (2009): Laboratory induced aggression: A positron emission tomography study of aggressive individuals with borderline personality disorder. Biol Psychiatry 66:1107–1114.

70. Bartsch K, Florange J, Herpertz SC (2020): Understanding brain mechanisms of reactive aggression. Curr Psychiatry Rep 22:81.

71. Fanning JP, Keedy S, Berman ME, Lee R, Coccaro EF (2017): Neural correlates of aggressive behavior in real time: A review of fMRI studies of laboratory reactive aggression. Curr Behav Neurosci Rep 4:138–150.

72. Wong TY, Sidd A, Wensing T, Eckhoff SB, Habel U, Gur RC, Nickl-Jockschat T (2019): Neural networks of aggression: ALE meta-analyses on trait and elicited aggression. Brain Struct Funct 224:1337–1341.

73. Hiser J, Koenigs M (2018): The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry 83:638–647.

74. Fisher PM, Hariri AR (2013): Identifying serotonergic mechanisms underlying the corticolimbic response to threat in humans. Philos Trans R Soc Lond B Biol Sci 368:20120192.

75. Fisher PM, Meltzer CC, Ziolko SK, Price JC, Moses-Kolko EL, Berga SL, Hariri AR (2006): Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nat Neurosci 9:1362–1363.

76. Salvaj M, Mouchlanitis E, Faulkner P, Turkeheimer F, Cowen PJ, Roiser JP, Howes O (2015): Presynaptic serotonergic regulation of emotional processing: A multimodal brain imaging study. Biol Psychiatry 78:563–571.

77. Kranz GS, Hahn A, Kraus C, Spies M, Pichler V, Jungwirth J, et al. (2018): Probing the association between serotonin-1A autoreceptor binding and amygdala reactivity in healthy volunteers. Neuroimage 171:1–5.

78. Murphy SE, Norbury R, O’Sullivan U, Cowen PJ, Hamer CJ (2009): Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry 194:335–340.

79. Cremers H, Lee R, Keedy S, Phan KL, Coccaro E (2016): Effects of escitalopram administration on the neural correlates of aggression in intermittent explosive disorder: An fMRI study. Neuropsychopharmacology 41:599–597.

80. Bigos KL, Pollock BG, Azenstein JH, Fisher PM, Bies RR, Hariri AR (2008): Acute 5-HT reuptake blockade potentiates human amygdala reactivity. Neuropsychopharmacology 33:3221–3225.

81. Selvaraj S, Cremers H, Arnone D, Cao B, Faulkner P, Cowen PJ, et al. (2018): Effect of citalopram on emotion processing in humans: A combined 5-HT1A(1)CUMI-101 PET and functional MRI study. Neuropsychopharmacology 43:655–664.

82. Anderson IM, Del-Ben CM, McKeie S, Richardson P, Williams SR, Elliott R, Deakin JF (2007): Citalopram modulation of neuronal responses to averse face emotions: A functional MRI study. Neuroreport 18:1351–1355.

83. Del-Ben CM, Deakin JF, McKeie S, Delvai NA, Williams SR, Elliott R, et al. (2005): The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: An fMRI study. Neuropsychopharmacology 30:1724–1734.

84. Sladky R, Spies M, Hoffmann A, Kranz G, Hummer A, Gryglewski G, et al. (2015): (S)-citalopram influences amygdala modulation in healthy subjects: A randomized placebo-controlled double-blind fMRI study using dynamic causal modeling. Neuroimage 108:243–250.

85. Maron E, Wall M, Norbury R, Godlewksa B, Terbeck S, Cowen P, et al. (2016): Effect of short-term escitalopram treatment on neural activation during emotional processing. J Psychopharmacol 30:33–39.

86. Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, Calder AJ, Robbins TW (2012): Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 71:38–43.

87. Fisher PM, Haahr ME, Jensen CG, Frokjaer VG, Siebner HR, Knudsen GM (2019): Fluctuations in [11C]SB207145 PET binding and functional connectivity in antisocial personality disorder. Neuropsychopharmacology 44:1510–1518.

88. da Cunha-Bang S, Fisher PM, Hjordt LV, Perfalk E, Beliveau V, Holst K, Knudsen GM (2018): Men with high serotonin 1B receptor binding predict to provocations with heightened amygdala reactivity. Neuroimage 178:108–114.

89. del-Ben CM, Deakin JF, McKeie S, Delvai NA, Williams SR, Elliott R, et al. (2005): The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: An fMRI study. Neuropsychopharmacology 30:1724–1734.

90. Sladky R, Spies M, Hoffmann A, Kranz G, Hummer A, Gryglewski G, et al. (2015): (S)-citalopram influences amygdala modulation in healthy subjects: A randomized placebo-controlled double-blind fMRI study using dynamic causal modeling. Neuroimage 108:243–250.

91. Kolla NJ, Dunlop K, Downar J, Links P, Bagby RM, Wilson AA, et al. (2018): Association of ventral striatum monoamine oxidase-A binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study. Eur Neuropsychopharmacol 26:777–786.

92. Krämer UM, Riba J, Richter S, Münte TF (2011): An fMRI study on the role of serotonin in reactive aggression. PLoS One 6:e2025.
Serotonin and Impulsive Aggression

94. Crockett MJ, Apergis-Schoute A, Hermann B, Lieberman MD, Müller U, Robbins TW, Clark L (2013): Serotonin modulates striatal responses to fairness and retaliation in humans. J Neurosci 33:3505–3513.

95. Crockett MJ, Siegel JZ, Kurth-Nelson Z, Ousdal OT, Story G, Frieband C, et al. (2015): Dissociable effects of serotonin and dopamine on the valuation of harm in moral decision making. Curr Biol 25:1852–1859.

96. Crockett MJ, Clark L, Hauser MD, Robbins TW (2010): Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proc Natl Acad Sci U S A 107:17433–17438.

97. Klasen M, Wolf D, Eisner PD, Eggermann T, Zerres K, Zepf FD, et al. (2019): Serotonergic contributions to human brain aggression networks. Front Neurosci 13:42.

98. da Cunha-Bang S, Ettrup A, Mc Mahon B, Skibsted AP, Schain M, Lehel S, et al. (2019): Measuring endogenous changes in serotonergic neurotransmission with [11C]Cimbi-36 positron emission tomography in humans. Transl Psychiatry 9:134.

99. Coccaro EF, Kavoussi RJ (1997): Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54:1081–1088.

100. Reist C, Nakamura K, Sagart E, Sokolski KN, Fujimoto KA (2003): Impulsive aggressive behavior: Open-label treatment with citalopram. J Clin Psychiatry 64:81–85.

101. Silva H, Iruma P, Solari A, Villarroel J, Jerez S, Jiménez M, et al. (2010): Fluoxetine response in impulsive-aggressive behavior and serotonin transporter polymorphism in personality disorder. Psychiatr Genet 20:25–30.

102. Butler T, Schofield PW, Greenberg D, Allnutt SH, Indig D, Carr V, et al. (2010): Reducing impulsivity in repeat violent offenders: An open label trial of a selective serotonin reuptake inhibitor, Aust N Z J Psychiatry 44:1137–1143.

103. Kavoussi RJ, Liu J, Coccaro EF (1994): An open trial of sertraline in personality disordered patients with impulsive aggression. J Clin Psychiatry 55:137–141.

104. Rubey RN, Johnson MR, Emmanuel N, Lydiard RB (1996): Fluoxetine in the treatment of anger: An open clinical trial. J Clin Psychiatry 57:398–401.

105. Coccaro EF, Lee RJ, Kavoussi RJ (2009): A double-blind, randomized, placebo-controlled trial of fluoxetine in patients with intermittent explosive disorder. J Clin Psychiatry 70:653–662.

106. Coccaro EF, Lee RJ (2019): 5-HT2C agonist, loracaserin, reduces aggressive responding in intermittent explosive disorder: A pilot study. Hum Psychopharmacol 34:e2714.

107. de Boer SF, Koolhaas JM (2005): 5-HT1A and 5-HT1B receptor agonists and aggression: A pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139.

108. Gwinn JL, Swann AC, Moeller FG, Lane SD (2010): Zolmitriptan and human aggression: Interaction with alcohol. Psychopharmacology 210:521–531.

109. Varnäs K, Jucaite A, McCarthy DJ, Stenkrona P, Nord M, Halldin C, et al. (2013): A PET study with [11C]AZ10419369 to determine brain 5-HT1B receptor occupancy of zolmitriptan in healthy volunteers. Cephalalgia 33:853–860.

110. Nautyal KM, Tanaka KF, Barr MM, Tritschler L, Le Dantec Y, David DJ, et al. (2015): Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity. Neuron 86:813–826.

111. Olivier B, van Oorschot R (2005): 5-HT1B receptors and aggression: A review. Eur J Pharmacol 526:207–217.

112. Emmizoe D, Ashok AH, Searle GE, Colasanti A, Turton S, Lewis Y, et al. (2020): Serotonin release measured in the human brain: A PET study with [11C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology 45:804–810.

113. Knudsen GM, Jensen PS, Emmizoe D, Baaré WFC, Ettrup A, Fisher PM, et al. (2016): The Center for Integrated Molecular Brain Imaging (Cimbi) database. Neurimage 124:1213–1219.

114. Beliveau V, Ganz M, Feng L, Ozenne B, Holggaard L, Fisher PM, et al. (2017): A high-resolution in vivo atlas of the human Brain’s serotonin system. J Neurosci 37:120–126.