The SIR model of an epidemic

William G. Faris
Department of Mathematics
University of Arizona
August 9, 2020

Abstract

The SIR model is a three-compartment model of the time development of an epidemic. After normalizing the dependent variables, the model is a system of two non-linear differential equations for the susceptible proportion S and the infected proportion I. After normalizing the time variable there is only one remaining parameter. This largely expository article is mainly about aspects of this model that can be understood with calculus. It also discusses an alternative exactly solvable model that appeared in early work of Kermack and McKendrick. This model may be obtained by replacing SI factors by $\sqrt{2S-I}$ factors. For a mild epidemic, where S is decreasing from 1 but remains fairly close to 1, this is a reasonable approximation.

1 The simplest model of an epidemic

The SIR model is the simplest differential equation model that describes how an epidemic begins and ends. It depends on only two parameters: One governs the timing, the other determines everything else. It gives a glimpse into the world of more complicated epidemic models.

The SIR model is standard in the literature of epidemiology [2, 3], and it even shows up in textbooks on calculus and differential equation. There is no exact formula for how the infection level depends on time. This account reviews what can be done in spite of this limitation. There is a modification of the SIR model for which there is an exact formula for the time dependence. This account also presents a way of understanding this modified model.
For a fixed population S is the proportion of susceptibles, I is the proportion of infected, and R is the proportion of removed. Removal is supposed to be permanent. The mechanism of removal is not specified. Some individuals might not survive; others might recover with full immunity.

Every member of the population is supposed to belong to one of these three compartments, so $S + I + R = 1$. While S, I, and R change with time, the parameters that define the model do not change with time. This is a closed system, with no reintroduction from the outside.

There are two parameters in the model. One is a rate b that governs how fast the susceptible-infected pairs are changing into infected-infected pairs. The other is a rate a that governs how fast infected individuals are being removed. The ratio

$$r_0 = \frac{b}{a}$$

is the basic reproduction number that determines the scope of the epidemic. This represents the number of new infections per removal at the beginning of the epidemic. When $r_0 < 1$ the epidemic immediately begins to die out. The more interesting situation is when $r_0 > 1$.

In this model there are no interventions; the rate constants b and a never change, and so also the reproductive number r_0 is constant. The goal is to see how the course of the epidemic depends on the parameters.

Here is an outline of what happens. During the course of the epidemic S decreases and R increases. What happens to I is governed by the effective reproduction number r_0S. This represents the average number of new infections per removal. As the pool of susceptibles is depleted, this number decreases with time. As long as r_0S is greater than one, the proportion I of infected increases. It reaches a peak when $r_0S = 1$. Afterward r_0S is less than one, and I decreases to zero. Meanwhile, R increases to a final value representing the proportion of the population eventually infected and removed.

It is sometimes useful to take the fundamental parameters as r_0 and a. In that case, the role of r_0 is to describe the size of the epidemic, while the role of a is to describe how fast the epidemic takes place as a function of time.

Figures 1, 2, and 3 show the behavior of the SIR model for r_0 values 2, 3, and 6. The following discussion will clarify what these pictures mean. Even when r_0 is 2, the final value of R is 80 percent. Also, the r_0 equal to 6 picture shows that the infection proportion curve I is not symmetric about its peak. This is because at this level of r_0 infection is fast and removal is
slow. (The modified SIR model will show why for small r_0 the infection curve is approximately symmetric.)

Figure 4 shows the dependence of the final proportion R of removed on the basic reproduction number $r_0 > 1$. The values are shockingly large; the growth of infection has a dramatic effect before it is checked.

2 The SIR model

The SIR model has fundamental equations

\[
\frac{dS}{dt} = -bSI, \quad \frac{dI}{dt} = bSI - aI
\]
\[
\frac{dR}{dt} = aI. \tag{2}
\]

Here \(S > 0 \) is the proportion susceptible, \(I > 0 \) is the proportion infected, \(R \geq 0 \) is the proportion removed. Since \(S + I + R = 1 \), any two of these equations implies the third one. There are two rate constants: \(b > 0 \) and \(a > 0 \). The initial conditions at \(t = 0 \) are \(S_0 < 1 \) and \(I_0 > 0 \) with \(S_0 + I_0 = 1 \). This implies that \(R_0 = 0 \). It is often useful to think of \(S_0 \approx 1 \) and \(I_0 \approx 0 \) as being close to 1 and 0.

It is convenient to define a rescaled time \(\tau = at \). This is measuring time in units that roughly correspond to the average time for removal. Since the basic reproduction number \(r_0 = b/a \), the equations become

\[
\frac{dS}{d\tau} = -r_0SI, \tag{3}
\]
\[
\frac{dI}{d\tau} = (r_0S - 1)I, \tag{4}
\]
\[
\frac{dR}{d\tau} = I. \tag{5}
\]

The proportion of susceptibles \(S \) starts at \(S_0 \) and steadily decreases, eventually approaching a limit \(S_\infty > 0 \) as \(\tau \to +\infty \). The proportion of removeds \(R \) starts at 0 and steadily increases, eventually approaching a limit \(R_\infty < 1 \) as \(\tau \to +\infty \). At each time the growth rate of the proportion \(I \) of infecteds is approximately exponential with rate \(r_0S - 1 \). In the long run this is negative, and the proportion of infecteds \(I \) approaches 0 as \(\tau \to +\infty \). It follows that \(S_\infty + R_\infty = 1 \).

By definition the effective reproduction number is \(r_0S \). From the equation

\[
-\frac{dS}{dR} = r_0S \tag{6}
\]

it appears that the effective reproduction number represents new infections per removal.

Since \(I = 1 - S - R \), it follows that

\[
\frac{dI}{dR} = r_0S - 1. \tag{7}
\]

This measures net infections per removal. This equation for \(dI/dR \) leads to the first and most basic result. Since \(dI/d\tau = dI/dR \frac{dR}{d\tau} \) and \(dR/d\tau > 0 \), it can be thought of as a result either about dependence on \(R \) or dependence on \(\tau \). Suppose \(r_0S_0 > 1 \).
Figure 2: S, I, R as functions of $\tau = at$: $r_0 = 3$.

- The infection proportion I as a function of the removed proportion R starts at I_0, increases to a peak at the R level where the effective reproduction number $r_0 S = 1$, and then decreases to zero at R_∞.

- The infection proportion I as a function of time τ starts at I_0, increases to a peak at the time τ when the effective reproduction number $r_0 S = 1$, and then decreases to zero as $\tau \to +\infty$.

3 S as a decreasing function of R

The differential equation $dS/dR = -r_0 S$ is the equation for exponential decay. If $R_0 = 0$ this has solution

$$S = S_0 e^{-r_0 R} \quad (8)$$
for $0 \leq R \leq R_\infty$.

The S and R values determine each other. In fact,

$$R = -\frac{1}{r_0} \ln \left(\frac{S}{S_0} \right)$$ \hspace{1cm} (9)

for $S_0 \geq S \geq S_\infty$.

The infection is then

$$I = 1 - S - R = 1 - S_0 e^{-r_0 R} - R.$$ \hspace{1cm} (10)

Alternatively,

$$I = 1 - S - R = 1 - S + \frac{1}{r_0} \ln \left(\frac{S}{S_0} \right).$$ \hspace{1cm} (11)

Its values are positive; they start at $I_0 = 1 - S_0$ and end at zero as S arrives at S_∞.

Putting these explicit formulas back in the original equations leads to integral expressions for t as a function of R and for t as a function of S. See for instance [1].

4 I at peak infection

Proposition 1 Start with $r_0 S_0 > 1$. The peak infection takes place when the effective reproduction number $r_0 S = 1$. At peak infection the values of S, I, R are

$$S^* = \frac{1}{r_0},$$

$$I^* = 1 - \frac{1}{r_0} + \frac{1}{r_0} \ln \left(\frac{1}{r_0 S_0} \right),$$

$$R^* = -\frac{1}{r_0} \ln \left(\frac{1}{r_0 S_0} \right).$$ \hspace{1cm} (12)

As r_0 increases from $1/S_0$ to $+\infty$, the S^* value decreases from S_0 to 0, the I^* value increases from I_0 to 1, and the R^* value rises from 0 to S_0/e (when $r_0 = e/S_0$) and then falls back to 0.

With the approximation $I_0 \approx 0$ and $S_0 \approx 1$ these peak I values depend only on r_0. To calculate how big the epidemic gets, all one needs is the value of r_0 and a scientific calculator.
At peak I the value of R can never exceed $1/e \approx 0.3679$. The remaining growth of R is after the peak. When r_0 is very large, then R_∞ is close to one, and almost all the growth of R from 0 to R_∞ is after the peak. The onset is sudden; the effects linger.

5 S and R at the end of the epidemic

Proposition 2 During the epidemic S decreases to S_∞, I eventually decreases to 0, and R increases to R_∞. The limiting values S_∞ and R_∞ satisfy $S_\infty + R_\infty = 1$, and

$$S_\infty = S_0 e^{-r_0 R_\infty}. \quad (13)$$

Furthermore, the equation

$$1 - R_\infty = S_0 e^{-r_0 R_\infty}. \quad (14)$$
Table 1: Peak and end values in SIR model

	S^*	I^*	R^*	S_∞	R_∞
$r_0 = 2$	0.50	0.15	0.35	0.20	0.80
$r_0 = 3$	0.33	0.30	0.37	0.06	0.94
$r_0 = 6$	0.17	0.53	0.30	0.003	0.997

has a unique solution with $0 < R_\infty < 1$. Increasing r_0 makes this solution closer to one.

When $S_0 \approx 1$ this equation takes the approximate form

$$1 - R_\infty \approx e^{r_0 R_\infty}$$ (15)

There is no explicit formula for the solution. However at peak I the value of S is $1/r_0$, so $S_\infty < 1/r_0$. It follows that $1 - 1/r_0 < R_\infty$.

The equation is a fixed point equation for R_∞. It may be solved by iteration. The iteration function is $g(R) = 1 - e^{-r_0 R}$. Start with the value $R = 1 - 1/r_0$. Keep replacing R by $g(R)$. These iterations give larger and larger values of R, increasing to the fixed point R_∞. To calculate the end result of the epidemic, all that one needs is the value of r_0, a scientific calculator, and patience.

Table 1 shows the values S^*, I^*, R^* at peak infection for various values of r_0. It also shows the end values S_∞, R_∞. For $r_0 = 6$ the proportion R^* removed at peak infection is not very large; the onset of the infection is rapid, and the removals have not yet had time to occur.

Figure 4 shows the dependence of R_∞ on r_0 for all values $0 < r_0 \leq 6$.

6 The fastest increase of new infections

How fast can the proportion of infections increase? There are two obvious measures. The rate of increase of new infections is $-dS/d\tau$. The rate of increase or decrease of infections is $dI/d\tau$. They are related by $dI/d\tau \leq -dS/d\tau$. The results for $-dS/d\tau$ are considerably simpler.

The most obvious result is an upper bound resulting from $S + I \leq 1$:

$$-\frac{dS}{d\tau} = r_0 SI \leq \frac{1}{4} r_0.$$ (16)
Figure 4: R_∞ as a function of r_0 for $r_0 > 1$.

Since $\tau = at$ and $b = r_0a$, it follows that

$$-\frac{dS}{dt} \leq \frac{1}{4} r_0a = \frac{1}{4} b.$$ \hspace{1cm} (17)

The constants b and a set the time scale in usual time units, days or weeks or months.

A more detailed analysis involves second derivatives. For S the result is

$$\frac{d^2S}{d\tau^2} = r_0SI(r_0I - (r_0S - 1)).$$ \hspace{1cm} (18)

Suppose $I_0 \approx 0$ and $S_0 \approx 1$. When $r_0 > 1$, the second derivative of S starts out negative and eventually becomes positive. Thus S has an inflection point where $dS/d\tau$ is minimal.

Proposition 3 The fastest increase of new infections is where $-dS/d\tau$ is
largest. This is where
\[r_0 I = r_0 S - 1. \] (19)

The value is
\[-\frac{dS}{d\tau} = r_0 SI = S(r_0 S - 1). \] (20)

The relevant equation
\[r_0 \left(1 - S + \frac{1}{r_0} \ln \left(\frac{S}{S_0} \right) \right) = r_0 S - 1 \] (21)
describes the intersection of a curve with a line; it has a unique solution.

A similar calculation gives equations for the two points where \(dI/d\tau \) has maximum or minimum values.

7 The SI model

The original SIR model makes sense when \(b > 0 \) and \(a = 0 \). This describes an infection that runs through the entire population. Since \(R \) stays at zero, it could be called the SI model. More commonly, it is called the logistic model. It has an explicit solution as a function of \(t \). This explicit solution will be used in the following section for quite another purpose.

In the SI model the variables \(S, I \) satisfy \(S + I = 1 \). The equations are
\[
\begin{align*}
\frac{dS}{dt} &= -bSI, \\
\frac{dI}{dt} &= bSI.
\end{align*}
\] (22) (23)

They may be solved explicitly to give \(S \) and \(I \) as functions of time. Since
\[
\frac{1}{b} \int \frac{d}{dt} \ln \left(\frac{I}{S} \right) = S + I = 1,
\] (24)
integration gives
\[
t = t^* + \frac{1}{b} \ln \left(\frac{I}{S} \right) = t^* + \frac{1}{b} \ln \left(\frac{I}{1-I} \right).
\] (25)
Here t^* is a constant of integration. The inverse function is given by
\[I = \frac{1}{2} + \frac{1}{2} \tanh \left(\frac{b(t - t^*)}{2} \right). \tag{26} \]

This is the general solution. It is the cumulative probability function for a logistic probability distribution. The value $t = t^*$ corresponds to $I = \frac{1}{2}$. In this simple model the infection grows to take over the entire population.

The derivative is
\[\frac{dI}{dt} = \frac{b}{4} \text{sech}^2 \left(\frac{b(t - t^*)}{2} \right). \tag{27} \]

This is the density for a logistic probability distribution with mean t^* and standard deviation $\pi/\sqrt{3}$ times $1/b$.

The relation between the SIR model and the SI model is subtle. As $r_0 \to +\infty$ and $a \to 0$ with $b = r_0a$ fixed, the convergence is very non-uniform. For each $a > 0$ the infection proportion I goes to zero as $t \to +\infty$, while for $a = 0$ the proportion I goes to 1. The SI model only captures the onset of the SIR epidemic, well before the peak.

8 The modified SIR model

In the SIR model the function I as a function of t is not symmetric about the peak, and there is no obvious formula for this function. The paper by Kermack and McKendrick \cite{kermack1927} introduced an approximation for this function near the peak that is not only symmetric, but admits an explicit formula for I as a function of t in terms of the square of a hyperbolic secant function. This section presents a modified SIR model whose exact solution is precisely the approximation given by Kermack and McKendrick. (The paper \cite{newman2002} describes another variant SIR model that also has an explicit formula for the time dependence.)

In the modified model the effective reproduction number is given for $1 \geq S \geq \frac{1}{2}$ by $r_0\sqrt{1 + 2(S - 1)}$, which is less than r_0S. As the proportion of susceptibles decreases from 1, their effective participation in feeding the epidemic also weakens. To make the formulas simple we again make the approximation that $S_0 \approx 1$ at time zero.

Again $S + I + R = 1$. Take $r_0 > 1$. The modified SIR equations are
\[\frac{dS}{d\tau} = -r_0\sqrt{2S - 1}I, \tag{28} \]
\[
\frac{dI}{d\tau} = (r_0\sqrt{2S-1} - 1)I, \quad (29)
\]
\[
\frac{dR}{d\tau} = I. \quad (30)
\]
These equations use the modified effective reproduction number
\[
r_0\sqrt{2S-1} = r_0\sqrt{1 + 2(S-1)} = r_0S\sqrt{1 - \left(\frac{S-1}{S}\right)^2} \leq r_0S \quad (31)
\]
for \(S \geq 1/2 \). For \(S \) near 1 this is approximately equal to the effective reproduction number \(r_0S \) of the SIR model. Even for \(S = 5/8 \) the value of \(\sqrt{2S-1} \) is only down to 1/2, which is not so far off. This effective reproduction number could apply in a scenario where susceptibles flee as they see their numbers diminish. Its nice properties will appear in the discussion that follows.

It follows that
\[
-\frac{dS}{dR} = r_0\sqrt{2S-1}. \quad (32)
\]
and
\[
\frac{dI}{dR} = r_0\sqrt{2S-1} - 1. \quad (33)
\]
Here the value of \(S \) where \(dI/dR = 0 \) is \((1/2)(1 + 1/r_0^2)\), always greater than 1/2.

The differential equation for \(S \) and \(R \) has solution
\[
r_0R = 1 - \sqrt{2S-1}. \quad (34)
\]
This can be inverted to express \(S \) as a quadratic function.
\[
S = 1 - r_0R + \frac{1}{2}r_0^2R^2. \quad (35)
\]
This is the second order Taylor expansion of the exponential function from the usual SIR model.

The time dependence may be found using
\[
\frac{dR}{d\tau} = I = (r_0 - 1)R - \frac{1}{2}r_0^2R^2. \quad (36)
\]
Let
\[
R = 2\frac{1}{r_0} \left(1 - \frac{1}{r_0}\right)R. \quad (37)
\]
Figure 5: I as function of $\tau = at$ for SIR and modified SIR: $r_0 = 4/3$.

With this change of variable the equation becomes

$$\frac{d\tilde{R}}{d\tau} = (r_0 - 1)\tilde{R}(1 - \tilde{R}).$$ \hspace{1cm} (38)

This is the logistic equation with known solution. Define τ^* as the time when $\tilde{R} = \frac{1}{2}$. The solution for R is

$$R = \frac{1}{r_0} \left(1 - \frac{1}{r_0} \right) \left(1 + \tanh \left(\frac{1}{2}(r_0 - 1)(\tau - \tau^*) \right) \right)$$ \hspace{1cm} (39)

As $t \to +\infty$ the proportion R increases to the limiting value $2(1/r_0)(1-1/r_0)$. This never exceeds $1/2$. Also

$$I = \frac{dR}{d\tau} = \frac{1}{2} \left(1 - \frac{1}{r_0} \right)^2 \operatorname{sech}^2 \left(\frac{1}{2}(r_0 - 1)(\tau - \tau^*) \right).$$ \hspace{1cm} (40)
The infection profile is given by a the square of a hyperbolic secant function. The maximum is at \(\tau^* \). Infection never touches more than half the population.

This model should not be taken too seriously for large \(r_0 \). In this case the main part of the infection takes place over a short period of time, roughly \(1/(r_0 - 1) \), and it has little consequence in the long run. For \(r_0 \) only a little larger than one the results should be a reasonable approximation to those of the SIR model. At the peak the value of the expansion parameter \(r_0 R \) is \(1 - 1/r_0 \) which is close to zero.

Figure 5 for \(r_0 = 4/3 \) shows \(I \) as a function of \(\tau = at \) for the SIR model and for the modified SIR model. They look roughly the same, though the modified SIR model predicts a smaller epidemic. The fit could be made better by adjusting the parameters. However the lack of symmetry about the peak in the SIR model will never be reflected in the modified model.

\section{Conclusion}

In the SIR model most essential features are captured in one number, the basic reproduction number. The formulas for peak infection and for long-time behavior depend only on this number. It determines everything about the solution, except for the timing.

This model exhibits the basic features of an epidemic. The infection initially rises, but eventually removal is dominant, and the infection dies out. The mechanism is that the proportion of susceptibles decreases until there are too few to maintain the infection. If the basic reproduction number is moderately larger than one, then the final proportion removed is large (Figure 4). Whether this is benign or sinister depends on the consequences of removal.

The author thanks Robert Indik for valuable comments.

\section{References}

[1] Tiberiu Harko, Francisco S. N. Lobo, and M. K. Mak, Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Applied Mathematics and Computation 236 (2014), 184–194.
[2] Herbert W. Hethcote, Three basic epidemiological models, pp 119-144, in Applied Mathematical Ecology (Biomathematics 18), edited by Simon A. Levin, Thomas G. Hallam, Louis J. Gross, Springer, Berlin, 1989.

[3] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society A, 115 (1927), 700–721.

[4] Robert E. Mickens, An exactly solvable model for the spread of disease, College Mathematics Journal 43 (2012), 114–121.