Energy Scan Program at the Cern SPS
and
An Observation of the Deconfinement Phase Transition
in Nucleus–Nucleus Collisions *

M. Gaździcki a,b
a Institut für Kernphysik, Universität Frankfurt, Germany
b Świętokrzyska Academy, Kielce, Poland

(March 25, 2022)

The history and the main results of the energy scan program at the CERN SPS are reviewed. Several anomalies in energy dependence of hadron production predicted as signals of deconfinement phase transition are observed and they indicate that the onset of deconfinement is located at about 30 A·GeV. For the first time we seem to have clear evidence for the existence of a deconfined state of matter in nature.

1. Introduction. During the last decade rich experimental data on Pb+Pb collisions at five beam energies (20, 30, 40, 80 and 158 A·GeV) were recorded by several experiments (NA49, NA45, NA57, NA50 and NA60) at the CERN SPS. The primary aim of this program is the search for the onset of deconfinement predicted to be at the low SPS energies.

In this report we briefly review the history and the basic results of the energy scan program at the CERN SPS. Conclusions and suggestions for possible directions of future studies close the paper.

2. A Brief History of Ideas. In the mid 90s numerous results on collisions of light nuclei at the BNL AGS (beams of Si at 14.6 A·GeV) and the CERN SPS (beams of O and S at 200 A·GeV) were obtained. The experiments with heavy nuclei (AGS: Au+Au at 11.6 A·GeV, SPS: Pb+Pb at 158 A·GeV) were just starting. This was the time when the first look at the energy dependence of hadron production in nucleus–nucleus (A+A) collisions at high energies was possible. Two compilations, on pion production [1] and on strangeness production [2] resulted in a clear conclusion: the energy dependences of hadron multiplicities measured in A+A collisions and p+p interactions are very different. Further more the data on A+A collisions suggested that there is a significant change in the energy dependence of pion and strangeness yields which is located between the top AGS and SPS energies. Based on the statistical approach to strong interactions [3] it was speculated [4] that the change is related to the onset of deconfinement at the early stage of the A+A collisions. Soon after, following this conjecture, a quantitative model was developed, the Statistical Model of the Early Stage (SMES) [5]. It assumes creation of the early stage matter according to the principle of maximum entropy. Depending on the collision energy the matter is in the confined \((E < 30 \text{ A·GeV})\), mixed \((30 < E < 60 \text{ A·GeV})\) or deconfined \((E > 60 \text{ A·GeV})\) phases. The phase transition is assumed to be of the first order.

3. A Brief History of Experiments. Based on these ideas in 1997 the NA49 Collaboration proposed to study hadron production in Pb+Pb collisions at 30 A·GeV [6]. At this energy the SMES predicted a sharp maximum of a strangeness to pion ratio as a characteristic signal of the onset of deconfinement. Following this request the 40 A·GeV Pb–beam was delivered to NA49 in 1998 as a test. The 5 weeks long run at 40 A·GeV took place in 1999 1. The data were registered by NA49, NA45, NA50 and NA57. The success of this first run at low SPS energy and the exciting preliminary results shown by NA49 justified a continuation of the program. In 2000 a beam at 80 A·GeV was delivered for 5 days to NA49 and NA45. The program was completed in 2002 by the run (NA49 and NA60) at 30 A·GeV (7 days) and 20 A·GeV (7 days).

*presented at 7th International Conference on Strange Quarks in Matter, SQM 2003, March 2003, Atlantic Beach, USA

1The program was started by 40 A·GeV run instead of originally requested 30 A·GeV run due to technical SPS reasons.
Numerous experimental results from the run at 40, 80 and 158 A·GeV are already published, see e.g. [7–9], and presented at conferences see e.g. [10]. The results from the 30 A·GeV run are shown for the first time at this conference [11]. The data at 20 A·GeV are still being analysed.

4. Signals of Deconfinement. Originally two signals of the deconfinement phase transition were proposed within the SMES: the energy dependence of mean pion and mean strangeness multiplicities [5]. Recently two new signals were suggested within the SMES: the energy dependence of the shape of the transverse mass spectrum of kaons [12] and the energy dependence of properly filtered multiplicity fluctuations [13]. Intuitive arguments which lead us to the proposed signals as well as the experimental status of the signals are reviewed here.

4a. The Pion Kink. The majority of all particles produced in high energy interactions are pions. Thus, pions carry basic information on entropy created in the collisions. On the other hand, the entropy production should depend on the form of matter present at the early stage of collisions. Deconfined matter is expected to lead to a state with higher entropy than that created in confined matter. Consequently, it is natural to expect that the onset of creation of deconfined matter should be signalled by an enhancement of pion production. Clearly a trivial dependence of the pion multiplicity on the size of colliding nuclei should be removed and thus a relevant observable is the ratio of the mean pion multiplicity $\langle \pi \rangle$ to the mean number of wounded nucleons $\langle N_W \rangle$ (the notation (...) will be used to denote the mean multiplicity in full phase space throughout the paper).

\[\frac{\langle \pi \rangle}{\langle N_W \rangle} \]

\[F (\text{GeV})^2 \]

\[\text{FIG. 1. The dependence of total pion multiplicity per wounded nucleon on Fermi’s energy measure } F \text{ for central } A+A \text{ collisions (closed symbols) and inelastic } p+p(\bar{p}) \text{ interactions (open symbols).} \]

This simple intuitive argument can be quantified within the SMES. Due to the assumed generalised Fermi–Landau initial conditions [3] the $\langle \pi \rangle/\langle N_W \rangle$ ratio increases approximately linear with F^2 outside the transition region. The slope parameter is proportional to $g^{1/4}$ [4], where g is an effective number of internal degrees of freedom at the early stage. In the transition region a steepening of the pion energy dependence is predicted, because of activation of a large number of partonic degrees of freedom.

A recent compilation of the data on pion multiplicity in central Pb+Pb (Au+Au) collisions and p+p interactions is shown in Fig. 1. In this figure the ratio $\langle \pi \rangle/\langle N_W \rangle$ is plotted as a function of F. One

\[^2F \text{ is the Fermi’s energy measure [3]: } F \equiv (\sqrt{s_{NN}} - 2m_N)^{3/4}/\sqrt{s_{NN}}^{1/4}, \text{ where } \sqrt{s_{NN}} \text{ is the c.m.s. energy per nucleon–nucleon pair and } m_N \text{ the rest mass of the nucleon.}\]
observes that the mean pion multiplicity per wounded nucleon in \(p + p(\overline{p}) \) interactions is approximately proportional to \(F \); the dashed line in Fig. 1 indicates a fit of the form \(\langle \pi \rangle /\langle N_W \rangle = a \cdot F \) to the data. For central A+A collisions the dependence is more complicated and cannot be fitted by a single linear function. Below 40 AGeV the ratio \(\langle \pi \rangle /\langle N_W \rangle \) in A+A collisions is lower than in \(p + p \) interactions (pion suppression), while at higher energies \(\langle \pi \rangle /\langle N_W \rangle \) is larger in A+A collisions than in \(p + p(\overline{p}) \) interactions (pion enhancement). In the region between the AGS and the lowest SPS energy (15–40 AGeV) the slope changes from \(a = 1.01 \pm 0.04 \) GeV^{-1/2} for the fit to the points up to the top AGS energy to \(a = 1.36 \pm 0.03 \) GeV^{-1/2} for the fit to the top SPS energy and the RHIC data points (the full line in Fig. 1).

The measured increase of the slope for A+A collisions by a factor of about 1.3, is interpreted within the SMES as due to an increase of the effective number of the internal degrees of freedom by a factor of \((1.3)^4 \approx 3 \) and is caused by the creation of a transient state of deconfined matter at energies higher than 30 AGeV.

The suppression of pion production in A+A collisions in comparison to \(p + p \) interactions is interpreted as due to entropy transfer from mesons to baryons, which is expected to result in a constant shift of the \(\langle \pi \rangle /\langle N_W \rangle \) ratio \([14]\). The transition from pion suppression to pion enhancement is demonstrated more clearly in the insert of Fig. 1, where the difference between \(\langle \pi \rangle /\langle N_W \rangle \) for A+A collisions and the straight line parametrisation of the \(p + p \) data is plotted as a function of \(F \) up to the highest SPS energy.

4b. The Strange Horn. The energy dependence of the strangeness to entropy ratio is a crucial signal of deconfinement due to its weak dependence on the assumed initial conditions \([5]\).
measured in experiments: the \(\langle K^+ \rangle / \langle \pi^+ \rangle \) ratio and the \(E_S = (\langle \Lambda \rangle + \langle K + \bar{K} \rangle) / \langle \pi \rangle \) ratio. The energy dependence of both ratios is plotted in Fig. 2 for central Pb+Pb (Au+Au) collisions and p+p interactions. For p+p interactions both ratios show monotonic increase with energy. However, very different behaviour is observed for central Pb+Pb (Au+Au) collisions. The steep threshold rise of the ratio characteristic for confined matter then settles into saturation at the level expected for deconfined matter. In the transition region (at low SPS energies) a sharp maximum is observed caused by a higher strangeness to entropy ratio in confined matter than in deconfined matter. As seen in Fig. 2 the measured dependence is consistent with that expected within the SMES.

4c. The Step in Slopes. With increasing collision energy the energy density at the early stage increases. At low and high energies, when pure confined or deconfined phases are produced, this leads to an increase of the initial temperature and pressure. This, in turn, results in increase of transverse expansion of matter and consequently a flattening of transverse mass spectra of final state hadrons. In the phase transition region the initial energy density increases with collision energy, but temperature \(T_0 = T_C \) and pressure \(p_0 = p_C \) remain constant. Consequently the shape of the \(p_T \) spectrum is expected to be approximately independent of collision energy in the transition region. Thus one expects a characteristic energy dependence of transverse hadron activity: the average transverse momentum increases with collision energy when the early stage matter is either in pure confined or in pure deconfined phases, and it remains approximately constant when the matter is in the mixed phase [12,15].

![FIG. 3. The energy dependence of the inverse slope parameter \(T^* \) for \(K^+ \) mesons produced at mid-rapidity in central Pb+Pb (Au+Au) collisions at AGS (triangles), SPS (squares) and RHIC (circles) energies.](image)

The energy dependence of the inverse slope parameter fitted to the \(K^+ \) (left) and \(K^- \) (right) transverse mass spectra at midrapidity for central Pb+Pb (Au+Au) collisions is shown in Fig. 3 [12]. The striking features of the data can be summarised and interpreted as follows.

The \(T^* \) parameter increases strongly with collision energy up to the lowest (30 A·GeV) SPS energy point. This is an energy region where the creation of confined matter at the early stage of the collisions is expected. Increasing collision energy leads to an increase of the early stage temperature and pressure. Consequently the transverse activity of produced hadrons, measured by the inverse slope parameter, increases with increasing energy. The \(T^* \) parameter is approximately independent of the collision energy in the SPS energy range. In this energy region the transition between confined and deconfined matter is expected to be located. The resulting modification of the equation of state “suppresses” the hydrodynamical transverse expansion and leads to the observed plateau structure in the energy dependence of the \(T^* \) parameter. At higher energies (RHIC data) \(T^* \) again increases with collision energy. The equation of state at the early stage becomes again stiffer, the early stage temperature and pressure increase with collision energy. This results in increase of \(T^* \) with energy.

4d. The Shark Fin in Entropy Fluctuations. In thermodynamics, the energy \(E \) and entropy \(S \) are
related to each other through the equation of state, EoS. Thus, various values of the energy of the initial equilibrium state lead to different, but uniquely determined, initial entropies. When the collision energy is fixed, the energy, which is used for hadron production still fluctuates. Consequently, simultaneous event–by–event measurements of both the entropy and energy yield information on the EoS. Since the EoS changes rapidly in the phase transition region this should be visible in the ratio of entropy to energy fluctuations [13].

Within the SMES the ratio of entropy to energy fluctuations is given by a simple function of the p/ε ratio:

$$R_F \equiv \frac{(\delta S)^2}{S^2} = \frac{(\delta E)^2}{E^2} = \left(1 + \frac{p}{\varepsilon}\right)^{-2}. \quad (1)$$

FIG. 4. The collision energy dependence of the relative entropy to energy fluctuations, R_F, calculated within SMES. The non–monotonic behaviour, the “shark fin” structure, is caused by the large fluctuations expected in the vicinity of the mixed phase region.

Thus it is easy to predict a qualitative dependence of the R_F ratio on collision energy. Within the model, confined matter modelled as an ideal gas is created below ≈ 30 A·GeV beam energy. In this domain, the ratio p/ε, and consequently the R_F ratio, are approximately independent of collision energy and equal to the ideal gas value of about $1/3$ and 0.6, respectively. The model assumes that the deconfinement phase–transition is of the first order. Thus, there is a mixed phase region, corresponding to the energy interval $\approx 30 \div \approx 60$ A·GeV. At the end of the mixed phase the p/ε ratio reaches a minimum (the “softest point” of the EoS [16]). Thus in the transition energy range the R_F ratio increases and reaches its maximum, $R_F \approx 0.8$, at the end of the transition domain. Further on, in the pure deconfined phase, which is represented by an ideal quark-gluon gas under bag pressure, the p/ε ratio increases and approaches its asymptotic value $1/3$ at the highest SPS energy of 160 A·GeV. This results in a decrease of the R_F ratio and its saturation at the value of about 0.6.

An estimate of the entropy fluctuations can be obtained from the analysis of multiplicity fluctuations as proposed in [13].

Experimental results on the energy dependence of the R_F ratio are not yet available.

5. Conclusions and Future. The energy scan program at the CERN SPS together with the measurements at lower (LBL, JINR, SIS, BNL AGS) and higher (BNL RHIC) energies yielded systematic data on energy dependence of hadron production in central Pb+Pb (Au+Au) collisions. Predicted signals of the deconfinement phase transition, namely anomalies in the energy dependence of hadron production (the pion kink, the strange horn and the step in slopes) are observed simultaneously at low SPS energies.
They indicate that the onset of deconfinement is located at about 30 A·GeV. For the first time we seem to have clear evidence for the existence of the deconfined state of matter in nature.

The analysis of the data from the energy scan program is still in progress. In particular we are soon expecting first results at 20 A·GeV. Many new observables can be studied in the near future. We hope that the properly analysed event–by-event fluctuations may also be sensitive to the onset of deconfinement and can serve as further confirmation of the current interpretation of the data.

The observed striking difference between the energy dependence measured for central Pb+Pb collisions and p+p interactions suggests a systematic experimental study of the system size dependence of the energy dependence of hadron production. We hope that these measurements can be done in the near future and will lead to substantial progress in our understanding of the properties of strongly interacting matter at high densities.

Acknowledgements The results presented in this report were to a large extend obtained thanks to my close collaboration with Mark I. Gorenstein (theory) and Peter Seyboth (experiment, the NA49 spokesman). I would like to thank them for a very exciting and fruitful period of common study.

This work was partially supported by Bundesministerium für Bildung und Forschung (Germany) and the Polish Committee of Scientific Research under grant 2P03B04123.

[1] M. Gaździecki and D. Röhrich, Z. Phys. C65, 215 (1995).
[2] M. Gaździecki and D. Röhrich, Z. Phys. C71, 55 (1996).
[3] E. Fermi, Prog. Theor. Phys. 5, 570 (1950);
L. D. Landau, Izv. Akad. Nauk SSSR Ser. Fiz. 17, 51 (1953).
[4] M. Gaździecki, Proceedings of NATO Advanced Research Workshop: "Hot Hadronic Matter: Theory and Experiment", Divonne-les-Bains, France, June 27 – July 1 (1994), edited by J. Letessier, H. H. Gutbrod and J. Rafelski, NATO ASI Series B: Physics Vol. 346, Plenum Press (1995) 215;
M. Gaździecki, Z. Phys. C66, 659 (1995) and J. Phys. G23, 1881 (1997).
[5] M. Gaździecki and M. I. Gorenstein, Acta Phys. Polon. B30, 2705 (1999).
[6] J. Bächler et al. (NA49 Collab.), Searching for QCD Phase Transition, Addendum–1 to Proposal SP-SLC/P264, CERN/SPSC 97 (1997).
[7] S. V. Afanasiev et al. (NA49 Collab.), Phys. Rev. C66, 054902 (2002).
[8] M. C. Abreu et al. (NA50 Collab.), Phys. Lett. B530, 33 (2002); B530, 43 (2002).
[9] D. Adamova et al. (NA45 Collab.), Nucl. Phys. A714, 124 (2003).
[10] for review see Proceedings of the 6th International Conference on Strange Quarks in Matter, Frankfurt, 2001, J. Phys. G28, 1517 (2002)
[11] V. Friese et al. (NA49 Collab.), in this volume.
[12] M. I. Gorenstein, M. Gaździecki and K. Bugaev, hep–ph/0303041.
[13] M. Gaździecki, M. I. Gorenstein and St. Mrówczyński, hep–ph/0304052.
[14] M. Gaździecki, M. I. Gorenstein and St. Mrówczyński, Eur. Phys. J. C5, 129 (1998).
[15] L. Van Hove, Phys. Lett. B118, 138 (1982).
[16] C.M. Hung and E. Shuryak, Phys. Rev. Lett. 75, 4003 (1995).