An Explicit Presentation of the Grothendieck Ring of Finitely Generated $\mathbb{F}_q[SL_2(\mathbb{F}_q)]$-Modules

Davide A. Reduzzi
University of California at Los Angeles
davredu83@math.ucla.edu
November 1, 2011

Abstract

Let p be a prime and $q = p^g$. We show that the Grothendieck ring of finitely generated $\mathbb{F}_q[SL_2(\mathbb{F}_q)]$-modules is naturally isomorphic to the quotient of the polynomial algebra $\mathbb{Z}[x]$ by the ideal generated by $f(x) = \sum_{j=0}^{\lfloor p/2 \rfloor} (-1)^j p^j (p-j) x^{p-2j}$, and the superscript $[g]$ denotes g-fold composition of polynomials. We conjecture that a similar result holds for simply connected semisimple algebraic groups defined and split over a finite field.

1 Introduction

In [5], J-P. Serre discovered a puzzling identity involving characteristic p symmetric powers representations of the group $GL_2(\mathbb{F}_q)$, viewed as elements of the Grothendieck ring $K_0(GL_2(\mathbb{F}_q))$ of finitely generated $\mathbb{F}_q[GL_2(\mathbb{F}_q)]$-modules.

More precisely, fix a rational prime p, a positive integer g, and set $q = p^g$. Denote by \mathbb{F}_q a field with q elements and by G the group $SL_2(\mathbb{F}_q) \subset GL_2(\mathbb{F}_q)$. For any non-negative integer k, denote by M_k the $(k+1)$-dimensional representation $\text{Sym}^k \mathbb{F}_q^2$ of G. Motivated by the computation of the Euler-Poincaré characteristic of the twisted sheaf $\mathcal{O}(k)$ on \mathbb{P}_q^1, in [3] Serre extended the definition of the modules M_k's for negative values of k, and showed that for any integer k the following relation holds in the ring $K_0(G)$:

$$M_k - M_{k-(q+1)} = M_{k-(q-1)} - M_{k-2q}. \quad (\Sigma)$$

The dimensional shiftings by $q+1$ and $q-1$ occurring in Serre’s relation can be obtained by applying opportune intertwining operators Θ_q and D to the symmetric powers modules. This has been exploited in [3] for the study of cohomological weight shiftings for elliptic modular forms modulo p.

Motivated by generalizations of the above considerations to Hilbert modular forms, families of generalized Θ_q and D operators are defined in [4], and the following identity in $K_0(G)$ is proved for any integers k, h and i:

$$M_k^{[i]} M_h^{[i+1]} - M_k^{[i]} M_{h-1}^{[i+1]} = M_k^{[i]} M_h^{[i+1]} - M_k^{[i]} M_{h-1}^{[i+1]} \quad (\Phi)$$

1
Here the superscript \([i]\) denote the \(i\)th Frobenius twisting on the corresponding virtual representation.

Using Glover’s product identity, one sees that \((\Phi)\) is equivalent to \((\Sigma)\) in case \(g = 1\), but it is stronger for \(g > 1\).

In this paper we apply formula \((\Phi)\) to determine an explicit presentation of the Grothendieck ring \(K_0(\mathcal{G})\). We treat the case of \(\mathcal{G} = SL_2(F_q)\) instead of \(GL_2(F_q)\), so we will not need to consider determinant twists that would make the set of relations more complicated; following the same methods we describe below, one could easily work with \(GL_2(F_q)\) instead.

Our main result is the following (cf. Theorem 3.6):

Theorem 1.1 Denote by \(X\) the standard representation of \(\mathcal{G}\) on \(F_2^{q}\) and let \(x\) be an indeterminate over \(\mathbb{Z}\). The assignment \(X \mapsto x\) induces an isomorphism of rings:

\[
K_0(\mathcal{G}) \simeq \mathbb{Z}[x]/(f^g(x) - x) \mathbb{Z}[x],
\]

where \(f^g(x) = (f \circ \cdots \circ f)(x)\) is the polynomial of \(\mathbb{Z}[x]\) having degree \(p^g\) obtained by \(g\)-fold composition of the monic degree \(p\) polynomial:

\[
f(x) = \sum_{j=0}^{|p/2|} (-1)^j \frac{p}{p - j} \binom{p}{j} x^{p - 2j}.
\]

Proposition 3.9 gives an explicit closed formula for \(f^g(x)\). Notice that, since \(f(x) \equiv x^p (mod p\mathbb{Z}[x])\), the structure of the generic and special fibers of the ring \(K_0(\mathcal{G}) \otimes \mathbb{Z} p\) are easily determined (Corollary 3.7). On the other side, the arithmetic properties of the polynomial \(f(x)\) over \(\mathbb{Q}\) seem to be more complicated.

In the last paragraph of the paper we prove the following fact (Proposition 4.1): assume \(\mathcal{G}\) is a simply connected, semisimple algebraic group defined and split over \(F_q\). If \(\mathcal{M}\) is an \(F_q[\mathcal{G}]\)-rational module of finite \(F_q\)-dimension, then the multiplicity of an irreducible \(F_q[\mathcal{G}]\)-rational module \(V\) as a Jordan-Hölder constituent of \(\mathcal{M}[i]\) is congruent modulo \(p\) to the multiplicity of \(V\) as a Jordan-Hölder constituent of \(\mathcal{M} \otimes p^i\), for any positive integer \(i\).

Motivated by this result, we are led to conjecture that the Grothendieck ring of a Chevalley group arising from a rank \(\ell\) algebraic group \(G\) as above is isomorphic to the algebra

\[
\frac{\mathbb{Z}[x_1, \ldots, x_\ell]}{\left(\tilde{f}_1^g(x_1) - x_1, \ldots, \tilde{f}_\ell^g(x_\ell) - x_\ell \right) \mathbb{Z}[x_1, \ldots, x_\ell]},
\]

where for any \(i\), \(\tilde{f}_i^g(x_i)\) is the \(g\)-fold composition of the degree \(p\) monic polynomial \(f_i(x_i) \in \mathbb{Z}[x_i]\).

We conjecture that \(\tilde{f}_i(x_i) \equiv f_i^g(\mod p\mathbb{Z}[x_i])\) for any value of \(i\). Some of the evidence for this conjecture is presented at the end of paragraph 4.

Conventions All the group representations in this paper are left representations on a module of finite length over a fixed ring. If \(R\) is an algebra over a ring \(A\), and \(S\) is a subset of \(R\), the symbol \(A[S]\) denotes the \(A\)-subalgebra of \(R\) generated by \(S\).
2 Weight shiftings identities in $K_0(\mathfrak{S})$

Fix a rational prime p, a positive integer g, and set $q = p^g$. Denote by \mathbb{F}_q a finite field with q elements and fix an algebraic closure $\overline{\mathbb{F}}_q$ of \mathbb{F}_q; let $\sigma \in \text{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_p)$ be the arithmetic absolute Frobenius element. Denote by \mathfrak{S} the group $SL_2(\mathbb{F}_q)$.

For any $i \in \mathbb{Z}$, the Frobenius power σ^i induces a function $\mathfrak{S} \rightarrow \mathfrak{S}$ obtained by applying σ^i to each entry of the matrices in \mathfrak{S}: composing this map with the action of \mathfrak{S} on a given $\mathbb{F}_q[\mathfrak{S}]$-module \mathcal{M} gives to the latter a new structure of \mathfrak{S}-module, that is denoted $\mathcal{M}^{[i]}$ and called the ith Frobenius twist of \mathcal{M}.

If $f : \mathcal{M} \longrightarrow \mathcal{N}$ is a homomorphism of $\mathbb{F}_q[\mathfrak{S}]$-modules and $i \in \mathbb{Z}$, we denote by $f^{[i]} : \mathcal{M}^{[i]} \longrightarrow \mathcal{N}^{[i]}$ the \mathfrak{S}-homomorphism defined by $f^{[i]}(x) = f(x)$ for all $x \in \mathcal{M}^{[i]}$.

Let \mathfrak{X} denote the standard representation of \mathfrak{S} on \mathbb{F}_q^2 and, for any positive integer k, define

$$\mathcal{M}_k = \text{Sym}^k \mathfrak{X}$$

to be the kth symmetric power of \mathfrak{X}, so that in particular $\mathfrak{X} = \mathcal{M}_1$. Let \mathcal{M}_0 be the trivial representation of \mathfrak{S} on \mathbb{F}_q.

Observe that we can identify \mathcal{M}_k with the \mathbb{F}_q-vector space of homogeneous degree k polynomials over \mathbb{F}_q in two variables X and Y, endowed with the action of \mathfrak{S} induced by:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot X = aX + cY, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot Y = bX + dY.$$

As a consequence of Steinberg’s restriction and tensor product theorems ([6]) we have:

Proposition 2.1 All and only the irreducible representations of \mathfrak{S} over \mathbb{F}_q are of the form:

$$\bigotimes_{i=0}^{g-1} \mathcal{M}_i^{[k_i]}$$

where k_0, \ldots, k_{g-1} are integers such that $0 \leq k_i \leq p - 1$ for $i = 0, \ldots, g - 1$, and the tensor products are over \mathbb{F}_q. Furthermore, the above representations are pairwise non-isomorphic.

Denote by $K_0(\mathfrak{S})$ the Grothendieck group of finitely generated $\mathbb{F}_q[\mathfrak{S}]$-modules. $K_0(\mathfrak{S})$ is isomorphic to the free abelian group generated by the isomorphism classes of irreducible representations of \mathfrak{S} over \mathbb{F}_q, so that it has rank q over \mathbb{Z}. If \mathcal{M} is an $\mathbb{F}_q[\mathfrak{S}]$-module, we will denote by the same symbol \mathcal{M} its class in $K_0(\mathfrak{S})$, if no confusion arises.

Tensor product over \mathbb{F}_q induces on $K_0(\mathfrak{S})$ a structure of commutative ring with identity; we denote the product in $K_0(\mathfrak{S})$ by \cdot or by simple juxtaposition. All the tensor products we will consider in the sequel are over \mathbb{F}_q, unless otherwise specified.

We can extend the definition of the virtual representation \mathcal{M}_k for $k < 0$ in a way that is coherent with Brauer character computations. In [5], the determination the Euler-Poincaré characteristic of the twisted sheaf $\mathcal{O}(k)$ on $\mathbb{P}^1_{\mathbb{F}_q}$ suggests the following:

Definition 2.2 Let k be a negative integer. Define the element \mathcal{M}_k of the Grothendieck group $K_0(\mathfrak{S})$ of \mathfrak{S} over \mathbb{F}_q by:

$$\mathcal{M}_k = \begin{cases} 0 & \text{if } k = -1 \\ \mathcal{M}_{-k-2} & \text{if } k \leq -2. \end{cases}$$

3
The following result summarizes some non-trivial identities that hold in the ring $K_0(G)$:

Theorem 2.3 Let k and h be any integers. The following identities hold in $K_0(G)$:

\[M_k = -M_{-k-2} \quad (\Delta_g) \]

\[M_k - M_{k-(q+1)} = M_{k-(q-1)} - M_{k-2q} \quad (\Sigma_g) \]

\[M_k M_h = M_{k+h} + M_{k-1} M_{h-1} \quad (\Pi_g) \]

\[M_k = M_{k-p} M^{[1]} - M_{k-2p}. \quad (\Phi_g) \]

Proof Formulae (Δ_g) and (Σ_g) are proved in [5] via a Brauer characters computation. Formula (Π_g) comes from an exact sequence of G-modules constructed in [1]. Formula (Φ_g) is proved in section 3 of [4].

We remark that formula (Φ_g) appeared in [4] also in the form:

\[M^{[i]} M^{[i+1]} - M^{[i]} M^{[i+1]} = M^{[i]} M^{[i+1]} - M^{[i]} M^{[i+1]}, \]

where k, h and i are any integers.

The product formula (Π_1) implies that (Φ_1) and (Σ_1) are equivalent. If $g > 1$, (Φ_g) cannot be deduced from (Σ_g) and (Π_g); the proof of this fact, contained in [4], is indirect and throughout the paper the knowledge of Serre’s relation (Σ_g) will allow sometimes to bypass long computations involving Frobenius twists, when $g > 1$.

In [4] it is also proved that for $g \geq 1$, we can use the relations $(\Delta_g), (\Phi_g), (\Pi_g)$ to explicitly compute the Jordan-Hölder factors of any virtual representations of the form $\prod_{i=0}^{g-1} M^{[i]}$, where $k_0, \ldots, k_{g-1} \in \mathbb{Z}$.

3 Presentation of $K_0(G)$

We keep the notation introduced in the previous paragraph.

Lemma 3.1 The ring $K_0(G)$ is generated by X as a \mathbb{Z}-algebra.

Proof By Proposition 2.1, $K_0(G)$ is freely generated as a \mathbb{Z}-module by the q elements $\prod_{i=0}^{g-1} M^{[i]}_k$, where $0 \leq k_i \leq p - 1$ for any i. It is therefore enough to show that for all integers i, k such that $0 \leq i \leq g - 1$ and $0 \leq k \leq p - 1$ we have $M^{[i]}_k \in \mathbb{Z}[X]$.

Applying (Π_g) we obtain the recursive relations:

\[M_2 = X^2 - 1, \ M_n = X \cdot M_{n-1} - M_{n-2} \quad (n > 2), \]

so that $M_k \in \mathbb{Z}[X]$ for all $k \geq 0$. Twisting (Π) by powers of Frobenius, we obtain:

\[M^{[i]}_2 = (X^{[i]})^2 - 1, \ M^{[i]}_n = X^{[i]} \cdot M^{[i]}_{n-1} - M^{[i]}_{n-2} \quad (n > 2), \]
for all $0 \leq i \leq g - 1$, so that $M_k^{[i]} \in \mathbb{Z}[x, x^{[1]}, \ldots, x^{[g-1]}]$ for all $k \geq 0$ and:

$$K_0(\mathfrak{g}) = \mathbb{Z}[x, x^{[1]}, \ldots, x^{[g-1]}].$$

By (Φ_x), we have $M_p = M_p^{[1]} - M_{-p}$, and applying (Δ_x) we obtain $x^{[1]} = M_p - M_{p-2}$, so that $x^{[1]} \in \mathbb{Z}[x]$, as $M_k \in \mathbb{Z}[x]$ for all $k \geq 0$. We also obtain that, for any $0 \leq i \leq g - 1$, we have:

$$x^{[i+1]} = M_p^{[i]} - M_{p-2}^{[i]}, \quad (2)$$

and we conclude $x^{[1]}, \ldots, x^{[g-1]} \in \mathbb{Z}[x]$, implying $K_0(\mathfrak{g}) = \mathbb{Z}[x]$. ■

Let x be an indeterminate over \mathbb{Z} and define the following two families of polynomials of $\mathbb{Z}[x]$:

$$m_0(x) = 1, \quad m_1(x) = x, \quad m_2(x) = x^2 - 1, \quad m_n(x) = x \cdot m_{n-1}(x) - m_{n-2}(x) \quad (n > 2);$$

$$i^{[0]}(x) = x, \quad i^{[1]}(x) = m_p(x) - m_{p-2}(x), \quad i^{[i]}(x) = i^{[i]}(x) - m_{p-2}(i^{[i-1]}(x)) \quad (i > 1).$$

Observe that for any non-negative integer n, $m_n(x)$ is a monic polynomial of degree n, so that for any non-negative integer i, $i^{[i]}(x)$ is a monic polynomial of degree p^i.

Lemma 3.2 For any non-negative integer i, we have $i^{[i]}(x) = x^{[i]}$ in $K_0(\mathfrak{g})$.

Proof Notice first that, by definition of $m_n(x)$ and by formula (3), one has:

$$m_n(x) = M_n \quad (3)$$

in $K_0(\mathfrak{g}) \quad (n \geq 0)$. To prove the lemma, we use induction on i. If $i = 0$, the statement is clear; if $i = 1$ it follows from formulae (3) and (2). Assume $i \geq 1$ fixed and suppose $i^{[i]}(x) = x^{[i]}$.

We have:

$$i^{[i+1]}(x) = m_p(i^{[i]}(x)) - m_{p-2}(i^{[i]}(x)) = m_p(x^{[i]}) - m_{p-2}(x^{[i]}).$$

Observe that Frobenius twists do not act on the coefficients of virtual representations in $K_0(\mathfrak{g})$, so that the last term above is equal to $m_p(x^{[i]}) - m_{p-2}(x^{[i]})$. By formula (3), the latter is $M_p^{[i]} - M_{p-2}^{[i]}$. By formula (2), this is $M_p^{[i]} - M_{p-2}^{[i]} = x^{[i+1]}$. ■

Proposition 3.3 There is an isomorphism of rings:

$$\frac{\mathbb{Z}[x]}{(i^{[i]}(x) - x) \mathbb{Z}[x]} \simeq K_0(\mathfrak{g}),$$

induced by mapping the indeterminate x of the polynomial ring $\mathbb{Z}[x]$ into the class of the representation x of \mathfrak{g}. 5
Lemma 3.4 \(\ker m \) (Where, for any integer \(X \))

Proof By Proposition \ref{prop:3.4} the ring homomorphism \(\mathbb{Z}[x] \rightarrow K_0(\mathcal{G}) \) induced by \(x \mapsto x \) is surjective. Since \(X^{[g]} = x \) in \(K_0(\mathcal{G}) \), and since by the above lemma we have \(f^{[g]}(x) = x^{[g]} \), the above assignment induces an epimorphism

\[
\pi : \frac{\mathbb{Z}[x]}{(f^{[g]}(x) - x) \mathbb{Z}[x]} \rightarrow K_0(\mathcal{G}).
\]

Since \(f^{[g]}(x) - x \) is a polynomial of degree \(p^g \) and since \(K_0(\mathcal{G}) \) is \(\mathbb{Z} \)-free of rank \(p^g \), after tensoring with \(\mathbb{Q} \) the map \(\pi \) defines an isomorphism of \(\mathbb{Q} \)-vector spaces. This implies that \(\ker \pi \) is a finitely generated torsion \(\mathbb{Z} \)-submodule of \(\frac{\mathbb{Z}[x]}{(f^{[g]}(x) - x) \mathbb{Z}[x]} \), and hence it is trivial since \(f^{[g]}(x) - x \) is monic. We conclude that \(\pi \) is an isomorphism of rings. \(\blacksquare \)

We are now left with determining an explicit formula for the polynomial \(f^{[g]}(x) \in \mathbb{Z}[x] \).

Lemma 3.4 For any non-negative integer \(n \) we have:

\[
m_n(x) = \sum_{j=0}^{[n/2]} (-1)^j \binom{n-j}{j} x^{n-2j}.
\]

(Where, for any integer \(h \), \([h] \) denotes the largest integer not greater than \(h \)).

Proof We use induction on \(n \geq 0 \); denote by \(m'_n(x) \) the right hand side of the above formula. We have \(m'_0(x) = 1 = m_0(x) \), \(m'_1(x) = x = m_1(x) \) and \(m'_2(x) = x^2 - 1 = m_2(x) \). If \(n > 2 \) we have by induction:

\[
m_n(x) = \sum_{j=0}^{[n/2]-1} (-1)^j \binom{n-j}{j} x^{n-2j} + \sum_{j=1}^{[n/2]} (-1)^j \binom{n-j-1}{j-1} x^{n-2j} + \sum_{j=0}^{[n/2]} (-1)^j \binom{n-j}{j} x^{n-2j}.
\]

If \(n > 2 \) is even, \([n-1)/2] = [(n-2)/2] = (n/2) - 1 \) and:

\[
m_n(x) = \sum_{j=0}^{(n/2)-1} (-1)^j \binom{n-j}{j} x^{n-2j} + \sum_{j=1}^{(n/2)} (-1)^j \binom{n-j-1}{j-1} x^{n-2j} + \sum_{j=0}^{[n/2]} (-1)^j \binom{n-j}{j} x^{n-2j}.
\]

If \(n > 2 \) is odd, \([(n-1)/2] = (n-1)/2, [(n-2)/2] = (n-3)/2 \) and:

\[
m_n(x) = \sum_{j=0}^{(n-1)/2} (-1)^j \binom{n-j}{j} x^{n-2j} + \sum_{j=1}^{(n-1)/2} (-1)^j \binom{n-j-1}{j-1} x^{n-2j} + \sum_{j=0}^{(n-1)/2} (-1)^j \binom{n-j}{j} x^{n-2j}.
\]

\(\blacksquare \)
Corollary 3.5 Let $n \geq 2$ be an integer. Then:

$$m_n(x) - m_{n-2}(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n}{n-j} \binom{n-j}{j} x^{n-2j}.$$

Proof This is a computation using the previous lemma. We distinguish two cases: if $n \geq 2$ is even we have:

$$m_n(x) - m_{n-2}(x) = \sum_{j=0}^{n/2} (-1)^j \binom{n-j}{j} x^{n-2j} - \sum_{j=0}^{(n/2)-1} (-1)^j \binom{n-2-j}{j} x^{n-2(j+1)}$$

$$= \sum_{j=0}^{n/2} (-1)^j \binom{n-j}{j} x^{n-2j} + \sum_{j=1}^{n/2} (-1)^j \binom{n-1-j}{j-1} x^{n-2j}$$

$$= x^n + \sum_{j=1}^{n/2} (-1)^j \left(\binom{n-j}{j} + \binom{n-1-j}{j-1} \right) x^{n-2j}$$

$$= x^n + \sum_{j=1}^{n/2} (-1)^j \frac{n}{n-j} \binom{n-j}{j} x^{n-2j}. \quad \blacksquare$$

If $n \geq 3$ is odd we have:

$$m_n(x) - m_{n-2}(x) = \sum_{j=0}^{(n-1)/2} (-1)^j \binom{n-j}{j} x^{n-2j} - \sum_{j=0}^{(n-3)/2} (-1)^j \binom{n-2-j}{j} x^{n-2(j+1)}$$

$$= \sum_{j=0}^{(n-1)/2} (-1)^j \binom{n-j}{j} x^{n-2j} + \sum_{j=1}^{(n-1)/2} (-1)^j \binom{n-1-j}{j-1} x^{n-2j}$$

$$= x^n + \sum_{j=1}^{(n-1)/2} (-1)^j \left(\binom{n-j}{j} + \binom{n-1-j}{j-1} \right) x^{n-2j}$$

$$= x^n + \sum_{j=1}^{(n-1)/2} (-1)^j \frac{n}{n-j} \binom{n-j}{j} x^{n-2j}. \quad \blacksquare$$

We have proved:

Theorem 3.6 Let g be a positive integer, p a prime, $q = p^g$ and set $\mathfrak{g} = SL_2(\mathbb{F}_q)$. Denote by \mathfrak{X} the standard representation of \mathfrak{g} on \mathbb{F}_q^2 and let x be an indeterminate over \mathbb{Z}. The assignment $\mathfrak{X} \mapsto x$ induces an isomorphism of rings:

$$K_0(\mathfrak{g}) \simeq \frac{\mathbb{Z}[x]}{(f^g(x) - x) \mathbb{Z}[x]},$$

where $f^g(x) = (\circ \circ \circ \circ \circ f)(x)$ is the monic polynomial of $\mathbb{Z}[x]$ having degree p^g that is obtained by composing g-times with itself the monic degree p polynomial:

$$f(x) := \sum_{j=0}^{|p/2|} (-1)^j \frac{p}{p-j} \binom{p-j}{j} x^{p-2j}.$$

At the time of writing of this paper, we do not know much about the properties of the polynomial $f^g(x) - x$ when viewed over \mathbb{Z}. Notice that if $p > 2$, $f^g(x) - x$ is an odd polynomial; using the easy to check facts that for any integer $n \geq 0$ we have $m_n(2) = n + 1$, and that:

$$m_n(1) = \begin{cases}
-1, & \text{if } n \equiv 3, 4 \pmod{6} \\
0, & \text{if } n \equiv 2, 5 \pmod{6} \\
1, & \text{if } n \equiv 0, 1 \pmod{6},
\end{cases}$$

7
Proposition 3.9

We have

when

the following proposition uses Serre’s relation \(\sum g \).

Furthermore, from computer elaborations, \(f^{[2]}(\bar{x}) - \bar{x} \) seems to have only real roots.

In general, it is natural to ask what we can say about the irreducible factors over \(\mathbb{Q} \) of \(f^{[g]}(\bar{x}) - \bar{x} \). We do not have an answer for this. Nevertheless, after tensoring \(K_0(\mathfrak{G}) \) with \(\mathbb{Z}_p \), we can prove:

Corollary 3.7

Let \(K_0(\mathfrak{G})_p = K_0(\mathfrak{G}) \otimes \mathbb{Z}_p \).

For any positive divisor \(d \) of \(g \), let \(\psi(d) \) be the number of monic irreducible polynomials of degree \(d \) in \(\mathbb{F}_p[x] \). Then:

(a) The special fiber of \(K_0(\mathfrak{G})_p \) is a split \(\mathbb{F}_p \)-algebra isomorphic to \(\prod_{d|g} \mathbb{F}_p^{\psi(d)} \);

(b) The generic fiber of \(K_0(\mathfrak{G})_p \) is a split \(\mathbb{Q}_p \)-algebra isomorphic to \(\prod_{d|g} \mathbb{Q}_p^{\psi(d)} \).

(Here we denoted by \(\mathbb{Q}_p^d \) the degree \(d \) unramified extension of \(\mathbb{Q}_p \) contained in a fixed algebraic closure of \(\mathbb{Q}_p \)).

Proof

By the explicit formula given above for \(f(\bar{x}) \), we see that \(f(\bar{x}) \equiv x^q \pmod{p\mathbb{Z}[x]} \): this is clear if \(p = 2 \), otherwise notice that \(\frac{p-j}{p-j} = p \cdot \frac{q-j-1}{p-j} \) and the last denominator is prime to \(p \) if \(1 \leq j \leq \frac{p-1}{2} \), implying that \(\frac{q-j-1}{p-j} \in \mathbb{Z} \). We conclude that

\[f^{[g]}(\bar{x}) - \bar{x} \equiv x^q - x \pmod{p\mathbb{Z}[x]} \]

and statement (a) follows. Part (b) follows from (a) and Hensel’s lemma. ■

Remark 3.8

We also have isomorphisms of algebras: \(K_0(\mathfrak{G})_p \otimes \mathbb{Z}_p \mathbb{F}_q \simeq (\mathbb{F}_q)^g \) and \(K_0(\mathfrak{G})_p \otimes \mathbb{Z}_p \mathbb{Q}_q \simeq (\mathbb{Q}_q)^g \).

It is interesting to notice that we can give an explicit formula also for \(f^{[g]}(\bar{x}) \). As the following proposition uses Serre’s relation \((\Sigma_g) \), it seems that an explicit formula for \(f^{[g]}(\bar{x}) \) when \(i \neq 1 \) would probably require more work.

Proposition 3.9

We have \(f^{[g]}(\bar{x}) = m_q(\bar{x}) - m_{q-2}(\bar{x}) \), so that:

\[f^{[g]}(\bar{x}) = \sum_{j=0}^{\lfloor q/2 \rfloor} (-1)^j \frac{q-j}{q-j} \binom{q-j}{j} x^{q-2j}. \]

Proof

Let \(\bar{x} : \mathbb{Z}[x] \to K_0(\mathfrak{G}) \) be the epimorphism of rings obtained by sending \(x \) to \(\mathfrak{X} \). Relation \((\Sigma_g) \) implies that \(M_1 = M_q - M_{q-2} \in K_0(\mathfrak{G}) \), that is \(M_q - M_{q-2} = 0 \). This means, by formula (3), that \(\mathfrak{X} \) satisfies the polynomial \(m_q(\bar{x}) - m_{q-2}(\bar{x}) - \bar{x} \in \mathbb{Z}[x] \), so that \(m_q(\bar{x}) - m_{q-2}(\bar{x}) - \bar{x} \in \ker \bar{x} = (f^{[g]}(\bar{x}) - \bar{x}) \mathbb{Z}[x] \). Since \(m_q(\bar{x}) - m_{q-2}(\bar{x}) - \bar{x} = f^{[g]}(\bar{x}) - \bar{x} \) are both monic of degree \(q \), the last relation implies that they have to be equal and \(f^{[g]}(\bar{x}) = m_q(\bar{x}) - m_{q-2}(\bar{x}) \). The proposition now follows from Corollary 3.5. ■
4 A conjecture

The following fact was pointed out to us by G. Savin:

Proposition 4.1 Let p be a prime and $q = p^i > 1$ be an integral power of p. Let G be a simply connected semisimple algebraic group defined and split over \mathbb{F}_q, and denote by $K_0(G)$ the Grothendieck ring of $\mathbb{F}_q[G]$-rational modules of finite \mathbb{F}_q-dimension. If \mathcal{M} is an element of $K_0(G)$ and i is any non-negative integer, we have:

$$\mathcal{M}^i \equiv \mathcal{M}^{pi} \pmod{pK_0(G)}.$$

Proof Let T be a maximal torus of G defined and split over \mathbb{F}_q, and denote by $X = X(T)$ its character group. For any $\lambda \in X$, denote by $e(\lambda)$ the corresponding basis element of the group ring $\mathbb{Z}[X]$, so that $e(\lambda + \lambda') = e(\lambda)e(\lambda')$ for any characters λ and λ'.

Fix a G-module \mathcal{M} and write its formal character as:

$$\text{ch} \mathcal{M} = \sum_{\lambda \in X} m_{\lambda} \cdot e(\lambda),$$

where m_{λ} is the dimension of the λ-isotypic submodule of \mathcal{M}. For a positive integer i, the p^ith power automorphism of \mathbb{F}_q induces an action on $\mathbb{Z}[X]$ by sending a basis element $e(\lambda)$ to $e(p^i\lambda)$, so that:

$$\text{ch} (\mathcal{M}^{(i)}) = \sum_{\lambda \in X} m_{\lambda} \cdot e(\lambda)^{p^i} = (\sum_{\lambda \in X} m_{\lambda} \cdot e(\lambda))^{p^i} \pmod{p\mathbb{Z}[X]}.$$

The formal character $(\sum_{\lambda \in X} m_{\lambda} \cdot e(\lambda))^{p^i}$ is the element associated to \mathcal{M}^{pi} by the map $\text{ch} : K_0(G) \rightarrow \mathbb{Z}[X]$. We have therefore:

$$\text{ch} (\mathcal{M}^{(i)}) \equiv \text{ch} (\mathcal{M}^{pi}) \pmod{p\mathbb{Z}[X]}.$$ (1)

Let \mathcal{W} denotes the Weyl group of the pair (G, T). By [2] II.5.8, the map ch induces an isomorphism of commutative rings:

$$\text{ch} : K_0(G) \xrightarrow{\sim} \mathbb{Z}[X]^\mathcal{W}.$$

Write $\text{ch} (\mathcal{M}^{(i)}) = \sum_{\lambda \in X} a_{\lambda} \cdot e(\lambda)$ and $\text{ch} (\mathcal{M}^{pi}) = \sum_{\lambda \in X} b_{\lambda} \cdot e(\lambda)$, so that $\text{ch} (\mathcal{M}^{(i)} - \mathcal{M}^{pi}) = \sum_{\lambda \in X} (a_{\lambda} - b_{\lambda}) \cdot e(\lambda)$ is such that:

$$\sum_{\lambda \in X} (a_{\lambda} - b_{\lambda}) \cdot e(\lambda) = \sum_{\lambda \in X} (a_{\lambda} - b_{\lambda}) \cdot e(w_{\lambda})$$ (2)

for all $w \in \mathcal{W}$.

By [1], there are integers c_{λ} such that $a_{\lambda} - b_{\lambda} = p c_{\lambda}$ for all $\lambda \in X$. Since $\mathbb{Z}[X]$ is \mathbb{Z}-flat, we can view it as a subring of $\mathbb{Q}[X]$, in which we have, for any $w \in \mathcal{W}$:

$$w \cdot \left(\sum_{\lambda \in X} c_{\lambda} \cdot e(\lambda) \right) = \frac{1}{p} \sum_{\lambda \in X} (a_{\lambda} - b_{\lambda}) \cdot e(w_{\lambda})$$

$$= \frac{1}{p} \sum_{\lambda \in X} (a_{\lambda} - b_{\lambda}) \cdot e(\lambda),$$
where the last equality follows from (2). Therefore $w \cdot \left(\sum_{\lambda \in X} c_{\lambda} \cdot e(\lambda) \right) = \sum_{\lambda \in X} c_{\lambda} \cdot e(\lambda)$ in $\mathbb{Z}[X]$ for all $w \in W$ and

$$\text{ch}(\mathcal{M}^i - \mathcal{M}^{\nu}) \in p\mathbb{Z}[X]^W.$$

This implies that \mathcal{M}^i is congruent to \mathcal{M}^{ν} modulo the ideal generated by p in $K_0(\mathbb{G})$.

Motivated by Theorem 3.6, Corollary 3.7 and Proposition 4.1, we are led to the following:

Conjecture 4.2 Let p be a prime and $q = p^q > 1$ be an integral power of p. Let \mathbb{G} be a simply connected semisimple algebraic group defined and split over \mathbb{F}_q, whose rank is $\ell > 0$. Denote by $K_0(\mathbb{G}(\mathbb{F}_q))$ the Grothendieck ring of finitely generated $\mathbb{F}_q[\mathbb{G}(\mathbb{F}_q)]$-modules. Then there exist ℓ monic polynomials $f_i(x_1) \in \mathbb{Z}[x_1], \ldots, f_i(x_\ell) \in \mathbb{Z}[x_\ell]$ having degree p such that:

$$K_0(\mathbb{G}(\mathbb{F}_q)) \simeq \frac{\mathbb{Z}[x_1, \ldots, x_\ell]}{(f_1^{[p]}(x_1) - x_1, \ldots, f_{\ell}^{[p]}(x_\ell) - x_\ell)} \mathbb{Z}[x_1, \ldots, x_\ell].$$

where for any i, $1 \leq i \leq \ell$, $f_i^{[p]}(x_i)$ is the polynomial obtained by composing $f_i(x_i)$ with itself g times.

Furthermore, $f_i(x_i) \equiv f_i^p \pmod{p\mathbb{Z}[x_i]}$ for any i, $1 \leq i \leq \ell$.

The idea behind the above statement is that if π is an isomorphism of $\mathbb{Z}[x_1, \ldots, x_\ell]/(f_1^{[p]}(x_1) - x_1, \ldots, f_{\ell}^{[p]}(x_\ell) - x_\ell)$ onto $K_0(\mathbb{G}(\mathbb{F}_q))$, and if we set $X_i := \pi(x_i)$ for $1 \leq i \leq \ell$, then $f_i(X_i) \in K_0(\mathbb{G}(\mathbb{F}_q))$ should be the Frobenius twist $X_i^{[1]}$. This means that the relations imposed above in the algebra $\mathbb{Z}[x_1, \ldots, x_\ell]$ are the obvious ones that translate into $X_i^{[p]} = X_i$ for all i.

Here is some evidence for the conjecture:

(a) As proved in the previous paragraph, the conjecture is true for $G = SL_2$ over $\mathbb{F}_q (\ell = 1)$, in which case we can also give an explicit formula for the polynomial $f(x) = f_1(x_1)$ (Theorem 3.6).

(b) A theorem of Steinberg (10) states that if \mathbb{G} is a simply connected semisimple algebraic group over \mathbb{F}_q, the number of semisimple conjugacy classes of $\mathbb{G}(\mathbb{F}_q)$ is equal to q^{ℓ}, where ℓ is the rank of G. Therefore $K_0(\mathbb{G}(\mathbb{F}_q)) \simeq \mathbb{Z}^{q^\ell}$ as \mathbb{Z}-modules, which follows from the conjecture.

(c) Since $h(x_1, \ldots, x_\ell)^q = h(x_1^q, \ldots, x_\ell^q)$ for any polynomial $h(x_1, \ldots, x_\ell) \in \mathbb{F}_q[x_1, \ldots, x_\ell]$, the conjecture implies that $\frac{\mathbb{M}^i}{\mathbb{M}^{\nu}} = \mathbb{M}^1$ for any $\mathbb{M} \in K_0(\mathbb{G}(\mathbb{F}_q)) \otimes_{\mathbb{Z}} \mathbb{F}_q$. This fact is also a consequence of Proposition 4.1.

(d) Assume we are given a surjective homomorphism of \mathbb{F}_q-algebras:

$$\gamma: \mathbb{F}_q[x_1, \ldots, x_\ell] \rightarrow K_0(\mathbb{G}(\mathbb{F}_q)) \otimes_{\mathbb{Z}} \mathbb{F}_q.$$

Proposition 4.1 implies that $\gamma(x_i)^q = \gamma(x_i)$ for any integer i, $1 \leq i \leq \ell$; in particular the kernel of γ contains the ideal generated by the polynomials $x_1^q - x_1, \ldots, x_\ell^q - x_\ell$. By dimension reasons we must have an isomorphism of \mathbb{F}_q-algebras:

$$\frac{\mathbb{F}_q[x_1, \ldots, x_\ell]}{(x_1^q - x_1, \ldots, x_\ell^q - x_\ell)} \rightarrow K_0(\mathbb{G}(\mathbb{F}_q)) \otimes_{\mathbb{Z}} \mathbb{F}_q.$$

This is predicted by Conjecture 4.2.
If Conjecture 4.2 is correct, one would like to determine explicit formulae for the polynomials $f_1(x_1), \ldots, f_\ell(x_\ell)$ and to relate factorization properties of these polynomials in $\mathbb{Z}[x_i]$ to algebraic properties of the group $G(\mathbb{F}_q)$.

References

[1] D. J. Glover, *A study of certain modular representations*, J. Algebra 51 (1978), 425–475.

[2] J. C. Jantzen, *Representations of algebraic groups, Second edition*, Mathematical Surveys and Monographs 107, AMS, 2003.

[3] D. A. Reduzzi, *Reduction mod p of cuspidal representations of $GL_2(\mathbb{F}_{p^n})$ and symmetric powers*, J. Algebra 324 (2010), 3507–3531.

[4] ________, *Cohomological weight shiftings for automorphic forms on definite quaternion algebras over totally real fields*. (Preprint), (2011).

[5] J-P. Serre, *Lettre Mme Hamer*, 2 Juillet 2001.

[6] R. Steinberg, *Representations of algebraic groups*, Nagoya Math. J. 22 (1963), 33–56.