Abstract

The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field between left- and right-handed quarks, caused by interactions with topological gluon fields from QCD vacuum fluctuations. We present two approaches to handle the dominant elliptic flow (v_2) background in the three-particle correlator ($\Delta \gamma_{112}$), sensitive to CME.

In the first approach, we present the $\Delta \gamma_{112}$ and $\Delta \gamma_{123}$ measurements in U+U and Au+Au collisions. While hydrodynamic simulations including resonance decays and local charge conservation predict that $\Delta \gamma_{112}$ scaled by N_{part}/v_2 will be similar in U+U and Au+Au collisions, the projected B-field exhibits a distinct difference between the two systems and with varying N_{part}. Therefore, U+U and Au+Au collisions provide configurations with different expectations for both CME signal and background. Moreover, the three-particle observable $\Delta \gamma_{123}$ scaled by N_{part}/v_3 provide baseline measurement for only the background.

In the second approach, we handle the v_2 background by measuring $\Delta \gamma_{112}$ with respect to the planes of spectators measured by Zero Degree Calorimeters and participants measured by Time Projection Chamber. These measurements contain different amounts of contributions from CME signal (along B-field, due to spectators) and v_2 background (determined by the participant geometry). With the two $\Delta \gamma_{112}$ measurements, the possible CME signal and the background contribution can be determined. We report such a measurement in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV with the newly installed event plane detector, and report the new findings in U+U system where the spectator-participant plane correlations are expected to differ from those in Au+Au collisions.

Keywords: QCD, heavy-ion collisions, chiral magnetic effect, spectators plane, participant plane.

1. Introduction

Quark interactions with fluctuating topological gluon field can induce chirality imbalance and local parity violation in quantum chromodynamics (QCD) [1–3]. This can lead to electric charge separation in the presence of a strong magnetic field (B), a phenomenon known as the chiral magnetic effect (CME) [4,5]. Such a B-field may present in non-central heavy-ion collisions, generated by the spectator protons at early times [6,7]. Extensive theoretical and experimental efforts have been devoted to the search for the CME-induced charge separation along B in heavy-ion collisions [8–11].
2. Results

We present two approaches to handle the dominant elliptic flow (v_2) background in the observable $\Delta \gamma_{112}$ (charge separation across second-order event plane), which is sensitive to CME.

In the first approach, we present the $\Delta \gamma_{112}$, $\Delta \gamma_{123}$, and $\Delta \gamma_{132}$ measurements in $U+U$ and $Au+Au$ collisions. The systematic studies of the $\Delta \gamma_{112}$, $\Delta \gamma_{123}$, and $\Delta \gamma_{132}$ in those two systems can provide insights on the CME signal and background behaviors. Left top panel of Fig. 1 show the expected B-field from MC-Glauber calculations [12], which indicate that $U+U$ and $Au+Au$ have large B-field difference at large N_{part}. Charge separation driven by CME should be sensitive to such difference. On the other hand, background model studies using hydrodynamic simulations [13] indicate background to be similar between $U+U$ and $Au+Au$ as seen in Fig. 1 (left bottom panel). Furthermore, the third-harmonic event plane (ψ_3) is not expected to be correlated with the magnetic field. Thus, one does not expect CME contribute to $\Delta \gamma_{123}$.

Right panels in Fig. 1 show the $\Delta \gamma_{112}$, $\Delta \gamma_{123}$, and $\Delta \gamma_{132}$ measurements in $U+U$ and $Au+Au$ collisions. Background contributions based on hydrodynamic simulations with local charge conservation and global momentum conservation are included for comparison. The mixed-harmonic correlations do not follow signal-only or background-only expectations. Interesting features in ultra-central collisions are observed, which need further investigations.

In the second approach, we study the $\Delta \gamma$ measurements with respect to the participant plane (ψ_{PP}) and spectator plane (ψ_{SP}). The CME refers to charge separation along the strong magnetic field. The magnetic field is mainly produced by spectator protons in heavy-ion collisions, strongest perpendicular to the ψ_{SP}. On the other hand, the major elliptic flow background is determined by the participant geometry, largest in the ψ_{PP}. The ψ_{SP} and the ψ_{PP} can be assessed, experimentally in STAR, by the spectator neutrons in Zero Degree Calorimeters (ψ_{ZDC}) and by midrapidity particles in the Time Projection Chamber (ψ_{TPC}), respectively. The $\Delta \gamma$ measurements with respect to ψ_{ZDC} and ψ_{TPC} can therefore resolve the possible CME signal (and the background). Consider the measured $\Delta \gamma$ to be composed of the v_2 background and the CME signal:

$$\Delta \gamma_{\psi_{TPC}} = \Delta \gamma_{\text{CME}}{\psi_{TPC}} + \Delta \gamma_{\text{Bkg}}{\psi_{TPC}}, \quad \Delta \gamma_{\psi_{ZDC}} = \Delta \gamma_{\text{CME}}{\psi_{ZDC}} + \Delta \gamma_{\text{Bkg}}{\psi_{ZDC}}.$$ \hspace{1cm} (1)

Assuming the CME is proportional to the magnetic field squared and background is proportional to v_2 [14], both projected onto the ψ direction, we have:

$$\Delta \gamma_{\text{CME}}{\psi_{TPC}} = a \Delta \gamma_{\text{CME}}{\psi_{ZDC}}, \quad \Delta \gamma_{\text{Bkg}}{\psi_{TPC}} = a \Delta \gamma_{\text{Bkg}}{\psi_{ZDC}}.$$ \hspace{1cm} (2)
where \(a = \langle \cos(2(\psi_{ZDC} - \psi_{TPC}) \rangle \). The parameter \(a \) can be readily obtained from the \(v_2 \) measurements:

\[
a = v_2[\psi_{ZDC}]/v_2[\psi_{TPC}].
\] (3)

The CME signal relative to the inclusive \(\Delta \gamma[\psi_{TPC}] \) measurement is then given by:

\[
I_{CME}^{EP} = \Delta \gamma_{CME}[\psi_{TPC}]/\Delta \gamma[\psi_{TPC}] = (A/a - 1)/(1/a^2 - 1),
\] (4)

where:

\[
A = \Delta \gamma[\psi_{ZDC}]/\Delta \gamma[\psi_{TPC}].
\] (5)

Note the only two free parameters \(a \) and \(A \) can be measured experimentally.

Applying this method, we have previously reported the measurements of possible CME signal fraction in 200 GeV Au+Au collisions, revealing dominant background contribution \cite{15}. Here, we report our findings in U+U collisions where the spectator-participant plane correlations are expected to differ from those in Au+Au collisions. Top panels in Fig. 2 show the measured \(v_2 \) (left) and \(\Delta \gamma \) (right) with respect to the \(\psi_{ZDC} \) and \(\psi_{TPC} \), as a functions of collision centrality. Bottom panels in Fig. 2 show the ratio of \(v_2 \) (left) measured with respect to the \(\psi_{ZDC} \) and that with respect to the \(\psi_{TPC} \), the \(a \) in Eq. 3 and the ratio of \(\Delta \gamma \) (right), the \(A \) in Eq. 5 as functions of the collision centrality in Au+Au 200 GeV and U+U 193 GeV. Data indicate difference in \(v_2 \) between central U+U and Au+Au. And the “a” and “A” are similar both in trend and magnitude, which indicate background contribution dominates in the \(\Delta \gamma_{12} \) measurements.

![Figure 2](image-url)

Fig. 2. The centrality dependence of the \(v_2 \) (top left) and \(\Delta \gamma \) (top right) measured with respect to the ZDC and TPC event planes. The corresponding ratios of the \(v_2 \) (bottom left) and \(\Delta \gamma \) (bottom right) measured with respect to these two planes.

Figure 3 shows the extracted CME fractions \(f_{CME}^{EP} \) at Au+Au 200 GeV and U+U 193 GeV. The combined result is \(f_{CME} = 8 \pm 4 \pm 8\% \).

In Au+Au collisions at \(\sqrt{s}\text{NN}=27 \text{ GeV} \), the differential \(\Delta \gamma \) measurements can be achieved by the newly installed Event Plane Detector (EPD) \((2.1 < |y| < 5.1)\) \cite{16}. At this energy, the rapidity of the colliding beam \((y_{\text{beam}}=3.4) \) falls in the middle of EPD acceptance. Therefore, the EPD can provide an unique way to search for CME using both \(\psi_{pp} \), by outer EPD, and \(\psi_{SP} \), by inner EPD. Top panel in Fig. 4 shows the multiplicity and \(v_2 \) scaled \(\Delta \gamma \) measurements with respect to the \(\psi_{pp} \) and \(\psi_{SP} \) from EPD \cite{17}. The bottom panel shows that the corresponding ratio of \(v_2 \) or \(\Delta \gamma \) measurements with \(\psi_{SP} \) over the one with \(\psi_{pp} \) is consistent with unity with large uncertainty, indicating CME fraction is consistent with zero. More quantitative studies are in progress.
3. Summary

In summary, we report mixed-harmonic three-particle correlation studies in Au+Au and U+U collisions at $\sqrt{s_{NN}}=200$ and 193 GeV, respectively. The results indicate that background models capture most of the observed trends. Meanwhile interesting features are observed in ultra-central Au+Au and U+U collisions, which need further investigations. We also report v_2 and Δy measurements with respect to ψ_{ZDC} and ψ_{TPC}, and extract the possible CME signal fraction assuming the proportionality of the CME and background to the projection onto the corresponding plane. The extracted possible CME fraction is $(8 \pm 4 \pm 8\%)$ averaged over 20-50% centrality in Au+Au 200 GeV and U+U 193 GeV collisions. We further explore the Au+Au 27 GeV data, where the newly installed EPD can be sensitive to both spectator and participant planes.

Acknowledgments This work was supported by the U.S. Department of Energy (Grant No. de-sc0012910).

References

[1] T. D. Lee, G. C. Wick, Phys. Rev. D 9 (1974) 2291–2316.
[2] D. Kharzeev, R. D. Pisarski, M. H. G. Tytgat, Phys. Rev. Lett. 81 (1998) 512–515.
[3] D. Kharzeev, R. D. Pisarski, Phys. Rev. D 61 (2000) 111901.
[4] K. Fukushima, D. E. Kharzeev, H. J. Warringa, Phys. Rev. D 78 (2008) 074033.
[5] B. Muller, A. Schafer, Phys. Rev. C 82 (2010) 057902.
[6] D. E. Kharzeev, L. D. McLerran, H. J. Warringa, Nucl. Phys. A 803 (2008) 227–253.
[7] M. Asakawa, A. Majumder, B. Muller, Phys. Rev. C 81 (2010) 064912.
[8] D. E. Kharzeev, J. Liao, S. A. Voloshin, G. Wang, Prog. Part. Nucl. Phys. 88 (2016) 1–28.
[9] J. Zhao, Int. J. Mod. Phys. A33 (13) (2018) 1830010.
[10] J. Zhao, Z. Tu, F. Wang, Nucl. Phys. Rev. (2018) 35, 03, 225.
[11] J. Zhao, F. Wang, Prog. Part. Nucl. Phys. 107 (2019) 200–236.
[12] S. Chatterjee, P. Tribedy, Phys. Rev. C 92 (1) (2015) 014902.
[13] B. Schenke, C. Shen, P. Tribedy, Phys. Rev. C 99 (4) (2019) 044908.
[14] H. Xu, J. Zhao, X. Wang, H. Li, Z. Lin, C. Shen, F. Wang, Chin. Phys. C 42 (2018) 084103.
[15] J. Zhao, (for the STAR collaboration), Nucl. Phys. A 982 (2019) 535–538.
[16] J. Adams, et al. arXiv:1912.05243.
[17] S. Choudhury, (for the STAR collaboration), poster presentation at QM2019.