Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review

Ivana F. Audhya^a, Antoinette Cheung^b, Shelagh M. Szabo^{b,∗}, Emma Flint^b, Conrad C. Weihl^c and Katherine L. Gooch^a

^aSarepta Therapeutics Inc, Cambridge MA, USA
^bBroadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
^cWashington University School of Medicine, St. Louis, MO, USA

Pre-press 4 May 2022

Abstract.

Background: The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype.

Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA.

Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data.

Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36).

Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.

Keywords: Muscular dystrophies, limb-girdle, age of onset, disease progression, walking, systematic review
INTRODUCTION

Limb girdle muscular dystrophy (LGMD) comprises a group of rare muscular dystrophies caused by mutations in genes encoding proteins involved with muscle maintenance, function, and repair [1]. Over 30 subtypes of LGMD have been identified, of which 90% are autosomal recessive (LGMDR) [2, 3]. The most common of these (along with their European NeuroMuscular Centre [ENMC] nomenclature/original nomenclature, and affected protein), are calpainopathy (LGMDR1/LGMD2A, calpain-3), dysferlinopathy (LGMDR2/LGMD2B and Miyoshi myopathy [MM], dysferlin), sarcoglycanopathies (LGMDR3/LGMD2D, ω-sarcoglycan; LGMDR4/LGMD2E, β-sarcoglycan; LGMDR5/LGMD2 C, γ-sarcoglycan; LGMDR6/LGMD2F, δ-sarcoglycan), fukutin-related protein (FKRP)-related dystroglycanopathy (LGMDR9/LGMD2I, FKRP), and anoctaminopathy (LGMDR12/LGMD2 L, anoctamin-5).

Data on the natural history of LGMDR are few and studies describing larger clinical cohorts followed over long periods of time are lacking. Nonetheless, understanding the clinical course and likely disease prognosis is important. Patients with LGMD, including LGMDR, primarily present with proximal skeletal muscle weakness [4], but the clinical course of different LGMDR subtypes appears highly variable and the age at disease onset can range from childhood through adulthood. Disease severity also varies from mild forms in which patients have relatively normal function, to severe forms with rapid onset and progression [1, 4]. Patients with LGMD may experience signs and symptoms of muscle weakness at any age and these typically worsen over time [3, 5]. At an early stage, patients may present with an abnormal walking gait, difficulties in walking, and/or difficulties in running. As the disease progresses, ambulatory function may deteriorate, patients may require walking assistance, and ultimately progress to loss of ambulation (LOA) and wheelchair dependence.

Progression to LOA has been described across LGMDR subtypes [6, 7]; however, it is unclear how the frequency and timing of LOA compares between patients with different subtypes. Previous studies have suggested that the clinical trajectories of patients with LGMD onset before 10 years of age (i.e. early childhood onset) may differ from those with onset after 10 years of age [8]. Although there has been some indication that patients with pediatric-onset LGMDR may experience a more severe progression than those with adult-onset disease [9], the impact of age at symptomatic disease onset on progression to LOA has not been well established. Understanding the natural history by subtype and age at onset is important to characterize disease burden and understand likely disease trajectories among those with LGMDR. In the absence of data from large clinical studies, a systematic review can help fill this gap. As such, through a systematic review and synthesis of the published literature, this study sought to describe the characteristics of patients with pediatric- and adult-onset LGMDR according to subtype and to characterize the frequency and timing of LOA among patients with pediatric- and adult-onset LGMDR, by subtype.

METHODS

Search strategy and study identification

A systematic literature review was conducted in MEDLINE, Embase and the Cochrane library to identify all published data from database inception to September 3, 2019, on the frequency and timing of LOA in patients with LGMDR1, LGMDR2/MM, LGMDR3-6, LGMDR9, and LGMDR12. The search strategy was developed to include terms related to the Population, Exposure/Comparator, Outcomes, Study design (PECOS) criteria specified to be of interest for the study (Supplementary Table 1). Two reviewers worked independently to screen all abstracts identified by the search strategy against the PECOS criteria, and then reviewed the full text of all potentially relevant abstracts. If any discrepancies occurred between the studies selected for inclusion by the two reviewers, a third reviewer provided arbitration.

Patient-level data from epidemiologic studies (retrospective and prospective cohort studies), clinical trials, as well as case series and reports were included.

Outcomes and data synthesis

Pediatric-onset disease was characterized based on two categories: onset before age 10 (early childhood-onset) and onset from age 10 to 18 years (late childhood-onset). Adult-onset was defined as disease onset at 18 years or older. Patients whose age at LGMD onset was reported descriptively rather than numerically were analyzed according to the category corresponding to the appropriate age at onset definition. For example, those whose age at onset was reported as occurring “in their third decade” were categorized as having adult-onset disease. Base-
I.F. Audhya et al. / Progression to LOA in LGMDR

479

line demographics and clinical characteristics of the patients included in the studies were characterized, using counts and proportions, and means and standard deviations (SD), as appropriate. These were stratified by age at onset and LGMDR subtype. Patients were considered to have LOA if they were described as being wheelchair dependent or non-ambulant. Those who were described as ambulatory at their last assessment were considered to not have LOA.

The total number of patients with patient-level data in the included studies and the number of patients with age at LGMD onset reported (and the subset among whom an ambulatory status was reported) were determined by subtype and among the overall sample in order to characterize data availability.

Outcomes of interest (overall and for each LGMDR subtype)

The following outcomes were extracted from the overall sample and for each LGMDR subtype. Among patients with age at LGMD onset reported, the n (%) with adult- (>18 years), late childhood- (10-18 years), and early childhood-onset (<10 years) LGMDR was tabulated. This was determined for the overall cohort as well as separately for male and female patients. Among patients with adult-, late childhood-, and early childhood-onset of disease, the n (%) with ambulatory status reported was assessed; patients could be either ambulatory or non-ambulatory at the time of each assessment. Among those with LOA, mean (SD) time from LGMD onset to LOA, stratified by age of onset (adult-, late childhood-, and early childhood-onset LGMDR, as per the above) was tabulated. Time to LOA was calculated for patients whose age at disease onset was reported numerically, rather than descriptively (e.g., in the third decade). Patients were analyzed based on the subgroup reported by study authors, except for LGMDR2 and MM which were combined into an overall dysferlinopathies subgroup for analysis (LGMDR2/MM).

As all data used in the study were from previously published sources, participant consent or ethical review and approval was not necessary.

RESULTS

Study characteristics

The systematic search identified 2,929 abstracts which after screening resulted in the inclusion of 298 studies, of which 195 studies provided data informing this analysis (Fig. 1). Data were primarily derived from case reports and case series (n = 123) [10–132], although patient-level data were also available from 31 retrospective [133–163], 21 prospective [164–184], and 4 cross-sectional studies [185–188], as well as 2 randomized controlled trials [189, 190] and 14 reports based on other designs (Supplementary Table 2) [98, 191–203]. Of studies reporting geographic location, over 35 countries were represented, with the most studies conducted in the United States (n = 28) and Italy (n = 23).

Data availability

In total, data from 1,841 patients were identified to comprise the overall sample (Fig. 2); of these, 1,603 (87.1%) patients had a reported age at onset. LGMDR2/MM and LGMDR1 were the most common subtypes among patients with a reported age at onset (n = 529, 33.0%; n = 324, 20.2%, respectively), while LGMDR6 was uncommon (n = 6, 0.4%). Among those with age at onset reported, 375 patients also had ambulatory status reported (23.4%), and the percentages with ambulatory status reported ranged from 0.5% (n = 2; LGMDR6) to 30.1% (n = 113; LGMDR2/MM) when considered by subtype. Data on ambulatory status were generally cross-sectional in nature; ambulatory function was typically reported at one assessment only.

Patient characteristics

Patient characteristics by age at onset category

Of the 1,603 patients with a reported age at onset, 695 (43.4%) had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset disease overall (Fig. 3A). The distribution of patients with pediatric- compared to adult-onset disease was highly variable between subtypes. Patients with LGMDR12 had onset predominantly in adulthood (95.2%), while adult-onset disease was infrequent among patients with LGMDR3-6 (7.5%). When the distribution of pediatric- compared to adult-onset disease was evaluated by sex, there were no real differences by sex among included patients with age at onset data, although the number of female patients with LGMDR12 (n = 39) was comparatively lower than the number of male patients with LGMDR12 (n = 124) identified for this analysis (data not shown). Among patients with adult-onset (n = 695) and late childhood-onset LGMDR (n = 532), the most com-
mon subtype was LGMDR2/MM ($n = 308$, 44.3% adult-onset; $n = 211$, 39.7% late childhood-onset; Table 1, Fig. 3B). Among those with early childhood-onset disease ($n = 376$), LGMDR3-6 was the most common subtype ($n = 211$; 56.1%). There were no patients with early childhood-onset LGMDR12.

Age at onset and ambulatory status

The frequency of ambulation assessment varied across age at onset categories and LGMDR subtypes (Table 2). Patients with early childhood-onset disease had ambulation assessed most often (33.2%, 121/376), while ambulation was infrequently assessed in patients with adult-onset disease (17.6%, 122/695). Among the different subtypes, ambulation assessments were generally common in LGMDR3-6 and LGMDR9 regardless of age at onset. The frequency of ambulation assessment was lowest in LGMDR1 (11.8% of adult-onset, 18.5% of late childhood-onset, and 16.7% of early childhood-onset disease).

LOA was observed in 60.8% (228/375) of patients with ambulatory function reported. Among patients with adult-onset disease, LOA was reported in 52.5%, and at a mean (SD) age of 44.7 (13.6) years (Table 2). LOA was most frequently reported among patients with LGMDR3-6, who also experienced the earliest LOA (mean [SD]: 32.5 [6.9] years) in this age at onset group. Among patients with late childhood-onset disease, 59.1% experienced LOA overall, at a mean (SD) age of 32.8 (11.4) years (Table 2). Compared to patients with adult-onset disease (52.5%), the percentage of patients with late childhood-onset
Fig. 2. Summary of data availability across LGMDR subtypes. *Includes patients whose age at onset was reported descriptively rather than numerically, with sufficient information to be categorized as having either adult-, late childhood-, or early childhood-onset disease (e.g. onset in “first decade”). Abbreviations: LGMDR, autosomal recessive limb girdle muscular dystrophy; MM, Miyoshi myopathy.

Fig. 3. A) Distribution of early childhood-, late childhood- and adult- onset LGMD, by subtype; B) distribution of LGMD subtypes by age at onset category. Note: Percentages are rounded to the nearest whole number. Abbreviations: LGMDR, autosomal recessive limb girdle muscular dystrophy; MM, Miyoshi myopathy.

disease who had LOA was slightly higher. Among patients with early childhood-onset disease, 71.1% experienced LOA overall, at a mean (SD) age of 17.7 (10.6) years (Table 2). LOA was most common in this age at onset group. This trend was generally consistent across subtypes, except in cases where low numbers of patients with ambulatory status were available. The number and percentage of patients with LOA and adult- or late childhood-onset disease was highest for LGMDR2/MM (n = 32, 57.1%; n = 42, 77.8%, respectively); while n (%) with LOA and early childhood-onset was highest for LGMDR3-6 (n = 57, 95.0%). All 3 patients with early childhood-onset LGMDR2/MM with an ambulatory assessment had LOA and their mean age at LOA was comparable to the mean age of LOA for the late-childhood onset patients.

Time to LOA

Data to assess time from disease onset to LOA according to age at onset category were limited. Mean (SD) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7] years, n = 56) and longest for those with
Table 1

Subtype	N with age at onset reported	Mean (SD) age at onset	n with sex reported	n male (%)

Adult-onset (>18 years)

Overall* 695 29.2 (10.1) 672 359 (51.7)

LGMDR1 102 30.4 (10.4) 100 39 (38.2)
LGMDR2/MM 308 26.3 (7.9) 290 140 (45.5)
LGMDR3-6 22 29.9 (8.2) 21 9 (40.9)
LGMDR5 7 23 7 3 (42.9)
LGMDR3 12 32.1 (9.5) 11 4 (33.3)
LGMDR4 0 N/A 0 0
LGMDR6 0 N/A 0 0
LGMDR9 106 29.6 (8.2) 106 54 (50.9)
LGMDR12 157 35.8 (13.1) 155 117 (74.5)

Late childhood-onset (10-18 years)

Overall* 532 14.0 (2.7) 516 242 (45.5)

LGMDR1 162 13.1 (2.5) 160 62 (38.3)
LGMDR2/MM 211 15.5 (2.1) 197 97 (46.0)
LGMDR3-6 60 11.8 (2.1) 60 31 (51.7)
LGMDR5 10 12.3 (2.8) 10 5 (50.0)
LGMDR3 32 11.6 (1.7) 32 14 (43.8)
LGMDR4 11 12.8 (2.4) 11 8 (72.7)
LGMDR6 0 N/A 0 0
LGMDR9 91 13.7 (2.7) 91 45 (49.5)
LGMDR12 8 15.2 (2.3) 8 7 (87.5)

Early childhood-onset (<10 years)

Overall* 376 5.1 (2.5) 374 201 (53.5)

LGMDR1 60 5.9 (2.4) 60 24 (40.0)
LGMDR2/MM 10 4.3 (2.6) 8 8 (80.0)
LGMDR3-6 211 5.1 (2.3) 211 112 (53.1)
LGMDR5 68 5.5 (2.3) 68 39 (57.4)
LGMDR3 72 5.1 (2.4) 72 35 (48.6)
LGMDR4 44 4.4 (2.4) 44 23 (52.3)
LGMDR6 6 3.8 (2.3) 6 4 (66.7)
LGMDR9 95 4.8 (2.8) 95 57 (60.0)
LGMDR12 0 N/A 0 0

*Within each age at onset category, “Overall” refers to unique patients in that category. As patients with LGMDR3, LGMDR4, LGMDR5, and LGMDR6 may be counted in both the individual subtype and combined LGMDR3-6 groups, the number of patients added across subtypes exceed the counts reflected under “Overall.”

Abbreviations: LGMDR, autosomal recessive limb girdle muscular dystrophy; MM, Miyoshi myopathy; N/A, not applicable; SD, standard deviation.

The findings from this systematic review confirm that there is variability in age at LGMDR onset across subtypes and provide novel details on the progression to LOA in LGMDR. Understanding the natural history of the progression to LOA and intervening prior to its occurrence would be critical to reduce the burden of disability in LGMDR. To date, there have been few large observational studies conducted that follow patients longitudinally to understand the natural history of LGMDR. However, the Global FKRP Registry has been established to support research in LGMDR [205]; as long-term data become available, this registry would offer important insights into the clinical trajectories for patients with this LGMD subtype.
Table 2

Subtype	n (%) with ambulation assessment	n (%) LOA	Mean (SD) age at LOA	Mean (SD) age at last assessment if ambulatory
Adult-onset (>18 years)				
Overall (n = 695)	122 (17.6)	64 (52.5)	44.7 (13.6)	43.4 (12.0)
LGMDR1 (n = 102)	12 (11.8)	11 (91.7)	48.4 (14.2)	
LGMDR2/MM (n = 308)	56 (18.2)	32 (57.1)	45.2 (13.1)	
LGMDR3-6 (n = 30)	11 (50.0)	11 (100.0)	32.5 (6.9)	
LGMDR9 (n = 106)	23 (21.7)	5 (21.7)	49.4 (14.4)	
LGMDR12 (n = 157)	20 (12.7)	5 (25.0)	55.0 (12.5)	
Late childhood-onset (10-18 years)				
Overall (n = 532)	132 (24.8)	78 (59.1)	32.8 (11.4)	26.5 (11.4)
LGMDR1 (n = 162)	30 (18.5)	17 (56.7)	30.6 (12.1)	
LGMDR2/MM (n = 211)	54 (25.6)	42 (77.8)	36.2 (11.1)	
LGMDR3-6 (n = 60)	13 (21.7)	9 (69.2)	21.7 (9.4)	
LGMDR9 (n = 91)	34 (37.4)	10 (29.4)	32.1 (8.6)	
LGMDR12 (n = 8)	1 (12.5)	0 (0.0)	N/A	
Early childhood-onset (<10 years)				
Overall (n = 376)	121 (32.2)	86 (71.1)	17.7 (10.6)	13.1 (10.1)
LGMDR1 (n = 60)	10 (16.7)	7 (70.0)	21.6 (10.6)	
LGMDR2/MM (n = 10)	3 (30.0)	3 (100.0)	36.0 (12.1)	
LGMDR3-6 (n = 21)	60 (28.4)	57 (95.0)	16.9 (11.1)	
LGMDR9 (n = 95)	48 (50.5)	19 (39.6)	15.5 (5.9)	
LGMDR12 (n = 0)	N/A	N/A	N/A	

Abbreviations: LGMDR, autosomal recessive limb girdle muscular dystrophy; LOA, loss of ambulation; MM, Miyoshi myopathy; N/A, not applicable; SD, standard deviation.

about LOA. Of note, the frequencies of individual subtypes within adult-, late childhood-, and early childhood-onset categories may be driven by data availability rather than true incidence, as some subtypes had considerably more patients with age at onset reported (e.g., LGMDR2/MM). Nevertheless, patients with LGMDR12 had onset predominantly in adulthood, which corresponds with previous reports that LGMD12 is characterized by late-onset lower limb weakness [206]. In comparison, patients with LGMDR3-6 frequently had early childhood-onset disease, similar to what was observed in a large cohort of patients with sarcoglycanopathy [8]. Variability in the occurrence of LOA was observed across LGMDR subtypes and across age at onset categories. LOA was more common among patients with early childhood- (71%) compared to late childhood- (59%) and adult-onset disease (52%). As ambulatory assessments were more frequent among patients with early childhood-onset disease, data on the occurrence and age at LOA may be more robust in this group than for those with adult-onset disease.

Regardless of age at disease onset, patients with LGMDR3-6 generally had the earliest LOA among the subtypes (at 32 years among adult-onset, 22 years among late childhood-onset, 17 years among early childhood-onset disease). Patients with early childhood-onset disease tended to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. This observation is consistent with the findings for LGMDR3-5 from the European Sarcoglycanopathy Consortium, which reported that patients with disease onset before age 10 experienced significantly faster progression to ambulation loss than those with onset after 10 years of age [8].

Given the inclusion of case report data in this systematic review, limitations to study findings include that case report data are prone to bias as investigators may have different motivations for their analyses. In particular, there may be a bias of reporting more severe patients as case studies of the disease. For example, patients who had ambulatory function assessments likely had issues with ambulation in the first place that would prompt such an assessment. Moreover, given the cross-sectional nature of data included in this review, the reported absence of a clinical outcome such as LOA in a patient may not necessarily mean that this patient would not experience LOA subsequently. The small numbers of patients with LGMDR12 identified with LOA may be a consequence of such limitations, as these patients have a later onset of weakness and ambulation loss. In addition, as LGMDR12 was not characterized as
Fig. 4. Mean (SD) time (years) to LOA of early childhood-, late childhood- and adult-onset LGMDR, by subtype. *Note: time to LOA was only determined for patients whose age at onset was reported numerically; e.g. patients who were reported as having onset “in adulthood” are not reflected. In addition, subtypes and age groups with n<5 are not reflected (e.g. LGMDR12). Abbreviations: LGMDR, autosomal recessive limb girdle muscular dystrophy; LOA, loss of ambulation; MM, Miyoshi myopathy; SD, standard deviation.

a separate entity until recently [44], data availability for these patients may have been particularly affected. Large registries or observational studies that follow patients over time would be valuable to better characterize the natural history of LGMDR, as well as the prevalence of the different subtypes. Large observational studies would also be important for understanding other factors that may influence disease progression, such as socioeconomic characteristics and access to medical care, which are difficult to capture in a systematic review. For the present analyses, data availability was limited as patients were considered eligible only if both their age at LGMD onset and the age at which ambulation was assessed was reported. Therefore, the small numbers of patients meeting these criteria for some subtypes may limit the generalizability of these findings. However, given the rarity of some subtypes such as LGMDR6, small sample sizes were expected. Among included patients, it was often unclear whether they presented symptomatically, were asymptomatic but diagnosed as a result of early recognition through genetic screening, or were asymptomatic and diagnosed when they become symptomatic. As a result, the reported age at disease onset, and consequently the calculated time from onset to LOA, may reflect different experiences for different patients, even for the same LGMDR subtype. Selection and reporting bias may also have resulted in ambulatory status being preferentially investigated among those who were experiencing severe mobility difficulties or who eventually progressed to LOA, which would further impact generalizability. The frequency of LOA among patients with adult-onset disease may particularly be impacted by such biases given the challenge of capturing data for patients with mild disease. Despite the potential for overestimating the frequency of LOA for LGMDR from this review, the differences in frequency and age at LOA observed between subtypes may still hold true, e.g. that patients with sarcoglycanopathies experience faster progression to LOA than other subtypes. Although overall estimates
of mean age at onset and age at LOA were determined for patients with adult-, late childhood-, and early childhood-onset LGMDR, data according to subtype may be more meaningful within these categories given the clinical heterogeneity across subtypes.

CONCLUSIONS

Using currently available data, this review illustrated that LOA occurred most commonly among LGMDR patients with early childhood-onset disease, and least commonly among those with adult-onset disease. Moreover, patients with early childhood-onset disease tended to have faster progression to LOA than those with late childhood- or adult-onset disease, suggesting that age at disease onset may be an important risk factor for disease progression. While this systematic review was informed by patient-level data including case report data, which has its caveats such as reporting bias, it provides an in-depth assessment of patients with LGMDR across multiple countries and is a valuable addition to the literature for this rare disease. To complement and strengthen these findings, large registries such as the Global FKRP Registry or observational studies that follow patients over time would be important for better characterizing the natural history of LGMDR. Despite limited data, these findings provide a greater understanding of progression to LOA by subtype in LGMDR, which may help inform clinical trial design and provide a basis for natural history studies.

ACKNOWLEDGMENTS

Funding: This study was funded by Sarepta Therapeutics, Inc.

Authors’ contributions: All authors contributed to the study conception and design. Data analysis was performed by AC, EF and SMS. All authors contributed to the writing of the manuscript. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST

IFA and KLG are employees of Sarepta Therapeutics, Inc. AC, EF and SMS are employees of Broadstreet HEOR which was contracted by Sarepta Therapeutics, Inc for the conduct of this study. CCW received consulting fees from Sarepta Therapeutics, Inc.

SUPPLEMENTARY MATERIALS

The supplementary material is available in the electronic version of this article: https://dx.doi.org/10.3233/JND-210771.

REFERENCES

[1] Lo HP, Cooper ST, Evesson FJ, Seto JT, Chiotis M, Tay V, et al. Limb-girdle muscular dystrophy: Diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscular Disorders. 2008;18(1):34-44.
[2] Chu ML, Moran E. The Limb-Girdle Muscular Dystrophies: Is Treatment on the Horizon? Neurotherapeutics. 2018;15(4):849-62.
[3] Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol. 2019;234(6):7874-84.
[4] Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: The 2014 update. Acta Myol. 2014;33(1):1-12.
[5] Iyadurai SJ, Kissel JT. The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies. Continuum (Minneapolis). 2016;22(6, Muscle and Neuromuscular Junction Disorders):1954-77.
[6] Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: Where next after six decades from the first proposal (Review). Molecular Medicine Reports. 2014;9(5):1515-32.
[7] Siciliano G, Simoncini C, Giannotti S, Zampa V, Angelini C, Ricci G. Muscle exercise in limb girdle muscular dystrophies: Pitfall and advantages. Acta Myologica. 2015;34(1):3-8.
[8] Alonso-Pérez J, González-Quereda L, Bello L, Guglieri M, Straub V, Gallano P, et al. New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy. Brain. 2020;143(9):2696-708.
[9] Angelini C. LGMD. Identification, description and classification. Acta myologica: Myopathies and cardiomyopathies : Official Journal of the Mediterranean Society of Myology. 2020;39(4):207-17.
[10] Aharoni S, Sadeh M, Silver EL, Straussberg R. Dysferlinopathy and very-long-chain acyl coenzyme a dehydrogenase deficiency segregating in the same family. Israel Medical Association Journal. 2011;13(10):632-4.
[11] Akarsu EO, Kotan D, Alemdar M, Tunc A. Myopathy and epilepsy: A rare phenotype in limb-girdle muscular dystrophy 2l associated with ANOS mutation. Acta Myologica. 2018;37 (2):161.
[12] Algahtani H, Shirah B, Alassiri AH, Habib BA, Almuhanna R, Ahamed MF. Limb-girdle muscular dystrophy type 2B: An unusual cause of proximal muscular weakness in Saudi Arabia. Journal of Back and Musculoskeletal Rehabilitation. 2018;31(5):999-1004.
[13] Al-Harbi KM, Abdallah AM. LGMD2D syndrome: The importance of clinical and molecular genetics in patient and family management. Neuroendocrinology Letters. 2016;37(4):277-81.
[14] Angelini C, Fanin M, Menegazzo E, Freda MP, Duggan DJ, Hoffman EP. Homozygous alpha-sarcoglycan mutation in two siblings: One asymptomatic and one
Although I have attempted to accurately transcribe the text from the image, it seems that the content is not fully readable or is too fragmented to provide a coherent summary. If you have specific questions or need clarification on certain points, please let me know, and I'll do my best to assist you.
[79] Muller T, Krasnianski M, Withutt R, Deschauer M, Zierer S. Dilated cardiomyopathy may be an early sign of the C826A Fukutin-related protein mutation. Neuromuscular Disorders. 2005;15(5):372-6.

[80] Mustafa E, Khandaker MAH, Rashid MM, Ghose SK, Chowdhury MK. Sarcoglycanopathy - A rare case report and literature review. Journal of Medicine (Bangladesh). 2014;15(1):77-9.

[81] Nagashima T, Chuma T, Mano Y, Goto YI, Hayashi YK, Minami N, et al. Dysferlinopathy associated with rigid spine syndrome. Neuropathology. 2004;24(4):341-6.

[82] Negrao L, Gerardo A, Matos A, Rebelo O, Santos R, Marques C. The first portuguese families with limb-girdle muscular dystrophy 2L. Sinapise. 2012;12(1):39-44.

[83] Nemes A, Dezszi L, Domzik P, Kalapos A, Forster T, Vecsei L. Left ventricular deformation abnormalities in a patient with calpainopathy-a case from the three-dimensional speckle-tracking echocardiographic magyar-path study. Quantitative Imaging in Medicine and Surgery. 2017;7(6):685-90.

[84] Neto ARC, Leoni TB, De Lima FD, Martinez ARM, Nucci L, Franca MC. EMG findings in patients with limb-girdle muscular dystrophy due to heterozygous CAPN3 mutations. Clinical Neurophysiology. 2018;129(Supplement 1):e82.

[85] Nowak KJ, Walsh P, Jacob RL, Johnsen RD, Peeverall J, McNally EM, et al. Severe gamma-sarcoglycanopathy caused by a novel missense mutation and a large deletion. Neuromuscular Disorders. 2000;10(2):100-7.

[86] Oexle K, Herrmann R, Dode C, Leturcq F, Hubner C, Kaplan JC, et al. Neuromuscular hearing loss in secondary adhalinopathy. Neuropediatrics. 1996;27(1):32-6.

[87] Ogata H, Ogawa G, Suzuki M, Ogata K, Nishino I, Oflazer PS, Gundesli H, Zorludemir S, Sabuncu T, Dincer M, et al. Limb-girdle muscular dystrophy with Calves Hypertrophy. Journal of Molecular Neurosciences. 2017;770-4.

[88] Okahashi S, Ogawa G, Suzuki M, Ogata K, Nishino I, Kawai M. Asymptomatic sporadic dysferlinopathy presenting with elevation of serum creatine kinase. Typical distribution of muscle involvement shown by MRI but not by CT. Internal Medicine. 2008;47(4):305-7.

[89] Okere A, Reddy SS, Gupta S, Shinnar M. A cardiomyopathy in a patient with limb girdle muscular dystrophy type 2A. Circulation: Heart Failure. 2013;6(1):e12-3.

[90] Oliveira Santos M, Ninitas P, Conceicao I. Severe limb-girdle muscular dystrophy 2A in two young siblings from Guinea-Bissau associated with a novel null homozygous mutation in CAPN3 gene. Neuromuscular Disorders. 2009;19(4):261-3.

[91] Okahashi S, Ogawa G, Suzuki M, Ogata K, Nishino I, Kawai M. Asymptomatic sporadic dysferlinopathy presenting with elevation of serum creatine kinase. Typical distribution of muscle involvement shown by MRI but not by CT. Internal Medicine. 2008;47(4):305-7.

[92] Okeke A, Reddy SS, Gupta S, Shinnar M. A cardiomyopathy in a patient with limb girdle muscular dystrophy type 2A. Circulation: Heart Failure. 2013;6(1):e12-3.

[93] Oliveira Santos M, Ninitas P, Conceicao I. Severe limb-girdle muscular dystrophy 2A in two young siblings from Guinea-Bissau associated with a novel null homozygous mutation in CAPN3 gene. Neuromuscular Disorders. 2009;19(4):261-3.

[94] Patel NJ, Van Dyke KW, Espinoza LR. Limb-Girdle Muscular Dystrophy 2B and Miyoshi Presentations of Dysferlinopathy. American Journal of the Medical Sciences. 2017;355(5):484-91.

[95] Peddaredygari LR, Oberoi K, Baise-DeLeon A, Grewal RP. Novel mutation in anotocin 5 gene causing limb-girdle muscular dystrophy 2L. Journal of Clinical Neuromuscular Disease. 2018;19(4):228-31.

[96] Pena L, Kim K, Charrow J. Episodic myoglobinuria in a primary gamma-sarcoglycanopathy. Neuromuscular Disorders. 2010;20(5):337-9.

[97] Penisson-Besnier I, Richard I, Dubas F, Beckmann JS, Fardeau M. Pseudometric variability of and phenotypic variability of calpain deficiency in two siblings. Muscle and Nerve. 1998;21(8):1078-80.

[98] Pimentel LHC, Alcantara RNA, Fontenele SMDA, Costa CMDC, Gondim F. Limb-girdle muscular dystrophy type 2B mimicking polymyositis. Arquivos de Neuro-Psiquiatria. 2008;66(1):80-2.

[99] Pizzanelli C, Mancuso M, Galli R, Choub A, Fanin M, Nascimbeni AC, et al. Epilepsy and limb girdle muscular dystrophy type 2A: Double trouble, serendipitous finding or new phenotype? Neurological Sciences. 2006;27(2):134-6.

[100] Prahm KP, Feldt-Rasmussen U, Vissing J. Human growth hormone stabilizes walking and improves strength in a patient with dominantly inherited calpainopathy. Neuromuscular Disorders. 2017;27(4):358-62.

[101] Prelle A, Comi GP, Tancredi L, Rigoletto C, Ciscato P, Fortunato F, et al. Sarcoglycan deficiency in a large Italian population of myopathic patients. Acta Neuropathologica. 1998;96(5):509-14.

[102] Quinlinvan RM, Robb SA, Sewry C, Dubowitz V, Piccolo F, Kaplan JC. Absence of alpha-sarcoglycan and novel missense mutations in the alpha-sarcoglycan gene in a young British girl with muscular dystrophy. Developmental Medicine and Child Neurology. 1999;41(11): 770-4.

[103] Rekik S, Sakka S, Ben Romdhim S, Farhat N, Baba Amer Y, Leikhim L, et al. Novel Missense CAPN3 Mutation Responsible for Adult-Onset Limb Girdle Muscular Dystrophy with Calves Hypertrophy. Journal of Molecular Neuroscience. 2019.

[104] Renard D, Fernandez C, Bouchet-Seraphin C, Labauge P. Cortical heterotopia in LGMD2I. Neuromuscular Disorders. 2012;22(5):443-4.

[105] Saenz A, Ono Y, Sorimachi H, Goicoechea M, Leturcq F, Blazquez L, et al. Does the severity of the LGMD2A phenotype in compound heterozygotes depend on the combination of mutations? Muscle and Nerve. 2011;44(5):710-4.

[106] Sahai S, Khanou N, Shieh P. A case of bilateral scapular winging. Journal of Clinical Neuromuscular Disease. 2019;20 (3):143.

[107] Schessl J, Kress W, Schoser B. Novel ANO5 mutations causing hyper-CK-emia, limb girdle muscular weakness and miyoshi type of muscular dystrophy. Muscle and Nerve. 2012;45(5):740-2.

[108] Schneider I, Stoltenburg G, Deschauer M, Winterholler M, Hanisch F. Limb girdle muscular dystrophy type 2L presenting as necrotizing myopathy. Acta Myologica : Myopathies and Cardiomyopathies : Official Journal of the Mediterranean Society of Myology / Edited by the Gaetano Conte Academy for the Study of Striated Muscle Diseases. 2014;33(3):19-21.

[109] Schutz PW, Scalco RS, Barresi R, Houlden H, Parston M, Holton JL. Calpainopathy with macrophage-rich, regional inflammatory infiltrates. Neuromuscular Disorders. 2017;27(8):738-41.

[110] Sczepanska-Kaiser M, Cortical heterotopia in LGMD2I. Neuromuscular Disorders. 2005;15(5):372-6.

[111] Sejna M, Hrovat D, Hladik P, et al. Does the severity of the LGMD2A phenotype in compound heterozygotes depend on the combination of mutations? Muscle and Nerve. 2011;44(5):710-4.

[112] Selva-O’Callaghan A, Labrador-Horrillo M, Gallardo E, Herruzo A, Grau-Junyent YM, Vilardell-Tarres M. Muscle inflammation, autoimmune Addison’s disease and sarcoidosis in a patient with dysferlin deficiency. Neuromuscular Disorders. 2006;16(3):208-9.
[109] Shouman K, Morren J, Soltanazedeh P. Phenotypic heterogeneity in limb-girdle muscular dystrophy type 2I (anoctaminopathy). Neurology Conference: 70th Annual Meeting of the American Academy of Neurology, AAN. 2018;90(15 Supplement 1).

[110] Strafella C, Campoli G, Galota RM, Caputo V, Pagliaroli G, Carboni S, et al. Limb-Girdle Muscular Dystrophies (LGMDs): The clinical application of NGS analysis, a family case report. Frontiers in Neurology. 2019;10 (JUN) (no pagination)(619).

[111] Svalh J, Streichenberger N, Benveniste O, Menassa R, Michel L, Fayolle H, et al. Significant response to immune therapies in a case of subacute necrotizing myopathy and FKRP mutations. Neuromuscular Disorders. 2015;25(11):865-8.

[112] Szymanska S, Rokicki D, Karkucinska-Wieckowska A, Szymanska-Debinska T, Ciara E, Ploski R, et al. Case report of an adolescent girl with limb-girdle muscular dystrophy type 2B - The usefulness of muscle protein immunostaining in the diagnosis of dysferlinopathies. Folia Neuropathologica. 2014;52(4):452-6.

[113] Takahashi K. Effects of prednisone on a patient with dysferlinopathy assessed by maximal voluntary isometric contraction: Alternate-day low-dose administration for a 17-year period. Case Reports in Neurology. 2019;10-6.

[114] Takahashi T, Aoki M, Imai T, Yoshioka M, Konno H, Higano S, et al. A case of dysferlinopathy presenting choreic movements. Movement Disorders. 2006;21(9):1513-5.

[115] Takano A, Bonnemann CG, Honda H, Sakai M, Feener CA, Kunkel LM, et al. Intrafamilial phenotypic variation in limb-girdle muscular dystrophy type 2C with compound heterozygous mutations. Muscle and Nerve. 2000;23(5):807-10.

[116] Tamopolsky M, Hoffman E, Girma M, Shoffner J, Brady L. Alpha-sarcoglycanopathy presenting as exercise intolerance and rhabdomyolysis in two adults. Neuromuscular Disorders. 2015;25(12):952-4.

[117] Tasca G, Evila A, Pane M, Monforte M, Graziano A, Hackman P, et al. Isolated semitendinosus involvement in the initial stages of limb-girdle muscular dystrophy 2L. Neuromuscular Disorders. 2014;24(12):1118-9.

[118] Tsuburaya R, Suzuki T, Saiki K, Nonaka I, Sugita H, Hayashi YK, et al. Lobulated fibers in a patient with 46-year history of limb-girdle muscle weakness. Neuropathology. 2011;31(4):455-7.

[119] Van der Kooi AJ, De Visser M, Van Meegen M, Ginjar HB, Van Essen AJ, Jennekens FGI, et al. A novel gamma-sarcoglycan mutation causing childhood onset, slowly progressive limb girdle muscular dystrophy. Neuromuscular Disorders. 1998;8(5):305-8.

[120] Viloria-Alebesque A, Bellosta-Diago E, Santos-Lasaosa S, Mauri-Llerda JA. Familial association of genetic generalised epilepsy with limb-girdle muscular dystrophy through a mutation in CAPN3. Epilepsy and Behavior Case Reports. 2019;11:122-4.

[121] Von Der Hagen M, Kaindl AM, Koecher K, Mitscherling P, Hausler HJ, Stoltenburg-Diederig G, et al. Limb-girdle muscular dystrophy type 2I caused by a novel missense mutation in the FKRP gene presenting as acute virus-associated myositis in infancy. European Journal of Pediatrics. 2006;165(1):62-3.

[122] Von Guionneau A, Burford C, Stone S. Limb-girdle muscular dystrophy type 2I (LGMD2I) and dilated cardiomyopathy: Management during Pregna. International Journal of Gynecology and Obstetrics. 2018;143 (Supplement 3):583-4.

[123] Vorgerd M, Genick M, Mortier J, Epplen JT, Malin JP, Mortier W. Isolated loss of gamma-sarcoglycan: Diagnostic implications in autosomal recessive limb-girdle muscular dystrophies. Muscle and Nerve. 2001;24(3):421-4.

[124] Walsh R, Hill F, Breslin N, Connolly S, Brett FM, Charlton R, et al. Progressive dysphagia in limb-girdle muscular dystrophy type 2B. Muscle and Nerve. 2011;43(5):761-4.

[125] Walter MC, Braun C, Vorgerd M, Poppe M, Thirion C, Schmidt C, et al. Variable reduction of caveolin-3 in patients with LGMD2B/MM. Journal of Neurology. 2003;250(12):1431-8.

[126] Walter MC, Dekomien G, Schlotter-Weigel B, Reilich P, Pongratz D, Muller-Felber W, et al. Respiratory insufficiency as a presenting symptom of LGMD2D in adulthood. Acta Myologica. 2004;23(1):1-5.

[127] Wang CH, Liang WC, Minami N, Nishino I, Jong YJ. Limb-girdle muscular dystrophy type 2A with mutation in CAPN3: The first report in Taiwan. Pediatries and Neorontology. 2015;56(1):62-5.

[128] Wang DN, Wang ZQ, Chen YQ, Xu GR, Lin MT, Wang N. Limb-girdle muscular dystrophy type 2I: Two Chinese families and a review in Asian patients. International Journal of Neuroscience. 2018;128(3):199-207.

[129] Wong-Kisiel LC, Kuntz NL. Two siblings with limb-girdle muscular dystrophy type 2E responsive to deflazacort. Neuromuscular Disorders. 2010;20(2):122-4.

[130] Xu C, Chen J, Zhang Y, Degree M, Li J. Limb-girdle muscular dystrophy type 2B misdiagnosed as polymyositis at the early stage Case report and literature review. Medicine (United States). 2018;97(21) (no pagination)(e10539).

[131] Yilmaz A, Gdynia HJ, Mahrholdt H, Sechtem U. Cardiovascular magnetic resonance reveals similar damage to the heart of patients with Becker and limb-girdle muscular dystrophy but no cardiac symptoms. Journal of Magnetic Resonance Imaging. 2009;30(4):867-7.

[132] Yuksel D, Dedeoglu O, Ozbay F, Talim B. A rare form of limb-girdle muscular dystrophy (LGMD type 2E) in trisomy 21. Acta Myologica. 2018;37 (2):161.

[133] Alavi A, Esmaeili S, Nilipour Y, Nafissi S, Tonekaboni SH, Zamani G, et al. LGMD2E is the most common type of sarcoglycanopathies in the Iranian population. Journal of Neurogenetics. 2017;31(3):161-9.

[134] Alhamidi M, Brox V, Stensland E, Lisset M, Lindal S, Nilssen O. Limb girdle muscular dystrophy type 2F: No correlation between clinical severity, histopathology and glycosylated alpha-dystroglycan levels in patients homozygous for common FKRP mutation. Neuromuscular Disorders. 2017;27(7):619-26.

[135] Angelini C, Nardetto L, Borsato C, Padoan R, Fanin M, Nascimbeni AC, et al. The clinical course of calpainopathy (LGMD2A) and dysferlinopathy (LGMD2B). Neurological Research. 2010;32(1):41-6.

[136] Aoki M, Liu J, Richard I, Bashir R, Britton S, Keers R, et al. Progressive dysphagia in limb-girdle muscular dystrophy due to dysferlin deficiency in Libyan Jews. Clinical and genetic features. Brain. 2000;123(6):1229-37.

[137] Boito CA, Melacini P, Vianello A, Prandini P, Gavassini BF, Bagattin A, et al. Clinical and molecular characteriza-
tion of patients with limb-girdle muscular dystrophy type 2I. Archives of Neurology. 2005;62(12):1894-9.

[139] Cagliani R, Magri F, Toscano A, Merlino L, Fortunato F, Lamberti C, et al. Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Human mutation. 2005;26(3):283.

[140] Cai S, Gao M, Xi J, Liu Z, Yue D, Wu H, et al. Clinical spectrum and gene mutations in a Chinese cohort with anoctaminopathy. Neuromuscular Disorders. 2019.

[141] de Albuquerque MAV, Abath Neto O, da Silva FMA, Zanolotti E, Reed UC. Limb-girdle muscular dystrophy type 2A in Brazilian children. Arquivos de Neuro-Psiquiatria. 2015;73(12):993-7.

[142] Fanin M, Fulizio L, Nascimbeni AC, Spinazzi M, Piluso G, Ventriglia VM, et al. Molecular diagnosis in LGMD2A: Mutation analysis of protein testing? Human Mutation. 2004;24(1):52-62.

[143] Fayssoil A, Nguyen LS, Ogna A, Meng P, Nardi O, Laforet P, et al. Effects of Home Mechanical Ventilation on Left Ventricular Function in Sarcoglycanopathies (Limb Girdle Muscle Dystrophies). American Journal of Cardiology. 2018;122(2):553-5.

[144] Figarella-Branger D, El-Dassouki M, Saenz A, Cobo AM, Malzac P, Tong S, et al. Myopathy with lobulated muscle fibers: Evidence for heterogeneous etiology and clinical presentation. Neuromuscular Disorders. 2002;12(1):4-12.

[145] Guglieri M, Magri F, D’Angelo MG, Prellre A, Morandi L, Rodolico C, et al. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Human Mutation. 2008;29(2):258-66.

[146] Hanisch F, Muller CR, Grimm D, Xue L, Traufeller T, Weiler T, Greenberg CR, Nylen E, Halliday W, Morgan K, Eggertson D, et al. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype. American Journal of Human Genetics. 1996;59(4):872-8.

[147] Liewluck T, Winder TL, Dimpel EL, Curn BA, Hempelmann CJ, Wang Y, et al. ANO5-muscular dystrophy: Clinical, pathological and molecular findings. European Journal of Neurology. 2013;20(10):1383-9.

[148] Paradas C, Llauger J, Ibarra-Correa G, De Luna N, Iuriagre C, et al. Redefining dysferlinopathy phenotypes based on clinical findings and muscle imaging studies. Neurology. 2010;75(3):316-23.

[149] Park HJ, Hong JM, Suh GI, Shin HY, Kim SM, Sunwoo IN, et al. Heterogeneous characteristics of Korean patients with dysferlinopathy. Journal of Korean Medical Science. 2012;27(4):423-9.

[150] Passos-Bueno MR, Moreira ES, Marie SK, Bashir R, Vasquez L, Love DR, et al. Main clinical features of the three mapped autosomal recessive limb-girdle muscular dystrophies and estimated proportion of each form in 13 Brazilian families. Journal of Medical Genetics. 1996;33(2):97-102.

[151] Penttila S, Palmio J, Suominen T, Rahevik M, Evila A, Gomez NM, et al. Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology. 2012;78(12):897-903.

[152] Petersen JA, Kuntzer T, Fischer D, von der Hagen M, Huebner A, Kana V, et al. Dysferlinopathy in Switzerland: Clinical phenotypes and potential founder effects. BMC Neurology. 2015;15(1) (no pagination) (182).

[153] Pollitt C, Anderson LVB, Pogue R, Davison K, Pyle A, Bushby KMD. The phenotype of calpainopathy: Diagnos-ss is based on a multidisciplinary approach. Neuromuscular Disorders. 2001;11(3):287-96.
limb girdle muscular dystrophy. Journal of Neurology. 2000;247(7):524-9.

[169] Hollingsworth KG, Willis TA, Bates MGD, Dixon BJ, Lochmuller H, Bushby K, et al. Subepicardial dysfunction leads to global left ventricular systolic impairment in patients with limb girdle muscular dystrophy 2I. European Journal of Heart Failure. 2013;15(9):986-94.

[170] Kang PB, Feener CA, Estrella E, Thorne M, White AJ, Darras BT, et al. LGMD2I in a North American population. BMC Musculoskeletal Disorders. 2007;8 (no pagination)(115).

[171] Mercuri E, Brockington M, Straub V, Quijano-Roy S, Yuva Y, Herrmann R, et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Annals of Neurology. 2003;53(4):537-42.

[172] Ro LS, Lee-Chen GJ, Lin TC, Wu YR, Chen CM, Lin CY, et al. Phenotypic features and genetic findings in 2 Chinese families with miyoshi distal myopathy. Archives of Neurology. 2004;61(10):1594-9.

[173] Rosales XQ, Moser SJ, Tran T, McCarthy B, Dunn N, Habib P, et al. Cardiovascular magnetic resonance of cardiomyopathy in limb girdle muscular dystrophy 2B and 2I. Journal of Cardiovascular Magnetic Resonance. 2011;13 (1) (no pagination)(39).

[174] Seong MW, Cho A, Park HW, Seo SH, Lim BC, Seol D, et al. Clinical applications of next-generation sequencing-based panel in patients with muscular dystrophy: Korean experience. Clinical Genetics. 2016;89(4):484-8.

[175] Tasca G, Monforte M, Diaz-Manera J, Brisca G, Semplicini C, D’Amico A, et al. MRI in sarcoglycanopathies: A large international cohort study. Journal of Neurology, Neurosurgery and Psychiatry. 2018;89 (1) (no pagination)(jnp-2017-316736).

[176] Topaloglu H, Dincer P, Richard I, Akcoren Z, Alehan D, Ozme S, et al. Calpain-3 deficiency causes a mild muscular dystrophy in childhood. Neuropediatrics. 1997;28(4):212-6.

[177] Umakhanova ZR, Bardakov SN, Mavlikeev MO, Cheremnykh IV, et al. Phenotypic expression and clinical spectrum of mutations in the FKRP gene: Rapid clinical progression to GSD1A in 2B patients. Pediatric Neurology. 2012;47(1):43-9.

[178] Vissing CR, Preisler N, Husu E, Prahm KP, Vissing J. Twenty-year clinical progression of dysferlinopathy in patients from Dagestan. Frontiers in Neurology. 2017;8 (MAR) (no pagination)(77).

[179] Vissing CR, Preisler N, Husu E, Prahm KP, Vissing J. Aerobic training in patients with anoctamin 5 myopathy and hyperckemia. Muscle and Nerve. 2014;50(1):119-23.

[180] Wahbi K, Meune C, Hamouda EH, Stojkovic T, Laforet P, Becane HM, et al. Cardiac assessment of limb-girdle muscular dystrophy 2L patients: An echography, Holter ECG and magnetic resonance imaging study. Neuromuscular Disorders. 2008;18(8):650-5.

[181] Woudt L, Di Capua GA, Krahm M, Castiglioni C, Hughes R, Campero M, et al. Toward an objective measure of functional disability in dysferlinopathy. Muscle Nerve. 2016;53(1):49-57.

[182] Xie Z, Hou Y, Yu M, Liu Y, Fan Y, Zhang W, et al. Clinical and genetic spectrum of sarcoglycanopathies in a large cohort of Chinese patients. Orphanet Journal of Rare Diseases. 2019;14 (1) (no pagination)(43).

[183] Xie Z, Xiao J, Zheng Y, Wang Z, Yuan Y. Magnetic resonance imaging findings in the muscle tissue of patients with limb girdle muscular dystrophy type 2I harbor-
[197] Gomez-Andres D, Díaz J, Munell F, Sanchez-Montanez A, Pulido-Valdeolivas I, Suazo L, et al. Disease duration and disability in dysferlinopathy can be described by muscle imaging using heatmaps and random forests. Muscle Nerve. 2019;59(4):436-44.

[198] Peric S, Stevanovic J, Johnson K, Kosac A, Peric M, Brankovic M, et al. Phenotypic and genetic spectrum of patients with limb-girdle muscular dystrophy type 2A from Serbia. Acta Myologica : Myopathies and Cardiomyopathies : Official Journal of the Mediterranean Society of Myology. 2019;38(3):163-71.

[199] Quick S, Schaefer J, Waessnig N, Schultheiss T, Reuner U, Schoen S, et al. Evaluation of heart involvement in calpainopathy (LGMD2A) using cardiovascular magnetic resonance. Muscle and Nerve. 2015;52(4):661-3.

[200] Sarkozy A, Deschauer M, Carlier RY, Schrank B, Seeger J, Walter MC, et al. Muscle MRI findings in limb girdle muscular dystrophy type 2L. Neuromuscular Disorders. 2012;22(SUPPL. 2):S122-S9.

[201] Sharma MC, Mannan R, Singh NG, Gulati S, Kalra V, Sarkar C. Sarcoglycanopathies: a clinicopathological study of 13 cases [corrected]. Neurology India. 2004;52(4):446-9.

[202] Ueyama H, Kumanoto T, Nagao SI, Masuda T, Horiouchi H, Fujimoto S, et al. A new dysferlin gene mutation in two Japanese families with limb-girdle muscular dystrophy 2B and Miyoshi myopathy. Neuromuscular Disorders. 2001;11(2):139-45.

[203] Vainzof M, Moreira ES, Canovas M, Anderson LVB, Pavanello RCM, Passos-Bueno MR, et al. Partial alpha-sarcoglycan deficiency with retention of the dystrophin-glycoprotein complex in a LGMD2D family. Muscle and Nerve. 2000;23(6):984-8.

[204] Mohassel P, Bönnermann CG. Chapter 34 - Limb-girdle Muscular Dystrophies. In: Darras BT, Jones HR, Ryan MM, De Vivo DC, editors. Neuromuscular Disorders of Infancy, Childhood, and Adolescence (Second Edition). San Diego: Academic Press; 2015. p. 635-66.

[205] Murphy LB, Schreiber-Katz O, Rafferty K, Robertson A, Topf A, Willis TA, et al. Global FKRP Registry: Observations in more than 300 patients with Limb Girdle Muscular Dystrophy R9. Ann Clin Transl Neurol. 2020;7(5):757-66.

[206] Penttilä S, Vihola A, Palmio J, Bjarne U. ANOS Muscle Disease. Seattle, W A: University of Washington, Seattle; 1993-2021 2012 Nov 29 [Updated 2019 Aug 22].