HIGHER INDEPENDENCE COMPLEXES OF GRAPHS AND THEIR HOMOTOPY TYPES

PRIYAVRAT DESHPANDE AND ANURAG SINGH

Abstract. For \(r \geq 1 \), the \(r \)-independence complex of a graph \(G \) is a simplicial complex whose faces are subset \(I \subseteq V(G) \) such that each component of the induced subgraph \(G[I] \) has at most \(r \) vertices. In this article, we determine the homotopy type of \(r \)-independence complexes of certain families of graphs including complete \(s \)-partite graphs, fully whiskered graphs, cycle graphs and perfect \(m \)-ary trees. In each case, these complexes are either homotopic to a wedge of equi-dimensional spheres or are contractible. We also give a closed form formula for their homotopy types.

1. Introduction

Let \(G \) be a simple undirected graph. A subset \(I \subseteq V(G) \) of vertex set of \(G \), is called an independent set if the vertices of \(I \) are pairwise non-adjacent in \(G \). The independence complex of \(G \), denoted \(\text{Ind}_1(G) \), is a simplicial complex whose faces are the independent subsets of \(V \).

The study of homotopy type of independence complexes of graphs has received a lot of attention in last two decades. For example, in Babson and Kozlov’s proof of Lovász’s conjecture (in [1]) regarding odd cycles and graph homomorphism complexes the independence complexes of cycle graphs played an important role. In [17], Meshulam related homology groups of \(\text{Ind}_1(G) \) with the domination number of \(G \). The problem of determining a closed form formula for the homotopy type of \(\text{Ind}_1(G) \) for various classes of graphs is also well studied. For instance, see [16] for paths and cycle graphs, [13] for forests, [4, 5] for grid graphs, [14] for chordal graphs and [10] for categorical product of complete graphs and generalized mycielskian of complete graphs. Barmak [2] studied the topology of independence complexes of triangle-free graphs and claw-free graphs. He also gave a lower bound for the chromatic number of \(G \) in terms of the strong Lusternik-Schnirelmann category of \(\text{Ind}_1(G) \).

Recently in [19], Paolini and Salvetti generalized the notion of independence complexes by defining \(r \)-independence complex for any \(r \geq 1 \). For a graph \(G \), a subset \(I \subseteq V(G) \) is called \(r \)-independent if each connected component of the induced subgraph \(G[I] \) has at most \(r \) vertices. For \(r \geq 1 \), the \(r \)-independence complex of \(G \), denoted \(\text{Ind}_r(G) \) is a simplicial complex whose faces are all \(r \)-independent subsets of \(V(G) \). They established a relationship between the twisted homology of the classical braid groups and the homology of higher independence complexes of associated Coxeter graphs. In particular they showed that \(r \)-independence complexes of path graphs are homotopy equivalent to a wedge of spheres (see Theorem [12]).

The aim of this article is to initiate the study of these so-called higher independence complexes of graphs. Our focus is on determining a closed form formula for its homotopy type. In the article we identify several classes of graphs for which these complexes are either homotopic to a wedge of equi-dimensional spheres or are contractible. In each case we also determine the dimension of the spheres and their number; we achieve this using discrete Morse theory.

The paper is organized as follows. In Section 2 we recall all the important definitions and relevant tools from discrete Morse theory. The formal definition and basic properties of higher independence complexes is given in Section 3; here we also look at the complexes associated with...
with complete s-partite graphs and show that they are always homotopic to a wedge of spheres. We also show that if a graph is modified by attaching leaves to every vertex then the higher independence complexes of these new graphs are either wedge of spheres or are contractible. In Section 4 we consider the case of cycle graphs and in Section 5 we consider perfect m-ary trees; in both the cases the associated complexes are either wedge of spheres or are contractible. Moreover, in both the cases we construct optimal discrete Morse functions on these complexes. As a result all the critical cells are concentrated in a fixed dimension. The construction of these Morse functions as well as the formula for the number of critical cells both are combinatorially involved. Finally in Section 6 we outline some questions and conjectures.

2. Preliminaries

Let G be a simple, undirected graph and $v \in V(G)$ be a vertex of G. The total number of vertices adjacent to v is called degree of v, denoted $\deg(v)$. If $\deg(v) = 1$, then v is called a leaf vertex. A graph H with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ is called a subgraph of the graph G. For a nonempty subset U of $V(G)$, the induced subgraph $G[U]$, is the subgraph of G with vertices $V(G[U]) = U$ and $E(G[U]) = \{(a, b) \in E(G) : a, b \in U\}$. In this article, $G[V(G) \setminus A]$ will be denoted by $G - A$ for $A \subseteq V(G)$.

Definition 2.1. An (abstract) simplicial complex \mathcal{K} on a finite set X is a collection of subsets such that

(i) $\emptyset \in \mathcal{K}$, and
(ii) if $\sigma \in \mathcal{K}$ and $\tau \subseteq \sigma$, then $\tau \in \mathcal{K}$.

The elements of \mathcal{K} are called simplices of \mathcal{K}. If $\sigma \in \mathcal{K}$ and $|\sigma| = k + 1$, then σ is said to be k-dimensional (here, $|\sigma|$ denotes the cardinality of σ as a set). Further, if $\sigma \in \mathcal{K}$ and $\tau \subseteq \sigma$ then τ is called a face of σ and if $\tau \neq \sigma$ then τ is called a proper face of σ. The set of 0-dimensional simplices of \mathcal{K} is denoted by $\mathcal{V}(\mathcal{K})$, and its elements are called vertices of \mathcal{K}. A subcomplex of a simplicial complex \mathcal{K} is a simplicial complex whose simplices are contained in \mathcal{K}. For $s \geq 0$, the k-skeleton of a simplicial complex \mathcal{K}, denoted $\mathcal{K}^{(s)}$, is the collection of all those simplices of \mathcal{K} whose dimension is at most s. In this article, we do not distinguish between an abstract simplicial complex and its geometric realization. Therefore, a simplicial complex will be considered as a topological space, whenever needed.

Let S' denote a sphere of dimension r and \ast denotes join of two spaces. The following results will be used repeatedly in this article.

Lemma 2.2 (3 Lemma 2.5). Suppose that \mathcal{K}_1 and \mathcal{K}_2 are two finite simplicial complexes.

1. If \mathcal{K}_1 and \mathcal{K}_2 both have the homotopy type of a wedge of spheres, then so does $\mathcal{K}_1 \ast \mathcal{K}_2$.
2. $\bigcup_i S^{a_i} \ast \bigcup_j S^{b_j} \simeq \bigcup_{i,j} S^{a_i + b_j + 1}$

We now discuss some tools needed from discrete Morse theory. The classical reference for this is [9]. However, here we closely follow [15] for notations and definitions.

Definition 2.3 (15 Definition 11.1). A partial matching on a poset P is a subset $\mathcal{M} \subseteq P \times P$ such that

(i) $(a, b) \in \mathcal{M}$ implies $a < b$; i.e., $a < b$ and no c satisfies $a < c < b$, and
(ii) each $a \in P$ belong to at most one element in \mathcal{M}.

Note that, \mathcal{M} is a partial matching on a poset P if and only if there exists $A \subseteq P$ and an injective map $\mu : A \to P \setminus A$ such that $\mu(a) > a$ for all $a \in A$.

An acyclic matching is a partial matching \mathcal{M} on the poset P such that there does not exist a cycle

$\mu(a_1) > a_1 < \mu(a_2) > a_2 < \mu(a_3) > a_3 \ldots \mu(a_t) > a_t < \mu(a_1), t \geq 2$.

For an acyclic partial matching on P, those elements of P which do not belong to the matching are called critical.
The main result of discrete Morse theory is the following.

Theorem 2.4 ([13] Theorem 11.13). Let \(K \) be a simplicial complex and \(M \) be an acyclic matching on the face poset of \(K \). Let \(c_i \) denote the number of critical \(i \)-dimensional cells of \(K \) with respect to the matching \(M \). Then \(K \) is homotopy equivalent to a cell complex \(K_c \) with \(c_i \) cells of dimension \(i \) for each \(i \geq 0 \), plus a single 0-dimensional cell in the case where the empty set is also paired in the matching.

Following can be inferred from Theorem 2.4.

Corollary 2.5. If an acyclic matching has critical cells only in a fixed dimension \(i \), then \(K \) is homotopy equivalent to a wedge of \(i \)-dimensional spheres.

Corollary 2.6. If the critical cells of an acyclic matching on \(K \) form a subcomplex \(K' \) of \(K \), then \(K \) simplicially collapses to \(K' \), implying that \(K' \) is homotopy equivalent to \(K \).

In this article, by matching on a simplicial complex \(K \), we will mean that the matching is on the face poset of \(K \). Let \(K \) be a simplicial complex with vertex set \(X \) and \(N_x = \{ \sigma \in K : \sigma \setminus \{x\}, \sigma \cup \{x\} \in K \} \) be a subcomplex of \(K \), where \(x \in X \). Define a matching on \(K \) using \(x \) as follows:

\[
M_x = \{ (\sigma \setminus \{x\}, \sigma \cup \{x\}) : \sigma \setminus \{x\}, \sigma \cup \{x\} \in K \},
\]

Definition 2.7. Matching \(M_x \), as defined above, is called an element matching on \(K \) using vertex \(x \).

The following result tells us that an element matching is always acyclic.

Lemma 2.8 ([15] Lemma 3.2]). The matching \(M_x \) is an acyclic matching on \(K \) and perfect acyclic matching on \(N_x \).

To obtain an acyclic matching on a simplicial complex \(K \), the next result tells us that one can define a sequence of element matchings on \(K \) using its vertices.

Proposition 2.9 ([10] Proposition 3.1]). Let \(K_1 \) be a simplicial complex and \(x_1, x_2, \ldots, x_n \) are vertices of \(K_1 \). Then, \(\bigcup_{i=1}^{n} M_{x_i} \) is an acyclic matching on \(K_1 \), where \(M_{x_i} = \{ (\sigma \setminus \{x_i\}, \sigma \cup \{x_i\}) : \sigma \setminus \{x_i\}, \sigma \cup \{x_i\} \in K_i \} \) and \(K_{i+1} = K_i \setminus \{ \sigma : \sigma \in \eta \text{ for some } \eta \in M_{x_i} \} \) for \(i \in \{1, \ldots, n\} \).

Proposition 2.9 will be used heavily in this article. Another useful way to construct an acyclic matching on a poset \(P \) is to first map \(P \) to some other poset \(Q \), then construct acyclic matchings on the fibers of this map and patch these acyclic matchings together to form an acyclic matching for the whole poset.

Theorem 2.10 (Patchwork theorem ([15] Theorem 11.10)). If \(\varphi : P \to Q \) is an order-preserving map and for each \(q \in Q \), the subposet \(\varphi^{-1}(q) \) carries an acyclic matching \(M_q \), then \(\bigcup_q M_q \) is an acyclic matching on \(P \).

The following result is a special case of Theorem 2.10.

Theorem 2.11 ([11] Lemma 4.3]). Let \(K_0 \) and \(K_1 \) be disjoint families of subsets of a finite set such that \(\tau \not\subset \sigma \) if \(\sigma \in K_0 \) and \(\tau \in K_1 \). If \(M_i \) is an acyclic matching on \(K_i \) for \(i = 0, 1 \) then \(M_0 \cup M_1 \) is an acyclic matching on \(K_0 \cup K_1 \).

3. **Basic results for higher independence complex**

We begin this section by exploring some basic results related to the main object of this article, i.e., higher independence complex. Henceforth, unless otherwise mentioned, \(r \geq 1 \) is a natural number and \([n] \) will denote the set \(\{1, \ldots, n\} \).

Definition 3.1. Let \(G \) be a graph and \(A \subseteq V(G) \). Then \(A \) is called \(r \)-independent if connected components of \(G[A] \) have cardinality at most \(r \).
Definition 3.2. Let G be a graph and $r \in \mathbb{N}$. The r-independence complex of G, denoted $\text{Ind}_r(G)$ has vertex set $V(G)$ and its simplices are all r-independent subsets of $V(G)$.

Example 3.3. Fig. 1 shows a graph G, its 1-independence complex and 2-independence complex. The 1-independence complex of G consists of 2 maximal simplices, namely $\{v_2, v_3, v_4\}$ and $\{v_1\}$. The complex $\text{Ind}_2(G)$ consists of 4 maximal simplices, namely $\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}$ and $\{v_2, v_3, v_4\}$.

![Figure 1](image-url)

The following are some easy observations from the definition of r-independence complex.

Observation 3.4. (i) For any graph G, $\text{Ind}_r(G)$ is $(r-2)$-connected. Moreover, if $r \geq |V(G)|$ then $\text{Ind}_r(G) \simeq \{\text{point}\}$.

(ii) If G is connected graph and $|V(G)| = r + 1$, then $\text{Ind}_r(G) \simeq S^{r-1}$.

(iii) Let K_n be the complete graph on n vertices, then $\text{Ind}_r(K_n)$ is equal to $(r-1)^{\text{th}}$ skeleton of an $(n-1)$-simplex, denoted Δ^{n-1}, i.e.,

$$\text{Ind}_r(K_n) = (\Delta^{n-1})^{(r-1)}.$$

(iv) If G and H are two disjoint graphs, then

$$\text{Ind}_r(G \sqcup H) \simeq \text{Ind}_r(G) \ast \text{Ind}_r(H).$$

(v) If G has a non-empty connected component of cardinality at most r, then $\text{Ind}_r(G)$ is contractible.

In Observation 3.4(iii), we saw that $\text{Ind}_r(K_n)$ is homotopy equivalent to a wedge of spheres of dimension $r-1$. So one would expect a similar result for complete s-partite graphs for $s \geq 2$. Where, a complete s-partite graph is a graph in which vertex set can be decomposed into s disjoint sets V_1, V_2, \ldots, V_s such that no two vertices within the same set V_i are adjacent and if $v \in V_i$ and $w \in V_j$ for $i \neq j$ then v is adjacent to w.

Theorem 3.5. Let $s \geq 2$ and $r \geq 1$. Given $m_1, m_2, \ldots, m_s \geq 1$, the homotopy type of r^{th} independence complex of the complete s-partite graph K_{m_1, \ldots, m_s} is given as follows,

$$\text{Ind}_r(K_{m_1, \ldots, m_s}) \simeq \bigvee_t S^{r-1},$$

where $t = \binom{M-1}{r} - \sum_{i=1}^{s} \binom{m_i-1}{r}$ and $M := \sum_{i=1}^{s} m_i$.

Proof. For simplicity of notations, we denote K_{m_1, \ldots, m_s} by G in this proof. Let V_1, V_2, \ldots, V_s be the partition of vertices of G and $V_i = \{v_{i1}^{m_i}, \ldots, v_{in}^{m_i}\}$ for $i \in [s]$. We now define a sequence of element matching on $\Delta_0 := \text{Ind}_r(G)$ using vertices $v_1^1, v_2^1, \ldots, v_s^1$. For $i \in [s]$, define

$M_i = \{(\sigma, \sigma \cup v_i^1) : v_i^1 \notin \sigma \text{ and } \sigma, \sigma \cup v_i^1 \in \Delta_{i-1}\}$,

$N_i = \{\sigma \in \Delta_{i-1} : \sigma \in \eta \text{ for some } \eta \in M_i\}$, and

$\Delta_i = \Delta_{i-1} \setminus N_i$.

This completes the proof of Theorem 3.5. □

Using Proposition 2.10, we get that $M = \bigcup_{i=1}^{s} M_i$ is an acyclic matching on Ind$_{r}(G)$ with Δ_s as the set of the critical cells.

Claim 1. The set of critical cells after sth element matching is given as follows:

$$\Delta_s = \{ \sigma \in \text{Ind}_r(G) : |\sigma| = r, \ v_1^i \notin \sigma \ \forall i \in [s] \text{ and } \sigma \nsubseteq V_i \text{ for any } i \in [s] \} \bigcup \{ \sigma \in \text{Ind}_r(G) : |\sigma| = r, \ v_1^i \notin \sigma \text{ and } v_i^1 \in \sigma \text{ for some } i \in \{2, \ldots, s\} \}.$$

Proof of Claim 7. Clearly, if $|\sigma| = r$, $v_1^i \notin \sigma \ \forall i \in [s]$ and $\sigma \nsubseteq V_i$ for any $i \in [s]$ then $G[\sigma \cup v_1^i]$ is a connected graph of cardinality $r + 1$ implying that $\sigma \notin N_i$ for all $i \in [s]$. Therefore, $\{ \sigma \in \text{Ind}_r(G) : |\sigma| = r, \ v_1^i \notin \sigma \ \forall i \in [s] \text{ and } \sigma \nsubseteq V_i \text{ for any } i \in [s] \} \subseteq \Delta_s$. Now, let $|\sigma| = r$ and $v_i^1 \in \sigma$ for some $i \in \{2, \ldots, s\}$. For $i \in \{2, \ldots, s\}$, if $v_i^1 \in \sigma$ then $\sigma \setminus v_i^1 \in N_i$ implies that $\sigma \notin N_i$. If $v_i^1 \notin \sigma$, then $|\sigma| = r$ and $v_i^1 \in \sigma$ for some $i \neq j$ implies that $G[\sigma \cup v_j^1]$ is connected subgraph of cardinality $r + 1$, hence $\sigma \notin N_j$. Thus $\{ \sigma \in \text{Ind}_r(G) : |\sigma| = r, \ v_1^i \notin \sigma \text{ and } v_i^1 \in \sigma \text{ for some } i \in \{2, \ldots, s\} \} \subseteq \Delta_s$.

Now consider $\sigma \in \Delta_s$. If $\sigma \subseteq V_i$ or $|\sigma| < r$ or $v_1^i \notin \sigma$, then $\sigma \in N_i$. If $\sigma \subseteq V_i$ for some $i \in [s]$ and $v_1^i \notin \sigma$. Then $\sigma \cup v_1^i \in \text{Ind}_r(G)$ implying that $\sigma \in N_i$ which is a contradiction to the fact that $\sigma \in \Delta_s$. Thus, either $\sigma \nsubseteq V_i$ for any $i \in [s]$ or if $\sigma \subseteq V_i$ for some $i \in \{2, \ldots, s\}$ then $v_i^1 \in \sigma$. Now, let $|\sigma| > r$. $\sigma \in \text{Ind}_r(G)$ implies that $\sigma \subseteq V_i$ for some $i \in [s]$ but then $\sigma \in N_i$. Therefore, $\sigma = r$. This completes the proof of Claim 1. □

Using Claim 1, we get that M is an acyclic matching on Ind$_r(G)$ with exactly $|\Delta_s|$ critical cells of dimension $(r - 1)$. Therefore, Corollary 2.6 implies that Ind$_r(G)$ is homotopy equivalent to a wedge of $|\Delta_s|$ spheres of dimension $r - 1$. We now compute the cardinality of the set Δ_s.

Using Claim 1, we get

$$|\Delta_s| = \left(\sum_{i=1}^{s} \frac{m_i - 1}{r} \right) - \sum_{i=1}^{s} \left(\frac{m_i - 1}{r} \right) + \sum_{j=2}^{s} \left(\sum_{i=1}^{j-1} \frac{m_i - 1}{r - 1} \right)$$

This completes the proof of Theorem 3.5. □

We now show that adding a whisker (a leaf vertex) at each vertex of G simplifies the homotopy type of higher independence complex. By adding a whisker at vertex v of G, we mean a new vertex is attached to v (the induced subgraph K_2 is called whisker). We show that the higher independence complex of fully whiskered graphs is homotopy equivalent to a wedge of equi-dimensional spheres.

Definition 3.6. Given a graph G, a fully whiskered graph of G, denoted $W(G)$, is a graph in which a whisker is added to each vertex of G.

![Figure 2](image-url)

FIGURE 2

5
Theorem 3.7. Let G be a connected graph and $V(G) = \{a_1, a_2, \ldots, a_n\}$ be the set of vertices of G. The homotopy type of $\text{Ind}_r(W(G))$ is given by the following formula:

$$\text{Ind}_r(W(G)) \simeq \begin{cases} \bigvee_{r-1} S^{r-1}, & \text{if } n \leq r \leq 2n - 1, \\ \{\text{point}\}, & \text{otherwise}. \end{cases}$$

Proof. Let $\{b_1, b_2, \ldots, b_n\}$ denote the set of leaves of graph $W(G)$ such that b_i is adjacent to a_i for each $i \in [n]$. Let $\Delta_0 = \text{Ind}_r(W(G))$. We define a sequence of element matching on Δ_0 using the leaf vertices. For $i \in [n]$, define

$$M(b_i) = \{\sigma, \sigma \cup b_i : b_i \notin \sigma, \text{ and } \sigma, \sigma \cup b_i \in \Delta_{i-1}\},$$

and

$$N(b_i) = \{\sigma \in \Delta_{i-1} : \sigma \in m \text{ for some } m \in M(b_i)\} \\text{and} \\Delta_i = \Delta_{i-1} \setminus N(b_i).$$

Claim 2. If $\sigma \in \text{Ind}_r(W(G))$ and $V(G) \not\subset \sigma$ then $\sigma \notin \Delta_n$, i.e. σ is not a critical cell.

Let $p = \min\{i : a_i \notin \sigma\}$. From Eq. (1), σ belongs to $N(b_p)$, which implies that $\sigma \notin \Delta_n$. This prove Claim 2.

Firstly, let $r < n$. Since G is connected, if $\sigma \in \text{Ind}_r(W(G))$ then $V(G) \not\subset \sigma$. Hence, result follows from Claim 2 and Corollary 2.5.

Secondly, assume that $r \geq n$. From definition of $\text{Ind}_r(G)$, it is easy to see that if $\sigma \in \text{Ind}_r(G)$ and cardinality of σ is less than r then $\sigma \in N(b_1)$. Thus, if $\sigma \in \Delta_n$ then cardinality of σ is at least r and $b_1 \notin \sigma$. Using Claim 2 we see that if $\sigma \in \Delta_n$ then $V(G) \subset \sigma$. Further, if $\sigma \in \text{Ind}_r(G)$ and $V(G) \subset \sigma$ then $\sigma \notin N(b_i)$ for any $i \in [n]$. Which shows that $\sigma \in \Delta_n$ iff $V(G) \subset \sigma$, $a_1 \notin \sigma$ and $|\sigma| \geq r$. Moreover, $V(G) \subset \sigma$ implies that $G[\sigma]$ is always connected. Therefore, cardinality of σ is exactly r. Combining all these arguments together, we see that Δ_n is a set of $\binom{n-1}{r-n}$ cells of dimension $r-1$. Thus the result follows from Corollary 2.5.

We now show that, for a graph G, adding more whiskers at non-leaf vertices of $W(G)$ does not affect the connectivity of the higher independence complex. In particular, we give closed form formula for the homotopy type of r-independence complexes of these new graphs.

Theorem 3.8. Let G be a connected graph and $W = \{a_1, a_2, \ldots, a_n\}$ be the set of all non-leaf vertices of G. For $i \in \{1, \ldots, n\}$, let l_i denote the number of leaves adjacent to vertex a_i. If $l_i > 0$ for all $i \in \{1, \ldots, n\}$, then the homotopy type of $\text{Ind}_r(G)$ is given as follows.

$$\text{Ind}_r(G) \simeq \begin{cases} \bigvee_{r-1} S^{r-1}, & \text{if } r \geq n, \\ \{\text{point}\}, & \text{otherwise}, \end{cases} \text{where } t = \frac{\sum_{i=1}^{n} l_i - 1}{r - n}.$$

Proof. Arguments in this proof are similar to that of in proof of Theorem 3.7. For $i \in [n]$, let $\{b_{1i}, b_{2i}, \ldots, b_{li}\}$ denote the set of leaves adjacent to a_i. Let $\Delta_0 = \text{Ind}_r(G)$. We define a sequence of element matching on Δ_0 using leaf vertices $b_{1i}, b_{2i}, \ldots, b_{li}$. For $i \in [n]$, define

$$M(b_{1i}) = \{\sigma, \sigma \cup b_{1i} : b_{1i} \notin \sigma, \text{ and } \sigma, \sigma \cup b_{1i} \in \Delta_{i-1}\},$$

and

$$N(b_{1i}) = \{\sigma \in \Delta_{i-1} : \sigma \in m \text{ for some } m \in M(b_{1i})\} \\text{and} \\Delta_i = \Delta_{i-1} \setminus N(b_{1i}).$$

Claim 3. If $\sigma \in \text{Ind}_r(G)$ and $W \not\subset \sigma$ then $\sigma \notin \Delta_n$, i.e. σ is not a critical cell.

Let $p = \min\{i : a_i \notin \sigma\}$. From Eq. (2), σ belongs to $N(b_{p,1})$, which implies that $\sigma \notin \Delta_n$. This prove Claim 3.
Firstly, let $r < n$. Since G is connected and W is collection of all non-leaf vertices, $G[W]$ is connected subgraph of cardinality n. Therefore, if $\sigma \in \text{Ind}_r(G)$ then $W \not\subseteq \sigma$. Hence, result follows from Claim 3 and Corollary 2.5.

Secondly, assume that $r \geq n$. From definition of $\text{Ind}_r(G)$, it is easy to see that if $\sigma \in \text{Ind}_r(G)$ and cardinality of σ is less than r then $\sigma \in N(b_{i,1})$. Thus, if $\sigma \in \Delta_n$ then cardinality of σ is at least r and $b_{1,1} \notin \sigma$. Using Claim 3 we see that if $\sigma \in \Delta_n$ then $W \subseteq \sigma$. Further, if $\sigma \in \text{Ind}_r(G)$ and $W \subseteq \sigma$ then $\sigma \notin N(b_{i,1})$ for any $i \in [n]$. Which shows that $\sigma \in \Delta_n$ iff $W \subseteq \sigma$, $b_{1,1} \notin \sigma$ and $|\sigma| \geq r$. Moreover, $W \subseteq \sigma$ implies that $G[\sigma]$ is always connected. Therefore, cardinality of σ is exactly r. Combining all these arguments together, we see that Δ_n is a set of $\left(\sum_{i=1}^n l_i - 1 \right) / r - 1$ cells of dimension $r-1$. Thus the result follows from Corollary 2.5.

For $n \geq 1$, a path graph of length n, denoted P_n, is a graph with vertex set $V(P_n) = \{1, \ldots, n\}$ and edge set $E(P_n) = \{(i, i+1) \mid 1 \leq i \leq n-1\}$. For $n \geq 3$, a cycle graph, denoted C_n, is a graph with vertex set $V(C_n) = \{1, \ldots, n\}$ and edge set $E(C_n) = \{(i, i+1) \mid 1 \leq i \leq n-1\} \cup \{(1, n)\}$. We can now compute r-independence complexes of almost all caterpillar graphs. A caterpillar graph is a path graph with some whiskers on vertices.

Definition 3.9. Let G be a graph with $V(G) = \{a_1, \ldots, a_n\}$ and $L = \{l_1, \ldots, l_n\}$ be a set of n non-negative integers. Define a graph G^L with the following data:

$$V(G^L) = V(G) \cup \bigcup_{l_i > 0} \{b_{i,1}, \ldots, b_{i,l_i}\}$$

$$E(G^L) = E(G) \cup \bigcup_{l_i > 0} \{(a_i, b_{i,j}) : 1 \leq j \leq l_i\}$$

See Fig. 3 for examples. Clearly, P_n^L is a caterpillar graph.

![Figure 3](image-url)

Corollary 3.10. Given $L = (l_1, l_2, \ldots, l_n)$ with $l_i > 0$ for every $i \in \{0, 1, \ldots, n\}$. Then,

$$\text{Ind}_r(P_n^L) \simeq \text{Ind}_r(C_n^L) \simeq \begin{cases} \bigvee \left(\sum_{i=1}^n l_i - 1 \right) \setminus S^{r-1} & \text{if } r \geq n, \\ \text{point} & \text{otherwise.} \end{cases}$$

4. **Higher Independence Complexes of Cycle Graphs**

Kozlov, in [15], computed the homotopy type of 1-independence complex of cycle graphs using discrete Morse theory. He proved the following result:

Proposition 4.1 ([15] Proposition 11.17). For any $n \geq 3$, we have

$$\text{Ind}_1(C_n) \simeq \begin{cases} S^{k-1} \setminus S^{k-1} & \text{if } n = 3k, \\ S^{k-1} & \text{if } n = 3k \pm 1. \end{cases}$$
In this section, we generalize this result and compute the homotopy type of \(\text{Ind}_r(C_n) \) for any \(n \geq 3 \) and \(r \geq 1 \). In particular, we define a perfect acyclic matching on \(\text{Ind}_{d-2}(C_n) \). We will use the following result, proved by Paolini and Salvetti in \([19]\).

Theorem 4.2 ([19] Proposition 3.7). For \(d \geq 3 \), we have

\[
\text{Ind}_{d-2}(P_n) \cong \begin{cases}
S^{dk-2k-1}, & \text{if } n = dk \text{ or } n = dk - 1; \\
\{\text{point}\}, & \text{otherwise.}
\end{cases}
\]

To make our computations of \(\text{Ind}_{d-2}(C_n) \) easier, we first improve the acyclic matching defined by Paolini and Salvetti on \(\text{Ind}_r(P_n) \), and get a perfect acyclic matching on \(\text{Ind}_{d-2}(P_n) \).

Proposition 4.3. There exists a perfect acyclic matching on \(\text{Ind}_{d-2}(P_n) \). In particular, if \(n = dk \) or \(dk - 1 \) and \(\{1, 2, \ldots, n\} \) is the vertex set of \(P_n \), then the only critical cell is \(\bigsqcup_{i=0}^{k-1} \{di + 2, \ldots, di + d - 1\} \).

Proof. Let \(n = dk - t \) for some \(t \in \{0, 1, \ldots, d - 1\} \), let \(\Delta = \{\sigma \in \text{Ind}_{d-2}(P_n) : \sigma \cap \{d, 2d, \ldots, dk\} \neq \emptyset\} \) and let \(\Delta_0 = \text{Ind}_{d-2}(P_n) \setminus \Delta \). In \([19]\) Proposition 3.7, Paolini and Salvetti constructed an acyclic matching \(M \) on \(\text{Ind}_{d-2}(P_n) \) with \(\Delta_0 \) as the set of critical cells. Here, we construct an acyclic matching on \(\Delta_0 \). For \(i \in \{0, \ldots, k - 1\} \), define

\[
M_i = \{\sigma, \sigma \cup \{di + 1\} : di + 1 \notin \sigma \text{ and } \sigma, \sigma \cup \{di + 1\} \in \Delta_i\},
\]

\[
N_i = \{\sigma \in \Delta_i : \sigma \in \eta \text{ for some } \eta \in M_i\},
\]

\[
\Delta_{i+1} = \Delta_i \setminus N_i.
\]

From Proposition 2.9 \(M' = \bigsqcup_{i=0}^{k-1} M_i \) is an acyclic matching on \(\Delta_0 \) with \(\Delta_k \) as the set of critical cells. Clearly, if \(n = dk \) or \(dk - 1 \) then \(\Delta_k = \{\sigma\} \), where \(\sigma = \bigsqcup_{i=0}^{k-1} \{di + 2, \ldots, di + d - 1\} \).

Further, if \(n \neq dk, dk - 1 \) then \(N_{k-1} = \Delta_{k-1} \). Using Theorem 2.11 we get that \(M \sqcup M' \) is an acyclic matching on \(\text{Ind}_{d-2}(P_n) \) with \(\Delta_k \) as set of critical cells. This completes the proof of Proposition 4.3.

Following are some immediate corollaries of Proposition 4.3.

Corollary 4.4. Let \(d \geq 3 \) and \(G \) be disjoint union of \(m \) path graphs of lengths \(d \) or \(d - 1 \). Then there exists an acyclic matching on \(\text{Ind}_{d-2}(G) \) with exactly one critical cell of dimension 0 and one of dimension \((d - 3)m + m - 1 = dm - 2m - 1 \).

Corollary 4.5. Let \(d \geq 3 \) and \(G \) be disjoint union of \(m \) path graphs. If any connected component of \(G \) has length less than \(d - 1 \) or greater than \(d \) and less than \(2d - 2 \), then there exists an acyclic matching on \(\text{Ind}_{d-2}(G) \) with no critical cell.

From Observation 3.3 (i) and (ii), we get that \(\text{Ind}_{d-2}(C_n) \cong \{\text{point}\} \) for all \(n \leq d - 2 \) and \(\text{Ind}_{d-2}(C_{d-1}) \cong S^{d-3} \). We now determine the homotopy type of \(\text{Ind}_{d-2}(C_n) \) for \(n \geq d \). The idea of this proof is to define acyclic matching of subsets of face poset of \(\text{Ind}_r(C_n) \) and then use Theorem 2.10.

Theorem 4.6. For \(n \geq d \geq 3 \), we have

\[
\text{Ind}_{d-2}(C_n) \cong \begin{cases}
\bigsqcup_{i=0}^{d-1} S^{dk-2k-1}, & \text{if } n = dk; \\
S^{dk-2k-1}, & \text{if } n = dk + 1; \\
S^{dk-2k}, & \text{if } n = dk + 2; \\
\vdots & \vdots \\
S^{dk-2k+d-3}, & \text{if } n = dk + (d - 1).
\end{cases}
\]
Proof. In this proof, we assume that the vertices of C_n are labeled as $1, 2, \ldots, n$ anti-clockwise. Let k denote the maximal integer such that $dk \leq n$. Furthermore, let E be a chain with $k + 1$ elements labeled as follows:

$$e_d > e_{2d} > \cdots > e_{dk} > e_r.$$

We define a map

$$\phi : \mathcal{F}(\text{Ind}_{d-2}(C_n)) \to E$$

by the following rule. The simplices that contain the vertex labeled d get mapped to e_d^ℓ; the simplices that do not contain the vertex labeled d, but contain the vertex labeled $2d$ get mapped to e_{2d}; the simplices that do not contain the vertices labeled d and $2d$, but contain the vertex labeled $3d$ get mapped to e_{3d}; and so on. Finally, the simplices that do not contain any of the vertices labeled $d, 2d, \ldots, dk$ all get mapped to e_r.

Clearly, the map ϕ is order-preserving, since if one takes a larger simplex, it will have more vertices, and the only way its image may change is to go up when a new element from the set $\{d, 2d, \ldots, dk\}$ is added and is smaller than the previously smallest one.

Let us now define acyclic matchings on the preimages of elements of E under the map ϕ. We split our argument into cases.

Case 1: We first consider the preimages $\phi^{-1}(e_{2d})$ through $\phi^{-1}(e_{dk})$. Let t be an integer such that $2 \leq t \leq k$. The preimage $\phi^{-1}(e_{dt})$ consists of all simplices σ such that $d, 2d, \ldots, dt - 1 \notin \sigma$, while $dt \in \sigma$. Since $\sigma \in \text{Ind}_{d-2}(C_n)$, $\{dt - 1, dt - 2, \ldots, dt - (d - 2)\} \notin \sigma$. This means that the pairing $\sigma \leftrightarrow \sigma \cup \{dt - (d - 1)\}$ provides a well-defined matching, which is acyclic from Lemma 2.3.

Case 2: Next, we consider the preimage $\phi^{-1}(e_d)$. For $\sigma \in \text{Ind}_{d-2}(C_n)$, let $\text{conn}_d(\sigma)$ be the number of vertices of connected components of $C_n[\sigma]$ containing vertex labeled d. We define a map $\psi : \phi^{-1}(e_d) \to \{e_1 < e_2 < \cdots < e_{d-2}\}$

$$\psi(\sigma) = \begin{cases} e_1, & \text{if } \text{conn}_d(G[\sigma]) = 1, \\ e_2, & \text{if } \text{conn}_d(G[\sigma]) = 2, \\ \vdots \\ e_{d-2}, & \text{if } \text{conn}_d(G[\sigma]) = d - 2. \end{cases}$$

Clearly, ψ is a poset map and for $i \in \{1, \ldots, d - 2\}$, if $\sigma \in \psi^{-1}(e_i)$ then cardinality of σ is at least i.

For $t \geq 1$, let $P_t^{(i+1, \ldots, i+t)}$ denote the path graph of length t whose vertices are labeled as $i + 1, i + 2, \ldots, i + t$ (see Fig. 4).

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (i1) at (0,0) {$i+1$};
 \node (i2) at (1,0) {$i+2$};
 \node (it) at (5,0) {$i+t$};
 \node (it1) at (6,0) {$i+t-1$};
 \node (it2) at (7,0) {$i+t-2$};
 \node (i) at (8,0) {\cdots};
 \node (i1) at (10,0) {$i+1, \ldots, i+t$};
 \draw (i1) -- (i2) -- (it) -- (it1) -- (it2) -- (i);
\end{tikzpicture}
\caption{$P_t^{(i+1, \ldots, i+t)}$}
\end{figure}

We now define a matching on $\phi^{-1}(e_d)$ if $d - 2$ steps as follows.

Step 1: For $p \geq 1$, it is clear that the p-cells of $\psi^{-1}(e_1)$ are in 1-1 correspondence with the $p - 1$ cells of $\text{Ind}_{d-2}(P_{n-3}^{(d+2, \ldots, n, 1, \ldots, d-2)})$ with one extra cell of dimension 0, which is $\{d\}$. Using Proposition 4.3, let M_0 be a perfect matching on $\text{Ind}_{d-2}(P_{n-3}^{(d+2, \ldots, n, 1, \ldots, d-2)})$. Define a matching M_1 on $\psi^{-1}(e_1)$ as follows: $(\sigma, \tau) \in M_0$ iff $(\sigma \cup d, \tau \cup d) \in M_1$. Therefore, we get the following.

- Matching M_1 is an acyclic matching on $\psi^{-1}(e_1)$ with the following property. If $n - 3 = dk - 1$ or $n - 3 = dk$, i.e., $n = dk + 2$ or $dk + 3$, then there is only one critical cell of
and with no critical cell otherwise.

$$\psi L \in (6)$$

$$\psi$$

Element of the following set:

$$(5)$$

$$\psi$$

merge them together to get an acyclic matching on

$$\psi \Delta = \psi (d-1,d) \cup \psi (d,d+1)$$

Here, $$\Delta$$ is collection of all those cells $$\sigma \in \psi^{-1}(c_2)$$ such that $$\{d-1,d\}$$ is the connected component of $$C_n[\sigma]$$. Similarly, $$\Delta_{\psi^{-1}(c_2)}$$ is collection of all those cells $$\sigma \in \psi^{-1}(c_2)$$ such that $$\{d,d+1\}$$ is the connected component of $$C_n[\sigma]$$. Clearly, $$\psi^{-1}(c_2) = \psi (d-1,d) \cup \psi (d,d+1)$$ and $$\psi (d-1,d) \cap \psi (d,d+1) = \emptyset$$. Now, the idea is to define an acyclic matching on $$\psi (d-1,d)$$, $$\psi (d,d+1)$$ and merge them together to get an acyclic matching on $$\psi^{-1}(c_2)$$.

Step 2: Observe that, in $$C_n$$, there are exactly two connected subgraphs of cardinality two containing vertex $$d$$, which are $$C_n[\{d-1,d\}] = P_{2}^{(d-1,d)}$$ and $$C_n[\{d,d+1\}] = P_{2}^{(d,d+1)}$$. Thus, cells of $$\psi^{-1}(c_2)$$ can be partitioned into two smaller disjoint subsets $$\Delta_{\psi^{-1}(c_2)}$$ and $$\Delta_{\psi^{-1}(c_2)}$$. Here, $$\Delta_{\psi^{-1}(c_2)}$$ is collection of all those cells $$\sigma \in \psi^{-1}(c_2)$$ such that $$\{d-1,d\}$$ is the connected component of $$C_n[\sigma]$$. Similarly, $$\Delta_{\psi^{-1}(c_2)}$$ is collection of all those cells $$\sigma \in \psi^{-1}(c_2)$$ such that $$\{d,d+1\}$$ is the connected component of $$C_n[\sigma]$$. Clearly, $$\psi^{-1}(c_2) = \psi (d-1,d) \cup \psi (d,d+1)$$ and $$\psi (d-1,d) \cap \psi (d,d+1) = \emptyset$$. Now, the idea is to define an acyclic matching on $$\psi (d-1,d)$$, $$\psi (d,d+1)$$ and merge them together to get an acyclic matching on $$\psi^{-1}(c_2)$$.

1. Observe that, for $$p \geq 2$$, the $$p$$-cells of $$\Delta_{\psi^{-1}(c_2)}$$ are in 1-1 correspondence with the $$p-2$$ cells of $$\text{Ind}_{d-2}(P_{n-4}^{(d+2,...,n,1,...,d-3)})$$ with one extra cell of dimension 1, which is $$\{d-11,d\}$$. Using Proposition 4.3, let $$M$$ be a perfect matching on $$\text{Ind}_{d-2}(P_{n-4}^{(d+2,...,n,1,...,d-3)})$$. Define a matching $$M$$ on $$\Delta_{\psi^{-1}(c_2)}$$ as follows: $$(\sigma, \tau) \in M$$ iff $$(\sigma \cup \{d-1,d\}, \tau \cup \{d-1,d\}) \in M$$. Therefore, we get the following.

Matching $$M$$ is an acyclic matching on $$\Delta_{\psi^{-1}(c_2)}$$ with the following property. If $$n - 4 = dk - 1$$ or $$dk + 4$$, then there is only one critical cell of dimension $$dk - 2k + 1$$ and that is

$$\{d-1,d\} \cup \{id+3,...,(i+1)d\} \cup \{n,1,...,d-3\}$$, if $$n = dk + 3$$,

$$\{d-1,d\} \cup \{id+3,...,(i+1)d\} \cup \{n-1,1,...,d-4\}$$, if $$n = dk + 4$$.

Otherwise, there is no critical cell.

2. Similar to the case of $$\Delta_{\psi^{-1}(c_2)}$$ and using the matching of $$\text{Ind}_{d-2}(P_{n-4}^{(d+3,...,n,1,...,d-2)})$$, we get an acyclic matching, say $$M$$ on $$\Delta_{\psi^{-1}(c_2)}$$ with the following property.

If $$n - 4 = dk - 1$$ or $$dk$$, then there is only one critical cell of dimension $$dk - 2k + 1$$ and that is

$$\{d,d+1\} \cup \{id+4,...,(i+1)d+1\} \cup \{1,...,d-2\}$$, if $$n = dk + 3$$,

$$\{d,d+1\} \cup \{id+4,...,(i+1)d+1\} \cup \{n,1,...,d-3\}$$, if $$n = dk + 4$$.

Otherwise, there is no critical cell.

Since $$\psi^{-1}(c_2) = \psi (d-1,d) \cup \psi (d,d+1)$$, $$M$$ is an acyclic matching on $$\psi^{-1}(c_2)$$ with exactly two critical cells of dimension $$dk - 2k + 1$$ whenever $$n = dk + 3$$ or $$dk + 4$$ and with no critical cell otherwise.

We now define a matching on $$\psi^{-1}(c_{d-2})$$. Idea here is similar to that of step 2.

Step 2: Observe that, in $$C_n$$, there are exactly $$d - 2$$ connected subgraphs of cardinality $$d - 2$$ containing vertex $$d$$, and these subgraphs are path graphs of length $$d - 2$$, i.e., one of the element of the following set: $$\mathcal{L} = \{L_{d-2}^{3,4,...,d-1,d}, L_{d-2}^{4,5,...,d-1,d+1},..., L_{d-2}^{d,d+1,...,2d-4,2d-3}\}$$.

Thus, cells of $$\psi^{-1}(c_{d-2})$$ can be partitioned into $$d - 2$$ smaller disjoint subsets $$\Delta_L$$ for each
$L \in \mathcal{L}$. Here, Δ_L is collection of all those cells $\sigma \in \psi^{-1}(c_{d-2})$ such that L is the connected component of $C_\nu[\sigma]$. Clearly, $\psi^{-1}(c_{d-2}) = \bigsqcup_{L \in \mathcal{L}} \Delta_L$. Now, the idea is to define acyclic matchings on Δ_L for each $L \in \mathcal{L}$ and merge them together to get an acyclic matching on $\psi^{-1}(c_{d-2})$.

1. Observe that, for $p \geq d - 2$, the p-cells of $\Delta_{f_{d-2}^{(3,4,\ldots,d-1,d)}}$ are in 1-1 correspondence with the $p - (d - 2)$ cells of $\text{Ind}_{d-2}(P_{n-d}^{(d+2,\ldots,n,1)})$ with one extra cell of dimension $d - 3$, which is $\{3,4,\ldots,d-1,1\}$. Using Proposition 4.3 let M be a perfect matching on $\text{Ind}_{d-2}(P_{n-d}^{(d+2,\ldots,n,1)})$. Define a matching M_{d-2} on $\Delta_{f_{d-2}^{(3,4,\ldots,d-1,d)}}$ as follows: $(\sigma, \tau) \in M$ iff $(\sigma \cup \{3,4,\ldots,d-1,d\}, \tau \cup \{3,4,\ldots,d-1,d\}) \in M_{d-2}^3$. Therefore, we get the following.

Matching M_{d-2}^3 is an acyclic matching on $\Delta_{f_{d-2}^{(3,4,\ldots,d-1,d)}}$ with the following property.

If $n - d = dk - 1$ or dk, i.e., $n = d(k + 1) - 1$ or $d(k + 1) + 1$, then there is only one critical cell of dimension $dk - 2k - 1 + d - 2 = d(k + 1) - 2(k + 1) - 1$ and that is

$$\{3,4,\ldots,d-1,d\} \cup \bigcup_{i=1}^{k-1} \{id + 3,\ldots,(i+1)d\} \cup \{dk + 3,\ldots,n,1\}, \text{ if } n = d(k + 1) - 1,$$

(7)

Otherwise, there is no critical cell.

2. We now define a matching on $\Delta_{f_{d-2}^{(4,5,\ldots,n-d-2)}}$ for each $t \in \{4,5,\ldots,d\}$. Similar to the case of $\Delta_{f_{d-2}^{(3,4,\ldots,d-1,d)}}$, we define an acyclic matching on $\Delta_{f_{d-2}^{(t+1,\ldots,d+1)}}$, say M_{d-2}^t using the perfect matching defined on $\text{Ind}_{d-2}(P_{n-d}^{(d+2,\ldots,n,1)})$. We thus get the following.

If $n - d = dk - 1$ or dk, i.e., $n = d(k + 1) - 1$ or $d(k + 1) + 1$, then there is only one critical cell of dimension $dk - 2k - 1 + d - 2 = d(k + 1) - 2(k + 1) - 1$ and that is

$$\{t,t+1,\ldots,d+t-3\} \cup \bigcup_{i=1}^{k-1} \{id + t,\ldots,(i+1)d+t-3\} \cup \{dk + t,\ldots,n,1,\ldots,t-2\},$$

if $n = d(k + 1) - 1$ and

$$\{t,t+1,\ldots,d+t-3\} \cup \bigcup_{i=1}^{k-1} \{id + t,\ldots,(i+1)d+t-3\} \cup \{dk + t,\ldots,n,1,\ldots,t-3\},$$

if $n = d(k + 1) + 1$.

Otherwise, there is no critical cell.

Since $\psi^{-1}(c_{d-2}) = \bigsqcup_{L \in \mathcal{L}} \Delta_L$, $M_{d-2} = \bigsqcup_{t=3}^d M_{d-2}^t$ (defined in step $d - 2$) is an acyclic matching on $\psi^{-1}(c_{d-2})$ with exactly $d - 2$ critical cells of dimension $d(k + 1) - 2(k + 1) - 1$ whenever $n = d(k + 1) - 1$ or $d(k + 1) + 1$ and with no critical cell otherwise.

Using Theorem 2.4, we observe that $M = \bigsqcup_{i=1}^{d-2} M_i$ is an acyclic matching on $\psi^{-1}(c_d)$ with:

- no critical cell if $n = dk + 1$,
- exactly 1 critical cell of dimension $dk - 2k$ if $n = dk + 2$
- exactly $t - 2$ critical cells of dimension $dk - 2k + t - 3$ and $t - 1$ critical cells of dimension $dk - 2k + t - 2$ if $n = dk + t$ for some $t \in \{3,\ldots,d-1\}$
- exactly $d - 2$ critical cells of dimension $d(k + 1) - 2(k + 1) - 1$ if $n = d(k + 1)$.

We now define another matching on the set of critical cells corresponding to matching M on $\psi^{-1}(c_d)$. The idea is the following. If $n = dk + 3$, then observe from step 1 and step 2 that if γ is critical of dimension $dk - 2k$ then $\gamma \cup \{d - 1\}$ is critical of dimension $dk - 2k + 1$. So match γ with $\gamma \cup \{d - 1\}$. Now, let $n = dk + t$ for some $t \in \{4,\ldots,d - 1\}$. From step $t - 2$ and step
t - 1 we see that, if in step t - 2, \(\gamma = \{d - i, \ldots, d, \ldots, d + t - i - 3\} \cup \{\beta\} \) is a critical cell of dimension \(dk - 2k + t - 3 \) then in step \(t - 1 \), \(\{d - i - 1, d - i, \ldots, d, \ldots, d + t - i - 3\} \cup \{\beta\} \) is critical of dimension \(dk - 2k + t - 2 \). Here, we match \(\gamma \) with \(\gamma \cup \{d - i - 1\} \). Let the matching defined above is \(M' \).

Claim 4. Let \(M \) and \(M' \) be matchings on \(\phi^{-1}(e_d) \) as defined above. Then, \(M = M \sqcup M' \) is an acyclic matching on \(\phi^{-1}(e_d) \) with

- no critical cell if \(n = dk + 1 \),
- exactly 1 critical cell of dimension \(dk - 2(k+1) + t \) if \(n = dk + t \) for some \(t \in \{2, \ldots, d-1\} \),
- exactly \(d - 2 \) critical cells of dimension \(d(k + 1) - 2(k + 1) - 1 \) if \(n = d(k + 1) \).

Proof of Claim 4. Let \(\Delta_0 = \{\sigma \in \phi^{-1}(e_d) : \sigma \in \eta \text{ for some } \eta \in M\} \) and \(\Delta_1 = \phi^{-1}(e_d) \setminus \Delta_0 \). Since \(M \) and \(M' \) are union of a sequence of elementary matchings on \(\Delta_0 \) and \(\Delta_1 \) respectively, \(M \) and \(M' \) are acyclic matching from Proposition 2.9.

Further, it is clear from the description of the critical cells given in step-1 to step-(\(d - 2 \)) that if \(\tau \in \Delta_1 \) and \(\sigma \in \Delta_0 \) then \(\tau \not\subseteq \sigma \). Thus, using Theorem 2.11, we get that \(M \) is an acyclic matching on \(\phi^{-1}(e_d) \). Calculation of number of critical cells corresponding to matching \(M \) is straightforward once we fix an \(n \).

Case 3: In cases 1 and 2, we defined acyclic matchings on \(\phi^{-1}(e_{id}) \) for \(i \in \{1, \ldots, k\} \). Here, we consider the preimage \(\phi^{-1}(e_r) \) and define a matching \(M' \) on it.

- If \(n = dk \), then \(\phi^{-1}(e_r) \) is isomorphic to \(\text{Ind}_{d-2}(G) \), where \(G \) is isomorphic to the union \(k \) disjoint copies of path graphs of length \(d - 1 \). From Corollary 4.4 there exists an acyclic matching on the face poset of \(\text{Ind}_{d-2}(G) \) with exactly one critical cell of dimension \(dk - 2k - 1 \).
- If \(n = dk + 1 \), then \(\phi^{-1}(e_r) \) is isomorphic to \(\text{Ind}_{d-2}(G_1) \), where \(G_1 \) is isomorphic to the union \(k - 1 \) disjoint copies of \(P_{d-1} \) and one copy of \(P_d \). Again from Corollary 4.4 there exists an acyclic matching on the face poset of \(\text{Ind}_{d-2}(G_1) \) with exactly one critical cell of dimension \(dk - 2k - 1 \).
- If \(n \neq dk, dk + 1 \) then one connected component of \(C_n \setminus \{d, 2d, \ldots, dk\} \) will be a path graph of cardinality either less than \(d - 1 \) or greater than \(d \) and less than \(2d - 2 \). In both the cases, using Corollary 4.5 there exists a matching on \(\phi^{-1}(e_r) \) with no critical cell.

From Eq. (3), Theorem 2.10, case (1), Claim 4 and case 3, we get that \(M \cup M' \) is an acyclic matching on \(\mathcal{F}(\text{Ind}_{d-2}(C_n)) \) with

- exactly \(d - 1 \) critical cells of dimension \((dk - 2k - 1) \) if \(n = dk \),
- exactly one critical cell of dimension \((dk - 2k + t - 2) \) if \(n = dk + t \) for some \(t \in \{1, \ldots, d - 1\} \).

Hence, Theorem 4.6 follows from Corollary 2.5.

5. The case of perfect \(m \)-ary trees

For fixed \(m \geq 2 \), an \(m \)-ary tree is a rooted tree in which each node has no more than \(m \) children. A full \(m \)-ary tree is an \(m \)-ary tree where within each level every node has either 0 or \(m \) children. A perfect \(m \)-ary tree is a full \(m \)-ary tree in which all leaf nodes are at the same depth (the depth of a node is the number of edges from the node to the tree’s root node).

Following are some known facts about the perfect \(m \)-ary tree of height \(h \), denoted \(B^m_h \) (see Fig. 5 for example).

1. \(B^m_h \) has \(h \sum_{i=0}^{h} m^i = \frac{m^{h+1} - 1}{m - 1} \) nodes.
2. For \(0 \leq t \leq h \), the number of nodes of depth \(t \) in \(B^m_h \) is \(m^t \).
3. \(B^m_h \) has \(m^h \) leaf nodes.

Before going into the computations of the homotopy type of \(r \) independence complexes of \(B^m_h \), let us fix some notations.
Remark 5.1. For simplicity of notations, B^2_h will be denoted by B_h.

Example 5.2. Here we compute the homotopy type of $\text{Ind}_4(B_2)$. Define an element matching on $\text{Ind}_4(B_2)$ using the vertex $a_{2,1}$ as follows,

$$M(a_{2,1}) = \{(\sigma, \sigma \cup a_{2,1} : a_{2,1} \notin \sigma, \text{ and } \sigma, \sigma \cup a_{2,1} \in \text{Ind}_4(B_2)\}, \text{ and }$$

$$N(a_{2,1}) = \{\sigma \in \text{Ind}_4(B_2) : \sigma \notin \eta \text{ for some } \eta \in M(a_{2,1})\}.$$

Let $\Delta_1 = \text{Ind}_4(B_2) \setminus N(a_{2,1})$. Observe that, if $\sigma \in \Delta(a_{2,1})$ then $\sigma \cup a_{2,1} \notin \text{Ind}_4(B_2)$. By definition of $\text{Ind}_4(G)$, we observe that either $\{a_{1,1}, a_{0,1}, a_{1,2}, a_{2,2}\} \subseteq \sigma$ or $\{a_{1,1}, a_{1,0}, a_{1,2}, a_{2,3}\} \subseteq \sigma$ or $\{a_{1,1}, a_{0,1}, a_{1,2}, a_{2,4}\} \subseteq \sigma$. Since $\{a_{1,1}, a_{0,1}, a_{1,2}, a_{2,2}\}, \{a_{1,1}, a_{0,1}, a_{2,2}, a_{2,3}\}, \{a_{1,1}, a_{1,0}, a_{1,2}, a_{2,4}\}$ are maximal cells of $\text{Ind}_4(B_2)$, these are the only unmatched cells i.e., $\Delta_1 = \{\{a_{1,1}, a_{0,1}, a_{1,2}, a_{2,2}\}, \{a_{1,1}, a_{0,1}, a_{1,2}, a_{2,3}\}, \{a_{1,1}, a_{0,1}, a_{1,2}, a_{2,4}\}\}$. Therefore, Corollary 2.7 implies that $\text{Ind}_4(B_2) \simeq \bigwedge_3 S^3$.

Example 5.3. Using the homotopy type of $\text{Ind}_4(B_2)$, we compute the homotopy type of $\text{Ind}_4(B_3)$. Here, we show that $\text{Ind}_4(B_3) \simeq \text{Ind}_4(B_3 - \{a_{0,1}\})$. It is easy to see that $B_3 - \{a_{0,1}\} \cong B_2 \cup B_2$. Thus, Observation 3.4 iv implies that $\text{Ind}_4(B_3) \simeq \text{Ind}_4(B_2) * \text{Ind}_4(B_2) \simeq \bigwedge_9 S^7$.

We now prove that $\text{Ind}_4(B_3) \simeq \text{Ind}_4(B_3 - \{a_{0,1}\})$. Let $R(a_{0,1}) = \{\sigma \in \text{Ind}_4(B_3) : a_{0,1} \in \sigma\}$. Clearly, $\text{Ind}_4(B_3) \setminus R(a_{0,1}) = \text{Ind}_4(B_3 - \{a_{0,1}\})$. From Corollary 2.7, it is enough to define a perfect matching on $R(a_{0,1})$. We do so by defining a sequence of elementary matching using vertices $a_{3,1}, a_{3,3}, a_{3,5}, a_{3,7}$ as follows: Let $\Delta_0 = \text{Ind}_4(B_3)$. For $i \in \{1, 2, 3, 4\}$, define

$$M(a_{3,2i-1}) = \{(\sigma, \sigma \cup a_{3,2i-1} : a_{3,2i-1} \notin \sigma \text{ and } \sigma, \sigma \cup a_{3,2i-1} \in \Delta_{i-1}\},$$

$$N(a_{3,2i-1}) = \{\sigma \in \Delta_{i-1} : \sigma \notin \eta \text{ for some } \eta \in M(a_{3,2i-1})\}, \text{ and }$$

$$\Delta_i = \Delta_{i-1} \setminus N(a_{3,2i-1}).$$

Claim 5. $\Delta_4 = \text{Ind}_4(B_3) \setminus R(a_{0,1})$.

Figure 5
Since $N(a_{3,2i-1}) \subseteq R(a_{0,1})$ for all $i \in \{1, 2, 3, 4\}$, $\text{Ind}_4(B_3) \setminus R(a_{0,1}) \subseteq \Delta_4$. To show the other way inclusion, it is enough to show that if $\sigma \in \text{Ind}_4(B_3)$ and $a_{0,1} \in \sigma$ then $\sigma \in N(a_{3,2i-1})$ for some $i \in \{1, 2, 3, 4\}$.

Let $\sigma \in \text{Ind}_4(B_3)$ and $a_{0,1} \in \sigma$. Since $a_{0,1} \in \sigma$, it follows from the definition of $\text{Ind}_v(G)$ that $\{a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2}\} \not\subseteq \sigma$. If $\{a_{1,1}, a_{2,1}\} \not\subseteq \sigma$, then $\sigma \in N(a_{3,1})$. If $\{a_{1,1}, a_{2,1}\} \subseteq \sigma$ and $a_{2,2} \not\in \sigma$, then $\sigma \in N(a_{3,3})$. If $\{a_{1,1}, a_{2,1}, a_{2,2}\} \subseteq \sigma$ then $a_{1,2} \not\in \sigma$, implying that $\sigma \in N(a_{3,5})$. This completes the proof of Claim 6.

To get the better understanding if the computations, we first prove our results for perfect binary trees. The proof for perfect m-ary trees will follows using similar arguments.

Lemma 5.4. Let $r \geq 2^h - 1$. Then the homotopy type of r^{th} independence complex of the graph B_h is given as follows,

$$\text{Ind}_r(B_h) \simeq \left\{ \begin{array}{ll}
\bigvee S^{r-1}, & \text{if } r = 2^h - 1 + s \text{ for some } s \in \{0, 1, \ldots, 2^h - 1\}, \\
\{\text{point}\}, & \text{if } r \geq 2^{h+1} - 1.
\end{array} \right.$$

Proof. The idea of the proof here is similar to that of in Example 5.2. If $r \geq 2^{h+1} - 1$, then Observation 5.4(i) implies the result. Let $r = 2^h - 1 + s$ for some fixed $s \in \{0, 1, \ldots, 2^h - 1\}$ and $\Delta_0 = \text{Ind}_r(B_h)$. Define a sequence of elementary matching using the alternate vertices of depth h, i.e., $a_{h,1}, a_{h,3}, \ldots, a_{h,2^h-1}$. For $i \in \{1, 2, \ldots, 2^h-1\}$, define

$$M(a_{h,2i-1}) = \{\sigma, \sigma \cup a_{h,2i-1} : a_{h,2i-1} \not\in \sigma \text{ and } \sigma \cup a_{h,2i-1} \in \Delta_{i-1}\},$$

$$N(a_{h,2i-1}) = \{\sigma \in \Delta_{i-1} : \sigma \in \eta \text{ for some } \eta \in M(a_{h,2i-1})\},$$

$$\Delta_i = \Delta_{i-1} \setminus N(a_{h,2i-1}).$$

We now show that the set of critical cells Δ_{2^h-1}, corresponding to the sequence of matching defined in Eq. (10) is a set of $\binom{2^h-1}{s}$ elements of fixed cardinality r. Thus, we get the result using Corollary 2.6.

Claim 6.

1. If $\sigma \in \Delta_{2^h-1}$, then \(\bigcup_{j=0}^{h-1} V_j(B_h) \subseteq \sigma \).
2. If $\sigma \in \Delta_{2^h-1}$, then σ is of cardinality r.
3. Cardinality of the set of critical cells Δ_{2^h-1} is $\binom{2^h-1}{s}$.

Proof of Claim 6

To the contrary of Claim 6(1), assume that there exists $\sigma_1 \in \Delta_{2^h-1}$ such that \(\bigcup_{j=0}^{h-1} V_j(B_h) \not\subseteq \sigma_1 \). Let $a_{i,j,1} \in \bigcup_{j=0}^{h-1} V_j(B_h)$ be the smallest element with respect to the given ordering above such that $a_{i,j,1} \not\in \sigma_1$. Since $a_{i,j,1}$ is not a leaf, let $a_{i,j,1}^1$ be the first children of $a_{i,j,1}$. Let $a_{h,\ell}$ be the left most leaf of the sub-tree rooted at $a_{i,j,1}^1$. Further, the number of vertices of sub-tree rooted at $a_{i,j,1}^1$ is not more than $2^h - 1$. Thus, $\sigma_1 \in N(a_{h,\ell})$ (being the left most child of a sub-tree, ℓ is an odd number) contradicting the assumption that $\sigma_1 \in \Delta_{2^h-1}$. This proves Claim 6(1).

We now prove the second part of the above claim. Let $\sigma \in \Delta_{2^h-1}$. Clearly, cardinality of σ is at least r (because any cell of $\text{Ind}_r(B_h)$ of cardinality less that r is in $N(a_{0,1})$). Using Claim 6(1), we see that $B_h[\sigma]$ is connected graph of cardinality equal to the cardinality of σ. Therefore, the cardinality of σ is at most r. This proves Claim 6(2).

From Eq. (10), it is clear that, if $\sigma \in \text{Ind}_r(B_h)$ and $a_{0,1} \in \sigma$ then $\sigma \in N(a_{h,1})$ implying that $\sigma \not\in \Delta_{2^h-1}$. Hence, using Claim 6(1) and (2), we get that the cardinality of the set Δ_{2^h-1} is equal to number of s-subsets of the set $V_h(B_h) \setminus \{a_{h,1}\}$. Which is equal to $\binom{2^h-1}{s}$. This completes the proof of Claim 6. \(\square\)
From Claim 4, we see that the matching on $\text{Ind}_r(B_h)$ defined in Eq. (11) has (2^{h-1}) critical cells of fixed dimension $r - 1$. Therefore, Lemma 5.3 follows from Corollary 2.3. □

We are now ready to present the computation of homotopy type of $\text{Ind}_r(B_h)$ for any r.

Theorem 5.5. For a fixed $t \geq 1$, let $r = 2^t - 1 + s$ for some $s \in \{0, 1, \ldots, 2^t - 1\}$. Then the r^{th} independence complex of the graph B_h is given as follows,

$$
\text{Ind}_r(B_h) \simeq \begin{cases}
\bigvee_{p_1} S^{q_1}, \quad &\text{if } h = (k-1)(t+2) + t + 1 \text{ for some } k \geq 1, \\
\bigvee_{p_2} S^{q_2}, \quad &\text{if } h = k(t+2) + t \text{ for some } k \geq 0, \\
\{\text{point}\}, &\text{otherwise},
\end{cases}
$$

where,

$$p_1 = \binom{2^t - 1}{s} 2^{(2^t+2^t+2^{t-1}+\cdots+2^{k-1}(t+2))}$$

and

$$q_1 = 2r(2^0 + 2^{t+2} + \cdots + 2^{(k-1)(t+2)}) - 1,$$

$$p_2 = \binom{2^t - 1}{s} 2^{2^t+2^{t-1}+\cdots+2^{k(t+2)}},$$

$$q_2 = r(2^0 + 2^{t+2} + \cdots + 2^{k(t+2)}) - 1.$$

Proof. The idea here is similar to that of Example 5.3. If $h \leq t$, then the result follows from Lemma 5.4. Let $h > t$. Here, we show that $\text{Ind}_r(B_h) \simeq \text{Ind}_r(G)$, where G is disjoint union of perfect binary trees of height at most t. Recall that $V_j(B_h)$ denotes the set of vertices of B_h of depth j.

Claim 7. $\text{Ind}_r(B_h) \simeq \text{Ind}_r(B_h - V_{h-(t+1)}(B_h)).$

Proof of Claim 7. Let $R(V_{h-(t+1)}(B_h)) = \{\sigma \in \text{Ind}_r(B_h) : \sigma \cap V_{h-(t+1)}(B_h) \neq \emptyset\}$. Clearly, $\text{Ind}_r(B_h) \setminus R(V_{h-(t+1)}(B_h)) = \text{Ind}_r(B_h - V_{h-(t+1)}(B_h))$. To prove Claim 6 from Corollary 2.6, it is enough to define a perfect matching on $R(V_{h-(t+1)}(B_h))$. We do so by defining a sequence of elementary matching on $\text{Ind}_r(B_h)$ using vertices $a_{h,1}, a_{h,2}, \ldots, a_{h,2^h-1}$ as follows: Let $\Delta_0 = \text{Ind}_r(B_h)$. For $i \in \{1, 2, \ldots, 2^h-1\}$, define

$$M(a_{h,2i-1}) = \{(\sigma, \sigma \cup a_{h,2i-1}) : \sigma \cap V_{h-(t+1)}(B_h) \neq \emptyset, a_{h,2i-1} \notin \sigma \text{ and } \sigma, \sigma \cup a_{h,2i-1} \in \Delta_i-1\},$$

$$N(a_{h,2i-1}) = \{\sigma \in \Delta_i-1 : \sigma \in \eta \text{ for some } \eta \in M(a_{h,2i-1})\},$$

$$\Delta_i = \Delta_{i-1} \setminus N(a_{h,2i-1}).$$

We now prove that $\Delta_{2^h-1} = \text{Ind}_r(B_h) \setminus R(V_{h-(t+1)}(B_h))$. Which, along with Corollary 2.3, will imply Claim 6. Since $N(a_{h,2i-1}) \subseteq R(V_{h-(t+1)}(B_h))$ for all $i \in \{1, 2, \ldots, 2^h-1\}$, $\text{Ind}_r(B_h) \setminus R(V_{h-(t+1)}(B_h)) \subseteq \Delta_{2^h-1}$. To show that $\Delta_{2^h-1} \subseteq \text{Ind}_r(B_h) \setminus R(V_{h-(t+1)}(B_h))$, it is enough to show that if $\sigma \in \text{Ind}_r(B_h)$ and $\sigma \cap V_{h-(t+1)}(B_h) \neq \emptyset$ then $\sigma \in N(a_{h,2i-1})$ for some $i \in \{1, 2, \ldots, 2^h-1\}$. Let $\sigma_1 \in \text{Ind}_r(B_h)$ such that $\sigma_1 \cap V_{h-(t+1)}(B_h) \neq \emptyset$. Without loss of generality, assume that $a_{h-(t+1),i}$ be the smallest vertex of $V_{h-(t+1)}(B_h)$ such that $a_{h-(t+1),i} \in \sigma_1$. Let $B(a_{h-(t+1),i},B_h)$ be the sub-tree of B_h rooted at $a_{h-(t+1),i}$. Let S denotes the set of all non-leaf vertices of $B(a_{h-(t+1),i},B_h)$, i.e., $S = \bigcup_{j=1}^{t+1} (V_{j} - B_h) \cap V(B(a_{h-(t+1),i},B_h))$. Clearly, $B(a_{h-(t+1),i},B_h)$ is a perfect binary tree of height $t+1$ and the cardinality of S is $2^{t+1} - 1$. Since $B_h[S]$ is a connected graph and $r < 2^{t+1} - 1$, $S \notin \sigma_1$. Let a_{i_1,j_1} be the smallest element of S such that $a_{i+1,j_1} \notin \sigma_1$. Since $a_{i_1,j_1} \in S$ and $a_{i_1+1,j_1} \in \sigma_1$, we get that $i_1 \in \{h-t, h-t+1, \ldots, h-1\}$. Let a_{i_1+1,j_2} be the left children of a_{i_1,j_1} and a_{h,i_1} be the left most leaf of perfect binary sub-tree rooted
at \(a_{i_1+1,j_2}\). Observe that the cardinality of the sub-tree rooted at \(a_{i_1+1,j_2}\) is at most \(2^t - 1\). Therefore, \(\sigma_1 \in N(a_{h,\ell_1})\) (here \(\ell_1\) is an odd number because it is the leftmost leaf of a perfect binary sub-tree of perfect binary tree). This completes the proof of Claim 7. \(\square\)

We prove Theorem 5.5 using induction on \(h\).

Step 1: In this step, we prove the result for \(h \in \{t+1, t+2, \ldots, (t+2) + t\}\).

From Claim 7 we see that \(\text{Ind}_r(B_h) \cong \text{Ind}_r(B_h - V_{h-(t+1)}(B_h))\). Observe that \(B_h - V_{h-(t+1)}(B_h)\) is disjoint union of \(2(2^{h-(t+1)})\) copies of perfect binary trees of height \(t\) and one perfect binary tree of height \(h - (t+2)\) (here, by \(B_{-1}\) we mean empty graph). Therefore, using Observation 3.4(iv) and Lemma 5.4, we get the following equivalence.

\[
\text{Ind}_r(B_h) \cong \text{Ind}_r(B_t \sqcup \cdots \sqcup B_t \sqcup B_{h-(t+2)}) \\
\cong \text{Ind}_r(B_t) \ast \cdots \ast \text{Ind}_r(B_t) \ast \text{Ind}_r(B_{h-(t+2)}) \\
\cong \begin{cases}
\text{Ind}_r(B_t) \ast \text{Ind}_r(B_t) \ast \text{Ind}_r(B_{-1}), & \text{if } h = t + 1, \\
\text{Ind}_r(B_t) \ast \cdots \ast \text{Ind}_r(B_t) \ast \text{Ind}_r(B_t), & \text{if } h = (t+2) + t, \\
\text{Ind}_r(B_t) \ast \cdots \ast \text{Ind}_r(B_t) \ast \{\text{point}\}, & \text{if } t + 1 < h < (t+2) + t.
\end{cases}
\]

(11)

Thus, Lemma 5.4 and Lemma 2.2 implies the result, i.e.,

\[
\text{Ind}_r(B_h) \cong \begin{cases}
\bigvee \limits_{(2^{t+1})} S^{2r(2^0) - 1}, & \text{if } h = t + 1, \\
\bigvee \limits_{(2^{t+2})} S^{r(2^0+2^{t+2}) - 1}, & \text{if } h = (t+2) + t, \\
\{\text{point}\}, & \text{if } t + 1 < h < (t+2) + t.
\end{cases}
\]

Step 2: In this step, we prove the result for \(h \in \{(t+2) + t + 1, \ldots, 2(t+2) + t\}\).

Following similar method as in step 1, we get the following equivalence,

\[
\text{Ind}_r(B_h) \cong \text{Ind}_r(B_t) \ast \cdots \ast \text{Ind}_r(B_t) \ast \text{Ind}_r(B_{h-(t+2)}) \\
\ast \text{Ind}_r(B_i \sqcup \cdots \sqcup B_i \sqcup B_{h-(t+2)}) \\
\cong \begin{cases}
\text{Ind}_r(B_t) \ast \cdots \ast \text{Ind}_r(B_t) \ast \text{Ind}_r(B_i \sqcup \cdots \sqcup B_i \sqcup B_{h-(t+2)}), & \text{if } h = (t+2) + t, \\
\{\text{point}\}, & \text{if } t + 1 < h < (t+2) + t.
\end{cases}
\]

Observe that \(h - (t+2)\) is in \(\{t+1, t+2, \ldots, (t+2) + t\}\). Thus, result of Step 1 implies the following.
In this step, we prove the result for B_i, i.e.,

$$h \simeq \begin{cases}
\text{ind}_r(B_i) \cdots \text{ind}_r(B_t) \text{ind}_r(B_{-1}), & \text{if } h = (t + 2) + t + 1, \\
\text{2(2}^t + 2^{i+2})\text{-copies}, & \\
\text{ind}_r(B_i) \cdots \text{ind}_r(B_t) \text{ind}_r(B_{-1}), & \text{if } h = 2(t + 2) + t, \\
\text{(2}^{t+2} + 2^{i(t+2)})\text{-copies}, & \\
\text{ind}_r(B_i) \cdots \text{ind}_r(B_{-1}) \{\text{point}\}, & \text{if } (t + 2) + t + 1 < h < 2(t + 2) + t.
\end{cases}$$

Using Lemma 5.4 and Lemma 2.2, we get the result, i.e.,

$$\text{ind}_r(B_h) \simeq \begin{cases}
\bigvee_{\binom{(2^t)}{2}^t} S^{2r((2^t) + 2^{i+2})}-1, & \text{if } h = (t + 2) + t + 1, \\
\bigvee_{\binom{(2^t)}{2}^t} S^{r((2^t) + 2^{i+2} + 2^t)}-1, & \text{if } h = 2(t + 2) + t, \\
\{\text{point}\}, & \text{if } (t + 2) + t + 1 < h < 2(t + 2) + t.
\end{cases}$$

Step k: In this step, we prove the result for $h \in \{(k - 1)(t + 2) + t + 1, \ldots, k(t + 2) + t\}$ where $k \geq 3$.

The proof here is exactly similar to that of Step 2. Therefore,

$$\text{ind}_r(B_h) \simeq \text{ind}_r(B_i) \cdots \text{ind}_r(B_t) \text{ind}_r(B_{-1} \cdots \text{ind}_r(B_{h-(t+2)})$$

Thus, result of Step $k - 1$ implies the following equivalence.

$$\text{ind}_r(B_h) \simeq \begin{cases}
\text{ind}_r(B_i) \cdots \text{ind}_r(B_{-1}), & \text{if } h = (k - 1)(t + 2) + t + 1, \\
\text{2(2}^{k+2} + \cdots + 2^{(k-1)(t+2)})\text{-copies}, & \\
\text{ind}_r(B_i) \cdots \text{ind}_r(B_{-1}) \text{ind}_r(B_{-1}), & \text{if } h = k(t + 2) + t, \\
\text{(2}^{k+2} + \cdots + 2^{k(t+2)})\text{-copies}, & \\
\text{ind}_r(B_i) \cdots \text{ind}_r(B_{-1}) \{\text{point}\}, & \text{if } (k - 1)(t + 2) + t + 1 < h < k(t + 2) + t.
\end{cases}$$

$$\simeq \begin{cases}
\text{ind}_r(B_i) \cdots \text{ind}_r(B_{-1}), & \text{if } h = (k - 1)(t + 2) + t + 1, \\
\text{2(2}^{k+2} + \cdots + 2^{(k-1)(t+2)})\text{-copies}, & \\
\text{ind}_r(B_i) \cdots \text{ind}_r(B_{-1}), & \text{if } h = k(t + 2) + t, \\
\text{(2}^{k+2} + \cdots + 2^{k(t+2)})\text{-copies}, & \\
\{\text{point}\}, & \text{if } (k - 1)(t + 2) + t + 1 < h < k(t + 2) + t.
\end{cases}$$
Hence, using Lemma 5.4 and Lemma 2.2, we get the result, i.e.,

\[S^{2r(2^0+2^1+2^2+\ldots+2^{k-1}(t+2))} \]

\[\text{Ind}_r(B_h) \simeq \begin{cases}
V \{ \sigma \} & \text{if } h = (k-1)(t+2) + t + 1, \\
S^{2r(2^0+2^1+2^2+\ldots+2^{k-1}(t+2))} \cup \{ \text{point} \} & \text{otherwise.}
\end{cases} \]

This completes the proof of Theorem 5.5.

We are now ready to generalize Lemma 5.4 and Theorem 5.5 for perfect \(m \)-ary trees. Henceforth, \(m \geq 3 \) will be a fixed integer.

Lemma 5.6. Let \(r \geq \frac{m^h-1}{m-1} \). Then the homotopy type of \(r \)-th independence complex of the graph \(B_h^m \) is given as follows,

\[\text{Ind}_r(B_h^m) \simeq \begin{cases}
V \{ \sigma \} & \text{if } r = \frac{m^h-1}{m-1} + s \text{ for some } s \in \{0,1,\ldots,m^h-1\}, \\
S^{2r-1} & \text{if } r = \frac{m^h-1}{m-1}, \\
\{ \text{point} \} & \text{if } r \geq \frac{m^{h+1}-1}{m-1}.
\end{cases} \]

Proof. The proof here is exactly similar to the proof of Lemma 5.4 but we explain some part here as well for completeness. If \(r \geq \frac{m^h-1}{m-1} \), then Observation 5.4(i) implies the result. Let \(r = \frac{m^h-1}{m-1} + s \) for some fixed \(s \in \{0,1,\ldots,m^h-1\} \) and \(\Delta_0 = \text{Ind}_r(B_h^m) \). Define a sequence of elementary matching using the following vertices of depth \(h \): \(a_{h,1}, a_{h,m+1}, \ldots, a_{h,m(m^h-1)+1} \).

For \(i \in \{1,2,\ldots,m^h-1\} \), define

\[(12) \]

\[M(a_{h,mi-(m-1)}) = \{ \sigma, \sigma \cup a_{h,mi-(m-1)} : a_{h,mi-(m-1)} \notin \sigma \text{ and } \sigma, \sigma \cup a_{h,mi-(m-1)} \in \Delta_i \}, \]

\[N(a_{h,mi-(m-1)}) = \{ \sigma \in \Delta_i-1 : \sigma \in \eta \text{ for some } \eta \in M(a_{h,mi-(m-1)}) \}, \] and

\[\Delta_i = \Delta_{i-1} \setminus N(a_{h,mi-(m-1)}) \].

We now show that the set of critical cells \(\Delta_{m^h-1} \), corresponding to the sequence of matching defined in Eq. (12) is a set of \(\binom{m^h-1}{s} \) cells of fixed dimension \(r-1 \).

Claim 8.

1. If \(\sigma \in \Delta_{m^h-1} \), then \(\bigcup_{j=0}^{h-1} V_j(B_h^m) \subseteq \sigma \).
2. If \(\sigma \in \Delta_{m^h-1} \), then \(\sigma \) is of cardinality \(r \).
3. Cardinality of the set of critical cells \(\Delta_{m^h-1} \) is \(\binom{m^h-1}{s} \).

Using exactly similar arguments as in the proof of Claim 5, we get the proof of Claim 8.

From Claim 8 we see that the matching on \(\text{Ind}_r(B_h^m) \) defined in Eq. (12) has \(\binom{m^h-1}{s} \) critical cells of fixed dimension \(r-1 \). Therefore, Lemma 5.6 follows from Corollary 2.4.

We are now ready to present the main result of this section.

Theorem 5.7. For a fixed \(t \geq 1 \), let \(r = \left(\sum_{i=0}^{t-1} m^i \right) + s = \frac{m^t-1}{m-1} + s \) for some \(s \in \{0,1,\ldots,m^t-1\} \).

Then the \(r \)-th independence complex of the graph \(B_h^m \) is given as follows,

\[\text{Ind}_r(B_h^m) \simeq \begin{cases}
V S^{p_1} & \text{if } h = (k-1)(t+2) + t + 1 \text{ for some } k \geq 1, \\
V S^{p_2} & \text{if } h = k(t+2) + t \text{ for some } k \geq 0, \\
\{ \text{point} \} & \text{otherwise,}
\end{cases} \]
where,

\[p_1 = \binom{m^t - 1}{s}^{m(m^0 + m^{t+2} + \cdots + m^{(k-1)(t+2)}) + 1} \]

\[q_1 = ms^0(m^0 + m^{t+2} + \cdots + m^{(k-1)(t+2)}) - 1, \]

\[p_2 = \binom{m^t - 1}{s}^{m^0 + m^{t+2} + \cdots + m^{k(t+2)}}, \]

\[q_2 = r(m^0 + m^{t+2} + \cdots + m^{k(t+2)}) - 1. \]

Proof. If \(h \leq t \), then the result follows from Lemma 5.1. Let \(h > t \). Here, we show that \(\text{Ind}_r(B^m_h) \simeq \text{Ind}_r(G) \), where \(G \) is disjoint union of perfect \(m \)-ary trees of height at most \(t \). Recall that \(\text{Ind}_r(G) \) denotes the set of vertices of \(B^m_h \) of depth \(j \).

Claim 9. \(\text{Ind}_r(B^m_h) \simeq \text{Ind}_r(B^m_h - V_{h-(t+1)}(B^m_h)) \).

Proof of Claim 9 Let \(R(V_{h-(t+1)}(B^m_h)) = \{ \sigma \in \text{Ind}_r(B^m_h) : \sigma \cap V_{h-(t+1)}(B^m_h) \neq \emptyset \} \). Clearly, \(\text{Ind}_r(B^m_h) \setminus R(V_{h-(t+1)}(B^m_h)) = \text{Ind}_r(B^m_h - V_{h-(t+1)}(B^m_h)) \). Thus, it is enough to define a perfect matching on \(R(V_{h-(t+1)}(B^m_h)) \). We do so by defining a sequence of elementary matching on \(\text{Ind}_r(B^m_h) \) using vertices \(a_{h,1}, a_{h,m+1}, \ldots, a_{h,m^h-(m-1)} \) as follows: Let \(\Delta_0 = \text{Ind}_r(B^m_h) \). For \(i \in \{1, 2, \ldots, m^h-1\} \), define

\[M(a_{h,mi-(m-1)}) = \{(\sigma, \sigma \cup a_{h,mi-(m-1)}) : \sigma \cap V_{h-(t+1)}(B^m_h) \neq \emptyset, a_{h,mi-(m-1)} \notin \sigma \text{ and } \sigma, \sigma \cup a_{h,mi-(m-1)} \in \Delta_{i-1}\}; \]

\[N(a_{h,mi-(m-1)}) = \{\sigma \in \Delta_{i-1} : \sigma \in \eta \text{ for some } \eta \in M(a_{h,mi-(m-1)})\}, \]

\[\Delta_i = \Delta_{i-1} \setminus N(a_{h,mi-(m-1)}). \]

Using similar arguments as in the proof of Claim 7, we get that \(\Delta_{m^h-1} = \text{Ind}_r(B^m_h) \setminus R(V_{h-(t+1)}(B^m_h)) \). This completes the proof of Claim 9. \(\square \)

We prove Theorem 5.7 using induction on \(h \).

Step 1: In this step, we prove the result for \(h \in \{t+1, t+2, \ldots, (t+2) + t\} \). From Claim 9, we see that \(\text{Ind}_r(B^m_h) \simeq \text{Ind}_r(B^m_h - V_{h-(t+1)}(B^m_h)) \). Observe that \(B^m_h - V_{h-(t+1)}(B^m_h) \) is disjoint union of \(m(m^h-(t+1)) \) copies of perfect \(m \)-ary trees of height \(t \) and one perfect \(m \)-ary tree of height \(h - (t+2) \) (here, by \(B^1_m \) we mean empty graph). Therefore, using Observation 5.3(iv) and Lemma 5.6 we get the following equivalence.

\[\text{Ind}_r(B^m_h) \simeq \text{Ind}_r(B^m_{t+1} \sqcup \cdots \sqcup B^m_t \sqcup B^m_{h-(t+2)}) \]

\[\simeq \text{Ind}_r(B^m_{t+1}) * \cdots * \text{Ind}_r(B^m_t) * \text{Ind}_r(B^m_{h-(t+2)}) \]

\[\simeq \begin{cases}
\text{Ind}_r(B^m_{t+1}) * \cdots * \text{Ind}_r(B^m_t) * \text{Ind}_r(B^m_{h-(t+2)}), & \text{if } h = t+1, \\
\text{Ind}_r(B^m_{t+2}) * \cdots * \text{Ind}_r(B^m_{t+1}) * \text{Ind}_r(B^m_{h-(t+2)}), & \text{if } h = (t+2) + t, \\
\text{Ind}_r(B^m_{t+2}) * \cdots * \text{Ind}_r(B^m_{t+1}) * \{\text{point}\}, & \text{if } t + 1 < h < (t+2) + t.
\end{cases} \]
Thus, Lemma 5.6 and Lemma 2.2 implies the result, i.e.,

\[
\text{Ind}_r(B^m_h) \simeq \begin{cases}
\bigvee_{(m^t-1)} S^{mr-1}, & \text{if } h = t + 1, \\
\bigvee_{(m^t-1)(m^0+m^t+2)} S^{r(m^0+m^t+2)-1}, & \text{if } h = (t + 2) + t, \\
\{\text{point}\}, & \text{if } t + 1 < h < (t + 2) + t.
\end{cases}
\]

Step 2: In this step, we prove the result for \(h \in \{(t + 2) + t + 1, \ldots, 2(t + 2) + t\} \).

Following similar method as in step 1, we get the following equivalence,

\[
\text{Ind}_r(B^m_h) \simeq \frac{\text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \text{Ind}_r(B^m_{h-(t+2)})}{m(m^h-(t+1))-\text{copies}}
\]

Observe that \(h - (t + 2) \) is in \(\{t + 1, t + 2, \ldots, (t + 2) + t\} \). Thus, result of Step 1 implies the following.

\[
\begin{align*}
\text{Ind}_r(B^m_h) & \simeq \begin{cases}
\text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \text{Ind}_r(B^m_{h-(t+2)}), & \text{if } h = (t + 2) + t + 1, \\
\text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \text{Ind}_r(B^m_h), & \text{if } h = 2(t + 2) + t, \\
\text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \{\text{point}\}, & \text{if } (t + 2) + t + 1 < h < (t + 2) + t.
\end{cases}
\end{align*}
\]

Using Lemma 5.6 and Lemma 2.2, we get the result, i.e.,

\[
\text{Ind}_r(B^m_h) \simeq \begin{cases}
\bigvee_{(m^t-1)} S^{mr(m^0+m^t+2)-1}, & \text{if } h = (t + 2) + t + 1, \\
\bigvee_{(m^t-1)(m^0+m^t+2+m^2(t+2))} S^{r(m^0+m^t+2+m^2(t+2))-1}, & \text{if } h = 2(t + 2) + t, \\
\{\text{point}\}, & \text{if } (t + 2) + t + 1 < h < 2(t + 2) + t.
\end{cases}
\]

Step k: In this step, we prove the result for \(h \in \{(k - 1)(t + 2) + t + 1, \ldots, k(t + 2) + t\} \) where \(k \geq 3 \).

The proof here is exactly similar to that of Step 2. Therefore,

\[
\text{Ind}_r(B^m_h) \simeq \frac{\text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \text{Ind}_r(B^m_{h-(t+2)})}{m(m^h-(t+1))-\text{copies}}
\]
Thus, result of Step $k - 1$ implies the following equivalence.

$$\text{Ind}_r(B^m_h) \simeq \begin{cases} \text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \text{Ind}_r(B^m_{m-1}), & \text{if } h = (k-1)(t+2) + t + 1, \\ m(m^0 + m^1 + \cdots + m^{k-1})-\text{copies} & \\ \text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \text{Ind}_r(B^m_{m-1}), & \text{if } h = k(t+2) + t, \\ m(m^i + \cdots + m^{k-1})-\text{copies} & \\ \text{Ind}_r(B^m_1) \ast \cdots \ast \text{Ind}_r(B^m_t) \ast \{\text{point}\}, & \text{if } (k-1)(t+2) + t + 1 < h < k(t+2) + t. \\ m(m^i + \cdots + m^{k-1})-\text{copies} & \\ \{\text{point}\}, & \text{if } (k-1)(t+2) + t + 1 < h < k(t+2) + t. \\ \end{cases}$$

Hence, using Lemma 5.6 and Lemma 2.2, we get the result (recall that t is fixed), i.e.,

$$\text{Ind}_r(B^m_h) \simeq \begin{cases} \bigvee_{(m-1)}^{m^0 + m^1 + \cdots + m^{k-1}} S^{\text{mr}(m^0 + m^1 + \cdots + m^{k-1})-1}, & \text{if } h = (k-1)(t+2) + t + 1, \\ m(m^i + \cdots + m^{k-1})-\text{copies} & \\ \bigvee_{(m-1)}^{m^i + \cdots + m^{k-1}} S^{\text{mr}(m^0 + m^1 + \cdots + m^{k})-1}, & \text{if } h = k(t+2) + t, \\ \{\text{point}\}, & \text{otherwise.} \\ \end{cases}$$

This completes the proof of Theorem 5.7.

\section*{6. Concluding Remarks}

In this section, we list a few interesting questions and conjectures.

\subsection*{6.1. Universality of higher independence complexes.} It was shown in [8] that every simplicial complex arising as the barycentric subdivision of a CW complex may be represented as the 1-independence complex of a graph. One can investigate whether a similar statement holds for all r-independence complexes. From the definition it is clear that $\text{Ind}_r(G)$ contains all subsets of $V(G)$ of cardinality at most $r+1$ implying that $\text{Ind}_r(G)$ is always $(r-2)$-connected. Moreover, the following example (which was done using SAGE) tells us that the homology groups of r-independence complexes of graphs may have torsion. Let $M_s(G)$ denotes the s^{th} generalised mycielskian of a graph G. Then,

$$\tilde{H}_i(\text{Ind}_2(M_4(C_4))) = \begin{cases} \mathbb{Z}_2 & \text{if } i = 3, \\ \mathbb{Z}^{45} & \text{if } i = 5, \\ 0 & \text{otherwise.} \end{cases}$$

One can now ask the following question.

\textbf{Question 1.} \emph{Given $r \geq 2$ and an $(r-2)$-connected simplicial complex X, does there exists a graph G such that $\text{Ind}_r(G)$ is homeomorphic to X?}

\subsection*{6.2. Trees.} Kawamura [13] computed the exact homotopy of 1-independence complexes of trees and showed that they are either contractible or homotopy equivalent to a sphere. In Section 5, it was shown that the homotopy type of higher independence complexes of m-ary trees is also that wedge of spheres. So, one might hope for a similar result for the class of all trees as well.

In another project [7] with Samir Shukla, authors have determined the homotopy type of $\text{Ind}_r(G)$ for chordal graphs G (note that class of tress is a subclass of chordal graphs). A \textit{chordal graph} is a graph in which every cycle on more than 3 vertices has a chord. Homotopy
type of 1-independence complexes of chordal graphs was studied by Kawamura in [14]. Here, we only announce our result, without proving it.

Theorem 6.1 (7). The higher independence complexes of chordal graphs are either contractible or homotopy equivalent to a wedge of spheres.

However, the following question is still unanswered.

Question 2. Given \(r \geq 2 \) and a trees \(T \), find a formula for the number of spheres in the homotopy decomposition of \(\text{Ind}_r(T) \)?

6.3. Shellable higher independence complexes. In [22], Woodroofe showed that 1-independence complexes of chordal graphs are vertex-decomposable (hence shellable [21, Theorem 1.2]). In a joint work [6] with Manikandan, we have indentified a few classes of graphs whose complexes of chordal graphs are vertex-decomposable (hence shellable [21, Theorem 1.2]).

Question 3. For which classes of graphs, the higher independence complexes are shellable?

One might expect a positive answer to the following question.

Question 4. Whether \(\text{Ind}_r(G) \) is vertex-decomposable for each \(r \geq 2 \) and chordal graph \(G \)?

There is also the case of chordal graphs.

Conjecture 6.2. If \(G \) is a chordal graph then \(\text{Ind}_r(G) \) is shellable for all \(r \).

6.4. Grid graphs. For \(m, n \geq 2 \), a rectangular grid graph, denoted \(G_{m,n} \) is a graph with \(V(G_{m,n}) = \{ (i,j) : i \in \{ m \}, j \in \{ n \} \} \) as its vertex set and \((i,j) \) is adjacent to \((i_1,j_1) \) in \(G_{m,n} \) if and only if either \('i_1 = i \) and \(j_1 = j + 1 \) or \('j_1 = j \) and \(i_1 = i + 1 \). In the last decade, 1-independence complexes of grid graphs have studied in details (see [4, 5, 12] for more details). We have analysed the complex \(\text{Ind}_r(G_{2,n}) \) (for small values of \(n \)) and also computed homology their of using SageMATH [20] (see Table 1 below). Based on our calculations, we make the following conjecture.

Conjecture 6.3. For all \(r \geq n \), \(\text{Ind}_r(G_{2,n}) \) is either contractible or homotopy equivalent to a wedge of spheres of dimension \(r - 1 \).

From Table 1, we also see that \(\tilde{H}_i(G_{2,9}) \) is non-trivial in two different dimensions (the notation \(i : \mathbb{Z}^p \) means \(\tilde{H}_i(\text{Ind}_r(G_{2,n}))) = \mathbb{Z}^p \)). This raises the following question.

Question 5. What is the homotopy type of higher independence complexes of grid graphs \(G_{m,n} \)?

\(r \)	1	2	3	4	5	6	7	8	9	
1	0 : \mathbb{Z}^1	0	0	0	0	0	0	0		
2	0 : \mathbb{Z}^1	1 : \mathbb{Z}^4	2 : \mathbb{Z}^3	3 : \mathbb{Z}^5	4 : \mathbb{Z}^1	5 : \mathbb{Z}^7	6 : \mathbb{Z}^1	0	0	
3	1 : \mathbb{Z}^1	1 : \mathbb{Z}^2	2 : \mathbb{Z}^5	3 : \mathbb{Z}^5	4 : \mathbb{Z}^1	0	0	0	0	
4	1 : \mathbb{Z}^1	3 : \mathbb{Z}^2	0	3 : \mathbb{Z}^7	4 : \mathbb{Z}^{13}	5 : \mathbb{Z}^7	6 : \mathbb{Z}^1	0	0	
5	2 : \mathbb{Z}^1	3 : \mathbb{Z}^2	5 : \mathbb{Z}^1	4 : \mathbb{Z}^5	5 : \mathbb{Z}^{25}	6 : \mathbb{Z}^{25}	7 : \mathbb{Z}^9	8 : \mathbb{Z}^8		
6	2 : \mathbb{Z}^1	3 : \mathbb{Z}^2	5 : \mathbb{Z}^{12}	7 : \mathbb{Z}^2	0	5 : \mathbb{Z}^2	6 : \mathbb{Z}^{40}	7 : \mathbb{Z}^{12}	8 : \mathbb{Z}^{14}	
7	3 : \mathbb{Z}^1	5 : \mathbb{Z}^{10}	5 : \mathbb{Z}^8	7 : \mathbb{Z}^{11}	9 : \mathbb{Z}^1	0	6 : \mathbb{Z}^8	7 : \mathbb{Z}^{56}	8 : \mathbb{Z}^{128}	
8	3 : \mathbb{Z}^1	5 : \mathbb{Z}^{13}	8 : \mathbb{Z}^7	7 : \mathbb{Z}^{19}	9 : \mathbb{Z}^{57}	11 : \mathbb{Z}^2	0	7 : \mathbb{Z}^8	8 : \mathbb{Z}^{12}	
9	4 : \mathbb{Z}^1	5 : \mathbb{Z}^7	7 : \mathbb{Z}^4	8 : \mathbb{Z}^{45}	7 : \mathbb{Z}^9	9 : \mathbb{Z}^{160}	11 : \mathbb{Z}^{79}	13 : \mathbb{Z}	0	8 : \mathbb{Z}^8

Table 1. Reduced homology groups of \(r \)-independence complexes of grid graphs \(G_{2,n} \). For all \(n \leq 9 \) and \(r \leq 9 \), \(i : 0 \) (i.e. \(\tilde{H}_i(\text{Ind}_r(G_{2,n}))) = 0 \) for all \(i \) not mentioned in the table.
References

[1] E. Babson and D. N. Kozlov. Proof of the Lovász conjecture. *Annals of Mathematics*, 165(3):965–1007, 2007.
[2] J. A. Barmak. Star clusters in independence complexes of graphs. *Advances in Mathematics*, 241:33–57, 2013.
[3] A. Björner and V. Welker. The homology of "k-equal" manifolds and related partition lattices. *Advances in mathematics*, 110(2):277–313, 1995.
[4] M. Bousquet-Mélou, S. Linusson, and E. Nevo. On the independence complex of square grids. *Journal of Algebraic combinatorics*, 27(4):423–450, 2008.
[5] B. Braun and W. K. Hough. Matching and independence complexes related to small grids. *The Electronic Journal of Combinatorics*, 24(4), 2017.
[6] P. Deshpande, N. Manikandan, and A. Singh. Shelling in higher independence complexes. *in preparation*, 2019.
[7] P. Deshpande, S. Shukla, and A. Singh. Distance r-domination number and r-independence complexes of graphs. *in preparation*, 2019.
[8] R. Ehrenborg and G. Hetyei. The topology of the independence complex. *European Journal of Combinatorics*, 110(2):277–313, 1995.
[9] R. Forman. Morse theory for cell complexes. *Adv. Math.*, 134(1):90–145, 1998.
[10] S. Goyal, S. Shukla, and A. Singh. Homotopy type of independence complexes of certain families of graphs. *arXiv preprint arXiv:1905.06926*, 2019.
[11] J. Jonsson. *Simplicial complexes of graphs*, volume 3. Springer, 2008.
[12] J. Jonsson. Certain homology cycles of the independence complex of grids. *Discrete & Computational Geometry*, 43(4):927–950, 2010.
[13] K. Kawamura. Homotopy types of independence complexes of forests. *Contributions to Discrete Mathematics*, 5(2), 2010.
[14] K. Kawamura. Independence complexes of chordal graphs. *Discrete Mathematics*, 310(15-16):2204–2211, 2010.
[15] D. Kozlov. *Combinatorial algebraic topology*, volume 21. Springer Science & Business Media, 2007.
[16] D. N. Kozlov. Complexes of directed trees. *Journal of Combinatorial Theory, Series A*, 88(1):112–122, 1999.
[17] R. Meshulam. Domination numbers and homology. *Journal of Combinatorial Theory, Series A*, 102(2):321–330, 2003.
[18] N. Nilakantan and A. Singh. Homotopy type of neighborhood complexes of kneser graphs, $kg_{2,k}$. *Proceedings Mathematical Sciences*, 128(5):53, 2018.
[19] G. Paolini and M. Salvetti. Weighted sheaves and homology of artin groups. *Algebraic & Geometric Topology*, 18(7):3943–4000, 2018.
[20] Sage developers. Sagemath, 2016.
[21] A. Van Tuyl and R. H. Villarreal. Shellable graphs and sequentially cohen–macaulay bipartite graphs. *Journal of Combinatorial Theory, Series A*, 115(5):799–814, 2008.
[22] R. Woodroofe. Vertex decomposable graphs and obstructions to shellability. *Proceedings of the American Mathematical Society*, 137(10):3235–3246, 2009.

Chennai Mathematical Institute, India
E-mail address: pdeshpande@cmi.ac.in

Chennai Mathematical Institute, India
E-mail address: anuragsingh@cmi.ac.in