First record of the *Ligia baudiniana* species complex in the American Gulf of Mexico Coastline, as confirmed by morphological and molecular approaches [version 1; referees: 2 approved]

Carlos A. Santamaria, Edgar T. Bischoff III, Moe Aye, Keith W. Phillips, Victoria Overmeyer

Biology Program, College of Science and Mathematics, University of South Florida Sarasota-Manatee, Sarasota, FL, 34243, USA

Abstract

Ligia isopods exhibit a constrained morphology that makes identification difficult. In the Greater Caribbean, a convoluted taxonomic history has left the distributional limits of *Ligia baudiniana* unclear. To date, no confirmed records of this species exist from the American Gulf of Mexico. Herein, we report the presence of *L. baudiniana* in Sarasota-Manatee Florida, as confirmed by morphological and molecular approaches. This is the first record of this species in the region and a ~300Km extension of its range. Specimens were collected in mangroves, underscoring the importance of protecting these habitats.

Corresponding author: Carlos A. Santamaria (santamaria.carlos.a@gmail.com)

Author roles: Santamaria CA: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Bischoff III ET: Conceptualization, Investigation, Methodology, Writing – Review & Editing; Aye M: Conceptualization, Investigation, Methodology, Writing – Review & Editing; Phillips KW: Conceptualization, Investigation, Methodology, Writing – Review & Editing; Overmeyer V: Conceptualization, Investigation, Methodology, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Santamaria CA, Bischoff III ET, Aye M et al. First record of the *Ligia baudiniana* species complex in the American Gulf of Mexico Coastline, as confirmed by morphological and molecular approaches [version 1; referees: 2 approved] *F1000Research* 2017, 6:1602 (doi: 10.12688/f1000research.12459.1)

Copyright: © 2017 Santamaria CA et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: The author(s) declared that no grants were involved in supporting this work.

First published: 30 Aug 2017, 6:1602 (doi: 10.12688/f1000research.12459.1)
Introduction

The isopod genus *Ligia* includes ~40 nominal species, most of which inhabit a narrow range in the upper rocky intertidal habitats. In the Greater Caribbean Region (i.e. the Caribbean and adjacent regions), a single endemic species is currently considered valid: *Ligia baudiniana*. The species has been reported from Brazil, the Caribbean islands, the Pacific coastlines of Central and South America, Bermuda, Bahamas, and in southern Florida, and the Everglades; however, doubt over historical records have left the distributional limits of *L. baudiniana* unclear.

L. baudiniana was described from specimens collected in the San Juan de Ulúa Fort in Veracruz, Mexico. Milne-Edwards’ original species description focuses on characters that are of limited taxonomic importance, lacks illustrations, and does not provide an account of male reproductive structures now known to be useful in *Ligia* taxonomy. Indeed, the terse description and source origin of the type material (i.e., artificial substrate) have led to confusion on whether *L. baudiniana* is a synonym of *L. exotica* or a valid species, and to records and specimens identified as *L. baudiniana* to be re-classified as *L. exotica*. This is particularly true for specimens from the American Gulf of Mexico coastlines, as most records appear to have been reclassified as *L. exotica*. Furthermore, a wide-ranging survey of *Ligia* in the Gulf of Mexico from Texas to Florida has shown artificial habitats in the region to harbor only *L. exotica* (unpublished study; Hurtado LA, Mateos M, Wang C, Santamaria CA, Jung J, Khalaji-Pirbalouty V, and Kim W).

The taxonomic confusion between *L. baudiniana* and *L. exotica* is complicated by the presence of a *Ligia* species endemic to habitats throughout the Greater Caribbean, Gulf of Mexico excluded, that is easily recognized by a unique male gonopod morphology that is readily distinguishable from *L. exotica* (Figure 1), and that has been attributed to *L. baudiniana* by Andersson, Rouse, Schultz, and Schultz and Johnson. A recent molecular study demonstrated that *Ligia* exhibiting this trait form a well-supported monophyletic clade composed of several cryptic and highly divergent lineages endemic to the region. The combination of these studies suggests that *L. baudiniana* as currently recognized: (a) is an endemic species to the Greater Caribbean Region; (b) can be identified using both molecular and morphological tools; and (c) appears to have a broad geographic range that includes the Caribbean islands, the Pacific coastlines of Central America to Ecuador, Bermuda, Bahamas, and southern Florida.

In southern Florida, *L. baudiniana* is reported from the Florida Keys and the Everglades, while no confirmed records from the American Gulf of Mexico exist to date. In this study, we use molecular and morphological approaches to identify specimens collected from Sarasota and Manatee counties in Florida as *L. baudiniana*. Our findings extend the confirmed range of this species ~300-km into the Gulf of Mexico coastline of Florida and represent the first confirmed record of *L. baudiniana* in the American Gulf of Mexico coastline.

Methods

Ligia specimens were collected by hand across the Sarasota-Manatee counties in Florida (Table 1, Figure 2) and field preserved in 70% EtOH. No permits were necessary for collections. Specimens were identified to species by inspecting the morphology of the apex of the endopod of the second pleopod of 15–25 male *Ligia* specimens per site, with individuals putatively identified as *L. baudiniana* if they exhibited a large process bifurcating close to the apex of the appendix masculina (Figure 1A), as proposed by Schultz and confirmed by Santamaria et al.

A subset of specimens was deposited in the Invertebrate Collections of the Biodiversity Research and Teaching Collections (BRTC) at Texas A&M University (http://brtc.tamu.edu/).

Morphological identifications were corroborated using a mitochondrial barcoding approach. We extracted total genomic DNA from pleopods/pereopods for a subset of individuals putatively identified as *L. baudiniana* using the ZR Quick-gDNA Miniprep Kit. Previously described primers and conditions were used to PCR-amplify and sequence a 658-bp fragment of the Cytochrome Oxidase I gene (COI, primers LCO1490/HCO2198). Positive amplicons were cleaned and sequenced at the University of Arizona Genetics Core (UAGC). Sequences were assembled in Geneious R v8.1.7.

We combined nucleotide sequences produced in this study with publicly available ones for *L. baudiniana* and *L. exotica* (Table 1). We used default settings to align the resulting dataset using the MUSCLE Alignment tool in Geneious R v8.1.7. No signs of misaligned regions or pseudo-genes were observed in the resulting alignment. The final alignment was imported into MEGA v7.0.18, where we estimated a neighbor-joining tree under...
Table 1. Localities included in analyses and corresponding species ID, geographic information, GenBank accession numbers, and BRTC voucher numbers when applicable. New records are in bold.

Species	Locality	Label or haplotype name	Latitude	Longitude	GenBank Accession No.	Museum Voucher
L. baudiniana	End of Tiara Drive, Bradenton, FL, U.S.A.	SRQ1	27°24’45.48"N	82°34’56.60"W	MF668214 MF668218	TCWC 2-4741
					MF668219 MF668220	
					MF668223	
L. baudiniana	Quick Point, Longboat Key, FL, U.S.A.	SRQ2	27°20’19.10"N	82°34’56.49"W	MF668216 MF668219	TCWC 2-4737
					MF668220 MF668223	
					MF668225	
L. baudiniana	Joan M Durante Community Park, Longboat Key, FL, U.S.A.	SRQ3	27°24’56.40"N	82°39’19.65"W	MF668217 MF668222	TCWC 2-4740
					MF668223	
L. baudiniana	Leffis Key, Bradenton Beach, FL, U.S.A.	SRQ4	27°27’08.64"N	82°41’17.25"W	MF668224	TCWC 2-4739
L. baudiniana	Gulf Drive South, Bradenton Beach, FL, U.S.A.	SRQ5	27°27’21.07"N	82°41’36.37"W	MF668215 MF668221	TCWC 2-4738
					MF668222 MF668224	
					MF668226	
L. baudiniana	Cozumel, Mexico	C1_2	20°25’13.64"N	86°50’42.26"W	KF555855	N/A
L. baudiniana	Indian Key, FL, U.S.A.	C3_2	24°53’23.70"N	80°40’31.38"W	KF555859	N/A
L. baudiniana	Summerland Key, FL, U.S.A.	C4_1	24°39’07.62"N	81°26’09.48"W	KF555860	N/A
L. baudiniana	Nassau, The Bahamas	C5_1	25°04’47.22"N	77°22’11.52"W	KF555858	N/A
L. baudiniana	Jaws Beach, The Bahamas	C6_1	25°01’05.05"N	77°32’49.00"W	KF555862	N/A
L. baudiniana	Habana, Cuba	C7_2	N/A	N/A	KF555861	N/A
L. baudiniana	Long Bird Bridge, Bermuda	C10_4	32°21’05.34"N	64°42’35.16"W	KF555856	N/A
L. baudiniana	Stonehole Bay, Bermuda	C12_1	32°15’19.62"N	64°48’49.68"W	KF555857	N/A
L. baudiniana	Fort Sherman, Panama	A1_1	09°21’51.36"N	79°56’55.56"W	KF555844	N/A
L. baudiniana	Portobelo (B), Panama	A2_1	09°32’14.72"N	79°40’26.30"W	KF555843	N/A
L. baudiniana	Portobelo (C), Panama	A3_1	09°32’54.24"N	79°40’14.10"W	KF555846	N/A
L. baudiniana	Portobelo (A), Panama	A4_1	09°33’11.70"N	79°39’35.58"W	KF555845	N/A
L. baudiniana	Yaguabo, Cuba	A7_2	N/A	N/A	KF555849	N/A
L. baudiniana	Playa Ancon, Cuba	A8_1	N/A	N/A	KF555848	N/A
L. baudiniana	Boca Chica, Dominican Republic	A9_1	18°26’37.02"N	69°36’37.98"W	KF555847	N/A
L. baudiniana	Playa Bonita, Costa Rica	B1_1	10°00’39.59"N	83°03’46.87"W	KF555850	N/A
L. baudiniana	Piuta, Costa Rica	B2_1	10°00’20.70"N	83°02’06.92"W	KF555851	N/A
Species	Locality	Label or haplotype name	Latitude	Longitude	GenBank Accession No.	Museum Voucher
------------	---------------------------------	-------------------------	-------------------	--------------------	-----------------------	---------------
L. baudiniana	Santa Marta, Colombia	B4_2	11°20'07.74"N	73°58'31.26"W	KF555852	N/A
L. baudiniana	Piscaderabaai, Curacao	D1_1	12°07'25.38"N	68°58'09.30"W	KF555866	N/A
L. baudiniana	Spaans Lagoen, Aruba	D2_1	12°27'45.18"N	69°58'00.42"W	KF555865	N/A
L. baudiniana	Donkey Beach, Bonaire	D3_1	12°07'50.10"N	68°17'04.44"W	KF555867	N/A
L. baudiniana	East Coast, Aruba	D4_1	12°32'44.58"N	69°57'46.68"W	KF555868	N/A
L. baudiniana	Fajardo, Puerto Rico	D5_1	18°21'38.84"N	65°37'28.51"W	KF555869	N/A
L. baudiniana	Veracruz, Panama	E1_1	08°53'28.30"N	79°35'35.19"W	KF555863	N/A
L. baudiniana	Caldera, Costa Rica	E2_1	09°56'26.96"N	84°44'02.93"W	KF555864	N/A
L. baudiniana	Buenaventura, I. Palma, Colombia	G1_1	N/A	N/A	KF555871	N/A
L. baudiniana	Maguipi, Colombia	G1_2	N/A	N/A	KF555870	N/A
L. baudiniana	Buenaventura, I. Palma, Colombia	G2_1	N/A	N/A	KF555872	N/A
L. exotica	Multiple localities in China	CH12	N/A	N/A	JX414150	N/A
L. exotica	Multiple localities in China	CH13	N/A	N/A	JX414151	N/A
L. exotica	Multiple localities in China	CH14	N/A	N/A	JX414152	N/A
L. exotica	Multiple localities in China	CH15	N/A	N/A	JX414153	N/A
L. exotica	Multiple localities in China	CH16	N/A	N/A	JX414154	N/A
L. exotica	Multiple localities in China	CH17	N/A	N/A	JX414155	N/A
L. exotica	Multiple localities in China	CH18	N/A	N/A	JX414156	N/A
L. exotica	Multiple localities in China	CH19	N/A	N/A	JX414157	N/A
L. exotica	Multiple localities in China	CH20	N/A	N/A	JX414158	N/A
L. exotica	Multiple localities in China	CH21	N/A	N/A	JX414159	N/A
L. exotica	Multiple localities in China	CH22	N/A	N/A	JX414160	N/A
L. exotica	Fort Johnson, Charleston, South Carolina, USA	Out_CAR30_1	19°11'40.19"N	96°07'24.41"W	KF546664	N/A
L. exotica	Indian Fields Creek, Virginia, USA	SERCINVERT0370	37°16'04.80"N	76°33'21.69"W	KU906047	N/A
Figure 2. Locations sampled in Sarasota and Manatee counties, Florida. Locations are: (SRQ1) End of Tiara Drive; (SRQ2) Quick Point; (SRQ3) Joan M. Durante Community Park; (SRQ4) Leffis Key; (SRQ5) Near Coquina Beach. Detailed locality information can be found in Table 1. The smaller panel presents the distribution of *L. baudiniana* lineages reported to date throughout the Caribbean and its adjacent region.

Kimura’s 2-parameter model (hereafter K2P; 20) and uniform rates. Support for the relationships within the tree were estimated by conducting 1,000 bootstrap replicates. Lastly, we calculated K2P genetic distances between haplotypes produced by this study, *L. exotica*, and previously reported *L. baudiniana* clades14.

Results

Molecular identifications produced results congruent with morphological identifications. We obtained 12 unique COI haplotypes from a total of 25 individuals putatively identified as *L. baudiniana*. Haplotypes produced in this study were highly similar to each other (COI K2P 0.00–2.81%, Table 2) and to those reported from localities in the Florida Keys, The Bahamas, northern Cuba, Cozumel, and Bermuda (COI K2P 0.50–6.08%, Table 2). Haplotypes were moderately to highly divergent from *L. baudiniana* from other localities in the Caribbean (COI K2P 14.44–24.90%, Table 2), and highly divergent from *L. exotica* (COI K2P 20.32–25.18%). The neighbor-joining analysis produced similar results (Figure 3).
nesting all haplotypes produced in this study in a well-supported clade (Bootstrap Support = 100) with the Clade C reported by Santamaria et al.14. All unique haplotypes have been deposited in GenBank (Table 1).

Discussion
Morphological and molecular evidence confirm that our sampled individuals represent L. baudiniana. These new records represent the first confirmed presence of this species in the Gulf of Mexico coastlines of the USA and extend the recognized range of the species ~300 km northward from a previous confirmed record from Florida Bay. Positive identifications in this study were made using both morphological and molecular characters. These findings are important as Florida’s rich coastal biodiversity faces serious threats such as sea-level rise, introduction of alien species, urbanization, habitat loss, and species displacements21.

All L. baudiniana specimens collected in our surveys were found in coastal mangrove forests with no specimens found in >10 surveyed artificial habitats. This suggests that coastal development in the American Gulf of Mexico may have led to the replacement of a native species with an introduced one via the removal of mangrove habitats for the establishment of artificial substrates. Additional work is needed to establish whether L. baudiniana is present in other mangrove habitats along the Gulf of Mexico, thus clarifying the northern limits of this species’ range.

Table 2: Divergence estimates between and within Ligia baudiniana lineages as estimated by K2P distances.
The top diagonals show minimum and maximum divergences between lineages, with lower diagonals presenting average genetic distances between clades. Within-group divergences are shown in the middle diagonal (in bold) in the order: minimum, maximum, and average divergence.

	Sarasota-Manatee (SRQ)	North Caribbean (C)	Central American + Antillean (A)	South American (B)	Leeward Antilles (D)	Central American Pacific (E)	Eastern Pacific (G)	L. exotica
Sarasota-Manatee (SRQ)	0.00-2.80	0.50-18.0	14.4-18.9	15.4-19.0	21.3-24.9	17.5-19.3	21.1-23.6	20.3-25.2
North Caribbean (G)	5.50	0.30-19.1	13.6-18.9	13.8-19.3	18.7-25.6	17.2-21.7	20.7-23.5	20.7-27.0
Central American + Antillean (A)	16.2	16.0	0.30-7.80	13.8-16.2	20.0-23.7	20.0-23.7	17.8-21.6	23.5-27.1
South American (B)	17.4	17.2	15.0	0.30-5.20	20.2-25.2	19.6-22.8	22.2-23.9	23.7-30.0
Leeward Antilles (D)	23.1	22.6	21.4	21.7	0.80-17.0	12.8	19.1-23.6	21.0-23.9
Central American Pacific (E)	18.5	18.9	21.7	21.2	21.0	N/A-N/A	21.1-23.2	21.8-27.9
Eastern Pacific (G)	22.3	22.2	19.7	22.8	22.7	22.3	0.30-1.00	22.5-24.1
L. exotica	23.4	23.7	25.2	25.0	25.2	25.5	23.2	0.00-14.9

5.10
Figure 3. Neighbor-Joining phylogram of COI haplotypes for *Ligia baudiniana* and *L. exotica*. Molecular identifications of putative *L. baudiniana* samples from Sarasota were made using K2P distances. All haplotypes for *Ligia* from Sarasota-Manatee counties (denoted by an *) are placed with previously reported haplotypes from the North Caribbean Clade reported by Santamaria et al. in a well-supported clade (values near nodes represent bootstrap support values). Branches are drawn to scale, with colors and labels corresponding with those used by Santamaria et al. The COI haplotype obtained from topotypes of *L. baudiniana* by Santamaria et al. is denoted by a †.

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting this work.

Acknowledgements
We would like to acknowledge Taylor Greenan, Kathleen Newell, and Sharla C. Rafferty for their help in the field and the laboratory. We would also like to thank the University of South Florida Sarasota-Manatee for funding and access to shared facilities.

Supplementary material
Supplementary File 1: Alignment of COI gene sequences for all sequenced individuals and *L. baudiniana* and *L. exotica* sequences from GenBank.

Click here to access the data.
References

1. Leistikow A, Wägele JW: Checklist of the terrestrial isopods of the new world (Crustacea, Isopoda, Oniscidea). Rev Bras Zool. 1999; 16(1): 1–72. Publisher Full Text
2. Schmalfuss H: World catalog of terrestrial isopods (Isopoda: Oniscidea). Serie A Nr, Stuttgart Beiträge zur Naturkunde Series A. 2003; 654: 1–341. Reference Source
3. Van Name WG: The American land and fresh-water isopod Crustacea. Bulletin of the American Museum of Natural History. 1936; 71: 1–535. Reference Source
4. Schultz GA: Terrestrial isopod crustaceans mainly from the West Indies and adjacent regions, 1. Tylos. and Ligia. Stud Fauna Curacao Caribb Isl. 1974; 45(77): 162–73. Reference Source
5. Andersson A: South American terrestrial isopods in the collection of the Swedish State Museum of Natural History. Arkiv för zoologi new series. 1960; 12: 537–70. Reference Source
6. Espinosa-Perez MD, Hendrickx ME: A comparative analysis of biodiversity and distribution of shallow-water marine isopods (Crustacea: Isopoda) from polar and temperate waters in the East Pacific. Belg J Zool. 2006; 136(2): 219–47. Reference Source
7. Leistikow A: Terrestrial isopods from Costa Rica and a redescription of Ischioscia variegata (Dollfus, 1893) (Crustacea: Isopoda: Oniscidea). Can J Zool. 1997; 75(9): 1415–64. Publisher Full Text
8. Schultz GA: Ecology and systematics of terrestrial isopod crustaceans from Bermuda (Oniscoidea). Crustacea Supplement. 1972; (3): 79–89. Reference Source
9. Rouse WL: Littoral crustaceans from southwest Florida. Quarterly Journal of the Florida Academy of Science. 1969; 32: 127–52. Reference Source
10. Schultz GA, Johnson C: Terrestrial isopod crustaceans from Florida (Oniscoidea), Tyllidae, Ligiidae, Halophilosciidae, Philosciidae, and Rhyscioidae. J Crustacean Biol. 1984; 4(1): 154–71. Publisher Full Text
11. Mîline-Edwards H: Histoire naturelle des Crustacés, comprenant l’anatomie, la physiologie et la classification de ces animaux. Paris: Librairie Encyclopédique de Roret; 1840. Publisher Full Text
12. Jackson HG: A revision of the isopod genus Ligia (Fabricius), J Zool. 1922; 92(3): 683–703. Publisher Full Text
13. Khalaji-Pirbalouty V, Wägele JW: Two new species of Ligia Fabricius, 1798 (Crustacea: Isopoda: Ligiidae) from coasts of the Persian and Aden gulfs. Organisms Diversity & Evolution. 2010; 10(2): 135–45. Publisher Full Text
14. Santamaria CA, Mateos M, Hurtado LA: Diversification at the narrow sea-land interface in the Caribbean: phylogeography of endemic supralittoral Ligia isopods. Front Ecol Evol. 2014; 2: 42. Publisher Full Text
15. Budde-Lund G: Crustacea Isopoda Terrestria per Familias et Genera et Species. Descripta: Sumtibus Auctoris; 1885; 1–319. Publisher Full Text
16. Richardson H: The marine and terrestrial isopods of the bermudas with descriptions of new genera and species. Transactions of the Connecticut Academy of Arts and Sciences. 1902; 11: 277–310. Reference Source
17. Folmer O, Black M, Hoeh W, et al.: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3(5): 294–9. PubMed Abstract
18. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5): 1792–7. PubMed Abstract | Publisher Full Text | Free Full Text
19. Kumar S, Stecher G, Tamura K: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016; 33(7): 1870–4. PubMed Abstract | Publisher Full Text
20. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16(2): 111–20. PubMed Abstract | Publisher Full Text | Free Full Text
21. Reece JS, Noss RF, Oetting J, et al.: A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change. PLoS One. 2013; 8(11): e80658. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Referee Status: ✔ ✔

Stefano Taiti
Institute of Ecosystem Studies (ISE), National Research Council (Italy), Sesto Fiorentino, Italy

This is a very interesting paper which can provide clear differences between two species of *Ligia* which have been mixed up in papers published up to the middle of last century.

I agree that the main differential character between *L. baudiniana* and *L. exotica* is the shape of male pleopod 2 endopod, even if several other morphological characters differ between the two species (e.g. shape of telson). In the text and Figure 1 the male pleopod 1 endopod is called "appendix masculina" or "gonopod". I would avoid using these terms, since they are not in use in the taxonomy of terrestrial isopods, also because they might not refer to the same appendage. In *Ligia* the male modifications are present mainly in the pleopod 2 endopod, but in other genera of Oniscidea they are present on the pleopod 1 endopod or even on both pleopod 1 and 2 endopods.

Ligia baudiniana is reported also from the Galapagos.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Referee Report 11 October 2017
doi:10.5256/f1000research.13491.r26865

Mary K. Wicksten
Texas A&M University, College Station, TX, USA

Very nice work, well supported with clear diagrams and photographs. Double-check spelling: Introduction line 4: doubt has or doubts have...I wonder if further work will show that the reports from the eastern Pacific constitute a sibling species but this information is not pertinent to acceptance of the current manuscript. It might be worthwhile to point out that mangroves either do not occur or do not support characteristic communities in the northern Gulf of Mexico.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Marine Biology

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com