Outcomes in patients receiving palliative chemotherapy for advanced biliary tract cancer

Authors
Felix Thol, Simon Johannes Gairing, Carolin Czauderna, Thomas Thomaidis, Thomas Gamstätter, Yvonne Huber, Johanna Vollmar, Johanna Lorenz, Maurice Michel, Fabian Bartsch, Lukas Müller, Roman Kloeckner, Peter Robert Galle, Marcus-Alexander Wörns, Jens Uwe Marquardt, Markus Moehler, Arndt Weinmann, Friedrich Foerster

Correspondence
friedrich.foerster@unimedizin-mainz.de (F. Foerster).

Graphical abstract

Background	Findings	Findings
Real world data depicting the outcome of biliary tract cancer remains scarce	Undergoing sequential chemotherapy lines may confer a survival benefit	The use of FOLFIRINOX was associated with a promising overall survival of 23.8 months.
although it would be extremely important, as it can critically inform clinical decision making.	Prognostic factors such as pre-therapeutic albumin levels	can increase the precision of the prognosis.
1 line; 2 lines; 3 lines; ≥4 lines	OS 6.7; 15.2; 18.2; 24.6 months	of 23.8 months.

Highlights
- This study provides important real-world data on the clinical outcomes of patients with ABTC.
- Patients may benefit from later lines of chemotherapy beyond second line.
- The use of FOLFIRINOX was associated with a promising overall survival of 23.8 months in our study.
- Many prognostically relevant factors, such as pre-therapeutic albumin, bilirubin or CA19-9 levels, were identified.
- Targeted therapies will become an integral part of the standard of care for patients with ABTC.

Lay summary
Real-world data depicting the outcome of patients with advanced biliary tract cancer outside the framework of controlled trials remain rare despite being extremely important for clinical decision-making. This study therefore provides important real-world data on the established first- and second-line treatments with gemcitabine + cisplatin and FOLFOX, as well as on other chemotherapy regimens or later lines of chemotherapy. It further demonstrates that the use of FOLFIRINOX is associated with promising survival and that there is an association between various clinical parameters such as pre-therapeutic albumin, bilirubin or carbohydrate antigen 19-9 levels and survival.

https://doi.org/10.1016/j.jhepr.2021.100417
Outcomes in patients receiving palliative chemotherapy for advanced biliary tract cancer

Felix Thol,1 Simon Johannes Gairing,1 Carolin Czauderna,1,2 Thomas Thomaidis,1 Thomas Gamstätter,1 Yvonne Huber,1 Johanna Vollmar,1 Johanna Lorenz,1 Maurice Michel,1 Fabian Bartsch,3 Lukas Müller,4 Roman Kloreckner,5 Peter Robert Galle,1 Marcus-Alexander Wörns,1 Jens Uwe Marquardt,1,2 Markus Moehler,1 Arndt Weinmann,1 Friedrich Foerster1,*

1Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; 2Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany; 3Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; 4Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany

JHEP Reports 2022. https://doi.org/10.1016/j.jhepr.2021.100417

Background & Aims: Advanced biliary tract cancer (ABTC) is associated with a poor prognosis. Real-world data on the outcome of patients with ABTC undergoing sequential chemotherapies remain scarce, and little is known about treatment options beyond the established first- and second-line treatments with gemcitabine + cisplatin and FOLFOX. This study aimed to evaluate the outcome of patients with regard to different oncological therapies and to identify prognostic factors.

Methods: From January 2010 until December 2019, 142 patients started palliative chemotherapy at our tertiary care liver center. Overall survival (OS) was calculated using Kaplan-Meier plots. Prognostic factors were evaluated using cox proportional-hazards.

Results: Patients received a median number of 2 lines of chemotherapy. Median OS was 6.7, 15.2 and 18.2 months for patients who received 1, 2 and 3 lines of chemotherapy, respectively. Patients treated with FOLFIRINOX had a significantly extended OS of 23.8 months (log-rank test: \(p = 0.018 \)). The univariate cox regression analysis identified several clinical parameters associated with survival (e.g. albumin, bilirubin, carcinoembryonic antigen, carbohydrate antigen 19-9 levels).

Conclusions: Our study provides real-world data on the prognosis of ABTC including survival times for patients receiving third and later lines of chemotherapy.

Lay summary: Real-world data depicting the outcome of patients with advanced biliary tract cancer outside the framework of controlled trials remain rare despite being extremely important for clinical decision-making. This study therefore provides important real-world data on the established first- and second-line treatments with gemcitabine + cisplatin and FOLFOX, as well as on other chemotherapy regimens or later lines of chemotherapy. It further demonstrates that the use of FOLFIRINOX is associated with promising survival and that there is an association between various clinical parameters such as pre-therapeutic albumin, bilirubin or carbohydrate antigen 19-9 levels and survival.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Advanced biliary tract cancer (ABTC) is a clinically challenging cancer that is associated with a poor prognosis (reviewed in1–3). The term ABTC encompasses various cancer entities that originate in the bile ducts, the gallbladder (GBC) and the ampulla of Vater. Bile duct carcinomas are also termed cholangiocarcinoma (CCA) and are categorized as intrahepatic (iCCA), perihilar (pCCA) and distal CCA depending on their primary site of origin.4,6 Although ABTC represents a heterogenous group of neoplasms, they are currently treated consistently.5,7 Recurrences are frequent even after successful surgical resection, which makes the use of adjuvant chemotherapy a subject of current research (reviewed in8). In the advanced stage, palliative chemotherapy is the main pillar of oncological treatment.1–11 In the first-line setting, gemcitabine + cisplatin (GemCis) has become the standard-of-care.12–14 After failure of GemCis, recent studies recommend the use of FOLFOX as second-line treatment of ABTC.2,15 In addition, triple therapies such as gemcitabine + cisplatin + nab-paclitaxel16 or FOLFIRINOX17–19, novel regimens such as liposomal irinotecan + fluorouracil + leucovorin,20 checkpoint inhibitors alone or in combination with chemotherapy,21 and molecular targeted therapies such as the inhibition of fibroblast growth factor receptor (FGFR) 1–422–26 or isocitrate dehydrogenase (IDH) 127 are currently being investigated in clinical trials.
Patients and methods

Patients
We performed a retrospective analysis of 142 patients with histologically confirmed malignancies who started treatment with palliative chemotherapy at our center between January 01, 2010 and December 31, 2019. Data were retrieved from our institution’s electronic clinical information system and prepared for analysis. Patients were followed up until December 31, 2020. All patients provided informed consent.

Ethical statement
The study was conducted according to the guidelines of the Declaration of Helsinki 1975 and approved by the Ethics Committee of the state of Rhineland-Palatinate (permit number 2018-13618, October 15th, 2018).

Statistical analysis
Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) version 27.0.1.0 (SPSS, Chicago, IL, USA). Categorical variables were tested for statistical significance using the chi-square test. Kaplan-Meier plots were generated to estimate OS from either the time of diagnosis or the time of unresectability until the time of death or last follow-up. The log-rank test was used to assess the statistical significance of the difference between strata. Univariate Cox proportional-hazards regression models assessing hazard ratios (HRs) and corresponding 95% CIs were employed to determine the relationship between several risk factors and OS (HR >1: potentially harmful; HR <1: potentially protective). p values <0.05 were considered statistically significant. A significance-adjusting Bonferroni correction was not applied despite the multiple testing as the objective of this study was to retrospectively evaluate the outcome of patients with ABTC undergoing palliative chemotherapy at our institution to identify prognostic factors.

Results

Baseline characteristics
Baseline clinical, laboratory and treatment characteristics are summarized in Table 1. The median age at diagnosis was 63.8 years and the sex distribution was balanced. The most frequent subtype was iCCA (51.4%), followed by GBC (21.1%) and pCCA (13.4%). Carcinomas originating from the distal bile duct (8.5%) or the Vateri ampulla (4.2%) were rarely observed. The majority of patients (63.2%) had Union for International Cancer Control (UICC)-stage 3 (14.8%) or 4 (48.4%) disease at diagnosis. Over half of the patients (54.5%) had lymph node metastases and over a third had distant metastases (39.1%). Histopathological grading was available for 92 patients with the majority being moderately (G2 = 55.4%) or poorly (G3 = 43.5%) differentiated. More than half (59.3%) of patients presented with an Eastern Cooperative Oncology Group – performance status (ECOG PS) of 0 at the start of palliative chemotherapy and 34.5% had an ECOG PS of 1. Only a minority (6.2%) had an ECOG PS of 2 or 3. Median baseline carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) levels were 122 U/ml and 2.6 ng/ml, respectively. CA19-9 and CEA levels over 1,000 U/ml and 4.5 ng/ml, respectively, could be detected in a third of patients (34.6% and 37.9%). Median bilirubin and albumin levels were 0.7 mg/dl and 33 mg/dl.

Table 1. Baseline characteristics.

Baseline characteristics	Patients
Age at diagnosis (years)	63.8 (54.5-73.1)
Age at start of CT1 (years)	64.8 (55.5-73.5)
Male sex	71 (50%)
BMI (kg/m²)	25.1 (22.5-28.6)
Underweight (<18.5)	4 (3%)
Normal weight (18.5-24.9)	62 (46.6%)
Overweight (25-29.9)	42 (31.6%)
Obese (>30)	25 (18.8%)
ECOG PS	1 39 (34.5%)
2 or 3	7 (6.2%)
CA19-9 (U/ml)	122 (18.0-1600.2)
CEA (ng/ml)	2.6 (1.6-8.7)
Albumin (mg/dl)	33 (26.0-37.5)
Tumor grading	
G1	1 (1.1%)
G2	51 (35.4%)
G3	40 (28.5%)
UICC-stage	
I	12 (9.4%)
II	35 (25.3%)
III	19 (14.8%)
IV	62 (44.8%)
T-stage	
T1	11 (9.2%)
T2	69 (50.0%)
T3	34 (24.6%)
T4	5 (4.2%)
Lymph node metastases	55 (54.5%)
Distant metastases	45 (39.1%)
Serum markers	
CEA (ng/ml)	2.6 (1.6-8.7)
CA19-9 (U/ml)	122 (18.0-1600.2)
Bilirubin (mg/dl)	0.73 (0.5-1.27)
Albumin (mg/dl)	33 (26.0-37.5)
Clinical parameters	
Initially resectable	60 (42.3%)
Recurrence after resection	60 (100%)
Neoadjuvant chemotherapy	2 (1.4%)
Adjuvant chemotherapy	13 (9.2%)
Recurrence localization	
Lymph node	3 (3%)
Intrahepatic	29 (48.3%)
Peritoneal metastases	13 (21.7%)
Distant metastases	15 (25%)
Resectable recurrence	5 (6.3%)

Continuous variables are expressed as median (IQR), categorical variables as n (%).

ABTC, advanced biliary tract cancer; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CT1, first-line chemotherapy; dCCA, distal cholangiocarcinoma; ECOG PS, Eastern Cooperative Oncology Group performance status; GBC, gallbladder cancer; iCCA, intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; UICC, Union for International Cancer Control.

Treatment outcome
42.3% of patients were initially treated with curative surgical resection. Of these 21.6% (13/60) also received adjuvant chemotherapy (in most cases GemCis or capecitabine). Recurrence of
ABTC occurred 10.5 months after surgery (median; Table 2). Patients whose malignancy was resected had superior OS of 27.9 months compared with 11.7 months in patients whose malignancy was not resected (log-rank test \(p < 0.001; \text{ Fig. 1A} \)). After recurrence, OS in patients who received an initial tumor resection was comparable to that of initially unresectable patients (log-rank test \(p = 0.130; \text{ Fig. 1B} \)). Median time from unresectability until the start of first-line chemotherapy (CT1) was 1.1 months. In the palliative setting, 50.7% of patients received GemCis or gemcitabine/oxaliplatin (GemOx) as CT1. Gemcitabine monotherapy (13.4%), FOLFIRI/CAPOX (10.6%) or FOLFIRINOX (7.7%) were used less frequently. More than half of patients (57%) were treated with a second-line chemotherapy (CT2) following disease progression. Regarding second-line therapy, most patients received FOLFIRI/CAPOX (30.5%), followed by gemcitabine monotherapy (18.3%), GemCis/GemOx (17.1%), other capectabine-based therapies (9.8%), FOLFI4 (4.9%) or FOLFIRINOX (4.9%). 25.1% received \(\geq 3 \) lines of chemotherapy, while a 4th or 5th line could only be employed in 6.6% of patients. As third-line chemotherapy (CT3), FOLFI4 (18.4%), FOLFOX (18.4%), S1-based therapies (15.8%) and docetaxel (15.8%) were most commonly used. 27.5% of patients received additional locoregional therapy (transarterial chemoembolization [10.6%]), selective internal radiation therapy [9.2%), radiotherapy [7.7%]).

Median OS was 6.7, 15.2, 18.2 and 24.6 months for patients receiving 1, 2, 3, or \(\geq 4 \) lines of chemotherapy, respectively (log-rank test \(p < 0.001; \text{ Fig. 1C} \)). The median number of received therapy lines was 2 (range 1-5). The duration of CT1, CT2 and CT3 was 2.9, 2.8 and 2.0 months, respectively.

In patients receiving FOLFOX/CAPOX as CT1, median OS was significantly lower than in patients receiving GemCis/GemOx with a difference of approximately 8 months (12.3 vs. 4.8 months; log-rank test \(p = 0.007; \text{ Fig. 1D-F} \)). In contrast, a comparison of patients who had received FOLFIRINOX at some point with those who never did revealed a significantly prolonged survival for the FOLFIRINOX group (11.9 vs. 23.8 months; log-rank test \(p = 0.018; \text{ Fig. 1G} \)). A comparison of prognostically relevant factors revealed that patients treated with FOLFIRINOX received more lines of chemotherapy and had lower bilirubin levels than those who never did.

Regardless of the chemotherapy regimen received, median OS after the start of CT1, CT2 and CT3 was 11.4, 8.0 and 6.2 months, respectively. Time from the last administration of chemotherapy until death was 1.8 months (median). At the end of follow-up, 127 patients (90.1%) had died.

Reported treatment outcomes and palliative chemotherapy regimens are summarized in Table 2 and Fig. 2. The fractions of patients who received 1, 2, 3 or \(\geq 4 \) chemotherapy lines and their associated OS are illustrated in Fig. 3.

Prognostic factors
In the log-rank tests and univariate cox regression analyses, increasing age, gallbladder cancer, lymph node metastases, distant metastases, UICC-stage 3 or 4, poor differentiation (G3) and a poor ECOG PS were associated with a shorter OS (Table 3). The greatest differences in OS were found for ECOG PS (17.2 months OS for ECOG PS 0, 12.1 for ECOG PS 1 and 5.2 for ECOG PS \(\geq 2 \); log-rank test \(p = 0.036; \text{ Fig. 4A} \)), age at diagnosis (10 vs. 18.0 months OS for patients <65 years; log-rank test \(p = 0.001 \)), distant metastases (10.8 vs. 17.6 months OS for patients without metastatic disease; log-rank test \(p = 0.003 \)), tumor cell differentiation (10.3 vs. 16.5 months OS for patients with well or moderately differentiated tumor cells [G1, G2] compared with poorly differentiated tumor cells [G3]; log-rank test \(p = 0.005 \)) and CBC (11.5 vs. 14.7 months OS for patients with other primary anatomic origins; log-rank test \(p = 0.006; \text{ Fig. 4B} \)). In addition, serological markers such as elevated CEA, CA19-9 or bilirubin levels were found to be associated with poor OS. In patients with CEA <4.5 ng/dl, CA19-9 <1,000 U/ml and bilirubin <1.2 mg/dl, OS was extended by 6.9, 3.8 and 7.3 months, respectively, in comparison to patients with higher levels (Fig. 4C-E). In contrast, an albumin level >33 mg/dl was associated with a 7.5 month extension in OS (Fig. 4F).

Finally, no significant correlation with OS was found for BMI, T-stage and sex.

Discussion
GemCis/GemOx as CT1 and FOLFIRI as CT2 have been established for patients with ABTC.12-15,26 The survival times reported here are comparable to the OS of 9.5-11.7 months after CT111,14 and 6.7-7.2 months after CT230-32 obtained in previous studies. In our analysis, OS was significantly dependent on the number of received therapy lines. It is worth noting that in our cohort almost twice as many patients received CT2 (57% vs. 32.5%) and CT3 (25.1% vs. 13.9%) as reported in a meta-analysis by Brieau et al., which could be a reason for the prolonged survival times observed in our study.30 Therefore, our data suggest that patients

Table 2. Treatment outcomes.

Outcome	Deceased \((90.1%) \)
Number of received chemotherapy lines	\((43.0%) \)
\(1 \)	58 (43.0%)
\(2 \)	43 (31.9%)
\(3 \)	25 (18.5%)
\(\geq 4 \)	9 (6.6%)
Number of received cycles	\((2-8) \)
Cycles of CT1	4.5 (2-8)
Cycles of CT2	4 (2-6)
Cycles of CT3	3 (2-5.25)
Cycles of CT4	4 (1.75-5.25)
Palliative oncological treatments	\((17.1%) \)
FOLFIRINOX as CT1	11 (7.7%)
FOLFOX in any line	25 (14.7%)
FOLFOX/CAPOX as CT1	14 (9.9%)
Targeted therapy	17 (12%)
Treatment with TACE	15 (10.6%)
Treatment with SIRT	13 (9.2%)
Treatment with radiotherapy	11 (7.7%)
Ongoing oncological treatment at data cut-off	6 (4.2%)

Survival times

- OS since diagnosis of ABTC: \(18.4 (8.1-31.9) \) months
- OS since resection (in case of resectability): \(27.9 (19.5-45.7) \) months
- Recurrence-free survival: \(10.5 (4.9-15.4) \) months
- OS since unresectability: \(14.5 (7.1-23.1) \) months
- Time from unresectability until the start of CT1: \(11.1 (0.7-2.0) \) months
- OS since start of CT1: \(11.4 (4.8-21.0) \) months
- OS since start of CT2: \(8.0 (4.1-17.3) \) months
- OS since start of CT3: \(6.2 (4.2-12.2) \) months
- Duration of CT1: \(2.9 (1.1-6.4) \) months
- Duration of CT2: \(2.8 (1.4-5.2) \) months
- Duration of CT3: \(2.0 (1.0-2.8) \) months
- OS since last CTX application: \(1.8 (1.1-4.1) \) months

Continuous variables are expressed as median (IQR), categorical variables as \(n (\%) \). Survival times are given in months and expressed as median (IQR).

ABTC, advanced biliary tract cancer; CT1, first-line chemotherapy; CT2, second-line chemotherapy; CT3, third-line chemotherapy; OS, overall survival; SIRT, selective internal radiation therapy; TACE, transarterial chemoembolization.
OS initially resectable = 27.9 months (median)
OS initially unresectable = 11.7 months (median)
Log-rank test: p value < 0.001

OS FOLFOX/CAPOX = 4.8 months (median)
OS others = 12.8 months (median)
Log-rank test: p value = 0.003

OS FOLFIRINOX = 23.8 months (median)
OS without FOLFIRINOX = 11.9 months (median)
Log-rank test: p value = 0.018

N° at risk
60 45 17 2 1 1
82 21 6 3 1

Fig. 1. Kaplan-Meier plots comparing OS. (A) OS since diagnosis with regard to initial resectability; (B) OS since unresectability with regard to initial resectability; (C) OS since unresectability with regard to the number of received chemotherapy lines; (D) OS since the start of CT1 with regard to the chosen CT1 regimen; (E) OS since the start of CT2 with regard to the chosen CT2 regimen; (F) OS after unresectability with regard to a treatment with FOLFOX / CAPOX as CT1; (G) OS after unresectability with regard to a treatment with FOLFIRINOX at any point. P values were generated by using log-rank tests. CT1, first-line chemotherapy; CT2, second-line chemotherapy; CT3, third-line chemotherapy; OS, overall survival.
with ABTC who are still fit for chemotherapy might benefit from later lines of therapy, which should lead to further investigation and consideration in clinical decision-making.

In light of the survival times reported by us and others, there is still an urgent and unmet medical need for more efficacious treatments for ABTC. In this regard, several previous studies have failed to identify new and more effective therapies. Therefore, a variety of new treatment regimens, such as triple therapies like FOLFIRINOX (NCT02591030) or gemcitabine/cisplatin/nab-paclitaxel (NCT03768414) are currently being investigated in clinical trials.16,20,40

In a recent study, FOLFIRINOX appeared to be a valid alternative for CT1 reaching an OS of 15 months.17 Furthermore, even when FOLFIRINOX was used as salvage treatment after GemCis failure, an OS of 13.2 months was achieved.18 These observations support our finding of a significantly prolonged OS in patients who received FOLFIRINOX at some point. However, AMEBICA PRODIGE 38, a randomized controlled trial, which compared treatment with FOLFIRINOX against GemCis did not meet its primary endpoint,19 which should be taken into account when considering our study results and the role of selection bias in our study. In addition to survival, the quality of life should not be neglected in the evaluation of novel triple therapies, as increased toxicity can lead to a higher rate of adverse events. Recent studies, however, have not reported abnormalities in this regard.17–19,41

Molecular targeted therapies hold great promise for the treatment of ABTC (reviewed in42). One novel mechanism of action is the inhibition of FGFR1-4. In this line, the FGFR inhibitor pemigatinib has demonstrated a survival benefit as second-line treatment in a phase II study in patients with advanced iCCA and a FGFR gene rearrangement which led to its approval by the Food and Drug Administration.22 Consequently, results from the FIGHT-302 phase III trial (NCT03656536) investigating the efficacy of pemigatinib as first-line treatment in patients with FGFR2 fusions are highly awaited.26 In addition to pemigatinib, various

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{flow_chart.png}
\caption{Flow chart illustrating first-, second- and third-line palliative chemotherapies. CT1, first-line chemotherapy; CT2, second-line chemotherapy; CT3, third-line chemotherapy; GemCis, gemcitabine + cisplatin; GemOx, gemcitabine + oxaliplatin.}
\end{figure}
other FGFR inhibitors, such as derazantinib (FIDES-01 phase II trial, NCT03230318), futibatinib (FOENIX-CCA3 phase III trial, NCT04093362) and infigratinib (PROOF study, NCT03773302), are being tested in clinical trials.23–25 Another target for personalized therapies involves mutations in the IDH gene. In this regard, the ClarIDHy phase III trial (NCT02989857) reported a significantly longer progression-free survival for pretreated patients with icca who received ivode-

Table 3. Univariate cox proportional-hazards of death for selected factors.

Factor	Hazard ratio (95% CI)	p value
Age at diagnosis (years)	1.017 (1.002-1.033)	0.029
Age over 65 years at diagnosis	1.756 (1.236-2.496)	0.002
Gallbladder cancer	1.797 (1.174-2.749)	0.007
T-stage	1.181 (0.788-1.771)	0.421
T1+T2 vs. T3+T4	1.627 (1.067-2.482)	0.024
Lymph node metastases	1.817 (1.213-2.723)	0.004
UICC-stage	1.580 (1.069-2.337)	0.022
H1 vs. III+V		
Tumor grading	1.853 (1.192-2.882)	0.006
G1+G2 vs. G3		
Number of received chemotherapy lines		<0.001
1	Reference	
2	0.444 (0.294-0.671)	<0.001
3	0.334 (0.202-0.553)	<0.001
≥4	0.285 (0.126-0.530)	<0.001
Treatment with FOLFIRINOX	0.574 (0.360-0.914)	0.019
ECOG PS		
0	Reference	
1	1.516 (0.981-2.383)	0.061
2 or 3	2.443 (1.047-5.841)	0.039
Serological markers		
CEA >4.5 ng/ml	1.859 (1.167-2.962)	0.009
CA19-9 >1,000 U/ml	1.580 (1.030-2.425)	0.036
Bilirubin >1.2 mg/dl	1.649 (1.059-2.566)	0.027
Albumin >33 mg/dl	0.456 (0.281-0.738)	0.001
Initially resectable	0.760 (0.532-1.086)	0.132

The calculated p values and hazard ratios including a 95% CI are given. P values and hazard ratios were generated by using univariate cox proportional-hazards. CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; ECOG PS, Eastern Cooperative Oncology Group performance status; UICC, Union for International Cancer Control.

Another target for personalized therapies involves mutations in the IDH gene. In this regard, the ClarIDHy phase III trial (NCT02989857) reported a significantly longer progression-free survival for pretreated patients with icca who received ivode-sinib in comparison to placebo.43 Moreover, cancer immunotherapy will continue to be explored for the treatment of ABTC despite disappointing results from the first clinical trials testing checkpoint inhibitors as monotherapy.44 Currently, checkpoint inhibitors are evaluated in combination with established chemotherapies such as GemCis (EORTC–1607-GITCG [NCT03260712], Keynote-966 [NCT04003636] or TOPAZ-1[NCT03875235])45,46 and other targeted agents.21 In this regard, the TOPAZ-1 trial, investigating a combination therapy with the PD-L1 inhibitor durvalumab and GemCis already showed promising results in an interim analysis in which it met its primary endpoint of a prolonged OS compared to GemCis. However, it remains to be seen how all these novel treatments will affect the overall outcome and management of patients with ABTC.

Regarding prognostic factors, ECOG PS has been identified previously and is used in the current ESMO guidelines to select patients for an appropriate CT1 therapy regimen. Thus, patients with an ECOG PS of 0-1 should receive treatment with GemCis, while patients with an ECOG PS >2 should instead receive gemcitabine monotherapy.9,47 In addition to ECOG PS,48–51 several other factors such as old age at diagnosis,52 lymph node metastases,53 distant metastases,50 poor tumor cell differenti-
ation,54 gallbladder cancer,54,55 or levels of bilirubin,56 albumin, or CA19-9 have previously been reported to be associated with survival in ABTC and can therefore inform clinical decision-making. Our findings lend further support to their prognostic value. Taking these parameters one step further, prognostic scores can be employed to predict the outcome of patients, as has already been shown for the ALAN and Glasgow score.57,58
Regarding the limitations of our study, one major limitation is its retrospective and monocentric design. In addition, the possibility of selection bias must be considered. Thus, the superior OS of patients who received sequential therapy lines and those who received FOLFIRINOX at some point may have been due to a selection bias (patients in a generally better condition are more likely to receive both more lines of chemotherapy as well as FOLFIRINOX). Furthermore, the number of patients who received
Abbreviations
ABT, advanced biliary tract cancer; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CT1, first-line chemotherapy; CT2, second-line chemotherapy; CT3, third-line chemotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; FGF, fibroblast growth factor receptor; GBC, gallbladder cancer; GemCis, gemcitabine + cisplatin; GemOx, gemcitabine + oxaliplatin; IDH, isocitrate dehydrogenase; iCCA, intrahepatic cholangiocarcinoma; OS, overall survival; pCCA, perihilar cholangiocarcinoma; UICC, Union for International Cancer Control.

Financial support
This research received no external funding.

Conflicts of Interest
The authors declare no conflict of interest.

Authors’ contributions
FF: conceptualization, methodology, project administration, supervision. FT, SJG and FF: writing-original draft preparation, validation. FT: formal analysis, visualization. FT, SJG, CC, TT, YH, JV, JJ, MMi, FB, LM, RK, PRG, MAW, JUM, MMo, AW and FF: writing-review and editing, data collection. All authors have read and agreed to the published version of the manuscript. This manuscript contains parts of the doctoral thesis of FT at the ‘Johannes Gutenberg-Universität Mainz’.

Data availability statement
Data is contained within the article or Supplementary Material.

Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhepr.2021.100417.

References

Author names in bold designate shared co-first authorship

[1] Vallee JW, Kelley RK, Nervi B, Oh D-Y, Zhu AX. Biliary tract cancer. Lancet 2021;397:428–444.
[2] Banales JM, Marin JGC, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020;17:557–588.
[3] Tariq NU, McNamara MG, Vallee JW. Biliary tract cancers: current knowledge and future challenges. Cancer Manag Res 2019;11:2623–2642.
[4] Adeva J, Sango R, Salati M, Edeline J, La Casta A, Bittoni A, et al. Medical treatment for cholangiocarcinoma. Liver Int 2019;39(Suppl 1):123–142.
[5] Kendall T, Verheij J, Caudio E, Evert M, Guido M, Goeppert B, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int 2019;39(Suppl 1):7–18.
[6] Lendvai G, Szekeresz T, Illyes I, Dora R, Konshek E, Gogli A, et al. Cholangiocarcinoma: classification, histopathology and molecular carcinogenesis. Pathol Oncol Res 2020;26:3–15.
[7] Waseem D, Tushar P. Intrahepatic, perihilar and distal cholangiocarcinoma: management and outcomes. Ann Hepatol 2017;16:133–139.
[8] Rizzo A, Brandi G. Pitfalls, challenges, and updates in adjuvant systemic treatment for resected biliary tract cancer. Expert Rev Gastroenterol Hepatol 2021;15:547–554.
[9] Vallee JW, Borbath I, Khan SA, Huguet F, Gruenberger T, Arnold D, et al. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016;27:v28–v37.
[10] Rizvi S, Khan SA, Hallemeyer CL, Kelley RK, Gores GJ. Cholangiocarcinoma–evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018;15:95–111.
[11] Dierks J, Gaspersz MP, Belkouz A, van Vught JLA, Coelen RJS, de Groot JWB, et al. Translating the ABC-02 trial into daily practice: outcome of palliative treatment in patients with unresectable biliary tract cancer treated with gemcitabine and cisplatin. Acta Oncol 2018;57:807–812.
[12] Vallee JW, Wasan H, Johnson P, Jones E, Dixon L, Swindell R, et al. Gemcitabine alone or in combination with cisplatin in patients with advanced or metastatic cholangiocarcinomas or other biliary tract tumours: a multicentre randomised phase II study - the UK ABC-01 Study. Br J Cancer 2009;101:621–627.
[13] Vallee J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010;362:1273–1281.
[14] Okusaka T, Nakachi K, Fukutomi A, Mizuno N, Ohkawa S, Funakoshi A, et al. Gemcitabine alone or in combination with cisplatin in patients with advanced or metastatic cholangiocarcinomas or other biliary tract tumours: a multicentre randomised phase II trial - the UK ABC-02 Study. Br J Cancer 2010;103:469–474.
[15] Lamarka A, Palmer DH, Wasan HS, Ross PJ, Ma YT, Arora A, et al. Second-line FOLFIRINOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol 2021;22:690–701.
[16] Shroff RT, Javle MM, Xiao L, Kaseb AO, Varadhachary GR, Wolff RA, et al. Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial. JAMA Oncol 2019;5:824–830.
[17] Ulusakarya A, Karaboue A, Ciccio O, Pittau G, Haydar M, Biondani P, et al. A retrospective study of patient-tailored FOLFIRINOX as a first-line chemotherapy for patients with advanced biliary tract cancer. BMC Cancer 2020;20:515.
[18] Ye LF, Ren C, Bai L, Liang JY, Hu MY, Tu MG, et al. Efficacy and safety of modified FOLFIRINOX as salvage therapy for patients with refractory advanced biliary tract cancer: a retrospective study. Invest N Drugs 2021.
[19] Phelip J, Desrame J, Edeline J, Barbier E, Terrebonne E, Michel P, et al. Modified FOLFIRINOX versus CISGEM chemotherapy for patients with advanced biliary tract cancer (PRODIGE 38 AMERICA): a randomized phase II study. J Clin Oncol 2021.
[20] Yoo C, Kim K-P, Jeong JH, Kim I, Kang MJ, Cheon J, et al. Liposomal irinotecan plus fluorouracil and leucovorin versus fluorouracil and leucovorin for metastatic biliary tract cancer after progression on gemcitabine plus cisplatin (NIFTY): a multicentre, open-label, randomised, phase 2b study. Lancet Oncol 2021;22:1560–1572.
[21] Marin JG, Prete MG, Lamarcia A, Tavolari S, Landa-Magdalena A, Brandi G, et al. Current and novel therapeutic opportunities for systemic therapy in biliary tract cancer. Ann Oncol 2020;123:1047–1058.

[22] Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melusi D, Al-Rajabi R, et al. Pembrolizumab for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020;21:671–684.

[23] Javle MM, Saab W1, Braun S, Engelhardt M, Borad MJ, Abou-Alfa GK, et al. FIDEOS-01, a phase II study of derazantinib in patients with unresectable intrabdominal cholangiocarcinoma (CCCA) and FGFR2 fusions and mutations or amplifications (M/A). J Clin Oncol 2020;38:TPS597–TPS599.

[24] Javle MM, Borbath I, Clarke SJ, Hitre E, Louvet C, Mercade TM, et al. Inflammagin versus gemcitabine plus cisplatin Multicenter, open-label, randomized, phase 3 study in patients with advanced cholangiocarcinoma with FGFR2 gene fusions/alterations: the PROOF trial. J Clin Oncol 2019;37:TPS4155–TPS4155.

[25] Borad MJ, Bridgewater JA, Morinane C, Shroff RT, Oh D-Y, Moehler MH, et al. A phase III study of futasitinib (TAS-120) versus gemcitabine-cisplatin (gem-cis) chemotherapy as first-line (1L) treatment for patients (pts) with advanced (adv) cholangiocarcinoma (CCA) harboring fibroblast growth factor receptor 2 (FGFR2) gene rearrangements (FOE-NIX-CCA). J Clin Oncol 2020;38:TPS600–TPS600.

[26] Bekai-Saab TS, Valle JW, Capanu M, O'Connell MJ, Bach J, Al-Rajabi R, et al. FICODIN: a phase 3 study with biomarker and serum programme. Eur J Cancer 2021:47–10335.

[27] Marin JJG, Prete MG, Lamarca A, Tavolari S, Landa-Magdalena A, Brandi G, et al. Current and novel therapeutic opportunities for systemic therapy in biliary tract cancer. Ann Oncol 2020;123:1047

[28] Bang Y-J, Ueno M, Malka D, Chung HC, Nagrial A, Kelley RK, et al. Pembraluzimab (Pembro) for advanced biliary adenoscarcinoma: results from the KEYNOTE-028 (KN028) and KEYNOTE-158 (KN158) basket studies. J Clin Oncol 2019;38:4079–4079.

[29] Finn RS, Kelley RK, Furuse J, Edeline J, Ren Z, Su S-C, et al. Abstract CT283: KEYNOTE-966: a randomized, double-blind, placebo-controlled, phase 3 study of pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract carcinoma. Cancer Res 2020;80:CT283–CT283.

[30] Kang JH, Lee J, Lee HW, Oh SY, Jang JS, et al. Capecitabine plus oxaliplatin versus gemcitabine plus oxaliplatin as first-line therapy for advanced biliary tract cancer: randomised, parallel-group, non-inferiority trial. Ann Oncol 2019;10:788–795.

[31] Oh D-Y, Chen LT, He AR, Okusaka T, Qin S, Chin S, et al. A phase III, randomized, double-blind, placebo-controlled, phase 3 study of pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract cancer. J Hepatol 2019;71:318–326.

[32] Grunnet M, Christensen IJ, Lassen U, Jensen LH, Lydolph M, Knox JJ, et al. Validation of the A.L.A.N. Score. J Oncol 2020:6180613.

[33] Kang J, Lee SH, Son JH, Lee JW, Choi YH, Choi JH, et al. Body mass index and weight change during initial period of chemotherapy affect survival outcome in advanced biliary tract cancer patients. PLoS One 2018;13:e0195118.

[34] Sanuki T, Itoya H, Nakai Y, Oikawa O, Kogure H, Ito Y, et al. Prognostic factors in patients with advanced biliary tract cancer receiving chemo therapy. Cancer Chemother Pharmacol 2011;67:847–853.

[35] Eckel F, Schmid RM. Chemotherapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials. Br J Cancer 2007:96:896–902.

[36] McNamara MG, Lopes A, Wasan H, Malka D, Jensen L, Okusaka T, et al. Prognostic factors for progression-free and overall survival in advanced biliary tract cancer. Ann Oncol 2016;27:134–140.

[37] Kang J, Lee SH, Son JH, Lee JW, Choi YH, Choi JH, et al. Body mass index and weight change during initial period of chemotherapy affect survival outcome in advanced biliary tract cancer patients. PLoS One 2018;13:e0195118.

[38] Kang JH, Lee J, Lee HW, Oh SY, Jang JS, et al. Capecitabine plus oxaliplatin versus gemcitabine plus oxaliplatin as first-line therapy for advanced biliary tract cancer: randomised, parallel-group, phase III, non-inferiority trial. Ann Oncol 2019;10:788–795.

[39] Phelip J-M, Edeline J, Blanc J-F, Barbier E, Michel P, Bourgeois V, et al. Modified FOLFIRINOX versus cisGem-first-line chemotherapy for locally advanced non resectable or metastatic biliary tract cancer (AMEBICA)-PRODICE 38: study protocol for a randomized controlled multicenter phase III/II study. Dig Liver Dis 2019;51:318–326.

[40] Belloux A, de Vos-Geelen J, Mathot RAa, Eskens F, van Golik TM, van Oijen MGH, et al. Efficacy and safety of FOLFIRINOX as salvage treatment in advanced biliary tract cancer: an open-label, single arm, phase 2 trial. Br J Cancer 2020;122:634–639.

[41] O'Rourke CJ, Munoz-Garrido P, Andersen JB. Molecular targets in cholangiocarcinoma. Hepatology 2021;73(Suppl 1):h0–h23.00.

[42] Bang Y-J, Ueno M, Malka D, Chung HC, Nagrial A, Kelley RK, et al. Pembroliuzimab (Pembro) for advanced biliary adenoscarcinoma: results from the KEYNOTE-028 (KN028) and KEYNOTE-158 (KN158) basket studies. J Clin Oncol 2019;38:4079–4079.

[43] Finn RS, Kelley RK, Furuse J, Edeline J, Ren Z, Su S-C, et al. Abstract CT283: KEYNOTE-966: a randomized, double-blind, placebo-controlled, phase 3 study of pembrolizumab in combination with gemcitabine and cisplatin for the treatment of advanced biliary tract carcinoma. Cancer Res 2020;80:CT283–CT283.

[44] Kang JH, Lee JH, Kwon JH, Lee HW, Oh SY, Jang JS, et al. Capecitabine plus oxaliplatin versus gemcitabine plus oxaliplatin as first-line therapy for advanced biliary tract cancer: randomised, parallel-group, non-inferiority trial. Ann Oncol 2019;10:788–795.

[45] Oh D-Y, Chen LT, He AR, Okusaka T, Qin S, Chin S, et al. A phase III, randomized, double-blind, placebo-controlled, international study of durvalumab in combination with gemcitabine plus cisplatin for patients with advanced biliary tract cancers: TOPAZ-I. Ann Oncol 2019:30:428–432.

[46] Park J, Lee JH, Ryu MH, Kim TW, Sook Lee S, Hyun Park D, et al. Prognostic factors and predictive model in patients with advanced biliary tract adenocarcinoma receiving first-line palliative chemotherapy. Cancer 2009;115:4148–4155.

[47] Bridgewater J, Lopes A, Wasan H, Malka D, Jensen L, Okusaka T, et al. Prognostic factors for progression-free and overall survival in advanced biliary tract cancer. Ann Oncol 2016;27:134–140.

[48] Kang J, Lee SH, Son JH, Lee JW, Choi YH, Choi JH, et al. Body mass index and weight change during initial period of chemotherapy affect survival outcome in advanced biliary tract cancer patients. PLoS One 2018;13:e0195118.

[49] Sanuki T, Iyama H, Nakai Y, Togawa O, Kogure H, Ito Y, et al. Prognostic factors in patients with advanced biliary tract cancer receiving chemo therapy. Cancer Chemother Pharmacol 2011;67:847–853.

[50] Lurje G, Bednarsh J, Czizany Z, Lurje J, Schlebusch IK, Boecker J, et al. The prognostic role of lymphovascular invasion and lymph node metastasis in perihilar and intraperhepatic cholangiocarcinoma. Eur J Surg Oncol 2019;45:1468–1478.