SYSTEMATIC REVIEW AND META-ANALYSIS

Renin-Angiotensin Aldosterone System Inhibitors and COVID-19: A Systematic Review and Meta-Analysis Revealing Critical Bias Across a Body of Observational Research

Jordan Loader, PhD; Frances C. Taylor, BExSc(Hons); Erik Lampa, PhD; Johan Sundström, MD, PhD

BACKGROUND: Renin-angiotensin aldosterone system (RAAS) inhibitor—COVID-19 studies, observational in design, appear to use biased methods that can distort the interaction between RAAS inhibitor use and COVID-19 risk. This study assessed the extent of bias in that research and reevaluated RAAS inhibitor—COVID-19 associations in studies without critical risk of bias.

METHODS AND RESULTS: Searches were performed in MEDLINE, EMBASE, and CINAHL databases (December 1, 2019 to October 21, 2021) identifying studies that compared the risk of infection and/or severe COVID-19 outcomes between those using or not using RAAS inhibitors (ie, angiotensin-converting enzyme inhibitors or angiotensin II type-I receptor blockers). Weighted hazard ratios (HR) and 95% CIs were extracted and pooled in fixed-effects meta-analyses, only from studies without critical risk of bias that assessed severe COVID-19 outcomes. Of 169 relevant studies, 164 had critical risks of bias and were excluded. Ultimately, only two studies presented data relevant to the meta-analysis. In 1 351 633 people with uncomplicated hypertension using a RAAS inhibitor, calcium channel blocker, or thiazide diuretic in monotherapy, the risk of hospitalization (angiotensin-converting enzyme inhibitor: HR, 0.76; 95% CI, 0.66–0.87; \(P < 0.001 \); angiotensin II type-I receptor blockers: HR, 0.86; 95% CI, 0.77–0.97; \(P = 0.015 \)) and intubation or death (angiotensin-converting enzyme inhibitor: HR, 0.64; 95% CI, 0.48–0.85; \(P = 0.002 \); angiotensin II type-I receptor blockers: HR, 0.74; 95% CI, 0.58–0.95; \(P = 0.019 \)) with COVID-19 was lower in those using a RAAS inhibitor. However, these protective effects are probably not clinically relevant.

CONCLUSIONS: This study reveals the critical risk of bias that exists across almost an entire body of COVID-19 research, raising an important question: Were research methods and/or peer-review processes temporarily weakened during the surge of COVID-19 research or is this lack of rigor a systemic problem that also exists outside pandemic-based research?

REGISTRATION: URL: www.crd.york.ac.uk/prospero/; Unique identifier: CRD42021237859.

Key Words: angiotensin receptor blockers ■ angiotensin-converting enzyme inhibitors ■ calcium channel blockers ■ COVID-19 ■ renin-aldosterone angiotensin system inhibitors ■ thiazide diuretics

Since it was found that SARS-CoV-2 gains entry into human cells via angiotensin-converting enzyme (ACE) 2,1 there has been an inundation of research evaluating if the use of renin-angiotensin aldosterone system (RAAS) inhibitors increases the risk of a SARS-CoV-2 infection and/or severe COVID-19 outcomes. Those studies, predominantly observational in design, were driven by the notion that RAAS...
inhibitors, such as ACE inhibitors and or angiotensin II type-I receptor blockers (ARBs), may upregulate the expression of ACE2.2–4 As the pandemic progressed, however, it became evident that, like a lot of COVID-19 research, many RAAS inhibitor—COVID-19 studies have suffered from the speed at which they were conducted;5 often using nonrepresentative samples where the risk of selection (ie, collider) bias is increased.6 At least 52 meta-analyses have assessed associations between RAAS inhibitor use and COVID-19 risk by collating parts of that body of research.7–58 However, little attention has been paid to selection bias, or other biases for that matter, which may distort the interaction between RAAS inhibitor use and COVID-19.

Given the sheer volume of previous research, it is understandable if the appeal of additional RAAS inhibitor—COVID-19 studies may be subsiding. However, in the interest of improving the methods used in observational research and, subsequently, enhancing its value, there is an urgent need to review how the scientific community has attempted to address this issue; to what extent does bias exist across that body of RAAS inhibitor—COVID-19 research and does that bias significantly distort the interaction between RAAS inhibitor use and COVID-19 risk? Accordingly, this study retested the hypothesis that RAAS inhibitor use is associated with important, severe COVID-19 outcomes, using only data from observational studies without critical risk of bias.

METHODS

The data that support the findings of this study are available within the article. The protocol of this systematic review and meta-analysis was registered on PROSPERO (Registration number: CRD42021237859) before the study commenced and is available in full on the National Institute for Health Research International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/PROSPERO). This study was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist (Table S1).

Data Sources and Searches

Systematic searches were performed in MEDLINE, EMBASE, and CINAHL databases from December 1, 2019, near to when the first case of SARS-CoV-2 was identified, until October 21, 2021. A combination of subject headings for COVID-19 and RAAS inhibitors was used (Table S2). Searches were limited to “human” studies only. A manual search of the citations included in identified reviews and articles selected for full-text retrieval was also performed.

Study Selection, Inclusion and Exclusion Criteria

Two investigators (J. L. and F. C. T.) independently performed study selection using Covidence, an online, Cochrane approved, software designed for conducting systematic reviews.59 Discrepancies in inclusion or exclusion were solved through consultation with a third
investigator (J. S.). To address the risk of bias in all observational studies of RAAS inhibitor—COVID-19 associations, the systematic review initially identified studies that compared the risk of infection with COVID-19 and/or severe COVID-19 outcomes (eg, hospitalization, admission to an intensive care unit, intubation and/or death with COVID-19) between those using an ACE inhibitor or an ARB and those not using a RAAS inhibitor. Only data from studies on people aged ≥18 years were included. Review articles were excluded, but as stated previously, their reference lists were screened. Studies indexed to preprint servers only, which are not certified for publication, were also excluded. Finally, inclusion was limited to studies originally published in the English language or where translated copies had been made available.

Risk of Bias Assessment
Given that this review focussed on observational studies, the risk of bias assessment for each study was performed independently by J. L. and F. C. T. using the Risk of Bias in Non-Randomized Studies—of Interventions (ROBINS-I), developed by the Cochrane Bias Methods Group and the Cochrane Non-Randomized Studies Methods Group. The ROBINS-I tool includes seven domains of potential bias: (1) bias due to confounding, (2) bias in selection of participants into the study, (3) bias in the classification of interventions, (4) bias due to deviations from intended interventions, (5) bias due to missing data, (6) bias in the measurements of outcomes, and (7) bias in selection of the reported result. A study was deemed to have a low risk of bias overall if it was judged to have a low risk of bias across all domains; a moderate risk of bias overall if it was judged to have a low or moderate risk of bias across all domains; a serious risk of bias overall if it was judged to have a serious risk of bias in at least one domain, but not at a critical risk of bias in any other domain; and a critical risk of bias overall if it was judged to have a critical risk of bias in at least one domain. If there was nothing indicating a serious or critical risk of bias, but there was a lack of information to make a judgment in any of the domains, a study was deemed to have “no information” regarding its risk of bias. Discrepancies in bias classification were resolved by discussion. As recommended, any study with a critical risk of bias was excluded from the subsequent synthesis and analysis.

Outcomes
Although risk of bias was assessed in studies of the association between RAAS inhibitor use and the risk of infection, it was planned from the outset that only severe COVID-19 outcomes (eg, hospitalization, admission to an intensive care unit, intubation, death) would be evaluated by the meta-analysis. Indeed, severe outcomes are most relevant considering that they are the burden to health care systems, whereas risk of infection data have an unknown potential for bias because of changes in COVID-19 testing strategies in outpatient care and, likely, a high rate of missed cases. Severe outcomes that could be pooled from the eligible studies included hospitalization and a combination of intubation and death with COVID-19.

Data Extraction
The main characteristics of each study eligible for inclusion in the meta-analysis were summarized in duplicate by J. L. and F. C. T. into a preformatted spreadsheet. These characteristics included (1) first author names and year of publication, (2) country, (3) study design, (4) sample size, (5) comorbidities, (6) number of relevant severe COVID-19 events, and (7) the weighted estimates for each outcome of interest.

Statistical Analysis
The weighted hazard ratios (HR) and the corresponding 95% CI detailing the association between using an ACE inhibitor or an ARB in monotherapy and hospitalization, intubation, or death with COVID-19 were pooled in fixed-effects meta-analyses. Those using a RAAS inhibitor in monotherapy were compared with those using a non-RAAS inhibitor in monotherapy (ie, a calcium channel blocker or thiazide diuretic [TZD]). A fixed-effects meta-analysis was chosen as the primary analysis given the low number of studies included in the meta-analyses. Indeed, a random-effects meta-analysis may not adequately estimate the heterogeneity and weights when so few studies are available. Recognizing that there are contrasting opinions as to when it is appropriate to use either a fixed- or random-effects model, a random-effects meta-analysis was conducted as a secondary (sensitivity) analysis. Heterogeneity was quantified using the I² statistic (I²>50%) and tested using Cochran’s Q statistic (P<0.10). Publication bias was not assessed as there were fewer than 10 studies available for the analysis. A P value of <0.05 was considered statistically significant. Analyses were performed using R, version 4.0.0 (R-Core Team, Vienna, Austria).

Certainty of the Evidence Assessment
The Grading of Recommendations Assessment, Development and Evaluation (GRADE) was performed in duplicate by J. L. and F. C. T. to provide an assessment of the quality of (ie, certainty of) the evidence produced by the meta-analyses. The GRADE’s official software package, GRADEpro Guideline Development Tool (McMaster University and Evidence Prime Inc.), was used to summarize the findings of the meta-analyses.
RESULTS

Study Selection and Risk of Bias Analysis

The systematic search identified 169 observational studies that assessed the associations between RAAS inhibitor use and the risk of contracting a SARS-CoV-2 infection and/or experiencing severe COVID-19 outcomes (Figure 1). Of those 169 studies, 164 had critical risks of bias and were excluded from the meta-analysis (Figure 2). Among these 164 studies, critical biases were most commonly due to confounding bias (n=157), selection bias (n=146), and bias due to deviations from the intended interventions (n=67). The risk of bias in the classification of the interventions, the measurement of the outcomes, and the selection of the reported result was predominantly low across the entire body of research. Notably, a substantial number of studies failed to provide information about how missing data were handled (n=90) or if important con-interventions (ie, other antihypertensive therapies) were addressed (n=60).

Of the five studies without critical risks of bias, two studies assessed only the association between RAAS inhibitor use and risk of infection (a nonsevere outcome that does not burden health care systems) and, as planned, were not included in the subsequent data synthesis. A third study without critical bias had eligible data in its secondary analysis, but the event rates for the relevant outcomes were not available; and, thus, it could not be pooled in the meta-analysis.

Study Characteristics

Two nationwide studies, one each from France and Sweden, could be included in the meta-analysis (Table 1). Although the study from France also completed analyses on those using a combination of antihypertensive therapies, the meta-analysis considered only outcomes commonly assessed in each study and, thus, included data from all French (n=1 186 987) and Swedish (n=164 655) residents with uncomplicated hypertension who used either an ACE inhibitor, ARB, calcium channel blocker, or TZD in monotherapy (Note: data for French citizens using a TZD in monotherapy were not available). Given that as-treated data were available only in the study from Sweden, only intention-to-treat data were used in the meta-analysis. Both studies excluded those with known cardiovascular and/or kidney diseases in order to limit confounding bias. The follow-up period was similar in both the French and Swedish studies, running from February...
likely driven by the low number of events in the study. The heterogeneity in each mortality analysis was most relevant, that the risk of hospitalization, intubation, or death varies little between those using a RAAS inhibitor and those using a calcium channel blocker or TZD (Table 2). Although the meta-analyses were based on observational studies, certainty in the evidence for each outcome began with a high rating because of the use of the ROBINS-I. There were no reasons to downgrade the certainty of the evidence for each of the hospitalization outcomes. However, given that only
one of two studies provided intubation data in the intubation or death outcomes, certainty of the evidence for these outcomes was downgraded by one level to a moderate rating owing to serious indirectness in the outcomes between studies.

DISCUSSION

This study reveals that current policy regarding the safety of using RAAS inhibitors during the ongoing COVID-19 pandemic is based almost entirely on a body of research that has severe limitations due to critical risk of bias. However, when only studies without critical risk of bias were pooled, results were consistent with the majority of that body of research; indicating that RAAS inhibitor use does not increase the risk of severe COVID-19 outcomes.

Critical risk of bias was most often attributed to confounding bias and/or selection bias, found in 164 of 169 observational studies relevant to this meta-analysis. Confounding bias was introduced mainly by the inclusion of people with preexisting cardiovascular and kidney diseases, confounding factors that are inherently uncontrollable when aiming to isolate the effect of RAAS inhibitor use on COVID-19 outcomes. Selection bias was introduced by the inclusion of samples restricted to people who were tested for/tested positive to a SARS-CoV-2 infection and/or who had been hospitalized due to COVID-19; sampling strategies that form cohorts unrepresentative of the general population.

These biases have the potential to create a spurious within-sample association between two variables, so called collider bias (eg, in the context of RAAS inhibitor—COVID-19 studies: frailty due to cardiovascular disease, with a high likelihood of being prescribed a RAAS inhibitor; and frailty due to an adverse COVID-19 course), that affects the probability of being included in the sample (eg, being hospitalized). To minimize such biases in the context of RAAS inhibitor—COVID-19 observational research, a primary prevention sample of yet uninfected people using RAAS inhibitors or a relevant comparator drug class needs to be studied in order to isolate the interaction between RAAS inhibitor use and COVID-19, not in those already affected by the virus.

Ultimately, only five observational studies used bias-minimized study designs, two of which could be included in the meta-analysis. The conclusion from this research, that RAAS inhibitor use does not increase the risk of severe COVID-19 outcomes, is consistent with the eight randomized controlled trials that have evaluated RAAS inhibitor—COVID-19 associations thus far. Although the 164 studies with critical biases cannot isolate the interaction between RAAS inhibitor use and COVID-19, the value of that research should not be discounted entirely. Indeed, those studies combined contributed to a detailed characterization of the population who experienced a severe COVID-19 disease course, identifying the people (eg, elderly people, people with comorbidities) who need more attention or greater protection (eg, prioritized vaccination) during the ongoing pandemic.

The exclusion of people with preexisting cardiovascular and kidney diseases from the studies pooled in the meta-analyses is likely to prompt questions about the limitations of this study: Do these findings apply to those with such comorbidities? Would these findings

Table 1. Main Characteristics of the Studies Included in the Meta-Analysis

Study	Country	Study period	Population*	Comorbidities	Hospitalization with COVID-19	Intubation or death with COVID-19†
Loader et al, 2021	Sweden	January 1, 2020–June 23, 2020	All residents in Sweden (n=164 655) uncomplicated hypertension using, in monotherapy, an ACE inhibitor (n=47 998) ARB (n=68 239) CCB or TZD (n=48 418)	Those with preexisting cardiovascular disease and kidney diseases were excluded	ACE inhibitor (n=94) ARB (n=135) CCB or TZD (n=107)	ACE inhibitor (n=16) ARB (n=19) CCB or TZD (n=26)
Semenzato et al, 2021	France	February 15, 2020–June 7, 2020	All residents in France (n=1 186 987) uncomplicated hypertension using, in monotherapy, an ACE inhibitor (n=353 236) ARB (n=582 031) CCB (n=251 720)	Those with diabetes, cardiovascular disease, chronic respiratory disease, and/or chronic renal failure in the 5 years before the study were excluded	ACE inhibitor (n=340) ARB (n=690) CCB (n=384)	ACE inhibitor (n=72) ARB (n=148) CCB (n=99)

ACE indicates angiotensin-converting enzyme; ARB, angiotensin II type-I receptor blocker; CCB, calcium channel blocker; and TZD, thiazide diuretic.

*Although only data for treatment by monotherapy are presented in the table, it should be noted that Semenzato et al. (2021) also conducted analyses on those in combination therapy.

†Intubation was only an outcome in the study by Semenzato et al. (2021), meaning only deaths were recorded in Loader et al. (2021).
not be more relevant if the analyses include those with comorbidities, those who are more at risk of severe a COVID-19 disease course? Indeed, it is unknown whether the findings of this meta-analysis extend to those with underlying comorbidities, the proportion of the population who are most at risk of severe COVID-19 outcomes and who represent the majority of people using RAAS inhibitors. Although it is important that this limitation is acknowledged, the fact remains that people with preexisting cardiovascular and kidney diseases could introduce confounding so intractable that statistical methods will not be able to control for this bias, necessitating the exclusion of those people to isolate any interaction between RAAS inhibitors and COVID-19. This methodological consideration represents an effort to produce observational research that, as best as possible, emulates a randomized controlled trial, a methodological principle.

Figure 3. Forest plots for each outcome assessed in the fixed-effects meta-analyses. Presented are the associations between (A) the use of an ACE inhibitor in monotherapy and hospitalization, (B) the use of an ACE inhibitor in monotherapy and intubation or death, (C) the use of an ARB in monotherapy and hospitalization and (D) the use of an ARB in monotherapy and intubation or death. ACEi indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin II type-I receptor blocker; CCB, calcium channel blocker; HR, hazard ratio; and TZD, thiazide diuretic.
Table 2. Summary of Findings Including the Certainty of the Evidence

Outcomes	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	No. of participants (studies)	Certainty of the evidence (GRADE)	Comments
ACE inhibitor use and the risk of hospitalization with COVID-19	164 per 100 000 (108–142)	HR 0.76 (0.66–0.87)	701 372 (2 observational studies)	⬤⬤⬤⬤ HIGH	The risk of hospitalization with COVID-19 differs little between those using an ACE inhibitor and those using a CCB or TZD in monotherapy
ACE inhibitor use and the risk of intubation or death with COVID-19	42 per 100 000 (20–35)	HR 0.64 (0.48–0.85)	701 372 (2 observational studies)	⬤⬤⬤⬤ MODERATE†,‡,§	The risk of intubation or death with COVID-19 differs little between those using an ACE inhibitor and those using a CCB or TZD in monotherapy
ARB use and the risk of hospitalization with COVID-19	164 per 100 000 (126–159)	HR 0.86 (0.77–0.97)	950 408 (2 observational studies)	⬤⬤⬤⬤ HIGH	The risk of hospitalization with COVID-19 differs little between those using an ARB and those using a CCB or TZD in monotherapy
ARB use and the risk of intubation or death with COVID-19	42 per 100 000 (24–40)	HR 0.74 (0.58–0.95)	950 408 (2 observational studies)	⬤⬤⬤⬤ MODERATE†,‡,§	The risk of intubation or death with COVID-19 differs little between those using an ARB and those using a CCB or TZD in monotherapy

GRADE Working Group grades of evidence—High certainty: We are very confident that the true effect lies close to that of the estimate of the effect. Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect. Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect. ACE indicates angiotensin-converting enzyme; ARB, angiotensin II type-1 receptor blocker; CCB, calcium channel blocker; GRADE, Grading of Recommendations Assessment, Development and Evaluation; HR, hazard ratio; and TZD, thiazide diuretic.

*The risk in users of an ACE inhibitor or an ARB (and its 95% CI) is based on the assumed risk in the users of a CCB or TZD and the relative effect of the intervention (and its 95% CI).

Explanations

1. A composite outcome of intubation and death was used in the meta-analysis, but intubation data were not available in Loader et al. (2021), resulting in the certainty of the evidence being downgraded by one level due to serious indirectness.
2. Point estimates vary greatly between each study, but the importance of this is questionable when considering the weighting of each study and does not decrease certainty in the evidence.
3. Heterogeneity is most likely explained by the low number of deaths in Loader et al. (2021).
that seems to have been overlooked in many drug-safety and effectiveness studies during the COVID-19 pandemic, not only those pertaining to RAAS inhibitors. Other potential limitations must also be addressed. This meta-analysis did not conduct an analysis including people on combination therapy with antihypertensive drugs. However, given the results from the nationwide study in France, it would appear that these findings based on monotherapy data could be extended to those on combination therapy. Owing to data availability, only intention-to-treat data were used in the analysis and variations in the prescribed RAAS inhibitor dose were not addressed by the meta-analysis. Thus, it is unclear how an as-treated analysis would affect the findings. However, the nationwide study from Sweden indicated that there is not much variation in the estimates between an intention-to-treat and an as-treated analysis. Finally, both studies in the meta-analysis (like most RAAS inhibitor—COVID-19 research) covered only the first wave of the pandemic, where event rates were relatively low compared with subsequent waves, and when early variants of the virus existed, possibly limiting the data in terms of their relevance to the evolving COVID-19 situation.

This study was not the first systematic review and meta-analysis to assess the associations between RAAS inhibitor use and COVID-19 outcomes. As of December 2021, at least 52 meta-analyses had been conducted, each of which pooled studies that have a critical risk of bias. Critical biases limit confidence in the evidence produced by these meta-analyses as much as they do in each of the studies that they were based on. Current guidelines from the Cochrane Collaboration instruct that these meta-analyses should not have been conducted, that studies with critical risk of bias should not be synthesized. However, only six of the 52 previous meta-analyses followed current guidelines and used the ROBINS-I to assess risk of bias. It is unclear as to why the authors of five of those six studies did not identify any critical risks of bias and proceeded with their meta-analyses. One meta-analysis, however, deviated from the guidelines, establishing their own unstandardized scoring system for the ROBINS-I.

Of the other 46 meta-analyses, only 18 referred to having completed a risk of bias assessment. Whether they recognized it or not, 34 studies used the Newcastle-Ottawa Scale for assessing the risk of bias. The Newcastle-Ottawa Scale, which has not been recommended by the Cochrane Collaboration since well before the COVID-19 pandemic (in a now archived version of the guidelines), provides a quality score where a higher value is interpreted as a lower risk of bias. Although this scale might detect a critical risk of bias in one domain, a study may still be deemed to be of high quality overall and, thus, have a low risk of bias overall because of strengths in other domains; essentially allowing for an important, potentially association-distorting bias(es) to go overlooked and explaining why some studies proceeded with their meta-analyses. In contrast, the ROBINS-I recognises that a critical risk of bias needs to exist in only one domain to limit confidence in an entire study and to provide reason for it to be excluded from a data synthesis. The Cochrane Collaboration’s transition from the Newcastle-Ottawa Scale to the ROBINS-I further reflects the need for more rigor in the design of observational research.

Three meta-analyses acknowledged use of a risk of bias assessment tool that is integrated into the GRADE. This tool, by admission of its creators, was not as comprehensive as other methods available at the time (Note: created long before the development for the ROBINS-I); and like the Newcastle-Ottawa Scale, it also overlooks important sources of bias. Only eight out of 52 meta-analyses used the GRADE to summarize their findings and determine the certainty of their evidence; a process that is crucial in being able to properly interpret the clinical importance of findings from a meta-analysis (eg, as demonstrated in this study: the difference between concluding a protective effect and no effect). Collectively, this poor methodology demonstrates a lack of knowledge around the current guidelines for systematic reviews and meta-analyses, among authors, reviewers, and journal editors alike.

CONCLUSIONS

Despite wavering interest, additional studies related to COVID-19 risk are inevitable, emphasizing the urgent need for this present systematic review and meta-analysis. Indeed, to improve future research, the inadequate methodologies used by almost an entire body of observational research, as well as by the meta-analyses that collated those studies, needed to be highlighted. If further RAAS—COVID-19 observational studies are to be conducted, it would be interesting if they extended follow-up to include subsequent waves of the pandemic, where event rates were substantially higher and when new variants of COVID-19 exist(ed); evaluating if associations change over time with variations in infection rates and in the virus. That research must address the methodological issues (eg, confounding bias and selection bias) identified in most previous studies in order to, as best as possible, isolate the interaction between RAAS inhibitor use and COVID-19. Researchers should also recognize that the methodological principles needed to improve RAAS—COVID-19 studies extend to other drug safety and effectiveness studies; methodological approaches that are crucial to enhancing the scientific value of observational research.
In summary, this study presents data that, fortunately, support directives from health authorities early in the pandemic, that antihypertensive therapies could be continued safely as per normal. However, it is not certain whether the effect estimates would remain consistent throughout subsequent waves of the pandemic or whether the findings are applicable to those with underlying comorbidities. Most significantly, this study reveals the extent of bias in RAAS inhibitor—COVID-19 studies, showing how wrong things can go when there is carelessness in research; that poorly designed studies continue, with little question, to direct subsequent research and health policies alike. This raises an important question: Have research methods and/ or peer review processes been temporarily weakened during the surge of COVID-19 research, potentially because of a desire to be the first published or to be the first to publish, or is this lack of rigor a systemic problem that also exists outside pandemic-based research?

ARTICLE INFORMATION

Received January 5, 2022; accepted April 7, 2022.

Affiliations

Department of Medical Sciences, Uppsala University, Uppsala, Sweden (J.L., E.L., J.S.); Inserm U1300 – HP2, CHU Grenoble Alpes, Grenoble, France (J.L.); Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (F.C.T.); Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia (F.C.T.); and The George Institute for Global Health, University of New South Wales, Sydney, Australia (J.S.).

Acknowledgments

Author contributions: Dr Jordan Loader developed the concept and the design of the study. Dr Loader and Miss Frances Taylor were responsible for acquisition of the data. Dr Loader and Dr Erik Lampa were responsible for data analysis. All authors in addition to Professor Johan Sundström, contributed to the interpretation of the data and to the production of the article. All authors approved the final version of the article.

Sources of Funding

This project (Dr Jordan Loader) has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement no. 898829. This research was also supported by funding from the Swedish Heart-Lung Foundation and Anders Wiflóf.

Disclosures

Dr Jordan Loader has completed medical writing services, separate of this study, for AstraZeneca; Professor Johan Sundström reports stock ownership in companies providing services to Itrim, Amgen, Janssen, Novo Nordisk, Eli Lilly, Boehringer, Bayer, Pfizter, Takeda, and AstraZeneca. The remaining authors have no disclosures to report.

Supplemental Material

Data S1
Tables S1–S2
Figure S1

REFERENCES

1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052
2. Nishima M, Wang DW, Han Y, Lewis DB, Wu JQ. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17:543–558. doi: 10.1038/s41569-020-0413-9
3. Ferrari OM, Jessup J, Chappell MC, Averyl DB, Brosnihan KB, Tallant EA, Diz DL, Gallagher PE. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111:2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461
4. Ishiyama Y, Gallagher PE, Averill DB, Brosnihan KB, Ferrari CM. Upreregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43:970–976. doi: 10.1161/HYPO.01018.501478-2
5. Bramstedt KA. The carriage of substandard research during the COVID-19 pandemic: a call for quality. J Med Ethics. 2020;46:803–807. doi: 10.1136/medethics-2020-106494
6. Griffith GJ, Morris TT, Tuddall MJ, Herbert A, Mancano G, Pike L, Sharp GC, Sterne J, Palmer TM, Davey Smith G, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat Commun. 2020;11:5749. doi: 10.1038/s41467-020-19478-2
7. Alamer AA, Almulhim AS, Alrashed AA, Abraham I. Mortality, severity, and hospital admission among COVID-19 patients with ACEI/ARB use: a meta-analysis stratifying countries based on response to the first wave of the pandemic. Healthcare (Basel). 2021;9:127. doi: 10.3390/healthcare9020127
8. Aparisi A, Catalá P, Aram-Santos IU, Marcos-Mangas M, López-Otero D, Veras C, López-Pais J, Cabezón-Villalba G, Cacho Antonio CE, Candela J, et al. Chronic use of renin–angiotensin–aldosterone inhibitors in hypertensive COVID-19 patients: results from a Spanish registry and meta-analysis. Med Clin (Barc). 2021;158:315–323. doi: 10.1016/j.medcli.2021.04.005
9. Baral R, Tsampasian V, Debaksi M, Moran B, Garg P, Clark A, Vassiliou VS. Association between renin-angiotensin-aldosterone system inhibitors and clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. JAMA Netw Open. 2021;4:e213594. doi: 10.1001/jamanetworkopen.2021.3594
10. Baral R, White M, Vassiliou VS. Effect of renin-angiotensin-aldosterone system inhibitors in patients with COVID-19: a systematic review and meta-analysis of 28,872 patients. Curr Atheroscler Rep. 2020;22:81. doi: 10.1007/s11883-020-00880-6
11. Barochiner J, Martinez R. Use of inhibitors of the renin-angiotensin system in hypertensive patients and COVID-19 severity: a systematic review and meta-analysis. J Clin Pharm Ther. 2020;45:1244–1252. doi: 10.1111/jcpt.13246
12. Bavishi C, Whelton PK, Mancia G, Conrao G, Messerli FH. Renin-angiotensin system inhibitors and all-cause mortality in patients with COVID-19: a systematic review and meta-analysis of observational studies. J Hypertens. 2021;39:784–794. doi: 10.1093/ HJH/000000002784
13. Bezabih YM, Bezabih A, Alamneh E, Peterson GM, Bezabih W. Comparison of renin–angiotensin–aldosterone system inhibitors with other antihypertensives in association with coronavirus disease-19 clinical outcomes. BMC Infect Dis. 2021;21:527. doi: 10.1186/s12879-021-06088-6
14. Biwas M, Kali MSK. Association of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers with risk of mortality, severity or SARS-Cov-2 test positivity in COVID-19 patients: meta-analysis. Sci Rep. 2021;11:5012. doi: 10.1038/s41598-021-84678-9
15. Cai XJ, Tay JCK, Kui SL, Tin AS, Tan VH. Impact of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on in-hospital mortality among patients with COVID-19: a systematic review and meta-analysis. Singapore Med J. 2021;62:563–567. doi: 10.11622/smedj.2020159
16. Caldeira D, Alves M, Gouveia e Melo R, Silvério António P, Cunha N, Nunes-Ferreira A, Prada L, Costa J, Pinto FJ. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in COVID-19: a systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2021;30:100627. doi: 10.1016/j. ijch.2020.100627
17. Chan C-K, Yang Y-S, Liao H-W, Tsai I-J, Sun C-Y, Pan H-C, Chuhe JS, Wang J-T, Wu V-C, Chu T-S, et al. Renin-angiotensin-aldosterone system inhibitors and risks of severe acute respiratory syndrome
coronavirus 2 infection: a systematic review and meta-analysis. Hypertension. 2020;76:1563–1571. doi: 10.1161/HYPERTENSIONAHA.120.15989

18. Chu C, Zeng S, Hasan AA, Hocher C-F, Krämer BK, Hocher B. Comparison of infection risks and clinical outcomes in patients with and without SARS-Cov-2 lung infection under renin-angiotensin-aldosterone system blockade: systematic review and meta-analysis. Br J Clin Pharmacol. 2021;87:2475–2492. doi: 10.1111/bcp.14890

19. COVID-19 Risk and Treatments (CORIST) Collaboration. RAAS inhibitors are not associated with mortality in COVID-19 patients: findings from an observational multicenter study in Italy and a meta-analysis of 19 studies. Vascul Pharmacol. 2020;135:106805. doi: 10.1016/j.vph.2020.106805

20. Dai X-C, An ZY, Wang ZY, Wang Z-Z, Wang Y-R. Associations between the use of renin-angiotensin system inhibitors and the risks of severe COVID-19 and mortality in COVID-19 patients with hypertension: a meta-analysis of observational studies. Front Cardiovasc Med. 2021;8:609857. doi: 10.3389/fcvm.2021.609857

21. Fernando ME, Drovandi A, Colledge J. Meta-analysis of the association between angiotensin pathway inhibitors and COVID-19 severity and mortality. Syst Rev. 2021;10:243. doi: 10.1186/s13643-021-01802-6

22. Flacco ME, Acuti Martellucci C, Bravi F, Parruti G, Cappadona R, Mascitelli A, Manfredini R, Mantovani LG, Manzoli L. Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: a meta-analysis. Heart. 2020;106:1519–1524. doi: 10.1136/heartjnl-2020-317356

23. Greco A, Buccheri S, D’Arrigo P, Calderone D, Agnello F, Monte M, Milluzzo RP, Franchina AG, Ingalia S, Capodanno D. Outcomes of renin-angiotensin-aldosterone system blockers in patients with COVID-19: a systematic review and meta-analysis. Eur J Heart Cardiovasc Pharmacother. 2020;6:335–337. doi: 10.1093/ejcv/pva064

24. Grover A, Obero M. A systematic review and meta-analysis to evaluate the clinical outcomes in COVID-19 patients on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Eur J Heart Cardiovasc Pharmacother. 2021;7:148–157. doi: 10.1093/ejcv/pva064

25. Guo X, Zhu Y, Hong Y. Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in hypertension: a meta-analysis. Hypertension. 2020;76:e13–e14. doi: 10.1161/HYPERTENSIONAHA.120.15572

26. Hasan SS, Kow CS, Hadi MA, Zacdi STR, Merchant HA. Mortality and disease severity among COVID-19 patients receiving renin-angiotensin system inhibitors: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2020;20:571–590. doi: 10.1007/s40256-020-00395-6

27. Hassib M, Hamilton S, Elkholy A, LiY, Kaplan AC, Renin-angiotensin-aldosterone system inhibitors and COVID-19: a meta-analysis and systematic review. Cureus. 2021;13:e13124. doi: 10.7759/cureus.13124

28. Jia N, Zhang G, Sun X, Wang Y, Zhao S, Chi W, Dong S, Xia J, Zeng P, Liu D. Influence of angiotensin converting enzyme inhibitors/angiotensin receptor blockers on the risk of all-cause mortality and other clinical outcomes in patients with confirmed COVID-19: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2021;23:1651–1663. doi: 10.1111/jch.14329

29. Kashour T, Bin Abdulhak AA, Tiayeh H, Hassett LC, Noman A, Mohsen A, Al-Mallah MH, Tiayeh JM. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers and mortality among COVID-19 patients: a systematic review and meta-analysis. Am J Ther. 2020. [prepub ahead of print]. doi: 10.1097/MJT.0000000000001281

30. Kaur U, Chakrabarti SS, Patel TK. Renin-angiotensin-aldosterone system blockers and region-specific variations in COVID-19 outcomes: findings from a systematic review and meta-analysis. Ther Adv Drug Saf. 2021;12:2042098621101344. doi: 10.1177/2042098621101345

31. Kerneis M, Ferrante A, Guedeney P, Vicaud E, Montalescot G. Severe acute respiratory syndrome coronavirus 2 and renin-angiotensin system blockers: review and pooled analysis. Arch Cardiovasc Dis. 2020;113:797–810. doi: 10.5152/acvd.2020.09.002

32. Koshy AN, Murphy AC, Farouque O, Ramchand J, Burrell LM, Yudi MB. Renin-angiotensin system inhibition and risk of infection and mortality in COVID-19: a systematic review and meta-analysis. Intern Med J. 2020;50:1488–1474. doi: 10.1111/imi.15002

33. Kurdi A, Abutheraa N, Akl L, Godman B. A systematic review and meta-analysis of the use of renin-angiotensin system drugs and COVID-19 clinical outcomes: what is the evidence so far? Pharmacol Res Perspect. 2020;8:e00666. doi: 10.1002/prp2.666

34. Laurentius A, Mendel B, Prakoso C. Clinical outcome of renin-angiotensin-aldosterone system blockers in treatment of hypertensive patients with COVID-19: a systematic review and meta-analysis. Egypt J Heart J. 2021;73:13.
for COVID-19: systematic review and meta-analysis. Open Heart. 2020;7:e001353. doi: 10.1136/openhrt-2020-001353

50. Tieyeh IM, Bin Abdulhak AA, Tieyeh H, Al-Mallah MH, Sorial MR, Hassett LC, Siller-Matula JM, Kashour T. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers and the risk of SARS-CoV-2 infection or hospitalization with COVID-19 disease: a systematic review and meta-analysis. Am J Ther. 2020;27:e74–e84. doi: 10.1097/MTJ.0000000000001318

51. Usman MS, Siddiqi TJ, Khan MS, Ahmed A, Ali SS, Michos ED, Hall ME, Krasusi RA, Greene SJ, Butler J, et al. A meta-analysis of the relationship between renin-angiotensin-aldosterone system inhibitors and COVID-19. Am J Cardiol. 2020;130:159–161. doi: 10.1016/j.amjcard.2020.05.038

52. Wang Y, Chen L, Li Y, Zhang L, Wang Y, Yang S, Xiao A, Qin Q. The use of renin-angiotensin-aldosterone system (RAAS) inhibitors is associated with a lower risk of mortality in hypertensive COVID-19 patients: a systematic review and meta-analysis. J Med Virol. 2021;93:1370–1377. doi: 10.1002/jmv.26625

53. Xie Q, Tang S, Li Y. The divergent protective effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blocker on clinical outcomes of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Ann Palliat Med. 2021;apm-21-972. doi: 10.21037/apm-21-972

54. Xu J, Tieyeh Y, Shang L, Gu X, Fan G, Chen Y, Tian R, Zhang S, Cao B. The effect of prior angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment on coronavirus disease 2019 (COVID-19) susceptibility and outcome: a systematic review and meta-analysis. Clin Infect Dis. 2021;72:e691–e613. doi: 10.1093/cid/ciaa1592

55. Xue Y, Sun S, Cai J, Zeng L, Wang S, Wang S, Li J, Sun L, Huo J. Effects of ACEI and ARB on COVID-19 patients: a meta-analysis. J Renin Angiotensin Aldosterone Syst. 2020;21:14703202020981321. doi: 10.1177/1470320320981321

56. Yokoyama Y, Akawa T, Takagi H, Briassoulis A, Kuno T. Association of renin-angiotensin-aldosterone system inhibitors with mortality and testing positive COVID-19: meta-analysis. J Med Virol. 2021;93:2084–2089. doi: 10.1002/jmv.26588

57. Zhang G, Wu Y, Xu R, Du X. Effects of renin-angiotensin-aldosterone system inhibitors on disease severity and mortality in patients with COVID-19: a meta-analysis. J Med Virol. 2021;93:2287–2300. doi: 10.1002/jmv.26695

58. Zhang X, Yu J, Pan LY, Jiang H-Y. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: a systematic review and meta-analysis. Pharmacol Res. 2020;158:104927. doi: 10.1016/j.phrs.2020.104927

59. Covidence. Available at: https://www.covidence.org/. Accessed June 29, 2021.

60. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch V, Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Available at: www.training.cochrane.org/handbook. Accessed June 18, 2021.

61. Nikolakopoulou A, Mavridis D, Salanti G. Demystifying fixed and random effects meta-analysis. Evid Based Ment Health. 2014;17:53–57.

62. Loader J, Khouri C, Taylor F, Stewart S, Lorenzen C, Cracowski J-L. The effect of prior angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker use among outpatients diagnosed with COVID-19. Am J Cardiol. 2020;150:150–157. doi: 10.1016/j.amjcard.2020.07.007

63. Bae DJ, Tehrani DM, Rababda SV, Frost M, Parkiv RH, Calfon-Press M, Aksoy O, Umar S, Ardhehal R, Rabbani A, et al. Angiotensin converting enzyme inhibitor and angiotensin II receptor blocker use among COVID-19 patients. Results of a prospective study on a hospital-based cohort. J Infect Public Health. 2020;14:162–166. doi: 10.4081/jiphm.2020.1315

64. Anjana RM, Bhopal R, Ramphal R, Ralhekh A, Rangarajan S, HPAF D, Choudhary S, et al. Hypertension, medications and severe COVID-19 outcomes in patients with hypertension. BMJ Open. 2021;11:e047548. doi: 10.1136/bmjopen-2021-047548

65. Basu A, Agwu JC, Barlow N, Lee B. Hypertension is the major predictor of poor outcomes among inpatients with COVID-19 infection in the UK: a retrospective cohort study. BMJ Open. 2021;11:e047561. doi: 10.1136/bmjopen-2020-047561

66. Bauer AZ, Gore R, Sama SR, Rosiello R, Garber L, Sundaresan D, Doltshah S. Yaghooobzadeh K, Savaj S. Angiotensin converting enzyme inhibitors, a risk factor of poor outcome in diabetic patients with COVID-19 infection. Iran J Kidney Dis. 2020;14:482–487.
113. El-Battrawy I, Núñez-Gil U, Abumasyaleh M, Estrada V, Manuel Becerra-Muñoz V, Uribarri A, Fernández-Rozas I, Feltes G, Arroyo-Espilguero R, Trabattoni D, et al. COVID-19 and the impact of arterial hypertension—an analysis of the international HOPE COVID-19 Registry (Italy-Spain-Germany). Eur J Clin Invest. 2021;51.e13582. doi: 10.1111/eci.13582

114. Fabbri R, Arrighi D, AlYouseh S, Bastaki H, Almazeedi S, Al-Haddad M, Jamali M, AlSabbah S. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blocker (ARB) are protective against ICU admission and mortality for patients with COVID-19 disease. Front Med (Lausanne). 2021;8:600385. doi: 10.3389/fmed.2021.600385

115. Felice C, Nardin C, Di Tanna GL, Grossi U, Bernardi E, Scaldeferrì L, Romagnoli M, Tonon L, Cavasin P, Novello S, et al. Use of RAAS inhibitors and risk of clinical deterioration in COVID-19: results from an Italian cohort of 133 hypertensions. Am J Hypertens. 2020;33:94-948. doi: 10.1016/j.amjha.2019.09.006

116. Feng Z, Li J, Yao S, Yu Q, Zhou W, Mao X, Li H, Kang W, Ouyang X, Mei Ji, et al. Clinical factors associated with progression and prolonged viral shedding in COVID-19 patients: a multicenter study. Aging Dis. 2020;11:1069-1081. doi: 10.14336/AD.2020.0630

117. Ferrante G, Fazzari F, Cozzi O, Maurina M, Bragato R, D’Orazio F, Torrisi C, Lanza E, Indolfi E, Donghi V, et al. Risk factors for myocardial injury and death in patients with COVID-19: insights from a cohort study with chest computed tomography. Cardiovasc Res. 2020;116:2239-2246. doi: 10.1093/cvr/cvaa193

118. Fosbol EL, Butt JH, Östergaard L, Andersson C, Selmer C, Kragholm K, Schou M, Rørisk S, Øchs M, Gislason GH, Ghosh VS, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality. JAMA. 2020;324:168-177. doi: 10.1001/jama.2020.11301

119. Fröhlich GM, Jeschke E, Echter U, Thiele H, Alharri L, Reinthaler M, Kastrati A, Leitner DM, Skurk C, Landmesser U, et al. Impact of oral anticoagulation on clinical outcomes of COVID-19: a nationwide cohort study of hospitalized patients in Germany. Clin Res Cardiol. 2021;110:1041-1050. doi: 10.1007/s00392-020-1783-x

120. Gao C, Cai Y, Zhang K, Zhou L, Zhang Y, Li W, Yang S, Zhao X, et al. Association of hypertension and antihypertensive treatment with severe COVID-19 disease with ACE inhibitors and angiotensin II blockers with severity of COVID-19: a multicenter, prospective study. J Cardiovasc Pharmacol Ther. 2020;26:244–252. doi: 10.1177/1074248420976279

121. Gaspar P, Perreira I, Antunes Meireles P, Bessa F, Dias Silva V, Abrantes AM, Pais de Lacerda A, Mota C. The effect of chronic and inhospital exposure to renin-angiotensin system inhibitors on the outcome and inflammatory state of coronavirus disease 2019 adult inpatients. Int J Hypertens. 2021;2021:5517441. doi: 10.1155/2021/5517441

122. Gault N, Esposito-Farèse M, Revest M, Inamo J, Cabié A, Polard G. Therapy with agents acting on the renin-angiotensin system and risk of pneumonia. J Am Heart Assoc. 2020;9:e1539–1545. doi: 10.1161/JAHA.120.015398

123. Genet B, Vidal J-S, Cohen A, Bouly C, Beunardeau M, Marine Haré L, Goncalves A, Boudal Y, Hernandorena I, Bally H, et al. COVID-19 in-hospital mortality and use of renin-angiotensin system blockers in geriatrics patients. J Am Med Dir Assoc. 2020;21:1539–1545. doi: 10.1016/j.jamda.2020.09.004

124. Georges J-L, Giffes F, Cotech H, Bertrand A, De Tournemire M, Harrison DA, Rowan K, Aveyard P, Pavord ID, Watkinson PJ. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart. 2020;106:1503–1511. doi: 10.1136/heartjnl-2020-317393

125. Holt A, Mizraik I, Lamberts M, Lav MP. Influence of inhibitors of the renin-angiotensin system on risk of acute respiratory distress syndrome in Danish hospitalized COVID-19 patients. J Hypertens. 2020;38:1612–1613. doi: 10.1093/jhype/jtaa676

126. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M, Cicero AFG, Minuz P, Muiesan ML, Mulatero P, et al. Age and multimorbidity predict death among patients with COVID-19: results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension. 2020;76:366–372. doi: 10.1161/HYPERTENSIONAHA.120.15324

127. Imam Z, Odish F, Gill I, O’Connor D, Armstrong J, Vanood A, Ibrovce O, Hanna A, Ranski A, Halalau A. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J Intern Med. 2020;288:469–476. doi: 10.1111/joim.13119

128. Jung C, Bruno RR, Wernly B, Joannidis M, Oeyen S, Zafeiridis T, Andersen FH, Moreno R, Fernandes AM, et al. Inhibitors of renin-angiotensin-aldosterone system blockers and mortality in COVID-19. JAMA Intern Med. 2021;8:600385. doi: 10.1155/2021/10.1177/1074248420976279

129. Kang S-H, Lee D-H, Han K-D, Jung J-H, Park S-H, Dai AM, Wu HG, Yoon O-H, Youn T-J, Chae H-I, et al. Hypertension,
renin-angiotensin-aldosterone-system-blocking agents, and COVID-19. Clin Hypertens. 2021;27:11. doi: 10.1186/s40885-021-00168-0

153. Khans KS, Reed-Embleton H, Lewis J, Bain P, Mahmoud S. Angiotensin converting enzyme inhibitors do not increase the risk of poor outcomes in COVID-19 disease. A multi-centre observational study. Scott Med J. 2020;65:150–153. doi: 10.1177/003627202095926

154. Khera R, Clark C, Lu Y, Guo Y, Ren S, Truax B, Spatz ES, Murugiah K, Lin Z, Omer SB, et al. Association of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and death in hypertensive patients with coronavirus disease-19. J Am Heart Assoc. 2021;10:e18086. doi: 10.1161/JAHA.120.018086

155. Kim E, Kim YC, Park YJ, Jung J, Lee JP, Kim H. Evaluation of the prognosis of COVID-19 patients according to the presence of underlying diseases and drug treatment. Int J Environ Res Public Health. 2021;18:5342. doi: 10.3390/ijerph18105342

156. Kim H-S, Kang M, Kang G. Renin-angiotensin system modulators and other risk factors in COVID-19 patients with hypertension: a Korean perspective. BMC Infect Dis. 2021;21:175. doi: 10.1186/s12879-021-06585-8

157. Kim J, Kim DW, Kim KI, Kim HB, Kim JH, Lee YG, Byeon KH, Cheong HK. Korean Society of Hypertension. Compliance of angiotensin-converting enzyme inhibition and risk of coronavirus disease 2019: a cohort study using big data from the Korean National Health Insurance Service. J Korean Med Sci. 2020;35:e232. doi: 10.3346/jkms.2020.35.e232

158. Kim JH, Baek YH, Lee H, Choe YJ, Shin HJ, Shin JY. Clinical outcomes of COVID-19 following the use of angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers among patients with hypertension in Korea: a nationwide study. Epidemiol Health. 2021;43:e2021004. doi: 10.4178/eh2021004

159. Kim MK, Jeon JH, Kim SW, Moon JS, Cho NH, Han E, You JH, Lee JY, Hyun M, Park JS, et al. The clinical characteristics and outcomes of patients with moderate-to-severe coronavirus disease 2019 infection and diabetes in Daegu, South Korea. Diabetes Metab J. 2020;44:602–613. doi: 10.4093/dmj.2020.1146

160. Kocayigit I, Kocayigit H, Yaylaci S, Can Y, Erdem AF, Karabay O. Adverse impact of renin-angiotensin system inhibitors and COVID-19 complications. Eur Heart J Cardiov Pharmaco. 2021;246:434–436. doi: 10.1093/ehjcvp/pva062

161. Li C, Tian Y, Liu Y, Wei C, Zhang K, Zhang Y, Zhong M, Zhang C, Zhang Y, Zhang HK; Korean Society of Hypertension. Compliance of antihypertensive medication and risk of coronavirus disease 2019: a cohort study using big data from the Korean National Health Insurance Service. J Korean Med Sci. 2020;35:e232. doi: 10.3346/jkms.2020.35.e232

162. Lim JH, Cho JH, Jeon Y, Lee YG, Jeon S, Noh HW, Lee YH, Lee J, Chung H-H, et al. Adverse impact of renin-angiotensin system blockade on the clinical course in hospitalized patients with severe COVID-19: a retrospective cohort study. Sci Rep. 2020;10:20250. doi: 10.1038/s41598-020-7691-5

163. Loader J, Lampa E, Gustafsson S, Cars T, Sundström J. Renin-angiotensin aldosterone system inhibitors in primary prevention of COVID-19. J Am Heart Assoc. 2021;10:e2021154. doi: 10.1161/ JAHA.120.021154

164. López-Otero D, López-Pais J, Cacho-Antonio AE, Antúnez-Muñoz PJ, González-Ferrer T, Pérez-Pozoa M, Otero-García O, Díaz-Fernández B, Bastos-Fernández M, Bouzas-Cruz N, et al. Impact of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on COVID-19 in a western population. CARDIOVIREGistry. Rev Esp Cardiol (Engl Ed). 2021;74:175–182.

165. Lozano-Montoya I, Quezada-Feijoó M, Jaramillo-Hidalgo G, Garmendia-Prieto B, Lisette-Carrillo P, Gómez-Pavón FJ. Mortality risk factors in a Spanish cohort of oldest-old patients hospitalized with COVID-19 in an acute geriatric unit: the OCTA-COVID study. Geriatr Med. 2021;12:1169–1180. doi: 10.1016/j.sagep.2021-00541-0

166. Ma Y, Zhang Y, Li S, Yang H, Li H, Cao Z, Xu F, Sun L, Wang Y. Sex differences in association between anti-hypertensive medications and risk of COVID-19 in middle-aged and older adults. Drugs Aging. 2021;38:921–930. doi: 10.1007/s40266-021-00886-y

167. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone-system blockers and the risk of Covid-19. N Engl J Med. 2020;382:2431–2440. doi: 10.1056/NEJMo a2006923

168. Martinez-Botía P, Bernardo A, Acebes-Huerta A, Caro A, Leoz B, Martínez-Carballoira E, Sanchez-Moncada A, Soriano-Aguilera C, Soto I, Gutiérrez L. Clinical management of hypertension, inflammation and thrombosis in hospitalized COVID-19 patients: impact on survival and concerns. J Clin Med. 2021;10:1073. doi: 10.3390/jcm100501073

169. Martinez-Dei Rio J, Piquer-Flores J, Martin N-S, de la Sierra P, Negreira-Caamaño M, Águila-Gordo D, Mateo-Gómez C, Salas-Bravo D. Rodríguez-Martínez M. Comparative analysis between the use of renin-angiotensin system antagonists and clinical outcomes of hospitalized patients with COVID-19 respiratory infection. Med Clin (Engl Ed). 2020;155:473–481. doi: 10.1016/j.medcl.2020.07.013

170. Mayer MA, Vidal-Alaball J, Puigdollvel-Sánchez A, Marín Gomez FX, Leis A, Mendioroz PJ. Clinical characterization of patients with COVID-19 in primary care in Catalonia: retrospective observational study. JMIR Public Health Surveill. 2021;7:e254. doi: 10.2196/254

171. Mehta N, Kaira A, Nowacki AS, Anjewierden S, Han Z, Bhat P, Carmona-Rubio AE, Jacob M, Procop GW, Harrington S, et al. Association of use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1020–1026. doi: 10.1001/jamacardio.2020.1825

172. Meng X, Liu Y, Wei C, Zhang K, Zhang Y, Zhong M, Zhang C, Zhang Y. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers improved the outcome of patients with severe COVID-19 and hypertension. Sci China Life Sci. 2021;64:836–839.

173. Million M, Lagier J-C, Gautret P, Colson P, Fourrier P-E, Amranne S, Hocquart M, Maille M, Estévez-Vieira V, Doudier B, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin.
in-hospital outcomes of COVID-19 pneumonia in patients with hypertension. Arter Hypertens. 2021;25:7–14. doi: 10.5633/AHA.2021.0004

205. Shah P, Owens J, Franklin J, Jani Y, Kumar A, Doshi R. Baseline use of angiotensin-converting enzyme inhibitor/AT1 blocker and outcomes in hospitalized coronavirus disease 2019 African-American patients. J Hypertens. 2020;38:2537–2541. doi: 10.1097/HJH.00000000000002584

206. Soleimani A, Kazemian S, Karbalai Saleh S, Aminroooya A, Shajari Z, Hadadi A, Talebpour M, Sedagehian H, Payandemehr P, Sotoodehnia M, et al. Effects of angiotensin receptor blockers (ARBs) on in-hospital outcomes of patients with hypertension and confirmed or clinically suspected COVID-19. Am J Hypertens. 2020;33:1102–1111. doi: 10.1093/ajh/hpaa149

207. Sofer MJ, Noorjizzi M, Abramowicz D, de Arriba G, Basile C, van Buren M, Covic A, Crespo M, Duivendood R, Massy ZA, et al. Renin-angiotensin system blockers and the risk of COVID-19–related mortality in patients with kidney failure. Clin J Am Soc Nephrol. 2021;16:1061–1072. doi: 10.2215/CJN.18961120

208. Son M, Seo J, Yang S. Association between renin-angiotensin-aldosterone system inhibitors and COVID-19 infection in South Korea. Hypertension. 2020;76:742–749. doi: 10.1161/HYPERTENSIONAHA.120.154844

209. Stevens JS, King KL. Robinsons-Juezey SY, Khairallah P, Toma K, Alvarado Verduzco H, Daniel E, Douglas D, Moses AA, Peleg Y, et al. High rate of renal recovery in survivors of COVID-19 associated acute renal failure requiring renal replacement therapy. PLoS One. 2020;15:1–17. doi: 10.1371/journal.pone.0241410

210. Takunlenejah H, Hosseinie K, Sedagheh S, Pourhosseinie H, Lotfi-Tokaldany M, Masoudkarib F, Sattartabar B, Masoudi M, Shafiee A, Badalabadi RM, et al. Clinical implications and indicators of mortality among patients hospitalized with concurrent COVID-19 and myocardial infarction. Turk Kardiyol Dern Ars. 2021;49:293–302. doi: 10.5453/tda.2021.14331

211. Tedeschi S, Giannella M, Bartoletti M, Abramo M, Arribas J, Guerrero J, Ca стр. Gómez-Arenas A, et al. Association between cardiovascular disease, cardiovascular drug therapy, and in-hospital outcomes in patients with COVID-19 data from a single large registry in Sweden. Kardiol Pol. 2021;79:773–780. doi: 10.3394/KP15990

212. Tettow S, Segiet-Siewicka A, O’Sullivan R, O’Halloran S, Aparisi R, Toth I, Espíndola E, Rojas L, et al. Intubation timing as determinant of outcome in patients with acute respiratory distress syndrome. BMJ Open. 2020;10:e021577. doi: 10.1136/bmjopen-2020-041577

213. Vila-Corcoles A, Ochoa-Gondar O, Satué-Gracia E, Torrejó-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, Diego-Cabanes C, Bejarano-Romero F, Basora-Gallissà J. Influence of prior comorbidities and chronic medications use on the risk of COVID-19 in adults: a population-based cohort study in Tarragona, Spain. BMJ Open. 2020;10:e041577. doi: 10.1136/bmjopen-2020-041577

214. Vila-Corcoles A, Ochoa-Gondar O, Satué-Gracia E, Ochoa-Gondar O, Torrejó-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, Diego-Cabanes C, Bejarano-Romero F, Basora-Gallissà J. Influence of prior comorbidities and chronic medications use on the risk of COVID-19 in adults: a population-based cohort study in Tarragona, Spain. J Am Heart Assoc. 2022;11:e052589. doi: 10.1161/JAHA.122.025289

215. Vila-Corcoles A, Ochoa-Gondar O, Satué-Gracia E, Ochoa-Gondar O, Torrejó-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, Diego-Cabanes C, Bejarano-Romero F, Rovirosa-Vieiana D, et al. Use of distinct anti-hypertensive drugs and risk for COVID-19 among hypertensive people: a population-based cohort study in Southern Catalonia, Spain. J Clin Hypertens (Greenwich). 2020;22:1379–1388. doi: 10.1111/jch.14584

216. Vila-Corcoles A, Ochoa-Gondar O, Satué-Gracia E, Ochoa-Gondar O, Torrejó-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, Diego-Cabanes C, Bejarano-Romero F, Basora-Gallissà J. Influence of prior comorbidities and chronic medications use on the risk of COVID-19 in adults: a population-based cohort study in Tarragona, Spain. BMJ Open. 2020;10:e041577. doi: 10.1136/bmjopen-2020-041577

217. Vila-Corcoles A, Ochoa-Gondar O, Satué-Gracia E, Ochoa-Gondar O, Torrejó-Fraga C, Gomez-Bertomeu F, Vila-Rovira A, Hospital-Guardiola I, Diego-Cabanes C, Bejarano-Romero F, Basora-Gallissà J. Influence of prior comorbidities and chronic medications use on the risk of COVID-19 in adults: a population-based cohort study in Tarragona, Spain. J Am Heart Assoc. 2022;11:e052589. doi: 10.1161/JAHA.122.025289
versus continuation of renin–angiotensin system inhibitors in COVID-19 (ACEI-COVID): a prospective, parallel group, randomised, controlled, open-label trial. *Lancet Respir Med.* 2021;9:863–872. doi: 10.1016/S2213-2600(21)00214-9

235. Cohen JB, Hartt TC, William P, Sweitzer N, Rosado-Santander NR, Medina C, Rodriguez-Mori JE, Renna N, Chang TI, Corrales-Medina V, et al. Continuation versus discontinuation of renin–angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial. *Lancet Respir Med.* 2021;9:275–284. doi: 10.1016/S2213-2600(20)30558-0

236. Duarte M, Pelorosso F, Nicolosi LN, Victoria Salgado M, Vetulli H, Aquieri A, Azzato F, Castro M, Coyle J, Davolos I, et al. Telmisartan for treatment of Covid-19 patients: an open multicenter randomized clinical trial. *EClinicalMedicine.* 2021;37:100962. doi: 10.1016/j.eclinm.2021.100962

237. Geriak M, Haddad F, Kular R, Greenwood KL, Habib M, Habib C, Willms D, Sakoulas G. Randomized prospective open label study shows no impact on clinical outcome of adding losartan to hospitalized COVID-19 patients with mild hypoxemia. *Infect Dis Ther.* 2021;10:1323–1330. doi: 10.1007/s40121-021-00453-3

238. Lopes RD, Macedo AVS, de Barros E Silva PGM, Moll-Bernardes RJ, Dos Santos TM, Miazza L, Feldman A, D’Andrea Saba Arruda G, de Albuquerque DC, Camiletti AS, et al. Effect of discontinuing vs continuing angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: a randomized clinical trial. *JAMA.* 2021;325:254–264. doi: 10.1001/jama.2020.25864

239. Najmeddin F, Solhjoo M, Ashraf H, Salehi M, Rasooli F, Ghoghaei M, Soleimani A, Bahreini M. Effects of renin-angiotensin-aldosterone inhibitors on early outcomes of hypertensive COVID-19 patients: a randomized triple-blind clinical trial. *Am J Hypertens.* 2021;hpab111. doi: 10.1093/ajh/hpab111

240. Puskarich MA, Cummins NW, Ingraham NE, Wacker DA, Reilkoff RA, Driver BE, Biros MH, Bellolio F, Chipman JG, Nelson AC, et al. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. *EClinicalMedicine.* 2021;37:100957. doi: 10.1016/j.eclinm.2021.100957

241. Renoux C, Azoulay L, Suissa S. Biases in evaluating the safety and effectiveness of drugs for the treatment of COVID-19: designing real-world evidence studies. *Am J Epidemiol.* 2021;190:1452–1456. doi: 10.1093/aje/kwab028

242. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ.* 2016;355:i4919. doi: 10.1136/bmj.i4919

243. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, et al. GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias). *J Clin Epidemiol.* 2011;64:407–415. doi: 10.1016/j.jclinepi.2010.07.017
Supplemental Material
Supplemental Methods

Assessment of the certainty in the evidence

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) was performed in duplicate by J.L. and F.C.T. to provide an assessment of the quality of (i.e., certainty of the) evidence produced by the meta-analyses. The GRADE rates the certainty of the evidence as high, moderate, low, or very low. The evidence from a meta-analysis including studies that are observational in design usually begin with a low-quality rating. However, when using the Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I), evidence can begin with a high-quality rating as it comprehensively addresses potential confounding and selection biases. Thereafter, certainty in the evidence can be downgraded due to: 1) study limitations; 2) inconsistency of results; 3) indirectness of evidence; 4) imprecision; and/or 5) reporting bias. The quality of evidence can be upgraded again if there is: 1) a large magnitude of effect; 2) a dose-response gradient; and/or 3) if plausible biases would decrease the magnitude of an apparent treatment effect. The highest rating that can be given to a body of evidence is high-quality, indicating a high level of certainty in the evidence.
Table S1. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist.

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Pages 2-4
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 7
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Pages 7-8
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 9
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 8
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 8 and Table S2
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 9
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 11
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Pages 10-11
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Pages 10-11
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Pages 9-10
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Pages 11-12
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Pages 9-11
Section and Topic	Item #	Checklist item	Location where Item is reported
-------------------	--------	--	---
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Not applicable
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 11
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 11
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g., subgroup analysis, meta-regression).	Not applicable
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page 11
	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Not applicable
	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Page 12 and Supplemental Methods
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 13
Study characteristics	17	Cite each included study and present its characteristics.	Page 13 and Table 1
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Figure 2
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Page 13, Figure 3 and Figure S1
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Page 12-13, Table 1 and Figure 2
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 14, Figure 3 and Figure S1
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 14
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Figure S1
Section and Topic	Item #	Checklist item	Location where Item is reported
-----------------------------------	--------	---	---------------------------------
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Not applicable
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Page 14, Table 2
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Pages 17
	23b	Discuss any limitations of the evidence included in the review.	Pages 17-18
	23c	Discuss any limitations of the review processes used.	Pages 17-18
	23d	Discuss implications of the results for practice, policy, and future research.	Pages 20-21
OTHER INFORMATION			
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 4 and 8
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 8
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Not applicable
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 22
Competing interests	26	Declare any competing interests of review authors.	Page 22
Availability of data, code and	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Not applicable
Table S2. Search strategy used in MEDLINE, EMBASE and CINAHL databases between December 1st, 2019, and October 21st, 2021.

Search terms used in each database	
1. "coronavirus disease 2019" OR "covid-19" OR "severe acute respiratory syndrome coronavirus 2" OR "SARS-CoV-2" OR "coronavirus 2" (TITLE)	
2. "coronavirus disease 2019" OR "covid-19" OR "severe acute respiratory syndrome coronavirus 2" OR "SARS-CoV-2" OR "coronavirus 2" (ABSTRACT)	
3. 1. OR 2.	
4. "renin-angiotensin aldosterone system" OR "renin-angiotensin-aldosterone system" OR "renin-angiotensin system" OR "RAAS" OR "RAS" OR "RAASi" OR "angiotensin converting enzyme inhibitors" OR "ACE inhibitors" OR "angiotensin II receptor blockers" OR "ARBs" OR "ARB" (TITLE)	
5. "renin-angiotensin aldosterone system" OR "renin-angiotensin-aldosterone system" OR "renin angiotensin system" OR "RAAS" OR "RAS" OR "RAASi" OR "angiotensin converting enzyme inhibitors" OR "ACE inhibitors" OR "angiotensin II receptor blockers" OR "ARBs" OR "ARB" (ABSTRACT)	
6. 4. OR 5.	
7. 3. AND 6.	
8. Limit 7. to human studies only	
Figure S1. Forest plots for the random effects meta-analyses.

A) Present are the associations between A) the use of an ACE inhibitor in monotherapy and hospitalization, B) the use of an ACE inhibitor in monotherapy and intubation or death, C) the use of an ARB in monotherapy and hospitalization and D) the use of an ARB in monotherapy and intubation or death. ACEi denotes angiotensin-converting enzyme inhibitor; ARB, angiotensin II type-I receptor blocker; CCB, calcium channel blocker; CI, confidence interval; HR, hazard ratio; SE, standard error; TZD, thiazide diuretic.

Study	log HR	SE	Favors ACEi	Favors CCB or TZD	HR	95% CI	Weight
Loader et al, 2021	-0.12	0.17			0.89	[0.64; 1.23]	22.6%
Semenzato et al, 2021	-0.31	0.08			0.73	[0.63; 0.85]	77.4%

Random effects model
Heterogeneity: $I^2 = 15\%$, $t^2 = 0.0030$, $p = 0.28$

Study	log HR	SE	Favors ACEi	Favors CCB or TZD	HR	95% CI	Weight
Loader et al, 2021	-0.03	0.35			0.97	[0.48; 1.93]	29.7%
Semenzato et al, 2021	-0.53	0.16			0.59	[0.43; 0.80]	70.3%

Random effects model
Heterogeneity: $I^2 = 39\%$, $t^2 = 0.0474$, $p = 0.20$

Study	log HR	SE	Favors ARB	Favors CCB or TZD	HR	95% CI	Weight
Loader et al, 2021	-0.06	0.15			0.94	[0.70; 1.27]	15.5%
Semenzato et al, 2021	-0.16	0.07			0.85	[0.75; 0.97]	84.5%

Random effects model
Heterogeneity: $I^2 = 0\%$, $t^2 = 0$, $p = 0.55$

Study	log HR	SE	Favors ARB	Favors CCB or TZD	HR	95% CI	Weight
Loader et al, 2021	0.22	0.35			1.25	[0.63; 2.49]	35.0%
Semenzato et al, 2021	-0.37	0.14			0.69	[0.53; 0.90]	65.0%

Random effects model
Heterogeneity: $I^2 = 60\%$, $t^2 = 0.1053$, $p = 0.12$