Global and Collective Dynamics at PHENIX

Takafumi Niida for the PHENIX Collaboration
University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
E-mail: niida@rcf.rhic.bnl.gov

Abstract. In order to study the properties of the hot and dense matter created by heavy ion collisions, various physics observables have been measured in RHIC and the LHC, such as spectra, collective flow, two particle correlations and HBT. The higher harmonic flow \(v_n \) have been recently measured, which is primarily coming from the spatial fluctuation of the initial participant density. Measurements related to the \(v_n \) and event planes will give us new insight into the properties of the hot and dense matter and space-time evolution in the heavy ion collisions. We present the latest results of higher harmonic flow \(v_n \) for identified particles and azimuthal hadron correlations with the subtraction of backgrounds from higher harmonic flow \(v_n \). Besides, we present \(m_T \) dependence of final eccentricity obtained by azimuthal HBT measurement.

1. Introduction

The initial geometry of the overlap region in heavy ion collisions have been treated as the collisions of nuclei with smooth density profile so far. In recent study, it is considered that the spatial position of the participating nucleons fluctuates geometrically and it leads to higher harmonic deformation. This spatial fluctuation is converted to momentum space by the collective expansion and then higher harmonic flow \(v_n \) is created.

Azimuthal distribution of emitted particles is written as the following:

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{2} 2v_n \cos(n(\phi - \Phi_n)) \tag{1}
\]

\[
v_n = \langle \cos(n(\phi - \Phi_n)) \rangle \tag{2}
\]

where \(n \) indicates the harmonic order, \(\phi \) and \(\Phi_n \) denote the azimuthal angle of emitted particles and event plane for each harmonic orders. The flow strength \(v_n \) is represented as the Fourier coefficient. The event planes are determined by the Reaction Plane Detector which covers \(1.0 < |\eta| < 2.8 \) and charged particles are measured by the PHENIX central detectors with \(|\eta| < 0.35 \) in this analysis. Charged hadron \(v_n \) have been measured at PHENIX [1], where \(v_2 \) increases from central to peripheral collisions, while \(v_3 \) doesn’t seems to have centrality
dependence. It indicates that v_3 mainly comes from the initial fluctuation. Though some theoretical models with different initial conditions can explain v_2 well, some of them fail to explain v_3. So v_3 provides the new constraints on the theoretical models. It is expected that v_n for identified particles will provide more constraints on the theoretical models.

2. Higher harmonic flow

Figure 1 shows higher harmonic flow of π^\pm, K^\pm and $p(\bar{p})$ as a function of p_T in 0-50% in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions. The measured $v_4(\Phi_2)$ with respect to 2nd ord event plane is also shown. Green bands indicate p_T correlated systematic uncertainties. The shown $v_3(\Phi_3)$, $v_4(\Phi_4)$ and $v_4(\Phi_2)$ are multiplied by factor, 1.5, 1.5 and 5.0 respectively when plotted in Fig.1. Each v_n for different species shows same trends. Particle mass dependence at low p_T and baryon/meson difference at mid p_T can be seen in v_3, v_4 as well as v_2. It is considered that higher harmonic flow shows the behavior like the hydrodynamics at low p_T region, and described by the quark recombination model at mid p_T region as well as v_2.

![Figure 1](image_url)

Figure 1. (Color online)$v_2(\Phi_2), v_3(\Phi_3), v_4(\Phi_4)$ and $v_4(\Phi_2)$ of π^\pm, K^\pm and $p(\bar{p})$ as a function of p_T in 0-50%. Green bands indicate p_T correlated systematic uncertainties. v_3 and v_4 are plotted after being multiplied by scale factors.

Figure 2 shows the modified n_q scaling of higher harmonic flow as a function of KE_T/n_q, where n_q is the number of constituent quark, $KE_T = (p_T^2 + m_0^2)^{1/2} - m_0$, m_0 is the particle mass, and v_n is scaled by $n_q^{1/2}$ using higher harmonic order n. The modified n_q scaling succeeds to scale v_n. It indicates that higher harmonic flow v_n also arises at partonic level.

In the PHENIX experiment, charged pions and protons can be identified up to $p_T = 6$ GeV/c and kaons up to $p_T = 4$ GeV/c by combining Time-Of-Flight detector and Aerogel Cherenkov Counter. Figure 3 shows PID v_2 as functions of p_T, KE_T/n_q and p_T/n_q for two different centrality bins. KE_T/n_q scaling works better than p_T/n_q scaling in central collisions. However, it breaks for protons at $KE_T/n_q \approx 1.0$ GeV in non-central collisions. It is considered that particle production at $p_T > 4$ GeV/c is not dominated by quark recombination, but by jet energy loss. So this result may give us any information on the interplay between the recombination and jet energy loss at high p_T region.
3. Two particle correlations

Two particle azimuthal correlations have been measured in heavy ion collisions to study the interaction between hard-scattered partons and the hot and dense matter. In recent studies, it is considered that higher harmonic flow will be a possible source of "ridge" and "march cone" [2], which are the long range $\Delta \eta$ correlations at near side and double hump structure at away side. Figure 4 shows the recent result of the two particle correlations for charged hadrons with $p_T^{\text{TRIG}}=2-4$ GeV/c and $p_T^{\text{ASSOC}}=1-2$ GeV/c for $|\Delta \eta| < 0.7$ in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions, where v_2, v_3, v_4 backgrounds are subtracted by ZYAM method [3]. In most central collisions, away side yield is suppressed, while the yield and double hump structure still remain in moving to mid central collisions. It is difficult to explain the structure only by higher harmonic flow v_n.

Figure 2. (Color online) $v_2(\Phi_2)$, $v_3(\Phi_3)$, $v_4(\Phi_4)$ and $v_4(\Phi_2)$ divided by $n_q^{n/2}$ of π^{\pm}, K^{\pm} and $p(\bar{p})$ as a function of KE_T/n_q in 0-50%, where n and n_q denote harmonic order and the number of constituent quarks of hadrons. Green bands indicate p_T correlated systematic uncertainties.

Figure 3. (Color online) v_2 of π^{\pm}, K^{\pm} and $p(\bar{p})$ with and without n_q scaling

Figure 4. Two particle correlations for charged hadrons with $p_T^{\text{TRIG}}=2-4$ GeV/c and $p_T^{\text{ASSOC}}=1-2$ GeV/c for $|\Delta \eta| < 0.7$ in Au+Au 200 GeV collisions, where v_2, v_3, $v_4(\Phi_4)$ background are subtracted by ZYAM method [3].
4. Azimuthal HBT measurement

HBT measurement is a powerful tool to study the space-time evolution of particle emitting source. Azimuthal HBT radii with respect to 2nd-order event plane have been measured for charged pions and kaons to investigate the source shape at freeze-out at PHENIX [4]. The result shows that final eccentricity of kaons defined as \(\varepsilon_{\text{final}} = 2R_{s,2}/R_{s,0}^2 \) [5] is larger than that of pions and almost the same as the initial eccentricity. However, since HBT radii show a transverse mass (\(m_T \)) dependence and average \(m_T \) of pions and kaons are different, the \(m_T \) dependence needs to be considered in the comparison of the final eccentricities. Figure 5 shows the relative amplitude of azimuthal HBT radii of charged pions and kaons as a function of average \(m_T \) for two centrality bins in \(\sqrt{s_{NN}} = 200 \) GeV Au+Au collisions. Left top panel shows final eccentricity, and there is still difference between pions and kaons in non-central collisions even at the same \(\langle m_T \rangle \). The difference may indicate faster freeze-out of kaons due to the lower cross section. The relative amplitude of \(R_o \) and \(R_{os} \) at low \(m_T \) in most central collisions have finite value though final eccentricity is close to zero. This result may indicate a temporal variation of emission duration of particles because \(R_o \) and \(R_{os} \) have temporal information in addition to geometrical information.

![Figure 5.](image)

Figure 5. (Color online) Relative amplitude of azimuthal HBT radii of charged pions and kaons as a function of average \(m_T \) for 2 centrality bins. Left top panel corresponds to final eccentricity.

5. Summary

Recent results on higher harmonic flow for identified particles, two particle correlations with the background subtraction from higher harmonic flow and \(m_T \) dependence of azimuthal HBT measurement are presented. There are still some open questions about each of the topics discussed and further study in experiment and theory will be needed to understand them.

References
[1] A. Adare, et al. (PHENIX Collaboration), Phys. Rev. Lett. 107, 252301 (2011)
[2] G. Aad et al. (ATLAS Collaboration), Phys. Rev. C86, 014907 (2012)
[3] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 97, 052301 (2006)
[4] T. Niida for the PHENIX Collaboration, in proceedings of The Seventh Workshop on Particle Correlations and Femtoscopy [PoS(WPCF2011)005]
[5] Fabrice Retière and Michael Annan Lisa, Phys. Rev. C70, 044907 (2004)