The global control of malaria is threatened with the spread of drug-resistant parasites and insecticide-resistant mosquitoes. The impact of this on the public health infrastructure and economic stability of the countries most affected is a cause for concern. Vaccines are an attractive mode of control since they are cost-effective and easily administered. Despite years of research, effective malaria vaccines have remained elusive and none has been introduced as a commercial product. However, efforts to develop a vaccine remain optimistic for a number of reasons. First, individuals in regions where malaria is endemic develop naturally acquired immunity to clinical manifestation of the disease (1, 2). Second, passive transfer of IgG from immune individuals conveyed protection to naive individuals (3). Third, vaccination with attenuated sporozoites induced partial protection (4). Finally, naturally and artificially acquired antibodies to different Plasmodium antigens have been shown to inhibit parasite invasion of reticulocytes, as well as parasite growth and development, in vitro (5–8).

Successful host red blood cell invasion by Plasmodium merozoites depends on specific ligand-receptor interactions (9, 10). In Plasmodium vivax, a critical step in the invasion of reticulocytes during asexual blood-stage infection is the interaction between the merozoite Duffy binding protein (DBP) and its cognate receptor, the Duffy antigen receptor for chemokines (DARC), on the reticulocyte surface. It is believed that DBP plays an essential role during the irreversible process of junction formation just before invasion (11, 12). This is evident in the virtual absence of P. vivax malaria in populations lacking DARC expression on their erythrocyte surface (13, 14). This dependence of DBP on DARC for erythrocyte invasion makes DBP a promising candidate as a vaccine against the asexual stages of the parasite. Naturally occurring anti-DBP antibodies are prevalent in people living in regions where malaria is endemic (15, 16). There is evidence that these anti-DBP antibodies can block DBP-erythrocyte binding, as well as inhibit parasite invasion in short-term in vitro cultures (5, 17–21). These data further strengthen the case for a vaccine based on DBP. In P. vivax DBP, a cysteine-rich domain, termed region II, consisting of 330 amino acid residues is considered the ligand domain for adherence to DARC during invasion (22, 23). Structural studies have revealed that DBPII can be divided into three subdomains (24, 25), and other studies have demonstrated that critical residues for receptor recognition are located within subdomain 2 (22, 26–28). Interestingly, this region is highly polymorphic, a pattern consistent with high selection pressure on DBPII (26, 29–32). This poses a great challenge to the development of a DBP-based vaccine that will be effective against diverse P. vivax strains.

We have identified B-cell epitopes within the ligand domain of DBP that are associated with protection (17). The immunodominant B-cell epitopes identified are polymorphic, surface-exposed motifs that a previous study determined are not important for receptor recognition but flank residues critical for receptor recognition (22, 25). As most naturally acquired infections with P. vivax tend to elicit weakly reactive and strain-specific antibodies (2, 17, 33), we hypothesize that the polymorphic dominant B-cell epitopes represent an evasion mechanism that misdirects the immune response away from the functional, more conserved Duffy recognition epitopes that are potential targets for broadly neutralizing immunity. Similar to what occurs in other microbial agents (34, 35), these variant immunodominant epitopes in DBPII tend
to create an inherent bias toward the induction of a nonprotective, strain-specific humoral immune response. Recently, we designed a novel synthetic DBPPII immunogen, termed DEKNull, that lacks a strain-specific immunodominant variant epitope normally present on DBPPII (36). We demonstrated that removal of this dominant variant epitope lowered DBP immunogenicity, but importantly, inhibitory anti-DBPPII antibodies were elicited against conserved neutralizing epitopes on the native Sal1 strain, which was used as the template and shared with other DBP allelic variants. Therefore, recombinant DEKNull (rDEKNull) was able to produce inhibitory anti-DBP antibodies against diverse DBPPII alleles (37). Previous studies have demonstrated that naturally acquired immunity to the erythrocytic stages of malaria parasites is strongly dependent on antibodies (38–40). In areas where malaria is endemic, immunity to vivax malaria is gradually acquired with age as a result of a boosting effect due to repeated exposure to infection (2, 19, 41, 42). Acquired immunity, in addition to being biased toward strain specificity, is relatively slow to develop, never sterile, weak, short-lived (43), and usually unstable (17). There is no long-lasting protective immunologic memory in the absence of continued exposure to infection (17, 43–46) and a failure to consistently boost upon reinfection (47). The present study was designed to further our understanding of the immunogenicity of synthetic DEKnull as a vaccine candidate and to determine whether immunization with rDEKnull can induce an immune response that is relevant to diverse naturally occurring DBPPII alleles of P. vivax.

MATERIALS AND METHODS

Production of recombinant proteins. Recombinant DBPPII antigens from three naturally occurring alleles (Sal1, 7.18, and P), the synthetic DBPPII allele (DEKnull) (36), and rPvMSP1-19 were expressed and purified as described previously (37, 48). Briefly, the genes coding for the various antigens were synthesized, codon optimized for expression in Escherichia coli, and cloned into expression vector PET21a+ (Novagen) with a C-terminal 6×His tag to facilitate purification by affinity chromatography. The resulting plasmid was transformed into E. coli BL21(DE3) LySE (Invitrogen). Recombinant proteins were expressed, purified under denaturing conditions, and refolded by rapid dilution as previously described (20, 49, 50). The refolded antigens were evaluated for native conformation and further analyzed for function by a standard erythrocyte-binding assay (36, 48). Endotoxins were removed from the antigens with the GenScript ToxinEraser endotoxin removal kit, and endotoxin levels in the final products were determined with the ToxinSensor Chromogenic LAL Endotoxin Assay kit. All antigens had endotoxin levels of ≤40 EU/ml.

Immunization schedule. Female BALB/c mice (6 to 8 weeks old) were purchased from Harlan Animal Research Laboratories. Immunizations were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee of the University of South Florida. Mice were randomly assigned to six groups of 15 mice each, and preimmune sera were collected from each mouse. The first five groups were primed twice 3 weeks apart with rDEKnull at 25 μg/dose subcutaneously, and the sixth group (control) was primed with rSal1 at 25 μg/dose. All antigens were emulsified in TiterMax Gold as an adjuvant according to the manufacturer’s specifications. Three weeks after the second dose (day 42), test sera were collected and total serum anti-DBPPII IgG titers (baseline titers) were quantified by enzyme-linked immunosorbent assay (ELISA) against the priming antigen. Serum IgG titers were then monitored until an approximately 50% decline in titer was observed (day 217). On day 224 (32 weeks after the first immunization), mice in each group received a booster immunization (anamnestic boost) of 25 μg of rDBPPII each from one of three naturally occurring alleles (Sal1, 7.18, and P), rDEKnull, or rPvMSP1-19 and the control group received rSal1 (Table 1). Three weeks following the anamnestic boost (day 245), the mice were bled for serum and individual mouse serum was stored at −20°C in barcoded tubes until needed. The final IgG titers (day 245) for each group were determined against the booster antigen, with the exception of the group boosted with rMSP1-19, whose IgG titer was determined against rDEKnull.

Quantitation of anti-DBPPII antibody titers. Immune mice were evaluated for allele-specific anti-DBPPII antibody titers by ELISA as previously reported (37, 48). Briefly, ELISA plates (Nunc) were precoated with 0.2 μg of rDEKnull, Sal1, P, 7.18, or PvMSP1-19 per well, and unbound surfaces were blocked with 5% wt/vol skim milk in phosphate-buffered saline−0.05% Tween 20 for 2 h at room temperature. Serial tripling dilutions of individual mouse sera (starting at 1:4,000) in blocking solution was added to triplicate wells and again incubated for 2 h on a shaker at room temperature. After washing, wells were incubated with a goat antimouse alkaline phosphatase-conjugated secondary antibody (KPL Inc.) for 90 min as described above, and bound antibody was detected with alkaline phosphatase conjugate (BluPhos Microwell Substrate kit; KPL Inc.). Absorbance at 630 nm was determined on a microplate reader (BioTek Instruments Inc.). DBPPII-specific monoclonal antibody 3D10 (48) was used as the standard calibrator on each plate. All optical density (OD) values were normalized at a point on the standard curve where the OD at 630 nm (OD630) was 1.0, and antibody values were expressed in ELISA units (EU), which were determined as the ratio of the OD630 generated by the test antibody to the OD630 of the standard (37). Antibody titers were determined as the serum dilution required to achieve 1.5 EU (51). Anti-MSP1-19 antibody served as a negative control, while preimmune serum was used as a background control.

Lymphocyte proliferative assay. Splenocytes from immunized mice were prepared as previously reported (52, 53), with some modifications. Briefly, spleens were harvested and washed twice in Iscove’s modified Dulbecco’s medium (IMDM; Invitrogen). Single-cell suspensions were prepared by teasing spleen tissues into tiny pieces in a petri dish containing IMDM. Red blood cells were lysed with ACK lysis solution (Invitrogen), and membrane debris was removed by passing the cell suspension through a cell strainer (Fisher Scientific). The cells were washed with IMDM, resuspended in IMDM–10% fetal bovine serum (FBS), and layered over Ficoll Paque Plus. The splenocytes were recovered by centrifugation and washed in IMDM–10% FBS. Cell viability was determined by trypan blue staining. The cells were resuspended in IMDM–10% FBS–0.5 mM 2-mercaptoethanol–1× streptomycin-penicillin (Invitrogen). Splenocytes were seeded into 96-well flat-bottom plates at a concentration of 2×10^5/ml in 100 μl of complete medium and stimulated with 1 μg/ml rDEKnull, Sal1, 7.18, P, or PvMSP1-19 in triplicate wells. Additional wells stimulated with concanavalin A (ConA; Sigma-Aldrich) at a final concentration of 1 μg/ml or left unstimulated (with culture medium alone) served as positive and negative controls, respectively. Plates were incubated for 72 h at 37°C in a 5% CO2 humidified incubator. A 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was used to determine the number of proliferative cells with the CellTiter 96 AQueous One Solution Cell Proliferation Assay reagent (Promega). A 20-μl volume of the reagent was added directly to 100 μl of culture in the wells and incubated for 4 h at

Immunization group	Priming antigen (days 0 and 21)	Anamnestic boost antigen (day 224)
1	DEKnull	DEKnull
2	DEKnull	Sal1
3	DEKnull	7.18
4	DEKnull	P
5	DEKnull	MSP1-19
6	Sal1	Sal1

a Antigen emulsified 1:1 (vol/vol).
b Antigen emulsified 1:0.5 (vol/vol) in adjuvant.
37°C, and absorbance at 490 nm was recorded with a 96-well Synergy 2 ELISA plate reader (BioTek Instruments). Results were expressed as a stimulation index (SI), which is the ratio of the absorbance of the stimulated culture to that of the unstimulated culture.

Inhibition of DBP-erythrocyte binding by COS-7 assay. Expression plasmid constructs were engineered to target different variants of DBPII alleles on the surface of transiently transfected COS-7 cells as fusion proteins to the N terminus of enhanced green fluorescent protein (EGFP). DBPII-erythrocyte binding inhibition assays were performed as previously reported (21, 54, 55). Briefly, wells of transfected COS-7 cells were preincubated with different concentrations of purified total serum IgG from pooled mouse serum from the different immunization groups prior to the addition of human erythrocytes. Purified total serum IgG from mice immunized with rMSP1-19 served as a negative-control antibody. Binding inhibition was determined by assessing the percentage of rosettes in wells of transfected COS-7 cells in the presence of test IgG relative to that in wells of transfected cells in the presence of purified IgG from preimmune sera.

Statistical analyses. The distributions of antibody titers and inhibition concentrations for each antiserum were compared between the different alleles tested for any statistically significant differences in antibody reactivity and inhibitory responses by one-way analysis of variance and multiple-comparison analysis by the Bonferroni test with SAS software.

RESULTS

Anamnestic response to rDEKnull. To determine if rDEKnull vaccine could induce secondary immune responses against native alleles of DBPII, BALB/c mice were primed with two consecutive doses of rDEKnull 3 weeks apart. ELISA was used to determine baseline serum anti-DEKnull IgG antibody titers 3 weeks after the second immunization (day 42). The serum anti-DEKnull IgG titers were monitored until a 50% decline in the IgG titer was observed (day 217), and then a third injection of one of three naturally occurring rDBPII alleles, Sal1, 7.18, or P; rDEKnull; or a control antigen, rPvMSP1-19, was administered (Table 1). Three weeks after the final immunization (day 245), serum anti-DBPII IgG antibody titers were again determined against the boosting antigen. Mice in all of the immunization groups showed strong immune responses to the anamnestic boost (Fig. 1). This was evident by a significant increase in antibody titers between days 217 and 245 ($P = 0.0007$) in all of the groups, with the exception of the DEKnull/MSP1-19 prime-boost group. No significant differences in antibody titers were observed between days 42 and 245 ($P = 0.4$).

Anti-DBPII reactivity profiles. Sera from the anamnestic boosts were evaluated for cross-reactivity with heterologous rDBPII alleles, as well as rPvMSP1-19. All the immunization groups elicited high levels of cross-reactive anti-DBPII antibody responses against heterologous DBPII alleles (Fig. 2). With the...
exception of the anti-DEKnull/MSP1-19 group, there was no response to rPvMSP1-19 (not shown). The DEKnull-primed and MSP1-19-boost mice showed lower levels of reactivity to rDBPII. We used 1.5 EU as a basis to determine potential differences in antigen-specific anti-DBPII antibody responses. Similar anti-DBPII reactivity profiles were observed for each immune serum against the respective rDBPII alleles (Fig. 3). Only one prime-boost combination (DEKnull/7.18) produced an anamnestic response with antibody titers greater than the homologous prime-boost vaccinations of Sal1/Sal1 and DEKnull/DEKnull (Bonferroni multiple-comparison adjustment, \(P < 0.05 \)). Interestingly, the DEKnull-primed–heterologous-DBPII-boosted mice showed anamnestic responses to all of the native alleles relatively higher than those of the Sal1/Sal1 homologous prime-boost mice. No anti-DBPII boosting response was observed with the rDEKnull-primed rPvMSP1-19 heterologous-boost mice; however, this group did produce a high anti-MSP1-19 response (not shown).

Lymphocyte proliferative response. The immunogenicity of the different antigens was further assessed for a T-cell response. Cultured splenocytes from mice primed with rDEKnull and boosted with the different native rDBPII alleles were stimulated with the same antigens used in the boosting immunization, and antigen-specific T-cell proliferation was determined. The number of proliferating cells was determined as the ratio of cells stimulated with antigens to cells stimulated with culture medium alone. Irrespective of the stimulating antigen, all the splenocytes from the DEKnull-primed mice showed a 3- to 4-fold increase in proliferation (SI, 2.9 to 3.9) compared to that of adjuvant controls (SI, 0.9), but this was significantly smaller than that of the Sal1/Sal1 homologous prime-boost group (SI, 5.3) \((P = 0.04) \). Splenocytes from the Sal1 homologous prime-boost mice stimulated with ConA (control) produced the highest level of proliferation, as expected (Fig. 4).

Assessment of anti-DBPII functional activity. The purified total IgG fraction of pooled sera from final bleeds (day 245 sera) of each immunization group was evaluated for inhibition of COS-7 cell surface-expressed DBPII alleles from binding to human erythrocytes in a standard COS-7 cell assay. Inhibition of DBPII-erythrocyte binding was determined by assessing the number of COS-7 cells with adherent erythrocytes (rosettes) in cultures of transfected COS-7 cells incubated in the presence of different concentrations of purified total serum IgG from the immunized mouse groups relative to IgG from preimmune serum. A dose-dependent anti-DBP binding-inhibitory response was observed with anti-

FIG 3 Quantitative analysis of anti-DBPII antiserum binding specificity. The binding specificity of antiserum from each immunization group was compared against that of recombinant Sal1, 7.18, P, and DEKnull by ELISA. Antibody titers were calculated as the serum dilution required to achieve 1.5 EU. Each bar represents the titer for each antiserum against a specific recombinant DBPII allele, and error bars indicate standard deviations. Asterisks indicate significant differences in antibody titers between the two groups.

FIG 4 Lymphocyte proliferation. Groups of BALB/c mice were primed with rDEKnull and boosted with recombinant DEKnull, Sal1, 7.18, P, or MSP1-19. An rSal1 prime-boost group served as a control. Cultured splenocytes harvested 3 weeks after boosting were stimulated with the booster antigen. The T-cell proliferative response was quantified by an MTS assay, and the SI was determined as the ratio of the absorbance at 490 nm of stimulated cells to that of unstimulated cells. Bars represent mean SI values ± standard deviations of triplicate wells. The asterisks indicate significant SI differences between the control group (Sal1-Sal1 prime-boost) and the DEKnull prime–heterologous-boost groups.
bodies from each immunization group (Fig. 5A). No inhibition was observed with total IgG from control mice immunized with MSP1-19 alone (not shown). The 50% inhibitory concentration (IC₅₀) was used as a basis for determining the anti-DBPII functional ability of each antibody group to inhibit DBPII-erythrocyte binding (Fig. 5B). Each antibody group showed variations in anti-DBPII inhibitory responses against the different alleles, with the 7.18 allele being the most resistant to inhibition, followed by the AH allele. Statistical analysis with the Bonferroni multiple-comparison adjustment grouped the different antibodies into two distinct groups (a and b; P < 0.05). The anti-DEKnull-primed recombiant P-boost antibodies showed no boosting effect since the inhibitory effect was similar to that of the control anti-DEKnull/ MSP1-19 antibodies (Fig. 5C).

DISCUSSION

It has been established that immunodominant variant epitopes tend to create an inherent bias toward a strain-specific immune response (34, 35) and limit the induction of an immune response toward more conserved protective epitopes. Correspondingly, immunization with a single P. vivax DBPII allele results in strain-specific protective immunity (56). This is also true for the P. falciparum vaccine candidate PfAMA1 (57, 58). On the other hand, it has been demonstrated that antibodies to epitopes common to different DBPII alleles (37) or PfAMA1 alleles are relevant for the induction of broader parasite strain inhibition (59, 60). An effective DBP vaccine therefore needs to focus the immune response towards conserved epitopes that are targets of neutralizing inhibitory antibodies. Recently, we demonstrated that a synthetic DBPII vaccine, DEKnull, lacking a dominant variant B-cell epitope induced inhibitory antibodies to shared neutralizing epitopes on native Sal1 from which it was derived (36). The results demonstrated that removal of the dominant variant epitope from the DEKnull vaccine lowered the immunogenicity of DBPII, but DEKnull immunization produced a more consistent anti-DBPII response against diverse DBPII alleles in an in vitro erythrocyte binding inhibition assay than three single native alleles, confirming that anti-DBP antibodies target shared neutralizing epitopes on DBPII (37).

The development of immunological memory even after a long period of nonexposure forms the basis of a successful vaccine in inducing long-term protective immunity against a given pathogen (61). Therefore, for an immunogen to serve as an effective vaccine, it should be able to produce an enhanced memory response to all of the native variants of the pathogen that either completely prevents reinfection or greatly reduces the severity of disease. In regions where malaria is endemic, individuals develop anti-DBP inhibitory antibodies following natural exposure (17, 21); however, there is no long-lasting protective immunologic memory in the absence of continued exposure to infection (17, 43–46) and sometimes there is failure to consistently boost upon reinfection (47). To further characterize the immunogenicity and vaccine potential of synthetic DEKnull, we conducted a prime-boost immunization study to evaluate the potential of rDEKnull vaccine to induce a B-cell memory response, as well as a T-cell response to naturally occurring DBPII alleles following primary DEKnull vaccination. Mice were immunized twice with rDEKnull, and serum IgG antibody titers were allowed to decline to ~50% before a boost with a natural DBPII allele. Our data demonstrate that DEKnull prime–heterologous-boost mice generally produced an anamnestic response to native DBPII alleles better than that of native Sal1/Sal1 homologous prime-boost mice (Fig. 3). However, this was not reflected in the anti-DBPII inhibitory responses, as multiple-comparison analysis showed no differences in inhibitory responses between antibodies from the different immunization groups, with the exception of the DEKnull/P prime-boost group (Fig. 5C). This observation supports previous data that showed no correlation between the antibody response to DBPII and inhibition of DBPII-erythrocyte binding (17, 48). Antibodies from all of the vaccination groups showed similar anti-DBPII-specific responses to each native allele, suggesting that the antibodies bind to similar epitopes on DBPII. Even though the DEKnull prime–heterologous-boost groups induced a relatively stronger antibody response to all DBPII alleles than the Sal1/Sal1 homologous prime-boost control group, only the DEKnull/7.18 prime-boost immunization induced an anamnestic response with antibody titers significantly higher (P < 0.05) than those of the Sal1/Sal1 and DEKnull/DEKnull homologous prime-boost groups (Fig. 3).

Previous studies have demonstrated that DBPII contains a cluster of T-cell epitopes that are recognized by individuals in areas where malaria is endemic, with a correlation between cellular immunity and protection and the prevalence and intensity of P. vivax infection (30, 62). This implies that cellular immune responses to DBPII play a role in the development of acquired immunity. To examine the cellular immune response to DEKnull, T-cell responses were determined by lymphocyte proliferation assays following restimulation of splenocytes from each immunization group with the different naturally occurring rDBPII antigens. The Sal1/Sal1 homologous prime-boost group induced a significantly stronger proliferative response than the DEKnull homologous and heterologous prime-boost groups, suggesting that the “DEK” epitope in DBPII represents an important T-cell epitope on DBPII.

We also evaluated the potential biological and functional anti-DBPII activity of the antibodies from the various groups in an in vitro erythrocyte binding inhibition assay. Differences were observed in the anti-DBPII binding-inhibitory responses consistent with anti-DBPII antibodies binding different functional epitopes.
within the different alleles. No significant difference in inhibition was observed for any antibody group against the Sal1, 27, 16, and P alleles. The 7.18 allele was the most refractory to inhibition, followed by the AH allele. These two alleles differ by just one amino acid and so cluster more closely to each other than the other natural alleles (Table 2). These data are in line with other studies that demonstrate that variation in DBPII plays a critical role in altering its antigenic properties and confers significant differences in sensitivity to inhibition by serum antibodies, resulting in a bias toward strain-specific immunity (56). Pairwise comparisons with a Bonferroni multiple-comparison adjustment classified the different antibodies into two statistically significantly different groups (Fig. 5C), with group a antibodies showing stronger inhibitory activity than group b antibodies (P < 0.05). Together, the data are consistent with our hypothetical framework that variation is an evasion mechanism responsible for strain-specific immunity and that stable broadly neutralizing immunity is achieved when antibodies target functionally conserved epitopes, thereby blocking erythrocyte binding and invasion.

In summary, we have demonstrated that synthetic DEKnull is able to elicit immunological memory responses similar to those elicited by naturally occurring DBPII alleles. While the anti-DBPII inhibitory response induced by rDEKnull is lower than that to DBPII Sal1, the functional activity of these antibodies demonstrated a broader coverage of diverse DBPII alleles. Further investigation is necessary to enhance the immunogenicity of DEKnull and broaden its specificity.

ACKNOWLEDGMENTS

This work was funded by NIAID/DMID contract N01-AI-054210 to Science Application International Cooperation under subcontract PO10035958 and grant R01AI064478 (to J.H.A.).

This work was funded by NIAID/DMID contract N01-AI-054210 to Science Application International Cooperation under subcontract PO10035958 and grant R01AI064478 (to J.H.A.).

ACKNOWLEDGMENTS

This work was funded by NIAID/DMID contract N01-AI-054210 to Science Application International Cooperation under subcontract PO10035958 and grant R01AI064478 (to J.H.A.).

REFERENCES

1. Branch OH, Udhayakumar V, Hightower AW, Oloo AJ, Hawley WA, Nahlen BL, Bloedon LB, Kaslow DC, Lal AA. 1998. A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19-kilodalton domain of Plasmodium falciparum in pregnant women and infants: associations with febrile illness, parasitemia, and anemia. Am. J. Trop. Med. Hyg. 58:211–219.

2. King CL, Michon P, Shakri AR, Marcotte A, Stanisic D, Zimmerman PA, Cole-Tobian JL, Mueller I, Chitnis CE. 2008. Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc. Natl. Acad. Sci. U. S. A. 105:8363–8368. http://dx.doi.org/10.1073/pnas.0803711105.

3. Cohen S, McGregor IA, Carrington S. 1961. Gamma-globulin and acquired immunity to human malaria. Nature 192:733–737. http://dx.doi.org/10.1038/192733a0.

4. Clyde DF, Most H, McCarthy VC, Vanderberg JP. 1973. Immunization of man against sporozoite-induced falciparum malaria. Am. J. Med. Sci. 266:169–177. http://dx.doi.org/10.1097/00000441-197309000-00002.

5. Grimmel B, Utomangsutch P, Xainli J, McHenry A, Panichukal T, Sattabongkot J, Cui I, Bockarie M, Chitnis C, Adams J, Zimmerman PA, King CL. 2007. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med. 4(12):e337. http://dx.doi.org/10.1371/journal.pmed.0040337.

6. Singh AP, Puri SK, Chitnis CE. 2002. Antibodies raised against receptor-binding domain of Plasmodium knowlesi Duffy binding protein inhibit erythrocyte invasion. Mol. Biochem. Parasitol. 121:21–31. http://dx.doi.org/10.1016/S0166-6851(02)00017-8.

7. Pattanak P, Shakri AR, Singh S, Goel S, Mukherjee P, Chitnis CE. 2007. Immunogenicity of a recombinant malaria vaccine based on receptor binding domain of Plasmodium falciparum EBA-175. Vaccine 25:806–813. http://dx.doi.org/10.1016/j.vaccine.2006.09.048.

8. Woehlbier U, Epp C, Hackett F, Blackman MJ, Bujard H. 2010. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion. Malar. J. 9:77. http://dx.doi.org/10.1186/1475-2875-9-77.

9. Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH. 1992. A family of erythrocyte binding proteins of malaria parasites. Proc. Natl. Acad. Sci. U. S. A. 89:7085–7089. http://dx.doi.org/10.1073/pnas.89.15.7085.

10. Barnwell JW, Wertheimer SP. 1989. Plasmodium vivax: merozoite antigens, the Duffy blood group, and erythrocyte invasion. Prog. Clin. Biol. Res. 313:1–11.

11. Dvorak JA, Miller LH, Whitehouse WC, Shroyishi T. 1975. Invasion of erythrocytes by malaria merozoites. Science 187:748–750. http://dx.doi.org/10.1126/science.803712.

12. Aikawa M, Miller LH, Johnson J, Rabbege J. 1978. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 77:72–82.

13. Miller LH, Mason SJ, Clyde DF, McGinniss MH. 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295:302–304.

14. Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK. 1975. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189:561–563. http://dx.doi.org/10.1126/science.1145213.

15. Xainli J, Cole-Tobian JL, Baisor M, Kastens W, Bockarie M, Yazdani SS, Chitnis CE. 1998. Epitope-specific humoral immunity to Plasmodium vivax Duffy binding protein. Infect. Immun. 71:2508–2515. http://dx.doi.org/10.1128/IAI.71.5.2508-2515.2003.

16. Ceravolo IP, Bruna-Romero O, Braga EM, Fontes CJ, Brito CF, Souza JM, Kretti AU, Adams JH, Carvalho LH. 2005. Anti-Plasmodium vivax Duffy binding protein antibodies measure exposure to malaria in the Brazilian Amazon. Am. J. Trop. Med. Hyg. 72:675–681.

TABLE 2 Panel of DBPII alleles used for protein expression and COS 7 assay

DBPII allele	Accession no.	Residue* at position
DBPII-Sal1	P22290.2	R L K N D E K A Q Q R R K Q N L W S K I
DEKnull	NA	R . . A A T A A T S R T S
DBPII-27.16	AAL79076	S . . . G . . . H I K E .
DBPII-7.18	AAL79051.1	S . . . G . . . Q K I R . . K
DBPII-AH	AAY34130.1	S . . . E . . . G K I R . . K
DBPII-P	AAL79073.1	R F . D G K N . . . H K I . . K

* Differences in amino acid residues between the different alleles are shown. A dot indicates that the residue is the same as that in DBPII-Sal1.

** NA, accession number is not available.

*** Allele used for COS-7 assay only.

September 2014 Volume 21 Number 9

cvi.asm.org
VanBuskirk KM, Sevova E, Adams JH. 2010. Mapping epitopes of the Plasmodium vivax Duffy binding protein with naturally acquired inhibitory antibodies. Infect. Immun. 78:1089–1095. http://dx.doi.org/10.1128/IAI.01036-09.

Dutta S, Daughtry JR, Ware LA, Lanar DE, Ockenhouse CF. 2000. Expression, purification and characterization of a functional region of the Plasmodium vivax Duffy binding protein. Mol. Biochem. Parasitol. 109:179–184. http://dx.doi.org/10.1016/S0166-6851(00)00244-9.

Michon PA, Arevalo-Herrera M, Fraser T, Herrera S, Adams JH. 1998. Serologic responses to recombinant Plasmodium vivax Duffy binding protein in a Colombian village. Am. J. Trop. Med. Hyg. 59:597–599.

Yazdani SS, Shakri AR, Chitnis CE. 2004. A high cell density fermentation strategy to produce recombinant malaria antigens in E. coli. Biotechnol. Lett. 26:1891–1895. http://dx.doi.org/10.1007/s10529-004-0640-4.

Michon P, Fraser T, Adams JH. 2000. Naturally acquired and vaccine-elicted antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. Infect. Immun. 68:3164–3171. http://dx.doi.org/10.1128/IAI.68.11.3164-3171.2000.

VanBuskirk KM, Sevova E, Adams JH. 2004. Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition. Proc. Natl. Acad. Sci. U. S. A. 101:15754–15759. http://dx.doi.org/10.1073/pnas.0405421101.

Chitnis CE, Chaudhuri A, Horuk R, Pogo AO, Miller LH. 1996. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 184:1531–1536. http://dx.doi.org/10.1084/jem.184.15.1531.

Singh SK, Hora R, Belhari H, Chitnis CE, Sharma A. 2006. Structural basis for Duffy-binding by the malarial parasite Duffy-binding-like domain. Nature 439:741–744. http://dx.doi.org/10.1038/nature04443.

Batchelor JD, Zahm JA, Tolia NH. 2011. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nat. Struct. Mol. Biol. 18:908–914. http://dx.doi.org/10.1038/nsmb.2088.

Ampudia E, Pataturoo MA, Pataturoo ME, Murillo LA. 1996. Genetic polymorphism of the Duffy receptor binding domain of Plasmodium vivax in Colombian wild isolates. Mol. Biochem. Parasitol. 78:269–272. http://dx.doi.org/10.1016/0166-6851(96)00261-4.

Hans D, Pattnaik P, Bhattacharrya A, Shakri AR, Yazdani SS, Sharma M, Choe H, Farzan M, Chitnis CE. 2005. Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Mol. Microbiol. 55:1423–1434. http://dx.doi.org/10.1111/j.1365-2958.2005.04848.x.

Rajan A, Chitnis CE. 1999. Mapping regions containing binding residues within functional domains of Plasmodium vivax and Plasmodium knowlesi erythrocyte-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 96:14067–14072. http://dx.doi.org/10.1073/pnas.96.24.14067.

Tsboi T, Kappe SH, al-Yaman F, Prickett MD, Alpers M, Adams JH. 1994. Natural variation within the principal adherence domain of the Plasmodium vivax Duffy binding protein. Infect. Immun. 62:5581–5586.

Cole-Tobian J, King CL. 2003. Diversity and natural selection in Plasmodium vivax Duffy binding protein gene. Mol. Biochem. Parasitol. 127:121–132. http://dx.doi.org/10.1016/S0166-6851(02)00327-4.

Ntumngia FB, McHenry AM, Barnwell JW, Cole-Tobian J, King CL, Adams JH. 2009. Genetic variation among Plasmodium vivax isolates adapted to non-human primates and the implication for vaccine development. Am. J. Trop. Med. Hyg. 80:218–227.

Cole-Tobian J, King CL. 2000. Duffy erythrocyte binding motif of Plasmodium vivax Duffy binding protein is highly polymorphic and functionally conserved in isolates from Papua New Guinea. Mol. Biochem. Parasitol. 111:253–260. http://dx.doi.org/10.1016/S0166-6851(00)00315-7.

Cole-Tobian JI, Michon P, Bisaro M, Richards JS, Beeson JG, Mueller I, King CL. 2009. Stage-specific Duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous Plasmodium vivax strains in Papua New Guinean children. Infect. Immun. 77:4009–4017. http://dx.doi.org/10.1128/IAI.00158-09.

Welsh RM, Fujinami RS. 2007. Pathogenic epitopes, heterologous immunity and vaccine design. Nat. Rev. Microbiol. 5:555–563. http://dx.doi.org/10.1038/nrmicro1709.

Ntumngia et al.
falciparum malaria vaccine, with CpG oligodeoxynucleotide. Vaccine 24:
2497–2505. http://dx.doi.org/10.1016/j.vaccine.2005.12.034.

52. Alaro JR, Lynch MM, Burns JM, Jr. 2010. Protective immune responses
elicited by immunization with a chimeric blood-stage malaria vaccine
persist but are not boosted by Plasmodium yoelii challenge infection. Vac-
cine 28:6876–6884. http://dx.doi.org/10.1016/j.vaccine.2010.08.018.

53. Deng YH, Sun Z, Yang XL, Bao L. 2010. Improved immunogenicity of
recombinant Mycobacterium bovis bacillus Calmette-Guerin strains ex-
pressing fusion protein Ag85A-ESAT-6 of Mycobacterium tuberculosis.
Scand. J. Immunol. 72:332–338. http://dx.doi.org/10.1111/j.1365-3083
2010.02444.x.

54. Michon P, Woolley I, Wood EM, Kastens W, Zimmerman PA, Adams
JH. 2001. Duffy-null promoter heterozygosity reduces DARC expression
and abrogates adhesion of the P. vivax ligand required for blood-stage
infection. FEBS Lett. 495:111–114. http://dx.doi.org/10.1016/S0014-5793
(01)02370-5.

55. Chitnis CE, Miller LH. 1994. Identification of the erythrocyte binding
domains of Plasmodium vivax and Plasmodium knowlesi proteins in-
volved in erythrocyte invasion. J. Exp. Med. 180:497–506. http://dx.doi
.org/10.1084/jem.180.2.497.

56. VanBuskirk KM, Cole-Tobian JL, Baisor M, Sevova ES, Bockarie M,
King CL, Adams JH. 2004. Antigenic drift in the ligand domain of Plas-
modium vivax Duffy binding protein confers resistance to inhibitory an-
tibodies. J. Infect. Dis. 190:1556–1562. http://dx.doi.org/10.1086/424852.

57. Remarque EJ, Roestenberg M, Younis S, Walraven V, van der Werff N,
Faber BW, Leroy O, Sauerwein R, Kocken CH, Thomas AW. 2012. Humoral immune responses to a single allele PiFAMA1 vaccine in healthy
malaria-naive adults. PLoS One 7(6):e38896. http://dx.doi.org/10.1371
/journal.pone.0038896.

58. Hodder AN, Grether PE, Anders RF. 2001. Specificity of the protective
antibody response to apical membrane antigen 1. Infect. Immun. 69:
3286–3294. http://dx.doi.org/10.1128/IAI.69.5.3286-3294.2001.

59. Kusi KA, Faber BW, Thomas AW, Remarque EJ. 2009. Humoral im-
une response to mixed PiFAMA1 alleles; multivalent PiFAMA1 vaccines
induce broad specificity. PLoS One 4(12):e8110. http://dx.doi.org/10
.1371/journal.pone.0008110.

60. Kusi KA, Faber BW, Riassat V, Thomas AW, Kocken CH, Remarque EJ.
2010. Generation of humoral immune responses to multi-allele PiFAMA1
vaccines; effect of adjuvant and number of component alleles on the
breadth of response. PLoS One 5(11):e15391. http://dx.doi.org/10.1371
/journal.pone.0015391.

61. Kaech SM, Wherry EJ, Ahmed R. 2002. Effector and memory T-cell
differentiation: implications for vaccine development. Nat. Rev. Immun.
ol. 2:251–262. http://dx.doi.org/10.1038/nri778.

62. Xainli J, Baisor M, Kastens W, Bockarie M, Adams JH, King CL. 2002.
Age-dependent cellular immune responses to Plasmodium vivax Duffy
binding protein in humans. J. Immunol. 169:3200–3207. http://dx.doi
.org/10.4049/jimmunol.169.6.3200.