Search for the charged-lepton-flavor-violating decay
\(Z \rightarrow e\mu\) in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the
ATLAS detector

The ATLAS Collaboration

A search for the charged-lepton-flavor-violating process \(Z \rightarrow e\mu\) is presented, using 139 fb\(^{-1}\) of \(\sqrt{s} = 13\) TeV \(pp\) collision data collected by the ATLAS experiment at the LHC. An excess in the \(e\mu\) invariant mass spectrum near the \(Z\) boson mass would be a striking signature of new physics. No excess is observed, and an upper limit \(\mathcal{B}(Z \rightarrow e\mu) < 2.62 \times 10^{-7}\) is placed on the branching fraction at 95% confidence level, which is the most stringent limit to date.
1 Introduction

The observed conservation of charged-lepton flavor is a long-standing mystery. Despite the lack of protection from a fundamental symmetry, no charged-lepton-flavor-violating decays have been observed [1–4].

Lepton-flavor violation has been observed in the neutrino sector [5, 6], but the rate of charged-lepton-flavor transitions mediated by neutrino-flavor oscillations is expected to be vanishingly small [7], giving, for example

\[\mathcal{B}(Z \to e\mu) < 4 \times 10^{-60} \]

New sources of charged-lepton-flavor violation would indicate physics beyond the Standard Model (BSM), and searches for such violations can be used to constrain BSM theories [8–11].

A search for muon decays into \(e^+e^-e^+\) by SINDRUM [12] and a search for \(\mu \to e\gamma\) by MEG [13] imply \(\mathcal{B}(Z \to e\mu) < 5 \times 10^{-15}\) at 90% confidence level (CL) [14]. However, these interpretations are indirect, and can be evaded in intriguing scenarios, such as anomalous magnetic moments or delicate cancellations [14], which cannot be ruled out. Direct searches for two-body decays into \(e\mu\) therefore remain a vital part of the investigation into charged-lepton-flavor violation. Searches at LEP give \(\mathcal{B}(Z \to e\mu) < 1.7 \times 10^{-6}\) at 95% CL [15–18] and a previous search at the Large Hadron Collider yielded \(\mathcal{B}(Z \to e\mu) < 7.5 \times 10^{-7}\) at 95% CL [19], in 20.3 fb\(^{-1}\) of 8 TeV proton collision data collected by the ATLAS experiment. Searches for \(Z \to \tau\ell\), where \(\ell = e\) or \(\mu\), report limits of \(\mathcal{B}(Z \to e\tau) < 5.0 \times 10^{-5}\) and \(\mathcal{B}(Z \to \mu\tau) < 6.5 \times 10^{-6}\) at 95% CL [20].

This paper presents a search for \(Z \to e\mu\) using 139 fb\(^{-1}\) of proton collision data collected at \(\sqrt{s} = 13\) TeV, in which a boosted decision tree and a veto on \(b\)-quark-tagged jets are used to enhance the signal selection.

2 ATLAS detector

The ATLAS detector [21] consists of an inner detector (ID) surrounded by a solenoid that produces a 2 T magnetic field, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) immersed in a magnetic field produced by a system of toroidal magnets. The ID measures the trajectories of charged particles over the full azimuthal angle and in the pseudorapidity\(^2\) range of \(|\eta| < 2.5\) using silicon pixel, silicon microstrip, and straw-tube transition-radiation tracker detectors. Liquid-argon (LAr) EM sampling calorimeters cover the range \(|\eta| < 3.2\) and a scintillator-tile calorimeter provides hadronic calorimetry for \(|\eta| < 1.7\). In the endcaps (\(|\eta| > 1.5\)), LAr is also used for the hadronic calorimeters, matching the outer \(|\eta|\) limit of endcap EM calorimeters. The LAr forward calorimeters extend the coverage to \(|\eta| < 4.9\) and provide both the EM and hadronic energy measurements. The MS measures the deflection of muons within \(|\eta| < 2.7\) using three stations of precision drift tubes, with cathode strip chambers in the innermost station for \(|\eta| > 2.0\), and provides separate trigger measurements from dedicated chambers in the region \(|\eta| < 2.4\). A trigger system implemented with hardware and software components is used to select interesting events to be recorded for subsequent offline analysis [22]. An extensive software suite [23] is

\(^1\) The electric charges of the lepton pairs throughout the paper are omitted for brevity, but opposite charges are implied except when specified.

\(^2\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z\)-axis along the beam pipe. The \(x\)-axis points from the IP to the center of the LHC ring, and the \(y\)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan(\theta/2)\). Transverse momentum and energy are defined relative to the beamline as \(p_T = p \sin(\theta)\) and \(E_T = E \sin(\theta)\).
used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Analysis strategy

The search for flavor-violating decays of the Z boson is performed by examining the invariant mass distribution of opposite-charge $e\mu$ candidates for evidence of a narrow peak consistent with direct Z boson decay. The event selection requires two isolated energetic, oppositely charged leptons of different flavor: $e^\pm\mu^\mp$. The primary backgrounds consist of decays into τ-lepton pairs ($Z \to \tau\tau \to e\mu\nu\bar{\nu}$), decays into muon pairs $Z \to \mu\mu$ where one muon is misidentified as an electron, dileptonic final states from decays of top quark pairs ($t\bar{t} \to e\mu\nu\bar{b}\bar{b}$), and decays of weak boson pairs ($WW \to e\mu\nu\bar{\nu}$). To suppress the contribution from top quark and boson pairs, events are required to have little jet activity and only a small amount of missing transverse momentum. To further reduce the background, a multivariate boosted decision tree (BDT) [24] is trained to distinguish between signal and background events, and the BDT output must exceed a threshold selected to optimize the ratio of expected signal to the square root of the expected background yield. Events from background processes which pass the selection are expected to form a smooth spectrum in the electron–muon invariant mass ($m_{e\mu}$) within the window $70 < m_{e\mu} < 110$ GeV. A binned likelihood fit, in which the signal is unconstrained, is performed. In the absence of a signal, an upper limit on the branching fraction $\mathcal{B}(Z \to e\mu)$ is set, related to a ratio of the observed $e\mu$ yield to the average of the observed yields of ee and $\mu\mu$ events to cancel out common systematic uncertainties.

4 Monte Carlo samples

Samples of simulated collisions generated using Monte Carlo (MC) methods are used to estimate the dominant backgrounds as well as to optimize the event selection. All MC samples were produced using the ATLAS detector simulation [25] based on Geant4 [26]. Simulated signal $Z \to e\mu$ events were generated at leading order with Pythia 8.210 [27] using the A14 set of tuned parameters (tune) [28] and the NNPDF2.3lo parton distribution function (PDF) set [29].

Background events with leptonically decaying W bosons or $Z \to \tau\tau$ production in association with jets were simulated with the Sherpa 2.2.1 [30] generator using next-to-leading-order (NLO) matrix elements for up to two partons, and leading-order (LO) matrix elements for up to four partons, calculated with the Comix [31] and OpenLoops [32–34] libraries. They were matched with the Sherpa parton shower [35] using the MEPS@NLO prescription [36–39] and the set of tuned parameters developed by the Sherpa authors. The NNPDF3.0nnlo set of PDFs [40] was used and the samples were normalized to a cross-section prediction at next-to-next-to-leading order (NNLO) in QCD [41].

Background events with $Z \to \mu\mu$ or $Z \to ee$ in association with jets were modeled with the Powheg Box v1 MC generator [42–45] at NLO in the hard-scattering processes of Z boson production. It was interfaced to Pythia 8.186 [46] for the modeling of the parton shower, hadronization, and underlying event, with parameters set according to the AZNLO tune [47]. The CT10nlo PDF set [48] was used for the hard-scattering processes, whereas the CTEQ6L1 PDF set [49] was used for the parton shower. The effect of QED final-state radiation was simulated with Photos++ 3.52 [50, 51]. The EvtGen 1.2.0 program [52] was used to decay bottom and charm hadrons.
All the Z boson samples, including $Z \rightarrow \tau\tau, Z \rightarrow \mu\mu, Z \rightarrow ee$ and $Z \rightarrow e\mu$ events, were reweighted such that the transverse momentum (p_T) of the Z boson matches that observed in $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ decays in data [53].

Samples of events with fully leptonic diboson final states and semileptonic diboson final states, where one boson decays leptonically and the other hadronically, were simulated with the SHERPA 2.2.1 or 2.2.2 [30] generator depending on the diboson (VV) process, including off-shell effects and Higgs boson contributions where appropriate. They were generated using matrix elements at NLO for up to one additional parton and at LO accuracy for up to three additional parton emissions. Samples for the loop-induced processes $gg \rightarrow VV$ were generated using LO-accurate matrix elements for up to one additional parton emission for both the cases of fully leptonic and semileptonic final states. The matrix element calculations were matched and merged with the SHERPA parton shower based on Catani–Seymour dipole factorization [31, 35] using the MEPS@NLO prescription. The virtual QCD corrections were provided by the OpenLoops library. The NNPDF3.0NNLO set of PDFs was used, along with the dedicated set of tuned parton-shower parameters developed by the SHERPA authors. The cross section for the $WW \rightarrow e\mu\nu\bar{\nu}$ processes was normalized to a prediction at NNLO in QCD [54].

The top quark backgrounds, i.e. $t\bar{t}$ and single top production, were modeled with the Powheg Box v2 [42–44, 55] generator at NLO, using the four-flavor scheme and the NNPDF3.0NNLO set of PDFs. The events were interfaced with PYTHIA 8.230 using the A14 tune and the NNPDF2.3LO set of PDFs.

Additional pp collisions from the same bunch crossing are included in each event, according to the distribution observed in data. The simulated events are reconstructed with the same software as the data.

5 Object selection

Events are required to have at least one primary collision vertex that has at least two associated tracks, each with transverse momentum $p_T > 0.5$ GeV. The primary vertex is selected as the one with the largest Σp_T^2, where the sum is over all tracks with transverse momentum $p_T > 0.4$ GeV that are associated with the vertex.

Candidate electrons are required to have $p_T > 27$ GeV and pseudorapidity $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$ to ensure they are contained in the high-granularity region of the EM calorimeter and avoid the transition region between the barrel and endcap calorimeters. Candidates must satisfy the “TightLH” identification requirements [56], which are based on calorimeter shower shape, ID track quality, and the spatial match between the shower and the track, as well as the “Tight” isolation requirement [56]. The track parameters z_0 and θ are the longitudinal impact parameter and the polar angle of the electron candidate at the point of closest approach of the track to the beam, respectively. Electrons are required to have a transverse impact parameter with respect to the measured beam position of magnitude less than 5σ, where σ is its estimated uncertainty, and $|z_0 \sin \theta|$ less than 0.5 mm.

Candidate muons are required to have $p_T > 27$ GeV and $|\eta| < 2.5$. Candidates must also satisfy the “Medium” identification requirements [57], which are based on track quality, as well as the “Tight” isolation requirement [58]. Muons are also required to have a transverse impact parameter with respect to the measured beam position of magnitude less than 3σ, and $|z_0 \sin \theta|$ less than 0.5 mm.

Hadronic jets are reconstructed from topological clusters [59] of energy deposits in the EM and hadronic calorimeters using the anti-k_t algorithm [60, 61] with distance parameter $R = 0.4$. The topological
clusters are calibrated at the EM energy scale. The jets are fully calibrated using the EM + jet energy scale scheme \cite{62}, and required to have $p_T > 20$ GeV and $|\eta| < 2.5$. To reject jets from other pp collisions (pileup), candidate jets with $p_T < 60$ GeV and $|\eta| < 2.4$ are required to pass the jet vertex tagger \cite{63}, a likelihood discriminant combining information from several track-based variables.

Jets containing b-hadrons are tagged if they satisfy the requirements of the highest-efficiency working point (85% for jets in $t\bar{t}$ events containing b-hadrons) of the MV2c10 multivariate tagging algorithm \cite{64}, which is based on track impact parameters and secondary vertices that are reconstructed from the tracks with large impact parameter significances.

The missing transverse momentum (with magnitude E_T^{miss}) is calculated as the negative vectorial sum of the p_T of all reconstructed and calibrated electrons, muons, tau leptons, photons and jets \cite{65, 66}, as well as inner-detector tracks originating from the primary vertex but not associated with any reconstructed objects.

6 Event selection

The dataset used in this search was collected during LHC Run 2 in stable beam conditions and with all detector systems operating normally. For this search, performed in 139 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded between 2015 and 2018, the candidate events of interest are required to satisfy either a single-electron trigger \cite{67, 68} or a single-muon trigger \cite{69}. Both triggers had p_T thresholds that increased from 20 to 26 GeV during the data-taking period.

Events in the signal region are selected by requiring one electron and one oppositely charged muon with an invariant mass in the window $70 < m_{e\mu} < 110$ GeV. Events in the control region are selected by requiring two opposite-charge electrons (muons) with an invariant mass in the window $70 < m_{ee} (\mu\mu) < 110$ GeV, to estimate the expected number of Z bosons. Events with more than two candidate leptons are vetoed, using the “Loose” electron \cite{70} or muon \cite{58} identification criteria. To suppress the top quark background, candidate events are vetoed if they contain a leading jet with $p_T > 60$ GeV, or $E_T^{\text{miss}} > 50$ GeV, or any jets tagged as containing b-hadrons.

A machine-learning strategy is used to find the optimal selection in the three-dimensional space of leading jet p_T, E_T^{miss}, and $p_T^{e\mu}$ to further suppress the background and enhance the signal; if no jets are reconstructed, a value of zero is used for the leading jet p_T. A gradient BDT is trained on samples of simulated signal and background events in the mass window $85 < m_{e\mu} < 95$ GeV, excluding the $Z \rightarrow \mu\mu$ background, where large event weights lead to unstable performance in training. The threshold value for the BDT output is chosen by maximizing the ratio of the expected signal to the square root of the expected background. Distributions of BDT values for simulated signal and background events in the mass window $70 < m_{e\mu} < 110$ GeV are shown in Figure 1 along with the ratio of data to MC background events as a function of BDT value. There is no evidence of overtraining, as performance is consistent between testing and training samples.

An analogous selection, but for same-flavor lepton pairs, is applied to build the control region sample used to calculate a normalization which eliminates many systematic uncertainties. For the ee ($\mu\mu$) control region sample, p_T^{ee} ($p_T^{\mu\mu}$) is used as an input to the BDT.
Figure 1: Distributions of BDT values for samples of simulated $Z \rightarrow e\mu$ signal and background events (histograms), as well as data (points). The component labeled “non-resonant” includes all SM background processes except $Z \rightarrow \tau\tau$ and $Z \rightarrow \mu\mu$. The normalizations for the $Z \rightarrow \tau\tau$, $Z \rightarrow \mu\mu$, and non-resonant background use the best-fit values in Table 1. A hypothetical $Z \rightarrow e\mu$ signal, whose branching fraction is set to 20 times the observed upper limit, is shown with a dark red solid line for illustration purposes. The uncertainty band for the MC histogram distribution includes both the systematic and statistical uncertainty. An arrow is added to show the analysis selection requirement for the BDT, corresponding to a value of 0.18.

7 Background estimation

The dominant background in the full mass range considered is due to $Z \rightarrow \tau\tau \rightarrow e\nu\nu\mu\nu$. The subleading background is due to $Z \rightarrow \mu\mu$ decays where a muon is misidentified as an electron, due to either muon decay, or radiation of a photon, or an unusually large energy deposit in the EM calorimeter by the muon. Both the $Z \rightarrow \tau\tau$ and $Z \rightarrow \mu\mu$ contributions are modeled using simulated events.

Additional backgrounds are due to diboson processes, top quark single or pair production, and leptonically decaying W bosons. These backgrounds are modeled using samples of simulated events for studies such as validation of the background estimation method, but these samples are not used in the final likelihood fit. The final background, in which two lepton candidates are misidentified jets, is estimated by extrapolating from samples of data events with leptons of the same electric charge. Assuming that jets are equally likely to be misidentified with either charge, the same-charge contribution is used as an estimate of the opposite-charge contribution, after subtracting previously accounted-for processes, estimated using samples of simulated events, to avoid double-counting. The non-resonant backgrounds, i.e. those other than $Z \rightarrow \tau\tau$ and $Z \rightarrow \mu\mu$, are the dominant background within the narrower mass range where the signal is...
Table 1: Best-fit values of background contributions for the $Z \rightarrow \tau \tau$, $Z \rightarrow \mu \mu$ and non-resonant backgrounds, from a background-only fit to data corresponding to 139 fb$^{-1}$, and the expected numbers from the simulated events and the estimated fake-lepton contributions, reported for the full mass window [70, 110] GeV, and for a signal-enriched subwindow [85, 95] GeV. The statistical uncertainty, as defined in the text, is shown.

Background	Best-fit contribution in mass window	Expected contribution in mass window		
	[70, 110] GeV	[85, 95] GeV	[70, 110] GeV	[85, 95] GeV
$Z \rightarrow \tau \tau$	13716 ± 185	951 ± 13	13750	953
$Z \rightarrow \mu \mu$	1557 ± 209	533 ± 72	1341	459
Non-resonant	4105 ± 259	1075 ± 68	3728	1003

expected. Roughly 80% of this non-resonant background comes from diboson processes and 10% consists of two jets misidentified as lepton candidates. A second-order polynomial function is used to describe the distribution of the non-resonant backgrounds and also to correct for residual differences between the data and the backgrounds estimated from simulation samples, where the normalization and functional parameters float in the fit. The functional form was validated against models of these backgrounds which use samples of simulated events to describe the diboson and top quark contributions and use samples of data and simulated events with leptons of the same electric charge to describe the fake-lepton contributions.

The branching fraction of $Z \rightarrow e \mu$ events is estimated using a binned extended maximum-likelihood fit to the $m_{e\mu}$ distribution, where the likelihood is also a function of the number of $Z \rightarrow \tau \tau$ events, the number of $Z \rightarrow \mu \mu$ events and the number of events due to all non-resonant backgrounds, all of which are free to float in the fit. The distributions in $m_{e\mu}$ for the $Z \rightarrow e \mu$ signal and the $Z \rightarrow \tau \tau$ and $Z \rightarrow \mu \mu$ backgrounds are modeled using histograms based on the samples of simulated events.

8 Results

Distributions of observed events, expected backgrounds after a background-only fit, and a benchmark signal are shown in Figure 2. The spectrum of $m_{e\mu}$ is consistent with the background expectation, with no evidence of an enhancement near the Z boson mass. The best-fit values of the contributions from the various background components are given in Table 1, and are consistent with the numbers from the simulated events and the estimated fake-lepton contributions.

The branching fraction of $Z \rightarrow e \mu$, $\mathcal{B}(Z \rightarrow e \mu)$, is related to the number of $Z \rightarrow e \mu$ decays ($N_{Z \rightarrow e\mu}$) divided by the product of the $Z \rightarrow e \mu$ signal acceptance and efficiency, $(A \times \varepsilon)_{Z \rightarrow e\mu}$, and the number of Z bosons expected in the sample (N_{Z}^{avg}):

$$N_{Z \rightarrow e\mu} = N_{Z}^{\text{avg}} \times (A \times \varepsilon)_{Z \rightarrow e\mu} \times \mathcal{B}(Z \rightarrow e \mu)$$

where N_{Z}^{avg} is the estimate of the number of Z boson events produced, as measured and geometrically averaged from samples of ee and $\mu\mu$ events with invariant mass in the range of [85, 95] GeV, selected with the same requirements as the $e\mu$ sample, other than the same-lepton-flavor requirement, and corrected for background contributions, acceptance times efficiency and the Z leptonic branching ratio. Acceptance and efficiency are measured in samples of simulated events. Comparisons of jet momentum, pseudorapidity and multiplicity in the $Z \rightarrow e \mu$ sample, simulated at LO, with the respective quantities in the $Z \rightarrow \mu \mu$,
Figure 2: Distribution of the invariant mass $m_{e\mu}$ of the $Z \to e\mu$ candidates, for data (points) and expected backgrounds (lines) after the background-only likelihood fit. The goodness-of-fit, as measured by the χ^2 divided by the number of degrees of freedom is 1.2, with probability 0.24. The final total fit is shown with a blue solid line, the $Z \to \tau\tau$ component with a green dashed line, the $Z \to \mu\mu$ component with a brown dotted line, and the pink dash-dotted curve represents all non-resonant background contributions. The statistical uncertainty is shown with the light blue band. A hypothetical $Z \to e\mu$ signal, its branching fraction scaled to 20 times the observed upper limit, is shown as the dark red solid line for illustration purposes. The lower panel shows the ratio of observed data to expected background yields.

simulated at NLO, show negligible differences after reweighting, and affect the $Z \to e\mu$ branching fraction by less than 0.1%.

The estimate of $\mathcal{B}(Z \to e\mu)$ is extracted using a maximum-likelihood signal-plus-background fit in which $\mathcal{B}(Z \to e\mu)$ is the parameter of interest and which incorporates nuisance parameters for the systematic uncertainties and the parameters of the second-order polynomial function used to model the non-resonant background. The best estimate is $\mathcal{B}(Z \to e\mu) = (0.3 \pm 1.1(\text{stat}) \pm 0.6(\text{syst})) \times 10^{-7}$. The statistical uncertainty is determined by fixing the nuisance parameters to their best-fit values. The systematic uncertainty is determined by subtracting the square of the statistical uncertainty from the square of the total uncertainty. An upper limit on $\mathcal{B}(Z \to e\mu)$ is calculated at 95% CL using a one-sided profile-likelihood test statistic in the asymptotic approximation [71]. The values of $\varepsilon_{Z\to ee}$ and N_{avg} are given in Table 2. This method gives a limit which is insensitive to sources of systematic uncertainty which are correlated between the ee, $\mu\mu$ and $e\mu$ final states, such as the jet p_T threshold efficiency, modeling of E_T^{miss} in simulation, and the integrated luminosity.

The dominant remaining systematic uncertainties are due to the statistical uncertainty of the simulated
Table 2: Values of quantities used to calculate $\mathcal{B}(Z \rightarrow e\mu)$ via Eq. (1). Quoted uncertainties reflect statistical and systematic contributions.

Quantity	Value
$A \times \varepsilon_{Z \rightarrow e\mu}$	(10.3 ± 0.3)\%
N_{Z}^{avg}	$(7.87 \pm 0.19) \times 10^{9}$

events used to form histograms of the $Z \rightarrow \tau\tau$ and $Z \rightarrow \mu\mu$ backgrounds, which are applied independently to each bin, allowing the bin content to vary. The expected upper limit including these uncertainties is 9.5% higher than the limit expected without these uncertainties.

Additional uncertainties include the jet energy scale and resolution uncertainty [62, 72], uncertainties in the efficiency of the jet b-tagging [64], and the pileup reweighting uncertainties [73]. Further sources of systematic uncertainty are the uncertainties in lepton trigger, reconstruction, identification and isolation efficiencies [56, 74]. Electrons have additional uncertainties from energy scale and resolution uncertainties, while muons have uncertainties from momentum resolution, track-to-vertex matching, and sagitta bias correction uncertainties. These additional systematic uncertainties vary the shape of the histograms for the $Z \rightarrow e\mu$, $Z \rightarrow \tau\tau$ and $Z \rightarrow \mu\mu$ processes, and change the signal efficiency. The effects of these additional systematic uncertainties degrade the expected limit by 2.4%. Uncertainties due to higher-order corrections to the simulated $Z \rightarrow e\mu$ signal as well as uncertainties due to potential mismodeling of the simulated background processes are found to be negligible.

Any potential bias due to the inability of the chosen polynomial function to accurately describe the background is estimated by fitting the simulated signal-plus-background model to samples of simulated background events. The resulting bias is found to be negligible.

Table 3 shows a summary of the uncertainties and their impact on the expected upper limit of the signal branching fraction $\mathcal{B}(Z \rightarrow e\mu)$. The observed (expected) upper limit on the $\mathcal{B}(Z \rightarrow e\mu)$ is $2.62 (2.37) \times 10^{-7}$ at 95% CL, which would correspond to approximately 200 $Z \rightarrow e\mu$ reconstructed events. The larger integrated luminosity (139 fb$^{-1}$) and higher energy ($\sqrt{s} = 13$ TeV) for this search lower the expected upper limit by a factor of three relative to the previous ATLAS result.
Table 3: Effect of various sources of systematic uncertainty on the expected upper limit on the branching fraction $\mathcal{B}(Z \rightarrow e\mu)$, measured by comparing the expected limits obtained with and without a given source of uncertainty. Uncertainties due to the statistical uncertainty of the samples of simulated events used to form the histograms which describe the $Z \rightarrow \tau\tau$ and $Z \rightarrow \mu\mu$ background processes are treated as systematic uncertainties.

Source of uncertainty	Degradation of $\mathcal{B}^{95\%CL}(Z \rightarrow e\mu)$
Statistical uncertainty in MC samples	9.5%
$Z \rightarrow \tau\tau$	4.7%
$Z \rightarrow \mu\mu$	6.1%
All other sources	2.4%
Jet energy scale and resolution	1.2%
Pileup	1.2%
Electron energy scale and resolution	0.8%
Lepton efficiency	0.7%
b-tagging	0.6%
Muon resolution and bias correction	0.6%

9 Conclusion

A search for the lepton-flavor-violating process $Z \rightarrow e\mu$ is performed in 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton collision data at collected by the ATLAS experiment at the LHC. No localized excess consistent with such a decay is observed in the $m_{e\mu}$ spectrum. An upper limit of $\mathcal{B}(Z \rightarrow e\mu) < 2.62 \times 10^{-7}$ is set at 95% CL, a significant improvement on the previous LHC limit, and the most stringent direct result yet reported.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de...
Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [75].

References

[1] S. Mihara, J. Miller, P. Paradisi, and G. Piredda, *Charged Lepton Flavor–Violation Experiments*, Annu. Rev. Nucl. Part. Sci. 63 (2013) 531.

[2] ATLAS Collaboration, *Searches for lepton-flavour-violating decays of the Higgs boson in \(\sqrt{s} = 13 \) TeV \(pp \) collisions with the ATLAS detector*, Phys. Lett. B 800 (2020) 135069, arXiv: 1907.06131 [hep-ex].

[3] ATLAS Collaboration, *Search for the Higgs boson decays \(H \rightarrow ee \) and \(H \rightarrow e\mu \) in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector*, Phys. Lett. B 801 (2020) 135148, arXiv: 1909.10235 [hep-ex].

[4] CMS Collaboration, *Search for lepton-flavor violating decays of the Higgs boson in the \(\mu\tau \) and \(e\tau \) final states in proton–proton collisions at \(\sqrt{s} = 13 \) TeV*, Phys. Rev. D 104 (2021) 032013, arXiv: 2105.03007 [hep-ex].

[5] Super-Kamiokande Collaboration, *Solar \(^8B \) and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data*, Phys. Rev. Lett. 86 (2001) 5651, arXiv: hep-ex/0103032.

[6] SNO Collaboration, *Measurement of the Rate of \(\nu_e + d \rightarrow p + p + e^- \) Interactions Produced by \(^8B \) Solar Neutrinos at the Sudbury Neutrino Observatory*, Phys. Rev. Lett. 87 (2001) 071301, arXiv: nucl-ex/0106015.

[7] J. I. Illana and T. Riemann, *Charged lepton flavor violation from massive neutrinos in Z decays*, Phys. Rev. D 63 (2001) 053004, arXiv: hep-ph/0010193.

[8] J. M. Yang, *Lepton flavor violating Z-boson decays at GigaZ as a probe of supersymmetry*, Sci. China Phys. Mech. Astron. 53 (2010) 1949, arXiv: 1006.2594 [hep-ph].

[9] G.-J. Ding and M.-L. Yan, *Lepton flavor violating \(\mu \rightarrow e\gamma \) and \(\mu - e \) conversion in unparticle physics*, Phys. Rev. D 77 (2008) 014005, arXiv: 0709.3435 [hep-ph].

[10] B. Gripaios, *Composite leptoquarks at the LHC*, JHEP 02 (2010) 045, arXiv: 0910.1789 [hep-ph].

[11] M. Hirsch, A. Vicente, J. Meyer, and W. Porod, *Majoron emission in muon and tau decays revisited*, Phys. Rev. D 79 (2009) 055023, [Erratum: Phys. Rev. D 79, (2009) 079901], arXiv: 0902.0525 [hep-ph].

[12] SINDRUM Collaboration, *Search for the decay \(\mu^+ \rightarrow e^+e^-e^- \)*, Nucl. Phys. B 299 (1988) 1.
MEG Collaboration, *Search for the lepton flavour violating decay $\mu^+ \rightarrow e^+\gamma$ with the full dataset of the MEG experiment*, Eur. Phys. J. C 76 (2016) 434, arXiv: 1605.05081 [hep-ex].

S. Nussinov, R. D. Peccei, and X. M. Zhang, *Constraints on two-body lepton flavor violating decay processes*, Phys. Rev. D 63 (1 2000) 016003.

OPAL Collaboration, *A Search for lepton flavour violating Z^0 decays*, Z. Phys. C 67 (1995) 555.

DELPHI Collaboration, *Search for lepton flavour number violating Z^0-decays*, Z. Phys. C 73 (1997) 243.

L3 Collaboration, *Search for lepton flavour violation in Z decays*, Phys. Lett. B 316 (1993) 427.

ALEPH Collaboration, *Searches for new particles in Z decays using the ALEPH detector*, Phys. Rept. 216 (1992) 253.

ATLAS Collaboration, *Search for the lepton flavor violating decay $Z \rightarrow \mu\mu$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector*, Phys. Rev. D 90 (2014) 072010, arXiv: 1408.5774 [hep-ex].

ATLAS Collaboration, *Search for lepton-flavor-violation in Z-boson decays with τ-leptons with the ATLAS detector*, Phys. Rev. Lett 127 (1 2021) 271801, arXiv: 2105.12491 [hep-ex].

ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST 3 (2008) S08003.

ATLAS Collaboration, *Performance of the ATLAS trigger system in 2015*, Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex].

ATLAS Collaboration, *The ATLAS Collaboration Software and Firmware*, ATL-SOFT-PUB-2021-001, 2021, url: https://cds.cern.ch/record/2767187.

A. Höcker et al., *TMVA - Toolkit for Multivariate Data Analysis*, (2007), arXiv: physics/0703039.

ATLAS Collaboration, *The ATLAS Simulation Infrastructure*, Eur. Phys. J. C 70 (2010) 823, arXiv: 1005.4568 [physics.ins-det].

GEANT4 Collaboration, *GEANT4—a simulation toolkit*, Nucl. Instrum. Meth. A 506 (2003) 250.

T. Sjöstrand et al., *An introduction to PYTHIA 8.2*, Comput. Phys. Commun. 191 (2015) 159, arXiv: 1410.3012 [hep-ph].

ATLAS Collaboration, *ATLAS Pythia 8 tunes to 7 TeV data*, tech. rep. ATL-PHYS-PUB-2014-021, CERN, 2014, url: https://cds.cern.ch/record/1966419.

NNPDF Collaboration, *Parton distributions with LHC data*, Nucl. Phys. B 867 (2013) 244, arXiv: 1207.1303 [hep-ph].

E. Bothmann et al., *Event generation with Sherpa 2.2*, SciPost Phys. 7 (2019) 034, arXiv: 1905.09127 [hep-ph].

T. Gleisberg and S. Höche, *Comix, a new matrix element generator*, JHEP 12 (2008) 039, arXiv: 0808.3674 [hep-ph].

F. Buccioni et al., *OpenLoops 2*, Eur. Phys. J. C 79 (2019) 866, arXiv: 1907.13071 [hep-ph].

F. Cascioli, P. Maierhöfer, and S. Pozzorini, *Scattering Amplitudes with Open Loops*, Phys. Rev. Lett. 108 (2012) 111601, arXiv: 1111.5206 [hep-ph].
[34] A. Denner, S. Dittmaier, and L. Hofer,
Collier: A fortran-based complex one-loop library in extended regularizations,
Comput. Phys. Commun. **212** (2017) 220, arXiv: 1604.06792 [hep-ph].

[35] S. Schumann and F. Krauss,
A parton shower algorithm based on Catani-Seymour dipole factorisation,
JHEP **03** (2008) 038, arXiv: 0709.1027 [hep-ph].

[36] S. Höche, F. Krauss, M. Schönherr, and F. Siegert,
A critical appraisal of NLO+PS matching methods,
JHEP **09** (2012) 049, arXiv: 1111.1220 [hep-ph].

[37] S. Höche, F. Krauss, M. Schönherr, and F. Siegert,
QCD matrix elements + parton showers: The NLO case,
JHEP **04** (2013) 027, arXiv: 1207.5030 [hep-ph].

[38] S. Catani, F. Krauss, B. R. Webber, and R. Kuhn,
QCD Matrix Elements + Parton Showers,
JHEP **11** (2001) 063, arXiv: hep-ph/0109231.

[39] S. Höche, F. Krauss, S. Schumann, and F. Siegert,
QCD matrix elements and truncated showers,
JHEP **05** (2009) 053, arXiv: 0903.1219 [hep-ph].

[40] R. D. Ball et al., *Parton distributions for the LHC run II*,
JHEP **04** (2015) 040, arXiv: 1410.8849 [hep-ph].

[41] C. Anastasiou, L. Dixon, K. Melnikov, and F. Petriello,
High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at next-to-next-to leading order,
Phys. Rev. D **69** (2004) 094008, arXiv: hep-ph/0312266.

[42] P. Nason, *A new method for combining NLO QCD with shower Monte Carlo algorithms*,
JHEP **11** (2004) 040, arXiv: hep-ph/0409146.

[43] S. Frixione, P. Nason, and C. Oleari,
Matching NLO QCD computations with parton shower simulations: the POWHEG method,
JHEP **11** (2007) 070, arXiv: 0709.2092 [hep-ph].

[44] S. Alioli, P. Nason, C. Oleari, and E. Re,
A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX,
JHEP **06** (2010) 43.

[45] S. Alioli, P. Nason, C. Oleari, and E. Re,
NLO vector-boson production matched with shower in POWHEG,
JHEP **07** (2008) 060, arXiv: 0805.4802 [hep-ph].

[46] T. Sjöstrand, S. Mrenna, and P. Skands, *A brief introduction to PYTHIA 8.1*,
Comput. Phys. Commun. **178** (2008) 852, arXiv: 0710.3820 [hep-ph].

[47] ATLAS Collaboration, *Measurement of the Z/γ^* boson transverse momentum distribution in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector*,
JHEP **09** (2014) 145, arXiv: 1406.3660 [hep-ex].

[48] H.-L. Lai et al., *New parton distributions for collider physics*,
Phys. Rev. D **82** (2010) 074024, arXiv: 1007.2241 [hep-ph].

[49] J. Pumplin et al.,
New Generation of Parton Distributions with Uncertainties from Global QCD Analysis,
JHEP **07** (2002) 012, arXiv: hep-ph/0201195.
[50] P. Golonka and Z. Was,
PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays,
Eur. Phys. J. C 45 (2006) 97, arXiv: hep-ph/0506026.

[51] N. Davidson, T. Przedzinski, and Z. Was,
PHOTOS Interface in C++: Technical and physics documentation,
Comput. Phys. Commun. 199 (2016) 86, arXiv: 1011.0937 [hep-ph].

[52] D. J. Lange,
The EvtGen particle decay simulation package,
Nucl. Instrum. Meth. A 462 (2001) 152.

[53] ATLAS Collaboration,
Measurement of the transverse momentum distribution of Drell–Yan lepton pairs in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,
Eur. Phys. J. C 80 (2020) 616, arXiv: 1912.02844 [hep-ex].

[54] M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev, and M. Wiesemann,
W^+W^- production at the LHC: fiducial cross sections and distributions in NNLO QCD,
JHEP 08 (2016) 140.

[55] R. Frederix, E. Re, and P. Torrielli,
Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO,
JHEP 09 (2012) 130, arXiv: 1207.5391 [hep-ph].

[56] ATLAS Collaboration,
Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data,
JINST 14 (2019) P12006, arXiv: 1908.00005 [hep-ex].

[57] ATLAS Collaboration,
Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV,
Eur. Phys. J. C 81 (2021) 578, arXiv: 2012.00578 [hep-ex].

[58] ATLAS Collaboration,
Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s} = 13$ TeV,
Eur. Phys. J. C 76 (2016) 292, arXiv: 1603.05598 [hep-ex].

[59] ATLAS Collaboration,
Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,
Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex].

[60] M. Cacciari, G. P. Salam, and G. Soyez,
The anti-k_t clustering algorithm,
JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].

[61] M. Cacciari, G. P. Salam, and G. Soyez,
FastJet user manual,
Eur. Phys. J. C 72 (2012) 1896, arXiv: 1111.6097 [hep-ph].

[62] ATLAS Collaboration,
Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,
Phys. Rev. D 96 (2017) 072002, arXiv: 1703.09665 [hep-ex].

[63] ATLAS Collaboration,
Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector,
Eur. Phys. J. C 76 (2016) 581, arXiv: 1510.03823 [hep-ex].

[64] ATLAS Collaboration,
ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV,
Eur. Phys. J. C 79 (2019) 970, arXiv: 1907.05120 [hep-ex].
[65] ATLAS Collaboration,
E_T^{miss} performance in the ATLAS detector using 2015-2016 LHC p-p collisions,
tech. rep. ATLAS-CONF-2018-023, CERN, 2018,
url: https://cds.cern.ch/record/2625233.

[66] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the
ATLAS detector using proton-proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 78 (2018) 903,
arXiv: 1802.08168 [hep-ex].

[67] ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2,
Eur. Phys. J. C 80 (2020) 47, arXiv: 1909.00761 [hep-ex].

[68] ATLAS Collaboration,
The ATLAS Inner Detector Trigger performance in pp collisions at 13 TeV during LHC Run 2,
(2021), arXiv: 2107.02485 [hep-ex].

[69] ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2,
JINST 15 (2020) P09015, arXiv: 2004.13447 [physics.ins-det].

[70] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector
using the 2015–2017 LHC proton-proton collision data, JINST 14 (2019) P12006,
arXiv: 1908.00005 [hep-ex].

[71] G. Cowan, K. Cranmer, E. Gross, and O. Vitells,
Asymptotic formulae for likelihood-based tests of new physics,
Eur. Phys. J. C 71 (2011) 1554, [Erratum: Eur.Phys.J.C 73, 2501 (2013)],
arXiv: 1007.1727 [physics.data-an].

[72] ATLAS Collaboration, Jet energy resolution in proton–proton collisions at $\sqrt{s} = 7$ TeV recorded in
2010 with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2306, arXiv: 1210.6210 [hep-ex].

[73] ATLAS Collaboration, Measurement of the Inelastic Proton–Proton Cross Section at $\sqrt{s} = 13$ TeV
with the ATLAS Detector at the LHC, Phys. Rev. Lett. 117 (2016) 182002,
arXiv: 1606.02625 [hep-ex].

[74] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton–proton
collision data at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 76 (2016) 292, arXiv: 1603.05598 [hep-ex].

[75] ATLAS Collaboration, ATLAS Computing Acknowledgements, ATL-SOFT-PUB-2021-003, 2021,
url: https://cds.cern.ch/record/2776662.
G. Chiarelli 71a, G. Chiodini 67a, A.S. Chisholm 19, A. Chitan 25b, Y.H. Chiua 161, M.V. Chizhov 16a, K. Choi 40, A.R. Chomont 72a, 72b, Y. Chou 100, E.Y.S. Chow 111, T. Chowdhury 31f, L.D. Christopher 31f, M.C. Chu 62a, X. Chu 13a, 13d, J. Chudoba 128, J.J. Chwastowski 83, D. Cierri 107, K.M. Ciesla 83, V. Cindro 90, I.A. Cioară 25b, A. Ciocio 16a, F. Ciroatto soup 69a, 69b, Z.H. Citron 165, M. Citterio 68a, D.A. Ciobotaru 25b, B.M. Ciungu 152, A. Clark 54, P.J. Clark 50, J.M. Clavijo Columbie 46, S.E. Clawson 68, C. Clement 45a, 45b, L. Clissa 21a, 21b, Y. Coadou 59, M. Cobal 66a, 66b, A. Coccoreo 55b, J. Cochran 78, R.F. Coelho Barrue 127a, R. Coelho Lopes De Sa 100, S. Coelli 68a, H. Cohen 148, A.E.C. Coimbra 134, B. Cole 43, J. Collot 58, P. Conde Muño 127a, 127g, S.H. Connell 31c, I.A. Connelly 57, E.I. Conroy 123, F. Conventi 69a, H.G. Cooke 19, A.M. Cooper-Sarkar 123, F. Cormier 56, L.D. Corpe 34, M. Corradi 72a, 72b, E.E. Corrigan 95, F. Corriveau 101, M.J. Costa 159, F. Costanza 34, D. Costanzo 136, B.M. Cote 116, G. Cowan 92, J.W. Cowley 130, K. Cranmer 114, S. Crépè-Renaudin 58, F. Crescioli 124, M. Cristinziani 138, M. Cristoforetti 75a, 75b, V. Croft 155, G. Crosetti 41b, 41a, A. Cueto 34, T. Cuhadar Donszelmam 156, H. Cui 13a, 13d, A.R. Cukierman 140, W.R. Cunningham 57, F. Curcio 41b, 41a, P. Czdowski 34, M.M. Czurylo 61b, M.J. Da Cunha Sargedas De Sousa 60a, J.V. Da Fonseca Pinto 79b, C. Da Via 98, W. Dabrowski 42a, T. Dado 64, S. Daibi 31f, T. Dai 103, C. Dallapiccola 100, M. Dany 40, G. D’ame 47, V. D’Amico 74a, 74b, J. Damp 97, J.R. Dandoy 125, M.F. Daneri 25, M. Danning 139, V. Dao 134, G. Darbo 45b, S. Darmora 53, A. Dattagupta 120, S. D’Auria 68a, 68b, C. David 153b, T. Davidek 130, D.R. Davis 49, B. Davis-Purcell 132, I. Dawson 69, K. De 77, R. De Asmundis 69a, M. De Beurs 111, S. De Castro 21b, 21a, N. De Groot 110, P. De Jong 111, H. De la Torre 104, A. De Maria 13c, D. De Pedis 72a, A. De Salvo 72a, U. De Sanctis 73a, 73b, M. De Santis 73a, 73b, A. De Santo 143, J.B. De Vivie De Regie 58, D.V. Dedovich 36, J. Degens 111, A.M. Deiana 42, J. Del Peso 96, Y. Delabat Diaz 146, F. Deliot 132, C.M. Delitzsch 46, M. Della Pietra 69a, 69b, D. Della Volpe 54, A. Dell’Acqua 83, L. Dell’Asta 68a, 68b, M. Delmastro 41, P.A. Delsart 38, S. Demers 168, M. Demichev 36, S.P. Denisov 35, L. D’Eramo 112, D. Derendarz 83, J.E. Derkaoui 33d, F. Derue 124, P. Dervan 89, K. Desch 22, K. Dette 152, C. Deutsch 22, P.O. Deviveiros 34, F.A. Di Bello 77a, 72b, A. Di Ciaccio 73a, 73b, L. Di Ciaccio 4, A. Di Domenico 77a, 72a, 72b, C. Di Donato 69a, 69b, A. Di Girolamo 34, G. Di Gregorio 71a, 71b, A. Di Luca 75a, 75b, B. Di Micco 74a, 74b, R. Di Nardo 74a, 74b, C. Diaconu 99, F.A. Dias 111, T. Dias Do Vale 127a, M.A. Diaz 13a, 13b, F.G. Diaz Capriles 22, J. Dickinson 24, M. Didenko 155, E.B. Diehl 103, J. Dietrich 47, S. Díez Cornell 46, C. Diez Pardos 138, A. Dimitrijevska 162, W. Ding 13b, J. Dingfelder 22, I-M. Dinu 25b, S.J. Dittmeier 61b, F. Dittus 54, F. Djama 29, T. Djobava 146b, J.J. Djuvsland 15, M.A.B. Do Vale 79c, D. Dodsworth 24, C. Doglioni 95, J. Dolejsi 130, Z. Dolezal 130, M. Donadelli 79d, B. Dong 60c, J. Donini 38, A. D’Onofrio 13c, M. D’Onofrio 89, J. Dophe 131, A. Doria 69a, M.T. Dova 87, A.T. Doyle 87, E. Drechsler 139, E. Dreyer 139, T. Dreyer 53, A.S. Drobot 155, D. Du 60a, T.A. du Pree 111, F. Dubinin 15, M. Dubovsky 26a, A. Dubreil 54, E. Duchovni 165, G. Duclek 106, O.A. Ducu 34, 258, D. Duda 107, A. Dудarev 34, M. D’uffizi 98, L. Duflot 64, M. Dührssen 34, C. Dülken 167, A.E. Dumitriu 25b, M. Dunford 61a, S. Dungs 47, K. Dunne 45a, 45b, A. Duperrin 99, H. Duran Yildiz 33a, M. Düren 56, A. Durglishvili 146b, B. Dutta 46, B.L. Dwyer 112, G.I. Dyckes 16a, M. Dyndal 82a, S. Dysch 98, B.S. Dziedzic 93, B. Eckerova 26a, M.G. Eggleston 49, E. Eligio Purciano De Souza 79b, L.F. Ehler 54, T. Eifert 57, G. Eigen 15, K. Einsweiler 16a, T. Ekelof 157, Y. El Ghazali 33b, H. El Jarrari 33e, A. El Moussaouy 33a, V. Ellagosyula 157, M. Ellert 157, F. Ellingham 167, A.A. Elliott 59, N. Ellis 54, J. Elmshesser 27, M. Elsing 34, D. Emeliyanov 131, A. Emenov 39, Y. Enari 150, J. Erdmann 47, A. Ereditato 178, P.A. Erland 83, M. Enrensi 167, M. Escalier 64.
C.S. Pollard, Z.B. Pollock, V. Polychronakos, D. Ponomarenko, L. Pontecorvo, S. Popa, G.A. Popencucu, L. Portales, D.M. Portillo Quintero, S. Pospisil, P. Postolache, K. Potamianos, I.N. Potrav, C.J. Potter, H. Potti, T. Poulsen, J. Poveda, T.D. Powell, G. Pownall, M.E. Pozo Astigarraga, A. Prades Ibanez, P. Pralavorio, M.M. Prapa, S. Prell, D. Price, M. Primavera, A. Principe Martin, M.L. Profitt, N. Proklova, K. Prokofiev, S. Protopopescu, J. Proudfoot, M. Prybyciega, D. Puizibbyantsvea, J. Qian, Y. Qin, T. Qiu, A. Quadil, M. Queitsch-Maitland, G. Rabanal Bolanos, F. Ragusa, J.A. Raine, S. Rajagopalan, J. Ran, D.F. Rassloff, D.M. Rauch, S. Rave, B. Ravina, I. Ravinovich, M. Raymond, A.L. Read, N.P. Readioff, D.M. Rebuuzzi, G. Redlinger, K. Reeves, D. Reikher, A. Reiss, A. Rej, C. Rembser, A. Renardi, M. Renda, M.B. Rendel, A.G. Rennie, S. Resconi, M. Ressegotti, E.D. Ressegwie, S. Retti, B. Reynolds, E. Reynolds, M. Rezaei Estabragh, O.L. Rezanova, P. Reznicek, E. Ricci, R. Richter, S. Richter, E. Richter-Was, M. Ridel, P. Rieck, P. Riedler, O. Rifki, M. Rijssenbeek, A. Rimoldi, M. Rimoldi, L. Rinaldi, T.T. Rinn, M.P. Rinnagel, G. Ripellino, I. Riu, P. Rivadeneira, E. Rivera Vergara, F. Rizatdinova, E. Rizzi, B.A. Roberts, B.R. Roberts, S.H. Robertson, M. Robin, D. Robinson, C.M. Robles Gajardo, M. Robles Manzano, A. Robson, A. Rocchi, S. Roda, S. Rodriguez Bosca, A. Rodriguez Rodrigue, A.M. Rodriguez Vera, S. Roe, A.R. Roepe-Gier, J. Roggel, O. Rohne, R.A. Rojas, B. Roland, C.P.A. Roland, J. Roloff, A. Romanouk, M. Romano, A.C. Romero Hernandez, N. Rompotis, M. Ronzani, L. Roos, S. Rosati, B.J. Rosser, E. Rossi, E. Rossi, E. Rossi, L.P. Rossi, L. Rossini, R. Rosten, M. Rotaru, B. Rottler, D. Rousseau, D. Rousso, G. Rovelli, S. Roy, A. Rozanov, Y. Rozen, X. Ruan, A.J. Ruby, T.A. Ruggeri, F. Rühr, A. Ruiz-Martinez, M. Rummel, Z. Rurikova, N.A. Rusakovitch, H.L. Russell, L. Rustige, J.P. Rutherford, E.M. Rüttiger, M. Rybar, E.B. Rye, A. Ryzhov, J.A. Sabater Iglesias, P. Sabatini, L. Sabetta, H.F.W. Sadrozinski, F. Safai Tehrani, B. Safarzadeh Samani, M. Safdari, S. Saha, M. Sahinsoy, A. Sahu, M. Saimpert, M. Saito, T. Saito, D. Salamani, G. Salamanna, J.T.A. Sallam, A. Salt, A. Salvador Salas, D. Salvatore, F. Salvatore, A. Salzburger, D. Sammel, D. Sampsonidou, D. Sampsonidou, J. Sánchez, A. Sanchez Pineda, V. Sanchez Sebastian, H. Sandaker, C.O. Sander, I.G. Sanderswood, J.A. Sandesara, M. Sandhoff, C. Sandoval, D.P.C. Sankey, M. Sannino, A. Sanson, C. Santoni, H. Santos, S.N. Santpur, A. Santra, K.A. Saoucha, J.G. Saravia, R.A. Santos, J. Sardain, O. Sasaki, K. Sato, C. Sauer, F. Sauerberg, E. Sauvan, P. Savard, R. Sawada, L. Sawyer, I. Sayago Galvan, C. Sbarta, A. Sbrizzi, T. Scanlon, J. Schaarschmidt, P. Schacht, D. Schaefer, A. Schäfer, A.C. Schaffer, D. Schale, R.D. Schamberger, E. Schanet, C. Scharf, N. Scharnberg, V.A. Schegelsky, D. Scheirich, F. Schenck, M. Schernau, C. Schiavi, M. Schiavi, K. Schildd, Z.M. Schillaci, E.J. Schioppa, M. Schioppa, B. Schlag, K.E. Schleicher, S. Schlenker, K. Schmieden, C. Schmitt, S. Schmitt, L. Schoeefel, A. Schoening, P.G. Scholer, E. Schopf, M. Schott, J. Schovancova, S. Schramm, F. Schroeder, H.C. Schultz-Coulon, M. Schumacher, B.A. Schumm
Ph. Schune 132, A. Schwartzman 140, T.A. Schwarz 103, Ph. Schwemling 132, R. Schwienhorst 104, A. Sciandra 133, G. Sciolla 24, F. Scuri 71a, F. Scuttari 102, C.D. Sebastiani 109, K. Sedałczek 47, P. Seema 17, S.C. Seidel 109, A. Seiden 133, B.D. Seiditz 37, T. Seiss 37, C. Seitz 46, J.M. Seixas 79b, G. Sehnimaizde 69a, S.J. Selma 42, L. Selmen 64, N. Semprini-Cesari 21b,21a, S. Sen 49, C. Serfoni 27, L. Serin 64, L. Serkin 66a,66b, M. Sessa 74a,74b, H. Severini 117, S. Sevova 47, F. Sforza 55b,55a, A. Sfyria 54, E. Shabalina 53, R. Shaheen 141, J.D. Shahinian 125, N.W. Shaikh 45a,45b, D. Shaked Renous 165, L.Y. Shan 133, M. Shapiro 16a, A. Sharma 34, A.S. Sharma 41, S. Sharma 46, P.B. Shatalov 15, K. Shaw 143, S.M. Shaw 98, P. Sherwood 29, L. Shi 93, C.O. Shimmin 168, Y. Shimogama 164, J.D. Shinner 92, I.P.J. Shipsey 123, S. Shirabe 54, M. Shiyakova 36, J. Shlomi 165, M.J. Shochet 37, J. Shojaei 102, D.R. Shope 141, S. Shrestha 116, E.M. Shrief 31f, M.J. Shroff 161, E. Shulga 165, P. Sicho 128, A.M. Sickles 158, E. Siders Haddad 11f, O. Sidirospoulou 34, A. Sidoti 21b, F. Siegert 48, D.j. Sijacki 14, J.M. Silva 19, M.V. Silva Oliveira 15a, S.B. Silverstein 15a, S. Simon 64, R. Simonelli 34, N.D. Simpson 95, S. Simsek 11b, P. Sinervo 152, V. Sinetckyi 35, S. Singh 139, S. Singh 152, S. Sinha 46, S. Sinha 31f, M. Sioli 21b,21a, I. Siral 120, S.Y. Sivoklokov 35, S. Sjölin 45a,45b, A. Skaf 53, E. Skorda 105, P. Skubic 117, M. Slawinska 33, K. Sliwa 155, V. Smakhtin 165, B.H. Smart 131, J. Smieszko 130, S.Y. Smirnov 35, Y. Smirnov 55, L.N. Smirnova 35a, O. Smirnova 35, E.A. Smith 37, H.A. Smith 123, M. Smizanska 48, K. Smolek 129, A. Smykiewicz 83, A.A. Snesarev 35, H.L. Snock 111, S. Snyder 27, R. Sobie 161y, A. Soffer 148, F. Sohns 153, C.A. Solans Sanchez 34, E.Y. Soldatov 35, U. Soldevila 159, A.A. Solodkov 35, S. Solomon 52, A. Soloshenko 36, O.V. Solovyanov 35, V. Solovev 35, P. Sommer 136, H. Son 155, A. Sonay 12, W.Y. Song 153b, A. Sopczak 129, A.L. Sopio 93, F. Sopkova 268, S. Sottocornola 103a,103b, P. Soualah 55a,55c, Z. Soumaini 33e, D. South 46, S. Spagnolo 67a,67b, M. Spalla 107, M. Spangenberg 163, F. Spano 92, D. Sperlich 52, T.M. Spieker 61a, G. Spigo 34, S. Spina 143, D.P. Spiteri 157, M. Spousta 130, A. Stabile 45a,68b, R. Stamen 61a, M. Stamenkovic 111, A. Stampekis 19, M. Standke 22, E. Stanecka 83, B. Stanislaus 64, M.M. Staniitoki 46, M. Stankityte 123, B. Staph 146, E.A. Starchenko 35, G.H. Stark 133, J. Stark 99ad, D.M. Starko 153b, P. Staroba 128, P. Starovoitov 61a, S. Stärz 101, R. Staszewski 48, G. Stavropoulos 44, P. Steinberg 127, A.L. Steinhebel 120, B. Stelzer 139,153a, H.J. Stelzer 126, O. Stelzer-Chilton 153a, H. Stenzel 56, T.J. Stevenson 143, G.A. Stewart 34, M.C. Stockton 34, G. Stoica 25b, M. Stolarski 127a, S. Stonjek 107, A. Straessner 48, J. Strandberg 141, S. Strandberg 45a,45b, M. Strauss 117, T. Streber 99, P. Strizeneck 26b, R. Ströhrmer 162, D.M. Strom 120, L.R. Strom 46, R. Stroynowski 42, A. Strubig 45a,45b, S.A. Stucci 27, B. Stuig 15, J. Stupak 117, N.A. Styles 46, D. Su 140, S. Su 60a, W. Su 60d,135,60c, X. Su 60a, K. Sugizaki 150, V.V. Sulin 35, M.J. Sullivan 89, D.M.S. Sultan 54, L. Sultanaliyeva 35, S. Sultansoy 3c, T. Sumida 64, S. Sun 103, S. Sun 166, X. Sun 98, O. Sunneborn Gudnadottir 157, C.J.E. Suster 144, M.R. Sutton 143, M. Svatos 128, M. Swiatlowski 153a, T. Swirski 162, I. Sykora 26a, M. Sykora 130, T. Sykora 130, D. Ta 97, K. Tackmann 19, A. Taffard 150, R. Tairoid 153a, R.H.M. Taibah 124, R. Takashima 85, K. Takeda 81, T. Takeshita 137, E.P. Takebo 150, Y. Takubo 80, M. Talby 99, A.A. Talyshew 35, K.C. Tam 62b, N.M. Tamir 148, A. Tanaka 150, J. Tanaka 150, R. Tanaka 64, J. Tang 60x, Z. Tao 160, S. Tapia Araya 78, S. Tapprogge 97, A. Tarek Abouelfadl Mohamed 104, S. Tarem 147, K. Tariq 46b, G. Tarna 25b, G.F. Tartarelli 48a, P. Tas 130, M. Tasevsky 128, E. Tassi 41b,41a, G. Tateno 150, Y. Tatalat 33e, G.N. Taylor 102, W. Taylor 153b, H. Teagle 89, A.S. Tee 166, R. Teixeira De Lima 140, P. Teixeira-Dias 692, H. Ten Kate 34, J.J. Teoh 111, K. Terashi 150, J. Terron 96, S. Terzo 12, M. Testa 51, R.J. Teuscher 152, y, N. Themistokleous 50, T. Theveneaux-Pelzer 17, O. Thiellmann 167, D.W. Thomas 92, J.P. Thomas 19, E.A. Thompson 46,
P.D. Thompson, E. Thomson, E.J. Thorpe, Y. Tian, V. Tikhomirov, Yu.A. Tikhonov, S. Timoshenko, P. Tipton, S. Tisserant, S.H. Tlou, A. Tnourji, K. Todome, S. Todorova-Nov, S. Tordt, M. Togawa, J. Tojo, S. Tokář, T. Tokushuku, E. Tolley, R. Tombs, M. Tomoto, L. Tompkins, P. Tornambe, E. Torró Pastor, M. Toscani, C. Tosciri, J. Toth, D.R. Tovey, A. Tracee, C.J. Treado, T. Trefzger, A. Tricoli, I.M. Trigger, S. Trincas-Duvoir, D.A. Trischuk, B. Tromè, A. Troyfymov, C. Troncon, F. Trovato, L. Truong, M. Trzebinski, A. Trzupek, F. Tsai, A. Tsiamis, P.V. Tsareshka, A. Tsirigotis, V. Tsiskaridze, E.G. Tsakhadzhe, M. Tsopoulou, Y. Tsujiwaka, I.I. Tsukerman, V. Tsulaia, S. Tsuno, O. Tsur, D. Tsybychev, J. Tu, A. Tudorache, D.V. Tudorache, A.N. Tuna, S. Turchikhin, I. Turk Çakır, R.J. Turner, R. Turra, P.M. Tuts, S. Tzamarias, P. Tzanis, E. Tzovara, K. Uchida, F. Ukegawa, P.A. Ulloa Poblete, G. Unal, M. Unal, A. Undrus, G. Unel, F.C. Ungaro, K. Uno, J. Urban, P. Urquiou, G. Usai, R. Ushioda, V. Vafeiadis, J. Wang, M. Vos, M. Vranjes Milosavljevic, I. Vukotic, M. Vrhovac, J. Wang, M. Vrtovec, L. Vyskočil, A. Verbytskyi, G.S. Virdee, A. Trofymov, P. Tzanis, K.O.H. Vadla, T. Vafeiadis, C. Valderanis, E. Valdes Santurio, M. Valente, S. Valentiniti, M. Veltrop, A. Valero, R.A. Vallance, A. Vallier, J.A. Valls Ferrer, T.R. Van Daalen, P. Van Gemmeren, S. Van Strouf, I. Van Vulpen, M. Vanadia, M. Vandenbroucke, E.R. Vandewall, D. Vanička, L. Vannoli, V. Varellas, M.E. Vasile, L. Vaslin, G.A. Vasquez, V. Vazquez, D. Vazquez, A. Vazquez, T. Vázquez Schroeder, J. Vaccari, V. Vecchio, M.J. Veen, I. Velissek, L.M. Veloce, F. Veloso, S. Veneziano, A. Ventura, A. Verbytskyi, M. Verducci, C. Vergis, M. Verissimo De Araujo, W. Verkerke, A.T. Vermeulen, J.C. Vermeulen, C. Vernieri, P.J. Verschuuren, M. Vessella, M.L. Vesterbacka, M.C. Vetterli, V. Vigenopoulos, N. Viaux Maira, R. Viček, M. Vignati, M. Villa, M. Villaplana Perez, E.M. Villhauer, E. Vilucchi, M.G. Vinter, G.S. Virdee, A. Vishwakarma, C. Vittori, I. Vivarelli, V. Vladimirov, E. Voevodina, M. Vogel, P. Vokac, J. Von Ahnen, E. Von Toerne, V. Vorobel, K. Vorobev, M. Vos, J.H. Vossebeld, M. Vozak, L. Vozdeky, N. Vranjes, M. Vranjes Milosavljevic, V. Vrbu, M. Vreeswijk, R. Vuillermet, O. Vujinovic, I. Vukotic, S. Wada, C. Wagner, W. Wagner, S. Wahdan, H. Wahlberg, R. Wakasa, M. Wakida, V.M. Walbrecht, J. Walder, R. Walker, S.D. Walker, W. Walkowiak, A.M. Wang, A.Z. Wang, C. Wang, D. Wang, P. Wang, R.-J. Wang, R. Wang, S.M. Wang, S. Wang, T. Wang, W.T. Wang, W.X. Wang, X. Wang, X. Wang, C. Wang, Y. Wang, C. Watanakunakorn, A. Warburton, M.P. Ward, R.J. Ward, N. Warrack, A.T. Watson, M.F. Watson, G. Watts, B.M. Waugh, A.F. Webb, C. Weber, M.S. Weber, S.A. Weber, S.M. Weber, C. Weil, Y. Wei, A.R. Weidberg, J. Weingarten, M. Weirich, C. Weiser, T. Wenaus, B. Wendland, T. Wengler, S. Wenig, N. Werners, M. Wessels, K. Whalen, A.M. Wharton, A.S. White, A. White, M.J. White, D. Whiteson, L. Wickremasinghe, W. Wiedenmann, C. Wiel, M. Wieters, N. Wieszoczek, C. Wiglesworth, L.M. Wiik-Fuchs, D.J. Wilber, H.G. Wilkens, L.J. Wilkins, D.M. Williams, H.H. Williams, S. Williams, S. Willocq, P.J. Windischhofer, I. Wingerter-Seer, F. Winkelmeier, B.T. Winter, M. Wittgen, M. Wobisch.
A. Wolf, R. Wölker, J. Wollrath, M.W. Wolters, H. Wolters, V.W.S. Wong, A.F. Wongel, S.D. Worm, B.K. Wosiek, K.W. Woźniak, K. Wraight, J. Wu, S.L. Wu, X. Wu, Y. Wu, Z. Wu, J. Wuerzinger, T.R. Wyatt, B.M. Wynne, S. Xella, L. Xia, M. Xie, J. Xiang, X. Xiao, M. Xie, X. Xie, I. Xiotidis, D. Xu, H. Xu, H. Xu, L. Xu, R. Xu, T. Xu, W. Xu, Y. Xu, Z. Xu, B. Yabsley, S. Yacoob, N. Yamaguchi, Y. Yamaguchi, M. Yamatani, H. Yamauchi, T. Yamazaki, Y. Yamazaki, J. Yan, S. Yan, Z. Yan, H.J. Yang, H.T. Yang, S. Yang, T. Yang, X. Yang, X. Yang, Y. Yang, Z. Yang, W.M. Yao, Y.C. Yap, H. Ye, J. Ye, S. Ye, I. Yeletskikh, R. Yexley, P. Yin, K. Yorita, K. Yoshihara, C.J.S. Young, C. Young, M. Yuan, R. Yuan, X. Yue, M. Zaazoua, B. Zabinski, G. Zacharias, E. Zaïd, T. Zakareishvili, N. Zakarchuk, S. Zambito, D. Zanzi, S.V. Zeißner, C. Zeitnitz, J.C. Zeng, D.T. Zenger Jr, O. Zenin, T. Ženić, S. Zenz, S. Zerradi, D. Zerwas, B. Zhang, D.F. Zhang, G. Zhang, J. Zhang, K. Zhang, L. Zhang, M. Zhang, R. Zhang, S. Zhang, X. Zhang, Z. Zhang, P. Zhao, Y. Zhao, Z. Zhao, A. Zhemchugov, Z. Zheng, D. Zhong, B. Zhou, C. Zhou, H. Zhou, Y. Zhou, C.G. Zhu, C. Zhu, H.L. Zhu, H. Zhu, J. Zhu, Y. Zhu, Z. Zhu, X. Zhuang, K. Zhukov, V. Zhubanov, D. Zieminska, N.I. Zimine, S. Zimmermann, J. Zinsser, M. Ziolkowski, L. Živković, A. Zoccoli, K. Zoch, T.G. Zorbas, O. Zormpa, W. Zou, L. Zwalinski.
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.

School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.

Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; Departamento de Física, Universidad Nacional de Colombia, Bogotá; Colombia.

Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; INFN Sezione di Bologna; Italy.

Physikalisches Institut, Universität Bonn, Bonn; Germany.

Department of Physics, Boston University, Boston MA; United States of America.

Department of Physics, Brandeis University, Waltham MA; United States of America.

Transilvania University of Brasov, Brasov; Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; University Politehnica Bucharest, Bucharest; West University in Timisoara, Timisoara; Romania.

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.

Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires; Argentina.

California State University, CA; United States of America.

Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.

Department of Physics, University of Cape Town, Cape Town; Thembalabs, Western Cape; Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; National Institute of Physics, University of the Philippines Diliman (Philippines); University of South Africa, Department of Physics, Pretoria; School of Physics, University of the Witwatersrand, Johannesburg; South Africa.

Department of Physics, Carleton University, Ottawa ON; Canada.

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; Faculté des Sciences, Université Ibn-Tofail, Kénitra; Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda; Faculté des sciences, Université Mohammed V, Rabat; Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco.

CERN, Geneva; Switzerland.

Affiliated with an institute covered by a cooperation agreement with CERN.

Affiliated with an international laboratory covered by a cooperation agreement with CERN.

Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.

Nevis Laboratory, Columbia University, Irvington NY; United States of America.

Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.

Dipartimento di Fisica, Università della Calabria, Rende; INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.

Physics Department, Southern Methodist University, Dallas TX; United States of America.

Physics Department, University of Texas at Dallas, Richardson TX; United States of America.

National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

Department of Physics, Stockholm University; Oskar Klein Centre, Stockholm; Sweden.
Brazil.

KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

Graduate School of Science, Kobe University, Kobe; Japan.

AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.

Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

Faculty of Science, Kyoto University, Kyoto; Japan.

Kyoto University of Education, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Graduate School of Science, Kobe University, Kobe; Japan.

Faculty of Science, Kyoto University, Kyoto; Japan.

Kyoto University of Education, Kyoto; Japan.

Faculty of Science, Kyoto University, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

Physics Department, Lancaster University, Lancaster; United Kingdom.

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Department of Physics and Astronomy, University College London, London; United Kingdom.

Louisiana Tech University, Ruston LA; United States of America.

Fysiska institutionen, Lunds universitet, Lund; Sweden.

Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.

Institut für Physik, Universität Mainz, Mainz; Germany.

School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Department of Physics, University of Massachusetts, Amherst MA; United States of America.

Department of Physics, McGill University, Montreal QC; Canada.

School of Physics, University of Melbourne, Victoria; Australia.

Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

Group of Particle Physics, University of Montreal, Montreal QC; Canada.

Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

New York University Abu Dhabi, Abu Dhabi; United Arab Emirates University, Al Ain; University of Sharjah, Sharjah; United Arab Emirates.

Department of Physics, New York University, New York NY; United States of America.

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

Ohio State University, Columbus OH; United States of America.

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
States of America.
118 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
119 Palacký University, Joint Laboratory of Optics, Olomouc; Czech Republic.
120 Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
121 Graduate School of Science, Osaka University, Osaka; Japan.
122 Department of Physics, University of Oslo, Oslo; Norway.
123 Department of Physics, Oxford University, Oxford; United Kingdom.
124 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris; France.
125 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
127 \((a)\) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; \((b)\) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; \((c)\) Departamento de Física, Universidade de Coimbra, Coimbra; \((d)\) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; \((e)\) Departamento de Física, Universidade do Minho, Braga; \((f)\) Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); \((g)\) Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.
128 Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
129 Czech Technical University in Prague, Prague; Czech Republic.
130 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
132 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
133 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
134 \((a)\) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; \((b)\) Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago; \((c)\) Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena; \((d)\) Universidad Andres Bello, Department of Physics, Santiago; \((e)\) Instituto de Alta Investigación, Universidad de Tarapacá, Arica; \((f)\) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
135 Department of Physics, University of Washington, Seattle WA; United States of America.
136 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
137 Department of Physics, Shinshu University, Nagano; Japan.
138 Department Physik, Universität Siegen, Siegen; Germany.
139 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
140 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
141 Department of Physics, Royal Institute of Technology, Stockholm; Sweden.
142 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
143 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
144 School of Physics, University of Sydney, Sydney; Australia.
145 Institute of Physics, Academia Sinica, Taipei; Taiwan.
146 \((a)\) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; \((b)\) High Energy Physics Institute, Tbilisi State University, Tbilisi; \((c)\) University of Georgia, Tbilisi; Georgia.
147 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
148 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
149 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

31
International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

Department of Physics, University of Toronto, Toronto ON; Canada.

TRIUMF, Vancouver BC; Department of Physics and Astronomy, York University, Toronto ON; Canada.

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.

Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.

Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.

Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

Department of Physics, University of British Columbia, Vancouver BC; Canada.

Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.

Department of Physics, University of Warwick, Coventry; United Kingdom.

Waseda University, Tokyo; Japan.

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.

Department of Physics, University of Wisconsin, Madison WI; United States of America.

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.

Department of Physics, Yale University, New Haven CT; United States of America.

Also Affiliated with an institute covered by a cooperation agreement with CERN.

Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.

Also at Bruno Kessler Foundation, Trento; Italy.

Also at Center for High Energy Physics, Peking University; China.

Also at Centro Studi e Ricerche Enrico Fermi; Italy.

Also at CERN, Geneva; Switzerland.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.

Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.

Also at Department of Physics, California State University, East Bay; United States of America.

Also at Department of Physics, California State University, Fresno; United States of America.

Also at Department of Physics, California State University, Sacramento; United States of America.

Also at Department of Physics, King’s College London, London; United Kingdom.

Also at Department of Physics, Stanford University, Stanford CA; United States of America.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Faculty of Physics, Sofia University, 'St. Kliment Ohridski', Sofia; Bulgaria.
Also at Hellenic Open University, Patras; Greece.
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
Also at Institute of Particle Physics (IPP); Canada.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.
Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
Also at Istanbul University, Dept. of Physics, Istanbul; Türkiye.
Also at L2IT, Université de Toulouse, CNRS/IN2P3, UPS, Toulouse; France.
Also at National Institute of Physics, University of the Philippines Diliman (Philippines); Philippines.
Also at Physics Department, An-Najah National University, Nablus; Palestine.
Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
Also at The City College of New York, New York NY; United States of America.
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.
Also at TRIUMF, Vancouver BC; Canada.
Also at Università di Napoli Parthenope, Napoli; Italy.
Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.
Also at Yeditepe University, Physics Department, Istanbul; Türkiye.
* Deceased