Heterogeneous pathways and timing of factor departure during translation initiation

Albert Tsai1,2, Alexey Petrov1, R. Andrew Marshall1,3, Jonas Korlach4, Sotaro Uemura1,5 & Joseph D. Puglisi1,6

The initiation of translation establishes the reading frame for protein synthesis and is a key point of regulation. Initiation involves factor-driven assembly at a start codon of a messenger RNA of an elongation-competent 70S ribosomal particle (in bacteria) from separated 30S and 50S subunits and initiator transfer RNA. Here we establish in Escherichia coli, using direct single-molecule tracking, the timing of initiator tRNA, initiation factor 2 (IF2; encoded by infB) and 50S subunit joining during initiation. Our results show multiple pathways to initiation, with orders of arrival of tRNA and IF2 dependent on factor concentration and composition. IF2 accelerates 50S subunit joining and stabilizes the assembled 70S complex. Transition to elongation is gated by the departure of IF2 after GTP hydrolysis, allowing efficient arrival of elongator tRNAs to the second codon presented in the aminoacyl-tRNA binding site (A site). These experiments highlight the power of single-molecule approaches to delineate mechanisms in complex multicomponent systems.

Initiation is a key point of regulation of gene expression before the ribosome is committed to the energy-intensive process of synthesizing a full protein. Protein factors guide and regulate initiation; three initiation factors, IF1 (encoded by infA), IF2 and IF3 (encoded by infC), are required for viability in bacteria, whereas a far larger complement of factors exists in eukaryotes.

Although the mechanism and overall kinetics of translation initiation in bacteria have been delineated over the past two decades, fundamental questions remain. The possible configurations that this multifactor system can adopt challenge traditional biophysical methods. The timings of individual factor and tRNA assembly on the ribosome, their coordination with each other, and the subsequent factor dissociation that allows elongation are not known. Translation initiation may follow a linear mechanism, or branch through multiple parallel pathways. We apply real-time single-molecule methods to track directly the dynamics of translation initiation in the model E. coli system. We determined the relative timing of initiator tRNA, IF2 and subunit binding, and showed how IF2 and GTP hydrolysis control the transition into elongation. Our data demonstrate that intermediate and late steps in initiation occur through heterogeneous pathways. The overall initiation rates and efficiency depend on the initiation pathway, whose selection is guided by initiation factors.

Single-molecule fluorescence experiments allow direct observation of dynamics in complex biological systems. To monitor single-molecule fluorescence at high (0.1–5 μM) concentrations of free dye-labelled biomolecules, optical confinement was achieved using zero-mode wave-guides (ZMWs) (Supplementary Fig. 1). We recently demonstrated the power of this approach by tracking the real-time dynamics of tRNA transit through the ribosome during elongation. After conducting control experiments to verify the functionality of our dye-labelled biomolecules (Supplementary Text 1 and Supplementary Fig. 2), we broaden this method to follow tRNAs, protein factors and ribosomal subunits directly during initiation and transition into elongation (Fig. 1a).

Although recent experiments suggested that IF2 and initiator tRNA (fMet-tRNAfMet) bind sequentially to the small subunit in the formation of a 30S pre-initiation complex (30S PIC), IF2 with GTP bound

![Figure 1 | Pathways leading to 30S PIC formation.](image-url)

- **Figure 1a**: Single dye-labelled 30S complexes were immobilized on the bottom of ZMW wells and scored by fluorescence (see Methods). Dye-labelled initiation factors, tRNAs and 50S subunits were delivered at t = 7 s in all experiments. The appearance of fluorescence signals indicates arrival of the labelled molecules. Fluorescence signal disappears either due to dye-labelled molecule departure or photobleaching.
- **Figure 1b**: Productive initiation events were identified by stable 50S arrival (see Methods). The order of arrival was determined by the sequence of the fluorescent pulses. Grey portions of the traces represent fluorescence background.
- **Figure 1c**: The ratios of possible 30S PIC formation pathways at different ligand concentrations were measured and plotted. See Methods for an explanation of instrument uncertainty. From left to right, n = 86, n = 51, n = 79 and n = 52.

1Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305-5126, USA. 2Department of Applied Physics, Stanford University, Stanford, California 94305-4090, USA. 3McKinsey & Company - Silicon Valley, 3705A Hansen Way, Palo Alto, California 94304, USA. 4Pacific Biosciences, 1380 Willow Rd, Menlo Park, California 94025, USA. 5Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 223-0045, Japan. 6Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, California 94305-5126, USA.

©2012 Macmillan Publishers Limited. All rights reserved
(IF2–GTP) also forms a weak complex with the tRNA (dissociation constant $K_d \approx 1 \mu M^{-1}$), potentially allowing both to bind simultaneously. We determined whether IF2 and tRNA binding is simultaneous, sequential or random by delivering a mixture of Cy3-labelled initiator tRNA (fMet-(Cy3)tRNA$_{fMet}$), Cy5-labelled IF2 (Cy5–IF2) and Cy3.5-labelled large subunits (Cy3.5–50S) to immobilized 30S subunits labelled with Alexa488 at 20–1,000 nM of each reagent (see Methods). The appearance of a stable 50S signal ($t > 10$ s) was used to identify productive tRNA- and IF2-binding events. The relative timing of IF2 and initiator tRNA arrival to the ribosome was determined by single-molecule analysis (Fig. 1b).

At low concentrations (20 nM each) of IF2 and the initiator tRNA, tRNA arrives first in 65% of the initiation events, IF2 arrives first in 30%, and only 5% show simultaneous arrival of both molecules (Fig. 1c and Supplementary Fig. 3). Addition of IF1 and IF3 shifts the arrival order, with 50% of ribosomes having IF2 arrive before initiator tRNA, 40% having initiator tRNA before IF2, and 10% showing simultaneous arrival. This is consistent with IF1 and IF3 destabilizing initiator tRNA in 30S PIC and increasing the affinity of IF2 to the 30S ribosomal subunit in the absence of initiator tRNA$_{fMet}$, GTP$_{11,13}$. Increasing IF2 and initiator tRNA concentrations to 1 μM raised the fraction of simultaneous arrival to 45% while lowering the fraction of IF2 arriving first to 35% and the fraction of initiator tRNA arriving first to 10%. Thus, the order of IF2 and initiator tRNA arrival does not strictly follow a defined sequence, but is greatly affected by ligand concentrations and other initiation factors. Whereas at lower concentrations, the ligands arrive independently, simultaneous arrival of both ligands could be a more common mechanism at near physiological concentrations.

50S subunit joining to a 30S PIC to form a 70S initiation complex (70S IC) is the second major molecular event of initiation. To track subunit joining, we used 50S subunits labelled with single dyes, which were shown to be functional in prior intersubunit fluorescence resonance energy transfer (FRET) studies.11,12 We delivered Cy5–50S subunits to immobilized 30S PICs (see Methods). IF2 in the presence of GTP drives rapid, stable subunit joining (2) at 2 μM IF2–GTP, Cy5–50S subunits joined rapidly to 30S PICs with an observed rate $k_{on} = 1 \times 10^{6} M^{-1} s^{-1}$ (corresponding to an exponential lifetime of $\tau \approx 9$ s), forming complexes whose lifetime was limited by photobleaching ($\tau \approx 38$ s) (Fig. 2b and Supplementary Fig. 4 and Supplementary Text 2). In accordance with previous studies,8 omitting IF2 resulted in slow and unstable subunit joining, decreasing k_{on} to $0.3 \times 10^{6} M^{-1} s^{-1}$ ($\tau \approx 29$ s) and 50S lifetime to $\tau \approx 6$ s. In the presence of IF2 and non-hydrolysable GDPNP, 50S subunit arrival rate was similar to that of IF2–GTP. However, 50S subunit stability decreased to a lifetime of $\tau \approx 28$ s, consistent with prior intersubunit FRET results that GDPNP-bound IF2 can guide stable subunit joining without GTP hydrolysis.11,13 Addition of the other two initiation factors, IF1 and IF3, at 1 μM each to 2 μM IF2–GTP did not appreciably change the k_{on} or the lifetime of the 50S subunit on our model mRNA.

Subunit joining accelerates GTP hydrolysis by IF2, and IF2–GDP quickly dissociates from the ribosome13; elongator tRNA arrival finalizes transition into elongation. Yet the relative timings of IF2 release, 50S subunit joining and elongator tRNA binding are not known. To monitor these events in real time, we delivered Cy5–IF2, Cy3.5–50S and Phe-(Cy2)tRNA$_{Phe}$ (as a ternary complex of tRNA, elongation factor EF-Tu and GTP, abbreviated as tRNA–EF-Tu–GTP, EF-Tu encoded by tufA/ B) to 30S PIC loaded with fMet-(Cy3)tRNA$_{fMet}$, simultaneously tracking four different labelled components (see Methods). An IF2 signal was followed by rapid and stable subunit joining ($t > 10$ s) in the presence of GTP (Fig. 3a). IF2 with GTP bound yielded stable tRNA binding ($t > 1$ s) after 50S subunit joining; only brief tRNA sampling occurs with GDPNP.

Post-synchronizing the four-colour experiments with IF2–GTP to 50S arrival revealed an overlap between the IF2 and 50S signals of $\tau = 2$ s on a 70S IC (Fig. 3b and Supplementary Fig. 5 and Supplementary Text 3). This overlap time was independent of 50S subunit concentration, suggesting that unimolecular processes occur within this overlap (Fig. 3c). During this period, IF2 rapidly hydrolyses GTP, rearranges the 70S IC, and then dissociates from the ribosome; consistent with this interpretation, the lifetime of IF2–GDP on 70S ribosomes was $\tau = 1.2$ s (Supplementary Fig. 2c). Interestingly, the arrival time of the elongator tRNA after subunit joining showed a similar lag of ≈ 2 s. Increasing tRNA concentration beyond 200 nM had no statistically significant effect on tRNA arrival time, suggesting that tRNA arrival is not a rate-limiting step (Fig. 3c). The temporal correlation of IF2 dissociation and tRNA arrival during this 2 s window was not absolute; when single-molecule trajectories were post-synchronized to IF2 departure, tRNA arrival frequency increased after IF2 release, but $\approx 20\%$ of tRNA molecules arrived before IF2 departure.

Further analysis of these experiments explains how IF2 controls the transition into elongation. In the presence of IF2–GDPNP, very little elongator tRNA density was observed. The overall frequency of elongator tRNA-binding events within a 2 s window before and after IF2 departure was similar in the presence of either GTP or GDPNP (Fig. 3d and Supplementary Text 4). However, the majority of tRNA arrival events were short-lived sampling events in GDPNP whereas most of the tRNA events in GTP involved stable (≈ 1 s) binding, indicating that before GTP hydrolysis, only short-lived elongator tRNA sampling events are allowed.

Single-molecule techniques can distinguish among heterogeneous populations of molecules. By tracking individual dye-labelled molecules, we have shown that initiation does not follow a strictly linear mechanism whereby the translational machinery is rigidly assembled in a well-defined order. Although the ribosome must proceed through defined stages, such as forming the 30S PIC and 70S IC, there are numerous pathways available to it (Fig. 4).

During the formation of 30S PIC, IF2 and fMet-tRNA$_{fMet}$ must bind to the 30S subunit to establish a reading frame on the mRNA and
prime the 30S subunit for subunit joining. We observed all possible orders of binding occurring under different conditions. The binding pattern changes depending on concentrations of both molecules and on the presence of other initiation factors, and our results suggest that simultaneous arrival of IF2 and the tRNA may dominate in vivo.

The last stages of successful initiation ensure stable 70S ribosome assembly and configure it to accept the first elongator tRNA. IF2–GTP is required for stable 70S complex formation. GTP hydrolysis by IF2 occurs rapidly (30 ms) after subunit joining, but our data show a lag of 1–2 s before elongator tRNA arrival. During this period, IF2–GDP is bound to the 70S ribosome. Cryo-electron microscopy (cryo-EM) structures show that the IF2–GDP adopts a different conformation from the GTP form, and moves away from the GTPase activation centre. Our data show that IF2 occupancy after GTP hydrolysis on the 70S complex hinders elongator tRNA arrival, consistent with cryo-EM maps of IF2–GDP on the 70S ribosome showing partial steric clash.

Figure 3 | Timing of IF2 departure and elongator tRNA arrival after 70S complex formation. a, See Methods for experimental setup. The timing of IF2 departure is determined by the disappearance of the Cy5 signal. b, The panels represent post-synchronization plots on 50S subunit arrival and IF2 departure at 1 μM dye-labelled ligand concentrations. With GTP (n = 161), there is a ~2 s overlap between the IF2 and 50S subunit signals with a strong elongator tRNA density. With GDPNP (n = 87), the overlap between IF2 and 50S is longer (~10 s) but there is little elongator tRNA density. c, The exponential lifetimes of the IF2–50S subunit overlap (left) in the presence of GTP did not depend on IF2 or 50S subunit concentrations. Increasing the elongator tRNA concentration also did not reduce the wait time until tRNA arrival (right). From left to right for both panels, n = 169 and n = 161; error bars are s.d. d, The event frequencies per molecule 2 s before and after IF2 departure are similar in both GTP (n = 161) and GDPNP (n = 87). Most events in GDPNP were removed by only counting events >1 s. Most of the events in GTP were longer-lived tRNA-binding events.

Figure 4 | The heterogeneous pathways of translation initiation. Multiple pathways are possible to reach the important stages of initiation as the ribosome converges to an elongation-competent 70S IC. Concentrations of initiation factors, tRNAs and ribosomal subunits all modulate the flux through the possible pathways that lead to successful initiation. After the 30S subunit binds to the mRNA, IF2 has a central role in channelling the ribosome towards elongation. At physiological concentrations of initiation factors and tRNAs, the majority of 30S PICs may be formed by IF2 bringing in the initiator tRNA to the 30S. IF2 also guides rapid and stable 50S subunit joining, while GTP hydrolysis by IF2 and its departure from the ribosome gates the stable binding of the first elongator tRNA.
with an incoming ternary complex (tRNA–EF–Tu–GTP) in the A site. These results suggest that IF2 release from the 70S complex controls the transition from initiation to elongation.

The single-molecule data presented here demonstrate the heterogeneous nature of translation initiation (Fig. 4). As the process evolves, the pathways converge to an elongation-competent 70S complex, with initiator tRNA positioned in the peptidyl-tRNA-binding site (P site), the correct intersubunit conformation, and IF2 clearance from the complex. Initiation factors guide the fidelity and timing of the process: IF1 and IF3 together regulate the order of IF2 and tRNA arrival and overall initiation efficiency, albeit via unclear mechanisms. IF2 guides the ribosome towards productive initiation and GTP hydrolysis governs transition into elongation. The single-molecule methods using ZMWs presented here can be broadly applicable to tracking compositional dynamics in other biological systems.

METHODS SUMMARY

Initiator and elongator tRNAs were dye labelled at the elbow position using Cy2-NHS (Cy2 conjugated to N-hydroxysuccinimide) or Cy3-maleimide dyes; IF2 was labelled by cysteine (K791C) with Cy5-maleimide. Ribosomal subunits were labelled using dye-conjugated oligonucleotide hybridization to mutant ribosomes (Supplementary Fig. 6). Biochemical experiments confirmed the functionality of all labelled components. Unless noted otherwise, all experiments were performed under buffer conditions described in Methods.

Data collection from ZMW chips was conducted using instrumentation and techniques described previously (Supplementary Fig. 1). Fluorescence traces were recorded at 30 frames per second for 5 min, with delivery of ligands to start the experiment at t = 7 s. The photobleaching lifetimes of the labelled ligands were characterized as previously described and were used to determine if a given loss of fluorescence signal is probably due to photobleaching or ligand dissociation. Data analysis on those traces was also conducted as described previously. All error bars presented on figures show standard deviation errors from fitting the data to exponential decay functions.

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 18 January; accepted 30 April 2012.

Published online 17 June 2012.

1. Laursen, B. S., Sorensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005).
2. Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999).
3. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
4. Uemura, S. et al. Real-time mRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).
5. Milon, P. et al. The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep. 11, 312–316 (2010).
6. Lockwood, A. H., Chakraborty, P. R. & Maitra, U. A complex between initiation factor IF2, guanosine triphosphate, and Met-tRNAf: an intermediate in initiation complex formation. Proc. Natl Acad. Sci. USA 68, 3122–3126 (1971).
7. Petersen, H. U., Roll, T., Grunberg-Manago, M. & Clark, B. F. Specific interaction of initiation factor IF2 of E. coli with formylmethionyl-tRNA_{Met}. Biochem. Biophys. Res. Commun. 91, 1068–1074 (1979).
8. Antoun, A., Pavlov, M. Y., Lovmar, M. & Ehrenberg, M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J. 25, 2539–2550 (2006).
9. Lockwood, A. H., Sarkar, P. & Maitra, U. Release of polysphosphate chain initiation factor IF-2 during initiation complex formation. Proc. Natl Acad. Sci. USA 69, 3602–3605 (1972).
10. Caserta, E. et al. Translation initiation factor IF2 interacts with the 30S ribosomal subunit via two separate binding sites. J. Mol. Biol. 362, 787–799 (2006).
11. Marshall, R. A., Aitken, C. E. & Puglisi, J. D. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35, 37–47 (2009).
12. Aitken, C. E. & Puglisi, J. D. Following the intersubunit conformation of the ribosome during translation in real time. Nature Struct. Mol. Biol. 17, 793–800 (2010).
13. Antoun, A., Pavlov, M. Y., Andersson, K., Tenson, T. & Ehrenberg, M. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J. 22, 5593–5601 (2003).
14. Myasnikov, A. G. et al. Conformational transition of initiation factor 2 from the GTP-to GDP-bound state visualized on the ribosome. Nature Struct. Mol. Biol. 12, 1145–1149 (2005).
15. Blanchard, S. C., Kim, H. D., Gonzalez, R. L. Jr., Puglisi, J. D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004).
16. Marshall, R. A. Regulation of Protein Synthesis via Changes in Ribosome Conformation. PhD thesis, Stanford Univ. (2006).
17. Dorywalska, M. et al. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189 (2005).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements Supported by National Institutes of Health grant GM51266 (J.D.P.) and the Japan Science and Technology Agency (S.U.).

Author Contributions A.T., A.P. and S.U. conducted the experiments and performed the analysis; R.A.M. prepared and provided experimental materials; J.K. provided technical expertise with instrumentation and data processing; S.U. and J.D.P. designed experiments; and all authors discussed results and wrote the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare competing financial interests: details accompany the full-text HTML version of the paper at www.nature.com/nature. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to S.U. (s-uemura@gsc.riken.jp) or J.D.P. (puglisi@stanford.edu).
METHODS

Dye-labelled ligands. *E. coli* ribosomal subunits, initiation factors and elongation factors were prepared and purified as described\(^\text{11,15,17,18}\). tRNA\(^{\text{Met}}\) and tRNA\(^{\text{Phe}}\) were labelled with fluorescent cyanine dyes at their elbow positions (U8 or U47), purified and aminocylated as previously described\(^\text{15,18}\). A single-cysteine mutant of IF2 (C599A and K791C) was labelled with monomaleimide-Cy5 (GE Lifesciences) according to instructions from GE Lifesciences\(^\text{16}\). Supplementary Fig. 6 shows the location of dye on the biomolecules.

Experimental conditions. Ribosome initiation complexes were assembled at 0.25 mM 30S subunit concentration in a polymix buffer (50 mM Tris-acetate (pH 7.5), 100 mM potassium chloride, 5 mM ammonium acetate, 0.5 mM calcium acetate, 5 mM magnesium acetate, 0.5 mM EDTA, 5 mM putrescine-HCl and 1 mM spermidine) as described previously\(^\text{4}\). Nucleotide concentration is at 4 mM for GTP, GDP and GDPNP in all experiments.

30S PIC immobilization. Biotinylated mRNAs were used to immobilize 30S PICs with or without fMet-tRNA\(^{\text{Met}}\). Complexes were tethered to the biotin-PEG-derivatized quartz surface on the bottom of ZMW wells through a tetrameric neutravidin adaptor molecule by establishing PEG-biotin–neutravidin–biotinylated-mRNA complexes. The mRNA used contains the following in order from 5' to 3': a 5' UTR and Shine–Dalgarno sequence derived from gene 32 of the T4 phage, an AUG start codon, 6 repeats of Phe-Lys codons, a UAA stop codon and 4 spacer Phe codons (Supplementary Fig. 1). Immobilized PICs were identified by initiator tRNA or 30S-subunit fluorescence and were distributed in ZMW holes according to Poisson statistics\(^\text{4}\). A single photobleaching step for the scoring dye confirms the single occupancy of the ZMW. Control experiments without mRNA demonstrated the absence of non-specific surface interactions at concentrations up to 1 µM of labelled tRNAs, factors or ribosomes. Thus, fluorescent events observed here represent true interactions of translation components with immobilized 30S subunits.

Observing the order of arrival of IF2 and initiator tRNA. We delivered a mixture of iMet-(Cy3)tRNA\(^{\text{Met}}\), Cy5–IF2–GTP and Cy3.5–50S to immobilized Alexa488–30S at 20 nM, 200 nM or 1,000 nM of each reagent. When present, IF1 and IF3 are at 1 µM. The appearance of a stable 50S signal was used to identify productive tRNA and IF2 binding events. The relative timing of IF2 and tRNA\(^{\text{Met}}\) arrival to the ribosome was determined by the order that their respective signals appear in each trace.

Observations for all experiments were done at 30 frames per second with ~33.3 ms exposure. Therefore, simultaneous arrival of fluorescence signals can be either genuine simultaneous arrival events or the two events happening sequentially within the exposure time. From the tRNA and IF2 arrival rates observed in control experiments, we calculated the percentage of apparent simultaneous events that can be attributed to sequential events happening in quick succession within one frame of exposure. We subtracted that part from the simultaneous events we observed and represented the subtracted portion as ‘instrument uncertainty’, or the grey portion on the bar graph in Fig. 1c.

Observing the role of IF2 in subunit joining. We delivered 200 nM of Cy5–50S to immobilized Cy3–30S at different magnesium concentrations (2.5–10 mM) both with and without 1 µM IF2 in either GTP or GDPNP. Where present, IF1 and IF3 are at 1 µM. The wait time until the appearance of the 50S signal and its lifetime was analysed to determine the efficiency of subunit joining under the different conditions.

Observing the relative timing of IF2 departure and elongator tRNA arrival. We delivered 20 to 1,000 nM Cy5–IF2, 200 to 1,000 nM Cy3.5–50S and 200 to 1,000 nM Phe–Cy2–tRNAPhe in a ternary complex with EF-Tu and GTP to 30S PIC loaded with fMet–Cy3–tRNA\(^{\text{Met}}\), simultaneously tracking four different labelled components in either GTP or GDPNP. We determined the overlap times of the IF2 signal with the 50S signal and the relative timing of IF2 departure to the arrival of the elongator tRNA, as well as the frequency of tRNA binding on the 70S ribosome after subunit joining.

18. Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nature Struct. Mol. Biol. 11, 1008–1014 (2004).