Performance and mechanism of ferric tannate in nitrogen removal from wastewater

R N Zhang¹, Y T Guan¹,³, J X Liu² and Z Liang³

¹Graduate School at Shenzhen Tsinghua University, Shenzhen, Guangdong 518055, China
²Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

E-mail: guanyt@tsinghua.edu.cn

Abstract. Ferric tannate (FT) has capacities on simultaneous adsorption of NH₄⁺-N and NO₂⁻-N. So far, no study has been reported on the mechanism of FT in the removal of NH₄⁺-N and NO₂⁻-N. In this work, FT was prepared for nitrogen removal, and the potential of FT in treating NH₄⁺-N and NO₂⁻-N from aqueous solution was investigated. The influence parameters e.g. substrate concentration and FT dosage on removing nitrogen from aqueous solution were optimized. The results showed that more N₂ generated when FT was added to the oxidation-reduction reaction between NH₄⁺-N and NO₂⁻-N. The concentration of NO₂⁻-N was higher than that of NH₄⁺-N would be conductive for the N₂ generation when adding FT. The Fourier Transform Infrared (FTIR) Spectrometer results showed that the structure of the FT (Fe-O) changed in the redox between NH₄⁺-N and NO₂⁻-N. The X-ray photoelectron spectroscopy (XPS) results showed that Fe³⁺ and Fe²⁺ coexisted in FT.

1. Introduction

At present, more and more contaminated wastewater which contained NH₄⁺-N and NO₂⁻-N are generated with the rapid development of industries, especially catalyst, chemical, and steel industries [1, 2]. Although nitrogen is a very important nutrient for algae, the excessive discharge of nitrogen will lead to eutrophication of receiving water bodies [3, 4]. The eutrophication of water will not only harm the environment, but also endanger the human health. And it has been reported that nitrite nitrogen causes blue baby syndrome, and is a precursor to the carcinogenic nitrosoamine [5]. Therefore, NH₄⁺-N and NO₂⁻-N removal from wastewater has attracted more interests recently.

Traditional methods, including biological treatment [6], ion exchange [7], adsorption [8-10] and catalysis etc., [11-14] have been applied to remove NH₄⁺-N and NO₂⁻-N from wastewater. Currently, long periods on bacteria acclimation for biological treatment and low total nitrogen (TN) removal when the influent biodegradable COD to TN ratio is low, which presents a problem in practical use [15]. Compared with the biological treatment, physical-chemical treatment has become a promising technology due to its high safety, high nitrogen removal, with practicable application [16]. Through the adsorbent and ion exchange resin can quickly remove nitrogen from wastewater, but they must be regenerated after adsorption nitrogen saturation, and the regenerated solution needs treatment and disposal. If the absorbent can be regenerated in situ, the adsorption will be an attractive alternative nitrogen removal technology.
Theoretically, the redox can occur between NO$_3^-$ and NH$_4^+$ according to their standard redox potential [17], which its products are N$_2$ and H$_2$O. To enhance NO$_3^-$ and NH$_4^+$ removal from wastewater simultaneously, a new material which had the ability of both NO$_3^-$ and NH$_4^+$ adsorption is needed. Previous a patent pointed that the colloidal particles of Fe(OH)$_3$, Ferric tannate (FT) and Fe$_2$O$_3$ could be used as catalysts during the process of NH$_4^+$-N reacted with NO$_2^-$N at room temperature [18]. However, to date, no research has been focused on factors of catalytic denitrification performance and mechanism on FT to remove NH$_4^+$-N and NO$_2^-$N.

Thus, the potential catalytic denitrification of FT to remove NH$_4^+$-N and NO$_2^-$N from aqueous solution simultaneously is investigated. The influence of various parameters (substrate concentration and FT dosage) on capacity and performance of the FT to remove nitrogen efficiently from aqueous solution were optimized. And before and after nitrogen removal, the FT were characterized through Fourier Transform Infrared (FTIR) Spectrometer and X-ray photoelectron spectroscopy (XPS).

2. Materials and methods

2.1. FT preparation

In this study, FT was prepared from the reaction of tannic acid and ferric chloride at ratio of 1:20 according to the reference [19].

2.2. Experiment procedure

The solution used in the test was mixture of ammonium chloride (~99.5%, Sinopharm Chemical reagent Co., China) and sodium nitrite (~99.0%, Sinopharm Chemical reagent Co., China). Ammonium (1000 mg/L) and nitrite (1000 mg/L) stock solution were prepared by dissolved ammonium chloride and sodium nitrite in deionized water, respectively. In these experiments, the concentrations of N in total were varied from 0 to 500 mg/L.

The adsorption-catalytic test was carried out in a 250 mL glass flask which had a working volume of 100 mL with the ratio of FT/ NH$_4^+$-N and FT/ NO$_2^-$N was 100 mg/mg and 50 mg/mg, respectively. There were two holes on the plug. The diameter of each hole was 50-70 mm. Two glass tubes connected with the flask through the holes for collecting samples and purging air. The gas of He was pumped into the flask to discharge all the air. Then the sealed flask was shocked at 200 rpm for 48 hours under ambient temperature, take the gas sample and the water sample from the flask every 2 hour. An additional flask that without ultrasound treatment was used as a control.

After filtration (microfiltration membrane pore size 0.45 μm, Beijing river the integrity of membrane technology development center, China), the concentrations of NH$_4^+$-N and NO$_2^-$N were determined.

2.3. Analysis and calculation methods

The concentrations of NH$_4^+$-N were measured using Nessler’S reagents spectrophotometer methods according to standard methods [20]. The concentrations of NO$_2^-$N were measured using hydrochloride naphthodiamide spectrophotometer methods on the basis of standard methods [20].

The content of N$_2$ was determined using the Agilent 6890N Gas Chromatograph equipped with TCD detector, and the gas of He was used as a carrier. During the procedure, temperature of the oven and the detector was 100°C and 250°C, respectively.

The functional group of the tannin acid and FT were measured using Fourier Transform Infrared Spectrometer (FTIR Spectrometer, Tensor 27, Germany) over the range of 400 ~ 4000 cm$^{-1}$ region [21]. In the test, the dried tannin acid and FTs were mixed potassium bromide (KBr) in the mass ratio of 1:20, respectively.

The binding energy of Fe and O on the surface of FT were obtained by XPS analysis. The sample of FT was packed carefully on XPS sampling template under the anaerobic condition to avoid surface oxidation. The XPS analysis was carried out using a Mutilab 2000 (ESCALAB250Xi, PANalytical co, Holland) with an Mg Kα X-ray (1253.6 eV) having a source power of 200 W. In the procedure of XPS
measurements, the sample chamber was evacuated (the base pressure was 3×10^{-9} mbar) before changing the gas atmosphere. The flood gun for charge compensation was used and calibrated the binding energy on the carbon 1s peak at 284.6 eV.

Fe content of FT was determined by spectrophotometric method using a Reflectoquant RQflex plus 10 (Merck chemical (Shanghai) Co., Ltd, China). The measuring principle was as follows. In acid solution (pH 2.5-9), a red-violet complex formed when Fe$^{2+}$ ions react with a triazine derivative that is determined reflectometrically. Samples must be reduced by ascorbic acid before Fe$^{3+}$ ions and total iron (sum of Fe$^{2+}$ and Fe$^{3+}$) can be measured. The procedure of the sample pretreatment was as follows. At first, 0.01 g of the dried FT was dissolved in 10 mL HCl (10%), the solution was divided into two equal parts. 5 mL solution was measured by a Reflectoquant RQflex plus 10 to determine the content of Fe$^{2+}$. In order to measure the content of total Fe, the other 5 mL solution was dissolved in 5 mL ascorbic acid (100 mg/L).

The content of Fe$^{2+}$ was calculated according to equation (1).

$$Fe^{2+} \ (mg/L) = Total \ Fe - Fe^{2+}$$

Where Fe$^{2+}$ was measured by measuring the Fe(phen)$_{2}^{3+}$ (phen=1,10-phenanthroline) complex formed during acid condition, total Fe was measured by converting any Fe$^{3+}$ of FT to Fe$^{2+}$ using ascorbic acid as a reducer.

The adsorption performances were evaluated according to the amount of NH$_{4}^{+}$-N and NO$_{2}^{-}$-N absorbed on per mass of FT (q_e in mg-N/g), which could be calculated according to equation (2).

$$q_e = (C_0 - C_e)/m$$

Where q_e was the equilibrium contaminant adsorbed by FT (mg/g). C_0 was the initial concentrations (mg N/L), C_e was the equilibrium concentration (mg N/L). V was solution volume (L) and m was the mass of FT used (g).

3. Results and discussion

3.1. The adsorption-catalytic denitrogenation performance on FT

The long reaction time (48 h) for FT in the study was chosen in the study, which might be due to the reaction time for NH$_{4}^{+}$-N and NO$_{2}^{-}$-N was unknown when FT added. To be on the safe side, the long reaction time (48 h) was chose for FT in the initial study.

![Figure 1](image)

Figure 1. The removal of NH$_{4}^{+}$-N and NO$_{2}^{-}$-N and N$_2$ production with the addition of FT.

In the present study, dosage of ferric tanate, concentration of NH$_{4}^{+}$-N and NO$_{2}^{-}$-N was 10.0 g/L, 100 mg/L and 200 mg/L, respectively. The results showed that N$_2$ increased when the concentration of
NH$_4^+$-N and NO$_2^-$-N decreased as time goes on (figure 1). In the procedure, NH$_4^+$-N reacted with NO$_2^-$-N as the equation (3).

$$\text{NH}_4^+ + \text{NO}_2^- \rightarrow \text{N}_2 + \text{H}_2\text{O}$$

(3)

After 24 hours, the concentration of NH$_4^+$-N and NO$_2^-$-N reduced to 30-35 mg/L and 125-128 mg/L, respectively. N$_2$ as product increased to 11.5-12.8 mg. And the removal rate of NH$_4^+$-N and NO$_2^-$-N was 64.6% and 39.0%. Meanwhile, the removal of NH$_4^+$-N and NO$_2^-$-N was 8.14% and 3.29%, respectively. And only 1.34 g N$_2$ generated in the control group. The results showed that more N$_2$ generated when FT was added to the oxidation-reduction reaction between NH$_4^+$-N and NO$_2^-$-N. Furthermore, according the result analysis, we confirmed the reaction time (10 h) for FT in the following study.

3.2. Adsorption of NH$_4^+$-N or NO$_2^-$-N on the FT

In order to investigate the nitrogen removal mechanism of FT, sequencing batch experiments for adsorbing NH$_4^+$-N and NO$_2^-$-N were conducted separately.

The adsorption capacity could describe well the distribution between liquid and solid phases at equilibrium [22, 23]. So the adsorption capacity of NH$_4^+$-N and NO$_2^-$-N on FT was measured in this work (figure 2). The maximum adsorption capacity of NH$_4^+$-N and NO$_2^-$-N were 13.4 mg/g and 10.0 mg/g (figure 2) under ambient temperature, respectively. And in the same experimental condition, the adsorption capacity of NH$_4^+$-N on FT was higher than NO$_2^-$-N. Thus, the results suggested that the FT showed better selectivity adsorption towards NH$_4^+$-N compared with NO$_2^-$-N. In addition, there was no N$_2$ generated in the processor. Hence NH$_4^+$-N and NO$_2^-$-N were removed by the adsorption of FT.

![Figure 2. Adsorption isotherms of NH$_4^+$-N and NO$_2^-$-N on FT.](image)

There were ferric ions and negative oxygen ions existed in FT, thus which can enhance NH$_4^+$-N and NO$_2^-$-N adsorption through the electrostatic interaction. The other important point is FT has the capacity of speeding this reaction up under ambient temperature. So the FT has the ability of regenerated in-situ when it used in NH$_4^+$-N and NO$_2^-$-N coexisted wastewater.

Therefore, in view of the cheaper cost and the simpler operation, FT is a good choice. More N$_2$ generated when FT was added to the reaction between NH$_4^+$-N and NO$_2^-$-N. Thus, the FT may be used as a promising material to remove nitrogen from wastewater in the future.

3.3. Factors influencing the reaction between NH$_4^+$-N and NO$_2^-$-N

The initial substrate concentration and the dosage of FT have important influence on the reaction of NH$_4^+$-N and NO$_2^-$-N. Therefore, it was necessary to investigate these significant factors. The experimental condition was listed as table 1, and the result of different initial substrate concentrations and different dosages of FT were illustrated as figures 3-6, respectively.
Table 1. The relative data in the experiments.

Test	1	2	3	4	5	6	7	8
NH\textsubscript{4}+-N (mg/L)	25	50	100	100	100	200	100	400
NO\textsubscript{2}--N (mg/L)	100	100	25	100	200	100	400	100
NH\textsubscript{4}+-N/NO\textsubscript{2}--N	1:4	1:2	4:1	1:1	1:2	2:1	1:4	4:1
FT (g/L)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
V (mL)	200	200	200	200	200	200	200	200

Figure 3. The variation of NH\textsubscript{4}+-N (a) and NO\textsubscript{2}--N (b) and conversion rate of N\textsubscript{2} (c) with the addition of FT.
Figure 4. The variation of NH$_4^+$-N (d) and NO$_2^-$-N (e) concentration and conversion rate of N$_2$ (f) with the addition of FT.

Figure 5. The variation of NH$_4^+$-N (g) and NO$_2^-$-N (h) concentration and conversion rate of N$_2$ (i) with the addition of FT.
3.3.1. Effect of the substrate concentration.

- The initial NH$_4^+$-N concentration was 100 mg/l, effect of the NO$_2^-$-N concentration on the reaction.

The results showed that the concentration of H$_2$O-N decreased to 99.3-64.3 mg/L and the removal quality of NO$_2^-$-N from 0.98 mg to 18.8 mg with NH$_4^+$-N to NO$_2^-$-N ratio decreased after 10 hours (figure 3). In the reaction, the production of N$_2$ was from 1.31 mg to 7.34 mg. And the most amount of N$_2$ (8.42 mg) generated at 1:2. The result indicated that the highest conversion rate of N$_2$ was achieved at 1:2 when the initial NH$_4^+$-N concentration was 100 mg/L.

- The initial NO$_2^-$-N concentration was 100 mg/l, effect of the NH$_4^+$-N concentration on the reaction.

The results showed that the concentration of NO$_2^-$-N decreased to 98.5-87.5 mg/L and the removal quality of NH$_4^+$-N from 0.70 mg to 5.20 mg with NH$_4^+$-N to NO$_2^-$-N ratio increased after 10 hours (figure 4). In the procedure, the production of N$_2$ was from 1.00 mg to 5.43 mg. And the most amount of N$_2$ (5.43 mg) generated at 1:2. The result indicated that the highest conversion rate of N$_2$ was attained at 1:2 when the initial NO$_2^-$-N concentration was 100 mg/L. While a closer look showed that the highest conversion rate of N$_2$ was obtained at NH$_4^+$-N to NO$_2^-$-N ratio 1:2 when the NO$_2^-$-N concentration kept constant.

- The initial amount of TN kept constant, effect of the NH$_4^+$-N to NO$_2^-$-N ratio on the reaction.

The initial content of TN in the group one (Test 1 and Test 3), group two (Test 7 and Test 8) were identical, respectively. After 10 hours reaction, the production of N$_2$ was 1.21 mg when the NH$_4^+$-N to NO$_2^-$-N ratio of 25:100, which was higher than the ratio of 100:25 (1.01 mg) when the initial TN
concentration was 125 mg/L. The production of N_2 was 7.14 mg when the NH$_4^+$-N to NO$_2^-$-N ratio of 100:400, which was higher than the ratio of 400:100 (4.66 mg) (figure 5) When the initial TN concentration was 500 mg/L. The results indicated that concentration of NO$_2^-$-N was higher than NH$_4^+$-N would be conductive to the N_2 generation with FT addition.

Results of the substrate concentration indicated that the concentration of NO$_2^-$-N was higher than NH$_4^+$-N would be conductive to the N_2 generation with FT addition. And in the present study, the optimum NH$_4^+$-N to NO$_2^-$-N ratio was 1:2, the removal rate of NH$_4^+$-N and NO$_2^-$-N was 64.3% and 7.0%, respectively. Meanwhile, the N_2 conversion ratio was 14.0%.

3.3.2. FT dosage. The addition of FT accelerated the reaction of NH$_4^+$-N and NO$_2^-$-N, and more N_2 generated. The effect of the dosage of FT on the redox between NH$_4^+$-N and NO$_2^-$-N was investigated.

In the study, FT dosages ranging from 0 to 20 g/L was optimized under optimum water conditions of NH$_4^+$-N 100 mg/L and NO$_2^-$-N 200 mg/L. The results showed that When the FT dosage was below 15 g/L, the production of N_2 increased as the increased addition of FT (figure 6). When the FT dosage continue increased (15-20 g/L), the production of N_2 and the removal of NH$_4^+$-N and NO$_2^-$-N no longer increased. Therefore, FT dosage was 15 g/L preferred for the further studies. And when the concentration of FT was 15 g/L, the highest removal rate of 68.0% for NH$_4^+$-N and 32.7% for NO$_2^-$-N could be reached. Meanwhile, the production of N_2 was 12.8 mg after 26 hours reaction.

3.4. The surface chemistry structure variation of FT

After the adsorption and adsorption-catalytic nitrogen removal reactions in the present study, FT were collected, and dried in a freezer dryer at minus 50°C. Then the structure analysis of FT was measured using FTIR spectroscopy. FTIR analysis permitted spectrophotometric observation of the material surface in the range 400-4000 cm$^{-1}$. The characteristic FTIR adsorption peaks could indicate some surface functional groups exist on the FT.

![Figure 7. FTIR spectra of FT before and after reaction.](image)

The smooth and broad adsorption peak at around 3500 cm$^{-1}$ appeared both the fresh and the used FT (figure 7), which was the characteristic FTIR adsorption peaks of adsorbed water or hydroxyl groups [24]. The broad Fe-O bands at around 567 cm$^{-1}$ and 459 cm$^{-1}$ appeared in the fresh FT, and the bands shifted to lower wavenumbers after either NH$_4^+$-N (559 cm-1 and 455 cm-1) or NO$_2^-$-N (557 cm-1 and 440 cm-1) adsorption. After experiments of adsorption-catalysis, the bands disappeared. The results implied that the structure of the FT (Fe-O) changed after it was added to the system where NH$_4^+$-N and NO$_2^-$-N coexisted.

3.5. The binding energy of O and Fe analysis in FT

The effects of chemical changes on the photoelectron peak shape using XPS have been of particular interest [25]. The technology of XPS was used to determine the chemical composition and the valence
state on the surface of substances [26]. In this study, the electron binding energy of O and Fe on the surface of FT were measured.

The O1s spectra were given as figure 8. In the fresh FT, the electron binding energy of O1s was 531.43 eV. After the FT was added to the system with NH4+-N or NO2⁻-N, or NH4⁺-N and NO2⁻-N coexisted, the electron binding energy of O1s was changed to 531.28 eV, 531.33 eV and 531.38 eV. The Fe 2p spectra were given as figure 8. In the fresh FT, the electron binding energy of Fe 2p was 710.93 eV. After the FT was added to the system with NH4⁺-N or NO2⁻-N, or NH4⁺-N and NO2⁻-N coexisted, the electron binding energy of Fe 2p was changed to 710.93 eV, 710.88 eV eV and 711.53 eV.

![Figure 8. XPS spectra of FT surface (m) O1s (n) Fe2p before and after reaction.](image)

There are four primary factors that affected the element’s electron binding energy as follows. (1) The spatial structure of the substance (2) The electronegativity of the substance (3) The oxidative state of the substance’s central ion (4) chemical environment of the element [27]. In this work, the electron binding energy of O1s on FT decreased. It might be the chemical environment of O1s had changed in the reaction, which led to the electron binding energy of O1s on the FT varied [28]. It was therefore suggested that the –O Fe was the core of the FT with the nitrogen removed function. And the difference in Fe 2p binding energy might be attributed to the oxidative state of Fe changed, or chemical environment of Fe changed [29]. The system with NO2⁻-N existed, NO2⁻-N would be combined with Fe ions of the FT through the electrostatic interaction. So the electronic cloud density of Fe ions on the FT increased, which could be observed from the binding energy of Fe ions decreased.

Furthermore, after and before adsorption-catalytic, the binding energy of Fe ions of FT were around 710 eV and 725 eV. Combined with the literature investigation and the standard XPS analysis method, it was found that Fe existed in FT as a form of Fe3O4 [30]. It might be concluded that the Fe3⁺ and Fe2⁺ coexisted in the FT, which could be determined in the next work.

3.6. The determination of the content of Fe in FT

FT that prepared in the study was difficult to dissolve in water. In the interest of analyzing the mechanism of the nitrogen removal using FT, before and after the reaction, the quantity change of FT was measured using the content of Fe (Fe3⁺ and Fe2⁺) in the substance with phenanthroline spectrophotometric method. The total amount of Fe in 1.5 g fresh FT was 0.1365 g, including a large quantity of Fe3⁺ (92.3%) and a small quantity of Fe2⁺ (7.70%) (figure 9). The result was consistent to the prediction of the XPS characterization with the Fe3⁺ and Fe2⁺ coexisted in the FT. And after the FT was added to the system which existed NH4⁺-N or NO2⁻-N, or NH4⁺-N and NO2⁻-N coexisted, the percentage composition of Fe3⁺ and Fe2⁺ was varied, while the total amount of Fe (Fe3⁺ and Fe2⁺) remained constant.

The percentage composition of Fe3⁺ in FT decreased quickly, and the percentage composition of Fe2⁺ increased obviously simultaneously in the first 2 hours in the system of NH4⁺-N and NO2⁻-N.
Later, the quantity of Fe3+ and Fe2+ in FT transformed each other to a certain degree with time prolonging (figure 9). While in the system with NH\textsubscript{4}+-N or NO\textsubscript{2}-N existed dependently, the percentage composition of Fe3+ in FT increased, and the percentage composition of Fe2+ decreased simultaneously with the time prolonging. And Fe3+ and Fe2+ in FT transformed each other without observed in the procedure. Therefore, only the redox reaction of NH\textsubscript{4}+-N and NO\textsubscript{2}-N was coupled with the redox reaction between Fe3+ and Fe2+. In the procedure, FT has the ability to improve the redox between NH\textsubscript{4}+-N and NO\textsubscript{2}-N. And Fe ions which contained in the FT represented as the electron transfer.

![Figure 9. The content of Fe3+ and Fe2+ of FT before and after reaction.](image)

4. Conclusions
More N\textsubscript{2} generated when FT was added to the oxidation-reduction reaction between NH\textsubscript{4}+-N and NO\textsubscript{2}-N. Furthermore, the FT has good performance for ammonium and nitrite removal with up to 68.0% and 32.7% removal efficiency, respectively. The concentration of NO\textsubscript{2}-N was higher than NH\textsubscript{4}+-N would be conductive to the N\textsubscript{2} generation with FT addition. When the FT concentration was 15 g/L, the production of N\textsubscript{2} was 12.8 mg, meanwhile the removal of NH\textsubscript{4}+-N and NO\textsubscript{2}-N was 68.0% and 32.7%, respectively.

The FTIR results implied that the structure of the FT (Fe-O) changed after it be added to the system where NH\textsubscript{4}+-N and NO\textsubscript{2}-N coexisted. XPS analysis found that Fe existed in FT as a form of Fe\textsubscript{3}O\textsubscript{4}, which meant the Fe3+ and Fe2+ coexisted in it. Results of the phenanthroline spectrophotometric method showed that in the system with NH\textsubscript{4}+-N and NO\textsubscript{2}-N existed dependently, without observed Fe3+ and Fe2+ in FT transformed each other. And only the redox between NH\textsubscript{4}+-N and NO\textsubscript{2}-N was coupled with the redox reaction between Fe3+ and Fe2+. In the procedure, FT has the ability to improve the redox reaction of NH\textsubscript{4}+-N and NO\textsubscript{2}-N, thus more N\textsubscript{2} generated. And Fe ions of the FT represented as the electron transfer.

Acknowledgments
This research was supported by the Major Science and Technology Program for Water Pollution Control and Treatment, National Water Grant (No. 2012ZX07301-001), Shenzhen Science and Innovation Commission (No. JSGG20160428181710653).

References
[1] Zhao Y X, Yang Y N, Yang S J and Zhang Z Y 2013 Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer J. Colloid. Interf. Sci. 393 264-70
[2] Li M, Feng C, Yang S and Sugiura N 2010 Treatment of nitrate contaminated water using an electrochemical method Bioresource Technol. 101 6553-7
[3] Bassin J P, Pronk M, Kraan R, Kleerebezem R and Loosdrecht M C 2011 Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules Water Res. 45 5257-65
[4] Widiastuti N, Wu H W, Ang H M and Zhang D 2011 Removal of ammonium from greywater using natural zeolite Desalination 277 15-23

[5] Jellali S, Wahab M A, Riahi K and Jedidi N 2011 Biosorption characteristics of ammonium from aqueous solutions onto Posidonia oceanica (L.) fibers Desalination 270 40-9

[6] Carrera J, Baeza J A, Vicent T and Lafuente J 2003 Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system Water Res. 37 4211-21

[7] Thornton A, Pearce P and Parsons S A 2007 Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study J. Hazard. Mater. 147 883-9

[8] Babou Kammoe R B and Hamoudi S 2014 Investigation of ammonium ion removal from aqueous solutions using arene- and propylsulfonic acid functionalized mesoporous silica adsorbents J. Environ. Qual. 43 1032-42

[9] Zheng H, Han L, Ma H, Zheng Y, Zhang H, Liu D and Liang S 2008 Adsorption characteristics of ammonium ion by zeolite 13X J. Hazard. Mater. 158 577-84

[10] Ye Z, Wang J, Sun L, Zhang D and Zhang H 2014 Removal of ammonium from municipal landfill leachate using natural zeolites Environ. Technol. 36 2919-23

[11] Sune D E, Barbara L M and Leon L 2008 In situ attenuated reflection infrared (ATR-IR) study of the adsorption of NO2-, NH\textsubscript{2}OH, and NH+ on Pd/Al\textsubscript{2}O\textsubscript{3} and Pt/Al\textsubscript{2}O\textsubscript{3} Langmuir 2 869-79

[12] EI-Kabbany F, Badr Y and Tosson M 2006 Tosson Infrared study of the high-temperature phase transition phase transition III- I of Na\textsubscript{2}SO\textsubscript{4} Phys. Status. Solidi (a) 63 699-704

[13] Reddy K J and Lin J P 2000 Nitrate removal from groundwater using catalytic reduction Water Res. 34 995-1001

[14] Ou H H, Hoffmann M R, Liao C H, Hong J H and Lo S L 2010 Photocatalytic oxidation of aqueous ammonia over platinized microwave-assisted titanate nanotubes Appl. Catal. B: Environ. 99 74-80

[15] Dey A 2010 Modeling simultaneous nitrification–denitrification process in an activated sludge continuous flow stirred-tank reactor: system optimization and sensitivity analysis Environ. Eng. Sci. 27 757-65

[16] Terry P A 2009 Removal of nitrates and phosphates by ion exchange with hydrotalcite Environ. Eng. Sci. 26 691-6

[17] Fanning J C 2000 The chemical reduction of nitrate in aqueous solution Coordin Chem Rev 199 159-79

[18] Yuasa Y and Kakai J P 1987 197 196[87 197196] 31 Aug.

[19] Zhang R N, Li L and Liu J X 2015 Synthesis and characterization of FT as anovel porous adsorptive-catalyst for nitrogen removal from wastewater RSC Adv. 5 40785-91

[20] Mccrady M H 1966 Am. J. Public Health and the Nations Health 56 684-5

[21] Liu W G, Xu Y M, Zhou W, Zhang X F, Cheng X L, Zhao H, Gao S and Huo L H 2017 A facile synthesis of hierarchically porous TiO\textsubscript{2} microspheres with carbonaceous species for visible-light photocatalysis J. Mater. Sci. Technol. 33 39-46

[22] Awwad A M and Salem N M 2014 Kinetics and thermodynamics of Cd(II) biosorption onto loquat (Eriobotrya japonica) leaves J. Saudi Chem. Soc. 18 486-93

[23] Farhan A M, Al-Dujaili A H and Awward A M 2013 Equilibrium and kinetic studies of cadmium (II) and lead (II) ions biosorption onto ficus carica leaves Int. J. Ind. Chem. 4 1-8

[24] Demirbas E, Dizge N, Sulak M T and Kobya M 2009 Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon Chem. Eng. J. 148 480-7

[25] Grosvenor A P, Kobe B A, Biesinger M C and McIntyre N S 2004 Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds Surf. Interface Anal. 36 1564-74

[26] Cerrato J M, Jr H M, Knocke W R, Dietrich A M and Cromer T F 2010 Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants Environ. Sci. Technol. 44 5881-6
[27] Li C, Hamasaki M, Manaka H and Obara K 2014 Charge transfer mechanism and spatial density correlation of electronic states of excited Zinc (3d9) film Open J Phys Chem 4 44-51

[28] Dimitrov V and Komatsu T 2003 Correlation of optical basicity and O1s chemical shift in XPS spectra of oxide glasses Phy Chem Glasses 44 357-64

[29] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart RC et al 2011 Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni Appl Surf Sci 257 2717-30

[30] Reddy G K, Boolchandb P and Smirniotis P G 2011 Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios – XPS and Mössbauer spectroscopic study J Catal 282 258-69