Numerical simulation of turning contact temperatures with varying material yield strength and tool wear

A N Unyanin* and P R Finageev
Faculty of Mechanical Engineering, Ulyanovsk State Technical University, 32, Severny Venetz str., 432027, Ulyanovsk, Russia

*a_un@mail.ru

Abstract. The results of numerical simulation the main component of cutting forces and temperatures at the contact zones of the face of the cutter with chip and flank with the workpiece depending on the tool wear and physico-mechanical properties of the workpiece material. The values of fluctuations in the cutting force and contact temperatures are determined depending on the variation of the stress yield of the workpiece material during machining of the workpieces made of steel 45 and steel 12Kh18N10T are established. The degree of influence of tool wear on the flank on cutting forces and contact temperatures is determined.

1. Introduction
The temperature of the cutting zone has a significant impact on the tool life, the quality of the machined surfaces and the machining capacity [1, 2, 3,4, etc.].

In the analytical study of the thermal physics of the cutting process, based on the accepted route of heat flows [5], determine the corresponding flows to the tool, chip and workpiece, and then make and solve the thermal conductivity equations for each object. The disadvantage of this approach is an approximate accounting of the distribution of heat flows between objects. The thermophysical characteristics of the workpiece and tool materials, as well as the mechanical characteristics of the workpiece material (tensile strength and yield strength) significantly depend on the temperature [6], but not all known methods for calculating temperatures take this into account.

The most widely used methods for calculating temperatures are those proposed by A. N. Reznikov [7] and S. S. Silin [8]. However, these methods do not take into account changes in the physical and mechanical properties of the workpiece material from temperature. The thermomechanical method for calculating temperatures is devoid of this disadvantage [9]. The common disadvantage of the above methods is that they do not take into account the effect of wear on the cutting tool (for example, on the flank) and the coolant on the temperature.

To predict quality parameters of machined parts and the tool life necessary to create a mathematical model that allows to calculate not only the expectation parameters of the machining process, but also the dispersion of these parameters. The specifics of the developed method for calculating the temperature field during turning [10, 11] do not allow us to explicitly obtain equations linking the temperature and the input parameters of the process. Therefore, the temperature dispersion fields were obtained by numerical modeling. In these studies, the degree of influence of fluctuations in the
physical and mechanical properties of the workpiece material on the dispersion of contact temperatures is established.

2. Analytical research

The method of calculating the temperature field developed by us takes into account the heat release in the deformation zone and in the contact zones of the cutter with the chip and the workpiece, the mutual movement of these objects and the conditions for their cooling when the coolant is supplied [11,12]. The dependence of parameters that characterizes the resistance of the material of workpiece to dispersion, as well as the thermal properties of objects (including the external environment) on temperature is taken into account. The dependence arguments for calculating the main component of the cutting force and the friction force of the cutter on the workpiece are the contact length of the flank of the cutter with the workpiece. The thermal conductivity equations of the contacting objects (cutter, chip, and workpiece) were solved together with the common boundary conditions in the contact zone using the finite element method.

For calculating temperatures, a method, algorithm and calculation program using the finite element method for solving differential equations of thermal conductivity have been developed. The results of calculating the temperatures according to the program were compared with experimental results, with the difference between the calculated and experimental values not exceeding 10 % [10].

The developed software allows us to calculate the tangential component of the cutting force \(P_Z \) and the temperature at various points of objects (grid nodes) through a time interval determined based on the stability of the integration step over time [12].

The program is written in the Basic programming language. Pre-enter the following input data: dimensions of the cutter and the workpiece; physical, mechanical and thermal properties of the materials of the workpiece and the cutter; geometric parameters of the cutter (rake angle \(\gamma \), angle of cutting edge \(\phi \)); tool wear; elements of the turning mode (cutting speed \(V \), feed \(S_{rev} \), depth of cut \(t_r \)); parameters of the calculated grid.

We fixed the component of the cutting force \(P_Z \) and temperature at points located on the contact areas of the face of the cutter with the chip and its flank with the workpiece.

3. Numerical simulation of turning contact temperatures

The established tolerance for the percentage content of various chemical elements in steel, as well as alloying components corresponds to a fairly wide range of mechanical properties. In carbon, structural and low alloy steels, it reaches 20%, in high-alloy up to 30 ... 40% [6, 13]. We assume that the yield strength of the workpiece material varies within \(\sigma_S \pm 10\% \). The mechanical and thermophysical characteristics of the workpiece and cutter material (yield stress \(\sigma_S \), density, thermal conductivity and heat capacity coefficients) depending on the temperature were determined according to [6, 9].

Numerical simulation of the temperature field was performed with the following initial data: material of workpiece – steel 45 and 12Kh18N10T; material of the cutting part of the tool – hard alloy T15K6; the tool angles \(\gamma = -4^\circ, \phi = 45^\circ \); the cutting speed \(V \) and feed \(S_{rev} \) varied; depth of cut \(t_r \), 0.5 mm; friction coefficients of the chip on the face of the cutter and the flank of the cutter on the workpiece \(\mu_1 = \mu_2 = 0.3 \). Simulation of temperatures during processing of workpieces of steel 45 was performed at the nominal value of the yield strength \(\sigma_S = 355 \) MPa, as well as at the maximum and minimum values equal to \(\sigma_S + 0.1 \cdot \sigma_S = 391 \) MPa and \(\sigma_S - 0.1 \cdot \sigma_S = 319 \) MPa.

The calculation results are presented in table 1.
Table 1. Results of calculating the cutting force and cutting contact temperatures when the parameter is varied σ_S: material of workpiece – steel 45.

Yield strength σ_S, MPa	Cutting speed V, m/min	Feed S_{rev}, mm/rev	Depth of cut t, mm	The temperature on the face T_1, °C	The temperature on the flank T_2, °C	Tangential component of the cutting force P_Z, N
391	60	0.15	0.5	357	331	70
	240	0.15	0.5	749	520	68
	60	0.3	0.5	392	430	111
	240	0.3	0.5	1156	809	106
355	60	0.15	0.5	326	304	63
	240	0.15	0.5	680	476	62
	60	0.3	0.5	358	393	101
	240	0.3	0.5	1059	740	97
319	60	0.15	0.5	298	278	57
	240	0.15	0.5	611	431	56
	60	0.3	0.5	324	355	91
	240	0.3	0.5	961	670	88

The calculation results show that when the parameter σ_S of steel 45 changes within \pm10%, the temperature fluctuations on the face are 20% (T_1 ± 10%), on the flank – 18% (T_2 ± 9%). Fluctuations in the tangential component of cutting force $\Delta P_Z = 20\%$ (P_Z ± 10%). The temperature on the face of the tool T_1 changes by 9-10% at the cutting speed $V=60$ m/min and 54-57% at the cutting speed $V=240$ m/min when the S_{rev} feed varies from 0.1 to 0.3 mm/rev. As the feed increases in the above range, the temperature on the flank of the tool changes by 29% at the cutting speed $V=60$ m/min and 55% at the cutting speed $V=240$ m/min. Varying the cutting speed from 60 to 240 m/min increases the temperature T_1 - 2.1-3.0 times, T_2-1.6-1.9 times.

A similar study was conducted for a contact couple 12KH18N10T – T15K6. The results are presented in table 2.

Table 2. Results of calculating the cutting force and cutting contact temperatures when the parameter is varied σ_S: material of workpiece – steel 12KH18N10T.

Yield strength σ_S, MPa	Cutting speed V, m/min	Feed S_{rev}, mm/rev	Depth of cut t, mm	The temperature on the face T_1, °C	The temperature on the flank T_2, °C	Tangential component of the cutting force P_Z, N
216	60	0.1	0.5	292	250	39
	240	0.1	0.5	925	598	37
	60	0.3	0.5	434	346	61
	240	0.3	0.5	1370	981	60
196	60	0.1	0.5	269	230	36
	240	0.1	0.5	855	553	34
	60	0.3	0.5	398	318	56
	240	0.3	0.5	1267	907	55
176	60	0.1	0.5	245	209	31
	240	0.1	0.5	783	506	31
	60	0.3	0.5	362	289	50
	240	0.3	0.5	1161	830	49
When changing the parameter σ_S of steel 12KH18N10T within ±10%, temperature fluctuations on the face and flank are 18% ($T_1 \pm 9\%$), fluctuations in the tangential leaving cutting force $\Delta P_Z = 20\%$ ($P_Z \pm 10\%$). An increase in the feed S_{rev} from 0.1 to 0.3 mm/rev leads to a 48% increase in contact temperatures T_1. The temperature on the flank of the tool T_2 varies by 38% depending on the feed S_{rev} at the cutting speed $V=60$ m/min and 64% at the cutting speed $V=240$ m/min. Varying the cutting speed V from 60 to 240 m/min increases the temperature T_1 by 3.2 times, T_2 by 2.4-2.9 times.

The developed software allows you to calculate contact temperatures when the wear varies along the flank h_w, functionally related to the contact length of the flank of the cutter with the workpiece l_2.

In the course of numerical simulation, the wear value of h_w varied within $h_w = 0.1 \ldots 0.5$ mm. Wear equal to 0.3-0.5 mm corresponds to the maximum tool wear during finishing [14]. The calculation results are presented in table 3.

Table 3. The results of calculation of cutting forces and contact temperatures by varying the tool wear h_w: $V = 240$ m/min; $S_{rev} = 0.3$ mm/rev; $t_r = 0.5$ mm

Material of workpiece	Tool flanks wear h_w, μm	The temperature on the face T_1, $^\circ$C	The temperature on the flank T_2, $^\circ$C	Tangential component of the cutting force P_Z, N
Steel 45	0.1	982	683	85
	0.2	1059	740	97
	0.3	1121	802	109
	0.4	1371	853	120
	0.5	1394	847	133
Steel 12KH18N10T	0.1	1292	881	48
	0.2	1267	907	55
	0.3	1229	932	62
	0.4	1366	955	69
	0.5	1391	964	77

When machining workpieces made of steel 45, an increase in wear on the flank of cutter h_w by 0.1 mm in the range $h_w = 0 \ldots 0.3$ mm leads to an increase in the tangential component of cutting force P_Z by an average of 12%, and the contact temperatures increase by 6 ... 8%. When reaching the value $h_w = 0.4$ mm, the contact temperatures increase to a greater extent. An increase in cutter wear on the flank from 0.1 to 0.3 mm leads to an increase in cutting force by 22%, and contact temperatures T_1 and T_2 by 12 and 15 %. When wear h_w increases from 0.1 to 0.5 mm, cutting forces increase by 56%, and temperatures T_1 and T_2 by 42 and 24%.

When processing workpieces made of steel 12KH18N10T with an increase in wear on the flank of the cutter of h_w by 0.1 mm in the range $h_w = 0 \ldots 0.3$ mm, the tangential component of cutting force P_Z increases by an average of 14%, the contact temperature T_1 does not change, and T_2 increases by 3%. When the value $h_w = 0.4$ mm is reached, the temperature T_1 increases significantly.

4. Conclusions

1. It is established that when the yield strength of the workpiece material fluctuates within 20%, the range of dispersion of the cutting force and contact temperatures is 18 ... 20%.
2. The degree of influence of tool wear on the flank on cutting forces and contact temperatures is determined.
Acknowledgments
The research was carried out with the financial support of RFBR and the Government of the Ulyanovsk region as part of a research project № 18-47-730005.

References
[1] Petrakov Yu V, Drachev O I 2011 Modeling of cutting processes (Stary Oskol: TNT) p. 240
[2] Zhelezov G S, Skhirtladze A G Processes of mechanical and physical-chemical processing of materials (Stary Oskol: TNT) p. 456
[3] Abhang L B, Hameedullah M 2010 Chip-Tool Interface Temperature Prediction Model for Turning Process (International Journal of Engineering Science and Technolog, Vol. 2 (4)) pp. 382 – 393.
[4] O’Sullivan D, Cotterell M 2001 Temperature measurement in single point turning (Journal of material processing technology Vol. 118) pp.301-308.
[5] Vorontsov A L 2016 Initial provisions and critical remarks on modern methods of theoretical research of thermophysical processes (Handbook. Engineering journal with an app. Application № 3(228)) pp. 2 – 8.
[6] Dragunov Yu G, Zubchenko A S, Kashirsky Yu V, Degtyarev A F, Zharov V V, Koloskov M M, Orlov A S, Skorobogatykh V N 2014 Handbook of steels and alloys. 4th ed., reprint. and add, ed Yu G Dragunov and A S Zubchenko (Moscow) p.1216
[7] Reznikov A N 1981 Thermophysics of processes of mechanical processing of materials (Moscow: Mashinostroenie) p.287 с
[8] Silin S S 1979 Similarity method for cutting materials (Moscow: Mashinostroenie) p.152
[9] Vasin S A, Vereshchaka A S, Kushner V S 2001 Cutting materials: A thermomechanical approach to the system of interrelations in cutting (Moscow : Bauman Moscow state technical University publishing house) p. 448
[10] Unyanin A N, Finageev P R 2018 The research of a temperature field when turning with vibrations superposition (Science Vector of Togliatti State University № 3 (45)) pp. 63 – 69.
[11] Unyanin A N, Finageev P R 2018 Research of the influence of the turning mode on the force and contact temperatures Innovative technologies in Metalworking. All-Russian scientific and practical correspondence conference with international participation (November 25, 2018): collection of proceedings (Ulyanovsk: UISTU) pp.142-147.
[12] Koldaev V D 2009 Numerical methods and programming: textbook edited by L G Gagarina (Moscow: Infra-M) p.544
[13] Zhdanov A A 2019 Ensuring the accuracy of calculating the deflection jib of non-rigid parts of the "Shaft" type when turning on CNC machines on the basis of obtaining operational information about the properties of contact couples: dissertation of the candidate of technical Sciences (Volgograd) p.155
[14] Ishutkin V I 1960 Setting of machine tools (Moscow: Mashgiz) p.104