Visser’s massive gravity bimetric theory revisited

Alain de Roany, Bertrand Chauvineau, José A. de Freitas Pacheco

University of Nice-Sophia Antipolis, Observatoire de la Côte d’Azur, Laboratoire Cassiopée, BP 4229, Nice Cedex 4, France
e-mail : deroany@oca.eu, Bertrand.Chauvineau@oca.eu, pacheco@oca.eu

Abstract

A massive gravity theory was proposed by Visser in the late nineties. This theory, based on a background metric $b_{\alpha\beta}$ and on an usual dynamical metric $g_{\alpha\beta}$ has the advantage of being free of ghosts as well as discontinuities present in other massive theories proposed in the past. In the present investigation, the equations of Visser’s theory are revisited with a particular care on the related conservation laws. It will be shown that a multiplicative factor is missing in the graviton tensor originally derived by Visser, which has no incidence on the weak field approach but becomes important in the strong field regime when, for instance, cosmological applications are considered. In this case, contrary to some previous claims found in the literature, we conclude that a non-static background metric is required in order to obtain a solution able to mimic the ΛCDM cosmology.

KEY WORDS : massive gravity - bimetric theory - FRW cosmology

I. INTRODUCTION

Studies of the luminosity distance as a function of the redshift of type Ia supernovae suggest that the expansion of the universe is presently accelerated [1,2]. These data as well as those derived from the space probe WMAP on the cosmic microwave background [3] can be explained by the inclusion of the so-called ”cosmological constant” term in Einstein’s equations. Arguments against this possibility have been raised in the literature, in particular the ”coincidence” problem and the interpretation of such a term as the vacuum energy density. However, some authors believe that these objections do not represent real difficulties for the theory [4]. They claim that the ”coincidence” problem is ill defined and that the identification of the cosmological constant with the vacuum energy density is probably a mistake!

Independently of the reality or not of these difficulties for the ΛCDM cosmology, alternative models have been proposed in the literature. In a first class of models, the usual thermodynamic properties of the constituents of the universe are modified and the acceleration of the expansion is driven by a negative pressure term associated either to particle production (see, for instance, [5] and references therein) or to a bulk viscosity term ([6] and references therein). In other class of models, the existence of new fields in nature responsible for the
acceleration are postulated (scalar fields in GR) as well as modifications in the Einstein-Hilbert action (\(f(R)\) theories) [7-9] or scalar-tensor theories [9-17].

In a particular class of theories (massive gravity), the graviton has a small but non-zero mass. These theories have a long history and present several difficulties. Fierz and Pauli (FP) noticed that the mass term must be quadratic for a Lorentz invariant massive spin-2 theory, otherwise a “ghost” appears in the spectrum [18]. A major difficulty with the FP theory is the van Dam-Veltman-Zakharov discontinuity [19,20]. In other words, in the linearized FP theory the extra scalar mode of the graviton does not disappear and remains coupled to matter even in the limit of a vanishing graviton mass and, consequently, in such a limit the linear equations of general relativity (GR) are not recuperated. Moreover, the prediction of the quadratic FP theory for the light bending effect differs from GR, practically ruling out the FP theory. However, Vainshtein [21] from the analysis of static spherically symmetric solutions, argued that the linear FP theory is only valid for distances larger than a certain scale dubbed the Vainshtein radius \(R_V\), which goes to infinity as the graviton mass goes to zero. For distances less than \(R_V\), around a static spherically symmetric source of mass \(M\), the full non-linear strongly coupled theory has to be considered in order to recover GR. In the past years, the problem of the continuous matching between solutions inside and outside the Vainshtein radius have been extensively debated in the literature [22-25].

A different approach was proposed by Visser [26], who introduced a background metric not subjected to any dynamical equation. The mass term in this theory depends both on the dynamical and on the background metric in such a way that in the linear limit, the massive field obeys a Klein-Gordon equation with a source term. GR is recovered when the graviton mass vanishes. The massive field in Visser’s theory has six degrees of freedom: five spin-2 and one scalar [26]. This theory was applied to cosmology by different authors [27-30], who claim that the resulting dynamical equations based on such a theory are able to explain the present observed acceleration of the universe and to satisfy other cosmological tests like the distance scale provided by the baryon acoustic peak and the cosmic microwave background shift parameter. In the aforementioned investigations, a flat background (Minkowski space-time) had been adopted despite the fact that according to Visser, “in a cosmological setting it is no longer obvious that we should use the Minkowski metric as a background”.

If a flat background is adopted, then the only issue resulting in an expanding dynamic metric is to assume that the divergence of the massive graviton tensor is a source for the divergence of the matter stress-energy tensor [27]. In Visser’s theory the divergence of the graviton tensor is set to zero and, consequently, when the dynamical equations are linearized around the background metric, the Hilbert-Lorentz condition appears naturally and not as a gauge one. It is worth mentioning that other bimetric gravity theories with generally a flat prior geometry have been elaborated in the past, in particular the approach by Rosen or the vector-bimetric theory by Rastall (see, for instance, [32,33] for reviews). These theories are quite distinct since the lagrangean density from which the field equations are derived differs drastically from that proposed by Visser.

In the present paper, the Visser’s theory is revisited as well as applications to cosmology. We will show that the graviton tensor derived by Visser [26] must be corrected by a factor equal to the ratio between the background and dynamical metric determinants. The conservation laws are also revisited and the following
question is examined: if the divergence of the graviton tensor is equal to zero (as it should be expected from general arguments based on a variational approach of gravity) is it possible to find an adequate background metric from which a cosmology compatible with the present data emerges? A positive answer can be given but the solutions able to mimic the ΛCDM cosmology are not completely satisfactory, since they require that the background metric tensor be proportional to the scale factor describing the dynamics of the universe. This paper is organized as follows: in Section II the Visser’s theory is revisited and the correct graviton tensor is derived. An alternative definition of the lagrangean density describing the graviton field is given as well as the resulting field equations. In Section III an application of the theory to cosmology is discussed and finally, in Section IV the main conclusions are presented.

II. THE FIELD EQUATIONS AND THE CONSERVATION LAWS

In this paper, the notation \(m_{\alpha\beta} \equiv \text{diag} (-1, +1, +1, +1) \) (Minkowski metric in cartesian coordinates) will be adopted as well as units such \(G = c = \hbar = 1 \). The action proposed by Visser \[26\] reads

\[
S = \int d^4x \left\{ \frac{1}{16\pi} \left[\sqrt{-g}R + \sqrt{-b}L_{\text{mass}} (g, b) \right] + \sqrt{-g}L_{\text{matter}} (g, X) \right\}
\]

(1)

where \(b_{\alpha\beta} \) represents the background metric tensor, \(g_{\alpha\beta} \) the dynamical metric tensor and \(X \) stands for any non gravitational field. Both metrics are required to have a lorentzian signature \((-1, +1, +1, +1)\). The lagrangean of the massive graviton is given explicitly by

\[
L_{\text{mass}} (g, b) = \frac{-1}{4} m^2 \left\{ b^{\alpha\beta} b_{\mu\nu} (g_{\alpha\mu} - b_{\alpha\mu}) (g_{\beta\nu} - b_{\beta\nu}) - \frac{1}{2} \left[b^{\alpha\beta} (g_{\alpha\beta} - b_{\alpha\beta}) \right]^2 \right\}
\]

(2)

The contravariant tensor \(b^{\alpha\beta} \) is defined from \(b_{\alpha\beta} \) by the inversion relation \(b_{\alpha\beta} b^{\beta\gamma} = \delta_\gamma^\alpha \), while \(g^{\alpha\beta} \) is defined from the relation \(g_{\alpha\beta} g^{\beta\gamma} = \delta_\gamma^\alpha \) as usually. The coefficient \(-1/4\) ensures that in the weak field limit, i.e., when \(b_{\alpha\beta} = m_{\alpha\beta} \) and \(g_{\alpha\beta} = m_{\alpha\beta} + h_{\alpha\beta} \) with \(|h_{\alpha\beta}| \ll 1\), the graviton field in vacuum obeys the Klein-Gordon equation. Since the construction of the action defined in eq. 1 is mainly motivated by such a requirement, it is worth pointing that any alternative action leading to the same linearized equations would be acceptable a priori. In particular, the graviton lagrangean density can be defined in terms of the dynamical metric, i.e., \(\sqrt{-g}L_{\text{mass}} \) instead of \(\sqrt{-b}L_{\text{mass}} \). This corresponds to an alternative to Visser’s proposal that admits the same usual weak field limit. Such an alternative for the graviton lagrangean density will be examined in some more detail at the end of this section.

A. Conservation laws

From the variation of the action (eq. 1) with respect to the field \(X \) (here, for simplicity, we assume the presence of only one non-gravitational field) one obtains the Lagrange equation describing the dynamics of the considered field. Since the matter lagrangean density \(L_{\text{matter}} \) depends only on the field \(X \) and on
the dynamical metric tensor (the field X couples with $g_{\alpha\beta}$ only), then the diffeomorphism invariance of L_{matter} leads immediately to a conservation equation expressed by the null covariant divergence condition

$$\nabla_\alpha T^{\alpha\beta} = 0 \quad (3)$$

where $T^{\alpha\beta}$ is the stress-energy tensor of matter [31]. If the condition above is ignored, some inconsistencies may appear in the physical laws describing the dynamics of non-gravitational fields. It is worth recalling that the null divergence of the Einstein’s tensor leads only to the null divergence of the sum of tensors constituting the right side of the field equations derived by varying the complete action of the theory (in our case eq. 1) with respect to the metric tensor $g_{\alpha\beta}$. If different stress-energy tensors are present, the null divergence of the Einstein tensor is not equivalent to eq. 3. In this case the validity of eq. 3 implies an additional condition to be fulfilled by the solutions of the field equations.

B. Field equations

Varying the action defined by eq. 1 with respect to the metric tensor $g_{\alpha\beta}$ leads to

$$G^{\alpha\beta} = 8\pi T^{\alpha\beta} + 8\pi T^{\alpha\beta}_{\text{mass}} \quad (4)$$

where $G^{\alpha\beta} = R^{\alpha\beta} - \frac{1}{2}R g^{\alpha\beta}$ is the Einstein tensor, $R_{\alpha\beta}$ is the Ricci tensor and $R = R^\beta_\beta$ is the Ricci scalar. The matter stress-energy tensor $T^{\alpha\beta}$ is, as usually, defined by

$$T^{\alpha\beta} = \frac{2}{\sqrt{-g}} \frac{\delta (\sqrt{-g} L_{\text{mat}})}{\delta g^{\alpha\beta}} \quad (5)$$

and the so-called graviton tensor by

$$T^{\alpha\beta}_{\text{mass}} = -\frac{m^2}{16\pi} \frac{\sqrt{-g}}{\sqrt{-b}} \left(\eta^{\mu\nu} y^{\rho\sigma} - \frac{1}{2} y^{\mu\rho} y^{\sigma\nu} \right) (g_{\mu\nu} - b_{\mu\nu}) \quad (6)$$

From the null divergence of Einstein’s tensor and eq. 3, it results

$$\nabla_\alpha T^{\alpha\beta}_{\text{mass}} = 0. \quad (7)$$

It should be emphasized that both conservation laws expressed by eqs. 3 and 7 must be satisfied and these are necessary conditions to be taken into account when considering solutions of the field equations. From these equations, it is trivial to verify that Visser’s theory reduces to GR when the graviton mass m vanishes. As we shall see in details in appendix A, a class of solutions in which the dynamical metric tensor is proportional to that of the background metric exists, which can be generated from GR solutions including a cosmological constant.

C. An alternative lagrangean density

As already mentioned, the requirement that the graviton field obeys the Klein-Gordon equation in the weak field (or linear) limit does not fix the form of the lagrangean density. An alternative to Visser’s proposal is to consider
a Lagrangean density defined in terms of the dynamical metric tensor, i.e., $\sqrt{-g}L_{\text{mass}}$, and, in this case, the total action of the theory is

$$ S = \int d^4x \sqrt{-g} \left\{ \frac{1}{16\pi} [R + L_{\text{mass}} (g,b)] + L_{\text{matter}} (g,X) \right\} \quad (8) $$

The resulting field equations are essentially identical to eq. 4 but now the graviton tensor reads

$$ T^{\alpha\beta}_{\text{mass}} = -\frac{m^2}{16\pi} \left[b^{\alpha\sigma} b^{\beta\rho} g_{\mu\nu} + b^{\alpha\beta} \left(1 - \frac{1}{2} b^{\mu\nu} g_{\mu\nu} \right) \right] - \frac{m^2}{16\pi} g^{\alpha\beta} \left[1 \right. $$

$$ - \frac{1}{4} b^{\mu\sigma} b^{\nu\rho} g_{\mu\nu} g_{\sigma\rho} - \frac{1}{8} (b^{\mu\nu} g_{\mu\nu})^2 + \frac{1}{2} b^{\mu\nu} g_{\mu\nu} - 1 \left. \right] \quad (9) $$

It should be emphasized that as in the case of the original Visser’s proposal, the field equations derived from this alternative Lagrangean density admit solutions generated from GR equations including a cosmological constant (see details in appendix A).

III - FRW COSMOLOGY

Recently, different authors have considered the Visser’s theory to describe the dynamics of the universe ([27-30]), claiming that the graviton mass term appearing in the Friedman equations is able to drive the observed acceleration of the expansion of the universe. In these investigations, a Minkowski spacetime was assumed as a background and, in this case, as a consequence of eq. 7, it results that the scale factor must be constant or, in other words, the universe must be “static”. In order to maintain a flat and static background (Minkowski), the aforementioned authors assumed that the conservation law expressed by eq. 7 is violated and, in order to satisfy the condition $\nabla_\alpha G^{\alpha\beta} = 0$, they have hypothesized that the divergence of the graviton tensor is a (negative) source term for the divergence of the stress-energy tensor of the matter.

Here the FRW cosmology is revisited in the context of the Visser’s theory but with preservation of the conservation laws as discussed in the previous Section. Considering the standard FRW form for the dynamical metric we have

$$ ds^2 = -dt^2 + a(t)^2 \left[d\chi^2 + F_k(\chi)^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right] \quad (10) $$

where $k = +1, 0, -1$ corresponds respectively to spherical, flat or hyperbolic spatial sections and, accordingly, $F_k(\chi) = \sin \chi, \chi, \sinh \chi$. Following Visser ([26]), we will search possible non-static solutions for the background metric, i.e.,

$$ da^2 = -B(t)^2 dt^2 + A(t)^2 \left[d\chi^2 + G_k(\chi)^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right] \quad (11) $$

where A and B are positive functions of the cosmic time. From the spatial components of eq. 4 we have necessarily $G_k(\chi) = F_k(\chi)$. The function $A(t)$ may be interpreted as a “background scale factor” while a “background cosmic time” may be defined by $\int B(t) dt$. Matter, as usually, is described as a perfect fluid with energy density $\varepsilon(t)$ and pressure $P(t)$, linked by an equation of state $P = P(\varepsilon)$.

5
Besides the time component of matter conservation (eq. 3), the other equations describing the dynamics of the universe are the components (0 0) and (1 1) of the field eq. 4, since the remaining components do not provide any additional information. On the other side, a relation between the coefficients of the background and of the dynamical metric can be obtained from eq. 7. It is useful to define the functions Ξ \((\dot a a)^2 + k a^2 = \frac{8\pi}{3} \epsilon + \frac{m^2}{12 \Sigma} \) and Ψ \(\ddot a + \left(\frac{\dot a}{a}\right)^2 + k \frac{a^2}{a^2} = -8\pi P + \frac{m^2}{4} (2\Psi^2 \Xi^2 - \Psi^2 - 1) \psi \) where the notation \(\dot X \equiv dX/dt\) was adopted (It is worth mentioning that in above equations Ξ and Ψ are functions of the cosmic time \(t\)).

The new function Σ in eq. 13 is defined as

\[\Sigma = \frac{1}{\Psi^3} (1 + 2\Psi^2 \Xi^2 - 3\Psi^2) \]

The space components of eq. 7 are trivially satisfied while the time component provides a relation between the coefficients of the background metric and the scale factor of the dynamical metric, namely

\[\frac{d\Sigma}{dt} + 3 \frac{\dot a}{a} \left(\Sigma + \frac{1 + \Psi^2 - 2\Psi^2 \Xi^2}{\Psi} \right) = 0 \]

or, equivalently

\[\frac{d\Sigma}{dt} = 3 \frac{\psi^2 - 1}{\psi^3} (1 - \psi^2 + 2\psi^2 \Xi^2) \frac{d \ln a}{dt} \]

For the sake of completeness, we mention that the time component of eq. 3 can be written explicitly as

\[\frac{d(ea^3)}{dt} + 3Pa^2 \dot a = 0. \]
Combining eqs. 13, 14 and 15 one obtains
\[\ddot{a} / a = -\frac{4\pi}{3} (\varepsilon + 3\rho) + \frac{m^2}{24\Psi^3} \left[2\Psi^2 (3\Psi^2 - 1) - (3\Psi^4 + 1) \right] \]
(19)

The equation above shows that the last term on the right hand side (depending on the graviton mass) can give a positive contribution to the acceleration of the expansion of the universe. According to our adopted approach, a solution for the background metric functions \(\Xi(t) \) and \(\Psi(t) \) can be obtained by adopting the following procedure: firstly, from the matter equation of state and eq. 18, the variation of the energy density and of the pressure can be derived as a function of the scale parameter \(a \) or, equivalently, of the redshift \(z \). Then, if the acceleration parameter \(q(z) = -\ddot{a}/\dot{a}^2 \) and the Hubble parameter \(H(z) \) are known from observations, the metric functions \(\Xi(z) \) and \(\Psi(z) \) can be determined from eqs. 13 and 19. Acceptable solutions require that the background metric functions be positive and at the present time, in order to have a positive acceleration, the following condition must be satisfied (including all the physical constants)
\[\frac{1}{\Psi^3} \left[2\Psi^2 (3\Psi^2 - 1) - (3\Psi^4 + 1) \right] > \frac{12\Omega_m H_0^2 h^2}{m^2 c^4} \]
(20)

where \(\Omega_m \) is the present matter density parameter and the metric functions \(\Xi \) and \(\Psi \) are taken at the present time. The other symbols have their usual meaning.

Although static solutions have only an academic interest, it is worth mentioning that these solutions necessarily implies also a static background geometry and vice-versa. Hence, the \(\Lambda \mathrm{CDM} \) cosmology cannot be reproduced if a Minkowski background is adopted. This point will be considered in some more detail in appendix B.

A. Back to the \(\Lambda \mathrm{CDM} \) cosmology

The present observations (luminosity distance of type Ia supernovae, the baryon acoustic peak (BAO) and the cosmic microwave background (CMB) shift parameter) are quite well fitted by the so-called \(\Lambda \mathrm{CDM} \) model. Is it possible to mimic such a cosmological model within the framework of the Visser’s theory? A positive answer can be obtained if one identifies the last term on the right side of eq. 13 as
\[\frac{m^2}{12} \Sigma = 1/3 \Lambda \]
(21)

In this case the function \(\Sigma \) must be a constant and eq. 17 has two possible solutions. The first corresponds to \(\Psi^2=1 \) and \(\Xi^2 = 1 + 2m^{-2}\Lambda \). Since \(\Lambda > 0 \), we have \(\Xi^2 > 1 \). This particular solution corresponds to a class of solutions discussed in appendix A, referred to the cosmological case. The second possibility corresponds to \(\Psi^2 = (1 - 2\Xi^2)^{-1} \) and \(\Sigma = -2\sqrt{1 - 2\Xi^2} \). However, this solution implies a negative cosmological constant, which is not supported by observations and will not be discussed further.

B. \(\Lambda \mathrm{CDM} \) and the alternative Visser’s theory
In the framework of the alternative definition of the graviton lagrangean density, the (0 0) component of the field equations is formally identical to eq. 13 but now the function Σ is defined as

$$\Sigma = 5 - (18 - 12\Xi^2)\Psi^2 - (3 - 12\Xi^2 + 8\Xi^4)\Psi^4$$

(22)

Another equation relating the metric coefficients can be obtained from the conservation law expressed by eq. 7 whose time component is

$$\frac{d\Sigma}{dt} = 3\frac{\Psi^2 - 1}{\Psi^2\Xi^4} (1 - \Psi^2 + 2\Psi^2\Xi^2) \frac{d\ln a}{dt}.$$

(23)

Again, to mimic the ΛCDM cosmology we require that $\Sigma=$constant and, in this case, two solutions are possible: $\Psi^2=1$ and $\Psi^2 = (1 - 2\Xi^2)^{-1}$ (Notice that the solution $\Psi^2=1$ corresponds to a case discussed in appendix A). Contrary to the solutions derived from equations based on the original Visser proposal, here the two solutions are compatible with a positive cosmological constant and a lower limit for the graviton mass can be derived from the observed value of Λ. In order to have at least one solution with a positive cosmological constant, the mass of the graviton must be higher than a critical value given by

$$m > 2\sqrt{\Omega_\Lambda \frac{h H_0}{c^2}} \sim 7.7 \times 10^{-66} \text{ g}$$

(24)

where we have adopted $\Omega_\Lambda = 0.7$ and $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

IV - CONCLUSIONS

In the present investigation the Visser’s theory was revisited and, in particular, we have found that the original graviton tensor must be corrected by a factor equal to the ratio between the square root of the determinant of the background metric and that of the dynamical metric. This correction is not relevant when the usual weak field approximation is considered but is of fundamental importance in cosmological applications. We have also considered an alternative to the graviton lagrangean density proposed by Visser and the consequent modifications in the graviton tensor but both approaches lead to the same linear field equations.

We have also shown that the field equations of the theory when combined to the conservation laws are able to mimic a ΛCDM cosmology if and only if the background metric functions are proportional to the scale factor defining the dynamical metric. This is in contradiction with claims in the literature based on investigations considering a Minkowski background and an abandon of the conservation laws expressed either by eq. 3 or eq. 7. However, the results are somewhat disappointing since only a particular form of the background metric, whose choice was based on a priori cosmological considerations leads to satisfactory results.

Since the background required for compatibility between the theory and cosmological observations turns to be time dependent, a natural question raises: how this affects locally physical process occurring in the linear regime? As argued by Visser, in the usual weak field approximation the background metric should be Minkowiskian and, in fact, an expanding background metric can be
put in the form $m_{\alpha \beta}$ by a suitable choice of coordinates if the relevant timescales are orders of magnitude smaller than the cosmological timescale. This is the case when planetary motions or the propagation of light within scales of the order of the solar system are considered. However if this is true at a given instant, this may not be the case (say) some billions years later. In this situation, performing an expansion of the dynamical metric a Klein-Gordon equation is not obtained. These considerations may lead into specific cosmological signatures on the local dynamics, opening eventual new constraints on the graviton mass by local observations. These aspects will be analyzed in a forthcoming paper.

[1] A.G. Riess et al., AJ 116, 1009 (1998)
[2] S. Perlmutter et al., ApJ 517, 565 (1999)
[3] D. Larson et al., ApJS 192, 16 (2011)
[4] E. Bianchi and C. Rovelli, arXiv:1002.3966v3
[5] A. de Roany and J.A. de Freitas Pacheco, Gen.Rel.Grav. 43, 61 (2011)
[6] O.F. Piattella, J.C. Fabris and W. Zimdahl, arXiv:1103.1328
[7] R. P. Woodard, Lect. Notes Phys. 720, 403 (2007)
[8] A. de Felice and S. Tsujikawa, $f(R)$ Theories in Living Reviews in Relativity, www.livingreviews.org/Irr-2010-3
[9] S. Tsujikawa, Mod. Phys. Lett. 25, 843 (2010)
[10] S. del Campo and P. Salgado, Class. Quant. Grav. 20, 4331 (2003)
[11] Y. Fujii and K. Maeda, The Scalar-Tensor Theory of Gravitation, Cambridge University Press, (2003)
[12] V. Faraoni, Cosmology in Scalar-Tensor Gravity, Kluwer Academic Publishers (2004)
[13] G. Barenboim and J. D. Lykken, JCAP 3, 17 (2008)
[14] S. Unnikrishnan and T. R. Seshadri, IJMPD 17, 2007 (2008)
[15] N. Banerjee and K. Ganguly, IJMPD 18, 445 (2009)
[16] C. E. M. Batista and W. Zimdahl, Phys. Rev. D82, 023527 (2010)
[17] M. Park, K. M. Zurek and S. Watson, Phys. Rev. D81, 124008 (2010)
[18] M. Fierz and W. Pauli, Proc.R.Soc. A173, 211 (1939)
[19] H. van Dam and M.J.G. Veltman, Nucl.Phys. B22, 397 (1970)
[20] V.I. Zakharov, JETP Lett 12, 312 (1970)
[21] A.I. Vainshtein, Phys.Lett. B39, 393 (1972)
[22] T. Damour, I.I. Kogan and A. Papazoglou, Phys.Rev. D67, 064009 (2003)
[23] G.R. Dvali, G. Gabadadze and M. Porrati, Phys.Lett. B485, 208 (2000)
[24] E. Babichev, C. Delfayet and R. Ziour, Phys.Rev. D82, 104008 (2010)
[25] C. de Rham and G. Gabadadze, Phys. Rev. D82, 044020 (2010)
[26] M. Visser, Gen. Rel. Grav. 30, 1717 (1998)
[27] M.E.S. Alves, O.D. Miranda and J.C.N. de Araujo, Gen. Rel. Grav. 40, 765 (2008)
[28] M.E.S. Alves, F.C. Carvalho, J.C.N. de Araujo, O.D. Miranda, C.A. Wunesche and E.M. Santos, Phys. Rev. D82, 023505 (2010)
[29] S. Basilakos, M. Plionis, M.E.S. Alves and J.A.S. Lima, Phys. Rev. D83, 103506 (2011)
[30] H.W. Lee, K.Y. Kim and Y.S. Myung, arXiv:1106.6114
[31] L.D. Landau and E.M.Lifshitz, The Classical Theory of Fields Addison-Wesley, Reading, Massachusetts, Pergamon, London (1971)
APPENDIX A - ΛGR solutions vs Visser’s theory

For a given background metric $b_{\mu\nu}$, let us search for solutions in which the dynamical metric $g_{\mu\nu}$ is proportional to the background metric tensor, i.e.,

$$g_{\mu\nu} = \lambda^{-2} b_{\mu\nu}$$ \hspace{1cm} (25)

where λ^2 is a positive constant. In this case, from eqs. 5 (see text) one obtains

$$T_{\text{mass}}^{\alpha\beta} = \frac{1 - \lambda^2}{16\pi} m^2 g^{\alpha\beta}$$ \hspace{1cm} (26)

Consequently the field equation takes formally the following structure

$$G^{\alpha\beta} + \frac{\lambda^2 - 1}{2} m^2 g^{\alpha\beta} = 8\pi T^{\alpha\beta}$$ \hspace{1cm} (27)

Notice that the above equation satisfies consistently eq. 7 and indicates that all GR solutions including a cosmological constant Λ are also solutions of Visser’s massive gravity with a background metric tensor

$$b_{\alpha\beta} = \left(1 + \frac{2\Lambda}{m^2}\right) g_{\alpha\beta}$$ \hspace{1cm} (28)

This result indicates that solutions based on eq. 25 are possible only if the background metric tensor is proportional to a solution of Einstein equations including a cosmological constant and with the same matter stress-energy tensor.

Similarly, if the alternative lagrangean density for the graviton field is considered, one obtains for the graviton tensor

$$T_{\text{mass}}^{\alpha\beta} = \frac{1}{16\pi} \left(\frac{1}{\lambda^2} - 1\right) \left(\frac{2}{\lambda^2} - 1\right) m^2 g^{\alpha\beta}$$ \hspace{1cm} (29)

that replaced in the field equation leads to

$$G^{\alpha\beta} + \left(1 - \frac{1}{\lambda^2}\right) \left(\frac{1}{\lambda^2} - \frac{1}{2}\right) m^2 g^{\alpha\beta} = 8\pi T^{\alpha\beta}$$ \hspace{1cm} (30)

Thus, as in Visser’s original theory, all GR solutions including a cosmological constant term are also solutions of the massive gravity field equations but now the proportional constant is given by

$$\left(1 - \lambda^{-2}\right) \left(2\lambda^{-2} - 1\right) = \frac{2\Lambda}{m^2}$$ \hspace{1cm} (31)

APPENDIX B : Static cases in Visser’s theory
Static solutions are those with a constant scale factor a (or $\dot{a} = 0$). The equations to be considered in this case are eqs. 13, 14 and 16 (see text). From these equations one obtains

$$\frac{k}{a^2} = \frac{8\pi}{3}\varepsilon + \frac{1}{12}m^2\Sigma$$

(32)

where

$$\Sigma = \left\{ \frac{1}{\Psi^3} [1 + 2\Psi^2\Xi^2 - 3\Psi^2] \right\}$$

(33)

$$\frac{k}{a^2} = -8\pi P + \frac{1}{4}m^2\frac{1}{\Psi}[2\Psi^2\Xi^2 - \Psi^2 - 1]$$

(34)

with $\dot{\Sigma} = 0$ (static case), which implies that $\Sigma =$ constant. The constancy of the energy density and of the pressure can be derived from the first equation and the equation of state. Thus, both Σ and the quantity $\Psi^{-1} [1 + \Psi^2 - 2\Psi^2\Xi^2]$ are constants, indicating that the background metric is necessarily static.

For a given ε, P, k and a (the case $P = 0$ corresponds to a dust filled static universe in the context of Visser’s theory), the metric coefficient Ψ is obtained by solving the equation

$$2\left(\frac{3k}{a^2} - 8\pi\varepsilon \right)\Psi^3 - m^2\Psi^2 - 2\left(\frac{k}{a^2} + 8\pi P \right)\Psi + m^2 = 0$$

(35)

and, consequently, Ξ satisfies

$$\Psi^2\Xi^2 = \frac{\Psi^2 + 1}{2} - \frac{2}{m^2}\left(\frac{k}{a^2} + 8\pi P \right)\Psi$$

(36)

The equations above permit to obtain the metric coefficients Ψ and Ξ.

Reciprocally, if we have a static background, we have necessarily A and B or $\Psi\Xi$ and Ξa constants (Notice that these imply also that a/Ψ is a constant). Inserting these relations into eq. 17 and after a straightforward calculation one obtains

$$(2\Psi^2\Xi^2 - \Psi^2 + 1)\frac{d\Psi}{dt} = 0.$$

(37)

Thus, one has either $2\Psi^2\Xi^2 - \Psi^2 + 1 = 0$ or $d\Psi/dt = 0$. Both possibilities imply $\Psi =$ constant and $a =$ constant, i.e., a static universe.