Topological qubits in graphenelike systems

Luiz Santos,1 Shinsei Ryu,2 Claudio Chamon,3 and Christopher Mudry4

1 Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
2 Department of Physics, University of California, Berkeley, California 94720, USA
3 Physics Department, Boston University, Boston, Massachusetts 02215, USA
4 Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
(Dated: October 5, 2010)

The fermion-doubling problem can be an obstacle to getting half a qubit in two-dimensional fermionic tight-binding models in the form of Majorana zero modes bound to the core of superconducting vortices. We argue that the number of such Majorana zero modes is determined by a $\mathbb{Z}_2 \times \mathbb{Z}_2$ topological charge for a family of two-dimensional fermionic tight-binding models ranging from noncentrosymmetric materials to graphene. This charge depends on the dimension of the representation (i.e., the number of species of Dirac fermions – where the doubling problem enters) and the parity of the Chern number induced by breaking time-reversal symmetry. We show that in graphene there are as many as ten order parameters that can be used in groups of four to change the topological number from even to odd.

I. INTRODUCTION

A major hurdle in the realization of quantum computers is the problem of decoherence. Qubits generically do not last long in the presence of the environment. Overcoming decoherence is possible if the qubit is stored nonlocally using a many-body state, in such a way that the reservoir, which only couples locally to the system, is unable to damage the quantum information. An implementation of this scheme can be achieved if the many-body ground state supports excitations obeying non-Abelian braiding statistics. Non-Abelian braiding statistics that depart from the Bose-Einstein or Fermi-Dirac statistics can only be realized in effectively two-dimensional (2D) systems, such as the $\nu = 5/2$ fractional quantum Hall state on the one hand or in chiral $p_x \pm ip_y$ 2D superconductors where a half vortex binds a zero-energy midgap state on the other hand. In the latter example, due to particle-hole symmetry (PHS), this zero mode is a Majorana fermion. A two-state system – a qubit – can be assembled from one complex fermion made up of a pair of such Majorana fermions sitting at far away vortices. The splitting of the energies from exactly zero is exponentially small in the separation between the vortices and thus the time to degrade a quantum superposition is exponentially large in the distance between the vortices.

Majorana fermions bound to the core of vortices in a superconductor were discovered by Jackiw and Rossi.1 There is a single zero-energy midgap state when the vorticity is $n = \pm 1$ (there are generically $|n|$ zero modes). However, these results are obtained for the case of the minimal representation of Dirac fermions whose support in space is the 2D continuum. The fermion-doubling problem, discovered in the context of lattice-gauge theory, prevents importing these results of Jackiw and Rossi to condensed-matter systems, which are models defined on lattices. In graphene, for instance, one does have the Majorana fermions from which it is possible to assemble the qubits, as shown by Ghaemi and Wilczek.2 However, there are four of them in each vortex because there are two Dirac cones for each spin polarization in graphene. Even numbers of Majorana fermions are not stable, as local perturbations can move them away from zero energy.

One can get much insight into the problem of how many Majorana fermions can be realized in effectively 2D tight-binding models if one looks into ideas for addressing the fermion-doubling problem in lattice-gauge theories. There is the original proposal due to Wilson, which is achieved by adding perturbations (Wilson masses) to a lattice Hamiltonian that opens gaps at undesirable duplicate Dirac points. However, from the point of view of a lattice-gauge regularization of quantum chromodynamics, this option has the undesirable property of breaking the chiral symmetry. Alternatively, the idea that the fermion doubling can be overcome by considering an n-dimensional system as a boundary of a $(n + 1)$-dimensional one was put forth by Callan and Harvey in Ref. 9 (see also Refs. 10 and 11). In fact, it is the Callan-Harvey effect that is at work in the remarkable results obtained by Fu and Kane:11 (i) surface states in 3D topological insulators with time-reversal symmetry (TRS) realize an odd number of Dirac fermions in the minimal representation of the Clifford algebra. (ii) They can be used to achieve an odd number of Majorana fermions bound to vortex cores induced by the proximity to a type-II superconductor.

We argue in this paper that the Wilson prescription is a route to attain an odd number of Majorana fermions in effectively 2D condensed-matter systems. The chief reason is that one is not constrained to impose chiral symmetry as in lattice-gauge theory. However, not any Wilson mass can be used for this purpose, only those that break TRS. This approach naturally leads to a $\mathbb{Z}_2 \times \mathbb{Z}_2$ topological charge that discerns whether the system has an even or odd number of Majorana fermions attached to a superconducting (SC) vortex. In essence, the parity of the number of zero modes is determined by the number of Dirac points which have not been knocked out by changing the Chern number via the TRS-breaking Wil-
fermions in a 2D tight-binding model, we begin with the pure Rashba kinetic energy

$$H_{\alpha} := \sum_{r} \sum_{n=x,y} (i\sigma_y c_{r+n}^\dagger \sigma_x c_r + H.c.)$$ \hspace{1cm} (1)$$

that we define on a square lattice with sites denoted by $r = mx + ny$, where m and n are integers. Here, $c_r^\dagger = (c_{r,x}^\dagger, c_{r,y}^\dagger)$ is a doublet that creates on site r an electron with the spin projection $s = \uparrow, \downarrow$ along the quantization axis, $\sigma_x \equiv \sigma_x \equiv \sigma_1$ and $\sigma_y \equiv \sigma_y \equiv \sigma_2$ are the first two Pauli matrices while the third Pauli matrix σ_3 defines the quantization axis in spin space, and the real-valued number α sets the energy scale for the Rashba hopping. At half filling, i.e., at vanishing chemical potential, the Fermi surface collapses to the four nonequivalent Fermi points

$$p_F = (0,0), (0,\pi), (\pi,0), (\pi,\pi).$$ \hspace{1cm} (2)$$

These Fermi points are TRS in that they change by a reciprocal wave vector under the inversion $p \rightarrow -p$. Linearization of the energy spectrum of H_{α} in the vicinity of these four Fermi points yields an 8×8 massless Dirac Hamiltonian, i.e., a reducible representation of the Clifford algebra four times larger than the minimal one in 2D continuum space. This is a manifestation of the fermion doubling. Hamiltonian (1) preserves TRS but breaks completely SU(2) spin-rotation symmetry (SRS).

We now introduce the same spectral gap at all the Fermi points, Eq. (2). We achieve this with the help of a singlet SC order parameter parametrized by a complex-valued Δ,

$$H_{\Delta} := \sum_r \left[\Delta c_r^\dagger (i\sigma_y) c_r^\dagger + H.c. \right],$$ \hspace{1cm} (3)$$

that we add to Hamiltonian (1),

$$H_{\alpha} \rightarrow H_{\alpha} + H_{\Delta}. \hspace{1cm} (4)$$

This 2D tight-binding Hamiltonian is the relative to a noncentrosymmetric superconductor in the Rashba-Dirac limit and with singlet SC pairing studied in Ref. [3]. A TRS-breaking vortex

$$\Delta \rightarrow \Delta(r) \exp(i\theta) \hspace{1cm} (5)$$

with the profile $\Delta(r)$, where r and θ are polar coordinates, binds four Majorana fermions at the Fermi energy via the Jackiw-Roetti solutions [3].

Finally, we define the three independent TRS-breaking Wilson masses

$$H_{h} := \sum_r \left(\sum_{n=x,y} h_n c_{r+n}^\dagger \sigma_3 c_r + H.c. + 2h_3 c_{r,x}^\dagger \sigma_3 c_r \right) \hspace{1cm} (6)$$

parametrized by the triplet of energy scales,

$$h = (h_1, h_2, h_3) \equiv (h_x, h_y, h_z). \hspace{1cm} (7)$$
Each Wilson mass breaks TRS and breaks SU(2) SRS down to U(1).

We are going to show numerically on the lattice and analytically in the continuum limit that the Wilson masses h can be used to change the number of Majorana fermions bound to the core of the vortex, Eq. (8), in

$$H := H_n + H_\Delta + H_h$$

one by one from four to zero.

Figure 1 displays the energy spectrum of Hamiltonian (8) obtained from numerical diagonalization on a square lattice made of 39×39 sites. Periodic boundary conditions are imposed in the presence of a vortex and an anti-vortex with winding numbers ±1, respectively, that are as far apart as possible. A continuum of energy eigenstates is visible as are bulk-gap-closing transitions as a function of $h_3 \equiv h_z$. Midgap states are also visible although they are not located at the Fermi energy because of level repulsion for states attached to the same defect and because of the finite separation between the two defects. Starting from four midgap states per isolated vortex in the thermodynamic limit, increasing h_3 decreases their number by one after each bulk-gap-closing transition.

The same results follow analytically after linearization of the spectrum around the Fermi points, Eq. (9). Indeed, linearization of Hamiltonian (8) yields, in the Bogoliubov-de-Gennes single-particle representation, the 16×16-dimensional block-diagonal Hermitian matrix,

$$\mathcal{H} := \text{diag}(\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4)$$

with the 4×4 Hermitian blocks

$$\mathcal{H}_j = \begin{pmatrix}
-\eta_j & p & \delta_j & 0 \\
\bar{p} & \eta_j & 0 & \delta_j \\
0 & -\eta_j & -p & \delta_j \\
0 & \bar{p} & \eta_j & -\delta_j
\end{pmatrix}$$

whereby the units $\hbar = v_F = 1$ have been chosen, the complex notation $p = p_1 + ip_2$ is used for the momenta whereby \bar{p} denotes the complex conjugate of x, and

$$\delta_1 = \delta_2 \equiv \Delta, \quad \delta_3 = \delta_4 \equiv \bar{\Delta},$$

$$n_1 \equiv \eta_{(0,0)} = 2(h_3 + h_1 + h_2),$$

$$n_2 \equiv \eta_{(0,\pi)} = -2(h_3 + h_1 - h_2),$$

$$n_3 \equiv \eta_{(\pi,0)} = 2(h_3 - h_1 - h_2),$$

$$n_4 \equiv \eta_{(\pi,\pi)} = -2(h_3 - h_1 + h_2).$$

The mathematical form of any of the four matrices \mathcal{H}_j is the same as that studied in Ref. 14, provided the SC order parameter Δ and each η_j are identified, respectively, with the Kekulé and Haldane masses in Ref. 14. Thus, we can immediately borrow and tailor some of the results from Ref. 14 to the present case.

If all the η_j’s are zero and the SC order parameter has a single vortex with unit winding number, there are four Majorana fermions bound to it. As the magnitudes of the $|\eta_j|$’s increase, there will be a phase transition every time that $|\eta_j| = |\Delta(r = \infty)|$. Any such transition is characterized by a decrease in the number of Majorana fermions by one unit and a corresponding change in the value of the Chern number by ±1, depending on the sign of η_j. Therefore, by changing the Chern number of the system by ±1 each time, one can knock out the Majorana fermions one by one.

Alternatively, one could start from the dominant Haldane masses limit defined by $|\eta_j| > |\Delta(r = \infty)|$ with $j = 1, 2, 3, 4$. In this limit, the system sustains the thermal integer quantum Hall effect (IQHE) and supports four chiral Majorana fermions. One can then change h so as to cross successive quantum phase transitions at which any one of the η_1, \ldots, η_4 equals in magnitude the spectral gap controlled by $|\Delta(r = \infty)|$. As before, each time we cross a phase transition, the Chern number and hence the number of Majorana fermions at a SC vortex core changes.

We note that the presence of a nearest-neighbor hopping dispersion

$$\epsilon(p) = -2t(\cos p_x + \cos p_y)$$

with $t \ll \alpha$ is equivalent to adding a constant chemical potential

$$\mu_j \equiv \epsilon(p_j)$$

for each one of the four Fermi momenta, Eq. (12). The effect of this term is to shift the gap closing condition to

$$|\eta_j| = \sqrt{\Delta^2 + \mu^2},$$

i.e., our results can be generalized to systems with quadratic dispersions and naturally explain the results found in Ref. 16.

III. TUNING THE NUMBER OF MAJORANA FERMIONS IN GRAPHENE

We are now going to demonstrate that the very same control on the number of Majorana fermions achieved with Hamiltonian (8) is also possible in graphene. We recall that in graphene, electrons with spin $s = \uparrow, \downarrow$ hop on a honeycomb lattice that is made of two triangular sublattices A and B. The conduction and valence bands touch at the two non-equivalent points K_\pm located at the opposite corners in the hexagonal first Brillouin zone (see Ref. 15 for a review). Finally, to account for the possibility of a SC instability, Nambu doublets are introduced with the index p and h to distinguish particles from their charge conjugate (holes). Hence, after linearization of the spectrum about the Fermi points K_\pm, this leads to a single-particle kinetic energy represented by a 16×16-dimensional matrix

$$\mathcal{H}_D := \alpha_1 p_1 + \alpha_2 p_2.$$
TABLE I: The ten mass matrices with PHS that anticommute with α_1 and α_2 and commute with the singlet SC masses M_{ReSSC} and M_{ImSSC}. Each mass matrix can be assigned an order parameter for the underlying microscopic model. The latin subindex of the order parameter’s name corresponds to the preferred quantization axis in SU(2) spin space. Each mass matrix either preserves or breaks TRS, SRS, and sublattice symmetry (SLS). Each mass matrix can be written as a tensor product $X_{\mu_1\mu_2\mu_3\mu_4} \equiv \rho_{\mu_1} \otimes \sigma_{\mu_2} \otimes \sigma_{\mu_3} \otimes \tau_{\mu_4}$, where ρ_{μ_1}, σ_{μ_2}, σ_{μ_3}, and τ_{μ_4} correspond to unit 2×2 and Pauli matrices that act on particle-hole, spin-1/2, valley, and sublattice indices, respectively.

Order parameter	TRS	SRS	SLS	Here	$X_{\mu_1\mu_2\mu_3\mu_4}$
IQHE	False	True	False	M_{IQHE}	X_{3003}
ReVBS$_x$	False	False	True	M_{ReVBS_x}	X_{3110}
ReVBS$_y$	False	False	True	M_{ReVBS_y}	X_{0210}
ReVBS$_z$	False	False	True	M_{ReVBS_z}	X_{3310}
ImVBS$_x$	False	False	True	M_{ImVBS_x}	X_{0120}
ImVBS$_y$	False	False	True	M_{ImVBS_y}	X_{3220}
ImVBS$_z$	False	False	True	M_{ImVBS_z}	X_{0320}
Néel$_x$	False	False	False	$M_{\text{Néel}_x}$	X_{3133}
Néel$_y$	False	False	False	$M_{\text{Néel}_y}$	X_{0233}
Néel$_z$	False	False	False	$M_{\text{Néel}_z}$	X_{3333}

Here, α_1 and α_2 are two 16×16-dimensional Dirac matrices.

It was shown in Ref. 14 that there exists 36 distinct order parameters such that any one, when added to H_D, opens a spectral gap. These order parameters are identified by seeking all 16×16 matrices from the Clifford algebra that anticommute with H_D. One complex valued order parameter is that for singlet superconductivity. We shall denote the two corresponding 16×16 matrices from the Clifford algebra by M_{ReSSC} and M_{ImSSC} and define the perturbation

$$H_\Delta := \Delta_1 M_{\text{ReSSC}} + \Delta_2 M_{\text{ImSSC}}$$

(14)

that opens the spectral gap $2|\Delta|$ with the complex-valued

$$\Delta \equiv \Delta_1 + i\Delta_2$$

(15)

parametrized by the real-valued Δ_1 and Δ_2 when added to H_D. Next, we seek all 16×16 matrices from the Clifford algebra that (i) anticommute with H_D and (ii) commute with H_Δ. In this way, we find all ten TRS-breaking order parameters listed in Table I that alone would open a gap in the Dirac spectrum if not for their competition with the gap induced by singlet superconductivity. Within this set of ten matrices one can form groups of at most four matrices that are mutually commuting and therefore can be simultaneously diagonalized. Here, we choose the four-tuplet \{ReVBS$_z$, ImVBS$_y$, Néel$_z$, IQHE\} for concreteness but the results hereafter apply to any other such four-tuplet of commuting mass matrices among the set of ten. Our main result regarding graphene is the fact that

$$H = p \cdot \alpha + \Delta_1 M_{\text{ReSSC}} + \Delta_2 M_{\text{ImSSC}} + m_1 M_{\text{ReVBS}} + m_2 M_{\text{ImVBS}} + m_3 M_{\text{Néel}} + \eta M_{\text{IQHE}}$$

(16a)

is unitarily similar to Eqs. (14a) and (14b) with

$$\delta_{1,2,3,4} \equiv \Delta,$$

(16b)

$$\eta_1 \equiv m_1 + m_2 + m_3 + \eta,$$

(16c)

$$\eta_2 \equiv m_1 - m_2 + m_3 + \eta,$$

(16d)

$$\eta_3 \equiv m_1 + m_2 - m_3 + \eta,$$

(16e)

$$\eta_4 \equiv -m_1 - m_2 - m_3 + \eta.$$

(16f)

The phase diagram in Fig. 2 follows.

There is a total of four SC pair potentials that open a uniform gap at K_{\pm} in graphene. One is the singlet SC pair potential, which we have discussed so far and the remaining three are all triplet SC pair potentials. For each such triplet SC mass, as in the singlet SC, there are four competing orders that commute pairwise and can be used, in principle, to knock out one by one Majorana fermions bound to the cores of isolated vortices.

IV. CONCLUSIONS

In summary, we have identified a mechanism to overcome the fermion-doubling barrier that can prevent the attachment of an odd number of Majorana fermions to the core of SC vortices in graphenelike tight-binding models. This mechanism relies on a $\mathbb{Z}_2 \times \mathbb{Z}_2$ topological charge that measures the parity in the number of Majorana
FIG. 2: Schematic phase diagram of the competition between the singlet SC (Δ), thermal IQH (η), magnetic bond ($m_{1,2}$), and Néel (m_3) orders near the Dirac point in graphene. Here, $m_{1,2,3}$ are fixed while $|\eta|$ and $|\Delta|$ vary. When $m_{1,2,3} = 0$, there are three phases (two large $|\eta|$ phases with $\eta > 0$ and $\eta < 0$ and one large $|\Delta|$ phase, according to Ref. 14). If we choose $m_{1,2,3}$ in such a way that $m_1 + m_2 + m_3$, $m_1 + m_2 - m_3$, $-m_1 + m_2 - m_3$, and $-m_1 - m_2 + m_3$ are all different, there are 15 phases as we change η and Δ. Shaded (nonshaded) regions represent a phase with the odd (even) Chern number (proportional to the thermal Hall conductivity divided by temperature). In phases that are adiabatically connected to a nonsuperconducting state (the horizontal axis $|\Delta| = 0$), one can switch off the pairing without closing the gap. In these phases, the number of Majorana fermions is thus even.

ACKNOWLEDGMENTS

This work is supported in part by the DOE under Grant No. DE-FG02-06ER46316 (C.C.). C.M. and S.R. thank the Condensed Matter Theory Visitor’s Program at Boston University for support.

1. A. Kitaev, Ann. Phys. 303, 2 (2003).
2. G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
3. N. Read and D. Green, Phys. Rev. B 61, 10267 (2000); N. Read, ibid. 79, 245304 (2009).
4. D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
5. R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 (1981).
6. H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).
7. P. Ghaemi and F. Wilczek, arXiv:0709.2626 (unpublished).
8. K. Wilson, in New Phenomena in Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1977).
9. C. Callan and J. Harvey, Nucl. Phys. B 250, 427 (1985).
10. E. Fradkin, E. Dagotto, and D. Boyanovsky, Phys. Rev. Lett. 57, 2967 (1986).
11. D. Kaplan, Phys. Lett. B 288, 342 (1992).
12. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
13. L. Santos, T. Neupert, C. Chamon, and C. Mudry, Phys. Rev. B 81, 184502 (2010).
14. S. Ryu, C. Mudry, C.-Y. Hou, and C. Chamon, Phys. Rev. B 80, 205319 (2009).
15. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
16. When $\Delta \neq 0$, PHS symmetry is broken so that the electron charge is not conserved and it is meaningless to define a Hall conductivity for the charge when the Haldane masses are dominant. Nevertheless, a quantized thermal Hall effect is meaningful when the Haldane masses are dominant, for the Bogoliubov-de-Gennes Hamiltonian is conserved, i.e., the flow of quasiparticle energy is a conserved one. When $\Delta = 0$ and for nonvanishing Haldane masses, the electron and Nambu quasiparticle charges are independently conserved. The charge and thermal Hall conductivities can then be quantized simultaneously.
17. J. Sau, R. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).
18. A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
19. M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).