Alignstein: optimal transport for improved LC-MS retention time alignment

Background
Reproducibility of liquid chromatography separation is limited by retention time drift. As a result, measured signals lack correspondence over replicates of the liquid chromatography mass spectrometry (LC-MS) experiments. Correction of these errors is named retention time alignment and needs to be performed before further quantitative analysis. Despite the availability of numerous alignment algorithms, their accuracy is limited, e.g. for retention time drift that swaps analytes' elution order.

Results
We present the Alignstein, an algorithm for liquid chromatography-mass spectrometry retention time alignment. It correctly finds correspondence even for swapped signals. To achieve this, we implemented the generalization of the Wasserstein distance to compare multidimensional features without any reduction of the information or dimension of the analyzed data. Moreover, Alignstein by design requires neither a reference sample nor prior signal identification. We validate the algorithm on publicly available benchmark datasets obtaining competitive results. Finally, we show that it can detect the information contained in the tandem mass spectrum by the spatial properties of chromatograms.

Conclusions
We show that the use of optimal transport effectively overcome the limitations of existing algorithms for statistical analysis of mass spectrometry datasets. The algorithm's source code is available at https://github.com/grzsko/Alignstein.

Corresponding Author:
Grzegorz Skoraczyński, M.S.
University of Warsaw Faculty of Mathematics Informatics and Mechanics: Uniwersytet Warszawski Wydzial Matematyki Informatyki i Mechaniki
Warsaw, POLAND

Response to Reviewers:
Dear Editor,
We enclose a revised manuscript of Alignstein's algorithm. We appreciate all...
reviewers' comment, because they helped to improve the quality of the manuscript. We have modified our manuscript accordingly. Please find below the responses to the comments of all reviewers.

Best regards
Grzegorz Skoraczyński, Anna Gambin, Błażej Miasojedow

Responses to reviewers' comments:

Reviewer 1

> The manuscript presents a new algorithm for retention time alignment in LC-MS data. The algorithm called alignstein uses a more appropriate multi-dimensional alignment strategy than existing algorithms. The authors should however investigate more of the available methods that try to achieve a similar goal (e.g., quandenser). In addition to this the introduction should be rewritten a bit to make it comprehensible. In the results the authors did not convince me of the better performance of alignstein. I admit that this might be due to the available data or benchmarks, but if this is the case I would have at least expected a discussion about these limitations. I suggest a major revision as I think the authors are likely able to address all my concerns.

> Major

> 1. Why is this needed? And what statistical analysis are you talking about? Do you mean quantification? In my opinion that is not a statistical analysis. "RT drift needs to be corrected prior to statistical LC-MS analysis."

We are grateful for this remark and we rewrote the whole paragraph as follows:

'RT drift requires a correction, usually named the RT alignment. It results in the correspondence of signals across runs. For example, in proteomics, the signal correspondence of the same peptides is needed for further applying label-free quantification (LFQ) for which samples must be measured separately. Moreover, for LFQ techniques, we cannot obtain the correspondence any other way because analytes do not have any additional information, such as metabolic labels, or chemical tags.'

> 2. The authors mention "Typically, it is caused by external conditions of variable nature, such as temperature [7].", but before it was mentioned it is hard to control experimental variables to counter retention time drift. External temperature is not hard to control. You can have chamber heating, pre-column heating, and even post-column heating.

Indeed, too simplistic example. We extended a list of experimental conditions affecting LC separation and rewrote the entire paragraph as below addressing also the other remarks (Minor 3, Minor 4):

'RT drift can be corrected by the experimental protocol only to a limited extent. It may change the whole gradient or affect only single peaks. These changes may be caused by various reasons such as the unstable mobile phase, the column change or degradation, sample chemical instability, or imprecise experiment setup.'

> 3. I think the authors should have a look at "Quandenser" as it resolves a lot of the issues raised. The, M., Käll, L. Focus on the spectra that matter by clustering of quantification data in shotgun proteomics. Nat Commun 11, 3234 (2020). https://doi.org/10.1038/s41467-020-17037-3

We did not know about Quandenser. Thanks for mentioning it. It looks really good, we find this idea of MS2 clustering very brilliant. However, it still reduces features into single points incorporating only the information about: minimal RT, maximal RT, average RT, single M/Z, charge, and total intensity.
When we were designing Alingstein, we aimed to take advantage of incorporating all features' signal information (span over RT and isotopic envelope) by its shape and the distribution of all signals.

We mentioned Quandenser in a paragraph listing other feature-matching algorithms. We address the same issues to Quandenser as raised in the original manuscript, i.e.

"To the best of the authors' knowledge, all matching algorithms reduce multidimensional features to one-dimensional extracted ion chromatograms or a single points with monoisotopic peak M/Z and average RT value, ignoring the information of isotopic envelope or feature span over the RT dimension. Without feature spatial characteristics and information of coeluting ions, elution order swaps are practically undetectable."

> 4. I would recommend the authors to look more into the literature between quantification and retention time alignment. The manuscript in its current form does not speak of quantification. While most people apply retention time alignment to better quantification. Also, the authors would have good benchmarks to test the performance of their algorithm through the use of these controlled experiments. E.g., see: Dowell, J. A., Wright, L. J., Armstrong, E. A., & Denu, J. M. (2021). Benchmarking quantitative performance in label-free proteomics. ACS omega, 6(4), 2494-2504.

Quantification is an important task. However, Alignstein is not designed as a quantification tool. The goal of Alignstein is to make the best possible RT alignment before quantification. Extending it to quantification benchmarking is out of the scope of the current paper.

Moreover, the proposed work benchmarks quantification techniques but it does not document RT alignment. Thus, we cannot derive any ground truth from this work and it does not allow for accurate RT benchmarking.

We described alignment as a preprocessing step of quantification as detailed in answer to Major 1.

> 5. I am very skeptical of evaluating performance on swapped signal with simulated data. I would urge the authors to seek further validation that does not involve simulated data. Or at least explain in detail why this is not possible to perform on experimentally acquired data.

The reason for using simulated data are limits of the other benchmarking techniques: limited ground-truth coverage of input datasets. Usually, we cannot correctly identify even half of our input data. Thus, we cannot check the accuracy of the alignment of features not covered by the ground truth. We checked the general accuracy of alignment on several real datasets: P1, P2, Mussels, and additionally, after revision, M1. Simulated data gives us the full information about the true correspondence. We used it only for benchmarking swaps detection, which affects only a fraction of features and thus is prone to ground-truth incompleteness.

> 6. Differences between Alignstein and OpenMS seem relatively small, if they perform equally is there another reason to use alignstein? Why is this difference so small when alignstein uses a much more sophisticated (according to the authors) algorithm for retention time alignment? Is the benchmark not suitable for evaluating?

While we were designing Alignstein, we wanted to fulfill several design goals: e.g. 1. no assumption about monotonicity of RT drift, 2. no need for reference sample, i.e. aligning fully uniformly with regard to the input chromatograms, 3. no need for any prior data identification.

The most challenging is goal 2, which is not met by OpenMS and practically almost all other algorithms. OpenMS takes either a reference sample or
arbitrarily chooses a chromatogram with the greatest number of features and aligns all other datasets to this one. This may partially skew the results.

Moreover, since the CAAP study, OpenMS has changed its alignment implementation, remaining the general algorithm idea. We reproduced the CAAP study on both versions of the OpenMS algorithm, and unfortunately, the current version of OpenMS no longer achieves the results declared in the original study, achieving significantly worse results. We added a paragraph with this information in Suppl. Mat., Section 4, as below:

'OpenMS alignment algorithm performed best in the CAAP study. Originally, the authors of this study evaluated the OpenMS version 1.0. Its alignment algorithm was reimplemented in 2012 and the previous version is no longer bundled with the OpenMS package. We reproduced the evaluation of the CAAP study on the current version of OpenMS. Unfortunately, the current alignment algorithm is achieving significantly worse results despite strenuous attempts to adjust the algorithm parameters to the data. Its alignment precision and recall are on average 60 percentage points lower than the results reported in the CAAP study.'

> 7. For the biomarker analysis, could the authors indicate some kind of baseline expectations? It is now very hard for a reader to evaluate if these results are good.

Because this kind of benchmarking is not popular, there is no obvious choice for a baseline. For this reason, we repeated the same analysis with OpenMS, which, for this setup, is working well but only for technical repetitions of a single experiment (IR equal to 0.81, 0.76, 0.85, 0.83). For the experiment across multiple BaP concentrations, its IR falls to 0.75.

> Minor

> 1. I think it is a bit much to call retention time alignment "One of the most important challenges of the automated LC-MS analysis is the correction of errors cause by retention time (RT) drift.". Indeed, the problem is important, but one of the most important? There are a lot of open problems in proteomics, both on the hardware and data analysis side.

We modified this statement as follows (+ a preceding sentence for readability):

'(...) designing algorithms for efficient and precise analysis of LC-MS datasets remains challenging.

One of these challenges is the correction of errors caused by retention time (RT) drift.'

> 2. The following sentence is grammatically incorrect and I think it does not add anything to the better comprehension of the subject or problem at hand:

"Also, inaccuracies of the detector in mass spectrometer may result in variable mass-to-charge ratio (M/Z) measurements, but in comparison to RT, the required correction is of essentially lower order of magnitude.". I suggest to remove this sentence.

As suggested, we removed this sentence.

> 3. The following sentence is hard to understand, what do the authors mean? Can they rewrite the sentence, so it is easier to understand? "It may change the whole chromatogram variably from sample to sample."

We rewrote the entire paragraph, see Major 2.

> 4. What are "fragments of the chromatogram". I find a lot of the terminology used confusing. Also because the terms used are not common in proteomics
We rewrote the entire paragraph, see Major 2.

> 5. What do the authors mean with this statement? "For samples analyzed under the same conditions, alignment is required to correct errors, while for samples analyzed under different experimental conditions, alignment is required to discriminate the corresponding biomarkers significant for further analysis.". So error correction is only needed for the same conditions? What errors are the authors talking about? And how is the connection made between biomarkers and different experimental conditions? This sentence is nonsensical.

We removed this statement and focused on LFQ instead, see Major 1.

> 6. Please rewrite this sentence "It overcomes the limitations of currently existing algorithms and deals properly even with RT drift, which swaps signals elution order over samples.". Deals properly with what?

We rewrote this sentence as follows:

'It overcomes the limitations of currently existing algorithms and properly resolves the correspondence of analytes of swapped elution order.'

> 7. Reference 26 and 27 are duplicated… So I guess there is a little bit less recent interest in the optimal transport approach? ;)

References 26 and 27 (in the previous paper version, now 34, 35) are two different papers by the same authors describing different setups (the former describes the fully discrete case, the latter semi-discrete case).

Although OT theory has over 50 years of history, its modern approach dates back to 2013 when Marco Cuturi proposed OT computation with the Sinkhorn-Knopp algorithm [1]. The application of optimal transport in life sciences is a case of the last 3-4 years since Chizat et al. work in 2018 (reference 40), where they proposed a technique of approximating the transport plan (cf. [2] or [3]).

Accordingly, interest in applying OT in MS is indeed very recent. Papers, which we cited in this work (references 27, 32, 34, 35), are to the best of our knowledge the only works of applying OT in MS, except one older, preliminary work written by our group [4] and two another from 2021: one more theoretical [5], one for elution profiles [6]. We added [6] to references (33) to show a more broad interest in OT in MS.

[1] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26.
[2] Cang, Z., & Nie, Q. (2020). Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nature communications, 11(1), 1-13.
[3] Demetci, P., Santorella, R., Sandstede, B., Noble, W. S., & Singh, R. (2022). SCOT: Single-cell multi-omics alignment with optimal transport. Journal of Computational Biology, 29(1), 3-18.
[4] Majewski, S., Ciach, M. A., Startek, M., Niemyska, W., Miasojedow, B., & Gambin, A. (2018). The wasserstein distance as a dissimilarity measure for mass spectra with application to spectral deconvolution. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[5] Moorthy, A. S., & Kearsley, A. J. (2021). Pattern similarity measures applied to mass spectra. In Progress in Industrial Mathematics: Success stories (pp. 43-53). Springer, Cham.
[6] Permiakova, O., Guilbert, R., Kraut, A., Fortin, T., Hesse, A. M., & Burger, T. (2021). CHICKN: extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of Wasserstein compressive hierarchical cluster analysis. BMC bioinformatics, 22(1), 1-30.
Skoraczyński et al describe an algorithm for retention time alignment which makes use of the generalized Wasserstein distance. This is beneficial because it allows to also consider peak shape and isotopic distribution to find corresponding features in MS runs. Based on several benchmark data sets the authors demonstrate comparable performance as achieved by the best algorithms currently available. The article is well written, and the authors managed to find an excellent balance for mathematical detail presented which makes the article good to read despite the complicated subject.

Major Comments:

- The biggest data set the authors use in their benchmarks is the CAAP P2 data set which comprises 5 fractions run in triplicates. Precision achieved here is much lower than in the smaller P1 data set. In the discussion the authors point out that their algorithm has difficulties with distant features. Obviously, retention time deviations tend to increase in larger studies. To evaluate if this might be an issue constraining the performance of the presented algorithm, the authors should also benchmark on a larger data set. This will also be of high interest in times where the size of proteomics studies continuously grows.

The precision drop from duplicate P1 set to triplicate P2 set is observable for all algorithms. It is because finding the feature correspondence for two sets is relatively easy (e.g. MassUntangler is implemented only for pairwise alignment, Alignstein has a special, simplified implementation for 2 chromatograms). However, finding feature matching for more than two chromatograms is significantly more difficult, both for conceptual (So what formal problem we are solving?) and implementation sides (and how to do it?).

To benchmark on a larger dataset, we added the description of benchmarking on the M1 dataset from the CAAP study. It consists of 44 metabolomic chromatograms. Initially, we focused on proteomics and omitted this set due to its data dump incompleteness. Based on data provided by the authors, the evaluation script would not give a clear answer if Alignstein performs better or worse than the other tools. Now, we resolved this obstacle by detecting features de novo. We used the tool and parameters from the original study (XCMS, method = "centWave", peakwidth = c(20, 50), snthresh = 5, ppm = 12). We matched newly detected features with the original ones and ran the evaluation script for such matched features. Results are competitive (precision 0.91, recall 0.88, F-score 0.89), which shows not only good scalability but also that Alignstein is not limited to proteomics. We reported the results in Table 1. Feature de novo detection is described in Suppl. Mat. section 4:

'M1 dataset lacks the spatial information of analyzed features. For this reason, we reproduced feature detection using XCMS3 with parameters detailed in the CAAP study. We matched features from the study with newly generated features by checking if the previous feature representation falls within the bounding box of new features. Such matched features were further input of the evaluation script.'

Minor Comments:

- The authors should mention the run time of the algorithm on the individual benchmark data sets and the computer on which the benchmarks were performed.
Good remark, we measured runtimes and presented results in Table 2. We added the following details of the computer in the Methods sections:

'Computation was done on a computer with Linux operating system and 24 Intel Xeon E5-2620 2.10 GHz processors + 62 GB RAM. We measured wall time using Linux built-in time command.'

>-Figure 1 in Box Clustering: hierarchical *clustering*

Corrected.

>-Page 7 after formula (1): where d(x, y) is *a distant* between peaks x and y; should be *the distance*

Corrected.

>-Page 8: We used input chromatograms as mzML and mzXML files and features as featureXML files provided by authors, as well as *their?* alignment precision and alignment recall evaluation script

We rewrote this sentence as follows:

'We used input chromatograms as mzML and mzXML files and features as featureXML files provided by authors of the CAAP study. We measured alignment precision and recall using an evaluation script written in R programming language by the authors of this study.'

>-Methods: as the paper deals with retention time alignment, the authors should also provide LC parameters used in the sample data sets (precolumn?, solvents, gradient, column, flow rate)

We added the following information to 'Mussels toxicological response experiment summary' Section in Methods:

'Acclaim PepMap C18 nano column 75 μm × 25 cm, 3 μm, 100 Å plus bypass, a linear gradient of 96% buffer A (0.5% Acetic Acid) and 4% buffer B (80% acetonitrile in 0.5% acetic acid) to 60% buffer A and 40% buffer B, a flow rate of 300 ml/min for 120 minutes).'

Additional Information:

Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes

Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our [Minimum Standards Reporting Checklist](#). Information essential to interpreting the data presented should be made available in the figure legends.

Have you included all the information requested in your manuscript?
| Resources |
|-----------|-----------|
| A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible. |
| Have you included the information requested as detailed in our Minimum Standards Reporting Checklist? | Yes |

| Availability of data and materials |
|-----------------------------------|-----------|
| All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript. |
| Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist? | Yes |
Grzegorz Skoraczynski1,*, Anna Gambin1 and Błażej Miasojedow1

1Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Stefana Banacha 2, 02-097 Warsaw, Poland
* Corresponding author. E-mail: g.skoraczynski@mimuw.edu.pl

Abstract

Background Reproducibility of liquid chromatography separation is limited by retention time drift. As a result, measured signals lack correspondence over replicates of the liquid chromatography mass spectrometry (LC-MS) experiments. Correction of these errors is named retention time alignment and needs to be performed before further quantitative analysis. Despite the availability of numerous alignment algorithms, their accuracy is limited, e.g. for retention time drift that swaps analytes’ elution order.

Results We present the Alignstein, an algorithm for liquid chromatography–mass spectrometry retention time alignment. It correctly finds correspondence even for swapped signals. To achieve this, we implemented the generalization of the Wasserstein distance to compare multidimensional features without any reduction of the information or dimension of the analyzed data. Moreover, Alignstein by design requires neither a reference sample nor prior signal identification. We validate the algorithm on publicly available benchmark datasets obtaining competitive results. Finally, we show that it can detect the information contained in the tandem mass spectrum by the spatial properties of chromatograms.

Conclusions We show that the use of optimal transport effectively overcome the limitations of existing algorithms for statistical analysis of mass spectrometry datasets. The algorithm’s source code is available at https://github.com/grzsko/Alignstein.

Key words: liquid chromatography–mass spectrometry; retention time alignment; Wasserstein distance; simplex algorithm

Introduction

Advances in liquid chromatography mass spectrometry (LC-MS) have provided a remarkable insight into the functioning of the organisms, ranging from protein level [1], through tissue [2] to environmental networks [3]. All of these research studies benefit from the possibility to separate complex mixtures in the liquid chromatographic column and then measure the analytes with high throughput mass spectrometer. Although LC-MS systems provide precise answers to both quantitative and qualitative biological and medical questions, designing algorithms for efficient and precise analysis of LC-MS datasets remains challenging.

One of these challenges is the correction of errors caused by retention time (RT) drift. It limits the reproducibility of LC separation, which is important for experiments usually acquired in many (even hundreds) replicates. RT drift became a significant obstacle with the emergence of high–performance chromatography (HPLC) and ultra–performance chromatography (UPLC) technologies. For example, nanoflow UPLC column separation takes a relatively long time, usually up to several hours. For these experiments, the elution time of peptides may vary up to 5 minutes [4] or even 10 minutes [1].

RT drift can be corrected by the experimental protocol only to a limited extent [5]. It may change the whole gradient or affect only single peaks. These changes may be caused by various reasons such as the unstable mobile phase, the column
we use clustering and network flow algorithms to achieve a
Although many of the available algorithms properly align most
Then, we validate the algorithm on publicly available bench-
Alignstein and analyze how it deals with the swapped signals.
 signals, still they fail to resolve swaps.
feature pairs are swapped between two chromatograms.
RT drift may swap the order of eluting analytes. In the pro-
technical experiment (cf. Methods), we analyzed that about 3
problems.
Here, we present a novel alignment algorithm named Align-
stein (cf. Fig. 1). It finds the correspondence of initially de-
tected features, i.e. convex sets of peaks representing the sig-
Example of swapped features. They represent four times charged pep-
tides: HTALYSTDSVRKRDQPG (Feature 1) and HTAIYSSDSVRNVRKKDTTG

Findings

The problem: resolving swaps

RT drift may swap the order of eluting analytes. In the pro-

The vast majority of approaches to RT alignment are so-
called warping algorithms, e.g. OpenMS [15], MetaAlign [16],
MZMine 2 [17], SIMA [18], the solution proposed by Zhang [19],
DIALignR [20], the solution proposed by Chiung-Ting Wu, et
al. [21]. These algorithms consist of applying a warping func-
tion that transforms the chromatograms by shifting, stretch-
ing, and squeezing. These transformations result in a close
distance between corresponding signals. After alignment, how-
ever, further feature detection and matching are still required
to obtain the signal correspondence. These algorithms’ ap-
plicability is limited because the warping function is applied
under the assumption that ions elute monotonically with RT.
Thus, they are not able to deal with elution order swaps.

Alternatively, a rarer implemented approach is feature
matching, e.g. OpenMS [15] (both warping and matching al-
gorithm), MassUntangler [22], LWBMatch [23], the solution pro-
posed by Wandy, et al. [24], MS-Dial [25], Quandenser [26]. Al-
gorithms by feature matching find the correspondence between
initially detected features of two or more chromatograms. Cor-
responding features represent the same analyte and further
will be referred to as consensus features. To the best of the
authors’ knowledge, all matching algorithms reduce multi-
dimensional features to one-dimensional extracted ion chro-
matograms or a single points with monoisotopic peak M/Z and
average RT value, ignoring the information of isotopic envelope
or feature span over the RT dimension. Without feature spatial
characteristics and information of coeluting ions, elution or-
der swaps are practically undetectable [8]. The main reason
for this simplification lies in the difficulty to find multidimen-
sional feature dissimilarity measures. Typically, Euclidean dis-
tance between points or one-dimensional cosine-like spectra
similarity scores is applied [27, 28]. Although the limitations
of these scores are known, still there is a shortage of their ef-
efective improvements [28, 29].

![Figure 1. The outline of the Alignstein algorithm. It starts with feature prepro-
cessing, for which then centroids are computed and clustered. As a next step,
the problem of optimal feature matching is solved. The result is obtained with
regard to prior clustering and can be further analyzed and verified.](image)

![Figure 2. The optimal transport plan between two features. The Wasserstein distance
captures not only the distance of feature drift along the RT dimension but
also spatial differences between features. Here, the left feature consists of
three ions, right feature consists of four ions. To properly capture this differ-
ence, part of the signal must be transported between different ions (denoted
with arrows) and thus the transport cost (the Wasserstein distance) is higher.](image)

![Figure 3. Example of swapped features. They represent four times charged pep-
tides: HTALYSTDSVRKRDQPG (Feature 1) and HTAIYSSDSVRNVRKKDTTG (Feature 2). Isotopic envelopes were generated using the IsolSpec tool [30] and
smoothed over RT with a gaussian filter. Retention times were predicted using
Pyroteomics package [31]. The Euclidean distance between corresponding shifted
features reduced to a point is 0.0 and 80.0, and between non-corresponding
features is 40.0 and 40.0. Whereas GWD for corresponding features equals
0.3 and 80.3, and for non-corresponding features, to 46.3 and 46.3. For such
an example, a simple feature matching algorithm, using GWD, would match
the features correctly, and for the Euclidean distance, this solution would be
ambiguous.](image)
The solution: the Alignstein algorithm

Alignstein is the RT alignment algorithm by feature matching that properly deals with features of swapped order. It is possible because the algorithm represents features by all signals contained within their boundaries. To cope with this representation, we use the generalization of the Wasserstein distance as a feature dissimilarity measure. It originates from the optimal transport theory and has been recently attracting growing attention to various problems of mass spectrometry [27, 32, 33, 34, 35]. Its design significantly differs from currently existing similarity scores and thus it overcomes the majority of their limitations. The Wasserstein distance describes the cost of the optimal way how to transform one feature into the other one. The transformations include not only shifting the signal from one feature to another but also splitting or combining the signal between peaks (cf. Fig. 2). The key strength of Wasserstein distance is the ability to compute features’ similarity by their spatial shape (cf. Fig. 3). Moreover, it easily scales with dimension. Generalizing the Wasserstein distance allows comparing noisy features by introducing an appropriate penalty. This provides a highly flexible measure for effective computing feature distance and similarity.

Alignstein aligns chromatograms by finding consensus features. It is done in two phases (cf. Fig. 1): at first, feature centroids are clustered to find candidates for consensus features, which are then verified by the feature matching phase. During the latter phase, the algorithm computes the optimal feature matching, which represents the most similar feature pairs throughout all chromatograms (cf. Methods). We solve this problem by reducing it to finding the maximum flow of minimum cost in an appropriate flow network (cf. Fig. 4). Consensus features are then created from optimal feature matching with regard to initial centroid clustering. The such formulation allows for aligning chromatograms without a requirement for a reference sample or a prior feature identification. It also easily scales with a number of input chromatograms. Finally, this algorithm is not limited to correcting RT perturbations in repeated experimental runs, it also accurately aligns the majority of detected corresponding biomarkers from samples of different experimental treatments.

Dealing with swapped signal

We assessed that Alignstein properly matches swapped features. For this purpose, we collected over 580 identified features from the chromatograms obtained from Barranger et al.’s work [3] (see Methods). We simulated RT drift by randomly moving features within range (-150 s, 150 s) in the RT dimension and within range (-0.3 Da, 0.3 Da) in the M/Z dimension. These two sets of features: one with original features and the second with drifted features represented chromatograms to be aligned. For such a formulation, about 2 % (ca. 3400) of feature pairs were swapped. We aligned these two sets and measured a number of properly matched features and a fraction of properly resolved swapped feature pairs. Our tool matched practically all drifted features (96 %) and the vast majority of swapped feature pairs (91 %). We compared our results with two open-source feature matching algorithms: OpenMS, and LWBMatch. OpenMS had high feature matching precision, it matched the majority of drifted features (80 %). However, its accuracy drastically decreased when analyzing only swapped feature pairs (61 %). LWBMatch had a significantly lower matching precision, it matched 24 % of drifted features and only 3 % of swapped feature pairs.

Algorithm validation on benchmark datasets

We evaluated the accuracy of our method by comparing alignment quality on public benchmark datasets. We reproduced the evaluation protocol from Lange et al. study [36] (further referred to as the CAAP study). We analyzed two proteomic datasets from CAAP evaluation: P1 and P2, and one metabolomic: M1. P1 set contained the analysis of E. coli protein extracts and consisted of 6 fractions at different salt bumps, every fraction in 2 different runs. Analogously, P2 contained the analysis of protein extract from M. smegmatis in 5 fractions every 3 replicated runs. M1 contained the analysis of leaf tissue extract from A. thaliana in 44 repeated runs. To assess the correctness of alignment algorithms, the authors of the CAAP study proposed alignment precision and alignment recall measures (cf. Methods). Moreover, as proposed by the authors of SIMA algorithm [18], we computed the F-score, which is a harmonic mean of alignment precision and recall.

We analyzed sets P1, P2, and M1 and compared Alignstein with the results of the OpenMS alignment algorithm [15] from the CAAP study. We chose OpenMS because it achieved significantly better results than the other tools and represented a state-of-the-art solution at the time of the original study. Moreover, we included in comparison the available results of algorithms published more recently: MZMine 2 [17], SIMA [18], MassUnTagger [22] (only P1 set), and Wandy et al. [24]. We measured the time of alignment computation, results are presented in Table 2.

Alignstein obtained highly competitive results in CAAP evaluation. For the P1 dataset, it matched perfectly almost all features, its precision and recall were on average 0.94, similarly to MZMine 2 and OpenMS (cf. Table 1, Supplementary Table S1). SIMA obtained slightly worse results and the rest of the tools obtained lower values than SIMA. Interestingly, all tools achieved average alignment precision and recall no higher than 0.94. It may suggest that improperly matched features either are too distant to be matched based on LC–MS information or ground–truth is misspecified.

For the P2 set, we achieved the highest average alignment recall (on average 0.82), i.e. our approach had a minimal num-
number of unmatched features (cf. Table 1, Supplementary Table S2). It had a lower precision on average equal to 0.73 and was second only to OpenMS. Overall, we obtained the best average F-score value, equal to 0.77.

For the M1 dataset, Alignstein achieved competitive results: precision equal to 0.88, recall 0.91, F-score 0.89. This confirms that Alignstein’s scales effectively with the number of input chromatograms.

Application to the detection of specific biomarkers

Alignstein can detect specific biomarkers in medical applications or biological analysis. To verify this, we analyzed the dataset from Barranger et al.’s work [3]. It contained LC-MS/MS chromatograms of intestinal protein from marine mus- sels exposed in vivo to various benzo[a]pyrene (BaP) concentrations (0, 5, 50, and 100 µg/L).

We checked if Alignstein recognizes tandem mass spectra (MS/MS) information by spatial properties of LC-MS features. To assess this, we detected LC-MS features and annotated them with peptide MS/MS identifications. The accuracy of alignment was quantified using proposed identification recall (IR) defined as follows. We chose all repeating identifications that have annotated features and computed a fraction of them that were properly aligned (cf. Methods). For every BaP concentration, we computed IR for all aligned technical replicates of the sample. We achieved sufficient results IR equal to 81 %, 78 %, 85 %, 86 % respectively for BaP concentrations 0, 5, 50, and 100 µg/L. As a baseline, we repeated this analysis for the OpenMS algorithm, which achieved similar results with IR equal to 81 %, 76 %, 85 %, and 83 %. Moreover, we calculated the IR separately for every subset of all aligned chromatograms (see Methods). This demonstrated that our approach uniformly treats all chromatograms (cf. Fig. 5a and Supplementary Fig. S1).

Moreover, we checked if Alignstein can detect corresponding biomarkers for LC-MS measurements of samples under different experimental conditions. For this purpose, we repeated the analysis above by aligning chromatograms across all BaP concentrations. The overall IR was equal to 85 %. Contrary to the previous experiment, IR for OpenMS has fallen to 0.75 %. Alignstein’s results were analogous as earlier uniform over all chromatogram subsets (cf. Fig. 5b) with IR values not lower than 67 %, reaching even 100 % for some subsets of repeated identifications. This proves that, despite the varying experimental conditions, our solution is able to correctly align the vast majority of corresponding features without accuracy loss. Finally, this experiment shows that it may be applied as a tool for biomarkers screening in LC-MS analysis.

Discussion

Alignstein is a novel, original algorithm for LC-MS alignment based on the GWD feature dissimilarity measure. This allows for incorporating not only distances between features, but also their spatial differences and thus more accurate feature alignment. The GWD emerges to be a key solution for correctly aligning signals with a swapped elution order, as demonstrated in the previous sections.

In addition to correctly resolving feature swaps, Alignstein has more advantages over the majority of alignment algorithms. It requires no prior feature identification, so LC-MS data without additional tandem mass spectra suffice as input to the algorithm. Moreover, our approach makes no assumptions about the characteristics of the analyzed chromatograms, so it is not limited to one type of data (e.g., proteomic or metabolomic). Still, specific properties of the analyzed data (e.g., maximum drift size) can be passed as algorithm parameters. Finally, it treats uniformly all analyzed chromatograms, and thus it does not require a reference sample.

Alignstein requires only the prior feature detection as a data preprocessing step. Although approaches with this requirement are criticized [8, 20], we argue that the analysis with detected features is more accurate than the analysis of raw chromatograms. Properly executed feature detection effectively discriminates regions of high signal-to-noise ratio from chro-

| Table 1. Comparison of alignment precision (P), alignment recall (R), and F-score (F). For P1 and P2 sets, average over fractions is computed. Dash marks result not presented in the original paper. |
|---|---|---|---|---|---|---|
| | Alignstein | OpenMS | MZMine 2 | Wangy et al. | SIMA | MassUntangler |
| P1 | P | 0.94 | 0.94 | 0.94 | 0.88 | 0.94 | 0.87 |
| | R | 0.94 | 0.94 | 0.94 | 0.89 | 0.92 | 0.79 |
| F | 0.94 | 0.94 | 0.94 | 0.88 | 0.93 | 0.83 |
| P2 | P | 0.74 | 0.83 | 0.68 | 0.72 | 0.72 | - |
| | R | 0.83 | 0.72 | 0.75 | 0.72 | 0.75 | - |
| F | 0.78 | 0.77 | 0.71 | 0.72 | 0.74 | - |
| M1 | P | 0.88 | 0.69 | 0.74 | - | 0.75 | - |
| | R | 0.91 | 0.87 | 0.91 | - | 0.92 | - |
| F | 0.89 | 0.77 | 0.82 | - | 0.83 | - |

For the M1 dataset wall-time was measured for the whole dataset.

| Table 2. Alignstein runtimes on benchmark CAAP datasets. |
|---|---|---|
| | P1 | P2 |
| 10 sec | 15 sec | 15 min 38 sec |

For the P1 and P2 dataset wall-time was measured for a single fraction. For the M1 dataset wall-time is measured for the whole dataset.
matograms [37]. Moreover, multidimensional feature detection is crucial for collecting information about coeluting ions (e.g., isotopic envelopes of compounds). Without this, any alignment algorithm might yield inaccurate results by aligning signals across isotopic envelopes.

Besides advantages, Alignstein has also limitations. It correctly matches the vast majority of features, but it happens to fail to match distant features. This mismatch can be explained by interpreting GWD as a sum of two costs: the cost of transporting the feature along the RT (to eliminate drift) and the cost of transformation (to incorporate feature–feature spatial differences). For a pair of distant, corresponding features, the cost of transport along the RT far exceeds the cost of transformation. For this reason, even highly dissimilar but much closer features may camouflage the correct feature correspondence. This can be particularly troublesome for complex datasets having a significant number of features, which are densely packed within chromatograms. This limitation can be only partially corrected by adjusting GWD parameters because the majority of corresponding feature pairs have RT differences of less than 10 seconds (cf. Supplementary Fig. S2) and thus the GWD parameters must be optimized for small feature distances. One of the possible solutions is to incorporate additional information for alignment, for example, MS/MS data. Thus, we plan to extend our algorithm to deal with LC–MS/MS datasets in a data-independent acquisition mode.

In conclusion, Alignstein correctly aligns chromatograms as we have shown in the biomarkers detection experiment, by reproducing the CAAP evaluation study, as well as in swaps resolving computational comparison. Its highly competitive matching accuracy is the result of applying the Generalized Wasserstein Distance as a feature dissimilarity measure, which allows matching features without reducing feature spatial information or the dimension of data. Thus, Alignstein is capable of detecting non-obvious signal patterns and finding optimal alignment. Our solution provides a solid basis for further applications of optimal transport theory to the multidimensional problems of automated analysis in mass spectrometry. We hope that the optimal transport–based distances will become a new paradigm as a measure of spectra dissimilarity and will allow the construction of highly effective, robust, and accurate algorithms for mass spectrometry analysis.

Methods

Feature dissimilarity measure

The most common approach to comparing mass spectra is a cosine–like similarity score [28, 38]. Despite its popularity, this class of scores is not applicable to feature alignment, because they are not scalable with dimension and cannot effectively compare spectra of significantly different molecules [29]. To address these limitations, we propose the Wasserstein distance [39] with additional generalizations [14, 40] as a feature dissimilarity measure.

The Wasserstein distance is a metric based on optimal transport theory. It describes how to optimally transform one feature into the other one. These transformations may include shifting the signal as well as splitting or combining the signal between peaks (cf. Fig. 2). Formally, suppose that we have two discrete features \(\mu \) and \(\nu \) so that \(\mu(x) \) is the intensity of \(\mu \) at \(M/Z \) value \(x \). Then we define the transport plan \(T \) so that \(T(x, y) \) corresponds to the amount of signal that is transported from a peak \(x \) of feature \(\mu \) to peak \(y \) of feature \(\nu \). The transport cost is the sum of amounts of transport between all pairs of peaks multiplied by the distance between peaks:

\[
\sum_{x,y} T(x,y) \cdot d(x,y),
\]

where \(d(x,y) \) is a distance between peaks \(x \) and \(y \). For this setup, we have chosen \(d(x,y) \) to be \(\ell_1 \) distance (a Manhattan distance). The Wasserstein distance \(W \) is the minimal transport cost of all possible transport plans \(T \):

\[
W(\mu, \nu) = \min_T \sum_{x,y} T(x,y) \cdot d(x,y).
\]

Besides effectiveness, we observed that Wasserstein distance unsatisfactorily deals with noisy features. To overcome this limitation, we use a generalization of Wasserstein distance (GWD) as proposed by Chizat et al. [40]. GWD differs mainly from Wasserstein distance by the possibility to omit transporting part of the signal with a constant penalty. More specifically, GWD allows omitting the transport of signal on a distance larger than the user–defined \(\lambda \) parameter with a constant penalty proportional to \(\lambda \) and the amount of not transported signal:

\[
W(\mu, \nu) = \min_T \sum_{x,y} T(x,y) \cdot d(x,y) + \lambda \cdot F(T_{\mu}, \mu) + \lambda \cdot F(T_{\nu}, \nu),
\]

where \(T_{\mu} \) and \(T_{\nu} \) are the marginals of the transport plan. \(F \) is a divergence chosen so that the approximation of the transport plan \(T \) to features \(\mu \) and \(\nu \) is possible. To compute GWD, we regularize it with the entropic term which allows for fast and numerically stable computation, using a scaling Sinkhorn–Knopp approximation algorithm [41]. Fully formal distance derivation is available in Supplementary Material sections 1–2.

Alignstein algorithm scheme

Alignstein is an algorithm for LC–MS alignment. Here, the alignment is formulated as finding the correspondence of detected features, which represent the same chemical entities (e.g., ions, compounds). Specifically, the algorithm takes chromatograms with detected features as an input, and the outcome of the algorithm is a list of consensus features. Consensus features are sets of corresponding features from distinct chromatograms. The algorithm outline is depicted in Fig. 1 and pseudocode is available in Algorithm 1.

Alignstein starts with feature preprocessing. If the features are not provided by the user, it detects them using the Feature Finder algorithm from the OpenMS package. Features are represented as a set of all signal peaks contained within the boundaries of detected features. For further processing, Alignstein normalizes features and scales the RT so that the RT dimension variation becomes of a similar order of magnitude as the \(M/Z \) dimension variation. Scaling is done by dividing the RT by a factor proportional to the ratio of the average feature length (along the RT axis) and the average feature width (along the \(M/Z \) axis).

After preprocessing, alignment consists of two phases: the centroid clustering phase and then the feature matching phase. During the former one, centroids of features from all chromatograms are clustered using Mini–Batch K–Means [42] and hierarchical clustering algorithms. Clustering is computed to create candidates for consensus features, which are then verified by the feature matching phase. During this phase, the algorithm searches for pairs of the most similar features across all chromatograms. It is done by finding the feature matching of minimal cost, where the cost is equal to the sum of GWDs...
We validated the Alignstein algorithm by reproducing the evaluation within one cluster. These restrictions assure that features are uniformly all input chromatograms, at most one feature from every chromatogram would be chosen to consensus features, etc. Finally, consensus features are created via clusters that have been matched as most similar in optimal matching. A more detailed algorithm description is available in Supplementary Material section 3.

In the special case, when only two chromatograms are aligned, the clustering phase is omitted and consensus features are created by finding the optimal matching between two feature sets (cf. Supplementary Fig. 5).

Implementation details

Alignstein is implemented as a Python 3 package and available at [44]. It uses C++ implementation of GWD in the MassSinkhornmetry package available at [45]. For centroid clustering, we used clustering algorithms implemented in the scikit-learn package [46, 47]. For solving the minimum cost flow problem, we used the data structures and algorithms implemented in NetworkX [48, 49] package.

Alignstein benchmarking details

We validated the Alignstein algorithm by reproducing the evaluation protocol from the Critical Assessment of Alignment Procedures (CAAP) study [36]. It was the analysis and comparison of 7 alignment algorithms: OpenMS [15], msInspect [50], MZmine 1 [51], SpecArray [52], XAlign [53], and XCMS [54].

We analyzed two proteomic datasets (P1 and P2) and one metabolomic (M1) from the CAAP study. For all sample sets, preparation, and analysis protocols are described in the original work (taxa Mollusca, subcategory Mytilus galloprovincialis) of both proteomic sets, the authors prepared a set of ground-truth consensus features, which represent feature correspondence over chromatograms of significantly high confidence.

To assess the accuracy of alignment, the authors of the CAAP study proposed the generalization of precision and recall as alignment precision and alignment recall. Alignment precision measures how the given ground-truth consensus feature was split over tool consensus features, i.e. it reflects the number of false positives. Alignment recall measures how many features of a given ground-truth consensus feature are found by the algorithm, i.e. it reflects the number of false negatives. Both alignment precision and recall are calculated as an arithmetic mean over all ground-truth consensus features. Furthermore, the authors of SIMA [18] and Wandy et al. [24] proposed the F-score which is the harmonic mean of alignment precision and alignment recall (\(F = \frac{2 \cdot P \cdot R}{P + R}\), where \(P\) is alignment precision and \(R\) is alignment recall) to express the balance of alignment precision and alignment recall.

We used input chromatograms as mzML and mzXML files and features as featureXML files provided by authors of the CAAP study. We measured alignment precision and recall using an evaluation script written in R programming language by the authors of this study. Computation was done on a computer with Linux operating system and 24 Intel Xeon E5–2620 2.10 GHz processors + 62 GB RAM. We measured wall time using Linux built-in \(\texttt{time}\) command. More details on CAAP benchmarking are provided in the Supplementary Material section 4.

Mussels toxicological response experiment summary

For assessment of Alignstein’s ability to detect specific biomarkers, we analyzed chromatograms originally created in the work of Barranger et al. [3]. The original study aimed to measure the effects of polluting the marine mussels (Mytilus galloprovincialis) environment with fullerene (C60) and benzo[a]pyrene (BaP). For this purpose, the authors performed a proteomic analysis.

Mussels were collected in Trebar with Strand, Cornwall, UK, and were exposed in vivo to C60 and BaP at concentrations 0, 5, 50, and 100 \(\mu\)g/L as described in the original study. For proteomic analysis, mussel intestinal proteins were collected. After digestion and purification, the peptides were analyzed by the LC–MS/MS system with data–dependent acquisition (DDA) mode as described in Sequiera et al. [55]. In summary, peptides were separated on Dionex Ultimate 3000 RSLC nanoflow system: Acclaim PepMap C18 nano column 75 \(\mu\)m x 25 cm, 3 \(\mu\)m, 100 \(\mu\)A plus bypass, a linear gradient of 96 % buffer A (0.5 % Acetic Acid) and 4 % buffer B (80 % acetonitrile in 0.5 % acetic acid) to 60 % buffer A and 40 % buffer B, the flow rate of 300 ml/min for 120 minutes. Separated analytes were analyzed in an Orbitrap Velos Pro FTMS (Thermo Finnigan) with positive ion mode ionization with Proxeon nanospray ESI source. In each run, the 10 most abundant ions were further analyzed with additional collision–induced dissociation (CID) fragmentation (30 % collision energy) in a linear ion trap spectrometer. For every BaP concentration from 0, 5, 50, to 100 \(\mu\)g/L three replicates were obtained. Collected chromatograms for all BaP exposure levels were deposited in the ProteomeXchange Consortium PRIDE repository (PXD013805) [56, 57].

Data analysis for detection of repeating biomarkers

In downloaded chromatograms, we identified peptides using Comet [58, 59]. We obtained the database for peptide identification from the original work (taxa Mollusca, subcategory Macesemajor).
We analyzed two replicates of 0 µg/l BaP concentration in the dataset described in the previous section. Computation was done for all pairs of annotated features with repeating identification in both chromatograms. We computed the fraction of these pairs that were swapped, i.e. a feature pair was considered as a swap when the computed feature RT means of the same identifications in two replicates were in a different order.

Availability of source code and requirements

- Project name: Alignstein
- Project home page: https://github.com/grzsko/Alignstein
- Operating systems: Linux, macOS
- Programming language: Python 3
- Other requirements: Python 3.6 or higher; dependency packages: MassSinkhornmetry, pyOpenMS, SciPy, NetworkX, scikit-learn, License: MIT,
- Any restrictions to use by non-academics: none,
- RRID: SCR_022483,
- Programming language: Python 3,
- Operating systems: Linux, macOS,
- Other requirements: Python 3.6 or higher; dependency packages: MassSinkhornmetry, pyOpenMS, SciPy, NetworkX, scikit-learn, License: MIT,
- Any restrictions to use by non-academics: none,
- RRID: SCR_022483,
- bio.tools ID: alignstein.

Availability of supporting data and materials

The Marine Mussels dataset was obtained from ProteomeXchange Consortium PRIDE repository under accession no. PXD013805. Benchmark datasets (P1, P2, M1), as well as evaluation script, were obtained from the CAAP webpage at https://msbi.ipb-halle.de/msbi/caap. Datasets P1 and P2 are originally available in Open Proteomic Database http://data.marcottelab.org/MSdata/OPD/.

Declarations

List of abbreviations

BaP: benzo[a]pyrene; CAAP: Critical Assessment of Alignment Procedures; C60: fullerene; CID: collision-induced dissociation. DDA: data-dependent acquisition; GWD: generalized Wasserstein distance; HPLC: high-performance liquid chromatography; IR: identification recall; LC-MS: liquid chromatography-mass spectrometry; M/Z: mass-to-charge ratio; RT: retention time; UPLC: ultra-performance liquid chromatography;

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

GS was supported by Polish National Science Center grant number 2019/33/N/ST6/02949. AG and BM were supported by Polish National Science Center grant number 2018/29/B/ST6/00681.

Author’s Contributions

GS implemented and verified the algorithm. AG conceived the idea of the project and discussed the results. BM designed the algorithm and supervised the work. GS, AG, and BM co-wrote the manuscript.

Acknowledgments

The authors thank Marta Nowak for her comments on the manuscript.

References

1. Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA, et al. Inhibition of DHHC20-Mediated EGFR Palmitoylation Creates a Dependence on EGFR Signaling. Molecular Cell 2016 May;62(3):385–396.
2. Sethi MK, Thyssen-Andersen M, Kim H, Park CK, Baker MS, Packer NH, et al. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. Journal of Proteomics 2015;126:54–67.
3. Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, et al. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C60) in Toxicological Response of Marine Mussels. Nanomaterials 2019 Jul;9(7):987.
4. Tomechko SE, Liu G, Tao M, Schlatter D, Powell CT, Gupta S, et al. Tissue Specific Dysregulated Protein Subnetworks in Type 2 Diabetic Bladder Urothelium and Detrusor Muscle. Molecular & Cellular Proteomics 2015 Mar;14(3):635–645.
5. Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst 2012;8(2):470–481.
6. Snyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. John Wiley & Sons, Inc.; 2009.
7. K Magnus Åberg and Erik Alm and Ralf J O Torgrip. The correspondence problem for metabonomics datasets. Analytical and Bioanalytical Chemistry 2009 Feb;394(1):151–162.
8. Smith R, Ventura D, Prince JT. LC–MS alignment in theory and practice: a comprehensive algorithmic review. Briefings in Bioinformatics 2013 Nov;16(1):104–117.
9. Xianyin Lai and Lianshui Wang and Frank A Witzmann. Issues and Applications in Label-Free Quantitative Mass Spectrometry. International Journal of Proteomics 2013 Jan;2013:1–13.

10. Lindemann, Claudia and Thomaneck, Nikolas and Hundt, Franziska and Lerari, Thilo and Meyer, Helmut E and Wolters, Dirk and Marcus, Katrin. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biological chemistry 2017;398(5–6):687–699.

11. Jürgen Cox and Marco Y Hein and Christian A Luber and Schmidutz, Franziska and Lerari, Thilo and Meyer, Helmut E and Wolters, Dirk and Marcus, Katrin. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biological chemistry 2017;398(5–6):687–699.

12. James A Dowell and Logan J Wright and Eric A Armstrong and John M Denu. Benchmarking Quantitative Performance in Label-Free Proteomics. ACS Omega 2021 Jan;6(4):2494–2504.

13. Li, Yunong and Li, Lian. Retention time shift analysis and correction in chemical isotope labeling liquid chromatography/mass spectrometry for metabolome analysis. Rapid Communications in Mass Spectrometry 2020;34(S1):e8643.

14. Peyré G, Cuturi M. Computational Optimal Transport: With Applications to Data Science. Foundations and Trends® in Machine Learning 2019;11(5–6):355–607.

15. Lange, Gröpl C, Schulz–Trieglaff O, Leinenbach A, Huber C, Reinehr K. A geometric approach for the alignment of liquid chromatography—mass spectrometry data. Bioinformatics 2007 07;23(13):1273–1281.

16. Lommen A. MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing. Analytical Chemistry 2009 Mar;81(8):3079–3086.

17. Pluskal T, Castillo S, Villar–Bromes A, Orelčí M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010 Jul;11(1).

18. Voss B, Hanselmann M, Renard BY, Lindner MS, Köthe U, Kirchner M, et al. SIMA: Simultaneous Multiple Alignment of LC/MS Peak Lists. Bioinformatics 2011 Feb;27(7):987–993.

19. Zhang Z. Retention Time Alignment of LC/MS Data by a Divide–and–Conquer Algorithm. Journal of the American Society for Mass Spectrometry 2012 Feb;23(4):764–772.

20. Gupta S, Ahadi S, Zhou W, Röst H. DIAlignR Provides Precise Retention Time Alignment Across Distant Runs in DIA and Targeted Proteomics. Molecular & Cellular Proteomics 2019 Apr;18(4):806–817.

21. Tu CT, Wang Y, Wang Y, Ebbels T, Karaman I, Graça G, et al. Targeted realignment of LC–MS profiles by neighborwise compound–specific graphical time warping with misalignment detection. Bioinformatics 2020 Jan;36(9):2862–2871.

22. Ballardini R, Benevento M, Arrigoni G, Pattini I, Roda A. MassIntangler: A novel alignment tool for label–free liquid chromatography–mass spectrometry proteomic data. Journal of Chromatography A 2011 Dec;1218(49):8859–8868.

23. Wang J, Lam H. Graph–based peak alignment algorithms for multiple liquid chromatography–mass spectrometry datasets. Bioinformatics 2013 Jul;29(19):2469–2476.

24. Wandy J, Daly R, Breitling R, Rogers S. Incorporating peak grouping information for alignment of multiple liquid chromatography–mass spectrometry datasets. Bioinformatics 2015 Feb;31(12):1999–2006.

25. Tsugawa H, Calka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS–DIAL: data–independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods 2015 May;12(6):523–526.

26. The, Matthew and Käll, Lukas. Focus on the spectra that matter by clustering of quantification data in shotgun proteomics. Nature communications 2020;11(1):1–12.

27. Moorby A, Roux A. J. 4: In: Pattern Similarity Measures Applied to Mass Spectra Springer International Publishing; 2020. p. 43–53.

28. Kim S, Zhang X. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry. Computational and Mathematical Methods in Medicine 2013;2013:1–12.

29. Huber F, Ridder L, Verhoeven S, Spaaks JH, Diblen F, Rogers S, et al. Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships. PLOS Computational Biology 2021 Feb;17(2):e1008724.

30. Lacki MK, Valkenburg D, Startek M. IsoSpec2: Ultra-fast Fine Structure Calculator. Analytical Chemistry 2020 Jun;92(14):9472–9475.

31. Levitsky LI, Klein JA, Ivanov MV, Gorskho MV. Pyteomics 4.0: Five Years of Development of a Python Proteomics Framework. Journal of Proteome Research 2018 Dec;18(2):709–714.

32. Ciach MA, Miasojedow B, Skoraczyński G, Majewski S, Startek M, Valkenburg D, et al. Wasserstein: Linear regression of mass spectra by optimal transport. Rapid Communications in Mass Spectrometry 2021 Jan;.

33. Permiakovka, Olgia and Guibert, Romain and Kraut, Alexandra and Fortin, Thomas and Hesse, Anne–Marie and Burger, Thomas. CHICKEN: extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of Wasserstein compressive hierarchical cluster analysis. BMC bioinformatics 2021;22(1):1–30.

34. Seifert NA, Prozument K, Davis MJ. Computational optimal transport for molecular spectra: The fully discrete case. The Journal of Chemical Physics 2021 Nov;155(18):184101.

35. Seifert NA, Prozument K, Davis MJ. Computational optimal transport for molecular spectra: The semi–discrete case. The Journal of Chemical Physics 2022 Apr;156(13):134117.

36. Lange E, Tautenhahn S, Neumann S, Gröpl C. Critical assessment of alignment procedures for LC–MS proteomics and metabolomics measurements. BMC Bioinformatics 2008 Sep;9(1).

37. Zohora FT, Rahman MZ, Tran NH, Xin L, Shan B, Li M. DeepIso: A Deep Learning Model for Peptide Feature Detection from LC–MS map. Scientific Reports 2019 Nov;9(1).

38. Frank AM, Monroe ME, Shah AR, Carver JJ, Bandeira N, Moore RJ, et al. Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra. Nature methods 2011;8(7):587–591.

39. Kantorovich LV. Mathematical Methods of Organizing and Planning Production. Management Science 1960 Jul;6(4):366–422.

40. Chizat L, Peyré G, Schmitzer B, Vialard FX. Scaling algorithms for unbalanced optimal transport problems. Mathematics of Computation 2018 Feb;87(314):2563–2609.

41. Knopp P, Sinkhorn R. Concerning nonnegative matrices and doubly stochastic matrices. Pacific Journal of Mathematics 1967;21(2):343 – 348.

42. Sculley D. Web-scale k-means clustering. In: Rappa M, Jones P, Freire J, Chakrabarti S, editors. Proceedings of the 19th international conference on World wide web – WWW ’10 New York, NY, USA: ACM Press; 2010. p. 1177–1178.
44. Alignstein; Version: 1.0. https://github.com/grzsko/Alignstein.
45. MassSinkhornmetry; https://github.com/grzsko/MassSinkhornmetry, accessed: 8 June 2022.
46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011;12:2825–2830.
47. scikit-learn; Version: 1.1.1. https://scikit-learn.org/stable/index.html.
48. Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. Proceedings of the 7th Python in Science Conference Pasadena, CA USA; 2008. p. 11 – 15.
49. NetworkX; Version: 2.8.3. https://networkx.org/.
50. Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, et al. A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC–MS. Bioinformatics 2006;22(15):1902–1909.
51. Katajamaa M, Orešič M. Processing methods for differential analysis of LC/MS profile data. BMC bioinformatics 2005;6(1):1–12.
52. Li Xj, Eugene CY, Kemp CJ, Zhang H, Aebersold R. A Software Suite for the Generation and Comparison of Peptide Arrays from Sets of Data Collected by Liquid Chromatography–Mass Spectrometry*. S. Molecular & Cellular Proteomics 2005;4(9):1328–1340.
53. Zhang X, Asara JM, Adamec J, Ozzanni M, Elmagarmid AK. Data pre-processing in liquid chromatography–mass spectrometry–based proteomics. Bioinformatics 2005;21(21):4054–4059.
54. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry 2006 Jan;78(3):779–787.
55. Sequiera GL, Sareen N, Sharma V, Surendran A, Abu-ElRub E, Ravandi A, et al. High throughput screening reveals no significant changes in protein synthesis, processing, and degradation machinery during passaging of mesenchymal stem cells. Canadian Journal of Physiology and Pharmacology 2019 Jun;97(6):536–543.
56. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology 2014 Mar;32(3):223–226.
57. Perez-Riverol Y, Csordas A, Bai J, Bernal–Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Research 2018 Nov;47(D1):D442–D450.
58. Eng JK, Jahan TA, Hoopmann MR. Comet: An open–source MS/MS sequence database search tool. PROTEOMICS 2012 Dec;13(1):22–24.
59. Eng JK, Hoopmann MR, Jahan TA, Egertson JD, Noble WS, MacCoss MJ. A Deeper Look into Comet—Implementation and Features. Journal of the American Society for Mass Spectrometry 2015 Jun;26(11):1865–1874.
