Approximation of Spherical Bodies of Constant Width and Reduced Bodies

Marek Lassak

Abstract. We present a spherical version of the theorem of Blaschke that every body of constant width $w < \frac{\pi}{2}$ can be approximated by a body of constant width w whose boundary consists only of pieces of circles of radius w as well as we wish in the sense of the Hausdorff distance. This is a special case of our theorem about approximation of spherical reduced bodies.

Keywords: sphere, spherical convex body, body of constant width, reduced body, Hausdorff distance, approximation

2010 Mathematics Subject Classification: 52A55

1 Introduction

A theorem of Blaschke says that for every convex body of constant width w in the Euclidean plane E^2 and every $\varepsilon > 0$ there exists a convex body of constant width w whose boundary consists only of pieces of circles of radius w such that the Hausdorff distance between the two bodies is at most ε (see [1] and also §65 of [2]). A generalization of this fact for normed planes is given in [6], where also approximation of reduced bodies is considered. Corollary at the end of this note presents an analog of this theorem for bodies of constant width on the sphere S^2, while Theorem gives a general version for reduced convex bodies on S^2.

The method of the proof of Theorem is similar to the proofs from [1] (by Blaschke) and [6]. In order to facilitate the reader a comparison of the present proof with this from [6] for normed planes, in Section 4 we use the notation from [6]. In the present paper we need a number of lemmas and claims for the spherical situation. They are given in Sections 2 and 3.

2 Auxiliary facts from spherical geometry

Let S^2 be the unit sphere of the three-dimensional Euclidean space E^3. By a great circle we mean the intersection of S^2 with any two-dimensional subspace of E^3. By a pair of antipodes we mean any pair of points obtained as the intersection of S^2 with a one-dimensional subspace of E^3. Observe that if two different points a, b are not antipodes, then there is exactly one
great circle containing them. By the *arc of great circle*, or shortly *arc*, \(ab \) connecting them we understand the shorter part of the great circle between \(a \) and \(b \). By the *distance* \(|ab| \), of these points we mean the length of \(ab \).

The set of points of \(S^2 \) whose distance from a point \(c \in S^2 \) equals (is at most) \(r \leq \frac{\pi}{2} \) is called the *circle* (respectively, *disk*) of radius \(r \) and center \(c \). Disks of radius \(\frac{\pi}{2} \) are called *hemispheres*. If \(p \) belongs to a circle, then the set of points which are at distances at most \(\frac{\pi}{2} \) from \(p \) is called a *semicircle*. We say that \(p \) is the *center* of this semicircle.

A subset of \(S^2 \) is called *convex* if it does not contain any pair of antipodes and if together with every two points it contains the arc connecting them. For a set \(A \) contained in the interior of a hemisphere we denote by \(\text{conv}(A) \) the smallest convex set containing \(A \). By a *convex body* we mean a closed convex set with non-empty interior. Let \(p \) be a boundary point of a set \(A \) contained in the interior of a hemisphere. We say that a hemisphere \(K \) containing \(A \) *supports* it if \(A \cap \text{bd}(K) \) is non-empty. If \(p \in A \cap K \), we say that \(K \) supports \(A \) at \(p \).

Lemma 1. Let \(A \subset S^2 \) be a closed set with non-empty interior. If at every boundary point the set \(A \) is supported by a hemisphere, then \(A \) is convex.

Proof. The proof is analogous to the proof of Theorem 9 of [3]. Namely, suppose that \(A \) is not convex. Then there are points \(x_1, x_2 \in A \) and a point \(y \in x_1x_2 \) such that \(y \notin A \). There exists an interior point \(z \) of \(A \) such that \(z \notin x_1x_2 \). Hence there is \(x_f \in \text{bd}(A) \cap yz \). Every great circle through \(x_f \) separates one of the points \(x_1, x_2, z \) from at least one other of these points. So there is no supporting hemisphere of \(A \) through \(x_f \). A contradiction. \(\square \)

Recall a few notions and facts from [7]. We say that \(e \) is an *extreme point* of \(C \) provided the set \(C \setminus \{ e \} \) is convex. If hemispheres \(G \) and \(H \) are different and their centers are not antipodes, then \(L = G \cap H \) is called a *lune*. The semicircles bounding \(L \) and contained respectively in \(\text{bd}(G) \) and \(\text{bd}(H) \) are denoted by \(G/H \) and \(H/G \). The *thickness* \(\Delta(L) \) of \(L \) is defined as the distance of the centers of \(G/H \) and \(H/G \). For every hemisphere \(K \) supporting a convex body \(C \) we find hemispheres \(K^* \) supporting \(C \) such that the lunes \(K \cap K^* \) are of the minimum thickness. At least one such a \(K^* \) exists. By the *width* \(\text{width}_{K}(C) \) of \(C \) determined by \(K \) we mean the thickness of the lune \(K \cap K^* \). It changes continuously, as the position of \(K \) changes. From Part I of Theorem 1 of [4] we know that such \(K^* \) is unique if \(\text{width}_{K}(C) < \frac{\pi}{2} \).

When we go on \(\text{bd}(C) \), then always counterclockwise. Let us recall, but in a slightly different form than in [10], that if hemispheres \(X, Y, Z \) support a convex body \(C \) in this order, then we write \(X \prec Y \prec Z \). Let \(X \) and \(Z \) be hemispheres supporting \(C \) at \(p \) and let \(L = X \cap Y \cap Z \) for every hemisphere \(Y \) supporting \(C \) at \(p \). Then \(X \) is said to be the *right supporting* hemisphere at \(p \) and \(Z \) is said to be the *left supporting* hemisphere at \(p \).

By the *thickness* \(\Delta(C) \) of \(C \) we mean the minimum of \(\text{width}_{K}(C) \) over all supporting hemispheres \(K \) of \(C \).
Assume that a lune \(L \) of thickness \(\Delta C \) contains a convex body \(C \). Then by Claim 2 of [7] both the centers of the semicircles bounding \(L \) belong to \(\text{bd}(C) \). We call such a lune \(L \) a \textit{supporting lune of} \(C \). We say that the lune supports \(C \) \textit{at} the mentioned centers. The arc connecting the centers of the semicircles bounding \(L \) is called a \textit{thickness chord of} \(C \). This notion is an analog of the notion of a thickness chord of a convex body in \(E^d \) considered by many authors under this name or without any name, as for instance in [2].

If for all hemispheres \(K \) supporting \(C \) the numbers \(\text{width}_K(C) \) are equal, we say that \(C \) is \textit{of constant width}. Of course, a convex body \(C \subset S^2 \) with \(\Delta(C) < \frac{\pi}{2} \) is of constant width if and only if for every hemisphere \(K \) supporting \(L \) the lune \(K \cap K^* \) has thickness \(\Delta(C) \).

Lemma 2. Consider a non-degenerate spherical triangle \(abd \subset S^2 \) and a point \(e \in ab \) such that \(de \) is orthogonal to \(ab \). The distance between \(d \) and \(ab \) is at most

\[
\arcsin \frac{|ab|}{\tan \frac{1}{2} |adb|}.
\]

Proof. Let \(e' \) be the center of \(ab \) and \(d' \) be such that \(|d'e'| = |de| \) with \(d'e' \) orthogonal to \(ab \). Clearly, \(\angle e'd'a = \frac{1}{2} \angle adb \) and \(|ae'| = \frac{1}{2} |ab| \). Since \(ae'd' \) is a right triangle, \(\sin |d'e'| \cdot \tan \frac{1}{2} |adb| = \tan \frac{1}{2} |ab| \) and our thesis for \(d' \) instead of \(d \) is true. By \(|d'e'| = |de| \) we get the thesis for our \(d \). \(\square \)

Here is a spherical version of the classic Blaschke selection theorem.

Claim 1. From every sequence of convex bodies on \(S^d \) of thickness at most a fixed constant smaller than \(\pi \) we may select a subsequence which tends to a spherical convex body.

Proof. First we select a subsequence which is contained in a certain spherical disk of a radius below \(\pi \). Then from this subsequence we select the final subsequence (see [7] p. 558 and [5]). \(\square \)

3 Reduced bodies on sphere

After [7] we say that a spherical convex body \(R \) is \textit{reduced} if \(\Delta(Z) < \Delta(R) \) for every convex body \(Z \subset R \) different from \(R \). For basic properties of reduced bodies on \(S^2 \) see [10]. The class of spherical reduced bodies is larger than the class of bodies of constant width. Earlier many papers considered reduced bodies in the Euclidean and normed \(d \)-dimensional spaces; see the survey articles [8] and [9].

Later tacitly assume that all considered reduced bodies \(R \subset S^2 \) are of thickness below \(\frac{\pi}{2} \).

Theorem 3.1 of [10] presents the boundary structure of a reduced body \(R \subset S^2 \). Namely, assume that \(M_1, M_2 \) are supporting hemispheres of \(R \) with \(\text{width}_{M_1}(R) = \Delta(R) = \text{width}_{M_2}(R) \) such that \(\text{width}_{M_1}(R) > \Delta(R) \) for every \(M \) fulfilling \(\prec M_1MM_2 \). Consider the lunes \(L_1 = M_1 \cap M_1^* \) and \(L_2 = M_2 \cap M_2^* \). Then the arcs \(a_1a_2 \) and \(b_1b_2 \) are in \(\text{bd}(R) \), where \(a_i \) is the center of \(M_i/M_i^* \) and \(b_i \) is the center of \(M_i^*/M_i \) for \(i = 1, 2 \).
Denote by c the intersection point of the arcs a_1a_2 and b_1b_2. The union of the triangles a_1a_2c and b_1b_2c is called a butterfly, while a_1a_2 and b_1b_2 its arms.

Consider any maximum piece \widehat{gh} of the boundary of R which does not contain any arc Let K be any hemisphere supporting R at a point of \widehat{gh}. But at g we agree only for the right, and at h we agree only for the left. By Part I of Theorem 1 of [7] for every K there exists exactly one hemisphere K^* supporting R such that the lune $K \cap K^*$ has thickness $\text{width}_K(R)$. From this theorem we also conclude that K^* touches R at a unique point. In particular, for the right hemisphere supporting R at g denote this unique point by g', and for the left hemisphere supporting R at h by h'.

Claim 2. For any hemisphere K supporting R at a point of \widehat{gh} we have $\text{width}_K(R) = \Delta(R)$.

Proof. Clearly, $\text{width}_K(R)$ cannot be smaller than $\Delta(R)$, because then we get a contradiction with the definition of the thickness of R.

Suppose that $\text{width}_K(R) > \Delta(R)$. Then by continuity arguments (see Theorem 2 of [7]) we obtain that if K supports R at a point different from g and h, then there are supporting hemispheres K_1 and K_2 with $\angle K_1 KK_2$ such that for every supporting hemisphere H fulfilling $\angle K_1 H K_2$ we have $\Delta(H) > \Delta(R)$. By the just recalled Theorem 3.1 of [10], the piece \widehat{gh} of the boundary of R contains an arc. A contradiction with the assumption on \widehat{gh} from the paragraph preceding our claim. If K supports R at g or h, then similarly we show that \widehat{gh} contains an arc whose one end-point is g or h, which again gives a contradiction with the choice of \widehat{gh}.

By the two preceding paragraphs we get $\text{width}_K(R) = \Delta(R)$.

From this claim and Lemma 2.2 of [10] we see that all the points at which all our hemispheres K^* touch R form a curve $g'h'$ being a piece of $\text{bd}(R)$. We call it the curve opposite to the curve \widehat{gh}. Vice-versa, from this lemma we obtain that $g'h'$ determines \widehat{gh}. So we say that \widehat{gh} and $g'h'$ is a pair of opposite curves of constant width $\Delta(R)$. Let us summarize the above consideration as the following claim analogous to Corollary 11 of [4] on the situation in a normed plane.

Claim 3. The boundary of a reduced body $R \subset S^2$ consists of countably many pairs of arms of butterflies and of countably many pairs of opposite pairs of curves of constant width $\Delta(R)$.

Clearly any particular pair of opposite pieces of curves of constant width $\Delta(R)$ consists of end-points of thickness chords; they are the centers of the semicircles bounding the lunes of thickness $\Delta(R)$ supporting R at the points of these pieces of curves of constant width.

In particular, when R from Claim 3 is a body of constant width, then its boundary is the union of one pair of curves of constant width $\Delta(R)$. We may present $\text{bd}(R)$ on infinitely many ways as such an union. Each time the curves end at the end-points of a thickness chord of R.

4 Approximation of reduced bodies

Theorem. Let \(R \subset S^2 \) be a reduced body of thickness below \(\frac{\pi}{2} \). For any \(\varepsilon > 0 \) there exists a reduced body \(R_\varepsilon \subset S^2 \) with \(\Delta(R_\varepsilon) = \Delta(R) \) whose boundary consists only of arms of butterflies and arcs of circles of radius \(\Delta(R) \) such that the Hausdorff distance between \(R_\varepsilon \) and \(R \) is at most \(\varepsilon \).

Proof. We omit the trivial case when the boundary of \(R \) consists only of arms of butterflies.

Take any positive \(\varepsilon < \frac{1}{2}\pi \). Put \(\rho_\varepsilon = 2 \cdot \arctan(\sin \varepsilon) \).

Consider any pair \(F, G \) of opposite curves of constant width \(\Delta(R) \) in the boundary of \(R \). Exceptionally, when \(R \) is a body of constant width, we divide \(\text{bd}(R) \) into a pair of curves \(F \) and \(G \) by an arbitrary thickness chord. Denote the endpoints of \(F \) by \(f' \) and \(f'' \), and the endpoints of \(G \) by \(g' \) and \(g'' \), in both cases according to the positive orientation.

Part A. The aim of this part is to construct the set \(R_\varepsilon \).

From Claim 3 we know that \(\text{bd}(R) \) contains countably many pairs of opposite pieces of curves of constant width \(\Delta(R) \). For each such a pair \(F, G \) we provide a number of different thickness chords \(f_1g_1, \ldots, f_ng_n \) of \(R \) such that \(f_1, \ldots, f_n \in F \) (with \(f_1 = f' \) and \(f_n = f'' \)), and \(g_1, \ldots, g_n \in G \) (with \(g_1 = g' \) and \(g_n = g'' \)), taking care that \(|f_i f_{i+1}| \) and \(|g_i g_{i+1}| \) be below \(\varepsilon \) for \(i = 1, \ldots, n - 1 \), and that the positively oriented angle between every two successive chords is below \(\frac{\pi}{2} \). Clearly, some of points \(f_1, \ldots, f_n \) (some of \(g_1, \ldots, g_n \)) may coincide. Let \(c_i \in \Gamma_i \) be a point of intersection of circles of

\[
\begin{align*}
\text{Figure: Illustration to the proof of Theorem}
\end{align*}
\]
radius \(\Delta(R) \) with centers \(f_i \) and \(f_{i+1} \) (so \(c_i \) is in equal distances from \(f_i \) and \(f_{i+1} \)). Such \(c_i \) exists since, thanks to Claim 2, we have \(|f_ig_{i+1}| \leq \Delta(R) \) and \(|f_{i+1}g_i| \leq \Delta(R) \). Moreover, by \(c_0 \) we mean \(g' \), and by \(c_n \) we mean \(g'' \).

For every \(i \in \{1, \ldots, n - 1 \} \) take the arc \(F_i \) of the circle \(F_i^c \) of radius \(\Delta(R) \) with center \(c_i \) and endpoints \(f_i \) and \(f_{i+1} \) which is in \(\Phi_i \). Moreover, for every \(i \in \{1, \ldots, n \} \) take the arc \(G_i \) of the circle \(G_i^c \) of radius \(\Delta(R) \) with center \(f_i \) which begins at \(c_{i-1} \) and ends at \(c_i \). Created arcs are marked by broken lines in Figure. Clearly, \(G_1 \subset \Gamma_1 \), \(G_i \subset \Gamma_{i-1} \cup \Gamma_i \) for \(i = 2, \ldots, n - 1 \), and \(G_n \subset \Gamma_{n-1} \). We have constructed the pair of curves \(F^* = F_1 \cup \ldots \cup F_{n-1} \) and \(G^* = G_1 \cup \ldots \cup G_n \).

Denote by \(U_\varepsilon \) the closure of the union of all arms of the butterflies of \(R \) and of all pairs of curves of the form \(F^* \) and \(G^* \). We see that \(U_\varepsilon \) is obtained from \(\text{bd}(R) \) by exchanging all pairs of opposite curves \(F \) and \(G \) by the constructed pairs of curves \(F^* \) and \(G^* \).

We define \(R_\varepsilon \) as the set bounded by \(U_\varepsilon \).

Part B. We define a sequence of sets \(R^j \subset S^2 \) and show that they are convex bodies.

We define \(R_0, R_1, \ldots \) by induction.

Put \(R^0 = R \). Clearly it is a convex body.

Assume that \(R^{j-1} \) is a convex body, where \(j \geq 1 \). We get the boundary of \(R^j \) by exchanging a pair of opposite curves \(F, G \), if any remains, from \(\text{bd}(R^{j-1}) \) into a pair \(F^*, G^* \) as in Part A.

At every boundary point \(p \), the set \(R^j \) is supported by a hemisphere. If \(p \in F^* \cup G^* \) this follows from the construction of \(F^* \) and \(G^* \). If \(p \in \text{bd}(R^j) \) does not belong to any curves \(F^* \) or \(G^* \), then in the part of the supporting hemisphere take this supporting \(R^{j-1} \). From Lemma 1 we conclude that \(R^j \) is convex. Clearly, \(R^j \) is a convex body.

Part C. We show that \(R_\varepsilon \) is a convex body and \(\Delta(R_\varepsilon) = \Delta(R) \).

If after a finite number of steps in Part B we get \(R_\varepsilon \), we see that it is a convex body.

In the opposite case, \(R_\varepsilon = \lim_{j \to \infty} R^j \). By Claim 1 we see that \(R_\varepsilon \) is also a convex body.

From the construction of \(R^j \) we see that for every supporting hemisphere \(K \) of \(R^j \) at every point of \(F^* \cup G^* \) we have \(\text{width}_K = \Delta(R) \). The remaining part of \(\text{bd}(R^j) \) does not differ from \(\text{bd}(R^{j-1}) \). So by induction we get \(\Delta(R^j) = \Delta(R) \). Thus if after a finite number of steps we obtain \(R_\varepsilon \), it has thickness \(\Delta(R) \). By Lemma 4 of [7], if \(R_\varepsilon = \lim_{j \to \infty} R^j \), then the same is true.

Part D. Let us prove that \(R_\varepsilon \) is a reduced body.

We should show that for any convex body \(Z \subset R_\varepsilon \) different from \(R_\varepsilon \) the inequality \(\Delta(Z) < \Delta(R_\varepsilon) \) holds true. The body \(Z \) does not contain an extreme point \(e \) of \(R_\varepsilon \) as it follows from the spherical analog of the Krein-Millman theorem formulated on p. 565 of [7]. Consequently, \(Z \) is disjoint with an open disk \(D \) centered at \(e \). Now exactly as in Part 4 of [6] we show that \(\Delta(Z) < \Delta(R_\varepsilon) \), so that \(R_\varepsilon \) is a reduced body.

Part E. We show that every \(F^* \) and every \(G^* \) are in the union of some triangles.
Take a pair of curves F^* and G^* constructed in Part A. The bounding semicircle of the first lune supporting R_ε at f_i is denoted by K_i, and that at g_i by L_i (again see Figure).

For $i \in \{1, \ldots, n-1\}$, by k_i denote the point of intersection of K_i with K_{i+1} (if they are subsets of a great circle, take k_i as the center of f_if_{i+1}). By l_i denote the point of intersection of L_i with L_{i+1} (if they are subsets of a great circle, take l_i as the center of g_ig_{i+1}).

For every $c \in G_i$ take the lune supporting R_ε such that cf_i is the thickness chord and denote by $T(c)$ the bounding semicircle of this lune through f_i. In particular, $T(g_i) = K_i$. When we move $c \in G_i$ counterclockwise from g_i to c_i, the lune and thus also $T(c)$ “rotate” counterclockwise. So since the distance between c_i and any point of $T(c_i)$ is at least $\Delta(R)$ we see that the distance from c_i to every point of the arc f_ik_i is at least $\Delta(R)$. Analogously, the distance from c_i to any point of $f_{i+1}k_i$ is at least $\Delta(R)$. So since every point of F_i is at the distance $\Delta(R)$ from c_i, we get $F_i \subset f_ik_if_{i+1}$. Thus F^* is contained in the union of triangles $f_ik_if_{i+1}$, where $i = 1, \ldots, n$. Similarly, G^* is in the union of triangles $g_ig_ig_{i+1}$, where $i = 1, \ldots, n$.

Part F. We show that the Hausdorff distance between R and R_ε is at most ε.

Denote by P the closure of the convex hull of all points f_i and g_i and of endpoints of all arms of butterflies of R. Denote by Q the union of P and all triangles $f_ik_if_{i+1}$ and $g_ig_ig_{i+1}$.

Part E implies inclusions $P \subset R \subset Q$ and $P \subset R_\varepsilon \subset Q$. So in order to estimate the Hausdorff distance between R and R_ε by ε it is sufficient to estimate the Hausdorff distance between P and Q by ε. Since $P \subset Q$, the Hausdorff distance between them is $\sup_{q \in Q} \inf_{p \in P} |pq|$. Hence it is sufficient to show that all (i.e., for all pairs F, G and all i) distances between k_i and $f_ik_if_{i+1}$, and also between l_i and $g_ig_ig_{i+1}$, are at most ε.

Since the sum of angles of any quadrangle $a_1k_ia_if_{i+1}$ is over 2π, from the assumption in Part A on the angle between two successive chords below 2π, we get $\angle f_ia_1f_{i+1} < \frac{\pi}{2}$. So $\angle f_ik_if_{i+1} > 2\pi - 3\cdot \frac{\pi}{2} = \frac{\pi}{2}$. Hence $\frac{1}{2} \angle f_ik_if_{i+1} > 1$. By Lemma 2 the distance from k_i to $f_ik_if_{i+1}$ is at most $\arcsin \frac{1}{2} |f_ik_if_{i+1}| < \arcsin \frac{1}{2} |f_ik_if_{i+1}|$. By $|f_i f_{i+1}| \leq \rho_\varepsilon$ (see Part A) and $\rho_\varepsilon = 2\arctan(\sin \varepsilon)$ we get that it is at most $\arcsin \frac{1}{2} \rho_\varepsilon = \arcsin \frac{2\arctan(\sin \varepsilon)}{2} = \varepsilon$. Analogously, the distance between l_i and $g_ig_ig_{i+1}$ is at most ε. We see that the Hausdorff distance between P and Q, and thus between R and R_ε, is at most ε.

If R is a body of constant width, from Parts A and B of this proof we see that R_ε (so R^1 in this case) is also a body of constant width. So we get the following corollary.

Corollary. For every body $W \subset S^2$ of constant width and for arbitrary $\varepsilon > 0$ there exists a body $W_\varepsilon \subset S^2$ of constant width $\Delta(W_\varepsilon) = \Delta(W)$ whose boundary consists only of arcs of circles of radius $\Delta(W)$, such that the Hausdorff distance between W and W_ε is at most ε.

Applications for Barbier’s theorem in Part 4 of [5] do not hold true here for the sphere.

Let us correct misprints in this Part 4 on p. 873: three times 2π should be changed into π.

References:

[5] Barbier’s theorem.
References

[1] W. Blaschke: Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann, 76 (1915) 504–513.

[2] T. Bonnesen, W. Fenchel: Theorie der konvexen Körper, Springer, Berlin et al., 1934, (Engl. transl. Theory of Convex Bodies, BCS Associated, Moscow, Idaho USA, 1987).

[3] H. G. Eggleston: Convexity, Cambridge University Press, 1958.

[4] E. Fabińska, M. Lassak: Reduced bodies in normed spaces, Isr. J. Math. 161 (2007) 75–88.

[5] N. N. Hai, P. T. Ann: A generalization of Blaschke’s converegence theorem in metric space, J. Convex Anal. 20 1013–1024.

[6] M. Lassak: Approximation of bodies of constant width and reduced bodies in a normed plane, J. Convex Anal. 19 (2012) 865–874.

[7] M. Lassak: Width of spherical convex bodies, Aeq. Math. 89 (2015), 555–567.

[8] M. Lassak, H. Martini: Reduced convex bodies in Euclidean space - a survey, Expo. Math. 29 (2011) 204–21.

[9] M. Lassak, H. Martini: Reduced convex bodies in finite-dimensional normed spaces – a survey, Results Math. 66 (2014) 405–426.

[10] M. Lassak, M. Musielak: Reduced spherical convex bodies, Bull. Pol. Acad. Sci., Math. 66 (2018) 87–97.

Marek Lassak
University of Science and Technology
al. Kaliskiego 7, Bydgoszcz 85-796, Poland
e-mail: lassak@utp.edu.pl