Pioglitazone: A review of analytical methods

N. Satheeshkumara,\ast, S. Shantikumara, R. Srinivasb

aDepartment of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER-H), Balanagar, Hyderabad 500037, India
bNational Center for Mass Spectrometry, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India

Received 6 November 2013; revised 30 January 2014; accepted 28 February 2014
Available online 13 March 2014

KEYWORDS
Pioglitazone; Analytical methods; Diabetes mellitus type 2

Abstract Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). It was the tenth-best-selling drug in the U.S. in 2008. This article examines published analytical methods reported so far in the literature for the determination of pioglitazone in biological samples and pharmaceutical formulations. They include various techniques like electrochemical methods, spectrophotometry, capillary electrophoresis, high-performance liquid chromatography, liquid chromatography–mass spectrometry and high-performance thin layer chromatography.

© 2014 Xi’an Jiaotong University. Production and hosting by Elsevier B.V.

1. Introduction

The active moiety of pioglitazone hydrochloride (PIO) ([5-[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione) is a thiazolidinedione (Fig. 1), a potent and highly selective agonist for the nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR-\gamma). PPARs are found in tissues like adipose tissue, skeletal muscle and liver, which are critical to insulin action. Activation of PPAR-\gamma modulates the transcription of a number of insulin-responsive genes involved in the control of glucose and lipid metabolism [1,2]. It is not chemically or functionally related to the alpha-glucosidase inhibitors, the biguanides, or the sulfonylureas. It addresses main pathophysiological defect i.e., insulin resistance, so it is used alone or in combination with insulin, metformin, or a sulfonylureas (glimepiride and glibenclamide) as an agent to treat diabetes. PIO reduces peripheral and hepatic resistance to insulin, resulting in increased insulin-dependent glucose disposal and decreased hepatic glucose output [3,4]. It has one chiral center and two enantiomers are available but no differences are found in their activities. Hence racemic mixture is pharmacologically used. Physically the hydrochloride salt of PIO is a white crystalline powder with no odor and has a molecular formula of C\textsubscript{19}H\textsubscript{20}N\textsubscript{2}O\textsubscript{3}S/HCl. The molecular weight is 392.90 Da. It is administered orally; insoluble in water and ether; slightly soluble in acetone, acetonitrile and alcohol; and soluble in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) [5,6]. In the present review we have compiled the published analytical methods reported so far in the literature for determination of PIO in biological samples and pharmaceutical formulations. Techniques like potentiometry, spectrophotometry, capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), liquid chromatography–mass spectrometry (LC–MS) and high-performance thin layer chromatography (HPTLC) have been used for analysis, from which HPLC methods are used most extensively. Overview of these methods for determination of PIO is shown in Fig. 2.
2. Sample preparation

2.1. Solubility

According to Biopharmaceutics Classification System (BCS), classification of PIO falls under BCS class-II [7], meaning it has low solubility and high permeability. The solubility of the drug was tested in solvents routinely used for analytical methodology [8]. The solubility chart is shown in Fig. 3. To enhance aqueous solubility of the drug, various strategies like co-solvent solubilization [9], micellar solubilization [10], and cyclodextrin inclusion complexes [11] have been proposed.

2.2. Sample preparation strategies

Sample preparation is an integral part of analytical methodology, and it was reported that about approximately 30% error generated in sample analysis was due to sample preparation [12]. Fig. 4 shows various diluents used for the analysis of PIO. In major cases methanol was used as a diluent. The sample preparation techniques for the extraction of PIO from biological matrices (plasma, serum and urine) include protein precipitation with acetonitrile, liquid–liquid extraction using diethyl ether, dichloromethane, ethyl acetate, methyl t-butyl ether and n-butyl ether; hollow fiber liquid phase micro-extraction using di n-hexyl ether; and solid phase extraction.

3. Analytical methods

3.1. Electrochemical methods

Mostafa et al. [13] constructed a new composite and classical potentiometric sensor for the determination of PIO, in which the authors used polyvinyl chloride (PVC) membrane sensors. These membrane sensors incorporate ion association complexes of PIO cation and sodium tetraphenylborate (NaTPB) or phosphomolybdic acid (PMA) or phosphotungstic acid (PTA) as electroactive materials. Direct determination showed an average recovery of 98.5%, 99.0% and 98.4% correspondingly. These sensors were applied for direct determination of PIO in some pharmaceutical preparations and have been used as indicator electrodes for potentiometric titration. In another study El-Ghobashy et al. [14] applied the above proposed principle i.e. membrane selective electrodes for the determination of PIO. The proposed method showed a linear response over the concentration range $3.16 \times 10^{-5} - 1 \times 10^{-2}$ M for PIO. The authors have applied this method for the determination of PIO in tablets and plasma. Potentiometric sensor for quantitative analysis of PIO was developed by Faridbod et al. [15] who selected pioglitazone–tetrphenyl borate as a suitable ion-pair reagent in making potentiometric PVC membrane sensor for PIO. The proposed method showed a wide linear range of $10^{-5} - 10^{-2}$ M and detection limit of 6.0×10^{-6} M. Badawy et al. [16] quantified rosiglitazone, PIO, glimepiride and glyburide conveniently and economically using cyclic voltammetry and differential pulse voltammetry. The authors used carbon paste and glassy carbon electrodes as sensors for these drugs in Briton–Robinson as buffer solution. The proposed technique was found to be orthogonal to the standard HPLC method. Ion selective electrodes were prepared by construction of 10% standard drug ionpair with reineckate or tungstophosphate imbedded as electro-active material. Al-Arfaj et al. [17] used square-wave adsorptive cathodic stripping voltammetry to determine PIO in Britton–Robinson buffer of pH 5. The adsorptive cathodic peak was observed at -1.5 V vs. Ag/AgCl. The detection limit was 8.08×10^{-8} M (3.17 ng/mL) using 300 s pre-concentration time. This method was applied to assay in pharmaceutical formulations and biological fluids. The samples were extracted by liquid–liquid extraction procedure using dichloromethane. The pharmacokinetic parameters of PIO in human plasma were estimated as $C_{\text{max}} = 785.8$ ng/mL, $t_{\text{max}} = 1.5$ h, $K_e = 0.125$ h$^{-1}$ and $t_{1/2} = 8$ h.
3.2. Spectrophotometry

In the literature about 22 methods were reported for the estimation of PIO using spectrophotometry \[8,18–34\], of which 8 methods are for determining PIO alone, while the others are for quantifying PIO in combination with other drug substances. Table 1 shows the summary of the reported spectrophotometric methods indicating the basic principle, λ_{max}, solvent and limit of detection (LOD).

Table 1 Representative spectrophotometric methods for the analysis of PIO.

Compounds	Method	λ_{max}	Solvent/procedure	LOD (\(\mu\)g/mL)	Ref.
PIO, SIT	Vierodt's method	267, 269	0.1 M HCl	0.009	[8]
PIO, MET, GLP	Three wavelength method	236.5, 226.4, 227.3	Acetonitrile:methanol:water (5:4:1)	0.18	[18]
PIO	Multi-wavelength method	236.5, 226.4, 227.3, 254	–	0.18	
PIO	Extractive spectrophotometric method	419	0.1 M HCl drug+BCG in phthalate buffer pH 2.4 and extracted into chloroform	–	[19]
PIO, MET, GLM	Second order derivative	265.4	Methanol	0.06	[20]
PIO, MET, GLB	Absorption correction method	268	Ethanol (95%)	0.08	[21]
PIO, GLM	First order derivative	250	Methanol	4	[22]
PIO, ATS	Vierodt's method	210, 225	Ethanol	0.7	[23]
PIO, GLP	Vierodt's method	216, 225	0.1 M NaOH	0.04	[24]
PIO	–	216, 228	–	0.05	
PIO	–	269	0.1 M HCl	0.66	[25]
PIO	–	224.4	Ethanol	–	[26]
PIO	–	269	0.1 M HCl	0.03	[27]
PIO, MET, GLM	Vierodt's method	227, 233, 265.5	0.1 M NaOH:Water (50:50)	0.007	[28]
PIO	Met. A	267	Ethanol:methanol:water	–	[29]
PIO	Met. B	297	Ion pair complex with methyl orange and bromo cresol green (0.05%)	–	
PIO, MET	Vierodt's method	233, 265.5	0.1 M NaOH	0.007	[30]
PIO	–	238	Phosphate buffer pH 7.4	0.0002	[31]
PIO, GLM	Multi-wavelength spectroscopy	238, 280	0.1 M NaOH	–	[32]
PIO, MET	Difference spectrometric method	225.8	Ethanol+0.1 M NaOH	–	[33]
PIO, MET	Vierodt's method	225, 237	Methanol	0.9	[34]
PIO, MET	Absorption correction method	267	–	3	

3.3. Capillary electrophoresis (CE)

CE methods have excellent performance for separation of pharmaceuticals, which makes it the first-choice technique for separation of stereoisomers. For PIO analysis few authors have used CE as a separation and determination technique. HPLC and micellar electrokinetic chromatographic (MEKC) methods were developed by Radhakrishna et al. [35] for the determination of PIO and its unsaturated impurity was separated in less than 7 min using an uncoated fused-silica capillary (43 cm × 50 \(\mu\)m i.d.) with extended light path for better sensitivity (25 kV at 30 °C) and a background electrolyte consisting of 20% acetonitrile (v/v) in 0.02 M sodium borate buffer pH 9.3 containing 0.05 M sodium dodecyl sulfate. LOD and limit of quantification (LOQ) were found to be 0.29 \(\mu\)g/mL and 0.74 \(\mu\)g/mL, respectively.

Calixto et al. [36] proposed an alternative electrophoretic method for PIO and its main metabolites determination in rat liver microsomal fraction. It was carried out on an uncoated fused-silica capillary (48 cm × 50 \(\mu\)m i.d.) using 50 M sodium phosphate buffer solution (pH 2.5). Using hydrodynamic injection (0.05 bar, 15 s), samples were introduced into the capillary and detected at 190 nm. The method demonstrated LOQ of 200 ng/mL.

Fig. 4 Various diluents used for the analysis of pioglitazone.
3.4. Chromatography

3.4.1. HPLC

3.4.1.1. Biological samples. Various methods for the determination of PIO in biological samples like plasma, serum and urine [37–43] are listed in Table 2.

3.4.1.2. Pharmaceutical samples. Analytical methods for the HPLC determination of PIO in pharmaceutical dosages forms using HPLC [35,44–67] are shown in Table 3, while Fig. 5 shows the best HPLC methods for the analysis of PIO.

3.5. LC–MS

Ramulu et al. [68] have discussed the identification, isolation and characterization of potential degradation products using LC–MS, 1H NMR, 13C NMR, MS and IR. Oxidative degradation impurity and base degradation impurity were characterized as pioglitazone N-oxide, 3-(4-(2-(5-ethylpyridine-2-yl)ethoxy)phenyl)-2-mercapto-propanoic acid and 2-(1-carboxy-2-{[4-[2-(5-ethylpyridine-2yl)ethoxy]phenyl]-ethylsulfanyl)-3-{4-[2-(5-ethylpyridine-2yl)ethoxy]phenyl} propanoic acid respectively. The method consists of water:trifluoroacetic acid in the ratio of 100:0.05 (v/v) as mobile phase–A and acetonitrile:trifluoroacetic acid in the ratio of 100:0.05 (v/v) as mobile phase–B using gradient/elution (T/%B: 0/10, 12/62, 16/65,17/10) at a flow rate of 1.0 mL/min and the eluents are monitored at 225 nm. The separation was carried out on a Zorbax Bonus RP18 column (150 mm × 4.6 mm, 3.5 μm). Zero air was used as nebulizer gas and high pure nitrogen was used as curtain gas and collision assisted dissociation gas. The MS parameters include Nebulizer 8.00 psi, curtain gas 8.00 psi, ion spray voltage 4500 V, temperature 0 °C, declustering potential 70 V, focusing potential 180 V, and entrance potential 10 V.

A simple, high throughput, direct-injection (LC/MS/MS) method was successfully applied to human pharmacokinetic study. The lower limit of quantitation of the method was 9 ng/mL. The authors have successfully applied the proposed method to analyze PIO concentrations in human serum samples for a bioequivalence study [69].

LC/MS/MS method was developed by Lin et al. [70] for simultaneous determination of PIO and its two metabolites in human plasma. Samples were extracted by single step liquid–liquid extraction procedure using 1:1 (v/v) of methyl tert-butyl ether:hexane. The extraction tubes were shaken at high speed for 20 min. Elution of three components was done isocratically on a C18 column, ionized using a positive ion atmospheric pressure electrospray ionization source, and analyzed using multiple reactions monitoring mode.

Another LC/MS/MS study was reported by Kumari Karra et al. [71] for simultaneous determination of PIO and candesartan in human plasma in which Irbesartan was used as an internal standard. Solid phase extraction was used for extracting the analytes from plasma. The samples were separated on a C18 column using a mixture of acetonitrile and 0.1% formic acid (80:20, v/v) with a flow rate of 0.8 mL/min. The proposed method was linear in the range of 15–3000 ng/mL for PIO and was successfully applied to human pharmacokinetic study.

3.6. HPTLC

Dhirender Singh et al. [72] developed an HPTLC method for PIO. They carried out separation on aluminum plates precoated with silica gel using the mixture of toluene:ethyl acetate:formic acid (10:3:1, v/v) as the mobile phase. The detection of spot was carried...
Pioglitazone: A review of analytical methods

Table 3 Reported analytical HPLC methods for determination of PIO either alone or in combination with other drugs like metformin (MET), glimepiride (GLM), atorvastatin (ATS), glibenclamide (GLB), and gliclazide (GLC) in pharmaceutical dosage forms.

Study aim	Mobile phase	Column	Detection λ_{max} (nm)	Flow rate (mL/min)	LOD (µg/mL)	Ref.
In bulk and pharmaceutical formulations by HPLC and MEKC methods	0.01 M potassium dihydrogen phosphate buffer (pH 6.0):ACN (50:50, v/v)	Symmetry C18	UV	225 1	--	[35]
SIAM by RP-HPLC	Phosphate buffer (pH 4.0), ACN and methanol (55:30:15, v/v)	Pontosil C8	254 nm	245 1.5	--	[44]
Study of stressed degradation behavior in bulk and pharmaceutical formulation	0.01 M potassium dihydrogen phosphate buffer (pH 3.5):methanol (55:45, v/v)	Phenomenex Luna C18	254 nm	241 1.5	1.69	[45]
Assay of tablets	Ammonium formate buffer (pH 3):ACN (75:25, v/v)	Nova-Pak C18	UV	225 1	--	[46]
Purity test and assay of tablets	Ammonium formate buffer (pH 4.1):ACN (44:55, v/v)	Symmetry C18	UV	266 1	0.042	[47]
SIAM	ACN (0.15, v/v) triethylamine (pH 4.6) (40:60, v/v)	Hypersil C-8	UV	220 1.5	0.6	[48]
Simultaneous determination with GLM	0.01 M trimammonium citrate (pH 6.95):ACN: methanol (45:35:20, v/v)	Cosmosil C18	UV	228 1	--	[49]
Simultaneous with MET	ACN:potassium dihydrogen phosphate buffer (pH 3) (50:50, v/v)	Hypersil BDS C18	UV	238 1	--	[50]
SIAM for determination of impurities	ACN:0.05 M potassium dihydrogen orthophosphate buffer of pH 3.0 (50:50, v/v)	Gemini C18	UV	225 1	0.005	[51]
Simultaneous determination with GLM	ACN:0.02 M ammonium acetate (pH 4.5) (60:40, v/v)	Inertsil ODS-3 C-18	UV	230 1	0.2	[52]
Simultaneous determination with MET and GLM in tablet formulation	Methanol:phosphate buffer (pH 4.3) (75:25, v/v)	Inertsil ODS-3 C-18	UV	258 1	--	[53]
Simultaneous estimation with saxaglitin in tablets	ACN:phosphate buffer (pH 7) (60:40, v/v)	Inertsil C18 column	UV	260 0.8	0.010	[54]
Simultaneous determination with GLM	ACN:0.01 M potassium dihydrogen orthophosphate (pH 6.2) (50:50, v/v)	Eurosphere-100 C18	UV	225 1.4	0.00049	[55]
Simultaneous estimation with GLM and rosiglitazone	Dil. orthorphosphoric acid (pH 3.0):ACN (80:20, v/v)	Nucleodur C-18	UV	215 0.8	0.19	[56]
Estimation along with MET in tablets	ACN:water:acetic acid (75:25:0:3, v/v/v), pH 5.5	Hypersil BDS C18	UV	230 0.5	0.009	[57]
Simultaneous quantification with GLM and MET	Phosphate buffer:ACN:tetrahydrofuran (40:50:10, v/v/v)	Intersil ODS 3V	UV	228 1.7	--	[58]
Simultaneous estimation along with GLM	Phosphate buffer:ACN (40:60, v/v)	Intersil ODS	UV	225 1.5	0.12	[59]
SIAM along with GLM	Solution-A is 0.02 M potassium dihydrogen phosphate, pH 3.2. Solution-B is ACN (85:15, v/v)	Zorbax Cxaryo	UV	230 0.8	--	[60]
Simultaneous determination with metformin and GLM in multicomponent formulation	Methanol:0.02 M potassium dihydrogen phosphate (85:15, v/v)	C18 column	UV	227 1.2	0.1	[61]
Simultaneous estimation with GLM	Methanol:water (72:28, v/v)	Agilent TC – C18	UV	230 1	0.760	[62]
Simultaneous estimation with telmisartan	ACN:ammonium dihydrogen phosphate (pH 4.5; 0.02 M) (65:35, v/v)	Phenomenex C8	UV	210 1	0.82	[63]
Determination of along with metformin and GLM	ACN:phosphate buffer (pH 3) (65:35, v/v)	Phenomenex RP-18	UV	245 0.5	0.061	[64]
Miscellar liquid chromatographic analytical method for determination of atorvastatin calcium	Tween-20: n-butanol: phosphate buffer, (pH 4.2) (50:25:25,v/v/v)	Phenomenex RP-18	UV	322 1.5	--	[65]
SIAM for determination of impurities in PIO	Sol-A: phosphate buffer pH 3.1 and Sol-B: acetaminil 0.01 M buffer:methanol (40:60, v/v)	Inertsil ODS-3V	UV	225 1.5	0.033	[66]
HPLC method		Symmetry – extend – C18	UV	240 1.2	--	[67]

out at 254 nm. The calibration curve was found to be linear between 100 and 3000 ng/mL. Gumienickz et al. [73] reported a thin-layer chromatographic behavior of three antidiabetic drugs PIO, rosiglitazone and repaglindine and then they developed stability-indicating HPTLC method for determination of PIO in tablets. The mobile phase consisted of 1,4-dioxane and phosphate buffer of pH 4.4 (5.5). The detection was carried out by densitometry at 266 nm. The proposed method was linear in the range of 0.4–2.4 µg/10 µL. Later Sharma et al. [74] gave an HPTLC method for the determination of PIO and atorvastatin using aluminum plates precoated with silica gel and mobile phase consisting of chloroform:methanol:toluene (6:3:4, v/v). The detection was carried out at 259 nm. The calibration curve was found to be linear between 100 and 400 ng/spot for both drugs. In another study, Anand et al. [75] proposed an HPTLC method for determination of PIO along with telmesartan using the mobile phase consisting of chloroform:methanol:dioxane and phosphate buffer of pH 6.2 (50:40:10, v/v/v).
phase consisting of toluene:ethyl acetate:methanol (7:2:1, v/v/v). LOD and LOQ were 140.0, 186.7 and 424.4, 1867.5 ng/spot for telmesartan and PIO respectively. Kale et al. [76] proposed a simple HPTLC method for simultaneous estimation of PIO, MET, and GLP using mobile phase consisting of acetonitrile, methanol, propyl alcohol, and ammonium acetate 7:2:1:1 (v/v). Densitometric quantification was performed at 240 nm. The R_f value of PIO was found to be 0.83 and the method was linear in the range of 0.3–1.2 μg/band. The comparative sensitivities of various techniques are shown in Fig. 6.

4. Challenges

As discussed earlier, PIO belongs to BCS class-II and so it is insoluble in water. Selection of the diluents would be a problem in the analysis of PIO as there are concerns with the formation of insoluble precipitate with various compositions of aqueous:organic phases. Furthermore, with more amount of aqueous phase or methanol in the mobile phase, the run times are prolonged with greater tailing factor in HPLC. It was observed that the drug gets slowly degraded in strongly acidic conditions over a period of time. For spectrometric determination, complexity with multicomponent dosage forms includes the presence of multiple entities and excipients, which may cause considerable challenge to the analytical chemist during the development of assay procedure. Estimation of the individual drugs in these multicomponent dosage forms becomes difficult. For such instances like multicomponent dosage forms, chemometric methods can be preferred to routine spectrophotometric methods.

5. Conclusion

In conclusion, a broad range of techniques are available for the analysis of PIO in biological samples and pharmaceutical formulations. The analysis of the published data revealed that the HPLC was extensively used for the determination of PIO in various matrices like plasma, serum and urine. For determination of PIO in biological samples, we recommend the HPLC–MS/MS method, since this method combines the HPLC separation ability with MS sensitivity and selectivity, allowing the unambiguous identification of PIO and its metabolites. For analysis of PIO in pharmaceuticals, HPLC with UV detection is applicable because this method provides accurate results and low cost compared to more advanced detection techniques. This review carried out an overview of the current state-of-art analytical methods for the determination of PIO.

Acknowledgments

The authors wish to thank Dr. Ahmed Kamal, Project Director, National Institute of Pharmaceutical Education & Research, Hyderabad for his constant encouragement. One of the author Mr. Shanti Kumar is thankful to the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, New Delhi, India for providing a research fellowship.

References

[1] G. Belcher, C. Lambert, G. Edwards, et al., Safety and tolerability of pioglitazone, metformin, and gliclazide in the treatment of type 2 diabetes, Diabetes Res. Clin. Pract. 70 (2005) 53–62.
[2] J.M. Olefsky, Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists, J. Clin. Invest. 106 (2000) 467–472.
Pioglitazone: A review of analytical methods

[3] Y. Miyazaki, L. Glass, C. Triplitt, et al., Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in type II diabetic patients, Diabetologia 44 (2001) 2210–2219.

[4] Y. Miyazaki, A. Mahankali, M. Matsuda, et al., Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone, Diabetes Care 24 (2001) 710–719.

[5] G. Iacobellis, Drug-Drug Interactions in the Metabolic Syndrome, Nova Science Publishers, New York, 2006.

[6] K. Mizushima, T. Tsuji, T. Noma, Pioglitazone: cardiovascular effects in prediabetic patients, Cardiovasc. Drug Rev. 20 (2002) 329–340.

[7] K.P.R. Chowdary, D.U. Chandra, N. Mahesh, et al., Enhancement of dissolution rate and formulation development of pioglitazone-a BCS class II drug, J. Pharm. Res. 4 (2011) 3862–3863.

[8] S.S. Kumar, Y. Krishnaveni, G. Ramesh, Simultaneous estimation of sitagliptin and pioglitazone by UV-spectroscopic method and study of interference of various excipients on this combination of drugs, Int. J. Curr. Pharm. Res. 4 (2012) 113–116.

[9] N. Seedher, M. Kanojia, Co-solvent solubilization of some poorly-soluble antidiabetic drugs, Pharm. Dev. Technol. 14 (2009) 185–192.

[10] N. Seedher, M. Kanojia, Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note, AAPS Pharm. SciTech 9 (2008) 431–436.

[11] V. Pandit, R. Gorantla, K. Devi, et al., Preparation and characterization of pioglitazone cyclodextrin inclusion complexes, J. Young Pharm. 3 (2011) 267–274.

[12] M.M.W.B. Hendriks, J.H. de Boer, A.K. Smilde, Robustness of Analytical Chemical Methods and Pharmaceutical Technological Products, Elsevier, Netherlands, 1996.

[13] G.A. Mostafa, A. Al-Majed, Characteristics of new composite-and classical potentiometric sensors for the determination of pioglitazone in some pharmaceutical formulations, J. Pharm. Biomed. Anal. 48 (2008) 57–61.

[14] M. El-Ghobashy, A. Yehia, A. Mostafa, Application of membrane-selective electrodes for the determination of pioglitazone HCl in the presence of its acid degradant or metformin HCl in tablets and plasma, Anal. Lett. 42 (2009) 123–140.

[15] F. Faridbod, M.R. Ganjali, E. Nasli-Esfahani, et al., Potentiometric sensor for quantitative analysis of pioglitazone hydrochloride in tablets based on theoretical studies, Int. J. Electrochem. Sci. 5 (2010) 880–894.

[16] W.A. Badawy, M.A. El-Ries, I.M. Mahdi, Carbon paste-and PVC membrane electrodes as sensitive sensors for the determination of pioglitazone hydrochloride and its main metabolites determination in rat liver microsomal fraction, Electrophoresis 34 (2013) 862–869.

[17] K. Sujana, K. Abbulu, O.B. Souri, et al., Difference spectrophotometric methods for pioglitazone HCl and metformin HCl using UV spectrophotometric simultaneous determination of metformin HCl and pioglitazone HCl in combined dosage form, Asian J. Pharm. Anal. 2 (2012) 05–09.

[18] K. Yamashita, H. Murakami, O. Teruaki, et al., High-performance liquid chromatographic determination of pioglitazone hydrochloride in bulk and pharmaceutical formulations by UV spectrophotometric method, Int. J. Pharm. Sci. Res. 1 (2010) 153–157.

[19] I. Singhvi, K. Mehta, N. Kapadiya, Analytical method development and validation for the simultaneous estimation of pioglitazone and glimepiride in tablet dosage form by multil wavelength spectroscopy, J. Appl. Pharm. Sci. 1 (2011) 159–161.

[20] S. Patil, S. Dwivedi, S. Bagade, Development of spectrophotometric method for the estimation of pioglitazone HCl from two different marketed brands, Am. J. PharmTech Res. 1 (2011) 264–275.

[21] S.D. Rathod, P.M. Patil, S.B. Jadhav, et al., UV-spectrophotometric simultaneous determination of metformin HCl and pioglitazone HCl in combined dosage form, Asian J. Pharm. Anal. 2 (2012) 05–09.

[22] P. Chauhan, K. Singh, Determination of pioglitazone hydrochloride in different pharmaceutical formulations by UV spectrophotometric method, J. Pharm. Biomed. Anal. 48 (2008) 165.

[23] S.D. Rathod, P.M. Patil, S.B. Jadhav, et al., UV-spectrophotometric simultaneous determination of metformin HCl and pioglitazone HCl in combined dosage form, Asian J. Pharm. Anal. 2 (2012) 05–09.

[24] P. Shukla, K. Singh, Determination of pioglitazone hydrochloride in bulk and pharmaceutical formulations by UV spectrophotometric method, Int. J. Pharm. Sci. Res. 1 (2010) 153–157.

[25] L.A. Calixto, P.S. Bonato, Combination of hollow-fiber liquid-phase microextraction and capillary electrophoresis for pioglitazone and its main metabolites determination in rat liver microsomal fraction, Electrophoresis 34 (2013) 862–869.

[26] K. Yamashita, H. Murakami, O. Teruaki, et al., High-performance liquid chromatographic determination of pioglitazone and its metabolites in human serum and urine, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 677 (1996) 141–146.

[27] S. Srimal, P. Neamhom, A. Saraphanchotiwitthaya, High-performance liquid chromatographic method for the determination of pioglitazone in human plasma using ultraviolet detection and its application to a pharmacokinetic study, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (2009) 1923–1929.

[28] C.H. Ravikanth, A.A. Kumar, V.U. Kiran, et al., Sensitive and rapid HPLC method for the determination of pioglitazone in rat serum, J. Pharm. Sci. Drug Res. 3 (2011) 38–41.

[29] K.S. Brahmi, T. Rajesh, S. Sharma, Determination of pioglitazone and glimepiride in pharmaceutical formulations and rat plasma by RP-LC, Int. J. PharmTech Res. 1 (2009) 496–499.

[30] Z. Islamshulchar, H. Valizadeh, P. Zakeri-Milani, Rapid HPLC determination of pioglitazone in human plasma by protein
precipitation and its application to pharmacokinetic studies, J. AOAC Int. 93 (2010) 876–881.

[43] M.S. Arayne, N. Sultana, A.Z. Mirza, Simultaneous determination of glibidine, pioglitazone HCl, and verapamil in formulation and human serum by RP-HPLC. J. Chromatogr. Sci. 49 (2011) 114–117.

[44] G.R.K. Reddy, V.S.N. Rao, Development and validation of stability indicating assay method for pioglitazone drug substance by reverse phase HPLC, J. Global Trends Pharm. Sci. 3 (2012) 584–596.

[45] S. Sharma, M.C. Sharma, S.C. Chaturvedi, Study of stressed degradation behavior of pioglitazone hydrochloride in bulk and pharmaceutical formulation by HPLC assay method, J. Optoelectron. Biomed. Mater. 1 (2010) 17–24.

[46] A.M.R.L. Saber, Determination of pioglitazone hydrochloride in tablets by high-performance liquid chromatography, Pak. J. Anal. Environ. Chem. 9 (2008) 118–121.

[47] A. Jedlicka, J. Klimes, T. Graffetterova, Reversed-phase HPLC methods for purity test and assay of pioglitazone hydrochloride in tablets, Pharmazie 59 (2004) 178–182.

[48] D.B. Wanjari, N.J. Gaikwad, Stability indicating RP-HPLC method for determination of pioglitazone from tablets, Indian J. Pharm. Sci. 67 (2005) 256–258.

[49] R.T. Sane, S.N. Menon, S. Inamdar, et al., Simultaneous determination of pioglitazone and glibempride by high-performance liquid chromatography, Chromatographia 59 (2004) 451–453.

[50] J. Swapna, C. Madhu, M. Srivani, et al., Analytical method development and method validation for the simultaneous estimation of metformin hydrochloride and pioglitazone hydrochloride in tablet dosage form by RP-HPLC, Asian J. Pharm. Anal. 2 (2012) 85–89.

[51] V. Sriram, K. Sriram, J. Angirekula, et al., Development and validation of stability indicating reverse phase HPLC method for the determination of impurities in pioglitazone hydrochloride, Int. J. Pharm. Biomed. Sci. 3 (2012) 89–96.

[52] A. Karthik, G. Subramanian, C.M. Rao, et al., Simultaneous determination of pioglitazone and glibempride in bulk drug and pharmaceutical dosage form by RP-HPLC method, Pak. J. Pharm. Sci. 21 (2008) 421–425.

[53] D. Jain, S. Jain, D. Jain, et al., Simultaneous estimation of metformin hydrochloride, pioglitazone HCl, and glibempride by RP-HPLC in tablet formulation, J. Chromatogr. Sci. 46 (2008) 501–504.

[54] M. Sarat, P.M. Krishna, C. Rambabu, RP-HPLC method for estimation of saxaglipatin and pioglitazone in tablets, Int. Res. J. Pharm. 3 (2012) 399–402.

[55] T.M. Kalyankar, M.R. Badgujar, R.B. Kakde, Simultaneous determination of pioglitazone HCl and glibempride by RP-HPLC in pharmaceutical dosage form, J. Pharm. Res. 4 (2011) 1326–1333.

[56] M.B. Shankar, V.D. Modi, D.A. Shah, et al., Estimation of pioglitazone hydrochloride and metformin hydrochloride in tablets by derivative spectrophotometry and liquid chromatographic methods, J. AOAC Int. 88 (2005) 1167–1172.

[57] G. Nirupa, U.M. Tirupathi, RP-HPLC analytical method development and validation for simultaneous estimation of three drugs: glibempride, pioglitazone and metformin and its pharmaceutical dosage forms, J. Chem. 2013 (2013) 1–8.

[58] M.S.V. Sakuntala, S.V.U.M. Prasad, S.S. Devi, et al., A RP-HPLC method development and validation for the simultaneous estimation of glibempride and pioglitazone HCl in tablet dosage forms, J. Chem. Pharma. Res. 4 (2012) 154–159.

[59] G. Navaneethan, K. Karunakaran, K.P. Elango, Simultaneous estimation of pioglitazone, glibempride and glibempride impurities in combination drug product by a validated stability-indicating RP-HPLC method, J. Chil. Chem. Soc. 56 (2011) 815–818.

[60] H. Shweta, S. Dhaneshwar, Development and validation of a HPLC method for the determination of metformin HCl, gliclazide and pioglitazone hydrochloride in multicomponent formulation, Webmed Central Pharm. Sci. 1 (2010) 1–16.

[61] V. Kumar, M. Sushankar, Y. Padmanaabha Reddy, et al., Method development and validation for simultaneous estimation of pioglitazone and glibempride in tablet dosage form by RP-HPLC and UV-spectrophotometric method, Curr. Pharm. Res. 2 (2011) 404–410.

[62] D.C. PremAnand, K.L. Senthilkumar, B. Senthilkumar, et al., A new RP-HPLC method development and validation for simultaneous estimation of telmisartan and pioglitazone in pharmaceutical dosage form, Int. J. ChemTech Res. 3 (2009) 448–454.

[63] K.S. Lakshmi, T. Rajesh, S. Sharma, et al., Development and validation of liquid chromatographic and UV derivative spectrophotometric methods for the determination of metformin, pioglitazone and glibempride in pharmaceutical formulations, Der. Pharm. Chem. 1 (2009) 238–246.

[64] M.C. Sharma, S. Sharma, D.V. Kohli, et al., Micellar liquid chromatographic analytical method development and validation of determination of atorvastatin calcium and pioglitazone in tablet dosage form, Der. Pharm. Chem. 2 (2010) 273–280.

[65] K. Ramulu, T.T. Kumar, S.R. Krishna, et al., Identification, isolation and characterization of potential degradation products in pioglitazone hydrochloride drug substance, Pharmazie 65 (2010) 162–168.

[66] Y.-J. Xue, K.C. Turner, J.B. Meeker, et al., Quantitative determination of pioglitazone in human serum by direct-injection high-performance liquid chromatography mass spectrometry and its application to a bioequivalence study, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 795 (2003) 215–226.

[67] Z.J. Lin, W. Ji, D. Desai-Krieger, et al., Simultaneous determination of pioglitazone and its two active metabolites in human plasma by LC–MS/MS, J. Pharm. Biomed. Anal. 33 (2003) 101–108.

[68] V. Kumar Karra, N. Rao Pilli, J. Kumar Inamadugu, et al., Simultaneous determination of pioglitazone and candesartan in human plasma by LC-MS/MS and its application to a human pharmacokinetic study, J. Pharm. Anal. 2 (2012) 167–173.

[69] S.C.D. Dhriender Singh, Ashok Kushnoor, Development and validation of a HPTLC method for estimation of pioglitazone in bulk and tablet dosage form, J. Pharm. Res. 4 (2011) 3919–3921.

[70] A. Gumieniczek, H. Hopkała, A. Berecka, Reversed-phase thin-layer chromatography of three new oral antidiabetics and densitometric determination of pioglitazone, J. Liq. Chromatogr. Rel. Technol. 27 (2004) 2057–2070.

[71] M. Sharma, S. Sharma, D. Kohli, HPTLC method development and validation for the estimation of atorvastatin calcium and pioglitazone HCl in pharmaceutical combined tablet dosage form, Ann. Biol. Res. 1 (2010) 124–129.

[72] D.P. Anand, HPTLC method for determination of telmisartan HCl with pioglitazone HCl in pharmaceutical dosage form, Int. J. Pharm. Res. 2 (2010) 185–190.

[73] D. Kale, R. Kakde, Simultaneous determination of pioglitazone, metformin, and glibempride in pharmaceutical preparations using HPTLC method, J. Planar Chromatogr. Mod. TLC 24 (2011) 331–336.