LP 714-37: A wide pair of ultracool dwarfs actually is a triple

1-1-2006

Ngoc Phan-Bao
University of Central Florida

Thierry Forveille

Eduardo L. Martin
University of Central Florida

Xavier Delfosse

Find similar works at: https://stars.library.ucf.edu/facultybib2000

University of Central Florida Libraries http://library.ucf.edu

Recommended Citation

Phan-Bao, Ngoc; Forveille, Thierry; Martin, Eduardo L.; and Delfosse, Xavier, "LP 714-37: A wide pair of ultracool dwarfs actually is a triple" (2006). Faculty Bibliography 2000s, 7886.
https://stars.library.ucf.edu/facultybib2000/7886

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please contact lee.dotson@ucf.edu.
LP 714-37: A WIDE PAIR OF ULTRACOOL DWARFS ACTUALLY IS A TRIPLE

Ngoc Phan-Bao, Thierry Forveille, Eduardo L. Martín, and Xavier Delfosse

Received 2006 May 15; accepted 2006 June 2; published 2006 June 30

ABSTRACT

LP 714-37 was identified by Phan-Bao et al. as one of the very few wide pairs of very low mass (VLM) stars known to date, with a separation of 33 AU. Here we present adaptive optics imaging that resolves the secondary of the wide pair into a tighter binary, with a projected angular separation of 0′.36, or 7 AU. The estimated spectral types of LP 714-37B and LP 714-37C are M8.0 and M8.5, respectively. We discuss the implications of this finding for brown dwarf formation scenarios.

Subject headings: binaries: visual — stars: individual (DENIS-P J0410−1251, LP 714-37) — stars: low-mass, brown dwarfs

Online material: color figure

1. INTRODUCTION

Binary systems offer us the only practical opportunity to measure accurate stellar masses, and they represent a powerful test of evolutionary models and star formation theories. These last two aspects are particularly important for stars at the bottom of the main sequence and for brown dwarfs (BDs), whose physical parameters and formation mechanism are not well known. Significant attention has recently been concentrated on binaries among ultracool dwarfs (spectral types later than M6) both in the field (Martín et al. 1999; Reid et al. 2001; Close et al. 2002, 2003; Bouy et al. 2003; Burgasser et al. 2003; Forveille et al. 2004, 2005; Siegler et al. 2005; Liu & Leggett 2005; Law et al. 2006) and in nearby young open clusters and associations (Martín et al. 1998, 2000, 2003; Luhman 2004; Kraus et al. 2005; Stassun et al. 2006; Bouy et al. 2006b).

These surveys demonstrate that wide binary systems (semi-major axis >15 AU) are very rare among ultracool dwarfs, with a frequency below 1%, while tighter binaries (semi-major axis <15 AU) occurs in >15% of them. This well-defined cutoff is not caused by disruptions during Galactic dynamical encounters, which only become effective at significantly wider separations (Weinberg et al. 1987). One possible explanation lies in the ejection model (Reipurth & Clarke 2001; Bate et al. 2002) for brown dwarf formation, which describes them as failed stellar embryos, ejected from their parent gas core before they have time to accrete a larger mass. Wide binaries are not expected to survive such an ejection, and the numerical simulations of this process suggest that it only produces close binaries (separation ≤10 AU; Bate et al. 2002), in rough agreement with the observations. More recently, however, a growing number of wide binaries (separation >30 AU) have been detected (Luhman 2004; Phan-Bao et al. 2005; Chauvin et al. 2004; Luhman 2005; Billères et al. 2005; Bouy et al. 2006a), suggesting that at least some VLM stars and BDs form through another process. Some of these apparent binaries, however, could be unresolved higher multiplicity systems, with a correspondingly higher total mass and binding energy. Ascertaining how many of them there are is clearly important.

In this Letter, we present adaptive optics observations of one such system, LP 714-37 (Phan-Bao et al. 2005), prompted in part by its apparently over luminous secondary. The new images do resolve that secondary into a tighter pair, and they demonstrate that the system contains three VLM stars. In §2 we present the observations and the data reduction, and in §3 we discuss the results in the context of the binary properties of wide VLM stars and BDs, in general, and of the formation of LP 714-37, in particular.

2. OBSERVATIONS AND DATA REDUCTION

We observed LP 714-37 at the 3.6 m Canada-France-Hawaii Telescope (CFHT) on 2005 October 13, using the CFHT Adaptive Optics Bonnette (AOB) and the KIR infrared camera. The AOB, also called PUEO after the sharp-visioned Hawaiian owl, is a general-purpose adaptive optics (AO) system based on F. Roddier’s curvature concept (Roddier et al. 1991). It is mounted at the telescope f/8 Cassegrain focus, and cameras or other instruments are then attached to it (Arsenault et al. 1994; Rigaut et al. 1994). The atmospheric turbulence is analyzed using a 19-element wavefront curvature sensor, and the correction applied using a 19-electrode bimorph mirror. Modal control and continuous mode gain optimization (Gendron & Léna 1994; Rigaut et al. 1994) maximize the quality of the AO correction for the current atmospheric turbulence and guide star magnitude, and produced well-corrected images for the faint LP 714-37 system (V = 16.5, I = 13.0). For our observations, a dichroic mirror diverted the visible light to the wavefront sensor, while the KIR science camera (Doyon et al. 1998) recorded infrared photons. The KIR plate scale is 0′035 pixel−1, for a total field size of 36′′ × 36′′.

We observed LP 714-37 through a K′ filter and obtained series of five 30 s exposures at each of the five dither positions. The raw images were median-combined to produce sky frames, which were then subtracted from the raw data. Subsequent reduction steps included flat-fielding, flagging of the bad pixels, and finally shift-and-add combinations of the corrected frames into one final image (Fig. 1) with a 12.5 minute total exposure time. Analysis of this image with SExtractor (Bertin & Arnouts...
1996) produced the relative astrometry and relative photometry summarized in Table 1.

3. DISCUSSION

3.1. Physical Parameters of the LP 714-37 Triple System

The proper motion of the system is \(\mu_x = -117 \) mas yr\(^{-1}\) and \(\mu_y = -382 \) mas yr\(^{-1}\) (Phan-Bao et al. 2003), and it has moved by 1.95 between the epoch of the DEep Near-Infrared Survey (DENIS) image (2000.0) and our CFHT observation. Figure 2 shows no background star at the position of the system in the DENIS and Two Micron All Sky Survey (2MASS) \(K \) images, demonstrating that the system is a physical triple.

Phan-Bao et al. (2005) spectroscopically classified component A as M5.5, with an estimated absolute magnitude of \(M_K = 9.11 \). The relative photometry listed in Table 1 therefore provides estimates of \(M_K \) for LP 714-37B and \(M_K \) for LP 714-37C. We note that the difference between the DENIS \(K \) photometry and the 2MASS \(K \) and \(K' \) photometry is very small (Carpenter 2001) and completely negligible for the purpose of the present Letter. Adding the flux of the three components, the absolute \(K \)-band magnitude of the system is \(8.5 \), which combines with the DENIS magnitude (\(K_s = 9.89 \)) to give a photometric distance of \(18.9 \pm 2.6 \) pc. At this updated distance, the projected separations between B and C and between A and the BC barycenter are, respectively, of 6.8 and 36.1 AU.

We estimate approximate spectral types for components B and C from their absolute \(K \)-band magnitude (which itself scales back to the spectral type of A). A linear least-squares fit to the absolute magnitude–spectral type relation of 35 single M5.0–M9.5 dwarfs (Fig. 3) gives the following relation: \(\text{SpT} = 2.17M_K - 13.9, \sigma = 0.68, \) where \(\text{SpT} \) is the spectral subtype, 5.0 for spectral type M5.0 and 9.5 for spectral type M9.5. Applying this relation results in estimated spectral types of M8.0 \(\pm 0.5 \) and M8.5 \(\pm 0.5 \) for component B and C, respectively.

The 5 Gyr \(K \)-band mass-luminosity relation of Baraffe et al. (1998) results in a mass of \(0.08 \pm 0.01 M_\odot \) for component C. All three components have estimated masses close to the hydrogen-burning limit (Chabrier & Baraffe 1997), and the total mass of LP 714-37 is \(\mu \sim 0.28 M_\odot \). Table 2 presents a summary of the derived physical parameters of the system.

3.2. Could LP 714-37 Have Formed through the Ejection Process?

Ejection models (Reipurth & Clarke 2001; Bate et al. 2002) suggest that (most) brown dwarfs form through the premature removal of prestellar cores from their parental molecular clouds by dynamical interactions. These models qualitatively predict that the binary brown dwarf systems that do exist must be close (separation \(\leq 10 \) AU), since the small binding energy of wide BD binaries leaves them vulnerable to disruption. More recent
Table 2: Spectral Types of the Three Components of LP 714-37

Component	SpT^a	M_L^b	Mass^c (M_⊙)
LP 714-37A	M5.5 ± 0.5	9.11 ± 0.25	0.11 ± 0.01
LP 714-37B	M8.0 ± 0.5	10.05 ± 0.30	0.09 ± 0.01
LP 714-37C	M8.5 ± 0.5	10.35 ± 0.30	0.08 ± 0.01

^a Spectral type, estimated from the M_L vs. spectral type relation.
^b K-band absolute magnitude.
^c Mass determination for 1–5 Gyr from the models of Baraffe et al. (1998).
^d From Phan-Bao et al. (2005).

Simulations (Bate & Bonnell 2005) do produce some wide BD binary systems, when two unrelated objects are simultaneously ejected in the same direction. This mechanism, however, needs high-density environments to work. It could thus not possibly form the wide binaries known in TW Hya, Cha I, and Upper Sco (Chauvin et al. 2004; Luhman 2004, 2005). A caveat, however, is that some apparent binaries might be unresolved triple or higher order multiple systems, whose additional components could boost the binding energy of the systems enough to allow them to survive ejection.

Close et al. (2003) found that the minimum escape velocity in their sample of 34 VLM binaries is 3.8 km s⁻¹ (Fig. 4). The escape velocity of LP 714-37A and B at a 33 AU semimajor axis would be \(V_{\text{esc}} \sim 3.3 \text{ km s}^{-1}\), significantly under that limit. Accounting for the additional C component, however, increases the escape velocity of the system to 4.4 km s⁻¹. This is significantly above the 3.8 km s⁻¹ (Close et al. 2003) empirical lower limit, and Figure 4 actually has a close analog of LP 714-37. LP 714-37 therefore demonstrates that some wide apparent VLM binaries are actually higher order multiple systems, whose additional components could boost the escape velocity of the systems enough to allow them to survive ejection.

The LP 714-37 system is represented by both an open star and components, A and B, while the filled square shows the escape velocity of the triple system. The LP 714-37 system is represented by both an open star and a filled star. Dash-dotted line: \(V_{\text{esc}} = 3.8 \text{ km s}^{-1}\) (Close et al. 2003).

N. P.-B. and E. L. M. acknowledge financial support from NSF grant AST 0440520. N. P.-B. thanks A. J. Burgasser for his comments on the manuscript. We thank the referee for a fast and useful report. This research has made use of the ALADIN, SIMBAD, and VIZIER databases, operated at CDS, Strasbourg, France.

References

Arsenault, R., Salmon, D., Kerr, J., Rigaut, F., Crampton, D., & Grundmann, W. A. 1994, Proc. SPIE, 2201, 833
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Bate, M. R., & Bonnell, I. A. 2005, MNRAS, 356, 1201
Beauvieux, M., Delfosse, X., Beuzit, J.-L., & Jasniewicz, T. 2005, A&A, 425, 997
Billères, M., Delfosse, X., Beuzit, J.-L., Forveille, T., Marchal, L., & Martin, E. L. 2005, A&A, 440, L55
Bouy, H., Brandner, W., Martin, E. L., Delfosse, X., Allard, F., & Basri, G. 2003, AJ, 126, 1526
Bouy, H., Martin, E. L., Brandner, W., Zapatero Osorio, M. R., Béjar, V. J. S., Schirmer, M., Huelamo, N., & Ghez, A. M. 2006a, A&A, 451, 177
Bouy, H., Moraux, E., Bourier, J., Brandner, W., Martin, E. L., Allard, F., Baraffe, I., & Fernández, M. 2006b, ApJ, 637, 1056
Burgasser, A. J., Kirkpatrick, J. D., Reid, I. N., Brown, M. E., Miskey, Ch. L., & Gizis, J. 2003, ApJ, 586, 512
Burgasser, A. J., & McElwain, M. W. 2006, AJ, 131, 1007
Carpenter, J. M. 2001, AJ, 121, 2851
Chabrier, G., & Baraffe, I. 1997, A&A, 327, 1039
Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B., Mouillet, D., Song, I., Beuzit, J.-L., & Lowrance, P. 2004, A&A, 425, L29
Close, L. M., Siegler, N., Freed, M., & Biller, B. 2003, ApJ, 587, 407
Close, L. M., Siegler, N., Potter, D., Brandner, W., & Liebert, J. 2002, ApJ, 567, L53 (erratum 571, L193)
Dahn, C. C., et al. 2002, AJ, 124, 1170
Doyon, R., Nadeau, D., Vallée, P., Barrado y Navascués, D., Baraffe, I., Bouy, H., & Dahn, S. 2003, ApJ, 594, 525
Gendron, E., & Léna, P. 1994, A&A, 291, 337
Kraus, A. L., White, R. J., & Hillsenbrand, L. A. 2005, ApJ, 633, 452
Law, N. M., Hodgkin, S. T., & Mackay, C. D. 2006, MNRAS, 368, 1917
Liu, M. C., & Leggett, S. K. 2005, ApJ, 634, 616
Luhman, K. L. 2004, ApJ, 614, 398
Monet, D. G., Dahn, C. C., Vrba, F. J., Harris, H. C., Pier, J. R., & Ables, H. D. 1992, AJ, 103, 638
Phan-Bao, N., Martin, E. L., Reylé, C., Forveille, T., & Lim, J. 2005, A&A, 439, L19
Phan-Bao, N., et al. 2003, A&A, 401, 599
Reid, I. N., & Gizis, J. E. 1997, AJ, 114, 2246
Reid, I. N., Gizis, J. E., Kirkpatrick, J. D., & Koerner, D. W. 2001, AJ, 121, 489
Reipurth, B., & Clarke, C. 2001, AJ, 122, 432

Fig. 4.—Escape velocity vs. total mass of the system for VLM systems in the field. The filled circles represent VLM binaries, from Siegler et al. (2005 and references therein), Reid & Gizis (1997), Beuzit et al. (2004), Martin et al. (2000), Billères et al. (2005), and Burgasser & McElwain (2006). The squares show the VLM triple system GJ 1245; the open square represents the escape velocity calculated by assuming the system would have only two components, A and B, while the filled square shows the escape velocity of the triple system. The LP 714-37 system is represented by both an open star and a filled star. Dash-dotted line: \(V_{\text{esc}} = 3.8 \text{ km s}^{-1}\) (Close et al. 2003).
Rigaut, F. J., Arsenault, R., Kerr, J. M., Salmon, D. A., Northcott, M. J., Dutil, Y., & Boyer, C. 1994, Proc. SPIE, 2201, 149
Roddier, F., Graves, J. E., McKenna, D., & Northcott, M. J. 1991, Proc. SPIE, 1542, 248
Siegler, N., Close, L. M., Cruz, K. L., Martin, E. L., & Reid, I. N. 2005, ApJ, 621, 1023
Stassun, K. G, Mathieu, R. D., & Valenti, J. A. 2006, Nature, 440, 311
van Altena, W. F., Lee, J. T., & Hoffleit, E. D. 1995, The General Catalogue of Trigonometric Stellar Parallaxes (4th ed.; New Haven: Yale Univ. Obs.)
Weinberg, M. D., Shapiro, S. L., & Wasserman, I. 1987, ApJ, 312, 367