PcG-Mediated Higher-Order Chromatin Structures Modulate Replication Programs at the *Drosophila* BX-C

Federica Lo Sardo1,2, Chiara Lanzuolo1,2, Federico Comoglio3, Marco De Bardi4, Renato Paro3,5, Valerio Orlando1,4*

1 Dulbecco Telethon Institute, IRCCS Santa Lucia Foundation, Rome, Italy, 2 CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy, 3 Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology Zürich, Basel, Switzerland, 4 Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy, 5 Faculty of Science, University of Basel, Basel, Switzerland

Abstract

Polycomb group proteins (PcG) exert conserved epigenetic functions that convey maintenance of repressed transcriptional states, via post-translational histone modifications and high order structure formation. During S-phase, in order to preserve cell identity, in addition to DNA information, PcG-chromatin-mediated epigenetic signatures need to be duplicated requiring a tight coordination between PcG proteins and replication programs. However, the interconnection between replication timing control and PcG functions remains unknown. Using *Drosophila* embryonic cell lines, we find that, while presence of specific PcG complexes and underlying transcription state are not the sole determinants of cellular replication timing, PcG-mediated higher-order structures appear to dictate the timing of replication and maintenance of the silenced state. Using published datasets we show that PRC1, PRC2, and PhoRC complexes differently correlate with replication timing of their targets. In the fully repressed BX-C, loss of function experiments revealed a synergistic role for PcG proteins in the maintenance of replication programs through the mediation of higher-order structures. Accordingly, replication timing analysis performed on two *Drosophila* cell lines differing for BX-C gene expression states, PcG distribution, and chromatin domain conformation revealed a cell-type-specific replication program that mirrors lineage-specific BX-C higher-order structures. Our work suggests that PcG complexes, by regulating higher-order chromatin structure at their target sites, contribute to the definition and the maintenance of genomic structural domains where genes showing the same epigenetic state replicate at the same time.

Citation: Lo Sardo F, Lanzuolo C, Comoglio F, De Bardi M, Paro R, et al. (2013) PcG-Mediated Higher-Order Chromatin Structures Modulate Replication Programs at the *Drosophila* BX-C. PLoS Genet 9(2): e1003283. doi:10.1371/journal.pgen.1003283

Editor: Asifa Akhtar, Max Planck Institute of Immunobiology and Epigenetics, Germany

Received: May 3, 2012; **Accepted:** December 14, 2012; **Published:** February 21, 2013

Copyright: © 2013 Lo Sardo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: FC is part of the Life Science Zurich Graduate School, PhD program in Systems Biology. CL at IBN-CNR is supported by the Italian Ministry of Research and University (Futuro in Ricerca RBFR10651Z, 001). This work was supported by grants from the ETH Zurich to RP and by Telethon Foundation, AIRC, and EPIGEN (progetto bandiera) to VG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vorlando@dti.telethon.it

* These authors contributed equally to this work.

Introduction

One of the key open questions in biology is how epigenetic traits are faithfully duplicated during the cell cycle and how this safeguards the correct maintenance of transcriptional programs and cell identity. During S-phase, replication of chromatin domains containing differentially expressed genes appears to be regulated in a spatial and temporal manner. In general it is widely accepted that active transcriptional units are preferentially replicated early whereas silenced genes and heterochromatin are replicated in late S-phase [1]. However, the contribution of epigenetic regulators to this dynamics remains to be elucidated.

Polycomb group (PcG) multiprotein complexes are evolutionary conserved epigenetic regulators required for the maintenance of repressed transcriptional states during development and in adult tissues [2]. In *Drosophila melanogaster* five PcG complexes have been identified, controlling gene silencing at different levels by regulating RNA Pol II function, histone modifications and higher-order chromatin structures; Polycomb repressive complexes 1 (PRC1) and 2 (PRC2), Pho-repressive complex (PhoRC), dRING-associated factors (dRAF) complex and Polycomb repressive deubiquitinase (PR-DUB) complex [2]. PcG complexes exert their function by interacting with specialized cis-regulatory regions termed PcG Response Elements (PREs) [3,4] and with transcription start sites (TSSs) [5]. The zinc finger protein Pleiohometric (PHO) of PhoRC is thought to play an important role in PRC1 and PRC2 recruitment [6]. Once recruited, the PRC2 complex, via its catalytic subunit E(z), deposits the characteristic repressive chromatin mark, histone H3 trimethylated at lysine 27 (H3K27me3) [7–9], which in turn serves as docking site for PRC1 [10]. Previous works have revealed that PcG-bound regulatory regions can interact with promoters and modulate their activity via mechanisms involving looping between regulatory elements and long-distance interactions in *cis* or in *trans* (between different chromosomes) [11–13]. The genome is topologically organized into chromatin loops also during the process of DNA replication, when hundreds of replication factories are formed, each containing clusters of replication origins that fire almost simultaneously [14]. It has been proposed that, in these replication foci, neighbouring origins are located in physical proximity to each
DNA replication is a tightly orchestrated process that precisely duplicates the entire genome during cell division to ensure that daughter cells inherit the same genetic information. The genome is replicated following a specific temporal program, where different segments replicate in distinct moments of the S phase correlating with active (early) and repressed (late) transcriptional state of resident genes. Moreover, replicating chromosomal domains are organized in the nuclear space, perhaps to guarantee the conservation of the same topological order in daughter cells. Epigenetic mechanisms, acting via chromatin organization, determine transcriptional states and must be maintained through cell division. Here, we analyzed in detail the link between Polycomb Group (PcG) proteins, higher-order chromatin structure, and replication timing in Drosophila. By using bioinformatic analyses combined with functional experiments, we show that Polycomb Repressive Complex 1 (PRC1), PRC2, and PhoRC differently correlate with replication timing of their targets and that transcription per se does not determine replication timing. Strikingly, by analyzing the PcG-regulated Bithorax Complex, where PRC1, PRC2, and PhoRC complexes are bound to repressed targets, we provide evidence for a synergistic role of PcG proteins in the modulation and maintenance of replication timing through the definition of specific, topologically distinct genomic domains.

other while inter-origin DNA regions are looped out, forming rosette-like structures [15,16]. In each factory large segments of the chromosome are replicated in a coordinated manner at characteristic times during S-phase. In higher eukaryotes the choice of replication origins and the time of firing are cell-type specific [17–19] and change dynamically during differentiation and development [20–22]. It has been proposed that epigenetic mechanisms regulating chromatin structure and chromosome organization could play a role in regulating the selection of DNA replication origins and the time of firing [23–26]. Conversely, timing and selection of replication origins can contribute to the establishment of chromatin domains thus modulating transcription [27].

In Drosophila it was shown that at the 340 kb, PcG-repressed homeotic Bithorax Complex (BX-C), distally spaced PREs, promoters and 3' ends of repressed genes interact with each other to form multi-looped structures that are dynamically regulated during replication [13,28]. In order to investigate the functional role of PcG-mediated silencing and higher-order chromatin structures in the modulation of replication programs in Drosophila, we used cell lines derived from embryonic tissue as model system. By means of genome-wide bioinformatic and statistical analyses we investigated whether PRC1, PRC2 or PhoRC bound regions would show any preferential replication timing in Drosophila embryonic Schneider 2 cell line (S2). We found that PRC2-targeted promoters replicate later than non-target ones, in agreement with the generally accepted concept that inactive genes are, on average, late replicating [28–33]. However, no significant difference in replication timing distributions emerged between PRC1 or Pho-RC bound and non-bound promoters. To gain deeper insight on the interplay between PcG-mediated silencing, higher-order structures and replication timing we focused on the repressed and late replicating BX-C in S2 cells. We found that, simple derepression of BX-C genes does not result in changes in replication timing or higher-order structures, while a combined PcG dependent (PHO, PG and E(z)) impairment of BX-C higher-order structures is accompanied by an anticipation in replication timing. Further, we found that epigenetically distinct cell lines, differing in BX-C gene transcription and topological three-dimensional conformations show PRE specific replication timing profiles. Our work reveals that PcG mediated BX-C higher-order structures coincide with replication domains and that PcG complexes act synergistically for the epigenetic maintenance of replication timing programs.

Results

PRC1-, PRC2-, and PhoRC-bound promoters show different replication timing distributions in Drosophila S2 cells

A positive correlation between PcG-mediated H3K27me3 mark and late replication has been previously reported [34]. Using public available data sets we analyzed the genome-wide replication timing distribution of PRC2, PhoRC and PRC1 bound promoters, defined as all regions within 500 bp of a unique ReSeq Transcription Start site (TSS). The replication timing of each promoter was estimated as described in Material and Methods. As representatives of PRC2 complex and its enzymatic activity we used, respectively, E(z) and H3K27me3 whereas PHO was used as representative of the PhoRC complex. All three datasets are available from modENCODE as ChIP-chip genome-wide profiles (see Material and Methods for details). Feature enrichments at promoters and their statistical significance have been computed using a conservative approach as described in Material and Methods.

First, we found that both H3K27me3 and E(z) enriched regions replicate significantly later than their non-enriched counterparts as shown by both boxplot and percentile bootstrap confidence intervals, left and right panel, respectively in Figure 1A and 1B. Of note, 94% of E(z) bound promoters are also significantly enriched for H3K27me3 in our analysis. To test whether the observed difference in replication timing could be entirely explained by the significantly lower transcriptional activity of PRC2 bound promoters (Figure 1A, 1B, upper panels), we used weighted bootstrap to compute confidence intervals for the mean replication timing of H3K27me3 enriched and non-enriched promoters using probability weights that account for the different transcriptional activity distributions between the two groups (see Materials and Methods for details).

Interestingly, the distributions of the mean replication timing within the two groups remained largely separated after resampling (Figure S1A and Materials and Methods), suggesting that transcription might not be the sole determinant of late replication timing for H3K27me3 enriched promoters.

Second, we analyzed the correlation between PHO binding and replication timing and we did not find any significant difference in the mean replication timing of PHO bound promoters compared to non-bound promoters as shown in Figure 1C, lower panel. The upper panel shows the transcriptional activity of the promoters in the two groups.

Third, we investigated whether PRC1 binding at promoters significantly correlates with their replication timing. We defined PRC1 bound those promoter regions showing joint enrichment for all three PRC1 core components: PC, Ph and Psc. All three proteins were profiled genome-wide in [3] using ChIP-Seq. Differently from what we observed for H3K27me3 and E(z) bound promoters, PRC1 bound promoters are globally more transcribed than their non-bound counterparts (Figure 1D, upper panel). When all promoters were considered, we did not find any significant difference between the mean replication timing of
PRC1 bound and non-bound promoters (Figure 1E, left boxplot). The differential replication timing distribution between PRC1, PhoRC and PRC2 may reflect a specific regulatory difference between these complexes, which has already been reported in previous works [5,35–37]. Moreover, these data support emerging evidence that PRC bound promoters are not universally silent [5,37–40]. PRC1 components have been shown to colocalize with TrxG complexes on stalled promoters, where RNA Pol II is “poised” for subsequent activation in response to developmental cues [5]. These promoters could be functionally considered as the fly’s analogs of the ‘bivalent domains’ found in mammals, representing poised states for lineage-specific activation of key regulatory and developmental genes [36,39]. To quantify the contribution of bivalent PRC1 bound regions to replication timing, we compared all promoters bound by PRC1 with promoters co-bound by PRC1 and Trx (Figure S1B), finding no difference between the two classes. To dissect the link between transcription and replication timing of PRC1 bound promoters, we divided them into two subgroups: OFF promoters, represented by promoters with none or little transcriptional output, and ON promoters containing actively transcribed promoters (Figure 1D, mid and lower panel, respectively, see Material and Methods). Of note, approximately half of the stalled promoters were considered ON in our analysis according to this definition. We then analyzed the mean replication timing within each subgroup. Interestingly, although OFF promoters are late replicating, no significant difference in replication timing distribution was found between PRC1 bound and non-bound (Figure 1E, mid boxplot). This result

Figure 1. PRC2, PhoRC, and PRC1 show different replication timing distributions in Drosophila S2 cells. (A) Boxplot (left panel) of genome-wide Drosophila embryonic S2 cell line replication timing for significantly H3K27me3 enriched promoters (orange) and non-enriched promoters (light blue). Horizontal boxplot (top right panel) of RNA expression levels in the two previous groups, where group sizes are indicated to the left. Bootstrap distributions (bottom right panel) of mean replication timing for H3K27me3 significantly enriched promoters (orange) and non-enriched promoters (light blue). Percentile confidence intervals (α = 0.025) are indicated with dashed vertical lines. (B) Same as (A), with promoters classified as E(z) bound (orange) and non-bound (light blue). (C) Same as the first two panels of (B), with promoters classified as PHO bound (orange) and non-bound (light blue). (D) Horizontal boxplot of RNA expression levels for genome-wide PRC1 bound (orange) and non-bound (light blue) promoters, PRC1 bound (dark red) and non-bound (dark blue) OFF promoters only and PRC1 bound (red) and non-bound (blue) ON promoters only (see Material and Methods). Group sizes are indicated to the left. (E) Boxplot of replication timing for the three previous groups. (F) Bootstrap distributions of mean replication timing for PRC1 bound (red) and non-bound (blue) ON promoters. Percentile confidence intervals (α = 0.025) are indicated with dashed vertical lines. All p-values have been computed using a Wilcoxon rank sum test.
might be explained by the considerable amount of late replicating constitutive heterochromatic promoters that are not occupied by PRC1, thus masking a possible contribution of PRC1 to replication program regulation. On the other hand, PRC1 bound ON promoters are significantly later replicating than PRC1 non-bound ON promoters (Figure 1E, right boxplot) despite the two sets exhibit no significantly different transcriptional activity (Figure 1D, lower boxplot). This result is in agreement with recent observations showing active transcription of PRC1 bound promoters [5] and reinforces the idea that transcription is not the unique discriminator of replication timing of a given locus. Figure 1F shows percentile bootstrap confidence intervals for the mean replication timing within the two groups of active promoters.

Taken together, these results corroborate the view of a functional difference between PRC2, PhoRC and PRC1 complexes and suggest that PRC2 complex, but not PRC1 or PhoRC, can be considered a genome-wide predictor of replication timing in Drosophila.

Forced transcriptional reactivation by depletion of single Pcg complex subunits changes neither replication timing nor the overall BX-C higher-order interactions

To further investigate the possible contribution of PRC1 and other Pcg complexes to replication timing at repressed targets (OFF TSSs), we focused our attention on the fully silenced and late replicating locus BX-C (Figure 2A). We performed loss of function experiments by treating Drosophila S2 cells with dsRNA against mRNA encoding either PHO, E(z) or PC proteins, members of the PhoRC, PRC2 and PRC1 complexes respectively, in order to evaluate and dissect the contribution of Pcg complexes on BX-C transcriptional silencing, higher-order structures maintenance and replication program control. Extending previous reports [13], after single Pcg-knockdown we observed a transcriptional reactivation of all three BX-C homeotic genes accompanied by a mild derepression of the intervening non-coding transcripts encompassing PREs (Figure S2A). Notably, depletion of specific Pcg proteins differentially affects BX-C transcription. In particular PC depletion results in a stronger derepression, causing an increase of transcription up to ten thousand fold for the Ubx transcript. In contrast, E(z) or PHO depletions, despite their suggested role in PRC1 recruitment [6] cause a weaker transcriptional increase. Massive transcription in the region corresponding to bx PRE (Figure S2A, right panel) in PC depleted cells reflects the strong activation of Ubx homeotic gene transcript encompassing bx region (Figure S2A, left panel). The different transcriptional effects observed upon depletion of each specific Pcg subunit did not depend on interference efficiency, as all targeted proteins were not detected by western blot after three rounds of dsRNA treatment (Figure S2B).

To determine BX-C replication timing, we pulse-labelled asynchronous S2 cells with BrdU and FACS sorted four S-phase fractions, from the earliest (f1) to the latest (f4), according to DNA content (Figure S2C). DNA was prepared from an equal number of cells representing the four fractions. BrdU-labelled DNA was immunoprecipitated from these fractions to enrich for those genomic sequences that replicate during the labelling period. We then performed quantitative real-time PCR (qRT-PCR), using primers specific for control sequence regions previously shown in S2 cells to be early and late replicating [34], for Fab-7, Mcp, bxd and bx PREs and for homeotic gene promoters (Figure 2B, Figure S2D). As an internal control we used a unique region of the mitochondrial genome, expected to replicate throughout the cell cycle [see Materials and Methods for details]. Our analysis showed that repressed BX-C PREs replicate during late S phase in control cells, being enriched in the latest S-phase fraction (Figure 2B). In Pcg-depleted cells where PREs and homeotic genes were no longer repressed, late replication was maintained (Figure 2B, Figure S2D), suggesting that single Pcg proteins do not have a strong influence on BX-C replication programs. This result was confirmed by statistical analysis, in which we calculated the ratio between the amounts of amplified products in the earliest (f1) and the latest (f4) S-phase fraction (Figure S2E). Interestingly, abdA and Ubx promoters were late replicating in control cells, while the 5' region of the AbdB gene, being situated in a transition region of replication timing (Figure S3), shows an intermediate timing of replication, presenting the highest BrdU incorporation in f2 and f3 S-phase fractions (Figure S2D). We have previously shown that reduced levels of the single PRC1 subunit Polycomb (PC) determines minor changes in higher-order structures [13]. Similar results were obtained in mammals [41,42]. In order to investigate to what extent BX-C higher-order structures are affected by depletion of different Pcg proteins, we used Chromosome Conformation Capture (3C) analysis to monitor DNA/DNA interactions between Pcg targets. Comparison of crosslinking frequencies in depleted versus control cells reveals that PRE/promoter interactions were affected more in PC depleted than in E(z) and PHO depleted cells, but the overall BX-C structure was maintained upon single Pcg knock-down (Figure 2C), reinforcing and extending previous reports [13]. Notably, E(z) depletion caused an increased frequency of some interactions between abdA promoter and PREs (Figure 2C, right panel). Taken together, these data indicate that transcriptional reactivation of homeotic genes after depletion of single Pcg subunits, only partially impairs BX-C three-dimensional structure and it is not sufficient per se to change the replication timing.

Simultaneous depletion of multiple subunits of Pcg protein complexes determines changes of BX-C transcription, replication timing, and high-order structures

We went on and performed simultaneous depletions of the PHO, E(z) and PC subunits. As shown in Figure S4A and S4B, mRNA and protein levels of targeted Pcg subunits were consistently reduced. As expected, in triple Pcg depleted cells we observed a transcriptional reactivation of homeotic genes one order of magnitude higher than in a single Pcg knock-down (Figure S4C). In addition, we found that transcription through PREs quantitatively correlates with homeotic gene reactivation (Figure S4D) being nearly ten fold for Fab-7, Mcp and bxd in respect to the GFP control. Strikingly, when we performed replication timing analyses in triple depleted cells, a clear anticipation of Fab-7, Mcp and bxd replication timing was observed, being enriched in f3 S-phase fraction after Pcg depletion (Figure 3A). Analysis done on two S phase fractions (Figure S4E) confirmed the above changes and identified the indicated PREs as mid replicating sequences, becoming statistically different from both early and late replicating sequences. Interestingly, each PRE was differently affected, with bx not susceptible to the triple Pcg protein depletion (Figure 3A, Figure S4E). Notably, this trend does not correlate with a higher degree of transcriptional reactivation (Figure S4D), suggesting again that transcription per se does not influence replication timing. We then measured replication timing of homeotic gene promoters and we found that only Ubx gene promoter showed anticipation in replication timing after triple Pcg depletion (Figure 3B, Figure S4E).

We further analysed functional DNA/DNA interactions in triple Pcg depleted cells. Interestingly, 3C analysis revealed that,
Figure 2. Single PcG subunit depletion does not affect BX-C replication timing or higher-order structures. (A) Schematic representation of the Bithorax Complex (BX-C) including homeotic genes and characterized PREs. (B) Enrichment of BrdU labelled DNA in the four FACs sorted S-phase fractions as quantified by real time PCR with indicated primers in control cells (blue) and in cells treated with PC-dsRNA, E(z)-dsRNA or PHO-dsRNA (pink, purple and light blue, respectively). The relative abundance of locus-specific DNA in each cell-cycle fraction is calculated from the average values of threshold cycle (Ct), normalized to the Ct of a mitochondrial sequence as internal control (Ctmit), using the following equation:

\[
\frac{2^{(\text{Ct}_\text{mit} - \text{Ct}_\text{Fj})}}{\sum_{i=1}^{n} 2^{(\text{Ct}_\text{mit} - \text{Ct}_\text{Fj})}} \times 0.10, \text{ where } i \text{ is one of the four fractions. All data points were generated from an average of six independent experiments. Standard error of the mean is indicated. (C) Crosslinking frequencies, normalized to the internal control, between the fixed fragments spanning two homeotic promoters (AbdB and abdA) and BX-C PREs. Crosslinking frequencies observed in GFP-dsRNA treated cells are shown in blue while data obtained in treated cells with PC-dsRNA, E(z)-dsRNA or PHO-dsRNA are in pink, purple and light blue, respectively. Standard error of the mean is indicated. All data points were generated from an average of four independent biological replicates. Two-tailed t-test was applied for statistical analysis. Asterisks indicate statistically relevant differences: *(p < 0.05).* P values: PC-dsRNA treated cells: AbdB/p/bxadP = 0.04, AbdB/p/bxP = 0.03 \times 10^{-1}; abdA/Fab7P = 0.01; abdA/bxP = 0.01 \times 10^{-2}; E(z)-dsRNA treated cells: AbdB/p/bxP = 0.06 \times 10^{-1}; abdA/Fab7P = 0.07 \times 10^{-1}; abdA/mcpP = 0.04; PHO-dsRNA treated cells AbdB/p/bx: P = 0.02 \times 10^{-1}; abdA/bxP = 0.09 \times 10^{-1}. doi:10.1371/journal.pgen.1003283.g002
control higher-order chromatin structure formation, their role in replication structure and replication timing regulation remains to be elucidated. Among these, cohesins have been shown to co-localize with ORC binding sites [59,60] and to influence replication origin choice and density through the regulation of specific chromatin loops [59]. Previously, we and others reported that PcG proteins are key regulators of higher-order chromatin structures and that condensins complex components and Topoisomerase II take part in PRE and BX-C silencing function [11–13,41,61]. Moreover, depletion of the mammalian PC homologue M33 determines a switch of the INK4a/ARF locus replication timing [62], suggesting a role for PcG proteins in the regulation of replication programs at their targets.

However, the interplay between PcG-mediated silencing, higher-order structures and control of replication timing in Drosophila has not been elucidated. We first addressed this issue on a genome-wide level finding that H3K27me3 enriched and PRC2 bound sequences replicate later than their unbound counterparts (Figure 1A, 1B). Surprisingly, the same is not true for PRC1 or PhoRC target sites, where the binding of PcG proteins does not significantly correlate with genome-wide replication timing distributions (Figure 1G–1E), highlighting a difference between PRC1, PhoRC and PRC2 complexes at a genome-wide scale. Notably, replication timing is more correlated to PRC1 binding at transcribed TSSs than at silenced TSSs (Figure 1D–1F).

To investigate the possible contribution of PRC1 and other PcG complexes at repressed genes, we decided to analyse in detail the functional interplay between PcG-dependent epigenetic signatures and maintenance of replication programs at one of the major PcG targets: the Drosophila BX-C. After depletion of single PcG proteins in S2 cells, we found reactivation of BX-C genes and their related PREs (Figure S2A). Interestingly, depletion of PHO protein causes only a mild effect on homeotic genes transcription, although this protein has been reported to be required for recruitment of PRC1 and 2 [6]. This suggests that multiple additional mechanisms of recruitment, such as ncRNAs or other protein partners, may act simultaneously at PcG target loci, as described particularly in mammalian cells (for a review, see [4]). Interestingly, also 3C analysis in single PcG depleted cells reveals a different response to E(z) depletion with respect to PC and PHO depletions. In particular, in PC and PHO depleted cells we could see no change or the small reduction of some PRE-PRE and PRE-promoter BX-C interactions, while in E(z) depleted cells even an increase in specific crosslinking frequencies for some interactions was observed (Figure 2). Moreover, both 3C and replication timing analysis in single PcG depleted cells (Figure 2) show that transcription per se cannot dramatically perturb the BX-C higher-order structures neither change the timing of replication. This result is in agreement with recent findings in mammalian cells showing that spatial chromatin organization and replication timing are not a direct consequence of transcription [50].

Conversely, simultaneous depletion of components of the three major PcG complexes (PhoRC, PRC2 and PRC1) determines major changes in BX-C transcription as well as in higher-order structure and an anticipation in replication timing (Figure 3; Figure S4C–S4E), suggesting that PcG proteins act synergistically on three-dimensional structures and on replication program maintenance. In line with these findings, in recovered cells, BX-C topological structure and PRE replication timing are indistinguishable from controls (Figure 3, Figure S4), suggesting that the observed variations are not sufficient to determine a stable epigenetic switch. In this context the more stable contacts might hamper an irreversible disruption of the three-dimensional BX-C structure (Figure S4F).

Our findings were further confirmed by the comparison of two different cell lines: S2 and S3 that differ for their embryonic origin. We have previously shown that in S3 cells, active transcription of AbdB is associated with different topological conformation of the locus, where AbdB gene and its regulative PREs are topologically separated from the other repressed and clustered epigenetic elements of the locus [13]. We found that distinct chromatin structures in S2 and S3 are associated with different replication timings (Figure 4, Figure S5), thus confirming that these epigenetic parameters vary in parallel.

Our analysis, in line with recent observations [50,63,64] indicate that the genome may be organized into distinct structural and functional domains in which DNA regions that stay together replicate together as a stable unit for many cell generations irrespective of single gene transcription state. It was shown that major adjustments of chromatin higher-order structure and replication program are necessary for a correct differentiation and are required for reprogramming of cell identity [65,66]. The high stability of higher-order chromatin structures and replication programs can explain one of the underlying molecular basis counteracting cellular reprogramming and representing an epigenetic barrier [20] and PcG complexes may play an important role in the maintenance of this barrier. Our data show that correct levels of PcG components can fully restore silencing, higher-order structures and late replication timing at derepressed BX-C gene loci. Of course, we do not exclude that additional functions may be involved in the maintenance of these epigenetic parameters either at the BX-C and in the rest of the genome. For example, other factors involved in the regulation of higher-order chromatin structure, including the insulator CTCF protein, condensin complex subunits and Topoisomerase II, were shown to have a role in PcG-mediated gene silencing function [61,67]. Interestingly, Topoisomerase II has been shown to be required for a global resetting of replication organization in the context of somatic cell reprogramming [65]. Hence, a deeper understanding of the functional interplay between epigenetic mechanisms modulating the stability of higher-order chromatin structure and replication program will be crucial to unravel the molecular basis of maintenance of cell identity and its metastability in developmental and pathogenic processes.
Figure 4. Different replication timing profiles at BX-C PREs in S2 and S3 cell lines. (A) Cell-cycle profiles of *D. melanogaster* S2 cells (top) and S3 cells (bottom) after BrdU pulse labelling and propidium iodide staining. Cells between the G1 and G2 peaks are in S phase. Gates indicate the sorted fractions: f1 represents the earliest and f4 the latest S-phase fraction. (B, C, D) Enrichment of BrdU labelled DNA in the four FACS sorted fractions as quantified by real time PCR with primers specific for early and late replication timing controls (B), PREs (C) and homeotic gene promoters (D) in S2 and S3 cell lines. All data points were generated from an average of at least four independent experiments. Standard error of the mean is indicated.

doi:10.1371/journal.pgen.1003283.g004

Materials and Methods

The following public available data sets in S2 cells were used for bioinformatic analyses (accession numbers are indicated in parenthesis). The genome-wide replication timing profile (GSM336376) was generated in [25] using Affymetrix tiling arrays. Pre-processed and normalized data were used for the analysis (E(z) (modENCODE_294), H3K27me3 (modENCODE_298) and PHO (modENCODE_3894). ChiP-chip profiles were downloaded from the modENCODE data warehouse as wiggle files containing smoothed M-values. PRCl core components (PC, Psc and Ph) and Trx ChiP-seq profiles as well as RNA-Seq gene expression profile were generated in [6] (GSE24521) and processed starting from fastq files.

Definition of unique TSSs

Bioinformatic and statistical analyses have been performed using R (R Development Core Team, R: A Language and Environment for Statistical Computing, 2011, Vienna, Austria), Bioconductor and custom scripts. Ensembl gene annotations were pre-processed to obtain a set of unique Transcription Start Sites (TSSs, n = 9268). A TSS was defined as unique if no other TSS within a 2 kb window centered on it was annotated. The 1 kb window centered on a given unique TSS was used to define its promoter region. The replication timing of each promoter was computed as the median replication timing of the probes in the tiling array entirely mapping within the promoter region. Promoters with less than 10 mapping probesets were discarded (n = 67) in order to increase the robustness of replication timing estimates, rendering a set of 9201 unique promoters (simply referred to as promoters in the following) further considered for the analysis. Promoters were classified in transcriptional activity classes (0–4) according to the expression level of the corresponding genes. Non-transcribed promoters were assigned to class 0, whereas transcribed promoters were classified according to expression level quartiles (classes 1–4). Transcriptional classes 0 and 1 were considered as inactive promoters (OFF) whereas classes 2–4 defined active promoters (ON).

Computing enrichments at promoters

PRCl core components and Trx enrichments as well as RNA expression values at promoters were computed as described in [6]. H3K27me3, E(z) and PHO enrichments at promoters were estimated as the median smoothed M-value of probes entirely mapping within the promoters. Promoters significantly enriched for a given feature were defined using the following conservative approach based on the estimation of the genome-wide distribution of probe levels. First, a Gaussian Mixture Model (GMM) was fit to genome-wide smoothed M-values X. This is equivalent to say that the distribution of X was modelled as a mixture of two univariate Gaussian components

\[
p(X|\Theta) = \frac{1}{2} N_1(X|\mu_1,\sigma_1^2) + \frac{1}{2} N_2(X|\mu_2,\sigma_2^2) = \sum_{k=1}^{2} \frac{1}{2} N_k(X|\mu_k,\sigma_k^2)
\]

where \(N_1\) is the distribution of probe values in non-enriched regions and \(N_2\) is the distribution of probe values in enriched regions. Second, the parameters vector \(\Theta = \{\mu_1,\mu_2,\sigma_1^2,\mu_2,\sigma_2^2\}\) was estimated using a Maximum Likelihood approach via Expectation Maximization. Then, Bayesian inference was used to compute posterior probabilities for each individual probe. These can be viewed as the responsibility that component \(k\) takes in explaining the probe value. Each probe was then classified according to a Maximum a Posteriori (MAP) criterion, namely it was assigned to the class that maximizes the posterior probability. Finally, a promoter was called significantly enriched for a given feature if at least 80% of the probes mapping within the promoter region were assigned to class \(k = 2\) meaning that overall probe levels are consistently more likely to originate from an enriched region. Notice that this choice leads to a rather conservative estimate of the number of significantly enriched promoters.

Bootstrap and weighted bootstrap

Given a set of promoters, the percentile confidence interval for their mean replication timing was computed using nonparametric bootstrap [68]. A resampling depth of \(10^4\) and a significance level \(\alpha = 0.025\) were used for all the analyses. The same parameters were applied for the weighted bootstrap with importance weights assigned to each promoter depending on its transcriptional activity class (ON/OFF) as inversely proportional to the cardinality of the class (i.e. the number of promoters belonging to the class).

Cell cultures

Drosophila embryonic S2 cells were grown at 25°C in serum-free insect culture medium (HyQ SFX; Hyclone, Logan, UT) supplemented with penicillin/streptomycin. *Drosophila* embryonic S3 cells were grown at 25°C in Schneider’s medium (Gibco#11720-034) supplemented with penicillin/streptomycin.

RNAl

Exonic fragments of 600 bp, 1400 bp, 658 bp or 810 bp, respectively, from *Gfp*, *Pho* or *E(z)* genes, were amplified by PCR, creating T7 polymerase binding sites for the transcription of genes, were amplified by PCR, creating T7 polymerase binding sites for the transcription of

\[
X = \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}\right)
\]

where \(\Phi_{X}\) is a diagonal matrix with elements \(\Phi_{X}(i) = \text{diag}(X_{i})\) and \(\Phi_{Y}\) is a three column vector representing the latest S-phase fraction.
fixed with drop-by-drop addition of 5 ml of 70% cold ethanol and incubated for 1 h on ice. Cells were then washed with PBS, resuspended in PBS/RNase A (1 mg/ml) 30 min at 37°C followed by addition of Propidium Iodide (20 μg/ml) and incubated 30 min in the dark at 4°C. On the basis of DNA content, cells were sorted into different S phase fractions using four selective gates. Equal numbers of cells from each cell cycle fraction (100,000) were sorted (using a MoFlo, Coulter) into microcentrifuge tubes containing lysis buffer (50 mM TrisHCl pH 8; 10 mM EDTA; 0.8% SDS; supplemented with 0.2 mg of proteinase K per ml). The samples collected by FACS were processed for replication timing analysis as previously described [70]. The preparations were analyzed by real-time PCR. The relative abundance of locus-specific DNA in each cell-cycle fraction was calculated from the average values of threshold cycle (Ct), normalized to the Ct of a unique mitochondrial sequence as internal control, using the following equation:

\[\frac{(2^{\text{(-Ct(F)})}} - \text{Ct(F)})}{\sum_{i=1}^{4} 2^{\text{(-Ct(F)}}) - \text{Ct(F))}} \times 100, \]

where i is one of the four fractions. All data points were generated from an average of six independent experiments. Primer sequences:

- CGTTGCCAGTG
- bx-low 5 9
- CAAGCGACGG
- CACTTTGGTTCTG
- bx-up 5 9
- CAAAACCA
- GAATTC
- CCAATAGTCTG 5 9 3
- CAATTACAC
- GCGCGA
- TGGTTCGGCTGGC
- 5

protein extraction and Western blot analyses

Total proteins were prepared by resuspended 2 x 10^6 S2 cells in extraction buffer (50 mM TrisHCl pH 7.6; 0.13 M NaCl; 5 mM EDTA; 16 Protease Inhibitors; 1% Triton X-100). Three pulses of 10 sec sonication at 30% amplitude were performed to allow dissociation of protein from chromatin and solubilization. Extracts were analysed by SDS-PAGE using an 8% gel (37:5:1 Acryl/Bis Acrylamide).

Antibodies

Antibodies against PHO and E(z) were kindly provided by J. Muller. Actin (Santa Cruz I-19 sc-1616).

Supporting Information

Figure S1 Gene expression is not the only determinant of replication timing. (A) Weighted bootstrap distributions of mean replication timing for H3K27me3 significantly enriched promoters (orange) and non-enriched promoters (light blue). See Material and Methods for details. Percentile confidence intervals (z = 0.025) are indicated with dashed vertical lines. (B) Promoters have been binary classified according to PRC1 binding in PRC1 non-bound (+) and bound (+) promoters (represented in light blue and orange, respectively). Among PRC1 bound promoters, the fraction of promoters co-bound by Trx (+(+)) Trx+ is shown in gray. (TIF)

Figure S2 Depletion of single PcG subunits differentially affects BX-C transcription. (A) Log scale quantification by real time-PCR of transcript levels, relative to GAPDH, of the BX-C homeotic genes (left panel) and PRE transcripts (right panel) in cell treated with PC-dsRNA (pink) E(z)-dsRNA (purple), PHO-dsRNA (light blue) normalized to GFP dsRNA treated cells used as control, represented in blue. All data points were generated from an average of at least four independent experiments. Standard error of the mean is indicated. (B) Western blot of total protein extracts showing the amount of PcG proteins in cells treated with dsRNA against PC, E(z) and PHO RNA or against GFP as control. Actin was used as a loading control. (C) Cell-cycle profile of D. melanogaster S2 control and depleted cells after BrdU pulse labelling and propidium iodide staining. Cells between the G1 and G2 peaks are in S phase. Gates indicate the sorted fractions: f1 represents the earliest and f4 the latest S-phase fraction. (D) Enrichment of BrdU labelled DNA in the four FACS sorted fractions as quantified by real time PCR with primers specific for the three homeotic gene promoters (AbdBA, abdA and Ubx). The
Epigenetic Regulation of BX-C Replication Programs

relative abundance of locus-specific DNA in each cell-cycle fraction is calculated from the average values of threshold cycle (Ct), normalized to the Ct of a mitochondrial sequence as internal control (Ctmit), using the following equation:

\[
(2^{-\Delta(Ct)(Ctmit)})^{100}, \text{ where } i \text{ is one of the four fractions. (E) Replication timing of PREs and homeotic genes as measured by quantitative RT-PCR. Data obtained from GFP-dsRNA-treated cells are shown in blue while data obtained in cells treated with PC-dsRNA, E(z)-dsRNA or PHO-dsRNA are in pink, purple and light blue, respectively. Ratios between the amplified products in early and late S phase, using the following equation: } 2^{-\Delta(Ct)(Ctmit/2)}, \text{ are shown. All data points were generated from an average of at least four independent experiments. Standard error of the mean is indicated. Two-tailed t-test was applied for statistical analysis. Asterisks indicate statistically relevant differences between PREs and early and late replicating control sequences (\(\alpha = 0.05\)). P values (comparison with late replicating control): Late Ctrl/Fab7 \(P = 0.07 \times 10^{-2}\); Early Ctrl/Mcp \(P = 0.03 \times 10^{-2}\); Late Ctrl/bxd \(P = 0.02 \times 10^{-2}\). P values (comparison with early replicating control): Early Ctrl/Fab7 \(P = 0.04 \times 10^{-3}\); Early Ctrl/Mcp \(P = 0.07 \times 10^{-3}\); Early Ctrl/bxd \(P = 0.05 \times 10^{-3}\). Early Ctrl/Ubxp \(P = 0.06 \times 10^{-2}\). (F) Crosslinking frequency, normalized to the internal control, between two homeotic gene promoters (AbdB and abdA) and their functional PREs (Fab7 and Mbp, respectively) and between Fab7/Mcp and bxd/bx PREs. (G) Cell count of GFP-dsRNA-treated cells (blue) and PC, E(z), PHO-dsRNA treated cells (orange) after each one of the three rounds of transfection. Standard error of the mean is indicated. (H) Enrichment of BrdU labelled DNA in the four FACS sorted fractions as quantified by real time PCR with primers specific for PREs and controls in GFP-dsRNA treated cells after recovery. (TIF)

Figure S3 Different epigenetic signatures and replication timing profiles in S2 and S3 cell lines. (A) Log scale quantification by real time-PCR of transcript levels, normalized to GAPDH, of the BX-C homeotic genes (left panel) and PRE transcripts (right panel) in S3 cells (violet) compared to S2 (blue). All data points were generated from an average of at least three independent experiments. Standard error of the mean is indicated. (B) In S2 cells, the BX-C locus adopts a condensed structure in which all the Polycomb group (PCG)-bound elements are interacting together. In S3 cells, the PRE-promoter interaction, in the AbdB domain, is lost, whereas the rest of the BX-C retains its clustered conformation. (C) Replication timing of PRE as measured by quantitative RT-PCR in S2 cells (blue) and in S3 cells (violet). Ratios between the amplified products in early and late S phase, using the following equation: \(2^{-\Delta(Ct)(Ctmit/2)}\) are shown. We amplified positive controls for the early and late S phase and the late replicating control sequence; \(\alpha = 0.05\). P values (comparison with early replicating control): Early Ctrl/abdAp \(P = 0.05 \times 10^{-2}\); Early Ctrl/bxd \(P = 0.1 \times 10^{-2}\); Early Ctrl/bx \(P = 0.2 \times 10^{-2}\); Early Ctrl/abdAp \(P = 0.2 \times 10^{-2}\); Early Ctrl/Ubxp \(P = 0.2 \times 10^{-2}\); PHO-dsRNA-treated cells: Early Ctrl/Fab7 \(P = 0.01 \times 10^{-2}\); Early Ctrl/Mcp \(P = 0.02 \times 10^{-2}\); Early Ctrl/bxd \(P = 0.02 \times 10^{-2}\); Early Ctrl/bx \(P = 0.02 \times 10^{-2}\); Early Ctrl/abdAp \(P = 0.02 \times 10^{-2}\); Early Ctrl/Ubxp \(P = 0.02 \times 10^{-2}\); PHO-dsRNA-treated cells: Early Ctrl/Fab7 \(P = 0.01 \times 10^{-2}\); Early Ctrl/Mcp \(P = 0.01 \times 10^{-2}\); Early Ctrl/bxd \(P = 0.01 \times 10^{-2}\); Early Ctrl/bx \(P = 0.01 \times 10^{-2}\). (TIF)

Figure S4 Multiple PcG depletion causes substantial homeotic genes and PRE transcripts derepression and changes in replication timing. Data obtained in control cells are shown in blue, data obtained in cells treated with dsRNA against PC, E(z) and PHO and in recovered cells are in orange and violet, respectively. (A) Quantification by real time-PCR of transcript levels, normalized to GAPDH, of PcG mRNA. (B) Western blot of total protein extract showing the amount of PcG proteins in control cells, in cells depleted for PC, E(z) and PHO mRNA (left panels) and in recovered cells (right panels). Actin was used as a loading control. (C, D) Quantification by real time-PCR of transcript levels, normalized to GAPDH, of BX-C homeotic genes (C) and PRE transcripts (D). Data were generated from an average of at least five independent biological replicates. Standard error of the mean is indicated. (E) Replication timing of PREs and homeotic genes as measured by quantitative RT-PCR. Ratios between the amplified products in early and late S phase, using the following equation: \(2^{-\Delta(Ct)(Ctmit/2)}\) are shown. All data points were generated from an average of at least four independent experiments. Standard error of the mean is indicated. Two-tailed t-test was applied for statistical analysis. Asterisks indicate statistically relevant differences between PREs and early and late replicating control sequences (\(\alpha = 0.05\)). P values (comparison with late replicating control): Late Ctrl/Fab7 \(P = 0.07 \times 10^{-2}\); Late Ctrl/Mcp \(P = 0.03 \times 10^{-2}\); Late Ctrl/bxd \(P = 0.02 \times 10^{-2}\); Late Ctrl/Ubxp \(P = 0.06 \times 10^{-2}\). P values (comparison with early replicating control): Early Ctrl/Fab7 \(P = 0.04 \times 10^{-3}\); Early Ctrl/Mcp \(P = 0.07 \times 10^{-3}\); Early Ctrl/bxd \(P = 0.05 \times 10^{-3}\); Early Ctrl/Ubxp \(P = 0.06 \times 10^{-2}\). (F) Crosslinking frequency, normalized to the internal control, between two homeotic gene promoters (AbdB and abdA) and their functional PREs (Fab7 and Mbp, respectively) and between Fab7/Mcp and bxd/bx PREs. (G) Cell count of GFP-dsRNA-treated cells (blue) and PC, E(z), PHO-dsRNA treated cells (orange) after each one of the three rounds of transfection. Standard error of the mean is indicated. (H) Enrichment of BrdU labelled DNA in the four FACS sorted fractions as quantified by real time PCR with primers specific for PREs and controls in GFP-dsRNA treated cells after recovery. (TIF)

Acknowledgments

We thank Luca Battistini and Giovanna Borsellino for providing lab space and funding to perform the work done by MDB, Gabriella Ruocco and Maria Teresa Cencioni for technical support at FACS. We thank J. Muller for kindly providing antibodies that have been essential for this study. We thank Daniel Endler and Cem Sievers for fruitful discussion. We are grateful to Beatrice Bodega, Elisa Cesarini, and all members of the Orlando’s lab for stimulating discussions and constructive criticisms.

Author Contributions

Conceived and designed the experiments: FLS CL FC RP VO. Performed the experiments: FLS CL FC. Analyzed the data: FLS CL VO. Contributed reagents/materials/analysis tools: MDB. Wrote the paper: FLS CL FC RP VO.
References

1. Hiratani I, Gilbert DM (2009) Replication timing as an epigenetic mark. Epigenetics 4: 93–97.
2. Lanzuolo C, Orlando V (2012) Memories from the Polycomb Group Proteins. Annu Rev Genet. 46: 249–273.
3. Mihaly J, Mishra KK, Karch F (1998) A conserved sequence motif in Polycomb response elements. Mol Cell 1: 1063–1066.
4. Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12: 123–135.
5. Enderle D, Beisel C, Stadler MB, Gerstung M, Athri P, et al. (2011) Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res 21: 216–226.
6. Wang L, Brown JL, Cao B, Zhang Y, Kassis JA, et al. (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14: 637–646.
7. Czermin B, Meli R, McCabe D, Seitz V, Imhof A, et al. (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity essential for de novo histone methylation. Mol Cell 10: 2041–2054.
8. Kuzmichev A, Nishioka K, Erijmen-Bromage H, Tempst P, Reargent D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2083–2095.
9. Mikkola M, Harkonen P, Lindqvist L, Vartiainen E, Shukla V, et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.
10. Cao R, Wang L, Wang H, Xia L, Erijmen-Bromage H, et al. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.
11. Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, et al. (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin manip. Proc Natl Acad Sci U S A 108: 2994–2999.
12. Comet I, Schuettengruber B, Sexton T, Cavalli G (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin manip. Proc Natl Acad Sci U S A 108: 2994–2999.
13. Lanzuolo C, Roure V, Decker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome-higher-order structures in the bithorax complex. Nat Cell Biol 9: 1167–1174.
14. Berenquer R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replication factories. Cell 125: 1297–1308.
15. Enderle D, Beisel C, Stadler MB, Gerstung M, Athri P, et al. (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Genome Res 21: 216–226.
16. Kitamura E, Blow JJ, Tanaka TU (2006) Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 125: 1297–1308.
17. Perry P, Sauer S, Billon N, Richardson WD, Spivakov M, et al. (2004) A functional assay for the transection of eukaryotic replication origins in vivo. Nat Genet 38: 700–705.
18. Casas-Delucchi CS, van Bemmel JG, Haase S, Herce HD, Nowak D, et al. (2010) Accessibility of Polycomb sites. EMBO J 29: 1743–1753.
19. Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, et al. (2012) Polycomb Group Proteins Regulate the Organization of Chromosome Replication Sites. Mol Cell 43: 537–549.
20. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, et al. (2012) Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31: 3678–3690.
21. Hassan-Zadeh V, Chalika S, Cadoret JC, Ma MK, Boggetto N, et al. (2012) USF binding sequences from the H4S insensitive element impair early replication timing on a vertebrate replicator. PLoS Biol 10: e1001277. doi:10.1371/journal.pbio.1001277
22. Li J, Santoro R, Koberna K, Grumanti I (2003) The chromatin remodeling complex NuRD controls replication timing of rDNA repeats. EMBO J 24: 120–127.
23. Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, et al. (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin manip. Proc Natl Acad Sci U S A 108: 2994–2999.
24. Perry P, Sauer S, Billon N, Richardson WD, Spivakov M, et al. (2004) A functional assay for the transection of eukaryotic replication origins in vivo. Nat Genet 38: 700–705.
25. Jorgensen HF, Azuara V, Amoils S, Spivakov M, Terry A, et al. (2007) The transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 21: 164–174.
26. Hiratani I, Takebayashi S, Lu J, Gilbert DM (2009) Replication timing and transcriptional control: beyond cause and effect–part II. Curr Opin Genet Dev 19: 142–149.
27. Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128: 993–1004.
28. Brookes E, de Santiago I, Heberstein D, Morris KJ, Carroll T, et al. (2012) Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs. Cell Stem Cell 10: 157–170.
29. Beisel C, Busess A, Round-Quispine IM, Koch B, Schmitz S, et al. (2007) Comparing active and repressed expression states of genes controlled by the Polycomb/Trithorax group proteins. Proc Natl Acad Sci U S A 104: 16615–16620.
30. Santos J, Pericar CE, Di Gregorio A, Speace T, Alder O, et al. (2010) Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelating as an important early event in the developing mouse embryo. Epigenetics Chromatin 3: 1.
31. Takebayashi S, Dileep V, Ryba T, Donna JH, Gilbert DM (2012) Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc Natl Acad Sci U S A 109: 12574–12579.
32. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, et al. (2012) Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31: 3678–3690.
33. Hiratani I, Takebayashi S, Lu J, Gilbert DM (2009) Replication timing and transcriptional control: beyond cause and effect–part II. Curr Opin Genet Dev 19: 142–149.
57. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, et al. (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20: 761–770.

58. Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, et al. (2010) Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011. doi:10.1371/journal.pgen.1001011

59. Guillou E, Barra A, Coulon V, Casado-Vela J, Rico D, et al. (2010) Cohesin organizes chromatin loops at DNA replication factories. Genes Dev 24: 2012–2022.

60. MacAlpine HK, Gordon R, Powell SK, Hartemink AJ, MacAlpine DM (2010) Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20: 201–211.

61. Lupo R, Breiling A, Bianchi ME, Orlando V (2001) Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol Cell 7: 127–136.

62. Agherbi H, Gausemann-Wenger A, Verthuy C, Chasson L, Serrano M, et al. (2009) Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS ONE 4: e5622. doi:10.1371/journal.pone.0005622

63. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, et al. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148: 458–472.

64. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, et al. (2012) Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome. Cell.

65. Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechal M (2005) Mitotic remodeling of the replicon and chromosome structure. Cell 123: 787–801.

66. Shufaro Y, Lachans-Kaplan O, Tzuberi BZ, McLaughlin J, Trounson A, et al. (2010) Reprogramming of DNA Replication Timing. Stem Cells 28: 443–449.

67. Holohan EE, Kwong C, Adryan B, Bartkuhn M, Herold M, et al. (2007) CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet 3: e112. doi:10.1371/journal.pgen.0030112

68. Efron BT, R. (1986) Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1: 54–75.

69. Breiling A, Turner BM, Bianchi ME, Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412: 651–655.

70. Azuara V (2006) Profiling of DNA replication timing in unsynchronized cell populations. Nat Protoc 1: 2171–2177.