Clinical diagnostic and treatment of COVID 19 of bilateral pneumonia: Case report

Otljanski A, Kipevska K

University Hospital of Surgery "SvNaumOhridski", Ss. Cyril and Methodius University, Faculty of Medicine, Skopje North Macedonia

INTRODUCTION

COVID 19 is a new type of viral infection emerged in Wuhan City, China, and genomic sequencing data of this virus, suggesting a novel CoV strain (2019-nCoV), which provokes different form of clinical manifestation, but the most often was severe acute respiratory syndrome CoV-2 (SARS-CoV-2). COVID-19 shows less severe pathogeneses compared to diseases caused by previously known human CoVs but with higher transmission competence. Asa result of this the number of confirmed cases continuously increasing globally.1,2,3

COVID-19 affects people in different ways. Most infected people will develop the heterogeneous of symptoms with mild to moderate illness and recover with or without hospitalization. The most common symptoms are fever, dry cough, tiredness, but there are other symptoms that develop in COVID-19 like conjunctivitis, a rash on skin, or discoloration of fingers or toes. Despite of clinical state some symptoms may be very serious like difficulty breathing or shortness of breath, chest pain, loss of speech or movement.4,5 The severity of COVID-19 symptoms can range from very mild to severe. There are no rules which people have only a few symptoms, some people may have no symptoms and others developed as worsened shortness of breath and pneumonia, about a week after symptoms start. People with comorbidities seems to be more like to develop mild or severe form of COVID-19.

COVID 19 pneumonia was first noticed at the end of 2019 in the patients in Wuhan, China. It causes atypical pneumonia compared to secondary bacterial infection.

CASE REPORT

A 55 years old patient was admitted to the hospital with the symptoms of cough and tiredness that started 7 days ago and difficulty breathing that started one day before coming to hospital. On admission the patient was subfebrile 37.5°C, blood pressure was 120/80mmHg, heart rate was 105/min, ECG was normal. Laboratory analyses on admission showed values of Hb 142g/l, Le 4.8, Lymph 1.7, CRP 136mg/L, CRP 136mg/L, LCT scan on lungs showed subpleural ground glass opacity bilateral predominantly in posterior segments.
Hemostatic parameters of the patient at admission were D-dimers 912 ng/mL, normal prothrombin time and normal partial thromboplastin time. Inflammatory markers were with the values of ferritin 760.89ug/L, interleukin 6 9.91pg/ml, procalcitonin 0.056ng/ml. PCR test was negative, but COVID antibodies showed high values of COVID 19 IgM 5.87 AU/ml and COVID 19 IgG 6.59 AU/ml.

Treatment – During the hospitalization of the patient we consulted infectious disease specialist and transfusiology specialist and they suggested treatment with meropenem, enoxaparin, favipiravir, intravenous corticosteroid and oxygen treatment with 5L/min. The dose they suggest are: Favipiravir in dosage of 1600mg first day and 600mg from day two to day five. Urbason was given in dosage 80+40mg 3 days, then 40+40mg 3 days, then only 40mg daily for four days.
On the third day of the treatment another antibiotic was given per os, moxifloxacin once a day. After fifth day of treatment patient showed significant improvement with saturation 92% on nasal mask oxygen 2l/min and without oxygen mask saturation 90%. We take laboratory analysis on fifth day and they showed Le 9.8, lymph 1.3, Tr 377, Fe 15.3, CRP 12.3, ferritin 745, d-dimers 933. After eight days of treatment saturation was 96% without nasal mask. Laboratory analysis on ten day of hospitalization was Le 8.9, Tr 372, lymph 2.2, Fe 20.4, CRP 1.9, D-dimers 862. We want to see the effect of treatment and we done new CT scan on the lungs which show the significant improvement on ground glass opacity and small fibroblastic changes.

The treatment with antibiotics and corticosteroids was finished after ten days.

After 15 days of treatment patient was discharge with recommendation of transfusiology for Amp. Enoxaparin 0.4 once a day for one more week. After 7 days of release he came in ambulance feeling much better, once a day for one more week. After 15 days of discharge, patient showed significant improvement with oxygen mask saturation 92%. We take laboratory analysis on fifth day and they showed Le 9.8, lymph 1.3, Tr 377, Fe 15.3, CRP 12.3, ferritin 745, d-dimers 933. After eight days of treatment saturation was 96% without nasal mask. Laboratory analysis on ten day of hospitalization was Le 8.9, Tr 372, lymph 2.2, Fe 20.4, CRP 1.9, D-dimers 862. We want to see the effect of treatment and we done new CT scan on the lungs which show the significant improvement on ground glass opacity and small fibroblastic changes.

The treatment with antibiotics and corticosteroids was finished after ten days.

After 15 days of treatment patient was discharge with recommendation of transfusiology for Amp. Enoxaparin 0.4 once a day for one more week. After 7 days of release he came in ambulance feeling much better, once a day for one more week. After 15 days of discharge, patient showed significant improvement with oxygen mask saturation 92%. We take laboratory analysis on fifth day and they showed Le 9.8, lymph 1.3, Tr 377, Fe 15.3, CRP 12.3, ferritin 745, d-dimers 933. After eight days of treatment saturation was 96% without nasal mask. Laboratory analysis on ten day of hospitalization was Le 8.9, Tr 372, lymph 2.2, Fe 20.4, CRP 1.9, D-dimers 862. We want to see the effect of treatment and we done new CT scan on the lungs which show the significant improvement on ground glass opacity and small fibroblastic changes.

DISCUSSION
In this article we present case of COVID-19 pneumonia, as a one of the manifestation of COVID-19 infection. Coronaviruses are a family of viruses that can cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) but in 2019, the world was attacked with a new coronavirus that originated in China.6,7

The virus is known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes is called coronavirus disease 2019 (COVID-19) and in March 2020, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic. This situation was new for every doctor in the world from aspect of diagnosis, treatment and complication from this pandemic. The first was note that people who are older have a higher risk of serious illness from COVID-19, people with existing chronic medical conditions like serious heart diseases, such as heart failure, coronary artery disease or cardiomyopathy, chronic obstructive pulmonary disease (COPD, Type 2 diabetes, obesity or severe obesity, cancer, weakened immune system etc). In our case with COVID 19 pneumonia we doneeficacy diagnosis, laboratory tests, CT scan on the lungs and complex treatment with follow up of patient after discharge and improvement the clinic state of patient.6,9,10

CONCLUSION
COVID 19 pneumonia was one of the form of COVID 19 infection. This form of treatments are focused on supportive care, often receiving oxygen therapy and antibiotics for prevention of secondary bacterial infection. In our case the treatment of hospitalized patient with COVID 19 bilateral pneumonia with antiviral medication, antibiotics, corticosteroids, oxygen and anticoagulation therapy, showed efficiency of treatment and stabilization of clinic state of patient.

REFERENCES
1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15; 395(10223):470-473.
2. Cate Wood. Infections without borders: a new coronavirus in Wuhan, China. Br J Nurs. 2020 Feb 13; 29(3):166-167.
3. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, D Bonilla-Aldana K, Rodriguez-Moreales AJ. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev. 2020 Jun 24; 33(4):e00028-20
4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15; 395(10223):497-506.
5. Cassella M, Rajnik M, Guomo A, Dulebohn SC, Raffaela Di Napoli Features, Evaluation, and Treatment of Coronavirus. StatPearls, October 4, 2020.
6. Seilbert FS, Toma D, Bauer F, Paniskaki K. Detection of SARS-CoV-2 pneumonia: two case reports. Journal of Medical Case Reports. 2020, volume 14, Article number: 242.
7. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brunink S, Schneider J, Schmidt ML, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020; 25(2).
8. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020 Apr 13
9. Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol. 2012 May; 68(5):479-503
10. Kollias A, Kyrakioudis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Br J Haematol. 2020 Jun; 189(5):846-847.