Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells

Minji Lee1,7, Eunmin Lee2,7, Seong Kyu Han3,7, Yoon Ha Choi2, Dong-il Kwon1, Hyobeen Choi3, Kwanghwan Lee3, Eun Seo Park2, Min-Seok Rha4, Dong Jin Joo5,6, Eui-Cheol Shin4, Sanguk Kim3,7✉, Jong Kyoung Kim2✉ & You Jeong Lee1✉

Invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT), and γδ T cells are innate T cells that acquire memory phenotype in the thymus and share similar biological characteristics. However, how their effector differentiation is developmentally regulated is still unclear. Here, we identify analogous effector subsets of these three innate T cell types in the thymus that share transcriptional profiles. Using single-cell RNA sequencing, we show that iNKT, MAIT and γδ T cells mature via shared, branched differentiation rather than linear maturation or TCR-mediated instruction. Simultaneous TCR clonotyping analysis reveals that thymic maturation of all three types is accompanied by clonal selection and expansion. Analyses of mice deficient of TBET, GATA3 or RORγt and additional in vivo experiments corroborate the predicted differentiation paths, while human innate T cells from liver samples display similar features. Collectively, our data indicate that innate T cells share effector differentiation processes in the thymus.

https://doi.org/10.1038/s41467-020-18155-8
Memory T cells are a diverse population that develops via multiple pathways \(^1,2\). Conventional or adaptive memory T cells develop as a result of foreign antigenic interactions, whereas human or mouse T cells respond to IL-7/IL-15 cytokines and self-antigens in the lymphopenic environment\(^3\). Alternatively, innate or innate-like T cells developmentally acquire a memory phenotype in the thymus expressing PLZF (encoded by Zbtb16), which reciprocally regulate the development of Eomes-expressing bystander memory T cells by secreting IL-4\(^4,5\). This category of memory T cells includes invariant natural killer T (iNKT), mucosal-associated invariant T (MAIT), and γδ T cells, that together represent abundant T cell subsets that migrate throughout the body and play important roles in early response to infection by a broad range of pathogens. However, it remains unclear how their effector differentiation is developmentally regulated in the thymus.

iNKT and MAIT cells have canonical TCRVα/β and biased usage of TCRVδ chains that recognize glycolipid or vitamin metabolites via CD1d and MR1, respectively\(^6\). The development of iNKT cells occurs via the lineage differentiation model, in which NKT1, NKT2, and NKT17 cells all develop from common progenitors\(^7,8\). In contrast, the development of MAIT cells has been described as a linear maturation model, in which CD24hi (stage 1) cells serially mature into CD24low (stage 2) and CD44hi (stage 3) cells\(^9\). Stage 3 MAIT cells include cells expressing Tbet or RORγt, and are designated as MAIT1 and MAIT17 cells, respectively. A third type of innate T cells, the γδ T cells, originate from double negative (DN) 2 or 3 thymocytes, and their transcriptional profiles based on their T-cell receptor (TCR) usage defined three distinct effector subsets secreting IFN-γ, IL-4, and IL-17\(^10\). The presence of analogous effector subsets of innate T cells suggests that they share common developmental programs, but previous studies were based on different developmental models and it was not possible to directly compare their thymic ontogenies.

In this report, we simultaneously analyze all three types of innate T cells to understand their developmental landscape at the clonal level using single-cell RNA sequencing (scRNA-seq) paired with TCR clonotyping analysis in the same cell. As a result, we define their analogous effector subsets and validate the presence of predicted developmental intermediates of these cells. In addition, we find that the development of innate T cells commonly occurs via lineage differentiation, with a highly diverse TCR repertoire of immature cells undergoing clonal selection and expansion. These features are also seen in human liver innate T cells, indicating that innate T cells have shared developmental program in mice and humans.

Results

Innate T cells have analogous effector subsets. We previously showed that iNKT cells differentiate into NKT1, NKT2, and NKT17 effector cells in the thymus, which express Tbet, Gata3, and RORγt with low, high, and intermediate levels of PLZF, respectively\(^8\). In this study, using the same combination of transcription factors, we defined the analogous effector subsets in MAIT cells, designated as MAIT1, MAIT2, and MAIT17, and in γδ T cells, designated as Tyδ1, Tyδ2, and Tyδ17 cells (Fig. 1a). MAIT1 and MAIT17 cells were previously reported\(^12\) and we further discovered PLZFhi MAIT2 cells. Previously, it was reported that MAIT2 cells were absent from CD44hi stage 3 MAIT cells\(^12\). However, we found that PLZFhi type 2 subsets of MAIT and γδ T cells were relatively enriched at stage 2 compared to type 1 or type 17 cells (Supplementary Fig. 1A). This finding is consistent with a recent report that showed the presence of MAIT cells expressing PLZF\(^13\). Tyδ1 and Tyδ17 cells have also been previously described\(^14\) and PLZFhi γδ T cells had been known as γδNKT cells as they express iNKT cell markers\(^15\). Here, we use the term Tyδ2 cells for consistency. Cytokine profiles of these subsets closely reflected their transcription factor expressions, and type 1, type 2, and type 17 cells secreted IFN-γ, IL-4, and IL-17, respectively, upon activation (Supplementary Fig. 1B, C). As previously showed CD44low and CD44hi NKT2 cells produced IL-17\(^16,17\), and this feature was also found in MAIT and γδ T cells (Supplementary Fig. 1D). We further analyzed the expression patterns of nine lineage specific markers and performed hierarchical clustering, which grouped together analogous effector subsets of NKT, MAIT, and γδ T cells (Fig. 1b).

In MAIT cells, it was shown that MAIT1 and MAIT17 cells are similar with NKT1 and NKT17 cells respectively\(^12\). In γδ T cells, TCR Vγ chain usage is known to be highly correlated with their developmental window, pattern of tissue localization, and cytokine secretion\(^17\). However, each Vγ chain generated multiple Tyδ subsets with age-related variations (Supplementary Fig. 1E, F) and we tested if Tyδ subsets showed transcriptional similarities with those of iNKT cells (Fig. 1c-e). For this, we sorted γδ T cells (Fig. 1f), and Tyδ1, Tyδ2, and Tyδ17 cells using surface markers as in Fig. 1b and performed bulk RNA-seq analysis (Supplementary Fig. 2A–C). For the analysis, we first defined 200–435 differentially expressed genes (DEGs) in each subset, and listed cytokines, receptors, and transcription factors in heat maps (Fig. 1c). When we performed principal component analysis (PCA) on 18,064 genes, the four subsets were distinctly separated by two principal components accounting for 85% of the total variance (Fig. 1d), indicating they are distinct entities. Then, we used a dataset that we previously obtained from iNKT subsets\(^18\) to assess if the analogous effector subsets of iNKT and γδ T cells (e.g., NKT1 and Tyδ1) had similar transcriptomic features. Specifically, we simulated random events of the overlapping number of DEGs between the iNKT and Tyδ subsets as depicted in Supplementary Fig. 3A and found that the number of genes commonly upregulated or downregulated in side by side comparisons was significantly higher than random expectation (Supplementary Fig. 3B). Using the same algorithm, we compared transcriptional similarities between iNKT cells, γδ T cells, T helper CD4 T cells and ILCs using a published dataset\(^19,20\) and found iNKT and γδ T cells have higher similarity compared to others, which is consistent with our previous report\(^18\) (Supplementary Fig. 3C). Additionally, the overlap of DEGs and the correlation of differential-expression patterns between subsets were significantly stronger for cytokines and receptors as compared to the other genes (Supplementary Fig. 3D, E). Volcano plots and heat maps also showed that genes reportedly associated with lineage differentiation\(^18\) were commonly shared between iNKT and Tyδ subsets (Supplementary Fig. 3F, G). We also defined differentially regulated pathways between iNKT and Tyδ subsets (Supplementary Fig. 4). Finally, PCA on the 120 functional genes using six different subsets from iNKT and γδ T cells showed that their transcriptional profiles were grouped according to their cytokines, receptors, and transcription factors rather than their antigen receptors (Fig. 1e). Collectively, these results indicate that the analogous effector subsets of iNKT and γδ T cells share significant number of genes, particularly for cytokines, receptors, and transcription factors. In addition, we analyzed CD24hi PLZF– RORγt– γδ T cells as immunoTyδ17 (Tyδ17i) cells, which were equivalent to CD24hi Vγ4+ or Vγ6+ γδ T cells (nomenclature of Heilig & Tonegawa\(^21\)). These cells were absent in iNKT or MAIT cells (Supplementary Fig. 5A), and using fate mapping reporter mice of Rorc and Il17a, we showed that RORγt expression is irreversible and only CD24low mature cells produce IL-17 (Supplementary Fig. 5B, C). We also analyzed the signature genes of Tyδ17i cells and found 349 DEGs to be specifically
Fig. 1 Innate T cells have analogous effector subsets. a Single-cell suspensions of 7-week-old BALB/c thymocytes were stained with PBS57 loaded CD1d tetramer, 5-OP-RU loaded MR1 tetramer, and anti-TCRγδ (GL3), and enriched for iNKT, MAIT, and γδ T cells respectively using MACS beads. Representative dot plots are shown and numbers indicate frequencies of cells in adjacent gates. Representative results of at least 10 independent experiments are shown. b Heat map shows log2 values of mean fluorescence intensities of cells expressing indicated markers analyzed by flow cytometry. Hierarchical clustering was made by Pearson correlation. Representative results of three independent experiments are shown. c Heat maps show expression patterns of cytokines, receptors, and transcription factors mapped to overexpressed genes in each Tyγδ subset. Expression patterns were quantified by column Z-scores of regularized log2-value of read counts. d Principal component analysis (PCA) plot shows subset distribution of Tyγδ subsets. Each dot represents a biological replicate. e PCA plot using 120 functional genes including cytokines, receptors, and transcription factors shows subset distribution of iNKT and γδ T cells. Each dot represents a biological replicate. f MAIT cells were enriched from Tcrd KO mice and analyzed for their subset profiles. Graph shows statistical analysis of number of MAIT subsets in indicated mice (n = 5 except analysis for CD24hi stage 1 MAIT cells (n = 3), right). Results are pooled from three independent experiment and numbers indicate frequencies of cells in adjacent gates (left). Each dot represents an individual mouse. Data are presented as mean ± SD. Unpaired two-tailed t-test was used. *P < 0.05, **P < 0.01. Source data are provided as a Source Data file.
upregulated in Tγδ17i cells compared to all the other Tγδ subsets (Supplementary Fig. 5D, E), indicating they are unique developmental intermediates of Tγδ17 cells.

The above similarities suggested that innate T cells might compete for thymic niches with one another; indeed, a previous report showed that MAIT cells expanded in BALB/c Cd1d−/− mice10. We additionally found that thymi of Tcrd−/− mice contained three times more MAIT cells (Fig. 1f), indicating that not only NKT cells, but also γδ T cells suppress the development of MAIT cells.

Collectively, these results indicate analogous effector subsets of innate T cells share lineage specific markers, and MAIT cells compete with both iNKT and γδ T cells for their thymic niche.

scRNA-seq defines developmental steps of innate T cells. To further analyze developmental pathways of innate T cells at the clonal level in an unbiased manner, we combined scRNA-seq and paired V(D)J sequencing. For this, we sorted total iNKT, MAIT, and γδ T cells from the pooled thymi of BALB/c mice (Supplementary Fig. 2D) and processed two independent pools of cells by mixing equal numbers of the three types of innate T cells in parallel to minimize batch effects. We demultiplexed cell types by combining the sex of mice (male iNKT and female MAIT) with their TCR information (Fig. 2a). From the two pooled replicates, a total of 8239 cells consisting of 3285 iNKT, 2287 MAIT, and 2667 γδ T cells passed our quality control criteria (Supplementary Table 1 and Supplementary Fig. 6), with an average of 3251 genes and 12,661 unique molecular identifiers (UMIs) per cell.

We used uniform manifold approximation and projection (UMAP) for dimensionality reduction to relate each innate T cell type in a shared low-dimensional representation (Fig. 2b)22. Reassuringly, cells from the two pooled replicates were evenly distributed, showing minimal batch effects (Supplementary Fig. 6D). The expression of Cd24a, Cd44, Zbtb16 (encoding PLZF), Rorc (encoding RORγt), Tbx21 (encoding TBET), and other markers defined immature populations and effector subsets (Fig. 2c). The annotated cell subtypes were confirmed by examining the signature scores of a subset unique genes of iNKT and γδ T cells that we obtained from our bulk RNA-seq and previous studies18,23 (Supplementary Fig. 7). To systematically characterize the subpopulation structures, we next applied unsupervised clustering to each type of innate T cell by excluding TCR genes. This TCR-independent transcriptome analysis yielded 22 clusters (Supplementary Figs. 8–10). We manually annotated each cluster type based on the signature scores of subsets and expression of lineage specific markers, and listed cluster-specific upregulated genes (Supplementary data 1).
In iNKT cells, we defined seven clusters, and annotated N1 as NKT progenitor (NKTp) cells, N2 as NKT1 cells, N3–N6 as MAIT2 cells, and N7 as MAIT17 cells (Supplementary Fig. 8). The signature gene set of CD24hi NKT0 cells had been analyzed before, and we detected 11 cells highly expressing them in CD24hi iNKT cells (Fig. 2d, left, and Supplementary Fig. 7B, top, far left). MAIT0 signatures were also highly expressed in CD24hi MAIT and γδ T cells, indicating that CD24hi immature innate T cells share common transcriptional signatures (Supplementary Fig. 7B, far left).

Likewise, we identified eight clusters within the MAIT cells, and annotated M1 as CD24hi CD44low stage 1, M2–M4 as CD24low CD44low γδ stage 2, and M5 and M6–M8 as CD24low CD44hi stage 3 MAIT1 and MAIT17 cells, respectively, consistent with the three-stage model of MAIT cell development and previous scRNA-seq analysis.25 (Supplementary Fig. 9A, B). In γδ T cells, we obtained seven clusters (G1–G7), as annotated in Supplementary Fig. 10A, B. We subdivided G6 into G6-1 and G6-2, according to their usage of TRGV4 and TRGV6, as the latter is known to originate from fetal thymus (Supplementary Fig. 10D, E). Genes including Pdcd1, Cxcr6, Zbtb16, and Clec4a, distinguished Vγ6 (G6-2) from Vγ4+ (G6-1) γδ T cells, and we validated these results by flow cytometry (Supplementary Fig. 10E). G7 cells included a small fraction of Thbx21+ Thy1 cells, and we separated them as G7-2 for mature Thy1 and other cells as G7-1 for immature Thy1 (Thy1i) cells (Supplementary Fig. 10C, F). Cd122 was highly expressed in the Thy1i population before the expression of Thbx21 or Cxcr3. Unfortunately, we were unable to find separate cluster corresponding to Thy2 cells. Because we have used only female MAIT cells, we further validated that male and female MAIT cells have no transcriptional difference using previous dataset that used both male and female mice (personal communication with Dr. Lantz, Supplementary Fig. 11).

Overall, the type 1 and 17 effector subsets of iNKT, MAIT, and γδ T cells were clustered together in the UMAP analysis (Fig. 2d), further supporting their developmental similarities and we defined their precursors in scRNA-seq analysis.

Trajectory analyses predict precursors of MAIT and γδ T cells. We further analyzed the potential precursor–progeny relationships between subpopulations of MAIT and γδ T cells by deriving a pseudo-temporal ordering of cells along differentiation trajectories using Palantir (Fig. 3) and Monocle 3 (Supplementary Fig. 12). In the MAIT cells, trajectory analysis showed three linear differentiation pathways: MAIT1 cells (M1–M3–M4–M5), MAIT2 cells (M1–M2), and MAIT17 cells (M1–M3–M6–M7–M8; Fig. 3a). Phenotypically, M5 was MAIT1 expressing Thbx21, and M8 was MAIT1 expressing Rorc and Ccr6 (Supplementary Fig. 9A, B). M4 was derived from M3 and upregulated type 1 signature genes, such as Nkg7 and Ccl5 (Supplementary data 1), indicating they are immature MAIT1 (MAITi1). M6 and M7 were localized close to NKTp in combined UMAP (Fig. 2d), and they shared their signature genes with NKTp (N1) (Fig. 3c and Supplementary Fig. 13), indicating they are immature MAIT17 (MAIT17i) cells. As M3 is a developmental intermediate of both MAIT1 (M5) and MAIT17 (M8), we designated them as common precursors of MAIT1 and MAIT17 (immature MAIT1/17 or MAIT1/17i). M2 MAIT cells were an immediate progeny of M1 cells that expressed GATA3 and PLZF (Supplementary Fig. 9A) and their phenotype is similar with that of MAIT1 cells expressing PLZF that identified previously.13 Although M2 MAIT cells did not co-localize with NKT2 cells in combined UMAP analysis (Fig. 2d, middle panels), they shared their signature genes mainly with NKT2 cells (Fig. 3c and Supplementary Fig. 13), suggesting that M2 corresponds to MAIT2 cells that we identified in flow cytometry (Fig. 1a). However, it requires further investigations to determine whether MAIT2 cells are terminally differentiated and their developmental relationships with NKTp cells. Overall, these trajectories defined all cells in a three-stage intra-thymic development model of MAIT cells, and we newly defined MAIT2 cells and developmental intermediates of MAIT1 and MAIT17 cells.

In the trajectory analysis of γδ T cells, two differentiation pathways were identified: G1–G2/G3–G4–G5–G6 for Thy17 cells, and G1–G2/G3–G7–G7-2 for Thy1i cells (Fig. 3b). Based on this trajectory, we annotated G1 as the most immature precursors of γδ T cells (Thy8p), G2 and G3 as common precursors of Thy1 and Thy17 cells (immature Thy1/17 or Thy1/17i), G4, and G5 as Thy17i cells (Fig. 3b and Supplementary Fig. 10A–C). The signature gene set of γδ+ cells and G25 was rather highly expressed in G2 (Supplementary Fig. 10A–C, H), suggesting Thy8p (G1) cells are earlier precursors than γδ+ cells. Consistent with this, G1 had more diverse TCR genotypes than G2–G7 (Fig. 3d).

To validate this finding, we performed fetal thymic organ culture experiment (FTOC) and found the generation of γδ25+ cells from γδ25+ cells, indicating γδ25+ cells are not the earliest precursors among TCRγδ+ cells (Supplementary Fig. 14). Vγ4+ cells were a major genotype of G4–G6, whereas Vγ6+ cells were only found in G6 as they are fetal-derived remnants (Fig. 3d). Vγ7+ cells are abundant in the intraepithelial layer of the small intestine with type 1 phenotype and were enriched in G1, G2/G3, and G7, consistent with the maturation pathways predicted in the trajectory analysis.

Overall, the scRNA-seq analysis predicted that MAIT and γδ T cells have common precursors into type 1/17 lineages, and immature type 1 and type 17 cells at stage 2 or CD24hi cells, respectively.

Innate T cells are clonally selected during development. To gain deeper insight into clonal expansion and selection of innate T cells during intra-thymic lineage differentiation, we evaluated the dynamic changes of TCR diversity along trajectories by defining TCR clonotypes as measured by V/J composition (CDR1 and CDR2) and CDR3 sequences (Fig. 4 and Supplementary data 2). For the analysis, we used the terms canonical and oligo-clonal to indicate common TCRα/β and TCRγδ usages of iNKT and MAIT cells as in Supplementary Figs. 8E and 9E and first analyzed CDR3 length distribution and sequence variations. CDR3a lengths of canonical TCRα chains of iNKT and MAIT cells were highly uniform and had little sequence variations (Fig. 4a, left and middle), emphasizing the critical role of CDR3a for antigen recognition of iNKT and MAIT cells.26–28 However, CDR3a lengths of non-canonical TCRs, and CDR3b lengths of both oligo-clonal and non-oligo-clonal TCRs were relatively diverse with substantial sequence variations. Interestingly, each Vγ chain had a narrow range of CDR3γ length distributions in the order of Vγ6, Vγ4, and Vγ7 with little sequence variations. However, CDR3b lengths were broadly distributed as previously reported, with significant sequence variations (Fig. 4a, right). Therefore, γ and δ TCRs are similar to canonical α and oligo-clonal β TCRs of iNKT and MAIT cells respectively in that TCR α/γ had less variation in CDR3 length and sequence compared to TCR β/δ.

Next, we analyzed the clonal repeats of innate T cells and surprisingly found they have highly oligo-clonal repeats (Fig. 4b–d and Supplementary Fig. 15 and Supplementary data 2). In iNKT cells, we detected 1898 distinct clonotypes from 2775 cells and found that 86% of clonotypes (or 59% of cells) had a single repeat, and 112 clonotypes (5.9%) were repeated more than three times (Fig. 4b, left). In MAIT cells, we detected 1760 clonotypes from 1892 cells: 95% of clonotypes (or 88% of cells) were single
Fig. 3 Trajectory analysis predicts precursors of MAIT and γδ T cells. a, b Far left: UMAP plots of MAIT (a) and γδ T cells (b) show schematic representation of trajectories. Left to far right: t-SNE plots of MAIT (a) and γδ T cells (b) colored by cell clusters (left), Palantir pseudotime (right), and Palantir branching probabilities (far right). c Projections of the MAIT clusters to iNKT clusters by scmap-cluster. d Heat maps illustrate log$_2$-transformed fold change of frequency of each TRGV/TRDV gene pair in a given cell cluster with respect to all γδ T cells.

repeats, and only 0.96% (17 clonotypes) was repeated more than three times (Fig. 4b, middle). In γδ T cells, we detected 1142 clonotypes from 1665 cells and 91% of clonotypes (or 63% of cells) were single repeats (Fig. 4b, right). Although four γδ TCR clonotypes repeated more than 50 times, the pattern of cumulative clonal repeat of γδ T cells was similar to that of iNKT cells, which were less than that of MAIT cells (Fig. 4c and Supplementary Fig. 15). Interestingly, MAIT cells had less clonotypic repeat (Fig. 4b and Supplementary Fig. 15) or overlap between clusters (Supplementary Figs. 8D, 9C, and 10G), compared to NKT and γδ T cells. These features indicate that MAIT cells are less efficient in their clonal proliferation compared to iNKT cells and γδ T cells, consistent with their paucity in the thymus. One possible explanation for such low clonal expansion of MAIT cells is that positively selected MAIT cells go through maturation processes without proliferation. However, this is unlikely as we and others observed a substantial level of Ki-67 expressions at least in stage 2 and 3 MAIT cells29 (Supplementary Fig. 16A), and cell cycle-regulated genes as well as lineage specific signatures were upregulated during maturation (Supplementary Fig. 17 and Supplementary Table 2). Consequently, the Shannon indexes for TCR diversity of MAIT cells were uniformly high, unlike NKT and γδ T cells (Fig. 4d). Considering that we collected MAIT cells from a total of 16 mice (two replicates using 8 mice each), this result indicates that individual mice had almost no overlap in their clonality. It is also unlikely that each mouse had unique clonal repeat, because when we separated two biological replicates of MAIT cells (eight mice each), there was more reduction in their clonal repeat (Supplementary Fig. 16B). In γδ T cells, the Shannon indexes for TCR clonotypes were the highest in Tγδp (G1, 0.98) cells, and lower in Tγδ17i (G4 and G5, 0.92) cells, and further decreased in Vy4+ Tγδ17i (G6-1, 0.73) cells (Fig. 4d, right), indicating that limited Tγδ17i clonotypes are selected after positive selection. As Vy6+ Tγδ17i cells are mostly fetal derived, which do not have a junctional diversity, their Shannon index was lower than that of Vy4+ Tγδ17i cells (0.34 vs. 0.73). We detected 21 clonotypes present both in Tγδ1i and Tγδ17i cells, which repeated total 359 times and occupied 21% of total cells and 58% of repetitive clones (Supplementary data 2). Figure 4e shows the distribution of most repetitive clonotype, which repeated 141 times in the tSNE plot. This feature indicates that identical TCR clonotype can generate diverse functional lineages although there are strong bias for their TCR usage in each Tγδ subset.
Next, we analyzed the non-canonical TCRα and/or non-oligoclonal TCRβ usage of iNKT and MAIT cells. In iNKT cells, 204 out of 1898 clonotypes (10.7%) or 253 out of 2775 cells (9.1%) had at least one of the non-canonical TCR Vα/Jα and/or non-oligoclonal TCR Vβ chains (Fig. 4f, left and Supplementary Figs. 8E−G). The most frequent non-canonical TCR of iNKT cells was Vα10/Jα50, which was previously reported in Jα18 KO BALB/c mice30 (Supplementary Fig. 8F). We detected three different clonotypes of them, which were all NKT2 cells and one of them repeated 15 times, accounting for a total of 18 cells out of 1898 analyzed iNKT clonotypes (Supplementary Table 1 and Supplementary data 2). In MAIT cells, 1107 out of 1760 (69%) analyzed clonotypes had canonical TCRs (Supplementary Fig. 9D−E). Interestingly, MAIT cells having one or more non-canonical TCRα and/or non-oligoclonal TCR Vβ chains were ~50% in M1, but decreased dramatically in MAIT1 (M5, 10%), MAIT2 (M2,
Fig. 4 Innate T cells are clonally selected during development. a Graphs show the distribution of CDR3α/γ (top) and CDR3β/δ (bottom) lengths of iNKT, MAIT, and γδ T cells. The relative amino acid composition is shown for the most common length by using the WebLogo application (hydrophilic, blue; neutral, green; and hydrophobic, black). b Bar plots show the ordered number of cells for each clonotype repeated 3 or more in iNKT (left), MAIT (middle), and γδ T cells (right), colored by each subset (iNKT) or their UMAP regions (MAIT and γδ T). Each bar represents an individual clonotype from Supplementary data 2. c Normalized number of clonotypes (y-axis) within each type of innate T cells (colored lines) plotted over the number of cells having the identical clonotype. d Line plots show the Shannon equitability indexes of clonotypes for the indicated subset of cell cluster in iNKT (left), MAIT (middle), and γδ T cells (right). e t-SNE plot of γδ T cells colored by cells having the most abundant single clonotype from Supplementary data 2. f Graph shows percentage of cells having non-canonical TCRα subchain for each subset of iNKT. g Venn diagram shows the non-canonical TCRα and/or non-oligoclonal TCRβ usage of MAIT cells. Numbers indicate number of cells with each combination. Graphs show distribution of total cells or MAITs with non-canonical TCRα or non-canonical TCRβ except 89 cells in Venn diagram in each MAIT cluster. Numbers in parentheses indicate total number of cells analyzed in each graph. Source data are provided as a Source Data file.

28%), and MAIT17 (M8, 21%) cells (Fig. 4g). It is extremely unlikely that these cells are contaminated cells as we have seen only 89 cells out of 669 cells that had non-canonical TCRα paired with non-oligoclonal TCRβ of MAIT cells, and we obtained same trends when we excluded these 89 cells (Fig. 4g). We also observed similar trends when we analyzed all different combinations of non-canonical TCRα and/or non-oligoclonal TCRβ usages (Supplementary Fig. 18A). To further rule out the possibility of cell contamination, we analyzed signature gene expression patterns between MAIT cells with canonical and non-canonical TCRα in each cluster using defined gene sets produced from previous research29 and found that there were few DEG between them except their TCRs (Supplementary Fig. 18B). In contrast, we found 55–430 DEGs between canonical MAITs and CD4+CD8+ DP thymocytes that we excluded from analysis as in Supplementary Fig. 6A (Supplementary Fig. 18D). Although our results showed the overall frequencies of non-canonical TCRs were two to three-times higher than those of previous reports10,31, it might be because we used BALB/c mice instead of B6 mice. Therefore, it is conceivable that the semi-invariant nature of MAIT cells is not a result of positive selection of DP thymocytes but a consequence of clonal selection after stage 2. It is unlikely that this reflects a different rate of clonal expansion as we observed almost non-overlapping clonotypes in MAIT cells (Fig. 4b–d). These features were not analyzable in the inNKT cells, however, as we could detect rare CD24hi NK1.1 cells (11 out of 2775 cells) and TCR sequences were detected in four cells of them, three of which had canonical TCRs (Supplementary data 2).

Collectively, our results indicate that positive selection repertoires of MAIT and γδ T cells are more diverse than their progenies and that the canonical MAIT TCRs are selected during their maturation process.

Lineage differentiation into γδ T cells is flexible. Our analysis of γδ T cells using bulk and scRNA-seq indicates that their development could be explained by the lineage differentiation process rather than instruction by TCRs, and we further validated these results by in vivo experiments. scRNA-seq predicted the presence of Tyβ11 cells expressing Cd122 but not Tbx21, and we found CD24hi CD122+ cells that expressed TBET upon down-regulation of CD24 (Fig. 5a, gating 1). Similarly, RORγt- γδ T cells upregulated CCR6 upon CD24 downregulation (Fig. 5a, gating 2). We further validated differentiation of γδ T subsets by FTOC experiments (Fig. 5b), in which we isolated four subsets (a–d) according to expression patterns of CD24, and tTomato in RorcCre Rosa26 LSL tdTomato mice. After 5–7 days of FTOC, we found CD24hi tTomato- cells (a) generated all the other populations, including tTomato+ cells. Isolated Tyβ11i (c) cells uniformly generated γδ T cells and once generated γδ T cells (d) did not change their phenotype. In addition, CD24low RORγt- cells (b) did not generate Tyβ17 cells, indicating all Tyβ17 are terminally differentiated and exclusively derived from Tyβ11i population. These results indicate lineage differentiation between Tyβ1 and Tyβ17 cells occur at CD24hi stage, consistent with the finding that RORγt expression is irreversible (Supplementary Fig. 5B).

Lineage differentiation of γδ T cells is highly linked to their TCR usage. In particular, Tyβ17 cells were mainly composed of Vγ4+ or Vγ6+ cells. Therefore, we further experimentally addressed whether TCR alone directs lineage fate determination of Tyβ17 cells by analyzing Vγ4/6 and Rorc KO mice. Surprisingly, the number of Tyβ17 cells was not decreased in Vγ4/6 KO mice, and Vγ1+ (Vδ 6.3+ or Vδ 6.3−) cells replaced Tyβ17 lineages (Fig. 5c). In contrast, Rorc KO mice, in which Tyβ17 differentiation is blocked, had a reciprocal expansion of Tyδ1 cells (Fig. 5d). In this mouse, the number of immature and mature Vγ4+ cells were not decreased, and Vγ4+ Tyδ1 cells increased 2.5-fold (Fig. 5e). Because small number of Vγ1+ Tyβ17 cells already present in WT mice (Fig. 5c, upper panels), it raises the issue whether the expansion of Vγ1+ Tyβ17 cells replaces a simple niche filling or re-direction of their fate at the progenitor stage. We found some evidence supporting the latter case. First, there was no proportional expansion of other minor Tyβ17 cells (Vγ5 and Vγ7, Fig. 5c, pie chart) and, second, Ki-67 levels of Vγ1+Vδ6.3+ cells were not increased in Vγ4/6 KO mice (Supplementary Fig. 19A). Third, the frequency of Vγ1+Vδ6.3+ cells among Tyδ2 cells was decreased in Vγ4/6 KO mice (Supplementary Fig. 19B), suggesting some of them redirected their fate from Tyδ2 cells to Tyβ17 cells at the progenitor stage. Although these are indirect evidence, above findings collectively indicate that, rather than TCR Vγ instructing the lineage fate of γδ T cells, there is a plasticity in their fate decision.
compare their relative frequencies, rather than absolute numbers. This result is consistent with the phenotype of iNKT cells in Gata3 cKO mice, in which NKT1 cells expanded in the absence of NKT2 and NKT17 cells as GATA3 was highly expressed in both NKT2 and NKT17 cells. However, the development of MAIT cells was arrested at stage 1 in Gata3 cKO mice, indicating GATA3 is essential for their early development (Fig. 6b).

In TBET-deficient mice, we previously showed that the development of NKT2 and NKT17 cells were reciprocally expanded in the absence of NKT1 cells. Consistent with this result, we observed the expansion of both Ty62/17 and MAIT2/17 cells in the absence of TBET (Fig. 6c, d). In RORγt deficient mice, we found there are expansion of Ty61 cells (Fig. 5d) as Ty617i cells expressed RORγt (Supplementary Fig. 5A) and their
absence would directly block the differentiation of type 17 lineages from the progenitors (Fig. 3b, G1–3). These features, however, could not be analyzed in iNKT and MAIT cells as they are dependent on RORγt for their TCR rearrangement\(^3\).

Collectively, the above results provide in vivo evidence supporting the lineage differentiation pathways of γδ T cells predicted from the scRNA-seq analysis.

Human and mouse innate T cells have analogous subsets.

Finally, we tested human innate T cells to determine if they also have common subset composition. For the experiments, we used liver perfusion fluids, which contain more abundant innate T cells than the peripheral blood (Fig. 7). Among the CD3+ T cells, we could detect iNKT, MAIT, and γδ T cells using CD1d and MR1 tetramers and anti-TCRγδ antibody, as shown in Fig. 7a. We distinguished two distinct subpopulations of iNKT, MAIT, and γδ T cells, which were RORγt+ (TBET\(^{\text{int}}\)) and TBET\(^{\text{hi}}\) (RORγt\(^{-}\)) cells. The former was a major population of iNKT and MAIT cells, whereas the latter was more dominant in γδ T cells. We further analyzed γδ TCR usage and found that Vδ1+Vγ9− cells were enriched in the TBET\(^{\text{hi}}\) population, whereas Vδ2+Vγ9+ cells were enriched in RORγt\(^{-}\) γδ T cells (Fig. 7b). In cytokine analysis, RORγt+ NKT, MAIT, and γδ T cells produced both IFN-γ and IL-17A, whereas TBET\(^{\text{hi}}\) cells produced only IFN-γ but not IL-17A (Fig. 7c). IL-4 production was detected in TBET\(^{\text{hi}}\) iNKT cells, but not in MAIT or γδ T cells, which is similar to mouse NK1T cells that produced IL-4 upon activation but not at the steady state\(^8\). Overall, these features show that human innate T cells share analogous effector subsets with each other, despite being different from those in mice, in that human RORγt+ cells simultaneously express an intermediate level of TBET with RORγt.

Discussion

In this study, we showed that iNKT, MAIT, and γδ T cells have analogous effector subsets and they not only compete for thymic niches, but also exhibit great similarity in their transcriptional nature at the single-cell level. Previously, we had shown that the development of iNKT cells can be explained by the lineage differentiation model and NK1T cells are terminally differentiated\(^8\). We additionally tested NK1T and NK1T17 cells and found that they are also terminally differentiated cells (Supplementary Fig. 20). Previous literature showed that MAIT1 and MAIT17 cells are similar with NK1T1 and NK1T17 cells respectively\(^12,36\) and we further extended our research scope to find a general rule to explain the development of innate T cells. In γδ T cells, the absence of TBET (Tbx21 KO), GATA3 (CD4\(^{\text{Cre}}\) Gata3\(^{\text{fl}}\)) and RORγt (Rorc KO) specifically blocked the differentiation of Thy1, Thy6, and γδ T cells respectively, and there were reciprocal expansions of the others (Figs. 5 and 6). On the other hand, TCR Vγ4/6 deficiency did not abrogate the development of Thy17 cells (Fig. 5c) and identical clonotypes can differentiate into both Thy6 and Thy17 lineages (Fig. 4e). In MAIT cells, we also observed the expansion of MAIT2 and MAIT17 cells in the absence of TBET, but GATA3 and RORγt deficiency could not be tested due to the complete absence of MAIT cells. Overall, these results indicate that effector subsets of innate T cells develop via lineage differentiation process rather than TCR-mediated instruction or linear maturation.

We and others showed the expansion of MAIT cells in the absence of NKT or γδ T cells\(^10,37\) and interpreted this result that innate T cells compete for their developmental niches. Interestingly, previous report suggested that neomycin cassette affects Trca gene rearrangements as seen in Traj18 KO mice\(^38\). Because Trca KO mice were also generated by using this, there is a possibility that the expansion of MAIT cells is an artificial effect. However, Trca recombination generally facilitates MAIT cell development by enhancing diverse Tcr gene rearrangements\(^39\) and we observed no effects of NKT cell frequencies in Trca KO mice. Further investigations are required to rule of this possibility.

In this study, we newly defined MAIT2 cells that correspond to NK2 or Thy62 cells (Fig. 1a). Unlike NK2 or Thy62 cells, however, MAIT2 cells did not express IL17RB (Fig. 1b), were less efficient for IL-4 production (Supplementary Fig. 1b, C) and were not co-localized with NK2 cells in UMAP (Fig. 2d). Previously, we showed that PLZF\(^{\text{hi}}\) NKT cells are subdivided as IL17RB-positive IL-4-producing NK2 and IL17RB-negative IL-4-non-producing NKT1 progenitors (NK1Tp)\(^38\), which defined as N1 cluster in an unbiased clustering (Supplementary Fig. 8A). Based on this, it is possible that PLZF\(^{\text{hi}}\) MAIT cells could correspond to NK1T cells rather than NK2 cells. However, M2 (MAIT2) had similarity with N3 (NK2) and N1 (NK1Tp) was more likely M6 (MAIT17i) in their transcriptional nature (Fig. 3c and Supplementary Fig. 13). It is possible that MAIT2 cells are not fully differentiated IL-4-producing subset and their developmental nature is in between NK1Tp and NK2 cells, which requires further investigation for the analysis of their exact ontogeny.

There are strong correlations between the types of γδ TCRs and their lineage fates. In this study, however, we showed that the absence of certain TCRs (e.g., Vγ4/6) or lineage specific transcription factors (TBET, RORγt, and GATA3) can re-direct lineage fates of γδ T cells. Therefore, γδ TCRs seem to be one of the factors, rather than a single determinant, that direct the lineage differentiation of γδ T cells, which recognize thymic self-antigens and provide certain signaling threshold. Consistent with this idea, a previous report showed lineage conversion of Vγ5+ dendritic epidermal T cells (DETCs) from Thy17 cells into IFN-γ secreting Thy1 cells in the absence of Skint1\(^40\). Previously, Kang and colleagues\(^15,41\) elegantly showed that cell intrinsic program can pre-determine the lineage fate of Thy17 cells at the DN1d stage, which express Rorc and Sox13 before they express γδ TCRs. Consistent with this, we also found Rorc\(^{-}\)Ccr6\(^{-}\)Sox13\(^{-}\) cells present in most immature G1 cluster (Supplementary Fig. 10C). However, this report supports the idea that lineage fate of γδ
Fig. 6 γδ T and MAIT cells develop via lineage differentiation process. a Thymocytes from Cd4([4]Cre (WT, n = 7) or Cd4([4]Cre Gata3([4]f/f (conditional KO (cKO), n = 4) mice were enriched for γδ T cells using MACS beads and analyzed for their subset frequencies amongst total γδ T cells (left). Graph shows statistical analysis (right). Representative data of two independent sets of experiment are shown. b MAIT cells were enriched from total thymocytes of WT (n = 5) or Gata3 cKO (n = 4) mice and compared for their absolute numbers. Representative dot plots (left) and statistical comparison is shown (right). Representative results from two independent sets of experiments are shown. c, d Single-cell suspensions of thymocytes from WT (n = 5) or TBET-deficient mice (n = 5) were enriched for γδ T (c) and MAIT (d) cells using MACS beads and analyzed for their subset development. Representative dot plots are from three independent experiments (left) and graph shows statistical analysis of three independent sets of experiment (right). Numbers indicate frequencies of cells in adjacent gates. Data are presented as mean ± SD. Unpaired two-tailed t-test was used. *P < 0.05, **P < 0.01, ***P < 0.001. NS not significant (P > 0.05). Source data are provided as a Source Data file.
Fig. 7 Human and mouse innate T cells have analogous subsets.

a Human mononuclear cells obtained from liver perfusion fluid were stained with the indicated markers. Representative dot plots (left) show frequencies of iNKT (left), MAIT (middle), and γδ T cells (right) amongst total mononuclear cells. Representative FACS plots are from seven independent experiments and graph shows statistical analysis of their frequencies using pooled data (n = 4 for NKT cell analysis, n = 6 for MAIT cell analysis, n = 4 for γδ T cell analysis).

b Total γδ T cells from (a) were stained with the indicated anti-TCR antibodies and representative FACS plots are from three independent experiments (left) and graph shows pooled results of their frequencies with statistical analysis (right, n = 5 except Vδ2+Vγ9+ cell analysis (n = 4)).

c Indicated cells were stimulated with PMA and ionomycin, and intracellularly stained with the anti-cytokine antibodies. Representative dot plots are shown from three independent experiments. Numbers indicated frequencies of cells in adjacent gates or each quadrant. Data are presented as mean ± SD. Unpaired two-tailed t-test was used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. NS not significant (P > 0.05). Source data are provided as a Source Data file.
T cells are determined independent of their TCRs, and the presence of Soxpro cells is not compatible with our results that showed lineage fate of Thy17 cells are determined at CD40hi immature stage. In our FTOC experiment, we showed CD24hi Rorc+ cells generated Rorc+ population (Fig. 5b), indicating RORγt is inductive after γδ TCR expression. One possible explanation for this discrepancy is that there are multiple pathways for the Thy17 generations; one is predetermined at DN1d stage and the other one is programed during their development by lineage differentiation, which requires further investigation.

γδ T cells mostly develop independently of MHCs, and the structure of their TCRs shares more resemblance to that of immunoglobulin than the αβ TCRs. Instead of MHCs, thymic epithelial expression of immunoglobulin superfamily molecules, such as Skint1 and Btnl, directed the development and local recruitment of γδ T cells; respectively.40,42,43 Interestingly, a recent report showed that Btnl expression of Vγ2+ γδ T cells was mediated by a germ-line-encoded motif of Vγ chains, whereas antigen recognition was mediated by CDR3s generated during the TCR rearrangement, indicating that γδ T cells use a different part of their TCRs for positive selection and activation.44 This is consistent with structural analysis of T10/22-restricted γδ TCRs, which showed that TCR6 mainly recognized the antigens.45 Based on these findings, we speculate that positive selection of γδ T cells is mediated by TCRγ chains recognizing self-antigens and, for their final maturation, they need to recognize additional antigens by their TCRδ chains. Consistent with this, we showed that the diversity of Vγδ (G1) cells is very high (Shannon index, 0.98), which decreases as they mature into the Thy17 lineage (Fig. 4d, right). This trend was not observed in γδ T cells, probably because Vγ7 cells leave the thymus at the CD24hi stage, and we did not include many γδ T cells for analysis. Currently, we are preparing to analyze the peripheral repertoire of γδ T cells, especially in the gut, to compare it with the thymic one.

For the thymic development of INKT cells, homotypic interactions between immature thymocytes with SLAM-SAP signaling are critical.46 For their effector differentiation into NK1T, NK2, and NKT17 cells, various combination of cytokine and transcription factors are also required. These features are also similarly conserved in MAIT cells, but the specific requirement of each factor for the development of γδ T cells have not been clearly defined. In the thymus, not all CD24low γδ T cells express PLZF, and there are naïve-like γδ T cells especially in the periphery, which do not express activation markers or lineage specific transcription factors. As INKT cells are long resident population in the thymus, it is possible that thymic γδ T cells are enriched with innate-like population, whereas naïve-like populations leave the thymus early. Further investigations are required to define factors conditioning innate versus naïve-like γδ T cells.

The TCR clonotypic analysis of innate T cells is reminiscent of limited mice in which fixed TCR Vα3.2 and Vβ5 transgene is paired with two Ja mini-locus and generate diverse CDR3s.47 In this analysis, they showed that the TCR repertoire of conventional T cells is highly diverse at the pre-selection DP stage, but post-selection thymocytes and mature peripheral T cells have an overlapping but distinct bumpy TCR repertoire. In MAIT cells, we observed that up to 50% of MAIT0 (M1) cells have non-canonical TCRα and/or non-oligoclonal TCRβ, whereas cells with canonical TCRs are predominantly mature subsets (Fig. 4g). It is possible that the MAIT cells should recognize additional ligands for their final maturation that are more specific to the canonical TCRs. Germ-free mice are more deficient for mature stage 3 MAIT cells than stage 1 or 2 immature ones,10, and it is possible that exogenous ligands provided by intestinal bacteria would favor canonical TCRs. This result suggests that positive selection of MAIT cells is dependent on endogenous self-ligands, which are more permissive to non-canonical TCRs, but their final maturation requires exogenous antigens. In this perspective, the micro-bial difference between those of humans and SPF mice would explain the abundance of MAIT cells in humans.

Overall, our results show that the effector differentiation of innate T cells is closely shared and regulated by clonal selection, proliferation, and competition. Recent reports showed the critical role of innate T cells in the pathogenesis of human disease and there have been attempts to use them for immunotherapeutic purpose.48,49 In that regard, our results would be important for understanding the various functional aspects of innate T cells and their potential for use in immunotherapeutic settings.

Methods

Mice. B6 (C57BL/6J, Stock# 000864), BALB/c (Stock# 000651), BALB/cByJ #001026), Tcrd−/−/Tcrd−/− (B6, 129P2-Tcrd^{tm1Mom}/J, Stock# 002120), Tbx21−/− (B6:129S6-Tbx21^{tm1Emj}/J, Stock# 000468), B6 Rorc^{Cre} (B6.FVB-Tfg-Rorc^{cre} I1/Iti, Stock# 002791), B6 IL17a^{Cre}, B6.Cg-Gt(Rosa26)Sor^{tm14CAG-Il17a-floxed}Hnrj^{Cre} (Stock# 007914), and B6 Rorc^{Cre}Gpp^{fl} (B6:129P2 (Cg)-Rorc^{tm2Litt}/J, Stock# 007572) mice were from the Jackson laboratory. BALB/cAnNc77c mice were purchased from Charles River. KN2 and Tbx21^{Cre} reporter mice were previously described48 and B6.Cg-Gt(Rosa26)Sor^{tm14CAG-Il17a-floxed}Hnrj^{Cre} mice were received from Dr. Charles D. Suri (POSTECH, Korea). Vγ4/6 KO mice were kindly provided by Dr. Rebecca O’Brien (National Jewish Health, USA) under the permission from Koichi Ikuta (Kyoto University, Japan). BALB/c Rorc^{Cre} mice were generated by backcrossing B6.SJL-Tg(P1ترا-ta^{tm2Koh}) mice at least 17 generations; one is predetermined at DN1d stage, and the other one is programed during their development by lineage differentiation, which requires further investigation.

Analysis53. To analyze iNKT, Th and ILC subsets, raw data of RNA-seq reads was downloaded from (SRA Project accession number: PRJNA318017 for iNKT, PRJNA584112 for Th and ILC subsets). RNA-seq reads were aligned to the mouse reference genome (mm10) and most reads were further filtered. The expression levels of all transcripts were quantified by RSEM (v1.3.1)51. Differentially expressed genes were determined by DESeq252. Expression levels for heat map and principal component analysis were based on regularized log−count of reads using DESeq2. Volcano plots were generated using Enhanced Volcano R package.55 Genes set enrichment analysis was performed to calculate enrichment P-value with Benjamini-Hochberg correction procedure using Ingenuity Pathway Analysis.56 To analyze INKT, Th and ILC subsets, raw data of RNA-seq reads was downloaded from (SRA Project accession number: PRJNA318017 for iNKT, PRJNA584112 for Th and ILC subsets).
Cell isolation for single-cell analysis. Pooled thymi of 6-week-old BALB/c mice were used to isolate iNKT and MAIT cells and post-natal day 5 thymi were used to isolate T cells. Single-cell suspensions of thyocytes were stained with PE-conjugated CD1d or MR1 tetramers or anti-TCRγδ (GL3) antibody and enriched with anti-PE microbeads (Miltenyi) according to the manufacturer’s instructions. After sorting, equal numbers of iNKT, MAIT, and γδ T cells were mixed and processed altogether.

Single-cell RNA sequencing. Libraries for scRNA-seq were prepared using the Chromium Single Cell 3′ Library & Gel Bead Kit (PN-1000014, 10X Genomics), Chromium Single Cell A Chip kit (PN-1000009, 10X Genomics), and Chromium (II) Multiplex Kit (PN-120262, 10X Genomics). Samples were loaded onto the Chromo-

mum Controller (10X Genomics) to generate gel bead-emulsions (GEMs) of 5000–7000 cells. Reverse transcription was performed using C1000 Touch Thermal Cycler with a deep-well block (Bio-Rad). Subsequent DNA purification and library generation was performed using the Chromium Single Cell 5′ Library Construction kit (PN1000020, 10X Genomics) and Chromium Single Cell V(D)J Enrichment Kit for scRNA-seq. Pooled libraries were sequenced on an Illumina HiSeq4000 (paired-end 100 bp reads) aiming at an average of 50,000 read pairs per cell.

Single-cell RNA-seq data preprocessing. Raw reads from scRNA-seq were processed using the Cell Ranger software suite (v2.2.0). Briefly, reformatted reads were mapped to the mouse reference genome (GRCm38) with the Ensembl GRCm38.91 GTF file. For each replicate, a gene-by-cell count matrix was generated with default arguments except for expect-cells=5000 and then aggregated into a single count matrix. Cells associated with empty droplets were identified and removed using find_droplet_split_outliers (v1.2.0) of the Seurat package with FDR < 0.05. To filter out low-quality cells, cells with <1000 unique molecular identifiers (UMIs) and with >10% of UMIs assigned to mitochondrial genes were excluded, where the thresholds were determined by visually inspecting outliers in the PCA plot on the quality control metrics using the calculateQCMetrics function of the scmap package. To remove specific biases, cells were further processed using tsc quick Cluster function of the scan (v1.10.2) R package with default arguments and cell-specific size factors were calculated using the computeSumsFactors function of the same package with the maximum and minimum pool sizes of 100 and 200, respectively. Raw counts of each cell were divided by their cell-species log-count and then log-transformed with a pseudocount of 1.

A mixture of iNKT, MAIT, and γδ T cells was demultiplexed based on the sex of mice and TCR genotypes. First, cells were assigned to iNKT (containing the canonical iNKT Vα4-14α-18 (TRAV11/TRAV11-1TRAV18) TCRα rearrangement), MAIT (containing the canonical MAIT Vα19-1α-33 (TRAV-TRAI33) TCRα rearrangement and not expressing Y-chromosomal genes), and γδ T cells (containing productive TCRδ and TCRγδ rearrangements). Putative clusters, which both contain productive TCRα and TCRγδ rearrangements or both canonical iNKT and MAIT TCRα rearrangements, were removed. Second, unassembled cells were reclassified based on the major cell type of clusters to which they belong. We identified highly variable genes (HVGs) using the decomposeVar function of the scan package with FDR ≤ 0.05 and biological variability >0.1, grouped all cells into 19 clusters using the FindClusters function of the Seurat (v2.3.4) R package on the first 20 PCs of HVGs with resolution = 1.5 and visualized cells in the two-dimensional UMAP plot using the RunUMAP function of the Seurat package on 20 PCs. Unassigned cells in two clusters (cluster 11 and 14) annotated as CD4⁺ CD8⁺ double-positive cells were removed and remaining cells were re-clustered using the same method as above except for 25 PCs. For each cluster with >80% of the most abundant cell type, unassembled cells were classified into the major cell type and cell assigned to other minor cell types were removed as putative doublets. In other clusters (cluster 10, 13, and 17), using TCR expression, unassembled cells were annotated as MAIT cells (expressing TRAV1) or γδ T cells (expressing V gene segments for both TCRγδ and TCRαβ chains). For each cell type, all assigned cells underwent a third round of clustering to filter out misclassified outlier cells. In γδ T cells, one cluster of 14 cells (cluster 7) was removed from further analysis.

Single-cell RNA-seq data analysis. For each cell type, we identified HVGs excluding TCR genes, clustered cells with 25 PCs and resolution = 0.8 and visualized cells in the two-dimensional UMAP plot, using the same methods as above. To visualize all assigned cells of iNKT, MAIT, and γδ T cells in the shared UMAP plot, HVGs were identified from all cells and 5 PCs were used. To identify subpopulations within G7 (Tyβ1), cells in G7 were grouped into four clusters using scmapCluster function of the scmap (v1.4.1) R package with HVGs of all assigned cells of iNKT, MAIT, and γδ T cells. The pseudotime analysis was performed for each cell type using the Palantir (v0.2) python package. Briefly, a nearest-neighbor graph (k = 30) was constructed using the first 10 diffusion components (DCs) of the 100 PCs of HVGs excluding TCR genes and visualized in the t-SNE plot based on the first four (for iNKT and MAIT cells) or five (for γδ T cells) DCs. An initial cell was defined by choosing a cell in the highest density cell of the 100 PCs. One cluster was assigned to G7-2 (Tyβ1) and other clusters were assigned to G7-1 (Tyβ1) based on the expression levels of Tbx21 and Ifng. Similarly, cells in G6 (Tyβ17) were grouped into G6-1 and G6-2 using TCR genes belonging to HVGs. For each cluster, marker genes were identified using the FindAllMarkers function of the Seurat (v2.3.4) R package with the minimum and maximum pool sizes of 100 and 200, respectively. Differentially expressed genes (DEGs) between G7-1 and G7-2 were detected using the same method except logfc_threshold = 0.2 and min_pctl = 0.05. The signature score of each functional subset of iNKT and γδ T cells was calculated from the average Z-score of log, normalized counts of signature genes.

The pseudotime analysis was performed for each cell type using the Palantir (v0.2) python package. Briefly, a nearest-neighbor graph (k = 30) was constructed using the first 10 diffusion components (DCs) of the 100 PCs of HVGs excluding TCR genes and visualized in the t-SNE plot based on the first four (for iNKT and MAIT cells) or five (for γδ T cells) DCs. An initial cell was defined by choosing a cell in the highest density cell of the 100 PCs. One cluster was assigned to G7-2 (Tyβ1) and other clusters were assigned to G7-1 (Tyβ1) based on the expression levels of Tbx21 and Ifng. Similarly, cells in G6 (Tyβ17) were grouped into G6-1 and G6-2 using TCR genes belonging to HVGs. For each cluster, marker genes were identified using the FindAllMarkers function of the Seurat (v2.3.4) R package with the minimum and maximum pool sizes of 100 and 200, respectively. Differentially expressed genes (DEGs) between G7-1 and G7-2 were detected using the same method except logfc_threshold = 0.2 and min_pctl = 0.05. The signature score of each functional subset of iNKT and γδ T cells was calculated from the average Z-score of log, normalized counts of signature genes.

The pseudotime analysis was performed for each cell type using the Palantir (v0.2) python package. Briefly, a nearest-neighbor graph (k = 30) was constructed using the first 10 diffusion components (DCs) of the 100 PCs of HVGs excluding TCR genes and visualized in the t-SNE plot based on the first four (for iNKT and MAIT cells) or five (for γδ T cells) DCs. An initial cell was defined by choosing a cell in the highest density cell of the 100 PCs. One cluster was assigned to G7-2 (Tyβ1) and other clusters were assigned to G7-1 (Tyβ1) based on the expression levels of Tbx21 and Ifng. Similarly, cells in G6 (Tyβ17) were grouped into G6-1 and G6-2 using TCR genes belonging to HVGs. For each cluster, marker genes were identified using the FindAllMarkers function of the Seurat (v2.3.4) R package with the minimum and maximum pool sizes of 100 and 200, respectively. Differentially expressed genes (DEGs) between G7-1 and G7-2 were detected using the same method except logfc_threshold = 0.2 and min_pctl = 0.05. The signature score of each functional subset of iNKT and γδ T cells was calculated from the average Z-score of log, normalized counts of signature genes.

The pseudotime analysis was performed for each cell type using the Palantir (v0.2) python package. Briefly, a nearest-neighbor graph (k = 30) was constructed using the first 10 diffusion components (DCs) of the 100 PCs of HVGs excluding TCR genes and visualized in the t-SNE plot based on the first four (for iNKT and MAIT cells) or five (for γδ T cells) DCs. An initial cell was defined by choosing a cell in the highest density cell of the 100 PCs. One cluster was assigned to G7-2 (Tyβ1) and other clusters were assigned to G7-1 (Tyβ1) based on the expression levels of Tbx21 and Ifng. Similarly, cells in G6 (Tyβ17) were grouped into G6-1 and G6-2 using TCR genes belonging to HVGs. For each cluster, marker genes were identified using the FindAllMarkers function of the Seurat (v2.3.4) R package with the minimum and maximum pool sizes of 100 and 200, respectively. Differentially expressed genes (DEGs) between G7-1 and G7-2 were detected using the same method except logfc_threshold = 0.2 and min_pctl = 0.05. The signature score of each functional subset of iNKT and γδ T cells was calculated from the average Z-score of log, normalized counts of signature genes.
Cells were incubated for 4 h with cell stimulation cocktail (ThermoFisher) with Monensin (eBioscience) for last 2 h and analyzed for intracellular cytokines by flow cytometry.

Statistical analysis. Prism software (Graphpad) was used for statistical analysis and all data were represented as mean ± SD. Unpaired two-tailed t-tests were used for data analysis and the generation of P values. P < 0.05 was defined as significant.

Data availability The bulk and single-cell RNA sequencing data have been deposited in the SRA database under the accession code PRINAS49112 and are available. All the other data are included within the article, source data or supplemental information or available from the authors upon reasonable requests. Source data are provided with this paper.
62. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. *Nature* **566**, 496–502 (2019).

63. Tigelaar, R. E., Lewis, J. M. & Bergstresser, P. R. TCR γδ+ dendritic epidermal T cells as constituents of skin-associated lymphoid tissue. *J. Invest. Dermatol.* **94**, 588–63S (1990).

64. Mallick-Wood, C. A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vgamma gene usage. *Science* **279**, 1729–1733 (1998).

65. Pereira, P. et al. Developmentally regulated and lineage-specific rearrangement of T cell receptor Valpha/delta gene segments. *Eur. J. Immunol.* **30**, 1988–1997 (2000).

Acknowledgements

We wish to thank Rebecca O’Brien (National Jewish Health, USA) and Koichi Ikuta (Kyoto University, Japan) for providing Vγ4/6 KO mice, Robert E. Tigelaar (Yale University, USA) for providing 17D1 hybridoma, and Pablo Pereira (Institut Pasteur, France) for providing anti-Vγ7 antibodies. We also thank Sung-Wook Hong for helping IPA analysis (University of Minnesota, USA) and Joosoo Kang (University of Massachusetts, USA) and Kristin Hogquist (University of Minnesota, USA) for critical reading of the manuscript. This work was supported by projects NRF-2019R1F1A1059237 (to Y. J.L.), 2018R1A2B6002657 (to S.K.), and 2018R1A5A1025511 and 2019M3A9D5A01102794 (to J.K.K.) funded by the Korean Ministry of Science, Information/Communication Technology and Future Planning and BK21 Plus (10220130012243) funded by the Ministry of Education (to M.L.), Korea.

Author contributions

M.L. designed and performed experiments and analyzed data; E.L. and E.S.P. analyzed scRNA-seq data; S.K.H. and K.L. analyzed bulk RNAseq data and provided research interpretation; Y.H.C., D.K., H.C., and M.-S.R. performed experiments; D.J.J. and E.C.S. provided human samples and research interpretation; and S.K., J.K.K., and Y.J.L. directed the study, analyzed data, and wrote the manuscript. Y.J.L. conceptualized the research.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-18155-8.

Correspondence and requests for materials should be addressed to S.K., J.K.K. or Y.J.L.

Peer review information *Nature Communications* thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020