On non-Abelian Toda $A_2^{(1)}$ model and related hierarchies

Dmitry K. Demskoia and Jyh-Hao Lee

Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan

(Received 16 July 2009; accepted 4 November 2009; published online 14 December 2009)

We study limiting cases of the two known integrable chiral-type models with three-dimensional configuration space. One of the initial models is the non-Abelian Toda $A_2^{(1)}$ model and the other was found by means of the symmetry approach by Meshkov and Demskoi [Theor. Math. Phys. 134, 351 (2003)]. The C-integrability of the reduced models is established by constructing their complete sets of integrals and general solutions. A description of the generalized symmetry algebras of these models is given in terms of operator mapping integrals into symmetries. The integrals of the Liouville-type systems are known to define Miura-type transformations for their generalized symmetries. This fact allowed us to find a few new systems of the Yajima–Oikawa type. We present a recursion operator for one them.

© 2009 American Institute of Physics. [doi:10.1063/1.3267864]

I. INTRODUCTION

It is known that many S-integrable hyperbolic equations have limiting cases which are integrable explicitly (see, e.g., Ref. 1). The latter have a few other characteristic properties such as the presence of generalized symmetries and nontrivial integrals (pseudoconstants). These equations constitute a subclass of C-integrable equations and called the Liouville-type equations. It appears that the above mentioned interrelation between S- and C-integrable equations2 can be used for establishing links between different though related hierarchies and also for studying their properties.3,4

Below we consider integrable models with Lagrangians of the form

$$L = u_i u_i + \eta \phi, w_i + f,$$

(1)

where subscripts denote partial derivatives and η and f are functions of the field variables u, v, and w. Such models are sometimes referred as chiral-type models.5,6 The general form of the chiral-type Lagrangian is

$$L = g_{ij}(u)u_i u_j + f(u),$$

(2)

where g is some nondegenerate matrix (metric tensor). Throughout the article we assume summation over the repeated indices.

The non-Abelian Toda $A_2^{(1)}$ model has the Lagrangian

$$L_1 = u_i u_i + \frac{4}{3} \frac{v}{vw + e^u} w_i + a \left(v w + \frac{3}{4} e^u \right) e^u + b e^{-2u},$$

(3)

where a and b are arbitrary constants. Along with (3) we also consider a model with

aElectronic mail: dmitry.demskoy@sci.monash.edu.au.
\[
L_2 = u_{\mu_\tau} + 4 \frac{\nu_\tau \psi_\tau}{\psi_\tau + \psi} + a \psi \tilde{\psi} + b \psi \tilde{\psi} u. \tag{4}
\]

The reason why these models are considered in one paper is that they are both related to the
Yajima–Oikawa hierarchy and also because of the obvious similarity between them. The other
common feature is that they both admit generalized symmetries which are polynomial with respect
to derivatives of field variables. The integrable model corresponding to \((3)\) was derived by means
of a general algebraic construction of affine non-Abelian Toda models.\(^1\) The simplest non-Abelian
Toda \(A_1^{(1)}\) model is actually the well-known Lund–Regge system (complex sine-Gordon I
equation)\(^9\).

The model corresponding to \(L_2\) was studied in Ref. 9, where it was shown to have a Lax
representation and infinitely many conserved densities. Obviously this model can be viewed as one
of the extensions of the classical sine-Gordon model. The limiting cases of \((4)\) with \(a = 0\) or
\(b = 0\) were considered in Ref. 3. It was proven that in either of these two instances the model has a
complete set of integrals and hence can be integrated explicitly. The actual general solution will be
given in Sec. IV. We also show that these reduced models are related to the open Toda \(A_2\) chain.

One of the objectives of this article is to establish connections between hierarchies of gener-
alized symmetries\(^10\) generated by \((3)\) and \((4)\). We show that they are both related to the Yajima–
Oikawa hierarchy\(^11\) by means of Miura-type transformations generated by the integrals of the
reduced systems.

The paper is organized as follows. First, we consider the reduced models derived from
\((3)\) and \((4)\), construct their complete sets of integrals, proving therefore that they are of the Liouville type.
The generalized Laplace invariants are used here as an auxiliary tool assisting in construction of the
integrals. Section III is devoted to finding the operator mapping integrals of systems in
question into their generalized symmetries. In Sec. IV we show that solutions of the reduced
systems are related to solutions of either the Liouville equation or the open Toda \(A_2\) chain. This
enables us to give explicit formulas of general solutions that are free of quadratures. In Sec. V
integrals of the reduced systems are used to find integrable evolution systems related to the
simplest generalized symmetries of \((3)\) and \((4)\).

II. INTEGRALS AND GENERALIZED LAPLACE INVARIANTS OF REDUCED SYSTEMS

The Laplace invariants of systems of equations have previously been considered in a few
different contexts\(^12\). It has been established\(^5\) that the chains of the Laplace invariants for the
most well-known hyperbolic systems having complete sets of integrals—the open Toda chains—
are finite. As we announced before the reduced systems considered in this articles are related to the
open Toda \(A_2\) chain. Therefore, the Laplace invariants for these systems must have similar prop-
erties. There is, however, a difference: we will show that for systems with Lagrangians \((3)\) and \((4)\)
under condition \(a = 0\) \((b = 0)\), the chains of the Laplace invariants \(H_k\) terminate in classical sense,
i.e., \(\det H_1 \neq 0, H_{k+1} = 0\) for some \(k\). The Laplace invariants \(H_k\) for the open Toda chains are
known to become degenerate although not identical zeros for some \(k\) (see, e.g., Ref. 1).

The Laplace invariants for the system of hyperbolic equations,

\[
F^i_i (u, u, u, u), \quad u = (u^1, \ldots, u^n),
\]

are introduced as follows. First, we consider the linearized system,

\[
S'_{\tau} - \frac{\partial F^i}{\partial u^i} S^i - \frac{\partial F^i}{\partial v^i} S^i - \frac{\partial F^i}{\partial w^i} S^i = 0.
\]

The first Laplace invariants \(H_{-1}, H_0\) of \((6)\) are defined as (see Ref. 1 for detailed exposition)
in particular, for the open Toda chains. We have also verified the validity of this statement for the integrals of the order R_{skj} integrals. Furthermore, if rank R_{skj} where R_{skj} is not necessarily symmetric. It is not difficult to find that for system (7) the Laplace invariant H_0 is given explicitly by

$$H_0| = \left(\frac{\partial \Gamma^i_{jk}}{\partial u^i_j} - \frac{\partial \Gamma^i_{jk}}{\partial u^j} + \Gamma^i_{kp} \Gamma^p_{ji} - \Gamma^i_{jp} \Gamma^p_{ki} \right) u^i_k u^j_k = R_{skj}^i u^i_k u^j_k,$$

where R_{skj} is the curvature tensor corresponding to g_{ij}. It immediately follows from this that $\det H_0 = 0$. Indeed, due to the antisymmetry of R_{skj} with respect to indices k, j, we have $R_{skj}^i u^i_k u^j_k = 0$. This is a reflection of the well-known fact that any system (7) has the first order integral,

$$\omega = g_{ij} u^i_k u^j_k, \quad D_i \omega = 0.$$ (8)

Generally we conjecture that if $n > k_0$, then a coupled system of form (5) admits $n - k_0$ first order integrals. Furthermore, if rank $H_k = k_i$ and $k_{i-1} > k_i$ for $i > 0$, then system (5) admits $k_{i-1} - k_i$ integrals of the order $i + 1$. This statement has been verified for different Liouville-type systems and, in particular, for the open Toda chains.15 We have also verified the validity of this statement for the reduced systems in question.

The explicit form of the system corresponding to Lagrangian (3) is

$$u_{tx} = -\frac{3}{2} \psi^2 v w x - \frac{1}{2} e^\psi (\frac{3}{2} e^\psi + v w) - b e^{-2u},$$

$$v_{tx} = \psi w (w t + e^\psi u_t) + \frac{3}{2} a \psi^{-1} v e^\psi, \quad w_{tx} = \psi w (w t + e^\psi u_t) + \frac{3}{2} a \psi^{-1} v e^\psi,$$ (9)

where $\psi = (v w + e^\psi)^{-1}$. Below we consider the reduced systems derived from (9) by successively setting $a = b = 0$, $a = 0$, and $b = 0$. The corresponding hyperbolic systems will be referred as S_1, S_2.

$$\left(H_0 \right)_j = \frac{\partial F^i}{\partial u^i_j} - D_i \left(\frac{\partial F^i}{\partial u^i_j} \right), \quad \left(H_{n-1} \right)_j = \frac{\partial F^i}{\partial u^i_j} - D_i \left(\frac{\partial F^i}{\partial u^i_j} \right),$$

where the total derivative operators D_x, D_t with respect to corresponding variables are calculated in virtue of system (5). The chain of the Laplace invariants is introduced according to the following recurrent formulas:

$$A_{k+1} H_k = -D_i (H_k) + H_k A_k, \quad (A_0)_j = -\frac{\partial F^i}{\partial u^i_j}$$

$$(H_{k+1})_j = (H_k)_j + D_i (A_{k+1})_j - \frac{\partial F^i}{\partial u^i_j} (A_{k+1})_j + (A_{k+1})_j - D_i (A_{k+1})_j.$$
and \(S_i^\tau \). Systems \(S_i^\tau \) and \(S_i^\nu \) are also known as the reduced \(A(2)_2 \) Bershadsky–Polyakov and \(A(1,1)_2 \) non-Abelian Toda models (see Ref. 16 and references therein). Our objective is to show that these systems have terminating sequences of the Laplace invariants and complete sets of integrals.

The system corresponding to (4) has the form

\[
\begin{align*}
 u_{t\tau} &= \frac{a}{2} v e^u - \frac{b}{2} w e^{-u}, \\
 v_{t\tau} &= \frac{b}{4} \varphi^{-1} e^{-u} + \varphi w v, \\
 w_{t\tau} &= -\frac{a}{4} \varphi^{-1} e^{-u} + \varphi w v w',
\end{align*}
\]

where \(\varphi = (v w + e)^{-1} \). The reduced systems derived from (10) were considered in Ref. 3, where they were shown to belong to a class of Liouville-type systems. By analogy with the previous systems they will be referred as \(S_2 \), \(S_3 \), and \(S_4 \). Note that systems (9) and (10) admit the following symmetries: \(t \rightarrow x, x \rightarrow t, v \rightarrow w, w \rightarrow v, \) and \(t \rightarrow x, x \rightarrow t \) correspondingly. This allows one to construct \(t \)-integrals from \(x \)-integrals and vice versa if either of them is known.

We start with the fully reduced system \(S_1 (a=b=0) \),

\[
\begin{align*}
 u_{t\tau} &= -\frac{2}{3} \psi^2 e^u v w, \\
 v_{t\tau} &= \psi v (e^u u + v w), \\
 w_{t\tau} &= \psi w (e^u u + w v).
\end{align*}
\]

It is not difficult to check that for this system we have rank \(H_0 = 1 \) and \(H_1 H_0 = 0 \), therefore we conjecture that (11) has two first order and one second order integrals. To derive the complete set of integrals for this system, we used the procedure suggested in Ref. 3. For the applicability of the procedure one needs to have a nontrivial integral and a nondegenerate higher commuting flow (symmetry). The nontrivial integral for (11) has the form (8). The simplest generalized symmetry is common for all systems derived from (3) and given by formula (25) (see below).

It is convenient to write integrals in terms of the following quantities:

\[
\alpha = u, \quad \beta = v, \quad \gamma = \ln w. \quad (12)
\]

Then the integrals of (11) can be written as

\[
\begin{align*}
 m &= \alpha + \frac{2}{3} \beta, \\
 p &= \frac{1}{3} \beta (\alpha_x - \gamma_x + \frac{1}{3} \beta), \\
 q &= 2 (\alpha_x + \gamma_x - \frac{1}{3} \beta - \beta^{-1} \beta_x).
\end{align*}
\]

Note that integral (8) can be brought into the form \(\omega = m^2 - p \).

System \(S_1^\nu (a=0) \) :

\[
\begin{align*}
 u_{t\tau} &= -\frac{2}{3} \psi^2 e^u v w - b e^{-2u}, \\
 v_{t\tau} &= \psi v (e^u u + v w), \\
 w_{t\tau} &= \psi w (e^u u + w v).
\end{align*}
\]

For this system we have rank \(H_0 = 3 \) and \(H_1 = 0 \) so we look for the three independent second order integrals. Because system \(S_1^\nu \) appears to be a limiting case of \(S_1^\tau \) and \(S_1^{\nu} \), the integrals of the latter can be expressed in terms of integrals of the former. By direct calculation it is not difficult to find that the integrals are

\[
\begin{align*}
 \mu &= m - \frac{1}{2} q, \\
 \nu &= m_x + m^2 - p, \\
 \lambda &= -2 p_x - q p.
\end{align*}
\]

System \(S_1^\tau (b=0) \) :

\[
\begin{align*}
 u_{t\tau} &= -\frac{2}{3} \psi^2 e^u v w + \frac{a}{4} e^u (e^u + 2 \psi)^{-1}, \\
 v_{t\tau} &= \psi v (e^u u + v w), \\
 w_{t\tau} &= \psi w (e^u u + w v).
\end{align*}
\]

As in the previous case we have rank \(H_0 = 3, H_1 = 0 \), and thus the system has three second order integrals given explicitly by
\(\rho = m^2 - m_x - p, \quad \theta = pq, \quad \phi = p, p^1 + \frac{1}{2}q - m. \) (17)

The complete set of integrals for \(S_2 \) and hence for \(S_2^b \) were constructed in Ref. 3. As in the previous case it is convenient to introduce the quantities

\[
\alpha = u, \quad \beta = v, \omega, \quad \gamma = \ln w.
\] (18)

System \(S_2 \) decouples into the d’Alambert equation and the reduced Lund–Regge system,

\[
u_{tx} = w, \quad v_{tx} = v_{x}, \quad w_{tx} = v_{x}w_{x}.
\] (19)

The integrals are

\[
m = -\frac{1}{2}\alpha_x, \quad p = -\beta \gamma, \quad q = 2(\gamma - \alpha \beta - \beta - 1).
\] (20)

System (19) was used in Refs. 17 and 18 as the working example of a Liouville-type system.

System \(S_2^b \) is obtained from (21) by means of the transformation \(u \to -u, v \to w, w \to v, a \to b \). The integrals for this system have the form (17) with \(m, p, \) and \(q \) given by (20). We would like to point out that the presented sets of integrals are minimal.

III. THE STRUCTURE OF GENERALIZED SYMMETRIES

Higher symmetries of the Liouville-type systems are known to have the special structure,

\[S = M \omega, \]

where \(M \) is some linear differential operator and \(\omega \) a vector function of integrals. Function \(S \) is assumed to satisfy Eq. (6). Operator \(M \) gives a complete description of symmetry algebra for a given Liouville-type hyperbolic system. It satisfies the following operator equation:

\[(D_x D_y - F_x) M = T D_x, \] (22)

where \(T \) is some differential operator and \(F_x \) stands for the Freshet derivative of the right hand side of (5). In principle, relation (22) can be used to find operator \(M \), but it appears more convenient to use results of Ref. 18 where it was proven that for any Liouville-type system of the form (5) there exists a differential operator \(P \), such that

\[\omega^* = (-D_x + F_{x})^* \circ P, \] (23)

where \(\omega^* \) stands for the operator formally conjugated to \(\omega \). Then according to Ref. 19 the operator \(M = g_x^{-1} P \) maps integrals of (5) into its symmetries, where \(g_x \) is the symmetric part of the metric tensor. The matrix \(g_x^{-1} \) for models \(S_1 \), \(S_1^a \), and \(S_1^b \) has the form
\[
\begin{align*}
\mathcal{M} &= g_s^{-1} P =
\begin{pmatrix}
1 & -\frac{2}{3} \psi w v_x & 2 \\
0 & v_x & 3 v \\
w & w_x - w u_x - \frac{2}{3} w^2 v_x \psi & 3 (\psi v_x)^{-1} D_x - w
\end{pmatrix}.
\end{align*}
\]

We denote \(\mathcal{M}_a \) and \(\mathcal{M}_b \) the M-operators for models \(S_i^a \) and \(S_i^b \) correspondingly. These operators can be factorized in the following way:

\[
\mathcal{M}_a = \mathcal{M} \mathcal{F}_a, \quad \mathcal{M}_b = \mathcal{M} \mathcal{F}_b,
\]

where

\[
\mathcal{F}_b = \begin{pmatrix}
-2 & D_x - 2m & 0 \\
0 & -2 & D_x - \frac{1}{2} q \\
1 & 0 & \frac{1}{4} p
\end{pmatrix}, \quad \mathcal{F}_a = \begin{pmatrix}
D_x + 2m & 0 & 1 \\
2 & 2 q & -2 p^{-1} D_x \\
0 & -p & -\frac{1}{2}
\end{pmatrix}.
\]

If we denote as \(A_i \), \(A_i^a \), and \(A_i^b \) the generalized symmetry algebras of systems \(S_i \), \(S_i^a \), and \(S_i^b \) correspondingly, then from (24) the following relation follows \(A_i^a \subseteq A_i \), \(A_i^b \subseteq A_i \). Finally, we would like to point out the simplest generalized symmetry of (9) can be written in the form

\[
\begin{pmatrix}
u_x \\
v_x \\
w_x
\end{pmatrix} = \mathcal{M}_a \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \mathcal{M}_b \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix}.
\]

It is easy to check that (25) is the second order polynomial (with respect to derivatives) evolutionary system.

IV. GENERAL SOLUTIONS OF THE REDUCED SYSTEMS

In Ref. 20 a reduction procedure was used to find a general solution of the open Toda \(A_n \) chain. The idea is to replace a system in question by an equivalent higher order PDE which can then be integrated explicitly. Here a similar procedure is applied to systems \(S_i^a \), \(S_i^b \), and \(S_i \) \((i = 1, 2)\). The solutions of these systems will be given in quadrature-free form.

We start with the simplest system \(S_1 \), which is given by (11). First, expressing \(u_t \) and \(u_x \) from the second and third equations correspondingly and then calculating the compatibility condition \(u_{tx} = u_{xt} \), we find

\[
h_x h - h_x h_x = 0,
\]

where \(h = w v_x^{-1} \). This allows us to parametrize functions \(v \) and \(w \) the following way:
\[v = T_1 e^s s, \quad w = -X_1 e^s s. \]

Here and below \(T_i(t) \) and \(X_i(x) \) are arbitrary functions of the indicated variables. Now considering Eqs. (11b) and (11c) as ODEs (with respect to \(u \)), we find
\[u = \ln(T_1X_1) + 2s + \ln(-s_{tx}). \]
Substituting this expression into (11a) we find that \(s \) satisfies the equation
\[s_{txx} - s_{tx} = \frac{8}{3} s^3. \]
Again the substitution \(s_{tx} = -\exp(r) \) reduces (26) to the Liouville equation
\[r_{tx} = \frac{8}{3} e^r, \]
having the well-known general solution,
\[r = \ln\left(\frac{3}{4} \frac{T_2}{X_2 + T_2}\right). \]
Thus we have finally
\[s = \frac{4}{3} \ln(X_2 + T_2) + T_3 + X_3. \]
Therefore, the general solution of (11) is
\[u = 2(T_3 + X_3) + \ln\left(\frac{3}{4} \frac{T_1X_1 T_2}{X_2 + T_2}\right), \quad v = T_1 \exp(X_3 + T_3)(X_2 + T_2)^{3/4}\left(\frac{3}{4} \frac{T_2}{T_1} + T_3\right), \]
\[w = -X_1 \exp(X_3 + T_3)(X_2 + T_2)^{3/4}\left(\frac{3}{4} \frac{T_2}{X_2 + T_2} + X_3\right). \]
The same reduction procedure can be applied to system \(S_3 \). The difference is that instead of (26) one gets the following system:
\[s_{txx} - s_{tx} = \frac{8}{3} s^3, \quad r_{tx} = 0, \]
which in turn is equivalent to
\[s_{tx} = \exp\left(-\frac{2}{3} s + \xi\right), \quad \xi_{tx} = -b \exp\left(\frac{4}{3} s - 2\xi + r\right), \quad r_{tx} = 0. \]
It easy to see that the latter system is reducible to the open \(A_2 \) Toda chain by the transformation \(s \rightarrow 3/4s - 3/20r, \xi \rightarrow \xi - 2/5r \). Using this connection \(^{20}\) one can express the general solution of \(S_3 \) in the form
\[u = \ln(r_{tx}) + \ln(-s_{tx}) + 2s, \quad v = r_{tx} \exp(s)s_{tx}, \quad w = -r_{tx} \exp(s)s_{tx}, \]
where
\[r = \ln\left(s_{txx} - s_{tx} \frac{8}{3} s^3 + 4s - \ln(b)\right), \quad s = \frac{4}{3} \ln(X_1T_1 + X_2T_2 + X_3T_3). \]

The general solution of the model \(S_3 \) (with \(a = -4/3 \)) can be obtained from the solution of \(S_3 \) by using the transformation\(^{16}\)
\[u \rightarrow -u - \frac{1}{2} \ln\left(1 + \frac{4}{3} e^{-u} w\right), \quad v \rightarrow \exp\left(1 + \frac{4}{3} e^{-u} w\right)^{-1/4}, \quad w = \frac{4}{3} v e^{-u}\left(1 + \frac{4}{3} e^{-u} w\right)^{-1/4}. \]
Now consider the reduced systems \(S_2 \) and \(S_3 \), i.e., (19) and (21). The general solution of \(S_2 \) can be found the following way. First, we express \(w \) from the second equation in (19),
\[w = v_x(v_x v - v_x v_y)^{-1}, \]

and then substituting it into the third equation, we get

\[
\begin{vmatrix}
 v & v_x & v_H \\
 v_x & v_{xx} & v_{xH} \\
 v_{xx} & v_{xH} & v_{Hxx}
\end{vmatrix} = 0.
\]

(28)

The latter equation has the following general solution \(v = X_1T_1 + X_2T_2, \) and thus we have

\[w = \frac{(X'_1T'_1 + X'_2T'_2)}{(T_2T'_1 - T_1T'_2)(X'_1X'_2 - X_2X'_1)}, \]

Now we turn to system \(S_i^2. \) The variables \(v \) and \(w \) can be expressed from the first and second equations in (21), this gives

\[v = 2a^{-1} \exp \left(-\frac{s}{2} \right), \quad w = \frac{ac}{4} \exp \left(\frac{a}{2} (s, s) - 2s s^{-1}\right), \]

(29)

where \(s = 2u - 2 \ln u. \) Substituting (29) to (21c) yields

\[s_{xx}s - s_{xx}^2 - s_{xx}^3 = -\frac{1}{2} s_{xx} \exp (u - \frac{1}{2} s). \]

(30)

If we introduce the new quantity \(r = -2 \ln(s) - u + 2s \), then one can check that \(r = 0. \) Therefore, system (21) is equivalent to the open Toda \(A_2 \) chain coupled with the d’Alambert equation,

\[u = \exp (u - \frac{1}{2} s), \quad s = \exp (-\frac{1}{2} u + s + \frac{1}{2} r), \quad r = 0. \]

(31)

This enables us to express the general solution of (31) in the form

\[u = -2 \log Q, \quad v = \frac{4}{a} (Q, Q), \]

\[w = -\frac{ac}{4} \frac{Q_{xx}(Q - Q_{xx})}{Q(Q_{xx}Q_{xx} - Q_{xx}Q_{xx} - Q_{xx}Q_{xx} - Q_{xx}Q_{xx} - Q_{xx}Q_{xx} + Q_{xx}Q_{xx})}, \]

(32)

where

\[Q = X_1T_1 + X_2T_2 + X_3T_3. \]

V. DIFFERENTIAL SUBSTITUTIONS AND MODIFIED YAJIMA–OIKAWA SYSTEMS

It is well known\(^1\) that the minimal integrals of Liouville-type systems define differential substitutions for their generalized symmetries. Therefore having constructed them for \(S_i, S_i^2, \) and \(S_i^2 \) we also found the differential substitutions for generalized symmetries of these systems. Now it is an easy task to construct corresponding modified evolutionary systems for (25), but first let us rewrite (25) in variables (12),

\[\alpha = -\frac{2}{3} \beta_x + \frac{1}{3} \beta \alpha_x, \quad \beta = \beta_{xx} - 2(\gamma_x \beta) + \frac{1}{3} \beta \beta_x, \]

\[\gamma = -\gamma_{xx} + \alpha_{xx} + \beta_x^2 - \frac{1}{2} \beta \beta_x + \frac{1}{3} \beta \gamma_x. \]

(33)

The second system in the chain of transformed systems corresponds to (13) and is given by

\[m = p_x, \quad p = -p_{xx} - (pq)_x + 2mp_x. \]
\[q_\tau = q_{xx} + 2mq_x - \frac{1}{2}(q^2)_x. \]

The integrals of \(S^4_1 \) and \(S^5_1 \) take system (34) into

\[\rho_\tau = \theta_\xi, \quad \theta_\tau = \theta_{xx} - 2(\phi \theta)_x, \]
\[\phi_\tau = -\phi_{xx} - (\phi^2 - \rho)_x, \]
\[\nu_\tau = -\lambda_\xi, \quad \lambda_\tau = -\lambda_{xx} + 2(\lambda \mu)_x, \]
\[\mu_\tau = \mu_{xx} + (\mu^2 - \nu)_x, \]

correspondingly. Note that systems (35) and (36) are related by the transformation \(\tau \to -\tau \). System (35) is known (see, e.g., Ref. 3) to be related to the Yajima–Oikawa system,\(^{11}\)

\[U_\tau = (VW)_x, \quad V_\tau = -V_{xx} + UV, \]

\[W_\tau = W_{xx} - UW \]
by the transformation

\[\rho = U, \quad \theta = VW, \quad \phi = V_x/V. \]

On the other hand, it is known\(^3\) that the simplest generalized symmetry,

\[u_\tau = 2\varphi v_x w_x, \quad v_\tau = v_{xx} - 2\varphi vv_x w_x + u_x v_x, \]
\[w_\tau = -w_{xx} + 2\varphi vw_x w_x + u_x w_x \]
of (10) is related to (34) by means of the integrals of \(S_2 \). Note that system (39) in variables \(\alpha, \beta, \) and \(\gamma \) has the simple polynomial form,\(^5\)

\[\alpha_\tau = 2\beta \gamma_x, \quad \beta_\tau = \beta_{xx} + (\beta^2 + \beta \alpha_x - 2\beta \gamma_x)_x, \]
\[\gamma_\tau = -\gamma_{xx} + \alpha_x \gamma_x - \gamma^2 + 2\beta \gamma_x. \]

The evolution systems listed above constitute a subclass of modified Yajima–Oikawa systems singled out by the relation to hyperbolic systems with Lagrangians (3) and (4). Their integrability obviously follows from the integrability of the Yajima–Oikawa system. Many of their properties such as bi-Hamiltonian structure, recursion operators, etc., can be obtained from the ones of the Yajima–Oikawa system itself. The most interesting of them is probably system (34) as it is related to both hierarchies of systems with (3) and (4). We found its recursion operator in the form
One can see that it has standard structure of the nonlocal part, i.e., it is a product of symmetries and cosymmetries. We would also like to point out that \(\text{(34)} \) is Hamiltonian with the following local Hamiltonian operator:

\[
\begin{pmatrix}
\frac{m_t}{p_t} \\
\frac{q_t}{q_t}
\end{pmatrix} = J \begin{pmatrix}
\frac{\delta H_1}{\delta m} \\
\frac{\delta H_1}{\delta p} \\
\frac{\delta H_1}{\delta q}
\end{pmatrix},
\]

where

\[
J = \begin{pmatrix}
-\frac{1}{2}D_x & 0 & -2D_x \\
0 & 2pD_x + p_x & 2D_x^2 + (q - 4m)D_x \\
-2D_x & -2D_x^2 + D_x(q - 4m) & 0
\end{pmatrix},
\]

\[
H_1 = -\frac{1}{2}pq
\]

Applying (41) to (43) one can generate infinitely many Hamiltonian operators.

Finally we would like to note that in Ref. 7 one more system of the Yajima–Oikawa type is found. It has the form

\[
u_t = -(vw)_x,
\]

\[
v_t = v_{xx} - vu_x - vu^2 - wv^2,
\]

\[
w_t = -w_{xx} - wu_x + wu^2 + w^2v.
\] (44)

The Miura-type transformation relating (44) with (37) is given by

\[
U = u^2 + u_x + vw, \quad V = w_x + wu, \quad W = -2v.
\]
ACKNOWLEDGMENTS

Authors are grateful to M. V. Pavlov, O. K. Pashaev, and V. V. Sokolov for fruitful discussions.

1. A. V. Zhiber and V. V. Sokolov, Russ. Math. Surveys 56, 61 (2001).
2. F. Calogero, *Why are Certain Nonlinear PDEs both Widely Applicable and Integrable? What is Integrability?*, Springer Series in Nonlinear Dynamics (Springer, Berlin, 1991), pp. 1–62.
3. D. K. Demskoi, Theor. Math. Phys. 141, 1509 (2004).
4. D. K. Demskoi, J. Nonlinear Math. Phys. 14, 147 (2007).
5. D. K. Demskoi, V. G. Marikhin, and A. G. Meshkov, Theor. Math. Phys. 148, 1034 (2006).
6. A. V. Balandin, O. N. Pakhareva, and G. V. Potyomin, Phys. Lett. A 283, 168 (2001).
7. I. Cabrera-Carnero, J. F. Gomes, E. P. Gueuvoghlanian, G. M. Sotkov, and A. H. Zimerman, "Non Abelian Toda Models and Constrained KP Hierarchies. VII," International Wigner Symposium, Maryland, 2001, arXiv:hep-th/0109117.
8. F. Lund and T. Regge, Phys. Rev. D 14, 1524 (1976); K. Pohlmeyer, Commun. Math. Phys. 46, 207 (1976).
9. D. K. Demskoi and A. G. Meshkov, Theor. Math. Phys. 134, 351 (2003).
10. P. J. Olver, *Applications of Lie Groups to Differential Equations*, 2nd ed. (Springer-Verlag, New York, 1993).
11. W. K. Schief and C. Rogers, Prog. Nonlinear Diff. Eq. 26, 315 (1996).
12. A. V. Zhiber and S. Ya. Startsev, Mat. Zametki 74, 848 (2003); Math. Notes 74, 803 (2003).
13. E. V. Ferapontov, Teor. Mat. Fiz. 110, 86 (1997) [Theor. Math. Phys. 110, 68 (1997)]; J. Phys. A 30, 6861 (1997).
14. A. M. Guryeva and A. V. Zhiber, Theor. Math. Phys. 138, 338 (2004).
15. J. F. Gomes, G. M. Sotkov, and A. H. Zimerman, Ann. Phys. 274, 289 (1999).
16. V. V. Sokolov and S. Ya. Startsev, Theor. Math. Phys. 155, 802 (2008).
17. D. K. Demskoi and S. Ya. Startsev, J. Math. Sci. (N. Y.) 136, 4378 (2006).
18. S. Ya. Startsev, Fundam. Prikl. Mat. 12, 251 (2006).
19. A. N. Leznov and M. V. Saveliev, *Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems* (Nauka, Moscow, 1985) (in Russian); English version translated by D. A. Leites, Progress in Physics Vol 15 (Birkhäuser, Basel, 1992), pp. xviii, 290.