Magnetization in the Superconducting Mixed State of the Heavy-Fermion Compound UBe$_{13}$

Yusei Shimizu1,3, Yoichi Ikeda1,5, Takumi Wakabayashi1, Kenichi Tenya2, Yoshinori Haga3, Hiroyuki Hidaka1, Tatsuya Yanagisawa4, and Hiroshi Amitsuka1

1Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
2Faculty of Education, Shinshu University, Nagano 385-8544, Japan.
3Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1184, Japan.
4Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan.
5Present Address: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.

E-mail: †yusei@phys.sci.hokudai.ac.jp

Abstract.
Static dc magnetization measurements in the superconducting mixed state of a single crystal UBe$_{13}$ along the [110] axis were performed by means of a capacitance Faraday-force method down to 0.24 K. Below the upper critical field B_{c2}, not only a peak effect but also an additional broad anomaly have been observed in magnetization curves. We report superconducting phase diagram of UBe$_{13}$ obtained by our magnetization measurements, including these anomalies.

1. Introduction
The heavy-fermion compound UBe$_{13}$ (cubic, O_h^6(Fm$ar{3}$c)) has attracted much attention since the discovery of non-BCS type superconductivity (SC) 27 years ago [1]. The SC transition of this compound takes place at about 0.85 K with a large specific-heat jump ΔC, which is the same order of the electronic specific heat $C \sim 1$ J/Kmol observed just above T_c. This indicates that the heavy electrons form the Cooper pairs which condense into the SC state. In order to understand the unconventional SC of UBe$_{13}$, it is very important to clarify the symmetry of the Cooper pairs and investigate the SC phase diagram precisely. First, as for the SC symmetry, an early specific-heat study made by Ott et al. [2] has suggested a p-wave Anderson-Brinkman-Morel (ABM) state from T^3 behavior of the specific heat well below T_c, because it is similar to the behavior observed in the ABM state of 3He superfluidity. NMR spin-relaxation rates [3] and ultrasonic velocities [4] have also suggested that the SC gap has a nodal structure. These results indicate that there is a line node in the SC gap, whereas the ABM state has point nodes. In addition, it remains also unclear whether the spin state of a Cooper pair is singlet or triplet. A recent μ^+-Knight shift study [5] in $B||[001]$ has suggested that the spin susceptibility decreases below T_c, indicating a spin-singlet pairing or a spin-triplet pairing with a strong spin-orbit coupling. On the other hand, a recent NMR study [6] has suggested that the Knight shift for $B||[001]$ shows no decrease below T_c, which indicates the spin-triplet pairing. In this way, no clear experimental consensus has been obtained about not only the SC gap structure but also the Cooper pairing state in UBe$_{13}$. Second, it is noted that the SC phase diagram of UBe$_{13}$ is quite
different from that of the conventional BCS superconductors. One of the unusual properties is the upper critical field curve $B_{c2}(T)$ that exhibits a clear upturn at low temperatures [7]. Moreover, low-T specific-heat and thermal-expansion measurements by Kromer et al. show a new anomaly at T_L below T_c for pure UBe$_{13}$ in zero field. In field scans of $C(B, T = \text{const.})$, this anomaly corresponds to $B^*(T)$. They have proposed that this anomaly is a precursor of another phase transition observed in the U$_{1-x}$Th$_x$Be$_{13}$ system at T_{c2} [8], because it seems that $T_L(x)$ smoothly merges into $T_{c2}(x)$ on a T-x phase diagram [9, 10].

In order to obtain further information about the unusual SC of UBe$_{13}$, we have performed low-temperature dc magnetization measurements in the SC mixed state of UBe$_{13}$ using a high-quality single crystal.

2. Experimental Procedure
A single crystal of UBe$_{13}$ was grown by an Al-flux method, and its weight was 6.6 mg. The SC transition temperature is about 0.8 K, which is defined by the peak-top temperature of the specific-heat jump for zero field. The dc magnetization measurements along $[110]$ were performed by using a capacitive Faraday-force magnetometer in a 3He-4He dilution refrigerator [11] at temperatures down to 0.24 K and in fields up to 6.9 T. Magnetization processes were measured in a field gradient of 500-900 Oe/cm applied in addition to the uniform magnetic field.

3. Results and Discussion
Figure 1 shows the magnetization process of UBe$_{13}$ observed for $B||[110]$ at 0.24 K up to 6.9 T. Below ~ 2 T, a clear irreversibility attributed to a vortex flux pinning is observed. On the other hand, the irreversibility decreases with increasing field above ~ 2 T. The smallness of this hysteresis in high field indicates a high-quality of the used sample, since flux-pinning centers are impurities or lattice defects in general. Here, we define B_{c2} as the field where the irreversibility vanishes completely. The linear component above B_{c2} is the normal state magnetization M_n. Just below B_{c2}, a peak effect, which is occasionally seen in type-II superconductors, is observed. We define the onset of the peak as B_{peak}. Figure 2 shows hysteresis magnetization curves ΔM measured at various temperatures: $\Delta M = (M_{\text{dec}} - M_{\text{inc}})/2$, where M_{dec} and M_{inc} are the magnetization of decreasing- and increasing-field processes, respectively.

Figure 1. Magnetization curves of the single crystalline UBe$_{13}$ at 0.24 K ($B||[110]$). The upper critical field B_{c2} is pointed by the arrow. B_{peak} denotes the onset of the peak effect.

Figure 2. The hysteresis magnetization ΔM of UBe$_{13}$ in various temperatures ($B||[110]$). Down and up arrows indicate B_{peak} and B_{c2}, respectively.
increases, the peak becomes indistinctive due to the interference with a large hysteresis in the low-field region. The peak effect has been observed also in other heavy-fermion superconductors such as UPt₃ and CeCoIn₅ [12, 13]. In particular, UPt₃ shows the peak effect just below B_c₂, which is similar to the behavior of UBe₁₃.

Since the hysteresis of the magnetization is sufficiently small in the high-field region, we can approximately obtain the thermal equilibrium magnetization M_eq in the mixed state by averaging the increasing- and decreasing-field processes. The M_eq consists of the normal state component M_n and the diamagnetic magnetization component M_eq^SC: M_eq = M_n + M_eq^SC. We estimated M_n in the mixed state by extrapolating the normal state magnetization above B_c₂ to the origin, assuming the linear region: M_n = \chi_n B. Figure 3 shows the M_eq^SC obtained at 0.24 K and 0.59 K. For the M_eq^SC at each temperatures, there are two bends below B_c₂ (at \sim 4 T and \sim 5 T, for 0.24 K). First, we note that M_eq^SC bends at a field clearly lower than B_peak. This anomaly is broad but distinct. We define this broad anomaly as B_M^*. At nearly the same field \sim 4 T, the specific heat and thermal expansion measurements [9, 10] have suggested that there is an anomaly at B^* below B_c₂, as mentioned in Introduction. Ac-susceptibility (ac-\chi) also shows an anomaly at \sim 4 T for T \sim 0.25 K [14]; we call this anomaly B_{ac}^* in order to distinguish it from B^* obtained by Kromer et al. Second, we note another bend observed in M_eq^SC near B_peak (at \sim 5 T for 0.24 K). This behavior, however, does not necessarily indicate an occurrence of a phase transition: if there is a slight deference in the magnitude of the magnetization peaks between increasing- and decreasing-field processes, then the bend may appear, except for a phase transition. Therefore, this bend at B_peak in M_eq^SC may not be intrinsic.

Figure 4 represents the obtained SC phase diagram of UBe₁₃ for B || [110], including our specific-heat results and the previous studies [9, 10, 14].

As seen in Figure 4, B_M^* gets closer to B_peak above \sim 0.5 K. In fact, above \sim 0.6 K, we could
not distinguish B^*_M from B_{peak}. Therefore, this disagreement may be caused by the difficulty of distinguishing B^*_M from B_{peak} above ~ 0.5 K, and B^*_{ac} above ~ 0.5 K may correspond to B_{peak}. Anyway, all works have suggested that there is at least an anomaly in the SC phase diagram in the same field range $B \lesssim 4.5$ T.

On the other hand, the scale of B_{c2} obtained from our measurements disagree with that in [9, 10] and [14]. Here, we can guess that there is little anisotropy of B_{c2}, because of the lack of anisotropy at least between $B||[100]$ and $B||[110]$, which has been suggested from the ac-χ measurements [14]. In particular, although B^*_M is almost consistent with B^* obtained by Kromer et al., the scale of the $B_{c2}(T)$ curve obtained for the present sample is obviously smaller than that of refs. [9] and [10]. If B^*_M and B^* are due to the same origin, the above comparison suggests that the scale of B^* is independent of that of B_{c2}. This may indicate that the anomaly at B^* originates from some phenomenon which is not basically associated with the SC. As for the origin of B^*, the following two cases may be considered: (1) a some magnetic correlation which coexists with the SC [9]; (2) a flux-pinning mechanism [14]. If B^* is orginated from the case (1), the scale of B^* may not necessarily depend on that of B_{c2}. In contrast, if B^* is orginated from the case (2), temperature dependence of B^* would follow $B_{c2}(T)$ as seen in the behavior of $B_{peak}(T)$. Therefore, the proposal that B^* is orginated from the magnetic correlation coexisting with the SC might be constant with our results. In order to uncover the relationship between B^* and the unusual SC of UBe$_{13}$, further studies such as a check of the sample-quality dependence will be needed.

4. Summary
The superconducting phase diagram of a single-crystalline UBe$_{13}$ for $B||[110]$ has been obtained by means of the static dc magnetization measurements down to 0.24 K. In addition to the peak effect just below the upper critical field B_{c2}, we found a broad anomaly at B^*_M, which is clearly below B_{peak}. In contrast to the disagreement of the B_{c2} curves, the observed B^*_M values are nearly comparable to the fields where specific heat and thermal expansion show an anomaly.

Acknowledgements
This work was supported by Grant-in-Aid for Scientific Research B (19340086) and S (20224015) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References
[1] Ott H R, Rudigier H, Fisk Z, Smith J L 1983 Phys. Rev. Lett. 50 1595
[2] Ott H R, Rudigier H, Rice T M, Ueda K, Fisk Z, Smith J L 1984 Phys. Rev. Lett. 52 1915
[3] MacLaughlin D E, Tien C, Clark W G, Lan M D, Fisk Z, Smith J L, Ott H R 1984 Phys. Rev. Lett. 53 1833
[4] Golding B, Bishop D J, Batlogg B, Haemmerle W H, Fisk Z, Smith J L, Ott H R 1985 Phys. Rev. Lett. 55 2479
[5] Sonier J E, Heffner R H, Morris G D, MacLaughlin D E, Bernal O O, Cooley J, Smith J L, Thompson J D 2003 Physica B 326 414
[6] Tou H, Tsugawa N, Sera M, Haga Y, Onuki Y 2007 J. Magn. Magn. Mat. 310 706
[7] Rauchschwalbe U, Ahlheim U, Steglich F, Rainer D, Frane J J M 1985 Z. Phys. B-Cond. Matt 60 379
[8] Ott H R, Rudigier H, Felder E, Fisk Z, Smith J L 1986 Phys. Rev. B. 33 126
[9] Kromer F, Helfrich R, Lang M, Steglich F, Langhammer, Bach A, Michels T, Kim J S, Stewart G R 1998 Phys. Rev. Lett. 81 4476
[10] Lang M, Helfrich R, Kromer F, Langhammer C, Steglich F, Stewart G R, Kim J S 1999 Physica B 259-261 608
[11] Sakakibara T, Mitamura H, Tayama T, Amitsuka H 1994 Jpn. J. Appl. Phys. 33 5067
[12] Tenya K, Ikeda M, Tayama T, Sakakibara T, Yamamoto E, Maezawa K, Kimura N, Settai R, Onuki Y 1996 Phys. Rev. Lett. 77 3193
[13] Tayama T, Harita A, Sakakibara T, Haga Y, Shishido H, Settai R, Onuki Y 2002 Phys. Rev. B. 65 180504
[14] Signore P J C, Andraka B, Stewart G R, Meisel M W 1995 Phys. Rev. B. 52 10315