FIRST OBSERVATIONS OF THE SECOND-BRIGHTEST QUASAR

K. M. LEIGHLY
Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019; leighly@ou.edu

J. P. HALPERN AND D. J. HELFAND
Department of Astronomy, Columbia University, 550 West 120th Street, Mail Code 5247, New York, NY 10027

R. H. BECKER
Department of Physics, University of California at Davis, 1 Shields Avenue, Davis, CA 95616; and
Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, P.O. Box 808, L-413, Livermore, CA 94551-9900

AND

C. D. IMPEY
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065

Received 2001 January 29; accepted 2001 March 1

ABSTRACT

We report the discovery of a new bright quasar, PHL 1811, as part of a follow-up program to identify bright quasars in the FIRST radio survey. With \(B = 13.9 \), \(R = 13.9 \), and \(z = 0.192 \), this quasar is now the second-brightest quasar (in apparent magnitude) known beyond \(z = 0.1 \). Optically classified as a narrow-line Seyfert 1 galaxy (NLS1), PHL 1811 is unusual for an object in this class in that it was not detected in X-rays in the ROSAT All-Sky Survey or in any previous X-ray survey. A follow-up BeppoSAX observation confirms that it is deficient in X-rays compared with other quasars, but poor signal-to-noise ratio prevents a definitive characterization of the X-ray spectrum. We consider three alternative hypotheses to explain why PHL 1811 is a weak X-ray source: (1) it is a broad absorption line quasi-stellar object and suffers X-ray absorption; (2) like several other luminous NLS1s, it exhibits high-amplitude X-ray variability and has been observed only when it is in an X-ray–quiescent state; and (3) it is intrinsically weak because it simply lacks an X-ray–emitting region.

Key words: galaxies: active — quasars: individual (PHL 1811) — X-rays

1. INTRODUCTION

Bright luminous quasars, relatively rare in the local universe, offer a valuable laboratory for studying astrophysical phenomena. Good signal-to-noise observations can be obtained with a modest amount of observing time, and these objects, which display the effects of accretion onto supermassive black holes, can be studied in detail. Bright quasars can also be used to probe the interstellar and intergalactic medium, as their brilliant continuum allows detection of faint absorption lines.

For the past eight years, the NRAO Very Large Array has been used to construct Faint Images of the Radio Sky at Twenty Centimeters (FIRST). The FIRST survey was designed to produce the centimetric equivalent of the first Palomar Observatory Sky Survey (POSS I), a uniform sky survey that surpassed existing radio surveys by a factor of 20. Twenty Centimeters (FIRST). The FIRST survey was designed to produce the centimetric equivalent of the first Palomar Observatory Sky Survey (POSS I), a uniform sky survey that surpassed existing radio surveys by a factor of 20.

One of our major follow-up programs has been the FIRST Bright Quasar Survey (FBQS; Gregg et al. 1996; White et al. 2000). Using coincidences between FIRST radio sources and stellar objects on the POSS I plates brighter than 18th magnitude, spectra have been obtained for ~2000 counterparts, leading to the discovery of more than 1000 quasars and BL Lac objects, over 80% of which were previously known. Recently, extending this program to a strip in the south Galactic cap, we discovered an extremely bright quasar at \(z = 0.192 \). Its magnitudes on the POSS I plates from the USNO catalog (Monet et al. 1996) are \(B = 13.9 \) and \(R = 13.9 \), and it is of similar brightness on a UK Schmidt plate taken in 1988. Its absolute magnitude is \(M_V = -26.8 \) (for \(H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1} \)). These properties make it the second-brightest quasar (in apparent magnitude) known with \(z > 0.1 \) after 3C 273. Its position is \(\alpha = 21^\text{h}55^\text{m}01^\text{s}48 \), \(\delta = -09^\circ22'24.7' \) (J2000.0); a finding chart is given in Figure 1. Its radio flux density at 20 cm is only 1.4 mJy, so although this object was discovered in a radio survey, it is a radio-quiet quasar. It is also a faint IRAS source. The only other mention of this object in the literature is as PHL 1811, one of the many blue “stars” in the Palomar-Haro-Luyten plate survey (Haro & Luyten 1962). In this paper, we report optical and X-ray observations of this bright quasar.

2. OPTICAL SPECTROSCOPY

PHL 1811 was observed at the Multiple Mirror Telescope on 1997 September 11 for 180 s. The spectral resolution was about 1.95 Å pixel\(^{-1}\). The spectrum is shown in Figure 2. It has been dereddened according to the Cardelli, Clayton, & Mathis (1989) law for Galactic reddening of \(E(B-V) = 0.046 \text{ mag} \) and shifted to the rest frame. The optical continuum is very blue. While blends of lines make characterization of the continuum difficult, we estimate that the slope is \(
\alpha = 0.4 \) for \(F(\lambda) = \lambda^{-\alpha} \) between 3050 and 5600 Å. This is as blue as the bluest quasars observed (e.g., Grupe et al. 1998; also Grupe et al. 2000; Siebert et al. 1999) and appears to be consistent with the continuum predicted by the classical thin accretion disk model (\(\alpha = -\frac{1}{2} \)). The bluest part of the spectrum may not be reliable as the air mass during the observation was relatively high and the spectro-
1. Finding chart for PHL 1811, $\alpha = 21^h55^m01^s.48$, $\delta = -09^\circ 22'24''.7$ (J2000.0).

The optical spectrum shows the narrow Hβ, weak [O III], and strong Fe II characteristic of a narrow-line Seyfert 1 galaxy (NLS1; Osterbrock & Pogge 1985; Goodrich 1989). The region around Hβ is cluttered with blends of Fe II, making the analysis of this region difficult, and therefore, to measure the width of the Hβ line we perform an Fe II subtraction using a template obtained from the prototype narrow-line Seyfert 1 galaxy I Zw 1. This procedure involves shifting the high signal-to-noise template to the rest wavelength of the quasar, broadening the template as necessary with a Gaussian, and subtracting the amplitude-scaled template from the spectrum. While not perfect, this method has been frequently used to clear the region around Hβ of Fe II lines (Boroson & Green 1992; Grupe et al. 1999; Leighly 1999b, among others).

The Fe II–subtracted spectrum is shown in the inset of Figure 2. We fitted the Hβ line with a Lorenzian profile and obtain a FWHM of 1930 km s$^{-1}$. The FWHM is less than 2000 km s$^{-1}$, indicating that that quasar can be classified as a narrow-line quasar. Hα is somewhat narrower, with FWHM of 1650 km s$^{-1}$. The Fe II–subtracted spectrum shows that there is no detected [O III] line. The blue continuum and lack of [O III] have been observed in another luminous narrow-line quasar, RX J1034.2–4258 (Grupe et al. 2000). We measure an Fe II to Hβ ratio of 1.1, making this object moderately strong in Fe II emission compared with other NLS1s (e.g., Leighly 1999b). He II λ4686 is also very weak or undetectable. We find that the ratio of Hα to Hβ is 2.66, a ratio consistent with that expected from case B recombination. This fact and the blue continuum suggest that there has been no significant reddening of the spectrum.

We extrapolated our spectrum to 2500 Å in the rest frame and find that the monochromatic flux is approximately 1.0×10^{-23} ergs cm$^{-2}$ s$^{-1}$ Hz$^{-1}$. For $H_0 = 50$ km s$^{-1}$ Mpc$^{-1}$, this corresponds to a luminosity of 2×10^{31} ergs s$^{-1}$ Hz$^{-1}$. Wilkes et al. (1994) find an average slope between 2500 Å and 2 keV (α_{ox}) of 1.62 for a quasar of this luminosity.

3. X-RAY OBSERVATIONS

3.1. ROSAT

PHL 1811 is the second-brightest quasar known beyond $z = 0.1$. Based on the typical α_{ox} mentioned above, we expect that the count rate in the ROSAT Position Sensitive
Proportional Counter (PSPC) 0.15–2.4 keV bandpass is 0.5 counts s$^{-1}$ for a power law ($\Gamma = 2.5$) plus Galactic absorption ($N_H = 3.65 \times 10^{20}$ cm$^{-2}$; Dickey & Lockman 1990) model. PHL 1811 should be a relatively bright quasar in X-rays, and therefore it was a complete surprise to discover that this object is undetected in the ROSAT All-Sky Survey (RASS).

We use the RASS events files to estimate an upper limit on the emission from this object. An examination of the events files indicated that PHL 1811 was scanned over a period of only ~ 34 hr. The exposure time listed for an object near PHL 1811 in the ROSAT Bright Source Catalog is 334 s, and we use this value for our estimate. The point-spread function (PSF) in the survey is degraded from the nominal PSPC PSF at the aim point because of the inclusion of data from the edge of the detector, where aberrations are significant. We used a bright nearby source to estimate the effective PSF and found a half-power radius of 111$''$. After examining a large source-free region, we estimated that there should be 3.6 background photons in a region of this radius in 334 s. We observe only 2 photons in the region centered on the optical position of PHL 1811. Determining the upper limit on the source count rate becomes a problem of joint probability distributions: What is the net number of counts consistent with exactly 2 photons being observed and a background rate of 3.6 at a particular confidence level? Assuming the Poisson probability distribution applies, we find a 95% confidence upper limit of 2.2 photons in 334 s, yielding an upper limit of 1.3×10^{-2} counts s$^{-1}$ in the 0.1–2.4 keV ROSAT PSPC bandpass.

3.2. BeppoSAX Observation

A 40 ks BeppoSAX observation was approved as part of the Cycle 4 program and the observation was performed on 2000 May 16. We used the default SAXDAS extracted events files for analysis.

The net exposure in the MECS detectors is 38 ks. An adaptively smoothed image is shown in Figure 3. The position of the bright central source is consistent with the optical position of the quasar. We measure 183 photons between 1.65 and 10 keV in a 3$'$ extraction region centered on the quasar. Following the method of Fiore, Guainazzi, and Grandi, we scale blank sky background to match the background rate observed. In the 3$'$ region, there are 118 background photons, yielding 65 net counts in the MECS spectrum. The object is only barely detected in the shorter LECS observation (11.9 ks exposure). We return to this point below.

Clearly the poor statistics make any detailed spectral analysis unreliable. We fitted the MECS spectrum with a power law and Galactic absorption. The resulting fit is acceptable ($\chi^2 = 6.5$ for seven degrees of freedom). We find a rather flat best-fitting photon index of $\Gamma = 1.5$; however, it is clearly not well constrained, and the $\Delta \chi^2 = 2.71$ errors of 0.9–2.3 overlap the canonical value for an active galactic nucleus (AGN) of ~ 1.9, as well as the very flat value near $\Gamma \sim 1$, expected if the spectrum is dominated by Compton reflection (e.g., Matt et al. 1996). The observed 2–10 keV flux is 1.6×10^{-13} ergs cm$^{-2}$ s$^{-1}$, and the intrinsic 2–10 keV luminosity is 2.8×10^{43} ergs s$^{-1}$.

The power-law model fits the spectrum adequately. However, the ratio of the data to the model shows a slight curvature that could indicate absorption intrinsic to the quasar (Fig. 4). Furthermore, we would like to explore the range of intrinsic flux at 2 keV consistent with the spectrum for the discussion of the spectral energy distribution in § 4.

1 See ftp://legacy.gsfc.nasa.gov/sax/doc/software–docs/saxabc_v1.2.ps.
By adding absorption to the model, we find an improvement in the fit ($\chi^2 = 3.3$ for six degrees of freedom). The best-fitting photon index is 3.3, and the column density is 10^{23} cm$^{-2}$ in the rest frame of the quasar. These parameters are not well constrained. When we fix the photon index at $\Gamma = 2.6$, approximately the steepest value observed from NLS1s (e.g., Leighly 1999b) and arguably the steepest value plausible, then the absorption column is $6.4^{+3.3}_{-2.6} \times 10^{22}$ cm$^{-2}$. For these parameters, the intrinsic 2–10 keV luminosity is 5.2×10^{43} erg s$^{-1}$. Alternatively if we require the unabsorbed flux at 2 keV to match that required for the nominal value of $\alpha_{ox} = 1.6$ (see § 4), a photon index of 4.4 and an absorption column of 1.6×10^{23} cm$^{-2}$ are required, and an acceptable χ^2 of 3.2 for seven degrees of freedom is obtained.

We used the LECS data to try to differentiate between these candidate models. Using the FAKEIT command in XSPEC, we estimated the number of photons expected in the 0.1–4.0 keV LECS bandpass in a 4′ region. For the power law plus Galactic absorption model, 16.5 photons are expected, and for the two models including intrinsic absorption 7 to 8 photons are expected. We observe 45 photons and estimate that 36$^{+7}_{-3.1}$ of them are background photons by using the average background scaling method.

Fig. 4.—Results of fitting the *BeppoSAX* MECS spectrum: *top*, counts spectrum; *bottom*, ratio of the data to model. The spectral parameters and goodness-of-fit information are listed in the text.

Fig. 5.—Spectral energy distribution of PHL 1811, plotted as a function of rest-frame frequency. The dotted line denotes the 2 keV flux for an average quasar; the observed flux is ~34 times fainter than this. The dashed line shows the range observed by Wilkes et al. 1994. The *BeppoSAX* results are shown by flat and steep power laws obtained for fits with intrinsic absorption and $\Gamma = 2.6$, and without intrinsic absorption, respectively. The *ROSAT* All-Sky Survey upper limits for a power-law model with three assumed photon indices are also shown.
discussed by Fiore, Guainazzi, and Grandi. The number of source photons is then 9 ± 7.4, showing that the LECS data cannot differentiate between models.

4. SPECTRAL ENERGY DISTRIBUTION OF PHL 1811

We constructed the spectral energy distribution (SED) in the rest frame of PHL 1811 by using our optical spectrum, the ROSAT upper limits, and the BeppoSAX results, as well as the IRAS flux points and the 2MASS flux points. The filter photometry points (Fig. 5). We do not plot the radio flux point; with $x_F(v) = (1.7 \times 10^{-9}, 2.0 \times 10^{-17})$, the point is too far off the scale of the plot. We caution that the optical spectrum was not made under photometric conditions; however, the optical flux is consistent with that measured from the POSS I plates and a UK Schmidt plate and is therefore representative. We note that the X-ray and optical observations were not simultaneous. Therefore the derived SED is not definitive but is probably representative.

The SED is shown in Figure 5. A dotted line joins the extrapolated flux at 2500 Å to the predicted flux at 2 keV computed using $\alpha_{ox} = 1.6$ expected for the average quasar, and the dashed vertical line shows the approximate range of α_{ox} observed for quasars of this optical luminosity (estimated by eye from Fig. 9 of Wilkes et al. 1994). The ROSAT upper limit is shown for three values of the assumed photon index (2.0, 2.5, and 3.0). The BeppoSAX results are shown by flat and steep power laws obtained for fits with intrinsic absorption and $\Gamma = 2.6$, and without intrinsic absorption. For the power law plus Galactic absorption model, we find $\alpha_{ox} = 2.2$. The X-ray flux at 2 keV in the rest frame is a factor of 34 below that expected for the average value of α_{ox}. For the power law ($\Gamma = 2.6$) plus intrinsic absorption model, the inferred α_{ox} is 1.96, and the X-ray flux is a factor of 8 below that expected for the average value of α_{ox}. When we allow the absorption to increase to the $\Delta \chi^2 = 2.71$ limit of 1.3×10^{23} cm$^{-2}$, the inferred X-ray flux is still at least 5 times smaller than the nominal value. Therefore, the data strongly suggest that even after possible absorption is accounted for PHL 1811 is intrinsically X-ray weak.

5. DISCUSSION

PHL 1811 is classified optically as a narrow-line Seyfert 1 galaxy with a quasar luminosity. Narrow-line Seyfert 1 galaxies are generally bright soft X-ray sources, comprising up to 50% of soft X-ray–selected samples of AGNs (e.g., Stevens 1989; Grupe et al. 1999). Based on average quasar properties, we expect PHL 1811 to be 34 times brighter at 2 keV than it was observed to be in our BeppoSAX observation and than implied by the ROSAT All-Sky Survey upper limit. We speculate on why it may be so faint in X-rays below.

5.1. Is PHL 1811 the Brightest BAL QSO?

Broad absorption line (BAL) quasars are recognized by deep broad absorption lines in their UV spectra. It has been shown that BAL quasi-stellar objects (QSOs) are typically either weak X-ray sources or not detected at all (e.g., Green & Mathur 1996 for ROSAT pointed observations; Gallagher et al. 1999 for ASCA observations). More recently, it has been demonstrated that many objects that appear to be deficient in soft X-rays also show absorption lines in their UV spectra (Brandt, Laor, & Wills 2000). In fact, these authors find that the equivalent width of the C IV 1549 absorption line is inversely correlated with α_{ox}, where in this case α_{ox} is defined as the slope between 3000 Å and 2 keV. For our data this alternative α_{ox} is 2.15, and based on Brandt et al. (2000) results we can expect PHL 1811 to be a BAL QSO and have a C IV absorption line equivalent width greater than 20 Å. If this turns out to be the case, PHL 1811 will be the brightest BAL QSO known by far. PHL 1811 is probably not a low-ionization BAL QSO, though, as there is no evidence for absorption lines blueward of Mg II in our optical spectrum.

If PHL 1811 is a BAL QSO, then the X-ray emission that we see may be from a very steep spectrum that is very highly absorbed, although the required photon index of 4.4 is so steep that it seems unphysical. Alternatively the intrinsic spectrum could be completely absorbed, and the photons that we see have been scattered toward us by an electron-scattering mirror (e.g., Gallagher et al. 1999). We note that the polarization properties of this quasar are not yet known.

5.2. Is PHL 1811 the Brightest Variable Quasar-Luminosity NLS1?

Besides being known for their typically bright soft X-ray emission, narrow-line Seyfert 1 galaxies are also known for their high-amplitude, rapid variability. Detailed analysis of NLS1 light curves reveals, however, that the character of the variability is not uniform across the class. NLS1s with very strong soft excess components in their ASCA spectra show very high amplitude X-ray variability (Leighly 1999a, 1999b). The light curves from these objects consist of flares and quiescent periods, and during their quiescent periods the objects would be classified as X-ray weak. Two objects in particular appear to be deficient in X-rays even when their time-averaged X-ray spectrum is considered: non-simultaneous Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and ASCA observations of IRAS 13224—3809 and 1H 0707—495 are consistent with a α_{ox} of 1.63, whereas the expected value is 1.4 for quasars of their luminosity. There is little evidence for absorption in their X-ray spectra (Leighly 1999b), and no evidence for intrinsic absorption lines in their UV spectra (Leighly & Halpern 2001). PHL 1811 is much more luminous than these quasars, so it seems possible that it could have been in the quiescent state for the entire BeppoSAX observation or RASS scan period (elapsed time 24 and ~ 34 hr, respectively).

5.3. Is PHL 1811 Intrinsically X-Ray Weak?

We have recently been examining several luminous NLS1s identified in the ROSAT All-Sky Survey and have found unusual X-ray behavior that suggests they may become intermittently intrinsically X-ray weak. A particular example is RX J2217.9 — 5941, a luminous NLS1 similar to PHL 1811 in that it also has a very blue optical spectrum and strong Fe II emission (Grupe, Thomas, & Leighly 2001). RX J2217.9 — 5941 was bright during the ROSAT All-Sky Survey, but it faded through two subsequent ROSAT HRI observations and an ASCA observation. At the same time, the optical flux remained constant, and the inferred α_{ox} at the time of the last ROSAT HRI observation was 2.0, much steeper than the expected value of 1.5 (Wilkes et al. 1994). Although the ASCA analysis was hampered by poor statistics and contamination by nearby sources, we find no...
evidence for X-ray absorption. Although other explanations are possible, we suspect that RX J2217.9 – 5941 is now intrinsically X-ray faint.

We point out that there is no obvious reason why intrinsically X-ray weak quasars should not exist. A QSO arguably cannot exist without some kind of accretion disk as a source of fuel and also as a source of ionizing photons to power the observed optical and UV emission lines. However, in a luminous quasar, the continuum emission observed from the accretion disk itself is expected to be confined to the optical and UV. Hard X-ray emission, on the other hand, is thought to be created in a corona that is separate from the accretion disk in luminous AGNs. When poorly sampled light curves seemed to indicate that X-ray and UV variability were correlated, it was thought that much or perhaps all the accretion energy was released in the corona and that the disk reprocessed some of that radiation into the optical and UV bands (e.g., Svensson & Zdziarski 1994). However, recent observations with better sampling show that hard X-ray reprocessing is clearly not a dominant effect in some objects (Nandra et al. 1998). Therefore, AGNs do not need to have coronae, and they may be absent in some objects. The only reason to consider a corona necessary, in our current understanding of AGN, is that reprocessing can power the tightly correlated UV and optical variability. However, as concentrated broadband monitoring has never been done on an object similar to PHL 1811, we cannot predict its broadband continuum behavior.

Why should PHL 1811 lack a hard X-ray–emitting region? At this point, we can only speculate. As discussed by Laor (2000), narrow Balmer lines in very luminous AGNs may imply extremely high accretion rates if the width of the lines is dominated by virial motions, and therefore PHL 1811 may have an extremely high accretion rate. We note that RX J2217.9 – 5941, which seems to have similar X-ray properties, is also a very luminous NLS1. One possible geometry suggested for accreting black holes is a central hot, optically thin, geometrically thick X-ray–emitting region, and an optically thick, geometrically thin optical and UV-emitting accretion disk with large inner radius. At high accretion rates, it might be expected that the inner radius of the accretion disk would stretch down to the innermost stable orbit and the central hot X-ray–emitting region would not be present. Another possible geometry assumes an X-ray–emitting corona on top of the accretion disk, where the corona is fed by reconnecting magnetic flux tubes that rise buoyantly from the accretion disk. In this case, perhaps the corona is present but is quenched by the strong UV emission from the disk. Alternatively recalling that an accretion disk is in some ways similar to a star, the feeding of the corona may be disrupted, and the magnetic field strength may be less in a radiative disk (similar to high-mass stars) than in a convective disk (similar to low-mass stars).

UV spectroscopic observations will show us whether PHL 1811 has deep absorption features characteristic of a BAL QSO. Such observations have been approved as part of the HST Cycle 10 program, and Far-Ultraviolet Spectroscopic Explorer GTO observations are also planned. Two approved Chandra observations will help us understand whether or not the X-rays are absorbed and whether there is variability that would tend to rule out scattering models for the X-rays.

The authors gratefully acknowledge the BeppoSAX team and in particular Luigi Piro for significant help with this observation. K. M. L. acknowledges useful discussions with Andrzej Zdziarski. K. M. L. gratefully acknowledges financial support by NASA LTSA (NAG 5-10171). D. J. H. and R. H. B. acknowledge support for the FIRST survey follow-up observations from the NSF (AST 98-62732). This research has made use of the NASA/IPAC Extragalactic Database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Two Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center at California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

REFERENCES
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Boroson, T., & Green, R. F. 1992, ApJS, 80, 109
Bradt, W. N., Laor, A., & Willis, B. J. 2000, ApJS, 125, 517
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
Filippenko, A. V. 1982, PASP, 94, 715
Gallagher, S. C., Brandt, W. N., Sambruna, R. M., Mathur, S., & Yamasaki, N. 1999, ApJ, 519, 549
Goodrich, R. W. 1989, ApJ, 342, 224
Green, P. J., & Mathur, S. 1996, ApJ, 462, 637
Gregg, M. D., Becker, R. H., White, R. L., Helfand, D. J., McMahon, R. G., & Hook, I. M. 1996, AJ, 112, 407
Grune, D., Beuermann, K., Mannheim, K., & Thomas, H-C. 1999, A&A, 338, 827
Grupe, D., Leighly, K. M., Thomas, H.-C., & Mannheim, K., & Fink, H. H. 1998, A&A, 333, 827
Grupe, D., Leighly, M., Thomas, H.-C., & Laurent-Muehlenisen, S. A. 2000, A&A, 369, 450
Grupe, D., Thomas, H.-C., & Leighly, K. M. 2001, A&A, 369, 450
Haro, G., & Luyten, W. J. 1962, Bol. Inst. Tonantzintla, 3, 37
Haro, G., & Luyten, W. J. 2000, NewA Rev., 44, 503
Leighly, K. M. 1999b, ApJS, 125, 297
---, 1999b, ApJS, 125, 317
Leighly, K. M., & Halpern, J. P. 2001, in preparation
Matt, G., et al. 1996, MNRAS, 281, 69
Monet, D., et al. 1996, USNO-S2.0 (Washington: US Naval Observatory)
Nandra, K., Clavel, J., Edelson, R. A., George, I. M., Malkan, M. A., Mushotzky, R. F., Peterson, B. M., & Turner, T. J. 1998, ApJ, 505, 594
Osterbrock, D. E., & Pogge, R. W. 1985, ApJ, 297, 166
Siebert, J., Leighly, K. M., Laurent-Muehlenisen, S. A., Brinkmann, W., Boller, T., & Matsukawa, M. 1999, A&A, 348, 678
Stephens, S. A. 1989, AJ, 97, 10
Svensson, R., & Zdziarski, A. A. 1994, ApJ, 436, 599
White, R. L., et al. 2000, ApJS, 126, 133
White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479
Wilkes, B. J., Tananbaum, H., Worrall, D. M., Avni, Y., Oey, M. S., & Flanagan, J. 1994, ApJS, 92, 53