The melittology research in Northern Africa and the Middle East: past and present situations

Mohamed A. Shebl 1, Faten Ben Abdelkader 2*, Leila Bendifallah 3, Karima Benachour 4, Ali A. Bataw 5, Emsaed M. Bufliga 16, Mohamed A. Osman 1 and Soliman M. Kamel 1

Abstract
Background: More than 20,000 species in the superfamily Apoidea have been identified worldwide. This superfamily includes the most important group of insect pollinators that contribute to the integrity of ecosystems.

Main body: We have gathered in this paper data from many previous works in Northern Africa and Middle East regions. Some of these data are date from many years ago and others are recent. We present here a non-exhaustive list of some common Apoidea species. In addition, certain previous studies that were published and other current research opportunities were suggested.

Conclusion: Although there are many bee experts in the Arab world, i.e., in apiculture, however, a few researchers are interested in melittology even though it seems that this region represents a large bee diversity.

Keywords: Checklist, Apoidea, Mellitology, Pollination, Solitary bees

Background
The sexual reproduction of over 90% of approximately 250,000 species of Angiosperms is depending on animal-pollination (Kearns & Oliveras, 2009). This plant-animal interaction maintains the world’s biodiversity and contributes to the integrity of ecosystems. Crops often depend on honeybee colonies for their productivity, partially on wild bee pollinators also (Klein et al., 2006; Potts et al., 2016). Actually, among 107 global crops, 90 are visited by bees, being the most important group of pollinators (Klein et al., 2006). However, the economic, ecological, and biodiversity importances of pollinators are acknowledged for few systems (Delaplane & Mayer, 2000) and there is a considerable extent for studying the characteristics of pollinators in Northern Africa and the Middle East (MENA) which moderates the value of pollinator communities. Although over 20,000 bee species have been globally reported (Ascher & Pickering, 2020), in most of Northern African and Arab countries, the total number of bee species is unclear and there are no published keys for species identification or even there is no updated checklist of bees for each country or the whole region (Grace, 2010; Shebl, Kamel, & Mahfouz, 2013). According to Rasmont (1995), the Maghreb and North Africa probably represent a bee diversity comparable or even larger than that of California where 1200 species were counted (Moldenke & Neff, 1974). Some studies show that the Maghreb and the Nile delta are remarkably rich in bee species and Morocco constitutes a hotspot for bee species richness. In contrast, in the area between western Egypt and southeastern Tunisia, the species richness is considered in a very low level (Michez & Patiny, 2007; Patiny, Michez, Kuhlmann, Pauly, & Barbier, 2009). Dours (1872); Benoist (1941, 1949, 1950); Guiglia (1942); Priesner (1957); and Schulthess (1924) were

* Correspondence: benabdelkaderfaten@gmail.com

2Laboratory of Bio-aggressors and Integrated Pest Management in Agriculture, National Institute of Agronomy of Tunisia, Carthage University, 1082 Cité Maharjène, Tunis, Tunisia

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
among the first entomologists who were interested in the study of bee fauna in The Mediterranean and Northern Africa regions. More recent works include those of Daly (1983); Ebmer (1985); Ebmer and Grünwaldt (1976); Gunseliitner and Schwarz (2002); (Zanden, 1991, 1994, 1996).

Melititology research was done extensively in Algeria, Egypt, Morocco, and Saudi Arabia, in the last four decades probably with the beginning of the 70s. On the other hand, some works were carried out in Tunisia and Libya and probably in other countries (Bendifallah et al., 2010a).

Among the most genera studied, we found the genus Andrena which was studied extensively (Scheuchl, 2010; Warncke, 1974, 1980, 1983). During the 80s, a total of 196 species of Adrena were recorded in Northern Africa and the Middle East (Moustafa, 1986). Later, Gunseliitner and Schwarz (2002) in their work, reported about 300 species of Andrena in Northern Africa and more than 200 species in Algeria. Very few studies were conducted for nesting biology of bees in the whole region (Aguib, Benachour, Maghni, & Louadi, 2017; Alqarni, Hannan, Gonzalez, & Engel, 2014; Shebl, Alqarni, & Engel, 2016) but several studies were carried on the pollination of plants and crops (Aouar-sadli, Louadi, Doum, & Ji, 2008; Benachour, 2017; Benachour, Louadi, & Terzo, 2007; Benachour & Bounira, 2017; Benachour & Louadi, 2011; Benachour & Louadi, 2013; Bendifallah, Louadi, & Doumandji, 2013).

Main text
In Egypt, the first study was carried out in the late 1950s by Priesner (1957) who was interested in species of the genus Anthophora in the region. Suez Canal University is the hub center of melittology research in Egypt now. Several research projects of bee diversity and conservation have been started in the last two decades (Osman & Shebl, 2020; Shebl et al., 2013). Grace (2010) recorded around 370 bee species in Egypt. In 2020, 466 bee species were recorded by Ascher and Pickering (2020) representing 15 subfamilies and seven families of Apoidea. The first research with solitary bees started in the seventies at the Agriculture Research Center, Ministry of Agriculture. Some papers were published in local and international journals (Ibrahim, Nassib, & El-Sherbeeny, 1978; Moustafa, El-Hefny, Abd El-Salam, & Salem, 1979; Moustafa & El Berry, 1976; Rashad, 1978; Rashad, 1985). Extensive field expeditions were done in the Canal region, 62 species were listed in addition to some newly recorded species (Shebl et al., 2013; Shebl & Farag, 2015) (Table 1). At the beginning of this century, Suez Canal University was collaborated with Idaho University (USA) and received grants for initiating leafcutting-bee cell management for alfalfa pollination (Shebl, Kamel, Abu Hashesh, & Osman, 2009). Some species were successfully nested in artificial nests (Kamel et al., 2019; Shebl, Hassan, Kamel, Osman, & Engel, 2018). Since there is no accurate number of native bee species in the country and still more species to be found and discovered (Abu Zeid, Shebl, & Metwali, 2019), more research is needed to be conducted.

In Algeria, the first studies established in the region started by Eaton, Morice, and Saunders (1908), Fountaine (1911), and Saunders (1906). The most recent works came later from Benachour et al. (2007), and Bendifallah et al. (2010a); Bendifallah, Doumandji, Louadi, and Iserybt, (2012); Louadi and Doumandji (1998a, b); Louadi (1999); Louadi et al. (2007); Louadi, Berchi, and Benachour, (2007). A survey by Louadi et al. (2008) was conducted in the northeast regions of Algeria (Tell Atlas: Annaba, Skikda, El Kala, El Taref, Constantine, Khenchla, and Tebessa), and in the northeast of the Sahara (Biskra) have established a list of the solitary bees counting 382 species. These species were belonging to 55 genera and divided in six families: Apidae (17 genera, 111 species), Megachilidae (20 genera, 100 species), Colletidae (2 genera, 25 species), Melittidae (3 genera, 9 species), Halictidae (8 genera, 60 species), and Andrenidae (5 genera, 77 species). Aouar-sadli et al. (2008) noted several new records for bee fauna of Algeria in TiziOuzou region such as Hylaenus (Prosoapis) meridonialis Förster, 1871; Andrena (Chrysandrena) fulvago Christ, 1791; Nomioioides facilis Smith, 1853; and Anthophora (Anthophora) subterranea Germar, 1826. Also, Bendifallah et al. (2010a, b); Bendifallah, Louadi, Doumandji, and Micez (2011); Bendifallah et al. (2012); Bendifallah et al. (2015); and Bendifallah and Ortiz-Sánchez (2018) noted a diverse bee fauna in mid-northern Algeria and in the Northeastern Sahara (Mitidjaplain, Blida, Bouira, Boumerdes, Chlef, Biskra) with more than 190 taxa. Anthophora (Lophanthophora) plumosum Pérez, Eucera (Heteroeucera) squamosa Lepeletier, 1841; Eucera (none or uncertain) nitidiventris Mocsary, 1978; Xylocopa (Koptortosoma) pubescens Spinola, 1838; Anmmbobates (Anmmbobates) punctatus Fabricius, 1804, were some new species and subspecies of Apoidea found in Algeria. It should be noted that studies on the systematics of some groups, also conducted basically in the northeastern part of the country, and allowed to identify new species for Algeria. For example, Aguib, Louadi, and Schwarz (2010) reported new taxa from Algeria including Anthidiom florentinum Fabricius 1775, Pseudoanthidium enslini (Alfken 1928), and Stelis similima (Morawitz 1876). The family Andrenidae has been studied by Benarfa, Louadi, and Scheuchl (2013); Cherair, Scheuchl, Doumandji, and Louadi, (2013); Djouama, Louadi, and Scheuchl (2016), and Scheuchl, Benarfa, and Louadi (2011). About 70 species have been listed including ten
Table 1 List of some common species in North Africa and Middle East (Louadi et al., 2008; Dathe et al., 2009; Grace, 2010; Bendifallah et al., 2010a; Bendifallah et al., 2012; Kuhlmann et al., 2012; Bendifallah et al., 2013; Shebl et al., 2013; Shebl & Farag, 2015; Bendifallah & Ortiz-Sánchez, 2018; Ascher & Pickering, 2020)

Family	Species	Distribution
Colletidae	Colletes arabicus Kuhlmann, 2002	Saudi Arabia and UAE
	Colletes cariniger Pérez, 1903	Libya and Egypt
	Colletes coriandri Pérez, 1895	Algeria, Tunisia, Libya, and Egypt
	Colletes elegans Noskiewicz, 1936	Morocco, Tunisia, and Egypt
	Colletes intricans Spinola, 1838	Morocco, Tunisia, and Egypt
	Colletes jejunus Noskiewicz, 1936	Algeria, Egypt, and Jordan
	Colletes lacunatus Dours, 1872	Morocco, Tunisia, Libya, Egypt, and UAE
	Colletes maroccanus Warncke, 1978	Morocco, Algeria, Tunisia, Libya, Egypt, Sudan, Syria, Jordan, UAE, and Oman
	Colletes nanus Friese, 1898	Egypt, Jordan, Yemen, and Tunisia
	Colletes perezi Morice, 1904	Algeria and Egypt
	Colletes pseudojejunus Noskiewicz, 1959	Morocco, Algeria, Tunisia, Egypt, Jordan, and Saudi Arabia
	Colletes pumilus Morice, 1904	Morocco, Algeria, Tunisia, Egypt, Jordan, Sudan, Yemen, Oman, and UAE
	Hylaeus albonotatus Walker, 1871	Morocco and Egypt
	Hylaeus biarmicus Warncke, 1992	Morocco and Egypt
	Hylaeus dinkleri Friese, 1898	Egypt, Yemen, Oman, and UAE
	Hylaeus elatus Warncke, 1891	UAE and Oman
	Hylaeus hameri Dathe, 1995	Egypt, Syria, and Jordan
	Hylaeus moricei Friese, 1898	Morocco, Lebanon, and Jordan
	Hylaeus angustatus Schenck, 1859	Morocco, Algeria, Tunisia, Libya, and Egypt
	Hylaeus sulphuripes Gribodo, 1894	Morocco, Algeria, Tunisia, Libya, and Egypt
Andrenidae	Andrena aegyptiaca Friese, 1899	Libya, Egypt, Saudi Arabia, and Jordan
	Andrena aegypticola Friese, 1899	Morocco, Algeria, Tunisia, Libya, Egypt, and Iraq
	Andrena albifacies Alfken, 1927	Algria, Tunisia, Libya, and Egypt
	Andrena argyrofasciata Schmiedeknecht, 1900	Morocco, Algeria, Tunisia, and Iraq
	Andrena bimaculata Kirby, 1802	Morocco, Algeria, Tunisia, and Egypt
	Andrena biskrensis Pérez, 1895	Morocco, Algeria, Tunisia, and Egypt
	Andrena caroli Pérez, 1895	Morocco, Algeria, Tunisia, Libya, and Egypt
	Andrena dousana Dufour, 1853	North Africa and UAE
	Andrena fuscosa Erichson, 1835	Morocco, Algeria, Tunisia, and Egypt
	Andrena impunctata Pérez, 1895	Yemen, Saudi Arabia, and UAE
	Borgatromelissa brevipennis Walker, 1871	Morocco, Algeria, Tunisia, and Egypt
	Ceylalictus desertorum Blüthgen, 1925	North Africa, UAE, and Jordan
	Ceylalictus punjabensis Cameron, 1907	North Africa, Saudi Arabia, Yemen, Oman, Bahrain, and UAE
	Ceylalictus variegatus Olivier, 1789	Egypt, Syria, and Jordan
	Dufourea nodicornis Warncke, 1979	Tunisia, UAE
	Dufourea phoenicea Ebmer, 2008	North Africa, Egypt, and Syria
	Halictus brunescens Eversmann, 1852	Morocco, Tunisia, and Egypt
	Halictus cupidus Vachal, 1902	North Africa, Yemen, Saudi Arabia, Iraq, and UAE
	Halictus lucidipennis Smith, 1853	North Africa, Egypt, and Oman.
	Halictus pici falx Ebmer, 2008	
Family	Species	Distribution
--------------	--------------------------------	---
Halictidae	Halictus aegypticola Strand, 1909	Egypt, Jordan, and Lebanon
	Halictus senilis Eversmann, 1852	North Africa, Egypt, Iraq, Jordan
	Halictus tibialis Walker, 1871	Egypt, Jordan, Oman, YemeN, and UAE
	Lipatriches parca Kohl, 1906	Yemen, Bahrain, Libya, Egypt, Sudan, and UAE
	Lasio glossum aegyptiellum Strand, 1909	Libya, Egypt, Syria, and Iraq
	Lasio glossum articulare Pérez, 1895	North Africa, Egypt, Jordan, Oman, and UAE.
	Lasio glossum decolor Pérez, 1895	Algeria, Tunisia, Libya, and Egypt
	Lasio glossum transitorium Schenck, 1870	North Africa, Syria, Jordan, and Egypt
	Nomia forbesi Kirby, 1900	Sudan, Yemen, and UAE
	Nomia lutea Warncke, 1976	Algeria, Egypt, and Sudan
	Nomia zonaria Walker, 1871	Egypt, Sudan, Saudi Arabia, and UAE
	Nomioides deceptor Saunders, 1908	North Africa, Egypt, Saudi Arabia, and UAE
	Nomioides klasii Pesenko, 1983	Algeria, Tunisia, Saudi Arabi, UAE, and Oman
	Pseudapis nilotica Smith, 1875	North Africa; Saudi Arabia, Qatar, Oman, UAE, and Jordan
	Panurgus nigricopa Pérez, 1895	Oman, Egypt, Morocco, Algeria, and UAE
	Panurgus dentatus Friese, 1901	Morocco, Algeria, Tunisia, Libya, Egypt, Jordan, and Saudi Arabia
	Rophites algirus Pérez, 1895	Morocco, Algeria, Tunisia, and Lebanon
	Systropha diacantha Baker, 1996	Oman and UAE
	Systropha andrasthenes Baker, 1996	UAE and Saudi Arabia
	Sphecodes olivieri Lepeletier, 1825	Morocco, Algeria, Egypt, Omaa, Qatar, and UAE
	Sphecodes longuloides Blüthgen, 1923	Morocco, Tunisia, and Algeria
Melittidae	Dasypoda albipila Spinola, 1838	Egypt, Saudia Arabia, UAE, and Oman
	Dasypoda hirtipes Fabricius, 1793	North Africa, Egypt, Syria, and Iraq
	Dasypoda sinuata Pérez, 1895	North Africa and Egypt
	Melitta aegyptiaca Radoszkowski, 1891	Moroco, Tunisla, and Egypt
	Melitta schmiedeknecht Friese, 1896	North Africa and Egypt
	Promelitta alboclypeata Friese, 1900	Morocco
Megachilidae	Anthidium argutilventre Morawitz, 1888	Egypt, Jordan, Syria, and Oman
	Anthidium manicatum Linnaeus, 1758	North Africa, Egypt, Syria, and Lebanon
	Chelostoma rapunculi Lepeletier, 1841	North Africa, Iraq, Jordan, and Syria
	Coelioxys decipiens Spinola, 1838	Moroco, Tunisia, Egypt, Yemen, Oman, and Iraq
	Coelioxys haemorrhoa Foerster, 1853	North Africa and Egypt
	Eoanthidium bakerorum Engel, 2004	North Africa, Egypt, and UAE
	Icteranthidium ferrugineum Fabricius, 1787	Morocco, Algeria, Tunisia, Egypt, Oman, Lebanon, Syria, UAE, and Saudi Arabia
	Icteranthidium grohmanni Spinola, 1838	Morocco, Algeria, Tunisia, Egypt, and Lenanonen
	Megachile amabilis Cockerell, 1933	Sudana, Egypt, and Oman
	Megachile apicalis Spinola, 1808	Morocco, Algeria, Egypt, and Iran
	Megachile submucida Alfken, 1926	Egypt and Saudi Arabia
	Megachile walkeri Dalla Torre, 1896	Egypt, Oman, Saudi Arabia, and UAE
	Osmia alfkeni Ducke, 1899	Morocco, Algeria, Tunisia, and Egypt
	Osmia caerulea Linnaeus, 1758	North Africa, Egypt, Jordan, and Syria
new species for the country, e.g., *A. (Orandrena) monilia* Warncke 1967, *A. (Suandrena) cyanomica* Pérez 1895, *A. haemorrhhoa* Fabricius, 1775, and one new record, i.e., *Andrena tebessana* Scheuchl et al. (2011). Between 2009 and 2012, 35 species belonging to the family Halictidae were identified in different localities in Batna (eastern Algeria); *Lasioglossum musculum* was reported for the first time in Algeria (Chichoune, Benachour, Louadi, & Ortiz-Sánchez, 2018). In the region of the Aures (northeast of Algeria), 33 species have been identified belonging to the tribe Anthophorini and of which six were new to the country such as *Anthophora (Anthophora) punctilabris* (Pérez, 1879), *A. (Lophanthophora) mucida* (Gribodo, 1873), and *A. (Petalosternon) extricata* Priesner, 1957 (Maghni, Louadi, Ortiz-Sánchez, & Rasmont, 2017). A total of 15 species of cleptoparasitic bees of *Nomada* Scopoli, 1770 (Hymenoptera Apidae) were found between 2011 and 2014 in five locations of north eastern Algeria and two species, i.e., *Nomada rubiginosa* Pérez, 1884, and *Nomada glaucopis* Pérez, 1890, were new to the fauna of the country (Bakiri, Louadi, & Schwarz, 2016). The presence of *Sphecodes puncticeps* Thomson, 1870, a cleptoparasitic species in Algeria was also confirmed by Chichoune et al. (2018). According to Ascher and Pickering (2020), the number of species in Algeria was about 826 species, 204 of them were belonging to Megachilinae (Table 1).

Table 1

Family	Species	Distribution
Osmia Latreille, 1811	*Osmia ferruginea* Latreille, 1811	North Africa, Egypt, Jordan, and Syria
	Osmia latreillei Spinola, 1806	North Africa, Egypt, Jordan, and Saudi Arabia
	Osmia latreillii Pérez, 1887	North Africa, Egypt, Syria, and Jordan
	Osmia fasciata Lateille, 1811	Egypt, Jordan, UAE, and Iraq
	Osmia gemmata Pérez, 1895	North Africa, Egypt, and Syria
	Osmia notata Fabricius 1804	North Africa and Egypt
	Stelis aegyptiaca Radoszkowski, 1876	North Africa, Egypt, and UAE
	Stelis phaeoptera Kirby, 1802	Algeria, Tunisia, Egypt, and Iraq
Apidae	*Amegilla albigena* Lepeletier, 1841	North Africa, Egypt, Jordan, Syria, and Lebanon
	Amegilla quadrifasciata de Villers, 1789	North Africa, Egypt, Syria, Iraq, and Lebanon
	Ammobates anarsiensis Lepeletier, 1841	North Africa, Egypt, and Jordan
	Bombus maysauty Kriechbaumer, 1877	North Africa, Egypt, and Jordan
	Bombus lapidarius Benoist, 1928	Morocco and Saudi Arabia
	Bombus niveatus Kriechbaumer, 1870	Lebanon and Syria
	Ceratina citriphila ackerell, 1935	Morocco, Algeria, Egypt, and Yemen
	Ceratina panula Smith, 1854	North Africa, Egypt, Syria, and Jordan
	Ceratina tarata Morawitz, 1872	Morocco, Egypt, Sudan, and Yemen
	Euca cerata Lepeletier, 1841	North Africa and Egypt
	Eucera cuniculina Klug, 1845	North Africa, Egypt, and Jordan
	Nomada fenestrata Lepeletier, 1841	Northern Africa, Egypt, Lebanon, Jordan, and Iraq
	Xylocopa pubescens Spinola, 1838	North Africa, Egypt, Lebanon, Yemen, Jordan, Syria, and Saudi Arabia
	Xylocopa aestuans Linnaeus, 1758	Egypt and Sudan
	Xylocopa sulcatipes Maa, 1970	Egypt, Saudi Arabia, Yemen, and UAE
We have noted the work of Sonet and Jacob-Remacle (1987) on pollination of the forage legume *Hedysarum coronarium* L. Those authors mentioned the presence of four families (Apidae, Halictidae, Andrenidae, and Megachilidae). Also, the work of Zanden (1991, 1994) on the Megachilidae where the author reported the presence of the genus *Anthocopa* in the region of Gafsa in 1991, and described in 1994 new subspecies, i.e., *Hoplosmia aneczybiarnica* from Tunisia which was also recorded in Algeria and Morocco and *Protosmia querqueda*. Although the absence of national research centers and specialized researchers, as the main causes, it seems that Tunisia is a very rich country with a total of 651 species (Ascher & Pickering, 2020) (Table 1). The first study established in 2009 gave a first approach to the composition of bee fauna in four regions of Tunisia, showed the presence of six families: Megachilidae (5 genera), Apidae (10 genera), Halictidae (5 genera), Andrenidae (3 genera), Colletidae (2 genera), and Melittidae (1 genus). The most represented genus, with 20% of all recorded species, was *Eucer (Chouchaine, 2015)*. The second study (Imene Rjiba, 2014, unpublished data) was conducted in the region of Bizerte (north of Tunisia) and in an orchard in the region of Chott-Meriem, Sousse (east of Tunisia). The study was addressing the diversity of wild bees more than their abundance. A total of six families were listed: Crabronidae, Apidae, Halictidae, Megalichidae, Andrenidae, and Sphecidae. A study of Crabronid fauna in Tunisia revealed the presence of 22 species belonging to 12 genera and three subfamilies (Astatinae, Crabroninae, and Pemphredoninae) (Khedher, Yildrim, & Braham, 2020). Recently, a *Hoplitis mucida* was discovered in Tunisia (El Kef in northern Tunisia) (Müller, Mauss, & Prosi, 2017), revealed striking differences than the two subspecies used to be known, *H. mucida mucida* (Dours, 1873) and *H. mucida stecki* (Frey-Gessner, 1908).

In 2020, a preliminary study conducted in a semi-arid environment in Tunisia concerned the distribution of insect visitors, in addition to honey bees hives, revealed the presence of three superfamilies: the Apoidea (represented mainly by the Apidae and Megachilidea families), the Ichneumonoidea, and the Vespoidae (Ben Abdelkader, Ounisi, Barbouche, & Ammar, 2020). Although research on the conservation of wild bees is common in the Mediterranean area, little is known about their status in the Libyan ecosystem. Libya as all other countries of the Mediterranean Basin contains many non-*Apis* species that spread all over the country. Among the works carried out in the Maghreb region during the first half of the twentieth century, we found the work of Guiglia (1942) who studied the Hymenoptera of Libya. Recently, about 151 bee species were recorded by Grace (2010) and 276 species were reported by Ascher and Pickering (2020) in Libya (Table 1). The melittology research in Libya based on a teamwork at Faculty of Science, Omar Al-Mukhtar University. Currently, there are some ongoing studies focused on wild bee’s diversity of the Al-Jabal Al-Akhdar that is a dense in east Libya, covered with agricultural and wild plants. Also, some basic ecological studies such as species distribution and their interaction with wild plant flowers are in progress. Surely, the results of these studies will encourage other researchers to get involved and explore the country’s native bee diversity and its great impact on the ecosystem.

In Morocco, the bee fauna was studied by Benoist (1941, 1949, 1950). Ebmer and Grünwaldt (1976) and Ebmer (1985) were particularly interested in the fauna of the Halictidae by describing the species of the genera *LasioGLOSSUM* and *Halictus* of this country. More recently, Pierre Rasmont and Yvan Barbier of the research team of Mons and Gembloux, carried out most wild bee research. A total of 925 species belonging to Andrenidae (193), Apidae (233), Colletidae (75), Halictidae (143), Megachilidae (267), and Melittidae (14) were reported in Morocco (Ascher & Pickering, 2020) (Table 1). Currently, there is a great funded project by ICARDA to evaluate the role of solitary bees in crop pollination. This project extended to other countries, e.g., Algeria represented in the National Institute of Agronomic Research (Algiers and Touggourt) whose work began in 2020.

Patiny et al. (2009) evaluated the distribution of some bee species within a region including the Sahara and Arabian deserts and their adjacent areas. They found that the *Hoplitis mucida* (Dours, 1873) was presented in Maghreb region (Morocco, Algeria, and Tunisia). The *Melitturga albescens* was the only palaearctic species found in Atlas Mountains and Tafilalt in Morocco. *Panurgus dentatus* was reported in Morocco along the southern slopes of the Atlas Mountains and in Egypt (Nile Valley) (Shebl, Patiny, & Michez, 2015), the mountains south of Tripoli and westwards into Tunisia. *Dasypoda oranienis* was restricted to Morocco and western Algeria and was not existed in the eastern part of North Africa.

Taxonomic works including material from Saudi Arabia started after 1970 (Alqarni, Hannan, & Engel, 2012; Alqarni, Hannan, Gonzalez, & Engel, 2014; Alqarni et al., 2014a, b, c; Daly, 1983; Ebmer, 1984, 1985; Engel, 2004; Engel, 2008; Engel, Hannan, & Alqarni, 2012; Engel, Alqarni, & Shebl, 2017; Engel, Alqarni, Shebl, Iqbal, & Hinojosa-Díaz, 2017; Michez & Patiny, 2007). In a survey conducted in 2013, 22 genera were documented in the literature for Saudi Arabia (Engel, Alqarni, & Hannan, 2013). Later, in 2017, at least 45 genera were found in the country with some expected new genera.
and species (Engel, Alqarni, & Shebl, 2017). Probably the total species number across the country is around 200 to 250 species including some cleptoparasitic taxa. The large carpenter bees (Xylocopinae, *Xylocopa* Latreille) occurring in central Saudi Arabia were reviewed, and two species were listed, i.e., *Xylocopa aestuans* and *X. sulcatipes* Maal (Hannan et al., 2012) in addition to a new species described from Sarawat Mountains (Engel, Alqarni, Shebl, Igbal, & Hinojosa-Díaz, 2017). *Melitta* Kirby, 1802 (Melittidae: Melittinae) was recorded for the first time in Saudi Arabia (Table 1). *Melitta schmiedeknechti* Friese, 1898 females were captured also in Saudi Arabia, representing the first discovery of this species, previously found across northern Africa and the southern Levant (Shebl et al., 2016). The nest architecture, foraging behavior, and host plants of the leafcutting bee, *Megachile minutissima* (Hymenoptera: Megachilidae), was also studied in Saudi Arabia (Alqarni, Hannan, Gonzalez, & Engel, 2014).

Baker (2004) collected and documented many data of several British hymenopterists between 1979 and 1993 in Qatar, UAE, and Oman. He reported the main two studies; Roche (1981) and Hamer (1986) and he published a list of bees and wasps found in these countries. Two new species, *Andrena Arabica* and *A. maidaqi* (Hymenoptera, Apidae), were described from UAE (Scheuchl & Gusenleitner, 2007). A survey in 2009 revealed the presence of 140 species, 46 genera in six of seven families found in UAE (Dathe et al., 2009) (Table 1). This was a low number compared to that known in the Mediterranean region which has a rich flora (Jongbloed, Feulner, Böer, & Western, 2003).

The first information concerning the bees of Syria dates from 1890. Thirty-four species were recorded from Damascus. Later in 1908, 20 new species of bees, mostly from Damascus and Homs, were recorded. In 1956, the list of the bees described and recorded was about 55 species (Mavromoustakis, 1956b). In 2010, Grace (2010) cited 266 species from Syria, while (Ascher & Pickering, 2020) reported the presence of 440 species (Table 1).

In Lebanon, bee fauna is not well documented. The first works were from Mavromoustakis (1955, 1956a, 1962) who collected extensively bees of Anthidiini and Osminii. About 163 species were cited by Grace (2010), but 260 species were listed by Ascher and Pickering (2020). Boustani et al. (2020) listed four species of bumblebees with different foraging ranges. Like Syria and Lebanon, the investigation about bee fauna in Jordan is very poor. In 2006, 53 species were identified, recorded, and classified into five families: Apidae, Megachilidae (widely diversified), Halictidae (highly abundant), Andrenidae, and Colletidae (Al-Ghzawi, Zaitoun, Mazary, Schindler, & Wittmann, 2006). About 50 *Andrena* species were found in Jordan (Erwin Scheuchl and Gideon Pisanty) unpublished data in Pisanty, Scheuchl, and Dorchin (2018).

In Iraq, studies in this concern were very few also. Augul (2018) investigated the fauna of bees (Hymenoptera, Apoidea) from different regions of Iraq. A total of 16 species from 13 genera belonging to four families was found. The same author revised all the species that were recorded in previous investigations and reported the presence of 110 species, 32 genera belonging to five families: Apidae, Andenridae, Colletidae, Halictidae, and Megachilidae. In 2019, a revision about the Sphecidae was done, 41 species belonging to 12 genera, and four subfamilies of the family Sphecidae were found in Iraq (Augul, 2019).

Unfortunately, we were unable to find any literature about the bee fauna of Yemen and Oman except those cited by Baker (2004). Some genera were recorded by Alqarni et al. (2014c) and Engel (2011). According to Ascher and Pickering (2020), 67 species recorded in Yemen representing five families and 83 species were recorded in Oman, considered very low number compared to those of other regions (Table 1).

This work describes the situation of mellitology research in North Africa and the Middle East. It also cites the most common species present in the region. According to the literature, the bee fauna is very rich in MENA region with the presence of the six families in all the countries. The diversity of species is variable according to the countries geography, topography, and floral diversity. There are many common bee species, for each family, exist in MENA region, Apidae with almost 549 species, followed by the Megachilidae with 555 species. The Andrenidae and the Halictidae families came third place with almost 326 and 330 species respectively. Finally, the Colletidae and the Mellittidae presented 148 and 25 species respectively. This review forms the basis for further studies involving the identification and bee-plant interactions in MENA regions. The continuous surveys will add more information about the bees in the region. Those efforts will be made to seek out further material in the field, obtain observations on their floral visitation behaviors, nesting biology, and locate immature stages.

Conclusions

Bees have great economic and ecological value. Recently, their continuous global loss requires the urgent development of specific conservation strategies. However, the difficulty of estimating the loss of bees and/or their preservation is due to lack of information (e.g., databases, not updating previous findings, etc.) concerning their worldwide diversity. Nevertheless, very little work has so far aimed to study the diversity of bees in the Arab world and Northen Africa although studies on bee
diversity are abundant in many countries. One of the major problems facing scientists especially in Northern Africa is the lack of funding and collaboration for conducting several research expeditions across the countries. Moreover, upcoming researches in these countries need to focus on taxonomy, diversity, ecology, and biology of native bees. Our utmost goal of such initiative and consortium is to show the great impact of native bees on the pollination services of wild and cultivated plants that are requesting continuous protection and conservation.

Abbreviations
UAE: United Arab Emirates; MENA: Middle East and North Africa

Acknowledgements
The authors would like to express their gratitude to the editor and anonymous reviewers for their insightful comments, which greatly improved the quality of this manuscript.

Authors’ contributions
MS, MO, and SK collected data from Egypt. FBA collected data from Tunisia and Morocco. LS and KB collected data from Algeria. AB and EB collected data from Libya. FBA and MS collected data from the Middle East. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt. 2Laboratory of Bio-aggressors and Integrated Pest Management in Agriculture, National Institute of Agronomy of Tunisia, Carthage University, 1082 Cité Mahrajène, Tunis, Tunisia. 3Department of Agronomy, Faculty of Sciences, M'Hamed Bougara University of Boumerdès, Avenue de l’Indépendance, 35000 Boumerdès, Algeria. 4Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires-Laboratoire de Biosystématique et Ecologie des Arthropodes, Université Frères Mentouri Constantine 1, Route Ain El Bey, 25000 Constantine, Algeria. 5Department of Natural Resources and Arthropodes, Université Frères Mentouri Constantine 1, Route Ain El Bey, Agro-alimentaires-Laboratoire de Biosystématique et Ecologie des Arthropodes, Université Frères Mentouri Constantine 1, Route Ain El Bey, 25000 Constantine, Algeria. 6Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt. 7Department of Agronomy, Faculty of Sciences, M’Hamid Bougara University of Boumerdes, Avenue de l’Indépendance, 35000 Boumerdes, Algeria. 8Department of Zoology, Faculty of Science, Omar Al Mukhtar University, Al Bayda, Libya.

Received: 7 December 2020 Accepted: 18 March 2021
Published online: 01 April 2021

References
Abu Zeid, I. M., Shebl, M. A., & Metwalli, E. M. (2019). Morphological and molecular analysis of some bee species of the subgenus Taeniandrena (Hymenoptera: Andrenidae) from Northern Egypt. International Journal of Agriculture and Biology, 22, 587–593.
Agui, S., Benachour, K., Maghni, N., & Louadi, K. (2017). Nesting behaviour of Osmia tingitana Benoist (1969) (Hymenoptera: Megachilidae), endemic species of North Africa with first observation of its parasite Chrysura barbara Lucas (1849)(Hymenoptera: Chrysididae). Journal of Entomology and Zoology Studies, 5, 1181–1186.
Alqarni, A. S., Hannan, M. A., & Engel, M. S. (2012). A new wild, pollinating bee species of the genus Tetraloniella from the Arabian Peninsula (Hymenoptera, Apidae). ZooKeys, 172, 89–96. https://doi.org/10.26842/binhm.7.2019.15.4.0491.
Alqarni, A. S., Hannan, M. A., & Engel, M. S. (2014a). New records of nomine and halictine bees in the Kingdom of Saudi Arabia (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 87(3), 312–317. https://doi.org/10.2317/KE140405.1.
Alqarni, A. S., Hannan, M. A., & Engel, M. S. (2014b). First record of the bee genus Compsonemelissa in the Kingdom of Saudi Arabia (Hymenoptera: Apidae). Pan-Pacific Entomologist, 90(1), 37–39. https://doi.org/10.3956/2014.90.1.37.
Alqarni, A. S., Hannan, M. A., & Engel, M. S. (2014c). A new species of the cleptoparasitic bee genus Thyrus from northern Yemen and southwestern Saudi Arabia (Hymenoptera, Apidae). ZooKeys, 428, 29.
Alqarni, A. S., Hannan, M. A., Gonzalez, V. H., & Engel, M. S. (2014). Nesting biology of the leafcutting bee Megachile minutissima (Hymenoptera: Megachilidae) in central Saudi Arabia [Article]. Annals of the Entomological Society of America, 107(3), 635–640. https://doi.org/10.1603/AN13165.
Aouar-sadli, M., Louadi, K., Douam, S.-E., & Ji (2008). Pollination of the broad bean (Vicia faba L. var. major) (Fabaceae) by wild bees and honey bees (Hymenoptera: Apoidea) and its impact on the seed production in the Tizi-Ouzou area [Algeria]. African Journal of Agricultural Research, 3, 266–272.
Ascher, J., & Pickering, J. (2020). Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). http://www.discoverlife.org/rmp/20q/guide=Apoidae_species
Augul, R. S. (2018). Study on diversity of bees (Hymenoptera, Apoidea) from different regions of Iraq. Bulletin of the Iraqi National History Museum (P-ISSN: 1017-8678, E-ISSN: 2311-9799), 12(1), 57–75.
Augul, R. S. (2019). Revision of the family Sphecidae (HYMENOPTERA, APOIDEA) in Iraq. Bulletin of the Iraqi National History Museum, 15(4), 491–504. https://doi.org/10.26842/binhm.7.2019.15.4.0491.
Baker, D. B. (2004). Hymenoptera collections from Qatar, the United Arab Emirates and Oman. Beitad zur Entomologie= Contributions to Entomology, 54(1), 97–105. https://doi.org/10.21248/contrib.entomol.54.1.97-105.
Bakit, A., Louadi, K., & Schwarz, M. (2016). Le genre Nomada Scopoli, 1770 du Nord-Est de l’Algérie (Hymenoptera, Apidae, Nomadini). Entomofauna, 37(4), 697–712.
Ben Abdelkader, F., Ouniisi, R., Barbouche, N., & Ammar, M. (2020). A preliminary study of insect visitors diversity in Goubellat, Northern Tunisia in the presence of honeybee colonies. Journal of Fundamental and Applied Sciences, 12(3), 1114–1124.
Benachour, K. (2017). Insect visitors of lavender (Lavandula officinalis L): Comparison of quantitative and qualitative interactions of the plant with its main pollinators. African Entomology, 25(2), 435–444. https://doi.org/10.4001/003.025.0435.
Benachour, K., & Bouinea, R. (2017, 5-8 octobre 2017). Inventaire préliminaire de la faune apidienne de la région de Mila (Nord est algérien) et sa relation avec les plantes sauvages. 46ème Congrès international de la biodiversité végétale, Marrakech, Maroc.
Benachour, K., & Louadi, K. (2011). Comportement de butinage des abeilles (Hymenoptera: Apoidea) sur les fleurs mâles et femelles du concombre (Cucumis sativus L.) (Cucurbitaceae) en région de Constantine (Algérie). Annales de la Société entomologique de France, 47(1-2), 63–70. https://doi.org/10.1080/00379271.2011.10697697.
Benachour, K., & Louadi, K. (2013). Inventory of insect visitors, foraging behaviour and pollination efficiency of honeybees (Apis mellifera L.) (Hymenoptera: Apidae) on plum (Prunus salicina Lindl.) (Rosaceae) in the Constantine area, Algeria. African Entomology, 21(2), 354–361. https://doi.org/10.4001/003.021.0227.
Khedher, H. B., Y. Shebl, M. A., & Mavromoustakis, G. (1956a). CX.

Louadi, K., Berchi, S., & Benachour, K. (2007). Floral visitation patterns of bees (Hymenoptera: Apoidea: Anthophila). In Checklist of the Western Palearctic Bees (Hymenoptera: Apoidea: Anthophila).

Kuhlmann, M., Ascher, J., Dathe, H., Ebmer, A., Hartmann, P., Michez, D., Moustafa, M., & El Berry, A. (1976). Morphological studies on Osmia submicans (HYMENOPTERA: APOIDEA) dans une pelouse à thériophytes de Constantine (Algérie). Bulletin de la Société entomologique de France (N.S.), 313–319.

Mavromoustakis, G. (1962). On the bees (Hymenoptera, Apoidea) of Lebanon Part II. Journal of Natural History, 5(89), 865–866. https://doi.org/10.1080/00222935508655648.

Khalife, S., & Bakir, M. (2015). Biochemical and morphological studies on some Halictidae species from the Suez Canal region of Egypt (Hymenoptera: Apoidea: Andrenidae). Linzer Biologische Beiträge, 39(1), 543–552. https://doi.org/10.1163/187631201500613537.

Mavromoustakis, G. (1956b).—On the bees (Hymenoptera, Apoidea) of Lebanon—Part I. Annales de la Société entomologique de France (N.S.), 3(1), 42–53. https://doi.org/10.1080/003379271.2017.1305916.

Mavromoustakis, G. (1956c).—On the bees (Hymenoptera, Apoidea) of Lebanon—Part III. Annales de la Société entomologique de France (N.S.), 3(3), 55–73. https://doi.org/10.1080/003379271.2017.1305916.

Mavic, B., & Patiny, S., Michez, D. (2010). Contribution à la connaissance des genres Halictus et Mavromoustakis, G. (1956b).—On the bees (Hymenoptera, Apoidea) of Lebanon Part II. Journal of Natural History, 5(89), 865–866. https://doi.org/10.1080/00222935508655648.

Mavromoustakis, G. (1956b).—On the bees (Hymenoptera, Apoidea) of Lebanon—Part I. Annales de la Société entomologique de France (N.S.), 3(1), 42–53. https://doi.org/10.1080/003379271.2017.1305916.

Mavic, B., & Patiny, S., Michez, D. (2010). Contribution à la connaissance des genres Halictus et...
Sonet, M., & Jacob-Remacle, A. (1987). Pollinisation de la légumineuse fourragère *Hedysarum coronarium* L. en Tunisie. Bulletin des recherches agronomiques de Gembloux, 22(1), 19-32.

Warncke, K. (1974). Beitrag zur Kenntnis und Verbreitung der Sandbienen in Nordafrika (Hymenoptera, Apoidea, Andrena). Mitteilungen aus dem Zoologischen Museum in Berlin, 45, 81–123.

Warncke, K. (1980). Zur Verbreitung der Bienengattung *Andrena F. Tunesien* (Hymenoptera, Apidae).—Mitteilungen der Münchner Entomologischen Gesellschaft, 70, 65–87.

Warncke, K. (1983). Beitrag zur Kenntnis der Bienen besonders an Tamarisken in der nördlichen und zentralen Sahara Algeriens (Hym, Apidae). Bollettino-Museo civico di storia naturale de Venezia, 33, 203–214.

Zanden, G. van der. (1991). Neue oder wenig bekannte Arten der Osmiini aus dem paläarktischen Gebiet (Insecta, Hymenoptera, Apoidea: Megachilidae). Reichenbachia, 28, 163–171.

Zanden, G. v. d. (1994). Neue Arten paläarktischer Osmiini (Insecta, Hymenoptera, Apoidea, Megachilidae). Linzer Biologische Beiträge, 26(2), 1113–1124.

Zanden, G. v. d. (1996). Neue Arten und Synonyme bei paläarktischen Bauchsammlern (Hymenoptera aculeata, Apoidea, Megachilidae). Linzer Biologische Beiträge, 28(2), 883–895.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.