A new approach for predicting the shear capacity of FRCM strengthened RC beams in shear

T G Wakjira and U Ebead

Department of Civil and Architectural Engineering, Qatar University, Doha, Qatar
uebead@qu.edu.qa

Abstract. In spite of the availability of different models proposed to predict the shear capacity of reinforced concrete (RC) beams strengthened in shear using fabric reinforced cementitious matrix (FRCM) system, accurately predicting this value remains a challenge. The simplified compression field theory has shown to accurately predict the shear capacity of RC beams. This paper presents an analytical model based on the simplified compression field theory for predicting the shear capacity of RC beams strengthened in shear using FRCM strengthening system. The model has been validated against a data series of over sixty RC beams strengthened in shear using different FRCM types with different strengthening configuration and orientation. The results showed that the model can reasonably predict the load carrying capacity of the beams. The ratio of theoretically predicted and experimental results for the load carrying capacity ranged between 0.67 and 1.33 while average of this ratio was 1.01 with a coefficient of variation of 0.16.

1. Introduction and background
Reinforced concrete (RC) members may become deficient in shear due to various reasons including reinforcement corrosion, design error, aggressive environmental conditions, overloading and poor maintenance [1]. To remedy these defects, fiber reinforced composites have been used widely as a strengthening material for different applications including strengthening of RC beams [2,3] and RC slab [4]. Despite their strengthening efficacy, FRPs are susceptible to failure in extreme weather conditions and unable to apply on wet surfaces[5,6]. Lately, the cementitious-based fabric reinforced cementitious matrix (FRCM) has shown to be a promising alternative to FRPs[5]. Existing literature revealed that the externally bonded (EB) fabric reinforced cementitious matrix can successfully be used for strengthening of RC beams both in shear and flexure [1,7–12]. However, the externally bonded FRCM technique is associated with debonding at the FRCM/concrete interface that limits the utilization of the strengthening material [1]. A recently introduced hybrid “near surface embedded/externally bonded” NSE/EB-FRCM system has shown to be promising in mitigating this type of failure and thus increases the FRCM utilization [13]. In spite of the availability of different models, accurately predicting the shear capacity of FRCM strengthened RC beams remains a challenge. The state of art on the comparison of the available models for predicting the contribution of the FRCM system on the shear strength of RC beams strengthened with externally bonded FRCM system has been recently presented by Gonzalez-Libreros et al. [14]. The existing models are based on 45-degree truss analogy neglecting the contribution of the concrete in the tension zone and thus gives a conservative result. Moreover, in each model the contribution of the strengthening system was computed as a difference of the shear capacity of the strengthened specimen and the reference specimen. This limits the use of the models as they all require to test and measure the shear capacity of the respective unstrengthen beam. An accurate
method of predicting the shear capacity of RC beams called modified compression field theory (MCFT) was developed by Vecchio and Collins [15] in which the concrete tensile stresses of the cracked section was taken into account. However, this model requires solving large number of equations in an iterative process. Bentz et al. [16] developed a simplified version of MCFT that reduce the number of parameters and iterations and yet can accurately predict the shear capacity. In simplified compression field theory, the shear strength of RC element is determined as a function of two different parameters; viz., inclination of the diagonal compressive stress (θ) and the tensile stress factor in the cracked concrete (β).

In light of the aforementioned gaps, this paper presents an accurate method of predicting the load carrying capacity of RC beams strengthened in shear using FRCM composites, based on the simplified compression field theory. An experimental results of 62 FRCM strengthened RC beams, obtained from the literature, have been used to validate the proposed analytical model.

2. Proposed model
Consider a beam element strengthened with FRCM system in Figure 1a and 1b. The shear in the beam section is resisted by the diagonal tension stress, f_1 and the diagonal compression stress, f_2.

From the equilibrium of stresses, Figure 1c,

$$f_1 + f_2 = \nu (\tan \theta + \cot \theta) \quad (1)$$

Where θ is the inclination of the diagonal compressive stress.

From the equilibrium of the forces, Figure 1d,

$$A_{sv} f_{sv} + A_{fv} f_{fv} = (f_2 \sin^2 \theta - f_1 \cos^2 \theta) b_w S_v \quad (2)$$

From Equation (1) and Equation (2),

$$\nu = f_1 \cot \theta + \frac{A_{sv} f_{sv}}{b_w S_v} \cot \theta + \frac{A_{fv} f_{fv}}{b_w S_v} \cot \theta \quad (2)$$

Where,

A_{sv} and A_{fv} are the area of internal shear reinforcement and FRCM strengthening, respectively, f_{sv} and f_{fv} are the tensile strength of transverse reinforcement bars and FRCM system, respectively. b_w the web width. S_v is the stirrup spacing. ρ_{sv} and ρ_{fv} are the reinforcement ratio of stirrups and FRCM system, respectively.

The shear strength or RC beams strengthened with inclined fabrics at an angle of α to the beam length can be determined based on Equation (3) below.

$$\nu = f_1 \cot \theta + \rho_{sv} f_{sv} \cot \theta + \epsilon_{fv} K_{fv} \cot \theta \ (\sin \alpha + \cos \alpha) \quad (3)$$

Where, K_{fv} is the axial stiffness of the FRCM composite given by equation below.

$$K_{fv} = \rho_{fv} E_{fv}$$

For intermittent FRCM system, ρ_{fv} can be determined by Equation (4) below,

$$\rho_{fv} = \frac{N w_{s} n a_{fv}}{L_{cr} b_w} \quad (4)$$

Where w_{s} is the FRCM strip width, L_{cr} is the shear span length, ‘N’ is the number of FRCM strips, ‘n’ is the number of FRCM layers and a_{fv} is the area of fabrics in the warp (transverse) direction. For continuous FRCM strengthening configuration the value of $N w_{s}/L_{cr}$ is unity.
a) Principal stresses in concrete.

b) Beam cross-section.

c) Forces in stirrups and FRM

d) Mohr’s circle for stresses

Figure 1. Equilibrium conditions for MCFT based on Vecchio and Collins [15].

As per the simplified compression field theory proposed by Bentz et al. [16] the contribution of concrete to the shear capacity is determined as a function of β.

\[\nu_c = \beta \sqrt{f'_c} \]

(5)

Thus,

\[\nu = \beta \sqrt{f'_c' + \rho_{SV} f_{sv} \cot \theta + \varepsilon_{Fv} K_{FV} \cot \theta \left(\sin \alpha + \cos \alpha \right)} \]

(6)

Where \(\beta \) is given by Equation (7) below,

\[\beta = \frac{0.4}{1 + 1500 \varepsilon_x} \frac{1300}{1000 + S_{xe}} \]

(7)

Where \(S_{xe} \) is the crack spacing given by Equation (8) below,

\[S_{xe} = \frac{35S_x}{a_g + 16} \geq 0.85S_x \]

(8)

Where \(S_x \) is the vertical distance between the longitudinal reinforcement (in mm) and \(a_g \) is the maximum diameter of aggregates (in mm).

Based on the simplified version of MCFT the value of \(\theta \) is approximated as follows.
\[\theta = (29 + 7000 \varepsilon_x) \times \left(0.88 + \frac{S_{se}}{2500} \right) \leq 75^\circ \]

Where \(\varepsilon_x \) is the strain in the longitudinal reinforcement,

\[\varepsilon_x = \frac{\nu \cot \theta - \beta \sqrt{f_{c}'} \tan \theta}{E_s \rho_{sx}} \]

Where \(E_s, \rho_{sx}, f_{c}' \) and \(\nu \) are the elastic modulus of flexural reinforcement, reinforcement ratio of flexural tensile bars, concrete shear stress and shear stress in a RC member, respectively.

The proposed model is summarized in Figure 2 below.

Figure 2. Flowchart for determining the shear capacity using simplified MCFT.
3. Verification of the model
The ultimate load carrying capacity of 62 RC beams, strengthened in shear using different types of FRCM system; namely, carbon (C), glass (G), basalt (B), and polyparaphenylene benzobisoxazole (PBO), has been predicted and the results compared with the experimental results reported in the literature [11,18–24]. Figure 3 shows the plot for the ratio of theory predicted (P_{ult}) to the experimental values (P_{ex}) of ultimate load carrying capacity. Moreover, the details of the experimental results and theoretically predicted values of the ultimate load carrying capacity of the beams is summarized in Tables 1a and 1b. As can be seen in Figure 3 and the last column of Tables 1a and 1b, the ratio of the theoretically predicted and experimental results for the ultimate load carrying capacity ranged between 0.67 and 1.33 while the average of this ratio was 1.01 with 0.16 coefficient of variation. The results showed that the model can reasonably predict the ultimate load carrying capacity of the strengthened beams.

![Figure 3. Verification of the model against experimental data.](image)

Table 1a. Summary of the theoretical and experimental results.

Beam ID	Concrete	Internal reinforcement	Strengthening composite	P_{ult}	P_{ex}	P_{ult}/P_{ex}			
Tetta et al. [24]									
CON	21.6	102	177	-	0.022	-	43.0333	51.8	0.83
CL1	23	102	177	-	0.022	C 0.2038	74.7094	102.3	0.73
CL1 STRIPS	20	102	177	-	0.022	C 0.3122	89.1772	110.7	0.81
CH1	23.8	102	177	-	0.022	C 0.3042	90.1423	78.2	1.15
CH1_CL1	20	102	177	-	0.022	C 0.5079	117.604	117.4	1
CH2	23.8	102	177	-	0.022	C 0.6084	133.407	120.2	1.11
CL3	20.8	102	177	-	0.022	C 0.6113	132.335	118	1.12
CH2_CL1	20	102	177	-	0.022	C 0.8121	158.768	129.3	1.23
CH3	22.6	102	177	-	0.022	C 0.9126	172.765	131.1	1.32
CON_3.6	20.5	102	177	-	0.022	C 0.2038	103.913	133.8	0.78
CL1_3.6	22.6	102	177	-	0.022	C 0.6113	185.999	158.7	1.17
CL3_3.6	22.6	102	177	-	0.022	B 0.2658	55.926	82.66	0.68
BS2	20	150	159	-	82.66	B 0.2658	55.926	82.66	0.68
BS3	20	150	159	-	83.51	B 0.2658	55.926	83.51	0.67
BS4	20	150	159	-	88.74	B 0.5316	82.062	88.74	0.92
BS5	20	150	159	-	92.53	B 0.5316	82.062	92.53	0.89

Al-Salloum et al. [18]

Beam ID	Concrete	Internal reinforcement	Strengthening composite	P_{ult}	P_{ex}	P_{ult}/P_{ex}			
BS2	20	150	159	-	82.66	B 0.2658	55.926	82.66	0.68
BS3	20	150	159	-	83.51	B 0.2658	55.926	83.51	0.67
BS4	20	150	159	-	88.74	B 0.5316	82.062	88.74	0.92
BS5	20	150	159	-	92.53	B 0.5316	82.062	92.53	0.89
Table 1b. Summary of the theoretical and experimental results.

Beam ID	Concrete	Internal reinforcement	Strengthening composite	$P_{a,th}$	$P_{a,ex}$	$P_{a,ex}/P_{a,th}$
Azam & Soudki [20]						
C-N	38	150	307.5	-	123.5	-
SB-GT	38	150	307.5	-	146.3	G 0.0238
UW-GT	38	150	307.5	-	180.2	G 0.0238
SB-CT1	38	150	307.5	-	155.5	C 0.0563
UW-CT1	38	150	307.5	-	151.8	C 0.0563
SB-CT2	38	150	307.5	-	245.4	C 0.1354
UW-CT2	38	150	307.5	-	253.4	C 0.1354
Ombres [19]						
TRA0	38.45	150	225	446.06	0.0023	75.35
TRA1	38.45	150	225	446.06	0.0023	94.37
TRA2	38.45	150	225	446.06	0.0026	85.2
TRB0	56.275	150	224.82	446.06	0.0032	105.7
TRB1	56.275	150	224.82	446.06	0.0032	139.53
TRB2	36.45	150	224.82	446.06	0.0032	95.83
TRB3	36.45	150	224.82	446.06	0.0032	95.93
TRB4	47.825	150	224.82	446.06	0.0032	99.98
TRB5	47.825	150	224.82	446.06	0.0032	99.88
Tetta et al. [21]						
CON	21.6	102	177	-	0.02227	-
SB_M1	21.6	102	177	-	0.02227	C 0.0419
UW_M1	23.8	102	177	-	0.02227	C 0.2287
SB_M2	22.6	102	177	-	0.02227	C 0.3204
UW_M2	23.8	102	177	-	0.02227	C 0.5933
SB_M3	22.6	102	177	-	0.02227	C 0.4806
UW_M3	22.6	102	177	-	0.02227	C 0.8899
Loreto et al. [22]						
L_0_Ave	29.13	152	248	276	0.0027	0.0304
L_1_Ave	29.13	152	248	276	0.0027	0.0304
L_4_Ave	29.13	152	248	276	0.0027	0.0304
H_0_Ave	42.91	152	248	276	0.0027	0.0304
H_1_Ave	42.91	152	248	276	0.0027	0.0304
H_4_Ave	42.91	152	248	276	0.0027	0.0304
Escrig et al. [23]						
V-BR3-01	33.78	300	254	-	0.00792	B 0.017
V-CXM25-01	33.78	300	254	-	0.00792	C 0.0251
V-CXM25-02	34.07	300	254	-	0.00792	C 0.0501
V-PXM750-01	34.07	300	254	-	0.00792	B 0.0388
V-PXM750-02	34.07	300	254	-	0.00792	B 0.0777
V-GPHDM-02	34.07	300	254	-	0.00792	G 0.0304
V-CONTROL	34.82	300	254	-	0.00792	-
Gonzalez-Libreros et al. [11]						
S1-CONTROL	23.3	150	230	527	0.0022	0.06156
S1-FRCM-F3-UN	23.3	150	230	527	0.0022	0.06156
S1-FRCM-F3-UA	23.3	150	230	527	0.0022	0.06156
S1-FRCM-F4-UN	21.3	150	230	527	0.0022	0.06156
S1-FRCM-F4-UA	21.3	150	230	527	0.0022	0.06156
S2-CONTROL	24.7	150	230	527	0.0034	0.06156
S2-FRCM-F3-UN	24.7	150	230	527	0.0034	0.06156
S2-FRCM-F3-UA	24.7	150	230	527	0.0034	0.06156
S2-FRCM-F4-UN	21.3	150	230	527	0.0034	0.06156
S2-FRCM-F4-UA	21.3	150	230	527	0.0034	0.06156

Note: The table includes beam IDs, concrete properties, internal reinforcement, and experimental results.
4. Conclusion
A model based on simplified MCFT has been proposed to predict the ultimate load carrying capacity of FRCM strengthened RC beams. Over sixty test results of RC beams obtained from the literature have been used to validate the proposed model. The results indicated that the model can correctly predict the ultimate load carrying capacity of the FRCM strengthened beams. The ratio of theoretically predicted and experimental results for the ultimate load carrying capacity ranged between 0.67 and 1.33 while the average of this ratio was 1.01 with 0.16 coefficient of variation.

5. References
[1] Younis A, Ebead U, Shrestha K. 2017 Different FRCM systems for shear-strengthening of reinforced concrete beams. Constr Build Mater 153:514–26. doi:10.1016/j.conbuildmat.2017.07.132.
[2] Kotynia R, Abdel Baky H, Neale K, Ebead U. 2008 Flexural strengthening of RC beams with externally bonded CFRP systems: Test results and 3D nonlinear FE analysis. J Compos Constr 12:190–201. doi:10.1061/(ASCE)1090-0268(2008)12:2(190).
[3] Aly R, Benmokrane B, Ebead U. 2006 Tensile Lap Splicing of Bundled CFRP Reinforcing Bars in Concrete. J Compos Constr 10:287–94. doi:10.1061/(ASCE)1090-0268(2006)10:4(287).
[4] Ebead U, Marzouk H. 2004 Fiber-reinforced polymer strengthening of two-way slabs. ACI Struct J 101:650–9. doi:10.14359/13387.
[5] Ebead U, Saeed H. 2013 Hybrid shear strengthening system for reinforced concrete beams: An experimental study. Eng Struct 49:421–33. doi:10.1016/j.engstruct.2012.11.039.
[6] Ebead U, Saeed H. 2014 Flexural and interfacial behavior of externally bonded/ mechanically fastened fiber-reinforced polymer-strengthened reinforced concrete beams. ACI Struct J 111:741–51. doi:10.14359/5168628.
[7] Oluwafunmilayo A, El-Maaddawy T, Ismail N. 2017 Fabric-reinforced cementitious matrix: A promising strengthening technique for concrete structures. Constr Build Mater 132:94–111. doi:10.1016/j.conbuildmat.2016.11.125.
[8] Elghazy M, Refai A, Ebead U, Nanni A. Effect of corrosion damage on the flexural performance of RC beams strengthened with FRCM composites. Compos Struct 180:994–1006. doi:10.1016/j.composites.2017.08.069.
[9] Elghazy M, El Refai A, Ebead U, Nanni A. 2018 Post-repair flexural performance of corrosion-damaged beams rehabilitated with fabric-reinforced cementitious matrix (FRCM). Constr Build Mater 166:732–44. doi:10.1016/j.conbuildmat.2018.01.128.
[10] Pino V, Hadad H, Basalo F, Nanni A, Ebead U, Refai A. 2017 Performance of FRCM-strengthened RC beams subject to fatigue. J Bridg Eng 22:4017079. doi:10.1061/(ASCE)BE.1943-5592.0001107.
[11] Gonzalez-Libreros JH, Sneed L, D’Antino T, Pellegrino C. 2017 Behavior of RC beams strengthened in shear with FRP and FRCM composites. Eng Struct 150:830–42. doi:10.1016/j.engstruct.2017.07.084.
[12] Escrig C, Gil L, Bernat-maso E. Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials. Constr Build Mater 2017;137:317–29. doi:10.1016/j.conbuildmat.2017.01.106.
[13] Wakjira T, Ebead U. 2018 Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study. Constr Build Mater 164:164–77. doi:10.1016/j.conbuildmat.2017.12.224.
[14] Gonzalez-Libreros JH, Sabau C, Sneed L, Pellegrino C, Sas G. 2017 State of research on shear strengthening of RC beams with FRCM composites. Constr Build Mater 149:444–58. doi:10.1016/j.conbuildmat.2017.05.128.
[15] Vecchio FJ, Collins MP. 1986 The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J Proc 83. doi:10.14359/10416.
[16] Bentz EC, Vecchio FJ, Collins MP. 2006 Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. *ACI Struct J* 103:614–24.

[17] ACI Committee 549. 2013 Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures (ACI 549.4R-13). *American Concrete Institute*, Farmington Hills, MI, USA.

[18] Al-Salloum Y, Elsanadedy H, Alsayed S, Iqbal RA. 2012 Experimental and numerical study for the shear strengthening of reinforced concrete beams using textile-reinforced mortar. *J Compos Constr* 16:74–90. doi:10.1061/(ASCE)CC.1943-5614.0000239.

[19] Ombres L. 2015 Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material. *Compos Struct* 122:316–29. doi:10.1016/j.compstruct.2014.11.059.

[20] Azam R, Soudki K. 2014 FRCM strengthening of shear-critical RC beams. *J Compos Constr* 18:1–9. doi:10.1061/(ASCE)CC.1943-5614.0000464.

[21] Tetta Z, Koutas L, Bournas D. 2015 Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams. *Compos Part B* 77:338–48. doi:10.1016/j.compositesb.2015.03.055.

[22] Loreto G, Babaeidarabad S, Leardini L, Nanni A. 2015 RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite. *Int J Adv Struct Eng* 7:341–52. doi:10.1007/s40091-015-0102-9.

[23] Escrig C, Gil L, Bernat-Maso E, Puigvert F. 2015 Experimental and analytical study of reinforced concrete beams shear strengthened with different types of textile-reinforced mortar. *Constr Build Mater* 83:248–60. doi:10.1016/j.conbuildmat.2015.03.013.

[24] Tetta Z, Koutas L, Bournas D. 2017 Shear strengthening of concrete members with TRM jackets: Effect of shear span-to-depth ratio, material and amount of external reinforcement. *Compos Part B Eng* 137:184–201. doi:10.1016/j.compositesb.2017.10.041.

Acknowledgments

This paper was made possible by NPRP grant # NPRP 7-1720-2-641 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.