Evidence for Nonlinear Isotope Shift in Yb⁺ Search for New Boson

Ian Counts, Joonseok Hur, Diana P. L. Aude Craik, Honggi Jeon, Calvin Leung, Julian C. Berengut, Amy Geddes, Akio Kawasaki, Wonho Jhe, and Vladan Vuletić

Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

W. W. Hansen Experimental Physics Laboratory and Department of Physics, Stanford University, Stanford, California 94305, USA

(Received 23 April 2020; accepted 27 July 2020; published 15 September 2020)

We measure isotope shifts for five Yb⁺ isotopes with zero nuclear spin on two narrow optical quadrupole transitions $^2S_{1/2} \rightarrow ^2D_{3/2}$ and $^2S_{1/2} \rightarrow ^2D_{5/2}$ with an accuracy of ~ 300 Hz. The corresponding King plot shows a 3×10^{-7} deviation from linearity at the 3σ uncertainty level. Such a nonlinearity can indicate physics beyond the Standard Model (SM) in the form of a new bosonic force carrier, or arise from higher-order nuclear effects within the SM. We identify the quadratic field shift as a possible nuclear contributor to the nonlinearity at the observed scale, and show how the nonlinearity pattern can be used in future, more accurate measurements to separate a new-boson signal from nuclear effects.

DOI: 10.1103/PhysRevLett.125.123002

The Standard Model (SM) of particle physics describes virtually all measurements of elementary particles exquisitely well, and yet various indirect evidence points to physics beyond the SM. This evidence includes the preponderance of dark matter of unknown composition in our Universe, astronomically observed with several different methodologies such as the rotation curves of galaxies, the motion of colliding galaxy clusters, gravitational lensing, and the power spectrum of the cosmic microwave background. Physics beyond the SM is also being probed in various laboratory experiments, such as high-energy collisions, searches for weakly interacting massive particles, axions, and axionlike particles, precision measurements of the electric dipole moments of elementary particles, and other precision tests.

Dark-matter candidates can be characterized by their mass, spin, and interactions. In the intermediate mass range from ~ 100 eV/c^2 to ~ 100 MeV/c^2, a new method has been proposed to search for a dark-matter boson ϕ that couples to quarks and leptons. The virtual exchange of ϕ between neutrons and electrons in an atom would result in a Yukawa-like potential in addition to the Coulomb potential of the nucleus (see Fig. 1). The corresponding shift in energy levels and transition frequencies is too small to be detected by directly comparing spectroscopic data to (much less accurate) atomic-structure calculations, but could potentially be detected through precision isotope-shift measurements that allow one to sidestep electronic-structure calculations. In particular, the scaled isotope shifts on two different transitions exhibit a linear relationship (King plot), and Refs. [9,10] argue that a deviation from linearity can indicate a new force mediator ϕ. Such studies are particularly timely as recent experiments analyzing nuclear decay in 8Be and 4He have observed a 7σ deviation from the SM that could be potentially explained by a new boson with a mass of 17 MeV/c^2 (X17 boson). According to Ref. [10], measurements of optical transitions with a resolution of 1 Hz in select atomic systems could probe this scenario. However, higher-order effects within the SM can result in nonlinearities that limit the sensitivity to new physics.

In this Letter, we report a precision measurement of the isotope shift for five isotopes of Yb⁺ ions with zero...

FIG. 1. New intra-atomic force between electron (e^-) and neutron (n) mediated by the virtual exchange of a hypothetical new boson ϕ. The coupling results in a Yukawa-like potential that modifies the atomic energy levels and can be probed with isotope-shift spectroscopy. We perform precision measurements of the long-lived states $^2D_{3/2}$, $^2D_{5/2}$ on individual trapped Yb⁺ ions.
TABLE I. Inverse-mass differences μ_{ji} and measured isotope shifts ν_{ji} between pairs of neighboring even Yb$^+$ isotopes. μ_{ji} is calculated from the mass of Yb$^+$ ions with the ionization energy set to 6.254 eV [30–32]. The nuclear size difference $\delta(r^2)$ is deduced from ν_{ji} using the calculated parameters $F^C_{ji} = -15.852$ GHz/fm2, $F^D_{ji} = -16.094$ GHz/fm2, $F^MBPT_{ji} = -16.570$ GHz/fm2, $F^D_{ji} = -16.771$ GHz/fm2, $K^C_{ji} = -1678.3$ GHz · u, and $K^D_{ji} = -1638.5$ GHz · u (see the Supplemental Material [33]). The uncertainties given here and throughout the paper for ν_{aji} and $\nu_{ji}β$ indicate 1σ statistical uncertainties; the estimated systematic uncertainties on these quantities are < 20% of the statistical uncertainties (see the Supplemental Material [33]).

Isotope pair (j, i)	μ_{ji} (10^{-6} u$^{-1}$)	ν_{aji} (kHz)	$\nu_{ji}β$ (kHz)	$\delta(r^2)_{ji}$ (fm2)
(168, 170)	70.113 698(46)	2 179 908.93(21)	2 212 391.85(37)	-0.156 < -0.149 < -0.156(1)
(170, 172)	68.506 890 50(63)	2 044 854.78(34)	2 076 421.58(39)	-0.146 < -0.140 < -0.1479(1)
(170, 172)	66.958 651 95(64)	1 583 068.42(36)	1 609 181.47(22)	-0.115 < -0.110 < -0.1207(1)
(174, 176)	65.474 078 21(65)	1 509 055.29(28)	1 534 144.06(24)	-0.110 < -0.105 < -0.1159(1)
(170, 174)	3 627 922.95(50)	3 685 601.95(33)		

nuclear spin on two narrow optical quadrupole transitions ($^2S_{1/2} \rightarrow ^2D_{3/2}, ^2D_{5/2}$) with an accuracy of \approx300 Hz. Displaying the data in a King plot [15], we observe a deviation from linearity at the 10^{-7} level, corresponding to 3 standard deviations $σ$. With four independent isotope-shift data points available, we further introduce a novel parametrization of the nonlinearity pattern that can be used to distinguish between nonlinearities of the same magnitude but different physical origin. At the current level of precision, the observed nonlinearity pattern is consistent with both a new boson and the quadratic field shift (QFS) [23] that we identify as the leading source of nonlinearity within the SM by means of precision electronic-structure calculations. In the future, more accurate measurements on the present and other optical transitions in Yb and Yb$^+$ [27–29] can discriminate between effects within and outside the SM.

Our measurements are performed with individual Yb$^+$ ions ($j \in \{168, 170, 172, 174, 176\}$) trapped in a linear Paul trap and Doppler cooled on the $6s^2^2S_{1/2} \rightarrow 6p^2^2P_{1/2}$ transition to typically 500 μK [65]. We perform optical precision spectroscopy on the transitions to two long-lived excited states (with electron configurations [Xe]4F146s2S$^1/2 \rightarrow [Xe]4F145d2D$^3/2, ^2D_{5/2}$) using light at the wavelengths 411 and 436 nm, respectively. The probe light is generated by a frequency-doubled Ti:Sapphire laser that is frequency stabilized to an ultralow-thermal-expansion cavity, achieving a short-term stability of \approx200 Hz. Typically, 1 mW of 411-nm light (0.2 mW of 436-nm light) is focused to a waist of $w_0 = 60$ μm ($w_0 = 15$ μm) at the location of the ion (see the Supplemental Material [33] for details).

Coherent optical Ramsey spectroscopy is carried out with two ($\pi/2$) pulses of 411- or 436-nm light, lasting 5 μs each, separated by 10 μs. This is followed by readout of the state, performed using an electron-shelving scheme [66] (see the Supplemental Material [33]). A small magnetic field of typically \approx1.1 G is applied to separate the different Zeeman components of the $S \rightarrow D$ transition. Frequency scans are taken over the central Ramsey fringes of the two symmetric Zeeman components with the lowest magnetic-field sensitivity to find the center frequency of the transition (see the Supplemental Material [33]).

The measurement on one isotope is averaged typically for 30 minutes before we switch to a next-neighboring isotope by adjusting various loading, cooling, and repumper laser frequencies. We typically perform three interleaved measurements of each isotope to determine an isotope shift, allowing us to reach a precision on the order of \approx300 Hz (see Table I and Fig. 2), limited mainly by drifts in the frequency stabilization of the probe laser to the ultrastable cavity (see the Supplemental Material [33]).

The frequency shift ν_{aji} between isotope $j\beta$ Yb and $j\beta$ Yb on an optical transition $α$ can be written as a sum of terms that factorize into a nuclear part (with subscript ji) and an electronic part (with subscript $α$) [9,15,24],

$$\nu_{aji} = F_a δ(r^2)_{ji} + K_a μ_{ji} + G_a [δ(r^2)]^2_{ji} + ν_mD_αa_{ji}. \tag{1}$$

Here $δ(r^2)_{ji} ≡ <r^2>_{ji} - <r^2>_{i}$ is the difference in squared charge radii r between isotope j and i, $μ_{ji} ≡ 1/m_j - 1/m_i$ is the inverse-mass difference, $[δ(r^2)]^2_{ji} ≡ (δ(r^2))_{ji}^2 - (δ(r^2))_{i}^2$ for some fixed isotope i (the choice of i is irrelevant to the nonlinearity) (see the Supplemental Material [33]), and $a_{ji} = j - i$ is the difference in neutron number. The quantity $ν_{ne} = (-1)^{i+1}y_nν_e/(4πℏc)$ is the product of the coupling factors of the new boson to the neutron y_n and electron $ν_e$, creating a Yukawa-like potential given by $V_{ne}(r) = ℏcν_{ne}exp(-r/ℏc)/r$ for a boson with
spin \(s \), mass \(m_\phi \), and reduced Compton wavelength \(\hbar_c = \hbar / (m_\phi c) \) [9,24].

For heavy elements like Yb, the first term in Eq. (1) associated with the change in nuclear size \(\delta(r^2) \) [“field shift” (FS)] dominates, while the second term is due to the electron’s reduced mass and momentum correlations between electrons (“mass shift”). According to our electronic-structure calculations (see below), the third (QFS) term associated with the square of nuclear size \([\delta(r^2)^2]_{ji} \) represents the leading-order nonlinearity [23,24] within the SM for Yb. The last term describes the isotope shift due to the Yukawa-like potential associated with the new boson \(\phi \). The quantities \(F, K, G, D \) are determined by the electronic wave functions of the transition [9,10,24]; see also the Supplemental Material [33]. Note that the effect of the next-leading order Seltzer moment [24,67] associated with \(\delta(r^4) \) is absorbed into the QFS term; see the Supplemental Material [33].

The first two terms in Eq. (1) lead to a linear relationship between the isotope shifts (King plot [15]) when one considers two different transitions \(\alpha, \beta \),

\[
\bar{\nu}_{\beta ji} = K_{\beta \alpha} + F_{\beta \alpha} \bar{\nu}_{\alpha ji} + G_{\beta \alpha} [\delta(r^2)]_{ji} + \nu_{\nu} D_{\beta \alpha} \delta_{ji}. \tag{2}
\]

Here we define \(F_{\beta \alpha} \equiv F_\beta / F_\alpha \), \(P_{\beta \alpha} \equiv P_\beta - F_\beta P_\alpha \) for \(P \in \{ K, G, D \} \), while \(\bar{x}_{ji} \equiv z_{ji} / \mu_{ji} \) for \(z \in \{ \nu_\alpha, \nu_\beta \}, [\delta(r^2)^2], \alpha \} \) is the inverse-mass-normalized quantity. For our purposes, where the FS dominates, the influence of mass and frequency errors is more transparent if we instead write a modified linear relationship for the frequency-normalized quantities \(\bar{x}_{ji} \equiv \nu_{\nu} \bar{\nu}_{\beta ji} \) for \(x \in \{ \nu_\beta, \mu_\alpha, [\delta(r^2)^2], \alpha \} \),

\[
\bar{\nu}_{\beta ji} = F_{\beta \alpha} + K_{\beta \alpha} \bar{x}_{ji} + G_{\beta \alpha} [\delta(r^2)]_{ji} + \nu_{\nu} D_{\beta \alpha} \delta_{ji}. \tag{3}
\]

To analyze the experimental results in this work, the transitions and isotopes are assigned as follows: \(\alpha = ^{2}S_{1/2} \rightarrow ^{2}D_{3/2} (411 \text{ nm}) \), \(\beta = ^{2}S_{1/2} \rightarrow ^{2}D_{3/2} (436 \text{ nm}) \), \(j \in \{ 168, 170, 172, 174 \} \) with \(i = j + 2 \), and \(l = 172 \).

The inset in Fig. 2(a) confirms the general linear relationship for the inverse-mass-normalized isotope shifts in a standard King plot corresponding to Eq. (2) for the two transitions \(\alpha \) and \(\beta \). However, when we zoom in by a factor of \(10^6 \) [main Fig. 2(a)], we observe a small deviation from linearity, in the range 0.5–1 kHz in frequency units for a given data point. The frequency-normalized King plot associated with Eq. (3), as displayed in Fig. 2(b), illustrates that due to the smallness of the slope, i.e., the mass-shift electronic factor \(K_{\beta \alpha} \), the mass error along the horizontal axis \(\bar{\mu}_{ji} \) has a negligible effect. For all points taken together, the nonlinearity is nonzero at the level of \(3 \sigma \) (see the Supplemental Material [33]).

With four independent isotope pairs, we can quantify not only the magnitude of the nonlinearity, but also an associated pattern further characterizing the nonlinearity. To this end, we introduce two dimensionless nonlinearity measures

\[
\zeta_{\pm} \equiv d_{168} - d_{170} \pm (d_{172} - d_{174}), \tag{4}
\]

where \(d_j \equiv \bar{\nu}_{\beta ji} - f \bar{\mu}_{ji} \) are the vertical deviations of the four data points \(\bar{\nu}_{\beta ji} \) in Fig. 2(b) from the linear fit \(f \). \(\zeta_{+} \) and \(\zeta_{-} \) characterize the two possible nonlinearities for four data points, a zigzag shape with deviation pattern \(+ - + - \), and a curved nonlinearity with deviation...
FIG. 3. (a) Nonlinearity measure \((\zeta_+ , \zeta_-)\) for next-neighbor isotope pairs. The red shaded region indicates the 95% confidence interval from our data. The green solid line and the blue dashed line indicate the required ratio \(\zeta_-/\zeta_+\) if the nonlinearity is purely due to a new boson \(\phi\) and the QFS, respectively. For the mass shift, that is more difficult to calculate accurately; we find 0.07% of our experimental value. (b) Experimental nonlinearity measure along the axes of a new boson (\(x\)-axis) and the QFS (\(y\)-axis).

pattern \(+ - - +\), respectively. Any given nonlinearity can be represented by a point in the \(\zeta_+ , \zeta_-\) plane [see Fig. 3(a)]. A nonlinearity that arises from the coupling of the \(\phi\) boson to the neutron number corresponds to a fixed nonlinearity pattern and hence a given line through the origin (see the Supplemental Material [33]). The same argument holds for the QFS. Our observed nonlinearity lies close to both lines representing pure coupling to a new boson and the QFS, respectively. The experimental uncertainty region in Fig. 3(a) can be decomposed into its possible QFS and new-boson components, as shown in Fig. 3(b). It highlights the relative contributions of the two sources of nonlinearity, ranging from pure new boson to pure QFS contribution at the current level of uncertainty. With increased measurement precision, it will be possible to separate the two contributions.

In order to convert the observed nonlinearity, as represented by \(\zeta_+\), into a physical quantity such as the coupling \(\nu_ne\), we need to determine the associated electronic wave functions. To cross-check our numerical simulations for systematic errors, we use two different methods, the Dirac-Hartree-Fock method [68,69] followed by the configuration interaction (CI) method [70], using the software package GRASP2018 [74], and many-body perturbation theory (MBPT) [75] implemented in AMBiT [76]. We calculate \(F^{\text{CI}}_{\beta\alpha} = 1.0153\) and \(F^{\text{MBPT}}_{\beta\alpha} = 1.0121\), within 0.2% and 0.07% of our experimental value \(F^{\text{exp}}_{\beta\alpha} = 1.01141024(86)\), respectively. For the mass shift, that is more difficult to calculate accurately; we find \(K^{\text{CI}}_{\beta\alpha} = 65\) GHz \(\cdot\) u (see the Supplemental Material [33]), within a factor of 2 from the experimental value \(K^{\text{exp}}_{\beta\alpha} = 120.208(23)\) GHz \(\cdot\) u. The calculated wave functions in combination with the measured frequency shift can also be used to extract the nuclear size difference \(\delta(r^2)\) (see the Supplemental Material [33]), in good agreement with other results [64]; see Table I. We also calculate \(G^{\text{CI}}_{\beta\alpha} = 232\) kHz \(\cdot\) fm\(^3\) and \(G^{\text{MBPT}}_{\beta\alpha} = -36\) kHz \(\cdot\) fm\(^3\) for the QFS, indicating a large systematic uncertainty in the calculation of this small term. The experimentally constrained range in Fig. 3(b) (24–94 kHz \(\cdot\) fm\(^3\)) (see the Supplemental Material [33]) lies between the two calculated values.

Using the electronic-structure calculations, we can determine a boundary on the new-boson coupling from our data. Figure 4 shows the upper bound on the product of couplings \(|y_{e\gamma}n|\). It is obtained by dividing the experimental value of \(\nu_neD_{\beta\alpha}\) from Fig. 3(b) (determined with the assumption that the effect of the new boson dominates the nonlinearity; i.e., \(G_{\beta\alpha} = 0\)), by \((-1)^{s+1}D_{\beta\alpha}(m_{\phi})/(4\pi\hbar c)\) from the

Supplemental Material [33], within a factor of 2 from the experimental value \(K^{\text{exp}}_{\beta\alpha} = 120.208(23)\) GHz \(\cdot\) u. The calculated wave functions in combination with the measured frequency shift can also be used to extract the nuclear size difference \(\delta(r^2)\) (see the Supplemental Material [33]), in good agreement with other results [64]; see Table I. We also calculate \(G^{\text{CI}}_{\beta\alpha} = 232\) kHz \(\cdot\) fm\(^3\) and \(G^{\text{MBPT}}_{\beta\alpha} = -36\) kHz \(\cdot\) fm\(^3\) for the QFS, indicating a large systematic uncertainty in the calculation of this small term. The experimentally constrained range in Fig. 3(b) (24–94 kHz \(\cdot\) fm\(^3\)) (see the Supplemental Material [33]) lies between the two calculated values.

Using the electronic-structure calculations, we can determine a boundary on the new-boson coupling from our data. Figure 4 shows the upper bound on the product of couplings \(|y_{e\gamma}n|\). It is obtained by dividing the experimental value of \(\nu_neD_{\beta\alpha}\) from Fig. 3(b) (determined with the assumption that the effect of the new boson dominates the nonlinearity; i.e., \(G_{\beta\alpha} = 0\)), by \((-1)^{s+1}D_{\beta\alpha}(m_{\phi})/(4\pi\hbar c)\) from the
atomic-structure calculations (see the Supplemental Material [33] for the calculation of $D_{\beta\alpha}$). The calculations with the CI and the MBPT methods agree with each other to better than a factor of 2 over most of the mass range m_ϕ. The upper bound from our data on $|\langle x_1 y_n \rangle|$ is \sim200 times larger than the preferred coupling range for the X17/2 [19,20], and 2 orders of magnitude larger than the bound estimated in Ref. [10] from the combination of $g-2$ measurements on the electron and neutron scattering data. We note, however, that the limit on $|\langle x_1 \rangle|$ depends on additional assumptions about the new boson’s spin and the symmetries of the interaction.

Finally, since the absolute optical frequency of the $^2S_{1/2} \rightarrow ^2D_{5/2}$ transition for 172Yb$^+$ has recently been measured with precision at the Hz level [86], the absolute frequencies for all the other bosonic isotopes can be deduced from our isotope shift measurements. The results are summarized in Table II.

In the future, the measurement precision can be increased by several orders of magnitude by cotrapping two isotopes [12,13]. This improvement, also in combination with measurements on additional transitions, such as the $^2S_{1/2} \rightarrow ^2F_{7/2}$ octupole transition in Yb$^+$ [87] or clock transitions in neutral Yb [28,29], will allow one to discriminate between nonlinearities of different origin. Characterizing the nonlinearities arising from within the SM can provide new information about the nucleus [88], especially in combination with improved electronic-structure calculations. On the other hand, if evidence for a new boson should emerge from the improved measurements, it can be independently verified by performing similar measurements on other atomic species [10], such as Ca/Ca$^+$ [13,89], Sr/Sr$^+$ [12,14], Nd$^+$ [90], or on highly charged ions [91–94], as well as on molecules like Sr$_2$ [95]. Unstable isotopes (e.g., 166Yb with a half-life of \sim2.4 days) can be used to increase the number of points in the King Plot, providing strong further constraints on the origin of the nonlinearity. The generalization of nonlinearity measures ζ_{\pm} for more isotopes or transitions is discussed in the Supplemental Material [33].

This work was supported by the NSF and NSF CUA. This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant No. 795121. C. L. was supported by the U. S. Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. J. C. B. is supported by the Australian Research Council (DP190100974). A. K. acknowledges the partial support of a William M. and Jane D. Fairbank Postdoctoral Fellowship of Stanford University. We thank M. Drewsen, V. V. Flambaum, P. Harris, N. Huntemann, T. Mehlstäubler, R. Milner, R. Ozeri, E. Peik, G. Perez, R. F. Garcia Ruiz, Y. Soreq, J. Thaler, and T. Zelevinsky for interesting discussions, W. Nazarewicz and P. Reinhard for providing information about the Yb nucleus, and V. Dzuba for pointing out the nuclear quadrupole deformation as a potential significant source of nonlinearity [26].

TABLE II. Frequencies of the $^2S_{1/2} \rightarrow ^2D_{5/2}$ transition.

Isotope	Absolute frequency (kHz)	Ref.
168	729 481 090 980.86(36)	This work
170	729 478 911 881.93(30)	This work
172	729 476 867 027.2068(44)	[86]
174	729 475 283 958.85(31)	This work
176	729 473 774 903.56(42)	This work

1. C. and J. H. contributed equally to this work.

* I. C. and J. H. contributed equally to this work.

[1] V. C. Rubin, W. K. Ford, and N. Thonnard, Astrophys. J. 238, 471 (1980).

[2] D. Clowe, M. Bradca, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006).

[3] R. Massey, T. Kitching, and J. Richard, Rep. Prog. Phys. 73, 086901 (2010).

[4] Y. Akrami et al. (Planck Collaboration), arXiv:1807.06205.

[5] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[6] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A. van Bibber, Annu. Rev. Nucl. Part. Sci. 65, 485 (2015).

[7] T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, Rev. Mod. Phys. 91, 015001 (2019).

[8] M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018).

[9] C. Delaunay, R. Ozeri, G. Perez, and Y. Soreq, Phys. Rev. D 96, 093001 (2017).

[10] J. C. Berengut, D. Budker, C. Delaunay, V. V. Flambaum, C. Frugueule, E. Fuchs, C. Grojean, R. Harnik, R. Ozeri, G. Perez et al., Phys. Rev. Lett. 120, 091801 (2018).

[11] F. Gebert, Y. Wan, F. Wolf, C. N. Angstmann, J. C. Berengut, and P. O. Schmidt, Phys. Rev. Lett. 115, 053003 (2015).

[12] T. Manovitz, R. Shaniv, Y. Shapiro, R. Ozeri, and N. Akerman, Phys. Rev. Lett. 123, 203001 (2019).

[13] F. W. Knollmann, A. N. Patel, and S. C. Doret, Phys. Rev. A 100, 022514 (2019).

[14] H. Miyake, N. C. Pisenti, P. K. Elgee, A. Sitaram, and G. K. Campbell, Phys. Rev. Research 1, 033113 (2019).

[15] W. H. King, Isotope Shifts in Atomic Spectra (Plenum Press, New York, 1984).

[16] A. J. Krasznahorkay, M. Csátlós, L. Csige, Z. Gácsi, J. Gulyás, A. Nagy, N. Sas, J. Timár, T. G. Tornyi, I. Vajda et al., J. Phys. Conf. Ser. 1056, 012028 (2018).

[17] A. J. Krasznahorkay, M. Csátlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár et al., Phys. Rev. Lett. 116, 042501 (2016).
[68] I. Grant, B. McKenzie, P. Norrington, D. Mayers, and N. Pyper, Comput. Phys. Commun. 21, 207 (1980).
[69] K. Dyall, I. Grant, C. Johnson, F. Parpia, and E. Plummer, Comput. Phys. Commun. 55, 425 (1989).
[70] P. Jönsson, A. Ynnerman, C. Froese Fischer, M. R. Godefroid, and J. Olsen, Phys. Rev. A 53, 4021 (1996).
[71] S. G. Porsev, M. G. Kozlov, and D. Reimers, Phys. Rev. A 79, 032519 (2009).
[72] B. Fawcett and M. Wilson, At. Data Nucl. Data Tables 47, 241 (1991).
[73] E. Biémont, J.-F. Dutrieux, I. Martin, and P. Quinet, J. Phys. B 31, 3321 (1998).
[74] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń, Comput. Phys. Commun. 237, 184 (2019).
[75] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B 18, 597 (1985).
[76] E. Kahl and J. Berengut, Comput. Phys. Commun. 238, 232 (2019).
[77] D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008).
[78] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, Phys. Rev. A 83, 052122 (2011).
[79] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111807 (2012).
[80] R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Phys. Rev. Lett. 106, 080801 (2011).
[81] H. Davoudiasl, H.-S. Lee, and W. J. Marciano, Phys. Rev. D 89, 095006 (2014).
[82] R. Barbieri and T. Ericson, Phys. Lett. 57B, 270 (1975).
[83] H. Leeb and J. Schniedmayer, Phys. Rev. Lett. 68, 1472 (1992).
[84] Y. N. Pokotilovski, Phys. At. Nucl. 69, 924 (2006).
[85] V. V. Nesvizhevsky, G. Pignol, and K. V. Protasov, Phys. Rev. D 77, 034020 (2008).
[86] H. A. Fürst, C.-H. Yeh, D. Kalincev, A. P. Kulosa, L. S. Dreissen, R. Lange, E. Benkler, N. Huntemann, E. Peik, and T. E. Mehlstäubler, arXiv:2006.14356.
[87] M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, Phys. Rev. Lett. 78, 1876 (1997).
[88] P.-G. Reinhard, W. Nazarewicz, and R. F. Garcia Ruiz, Phys. Rev. C 101, 021301(R) (2020).
[89] A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, Phys. Rev. A 69, 042502 (2004).
[90] N. Bhatt, K. Kato, and A. C. Vutha, arXiv:2002.08290.
[91] P. Micke, T. Leopold, S. A. King, E. Benkler, L. J. Spieß, L. Schmögier, M. Schwarz, J. R. Crespo López-Urrutia, and P. O. Schmidt, Nature (London) 578, 60 (2020).
[92] V. A. Yerokhin, R. A. Müller, A. Surzhykov, P. Micke, and P. O. Schmidt, Phys. Rev. A 101, 012502 (2020).
[93] R. Silwal, A. Lapierre, J. D. Gillaspy, J. M. Dreiling, S. A. Blundell, Dipti, A. Borovik, G. Gwinner, A. C. C. Villari, Y. Ralchenko et al., Phys. Rev. A 98, 052502 (2018).
[94] M. G. Kozlov, M. S. Safronova, J. R. Crespo López-Urrutia, and P. O. Schmidt, Rev. Mod. Phys. 90, 045005 (2018).
[95] B. H. McGuyer, M. McDonald, G. Z. Iwata, M. G. Tarallo, A. T. Grier, F. Apfelbeck, and T. Zelevinsky, New J. Phys. 17, 055004 (2015).