HPTLC study to determine the antioxidant activity of dried leaves of *Portulaca oleracea* L.

Kesri Nandan Sharma\(^1\), Nitu Bhatnagar\(^2\)

\(^1\)Research Scholar, Department of Chemistry, Manipal University Jaipur – 303 007, Rajasthan, India
\(^2\)Department of Chemistry, Manipal University Jaipur – 303 007, Rajasthan, India

Article History:

Received on: 21 Jun 2020
Revised on: 26 Jul 2020
Accepted on: 03 Oct 2020

Keywords:
Densitogram, Derivatization, DPPH, Nutrients, Purslane, visionCATS

ABSTRACT

This present study involves the assessment of the anti-oxidant activity study of the sample which was obtained from the methanolic extracts of dried leaves of *Portulaca oleracea* L. (common name Purslane). Purslane is a rich source of Vitamin A, Vitamin-C and some other B-complex vitamins like riboflavin, niacin, pyridoxine and carotenoids which are known powerful natural anti-oxidants. Anti-oxidants are compounds that inhibit oxidation. This methanolic extract of leaves was evaluated for the determination of its anti-oxidant efficiency by using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) by using Silica TLC plates on Camag High-Performance Thin Layer Chromatography (HPTLC) system using visionCATS software. Densitograms and chromatographs obtained show the presence of anti-oxidant activity. It is a rapid, inexpensive and straightforward method to measure anti-oxidant properties of substances after separation by HPTLC. It involves the use of the free radical, 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) which is widely used to test the ability of compounds to act as free radical scavengers or hydrogen donors and to evaluate anti-oxidant activity. When Anti-oxidants substances react with DPPH, which is a stable free radical becomes paired off in the presence of a hydrogen donor (e.g., a free radical scavenging anti-oxidant) and is reduced to the DPPHH. As a consequence, the absorbance's decreased from the DPPH.

*Corresponding Author

Name: Kesri Nandan Sharma
Phone: +91-9829014052
Email: sharma_kesri@rediffmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v12i1.4174

INTRODUCTION

Portulaca oleracea L. (Purslane) has wide cosmopolitan distribution around the globe as it can be seen in fields, gardens, vineyards, lawns, driveways, dunes and river banks. It is better known as wild plants but also an edible vegetable rich in many beneficial nutrients for human consumption ([Alam et al., 2014](https://doi.org/10.26452/ijrps.v12i1.4174)). It contains more omega-3 fatty acids and alpha-linolenic acid (both are good anti-oxidants) in than any other leafy vegetable plant. ([Chowdhary, 2013](https://doi.org/10.26452/ijrps.v12i1.4174)), and is a nutritious food rich in omega-3 fatty acids and anti-oxidants ([Simopoulos et al., 1992](https://doi.org/10.26452/ijrps.v12i1.4174)). It possesses many anti-oxidant properties due to the excellent value contents of vitamins, minerals, essential fatty acids and other compounds and having rich medicinal properties ([Rahimi, 2018](https://doi.org/10.26452/ijrps.v12i1.4174)), possess potent pharmacological activities as anti-oxidant ([Naeem and Khan, 2013](https://doi.org/10.26452/ijrps.v12i1.4174)).
Purslane is a nutritious vegetable used for human consumption (Dkhil et al., 2011) and having anti-oxidative property. Phytochemical investigations revealed that this plant has a wide range of secondary metabolites including alkaloids, terpenoids, flavonoids and organic acids (Iranshahy et al., 2017). Anti-oxidants are the compounds that inhibit oxidation and oxidation is a chemical reaction that can produce free radicals (Sicari et al., 2018), thereby leading to chain reactions that may damage the cells of organisms. Many anti-oxidants like thiols or ascorbic acid (vitamin C) terminate these chain reactions.
Kesri Nandan Sharma and Nitu Bhatnagar, Int. J. Res. Pharm. Sci., 2021, 12(1), 254-261

Figure 7: Derivatized HPTLC Plate image in white light

Figure 8: Derivatized HPTLC Plate image at 366 nm

reactions. To balance the oxidative stress, plants and animals maintain complex systems of overlapping anti-oxidants, such as glutathione and enzymes (e.g., catalase and superoxide dismutase), produced internally, or the dietary anti-oxidants vitamin C & vitamin E (Hefnawy and Ali, 2015).

DPPH (2,2-diphenyl-1-picrylhydrazyl) is a free radical which produces a violet solution dissolved in Methanol (Erkan, 2012). It is stable at room temperature and ambient environmental conditions. Anti-oxidants present in the extract reacts with the DPPH free radicals and breaks the chain reaction and further formation of free radicals (Sanja et al., 2009) this causes a colour change in DPPH to yellow. The formula of DPPH is C18H12N5O6 and its Molecular Weight is 394.32 g/mol. Structure of DPPH (Figure 1). High-Performance Thin Layer Chromatography (HPTLC) is a powerful and versatile chromatographic technique for the separation and analysis of natural products as compared to other techniques such as HPLC, spectrophotometry, titrimetric. HPTLC system of Camag brand consists of following components such as Plate Developing Chambers (Twin trough), TLC Applicator (Linomat 5), TLC plate heater, Derivatier Sprayer, Detection component (Scanner 4), Evaluation is done by software (visionCATS) and documentation by TLC Visualizer.

MATERIALS AND METHODS

The whole plant of Portulaca oleracea along with leaves on which study is performed was authenticated by Raw Materials Herbarium & Museum, Delhi (RHMD), National Institute of Science Communication & Information Resources (CSIR-NISCAIR) New Delhi and requisite certificates are obtained.

DPPH reagent (2,2-Diphenyl-1-picrylhydrazyl), Ethanol, Camag HP-TLC System comprising vision CATS- Software, Linomat 5, Twin Trough Chamber, Visualizer, Scanner4, Dipping Chamber, Centrifuge machine, Ultrasonic bath, Silica gel TLC plates, Ethyl Acetate, Methyl ethyl ketone, Formic Acid, Distilled Water

Reagent Preparation

Exactly 7.89 mg of DPPH reagent is weighed by analytical balance and diluted to 100 ml by 99.5 % ethanol. The concentration of this solution is 0.2 mM. It is kept in an amber-coloured bottle which is then wrapped with aluminium foil as DPPH activity is light sensitive.

Sample preparation

One gram of fine powder made from dried leaves of Portulaca oleracea (Purslane) is precisely weighed and dissolved in 10 ml of Methanol and then kept in Ultrasonic bath for 15 minutes after its supernatant is taken with the help of a pipette. After that, it is centrifuged at 3000 rpm for 10 minutes in a centrifuge machine, and the final extract is taken for the analysis.

PROCEDURE

The study is performed in a dark environment only as the DPPH activity is light sensitive, DPPH reagent is dissolved in ethanol and dissolved. After application of the sample on stationary phase HPTLC plates silica gel 60 F 254 of size 10 cm x10 cm the and standard are run in the mobile phase which contains Ethyl Acetate: Methyl ethyl ketone: Formic Acid: Water in a ratio of 5:3:1:1 volume/volume.
Figure 9: *Chromatograph A1, A2, A3, A4 and A5 obtained at 254 nm
Figure 10: Chromatograph B1, B2, B3, B4 and B5 obtained at 366 nm
Table 1: Evaluation result HPTLC Chromatograph are obtained at 254 nm

	Volume	Peak	Max	Area			
			Height	%		A	%
A1	2.0 µl	1	0.124	0.0326	22.66	0.00103	11.81
A1	2.0 µl	2	0.876	0.1112	77.34	0.00767	88.19
A2	4.0 µl	1	0.039	0.0201	7.50	0.00036	2.21
A2	4.0 µl	2	0.124	0.0503	18.77	0.00153	9.45
A2	4.0 µl	3	0.173	0.0291	10.85	0.00125	7.70
A2	4.0 µl	4	0.381	0.0153	5.71	0.00062	3.82
A2	4.0 µl	5	0.745	0.0460	17.15	0.00277	17.07
A2	4.0 µl	6	0.887	0.1073	4.02	0.00968	5.75
A3	6.0 µl	1	0.037	0.0222	6.76	0.00045	3.21
A3	6.0 µl	2	0.126	0.0699	21.28	0.00213	15.11
A3	6.0 µl	3	0.174	0.0417	12.70	0.00173	12.26
A3	6.0 µl	4	0.385	0.0229	6.98	0.00093	6.59
A3	6.0 µl	5	0.750	0.0526	16.02	0.00321	22.78
A3	6.0 µl	6	0.935	0.1190	36.24	0.00564	40.05
A4	8.0 µl	1	0.039	0.0272	7.13	0.00053	3.18
A4	8.0 µl	2	0.126	0.0832	21.83	0.00274	16.52
A4	8.0 µl	3	0.177	0.0526	13.81	0.00217	13.06
A4	8.0 µl	4	0.384	0.0284	7.45	0.00118	7.09
A4	8.0 µl	5	0.753	0.0565	14.82	0.00318	19.17
A4	8.0 µl	6	0.939	0.1332	34.95	0.00680	40.97
A5	10.0 µl	1	0.039	0.0324	7.38	0.00070	3.50
A5	10.0 µl	2	0.129	0.0937	21.33	0.00320	16.08
A5	10.0 µl	3	0.181	0.0610	13.89	0.00242	12.15
A5	10.0 µl	4	0.836	0.3062	38.26	0.01653	44.23
A5	10.0 µl	5	0.948	0.1549	35.28	0.00847	42.61

Table 2: Evaluation result HPTLC Chromatographs are obtained at 366 nm

	Volume	Peak	Max	Area			
			Height	%		A	%
B1	2.0 µl	1	0.827	0.1072	28.53	0.00450	30.49
B1	2.0 µl	2	0.933	0.2685	71.47	0.01025	69.51
B2	4.0 µl	1	0.831	0.2239	35.97	0.01148	40.74
B2	4.0 µl	2	0.940	0.3985	64.03	0.01670	59.26
B3	6.0 µl	1	0.064	0.0175	2.19	0.00046	1.22
B3	6.0 µl	2	0.260	0.0141	1.77	0.00039	1.04
B3	6.0 µl	3	0.836	0.3062	38.26	0.01653	44.23
B3	6.0 µl	4	0.948	0.4625	57.79	0.02000	53.50
B4	8.0 µl	1	0.067	0.0191	2.15	0.00042	0.97
B4	8.0 µl	2	0.840	0.3647	41.03	0.01978	46.29
B4	8.0 µl	3	0.953	0.5050	56.81	0.02253	52.74
B5	10.0 µl	1	0.067	0.0230	2.31	0.00056	1.15
B5	10.0 µl	2	0.265	0.0199	1.99	0.00059	1.23
B5	10.0 µl	3	0.844	0.4033	40.48	0.02209	45.89
B5	10.0 µl	4	0.958	0.5501	55.22	0.02489	51.72
After the development of standard and sample, the plate is then derivatized with DPPH reagent. A working program is prepared in visionCATS software. A specific volume of sample 2μl, 4μl, 6μl, 8μl and 10μl is taken by using 100 μl syringe and applied through sample applicator. After application, the plate is air-dried for 10 minutes. For the development of chromatogram, a filter paper lined in the Twin Trough Chamber for uniform saturation chamber is used. Chamber saturation is done for 20 minutes (according to USP chapter 202). Then the applied plate is placed in a twin trough chamber layer facing towards the paper. The plate is a run-up to the marked position, i.e. 70 mm and then removed and air-dried for 5 minutes. The dip tank is used for derivatization with DPPH reagent. It is kept in the dark place for 10 min for development of proper intensity of colour. Then images are taken in visible light if anti-oxidant is present it will show the yellow colour spot.

RESULTS AND DISCUSSION

Images of HPTLC plate after application of sample of methanolic extract applied in a volume of by microsyringe in 2μl, 4μl, 6μl, 8μl and 10μl concentrations is obtained under normal white light (Figure 2), under U.V. light at 254 nm (Figure 3) and when under U.V. light at 366 nm (Figure 4).

First Densitogram is obtained by keeping the developed HPTLC plate in TLC Scanner and vision CATS software with settings at wavelength 254 nm and other as under:

- Scanner type used as Single λ; Optimization - Resolution; Measurement mode –absorption;
- Detector mode – Automatic ; Scanning speed - 20 mm/s; Data resolution 100 μm/step ; Slit 6 x 0.45 mm, micro; lamp- Deuterium Lamp (Figure 5).

Second Densitogram is obtained by keeping the developed HPTLC plates in TLC Scanner and vision CATS software with settings at wavelength 366 nm and other as under; Scanner type used as Single λ ; Optimization - Resolution ; Filter – K 400 ; Measurement mode–Fluorescence; Detector mode – Auto-

Rf Value	Colour	Intensity
0.87	Yellow	High
0.78	Yellow	High
0.18	Yellow	Low
matic; Scanning speed - 20 mm/s; Data resolution 25 μm/step; Slit 6 x 0.45 mm, micro; lamp- Mercury Lamp (Figure 6).

The developed plate is then derivatized by using freshly prepared DPPH reagents and images are observed under white light (Figure 7) and at 366 nm (Figure 8).

Evaluation of results

Area, Area % and Rf values of the peaks detected during densitometry analysis of extract are given in Table 1 for five chromatographs are obtained at 254 nm on applying 2 μl, 4 μl, 6 μl, 8 μl and 10 μl consequently. (Figure 9) and in Table 2 for the other five chromatographs are obtained at 366 nm on applying the same concentrations as above consequently (Figure 10). TLC visualize used for imaging and documentation in which yellow colour bands can be seen at 0.18, 0.78 and 0.87 Rf values (Figure 11), and detailed results can be seen as in Table 3.

CONCLUSION

This study concludes that when five tracks of different concentrations, i.e. 2 μl, 4 μl, 6 μl, 8 μl and 10 μl were applied and studied at 254 nm and 366 nm and again studied at after derivatization by DPPH reagent, it is found that the yellow colour band present at Rf 0.18, Rf 0.78 and Rf 0.87 shows the presence of anti-oxidant activity present in the methanolic extract of *Portulaca oleracea* dried leaves.

ACKNOWLEDGEMENT

Manipal University Jaipur for providing central lab facility and resources to conduct this study and M/S Anchrom Enterprises (India) Pvt Ltd, Mumbai for providing their Camag HPTLC application lab facilities and assistance to conduct this study.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Alam, M. A., *et al.* 2014. Evaluation of Anti-oxidant Compounds, Anti-oxidant Activities, and Mineral Composition of 13 Collected Purslane Portulaca Oleracea L.) Accessions. *BioMed Research International*, page 10. Article ID 296063.

Chowdhary, C. V. 2013. A Review on Phytochemical and Pharmacological Profile of Portulaca oleracea Linn. (Purslane). *International Journal of Research in Ayurveda and Pharmacy*, 4(1):34–37.

Dkhil, M. A., *et al.* 2011. Anti-oxidant Effect of Purslane (*Portulaca oleracea*) and Its Mechanism of Action. *Journal of Medicinal Plants Research*, 5(9):1589–1563.

Erkan, N. 2012. Anti-oxidant Activity and Phenolic Compounds of Fractions from Portulaca Oleracea L. *Food Chemistry*, 133(3):775–781.

Hefnawy, T., Ali, O. 2015. Assessment of antioxidant capacity of ethanolic extract of Portulaca oleracea leaves in vitro and in vivo. *Journal of Medicinal Plants Research*, 9(10):335–342.

Iranshahy, M., Javadi, B., Iranshahi, M., Jahanbaksh, S. P., Mahyari, S., Hassan, F. V., Karimi, G. 2017. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. *Journal of Ethnopharmacology*, 205:158–172.

Naeem, F., Khan, S. H. 2013. Purslane (*Portulaca oleracea L.*) as Phytophelan Substance—A Review. *Journal of Herbs, Spices & Medicinal Plants*, 19(3):216–232.

Nile, S. H. 2017. Total Phenolics, Antioxidant, Antitumor, and Enzyme Inhibitory Activity of Indian Medicinal and Aromatic Plants Extracted with Different Extraction Methods. *3 Biotech*.

Rahimi, V. B. 2018. A Pharmacological Review on Portulaca Oleracea L.: Focusing on Anti-Inflammatory, Anti-Oxidant, Immuno-Modulatory and Antitumor Activities. *Journal of Pharmacopuncture*, 22(1):7–15.

Sanja, S. D., *et al.* 2009. Characterization and Evaluation of Anti-oxidant Activity of Portulaca Oleracea. *International Journal of Pharmacy and Pharmaceutical Sciences*, 1(1).

Sicari, V., *et al.* 2018. Portulaca Oleracea L. (Purslane) Extracts Display Antioxidant and Hypoglycaemic Effects. *Journal of Applied Botany and Food Quality*, 91.

Simopoulos, A. P., Norman, H. A., Gillaspy, J. E., Duke, J. A. 1992. Common purslane: a source of omega-3 fatty acids and antioxidants. *Journal of the American College of Nutrition*, 11(4):374–382.

Uddin, M. K., *et al.* 2014. Purslane Weed (*Portulaca Oleracea*): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Anti-oxidant Attributes. *The Scientific World Journal*. Article ID 951019.