Research Progress in Prognostic Factors and Biomarkers of Ovarian Cancer

Shuna Liu1,2, Ming Wu1,2, Fang Wang1,2 ★

1. Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029.
2. National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029.

★ Corresponding author: Fang Wang, E-mail: wangfang@njmu.edu.cn, Tel./Fax: +86 2586862814.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2020.05.02; Accepted: 2021.04.22; Published: 2021.05.13

Abstract

Ovarian cancer is a serious threat to women’s health; its early diagnosis rate is low and prone to metastasis and recurrence. The current conventional treatment for ovarian cancer is a combination of platinum and paclitaxel chemotherapy based on surgery. The recurrence and progression of ovarian cancer with poor prognosis is a major challenge in treatment. With rapid advances in technology, understanding of the molecular pathways involved in ovarian cancer recurrence and progression has increased, biomarker-guided treatment options can greatly improve the prognosis of patients. This review systematically discusses and summarizes existing and new information on prognostic factors and biomarkers of ovarian cancer, which is expected to improve the clinical management of patients and lead to effective personalized treatment.

Key words: ovarian cancer; prognostic factor; biomarker

Introduction

Ovarian cancer is the most fatal gynecological tumor, its incidence is next to cervical cancer and endometrial cancer, but its mortality rate is the first among reproductive system malignancies. According to the data of cancer statistics in 2020, the number of new cases is about 21750 and the number of deaths is 13940 [1]. Ovarian is located in the posterolateral uterine bottom, the onset is insidious, the early symptoms lack specificity, and the screening effect is limited, so the early diagnosis of ovarian cancer is difficult. According to the American congress of obstetricians and gynecologists (ACOG), 70 to 75 percent of ovarian cancers are diagnosed late, and the 5-year survival rate for most women is 20 to 30 percent [2]. Compared with other gynecological tumors, ovarian cancer has complex pathological types, high recurrence rate and poor prognosis. Patients with distant metastasis due to delayed medical treatment and tolerance to chemotherapy have worse prognosis. Therefore, the identification of effective clinical prognostic factors and biomarkers is crucial to improve the prognosis of ovarian cancer patients. With the in-depth study of the molecular changes that drive the transformation of ovarian cancer and tumor progression, many new molecular analysis techniques have been widely used. Recent studies have shown that microRNAs (miRNAs) may play an important role in the pathogenesis of ovarian cancer and serve as potential biomarkers [3].

The main contents of this review are divided into two parts: classic prognostic factors and novel prognostic factors. Classic prognostic factors included clinicopathologic factors (FIGO stage, degree of differentiation, degree of tumor reduction surgery, course of chemotherapy) and serum CA125. New prognostic factors mainly include blood- or tissue-based biomarkers. The ovarian cancer field has lagged in incorporating targeted therapies into standard treatments, these novel biomarkers are expected to provide therapeutic targets for ovarian cancer, thus guiding clinical practice, improving patient prognosis and ultimately reducing the risk of death of ovarian cancer patients.

Search Methods

Based on the topics discussed in this review, we systematically searched the recent medical literatures on novel prognostic biomarkers of ovarian cancer in...
PubMed and PMC databases by using our search strategy. All the literatures included in the study were published between February 1, 2015 and February 1, 2021. After excluding the duplicated literatures in the two databases, a total of 1,923 literatures met the restriction conditions. Then the retrieved literatures were imported into the literature management software Endnote. Preliminary screening was performed by reading the titles and abstracts of the literatures to exclude irrelevant studies, and then the full text of the included literatures was evaluated. In order to ensure the reliability of the research results, we only selected studies with more than 50 ovarian cancer patients, and the biomarkers studied in the literature were consistent with the clinical results. The inclusion and exclusion criteria and search strategy are provided in the appendix. Finally, a manual search was conducted in major journals and the reference lists of the selected papers to find other relevant citations that were missing by the electronic search.

Search Results

A total of 297 different novel prognostic biomarkers were reported in 296 studies that met the inclusion criteria (Figure 1). These prognostic biomarkers were classified according to the purpose of the study; there were 45 studies on biomarkers in the blood of ovarian cancer patients (Table 1) and 251 studies on biomarkers in tumor tissues (Tables 2-4).

![Flowchart of article selection process](http://www.jcancer.org)

Figure 1. Flowchart of article selection process.
Table I. Blood-based biomarkers in ovarian cancer
Cell proliferation and invasion
Leptin
miR-429
ADAM12
Septin-9, clusterin
MMP3, TIMP3
MSLN
CYFRA21-1
Inflammation
NLR
NLR
CRP / Alb
NLR, LDH
AFR
NLR
PLR
NLR
Angiogenesis
Fibulin-4
VEGF
VEGF-A
LncRNA MALAT1
Antioxidant
s-OHdG
Immune response
TNFα/IL-4 ratio
sPD-L1
s-Cd95L
absolute lymphocyte count
CD4/CD8 ratio
Chemotherapeutic sensitivity
CEBPA, C69.OC<T polymorphism (rs34529039)
hyperfibrinogenemia
ERCC1
miR-135a-3p
Gal-8, Gal-9
Mitotic process
Aurora A codon 57 SNP
EMT and metastasis
miR 20a, miR 20b, miR 200c
miR-200b, miR-200c
Deregulation of the cellular transport
KPN2A
Apoptosis process
survivin
Smac/DIABLO
Others
miR-200c, miR-141
Platelet counts
SFRA
OPN
microRNA-125b (miR-125b)
miR-125b
BGA
RASSF1A rs1998939C > T SNP
MACCI and S100A4
sP (Hyp-Leu,Glu-Phe-Trp)

Abbreviations: miR: MicroRNA; NLR: the ratio of neutrophil count to lymphocyte count; AFR: albumin-to-fibrinogen ratio; PLR: platelet lymphocyte ratio; SNP: single Nucleotide Polymorphism; MSLN: Mesothelin; AAK: Aurora A kinase; Gal: Galectin; VEGF: vascular endothelial growth factor; sP-D-L1: soluble PD - L1; OC: ovarian cancer; HSOC: High grade serous ovarian cancer; EOC: epithelial ovarian cancer.

http://www.jcancer.org
Table 2. Tissue-based immunohistochemistry biomarkers in ovarian cancer

EMT and metastasis	Expression or ratio	Potential clinical use	Example study	Studied biomarkers	Subsite	Patients (n)
CTHRC1	Increased	Poor prognosis	Hou, M., et al. (2015)	CTHRC1	EOC	88
ZEB2	Increased	Poor prognosis	Prisles, S., et al. (2015)	ZEB2	EOC	143
CD44v6	Increased	Poor prognosis	Tjhay, F., et al. (2015)	CD44v6	EOC	59
mIR-30e	Increased	Good prognosis	Sun, Y., et al. (2015)	mIR-30e	EOC	204
FILIP1L	Increased	Good prognosis	Kwon, M., et al. (2016)	FILIP1L	OC	369
Par3	Decreased	Good prognosis	Nakamura, H., et al. (2016)	Par3	OC	50
MMP-14, CD44	Double expression	Poor prognosis	Vos, M. C., et al. (2016)	MMP-14, CD44	OC	97

Inflammation and immune response	CD8/Treg ratio	Increased	Good prognosis	Knutsen, K. L., et al. (2015)	CD8/Treg ratio	EOC	405
PD-1, PD-L1	Increased	Good prognosis	Darb-Esfahani, S., et al. (2016)	PD-1, PD-L1	HGSOC	215	
Tumour-infiltrating B cell and plasma cell	Increased	Poor prognosis	Lundgren, S., et al. (2016)	Tumour-infiltrating B cell and plasma cell	EOC	154	
TIL	Increased	Good prognosis	James, F. R., et al. (2017)	TIL	EOC	707	
T-bet+ TILs	Increased	Good prognosis	Xu, Y., et al. (2017)	T-bet+ TILs	EOC	81	
PD-L1	Increased	Poor prognosis	Zhu, J., et al. (2017)	PD-L1	OCCC	138	
Transcription factors WT1 and p53	Increased	Poor prognosis	Carter, J. H., et al. (2018)	Transcription factors WT1 and p53	OC	96	
SOCS-1	Increased	Poor prognosis	Nakagawa, S., et al. (2018)	SOCS-1	OC	83	
PD-L1	Increased	Good prognosis	Kim, K. H., et al. (2019)	PD-L1	EOC	248	
TIL	Increased	Good prognosis	Mauricio, P., et al. (2019)	TIL	HGSOC	128	
RCAS1-Ir	Increased	Poor prognosis	Szubert, S., et al. (2019)	RCAS1-Ir	EOC	67	
VISTA	Expression	Poor prognosis	Zong, L., et al. (2020)	VISTA	OC	146	
Co-expression of CD8+ and granzyme B++	Increased	Good prognosis	Jäntti, T., et al. (2020)	Co-expression of CD8+ and granzyme B++	HGSOC	67	

Antioxidant

| Nrf2 | Expression | Poor prognosis | Lieve, P. L., et al. (2015) | Nrf2 | OC | 108 |
| SOD2 | Increased | Poor prognosis | Amano, T., et al. (2019) | SOD2 | EAOCC | 61 |

Angiogenesis

p53K	Expression	Poor prognosis	Kinose, Y., et al. (2015)	p53K	OC	94
PDGFRβR	Increased	Poor prognosis	Corvigo, S., et al. (2016)	PDGFRβR	SOC	186
VEGF-R1, VEGF-R2	Expression	Good prognosis	Skirnisdottir, I., et al. (2016)	VEGF-R1, VEGF-R2	EOC	131
Nestin	Increased	Poor prognosis	Onisim, A., et al. (2016)	Nestin	SOC	85
MIG-7	Increased	Poor prognosis	Huang, B., et al. (2016)	MIG-7	EOC	121
PTEN	Expression	Good prognosis	Shen, W., et al. (2017)	PTEN	OC	76
HIF-1α and VEGF	Expression	Poor prognosis	Shen, W., et al. (2017)	HIF-1α and VEGF	OC	76
AEG-1	Increased	Poor prognosis	Yu, X., et al. (2018)	AEG-1	EOC	170
VEGF, SEMA4D	Expression	Poor prognosis	Chen, Y., et al. (2018)	VEGF, SEMA4D	OC	124
TBC1D16	Increased	Good prognosis	Yang, Z., et al. (2018)	TBC1D16	EOC	156
PGF	Increased	Poor prognosis	Meng, Q., et al. (2018)	PGF	EOC	89
VEGF-A	Decreased	Poor prognosis	Sopo, M., et al. (2019)	VEGF-A	OC	86
Vasoformin-1, MACC1	Increased	Poor prognosis	Yu, L., et al. (2019)	vasoformin-1, MACC1	SOC	124
Tie-2	Increased	Poor prognosis	Sopo, M., et al. (2020)	Tie-2	HGSOC	86

Cell proliferation

FASN	Increased	Poor prognosis	Cai, Y., et al. (2015)	FASN	OC	60
CD73	Increased	Poor prognosis	Turcotte, M., et al. (2015)	CD73	HGSOC	208
SPINK1	Increased	Poor prognosis	Mehner, C., et al. (2015)	SPINK1	EOC	490
KCNN4, S100A14	Increased	Poor prognosis	Zhao, H., et al. (2016)	KCNN4, S100A14	SOC	127
EGFR	Increased	Poor prognosis	Xu, L., et al. (2016)	EGFR	EOC	67
Gab1	Increased	Poor prognosis	Hu, L. and R. Liu (2016)	Gab1	EOC	124
IL-36a	Decreased	Poor prognosis	Chang, L., et al. (2017)	IL-36a	EOC	750
DOT1L	Increased	Poor prognosis	Zhang, X., et al. (2017)	DOT1L	OC	117
KRT5, KRT6	Increased	Poor prognosis	Ricciardelli, C., et al. (2017)	KRT5, KRT6	SOC	117
hLSR	Increased	Poor prognosis	Hiramatsu, K., et al. (2018)	hLSR	EOC	104
PAUF, TIR4	TLR4 and PAUF/TLR4	Poor prognosis	Choi, C. H., et al. (2018)	PAUF, TIR4	EOC	205
PCDH8	Decreased	Poor prognosis	Cao, Y., et al. (2018)	PCDH8	OC	68
RIF1	Increased	Poor prognosis	Liu, Y. B., et al. (2018)	RIF1	EOC	72
FGFRI	Increased	Poor prognosis	Li, M., et al. (2018)	FGFRI	OC	428
Protein/Marker	Expression or ratio	Potential clinical use	Example study	Studied biomarkers	Subsite	Patients (n)
FOXO1/PAX3	Increased	Poor prognosis	Han, G. H., et al. (2019)\(^{114}\)	FOXO1 / PAX3	EOC	212
pStat3	Increased	Poor prognosis	Li, H., et al. (2020)\(^{135}\)	pStat3	EOC	156
ATAD2	Increased	Poor prognosis	Liu, Q., et al. (2020)\(^{116}\)	ATAD2	OC	60
GRO-β	Increased	Poor prognosis	Ye, Q., et al. (2015)\(^{127}\)	GRO-β	OC	136
B7-H6	Increased	Poor prognosis	Zhou, Y., et al. (2015)\(^{118}\)	B7-H6	OC	110
OCT4, Notch1 and DLL4	Increased	Poor prognosis	Yu, L., et al. (2016)\(^{119}\)	OCT4, Notch1 and DLL4	EOC	207
EphA8	Increased	Poor prognosis	Liu, X., et al. (2016)\(^{120}\)	EphA8	OC	233
AGTR1	Increased	Poor prognosis	Zhang, Q., et al. (2019)\(^{121}\)	AGTR1	EOC	902
CK2a	Increased	Poor prognosis	Ma, Z., et al. (2017)\(^{122}\)	CK2a	EOC	117
CEP55	Increased	Poor prognosis	Zhang, W., et al. (2017)\(^{123}\)	CEP55	EOC	213
ANXA1	Increased	Good prognosis	Manai, M., et al. (2020)\(^{124}\)	ANXA1	EOC	156
MAP3K8	Increased	Poor prognosis	Grussos, T., et al. (2015)\(^{125}\)	MAP3K8	HGSOC	139
IL-33/ST2 axis	Increased	Poor prognosis	Tong, X., et al. (2016)\(^{126}\)	IL-33/ST2 axis	EOC	152
CDCP1, ADAM12	Decreased	Good prognosis	Vlad, C., et al. (2016)\(^{127}\)	CDCP1, ADAM12	SOC	102
FGFR1	Increased	Poor prognosis	Tai, H., et al. (2018)\(^{128}\)	FGFR1	OC	90
HSDL2	Increased	Poor prognosis	Sun, Q., et al. (2018)\(^{129}\)	HSDL2	OC	74
DUSP2	Decreased	Poor prognosis	Liu, W., et al. (2019)\(^{130}\)	DUSP2	HGSOC	127
Kallistatin (KAL)	Decreased	Poor prognosis	Wu, H., et al. (2019)\(^{131}\)	Kallistatin (KAL)	HGSOC	312
YTHDF1-EIF3C axis	Increased	Poor prognosis	Liu, T., et al. (2020)\(^{132}\)	YTHDF1-EIF3C axis	OC	134
IL-6R	Increased	Good prognosis	Isobe, A., et al. (2015)\(^{133}\)	IL-6R	OC	94
Usp7, MARCH7	Increased	Poor prognosis	Zhang, L., et al. (2016)\(^{134}\)	Usp7, MARCH7	EOC	121
PPA1	Increased	Poor prognosis	Li, H., et al. (2017)\(^{135}\)	PPA1	SOC	139
PATZ1	Increased	Good prognosis	Zhao, C., et al. (2018)\(^{136}\)	PATZ1	SOC	208
ARMCh	Increased	Poor prognosis	Jiang, G., et al. (2015)\(^{137}\)	ARMCh	OC	247
galectin-1	Increased	Poor prognosis	Chen, L., et al. (2015)\(^{138}\)	galectin-1	EOC	110
MAGE-A9	Increased	Poor prognosis	Xu, Y., et al. (2015)\(^{139}\)	MAGE-A9	EOC	128
TROP2	Increased	Poor prognosis	Xu, N., et al. (2016)\(^{140}\)	TROP2	EOC	128
Galectin-6	Increased	Poor prognosis	Lin, T., C., et al. (2017)\(^{141}\)	Galectin-6	OC	78
Galectin-1	Increased	Poor prognosis	Schulz, H., et al. (2017)\(^{142}\)	Galectin-1	OC	156
Galectin-3	Increased	Poor prognosis	Schulz, H., et al. (2017)\(^{143}\)	Galectin-3	OC	156
Galectin-7	Increased	Poor prognosis	Schulz, H., et al. (2017)\(^{144}\)	Galectin-7	OC	156
REDD1	Increased	Poor prognosis	Chang, B., et al. (2018)\(^{145}\)	REDD1	OC	229
RacGAP1	Decreased	Good prognosis	Wang, C., et al. (2018)\(^{146}\)	RacGAP1	EOC	117
PAI-1, PAI-RBP1	Increased	Poor prognosis	Koersgen, D., et al. (2018)\(^{147}\)	PAI-1, PAI-RBP1	OC	156
PRDX1	Decreased	Poor prognosis	Sienko, J., et al. (2019)\(^{148}\)	PRDX1	OC	55
KAI1	Decreased	Poor prognosis	Yu, L., et al. (2019)\(^{149}\)	KAI1	SOC	124
CAV1, ATG4C	Increased	Poor prognosis	Zeng, Y., et al. (2020)\(^{150}\)	CAV1, ATG4C	EOC	95
CH13L1, FKB4P4	Increased	Poor prognosis	Lavrenson, K., et al. (2015)\(^{151}\)	CH13L1, FKB4P4	EOC	200
REG4	Increased	Poor prognosis	Chen, S., et al. (2015)\(^{152}\)	REG4	EOC	337
Spry2	Decreased	Poor prognosis	Masoumi-Moghadam, S., et al. (2015)\(^{153}\)	Spry2	OC	99
P38a, AT2F2	Increased	Poor prognosis	Song, W., et al. (2017)\(^{154}\)	P38a, AT2F2	OSC	120
nERK5	Increased	Poor prognosis	Chan, K. K., et al. (2017)\(^{155}\)	nERK5	OC	106
SENP3/SMT3P1	Increased	Poor prognosis	Cheng, J., et al. (2017)\(^{156}\)	SENP3/SMT3P1	EOC	124
BCL6, Lewis y	Increased	Poor prognosis	Zhu, L., et al. (2017)\(^{157}\)	BCL6, Lewis y	OC	103
CXCL11, HMG2A	Increased	Poor prognosis	Jin, C., et al. (2018)\(^{158}\)	CXCL11, HMG2A	HGSOC	110
HSPG2	Decreased	Poor prognosis	Huang, R.L., et al. (2018)\(^{159}\)	HSPG2	EOC	115
KIF2A	Decreased	Poor prognosis	Sheng, N., et al. (2018)\(^{160}\)	KIF2A	OC	108
TRIM59	Increased	Good prognosis	Wang, Y., et al. (2018)\(^{161}\)	TRIM59	OC	192
S100A10	Increased	Poor prognosis	Wang, L., et al. (2019)\(^{162}\)	S100A10	OC	138
PYGB	Increased	Poor prognosis	Zhou, Y., et al. (2019)\(^{163}\)	PYGB	OC	94
GalNAs T6, T14	Increased	Poor prognosis	Sheta, R., et al. (2017)\(^{164}\)	GalNAs T6, T14	HGSOC	131

Glycosylation disorder of protein

- GalNAs T6, T14
- **Mitotic process**
- TOPK
- HER2, AURKA
- KIF14

Apoptosis process

- PDCD5

- **Example study**

- **Studied biomarkers**

- **Subsite**

- **Patients (n)**
| Expression or ratio | Potential clinical use | Example study | Subscribed markers | Patients (n) | |
|---|---|---|---|---|---|
| MDM2 | Increased | Poor prognosis | Mak, C., et al. (2016) | MDM2 | OCCC 75 |
| DNA-PKcs, Akt3, p53 | Increased | Poor prognosis | Shin, K., et al. (2016) | DNA-PKcs, Akt3, p53 | SOC 132 |
| Gal-1, Gal-8, Gal-9p | Increased | Poor prognosis | Labrie, M., et al. (2017) | Gal-1, Gal-8, Gal-9p | HGSOC 209 |

Cell survival (telomerase activity)

| Phosphorylated Akt, hTERT | Increased | Poor prognosis | Lee, Y. K., et al. (2015) | phosphorylated Akt, hTERT | EOC 92 |

Chemotherapeutic sensitivity

JARI1D1B	Increased	Poor prognosis	Wang, L., et al. (2015)	JARI1D1B	EOC 120
ALDH1	Increased	Good prognosis	Aubry, T. H., et al. (2015)	ALDH1	EOC 55
PRP4K	Increased	Good prognosis	Corkery, D. P., et al. (2015)	PRP4K	OC 199
HtrA2	Decreased	Poor prognosis	Miyamoto, M., et al. (2015)	HtrA2	HGSOC 142
PTEN	Increased	Good prognosis	Wang, L., et al. (2015)	PTEN	EOC 161
NF-kBp65	Increased	Good prognosis	Wang, L., et al. (2015)	NF-kBp65	EOC 161
elf3A	Increased	Good prognosis	Zhang, Y., et al. (2015)	elf3A	OC 126
GTF2H5	Decreased	Good prognosis	Gayarre, J., et al. (2016)	GTF2H5	HGSOC 117
POSTN	Increased	Poor prognosis	Sun, P. L., et al. (2016)	POSTN	EOC 308
SOX10	Increased	Poor prognosis	Know, A. Y., et al. (2016)	SOX10	EOC 203
GOLPH3L	Increased	Poor prognosis	Ho, S., et al. (2017)	GOLPH3L	OC 177
LCOA	Increased	Poor prognosis	Miyamoto, M., et al. (2017)	LCOA	HGSOC 117
Stonin 2 (STON2)	Increased	Poor prognosis	Sun, X., et al. (2017)	Stonin 2 (STON2)	EOC 89
GATA3	Increased	Poor prognosis	Chen, H. J., et al. (2018)	GATA3	OC 196
EpCAM	Increased	Poor prognosis	Zhang, X., et al. (2018)	EpCAM	EOC 109
UBC13	Decreased	Poor prognosis	Zhang, X., et al. (2018)	UBC13	OC 71
14-3-3σ	Increased	Poor prognosis	Kim, H. J., et al. (2018)	14-3-3σ	OC 88
KCNN3	Increased	Poor prognosis	Liu, X., et al. (2018)	KCNN3	OC 57
HELQ	Increased	Poor prognosis	Long, J., et al. (2018)	HELQ	EOC 87
P1S10 (KIAA0101)	Increased	Poor prognosis	Jin, C., et al. (2018)	P1S10 (KIAA0101)	HGSOC 118
UTP23	Decreased	Poor prognosis	Fu, Z., et al. (2019)	UTP23	OC 133
ABCB9	Decreased	Poor prognosis	Hou, L., et al. (2019)	ABCB9	OC 308
PBK	Increased	Poor prognosis	Ma, H., et al. (2019)	PBK	HGSOC 234
Sorcin	Decreased	Poor prognosis	Zhang, S., et al. (2019)	Sorcin	OC 60
PRC1	Increased	Poor prognosis	Bu, H., et al. (2020)	PRC1	HGSOC 210
NCAALD	Decreased	Poor prognosis	Feng, L. Y. and L. Li (2020)	NCAALD	EOC 239

Cell cycle regulation

CAPE	Increased	Poor prognosis	Hua, M., et al. (2015)	CAPE	EOC 119
CCNE1	Increased	Poor prognosis	Ayhan, A., et al. (2017)	CCNE1	HGSOC 120
NUCKS	Increased	Poor prognosis	Shi, C., et al. (2017)	NUCKS	OC 121
TK1	Increased	Poor prognosis	Wang, J., et al. (2017)	TK1	SOC 109

Differentiation of cancer-associated fibroblasts (CAFs)

| MARCKS | Increased | Poor prognosis | Doghri, R., et al. (2017) | MARCKS | EOC 118 |

Immunosuppression

| VEGF | Increased | Poor prognosis | Horiwaka, N., et al. (2017) | VEGF | HGSOC 56 |

Metabolic reprogramming

| TBC1D8 | Increased | Poor prognosis | Chen, M., et al. (2019) | TBC1D8 | OC 141 |

Fatty acid metabolism

| PAX2 | Increased | Poor prognosis | Feng, Y., et al. (2020) | PAX2 | EOC 152 |

Defective DNA repair

| WRAP53β | Decreased | Poor prognosis | Hedström, E., et al. (2015) | WRAP53β | EOC 151 |
| pH2AX | Increased | Poor prognosis | Mei, L., et al. (2015) | pH2AX | EOC 87 |

Others

SLP-2	Increased	Poor prognosis	Sun, F., et al. (2015)	SLP-2	EOC 140
CD44v8-10	Expression	Good prognosis	Sosulski, A., et al. (2016)	CD44v8-10	SOC 210
P53	Increased	Poor prognosis	Zuo, J., et al. (2016)	P53	SOC 183
Highly sulfated CS	Increased	Poor prognosis	Van der steen, S.C., et al. (2016)	Highly sulfated CS	EOC 255
adiponectin receptor-1 (AdipoR1)	Increased	Good prognosis	Li, X., et al. (2017)	adiponectin receptor-1 (AdipoR1)	EOC 73
TP53	Increased	Poor prognosis	Rzepecka, I. K., et al. (2017)	TP53	HGSOC 159
SMAD3	Increased	Poor prognosis	Sark, S., et al. (2017)	SMAD3	GCT 88
ALDH5A1	Increased	Good prognosis	Tian, X., et al. (2017)	ALDH5A1	OC 192
GR	Increased	Poor prognosis	Veneris, J. T., et al. (2017)	GR	EOC 341
LAMP3	Increased	Poor prognosis	Wang, D., et al. (2017)	LAMP3	EOC 135
HBXIP	Increased	Poor prognosis	Wang, Y., et al. (2017)	HBXIP	OC 120
HSF1 p.ser326	Expression	Poor prognosis	Yasuda, K., et al. (2017)	HSF1 p.ser326	EOC 122
COX-1, COX-2	Increased	Poor prognosis	Beeghly-Fadiel, A., et al. (2018)	COX-1, COX-2	EOC 190
GPRI	Expression	Poor prognosis	Zhu, C. X., et al. (2018)	GPRI	EOC 110
JHURP	Increased	Poor prognosis	Li, L., et al. (2018)	JHURP	HGSOC 98
Galactins-8	Increased	Poor prognosis	Schulz, H., et al. (2018)	Galactins-8	OC 156
HER3	Expression	Poor prognosis	Chang, Y. W., et al. (2019)	HER3	EOC 105
Table 3. Tissue-based DNA biomarkers in ovarian cancer

Methylation	Expression or ratio	Potential clinical use	Example study	Studied biomarkers	Method	Subsite	Patients (n)
MYLK3 Methylation	Increased	Good prognosis	Phelps, D.L., et al. (2017)	MYLK3 Methylation	Pyrosequencing	SOC	803
HNF1B	Expression	Poor prognosis	Bubancova, I., et al. (2017)	HNF1B	NGS, HRM, MS-PCR	OC	64
GATA4	Expression	Good prognosis	Bubancova, I., et al. (2017)	GATA4	NGS, HRM, MS-PCR	OC	64
HS3ST2	Increased	Poor prognosis	Huang, R.L., et al. (2018)	HS3ST2	Pyrosequencing	EOC	115
ZNF671	Increased	Early relapse	Mase, S., et al. (2019)	ZNF671	EOC	HGSOCC	78
Structural changes of nuclear chromatin							
Chromatin entropy nuclei	Increased	Poor prognosis	Nielsen, B. et al. (2018)	Chromatin entropy nuclei	Nuclear Texture analysis	OC	246
Mutation status							
BRCA1/2 wild type	Expression	Poor prognosis	Eoh, K. J., et al. (2017)	BRCA1/2 wild type	Direct sequencing	EOC	116
BRCA1/2	Property	Good prognosis	Kim, S. I., et al. (2019)	BRCA1/2	Sanger sequencing	HGSOCC	128
Cell proliferation and apoptosis							
ecDNA	Increased	Poor prognosis	Kalavská, K., et al. (2018)	ecDNA	RT-PCR	OC	67
Gene polymorphism							
The AT genotype of rs189897	Expression	Poor prognosis	Liu, J., et al. (2019)	The AT genotype of rs189897	Mass ARRAY	EOC	200
rs12921862 C/C	Expression	Good prognosis	Zhang, Y., et al. (2019)	rs12921862 C/C	PCR-RFLP	EOC	165

Abbreviations: TIL: tumor infiltrates lymphocytes; Gal: Galectin; OC: ovarian cancer; HGSOCC: High grade serous ovarian cancer; EOC: epithelial ovarian cancer.

Table 4. Tissue-based RNA biomarkers in ovarian cancer

Cell proliferation	Expression or ratio	Potential clinical use	Example study	Studied biomarkers	Method	Subsite	Patients (n)
microRNA(miR)-498	Decreased	Poor prognosis	Cong, J., et al. (2015)	microRNA(miR)-498	qRT-PCR	OC	175
mir-193b	Decreased	Poor prognosis	Li, H., et al. (2015)	mir-193b	qRT-PCR	OC	116
mir-752	Decreased	Good prognosis	Zhang, X., et al. (2015)	mir-752	qRT-PCR	OC	108
C7	Decreased	Poor prognosis	Ying, L., et al. (2016)	C7	qRT-PCR	OC	156
HER2, STAT3	Decreased	Poor prognosis	Shang, A. Q., et al. (2017)	HER2, STAT3	qRT-PCR	OC	136
SOCS3	Decreased	Poor prognosis	Shang, A. Q., et al. (2017)	SOCS3	qRT-PCR	OC	136
IncRNA RAD51-A51	Increased	Poor prognosis	Zhang, X., et al. (2017)	IncRNA RAD51-A51	qRT-PCR	EOC	163
IncRNA LINC 00152	Increased	Poor prognosis	Chen, P., et al. (2018)	IncRNA LINC 00152	qRT-PCR	OC	82
mir-1294	Increased	Good prognosis	Guo, T. Y., et al. (2018)	mir-1294	qRT-PCR	EOC	76
IncRNA TUG1	Increased	Poor prognosis	Li, T. H., et al. (2018)	IncRNA TUG1	qRT-PCR	EOC	96
microRNA-424-5p (miR-424-5p)	Increased	Good prognosis	Liu, J., et al. (2018)	microRNA-424-5p (miR-424-5p)	qRT-PCR	EOC	83
Cell migration							
IncRNA LINC00092	Increased	Poor prognosis	Zhao, L., et al. (2017)	IncRNA LINC00092	qRT-PCR	SOC	58
IncRNA PTPRG-A51	Increased	Poor prognosis	Ren, X. Y., et al. (2020)	IncRNA PTPRG-A51	qRT-PCR	EOC	184
Cell invasion							
IncRNA NEAT1	Increased	Poor prognosis	Chen, Z. J., et al. (2016)	IncRNA NEAT1	qRT-PCR	OC	149
ASAP1-IT1	Increased	Good prognosis	Fu, Y., et al. (2016)	ASAP1-IT1	qRT-PCR	EOC	266
Cell proliferation and migration							
miR-145	Decreased	Poor prognosis	Kim, T.H., et al. (2015)	miR-145	qRT-PCR	HGSOCC	74
microRNA-196a	Decreased	Poor prognosis	Fan, Y., et al. (2015)	microRNA-196a	qRT-PCR	EOC	156
mir-522	Increased	Poor prognosis	Zhao, W., et al. (2015)	mir-522	qRT-PCR	OC	110
Cell proliferation and invasion							
IncRNA AB073614	Increased	Poor prognosis	Cheng, Z., et al. (2015)	IncRNA AB073614	qRT-PCR	OC	75
Expression or ratio	Potential clinical use	Example study	Studied biomarkers	Method	Subsite	Patients (n)	
---------------------	------------------------	---------------	-------------------	--------	---------	--------------	
TBL1X1R1	Increased	Poor prognosis	Ma, M. and N. Yu (2017) [50]	TBL1X1R1	qRT-PCR	SOC 116	
IncRNA MXN1-AS1	Increased	Poor prognosis	Li, A. H. and H. H. Zhang (2017) [51]	IncRNA MXN1-AS1	qRT-PCR	EOC 177	
IncRNA NEAT1	Increased	Poor prognosis	Yong, W., et al. (2018) [52]	IncRNA NEAT1	qRT-PCR	HGSC 75	
miR-532-5p	Decreased	Poor prognosis	Wei, H., et al. (2018) [53]	miR-532-5p	qRT-PCR	EOC 145	
Cell migration and invasion							
ANRIL	Increased	Poor prognosis	Qiu, J., et al. (2015) [54]	ANRIL	qRT-PCR	SOC 68	
IncRNA CAT1	Increased	Poor prognosis	Cao, Y., et al. (2015) [55]	IncRNA CAT1	qRT-PCR	EOC 72	
miR-28a-5p	Increased	Good prognosis	Mei, J., et al. (2019) [56]	miR-28a-5p	qRT-PCR	OC 61	
STAT2	Increased	Poor prognosis	Chen, S., et al. (2020) [57]	STAT2	RT-PCR	OC 62	
IncRNA miR5030HG	Decreased	Poor prognosis	Zhu, D., et al. (2020) [58]	IncRNA miR5030HG	qRT-PCR	OC 61	
Cell proliferation, migration and invasion							
IncRNA CCAT2	Increased	Poor prognosis	Huang, S., et al. (2016) [59]	IncRNA CCAT2	qRT-PCR	OC 109	
GOLPH3	Increased	Poor prognosis	Sun, J., et al. (2017) [60]	GOLPH3	qRT-PCR	EOC 73	
IncRNA HOXA11as	Increased	Poor prognosis	Yim, G. W., et al. (2017) [61]	IncRNA HOXA11as	qRT-PCR	SOC 129	
miR-520b	Increased	Poor prognosis	Zhang, J., et al. (2018) [62]	miR-520b	qRT-PCR	EOC 116	
IncRNA SNHG16	Increased	Poor prognosis	Yang, X. S., et al. (2018) [63]	IncRNA SNHG16	qRT-PCR	OC 103	
IncRNA EBIC	Increased	Poor prognosis	Xu, Q. F., et al. (2018) [64]	IncRNA EBIC	qRT-PCR	OC 126	
IncRNA MALAT1	Increased	Poor prognosis	Guo, C., et al. (2018) [65]	IncRNA MALAT1	qRT-PCR	OC 60	
IncRNA RP11-552M11.4	Increased	Poor prognosis	Huang, K., et al. (2018) [66]	IncRNA RP11-552M11.4	qRT-PCR	EOC 67	
IncRNA OUTF1-isoform2	Increased	Poor prognosis	Wang, S., et al. (2018) [67]	IncRNA OUTF1-isoform2	qRT-PCR	OC 114	
HYOU1	Increased	Poor prognosis	Li, X., et al. (2019) [68]	HYOU1	qRT-PCR	EOC 127	
miR-203a-3p	Increased	Good prognosis	Liu, H. Y., et al. (2019) [69]	miR-203a-3p	qRT-PCR	OC 152	
LINCO0339	Increased	Poor prognosis	Pan, L., et al. (2019) [70]	LINCO0339	qRT-PCR	OC 75	
IncRNA SNHG20	Increased	Poor prognosis	Wang, D., et al. (2019) [71]	IncRNA SNHG20	RT-PCR	EOC 60	
miR-149	Increased	Good prognosis	Zhao, L. W., et al. (2020) [72]	miR-149	qRT-PCR	OC 72	
Chemotherapeutic sensitivity							
microRNA-506 (miR-506)	Increased	Good prognosis	Liu, G., et al. (2015) [73]	microRNA-506 (miR-506)	qRT-PCR	EOC 598	
CHI3L1	Increased	Poor prognosis	Chiang, Y. C., et al. (2015) [74]	CHI3L1	qRT-PCR	EOC 180	
IMP3	Increased	Poor prognosis	Hsu, K. F., et al. (2015) [75]	IMP3	qRT-PCR	EOC 140	
Lin28B	Increased	Poor prognosis	Hsu, K. F., et al. (2015) [76]	Lin28B	qRT-PCR	EOC 140	
Triptolides 2 (TRIB2)	Decreased	Poor prognosis	Kritsch, D., et al. (2017) [77]	Triptolides 2 (TRIB2)	qRT-PCR	EOC 149	
let-7e	Decreased	Poor prognosis	Xiao, M., et al. (2017) [78]	let-7e	qRT-PCR	EOC 84	
MAL	Increased	Poor prognosis	Zanotti, L., et al. (2017) [79]	MAL	qRT-PCR	HGSC 74	
miR-98-5p	Increased	Good prognosis	Wang, Y., et al. (2018) [80]	miR-98-5p	qRT-PCR	OC 97	
miR-1180	Increased	Poor prognosis	Gu, Z. W., et al. (2019) [81]	miR-1180	qRT-PCR	OC 59	
IncRNA GA55	Increased	Good prognosis	Long, X., et al. (2019) [82]	IncRNA GA55	qRT-PCR	OC 53	
Immune response							
APOBEC3G	Increased	Good prognosis	Leonard, B., et al. (2016) [83]	APOBEC3G	qRT-PCR	HGSC 354	
IncRNA MIR155HG	Increased	Good prognosis	Colvin, E. K., et al. (2020) [84]	IncRNA MIR155HG	qRT-PCR	HGSC 67	
Chromosome structure and function							
SMYD3 genetic polymorphisms	Expression	Poor prognosis	Liu, T. T., et al. (2016) [85]	SMYD3 genetic polymorphisms	qRT-PCR	OC 154	
Apoptosis process							
CPSI-1TI	Increased	Good prognosis	Wang, Y. S., et al. (2017) [86]	CPSI-1TI	qRT-PCR	EOC 91	
Others							
CRNDE	Increased	Poor prognosis	Szafron, L. M., et al. (2015) [87]	CRNDE	qRT-PCR	OC 135	
GADD45A (1506T>C)	Increased	Poor prognosis	Yuan, C., et al. (2015) [88]	GADD45A (1506T>C)	qRT-PCR	OC 258	
miR-510, miR-129-3P	Decreased	Good prognosis	Zhang, X., et al. (2015) [89]	miR-510, miR-129-3P	RT-qPCR,ISH	EOC 78	
FAM215A	Decreased	Good prognosis	Fu, Y., et al. (2016) [90]	FAM215A	qRT-PCR	EOC 266	
LIN-28B/let-7a/IGF-II axis	Decreased	Good prognosis	Lu, L., et al. (2016) [91]	LIN-28B/let-7a/IGF-II axis	qRT-PCR	EOC 211	
miR-200b, miR-1274A (8RNA LyS) and miR-141	Decreased	Good prognosis	Halvorsen, A. R., et al. (2017) [92]	miR-200b, miR-1274A (8RNA LyS) and miR-141	qRT-PCR	OC 207	
miR-595	Decreased	Poor prognosis	Zhou, Q. H., et al. (2017) [93]	miR-595	qRT-PCR	EOC 166	
KLK11, KLK15	Decreased	Good prognosis	Geng, X., et al. (2017) [94]	KLK11, KLK15	RT-PCR	HGSC 139	
IncRNA LINC01088	Decreased	Poor prognosis	Ai, H., et al. (2018) [95]	IncRNA LINC01088	qRT-PCR	EOC 184	
IncRNA HMMR-AS1	Decreased	Poor prognosis	Chu, Z. P., et al. (2018) [96]	IncRNA HMMR-AS1	qRT-PCR	EOC 152	
circ LARP4	Decreased	Poor prognosis	Zou, T., et al. (2018) [97]	circ LARP4	qRT-PCR	OC 87	
circ HIPK3	Decreased	Poor prognosis	Liu, N., et al. (2018) [98]	circ HIPK3	qRT-PCR	OC 69	
IncRNA DGCR5	Decreased	Poor prognosis	Chen, H., et al. (2019) [99]	IncRNA DGCR5	qRT-PCR	OC 66	
Classic prognostic factors

Clinicopathologic factors and serum CA125 level are independent factors affecting the prognosis of ovarian cancer patients, which have been widely used to guide accurate and reasonable clinical treatment, so as to improve the survival rate of patients.

Clinicopathological factors

The clinicopathological factors that affect the prognosis of ovarian cancer mainly include: FIGO stage, degree of differentiation, degree of tumor reduction surgery, course of chemotherapy. Previous literature has reported the importance of ovarian cancer staging for prognosis and treatment options, ovarian cancer can be classified as stage I-IV according to FIGO staging criteria, and most patients have stage III disease. Studies have shown that patients with stage I ovarian cancer have a 5-year survival rate of more than 90%; when ovarian cancer is confined to the pelvis (stage II), the estimated 5-year survival rate is about 70%; when ovarian cancer has spread to the entire abdominal cavity (stage III) or to distant parts (stage IV), the 5-year survival rate is less than 30% [4]. The survival prognosis of patients in the early stage was significantly better than that in the late stage. Differentiation degree of ovarian cancer includes high differentiation, moderate differentiation and low differentiation (poor differentiation), there has been evidence that poor differentiation of ovarian cancer is associated with worse survival. A large sample study established a predictive model for overall survival in 1189 patients with primary ovarian epithelial carcinoma, cox regression analysis showed that the worse the differentiation, the greater the risk of death [5].

Surgery is the most effective treatment for ovarian cancer, once suspected for ovarian cancer, should be performed as early as possible. Staging surgery is performed for early stage cancer, including resection of the tumor and definite staging. Tumor cell reduction was performed for advanced cancer, and the primary tumor and all metastases were removed as far as possible to minimize the number of tumor cells. Studies have confirmed that the degree of tumor cell reduction and the number of residual lesions after the first operation are important prognostic factors for advanced ovarian cancer [6]. The research of Jing shui et al. shows that the size of residual tumor foci was negatively correlated with the survival rate of patients and those with residual tumor foci ≤ 2 cm had better prognosis [7]. It is helpful to improve the prognosis and long-term survival rate of patients by minimizing or removing residual tumor foci.

Chemotherapy is an important adjuvant treatment for ovarian cancer, and most ovarian cancer is sensitive to chemotherapy. Platinum-based drugs (cisplatin and carboplatin) and taxanes (paclitaxel and docetaxel) are chemotherapy drugs commonly used in the treatment of ovarian cancer [8]. Postoperative adjuvant chemotherapy should follow the principles of standard, early and adequate course of treatment. Currently, it is generally considered that the standard course of chemotherapy for ovarian cancer is 6 courses. Three trials of primary advanced ovarian cancer compared the efficacy of chemotherapy with cisplatin in 5-6 cycles and 8-12 cycles, and the results showed that there was no benefit after 6 cycles of chemotherapy [9]. Another study on prognostic factor analysis of 129 cases of epithelial ovarian cancer showed that the median OS of patients with postoperative chemotherapy course ≥ 6 courses was significantly higher than that of patients with less than 6 courses of chemotherapy, and the difference was statistically significant (P<0.0001). There was no statistically significant difference in median OS in patients with 6 courses of chemotherapy, 7 courses of chemotherapy, 8 courses of chemotherapy or more than 8 courses of chemotherapy (P=0.816) [10]. In summary, postoperative chemotherapy course is an important prognostic factor for ovarian cancer, and standard chemotherapy course is associated with higher overall survival.

CA125

CA125, encoded by the MUC16 gene, is a classic marker for the diagnosis of ovarian cancer and was first described in the study of Bast RC et al [11]. Serum CA125 lacks sensitivity and specificity and cannot be used as a single marker for early detection of ovarian cancer [12,13], but the CA125 value after surgery and chemotherapy plays an important role in monitoring recurrence and evaluating prognosis. Redman et al. detected the CA125 value before the third chemotherapy in 78 patients with stage II-IV ovarian cancer after the completion of two courses of
chemotherapy, and the analysis showed that those with CA125 ≤ 35U/mL had a 1-year survival rate of 96%, while those with CA125>35U/mL had a 1-year survival rate of 15% [14]. The half-life of CA125 is another widely reported indicator. In some studies, CA125 was regularly detected after surgery and chemotherapy in 225 patients with advanced ovarian cancer, and the complete remission rate of patients with serum CA125 half-life <25 d was found to be 3.6 times higher than that of patients with >25 d through analysis combined with the results of secondary exploration [15]. Therefore, continuous monitoring of CA125 is of great value for efficacy evaluation and prognosis analysis of ovarian cancer patients.

Novel prognostic factors

In order to develop a powerful predictive tool with both sensitivity and specificity to monitor ovarian cancer response to treatment, the research on prognostic biomarkers for ovarian cancer is continuously advancing.

Blood-based prognostic biomarkers

Blood test is minimally invasive, simple and easy to obtain specimens, and blood test results are widely used in clinic to assist the guidance of treatment. A variety of novel prognostic biomarkers derived from blood can provide a new tool for the clinical management of ovarian cancer. A total of 43 blood based biomarker studies met our selection criteria (Table 1), of which 13 were evaluated using ELISA methods for protein biomarkers [16,18-22,30-32,34,36,37,44]. PCR technology was used for detection of DNA or RNA source biomarkers [17,33,40-42,46,47,49,53,54,57]. The 41 novel prognostic biomarkers provided by 43 studies can be classified by biological function, including cell proliferation and invasion [16-22], inflammatory response [23-29], angiogenesis [30-33], antioxidant [34], immune response [35-39], chemotherapeutic sensitivity [40-44], mitosis process [45], EMT (epithelial-to-mesenchymal transformation) and metastasis [46,47], deregulation of the cellular transport [48] and apoptosis process [31]. The following are representative novel prognostic factors reported in the literature.

A large number of studies have shown that chronic inflammation is closely related to the occurrence and development of cancer, and a variety of inflammatory cells and inflammatory factors participate in and promote the proliferation, invasion and metastasis of tumor cells, and affect the prognosis of patients [310]. Neutrophils and lymphocytes are both important cells involved in the inflammatory response process. The changes in the number of them can directly reflect the degree of inflammatory response in the body. NLR (neutrophil to lymphocyte ratio) is an important biological indicator of systemic inflammatory response, which can be obtained by calculating the ratio after the complete blood count [311]. Previous studies have shown that elevated NLR is an independent prognostic risk factor for several malignant tumors, including ovarian cancer [312-314]. The study of Stanislaus Argeny et al. found that the non-specific inflammatory response in cancerous tissues would lead to changes in the level of peripheral blood cells, mainly manifested as an increase in NLR. Studies have shown that neutrophils can alter the tumor microenvironment by producing cytokines and chemokines, they also promote the transformation of normal cells into tumor cells by secreting substances like reactive oxygen species and proteases. Moreover, the migration and diffusion ability of tumor cells can be enhanced by secreting platelet activating factor, matrix metalloproteinase and other factors related to tumor cell metastasis. In addition, lymphocytes are important components of the immune system and play an important role in immune surveillance. The decreased number of lymphocytes indicates the weakened immunity of the body and the reduced monitoring and killing effect on tumor cells, which cannot effectively prevent the proliferation and migration of tumor cells. Therefore, an elevated preoperative NLR usually indicates a poor prognosis in ovarian cancer patients [315]. The study of Zhang H et al. suggested that NLR could be used to differentiate CA125-negative ovarian cancer and was superior to CA125 in predicting patients' overall survival (OS) and progression free survival (PFS) [316]. In addition, a multivariate analysis of clinical data in 165 initial treatment ovarian cancer patients also suggested that NLR is an independent prognostic factor for PFS and OS in ovarian cancer patients [28].

Alterations in energy metabolism are a decisive biochemical feature of tumor cells, in other words, abnormal activation of glycolytic pathway still exists in tumor cells even under the condition of sufficient oxygen supply, consume large amounts of glucose and eventually produce lactic acid in order to satisfy energy supply of malignant tumor cell proliferation, this phenomenon is called aerobic glycolysis of tumors, also known as the Warburg effect [317]. In the process of glycolysis of malignant tumors, there is an important catalytic enzyme, namely lactate dehydrogenase (LDH), which mainly catalyzes the exchange of pyruvate and lactic acid, and is highly expressed in hypoxic cells, especially in tumor cells. Compared with normal tissues, the levels of glycolysis in malignant tissues were higher, and the serum LDH level of patients increased with the
progression of the disease, especially in the advanced stage of the tumor [318]. A study shows that the LDH levels at different stages and grades differed significantly in ovarian cancer, survival curves revealed that higher LDH expression was correlated with shorter survival (P<0.05). In addition, SATB1 may reprogram energy metabolism in ovarian cancer by regulating LDH and MCT1 levels to promote metastasis [319]. As another marker of tissue damage and inflammation, elevated serum LDH level can promote the proliferation, metastasis and development of cancer cells, which is commonly seen in a variety of malignant tumors [320,321]. A study showed that preoperative higher LDH levels were significantly associated with poor survival in patients with high grade serous ovarian cancer through survival analysis, serum high LDH levels are a promising prognostic biomarker [26].

Mesothelial protein (MSLN) is a cell surface glycoprotein, which was found by Chang et al. [322] and is usually only expressed in mesothelial tissue of body cavity. In recent years, MSLN as a differentiation antigen has been proved to be overexpressed in malignant pleural mesothelioma, pancreatic cancer, ovarian cancer and other malignant tumors, and may through increased synthesis of cyclinD1 and suppress the degradation and forming MSLN/MUC16 complex pathways involved in tumor cell proliferation, adhesion and transfer process, it is related to transcoelomic spread of ovarian cancer cells [323]. In addition, MSLN inhibits paclitaxel-induced apoptosis through serine and threonine kinase pathways, leading to chemotherapy resistance and seriously affecting the prognosis of patients [324]. The study of Karolina Okla et al. confirmed that plasma MSLN concentration in EOC patients was significantly higher than that in benign ovarian tumor patients and healthy women. Kaplan-Meier analysis results showed that, compared with low MSLN level, only high MSLN concentration of EOC patients before treatment was significantly correlated with a shorter 5-year OS (P=0.03), which predicted poor prognosis [21]. Another study showed that MSLN can enhance the invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways, blocking the MSLN-related pathway may be a potential strategy to improve the prognosis of ovarian cancer patients [325].

Aurora A kinase (AAK) is encoded by the Aurka gene and is a member of the serine/threonine kinase family. And as an important mitotic regulator, it can participate in many processes of cell mitosis and maintain chromosome division and spindle stability together with centrosomes [326]. Overexpression of Aurora A has been observed in a variety of malignant tumor types and plays an important regulatory role in the key control points of the tumorigenic transformation response through p53/TP53 phosphorylation [327]. Aurora A overexpression can also lead to abnormal amplification of centrosomes, leading to multilevel allocation and instability of chromosomes during division, and then to activation of oncogenes or inactivation of tumor suppressor genes [328]. Through gene chip screening and RT-PCR, the study of Hellemann et al. confirmed that Aurora A was overexpressed in ovarian cancer tissues that did not respond to platinum therapy, compared with ovarian cancer patients who responded to platinum therapy, and patients with overexpression of Aurora A had a poor prognosis [329]. A single nucleotide polymorphism in G169A at codon 57 of Aurora A locus leads to the substitution of valine by isoleucine, leading to the production of variant II. Kimura et al. [45] showed that AAK activity was reduced by the II variant, and the inhibited AAK could lead to cell death by affecting the mitosis process. Therefore, the change of single nucleotide polymorphisms in AAK may be a protective factor for cancer risk.

Galectin is an important member of the lectin superfamily, it is widely expressed in a variety of cell types and plays an important role in apoptosis, angiogenesis, cell migration, and tumor immune escape. Dysfunction or altered expression of galectin is associated with a variety of cancer types [330]. Galectin-8 and galectin-9 both have two carbohydrate recognition domains and are tandem repeat galactosins that regulate a variety of biological functions, including cell aggregation, cell adhesion, and tumor cell apoptosis [331]. Recent studies have shown that galectin-9 promotes CD8 + T cell failure and induces proliferation of myeloid inhibitory cells by binding to T cell immunoglobulin mucin 3 (Tim-3), thereby participating in immune escape of tumor cells [332]. In addition, the expression of galectin-8 in solid tumors has also been proved to be closely related to tumor cell adhesion or metastasis [333]. Labrie M et al. showed that plasma Gal-8 and Gal-9 levels were significantly increased in HGSOC patients compared to healthy controls, and higher plasma galectin-8 and galectin-9 levels were associated with a shorter 5-year disease-free survival (DFS) and 5-year OS (P=0.005), multivariate analysis further demonstrated that both plasma galectin-8 and galectin-9 could be promising biomarkers for poor prognosis in high grade serous ovarian cancer patients [171].

Angiogenesis plays an important role in tumor growth and metastasis. Neovascularization provides oxygen and nutrients to tumor cells, which can enhance cell proliferation and invasion ability [334].
Tumor tissue can secrete a variety of proangiogenic substances to induce and regulate angiogenesis, among which vascular endothelial growth factor (VEGF) is the primary stimulator of tumor angiogenesis. VEGF family members include VEGF-A, VEGF-B, VEGF-C, VEGF-D, etc. Among them, the biologic activity of VEGF-A is the most important, which can promote neovascularization and increase vascular permeability through VEGF/VEGFR (Vascular Endothelial Growth Factor Receptor) signaling pathway [335]. Previous studies have shown that VEGF-A is closely related to the occurrence and development of cancer and some inflammatory diseases [336]. Studies have investigated the efficacy of serum VEGF-A levels as prognostic markers in Epithelial ovarian cancer (EOC) patients, the experiment confirmed that the OS of patients with high VEGF-A level was significantly lower than that of patients with low VEGF-A level, and the difference was statistically significant (P=0.015). Moreover, the VEGF-A level of patients was correlated with FIGO stage. Multivariate analysis showed that serum VEGF-A could be an independent prognostic factor for OS of patients [32]. The study of Dobrzycka B et al. showed that serum VEGF level was significantly increased in patients with serous ovarian cancer (SOC) compared with healthy control group, and higher serum VEGF level was significantly correlated with poor prognosis, and multivariate analysis confirmed that serum VEGF level was an independent risk factor for prognosis [31].

MicroRNAs (miRNAs) are a class of single-stranded small RNAs encoded by endogenous genes, which regulate the expression of target genes by acting on target mRNA to promote its degradation or inhibit its translation [337]. MiRNAs are involved in the regulation of a variety of human life activities, and studies have found that miRNAs are closely related to the occurrence and development of a variety of malignant tumors [338,339]. At present, more than 50% miRNA genes have been located in tumor-related chromosomal rearrangement regions, which have important research and application values in the diagnosis, treatment and prognosis prediction of malignant tumors. EMT is closely related to tumor invasion and metastasis, many miRNAs have been proved to directly regulate the expression of epithelial markers and indirectly regulate EMT-related growth factor signaling pathways and transcription factors to affect the EMT process [340,341]. At present, miR-200 family is the most studied miRNA related to EMT process. Gregory et al. found that TGF-Beta/ZEB/miR-200 signaling pathway can regulate the transformation of cell epithelial-mesenchymal phenotype [342]. MiR-200c and miR-141 belong to the miRNA-200 family, Gao,Y.C. et al. evaluated the value of these two miRNAs as novel prognostic biomarkers for ovarian cancer. Studies have shown that the expression levels of serum miR-200c and miR-141 in ovarian cancer patients are significantly increased compared with the normal control group, and the expression levels of the two miRNAs are correlated with different stages and pathological subtypes of ovarian cancer. Survival analysis showed that compared with the group with high serum miR-200c expression, the overall survival rate of the group with low serum miR-200c expression was significantly reduced. This is similar to the analysis results of different miR-141 expression groups, so both miR-200c and miR-141 are likely to be promising prognostic biomarkers for ovarian cancer [49]. Another study compared the expression levels of miR-200a, miR-200b and miR-200c in blood samples from 70 EOC patients and healthy controls, the results showed that these three miRNAs were significantly higher expressed in serum samples from EOC patients compared to normal controls, statistical analysis confirmed that the high expression of miR-200a, miR200b and miR-200c was significantly correlated with tumor histological subtypes, stages and lymph node metastasis, and all of them could be used as reliable indicators for predicting the prognosis of patients with EOC [46].

Tissue-based prognostic biomarkers

The overwhelming majority of selected biomarker studies investigated different tissue-based biomarkers using a variety of technical research methods. The selected tissue prognostic biomarkers can be divided into immunohistochemical biomarkers (68.77%) [59-232], DNA biomarkers (3.95%) [159,233-241] and RNA biomarkers (27.28%) [242-309]. The prognostic value of 172 protein biomarkers was evaluated by immunohistochemistry in 174 studies (Table 2). These markers are classified according to their biological functions, mainly including such functional pathways as EMT and metastasis [59-71], inflammation and immunity [72-84], antioxidant [85,86], angiogenesis [87-99], cell proliferation, migration and invasion [100-116], chemotherapeutic sensitivity [117-197] and cell cycle regulation [198-201]. The remaining 79 studies of prognostic biomarkers were based on genomic DNA or RNA (Tables 3-4), involving different functional pathways in the progression of ovarian cancer, such as gene locus methylation [159,233-235], mutation status [237,238], gene polymorphism [240,241] and the expression of non-coding RNA during cancer cell proliferation, migration and invasion [242-282].

As a new type of anti-tumor effector
lymphocytes with potential therapeutic value, the correlation between TIL and patient prognosis and survival has been widely concerned. Through systematic literature retrieval, we determined that TIL is a promising prognostic biomarker, and its level can be detected by immunohistochemistry. TIL can be classified by function and location in the tumor tissue, which is generally associated with better prognosis and survival, in which the presence of CD8+ T cells is positively correlated with survival [343,344]. The presence of TIL in a variety of tumor types, including metastatic melanoma, breast cancer, colorectal cancer, and ovarian cancer, has been found to be significantly correlated with patient clinical outcomes and is an important positive prognostic factor [345-349]. There is evidence that ovarian cancer patients are usually accompanied by systemic immunosuppression. In contrast, patients with a stronger immune response have improved survival and respond better to chemotherapy [350]. Mauricio P et al. [81] evaluated TIL as a prognostic survival indicator for a group of HGSOC patients, and examined the expression of matrix and intraepithelial TIL (CD4+ and CD8+) in tissue samples. Multivariate analysis showed that intraepithelial CD4+ TIL infiltration was associated with better PFS and OS, intraepithelial CD8+ TIL infiltration was only associated with better PFS. This confirms previous studies that ovarian cancer patients with high infiltration of CD4+ and CD8+ TIL have better prognosis. As a new method for the treatment of ovarian cancer, the potential value of targeted immunotherapy is an important research direction, which can be used to guide clinical practice, reduce recurrence and improve the long-term survival rate of patients.

Mitochondrial superoxide dismutase (MnSOD or SOD2) is the most important antioxidant enzyme in mitochondria, which protects cells from oxidative damage induced by reactive oxygen species (ROS) and lipid peroxidation by converting endogenous superoxide to hydrogen peroxide [351]. Studies have demonstrated that SOD2 overexpression can enhance the invasion and metastasis of tumor cells by increasing the expression of matrix metalloproteinases (MMP) family members or activating Redox sensitive signaling pathways [352]. New evidence suggests that inhibition of SOD2 activity in tumor cells leads to increased apoptosis, inhibition of proliferation and increased sensitivity to chemotherapeutics [353]. There is growing evidence that SOD2 overexpression is associated with poor prognosis in a variety of cancer types, including renal clear cell carcinoma and ovarian cancer [354-356]. A study based on SOD2 immunohistochemical staining confirmed the correlation between SOD2 expression and patient prognosis in the endometriosis-associated ovarian cancer (EAOC) case group. Kaplan-Meier analysis showed that high SOD2 expression was associated with shorter PFS (P=0.0669) and poorer OS (P=0.0405), and increased SOD2 expression was a predictive biomarker for poor prognosis in EAOC [86].

Genome-wide analysis has confirmed that epigenetic changes are common events in many cancers, cellular genomic epigenetic disorders are important causes of many diseases, including cancer and autoimmune diseases. Epigenetic changes in human malignancies mainly include DNA methylation, nucleosomal remodeling histone modification and non-coding RNA dysregulation [357]. Numerous studies have confirmed that abnormal methylation of multiple genes involved in DNA repair, Akt /mTOR, Redox response, apoptosis, cell adhesion and cancer stem cell signaling pathways are associated with poor prognosis in ovarian cancer patients [358]. Mase et al. [235] confirmed that the DNA methylation status of ZNF671 was closely related to the recurrence and prognosis of patients with serous ovarian cancer. Multiple analysis methods combined showed that the methylation status of ZNF671 was an independent factor to predict the early recurrence of patients and patients with DNA methylation of ZNF671 had poor prognosis (P<0.05). A subsequent study validated the prognostic significance of HS3ST2 methylation in patients with advanced EOC in three separate dataset of TSGH, AOCS, and TCGA, studies have confirmed that HS3ST2 inhibits the malignant phenotype of ovarian cancer by interfering with various carcinogenic ligand signals, such as IL-6, FGF2 and EGF, and patients with low HS3ST2 expression accompanied by high expression of carcinogenic cytokines or growth factors have the worst prognosis [159]. In conclusion, abnormal DNA methylation in tumor cells can be used as an effective prognostic marker for ovarian cancer. Non-coding RNA is an important part of epigenetic changes, among which long non-coding RNA (lncRNA) is an emerging regulatory RNA that is involved in the regulation of a variety of physiological and pathological processes and is abnormally expressed in a variety of types of cancers. It has been reported that the differential expression of IncRNA in ovarian cancer, lung cancer, gastric cancer and liver cancer is related to the prognosis of patients [359]. Cao Y et al. [265] confirmed that the expression of IncRNA CCAT1 was up-regulated in EOC tissues, and the high expression of IncRNA CCAT1 could promote the process of EMT of EOC cells, and enhance the migration and invasion ability of cells. Furthermore, high IncRNA CCAT1 expression was associated with
FIGO stage, histological grade, lymph node metastasis and poor survival. Multivariate cox regression analysis showed that CCAT1 expression was an independent prognostic factor. In addition, it has been demonstrated that silencing of IncRNA CCAT2 in cancer cells significantly inhibits cell proliferation, migration and invasion through the Wnt/β-catenin signaling pathway, and the results of subsequent survival analysis showed that high CCAT2 expression was associated with shorter OS or DFS, cox proportional risk regression model analysis showed that CCAT2 expression level was an independent prognostic indicator for overall survival, and these data results confirmed that IncRNA CCAT2 was a reliable prognostic marker for ovarian cancer [269].

Conclusion
Ovarian cancer is the most fatal gynecological malignancy with high incidence and low survival rate. By exploring the prognostic biomarkers associated with ovarian cancer recurrence and progression, independent risk factors affecting patient prognosis were identified, which laid a solid foundation for the development of novel treatment strategies and the improvement of patient treatment outcomes. This review searched the literature and database for the relevant reports on prognostic biomarkers of ovarian cancer, reviewed the classic clinical prognostic biomarkers, and focused on the recently discovered various prognostic markers. Advances in genomics, proteomics and metabolomics have provided favorable conditions for the discovery of novel prognostic biomarkers that have identified a variety of promising prognostic biomarkers, including miRNA, IncRNA and TIL, these biomarkers can affect the prognosis of patients through a variety of biological functional pathways. TCGA data sets and public databases can provide data information for large patient cohort genome studies, the application of bioinformatics modeling and high-throughput molecular analysis techniques has greatly enriched the knowledge related to biological processes such as cancer progression. The prognostic value of a variety of novel biomarkers was evaluated by integrating genomic, proteomic and metabolomic data and clinical information with a multivariate analysis model. The effectiveness of these novel prognostic biomarkers still needs to be further validated in large clinical trials. By studying the functional pathways of regulation of these molecular markers, the potential molecular mechanisms are revealed, so as to identify new therapeutic targets. This is a high-precision medical method, which may promote personalized treatment of ovarian cancer patients and improve their prognosis.

Supplementary Material
Supplementary materials.
http://www.jcancer.org/v12p3976s1.pdf

Acknowledgements

Contributions
Shuna Liu and Ming Wu did the literature search and analysed and interpreted data. Shuna Liu wrote the manuscript. Ming Wu prepared the Tables and Figures. Fang Wang designed and supervised the manuscript before submission. We both reviewed and approved the final manuscript before submission.

Competing Interests
The authors have declared that no competing interest exists.

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan;70(1):7-30.
2. Tian F, Jia L, Chu Z, Han H, Zhang Y, Cai J. MicroRNA-519a inhibits the proliferation and promotes the apoptosis of ovarian cancer cells through targeting signal transducer and activator of transcription 3. Exp Ther Med. 2018;15(2):1819-1824.
3. BAKER, Vicki V. Treatment Options for Ovarian Cancer. Clinical Obstetrics & Gynecology. 2001;44(3):522-530.
4. Clark T G, Stewart M E, Altman D G, et al. A prognostic model for ovarian cancer. British Journal of Cancer. 2001;85(7):944-952.
5. Zheng Q, Wang P, Hui R, et al. Cox regression analysis of prognostic factors in ovarian cancer patients. Cancer. 2009;16(02):99-102.
6. Jing S, Chen Z, Xie F, et al. Analysis of prognostic factors of 57 cases of ovarian cancer. Chinese Journal of Anatomy and Clinical Sciences. 2013;8(2):136-138.
7. Parmar MK, Ledermann JA, Colombo N, et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet. 2003;361(9375):2099-2106.
8. Bertelsen K, Grennman S, Rustin GJ. How long should first-line chemotherapy continue? Ann Oncol. 1999;10(Suppl 1):17-20.
9. Liu C, Li Li, Zhao B, et al. III C IV stage epithelial ovarian cancer prognosis factors analysis. International Journal of Gynecology & Obstetrics.2018;145(06):50-53+.
10. Basc JC, Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest.1981;69(2):1331-1337.
11. Bell J, Brady MF, Young RC, et al. Randomized phase III trial of three versus six cycles of adjuvant carboplatin and paclitaxel in early stage epithelial ovarian carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2006;102(3):432-439.
12. Zurawski VR Jr, Orjaefer H, Andersen A, Jellum E. Elevated serum CA125 levels prior to diagnosis of ovarian neoplasia: relevance for early detection of ovarian cancer. Int J Cancer.1988;42(5):677-680.
13. Redman CW, Blackledge GS, Kelly K, Powell J, Buxton EJ, Luesley DM. Early serum CA125 response and outcome in epithelial ovarian cancer. Eur J Cancer.1990;26(5):593-596.
14. Gadducci A, Zola P, Landoni F, et al. Serum half-life of CA 125 during early chemotherapy as an independent prognostic variable for patients with advanced epithelial ovarian cancer: results of a multicentric Italian study. Gynecol Oncol. 1995;58(1):42-47.
15. Kato S, Abazriza-Catalan L, Trigo C, et al. Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women. Oncotarget.2015;6(25):21100-21119.
16. Lyu N, Wang Y, Wang J, Zhang Z, Kong W. Study on early diagnosis of epithelial ovarian cancer by analysis of plasma septin-9 and clusterin level. J Cancer Res Ther.2018;14(Supplement):S444-S449.
17. Meng X, Jonse SA, Muller V, et al. Diagnostic and prognostic potential of serum miR-7, miR-16, miR-25, miR-182, miR-37a and miR-429 in ovarian cancer patients. Br J Cancer.2015;113(9):1388-1396.
18. Cheon DJ, Li AJ, Beach JA, et al. ADAM12 is a prognostic factor associated with an aggressive molecular subtype of high-grade serous ovarian carcinoma. Carcinogenesis.2015;36(7):739-747.
Labrie M, De Araujo LOF, Communal L, Mes-Masson AM, St-Pierre Y. Tissue biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci. 2017;108(5):886-896.

Chebouti I, Kuhlmann JD, Buderath P, et al. ERCC1-expressing circulating hyperfibrinogenemia are predictive factors of clinical outcomes in high-grade serous ovarian cancer. Oncotarget. 2017;8(15):24303-24313.

Konopka B, Szafron LM, Kwiatkowska E, et al. The significance of c.690G>T transition and Its Ligand Expression as Discriminatory and Predictive Markers in Advanced Solid Tumors Treated With Alisertib, an Investigational Aurora A Kinase Inhibitor. Eli Lilly and Company. 2017;25:50-57

Meng X, Müller V, Milde-Langosch K, Trillich F, Pantel K, Schwarzenbach H. Diagnostic and prognostic relevance of circulating exosomal miR-21, miR-20b, miR-20b and miR-20c in patients with epithelial ovarian cancer. Oncotarget. 2017;6(14):16923-16930.

Huang L, Zhou Y, Cao XP, et al. KIFNA2 is a potential diagnostic serum biomarker for epithelial ovarian cancer and correlates with poor prognosis. Tumour Biol. 2017;39(6):7708-7720.

Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY, Hua KQ. Exosomal miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Tumour Biol. 2015;36(6):4843-4850.

Chen Y, Zhang L, Liu WX, Liu XY. Prognostic significance of preoperative anemia, leukocytosis and thrombocytosis in chinese women with epithelial ovarian cancer. Int J Gynecol Cancer. 2017;27(1):13-20.

Kurosaki A, Haegawa K, Kato T, et al. Secreted folate receptor alpha as a biomarker for ovarian cancer: Implications for diagnosis, prognosis and predicting its local tumor expression. Int J Cancer. 2016;138(9):1994-2002.

Zeven JH, Leuhomeshki J, Kleinert F Jr, Zven J, Haluzik M, Cibulka D. Correlation of Plasma Osteopontin Levels between Patients with Borderline Ovarian Tumours and Serous Ovarian Carcinoma. Folia Biol (Praha). 2016;62(6):258-262.

Zuberi M, Khan I, Mir R, Gandhi C, Ray PC, Saxena A. Utility of Serum markers as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS One. 2016;11(4):e0153902.

Zhu T, Gao W, Chen X, et al. A Pilot Study of Circulating MicroRNA-125b as a Diagnostic and Prognostic Biomarker for Epithelial Ovarian Cancer. Int J Gynecol Cancer. 2017;27(1):3-10.

Montavon Sartorius C, Schoetzau A, Kettellbach H, et al. ABO blood groups as a prognostic factor for recurrence in ovarian and vulvar cancer. PLoS One. 2018;13(3):e0192513.

He W, Zhang P, Ye M, et al. Polymorphisms of the Ras-Association Domain Family 1 Isomorph (RASSF1A) Gene are Associated with Ovarian Cancer, and with the Prognostic Factors of Grade and Stage, in Women in Southern China. Genet Mol Res. 2018;17(4):1-11.

Prislei S, Martellini E, Zannoni GF, et al. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Cell Physiol Biochem. 2017;43(6):2489-2504.

Prislei S, Martinelli E, Zannoni GF, et al. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Cell Physiol Biochem. 2015;36(6):1888-1896.

Chatterjee J, Dai W, Aziz NHA, et al. Clinical Use of Programmed Cell Death-1 (PD-1) Antibody to Nonsmall Cell Lung Cancer. J Immuno Res. 2016;9(1):53.

Zivný JH, Leahomschi S, Klener P Jr, Zivný J, Haluzík M, Cibulka D. Correlation of Plasma Osteopontin Levels between Patients with Borderline Ovarian Tumours and Serous Ovarian Carcinoma. Folia Biol (Praha). 2016;62(6):258-262.

Živný JH, Leahomschi S, Klener P Jr, Zivný J, Haluzík M, Cibulka D. Correlation of Plasma Osteopontin Levels between Patients with Borderline Ovarian Tumours and Serous Ovarian Carcinoma. Folia Biol (Praha). 2016;62(6):258-262.

Zuberi M, Khan I, Mir R, Gandhi C, Ray PC, Saxena A. Utility of Serum markers as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS One. 2016;11(4):e0153902.

Zhu T, Gao W, Chen X, et al. A Pilot Study of Circulating MicroRNA-125b as a Diagnostic and Prognostic Biomarker for Epithelial Ovarian Cancer. Int J Gynecol Cancer. 2017;27(1):3-10.

Montavon Sartorius C, Schoetzau A, Kettellbach H, et al. ABO blood groups as a prognostic factor for recurrence in ovarian and vulvar cancer. PLoS One. 2018;13(3):e0192513.

He W, Zhang P, Ye M, et al. Polymorphisms of the Ras-Association Domain Family 1 Isomorph (RASSF1A) Gene are Associated with Ovarian Cancer, and with the Prognostic Factors of Grade and Stage, in Women in Southern China. Genet Mol Res. 2018;17(4):1-11.
97.
94.
93.
92.
90.
84.
82.
80.
77.
78.
76.
75.

Journal of Cancer

primary high grade epithelial ovarian cancer. BMC Cancer. 2019;19(1):584.

Sopo M, Anttila M, Häimäläinen K, et al. Expression of Tie-2 promotes poor prognosis in primary high grade serous ovarian cancer. PLoS One. 2020;15(11): e0241448.

Cai Y, Wang J, Zhang L, et al. Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer. Med Oncol. 2015;32(1):391.

Tümur M, Spring K, Pompli S, et al. CD73 is associated with poor prognosis in high grade serous ovarian cancer. Cancer Res. 2015;75(21):4944-4953.

Mehner C, Oberg AL, Kalli KR, et al. Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancer cells. Oncotarget. 2016;7(28):43924-43938.

Zhang W, Niu C, He W, et al. Progesterone receptor-negative patients with endometrioid type cancer benefit from a new pan-ERG inhibitor, effective in killing ovarian cancer cells. Discov Med. 2016;22(12):297-309.

Hulu L, Liu R. Expression of Gabl Is Associated with Poor Prognosis of Patients with High-grade Serous Ovarian Cancer. Tohoku J Exp Med. 2016;239(5):177-184.

Chang L, Guo R, Zhao J, et al. Progesterone receptor-negative ovarian cancer cells. Tumour Biol. 2019;39(6):1010428319706911.

Zhang X, Liu D, Li M, et al. Prognostic and therapeutic value of disruptor of telomeric silencing-1-like (DOT1L) expression in patients with ovarian cancer. J Hematol Oncol. 2017;10(1):25.

Riccardelli C, Lokman NA, Turcotte M, et al. Kazal type 1 serine protease inhibitor (KRT1) overexpression is associated with poor outcomes in breast and ovarian cancer. J Transl Med. 2017;15: 373.

Adenoviral Vector Carrying the SOCS-1 Gene Enhances T-cell-Mediated Immunotherapy of Ovarian Cancer. Oncotarget. 2016;7(2):1486-1499.

Nakagawa S, Serada S, Kakubari R, et al. Intratumoral Delivery of an Adenoviral Vector Carrying the SOCS-1 Gene Enhances T-Cell-Mediated Antitumor Immunity By Suppressing PD-L1. Mol Cancer Ther. 2018;17(9):1939-1950.

Kim KH, Choi KU, Kim A, et al. PD-L1 expression on stromal tumor-infiltrating lymphocytes is a favorable prognostic factor in ovarian serous carcinoma. J Ovarian Res. 2019;12(1):56.

Manielli-Kiyokawa T, Lombardi T, Menini B, et al. Tissue eosinophilia in oral intraepithelial neoplasia as a probable indicator of invasion. Oral Dis. 2018;24(1-2):103-108.

Szubert S, Jozwicki W, Wicherek L, et al. Cytoplasmic and membranous VEGF-A, VEGF-R1 and VEGF-R2 to p53 status and prognostic significance in epithelial ovarian carcinoma in FIGO-stages I-II. Int J Oncol. 2016;48(3):998-1006.

Onisim A, Iancu M, Vlad C, et al. Expression of Nestin and CD133 in serous ovarian carcinoma. J Ovarian Res. 2019;12(1):56.

Liu YB, Mei Y, Tian ZW, Long J, Luo CH, Zhou HH. Downregulation of RIF1 Enhances Sensitivity to Platinum-Based Chemotherapy in Ovarian Cancer (OEC) by Regulating Nucleotide Excision Repair (NER) Pathway. Cell Physiol Biochem. 2016;46(5):1971-1984.

Li J, Han S, Yan Z, Ma X, et al. MIR-628-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting FGFR2. Biochem Biophys Res Commun. 2018;495(2):2085-2091.

Han GH, Chay DR, Nam S, Cho H, Chung YJ, Kim JH. Prognostic implications of forkhead box protein G1 (FOXG1) and paired box 3 (PAX3) in epithelial ovarian cancer. BMC Cancer. 2015;15(1):1261.

Cao Y, Yu Y, Chen X, et al. Low Expression of Proteasome-8 Promotes the Progression of Ovarian Cancer. Int J Gynecol Cancer. 2018;28(2):346-354.

Liu YR, Mei Y, Tian ZW, Long J, Luo CH, Zhou HH. Downregulation of RIF1 Enhances Sensitivity to Platinum-Based Chemotherapy in Ovarian Cancer (OEC) by Regulating Nucleotide Excision Repair (NER) Pathway. Cell Physiol Biochem. 2018;46(5):1971-1984.

Li J, Han S, Yan Z, Ma X, et al. MIR-628-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting FGFR2. Biochem Biophys Res Commun. 2018;495(2):2085-2091.

Han GH, Chay DR, Nam S, Cho H, Chung YJ, Kim JH. Prognostic implications of forkhead box protein G1 (FOXG1) and paired box 3 (PAX3) in epithelial ovarian cancer. BMC Cancer. 2015;15(1):1261.

Li H, Qian Y, Wang X, Pi R, Zhao X, Wei X. Targeted activation of Stat3 in epithelial ovarian cancer. BMC Cancer. 2019;19(1):1202.

Liu Q, Liu H, Li L, et al. ATAD2 predicts poor outcomes in patients with ovarian cancer and is a marker of proliferation. Oncotarget. 2016;7(28):35754-35765.

Li J, Liu Y, Zhao L, Song WQ, Wu SW, Wang DN, Nan Fang Yi Ke Da Xue Xue Bao. 2016;37(4):443-450.

Liu X, Xu Y, Jin Q, et al. EphA8 is a prognostic marker for epithelial ovarian cancer. Oncotarget. 2016;7(17):20811-20829.

Zhang Q, Yu S, Lam MMT, et al. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturase and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 2018;37(1):116.

Ma Z, Wang X, He J, Xia J, Li Y. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer. PLoS One. 2017;12(10): e0174037.

Zhang W, Niu C, He W, et al. Upregulation of centrosomal protein 55 is associated with cancer progression and patient's survival in human ovarian cancer. Int J Clin Exp Pathol. 2015;8(5):4347.

Yao L, Jia Y, Zhou L, Song WQ, Wu SW, Wang DN, Nan Fang Yi Ke Da Xue Xue Bao. 2016;37(4):443-450.

Liu X, Xu Y, Jin Q, et al. EphA8 is a prognostic marker for epithelial ovarian cancer. Oncotarget. 2016;7(17):20811-20829.

Zhang Q, Yu S, Lam MMT, et al. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturase and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 2018;37(1):116.

Ma Z, Wang X, He J, Xia J, Li Y. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer. PLoS One. 2017;12(10): e0174037.

Zhang W, Niu C, He W, et al. Upregulation of centrosomal protein 55 is associated with unfavorable prognosis and tumor invasion in epithelial ovarian carcinoma. Tumour Biol. 2016;37(5):629-6254.

Manai M, Doghri R, Finetti P, et al. Overexpression of Annexin A1 Is Associated with Tumorigenesis, Metastasis, and Poor Prognosis in Ovarian Cancer. Int J Cancer Dis. Markers. 2014;2015:387382.

Zhou Y, Xu Y, Chen L, Xu B, Wu C, Jiang J. B7-H1 expression correlates with cancer progression and patient's survival in human ovarian cancer. Int J Clin Exp Pathol. 2015;8(5):4347.

Liu Q, Liu H, Li L, et al. ATAD2 predicts poor outcomes in patients with ovarian cancer and is a marker of proliferation. Int J Oncol. 2020;56(1):219-231.

Ye Q, Zhai X, Wang W, et al. Overexpression of Growth-Related Oncogene-β Is Associated with Tumorigenesis, Metastasis, and Poor Prognosis in Ovarian Cancer. Dis Markers. 2015;2015:387382.

Zhou Y, Xu Y, Chen L, Xu B, Wu C, Jiang J. B7-H1 expression correlates with cancer progression and patient's survival in human ovarian cancer. Int J Clin Exp Pathol. 2015;8(5):4347.

http://www.jcancer.org
Chen S, Gou WF, Zhao S, et al. The role of the REG4 gene and its encoding oncogene REDD1 correlates with tumor progression and is an independent prognostic biomarker for ovarian epithelial carcinoma. BMC Cancer. 2015;15:471.

Moghaddam S, Amini A, Wei AQ, Robertson G, Morris DL. Sprouty 5 Are Prognostic Factors in Ovarian Carcinoma. Front Oncol. 2017;7:419.

Lawrenson K, Mhawech secretomes of three 2018;83(5):508-514.

Koensgen D, Stope MB, Tuerbachova I, et al. Expression, Intracellular Study of the Tumor Bank Ovarian Cancer Network. Gynecol Obstet Invest. 2018;85(3):165-175.

Wang L, Yan W, Li X, et al. S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J Ovarian Res. 2019;12(1):111.

Zhou Y, Jin Z, Wang C. Glycogen phosphorylase B promotes ovarian cancer progression via Wnt/β-catenin signaling and is regulated by miR-133a-3p. Biomed Pharmacother. 2019;116:103621.

Sheehan R, Bachvarova M, Pearlman M, et al. Altered expression of different GalNAc-transferases is associated with disease progression and poor prognosis in women with high-grade serous ovarian cancer. Int J Oncol. 2017;51(6):1887-1897.

Ikeda Y, Park JH, Miyamoto T, et al. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer. Clin Cancer Res. 2016;22(24):6110-6117.

Li MJ, Li HR, Cheng X, et al. Clinical significance of targeting drug-molecular biomarkers expression in ovarian clear cell carcinoma. Zhonghua Fu Chan Ke Za Zhi. 2017;52(12):835-843.

Quo HL, Deng SZ, Li C, et al. High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2017;21(23):239-245.

Gao L, Ye X, Ma RQ, et al. Low programmed cell death 5 expression is a potential prognostic factor in ovarian cancer. Chin Med J (Engl). 2015;128(8):1084-1090.

Mahli C, Oda K, Ikeda Y, et al. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53. Oncotarget. 2016;7(46):73328-73338.

Shin K, Kim KH, Yoon MB, et al. Expression of Interactive Genes Associated with Apoptosis and Their Prognostic Value for Ovarian Serous Adenocarcinoma. Adv Clin Exp Med. 2016;25(3):513-521.

Labrie de Araujo LOF, Communal L, Mes-Masson AM, St-Pierre Y. Tissue and plasma levels of galectins in patients with high grade serous ovarian carcinoma as new predictive biomarkers. Sci Rep. 2017;7(1):13244.

Lee YK, Chung HH, Kim JW, Song YS, Park NH. Expression of phosphorylated Akt and B-ERF is associated with prognostic difference in epithelial ovarian cancer. J Clin Exp Pathol. 2015;2015:14971-14976.

Zhang W, Liang C, Jin S, et al. High expression of YTHDF1 promotes ovarian cancer progression. Cancer Med. 2017;6(2):558-568.

Park JH, Miyamoto T, et al. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer. Clin Cancer Res. 2016;22(24):6110-6117.

Jiang G, Yang D, Wang L, et al. A novel biomarker ARMc8 promotes Malignant Progression of Ovarian Cancer by Inducing Annexin A2 Expression. Int J Biol Sci. 2018;14(14):2073-2082.

Wang L, Yan W, Li X, et al. S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J Ovarian Res. 2019;12(1):111.

Chen S, Gou WF, Zhao S, et al. The role of the REG4 gene and its encoding oncogene REDD1 correlates with tumor progression and is an independent prognostic biomarker for ovarian epithelial carcinoma. BMC Cancer. 2015;15:471.

Moghaddam S, Amini A, Wei AQ, Robertson G, Morris DL. Sprouty 5 Are Prognostic Factors in Ovarian Carcinoma. Front Oncol. 2017;7:419.

Lawrenson K, Mhawech secretomes of three 2018;83(5):508-514.

Koensgen D, Stope MB, Tuerbachova I, et al. Expression, Intracellular Study of the Tumor Bank Ovarian Cancer Network. Gynecol Obstet Invest. 2018;85(3):165-175.

Wang L, Yan W, Li X, et al. S100A10 silencing suppresses proliferation, migration and invasion of ovarian cancer cells and enhances sensitivity to carboplatin. J Ovarian Res. 2019;12(1):111.

Zhou Y, Jin Z, Wang C. Glycogen phosphorylase B promotes ovarian cancer progression via Wnt/β-catenin signaling and is regulated by miR-133a-3p. Biomed Pharmacother. 2019;116:103621.

Sheehan R, Bachvarova M, Pearlman M, et al. Altered expression of different GalNAc-transferases is associated with disease progression and poor prognosis in women with high-grade serous ovarian cancer. Int J Oncol. 2017;51(6):1887-1897.

Ikeda Y, Park JH, Miyamoto T, et al. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer. Clin Cancer Res. 2016;22(24):6110-6117.

Li MJ, Li HR, Cheng X, et al. Clinical significance of targeting drug-molecular biomarkers expression in ovarian clear cell carcinoma. Zhonghua Fu Chan Ke Za Zhi. 2017;52(12):835-843.

Quo HL, Deng SZ, Li C, et al. High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2017;21(23):239-245.

Gao L, Ye X, Ma RQ, et al. Low programmed cell death 5 expression is a potential prognostic factor in ovarian cancer. Chin Med J (Engl). 2015;128(8):1084-1090.

Mahli C, Oda K, Ikeda Y, et al. MDM2 is a potential therapeutic target and prognostic factor for ovarian clear cell carcinomas with wild type TP53. Oncotarget. 2016;7(46):73328-73338.

Shin K, Kim KH, Yoon MB, et al. Expression of Interactive Genes Associated with Apoptosis and Their Prognostic Value for Ovarian Serous Adenocarcinoma. Adv Clin Exp Med. 2016;25(3):513-521.

Labrie de Araujo LOF, Communal L, Mes-Masson AM, St-Pierre Y. Tissue and plasma levels of galectins in patients with high grade serous ovarian carcinoma as new predictive biomarkers. Sci Rep. 2017;7(1):13244.
Doghri R, Manai M, Finetti P, et al. Stromal Expression of MARCKS Protein in adenocarcinoma is superior to Ki

Hedström E, Pederiva C, Farnebo J, et al. Downregulation of the cancer DNA repair and poor clinical outcome. Cell Death Dis. 2015;6(10):e1892.

Sun F, Ding W, He JH, Wang XJ, Ma ZB, Li YF. Stomatin as a prognostic marker for epithelial ovarian cancer. Int. J. Clin. Exp. Ther. 2017;14(5):429-439.

Sosulski A, Horn H, Zhang L, Feng LY, Li L. Low expression of NCALD is associated with chemotherapy resistance and poor prognosis in ovarian cancer. Zhong Nan Da Xue Xue Bao. 2019;44(10):1113-1119.

Sun X, Zhang W, Li H, et al. Downregulation of the cancer DNA repair and poor clinical outcome. Cell Death Dis. 2015;6(10):e1892.

Ke Xue Yuan Xue Bao. 2016;38(2):169-174.

Miyamoto M, Takano M, Aoyama T, et al. Inhibition of autophagy protein LC3A as a therapeutic target in ovarian clear cell carcinomas. J Gynecol Oncol. 2017;28(3):e33.

Chu CX, Xiong W, Wang ML, et al. Nuclear G protein-coupled oestrogen receptor (GPER) predicts poor survival in patients with ovarian cancer. J Int Med Res. 2018;46(2):723-731.

Li, Yu Z, Yang Q, Khan AQ, Chen X. Increased Expression of Holliday Junction-Recognizing Protein (HJURP) as an Independent Prognostic Biomarker in Advanced-Stage Serous Ovarian Carcinoma. J Clin Med. 2018;24:3050-3055.

Zhong X, Li H, Yu X, et al. Analysis of Circulating Tumor Cells in Ovarian Cancer and Their Clinical Value as a Biomarker. J Mol Sci. 2017;18(8):1653.

Fadiel A, Wilson AJ, Keene S, et al. Differential cyto-oxygenase expression levels and survival associations in type I and type II ovarian tumors. J Gynecol Oncol. 2018;18(2):3-7.

Liu X, Wei L, Zhao B, Cai X, Dong C, Yin F. Low expression of KCN3N may affect drug resistance in ovarian cancer. Mol Med Rep. 2018;18(2):1377-1386.

Chen M, Sheng XJ, Qin YY, et al. TBC1D8 Amplification Drives Tumorigenesis through the Accumulation of Myeloid Endothelial Growth Factor in Ovarian Cancer Inhibits Tumor Immunity. J Mol Sci. 2017;18(2):474.

Feng LY, Li L. Low expression of NCALD is associated with chemotherapy resistance and poor prognosis in ovarian cancer. Pathol Res Pract. 2019;215(11):15261-15265.

Sun X, Zhang W, Li H, et al. Overexpression of MARCKS protein predicts poor prognosis in patients with ovarian cancer. J Clin Exp Ther. 2017;18(4):245-251.

Zhang X, Li H, Yu X, et al. Decreased expression of ALDH1A1 predicts prognosis in patients with ovarian cancer. Cancer Biol Ther. 2017;18(4):245-251.

Veneris JT, Darcy KM, Mhawech-Fauceglia P, et al. High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer. J Gynecol Oncol. 2017;28(1):153-160.

Taspaev A, Stafon LM, Stys A, et al. Prognosis of patients with BRCA1-associated ovarian carcinomas depends on TP53 accumulation status in tumor cells. Gynecol Oncol. 2017;144(2):369-376.

Sakr S, Abduljalili E, Thomas S, et al. Granulosa Cell Tumors: Novel Predictors of Patients with Ovarian Cancer Defined by the Single Chain Antibody GD3A11. Gynecol Oncol. 2018;144(1):101-107.

Tian X, Han Y, Yu Y, et al. Decreased expression of ALDH1A1 predicts prognosis in patients with ovarian cancer. Cancer Biol Ther. 2017;18(4):245-251.

Veneris JT, Darcy KM, Mhawech-Fauceglia P, et al. High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer. J Gynecol Oncol. 2017;28(1):153-160.

Long J, Zhu JX, Liu YB, et al. Helicase POLQ-like (HELQ) as a novel indicator of platinum-based chemoresistance for epithelial ovarian cancer. Gynecol Oncol. 2018;149(2):341-349.

Jin C, Liu Z, Li Y, et al. PCNA-associated factor PISPAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer. 2017;140(6):1293-1298.

Fu Z, Wang C, Chen Y, Zhang X, Wang X, Xie D. Down-regulation of UTP32 promotes paclitaxel resistance and predicts poorer prognosis in ovarian cancer. Pathol Res Pract. 2019;215(11):15261-15265.

Hao L, Zhang Y, Yao J, et al. AIP binding cassette subfamily member B (AIBC9) is a prognostic indicator of overall survival in ovarian cancer. Medicine (Baltimore). 2019;98(19):e15698.

Ma H, Li Y, Wang X, et al. FBK, targeted by EVIL, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis. 2019;10(3):166.

Zhang S, Deng M, Wang Q, Jiang Q, Xu Q, Cao L. Level of Sorcin expression influences chemoresistance and overall survival in patients with ovarian cancer. Biomed Res Int. 2019;2019:1056785.

Bu H, Li Y, Jin C, et al. Overexpression of PRCL1 indicates a poor prognosis in ovarian cancer. Int J Oncol. 2020;56(7):685-696.

Feng L, Li L. Low expression of NCALD is associated with chemotherapeutic resistance and poor prognosis in epithelial ovarian cancer. J Ovarian Res. 2020;13(1):35.

Hua M, Yan S, Deng Y, et al. CAPI1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation. Int J Mol Med. 2015;35(4):941-949.

Aykan A, Kuhn E, Wu RC, et al. CCNE1 copy-number gain and overexpression identify ovarian clear cell carcinoma with a poor prognosis. Mod Pathol. 2017;30(2):297-303.

Shi C, Qin L, Gao H, et al. NUCKS nuclear elevated expression indicates progression and prognosis of ovarian cancer. Tumour Biol. 2017;39(9):1042381717744631.

Wang J, Liu Q, Zhou X, et al. Thymidine kinase 1 expression in ovarian serous adenocarcinoma is superior to Ki-67: A new prognostic biomarker. Tumor Biol. 2016;37(9):11707-11708.

Dohgiri R, Manai M, Finetti P, et al. Stromal Expression of MARCKS Protein in Ovarian Carcinomas Has Unfavorable Prognostic Value. Int J Mol Sci. 2017;19(1):41.

Horioka N, Akiko K, Matsumura N, et al. Expression of Vascular Endothelial Growth Factor in Ovarian Cancer Inhibits Tumor Immunity through the Accumulation of Myeloid-Derived Suppressor Cells. Clin Cancer Res. 2017;23(2):387-399.

Chen M, Sheng XJ, Qin YY, et al. TBC1D8 Amplification Drives Tumorigenesis through Metabolism Reprogramming in Ovarian Cancer. Theranostics. 2019;9(3):676-690.

Feng Y, Tang Y, Mao Y, et al. PAOX2 promotes epithelial ovarian cancer progression involving fatty acid metabolic reprogramming. Int J Oncol. 2020;56(3):697-708.

Hedström E, Pederviva C, Farnebo J, et al. Downregulation of the cancer susceptibility protein WAP1 in epithelial ovarian cancer leads to defective DNA repair and poor overall clinical outcome. Cell Death Dis. 2015;6(10):1892.

Mei L, Hu Q, Peng J, et al. Phospho-histone H2AX is a diagnostic and prognostic marker for epithelial ovarian cancer. Int J Clin Exp Pathol. 2015;8(5):5977-5980.

Sun F, Ding W, He JH, Wang XJ, Ma ZB, Li YF. Stomatin-like protein 2 is overexpressed in epithelial ovarian cancer and predicts poor patient survival. BMC Cancer. 2015;15:746.

Sosulski A, Horn H, Zhang L, et al. CD44 Splice Variant v8-10 as a Marker of Ovarian Serous Carcinoma Prognosis. PLoS One. 2016;11(6):e0155995.

Zuo J, Song Y, Li Z, Wu L. Relationship between P53 Protein Expression and Advanced Ovarian Serous Adenocarcinoma. Zhonggou Yi Xue Ke Xue Yuan Xue Bao. 2016;38(2):169-174.

van der Steen SC, van Tilborg AA, Vallen MJ, Bulten J, van Kuppevelt TH, Masureel MF. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11. Gynecol Oncol. 2016;140(3):527-536.
Qiu JJ, Lin YY, Ding JX, Feng WW, Jin HY, Hua KQ. Long non-coding RNA 3377 promotes cell proliferation and invasion by targeting TWIST1 in epithelial ovarian cancer. Cancer Med. 2017;6(4):834-844.

Yim GW, Kim HJ, Kim JK, et al. Long non-coding RNA HOXA11 Antisense Promotes Cell Proliferation and Predicts Patient Prognosis in Serous Ovarian Cancer. Cancer Res Treat. 2017;49(3):655-668.

Zhang J, Liu W, Shen F, et al. The activation of microRNA-520h-associated TGF-β1-c-Myc/Smad7 axis promotes epithelial ovarian cancer progression. Gynecol Oncol. 2018;157(3):616-622.

Yang XS, Wang GX, Luo L. Long non-coding RNA SNHG16 promotes cell growth and metastasis in ovarian cancer. Eur Rev Med Pharmacol Sci. 2018;22(3):4440-4447.

Guo C, Wang X, Chen LP, et al. Long non-coding RNA MALAT1 regulates ovarian cancer cell proliferation, migration and apoptosis through PTEN signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22(12):3703-3712.

Huang K, Geng J, Wang J. Long non-coding RNA RP11-552M11.4 promotes cells proliferation, migration and invasion by targeting BRCA2 in ovarian cancer. Cancer Sci. 2018;109(1):135-146.

Wang S, Ning Y, Wei P, et al. The non-coding RNA OTUB1-isomerase2 promotes ovarian tumour progression and predicts poor prognosis. J Cell Mol Med. 2018;22(10):4794-4806.

Li Y, Yang NX, Wei HY, et al. HYO1 promotes cell growth and metastasis via activating PI3K/AKT signaling in epithelial ovarian cancer and predicts poor prognosis. Eur Rev Med Pharmacol Sci. 2019;23(1):4126-4135.

Liu HY, Zhang YL, Zhu BL, et al. miR-20a-3p regulates the biological behaviours of ovarian cancer cells through mediating the Akt/GSK-3β/Stat3 signaling pathway by targeting ATJ. Ovarian Cancer. 2019;2(1):60.

Pan L, Meng Q, Li H, Liang K, Li B. LINC00339 promotes cell proliferation, migration, and invasion of ovarian cancer cells via miR-148a-5p/ROCK1 axis. Biomed Pharmacother. 2019;114:109423.

Wang D, Dai J, Hou S, Qian Y. LncRNA SNHG20 predicts a poor prognosis and promotes cell progression in epithelial ovarian cancer. Biosci Rep. 2019;39(4):882018186.

Zhao LW, Yu AJ, Zhang YJ, Wang XC, Han B, Wang XH. MicroRNA-149 suppresses the malignant phenotypes of ovarian cancer via downregulation of MSR2 and inhibition of PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2020;24(1):55-64.

Liu G, Xue F, Zhang W. miR-506: a regulator of chemo-sensitivity through suppression of the RAD51-homologous recombination axis. Chin J Cancer. 2015;34(11):485-487.

Chiang YC, Lin HW, Chang CJ, et al. Overexpression of CHHL1 is associated with chemoresistance and poor outcome of epithelial ovarian carcinoma. Oncotarget. 2015;6(37):39740-39755.

Hsu KE, Shen MR, Huang YE, et al. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor survival in epithelial ovarian cancer. Br J Cancer. 2015;113(3):414-424.

Kritsch D, Hoffmann F, Steinhage D, et al. Tribles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int J Cancer. 2017;141(8):1600-1614.

Zhao LW, Ji G, Le X, et al. Long Noncoding RNA LINC00092 Acts in TGF-β/Smad3 Signaling Pathway to Promote Epithelial Ovarian Cancer. Tohoku J Exp Med. 2017;241(3):239-250.

Zhao L, Ji G, Le X, et al. Long Noncoding RNA CCAT1 promotes cell proliferation, metastasis and poor prognosis in ovarian cancer. Cell Cycle. 2018;17(3):309-318.

Liu J, Gu Z, Tang Y, Hao J, Zhang C, Yang X. Tumour-suppressive microRNA-424-5p directly targets CCNE1 as potential clinical markers in epithelial ovarian cancer. Cell Death Dis. 2018;9(7):3057.

Liu J, Li G, Le X, et al. Long Noncoding RNA CCAT00092 Acts in TGF-β/Smad3 Signaling Pathway to Promote Epithelial Ovarian Cancer. Cell Death Dis. 2018;9(7):3057.

Liu J, Li G, Le X, et al. Long Noncoding RNA CCAT00092 Acts in TGF-β/Smad3 Signaling Pathway to Promote Epithelial Ovarian Cancer. Cell Death Dis. 2018;9(7):3057.

Chen ZJ, Zhang Z, Xie BB, Zhang HY. Clinical significance of upregulated miR-2125 with MCL-1 by regulating mitochondrial apoptosis in ovarian cancer. Tumor Biol. 2018;39(6):1050402618786282.

Cui Y, Zhu Y, Sun J, et al. The non-coding RNA LINC00092 promotes cell proliferation, metastasis and poor prognosis in ovarian cancer. Cell Death Dis. 2018;9(9):861.

Xiao M, Cai J, Cai L, et al. Let-7e inhibits epithelial ovarian cancer cell proliferation through repressing DNA double strand break repair. J Ovarian Res. 2015;8(4):4132.

Mei J, Huang Y, Hao L, et al. DAAM1 mediates migration and invasion of ovarian cancer cells by repressing DNA double strand break repair. J Ovarian Res. 2015;8(4):4132.
Coelho R, Marco-Silva L, Ricardo S, et al. Peritoneal dissemination of ovarian cancer: role of MUC16-mesothelin interaction and implications for treatment. Expert Rev Anticancer Ther. 2018;18(2):177-186.

Chung MC, Chen CA, Chen PJ, et al. Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochim J. 2012;442(2):293-302.

Yan M, Wang C, He B, et al. Inhibitory effects of Aurora-A on ovarian cancer. Cancer Res. 2010;70(9):3371-3378.

Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A. 1996;93(1):136-140.

He X, Wang L, Riedel H, et al. Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung adenocarcinoma cells. Mol Cancer. 2016;15(1):81.

Yun J, Liu X, Li X, et al. The GAD5455 (10507-G) Polymorphism is Associated with Ovarian Cancer Susceptibility and Prognosis. PLoS One. 2015;10(19):e0143692.

Zhang X, Guo G, Wang G, et al. Profile of differentially expressed miRNAs in high grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510A in ovarian carcinoma. Mol Med Rep. 2012;6(2):8021-8031.

Coelho R, Marcos L, Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A. 1996;93(1):136-140.

Zhou QH, Zhao YM, Jia LL, Zhang Y. Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2017;21(19):4278-4282.

Zhang H, Liu Y, et al. Clinical relevance of kallikrein-related peptidase 9, 10, 11, and 15 mRNA expression in advanced high-grade serous ovarian cancer. PLoS One. 2017;12(12):e0186487.

Ai H, Xie W, Xiu AH, et al. The down-regulation of long non-coding RNA LINC01088 is associated with the poor prognosis of epithelial ovarian cancer patients. Cancer Med. 2018;7:8068-8074.

Chu ZP, Dai J, Jia LG, et al. Increased expression of long noncoding RNA HMMR-AS1 in epithelial ovarian cancer: an independent prognostic factor. PLoS One. 2018;13(2):e0194134.

Chu ZP, Dai J, Jia LG, et al. Increased expression of long noncoding RNA HMMR-AS1 in epithelial ovarian cancer: an independent prognostic factor. PLoS One. 2018;13(2):e0194134.

Chou TZ, Wang YA, Liang WT, et al. Circular RNA LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis. Eur Rev Med Pharmacol Sci. 2018;22(21):7718-7726.

Niu L, Zhang J, Zhang LY, Wang L. CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2018;22(12):3737-3741.

Chen H, Tian X, Luan Y, Liu H. Downregulated Long Noncoding RNA DGC5R acts as a New Promising Biomarker for the Diagnosis and Prognosis of Ovarian Cancer. Technol Cancer Res Treat. 2019;18:1533033819896809.

Bartling TR, Subbaram S, Clark RR, Chandrasekaran A, Kar S, Melendez JA. Preoperative neutrophil to lymphocyte ratio >5 is a prognostic factor for recurrent colorectal cancer. J Surg Res. 2016;213(2):212-219.

Wang Y, Liu P, Xu Y, et al. Preoperative neutrophil-to-lymphocyte ratio predicts response to first-line platinum-based chemotherapy and prognosis in serous ovarian cancer. J Cancer. 2015;6(2):843-854.

Zhang X, Zhou Y, Jiao Y, et al. Adenylate kinase AK1 is a prognostic indicator of overall survival in ovarian cancer. Medicine (Baltimore). 2021;100(44):e24134.

Cousens LM, Web Z. Inflammation and cancer. Nature. 2002;420(6917):867-876.

Zahorec R. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of system inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5-14.

Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-related peptidase 2418. J Cell Physiol. 2005;202(51):18538-18543.

Clemente CG, Mihm MC Jr, Bufalino R, Zurrada S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 2014;120(24):3851-3855.

Pages F, Galon J, Dieu-Moreau E, et al. Type 2 immune infiltrate is inversely associated with patient survival in a large population-based study of colorectal cancer. Cancer. 2010;116(12):2829-2840.
355. Xu Z, Chen Y, Gu D, et al. SOD2 rs4880 CT/CC genotype predicts poor survival for Chinese gastric cancer patients received platinum and fluorouracil based adjuvant chemotherapy. Am J Transl Res. 2015;7(2):401-410.
356. Isono T, Chano T, Yonese J, Yuasa T. Therapeutic inhibition of mitochondrial function induces cell death in starvation-resistant renal cell carcinomas. Sci Rep. 2016;6:25669.
357. Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. Methods Mol Biol. 2015;1238:3-25.
358. Huang RL, Chen HH, Chen LY, et al. Epigenetic loss of heparan sulfate 3-O-sulfation sensitizes ovarian carcinoma to oncogenic signals and predicts prognosis. Int J Cancer. 2018;143(8):1943-1953.
359. Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017;77(15):3965-3981.