Of social molecules: The interactive assembly of ASH1 mRNA-transport complexes in yeast

Annika Niedner1, Franziska T Edelmann1, and Dierk Niessing*

Institute of Structural Biology; Helmholtz Zentrum München – German Center for Environmental Health; Neuherberg, Germany

1These authors contributed equally to this work.

Keywords: ASH1 mRNA, She2p, She3p, Myo4p, Loc1p, mRNA localization, myosin, endoplasmic reticulum, RNA-binding protein, mRNP

Asymmetric, motor-protein dependent transport of mRNAs and subsequent localized translation is an important mechanism of gene regulation. Due to the high complexity of such motile particles, our mechanistic understanding of mRNA localization is limited. Over the last two decades, ASH1 mRNA localization in budding yeast has served as comparably simple and accessible model system. Recent advances have helped to draw an increasingly clear picture on the molecular mechanisms governing ASH1 mRNA localization from its co-transcriptional birth to its delivery at the site of destination. These new insights help to better understand the requirement of initial nuclear mRNPs, the molecular basis of specific mRNA-cargo recognition via cis-acting RNA elements, the different stages of RNP biogenesis and reorganization, as well as activation of the motile activity upon cargo binding. We discuss these aspects in context of published findings from other model organisms.

Introduction

mRNA localization is a universal feature throughout eukaryotes with important roles in cell polarity and differentiation, as well as embryonic development and body axis determination (reviewed in refs. 1–3). In somatic tissues mRNA localization is required for the formation and function of highly differentiated cells like neurons, neuroglia and epidermal cells. In higher eukaryotes, several dozens of factors usually co-immunoprecipitate in cells like neurons, neuroglia and epidermal cells. However, for most protozoan model organisms, including the filamentous plant pathogen Ustilago maydis, the number of core factors remains unknown (reviewed in refs. 3 and 8). Several localization mRNPs in higher and lower eukaryotes associate with membranes and vesicles (reviewed in refs. 9 and 10). Also the reported numbers of specifically recognized RNA species vary dramatically from thousands1–13 to only several dozens.14 Most likely these numbers extensively depend on the threshold for the definition of specific binding and usually drastically decrease when cross-validation is performed.14 Obviously, a model system with a much lower complexity is needed to understand the mechanisms underlying mRNA localization.

In the past 20 y, budding yeast Saccharomyces cerevisiae has emerged as a particularly well-suited model system to understand basic principles of the assembly and function of mRNA-transport complexes (reviewed in refs. 9 and 15). In haploid yeast cells, asymmetric cell division results in progenies with opposing mating types of either MATα or MATα (reviewed in ref. 16). The mating type is altered in the mother cell by transcription of the site-specific endonuclease HO (Homothallic switching)17 and an HO-dependent genomic recombination in the MAT gene locus. Since HO is only expressed in the mother cell, the mating type of the daughter cell remains unchanged.

In 1996 two concurrent studies showed that the protein Ash1p (asymmetric synthesis of HO) localizes preferentially to the daughter cell, where it inhibits HO transcription and thus mating-type switching.18,19 A third concurrent study reported the identification of five so-called SHE genes (SWT5-dependent HO expression), whose protein products are required for the asymmetric distribution of Ash1p.20 Only one year later two laboratories published the surprising finding that the ASH1 transcript and not its protein product is actively transported into the daughter cell.21,22 The locally restricted translation of the ASH1 mRNA causes the Ash1p-dependent repression of HO transcription in the daughter cell, thereby leading to the selective inhibition of mating-type switching (reviewed in ref. 16).

The SHE1 gene identified in a genetic screen by Jansen and colleagues encodes the type V myosin (MyoV) motor Myo4p.20 MyoV motors constitute the main group of myosins for cargo transport (reviewed in ref. 23). The N-terminus consists of an ATP-hydrolyzing motor domain, followed by a calmodulin-bound lever arm, a coiled-coil dimerization domain, and a globular cargo-binding domain at its C-terminus. Dimeric MyoV binds to and moves processively along actin filaments (reviewed in ref. 23). She2p is an ASH1 mRNA-binding protein24–26 with a domain fold that lacks
similarity to previously described RNA-binding domains. She3p was initially shown to be an adaptor protein in the transport complex. She4p/Dim1p belongs to the UNCGRO/SHE4 (UCS)-domain containing protein family and binds to Myo4p and other myosins in yeast. It has been suggested to be required for the structural integrity of Myo4p and as determinant of Myo4p step-size on actin filaments. However, its exact role is still not fully understood. She5p/Bni1p is a member of the formin family that is involved in the nucleation of linear actin filaments and thus required for cytoskeletal integrity during cell division (reviewed in ref. 32). Initial experiments already suggested that She2p is the core ASH1 mRNA-binding protein, which is bound by Myo4p-associated She3p to form an active transport complex (Fig. 1A).
Besides these essential SHE factors, auxiliary proteins were discovered that also associate with the ASHI mRNA. Their deletion resulted in the reduction, but not abolition of ASHI mRNA localization. These factors include the nuclear ribosomal biogenesis factor Loc1p, as well as the translational repressors Puf6p and Khd1p.53-57 Aside from ASHI mRNA, about 30 other transcripts are transported into the daughter cell.7,40-43

The assembly of the ASHI mRNA-transport complex already occurs co-transcriptionally with the binding of the RNA-binding protein She2p to so-called localization or zip-code elements of the nascent ASHI mRNA (Figs. 1A and 2A).44 This core complex is joined by Loc1p, Puf6p, and Khd1p.34-37,45,46 While Loc1p remains in the nucleus, the rest of the ASHI mRNA exports into the cytoplasm. There, She2p interacts with She3p (Fig. 1A).24,25,47,51 Since She3p itself is constitutively bound to the Myo4p motor,44,45,48-51 this interaction results in the formation of the mature transport complex. Together with its translational repressors, the ASHI mRNA moves along actin filaments until it reaches the tip of the bud cell. At the bud tip, translation is activated. The result is Ash1p-dependent inhibition of the HO endonuclease and the prevention of mating-type switching in the daughter cell (reviewed in ref. 16).

Although the initial genetic screen did not offer any link to membrane transport, a subsequent screen revealed that two components of the mRNA transport complex, Myo4p and She3p are also required for the early inheritance of cortical endoplasmic reticulum (ER) to the bud cell (Fig. 1A).52 Vice versa, a subset of proteins required for cortical ER inheritance were also shown to affect mRNA localization,43,53 suggesting a direct link between both processes.

While a concomitant review by Singer-Krüger and Jansen in this issue gives an overview on all the different mRNA transport processes present in yeast, this review focuses on recent advances of ASHI mRNA function. In the remaining part of this review, we summarize the major progress made in the last five years to understand (1) why localizing mRNAs and transport-core factors are already assembled in mRNPs within the nucleus, (2) how specificity for localizing mRNAs is achieved, (3) what importance has mRNP reorganization at specific cellular sites has, (4) how processive motility of the ASHI mRNA is achieved, (5) how ER inheritance is connected to mRNA localization, and (6) what effect multimerization of sub-complexes has on the function of localizing mRNPs.

Recent Advancements in Understanding ASHI mRNA Function

Why do we need initial nuclear mRNPs?

Although the assembly of nuclear sub-complexes with localizing RNAs has been described in different organisms, to date it is not well understood why the nuclear history of mRNPs is important for cytoplasmic mRNA localization. Also in the budding yeast such initial nuclear complexes have been described. The core RNA-binding protein She2p shuttles between nucleus and cytoplasm.48 An RNA-binding deficient version of She2p accumulates in the nucleolus,45 indicating that She2p is exported with its target mRNA into the cytoplasm. Consistently, blocking nuclear mRNA export with a temperature-sensitive mutant of the export factor MEX67 traps She2p in the nucleus.48 In addition, mutant versions of She2p, which are unable to enter the nucleus, show impaired cytoplasmic mRNA localization and upregulation of ASHI mRNA translation.45,46 Together these findings indicate that nuclear mRNA binding of She2p is required to mediate cytoplasmic inhibition of translation during transport.

More recently, it was shown that this nuclear association of She2p with ASHI mRNA occurs already co-transcriptionally via binding to a RNA-polymerase II-associated heterodimeric protein complex, consisting of Suppressor of Ty’s 4 and 5 (Spt4/5).44 Based on these data Chartrand and colleagues proposed a model, in which She2p first associates with RNA polymerase II at the ASHI locus and then selectively translocates onto the nascent ASHI transcript to form a first, specific nuclear mRNP (Fig. 1A).

For this intriguing model an open question concerns the specificity of co-transcriptional She2p recruitment to the ASHI locus. In a second study a very similar approach was used to assess the association of She2p with chromatin and nascent RNA. However, it failed to confirm the previously reported selective enrichment of She2p at the ASHI locus, but rather showed a broad, unspecific enrichment of She2p at chromatin.47 Although it would make sense to selectively tether She2p co-transcriptionally to localizing mRNAs, it seems to require additional experimental proof to adequately understand these events.

A related unresolved issue is the association of She2-2p with the transcription machinery and its implications on specificity. The Spt4/5 complex acts as general RNA polymerase II-dependent elongation factor.54,55 In contrast, She2p is selectively required for ASHI mRNA recognition and localization. Considering that RNA-polymerase II is much more abundant in cells than She2p56 and that RNA-polymerase II as well as the Spt4/5 complexes associate with a large number of loci, it remains unclear how She2p would efficiently find the few transcription sites of localizing mRNAs. Thus, more work seems to be required to fully understand how the She2p-dependent co-transcriptional recruitment results in the formation of specific ASHI mRNPs.

In the nucleus this complex is joined by the translational repressors Puf6p and Khd1p (Fig. 1A).34-37 In experiments using a She2p mutant that lacks a nuclear localization signal less ASHI mRNA is associated with Puf6p. Thus, She2p seems to be important for the formation of nuclear Puf6p-containing mRNPs.46 Consistent with this finding, in cells with a cytoplasmically tethered mutant of She2p, translational repression is impaired during transport.45 The third factor interacting with the ASHI mRNA in the nucleus is Loc1p (Fig. 1A).38,47 This protein contains a number of potential nucleolar localization signals and directly interacts with She2p in a specific manner.57 Furthermore, the incorporation of Loc1p into the ASHI mRNA-She2p complex enhances the specificity and stability in vitro.57 Loc1p is therefore likely to stabilize and direct the ASHI-She2p mRNP into the nucleolus, where it is loaded with the translational repressor Puf6p (Fig. 1B).36,37
Figure 2. Secondary structures of zip-code elements (A) Selection of known zip-code elements bound by the She2p-She3p complex in yeast, as predicted by the mfold web server.141 Cartoon on top shows that in the ASH1 mRNA, the zip-code elements E1, E2A, and E2B are part of the open reading frame, whereas E3 is located directly 3' to the stop codon. Also the EAR1 mRNA contains an experimentally confirmed zip-code element. In the secondary structure predictions, boxed base triplets and a single encircled cytosine mark a previously identified consensus recognition motif.68 Note that the EAR1 zip-code lacks this motif, that the motif can occur in inversed 3' to 5' orientation, and that the base triplet is also found in permutations of its sequence. Also the location of the bipartite motif with regard to the secondary structure varies, indicating that the basic features of specific zip-code recognition are still not well understood. (B) OES secondary structure from chemical probing data.62,76 (C) Secondary structure (left) and three-dimensional NMR structure (right) of fs(1)K10 TLS (PDB-identifier: 2KE6).77 Asterisk shows widened major groove that is required for dynein-dependent localization.
Also examples from higher eukaryotes have been described, where initial nuclear mRNPs are important for cytoplasmic mRNA localization. For instance, neuronal Staufen2 is implicated in cytoplasmic RNA localization to dendrites, thereby likely modulating synaptic plasticity. In similarity to studies with She2p, a mutant of Staufen2 with deficiency in RNA binding accumulates in the nucleolus. This finding suggests the formation of initial nuclear mRNPs and co-export of Staufen2 with its target mRNA into the cytoplasm.

A mechanistically very interesting and well understood example is the requirement of nuclear splicing of oskar mRNA in the oocyte of the fruit fly Drosophila melanogaster for its cytoplasmic localization to the posterior pole. For correct RNA localization two structural elements within the RNA are prerequisite: the spliced oskar localization element (SOLE) and the oskar 3' UTR containing a dimerization element (Fig. 2B). In the unspliced oskar pre-mRNA two halves of a bipartite zip-code element are separated by an intron. The splicing reaction at the first exon-exon junction joins both halves, and thus creates this so-called SOLE. Upon splicing the exon junction complex (EJC) is deposited on the mRNAs and contributes to the correct localization of the RNA to the posterior pole.

Another example for nuclear priming of mRNPs can be found in β-actin mRNA localization, which facilitates neurite outgrowth and cell migration. β-actin mRNA is already bound co-transcriptionally by its dedicated RNA-binding protein and localization factor zipcode-binding protein 1 (ZBP1). This nuclear recruitment of ZBP1 to β-actin mRNA depends on ZBP2. Since a knock-down of ZBP2 inhibits neurite outgrowth, formation of these nuclear mRNPs seems to be a prerequisite for functional cytoplasmic β-actin mRNA localization.

Also the localization of VegT and Vgl1 mRNA in the African clawed frog Xenopus laevis requires nuclear mRNP assembly. Already in 2004, Kress and colleagues proposed the formation of a nuclear core complex consisting of heterogeneous nuclear ribonucleoprotein 1 (hnRNP), Vgl1 RBP70/era, and zip-code containing mRNA that is necessary for mRNP localization to the vegetal pole of the oocyte.

Molecular Mechanisms of Specificity in mRNA Recognition

Cis-acting regions in localizing mRNAs: The zip-code elements

Localizing mRNAs contain cis-acting localization elements, also termed zip-code elements that are recognized by the transport machinery for their localization (reviewed in ref. 66). Zip-code elements are sufficient to mediate localization, even when placed into heterologous mRNAs. In budding yeast, the ASH1 mRNA has four zip-code elements (Fig. 2A). Three of them, termed E1, E2A, and E2B, reside in the coding region, whereas the most 3'-located E3 zip-code element is found directly after the stop-codon. Although all four elements are specifically bound by the SHE complex, they show no obvious sequence conservation and great differences in their predicted secondary structures (Fig. 2A). Khd1p binds to a region that includes the E1 element and Puf6p interacts with sequences in the E3 element. This E3 zip-code element appears to play a particularly important role. While showing the highest affinity for She2p, it is the only element in the ASH1 mRNA that resides outside of the open reading frame (Fig. 2A), and has a binding site for Puf6p. Secondary structure predictions of all four zip-code elements indicate stem loops with mismatches like bulges and internal loops (Fig. 2A). The only reported consensus between these elements is the presence of a CGA-base triplet and a single cytosine separated by six bases either 3' or 5' from the triplet. While this small motif is found in all four elements of the ASH1 mRNA and also in the localizing RNAs IST2 and YMR171c, it is lacking in some other localizing RNAs, such as the EARI zip-code (Fig. 2A).

Furthermore, within the ASH1 zip-code elements, this motif is located in different secondary structures, can have an inverse 3' to 5' orientation, the sequence of its base triplet can be permuted, and the spacing of this bipartite motif seems variable (Fig. 2A). For several of the other localizing mRNAs, no defined zip-code element has been identified to date. Thus, further work will be required to understand what structural and sequence features define a zip-code element for SHE-dependent localization.

Since the zip-code binding mode in budding yeast is not well understood, a comparison with zip-code elements in higher eukaryotes might offer common themes. For instance, it seems to be a general rule that zip-code elements consist of double-stranded regions with hairpins and well-defined mismatches (reviewed in ref. 69). Such mismatches appear to be important to promote specificity for protein interactions. An exception to this rule is the zip-code element β-actin mRNA, which consists of a single-stranded bipartite recognition motif.

In particular in Drosophila a number of such zip-code elements has been identified for mRNAs expressed either during oogenesis or embryogenesis. They include the Gurken Localization Signal (GLS), Bicoid Localization Element (BLE), the above-described SOLE element and the Octave Entry Signal (OES) of the oskar mRNA (Fig. 2B), and a 44nt Transport Localization Sequence (TLS) in the f(1)K10 mRNA (Fig. 2C). Although these localizing mRNAs have distinct functions in development, at least some of them appear to have related zip-code elements. For instance, the f(1)K10 mRNA normally localizes to the apical regions of the embryo. When its zip-code element TLS is expressed earlier during oogenesis as part of a heterologous RNA, this element also mediates its localization in its new environment. A second example is the OES, which mediates the transport of oskar mRNA from the nurse cells into the oocyte. When ectopically expressed, OES-containing RNAs are also localized in blastoderm-stage embryos, in follicular epithelial cells, and in larval salivary glands. This observation indicates that the localization machinery is conserved and might be reused during different developmental stages of the fruit fly. Furthermore, f(1)K10 TLS and the oskar OES are interchangeable. This is surprising because both zip-code elements share no obvious homology on the level of sequence and secondary-
structure predictions (Fig. 2B and C), thereby being very reminiscent of the ASH1 zip-codes (Fig. 2A).

In comparison to double-stranded DNA binding motifs it is much more difficult to define consensus protein-binding motifs in RNAs. A main reason is that RNAs fold in a much more diverse manner, more similar to proteins than to DNA. As a consequence it is difficult to predict secondary or even tertiary structures with high reliability (reviewed in ref. 79). Thus, in most cases, secondary structure predictions and sequence similarities are insufficient to identify zip-code elements and to understand their function.

The example of the fs(1)K10 TLS from Drosophila shows that three-dimensional structural information are extremely useful to overcome this limitation. The 44nt long TLS zip-code element is a stem-loop structure with an A'-form helix. This unusual helix has a widened major groove that is required for dynein-dependent localization to apical regions of the Drosophila embryo (Fig. 2C). A second example where structural information are necessary to explain zip-code binding is ZBP1 from chicken and its target β-actin mRNA. Here a 54nt long single-stranded zip-code element with a bipartite binding motif is necessary and sufficient for the localization of reporter mRNAs. 70-72 Important for specificity are not only the two binding motifs but also their exact spacing. Other interesting examples, where cis-acting targeting elements lead to transport of distinct mRNAs can be found in neurons. For instance the small non-coding brain cytoplasmic RNA 1 (BC1) is localized to dendrites of rodents, as well as Mauthner axons and dendrites of goldfish, 81 where it regulates translation of target genes. 82,83 Dendritic localization elements can also be found in the α-calcium/calmodulin-dependent protein kinase II (α-CaMKII) mRNA. Here several cis-acting elements mediate site-directed transport. 84-88

RNA-Binding Domains for mRNA Recognition

It is interesting to note that only two of the RNA-binding proteins in the ASH1 mRNP bear known RNA-binding domains. The first one is the auxiliary factor Puf6p, which belongs to the highly conserved PUF (Pumilio and FBP) family of RNA-binding proteins. PUF proteins are characterized by a Pumilio-homology domain (PUM-HD). 89,90 The second is Khd1p, which contains three K-homology (KH) RNA-binding domains. 91,92 In contrast, no predictable RNA-binding domain can be found in the auxiliary factor Loc1p. Also the two zip-code recognizing RNA-binding proteins She2p and She3p lack any recognizable canonical RNA-binding domain.

A number of abundant RNA-binding domains have been identified in the past. Beside the above-described PUM-HD and the KH domains, other examples for wide-spread RNA-binding domains include the double-stranded RNA-binding domain (dsRBD), 93-95 the RNA-recognition motif (RRM), 96,97 zinc fingers (ZF), 98,99 PAZ domain, 100,101 PIWI domain, 102-104 and the Sterile alpha motif/pointed (SAM) domain. 105 Thus, at first glance this apparent lack of known domains in the ASH1 mRNP appears unusual.

However, recent studies suggest that also other RNA-binding proteins for mRNA localization lack identifiable RNA-binding domains. For instance, in Drosophila the RNA-binding protein Egalitarian shows no sequence similarity to known RNA-binding domains or motifs. 106 Furthermore, two recent systematic screens for mRNA-interacting proteins demonstrated that at least one-third of the identified factors lack identifiable RNA-binding domains and were previously not predicted to bind RNA. 107,108 These findings suggest that the RNA-interactome is larger than previously anticipated and that the high number of non-canonical RNA-binding proteins in the ASH1 mRNP might not be unusual after all.

Specific She2p-Loc1p mRNP in the Nucleus

In vitro binding experiments showed that the initial nuclear mRNP consisting of ASH1 mRNA and She2p has a low specificity and complex stability. 26,47 Both of these features seem incompatible with the idea that She2p stably and selectively escorts localizing mRNAs from their site of transcription to the final destination at the tip of the daughter cell. This discrepancy was resolved by the recent finding that the joining of Loc1p is able overcome this limitation. Loc1p binds simultaneously and directly to the ASH1 mRNA as well as to She2p, resulting in a ternary complex with much improved stability and specificity (Fig. 1A and B). 57 Although it is unclear where exactly in the nucleus Loc1p joins the complex, it is reasonable to assume that this event should occur as early as possible, perhaps during or shortly after transcription. The requirement of the joint RNA-binding of two proteins is important also in subsequent stages of ASH1-mRNP function.

Such a cooperative RNP binding can also be found in the claw frog Xenopus laevis. Vg1 RBP/Vera, hnRNP1 and 40LoVe associate with Vg1 mRNA already in the nucleus and all factors affect vegetal mRNP localization. 109-111 40LoVe binds the localization element of the Vg1 mRNA (VLE) with high affinity but low specificity. Mutation or deletion of binding motifs of hnRNP1 and Vg1 RBP/Vera within the VLE abolishes also the binding of 40LoVe. 109,111 Therefore hnRNP1 and/or Vg1 RBP/Vera might be the recruitment factors that provide specificity for the localizing mRNAs.

Specific She2p-She3p mRNP in the Cytoplasm

Since no Loc1p is present in the cytoplasm, the exported She2p-ASH1 mRNA complex would be unstable in absence of another stabilizing co-factor. This problem is overcome by the joining of She3p. Besides being a myosin adaptor, the strictly cytoplasmic She3p is a rather unspecific RNA-binding protein that also undergoes protein-protein interactions with She2p. 47 The joining of She2p and She3p with ASH1 mRNA in the cytoplasm results in the formation of a highly specific, high-affinity co-complex with each of the four zip-code elements of the ASH1 mRNA (Fig. 1A). 47 This synergistic complex together with its associated motor Myo4p and the translational repressors Puflp and Khd1p constitutes the mature ASH1 transport complex. Interestingly, there is a gradual increase of binding affinity for the RNA from the co-transcriptional recruitment to the assembly of the mature cytoplasmic transport complex, ensuring directionality of assembly (Fig. 1B).
From these recent insights on cargo-RNA binding in the nucleus and in the cytoplasm, it became clear that only the joint RNA binding of two proteins achieves specific zip-code recognition. In the nucleus She2p requires Loc1p and in the cytoplasm She3p takes over from Loc1p to form a highly specific ternary complex with She2p and zip-code RNA. These observations in yeast might serve as an emerging concept for zip-code recognition also in other organisms.

In the Drosophila embryo, the apical localization of fi(1)K10 and hairy mRNA depend on dynein-containing particles. This mRNP contains the two interacting proteins BicaudalD and Egalitarian, which in co-complex show higher affinity and specificity than the Egalitarian mRNP alone. Although similar to the joint binding of She2p and She3p, this effect is less pronounced.

Recent studies on ZBP1 demonstrated how two of its KH domains mediate specificity for β-actin mRNA localization. Chao and colleagues combined NMR data with a crystal structure to show that this zip-code element is single stranded with a bipartite recognition motif, which is recognized by two KH domains forming a defined di-domain. The zip-code element wraps around this di-domain and binds to two opposing sites of the protein. Whereas each binding motif interacts with one KH domain only with medium specificity, the spacer of defined length ensures the precise coordination of both binding events thus mediating specificity in RNA recognition. Interestingly, the overwhelming majority of mRNA-binding proteins in higher eukaryotes have more than one RNA-binding domain (reviewed in ref. 112). For instance, the protein Vignilin consists of 14 KH domains and the RNA-binding transcription factor III A (TFIIIA) contains nine zinc-finger motifs. Such proteins can also contain combinations of different types of RNA-binding domains, like the above-described ZBP1, which has four KH domains and two additional RRMs. It has been previously speculated that the combined action of two or more domains within one protein might be required to achieve high specificity.

Complex Reorganization at Nuclear Pore and at Bud Tip

The presence of a specific and stable nuclear mRNP indicates the need for reorganization processes to ensure the formation of the subcomplex (e.g., mature cytoplasmic complex). Since Loc1p is a strictly nucle(ol)ar protein, it has to be removed from the ASH1 mRNP prior to its cytoplasmic transport. Indeed, in vitro pull-down experiments and UV-crosslinking studies demonstrated that the cytoplasmic co-complex of She2p and She3p out-competes and displaces Loc1p from the mRNP (Fig. 1B and C). As Loc1p binds to both, the zip-code RNA and She2p, the out-competition by She3p must occur in a specific manner at the protein and the mRNA. She3p itself is strictly cytoplasmic and constitutively bound to the type V myosin Myo4p, whereas Loc1p has only been reported in the nucleus. Thus Loc1p is likely removed from the complex close to the nuclear pore complex (Fig. 1C) during or directly after nuclear export. In cells with a genomic deletion of SHE3, the nuclear distribution of Loc1p is altered and a substraction of Loc1p is observed in the cytoplasm, proving that complex remodeling at the nuclear pore depends on She3p.

Recently it was shown that phenylalanine-glycin repeat domains of yeast nucleoporins (Nup) are necessary for complex remodeling shortly after mRNP export. Nup159 and Nup42 position mRNPs for remodeling by the RNA helicase Dyp5, which triggers the release of mRNP from the transport receptor Mex67-Mtr2 and their export into the cytoplasm. The dependence of nuclear export of She2p on Mex67 indicates that remodeling of the ASH1 mRNP at the nuclear pore might involve the same molecular pathway.

Once the cytoplasmic mRNPs are assembled, they move toward the plus ends of actin filaments at the bud tip, where translation is activated. About ten years ago it was shown that efficient ASH1 localization and localized translation involves complex reorganization at the bud tip. This conclusion is consistent with the finding that proper localization at the bud tip requires the mRNA to bear a start codon, suggesting that active translation might potentially be involved in anchoring.

More recently two studies demonstrated that both translational repressors, Khd1p and Puf6p, are phosphorylated at the bud tip, thereby reducing their affinity for the ASH1 mRNA (Fig. 1C). The posttranslational modifications result in reduced RNA binding, the release of ASH1 mRNA, and translation of the Ash1p. Phosphorylation-dependent release of localizing mRNAs at their site of destination has also been observed in higher eukaryotes. Hence, it might serve as general principle for translational activation at the end of mRNA transport.

Understanding Motile Activity of Localizing ASH1 mRNPs

In vivo the ASH1 mRNP moves along actin filaments to the bud tip within 1–2 min, where it is anchored. Recently, in vitro reconstitution experiments with single-particle motility assays proved that the core factors Myo4p with its bound calmodulins and light chains, as well as She3p and She2p are sufficient to assemble a functional mRNA-transport complex. Directional particle motility was also achieved in vitro when either cargo RNA was absent or when an RNA-binding deficient mutant of She2p was used for complex reconstitution. Thus, the cargo RNA itself is dispensable for processive movement of the transport complex in vitro. Instead, the interaction of She2p with Myo4p-bound She3p activates the motile activity.

Unraveling the exact molecular composition of the ASH1 mRNP started already in 2007. At this time, it was reported that the Myo4p motor alone is monomeric and non-processive. She3p binds to the rod of Myo4p and forms a single-headed myosin-She3p complex. Other prerequisites for motile activity turned out to be the tetrameric state of She2p and the need for at least two Myo4p molecules in one complex. Subsequently, results from a cryo electron-microscopy study indeed showed that two Myo4p motors form a dimer-like structure in the particle. Today the stoichiometric ratios and absolute numbers of molecules in a fully reconstituted and motile ASH1 mRNP are known. One She2p tetramer binds two zip-code RNAs, thereby forming an initial nuclear complex. This pre-formed mRNP interacts with two complexes of a She3p
dimer coupled to one Myo4p monomer. Recently Shi and colleagues confirmed this She3p-Myo4p heterotrimer with the crystal structure of the C-terminal domain of Myo4p together with the N-terminal part of She3p. The mature SHE core complex has a defined stoichiometric ratio, consisting of two ASH1 zip-codes, a She2p tetramer, two She3p dimers and two Myo4p monomers. This complex moves processively along actin filaments (Fig. 1A and D). From these studies, one of the most surprising findings was the observation that actin transport complexes can also be assembled in absence of RNA.

In case of dynein-dependent transport in the Drosophila embryo, the RNA-cargo seems to play a more active role. Beside the protein levels of Egalitarian and Bicaudal D also the dosage of zip-code elements is responsible for a preferential minus-end-directed movement. The ER Inheritance Connection

Interestingly, part of the localizing mRNA pool moves together with ER tubules to the bud Furthermore, some of the proteins required for cortical ER inheritance also affect the bud localization of a subset of mRNAs. Because the majority of these co-migrating RNAs encode proteins involved in membrane biogenesis and function, their co-transport with ER implies a functional connection between ER and mRNA. Although She2p itself is dispensable for ER inheritance, its genomic deletion results in loss of localization of the above-described subset of mRNAs. The recent observation that She2p directly associates with membranes independently from She3p or Myo4p indicates that membrane-tethered She2p is responsible for binding of mRNAs to the cortical ER (Fig. 1A and E).

In membrane-free ASH1 mRNPs, She3p is required for specific RNA recognition of She2p. In the case of membrane-bound She2p it is still an unresolved issue whether She3p is also required for specific RNA-recognition. A number of recent studies suggest that such tethering of mRNAs to ER in a signal-recognition particle (SRP)-independent fashion is a rather common mechanism (reviewed in ref. 9 and 10). Since cortical ER is inherited into the daughter cell also in a SHE2-deficient strain, a second open question remains how She3p and Myo4p are tethered to the ER (Fig. 1E). Complex reconstitution experiments showed that She2p is required for Myo4p dimerization and is thus needed for processive movement (reviewed in ref. 15). It is therefore also unclear how Myo4p is activated in absence of She2p to mediate efficient ER inheritance (Fig. 1E).

The Concept of Multimerization for mRNP Localization

In yeast, multiple zip-code elements exist in the ASH1 mRNA and in few other localizing transcripts. Considering the observation that each motor-containing SHE complex contains two binding sites for zip-code elements, every mRNA with multiple zip-codes should potentially be able to concatenate SHE complexes into larger particles. This hypothesis is supported by the in vivo observation that each transport particle contains several ASH1-mRNA molecules, suggesting complex oligomerization also in the cell (Fig. 1F). In vitro reconstitution experiments with RNAs bearing two zip-code elements confirmed that zip-code-mediated oligomerization of SHE complexes can occur.

In single particle motility assays Slawek and colleagues found that mRNAs with multiple zip-code elements show increased processivity of movement. While these particles were produced at non-stoichiometric ratios, a second study with mRNPs assembled with their correct stoichiometries did not find such zip code-dependent differences in motility. Although the latter study suggests that there is no positive influence on processive movement caused by RNA-mediated oligomerization, the possibility exists that due to diverging subcellular localizations such strong sub-stoichiometric ratios could occur in the cell. However, due to the fact that stoichiometrically assembled ASH1 particles achieved run-lengths and velocities comparable to in vivo observations it is unclear if a positive effect of multiple zip-codes on processivity would be required in vivo.

There could also be other reasons why multimerization by multi-zip code mRNAs is important for a yeast cell. For instance it could be advantageous to co-transport several mRNAs with a similar function. So-called post-transcriptional operons might be better co-regulated if they are transported in the same particle. This interpretation would be beneficial for instance for the several mRNAs being associated with cortical ER. The majority of these mRNAs encode for proteins in membrane biogenesis and function. Double-fluorescence staining in vivo indeed showed that two different mRNAs can be co-transported in the same particle, suggesting that co-regulation could indeed occur.

ASH1 mRNA is repressed during its transport by Pufo and Khd1. For the other localizing mRNAs it is unclear, whether translational repression occurs by Pufo and Khd1. It is therefore tempting to speculate on translational repression of a subset of localizing mRNAs exclusively via the previously described multimerization of complexes into larger SHE particles.

The impact of mRNP multimerization has already been reported for oskar mRNA transport in Drosophila oocytes. The binding of the poly pyrimidine tract-binding protein hnRNP (PTB) to multiple sites of the oskar 3'UTR mediates the formation of higher-order RNPs and translational repression. The 3'UTR of oskar mRNA also contains a dimerization element that interacts via kissing-loop between two RNA molecules and contributes to the enrichment of oskar mRNP at the posterior pole of the oocyte. Such an RNA-mediated dimerization might also participate in the above described PTB-dependent translational repression of oskar mRNA.

RNA- and DNA-binding proteins show a significant enrichment of low-complexity (LC) regions when compared with the entire proteome. For a long time, the functional implications of such low-complexity regions in RNA- and DNA-binding proteins were not well understood. A recent study found that (G/S-Y-G/S) motif-enriched LC regions in RNA-binding proteins like Fused in Sarcoma/Translocated in Sarcoma (FUS), Heterogeneous nuclear ribonucleoproteins A1 and 2 (hnRNPA1/2), Cytotoxic Granule-Associated RNA.
References

1. Holt CE, Bullock SL. Subcellular mRNA localization in animal cells and why it matters. Science 2009; 326:1212-6; PMID:19965463; http://dx.doi.org/10.1126/science.1176488

2. Jansen RP, Niessing EA. Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes—an overview. Curr Protein Pept Sci 2012; 13:284-93; PMID:22708485; http://dx.doi.org/10.2174/1389203128012010189493

3. Marchand V, GC, L. Esprius A. An intracellular transmission control protocol: assembly and transport of ribonucleoprotein complexes. Curr Opin Cell Biol 2012; 24:202-10; PMID:22778045; http://dx.doi.org/10.1016/j.ceb.2012.12.014

4. Fritzsche R, Karka D, Binningt KL, Ang FY, Herad-Farlow JE, Tolmino M, Doyle M, Bauer KE, Thomas S, Planyavsky M, et al. Interaction of two diverse RNA granules links mRNA localization to transcription repression in neurons. Cell Rep 2013; 5:1749-62; PMID:23450690; http://dx.doi.org/10.1016/j.celrep.2013.11.023

5. Kani Y, Dohlman H, Hirokawa N. Kinesin transports mRNA: isolation and characterization of an RNA-translocating granule. Neuron 2004; 43:513-25; PMID:15312650; http://dx.doi.org/10.1016/j.neuron.2004.07.022

6. Maher-Laporte M, Berthiaume F, Moreau M, Julien LA, Lapointe G, Mourer M, DeGrosseliers L. Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain. PLoS One 2010; 5:e11350; PMID:20596529; http://dx.doi.org/10.1371/journal.pone.0011350

7. Oefinger M, Wei KE, Rogers R, De Graeve JA, Chait BT, Atchison JD, Rout MP. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods 2007; 4:951-6; PMID:17922018; http://dx.doi.org/10.1038/nmeth1011

8. Gohre V, Haag G, Feldbrugge M. RNA biology in fungal pathophysiologs. PLoS Pathog 2013; 9: e1003617; PMID:24166612; http://dx.doi.org/10.1371/journal.ppat.1003617

9. Hermesh O, Jansen RP. Take the (RN)A-train: localization of mRNA to the endoplasmic reticulum. Biochim Biophys Acta 2013; 1833:2519-25; PMID:23353632; http://dx.doi.org/10.1016/j.bbamcr.2013.01.015

10. Kraut-Cohen J, Genter JE. Addressing mRNAs to the ER: cis interactions at play? Trends Biochem Sci 2010; 35:459-69; PMID:20346679; http://dx.doi.org/10.1016/j.tibs.2010.02.006

11. Hafner M, Landthaler M, Haug T, Vermeulen SC, Burger L, Khorshid M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010; 141:129-41; PMID:20377350; http://dx.doi.org/10.1016/j.cell.2010.03.009

12. Licitaitis DD, Mele A, Fuk JJ, Ule J, Kayeke M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, et al. HTTS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 2008; 456:464-9; PMID:18978775; http://dx.doi.org/10.1038/nature07488

13. Maher-Laporte M, DeGrosseliers L. Genome-wide identification of Staufen2-bound mRNAs in embryonic rat brains. MBM Rep 2010; 43:344-8; PMID:20510018; http://dx.doi.org/10.5483/MBMRep.2010.43.344

14. Herad-Farlow JE, Shurangdhara T, Li X, Pfeifer P, Tauber S, Onesse D, Herranna A, Thomas S, Bakosova A, Farlow AR, et al. Staufen2 regulates neuronal target RNAs. Cell Rep 2013; 5:1511-8; PMID:23460961; http://dx.doi.org/10.1016/j.celrep.2013.11.039

15. Heym RG, Niessing EA. Principles of mRNA transport in yeast. Curr Biol 2012; 22:1843-53; PMID:22159587; http://dx.doi.org/10.1016/j.cub.2012.11.092

16. Cosma MP. Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commandant. EMBO Rep 2006; 5:953-7; PMID:15459976; http://dx.doi.org/10.1038/sj.embr.7400251

17. Nasmuth K. Molecular analysis of a cell lineage. Nature 1983; 302:670-6; PMID:6339953; http://dx.doi.org/10.1038/302670a

18. Bohola N, Jansen RP, Shin TH, Nasmuth K. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 1996; 84:699-709; PMID:8672608; http://dx.doi.org/10.1016/S0092-8674(00)80108-X

19. Sil A, Herrnkonitz I. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 1996; 84:771-22; PMID:86825409; http://dx.doi.org/10.1016/S0092-8674(00)80149-1

20. Jansen RP, Dowzer C, Michaelis C, Galova M, Niessing EA, She2p is a novel RNA-binding protein that recruits a transcriptional unit to the Myo4p-She3p complex to ASH1 mRNA. EMBO J 2000; 19:5692-601; PMID:11101531; http://dx.doi.org/10.1038/38015

21. Long RM, Gu W, Lorimer E, Singer RH, Charrtrand P, She2p is a novel RNA-binding protein that recruits the Mlp4p-She3p complex to ASH1 mRNA. EMBO J 2000; 19:5692-601; PMID:11101531; http://dx.doi.org/10.1038/38015

22. Muller M, Richter K, Heuck A, Kremmer E, Buchner J, Jansen RP, Niessing EA. Formation of She2p emitters is required for mRNA binding, mRNA assembly, and localization. RNA 2009; 15:2002-12; PMID:19710866; http://dx.doi.org/10.1038/sj.embor.7405309

23. Niessing EA, Hurtelmaier S, Zenklusen D, Singer RH, Burley SK. She2p is a novel RNA binding protein with a basic helical hairpin motif. Cell 2004; 119:491-502; PMID:15537539; http://dx.doi.org/10.1016/j.cell.2004.10.018

24. Takizawa PA, Vale RD. The myosin motor. Myosin, binds Ash1 mRNA via the adapter protein, Shep. Proc Natl Acad Sci U S A 2000; 97:5273-8; PMID:10792032; http://dx.doi.org/10.1073/pnas.08053897

25. Toi H, Fujisawa-Kamada K, Irie K, Takai Y, Todo S, Tanaka K, Shep4p/Dmn1p interacts with the motor domain of unconventional myosins in the budding yeast, Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:2375-49; PMID:12880826; http://dx.doi.org/10.1091/mbc.E02-09-0616

26. Wessle S, Arndt M, Jansen RP. The UCS domain protein Shep binds to myosin motor domains and is essential for class I and class V myosin function. Cell Biol 2003; 13:715-24; PMID:12725728; http://dx.doi.org/10.1038/sj.emboj.7400261

27. Shi H, Blögel B, UNC-45/CRO1/Shep (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region. Proc Natl Acad Sci U S A 2010; 107:21382-7; PMID:21158842; http://dx.doi.org/10.1073/pnas.1010381017

Outlook

It is interesting to see that mechanistic key findings from yeast are conserved in other species. Synergistic RNA binding of zipcode, the requirement of a nuclear history for proper cytoplasmic mRNA localization, complex reorganization at the nuclear pore and at the site of destination, as well as complex oligomerization of mRNPs are common principles found not only in yeast. Thus, this model organism will continue to provide essential information for understanding such general principles of mRNA localization.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We like to thank Birgit Singer-Krüger and Ralf-Jansen for critical comments on this manuscript.
32. Evangelista M, Zagnitond S, Boone C. Formin- signaling effectors for assembly and polarization of actin filaments. J Cell Sci 2003; 116:2603-11; PMID: 12775772; http://dx.doi.org/10.1242/jcs.00611

33. Hesserer AP. Distinct roles for Khd1p in the localization and expression of bud-localized mRNAs in yeast. RNA 2008; 14:2333-47; PMID:18805955; http://dx.doi.org/10.1016/j.rna.2010.05.050

34. Irie K, Tadauchi T, Takizawa PA, Vale RD, Matsudo K, Herskowitz I. The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. EMBO J 2002; 21:1158-67; PMID:11867544; http://dx.doi.org/10.1093/emboj/csf167

35. Paquin N, Menade P, Poirier G, Donato D, Drouet E, Chraptand P. Local activation of yeast ASH1 mRNA translation through phosphorylation of Khd1p by the caskine kinase Yck1p. Mol Cell 2007; 26:809-91; PMID:17588515; http://dx.doi.org/10.1016/j.molcel.2007.05.016

36. Gu W, Deng Y, Zenklenus D, Singer RH. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA and Ash1p in yeast. Genes Dev 2004; 18:1452-65; PMID:15198983; http://dx.doi.org/10.1101/gad.1519904

37. Deng Y, Singer RH, Gu W. Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and requires Khd1p phosphorylation. Genes Dev 2008; 22:1037-50; PMID:18413716; http://dx.doi.org/10.1101/gad.1611308

38. Long RM, Gu W, Meng X, Gonzàlvez G, Singer RH, Chraptand P. An exclusively nuclear RNA-binding protein affects asymmetric localization of ASH1 mRNA and Ash1p in yeast. J Cell Biol 2001; 153:307-18; PMID:11309412; http://dx.doi.org/10.1083/jcb.153.2.307

39. Urbaini CR, Gonzàlvez GB, Aris JP, Long RM. Loc1p is required for efficient assembly and nuclear export of the 60S ribosomal subunit. Mol Gen Genomics 2006; 276:369-77; PMID:16871394; http://dx.doi.org/10.1007/s00438-006-0151-7

40. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Shi H, Singh N, Esselborn F, Blobel G. Structure of a yeast PUF family protein, Puf6p, represses mRNA translation through phosphorylation of Spt4-Spt5/DSIF promotes mRNA localization to the microreticulum to the incipient bud in Saccharomyces cerevisiae. Genes Dev 1998; 12:357-69; PMID:9450930; http://dx.doi.org/10.1101/gad.12.3.357

41. Hynes RH, DeRisi JL, Wilhelm JE, Vale RD, Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Brenowitz M, Girvin M, Levy M, Almo SC, Singer RH. The brain-specific double-stranded RNA-binding protein Staufen2: asymmetric, cytoplasmic RNA transport. RNA 2007; 13:625-42; PMID:17449729; http://dx.doi.org/10.1016/j.rna.2007.02.004

42. Hanner M, Lidschreiber M, Siebert M, Leike K, Schmiduller M, Heym RG, Mayer A, Kramer K, Schmiduller M, Moorthy BT, Ellenberger J, Jansen RP. Ribonucleoprotein complex assembly initiates cytoplasmic RNA localization. Mol Cell 2007; 25:4752-66; PMID:17499354; http://dx.doi.org/10.1016/j.molcel.2007.06.020

43. Hutter M, Heym RG, Mayer A, Kramer K, Schmiduller M, Moorthy BT, Jansen RP, Dieterich C. Major function of C19/C19-AR I, Ephrussi A. Control of bicoid mRNA. Mol Cell 2002; 10:1941-9; PMID:12226546; http://dx.doi.org/10.1016/s0043-8899(02)00252-1

44. Ghosh S, Marchand V, Gáspár I, Ephrussi A. Control of RNP mobility and localization by a splicing-dependent structure in oskar mRNA. Nat Struct Mol Biol 2012; 19:2491-9; PMID:22028360; http://dx.doi.org/10.1038/nsmb.2257

45. Han Y, Hrubec S, Schiavo RH, Gu W, ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell 2008; 27:8340-51; PMID:17893325; http://dx.doi.org/10.1016/j.mcb.2007.11.018

46. Gu W, Pan F, Zhang H, Basell GJ, Singer RH. A predominately nuclear protein affecting cytoplasmic localization of beta-actin mRNA in thalidomide and neurons. J Cell Biol 2002; 156:441-51; PMID:11781334; http://dx.doi.org/10.1083/jcb.20011553

47. Kress TL, Yoon JY, Mowry KL. mRNA complex assembly initiates cytoplasmic RNA localization. J Cell Biol 2004; 164:1055-62; PMID:15065272; http://dx.doi.org/10.1083/jcb.200309145

48. Singer RH. mRNA zippers for cytoplasmic addresses. Curr Biol 1993; 3:719-21; PMID:15355871; http://dx.doi.org/10.1016/0960-9822(93)90079-4

49. Berendes E, Charrondier R, Bensoumy M, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Mol Cell 1998; 2:437-45; PMID:9809655; http://dx.doi.org/10.1016/S0925-4773(00)00148-1

50. Ollero C, Poirier G, Gendron P, Bougouinie E, Major F, Chraptand P. Identification of a conserved mRNA motif essential for She2p recognition and mRNA localization to the yeast bud. Mol Cell Biol 2005; 25:4732-6; PMID:15899876; http://dx.doi.org/10.1128/MCB.25.11.4732-4743

51. Jambhekar A, Derisi JL. Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 2007; 13:625-42; PMID:17499279; http://dx.doi.org/10.1083/jcb.200611180

52. Kailasikil JO, Zhu X, Singer RH. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol 1994; 127:441-51; PMID:7925387; http://dx.doi.org/10.1083/jcb.127.3.441

53. Chao J, Parkovskiy V, Patel V, Levy M, Almo SC, Singer RH. ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev 2010; 24:148-58; PMID:20880952; http://dx.doi.org/10.1101/gad.1862910

54. Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Brenowitz M, Girvin M, Levy M, Almo SC, Singer RH, et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev 2012; 26:63-43; PMID:22215810; http://dx.doi.org/10.1101/gad.177428.111

55. Van De Bor V, Hartwood E, Jones C, F pinsl E, Davis I, farthone and the I factor in mRNA transport RNAs share common localization signals and machinery. Dev Cell 2005; 9:51-62; PMID:15993240; http://dx.doi.org/10.1016/j.devcel.2005.04.012

56. Macdonald PM, Kerr K. Mutational analysis of a RNA recognition element that mediates localization of bicoid mRNA. Mol Cell Biol 1998; 18:3788-95; PMID:9632476; http://dx.doi.org/10.1128/MCB.18.10.3788-3795

57. Macdonald PM, Kerr K, Smith JL, Leask A. RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. Development 1993; 118:1233-43; PMID:28628360

58. Burton M, Mueller A, Bulkolc SL, Ephrussi A, A stem-loop structure directs oskar mRNA to microtubule minus ends. RNA 2014; 20:429-39; PMID:24572808; http://dx.doi.org/10.1038/nmb.2441

59. Bulkolc SL, Ringel I, Ihn-Fhkovitzc D, Lukavsky PJ. A-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat Struct Mol Biol
83. Lin D, Pestova TV, Hellen CU, Tiedge H. Translation of an mRNA domain reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J 1995; 14:3563-71; PMID:7628456.

84. Khattar A, Macias MJ, Gibson TJ, Nilges M, Pastore A. Structure of the mRNA binding domain of E. coli RNase III. EMBO J 1995; 14:3572-84; PMID:7682457.

85. Bycroft M, Grünert S, Murzin AG, Proctor M, St Johnston D. NMR solution structure of a dRNA binding domain from Drosophila: structure, dynamics and activity. Prostate, Functional control by a small RNA: dendritic BC1 RNA. EMBO J 1998; 17:7505-13; PMID:9857205; http://dx.doi.org/10.1093/emboj/17.24.7505.

86. Tiedge H. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein 2. Nature 1990; 348:515-20; PMID:2147232; http://dx.doi.org/10.1038/s348515a.

87. Nobes C, Gippert GP, Soman KV, Case DA, Wright PE. Three-dimensional solution structure of a single zin finger DNA-binding domain. Science 1989; 245:635-7; PMID:2536871; http://dx.doi.org/10.1126/science.2456357.

88. Czaplinski K, Audus B, Vasileva S, Murzin AG, Proctor M, St Johnston D. Crystal structure at 1.92 Å resolution of the RNA-protein interaction complex. Nature 2005; 434:666-70; PMID:15800629; http://dx.doi.org/10.1038/nature03462.

89. Buytendijk F, Vendrana G, Miki D, Macchi P, Thomas S, Huet C, Barbieux E, Richer JD. Functional analysis of the dRNA transport by a class V myosin. Nat Struct Mol Biol 2013; 20:952-7; PMID:23812374; http://dx.doi.org/10.1038/nsmb.2626.

90. Lange S, Katayama Y, Schmid M, Burkacky O, Braüche C, Lamb DC, Jansen RP. Simultaneous transport of different localized mRNAs revealed by live-cell imaging. Traffic 2008; 9:1256-67; PMID:18485054; http://dx.doi.org/10.1111/j.1600-0854.2008.00673.x.

91. Heym RG, Zimmermann D, Edelmann FT, Israel L, Okken Z, Kovar DR, Niessing D. In vitro reconstitution of an mRNA-transport complex reveals mechanical insights into the fragile X syndrome. Cell 2009; 139:1319-30; PMID:20540080; http://dx.doi.org/10.1016/j.sbi.2010.04.001.

92. Sladek TE, Bockwoldt CS, Hong MS, Trybus KM. Single-molecule reconstitution of mRNA transport by a class V myosin. Nat Struct Mol Biol 2013; 20:952-7; PMID:23812374; http://dx.doi.org/10.1038/nsmb.2626.

93. brows et al. The positional, structural, and sequence requirements of the Drosophila TLS RNase L domain. EMBO J 2003; 22:2291-301; PMID:12604094.

94. Czaplinski K, Matrajt IW. 40S0 interacts with VgYRBP/Vera and hNRNP in binding the Vg1-localization element. RNA 2006; 12:2123-22; PMID:16373488; http://dx.doi.org/10.1001/gad.531009.

95.כלל, הדר נ. סיוע בביולוגיה של mRNA. "mind the gap". 서울: 2002; 9:768-94; http://dx.doi.org/10.1016/S0960-9822(99)80145-6.

96. Castello A, Fischer B, Eichelbaum K, Horus R, Beckmann BM, Strine C, Davey NE, Humphreys DT, Press T, Steinmetz LM. Translation into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012; 149:3933-46; PMID:22658674; http://dx.doi.org/10.1016/j.cell.2012.04.031.

97. Castello A, Fischer B, Eichelbaum K, Horus R, Beckmann BM, Strine C, Davey NE, Humphreys DT, Press T, Steinmetz LM. Translation into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012; 149:3933-46; PMID:22658674; http://dx.doi.org/10.1016/j.cell.2012.04.031.

98. De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, De Camilli P. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein 2. Nature 1990; 348:515-20; PMID:2147232; http://dx.doi.org/10.1038/s348515a.

99. Nobes C, Gippert GP, Soman KV, Case DA, Wright PE. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 1989; 245:635-7; PMID:2536871; http://dx.doi.org/10.1126/science.2456357.

100. Cohen RS, Zhang S, Dollar GL. The positional, structural, and sequence requirements of the Drosophila TLS RNase L domain. EMBO J 2003; 22:2291-301; PMID:12604094.

101. Cohen RS, Zhang S, Dollar GL. The positional, structural, and sequence requirements of the Drosophila TLS RNase L domain. EMBO J 2003; 22:2291-301; PMID:12604094.

102. Cohen RS, Zhang S, Dollar GL. The positional, structural, and sequence requirements of the Drosophila TLS RNase L domain. EMBO J 2003; 22:2291-301; PMID:12604094.

103. Cohen RS, Zhang S, Dollar GL. The positional, structural, and sequence requirements of the Drosophila TLS RNase L domain. EMBO J 2003; 22:2291-301; PMID:12604094.

104. Cohen RS, Zhang S, Dollar GL. The positional, structural, and sequence requirements of the Drosophila TLS RNase L domain. EMBO J 2003; 22:2291-301; PMID:12604094.
motility uniquely adapted to transport mRNA. J Cell Biol 2007; 178:1193-206; PMID:17893244; http://dx.doi.org/10.1083/jcb.200707080

123. Hodges AR, Kremenetsova EB, Trybus KM. She3p binds to the tail of yeast myosin V and prevents it from dimerizing, forming a single-headed motor complex. J Biol Chem 2008; 283:6906-14; PMID:18175803; http://dx.doi.org/10.1074/jbc.M708865200

124. Chung S, Takizawa PA. Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. J Cell Biol 2010; 189:755-67; PMID:20457760; http://dx.doi.org/10.1083/jcb.200912011

125. Kremenetsova EB, Hodges AR, Bookwalter CS, Sla-dewski TE, Travaglia M, Sweeney HL, Trybus KM. Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex. J Cell Biol 2011; 195:631-41; PMID:22084309; http://dx.doi.org/10.1083/jcb.201106146

126. Amrute-Nayak M, Bullock SL. Single-molecule assays reveal that RNA localization signals regulate dynein-dynactin copy number on individual transcript cargoes. Nat Cell Biol 2011; 14:416-23; PMID:23666877; http://dx.doi.org/10.1038/ncb2446

127. Bullock SL, Nicol A, Gross SP, Zicha D. Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr Biol 2006; 16:1447-52; PMID:16860745; http://dx.doi.org/10.1016/j.cub.2006.05.055

128. Soundararajan HC, Bullock SL. The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. Elife (Cambridge) 2014; Sc01596; PMID:24737859; http://dx.doi.org/10.7554/eLife.01596

129. Schmid M, Jaedicke A, Du TG, Jansen R-P. Coordination of endoplasmic reticulum and mRNA localization to the yeast bud. Curr Biol 2006; 16:1538-43; PMID:16890529; http://dx.doi.org/10.1016/j.cub.2006.06.025

130. Genu C, Fundakowski J, Hermesh O, Schmid M, Jansen RP. Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J Cell Biol 2013; 288:32384-93; PMID:24056570; http://dx.doi.org/10.1074/jcb.2013056431

131. Chartrand P, Meng XH, Singer RH, Long RM. Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr Biol 1999; 9:333-6; PMID:10209102; http://dx.doi.org/10.1016/S0960-9822(99)80144-4

132. Haim L, Ziper G, Arotov S, Gent JE. A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat Methods 2007; 4:409-12; PMID:17417645

133. Keene JD, Tenenbaum SA. Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 2002; 9:1161-7; PMID:12086614; http://dx.doi.org/10.1016/S1097-2765(02)00559-2

134. Müller M, Heuck A, Niessing D. Directional mRNA transport in eukaryotes: lessons from yeast. Cell Mol Life Sci 2007; 64:171-80; PMID:17131056; http://dx.doi.org/10.1007/s00018-006-6286-1

135. Besso F, López de Quinto S, Marchand V, Trucco A, Ephrussi A. Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 2009; 23:195-207; PMID:1913445; http://dx.doi.org/10.1101/gad.505709

136. Michelitsch MD, Weissman JS. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci U S A 2000; 97:11910-5; PMID:11050225; http://dx.doi.org/10.1073/pnas.97.22.11910

137. Kwon I, Kata M, Xu T, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012; 149:753-67; PMID:22579281; http://dx.doi.org/10.1016/j.cell.2012.04.017

138. Michelitsch MD, Weissman JS. The influence of dynein processivity control, MAPs, and microtubule ends on directional movement of a localising mRNA. Elife (Cambridge) 2014; Sc01596; PMID:24737859; http://dx.doi.org/10.7554/eLife.01596

139. Kwon I, Kata M, Xu T, Xie S, Corden JL, McKnight SL. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 2013; 155:1049-60; PMID:24267890; http://dx.doi.org/10.1016/j.cell.2013.10.053

140. Kwon I, Kata M, Xu T, Xie S, Corden JL, McKnight SL. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 2013; 155:1049-60; PMID:24267890; http://dx.doi.org/10.1016/j.cell.2013.10.053

141. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406-15; PMID:12824337; http://dx.doi.org/10.1093/nar/gkg595