The handle http://hdl.handle.net/1887/43550 holds various files of this Leiden University dissertation.

Author: Brunsveld-Reinders, A.H.
Title: Communication in critical care: measuring and monitoring quality of care to improve patient safety
Issue Date: 2016-10-13
A comprehensive method to develop a checklist to increase safety of intra-hospital transport of critically ill patients

Anja H. Brunsveld-Reinders
M. Sesmu Arbous
Sander G. Kuiper
Evert de Jonge

Critical Care 2015 May 7;19:214
Abstract

Introduction: Transport of critically ill patients from the Intensive Care Unit (ICU) to other departments for diagnostic or therapeutic procedures is often a necessary part of the critical care process. Transport of critically ill patients is potentially dangerous with up to 70% adverse events occurring. The aim of this study was to develop a checklist to increase safety of intra-hospital transport (IHT) in critically ill patients.

Method: A three-step approach was used to develop an IHT checklist. First, various databases were searched for published IHT guidelines and checklists. Secondly, prospectively collected IHT incidents in the LUMC ICU were analyzed. Thirdly, interviews were held with physicians and nurses over their experiences of IHT incidents. Following this approach a checklist was developed and discussed with experts in the field. Finally, feasibility and usability of the checklist was tested.

Results: Eleven existing guidelines and five checklists were found. Only one checklist covered all three phases: pre-, during- and post-transport. Recommendations and checklist items mostly focused on the pre-transport phase. Documented incidents most frequently related to patient physiology and equipment malfunction and occurred most often during transport. Discussing the incidents with ICU physicians and ICU nurses resulted in important recommendations such as the introduction of a standard checklist and improved communication with the other departments. This approach resulted in a generally applicable checklist, adaptable for local circumstances. Feedback from nurses using the checklist were positive, the fill in time was 4.5 minutes per phase.

Conclusion: A comprehensive way to develop an intra-hospital checklist for safe transport of ICU patients to another department is described. This resulted in a checklist which is a framework to guide physicians and nurses through intra-hospital transports and provides a continuity of care to enhance patient safety. Other hospitals can customize this checklist to their own situation using the methods proposed in this paper.
Introduction

Critically ill patients are frequently transported between the Intensive Care Unit (ICU) and other sections of the hospital for diagnostic and/or therapeutic interventions. 1-3 Unfortunately there is an increased risk of an adverse event during intra-hospital transport (IHT). 4 The first documentation that IHT is potentially dangerous was shown in 1970: during transport, arrhythmia occurred in 84% of patients at high risk of cardiovascular events. 5 Subsequent studies reported incidents in between 4.2 to 70.0% of critically ill patients during IHT. 1-3,6-8 Incidents were mostly related to equipment failure (39 to 45%) 6-8, and physiological deterioration of the patient including hypotension up to 47% and hypoxia (20 to 29%). 3 Specific knowledge on the risk of particular incidents during IHT can contribute to improved safety but so far little is known about what kind of incidents occur during intra-hospital transport of critically ill patients.

Measures to reduce incidents include better pre-transport planning, the introduction of standardized procedures related to personnel, organisation and equipment during transport and the use of checklists during the preparation phase. 3,6-10 Indeed, some guidelines on optimal IHT 11,12 are available but they are not easily translated into practical measures to reduce incidents. As an alternative, checklists are practical and can provide tools to improve safety. 13

The aim of our study was to develop a checklist covering the pre-transport preparation phase, the actual transport phase and the ICU reinstallation (post-transport) phase, to improve safety during intra-hospital transport of adult critically ill patients.

Methods

This study was conducted in a 29-bed, adult patient mixed tertiary ICU at the Leiden University Medical Center (LUMC), the Netherlands. Three complementary methods were sequentially applied to develop the checklist. These consisted of (1) a review of the available literature on IHT guidelines and checklists, (2) an analysis of incidents related to IHT at the LUMC and (3) an inventory of what could go wrong during IHT and how to prevent it accumulation through structured interviews with ICU doctors and ICU nurses. Based upon the study results, a checklist was developed and the feasibility and usability of the checklist were tested during a one-month period.
Definitions
For the purpose of this study we explicitly divided intra-hospital transport into three phases, and for the literature search we determined whether these three phases were addressed in the guidelines and checklists. Furthermore, we specifically focused on the separate phases when analysing the reported incidents and in the interviews with doctors and nurses.

The pre-transport phase is the phase in which the patient is prepared for transport. The focus is on the patient’s severity of illness and stability, on the kind of monitoring and therapy the patient currently requires and also on what the patient is likely to need during the transport process. The transport phase comprises the transport from the ICU to another department and vice versa as well as the period during the diagnostic or therapeutic procedure. The post-transport phase is the phase when the patient has returned to the ICU, in which ICU monitoring and earlier ICU therapies have to be reinstalled, and the patient has to be stabilised. This phase requires 0.5 to 1 h after transport and must be considered as part of the transport process. An incident is defined as ‘any event or outcome which could have reduced, or did reduce the safety margin for the patient. It may or may not have been preventable and may or may not have involved an error on the part of the health care team’.

Review of the literature
Our review of the literature focused on guidelines and checklists on intra-hospital transport of critically ill patients. We searched in PubMed, Embase, Web of Science, COCHRANE, CINAHL, Academic Search Premier and ScienceDirect; from inception until 12 January 2014. The databases were searched for medical literature with the following terms: ‘intensive care’, ‘critical care’, ‘critically ill’, ‘intra-hospital transport’, ‘in-hospital transport’, ‘radiology department’, ‘guideline’ and ‘checklist’. Reference lists of review articles and eligible primary studies were checked to identify cited articles not captured by electronic searches.

Study selection
Two authors (AB and SK) scrutinized titles and abstracts of all references for possible inclusion. Inclusion criteria were: transport of adult ICU patients in the hospital, checklist and/or recommendations for IHT. Excluded were articles related to paediatric critical care, inter-hospital transport, reviews and editorials. Full text articles were examined and any disagreement was resolved by a third author (SA).
Data abstraction
The following data were abstracted from the studies with guidelines or checklists: author/research group, year of publication, country and recommendations and checklist items related to the pre-transport-, transport- and post-transport phase.

Analysis of incidents related to transport
We collected and analysed IHT incidents in our hospital to learn about the types and contributing factors of IHT incidents. In our ICU all incidents are submitted to an electronic incident reporting system. All routinely registered transport-related incidents were analysed and categorized with respect to type, phase of occurrence and contributing factors in the period from 2006 to 2009. Subsequently, over a 12-months period in 2012 we specifically asked ICU physicians and ICU nurses to report all incidents occurring during intra-hospital transport. A questionnaire was developed to collect these incidents. Incidents were predefined and categorized as airway, breathing, circulation, disability, exposure and other. Also, a free-text field allowed the reporter to give a description of the situation during transport, perceived causes and actions that were taken. Incidents were analysed with respect to type, circumstances and contributing factors.

Interviews with experts in the field of intensive care
Structured interviews based on findings from the literature and collected incidents were undertaken with ten ICU physicians and fifteen ICU nurses. The interviews followed a questionnaire containing 53 questions on what could go wrong during the three phases of IHT and how to prevent it. Questions were related to equipment, patient physiology, monitoring, medication and fluid management; and covered all three transport phases. Additionally, for the transport phase questions focused on logistics and communication with the other department, and registration of vital signs. For the post-transport phase the focus was on the reinstallation of ICU therapies and monitoring and on the stabilization of the patient. A detailed overview of the questions used for the structured interview can be found in Appendix A.

Development of the checklist
The information gathered from the review of the literature, the analysis of transport-related incidents and the interviews with experts in the field were combined to develop the checklist. Checklist items were structured according to the different phases of transport. The checklist was introduced to ICU physicians and ICU nurses and was implemented in the Patient Data Management System of our ICU to be used in daily practice.
Feasibility and usability
The checklist was used by the ICU for one month, whereupon we collected data to investigate the feasibility and usability of the checklist. Nurses were asked to fill in a questionnaire after each transport documenting their experiences using this checklist. The following data were collected: overall rating of the checklist, the time it took to fill in the checklist, relevance of the questions, logistics of the filling in of the checklist, and questions that were felt to be lacking. The questionnaire is listed in Appendix B.

Ethical approval
The Medical Ethics Committee of the LUMC waived the need for ethical evaluation of the study due to the observational nature of the study. Consequently, the need for informed consent was not applicable.

Results

Review of the literature
In total eleven guidelines \(^{11,12,16-24}\) and five checklists on IHT \(^{25-29}\) were identified in the literature. The guidelines were developed in USA, Europe, India, Australia and New Zealand and described recommendations for intra-hospital transport as well as for inter-hospital transport. In the guidelines some basic principles regarding transport were defined for example, that a hospital transport protocol should be present \(^{11,16-18,21,22,24}\) and that the patient should receive the same level of basis physiologic monitoring during IHT as they received in the ICU. \(^{12,17-19,23}\) Three phases of transport were recognized. For each phase recommendations could be subdivided into categories namely (i) use of (monitoring) equipment, (ii) patient physiology, (iii) medication and fluids, (iv) organization and planning.

The pre-transport phase was most extensively described. In this phase, recommendations were related to the use of a transport trolley, equipment to secure airway, and preparation of monitoring, medication and fluids. With respect to patient physiology, a careful evaluation of the risk-benefit ratio should be made by the physician \(^{11,16-24}\) and special attention should be paid to the indication for transport. \(^{11,12,17,18,23,24}\) Other recommendations included: planning of personnel with the suggestion that a minimum of two qualified staff members, an ICU nurse and ICU physician, should accompany the patient \(^{11,12,16-24}\) and the need for clear communication to ensure that the patient is expected at the destination department \(^{16,20,22-24}\) and to confirm that the receiving party is ready. \(^{11,12,20,23,24}\)

In the transport phase an important goal should be to continue monitoring during the transport as well as during the diagnostic or therapeutic procedure \(^{11,17,18}\) and to
check and record the patient's vital signs on a regular basis, at least every 15 minutes. Furthermore, medication and fluid management and maintenance of physiologic stability should be of key importance.

Back in the ICU, after installation and stabilization of the patient, it is essential to check monitoring and medication and to document the course of the transport in the medical chart. With respect to the latter, attention should be paid to the status of the patient during and after transport and also to the events and interventions that occurred during transport. All the transport equipment should be cleaned and plugged back in the main power supply to ensure that the equipment is available for another transport to the receiving department for a diagnostic or therapeutic intervention.

In the literature, five checklists for intra-hospital transport of critically ill patients were found, of which one was specifically developed for obese patients. The main focus of the checklists was on the pre-transport phase. Only the checklist developed by Jarden also described items for the transport and post-transport phase. Checklist items in the pre-transport phase related to the patient, monitoring equipment, communication and quality of the team. Before transport, the clinical stability of the patient and the necessity of the transport should be assessed. Medication, fluids and the equipment should be checked including transport trolley, monitoring devices, and additional equipment. Items related to planning and organization should also receive attention. For example, in order to guarantee a safe transport, items were formulated with respect to the composition of the transport team, namely the presence of a physician and a minimum number of ICU nurses.

During transport, when the patient has arrived at the destination department, various items should be checked and ensured. First, the continuity of the oxygen supply and the electronic supply for transport trolley and medication pumps should be checked. Furthermore, vital signs and administration of medication should be registered frequently.

Upon return in the ICU, it is essential to reinstall respiratory support devices, medication and monitoring, and to describe in the medical chart the complications that have occurred during transport and to recheck the used equipment. An overview of the content of the published checklists is shown in Table 1.

Analysis of incidents related to IHT
Over a 36-month period, a total of 5,937 incidents were reported in our incident registration system, of which 118 incidents (2.0%) were IHT related. Of the 118 IHT incidents 38% occurred in the pre-transport phase, 47% in the transport phase and 15% in the post-transport phase.
Table 1. An overview of the content of published intra-hospital (IHT) checklists

Author	Pope28	Fanara26	Jarden27	Roland29	Choi5	Current checklist
	(2003)	(2010)	(2010)	(2010)	(2011)	LUMC
Pre-transport						
Necessity of transport is confirmed	+					
Patient assessment pre-transport	+	+				
Wrist band patient or consent form	+	+	+		+	
Transport team is notified	+	+				
Equipment and materials are gathered	+	+	+	+	+	
Check sufficient oxygen level	+					
Extra intravenous fluid and medication	+	+	+	+	+	
Check sufficient intravenous medication	+	+	+			
Stop enteral feeding and enteral insulin					+	
Check tubes and lines	+					
Check and set monitor alarms	+	+				
Check and set transport ventilator alarms	+				+	
Insert i.v. cannula in case of computed tomography with contrast					+	
Preparation and equipment adapted to procedure						
(magnetic resonance imaging)					+	
Fill in magnetic resonance imaging safety questionnaire					+	
Register baseline vital signs		+/-			+	
Receiving department is notified	+					
Transport route is clear	+					
During transport						
Check and plug in equipment at destination	+				+	
Registration of administered fluids/medication	+				+	
Registration vital signs every 20 minutes	+				+	
Post-transport						
Start enteral feeding and enteral insulin	+				+	
Turn on humidifier	+				+	
Change HME filter	+				+	
Change suction bag if used	+				+	
Complement transport bag	+				+	
Report occurred incidents/events	+				+	
Re-check equipment and materials	+				+	

*Current checklist Leiden University Medical Center (LUMC) refers to the final checklist that was based on reviewing the available literature on IHT checklists and guidelines, an analysis of transport related incidents and a structured interview with ICU physicians and ICU nurses. HME = Heat and moisture exchanger.

In the pre-transport phase most reported incidents were related to equipment and organizational issues. Examples of equipment-related incidents were: low battery of the ventilator and/or medication pumps, use of a mechanical ventilator not suitable for the MRI and an empty oxygen tank. Examples of organisation-related incidents were
inappropriate preparation of the patient leading to delay of transport or inadequate communication with the receiving department.

Also in the transport phase most reported incidents were related to equipment and organisation. Examples of equipment incidents during this phase included failure of the transport trolley and its monitor. Examples of the organisational incidents were in availability of CT or MRI equipment.

Post-transport, most reported incidents were related to airway and respiratory management, such as failure to install adequate oxygen level or to reconnect humidifier of the ventilator. An overview of the most common incidents is shown in Table 2.

Table 2. Top ten most commonly reported intra-hospital transport (IHT)-related incidents

Top 10 routinely registered IHT-related incidents	Pre-transport	Per-transport	Post-transport	Total
Equipment dysfunction	9	24	1	34
Preparation before transport	30	0	0	30
Lack of communication with radiology department	1	5	0	6
Dislocation of intravenous lines and tubing	0	12	1	13
Oxygen tank empty	4	4	0	8
Increase need vasopressor or inotropics	0	3	0	3
Equipment not available radiology department	0	5	0	5
Lack of documentation in medical chart	0	0	2	2
Failure reconnect humidifier on ventilator	0	0	11	11
Hypoglycemia	0	0	2	2

Top 10 prospectively collected IHT-related incidents	Pre-transport	Per-transport	Post-transport	Total
Equipment dysfunction	7	24	2	33
Preparation before transport	6	5	0	11
Lack of communication with radiology department	5	5	0	10
Dislocation in intravenous line	0	7	2	9
Oxygen tank empty	4	2	0	6
Increase need vasopressor or inotropics	5	15	6	26
Low blood pressure §	21	44	18	83
Hypoxia §/increased O2 demand	5	18	12	35
Increased need sedatives or opioids due to agitation	2	17	2	21
Hypertension §	2	9	3	14

* Analysis of transport related incidents that were identified from routinely collected incidents in an electronic incident reporting system in Leiden University Medical Center. § For 12 months, all incidents occurring during intra-hospital transport were prospectively collected.

§ No definitions were used to define hypotension, hypertension and hypoxia. Physicians and nurses were able to judge whether it was deviated.

In 2012, we prospectively collected transport-related incidents. In this period, 503 transports to the radiology department were undertaken. In 334/503 (66%) of IHTs an ICU physician and ICU nurse accompanied the patients to the radiology department. In 133/503 (27%) of IHTs three ICU staff members, an ICU physician and two ICU nurses and in 16/503 (3%) four ICU staff members, two ICU physicians and two ICU nurses accompanied the patient. When the patient was not intubated the nurses sometimes accomplished the transport without a physician 20/503 (4%). The median duration of
the transport was 55 minutes (range 10 to 305 minutes). In 77% the reason for the IHT was to perform a CT scan and in 10% an angiography.

In 133 of the 503 transports (26%), one or more incidents occurred, and in total, 358 incidents were reported. Incidents occurred in the transport phase (215/358, 60%), in the pre-transport phase (80/358, 22%) and in the post-transport phase (63/358, 18%). The ten most frequently reported incidents during transport are shown in Table 2. In the transport phase the incidents were related to hemodynamic instability, respiratory instability, equipment dysfunction and increased need of medication. In the pre-transport and post-transport phase incidents were related to hemodynamic instability. The lack of communication with the radiology department before and during transport also occurred regularly.

Interviews with experts in the field of intensive care

Ten physicians and fifteen nurses were interviewed to discuss the findings from the literature and the collected incidents. A transport protocol existed in our hospital but 90% of the physicians and 73% of the nurses were not familiar with the protocol. The protocol described the composition of the accompanying team, the monitoring and respiratory equipment to be used, and the medication and additional equipment that should be available during transport. Incidents considered most important by physicians and nurses in the pre-transport phase were an empty oxygen tank, lack of sufficient intravenous access, missing equipment, trolley failure, inadequate length intravenous tubing and miscommunication with the radiology department. In the transport phase, nurses and physicians mentioned potential incidents such as dislocation of an intravenous canulla or endotracheal tube, low battery of the pumps, impaired view of the patient in the radiology department and patient instability. In the post-transport phase patient instability and incorrect reinstallation of respiratory support and medication were commonly reported.

To enhance a safer transport, several improvement measures were suggested by physicians and nurses such as introduction of a checklist for the three phases of transport and standardization of the transport procedure and improved communication with the radiology department. A list of recommendations can be found in Table 3. Furthermore, the physicians and nurses indicated that they would feel more confident if they received more education and practical training.
Table 3. Recommendations from ICU physicians and ICU nurses

Recommendations
Team
Ventilated patient at least one ICU physician and one ICU nurse
Not ventilated patient and:
o ≤ 1 inotropic, one ICU nurse
o ≤ 1 inotropic, respiratory insufficient and arrhythmia, one ICU physician and one ICU nurse

| **Education** |
| Focus on how to operate equipment of transport trolley |
| More education for ICU physicians and ICU nurses to execute transport of ICU patients |

| **Equipment and materials** |
| Equipment on trolley is equal to equipment in the ICU |
| Check equipment and materials prior to transport |
| Check extra length of intravenous lines for MRI prior to transport |
| Check and calculate oxygen level in oxygen tank |
| Defibrillator is standard equipment on transport trolley |
| Check all equipment on transport trolley |
| Batteries are fully charged prior to transport |

| **Organization and procedure** |
| Introduction of an intra-hospital checklist |
| Formal training in transport procedure to MRI |
| Standard Operating Procedure |
| Standardization of IHT procedure |

| **Communication** |
| Confirm appointment with the other department prior to transport |
| Improve communication with the other department to prevent incidents during transport |
| Debriefing with ICU physician and ICU nurse after transport |

| **Medication** |
| Check and prepare intravenous medication prior to transport |
| Extra intravenous medication and intravenous fluids |

Recommendations suggested by ICU physicians and ICU nurses when they were interviewed to discuss safety and hazards of IHT and the findings from the literature and the collected incidents.

Development of the checklist

Based on the literature, we chose the checklist of Jarden27 as a base to develop our own checklist. The other four checklists were used to complement our new checklist. All the checklists had several items in common such as check equipment/materials25-29, medication26-28 and intravenous access.25-29 We included these items in our checklist. One item, only found in the checklist by Pope was ‘whether the receiving department is notified’ and we included this item also in our checklist.28 An overview of the items of the published checklists is shown in Table 1.

The final checklist developed as described above is presented in Figures 1 and 2. The basic principle of this checklist was to guide the physician and nurses through the different phases. In the pre-transport phase the focus is on required equipment, preparation of extra medication and intravenous fluids and checking of procedures such as the use of contrast fluid and kidney protection.
In the transport phase the focus is on the destination department with attention for the following items: plugging in the oxygen, monitoring equipment and keeping sight on the monitor during the procedure and registration of vital signs, and medication and intravenous fluids.

In the post-transport phase it is important to connect the patient to the equipment in the ICU with specific attention to switching on the humidifier, nutrition, insulin and checking the correct dose of medication via the perfusor. Also, to assure that required equipment is ready for use for the next trip, the transport trolley and transport bag should be checked and connected to the power supply. Finally, documentation in medical charts including registration of incidents should be checked.

Figure 1. Newly developed Leiden University Medical Center (LUMC) checklist side one.

i.v., intravenous; MRI, Magnetic resonance imaging; EtCO₂, End Tidal CO₂; HME, Heat and moisture exchanger; ET/TT, Endotracheal tube/Tracheal tube; PDMS, Patient Data Management System.
Figure 2. Newly developed Leiden University Medical Center (LUMC) checklist side two.

iv., intravenous; HR, Heart rate; BP, blood pressure; MAP, Mean arterial pressure; CVP, Central venous pressure; PAP, Pulmonary artery pressure; Vent mode, Ventilation mode; FIO2, fraction of inspired oxygen; PEEP/PS, Positive End Expiratory Pressure/Pressure Support; RR, Respiratory rate; SpO2, Peripheral capillary oxygen saturation; EtCO2, End Tidal CO2; GCS, Glasgow coma scale; ICU, Intensive care unit; PDMS, Patient Data Management System; HME, Heat and moisture exchanger.
Feasibility and usability
In order to investigate the feasibility and usability of the checklist, data was collected over a one month period using the checklist. During this month, 41 transports were made to the Radiology department. In 29 of these transports, the checklist was used and a questionnaire was later filled in by the nurses about their experiences using the checklist. Reasons for not using the checklist during transport were either due to forgetfulness of the team to use it (5/29) or to the urgency of the transport (7/29). The time it took to fill in the checklist was on average 4.5 minutes per phase (range 3-10). Nurses stated that the user friendliness of the checklist was good, it was comprehensive and complete, it reduced the chance of forgetting things, and it was easy to apply because it was implemented in the Patient Data Management System. A point of criticism was the documentation of vital signs every 20 minutes on the paper-based checklist that was used in the transport phase. This was considered time consuming. Digitally input documentation was preferred. Items that were missed in the checklist were information on the completeness of the transport bag and patient assessment in the pre- and post-transport phase. Information on the transport phase and post-transport phase was filled in after the transport.

Discussion

We developed a checklist to improve safety of intra-hospital transport by using three complementary methods: a review of the available guidelines and checklists in the literature, an analysis of transport-related incidents and an inventory of what could go wrong during IHT and how to prevent it by interviews with ICU doctors and nurses. Importantly our checklist includes three phases of intra-hospital transport. Furthermore, we propose that our methods of local modification of an existing checklist on IHT may be a useful procedure for any hospital aiming at improving safety of intra-hospital transport.

The basic principles for intra-hospital and inter-hospital transport are the same, namely to ensure safety during this potentially dangerous transport. We were specifically interested in intra-hospital transports because they occur frequently on the ICU and because the number of incidents during these transports is still very high. Our checklist is based on an earlier checklist by Jarden. This is the only checklist that discerns three different transport phases. In other checklists the focus was only on the pre-transport phase namely to check the patient and equipment before transport. If the patient is checked before transport it lowers the risks of incidents during transport. However, patient transport is not limited to the pre-transport phase. It is essential that the entire transport process of critically ill patients is covered from start to end.
We wanted to adapt the checklist of Jarden\(^{27}\) to our own situation. It is often necessary to customise a checklist because aspects of the checklist may not be suitable to a specific local situation. Also in our case, some of our hospital policies and procedures differed from the described checklist items. Therefore, ICUs need to customise the available checklists to their own situation taking into account the hospital procedures and circumstances in which a transport will be conducted.

A comprehensive method was used to develop the checklist. This included a review of the literature for available guidelines and checklists, an analysis of incidents related to transport in our hospital and an inventory of ICU physicians’ and nurses’ expert opinion over IHT. Due to this approach, we obtained different types of knowledge available on the subject and we were better able to build a comprehensive and practical checklist. This approach is supported by Hales \textit{et al.}\(^{30}\) who stated that peer-reviewed guidelines and evidence-based best practice should be considered to form the body of a checklist and that checklists should also reflect the local hospital and institution policies and procedures.

There are some differences between the Jarden's checklist\(^{27}\) and ours. We added some items that are specifically related to our local situation and some that are a more generic addition for checklists on IHT. For example, in the pre-transport phase checking the availability of sufficient intravenous medication was added. While Jarden's checklist included a patient assessment and documentation section in the pre-transport phase, we eliminated many of these items because this information can be found in our Patient Data Management System. We added a few items to the checklist that were specific for our IHT policy. Examples of these are extending the length of intravenous tubing, hyper hydration for kidney protection and an MRI safety questionnaire for transport to MRI. In the post-transport phase the focus was on connecting the patient to the available equipment in the ICU and on checking the rate of administration of intravenous pumps with the Patient Data Management System. These items were important for our ICU due to frequently reported incidents that decreased the patient safety.

General guidelines and checklists provide guidance in developing a local checklist. The concept of local adaptation of the transport checklist developed by Jarden\(^{27}\) was not previously described. In our opinion, customizing a checklist according to local policies and procedures improves the commitment of nurses and physicians to use this checklist.

A checklist can be seen as an important instrument to avoid incidents. It is of added value if it is introduced accompanied with education and training. Barriers to using checklists in healthcare are related to operational and cultural aspects.\(^{13}\) Filling in a checklist adds to the nurse’s workload. However, in our small feasibility study, it only took 4.5 minutes (range 3 to 10) per phase and it appeared that nurses were on the whole positive about using a transport checklist.
Our study has a few limitations. First, we have not yet investigated whether our checklist indeed decreases the number of IHT-related incidents and improves safety. This will be the subject of future research. Furthermore, the checklist is by definition most useful in our specific hospital because it is customized to the local hospital and ICU procedures and protocols. Third, while we implemented the pre- and post-transport phase checklist into the Patient Data Management System, the checklist items in the transport phase are still registered on paper (vital signs, medication and fluids). This may result in a potentially lower adherence during this phase.

A strong point of our study was the comprehensive way we developed the checklist. Particularly our inventory of what could go wrong during IHT and how to prevent it, which we achieved through interviews with ICU doctors and nurses, will have contributed to a clinically relevant checklist and to the applicability and acceptance of the checklist in daily practice by ICU doctors and nurses. We think that this checklist can contribute to the safety of ICU patients that need to be transported during their ICU stay. However, to confirm this, the next step to be taken is testing and evaluating the efficacy of the checklist: is patient safety increased with the checklist and are ICU nurses and ICU physicians satisfied using it in daily practice? Our checklist, though specifically adapted for one hospital, can be used in other hospitals as well. Each hospital should assess whether the items from the checklist are applicable to their specific situation. If necessary, local modifications can be made.

Conclusion

In conclusion, we applied a comprehensive approach to develop an intra-hospital checklist for safe transport of ICU patients to another department and back to the ICU. This checklist is not only based on available guidelines and checklists in the literature but also on reported incidents and expert opinions of ICU physicians and nurses. This resulted in a checklist that is a framework to guide ICU physicians and nurses through intra-hospital transports and provides a continuity of care to enhance patient safety.

Key messages

- A comprehensive method was applied to develop a checklist which can be used to increase the safety of intra-hospital transport of critically ill patients.
- The checklist covers the transport of critically ill patients from the start until the end of the process, including all three transport phases.
- Customizing the checklist according to local policies and procedures - using the comprehensive method suggested in this study - is important to improve the commitment of nurses and physicians.
List of abbreviations
CT Computed tomography
ICU Intensive Care Unit
IHT Intra-hospital transport
MRI Magnetic resonance imaging

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AB contributed to the development of the manuscript concept and design, carried out the study and performed primary writing and editing of all drafts of the manuscript. SA contributed to the development of the manuscript concept and design and performed editing of all drafts of the manuscript. SG contributed to the development of the manuscript concepts and design, performed the literature search, analysed incidents and interviewed ICU physicians and ICU nurses and performed editing of the manuscript. EdJ contributed to the development of the manuscript concept and design and performed editing of all drafts of the manuscript. All authors read and approved the final version of the manuscript.
References

1. Day D. Keeping patients safe during intrahospital transport. Crit Care Nurse 2010;30:18-32.
2. Caruana M, Culp K. Intrahospital transport of the critically ill adult: a research review and implications. Dimens Crit Care Nurs 1998;17:146-56.
3. Waydhas C. Intrahospital transport of critically ill patients. Crit Care 1999;3:R83-R89.
4. Lahner D, Nikolic A, Marhofer P, et al. Incidence of complications in intrahospital transport of critically ill patients—experience in an Austrian university hospital. Wien Klin Wochenschr 2007;119:412-16.
5. Taylor JO, Chulay, Landers CF, Hood W, Jr., Abelman WH. Monitoring high-risk cardiac patients during transportation in hospital. Lancet 1970;2:1205-8.
6. Lovell MA, Mudaliar MY, Klineberg PL. Intrahospital transport of critically ill patients: complications and difficulties. Anaesth Intensive Care 2001;29:400-405.
7. Beckmann U, Gillies DM, Berenholtz SM, Wu AW, Pronovost P. Incidents relating to the intra-hospital transfer of critically ill patients. An analysis of the reports submitted to the Australian Incident Monitoring Study in Intensive Care. Intensive Care Med 2004;30:1579-85.
8. Papson JP, Russell KL, Taylor DM. Unexpected events during the intrahospital transport of critically ill patients. Acad Emerg Med 2007;14:574-77.
9. Fromm RE, Jr., Dellinger RP. Transport of critically ill patients. J Intensive Care Med 1992;7:223-33.
10. Wallace PG, Ridley SA. ABC of intensive care. Transport of critically ill patients. BMJ 1999;319:368-71.
11. American College of Critical Care Medicine, Society of Critical Care Medicine, and American Association of Critical-Care Nurses. Transporting critically ill patients. Health Devices 1993;22:590-591.
12. Ferdinande P. Recommendations for intra-hospital transport of the severely head injured patient. Working Group on Neurosurgical Intensive Care of the European Society of Intensive Care Medicine. Intensive Care Med 1999;25:1441-43.
13. Hales BM, Pronovost PJ. The checklist—a tool for error management and performance improvement. J Crit Care 2006;21:231-35.
14. Venkataraman ST, Orr RA. Intrahospital transport of critically ill patients. Crit Care Clin 1992;8:525-31.
15. Beckmann U, West LF, Groombridge GJ, et al. The Australian Incident Monitoring Study in Intensive Care: AIMS-ICU. The development and evaluation of an incident reporting system in intensive care. Anaesth Intensive Care 1996;24:314-19.
16. Australasian College for Emergency Medicine, Australian and New Zealand College of Anaesthetists; Joint Faculty of Intensive Care Medicine. Minimum standards for intrahospital transport of critically ill patients. Emerg Med (Fremantle) 2003;15:202-4.
17. Whiteley S, Macartney I, Mark J, Barratt H, Binks R. Guidelines for the transport of the critically ill adult, 3rd edition, The Intensive Care Society. 2011.
18. Australasian College for Emergency Medicine (ACEM), Australian and New Zealand College of Anaesthetists (ANZCA), College of Intensive Care Medicine of Australia and New Zealand (CICM). Guidelines for Transport of Critically Ill patients. 2013. http://www.anzca.edu.au/resources/professional-documents/pdfs/ps52-2015-guidelines-for-transport-of-critically-ill-patients.pdf/at_download/file.
19. Chang DW. AARC Clinical Practice Guideline: in-hospital transport of the mechanically ventilated patient—2002 revision & update. Respir Care 2002;47:721-23.
20. Gupta S, Bhagotra A, Gulati S, Sharma J. Guidelines for the Transport of Critically Ill Patients. JK Science 2004;6:109-12.
21. Lieshout van EJ. Richtlijn voor het transport van Intensive Care patienten. NVIC monitor 2001;5:22-25.
22. Quenot JP, Milesi C, Cravoisy A, et al. Intrahospital transport of critically ill patients (excluding newborns) recommendations of the Societe de Reanimation de Langue Francaise (SRLF), the Societe Francaise d’Anesthesie et de Reanimation (SFAR), and the Societe Francaise de Medecine d’Urgence (SFMU). Ann Intensive Care 2012;2:1.

23. Warren J, Fromm RE, Jr., Orr RA, Rotello LC, Horst HM. Guidelines for the inter- and intrahospital transport of critically ill patients. Crit Care Med 2004;32:256-62.

24. SIAARTI study group for safety in Anesthesia and Intensive Care. Recommendations on the transport of critically ill patient. Minerva Anestesiol 2006;72:XXXVII-LVII.

25. Choi HK, Shin SD, Ro YS, Kim dK, Shin SH, Kwak YH. A before- and after-intervention trial for reducing unexpected events during the intrahospital transport of emergency patients. Am J Emerg Med 2012;30:1433-40.

26. Fanara B, Manzon C, Barbot O, Desmettre T, Capellier G. Recommendations for the intrahospital transport of critically ill patients. Crit Care 2010;14:R87.

27. Jarden RJ, Quirke S. Improving safety and documentation in intrahospital transport: development of an intrahospital transport tool for critically ill patients. Intensive Crit Care Nurs 2010;26:101-7.

28. Pope BB. Provide safe passage for patients. Nurs Manage 2003;34:41-46.

29. Roland D, Howes C, Stickles M, Johnson K. Safe intrahospital transport of critically ill obese patients. Bariatric Nursing & Surgical Patient Care 2010;5:65-70.

30. Hales B, Terblanche M, Fowler R, Sibbald W. Development of medical checklists for improved quality of patient care. Int J Qual Health Care 2008;20:22-30.
Appendix A. Questionnaire used for the structured interview of ICU physicians and ICU nurses for intra-hospital transport (translation from Dutch version)

Part A. Introduction and general questions

1. Profession
 - ICU Nurse
 - Student ICU Nurse
 - Resident
 - Fellow
 - ICU physician

2. Employment at ICU
 - < 1 year
 - 1 to 5 year
 - 5 to 10 year
 - > 10 year

3. How often do you transport patients to the radiology department per month?

4. Is there a protocol to transport patients?
 - Yes
 - No

 If 'Yes', do you know the contents of the protocol?
 - Yes
 - No
 - NA

 Do you examine the protocol before transport?
 - Never
 - Sometimes
 - Often
 - Always

 If you examine the protocol, what is the reason for examining the protocol?

5. How would you grade 'I am afraid to transport patient to the radiology department' on a scale from 0 “very scared” to 10 “not scared”.

6. How would you grade ‘I feel confident to transport the patient to the radiology department’ on a scale from 0 “totally not confident” to 10 “very confident”.

7. What is the most important factor as to why you feel afraid or not confident during transport?
Part B. Questions related to the pre-transport phase

8. Before transport is the destination clear?
 - Yes
 - No
 If 'Yes', do you know the best route through the hospital?
 - Yes
 - No
 If 'No', please specify ..

9. How often is the room number at destination incorrect?

10. How many ICU staff members are sufficient to accompany the patient to the radiology department if:
 The patient is not intubated, please specify
 The patient is intubated, please specify

11. The following questions refer to which and how many ICU staff members, in your opinion, should accompany the patient during transport in the following situations.

 A. The patient is not intubated and who should accompany (nurse, resident, fellow or intensivist):
 - Number of inotropic drugs < 1
 - Number of inotropic drugs > 1
 - Agitated patient
 - Respiratory failure
 - Recent arrhythmia

 B. The patient is intubated and who should accompany (nurse, resident, fellow or intensivist):
 - Number of inotropic drugs < 1
 - Number of inotropic drugs > 1
 - Agitated patient
 - Recent arrhythmia
 - Haemodynamic failure
 - External equipment (e.g. ECMO or IABP)

12. Several devices are used during transport. Which of these devices are difficult to use?
 - Transport monitor
 - Transport ventilator
 - Suction device
 - Air tank
 - Oxygen tank

13. How would you grade 'the operating controls' of the following devices 'easy to use', 'difficult' or 'neutral'?
 - Transport monitor
 - Transport ventilator
 - Suction device
 - Air tank
 - Oxygen tank
14. Which problems are you dealing with in operating the devices?

15. What would you, at minimum, monitor during transport?
 - Monitor ECG
 - Invasive blood pressure
 - Respiratory rate
 - Pulse oximetry
 - Non-invasive blood pressure
 - Central venous pressure
 - Intra cranial blood pressure
 - Pressure arterial pulmonary
 - Electroencephalogram

16. Do you check the level of oxygen in the oxygen tank before transport?
 - Never
 - Sometimes
 - Often
 - Always

17. What is in your opinion the minimum level of oxygen in the oxygen tank before transport?

18. Do you take the transport bag with you during transport?
 - Yes
 - No

19. Did you ever use the transport bag (equipment and drugs for emergency use)?
 - Yes
 - No

20. Did you ever miss something in the transport bag?
 - Yes
 - No
 If 'Yes', please specify ...

21. Do you always take the defibrillator with you?
 - Yes
 - No
 If 'Yes', please specify...
 If 'No', please specify...

22. Do you check if there is a sufficient amount of drugs available during transport?
 - Never
 - Sometimes
 - Often
 - Always

23. Do you take extra intravenous medication during transport?
 - Yes
 - No
If 'Yes', please specify which medication:
- Inotropic
- Analgesia
- Sedative
- Muscle relaxant
- Not applicable
- Other, namely ..

24. When extra intravenous medication was taken, have you ever experienced that you don’t have enough medication?

25. How would you grade how often 'there is insufficient medication' on a scale from 0 “never” to 10 “every transport”?

26. Do you take pre-prepared medication?
 If 'Yes' please specify which medication ..

27. Do you take extra intravenous fluids?
 In case of 'Yes' please specify which fluids and how many

28. In case of CT-Scan or MRI do you check the length of the intravenous tubes?
 - Never
 - Sometimes
 - Often
 - Always

29. Before transport, discussion takes place between physician and nurse regarding the situation of the patient?
 - Never
 - Sometimes
 - Often
 - Always
 - Not applicable

30. Who is notified that you are “on transport”?
 - Colleague
 - Head unit
 - None
 - Other, namely ..

31. Do you inform the radiology department?
 - Never
 - Sometimes
 - Often
 - Always

32. Which incidents occur frequently in the pre-transport phase?

33. Which improvement measures should be taken in this phase?
Part C. During transport questions

34. Do you record the following data during transport?
 - Vital signs
 - Given medication
 - Given intravenous fluids
 If more than 1 'Yes', how do you record this?

35. Do you discuss who is responsible to check the monitor in case of:
 a. During transport?
 - Yes
 - No
 b. During the procedure in the radiology department?
 - Yes
 - No

36. How is the visual on the transport monitor;
 a. During transport at from the ICU to the radiology department and vice versa
 - None
 - Insufficient
 - Sufficient
 - Good
 - Excellent
 b. During the procedure in the radiology department
 - None
 - Insufficient
 - Sufficient
 - Good
 - Excellent

37. Do you give extra sedation to the patient during transport?
 - Never
 - Sometimes
 - Often
 - Always
 Please specify the reason, ...

38. Do you give extra analgesia during transport?
 - Never
 - Sometimes
 - Often
 - Always
 Please specify the reason, ...

39. Do you give extra muscle relaxant to the patient during transport?
 - Never
 - Sometimes
 - Often
 - Always
 Please specify the reason, ...
40. The following questions refer to the cooperation with the radiology department.
 a. Is the radiology department ready when you arrive?
 - Never
 - Sometimes
 - Often
 - Always

 b. Personnel of the radiology department are helpful during the procedure?
 - Never
 - Sometimes
 - Often
 - Always

 c. Can you always plug in the oxygen and air?
 - Never
 - Sometimes
 - Often
 - Always

 d. How would you grade the technical skills of the personnel on a scale from 0 (poor) to 10 (excellent)?

 e. How would you grade the communication skills of the personnel on a scale from 0 (poor) to 10 (excellent)?

41. Which incidents occur frequently in the per-transport phase?

42. Which improvement measures should be taken in this phase?

Part D. Post-transport questions

43. In case of transport of the patient, do you report this in the medical chart?
 - Yes
 - No

 If 'Yes', what do you report (more answers possible)
 - Indication of transport
 - Duration of the transport
 - Patient status during transport
 - Action take in case of haemodynamic or respiratory failure
 - Incidents and complications
 - Extra intravenous medication given

 If 'No', please specify the reason

44. Which incidents occur frequently in the post-transport phase?

45. Which improvement measures should be taken in this phase?

Part E. General questions

46. Which transport related problems did you sometimes discover after transport of the patient?

47. In which circumstances would you refuse to transport the patient?
48. Would you refuse to transport the patient in the following situations?
 a. Positive End Expiratory Pressure
 □ Yes
 □ No
 If 'Yes', please specify at what level?
 b. Oxygen
 □ Yes
 □ No
 If 'Yes', please specify at what level?
 c. Inotropic
 □ Yes
 □ No
 If 'Yes', please specify at what level?

49. Do you think there is enough knowledge to ensure the safety during transport of patients if the transporter is an:
 a. ICU Physician
 □ Yes
 □ No
 b. ICU nurse
 □ Yes
 □ No
 If 'No', which improvement measures should be taken?

50. a. An examination is required before an ICU physician can accompany the patient?
 □ Yes
 □ No
 c. An examination is required before an ICU nurse can accompany the patient?
 □ Yes
 □ No

51. How would you grade your expertise in transport of critically ill patients on a scale from 0 (poor) to 10 (excellent)?

52. In your opinion which personnel (ICU nurse, ICU physician or both) is responsible for the following tasks;
 a. Preparation of the patient
 b. Coordination of the transport
 c. Completion of the transport bag
 d. Rechecking equipment and completion of the transport trolley

53. Several solutions can be introduced to enhance a safer transport. In your opinion, do the following solutions contribute to a safer transport?
 □ Extending protocol
 □ Checklist
 □ More education
 □ Transport nurse
 □ Other, namely ..
Appendix B. Questionnaire used to assess feasibility and usability of current checklist LUMC (translation from Dutch version)

Part A. Content of the Checklist

1. Did you miss questions in the checklist?
 a. In the pre-transport checklist?
 - Yes
 - No
 If 'Yes', please specify

 b. In the transport checklist?
 - Yes
 - No
 If 'Yes', please specify

 c. In the post-transport checklist?
 - Yes
 - No
 If 'Yes', please specify

2. Does the checklist contain unnecessary questions?
 - Yes
 - No
 If 'Yes', please specify

3. Did you skip checklist items while you used the checklist?
 - Yes
 - No
 If 'Yes', please specify

4. What is the reason for skipping these checklist items?

Part B. User friendliness

5. Was it easy to fill in the checklist?
 - Yes
 - No

6. Can you describe in your own words what you find useful or impractical for filling in the checklist?

7. When did you fill in the transport checklist?
 a. The pre-transport checklist?
 - Before transport
 - During transport
 - After transport

 b. The transport checklist?
 - Before transport
 - During transport
 - After transport
c. The post-transport checklist?
 - Before transport
 - During transport
 - After transport

8. Did you have sufficient time to fill in the checklist?
 a. The pre-transport checklist?
 - Yes
 - No
 b. The transport checklist?
 - Yes
 - No
 c. The post-transport checklist?
 - Yes
 - No

9. If 'No' for question 8, please specify …………………………….

10. What is your estimation of time you needed to fill in the checklist in the different phases? (in minutes)
 - Pre-transport
 - During transport
 - Post-transport

11. Did you check the checklist items by yourself?
 - Yes
 - No

12. Did you check the checklist items with a second person?
 - Yes
 - No

13. If the checklist items were checked with a second person, with whom did you check these items?

14. Why do you use the checklist – please specify in your own words?

15. In your opinion, will you recommend the checklist to a colleague?

16. If 'Yes' or 'No' for question 15, please specify………………………….

17. Any closing remarks?