THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters

Stephen PH Alexander1, Eamonn Kelly2, Alistair Mathie3, John A Peters4, Emma L Veale3, Jane F Armstrong5, Elena Faccenda5, Simon D Harding5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators

1 School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
2 School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
3 Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
4 Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
5 Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK

Abstract

The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14753. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

© 2019 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Overview: The majority of biological solutes are charged organic or inorganic molecules. Cellular membranes are hydrophobic and, therefore, effective barriers to separate them allowing the formation of gradients, which can be exploited, for example, in the generation of energy. Membrane transporters carry solutes across cell membranes, which would otherwise be impermeable to them. The energy required for active transport processes is obtained from ATP turnover or by exploiting ion gradients. ATP-driven transporters can be divided into three major classes: P-type ATPases; F-type or V-type ATPases and ATP-binding cassette transporters. The first of these, P-type ATPases, are multimeric proteins, which transport (primarily) inorganic cations. The second, F-type or V-type ATPases, are proton-coupled motors, which can function either as transporters or as motors. Last, are ATP-binding cassette transporters, heavily involved in drug disposition as well as transporting endogenous solutes. The second largest family of membrane proteins in the human genome, after the G protein-coupled receptors, are the SLC solute carrier family. Within the solute carrier family, there are a great variety of solutes transported, from simple inorganic ions to amino acids and sugars to relatively complex organic molecules like haem. The solute carrier family includes 65 families of almost 400 members. Many of these overlap in terms of the solutes that they carry. For example, amino acids accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43 families. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles. Some SLC family members remain orphan transporters, in as much as a physiologial function has yet to be determined. Within the SLC superfamily, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TM domain pro-

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Family structure

S399	ATP-binding cassette transporter family	S428	SLC8 family of sodium/calcium exchangers	S457	SLC27 family of fatty acid transporters
S399	ABCA subfamily	S429	SLC9 family of sodium/hydrogen exchangers	S458	SLC28 and SLC29 families of nucleoside transporters
S401	ABCB subfamily	S429	SLC10 family of sodium-bile acid co-transporters	S458	SLC28 family
S403	ABCG subfamily	S430	SLC11 family of proton-coupled metal ion transporters	S459	SLC29 family
S404	ABCD subfamily of peroxisomal ABC transporters	S431	SLC12 family of cation-coupled chloride transporters	S461	SLC30 zinc transporter family
S405	ABCG subfamily	S432	SLC13 family of sodium-dependent sulphate/carboxylate transporters	S461	SLC31 family of copper transporters
S406	F-type and V-type ATPases	S434	SLC14 family of facilitate uric acid transporters	S462	SLC32 vesicular inhibitory amino acid transporter
S407	V-type ATPase	S435	SLC15 family of peptide transporters	S463	SLC33 acetylCoA transporter
S408	P-type ATPases	S436	SLC16 family of monocarboxylate transporters	S464	SLC34 family of sodium phosphate co-transporters
S409	Phospholipid-transporting ATPases	S437	SLC17 family of phosphate and organic anion transporter family	S465	SLC35 family of nucleotide sugar transporters
S409	SLC2 family of hexose and sugar alcohol transporters	S438	Type I sodium-phosphate co-transporters	S466	SLC36 family of proton-coupled amino acid transporters
S410	SLC3 family of amino acid transporters	S439	Sialic acid transporter	S468	SLC37 family of phosphosugar/phosphate exchangers
S410	Glutamate transporter subfamily	S440	Vesicular glutamate transporters (VGLUTs)	S468	SLC38 family of sodium-dependent neutral amino acid transporters
S411	Alanine/serine/cysteine transporter subfamily	S441	Vascular nucleotide transporter	S469	System A-like transporters
S411	SLC3A family of amino acid transporters	S442	SLC18 family of amino acid transporters	S469	System N-like transporters
S412	SLC3C family of heteromeric amino acid transporters (HATs)	S443	SLC19 family of vitamin transporters	S470	Orphan SLC38 transporters
S412	SLC2 family of hexose and sugar alcohol transporters	S444	SLC20 family of sodium-dependent phosphate transporters	S470	SLC39 family of metal ion transporters
S413	Class I transporters	S445	SLC22 family of organic cation and anion transporters	S471	SLC40 iron transporter
S413	Class II transporters	S446	Organic cation transporters (OCT)	S472	SLC41 family of divalent cation transporters
S413	Class III transporters	S447	Organic zwartiters/cation transporters (OCTN)	S473	SLC42 family of Rhesus glycoprotein ammonium transporters
S414	Proton-coupled inositol transporter	S448	Organic ion transporters (OATs)	S473	SLC43 family of large neutral amino acid transporters
S415	SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)	S449	Urate transporter	S474	SLC44 choline transporter-like family
S415	SLC3 family	S450	Orphan or poorly characterized	S475	SLC45 family of putative sugar transporters
S416	SLC7 family	S451	Atypical SLC22B subfamily	S476	SLC46 family of folate transporters
S417	SLC4 family of bicarbonate transporters	S452	SLC23 family of ascorbic acid transporters	S477	SLC47 family of multidrug and toxin extrusion transporters
S417	Anion exchangers	S453	SLC24 family of sodium/potassium/calcium exchangers	S477	SLC48 heme transporter
S418	Sodium-dependent HCO₃⁻ transporters	S454	SLC25 family of mitochondrial transporters	S478	SLC49 family of FLVCR-related heme transporters
S418	SLC5 family of sodium-dependent glucose transporters	S455	Mitochondrial di- and tri-carboxylic acid transporter subfamily	S479	SLC50 sugar transporter
S419	Hexose transporter family	S456	Mitochondrial amino acid transporter subfamily	S479	SLC51 family of steroid-derived molecule transporters
S420	Choline transporter	S457	Mitochondrial phosphate transporters	S480	SLC52 family of riboflavin transporters
S421	Sodium iodide symporter, sodium-dependent multivitamin transporter and sodium-coupled monocarboxylate transporters	S458	Mitochondrial nucleotide transporter subfamily	S481	SLC53 Phosphate carriers
S422	Sodium myo-inositol cotransporter transporters	S459	Mitochondrial uncoupling proteins	S481	SLC54 Mitochondrial pyruvate carriers
S423	SLC6 neurotransmitter transporter family	S460	Miscellaneous SLC25 mitochondrial transporters	S482	SLC55 Mitochondrial cation/proton exchangers
S423	Monoamine transporter subfamily	S461	SLC26 family of anion exchangers	S482	SLC56 Sideroflexins
S424	GABA transporter subfamily	S462	Selective sulphate transporters	S483	SLC57 NiPA-like magnesium transporter family
S425	Glycine transporter subfamily	S463	Chloride/bicarbonate exchangers	S483	SLC58 MagT-like magnesium transporter family
S427	Neutral amino acid transporter subfamily	S464	Anion channels	S484	SLC59 Sodium-dependent lysophosphatidylcholine symporter family
S428	SLC22 family of organic cation and anion transporters	S465	Other SLC26 anion exchangers	S484	SLC60 Glucose transporters

Membrane topology predictions for other families suggest 3,4,6,7,8,9,10,11,12,13 or 14 TM domains. The SLC transporters include members which function as antiports, where solute movement in one direction is balanced by a solute moving in the reverse direction. Symports allow concentration gradients of one solute to allow co-transport of a second solute across a membrane. A third, relatively small group are equilibrative transporters, which allow solutes to travel across membranes down their concentration gradients. A more complex family of transporters, the SLC27 fatty acid transporters also express enzymatic function. Many of the transporters also express electrogenic properties of ion channels.
ATP-binding cassette transporter family

Overview: ATP-binding cassette transporters are ubiquitous membrane proteins characterized by active ATP-dependent movement of a range of substrates, including ions, lipids, peptides, steroids. Individual subunits are typically made up of two groups of 6TM-spanning domains, with two nucleotide-binding domains (NBD). The majority of eukaryotic ABC transporters are ‘full’ transporters incorporating both TM and NBD entities. Some ABCs, notably the ABCD and ABCG families are half-transporters with only a single membrane spanning domain and one NBD, and are only functional as homo- or heterodimers. Eukaryotic ABC transporters convey substrates from the cytoplasm, either out of the cell or into intracellular organelles. Their role in the efflux of exogenous compounds, notably chemotherapeutic agents, has led to considerable interest.

ABCA subfamily

Overview: To date, 12 members of the human ABCA subfamily are identified. They share a high degree of sequence conservation and have been mostly related with lipid trafficking in a wide range of body locations. Mutations in some of these genes have been described to cause severe hereditary diseases related with lipid transport, such as fatal surfactant deficiency or harlequin ichthyosis. In addition, most of them are hypothesized to participate in the subcellular sequestration of drugs, thereby being responsible for the resistance of several carcinoma cell lines against drug treatment [8].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature	ABCA1	ABCA3	ABCA4
Common abbreviation	ABC1, CERP	ABC3, ABCC	ABCR
HGNC, UniProt	ABCA1, O95477	ABCA3, Q99758	ABCA4, P78363
Selective ligands	bihelical apoA-I mimetic peptide 5A (Binding) [567]	–	–
Selective inhibitors	probucol [195, 676]	–	–
Comments	–	Loss-of-function mutations are associated with pulmonary surfactant deficiency	Retinal-specific transporter of N-retinylPE; loss-of-function mutations are associated with childhood-onset Stargardt disease, a juvenile onset macular degenerative disease. The earlier onset disease is often associated with the more severe and deleterious ABCA4 variants [216]. ABCA4 facilitates the clearance of all-trans-retinal from photoreceptor disc membranes following photoexcitation. ABCA4 can also transport N-11-cis-retinylidene-phosphatidyethanolamine, the Schiff-base adduct of 11-cis-retinal; loss of function mutation cause a buildup of lipofuscin, atrophy of the central retina, and severe progressive loss in vision [512].

Nomenclature	ABCA5	ABCA6	ABCA7	ABCA12
HGNC, UniProt	ABCA5, Q8WWZ7	ABCA6, Q8N139	ABCA7, Q8IZY2	ABCA12, Q86UK0
Comments	ABCA5 is a lysosomal protein whose loss of function compromises integrity of lysosomes and leads to intra-endolysosomal accumulation of cholesterol. It has recently been associated with Congenital Generalized Hypertrichosis Terminalis (CGHT), a hair overgrowth syndrome, in a patient with a mutation in ABCA5 that significantly decreased its expression [147].	A recent genome wide association study identified an ABCA6 variant associated with cholesterol levels [636].	Genome wide association studies identify ABCA7 variants as associated with Alzheimer's Disease [294].	Reported to play a role in skin ceramide formation [727]. A recent study shows that ABCA12 expression also impacts cholesterol efflux from macrophages. ABCA12 is postulated to associate with ABCA1 and LXR beta, and stabilize expression of ABCA1. ABCA12 deficiency causes decreased expression of Abca1, Abcg1 and Nr1h2 [215].

Comments: A number of structural analogues are not found in man: Abca14 (ENSMUSG000000062017); Abca15 (ENSMUSG00000054746); Abca16 (ENSMUSG00000051900) and Abca17 (ENSMUSG00000035435).
ABCB subfamily

Overview: The ABCB subfamily is composed of four full transporters and two half transporters. This is the only human subfamily to have both half and full types of transporters. ABCB1 was discovered as a protein overexpressed in certain drug resistant tumor cells. It is expressed primarily in the blood brain barrier and liver and is thought to be involved in protecting cells from toxins. Cells that overexpress this protein exhibit multi-drug resistance [142].

Nomenclature

Gene	Common abbreviation	HGNC, UniProt	Comments
ABCB1	MDR1, Pgp1	ABCB1, PO8183	Responsible for the cellular export of many therapeutic drugs. The mouse and rat have two Abcb1 genes (gene names; Abcb1a and Abcb1b) while the human has only the one gene, ABCB1.
ABCB2	TAP1	TAP1, Q03518	Endoplasmic reticulum peptide transporter is a hetero-dimer composed of the two half-transporters, TAP1 (ABCB2) and TAP2 (ABCB3). The transporter shuttles peptides into the endoplasmic reticulum where they are loaded onto major histocompatibility complex class I (MHC-I) molecules via the macromolecular peptide-loading complex and are eventually presented at the cell surface, attributing to TAP an important role in the adaptive immune response [568].
ABCB3	TAP2	TAP2, Q03519	
ABCB4	PGY3	ABCB4, P21439	Transports phosphatidylcholine from intracellular to extracellular face of the hepatocyte canalicular membrane [484]. Heterozygous ABCB4 variants contribute to mild cholestatic phenotypes, while homozygous deficiency leads to Progressive Intrahepatic Familial Cholestasis (PFIC) Type 3, and increased risk of cholesterol gallstones [291].
ABCB5	–	ABCB5, Q2M3G0	A drug efflux transporter that has been shown to identify cancer stem-like cells in diverse human malignancies, and is also identified as a limbal stem cell that is required for corneal development and repair [377, 670].
ABCB6	MTABC3	ABCB6, Q9NP58	Putative mitochondrial porphyrin transporter [374]; other subcellular localizations are possible, such as the plasma membrane, as a specific determinant of the Langereis blood group system [285]. Loss of Abcb6 expression in mice leads to decreased expression and activity of CYP450 [103].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature	ABCB7	ABCB8	ABCB9
Common abbreviation	ABC7	MABC1	TAPL
HGNC, UniProt	ABCB7, Q75027	ABCB8, Q9NUT2	ABCB9, Q9NP78
Comments	Mitochondrial; reportedly essential for haematopoiesis \[501\]. Deletion studies in mice demonstrate that Abcb7 is essential in mammals and substantiate a role for mitochondria in cytosolic Fe-S cluster assembly \[502\].	Mitochondrial; suggested to play a role in chemoresistance of melanoma \[177\]. Cardiac specific deletion of Abcb8 leads to cardiomyopathy and accumulation of mitochondrial iron, and is thus thought to modulate mitochondrial iron export \[305\].	A homodimeric transport complex that translocates cytosolic peptides into the lumen of lysosome for degradation \[145\].

Nomenclature	ABCB10	
Common abbreviation	MTABC2	
HGNC, UniProt	ABCB10, Q9NRK6	
Ligands	–	
Comments	Mitochondrial location; the first human ABC transporter to have a crystal structure reported \[575\]. ABCB10 is important in early steps of heme synthesis in the heart and is required for normal red blood cell development \[45, 606\].	Loss-of-function mutations are associated with progressive familial intrahepatic cholestasis type 2 \[590\]. ATP-dependent transport of bile acids into the confines of the canalicular space by ABCB11 (BSEP) generates an osmotic gradient and thereby, bile flow. Mutations in BSEP that decrease its function or expression cause Progressive Familial Cholestasis Type 2 (PFIC2), which in severe cases, can be fatal in the absence of a liver transplant. Drugs that inhibit BSEP function with IC50 values less than 25 \(\mu\)M \[450\] or decrease its expression \[228\] can cause Drug-Induced Liver Injury (DILI) in the form of cholestatic liver injury.
ABCC subfamily

Overview: Subfamily ABCC contains thirteen members and nine of these transporters are referred to as Multidrug Resistance Proteins (MRPs). MRP proteins are found throughout nature and mediate many important functions. They are known to be involved in ion transport, toxin secretion, and signal transduction [142].

Nomenclature	ABCC1	ABCC2	ABCC3
Common abbreviation	MRP1	MRP2, cMOAT	MRP3
HGNC, UniProt	ABCC1, P33527	ABCC2, Q92887	ABCC3, O15438
Inhibitors	WP814 (pKᵢ 7.2) [507]	PAK-104P (pKᵢ 5.4) [111]	–
Comments	Exhibits a broad substrate specificity [37], including LTC₄ (Kᵢ 97 nM [394]) and estradiol-17β-glucuronide [595].	Loss-of-function mutations are associated with Dubin-Johnson syndrome, in which plasma levels of conjugated bilirubin are elevated (OMIM: 237500).	Transports conjugates of glutathione, sulfate or glucuronide [67].

Nomenclature	ABCC4	ABCC5	ABCC6
Common abbreviation	MRP4	MRP5	MRP6
HGNC, UniProt	ABCC4, O15439	ABCC5, O15440	ABCC6, O95255
Inhibitors	estradiol disulfate (pIC₅₀ 6.7) [702]	compound 2 (pKᵢ 7.2) [541], sildenafil (pKᵢ 5.9) [541]	–
Comments	Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned [67]; reported to export prostaglandins in a manner sensitive to NSAIDS [523]	Although reported to facilitate cellular cyclic nucleotide export, this role has been questioned [67]	Loss-of-function mutations in ABCC6 are associated with pseudoxanthoma elasticum (OMIM: 264800).
Nomenclature	ATP-binding cassette, sub-family C (CFTR/MRP), member 8	ABCC9	
-------------	--	-------	
Systematic nomenclature	ABCC8	–	
Common abbreviation	SUR1	SUR2	
HGNC, UniProt	ABCC8, Q09428	ABCC9, O60706	
Selective inhibitors	repaglinide (pIC₅₀ 7) [680]	–	

Comments

The sulfonylurea drugs (acetohexamide, tolbutamide and glibenclamide) appear to bind sulfonylurea receptors and it has been shown experimentally that tritiated glibenclamide can be used to pull out a 140 kDa protein identified as SUR1 (now known as ABCC8) [522]. SUR2 (ABCC9) has also been identified [307]. However, this is not the full mechanism of action and the functional channel has been characterised as a hetero-octamer formed by four SUR and four Kir6.2 subunits, with the Kir6.2 subunits forming the core ion pore and the SUR subunits providing the regulatory properties [440]. Co-expression of Kir6.2 with SUR1, reconstitutes the ATP-dependent K⁺ conductivity inhibited by the sulfonylureas [307].

Associated with familial atrial fibrillation, Cantu syndrome and familial isolated dilated cardiomyopathy.

Single nucleotide polymorphisms distinguish wet vs. dry earwax (OMIM: 117800); an association between earwax allele and breast cancer risk is reported in Japanese but not European populations.

Comments: ABCC7 (also known as CFTR, a 12TM ABC transporter-type protein, is a CAMP-regulated epithelial cell membrane Cl⁻ channel involved in normal fluid transport across various epithelia and can be viewed in the Chloride channels section of the Guide. ABCC8 (ENSG00000006071, also known as SUR1, sulfonylurea receptor 1) and ABCC9 (ENSG00000069431, also known as SUR2, sulfonylurea receptor 2) are unusual in that they lack transport capacity but regulate the activity of particular K⁺ channels (Kir6.1-6.2), conferring nucleotide sensitivity to these channels to generate the canonical K$_{ATP}$ channels. ABCC13 (ENSG00000155288) is a possible pseudogene.

ABCD subfamily of peroxisomal ABC transporters

Transports → ATP-binding cassette transporter family → ABCD subfamily of peroxisomal ABC transporters

Overview: Peroxisomes are indispensable organelles in higher eukaryotes. They are essential for the oxidation of a wide variety of metabolites, which include: saturated, monounsaturated and polyunsaturated fatty acids, branched-chain fatty acids, bile acids and dicarboxylic acids [348]. However, the peroxisomal membrane forms an impermeable barrier to these metabolites. The mammalian peroxisomal membrane harbour three ATP-binding cassette (ABC) half-transporters, which act as homo- and/or heterodimers to transport these metabolites across the peroxisomal membrane.
ABCD subfamily

Transports → ATP-binding cassette transporter family → ABCG subfamily

Overview: This family of 'half-transporters' act as homo- or heterodimers; particularly ABCG5 and ABCG8 are thought to be obligate heterodimers. The ABCG5/ABCG heterodimer sterol transporter structure has been determined [389], suggesting an extensive intracellular nucleotide binding domain linked to the transmembrane domains by a fold in the primary sequence. The functional ABCG2 transporter appears to be a homodimer with structural similarities to the ABCG5/ABCG8 heterodimer [609].

Nomenclature	ABCG1	ABCG2	ABCG4	ABCG5	ABCG8
Common abbreviation	ABC8	ABCP	–	–	–
HGNC, UniProt	ABCG1, P45844	ABCG2, Q9UNQ0	–	ABCG5, Q9H222	ABCG8, Q9H221
Inhibitors	–	cyclosporin A (pKᵢ 6.3) [486]	–	–	–
Comments	Transports sterols and choline phospholipids [351]	Exhibits a broad substrate specificity, including urate and haem, as well as multiple synthetic compounds [351].	Putative functional dependence on ABCG1	The ABCG5/ABCG8 heterodimer transports phytosterols and cholesterol [389]. Loss-of-function mutations in ABCG5 or ABCG8 are associated with sitosterolemia (OMIM: 210250).	The ABCG5/ABCG8 heterodimer transports phytosterols and cholesterol [389]. Loss-of-function mutations in ABCG5 or ABCG8 are associated with sitosterolemia (OMIM: 210250).

Comments:

ABCD4 (ENSG00000119688, also known as PMP69, PXMP1-L or P70R) is located at the lysosome and is involved in the transport of vitamin B12 (cobalamin) from lysosomes into the cytosol [122].
Comments on ATP-binding cassette transporter family:
A further group of ABC transporter-like proteins have been identified to lack membrane spanning regions and are not believed to be functional transporters, but appear to have a role in protein translation [110, 490]: ABCE1 (P61221, also known as OABP or 2’-5’ oligoadenylate-binding protein); ABCF1 (Q8NE71, also known as ABC50 or TNF-α-stimulated ABC protein); ABCF2 (Q9UG63, also known as iron-inhibited ABC transporter 2) and ABCF3 (Q9NUQ8).

Further reading on ATP-binding cassette transporter family

Baker A et al. (2015) Peroxisomal ABC transporters: functions and mechanism. *Biochem. Soc. Trans.* 43: 959-65 [PMID:26517918]
Beis K. (2015) Structural basis for the mechanism of ABC transporters. *Biochem. Soc. Trans.* 43: 889-93 [PMID:26517899]
Chen Z et al. (2016) Mammalian drug efflux transporters of the ATP-binding cassette (ABC) family in multidrug resistance: A review of the past decade. *Cancer Lett.* 370: 153-64 [PMID:26499806]
Kemp S et al. (2011) Mammalian peroxisomal ABC transporters: from endogenous substrates to pathology and clinical significance. *Br. J. Pharmacol.* 164: 1753-66 [PMID:21488864]
Kerr ID et al. (2011) The ABCG family of membrane-associated transporters: you don’t have to be big to be mighty. *Br. J. Pharmacol.* 164: 1767-79 [PMID:21715590]
Kloudova A et al. (2017) The Role of Oxysterols in Human Cancer. *Trends Endocrinol. Metab.* 28: 485-496 [PMID:28410994]
López-Marqués RL et al. (2015) Structure and mechanism of ATP-dependent phospholipid transporters. *Biochim. Biophys. Acta* 1850: 461-475 [PMID:24746984]
Neul C et al. (2016) Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. *Trends Pharmacol. Sci.* 37: 904-932 [PMID:27659854]
Peña-Solórzano D et al. (2017) ABCG2/BCRP: Specific and Nonspecific Modulators. *Med Res Rev* 37: 987-1050 [PMID:28005280]
Robey RW et al. (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. *Nat Rev Cancer* 18: 452-464 [https://www.ncbi.nlm.nih.gov/pubmed/29643473]
Vauthier V et al. (2017) Targeted pharmacotherapies for defective ABC transporters. *Biochem. Pharmacol.* 136: 1-11 [PMID:28245962]

F-type and V-type ATPases

Transports → F-type and V-type ATPases

Overview: The F-type (ATP synthase) and the V-type (vacuolar or vesicular proton pump) ATPases, although having distinct subcellular locations and roles, exhibit marked similarities in subunit structure and mechanism. They are both composed of a ‘soluble’ complex (termed F₁ or V₁) and a membrane complex (F₀ or V₀). Within each ATPase complex, the two individual sectors appear to function as connected opposing rotary motors, coupling catalysis of ATP synthesis or hydrolysis to proton transport. Both the F-type and V-type ATPases have been assigned enzyme commission number E.C. 3.6.3.14

F-type ATPase

Transports → F-type and V-type ATPases → F-type ATPase

Overview: The F-type ATPase, also known as ATP synthase or ATP phosphohydrolase (H+-transporting), is a mitochondrial membrane-associated multimeric complex consisting of two domains, an F₀ channel domain in the membrane and an F₁ domain extending into the lumen. Proton transport across the inner mitochondrial membrane is used to drive the synthesis of ATP, although it is also possible for the enzyme to function as an ATPase. The ATP5O subunit (oligomycin sensitivity-conferring protein, OSCP, [P48047]), acts as a connector between F₁ and F₀ motors. The F₁ motor, responsible for ATP turnover, has the subunit composition α3β3γ3δϵ. The F₀ motor, responsible for ion translocation, is complex in mammals, with probably nine subunits centring on A, B, and C subunits in the membrane, together with D, E, F₂, F₆, G₂ and 8 subunits. Multiple pseudogenes for the F₀ motor proteins have been defined in the human genome.

Information on members of this family may be found in the online database.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
V-type ATPase

Transducers → F-type and V-type ATPases → V-type ATPase

Overview: The V-type ATPase is most prominently associated with lysosomes in mammals, but also appears to be expressed on the plasma membrane and neuronal synaptic vesicles. The V₁ motor, responsible for ATP turnover, has eight subunits with a composition of A-H. The V₀ motor, responsible for ion translocation, has six subunits (a-e).

Information on members of this family may be found in the online database.

Further reading on F-type and V-type ATPases

Brandt K *et al*. (2015) Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance. *Biol. Chem.* 396: 1031-42 [PMID:25838297]

Krah A. (2015) Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition. *Prog. Biophys. Mol. Biol.* 119: 94-102 [PMID:26140992]

Marshansky V *et al*. (2014) Eukaryotic V-ATPase: novel structural findings and functional insights. *Biochim. Biophys. Acta* 1837: 857-79 [PMID:24508215]

Noji H *et al*. (2017) Catalytic robustness and torque generation of the F₁-ATPase. *Biophys Rev* 9: 103-118 [PMID:28424741]

Okuno D *et al*. (2013) Single-molecule analysis of the rotation of F₁-ATPase under high hydrostatic pressure. *Biophys. J.* 105: 1635-42 [PMID:24094404]

P-type ATPases

Transducers → P-type ATPases

Overview: Phosphorylation-type ATPases (EC 3.6.3.-) are associated with membranes and the transport of ions or phospholipids. Characteristics of the family are the transient phosphorylation of the transporters at an aspartate residue and the interconversion between E₁ and E₂ conformations in the activity cycle of the transporters, taken to represent ‘half-channels’ facing the cytoplasm and extracellular/luminal side of the membrane, respectively. Sequence analysis across multiple species allows the definition of five subfamilies, P₁-P₅. The P₁ subfamily includes heavy metal pumps, such as the copper ATPases. The P₂ subfamily includes calcium, sodium/potassium and proton/potassium pumps. The P₄ and P₅ subfamilies include putative phospholipid flippases.

Information on members of this family may be found in the online database.

Comments: Na⁺/K⁺-ATPases are inhibited by ouabain and cardiac glycosides, such as digoxin, as well as potentially endogenous cardiotonic steroids [34].

Na⁺/K⁺-ATPases

Transducers → P-type ATPases → Na⁺/K⁺-ATPases

Overview: The cell-surface Na⁺/K⁺-ATPase is an integral membrane protein which regulates the membrane potential of the cell by maintaining gradients of Na⁺ and K⁺ ions across the plasma membrane, also making a small, direct contribution to membrane potential, particularly in cardiac cells. For every molecule of ATP hydrolysed, the Na⁺/K⁺-ATPase extrudes three Na⁺ ions and imports two K⁺ ions. The active transporter is a heteromultimer with incompletely defined stoichiometry, possibly as tetramers of heterodimers, each consisting of one of four large, ten TM domain catalytic α subunits and one of three smaller, single TM domain glycoprotein β-subunits. Additional protein partners known as FXYD proteins (e.g. FXYD2, PS4710) appear to associate with and regulate the activity of the pump.

Information on members of this family may be found in the online database.

Comments: Na⁺/K⁺-ATPases are inhibited by ouabain and cardiac glycosides, such as digoxin, as well as potentially endogenous cardiotonic steroids [34].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Ca\(^{2+}\)-ATPases

Overview: The sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) is an intracellular membrane-associated pump for sequestering calcium from the cytosol into intracellular organelles, usually associated with the recovery phase following excitation of muscle and nerves.

The plasma membrane Ca\(^{2+}\)-ATPase (PMCA) is a cell-surface pump for extruding calcium from the cytosol, usually associated with the recovery phase following excitation of cells. The active pump is a homodimer, each subunit of which is made up of ten TM segments, with cytosolic C- and N-termini and two large intracellular loops. Secretory pathway Ca\(^{2+}\)-ATPases (SPCA) allow accumulation of calcium and manganese in the Golgi apparatus.

Information on members of this family may be found in the online database.

Comments: The fungal toxin ochratoxin A has been described to activate SERCA in kidney microsomes [116]. Cyclopiazonic acid [564], thapsigargin [414] and BHQ are widely employed to block SERCA. Thapsigargin has also been described to block the TRPV1 vanilloid receptor [629]. The stoichiometry of flux through the PMCA differs from SERCA, with the PMCA transporting 1 Ca\(^{2+}\) while SERCA transports 2 Ca\(^{2+}\).

Loss-of-function mutations in SPCA1 appear to underlie Hailey-Hailey disease [299].

H\(^{+}\)/K\(^{+}\)-ATPases

Overview: The H\(^{+}\)/K\(^{+}\)-ATPase is a heterodimeric protein, made up of \(\alpha\) and \(\beta\) subunits. The \(\alpha\) subunit has 10 TM domains and exhibits catalytic and pore functions, while the \(\beta\) subunit has a single TM domain, which appears to be required for intracellular trafficking and stabilising the \(\alpha\) subunit. The ATP4A and ATP4B subunits are expressed together, while the ATP12A subunit is suggested to be expressed with the \(\beta1\) (ATP1B1) subunit of the Na\(^{+}\)/K\(^{+}\)-ATPase [495].

Information on members of this family may be found in the online database.

Comments: The gastric H\(^{+}\)/K\(^{+}\)-ATPase is inhibited by proton pump inhibitors used for treating excessive gastric acid secretion, including dextlansoprazole and a metabolite of esomeprazole.

Cu\(^{+}\)-ATPases

Overview: Copper-transporting ATPases convey copper ions across cell-surface and intracellular membranes. They consist of eight TM domains and associate with multiple copper chaperone proteins (e.g. ATOX1, O00244).

Information on members of this family may be found in the online database.
Phospholipid-transporting ATPases

Overview: These transporters are thought to translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from one side of the phospholipid bilayer to the other to generate asymmetric membranes. They are also proposed to be involved in the generation of vesicles from intracellular and cell-surface membranes.

Information on members of this family may be found in the online database.

Comments: Loss-of-function mutations in ATP8B1 are associated with type I familial intrahepatic cholestasis.

A further series of structurally-related proteins have been identified in the human genome, with as yet undefined function, including ATP13A1 (Q9HD20), ATP13A2 (Q9NQ11), ATP13A3 (Q9H6F), ATP13A4 (Q4VNC1) and ATP13A5 (Q4VNC0).

Further reading on P-type ATPases

- **Aperia A et al. (2016)** Na+K+-ATPase, a new class of plasma membrane receptors. *Am. J. Physiol., Cell Physiol.* 310: C491-5 [PMID:26791490]
- **Brini M et al. (2017)** The plasma membrane calcium pumps: focus on the role in (neuro)pathology. *Biochim. Biophys. Res. Commun.* 483: 1116-1124 [PMID:27480928]
- **Bruce JJE. (2018)** Metabolic regulation of the PMCA: Role in cell death and survival. *Cell Calcium* 69: 28-36 [PMID:28623348]
- **Diederich M et al. (2017)** Cardiac glycosides: From molecular targets to immunogenic cell death. *Biochem. Pharmacol.* 125: 11-1 [PMID:2753475]
- **Dubois C et al. (2016)** The calcium-signaling toolkit: Updates needed. *Biochim. Biophys. Acta* 1863: 1337-43 [PMID:26658643]
- **Krebs J. (2015)** The plethora of PMCA isoforms: Alternative splicing and differential expression. *Biochim. Biophys. Acta* 1853: 2016-24 [PMID:2553949]
- **Little R et al. (2016)** Plasma membrane calcium ATPases (PMCA) as potential targets for the treatment of essential hypertension. *Pharmacol. Ther.* 159: 23-34 [PMID:26820758]
- **López-Marqués RL et al. (2015)** Structure and mechanism of ATP-dependent phospholipid transporters. *Biochim. Biophys. Acta* 1850: 461-475 [PMID:24746984]
- **Migocka M. (2015)** Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. *IUBMB Life* 67: 737-45 [PMID:26422816]
- **Padányi R et al. (2016)** Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. *Biochim. Biophys. Acta* 1863: 1351-63 [PMID:26707182]
- **Pomorski TG et al. (2016)** Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. *Prog. Lipid Res.* 64: 69-84 [PMID:27528189]
- **Retamales-Ortega R et al. (2016)** P2C-Type ATPases and Their Regulation. *Mol. Neurobiol.* 53: 1343-54 [PMID:25631710]
- **Tadini-Buoninsegni F et al. (2017)** Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B. *IUBMB Life* 69: 218-225 [PMID:28164426]

SLC superfamily of solute carriers

Overview: The SLC superfamily of solute carriers is the second largest family of membrane proteins after G protein-coupled receptors, but with a great deal fewer therapeutic drugs that exploit them. As with the ABC transporters, however, they play a major role in drug disposition and so can be hugely influential in determining the clinical efficacy of particular drugs. 48 families are identified on the basis of sequence similarities, but many of them overlap in terms of the solutes that they carry. For example, amino acid accumulation is mediated by members of the SLC1, SLC3/7, SLC6, SLC15, SLC16, SLC17, SLC32, SLC36, SLC38 and SLC43. Further members of the SLC superfamily regulate ion fluxes at the plasma membrane, or solute transport into and out of cellular organelles. Within the SLC superfamily, there is an abundance in diversity of structure. Two families (SLC3 and SLC7) only generate functional transporters as heteromeric partners, where one partner is a single TM domain protein. Membrane topology predictions for other families suggest 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, or 14 TM domains. Functionally, members may be divided into those dependent on gradients of ions (particularly sodium, chloride or protons), exchange of solutes or simple equilibrative gating. For many members, the stoichiometry of transport is not yet established. Furthermore, one family of transporters also possess enzymatic activity (SLC27), while many members function as ion channels (e.g. SLC1A7/EAAT5), which increases the complexity of function of the SLC superfamily.
SLC1 family of amino acid transporters

Transporters → SLC superfamily of solute carriers → SLC1 family of amino acid transporters

Overview: The SLC1 family of sodium dependent transporters includes the plasma membrane located glutamate transporters and the neutral amino acid transporters ASCT1 and ASCT2 [11, 46, 338, 339, 487].

Glutamate transporter subfamily

Transporters → SLC superfamily of solute carriers → SLC1 family of amino acid transporters → Glutamate transporter subfamily

Overview: Glutamate transporters present the unusual structural motif of 8TM segments and 2 re-entrant loops [262]. The crystal structure of a glutamate transporter homologue (GltPh) from Pyrococcus horikoshii supports this topology and indicates that the transporter assembles as a trimer, where each monomer is a functional unit capable of substrate permeation [68, 526, 696] reviewed by [329]). This structural data is in agreement with the proposed quaternary structure for EAAT2 [232] and several functional studies that propose the monomer is the functional unit [257, 366, 385, 539]. Recent evidence suggests that EAAT3 and EAAT4 may assemble as heterotrimers [467]. The activity of glutamate transporters located upon both neurones (predominantly EAAT3, 4 and 5) and glia (predominantly EAAT 1 and 2) serves, dependent upon their location, to regulate excitatory neurotransmission, maintain low ambient extracellular concentrations of glutamate (protecting against excitotoxicity) and provide glutamate for metabolism including the glutamate-glutamine cycle. The Na⁺/K⁺-ATPase that maintains the ion gradients that drive transport has been demonstrated to co-assemble with EAAT1 and EAAT2 [533]. Recent evidence supports altered glutamate transport and novel roles in brain for splice variants of EAAT1 and EAAT2 [231, 386]. Three patients with dicarboxylic aminoaciduria (DA) were recently found to have loss-of-function mutations in EAAT3 [35]. DA is characterized by excessive excretion of the acidic amino acids glutamate and aspartate and EAAT3 is the predominant glutamate/aspartate transporter in the kidney. Enhanced expression of EAAT2 resulting from administration of β-lactam antibiotics (e.g. ceftriaxone) is neuroprotective and occurs through NF-κB-mediated EAAT2 promoter activation [226, 390, 536] reviewed by [353]). PPARγ activation (e.g. by rosiglitazone) also leads to enhanced expression of EAAT through promoter activation [532]. In addition, several translational activators of EAAT2 have recently been described [125] along with treatments that increase the surface expression of EAAT2 (e.g. [384, 726]), or prevent its down-regulation (e.g. [248]). A thermodynamically uncoupled Cl- flux, activated by Na⁺ and glutamate [259, 339, 419] (Na⁺ and aspartate in the case of GltPh [538]), is sufficiently large, in the instances of EAAT4 and EAAT5, to influence neuronal excitability [621, 648]. Indeed, it has recently been suggested that the primary function of EAAT5 is as a slow anion channel gated by glutamate, rather than a glutamate transporter [220].
Glutamate subfamily

Nomenclature	Systematic nomenclature	Common abbreviation	HGNC, UniProt	Substrates	Endogenous substrates	Stoichiometry	Inhibitors	Labelled ligands	
Excitatory amino acid transporter 1	SLC1A3	EAAT1	SLC1A3, P43003	DL-threo-β-hydroxyaspartate (K_i 5.8×10^−3 M) [571], D-aspartic acid, L-trans-2,4-pyridoline dicarboxylate	L-aspartic acid, L-glutamic acid	Probably 3 Na⁺: 1 H⁺: 1 glutamate (in): 1 K⁺ (out)	WAY-213613 (pIC₅₀ 7.1) [167], D-L-TBOA (pKᵦ 6.9) [326], D-L-TBOA (pKᵦ 5.5) [571], dihydrokainate (pKᵦ 5), three-3-methylglutamate (pKᵦ 4.7) [640]	[³H]JETB-TBOA (Birthng) (pKᵦ 7.8)	[³H]JETB-TBOA (Binding) (pKᵦ 7.8) – Rat, [³H]JDA-aspartic acid, [³H]SYM2081
Excitatory amino acid transporter 2	SLC1A2	EAAT2	SLC1A2, P43004	DL-threo-β-hydroxyaspartate, L-trans-2,4-pyridoline dicarboxylate [367]	L-glutamic acid, L-glutamic acid	3 Na⁺: 1 H⁺: 1 glutamate (in): 1 K⁺ (out) [396]	NBI-59159 (pIC₅₀ 7.1) [165], L-JM-BA ([³H]JDA-aspartate uptake assay) (pKᵦ 6.1) [186], D-L-TBOA (pIC₅₀ 5.1) [573]	[³H]JETB-TBOA (Binding) (pKᵦ 7.8) – Rat, [³H]JDA-aspartic acid, [³H]SYM2081	[³H]JETB-TBOA (Binding) (pKᵦ 6.5) – Rat, [³H]JDA-aspartic acid, [³H]JDA-aspartic acid
Excitatory amino acid transporter 3	SLC1A1	EAAT3	SLC1A1, P43005	L-trans-2,4-pyridoline dicarboxylate, DL-threo-β-hydroxyaspartate, D-aspartic acid	L-aspartic acid, L-cysteine [706], L-glutamic acid	Probably 3 Na⁺: 1 H⁺: 1 glutamate (in): 1 K⁺ (out)	D-L-TBOA (pKᵦ 5.4) [570], three-3-methylglutamate (pKᵦ 4.3) [176]	[³H]JETB-TBOA (Binding) (pKᵦ 7.9)	[³H]JETB-TBOA (Binding) (pKᵦ 7.6) – Rat, [³H]JDA-aspartic acid, [³H]JDA-aspartic acid
Excitatory amino acid transporter 4	SLC1A6	EAAT4	SLC1A6, P48664	D-aspartic acid, DL-threo-β-hydroxyaspartate, L-trans-2,4-pyridoline dicarboxylate	L-glutamic acid, L-aspartic acid	Probably 3 Na⁺: 1 H⁺: 1 glutamate (in): 1 K⁺ (out)	D-L-TBOA (pKᵦ 5.5) [570]	[³H]JETB-TBOA (Binding) (pKᵦ 7.6) – Rat, [³H]JDA-aspartic acid, [³H]JDA-aspartic acid	
Excitatory amino acid transporter 5	SLC1A7	EAAT5	SLC1A7, O00341	D-aspartic acid, DL-threo-β-hydroxyaspartate	L-aspartic acid, L-glutamic acid			[³H]JETB-TBOA (Binding) (pKᵦ 7.6) – Rat, [³H]JDA-aspartic acid, [³H]JDA-aspartic acid	

Comments: The K_b (or K_i) values reported, unless indicated otherwise, are derived from transporter currents mediated by EAATs expressed in voltage-clamped *Xenopus laevis* oocytes [176, 570, 571, 640]. K_b (or K_i) values derived in uptake assays are generally higher (e.g. [571]). In addition to acting as a poorly transportable inhibitor of EAAT2, (2S,4R)-4-methylglutamate, also known as SYM2081, is a competitive substrate for EAAT1 ($K_M = 540 μM$; [300, 640]) and additionally is a potent kainate receptor agonist [715] which renders the compound unsuitable for autoradiographic localisation of EAATs [24]. Similarly, at concentrations that inhibit EAAT2, dihydrokainate binds to kainate receptors [571]. WAY-855 and WAY-213613 are both non-substrate inhibitors with a preference for EAAT2 over EAAT3 and EAAT1 [166, 167]. NBI-59159 is a non-substrate inhibitor with modest selectivity for EAAT3 over EAAT1 (> 10-fold) and EAAT2 (5-fold) [126, 164]. Analogously, L-β-threo-benzyl-aspartate (L-β-BA) is a competitive non-substrate inhibitor that preferentially blocks EAAT3 versus EAAT1, or EAAT2 [186]. [³H]SYM2081 demonstrates low affinity binding ($K_i = 5.5 μM$) to EAAT1 and EAAT2 in rat brain homogenates [25] and EAAT1 in murine astrocyte membranes [23], whereas [³H]JETB-TBOA binds with high affinity to all EAATs other than EAAT3 [572]. The novel isoxazole derivative (-)-HIP-A may interact at the same site as TBOA and preferentially inhibit reverse transport of glutamate [124]. Three-3-methylglutamate induces substrate-like currents at EAAT4, but does not elicit heterocyclic exchange of [³H]-aspartate in synaptosome preparations, inconsistent with the behaviour of a substrate inhibitor [176]. Parawixin 1, a compound isolated from the venom of the spider *Parawixia bistriata* is a selective enhancer of the glutamate uptake through EAAT2 but not through EAAT1 or EAAT3 [207, 208]. In addition to the agents listed in the table, DL-threo-β-hydroxyaspartate and L-trans-2,4-pyridoline dicarboxylate act as non-selective competitive substrate inhibitors of all EAATs. Zn²⁺ and arachidonic acid are putative endogenous modulators of EAATs with actions that differ across transporter subtypes (reviewed by [639]).
Alanine/serine/cysteine transporter subfamily

Transports → SLC superfamily of solute carriers → SLC1 family of amino acid transporters → Alanine/serine/cysteine transporter subfamily

Overview: ASC transporters mediate Na⁺-dependent exchange of small neutral amino acids such as Ala, Ser, Cys and Thr and their structure is predicted to be similar to that of the glutamate transporters [27, 634]. ASCT1 and ASCT2 also exhibit thermodynamically uncoupled chloride channel activity associated with substrate transport [79, 704]. Whereas EAATs counter-transport K⁺ (see above) ASCTs do not and their function is independent of the intracellular concentration of K⁺ [704].

Nomenclature

Alanine/serine/cysteine transporter 1	Alanine/serine/cysteine transporter 2
Systematic nomenclature	Systematic nomenclature
SLC1A4	SLC1A5
Common abbreviation	Common abbreviation
ASCT1	ASCT2
HGNC, UniProt	HGNC, UniProt
SLC1A4, P43007	SLC1A5, Q15758

Endogenous substrates

- L-cysteine > L-alanine = L-serine > L-threonine
- L-alanine = L-serine = L-cysteine (low Vmax) > L-threonine = L-glutamine = L-asparagine ≫ L-methionine ≡ glycine ≡ L-leucine > L-valine > L-glutamic acid (enhanced at low pH)
- 1 Na⁺: 1 amino acid (in): 1 Na⁺: 1 amino acid (out); (homo-, or hetero-exchange; [705])
- 1 Na⁺: 1 amino acid (in): 1 Na⁺: 1 amino acid (out); (homo-, or hetero-exchange; [77])
- p-nitrophenyl glutamyl anilide (pKᵢ 4.3) [187] – Rat, benzylcysteine (pKᵢ 3.1) [258], benzylerine (pKᵢ 3) [258]

Stoichiometry

- 1 Na⁺: 1 amino acid (in): 1 Na⁺: 1 amino acid (out); (homo-, or hetero-exchange; [705])
- 1 Na⁺: 1 amino acid (in): 1 Na⁺: 1 amino acid (out); (homo-, or hetero-exchange; [77])
- p-nitrophenyl glutamyl anilide (pKᵢ 4.3) [187] – Rat, benzylcysteine (pKᵢ 3.1) [258], benzylerine (pKᵢ 3) [258]

Inhibitors

- –

Comments: The substrate specificity of ASCT1 may extend to L-proline and trans-4-hydroxy-proline [499]. At low pH (5.5) both ASCT1 and ASCT2 are able to exchange acidic amino acids such as L-cysteate and glutamate [605, 634]. In addition to the inhibitors tabulated above, HgCl₂, methylmercury and mersalyl, at low micromolar concentrations, non-competitively inhibit ASCT2 by covalent modification of cysteine residues [480].

Further reading on SLC1 family of amino acid transporters

- Beart PM et al. (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol. 150:5-17 [PMID:17088867]
- Bjrn-Yoshimoto WE et al. (2016) The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem. Int. 98:4-18 [PMID:27233497]
- Fahlke C et al. (2016) Molecular physiology of EAAT anion channels. Pflugers Arch. 468:491-502 [PMID:26687113]
- Fontana AC. (2015) Current approaches to enhance glutamate transporter function and expression. J. Neurochem. 134:982-1007 [PMID:26096891]
- Grewer C et al. (2014) SLC1 glutamate transporters. Pflugers Arch. 466:3-24 [PMID:24240778]
- Jensen AA et al. (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20:116-23 [PMID:25466154]
- Kanai Y et al. (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Aspects Med. 34:108-20 [PMID:23506861]
- Takahashi K et al. (2015) Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell. Mol. Life Sci. 72:3489-506 [PMID:26033496]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC2 family of hexose and sugar alcohol transporters

Transports → SLC superfamily of solute carriers → SLC2 family of hexose and sugar alcohol transporters

Overview: The SLC2 family transports D-glucose, D-fructose, inositol (e.g., myo-inositol) and related hexoses. Three classes of glucose transporter can be identified, separating GLUT1-4 and 14, GLUT6, 8, 10 and 12; and GLUT5, 7, 9 and 11. Modelling suggests a 12 TM membrane topology, with intracellular termini, with functional transporters acting as homodimers or homotetramers.

Class I transporters

Transports → SLC superfamily of solute carriers → SLC2 family of hexose and sugar alcohol transporters → Class I transporters

Overview: Class I transporters are able to transport D-glucose, but not D-fructose, in the direction of the concentration gradient and may be inhibited non-selectively by phloretin and cytochalasin B. GLUT1 is the major glucose transporter in brain, placenta and erythrocytes, GLUT2 is found in the pancreas, liver and kidneys, GLUT3 is neuronal and placental, while GLUT4 is the insulin-responsive transporter found in skeletal muscle, heart and adipose tissue. GLUT14 appears to result from gene duplication of GLUT3 and is expressed in the testes [678].

Nomenclature	Glucose transporter 1	Glucose transporter 2	Glucose transporter 3	Glucose transporter 4	Glucose transporter 14
Systematic nomenclature	SLC2A1	SLC2A2	SLC2A3	SLC2A4	SLC2A14
Common abbreviation	GLUT1	GLUT2	GLUT3	GLUT4	GLUT14
HGNC, UniProt	SLC2A1, P11166	SLC2A2, P11168	SLC2A3, P11169	SLC2A4, P14672	SLC2A14, Q8TD88
Substrates	D-glucosamine (D-glucose = D-glucosamine) [631], dehydroascorbic acid [55], D-glucose (D-glucose = D-glucosamine) [631]	D-glucosamine (D-glucosamine > D-glucose) [631], D-glucose (D-glucose > D-glucose) [631]	D-glucose	D-glucosamine (D-glucosamine ≥ D-glucose) [631], D-glucose (D-glucosamine ≥ D-glucose) [631]	–
Labelled ligands	[3H]2-deoxyglucose	[3H]2-deoxyglucose	[3H]2-deoxyglucose	[3H]2-deoxyglucose	–
Comments	GLUT1 is a class I facilitative sugar transporter. GLUT1 functions to maintain basal glucose import which is required for cellular respiration.	–	–	–	–
Class II transporters

Overview: Class II transporters transport D-fructose and appear to be insensitive to cytochalasin B. Class II transporters appear to be predominantly intracellularly located.

Nomenclature	Glucose transporter 5	Glucose transporter 7	Glucose transporter 9
Systematic nomenclature	SLC2A5	SLC2A7	SLC2A9
Common abbreviation	GLUT5	GLUT7	GLUT9
HGNC, UniProt	SLC2A5, P22732	SLC2A7, Q6PXP3	SLC2A9, Q9NRM0
Substrates	D-fructose (D-fructose > D-glucose) [83], D-glucose (D-fructose > D-glucose) [83]	D-fructose [104], D-glucose [104]	D-fructose [94], uric acid [94]

Nomenclature	Glucose transporter 11	Glucose transporter 6	Glucose transporter 8	Glucose transporter 10	Glucose transporter 12
Systematic nomenclature	SLC2A11	SLC2A6	SLC2A8	SLC2A10	SLC2A12
Common abbreviation	GLUT11	GLUT6	GLUT8	GLUT10	GLUT12
HGNC, UniProt	SLC2A11, Q9BYW1	SLC2A6, Q9UGQ3	SLC2A8, Q9NY64	SLC2A10, Q95528	SLC2A12, Q8TD20
Substrates	D-fructose [426], D-glucose [156]	–	D-glucose [303]	dehydroascorbic acid [392], D-glucose [392]	D-glucose [530]
Proton-coupled inositol transporter

Overview: Proton-coupled inositol transporters are expressed predominantly in the brain and can be inhibited by phloretin and cytochalasin B [631].

Nomenclature

Proton myo-inositol cotransporter
Systematic nomenclature SLC2A13
Common abbreviation HMIT
HGNC, UniProt SLC2A13, Q96QE2
Substrates D-chiro-inositol [631], myo-inositol [631], scyllo-inositol [631], muco-inositol [631]
Stoichiometry 1 H+ : 1 inositol (in) [150]

Further reading on SLC2 family of hexose and sugar alcohol transporters

Augustin R. (2010) The protein family of glucose transport facilitators: It’s not only about glucose after all. *IUBMB Life* 62: 315-33 [PMID:20209635]
Klip A et al. (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. *Am. J. Physiol., Cell Physiol.* 306: C879-86 [PMID:24598362]
Leney SE et al. (2009) The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. *J. Endocrinol.* 203: 1-18 [PMID:19389739]
Mueckler M et al. (2013) The SLC2 (GLUT) family of membrane transporters. *Mol. Aspects Med.* 34: 121-38 [PMID:23506862]
Uldry M et al. (2004) The SLC2 family of facilitated hexose and polyol transporters. *Pflugers Arch.* 447: 480-9 [PMID:12750891]

SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

Overview: The SLC3 and SLC7 families combine to generate functional transporters, where the subunit composition is a disulphide-linked combination of a heavy chain (SLC3 family) with a light chain (SLC7 family).

SLC3 family

Overview: SLC3 family members are single TM proteins with extensive glycosylation of the exterior C-terminus, which heterodimerize with SLC7 family members in the endoplasmic reticulum and assist in the plasma membrane localization of the transporter.

Information on members of this family may be found in the online database.
SLC7 family

Transports → SLC superfamily of solute carriers → SLC3 and SLC7 families of heteromeric amino acid transporters (HATs) → SLC7 family

Overview: SLC7 family members may be divided into two major groups: cationic amino acid transporters (CATs) and glycoprotein-associated amino acid transporters (gpaATs). Cationic amino acid transporters are 14 TM proteins, which mediate pH- and sodium-independent transport of cationic amino acids (system y\(^+\)), apparently as an exchange mechanism. These transporters are sensitive to inhibition by N-ethylmaleimide.

Nomenclature

Systematic nomenclature	Common abbreviation	HGNC, UniProt	Substrates	Selective inhibitors
SLC7A1	CAT1	SLC7A1, P30825	L-ornithine, L-arginine, L-lysine, L-histidine	–
SLC7A2	CAT2	SLC7A2, P52569	L-ornithine, L-arginine, L-lysine, L-histidine	–
SLC7A3	CAT3	SLC7A3, Q8WY07	–	KYT-0353 [476]
SLC7A5	LAT1	SLC7A5, Q01650	–	–
SLC7A8	LAT2	SLC7A8, Q9UH15	–	–

Substrates

Nomenclature	Systematic nomenclature	Common abbreviation	HGNC, UniProt
y+LAT1	SLC7A7	y+LAT1	SLC7A7, Q9UH01
y+LAT2	SLC7A6	y+LAT2	SLC7A6, Q92536

Inhibitors

Nomenclature	Systematic nomenclature	Common abbreviation	HGNC, UniProt
quisqualate	SLC7A11	xCT	SLC7A11, Q9UPY5

Comments: CAT4 appears to be non-functional in heterologous expression [672], while SLC7A14 has yet to be characterized. Glycoprotein-associated amino acid transporters are 12 TM proteins, which heterodimerize with members of the SLC3 family to act as cell-surface amino acid exchangers. Heterodimers between 4F2hc and LAT1 or LAT2 generate sodium-independent system L transporters. LAT1 transports large neutral amino acids including branched-chain and aromatic amino acids as well as miglustat, whereas LAT2 transports most of the neutral amino acids.

Heterodimers between 4F2hc and LAT1 or LAT2 generate transporters similar to the system y\(^+\)L, which transport cationic (L-arginine, L-lysine, L-ornithine) amino acids independent of sodium and neutral (L-leucine, L-isoleucine, L-methionine, L-glutamine) amino acids in a partially sodium-dependent manner. These transporters are N-ethylmaleimide-insensitive. Heterodimers between rBAT and b\(^0,\,+\)AT appear to mediate sodium-independent system b\(^0,\,+\) transport of most of the neutral amino acids and cationic amino acids (L-arginine, L-lysine and L-ornithine).

Asc-1 appears to heterodimerize with 4F2hc to allow the transport of small neutral amino acids (such as L-alanine, L-serine, L-threonine, L-glutamine and glycine), as well as D-serine, in a sodium-independent manner.

xCT generates a heterodimer with 4F2hc for a system \(\chi_{e-c}\) transporter that mediates the sodium-independent exchange of L-cystine and L-glutamic acid.

AGT has been conjugated with SLC3 members as fusion proteins to generate functional transporters, but the identity of a native heterodimer has yet to be ascertained.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Further reading on SLC3 and SLC7 families of heteromeric amino acid transporters (HATs)

Bhutia YD et al. (2015) Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs. Cancer Res. 75: 1782-8 [PMID:25855379]
Fotiadis D et al. (2013) The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 34: 139-58 [PMID:23506863]
Palacín M et al. (2004) The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. 447: 490-4 [PMID:14770309]
Palacín M et al. (2005) The genetics of heteromeric amino acid transporters. Physiology (Bethesda) 20: 112-24 [PMID:15772300]
Verrey F et al. (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 447: 532-42 [PMID:14770310]

SLC4 family of bicarbonate transporters

Transceptors → SLC superfamily of solute carriers → SLC4 family of bicarbonate transporters

Overview: Together with the SLC26 family, the SLC4 family of transporters subserve anion exchange, principally of chloride and bicarbonate (HCO₃⁻), but also carbonate and hydrogen sulphate (HSO₄⁻). SLC4 family members regulate bicarbonate fluxes as part of carbon dioxide movement, chyme neutralization and reabsorption in the kidney.

Within the family, subgroups of transporters are identifiable: the electroneutral sodium-independent Cl⁻/HCO₃⁻ transporters (AE1, AE2 and AE3), the electrogenic sodium-dependent HCO₃⁻ transporters (NBCe1 and NBCe2) and the electroneutral HCO₃⁻ transporters (NBCn1 and NBCn2). Topographical information derives mainly from study of AE1, abundant in erythrocytes, which suggests a dimeric or tetrameric arrangement, with subunits made up of 13 TM domains and re-entrant loops at TM9/10 and TM11/12. The N terminus exhibits sites for interaction with multiple proteins, including glycolytic enzymes, haemoglobin and cytoskeletal elements.

Anion exchangers

Transceptors → SLC superfamily of solute carriers → SLC4 family of bicarbonate transporters → Anion exchangers

Nomenclature	Anion exchange protein 1	Anion exchange protein 2	Anion exchange protein 3	Anion exchange protein 4
Systematic nomenclature	SLC4A1	SLC4A2	SLC4A3	SLC4A9
Common abbreviation	AE1	AE2	AE3	AE4
HGNC, UniProt	SLC4A1, P02730	SLC4A2, P04920	SLC4A3, P48751	SLC4A9, Q96Q91
Endogenous substrates	HCO₃⁻, Cl⁻	Cl⁻, HCO₃⁻	Cl⁻, HCO₃⁻	–
Stoichiometry	1 Cl⁻ (in) : 1 HCO₃⁻ (out)	1 Cl⁻ (in) : 1 HCO₃⁻ (out)	1 Cl⁻ (in) : 1 HCO₃⁻ (out)	–

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Sodium-dependent HCO_3^- transporters

Transports → SLC superfamily of solute carriers → SLC4 family of bicarbonate transporters → Sodium-dependent HCO_3^- transporters

Nomenclature	Electrogenic sodium bicarbonate cotransporter 1	Electrogenic sodium bicarbonate cotransporter 4	Electroneutral sodium bicarbonate cotransporter 1	Electroneutral sodium bicarbonate cotransporter 2	NBCBE	NaBC1
Systematic nomenclature	SLC4A4	SLC4A5	SLC4A7	SLC4A10	SLC4A8	SLC4A11
Common abbreviation	NBCE1	NBCE2	NBCn1	NBCn2	NDCBE	BTR1
HGNC, UniProt	SLC4A4, Q9Y6R1	SLC4A5, Q9Y6R1	SLC4A7, Q9Y6M7	SLC4A10, Q6U841	SLC4A8, Q2Y0W8	SLC4A11, Q8NBS3
Endogenous substrates	NaHCO_3^-	NaHCO_3^-	NaHCO_3^-	NaHCO_3^-	NaHCO_3^-, Cl$^-$	NaHCO_3^-
Stoichiometry	$1 \text{Na}^+ : 2/3 \text{HCO}_3^-$ (out) or $1 \text{Na}^+ : \text{CO}_3^{2-}$	$1 \text{Na}^+ : 2/3 \text{HCO}_3^-$ (out) or $1 \text{Na}^+ : \text{CO}_3^{2-}$	$1 \text{Na}^+ : 1 \text{HCO}_3^-$ (out) or $1 \text{Na}^+ : \text{CO}_3^{2-}$	$1 \text{Na}^+ : 1 \text{HCO}_3^-$ (out) or $1 \text{Na}^+ : \text{CO}_3^{2-}$	$1 \text{Na}^+ : 2 \text{HCO}_3^-$ (in) : 1Cl^- (out)	–

Further reading on SLC4 family of bicarbonate transporters

Majumdar D et al. (2010) Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. *Neuroscience* 171: 951-72 [PMID:20884330]

Parker MD et al. (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. *Physiol. Rev.* 93: 803-959 [PMID:23589833]

Reithmeier RA et al. (2016) Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. *Biochim. Biophys. Acta* 1858: 1507-32 [PMID:27058983]

Romero MF et al. (2013) The SLC4 family of bicarbonate (HCO_3^-) transporters. *Mol. Aspects Med.* 34: 159-82 [PMID:23506864]

Thornell IM et al. (2015) Regulators of Slc4 bicarbonate transporter activity. *Front Physiol* 6: 166 [PMID:26124722]

SLC5 family of sodium-dependent glucose transporters

Transports → SLC superfamily of solute carriers → SLC5 family of sodium-dependent glucose transporters

Overview: The SLC5 family of sodium-dependent glucose transporters includes, in mammals, the Na$^+$/substrate co-transporters for glucose (e.g. choline, D-glucose, monocarboxylates, myo-inositol and I$^-$ [200, 224, 674, 675]). Members of the SLC5 and SLC6 families, along with other unrelated Na$^+$ cotransporters (i.e. Mhp1 and BetP), share a common structural core that contains an inverted repeat of 5TM α-helical domains [2].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Hexose transporter family

Overview: Detailed characterisation of members of the hexose transporter family is limited to SGLT1, 2 and 3, which are all inhibited in a competitive manner by phlorizin, a natural dihydrocholine glucoside, that exhibits modest selectivity towards SGLT2 (see [674] for an extensive review). SGLT1 is predominantly expressed in the small intestine, mediating the absorption of glucose (e.g. D-glucose), but also occurs in the brain, heart and in the late proximal straight tubule of the kidney. The expression of SGLT2 is almost exclusively restricted to the early proximal convoluted tubule of the kidney, where it is largely responsible for the renal reabsorption of glucose. SGLT3 is not a transporter but instead acts as a glucosensor generating an inwardly directed flux of Na⁺ that causes membrane depolarization [153].

Nomenclature	Sodium/glucose cotransporter 1	Sodium/glucose cotransporter 2	Low affinity sodium-glucose cotransporter	Sodium/glucose cotransporter 4	Sodium/glucose cotransporter 5
Systematic nomenclature	SLC5A1	SLC5A2	SLC5A4	SLC5A9	SLC5A10
Common abbreviation	SGLT1	SGLT2	SGLT3	SGLT4	SGLT5
HGNC, UniProt	SLC5A1, P13866	SLC5A2, P31639	SLC5A4, Q9NY91	SLC5A9, Q2M3M2	SLC5A10, A0PJK1
Substrates	D-galactose [650], α-MDG [650], D-glucose [650]	α-MDG, D-glucose	D-glucose [650], 1-deoxynojirimycin-1-sulfonic acid [650], N-ethyl-1-deoxynojirimycin [650], miglustat [650], miglitol [650], 1-deoxynojirimycin [650]	D-glucose, D-mannose, α-MDG	D-galactose, D-glucose
Stoichiometry	2 Na⁺ : 1 glucose [340]	1 Na⁺ : 1 glucose [301]	–	–	–
Selective inhibitors	mizagliflozin (pKᵢ 7.6) [311]	dapagliflozin (pIC₅₀ 9.3) [343]	–	–	–
Comments	–	–	SGLT3 acts as a glucosensor.	–	–

Comments: Recognition and transport of substrate by SGLTs requires that the sugar is a pyranose. De-oxylucose derivatives have reduced affinity for SGLT1, but the replacement of the sugar equatorial hydroxyl group by fluorine at some positions, excepting C2 and C3, is tolerated (see [674] for a detailed quantification). Although SGLT1 and SGLT2 have been described as high- and low-affinity sodium glucose co-transporters, respectively, recent work suggests that they have a similar affinity for glucose under physiological conditions [301]. Selective blockers of SGLT2, and thus blocking 50% of renal glucose reabsorption, are in development for the treatment of diabetes (e.g. [100]).
Choline transporter

Overview: The high affinity, hemicholinium-3-sensitive, choline transporter (CHT) is expressed mainly in cholinergic neurones on nerve cell terminals and synaptic vesicles (keratinocytes being an additional location). In autonomic neurones, expression of CHT requires an activity-dependent retrograde signal from postsynaptic neurones [375]. Through recapture of choline generated by the hydrolysis of ACh by acetylcholinesterase, CHT serves to maintain acetylcholine synthesis within the presynaptic terminal [200]. Homozygous mice engineered to lack CHT die within one hour of birth as a result of hypoxia arising from failure of transmission at the neuromuscular junction of the skeletal muscles that support respiration [199]. A low affinity choline uptake mechanism that remains to be identified at the molecular level may involve multiple transporters. In addition, a family of choline transporter-like (CTL) proteins, (which are members of the SLC44 family) with weak Na⁺ dependence have been described [622].

Nomenclature

Nomenclature	CHT
Systematic nomenclature	SLC5A7
HGNC, UniProt	SLC5A7, Q9GZV3
Substrates	triethylcholine
Endogenous substrates	choline
Stoichiometry	Na⁺ : choline (variable stoichiometry); modulated by extracellular Cl⁻ [322]
Selective inhibitors	hemicholinium-3 (pKᵢ 7–8) [478]
Labelled ligands	[³H]hemicholinium-3 (pKᵢ 8.2–8.4)

Comments: Kᵢ and Kᵢ values for hemicholinium-3 listed in the table are for human CHT expressed in Xenopus laevis oocytes [479], or COS-7 cells [22]. Hemicholinium mustard is a substrate for CHT that causes covalent modification and irreversible inactivation of the transporter. Several exogenous substances (e.g. triethylcholine) that are substrates for CHT act as precursors to cholinergic false transmitters.
Sodium iodide symporter, sodium-dependent multivitamin transporter and sodium-coupled monocarboxylate transporters

Overview: The sodium-iodide symporter (NIS) is an iodide transporter found principally in the thyroid gland where it mediates the accumulation of I⁻ within thyrocytes. Transport of I⁻ by NIS from the blood across the basolateral membrane followed by apical efflux into the colloidol lumen, mediated at least in part by pendrin (SLC22A4), and most likely not SMCT1 (SLC5A8) as once thought, provides the I⁻ required for the synthesis of the thyroid hormones triiodothyronine (triiodothyronine) and thyroxine (T₄) [59]. NIS is also expressed in the salivary glands, gastric mucosa, intestinal enterocytes and lactating breast. NIS mediates I⁻ absorption in the intestine and I⁻ secretion into the milk. SMVT is expressed on the apical membrane of intestinal enterocytes and colonocytes and is the main system responsible for biotin (vitamin H) and pantothenic acid (vitamin B₅) uptake in humans [54]. SMVT located in kidney proximal tubule epithelial cells mediates the reabsorption of biotin and pantothenic acid. SMCT1 (SLC5A8), which transports a wide range of monocarboxylates, is expressed in the apical membrane of epithelia of the small intestine, colon, kidney, brain neurons and the retinal pigment epithelium [224]. SMCT2 (SLC5A12) also localises to the apical membrane of kidney, intestine, and colon, but in the brain and retina is restricted to astrocytes and Muller cells, respectively [224]. SMCT1 is a high-affinity transporter whereas SMCT2 is a low-affinity transporter. The physiological substrates for SMCT1 and SMCT2 are lactate (L-lactic acid and D-lactic acid), pyruvic acid, propanoic acid, and nicotinic acid in non-colonic tissues such as the kidney. SMCT1 is also likely to be the principal transporter for the absorption of nicotinic acid (vitamin B₃) in the intestine and kidney [246]. In the small intestine and colon, the physiological substrates for these transporters are nicotinic acid and the short-chain fatty acids acetic acid, propanoic acid, and butyric acid that are produced by bacterial fermentation of dietary fiber [447]. In the kidney, SMCT2 is responsible for the bulk absorption of lactate because of its low-affinity/high-capacity nature. Absence of both transporters in the kidney leads to massive excretion of lactate in urine and consequently drastic decrease in the circulating levels of lactate in blood [615]. SMCT1 also functions as a tumour suppressor in the colon as well as in various other non-colonic tissues [225]. The tumour-suppressive function of SMCT1 is based on its ability to transport pyruvic acid, an inhibitor of histone deacetylases, into cells in non-colonic tissues [616]; in the colon, the ability of SMCT1 to transport butyric acid and propanoic acid, also inhibitors of histone deacetylases, underlies the tumour-suppressive function of this transporter [224, 225, 271]. The ability of SMCT1 to promote histone acetylase inhibition through accumulation of butyric acid and propanoic acid in immune cells is also responsible for suppression of dendritic cell development in the colon [579].

Nomenclature	NIS	SMVT	SMCT1	SMCT2
Systematic nomenclature	SLC5A5	SLC5A6	SLC5A8	SLC5A12
HGNC, UniProt	SLC5A5, Q92911	SLC5A6, Q9Y289	SLC5A8, QBN69S	SLC5A12, Q1EH84
Substrates	ClO₄²⁻, SCN⁻, I⁻, NO₃⁻, pertechnetate	lipoic acid [139], pantothenic acid [139], I⁻ [139], biotin [139]	propanoic acid, 3-bromopyruvate, pyroglutamic acid, nicotinic acid, D-lactic acid, β-D-hydroxybutyric acid, L-lactic acid, salicylic acid, dichloroacetate, butyric acid, α-ketoisocaproate, pyruvic acid, acetooacetic acid, benzoate, γ-hydroxybutyric acid, 2-oxythiazolidine-4-carboxylate, acetic acid, β-L-hydroxybutyric acid, 5-aminosalicylate	pyruvic acid, L-lactic acid, nicotinic acid
Stoichiometry	2Na⁺ : 1 I⁻ [185]; 1Na⁺ : 1 ClO₄⁻ [157]	2Na⁺ : 1 biotin (or pantothenic acid) [506]	2Na⁺ : 1 monocarboxylic acid [120]	–
Inhibitors	–	–	fenoprofen (pIC₅₀ 4.6) [319], ibuprofen (pIC₅₀ 4.2) [319], ketoprofen (pIC₅₀ 3.9) [319]	–

Comments: I⁻, ClO₄²⁻, thiocyanate and NO₃⁻ are competitive substrate inhibitors of NIS [157]. Lipoic acid appears to act as a competitive substrate inhibitor of SMVT [654] and the anticonvulsant drugs primidone and carbamazepine competitively block the transport of biotin by brush border vesicles prepared from human intestine [545].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full

Sodium iodide symporter, sodium-dependent multivitamin transporter and sodium-coupled monocarboxylate transporters

S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493
Overview: Three different mammalian myo-inositol cotransporters are currently known; two are the Na\(^+\)-coupled SMIT1 and SMIT2 tabulated below and the third is proton-coupled HMIT (SLC2A13). SMIT1 and SMIT2 have a widespread and overlapping tissue location but in polarized cells, such as the Madin-Darby canine kidney cell line, they segregate to the basolateral and apical membranes, respectively \[58\]. In the nephron, SMIT1 mediates myo-inositol uptake as a ‘compatible osmolyte’ when inner medullary tubules are exposed to increases in extracellular osmolality, whilst SMIT2 mediates the reabsorption of myo-inositol from the filtrate. In some species (e.g. rat, but not rabbit) apically located SMIT2 is responsible for the uptake of myo-inositol from the intestinal lumen \[21\].

Nomenclature	SMIT	SGLT6
Systematic nomenclature	SLC5A3	SLC5A11
Common abbreviation	SMIT1	SMIT2
HGNC, UniProt	SLC5A3, PS3794	SLC5A11, Q8WWX8
Substrates	myo-inositol, scyllo-inositol > L-fucose > L-xylose > L-glucose, D-glucose, α-MDG > D-galactose, D-fucose > D-xylose [273]	myo-inositol = D-chiro-inositol > D-glucose > D-xylose > L-xylose [121]
Stoichiometry	2 Na\(^+\) :1 myo-inositol [273]	2 Na\(^+\) :1 myo-inositol [70]
Inhibitors	phlorizin [121]	phlorizin (pK\(_i\) 4.1) [121]

Comments: The data tabulated are those for dog SMIT1 and rabbit SMIT2. SMIT2 transports D-chiro-inositol, but SMIT1 does not. In addition, whereas SMIT1 transports both D-xylose and L-xylose and D-fucose and L-fucose, SMIT2 transports only the D-isomers of these sugars \[121, 273\]. Thus the substrate specificities of SMIT1 (for L-fucose) and SMIT2 (for D-chiro-inositol) allow discrimination between the two SMITs. Human SMIT2 appears not to transport glucose \[402\].

Further reading on SLC5 family of sodium-dependent glucose transporters

DeFronzo RA \textit{et al} (2017) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. \textit{Nat Rev Nephrol} \textbf{13}: 11-26 [PMID:27941935]

Koepsell H. (2017) The Na\(^+\)-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. \textit{Pharmacol. Ther.} \textbf{170}: 148-165 [PMID:27773781]

Lehmann A \textit{et al} (2016) Intestinal SGLT1 in metabolic health and disease. \textit{Am. J. Physiol. Gastrointest. Liver Physiol.} \textbf{310}: G887-98 [PMID:27012770]

Wright EM. (2013) Glucose transport families SLC5 and SLC50. \textit{Mol. Aspects Med.} \textbf{34}: 183-96 [PMID:23506865]

Wright EM \textit{et al}. (2011) Biology of human sodium glucose transporters. \textit{Physiol. Rev.} \textbf{91}: 733-94 [PMID:21527736]
SLC6 neurotransmitter transporter family

Transports → SLC superfamily of solute carriers → SLC6 neurotransmitter transporter family

Overview: Members of the solute carrier family 6 (SLC6) of sodium- and (or sometimes chloride-) dependent neurotransmitter transporters [80, 106, 376] are primarily plasma membrane located and may be divided into four subfamilies that transport monoamines, GABA, glycine and neutral amino acids, plus the related bacterial NSS transporters [546]. The members of this superfamily share a structural motif of 10 TM segments that has been observed in crystal structures of the NSS bacterial homolog LeuT, a Na⁺-dependent amino acid transporter from Agrobacterium radiobacter [687] and several other transporter families structurally related to LeuT [209].

Monoamine transporter subfamily

Transports → SLC superfamily of solute carriers → SLC6 neurotransmitter transporter family → Monoamine transporter subfamily

Overview: Monoamine neurotransmission is limited by perisynaptic transporters. Presynaptic monoamine transporters allow recycling of synthetically released noradrenaline, dopamine and S-hydroxytryptamine.

Nomenclature	NET	DAT	SERT	
Systematic nomenclature	SLC6A2	SLC6A3	SLC6A4	
HGNC, UniProt	SLC6A2, P23975	SLC6A3, Q01959	SLC6A4, P31645	
Substrates	MPP⁺, methamphetamine, amphetamine	dopamine, (-)-adrenaline, (-)-noradrenaline	MPP⁺, methamphetamine, amphetamine	
Endogenous substrates	1 noradrenaline: 1 Na⁺: 1 Cl⁻ [266]	1 dopamine: 1-2 Na⁺: 1 Cl⁻ [265]	1 S-HT: 1 Na⁺: 1 Cl⁻ (in), + 1 K⁺ (out) [603]	
Stoichiometry	H⁰⁺	1 [682] – Rat	H⁰⁺	1 [682] – Rat
Inhibitors	H⁰⁺	1 [682] – Rat	H⁰⁺	1 [682] – Rat
Sub/family-selective inhibitors	sibutramine (pK₆ 5.2) [31]	sibutramine (pK₆ 6.3) [31]	clomipramine (pK₇ 9.7) [608], paroxetine (pK₆ 9.6) [608], citalopram (pK₉ 9.4) [49]	
Selective inhibitors	mazindol (pK₈ 8.9), protriptyline (pIC₅₀ 8.8) [449], niloxetine (pK₇ 8.4), protriptyline (pK₇ 8.2) [404], nomifensine (pK₇ 8.1), reboxetine (pK₇ 8) [673]	mazindol (pK₇ 8), WIN35428 (pK₇ 7.9) [524], GBR1293S (pK₇ 7.6), dexamfetamine (pK₇ 7.6) [381], methylphenidate (pIC₅₀ 7.1) [214]	citalopram (pK₉ 8.4) [49]	
Labelled ligands	[³H]mazindol (Inhibitor) (pK₉ 9.3) [514] – Rat, [³H]niloxetine (Inhibitor) (pK₇ 8.4)	[³H]GBR1293S (Inhibitor) (pK₈ 8.5) [508], [³H]WIN35428 (Inhibitor) (pK₈ 8) [508]	[³H]paroxetine (Inhibitor) (pK₉ 9.7), [³H]citalopram (Inhibitor) (pK₈ 8.3)	

Comments: [125] JRT155 labels all three monoamine transporters (NET, DAT and SERT) with affinities between 0.5 and 5 nM. Cocaine is an inhibitor of all three transporters with pKᵢ values between 6.5 and 7.2. Potential alternative splicing sites in non-coding regions of SERT and NET have been identified. A bacterial homologue of SERT shows allosteric modulation by selected anti-depressants [580].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
GABA transporter subfamily

Transports → SLC superfamily of solute carriers → SLC6 neurotransmitter transporter family → GABA transporter subfamily

Overview: The activity of GABA-transporters located predominantly upon neurones (GAT-1), glia (GAT-3) or both (GAT-2, BGT-1) serves to terminate phasic GABA-ergic transmission, maintain low ambient extracellular concentrations of GABA, and recycle GABA for reuse by neurones. Nonetheless, ambient concentrations of GABA are sufficient to sustain tonic inhibition mediated by high affinity GABA_A receptors in certain neuronal populations [566]. GAT1 is the predominant GABA transporter in the brain and occurs primarily upon the terminals of presynaptic neurones and to a much lesser extent upon distal astrocitic processes that are in proximity to axons terminals. GAT3 resides predominantly on distal astrocitic terminals that are close to the GABAergic synapse. By contrast, BGT1 occupies an extrasynaptic location possibly along with GAT2 which has limited expression in the brain [422]. TauT is a high affinity taurine transporter involved in osmotic balance that occurs in the brain and non-neuronal tissues, such as the kidney, brush border membrane of the intestine and blood brain barrier [106, 279]. CT1, which transports creatine, has a ubiquitous expression pattern, often co-localizing with creatine kinase [106].

Nomenclature	Systematic nomenclature	HGNC, UniProt	Substrates	Endogenous substrates	Stoichiometry	Selective inhibitors	Labelling ligands
GAT1	SLC6A1	SLC6A13	n-Nicotinic acid, guvaince	GABA	2Na*: 1Cl: 1GABA	SNAP-5114 (pIC50 4.7) [66]	[13H]Gaba (Inhibitor)
GAT2	SLC6A11	SLC6A13, Q9N9DS	n-Nicotinic acid, guvaince	β-alanine, GABA	2Na*: 1Cl: 1GABA	SNAP-5114 (pIC50 5.2) [65]	–
GAT3	SLC6A12	SLC6A11, P48066	guvaince, n-Nicotinic acid	β-alanine, GABA	≥ 2Na*: 2 Cl: 1GABA	SNAP-5114 (pIC50 5.9) [618]	–
BGT1	SLC6A12	SLC6A12, P48065	–	GABA, betaine	3Na*: 1 (or 2) Cl: 1GABA	NNC052090 (pK5 5.9) [618]	–
TauT	SLC6A6	SLC6A6, P31641	–	β-alanine, taurine, GABA	2Na*: 1Cl: 1 taurine	–	–
CT1	SLC6A8	SLC6A8, P48029	–	creatine	–	–	–

Comments: The IC50 values for GAT1-4 reported in the table reflect the range reported in the literature from studies of both human and mouse transporters. There is a tendency towards lower IC50 values for the human orthologue [380]. SNAP-5114 is only weakly selective for GAT 2 and GAT3, with IC50 values in the range 22 to >30 μM at GAT1 and BGT1, whereas NNC052090 has at least an order of magnitude selectivity for BGT1 [see 119, 562] for reviews]. Compound (R)-4d is a recently described compound that displays 20-fold selectivity for GAT3 over GAT1 [218]. In the inhibitors listed, deramiclante is a moderately potent, though non-selective, inhibitor of all cloned GABA transporters (IC50 = 26-46 μM; [148]). Diarylaxine and diarylvinyl ether derivatives of n-Nicotinic acid and guvaince that potently inhibit the uptake of [13H]GABA into rat synaptosomes have been described [359]. Several derivatives of exo-THPO (e.g. N-methyl-exo-THPO and N-acetyloxethyl-exo-THPO) demonstrate selectivity as blockers of astroglial, versus neuronal, uptake of GABA [see 119, 561] for reviews]. GAT3 is inhibited by physiologically relevant concentrations of Zn2+ [123]. Tau transports GABA, but with low affinity, but CT1 does not, although it can be engineered to do so by mutagenesis guided by LeuT as a structural template [155]. Although inhibitors of creatine transport by CT1 (e.g. β-guanidinopropionic acid, cyclocreatine, guanidinoethane sulfonic acid) are known (e.g. [131]) they insufficiently characterized to be included in the table.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Glycine transporter subfamily

Overview: Two gene products, GlyT1 and GlyT2, are known that give rise to transporters that are predominantly located on glia and neurones, respectively. Five variants of GlyT1 (a,b,c,d & e) differing in their N- and C-termini are generated by alternative promoter usage and splicing, and three splice variants of GlyT2 (a,b & c) have also been identified (see [51, 189, 242, 594] for reviews). GlyT1 transporter isoforms expressed in glia surrounding glutamatergic synapses regulate synaptic glycine concentrations influencing NMDA receptor-mediated neurotransmission [50, 219], but also are important, in early neonatal life, for regulating glycine concentrations at inhibitory glycinergic synapses [243]. Homozygous mice engineered to totally lack GlyT1 exhibit severe respiratory and motor deficiencies due to hyperactive glycineric signalling and die within the first postnatal day [243, 624]. Disruption of GlyT1 restricted to forebrain neurones is associated with enhancement of EPSCs mediated by NMDA receptors and behaviours that are suggestive of a promnesic action [695]. GlyT2 transporters localised on the axons and boutons of glycinergic neurones appear crucial for efficient transmitter loading of synaptic vesicles but may not be essential for the termination of inhibitory neurotransmission [244, 537]. Mice in which GlyT2 has been deleted develop a fatal hyperekplexia phenotype during the second postnatal week [244] and mutations in the human gene encoding GlyT2 (SLC6A5) have been identified in patients with hyperekplexia (reviewed by [281]). ATB0+ (SLC6A14) is a transporter for numerous dipolar and cationic amino acids and thus has a much broader substrate specificity than the glycine transporters alongside which it is grouped on the basis of structural similarity [106]. ATB0+ is expressed in various peripheral tissues [106]. By contrast PROT (SLC6A7), which is expressed only in brain in association with a subset of excitatory nerve terminals, shows specificity for the transport of L-proline.
Nomenclature

GlyT1 GlyT2 ATB0,+ PROT
Systematic nomenclature SLC6A9 SLC6A5 SLC6A14 SLC6A7
HGNC, UniProt SLC6A9 SLC6A5 SLC6A14, Q9Y345 SLC6A7, Q9UN76
Substrates – – – –
Endogenous substrates sarcosine, glycine glycine β-alanine > L-leucine, L-methionine > L-phenylalanine > L-tryptophan > L-valine > L-serine [581] L-proline
Stoichiometry 2 Na+: 1 Cl–: 1 glycine 3 Na+: 1 Cl–: 1 glycine 2-3 Na+: 1 Cl–: 1 amino acid [581] Probably 2 Na+: 1 Cl–: 1 L-proline
Inhibitors PF-03463275 (pK_i 7.9) [411] bitopertin (pEC_{50} <4.5) [498] – –
Selective inhibitors (R)-NFPS (pIC_{50} 8.5–9.1), SSR-103800 (pIC_{50} 8.7) [69], N-methyl-SSR504734 (pIC_{50} 8.6), LY2365109 (pIC_{50} 7.8), GSK931145 (pIC_{50} 7.6), bitopertin (pIC_{50} 7.5) [498] Org 25543 (pIC_{50} 7.8) [95], ALX 1393, ALX 1405 α-methyl-D,L-tryptophan (pIC_{50} 3.6) [345] compound 58 (pIC_{50} 7.7) [724], LP-403812 (pIC_{50} 7) [698]
Labelled ligands [3H](R)-NPTS (Binding) (pK_d 9) [410], [3H]GSK931145 (Binding) (pK_d 8.8) [287], [35S]JACPPB (Binding) (pK_d 8.7) [703], [3H]SB-733993 (Binding) (pK_d 8.7) [287], [3H]N-methyl-SSR504734 (pK_d 8.1–8.5), [3H]NFPS (pK_d 7.7–8.2) – –
Comments – N-Oleoyl-L-carnitine (0.3 μM, [91]) and N-arachidonoylglycine (IC_{50} 5–8 μM, [668]) have been described as potential endogenous selective GlyT2 inhibitors

Comments: Sarcosine is a selective transportable inhibitor of GlyT1 and also a weak agonist at the glycine binding site of the NMDA receptor [707], but has no effect on GlyT2. This difference has been attributed to a single glycine residue in TM6 (serine residue in GlyT2) [641]. Inhibition of GLYT1 by the sarcosine derivatives NFPS, NPTS and Org 24598 is non-competitive [424, 436]. IC_{50} values for Org 24598 reported in the literature vary, most likely due to differences in assay conditions [74, 424]. The tricyclic antidepressant amoxapine weakly inhibits GlyT2 (IC_{50} 92 μM) with approximately 10-fold selectivity over GlyT1 [473]. The endogenous lipids arachidonic acid and anandamide exert opposing effects upon GlyT1α, inhibiting (IC_{50} 2 μM) and potentiating (EC_{50} 13 μM) transport currents, respectively [491]. N-arachidonyl-glycine, N-arachidonyl-γ-aminobutyric acid and N-arachidonyl-D-alanine have been described as endogenous non-competitive inhibitors of GlyT2α, but not GlyT1b [170, 327, 668]. Protons [30] and Zn^{2+} [332] act as non-competitive inhibitors of GlyT1b, with IC_{50} values of 100 nM and 10 μM respectively, but neither ion affects GlyT2 (reviewed by [639]). Glycine transport by GLYT1 is inhibited by Li^+, whereas GLYT2 transport is stimulated (both in the presence of Na^+) [509].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full

Glycine transporter subfamily S426
Neutral amino acid transporter subfamily

Transporters → SLC superfamily of solute carriers → SLC6 neurotransmitter transporter family → Neutral amino acid transporter subfamily

Overview: Certain members of neutral amino acid transport family are expressed upon the apical surface of epithelial cells and are important for the absorption of amino acids from the duodenum, jejunum and ileum and their reabsorption within the proximal tubule of the nephron (i.e. \(\text{B}^0\text{AT1 (SLC6A19)} \), SLC6A18, SLC6A20). Others may function as transporters for neurotransmitters or their precursors (i.e. \(\text{B}^0\text{AT2, SLC6A17} \) [81]). \(\text{B}^0\text{AT1} \) has been proposed as a drug target to treat phenylketonuria [47].

Nomenclature	Systematic nomenclature	Endogenous substrates	Stoichiometry	Inhibitors	Selective inhibitors	Comments
\(\text{B}^0\text{AT1} \)	SLC6A19	L-leucine, L-methionine, L-isoleucine, L-valine, L-asparagine, L-phenylalanine, L-alanine, L-serine > L-threonine, glycine, L-proline [80]	1 \(\text{Na}^+ \): 1 amino acid [90]	cinromide (pIC\(_{50}\) 6.4) [134], nimesulide (pIC\(_{50}\) 4.6) [500] – Rat, benzatropine (pIC\(_{50}\) 4.4) [112]	–	Mutations in \(\text{B}^0\text{AT1} \) are associated with Hartnup disorder
\(\text{B}^0\text{AT2} \)	SLC6A15	L-proline > L-alanine, L-valine, L-methionine, L-leucine > L-isoleucine, L-threonine, L-asparagine, L-serine, L-phenylalanine > glycine [80]	1 \(\text{Na}^+ \): 1 amino acid [78]	–	loratadine (pIC\(_{50}\) 5.4) [130]	SLC6A18 is a functional transporter in mouse, but not in humans.
\(\text{B}^0\text{AT3} \)	SLC6A18	L-alanine, glycine > L-methionine, L-leucine, L-phenylalanine, L-leucine, L-histidine, L-glutamine [643]	\(\text{Na}^+ \)- and Cl\(^-\) -dependent transport [578]	–	–	
NTT5	SLC6A16	–	–	–	–	
NTT4	SLC6A17	L-leucine, L-methionine, L-proline > L-cysteine, L-alanine, L-glutamine, L-serine > L-histidine, glycine [700]	Na\(^+\)-dependent, Cl\(^-\) -independent transport [700]	–	–	
SIT1	SLC6A20	L-proline	2 Na\(^+\): 1 Cl\(^-\): 1 imino acid [76]	–	–	

Further reading on SLC6 neurotransmitter transporter family

Bermingham DP et al. (2016) Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol. Rev. 68: 888-953 [PMID:27591044]

Boer S et al. (2012) The solute carrier 6 family of transporters. Br. J. Pharmacol. 167: 256-78 [PMID:22519513]

Jonquet-Chevalier Curt M et al. (2015) Creatine biosynthesis and transport in health and disease. Biochimie. 119: 146-65 [PMID:26542286]

Lohr KM et al. (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurosci. 45: 20-33 [PMID:27520881]
SLC8 family of sodium/calcium exchangers

Overview: The sodium/calcium exchangers (NCX) use the extracellular sodium concentration to facilitate the extrusion of calcium out of the cell. Alongside the plasma membrane Ca\(^{2+}\)-ATPase (PMCA) and sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA), as well as the sodium/potassium/calcium exchangers (NKCC, SLC24 family), NCX allow recovery of intracellular calcium back to basal levels after cellular stimulation. When intracellular sodium ion levels rise, for example, following depolarisation, these transporters can operate in the reverse direction to allow calcium influx and sodium efflux, as an electrogenic mechanism. Structural modelling suggests the presence of 9 TM segments, with a large intracellular loop between the fifth and sixth TM segments.

Nomenclature

Nomenclature	Sodium/calcium exchanger 1	Sodium/calcium exchanger 2	Sodium/calcium exchanger 3
Systematic nomenclature	SLC8A1	SLC8A2	SLC8A3
Common abbreviation	NCX1	NCX2	NCX3
HGNC, UniProt	SLC8A1, P32418	SLC8A2, Q9UPR5	SLC8A3, P57103
Stoichiometry	3 Na\(^+\) (in) : 1 Ca\(^{2+}\) (out) or 4 Na\(^+\) (in) : 1 Ca\(^{2+}\) (out) [158]; Reverse mode 1 Ca\(^{2+}\) (in): 1 Na\(^+\) (out)	–	–
Selective inhibitors	–	–	YM-244769 (pIC\(_{50}\) 7.7) [323]

Comments: Although subtype-selective inhibitors of NCX function are not widely available, 3,4-dichlorobenzamil and CBDMB act as non-selective NCX inhibitors, while SEA0400, KB-R7943, SN6, and ORM-10103 [331] act to inhibit NCX function with varying degrees of selectivity. BED is a selective NCX3 inhibitor [563] and and YM-244769 inhibits NCX3 preferentially over other isoforms [323, 688].

Further reading on SLC8 family of sodium/calcium exchangers

Giladi M et al. (2016) Structure-Functional Basis of Ion Transport in Sodium-Calcium Exchanger (NCX) Proteins. Int J Mol Sci 17: [PMID:27879668]

Khananshvili D. (2013) The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol. Aspects Med. 34: 220-35 [PMID:23506867]

Sekler I. (2015) Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. Biochem. Biophys. Res. Commun. 460: 50-2 [PMID:25998733]
SLC9 family of sodium/hydrogen exchangers

Overview: Sodium/hydrogen exchangers or sodium/proton antiports are a family of transporters that maintain cellular pH by utilising the sodium gradient across the plasma membrane to extrude protons produced by metabolism, in a stoichiometry of 1 Na⁺ (in) : 1 H⁺ (out). Several isoforms, NHE6, NHE7, NHE8 and NHE9 appear to locate on intracellular membranes [448, 457, 472]. Li⁺ and NH₄⁺, but not K⁺, ions may also be transported by some isoforms. Modelling of the topology of these transporters indicates 12 TM regions with an extended intracellular C-terminus containing multiple regulatory sites. NHE1 is considered to be a ubiquitously-expressed ‘housekeeping’ transporter. NHE3 is highly expressed in the intestine and kidneys and regulate sodium movements in those tissues. NHE10 is present in sperm [653] and osteoclasts [391]; gene disruption results in infertile male mice [653].

Information on members of this family may be found in the online database.

Comments: Analogues of the non-selective cation transport inhibitor amiloride appear to inhibit NHE function through competitive inhibition of the extracellular Na⁺ binding site. The more selective amiloride analogues MPA and ethylisopropylamiloride exhibit a rank order of affinity of inhibition of NHE1 > NHE2 > NHE3 [127, 625, 626].

Further reading on SLC9 family of sodium/hydrogen exchangers

Donowitz M et al. (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na⁺/H⁺ exchangers. Mol. Aspects Med. 34: 236-51 [PMID:23506868]
Kato A et al. (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu. Rev. Physiol. 73: 261-81 [PMID:21054167]
Ohgaki R et al. (2011) Organellar Na⁺/H⁺ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50: 443-50 [PMID:21171650]

SLC10 family of sodium-bile acid co-transporters

Overview: The SLC10 family transport bile acids, sulphated solutes, and other xenobiotics in a sodium-dependent manner. The founding members, SLC10A1 (NTCP) and SLC10A2 (ASBT) function, along with members of the ABC transporter family (MDR1/ABCB1, BSEP/ABCB11 and MRP2/ABCC2) and the organic solute transporter obligate heterodimer OSTα:OSTβ (SLC51), to maintain the enterohepatic circulation of bile acids [138, 357]. SLC10A6 (SOAT) functions as a sodium-dependent transporter of sulphated solutes including sulphated steroids and bile acids [234, 236]. Transport function has not yet been demonstrated for the 4 remaining members of the SLC10 family, SLC10A3 (P3), SLC10A4 (P4), SLC10A5 (P5), and SLC10A7 (P7), and the identity of their endogenous substrates remain unknown [201, 236, 241, 649]. Members of the SLC10 family are predicted to have seven transmembrane domains with an extracellular N-terminus and cytoplasmic C-terminus [42, 274].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature

Sodium/bile acid and sulphated solute cotransporter 1	Sodium/bile acid and sulphated solute cotransporter 2	Sodium/bile acid and sulphated solute cotransporter 6
SLC10A1	SLC10A2	SLC10A6

Systematic nomenclature

NTCP	ASBT	SOAT
SLC10A1, Q14973	SLC10A2, Q12908	SLC10A6, Q3KNWS

Common abbreviation

HGNC, UniProt
SLC10A1, Q14973

Substrates

- glycodeoxycholic acid
- glycoursodeoxycholic acid
- glycochenodeoxycholic acid
- taurocholic acid
- cholic acid
- pregnenolone sulphate
- estrone-3-sulphate
- dehydroepiandrosterone sulphate
- taurolithocholic acid-3-sulphate

Endogenous substrates

- dehydroepiandrosterone sulphate
- estrone-3-sulphate
- iodothyronine sulphates
- tauroursodeoxycholic acid
- taurocholic acid
- taurochenodeoxycholic acid
- glycocholic acid
- cholic acid

Stoichiometry

2 Na⁺: 1 bile acid

>1 Na⁺: 1 bile acid

Inhibitors

- (-)-propranolol (pIC\textsubscript{50} 8.2) \[355\]
- cyclosporin A (pIC\textsubscript{50} 6) \[355\]
- elobixibat (pIC\textsubscript{50} 8.9) \[237\]
- SC-435 (pIC\textsubscript{50} 8.8) \[54\]
- (+)-propranolol (pIC\textsubscript{50} 5.3) \[355\]
- cyclosporin A (pK\textsubscript{i} 5.1) \[159\]
- irbesartan (pK\textsubscript{i} 4.9) \[159\]

Labelled ligands

- \[^{3}H\]taurocholic acid \[129\]

Comments

Chenodeoxycholyl-N\textsubscript{N} -nitrobenzoxadiazol-lysine is a fluorescent bile acid analogue used as a probe \[662\].

- Heterologously expressed SLC10A4 \[235\] or SLC10A7 \[241\] failed to exhibit significant transport of taurocholic acid, pregnenolone sulphate, dehydroepiandrosterone sulphate or choline. SLC10A4 has recently been suggested to associate with neuronal vesicles \[84\].

Further reading on SLC10 family of sodium-bile acid co-transporters

- Anwer MS \textit{et al.} (2014) Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. \textit{Pflugers Arch.} \textbf{466}: 77-89 [PMID:24196564]
- Claro da Silva T \textit{et al.} (2013) The solute carrier family 10 (SLC10): beyond bile acid transport. \textit{Mol. Aspects Med.} \textbf{34}: 252-69 [PMID:23806869]
- Dawson PA. (2017) Roles of ileal ASBT and OST\textalpha-OST\textbeta in Regulating Bile Acid Signaling. \textit{Dig Dis} \textbf{35}: 261-266 [PMID:28249269]
- Zwicker BL \textit{et al.} (2013) Transport and biological activities of bile acids. \textit{Int. J. Biochem. Cell Biol.} \textbf{45}: 1389-98 [PMID:23603607]
SLC11 family of proton-coupled metal ion transporters

Overview: The family of proton-coupled metal ion transporters are responsible for movements of divalent cations, particularly ferrous and manganese ions, across the cell membrane (SLC11A2/DMT1) and across endosomal (SLC11A2/DMT1) or lysosomal/phagosomal membranes (SLC11A1/NRAMP1), dependent on proton transport. Both proteins appear to have 12 TM regions and cytoplasmic N- and C- termini. NRAMP1 is involved in antimicrobial action in macrophages, although its precise mechanism is undefined. Facilitated diffusion of divalent cations into phagosomes may increase intravesicular free radicals to damage the pathogen. Alternatively, export of divalent cations from the phagosome may deprive the pathogen of essential enzyme cofactors. SLC11A2/DMT1 is more widely expressed and appears to assist in divalent cation assimilation from the diet, as well as in phagocytic cells.

Nomenclature
- NRAMP1
- DMT1
- SLC11A1
- SLC11A2

Systematic nomenclature
- SLC11A1
- SLC11A2

HGNC, UniProt
- SLC11A1
- SLC11A2

Endogenous substrates
- Fe^{2+}, Mn^{2+}
- Cu^{2+}, Co^{2+}, Cd^{2+}, Fe^{2+}, Mn^{2+}

Stoichiometry
- 1 H^+ : 1 Fe^{2+} (out) or 1 Fe^{2+} (in) : 1 H^+ (out)

Inhibitors
- compound 6b (pIC50 7.1)

Comments: Loss-of-function mutations in NRAMP1 are associated with increased susceptibility to microbial infection (OMIM: 607948). Loss-of-function mutations in DMT1 are associated with microcytic anemia (OMIM: 206100).

Further reading on SLC11 family of proton-coupled metal ion transporters
- Codazzi F et al. (2015) Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci 8: 18 [PMID:2609776]
- Montalbetti N et al. (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med. 34: 270-87 [PMID:23506870]
- Wessling-Resnick M. (2015) Nramp1 and Other Transporters Involved in Metal Withholding during Infection. J. Biol. Chem. 290: 18984-90 [PMID:26053722]
- Zheng W et al. (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol. Ther. 133: 177-88 [PMID:22115751]

SLC12 family of cation-coupled chloride transporters

Overview: The SLC12 family of chloride transporters contribute to ion fluxes across a variety of tissues, particularly in the kidney and choroid plexus of the brain. Within this family, further sub-families are identifiable: NKCC1, NKCC2 and NCC constitute a group of therapeutically-relevant transporters, targets for loop and thiazide diuretics. These 12 TM proteins exhibit cytoplasmic termini and an extended extracellular loop at TM7/8 and are kidney-specific (NKCC2 and NCC) or show a more widespread distribution (NKCC1). A second family, the K-Cl co-transporters are also 12 TM domain proteins with cytoplasmic termini, but with an extended extracellular loop at TM 5/6. CCC6 exhibits structural similarities with the K-Cl co-transporters, while CCC9 is divergent, with 11 TM domains and a cytoplasmic N-terminus and extracellular C-terminus.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature

Kidney-specific Na-K-Cl symporter	Basolateral Na-K-Cl symporter	Na-Cl symporter	K-Cl cotransporter 1	K-Cl cotransporter 2
SLC12A1	SLC12A2	SLC12A3	SLC12A4	SLC12A5
NKCC2	NKCC1	NCC	KCC1	KCC2

Inhibitors

- Bumetanide (pIC₅₀ 6.5) [280]
- Piretanide (pIC₅₀ 6) [280]
- Furosemide (pIC₅₀ 5.6) [280]
- Chlorothiazide, cyclothiazide, hydrochlorothiazide, metolazone

Stoichiometry

- 1 Na⁺ : 1 K⁺ : 2 Cl⁻ (in)
- 1 Na⁺ : 1 K⁺ : 2 Cl⁻ (in)
- 1 Na⁺ : 1 Cl⁻ (in)
- 1 K⁺ : 1 Cl⁻ (out)

Comments

- DIOA is able to differentiate KCC isoforms from NKCC and NCC transporters, but also inhibits CFTR [321].

Further reading on SLC12 family of cation-coupled chloride transporters

- Arroyo JP et al. (2013) The SLC12 family of electroneutral cation-coupled chloride cotransporters. *Mol. Aspects Med.* **34**: 288-98 [PMID:23506871]
- Bachmann S et al. (2017) Regulation of renal Na-(K)-Cl cotransporters by vasopressin. *Pflugers Arch.* **469**: 889-897 [PMID:28577072]
- Bazúa-Valenti S et al. (2016) Physiological role of SLC12 family members in the kidney. *Am. J. Physiol. Renal Physiol.* **311**: F131-44 [PMID:27097893]
- Huang X et al. (2016) Everything we always wanted to know about furosemide but were afraid to ask. *Am. J. Physiol. Renal Physiol.* **310**: F958-71 [PMID:26911852]
- Kahle KT et al. (2015) K-Cl cotransporters, cell volume homeostasis, and neurological disease. *Trends Mol Med* **21**: S13-23 [PMID:26142773]
- Martin-Aragón Baudel MA et al. (2017) Chloride co-transporters as possible therapeutic targets for stroke. *J. Neurochem.* **140**: 195-209 [PMID:27861901]

Comments: DIOA is able to differentiate KCC isoforms from NKCC and NCC transporters, but also inhibits CFTR [321].
SLC13 family of sodium-dependent sulphate/carboxylate transporters

Transports → SLC superfamily of solute carriers → SLC13 family of sodium-dependent sulphate/carboxylate transporters

Overview: Within the SLC13 family, two groups of transporters may be differentiated on the basis of the substrates transported: NaS1 and NaS2 convey sulphate, while NaC1-3 transport carboxylates. NaS1 and NaS2 transporters are made up of 13 TM domains, with an intracellular N terminus and are electrogenic with physiological roles in the intestine, kidney and placenta. NaC1, NaC2 and NaC3 are made up of 11 TM domains with an intracellular N terminus and are electrogenic, with physiological roles in the kidney and liver.

Nomenclature	Na⁺/sulfate cotransporter	Na⁺/dicarboxylate cotransporter	Na⁺/dicarboxylate cotransporter 3	Na⁺/sulfate cotransporter	Na⁺/citrate cotransporter
Systematic nomenclature	SLC13A1	SLC13A2	SLC13A3	SLC13A4	SLC13A5
Common abbreviation	NaS1	NaC1	NaC3	NaS2	NaC2
HGNC, UniProt	SLC13A1, Q9BZW2	SLC13A2, Q13183	SLC13A3, Q8WWT9	SLC13A4, Q9UKG4	SLC13A5, Q86YT5
Endogenous substrates	SeO₄²⁻, SO₄²⁻, S₂O₃²⁻	citric acid, succinic acid	citric acid, succinic acid	SO₄²⁻	citric acid, pyruvic acid
Stoichiometry	3 Na⁺ : 1 SO₄²⁻ (in)	3 Na⁺ : 1 dicarboxylate²⁻ (in)	Unknown	3 Na⁺ : SO₄²⁻ (in)	Unknown

Further reading on SLC13 family of sodium-dependent sulphate/carboxylate transporters

Bergeron MJ et al. (2013) SLC13 family of Na⁺-coupled di- and tri-carboxylate/sulfate transporters. Mol. Aspects Med. 34: 299-312 [PMID:23506872]
Markovich D. (2014) Na⁺-sulfate cotransporter SLC13A1. Pflugers Arch. 466: 131-7 [PMID:24193406]

Pajor AM. (2014) Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch. 466: 119-30 [PMID:24114175]
SLC14 family of facilitative urea transporters

Overview: As a product of protein catabolism, urea is moved around the body and through the kidneys for excretion. Although there is experimental evidence for concentrative urea transporters, these have not been defined at the molecular level. The SLC14 family are facilitative transporters, allowing urea movement down its concentration gradient. Multiple splice variants of these transporters have been identified; for UT-A transporters, in particular, there is evidence for cell-specific expression of these variants with functional impact \[589\]. Topographical modelling suggests that the majority of the variants of SLC14 transporters have 10 TM domains, with a glycosylated extracellular loop at TMS/6, and intracellular C- and N-termini. The UT-A1 splice variant, exceptionally, has 20 TM domains, equivalent to a combination of the UT-A2 and UT-A3 splice variants.

Nomenclature	Erythrocyte urea transporter	Kidney urea transporter
Systematic nomenclature	SLC14A1	SLC14A2
Common abbreviation	UT-B	UT-A
HGNC, UniProt	SLC14A1, Q13336	SLC14A2, Q15849
Substrates	acetamide [711], acrylamide [711], methylurea [711]	urea [420]
Endogenous substrates	ammonium carbonate [711], urea [711], formamide [711]	–
Stoichiometry	Equilibrative	Equilibrative
Inhibitors	compound 1a (pIC\(_50\) ~ 8) [406], compound 1a (pIC\(_50\) 7.6) [406] – Mouse	–

Further reading on SLC14 family of facilitative urea transporters

Esteva-Font C et al. (2015) Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 11: 113-23 [PMID:25488859]

LeMoine CM et al. (2015) Evolution of urea transporters in vertebrates: adaptation to urea’s multiple roles and metabolic sources. J. Exp. Biol. 218: 1936-1945 [PMID:26085670]

Pannabecker TL. (2013) Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304: R488-503 [PMID:23364530]

Shayakul C et al. (2013) The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol. Aspects Med. 34: 313-22 [PMID:23506873]

Stewart G. (2011) The emerging physiological roles of the SLC14A family of urea transporters. Br. J. Pharmacol. 164: 1780-92 [PMID:21449978]
Overview: The Solute Carrier 15 (SLC15) family of peptide transporters, alias H⁺-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di- and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reap-uptake of di/tripeptides from ultrafiltration and brain-to-blood ef-flux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide-like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two sub-families.

Nomenclature	Peptide transporter 1	Peptide transporter 2
Systematic nomenclature	SLC15A1	SLC15A2
Common abbreviation	PEPT1	PEPT2
HGNC, UniProt	SLC15A1, P46059	SLC15A2, Q16348
Substrates	fMet-Leu-Phe [88, 102, 432, 433, 677], His-Leu-lopinavir [425], D-Ala-Lys-AMCA [245, 260, 372, 599], β-Ala-Lys-AMCA [3, 324, 372], alafosfalin [462], muramyl dipeptide [318, 645]	muramyl dipeptide [297, 592], β-Ala-Lys-AMCA [3, 152, 372, 531, 540, 592, 722, 723], D-Ala-Lys-AMCA [372, 599, 663], β-E-DAP [592, 597], alafosfalin [462]
Endogenous substrates	protons, dipeptides [169], 5-aminoimidazole-4-carboxamide ribonucleotide [169, 53, 169, 312, 461, 549], tripeptides [169]	dipeptides, protons, tripeptides, 5-aminoimidazole-4-carboxamide ribonucleotide [169, 312, 681]
Stoichiometry	Transport is electroneutral and involves a variable proton-to-substrate stoichiometry for uptake of neutral and mono- or polyvalently charged peptides, as well as 5-aminoimidazole-4-carboxamide ribonucleotide acid.	Transport is electroneutral and involves a variable proton-to-substrate stoichiometry for uptake of neutral and mono- or polyvalently charged peptides, as well as 5-aminoimidazole-4-carboxamide acid.
Inhibitors	Lys(Z(NO₂)) Val (pKᵢ 5.7) [360], 4-AMBA (pKᵢ 5.5) [135, 431], Lys(Z(NO₂)) Pro (pKᵢ 5–5.3) [362]	Lys(Z(NO₂)) Lys(Z(NO₂)) (pKᵢ 8) [57, 617], Lys(Z(NO₂)) Pro
Labelled ligands	[11C] GlySar [444], [14C] GlySar [6, 40, 56, 221, 222, 223, 312, 361, 362, 363, 413, 425, 556, 604, 612, 613, 614], [3H] GlySar [12, 87, 118, 128, 278, 325, 399, 483, 549, 599]	[11C] GlySar [453], [14C] GlySar [217, 221, 222, 223, 298, 312, 361, 363, 405, 413, 556, 612, 614], [3H] GlySar [399, 412, 483, 550, 583, 599]
Comments	A variety of dipeptides and drugs interact with PEPT1, including carnosine [288], D-Phe-Ala [169, 362], D-Phe-Gln [16], 5-aminoimidazole-4-carboxamide ribonucleotide [461, 475, 529], nateglinide [614], glibencamide [556], valacyclovir [39, 40, 53, 270], cefadroxil [664], cephalaxin [221] and penicillin G (benzylpenicillin) [53], as detected using [3H] and [14C] radio-labelled probes.	Other high-affinity (non-transported) inhibitors: Lys(Z(NO₂)) Val (Kᵢ 2 μM) [360, 362], Lys(Z(NO₂)) Pro (Kᵢ 3–7 μM) [360, 362]; other low-affinity, (non-transported) inhibitors: 4-AMBA (Kᵢ 3 μM) [16, 135, 431]. Like PEPT1, PEPT2 interact with dipeptides and drugs including carnosine [681], D-Phe-Ala [169, 617], 5-aminoimidazole-4-carboxamide ribonucleotide [169, 312, 461, 475, 529], nateglinide [614], glibencamide [556], cefadroxil [475], cephalaxin [221] and penicillin G (benzylpenicillin) [475].
Nomenclature Peptide transporter 3
Systematic nomenclature SLC15A3
Common abbreviation PHT2
HGNC, UniProt SLC15A3, Q8IY34
Substrates MDP-rhodamine [456], muramyl dipeptide [456, 660], Tri-DAP [660]
Endogenous substrates L-histidine [548], dipeptides, tripeptides, protons
Stoichiometry PHT2 has not been analyzed systematically with respect to driving force, mode of transport, and substrate specificity. The pH dependence observed for transport of histidine [548] and the model peptides used, i.e. carnosine [548] and histidyl-leucine [548], suggest a similar mode of operation as PEPT1 and PEPT2 proteins.
Labelled ligands [14C]histidine [548]
Comments PHT2 interacts with 3H]carnosine [548].

Peptide transporter 4

Nomenclature Peptide transporter 4
Systematic nomenclature SLC15A4
Common abbreviation PHT1
HGNC, UniProt SLC15A4, Q8N697
Substrates His-Leu-lopinavir [425], Tri-DAP [388, 554, 584], C12-IE-DAP [388], glycyI-sarcosine [52, 298, 584, 599], muramyl dipeptide [456, 584], valacyclovir [52], MDP-rhodamine [297, 456]
Endogenous substrates L-histidine [52, 365, 425, 658, 689], carnosine [52, 689]
Stoichiometry PHT1 has not been analyzed systematically with respect to driving force, mode of transport, and substrate specificity. The pH dependence observed for transport of histidine [52, 365, 425, 658, 689] and the model peptide used, i.e., carnosine [52, 689], suggest a similar mode of operation of PEPT1 and PEPT2 proteins.
Labelled ligands [14C]histidine (Binding) [658, 659, 689], [3H]histidine [52, 425, 599, 658]
Comments Other PHT1 ligands include [3H]histidine [52, 425, 599, 658], d3-L-histidine [584], [3H]carnosine [52, 689] [14C]GlySar [298], [3H]GlySar [52, 599] and [3H]valacyclovir [52].

Comments: The members of the SLC15 family of peptide transporters are particularly promiscuous in the transport of di/tripeptides, and D-amino acid containing peptides are also transported. While SLC15A3 and SLC15A4 transport histidine, none of them transport tetrapeptides. In addition, many molecules, among which beta-lactam antibiotics, angiotensin-dine, none of them transport tetrapeptides. In addition, many di/tripeptides, and D-amino acid containing peptides are also transported. The pH dependence observed for transport of histidine [548] and the model peptides used, i.e., carnosine [548] and histidyl-leucine [548], suggest a similar mode of operation as PEPT1 and PEPT2 proteins.

Further reading on SLC15 family of peptide transporters

Anderson CM et al. (2010) Hijacking solute carriers for proton-coupled drug transport. *Physiology (Bethesda)* 25: 364-77 [PMID:21186281]
Brandes M. (2013) Drug transport via the intestinal peptide transporter PepT1. *Curr Opin Pharmacol* 13: 881-7 [PMID:24007794]
Brandes M. (2009) Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. *Expert Opin Drug Metab Toxicol* 5: 887-905 [PMID:19519280]
Fredriksson R et al. (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. *FEBS Lett.* 582: 3811-6 [PMID:18948099]
Newstead S. (2015) Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. *Biochim. Biophys. Acta* 1850: 488-499 [PMID:24859687]
Newstead S. (2017) Recent advances in understanding proton coupled peptide transport via the POT family. *Curr. Opin. Struct. Biol.* 45: 1724 [PMID:27865112]
Newstead S. (2011) Towards a structural understanding of drug and peptide transport within the proton-dependent oligopeptide transporter (POT) family. *Biochem. Soc. Trans.* 39: 1353-5 [PMID:21936814]
Smith DE et al. (2013) Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. *Mol. Aspects Med.* 34: 323-36 [PMID:23506874]
Thwaites DT et al. (2007) H+ coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. *Exp. Physiol.* 92: 603-19 [PMID:17468205]
SLC16 family of monocarboxylate transporters

Overview: Members of the SLC16 family may be divided into subfamilies on the basis of substrate selectivities, particularly lactate (e.g. L-lactic acid), pyruvic acid and ketone bodies, as well as aromatic amino acids. Topology modelling suggests 12 TM domains, with intracellular termini and an extended loop at TM 6/7. The proton-coupled monocarboxylate transporters (monocarboxylate transporters 1, 4, 2 and 3) allow transport of the products of cellular metabolism, principally lactate (e.g. L-lactic acid) and pyruvic acid.

Nomenclature

Systematic nomenclature	Monocarboxylate transporter 1	Monocarboxylate transporter 2	Monocarboxylate transporter 3	Monocarboxylate transporter 4	Monocarboxylate transporter 6	Monocarboxylate transporter 8	Monocarboxylate transporter 10
SLC16A1	SLC16A7	SLC16A8	SLC16A3	SLC16A5	SLC16A2	SLC16A2	SLC16A10
Common abbreviation	MCT1	MCT2	MCT3	MCT4	MCT6	MCT8	TAT1
HGNC, UniProt	SLC16A1, P53985	SLC16A7, O60669	SLC16A8, O95907	SLC16A3, O15427	SLC16A5, O15375	SLC16A2, P36021	SLC16A10, Q8TF71

Substrates

- **Endogenous substrates**
 - pyruvic acid, L-lactic acid, β-D-hydroxybutyric acid
 - L-lactic acid
 - pyruvic acid, L-lactic acid

- **Stoichiometry**
 - 1 H⁺ : 1 monocarboxylate (out)
 - 1 H⁺ : 1 monocarboxylate (out)
 - 1 H⁺ : 1 monocarboxylate (out)
 - Unknown

- **Inhibitors**
 - compound 30 (Compound 30 is a channel blocker) (pKᵢ 8.3) [268]
 - 7ACC2 (pIC₅₀ 8) [162]
 - MCT6 has been reported to transport bumetanide, but not short chain fatty acids [451].

- **Comments**
 - MCT1 and MCT2, but not MCT3 and MCT4, are inhibited by CHC, which also inhibits members of the mitochondrial transporter family, SLC25.
 - MCT5-MCT7, MCT9 and MCT11-14 are regarded as orphan transporters.

Further reading on SLC16 family of monocarboxylate transporters

Bernal J et al. (2015) Thyroid hormone transporters-functions and clinical implications. *Nat Rev Endocrinol* 11: 406-417 [PMID:25942657]

Halestrap AP. (2013) The SLC16 gene family - structure, role and regulation in health and disease. *Mol. Aspects Med.* 34: 337-49 [PMID:23506875]

Jones RS et al. (2016) Monocarboxylate Transporters: Therapeutic Targets and Prognostic Factors in Disease. *Clin. Pharmacol. Ther.* 100: 454-463 [PMID:27351344]
SLC17 phosphate and organic anion transporter family

Overview: The SLC17 family are sometimes referred to as Type I sodium-phosphate co-transporters, alongside Type II (SLC34 family) and Type III (SLC20 family) transporters. Within the SLC17 family, however, further subgroups of organic anion transporters may be defined, allowing the accumulation of sialic acid in the endoplasmic reticulum and glutamate (e.g. L-glutamic acid) or nucleotides in synaptic and secretory vesicles. Topology modelling suggests 12 TM domains.

Type I sodium-phosphate co-transporters

Overview: Type I sodium-phosphate co-transporters are expressed in the kidney and intestine.

Nomenclature	Sodium/phosphate cotransporter 1	Sodium/phosphate cotransporter 3	Sodium/phosphate cotransporter 4	Sodium/phosphate cotransporter homolog
Systematic nomenclature	SLC17A1	SLC17A2	SLC17A3	SLC17A4
Common abbreviation	NPT1	NPT3	NPT4	–
HGNC, UniProt	SLC17A1, Q14916	SLC17A2, O00624	SLC17A3, O00476	SLC17A4, Q9V2CS
Substrates	probenecid [86], penicillin G [86], Cl⁻ [306], organic acids [306], uric acid [306], phosphate [306]	–	–	–
Stoichiometry	Unknown	Unknown	Unknown	Unknown
Sialic acid transporter

Transporters → SLC superfamily of solute carriers → SLC17 phosphate and organic anion transporter family → Sialic acid transporter

Overview: The sialic acid transporter is expressed on both lysosomes and synaptic vesicles, where it appears to allow export of sialic acid and accumulation of acidic amino acids, respectively [446], driven by proton gradients. In lysosomes, degradation of glycoproteins generates amino acids and sugar residues, which are metabolized further following export from the lysosome.

Nomenclature	Sialin
Systematic nomenclature	SLC17A5
Common abbreviation	AST
HGNC, UniProt	SLC17A5, Q9NRA2
Endogenous substrates	L-lactic acid, gluconate (out), L-glutamic acid (in) [446], glucuronic acid, L-aspartic acid [446], sialic acid
Stoichiometry	1 H⁺ : 1 sialic acid (out)

Comments: Loss-of-function mutations in sialin are associated with Salla disease (OMIM: 604369), an autosomal recessive neurodegenerative disorder associated with sialic acid storage disease [647].

Vesicular glutamate transporters (VGLUTs)

Transporters → SLC superfamily of solute carriers → SLC17 phosphate and organic anion transporter family → Vesicular glutamate transporters (VGLUTs)

Overview: Vesicular glutamate transporters (VGLUTs) allow accumulation of glutamate into synaptic vesicles, as well as secretory vesicles in endocrine tissues. The roles of VGLUTs in kidney and liver are unclear. These transporters appear to utilize the proton gradient and also express a chloride conductance [48].

Nomenclature	Vesicular glutamate transporter 1	Vesicular glutamate transporter 2	Vesicular glutamate transporter 3
Systematic nomenclature	SLC17A7	SLC17A6	SLC17A8
Common abbreviation	VGLUT1	VGLUT2	VGLUT3
HGNC, UniProt	SLC17A7, Q9P2U7	SLC17A6, Q9P2U8	SLC17A8, Q8NDX2
Endogenous substrates	L-glutamic acid > D-glutamic acid	L-glutamic acid > D-glutamic acid	L-glutamic acid > D-glutamic acid
Stoichiometry	Unknown	Unknown	Unknown

Comments: Endogenous ketoacids produced during fasting have been proposed to regulate VGLUT function through blocking chloride ion-mediated allosteric enhancement of transporter function [333].
Vesicular nucleotide transporter

Overview: The vesicular nucleotide transporter is the most recent member of the SLC17 family to have an assigned function. Uptake of ATP was independent of pH, but dependent on chloride ions and membrane potential [555].

Nomenclature

Nomenclature	Systematic nomenclature	Common abbreviation	HGNC, UniProt
Vesicular nucleotide transporter	SLC17A9	VNUT	SLC17A9, Q9BYT1

Endogenous substrates: guanosine 5’-diphosphate [555], guanosine-5’-triphosphate [555], ATP [555]

Stoichiometry: Unknown

Selective inhibitors: clodronic acid (pIC$_{50}$ 7.8) [346]

Comments: VGLUTs and VNUT can be inhibited by DIDS and evans blue dye.

Further reading on SLC17 phosphate and organic anion transporter family

Moriyama Y et al. (2017) Vesicular nucleotide transporter (VNUT): appearance of an actress on the stage of purinergic signaling. *Purinergic Signal.* 13: 387-404 [PMID:28616712]

Omote H et al. (2016) Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. *Annu. Rev. Pharmacol. Toxicol.* 56: 385-402 [PMID:26514205]

Reimer RJ. (2013) SLC17: a functionally diverse family of organic anion transporters. *Mol. Aspects Med.* 34: 350-9 [PMID:23506876]

Takamori S. (2016) Vesicular glutamate transporters as anion channels? *Pflugers Arch.* 468: 513-8 [PMID:26577586]

SLC18 family of vesicular amine transporters

Overview: The vesicular amine transporters (VATs) are putative 12 TM domain proteins that function to transport singly positively charged amine neurotransmitters and hormones from the cytoplasm and concentrate them within secretory vesicles. They function as amine/proton antiporters driven by secondary active transport utilizing the proton gradient established by a multi-subunit *vacuolar ATPase* that acidifies secretory vesicles (reviewed by [174]). The vesicular acetylcholine transporter (VACHT; [184]) localizes to cholinergic neurons, but non-neuronal expression has also been claimed [558]. The vesicular monoamine transporter 1 (VMAT1, [182]) is mainly expressed in peripheral neuroendocrine cells, but most likely not in the CNS, whereas VMAT2 [183] distributes between both central and peripheral sympathetic monoaminergic neurones [175]. The vesicular polyamine transporter (VPAT) is highly expressed in the lungs and placenta, with moderate expression in brain and testis, and with low expression in heart and skeletal muscle [290]. VPAT mediates vesicular accumulation of polyamines in mast cells [602].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature
Vesicular monoamine transporter 1
Vesicular monoamine transporter 2
Vesicular acetylcholine transporter

Systematic nomenclature
SLC18A1
SLC18A2
SLC18A3

Common abbreviation
VMAT1
VMAT2
VAChT

HGNC, UniProt
SLC18A1, P54219
SLC18A2, Q05940
SLC18A3, Q16572

Substrates
- Dexamfetamine (Kᵢ 4.7x10⁻⁵ M) [183], β-phenylethylamine (Kᵢ 3.4x10⁻⁵ M) [183], fenfluramine (Kᵢ 3.1x10⁻⁶ M) [183], MPP⁺ (Kᵢ 6.9x10⁻⁵ M) [183], MDMA (Kᵢ 1.9x10⁻³ M) [183]
- β-phenylethylamine (Kᵢ 3.7x10⁻⁶ M) [183], dexamfetamine (Kᵢ 2.1x10⁻⁶ M) [183], fenfluramine (Kᵢ 5.1x10⁻⁶ M) [183], MPP⁺ (Kᵢ 8.9x10⁻⁶ M) [183], MDMA (Kᵢ 6.9x10⁻⁶ M) [183]

Endogenous substrates
- Histamine (Kᵢ 4.6x10⁻³ M) [183], 5-hydroxytryptamine (Kᵢ 1.4x10⁻⁴ M) [183], dopamine (Kᵢ 3.8x10⁻⁴ M) [183], (-)-noradrenaline (Kᵢ 1.3x10⁻³ M) [183], (-)-adrenaline (Kᵢ 5.5x10⁻⁶ M) [183]
- Histamine (Kᵢ 1.4x10⁻⁴ M) [183], dopamine (Kᵢ 1.4x10⁻⁶ M) [183], 5-hydroxytryptamine (Kᵢ 9.10⁻⁷ M) [183], (-)-noradrenaline (Kᵢ 3.4x10⁻⁶ M) [183], (-)-adrenaline (Kᵢ 1.9x10⁻⁶ M) [183]

Stoichiometry
- 1 amine (in): 2H⁺ (out)
- 1 amine (in): 2H⁺ (out)
- 1 amine (in): 2H⁺ (out)

Inhibitors
- Reserpine (pKᵢ 7.5) [183], ketanserin (pKᵢ 5.8) [183], tetrabenazine (pKᵢ 4.7) [183]
- Reserpine (pKᵢ 7.9) [183], tetrabenazine (pKᵢ 7) [183], ketanserin (pKᵢ 6.3) [183]
- Aminobenzovesamicol (pKᵢ 10.9) [173], vesamicol (pKᵢ 8.7) [173]

Labelled ligands
- [³H]TBZOH (Inhibitor) (pKd 8.2) [644], [¹²⁵]Iodovinyl-TBZ (Inhibitor) (pKd 8.1) [378], [¹¹]CJDTHZ (Inhibitor), [¹²³]I-7-azido-8-iodoketanserin (Inhibitor) [577], [³H]vesamicol (pKd 8.4) [644], [¹²⁵]Iodobenzovesamicol (Inhibitor) (pKd 8.1) [378], [¹¹]CJDTHZ (Inhibitor), [¹²³]I-7-azido-8-iodoketanserin (Inhibitor) [577]

Comments: pKᵢ values for endogenous and synthetic substrate inhibitors of human VMAT1 and VMAT2 are for inhibition of [³¹]H5-HT uptake in transfected and permeabilised CV-1 cells as detailed by [183]. In addition to the monoamines listed in the table, the trace amines tyramine and β-phenylethylamine are probable substrates for VMAT2 [175]. Probes listed in the table are those currently employed; additional agents have been synthesized (e.g. [720]).

Further reading on SLC18 family of vesicular amine transporters

German Cl. et al. (2015) Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol. Rev. 67: 1005-24 [PMID:26408528]

Lohr KM et al. (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur. J. Neurosci. 45: 20-33 [PMID:27520881]

Omonte H et al. (2016) Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era. Annu. Rev. Pharmacol. Toxicol. 56: 385-402 [PMID:26514205]

Sitte HH et al. (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol. Sci. 36: 41-50 [PMID:25542076]

Wimalasena K. (2011) Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31: 483-519 [PMID:20135626]
SLC19 family of vitamin transporters

Overview: The B vitamins folic acid and thiamine are transported across the cell membrane, particularly in the intestine, kidneys and placenta, using pH differences as driving forces. Topological modelling suggests the transporters have 12 TM domains.

Nomenclature	Reduced folate transporter 1	Thiamine transporter 1	Thiamine transporter 2
Systematic nomenclature	SLC19A1	SLC19A2	SLC19A3
Common abbreviation	FOLT	ThTr1	ThTr2
HGNC, UniProt	SLC19A1, P41440	SLC19A2, O60779	SLC19A3, Q9BZV2
Substrates	N⁵-formyltetrahydrofolate, folinic acid, methotrexate, folic acid [505]	thiamine	thiamine
Endogenous substrates	Other tetrahydrofolate-cofactors, Organic phosphates; in particular, adenine nucleotides, tetrahydrofolic acid [505], N⁵-methylfolate [505], thiamine monophosphate [712]	--	--
Stoichiometry	Folate (in) : organic phosphate (out), precise stoichiometry unknown	A facilitative carrier not known to be coupled to an inorganic or organic ion gradient	A facilitative carrier not known to be coupled to an inorganic or organic ion gradient
Inhibitors	compound 9 (pKᵢ 6.6) [534], methotrexate (pKᵢ 5.3) [534]	--	--
Labelled ligands	[³H]folic acid [29], [³H]methotrexate [29]	[³H]thiamine [168]	[³H]thiamine [518]

Comments: Loss-of-function mutations in ThTr1 underlie thiamine-responsive megaloblastic anemia syndrome [151].

Further reading on SLC19 family of vitamin transporters

Matherly LH et al. (2014) The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos. 42: 632-49 [PMID:24396145]

Zhao R et al. (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol. Aspects Med. 34: 373-85 [PMID:23506878]
SLC20 family of sodium-dependent phosphate transporters

Overview: The SLC20 family is looked upon not only as ion transporters, but also as retroviral receptors. As ion transporters, they are sometimes referred to as Type III sodium-phosphate co-transporters, alongside Type I (SLC17 family) and Type II (SLC34 family). PiTs are cell-surface transporters, composed of ten TM domains with extracellular C- and N-termini. PIT1 is a focus for dietary phosphate and vitamin D regulation of parathyroid hormone secretion from the parathyroid gland. PIT2 appears to be involved in intestinal absorption of dietary phosphate.

Nomenclature	Sodium-dependent phosphate transporter 1	Sodium-dependent phosphate transporter 2
Systematic nomenclature	SLC20A1	SLC20A2
Common abbreviation	PIT1	PIT2
HGNC, UniProt	SLC20A1, Q8WUM9	SLC20A2, Q08357
Substrates	AsO$_4^{3-}$ [519], phosphate [519]	phosphate [519]
Stoichiometry	>1 Na$^+ : 1$ HPO$_4^{2-}$ (in)	>1 Na$^+ : 1$ HPO$_4^{2-}$ (in)

Further reading on SLC20 family of sodium-dependent phosphate transporters

Biber J et al. (2013) Phosphate transporters and their function. Annu. Rev. Physiol. 75: 535-50 [PMID:23398154]
Forster IC et al. (2013) Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34: 386-95 [PMID:23506879]
Shobeiri N et al. (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. Br J Clin Pharmacol 77: 39-54 [PMID:23506202]

SLC22 family of organic cation and anion transporters

Overview: The SLC22 family of transporters is mostly composed of non-selective transporters, which are expressed highly in liver, kidney and intestine, playing a major role in drug disposition. The family may be divided into three subfamilies based on the nature of the substrate transported: organic cations (OCTs), organic anions (OATs) and organic zwiterrion/cations (OCTN). Membrane topology is predicted to contain 12 TM domains with intracellular termini, and an extended extracellular loop at TM 1/2.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Organic cation transporters (OCT)

Transports → SLC superfamily of solute carriers → SLC22 family of organic cation and anion transporters → Organic cation transporters (OCT)

Overview: Organic cation transporters (OCT) are electrogenic, Na⁺-independent and reversible.

Nomenclature	Organic cation transporter 1	Organic cation transporter 2	Organic cation transporter 3
Systematic nomenclature	SLC22A1	SLC22A2	SLC22A3
Common abbreviation	OCT1	OCT2	OCT3
HGNC, UniProt	SLC22A1, O15245	SLC22A2, O15244	SLC22A3, O75751
Substrates	MPP⁺, tetraethylammonium, desipramine, metformin [576], aciclovir	MPP⁺ [247], pancuronium [247], tetraethylammonium [247], tubocurarine [247], cisplatin [368], metformin [368]	MPP⁺, tetraethylammonium, quinidine, metformin [368]
Endogenous substrates	PGF₂α, choline, PGE₂, 5-hydroxytryptamine	PGE₂ [356], dopamine [263], histamine [263]	(-)-noradrenaline [719], 5-hydroxytryptamine [719], dopamine [719]
Stoichiometry	Unknown	Unknown	Unknown
Inhibitors	clonidine (pKᵢ 6.3) [708]	Unknown	decynium 22 (pKᵢ 7) [247]
	Unknown	Unknown	disprocynium24 (pKᵢ 7.8) [264]

Comments: Corticosterone and quinine are able to inhibit all three organic cation transporters.

Further reading on Organic cation transporters (OCT)

Koepsell H. (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 34: 413-35 [PMID:23506881]

Lozano E et al. (2013) Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed Res Int 2013: 692071 [PMID:23984399]

Pelis RM et al. (2014) SLC22, SLC44, and SLC47 transporters—organic anion and cation transporters: molecular and cellular properties. Curr Top Membr 73: 233-61 [PMID:24745985]

Yin J et al. (2016) Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 6: 363-373 [PMID:27709005]
Organic zwitterions/cation transporters (OCTN)

Overview: Organic zwitterions/cation transporters (OCTN) function as organic cation uniporters, organic cation/proton exchangers or sodium/L-carnitine co-transporters.

Nomenclature	Organic cation/carnitine transporter 1	Organic cation/carnitine transporter 2	Carnitine transporter 2
Systematic nomenclature	SLC22A4	SLC22A5	SLC22A16
Common abbreviation	OCTN1	OCTN2	CT2
HGNC, UniProt	SLC22A4, Q9H015	SLC22A5, O76082	SLC22A16, Q86V01
Substrates	verapamil, mepyramine, tetraethylammonium, MPP\(^+\)	verapamil, tetraethylammonium, MPP\(^+\), mepyramine	–
Endogenous substrates	L-carnitine	L-carnitine, acetyl-L-carnitine	L-carnitine
Stoichiometry	Unknown	Unknown	Unknown

Comments: Mutations in the SLC22A5 gene lead to primary carnitine deficiency [409].

Further reading on Organic zwitterions/cation transporters (OCTN)

Pochini L et al. (2013) OCTN cation transporters in health and disease: role as drug targets and assay development. *J Biomol Screen* **18**: 851-67 [PMID:23771822]

Tamai I. (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). *Biopharm Drug Dispos* **34**: 29-44 [PMID:22952014]

Yin J et al. (2016) Renal drug transporters and their significance in drug-drug interactions. *Acta Pharm Sin B* **6**: 363-373 [PMID:27709005]
Organic anion transporters (OATs)

Overview: Organic anion transporters (OATs) are non-selective transporters prominent in the kidney, placenta and blood-brain barrier.

Nomenclature	Organic anion transporter 1	Organic anion transporter 2	Organic anion transporter 3	Organic anion transporter 4	Organic anion transporter 5	Organic anion transporter 7
Systematic nomenclature	SLC22A6	SLC22A7	SLC22A8	SLC22A11	SLC22A10	SLC22A9
Common abbreviation	OAT1	OAT2	OAT3	–	OAT5	OAT4
HGNC, UniProt	SLC22A6, Q4U2R8	SLC22A7, Q9Y694	SLC22A8, Q8TCC7	SLC22A11, Q9NSA0	SLC22A10, Q63ZE4	SLC22A9, Q8IVM8
Substrates	aminohippuric acid, non-steroidal anti-inflammatory drugs	aminohippuric acid, PGE2, non-steroidal anti-inflammatory drugs	uric acid [466], estrone-3-sulphate [379], aminohippuric acid [379], cimetidine [379], ochratoxin A [379]	uric acid [466], dehydroepiandrosterone sulphate [97], estrone-3-sulphate [97], ochratoxin A [97]	–	–
Stoichiometry	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
Inhibitors	probenecid (Inhibition of urate transport by human SCL22A6) (pIC50 4.9) [304]	–	–	–	–	–

Further reading on Organic anion transporters (OATs)

Burckhardt G et al. (2011) In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. *Handb Exp Pharmacol* 29-104 [PMID:21103968]

Koepsell H. (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. *Mol. Aspects Med.* 34: 413-35 [PMID:23506881]

Yin J et al. (2016) Renal drug transporters and their significance in drug-drug interactions. *Acta Pharm Sin B* 6: 363-373 [PMID:27709005]

Urate transporter

Overview: URAT1, a member of the OAT (organic anion transporter) family, is an anion-exchanging uptake transporter localized to the apical (brush border) membrane of renal proximal tubular cells. It is an anion exchanger that specifically reabsorbs uric acid from the proximal tubule in exchange for monovalent anions such as lactate, nicotinamide, acetooacetate, and hydroxybutyrate [181].
Nomenclature | Urate anion exchanger 1
Systematic nomenclature | SLC22A12
Common abbreviation | URAT1
HGNC, UniProt | SLC22A12, Q96S37
Endogenous substrates | uric acid [181], orotic acid [181]
Stoichiometry | Unknown
Selective inhibitors | sufinpyrazone (pIC50 4) [699]
Comments | URAT1 is expressed in the proximal tubule of the kidney and regulates uric acid excretion from the body. Inhibitors of this transporter, such as losartan, find clinical utility in managing hyperuricemia in patients with gout [85, 275].

Further reading on Urate transporter
Nigam SK et al. (2018) The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr. Opin. Nephrol. Hypertens. 27: 305-313 [PMID:29847376]

Atypical SLC22B subfamily

Overview: This family of transporters has previously been classified as part of the atypical major facilitator superfamily (MSF) protein superfamily [489, 492, 493, 520]. The atypical SLCs share sequence similarities and phylogenetic ancestry with other SLCs, and they have historically been classified in to subfamilies (also referred to as atypical MSF transporter families (AMTF1-15)) based on phylogenetic, sequence and structural analyses [492].

Nomenclature | synaptic vesicle glycoprotein 2A
Systematic nomenclature | SLC22B1
HGNC, UniProt | SV2A, Q7L0J3
Substrates | Galactose [421]
Inhibitors | brivaracetam (pIC50 7) [349] – Rat, levetiracetam (pKᵢ 5.8) [470] – Rat

Comments: There are three human synaptic vesicle glycoprotein 2 family members, SV2A, SV2B and SV2C. They have transmembrane transporter activity and can be classified in to the SLC superfamily of solute carriers in subfamily SLC22, as SLC22B1, B2 and B3 respectively. SV2A (SLC22B1) has been identified as the brain binding-site for the antiepileptic drugs levetiracetam [358, 415] and brivaracetam [465].
Further reading on Atypical SLC22B subfamily

Löser W et al. (2016) Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 30: 1055-1077 [PMID:27752944]

Mendoza-Torreblanca JG et al. (2013) Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur. J. Neurosci. 38: 3529-39 [PMID:24102679]

Further reading on SLC22 family of organic cation and anion transporters

Burckhardt G. (2012) Drug transport by Organic Anion Transporters (OATs). Pharmacol. Ther. 136: 106-30 [PMID:22841915]

Hillgren KM et al. (2013) Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94: 52-63 [PMID:23588305]

International Transporter Consortium et al. (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9: 215-36 [PMID:20190787]

Koepsell H. (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Aspects Med. 34: 413-35 [PMID:23506881]

Lozano E et al. (2018) Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 8: [PMID:29659532]

Nigam SK. (2018) The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu. Rev. Pharmacol. Toxicol. 58: 663-687 [PMID:29309257]

Zamek-Gliszczynski MJ et al. (2018) Transporters in Drug Development: 2018 ITC Recommendations for Transporters of Emerging Clinical Importance. Clin. Pharmacol. Ther. 104: 890-899 [PMID:30091177]

SLC23 family of ascorbic acid transporters

Transporters → SLC superfamily of solute carriers → SLC23 family of ascorbic acid transporters

Overview: Predicted to be 12 TM segment proteins, members of this family transport the reduced form of ascorbic acid (while the oxidized form may be handled by members of the SLC2 family (GLUT1/SLC2A1, GLUT3/SLC2A3 and GLUT4/SLC2A4). Phloretin is considered a non-selective inhibitor of these transporters, with an affinity in the micromolar range.

Nomenclature	Sodium-dependent vitamin C transporter 1	Sodium-dependent vitamin C transporter 2	Sodium-dependent vitamin C transporter 3
Systematic nomenclature	SLC23A1	SLC23A2	SLC23A3
Common abbreviation	SVCT1	SVCT2	SVCT3
HGNC, UniProt	SLC23A1, Q9UHI7	SLC23A2, Q9UGH3	SLC23A3, Q6PIS1
Endogenous substrates	L-ascorbic acid > D-ascorbic acid > dehydroascorbic acid [628]	L-ascorbic acid > D-ascorbic acid > dehydroascorbic acid [628]	–
Stoichiometry	2 Na+: 1 ascorbic acid (in) [628]	2 Na+: 1 ascorbic acid (in) [628]	–
Inhibitors	phloretin (pK 4.2) [628]	–	–
Labelled ligands	[14C]ascorbic acid (Binding) [417]	[14C]ascorbic acid	–
Comments	–	–	SLC23A3 does not transport ascorbic acid and remains an orphan transporter.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature
Sodium-dependent nucleobase transporter
Systematic nomenclature SLC23A4
Common abbreviation SNBT1
HGNC, UniProt SLC23A4P
Substrates 5-fluorouracil
Endogenous substrates uracil > thymine > guanine, hypoxanthine > xanthine, uridine
Stoichiometry 1 Na+ : 1 uracil (in)
Comments SLC23A4/SNBT1 is found in rodents and non-human primates, but the sequence is truncated in the human genome and named as a pseudogene, SLC23A4P

Further reading on SLC23 family of ascorbic acid transporters
Bürzle M et al. (2013) The sodium-dependent ascorbic acid transporter family SLC23. Mol. Aspects Med. 34: 436-54 [PMID:23506882]
May JM. (2011) The SLC23 family of ascorbate transporters: ensuring that you get and keep your daily dose of vitamin C. Br. J. Pharmacol. 164: 1793-801 [PMID:21418192]

SLC24 family of sodium/potassium/calcium exchangers

Overview: The sodium/potassium/calcium exchange family of transporters utilize the extracellular sodium gradient to drive calcium and potassium co-transport out of the cell. As is the case for NCX transporters (SLC8A family), NKCX transporters are thought to be bidirectional, with the possibility of calcium influx following depolarization of the plasma membrane. Topological modeling suggests the presence of 10 TM domains, with a large intracellular loop between the fifth and sixth TM regions.

Nomenclature
Sodium/potassium/calcium exchanger 1
Systematic nomenclature SLC24A1
Common abbreviation NKCX1
HGNC, UniProt SLC24A1, O60721
Stoichiometry 4Na+:1Ca2+ +1K+
Comments: NKCX6 has been proposed to be the sole member of a CAX Na+/Ca2+ exchanger family, which may be the mitochondrial transporter responsible for calcium accumulation from the cytosol [565].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Further reading on SLC24 family of sodium/potassium/calcium exchangers

Schnetkamp PP. (2013) The SLC24 gene family of Na\(^+/\)Ca\(^{2+}\)-K\(^+\) exchangers: from sight and smell to memory consolidation and skin pigmentation. *Mol. Aspects Med.* 34: 455-64 [PMID:23506883]

Schnetkamp PP et al. (2014) The SLC24 family of K\(^+\)-dependent Na\(^+\)-Ca\(^{2+}\) exchangers: structure-function relationships. *Curr Top Membr* 73: 263-87 [PMID:24745986]

Sekler I. (2015) Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. *Biochem. Biophys. Res. Commun.* 460: 50-2 [PMID:25998733]

SLC25 family of mitochondrial transporters

Transports → SLC superfamily of solute carriers → SLC25 family of mitochondrial transporters

Overview: Mitochondrial transporters are nuclear-encoded proteins, which convey solutes across the inner mitochondrial membrane. Topological modelling suggests homodimeric transporters, each with six TM segments and termini in the cytosol.

Mitochondrial di- and tri-carboxylic acid transporter subfamily

Transports → SLC superfamily of solute carriers → SLC25 family of mitochondrial transporters → Mitochondrial di- and tri-carboxylic acid transporter subfamily

Overview: Mitochondrial di- and tri-carboxylic acid transporters are grouped on the basis of commonality of substrates and include the citrate transporter which facilitates citric acid export from the mitochondria to allow the generation of oxalacetic acid and acetyl CoA through the action of ATP:citrate lyase.

Nomenclature	Mitochondrial citrate transporter	Mitochondrial dicarboxylate transporter	Mitochondrial oxoglutarate carrier	Mitochondrial oxodicarboxylate carrier
Systematic nomenclature	SLC25A1	SLC25A10	SLC25A11	SLC25A21
Common abbreviation	CIC	DIC	OGC	ODC
HGNC, UniProt	SLC25A1, P53007	SLC25A10, Q9UBX3	SLC25A11, Q02978	SLC25A21, Q9BQT8
Substrates	phosphoenolpyruvic acid, malic acid, citric acid	SO\(_4^{2-}\), phosphate, S\(_2\)O\(_3^{2-}\), succinic acid, malic acid	\(\alpha\)-ketoglutaric acid, malic acid	\(\alpha\)-ketoglutaric acid, \(\alpha\)-oxoadipic acid
Stoichiometry	Malate\(^2-\) (in) : H-citrate\(^2-\) (out)	PO\(_3^{4-}\) (in) : malate\(^2-\) (out)	Malate\(^2-\) (in) : oxoglutarate\(^2-\) (out)	Oxoadipate (in) : oxoglutarate (out)
Inhibitors	1,2,3-benzenetricarboxylic acid	–	–	–

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Mitochondrial amino acid transporter subfamily

Transporters → SLC superfamily of solute carriers → SLC25 family of mitochondrial transporters → Mitochondrial amino acid transporter subfamily

Overview: Mitochondrial amino acid transporters can be subdivided on the basis of their substrates. Mitochondrial ornithine transporters play a role in the urea cycle by exchanging cytosolic ornithine (L-ornithine and D-ornithine) for mitochondrial citrulline (L-citrulline and D-citrulline) in equimolar amounts. Further members of the family include transporters of S-adenosylmethionine and carnitine.

Nomenclature	AGC1	AGC2	Mitochondrial glutamate carrier 2	Mitochondrial glutamate carrier 1	Mitochondrial ornithine transporter 2	Mitochondrial ornithine transporter 1	Carnitine/acylcarnitine carrier
Systematic nomenclature	SLC25A12	SLC25A13	SLC25A18	SLC25A22	SLC25A2	SLC25A15	SLC25A20
Common abbreviation	–	–	GC2	GC1	ORC2	ORC1	CAC
HGNC, UniProt	SLC25A12, Q75746	SLC25A13, Q9UJS0	SLC25A18, Q9H1K4	SLC25A22, Q9H936	–	–	–
Substrates	L-glutamic acid, 2-amino-3-sulfinopropanoic acid, L-aspartic acid	2-amino-3-sulfinopropanoic acid, L-glutamic acid, L-aspartic acid	L-glutamic acid	L-glutamic acid	L-citrulline [202], L-lysine [202], L-arginine [202], D-lysine [202], D-arginine [202], D-citrulline [202], D-ornithine [202], D-histidine [202], L-histidine [202]	L-lysine [202], L-ornithine [202], L-citrulline [202], L-arginine [202]	–
Stoichiometry	Aspartate : glutamate H⁺ (bidirectional)	Aspartate : glutamate H⁺ (bidirectional)	Glutamate : H⁺ (bidirectional)	Glutamate : H⁺ (bidirectional)	1 Ornithine (in) :1 citrulline : 1 H⁺ (out)	1 Ornithine (in) :1 citrulline : 1 H⁺ (out)	–
Comments	–	–	–	–	Exchanges cytosolic acylcarnitine for mitochondrial carnitine		

Comments: Both ornithine transporters are inhibited by the polyamine spermine [203]. Loss-of-function mutations in these genes are associated with hyperornithinemia-hyperammonemia-homocitrullinuria.
Mitochondrial phosphate transporters

Overview: Mitochondrial phosphate transporters allow the import of inorganic phosphate for ATP production.

Nomenclature
- **Mitochondrial phosphate carrier**
 - Systematic nomenclature: SLC25A3
 - Common abbreviation: PHC
 - HGNC, UniProt: SLC25A3, Q00325
 - Stoichiometry: \(\text{PO}_4^{4-} \) (in) : \(\text{OH}^- \) (out) or \(\text{PO}_4^{3-} : \text{H}^+ \) (in)

Mitochondrial nucleotide transporter subfamily

Overview: Mitochondrial nucleotide transporters, defined by structural similarities, include the adenine nucleotide translocator family (SLC25A4, SLC25A5, SLC25A6 and SLC25A31), which under conditions of aerobic metabolism, allow coupling between mitochondrial oxidative phosphorylation and cytosolic energy consumption by exchanging cytosolic ADP for mitochondrial ATP. Further members of the mitochondrial nucleotide transporter subfamily convey diverse substrates including CoA, although not all members have had substrates identified.

Nomenclature
- **Mitochondrial adenine nucleotide translocator 1**
 - Systematic nomenclature: SLC25A4
 - Common abbreviation: ANT1
 - HGNC, UniProt: SLC25A4, P12235
 - Substrates: ADP\(^{3-}\) (in) : ATP\(^{4-}\) (out)
 - Stoichiometry: ADP\(^{3-}\) (in) : ATP\(^{4-}\) (out)
 - Inhibitors: bongkrek acid, carboxyatractyloside
 - Gravel disease carrier
 - Peroxisomal membrane protein

- **Mitochondrial adenine nucleotide translocator 2**
 - Systematic nomenclature: SLC25A5
 - Common abbreviation: ANT2
 - HGNC, UniProt: SLC25A5, P05141
 - Substrates: –
 - Stoichiometry: –
 - Inhibitors: –

- **Mitochondrial adenine nucleotide translocator 3**
 - Systematic nomenclature: SLC25A6
 - Common abbreviation: ANT3
 - HGNC, UniProt: SLC25A6, P12236
 - Substrates: –
 - Stoichiometry: –
 - Inhibitors: –

- **Mitochondrial adenine nucleotide translocator 4**
 - Systematic nomenclature: SLC25A31
 - Common abbreviation: ANT4
 - HGNC, UniProt: SLC25A31, Q09028
 - Substrates: CoA (in) and congeners
 - Stoichiometry: ADP\(^{3-}\) (in) : ATP\(^{4-}\) (out)
 - Inhibitors: –

- **Graves disease carrier**
 - Systematic nomenclature: SLC25A16
 - Common abbreviation: GDC
 - HGNC, UniProt: SLC25A16, P16260
 - Substrates: CoA (in)
 - Stoichiometry: ADP\(^{3-}\) (in) : ATP\(^{4-}\) (out)
 - Inhibitors: –

- **Peroxisomal membrane protein**
 - Systematic nomenclature: SLC25A17
 - Common abbreviation: PMP34
 - HGNC, UniProt: SLC25A17
 - Substrates: ADP, ATP, adenosine 5'-monophosphate
 - Stoichiometry: ATP (in)
 - Inhibitors: –
Mitochondrial uncoupling proteins

Transports → SLC superfamily of solute carriers → SLC25 family of mitochondrial transporters → Mitochondrial uncoupling proteins

Overview: Mitochondrial uncoupling proteins allow dissipation of the mitochondrial proton gradient associated with thermogenesis and regulation of radical formation.

Nomenclature	Uncoupling protein 1	Uncoupling protein 2	Uncoupling protein 3	Uncoupling protein 4	Uncoupling protein 5	KMCP1
Systematic nomenclature	SLC25A7	SLC25A8	SLC25A9	SLC25A27	SLC25A14	SLC25A30
Common abbreviation	UCP1	UCP2	UCP3	UCP4	UCP5	–
HGNC, UniProt	UCP1, P25874	UCP2, P55851	UCP3, P55916	SLC25A27, O9S847	SLC25A14, O9S258	SLC25A30, Q5SV54
Stoichiometry	H⁺ (in)	–				
Miscellaneous SLC25 mitochondrial transporters

Overview: Many of the transporters identified below have yet to be assigned functions and are currently regarded as orphans.

Information on members of this family may be found in the online database.

Further reading on SLC25 family of mitochondrial transporters

Baffy G. (2017) Mitochondrial uncoupling in cancer cells: Liabilities and opportunities. Biochim. Biophys. Acta 1858: 655-664 [PMID:28088333]
Bertholet AM et al. (2017) UCP1: A transporter for H+ and fatty acid anions. Biochimie 134: 28-34 [PMID:27984203]
Clémençon B et al. (2013) The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol. Aspects Med. 34: 485-93 [PMID:23506884]

Palmieri F. (2013) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 34: 465-84 [PMID:23266187]
Seifert EL et al. (2015) The mitochondrial phosphate carrier: Role in oxidative metabolism, calcium handling and mitochondrial disease. Biochem. Biophys. Res. Commun. 464: 369-75 [PMID:26091567]
Taylor EB. (2017) Functional Properties of the Mitochondrial Carrier System. Trends Cell Biol. 27: 633-644 [PMID:28522206]

SLC26 family of anion exchangers

Overview: Along with the SLC4 family, the SLC26 family acts to allow movement of monovalent and divalent anions across cell membranes. The predicted topology is of 10-14 TM domains with intracellular C- and N-termini, probably existing as dimers. Within the family, subgroups may be identified on the basis of functional differences, which appear to function as anion exchangers and anion channels (SLC26A7 and SLC26A9).

Selective sulphate transporters

Nomenclature
Sat-1
Systematic nomenclature
SLC26A1
HGNC, UniProt
SLC26A1, Q9H2B4
Substrates
SO₄²⁻, oxalate
Stoichiometry
SO₄²⁻ (in) : anion (out)

DTDST
SLC26A2
SLC26A2, P50443
SO₄²⁻, 1 SO₄²⁻ (in) : 2 Cl⁻ (out)

Sat-1
SLC26A1
SO₄²⁻, oxalate
SO₄²⁻ (in) : anion (out)

Selective sulphate transporters S454

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Chloride/bicarbonate exchangers

Transporters → SLC superfamily of solute carriers → SLC26 family of anion exchangers → Chloride/bicarbonate exchangers

Nomenclature	DRA	Pendrin	PAT-1
Systematic nomenclature	SLC26A3	SLC26A4	SLC26A6
HGNC, UniProt	SLC26A3, P40879	SLC26A4, Q43511	SLC26A6, Q98X59
Substrates	Cl⁻	formate, HCO₃⁻, OH⁻, I⁻, Cl⁻	formate, oxalate, SO₄²⁻, OH⁻, Cl⁻, HCO₃⁻, I⁻
Stoichiometry	2 Cl⁻ (in) : 1 HCO₃⁻ (out) or 2 Cl⁻ (in) : 1 OH⁻ (out)	Unknown	1 SO₄²⁻ (in) : 2 HCO₃⁻ (out) or 1 Cl⁻ (in) : 2 HCO₃⁻ (out)

Anion channels

Transporters → SLC superfamily of solute carriers → SLC26 family of anion exchangers → Anion channels

Nomenclature	SLC26A7	SLC26A9
HGNC, UniProt	SLC26A7, Q8TE54	SLC26A9, Q7LBE3
Substrates	NO₃⁻ ≫ Cl⁻ = Br⁻ = I⁻ > SO₄²⁻ = L-glutamic acid	I⁻ > Br⁻ > NO₃⁻ > Cl⁻ > L-glutamic acid
Functional Characteristics	Voltage- and time-independent current, linear I-V relationship [354]	Voltage- and time-independent current, linear I-V relationship [161]
Comments	–	SLC26A9 has been suggested to operate in two additional modes as a Cl⁻-HCO₃⁻ exchanger and as a Na⁺-anion cotransporter [99].
Other SLC26 anion exchangers

Transporters → SLC superfamily of solute carriers → SLC26 family of anion exchangers → Other SLC26 anion exchangers

Nomenclature	Prestin
Systematic nomenclature	SLC26A5
HGNC, UniProt	SLC26A5, PS8743
Substrates	HCO$_3^-$ [443], Cl$^-$ [443]
Stoichiometry	Unknown
Comments	Prestin has been suggested to function as a molecular motor, rather than a transporter

Further reading on SLC26 family of anion exchangers

Alper SL et al. (2013) The SLC26 gene family of anion transporters and channels. *Mol. Aspects Med.* 34: 494-515 [PMID:23506885]

Kato A et al. (2011) Regulation of electroneutral NaCl absorption by the small intestine. *Annu. Rev. Physiol.* 73: 261-81 [PMID:21054167]

Noftziger C et al. (2011) Pendrin function in airway epithelium. *Cell. Physiol. Biochem.* 28: 571-8 [PMID:22116372]

Soleimani M. (2013) SLC26 Cl-/HCO3- exchangers in the kidney: roles in health and disease. *Kidney Int.* 84: 657-66 [PMID:23636174]
SLC27 family of fatty acid transporters

Overview: Fatty acid transporter proteins (FATPs) are a family (SLC27) of six transporters (FATP1-6). They have at least one, and possibly six [397, 557], transmembrane segments, and are predicted on the basis of structural similarities to form dimers. SLC27 members have several structural domains: integral membrane associated domain, peripheral membrane associated domain, FATP signature, intracellular AMP binding motif, dimerization domain, lipocalin motif, and an ER localization domain (identified in FATP4 only) [190, 441, 481]. These transporters are unusual in that they appear to express intrinsic very long-chain acyl-CoA synthetase (EC 6.2.1.-, EC 6.2.1.7) enzyme activity. Within the cell, these transporters may associate with plasma and peroxisomal membranes. FATP1-4 and -6 transport long- and very long-chain fatty acids, while FATP5 transports long-chain fatty acids as well as bile acids [439, 557].

Nomenclature	Fatty acid transport protein 1	Fatty acid transport protein 2	Fatty acid transport protein 3	Fatty acid transport protein 4	Fatty acid transport protein 5	Fatty acid transport protein 6
Systematic nomenclature	SLC27A1	SLC27A2	SLC27A3	SLC27A4	SLC27A5	SLC27A6
Common abbreviation	FATP1	FATP2	FATP3	FATP4	FATP5	FATP6
HGNC, UniProt	SLCT27A1, Q6PCB7	SLCT27A2, Q14975	SLCT27A3, Q5K4L6	SLCT27A4, Q6P1M0	SLCT27A5, Q9Y2P5	SLCT27A6, Q9Y2P4
Endogenous substrates	palmitic acid > oleic acid > γ-linolenic acid > octanoic acid [238] arachidonic acid > palmitic acid > oleic acid > butyric acid [557]	-	-	palmitic acid, oleic acid > γ-linolenic acid > octanoic acid [238]	palmitic acid > oleic acid > butyric acid, γ-linolenic acid > arachidonic acid [586]	-
Inhibitors	-	-	-	compound 11 (pIC50 7.1) [60]	-	-
Comments	-	-	-	FATP4 is genetically linked to restrictive dermopathy.	-	-

Comments: Although the stoichiometry of fatty acid transport is unclear, it has been proposed to be facilitated by the coupling of fatty acid transport to conjugation with coenzyme A to form fatty acyl CoA esters. Small molecule inhibitors of FATP2 [398, 553] and FATP4 [60, 718], as well as bile acid inhibitors of FATP5 [718], have been described; analysis of the mechanism of action of some of these inhibitors suggests that transport may be selectively inhibited without altering enzymatic activity of the FATP. C1-BODIPY-C12 accumulation has been used as a non-selective index of fatty acid transporter activity. FATP2 has two variants: Variant 1 encodes the full-length protein, while Variant 2 encodes a shorter isoform missing an internal protein segment. FATP6 also has two variants: Variant 2 encodes the same protein as Variant 1 but has an additional segment in the 5’ UTR.

Further reading on SLC27 family of fatty acid transporters

Anderson CM et al. (2013) SLC27 fatty acid transport proteins. Mol. Aspects Med. 34: S16-28 [PMID:23506886]

Dourlen P et al. (2015) Fatty acid transport proteins in disease: New insights from invertebrate models. Prog. Lipid Res. 60: 30-40 [PMID:26416577]

Schwenk RW et al. (2010) Fatty acid transport across the cell membrane: regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fatty Acids 82: 149-54 [PMID:20206486]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC28 and SLC29 families of nucleoside transporters

Overview: Nucleoside transporters are divided into two families, the sodium-dependent, concentrative solute carrier family 28 (SLC28) and the equilibrative, solute carrier family 29 (SLC29). The endogenous substrates are typically nucleosides, although some family members can also transport nucleobases and organic cations.

SLC28 family

Overview: SLC28 family members appear to have 13 TM segments with cytoplasmic N-termini and extracellular C-termini, and function as concentrative nucleoside transporters.

Nomenclature	Sodium/nucleoside cotransporter 1	Sodium/nucleoside cotransporter 2	Solute carrier family 28 member 3
Systematic nomenclature	SLC28A1	SLC28A2	SLC28A3
Common abbreviation	CNT1	CNT2	CNT3
HGNC, UniProt	SLC28A1, O00337	SLC28A2, O43868	SLC28A3, Q9HAS3
Substrates	ribavirin [115], gemcitabine [114], zalcitabine, zidovudine	cladribine [485], didanosine, vidarabine, fludarabine [382], formycin B [382]	zalcitabine, formycin B, cladribine, 5-fluorouridine, flouxuridine, didanosine, zidovudine, zebularine, gencitabine
Endogenous substrates	adenosine, uridine, cytidine, thymidine	adenosine, guanosine, inosine, thymidine	adenosine, uridine, guanosine, thymidine, inosine, cytidine
Stoichiometry	1 Na⁺ : 1 nucleoside (in)	1 Na⁺ : 1 nucleoside (in)	2 Na⁺/H⁺
Inhibitors	–	–	compound 16 (pKᵢ 5.5) [272]
Comments	–	–	CNT3 forms cyclic homotrimers [588]. Genetic variants of SLC28A3 are associated with increased risk of anthracycline-induced cardiomyopathy [587].

Further reading on SLC28 family

Johnson ZL et al. (2014) Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. *Elife* 3: e03604 [PMID:25082345]
Pastor-Anglada M et al. (2008) SLC28 genes and concentrative nucleoside transporter (CNT) proteins. *Xenobiotica* 38: 972-94 [PMID:18668436]
Pastor-Anglada M et al. (2015) Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. *Front Pharmacol* 6: 13 [PMID:25713533]
Pastor-Anglada M et al. (2018) Who Is Who in Adenosine Transport. *Front Pharmacol* 9: 627 [PMID:29962948]
Young JD et al. (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. *Mol. Aspects Med.* 34: S29-47 [PMID:23506887]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC29 family

Transports → SLC superfamily of solute carriers → SLC28 and SLC29 families of nucleoside transporters → SLC29 family

Overview: SLC29 family members appear to be composed of 11 TM segments with cytoplasmic N-termini and extracellular C-termini. ENT1, ENT2 and ENT4 are cell-surface transporters, while ENT3 is intracellular, possibly lysosomal [38]. ENT1-3 are described as broad-spectrum equilibrative nucleoside transporters, while ENT4 is primarily a polyspecific organic cation transporter at neutral pH [293].

Nomenclature	Equilibrative nucleoside transporter 1	Equilibrative nucleoside transporter 2
Common abbreviation	ENT1	ENT2
HGNC, UniProt	SLC29A1, Q99808	SLC29A2, Q14542
Endogenous substrates in order of increasing Km:	adenosine < inosine < uridine < guanosine < cytidine < hypoxanthine < adenine < thymine	adenosine, guanine, thymine, uridine, guanosine, hypoxanthine, inosine, thymidine, cytosine
Substrates	abacavir [96], atenolol [442], pentostatin, vidarabine, gemcitabine, 2-chloroadenosine, cytarabine, zalcitabine, didanosine, tubercidin, formycin B, cladribine, ribavirin [115], floxuridine	formycin B, 2-chloroadenosine, cytarabine, tubercidin, cladribine, gemcitabine, vidarabine, zidovudine
Endogenous substrates	thymine [691], guanosine [691], hypoxanthine [691], uridine [691], inosine [691], adenine [691], cytidine [691], thymidine [691], adenosine [691]	
Stoichiometry	Equilibrative	Equilibrative
Inhibitors	nitrobenzylmercaptopurine ribonucleoside (pKᵢ 9.7), draflazine (pKᵢ 9.6) [276], KF24345 (pKᵢ 9.4) [277], NBTGR (pKᵢ 9.3), dilazep (pKᵢ 9), dipyridamole (pKᵢ 8.8) [277], ticagrelor (pKᵢ 7.3) [26]	
Labelled ligands	[³H]nitrobenzylmercaptopurine ribonucleoside (pKᵢ 9.3)	
Comments	ENT1 has 100-1000-fold lower affinity for nucleobases as compared with nucleosides [691]. The affinities of draflazine, dilazep, KF24345 and dipyridamole at ENT1 transporters are species dependent, exhibiting lower affinity at rat transporters than at human transporters [277, 593]. The loss of ENT1 activity in ENT1-null mice has been associated with a hypermineralization disorder similar to human diffuse idiopathic skeletal hyperostosis [661]. Lack of ENT1 also results in the Augustine-null blood type [133].	
Nomenclature
Equilibrative nucleoside transporter 3
Systematic nomenclature SLC29A3
Common abbreviation ENT3
HGNC, UniProt SLC29A3, Q9BZD2
Substrates zidovudine [38], zalcitabine [38], didanosine [38], fludarabine [38], cordycepin [38], floxuridine [38], cladribine [38], tubercidin [38], zebularine [38]
Endogenous substrates adenosine [38], inosine [38], uridine [38], thymidine [38], guanosine [38], adenine [38] histamine [180, 655], tyramine [180, 655], adenosine [716], 5-hydroxytryptamine [180, 655], dopamine [180, 655]
Stoichiometry Equilibrative
Inhibitors –
Comments Defects in SLC29A3 have been implicated in histiocytosis-lymphadenopathy plus syndrome (OMIM:602782) and lysosomal storage diseases [296, 342]. Uptake of substrates by PMAT is pH dependent, with greater uptake observed at acidic extracellular pH [43, 717].

Further reading on SLC29 family
Boswell-Casteel RC et al. (2017) Equilibrative nucleoside transporters-A review. Nucleosides Nucleotides Nucleic Acids 36: 7-30 [PMID:27759477]
Pastor-Anglada M et al. (2018) Who Is Who in Adenosine Transport. Front Pharmacol 9: 627 [PMID:29962948]
Wang J. (2016) The plasma membrane monoamine transporter (PMAT): Structure, function, and role in organic cation disposition. Clin. Pharmacol. Ther. 100: 489-499 [PMID:27506881]

Further reading on SLC28 and SLC29 families of nucleoside transporters
Boswell-Casteel RC et al. (2017) Equilibrative nucleoside transporters-A review. Nucleosides Nucleotides Nucleic Acids 36: 7-30 [PMID:27759477]
Pastor-Anglada M et al. (2015) Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 6: 13 [PMID:25713533]
Young JD. (2016) The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey. Biochem. Soc. Trans. 44: 869-76 [PMID:27284054]
Young JD et al. (2013) The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med. 34: 529-47 [PMID:23506887]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC29 family S460
SLC30 zinc transporter family

Overview: Along with the SLC39 family, SLC30 transporters regulate the movement of zinc ions around the cell. In particular, these transporters remove zinc ions from the cytosol, allowing accumulation into intracellular compartments or efflux through the plasma membrane. ZnT1 is thought to be placed on the plasma membrane extruding zinc, while ZnT3 is associated with synaptic vesicles and ZnT4 and ZnT5 are linked with secretory granules. Membrane topology predictions suggest a multimeric assembly, potentially heteromultimeric [596], with subunits having six TM domains, and both termini being cytoplasmic. Dityrosine covalent linking has been suggested as a mechanism for dimerisation, particularly for ZnT3 [551]. The mechanism for zinc transport is unknown.

Information on members of this family may be found in the online database.

Comments: ZnT8/SLC30A8 is described as a type 1 diabetes susceptibility gene. Zinc fluxes may be monitored through the use of radioisotopic Zn-65 or the fluorescent dye FluoZin 3.

Further reading on SLC30 zinc transporter family

Bouron A et al. (2014) Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch. 466: 381-7 [PMID:23719866]
Hojyo S et al. (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611: 43-50 [PMID:27394923]
Huang L et al. (2013) The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 34: 548-60 [PMID:23506888]
Kambe T et al. (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71: 3281-95 [PMID:24710731]
Kambe T et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95: 749-784 [PMID:26084690]

SLC31 family of copper transporters

Overview: SLC31 family members, alongside the Cu-ATPases are involved in the regulation of cellular copper levels. The CTR1 transporter is a cell-surface transporter to allow monovalent copper accumulation into cells, while CTR2 appears to be a vacuolar/vesicular transporter [521]. Functional copper transporters appear to be trimeric with each subunit having three TM regions and an extracellular N-terminus. CTR1 is considered to be a higher affinity copper transporter compared to CTR2. The stoichiometry of copper accumulation is unclear, but appears to be energy-independent [387].
Nomenclature
Systematic nomenclature
Common abbreviation
HGNC, UniProt
Substrates
Endogenous substrates
Stoichiometry

Copper transporter 1
SLC31A1
CTR1
SLC31A1, O15431
copper [387]
Unknown

Copper transporter 2
SLC31A2
CTR2
SLC31A2, O15432
cisplatin [317]
Unknown

Comments: Copper accumulation through CTR1 is sensitive to silver ions, but not divalent cations [387].

Further reading on SLC31 family of copper transporters
Howell SB et al. (2010) Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol. Pharmacol. 77: 887-94 [PMID:20159940]
Kaplan JH et al. (2016) How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal. Biophys. J. 110: 7-13 [PMID:26745404]
Kim H et al. (2013) SLC31 (CTR) family of copper transporters in health and disease. Mol. Aspects Med. 34: 561-70 [PMID:23506889]
Monné M et al. (2014) Antiporters of the mitochondrial carrier family. Curr Top Membr 73: 289-320 [PMID:24745987]
Nomenclature	Vesicular inhibitory amino acid transporter
Systematic nomenclature | SLC32A1
Common abbreviation | VIAAT
HGNC, UniProt | SLC32A1, Q9H598
Endogenous substrates | β-alanine, γ-hydroxybutyric acid, GABA (Km 5x10^{-3}M) [429], glycine
Stoichiometry | 1 amino acid (in): 1 H^+ (out) [229] or 1 amino acid: 2Cl^- (in) [334]
Inhibitors | vigabatrin (pIC_{50} 2.1) [429]

Further reading on SLC32 vesicular inhibitory amino acid transporter
Anne C et al. (2014) Vesicular neurotransmitter transporters: mechanistic aspects. Curr Top Membr. 73: 149-74 [PMID:24745982]
Schiöth HB et al. (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol. Aspects Med. 34: 571-85 [PMID:23506890]

SLC33 acetylCoA transporter

Overview: Acetylation of proteins is a post-translational modification mediated by specific acetyltransferases, using the donor acetyl CoA. SLC33A1/AT1 is a putative 11 TM transporter present on the endoplasmic reticulum, expressed in all tissues, but particularly abundant in the pancreas [341], which imports cytosolic acetyl CoA into these intracellular organelles.

Nomenclature	AcetylCoA transporter
Systematic nomenclature | SLC33A1
Common abbreviation | ACATN1
HGNC, UniProt | SLC33A1, O00400
Endogenous substrates | acetyl CoA
Stoichiometry | Unknown
Labelled ligands | [14C]AcetylCoA (Binding)

Comments: In heterologous expression studies, acetyl CoA transport through AT1 was inhibited by coenzyme A, but not acetic acid, ATP or UDP-galactose [330]. A loss-of-function mutation in ACATN1/SLC33A1 has been associated with spastic paraplegia (SPG42, [401]), although this observation could not be replicated in a subsequent study [560].
SLC34 family of sodium phosphate co-transporters

Overview: The SLC34 family are sometimes referred to as Type II sodium-phosphate co-transporters, alongside Type I (SLC17 family) and Type III (SLC20 family) transporters. Topological modelling suggests eight TM domains with C- and N- termini in the cytoplasm, and a re-entrant loop at TM7/8. SLC34 family members are expressed on the apical surfaces of epithelia in the intestine and kidneys to regulate body phosphate levels, principally NaPi-IIa and NaPi-IIb, respectively. NaPi-IIa and NaPi-IIb are electrogenic, while NaPiIic is electroneutral [18].

Nomenclature	Sodium phosphate 1	Sodium phosphate 2	Sodium phosphate 3
Systematic nomenclature	SLC34A1	SLC34A2	SLC34A3
Common abbreviation	NaPi-IIa	NaPi-Iib	NaPi-Iic
HGNC, UniProt	SLC34A1, Q06495	SLC34A2, Q95436	SLC34A3, Q8N130
Stoichiometry	3 Na⁺ : 1 HPO₄²⁻ (in) [210]	3 Na⁺ : 1 HPO₄²⁻ (in) [18]	2 Na⁺ : 1 HPO₄²⁻ (in) [18]
Antibodies	–	lifastuzumab vedotin (Binding) [146]	–

Comments: These transporters can be inhibited by foscarnet, in contrast to type III sodium-phosphate cotransporters, the SLC20 family.

Further reading on SLC34 family of sodium phosphate co-transporters

Biber J et al. (2013) Phosphate transporters and their function. *Annu. Rev. Physiol.* **75**: 535-50 [PMID:23398134]

Forster IC et al. (2013) Phosphate transporters of the SLC20 and SLC34 families. *Mol. Aspects Med.* **34**: 386-95 [PMID:23506879]

Shobeiri N et al. (2014) Phosphate: an old bone molecule but new cardiovascular risk factor. *Br J Clin Pharmacol* **77**: 39-54 [PMID:23506202]

Wagner CA et al. (2014) The SLC34 family of sodium-dependent phosphate transporters. *Pflugers Arch.* **466**: 139-53 [PMID:24352629]
SLC35 family of nucleotide sugar transporters

Overview: Glycoprotein formation in the Golgi and endoplasmic reticulum relies on the accumulation of nucleotide-conjugated sugars via the SLC35 family of transporters. These transporters have a predicted topology of 10 TM domains, with cytoplasmic termini, and function as exchangers, swapping nucleoside monophosphates for the corresponding nucleoside diphosphate conjugated sugar. Five subfamilies of transporters have been identified on the basis of sequence similarity, namely SLC35A1, SLC35A2, SLC35A3, SLC35A4 and SLC35A5; SLC35B1, SLC35B2, SLC35B3 and SLC35B4; SLC35C1 and SLC35C2; SLC35D1, SLC35D1, SLC35D2 and SLC35D3, and the subfamily of orphan SLC35 transporters, SLC35E1-4 and SLC35F1-5.

Further reading on SLC35 family of nucleotide sugar transporters

Ishida N et al. (2004) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch. 447: 768-75 [PMID:12759756]

Orellana A et al. (2016) Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J. Mol. Biol. 428: 3150-3165 [PMID:27261257]

Song Z. (2013) Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol. Aspects Med. 34: 590-600 [PMID:23506892]
SLC36 family of proton-coupled amino acid transporters

Overview: Members of the SLC36 family of proton-coupled amino acid transporters are involved in membrane transport of amino acids and derivatives. The four transporters show variable tissue expression patterns and are expressed in various cell types at the plasma-membrane and in intracellular organelles. PAT1 is expressed at the luminal surface of the small intestine and absorbs amino acids and derivatives [3]. In lysosomes, PAT1 functions as an efflux mechanism for amino acids produced during intralysosomal proteolysis [5, 542]. PAT2 is expressed at the apical membrane of the renal proximal tubule [82] and at the plasma-membrane in brown/beige adipocytes [633]. PAT1 and PAT4 are involved in regulation of the mTORC1 pathway [191]. More comprehensive lists of substrates can be found within the reviews under Further Reading and in the references.

Nomenclature	Proton-coupled Amino acid Transporter 1	Proton-coupled Amino acid Transporter 2
Systematic nomenclature	SLC36A1	SLC36A2
Common abbreviation	PAT1	PAT2
HGNC, UniProt	SLC36A1, Q7Z2H8	SLC36A2, Q495M3
Substrates	muscimol [619], arecaidine [619], betaine [619], L-cycloserine [619], S-aminolevulinic acid [619], gaboxadol [383, 619], β-guanidinopropionic acid [619], D-cycloserine [619], MeAIB [619], vigabatrin [1, 619], L-azetidine-2-carboxylate [619], THPO [619]	MeAIB [109], D-cycloserine, L-cycloserine, L-azetidine-2-carboxylate [350]
Endogenous substrates	GABA [619], L-alanine [619], β-alanine [619], taurine [619], D-serine [619], D-proline [619], trans-4-hydroxy-proline [619], sarcosine [619], D-cysteine [619], glycine [619], D-alanine [619]	sarcosine, L-proline, glycine, L-alanine, trans-4-hydroxy-proline
Stoichiometry	1 H⁺ : 1 amino acid (symport)	1 H⁺ : 1 amino acid (symport)
Inhibitors	5-hydroxy-L-tryptophan (pKᵢ 3) [434], L-tryptophan (pKᵢ 2.3) [434], indole-3-propionic acid (pKᵢ 2.3) [434], 5-hydroxytryptamine (pKᵢ 2.2) [434]	5-hydroxy-L-tryptophan (pIC₅₀ 2.8) [171], α-methyl-D,L-tryptophan (pIC₅₀ 2.5) [171]
Comments	[³H] or [¹⁴C] labelled substrates as listed above are used as probes. PAT1 can also function as an electroneutral transport system for protons and fatty acids including acetic acid, propanoic acid and butyric acid [206]. In addition, forskolin, phosphodiesterase inhibitors, amloride analogues and SLC9A3 (NHE3) selective inhibitors all reduce PAT1 activity indirectly (in intact mammalian intestinal epithelia such as human intestinal Caco-2 cells) by inhibiting the Na⁺/H⁺ exchanger NHE3 which is required to maintain the H⁺-electrochemical gradient driving force for H⁺/amino acid cotransport [14, 17, 619].	[³H] or [¹⁴C] labelled substrates as listed above are used as probes. Loss-of-function mutations in PAT2 lead to iminoglycinuria and hyperglycinuria in man [82]. PAT2 can also function as an electroneutral transport system for protons and fatty acids including acetic acid, propanoic acid and butyric acid [206]. Replacement of a Phe residue in transmembrane domain 3 with Cys (that has a smaller side-chain) broadens substrate specificity to include larger substrates (e.g. methionine, leucine) [172].
Nomenclature	Proton-coupled Amino acid Transporter 3	Proton-coupled Amino acid Transporter 4
-----------------------	--	--
Systematic nomenclature	SLC36A3	SLC36A4
Common abbreviation	PAT3	PAT4
HGNC, UniProt	SLC36A3, Q495N2	SLC36A4, Q6YBV0
Endogenous substrates	–	L-tryptophan [497], L-proline [497]
Stoichiometry	Unknown	Unknown
Comments	The function of the testes-specific PAT3 remains unknown.	PAT4 is not proton-coupled and functions by facilitated diffusion in an electroneutral, Na⁺-independent, manner [497]. PAT4 is expressed ubiquitously and is predominantly associated with the Golgi [192]. High PAT4 expression is associated with reduced relapse-free survival after colorectal cancer surgery [192].

Further reading on SLC36 family of proton-coupled amino acid transporters

Schioth HB *et al.* (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. *Mol. Aspects Med.* **34**: 571-85 [PMID:23506890]

Thwaites DT *et al.* (2011) The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. *Br. J. Pharmacol.* **164**: 1802-16 [PMID:21501141]

Thwaites DT *et al.* (2007) Deciphering the mechanisms of intestinal imino (and amino) acid transport: the redemption of SLC36A1. *Biochim. Biophys. Acta*** **1768**: 179-97 [PMID:17123464]
SLC37 family of phosphosugar/phosphate exchangers

Overview: The family of sugar-phosphate exchangers pass particular phosphorylated sugars across intracellular membranes, exchanging for inorganic phosphate. Of the family of sugar phosphate transporters, most information is available on SPX4, the glucose-6-phosphate transporter. This is a 10 TM domain protein with cytoplasmic termini and is associated with the endoplasmic reticulum, with tissue-specific splice variation.

Nomenclature

Nomenclature	Glycerol-3-phosphate transporter	Sugar phosphate exchanger 2	Glucose-6-phosphate transporter
Systematic nomenclature	SLC37A1	SLC37A2	SLC37A4
Common abbreviation	SPX1	SPX2	SPX4
HGNC, UniProt	SLC37A1, P57057	SLC37A2, Q8TED4	SLC37A4, O43826
Endogenous substrates	glycerol 3-phosphate, glucose 6-phosphate	glucose 6-phosphate	glucose 6-phosphate
Stoichiometry	Glucose 3-phosphate (in): phosphate (out) [488].	Glucose 6-phosphate (in): phosphate (out) [488].	Glucose 6-phosphate (in): phosphate (out) [107].
Inhibitors	–	–	S-4048 (pIC₅₀ 8.7) [101] – Rat
Comments	–	–	Multiple polymorphisms have been described for the SLC37A4 gene, some of which associate with a glycogen storage disease [9].

Further reading on SLC37 family of phosphosugar/phosphate exchangers

Chou JY et al. (2014) The SLC37 family of sugar-phosphate/phosphate exchangers. *Curr Top Membr* 73: 357-82 [PMID:24745989]

Chou JY et al. (2013) The SLC37 family of phosphate-linked sugar phosphate antiporters. *Mol. Aspects Med.* 34: 601-11 [PMID:23506893]

SLC38 family of sodium-dependent neutral amino acid transporters

Overview: The SLC38 family of transporters appears to be responsible for the functionally-defined system A and system N mechanisms of amino acid transport and are mostly expressed in the CNS. Two distinct subfamilies are identifiable within the SLC38 transporters. SNAT1, SNAT2 and SNAT4 appear to resemble system A transporters in accumulating neutral amino acids under the influence of the sodium gradient. SNAT3 and SNAT5 appear to resemble system N transporters in utilizing proton co-transport to accumulate amino acids. The predicted membrane topology is of 11 TM domains with an extracellular C-terminus and intracellular N-terminus [559].
System A-like transporters

Transporters → SLC superfamily of solute carriers → SLC38 family of sodium-dependent neutral amino acid transporters → System A-like transporters

Nomenclature	Sodium-coupled neutral amino acid transporter 1	Sodium-coupled neutral amino acid transporter 2	Sodium-coupled neutral amino acid transporter 4
Systematic nomenclature	SLC38A1	SLC38A2	SLC38A4
Common abbreviation	SNAT1	SNAT2	SNAT4
HGNC, UniProt	SLC38A1, Q9H2H9	SLC38A2, Q96QD8	SLC38A4, Q96916
Substrates	MeAIB	MeAIB	MeAIB
Stoichiometry	1 Na⁺ : 1 amino acid (in) [7]	1 Na⁺ : 1 amino acid (in) [283]	1 Na⁺ : 1 neutral amino acid (in) [282]
Labelled ligands	[¹⁴C]alanine, [³H]alanine	[¹⁴C]alanine, [³H]alanine	[¹⁴C]alanine, [¹⁴C]glycine, [³H]alanine, [³H]glutamine
Comments	–	–	Transport of cationic amino acids by SNAT4 was sodium-independent [282].

System N-like transporters

Transporters → SLC superfamily of solute carriers → SLC38 family of sodium-dependent neutral amino acid transporters → System N-like transporters

Nomenclature	Sodium-coupled neutral amino acid transporter 3	Sodium-coupled neutral amino acid transporter 5
Systematic nomenclature	SLC38A3	SLC38A5
Common abbreviation	SNAT3	SNAT5
HGNC, UniProt	SLC38A3, Q99624	SLC38A5, Q8WUX1
Substrates	L-histidine, L-glutamine > L-asparagine, L-alanine > L-glutamic acid [197]	L-asparagine, L-serine, L-histidine, L-glutamine > glycine, L-alanine [459]
Stoichiometry	1 Na⁺ : 1 amino acid (in) : 1 H⁺ (out) [75]	1 Na⁺ : 1 amino acid (in) : 1 H⁺ (out) [459]
Labelled ligands	[¹⁴C]glutamine, [³H]glutamine	[¹⁴C]histidine, [³H]histidine

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Orphan SLC38 transporters

Transports → SLC superfamily of solute carriers → SLC38 family of sodium-dependent neutral amino acid transporters → Orphan SLC38 transporters

Nomenclature	Putative sodium-coupled neutral amino acid transporter 7
Systematic nomenclature	SLC38A7
Common abbreviation	SNAT7
HGNC, UniProt	SLC38A7, Q9NVC3
Comments	SNAT7/SLC38A7 has been described to be a system N-like transporter allowing preferential accumulation of glutamine (e.g. L-glutamine), histidine (e.g. L-histidine) and asparagine (e.g. L-asparagine) [302].

Further reading on SLC38 family of sodium-dependent neutral amino acid transporters

Bhutia YD et al. (2016) Glutamine transporters in mammalian cells and their functions in physiology and cancer. Biochim. Biophys. Acta 1863: 2531-9 [PMID:26724577]
Bröer S. (2014) The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 466: 155-72 [PMID:24193407]
Bröer S et al. (2011) The role of amino acid transporters in inherited and acquired diseases. Biochem. J. 436: 193-211 [PMID:21568940]
Hägglund MG et al. (2011) Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J. Biol. Chem. 286: 20500-11 [PMID:21511949]
Schiöth HB et al. (2013) Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol. Aspects Med. 34: 571-85 [PMID:23506890]

SLC39 family of metal ion transporters

Transports → SLC superfamily of solute carriers → SLC39 family of metal ion transporters

Overview: Along with the SLC30 family, SLC39 family members regulate zinc movement in cells. SLC39 metal ion transporters accumulate zinc into the cytosol. Membrane topology modelling suggests the presence of eight TM regions with both termini extracellular or in the lumen of intracellular organelles. The mechanism for zinc transport for many members is unknown but appears to involve co-transport of bicarbonate ions [240, 407].

Nomenclature	Zinc transporter 8
Systematic nomenclature	SLC39A8
Common abbreviation	ZIP8
HGNC, UniProt	SLC39A8, Q9C0K1
Substrates	Cd²⁺ [132, 407]
Stoichiometry	1 Zn²⁺ (in) : 2 HCO₃⁻ (in) [407]

Nomenclature	Zinc transporter 14
Systematic nomenclature	SLC39A14
Common abbreviation	ZIP14
HGNC, UniProt	SLC39A14, Q15043
Substrates	Cd²⁺ [240], Mn²⁺ [240], Fe²⁺ [408]
Stoichiometry	–

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Comments: Zinc fluxes may be monitored through the use of radioisotopic Zn-65 or the fluorescent dye FluoZin 3. The bicarbonate transport inhibitor DIDS has been reported to inhibit cation accumulation through ZIP14 [240].

Further reading on SLC39 family of metal ion transporters

Hojyo S et al. (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch. Biochem. Biophys. 611: 43-50 [PMID:27394923]

Jeong J et al. (2013) The SLC39 family of zinc transporters. Mol. Aspects Med. 34: 612-9 [PMID:23506894]

Kambe T et al. (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71: 3281-95 [PMID:24710731]

Kambe T et al. (2015) The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95: 749-784 [PMID:26084690]

Marger L et al. (2014) Zinc: an underappreciated modulatory factor of brain function. Biochem. Pharmacol. 91: 426-35 [PMID:25130547]

SLC40 iron transporter

Transports → SLC superfamily of solute carriers → SLC40 iron transporter

Overview: Alongside the SLC11 family of proton-coupled metal transporters, ferroportin allows the accumulation of iron from the diet. Whilst SLC11A2 functions on the apical membrane, ferroportin acts on the basolateral side of the enterocyte, as well as regulating macrophage and placental iron levels. The predicted topology is of 12 TM domains, with intracellular termini [527], with the functional transporter potentially a dimeric arrangement [4, 140]. Ferroportin is essential for iron homeostasis [160]. Ferroportin is expressed on the surface of cells that store and transport iron, such as duodenal enterocytes, hepatocytes, adipocytes and reticuloendothelial macrophages. Levels of ferroportin are regulated by its association with (binding to) hepcidin, a 25 amino acid hormone responsive to circulating iron levels (amongst other signals). Hepcidin binding targets ferroportin for internalisation and degradation, lowering the levels of iron export to the blood. Novel therapeutic agents which stabilise ferroportin or protect it from hepcidin-induced degradation are being developed as anti-anemia agents. Anti-ferroportin monoclonal antibodies are such an agent.

Nomenclature	Ferroportin
Systematic nomenclature	SLC40A1
Common abbreviation	IREG1
HGNC, UniProt	SLC40A1, Q9NP59
Endogenous substrates	Fe²⁺
Stoichiometry	Unknown
Antibodies	LY2928057 (Binding) [395]

Comments: Hepcidin (HAMP, P81172), cleaved into hepcidin-25 (HAMP, P81172) and hepcidin-20 (HAMP, P81172), is a small protein that increases upon inflammation, binds to ferroportin to regulate its cellular distribution and degradation. Gene disruption in mice results in embryonic lethality [160], while loss-of-function mutations in man are associated with haemochromatosis [141].
Further reading on SLC40 iron transporter

McKie AT et al. (2004) The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch. 447: 801-6 [PMID:12836025]

Montalbetti N et al. (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol. Aspects Med. 34: 270-87 [PMID:23506870]

SLC41 family of divalent cation transporters

Transporters → SLC superfamily of solute carriers → SLC41 family of divalent cation transporters

Overview: By analogy with bacterial orthologues, this family is probably magnesium transporters. The prokaryote orthologue, MgT, is responsible for uptake of divalent cations, while the heterologous expression studies of mammalian proteins suggest Mg²⁺ efflux [369], possibly as a result of co-expression of particular protein partners (see [543]). Topological modelling suggests 10 TM domains with cytoplasmic C- and N-termini.

Nomenclature	Solute carrier family 41 member 1	Solute carrier family 41 member 2
Systematic nomenclature	SLC41A1	SLC41A2
Common abbreviation	MgT	SLC41A2
HGNC, UniProt	SLC41A1; Q8IV1	SLC41A2; Q96W4
Substrates	Co²⁺ [252], Cu²⁺ [252], Ba²⁺ [252], Cd²⁺ [252], Zn²⁺ [252], Mg²⁺ [252], Sr²⁺ [252], Fe²⁺ [252]	Ba²⁺ [253], Mg²⁺ [253], Co²⁺ [253], Ni²⁺ [253], Mn²⁺ [253], Fe²⁺ [253]
Stoichiometry	Unknown	Unknown

Further reading on SLC41 family of divalent cation transporters

Payandeh J et al. (2013) The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta 1828: 2778-92 [PMID:23954807]

Sahni J et al. (2013) The SLC41 family of MgT- like magnesium transporters. Mol. Aspects Med. 34: 620-8 [PMID:23506895]

Sweigl-Röntgen M et al. (2014) SLC41 transporters—molecular identification and functional role. Curr Top Membr 73: 383-410 [PMID:24745990]
SLC42 family of Rhesus glycoprotein ammonium transporters

Overview: Rhesus is commonly defined as a ‘factor’ that determines, in part, blood type, and whether neonates suffer from haemolytic disease of the newborn. These glycoprotein antigens derive from two genes, RHCE (P18577) and RHD (Q02161), expressed on the surface of erythrocytes. On erythrocytes, RhAG associates with these antigens and functions as an ammonium transporter. RhBG and RhBG are non-erythroid related sequences associated with epithelia. Topological modelling suggests the presence of 12 TM with cytoplasmic N- and C- termini. The majority of information on these transporters derives from orthologues in yeast, plants and bacteria. More recent evidence points to family members being permeable to carbon dioxide, leading to the term gas channels.

Nomenclature	Ammonium transporter Rh type A	Ammonium transporter Rh type B	Ammonium transporter Rh type C
Systematic nomenclature	SLC42A1	SLC42A2	SLC42A3
Common abbreviation	RhAG	RhBG	RhCG
HGNC, UniProt	RHAG, Q02094	RHBG, Q9H310	RHCG, Q9UBD6
Substrates	NH$_4^+$ [665], NH$_3$ [528], CO$_2$ [179]	–	NH$_3$ [721]
Stoichiometry	Unknown	Unknown	Unknown
Labelled ligands	$[^{14}C]$methylamine (Binding) [286]	–	$[^{14}C]$methylamine (Binding) [423] – Mouse

Further reading on SLC42 family of Rhesus glycoprotein ammonium transporters

Nakhoul NL et al. (2013) Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport. Mol. Aspects Med. 34: 629-37 [PMID:23506896]

Weiner ID et al. (2014) Ammonia transport in the kidney by Rhesus glycoproteins. Am. J. Physiol. Renal Physiol. 306: F1107-20 [PMID:24647713]

SLC43 family of large neutral amino acid transporters

Overview: LAT3 (SLC43A1) and LAT4 (SLC43A2) are transporters with system L amino acid transporter activity, along with the structurally and functionally distinct transporters LAT1 and LAT2 that are members of the SLC7 family. LAT3 and LAT4 contain 12 putative TM domains with both N and C termini located intracellularly. They transport neutral amino acids in a manner independent of Na$^+$ and Cl$^-$ and with two kinetic components [33, 64]. LAT3/SLC43A1 is expressed in human tissues at high levels in the pancreas, liver, skeletal muscle and fetal liver [33] whereas LAT4/SLC43A2 is primarily expressed in the placenta, kidney and peripheral blood leukocytes [64]. SLC43A3 is expressed in vascular endothelial cells [651] but remains to be characterised.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature
Systematic nomenclature
Common abbreviation
HGNC, UniProt
Substrates
Stoichiometry
Comments
Substrates
L-isoleucine [33], L-valinol [33], L-leucinol [33], L-phenylalaninol [33], L-leucine [33], L-phenylalanine [33], L-valine [33], L-methionine [33]
Operates by facilitative diffusion
Covalent modification of LAT3 by N-ethylmaleimide inhibits its function [33] and at LAT4 inhibits the low-, but not high-affinity component of transport [64].

Further reading on SLC43 family of large neutral amino acid transporters
Bodoy S et al. (2013) The small SLC43 family: facilitator system I amino acid transporters and the orphan EEG1. Mol. Aspects Med. 34: 638-45 [PMID:23268354]

SLC44 choline transporter-like family

Overview: Members of the choline transporter-like family are encoded by five genes (CTL1-CTL5) with further diversity occurring through alternative splicing of CTL1, 4 and 5 [622]. CTL family members are putative 10TM domain proteins with extracellular termini that mediate Na⁺-independent transport of choline with an affinity that is intermediate to that of the high affinity choline transporter CHT1 (SLC5A7) and the low affinity organic-ion transporters [OCT1 (SLC22A1) and OCT2 (SLC22A2)] [438]. CTL1 is expressed almost ubiquitously in human tissues [669] and mediates choline transport across the plasma and mitochondrial membranes [437]. Transport of choline by CTL2, which in rodents is expressed as two isoforms (CTL2P1 and CLTP2; [370]) in lung, colon, inner ear and spleen and to a lesser extent in brain, tongue, liver, and kidney, has only recently been demonstrated [370, 458]. CTL3-5 remain to be characterized functionally.

Nomenclature
Systematic nomenclature
Common abbreviation
HGNC, UniProt
Substrates
Stoichiometry
Inhibitors
Choline transporter-like 1
SLC44A1
CTL1
SLC44A1, Q8WWI5
choline
Unknown: uptake enhanced in the absence of extracellular Na⁺, reduced by membrane depolarization, extracellular acidification and collapse of plasma membrane H⁺ electrochemical gradient
hemicholinium-3 (pKᵢ 3.5–4.5)
Comments: Data tabulated are features observed for CLT1 endogenous to: rat astrocytes [308]; rat renal tubule epithelial cells [683]; human colon carcinoma cells [373]; human keratinocytes [630] and human neuroblastoma cells [684]. Choline uptake by CLT1 is inhibited by numerous organic cations (e.g. [308, 683, 684]). In the guinea-pig, CTL2 is a target for antibody-induced hearing loss [454] and in man, a polymorphism in CTL2 constitutes the human neutrophil alloantigen-3a (HNA-3a; [256]).

Further reading on SLC44 choline transporter-like family

Inazu M. (2014) Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. *Biopharm Drug Dispos* **35**: 431-49 [PMID:24532461]

Traiffort E et al. (2013) The choline transporter-like family SLC44: properties and roles in human diseases. *Mol. Aspects Med.* **34**: 646-54 [PMID:23506897]

SLC45 family of putative sugar transporters

Transporters → SLC superfamily of solute carriers → SLC45 family of putative sugar transporters

Overview: Members of the SLC45 family remain to be fully characterised. SLC45A1 was initially identified in the rat brain, particularly predominant in the hindbrain, as a proton-associated sugar transport, induced by hypercapnia [574]. The protein is predicted to have 12TM domains, with intracellular termini. The *SLC45A2* gene is thought to encode a transporter protein that mediates melanin synthesis. Mutations in *SLC45A2* are a cause of oculocutaneous albinism type 4 (e.g. [463]), and polymorphisms in this gene are associated with variations in skin and hair color (e.g. [254]).

Nomenclature	Proton-associated sugar transporter A
Systematic nomenclature	SLC45A1
HGNC, UniProt	*SLC45A1, Q9Y2W3*
Substrates	L-glucose [574], Galactose [574]
Stoichiometry	Unknown; increased at acid pH [574].

Further reading on SLC45 family of putative sugar transporters

Bartölke R et al. (2014) Proton-associated sucrose transport of mammalian solute carrier family 45: an analysis in Saccharomyces cerevisiae. *Biochem. J.* **464**: 193-201 [PMID:25164149]

Vitavska O et al. (2013) The SLC45 gene family of putative sugar transporters. *Mol. Aspects Med.* **34**: 655-60 [PMID:23506898]

SLC46 family of folate transporters

Transporters → SLC superfamily of solute carriers → SLC46 family of folate transporters

Overview: Based on the prototypical member of this family, PCFT, this family includes proton-driven transporters with 11 TM segments. SLC46A1 has been described to act as an intestinal proton-coupled high-affinity *folic acid* transporter [510], with lower affinity for *heme*. Folic acid accumulation is independent of Na⁺ or K⁺ ion concentrations, but driven by extracellular protons with an as yet undefined stoichiometry.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Nomenclature
Proton-coupled folate transporter

Systematic nomenclature
SLC46A1

Common abbreviation
PCFT

HGNC, UniProt
`SLC46A1`, `Q96NT5`

Substrates
pemetrexed, N-formyltetrahydrofolate, methotrexate \[^{[510]}\] folic acid \((1.3 \mu M)\) > heme \((> 100 \mu M)\) \[^{[455]}\]

Endogenous substrates
N[^5]-methyltetrafolate \[^{[510]}\]

Labelled ligands
\[^{[3]}H\]N[^5]-methylfolate (Binding), \[^{[3]}H\]folic acid, \[^{[3]}H\]folinic acid (Binding), \[^{[3]}H\]methotrexate, \[^{[3]}H\]pemetrexed (Binding)

Comments
Loss-of-function mutations in PCFT (SLC46A1) are the molecular basis for hereditary folate maladsorption \[^{[552]}\].

Further reading on SLC46 family of folate transporters

Hou Z _et al._ (2014) Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. *Curr Top Membr* 73: 175-204 \[PMID:24745983\]

Matherly LH _et al._ (2014) The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. *Drug Metab. Dispos.* 42: 632-49 \[PMID:24396145\]

Wilson MR _et al._ (2015) Structural determinants of human proton-coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6. *Biochem. J.* 469: 33-44 \[PMID:25877470\]

Zhao R _et al._ (2011) Mechanisms of membrane transport of folates into cells and across epithelia. *Annu. Rev. Nutr.* 31: 177-201 \[PMID:21568705\]

Zhao R _et al._ (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. *Mol. Aspects Med.* 34: 373-85 \[PMID:23506878\]
SLC47 family of multidrug and toxin extrusion transporters

Overview: These proton:organic cation exchangers are predicted to have 13 TM segments [709] and are suggested to be responsible for excretion of many drugs in the liver and kidneys.

Nomenclature	Multidrug and toxin extrusion
Systematic nomenclature	SLC47A1
Common abbreviation	MATE1
HGNC, UniProt	SLC47A1, Q96FL8
Substrates	quinidine [607], cephradine [607], metformin (Km 7.8x10^{-4}M) [607], cephalixin [607], cimetidine (Km 1.7x10^{-4}M) [477, 607], paraquat [108]
Endogenous substrates	thiamine [607], creatine [607]
Sub/family-selective inhibitors	pyrimethamine (pKi 7.1) [320], cimetidine (pKi 6) [627]
Labelled ligands	[14C]TEA [482, 611], [14C]metformin [607, 611]

Nomenclature

MATE2

Systematic nomenclature

SLC47A2

Common abbreviation

MATE2-K

HGNC, UniProt

SLC47A2, Q86VL8

Substrates

guanidine [607], procainamide [428], metformin (Km 1.9x10^{-3}M) [428, 607], aciclovir [477, 607], MPP^+ [428], cimetidine (Km 1.2x10^{-4}M) [428, 607], N^1-methyl nicotinamide [428]

Endogenous substrates

creatine [607], thiamine [607]

Sub/family-selective inhibitors

pyrimethamine (pKi 6.3) [320] – Mouse, cimetidine (pKi 5.1) [627]

Labelled ligands

[14C]TEA [607], [14C]metformin [607]

Comments: DAPI has been used to allow quantification of MATE1 and MATE2-mediated transport activity [693]. MATE2 and MATE2-B are inactive splice variants of MATE2-K [428].

Further reading on SLC47 family of multidrug and toxin extrusion transporters

Damm K *et al.* (2011) Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrate analogues and xenobiotics. *Drug Metab. Rev.* **43**: 499-523 [PMID:21923552]

Motohashi H *et al.* (2013) Multidrug and toxin extrusion family SLC47: physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. *Mol. Aspects Med.* **34**: 661-8 [PMID:23506899]

Nies AT *et al.* (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. *Arch. Toxicol.* **90**: 1555-84 [PMID:27165417]

Wagner DJ *et al.* (2016) Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. *Pharmacol. Res.* **111**: 237-246 [PMID:27317943]

Yonezawa A *et al.* (2011) Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. *Br. J. Pharmacol.* **164**: 1817-25 [PMID:21457222]

SLC48 heme transporter

Overview: HRG1 has been identified as a cell surface and lysosomal heme transporter [517]. In addition, evidence suggests this 4TM-containing protein associates with the V-ATPase in lysosomes [474]. Recent studies confirm its lysosomal location and demonstrate that it has an important physiological function in macrophages ingesting senescent red blood cells (erythrophagocytosis), recycling heme (released from the red cell hemoglobin) from the phagolysosome into the cytosol, where the heme is subsequently catabolized to recycle the iron [666].
Nomenclature
Systematic nomenclature: SLC48A1
Common abbreviation: HRG1
HGNC, UniProt: SLC48A1, Q6P1K1

Further reading on SLC48 heme transporter
Khan AA et al. (2013) Heme and FLVCR-related transporter families SLC48 and SLC49. Mol. Aspects Med. 34: 669-82 [PMID:23506900]

SLC49 family of FLVCR-related heme transporters

Overview: FLVCR1 was initially identified as a cell-surface attachment site for feline leukemia virus subgroup C [601], and later identified as a cell surface accumulation which exports heme from the cytosol [513]. A recent study indicates that an isoform of FLVCR1 is located in the mitochondria, the site of the final steps of heme synthesis, and appears to transport heme into the cytosol [113]. FLVCR-mediated heme transport is essential for erythropoiesis. Flvcr1 gene mutations have been identified as the cause of PCARP (posterior column ataxia with retinitis pigmentosa (PCARP)) [516]. There are three paralogs of FLVCR1 in the human genome.

FLVCR2, most similar to FLVCR1 [403], has been reported to function as a heme importer [163]. In addition, a congenital syndrome of proliferative vasculopathy and hydranencephaly, also known as Fowler’s syndrome, is associated with a loss-of-function mutation in FLVCR2 [435].

The functions of the other two members of the SLC49 family, MFSD7 and DIRC2, are unknown, although DIRC2 has been implicated in hereditary renal carcinomas [63].

Nomenclature
Feline leukemia virus subgroup C cellular receptor family, member 1
Systematic nomenclature: SLC49A1
Common abbreviation: FLVCR1
HGNC, UniProt: FLVCR1, Q9YSY0
Substrates: heme [513]
Stoichiometry: Unknown

Feline leukemia virus subgroup C cellular receptor family, member 2
Systematic nomenclature: SLC49A2
Common abbreviation: FLVCR2
HGNC, UniProt: FLVCR2, Q9UPI3
Substrates: heme [163]
Stoichiometry: Unknown

Comments: Non-functional splice alternatives of FLVCR1 have been implicated as a cause of a congenital red cell aplasia, Diamond Blackfan anemia [525].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full

SLC49 family of FLVCR-related heme transporters S478
Further reading on SLC49 family of FLVCR-related heme transporters

Khan AA et al. (2013) Heme and FLVCR-related transporter families SLC48 and SLC49. Mol. Aspects Med. 34: 669-82 [PMID:23506900]

Khan AA et al. (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim. Biophys. Acta 1813: 668-82 [PMID:21238504]

SLC50 sugar transporter

Transports → SLC superfamily of solute carriers → SLC50 sugar transporter

Overview: A mouse stromal cell cDNA library was used to clone C2.3 [598], later termed Rag1-activating protein 1, with a sequence homology predictive of a 4TM topology. The plant orthologues, termed SWEETs, appear to be 7 TM proteins, with extracellular N-termini, and the capacity for bidirectional flux of D-glucose [105]. Expression of mouse SWEET in the mammary gland was suggestive of a role in Golgi lactose synthesis [105].

Nomenclature
- SLC50 sugar exporter
- Systematic nomenclature: SLC50A1
- Common abbreviation: RAG1AP1
- HGNC, UniProt: SLC50A1, Q9BRV3

Further reading on SLC50 sugar transporter

Wright EM. (2013) Glucose transport families SLC5 and SLC50. Mol. Aspects Med. 34: 183-96 [PMID:23506865]

Wright EM et al. (2011) Biology of human sodium glucose transporters. Physiol. Rev. 91: 733-94 [PMID:21527736]

SLC51 family of steroid-derived molecule transporters

Transports → SLC superfamily of solute carriers → SLC51 family of steroid-derived molecule transporters

Overview: The SLC51 organic solute transporter family of transporters is a pair of heterodimeric proteins which regulate bile salt movements in the small intestine, bile duct, and liver, as part of the enterohepatic circulation [41, 137]. OSTα/OSTβ heterodimers have been shown to transport [3H]taurocholic acid, [3H]dehydroepiandrosterone sulphate, [3H]estrone-3-sulphate, [3H]pregnenolone sulphate and [3H]dehydroepiandrosterone sulphate [41, 137, 193]. OSTα/OSTβ-mediated transport of bile salts is inhibited by clofazimine [635]. OSTα is suggested to be a seven TM protein, while OSTβ is a single TM ‘ancillary’ protein, both of which are thought to have intracellular C-termini [400]. Both proteins function in solute transport and bimolecular fluorescence complementation studies suggest the possibility of OSTα homooligomers, as well as OSTα/OSTβ heterooligomers [117, 400]. An inherited mutation in OSTβ is associated with congenital diarrhea in children [591].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
Further reading on SLC51 family of steroid-derived molecule transporters

Ballatori N. (2011) Pleiotropic functions of the organic solute transporter Ostα-Ostβ. *Dig Dis* **29**: 13-7 [PMID:21691099]

Ballatori N et al. (2013) The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. *Mol. Aspects Med.* **34**: 683-92 [PMID:23506901]

SLC52 family of riboflavin transporters

Transports → SLC superfamily of solute carriers → SLC52 family of riboflavin transporters

Overview: Riboflavin, also known as vitamin B2, is a precursor of the enzyme cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Riboflavin transporters are predicted to possess 10 or 11 TM segments.

Further reading on SLC52 family of riboflavin transporters

Yonezawa A et al. (2013) Novel riboflavin transporter family RFVT/SLC52: identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. *Mol. Aspects Med.* **34**: 693-701 [PMID:23506902]
SLC53 Phosphate carriers

Transports → SLC superfamily of solute carriers → SLC53 Phosphate carriers

Nomenclature	xenotropic and polytropic retrovirus receptor 1
Systematic nomenclature	SLC53A1
HGNC, UniProt	XPR1, Q9UBH6
Substrates	Phosphate [239]
Comments	XPR1/SLC53A1 is a phosphate carrier which appears to play a role in bone and tooth mineralization. It is ubiquitously expressed [44, 600]. The pathological consequences of defective SLC53A1 expression in the brain [393] and kidney [20] have been reported.

SLC54 Mitochondrial pyruvate carriers

Transports → SLC superfamily of solute carriers → SLC54 Mitochondrial pyruvate carriers

Nomenclature	mitochondrial pyruvate carrier 1	mitochondrial pyruvate carrier 2	mitochondrial pyruvate carrier 1 like
Systematic nomenclature	SLC54A1	SLC54A2	SLC54A3
HGNC, UniProt	MPC1, Q9YSU8	MPC2, Q95S63	MPC1L, P0DKB6
Substrates	Pyruvate [73, 289]	Pyruvate [73]	Pyruvate [642]
Comments	SLC54A1 is ubiquitously expressed [642].	SLC54A2 is ubiquitously expressed [642].	SLC54A3 is expressed in testis, postmeiotic spermatids and sperm cells [642].

Comments: SLC54 family transporters appear to function as mechanisms for accumulating pyruvate into mitochondria to link glycolysis with oxidative phosphorylation.
SLC55 Mitochondrial cation/proton exchangers

Nomenclature
- Leucine zipper and EF-hand containing transmembrane protein 1
- Leucine zipper and EF-hand containing transmembrane protein 2
- LETM1 domain containing 1

Systematic nomenclature
- SLC55A1
- SLC55A2
- SLC55A3

HGNC, UniProt
- LETM1, O95202
- LETM2, Q2VYF4
- LETMD1, Q6P1Q0

Transport type
- Exchanger / Ca\(^{2+}\):H\(^+\) [328, 569]
- Exchanger / K\(^+\):H\(^+\) [154, 468]

Substrates
- Ca\(^{2+}\), K\(^+\), H\(^+\) [154, 468, 469, 725]

Comments
- SLC55A1 is ubiquitously expressed [178]. Arguments against SLC55A1’s role as a Ca\(^{2+}\) transporter are outlined by Zotova et al. (2010) [725].

Comments: The family of SLC55 mitochondrial transporters appear to regulate ion fluxes and to maintain tubular networks.

SLC56 Sideroflexins

Nomenclature
- Sideroflexin 1
- Sideroflexin 2
- Sideroflexin 3
- Sideroflexin 4
- Sideroflexin 5

Systematic nomenclature
- SLC56A1
- SLC56A2
- SLC56A3
- SLC56A4
- SLC56A5

HGNC, UniProt
- SFXN1, Q9H9B4
- SFXN2, Q96NB2
- SFXN3, Q9BWM7
- SFXN4a, Q8TD22
- SFXN4b, Q8TD22

Comments
- Sideroflexin 1 (SFXN1/SLC56A1) was probably falsely identified as a tricarboxylate carrier in the 1993 article by Azzi et al. [32], as discussed several years later in [205]. SFXN1 likely transports pyridoxin or another heme precursor or the 5’-aminolevulinate synthase 2 (ALAS2; P22557) cofactor [205, 694]. SFXN1 has recently been suggested to be a mitochondrial serine transporter [371]. It is mainly expressed in adult kidney and liver (mouse) [205].
- Sideroflexin 2 expression is mainly detected in adult kidney and liver [205]. In human tissues it is detected at highest levels in kidney, liver and pancreas [694].
- Sideroflexin 3 is ubiquitously expressed in mouse tissues [205].
- Sideroflexin 4 is expressed in mouse kidney, brain and heart [205]. The SFXN4a isoform is most highly expressed in human kidney and pancreas, and the SFXN4b isoform is barely detectable in brain [713].
- Sideroflexin 5 is expressed in mouse brain and liver [205].

Comments: These are a family of incompletely-characterised mitochondrial transporters.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC57 NiPA-like magnesium transporter family

Nomenclature	NIPA magnesium transporter 1	NIPA magnesium transporter 2	NIPA like domain containing 1	NIPA like domain containing 3
Systematic nomenclature	SLC57A1	SLC57A2	SLC57A3	SLC57A5
HGNC, UniProt	NIPA1, Q7RTP0	NIPA2, Q8N8Q9	NIPAL1, Q6NVV3	NIPAL3, Q6P499
Substrates	Sr$^{2+}$, Fe$^{2+}$ and Co$^{2+}$ to a lesser extent [250], Mg$^{2+}$ [249]	Mg$^{2+}$ [250]	Mg$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Fe$^{2+}$, Cu$^{2+}$ [250]	–
Comments	Human tissue expression: Constitutively expressed at low levels, with significant enrichment in the brain [515]. Mouse tissue expression: Widely expressed, including in the heart, kidney, liver, colon, less in the brain, and not in the small intestine [249].	–	–	–

SLC58 MagT-like magnesium transporter family

Nomenclature	magnesium transporter 1	tumor suppressor candidate 3
Systematic nomenclature	SLC58A1	SLC58A2
HGNC, UniProt	MAGT1, Q9HOU3	TUSC3, Q13454
Transport type	Channel-like [511]	–
Substrates	Mg$^{2+}$ [251]	Mg$^{2+}$, Fe$^{2+}$, Cu$^{2+}$, Mn$^{2+}$ [250, 511]
Comments	Expressed in kidney, colon, heart and liver (the latter only at the mRNA level) [251]; universally expressed [714].	Expressed in placenta, pancreas, testis, ovary, heart, and prostate [418].
SLC59 Sodium-dependent lysophosphatidylcholine symporter family

Nomenclature	major facilitator superfamily domain containing 2A	major facilitator superfamily domain containing 2B
Systematic nomenclature	SLC59A1	SLC59A2
HGNC, UniProt	MFSD2A, Q8NA29	MFSD2B, A6NFX1
Transport type	Co-transporter: LPC:Na⁺, uptake	–
Substrates	LPC (lysophosphatidylcholine) form of DHA (docosahexaenoic acid) [464]	–
Comments	MFSD2B/SLC59A has been suggested to be a sphingosine 1-phosphate transporter in erythropoietic cells [364]. It is expressed in brain, intestine, kidney, liver, lung, mammary gland, and prostate [19]; relatively low expression in BAT (brown adipose tissue), but upregulated during cold-induced thermogenesis [19]. Subcellular locations: plasma membrane [656] and ER [19].	Expressed in the spleen, lung, testis and subcellularly in the ER [19].

SLC60 Glucose transporters

Nomenclature	major facilitator superfamily domain containing 4A	major facilitator superfamily domain containing 4B
Systematic nomenclature	SLC60A1	SLC60A2
HGNC, UniProt	MFSD4A, Q8N468	MFSD4B, Q5TF39
Transport type	–	Co-transporter / Na⁺ (1:1) uptake (Rat) [295]
Substrates	–	α-Me-glucose, D-glucose [295]
Inhibitors	–	phloretin [295] – Rat, phlorizin [295] – Rat, urea [460] – Rat
Comments	–	Expressed in rat kidney (cortex and medulla), brain, liver and lung [295].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC61 Molybdate transporter family

Nomenclature | major facilitator superfamily domain containing 5
Systematic nomenclature | SLC61A1
HGNC, UniProt | MFSD5, Q6N075
Substrates | molybdate [610]
Comments | MFSD5/SLC61 is a putative 12TM cell-surface protein which appears to allow the accumulation of molybdate, and where the neural expression appears to respond to changes in the diet. It is expressed in cervix, stomach, nerve and skin [610]; ubiquitous but higher in skeletal muscle, olfactory bulb [212]; blood, cortex, hypothalamus, cerebellum and spinal cord (mouse) [494].

SLC62 Pyrophosphate transporters

Nomenclature | ANKH inorganic pyrophosphate transport regulator
Systematic nomenclature | SLC62A1
HGNC, UniProt | ANKH, Q9HCJ1
Substrates | Pyrophosphate [292]
Comments | ANKH/SLC62 is a putative 8TM membrane protein, also known as progressive ankylosis protein homolog. Mutations in this protein are associated with bone and joint abnormalities. It is expressed in kidney and bone [92].
SLC63 Sphingosine-phosphate transporters

Transporters → SLC superfamily of solute carriers → SLC63 Sphingosine-phosphate transporters

Overview: The SLC63 family of transporters has roles inside the cell (SLC63A1/SPNS1) or on the cell surface (SLC63A2/SPNS2) in sphingolipid transport.

Nomenclature	sphingolipid transporter 1 (putative)
Systematic nomenclature	SLC63A1
HGNC, UniProt	SPNS1, Q9H2V7
Comments	Expressed in mitochondria [690].

SLC64 Golgi Ca\(^{2+}\)/H\(^+\) exchangers

Transporters → SLC superfamily of solute carriers → SLC64 Golgi Ca\(^{2+}\)/H\(^+\) exchangers

Nomenclature	transmembrane protein 165
Systematic nomenclature	SLC64A1
HGNC, UniProt	TMEM165, Q9HC07
Transport type	Exchanger/ Ca\(^{2+}\):H\(^+\)
Substrates	Mn\(^{2+}\) [503, 504], Ca\(^{2+}\), H\(^+\) [144]
Comments	TMEM165/SLC64 is a putative 6TM intracellular membrane protein. Mutations in the protein are associated with congenital disorder of glycosylation. It has been suggested to be essential for milk production in the mammary gland [582]. TMEM165 deficiency (via siRNA knockdown) causes Golgi glycosylation defects in transfected HEK cells [211].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14753/full
SLC65 NPC-type cholesterol transporters

Overview: The SLC65 family of intracellular cholesterol transporters are 13TM membrane proteins. NPC1/SLC65A1 is an intracellular cholesterol transporter, which together with NPC2 (Uniprot ID P61916), allows the accumulation into the cytosol of cholesterol acquired from low density lipoproteins.

Nomenclature	NPC intracellular cholesterol transporter 1	NPC1 like intracellular cholesterol transporter 1
Systematic nomenclature	SLC65A1	SLC6SA2
HGNC, UniProt	*NPC1*, O15118	*NPC1L1*, Q9UHC9
Substrates	Cholesterol [309, 310, 496]	Cholesterol [10]
Selective antagonists	–	ezetimibe (Inhibition) (pK_d 6.7) [227]
Comments	Expression is ubiquitous [10], with highest levels detected in liver, lung, and pancreas [136]. NPC1 plays a critical role in the regulation of intracellular cholesterol trafficking [93]. Mutations in the NPC1 gene have been identified in patients with the lipid storage disorder Niemann-Pick disease type C1 [62, 93, 255, 686].	Expressed in small intestine, gallbladder, liver, testis and stomach [10].
SLCO family of organic anion transporting polypeptides

Overview
The SLCO superfamily is comprised of the organic anion transporting polypeptides (OATPs). The 11 human OATPs are divided into 6 families and ten subfamilies based on amino acid identity. These proteins are located on the plasma membrane of cells throughout the body. They have 12 TM domains and intracellular termini, with multiple putative glycosylation sites. OATPs mediate the sodium-independent uptake of a wide range of amphiphilic substrates, including many drugs and toxins. Due to the multispecificity of these proteins, this guide lists classes of substrates and inhibitors for each family member. More comprehensive lists of substrates, inhibitors, and their relative affinities may be found in the review articles listed below.

Nomenclature	OATP1A2	OATP1B1	OATP1B3	OATP1C1
Systematic nomenclature	SLCO1A2	SLCO1B1	SLCO1B3	SLCO1B1
HGNC, UniProt	SLCO1A2, P46721	SLCO1B1, Q9Y6L6	SLCO1B3, Q9NPDS	SLCO1C1, Q9NYB5
Substrates	fluoroquinolones, beta blockers, deltorphin II, rosuvastatin, fexofenadine, bromsulphthalein, anticancer drugs, antibiotics, HIV protease inhibitors, talinolol, ouabain, microcystin-LR [204]	statins, opioids, β-lactam antibiotics, bile acid derivatives and conjugates, bromsulphthalein, anticancer drugs, HIV protease inhibitors, fexofenadine, antifungals, ACE inhibitors, rifampicin, endotelien receptor antagonists, sartans	cilostazol, statins, bilirubin, CCK-8 (human, mouse, rat), ATP-γ-S (human, mouse, rat, dog), ATP-β-S, ATP, ouabain, adenosine, CCK-8, and thrombin	statins, bromsulphthalein
Endogenous substrates	bile acids, thyroid hormones, steroid conjugates, bilirubin, PGE₂	leukotrienes, steroid conjugates, thyroid hormones, bile acids, bilirubin	steroid conjugates, thyroid hormones, bile acids, CCK-8 (human, mouse, rat), ATP-γ-S (human, mouse, rat, dog), ATP-β-S, ATP, ouabain, adenosine, CCK-8, and thrombin	thyroid hormones, steroid conjugates
Ligands	pravastatin	pravastatin (Binding)	pravastatin	pravastatin (Binding)
Inhibitors	rifampicin (SV (pKᵢ 5) [646], rifampicin (pKᵢ 4.3) [646]), naringin [36]	cyclosporin A (pKᵢ 7.3) [196, 344], estrone-3-sulphate (pIC₅₀ 7.2) [267], rifampicin (pKᵢ 6) [344], fumonisin SV (pKᵢ 5.7) [646], gemfibrozil [471], glycyrrhizin, indocyanine green	cyclosporin A (pIC₅₀ 6.1) [344, 623], sildenafil (pIC₅₀ 6.1) [623], rifampicin (pIC₅₀ 5.8) [344, 623], gemfibrozil, glycyrrhizin, rifampicin SV	DPDE, probenecid, taurocholic acid
Labelled ligands	[³H]BSP, [³H]DPDPE, [³H]estrone-3-sulphate	[³H]estradiol-17β-glucuronide, [³H]estrone-3-sulphate	[³H]estradiol-17β-glucuronide	[125]Ithyroxine, [³H]BSP, [³H]estrone-3-sulphate
Comments	Although rat and mouse OATP1A4 are considered the orthologs of human OATP1A2 we do not cross-link to gene or protein databases for these since in reality there are five genes in rodents that arose through gene duplication in this family and it is not clear which one of these is the “true” ortholog.	Other inhibitors include, fibrates, flavonoids, glitazones and macrolide antibiotics.	Other inhibitors include, HIV protease inhibitors, glitazones and macrolide antibiotics. CCK-8 is used as an OATP1B3-selective probe.	–
Further reading on SLCO family of organic anion transporting polypeptides

Hagenbuch B et al. (2013) The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34: 396-412 [PMID:23506800]

Hillgren KM et al. (2013) Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94: 52-63 [PMID:23588305]

International Transporter Consortium et al. (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9: 215-36 [PMID:2090787]

Lee HH et al. (2017) Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLC21B1). Br J Clin Pharmacol 83: 1176-1184 [PMID:27936281]

Further reading on SLC superfamily of solute carriers

Bhutia YD et al. (2016) SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem. J. 473: 1113-24 [PMID:27118869]

Colas C et al. (2016) SLC Transporters: Structure, Function, and Drug Discovery. Medchemcomm 7: 1069-1081 [PMID:27672436]

César-Razquin A et al. (2015) A Call for Systematic Research on Solute Carriers. Cell 162: 478-87 [PMID:26232220]

Lin L et al. (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14: 543-60 [PMID:26117666]

Neul C et al. (2016) Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol. Sci. 37: 904-932 [PMID:27659854]

Nigam SK. (2015) What do drug transporters really do? Nat Rev Drug Discov 14: 29-44 [PMID:25475361]

Perland E et al. (2017) Classification Systems of Secondary Active Transporters. Trends Pharmacol. Sci. 38: 305-315 [PMID:27939446]

Rives ML et al. (2017) Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem. Pharmacol. 135: 1-11 [PMID:28214518]
218. Fülep GH
216. Fujinami K
201. Fernandes CF
S.P.H. Alexander et al. (2004)
209. Fernandes CF et al. (2009)
130. Fernandez-Lafuente et al. (2003)
125. Ferrer G et al. (2009)
129. Ferroni G et al. (2007)
128. Feske U et al. (2002)
127. Efron J et al. (2002)
117. Efron J et al. (2001)
116. Efron J et al. (2000)
115. Efron J et al. (1999)
114. Efron J et al. (1998)
113. Efron J et al. (1997)
112. Efron J et al. (1996)
111. Efron J et al. (1995)
110. Efron J et al. (1994)
109. Efron J et al. (1993)
108. Efron J et al. (1992)
107. Efron J et al. (1991)
106. Efron J et al. (1990)
105. Efron J et al. (1989)
104. Efron J et al. (1988)
103. Efron J et al. (1987)
102. Efron J et al. (1986)
101. Efron J et al. (1985)
100. Efron J et al. (1984)
99. Efron J et al. (1983)
98. Efron J et al. (1982)
97. Efron J et al. (1981)
96. Efron J et al. (1980)
95. Efron J et al. (1979)
94. Efron J et al. (1978)
93. Efron J et al. (1977)
92. Efron J et al. (1976)
91. Efron J et al. (1975)
90. Efron J et al. (1974)
89. Efron J et al. (1973)
88. Efron J et al. (1972)
87. Efron J et al. (1971)
86. Efron J et al. (1970)
85. Efron J et al. (1969)
84. Efron J et al. (1968)
83. Efron J et al. (1967)
82. Efron J et al. (1966)
81. Efron J et al. (1965)
80. Efron J et al. (1964)
79. Efron J et al. (1963)
78. Efron J et al. (1962)
77. Efron J et al. (1961)
76. Efron J et al. (1960)
75. Efron J et al. (1959)
74. Efron J et al. (1958)
73. Efron J et al. (1957)
72. Efron J et al. (1956)
71. Efron J et al. (1955)
70. Efron J et al. (1954)
69. Efron J et al. (1953)
68. Efron J et al. (1952)
67. Efron J et al. (1951)
66. Efron J et al. (1950)
65. Efron J et al. (1949)
64. Efron J et al. (1948)
63. Efron J et al. (1947)
62. Efron J et al. (1946)
61. Efron J et al. (1945)
60. Efron J et al. (1944)
59. Efron J et al. (1943)
58. Efron J et al. (1942)
57. Efron J et al. (1941)
56. Efron J et al. (1940)
55. Efron J et al. (1939)
54. Efron J et al. (1938)
53. Efron J et al. (1937)
52. Efron J et al. (1936)
51. Efron J et al. (1935)
50. Efron J et al. (1934)
49. Efron J et al. (1933)
48. Efron J et al. (1932)
47. Efron J et al. (1931)
46. Efron J et al. (1930)
45. Efron J et al. (1929)
44. Efron J et al. (1928)
43. Efron J et al. (1927)
42. Efron J et al. (1926)
41. Efron J et al. (1925)
40. Efron J et al. (1924)
39. Efron J et al. (1923)
38. Efron J et al. (1922)
37. Efron J et al. (1921)
36. Efron J et al. (1920)
35. Efron J et al. (1919)
34. Efron J et al. (1918)
33. Efron J et al. (1917)
32. Efron J et al. (1916)
31. Efron J et al. (1915)
30. Efron J et al. (1914)
29. Efron J et al. (1913)
28. Efron J et al. (1912)
27. Efron J et al. (1911)
26. Efron J et al. (1910)
25. Efron J et al. (1909)
24. Efron J et al. (1908)
23. Efron J et al. (1907)
22. Efron J et al. (1906)
21. Efron J et al. (1905)
20. Efron J et al. (1904)
19. Efron J et al. (1903)
18. Efron J et al. (1902)
17. Efron J et al. (1901)
16. Efron J et al. (1900)
15. Efron J et al. (1899)
14. Efron J et al. (1898)
13. Efron J et al. (1897)
12. Efron J et al. (1896)
11. Efron J et al. (1895)
10. Efron J et al. (1894)
9. Efron J et al. (1893)
8. Efron J et al. (1892)
7. Efron J et al. (1891)
6. Efron J et al. (1890)
5. Efron J et al. (1889)
4. Efron J et al. (1888)
3. Efron J et al. (1887)
2. Efron J et al. (1886)
1. Efron J et al. (1885)

References: S491

Full text available on S491
