Connection adaption for control of networked mobile chaotic agents

Jie Zhou¹, Yong Zou¹, Shuguang Guan¹, Zonghua Liu¹, Gaoxi Xiao²-³ & S. Boccaletti⁴-⁵

In this paper, we propose a strategy for the control of mobile chaotic oscillators by adaptively rewiring connections between nearby agents with local information. In contrast to the dominant adaptive control schemes where coupling strength is adjusted continuously according to the states of the oscillators, our method does not request adaption of coupling strength. As the resulting interaction structure generated by this proposed strategy is strongly related to unidirectional chains, by investigating synchronization property of unidirectional chains, we reveal that there exists a certain coupling range in which the agents could be controlled regardless of the length of the chain. This feature enables the adaptive strategy to control the mobile oscillators regardless of their moving speed. Compared with existing adaptive control strategies for networked mobile agents, our proposed strategy is simpler for implementation where the resulting interaction networks are kept unweighted at all time.

Synchronization is a ubiquitous collective behavior, widely found in biological, physical, and social systems¹–⁶. An issue of particular relevance is the control of networked systems, so as to target them towards specific, collective, and desired functionalities. When the topology of connections among the units of a network is fixed, various strategies can be adopted, such as: i) regulating the strength of the coupling between the graph's components⁷–¹³, ii) applying a time delay¹⁴,¹⁵, iii) changing adaptively the nodes interaction¹⁶, iv) pinning specific sequences of network's components¹⁷–¹⁹. With the rapid development of technology in mobile devices, synchronization and control of mobile agents becomes, however, an issue of primary importance²⁰–²². Conditions for synchronization of networks with time-varying structure under various circumstances have been studied. Such conditions include that the time-varying structures are always small world²³,²⁴, oscillators perform random walk on networked infrastructure²⁵–²⁷, oscillators could move on a one-dimensional ring²⁸, oscillators are allowed to jump randomly in the space²⁹, etc. A good study of the condition of stable synchronization for fast-switching networks, where the network structure changes much faster than the unit dynamics, can be found in ref.²⁸, while a study for slow-switching networks is presented in ref.³¹. Further, the compound effect of different time scales between structure dynamics and unit dynamics has been studied in ref.³².

The problem of controlling networked mobile oscillators has received many research interests³³–³⁷. However, moving-agent systems commonly have features of spatial distribution, communication constraints, and limited sensing capacity, which makes centralized control strategies generally too expensive or even infeasible to be implemented in practice. Therefore, many adaptive control strategies which require only local information, termed as decentralized strategies, have been proposed in the last decade. For instance, an adaptive strategy has been designed for the consensus of networked moving agents³⁹. Because of the advantages of the decentralized method, adaptive control strategies have also been extensively developed for networks with static structures⁴⁰–⁴².

However, most existing adaptive control strategies are realized by continuously adjusting coupling strength between agents, here we referred as coupling adaption strategy. In this paper, we propose a strategy where agents may adaptively choose neighboring ones to establish temporary connections without tuning coupling strength, which we refer to as connection adaptation strategy. We prove that the temporary networks generated from our strategy have the same synchronization stability as that of the static networks with the same Laplacian spectrum. We further show that the resulting structure is closely related to unidirectional chains. Our study suggests that for such chains there exists a certain range of coupling strength within which the whole chain could be controlled.
ji as follows, where \(\neq \), with \(\cdot \). The module \(\cdot \) denotes temporal derivative, and \(\cdot \) the interaction structure is acyclic. Further, if no agents are found in the disk satisfying the two above conditions, the latter condition ensures that all formed connections uniformly point from the periphery to the GA, and therefore the resulting structure is a directed tree, with each agent having one out-going connection converging from the periphery to the GA.

The control scheme. For clarity, the guide agent (GA) is located at the center of the square. The gray circles (dashed arrow) indicate the agents (the directed connections). Agent \(i \) only detects the state and position of other agents that are within the dashed circle with radius \(r \). In the example, agent \(i \) builds a connection to agent \(j \) since agent \(j \) is the neighbor which has the smallest distance to the GA and is closer to the GA than the agent \(i \). The resulting structure is a directed tree, with each agent having one out-going connection converging from the periphery to the GA.

![Figure 1](image.png)

Figure 1. The control scheme. For clarity, the guide agent (GA) is located at the center of the square. The gray circles (dashed arrow) indicate the agents (the directed connections). Agent \(i \) only detects the state and position of other agents that are within the dashed circle with radius \(r \). In the example, agent \(i \) builds a connection to agent \(j \) since agent \(j \) is the neighbor which has the smallest distance to the GA and is closer to the GA than the agent \(i \). The resulting structure is a directed tree, with each agent having one out-going connection converging from the periphery to the GA.

regardless of the length of the chains. This feature further indicates that in this coupling range the networked mobile chaotic agents could be controlled regardless of the speed of the agents. Since the resulting networks generated by our strategy are always unweighted, this connection adaption strategy may be simpler to be implemented than the coupling adaptation strategies.

Model and theory

We start from an ensemble of \(N \) moving agents networked on a unit planar space \(\Gamma = [0,1]^2 \) (with periodic boundary conditions). Agent \(i \) budes with velocity \(\gamma (t) = (v \cos \theta_i, v \sin \theta_i) \). The module \(v \) (equal for all agents) is constant, and the direction \(\theta_i \) is randomly drawn from the interval \([-\pi, \pi]\) with uniform probability (at each time step). The position \(\gamma (t) \) of agent \(i \) evolves, therefore, as \(\gamma (t + \Delta t) \approx \gamma (t) + \gamma (t) \Delta t \), where \(\Delta t \) is an integration step size.

All agents carry an identical chaotic dynamics, described by \(\dot{x} = F(x), \) with \(x^i \in \mathbb{R}^m, i = 1, 2, \ldots, N \), dot denoting temporal derivative, and \(F: \mathbb{R}^m \rightarrow \mathbb{R}^m \). Each agent builds its connections based on the state and position information that it collects from other agents located within a neighborhood of radius \(r \). The interacting structure is described by the un-weighted elements of the (generically asymmetric) coupling matrix \(G(t) \) where \(g_{ij} (t) = -1 \) when agent \(i \) forms a directed connection with agent \(j \), and \(g_{ij} (t) = 0 \) otherwise. The diagonal elements \(g_{ii} (t) = -\sum_{j \neq i} g_{ij} (t) \) warrant the zero-row-sum property of \(G(t) \). The dynamics of each agent is ruled by

\[
\dot{x}^i = F(x^i) - \sigma \sum_{j=1}^{N} g_{ij} (t) H(x^j),
\]

where \(\sigma \) is the coupling strength, and \(H: \mathbb{R}^m \rightarrow \mathbb{R}^m \) is here a coupling function.

The purpose is to steer the dynamics of all agents towards a desired solution \(\dot{x}^i = x^i = \cdots = x^N = x^\cdot \). To this aim, we first put a unit (carrying the desired state \(x^\cdot \)) at an arbitrary position in the space. Such a unit (which can be regarded actually as a virtual agent) plays the role of a reference guide for all other agents, so that we refer to it in the following as the guide agent (GA). The position of the GA is fixed once forever, and is known to all other agents. At each time step \(t \), agent \(i \) chooses one of its neighbors (say agent \(j \)) to form a direct connection (so that \(g_{ij} = -1 \)). The chosen neighbor is the one which satisfies two conditions: i) it is the nearest one (among all neighbors of agent \(i \) within a disk of radius \(r \)) to the GA; if the GA is a neighbor of agent \(i \), it will therefore be chosen; ii) the distance between the connected agent and the GA is smaller than that between agent \(i \) and the GA. This latter condition ensures that all formed connections uniformly point from the periphery to the GA, and therefore the interaction structure is acyclic. Further, if no agents are found in the disk satisfying the two above conditions, agent \(i \) expands its interaction radius until finding a valid connection. The resulting structure is schematically sketched in Fig. 1. Note that, though the GA is located at the center of the square in Fig. 1, the position of GA can be arbitrary.

The resulting coupling matrix \(G(t) \) adaptively changes in time. After a proper relabeling of the agents [assigning the index 1 to the GA at all times, while giving smaller (larger) indices to agents closer (further) to the GA], an orthogonal transformation \(M(t) \) can be defined, by means of which one gets a lower triangular matrix \(L(t) = [l_{ij}(t)] \in \mathbb{R}^{(N+1)\times(N+1)} \) with \(L(t) = M^\top(t)G(t)M(t) \) as follows,
The necessary condition for stability of the system is given by Eq. (3), above which $\langle \delta \rangle$ diverges. The inset shows the numerically found relationship between σ and v.

$$L(t) = \begin{pmatrix} 0 & 1 & 0 \\ \vdots & \ddots & \vdots \\ l_{ij} = 0, & -1, & 1 \end{pmatrix},$$

where $l_{ii} = 0$ and $l_i = 1 (i \neq 1)$. The values of the elements l_{ij} [the lower part of $L(t)$] are either 0 or −1. Solving the related secular equation gives the spectrum of $L(t)$ and also of $\Gamma(t)$ as $\lambda_1 = 0$ and $\lambda_2 = \cdots \lambda_{N+1} = 1$. The eigen-vector of λ_1 corresponds to the synchronization manifold x^*, while the other eigen-vectors are associated to eigen-modes spanning the transverse space of the synchronization manifold. As all such eigen-modes have always the same eigenvalue, they form a unique subspace which is invariant with time. It can be proved that the condition of stable synchronization for this time-varying structure is similar to that for a static network with the same spectrum (see Methods for details on both cases of slow- and fast-varying networks).

For a time-independent coupling matrix, a necessary condition for synchronization is that the Master Stability Function (MSF) $\Phi(\sigma \lambda)$ be strictly negative in each transverse mode. For our control scheme, the guess is therefore that the attainment of x^* would occur at that value of the coupling strength σ for which $\Phi(\sigma) < 0$.

For the sake of illustration, let us now refer to the case of agents carrying the chaotic Rössler oscillator. The dynamics of each unit is therefore described by $x_i^t = -(x_i + x_i)$, $x_i^t = x_i^t + ax_i^t$, $x_i^t = b + x_i(x_i - c)$, with $x^t = (x_i^t, x_i^t, x_i^t)$ and $a = b = 0.2$, $c = 7$. $H(x) = (x_0, 0, 0)$, which realizes a linear coupling on the x_i variable of the agents. The dynamics is integrated with fixed integration time step $\Delta t = 0.001$. Unless otherwise specified, network's parameters are $N = 100$ and $r = 0.1$. The error function $\delta(t) = 1/N \sum_{i=1}^{N} (|x_i^t - x_i^t| + |x_i^t - x_i^t| + |x_i^t - x_i^t|)$ is monitored to evaluate the control performance on agent i. $\langle \delta(t) \rangle$ (the average error of all the agents) and $\langle \delta \rangle$ (the time averaged value of $\delta(t)$ over the last 10^6 integration steps) are evaluated after a suitable transient time, to quantify the global control performance.

With such a choice of parameters (and of output function H), the Rössler system belongs to class III MSF, i.e. Φ is negative within the range $[\alpha_1, \alpha_2]$ (with $\alpha_1 \simeq 0.2$ and $\alpha_2 \simeq 4.3$). The necessary condition for stability of the synchronized solution x^* is therefore:

$$\alpha_1 < \sigma < \alpha_2.$$

Results

Figure 2 reports $\langle \delta \rangle$ (the control performance) vs. σ for various values of agents’ velocities. Remarkably [and together with the necessary condition of Eq. (3)], agents’ velocity impacts the control performance, with a range of σ for control which monotonically decreases with decreasing v (see the inset of Fig. 2, from which it is clear that only when v is large enough, the condition (3) is matched). A major conclusion is the existence of a range of the coupling strength (the non-vanishing range of σ at $v = 0$) where the system can be controlled for all agents’ velocities.

In order to better elucidate the control mechanism, we first concentrate on the case $v = 0$, where the structure of connections is static and can be regarded as the overlap of a group of unidirectional chains, converging towards the GA and bifurcating at some intermediate points. Since agents closer to the GA are not influenced by those further to them, the chains can be considered as independent to each other. Therefore, controlling the case $v = 0$ is tantamount to finding under which conditions unidirectional chains can be controlled to x^*. In the following, therefore, we focus on the performance of a typical unidirectional chain [sketched in Fig. 3(a)], for which the only structural factor is its length m, i.e. the number of agents to be controlled [indexed by their distance to the GA, and denoted by the gray circles in Fig. 3(a)]. Figure 3(b) reports the relation between the error function $\langle \delta \rangle$ and m, at $\sigma = 3.5$. Remarkably, a threshold value $m_{th} = 5$ exists, such that the chain cannot be controlled for $m > m_{th}$. Notice that $\sigma = 3.5$ still satisfies the necessary condition (3), which means that the distance of the agent to the GA...
fundamentally affects the control performance. Figure 3(c) reports the behavior of m_{th} as a function of σ. With the shape of the curve (reminiscent of the V-shape of the MSF for such coupled Rössler oscillators), m_{th} is negatively correlated with the MSF, and reaches 0 at the points of α_1 and α_2. As shown in Fig. 3(b), under a given coupling strength σ the feasible length of a chain for control is restricted by the threshold m_{th}, therefore the control performance for a static network is determined by its longest chain: if the length of the longest chain, l_{max}, is smaller (larger) than $m_{th}(\sigma)$ the network can (cannot) be controlled. We verified that $l_{\text{max}} \approx 10$ (for our network with $v=0$ and $r=0$), and the corresponding range of σ satisfying $m_{th}(\sigma) > 10$ is marked by the red curve in Fig. 3(c). The range of coupling spanned by the green bar is well consistent with that for the case of $v=0$ in Fig. 2.

We have also compared l_{max} with m_{th} for different radius r, and good consistency appears in all of them (see Supplemental Information).

Furthermore, it is seen in Fig. 3(c) that $m_{th}(\sigma)$ diverges when σ is in the range $[0.6, 2.2]$ (we have verified this divergence with extensive simulations where the the length of a 1D chain is increased up to 1,000, and still synchronization occurs in that range). In order to gather more detailed information, we monitor the time evolution of $\delta_i(t)$, and find that $\delta_i(t)$ features intermittent spikes (see Fig. 4(a–c)), which is actually caused by sudden surges in the χ_i variable of the Rössler oscillator. In order to capture the main profile of the evolution, one can then use the smoothing process to remove the spikes. More precisely, a Smooth function $\tilde{\delta}(t) = \frac{1}{2\tau} \int_{t-i\tau}^{t+i\tau} \delta(t') dt'$ is defined. As the typical time interval spanned by the spikes is about $2 \times 10^3 \Delta t$, when τ is larger than 2 they are eliminated. Figure 4(d–f) show the resulting profile after applying the smoothing function, for $\tau = 10$. One observes that, before vanishing, $\tilde{\delta}(t)$ features a characteristic hump, whose height δ_{ih} (indicated by the black dots), changes with the index i. For instance, for $\sigma = 3$, δ_{ih} increases with increasing i, leading eventually to a divergence of δ_i. For $\sigma = 2$, instead, δ_{ih} does not increase with i, suggesting that the whole chain can be controlled even when its length is very long. These humps can be regarded as transient fluctuations, that can be delivered from one agent to the next. For some coupling strength σ, these fluctuations will be scaled up during the delivery. To accurately describe the tendency of δ_{ih} evolving with i, one then defines the ratio between the humps of two adjacent agents δ_{ih} as $\gamma(\sigma) = \frac{\delta_{ih}^{\sigma}}{\delta_{ih}^{\sigma+1}}$, and the average of such ratios on the chain as $\bar{\gamma}(\sigma) = \frac{1}{m_{th}} \sum_{i=1}^{m_{th}} \gamma(\sigma)$, which then measures the converging (or diverging) tendency of the whole chain.

$\gamma(\sigma)$ is reported in Fig. 5. It is seen that, when $0.6 < \sigma < 2.2$, $\gamma \approx 1$, and therefore δ_{ih} does not scale up with increasing i. When instead σ is out of such a range, δ_{ih} is amplified with the increase of the index i, and eventually exceeds a certain domain, leading to divergence of the state. By calling the size of the domain as U, then one has $\delta_{ih}^{\sigma} = U$, where δ_{ih}^{σ} is the height of the hump of the first agent (i.e. the initial value), and m_{th} denotes the number of amplifications needed to reach U. As a consequence, $m'_{th} = \ln(U/\delta_{ih})/\ln(\gamma(\sigma)) + 1$. The value of $U/\delta_{ih} = 200$ is the result of a fit, and one can further input the dependencies of $\gamma(\sigma)$, so as to obtain a prediction for m'_{th}, m_{th} as a function of σ is reported as a red dashed curve in Fig. 3(c). One can easily see how significantly the two curves for m'_{th} and m_{th} are matching, pointing to the fact that the parameter γ represents actually a proper indicator to predict the tendency of δ_{ih}.

As a conclusion of all the above reasoning, our results suggest that one can partition all the range of σ into three distinct regions (reported in Fig. 5): Region I, characterized by $\Phi(\sigma) < 0$ and $\gamma \lesssim 1$. In this region synchronization occurs regardless of the length of the chain, so that we can safely call this region as Strongly controllable.
region (SCR); Region II, where \(\Phi(\sigma)<0\) but \(\gamma>1\). Here, though the necessary condition of the MSF is satisfied, synchronization is restricted to a finite chain length, so that the region is called as Conditionally controllable region; Region III, where \(\Phi(\sigma)>0\). Here the necessary condition of a negative MSF is not satisfied. Therefore, synchronization is intrinsically unstable, and we call this region as the Uncontrollable region.

Finally, we briefly elaborate on the case where \(v \neq 0\). There, network’s chains are continuously broken and regrouped, with such a process occurring more often at higher agents’ velocities. When a chain is broken, the fluctuation delivery process is interrupted and current fluctuations may be defused on the newly formed chain. Therefore, increasing the velocity \(v\) is equivalent to reducing \(l_{\text{max}}\). For instance, at \(v=10\), the network can be controlled when \(\sigma<3.6\) (see Fig. 2), which indicates that chains with lengths longer than 5 (compare with data and discussion on Fig. 3) cannot remain unchanged long enough (under this speed) to induce an effective divergence of the state variables. On the other hand, when \(v\) is small, long chains are more easily to remain unmodified, and control therefore fails.

Conclusion

In this paper, we have proposed an adaptive strategy for controlling networked mobile chaotic oscillators with local information. The key idea of this strategy is to allow each agent to select one of its neighbors to form up a connection between them. The resulting temporary structures generated by this strategy is a set of directed trees and their Laplacian spectrum are always kept the same with identity eigenvalues for all the transversal modes. We have proved that such a time-varying structure has the same synchronization stability as that of the static network with the same Laplacian spectrum. Thus, the networks may be controlled without changing coupling strength. We have further shown that the temporary structure generated by the proposed strategy is closely related to a unidirectional chain. By investing this featured structure, we observe a specific region of coupling strength, called strongly controllable region, within which the whole chain can be controlled regardless of its length. This feature

Figure 4. (Left panels) Time evolution of \(\delta_i(t)\) \((i=1, \ldots, 8)\) for \(\sigma=2.0\) (a), 2.2 (b), and 3.0 (c); (Right panels) Time evolution of \(\delta_i(t)\) \((i=1, \ldots, 8)\) for \(\sigma=2.0\) (d), 2.2 (e), and 3.0 (f). Distinct humps appear before \(\delta_i(t)\) vanishes. Black dots mark the peak of the humps of \(\delta_i(t)\) for a guide to the eyes.

Figure 5. \(\gamma\) (see text for definition) as a function of \(\sigma\). The entire range of \(\sigma\) can be separated into three regions: I. Strongly controllable region, where \(\Phi(\sigma)<0\) and \(\gamma<1\) (Light gray); II. Conditionally controllable region, where \(\Phi(\sigma)<0\) and \(\gamma>1\) (Dark gray); III. Uncontrollable region, where \(\Phi(\sigma)>0\) (White).
is of value for our strategy, since in this region the whole networks can be controlled for arbitrary moving speed of the oscillators.

Compared to the dominant adaptive control scheme for related mobile systems where the coupling strength is adjusted continuously, our strategy may be regarded as a favorable simplification where the coupling ratio only needs to be set as either 0 or 1 regardless of the states of the oscillators, hence significantly reduced the efforts for implementation. We expect our work may inspire more researches in developing simple and efficient decentralized strategies for the control of networked mobile systems. Though in this work the results are presented on a simple model, the proposed scheme can be extended to more realistic situations, e.g., where there exist noises, errors or non-negligible delay in communications between agents and systems are of complicated spatial structures, etc. Such extensions will be our future research interest.

Methods
The necessary condition for control. The linearized equation of the system deviating around the solution $x^\delta = x^s = 1, ..., x^{N+1}$ can be written as

$$\delta \dot{x} = [I_{N+1} \otimes DF - \sigma G \otimes DH] \delta x,$$

(4)

where $\delta x = (\delta x_1, ..., \delta x^{N+1})^T$, I_{N+1} is the identity matrix of order $N+1$, and DF and DH are the Jacobian functions of F and H, respectively. This equation is in accordance to Eq. (1), and we here label the GA as agent 1 and the other N agents with indices from 2 to $N+1$. At time t, the Laplacian G is decomposed as $G = \sum_{i=1}^{N} \sigma_i u_i u_i^T$, where the spectrum $\{\lambda_i\}$ is such that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{N+1} = 1$. The eigen-vectors $\{u_i = (u_{ij}, ..., u_{i,N+1})^T\}$ form an orthonormal basis, with $u_i = \frac{1}{\sqrt{\lambda_i}} (1, ..., 1)^T$ corresponding to the synchronization manifold x^s. Taking $I_{N+1} = \sum_{i=1}^{N} u_i u_i^T$, one gets

$$\delta x = \sum_{i=1}^{N+1} [u_i u_i^T \otimes (DF + \sigma \lambda_i DH)] \delta x.$$

(5)

Setting $\delta x(t) = Q \delta y(t)$ with $Q = (u_1, ..., u_{N+1}) \otimes I_m$, where I_m is the identity matrix of order m (the number of degrees of freedom of the dynamics carried by each agent), Eq. (5) becomes

$$\delta \dot{y} = Q^{-1} \sum_{i=1}^{N+1} [u_i u_i^T \otimes (DF + \sigma \lambda_i DH)] Q \delta y = \sum_{i=1}^{N+1} [e_i e_i^T \otimes (DF + \sigma \lambda_i DH)] \delta y,$$

(6)

where e_i is a unit vector whose i-th element is 1 and 0 otherwise. The matrix in Eq. (6) is block diagonal with $m \times m$ blocks. Taking δy as $\delta y = (\delta y_1, ..., \delta y^m)^T$ with $\delta y^i \in \mathbb{R}^m$, one has

$$\delta \dot{y} = (DF + \sigma \lambda_i DH) \delta y^i.$$

(7)

Since $\delta y = Q \delta x$ (and noting that $\lambda_i = 1$ for $i \geq 2$), Eq. (7) gives

$$\sum_{j=2}^{N+1} u_j \delta x^j = (DF + \sigma DH) \sum_{j=2}^{N+1} u_j \delta x^j, \quad \text{for } i \geq 2.$$

(8)

Since here $\{u_j(j \leq 2)\}$ can be arbitrary set as long as they form an orthonormal basis of eigen-vectors, the solution for δx can only be

$$\delta x^j = (DF + \sigma DH) \delta x^j, \quad \text{for } j \geq 2.$$

(9)

Therefore, when the spectrum of $G(t)$ satisfies $\lambda_1 = 0$ and $\lambda_2 = \cdots \lambda_{N+1} = 1$, the deviation around x^s of all the agents (except for the GA) shall evolves uniformly following Eq. (9).

The above argument reveals how δx evolves during the time window where the structure is fixed. Now, let us discuss what happens, instead, when the structure switches from one topology to another due to the movement of the agents in the square plane. When this happens, say at time t', then $\delta x(t')$ (the final solution of the deviation during the presence of the previous structure of connections) now becomes the initial condition for the evolution of the deviation in the presence of the new structure. It is important to remark that the eigen-vectors of the new structure may be different from the old ones (though the eigenvalues’ spectra are the same). Specifically, we suppose the new structure could be decomposed as $G = \sum_{i=1}^{N} \lambda_i \nu_i \nu_i^T$ with eigenvectors $\nu_i = (\nu_{i1}, ..., \nu_{i,N+1})^T$.

Similarly, setting $\delta x(t') = R \delta x(t')$ with $R = (\nu_1, ..., \nu_{N+1}) \otimes I_m$, one obtains

$$\delta \dot{x}' = (DF + \sigma \lambda_i DH) \delta x'.$$

(10)

Owing to the difference between Q and R (i.e. the difference of the eigenvectors), $\delta y(t')$ and $\delta x(t')$ could be different. That is to say that the change of eigenvectors may lead to a change of the deviations of eigen-transversal modes for different structures, so that $\delta y(t')$ changes to $\delta x(t')$.

However, since both Eqs (7) and (10) bring about Eq. (9), and $\delta x(t')$ is maintained at the moment at which the structure switches, we conclude that Eq. (9) is valid at all times during the structure switching process. Therefore, since in our method the spectrum of the temporal Laplacians always satisfies the condition, we conclude that the criteria for stability of the solution where all agents are synchronized with the GA are equivalent to those for the same solution in a static network featuring the same eigenvalues’ spectrum.
References
43. Pecora, L. M. & Carroll, T. L. Master Stability Functions for Synchronized Coupled Systems. Phys. Rep. 366, 1 (2002).
42. Li, Z., Chen, M. Z. Q. & Ding, Z. Distributed Adaptive Controllers for Cooperative Output Regulation of Heterogeneous Agents over Directed Graphs. Automatica 68, 179 (2016).
41. Li, Z., Chen, M. Z. Q. & Ding, Z. Distributed Adaptive Controllers for Cooperative Output Regulation of Heterogeneous Agents over Directed Graphs. Automatica 68, 179 (2016).
40. Li, Z., Dong, H., Cao, Y. & Sun, Y. X. Adaptive synchronization of weighted complex dynamical networks through pinning. Euro. Phys. J. B 61, 355 (2008).
39. Wang, X., Wang, X., Su, H. & Chen, G. Pinning control of scale-free dynamical networks. Physica A 369, 310 (2006).
38. Wang, L., Shi, H. & Sun, Y.-X. Induced synchronization of a mobile agent network by phase locking. IEEE Trans. Autom. Control 59, 2074 (2014).
37. Klinglmayr, J., Bettstetter, C., Timme, M. & Kirst, C. Convergence of Self-Organizing Pulse-Coupled Oscillator Synchronization in Complex Networks. Phys. Rev. Lett. 112, 114102 (2014).
36. Zhang, X., Boccaletti, S., Guan, S. & Liu, Z. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 038701 (2015).
35. Nishikawa, T. & Motter, A. E. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl. Acad. Sci. USA 107, 10342 (2010).
34. Dariani, R., Buscarino, A., Fortuna, L. & Frasca, M. Pinning Control in a System of Mobile Chaotic Oscillators. Phys. Rev. Lett. 110, 78701 (2013).
33. Zhou, J., Zou, Y., Guan, S., Liu, Z. & Boccaletti, S. Synchronization in slowly switching networks of coupled oscillators. Sci. Rep. 5, 093029 (2016).
32. Fujiwara, N., Kürths, J. & Daz-Guilera, A. Synchronization in networks of mobile oscillators. Physica A 391, 4088 (2012).
31. Zhou, J., Zou, Y., Guan, S., Liu, Z. & Boccaletti, S. Synchronization in slowly switching networks of coupled oscillators. Sci. Rep. 5, 093029 (2016).
30. Porfiri, M., Stilwell, D. J. & Bollt, E. M. Synchronization in random weighted directed networks. IEEE Transactions on Circuits and Systems I 55, 3170 (2008).
29. Frasca, M., Buscarino, A., Rizzo, A., Fortuna, L. & Boccaletti, S. Synchronization of Moving Chaotic Agents. Phys. Rev. Lett. 100, 044102 (2008).
28. Peruani, F., Nicola, E. M. & Morelli, L. G. Mobility induces global synchronization of oscillators in periodic extended systems. New J. Phys. 12, 093029 (2010).
27. Porfiri, M., Stilwell, D. J., Bollt, E. M. Synchronization in random weighted directed networks. IEEE Transactions on Circuits and Systems I 55, 3170 (2008).
26. Porfiri, M., Stilwell, D. J., Bollt, E. M. Synchronization in random weighted directed networks. IEEE Transactions on Circuits and Systems I 55, 3170 (2008).
25. Li, Z., Ren, W., Liu, X. & Fu, M. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58, 1786 (2013).
24. Li, Z., Chen, M. Z. Q. & Ding, Z. Distributed Adaptive Controllers for Cooperative Output Regulation of Heterogeneous Agents over Directed Graphs. Automatica 68, 179 (2016).
23. Pecora, L. M. & Carroll, T. L. Master Stability Functions for Synchronized Coupled Systems. Phys. Rev. Lett. 80, 2109 (1998).
22. Schröder, M., Mannattil, M., Dutta, D., Chakraborty, S. & Timme, M. Transient Uncoupling Induces Synchronization. Phys. Rev. Lett. 115, 054101 (2015).
21. Wang, L., Shi, H. & Sun, Y.-X. Induced synchronization of a mobile agent network by phase locking. IEEE Trans. Autom. Control 59, 2074 (2014).
20. Porfiri, M., Stilwell, D. J. & Bollt, E. M. Synchronization in random weighted directed networks. IEEE Transactions on Circuits and Systems I 55, 3170 (2008).
19. Chen, T., Liu, X. & Lu, J. Pinning Complex Networks by a Single Controller. Phys. Rev. Lett. 113, 138701 (2014).
18. Li, X., Wang, X. & Chen, G. Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I 51, 2074 (2004).
17. Chen, T., Liu, X. & Lu, W. Pinning Complex Networks by a Single Controller. Circuits and Systems I: Regular Papers, IEEE Transactions 54, 1317 (2007).
16. Hövel, P. Control of Complex Nonlinear Systems with Delay (Springer, Berlin) (2010).
15. Flunkert, V., Yanchuk, S., Dahms, T. & Schöll, E. Synchronizing Distant Nodes: A Universal Classification of Networks. Phys. Rev. Lett. 105, 254101 (2010).
14. Hövel, P. Control of Complex Nonlinear Systems with Delay (Springer, Berlin) (2010).
13. Yu, W., Lü, J., Yu, X. & Chen, G. Distributed Adaptive Control for Synchronization in Directed Complex Networks. SIAM J. Control Optim. 53, 2980 (2015).
12. Schröder, M., Mannattil, M., Dutta, D., Chakraborty, S. & Timme, M. Transient Uncoupling Induces Synchronization. Phys. Rev. Lett. 115, 054101 (2015).
11. Wang, L., Dai, H. P., Dong, H., Cao, Y. & Sun, Y. X. Adaptive synchronization of weighted complex dynamical networks through pinning. Euro. Phys. J. B 61, 355 (2008).
10. Zhou, J., Lu, J.-A. & Lü, J. Pinning adaptive synchronization of a general complex dynamical network. Automatica 44, 996 (2008).
9. Wang, L., Dai, H. P., Dong, H., Cao, Y. & Sun, Y. X. Adaptive synchronization of weighted complex dynamical networks through pinning. Euro. Phys. J. B 61, 355 (2008).
8. Schröder, M., Mannattil, M., Dutta, D., Chakraborty, S. & Timme, M. Transient Uncoupling Induces Synchronization. Phys. Rev. Lett. 115, 054101 (2015).
7. Klinglmayr, J., Bettstetter, C., Timme, M. & Kirst, C. Convergence of Self-Organizing Pulse-Coupled Oscillator Synchronization in Dynamic Networks. IEEE Transactions on Automatic Control, https://doi.org/10.1109/TAC.2016.2593642 (2016).
6. Zhang, X., Boccaletti, S., Guan, S. & Liu, Z. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114, 058701 (2015).
5. Nishikawa, T. & Motter, A. E. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl. Acad. Sci. USA 107, 10342 (2010).
4. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008).
3. Zhou, J., Zou, Y., Guan, S., Liu, Z. & Boccaletti, S. Synchronization in slowly switching networks of coupled oscillators. Sci. Rep. 5, 093029 (2016).
2. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. (Cambridge University Press, Cambridge, England) (2003).
1. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L. & Zhou, C. S. The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002).

Acknowledgements
Work partially supported by the National Natural Science Foundation of China (Grant Nos. 11405059, 11575041, and 61503110), Natural Science Foundation of Shanghai (Grant No. 17ZR1444800) and Ministry of Education, Singapore, under contract MOE2016-T2-1-119.
Author Contributions
J.Z., Y.Z., S.G.G., Z.H.L., G.X.X. and S.B. conceived the methods and the research; J.Z. performed the numerical simulations; J.Z. and S.B. wrote the paper. All authors reviewed the Manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16235-2.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017