Study of Iterative Detection and Decoding for Large-Scale MIMO Systems with 1-Bit ADCs

Zhichao Shao, Rodrigo C. de Lamare, Senior Member, IEEE and Lukas T. N. Landau, Member, IEEE

Abstract

We present a novel iterative detection and decoding scheme for uplink large-scale multiuser multiple-antenna systems. In order to reduce the receiver’s energy consumption and computational complexity, 1-bit analog-to-digital converters are used in the front-end. The performance loss due to the 1-bit quantization can be mitigated by using large-scale antenna arrays. We propose a linear low-resolution-aware minimum mean square error detector for soft multiuser interference mitigation. Moreover, short block length low-density parity-check codes are considered for avoiding high latency. In the channel decoder, a quasi-uniform quantizer with scaling factors is devised to lower the error floor of LDPC codes. Simulations show good performance of the system in terms of bit error rate as compared to prior work.

Index Terms

Large-scale multiple-antenna systems, 1-bit quantization, IDD schemes, MMSE detectors.

I. INTRODUCTION

Large-scale multiple-antenna systems have been identified as a promising technology for the next generation communication systems [1], [2], [3]. In fact, large spatial degrees of freedom (DoFs) can increase the spectral and energy efficiency. However, as the antennas scale up, the receiver design will become more complex and the energy consumption will be higher. For overcoming these issues, one solution is to use low-resolution analog-to-digital converters (ADCs) at the receiver. As one extreme case, 1-bit quantization can drastically simplify the receiver design. Prior work on multiple-antenna systems with low-resolution ADCs includes the studies in [4] and [5], where in the latter the authors reported a novel linear minimum mean square error (MMSE) precoder design for multiple-antenna systems using 1-bit DAC/ADC both at the transmitter and the receiver. An analytical approach to calculate a lower bound on capacity for a wideband system with multiple-antenna and 1-bit ADCs, which employs low-complexity channel estimation and symbol detection, has been described in [6].

In recent years, low-density parity-check (LDPC) codes have been used in many industry standards including DVB-S2 and IEEE 802.11n (Wi-Fi). They have also been adopted for the next generation communication systems, since they approach the Shannon capacity and have low complexity. Compared to LDPC codes with large block length, short block LDPC codes result in much lower latency. As one branch of LDPC codes, regular LDPC codes, they have high error floor phenomenon, which is commonly attributed to the existence of certain error-prone structures in the corresponding Tanner graph. This is partially because of trapping sets [7], [8] and absorbing sets [9]. The authors in [10] have proposed a new LDPC decoder with low error floors and low computational complexity. This approach quasi-uniformly quantizes the passing messages into different ranges.

The authors are with the Pontifical Catholic University of Rio de Janeiro, Centre for Telecommunications Studies, Rio de Janeiro, CEP 22453-900, Brazil (e-mail: zhichao.shao;delamare;lukas.landau@cetuc.puc-rio.br).
of reliability. It extends the saturation level to prevent the messages from being trapped and can be helpful for 1-bit quantized data. In receiver designs with channel codes, it is often useful to employ iterative detection and decoding (IDD) schemes [11], [12], [13], [14], [15], [16], [17]. The key mechanism of the IDD process is the soft information exchange between the detector and the channel decoder, which leads to successive performance improvement [11]. The soft information exchanged often has the form of log likelihood ratio (LLR) of a certain bit. In [17] an IDD algorithm with LDPC codes for multiple-antenna systems under block-fading channels is proposed. Results show that by properly manipulating the LLR output of decoder the system performance can be largely improved.

In this work, we develop an IDD scheme for 1-bit quantized systems and derive a linear low-resolution-aware MMSE (LRA-MMSE) receive filter suitable for 1-bit ADCs and soft interference mitigation. Moreover, we also develop an adaptive decoding approach that combines a quasi-uniform quantization of the passing messages with adjustable scaling factors, which can avoid trapping sets and refine the exchange of LLRs between the detector and the decoder.

The rest of this paper is organized as follows: Section II shows the system model and presents some statistical properties about 1-bit quantization. Section III describes the derivation of the proposed LRA-MMSE detector and decoding technique. Section IV discusses the simulation results and section V concludes the work.

Notation: Bold capital letters indicate matrices while vectors are in bold lowercase. \(I_n\) denotes a \(n \times n\) identity matrix while \(0_n\) is a \(n \times 1\) vector with all zeros. Additionally, \(\text{diag}(\mathbf{A})\) is a diagonal matrix only containing the diagonal elements of \(\mathbf{A}\).

II. SYSTEM MODEL AND STATISTICAL PROPERTIES OF 1-BIT QUANTIZATION

A single-cell multi-user large-scale multiple-antenna uplink scenario is considered, which is depicted in Fig. 1. There are \(K\) single-antenna users and the receiver is equipped with \(M\) antennas, where \(M \gg K\). The information symbols \(b_k\) are firstly encoded by each user’s channel encoder and modulated to \(x_k\) according to a given modulation scheme. The transmit symbols \(x_k\) have zero-mean and the same energy \(E[|x_k|^2] = \sigma_x^2\). The modulated symbols are then transmitted over block-fading channels. The vector \(\mathbf{n} \sim \mathcal{C}\mathcal{N}(\mathbf{0}_M, \sigma_n^2 \mathbf{I}_M)\) contains independent and identically distributed (IID) complex Gaussian random variables with zero mean and variance \(\sigma_n^2\). The received unquantized signal is given by

\[
y = \mathbf{Hx} + \mathbf{n} = \sum_{k=1}^{K} \mathbf{h}_k x_k + \mathbf{n},
\]
where $H \in \mathbb{C}^{M \times K}$ is the channel matrix. $Q(\cdot)$ represents the 1-bit quantization. The real and imaginary parts of the unquantized signal y are element-wisely quantized to $\{\pm \frac{1}{\sqrt{2}}\}$ based on a threshold. The resulting quantized signal y_Q is

$$y_Q = Q(\Re\{y\}) + jQ(\Im\{y\}),$$ \hspace{1cm} (2)$$

where $\Re\{\cdot\}$ and $\Im\{\cdot\}$ get the real and imaginary part, respectively.

Since quantization strongly changes the properties of signals, we show here some statistical properties of quantization for a Gaussian input signal. For 1-bit quantization and Gaussian inputs, the cross-correlation between the unquantized signal s with covariance matrix C_s and its 1-bit quantized signal s_Q is described by $[18]$

$$C_{s_Q} = \frac{1}{\pi} \sqrt{2} KC_s, \text{where } K = \text{diag}(C_s)^{-2}. \hspace{1cm} (3)$$

Furthermore, the covariance matrix of the 1-bit quantized signal s_Q is given by $[19]$

$$C_{s_Q} = \frac{2}{\pi} \left(\sin^{-1}(\Re\{C_s\}K) + j\sin^{-1}(\Im\{C_s\}K) \right). \hspace{1cm} (4)$$

III. PROPOSED ITERATIVE DETECTION AND DECODING

A. Proposed LRA-MMSE Detector

Inspired by prior work on IDD schemes $[11] [17]$, we propose a LRA-MMSE detector, which employs a modified linear MMSE receive filter and performs soft parallel interference cancellation. The soft estimate of the k-th transmitted symbol is firstly calculated based on the extrinsic LLR L_{e_k} provided by the channel decoder from a previous stage:

$$\bar{x}_k = \sum_{x \in \mathcal{A}} x \Pr(x_k = x) = \sum_{x \in \mathcal{A}} x \left(\prod_{j=1}^{M_c} \left[1 + \exp(-x^H L_{e_k}^j) \right] \right)^{-1},$$

where \mathcal{A} is the complex constellation set with 2^{M_c} possible points. The symbol x^j corresponds to the value $(+1, -1)$ of the j-th bit of symbol x. Denote $\bar{x} = [\bar{x}_1, ..., \bar{x}_K]^T$ and

$$\tilde{x}_k = \bar{x} - \bar{x}_k \mathbf{e}_k, \hspace{1cm} (5)$$

where \mathbf{e}_k is a column vector with all zeros, except that the k-th element is equal to 1. For each user k, the interference from the other $K - 1$ users is canceled according to

$$y_{Q_k} = y_Q - \sum_{j=1, j \neq k}^{K} \tilde{x}_j h_j = y_Q - HS_k. \hspace{1cm} (6)$$

Note that when no prior information is given, $y_{Q_k} = y_Q$. The linear LRA-MMSE filter is then applied to y_{Q_k}, to obtain

$$\hat{x}_k = w_k^H y_{Q_k}, \hspace{1cm} (7)$$

where w_k is chosen to minimize the mean square error (MSE) between the transmitted symbol x_k and the filter output, i.e.

$$w_k = \arg \min_{w_k} E \left[\|x_k - w_k^H y_{Q_k}\|^2 \right]. \hspace{1cm} (8)$$

The solution of the LRA-MMSE receive filter is given by

$$w_k = C_{y_{Q_k}}^{-1} \mathbf{e}_k, \hspace{1cm} (9)$$

denotes the covariance matrix

$$C_{y_{Q_k}} = C_{y_Q} - (C_{y_Q} s_k H)^H - C_{y_Q s_k} H^H + HC_{s_k} H^H \hspace{1cm} (10)$$
and the cross-correlation vector is
\[\mathbf{c}_{x_k y_{Q_k}} = \sigma_x^2 \sqrt{\frac{2}{\pi}} \mathbf{K} \mathbf{h}_k, \quad \text{with} \quad \mathbf{K} = \text{diag} \left(\mathbf{C}_y \right)^{-\frac{1}{2}}. \] (11)

In (10), the covariance matrix of the quantized data vector \(y_Q \) is described by
\[\mathbf{C}_{y_Q} = \frac{2}{\pi} \left(\sin^{-1} (\mathbf{K} \mathbf{h}_k) + j\sin^{-1} (\mathbf{K} \Im \{\mathbf{C}_y\}) \right), \] (12)
and the cross-correlation vector between \(y_Q \) and \(\tilde{x}_k \) is
\[\mathbf{C}_{y_Q \tilde{x}_k} = \sqrt{\frac{2}{\pi}} \mathbf{K} \mathbf{H} \tilde{x}_k. \] (13)

Note that \(\mathbf{C}_y \) is the covariance matrix of the unquantized data vector \(y \), which leads to the following result
\[\mathbf{C}_y = E \left[(\mathbf{H} \mathbf{x} + \mathbf{n})(\mathbf{H} \mathbf{x} + \mathbf{n})^H \right] = \sigma_x^2 \mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_M. \] (14)

In order to calculate \(P(\hat{x}_k|x) \), we use the Cramer's central limit theorem \[20\]: the LRA-MMSE filter output can be approximated by a complex Gaussian distribution due to the large number of independent variables. The mean and variance of the estimated symbol \(\hat{x}_k \), which is conditioned on the transmitted symbol \(x \), are given respectively by
\[\mu_k \triangleq E [\hat{x}_k|x] = \mathbf{w}_k^H (\mathbf{Q} (\mathbf{h}_k x + \mathbf{H} \tilde{x}_k) - \mathbf{H} \tilde{x}_k) \] (15)
\[\eta_k^2 \triangleq \text{var} [\hat{x}_k|x] = \mathbf{w}_k^H \mathbf{c}_{x_k y_{Q_k}} - \left(\mathbf{w}_k^H \mathbf{c}_{x_k y_{Q_k}} \right)^2. \] (16)

Therefore, the likelihood function can be approximated by
\[P(\hat{x}_k|x) \approx \frac{1}{\pi \eta_k^2} \exp \left(-\frac{1}{\eta_k^2} |\hat{x}_k - \mu_k|^2 \right). \] (17)

Then the LLR computed by the LRA-MMSE detector for the \(l \)-th bit (\(l \in \{1, \ldots, M_c\} \)) of the symbol \(\hat{x}_k \) is given by
\[L_{\hat{x}_k}^l = \log \frac{\Pr (b_k^l = +1|\hat{x}_k)}{\Pr (b_k^l = -1|\hat{x}_k)} - \log \frac{\Pr (b_k^l = +1)}{\Pr (b_k^l = -1)} \]
\[= \log \frac{1}{\sum_{x \in \mathcal{A}_l} P(\hat{x}_k|x) \Pr(x)} - L_{\hat{x}_k}^l, \] (18)
where \(\mathcal{A}_l^{-1} \) is the set of hypotheses \(x \) for which the \(l \)-th bit is +1 and \(\mathcal{A}_l^{-1} \) is similarly defined.

B. Proposed Soft Information Processing and Decoding

The soft information provided by the LRA-MMSE detector is then fed into a channel decoder that adaptively scales the input LLRs and quasi-uniformly quantizes the messages.

1) **Iterative Decoder:** The decoding method is based on message passing, which iteratively computes the distributions of variables in graph-based models. In the system we have used the box-plus sum product algorithm (SPA) \[21\], which is an approximation of SPA decoding. One drawback of SPA is the hyperbolic tangent function, which has numerical saturation problems when computed with finite precision. To avoid such problems, thresholds on the magnitudes of messages must be applied. In the box-plus SPA, the message sent from check node (CN) \(j \) to variable node (VN) \(i \) is
\[L_{j \rightarrow i} = \oplus_{i \in \mathcal{N}(j) \setminus i} L_{i \rightarrow j}, \] (19)
where ⊞ is the pairwise "box-plus" operator defined as

\[x ⊞ y = \log \left(\frac{1 + e^{x+y}}{e^x + e^y} \right) \]

\[= \text{sign}(x)\text{sign}(y) \min(|x|, |y|) \]

\[+ \log \left(1 + e^{-|x+y|}\right) - \log \left(1 + e^{-|x-y|}\right). \] (20)

The message from VN \(i \) to CN \(j \) is then calculated as

\[L_{i \rightarrow j} = L_i + \sum_{j' \in N(i) \setminus j} L_{j' \rightarrow i}, \] (21)

where \(L_i \) is the LLR at VN \(i \). The quantity \(j' \in N(i) \setminus j \) represents all CNs connected to VN \(i \) except CN \(j \).

2) **Quasi-uniform Quantizer:** This quantizer is used both in the decoder and the extrinsic message quantizer to refine or compensate for the effect of 1-bit quantization on the LLRs. The algorithm is based on the quasi-uniform quantization in [10], which represents a compromise between conflicting objectives of retaining fine precision, allowing large dynamic range and implementation complexity. It is a combination of non-uniform and uniform quantization and realized as follows:

\[
Q'_\Delta(L_{c_k}) = \begin{cases}
2^{d+1}N\Delta & \text{if } 2^{d+1}N\Delta \leq L_{c_k} \\
d^rN\Delta & \text{if } d^rN\Delta \leq L_{c_k} < d^{r+1}N\Delta, \\
Q_\Delta(L_{c_k}) & \text{if } -dN\Delta < L_{c_k} < dN\Delta \\
-d^rN\Delta & \text{if } -d^{r+1}N\Delta \leq L_{c_k} < -d^rN\Delta, \\
-d^{r+1}N\Delta & \text{if } L_{c_k} \leq -d^{r+1}N\Delta \\
\end{cases}
\]

with

\[
Q_\Delta(L_{c_k}) = \begin{cases}
N\Delta & \text{if } N\Delta - \frac{\Delta}{2} \leq L_{c_k} \\
m\Delta & \text{if } m\Delta - \frac{\Delta}{2} \leq L_{c_k} < m\Delta + \frac{\Delta}{2}, \\
0 & \text{if } -\frac{\Delta}{4} < L_{c_k} < \frac{\Delta}{4} \\
-m\Delta & \text{if } m\Delta - \frac{\Delta}{2} < L_{c_k} \leq m\Delta + \frac{\Delta}{2}, \\
-N\Delta & \text{if } L_{c_k} \leq -N\Delta + \frac{\Delta}{2} \end{cases}
\]

where \(d \) is the growth rate parameter, \(\Delta \) is the step size, \(N \) is the total number of bits for representing each range and \(L_{c_k} \) is the passing message at the \(k \)-th decoder.

3) **Adaptive Scaling Factors:** For improving the decoding performance we have deployed two scaling factors, which are obtained offline and online, respectively.

- **Offline Scaling Factor:** This factor is utilized to correct LLR values used in iterative decoding based on the LLR distribution [22]. In the training phase, data packets are sent to the receiver for obtaining sufficient LLR statistics. For a given SNR, the following steps are carried out:
1) Calculate the probabilities of $\Pr(L_{ck}|b_k)$ conditioned on transmitted bits b_k through histograms.

2) Obtain $f(L_{ck}) = \log \frac{\Pr(L_{ck}|b_k=1)}{\Pr(L_{ck}|b_k=0)}$.

3) Employ the approximation $f(L_{ck}) = \alpha_k L_{ck}$.

This factor α_k is only applied in the first iteration at the kth decoder input during the data transmission phase. Moreover, the scaled mean absolute value $\alpha_k L_{ck}$ for each user is stored for calculating the online scaling factor.

- Online Scaling Factor: The factor f_k is calculated at the kth decoder input in the second iteration and applied for all the iterations except the first iteration. It aims to correct the LLR errors caused by quantizer. The scaled LLR should be approximated to the scaled LLR in 3). We propose a linear scaling factor that is calculated as:

$$f_k = \alpha_k L_{ck} / \overline{L}_{ck}^{2\text{nd\ iteration}},$$

where $\overline{L}_{ck}^{2\text{nd\ iteration}}$ is the mean absolute value of LLRs for the kth user in the second iteration.

IV. Numerical Results

We consider a short length regular LDPC code with block length $n = 512$ and rate 1/2. The modulation scheme is QPSK and the parameters of the quasi-uniform quantizer are $\Delta = 0.25$, $d = 1.3$ and $N = 6$. The channel is assumed to experience block fading and is modeled by IID circularly symmetric complex Gaussian random variables with zero mean and unit variance. The channel matrix is estimated unless otherwise specified through the Bussgang-based LMMSE (BLMMSE) channel estimator [23]. During training, all K users simultaneously transmit τ pilot symbols to the receiver. To match the matrix form to the vector form of (2), the vectorized received signal is described by

$$y_Q = Q(y_p) = Q(\tilde{X}_p h + n_p),$$

where $\tilde{X}_p = (X_p^T \otimes I_M) \in \mathbb{C}^{M\tau \times KM}$ is the modified pilot matrix. The vector $h \in \mathbb{C}^{KM \times 1}$ is the vectorized channel matrix H.

With the assumption $C_h = I_{KM}$, the estimated channel vector is

$$\hat{h} = (A_p \tilde{X}_p)^H C_{y_p}^{-1} y_Q,$$

where $A_p = \sqrt{\frac{2}{\pi}} \text{diag}(C_{y_p})^{-\frac{1}{2}}$. C_{y_p} and C_{y_p} are calculated according to (12) and (14), respectively.

The BER performances of IDD schemes under perfect channel state information (CSI) are shown in Fig. 2. It can be seen that the proposed LRA-MMSE detector obtains a large gain compared to the traditional MMSE one. Recently, the authors in [24] have proposed a near maximum likelihood (ML) detector with a 2dB performance gain, but the computational complexity ($O(2^{KM} M^2))$ is much higher than that of the LRA-MMSE detector ($O(M^3)$). Moreover, Fig. 2 also depicts the BER performances of IDD schemes with and without quasi-uniform quantizer and scaling factors, which shows the system has a significant performance gain after 2 iterations. These results also demonstrate that the quantizer and the scaling factors offer extra performance gains. Fig. 3 illustrates the system performance using BLMMSE channel estimation, where $\tau = 70$ pilot symbols are used in each block.

V. Conclusion

In this work, we have developed an IDD scheme for 1-bit quantized systems and proposed a LRA-MMSE detector for 1-bit systems. The simulation results have shown a great performance gain after several iterations. Moreover, we have devised an adaptive channel decoder using a quantizer together with scaling factors for further performance improvement.
Fig. 2: $K = 12$ and $M = 32$. BER performances of IDD schemes under the perfect CSI. (The single-user bound curve (no interference) is about 20dB to the left for the same BER.)

Fig. 3: $K = 9$ and $M = 32$. BER performances of IDD schemes using BLMMSE channel estimation with $\tau = 70$ pilot symbols. (The single-user bound curve (no interference) is about 16dB to the left for the same BER.)

REFERENCES

[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, February 2014.

[2] R. C. de Lamare, “Massive mimo systems: Signal processing challenges and future trends,” URSI Radio Science Bulletin, vol. 2013, no. 347, pp. 8–20, Dec 2013.

[3] W. Zhang, H. Ren, C. Pan, M. Chen, R. C. de Lamare, B. Du, and J. Dai, “Large-scale antenna systems with ul/dl hardware mismatch: Achievable rates analysis and calibration,” IEEE Transactions on Communications, vol. 63, no. 4, pp. 1216–1229, April 2015.

[4] L. T. N. Landau and R. C. de Lamare, “Branch-and-bound precoding for multiuser mimo systems with 1-bit quantization,” IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 770–773, Dec 2017.

[5] O. B. Usman, H. Jedda, A. Mezghani, and J. A. Nossek, “MMSE precoder for massive MIMO using 1-bit quantization,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., March 2016, pp. 3381–3385.

[6] C. MolleÁn, J. Choi, E. G. Larsson, and R. W. Heath, “Uplink Performance of Wideband Massive MIMO With One-Bit ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 87–100, Jan 2017.

[7] T. Richardson, “Error floors of LDPC codes,” in Proc. Allerton Conf. on Communications, Control, and Computing, Monticello, IL, USA, Oct 2003, pp. 1426–1435.

[8] C. T. Healy and R. C. de Lamare, “Design of ldpc codes based on multipath emd strategies for progressive edge growth,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3208–3219, Aug 2016.
[9] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181–201, Jan 2010.
[10] X. Zhang and P. H. Siegel, “Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes,” IEEE Trans. Commun., vol. 62, no. 1, pp. 1–14, January 2014.
[11] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1046–1061, Jul 1999.
[12] R. C. de Lamare and R. Sampaio-Neto, “Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for ds-CDMA systems,” IEEE Transactions on Communications, vol. 56, no. 5, pp. 778–789, May 2008.
[13] P. Li, R. C. de Lamare, and R. Fa, “Multiple feedback successive interference cancellation detection for multi-user mimo systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2434–2439, August 2011.
[14] R. C. de Lamare, “Adaptive and iterative multi-branch mmse decision feedback detection algorithms for multi-antenna systems,” IEEE Transactions on Wireless Communications, vol. 12, no. 10, pp. 5294–5308, October 2013.
[15] L. Dai, X. Gao, X. Su, S. Han, C. L. I, and Z. Wang, “Low-complexity soft-output signal detection based on gauss-seidel method for uplink multi-user large-scale mimo systems,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4839–4845, Oct 2015.
[16] X. Qin, Z. Yan, and G. He, “A near-optimal detection scheme based on joint steepest descent and jacobi method for uplink massive mimo systems,” IEEE Communications Letters, vol. 20, no. 2, pp. 276–279, Feb 2016.
[17] A. G. D. Uchoa, C. T. Healy, and R. C. de Lamare, “Iterative Detection and Decoding Algorithms for MIMO Systems in Block-Fading Channels Using LDPC Codes,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2735–2741, April 2016.
[18] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted Gaussian signals,” Res. Lab. Electron., Massachusetts Inst. Technol., no. 216, p. 14, March 1952.
[19] G. Jacovitti and A. Neri, “Estimation of the autocorrelation function of complex gaussian stationary processes by amplitude clipped signals,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 239–245, Jan 1994.
[20] H. Cramer, Random variables and probability distributions. Cambridge University Press, 2004.
[21] X. Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding LDPC codes,” in Proc. IEEE Glob.Comm. Conf. (GLOBECOM), vol. 2, San Antonio, TX, USA, Nov. 2001, pp. 1036–1036E vol.2.
[22] A. Alvarado, V. Nunez, L. Szczecinski, and E. Agrell, “Correcting Suboptimal Metrics in Iterative Decoders,” in Proc. IEEE Int. Conf. Commum. (ICC), Dresden, Germany, June 2009, pp. 1–6.
[23] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and L. Liu, “Channel Estimation and Performance Analysis of One-Bit Massive MIMO Systems,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4075–4089, Aug 2017.
[24] S. Kim, N. Lee, and S. Hong, “A Low-Complexity Soft-Output wMD Decoding for Uplink MIMO Systems with One-Bit ADCs,” 2017. [Online]. Available: http://arxiv.org/abs/1707.02868