Data in Brief

Whole genome shotgun sequencing of Indian strains of *Streptococcus agalactiae*

Balaji Veeraraghavan, Naveen Kumar Devanga Ragupathi, Sridhar Santhanam, Valsan Philip Verghese, Francis Yesurajan Inbanathan, Charles Livingston

ARTICLE INFO

Keywords: *Streptococcus agalactiae* Whole genome shotgun sequencing Antimicrobial resistance MLST Group B Streptococcus

ABSTRACT

Group B streptococcus is known as a leading cause of neonatal infections in developing countries. The present study describes the whole genome shotgun sequences of four Group B Streptococcus (GBS) isolates. Molecular data on clonality is lacking for GBS in India. The present genome report will add important information on the scarce genome data of GBS and will help in deriving comparative genome studies of GBS isolates at global level. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers NHPL00000000–NHPO00000000.

1. Direct link to deposited data

Data have been deposited in repository https://www.ncbi.nlm.nih.gov/bioproject/PRJNA387519 and the sequence files are accessible under the accession numbers NHPL00000000–NHPO00000000.

2. Introduction

Group B *Streptococcus* (GBS) is one of the leading causes of neonatal infections in developing countries [1]. Between 1998 and 2010, we have reported an early onset infection incidence among newborn of 0.68/1000 live births in our hospital [2]. There is lack of data on molecular epidemiology and genomic content of GBS in India. The present study reports on draft genome sequences of clinical *S. agalactiae* strains.

2.1. Experimental design, materials and methods

Four clinical *S. agalactiae* strains (VB11227, VB12497, VBP4522 and VBP3124) from blood stream infections were isolated at the Department of Clinical Microbiology, Christian Medical College, Vellore, India (12.9248° N 79.1354° E).
Vellore, India. Of these, VBP4522 and VBP3124 were from pediatric patients. All four isolates were identified to be group B using latex agglutination.

The isolates were sequenced further to investigate their whole genome for understanding of their genetic arrangements. DNA was isolated using QiAamp DNA mini Kit (Qiagen, Germany). Whole genome shotgun sequencing was done in the Ion Torrent PGM platform (Life Technologies) with 400 bp chemistry. De novo assembly of the raw reads was performed using AssemblerSPAdes v.5.0.0 embedded in Torrent suite server v.5.0.5. Genome annotation of the assembled sequences were performed in the PATRIC database (the bacterial bioinformatics database and analysis resource) (http://www.patricbrc.org) [3], and the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html). Downstream analysis was completed using the Center for Genomic Epidemiology (CGE) server (http://www.cbs.dtu.dk/services), and PATRIC database. Specific components like antimicrobial resistance (AMR) genes and plasmids were made using ResFinder 2.1 and PlasmidFinder 1.3 tools from the CGE server [4–5]. Further analysis to identify the clusters of regularly interspaced short palindromic repeats (CRISPR) and spacer sequences in the genome were performed using CRISPR finder (http://crispr.u-psud.fr/Server/) [6]. To identify the clonality, the sequence types (STs) of S. agalactiae isolates were investigated using the following house-keeping genes adhp, atr, glck, glna, phes, sdha and tkt by comparing with the standard references available at the MLST 1.8 database (https://cge.cbs.dtu.dk/services/MLST/). To visualize the possible evolutionary relationships between isolates, STs of the study isolates and the globally reported strains were computed using PHYLOViZ software v2.0 based on goeBURST algorithm [7].

3. Data description

The size of the S. agalactiae genomes ranged from ~1.9 to ~2.1 Mbp with coverage of 80× to 90× (Table 1). The number of coding DNA sequences (CDS) per genome ranged between 2024 and 2163. Serotype of the GBS isolates were identified using the whole genome data, by performing in silico PCR for capsular polysaccharide genes [8]. Primers and interpretations were used as described by Imperi et al. [9] for in silico PCR. VBP4522 was identified to be serotype V, and VB11227, VB12497 and VBP3124 were identified as serotype Ia.

Three out of four S. agalactiae isolates carried AMR genes. VB11227 had tet(M) gene responsible for tetracycline resistance and msr(D), mef(A) genes for macrolide resistance respectively. All three genes were mostly reported in Streptococcus spp. All isolates were positive for cye beta hemolysin, hemolysin III and cfb gene responsible for CAMP factor. All four isolates were negative for plasmids. However, three isolates carried CRISPR regions in their genomes (Table 1).

The MLST data reveals that the study isolates are of different phylogeny and is suggestive of different clones circulating in India. goeBURST reveals 68 clonal complexes from the available datasets globally. The goeBURST diagram shows that the sequence types ST-1 and ST-103 from the study isolates belong to clonal complex (CC) 1 with ST1 as founder ST, whereas, ST-23 and ST249 belong to a different clonal complex (CC2) with ST23 as founder ST (Fig. 1). Further studies on molecular epidemiology will provide a baseline data of the GBS clones available in India.

Conflict of interest

The authors declare that there is no conflict of interest.
References

[1] P.Y. Iroh Tam, S.F. Delair, S.K. Obaro, Neonatal group B streptococcus disease in developing countries: are we ready to deploy a vaccine? Expert Rev. Vaccines 14 (2015) 1401–1403.

[2] S. Sridhar, R. Grace, P.J. Nithya, V. Balaji, T. Niranjan, K. Manish, K.K. Anil, J.K. Atanu, Group B Streptococcal infection in a tertiary hospital in India—1998–2010, Pediatr. Infect. Dis. J. 33 (2014) 1091–1092.

[3] A.R. Wattam, D. Abraham, O. Dalay, T.L. Disz, T. Driscoll, J.L. Gabbard, J.J. Gillespie, R. Gough, D. Hix, R. Kenyon, D. Machi, C. Mao, E.K. Nordberg, R. Olson, R. Overbeek, G.D. Pusch, M. Shukla, J. Schulman, R.L. Stevens, D.E. Sullivan, V. Vosstein, A. Warren, R. Will, M.J.C. Wilson, H.S. Yoo, C. Zhang, Y. Zhang, B.W. Sobral, PATRIC, the bacterial bioinformatics database and analysis resource, Nucleic Acids Res. 42 (2014) D581–D591.

[4] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F.M. Aarestrup, M.V. Larsen, Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother. (2012), http://dx.doi.org/10.1093/jac/dks261.

[5] A. Carattoli, E. Zankari, A. Garcia-Fernandez, M. Voldby Larsen, O. Lund, L. Villa, F.M. Aarestrup, H. Hasman, PlasmidFinder and pMLST: in silico detection and typing of plasmids, Antimicrob. Agents Chemother. 58 (2014) 3895–3903.

[6] I. Grissa, G. Vergnaud, C. Pourcel, CRISP-Finder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res. 35 (Web Server issue) (2007) W52–W57.

[7] A.P. Francisco, C. Vaz, P.T. Monteiro, J. Melo-Cristino, M. Ramirez, J.A. Carriço, PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods, BMC Bioinf. 13 (2012) 87.

[8] R.M. San Millán, I. Martínez-Ballestero, A. Rementeria, J. Garaiar, J. Bikandi, Online exercise for the design and simulation of PCR and PCR-RFLP experiments, BMC Res. Notes 6 (2013) 513.

[9] M. Imperi, M. Pataracchia, G. Alfalone, L. Baldassarri, G. Orefici, R. Creti, A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae, J. Microbiol. Methods 80 (2010) 212–214.