Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study

M. T. Khan\(^a\), A. Ali\(^b\), X. Wei\(^b\), T. Nadeem\(^c\), S. Muhammad\(^d\), A. G. Al-Sehemi\(^d\) and Dongqing Wei\(^e\,*\)

\(^a\)The University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
\(^b\)Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Microbial Metabolism, Shanghai, China
\(^c\)University of The Punjab, National Centre of Excellence in Molecular Biology, Lahore, Pakistan
\(^d\)Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
\(^e\)Peng Cheng Laboratory, Shenzhen, Guangdong, China

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most effective viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.

Keywords: Nigella sativa; main protease; thymoquinone; SARS-CoV-2.
2005; Liang, 2006; Gan et al., 2006; Xue et al., 2008; Pillaiyar et al., 2016) and its potential role. This viral protein acts on 11 positions along polyproteins. Human proteases do not share the cleavage specificity with NSP5 of SARS-CoV-2 (Lee et al., 2020, p. 2).

The substrate-binding sites residues 10–99 (Domains I) and 100–182 (Domain II) in picornavirus, are six-stranded antiparallel β-barrels while domain III (198–303) forming five helices, regulating the dimerization of Mpro (Shi and Song, 2006). Residues Cys145 and His41 form the catalytic site. The catalytic activity depends on the dimerization of the enzyme, as the N-finger interacts with Glu166 to facilitate the S1 pocket shape of the substrate-binding site (Anand et al., 2002). The residue T285 and I286 in Anand et al., 2002; El-Abhar et al., 2003; Khan et al., 2005) and anti-oxidant Vilar et al., 2008). Nigella sativa (Anand et al., 2002). The researchers around the world (Am and Hosseinzadeh, 2016) have confirmed the anti-cancer (Jain et al., 2020) leading to a threefold upsurge Mpro (Lim et al., 2014). Inhibitors may be useful to reduce the catalytic degree against these locations.

Phytocompounds have been found, effective against many viral targets (Raj and Varadvaj, 2016; Setlur et al., 2017; Ismail and Jusoh, 2017; Li et al., 2020; Khare et al., 2020). Among the plants, Nigella sativa (Black cumin) is an annual flowering plant under the family Ranunculaceae (Amin and Hosseinzadeh, 2016). Its fruit is in inflated capsule of seeds, native to North Africa, Southeast Asia, Southern Europe, Mediterranean and Middle Eastern region (Ahlaciti et al., 2014). N. Sativa seed is composed of some major components including 35.6–41.5% of fatty oil, fat (28.5%), proteins (26.7%), carbohydrates (24.9%) and several vitamins (A, B1, B2, B3, C) and minerals (Ca, K, Se, Cu, P, Zn, Fe) (Ahlaciti et al., 2014; Islam, 2016). The volatile oil of N. sativa seeds has saturated fatty acids including thymohydroquinone (THQ), dithymohydroquinone, carvacrol, thymoquinone (TQ), nigellone, thymol, α and β-pinene, d-citronellol, d-limonene, p-cymene volatile oil, t-anethole, longifoline and 4-terpineol (Enomoto et al., 2001). The medicinal characteristics focusing on various pharmacological efficacies of N. sativa seeds like: gastroprotective (El-Abhar et al., 2003), anti-oxidant (Hosseinzadeh et al., 2013), anti-cancer (Khan et al., 2011), anti-viral activity against cytomegalovirus have been reported in recent years. In some studies, the TQ was effective against avian influenza virus (H9N2 AIV) and cytomegalovirus infection in murine model I (Salem and Hossain, 2000; Umar et al., 2016). Nigella sativa extract prior decreases the coronavirus replication and significant reduction in coronavirus survival virus load inside cells. Recently, a am insilico study also proposed that thymoquinone (TQ) may interfere with ACE2 binding receptors, preventing virus entry.

In the drug discovery and their mechanism of action are important for better understanding the insight of the molecules. The molecular biologist desire to know that how a protein and small molecules works. An atomic level information is typically generating significant insight information of biomolecular interactions. The intermolecular interactions could be explored through the dynamic’s studies. Unfortunately, such kind of information is difficult to obtained through experimental approaches. An alternative to such approaches is computational molecular dynamics simulation (MD) of proteins and natural compounds to understand the atomic level mechanism underlined. The MD simulations are time efficient and may accurately predict how interact (Liu et al., 2018; Hollingsworth and Dror, 2018). These MD studies are useful to capture a variety of biomolecular interactions, including ligand binding, protein folding, and changes in proteins behavior over time.

Knowing the strength of MD simulations and the importance of pharmacological characteristics of N. sativa, we performed the current study on thymoquinone (TQ) against Mpro to analyze the behavior of target protein at molecular level and their molecular effect on the SARS-CoV-2 target proteins.

2. Methods

2.1. Protein preparation

The worldwide biomolecular structural information is being archived at Brookhaven National Laboratories, called Protein Data Bank (PDB) (Bernstein et al., 1977; Berman et al., 2000). The researchers around the world can easily retrieve the crystal structures of biomolecules. The crystal structure of COVID-19 Mpro (PDB ID: 6M03) was retrieved from PDB. Prior to further analysis, the structure was subjected to Preparation, using MOE (molecular operating environment) (Vilar et al., 2008). The partial charges and missing hydrogen were assigned. The thymoquinone (CID: 10281) was also prepared. Protein and ligand were docked and the complex was subjected to dynamics study.

2.2. Molecular Dynamics (MD) simulation

The molecular dynamics (MD) simulations in drug discovery capture the behavior of proteins in full molecular and atomic detail to an extent of fine temporal resolution (Liu et al., 2018; Hollingsworth and Dror, 2018). The Mpro and TQ docking complex were subjected to molecular dynamics (MD) simulation as described in our previous study using Amber package (Berendsen et al., 1995; Khan et al., 2020). Briefly, MD simulation was performed on docking complex with the ff14SB force field through Amber14 package (Salomon-Ferrer et al., 2013; Sun et al., 2014b, a). To solvate each system the TIP3P water model was applied while system was neutralized with counterions (Jorgensen et al., 1983). The system was energy minimized and conjugate gradient followed by heating up to 300K and 1 atm pressure to equilibrate the system. Temperature regulations was achieved with the Langevin thermostat while Particle Mesh Ewald algorithm was applied for long-range electrostatic interactions (Essmann et al., 1995; Darden et al., 1993). The MD simulation production step was carried with pmemd code 30 (Götz et al., 2012).

3. Results and Discussion

The current study shows that TQ may be effective against Mpro of SARS-CoV-2. The calculation of drug-likeness may help to understand the pharmacokinetic of a novel compound as well the pharmaceutical properties before its clinical application. The TQ drug likeness properties,
Inhibitory effect of thymoquinone against SARS-CoV-2 calculated through Swiss ADME, is also in accordance the drug likeness rule (Walters and Murcko, 2002; Daina et al., 2017). The drug likeness properties and absorption has been given in Table 1. The pharmacokinetics of TQ seems in accordance with desire drug like compound. Similarly, drug likeness properties also favor its clinical application (Brüstle et al., 2002; Vistoli et al., 2008; Ursu et al., 2011). The TQ docked against SARS-CoV-2 Mpro seems potent, altering the stability of protein. The RMSD of TQ and Mpro in Figure 1 shows stability. The Mpro is not stable in the whole simulation period which might be useful for effective inhibition of viral activity.

The RMSD graph during the 50ns simulation period shows that the Mpro exhibited an unstable fluctuation. The RMSD at the start (1.06Å) is rising to 2.9Å at 18ns simulations. A downfall fall in fluctuation was again observed to 1.4Å at the end of 50ns MD simulation. The RMSD of Mpro seems highly unstable due to TQ which may alter the stability of target, assisting in the inhibition of viral proteins. Flexibility is also one of the important thermodynamic properties, maintaining the optimal functions of proteins (Nagasundaram et al., 2015). A large change in this property may alter the biomolecules optimal function. The TQ may cause an increase in the flexibility of Mpro (Figure 2) which might be useful for better management of SARS-CoV-2 infections. The Mpro exhibited the RMSF among 5Å and 25Å at residues position 48 and 310 respectively. Residues at location 145 to 160 also attained a high RMSF (20.4Å) which contains the active site residue Cys145. MD simulations may explore the insight mechanisms of changes at the molecular level (Liu and Yao, 2010; Liu et al., 2018; He et al., 2018) which might be difficult through experimental work. Several studies reported that any change in protein function might be due the change in RMSF (Berhanu and Masunov, 2011; Chong et al., 2011; Bavi et al., 2016).

The degree of folding stability could be measured through Rg. Fluctuations in Rg with respect to time shows unstable folding while a straight value reveals stability in folding (Lobanov et al., 2008; Smilgies and Folta-Stogniew, 2015; Khan et al., 2019, 2021). A protein with misfolding shows variations in Rg over time (Figure 3). The plot shows large variations between 22Å and 22.8Å. Majority of the variations have been found from 811ps to 2026ps.

The degree of folding stability could be measured through Rg. Fluctuations in Rg with respect to time shows unstable folding while a straight value reveals stability in folding (Lobanov et al., 2008; Smilgies and Folta-Stogniew, 2015; Khan et al., 2019, 2021). A protein with misfolding shows variations in Rg over time (Figure 3). The plot shows large variations between 22Å and 22.8Å. Majority of the variations have been found from 811ps to 2026ps.

Table 1. Chemical properties of thymoquinone.

Thymoquinone	Pharmacokinetics
permeant to BBB	Yes
Absorption (GI)	High
Inhibitor of CYP2C19	No
Inhibitor of CYP1A2	No
Inhibitor of CYP2C9	No
Inhibitor of CYP2D6	No
CYP3A4 inhibitor	No
Drug likeness	Lipinski Yes (0 violations) Veber Yes
Physiochemical Properties	Formula C10H12O2
Molecular weight	164.20 g/mol
Heavy atoms	12
Rot: bonds	1
HB acceptors	2
HBdonors	0

*BBB = blood brain barrier; GI = gastrointestinal; Rot = rotatable; HB = hydrogen bond.

Figure 1. RMSD of TQ and Mpro during the 50ns MD simulation period. Stability seems fluctuating from 1.0612Å at 2ns and 2.94 Å at 18ns. Target stability seems unstable even at the end of simulation period.

Figure 2. Residue’s flexibility of TQ and Mpro complex during simulation. Flexibility is very high in last amino acid residues. This high flexibility may change the protein function, required for virus activity.

Figure 3. Radius of gyration TQ and SARS-CoV-2 Mpro complex. A constant Rg value is a measure of correct folding. Fluctuations in Rg shows that protein folding is not stable.
The lowest Rg was detected at 811ps (22Å) while the highest at 1216ps (22.8Å). This shows that the TQ may affect the folding of Mpro which might be important to inhibit the protein activity. The Rg plot of Mpro is not stable during the simulation period which shows the potential activity of TQ. Change in protein stability may be due to the alteration of thermodynamic property (Chen and Shen, 2009). This includes protein RMSD, fluctuations and also the protein folding. Destabilization in folding and thermodynamic stability may affect biomolecules function.

The TQ is fitting in the pocket, interacting with active site (C145, H41) (Figure 4), altering the catalytic activity of viral protein. The residues located in the binding pocket and its surrounding (T24, L27, H41, F140, C145, H163, M165, P168, and His172) are imported for a natural compound to interact with. The phytocompound TQ form a hydrogen bond with Glu166, facilitating the pocket shape of the substrate-binding site (Anand et al., 2002) and many hydrophobic interactions with active site (His41, Cys145) and its surrounding residues (Figure 5).

Figure 4. Thymoquinone and SARS-CoV-2 main protease interaction. (A) Docked thymoquinone. (B) Thymoquinone in binding Pocket. (C) Residues in the surrounding thymoquinone.

Figure 5. Mpro of SARS-CoV-2. (A) Domain organization. Active site residues have been shown. (B) Dimerization of two Mpro monomers and location of E166. (C) Impact of E166A mutation on the dynamics of Mpro. The mutant gain flexibility and show destabilizing effect (Rodrigues et al., 2018).
4. Conclusion

TQ shows good binding affinity with SARS-CoV-2 NSP5, interacting with active site residues and also with Glue166, maintaining the pocket shape for viral enzymatic activity. This phytomedicine alters the overall thermodynamics properties of SARS-CoV-2 Mpro which may useful for better management of COVID-19 in future. Further experimental validation is required to observe the TQ effect in vivo. The TQ may be used as therapeutic compound against SARS-CoV-2 after experimental confirmation.

Abbreviations

AIV: Avian influenza virus
COVID-19: Coronavirus disease-19
MOE: Molecular operating environment
Mpro: Main protease
MD: Molecular dynamics
NSP5: Non-structural protein 5
NPT: Number of moles, pressure, temperature
NVT: Number of moles, volume, temperature
RMSD: Root means square deviation
RMSF: Root means square fluctuation
Rg: Radius of gyration
SARS-CoV-2: Severe acute respiratory syndrome 2
TQ: Thymoquinone
PDB: Protein data bank
SPC: Simple point charge

Acknowledgements

The authors are thankful to the Institute of Research and Consulting Studies at King Khalid University for funding this research through grant number 2-N-20/22 and the support of the Research Center for Advanced Materials Science is highly acknowledged. Dong-Qing Wei is supported by grants from the National Science Foundation of China (Grant No. 32070662, 61832019, 32030063) the Key Research Area Grant 2016YFA0501703 of the Ministry of Science and Technology of China, the Science and Technology Commission of Shanghai Municipality (Grant No.: 19430750600), as well as SJTU JIRLMD Joint Research Fund and Joint Research Funds for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University (YG2021ZD02). The computations were partially performed at the Pengcheng Lab. and the Center for High-Performance Computing, Shanghai Jiao Tong University.

References

AHLATCI, A., KUZHAN, A., TAYSI, S., DEMIRTAS, O.C., ALKIS, H.E., TARAKCIIOGLU, M., DEMIRCI, A., CAGLAYAN, D., SARICEK, E. and CINAR, K., 2014. Radiation-modifying abilities of Nigella sativa and thymoquinone on radiation-induced nitrosative stress in the brain tissue. Phytomedicine, vol. 21, no. 5, pp. 740–744. http://dx.doi.org/10.1016/j.phymed.2013.10.023. PMid:24268807.

AMIN, B. and HOSSEINZADEH, H., 2016. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Medica, vol. 82, no. 1-2, pp. 8–16. http://dx.doi.org/10.1055/s-0035-1557838. PMid:26366755.

ANAND, K., PALM, G.J., MESTERS, J.R., SIDDELL, S.G., ZIEBUHR, J. and HILGENFELD, R., 2002. Structure of coronavirus main protease reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, vol. 21, no. 13, pp. 3213–3224. http://dx.doi.org/10.1093/emboj/cdf327. PMid:12093723.

ANAND, K., YANG, H., BARTLAM, M., RAO, Z. and HILGENFELD, R., 2005. Coronavirus main protease: target for antiviral drug therapy. In: A. SCHMIDT, O. WEBER and M.H. WOLF, eds. Coronaviruses with special emphasis on first insights concerning SARS. Basel: Birkhäuser Basel, pp. 173–199. http://dx.doi.org/10.1007/3-7643-7339-3_9.

BAVI, R., KUMAR, R., CHOI, L. and LEE, K.W., 2016. Exploration of novel inhibitors for Bruton’s tyrosine kinase by 3D QSAR modeling and molecular dynamics simulation. PLos One, vol. 11, no. 1, p. e0147190. http://dx.doi.org/10.1371/journal.pone.0147190. PMid:26784025.

BERENDSEN, H.J.C., VAN DER SPOEL, D. and VAN DRUNEN, R., 1995. GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, vol. 91, no. 1–3, pp. 43–56. http://dx.doi.org/10.1016/0010-4655(95)00042-E.

BERHANU, W.M. and MASUNOV, A.E., 2011. Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: structural stability and thermodynamic of association. Biopolymers, vol. 95, no. 9, pp. 573–590. http://dx.doi.org/10.1002/bip.21611. PMid:21384336.

BERMAN, H.M., WESTBROOK, J., FENG, Z., GILLILAND, G., BHAT, T.N., WEISSIG, H., SHINDALOV, I.N. and BOURNE, P.E., 2000. The Protein Data Bank. Nucleic Acids Research, vol. 28, no. 1, pp. 235–242. http://dx.doi.org/10.1093/nar/28.1.235. PMid:10592235.

BERNSTEIN, F.C., KOETZLE, T.F., WILLIAMS, G.J., MEYER JUNIOR, E.F., BRICE, M.D., RODGERS, J.R., KENNARD, O., SHIMANOUCHI, T. and TASUMI, M., 1977. The Protein Data Bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology, vol. 112, no. 3, pp. 535–542. http://dx.doi.org/10.1016/0022-2836(77)90200-3. PMid:875032.

BRÜSTLE, M., BECK, B., SCHINDLER, T., KING, W., MITCHELL, T. and CLARK, T., 2012. Descriptors, physical properties, and drug-likeness. Journal of Medicinal Chemistry, vol. 45, no. 16, pp. 3345–3355. http://dx.doi.org/10.1021/jm3011027. PMid:22190446.

CHEN, J. and SHEN, B., 2009. Computational analysis of amino acid mutation: a proteome wide perspective. Current Proteomics, vol. 6, no. 4, pp. 228–234. http://dx.doi.org/10.2174/15701640978973737.

CHONG, S.-H., LEE, C., KANG, G., PARK, M. and HAM, S., 2011. Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis. Journal of the American Chemical Society, vol. 133, no. 18, pp. 7075–7083. http://dx.doi.org/10.1021/ja1116233. PMid:21506781.

DAINA, A., MICHELIN, O. and ZOETE, V., 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, vol. 7, no. 1, p. 42717. http://dx.doi.org/10.1038/srep42717. PMid:28256516.

DARDEN, T., YORK, D. and PEDERSEN, L., 1993. Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, vol. 98, no. 12, pp. 10085–10092. http://dx.doi.org/10.1063/1.464397.
discovery using virtual screening and molecular docking studies. *Interdisciplinary Sciences, Computational Life Sciences*, vol. 8, no. 2, pp. 132-141. http://dx.doi.org/10.1007/s12539-015-0109-8. PMid:26286008.

RODRIGUES, C.H., PIRES, D.E. and ASCHER, D.B., 2018. DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. *Nucleic Acids Research*, vol. 46, no. W1, pp. W350-W355. http://dx.doi.org/10.1093/nar/gky300. PMid:29718330.

SALEM, M.L. and HOSSAIN, M.S., 2000. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. *International Journal of Immunopharmacology*, vol. 22, no. 9, pp. 729-740. http://dx.doi.org/10.1016/S0192-4658(00)00036-9. PMid:10884593.

SALOMON-FERRER, R., CASE, D.A. and WALKER, R.C., 2013. An overview of the Amber biomolecular simulation package. *WIREs Computational Molecular Science*, vol. 3, no. 2, pp. 198-210. http://dx.doi.org/10.1002/wcms.1121.

SETLUR, A.S., NAIK, S.Y. and SKARIYACHAN, S., 2017. Herbal lead as ideal bioactive compounds against probable drug targets of ebola virus in comparison with known chemical analogue: a computational drug discovery perspective. *Interdisciplinary Sciences, Computational Life Sciences*, vol. 9, no. 2, pp. 254-277. http://dx.doi.org/10.1007/s12539-016-0419-8. PMid:26857866.

SHI, J. and SONG, J., 2006. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. *The FASEB Journal*, vol. 20, no. 5, pp. 1035-1045. http://dx.doi.org/10.1111/j.1742-4658.2006.05130.x. PMid:16478476.

SMLIGIES, D.-M. and FOLTA-STOGNIEW, E., 2015. Molecular weight-gyration radius relation of globular proteins: a comparison of light scattering, small-angle X-ray scattering and structure-based data. *Journal of Applied Crystallography*, vol. 48, pp. 1604-1606. http://dx.doi.org/10.1017/s1600576715015551. PMid:26500468.

SUN, H., LI, Y., SHEN, M., TIAN, S., XU, L., PAN, P., GUAN, Y. and HOU, T., 2014a. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. *Physical Chemistry Chemical Physics*, vol. 16, no. 40, pp. 22035-22045. http://dx.doi.org/10.1039/C4CP03179B. PMid:25205360.

SUN, H., LI, Y., TIAN, S., XU, L. and HOU, T., 2014b. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. *Physical Chemistry Chemical Physics*, vol. 16, no. 31, pp. 16719-16729. http://dx.doi.org/10.1039/C4CP01388C. PMid:24999761.

UMAR, S., MUNIR, M.T., SUBHAN, S., AZAM, T., NISA, Q., KHAN, M.I., UMAR, W., REHMAN, Z., SAQIB, A.S. and SHAH, M.A., 2016. Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. *Journal of the Saudi Society of Agricultural Sciences*. http://dx.doi.org/10.1016/j.jssas.2016.09.004. In press.

URSU, O., RAYAN, A., GOLDBLUM, A. and OPREA, T.I., 2011. Understanding drug-likeness. *WIREs Computational Molecular Science*, vol. 1, no. 5, pp. 760-781. http://dx.doi.org/10.1002/wcms.52.

VILAR, S., COZZA, G. and MORO, S., 2008. Medicinal chemistry and the Molecular Operating Environment (MOE): application of QSAR and molecular docking to drug discovery. *Current Topics in Medicinal Chemistry*, vol. 8, no. 18, pp. 1555-1572. http://dx.doi.org/10.2174/156802608786786624. PMid:19075767.

VISTOLI, G., PEDRETTI, A. and TESTA, B., 2008. Assessing drug-likeness – what are we missing? *Drug Discovery Today*, vol. 13, no. 7-8, pp. 285-294. http://dx.doi.org/10.1016/j.drudis.2007.11.007. PMid:18405840.

WALTERS, W.P. and MURCKO, M.A., 2002. Prediction of ‘drug-likeness’. *Advanced Drug Delivery Reviews*, vol. 54, no. 3, pp. 255-271. http://dx.doi.org/10.1016/S0169-409X(02)00003-0. PMid:11922947.

XUE, X., YU, H., YANG, H., XUE, F., WU, Z., SHEN, W., LI, J., ZHOU, Z., DING, Y., ZHAO, Q., ZHANG, X.C., LIAO, M., BARTLAM, M. and RAO, Z., 2008. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. *Journal of Virology*, vol. 82, no. 5, pp. 2515-2527. http://dx.doi.org/10.1128/JVI.02114-07. PMid:18094151.

ZHANG, L., LIN, D., SUN, X., CURTH, U., DROSTEN, C., SAUERHERING, L., BECKER, S., ROX, K. and HILGENFELD, R., 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. *Science*, vol. 368, no. 6489, pp. 409-412. http://dx.doi.org/10.1126/science.abb3405. PMid:32198291.