Potential roles of gut microbes in biotransformation of natural products: An overview

Yucui Zhao1,2,3, Xinqin Zhong1,2,3, Junyuan Yan1,2,3, Congying Sun1,2,3, Xin Zhao1,3* and Xiaoying Wang1,2,3

1Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 3State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China

Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.

KEYWORDS
natural products, gut microbes, enzyme system, biotransformation, bioavailability

Introduction

The gut microbiota is composed of 1,000–1,250 kinds of bacteria that interact with humans in various forms, such as symbiosis and parasitism, and this interaction greatly affects human health via microbial metabolites as signal molecules (Liu et al., 2017; de Vos et al., 2022). The gut microbes constitute a dynamic and diversified micro-ecosystem, which is a natural barrier to resisting pathogenic bacteria (Chopyk and Grakoui, 2020; Zhao and Maynard, 2022). Gut microbes have abundant enzyme systems, including glucosidase, reductase, lyase, transferase, etc., and greatly expand the metabolic response pool in the human body (Wilson and Nicholson, 2017; Fushinobu and Abou Hachem, 2021).
Natural products are small molecules produced naturally by any organism including primary and secondary metabolites. This article mainly describes natural products of plant origin, including nutrients and drugs. They easily interact with gut microbiota because of their complex components and long residence time in the gut. Generally, the residence time for exogenous substances is 1–6 h in the small intestine and 1–3 days in the colon (Chu and Traverso, 2022). Specific gut microbes decompose and transform natural products to produce rich metabolites and functional compounds with physiological activities that cannot be synthesized by the host itself (Koppel et al., 2017; Xie et al., 2020). Microbial transformation in natural products usually refers to the chemical reactions that are used to modify the structure of natural products substrates, such as hydrolysis, methylation, demethylation, redox, and cyclization reaction (Morgan et al., 2022; Rocchetti et al., 2022). Gut microbiota remarkably affects the chemical modification, pharmacological activity, and metabolic mechanism of natural products. The potential utility of gut microbes for large-scale synthesis of active metabolites and production of compounds has not been investigated. Studying these gut microbes, metabolites, and the reactions involved in the interactions between natural products and gut microbiota is of great significance in the exploration of the pharmacological mechanisms and utilization of natural products. In this review, we introduce the resident gut microbes that contribute to the transformation of natural products and summarize the transformation pathways between natural products and specific microbes classified by the reactions. Moreover, the advantages, research methods, and future directions of gut microbial in the conversion of natural products are discussed to provide a theoretical basis for the modern application of natural products and the precise treatment through gut microbiota.

Key gut microbes in the biotransformation of natural products

Oral administration is the preferred route for drug delivery, and oral drugs account for 84% of the top 50 best-selling drugs in the US and European markets (Lennernäs and Abrahamsson, 2005; Vinarov et al., 2021). In recent years, the influence of gut microbiota on the stability of oral administration of natural products has received much attention. The intestinal tract has abundant bacteria that help with normal digestive function, in which about 98% of gut microbes in healthy subjects can be classified into four phyla, Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria (Manor et al., 2020; Ye et al., 2021; de Vos et al., 2022). Some gut microbes such as Escherichia coli, Bifidobacterium, Eubacterium, Lactobacillus, Bacteroides, and Streptococcus participate in the biotransformation of natural products, and part of their metabolites are conducive to intestinal absorption and play a notable pharmacological role (Al-Ishaq et al., 2021; Augusti et al., 2021; Figure 1).

Escherichia coli

Escherichia coli is a Gram-negative, spore-free, facultative anaerobic bacterium, which mainly inhabits the intestines of vertebrates (Foster-Nyarko and Fallon, 2022). Part of E. coli

1 https://www.nature.com/subjects/natural-products

Abbreviations: DHC, dihydrocurcumin; THC, tetrahydrocurcumin; CurA, NADPH-dependent curcumin/dihydrocurcumin reductase; CHA, chlorogenic acid; CA, caffeic acid; GL, glycyrrhizin; 18β-GA, 18β-glycyrrhetinic acid; PM-I, paeonolmetabolin-I; GAMG, 18β-glycyrrhetinic acid-3-O-β-D-glucuronic acid; SGG, Streptococcus gallolyticus subsp. Galloyticus; DDAs, diester diterpenoid alkaloids; MDAs, monoester diterpene alkaloids; DHENL, (-)-dihydroxyenterolactone; 3′-DMAG, 3′-desmethylarctigenin; BBR, Berberine; dhBBR, dihydroberberine; DMC, demethoxycurcumin; bDMC, bis-demethoxycurcumin; CK, compound K; UA, Urolitin A.
can produce glycosidase to participate in the transformation of exogenous substances, resulting in its beneficial role (Rodríguez-Daza et al., 2021; Candeliere et al., 2022). For example, *E. coli* HGU-3 produces β-glucuronidase to hydrolyze the O-glycosidic bond in baicalin to yield baicalein (Han et al., 2016; Li D. et al., 2019). Feruloyl esterases from *B. animalis*, *L. reuteri*, *L. helveticus*, and *L. fermentum* catalyzes hydrolysis of chlorogenic acid into caffeic acid (Raimondi et al., 2015; Pang et al., 2016; Aguirre Santos et al., 2018). β-glucosidase of *Eubacterium* L-8 and Streptococcus L2-22 catalyzes hydrolysis of glycyrrhizin to 18β-glucorhyzic acid (Kim et al., 1999; Chen B. et al., 2021). α-L-rhamnosidase from Bacteroides sp. 45 catalyzes hydrolysis of rutin to quercetin 3-O-glucoside (Riva et al., 2020). O-Methyltransferase from Blautia sp. MRG-PMF1 catalyzes the demethylation of curcumin to demethoxycurcumin (Burapan et al., 2017a,b). Created with BioRender.com.

Bifidobacterium

Bifidobacterium is a widespread and abundant genus belonging to the phylum Actinobacteria and is among the first colonizers of gut microbiota for humans (Satti et al., 2021; He et al., 2022). The most common *Bifidobacterium* in the human gut include *B. adolescentis*, *B. longum*, *B. breve*, *B. catenulatum*, *B. dentium*, *B. longum*, *B. pseudocatenulatum*, and *B. pseudolongum* (Turroni et al., 2008; Hidalgo-Cantabrana et al., 2017), accounting for <10% of the adult human microbiome, but they are linked to host health (Turroni et al., 2008). Certain species of *Bifidobacterium* can generate phenolic acids by expressing feruloyl esterase. For example, the feruloyl esterase of *B. animalis* can hydrolyze chlorogenic acid (CHA) into caffeic acid (CAA);
CAAs (10–30 mg/kg) can prevent acetaminophen-induced acute liver injury in mice by increasing Nrf2 transcription (Raimondi et al., 2015; Pang et al., 2016). The participation of partial Bifidobacterium promotes the metabolism of flavanones, glycosides, and saponins in the gut. β-glucosidase and demethylase in B. longum R0175 promote 3-(3′-hydroxyphenyl) propionic acid and 3-(phenyl) propionic acid production from hesperidin through ring-cleavage and demethylation (Pereira-Caro et al., 2018). B. longum SBT2928 hydrolyzes six major human and two animal bile salts (Tánaka et al., 2000). Thus, Bifidobacterium may regulate bile acid metabolism and reduce cholesterol levels in vivo. In addition, B. breve ATCC 15700 produces β-glucosidase to cleave glycoside at the C-3 and C-20 positions of ginsenoside Rd. to generate deglycosylated ginsenoside compound K (Zhong et al., 2016; Zhang R. et al., 2019). These metabolic characteristics make Bifidobacterium a prime candidate for the development of symbiosis to make natural products potentially beneficial.

Eubacterium

The genus of Eubacterium strains is Gram-positive, which forms one of the core genera of the human gut microbiota and shows widespread colonization of the human gut (Mukherjee et al., 2020). Some Eubacterium species produce glycosidase, reductase, etc., and participate in the metabolism of exogenous substances (Zhang J. et al., 2019; Ellenbogen et al., 2021). E. ramulus is one of the most widely studied flavonoid-degrading gut bacteria, and it is prevalent in the human intestine. Chalcone isomerase and flavanone-/flavanolol-cleaving reductase from E. ramulus degrade certain flavonoids to produce chalcone, and dihydrochalcone (Gall et al., 2014). Dihydrochalcone and its metabolites have anti-inflammatory and antioxidant effects, which can down-regulate the secretion of pro-inflammatory cytokines in RAW 264.7 and rescue LPS-induced oxidative phosphorylation (Choi et al., 2021). Braune et al. investigated the degradation of flavonol quercetin and flavone luteolin by E. ramulus strain wK1 and found that resting cells and enzyme preparations convert these flavonoids into 3, 4-dihydroxyphenylacetic acid, and 3-(3, 4-dihydroxyphenyl) propionic acid via the reduction of 2, 3-position double bonds and subsequent ring fission (Braune et al., 2001). Phloretin hydrolase from E. ramulus strain wK1 hydrolytically cleaves the C-C bond, which is adjacent to the aromatic A-ring of phloretin to 3-(4-hydroxyphenyl)-propionic acid and chlorogluconol (Schoefer et al., 2004; Braune et al., 2019). E. cellulolytica ATCC 43171 may contribute to the deglycosylation of flavonoid O- and C-glycosides (luteolin 6-C-glucoside and apigenin 6-C-glucoside) through the fermentation of the liberated glucose portion. The deglycosylation of C-glycosides is exclusively catalyzed by bacterial enzymes (Braune and Blaut, 2012; Braune et al., 2016). Eubacterium L-8 hydrolyzed terpenoid glycyrrhizin (GL) to 18β-glycyrrhetinic acid (18β-GA; Kim et al., 2000). 18β-GA prevents OVA-induced airway allergic inflammation by inhibiting NF-κB phosphorylation and enhancing the Nrf2/HO-1 pathway (Liu et al., 2022). These metabolic transformations provide more information about the diverse array of benefits that humans derive from Eubacterium spp. However, further in vivo studies are necessary to maximize the potential benefits the Eubacterium genus has to offer.

Lactobacillus

The genus Lactobacillus belongs to the phylum Firmicutes, which can balance the micro-community and protect gastrointestinal mucosa (Dempsey and Corr, 2022). Some Lactobacillus species are rich in metabolic enzymes, such as α-rhamnosidas, tannase, galate decarboxylases, etc. and they transform exogenous substances (Reverón et al., 2017; Li B.C. et al., 2019; Ferreira-Lazarte et al., 2021). L. rhamnosus NCTC 10302, which has both β-glucosidase and α-rhamnosidase activities, converts hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside to their respective aglycones and 3-(phenyl) propionic acid by hydrolysis, ring fission, and dehydroxylation (Pereira-Caro et al., 2018). L. plantarum expresses tannase to hydrolyze galate, protocatechuate esters with a short aliphatic alcohol substituent, and complex galactannins to produce gallic acid (Jiménez et al., 2014). Gallic acid (11.5–46 μg/ml) plays a protective role in LPS-induced inflammation and oxidative stress by inhibiting the MAPK/NF-κB pathway and activating the Akt/AMPK/Nrf2 pathway (Tánaka et al., 2018). Fang et al. observed that gallic acid and pyrogallol are produced by the degradation of galactannins by galactannin-metabolizing enzymes in L. plantarum WCFS1. This study implies the potential role of prebiotic-probiotic interactions in the prevention of diet-induced metabolic disorders (Reverón et al., 2015; Fang et al., 2019). Daidzein is reduced to dihydrodaidzein by Lactobacillus sp. Niu-O16 with daidzein reductase activity (Wang et al., 2007; Heng et al., 2019). Dihydrodaidzein (2.5–5 μM) inhibits NF-κB activation and MAPK phosphorylation, thereby improving osteoporosis (Kim et al., 2019). L. casei, L. plantarum, and L. acidophilus highly influence the deglycosylation of piceicid to resveratrol (Basholli-Salihu et al., 2016). This conversion is important for increasing the bioavailability and bioactivity of piceicid. Feruloyl esters from L. reuteri, L. helveticus, and L. fermentum hydrolyze chlorogenic acid to release caffeic acid (Aguirre Santos et al., 2018). These findings open a new perspective on the role of Lactobacillus in health-promoting pharmaceutical and food product applications. However, the underlying transformation mechanism deserves further study.

Bacteroides

Members of the genus Bacteroides are Gram-negative obligate anaerobes, which account for 25% of the total bacteria in the colon and play multiple roles in the human gut bacteriome (Zafar and...
Saier, 2021). Bacteroides species such as B. fragilis, B. distasonis, B. ovatus, and B. thetaiotaomicron are commonly detected in the clinic (Wexler, 2007). Bacteroidetes spp. possesses a series of hydrolases and participates in inter-species cross-feeding relationships with their microbial neighbors by converting foreign substances (Sonnenburg et al., 2004; Zafar and Saier, 2021). In vitro co-incubation experiments showed that certain Bacteroides species are involved in the biotransformation of flavonoids. Bacteroides sp. 45 expresses α-L-rhamnosidase and β-rutinosidase for the hydrolysis of rutin into quercetin 3-O-glucoside, quercetin, and leucocyanidin (Yang et al., 2012; Riva et al., 2020; Ferreira-Lazarte et al., 2021). Quercetin 3-O-glucoside is better absorbed than other forms of quercetin and can suppress the inflammatory response in mice with TNBS-induced colitis via the inhibition of the NF-κB and MAPK signaling pathways (Zhang D. et al., 2019). Bacteroides sp. 54 metabolizes quercitrin to hydroxyquercitrin and desmethylquercitrin. Quercitrin is also degraded to quercetin by α-L-rhamnosidase and undergoes further ring-cleavage to yield 3,4-dihydroxybenzoic acid by Bacteroides sp. 45 (Jiang et al., 2014). β-glucuronidase, which is expressed by Bacteroidetes J-37, metabolizes GL to 18β-GA (Kim et al., 1999; Guo et al., 2018). Based on the review of existing studies, natural products are biotransformed under the action of Bacteroidetes to produce metabolites with different functional activities. It is important to understand the whole process of natural products occurring in the body to assess the effect on human health.

Streptococcus

The Streptococcus species are Gram-positive, spherical, or ovoid cells, which are usually arranged in chains or pairs and widely exist in human feces and nasopharynx (Lannes-Costa et al., 2021). Meta-transcriptomic analysis indicates that the phosphotransferase system is majorly expressed by Streptococcus, suggesting that these bacteria are the main utilizers of the available carbohydrates in the small intestinal (Zoetendal et al., 2012). Streptococcus LJ-22 expresses β-glucuronidase to metabolize GL to 18β-glycyrrhetinic acid-3-O-β-D-glucuronic acid (GAMG; Kim et al., 2000; Park et al., 2004; Guo et al., 2018). GAMG has anti-inflammatory activity against LPS-induced RAW264.7 cells with IC50 value of 0.28 mM (Park et al., 2004). In addition, tannic acid is degraded by tannase of Streptococcus galolyticus subsp. Galloyticus (SGG) to produce pyrogallol. SGG may contribute to the development of colorectal cancer by eliminating the toxicity of tannic acid to tumor cells (Oehmcke-Hecht et al., 2020). Therefore, further in vivo studies are necessary to determine whether the elimination of these tannic acid-degrading microbes can support the effective treatment of colorectal cancer. S. thermophilus GIM 1.321 has a high production capacity of β-glucosidase for the degradation of fructus anthocyanins into CHA, CAA, and ferulic acid (Cheng J.R. et al., 2016). The administration of CAA and CHA (10/15 mg/kg/day) can lower blood pressure and exert an anti-oxidant effect (Agunloye et al., 2019). Streptococcus strains might be a commensal, pathogenic, and opportunistic pathogen in the gut, and more information is needed about its effect on human health. A better understanding of how Streptococcus metabolizes natural products may allow the regulation of the gut microbiome to improve therapeutic efficacy.

Blautia

Blautia species are strictly anaerobic, nonmotile, usually spherical or oval, and widely found in the gut and feces of mammals (Liu X. et al., 2021). There is increasing evidence for the probiotic properties of Blautia on the biotransformation of natural products (Tremaroli and Bäckhed, 2012). In the course of flavonoid biotransformation, the reactions catalyzed by Blautia include demethylation, O- and C- de glucosylation, and C-ring cleavage (Braune and Blaut, 2016), which may be catalyzed by the corresponding enzymes, such as O-glycosidase and β-glucosidases (Braune et al., 2016). Research indicates that the strain Blautia sp. MRG-PMF1 has a hydrolytic ability on aryl methyl ether functional groups by converting 5,7-dimethoxyflavone and 5,7,4-trimethoxyflavone into bioactive chrysin and apigenin, respectively. Blautia sp. MRG-PMF1 also possesses de glycosylation activity, and various isoflavones, flavones, and flavones were found to be metabolized into the corresponding aglycones (Kim et al., 2014). Besides, under anaerobic conditions, Blautia sp. MRG-PMF1 strain metabolizes icariin further to demethylcaritin with estrogenic effects (Wu et al., 2016). The strain can also catalyze curcumin to produce demethoxycurcumin with anti-inflammatory and anti-cancer properties (Burapan et al., 2017a; Hatamipour et al., 2019). In addition, Blautia sp. AUH-JLD56 is capable of solely biotransforming arctiin or arctigenin into demethylated products with better antioxidant capacity (Liu et al., 2013). Recently, a growing academic interest has been witnessed in the biotransformation and metabolism of herbal plants and functional foods by Blautia. Exploring the biotransformation of Blautia is of great significance for the development of new enzymes and bioactive metabolites (Meng et al., 2020).

Key transformation types involved in natural products microbial metabolism

Complex microbial enzymes catalyze the metabolism of natural products in the gut, resulting in lipophilic and low-molecule-weight metabolites conducive to host utilization/excretion (Weersma et al., 2020). Unlike human genetics, the gut microbiome is modifiable in terms of characteristics, making it a potential therapeutic target to optimize therapy. After oral natural products enter the digestive tract, they will first come into contact with a large number of gut microbes and the active enzymes produced by them. Therefore, natural products’ gut
bistaturation may occur before the first-pass effect through the liver (Xie et al., 2020). Natural products can be modified/deconjugated by the gut microbiome, and can also be transported to the liver to modify/bind and then excreted into the gut to react with gut microbes to form a series of metabolites (Koppel et al., 2017). The metabolites transformed by the host-microbial co-metabolic system may be functionally novel and not clearly defined. Therefore, the combination of specific strains, specific metabolic pathways, and specific enzymes associated with health/disease is important for the determination of the effect of gut microbes on the host.

Hydrolysis

Certain natural products have high molecular weight and low lipid solubility, and they are difficult to be absorbed by the body in the intestine and have low bioavailability (Hostetler et al., 2017). Through gut microbes-mediated hydrolysis, their physical properties are changed, and their biological activity and bioavailability are greatly improved (Wu and Tan, 2019). Slámová et al. indicated that most glycosides have low activity and are considered “natural prodrugs” (Slámová et al., 2018). After interacting with gut microbes, the sugar groups of glycosides are removed, and then, the aglycone portion is absorbed by intestinal cells to exert physiological effects (Wilson and Nicholson, 2017; Murota et al., 2018). The hydrolysis reaction is required for further transformation, and the products (e.g., sugars) participate in promoting the growth and survival of gut microorganisms (Theilmann et al., 2017). Figure 2 shows the hydrolysis reaction of partial natural products under the action of gut microbes.

Flavonoids

Flavonoids are natural phenolic compounds found abundantly in fruits and vegetables. Gut microbes may be partly responsible for the efficacy of flavonoids (glycoside forms), which have low bioavailability because of the presence of water-soluble sugar components (Murota et al., 2018; Al-Ishaq et al., 2021). Flavanoids with 3-hydroxyflavone base (3-hydroxy-2-phenylchromen-4-one) and planar ring system constitute a significant class of flavonoids. In the study of Du et al.,isorhamnetin-3-O-neohesperidoside was first deglycosylated to isorhamnetin-3-O-glucoside and subsequently to the aglycone isorhamnetin by Escherichia sp. 23 (Du et al., 2017). The gut microbes and derived enzymes (lactase phlorizin hydrolyase) jointly controlled the metabolism of epimedium koreanum nakai-prenylated flavonoids as determined by in vitro assays. In the present study, gut enzymes metabolized flavonoids faster than gut microbes (Zhou et al., 2013). Wu et al. found that α-L-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 could hydrolyze the α-1.2 glycosidic bond of epimedin C to produce icariside (Wu et al., 2018). β-xilosidase Dt-2,286, which is derived from Dictyoglomus turgidum, is highly active in hydrolyzing xylene and glucose groups in epimedium B to obtain baohuoside I and sagittatose B (Tong et al., 2021). Flavanones have a 2,3-dihydro-2-phenylchromen-4-one structure. Hesperidin is converted to its active form hesperetin by α-L-rhamnosidase, which is expressed by B. pseudocatenulatum (Mas-Capdevila et al., 2020). Isoflavones are mainly found in legumes. B. breve MCC1274 possesses the highest β-glucosidase activity for the conversion of daidzin to daidzein (Yao et al., 2019). The anthocyanin cyanidin 3-glucoside is converted to cyanidin by E. ramulus and Clostridium saccharogumia (Hanske et al., 2013). Human gut enzymes such as β-glucuronidase play a key role in the hydrolysis of wogonoside to its aglycone form wogonin (Xing et al., 2014). Theasinensin A, a bioactive catechin dimer found in black tea, is degalloylated to yield theasinensin C by human fecal microbiota (Liu Z. et al., 2021). In the present study, we observed the metabolic differences in flavane-3-ols, and the results suggest that steric hindrance may limit the degradation of partial flavane-3-ols C-ring by bacterial enzymes during gut microbial fermentation. Many other flavonoids can also undergo hydrolysis reactions under the action of gut microbes, as shown in Table 1. Notably, considering the structural differences of flavonoids, the degree of degradation of flavonoids by gut microbes varies greatly, thus affecting their bioaccessibility. Further efforts are required to investigate the role of gut metabolism in the bioavailability and absorption of flavonoids and the possible bacteria-flavonoid interaction activities.

Terpenoids

Terpenoids are the largest class of natural products with anticancer, anti-inflammatory, and neuroprotective effects (Agatonovic-Kustrin et al., 2020; El-Baba et al., 2021). Part of terpenoids can also be hydrolyzed by gut microbes. Geniposide produces genipin with the action of β-glucosidase expressed by Eubacterium sp. A-44 (Ako et al., 1994; Jiang et al., 2016). Paenoniflorin is transformed into PM-I under the action of β-glucosidase, which is expressed by L. brevis and B. fragilis (Abdel-Hafez et al., 1999; He et al., 2007). By incubating with rat anaerobic gut microbiota, paenoniflorin is also deglucosed and dephenyled into albiflorin and acyl albiflorin with a small molecular weight (Ke et al., 2016). Peng et al. demonstrated that several Bifidobacteria species with esterase can hydrolyze albiflorin to benzoic acid in vitro (Peng et al., 2022). In vitro study shows that asiasic acid is gradually deglycosylated by glycoside bond hydrolyase and produces corresponding aglycones (Weng et al., 2006). Saikosaponin B1 is gradually hydrolyzed to prosaikogenin and saikogenin A under the action of β-glucosidase and β-D-fucosidase, which are expressed by Eubacterium sp. A-44 (Kida et al., 1998). Except for the compounds mentioned above, terpenoids ginsenoside Rh2 (Guo et al., 2019), aridipusillosides I (Cao et al., 2015), mogroside III (Yang et al., 2007), and pedunculoside (Wu et al., 2019) can also undergo hydrolysis reactions under the action of gut microbes (Table 1). Therefore, gut microbes play an important role in terpenoid metabolism, and
the effects of their metabolites on gut microbiome and human health need to be further studied.

Other compounds

Ellagitannins, which have a very low bioavailability perform a pharmacological role only when it is hydrolyzed into derivatives such as ellagic acid and urolithis under the action of tannase from
Gordonibacter urolithinfaciens, *Gordonibacter pamelaeae*, and *Ellagibacter isourolithinifaciens* (Beltrán et al., 2018; García-Villalba et al., 2020; Tang et al., 2021). The anthraquinone glycosides extracted from rhubarb are hydrolyzed into anthraquinone aglycones by gut microbes (Li Q. et al., 2020). Sennoside A, a major component of rhubarb extract, is metabolized into rhein anthrone by β-glucosidase of *Bifidobacterium* sp. strain SEN (Matsumoto et al., 2012; Kon et al., 2014). Under the action of carboxylesterase (CEs), which are expressed by gut microbes, diester diterpenoid alkaloids (DDAs, such as aconitine) hydrolyze the ester bonds of C-8 and C-14 to produce monoester diterpene alkaloids (MDAs, such as hypaconitine), which are less toxic (Zhang et al., 2015). *Pulsatilla Chinensis* is commonly used in Asia, and its major saponin anemoside B4 can be degraded by gut microbes to produce deglycosylation products (Wan et al., 2017). Table 1 shows that the alkaloids scopolamine (Wu et al., 2019), steroid compound pulsatilla saponin D (Yan et al., 2018), and cycasin (Goldin, 1990) undergo hydrolysis reactions under the action of gut microbes. The hydrolysis reaction is an important step in the metabolism of natural products by gut microbes and is required for the expression of biological activity and further biotransformation. The specific microorganisms and enzymes involved in this reaction should be focused on to fully understand the ultimate fate of natural products and their impact on human health and provide a basis for personalized treatment.

Methylation and demethylation

Gut microbes can express transferases and move functional groups between the two substrates through nucleophilic substitution reactions (Koppel et al., 2017). The addition of methyl...
Classification	Gut microbiota	Enzyme	Substrate	End-product	Changes	Ref.
Flavonoid glycosides	*E. coli* HGU-3; *L. brevis* RO1	β-glucuronidase	Baicalin; oroxylin A	Bioavailability↑ anti-inflammation↑	Yim et al. (2004), Trinh et al. (2010) and Han et al. (2016)	
	E. coli ATCC 43171	β-glucosidase	Luteolin 7-O-glucoside; apigenin 7-O-glucoside	Bioavailability↑	Braune and Blaut (2012) and Braune et al. (2016)	
	E. coli ATCC 43171	NA	Luteolin 6-C-glucoside; apigenin 6-C-glucoside	Bioavailability↑	Braune and Blaut (2012) and Braune et al. (2016)	
	Human gut microbes	β-glucuronidase	Wogonoside	Bioavailability↑ anti-inflammation↑	Xing et al. (2014)	
	Bacteroides JV-6; *Fusobacterium*	β-glucosidase	Rutin	Anti-oxidant↑	Riva et al. (2020) and Ferreira-Lazarte et al. (2021)	
	E. coli sp. 23	β-glucosidase	isorhamnetin-3-O-neohesperidoside	Bioavailability↑ anti-inflammation↑	Du et al. (2017)	
	Rat gut microbes; *B. thetaiotaomicron* VPI-5482	β-glucosidase	Epimedin A, B, C	Anti-osteoporosis↑	Cui et al. (2013), Cui et al. (2014) and Wu et al. (2018)	
	Dictyoglomus turgidum	β-xyllosidase Dt-2,286	Epimedium B	Anti-osteoporosis↑	Tong et al. (2021)	
	B. animalis subsp. *lactis* AD011	β-glucosidase	Kaempferol-3-O-sophoroside	Anti-aging↑	Shimojo et al. (2018)	
	Lactobacillus paracasei A221	β-glucosidase	Astilbin	Cardiovascular protection↑ anti-tumor↑ anti-inflammatory↑	Zhao et al. (2014) and Zhao et al. (2021)	
	Enterococcus sp. 8B, 8-2,9-2	β-glucosidase	Taxifolin	Anti-tumor↑	Youn et al. (2012)	
	Human gut microbes; *B. pseudocatenulatum*	α-L-rhamnosidase; β-glucosidase	Hesperidin	Anti-oxidant ↑ anti-inflammatory ↑	Mas-Capdevila et al. (2020)	
	Rat gut microbes	β-glucosidase	Calycosin-7-O-β-D-glucoside	Neuroprotection↑ anti-oxidant ↑	Ruan et al. (2015)	
	E. ramulus; *B. breve* MCC1274	β-glucosidase	Daidzin	Neuroprotection↑	Mace et al. (2019) and Yao et al. (2019)	
	Dorea species PUE	C-deglycosylation enzymes (DgpB-C)	3″-oxo-puerarin	Bioavailability↑	Nakamura et al. (2020)	
	E. ramulus; *Clostridium saccharogumia*	β-glucosidase	Cyanidin 3-glucoside	Bioavailability↑	Hanske et al. (2013)	
	Human gut microbes	C-C glucosyl-cleaving enzyme	Thaseminens A	Bioavailability↑	Liu Z. et al. (2021)	
	Bacillus sp. KM7-1; *Bacteroides* sp. MANG	β-glucosidase	Mangiferin	Anti-cancer ↑ anti-diabetes↑	Hasanah et al. (2021)	

(Continued)
Classification	Gut microbiota	Enzyme	Substrate	End-product	Changes	Ref.
Terpenoids	Eubacterium, sp. A-44	β-glucosidase, carboxylesterases	Geniposide	Genipin; geniposidic acid	Bile secretion† anti-hepatitis†	Akao et al. (1994), Jang et al. (2016) and Tian et al. (2013)
B. fragilis, L. brevis, rat gut microbes	β-glucosidase	Paeoniflorin	PM-I; albiflorin and its aglycone; Deacetyl-paeonifloridin	Anti-convulsant† Bioavailability†	He et al. (2007) and Ke et al. (2016)	
Rat gut microbes	Glycoside hydrolases	Asiaticoside	Corresponding aglycones	Bioavailability†	Weng et al. (2006)	
Eubacterium sp. A-44	β-glucosidase; β-D-fucosidase	Saikosaponin B1	Prosaka genin; sakogenin A	Anti-inflammatory† Anti-oxidant†	Kida et al. (1998)	
Eubacterium L-8; Bacteroidetes L-37; Streptococcus LJ-22	β-glucuronidase	GL	18β-GA; GAMG	Anti-platelet aggregation† anti-allergic† anti-tumor† anti-bacterial†	Kim et al. (1999), Kim et al. (2000), Park et al. (2004) and Guo et al. (2018)	
Eubacterium sp. A-44; B. breve ATCC 15700	β-glucosidase	Ginsenoside Rh2	Ginsenoside F3 compound K	Bioavailability†	Zhong et al. (2016), Zhang R. et al. (2019) and Kim (2018)	
B. breve; B. longum	Esterases	Albiflorin	Benzoic acid	Anti-depression†	Zhao et al. (2018) and Peng et al. (2022)	
Human/rat gut microbes	β-glucosidase; α-L-rhamnosidase	Ardispasilloses I	Deglycosylated product	Bioavailability†	Cao et al. (2015)	
Human gut microbes	NA	Mogroside III	Mogroside II mogrol	Bioavailability†	Yang et al. (2007)	
B. adolescentis, B. breve	NA	Pedunculoside	Deglycosylated products	Bioavailability†	Wu et al. (2019)	
Rat gut microbes	NA	Capilliposide C	Deglycosylated products esterolysis products	Bioavailability†	Cheng Z. et al. (2016)	
Anthraquinones	Bifidobacterium sp. strain SEN	β-glucosidase	Sennoside A and B	Sennidin A/B-8-monoglucoside	Purgation†	Matsumoto et al. (2012)
Alkaloids Phenols	Human gut microbes	CEs	DDAAs	MDAAs	Toxicity† Anti-tumor† anti-inflammatory†	Zhang et al. (2015) and Dey (2019)
Rat gut microbes	NA	Scopolamine	Scopine	Anti-tumor† anti-inflammatory†	Jiménez et al. (2014)	
L. plantarum	Tannase	Gallic tannins	Gallic acid	Anti-oxidant† anti-inflammatory†	Luca et al. (2020)	
Akkermansia muciniphila	Tannase	Ellagittannins	Ellagic acid	Neuroprotection†		
Rat gut microbes	β-glucosidase	Amygdalin	Mandaedinitrile; prunasin; phenylacetonitrile; hydrogen cyanide	Toxicity†	Kim et al. (2008) and Qin et al. (2021)	
B. animalis	Feruloyl esterase	CHA	CAA	Anti-oxidant†	Raimondi et al. (2015)	
L. plantarum; L. johnsonii; L. acidophilus	Feruloyl esterases	CAA; p-coumaric acids	ferulic acid	Anti-oxidant†	Fritsch et al. (2017)	
E. coli Nu; E. coli MC; E. coli WC-1	Cinnamyl esterase	Conjugated hydroxycinnamates	Free hydroxycinnamates	Anti-oxidant† anti-cancer†	Couteau et al. (2001)	
to exogenous substances by gut microbes requires chemically activated co-substrates, such as acetyl coenzyme A, adenosine triphosphate, or S-adenosylmethionine, while demethylation requires cofactors that can undergo nucleophilic catalysis, such as COB (I) alamin, and tetrahydrofurfurato (Kumano et al., 2016). Methylation modification can optimize the physiological activity of natural products, and demethylation can release polar groups for further binding and excretion from the body, and provide a carbon source for the growth of gut microbes (Ticak et al., 2014). Figure 3 shows the methylation and demethylation of natural products under the action of gut microbes.

Flavonoids

The flavonoid modification can be carried out at the C-2, C-3, C-4, C-5, C-6, C-7, and C-8 positions in the structure of flavonoids, and the bioavailability of methylated flavonoids is greatly improved (Wen and Walle, 2006). Bernini et al. found that O-methylated flavonoids have remarkable anti-inflammatory and resistance to hepatic metabolism (Bernini et al., 2011; Choi, 2019). After oral administration of rutin in rats, many methylated metabolites, such as methylrutin, methylisoorientin, and methylquercetin sulfate, are detected in fecal samples (Yang et al., 2012; Wu et al., 2017; Riva et al., 2020). Methoxylated isoflavonoids formononetin and biochanin A undergo demethylation to produce daidzein and genistein under the action of E. limosum ATCC 8486 (Hur and Rafii, 2000). Isoxanthohumol yields demethylation products 8-prenylnaringenin by E. limosum (Paraiso et al., 2019). Hesperidin, hesperetin (Pereira-Caro et al., 2018; Jiao et al., 2020), 5,7-dimethoxyflavone, xanthohumol (Paraiso et al., 2019), and 5,7,4′-trimethoxyflavone (Kim et al., 2014) can also undergo demethylation reactions under the action of gut microbes (Table 2).

Alkaloids

Alkaloids are nitrogen-containing compounds, which are biosynthesized by both marine and terrestrial organisms, and they have anti-cancer (Tse et al., 2022) and anti-viral activity (Aboukleesh et al., 2022). Under the action of enzymes expressed by gut microbes, quassin ketone, the main alkaloid component in bitter wood, is methylated into quassic alkali butyl (Fan et al., 2013; Chen et al., 2021). Isoquinoline alkaloid palmatine yields demethylation products such as columbamine, jatrorrhizine, demethyleneberberine, and demethyleneberberine via in vitro anaerobic incubation (He et al., 2017; Liao et al., 2021). The demethylation of aconitine by gut microbes is demonstrated by ion trap electrospray ionization tandem mass spectrometry, and 16-O-demethyloaconitine is produced (Zhao et al., 2008; Zhang et al., 2017).

Lignans

Dietary lignans are phytoestrogens that are mostly found in seeds, nuts, legumes, and vegetables. Arctiin can be demethylated to (−)-dihydroxyenterolactone (DHENL) and other products by Eubacterium sp. ARC-2 strain (Jin et al., 2007, 2013; Seyed Hameed et al., 2020). Liu et al. isolated a bacterium named Blautia sp. AUH-JLD56 from human fecal bacteria, and this species could efficiently transform arctiin or arctigenin into a demethylation metabolite 3′-desmethy lacorticigenin (3′-DMAg; Liu et al., 2013). Secoisolariciresinol, which is one of the most common lignans found in flaxseed, can be demethylated in the presence of Blautia producta, Gordonibacter and Lactonifactorlongoviformis to form enterolactone and enterodiol (Bess et al., 2020; Tse et al., 2022). Sesamin is metabolized into mammalian lignan enterolactone and enterodiol through methylation, demethylation, and other reactions by gut microbes (Peñañó et al., 2005). Matairesinol and phillygenin can also be demethylated to produce enterolactone (Clavel et al., 2006; Yamawaki et al., 2011; Michalak et al., 2018). Silybin A and B are demethylated into demethylsilybin A and demethylsilybin B by human fecal microbiota (Zheng et al., 2014; Valentová et al., 2020).

Other compounds

Polyphenol compound curcumin is demethylated by Blautia sp. MRG-PMF1 to produce metabolites demethoxycurcumin (DMC) and bis-demethoxycurcumin (bDMC; Burapan et al., 2017a,b). The demethylated products of dihydro-isoforolic acid, such as dihydrocaffeic acid, are also obtained in fecal metabolites (Kay et al., 2017). Wang et al. found that the methylation reaction occurs at the internal and external glucuronic acid residues of the licorice saponin 22β-acetyl glycyrrhizin sugar chain, yielding 22β-acetoxy glycyrrhizin-6′-methyl ester (Wang et al., 2015). Compounds such as polyphenols danshensu (Gu et al., 2014), terpenoids genipin (Akao et al., 1994), stilbenoids thunbarene (Jarošova et al., 2019), and steroids pulsatilla saponin B3 (Liu et al., 2015) undergo methylation and demethylation under the action of gut microbes, as shown in Table 2. Methylation and demethylation reactions are important pathways of gut microbiol metabolism, and have been confirmed in many studies. However, the genes/enzymes that mediate this reaction have not been fully characterized.

Redox reaction

Gut microbes can express many oxidoreductases and transform natural compounds by adjusting various functional

TABLE 1 (Continued)

Classification	Gut microbiota	Enzyme	Substrate	End-product	Changes	Ref.
Steroids	Human gut microbes	NA	Pulsatilla saponin D	Corresponding deglycosylation products	Bioavailability†	Yan et al. (2018)
Other	Mouse gut microbes	β-glucosidase	Cycasin	Diazomethane	Toxicity†	Goldin (1990)
groups, such as olefins, carboxylic acid derivatives, nitro, N-oxides, and a, b-unsaturated carboxylic acid derivatives, which influence the activity of natural products in vivo (Lavrijsen et al., 1995; Haiser et al., 2013; Abookleesh et al., 2022). Various cofactors such as NADH, NADPH, flavin, Fe/S cluster, heme, and molybdenum cofactor are involved in the mediation of the transfer of electron or hydride equivalent (H+, 2e−) to the substrate (Vanoni, 2021; Lubner et al., 2022). Figure 4 shows the oxidation and reduction reactions of natural products under the action of gut microbes.

Flavonoids

Daidzein is reduced to dihydrodaidzein and further tetrahydrodaidzein under the action of Clostridium sp. strain HGH6 and Lactobacillus sp. Niu-O16 (Zhao et al., 2011; Heng et al., 2019). The reduced product dihydrogenistein is produced by genistein under the action of human fecal bacteria (Mace et al., 2019). By using UPLC-ESI-Q-TOF-MS/MS analysis, compounds such as the deoxidized metabolites kaempferol and the C2-C3 double bond hydrogenation reduction product taxifolin were identified in the culture solution of rat gut fluid by incubation with quercetin under anaerobic conditions (Qin et al., 2017). Yang et al. discovered a flavone reductase from Flavonifractor plautii ATCC 49531, and this enzyme specifically catalyzes the hydrogenation of the C2-C3 double bond of flavones/flavanols C-ring and acts during the initial step of the entire biodegradation pathway of flavonoid (Goris et al., 2021; Yang et al., 2021). O-desmethylxanthohumol, a chalcone compound, is reduced to O-desmethyl-α, β-dihydroxanthohumol by E. ramulus (Paraiso et al., 2019).

Alkaloids

Nitroreductase, which is produced by gut microbes, catalyzes ether and coordination bond reactions in alkaloids.
Classification	Gut microbiota	Enzyme	Substrate	End-product	Changes	Ref.
Flavonoids	Rat gut microbes	Methyltransferase	Rutin	Methylrutin, Methyl-isoquercetin, methylquercetin sulfate	Bioavailability↑	Wu et al. (2017)
Mice gut microbes	NA	Myricetin	Myricetin	Monol- and dimethylated myricetin	Toxicity↓	Zhang et al. (2020)
Rat gut microbes	NA	Hesperidin; hesperetin	Demethylated products	Bioavailability↑	Pereira-Caro et al. (2018) and Jiao et al. (2020)	
E. limosum	O-demethylase	Formononetin; biochanin A	Daidzein; genistein	Estrogen effect↑	Hur and Rafii (2000)	
Blautia sp. MRG-PMF1	Methyltransferase	5,7-dimethoxyflavone; 5,7,4′-trimethoxyflavone	Chrysin; apigenin	Anti-oxidant↑ anti-inflammatory↑ anti-cancer↑	Kim et al. (2014)	
Blautia sp. MRG-PMF1	Methyltransferase	Icariin	Desmethylicaritin	Estrogenic effects↑	Wu et al. (2016)	
E. limosum	O-demethylase	Isoxanthohumol	8-prenylnaringenin	Anti-androgen↑ anti-osteoporosis↑	Paraizo et al. (2019)	
Alkaloids	Human gut microbes	Methyltransferase	Quassic ketone	Quassic alka butyl	Chen F.Z. et al. (2021)	
Rat gut microbes	Methyltransferase	Palmatine	Columbinine; Jatrorrhizine; demethyleneberberine	Bioavailability↑	He et al. (2017) and Liao et al. (2021)	
Human gut microbes	O-demethylase	Aconitine	16-O-demethylaconitine	Toxicity↓	Zhao et al. (2008) and Zhang et al. (2017)	
Lignans	Enterobacter sp. ARC-2; Blautia sp. AUH-ILD56	O-demethylase	Arctin; arctigenin	DHENL; 3′-DMAG	Anti-oxidant↑ estrogen effect↑	Jin et al. (2007), Jin et al. (2013), Liu et al. (2013) and Seyed Hameed et al. (2020)
Blautia producta DSM3507; Gordonibacter strains 3C and 28C; Lactonifactor longoforma DSM17459	Guaiacol lignan methyltransferase; catechol lignan dehydroxylase; enterodiol lactonizing enzyme	Secoisolaricitresinol	Enterolactone; enterodiol	Estrogen effect↑	Bess et al. (2020) and Tse et al. (2022)	
Human gut microbes	O-demethylase	Sesamin	Enterolactone; enterodiol	Estrogen effect↑	Peñalvo et al. (2005)	
Rat gut microbes	O-demethylase	Mataresinol	2,3-bis(3,4-dihydroxybenzyl) butyro lactone; enterolactone	Anti-inflammatory↑ estrogen effect↑	Clavel et al. (2006), Yamawaki et al. (2011) and Michalak et al. (2018)	
Human/rat gut microbes	O-demethylase	Phillygenin	Enterolactone	Anti-inflammatory↑ estrogen effect↑	Michalak et al. (2018)	
E. limosum ZL-II; human gut microbes	O-demethylase	Silybin A and B	Demethylsilybin A; demethylsilybin B	Anti-Alzheimer's disease↑	Zhang et al. (2014) and Valentová et al. (2020)	
Diketones	Blautia sp. MRG-PMF1	Co O-Methyltransferase	Curcumin	DMC; bDMC	Anti-tumor↑ anti-inflammatory↑	Burapan et al. (2017a,b)
Phenols	Rat gut microbes	NA	Danshensu	3-(3-O-methyl-4-hydroxyphenyl)-2-hydroxypropanoic acid	Bioavailability↑	Gu et al. (2014)

(Continued)
Berberine (BBR), as the main component of *Coptis Chinensis*, can be reduced to dihydroberberine (dhBBR) by nitroreductase expressed by gut microbes, and this reduction product has high polarity. dhBBR could be absorbed in the intestine and then oxidized into the prototype BBR into the blood. The absorption rate of dhBBR in the intestine is five times that of BBR.
BBR (Feng et al., 2015). Li et al. found that the gut microbes could transform BBR into oxyberberine via oxidation (Li et al., 2020). Oxyberberine, a novel metabolite of BBR, may be a promising bioactive agent worthy to be explored. Coptisine is a natural protoberberine alkaloid with the same maternal structure as BBR. After oral administration of coptisine, the C-O bond is opened and cracked, followed by a reduction reaction to produce hydrogenated BBR (Cui et al., 2018). Avenanthramide-C is reduced by mice and the human gut microbiota into dihydroavenanthramide-C (Wang et al., 2015).

Phenylpropanoids

Caffeic acid (CAA), as the main dietary polyphenol in food and beverage, can easily enter the colon and react with gut microbiota after esterification. CAA is transformed to 3-hydroxyphenylpropionic acid through C4 double bond reduction and dehydroxylation, and then rapidly converted to 3-phenyl propionic acid via the β-oxidation of gut microbes in vitro (Gonthier et al., 2006). CAA can also be dehydroxylated to m-coumaric acid or hydrogenated to dihydrocaffeic acid (Garcia-Villalba et al., 2020). Danshensu, the major monomer phenolic acid of Salvia Miltiorrhiza, undergo dehydrogenation and deoxygenation by gut microbiota to produce 3-phenyl-2-hydroxy propionic acid, 3-(3,4-dihydroxy phenyl) 2-acrylic acid (caffeic acid), and 3-3-(3,4-dihydroxy phenyl)-propionate (Gu et al., 2014).

Other compounds

Glycyrrhizic acid generates 3-oxo-glycyrrhetinic acid by 3β-hydroxysteroid dehydrogenase of Ruminococcus sp. pol-3 in the cecum. Sennosides, a class of natural anthraquinone derivative and dimeric glycosides, are first hydrolyzed by β-glucosidase to produce sennoside-8-O-monoglycoside, and then reduced to rubaranthrone with purgative effect by Streptococcus in vivo (Hattori et al., 1988). Stilbenoids resveratrol is reduced to dihydroresveratrol by Slackia equalifaciens and Eggerthella lenta ATCC 4305 (Bode et al., 2013; Pallauf et al., 2019). Moreover, diketones curcumin (Hassaninasab et al., 2011; Tan et al., 2014), steroid compounds digoxin (Kumar et al., 2018) and other compounds aristolochic acid (Feng et al., 2019) can also be reduced in the presence of gut microbes (Table 3). Gut microbial flavone reductase and nitroreductase have special catalytic selectivity, filling key gaps in gut microbial transformation pathways. However, the specific genes and enzymes that mediate gut microbial reduction have not been fully determined.

Other reactions

As shown in Table 4, natural products are also transformed by gut microbes through ring fission, sulfuration, aromatization, and other reactions. Gentiopicroside, a natural iridoid glycoside, can be hydrolyzed to gentianaldehyde by gut microbial β-glucosidase, and then to nitrogen-containing compounds via N-heterocyclic reaction (el-Sedawy et al., 1989). The partial ring-opening of genipin acetone alcohol results in the formation of dialdehyde by gut microbes (Kang et al., 2012). Quinic acid can be aromatized to hippuric acid (Feng et al., 2015). Oxyberberine, a novel metabolite of BBR, may be the primary hydrolytic enzymes that mediate gut microbial reduction have not been fully determined.

This section summarizes the biotransformation of gut microbiota-mediated natural products from a single reaction. However, some limitations are observed. Firstly, considering the complexity of gut microbes and the diversity of gut microbial enzymes, natural products undergo complex transformations in the enormous metabolic potential of various gut microbiomes. The gut microbial metabolism of natural products and their role in host health should be the focus of future research.
the intestinal tract. A single reaction can only describe a certain process of metabolism. Therapy can be optimized by activating/inhibiting this process. In addition, considering that gut microbes contain various potentially multifunctional enzymes, more biotransformation reactions underplayed by natural products can be expected from gut microbes. To elucidate how gut microbial metabolism affects human health, researchers should link the functions of interest to genes and enzymes. A deep understanding

Classification	Gut microbiota	Enterobacterial metabolic enzyme	Substrate	End-product	Changes	Ref.
Flavonoids	Clotridium sp. strain HGH6; Lactobacillus sp. Niu-O16	Dihydrodaidzein reductase; tetrahydrodaidzein reductase	Daidzein	Dihydrodaidzein; tetrahydrodaidzein	Anti-osteoporosis†	Wang et al. (2007) and Heng et al. (2019)
	Aceoto Niu-O16	NA	Genistein	Dihydrogenistein	Bioavailability†	Mace et al. (2019)
	Rat gut microbes <i>E. ramalus</i>	Flavone reductase	Quercetin	Kaempferol, taxifolin	Bioavailability†	Qiu et al. (2017)
	<i>E. ramalus</i>	Flavanone/-flavanonol-cleaving reductase	Xanthohumol; O- desmethylxanthohumol	α, β-dihydroxanthohumol; O-desmethyl-α, β-dihydroxanthohumol	Anti-bacterial†	Paraiso et al. (2019)
Alkaloids	Mouse gut microbes	Nitroreductase	BBR, coptisine	dhBBR; hydrogenated berberine	Bioavailability†	Feng et al. (2015) and Cui et al. (2018)
	Mouse gut microbes	NA	BBR	Onyberberine	Anti-fungal†	Li C. et al. (2020)
	Mouse/human gut microbes	NA	Avenanthramide-C	Dihydroavenanthramide-C	Anti-inflammation† anti-atherogenesis†	Wang P. et al. (2015)
Phenolic acids	Human gut microbes	NA	CAA	Dihydrocaffeic acid	Bioavailability†	Gonthier et al. (2006) and Garcia-Villalba et al. (2020)
	Rat gut microbes	NA	Isoferulic acid	Dihydrocaffeic acid	Anti-oxidant† anti-apoptosis†	Gu et al. (2014)
	Rat gut microbes	NA	Dansensu	3-phenyl-2-hydroxy propionic acid; 3-(3,4-dihydroxy phenyl)-2-acrylic acid; 3-(3,4-dihydroxy phenyl)-propionate	Bioavailability†	Gu et al. (2014)
	Gordonibacter urolithinfaciens	Catechol-dehydroxylase	Chlorogenic acid; rosmarinic acid	Dihydro-chlorogenic acid; dihydro-rosmarinic acid	Bioavailability†	Garcia-Villalba et al. (2020)
Terpenoids	<i>Ruminococcus sp. po1-3</i>	β-3-hydroxysteroid dehydrogenase	Glycyrretinic acid	3-oxo-glycyrretinic acid	Anti-inflammatory†	
Anthraquinone	Human gut microbes; <i>Streptococcus spp.</i>	NA	Senosside-8-O-monglycoside	Rhubaranthrone	Purgation†	Hattori et al. (1988) and Matsumoto et al. (2012)
Stilbenes	<i>Slakia equilabilis, Eggerthella lenta</i> ATCC 4305	NA	Resveratrol	Dihydroresveratro	Anti-oxidant†	Jung et al. (2009), Bode et al. (2013) and Pallaf et al. (2019)
Diketones	<i>E. coli strain K-12, E. fergusonii ATCC 35469, E. coli strains ATCC 8739 and DH10B</i>	CurA	Curcumin	DHC, THC	Anti-oxidant† lipid-lowering†	Hassaninasab et al. (2011) and Tan et al. (2014)
Steroids	Eubacterium lenta	Cardiac glycoside reductase	Digoxin	Dihydrodigoxin	Bioavailability†	Kumar et al. (2018)
Other classes	Human gut microbes	NA	Aristolochic acid	Aristololactams	Anti-cancer†	Feng et al. (2019)
TABLE 4 Other reactions of gut microbes to natural products.

Classification	Gut microbiota	Biotransformation	Enterobacterial metabolic enzyme	Substrate	End-product	Changes	Ref.
Terpenoids	Human gut microbes	Cyclization	β-glucosidase	Gentispicroside	Gentisaldehyde; nitrogen-containing compounds	Anti-inflammatory†	el-Sedawy et al. (1989)
Human gut microbes	Cyclization	NA	Geniposide	Nitrogen-containing compounds	Bioavailability†	Kawata et al. (1991)	
Human gut microbes	Deglycosylation; deacetylation; dehydrogenation	NA	Astragaloside A	Cycloastragenol	Bioavailability†	He et al. (2019)	
Phenolic acids	Rat gut microbes	Aromatization	NA	Quinic acid	Hippuric acid	Anti-cancer† anti-bacterial†	Pero and Lund (2011)
Egerthella lenta	Dehydroxylation	Catechol dehydroxylases	Dihydrocaffeic acid	3-(3-hydroxyphenyl) propionic acid	Bioavailability†	Maini Rekdal et al. (2020)	
Human gut microbes	Ring cleavage; sulfation methylation	NA	Tea polyphenols	Phenolic acids	Bioavailability†	Cheng et al. (2018)	
L. plantarum WCFS1	Ring fission; hydrolysis	Tannase; gallate decarboxylase	Gallotannins	Gallic acid; pyrogallol	Anti-oxidant† anti-inflammatory†	Reverón et al. (2015) and Fang et al. (2019)	
SGG	Ring fission; hydrolysis	Tannase; gallate decarboxylase	Gallotannins	Gallic acid; pyrogallol	Anti-cancer†	Oehmike-Hecht et al. (2020)	
Gordonibacter urolithinfaciens; Goronibacter pamelaeae; Ellagibacter isourolithinfaciens	Decarboxylation; lactone-ring cleavage; dehydroxylation	NA	Ellagic acid	Urolithins	Anti-cancer† anti-oxidant † anti-inflammatory†	Beltrán et al. (2018), García-Villalba et al. (2020) and Tang et al. (2021)	
Flavonoids	Rat gut microbes	Sulfation	Aryl sulfotransferase	Luteolin	Luteolin-3′-O-sulfate; luteolin-4′-O-sulfate		Li et al. (2017) and Káňová et al. (2020)
Clostridium sp. strain HGH136	C-ring fission	2-dehydro-O-demethylangolensin	Daidzein	O-desmethylangolensin	Anti-cancer†	Hur et al. (2002)	
Egerthella sp. strain YY7918; B. breve ATCC 15700T; B. longum BBS36; L. paracasei CS2	Ring-fission	Dihydroidaidzein racemase	Dihydroidaidzein	S-equol	Estrage effect†	Yokoyama and Suzuki (2008) and Mayo et al. (2019)	

(Continued)
Classification	Gut microbiota	Biotransformation	Enterobacterial metabolic enzyme	Substrate	End-product	Changes	Ref.
E. ramulus	Ring-fission, reduction	Chalcone isomerase; flavanone-/flavanonol-cleaving reductase	Naringenin, eriodictyol	Naringenin chalcone; phloretin; 3-hydroxyphloretin	Bioavailability†	Gall et al. (2014) and Braune et al. (2019)	
E. ramulus strain wK1	Ring-fission	Phloretin hydrolase	Phloretin	3-(4-hydroxyphenyl)-propionic acid; phloroglucinol	Bioavailability†	Schoefer et al. (2004) and Braune et al. (2019)	
Bacteroides sp. 45; B. fragilis; E. ramulus	Ring-fission	Chalcone isomerase; phloretin hydrolase	Quercetin; luteolin	4-hydroxybenzoic acid; 3,4-dihydroxyphenylacetic acid; 3,4-dihydroxybenzoic; 3-(3-hydroxyphenyl)propionic acid	Anti-platelet aggregation† anti-tumor†	Jiang et al. (2014) and Braune et al. (2001)	
Rat gut microbes	Ring-fission; sulfation	Chalcone isomerase; phloretin hydrolase	Myricetin	3,4,5-trihydroxyphenylacetic acid; myricetin-3-O-sulfate	Anti-inflammatory†	Zhang S. et al. (2019) and Káňová et al. (2020)	
B. longum R0175	Ring-cleavage; demethylation	Phloretin hydrolase; demethylase	Hesperidin	3-(3′-hydroxyphenyl)propionic acid; 3-(phenyl)propionic acid	Bioavailability†	Pereira-Caro et al. (2018)	
Eggerthella lenta; Flavonifractor plautii	C-ring cleavage	NA	(+)-epicatechin; (+)-catechin	1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol; δ-(31,41-dihydroxyphenyl)-γ-valerolactone; δ-(31,41-dihydroxyphenyl)-γ-valeric acid	Bioavailability†	Ozdal et al. (2016)	
Human gut microbes	C-ring cleavage	NA	Anthocyanidin	Protocatechuic acid; syringic acid; vanillic acid; phloroglucinol aldehyde	Bioavailability†	Aura et al. (2005)	
Human gut microbes	C-ring cleavage	Tannase	Procyanidin B2 and A2	2- (3,4-dihydroxyphenyl)acetic acid; 5-(3,4-dihydroxyphenyl)-γ-valerolactone; benzoic acid	Anti-oxidant†	Stoupi et al. (2010), Ou et al. (2014) and Le Bourvellec et al. (2019)	

(Continued)
of the gene sequences of functional enzymes allows organisms with similar sequences to be assigned the same biological activity. Moreover, in addition to the regulation of gut microbes on the disposal of natural products, the regulation of natural products on gut microecology is important as a potential mechanism of efficacy.

Biotransformation contributions to mining the active substance and mechanism

The increasing research about gut microbiota gradually reveals the relationship between high pharmacological action and low oral availability of most natural products. Most glycosides have complex parent structures and are difficult to be absorbed by the intestine cells, thus limiting their tissue-specific bio-accessibility. These compounds are transformed into small molecule metabolites/unique metabolites through degradation reactions that are dependent on microbial/gut microbial enzymes and thus have a wide range of effects on the host (Wardman et al., 2022). Gut microbes also act on dietary phenolics to produce functional metabolites that contribute to host health (Loo et al., 2020).

Importantly, the biotransformation by gut microbes facilitates the therapeutic effects of natural products. The typical metabolization model of ginsenosides to compound K (CK) has been widely reported (Figure 5), with enhanced anti-tumor, anti-inflammatory, and lipid-lowering effects (Kim et al., 2013; Kim, 2018). At 50 μM, CK inhibits the growth of glioblastoma cells by upregulating caspase-3-, caspase-8-, caspase-9- and cAMP-dependent protein kinases (Lee et al., 2017); At 20 μM, CK reduces hepatic lipid accumulation in human hepatocellular carcinoma cells by activating AMPK (Zhang et al., 2022); CK attenuates macrophage inflammation and foam cell formation via autophagy induction and by modulating NF-κB, p38 and JNK/MAPK signaling (Lu et al., 2020). The chemical stability of DMC increases because of the absence of the methoxyl group in their prototype benzene ring structure, thus explaining the strong beneficial effects of curcumin (Burapan et al., 2017a). Notably, urolithin A (UA), a natural compound that is produced by gut microbes from ingested ellagitannins and ellagic acid, has significant anti-inflammatory and neuroprotective effects. At 1 μM, UA is sufficient for the decreased production of TNF-α and MCP-1 and the inactivation of TLR3/TRIF signaling in poly (I:C)-induced

TABLE 4 (Continued)

Substrate	Enterobacterial metabolic enzyme	Changes	End-product	Ref.
Alkaloids	[el-Makhsouy et al. (1993)]	Toxicity↓	Strychnine; 16-hydroxystrychnine	NA
Alkoxy	[Bess et al. (2020); Xiao et al. (2021)]	Anti-apoptosis↑	Lariceal; Lariciresinol; secoisolariciresinol	NA
Aldehydes	[el-Makhsouy et al. (1993)]	Anti-oxidant	Quercitin-3-O-rhamnoside; quercitin; aglycone myricetin	NA

TABLE 4 (Continued)

Substrate	Enterobacterial metabolic enzyme	Changes	End-product	Ref.
Aliphatics	[Du et al. (2014)]	Anti-apoptosis↑	Myristic acid	NA
Lignins	[Khan et al. (2022)]	Anti-oxidant↑	Lariceal; lariciresinol; secoisolariciresinol	NA
Alkylamines	[Lee et al. (2013)]	Toxicity↓	Strychnine	NA
Anthraquinones	[Wardman et al. (2022)]	Anti-apoptosis↑	Strychnine; 16-hydroxystrychnine	NA

TABLE 4 (Continued)

Substrate	Enterobacterial metabolic enzyme	Changes	End-product	Ref.
Alcohols	[Du et al. (2014)]	Anti-oxidant↑	Lariceal; Lariciresinol; secoisolariciresinol	NA
Aldehydes	[Du et al. (2014)]	Anti-oxidant↑	Myristic acid	NA
Aliphatics	[Du et al. (2014)]	Anti-oxidant↑	Myristic acid	NA

TABLE 4 (Continued)

Substrate	Enterobacterial metabolic enzyme	Changes	End-product	Ref.
Alcohols	[Khan et al. (2022)]	Anti-oxidant↑	Myristic acid	NA
Aldehydes	[Khan et al. (2022)]	Anti-oxidant↑	Myristic acid	NA
Aliphatics	[Khan et al. (2022)]	Anti-oxidant↑	Myristic acid	NA

TABLE 4 (Continued)

Substrate	Enterobacterial metabolic enzyme	Changes	End-product	Ref.
Alcohols	[Khan et al. (2022)]	Anti-oxidant↑	Myristic acid	NA
Aldehydes	[Khan et al. (2022)]	Anti-oxidant↑	Myristic acid	NA
Aliphatics	[Khan et al. (2022)]	Anti-oxidant↑	Myristic acid	NA
RAW264.7 cells (Huang et al., 2022). UA improves systemic insulin sensitivity and reduces liver IL-1β levels in high-fat diet mice (Toney et al., 2019). UA ameliorates cognitive impairment in APP/PS1 mice and inhibits neuroinflammation by decreasing the levels of IL-6, IL-1β, and TNF-α in the cortex and hippocampus (Gong et al., 2019). These studies highlight the importance of identifying natural products-microbial metabolism. Moreover, many in vitro pharmacological activity measurements should be performed in conjunction with microbial metabolites, which actually interact with biochemical receptors in vivo.

The composition, structure, function, and metabolites of gut microbes have become potential targets for natural products to exert beneficial effects and reduce toxicity as well. For instance, gut microbes can catalyze the ester bond hydrolysis of C-8 and C-14 of DDAs through CEs or catalyze the ester exchange of C-8 to produce less toxic MDAs (Zhang et al., 2015; Ding et al., 2019). The digoxin-reducing type strains of E. lenta contain cardiac glycoside reductase that can reduce the α and β-unsaturated lactone on the digoxin ring and metabolize it into dihydrodigoxin with less activity, thereby inhibiting its possible cardiotoxicity (Kumar et al., 2018). However, this ability is limited, and 50% of digoxin can be inactivated by gut microbial transformation (Lu et al., 2014). Cardiac glycoside reductase may be an effective biomarker for digoxin inactivation, and its expression can be inhibited by arginine (Haiser et al., 2013). Therefore, diet could explain the inter-individual variations in digoxin reduction and may modulate microbial metabolic activity in vivo. By contrast, toxic compounds can be produced by gut microbes. Cycasin is hydrolyzed into carcinogenicity diazomethane under the action of β-glucosidase from gut microbes (Goldin, 1990). Therefore, small molecule inhibitors of microbial gut enzymes should be developed to play a regulatory role in specific
transformation in this complex habitat. The toxicity difference between metabolites transformed by gut microbiota and precursor substances is worthy of further study. Moreover, excessive drugs may cause imbalance and adverse reactions in gut microbes (Lindell et al., 2022), and the effects of different doses of natural products on gut microbes and metabolism need further investigation.

Multivariate technologies for studying biotransformation

Considering that gut microbes can increase the host’s complex and variable response to drugs/natural products, this process is of great interest to researchers. Research on biotransformation is mainly conducted via in vitro approach (Sousa et al., 2008) as follows: (1) Intestinal fluid transformation. The large-scale preparation of transformed products can be realized by intestinal fluid biotransformation; (2) Incubation with a sample of the host microbiota. The type and quantity of prototype drugs and metabolites can be detected using the method. It has the advantage of accurate representation of the entire gut microbiome of the individual; (3) Incubation of representative strains. This method affords high-throughput potential, which is valuable for large-scale drug studies and contributes to the industrial production of beneficial metabolites. In addition, organ-on-a-chip microphysiological systems (Ashammakhil et al., 2020), gastrointestinal organoids (Singh et al., 2020), and various predictive/computational tools (Machado et al., 2018; Chowdhury and Fong, 2020) may help improve our understanding of microbial metabolism in the future.

In addition, the relationships between natural product metabolism and gut microbes have been studied in animal models, and the results can be used to investigate the distribution and form of metabolites (Yoshisue et al., 2000). Germ-free/antibiotic-treated animals with conventional animals have been compared to prove the key roles of gut microbes on natural product metabolism. The limitation of this method is that inherent gastrointestinal and microbiological differences exist between humans and rodents (Nguyen et al., 2015). Detailed microbiota and metabolite analysis of feces collected from subjects in clinical trials can comprehensively reflect the metabolic process of natural products in vivo and be used to explain individual differences. In addition, the application of sequencing technology needs to be increased to study the microbial transcriptional activity and metabolic profile. By using the single-cell method, the physiological structure of gut microbes can be characterized to determine their metabolic activity (Zheng et al., 2022). Metatranscriptomics (RNA-Seq) allows the direct analysis of gene expression profiles of microorganisms with strong metabolic activity in the human gut (Berlinberg et al., 2022). The combination of single-cell methods, metatranscriptomics, and metagenomics has been used to identify and characterize the active subsets of gut microbiota and determine their metabolic responses to natural products.

Conclusions and future remarks

The gut microbiota is a reservoir of genes that encode various metabolic enzymes (Flint et al., 2012). The activation of biological activities and potential health benefits of most natural products (e.g., flavonoids, alkaloids, and lignin) are extremely dependent on gut microbes as a substrate-machining factory (Braune and Blaut, 2016; Seyed Hameed et al., 2020; Plamada and Vodnar, 2021). Much research effort has been devoted to understanding how microbes uniquely modify natural products and the effects of these metabolites on host health (Luca et al., 2020; Shabbir et al., 2021). The following conclusions have been made: (1) gut microbes can transform natural products (Xie et al., 2020); (2) natural products can regulate the composition and abundance of gut microbes (Saccon et al., 2021); and (3) gut microbes can mediate the multi-component synergy of natural products (Feng et al., 2019). Although high-throughput methods are being developed to help people understand the importance of the gut microbiome in the metabolism of natural products, microbial metabolism-based screening has not been adopted as part of the drug development process, because its mechanism remains unclear (Zimmermann et al., 2019). Moreover, the great plasticity and interindividual differences of gut microbes are notable (Vujkovic-Cvijin et al., 2020). Therefore, researchers need to improve the understanding of the physiological, chemical, and microbial contributions of gut microbes to the metabolism of natural products to help in explaining the individual differences in natural product responses and provide support for personalized treatment (Klozdziejezyck et al., 2019; Javdan et al., 2020). Most of the data in the present study were obtained independently of the clinic, but clinical trials are already underway, and the results will influence clinical practice in the foreseeable future.

Increasing studies on the mechanism of how to exert the curative effect, the application of fecal transplantation, specific bacterial transplantation, and animal models will help in clarifying the role of gut microbes. Nevertheless, standardization of operation, reproducibility of experimental results, and variation between species and individuals greatly reduce the authenticity and stability of the research, and a standard and scientific operating procedure remain to be put forward. Thus, confirming the symbolic functional extremely involved in biotransformation and its material basis will help in exploring the mechanism of natural products in the treatment of diseases and explaining the treatment mode of indirect interaction between natural products with low bioavailability and gut microbiota.
Author contributions

YZ contributed to the data collection and preparation of the original draft. XZ, JY, and CS provided brief article ideas and language modifications. XZ and XW supervised and revised the manuscripts. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the National Natural Science Foundation of China under grant no. 81873104, 81830112, and 82192914.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
El Baba, C., Baarsiris, A., Kiriako, G., Dia, B., Fadallah, S., Moodad, S., et al. (2021). Terpenoids’ anti-cancer effects: focus on autophagy. Apoptosis 26, 491–511. doi: 10.1007/s10495-021-01684-y
Ellenbogen, J. B., Jiang, R., Kountz, D. J., Zhang, L., and Kryczky, J. A. (2021). The Mtb superfamily member Miyb from the human gut symbiont Escherichia tiamosum is a cobalamin-dependent β-urebuteraine methyltransferase. J. Bacteriol. 297, 103127. doi: 10.1128/jb.2021.103127
el-Mekawy, S., Meselhy, M. R., Kawata, Y., Kadota, S., Hattori, M., and Namba, T. (1993). Metabolism of strychnine N-oxide and brucine N-oxide by human intestinal bacteria. Planta Med. 59, 347–350. doi: 10.1055/s-2006-959698
el-Sedawy, A. I., Hattori, M., Kobashi, K., and Namba, T. (1989). Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria. Chem. Pharm. Bull. 37, 2435–2448. doi: 10.1248/cpb.37.2435
Fan, H., Qi, Q., Yang, M., Fang, H., Liu, K., and Zhao, F. (2013). In vitro and in vivo anti-inflammatory effects of 4-methoxy-n-hydroxycanthin-6-one, a natural alkaloid from Picrasma quassoides. Phytomedicine 20, 319–323. doi: 10.1016/j.phymed.2012.11.016
Fang, C., Kim, H., Yanagisawa, L., Bennett, W., Sirven, M. A., Alanzí, R. C., et al. (2019). Gallotannins and labuchabidiplanum WFCs1 mitigate high-fat diet-induced inflammation and induce biomarkers for thermogenesis in adipose tissue in gnotobiotic mice. Mol. Nutr. Food Res. 63,e1800937. doi: 10.1002/mnfr.201800937
Feng, W., Ao, H., Peng, C., and Yan, D. (2019). Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol. Res. 142, 176–191. doi: 10.1016/j.phrs.2019.02.024
Feng, R., Shuo, J. W., Zhao, Z. X., He, C. Y., Ma, C., Huang, M., et al. (2015). Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci. Rep. 5:11215. doi: 10.1038/srep11215
Ferreira-Lazarte, A., Plaza-Vinuesa, L., de Las Rivas, B., Villamiel, M., Muñoz, R., and Moreno, F. J. (2021). Production of α-thrombosidases from labuchabidiplanum WFCs1 and their role in degradolysis of dietary flavonoids naringin and rutin. Int. J. Biol. Macromol. 193, 1093–1102. doi: 10.1016/j.ijbiomac.2021.11.053
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., and Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Microbes 3, 289–306. doi: 10.1016/j.micres.1997.11.006
Foster-Nyarko, E., and Pallen, M. J. (2022). The microbial ecology of Echeinococcus colti in the vertebrate gut. FEMS Microbiol. Rev. 46, fuaa008. doi: 10.1093/femsre/fuaa008
Fritsch, C., Jansch, A., Ehrmann, M. A., Toelstedt, S., and Vogel, R. F. (2017). Characterization of cinnamonoyl esterases from different labuchacidi and bifidobacteria. Curc. J. 74, 247–256. doi: 10.1002/bf.201182
Fushinobu, S., and Abou Hachem, M. (2021). Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochem. Soc. Trans. 49, 563–578. doi: 10.1042/bst20200163
Gall, M., Thomsen, M., Peters, C., Pavlidis, I. V., Jonczyk, P., Grünert, P. P., et al. (2014). Enzymatic conversion of flavonoids using bacterial chalcone isomerase and exorotate reductase. Angew. Chem. Int. Ed. Engl. 53, 1439–1442. doi: 10.1002/anie.201306952
Garcia Villalba, R., Beltrán, D., Frutos, M. D., Selma, M. V., Espín, J. C., and Tomás-Barberán, F. A. (2020). Metabolism of different dietary phenolic compounds by the urolithin-producing human-gut bacteria Gordonibacter urolithanifaciens and Ellagibacter isourolithatifaciens. Food Funct. 11, 7012–7022. doi: 10.1039/d0ff01649r
Goldin, B. R. (1990). Intestinal microflora: metabolism of drugs and carcinogens. Ann. Med. 22, 43–48. doi: 10.1080/07853899009147240
Gong, Z., Huang, J., Xu, B., Ou, Z., Zhang, L., Lin, X., et al. (2019). Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflammation 16:62. doi: 10.1186/s12974-019-1450-3
Gonthier, M. P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J. M., Chory, J., et al. (2021). Flavonoid-modifying gut microbiota-mediated biotransformation by HPLC-MS/MS. Mol. Nutr. Food Res. 65, 3589–3599. doi: 10.1002/mnrfs.20210374
Cui, X., Tao, J. H., Jiang, S., Wei, X. Y., Xu, J., Qian, D. W., et al. (2018). Study on the interaction between rhizoma coptis extract and intestinal microflora (in Chinese). Chin. J. Forensic Med. 49, 2103–2107.
with improved biological activities. *Compr. Rev. Food Sci. Food Saf.* 17, 905–919. doi: 10.1111/1541-4337.12353

Haiser, H. J., Gootenbarg, D. B., Chatman, K., Sirasani, G., Balhusk, E. P., and Turnbaugh, P. J. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterial *Eggertella lenta*. Science 341, 295–298. doi: 10.1126/science.1235827

Han, D. H., Lee, Y., and Ahn, J. H. (2016). Biological synthesis of baicalein derivatives using *Exochorda chin.* *J. Microbiol. Biotechnol.* 26, 1918–1923. doi: 10.4014/jmb.1605.05050

Hanske, L., Engst, W., Loh, G., Szczesny, S., Blaut, M., and Braun, A. (2013). Contributions of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. *Br. J. Nutr.* 109, 1433–1441. doi: 10.1017/s0007114510003376

Hasanah, U., Miki, K., Nitoda, T., and Kanakri, H. (2021). Aerobic biocconversion of C-glycoside mangiferin into its aglycone norarctinhol by an isolated mouse intestinal bacterium. *Biosci. Biotechnol. Biochem.* 85, 989–997. doi: 10.1007/s10527-016-1211-2

Hassanin, A., Hashimoto, Y., Tomita-Yokotani, K., and Kobayashi, M. (2011). Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. *Proc. Natl. Acad. Sci. U. S. A.* 108, 6615–6620. doi: 10.1073/pnas.1016217108

Hatamipour, M., Remazani, T., Babadi, S. A. S., Johnstone, T. P., and Sabekbar, A. (2019). Demethoxycurcumin: a naturally occurring curcumin analogue for treating non-cancerous diseases. *J. Cell. Physiol.* 234, 19320–19330. doi: 10.1002/jcp.28626

Hattori, M., Namba, T., Akao, T., and Kobashi, K. (1998). Metabolism of sennosides by human intestinal bacteria. *Pharmacology* 36, 172–179. doi: 10.1155/1998/138437

He, C. Y., Fu, J., Shou, J., Zhao, Z. X., Ren, L., Wang, Y., et al. (2017). In vitro study of the metabolic characteristics of eight isouquinoline alkaloids from natural plants in rat gut microbiota. *Molecules* 22:932. doi: 10.3390/molecules22060932

He, J. X., Goto, E., Akao, T., and Tani, T. (2007). Interaction between Shaoyao- Gancao-Tang and a laxative with respect to alteration of paeniflorin metabolism by intestinal bacteria in rats. *Phytochemistry* 14, 452–459. doi: 10.1016/j.phytochem.2006.09.014

He, Y., Su, Z., Li, A., Zhu, Z., Yang, Y., Zheng, Y., et al. (2019). Recent advances in biotransformation of saponins. *Molecules* 24:2365. doi: 10.3390/molecules24122365

He, B. L., Xiong, Y., Hu, T. G., Zong, M. H., and Wu, H. (2002). *Bifidobacterium* spp. as functional foods: a review of current status, challenges, and strategies. *Crit. Rev. Food Sci. Nutr.* 33, 1–18. doi: 10.1080/104083902900205934

Heng, Y., Kim, M. J., Yang, H. J., Kang, S., and Park, S. (2019). *Lactobacillus* intestinale efficiently produces equol from daidzin and byungkojung, short-term fermented soybeans. *Arch. Microbiol.* 201, 1009–1017. doi: 10.1007/s00203-019-1666-5

Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Raas-Madiedo, P., Sánchez, B., and Margolles, A. (2017). *Bifidobacterium* and their health-promoting effects. *Microbiol. Spectr.* 5. doi: 10.1128/microbiolspec.BAD-0010-2016

Hostgler, G. L., Ralston, R. A., and Schwartz, S. J. (2017). Flavonones: food sources, bioavailability, metabolism, and bioactivity. *Adv. Nutr.* 8, 423–435. doi: 10.1093/advnut/anw01248

Huang, W. C., Liou, C. J., Shen, S. C., Hu, S., Chao, J. C., Hsiao, C. Y., et al. (2019). Polymethoxyflavones by human intestinal bacterium *Eggerthella lenta* and their chemoenzymatic preparation and biophysical properties. *J. Agric. Food Chem.* 68, 11197–11206. doi: 10.1021/acs.jafc.9b06399

Hassan, A., U., Hashimoto, Y., Tomita-Yokotani, K., and Kobayashi, M. (2011). Aerobic biocconversion of c-glycoside mangiferin into its aglycone norarctinhol by an isolated mouse intestinal bacterium. *Biosci. Biotechnol. Biochem.* 85, 989–997. doi: 10.1007/s10527-016-1211-2

Hassanin, A., Hashimoto, Y., Tomita-Yokotani, K., and Kobayashi, M. (2011). Aerobic biocconversion of c-glycoside mangiferin into its aglycone norarctinhol by an isolated mouse intestinal bacterium. *Biosci. Biotechnol. Biochem.* 85, 989–997. doi: 10.1007/s10527-016-1211-2

He, C. Y., Fu, J., Shou, J., Zhao, Z. X., Ren, L., Wang, Y., et al. (2017). In vitro study of the metabolic characteristics of eight isouquinoline alkaloids from natural plants in rat gut microbiota. *Molecules* 22:932. doi: 10.3390/molecules22060932

He, J. X., Goto, E., Akao, T., and Tani, T. (2007). Interaction between Shaoyao- Gancao-Tang and a laxative with respect to alteration of paeniflorin metabolism by intestinal bacteria in rats. *Phytochemistry* 14, 452–459. doi: 10.1016/j.phytochem.2006.09.014

He, Y., Hu, Z., Li, A., Zhu, Z., Yang, Y., Zheng, Y., et al. (2019). Recent advances in biotransformation of saponins. *Molecules* 24:2365. doi: 10.3390/molecules24122365

He, B. L., Xiong, Y., Hu, T. G., Zong, M. H., and Wu, H. (2002). *Bifidobacterium* spp. as functional foods: a review of current status, challenges, and strategies. *Crit. Rev. Food Sci. Nutr.* 33, 1–18. doi: 10.1080/104083902900205934

Heng, Y., Kim, M. J., Yang, H. J., Kang, S., and Park, S. (2019). *Lactobacillus* intestinale efficiently produces equol from daidzin and byungkojung, short-term fermented soybeans. *Arch. Microbiol.* 201, 1009–1017. doi: 10.1007/s00203-019-1666-5

Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Raas-Madiedo, P., Sánchez, B., and Margolles, A. (2017). *Bifidobacterium* and their health-promoting effects. *Microbiol. Spectr.* 5. doi: 10.1128/microbiolspec.BAD-0010-2016

Hostgler, G. L., Ralston, R. A., and Schwartz, S. J. (2017). Flavonones: food sources, bioavailability, metabolism, and bioactivity. *Adv. Nutr.* 8, 423–435. doi: 10.1093/advnut/anw01248

Huang, W. C., Liou, C. J., Shen, S. C., Hu, S., Chao, J. C., Hsiao, C. Y., et al. (2022). Urolithin A inactivation of TLR3/TRIF signaling to block the NF-κB pathway in RAW264.7 cells. *Frontiers in Immunology* 11. doi: 10.3389/fimmu.2020.597501

Hassanin, A., Hashimoto, Y., Tomita-Yokotani, K., and Kobayashi, M. (2011). Aerobic biocconversion of c-glycoside mangiferin into its aglycone norarctinhol by an isolated mouse intestinal bacterium. *Biosci. Biotechnol. Biochem.* 85, 989–997. doi: 10.1007/s10527-016-1211-2
to decrease aquaporin-3 expression in the colon, causing the laxative effect of rhubarb extract. J. Ethnopharmacol. 152, 190–200. doi: 10.1016/j.jep.2013.12.055
Koppel, N., Maini Rekdal, V., and Baluks, P. F. (2017). Chemical transformation of xenobiotics by the human gut microbiota. Science 356:aag2770. doi: 10.1126/science.aag2772
Kumano, T., Fujiki, E., Hashimoto, Y., and Koyabashi, M. (2016). Discovery of a sesamin metabolizing microorganism and a new enzyme. Proc. Natl. Acad. Sci. U. S. A. 113, 9087–9092. doi: 10.1073/pnas.160505111
Kumar, K., Jaiswal, S. K., Dhoke, G. V., Srivastava, G. N., Sharma, A. K., and Sharma, V. K. (2018). Mechanistic and structural insight into promiscuity based metabolic flexibility of cardiac drug digoxin by gut microbial enzyme. J. Cell. Biochem. 119, 5287–5296. doi: 10.1002/jcb.26638
Lanaces-Costa, P. S., de Oliveira, J. S. D., da Silva Santos, N., and Nagao, P. E. (2021). A current review of pathogenicity determinants of streptococcus sp. J. Appl. Microbiol. 131, 1600–1620. doi: 10.1111/jam.15090
Lavrpenjes, K. van, Dyck, D., van Houdt, J., Hendrickx, J., Monbelin, J., Woestenborghs, R., et al. (1995). Reduction of the prodrug loperamide oxide to its active drug loperamide in ox bile of rats, dogs, and humans. Drug Metab. Dispos. 23, 354–362. PMID: 7628301
Le Bourvèlle, C., Bagano Vilas Boas, P., Lepercq, P., Comtet-Marre, S., Auffret, P., Ruiz, P., et al. (2019). Procozymid-cell wall interactions within apple matrices decrease the metabolization of procyanidins by the human gut microbiota and the anti-inflammatory effect of the resulting microbial metabolome in vitro. Nutrients 11:664. doi: 10.3390/nn1103664
Lee, S., Kim, C. M., Kang, J. P., Sohng, J. K., and Jung, H. J. (2017). The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int. J. Oncol. 51, 414–424. doi: 10.3892/ijo.2017.4054
Lennerns, H., and Abrahamsson, B. (2005). The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J. Pharm. Pharmacol. 57, 273–285. doi: 10.1211/jpp.2005.07055263
Li, C., Ai, G., Wang, Y., Lu, Q., Luo, C., Tan, L., et al. (2020). Oxyherbarine, a novel gut microbiota-mediated metabolite of herbarine, possesses superior anti-colic effect: impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-B pathway. Pharmacol. Res. 152.1014603. doi: 10.1016/j.phrs.2019.104603
Li, Q., Guo, Y., Xu, Y., Liu, W., and Zhou, L. (2020). Protective mechanism of rhubarb anaarquinoide glycosides in rats with cerebral ischaemia-reperfusion injury: interactions between medicine and intestinal flora. Chin. Med. 15:60. doi: 10.1186/s13020-020-00341-x
Li, J. M., He, M. Z., Feng, Y. L., Li, T. E., Li, Y., Wu, B., et al. (2017). Study on the daidzein isoflavone and its presumed beneficial health effects. J. Agric. Food Chem. 65, 758–771. doi: 10.1021/acs.jafc.6b05014
Liu, Y. L., Song, Y. G., Wei, S. F., Zhang, L., Yang, S. L., Wang, M., et al. (2015). The impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-B pathway. FASEB J. 29, 1245–1261. doi: 10.1096/fj.14-263359
Liu, M. Y., Li, M., Wang, X. L., Liu, P., Hao, Q. H., and Yu, X. M. (2013). Study on the occurrence of two metabolites of catechins and their kinetics in human urine and serum. Chin. J. Exp. Formulae 23, 859–868. doi: 10.1021/acs.jaffc.0c00059
Liu, Z., de Bruijn, W. J. C., Sanders, M. G., Wang, S., Bruins, M. E., and van der Goot, F. G. (2018). Automated reconstruction of genome-scale metabolic models for microbial species. Nucleic Acids Res. 46, 7542–7553. doi: 10.1093/nar/gky337
Maini Rekdal, V., Nd Bertrandino, P., Laescher, M. U., Kiamhse, S., Le, C., Bissan, J. E., et al. (2020). A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. Elife 9:e50845. doi: 10.7554/eLife.50845
Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovesy, J. C., et al. (2020). Health and disease markers correlate with gut microbiota and time of treatment on tissue levels of green tea polyphenols in mice. Sci. Rep. 10.1038/s41598-019-41687-x
Meng, X., Zhang, G., Cao, H., Cao, N., Xiong, T., Su, Y., et al. (2020). Gut dysbacteriosis and intestinal disease: mechanism and treatment. World J. Microbiol. Biotechnol. 30, 791–799. doi: 10.1007/s11292-013-1507-x
Michels, B. P., van Kranenburg, R., and Roberts, J. (2015). Comparative metabolism of human intestinal bacterium Eubacterium rectale with potential probiotic properties? Frontiers in Microbiology 6:1470. doi: 10.3389/fmicb.2015.01470
Zhao et al. 10.3839/fmicb.2020.956378
two recombinant bacterial enzymes and 3-oxo-g๐-oxo. Appl. Environ. Microbiol. 86, e00607–e00620. doi: 10.1128/AEM.00607-20

Nguyen, T. L., Vieira-Silva, S., Liston, A., and Raes, J. (2015). How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16. doi: 10.1242/dmm.20150071

Oehmcke-Hecht, S., Mandl, V., Naatz, L. T., Dürring, L., Köhler, J., Kreikemeyer, B., et al. (2020). Streptococcus gallolyticus abrogates anti-cancerogenic properties of tannic acid on low-passage colorectal carcinomas. Sci. Rep. 10: 4714. doi: 10.1038/s41598-020-61458-5

Ou, K., Sarnoski, P., Schneider, K. R., Song, K., Khou, C., and Gu, L. (2014). Microbial catalysis of pyruvates by human gut microbiota. Mol. Nutr. Food Res. 58, 2196–2205. doi: 10.1002/mnfr.201400243

Osvald, T., Sela, D. A., Xiao, J., Boyacigul, D., Chen, F., and Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78. doi: 10.3390/nu80502078

Pallau, K., Chiu, D., Günther, F., Birringer, M., Liersen, K., Schultheiß, G., et al. (2019). Resveratrol, lumarin and dihydroresveratrol do not act as caloric restriction mimetics when administered intraperitoneal in mice. Sci. Rep. 9:4445. doi: 10.1038/s41598-019-41050-2

Pang, C., Zheng, Z., Shi, L., Sheng, Y., Wei, H., Wang, Z., et al. (2016). Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidant defense system. Free Radic. Biol. Med. 91, 236–246. doi: 10.1016/j.freeradbiomed.2015.12.024

Paraiso, I. L., Plaggmann, I. S., Yang, L., Ziekle, R., Gombart, A. F., Maier, C. S., et al. (2019). Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium et al. (2019). Reductive metabolism of xanthohumol and 8-prenylnaringenin by the intestinal bacterium. Front. Microbiol. 10.1093/jn/135.5.1056

Park, H. Y., Park, S. H., Yoon, H. K., Han, M. J., and Kim, D. H. (2004). Anti-inflammatory activity of 18β-glycyrrhetinic acid-3-O-β-D-glucuronic acid. Arch. Pharm. Res. 27, 57–60. doi: 10.1007/s82084007

Pethalow, J. L., Heinonen, S. M., Aun, A. M., and Adlcreutz, H. (2005). Dietary sesamin is converted to enterolactone in humans. J. Nutr. 135, 1056–1062. doi: 10.1093/jn/135.5.1056

Peng, R., Han, F., Pu, J., Zhang, Z. W., Ma, S. R., Pan, L. B., et al. (2022). Esterase from Bifidobacteria exhibit the conversion of allolactin in gut microbiota. Front. Microbiol. 13:880118. doi: 10.3389/fmicb.2022.880118

Pereira-Caro, G., Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Pereira-Caro, G., Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Pradas, I., Crozier, A., and Fernández-Quirós, B., Ludwig, I. A., Prada...
efficiency of epimediin C. Bioorg. Chem. 81, 461–467. doi: 10.1016/j.bioorg.2018.08.004

Wu, X. M., and Tan, R. X. (2019). Interaction between gut microbiota and ethnomedicine constituents. Nat. Prod. Rep. 36, 788–809. doi: 10.1039/c9np00041g

Wu, M. J., Wu, X. L., Zhang, D. Q., Ding, L. Q., Qiu, F., and Zhang, H. M. (2017). Identification of metabolites of rutin in rats by UPLC-Q-TOF/MS (in Chinese). Chin. J. Exp. Pharmacol. Formulae 23, 91–97. doi: 10.13422/cnki.syrx.2017170091

Xiao, Y., Shao, K., Zhou, J., Wang, L., Ma, X., Wu, D., et al. (2021). Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat. Commun. 12:2828. doi: 10.1038/s41467-021-23095-y

Xie, Y., Hu, F., Xiang, D., Lu, H., Li, W., Zhao, A., et al. (2020). The metabolic effect of gut microbiota on drugs. Drug Metab. Res. 52, 139–156. doi: 10.1016/j.dmr.2020.01.179691

Xing, S., Wang, M., Peng, Y., Chen, D., and Li, X. (2014). Simulated gastrointestinal tract metabolism and pharmacological activities of water extract of Scutellaria baicalensis roots. J. Ethnopharmacol. 152, 183–189. doi: 10.1016/j.jep.2013.12.056

Yamawaki, M., Nishi, K., Nishimoto, S., Yamauchi, S., Akiyama, K., Kishida, T., et al. (2011). Immunomodulatory effect of (−)-matriceneol in vivo and ex vivo. Biosci. Biotechnol. Biochem. 75, 859–863. doi: 10.1080/03602532.2011.100781

Yan, T., Yi, T., and Zheng, T. T. (2018). Effects of human intestinal flora on the metabolic transformation of ginsenoside Rg3 and Ginsenoside D of Pulsatilla chinensis (in Chinese). Proprietary Chin. Med. 40, 1902–1909

Yang, G., Hong, S., Yang, P., Sun, Y., Wang, Y., Zhang, P., et al. (2021). Discovery of an ene-reductase for initiating flavone and flavonoid catalysis in gut bacteria. Nat. Commun. 12:790. doi: 10.1038/s41467-021-20974-2

Yang, J., Qian, D., Jiang, S., Sheng, E. X., Guo, E., and Duan, J. A. (2012). Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 898, 95–100. doi: 10.1016/j.jchromb.2012.04.024

Yang, X. W., Zhang, Y. J., and Xu, W. (2007). Biotransformation of mogroside III by human intestinal bacteria. Biochemical Pharmacol. 73, 657–662. doi: 10.1016/j.bcp.2006.12.009

Yao, R., Wong, C. B., Nakamura, M., Miyayama, E., Tanaka, A., Kuhara, T., et al. (2019). Bifidobacterium breve MCC1274 with glycosidic activity enhances in vivo stool flow bioavailability. Benef Microbes 10, 521–531. doi: 10.3920/bm2018.0179

Ye, M., Wang, Q., Zhang, W., Li, Z., Wang, Y., and Hu, R. (2014). Oxyrinol A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via NFκB ARE activation. Biochem. Biophys. Res. Commun. 437, 332–338. doi: 10.1016/j.bbrc.2014-03-0030

Ye, M., Mi, J., Xu, X., Zhu, J., Gao, X., and Liu, W. (2021). Polysaccharides catalysis in the human gut bacterium Bifidobacterium thetaumacrorum: advances and perspectives. Crit. Rev. Food Sci. Nutr. 61, 3569–3588. doi: 10.1080/03602532.2020.1831398

Yin, J. S., Kim, Y. S., Moos, S. K., Cho, K. H., Bae, H. S., Kim, J. I., et al. (2004). Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull. 27, 1580–1584. doi: 10.1248/bpb.27.1580

Yokoyama, S., and Suzuki, T. (2008). Isolation and characterization of a novel p-hydroxybenzoic acid dehydrogenase from Clostridium difficilis. J. Ferment. Bioeng. 106, 260–266. doi: 10.1016/j.jfb.2008.03.029

Yoshikawa, K., Masuda, H., Matushima, E., Ikeda, K., Nagayama, S., and Kawaguchi, Y. (2000). Tissue distribution and biotransformation of potassium oxonate after oral administration of a novel antioxidant agent (drug combination of tegafur, 5-Chloro-2,4-dihydroxypyridine, and potassium oxonate) to rats. Drug Metab. Dispos. 28, 1162–1167. PMID: 10997934

Youn, S. Y., Park, M. S., and G. E. (2012). Identification of the beta-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum: BGYN4. Microb. Biotechnol. 22, 1714–1723. doi: 10.1111/j.2042-0521.2010.00016.x

Yu, Q., Liu, Y., Wu, Y., and Chen, C. (2018). Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced O2 and HepG2 cells. Biomed. Pharmacother. 103, 1237–1336. doi: 10.1016/j.biopha.2018.04.143

Zafar, H., and Saier, M. H. J. (2021). Gut Bacteroides species in health and disease. Gut Microbes 13, 1–20. doi: 10.1089/gimb.2019.094706.1848158

Zhang, R., Huang, M. Y., Yan, J. H., Liu, X. Y., Zhou, Q., Luo, Z. Y., et al. (2019). Highly selective production of compound K from Ginsenoside Rb1 by hydrolyzing glucose at C3 glycoside using β-glucosidase of Bifidobacterium breve ATCC15700. J. Microbiol. Biotechnol. 29, 410–418. doi: 10.1007/s12210-008-08059

Zhang, L., Jiao, X., Song, W., and P. (2019). Gut microbial beta-glucuronidase and glycerol/diol dehydratase activity contribute to dietary heterocyclic amine biotransformation. BMC Microbiol. 19:99. doi: 10.1186/s12866-019-1483-x

Zhao, L., Ma, X., and Fan, D. (2022). Ginsenoside CK ameliorates hepatic lipid accumulation via activating the LKB1/AMPK pathway in vitro and in vivo. Food Funct. 13, 1153–1167. doi: 10.1039/d2fo00326d

Zhang, M., Peng, C. S., and Li, X. B. (2015). In vivo and in vitro metabolites from the main diester and monoester diterpened alkaloids in a traditional Chinese herb,
the aconitum species. *Evid. Based Complement. Alternat. Med.* 2015:252434. doi: 10.1155/2015/252434

Zhao, M., Peng, C. S., and Li, X. B. (2017). Human intestine and liver microsomal metabolic differences between C19-diester and monoester diterpenoid alkaloids from the roots of *Aconitum carmichaelii* Debx. *Toxicol. In Vitro* 45, 318–333. doi: 10.1016/j.tiv.2017.09.011

Zhang, S., Wang, R., Zhao, Y., Tareq, F. S., and Sang, S. (2019). Biotransformation of myricetin: a novel metabolic pathway to produce aminated products in mice. *Mol. Nutr. Food Res.* 63:e1900203. doi: 10.1002/mnfr.201900203

Zhang, S., Xiao, L., Ly, L., and Sang, S. (2020). Trapping methylglyoxal by myricetin and its metabolites in mice. *J. Agric. Food Chem.* 68, 9408–9414. doi: 10.1021/acs.jafc.0c03471

Zhang, Y., Yang, D. H., Zhang, Y. T., Chen, X. M., Li, L. L., and Cai, S. Q. (2014). Biotransformation on the flavonolignan constituents of *Silybi Fructus* by an intestinal bacterial strain *Eubacterium limosum* ZL-II. *Fitoterapia* 92, 61–71. doi: 10.1016/j.fitote.2013.10.001

Zhong, F. L., Ma, R., Jiang, M., Dong, W. W., Jiang, J., Wu, S., et al. (2016). Cloning and characterization of ginsenoside-hydrolyzing β-glucosidase from *Lactobacillus brevis* that transforms ginsenosides Rb1 and F2 into ginsenoside Rd and compound K. *J. Microbiol. Biotechnol.* 26, 1661–1667. doi: 10.4014/jmb.1605.05052

Zheng, W., Zhao, S., Yin, Y., Zhang, H., Needham, D. M., Evans, E. D., et al. (2022). High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. *Science* 376:eabr1483. doi: 10.1126/science.abr1483