Analysis of HIV-1 Vpr determinants responsible for cell growth arrest in *Saccharomyces cerevisiae*

Xiao-Jian Yao¹,², Nicole Rougeau¹, Ghislaine Duisit¹, Julie Lemay¹ and Éric A Cohen*¹

Address: ¹Laboratoire de Rétrovirologie Humaine, Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada and ²Current address: Dept. of Medical Microbiology, University of Manitoba, Basic Medical Sciences Building, 730 William Avenue, Winnipeg, Manitoba R3E 0W3, Canada

Email: Xiao-Jian Yao - yao2@cc.umanitoba.ca; Nicole Rougeau - nicole.rougeau@umontreal.ca; Duisit Ghislaine - g.duisit@umontreal.ca; Julie Lemay - j.lemay@pasteur.fr; Eric A Cohen* - eric.cohen@umontreal.ca

* Corresponding author

Abstract

Background: The HIV-1 genome encodes a well-conserved accessory gene product, Vpr, that serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest, and the modulation of HIV-1-induced apoptosis. We previously reported the genetic selection of a panel of di-tryptophan (W)-containing peptides capable of interacting with HIV-1 Vpr and inhibiting its cytostatic activity in *Saccharomyces cerevisiae* (Yao, X.-J., J. Lemay, N. Rougeau, M. Clément, S. Kurtz, P. Belhumeur, and E. A. Cohen, J. Biol. Chem. v. 277, p. 48816–48826, 2002). In this study, we performed a mutagenic analysis of Vpr to identify sequence and/or structural determinants implicated in the interaction with di-W-containing peptides and assessed the effect of mutations on Vpr-induced cytostatic activity in *S. cerevisiae*.

Results: Our data clearly shows that integrity of N-terminal α-helix I (17–33) and α-helix III (53–83) is crucial for Vpr interaction with di-W-containing peptides as well as for the protein-induced cytostatic effect in budding yeast. Interestingly, several Vpr mutants, mainly in the N- and C-terminal domains, which were previously reported to be defective for cell-cycle arrest or apoptosis in human cells, still displayed a cytostatic activity in *S. cerevisiae* and remained sensitive to the inhibitory effect of di-W-containing peptides.

Conclusions: Vpr-induced growth arrest in budding yeast can be effectively inhibited by GST-fused di-W peptide through a specific interaction of di-W peptide with Vpr functional domain, which includes α-helix I (17–33) and α-helix III (53–83). Furthermore, the mechanism(s) underlying Vpr-induced cytostatic effect in budding yeast are likely to be distinct from those implicated in cell-cycle alteration and apoptosis in human cells.
replication and pathogenesis. First, virion-associated Vpr has been shown to act early in viral infection as a facilitator of HIV-1 preintegration complex (PIC) entry through the limiting nuclear pore. This activity of Vpr is thought to be responsible for Vpr’s ability to enhance HIV-1 replication in nondividing cells, most notably in terminally differentiated macrophages [3-5]. Second, expression of Vpr induces a G2 cell cycle arrest, which is thought to indirectly enhance viral replication by increasing transcription from the HIV-1 long terminal repeat (LTR) [6,7].

Even though the molecular mechanism of Vpr-mediated cell-cycle G2 arrest is still obscure, it has been known that Vpr expression leads to inactivation of the mitotic p34cdc2/cyclinB complex in human cells [8,9] as well as in fission yeast Schizosaccharomyces pombe (Sc. Pombe) [10-14]. Involvement of protein phosphatase 2A (PP2A), Wee1, Cdc25C, and 14-3-3 proteins has also been implicated [8-12,14] but the host cell proteins directly engaged by Vpr are not yet identified. Noteworthy, HIV-1 Vpr expression induces also a growth arrest in Saccharomyces (S.) cerevisiae [15-17]. Deletion mapping studies showed that the C-terminal 33 amino acids, including the H(S/F)RIG motif, contributed to this cytostatic effect [15,18]. Although this region has also been implicated in Vpr-mediated cell-cycle dysregulation in mammalian and S. Pombe cells [19-25], the molecular mechanism of Vpr-growth arrest in budding yeast is thought to be distinct since growth arrest occurs independently of any evident block at the G2/M transition [16]. Accordingly, it has been reported that the G2/mitosis transition in budding yeast is regulated differently than in mammalian cells and fission yeast [26,27]. Indeed, Vpr cytostatic effect observed in S. cerevisiae has been proposed to result from gross mitochondrial dysfunction [17] and/or cytoskeletal defects [16], rather than a cell cycle G2 arrest.

In addition to nuclear import and cytostatic activities, HIV-1 Vpr exhibits cytotoxic properties. Elevated intracellular expression or addition of extracellular Vpr or derived peptides results in proapoptotic effects in human cells including neurons [6,28,29] as well as cytotoxicity in budding and fission yeasts [30,31]. Jacot et al. have provided evidence indicating that extracellular Vpr or peptides derived from Vpr C-terminus induce mitochondrial dysfunction in human cells by a mechanism involving a specific binding to the adenosine nucleotide translocator (ANT), a component of the permeability transition pore complex (PTPC) in the mitochondrial membrane. The resulting mitochondrial membrane permeabilization (MMP) leads to a decreased membrane potential and the release of cytochrome c and apoptosis inducing factor (AIF) [32,33]. This Vpr-mediated MMP is thought to initiate cell death through both caspase-dependent and independent mechanisms in human cells as well as cytotoxicity in budding yeast [32-37]. In addition, it has also been shown that extracellular Vpr is capable of forming cation-selective ion channels in planar lipid bilayers, which can depolarize intact cultured neurons, thus leading to cell death [28].

In a previous report, we have shown that expression of genetically-selected glutathione-S-transferase (GST)-fused di-tryptophan (di-W)-containing peptides inhibited Vpr-mediated growth arrest in S. cerevisiae presumably by interacting with Vpr [38]. Interestingly, these, di-W-containing peptides were also able to inhibit Vpr biological activities, including nuclear import, cell cycle G2 arrest and apoptosis, in mammalian cells or HIV-1 infected T cells [38]. Even though the inhibitory effect of these di-W-containing peptides correlated with their ability to interact with Vpr in budding yeast, the detailed mechanism underlying their mode of action remains to be defined. In addition, it is still unclear whether the growth arrest activity of Vpr in budding yeast is related to specific biological activities of Vpr in human cells. In this study, we have performed a mutagenic analysis of Vpr to identify Vpr domains important for di-W peptide binding and cytostatic activity in S. cerevisiae. Results reveal that the inhibitory di-W-containing peptides target specifically a functional domain of Vpr directly involved in growth arrest in budding yeast. Furthermore, several previously well-characterized Vpr mutants unable to induce cell-cycle dysregulation and/or apoptosis in mammalian cells still exhibit strong growth arrest activity in budding yeast, indeed suggesting that Vpr carries out distinct functions in S. cerevisiae.

Results

Analysis of Vpr sequence and/or structural determinants implicated in the interaction with di-W-containing peptides

We have previously used a genetic selection system in S. cerevisiae budding yeast and selected a panel of di-W-containing GST-peptides that specifically inhibit Vpr-mediated yeast growth arrest function presumably through their ability to bind HIV-1 Vpr [38]. In this study, we further investigated the molecular mechanism of this inhibition using a newly selected GST-fused di-W peptide WWSFJKSV (GST-B4), which displayed an enhanced ability to bind Vpr and inhibit its growth arrest activity in budding yeast (Fig. 1A and 1B).

Structural studies performed with synthetic forms of Vpr indicate that Vpr is characterized by a well-defined gamma turn (14-16)-alpha helix (a-helix I: 17-33)-turn (34-36), followed by an alpha helix(a-helix II: 40-48)-loop (49-54)-alpha helix (a-helix III: 55-83) domain and ends with a very flexible C-terminal arginine-rich sequence [39]. The a-helical determinants where shown...
to be required for Vpr virion incorporation, nuclear localization and oligomerization [39-44] and are believed to be involved in heterologous protein binding [45]. The arginine rich C-terminal region of Vpr has not been shown to have a predicted structure, however this region harbors protein phosphorylation sites and plays an important role in cell cycle G2 arrest and the nuclear localization of the protein in mammalian cells [6,31,46]. To further investigate the sequence and/or structural requirement of Vpr for GST-B4 binding, mutations were introduced in p424Gal1-Vpr expressor to target different regions of Vpr (Fig. 2A). The N-terminal Q3R mutant was shown to affect Vpr proapoptotic activity during HIV-1 replication [47]. Four amino acids Glu21, Leu23, Glu25 and Ala30 were separately changed to Lys or Phe (E21K, L23F, E25K and A30F) in order to disrupt the amphipaticity of the first α-helix [39] (Fig. 2A). The F34I was introduced in a γ-turn region which is just after the α-helix I

Figure 1
GST-B4 peptide binds to HIV-1 Vpr in S. cerevisiae and rescues cell growth. (A) GST pull-down from yeast extracts. S. cerevisiae HP16 strain co-transformed with GST or GST-B4 plasmids and (R+) or (R-) Vpr expressor were metabolically-labeled with 150 μCi of 35S-Translabel in Vpr-inducible medium. Half volume of the cell extract was used for GST pull-down, while the remaining lysates were subjected to immunoprecipitation with polyclonal anti-Vpr antiserum. Total and GST-bound radiolabeled Vpr proteins were detected by autoradiography after SDS-PAGE. (B) GST-B4 suppression of Vpr-induced cell growth arrest. Yeast co-transformants were grown in non-inducible selective medium for two days. Similar number of yeast cells were then serially diluted, spotted onto either Vpr non-inducible (Trp-/Ura-, 2% raf) or Vpr-inducible plates (Trp-/Ura-, 2% gal) and incubated for 3 to 5 days to evaluate their growth rates. This data is representative of results obtained in two independent experiments.
The R62P and I63K mutations introduced in the third helix were aimed at interfering with the integrity of the α-helix and are known to abolish Vpr nuclear localization [41]. Four mutants in the C-terminal region, including R77Q, S79A, R80A and RR87,88AA, were generated to replace positively-charged arginine residues or to remove the critical phosphorylation site (Ser 79) of the protein. Vpr mutants S79A and R80A were reported to be defective for cell cycle G2 arrest activity in mammalian cells, while the proapoptotic activity of R77Q was severely attenuated [6,24,48]. In addition, a frameshift mutation (R77fs) [40] and a truncation mutation (R86stop), which prematurely terminate the protein at amino acid 77 and 86 respectively were also constructed.

To determine the impact of the Vpr mutations on GST-B4 peptide binding, HP-16 yeast co-transformed with mutated-Vpr expressors and either GST or GST-B4 vectors were radio-labeled in Vpr-inducible medium and subjected to GST pull-down assays (Fig. 2B), as described in...

Figure 2

HIV-1 Vpr mutants exhibit differential GST-B4 binding abilities. Each Vpr mutant used in this study with the exact location of the introduced mutation is described (A). (B) GST pull-down using a panel of Vpr mutants. Assays were performed as described in Fig. 1A. Protein extracts were prepared from radiolabeled cells expressing GST (lanes 1–2) or GST-B4 proteins (lanes 3–17) alone (R-), or in presence of wild-type Vpr (R+) or different mutant proteins, as indicated. Vpr bound to GST-B4 (upper panel) and the total amount of Vpr as determined using immunoprecipitation with anti-Vpr antiserum (lower panel) were separated by SDS-PAGE and detected after autoradiography. (C) The percentage of GST-B4-bound Vpr relative to the total amounts of Vpr for each mutant was quantified by autoradiography scanning and the level of wild type Vpr bound to GST-B4 was arbitrarily set as 100%. These data are representative of at least two independent experiments.
Materials and Methods. Moreover, the amount of wild type Vpr or each mutant bound to GST-B4 peptide was evaluated by laser densitometric scanning of bands in autoradiograms and normalized to the total amounts of Vpr and GST proteins that were expressed in each transformant. The amounts of wild type Vpr bound to GST-B4 was arbitrarily set as 100% (Fig. 2C). Results of figure 2B reveal that all Vpr mutants were expressed at comparable levels, as determined by Vpr immunoprecipitation of induced-cell lysates with the exception of Vpr (R77fs), which indeed was previously reported to be less stable than wild type Vpr [40] (Fig. 2B, lower panel). While no Vpr interacted with GST (Fig. 2B, upper panel, lane 2), similar levels of wild type Vpr E25K, F34I, I63K, R77fs, R80A, R87, 88 and R86stop mutants were pulled-down with GST-B4 (Fig. 2B, upper panel and 2C). Similar results were obtained for Vpr mutants Q3R, R77Q, S79A (data not shown). In contrast, E21K, L23F, A30F and R62P mutants, which are respectively located in α-helix I and α-helix III regions, were not co-pulled down with GST-B4 (Fig. 2B (upper panel, lanes 5, 7, 8 and 14) and 2C). Taken together, these results suggest that the integrity of the N-terminal α-helix I and the α-helix III of Vpr are crucial for GST-B4 binding, whereas the C-terminal domain is dispensable for the interaction.

Vpr mutants defective for GST-B4 binding are unable to arrest yeast cell growth

We next tested the growth arrest activity of these Vpr mutants in HP-16 yeast. Growing yeast cells transformed with the empty vector (R-), wild-type (R+) or mutated Vpr expressers were serially diluted and spotted onto either a Vpr non-inducible plate (Trp+, 2% raf) or a Vpr-inducible plate (Trp-, 2% gal). Cell growth was evaluated following an incubation of 3–5 days at 30°C (Fig. 3). In Vpr non-inducible plate, all yeast transformants grew at similar rate (Fig. 3, left panel). Upon galactose induction, while the empty vector (R-) transformed yeast grew efficiently (Fig. 3, lanes 1, 8 and 15), the wild-type Vpr (lanes 2, 9 and 16), the Q3R mutant and all proteins mutated in the C-terminal region, including R77Q, S79A, R80A exhibited a profound growth arrest activity (Fig. 3, right panel (lanes 10, 13, 14 and 18). Similar results were obtained for R87, 88 and R86stop mutants (data not shown), indicating that the C-terminal arginine-rich region of Vpr is not involved in budding yeast growth arrest activity. Of note, R77fs showed an impaired growth arrest activity (Fig. 3, lane 17), which is most likely due to the shorter half-life of this truncated protein, as reported before [40]. In contrast, expression of helices I and III Vpr mutants, E21K, L23F, A30F and R62P, which displayed a strong attenuation of binding to GST-B4, did not lead to HP-16 budding yeast growth arrest (Fig. 3, right panel, lanes 3, 4, 6 and 11). On the contrary, helix I or III mutants E25K, F34I, and I63K, which were able to interact with GST-B4, still exhibited growth arrest activity, even though at reduced levels as compared to wild-type Vpr (Fig. 3, right panel, 5, 7 and 12). These results indicate that Vpr helices I and III represent an important functional domain involved in growth arrest in budding yeast.

GST-B4 inhibits the cytostatic activity of Vpr mutants and rescues cell growth

To further investigate the correlation between the inhibitory effect of GST-B4 and its Vpr-binding ability, GST or GST-B4 were co-expressed with two GST-B4-binding defective Vpr mutants E21K and L23F or with two GST-B4-binding competent mutants E25K and F34I in HP-16 yeast and the resulting cell growth was monitored in Vpr-inducible plates as described above. In agreement with the data of figure 3, in the presence of GST alone, mutants E25K and F34I induced significant yeast growth arrest, while such activity was severely impaired for B4-binding defective mutants E21K and L23F (Fig. 4, left panel). In contrast, GST-B4 co-expression strongly inhibited the growth arrest activity of the wild type Vpr, E25K and F34I mutants and indeed restored their cell growth at a level comparable to that of yeast cells expressing E21K or L23F (Fig. 4, right panel). A weak inhibitory activity of B4 was also observed with mutants E21K and L23F (lanes 3 and 4). It is possible that this may reflect a weak or instable interaction between B4 and Vpr mutants E21K and L23F, which could not be clearly detected in the binding experiments (Fig. 3). Overall, these results clearly indicate that GST-B4 specifically binds to structural determinants that are important for inducing cell growth arrest. Moreover, as described previously [38], the binding efficiency of B4 peptides correlates with the extent of the peptide inhibitory activity.

Discussion

We have previously shown that GST-fused di-W-containing peptides were able to interact with HIV-1 Vpr and as a result inhibit its multiple functions in budding yeast as well as in HIV-1 infected T cells [38]. In the present study we have further investigated the sequence and/or structural determinants required for Vpr peptide interaction and determined their impact on Vpr cytostatic activity in budding yeast. Results clearly show that GST-fused B4 peptide interaction with Vpr involves the α-helical I and III structure of Vpr. Mutations affecting the integrity of these helical regions not only interfered with the interaction with GST-B4 peptide, but also failed to induce a cytostatic activity in budding yeast. Furthermore, Vpr mutants, including Q3R, R77Q, R80A and S79A, yet defective for cell-cycle arrest or apoptosis in mammalian cells, still induced a growth arrest in S. cerevisiae and displayed sensitivity to GST-B4 inhibition. Overall, these results indicate that GST-fused di-W-containing peptides directly target functional domains of HIV-1 Vpr responsible for
inducing growth arrest in budding yeast and strongly suggest that the mechanism(s) underlying Vpr-induced cytostatic effect in budding yeast are distinct from those implicated in cell-cycle alteration and apoptosis in mammalian cells.

Previous reports have indicated that the Vpr cytostatic activity in *S. cerevisiae* budding yeast was attributed to its last 63–96 amino acid (aa) and the critical domain was located in a conserved C-terminal HFRIGCRHSRIG sequence from aa 71 to 82 [15]. In contrast, our results showed that expression of a truncated Vpr encompassing aa 1 to 77 was sufficient to induce growth arrest (Fig. 3), suggesting that the sequence of HFRIG (aa 71 to 75), but not HSRIG (aa 78 to 82) and other C-terminal region of Vpr, may constitute one important determinant for this Vpr-induced phenotype. Consistently, a mutagenic analysis by Berglez *et al.*, revealed that substitution mutations of aa His71 or Gly75 in this HFRIG sequence abolished Vpr cytostatic effect in budding yeast [18]. Interestingly, our analysis clearly reveal that the N-terminal α-helix I and the α-helix III are both contributing to Vpr cytostatic effect, which is in agreement with a previous finding by Gu *et al* showing that the Vpr F34I mutant was unable to

Figure 3
The growth arrest activity of different Vpr mutants. *S. cerevisiae* HP16 yeast was transformed with the p424Gal1 expressor alone (R-) or coding for wild-type (R+) or each mutant, as indicated at the left of photograph, and first grown in non-inducible medium for 2 days. Then, similar amounts of transformed yeast were serially 10× diluted and spotted onto either non-inducible (Trp-, 2% raf) or Vpr-inducible (Trp-, 2% gal) plates and incubated for 3 days to evaluate their growth rates. This data is representative of at least two independent experiments. The ability of each mutant to bind the B4 peptide is indicated on the right. (+) indicates efficient binding while (-) indicates absence of binding.
induce a growth arrest phenotype in budding yeast [16]. On the basis of the Vpr NMR structure reported by Wecker et al [39], mutations E21K, L23F, E25K and A30F located within the α-helix I (from aa 17 to 33) were designed to disrupt either the negatively-charged cluster or the hydrophobic interface. With the exception of E25K mutant, all other mutations in this N-terminal α-helical region lead to the loss of Vpr cytostatic function (Fig. 3). In addition, disruption of the third α-helix by introduction of a proline at position 62 (R62P) suppressed Vpr-induced growth arrest, suggesting that integrity of α-helices I and III was required for Vpr cytostatic activity in budding yeast. It was also noted that E25K and I63K still induced a low level of growth arrest compared to other helical region mutants (Fig. 3). It could be possible that E25K is somewhat external to the spatially-aligned acidic cluster D17-E21-E24 [39], and may be therefore less critical. Similarly, the I63K mutation may have a minor impact on the tridimensional structure of helix III as compared to the introduction of a proline residue as with the R62P Vpr mutant.

One striking observation of this study is that the four mutants (E21K, L23F, A30F and R62P) located in the α-helical I and III regions of Vpr, which were defective for the cytostatic activity in budding yeast (Fig. 3) also lost the ability to interact with the inhibitory GST-B4 peptide (Fig. 2). It indicates that GST-B4 directly targets a critical

Figure 4
Comparison of GST-B4-mediated inhibition of the growth arrest activity of different Vpr mutants. S. cerevisiae HP16 yeast co-expressing GST (left panel) or GST-B4 (right panel) and a panel of representative Vpr mutants, as indicated, were serially 10× diluted and plated on Vpr-inducible and selective (Trp-/Ura-, 2% gal) plates as described in Fig. 3. The respective cell growth was evaluated after a 3-day incubation. This data is representative for two independent experiments.

Yeast dilutions	Yeast dilutions			
10^-1	10^-2	10^-3	10^-4	10^-5
R-	R+			
R-E21K	R-L23F			
R-E25K	R-F34I			
GST	GST-B4			
galactose	galactose			
1	2			
3	4			
5	6			

Comparison of GST-B4-mediated inhibition of the growth arrest activity of different Vpr mutants.
functional domain, possibly a structural cluster comprising both of α-helical I and III, that is responsible for cyto-
static activity. Interestingly, the sequence of GST-B4 (GST-
WWSKKSV) reveals that, in addition to a conserved di-W
motif [38], it also harbors an overlapping WxxF motif,
which has been previously isolated by phage-display as a
Vpr-binding motif and is present in Vpr-interacting pro-
tein uracil DNA glycosylase (UDG) [49]. Coincidentally,
a bipartite domain encompassing Vpr amino acids 15–27
and 63–77 was also shown to be involved in UDG bind-
ing [50]. Based on these observations, it appears that sim-
ilar regions of Vpr are involved in binding to UDG and
GST-B4 through targeting of a WxxF element. However,
E25K and F34I mutants, which were shown to be defective
for growth arrest in budding yeast remains an open question. During HIV-1 repli-
cation, the expression of Vpr has been shown to induce a
cell cycle G2 arrest resulting from the inactivation of the
mitotic p34cd2/cyclinB complex [51]. In contrast, Vpr-
motivated growth arrest in budding yeast is thought to
occur through a distinct mechanism(s), since it occurs
independently of any evident block at the G2/M transi-
tion [16]. In this study, we tested a panel of well-charac-
terized Vpr mutants for their ability to growth arrest HP-
16 budding yeast. Interestingly, Vpr mutants (S79A and
R80A) which were previously shown to be as stable as
wild type Vpr but defective for cell-cycle G2 arrest in
human cells [6,19,24] still induced strong growth arrest in
budding yeast. Conversely, L23F, and R62P mutants,
which are competent for cytostatic effect in mammalian
cells, [20,41] were unable to block yeast growth. There-
fore, it can be concluded that Vpr structural determinants
required for growth arrest in S. cerevisiae and human cells
are clearly distinct, implying that different molecular
mechanisms governs Vpr activities in these different cell
species. Moreover, our study also demonstrates that Vpr
cytostatic effect in budding yeast is not related to the cyto-
oxic activity of the viral protein. Vpr exhibits different
cytotoxic properties that implicate distinct domains of the
viral protein. First, wild-type Vpr and its first 40 N-termi-
nal amino acids can form cation-selective ion channels in
lipid bilayers [28,52]. Depolarization of the plasma mem-
brane resulting from inward sodium current eventually
induces killing of polarized cells such as neurons. On the
other hand, apoptosis in T cells is thought to be triggered
by transduction of full-length Vpr or its C-terminal 52–96
moiety into cells and involves mitochondrial membrane
permeabilization [33,53,54]. Resulting loss of mitochon-
drial transmembrane potential then induces the release of
apoaptogenic proteins, leading to caspase-dependent
(37,55,48) or caspase-independent [55] cell killing. The
fact that both 17–33 and 55–83 alpha-helices are required
for growth arrest in S. cerevisiae strongly suggests that the
cytostatic effect observed in budding yeast is mechanisti-
cally distinct from effects resulting from ion channels
formation or mitochondria permeabilization. Consistently,
Q3R, R80A, R77Q Vpr mutants, which were previously
shown to be as stable as wild type Vpr, but yet defective for
apoptosis induction in human cells [6,47,48] were still
able to block yeast growth in a B4-sensitive way.

Conclusions
Taken together, the results presented here provide evi-
dence that Vpr triggers growth arrest in budding yeast by
an undefined mechanism that is unrelated to Vpr-induced
cell cycle arrest and apoptosis in mammalian cells. This Vpr-
induced budding yeast growth arrest can be effectively
inhibited by GST-fused di-W peptide through an interac-
tion of di-W peptide with Vpr functional domain, which
includes α helix I and III. These observations would sup-
port a model in which, Vpr interacts with a di-W-contain-
ning protein in S. cerevisiae to induce yeast growth arrest.
The question that still remains unanswered at this point is
whether this Vpr cytostatic activity in budding yeast can
also play an important role during HIV-1 replication and
viral pathogenesis and further investigations are currently
underway to address this question.

Materials and methods
Yeast strain
The S. cerevisiae yeast strain used in this study was the pro-
tease-deficient HP-16 strain (MATα ura3-52 his3Δ1 leu2
trp1Δ63 prb1-1122 pep4-3 prc1-407) [56]. Plasmid trans-
formation was performed using the lithium acetate
method [57].

Plasmids, antisera and chemicals
The HIV-1 Vpr yeast expression plasmid (p424Gal1-Vpr)
and the negative control plasmid p424Gal1-R have been
previously described [38]. To generate different
different Vpr mutants cDNAs (Fig. 2A) was generated by a two-steps
polymerase chain reaction (PCR)-based method [40] by
using a 5′-primer (5′-CTGCTAGCGGATAGATGGGA-3′)
harboring a BamH1 site in front of the Vpr initiation
codon, a 3′-primer (5′-GCATCGCTCGAGGATCTACT-
GCC-3′) containing a Xhol site after the stop codon of Vpr
and the complementary oligonucleotide primers containing
the desired mutations. Amplified Vpr cDNA harboring
specific mutations were then cloned into the p424Gal1 vector at BamH1/Xhol sites. The Vpr mutants L23F, E25K,
A30F, R62P, I63K, R77Q, R77fs and R80A were previously
described [6,41,48]. The pPGK-GST plasmid was
described previously [38] while the pPGK-GST-B4
expressor was isolated and purified from an S. cerevisiae
HP-16 yeast colony that was resistant to HIV-1 Vpr-mediated growth arrest as previously described [38].

The rabbit anti-Vpr polyclonal serum was raised against bacterially expressed recombinant Vpr as described previously [58]. Galactose, raffinose and glucose were purchased from Sigma Inc.

Evaluation of the growth arrest activity of Vpr mutants and the anti-Vpr activity of GST-peptide in budding yeast

The experimental procedures to evaluate protein expression, Vpr growth arrest activity and the anti-Vpr activity of GST-fused di-W peptide were described previously [38]. Briefly, HP-16 yeast cells transformed with p424Gal1-wild-type/mutant Vpr plasmids or co-transformed with Vpr expression and pPGK-GST-B4 plasmid were first grown in a Vpr non-inducible selective medium (Trp or Trp/ura, 2% raffinose (raf+)) for 2 days. Then, suspensions of transformed HP-16 yeast cells (adjusted at similar cell densities) were serially diluted and spotted onto either a Vpr non-inducible plate (Trp or Trp/ura, 2% raf) or a Vpr-inducible plate (Trp or Trp/ura, 2% gal) to evaluate the growth of each co-transformed HP16 population.

GST pull-down assay and anti-Vpr immunoprecipitation

HP16 o-transfectants were radiolabeled with 150 μCi of [35S-Translabel (ICN Inc.)] in Vpr-inducible medium and lysed in CHAPS buffer as previously described [38]. Cell extracts were then subjected to GST pull-down assay [4,38]. Briefly, lysates were incubated with glutathione-sepharose 4B beads (Amerham Pharmacia Biotech Inc) for 2 hours at 4°C. Beads were washed 3 times and the radiolabeled protein complexes were eluted with an elution buffer (100mM reduced glutathione, 120 mM NaCl, 100 mM Tris-HCl pH 8.5) by gentle shaking at 4°C for 1 hour. Eluted protein complexes were separated by SDS-PAGE and detected by autoradiography. For Vpr expression analysis, aliquots of labeled yeast lysates were immunoprecipitated with anti-Vpr antibodies as described previously [38,40].

Authors’ contributions

X-J. Yao designed the experiments, constructed most Vpr mutants and wrote the manuscript. NR carried out the binding assays and tested the effect of Vpr mutants on yeast cells growth. JL selected and characterized the B4 GST-di-W-containing peptide. GD participated in the design of the study and critically evaluated the manuscript. EAC participated in the design of the study and coordinated it. All authors read and approved the final manuscript.

Acknowledgments

X-J. Yao is a recipient of a Médecine-Relève 2000-Messenger Foundation Award from the Faculté de Médecine, Université de Montréal. E.A. Cohen is the recipient of the Canada Research Chair in Human Retrovirology. This work was supported by grants from the Canadian Institute of Health Research (CIHR) and the CANVAC network of excellence to EAC.

References

1. Cohen EA, Dehni G, Sodroski JG, Haselton WA: Human immunodeficiency virus type 1 virion expression is a virion-associated regulatory protein. J Virol 1993, 67:2709-2709.

2. Paxton W, Connor RI, Landau NR: Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of Gag and mutual analysis. J Virol 1993, 67:7279-7273.

3. Papov S, Rexach M, Zybarch G, Reiling N, Lee MA, Ratner L, Lane CM, Moore MS, Bloibel G, Bukrinsky M: Viral protein R regulates nuclear import of HIV-1 pre-integration complex. EMBO J 1998, 17:909-917.

4. Vodicka MA, Koepf DM, Silver PA, Emerman M: HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 1998, 12:175-185.

5. Heinzinger NK, Bukinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M: The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of HIV type 1 non-structural host genes. J Virol 1996, 70:5821-5826.

6. Yao XJ, Mouland AJ, Subbramanian RA, Gendelman HE, Ratner L, Stevenson M, Emerman M: Human immunodeficiency virus type 1 viral protein (R) Vpr arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 1995, 69:6705-6711.

7. Xie J, Choe S, Walker R, Di Marzo P, Morgan DO, Landau NR: Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting the activation of p34cdc2-cyclin B. J Virol 1995, 69:8695-8684.

8. Elder RT, Yu M, Chen M, Edelson S, Zhao Y: Cell cycle G2 arrest induced by HIV-1 Vpr in fission yeast (Schizosaccharomyces pombe) is independent of cell death and early genes in the DNA damage checkpoint. Virus Res 2000, 68:161-173.

9. Elder RT, Yu M, Chen M, Zhu X, Yangida M, Zhao Y: HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Weel and Cdc25. Virology 2001, 287:359-370.

10. Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M: HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 1998, 4:65-71.

11. Hahn BH, Emerman M: Human immunodeficiency virus type 1 protein R (Vpr) is a cell cycle inhibitor. J Virol 1996, 70:5821-5826.

12. Zhang C, Rasmussen C, Chang LJ: Cell cycle inhibitory effects of HIV and SIV Vpr and Vpx in the yeast Schizosaccharomyces pombe. Virology 1997, 230:103-112.

13. Macreadie IG, Castelli LA, Heath EV, Kirkpatrick A, Ward AG, Azad AA: A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects. Proc Natl Acad Sci U S A 1995, 92:2770-2774.

14. Gu J, Emerman M, Sandmeyer S: Small heat shock protein suppression of Vpr-induced cell growth defects in budding yeast. Mol Cell Biol 1997, 17:4033-4042.

15. Macreadie IG, Thorburn DR, Kirby DM, Castelli LA, de Rozario NL, Azad AA: HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeast Saccharomyces cerevisiae. FEBS Lett 1997, 410:145-149.

16. Berglez JM, Castelli LA, Sankovich SA, Smith SC, Curtain C, Macreadie IG: Residues within the HFR1GC sequence of HIV-1 vpr involved in growth arrest activities. Biochem Biophys Res Commun 1999, 264:287-290.
26. Amon A, Surana U, Muroff J, Nasmyth K: Human immunodeficiency virus type 1 Vpr protein transactivation function: mechanism and identification of domains involved. J Mol Biol 1998, 284:915-932. doi:10.1006/jmbi.2002.7779.

25. Mueller SM, Lang SM: Mutagenic analysis of human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J Virol 1997, 71:4842-4846.

24. Chen M, Elder RT, Yu M, O’Gorman MG, Selig L, Benarous R, Yamamoto A, Zhao Y: Transdominant activity of human immunodeficiency virus type 1 Vpr with a mutation at residue 73. J Virol 2000, 74:4877-4881.

23. Sawaya BE, Khalil K, Gordon J, Srinivasan A, Richardson M, Rappaport J, Amin S: Phosphorylation of human immunodeficiency virus type 1 Vpr regulates cell cycle arrest. J Virol 2000, 74:6520-6527.

22. Mueller SM, Lang SM: The first HxRxG motif in simian immunodeficiency virus mac239 Vpr is crucial for G2/M cell cycle arrest. J Virol 2000, 74:1704-1709.

21. Ammon A, Surana U, Muroff J, Nasmyth K: Regulation of p34cdc28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 1992, 355:368-371.

20. Sorger PK, Murray AW: S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 1992, 355:365-368.

19. Piller SC, Ewart GD, Jans DA, Gage PW, Jans DA: Phosphorylation of human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 1997, 71:5579-5592.

18. Ammon A, Surana U, Muroff J, Nasmyth K: Regulation of p34cdc28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 1992, 355:368-371.

17. Sorger PK, Murray AW: S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 1992, 355:365-368.

16. Piller SC, Ewart GD, Jans DA, Gage PW, Cox GB: The amino-terminal domain of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J Virol 1999, 73:4230-4238.

15. Stewart SA, Poon B, Jowett JB, Chen IS: Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 1997, 71:1185-1192.

14. Sato Y, Yu M, Chen M, Elder RT, Yamamoto A, Cao J: Pleiotropic effects of HIV-1 protein R (Vpr) on morphogenesis and cell survival in fission yeast and antagonism by pentoxifylline. J Virol 1998, 72:1327-1337.

13. Negishi K, Aruainagi CK, Hewish DR, White JF, Azad AA: Extra-cellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death. Mol Microbiol 1996, 19:1185-1192.

12. Yao XJ, Lemay J, Rougeau N, Clément M, Kurzt S, Belhumeur P, Cohen EA: Genetic selection of inhibitory peptides against Human Immunodeficiency Virus Type 1 Vpr. J Biol Chem 2002, 277:48816-48826.

11. Wecker K, Morellet N, Bouaziz S, Roques BP: NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol. Comparison with the Vpr N-terminal (1-15) and C-terminal (52-96) domains. Eur J Biochem 2002, 269:3779-3788.

10. Yao XJ, Subbramanian RA, Rougeau N, Boisvert F, Bergeron D, Cohen EA: Mutagenic analysis of human immunodeficiency virus type 1 Vpr: role of a predicted N-terminal alpha-helical structure in Vpr nuclear localization and virion packaging. J Virol 2002, 76:7033-7044.

9. Subbramanian RA, Yao XJ, Dhilhudy H, Rougeau N, Bergeron D, Robitaille Y, Cohen EA: Human immunodeficiency virus type 1 Vpr localization: nuclear transport of a viral protein modulated by a putative amphipathic helical structure and its relationship to biology. J Virol 2002, 76:6520-6527.

8. Schuler W, Wecker K, de Rocquigny H, Baudut Y, Sire J, Roques BP: NMR structure of the (52–93) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions. J Mol Biol 1999, 285:2105-2117.

7. Singh SP, Tomkowicz B, Lai D, Cartas M, Mahalingam S, Kalyanaraman VS, Muriri R, Srinivasan A: Functional role of residues corresponding to helical domain II (amino acids 35 to 46) of human immunodeficiency virus type 1 Vpr. J Virol 2000, 74:10650-10657.

6. Zhao LJ, Wang L, Pukhjere S, Narayan O: Biochemical mechanism of HIV-1 Vpr function: oligomerization mediated by the N-terminal domain (1-52). J Biol Chem 1999, 274:33331-33337.

5. Sherman MP, de Noronha CM, Heusch MI, Greene S, Greene WC: Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 2001, 75:1522-1532.

4. Somasundaran N, Sharkey M, Brichacek B, Luzuriaga K, Emarmann M, Sullivan J, Stevenson M: Evidence for a cytotoxicity-determining determinant in HIV-1 Vpr. Proc Natl Acad Sci U S A 2002, 99:9503-9508.

3. Lum J, Cohen OJ, Nie Z, Weaver JG, Gomez TS, Yao XJ, Lynch D, Pilon AA, Hawley N, Kim JE, Chen Z, Montpied M, Sanchez-Dardon J, Cohen EA, Badley AD: Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J Clin Invest 2003, 111:1547-1554.

2. BouHammad M, Xue Y, Baudut Y, Hu B, Sire J, Pomerantz RJ, Duan LX: The diversity of HIV-1 Vpr protein interacts invariantly with the WXXF motif of host cell proteins. J Biol Chem 1998, 273:8009-8016.

1. BouHammad M, Benichou S, Rev F, Navarro JM, Agostini I, Spire B, Camonis J, Shuphisng H, Vigne R, Benarous R, Sire J: Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Biol Chem 2002, 277:3231-3237.

http://www.retrovirology.com/content/1/1/21

Retrovirology 2004, 1:21

Page 10 of 11 (page number not for citation purposes)
57. Gietz D, St Jean A, Woods RA, Schiestl RH: Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 1992, 20:1425-1430.

58. Lavallée C, Yao X-J, Ladha A, Gottlinger H, Haseltine WA, Cohen EA: Requirement of the Pr55gag precursor for incorporation of the Vpr product into human immunodeficiency type 1 viral particles. J Virol 1994, 68:1926-1934.