AN ELEMENTARY PROOF
OF THE IRRATIONALITY OF TSCHAKALOFF SERIES

WADIM ZUDILIN‡ (Moscow)

E-print math.NT/0506086

To A. B. Shidlovskii on the occasion of his 90th birthday

Abstract. We present a new proof of the irrationality of values of the series
\[T_q(z) = \sum_{n=0}^{\infty} z^n q^{-n(n+1)/2} \]
in both qualitative and quantitative forms. The proof is based on
a hypergeometric construction of rational approximations to \(T_q(z) \).

1. Introduction. In 1919, L. Tschakaloff introduced the series [10]
\[T_q(z) = \sum_{n=0}^{\infty} z^n q^{-n(n+1)/2}, \tag{1} \]
convergent in the whole complex \(z \)-plane whenever \(|q| > 1 \), and proved the irrationality
and linear independence of its values at rational non-zero points \(z \) and \(q \) (under certain
assumptions on \(q \)). His method generalized that by O. Szász [9] for a special case
of (1), namely, the function \(\Theta_q(z) = \sum_{n=0}^{\infty} z^n q^{-n^2} = T_{q^2}(z/q) \); at about the same time
F. Bernstein and O. Szász [1] used a continued fraction for \(\Theta_q(z) \) due to Eisenstein
to provide another irrationality proof for its values at certain rational \(q \) and \(z \). These
seem to be the very first results on the arithmetic nature of values of \(q \)-series.

The aim of this note is to give an elementary proof of Tschakaloff’s theorem [10]
and also its quantitative form given by P. Bundschuh in [3, Satz 2].

Theorem. Let \(q = q_1/q_2 \) and \(z \) be non-zero rational numbers, where \(|q| > 1 \) and
\(q_1, q_2 \in \mathbb{Z} \). Suppose that the non-negative number
\[\gamma = \frac{\log |q_2|}{\log |q_1|} \]
satisfies \(\gamma < \gamma_0 = (3 - \sqrt{5})/2 \). Then the value \(T_q(z) \) is irrational. Moreover, for any
\(\varepsilon > 0 \) there exists a positive constant \(b_0(\varepsilon) \) such that
\[\left| T_q(z) - \frac{a}{b} \right| > |b|^{-1} - \frac{\sqrt{5} - 1}{2(\gamma_0 - \gamma)} - \varepsilon \tag{2} \]
for all integers \(a \) and \(b \) with \(|b| \geq b_0(\varepsilon) \).

The rational approximations to the Tschakaloff function (1) that we construct in the next section are actually the same as those in [10] and [3]. Our contribution here is to provide an elementary explanation of why these approximations are good enough to obtain the irrationality of \(T_q(z) \). Our proof is inspired by the ideas of L. Gutnik and Yu. Nesterenko [7, Section 1] in their proof that \(\zeta(3) \notin \mathbb{Q} \). This is the famous theorem due to R. Apéry; elementary proofs and interrelations with irrationality results for other mathematical constants may be found in [4] and [8].

2. Proof. For the first paragraph, we shall think of \(q \) as a variable. Let \(n \) be a positive integer and define the polynomial

\[
R(T; q) = R_n(T; q) = (1 - qT)(1 - q^2T) \cdots (1 - q^nT).
\]

Multiplication gives

\[
R(T; q) = \sum_{k=0}^{n} C_k(q)T^k,
\]

where, for \(k = 0, 1, \ldots, n \),

\[
C_k(q) = C_{k,n}(q) \in \mathbb{Z}[q]
\]

is a polynomial in \(q \) with

\[
\text{degree } C_k(q) \leq \frac{n(n + 1)}{2}.
\]

Conditions (4) and (5) imply that, if \(q = q_1/q_2 \), then

\[
q_2^{n(n+1)/2}C_k\left(\frac{q_1}{q_2}\right) \in \mathbb{Z}
\]

for \(k = 0, 1, \ldots, n \) and arbitrary non-zero integers \(q_1 \) and \(q_2 \).

Let \(m = \lfloor \beta n \rfloor \) (here \(\lfloor \cdot \rfloor \) denotes the integer part of a number), where \(\beta = (\sqrt{5} - 1)/2 \) is the positive root of the polynomial \(x^2 + x - 1 \), and introduce the series

\[
I_n = I_n(z; q) = \sum_{t=1}^{\infty} R_n(q^{-t}; q)z^{t+m}q^{-(t+m)(t+m-1)/2},
\]

which converges if \(|q| > 1 \). Using (3) we obtain

\[
I_n = \sum_{t=1}^{\infty} \sum_{k=0}^{n} C_k(q)q^{-(k-1)/2+km}z^{t+m}q^{-(t+m)(t+m-1)/2} \cdot \sum_{t=1}^{\infty} z^{l}q^{-l(l-1)/2}
\]
\[I_n = \sum_{k=0}^{n} z^{-k} C_k(q) q^{k(k-1)/2+km} \left(\sum_{l=0}^{\infty} z^l q^{-l(l-1)/2} - \sum_{l=0}^{k+m} z^l q^{-l(l-1)/2} \right) \]

\[= \sum_{k=0}^{n} z^{-k} C_k(q) q^{k(k-1)/2+km} \cdot T_q(z) - \sum_{k=0}^{n} C_k(q) \sum_{l=0}^{k+m} z^{-k-l} q^{k(k-1)/2+km-l(l-1)/2}. \]

(8)

If \(q = q_1/q_2 \) and \(z = z_1/z_2 \), where \(q_1, q_2, z_1, z_2 \in \mathbb{Z} \setminus \{0\} \), then from (6) and (8) we see that the quantity \(\tilde{I}_n = \tilde{I}_n(z; q) \) defined by

\[\tilde{I}_n = z_1 z_2 q_1^{m(m-1)/2} q_2^{n(n+1)/2+n(n-1)/2+nm} I_n \]

(9)

is of the form

\[\tilde{I}_n = B_n \cdot T_q(z) - A_n, \]

(10)

where \(A_n \) and \(B_n \) are integers, determined by (8) and (9). In addition, since equality in (5) is achieved only when \(k = n \), we see that the coefficient of \(T_q(z) \) in (8) has the following asymptotics as \(n \to \infty \) (where \(f(n) \sim g(n) \) means that \(f(n)/g(n) \to 1 \)):

\[\left| \sum_{k=0}^{n} z^{-k} C_k(q) q^{k(k-1)/2+km} \right| \sim |z|^{-n} |C_n(q)| |q|^{n(n-1)/2+nm} \]

\[= |z|^{-n} |q|^{n(n+m)}. \]

(11)

In order to evaluate the asymptotic behavior of the sum of the series (7), notice that \(R_n(q^{-t}; q) = 0 \) for \(t = 1, 2, \ldots, n \). Therefore (using \(f(n) = O(g(n)) \) as \(n \to \infty \) to mean that \(|f(n)| \leq C|g(n)| \) for some constant \(C > 0 \) and all \(n \) sufficiently large),

\[I_n = \sum_{t=n+1}^{\infty} R_n(q^{-t}; q) z^t q^{-t(t+m)(t+m-1)/2} \]

\[= R_n(q^{-n+1}; q) z^{n+m+1} q^{-n(n+m)(n+m+1)/2} + O(q^{-n(n+m+1)(n+m+2)/2}) \]

\[= z^{n+m+1} q^{-n(n+m)(n+m+1)/2} (1 - q^{-1})(1 - q^{-2}) \cdots (1 - q^{-n}) \]

\[+ O(q^{-n(n+m+1)(n+m+2)/2}) \]

\[\sim z^{n+m+1} q^{-n(m+n)(m+n+1)/2} \quad \text{as} \quad n \to \infty. \]

(12)

In particular, \(I_n \neq 0 \) for all \(n \) sufficiently large.

Finally, since \(|q_1/q_2| = |q| > 1 \) implies that \(|q_1| > 1 \), we may define \(\gamma \) by the relation \(\log |q_2| = \gamma \log |q_1| \), so that \(\gamma \geq 0 \). Assume that \(\gamma < \gamma_0 = (3 - \sqrt{5})/2 \). Then, from (9), (11), (12), and the relation \(m = \lfloor \beta n \rfloor \), for the quantities \(B_n \) and \(\tilde{I}_n \) in (10) we have

\[\lim_{n \to \infty} \frac{\log |B_n|}{n^2 \log |q_1|} = (1 - \gamma)(1 + \beta) + \gamma(1 + \beta) + \frac{\beta^2}{2} = \frac{\sqrt{5}(\sqrt{5} + 1)}{4} \]

(13)
and
\[
\lim_{n \to \infty} \frac{\log |\tilde{I}_n|}{n^2 \log |q_1|} = -(1 - \gamma) \frac{(1 + \beta)^2}{2} + \gamma(1 + \beta) + \frac{\beta^2}{2} = -\frac{\sqrt{5}(\sqrt{5} + 1)(\gamma_0 - \gamma)}{2(\sqrt{5} - 1)} < 0. \tag{14}
\]

Now let us show that \(T_q(z) \) cannot be rational. Suppose, on contrary, that \(T_q(z) = a/b \) for some integers \(a \) and \(b \neq 0 \). Then from (10)
\[
b\tilde{I}_n = B_n a - A_n b \in \mathbb{Z} \quad (n = 1, 2, \ldots).
\]
Recalling that (12) yields \(I_n \neq 0 \) for \(n \) large, we conclude that \(|b\tilde{I}_n| \geq 1 \). But, by (14), we have \(|b\tilde{I}_n| \to 0 \) as \(n \to \infty \). The contradiction implies that \(T_q(z) \notin \mathbb{Q} \).

We leave to the reader the derivation of estimate (2) from (10), (13), and (14) by letting \(a_n = A_n \) and \(b_n = B_n \) in the following standard lemma (compare [2, Section 11.3, Exercise 3]).

Lemma. Let \(\alpha \) be an irrational real number. Suppose that we have a sequence of rational approximations \(a_n/b_n \) to \(\alpha \) (where \(a_n, b_n \in \mathbb{Z} \) for \(n = 1, 2, \ldots \)) such that the sequence \(|b_n| \) tends to infinity with \(n \),
\[
\lim_{n \to \infty} \frac{\log |b_{n+1}|}{\log |b_n|} = 1,
\]
and with some constant \(c > 0 \)
\[
\left| \alpha - \frac{a_n}{b_n} \right| < \frac{1}{|b_n|^{1+c}}
\]
for all \(n \) sufficiently large. Then for any \(\varepsilon > 0 \) there exists a positive constant \(b_0(\varepsilon) \) such that
\[
\left| \alpha - \frac{a}{b} \right| > \frac{1}{b^{1+1/c+\varepsilon}}
\]
for all integers \(a \) and \(b \) with \(b \geq b_0(\varepsilon) \).

3. Related results. Although we are able to prove the irrationality of \(T_q(z) \) only under the hypothesis \(\gamma < \gamma_0 = 0.381966 \ldots \), it is expected that this hypothesis can be dropped, i.e., that \(T_q(z) \) is irrational for all \(z \in \mathbb{Q} \setminus \{0\} \) and \(q \in \mathbb{Q} \) with \(|q| > 1 \). This remains an open problem. The earlier method in [9] requires the condition \(\gamma < 1/3 \) (which is worse, since \(1/3 < \gamma_0 \)) corresponding to the simpler choice \(\beta = 0 \) in our notation. The choice \(\beta = (\sqrt{5} - 1)/2 \) ensures the optimal value of \(\gamma_0 \) in terms of the construction presented here.

The Tschakaloff function (1) might be viewed as “half” of the theta series \(\sum_{n \in \mathbb{Z}} z^{n-1/2} q^{-(n-1/2)^2} \). This viewpoint and Nesterenko’s theorem [6] on the transcendence of certain theta series imply the transcendence of \(T_q(z) \) for \(q \) algebraic, \(|q| > 1 \), and \(z = q^k \) with some \(k \in \mathbb{Z} \), solving this case of the open problem. On the other hand, when \(z \) and \(q \) are multiplicatively independent, no transcendence results are known. This is part of a general problem posed by K. Mahler in [5] for analytic
functions which satisfy functional equations (such as $T_q(z) = 1 + zT_q(z/q)$ for the function (1)), but to which his method from [5] cannot be applied.

The constants $\beta = (\sqrt{5} - 1)/2$ and $\gamma_0 = 1 - \beta$, involved in the proof of the Theorem, are related to the golden mean (or golden section), the positive root of the polynomial $x^2 - x - 1$. It is quite curious that the golden mean and its generalizations (the so-called metallic means) also occur in other irrationality proofs related to Apéry’s theorem [4].

Finally, we mention that a special case of the q-binomial theorem implies the following explicit formula for the polynomial (4):

$$C_k(q) = (-1)^k \binom{n}{k} q^{k(k+1)/2}$$

involving the q-binomial coefficients

$$\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n - k]_q!} \in \mathbb{Z}[q],$$

where $[0]_q! = 1$ and, for $k = 1, 2, \ldots,$

$$[k]_q! = \frac{(q - 1)(q^2 - 1)(q^3 - 1) \cdots (q^k - 1)}{(q - 1)^k}.$$

Acknowledgments. It is a pleasure for me to thank Jonathan Sondow, who conceptually influenced the note by several very useful suggestions.

References

1. F. Bernstein and O. Szász, Über Irrationalität unendlicher Kettenbrüche mit einer Anwendung auf die Reihe ..., Math. Ann. 76 (1915), 295–300.
2. J. M. Borwein and P. B. Borwein, Pi and the AGM: A study in analytic number theory and computational complexity, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1987.
3. P. Bundschuh, Verschärfung eines arithmetischen Satzes von Tschakaloff, Portugal. Math. 33 (1974), no. 1, 1–17.
4. D. Huylebrouck, Similarities in irrationality proofs for π, $\ln 2$, $\zeta(2)$ and $\zeta(3)$, Amer. Math. Monthly 108 (2001), no. 3 (March), 222–231.
5. K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512–521.
6. Yu. Nesterenko, Modular functions and transcendence problems, C. R. Acad. Sci. Paris Sér. I 322 (1996), no. 10, 909–914.
7. Yu. V. Nesterenko, A few remarks on $\zeta(3)$, Math. Notes 59 (1996), no. 6, 625–636.
8. A. van der Poorten, A proof that Euler missed... Apéry’s proof of the irrationality of $\zeta(3)$, An informal report, Math. Intelligencer 1 (1978/79), no. 4, 195–203.
9. O. Szász, Über Irrationalität gewisser unendlicher Reihen, Math. Ann. 76 (1915), 485–487.
10. L. Tschakaloff, Arithmetische Eigenschaften der unendlichen Reihe ..., Math. Ann. 80 (1919), 62–74.

Department of Mechanics and Mathematics
Moscow Lomonosov State University
Vorobyovy Gory, GSP-2
119992 Moscow, RUSSIA
URL: http://wain.mi.ras.ru/
E-mail address: wadim@ips.ras.ru