Antibacterial activities of the methanol extracts and compounds from *Erythrina sigmoidea* against Gram-negative multi-drug resistant phenotypes

Doriane E. Djeussi¹, Louis P. Sandjo², Jaurès A. K. Noumedem¹, Leonidah K. Omosa³, Bonaventure T. Ngadjui⁴ and Victor Kuete¹*

Abstract

Background: In the present study, the methanol extracts from the leaves, as well as compounds namely sigmoidin I (1), atalantoflavone (2), bidwillon A (3), neocyclomorusin (4), 6α-hydroxyphaseollidin (5) and neobavaisoflavone (6) (from the bark extract) were tested for their activities against a panel of Gram-negative bacteria including multi-drug resistant (MDR) phenotypes.

Methods: Broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of the extracts as well as compounds 1–6.

Results: The MIC results indicated that the crude extracts from the leaves and bark of this plant were able to inhibit the growth of 96.3 % of the 27 tested bacteria. Compounds 2–6 displayed selective activities, their inhibitory effects being obtained on 8.3 %, 41.7 %, 58.3 %, 58.3 % and 66.7 % of tested bacteria respectively for 2, 3, 5, 6 and 4. The lowest MIC value of 8 μg/mL was obtained with 6 against *Escherichia coli* ATCC8739, *Enterobacter cloacae* ECC769, *Klebsiella pneumoniae* KP55, *Providencia stuartii* NAE16 and *Pseudomonas aeruginosa* PA01.

Conclusion: The present study demonstrates that *Erythrina sigmoidea* is a potential source of antibacterial drugs to fight against MDR bacteria. Neobavaisoflavone (6) is the main antibacterial consituents of the bark crude extract.

Keywords: Antibacterial, *Erythrina sigmoidea*, Compounds, Multidrug resistance, Neobavaisoflavone

Background

Medicinal plants have been used since ancient times in the management of human including microbial infections. Approximately 60 % of world’s population still relies on medicinal plants for their primary healthcare [1]. The African mainland has between 40,000-60,000 plant species, of which approximately 35,000 are endemic [2, 3]. Cameroon has a rich biodiversity, with about 8,620 plants species [4]. Several Cameroonian medicinal plants were previously reported for their antibacterial activities against multi-drug resistant Gram-negative bacteria [5–8]. Some of the them include *Beilschmiedia cinnamomea* and *Echinops giganteus* [5], *Beilschmiedia obscura*, *Pachypodanthium staudeii* and *Peperomia fernandopoiana* [9] or *Capsicum frutescens* [10]. The antimicrobial activities of many secondary metabolites from Cameroonian plants were also reported [11, 12]. In our continuing search of new herbal drug from the Cameroon flora, the present study was designed to demonstrate the antibacterial activity of the extracts and compounds from *Erythrina sigmoidea* Hua (Fabaceae). *Erythrina sigmoidea* is a tree of up to 6 m high, with stems armed with stout found in Senegal, Nigeria, Cameroon, Chad and Central African Republic [13]. The plant is traditionally used as antidotes (venomous stings, bites, etc.), diuretic, febrifuge and to treat arthritis, rheumatism, pulmonary troubles, stomach troubles, infectious diseases and kidney diseases [13]. In the Western

* Correspondence: kuetevictor@yahoo.fr
1 Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
Full list of author information is available at the end of the article

© 2015 Djeussi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Region of Cameroon, the aqueous extracts from leaves, bark and roots are used to treat gastrointestinal infections, venereal diseases and leprosy [14]. Previously phytochemical study this plant led to the isolation of sigmoidin I (1), atalantoflavone (2), bidwillon A (3), neocyclomorusin (4), 6α-hydroxyphaseollidin (5), and neobavaisoflavone (6) [15]. They displayed good cytotoxicity towards drug-sensitive and drug resistant cancer cell line [15]. In addition, they showed low cytotoxicity against the normal AML12 hepatocytes [15].

Methods

Plant material and extraction
The leaves and bark of *Erythrina sigmoidea* (Fabaceae) were collected in April 2013 in Bangangté (West Region of Cameroon). The plant was identified by a botanist of the National Herbarium in Yaoundé, Cameroon and compared with voucher kept under the registration number N°24470/HNC.

Antimicrobial assays

Chemicals for antimicrobial assay

Compounds isolated from the bark of *Erythrina sigmoidea* included β-sigmoidin I (1), atalantoflavone (2), bidwillon A (3), neocyclomorusin (4), 6α-hydroxyphaseollidin (5) and neobavaisoflavone (6) (Fig. 1). Their isolation and identification were previously reported [15]. Chloramphenicol ≥98 % (Sigma-Aldrich, St. Quentin Fallavier, France) was used as reference antibiotics (RA) against Gram-negative bacteria. *p*-Iodonitrotetrazolium chloride ≥97 % (INT, Sigma-Aldrich) was used as microbial growth indicator [16, 17].

Microbial strains and culture media
The studied microorganisms included sensitive and resistant strains of *Escherichia coli* (ATCC8739, AG100, AG100A, AG100A_{TEM}, AG102, MC4100, W3110), *Enterobacter aerogenes* (ATCC13048, CM64, EA27, EA289, EA294, EA298), *Enterobacter cloacae* (ECCI69, BM47, BM67), *Klebsiella pneumoniae* (ATCC12296, KP55, KP63, K24, K2), *Providencia stuartii* (NEA16, ATCC29916, PS2636, PS299645) and *Pseudomonas aeruginosa* (PA01, PA124) obtained clinically or from the American Type Culture Collection. Their bacterial features are summarized in Table 1. Nutrient agar was used for the activation of the tested bacteria [18].

INT colorimetric assay for MIC and MBC determinations

MIC determinations on the tested bacteria were conducted using rapid *p*-iodonitrotetrazolium chloride (INT) colorimetric assay according to described methods [16] with some modifications [19, 20]. The test samples and chloramphenicol were first of all dissolved in DMSO/Müller Hinton Broth (MHB) or DMSO/7H9 broth. The final concentration of DMSO was lower than 2.5 % and does not affect the microbial growth [21, 22]. The 96-wells microplate were used and the inoculum concentration was 1.5 × 10⁶ CFU/mL [19, 20]. The plates were incubated at 37 °C for 18 h. The assay was repeated thrice. Wells containing adequate broth, bacterial inoculum and DMSO to a final concentration of 2.5 % served as negative control. The MIC of samples was detected after 18 h incubation at 37 °C, following addition (40 μL) of 0.2 mg/mL of INT and incubation at 37 °C for 30 min. Viable bacteria reduced the yellow dye to a pink. MIC was defined as the sample concentration that prevented the color change of the medium and exhibited complete inhibition of microbial growth [16]. The MBC was determined by adding 50 μL aliquots of the preparations, which did not show any growth after incubation during MIC assays, to 150 μL of

![Fig. 1 Chemical structures of the compounds isolated from *Erythrina sigmoidea*. sigmoidin I (1); atalantoflavone (2); bidwillon A (3); neocyclomorusin (4); 6α-hydroxyphaseollidin (5); neobavaisoflavone (6)](image-url)
adequate broth. These preparations were incubated at 37 °C for 48 h. The MBC was regarded as the lowest concentration of extract, which did not produce a color change after addition of INT as mentioned above [19, 20].

Results and discussion

Compounds tested in this study included five isoflavonoids: atalantoflavone (2), bidwillon A (3), neocyclomorusin (4), 6α-hydroxyphaseollidin (5), neobavaisoflavone (6) and one flavonoid: sigmoidin I (1) (Fig. 1). Their isolation and identification from the bark of *Erythrina sigmoidea* were previously reported [15]. These compounds as well as the crude extracts from the leaves and bark of *Erythrina sigmoidea* were tested for their antibacterial activities on a panel bacterial strains and the results are reported in Tables 2 and 3.

Results of the MIC determinations indicate that crude extracts from leaves and bark of this plants were able to
inhibit the growth of 26 of the 27 (96.3 %) tested Gram-
negative bacteria, and the obtained MIC values ranged
from 16 to 1024 μg/mL (Table 2). Compound 1 was not
active whilst 2–6 displayed selective activities (Table 3),
the MIC values below or equal to 512 μg/mL being
noted on 1/12 (8.3 %), 5/12 (41.7 %), 7/12 (58.3 %), 7/12
(58.3 %) and 8/12 (66.7 %) tested bacteria respectively
for 2, 3, 5, 6 and 4. The lowest MIC value of 16 μg/mL
for crude extracts was obtained with the bark extract
against Escherichia coli ATCC8739, Enterobacter aerogenes
EA294 and Klebsiella pneumoniae KP63. The corre-
sponding value for the tested compounds (8 μg/mL) was
obtained with 6 against E. coli ATCC8739, Enterobacter
cloacae ECCI69, K. pneumoniae KP55, Providencia stuartii
NAE16 and Pseudomonas aeruginosa PA01. The antimicro-
bial activity of a phytochemical (crude extract) has been
defined as significant when MIC is below 100 μg/mL,
moderate when 100 μg/mL < MIC < 625 μg/mL or low

Bacterial strains	Tested plant samples, MIC and MBC (μg/ml) and ratio MBC/MIC	Chloramphenicol							
	Erythrina sigmoidea leaves extract	Erythrina sigmoidea bark extract							
	MIC	MBC	MBC/MIC	MIC	MBC	MBC/MIC	MIC	MBC	MBC/MIC
Escherichia coli									
ATCC8739	64	64	1	16	64	4	4	64	16
AG100	32	256	8	32	128	4	8	>512	na
AG100A	512	1024	2	256	1024	4	4	>512	na
AG100A TET	1024	1024	1	256	512	2	32	>512	na
AG102	512	1024	2	128	1024	8	8	>512	na
MC4100	1024	1024	1	512	512	1	32	>512	na
W1110	512	512	1	512	512	1	8	>512	na
Enterobacter aerogenes									
ATCC13048	128	256	2	128	1024	8	16	128	8
CM64	1024	>1024	na	1024	na	na	512	>512	na
EA27	256	256	1	64	128	2	128	>512	na
EA289	1024	>1024	na	512	>1024	na	512	>512	na
EA298	512	512	1	512	1024	2	256	>512	na
EA294	64	512	8	16	128	8	4	32	8
Enterobacter cloacae									
ECCI69	1024	>1024	na	1024	>1024	na	256	>512	na
BM47	1024	1024	1	1024	1024	1	512	>512	na
BM67	1024	>1024	na	1024	1024	1	256	>512	na
Klebsiella pneumoniae									
ATCC11296	256	256	1	64	512	8	16	128	8
KPS5	512	>1024	na	256	>1024	na	64	256	4
KP63	128	>1024	na	16	128	8	128	>512	na
K24	256	512	2	128	>1024	na	16	>512	na
K2	128	1024	8	64	512	8	16	256	na
Providencia stuartii									
ATCC29916	128	>1024	na	32	128	4	8	128	16
NAE16	128	128	1	32	>1024	na	8	256	32
PS2636	1024	>1024	na	1024	1024	1	64	>512	na
PS299645	512	1024	2	64	128	2	32	>512	na
Pseudomonas aeruginosa									
PA01	1024	1024	1	256	256	1	16	256	8
PA124	>1024	>1024	na	>1024	>1024	na	64	256	4

na: not applicable
Bacterial strains	Tested compounds, MIC and MBC (µg/ml) and ratio MBC/MIC										
	1	2	3	4	5	6					
	MIC	MBC	MBC/MIC	MIC	MBC	MBC/MIC	MIC	MBC	MBC/MIC	MIC	MBC
Escherichia coli											
ATCC8739	-	-	na	-	-	na	512	-	na	256	-
AG100A_{TET}	-	-	na	128	-	na	-	-	na	256	-
AG102	-	-	na	-	-	na	512	-	na	128	512
Enterobacter aerogenes											
ATCC13048	-	-	na	-	na						
EA289	-	-	na	-	-						
Enterobacter cloacae											
ECCi69	-	-	na	8	512	64					
Klebsiella pneumoniae											
ATCC11296	-	-	na								
KPSS	-	-	na	-	-	na	256	-	na	256	512
Providencia stuartii											
ATCC29916	-	-	na	-	-	na	256	-	na	256	-
NAE16	-	-	na	-	-	na	256	-	na	256	-
Pseudomonas aeruginosa											
PA01	-	-	na	-	-	na	256	-	na	256	-
PA124	-	-	na	256	-	na	-	-	na		

sigmoidin I (1); atalantoflavone (2); bidwillon A (3); neocyclomorusin (4); 6α-hydroxyphaseollidin (5); neobavaisoflavone (6); (-): MIC or MBC >512 µg/mL; nt: not tested as MIC was >512 µg/mL
when MIC > 625 μg/mL [4, 23]. On this basis, the crude extracts from *Erythrina sigmoidea* could be considered as promising herbal drug. In fact, MIC values below 100 μg/mL were obtained with leaves and bark extracts respectively against 3/27 (11.1 %) and 10/27 (37.0 %) tested bacteria. Compound 6 can also be considered as a good antimicrobial agent, as MIC values below 10 μg/mL were obtained on 5/12 (41.7 %) tested bacteria. Interestingly, the bark extract was more active (lower MIC value) than chloramphenicol on some MDR strains such as *E. aerogenes* EA27, *K. pneumoniae* KP63, highlighting its good antimicrobial potency. Minimal bactericidal concentration (MBC) values below or equal to 1024 μg/mL were also obtained on 18/27 (66.7 %) and 20/27 (74.1 %) tested bacterial strains respectively for leaves and bark extracts. Data from Tables 2 and 3 indicated that some MBC/MIC ratios were below 4, indicating that the studied extracts exerted bactericidal effects on certain Gram negative bacteria [24–26]. However, a keen look of the MICs and MBCs of compounds indicated that they rather exerted bacteriostatic effects (MBC/MIC > 4) [24–26]. It should be noted that the antibacterial spectra of compounds were lower than that of the bark extract. This suggested that a possible synergistic effect between the constituents of this extract could be expected. It should also be noted that the bark extract was not active on the resistant *P. aeruginosa* PA124 strains contrary to the isolated compound 6. This can either be due to the fact that this active compound (6) is less concentrated in the initial crude extract or to the possible interactions with other constituent. Regarding the clinical involvement of MDR bacteria in treatment failures [11, 12, 27, 28], the antibacterial activity of the crude extracts as well as that of compound 6 could be considered promising. *Pseudomonas aeruginosa* is an important nosocomial pathogen, highly resistant to clinically used antibiotics, leading to substantial morbidity and mortality [29]. MDR Enterobacteriaceae, including *K. pneumoniae*, *E. aerogenes*, *E. cloacae* and *P. stuartii* and *E. coli* have also been classified as antimicrobial-resistant organisms of concern in healthcare facilities [11, 12, 30].

To the best of our knowledge, the antibacterial activity of the crude extracts from the *Erythrina sigmoidea* as well as compounds 2–6 against MDR bacteria is being reported for the first time. However, the antibacterial activities of compounds belonging to the classes flavonoids and isoflavonoids are well known [31]. In addition, a preliminary antibacterial study of flavonoids from the stem bark of *Erythrina burstii* showed that bidwillon A was active against *E. coli* and *Staphylococcus aureus* [32]. Neobavaisoflavone also displayed antifungal activity against *Aspergillus fumigatus* and *Cryptococcus neoformans* [33]. The present study provides additional information on the antimicrobial potency of neobavaisoflavone (6).

Conclusions

The results of the present study are interesting, taking into account the medical importance of the studied microorganisms. These data provided evidence that the crude extracts from *Erythrina sigmoidea* as well as some of its constituents, and mostly neobavaisoflavone (6) could be potential antimicrobial drugs to fight MDR bacterial infections.

Competing interests

The authors declare that there are no competing interest.

Authors’ contributions

DEJ, JAKN, LPS and LKO carried out the study; VK designed the experiments, wrote the manuscript, and provided the bacterial strains; BTN and VK supervised the work; all authors read and approved the final manuscript.

Acknowledgements

Authors are thankful to the Cameroon National Herbarium for identification of the plant.

Author details

1. Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon. 2. Department of Pharmaceutical Sciences, CCS, Universidade Federal de Santa Catarina, Florianópolis 88040-900 SC, Brazil. 3. Department of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100 Nairobi, Kenya. 4. Department of Organic chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.

Received: 6 October 2015 Accepted: 22 December 2015

Published online: 30 December 2015

References

1. WHO WHO. Tuberculosis, Fact sheet No. 104. Geneva, Switzerland: World Health Organization; 2010. http://www.who.int/tb/publications/factsheets/en/. Accessed on February 02, 2012.

2. United Nation Environment Programme. Biodiversity in Africa; 2011. http://www.eoearth.org/view/article/150570. Accessed on February 02, 2012.

3. Kuete V, Effert et T. African flora has the potential to fight multidrug resistance of cancer. BioMed Research International. 2015;2015:914813.

4. Kuete V, Effert et T. Cameroonian medicinal plants: pharmacology and derived natural products. Front Pharmacol. 2010;1:123.

5. Fankam AG, Kuete V, Voukeng IK, Kuete JR, Pages JM. Antibacterial activities of selected Cameroonian spieces and their synergetic effects with antibiotics against multidrug-resistant phenotypes. BMC Complement Altern Med. 2011;11:104.

6. Voukeng IK, Kuete V, Dzoyem JP, Fankam AG, Noumedem JA, Kuiate JR et al. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spieces against Gram-negative multi-drug resistant phenotypes. BMC Res Notes. 2012;5:299.

7. Djeussi DE, Noumedem JA, Seukep JA, Fankam AG, Voukeng IK, Tankeo SB, et al. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement Altern Med. 2013;13(1):164.

8. Seukep JA, Fankam AG, Djeussi DE, Voukeng IK, Tankeo SB, Noumedem JA, et al. Antibacterial activities of the methanol extracts of seven Cameroonian dietary plants against bacteria expressing MDR phenotypes. Springerplus. 2013;2:363.

9. Fankam AG, Kuiate JR, Kuete V. Antibacterial activities of *Bellischmidia obscura* and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes. BMC Complement Altern Med. 2014;14:241.

10. Touani FK, Seukep AJ, Djeussi DE, Fankam AG, Noumedem JA, Kuete V. Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern Med. 2014;14:258.

11. Kuete V, Ngameni B, Tangmouou AG, Bolla JM, Albright-Franco S, Nga’dji BT, et al. Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob Agents Chemother. 2010;54(5):1749–52.
et al. BMC Complementary and Alternative Medicine (2015) 15:453

12. Kuete V, Albert-Franco S, Eyong KO, Ngameni B, Folefoc GN, Nguemevong JR, et al. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Agents. 2011;37(2):156–61.

13. Burkhill H. The useful plants of West Tropical Africa. London: Royal Botanic Garden Kew; 1985.

14. Mabeku L, Kuate J, Oyono E. Screening of some plants used in the cameroonian folk medicine for the treatment of infectious diseases. Int J Biol. 2011;13:21.

15. Kuete V, Sandjo LP, Djueesi DE, Zeino M, Kvarmou GM, Ngadjui B, et al. Cytotoxic flavonoids and isoflavonoids from Erythrina sigmoidea towards multi-factorial drug resistant cancer cell lines. Invest New Drugs. 2014;32:1053–62.

16. Elloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64(8):711–3.

17. Matvandela SPM, Lall N, Meyer JM. Antibacterial, antifungal and antibacterial activity (of the roots of) Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (Geraniaceae) root extracts. S Afr J Bot. 2006;72(2):232–7.

18. Kuete V, Kamga J, Sandjo LP, Ngameni B, Poumaile HM, Ambassa P, et al. Antimicrobial activities of the methanol extract, fractions and compounds from Ficus polita Vahl. (Moraceae). BMC Complement Altern Med. 2011;11:6.

19. Kuete V, Nana F, Mbaveng BM, Keumuedjio F, Ngadjui BT. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J Ethnopharmacol. 2009;124(3):556–61.

20. Kuete V, Wama J, Mbaveng AT, Nkengfack AE, Vouffo TW, Fomum ZT, Meyer M, et al. Cytotoxic flavonoids and isoflavonoids from Erythrina sigmoidea and Erythrina burttii (Moraceae). J Ethnopharmacol. 2009;124(3):556–61.

21. Kuete V, Wamba GF, Ngameni B, Mbaveng AT, Metuno R, Etoa FX, et al. Antibacterial, antifungal, and antiviral activities of African medicinal plants. In: Kuete V, editor. Medicinal Plant Research in Africa. Oxford: Elsevier; 2011. p. 23.

22. Kuete V, Wamba GF, Ngameni B, Mbaveng AT, Metuno R, Etoa FX, et al. Antibacterial and antifungal activities of the methanolic extract, fractions and compounds from stem bark of Pelargonium sidoides. BMC Complement Altern Med. 2011;11:6.

23. Kuete V, Alibert-Franco S, Eyong KO, Ngameni B, Folefoc GN, Nguemeving JR, et al. Antimicrobial activity of the crude extracts and compounds from the stem bark of Ficus polita Vahl. (Moraceae). J Ethnopharmacol. 2011;134(1):54–60.

24. Kuete V, Wamba GF, Ngameni B, Mbaveng AT, Metuno R, Etoa FX, et al. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovata (Moraceae). J Ethnopharmacol. 2009;124(3):556–61.

25. Kuete V, Wansi JD, Mbaveng AT, Kana Sop MM, Tadjong AT, Beng VP, et al. Antimicrobial activity of the methanolic extract and compounds from Tecedis obeli (Rubiaceae). S Afr J Bot. 2008;74(4):572–7.

26. Kuete V, Ngameni B, Simo CC, Tankeu RK, Ngadjui BT, Meyer JJ, et al. Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). J Ethnopharmacol. 2008;120(1):17–24.

27. Kuete V, Wamba GF, Ngameni B, Mbaveng AT, Metuno R, Etoa FX, et al. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Irvingia gabonensis (Irvingiaceae). J Ethnopharmacol. 2008;116(3):483–91.

28. Falagas ME, Bliziotis IA. Pandrug-resistant Gram-negative bacteria: the dawn of multidrug resistance. Curr Opin Infect Dis. 2003;16(3):293–7.

29. Cardoso O, Alves AF, Leitao R. Surveillance of antimicrobial susceptibility of Pseudomonas aeruginosa clinical isolates from a central hospital in Portugal. J Antimicrob Chemother. 2007;60(2):452–4.

30. Tran QT, Mahendran KR, Hajjar E, Ceccarelli M, Davin-Regli A, Winterhalter M, et al. Geranium restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob Agents Chemother. 2009;53(3):1209–11.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit