Cancer is a group of diseases which are characterized by uncontrolled growth and spread of abnormal immortal cells, and its causes may be both external and internal factors. Cancer is a very important health problem, because its frequency is increasing every day, and there is no satisfying medical treatment method available today [1]. Although cancer is one of the most-studied diseases all around the world, it looks like that the main source of hope is natural, and especially plant derived, products. Because natural or natural-derived products have been the most significant source of drugs in modern medicine and dominant role of these natural products in cancer is obvious with about 74% of anticancer compounds being natural products, or natural product-derived products [2]. Probably, heavy screening and goal-oriented detailed scientific research would be the most distinctive steps in determining and developing potentially “druggable” targets in cancer research [2,3].

Myrtus communis L. (MC) is an evergreen shrub with a height of about 1-5 m, and probably the only myrtle variety that has an important cultural significance in Mediterranean region and Anatolia [4]. Besides its cultural importance, MC has a lot of medical usages in different indications such as diarrhea, peptic ulcers, hemorrhoids, inflammation, bleeding, headache, palpitation, leucorrhoea, urethritis, epistaxis, conjunctivitis, excessive perspiration, cough, pulmonary and skin diseases, diabetes mellitus, antiseptic, pain, heartburn, swelling, stiffness of the limbs, to remove mucus from the chest [4-7]. There are also some information about the usage of MC for anticancer purposes in traditional medicine [3,6,8]. Anticancer properties of MC were previously investigated in a number of studies, and in some of these studies myrtucommulone which is a unique, nonprenylated acylphloroglucinol, was found to be an active compound [9]. Myrtucommulone has antioxidant, antibacterial, anti-inflammatory, anti-diabetes, and anticancer properties, and it is found in the leaves of MC [5-7,9-20] [Table 1].

STUDIES ABOUT ANTICANCER PROPERTIES OF MC L

Alwan et al. showed that ethanolic extract of MC inhibited aryl hydrocarbon hydroxylase (AHH) activity and 3H-benzo(a) pyrene (‘H-BP) binding to rat liver microsomal protein, effectively. In the same study, no inhibitory effect was shown with aqueous extracts [21].

In another study of the same author, different organic extracts of eight plants were tested against AHH activity and ‘H-BP binding to DNA in vitro. The obtained in vitro effects of plants are similar with the in vivo effects from the previous study, and MC showed significant inhibitory effect when n-butanol extract was used. The n-butanol extract was more effective than the extracts of chloroform and petroleum-ether, respectively. None of the aqueous extracts showed any inhibitory effects on both AHH activity and ‘H-BP binding to DNA [22].

In a screening study performed at UNLV Cancer Research Institute at Brigham Young University, essential oils of various plants were tested against different cancer cell lines at 2005. At 100 μg/ml concentration, MC essential oil showed 81.4% cell line inhibition at breast cancer cell line, while at 200 μg/ml concentration the inhibition percent was 67 and 95.2 for prostate and breast cancer cell lines, respectively. Probably, the most exciting and hopeful result of this study is the inhibition value of essential oil of MC on 3T3 fibroblast cell line is 3.7% and 6.5% for the dosages of 100 μg/ml and 200 μg/ml, respectively. We may talk about a selective anticancer effect
myrtucommulone-A, a nonprenylated acylphloroglucinol, is probably one of the most attracting molecules in MC. Besides its other properties, recently it was shown that myrtucommulone-A induced apoptosis in cancer cell lines, with marginal cytotoxicity for non-transformed cells, via the mitochondrial cytochrome c/Apaf-1/caspase-9 [5]. In the mentioned study, authors showed that cell death had been caused via apoptosis and they found it to be much less cytotoxic for non-transformed human peripheral blood mononuclear cells (PBMC) or foreskin fibroblasts (EC50 cell death = 20-50 μM), and myrtucommulone up to 30 μM hardly caused processing of poly(ADP-ribose)polymerase (PARP), caspase-3, -8, and -9 in human PBMC. They concluded that the myrtucommulone-induced apoptosis was mediated by the intrinsic rather than the extrinsic death pathway; hence, myrtucommulone caused loss of the mitochondrial membrane potential in MM6 cells and evoked release of cytochrome c from mitochondria. Furthermore, it was found that Jurkat cells deficient in caspase-9 were resistant to myrtucommulone-induced cell death and no processing of PARP or caspase-8 was evident. In cell lines deficient in either CD95 (Fas, APO-1) signaling, FADD or caspase-8, myrtucommulone was still able to potently induce cell death and PARP cleavage [5].

When different myrtucommulones were tested against different cancer cell lines, it was shown that aromatic phloroglucinol core is essential for the cytotoxic activity; myrtucommulone types without phloroglucinol core have cytotoxic effects against the same cancer cell lines while myrtucommulones with phloroglucinol core have cytotoxic effects against the same cancer cell lines [12].

These results are so important and exciting, because all of these findings look like that sound of footsteps of the pioneer of an ideal and selective anti-cancer drug in the near future [27]. But we need to perform new studies in order to support and improve the results for developing long-awaited cancer drug.

REFERENCES

1. Asirvatham R, Christina AJ. Anticancer activity of Drosera indica L., on Dalton’s lymphoma ascites (DLA) bearing mice. J Intercult Ethnopharmacol 2013;2:9-14.
2. Tari G, Gyllenhal C, Soejarto DD. Biodiversity as a source of anticancer drugs. Curr Drug Targets 2008;7:265-77.
3. Oğur R, Korkmaz A, Bakir B. Herbal treatment usage frequency, types and preferences in Turkey. Middle East J Fam Med 2006;4:38-44.
4. Özkan AM, Güray ÇG. A Mediterranean: Myrtus communis L. (Myrtle). 1st ed. Bari: Edipuglia Srl; 2009.
5. Tretiakov I, Blaesius D, Maxia L, Wesselborg S, Schulze-Osthoff K, Cinati J Jr, et al. Myrtucommulone from Myrtus communis induces
apotopsis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis 2008;13:119-31.
6. Sumbul S, Ahmad MA, Asif M, Akhtar M. Myrtus communis L. A review. Indian J Nat Prod Resources 2011;2:395-402.
7. Alipour G, D ashti S, Hosseinzadeh H. Review of Pharmacological Effects of Myrtus communis L. and its Active Constituents. Phytother Res 2014;28:1125-136.
8. Salouage I, Khouz A, Charfi H, Ferchichi H, Charfi R, Ouanes L, Boussaid M, et al. Effect of Myrtus communis L. on an Experimental Model of a Rat Liver Ischema-Reperfusion. In: Neffati M, Belgacem AO, ElMourid M, editors. International Symposium on Medicinal and Aromatic Plants – SIPAM 2009. Acta Horticulturae. Vol. 853. Djerba, Tunisia: International Society for Horticultural Science; 2010. p. 379-82.
9. Rotstein A, Lifshitz A, Kashman Y. Isolation and antibacterial activity of acylphloroglucinols from Myrtus communis. Antimicrob Agents Chemother 1974;6:539-42.
10. Choudhary MI, Khan N, Ahmad M, Yousuf S, Fun HK, Soomro S, et al. New inhibitors of ROS generation and T-cell proliferation from Myrtus communis. Org Lett 2013;15:1862-5.
11. Gerbeth K, Hüsch J, Meins J, Rossi A, Sautebin L, Wiechmann K, et al. Myrtucommulone from Myrtus communis: Metabolism, permeability, and systemic exposure in rats. Planta Med 2012;78:1932-8.
12. Cottiglia F, Casu L, Leonti M, Caboni P, Floris C, Busonera B, et al. Myrtus communis L. Free Radic Res 2003;37:1013-9.
13. Appendino G, Bianchi F, Minassi A, Sterner G, Ballero M, Gibbons S. Myrtic acid from Myrtus communis myrtle (Myrtus communis). J Nat Prod 2002;65:334-8.
14. Koeberle A, Pollastro F, Northoff H, Werz O. Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J Pharmacol Exp Ther 2005;315:389-96.
15. Koeberle A, Pollastro F, Northoff H, Werz O, Angelini G, Zennaro V, et al. Myrtucommulone, a new inhibitor of ROS generation and T-cell proliferation from Myrtus communis. J Nat Prod 2013;76:1690-2.
16. Appendino G, Maxia L, Bettoni P, Locatelli M, Valdivia C, Ballero M, et al. Antibacterial galloylated alkylphloroglucinol glucosides from myrtle (Myrtus communis). J Nat Prod 2006;69:251-4.
17. Feisst C, Franke L, Appendino G, Werz O. Identification of molecular targets of the oligomeric nonprenylated acylphloroglucinols from Myrtus communis and their implication as anti-inflammatory compounds. J Pharmacol Exp Ther 2005;315:389-96.
18. Rosa A, Deiana M, Casu V, Corona G, Appendino G, Bianchi F, et al. Antioxidant activity of oligomeric acylphloroglucinols from Myrtus communis. Free Radic Res 2003;37:1013-9.
19. Appendix G, Bianchi F, Minassi A, Sterner G, Ballero M, Gibbons S. Myrtic acid from Myrtus communis myrtle (Myrtus communis). J Nat Prod 2002;65:334-8.
20. Alwan AH, Al-Gaili AN, Najj A. Inhibition of the binding of 3H-Benz[a]pyrene to rat liver microsomal protein by plant extracts. Pharm Biol 1989;27:33-7.
21. Alwan AH, Mahmoud MJ, Najj A. Effects of plant extracts on aryl hydrocarbon hydroxylase activity and 3H-benz[a]pyrene binding to DNA. J Food Safety 1989;10:209-18.
22. Stevens N. Natural Synergy: Essential Oils in Cancer Research; 2005. Available from: http://www.young-living.net/Presentations/StevensEssentialOilsInCancer.pdf. [Last accessed on 2014 Aug 01].
23. Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
24. Mothana RA, Kriegisch S, Harms M, Wende K, Lindequist U. Inhibitory Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
25. Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
26. Korkmaz A, Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
27. Korkmaz A, Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
28. Korkmaz A, Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
29. Korkmaz A, Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
30. Korkmaz A, Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.
31. Korkmaz A, Ogur R, Deniz G, Tekbas OF, Hasde M. Antitumorogenic Effect of AR-11 on Ehrlich Ascites Tumour in Mice. 2nd International Conference on Tumor Progression & Therapeutic Resistance; September 18-20. Burlington, Boston, USA: GTCbio; 2005.