Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B

Torunn Rønningen,1,3 Akshay Shah,1,3 Anja R. Oldenburg,1,2 Kristin Vekterud,1 Erwan Delbarre,1 Jan Øivind Moskaug,1,2 and Philippe Collas1,2

1Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway; 2Norwegian Center for Stem Cell Research, Oslo University Hospital, 0317 Oslo, Norway

Dynamic interactions of nuclear lamins with chromatin through lamin-associated domains (LADs) contribute to spatial arrangement of the genome. Here, we provide evidence for prepatterning of differentiation-driven formation of lamin A/C LADs by domains of histone H2B modified on serine 112 by the nutrient sensor O-linked N-acetylglucosamine (H2BS112GlcNAc), which we term GADs. We demonstrate a two-step process of lamin A/C LAD formation during in vitro adipogenesis, involving spreading of lamin A/C-chromatin interactions in the transition from progenitor cell proliferation to cell-cycle arrest, and genome-scale redistribution of these interactions through a process of LAD exchange within hours of adipogenic induction. Lamin A/C LADs are found both in active and repressive chromatin contexts that can be influenced by cell differentiation status. De novo formation of adipogenic lamin A/C LADs occurs nonrandomly on GADs, which consist of megabase-size intergenic and repressive chromatin domains. Accordingly, whereas predifferentiation lamin A/C LADs are gene-rich, post-differentiation LADs harbor repressive features reminiscent of lamin B1 LADs. Release of lamin A/C from genes directly involved in glycolysis concurs with their transcriptional up-regulation after adipogenic induction, and with downstream elevations in H2BS112GlcNAc levels and O-GlcNAc cycling. Our results unveil an epigenetic prepatterning of adipogenic LADs by GADs, suggesting a coupling of developmentally regulated lamin A/C-genome interactions to a metabolically sensitive chromatin modification.

[Supplemental material is available for this article.]

© 2015 Rønningen et al. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Genome Research 1825
et al. 2013). LAD variability has been attributed to shifts in LAD borders (Meuleman et al. 2013; Harr et al. 2015), which are flanked by regions of H3K27me3 (Guelen et al. 2008) that appear to be important for association with the nuclear lamina (Harr et al. 2015). A- and B-type lamins may also temporally interact with genes and regulatory regions during embryonic and somatic stem cell differentiation (Petric-Hupkes et al. 2010; Lund et al. 2013). Recent work shows that in adipose tissue stem cells (ASCs), proadipogenic gene promoters are released from lamin A/C after differentiation into adipocytes, whereas many nonadipogenic, lineage-specific promoters retain lamin association (Lund et al. 2013). A similar uncoupling of a myogenic promoter from C. elegans lamin is associated to muscle-specific gene activation (Mattout et al. 2011). These results suggest that subsets of nuclear lamin–genome interactions are under developmental regulation.

Cell metabolism is coupled to post-translational modifications of histones and chromatin remodeling proteins affecting chromatin structure and gene expression (Keating and El-Osta 2015). Metabolic intermediates often act as cofactors or substrates of histone modifying enzymes. The hexosamine biosynthetic pathway (HBP) is responsive to intracellular levels of amino acids, fatty acids, and carbohydrates (Hanover et al. 2012) and constitutes an important link between glucose metabolism and chromatin. Approximately 3%–5% of glucose taken up by the cell is directed to the HBP (Marshall et al. 1991) and converted to UDP-N-acetylglucosamine (UDP-GlcNAc), the donor of O-linked GlcNAc for O-GlcNAcylation of proteins. GlcNAcylation is catalyzed by the O-GlcNAc transferase OGT, while O-GlcNAcase (OGA) hydrolyzes O-GlcNAc (Gambetta and Müller 2015). All core histones can be GlcNAcylated (Zhang et al. 2011; Fong et al. 2012; Vella et al. 2013), indicating that chromatin organization is influenced by the OGT/OGA balance. GlcNAcylation of H2B on serine 112 (S112) has been reported to promote H2BK120 monoubiquitination (H2BK120ub1), suggesting a link to gene activity (Fujiki et al. 2011). Notwithstanding, localization of H2B S112 on the nucleosome surface raises the possibility that H2BS112GlcNAc promotes additional chromatin-associated processes.

Here, we used an in vitro adipogenic differentiation system from human adipocyte progenitors (Shah et al. 2014) to address the relationship between H2B GlcNAcylation and association of lamin A/C with chromatin at key time points of adipogenesis. Our results suggest a coupling of developmentally regulated lamin A/C–genome interactions to H2BS112GlcNAc, a metabolically sensitive chromatin modification.

Results

Adipogenic differentiation reorganizes genome-wide lamin A/C–chromatin interactions

We first investigated the dynamics of A-type lamin interactions with the genome by ChIP-seq analysis of lamin A/C in ASCs at five stages of in vitro adipogenic differentiation. We examined (1) proliferating undifferentiated ASCs (2 d before adipogenic induction; D−2); (2) cell cycle-arrested undifferentiated ASCs on D0 (immediately before adipogenic induction); and (3) cells in the undergoing differentiations on D1, D3, and D9 after adipogenic induction (Supplemental Fig. 1A).

Using Enriched Domain Detector (EDD), an algorithm we developed for analysis of broad genomic domains of protein enrichment (Lund et al. 2014), we identify throughout differentiation approximately 200–500 lamin A/C LADs ranging from ~100 kb to ~10 Mb (Fig. 1A–C). We find that on D0, cells display a threefold
increase in LAD number and coverage relative to D−2 cells (Fig. 1B, D) despite constant intracellular lamin A/C levels (Supplemental Fig. 1B). On D0, ASCs have notably reached cell-cycle arrest as a result of replateing to confluency and growth factor removal 48 h earlier. Most lamin A/C-chromatin interactions in proliferating ASCs are maintained on D0 (Fig. 1D, D−2 gray bar), so we conclude that cell-cycle arrest, which precedes adipogenic induction, is accompanied by a net gain in LADs. This is consistent with the reorganization of chromatin that occurs after mitosis exit (Naumova et al. 2013).

Although EDD calls lamin A/C LADs conservatively, we also detect non-LAD regions of interspersed positive and negative bins of enrichment (see Fig. 1A); these can be interpreted as enriched and depleted lamin A/C-chromatin interactions that are distinct from truly depleted regions. It is at present unclear whether these “wobbly” areas represent noise caused by stochastic lamin–chromatin interactions or whether they have biological significance for the formation of LADs.

Genome-wide reorganization of lamin A/C–chromatin associations is not restricted to the preadipogenic phase. We find that within day 1 of stimulation with a proadipogenic cocktail (D0–D1 transition), lamin A/C-chromatin interactions are strikingly redistributed, with poor LAD overlap between undifferentiated and differentiated stages (D−2/D0 versus D1/D3/D9) (Fig. 1A,D, gray bars). This LAD redistribution is not elicited by mitotic disassembly and reassembly of the nuclear envelope, which could reset lamin-genome contacts (Kind et al. 2013), because ASCs do not divide once induced to differentiate (Supplemental Fig. 1C). Altogether, these changes reveal a genome-wide reorganization of lamin A/C–chromatin interactions elicited by adipogenic induction.

The wide range of LAD sizes detected (Fig. 1C) suggests differences in behavior and genomic properties between LADs of various sizes during differentiation. To address this, we categorized LADs into small (<0.32 Mb), medium (0.32–1.13 Mb), and large (>1.1 Mb) domains based on their quantile size distribution (Supplemental Fig. 1D) and evaluated the extent to which these domains overlap between differentiation time points by computing Jaccard similarity coefficients. We find that small and medium LADs poorly overlap between differentiation time points (Fig. 1E), suggesting that they may represent unstable or stochastic lamin–chromatin interactions. The overlap between large LADs is minimal between proliferation (D−2) and cell cycle-arrested (D0) stages in undifferentiated cells, because most D0 LADs are not detected on D−2 (Fig. 1D). However, once large LADs form on D1, they are maintained thereafter (Fig. 1A,E).

We conclude that adipogenic commitment of human primary ASCs elicits high-order genome rearrangements through a large-scale reorganization of lamin A/C LADs. This involves a spreading of LADs after cell-cycle arrest and a genome-wide remodeling of LADs upon adipogenic induction.

Gene content of LADs depends on LAD size and differentiation status

In line with earlier data on lamin B1 LADs (Guelen et al. 2008) and lamin A/C LADs (Lund et al. 2014), we find that lamin A/C LADs are overall gene poor; however, this is only after induction of differentiation (D1–D9). Indeed in undifferentiated cells, LADs are strikingly gene rich, averaging 9–13 genes/Mb (Fig. 1F; Supplemental Fig. 1E). RNA-seq shows that in undifferentiated ASCs, genes within LADs are expressed at the same level as all expressed RefSeq genes as a whole (Fig. 1G). In contrast, on D1 and D3, LADs are gene poor (fewer than two genes/Mb) and genes within LADs are more weakly expressed than RefSeq genes (Fig. 1G). Thus, ASC LADs display genomic properties distinct from LADs of lineage-committed cells. Supporting this view, we further find that LADs in differentiated ASCs overlap with lamin B1 LADs (Guelen et al. 2008) to a greater extent than predifferentiation LADs (Fig. 1H). These results are consistent with a view that lamin A/C LADs can occur in different chromatin contexts in undifferentiated and differentiated cells, and lamin A/C association with genes does not always coincide with a transcriptionally repressed state.

Domains of GlcNAcylated histone H2B constitute stable chromatin landmarks during adipogenic differentiation

Modifications in chromatin architecture during adipogenesis have been shown to be linked to cellular metabolic state (Siersbaek et al. 2012). This suggests that resetting of lamin A/C-genome associations upon adipogenic induction may be linked to metabolically linked chromatin modifications. To investigate this possibility, we mapped by ChIP-seq the profile of H2BS112GlcNAc (which we refer to as “H2BGlcNAc” here), as a putative nutrient sensor on chromatin (Hart 2014), using an antibody raised against an H2B peptide GlcNAcylated on S112.

We first evaluated the specificity of the anti-H2BS112GlcNAc antibody in several ways: (1) We show differential immunodetection sensitivity of immobilized H2BS112GlcNAc and control unmodified H2B peptides (Fig. 2A; Supplemental Fig. 2A); (2) anti-H2BS112GlcNAc immunoreactivity is abrogated after peptide incubation with recombinant OGA (Fig. 2A); (3) immunofluorescence analysis shows differential detection of H2BS112GlcNAc in a competition assay using an H2BS112GlcNAc or a control unmodified H2B competitor peptide (Fig. 2B); (4) incubation of an ASC lysate with recombinant OGA abrogates H2BS112GlcNAc, but not pan-H2B, immunoreactivity (Fig. 2C); (5) overexposure of anti-H2BS112GlcNAc Western blots from cell and nuclear lysates reveal no other detectable histones (Supplemental Fig. 2B), indicating that the antibody does not recognize unmodified or GlcNAcylated histones other than H2B; (6) expression of an EGFP-H2BS112A mutant, which cannot be GlcNAcylated on S112, leads to a weaker detection (but not abolishment) of EGFP-H2BS112A than wild-type EGFP-H2B using anti-H2BS112GlcNAc antibodies, whereas control immunoreactivity with anti-H2B or anti-GFP antibodies is not affected (Fig. 2D); thus, shifts in H2BGlcNAc detected by ChIP (see below) do not necessarily represent absolute changes in GlcNAcylated H2B levels; (7) moreover, ChIP-seq of H2BS112GlcNAc, pan-H2B, and of a control IgG reveals distinct enrichment profiles for pan- and modified H2B (Supplemental Fig. 2C; see also below); although we note some sites of coincidence between H2B and H2BS112GlcNAc (Supplemental Fig. 2B), we find that genome-wide, only 0.8% of H2BS112GlcNAc-enriched domains display pan-H2B enrichment, representing only 6.5 Mb of genome, which is negligible (Supplemental Fig. 2D); this indicates H2BS112GlcNAc domains are not merely due to H2B enrichment, in fact, 91% of the total area enriched in H2BS112GlcNAc relative to input chromatin is also enriched in H2BS112GlcNAc relative to pan-H2B (Supplemental Fig. 2E); and (8) this differential enrichment in H2B versus H2BS112GlcNAc was corroborated by independent ChIP-PCR validation of 20 loci, of which 16 were found to be enriched in H2BGlcNAc and four not enriched, based on ChIP-seq data (Supplemental Fig. 2F; Supplemental Table 1). These results collectively indicate that the H2BS112GlcNAc antibody recognizes a
domains, ranging from 60 kb to 1828 Genome Research
eclude that H2BGlcNAcylation is dynamic. We find that adipogenic
levels and up-regulates glycolytic genes

Figure 2. Assessment of specificity of the anti-H2BS112GlcNAc antibody. (A) Immunoreactivity of the anti-H2BS112GlcNAc antibody on H2BS112GlcNAc and corresponding unmodified H2B peptides (KHAVS112EGTK) immobilized on nitrocellulose. Peptides were preincubated without or with 2 ng/µl recombinant OGA prior to immunodetection. (B) Immunofluorescence peptide competition assay using H2BS112GlcNAc and unmodified H2B peptides; immunodetection using anti-H2BS112GlcNAc. Scale bar, 10 µm. (C) Immunoblot of ASC extracts preincubated with 0 or 2 ng/µl recombinant OGA for 30 min. (D) Expression of an EGFP-H2BS112A mutant, but not a control wild-type EGFP-H2B, in HeLa cells reduces H2BS112GlcNAc immunoreactivity (left) without affecting detection of total H2B (middle) or EGFP (right).

GlcNAc epitope on H2BS112 despite some cross reactivity with unmodified H2B.

We identify throughout adipogenesis 600 to nearly 900 H2BGlcNAc-enriched domains, ranging from 60 kb to ~10 Mb, which we call GADs (Fig. 3A,B; Supplemental Fig. 3A,B). GADs primarily localize to intergenic regions and sharply demarcate clusters of transcribed genes (Fig. 3A). Accordingly, GADs are gene poor (Fig. 3C), and genes within GADs are repressed ($P<10^{-15}$ relative to all genes and genes outside GADs; Wilcoxon test) (Fig. 3D; Supplemental Fig. 3C). H2BS112GlcNAc has been proposed to be connected to H2BK120ub1 (Fuji et al. 2011), a modification linked to transcription; however, ChIP-qPCR of H2BK120ub1 on 20 regions high or low in H2BGlcNAc in ASCs shows no obvious relationship between the two marks in this cell type (Supplemental Fig. 3D). H2BGlcNAc enrichment in intergenic regions does not result from increased density of H2B-bearing nucleosomes (see also above) because (1) it was corroborated when we determined enrichment of H2BGlcNAc over H2B in these regions ($P=2.2 \times 10^{-16}$; Wilcoxon test) but not in genes (Supplemental Fig. 3E); and (2) genes within regions enriched in H2BGlcNAc over H2B are not expressed (Supplemental Fig. 3F). Furthermore, overlap analysis reveals that large GADs (>1.3 Mb in size) (Fig. 3B) are overall maintained during adipogenic differentiation (Fig. 3E). Since features of GADs and of lamin B1 LADs are similar, we compared the overlap between GADs in ASCs and lamin B1 LADs in fibroblasts (Guelen et al. 2008). Data show that ~70% of GAD coverage is shared with lamin B1 LADs (Fig. 3F). ChIP-qPCR analysis confirms that in ASCs, lamin B1 occupies regions enriched in H2BGlcNAc but not in nonenriched regions (Fig. 3G).

Adipogenic induction transiently elevates H2BGlcNAc levels and up-regulates glycolytic genes

Overall GAD conservation through differentiation does not preclude that H2BGlcNAcylation is dynamic. We find that adipogenic induction is manifested by a transient increase in GAD number and coverage between D0 and D1 (Supplemental Fig. 3A,B). Increased H2BGlcNAc enrichment is also shown by ChIP-qPCR (Fig. 4A) and mirrors transient elevations in total cellular H2BGlcNAc and O-GlcNAc levels (Fig. 4B; Supplemental Fig. 3G). ASC stimulation with each component of the adipogenic cocktail separately, which by itself does not elicit adipogenesis, failed to elevate O-GlcNAc or H2BGlcNAc (data not shown). Thus, the transient elevation in H2BGlcNAc results from the adipogenic stimulus, although a stress response cannot formally be ruled out. Concomitant with O-GlcNAc increase, levels of OGT and OGA proteins are also transiently up-regulated on D1 (Fig. 4B), providing evidence for enhanced O-GlcNAc cycling (Hart et al. 2007) in the early stages of adipogenesis.

Providing biological significance to the elevation in H2BGlcNAc in the transition from preadipogenic to adipogenic stages, gene ontology (GO) analyses show that the 2716 genes up-regulated at the D0-D1 transition (Supplemental Fig. 4A) are for the most part involved in metabolic functions pertaining to cellular metabolic process including oxidation-reduction processes, lipid synthesis and glucose metabolism (Fig. 4C; Supplemental Fig. 4B; see Supplemental Table 2 for gene lists; Shah et al. 2014). The vast majority of these genes reside outside GADs on D0 (Fig. 4D; only 46 genes are in GADs at this stage), consistent with their expressed status on D0 (Supplemental Fig. 4C), and remain outside GADs throughout differentiation (Fig. 4D). Moreover, <10% of the 2716 up-regulated genes are in LADs on D−2, yet 752 are found in LADs on D0 (Fig. 4E), in line with the broad increase in LAD coverage aftercell-cytoarse (Fig. 1D). Remarkably however, these genes lose lamin A/C association on D1 (Fig. 4E), which coincides with their transcriptional up-regulation (Fig. 4F; Supplemental Fig. 4A).

Interestingly, adipogenic stimulation up-regulates hypoxia inducible factor 1, alpha subunit (HIF1A), which positively regulates the glucose transporter SLC2A1 and genes of the glycolytic pathway (Supplemental Fig. 4D,E). HIF1A also up-regulates the pyruvate dehydrogenase PDK4 gene, which inhibits mitochondrial pyruvate oxidation (Supplemental Fig. 4D,E). Consistent with our previous findings, the PDK4 gene is de-GlcNAcylated concomitant to its activation on D1 (Fig. 4F); however, none of the glycolytic genes are marked by H2BGlcNAc on D0, as predicted from their expressed state (Fig. 4F; data not shown). Additionally, up-regulation of PDK4 and of glycolytic genes on D1 consistently also correlates with loss of lamin A/C interaction from promoter regions (Fig. 4F, arrows), consistent with the exchange of LADs taking place at the D0/D1 transition. A 2-Mb window around these genes unveils the loss of lamin A/C association on D1 (TPPI, ENO1, LDH1, PGM1, PEK), in a non-GAD context, and maintenance of these genes outside LADs and GADs throughout differentiation (Supplemental Fig. 5).

These results argue that the passage from quiescence to adipogenic commitment up-regulates the glycolytic pathway, a metabolic transition characterizing ASCs committed to adipogenesis.
in vivo (Shyh-Chang et al. 2013). Since the HBP is coupled to glycolysis, our data suggest a link between cellular metabolic state, lamin A/C–chromatin interactions, and changes in gene expression at an early stage of adipogenesis in a manner consistent with changes in H2BGlcNAc levels on D1.

De novo LADs formed on D1 of adipogenesis are nonrandomly established on GADs

Several features of lamin A/C and H2BGlcNAc enrichment patterns during differentiation suggest that LADs and GADs may be functionally related. First, LADs formed on D1 strongly coincide with domains enriched in H2BGlcNAc (Fig. 5A). We find that 71% of de novo LAD coverage on D1 overlaps with domains that are H2BGlcNAcylated already on D0 (Fig. 5B). Monte Carlo simulations show that LAD formation on preexisting GADs is not random, but is rather highly significant ($P = 9.98 \times 10^{-5}$) (Fig. 5B). This suggests that establishment of de novo lamin A/C–chromatin interactions on D1 of adipogenesis is prepatterned by domains of H2BGlcNAc. Formation of lamin A/C LADs on GADs on D1 is further demonstrated by the increase in the Jaccard index of overlap between LADs and GADs at this time point (Fig. 5C). In addition, genome-wide lamin A/C levels positively correlate with H2BGlcNAc levels when taking into account enrichment ratios rather than LADs and GADs (Fig. 5D). We conclude that lamin A/C LAD formation after adipogenic induction occurs nonrandomly on GADs, consistent with a view of epigenetic prepatterning of de novo adipogenic lamin A/C LADs by GADs.

Chromatin states underlining removal and formation of LADs during differentiation

To provide insight into the interplay between LADs and GADs during differentiation, we identified chromatin states underlining GADs and the de novo formation of LADs in particular. We used ChromHMM (Ernst and Kellis 2012), a Hidden Markov Modeling algorithm, to model chromatin states from recurrent combinations of six histone modifications (H3K4me1, H3K4me2, H3K4me3, H3K27me3, H3K27ac, H3K36me3), insulator protein CCCTC-binding factor (CTCF), lamin A/C, and H2BGlcNAc. Histone H3 modifications and CTCF were previously mapped by ChIP-seq in human ASCs on D−2, D0, D3, and D9 of adipogenic differentiation in a separate study (Mikkelsen et al. 2010). Using ChromHMM, we identify a 15-chromatin state model, i.e., 15 different combinations of chromatin marks characterizing the chromatin landscape of in vitro adipogenesis (Fig. 6A). From its composition in modified histones, CTCF, and lamin A/C, each chromatin state could be "annotated" into a given genomic feature (Fig. 6A). We identify four chromatin states (states 2, 3, 4, 15) containing lamin A/C (Fig. 6A): lamin A/C together with H3K36me3.
Adipogenic induction results in up-regulation of metabolic genes, lamin A/C dissociation from these genes, and in a transient increase in H2BGlcNAc. (A) ChIP-qPCR analysis of H2BGlcNAc on enriched and nonenriched loci on D0, D1, and D3 of differentiation. (B) Western blot analysis of H2BGlcNAc, total O-GlcNAc (RL2 antibody), OGT, OGA, and H2B throughout differentiation. Graph shows mean H2BGlcNAc levels at each time point relative to D−2 (levels standardized to H2B; mean ± SD of four experiments). (C) Gene ontology enrichment classification for the 2716 genes up-regulated between D0 and D1 up-regulated genes in GADs (D) and lamin A/C LADs (E), and maintenance of these genes within GADs or LADs between consecutive differentiation time points (gray bars). (F) H2BGlcNAc and lamin A/C ChIP-seq profiles on PDK4 and indicated glycolytic HIF1A-target genes. Arrows point to losses of lamin A/C from promoters, coinciding with transcriptional up-regulation of the genes. RNA-seq profiles are shown (scale 0–1000 FPKM).

Discussion

We provide evidence for a prepatterning of lamin A/C LADs by domains of GlcNAcylated H2B (GADs) during adipogenic differentiation of human primary adipocyte progenitors. We propose a model of a two-step process of lamin A/C LAD formation during adipogenesis (Fig. 6C). Our model entails spreading of LADs lamin A/C-chromatin interactions after the transition from progenitor cell proliferation to cell-cycle arrest and redistribution of these interactions through an exchange of LADs within hours of adipogenic induction. In undifferentiated cells, lamin A/C LADs are enriched in active genes and regulatory elements and do not necessarily involve GADs. However, post-differentiation LADs contain repressive chromatin features and strongly coincide with GADs. As lamin A/C is found both at the nuclear periphery and in the nuclear interior (Dechat et al. 2010; Gesson et al. 2014), the heterochromatic versus euchromatic nature of lamin A/C–chromatin interactions evidenced in this study is likely influenced by the dual localization of A-type lamins: Peripheral LADs are enriched in heterochromatin (Guelen et al. 2008; Reddy et al. 2008), while nucleoplasmic LADs would be more euchromatic. Extending the dogma that LADs are mainly gene-poor and repressed heterochromatin domains, our results indicate that lamin A/C LADs can be found both in active and repressive chromatin contexts, which can be influenced by cell differentiation status.

Remodeling of LADs after adipogenic induction raises the question of how this reorganization is orchestrated. Chromosome movements in response to changes in gene expression (Bickmore and van Steensel 2013) regulate radial positioning of loci and may contribute to forming de novo LADs (Harr et al. 2015). Alternatively, pools of lamin A/C may translocate to the nuclear
reflecting a nonrandom association (permutation on D1 (in megabases)): Data show that 71% of de novo LAD coverage overlaps with preexisting GADs, Venn diagram analysis of overlap of de novo LADs formed on D1 with preexisting D0 GADs maintained identified in ASCs and their overlap with lamin B1 LADs is both contacts (Kind et al. 2013). The overall repressed state of GADs cells; however, G9a plays a role in promoting chromatin EHMT2 no evidence that the H3K9 methyltransferase G9a (encoded by histone methyltransferase activity (Towbin et al. 2012). There is of sequences to the nuclear periphery in various cellular contexts (Guelen et al. 2008; Kind et al. 2013; Harr et al. 2015). LAD borders, but not LAD interiors, have been found to be enriched in H3K27me3 in human and mouse cells (Guellen et al. 2008; Simon et al. 2013; Harr et al. 2015), and abrogation of H3K27me3 by down-regulation of the H3K27 methyltransferase EZH2 impairs LAD maintenance (Harr et al. 2015). Thus, in addition to H3K9me2/3 within LADs, H3K27me3 in LAD borders could be a key player in de novo lamin A/C LAD formation during differentiation (Fig. 6C). The role of protein O-GlcNAcylation in Polycomb-mediated gene repression in Drosophila (Gambetta and Müller 2014), although this remains compatible with their enrichment in heterochromatin marked by H3K9me2/3. However, this may also speculatively reflect a cell-specific state since we find that lamin A/C LADs in undifferentiated ASCs contain active genes (Fig. 6C). It would be interesting to assess the role of H3K9me di- or tri-methylation on the formation of adipogenic LADs on GADs.

Whether the Polycomb facultative heterochromatin mark H3K27me3 is also involved in adipogenic de novo lamin A/C LAD formation remains unknown but is a possibility, in light of its involvement (together with H3K9me2/3) in the formation of LADs in mouse cells (Harr et al. 2015). Interestingly, short DNA sequences (Zullo et al. 2012) located in LAD borders are important for chromatin–lamina interactions (Harr et al. 2015). LAD borders, but not LAD interiors, have been found to be enriched in H3K27me3 in human and mouse cells (Guellen et al. 2008; Simon et al. 2013; Harr et al. 2015), and abrogation of H3K27me3 by down-regulation of the H3K27 methyltransferase EZH2 impairs LAD maintenance (Harr et al. 2015). Thus, in addition to H3K9me2/3 within LADs, H3K27me3 in LAD borders could be a key player in de novo lamin A/C LAD formation during differentiation (Fig. 6C). The role of protein O-GlcNAcylation in Polycomb-mediated gene repression in Drosophila (Gambetta and Müller 2014), although this remains

periphery (Gesson et al. 2014), a process regulated by LAP2 (Naetar et al. 2008), and this could potentially generate new LADs. Interestingly, LAP2 also modulates the balance between tissue progenitor cell proliferation and differentiation (Dorner et al. 2006; Naetar and Foisner 2009; Gotic et al. 2010). This raises the possibility that LAP2-lamin A/C interactions, and the equilibrium between nucleoplasmic and peripheral pools of lamin A/C, participate in the regulation of cell fate including adipogenic differentiation (Dorner et al. 2006).

H2B5112GlcNAc emerges as a new epigenetic mark underlying lamin A/C associations with chromatin. However, since 50% of GADs do not harbor lamin A/C after differentiation, GADs are not the only component specifying lamin A/C LADs. Several factors including DNA sequences in LAD borders, transcription factors, histone modifiers, and repressive histone modifications regulate sequence positioning to the nuclear periphery in various cellular contexts (Towbin et al. 2012; Zullo et al. 2012; Kind et al. 2013; Harr et al. 2015). LADs have been shown to be enriched in H3K9me2/3 (Guelen et al. 2008; Kind et al. 2013; Harr et al. 2015) and targeting of sequences to the nuclear periphery in S. c. elegans requires H3K9 histone methyltransferase activity (Towbin et al. 2012). There is no evidence that the H3K9 methyltransferase G9a (encoded by EHMT2) is preferentially active at the nuclear periphery in human cells; however, G9a plays a role in promoting chromatin–lamina contacts (Kind et al. 2013). The overall repressed state of GADs identified in ASCs and their overlap with lamin B1 LADs is both to be shown in mammals, and the discovery that O-GlcNAc is enriched at Polycomb response elements (Gambetta et al. 2009; Sinclair et al. 2009), suggest a view of an interplay between different histone modifications and the formation or maintenance of nuclear lamin–genome associations. Several levels of regulation involving combinations of multiple factors and H2BGlNc patterns may therefore determine lamin A/C–chromatin interactions elicited by differentiation in a cell- and tissue-specific manner.

Through several means of association of OGt with chromatin, GlcNAcylation is connected to multiple functions. In immortalized cell lines, OGt and H2B5112GlcNAc have been linked to transcriptional activity via targeting of OGt to chromatin by ten-eleven translocation enzymes (Chen et al. 2013; Deplus et al. 2013; Vella et al. 2013). However, none of the TET genes are expressed in ASCs or adipocytes (Shah et al. 2014), and we find no clear correlation between H2BGlNc and H2B120ub1 (which is linked to transcriptional activity) in ASCs. Instead, at least in ASCs, GADs correspond to intergenic regions and silent chromatin. In line with our findings, OGt is implicated in gene silencing (Gambetta et al. 2009; Sinclair et al. 2009; Darwanto et al. 2010; Gambetta and Müller 2014), for instance by modulating stability and function of EZH2 (Chu et al. 2014), and through its recruitment to chromatin by transcriptional corepressors (Yang et al. 2002; Vella et al. 2013). Thus, distinct mechanisms may link OGt to chromatin and OGt activity toward histones in different cellular contexts experiencing different metabolic states.
Inasmuch as in vivo quiescent tissue progenitor cells under hypoxic conditions in organs produce ATP through glycolysis, rapidly dividing cells in culture also use glycolysis more than oxidative phosphorylation (Shyh-Chang et al. 2013). Accordingly, glycolytic enzymes are expressed in undifferentiated proliferating ASCs in vitro. Consistent with this finding, the transcription factor MEIS1 is expressed in ASCs, enabling up-regulation of its target HIF1A (Simek et al. 2010; Harr et al. 2015) and active chromatin domains. Adipogenic differentiation elicits an exchange of lamin A/C LADs; this involves the formation of LADs predominantly on H2B-GlcNAc domains, consistent with an epigenetic prepatternning of de novo adipogenic lamin A/C LADs by GADs. The recently shown involvement of H3K27me3-enriched regions in LAD borders on the maintenance of LADs in mouse cells (Guelen et al. 2008; Kind et al. 2013; Harr et al. 2015) raises the possibility that de novo lamin A/C LADs formed during adipogenesis also entail a contribution from trimethylated H3K27 in LAD borders. The overall repressed state of these de novo LADs, together with their strong overlap with lamin B1 LADs, suggests that they become enriched in heterochromatin marked by di- or trimethylated H3K9.

Antibodies used were against

H2B512GlcNAc (ab130951, Abcam), H2B (ab1790, Abcam), H2BK120Ub1 (S546, Cell Signaling), O-GlcNAc (RL2, Abcam), lamin A/C (sc7292, Santa Cruz), lamin B1 (sc6216, Santa Cruz), α-tubulin (T5168, Sigma-Aldrich), EGFP (1181446001, Roche), and γ-tubulin (T326, Sigma-Aldrich). Control IgGs used for immunoprecipitation and ChIP-seq were from Millipore (12-370).

Vectors

Human H2B cDNA was amplified by PCR from pH2B-dihHcRed (a gift from Jan Ellenberg, EMBL, Heidelberg) using a sense primer containing a HindIII site at the 5′ end (5′-CCGCAGCTGTTACGCA GTCCACGGAGTCTGCTCC-3′) and an antisense primer with a SacI site at the 5′ end (5′-AGTCCCGGGTCACTTGGGTCGTTGACTTGGTCGAC-3′). Products were digested with HindIII and SacI.
and ligated into the HindIII and SacI cloning sites of pEGFP-C1 (Clontech). Plasmid encoding EGFP-H2B(S112A) was made from pEGFP-H2B by mutagenesis using the following primers: 5’-GGCAAGGACCGGTGGCCAGGATGTAAGG-3’ and 5’-CTCTAGTCCTCCGCAGCAGGGCTGGTC-3’.

OGA treatment of cell extract
ASCs were lysed in 20 mM Hepes/HCl, pH 8.2, 50 mM NaCl, 5 mM MgCl₂, and a protease inhibitor mix for 10 min and sonicated with a probe sonicator (Braun Biotech; 60% power, 0.5 sec intervals for 30 sec). Lysates were incubated for 30 min at room temperature with 2 ng/µL recombinant OGA (6779G0820, R&D Systems) and dissolved in 1x Laemmli buffer for SDS-PAGE and immunoblotting.

Dot blot assay and immunoblotting
Synthetic H2B (residues 108–117) and H2BS112GlcNAc (residues 108–116 with S112GlcNAc) peptides (Abcam) were spotted on a nitrocellulose membrane, air-dried, and blocked with Odyssey blocking buffer (Liorc). IRDye-800-coupled secondary antibodies and Odyssey imaging were used for visualization. For immunoblotting, proteins were separated by SDS-PAGE, blotted onto Immobilon-FL membranes (Millipore), and blocked with Odyssey blocking buffer. Proteins were visualized using IRDye-800- or IRDye-680-coupled antibodies (Liorc) and by Odyssey imaging.

Immunofluorescence and microscopy
Cells on coverslips were fixed with 3% paraformaldehyde for 15 min followed by 2 min in ice-cold methanol. Coverslips were blocked with 2% BSA, 0.1% Tween 20 in PBS (PBST-BSA) for 90 min, and incubated with primary antibodies overnight at 4°C. Coverslips were incubated with Cy2, Cy3 (Jackson Immuno-Research), or Alexa 488, Alexa 594 (Life Technologies) coupled secondary antibodies for 30 min before washing with PBST-BSA and mounting with DAPI Fluoromount G (Southern Biotech). Images were acquired on an Olympus IX71 microscope fitted with the DeltaVision system or through a SuperApochromat 60X/1.35 objective on an Olympus Fluoview 1000 confocal microscope. Images were processed with ImageJ v1.42q.

Chromatin immunoprecipitation
Cells (10⁷/ChIP) were cross-linked with 1% formaldehyde for 10 min, lysed for 10 min in ChIP lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-Cl, pH 7.5, proteinase inhibitors, 1 mM PMSF), and sonicated 4 × 10 min in a Bioruptor (Diagenode) to generate 200–500 bp DNA fragments. After sedimentation at 10,000g for 10 min, the supernatant was collected and diluted 10 times in RIPa buffer (140 mM NaCl, 10 mM Tris-Cl, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate, 1 mM PMSF, protease inhibitors) (input chromatin). Chromatin was incubated overnight at 4°C with antibodies to lamin A/C (5 µg/10⁶ cells; Santa Cruz sc7292), lamin B1 (Abcam ab16048; 2.5 µg/10⁶ cells), H2BS112GlcNAc (Abcam ab130951; 2.5 µg/10⁶ cells), H2BK120ub1 (Cell Signaling 5546; 2.5 µg/10⁶ cells), H2B (Abcam ab1790; 2.5 µg/10⁶ cells), or with control IgGs (2.5 µg/10⁶ cells) coupled to magnetic Dynabeads Protein A/G (Invitrogen). ChIP samples were washed four times in ice-cold RIPa buffer and incubated with 0.5 µg/mL RNase A for 20 min at 37°C. Crosslinks were reversed, and DNA was eluted for 6 h at 86°C in 50 mM NaCl, 20 mM Tris-Cl, pH 7.5, 5 mM EDTA, 1% SDS, and 50 ng/µL Proteinase K. DNA was purified and dissolved in H₂O. Sequencing libraries were prepared as per Illumina protocol and sequenced on an Illumina HiSeq 2500. For H2BS112GlcNAc ChIP, buffers were supplemented with 10 µM of the OGA inhibitor PugNAc (Sigma-Aldrich). ChIP DNA was also used as template for quantitative (q)PCR using primers to genomic and intergenic regions (Supplemental Table 1). PCR was done using SYBR Green (BioRad) for 3 min at 95°C and 40 cycles of 30 sec at 95°C, 30 sec at 60°C, and 30 sec at 72°C.

RNA sequencing and data analysis
RNA-seq data for D−2, D0, D3, and D9 of differentiation were published earlier (Shah et al. 2014) and downloaded from NCBI GEO GSE60237. RNA-seq data for D1 were generated as part of the same data set. Each RNA-seq data set was generated from duplicate differentiation experiments and sequence reads combined. RNA-seq reads were processed using Tuxedo (Trapnell et al. 2010). TopHat (Trapnell et al. 2012) was used to align reads with no mismatch against the hg19 reference genome with default settings, applying the Bowtie 2 (Langmead and Salzberg 2012) preset “very sensitive.” Cufflinks and cuffdiff were run using default settings and bias correction. Gene ontology analyses were done using GOSlim (Ashburner et al. 2000) and Gorilla (Eden et al. 2009) packages.

ChIP-seq data processing and identification of LADs and GADs
All scripts were written in Perl (Stajich et al. 2002) or R (R Core Team 2015). H2BGlcNAc and lamin A/C ChIP-seq reads were mapped to hg19 using Bowtie v1.0.0 (Langmead et al. 2009) with default settings and option “-best” enabled. Note that using hg19 instead of the more recent GRCh38 annotation did not affect our conclusions because GRCh38 updated annotations for mitochondrial gene, centromeric, and other repeat regions, to which sequencing reads are not mapped. Mapped reads were used to call peaks using Enhanced Domain Detector (EDD) (Lund et al. 2014). Browser files were generated by getting a ratio of ChIP/input for each of 1-kb (H2BGlcNAc) or 10-kb (lamin A/C) bins with input normalized to the ratio of total ChIP reads/total input reads. Lengths of lamin A/C and H2BGlcNAc peaks (domains) were categorized small (below lower quantile), large (above upper quantile), and medium (inter-quantile range) (Supplemental Script 1). Gene density was determined by computing numbers of genes per megabase in LADs and GADs (Supplemental Script 2).

Analysis of chromatin states
ChIP-seq data sets of histone marks and CTCF were from a previous study (Mikkelsen et al. 2010). Reads were remapped using Bowtie and peaks called using MACS v1.4.2 (Zhang et al. 2008). ChromHMM (Ernst and Kellis 2012) was used to identify chromatin states using the called peaks. Options were selected to learn a 15-state model using the Baum-Welch training algorithm (Miklós and Meyer 2005).

Statistical analysis
Gene intersects were generated by using “intersectBed” from BEDTools v2.21.0 (Quinlan and Hall 2010) on gene lists from RNA-seq data and ChIP-seq peaks. Genome coverage, jaccard indices, and overlap between GADs and LADs were calculated using “genomeCoverageBed,” “coverageBed,” and “BEDTools jaccard” (Quinlan et al. 2010) (Supplemental Scripts 3, 4). Significance of the overlap between GADs and LADs was calculated by performing 10,034 Monte Carlo simulations of randomly shuffling LADs along the genome using “shuffleBed” and generating a P-value based on the number of times the permutations were equally or
more extremely colocalized (Supplemental Script 5). Significance for difference in expression between genes within peaks, outside peaks, and ReSeq genes was determined by a Wilcoxon rank-sum test and Bonferroni corrected. Significance for difference in enrichment of predefined genomic regions in chromatin states was tested by generating a distribution of the difference in ratios of bases of a given state for the region, divided by the total bases of the chromatin state between the time points shuffled in a case-control manner, and a two-tailed t-test with the original value as the testing value.

Data viewing
Browser views of gene tracks, ChIP-seq data, and chromatin states are shown using the Integrated Genomics Viewer (Robinson et al. 2011). Genes are from Illumina iGenomes gene annotation with UCSC source for hg19. All plots were generated using the ggpplot2 or LSD libraries in R.

Data access
The sequence data from this study have been submitted to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE63346.

Acknowledgments
We thank Dr. Gunnar Kvalheim (Oslo University Hospital) for adipose stromal cells and Dr. Jan Ellenberg (EMBL, Heidelberg) for pH2B-dHiCRed. This work was supported by the University of Oslo (A.S., T.R.), The Research Council of Norway, the Norwegian Cancer Society (E.D.), South East Health Norway (A.R.O.), and the Norwegian Center for Stem Cell Research.

References
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 23–29.

Bickmore WA, van Steensel B. 2013. Genome architecture: domain organization of interphase chromosomes. Cell 152: 1270–1284.

Boquest AC, Shahdadfar A, Fronsal K, Sigurjonsson O, Tunheim SH, Collas P, Brinchmann JE. 2005. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16: 1131–1141.

Burke B, Stewart CL. 2013. The nuclear lamins: flexibility in function. Rev Mol Cell Biol 14: 13–24.

Chen Q, Chen Y, Bian C, Fujiki R, Yu X. 2013. TET2 promotes histone H3 Lys-79 methylation. Nature 493: 357–364.

Dawson MA, Volkmar M, Putmans P, Calonne E, et al. 2013. TET2 regulates cell cycle progression and differentiation via the retinoblastoma-E2F pathway. J Cell Biol 175: 83–95.

Eden E, Navon R, Steinfeld I, Lipson D, Yahav D. 2009. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 48.

Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9: 215–216.

Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, Sifers RN. 2012. β-N-Acetylglucosamine (O-GlcNaC) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem 287: 12195–12205.

Gambetta MC, Oktaba K, Müller J. 2019. Essential role of the glycosyltransferase ssc/Ort in polycomb repression. Science 325: 93–96.

Gambetta MC, Vidak S, Foisner R. 2014. Lamin-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Senin Cell Dev Biol 29: 116–124.

Gotlic I, Foisner R. 2010. Multiple novel functions of lamin associated polypeptide 2α in sitiated muscle. Nucleus 1: 397–401.

Hamlington J, Dyer TD, Arya R, Abboud H, et al. 2005. A single nucleoside modification of O-GlcNAc can disrupt cell cycle progression in human cells. Mol Biol Cell 16: 425–433.

Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL. 2015. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol 208: 33–52.

Hart GW. 2014. Three decades of research on O-GlcNAcylation—a major nutrient sensor that regulates signaling, transcription and cellular metabolism. Front Endocrinol 5: 183.

Hart GW, Houssy MP, Slawson C. 2007. Cycling of O-linked β-N-acetylglu- colocosamine on nucleocytoplasmic proteins. Nature 446: 1017–1022.

Johnson BR, Mounkes L, Barbie DA, Stewart CL, Harlow E, Kennedy BK. 2004. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing pro- teosomal degradation. Proc Natl Acad Sci USA 101: 9677–9682.

Keating ST, El-Osta A. 2015. Epigenetics and metabolism. Nature Rev Mol Cell Biol 16: 312–321.

Kolb T, Maass K, Herrmann H. 2011. Lamin A and lamin C switch nuclear localization and affects postnatal fiber-type determination. Stem Cells 29: 480–488.

Kolb T, Masak K, Herrgott M, Nolen LD, Bickmore WA, van Steensel B. 2013. Single-cell dynamics of lamina-associated polypeptide 2 in striated muscle. J Biol Chem 289: 11475–11487.

Kolb T, Masak K, Herrgott M, Nolen LD, Bickmore WA, van Steensel B. 2013. Single-cell dynamics of O-GlcNAcylation. Nat Rev Mol Cell Biol 14: 312–321.

Kunjambal AC, Briand N, Bidault G, Afonso P, Bereziat V, Vatier C, Lascols G. 2015. Glycosylation of O-linked β-N-acetylglucosamine mediates cellular responses to metabolic stress in islet cells. Cell 160: 1131–1141.

Krey J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola AM, Lehman DM, Fu DJ, Freeman AB, Hunt KJ, Leach RJ, Johnson-Pais T, Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lehman DM, Fu DJ, Freeman AB, Hunt KJ, Leach RJ, Johnson-Pais T, Hamlington J, Dyer TD, Arya R, Abboud H, et al. 2005. A single nucleo- tide polymorphism in MGEA5 encoding O-GlcNAc-transferase (OGT) and SET1/COMPASS. Int Rev Cell Mol Biol 252: 497–565.

Lehman DM, Fu DJ, Freeman AB, Hunt KJ, Leach RJ, Johnson-Pais T, Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

Lund E, Oldenburg A, Delbarre E, Freberg C, Duband-Goulet I, Escherland R, Ueland B, Collas P. 2013. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res 23: 1580–1589.

Lund EG, Oldenburg AR, Collas P. 2014. Enriched domain detector: a pro- gram for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res 42: e92.
Marshall S, Bacote V, Traxinger RR. 1991. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. J Biol Chem 266: 4706–4712.

Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A, Stadler MB, Meister P, Gruenbaum Y, Gasser SM. 2011. An EMDM mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol 21: 1603–1614.

Meuleman W, Peric-Hupkes D, Kind J, Beaudry JB, Pagie L, Kellis M, Reinders M, Wessels L, van Steensel B. 2013. Constitutive nuclear lamin-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23: 270–280.

Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED. 2010. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143: 156–169.

Mikkola I, Meyer IM. 2005. A linear memory algorithm for Baum-Welch reestimation. R project.org/.

Naetar N, Kozlov B, Kozlov A, Serenyi MA, Dommer D, Kral R, Gotic I, Miklós I, Meyer IM. 2005. A linear memory algorithm for Baum-Welch reestimation. R project.org/.

Naetar N, Kozlov B, Kozlov A, Serenyi MA, Dommer D, Kral R, Gotic I, Miklós I, Meyer IM. 2005. A linear memory algorithm for Baum-Welch reestimation. R project.org/.

Naetar N, Korbel R, Kozlov S, Kerenyi MA, Dommer D, Kral R, Gotic I, Fuchs P, Cohen TV, Bittner R, et al. 2008. Loss of nucleoplasmic LAP2α lamin A complexes causes erythroblast and epidermal progenitor hyperproliferation. Nat Cell Biol 10: 1341–1348.

Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J. 2013. Organization of the mitotic chromosome. Science 14: 953.

Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flieck P, Kerkhoven RM, van Loohuizen M, et al. 2010. Molecular maps of the reorganization of genome-nuclear lamin interactions during differentiation. Mol Cell 38: 603–613.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.

Reddy KL, Zullo JM, Bertolino E, Singh H. 2008. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452: 243–247.

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita Reddy KL, Zullo JM, Bertolino E, Singh H. 2008. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452: 243–247.

Siersbaek R, Nielsen R, Mandrup S. 2012. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 23: 56–64.

Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, Kesner BA, Maier VK, Kingston RE, Lee JT. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504: 465–469.

Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp H, et al. 2002. The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12: 1611–1618.

Stierle V, Coutiere J, Ostlund C, Krimm I, Zinn-Justin S, Hossenlopp P, Siersbaek R, Nielsen R, Mandrup S. 2012. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol Metab 23: 56–64.