Background and Purpose Hyperekplexia (HPX), a rare neurogenetic disorder, is classically characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli and followed by a shortly general stiffness. Glycine receptor alpha 1 (GLRA1) is the major pathogenic gene of the disease. We described the clinical manifestations of genetically confirmed HPX patients and made a literature review of GLRA1-related HPX to improve the early recognition and prompt the management of the disorder.

Methods Extensive clinical evaluations were analyzed in 4 Chinese HPX patients from two unrelated families. Next generation sequencing was conducted in the probands. Sanger sequence and segregation analysis were applied to confirm the findings.

Results All four patients including 3 males and 1 female presented with excessive startle reflex, a cautious gait and recurrent falls. Moreover, startle episodes were dramatically improved with the treatment of clonazepam in all cases. Exome sequencing revealed 2 homozygous GLRA1 mutations in the patients. The mutation c.1286T>A p.I429N has been previously reported, while c.754delC p.L252* is novel.

Conclusions HPX is a treatable disease, and clonazepam is the drug of choice. By studying and reviewing the disorder, we summarized the phenotype, expanded the genotype spectrum, and discussed the possible pathogenic mechanisms to enhance the understanding and recognition of the disease. Early awareness of the disease is crucial to the prompt and proper administration, as well as the genetic counseling.

Key Words hyperekplexia, startle reaction, glycine receptor alpha 1, mutation, clonazepam.

INTRODUCTION

Hyperekplexia (HPX), also referred to as Startle disease, is a rare inherited neurological disorder which is clinically characterized by neonatal hypertonia, generalized muscle stiffness and exaggerated startle reflexes provoked by sudden, unexpected auditory, tactile, and visual stimuli. In 1958 Kirstein and Silfverskiold firstly described a family of which affected members suffered sudden falls precipitated by ‘emotional’ stimuli. In 1958 Kirstein and Silfverskiold firstly described a family of which affected members suffered sudden falls precipitated by ‘emotional’ stimuli. In 1966 Suhren investigated a large Dutch pedigree with the similar symptoms and firstly named the disorder “HPX.” Clinically, a generalized stiffness is always noted early after birth, which may be associated with apnea attacks and sudden infant death syndrome, or some may be gradually improved in the first few years of life. While excessive startling may last throughout life which can occasionally cause serious traumatic injuries and impaired social interactions in older children. Periodic limb movements in sleep and a characteristic head retraction reflex (nose-tapping test) can be observed in most patients with HPX. Genetically, the disor-
der shows genetic heterogeneity. Among the causative genes, GLRA1 is the major one, which accounts for about 80% of all cases. To date, the pathogenic mechanism of the disease is still not fully understood. However, HPX has relatively a good prognosis with clonazepam to effectively respond to the startle episodes.

Although potentially treatable, HPX is not necessarily a benign condition. In practice, it can be easily misdiagnosed and missed the prompt and appropriate treatment due to limited attention understanding of the disease. Herein, clinical and genetic investigation of 4 Chinese patients from two unrelated families with novel GLRA1 mutations were described, and a further detailed literature review of the GLRA1-related HPX was made to summarize the clinical manifestations, expand the genetic spectrum, and discuss the possible pathogenic mechanisms to enhance the early recognition, shed light on the pathogenetic studies and improve the systematic management for the disorder.

METHODS

Patients
A total of 4 patients from 2 unrelated families were enrolled in this study. Clinical diagnosis of HPX was based on the following performances: exaggerated startle reflex, muscle stiffness, a positive nose-tapping test, and a good response to clonazepam. All patients came from the neurology department of Ruijin Hospital and were evaluated by two senior neurologists at least. The ethics committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China approved the study (2017-38). All participants or their guardians provided written informed consents.

Exome sequencing and data analysis
Genomic DNA was extracted using the standardized phenol/chloroform extraction protocol. Exome sequencing was performed on the proband of each family. The variants were analyzed as follows: firstly, the 1,000 Genomes Project (http://www.internationalgenome.org), dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP), and the Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/) were as references to exclude all variants present in the population at greater than 5% frequency. Then, the pathogenicity of the nucleotide and amino acid conservation was predicted by Mutationtaster (http://www.mutationtaster.org), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2), and SIFT (http://sift.jcvi.org). Finally, the pathogenic of the variant was interpreted and classified following the American College of Medical Genetics and Genomics Standards and Guidelines. Putative pathogenic variants were further confirmed by Sanger sequencing, as well as co-segregation analysis among family members.

RESULTS

Clinical findings
Clinical profiles of the 4 patients are summarized in Table 1. Total 4 patients from 2 unrelated families, including 3 males and 1 female were enrolled. All patients had no remarkable neonatal problems. Muscle stiffness and/or excessive startle response were noticed during the neonatal period. The abnormal startle response was usually triggered by unexpected noises and constituted sudden stiffness, recurrent rigid falls to the ground with arms by two sides, but without loss of consciousness. All cases showed a cautious gait with a wide stride in adult life. Interestingly, all patients dared not to walk on hard ground, but could walk freely without fear on the green-sward, or with something relying on, such as wall, wheelchair, umbrella or stick (the video of the cautious gait and the improved therapeutic effects in siblings of the family 1). The non-specific abnormalities in electroencephalogram (focal spike or slow waves) were found in two patients (family 1). All patients were previously judged as epilepsy or dystonia, and endured long time fear and frequent traumatic falls before correctly diagnosed. There was no developmental delay or intellectual disturbance in all patients. The other examinations such as, routine laboratory test, brain imaging showed no notable abnormalities in all cases. Moreover, clonazepam was administrated to all patients soon after the consideration of HPX, stiffness and startle reflex were dramatically or partially improved.

Genetic findings
Exome sequencing revealed 2 homozygous mutations in GLRA1 (NM_000171) (Fig. 1). In consanguineous family 1, the two siblings had a novel homozygous deletion mutation c.754delC (p.L252*), while their asymptomatic mother is a heterozygous carrier. In family 2, the proband and his younger brother carried a documented homozygous missense mutation c.1286T>A (p.I429N), his asymptomatic sister and son are heterozygous carriers. All the patients showed an autosomal recessive inheritance mode. The mutations above were not found in 1,000 Genomes Project, dbSNP, and ExAC database, and Mutationtaster predicted the mutations to be disease-causing.

DISCUSSION
In this study, we investigated the clinical features of 4 patients from 2 unrelated families with genetically confirmed diagno-
Family	Patient no.	Age at diagnosis (yr)	Inheritance	Phenomenology	Complications	EEG	Previous diagnosis
1	IV:1	M Neonate	Autosomal	Neonatal hypertonia, exaggerated startle reflexes, facial expressionless, timid	Focal spike and slow waves, by recurrent falls	Epilepsy, dystonia	Partially relieved (0.5 mg/day)
		48					
	II:1	M Neonate	Autosomal	Exaggerated startle reflexes, facial expressionless	Focal slow waves	Epilepsy, dystonia	Not done
		51					
2	IV:2	F Neonate	Autosomal	Neonatal hypertonia, exaggerated startle reflexes, stiff in 4 limbs, facial expressionless	Focal spike and slow waves	Epilepsy, dystonia	Partially relieved (1 mg/day)
		41					
	II:4	M Neonate	Autosomal	Exaggerated startle reflexes, mildly diminished	Focal slow waves	Epilepsy, dystonia	Partially relieved (0.5 mg/day)
		46					

Responsive to CZP significantly improved (can walk freely with nothing on legs, startle reflexes almost vanished), partially relieved (maintain a slight sense of alertness, mild cautious gait), nonresponsive.

Pathogenic variants in 5 genes relating to the glycineergic neurotransmission system have been identified in HPX. GLRA1 and GLRB encode the α1 and β subunit of the post-synaptic inhibitory glycine receptor respectively. SLC6A5 encodes the cognate presynaptic glycine transporter 2. It was reported that patients with GLRB and SLC6A5 mutations are more likely to have apnea attacks, or mild to severe delay in life, although the severity differs among the patients. The disorder always has a neonatal onset, which requires more attention in paediatrician’s clinical practice. In our study, the electroencephalogram (EEG) abnormalities may be a non-specific pathological change, which might due to the severe craniocerebral trauma caused by the recurrent falls. As reported in previous study, fast spikes followed by slow background activity and flattening can be observed on EEG without epileptic discharges of the patient. In addition, phenotype disparities existed between the affected members in the same pedigree, which is consistent with the previous reports, suggesting an underlying mechanism of variable expressivity. Currently, clonazepam is the drug of choice that dramatically improves the exaggerated startling, which through enhancing GABA-gated chloride channel function and presumably compensating for the defective glycine-gated chloride channel function.

Pathogenic variants in 5 genes relating to the glycineergic neurotransmission system have been identified in HPX.
development or speech acquisition. While the mutations in *GPHN* and *ARHGEF9*, of which the encoding proteins gephyrin and collybistin are involved in GlyR synaptic clustering, have also been reported to result in more complex or atypical phenotype. All these proteins are implicated in the normal functioning of inhibitory glycinergic synapses, which are located predominantly in the spinal cord and brainstem.

In human, four α subunits (α1–α4) and a single β subunit of GlyR contains an extracellular domain (ECD) that harboring the neurotransmitter binding site and a transmembrane domain (TMD) that comprising 4 α-helices, termed TM1–TM4.

Clustered in ECD, TM1, TM2 domains and Loop2 (Fig. 2B). Among all the mutations, we found that 40.0% (30/77) are dominant, 50.6% (39/77) are recessive (missense and nonsense), 7.8% (6/77) are recessive frameshift variants. Domain mutations are mainly located in and around TM2 domain, R299 is the most frequent mutant residue of which the encoding proteins ARHGEF9 were identified in the two siblings (IV:1 and IV:3), their asymptomatic mother (III:2) is a heterozygous carrier. B: Homogenous GLRA1 c.1286T>A (p.I429N) identified in the proband and his younger brother (II:1 and II:4), his asymptomatic sister and son are heterozygous mutation carriers (II:2 and III:1).
ly contribute to the reduction in the glycine-induced current amplitude. Nevertheless, the exact mechanism of GLRA1 mutations still beyond fully understand and requires more investigation.

Due to the overlapping clinical signs, HPX can be initially misdiagnosed as epilepsy, cerebral palsy in infancy period, or adult-onset anxiety neurosis. The disorder has a neonatal onset, when newborns showed diffuse muscular rigidity, episodic tonic spasm, apnea, aspiration pneumonia, it should be considered the possibility of HPX. Nose-tapping test can make a preliminary judgement. Once acute hypertonia and apnea episodes occur, a simple intervention called the Vigevano action (flexing of the head and limbs toward the trunk) can relieve the event. Fortunately, HPX is a potentially treatable disease. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for HPX patients. The treatment is recommended to start with a dose of 0.5 mg daily, adjust dosage based on effects, up to 6 mg daily if necessary. Some other antiepileptic drugs, like carbamazepine or phenobarbital, can also be used while their therapeutic effect is still in debate.

In conclusion, HPX is a treatable neurogenetic disorder, and clonazepam is the drug of choice. Mutations in GLRA1 account for the most. By studying and reviewing the disorder, we summarized the phenotype, expanded the genotype spectrum, discussed the possible pathogenic mechanisms, to enhance learning, awareness-raising of the HPX and shed light on the pathogenetic studies. Early recognition of the disease is
helpful for prompt and appropriate treatment, to avoid the se-
rious adverse events and improve the quality of life. More-
over, prompt genetic analysis may be useful for early de-
finite diagnosis, genetic counseling and safer care for affected
neonates.

Author Contributions

Conceptualization: Li Cao. Data curation: Feixia Zhan, Chao Zhang, Shige Wang, Zeyu Zhu, Guang Chen, Mingliang Zhao, Li Cao. Formal analysis: Feixia Zhan, Chao Zhang, Li Cao. Funding acquisition: Li Cao. Investigation: Feixia Zhan, Chao Zhang, Shige Wang, Zeyu Zhu, Guang Chen, Mingliang Zhao, Li Cao. Methodology: Feixia Zhan, Chao Zhang, Li Cao. Project administration: Li Cao. Resources: Li Cao. Software: Feixia Zhan, Chao Zhang. Supervision: Li Cao. Validation: Li Cao. Writing—original draft: Feixia Zhan. Writing—review & editing: Li Cao.

ORCID IDs

Feixia Zhan https://orcid.org/0000-0003-1880-8481
Chao Zhang https://orcid.org/0000-0003-1927-2906
Shige Wang https://orcid.org/0000-0002-6826-6812
Zeyu Zhu https://orcid.org/0000-0003-0970-4832
Guang Chen https://orcid.org/0000-0002-9209-5494
Mingliang Zhao https://orcid.org/0000-0002-2565-6351
Li Cao https://orcid.org/0000-0003-1742-9877

Conflicts of Interest

The authors have no potential conflicts of interest to disclose.

Acknowledgements

This study was supported by the grants from the National Natural Sci-
ence Foundation of China (No.81571086 and 81878089), National Key
R&D Program of China (No.2017YFC1310200), Shanghai Municipal Edu-
cation Commission-Gaofeng Clinical Medicine Grant (20161401)
and Interdisciplinary Project of Shanghai jiao Tong University (YG2016MS64).

We would like to thank the patients for their cooperation.

REFERENCES

1. Bakker MJ, van Dijk JG, van den Maagdenberg AMJM, Tijsens MAJ.
 Startle syndromes. Lancet Neurol 2006;5:513-524.
2. Harvey RJ, Topf M, Harvey K, Rees MI. The genetics of hyperekplex-
 ia: more than startle! Trends Genet 2008;24:339-447.
3. Kirstein L, Silfverskiold BP. A family with emotionally precipitated
drop seizures. Acta Psychiatr Neurol Scand 1958;33:471-476.
4. Suhren O, Bruyn GW, Tuyman JA. Hypermelplexia: a hereditary syn-
drome. J Neurol Sci 1966;3:577-605.
5. Giacopa GP, Ryan SG. Hypermelplexia associated with apnea and sud-
ben infant death syndrome. Arch Pediatr Adolesc Med 1994;148:540-
543.
6. Mine T, Taketani T, Yoshida K, Yokochi F, Kobayashi J, Maruyama K,
et al. Clinical and genetic investigation of 17 Japanese patients with
hypermelplexia. Dev Med Child Neurol 2015;57:372-472.
7. Thomas RH, Chung SK, Wood SE, Cushion TD, Drew CJG, Ham-
mond CL, et al. Genotype-phenotype correlations in hypermelplexia:
apnoea, learning difficulties and speech delay. Brain 2013;136:3085-
3095.
8. Sproveri T, Ungaro C, Sivo S, Quintiliani M, Contaldo I, Veredice C,
et al. Clinical features and genetic analysis of two siblings with startle
disease in an Italian family: a case report. BMC Med Genet 2019;20:40.
9. Zhou L, Chillag KL, Ngo MA. Hypermelplexia: a treatable neuroge-
etic disease. Brain Dev 2002;24:669-674.
10. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Stan-
dards and guidelines for the interpretation of sequence variants: a joint
consensus recommendation of the American College of Medical Ge-
etics and Genomics and the Association for Molecular Pathology.
Genet Med 2015;17:405-424.
11. Zhang C, Wang SG, Wang Y, Liu XL, Cao L. Teaching video neuro-
images: cautious walking gait in siblings with hereditary hyperekplex-
ia. Neurology 2019;92:e2068-e2069.
12. Huang Z, Tian Y, Xu H, Zhang H. Weird laughing in hypermelplexia: a
new phenotype associated with a novel mutation in the GLRA1 gene.
Seizure 2018;58:6-8.
13. Yang Z, Sun G, Yao F, Tao D, Zhu B. A novel compound mutation in
GLRA1 cause hyperekplexia in a Chinese boy- a case report and re-
view of the literature. BMC Med Genet 2017;18:110.
14. Chan KK, Cherk SWW, Lee HHC, Poon WT, Chan AYW. Hypermel-
plexia: a Chinese adolescent with 2 novel mutations of the GLRA1
gene. J Child Neurol 2014;29:111-113.
15. Poon WT, Au KM, Chan YW, Chan KY, Chow CB, Tong SF, et al. New
novel missense mutation (Y279S) in the GLRA1 gene causing hyper-
melplexia. Clin Chim Acta 2006;364:361-362.
16. Tsai CH, Chang FC, Su YC, Tsai FJ, Lu MK, Lee CC, et al. Two novel
mutations of the glycine receptor gene in a Taiwanese hyperekplexia
family. Neurology 2004;63:893-896.
17. Li H, Yang ZX, Xue J, Qian P, Liu XY. [Clinical and genetic analysis of
hypermelplexia in a Chinese child and literature review]. Zhonghua Er
Ke Za Zhi 2017;55:120-124.
18. Lee Y, Kim NY, Hong S, Chung SJ, Jeong SH, Lee PH, et al. Familiar
hypermelplexia, a potential cause of cautious gait: a new Korean case
and a systematic review of phenotypes. J Mov Disord 2017;10:53-58.
19. Tohier C, Roze JC, David A, Vezzetti ME, Renaud P, Mouzard A.
Hypermelplexia or Stiff Baby Syndrome. Arch Dis Child 1991;66:460-
461.
20. Zwarts MJ, Willemsen MH, Kamsteeg EJ, Schelhaas HJ. Paroxysmal
sensory (spinal) attacks without Hyperekplexia in a patient with a vari-
ant in the GLRA1 gene. J Neurol Sci 2017;378:175-176.
21. Masri A, Chung SK, Rees MI. Hypermelplexia: report on phenotype
and genotype of 16 Jordanian patients. Brain Dev 2017;39:306-311.
22. Rees MI, Harvey K, Ward H, White JH, Evans L, Duguid JC, et al. Iso-
form heterogeneity of the human gephyrin gene (GPHN), binding
domains to the glycine receptor, and mutation analysis in hypermel-
plexia. J Biol Chem 2003;278:24688-24696.
23. Harvey K, Duguid JC, Allerd MF, Beatty SE, Ward H, Keep NH, et al.
The GDP-GTP exchange factor collybistin: an essential determi-
nant of neuronal gephyrin clustering. J Neurosci 2004;24:5816-5826.
24. Chalpin AV, Saha MS. The specification of glycnergic neurons and
the role of glycnergic transmission in development. Front Mol Neuro-
rosi 2010;3:11.
25. Matsumoto T, Fuji P, Nigro M, Hallett M. Physiological abnor-
malities in hereditary hyperekplexia. Ann Neurol 1992;32:41-50.
26. Floeter MK, Andermann E, Andermann F, Nigro M, Hallett M. Phys-
iological studies of spinal inhibitory pathways in patients with he-
reditary hyperekplexia. Neurology 1996;46:766-772.
27. Bode A, Latch JW. The impact of human hyperekplexia mutations on
glycine receptor structure and function. Mol Brain 2014;7:2.
28. Chung SK, Vanbebreggenf RN, Mullins JGL, Robinson A, Hantle J, Ham-
mond CL, et al. Pathophysiological mechanisms of dominant and rece-
ptive GLRA1 mutations in hyperekplexia. J Neurosci 2010;30:9612-9620.
29. Bode A, Wood SE, Mullins JGL, Keramidas A, Cushion TD, Thomas
RH, et al. New hyperekplexia mutations provide insight into glycine
receptor assembly, trafficking, and activation mechanisms. J Biol Chem
2013;288:33745-33759.
30. Breitinger HG, Willmann C, Becker K, Becker CM. Opposing effects
of molecular volume and charge at the hyperekplexia site alpha 1
(P250) govern glycine receptor activation and desensitization. J Biol
Chem 2001;276:29657-29663.
31. Hirzel K, Müller U, Lataf AT, Hülsmann S, Grudzinska J, Seeliger MW,
et al. Hypermelplexia phenotype of glycine receptor a1 subunit mutant
mice identifies Zn$^{2+}$ as an essential endogenous modulator of glycinergic neurotransmission. *Neuron* 2006;52:679-690.
32. Zhou N, Wang CH, Zhang S, Wu DC. The GLRA1 missense mutation W170S associates lack of Zn$^{2+}$ potentiation with human hyper-ekplexia. *J Neurosci* 2013;33:17675-17681.
33. Vigevano F, Di Capua M, Dalla Bernardina B. Startle disease: an avoidable cause of sudden infant death. *Lancet* 1989;1:216.
34. Dreissen YEM, Tijssen MAJ. The startle syndromes: physiology and treatment. *Epilepsia* 2012;53 Suppl 7:3-11.