Anharmonic stabilization of the high-pressure simple cubic phase of calcium

Ion Errea1,2,3, Bruno Rousseau2,3, and Aitor Bergara1,2,3

1Materia Condensatueren Fisika Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Postakutxatila, 48080 Bilbao, Basque Country, Spain
2Donostia International Physics Center (DIPC), Pasco de Manuel Lardizábal 4, 20018, Donostia, Basque Country, Spain and
3Centro de Física de Materiales CFM - Materials Physics Center MPC, Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa 72, 20018 Donostia, Basque Country, Spain

(Dated: January 13, 2013)

The phonon spectrum of the high-pressure simple cubic phase of calcium, in the harmonic approximation, shows imaginary branches that make it mechanically unstable. In this letter, the phonon spectrum is recalculated using density-functional theory (DFT) ab initio methods fully including anharmonic effects up to fourth order at 50 GPa. Considering that perturbation theory cannot be employed with imaginary harmonic frequencies, a variational procedure based on the Gibb-Bogoliubov inequality is used to estimate the renormalized phonon frequencies. The results show that strong quantum anharmonic effects make the imaginary phonons become positive even at zero temperature so that the simple cubic phase becomes mechanically stable, as experiments suggest. Moreover, our calculations find a superconducting T_c in agreement with experiments and predict an anomalous behavior of the specific heat.

PACS numbers: 63.20.kg,63.20.dk,63.20.Ry,74.25.Kc

The understanding of crystal lattice vibrations in terms of phonons provides an excellent paradigm to interpret and understand a wide range of physical phenomena [1]. In most cases, the harmonic approximation describes accurately phonon frequencies and the associated physical properties. However, there are examples where experimentally confirmed structures display imaginary phonons in ab initio DFT calculations, indicating that in such cases anharmonicity cannot be neglected. The high-pressure simple cubic (sc) phase of calcium is an important example of the possible stabilizing role of anharmonicity. Indeed, while measurements confirm the presence and stability of this structure [2,3,11,12], theoretical calculations based on the harmonic approximation find imaginary phonon branches throughout the whole Brillouin zone (BZ) [3,9].

Under pressure, calcium exhibits a complex and interesting behavior. For instance, it becomes the element with the largest superconducting critical temperature (T_c), reaching 25 K at 161 GPa [10]. According to room temperature x-ray diffraction measurements [2,3,11,12], the ambient condition face-centered-cubic (fcc) phase transforms to body-centered-cubic (bcc) at 19 GPa, to sc at 32 GPa, to $P4_2_2_2$ at 119 GPa, to $Cmca$ at 143 GPa and to $Pnma$ at 158 GPa. Moreover, it has recently been reported that upon cooling the sc structure transforms into a very similar monoclinic $Cmcmn$ phase at 30 K and 45 GPa [5]. On the other hand, evolutionary DFT simulations within the generalized gradient approximation (GGA) at 0 K [13] found that the experimental phases do not always coincide with the lowest enthalpy structures. This is quite dramatic in the stability range of the sc phase considering that the $I4_1/amd$ structures (from 33 to 71 GPa) and $C2/c$ structures (from 71 to 89 GPa) have considerably lower enthalpy than sc. Recent diffusion quantum Monte Carlo calculations (DMC) [9] have brought new insight to this problem, showing that the sc phase is energetically preferred over the $I4_1/amd$ phase when the exchange-correlation energy is treated correctly. Nevertheless, the question of dynamical stability remains and a proper quantum-mechanical treatment explicitly incorporating anharmonicity is still missing.

The extreme anharmonicity in sc Ca requires a non-perturbative approach and suggests the application of the self-consistent harmonic approximation (SCHA) [14,15]. The SCHA seeks the physically well-defined Gibb-Bogoliubov bound and, in contrast to classical molecular dynamics (MD) or statistical sampling methods [16], works at any temperature with no additional cost. However, in order to apply this theory, the knowledge of all anharmonic coefficients is needed. Calculating them from first principles is usually complicated and highly time-demanding, thus, the SCHA has been normally applied making use of empirical potentials. Nevertheless, given the simplicity and high-symmetry of the sc structure, we have calculated ab initio all the necessary anharmonic coefficients up to fourth order in displacement. The SCHA could then be applied to compute the temperature dependent renormalized phonon frequencies. The calculations have been performed at 50 GPa and, as it turns out, within this formalism the phonons of sc Ca are stable even at 0 K at this pressure. Unless stated otherwise, we use atomic units throughout, i.e., $\hbar = 1$.

Within the Born-Oppenheimer approximation, the Hamiltonian describing the dynamics of the N ions in the crystal is given by $H = T + U$, where T and U are, respectively, the kinetic and potential energy operators of the ions. The potential is expanded up to fourth order
as $\hat{U} = \hat{U}_0 + \hat{U}_2 + \hat{U}_3 + \hat{U}_4$ with

$$\hat{U}_n = \frac{N^{1-\frac{n}{2}}}{n!} \sum_{(\alpha q)} \hat{u}^{(\alpha)}(q_1) \cdots \hat{u}^{(\alpha)}(q_n) \Phi^{\alpha_1 \cdots \alpha_n}(q_1, \ldots, q_n).$$

In Eq. \[1\], \{\alpha\} represent Cartesian coordinates, $\Phi^{\alpha_1 \cdots \alpha_n}(q_1, \ldots, q_n)$ is the Fourier transform of the nth derivative of the total energy with respect to the ionic displacements and $\hat{u}^{(\alpha)}(q)$ is the Fourier transform of the ionic displacement operator. In the harmonic approximation, neglecting the third and fourth order terms of the potential, the Hamiltonian is diagonalized in terms of phonons. The term $\hat{U}_3 + \hat{U}_4$ can be treated within perturbation theory to correct the phonon frequencies and account for their finite lifetime \[17\]. However, in sc Ca the energy has no lower bound due to the imaginary frequencies obtained in the harmonic approximation and, therefore, one needs to treat anharmonicity beyond perturbation theory. In the SCHA, one adds and subtracts a trial harmonic term that yields well defined real phonon frequencies, \hat{H}_0, and redefines the Hamiltonian as $\hat{H} = \hat{H}_0 + \hat{H}_1$, with $\hat{H}_0 = \hat{T} + \hat{U}_0^2$ and $\hat{H}_1 = (\hat{U}_2 - \hat{U}_0^2) + \hat{U}_3 + \hat{U}_4$. The exact free energy F satisfies the Gibbs-Bogoliubov inequality

$$F \leq F_0 + \langle \hat{H}_1 \rangle_0,$$

so that the minimum of the right-hand side of Eq. \[2\] becomes an approximate solution of F. F_0 and $\langle \hat{H}_1 \rangle_0$ are given as $F_0 = -\frac{1}{2} \ln Z$ and $\langle \hat{H}_1 \rangle_0 = \text{tr}(\hat{H}_1 e^{-\beta \hat{H}_0})/Z$, where $\beta = 1/k_B T$ and the partition function is $Z = \text{tr}(e^{-\beta \hat{H}_0})$.

The adjustable parameters that can be used for the minimization are the trial phonon frequencies $\{\Omega_{\nu q}\}$ that diagonalize \hat{H}_0, ν being a mode index. Differentiating Eq. \[2\] with respect to $\Omega_{\nu q}$, the equation for the trial frequencies that minimize the free energy can be obtained straightforwardly:

$$\Omega_{\nu q}^2 = \omega_{\nu q}^2 + 8\Omega_{\nu q} j_{\nu q}.$$ \[3\]

A numerical solution of this equation leads to the renormalized frequencies $\Omega_{\nu q}$ at any temperature. In Eq. \[3\]

$$j_{\nu q} = \frac{1}{8N} \sum_{\nu'q'\{\alpha\}} \epsilon_{\nu q}^{\alpha_1} \epsilon_{\nu' q'}^{\alpha_2} \epsilon_{\nu q'}^{\alpha_3} \epsilon_{\nu' q''}^{\alpha_4} \frac{M^2 \Omega_{\nu q} \Omega_{\nu' q''}}{4M^2 \Omega_{\nu q} \Omega_{\nu' q'}} \times \Phi^{\alpha_1 \alpha_2 \alpha_3 \alpha_4}(q', -q', q, -q)[1 + 2n_B(\Omega_{\nu q'})],$$ \[4\]

$\epsilon_{\nu q}$ is the phonon polarization vector, M the mass of Ca, $\{\Omega_{\nu q}\}$ the phonon frequencies diagonalizing \hat{U}_2, imaginary at some q, and n_B the usual bosonic occupation factor. As it can be seen, the third order anharmonic coefficients do not contribute to F at this level of approximation. It should be noted that in the renormalization process the polarization vectors are kept fixed. This is justified for the highly-symmetric sc phase, but in systems with different atoms in the unit cell polarization vectors may be used to minimize Eq. \[2\].

The computationally most expensive part of the method described above is the \textit{ab initio} calculation of the fourth order anharmonic coefficients $\{\Phi^{\alpha_1 \alpha_2 \alpha_3 \alpha_4}(q', -q', q, -q)\}$. These can be obtained taking numerical second derivatives of dynamical matrices calculated in supercells (see, for example, Ref. \[18\]: the method presented there was slightly extended, given that two linearly independent real displacements must be used to generate the necessary supercells at q points not at the BZ edge). Such dynamical matrices were obtained using density functional perturbation theory (DFPT) \[19\] as implemented in \textsc{Quantum Espresso} \[20\] within the PBE-GGA \[21\] and making use of a 10 electron ultrasoft pseudopotential with 3s, 3p and 4s states in the valence. A 30 Ry cutoff was used for the plane-wave basis and a $16 \times 16 \times 16$ Monkhorst-Pack k mesh for the BZ integrations. Phonon frequencies and anharmonic coefficients were calculated on a $4 \times 4 \times 4$ q grid \[22\] and the renormalized phonon dispersion curves were obtained by Fourier interpolation.

The strong anharmonicity in this system stabilizes all the imaginary phonon branches even at 0 K, as can be seen in Fig. \[1\]. This is an extraordinary effect considering that, normally, anharmonic stabilization of unstable modes occurs with increasing temperature \[16\]. MD
simulations have suggested that sc Ca may be stable at room temperature \cite{21,22}. On the other hand, MD calculations cannot \cite{22} predict the stabilization below the Debye temperature (\(\Theta_D \sim 120 \text{ K}\) according to our calculations) since, as we demonstrate, sc Ca is stabilized by purely quantum anharmonic effects at 0 K. In particular, our results give 26.8 \(\text{cm}^{-1}\) and 2.6 \(\text{cm}^{-1}\) for the transverse modes, unstable in the harmonic case, at the X and M points respectively. Although low-energy transverse modes show the largest renormalization, longitudinal modes also suffer a considerable anharmonic correction. As expected, phonon frequencies increase when temperature is raised. Concretely, the temperature dependence is very strong for the transverse mode at M and at R. At 300 K, above \(\Theta_D\), our results are in close agreement with the values obtained from MD at the zone boundary by Teweldeberhan et al. \cite{9}. Note that their calculation was performed at 45 GPa and ours at 50 GPa.

In sc Ca, as in many other cases \cite{18,24,25}, it is crucial to account for scattering between phonons with different momenta. Indeed, if we make the assumption that nondiagonal coefficients are equal to the diagonal ones in Eq. (4), \(\Phi^{\alpha_1\alpha_2\alpha_3\alpha_4}(q') \sim \Phi^{\alpha_1\alpha_2\alpha_3\alpha_4}(q, q, q, -q)\), the error caused in \(\Omega_{eq}\) is quite dramatic and the temperature dependence becomes unrealistic. For example, the mode at R reaches a frequency of 235.5 \(\text{cm}^{-1}\) at 0 K and already 372.2 \(\text{cm}^{-1}\) at 100 K, 2.6 times larger than our predicted value. At R such a difference is a consequence of the huge value of the diagonal coefficients in comparison to the nondiagonal ones. As shown in Fig. 2, the importance of the diagonal anharmonic coefficients can be calculated from frozen phonon calculations. For a mode with momentum \(q\) at the edge of the BZ, when the atoms are displaced from their equilibrium position \(R\) as \(qa \cos(\mathbf{qR})\epsilon_{\nu q}\), with \(a\) the lattice parameter and \(\eta\) a small dimensionless number, the potential is given as \(E/N(\eta) = \frac{\hbar^2}{2m} \omega^2 + \eta^4 \Phi_{4.\nu q}\), with

\[
\Phi_{4.\nu q} = a^4 \sum_{\alpha} \epsilon_{\alpha q}^4 \epsilon_{\alpha q}^{*4} \epsilon_{\alpha q}^{*4} \epsilon_{\alpha q}^{*4} \Omega_{\nu q}^{\alpha_1\alpha_2\alpha_3\alpha_4}(q, -q, q, -q).
\]

(5)

A fit to this potential yields the frozen phonon \(\Phi_{4.\nu q}\) coefficient. As can be seen in Fig. 2 our values obtained differentiating dynamical matrices in supercells are in good agreement with frozen phonon estimates.

Our method yields the whole renormalized phonon spectrum at \(0 \text{ K}\) and, thus, we can estimate the superconducting transition temperature in sc Ca. The usual electron-phonon vertex is not modified by anharmonicity since the matrix elements of the gradient of the crystal potential are independent of the phonon frequencies \cite{26}. Therefore, the electron-phonon coupling constant \(\lambda\) can be calculated straightforwardly using the electron-phonon matrix elements and the renormalized frequencies \(\Omega_{eq}\) at 0 K. The convergence of the electron-phonon matrix elements requires a denser \(80 \times 80 \times 80\) \(\mathbf{k}\) grid. Integrating the Eliashberg function, \(\alpha^2 F(\omega)\), we obtain \(\lambda = 0.74\) and \(\omega_{\text{D}} = 53\) K, leading to \(T_c \sim 2.1\) K, an estimate obtained from the Allen-Dynes modified McMillan equation \cite{27} (we have used \(\mu^* = 0.1\) for the Coulomb pseudopotential). As can be seen in Fig. 1 the greatest contributions to \(\lambda\) come from the soft transverse modes which are unstable in the harmonic approximation. Indeed, the integrated electron-phonon coupling parameter, \(\lambda(\omega)\), reaches the value of 0.54 at 50 \(\text{cm}^{-1}\) (that is, 73 \% of the total value of \(\lambda\)), so that if it were not for these soft modes sc Ca would superconduct only below 0.1 \(\mu\text{K}\). The value calculated for \(T_c\) at 50 GPa is in close agreement with the experimental 1.2 \(\text{K}\) value obtained by Okada et al. \cite{28} and with the 1.7 \(\text{K}\) value obtained extrapolating linearly the \(T_c\) values measured for sc Ca at higher pressure in more recent experiments \cite{10}. Finally, despite the strong anharmonicity, the isotope coefficient, \(\alpha = -\frac{d \ln T_c}{d \ln M}\), is predicted to be 0.45, close to the 0.5 value of a BCS superconductor.

The temperature dependent renormalized frequencies \(\{\Omega_{eq}\}\) allow us to estimate the anharmonic free energy directly from Eq. (2) and the constant volume specific heat as \(C_V = -T \left(\frac{\partial F}{\partial T} \right)_V\). As shown in Fig. 3, the high-temperature limit of the specific heat per atom is reduced by 17 \% from the classical \(3k_B\) value given by the equipartition theorem. Such a reduction from the Dulong-Petit law is a sign of strong anharmonicity \cite{29,30} and has been observed in different systems \cite{31,32}. Moreover, the low-temperature behavior of \(C_V\) is strongly modified from the \(T^3\) relation of harmonic crystals. The anomalies of the specific heat are mainly driven by the temperature dependence of the phonon frequencies in \(F_6\). Indeed, as depicted in Fig. 3 when the specific heat is calculated.
from F_0 assuming that the 0 K renormalized phonons are not modified under temperature, the Dulong-Petit law and the low-temperature T^3 behavior are recovered as expected.

In summary, within the SCHA, using a variational procedure based on the Gibbs-Bogoliubov inequality we have shown that the high-pressure sc phase of Ca is stabilized even at 0 K by strong quantum anharmonic effects. This procedure has been used calculating fully ab initio the anharmonic coefficients up to fourth order in the whole BZ and may be applied as well in many cases where the phonons are imaginary or anharmonicity needs to be treated beyond standard perturbation theory. Although below 30 K the sc phase may transform to a rather similar monoclinic $Cmmm$ phase [5], which is mechanically unstable in the harmonic approximation as well and shows very similar harmonic phonons [9], we have calculated the superconducting T_c of sc Ca finding a good agreement with experiment. Moreover, the huge anharmonicity in this system makes the specific heat very anomalous below 30 K the SC phase may transform to a rather similar harmonic crystal (line with grey circles). For comparison, the specific heat calculated with the usual harmonic formula including the renormalized $\Omega_{\mathbf{q}}$ frequencies at 0 K is shown (solid line). The $3k_B$ line is depicted too (dashed line).

FIG. 3. (a) Constant volume specific heat per atom for the sc Ca anharmonic crystal (line with grey circles). For comparison, the specific heat calculated with the usual harmonic formula including the renormalized $\Omega_{\mathbf{q}}$ frequencies at 0 K is shown (solid line). The $3k_B$ line is depicted too (dashed line). (b) Low temperature specific heat in logarithmic scale.

The authors are grateful to F. Mauri, M. Calandra and A. Eiguren for fruitful discussions and the Department of Education, Universities and Research of the Basque Government, UPV/EHU (Grant No. IT-366-07) and the Spanish Ministry of Science and Innovation (Grant No. FIS2010-19609-C02-00) for financial support. Computer facilities were provided by the DIPC.

[1] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954).
[31] Z. Hiroi, S. Yonezawa, Y. Nagao, and J. Yamaura, Phys. Rev. B 76, 014523 (2007).

[32] J. He, D. Hitchcock, I. Bredeson, N. Hickman, T. M. Tritt, and S. N. Zhang, Phys. Rev. B 81, 134302 (2010).