A Live *Salmonella* Vaccine Delivering PcrV through the Type III Secretion System Protects against *Pseudomonas aeruginosa*

Julia Aguilera-Herce,* Meritxell García-Quintanilla,† Rocio Romero-Flores,* Michael J. McConnell,‡
© Francisco Ramos-Morales*§

*Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
†Institute of Biomedicine of Sevilla (IBiS), University Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
‡Antimicrobial Resistance and Hospital Acquired Infections Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
© Present address: Meritxell García-Quintanilla, University Hospital, Goethe-University, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany.

ABSTRACT *Pseudomonas aeruginosa* is a common Gram-negative opportunistic pathogen that is intrinsically resistant to a wide range of antibiotics. The development of a broadly protective vaccine against *P. aeruginosa* remains a major challenge. Here, we used an attenuated strain of *Salmonella enterica* serovar Typhimurium as a vehicle to express *P. aeruginosa* antigens. A fusion between the *S. enterica* type III secretion effector protein SseJ and the *P. aeruginosa* antigen PcrV expressed under the control of the *sseA* promoter was translocated by *Salmonella* into host cells in vitro and elicited the generation of specific antibodies in mice. Mice immunized with attenuated *Salmonella* expressing this fusion had reduced bacterial loads in the spleens and lungs and lower serum levels of proinflammatory cytokines than control mice after *P. aeruginosa* infection. Importantly, immunized mice also showed significantly enhanced survival in this model. These results suggest that type III secretion effectors of *S. enterica* are appropriate carriers in the design of a live vaccine to prevent infections caused by *P. aeruginosa*.

IMPORTANCE The Gram-negative bacterium *Pseudomonas aeruginosa* is an important opportunistic pathogen that causes infections in cystic fibrosis and hospitalized patients. Therapeutic treatments are limited due to the emergence and spread of new antibiotic-resistant strains. In this context, the development of a vaccine is a priority. Here, we used an attenuated strain of *Salmonella enterica* serovar Typhimurium as a vehicle to express and deliver the *Pseudomonas* antigen PcrV. This vaccine induced the generation of specific antibodies in mice and protected them from lethal infections with *P. aeruginosa*. This is an important step toward the development of an effective vaccine for the prevention of infections caused by *P. aeruginosa* in humans.

KEYWORDS PcrV, *Pseudomonas aeruginosa*, *Salmonella*-delivered vaccines, SseJ, type III secretion

Pseudomonas aeruginosa is an environmentally ubiquitous, Gram-negative, opportunistic bacterial pathogen. It is one of the more commonly reported nosocomial pathogens (1). *P. aeruginosa* forms biofilms in the upper airways of cystic fibrosis patients and repeatedly colonizes the lower airways, leading to chronic lung infection (2). It is also a common pathogen linked to burn wound infections (3), ventilator-associated pneumonia in intensive care unit patients (4), and urinary infections in patients with catheters in the upper urinary tract (5). In addition, *P. aeruginosa* is a leading cause of life-threatening infections in immunocompromised hosts with underlying diseases such as cancer or AIDS (6).

P. aeruginosa is intrinsically resistant to a wide range of antibiotics (7) and possesses adaptation strategies that facilitate its persistence in the environment, such as biofilm
formation (8). In addition, the increasing selection of additional acquired resistance mechanisms, via mutations or horizontal gene transfer, has led to the emergence of multidrug-resistant strains (9).

In this context, the development of vaccines that limit the spread of P. aeruginosa infections is a major challenge. This has been the focus of research efforts for almost half a century, and over the last 25 years, multiple P. aeruginosa vaccines have been assessed in clinical trials (10). However, with the recent failure of the ICA3 vaccine in a phase II clinical trial (11), there are currently no approved vaccines against P. aeruginosa or vaccines in advanced stages of clinical development (12). Renewal of the P. aeruginosa vaccine pipeline is thus a high priority.

Many antigens and delivery protocols have been tested as vaccine candidates, but to increase the efficacy of vaccination, novel approaches are clearly needed. Such approaches may combine previously tested P. aeruginosa antigens with delivery methods that were successful for other antigens.

The protective efficacy of outer membrane proteins OprF and OprI have been shown in animal models and clinical trials (13, 14). Another promising candidate is the P. aeruginosa V antigen (PcrV), the tip protein of the type III secretion system (T3SS), which is critical for its assembly and regulation. These secretion systems are present in many Gram-negative pathogens and symbionts and inject effector proteins into host cells to interfere with host cellular processes (15). Blockade of PcrV by specific antibodies inhibits the translocation of type III effector proteins, and immunization with recombinant PcrV or administration of anti-PcrV antibodies can protect animals from lethal P. aeruginosa infections (16, 17). Killed whole-cell and live attenuated P. aeruginosa vaccines present multiple antigens to the immune system but may exhibit some toxicity or residual virulence, whereas the use of recombinant proteins is safer but may induce a weaker immune response (18).

The use of live attenuated bacterial or viral pathogens is an interesting alternative for delivering heterologous antigens (19). Salmonella is among the first bacteria used for this purpose and has well-established protocols for genetic manipulation. Additional advantages of Salmonella-based vaccines are the low cost of production, absence of animal products, safety, and elicitation of efficient humoral and cellular immune responses via stimulation of innate and adaptive immunity (20). Salmonella enterica is a facultative intracellular pathogen that, once inside the host cell, resides in a modified phagosome known as the Salmonella-containing vacuole (SCV) (21). S. enterica possesses two T3SSs, T3SS1 and T3SS2, encoded in Salmonella pathogenicity islands 1 (SPI1) and 2 (SPI2), respectively (22–24). T3SS1 translocates effector proteins through the host plasma membrane and is required for invasion of nonphagocytic cells. T3SS2 is necessary for intracellular survival and secretes effectors from inside the SCV. Previous studies have shown that T3SS-mediated translocation can be used for efficient delivery of heterologous antigens that are fused to effector proteins to the cytosol of antigen-presenting cells (25–27). In fact, live S. enterica vaccines based on these delivery systems have been shown to produce protective immunity against other bacterial and viral pathogens (28–31) and are also being used in the field of tumor immunotherapy (32–36).

The aim of this study was to develop a vaccine against P. aeruginosa using S. enterica T3SS effectors as carriers for relevant antigens. A strong protective immune response against the PcrV antigen was obtained using the SseJ effector as a carrier.

RESULTS

Construction and evaluation of Salmonella vectors for delivery of P. aeruginosa antigens. A previous study showed that the effector SseJ was an appropriate carrier for inducing a robust immune response against the model antigens ovalbumin and listeriolysin in vitro and in vivo (25). We used the promoter of the Salmonella SPI2 gene sseA (PsseA) to direct the expression of fusion proteins containing the Salmonella effector SseJ as well as Pseudomonas antigens OprF/I and PcrV (Fig. 1A and B and Materials and Methods). SseJ is secreted through the T3SS2 from inside the SCV (37),
FIG 1 Generation of protein fusions for delivery of Pseudomonas aeruginosa antigens. (A) Vector pWSK29 was used for the generation of two plasmids in three steps. In the first step, part of the coding region of antigens OprF/OprI (see Materials and Methods for the generation of the hybrid gene oprF-oprI) or the complete coding region (without the stop codon) for the antigen PcrV from P. aeruginosa was amplified by PCR. DNA encoding the FLAG epitope and recognition sites for BamHI and NotI endonucleases was added with the primers used for amplification. These amplicons were cleaved with BamHI and NotI and ligated into pWSK29 previously cleaved with the same restriction enzymes. In the second step, the coding region of sseJ without the stop codon was amplified by PCR and ligated to the plasmids obtained in the first step previously cleaved with EcoRI and BamHI restriction enzymes. Finally, the promoter region of sseA (nucleotides 411 to 15 relative to the translation start site) was amplified by PCR and added to the plasmids obtained in the second step previously cleaved with endonucleases KpnI and EcoRI. Numbers in parentheses indicate base pairs relative to the start of the coding region. (B) Fusion proteins that are expected to be produced under the appropriate conditions after the introduction of the plasmids described in panel A in S. Typhimurium. Numbers in parentheses refer to amino acids included in the fusions. Both fusions include the complete amino acid sequence of SseJ and a C-terminal FLAG epitope to facilitate identification of the fusions by Western blotting. The expected molecular masses are 70.18 kDa for SseJ-OprF/I-FLAG and 79.23 kDa for SseJ-PcrV-FLAG. (C) Derivatives of S. Typhimurium strain 14028 carrying plasmids encoding OprF/I (Opr) or PcrV fusion proteins were grown in LPM. A FLAG tag was used for detection of the proteins by immunoblotting. Molecular weights in kDa are indicated on the left. (D) Salmonella strains that were derivatives of the wild-type strain (wt) or the ssaV mutant (carrying a nonfunctional T3SS2) expressing SseJ in fusion with Pseudomonas antigens OprF/I (Opr) or PcrV with a FLAG tag were grown under noninvasive conditions. These bacteria were used to infect RAW264.7 cells for 8 h. Cells were lysed with 1% Triton X-100 in PBS and centrifuged 15 min at 15,000 × g. The pellets and the filtered concentrated supernatants (cytosol) were analyzed by immunoblotting with anti-FLAG antibodies to detect translocation of fusion proteins into the host cytosols. Incubations with anti-DnaK or anti-GroEL antibodies were used as controls of contamination of the cytosol fraction with nonsecreted bacterial proteins. (E) Expression of the fusion proteins SseJ-OprF/I (Opr) and SseJ-PcrV (PcrV) was analyzed in an aroA aroB (aro) background. Bacteria were grown in LPM (left) or were grown for 24 h at 37°C with shaking in LB medium and used to infect RAW264.7 macrophages (right). Protein extracts were analyzed by immunoblotting with an anti-FLAG antibody.
and PseA responds to intravacuolar signals and is induced several hours after invasion (38, 39). The constructs were prepared using the low-copy-number plasmid pWSK29 as the vector. S. enterica serovar Typhimurium strain 14028 containing the plasmids with the hybrid genes was grown in low-magnesium minimal medium (LPM), a medium that imitates intravacuolar conditions, and the expression of fusion proteins was monitored by Western blotting against the FLAG tag that was also added. The results shown in Fig. 1C indicate that both plasmids yielded significant levels of protein production. Strains containing these plasmids were tested for their capacity to translocate the fusion proteins into RAW264.7 macrophages. Translocation was detected for both fusions, SseJ-OprF/I-FLAG and SseJ-PcrV-FLAG, by Western blotting using an anti-FLAG antibody (Fig. 1D). Translocation was T3SS2 dependent, since it was not observed in an ssaV mutant background (SsaV is an essential component of T3SS2).

Antibody responses induced by candidate vaccines against P. aeruginosa. The plasmids generated as described above were introduced into an attenuated strain of S. Typhimurium with mutations in aroA and aroB. Expression of the fusion proteins was detected again in this background, both in LPM (imitating intravacuolar conditions) and during infection of macrophages (Fig. 1E), and C57BL/6 mice were immunized by intraperitoneal injections with the attenuated strains carrying the plasmids. Mice immunized with Salmonella aroA aroB without pWSK29 derivatives were used as the controls. Indirect enzyme-linked immunosorbent assays (ELISAs) were performed using sera collected 21 days after immunization. As shown in Fig. 2, immunization with Salmonella expressing SseJ-PcrV elicited detectable levels of antigen-specific total IgG in all mice, whereas Salmonella expressing SseJ-OprF/I was not able to induce a specific response. As expected, control mice had no detectable antigen-specific IgG.

Protective responses induced by candidate vaccines. Vaccine efficacy was tested by infecting immunized and control mice with P. aeruginosa strain PAO1 by intraperitoneal injections, and survival was monitored over 7 days. As shown in Fig. 3, most of the mice vaccinated with Salmonella expressing the SseJ-PcrV construct survived the challenge, whereas mice vaccinated with Salmonella expressing SseJ-OprF/I or control Salmonella were not significantly protected. Statistical analysis of these survival data showed significant protection for the group vaccinated with Salmonella expressing SseJ-PcrV, whereas there was no significant difference between the control group and the group vaccinated with Salmonella expressing SseJ-OprF/I.

Effect of vaccination on tissue bacterial loads, postinfection serum cytokine levels, and survival. A new immunization experiment was carried out using the
A live Salmonella Vaccine against Pseudomonas

FIG 3 Survival curve of challenged mice. Groups of 8 C57BL/6 mice were intraperitoneally vaccinated with an aroA aroB mutant of S. Typhimurium (aro) or with the same strain carrying the plasmids pIZ2160 or pIZ2267 for expression of the fusion proteins SseJ-OprF/I-FLAG (from the PsseA promoter) or SseJ-PcrV-FLAG (from the PsseA promoter), respectively. Twenty-one days after the immunization, mice were infected with P. aeruginosa strain PAO1 by intraperitoneal injection, and the survival of mice was monitored for 7 days. Statistical significance was determined by log rank analysis. *, P < 0.05 compared to levels in control mice inoculated with Salmonella aroA aroB.

This study shows that the T3SSs of Salmonella can be used as vectors for efficient delivery of P. aeruginosa antigens and elicitation of protective immunity against this opportunistic pathogen. In particular, the expression of a fusion between the Salmonella effector SseJ and the Pseudomonas antigen PcrV under the control of PsseA yielded successful results in the preclinical study shown here. Since PsseA responds to intravacuolar signals and SseJ is a specific substrate of the T3SS2, the fusion protein SseJ-PcrV is expected to be expressed by Salmonella inside the vacuole of the antigen-presenting cell and translocated from the vacuole into the host cell cytosol. Previous findings suggested that the translocation of fusion proteins results in major histocompatibility complex (MHC) class I- and MHC class II-restricted presentation and that a fusion of the model antigen listeriolysin to SseJ induced T cell responses after vaccination in mice (25). Here, we show that mice immunized with Salmonella expressing a fusion of SseJ to PcrV, a relevant P. aeruginosa antigen, produced high levels of specific anti-PcrV IgG and were able to survive an otherwise lethal infection with Pseudomonas. Protection was observed in two independent experiments shown in Fig. 3 and Fig. 4E. The differences in the results between these experiments could be due to multiple factors that influence this kind of experiment (differences in the lots of mice that were used, the exact state of the Salmonella cultures used for the vaccinations, different Pseudomonas cultures used for challenge, reactions of individual mice to intraperitoneal injections, etc.), but importantly, both experiments confirmed that this vaccine conferred statistically significant protection against Pseudomonas. The protective effect of this vaccination was confirmed because immunized mice displayed lower bacterial loads in spleen and lungs compared to control mice.
loads in different organs and lower serum levels of proinflammatory cytokines. PcrV was shown previously to induce protective immunity when delivered as a purified recombinant protein antigen, alone or in combination with other antigens (16, 40–43).

In a recent report, mice were intraperitoneally vaccinated with recombinant PcrV formulated with one of three different adjuvants (43). These vaccines were effective in inducing specific immunity against PcrV and in conferring protection against a lethal dose of *P. aeruginosa*.
Surprisingly, a similar construct with the OprF/I antigen was unable to elicit the production of specific antibodies or to provide protection against *Pseudomonas*. The reasons for the superior immunogenicity of PcrV compared to that of OprF/I in our system are unclear. The recombinant hybrid protein OprF(190-342)/OprI(21-83) was shown to be immunogenic and protective in previous studies (13, 44). Glutathione transferase (GST)-OprF/I elicited specific antibodies against *P. aeruginosa* and OprF peptides and protected immunodeficient mice against 975-fold the 50% lethal dose of *P. aeruginosa*, whereas GST alone had no effect (45). A vaccine based on this hybrid protein, IC43, was evaluated in a phase II clinical trial in mechanically ventilated intensive care unit patients, although it did not produce significant differences in infection rates (11).

PcrV is an essential component of the T3SS. This system and its effectors are the major virulence determinants of *P. aeruginosa* (46). Thus, the T3SS is an appealing target for new therapies (47). PcrV, as part of the translocon, the most accessible part of the T3SS, has been selected for targeting by antibodies developed for clinical use (48). However, few vaccines have been described based on this antigen, presumably because of solubility problems during purification of the protein (41). The methodology employed here circumvents these problems, since the antigen is produced by *Salmonella* and directly translocated through the T3SS2 into the antigen-presenting cells. The use of an *in vivo* inducible promoter, such as PseA, instead of a constitutive promoter is advantageous, because it enhances stable expression and immunogenicity of foreign antigens expressed by *Salmonella* (49). The pWSK29 vector carries the pSC101 replicon that produces 6 to 8 copies per cell (50) and is sufficiently stable for *in vivo* applications (25).

The aim of this study was to characterize the ability of this vaccination approach to produce an antibody response and to protect against infection in a preclinical model. Although this is an important step toward the development of an effective vaccine for the prevention of infections with *P. aeruginosa*, additional aspects could be optimized in future experiments carried out in this model. (i) Tolerability and toxicity studies would be necessary in order to advance this vaccine candidate. (ii) Other effectors could be tested as carriers for the PcrV antigen, taking into account that the fusion with the highest level of expression *in vitro* is not necessarily the most immunogenic *in vivo* (25). (iii) Since *Salmonella* is also a pathogen, strains used to develop a live vaccine should be attenuated. However, they should also be able to reach, multiply, and persist temporarily in lymphoid organs to stimulate protective immune responses. Thus, a balance between attenuation and immunogenicity is essential for the success of a live vaccine. The *aro* mutants of *S. Typhimurium* used here are auxotrophic for aromatic amino acids and several essential vitamins. These mutants are safe and immunogenic in mouse models (51), where this serovar can reach systemic organs, and have previously been used as carriers of heterologous antigens (52). Since *S. Typhimurium* causes only self-limited intestinal disease in immunocompetent humans and does not reach systemic sites in this host, the human-restricted *S. enterica* serovar Typhi is also being tested as a live vector for humans (53). A double *aro* mutant of *S. Typhi* is highly immunogenic, but additional attenuation could be desirable in humans; therefore, other means of enhancing vaccine efficacy and safety have been proposed (54). In particular, the safety of live attenuated vaccines needs to be determined in immunocompromised individuals, since they represent a relevant target for vaccination against *Pseudomonas*. In fact, an *aro* mutant may be virulent in immunodeficient mice (55), although moderate immunosuppression, causing increased susceptibility to wild-type *Salmonella*, does not affect resistance to an *aroA Salmonella* vaccine strain (56). Other attenuating mutations or combinations of mutations could be used to increase safety (55). (iv) Another aspect to be considered for future development of this vaccine is the route of immunization. The intraperitoneal injection is employed in many preclinical studies but is not typically used in the clinical setting as a route of immunization. However, mice can also be inoculated with *Salmonella* via the intravenous, subcutaneous, oral, intranasal, and rectal routes (57, 58), and some of these protocols should
Table 1: Bacterial strains and plasmids used in this study

Strain or plasmid	Relevant characteristics	Source or reference
Strains		
Escherichia coli		
DH5α	supE44 ΔlacU169 (ω80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1	67
BL21(DE3)	F' ompT dcm lon hsdS(r− m− ; E. coli B strain), with DE3, a λ prophage carrying the T7 RNA pol gene	Stratagene
Pseudomonas aeruginosa		
PAO1	Reference strain	68
Salmonella enterica serovar *Typhimurium*		
14028	Wild type	ATCC
SV4338	aroA551::Tn10	Laboratory stock
SV5136	ssaV::Cm	Laboratory stock
SV8462	ΔaroB::Km	Laboratory stock
SV9699	aroA551::Tn10 ΔaroB::Km	This work
Plasmids		
pET15b	6×His fusion vector, Ap'	Novagen
pET15b-OprF/I	OprF/I cloned with Ndel and BamHI	This work
pGEX-4T-2	GST fusion vector, Ap’	GE Healthcare
pIZ2267	pWSK29-PsseA-SseJ-OprF/I-FLAG	This work
pIZ2338	pWSK29-PsseA-SseJ-PcrV-FLAG	This work
pIZ2338	pGEX-4T-2-PcrV	This work
pWSK29	Low-copy-number vector, Ap’	50

Derivatives of these strains were used as indicated in the text.

be tested in animal models before progressing into the clinical stages. It is also worth noting that the cell-mediated immune response was not evaluated in this study, an aspect that could be further characterized in future studies.

In conclusion, this study shows that the SPI2-related T3SS of *Salmonella* is an appropriate vehicle to deliver the *Pseudomonas* antigen PcrV and to generate a protective live vaccine against this opportunistic pathogen.

MATERIALS AND METHODS

Bacterial strains, bacteriophages, and strain construction. Bacterial strains used in this study are described in Table 1. *S. Typhimurium* strains were derived from the wild-type strain ATCC 14028. Transductional crosses using phage P22 HT 105/1 into201 (59) were used for strain construction (60).

Bacterial culture. The standard culture medium for all bacteria was Luria-Bertani (LB) broth. For *P. aeruginosa* appropriate vehicle to deliver the *Pseudomonas* antigen PcrV and to generate a protective live vaccine against this opportunistic pathogen.

The construction of derivatives of *pWSK29* for vaccine assays was carried out in three steps (Fig. 1): (i) cloning of *P. aeruginosa* DNA fragments encoding antigens PcrV and OprF(190-342)/OprI(21-83) in fusion with FLAG using BamHI and Ndel restriction enzymes; (ii) addition of *S. Typhimurium* DNA encoding effector SseJ using EcoRI and BamHI restriction sites; (iii) addition of *P. aeruginosa* DNA fragment encoding SseA using KpnI and EcoRI. The hybrid gene oprF-oprI was generated using the gene splicing by overlap extension approach (63) as previously described (45) using oligonucleotides shown in Table 2. To generate plasmid pIZ2267, the coding region of pcrV was amplified by colony PCR using lysed *P. aeruginosa* PAO1 as the template and cloned into pGEX-4T-2 using BamHI and EcoRI restriction sites. To generate plasmid pET15b-OprF/I, oprF-oprI was first synthetized in vitro (GenScript) and then transferred from the original vector (pUC57) into pET15b using Ndel and BamHI restriction enzymes.

Expression and purification of recombinant proteins in *E. coli*. Plasmids pET15b-OprF/I, expressing 6×His-OprF/I, or pIZ22338, expressing GST-PcrV, were transformed into *E. coli* BL21(DE3). Bacteria were grown in LB with ampicillin at 37°C. At mid-exponential-growth phase, 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) was added to induce expression, and incubation was pursued for 4 h. The cells were harvested by centrifugation, and the cell pellet was resuspended in NP-40 lysis buffer (64). A commercial mixture of protease inhibitors (Sigma-Aldrich) was added to the suspension, and lysis was performed by sonication. The cell lysate was centrifuged at 15,000 × g for 30 min at 4°C, and the fusion proteins were isolated from the supernatants by affinity chromatography with Ni-nitrilotriacetic acid.
TABLE 2 Oligonucleotides used in this study

Oligonucleotide	Sequence 5’→3’
Amplification of pcrV with FLAG tag for cloning in pWSK29	ATCGGGATCCGAGCGAGGACACTATGCC
pcrVFWBam	GCTAGGTACGAGAAGAGCAACGGCAAG
pcrVFLAcrevNot	CCTAGAATTCGAGAGGACACTATGCC
Fusion of oprF and oprI with FLAG tag	ATCGGGATCCGAGCGAGGACACTATGCC
oprFFWBam	GCTAGGTACGAGAAGAGCAACGGCAAG
oprFrev	CCTAGAATTCGAGAGGACACTATGCC
oprPFWBam	GCTAGGTACGAGAAGAGCAACGGCAAG
oprPrew	CCTAGAATTCGAGAGGACACTATGCC
Amplification of sseJ promoter	ATCGGGATCCGAGCGAGGACACTATGCC
sseJFWBam	GCTAGGTACGAGAAGAGCAACGGCAAG
sseJrevNot	CCTAGAATTCGAGAGGACACTATGCC
Amplification of sseA promoter	ATCGGGATCCGAGCGAGGACACTATGCC
PsseAFWcrev	GCTAGGTACGAGAAGAGCAACGGCAAG
PsseArevBam	GCTAGGTACGAGAAGAGCAACGGCAAG
Amplification of pcrV for cloning in pGEX-4T-2	ATCGGGATCCGAGCGAGGACACTATGCC
pcrVFWcrev	GCTAGGTACGAGAAGAGCAACGGCAAG
pcrVrevNot	CCTAGAATTCGAGAGGACACTATGCC
pcrVfwBam	GCTAGGTACGAGAAGAGCAACGGCAAG
pcrVflAcrevNot	CCTAGAATTCGAGAGGACACTATGCC

(NTA) agarose beads (Qiagen) or glutathione agarose beads (Sigma-Aldrich) according to the manufacturers' protocols.

Mammalian cell culture. RAW264.7 cells (murine macrophages, ECACC number 91062702) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum and 2 mM L-glutamine. Penicillin (60 μg/ml) and streptomycin (100 μg/ml) were included in the culture medium (except for bacterial infection experiments). Cells were maintained in a 5% CO₂ humidified atmosphere at 37°C.

Bacterial infection of cultured cells and protein translocation assays. RAW264.7 cells were plated 24 h before infection in 6-well plates at 8 × 10⁴ cells per well and incubated 24 h at 37°C with 5% CO₂ in medium without antibiotics. Bacteria carrying plasmids expressing FLAG fusions were grown in LB medium with ampicillin for 24 h at 37°C with shaking, added to the cell monolayers at a multiplicity of infection of 250 bacteria/cell, and then were incubated at 37°C with 5% CO₂. The cell culture was washed twice with phosphate-buffered saline (PBS) 1 h postinfection, overlaid with DMEM containing 100 μg/ml gentamicin and ampicillin, and incubated for 1 h. The culture was then washed twice with PBS, covered with DMEM with gentamicin (16 μg/ml) and ampicillin (100 μg/ml), and incubated for 6 h. To study the translocation of FLAG fusions, infected mammalian cells were lysed with 1% Triton X-100. Cell lysates were processed for electrophoresis and Western blotting as previously described (65).

Analysis of expression of fusion proteins. Salmonella strains carrying plasmids expressing FLAG fusions were grown overnight in LB medium at 37°C with shaking. Bacteria were then washed, diluted 1:50 in LPM, and incubated at 37°C for 7 h after being shaken for 1 h. The bacteria were then pelleted by centrifugation and lysed by boiling in Laemmli sample buffer. Proteins were separated by SDS-PAGE and analyzed by immunoblotting with a monoclonal antibody directed to the FLAG epitope (1:10,000; Sigma-Aldrich). Goat anti-mouse horseradish peroxidase (HRP)-conjugated antibody (1:5,000; Bio-Rad) was used as the secondary antibody.

Mouse immunization and infection with P. aeruginosa. Mice were maintained in the IBiS facility, and their care was in accordance with institutional guidelines. Attenuated S. Typhimurium strain SV9699 (aroA551::Tn10 ΔaroB::Km) (Table 1) with appropriate plasmids was grown overnight at 37°C with shaking in LB with ampicillin, diluted in fresh medium (1:100), and grown to an optical density at 600 nm (OD₆₀₀) of 0.3 to 0.6. Vaccination was carried out in 6- to 8-week-old female C57BL/6 mice (Charles River Laboratories) by a single intraperitoneal injection with 0.2 ml of PBS containing 2 × 10⁶ CFU of Salmonella. Mice were infected with P. aeruginosa strain PAO1 on day 21 postimmunization by intraperitoneal injection with 9 × 10⁶ bacteria (3.6 × 10⁶ the 50% lethal dose [LD₅₀]) in 0.2 ml of PBS, and survival was monitored for 7 days. Mice that received the same infection were housed together with up to 5 mice per cage. Mice were monitored twice daily and culled using thiopental at the end of the experiments. The procedures (intraperitoneal injections) made the use of analgesics unnecessary. To minimize animal suffering, euthanasia using thiopental was carried out immediately when detecting severe clinical signs: hunching, labored breathing, severe weight loss, inactivity, or lethargy. Experiments involving the use of animals were approved by the Committee on Ethics and Experimentation of the Consejería de Agricultura, Pesca y Desarrollo Rural (Junta de Andalucía, Spain) (permit number 18-01-16-003) and were in accordance with the EU Directive 2010/63/EU for animal experiments.

Spleen and lung bacterial loads and serum cytokine levels. Postinfection bacterial loads were determined in vaccinated and control mice 12 h after infection. Mice were euthanized with thiopental,
and after the collection of blood samples from the retro-orbital sinus, spleens and lungs were aseptically removed, weighed, and homogenized in 2 ml of physiological saline. Serial log dilutions were plated on agar plates for bacterial quantification. Serum levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were determined in mice at 12 h postinfection using Duoset ELISA kits (R&D Systems).

Enzyme-linked immunosorbent assays. For indirect ELISAs, 96-well plates were coated with 100 µl per well of 1-µg/ml solutions of purified 6×His-OprF/I or GST-Pcvr by incubating at 4°C overnight. ELISAs were performed using sera collected on day 21 as described previously (66). Antibody titers were measured against the OprF/I or Pcvr antigens and were defined as the dilution in which spectrophotometric readings were at least 0.1 units greater than that in the background wells (wells containing no serum).

Statistical analysis. Antibody titers, bacterial loads, and cytokine levels were compared using the Mann-Whitney U test. Survival data were compared using the log rank test. Statistics were performed using SPSS version 24.0 software (SPSS Inc.). P values of 0.05 or less were considered significant.

ACKNOWLEDGMENTS

This work was supported by Spanish Ministerio de Economía, Industria y Competitividad and the European Regional Development Fund (grant numbers SAF2013-46229-R and SAF2016-75365-R to F.R.-M.). The funding source was not involved in the research or the preparation of the article.

M.J.M. is a founder and scientific advisor for the biotechnology company Vaxdyn, S.L.

REFERENCES

1. National Nosocomial Infections Surveillance System. 2004. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485. https://doi.org/10.1016/S0196-6553(04)00542.5

2. Lyczak JB, Cannon CL, Pier GB. 2002. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222. https://doi.org/10.1128/CMR.15.2.194-222.2002.

3. Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Dziewulski P, Dickson WA, Whittaker IS. 2014. Gram negative wound infection in hospitalised adult burn patients-systematic review and metanalysis. PLoS One 9:e95042. https://doi.org/10.1371/journal.pone.0095042.

4. Ramirez-Estrada S, Boggata B, Rello J. 2016. *Pseudomonas aeruginosa* ventilator-associated pneumonia management. Infect Drug Resist 9:7–18. https://doi.org/10.2147/IDR.S50669.

5. Lara-Isla A, Medina-Polo J, Alonso-Isa M, Benitez-Sala R, Sopeña-Sutil R, Justo-Quintas J, Gil-Moradillo J, González-Padilla DA, García-Rojo E, Passas-Martínez JB, Tejido-Sánchez Á. 2017. Urinary infections in patients with catheters in the upper urinary tract: microbiological study. Urol Int 98:442–448. https://doi.org/10.1159/000467398.

6. Rolston K. 2017. Infections in cancer patients with solid tumors: a review. Infect Dis Ther 6:69–83. https://doi.org/10.1007/s40121-017-0146-1.

7. Moradali MF, Ghods S, Rehm B. 2017. *Pseudomonas aeruginosa* lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39. https://doi.org/10.3389/fcimb.2017.00039.

8. Lee K, Yoon SS. 2017. *Pseudomonas aeruginosa* biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol 27:1053–1064. https://doi.org/10.4175/jm.1611.11056.

9. Rodrigo-Troyano A, Sibila O. 2017. The respiratory threat posed by multidrug resistant Gram-negative bacteria. Respir Respiology 22:1288–1299. https://doi.org/10.1186/s12931-017-0604.

10. Grimwood K, Kyd JM, Owen SJ, Massa HM, Cripps AW. 2015. Vaccination against respiratory *Pseudomonas aeruginosa* infection. Hum Vaccin Immunother 11:14–20. https://doi.org/10.4161/hv.34296.

11. Rello J, Krenn C-G, Locker G, Hall F, Eddeloot ML, Jolliffe PL, Chirean CI, Hasselblad V, Paterson DL, Dickson WA, Whittaker IS. 2015. Antibody titers, bacterial loads, and cytokine levels were compared using the Mann-Whitney U test. Survival data were compared using the log rank test. Statistics were performed using SPSS version 24.0 software (SPSS Inc.). P values of 0.05 or less were considered significant.

12. Le Moigne V, Gaillard J-L, Herrmann J-L. 2016. Vaccine strategies against bacterial pathogens in cystic fibrosis patients. Med Mal Infect 46:4–9. https://doi.org/10.1016/j.medmal.2015.11.013.

13. Baumann U, Mansouri E, von Specht B-U. 2004. Recombinant OprF-OprI as a vaccine against *Pseudomonas aeruginosa* infections. Vaccine 22:840–847. https://doi.org/10.1016/j.vaccine.2003.11.029.

14. Lee NG, Jung SB, Ahn BY, Kim YH, Kim JJ, Kim DK, Kim IS, Yoon SM, Nam SW, Kim HS, Park WJ. 2000. Immunization of burn-patients with a *Pseudomonas aeruginosa* outer membrane protein vaccine elicits antibodies with protective efficacy. Vaccine 18:1952–1961. https://doi.org/10.1016/S0264-410X(99)00479-X.

15. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, Styrmadka NCI, Finlay BB. 2017. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15:323–337. https://doi.org/10.1038/nrmicro.2017.20.

16. Moriyama K, Wiener-Kronish JP, Sawa T. 2009. Protective effects of affinity-purified antibody and truncated vaccines against *Pseudomonas aeruginosa* V-antigen in neutropenic mice. Microbiol Immunol 53:587–594. https://doi.org/10.1111/j.1348-0421.2009.01656.x.

17. Sawa T, Yahr TL, Ohara M, Kurahashi K, Gropper MA, Wiener-Kronish JP, Frank DW. 1999. Active and passive immunization with the *Pseudomonas* V antigen protects against type III intoxication and lung injury. Nat Med 5:392–398. https://doi.org/10.1093/nm/3.4.392.

18. Sharma A, Krause A, Worgall S. 2011. Recent developments for *Pseudomonas* vaccines. Hum Vaccin 7:999–1011. https://doi.org/10.1111/j.1650-1991.2009.01063.x.

19. Lin IYC, Van TTH, Smooker PM. 2015. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines 3:940–972. https://doi.org/10.3390/vaccines3040940.

20. Cheminay C, Hensel M. 2008. Rational design of *Salmonella* recombinant vaccines. Int J Med Microbiol 298:87–98. https://doi.org/10.1016/j.ijmm.2007.08.006.

21. Steele-Mortimer O. 2008. The *Salmonella*-containing vacuole: moving with the times. Curr Opin Microbiol 11:38–45. https://doi.org/10.1016/j.cimb.2008.01.002.

22. Ochman H, Soncini FC, Solomon F, Groisman EA. 1996. Identification of a pathogenicity island required for *Salmonella* survival in host cells. Proc Natl Acad Sci U S A 93:7800–7804. https://doi.org/10.1073/pnas.93.15.7800.

23. Shea JE, Hensel M, Gleeson C, Holden DW. 1996. Identification of a virulence locus encoding a second type III secretion system in *Salmonella Typhimurium*. Proc Natl Acad Sci U S A 93:2593–2597. https://doi.org/10.1073/pnas.93.5.2593.

24. Galán JE, Curtiss R. 1989. Cloning and molecular characterization of genes whose products allow *Salmonella Typhimurium* to penetrate tissue culture cells. Proc Natl Acad Sci U S A 86:6383–6387. https://doi.org/10.1073/pnas.86.16.6383.

25. Hegazy WA, Xu K, Metelitsa L, Hensel M. 2012. Evaluation of *Salmonella enterica* type III secretion system effector proteins as carriers for heterologous vaccine antigens. Infect Immun 80:1193–1202. https://doi.org/10.1128/IAI.00565-11.
26. Panthel K, Meinel KM, Sevil Domènech VE, Trulzsch K, Rüssmann H. 2008. Salmonella enterica: multi-mediated heterologous antigen delivery: a versatile oral vaccination strategy to induce cellular immunity against infectious agents and tumors. Int J Med Microbiol 298:99–103. https://doi.org/10.1016/j.jmm.2007.07.002.

27. Ramos-Morales F. 2012. Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012:1–36. https://doi.org/10.5402/2012/78939.

28. Chen L-M, Briones G, Donis RO, Galán JE. 2006. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infect Immun 74:5826–5833. https://doi.org/10.1128/IAI.00375-06.

29. Panthel K, Meinel KM, Sevil Domènech VE, Geginat G, Linkemann K, Busch DH, Rüssmann H. 2006. Prophylactic anti-tumor immunity against a murine fibrosarcoma triggered by the Salmonella type III secretion system. Microbes Infect 8:2539–2546. https://doi.org/10.1016/j.micinf.2006.07.004.

30. Rüssmann H, Shams H, Poblete F, Fu Y, Galán JE, Donis RO. 1998. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281:565–568.

31. Rüssmann H, Igwe EI, Jauer S, Hardt WD, Bubert A, Geginat G. 2001. Protection against murine listeriosis by oral vaccination with recombinant Salmonella enterica producing hybrid Yersinia type III. proteins. J Immunol 167:357–365. https://doi.org/10.4049/jimmunol.167.1.357.

32. Jellbauer S, Panthel K, Hetrodt JH, Rüssmann H. 2012. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS One 7:e34214. https://doi.org/10.1371/journal.pone.0034214.

33. Zhu X, Zhou P, Cai J, Yang G, Liang S, Ren D. 2010. Tumor antigen delivered by Salmonella III secretion protein fused with heat shock protein 70 induces protection and eradication against murine melanoma. Cancer Sci 101:2621–2628. https://doi.org/10.1111/j.1349-7006.2010.01722.x.

34. Xiong G, Husseiny MI, Song L, Erdreich-Epstein A, Shackleford GM, Galán JE. 2006. Optimization of the effector protein secretion by Salmonella for vaccine development. Microbes Infect 8:2539–2546. https://doi.org/10.1016/j.micinf.2006.07.004.

35. Wang Y-J, Hou Y, Huang H, Liu G-R, White AP, Liu S-L. 2008. Two oral HBx vaccines delivered by live attenuated Salmonella: both eliciting effective anti-tumor immunity. Cancer Lett 263:67–76. https://doi.org/10.1016/j.canlet.2007.12.022.

36. Nishikawa H, Sato E, Briones G, Chen L-M, Matsuo M, Nagata Y, Ritter G, Jäger E, Nomura H, Kondo S, Tawara I, Kato T, Shiku H, Old LJ, Galán JE, Jäger E, Nomura H, Kondo S, Tawara I, Kato T, Shiku H, Old LJ, Galán JE, Old LJ, Galán JE. 2007. Protective efficacy of the trivalent Salmonella enterica serovar Typhi live vector vaccines finally comes of age. Immunol Cell Biol 87:400–412. https://doi.org/10.1038/icb.2009.31.

37. Wang S, Kong Q, Curtiss R. 2013. New technologies in developing recombinant attenuated Salmonella vaccines. Microb Pathog 58:17–28. https://doi.org/10.1016/j.micpath.2012.10.006.

38. VanCott JL, Chartfield SN, Roberts M, Hone DM, Hohmann EL, Pascual MW, Smooker PM. 2003. Delivery of a heterologous antigen by a registered Salmonella vaccine strain. Proc Natl Acad Sci USA 97:7539–7544. https://doi.org/10.1073/pnas.100728097.

39. Xiong G, Husseiny MI, Song L, Erdreich-Epstein A, Shackleford GM, Galán JE. 2006. Optimization of the effector protein secretion by Salmonella for vaccine development. Microbes Infect 8:2539–2546. https://doi.org/10.1016/j.micinf.2006.07.004.

40. Miao EA, Miller SI. 2000. A conserved amino acid sequence directing type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012:1–36. https://doi.org/10.5402/2012/78939.

41. Ramos-Morales F. 2012. Impact of Salmonella enterica type III secretion system effectors on the eukaryotic host cell. ISRN Cell Biol 2012:1–36. https://doi.org/10.5402/2012/78939.

42. Chen L-M, Briones G, Donis RO, Galán JE. 2006. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infect Immun 74:5826–5833. https://doi.org/10.1128/IAI.00375-06.

43. Panthel K, Meinel KM, Sevil Domènech VE, Geginat G, Linkemann K, Busch DH, Rüssmann H. 2006. Prophylactic anti-tumor immunity against a murine fibrosarcoma triggered by the Salmonella type III secretion system. Microbes Infect 8:2539–2546. https://doi.org/10.1016/j.micinf.2006.07.004.

44. Rüssmann H, Shams H, Poblete F, Fu Y, Galán JE, Donis RO. 1998. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281:565–568.
(SrP), targets the human chaperone ERdj3. J Biol Chem 285: 16360–16368. https://doi.org/10.1074/jbc.M110.100669.
65. Cardenal-Muñoz E, Ramos-Morales F. 2011. Analysis of the expression, secretion and translocation of the *Salmonella enterica* type III secretion system effector SteA. PLoS One 6:e26930. https://doi.org/10.1371/journal.pone.0026930.
66. McConnell MJ, Hanna PC, Imperiale MJ. 2006. Cytokine response and survival of mice immunized with an adenovirus expressing *Bacillus anthracis* protective antigen domain 4. Infect Immun 74:1009–1015. https://doi.org/10.1128/IAI.74.2.1009-1015.2006.
67. Hanahan D. 1983. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol 166:557–580. https://doi.org/10.1016/0022-2836(83)80284-8.
68. Holloway BW. 1955. Genetic recombination in *Pseudomonas aeruginosa*. J Gen Microbiol 13:572–581. https://doi.org/10.1099/00221287-13-3-572.