Review

PLZF-RARα, NPM1-RARα, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review

Marta Sobas 1, Maria Carme Talarn-Forcadell 2, David Martinez-Cuadrón 3,4, Lourdes Escoda 2, María J. García-Pérez 5, Jose Maríz 6, María J. Mela-Osorio 7, Isolda Fernández 7, Juan M. Alonso-Domínguez 8, Javier Corrago-Navascués 8, Gabriela Rodríguez-Macias 9, María E. Amutio 10, Carlos Rodríguez-Medina 11, Jordi Esteve 12, Agnieszka Sokół 13, Thais Murciano-Carrillo 14, María J. Calasanz 15, Manuel Barrios 16, Eva Barragán 14, Miguel A. Sanz 3,4 and Pau Montesinos 3,4,*

1 Wroclaw Medical University, Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, 50-367 Wroclaw, Poland; marta.sobas@umed.wroc.pl
2 Hospital of Tarragona “Joan XXIII”, Hematology-ICO, 43-005 Tarragona, Spain; ctafern@iconcologia.net (M.C.T.-F.); lescoda@iconcologia.net (L.E.)
3 Hospital Universitari Politècnic La Fe, Department of Hematology, 46-009 Valencia, Spain; martinez_davcua@gva.es (D.M.-C.); Miguel.Sanz@uv.es (M.A.S.)
4 CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain
5 University Hospital Torrecardenas, Department of Hematology, 04-009 Almeria, Spain; mjgarciaper@gmail.com
6 Istituto Portugues de Oncologi IPO, Department of Hematology, 4200-072 Porto, Portugal; mariz@ipoporto.min-saude.pt
7 Fundaleu, Department of Hematology, 1114 Buenos Aires, Argentina; mjmelafundaleu.org.ar (M.J.M.-O.); ifernandez@fundaleu.org.ar (I.F.)
8 University Hospital Universitario Fundacion Jimenez Diaz IIS-FJD, Department of Hematology, 28-040 Madrid, Spain; juanadm@fjd.es (I.M.A.-D.); javier.cornago@hospitalreyjuanacarlos.es (J.C.-N.)
9 Hospital Gregorio Marañon, Department of Hematology, 28-010 Madrid, Spain; mgabrielarm@yahoo.com
10 Hospital de Cruces, Department of Hematology, 48-903 Barakaldo, Spain; mariela.amutiodiez@osakidetza.net
11 Hospital Universitario Dr. Negrin, Department of Hematology, 35-010 Las Palmas de Gran Canaria, Spain; hematocritico@yahoo.es
12 Hospital Clinic, Department of Hematology, 08-036 Barcelona, Spain; jesteve@clinic.cat
13 Wroclaw Medical University, Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, 50-367 Wroclaw, Poland; agnieszkasokolzezewska@interia.pl
14 Hospital Vall d’Hebron, Department of Pediatric Hematology, 08-035 Barcelona, Spain; thais.murciano@vhebron.net
15 Clinica Universitaria de Navarra, Department of Hematology, 31-008 Pamplona, Spain; mjcal@unav.es
16 Hospital Carlos Haya, Department of Hematology, 29-014 Málaga, Spain; barriosmanolo1@gmail.com
17 Hospital Universitari I Politécnic La Fe, Department of Molecular Biology Laboratory, 46-009 Valencia, Spain
* Correspondence: montesinos_pau@gva.es

Received: 30 April 2020; Accepted: 18 May 2020; Published: 21 May 2020

Abstract: It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARa being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARa and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs
reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatías Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 10⁹/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.

Keywords: variant; acute promyelocytic leukemia; systematic review; characteristics; outcomes

1. Introduction

Acute promyelocytic leukemia (APL) is a relatively rare hematologic malignancy accounting for ~10% of acute myeloid leukemia (AML) cases [1]. APL is characterized by M3 morphological subclassification, t(15;17)(q22;q21) chromosomal translocation, and promyelocytic leukemia protein (PML)—retinoic acid receptor alpha (RARα) gene fusion, showing high rates of complete remission (CR) and cure using front-line schedules with all-trans-retinoic acid (ATRA) and/or arsenic trioxide (ATO). Apart from the classical PML-RARα cases, some APL patients are diagnosed with rare APL variants, characterized by a different rearrangement involving RARα plus another partner gene. According to some reviews, these APL genetic variants account for ~1–2% of APL cases, but the real frequency remains unknown [2–5]. To our knowledge, 14 types of variant APL where RARα is fused to different genes have been reported [2–63]. Moreover, the clinical features and optimal treatment of variant APLs remain to be established. In fact, some authors have suggested resistance to ATO and ATRA for the PLZF-RARα APL, which is probably the most frequent form of rare APL forms (up to 0.8% of all APLs) [3,27].

In this study, we aim to analyze the incidence, characteristics, treatment patterns, and outcomes of variant APLs reported to the PETHEMA epidemiology registry, including patients from Poland, Argentina, Portugal, and Spain from PALG (Polish Adult Leukemia Group), PETHEMA (Programa para el Tratamiento de Hemopatías Malignas), and GATLA (el Grupo Argentino de Tratamiento de la Leucemia Aguda) groups. Given the clinical heterogeneity and scarce number of variant APL patients reported in the literature, we also aim to perform a systematic review in order to shed light on strategies to improve the management of these extremely rare diseases.

2. Methods

2.1. Patients and Eligibility

Between November 1996 and January 2020, adult patients from institutions from Spain, Poland, Portugal, Argentina, Colombia, and Uruguay were registered in the PETHEMA database. In all patients, the diagnosis of APL was suspected by cytomorphology and confirmed by conventional cytogenetics and/or reverse transcriptase-polymerase chain reaction (RT-PCR). Patients were reported irrespectively of the treatment administered, including also those dying early before starting ATRA or chemotherapy. Eligibility criteria and trial design for PML-RARα patients have been reported elsewhere [64–67]. Patients diagnosed with rare APL variants were not eligible as per PETHEMA trial protocols, but baseline and treatment information were also collected using the same forms than for PML-RARα APLs. Diagnosis of APL variants was performed after clinical suspicion (M3 morphology and lack of genetic diagnosis of t(15;17) or PML-RARα). Specific PCR tests for rare rearrangements involving RARα were performed locally according to routine clinical practice. Two central laboratories were
available in Spain as per physician’s demands in case of need. Informed consent was obtained from patients. According to the Declaration of Helsinki, the protocol was approved by the Research Ethics Board of each participating hospital.

2.2. Treatment

No specific guidelines or recommendations for front-line or salvage therapy for rare APL variants were available during the study period. If they considered appropriate, physicians could follow front-line protocols for t(15;17) APL, where induction therapy consisted of oral ATRA and intravenous idarubicin (AIDA regimen). All patients in complete remission (CR) received 3 anthracycline-based consolidation courses, which were risk-adapted since protocol LPA99. Consolidation was followed by 2 years of maintenance, as it was previously described [64–67]. Since 2017, the PHEMAEA guidelines recommended ATO+ATRA combination for low- and intermediate-risk t(15;17) APL.

2.3. Response Assessment

Remission induction response and relapse were assessed according to the revised criteria by Cheson et al. [68]. There were no guidelines or definitions for molecular remission, molecular persistence, or molecular relapse. Relapse was defined as presence of equal or more than 5% bone marrow blasts or presence of extramedullary disease. Lumbar puncture or other diagnostic tests to assess disease status were performed as per physician’s judgement.

2.4. Data Collection

Data were collected and registered prospectively; last patient follow-up was updated on 15 February 2020. Following data were collected at diagnosis: age, gender, ECOG score, thrombosis and bleeding, hemoglobin level, platelet count, leukocytes (WBC) count, creatinine, uric acid, urea, lactate dehydrogenase (LDH), alkaline phosphatases, total bilirubin, and albumin, triglycerides, cholesterol, bilirubin, and type of RARα rearrangement. Coagulopathy was defined as thrombocytopenia plus either: prolonged prothrombin time and/or activated partial thromboplastin; or hypofibrinogenemia and/or increased levels of fibrin degradation products or D-dimers.

2.5. Systematic Review: Search Strategy and Selection of Studies

In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, two independent reviewers (M.S. and P.M.) conducted this systematic review [69]. The following databases were searched without restrictions: PubMed and Excerpta Medica database (EMBASE). In addition, the reference lists of important studies and reviews were hand searched. The last literature search was performed on 23 February, 2020. Similar keywords were used in different databases: acute promyelocytic leukemia and “rare” or “variant” [Mesh], as well as the specific fusion genes. Case reports or studies analyzing a series of patients with rare APL variants were selected. Our systematic search obtained 60 citations from databases and journals (58 original research/case report articles and 2 reviews). The agreement in the study selection between the reviewers was excellent (kappa = 0.97).

3. Results

3.1. Patients and Eligibility

Overall, 2961 patients with newly diagnosed APL from Spain, Portugal, Argentina (GATLA group), Uruguay, Colombia, and Poland (PALG group) were reported to the PHEMAEA registry. Of them, 66 were coded as lack of genetic diagnosis, resulting in 2895 patients with genetically confirmed APL. Among those, 11 patients with variant APL were identified (0.4%); 9 PLZF-RARα (0.3%) and 2 NPM1-RARα (0.1%). The main characteristics of variant APL patients are presented in Table 1. Briefly, the majority were men (9/11), with median age at diagnosis of 44.6 years (3 months to 76 years) in PLZF-RARα and 7 and 74 years for NPM1-RARα patients (two pediatric patients overall).
Median WBC at diagnosis was $16.8 \times 10^9/L$, with 50% patients classified as high-risk according to Sanz’s relapse-risk score [10,11,13]. Three out of 10 patients (30%) had hyperleukocytic forms with WBC $> 50 \times 10^9/L$. Two out of 11 patients had therapy-related APL secondary to colon neoplasm’s chemotherapy or to methotrexate plus antipaludic drugs for rheumatoid arthritis. The majority of variant APL had coagulopathy at diagnosis (6 out of 7 with available data), and 2 out of 6 patients with CD56 blast expression available were positive.
Table 1. Clinical characteristics, treatment, and outcomes of 11 variant acute promyelocytic leukemia (APL) patients reported to the PETHEMA registry.

Sex/Age (Years)	WBC × 10^9/L	Therapy-Related APL	Coagulo-Pathy	CD56 %	Karyotype & Rearrangement by PCR	Front-Line Therapy	Induction Response	Relapse	Salvage Therapy	AlloHSCT (Type)	Survival in Months (Status)
PLZF-RAR, patients											
M/31	NA	No	NA	NA	t(11;17)(q23;q21) PLZF-RAR	Induction AIDA (PETHEMA 99), Consolidation, Maintenance 6-MP/MTX/ATRA	CR	YES (isolated CNS sarcoma) at 58 months	ATRA + ATO + TIT—CR2, RTH; consolidation HD-Ara-C + IDA; maintenance 6-MP/MTX	NO	101+
F/50	2.9	Yes: MTX for arthritis	YES	100	t(11;17)(q23;q21) PLZF-RAR	Induction ATRA + IDICE, Consolidation Ara-C/MTZ/ATRA (+2), alloHSCT	CR	NO	-	YES (MUD)	36+
M/76	21.4	Yes: chemotherapy for colon cancer	YES	NA	t(11;17)(q23;q21) PLZF-RAR	Induction AIDA (PETHEMA2012)	Death	-	-	-	0.3 (death)
M/67	53	No	YES	47	t(11;17)(q23;q21) PLZF-RAR	Induction AIDA (PETHEMA 2012), Consolidations 1st: IDA/Ara-C/ATRA, 2nd:MTZ/ATRA, 3rd: IDA/Ara-C/ATRA Maintenance 6-MP/MTX/ATRA (2 years)	CR	YES (bone marrow) 1st at 40 months 2nd at 52 months 3rd at 60 months	ATRA + ATO—CR2 2nd relapse: MTZ + Ara-C—CR3 consolidation Mylotarg (+2) 3rd relapse: untreated	NO	60 (death)
M/43	16.8	No	YES	0	t(11;17)(q23;q21) PLZF-RAR	Induction AIDA (PETHEMA2012)	Death	-	-	-	0.2 (death)
M/40	9.6	No	YES	0	t(11;17)(q23;q21) PLZF-RAR	Induction ATRA + IA 3+7, Consolidation HD-Ara-C (+1), alloHSCT	CR	NO	YES (MUD)	47+	
M/3 months	56.4	No	YES	NA	t(11;17)(q23;q21) PLZF-RAR	Induction ATRA + AIE + ithAra-C, Consolidation ATRA + A1 + ithAra-C (+1) ATRA + HAM + ithAra-C (+1), Intensification: ATRA + HAE + ithAra-C, Maintenance: ATRA + 6-TG Ara-C s.c. + ithAra-C + RTH CNS	CR	NO	-	NO	48+
M/33	248	No	NA	NA	t(11;17)(q23;q21) PLZF-RAR	Induction DA 3+7, Consolidation DA 3+7	CR	YES (isolated CNS) 1st at 24 months 2nd at 34 months 3rd at 50 months	HD-Ara-C + TIT (8+)—CR2, alloHSCT 2nd relapse: Ara-C + MTZ + TIT (7+) plus radiotherapy—CR3 3rd relapse: ATRA + FLAG-IDA—CR4 consolidation ATRA + ATO	YES (MRD)	62+
M/62	1.1	No	NA	0	t(11;17)(q23;q21) PLZF-RAR	Induction IA 3+7 (+2), Consolidation HD-Ara-C (+2)	CR	NO	-	NO	8+
NPMI-RAR, patients											
F/7	100	No	NA	NA	t(5;15;17) NPM1-RAR	Induction AIDA (PETHEMA 2017), Consolidation: 1st: IDA/Ara-C/ATRA, 2nd: MTZ/ATRA, 3rd: IDA/Ara-C/ATRA	CR	YES (CNS + bone marrow) at 9 months	ATRA + ATO + TIT—CR2, alloHSCT planned planned (haplo-identical)	YES	11+
Induction FLUGA → RES
2nd line AIDA → PR
3rd line IA 2+5 → CR, Consolidation intermediate-dose Ara-C (±2)

M/74	1.7	No	NO	0	t(5;17)(q35;q21)	NPM1-RAR	RES	NO	-	NO

Abbreviations: M: male, F: female, NA: not available, CR: complete response, WBC: leukocytes, APL: acute promyelocytic leukemia, PCR: polymerase chain reaction, RES: resistance, PR: partial response, PLZF: promyelocytic leukaemia zinc finger, PETHEMA: Programa para el Tratamiento de Hemopatías Malignas, MTX: methotrexate, MRD: matched related donor, alloHSCT: allogeneic hematopoietic stem cell transplantation, MUD: matched unrelated donor, CNS: central nervous system, TIT: triple intrathecal therapy, i.th: intrathecal, RTH: radiotherapy, s.c.: subcutaneous, ATRA: all-trans-retinoic acid, IDA: idarubicin, 6-MP: 6 mercaptopurine, 6-TG: 6-thioguanine, MTX: methotrexate, Ara-C: citarabine, HD-Ara-C: high dose Ara-C, MTZ: Mitoxantrone, ATO: arsenic trioxide, AIDA (IDA 12 mg/m² days 2, 4, 6, and 8, ATRA 45 mg/m² till CR), IDICE (IDA 12 mg/m² day 1, 3 and 5, Ara-C 500 mg/m²/12 h days 1, 3, 5, and 7, Etoposide 100 mg/m² days 1, 2 and 3), DA 3+7 (Daunorubicin 60 mg/m² days 1–3, Ara-C 200 mg/m²/12 h days 1–7), IA 3+7 (IDA 12 mg/m² days 1–3, Ara-C 200 mg/m²/12 h days 1–7), AML-BFM 2004 INTERIM: induction AIE (Ara-C 100 mg/m²/24 h days 1–2, Ara-C 100 mg/m²/12 h days 3–8, Ida 12 mg/m² days 3, 5 and 7, Etoposide 150 mg/m² days 6–8) plus i.th Ara-C days 1 and 8, consolidation AI (Ara-C 500 mg/m²/24 h days 1–4, Ida 7 mg/m² days 3, 5) plus i.th Ara-C days 0 and 6, consolidation HAM (HD-Ara-C 1 g/m²/12 h days 1–3, MTZ 10 mg/m² days 3–4) plus i.th Ara-C days 0 and 6, intensification HAE (HD-Ara-C 3 g/m²/12 h days 1–3, ETO 125 mg/m², days 2, 3, 4, 5) plus i.th Ara-C day 0, maintenance (6-TG 40 mg/ m² daily, Ara-C 40 mg/m² s.c., for 4 days, every 4 weeks) plus i.th Ara-C and RTH CNS 15 Gy, HD-Ara-C and i.th Ara-C doses are modified according to age. FLUGA (Fludarabine 25 mg/m²/d i.v. days 26–, Ara-C 75 mg/m²/d i.v. days 2–5, g-CSF 5 μgr/kg/d s.c. days 1–3), FLAG-IDA (fludarabine 30 mg/m², AraC 2 g/m² for 5 days, idarubicin 10 mg/m² for 3 days, and G-CSF 5 micro g/kg from day +6 until neutrophil recovery).
3.2. Treatment and Outcomes

All patients received induction treatment, consisting of ATRA plus idarubicine (IDA) according to the ongoing PETHEMA trial (AIDA regimen) in 5 patients, AML-type chemotherapy plus ATRA in 3 patients (1 patient IDICE, 1 patient 3 + 7, and 1 patient AIE) (Table 1). Three remaining patients received an AML-type chemotherapy without ATRA or ATO (2 patients 3 + 7, and 1 patient FLUGA). CR was achieved in 8 patients (73%), with 1 resistance and 2 induction deaths (18%) (76 and 43 years old, both treated with AIDA and with WBC > 10 × 10^9/L and coagulopathy at presentation). The initially resistant patient received second-line regimen with AIDA (partial remission) and reached a first CR after a 2 + 5 regimen (Ida + Ara-C).

Post-remission schedule consisted of ATRA and anthracycline-based consolidation cycles in 4 patients (3 of them followed by ATRA plus low-dose chemotherapy maintenance) and intermediate or high dose Ara-C-based (HD-Ara-C) consolidation in 5 patients. Two patients (40 and 50 years old) received an allogeneic hematopoietic stem cell transplant (alloHSCT) in first CR. Only one patient (0.3 years old) received central nervous system (CNS) prophylaxis as part of the front-line regimen.

With a median follow-up of 60 months (8–101 months), 8 patients (73%) were alive at the time of analysis (3 deaths: 2 induction deaths and 1 death due to disease progression after third relapse). Overall, 4 out of 9 patients (43%) achieving first CR subsequently relapsed at 9, 24, 40, and 58 months (3 of them had CNS relapse). Patients relapsing had 53, 100, and 248 × 10^9/L WBC counts at diagnosis (1 patient no available data). A second CR was achieved in all cases (salvage therapy was ATRA + ATO in 3 patients; and HD-Ara-C in 1; including triple intrathecal chemotherapy for all patients with CNS relapse). An alloHSCT was performed in second CR in 1 patient who relapsed subsequently, and 1 patient was planned to undergo Haploidentical alloHSCT.

3.3. Systematic Literature Review

3.3.1. PLZF-RARα APL

Chen et al. described in 1993 the first variant APL with t(11;17)(q23;q21), producing the promyelocytic leukemia zinc finger PLZF-RARα fusion gene [61] (also known as ZBTB16-RARα). In a multicenter study performed by Grimwade et al., 5 out of 611 APL patients (0.8%) had the PLZF-RARα fusion gene being so far the only source to estimate the frequency of variant APLs [3]. PLZF-RARα APL seems to have distinct morphological features, as compared with classical APL, being the blast nucleus regular vs. bilobed, granules are fine or absent, and there is an increased CD56 expression by flow cytometry (similar to atypical FAB M3v APL) [4,11,66].

To date, 35 cases of PLZF-RARα APL have been reported (Table 2). Briefly, the vast majority were men (32/35) with median age at diagnosis of 48 years (15–81 years) and median WBC 9.9 × 10^9/L, with 14 out of 34 (41%) patients classified as high-risk according to the Sanz’s relapse-risk score. Five out of 35 patients (15%) had WBC > 50 × 10^9/L. All patients received first induction therapy that resulted in 12 CR (34%), 18 remissions (51%), and 5 induction deaths (14%). Five patients received ATRA monotherapy (1 resistance and 4 induction deaths), 14 ATRA plus chemotherapy-based regimens (9 CR [64%], 4 resistances, and 1 induction death), 6 AML-type chemotherapy (2 CR and 4 resistances), 6 ATO+-chemotherapy-based induction (6 resistances), and 4 ATO+ATRA+-chemotherapy-based induction (1 CR and 3 resistances). Accounting for first-line and salvage induction therapy, 23 patients achieved a first CR (66%). Successful salvage induction consisted of AML-type chemotherapy in 7, ATRA plus chemotherapy in 2, ATRA monotherapy in 1, and ATO+ATRA in 1 patient. Overall, 26 patients were exposed to ATRA at any therapeutic line (CR in 14, resistance in 9 [3 of them with signs of differentiation], and 3 were non-evaluable because of early death) and 12 were exposed to ATO (CR in 2 and resistance in 10). Two out of 23 patients achieving a first CR received subsequently an alloHSCT. Regarding survival, seven patients were not evaluable (Table 2). The median follow-up of patients alive was 17 months (21–77 months), with 14 patients (48%) alive (15 deaths: 5 induction deaths, 2 deaths without relapse, and 8 deaths after relapse). Overall, 12 out of 21 patients (57%) relapsed after first CR (no CNS relapse reported), and 4 patients received an alloHSCT in first or second CR [3–6,8–14,24–26,28–34,63].
3.3.2. NPM1-RARα APL

We identified 9 cases of NPM1-RARα (Table 3), with median age at diagnosis of 12 years (2–76 years). Overall, 5 (55.6%) patients were pediatric, the majority were male (6 patients), median WBC was $15.7 \times 10^9/L$, and 3 had extramedullary disease. All patients received first induction therapy that resulted in 7 CR (78%) and 2 induction deaths (22%). One patient received ATRA monotherapy (1 induction death), 6 received ATRA plus chemotherapy-based regimens (5 CR and 1 induction death), and 2 an AML-type chemotherapy (2 CR). No clinical data regarding ATO sensitivity were reported. No patients achieving a first CR received an alloHSCT. The median follow-up of patients alive was 23 months (2–46 months), with 6 patients (67%) alive (2 induction deaths, and 1 death after relapse). Overall, 4 out of 7 patients (57%) relapsed after first CR (no CNS relapse reported). One patient received an alloHSCT in second CR [3,6,35–41].

3.3.3. Other Variant APL

Overall, 35 additional APL patients with other RARα fusion genes have been reported as follow: 12 with the signal transducer and activator of transcription 5 beta (STAT5B)-RARα, 6 with Transducin β-like 1 X-linked receptor 1 (TBLR1-RARα), 5 with interferon regulatory factor 2 binding proteins 2 (IRF2P2)-RARα, 2 with factor interacting with PAPOLA and CPSF1 (FIP1L1)-RARα, 2 with signal transducer and activator of transcription 3 (STAT3)-RARα, 2 with BCL6 Corepressor (BCOR)-RARα, and 1 case of nuclear mitotic apparatus protein 1(NuMa1)-RARα, protein Kinase CAMP-Dependent Type I Regulatory Subunit Alpha (PRKARIA)-RARα, nucleic acid binding protein 1 (NABP1)-RARα, general transcription factor II-I (GTF2I)-RARα, trafficking From ER To Golgi Regulator (TFG)-RARα, and fibronectin Type III Domain Containing 3B (FNDC3B)-RARα (Table 4) [7,15–24,43–60]. Male predominance was noted (25 patients), with variable age at presentation (median 43 years), in 15 out of 30 patients (50%) with WBC > $10 \times 10^9/L$. IRF2P2-RARα APL had different features at diagnosis (3 out 5 cases were female and all patients had WBC counts < $5 \times 10^9/L$).

No CRs after ATRA or ATO-based regimens were observed among 2 patients with STAT3—RARα [54] or 1 with GTF2I-RARα [55]. ATRA monotherapy or combined with chemotherapy was the most frequent treatment for TBLR1-RARα APL, observing 2 out of 5 CRs and frequent relapse (including 1 extramedullary). The ATO-based regimen was successfully administered in 1 case at relapse [43–46].

Among STAT5B-RARα APL, treatment consisted of intensive chemotherapy plus ATRA (in most patients), with 8 out of 12 (67%) CRs and frequent relapse reported [7,15–24,49].

No resistances to ATRA plus chemotherapy induction were observed among patients with IRF2P2-RARα, FIP1L1-RARα, BCOR-RARα, NuMa-RARα, PRKARIA-RARα, FNDC3B-RARα, TFG-RARα, and NABP1-RARα, but relapses were also frequent among these settings [47–53,56–60].
Table 2. Characteristics and clinical outcomes in patients reported with PLZF-RARa.

Cases/First Reference	Karyotype	Sex/Age (Years)	WBC ($\times 10^9$/L)	Response to ATRA-Containing Regimen	Response to ATO-Containing Regimen	Induction(s) and Responses(s)	Relapse (Months)	Salvage Therapy	AlloHSCT	Survival in Months (Status)
ATRA monotherapy induction										
[63]	46,XY,t(11;17)(q23;q21)	M/67	4.1	Differentiation	-	Induction ATRA—ED	-	-	0.7	(death)
[11]	46,XY,t(11;17)(q23;q21)	F/81	7.6	Differentiation	-	Induction ATRA—ED	-	-	0.6	(death, cerebral bleeding)
[7]	46,XY,t(11;17)(q23;q21)	M/67	4.1	Not evaluable	-	Induction ATRA—ED	-	-	0.5	(death)
[34]	46,XY,t(11;17)(q23;q21) with del(5)(q22p35)	M/53	15.4	NO	-	Induction ATRA—RES, DNR + Ara-C—CR	NA	NA	NA	
ATRA + chemotherapy-based induction										
[12]	46,XY,t(11;17)(q23;q21)	M/31	69.5	YES	-	Induction ATRA + Ara-C + IDA + IDA	YES (11)	ATRA—CR2, consolidation HD-Ara-C, alloHSCT	YES in CR2	51+
[13]	46,XY,t(11;17)(q23;q21)	M/83	NA	YES	-	Induction: ATRA + DNR—CR + ATRA + DNR—CR + Ara-C + 2, Maintenance ATRA +6-MP + MTX	NO	NO	24+	
[49]	47,XY,+8/47,XY,+8,t(11;17)(q23;2q21)	M/62	1.2	YES	-	Induction ATRA + ADE—CR	YES (7)	NA	17+	
[10]	46,XY,t(11;17)(q23;q21)/46,XY	M/53	4.5	YES	-	Induction ATRA + ADE—CR, Consolidation ADE, MACE, MiDAC	YES (45)	ATRA—CR2, alloHSCT	YES in CR2	177+
[26]	46,XY,t(7;17)(q35p21)	M/58	7.4	YES	-	Induction ATRA + DAT—CR, Consolidation DAT + ATRA, MACE	YES (36)	NA	36 (death in relapse)	
[8]	46,XY,t(11;17)(q23;q21)/45,XY,−Y,t(11;17)(q23;q21)	M/50	6.8	YES	-	Induction ATRA + ADE—CR, Consolidation ADE, MACE, MiDAC	NO	NO	73+	
Reference	Chromosomal Abnormality	Age (years)	Platelet Count (×10^9/L)	Induction Scheme	Consolidation Scheme	Outcome	Comments			
-----------	-------------------------	-------------	--------------------------	-----------------	---------------------	---------	----------			
[3]	46,XY, t(11;17)(q23;q21)	M/75	2.0	YES	-	-	-			
[3]	45,XY,t(11;17)(q23;q21)	M/32	11.6	YES	-	-	-			
[28]	46,XY,t(11;17)(q23;q21)/4 7,idem,+8	M/68	6.9	YES	-	-	-			
[11]	45,X,2Y,add(2)(q33)t(11;1 7)(q23;q21)/46,XY	M/34	2.4	NO	-	-	-			
[14]	No metaphases	M/48	71.6	NO	NO (in second line)	-	NA			
[14]	46,XX,t(11;17)(q23;q22)	F/38	23.6	NO	-	-	2 (death by sepsis)			
[32]	46,XX,add(17)(q21)[4]/46, XX[9].ish der(11)[1]t(11;17)(q23;q21)	M/81	1.8	Not evaluable	-	-	0.3 (death by pulmonary bleeding)			

Chemotherapy-based induction

Reference	Chromosomal Abnormality	Age (years)	Platelet Count (×10^9/L)	Induction Scheme	Consolidation Scheme	Outcome	Comments			
[11]	46,XY,t(11;17)(q23;q21)	M/53	15.3	YES	-	-	-			
[31]	t(11;17)(q23;q21)	M/52	1.6	-	-	-	-			
[29]	46,XY,t(11;17)(q23;q21)	M/37	45.2	-	-	-	-			
[3]	46,XY,t(11;17)(q23;q21),id em,-Y/46,XY	M/34	20	YES (in second line)	-	Induction DNR + Ara-C + ETO—RES, Ara-C + IDA+ATRA—CR, alloHSCT	NO	YES in CR1	33+	
[33]	t(11;17)(q23;q21)	M/50	1.3	YES (in second line)	YES (in second line)	Induction DNR + Ara-C—RES, ATRA + ATO—CR	NA	NA	NA	
[3]	46,XY,ish,ins(11;17)(q23q 21,q21)	M/62	9.9	YES (monotherapy at relapse)	-	Induction Ida + Ara-C + ETO—RES, MICE—CR	YES	ATRA-CR2 2nd relapse (8)—no treatment	NO	25 (death in relapse)

ATO+ATRA+/-chemotherapy-based induction

| 46,XX,der(11),der(17)/46, XX | F/60 | 34 | YES | YES | Induction ATRA + ATO + IDA—CR, Consolidation ATO + IA, MTZ, ATO + DNR, ATO + DA, MA | NO | NO | 11+ |
| 46,XY,t(11;17)(q23q21)/46,XY | M/44 | 52.1 | NO | NO | Induction ATRA + DNR + Ara-C (3+7) + ATO—RES | - | - | 5+ |

ATO+/-chemotherapy-based induction

45,X,Y, t(11;17)(q23;q21)/46,XY, t(11;17)(q23;q21)	M/23	9.1	-	NO	Induction ATO—RES, DNR + Ara-C 3+7—CR; Consolidation Ara-C × 5, Ara-C + DNR × 4	YES (7)	NA	32+
NA	M/15	64.9	-	NO	Induction ATO + IDA—RES, HD-Ara-C (3)—CR, Maintenance ATRA	NO	NO	NA
NA	M/38	NA	-	NO	Induction ATO—RES	-	-	2+
NA	M/45	NA	-	NO	Induction ATO—RES	-	-	NA
Induction ATO +
Desatinone + RES,
DNR + Ara-C = RES,
HD-Ara-C = CR,
Consolidation
HD-Ara-C = 2
YES (11)
NO
NO
11 (death in relapse)

Induction ATO +
HD-Ara-C = NA
NO
NO
NA
NA
NA

Abbreviations: M: male, F: female, NA: not available, WBC: leukocytes, CR: complete response, RES: resistance, ED: early death, alloHSCT: allogeneic hematopoietic stem cell transplantation, ATRA: all-trans-retinoic acid, ATO: arsenic trioxide, G-CSF: Granulocyte colony-stimulating factor, DNR: daunorubicine, IDA: idarubicin, Ara-C: cytarabine, HD-Ara-C: high dose Ara-C, IFN: interferone, ETO: etoposide, MTZ: Mitoxantrone, MTX: mitoxantrone, 6-MP: 6-mercaptopurinum, MACE (Amsacrine, Ara-C, Etoposide), MiDAC (mitoxantrone, Ara-C), IA (Ida plus Ara-C), FLAG (fludarabine, Ara-C, G-CSF), MA (Mitoxantrone, Ara-C), CAG (Ara-C, aclarubin and G-CSF), MICE (Ara-C, Etoposide, Gemtuzumab ozogamicin, Ida, Mitoxantrone), AIDA (ATRA plus IDA), ADE (Ara-C, ADR plus ETO), DAT (DNR, Ara-C plus thioguanine), DA (DNR, Ara-C plus Ara-C)

Table 3. Characteristics, treatment, and outcomes of 9 NPM1-RARa APL patients reported in the literature.

Case Reference	Karyotype	Sex/Age (Years/10^9/L)	Myeloid Sarcoma	Response to ATRA-Containing Regimen	Response to ATO-Containing Regimen	Induction and Response	Relapse (Months)	Therapies	Survival in Months (Status)
[37,40]	46,XX.t(5;17)(q32;q12),48,XX.t(5;17),+2mar	F/2 NA NO YES -	4.9			Induction DNR + Ara-C + ETO = CR, then ATRA=molecular CR, autoHSCT	YES (7)	NO (autoHSCT)	7 (death in relapse)
[41]	47,XY.t(5;17)(q35q21),der(8)(p23), der(10)(q26),del(12)(q13q22),del(1)(q12q14),−16,−18,+21,+22,+mar	M/12 NA NO YES -	76.9			Induction DNR + Ara-C (3+7)—CR, consolidation DNR + Ara-C + 6-TG + ETO + DXM	YES (5)	ATRA + Ara-C = CR2, alloHSCT	YES in CR2 8+
[3]	46,XX.rns(5;17)(q26q13q13),t(5;17)(q34q21)	F/9 17 NO YES -	15.7			Induction ATRA + Ara-C + MTZ = CR, consolidation DNR + Ara-C + ETO	NO NO	29+	
	46,XX.der(5;17)(q13q21),del(8)(q22q24),del(17), 532−dim	F/76 43.1 NO YES -	0.2 (death by cerebral hemorrhage)			Induction ATRA + ED	-	-	

| [6] | 46,XX.t(5;17)(q35q21),del(12)(p13) | M/12 15.7 NO Not evaluable - | 48,XX,ins(3;5)(q34q21) | | | Induction ATRA + ED | - | - | 0.2 (death by cerebral hemorrhage) |
Table 4. Cases reported in the literature with other variant APL.

References	Rearrangement	Karyotype	N of Cases	Sex/Median Age Years (Range)	WBC + 10^9/L Median (Range)	ATRA Sensitivity	ATO Sensitivity	Treatment Schedules	Relapse Months	HSCT	OS (Months)
[8,15–24]	STAT5B-RAR,	From normal till complex, karyotype, (interstitial deletion within chr. 17)	12	M (10)/F (3) 42 (17–67) years	16.1 (2.1–77.8)	YES	POSSIBLE 1 CR with ATRA + ATO + Ida	IA, ETO, FLAG, CAG, FLA, DA, MTZ, GO, Decitabine, ATO (most of them with ATRA—CR in 8/12 (67%) cases (5 CR with ATRA-containing induction)	YES (4 patients) Median 30.4, range 3.5–56	YES 2 in CR1 and 2 in CR2	Median 25.6 (0–75)
[43–46]	TBLR1-RAR, (1 case also with PML-RAR)	t(3;17)(q26;q12-q21) plus other alterations t(3;17) (p25;q21) in 1 case	6	M (6)/F (2) 41 (3–72) years (available in 4 patients)	14.1 and 20.4 (available)	YES	POSSIBLE (in 2nd line with chemotherapy)	1st case: ATRA + DNR—CR, 2nd case: ATRA + MTZ—RES, 3rd case: ATRA + chemotherapy—ED 4th case: ATRA—RES 5th case: ATRA—RES, chemotherapy CR 6th case: —ED	YES (2 patients after 10 and 24 months; one extrameduillary)	YES (1 patient in 2nd CR—cord blood)	1 patient alive after alloHSCT

Abbreviations: Ref: references, M: male, F: female, NA: not available, CR: complete response, ED: early death, alloHSCT: allogeneic hematopoietic stem cell transplantation, autoHSCT: autologous hematopoietic stem cell transplantation, DIC: disseminated intravascular coagulopathy, ATRA: all-trans-retinoic acid, ATO: arsenic trioxide, Ara-C: cytarabine, DNR: daunorubicine, IDA: idarubicin, 6-TG: 6-thioguanine, ETO: etoposide, DXM: dexamethasone, MTZ: Mitoxantrone.
[47–51]	IRF2P2-RAR.	Normal, diploid, -X (2 cases), t(1;17)(q42;q21)	5	M(2)/F (3) 38 (19–68) years	3.8 (1.65–5.14)	YES	YES	1st case: ATRA + ATO + GO— CR 2nd case: ATRA + IDA + Ara-C + GO— CR 3rd case: ATRA— CR 4th case: ATRA + IDA + Ara-C— CR 5th case: ATRA + ATO + DRN + Ara-C— CR	YES (3 patients between 8–12 months)	1 patient (after relapse)	Median 39 (8–18) months
[52,53]	FIP1L1-RAR.	t(4;17)(q12;q21)	2	F (2) 77, 90 59 in 1 case (other case NA)	YES	-	1st case: Induction AIDA protocol— ED; 2nd case: Induction ATRA— CR	NO			
[54]	STAT3-RAR.	45,XY,−Y[6]/46,X Y[8] or 46,XY[20]	2	M (2) 24, 26 6.6, 32.3	NO	NO	1st case: Induction ATO + ATRA— CR, DA3+7— CR, Homoharringtonine + ARA-C + G-CSF— CR, consolidation FLU + ARA-C (+4) MTZ + ARA-C (+1) 2nd case: Induction ATRA— RES, IA3+7— RES	YES (1st patient)	NO	1st patient: 33 (death in relapse), 2nd patient 6 months (death as RES)	
[55,58]	BCOR-RAR.	t(X;17)(p11;q21) or Y;X;17(p11.4; q21)	2	M/45 and 71 25.3 and >10	YES NO (in relapse)	1st case: Induction ATRA + IDA + Ara-C— CR, than Consolidation 2nd case: Induction DA3+7— CR, Consolidation ATRA + chemotherapy	YES at 35 months IDA + Ara-C + ATRA— C R2 2nd at 41 months— ATO— RES, tamibarotene + DNR + Ara-C— C R3	YES (cord blood in 3rd CR)	44+ and 12+		
[56]	GTF2I-RAR.	t(7;17)(q11;q21)	1	M/35 53.7	No	NO	Induction ATRA + DA - RES ID-ARA-C— RES IAH— RES ATRA+ATO— RES, death	-	-	4.8 (death as RES)	
[57]	NuMa1-RAR.	t(11;17)(q13;q21)	1	M/0.5 3.6	YES	-	Induction ATRA— CR, autoHSCT NO	NO (autoHSCT)	38		
Ref	Translocation	Breakpoint	Age	Gender	WBC	CR	RES	OS	ED	HSCT	HSCT Type
[59]	PRKAR1A-RAR_α	t(17;17)(q21;q24)	1	M/66	5.3	YES	YES	Induction ATRA + ATO + IDA—CR, Consolidation Ara-C + amsacrine × 3, Maintenance ATRA	NO	NO	24+
[60]	NABP1-RAR_α (OBFC2A-RAR_α)	der(2)(t(2;17)(q32;q21) with subclones t(11;19)(q13;p13.1)	1	M/59	96.9	YES	-	Induction AIDA—CR Consolidation × 2 cycles	NO	YES (MUD)	15+
[62]	TFG-RAR_α	t(3;14)(q12q31)	1	M/16	1.81	YES	Induction: ATRA—CR, Consolidation: ATRA + IDA (<2), maintenance: ATRA	NO	NO	NA	
[61]	FNDC3B-RAR_α	t(3;17)(q26;q21)	1	M/36	3.6	YES	-	Induction ATRA + DA consolidation DA 5+2, HD-Ara-C, maintenance ATRA/MTX/6-MP	YES	NO	8 (death in relapse)

Ref: references, N: number, M: male, F: female, WBC: leukocytes, CR: complete response, RES: resistance, OS: overall survival, ED: early death, HSCT: hematopoietic stem cell transplantation, allo: allogenic, auto: autologous, DS: differentiation syndrome, ATRA: all-trans-retinoic acid, ATO: arsenic trioxide, GO: gentuzumab ozogamizine; ETO: etoposide, IDA: idarubicin, DNR: daunorubicin, G-CSF: Granulocyte colony-stimulating factor, MTZ: mitoxantrone, FLU: fludarabine, MTX: metotrexate, MTZ: mitoxantrone, 6-MP: 6-mercaptopurine, ID-Ara-C: intermediate dose Ara-C, IA/IA 3+7: Ida plus Ara-C, DA: DNR plus Ara-C, FLA: fludarabine plus Ara-C, FLAG: fludarabine, Ara-C, G-CSF, CAG: Ara-C, aclarubicin, G-CSF, AIDA: ATRA plus IDA, IAH: Ida plus Ara-C plus homoharringtonine.
4. Discussion

This study shows that variant APL is probably less frequent (0.4%) than previously reported (1–2%). Our systematic literature search found 60 manuscripts on this topic (58 original reports and 2 reviews), almost equaling the number of patients with variant APL reported to date (n = 79). The characteristics of new 11 variant APL cases registered by the PETHEMA group are in line with prior reports (male predominance, PLZF-RARα as more frequent rearrangement). The vast majority of PETHEMA patients were treated with ATRA-containing schedules. While survival and CR rates seem better in our series as compared to background literature, prevention of relapse (especially in the CNS) remains as a challenging issue as well. Although prognosis of variant APLs seems better than non-promyelocytic AML, it is worse than PML-RARα APLs, where ATO + ATRA or AIDA-based regimens results in virtual absence of remission induction resistance, low rate of relapses (<15%), and higher rates of cure (>80%) [1].

As far as we know, this is the larger series analyzing the frequency of variant APL (0.4%); 11 out of 2895 patients with genetically confirmed APL had PLZF-RARα (0.3%) or NPM1-RARα (0.1%). This frequency is lower than 1.1% previously reported by Grimwade et al. [3], which showed 5 PLZF-RARα (0.8%) and 2 NPM1-RARα (0.3%) out of 611 APL. However, our frequency data should be carefully interpreted due to several reasons: (1) although the PETHEMA registry includes all suspected APL patients regardless of treatment or diagnosis, investigators may include preferably those cases evaluable for PML-RARα therapeutic protocols; (2) a number of registered APL patients were excluded from this study because of lack of genetic diagnosis. The majority of these cases had no genetic diagnosis because of very early death, but we cannot exclude that some of them had an unidentified variant APL; and (3) although the PETHEMA network offers expert counseling and possibility of genetic testing at central laboratories when required, the diagnosis of variant APL (in particular for very infrequent forms) needs first to be suspected and then guided PCR tests performed. In our opinion, the frequency of variant APL could be higher than herein reported, but probably lower than 1%.

The systematic literature review and the PETHEMA registry experience confirms some clinical features of variant APL that are common to PML-RARα, as frequent coagulopathy and a median age at diagnosis of roughly 45 years old [64–67]. Interestingly, one out of two NPM1-RARα patients here reported was a pediatric patient, in line with prior case reports suggesting that this form is mainly affecting children (Table 3) [3,6,35–41]. As a distinction to PML-RARα APL, our study show that variant forms present with higher median WBC counts, and 40–50% could be classified as high-risk according to the Sanz’s score. As per the literature review, only IRF2P2-RARα APL had different features at diagnosis (3 out 5 cases were female and all had WBC < 5 × 10^9/L) (Table 4) [7,15–24,43–61]. On the other hand, it has been suggested that CD56 could be frequently expressed in some variant APL forms [2,4], but this could not be confirmed in our series (CD56 available only in 5 patients).

Apart from accurate diagnosis, the main issue for the management of variant APL is the striking lack of evidence to guide therapeutic approaches in this population. Although our study aimed to shed light on this management, making reliable recommendations remains challenging in light of patient’s and therapeutic approaches heterogeneity reported so far. Thus, we can only make suggestions for induction therapy, as follows: (1) a chemotherapy-based approach could be administered for STAT3-RARα and GTF2I-RARα as 3 reported cases were resistant to ATRA- or ATO-based regimens; (2) an AIDA or AIDA-like induction could be employed for NPM1-RARα, IRF2P2-RARα, FIP1L1-RARα, BCOR-RARα, NuMa-RARα, PRKAR1A-RARα, FND3B-RARα, TFG-RARα, and NABP1-RARα (only 1 induction resistance reported). No clinical data regarding ATO sensitivity were available in the literature for these APL forms. However, in our series, one pediatric patient achieved a second CR after ATO plus ATRA plus intrathecal therapy for a concomitant bone marrow and CNS relapse, suggesting that ATO could be active as well in NPM1-RARα APL; (3) an ATRA plus chemotherapy-based regimen could be employed for TBLR1-RARα and STAT5B-RARα, but the CR rate seems much lower than in PML-RARα APL. Of note, an ATO-based salvage was successfully used in 1 patient with relapsed TBLR1-RARα APL.

Regarding treatment and outcomes of PLZF-RARα APL, previously reported cases (n = 35) and data from our cohort of patients (n = 9) allow for more reliable recommendations. Based on previously
published data, induction schedules were quite heterogeneous, including some ATO-based regimens, with low CR (34%) and high resistance rates (51%). Of note, better CR rates (64%) were observed among 14 patients receiving ATRA plus chemotherapy-based induction (Table 2). In contrast, front-line regimens were more homogeneous (AIDA or AIDA-like in 7 patients) in the PETHHEMA cohort, no resistances occurred and early death was the only cause of induction failure, similar to PML-RARα patients [70]. Until we have better evidence, it seems reasonable to recommend a first induction with AIDA or AIDA-like regimens for PLZF-RARα patients. Regarding ATO therapy, although clinical responses are disappointing, combinations including ATO could play a role at relapse, where some responses have been observed so far (Tables 1 and 2). The mechanism of resistance to ATRA and ATO in PLZF-RARα APL could be related to distinct nature of leukemogenic process as compared to the PML-RARα. Rego et al., observed in vitro and in vivo, that therapeutic doses of ATRA and ATO can induce the degradation of both fusion protein, but maintenance of the leukemic phenotype depends on the continuous presence of the PML-RARα but not of the PLZF-RARα protein [71]. According to another study, ATRA, but not ATO, can provoke degradation of the PLZF-RARA fusion protein [27].

Moreover, it has been suggested that ATRA has difficulties to completely release the corepressor proteins like N-CoR (nuclear receptor corepressor) or nuclear receptor transcriptional (SMRT) from the PLZ-RARα fusion protein as there is a second binding site for corepressor complex in the PLZF region [72]. We should also highlight that PML restauation by ATO and ATRA activates p53 by recruiting the protein to PML-nuclear bodies site and promoting its activation. The lack of p53 function could be in relation to the resistance that is observed in APL variants [73]. On the other hand, activation of the hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) receptor signaling could lead to the release of corepressor proteins from PLZF, supporting the therapeutic combination of ATRA and G-CSF [12]. Other studies provided biological rationale to enhance the efficacy of ATRA through combinations with interferon [74] or histone deacetylase inhibitors [75,76] and efficacy of ATRA and ATO through 8-CPT-CAMP [77,78]. We should mention the possibility of using tamibarotene instead of ATRA for those patients with variants since it is thought that tamibarotene is a better inducer of differentiation and cells death in APL cells [79].

Post-remission outcomes were worse in variant APL as compared to classical forms, mainly due to frequent relapses. In the literature cases, crude relapse rate was 57% among PLZF-RARα and NPM1-RARα, even if intensive consolidations were often administered. In our short series, 43% of patients relapsed with a remarkable frequency of CNS involvement, but a second CR was achieved in all patients. It should be noted that variant APLs frequently show risk factors that have been related with an increased risk of relapse in PML-RARα APL (i.e., hyperleukocytosis and male gender) [80]. In our series, 3 out of 4 relapses occurred in patients with more than 50 × 10^9/L WBC counts at diagnosis. Given the high rate of relapses observed, we can speculate that consolidation regimens including ATRA and chemotherapy (i.e., anthracycline and Ara-C) may be useful to prevent hematological and extramedullary relapses. Regarding specific CNS prophylaxis, it is difficult to make recommendations given the low number of cases, but it seems judicious to follow similar approaches than for typical APL. Although our short but mature series shows an acceptable proportion of patients still alive (73%), better than in previously published data. We can hypothesize that more homogeneous schedules with ATRA plus chemotherapy-based regimens, successful salvages, and more contemporaneous treatments, could explain our survival results. From our experience, the role of alloHSCT in first CR is debatable, but it should be performed when possible in second CR.

In conclusion, we confirm that variant forms are very rare, accounting for less than 1% of APLs. Main characteristics of 11 patients reported by PETHHEMA are in line with previous reports (male predominance, high WBC, median age 45 years, PLZF-RARα followed by NPM1-RARα as more frequent rearrangements). Except for STAT3-RARα and GTF2I-RARα APLs, ATRA plus chemotherapy-based induction may lead to high CR rates. Further studies are needed to gain insights on optimal post-remission strategies to prevent the relatively high rate of relapse observed in variant APL patients.

Author Contributions: M.S., P.M., and C.T. conceived the study; M.S. and P.M. analyzed and interpreted the data; M.S., P.M., and M.C.T.F. wrote the paper; D.M.-C., L.E., M.J.G.-P., J.M., M.J.M.-O., I.F., J.M.A.-D., J.C.-N.,
G.R.-M., M.E.A., C.R.-M., J.E., A.S., T.M.-C., M.J.C., M.B., E.B., and M.A.S. included data of patients treated in their institutions. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially financed with FEDER funds (CIBERONC (CB16/12/00284)) and with Instituto de Investigación Sanitaria La Fe funds (2016/0158).

Acknowledgements: The authors thank Carlos Pastorini, María D. García, and Mar Benloch for data collection and management.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.-J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. *Blood* **2019**, *133*, 1630–1643, doi:10.1182/blood-2019-01-894980.

2. Adams, J.; Nassiri, M. Acute Promyelocytic Leukemia: A Review and Discussion of Variant Translocations. *Arch. Pathol. Lab. Med.* **2015**, *139*, 1308–1313, doi:10.1097/MLR.0000000000000435.

3. Grimwade, D.; Biondi, A.; Mozziconacci, M.J.; Hagemeijer, A.; Berger, R.; Neat, M.; Howe, K.; Dastugue, N.; Jansen, J.; Radford-Weiss, I.; et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): Results of the European Working Party. Groupe Français de Cytogénétique Hématologique, Groupe de Français d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action "Molecular Cytogenetic Diagnosis in Haematological Malignancies". *Blood* **2000**, *96*, 1297–1308.

4. Sainty, D.; Liso, V.; Cantu-Rajnoldi, A.; Head, D.; Mozziconacci, M.J.; Arnoulet, C.; Benattar, L.; Fenaroli, S.; Mancini, M.; Duchaye, E.; et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. *Blood* **2000**, *96*, 1287–1296.

5. Hussain, L.; Maimaitiyiming, Y.; Islam, K.; Naranmandura, H. Acute promyelocytic leukemia and variant fusion proteins: PLZF-RARα fusion protein at a glance. *Semin. Oncol.* **2019**, *46*, 133–144, doi:10.1053/j.seminoncol.2019.04.004.

6. Xu, L.; Zhao, W.L.; Xiong, S.M.; Su, X.Y.; Zhao, M.; Wang, C.; Gao, Y.R.; Niu, C.; Cao, Q.; Gu, B.W.; et al. Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. *Leukemia* **2001**, *15*, 1359–1368, doi:10.1038/sj.leu.2402205.

7. Wang, X.; Wang, J.; Zhang, L. Characterization of atypical acute promyelocytic leukaemia. *Medicine* **2019**, *98*, e15537, doi:10.1097/md.0000000000015537.

8. Jovanovic, J.V.; Rennie, K.; Culligan, M.; Peniket, A.; Leonard, A.; Harrison, J.; Vyas, P.; Grimwade, D. Development of Real-Time Polymerase Chain Reaction Assays to Track Treatment Response in Retinoid Resistant Acute Promyelocytic Leukemia. *Front. Oncol.* **2011**, *1*, doi:10.3389/fonc.2011.00035.

9. George, B.; Poonkuzhali, B.; Srivastava, V.M.; Chandy, M.; Srivastava, A. Hematological and molecular remission with combination chemotherapy in a patient with PLZF-RARalpha acute promyelocytic leukemia (APML). *Ann Hematol.* **2005**, *84*, 406–408.

10. Grimwade, D.; Gorman, P.; Duprez, E.; Howe, K.; Langabeer, S.; Oliver, F.; Walker, H.; Culligan, D.; Waters, J.; Pomfret, M.; et al. Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia. *Blood* **1997**, *90*, 4876–4885.

11. Licht, J.; Chomienne, C.; Goy, A.; Chen, A.; Scott, A.; Head, D.R.; Michaux, J.; Wu, Y.; DeBlasio, A.; Miller, W.J. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). *Blood* **1995**, *85*, 1083–1094, doi:10.1182/blood.v85.4.1083.bloodjournal8541083.

12. Jansen, J.; De Ridder, M.C.; Geertsma, W.; Erpelinc, C.; Van Lom, K.; Smit, E.; Slater, R.; Reijden, B.V.; De Greef, G.; Sonneveld, P.; et al. Complete Remission of t(11;17) Positive Acute Promyelocytic Leukemia Induced by All-trans Retinoic Acid and Granulocyte Colony-Stimulating Factor. *Blood* **1999**, *94*, 39–45, doi:10.1182/blood.v94.1.39.413a26_39_45.
13. Cassinat, B.; Guillemot, I.; Moluçon-Chabrot, C.; Zassadowski, F.; Fenaux, P.; Tournilhac, O.; Chomienne, C. Favourable outcome in an APL patient with PLZF/RARalpha fusion gene: Quantitative real-time RT-PCR confirms molecular response. Haematologica. 2006, 91 (12 Suppl), ECR58.

14. Rohr, S.S.; Pelloso, L.A.F.; Borgo, A.; De Nadai, L.C.; Yamamoto, M.; Rego, E.M.; Chauffaille, M.D.L.L.F. Acute promyelocytic leukemia associated with the PLZF-RARA fusion gene: Two additional cases with clinical and laboratory peculiar presentations. Med. Oncol. 2011, 29, 2345–2347, doi:10.1007/s12032-011-0147-y.

15. Strehl, S.; König, M.; Boztug, H.; Cooper, B.W.; Suzukawa, K.; Zhang, S.-J.; Chen, H.-Y.; Attarbaschi, A.; Dworzak, M.N. All-trans retinoic acid and arsenic trioxide resistance of acute promyelocytic leukemia with the variant STAT5B-RARA fusion gene. Leukemia 2012, 27, 1606–1610, doi:10.1038/leu.2012.371.

16. Chen, H.; Pan, J.; Yao, L.; Wu, L.; Zhu, J.; Wang, W.; Liu, C.; Han, Q.; Du, G.; Cen, J.; et al. Acute promyelocytic leukemia with a STAT5b-RARα fusion transcript defined by array-CGH, FISH, and RT-PCR. Cancer Genet. 2012, 205, 327–331, doi:10.1016/j.cancergen.2012.02.007.

17. Qiao, C.; Zhang, S.-J.; Chen, L.-J.; Miao, K.; Zhang, J.-F.; Wu, Y.-J.; Qiu, H.-R.; Li, J. Identification of the STAT5B-RAR fusion transcript in an acute promyelocytic leukemia patient without FLT3, NPM1, c-Kit and C/EBP mutation. Eur. J. Haematol. 2011, 86, 442–446, doi:10.1111/j.1600-0609.2011.01595.x.

18. Iwanaga, E.; Nakamura, M.; Nanri, T.; Kawakita, T.; Horikawa, K.; Mitsuya, H.; Asou, N. Acute promyelocytic leukemia harboring a STAT5B-RARA fusion gene and a G596V missense mutation in the STAT5B SH2 domain of the STAT5B-RARA. Eur. J. Haematol. 2009, 83, 499–501, doi:10.1111/j.1600-0609.2009.01324.x.

19. Kusakabe, M.; Suzukawa, K.; Namikochi, T.; Obara, N.; Okoshi, Y.; Mukai, H.Y.; Hasegawa, Y.; Kojima, H.; Kawakami, Y.; Ninomiya, H.; et al. Detection of the STAT5B–RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur. J. Haematol. 2008, 80, 444–447, doi:10.1111/j.1600-0609.2008.10142.x.

20. Arnould, C.; Philippe, C.; Bourdon, V.; Grégoire, M.J.; Berger, R.; Jonveaux, P. The Signal Transducer and Activator of Transcription STAT5b Gene Is a New Partner of Retinoic Acid Receptor in Acute Promyelocytic-Like Leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749, doi:10.1093/hmg/8.9.1741.

21. Gallagher, R.E.; Mak, B.S.; Paietta, E.; Cooper, B.; Ehmann, W.C.; Tallman, M.S. Identification of a Second Acute Promyelocytic Leukemia (APL) Patient with the STAT5B-RARα Fusion Gene among PML-RARA-Negative Eastern Cooperative Oncology Group (ECOG) APL Protocol Registrants. Blood 2004, 104, 3005, doi:10.1182/blood.v104.11.3005.3005.

22. Cahill, T.J.; Chowdhury, O.; Myerson, S.G.; Ormerod, O.; Herring, N.; Grimwade, D.; Littlewood, T.; Peniket, A. Myocardial Infarction with Intracardiac Thrombosis as the Presentation of Acute Promyelocytic Leukemia. Circulation 2011, 123, doi:10.1161/circulationaha.110.86208.

23. Kluk, M.J.; Abo, R.P.; Brown, R.D.; Kuo, F.C.; Cin, P.D.; Pozdnuyakova, O.; Morgan, E.A.; Lindeman, N.I.; DeAngelo, D.J.; Aster, J.C. Myeloid neoplasms demonstrating a STAT5B-RARA rearrangement and genetic alterations associated with all-trans retinoic acid resistance identified by a custom next-generation sequencing assay. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000307, doi:10.1101/mcs.a000307.

24. Wang, A.; Cai, X.; Qiang, P.; Duan, Q. Successful treatment of a patient with acute promyelocytic leukemia with a STAT5B/RARA fusion gene using decitabine. Leuk. Lymphoma 2017, 59, 763–765, doi:10.1080/10428194.2017.1357176.

25. Culligan, D.J.; Stevenson, D.; Chee, Y.L.; Grimwade, D. Acute promyelocytic leukaemia with t(11;17)(q23;q12-21) and a good initial response to prolonged ATRA and combination chemotherapy. Br. J. Haematol. 1998, 100, 288–330, doi:10.1046/j.1365-2141.1998.00575.x.

26. Guidez, F.; Parks, S.; Wong, H.; Jovanovic, J.V.; Mays, A.; Gilkes, A.F.; Mills, K.I.; Guillemin, M.-C.; Hobbs, R.M.; Panofli, P.P.; et al. RAR -PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 18694–18699, doi:10.1073/pnas.0704433104.

27. Koken, M.; Daniel, M.-T.; Gianni, M.; Zelent, A.; Licht, J.; Buzyn, A.; Minard, P.; Degos, L.; Varet, B.; De Thé, H. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARα fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene 1999, 18, 1113–1118, doi:10.1038/sj.onc.1202414.
28. Guidez, F.; Huang, W.; Tong, J.H.; Dubois, C.; Balitrand, N.; Waxman, S.; Michaux, J.L.; Martiat, P.; Degos, L.; Chen, Z. Poor response to all-trans retinoic acid therapy in a t(11;17) PLZF/RARα alpha patient. Leukemia 1994, 8, 312–317.

29. Scott, A.A.; Head, D.R.; Kopecky, K.J.; Appelbaum, F.R.; Theil, K.S.; Grever, M.R.; Chen, I.M.; Whitaker, M.H.; Griffith, B.B.; Licht, J.D. HLA-DR-, CD33+, CD56+, CD16- myeloid/natural killer cell acute leukemia: A previously unrecognized form of acute leukemia potentially misdiagnosed as French-American-British acute leukemia-M3. Blood 1994, 84, 244–255.

30. Rabade, N.; Raval, G.; Chaudhary, S.; Subramanian, P.; Kodgule, R.; Joshi, S.; Tembhare, P.; Hasan, S.K.; Jain, H.; Sengar, M.; et al. Molecular Heterogeneity in ACUTE promyelocytic leukemia—A single centre experience from india. Mediterr. J. Hematol. Infect. Dis. 2018, 10, 2018002, doi:10.4084/MJHID.2018.002.

31. Han, S.B.; Lim, J.; Kim, Y.; Kim, H.-J.; Han, K. A variant acute promyelocytic leukemia with t(11;17) (q23;q12); ZBTB16-RARA showing typical morphology of classical acute promyelocytic leukemia. Korean J. Hematol. 2010, 45, 133–135, doi:10.5045/kjh.2010.45.2.133.

32. Langabeer, S.E.; Preston, L.; Kelly, J.; Goodyer, M.; Elhassadi, E.; Hayat, A. Molecular Profiling: A Case of ZBTB16-RARA Acute Promyelocytic Leukemia. Case Rep. Hematol. 2017, 2017, 1–4, doi:10.1155/2017/765793.

33. Lechevalier, N.; Dulucq, S.; Bidet, A. A case of acute promyelocytic leukaemia with unusual cytological features and a ZBTB16-RARA translocation. Br. J. Haematol. 2016, 174, 502, doi:10.1111/bjh.14198.

34. Dowse, R.T.; Ireland, R.M. Variant ZBTB16-RARA translocation: Morphological changes predict cytogenetic variants of APL. Blood 2017, 129, 2038, doi:10.1182/blood-2016-10-743856.

35. Okazuka, K.; Masuko, M.; Seki, Y.; Hama, H.; Honma, N.; Furukawa, T.; Toba, K.; Kishi, K.; Aizawa, Y. Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RARα fusion. Int. J. Hematol. 2007, 86, 246–249, doi:10.1007/s11238-007-0092-x.

36. Otsubo, K.; Horie, S.; Nomura, K.; Miyawaki, T.; Abe, A.; Kanegane, H. Acute promyelocytic leukemia following aleukemic leukemia cutis harboring NPM/RARA fusion gene. Pediatr. Blood Cancer 2012, 59, 959–960, doi:10.1002/pbc.24199.

37. Redner, R.; Rush, E.; Faas, S.; Rudert, W.; Corey, S. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996, 87, 882–886, doi:10.1182/blood.v87.3.882.bloodjournal873882.

38. Kikuma, T.; Nakamachi, Y.; Noguchi, Y.; Okazaki, Y.; Shimomura, D.; Yakushijin, K.; Yamamoto, K.; Matsuoka, H.; Minami, H.; Itoh, T.; et al. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene. Int J Hematol. 2015, 102, 713–718.

39. Nicci, C.; Ottaviani, E.; Luatti, S.; Grafone, T.; Tonelli, M.; Motta, M.R.; Malagola, M.; Marzocchi, G.; Martinelli, G.; Baccarani, M.; et al. Molecular and cytogenetic characterization of a new case of t(5;17)(q35;q21) variant acute promyelocytic leukemia. Leukemia 2005, 19, 470–472, doi:10.1038/sj.leu.2403645.

40. Corey, S.J.; Locker, J.; Oliveri, D.R.; Shekhter-Levin, S.; Redner, R.L.; Penchansky, L.; Gollin, S.M. A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia 1994, 8, 1350–1353.

41. Hummel, J.L.; A Wells, R.; Dubé, I.D.; Licht, J.D.; Kamel-Reid, S. Deregulation of NPM and PLZF in a variant t(5;17) case of acute promyelocytic leukemia. Oncogene 1999, 18, 633–641, doi:10.1038/sj.onc.1202357.

42. Liu, Y.; Xu, J.; Chu, L.; Yu, L.; Zhang, Y.; Ma, L.; Wang, W.; Zhang, Y.; Xu, Y.; Liu, R. A rare case of acute promyelocytic leukemia with ider(17)(q10)(t15;17)(q22;q21) and favorable outcome. Mol. Cytogenet. 2020, 13, 1–5, doi:10.1186/s13039-020-00479-1.

43. Osumi, T.; Watanabe, A.; Okamura, K.; Nakabayashi, K.; Yoshida, M.; Tsujimoto, S.; Uchiyama, M.; Takahashi, H.; Tomizawa, D.; Hata, K.; et al. Acute promyelocytic leukemia with a cryptic insertion of RARA into TBL1XR1. Genes Chromosom. Cancer 2019, 58, 820–823, doi:10.1002/gcc.22791.

44. Silva, M.M.; Land, M.G.P.; Heller, A.; Abdelhay, E.; Pombo-De-Oliveira, M.S.; Ribeiro, R.; Alves, G.; Lerner, D.; Liehr, T. New rearrangement t(3;17)(q26.3;q12) in an AML patient with a poor outcome. Oncol. Rep. 2005, 14, 663–666, doi:10.3892/or.14.3.663.

45. Chen, Y.; Li, S.; Zhou, C.; Li, C.; Ru, K.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; et al. TBL1R1 fuses to retinoic acid receptor α in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood 2014, 124, 936–945, doi:10.1182/blood-2013-10-528596.
46. Redner, R.L.; Contis, L.C.; Craig, F.; Evans, C.; E Sherer, M.; Shekhter-Levin, S. A novel t(3;17)(p25;q21) variant translocation of acute promyelocytic leukemia with rearrangement of the RARA locus. *Leukemia* 2005, 20, 376–379, doi:10.1038/sj.leu.2404662.

47. Yin, C.C.; Jain, N.; Mehrotra, M.; Zhaang, J.; Protopopov, A.; Zuo, Z.; Pemmaraaju, N.; DiNardo, C.; Hirsch-Ginsberg, C.; Wang, S.A.; et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. *J Allergy Clin Immunol* 2015, 13, 19–22.

48. Shimomura, Y.; Mitsui, H.; Yamashita, Y.; Kamae, T.; Kanai, A.; Matsui, H.; Ishibashi, T.; Tanimura, A.; Shibayama, H.; Oritani, K.; et al. New variant of acute promyelocytic leukemia with IRF2BP2–RARA fusion. *Cancer Sci.* 2016, 107, 1165–1168, doi:10.1111/cas.12970.

49. Jovanovic, J.V.; Chillón, M.C.; Vincent-Fabert, C.; Dillon, R.; Voisset, E.; Gutiérrez, N.C.; Garcia-Sanz, R.; Lopez, A.A.M.; Morgan, Y.G.; Lok, J.; et al. The cryptic IRF2BP2-RARA fusion transforms hematopoietic stem/progenitor cells and induces retinoid-sensitive acute promyelocytic leukemia. *Leukemia* 2016, 31, 747–751, doi:10.1038/leu.2016.338.

50. Mazharuddin, S.; Chattopadhyay, A.; Levy, M.Y.; Redner, R.L. IRF2BP2-RARA[t(1;17)(q22.3;q21.2)] APL blasts differentiate in response to all-trans retinoic acid. *Leuk. Lymphoma* 2018, 59, 2246–2249, doi:10.1080/10428194.2017.1421761.

51. Liu, Y.; Xu, F.; Hu, H.; Wen, J.; Su, J.; Zhou, Q.; Qu, W. A rare case of acute promyelocytic leukemia with IRF2BP2-RARA fusion and literature review. *Oncotarget.* 2019, 12, 6157–6163, doi:10.22417/OTT.S217622.

52. Kondo, T.; Mori, A.; Darmanin, S.; Hashino, Y.; Tanaka, J.; Asaka, M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. *Haematologica* 2008, 93, 1414–1416, doi:10.3324/haematol.12854.

53. Menezes, J.; Acquaro, F.; de la Villa, C.P.; García-Sanchez, F.; Alvarez, S.; Cigudosa, J.C. FIP1L1/RARA with breakpoint at FIP1L1 intron 13: A variant translocation in acute promyelocytic leukemia. *Haematologica* 2011, 96, 1565–1566.

54. Yao, L.; Wen, L.; Wang, N.; Liu, T.; Xu, Y.; Ruan, C.; Wu, D.; Chen, S. Identification of novel recurrent STAT3-RARA fusions in acute promyelocytic leukemia lacking t(15;17)(q22;q12)/PML-RARA. *Blood* 2018, 131, 925–939.

55. Ichikawa, S.; Ichikawa, S.; Ishikawa, I.; Takahashi, T.; Fujiwara, T.; Harigae, H. Successful treatment of acute promyelocytic leukemia with a t(X;17)(p11.4;q21) and BCOR-RARA fusion gene. *Cancer Genet* 2015, 208, 162–163.

56. Li, J.; Zhong, H.-Y.; Zhang, Y.; Xiao, L.; Bai, L.-H.; Liu, S.-F.; Zhou, G.; Zhang, G.-S. GTF2I-RARA is a novel fusion transcript in a t(7;17) variant of acute promyelocytic leukaemia with clinical resistance to retinoic acid. *Br. J. Haematol.* 2014, 168, 904–908, doi:10.1111/bjh.13157.

57. A Wells, R.; Hummel, J.L.; De Koven, A.; Zipursky, A.; Kirby, M.; Dubé, I.; Kamel-Reid, S. A new variant translocation in acute promyelocytic leukaemia: Molecular characterization and clinical correlation. *Leukemia* 1996, 10, 735–740.

58. Yamamoto, Y.; Tsuzuki, S.; Tsuzuki, M.; Handa, K.; Inaguma, Y.; Emi, N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. *Blood* 2010, 116, 4274–4283, doi:10.1182/blood-2010-01-264342.

59. Catalano, A.; Dawson, M.A.; Somana, K.; Opat, S.; Schwarer, A.; Campbell, L.J.; Iland, H. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. *Blood* 2007, 110, 4073–4076, doi:10.1182/blood-2007-06-095554.

60. Won, D.; Shin, S.Y.; Park, C.-J.; Jang, S.; Chi, H.-S.; Lee, K.-H.; Lee, J.-O.; Seo, E.-J. OBFC2A/RARA: A novel fusion gene in variant acute promyelocytic leukemia. *Blood* 2013, 121, 1432–1435, doi:10.1182/blood-2012-04-423129.

61. Cheng, C.K.; Wang, A.Z.; Wong, T.H.Y.; Wan, T.S.; Cheung, J.S.; Raghupathy, R.; Chan, N.P.H.; Ng, M.H.L. FNDC3B is another novel partner fused to RARA in the t(3;17)(q26;q21) variant of acute promyelocytic leukemia. *Blood* 2017, 129, 2705–2709, doi:10.1182/blood-2017-02-767707.

62. Chong, M.L.; Cheng, H.; Xu, P.; You, H.; Wang, M.; Wang, L.; Ho, H.H. TFG-RARA: A novel fusion gene in acute promyelocytic leukemia that is responsive to all-trans retinoic acid. *Leuk. Res* 2018, 74, 51–54.

63. Chen, S.J.; Zelent, A.; Tong, J.H.; Yu, H.Q.; Wang, Z.Y.; Derre, J.; Berger, R.; Waxman, S.; Chen, Z. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. *J Clin Investig.* 1993, 91, 2260–2267, doi:10.1172/jci116453.
64. Sanz, M.A.; Montesinos, P.; Vellenga, E.; Rayón, C.; de la Serna, J.; Parody, R.; Bergua, J.M.; León, A.; Negri, S.; González, M. Risk adapted treatment of acute promyelocytic leukemia with all trans retinoic acid and anthracycline monotherapy: A multicenter study by the PHEMA group. Blood 2004, 103, 1237–1243.

65. Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Buchner, T.; Döhner, H.; et al. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009, 113, 1875–1891, doi:10.1182/blood-2008-04-150250.

66. Montesinos, P.; Rayón, C.; Vellenga, E.; Brunet, S.; González, J.; González, M.; Holowiecka, A.; Esteve, J.; Bergua, J.; Hernández-Rivas, J.M.; et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood 2011, 117, 1799–1805, doi:10.1182/blood-2010-04-277434.

67. Sanz, M.A.; Montesinos, P.; Rayón, C.; Holowiecka, A.; De La Serna, J.; Milone, G.; De Lisa, E.; Brunet, S.; Rubio, V.; Ribera, J.M.; et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline in consolidation therapy for high-risk patients: Further improvements in treatment outcome. Blood 2010, 115, 5137–5146, doi:10.1182/blood-2010-01-266007.

68. Cheson, B.D.; Bennett, J.M.; Kopecky, K.J.; Büchner, T.; Willman, C.L.; Estey, E.; Schiffer, C.A.; Doehner, H.; Tallman, M.S.; Lister, T.A.; et al. Revised Recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J. Clin. Oncol. 2003, 21, 4642–4649, doi:10.1200/jco.2003.04.036.

69. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnjen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34.

70. De La Serna, J.; Fernández, P.M.; Vellenga, E.; Rayón, C.; Parody, R.; León, A.; Esteve, J.; Bergua, J.M.; Milone, G.; Debeén, G.; et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood 2008, 111, 3395–3402, doi:10.1182/blood-2007-07-100669.

71. Rego, E.M.; He, L.Z.; Warrell, R.P.; Wang, Z.G.; Pandolfi, P.P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc. Natl. Acad. Sci. USA 2000, 97, 10173–10178.

72. He, L.Z.; Guido, F.; Tribioli, C.; Peruzzi, D.; Ruthardt, M.; Zelent, A.; Pandolfi, P.P. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat. Genet. 1998, 18, 126–135.

73. Bernardi, R.; Pandolfi, P.P. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat. Rev. Mol. Cell Biol. 2007, 8, 1006–1016.

74. He, P.; Liu, Y.; Zhang, M.; Wang, X.; Xi, J.; Wu, D.; Li, J.; Cao, Y. Interferon-γ enhances promyelocytic leukemia protein expression in acute promyelocytic cells and cooperates with all-trans-retinoic acid to induce maturation of NB4 and NB4-R1 cells. Exp. Med. 2012, 3, 776–780, doi:10.3892/etm.2012.488.

75. Kitamura, K.; Hoshi, S.; Kolké, M.; Kiyoi, H.; Saito, H.; Naoe, T. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukemia cells with t(11;17) in combination with all-trans retinoic acid. Br. J. Haematol. 2000, 108, 696–702, doi:10.1046/j.1365-2410.2000.01933.x.

76. Côté, S.; Rosenauer, A.; Bianchini, A.; Seiter, K.; Vandewiele, J.; Nervi, C.; Miller, W.H. Response to histone deacetylase inhibition of novel PML/RARα mutants detected in retinoic acid–resistant APL cells. Blood 2002, 100, 2586–2596, doi:10.1182/blood-2002-02-0614.

77. Zhu, Q.; Zhang, J.-W.; Zhu, H.-Q.; Shen, Y.-L.; Flexor, M.; Jia, P.-M.; Yu, Y.; Cai, X.; Waxman, S.; Lanotte, M.; et al. Synergic effects of arsenic trioxide and cAMP during acute promyelocytic leukemia cell maturation subverts a novel signaling cross-talk. Blood 2002, 99, 1014–1022.
78. Jiao, B.; Ren, Z.-H.; Liu, P.; Chen, L.-J.; Shi, J.-Y.; Dong, Y.; Ablain, J.; Shi, L.; Gao, L.; Hu, J.-P.; et al. 8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARA degradation. Proc. Natl. Acad. Sci. USA 2013, 110, 3495–3500, doi:10.1073/pnas.1222863110.

79. Sanford, D.; Lo-Coco, F.; Sanz, M.A.; Di Bona, E.; Coutre, S.; Altman, J.K.; Wetzler, M.; Allen, S.; Ravandi, F.; Kantarjian, H.; et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br. J. Haematol. 2015, 171, 471–477, doi:10.1111/bjh.13607.

80. Tallman, M.S.; Kim, H.T.; Montesinos, P.; Appelbaum, F.R.; De La Serna, J.; Bennett, J.M.; Deben, G.; Bloomfield, C.D.; Gonzalez, J.; Feusner, J.H.; et al. Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood 2010, 116, 5650–5659, doi:10.1182/blood-2010-06-288613.