An Approximation Solution to Estimate the Ultimate Bearing Capacity of Smooth Strip Footings on Ponderable Soil

HAN Dong-dong

CCCC Highway Bridges National Engineering Research Centre CO., Ltd. Beijing 100088, China;
handongdong@bnerc.com

Abstract: The procedure for calculating the bearing capacity of smooth footings is employed to calculate the bearing capacity of strip foundations on general $c\cdot\phi\cdot\gamma$ soil by the method of characteristics. The numerical results are in good agreement with other known computations. The surcharge ratio, λ, is found to be another good parameter for evaluation of the bearing capacity without superposition. The approximate formula for estimating the bearing capacity factor N_γ is then proposed considering the influence of λ in addition to ϕ with an error of no more than $\pm 3\%$ compared to the numerical results. The error caused by the superposition method is systematically analyzed and the influences of λ and ϕ on the superposition error are discussed.

1. Introduction

There are many types of soils encountered in marine engineering throughout the world; the physical and mechanical properties of which differ greatly [1-4]. Among the mechanical properties of these soils, the cohesion of soil and the internal friction angle of soil are the two main parameters used to estimate the strength of the soil. The current bearing capacity formulas for different types of foundations originate from the formula for strip footings considering the shape factors, load inclination factors, depth factors, etc [5-10]. Therefore, the bearing capacity of strip footings is regarded as one of the classic issues in geotechnical engineering. The bearing capacity of a strip footing subjected to a vertical load is currently expressed as

$$q_u = qN_q + cN_c + \frac{1}{2}\frac{\gamma}{B}N_\gamma$$

(1)

where q_u is the ultimate bearing capacity; q, c, γ, and B represent the equivalent surcharge load at the footing base, the soil cohesion, the soil unit weight, and the footing width, respectively; N_q, N_c, and N_γ are the bearing capacity factors related to q, c and γ, respectively. Terzaghi approximately calculated the three parts of contribution by superposition: N_q and N_c are obtained on weightless soil (i.e., $q\neq0, c\neq0, \gamma=0$) and N_γ is deduced by a surface footing on ponderable granular soil (i.e., $q=0, c=0, \gamma\neq0$). The expressions of N_q and N_c in Equation (1) are widely accepted in the following closed form [11]

$$N_q = (N_q - 1)\cot \phi$$

(2)

$$N_c = e^{\tan \phi} \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right)$$

(3)

Where, ϕ represents the internal friction angle of the soil. The well-know expressions above have been proven to be exact for weightless soils [12,13].
However, the bearing capacity factor $N_γ$ of a strip footing on a surface granular soil has been discussed for decades by many researchers and the expressions for $N_γ$ proposed by different investigators vary widely \cite{13-17}. Furthermore, the bearing capacity factor $N_γ$ is found to be influenced by other parameters such as q, c, $γ$, and B \cite{13,18-22}, and at present, a satisfactory expression of $N_γ$ has not been acquired. For the bearing capacity of strip foundations on c-$ϕ$-$γ$ soil, the solutions acquired by the superposition method are conservative compared to the results calculated in one failure mechanism \cite{23-26}. But the errors caused by the superposition method have not been systematically estimated, and lack the exact bearing capacity solution on general c-$ϕ$-$γ$ soil.

In this paper, the procedure for calculating the bearing capacity of smooth footings, called BCSF, is written to compute the bearing capacity of strip footings by the method of characteristics. The method of characteristics is one of the main methods used for bearing capacity problems, the solution of which is proved to be exact \cite{27,28}. As the method of characteristics has been introduced by many researchers \cite{14,27-30}, it is unnecessary to introduce detailed computations of the process in this work, as it is available in many references. The present computations are compared to other known results. The surcharge ratio λ ($\lambda=(q+c\tan \phi)/\gamma B$) first proposed by Zhu et al. \cite{21} is adopted as another parameter to evaluate the bearing capacity without using superposition. The bearing capacity factor $N_γ$ is then discussed, and an approximate formula is proposed considering the influence of λ in addition to $ϕ$. The error caused by the superposition method is systematically analyzed and the influences of λ and $ϕ$ on the superposition error are discussed.

2. Computations of bearing capacity

Cox (1962) discussed the bearing capacity of strip footings on c-$ϕ$-$γ$ soil with variation of the dimensionless ratio G, which is defined as

$$G = \frac{\gamma B}{2c^*}$$

where c^* is the relative cohesion, equal to $c+qtan \phi$.

It can be inferred that the denominator of G is related to λ using the formula below

$$\lambda = \frac{\cot \phi}{2G}$$

Martin (2003) confirmed that Cox’s results\cite{18} are in good agreement with computations by ABC (Analysis of Bearing Capacity). When $q=0$, $c=1$ kPa, $B=2$ m, and γ is equal to the value determined by equation (4), the bearing capacity q_u can be calculated by the present method and q_u/c^* is then obtained as shown in table 1. The numerical results in table 1 indicate the results of the present method’s calculations are very close to those by Cox (1962) and Martin (2003).

$ϕ/°$	G	λ	q_u/c^*		
			present method	Cox (1962)	Martin (2003)
10	0	∞	8.3449	8.34	8.345
	0.01	283.56	8.3522	8.35	8.352
	0.1	28.36	8.4167	8.42	8.417
	1	2.84	9.0200	9.02	9.02
	10	0.28	13.5581	13.6	13.56
20	0	∞	14.8348	14.83	14.83
	0.01	137.37	14.8692	14.87	14.87
	0.1	13.74	15.1743	15.2	15.17
	1	1.37	17.8929	17.9	17.89
	10	0.14	37.7627	37.8	37.76
30	0	∞	30.1400	30.14	30.14
	0.01	86.60	30.2914	30.29	30.29
	0.1	8.66	31.6146	31.6	31.61
	1	0.87	42.8703	42.9	42.87
For the bearing capacity of rough footings, Zhu et al. (2003) found that the normalized bearing capacity, $p_u = \frac{q_u + ccot\phi}{\gamma B}$, is only related to the surcharge ratio λ at a determined ϕ. The same conclusion can be verified by numerical calculations of smooth footings. When ϕ is equal to 25°, the computations of normalized p_u under a series of q, c, γ, and B values are shown in Table 2. As can be seen from the table, although the bearing capacity, q_u, differs greatly with the variations in q, c, γ, and B, p_u is a constant when λ is fixed. A large number of numerical examples at other ϕ also support the same conclusion.

Table 2. Normalized p_u under a series of q, c, γ, and B values ($\phi=25^\circ$).

q (kPa)	c (kPa)	γ (kN/m3)	B (m)	λ	q_u (kPa)	p_u
10	0	20	5	0.1	336.96	3.37
2	0	10	2	0.1	67.39	3.37
1	2.145	20	2.8	0.5	184.10	3.37
4	0.933	20	3		200.18	3.37
10	0	20	1		167.99	8.40
10	4.663	10	4	0.5	325.99	8.40
5	2.332	20	1		162.99	8.40
0	11.658	20	2.5		394.99	8.40
20	0	20	1		283.19	14.16
18	0	10	1.8	1	254.8	14.16
10	13.989	10	4		536.39	14.16
0	23.315	20	2.5		657.99	14.16

From the definitions of p_u and λ, the bearing capacity N_γ in Equation (1) can be written as

$$N_\gamma = 2(p_u - \lambda N_q)$$

(6)

If the bearing capacity N_q is calculated from Equation (3), it is can be inferred that the bearing capacity is only influenced by λ when ϕ is constant. The surcharge ratio, λ, is thus regarded as another parameter that has impact on N_γ in addition to ϕ.

3. Analysis of the bearing capacity N_γ

3.1. N_γ in the case of $\lambda=0$

The bearing capacity N_γ have been discussed by many researchers for the case of $q=0$, $c=0$, and $\gamma\neq0$. The surcharge ratio, λ, equals 0 under this condition and N_γ can be obtained by the following equation:

$$N_\gamma = \frac{2q_u}{\gamma B}$$

(7)

The N_γ values calculated by the present method at different angles are given in table 3. The present values for the case of $\lambda=0$ are in good agreement with those by the method of characteristics and are within the range of the lower and upper bounds defined by the limit analysis. The numerical results of Frydman and Burd [31] using FLAC and Woodward and Griffiths [32] using FEM are also consistent with the values obtained by the present method. The upper-bound solutions in the table are relatively
large compared to the present results. The present results can be taken as exact solutions as they are between the lower and upper bounds given by Hjaj et al. [16], which are very close to each other.

ϕ ($^\circ$)	Present method	Chen (1975)	Bolton and Lau (1993)	Michalowski (1997)	Frydman and Bard (1997)	Woodward and Griffiths (1998)	Ukritchon et al. (2003)	Smith (2005)	Hjaj et al. (2005)	Kumat (2009)
5	0.0845	0.248	0.10	0.09	0.127	--	0.08-0.09	--	0.0862-0.0914	0.087
10	0.2810	0.723	0.50	0.29	0.423	--	0.3	0.27-0.30	0.283-0.299	0.282
15	0.6987	1.641	1.20	0.71	1.050	--	0.7	0.68-0.75	0.701-0.737	0.699
20	1.5787	3.452	2.70	1.60	2.332	--	1.5	1.52-1.73	1.578-1.665	1.577
25	3.4614	7.163	5.90	3.51	5.020	--	3.4	3.33-3.94	3.454-3.653	3.457
30	7.6530	15.19	12.7	7.74	10.92	7.9	7.6	7.18-8.54	7.623-8.078	7.644
35	17.5897	33.87	28.6	17.8	24.75	18.9	--	15.7-21.2	17.46-18.51	17.55
40	43.19	81.75	71.6	44	60.22	42	--	38.5-54.2	42.77-45.42	43.08

- Upper-bound method
- Method of characteristics
- Fast lagrangian analysis of continua (FLAC)
- Finite element method (FEM)
- Limit analysis (lower-bound method and upper-bound method)

3.2. Approximation of N_f

If λ is not equivalent to 0, the numerical value of N_f obtained form Equation (6) is found to increase with increasing λ. The maximum N_f is available when λ approaches ∞, which means the unit weight of the soil, γ, decreases to 0. The values of maximum N_f are also listed in Table 3, when λ is ∞. It should be noted that the numerical results of N_f are calculated for the case of $\lambda=104$ because N_f will approach the upper-bound solution given by Chen (1975) in the Hill mechanism, the theoretical formula of which is expressed as

$$N_f = \frac{1}{4} \tan u ((\tan u e^{3\phi} - 1) + \frac{3\sin \phi}{1 + 8\sin^2 \phi} [(\tan u - \frac{\cot \phi}{3}) e^{3\phi} + \tan u \frac{\cot \phi}{3}] + 1)$$

where $u = \pi/4 + \phi/2$ and $f = \tan \phi$.

To distinguish the N_f value in different surcharge ratios, N_f is noted as $N_{f,\min}$ and $N_{f,\max}$ in the case of $\lambda=0$ and $\lambda=\infty$, respectively. The $N_{f,\min}$ and $N_{f,\max}$ results by the present method can be approximately written in the form of the fitting formula suggested by Diaz-Segura (2013) as

$$N_{f,\min} = (0.5 N_q - 0.08) \tan(1.34 \phi)$$

$$N_{f,\max} = (N_q + 0.6) \tan(1.3 \phi)$$

The approximate formula for N_f considering the influence of λ is proposed as

$$N_f = \frac{N_{f,\min}}{1 + (A_0 \lambda)^{0.75}} + \frac{N_{f,\max}}{1 + (A_0 \lambda)^{0.75}}$$

where A_0 is a fitting coefficient related to ϕ and the proposed value is determined as $A_0 = 3.774 \phi - 6.774 \phi^2 - 1.552 \phi + 5.202$.

The approximate curves as well as numerical values are plotted in figure 1. The N_f values from the computations of Cox(1962) and Martin(2003) in table 1, can be acquired using
The inferred results from Equation (13) are also marked in Figure 1. As can be seen from Figure 1, the approximation curves are in good agreement with the numerical results. Further estimation shows that the error between the approximation and the exact numerical result is no more than ±3% for any case if ϕ is within 40°. The N_γ values deduced by Martin (2003) perfectly support the present results. The outcomes by Cox (1962) outcomes are also close to the present calculations on the whole, except that relatively larger errors occur in two cases ($G=0.01$ when $\phi=10^\circ$ and 20°) because of poor accuracy for q_u/c^*.

Figure 1. The variation of N_γ versus λ at different friction angles.
4. Error evaluation caused by the superposition method

Calculation of the bearing capacity factor, $N_γ$, by the traditional superposition method is obtained for the circumstance of $λ=0$ ($q=0$, $c=0$, $γ≠0$), the value of which is the minimum named as $N_{γ, min}$ for a determined $ϕ$. If the bearing capacity obtained by the superposition method is noted as s_u, the equation of s_{umin} can be written as

$$s_{umin} = 0.5(\frac{γBN_{γ, min}}{\lambda N_q - c cot / γB + 0.5N_γ})$$

The error, $ε$, caused by the superposition method is estimated by the formula as follows:

$$ε = \frac{q_u - q_u}{q_u} = \frac{0.5(N_{γ, min} - N_γ)}{\lambda N_q - c cot / γB + 0.5N_γ}$$

It can be easily deduced that $ε$ is within the range below

$$ε_L ≤ ε ≤ ε_U$$

where $ε_L$ and $ε_U$ are the minimum and max defined as

$$ε_L = \frac{0.5(N_{γ, min} - N_γ)}{\lambda N_q - c cot / γB + 0.5N_γ}$$

$$ε_U = \frac{0.5(N_{γ, min} - N_γ)}{\lambda N_q - c cot / γB + 0.5N_γ}$$

The error $ε$ is equal to $ε_L$ under the condition of $q=0$ and turns into $ε_U$ when $c=0$. If $ϕ$ and $λ$ are fixed, it can be inferred that the error caused by using the superposition method is largest on cohesive soil without surcharge and is least on granular soil with surcharge. For a constant $ϕ$, $ε$ is always within the range of $ε_L$ and $ε_U$, regardless of the values of q, c, $γ$ and B. The error in the bearing capacity resulting from the traditional superposition method can be theoretically evaluated for $λ$ at a determined $ϕ$. The variation of $ε$ with $λ$ at different friction angles are plotted in figure 3. When $λ$ is constant, figure 4 gives the curves of $ε_L$ and $ε_U$ versus $ϕ$. In the two figures, the value of $ε$ changes between the dashed line and the solid line for a determined $ϕ$ or $λ$.

![Graph showing error evaluation](image-url)
The figure 2 and figure 3 reveal that:

1. The curves of ϵ_L and ϵ_U versus λ are similar to a lognormal distribution. When ϕ is a constant between 5°-40°, the largest error occurs when λ is between 0.04 and 0.3. The value of λ corresponding to the maximum error increases with increasing ϕ.

2. The curves of ϵ_L and ϵ_U converge as ϕ increases, which indicates for a fixed λ, the impacts of q, c, γ, and B on ϵ get smaller with increasing ϕ.
(3) The \(\lambda_L \) and \(\lambda_U \) relate to the maximum values of \(\varepsilon_L \) and \(\varepsilon_U \), respectively, and are not equivalent. The former is relatively larger than the latter. But the difference between the two values becomes smaller with increasing \(\phi \).

(4) The maximum error, \(\varepsilon_L \), decreases when \(\phi \) increases to some extent. The absolute value of the maximum error is about 24% when \(\phi = 5^\circ \) and reduces to about 16% when \(\phi \) reaches 40°. But there is an obvious superposition error when \(\lambda \) is around 0.1 regardless of the value of \(\phi \).

5. Conclusions
The BCSF procedure is employed to calculate the bearing capacity of smooth strip footings based on the method of characteristics. The present computations of bearing capacity \(q_u \) and the bearing capacity factor \(N_\gamma \) are compared to other researchers’ results. An approximate formula to evaluate the numerical results of the \(N_\gamma \) is proposed and the approximations are found to be in good agreement with the numerical calculations. The error caused by the superposition method is comprehensively discussed with the variation of the surcharge ratio \(\lambda \). The following conclusions can be reached from these comparisons and analyses:

The bearing capacity and corresponding \(N_\gamma \) determined by the present method are close to the values given by other researchers. The bearing capacity factor \(N_\gamma \) can be regarded as an exact solution, as the present value is between the range of the lower and upper bounds given by Hjiaj et al. (2005) when \(\lambda \) equals 0.

The difference between the exact \(N_\gamma \) and the value obtained by the traditional superposition method on a general \(c-\phi-\gamma \) soil comes from neglecting the surcharge ratio \(\lambda \). To get a better \(N_\gamma \), it is critical to consider the contribution of \(\lambda \) in addition to the friction angle \(\phi \). The formula for \(N_\gamma \) proposed in this paper provides a good approximate value with the largest error no more than 3% and is suitable for evaluating the bearing capacity without using the superposition method.

The bearing capacity obtained by the traditional superposition method gives a visible error on the conservative side. The values of bearing capacity are underestimated by 16%-24% for smooth footings from the view of maximum error. A further discussion shows that the maximum error occurs when \(\lambda \) is between 0.04 and 0.3 at a determined \(\phi \).

References
[1] Wang, X. Z., F. Y. Tan, Y. Y. Jiao, and R. Wang. 2014. A new apparatus for testing the bearing capacity of calcareous sand in laboratory. Marine Georesources & Geotechnology, 32(4), pp379-386.
[2] Li, G., J. L. Zhang, and Q. Yang. 2015. Geotechnical investigations at the Dalian offshore airport, China. Marine Georesources & Geotechnology, 1-12. DOI:10.1080/1064119X.2015.1087438
[3] Derkaoui, M., H. Missoum, K. Bendani, and Belhouari, F. (2015). Shear behavior of sand–silt mixtures: a laboratory investigation of coastal silty sand soils of Mostaganem. Marine Georesources & Geotechnology, DOI:10.1080/1064119X.2015.1070388
[4] Jeon, J. S. 2016. Consolidation properties and in-situ stress of the marine clay in southern Korea, Marine Georesources & Geotechnology, 34:1, pp33-41
[5] Terzaghi K. 1943. Theoretical soil mechanics. New York: Wiley
[6] Meyerhof, G. G. 1963. Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal 1(1): pp16-26.
[7] Hansen, J. B. 1970. A revised and extended formula for bearing capacity, Danish Geotechnical Institute Bulletin.
[8] Vesic, A. S. 1973. Analysis of ultimate loads of shallow foundations. Journal of Soil Mechanics & Foundations Div, 99(1), pp45–73.
[9] Housby, G. T. and A. M. Puzrin. 1999. The bearing capacity of a strip footing on clay under combined loading. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 455, No. 1983, pp. 893-916). The Royal Society.
[10] Georgiadis, K. 2010. The influence of load inclination on the undrained bearing capacity of strip footings on slopes. *Computers and Geotechnics* **37**(3): pp311-322.
[11] Prandtl L.1921. Uber die eindringungsfestigkeit (harte) plastischer baustoffe und die festigkeit von schneiden. *Zeit angew Math Mechanisms* **1**(1):pp5-20.
[12] Shield, R. T. 1954. Plastic potential theory and Prandtl bearing capacity solution. *Journal of Applied Mechanics, Trans. ASME*, **21**(2), pp193-194.
[13] Chen WF. 1975. Limit analysis and soil plasticity. New York: Elsevier.
[14] Bolton M.F. and C. K. Lau 1993. Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil. *Canadian Geotechnical Journal* **30**(6):pp1024–33.
[15] Poulos, H. G., J. P. Carter, and J. C. Small. 2002. Foundations and retaining structures—Research and practice. In *proceedings of the 15th international conference on soil mechanics and geotechnical engineering* Istanbul, Turkey. Vol. 4, pp. 2527-2606. A.A. Balkema Publishers.
[16] Hjiaj, M., A. V. Lyamin, and S. W. Sloan. 2005. Numerical limit analysis solutions for the bearing capacity factor N_c. *International Journal of Solids and Structures* **42**(5), pp1681-1704.
[17] Diaz-Segura, E. G. 2013. Assessment of the range of variation of N_c from 60 estimation methods for footings on sand. *Canadian Geotechnical Journal* **50**(7), pp793-800.
[18] Cox AD. 1962. Axially-symmetric plastic deformation in soils—II. Indentation of ponderable soils. *International Journal of Mechanical Sciences*, vol. 4, no. 5, pp. pp371-380.
[19] Michalowski R.L. 1997. An estimate of the influence of soil weight on bearing capacity using limit analysis. *Soils and Foundations* **37**(4): pp57–64.2
[20] Silvestri V. 2003. A limit equilibrium solution for bearing capacity of strip foundations on sand. *Canadian Geotechnical Journal* **40**(2): pp351–61.
[21] Zhu, D.Y., C. F. Lee and K. T. Law. 2003. Determination of bearing capacity of shallow foundations without using superposition approximation. *Canadian Geotechnical Journal* **40**(2): pp450-9.
[22] Sun J.P., Z. Y. Zhao, and Y. P. Cheng. 2013. Bearing capacity analysis using the method of characteristics. *Acta Mechanica Sinica* **29**(2): pp179–88.
[23] Davis E. H. and J. R. Booker. 1971. The bearing capacity of strip footings from the standpoint of plasticity theory. *Proceedings 1st Australia-New Zealand Conference on Geomechanics*, Melbourne, Australia. pp276-282.
[24] Griffiths, D. V. 1982. Computation of bearing capacity factors using finite elements. *Geotechnique* **32**(3), pp195-202.
[25] Wang, Y. J., J. H.Yin, and Z. Y. Chen. 2001. Calculation of bearing capacity of a strip footing using an upper bound method. *International Journal for Numerical and Analytical Methods in Geomechanics*, **25**(8), pp841-851.
[26] Tsukamoto, Y. 2005. Evaluating superposition errors in bearing capacity factors from Sokolovskii’s method of characteristics. *Soils and Foundations* **45**(3), pp161-165.
[27] Martin, C. M. 2004. ABC–Analysis of bearing capacity. Available online from www.eng.ox.ac.uk/civil/people/cmm/software/abc_manual.pdf
[28] Smith, C. C. 2005. Complete limiting stress solutions for the bearing capacity of strip footings on a Mohr-Coulomb soil. *Geotechnique*, **55**(8), pp607-612.
[29] Sokolovskii V.V. 1965. Statics of granular media. New York: Pergamon Press.
[30] Kumar, J. 2009. The variation of N_c with footing roughness using the method of characteristics. *International Journal for Numerical and Analytical Methods in Geomechanics* **33**(2), 275-284.
[31] Frydman, S. and H. J. Burd. 1997. Numerical studies of bearing-capacity factor N_c. *Journal of geotechnical and geoenvironmental engineering* **123**(1): pp20-29.
[32] Woodward P.K. and D.V. Griffiths. 1998. Observations on the computation of the bearing capacity factor N_c by finite elements. *Geotechnique* **48**(1): pp137-41.