Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans

Reza Zolfaghari Emameh1,2*, Harlan Barker1,2, Martti E E Tolvanen2,3, Csaba Ortutay2 and Seppo Parkkila1,2,4

Abstract

Background: Despite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species.

Methods: Here, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver.

Results: We verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations.

Conclusions: These investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in proteomics and genomics databases, but will also suggest novel targets for drugs against parasites.

Keywords: Beta carbonic anhydrase, Inhibitor, Metazoa, Mitochondrial targeting peptide, Multiple sequence alignment, Protozoa

Background

Carbonic anhydrases (CAs) are ubiquitous metalloenzymes. They are encoded by five evolutionary divergent gene families and the corresponding enzymes are designated α, β, γ, δ and ζ-CAs. α-CAs are present in animals, some fungi, bacteria, algae, and cytoplasm of green plants. β-CAs are expressed mainly in fungi, bacteria, archaea, algae, and chloroplasts of monocotyledons and dicotyledons. γ-CAs are expressed in plants, archaea, and some bacteria. δ- and ζ-CAs are present in several classes of marine phytoplankton [1-6]. A total of 13 enzymatically active α-CAs have been reported in mammals: CA I, CA II, CA III, CA VII, and CA XIII are cytosolic enzymes; CA IV, CA IX, CA XII, CA XIV, and CA XV are membrane-bound; CA VA and CA VB are mitochondrial; CA VI is secreted and CA VIII, CA X, and CA XI are acatalytic CA-related proteins [3,7]. The active site of CA contains a zinc ion (Zn²⁺) which has a critical role in the catalytic activity of the enzyme. ζ- and γ-CAs represent exceptions to this rule since they can use...
cadmium (ζ), iron (γ), or cobalt (γ) as cofactors [8-10]. CAs are involved in many biological processes, such as respiration involving transport of CO₂ and bicarbonate between metabolizing tissues, pH homeostasis, electrolyte transfer, bone resorption, calcification, and tumor progression. They also participate in some biosynthetic reactions, such as gluconeogenesis, lipogenesis, and ureagenesis [3,11-14].

The first β-CA was serendipitously discovered by Neish in 1939 [15]. In 1990, the cDNA sequence of spinach (Spinacea oleracea) chloroplast CA was determined, and found to be non-homologous to animal α-CA [16,17]. Thereafter, cDNA sequences of β-CA from pea (Pisum sativum) and Arabidopsis thaliana were determined [17-19]. It is believed that the plant β-CAs are distributed in the chloroplastic stroma, thylakoid space, and cytoplasm of plant cells [17]. Many putative β-CAs have been discovered since 1990, not only in photosynthetic organisms, but also in eubacteria, yeast, and archaea [17].

The first bacterial β-CA gene was named CynT and recognized in Escherichia coli [20,21]. Later, β-CA was identified in some other pathogenic bacteria, such as Helicobacter pylori, Mycobacterium tuberculosis, Salmonella typhimurium [17,22], Haemophilus influenzae [23,24], Brucella suis [24,25], Streptococcus thalliana [24,26], Salmonella enterica [24,27], and Vibrio cholerae [24,28,29]. β-CAs have also been identified in fungi, such as Candida albicans [1,30], Candida glabrata [1,31], Cryptococcus neoformans [1,32], and Sordaria macrospora [6,33]. This class of enzyme has also been discovered in a wide range of taxa, such as yeast (Saccharomyces cerevisiae) [34-36], cyanobacteria (Synechocystis sp. PCC6803) [37], carboxysomes of chemoheterotrophic bacteria (Halothiobacillus neapolitanus) [38], green algae (Chlamydomonas reinhardtii) [39], red algae (Porphyridium purpurnum) [40], nematodes (Caenorhabditis elegans) [41], and insects (Drosophila melanogaster) [4]. While β-CAs were initially thought to be expressed only in plants, this enzyme family is indeed present in a wide variety of species – from bacteria and archaea to invertebrate animals, missing only from vertebrates and most chordates, making it an attractive target for evolutionary studies [5].

β-CA is an important accessory enzyme for many CO₂ or HCO₃⁻ utilizing enzymes (e.g. RuBisCO in chloroplasts, cyanase in E. coli [42], urease in H. pylori [43], and carboxylases in Corynebacterium glutamicum [44]). In cyanobacteria, β-CA is an essential component of the CO₂-concentrating carboxysome organelle [17,45]. β-CA activity is required for growth of E. coli bacteria in air [46]; it is also indispensable if the atmospheric partial pressure of CO₂ is high or during anaerobic growth in a closed vessel at low pH, where copious CO₂ is generated endogenously. β-CA is also needed for growth of C. glutamicum [44,47] and some yeasts, such as S. cerevisiae [40]. In higher plants, the Flaviera bidentis genome contains at least three β-CA genes, named CA1, CA2, and CA3 [48]. The functional roles of β-CAs in plants are not yet fully understood, even though a lot of new data has emerged in recent years. C₃ and C₄ plants have different mechanisms for carbon fixation and photosynthesis and, thus, β-CAs might possess different roles, depending on the location of the enzyme and the type of plant [49]. In plants, the highest CA activity has been found within the chloroplast stroma, but there is also some CA activity in the cytosol of mesophyll cells [50]. Carbon dioxide coming from the external environment must be rapidly hydrated by β-CA and converted into HCO₃⁻ for the phosphoenolpyruvate carboxylase enzyme [49]. Additionally, CAs play a role in photosynthesis by facilitating diffusion into and across the chloroplast, and by catalyzing HCO₃⁻ dehydration to supply CO₂ for RuBisCO. Interestingly, both RuBisCO and β-CA expression levels increase together when P. sativum is transferred from an environment with high levels of CO₂ to one with low levels [47].

Crystal structures of β-CAs reveal that a zinc ion (Zn²⁺) is ligated by two conserved cysteines and one conserved histidine [5]. Until now, the only X-ray crystallography structure defined for β-CAs in plants belongs to P. sativum [51]. E. coli was the first bacteria in which the β-CA crystal structure was determined [20]. β-CA can adopt a variety of oligomeric states with molecular masses ranging from 45 to 200 kDa [52].

The first metazoan β-CAs were reported in 2010 [41]. In one of the studies [4,41], two genes encoding β-CAs (y116a4c.28 and bca-1) were identified in Caenorhabditis elegans. Another study reported a novel β-CA gene identified from FlyBase, which was named DmBCA (short for Drosophila melanogaster β-CA) [4]. Additionally, orthologs were retrieved from sequence databases, and reconstructed when necessary. The results confirmed the presence of β-CA sequences in 55 metazoan species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, Drosophila virilis, Tribolium castaneum, Nasonia vitripennis, Apis mellifera, Acyrthosiphon pisum, Daphnia pulex, Caenorhabditis elegans, Pristionchus pacificus, Trichoplax adhaerens, Caligus elegans, Lepeophtheirus salmonis, Nematostella vectensis, Strongylocentrotus purpuratus, and Saccoglossus kowalevskii. The DmBCA enzyme was produced as a recombinant protein in SF9 insect cells, and its kinetic and inhibition profiles were determined. The enzyme showed high CO₂ hydratase activity, with a kₗcat of 9.5 × 10⁷ M⁻¹ s⁻¹ and a kₗcat/Kₘ of 1.1 × 10⁶ M⁻¹ s⁻¹. DmBCA was inhibited by the clinically-used sulfonamide, acetazolamide, with an inhibition constant of 49 nM. Subcellular localization studies have indicated that DmBCA is probably a mitochondrial enzyme, as is also suggested by sequence analysis.

In this study, using bioinformatics tools, we discovered and verified the presence of β-CA in various other
metazoan species, and, for the first time, in protozoa. Previously, most β-CA proteins have been identified in protein databases as ‘unknown’ proteins or ‘putative’ CAs, without a specific reference to β-CAs. Based on the present findings, new avenues will be opened to biochemically characterize β-CAs and their inhibitors in arthropods, nematodes and protozoans.

Methods
Identification of putative β-CA enzymes in protozoan and metazoan species and multiple sequence alignment
Identification of novel β-CAs was based on the presence of the highly-conserved amino acid sequence patterns of the active site, namely Cys-Xaa-Asp-Xaa-Arg and His-Xaa-Xaa-Cys also marked in Additional file 1: Figure S1. Alignment was visualized in Jalview [53]. In total, 75 invertebrate β-CA sequences were retrieved from Uniprot (http://www.uniprot.org/) for alignment analysis, and one bacterial sequence (Pelosinus fermentans) was included as an outgroup. All protein sequences were aligned using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) [54]. The sequences were manually curated to remove residues associated with an incorrect starting methionine. A total of 90 residues were removed from the N-terminal end of Uniprot IDs D4NWE5_ADIVA, G0QPN9_ICHMG, D6WK56_TRICA, I7LWM1_TETTS and I7M0M0_TETTS. The modified protein sequences were then re-aligned. This protein alignment then served as the template for codon alignment of corresponding nucleotide sequences using the Pal2Nal program (http://www.bork.embl.de/pal2nal/) [55].

Phylogenetic analysis
The phylogenetic analysis was computed using Mr. Bayes v3.2 [56]. After 8 million generations using the GTR codon substitution model, with all other parameters as default, the standard deviation of split frequencies was 1.39×10^{-3}. The final output tree was produced using 50% majority rule consensus. FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/) [56] was used to visualize the phylogenetic tree and the Pelosinus fermentans [57] sequence set as outgroup. Additional trees were constructed for comparison using maximum likelihood (PhyML) [58], UPGMA, and neighbor-joining methods within Geneious version 7.0.5 from Biomatters (Auckland, New Zealand) (http://www.geneious.com/).

Prediction of subcellular localization
Subcellular localization prediction of each identified invertebrate β-CA was performed using the TargetP webserver (http://www.cbs.dtu.dk/services/TargetP/). TargetP is built from two layers of neural networks, where the first layer contains one dedicated network for each type of pre-sequence [cTP (cytoplasmic targeting peptide), mTP (mitochondrial targeting peptide), or SP (secretory signal peptide)], and the second is an integrating network that outputs the actual prediction (cTP, mTP, SP, other). It is able to discriminate between cTPs, mTPs, and SPs with sensitivities and specificities higher than what has been obtained with other available subcellular localization predictors [59].

Results
Multiple sequence alignment
The Uniprot search of potential β-CA sequences, and the subsequent multiple sequence alignment, identified 75 β-CAs in metazoan and protozoan species, of which 23 sequences were reported as β-CAs previously [4]. Thus, 52 metazoan and protozoan β-CA sequences were novel and reported here for the first time. All 75 β-CAs in metazoan and protozoan species are shown in Table 1. The multiple sequence alignment results of these 75 β-CAs, plus a bacterial β-CA sequence from Pelosinus fermentans, are shown as Additional file 1: Figure S1. Multiple sequence alignment of all animal β-CAs confirmed conservation of the known active site motifs CxDxR and HxxC in all identified enzymes. Several other key residues were also highly conserved. Notably, all β-CA sequences from Leishmania species (Leishmania donovani, Leishmania infantum, Leishmania major, and Leishmania mexicana) contained a 71 residue N-terminal extension not present in any other sequences.

Phylogenetic analysis
The results of the phylogenetic analysis of 75 β-CAs in metazoan and protozoan species are shown in Figure 1. A β-CA sequence from the Pelosinus fermentans bacterium was used as an outgroup [60]. The phylogenetic results represent the evolutionary root of β-CAs in metazoan and protozoan species, the similarity between them, and duplications that have occurred. The branching pattern and branch lengths reveal interesting evolutionary relationships of β-CAs in various invertebrate species. There is a close relationship between our bacterial outgroup and Trichomonas vaginalis β-CAs, both having originated well before the other species within the tree. β-CAs of nematodes and arthropods are located in the lower evolutionary branches. In the protozoan Tetrahymena thermophila and Paramecium tetraurelia clades significant duplications of β-CA have occurred, with 8 and 5 distinct proteins respectively. Meanwhile, metazoan and nematode species tend to have just one or two β-CAs. Surprisingly, β-CAs of the nematode Trichinella spiralis and trematode Schistosoma mansoni appear more closely related to arthropod than to nematode enzymes. The triangle located near the bottom of Figure 1 represents the clade of β-CAs in different Drosophila species. The details of the phylogenetic tree of β-CAs in Drosophila species are shown in Figure 2. The likely presence of inaccuracies in some of the database
Species	β- CA ID	Entry ID	Gene name	Protein name
Acromyrmex echinatior	BCA	F4WAG3	GSL_02499	Beta carbonic anhydrase 1
Acyrthosiphonpisum	BCA1	J9K06	Uncharacterized	Uncharacterized
	BCA2	C4WWD8	ACYPI006033	ACYPI006033
	BCA3	J9I7Y3	XM_001950078.1	Uncharacterized
Adineta vaga	BCA	D4NWE5	Uncharacterized	Putative uncharacterized protein
Aedes aegypti	BCA	Q17N6	AAEL00816	AAEL00816-PA
Ancylostoma caninum	BCA	FC551456	Uncharacterized	Uncharacterized protein
Anopheles darlingi	BCA	E3XSQ8	AND14274	Uncharacterized protein
Anopheles gambiae	BCA	QST56	AGAP002992	AGAP002992-PA
Apis mellifera	BCA	H9K529	Uncharacterized	Uncharacterized protein
Ascaris suum	BCA	F1LE18	Uncharacterized	Beta carbonic anhydrase 1
Caenorhabditis brenneri	BCA1	G0M5W4	CBn-bca-1	CBN-BCA-1 protein
	BCA2	G0MRG1	CBn-bca-2	CBN-BCA-2 protein
Caenorhabditis briggsae	BCA1	A8XV0	bca-1 CB14861	Beta carbonic anhydrase 1
	BCA2	A8WNP2	bca-2 Cbr-bca-2	Protein CB-BCA-2
Caenorhabditis elegans	BCA1	Q22460	bca-1 T13C5.5	Beta carbonic anhydrase 1
	BCA2	Q2YS41	bca-2 Y116A8C.28	Protein BCA-2
Caenorhabditis remanei	BCA1	E3LDN3	Cre-bca-1 CRE_00190	CRE-BCA-1 protein
	BCA2	E3MK96	Cre-bca-2 CRE_2874	CRE-BCA-2 protein
Caligus clemensi	BCA	C1C2M7	CYNT	Carbonic anhydrase
Camponotus floridanus	BCA	E2ANQ9	EAG_05651	Carbonic anhydrase
Culex quinquefasciatus	BCA	B0WKV7	CpipJ_CPIJ007527	Carbonic anhydrase
Danaus plexippus	BCA	G667Z4	Uncharacterized	Putative carbonic anhydrase
Daphnia pulex	BCA	E9GLBS	CAB	Beta-carbonic anhydrase
Dendroctonus ponderosae	BCA	J31TM9	Uncharacterized	Uncharacterized protein
Drosophila ananassae	BCA	B3LZ10	GF17694 DanaGF17694 Dana_GF17694	GF17694
Drosophila erecta	BCA	B3P1V8	G13874 DereGG13874 Dere_GG13874	G13874
Drosophila grimshawi	BCA	B4HY1	GH19010 DgriGH19010 Dgri_GH19010	GH19010
Drosophila melanogaster	BCA	Q9WH5	CAHbeta CG11967	CG11967
Drosophila mojavensis	BCA	B4KDC1	GI23065 DmojGI23065 Dmoj_GI23065	GI23065
Drosophila persimilis	BCA	B4GFA1	GL22171 DperGL22171 Dper GL22171	GL22171
Drosophila pseudoobscura	BCA	Q296E4	GA11301 DpselGA11301 Dpsel_GA11301	GA11301
Drosophila sechellia	BCA	B4HKY7	GM23772 DsecGM23772 Dsec_GM23772	GM23772
Drosophila simulans	BCA	B4QXCS	GD18582 DsimGD18582 Dsim_GD18582	GD18582
Drosophila virilis	BCA	B4LZE7	CAHbeta DvirGI24578 GI24578 Dvir_GI24578	GI24578
Drosophila willistoni	BCA	B4NBB9	GK11865 DwilGK11865 Dwil_GK11865	GK11865
Drosophila yakuba	BCA	B4PTY0	GE25916 DyakGE25916 Dyak_GE25916	GE25916
Entamoeba dispers	BCA	B0E7M0	EDL275880	Carbonic anhydrase
Entamoeba histolytica	BCA	C4LXK3	EHL073380	Carbonic anhydrase
Entamoeba nuttallii	BCA	K2GQM0	ENU1_204230	Carbonate dehydratase domain containing protein
Harpegnathos saltator	BCA	E2BQ1	EAL05019	Carbonic anhydrase
Helicin cus melpomene	BCA	HMEL015257	Uncharacterized	Uncharacterized protein
Hirudo medicinalis	BCA	EY481200	Uncharacterized	Uncharacterized protein
sequences, and inherent limitations of Bayesian inference, prompted use of additional phylogenetic methods. These analyses generally supported the major features of the final tree achieved via Bayesian inference.

Subcellular localization of β-CAs
The predictions for subcellular localization of the 75 β-CAs are shown in Table 2. The results reveal that 31 are predicted to have a mitochondrial localization, one (Anopheles darlingii, Uniprot ID: E3X5Q8) was predicted to be secreted, and the remaining 43 were predicted to have other cellular localizations. The predictions were based on the analysis of 175 N-terminal amino acids of each sequence. In the Name column, there are both IDs of the β-CAs in Uniprot database and scientific name of the metazoan and protozoan species.

Discussion
This study shows that the β-CA enzyme is present in a range of protozoans and metazoans. A total of 75 sequences were identified and a phylogenetic tree constructed. The multiple sequence alignment results revealed that all 75 sequences have the highly conserved residues (Cysteine, Aspartic acid, Arginine, and Histidine) consistent with a β-CA enzyme (Additional file 1: Figure S1). Most of the metazoan and protozoan β-CAs, and corresponding coding sequences, were designated as uncharacterized sequences or CAs with no class specification. These
Figure 1 Phylogenetic analysis of 75 metazoan and protozoan β-CAs. The position of β-CAs of Drosophila species has been represented at the bottom of the phylogenetic tree by a triangle shape. The details of β-CAs of Drosophila species in the phylogenetic tree are shown in Figure 2.
can be now assigned to β-CAs in proteomics and genomics databases.

β-CAs have been identified in the mitochondria of a variety of different organisms, such as plants [61], green algae [62], fungi [1,63], and Drosophila melanogaster [4]. Our results of subcellular localization prediction (Table 2) suggested that 31 of the β-CAs are targeted to mitochondria. In mitochondrial targeting peptides (mTPs), Arginine, Alanine and Serine are over-represented, while negatively charged amino acid residues (Aspartic acid and Glutamic acid) are rare. Furthermore, mTPs are believed to form an amphiphilic α-helix, which is important for the import of the nascent protein into the mitochondrion [59]. The successful construction of the TargetP predictor demonstrates that protein sorting signals can be recognized with reasonable reliability from amino acid sequence data alone, thus, to some extent, mimicking the cellular recognition processes [59]. The prediction of the mitochondrial localization for many of the proteins studied is also supported by the previous experimental data, showing that recombinant DmBCA protein is indeed located in mitochondria of insect cells [4]. As mitochondrial proteins the β-CAs may contribute to key metabolic functions. Among the mammalian α-CAs, CA VA and CA VB are the only enzymes that have been exclusively located to mitochondria. Functional studies, summarized in [64], have indicated them in several metabolic processes, such as gluconeogenesis, urea synthesis, and fatty acid synthesis. It has been shown previously that the gluconeogenic enzyme, pyruvate carboxylase, is expressed in protozoan (Toxoplasma gondii) mitochondria [65]. This enzyme utilizes bicarbonate to convert pyruvate to oxaloacetate. Mitochondrial CA V is also involved in lipid synthesis through pyruvate carboxylation reaction [66]. Importantly, lipid metabolism is of crucial importance for parasites. Lipids serve as cellular building blocks, signaling

Figure 2 Phylogenetic analysis of β-CAs of Drosophila species. This tree represents the expanded view of the triangle located near the bottom of the main phylogenetic tree of β-CAs in Figure 1.
Species	β- CA ID	Entry ID	mTP	SP	Other	Loc	RC
Acromyrmex echinatior	BCA	F4WAG3	0.199	0.054	0.86	-	2
Acyrthosiphon pisum	BCA1	J9K706	0.473	0.05	0.631	-	5
	BCA2	C4WVD8	0.579	0.043	0.536	M	5
	BCA3	J9JZY3	0.579	0.043	0.534	M	5
Adineta vaga	BCA	D4NWE5	0.509	0.102	0.375	M	5
Aedes aegypti	BCA	Q17N64	0.589	0.029	0.491	M	5
Ancylostoma caninum	BCA	FC51456	0.466	0.046	0.514	-	5
Anopheles darlingi	BCA	E3XQ8	0.044	0.836	0.144	S	2
Anopheles gambariae	BCA	QSTUS6	0.713	0.03	0.34	M	4
Apis mellifera	BCA	H9KS29	0.126	0.08	0.875	-	2
Ascaris suum	BCA	F1LE18	0.388	0.079	0.406	-	5
Caenorhabditis brennieri	BCA1	G0M5W4	0.522	0.036	0.518	M	5
	BCA2	G0MRG1	0.52	0.051	0.473	M	5
Caenorhabditis briggsae	BCA1	A8XK60	0.392	0.047	0.615	-	4
	BCA2	A8WN21	0.546	0.048	0.466	M	5
Caenorhabditis elegans	BCA1	Q22460	0.475	0.039	0.549	-	5
	BCA2	Q2YS41	0.656	0.05	0.529	-	5
Caenorhabditis remanei	BCA1	E3LDN3	0.327	0.045	0.69	-	4
	BCA2	E3MK96	0.51	0.051	0.48	M	5
Caligus clemensi	BCA	C1C2M7	0.21	0.04	0.873	-	2
Camponotus floridanus	BCA	E2ANQ9	0.325	0.051	0.735	-	3
Culex quinquefasciatus	BCA	B0WKV7	0.573	0.032	0.507	M	5
Danausplexippus	BCA	G6D7Z4	0.793	0.032	0.273	M	3
Daphnia pulex	BCA	E9GLB5	0.157	0.055	0.843	-	2
Dendroctonus ponderosae	BCA	J3JTM9	0.27	0.064	0.742	-	3
Drosophila ananassae	BCA	B3LZ10	0.537	0.041	0.518	M	5
Drosophila erecta	BCA	B3P1V8	0.531	0.04	0.53	M	5
Drosophila grimshawi	BCA	B4JHY1	0.605	0.037	0.454	M	5
Drosophila melanogaster	BCA	Q9VHJ5	0.531	0.04	0.53	M	5
Drosophila mojavensis	BCA	B4KDC1	0.556	0.039	0.511	M	5
Drosophila persimilis	BCA	B4GFA1	0.595	0.037	0.466	M	5
Drosophila pseudoobscura	BCA	Q296E4	0.595	0.037	0.466	M	5
Drosophila sechellia	BCA	B4KHY7	0.531	0.04	0.53	M	5
Drosophila simulans	BCA	B4QXCS	0.531	0.04	0.53	M	5
Drosophila virilis	BCA	B4LZG7	0.531	0.04	0.53	M	5
Drosophila willistoni	BCA	B4N8B9	0.531	0.04	0.53	M	5
Drosophila yakuba	BCA	B4PTY9	0.531	0.04	0.53	M	5
Entamoeba dispar	BCA	B0E7M0	0.114	0.158	0.766	-	2
Entamoeba histolytica	BCA	C4LXK3	0.113	0.151	0.779	-	2
Entamoeba nuttalli	BCA	K2GQM0	0.132	0.142	0.763	-	2
Harpgreuthais saltator	BCA	E2B2Q1	0.248	0.055	0.801	-	3
Heliconius melpomene	BCA	HMEL015257	0.77	0.032	0.302	M	3
Hirudo medicinalis	BCA	EY481200	0.121	0.098	0.778	-	2
Ichthyophthirius multifilis	BCA	GOQPN9	0.181	0.04	0.872	-	2
molecules, energy stores, posttranslational modifiers, and pathogenesis factors [67]. Parasites rely on complex metabolic systems to satisfy their lipid needs. The present findings open a new avenue to investigate whether mitochondrial \(\beta\)-CAs are functionally involved in these processes. The single \(\beta\)-CA of \textit{Anopheles darlingi} is the first predicted secretory \(\beta\)-CA. Among the various \(\alpha\)-CAs, the first secreted form (CA VI) was identified in human saliva in 1987 [68], and in 2011 another \(\alpha\)-CA was identified in the salivary gland of \textit{Aedes aegypti} [69]. Complementary research, such as morphological, biochemical, and spatial mapping of gene expression in \textit{Anopheles darlingi} will clarify the exact expression pattern of \(\beta\)-CA in this mosquito [69,70].

The TargetP predictor defined 43 \(\beta\)-CAs with 'other' cellular localizations. Although it is possible that \(\beta\)-CAs are truly located in different subcellular compartments depending on the species, these results should be interpreted with caution. Both the common errors in full genomic DNA, cDNA, or protein sequences in databases, and the potential inaccuracy of TargetP predictor could contribute to the observed deviations of the results. The highest prediction accuracy, with appropriate selection of specificity and sensitivity, is 90% [59]. Among the species mentioned in Table 1, some have important medical relevance, such as \textit{Aedes aegypti}, \textit{Anopheles darlingi}, \textit{Anopheles gambiae}, \textit{Ascaris suum} (\textit{Ascaris lumbricoides}), \textit{Culex quinquefasciatus}, \textit{Entamoeba histolytica}, \textit{Hirudo medicinalis}, \textit{Leishmania} species,
Schistosoma mansoni, Trichinella spiralis, and Trichomonas vaginalis. In the past decade, inhibition profiles of β-CAs of bacteria [24,31,71] and fungi [72–75] have been investigated with various inhibitors. Our results suggest that various protozoans and metazoa express β-CAs and that these molecules represent protein targets appropriate for inhibitor development. These proteins are not restricted to nematodes, insects, or protozoa causing human diseases, but are also present in many species with relevance to agriculture or veterinary medicine. These species include: Acyrthosiphon pisum, Ancylostoma caninum, Ascaris suum, Caligus clemensi, Camponotus floridanus, Culex quinquefasciatus, Dendroctonus ponderosae, Entamoeba species, Icthyophthirius multifiliis, Solenopsis invicta, Tribolium castaneum, Trichinella spiralis, and Trixxxopax adhaerens. Therefore, our findings also suggest that it might be possible to develop specific β-CA inhibitors as pesticides for the protection of crops and other natural resources against pathogens and pests.

Conclusions
The present data identifies β-CA enzymes that are expressed in a number of protozoans and metazoa. Metazoa and protozoan β-CAs represent promising diagnostic and therapeutic targets for parasitic infections, because this CA family is absent from mammalian protems. Many of these enzymes are predicted to be present in mitochondria where they might contribute to cell metabolism by providing bicarbonate for biosynthetic reactions and regulating intra-mitochondrial pH.

Additional file

Additional file 1: Figure S1. Multiple sequence alignment of all 75 β-CAs in metazoan and protozoan species with β-CA of Pelosinus fermentans (a bacterial out group). β-CAs contain two highly conserved active site marts, CxDxxR as well as HxxC. (C=,Cysteine, D=Aspartic acid, R=Arginine, H=Histidine, C=Cysteine) which are indicated by arrows. Alignment was visualized in Jalview [53].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
RZE, HB, MEET, CO carried out the bioinformatics searches on metazoan and protozoan species. RZE and HB participated in the sequence alignment and made the phylogenetic analysis. RZE performed the mitochondrial targeting peptide prediction. All authors participated in the design of the study. RZE and HB drafted the first version of the manuscript. All authors read and approved the final manuscript.

Acknowledgement
To perform these studies RZE received a scholarship support from the Ministry of Science, Research and Technology, and National Institute of Genetic Engineering and Biotechnology of Islamic Republic of Iran. This study was also funded by Finnish Cultural Foundation (HB), Academy of Finland (SP), Sigrid Juselius Foundation (SP), Jane and Aatos Erkko Foundation (SP), Tampere Tuberculosis Foundation (SP), and Competitive Research Funding of the Tampere University Hospital (SP, 9 N054).

Author details
1School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520 Tampere, Finland. 2Institute of Biomedical Technology and BioMediTech, University of Tampere, 33520 Tampere, Finland. 3Department of Information Technology, University of Turku, 20520 Turku, Finland. 4Fimlab Ltd and Tampere University Hospital, Biokatu 4, 33520 Tampere, Finland.

Received: 9 October 2013 Accepted: 10 January 2014
Published: 21 January 2014

References
1. Elleuche S, Poggeler S: Carbonic anhydrases in fungi. Microbiology 2010, 156(part 1):23–29.
2. Huang S, Hanz T, Grundstrom C, Forsman C, Samuelsson G, Sauer-Eriksson AE: Structural studies of beta-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. PLoS One 2011, 6(12):e28458.
3. Supuran CT: Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008, 7(2):168–181.
4. Syrijnen L, Tolvanen M, Hilvo M, Olatubosun A, Innocenti A, Scozzafava A, Leppiniemi J, Niederhauser B, Hytonen VP, Gorr TA, et al: Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates. BMC Biochem 2010, 11:28.
5. Tripp BC, Smith K, Ferry JG: Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 2001, 276(52):48615–48618.
6. Elleuche S, Poggeler S: Evolution of carbonic anhydrases in fungi. Curr Genet 2009, 55(2):211–222.
7. Edsbaugh AJ, Tufts BL: The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 2005, 154(1–2):185–198.
8. Lane TW, Saito MA, George GN, Pickering JI, Prince RC, Morel FM: Biochemistry: a cadmium enzyme from a marine diatom. Nature 2005, 435(7038):42.
9. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM: Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 2008, 452(7183):56–61.
10. Ferry JG: The gamma class of carbonic anhydrases. Biochim Biophys Acta 2010, 1804(2):374–381.
11. Attreio V, Vitale RW, Monti SM, Pedone C, Scozzafava A, Cecchi A, De Simone G, Supuran CT: Carbonic anhydrase inhibitors: X-ray and molecular modeling study for the interaction of a fluorescent antitumor sulfonamide with isozyme II and IX. J Am Chem Soc 2006, 128(26):8329–8335.
12. Nishimori I, Minakuchi T, Onishi S, Vullo D, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors. DNA cloning, characterization, and inhibition studies of the human secretory isozyme VI, a new target for sulfonamide and sulfamate inhibitors. J Med Chem 2007, 50(2):381–388.
13. Vullo D, Franchi M, Gallori E, Antel J, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors. Inhibition of mitochondrial isozyme V with aromatic and heterocyclic sulfonamides. J Med Chem 2004, 47(5):1272–1279.
14. Vullo D, Innocenti A, Nishimori I, Pastorek J, Scozzafava A, Pastorekova S, Supuran CT: Carbonic anhydrase inhibitors. Inhibition of the transmembrane isozyme XII with sulfonamides—a new target for the design of antitumor and antiglaucoma drugs? Bioorg Med Chem Lett 2005, 15(8):963–969.
15. Neish AC: Studies on chloroplasts: Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem J 1939, 33(3):300–308.
16. Burnell JN, Gibbs MJ, Mason JG: Spinach chloroplastic carbonic anhydrase: nucleotide sequence analysis of cDNA. Plant Physiol 1990, 92(1):37–40.
17. Rowlett RS: Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim Biophys Acta 2010, 1804(2):362–373.
18. Fett JP, Coleman JR: Characterization and expression of two cDNAs encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiol 1994, 105(2):707–713.
19. Majewski N, Coleman JR: Nucleotide sequence of a complementary DNA encoding tobacco chloroplastic carbonic anhydrase. Plant Physiol 1992, 100(2):1077–1078.
20. Cronk JD, Endrizzi JA, Cronk MR, O'Neill JW, Zhang KY: Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci 2001, 10(5):911–922.
21. Guilloton MB, Korte JJ, Lamblin AF, Fuchs JA, Anderson PM: Carboxic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem 1992, 267(6):3731–3734.

22. Smith KS, Ferry JK: A plant-type (beta-class) carboxic anhydrase in the thermophilic methanorhodoarcus Methanobacterium thermautotrophicum. J Bacteriol 1999, 181(6):2647–2653.

23. Bowser RL, Tu C, Lee J, Herman AG, Chapnick DA, Shah SH, Garees PC: Allosteric site variants of Haemophilus influenzae beta-carboxic anhydrase. Biochemistry 2009, 48(26):6146–6156.

24. Supuran CT: Bacterial carboxic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol 2011, 2:34.

25. Joseph P, Turtaut F, Ouahrani-Bettache S, Montero JL, Nishimori I, Minakuchi Y, Burghout P, Vullo D, Scozzafava A, Hermans PW, Supuran CT: Characterization, and inhibition studies of a beta-carboxic anhydrase from Brucella suis. J Med Chem 2010, 53(7):2277–2285.

26. Kovalciza G, Lin W, Skorupski K: The Lys-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol 2010, 192(6):4181–4191.

27. Klenberg T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K, Naglik J, Eckert S, Mogensen EG, Haynes T, Kupe M, et al: Fungal adenyl cyclase cyclates CO2 sensing with cAMP signaling and virulence. Curr Biol 2005, 15(22):2101–2106.

28. Aoki BH, Winth P: Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 2009, 77(11):4811–4820.

29. So AK, Espin G: Cloning, characterization and expression of carboxic anhydrase from cyanobacterium Synechocystis PCC6803. Plant Mol Biol 1998, 37(2):205–215.

30. Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kater CA: The structure of beta-carboxic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 2006, 281(17):17546–17555.

31. Eriksson M, Karlsson J, Ramazanov Z, Gardestrom P, Samuelsson G: Discovery of an algal mitochondrial carboxic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 1993, 90(21):10231–10234.

32. Mitsuhashi S, Mizushima T, Yamashita E, Yamamoto M, Kumasaka T: Deletion of the carbonic anhydrase from the red algae, Porphyridium purpuratum, reveals a novel catalytic site for CO(2) hydration. J Biol Chem 2000, 275(8):5521–5526.

33. Fassas MK, Tsikou D, Fermetakis E, Katiniakis P: Molecular and biochemical analysis of the beta class carboxic anhydrases in Gaenorhabditis elegans. Mol Biol Rep 2010, 37(9):2941–2950.
64. Shah GN, Rubbelke TS, Hendin J, Nguyen H, Waheed A, Shoemaker JD, Sly WS. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. *Proc Natl Acad Sci U S A* 2013, 110(18):7423–7428.

65. Fleige T, Pfaff N, Gross U, Bohne W. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in *Toxoplasma gondii*. *Int J Parasitol* 2008, 38(10):1121–1132.

66. Hazen SA, Waheed A, Sly WS, Lanoue KF, Lynch CJ. Differentiation-dependent expression of CA V and the role of carbonic anhydrase isoforms in pyruvate carboxylation in adipocytes. *FASEB J* 1999, 10(6):481–490.

67. Ramakrishnan S, Sernicchio M, Streppen B, Butikofer P. Lipid synthesis in protozoan parasites: A comparison between kinetoplastids and apicomplexans. *Prog Lipid Res* 2013, 52(4):488–512.

68. Murakami H, Sly WS. Purification and characterization of human salivary carbonic anhydrase. *J Biol Chem* 1987, 262(3):1382–1388.

69. Juhn J, Naem-Ullah U, Maciel Guedes BA, Majid A, Coleman J, Paolucci Pimenta PF, Akram W, James AA, Marinotti O. Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, *Aedes aegypti*. *Parasit Vectors* 2011, 4:1.

70. Moreira-Ferro CK, Marinotti O, Bijovsky AT. Morphological and biochemical analyses of the salivary glands of the malaria vector, *Anopheles darlingi*. *Tissue Cell* 1999, 31(3):264–273.

71. Maresta A, Scozzafava A, Kohler S, Winum JY, Supuran CT. Inhibition of beta-carbonic anhydrases from the bacterial pathogen *Brucella suis* with inorganic anions. *Inorg Biochem* 2012, 110:36–39.

72. Isik S, Guler O, Kockar F, Aydin M, Arslan O, Supuran CT. Saccharomyces cerevisiae beta-carbonic anhydrase: inhibition and activation studies. *Curr Pharm Des* 2010, 16(29):3327–3336.

73. Isik S, Kockar F, Aydin M, Arslan O, Guler O, Innocenti A, Scozzafava A, Supuran CT. *Carbonic anhydrase inhibitors: inhibition of the beta-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates*. *Bioorg Med Chem* 2009, 17(3):1158–1163.

74. Monti SM, Maresta A, Viparelli F, Carta F, De Simone G, Muhschlegel FA, Scozzafava A, Supuran CT. *Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoforms, Candida albicans and Candida glabrata*. *Bioorg Med Chem Let* 2012, 22(8):2508–2511.

75. Guzel O, Maresta A, Hall RA, Scozzafava A, Mastrolorenzo A, Muhschlegel FA, Supuran CT. *Carbonic anhydrase inhibitors. The beta-carbonic anhydrases from the fungal pathogens Cryptococcus neoforms and Candida albicans are strongly inhibited by substituted-phenyl-1H-indole-5-sulfonamides*. *Bioorg Med Chem Let* 2010, 20(8):2508–2511.

Cite this article as: Zolfaghari Emameh et al.: Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. *Parasites & Vectors* 2014, 7:38.

Submit your next manuscript to BioMed Central

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit