Enhancement of Heparin Cofactor II Anticoagulant Activity*

(Received for publication, January 11, 1999, and in revised form, September 9, 1999)

Susannah J. Bauman‡ and Frank C. Church§

From the Departments of Pathology and Laboratory Medicine, Pharmacology, and Medicine, and Center for Thrombosis and Hemostasis, The University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7035

Heparin cofactor II (HCII) is a serpin whose thrombin inhibition activity is accelerated by glycosaminoglycans. We describe the novel properties of a carboxy-terminal histidine-tagged recombinant HCII (rHCII-CHis6). Thrombin inhibition by rHCII-CHis6 was increased >2-fold at ~5 μg/ml heparin compared with wild-type recombinant HCII (wt-rHCII) at 50–100 μg/ml heparin. Enhanced activity of rHCII-CHis6 was reversed by treatment with carboxypeptidase A. We assessed the role of the HCII acidic domain by constructing amino-terminal deletion mutants (Δ1–52, Δ1–68, and Δ1–75) in wt-rHCII and rHCII-CHis6. Without glycosaminoglycan, unlike wt-rHCII deletion mutants, the rHCII-CHis6 deletion mutants were less active compared with full-length rHCII-CHis6. With glycosaminoglycans, Δ1–68 and Δ1–75 rHCIs were all less active. We assessed the character of the tag by comparing rHCII-CHis6, rHCII-CA1Δ6, and rHCII-CLys6 to wt-rHCII. Only rHCII-CHis6 had increased activity with heparin, whereas all three mutants have increased heparin binding. We generated a carboxy-terminal histidine-tagged recombinant antithrombin III to study the tag on another serpin. Interestingly, this mutant antithrombin III had reduced heparin cofactor activity compared with wild-type protein. In a plasma-based assay, the glycosaminoglycan-dependent inhibition of thrombin by rHCII-CHis6 was significantly greater compared with wt-rHCII. Thus, HCII variants with increased function, such as rHCII-CHis6, may offer novel reagents for clinical application.

Serine protease inhibitors (serpins) are a class of highly conserved proteins whose prototypical member is α1-proteinase inhibitor (1, 2). Serpins function primarily to inhibit serine proteases that are involved in many normal biological processes including coagulation, fibrinolysis, inflammation, wound healing, and tissue repair as well as some pathological processes such as atherosclerosis and cancer metastasis (2). Within the serpin superfamily is a subclass of glycosaminoglycan-binding serpins (1–3). This group includes antithrombin III (ATIII), heparin cofactor II (HCII), protein C inhibitor, protease nexin-1, and plasminogen activator inhibitor-1 (2). Glycosaminoglycans bound by these serpins include heparin, chondroitin sulfates, dermatan sulfate, and proteoglycans with these molecules as side chains.

Serpins inhibit their target proteases by acting as suicide substrates (1, 2). Serpins contain an exposed reactive site loop. Within the reactive site loop of the serpin is the P1–P1’ bond (4). The target protease will recognize this reactive site bond and attack it as a substrate. Once attacked, the serpin and protease are caught in a 1:1 covalent complex in which the protease is rendered inactive (5). The complex is then cleared via receptor-mediated endocytosis (6–8).

Heparin cofactor II is a 65.5-kDa glycoprotein whose inhibitory activity is directed toward thrombin and chymotrypsin (9, 10). Unlike the physiologic thrombin inhibitor ATIII (11, 12), HCII inhibition of thrombin is accelerated by both heparin and dermatan sulfate (13, 14). Maximal rates of thrombin inhibition by HCII are seen in the presence of dermatan sulfate. As many dermatan sulfate-containing proteoglycans are located extravascularly it has been speculated that HCII is an extravascular thrombin inhibitor (15–17).

Heparin cofactor II is unusual in that its reactive site bond is Leu-Ser (18, 19). In the presence of glycosaminoglycan, HCII inhibits thrombin through an unusual mechanism (2, 14, 20–25). Heparin cofactor II contains a unique amino-terminal region that is highly acidic and thus referred to as the “acidic domain.” In the absence of glycosaminoglycan, the acidic domain is believed to interact with the D-helix region, which is highly basic. The D-helix region is involved in glycosaminoglycan binding. When glycosaminoglycan is present, it has been suggested that the acidic domain is displaced. The displaced acidic domain is then able to interact with the anion-binding exosite-1 of thrombin.

Standard procedures to purify HCII involve binding protein to heparin-Sepharose (26, 27). However, a further investigation of the HCII mechanism of action by mutagenesis of its glycosaminoglycan-binding region would disrupt purification of protein by heparin affinity. Therefore, we began to derive alternative purification protocols to avert this problem. Many researchers have used a sequence consisting of six histidine residues as an affinity ligand (28–30). By attaching this sequence to a protein, either the amino or carboxyl terminus, protein can be purified with a specialized Ni²⁺ matrix (31). This method had been used successfully as an affinity purification ligand (28–30). These data suggest that the histidine tag is a benign addition to proteins to which it was attached (28–30).

In this report we show the following: (a) carboxy-terminal
hexahistidine-tagged recombinant HCII (rHCII-CHis6) has enhanced progressive antithrombin and heparin cofactor activities and increased heparin-Sepharose binding compared with wild-type recombinant HCII (wt-rHCII); (b) a region within the amino terminus of HCII may interact with the carboxyl-terminal hexahistidine of rHCII-CHis6; (c) carboxyl-terminal hexahistidine-tagged recombinant antithrombin III (rATIII-CHis6) does not have these enhanced activities compared with wild-type recombinant ATIII (wt-rATIII); and (d) the enhanced heparin effect of rHCII-CHis6 is maintained in a plasma-based thrombin inhibition assay. Collectively, these data suggest that rHCII-CHis6 could be a novel anticoagulant therapy.

EXPERIMENTAL PROCEDURES

Mutagenesis and Expression of Recombinant Proteins—To facilitate our studies of HCII, site-directed mutagenesis (35) was performed on full-length HCII cDNA subcloned into the pBlueScript SK+ mutagenesis and cloning vector (Stratagene, La Jolla, CA) (36) at two sites to encode the identical amino acid sequence but with two nucleotide changes (at base pairs 595 and 1255) that create unique restriction sites (NheI and ApII) in the cDNA. DNA sequencing using a Sequenase version 2.0 kit (Amersham Pharmacia Biotech) identified positive clones. Full-length HCII cDNA constructs with these unique restriction enzyme sites were then subcloned into the baculoviral transfer vector pVL1392 (PharMingen, La Jolla, CA) via flanking EcoRI sites as described previously (36).

Using this new HCII cDNA, a cassette of the cDNA was then subcloned into pBlueScript SK+ with XhoI and EcoRI. This cassette was then used to prepare rHCII-CHis6, rHCIII-CAa16, and rHCIII-CLys6 by Kunkel’s method (35) of oligonucleotide-directed mutagenesis using the primers 5’-GCCAACCCCAGCAGGTCC(GCC)6TAGAGGTGGAGG-3’, 5’-GCCAACCCCAGCAGGTCC(GAC)6TAGAGGTGGAGG-3’, and 5’-GCCAACCCCAGCAGGTCC(GAG)6TAGAGGTGGAGG-3’, respectively. We also used this construct to create the truncation mutants Δ1–52-rHCII, Δ1–68-rHCII, and Δ1–75-rHCII, using the primers 5’-ACATCTGCGTGGGGTGAGGGGGAGGAGGAC-3’, 5’-ACATCTGCGTGGGGTGAGGGGGAGGAGGAC-3’, 5’-ACATCTGCGTGGGGTGAGGGGGAGGAGGAC-3’, and 5’-ACATCTGCGTGGGGTGAGGGGGAGGAGGAC-3’, respectively. By using the rHCII-CHis6 construct, we created the truncation mutants Δ53–122-rHCII-CHis6, Δ53–128-rHCII-CHis6, and Δ53–175-rHCII-CHis6, using the primers mentioned above, respectively. DNA sequencing identified positive clones. A cassette containing the carboxyl-terminal addition was then excised with ApII and XhoI and subcloned into pVL1392 containing the full-length HCII cDNA with the same restriction enzymes. All truncation mutants were subcloned into pVL1392 using the restriction enzyme EcoRI and screened for proper orientation.

A full-length human ATIII cDNA was obtained from ATCC (catalog number 57224) in the vector pKT218. The ATIII-containing vector was mutagenized and cloned vector (Stratagene, La Jolla, CA) (36) at two sites to encode a full-length human ATIII cDNA obtained from ATCC (catalog number 57224) in the vector pKT218. The ATIII-containing vector was mutagenized and cloned (34, 36). However, the cleared media of cleared media of H. pluvialis was performed using HighFive™ cells on day 1 with specific recombinant viral stocks. Two to three days post-infection, media were decanted from cells, and cell debris was spun out by centrifugation at 350 × g for 10 min in a Centra-SC centrifuge (International Equipment Co., Needham Heights, MA). The cleared medium (~100 ml) was diluted with an equal volume of a buffer made up of 20 mM Hapes, pH 6.5, 0.2% PEG, and 0.02% NaNO3. One ml of a 1:1 slurry of heparin-Sepharose in HNPN buffer was added to the diluted medium and incubated at 4 °C for 1 h. Heparin-Sepharose beads were then pelleted at 50 × g for 5 min and washed twice with 20 ml Hapes, pH 7.4, 750 mM NaCl, 0.1% PEG, and 0.02% NaNO3. The protein was eluted off of heparin-Sepharose with 20 mM Hapes, pH 7.4, 2.0 mM NaCl, 0.1% PEG, and 0.02% NaNO3.

Recombinant Protein Immunodetection—Concentrations of rHCII and rATIII were determined by enzyme-linked immunosorbent assay using purified plasma proteins as the standard, and rabbit antihuman antithrombin III Dako Corp. (Carpinteria, CA); mouse antihuman antibody 2-3-4 to human HCII was prepared in our laboratory, and a goat anti-human HCII IgG (catalog number GAHC2-IG) was from Enzyme Research Laboratories (South Bend, IN). Immunoblot analysis was carried out using a Phast System (Amersham Pharmacia Biotech) (34, 36).

Protease Inhibition—Protease inhibition rates were determined as described previously (14, 17, 34, 36). All assays were performed at 25 °C in temperature at 96-well microtiter plates previously coated with 2 mg/ml BSA.

In the absence of glycosaminoglycan, 5–150 nM rHCII (wt, CHis6, Pro, CAa16, CLys6, Δ1–52, Δ1–68, Δ1–75, Δ53–122, CHis6, Δ1–68, and Δ1–75-CHis6) or rATIII (wt or CHis6) was incubated with 0.5–4 nM thrombin, 1 nM γ-carboxy-thrombin, 0.5 nM Factor Xa, 2 nM chymotrypsin, or 5 nM trypsin, in the presence of 1 mg/ml Polybrene (pB) (for thrombin and Factor Xa) and 2 mg/ml BSA in HNPN, pH 7.4.

In the absence of glycosaminoglycan either hirugen or a control peptide corresponding to the reverse sequence of the HCII acidic domain (residues 47–61) at 20 μM and rHCII (wt at 200 nM and CHis6 at 100 nM) were incubated with 1 nM thrombin in the presence of 1 mg/ml BSA in HNPN, pH 7.4 (37).

In the presence of either heparin (10 or 100 μg/ml) or dermatan sulfate (100 μg/ml), 0.5 nM thrombin was incubated with 20 μg/ml heparin or control peptide and 10 nM wt-rHCII or rHCII-CHis6 in the presence of 2 mg/ml BSA in HNPN, pH 7.4.

In the presence of glycosaminoglycans or sulfated polyanions, 5–10 nM rHCII (wt, CHis6, Pro, CAa16, CLys6, Δ1–52, Δ1–68, Δ1–75, Δ53–122, CHis6, Δ1–68, and Δ1–75-CHis6) or rATIII (wt or CHis6) was incubated with 0.5 nM thrombin, and 0–1 mg/ml heparin, 0–4 mg/ml dermatan sulfate, 0–6 mg/ml desmin (a gift from Dr. Egido Marchi of Alfa Wassermann, S.p.A.), or 0–100 μg/ml fucoidan, or 10 nM rATIII (wt or CHis6) was incubated with 1 nM thrombin or factor Xa and 0–1 mg/ml heparin in the presence of 2 mg/ml BSA in HNPN, pH 7.4.

Residual factor Xa activity was measured with 500 μM Spectrozyme FXa and 2 mg/ml BSA in the presence or absence of glycosaminoglycan. Residual chymotrypsin activity was measured with 150 μM Gly-Pro-Arg-NA and 1 mg/ml BSA in the presence of glycosaminoglycan, 2 mg/ml BSA in the presence of heparin or fucoidan, 4 mg/ml BSA in the presence of dermatan sulfate, and 6 mg/ml BSA in the presence of desmin. Residual factor Xa activity was measured with 500 μM Spectrozyme FXa and 2 mg/ml BSA in the presence or absence of glycosaminoglycan. Residual chymotrypsin activity was measured with 150 μM Gly-Pro-Arg-NA and 1 mg/ml BSA in the presence of glycosaminoglycan, 2 mg/ml BSA in the presence of heparin or fucoidan, 4 mg/ml BSA in the presence of dermatan sulfate, and 6 mg/ml BSA in the presence of desmin. Residual factor Xa activity was measured with 500 μM Spectrozyme FXa and 2 mg/ml BSA in the presence or absence of glycosaminoglycan. Residual chymotrypsin activity was measured with 150 μM Gly-Pro-Arg-NA and 1 mg/ml BSA in the presence of glycosaminoglycan, 2 mg/ml BSA in the presence of heparin or fucoidan, 4 mg/ml BSA in the presence of dermatan sulfate, and 6 mg/ml BSA in the presence of desmin. Residual factor Xa activity was measured with 500 μM Spectrozyme FXa and 2 mg/ml BSA in the presence or absence of glycosaminoglycan. Residual chymotrypsin activity was measured with 150 μM Gly-Pro-Arg-NA and 1 mg/ml BSA in the presence of glycosaminoglycan, 2 mg/ml BSA in the presence of heparin or fucoidan, 4 mg/ml BSA in the presence of dermatan sulfate, and 6 mg/ml BSA in the presence of desmin. Residual factor Xa activity was measured with 500 μM Spectrozyme FXa and 2 mg/ml BSA in the presence or absence of glycosaminoglycan.
Increased Anticoagulant Activity of His₆-tagged HCII

TABLE I

Serpin	Thrombin k₂ × 10⁶	Ratio (mutant/wt)	Chymotrypsin k₂ × 10⁶	Ratio (mutant/wt)
wt-rHCII	1.3 ± 0.19		71 ± 12	
rHCII-CHis₆	1.9 ± 0.10^a	1.5	61 ± 16^b	0.86
rHCII-CAH₆	1.7 ± 0.41^d	1.5	48 ± 7.6^e	0.77
Δ1–52-rHCII	1.4 ± 0.19^c	1.4	56 ± 5.7^f	0.90
Δ1–68-rHCII	1.0 ± 0.42^g	0.90	102 ± 31^h	1.6
Δ1–75-rHCII	1.2 ± 0.26ⁱ	1.1	86 ± 27^f	1.4
Δ1–52-rHCII-CHis₆	0.95 ± 0.15^j	0.53^j	38 ± 9.1^k	0.66^f
Δ1–68-rHCII-CHis₆	0.56 ± 0.26^j	0.31^j	30 ± 2.3^j	0.52^j
Δ1–75-rHCII-CHis₆	0.71 ± 0.15^j	0.39^j	12 ± 7.0^j	0.21

^a Rate constants are the mean values of 3–9 separate determinations with at least 3 different preparations of recombinant protein.

^b p ≤ 0.003 compared with wt-rHCII.

^c Not statistically different from wt-rHCII.

^d Not significantly different from wt-rHCII (using the values 1.1 ± 0.05 × 10⁶ and 62 ± 14 × 10⁶ M^{−1}min^{−1} for thrombin and chymotrypsin, respectively).

^e Not significantly different from wt-rHCII (using the values 1.1 ± 0.05 × 10⁶ and 62 ± 14 × 10⁶ M^{−1}min^{−1} for thrombin and chymotrypsin, respectively).

^f Ratio calculated as mutant/rHCII-CHis₆ (using the values 1.8 ± 0.05 × 10⁶ and 58 ± 18 × 10⁶ M^{−1}min^{−1} for thrombin and chymotrypsin, respectively).

^g p ≤ 0.05 compared with rHCII-CHis₆.

^h p ≤ 0.05 compared with wt-rHCII.

ⁱ Ratio calculated as mutant/rHCII-CHis₆ (using the values 1.8 ± 0.05 × 10⁶ and 58 ± 18 × 10⁶ M^{−1}min^{−1} for thrombin and chymotrypsin, respectively).

^j Ratio calculated as mutant/rHCII-CHis₆ (using the values 1.8 ± 0.05 × 10⁶ and 58 ± 18 × 10⁶ M^{−1}min^{−1} for thrombin and chymotrypsin, respectively).

We have compared the rates of inhibition of thrombin and chymotrypsin by rHCII-CHis₆ and wt-rHCII (Table I). In the absence of glycosaminoglycan, the rate of thrombin inhibition by rHCII-CHis₆ is significantly faster (1.5-fold) than that of wt-rHCII. However, when comparing the same proteins in their ability to inhibit chymotrypsin, we see that wt-rHCII and rHCII-CHis₆ are essentially the same.

The antithrombin properties of wt-HCII can be enhanced more than 10,000-fold by the addition of glycosaminoglycans such as heparin or dermatan sulfate. The carboxyl-terminal histidine-tagged HCII influences the heparin-accelerated antithrombin activity. As shown in the top panel of Fig. 1, the maximal rate of wt-rHCII inhibition of thrombin is 9.29 ± 2.8 × 10⁸ M^{−1}min^{−1} at 50–100 μg/ml heparin. We see over a 2-fold increase in the rate of thrombin inhibition by rHCII-CHis₆ at 2.23 ± 0.43 × 10⁹ M^{−1}min^{−1} at only 5 μg/ml heparin. Therefore, in addition to the increase in rate, we also see an approximate 20-fold decrease in the amount of heparin required for maximal activity. These results are summarized in Table II and indicate that the histidine tag augmented the ability of HCII to inhibit thrombin in the presence of heparin. Addition of an N-acetylated hexahistidine peptide at 1,000 molar excess to wt-rHCII had neither a positive nor a negative effect on the heparin cofactor activity of HCII (data not included). These data suggest that the rate of thrombin inhibition by rHCII-CHis₆ with heparin is increased over 100,000-fold and is comparable to rates obtained with the physiologic thrombin inhibitor ATIII with heparin.

We do not see any change in rates of thrombin inhibition in the presence of the glycosaminoglycan, dermatan sulfate. As shown in the bottom panel of Fig. 1, the maximal rate of thrombin inhibition is 1.52 ± 0.31 × 10⁸ M^{−1}min^{−1} for wt-rHCII, and 1.80 ± 0.50 × 10⁸ M^{−1}min^{−1} for rHCII-CHis₆ maximal inhibition is seen at approximately 500 μg/ml dermatan sulfate for both proteins. These data, which are also summarized in Table II, indicate that the addition of the carboxyl-terminal histidine tag does not affect the rate at which thrombin inhibition by HCII is accelerated by dermatan sulfate.²

² We determined the ability of two other sulfated polysaccharides to accelerate thrombin inhibition by HCII. In the presence of fucoidan, we
hanced heparin cofactor activity of rHCII-CHis6, these data indicated that heparin-Sepharose. As shown in Table II, rHCII-CHis6 eluted under "Experimental Procedures" with detailed information about glycosaminoglycan were performed in the presence of Thrombin inhibitory assays in the presence of glycosaminoglycans were performed as described under "Experimental Procedures" with α-thrombin and increasing amounts of heparin (top panel) and dermatan sulfate (bottom panel) comparing wt-rHCII (C) and rHCII-CHis6 (O). The curves shown are averages of two or three recombinant protein preparations assayed two to three times each.

We further assessed the ability of these proteins to bind heparin-Sepharose. As shown in Table II, rHCII-CHis6 eluted at almost two times the NaCl concentration as wt-rHCII, 575 mM versus 350 mM, respectively. Taken together with the enhanced heparin cofactor activity of rHCII-CHis6, these data imply that the hexahistidine tag endows HCII with increased heparin binding.

To ensure that the enhanced activity of rHCII-CHis6 could be attributed to the histidine tag, we attempted to remove the tag using the exopeptidase CPA. CPA removes amino acids from the carboxyl terminus of proteins; however, it is unable to cleave arginine, lysine, or proline. There is an arginine at the second to last position of the native HCII. Therefore, we assumed a CPA digest would remove the hexahistidine tag and the final serine residue of HCII stopping at the penultimate arginine. In the top panel of Fig. 2, we see that a rHCII-CHis6 pre-CPA digest shows an increased rate of thrombin inhibition and a shift to a lower heparin requirement. When digested with CPA, the curve of thrombin inhibition shifts to lower rates of inhibition and the required heparin concentration increases. In contrast, the curves of thrombin inhibition by wt-rHCII do not drastically change before or after the CPA digest (Fig. 2, middle panel). Control experiments with EDTA added to rHCII-CHis6 prior to the exopeptidase verified that the loss of HCII-CHis6 activity was due to the effect of active CPA.

To confirm that the function of CPA in reversing the enhanced activity was on the hexahistidine sequence, we expressed a mutant that had a His5Pro carboxyl-terminal tag. rHCII-CHis5Pro inhibits thrombin in the absence of glycosaminoglycans (3.2 × 10^4 M⁻¹ min⁻¹) at rates ~2-fold higher than wt-rHCII and has increased heparin cofactor activity at a lower maximal heparin concentration (1.87 ± 0.37 × 10^6 M⁻¹ min⁻¹ at 10 μg/ml heparin; data not included). We hypothesized that this mutant should be resistant to CPA digestion because of the carboxyl-terminal proline residue. Pre-digested rHCII-CHis5Pro has similar properties to that of rHCII-CHis6 with an increased inhibition rate and a lower heparin requirement; however, as expected, its activity does not change appreciably after treatment with CPA (Fig. 2, bottom panel).

Thrombin inhibition in the presence of hirugen was performed to examine the potential role of thrombin anion-binding exosite-1 (ABE-1) in the enhanced activity of rHCII-CHis6. Hirugen has a similar effect on antithrombin activity (without glycosaminoglycan) of rHCII-CHis6 and wt-rHCII, with rates reduced >50% (Fig. 3). The effect of hirugen is specific since a control peptide did not significantly block the rHCII-thrombin reactions (Fig. 3). In the presence of either 100 μg/ml heparin (optimal for wt-rHCII) or dermatan sulfate (optimal for wt-rHCII and rHCII-CHis6), both wt-rHCII and rHCII-CHis6 lose >85% of their inhibitory activity in the presence of hirugen (Fig. 3). In the presence of 10 μg/ml heparin (optimal for rHCII-CHis6) and hirugen, we see that wt-rHCII loses 90% of its inhibitory potential, whereas rHCII-CHis6 loses 70% of its inhibitory activity (Fig. 3). These data imply that the hexahistidine tag does not alter the manner in which HCII interacts with ABE-1 of thrombin.

Amino-terminal Deletion Mutants of wt-rHCII and rHCII-CHis6—To assess the role of the acidic domain on HCII activity, we prepared amino-terminal deletions of rHCII with and without CHis6. By using either a wt-rHCII or rHCII-CHis6 single-stranded DNA template, we deleted amino acids 1–52, 1–68, or 1–75. From each 100-ml culture infected with recombinant baculoviral stock, we purified ~150 μg of protein. As expected, immunoblot analysis showed that purified Δ1–52-rHCII, Δ1–68-rHCII, and Δ1–75-rHCII (with and without CHis6) were sequentially smaller than wt-rHCII.

In the absence of glycosaminoglycan, each of the six amino-terminal deletion mutations was compared with either wt-rHCII or rHCII-CHis6 for thrombin and chymotrypsin inhibition (Table I). Deletion of the first 52 amino acids, but not for the 68 or 75 deletions, slightly but significantly increases the rate of thrombin inhibition in the untagged rHCII compared with wt-rHCII. Chymotrypsin inhibition by Δ1–68-rHCII is significantly faster than wt-rHCII; however, Δ1–52- and Δ1–75-rHCII show no significant differences in the rates of chymotrypsin inhibition (Table I). In contrast, the three deletions in the hexahistidine-tagged rHCII resulted in significant decreases in both thrombin and chymotrypsin inhibition activity compared with rHCII-CHis6. Deletion of the amino terminus, beginning with Δ1–52, drastically affects protease inhibition by CHis6-tagged rHCII and may indicate that an interaction between the amino- and carboxyl-terminal regions of HCII is eliminated that leads to the loss of activity.

In the presence of hirugen, Δ1–52-rHCII had similar activity.

Inhibition of γγ-thrombin by wt-rHCII and rHCII-CHis6 was compared with further study of the role of ABE-1 of thrombin. In the absence of glycosaminoglycan, thrombin inhibition by rHCII-CHis6 (7.93 ± 1.0 × 10^5 M⁻¹ min⁻¹) is significantly faster (2-fold) than wt-rHCII (3.81 ± 0.30 × 10^5 M⁻¹ min⁻¹). In the presence of heparin and dermatan sulfate, the rates of γγ-thrombin inhibition by either wt-rHCII or rHCII-CHis6 are greatly reduced in comparison to inhibition rates with α-thrombin (data not shown). These data agree with the currently accepted mechanism of thrombin inhibition by HCII.
Increased Anticoagulant Activity of His₆-tagged HCII

TABLE II

Inhibition of serine proteases by rHCII and rATIII mutants was measured in the presence of increasing concentrations of either heparin or dermatan sulfate (DSO4). The maximal inhibition of each curve was used in the calculation of the average inhibition rate. Values are expressed as means ± S.D. The number in parentheses that follows indicates the average glycosaminoglycan concentration at which the maximal rate was measured. The final column indicates the peak NaCl concentration at which each variant eluted from heparin-Sepharose. All assays were performed as described under “Experimental Procedures.”

Serpin	Thrombin + heparin^a^b k₂ × 10⁸	Ratio (mutant/wt)	Thrombin + DSO4^a^b k₂ × 10⁸	Ratio (mutant/wt)	Factor Xa + heparin^a^b k₂ × 10⁸	Ratio (mutant/wt)	Heparin-Sepharose NaCl^a	Ratio (mutant/wt)
wt-rHCII	9.29 ± 2.8 (50)	22.3 ± 4.3 (5)	9.29 ± 2.8 (50)	22.3 ± 4.3 (5)	1.41 ± 0.39 (10)	0.785 ± 0.28 (10)	350	575
rHCII-CHis₆	15.2 ± 5.0^c (500)	1.2	15.2 ± 5.0^c (500)	1.2	0.75 ± 0.28 (10)	0.785 ± 0.28 (10)	975	975
wt-rATIII	5.26 ± 6.8 (1)	2.4	5.06 ± 6.8 (1)	2.4	1.41 ± 0.39 (10)	0.785 ± 0.28 (10)	975	975
rATIII-CHis₆	2.87 ± .54 (2)	.55	2.6 ± .54 (2)	.55	1.41 ± 0.39 (10)	0.785 ± 0.28 (10)	975	975

^a Rate constants are the mean values of 3–6 separate determinations on at least 3 different protein preparations.

^b Values in parentheses indicate optimal heparin concentration.

^c Not statistically different from wt-rHCII.

^d p ≤ 0.029 compared with wt-rHCII.

FIG. 2. Carboxypeptidase A reversibility of rHCII mutants. Thrombin inhibition assays in the presence of heparin were performed as detailed under “Experimental Procedures” with α-thrombin and increasing amounts of heparin. The top panel shows the curves for rHCII-CHis₆ pre-^c and post-CPA^c digest. The middle panel shows the curves for wt-rHCII pre-^c and post-CPA^c digest. The bottom panel shows the curves for rHCII-CHis₆Pro pre-^c and post-CPA^c digest. The curves shown are representative data.

Thrombin inhibition with heparin (Table III). Likewise, the 68 and 75 hexahistidine-tagged deletions have even greater decreases in heparin-accelerated thrombin inhibition compared with full-length rHCII-CHis₆ (Table III). As noted previously (22), deletion of the acidic domain of rHCII leads both to a successive reduction in the peak heparin concentration at which maximal thrombin inhibition occurs and to increased NaCl elution from a Hi-Trap Heparin-Sepharose matrix, whether containing wt-rHCII or rHCII-CHis₆ (Table III). In the presence of dermatan sulfate, a similar pattern was found for both wt-rHCII and rHCII-CHis₆ deletion constructs (Table III). Overall, these data agree with previous work concerning the masking of glycosaminoglycan binding properties of HCII by its amino-terminal acid domain region (22). It is notable that the results for Δ1–52-rHCII-CHis₆ may suggest a potential interaction between this portion of the amino terminus of HCII with its own carboxyl terminus.

Carboxyl-terminal Alanine- and Lysine-tagged rHCII—To assess the character of the carboxyl-terminal tag on HCII activity, we inserted six alanine or lysine codons directly before the TAG stop codon and made rHCII-CA₆ and rHCII-CL₆. We typically obtained ~125 μg of protein from a 100-ml culture infected with recombinant baculoviral stock. Immuno blot analysis showed that purified rHCII-CA₆ and rHCII-CL₆ co-migrated with wt-rHCII.

In the absence of glycosaminoglycan, the rate of thrombin inhibition by rHCII-CHis₆ and rHCII-CA₆, but not by rHCII-CL₆, was significantly faster than wt-rHCII (Table I). In contrast, the carboxyl-terminal hexapeptide-tagged rHCII (His₆, Ala₆, or Lys₆) did not have rates of chymotrypsin that differed significantly from wt-rHCII (Table I). Thus, comparing chymotrypsin to thrombin inhibition, the data imply that the carboxyl-terminal tags do not drastically affect the conformation of the reactive site loop of full-length rHCII.

In the presence of heparin, we found the alanine and lysine tags had different effects on the rate of thrombin inhibition compared with rHCII-CHis₆ (Fig. 4 and Table III). Although rHCII-CL₆ has a similar inhibitory rate to wt-rHCII, it does demonstrate the shift of the inhibition maximum to a lower heparin concentration (20 μg/ml) similar to but not the same as rHCII-CHis₆ (10 μg/ml). Recombinant HCII-CA₆ was reduced in activity but has the similar maximum as wt-rHCII.

In the presence of dermatan sulfate, thrombin inhibition by rHCII-CHis₆ is similar to wt-rHCII, but the rates for both rHCII-CA₆ and rHCII-CL₆ are significantly reduced with a similar maximal dermatan sulfate concentration ranging from 100 to 200 μg/ml (Fig. 4 and Table III). Both rHCII-CHis₆ and rHCII-CL₆ eluted at a significantly higher ionic strength than wt-rHCII by Hi-Trap Heparin-Sepharose chromatog-
phy, whereas rHCII-CAI_{6} eluted at a slightly higher NaCl concentration than wt-rHCII (Table III). These results suggest that a unique interaction may occur between hexahistidine and HCII, which is not manifest by either hexa-alanine or hexalysine attached to the carboxyl terminus of rHCII.

Carboxyl-terminal Histidine-Tagged rATIII—To examine whether augmentation of activity was a general phenomenon of other glycosaminoglycan-binding serpins, we added a hexahistidine carboxyl tag to recombinant wild-type ATIII. Again we used Kunkel’s method to insert six histidine codons directly before the TAA stop codon. We used a baculoviral expression system, and 60–150 μg of protein was obtained from four T150 flasks of HighFive™ cells infected with recombinant viral stock. Immunoblot analysis showed that purified rATIII-CHis_{6} co-migrated with wt-rATIII as a single band.

As a control to evaluate recombinant ATIII proteins, we obtained inhibition rates of 1.32 ± 0.22 × 10^6 M⁻¹ min⁻¹ and 9.15 ± 0.44 × 10^4 M⁻¹ min⁻¹ for thrombin and Factor Xa with human plasma-derived ATIII in the absence of glycosaminoglycan, respectively. The rates of thrombin (8.81 ± 1.3 × 10^4 M⁻¹ min⁻¹) and trypsin (180 ± 91 × 10^4 M⁻¹ min⁻¹) inhibition by rATIII-CHis_{6} are essentially unchanged as compared with wt-rATIII (10.4 ± 2.3 × 10^4 M⁻¹ min⁻¹ and 184 ± 57 × 10^4 M⁻¹ min⁻¹ for thrombin and trypsin, respectively). However, the rate of Factor Xa inhibition by rATIII-CHis_{6} is 9.87 ± 0.57 × 10^4 M⁻¹ min⁻¹, which is significantly lower than wt-rATIII (16.4 ± 1.2 × 10^4 M⁻¹ min⁻¹).

Fig. 5 shows the heparin-catalyzed ATIII inhibition of thrombin (top panel) and Factor Xa (bottom panel). We see that there is an almost 2-fold slower rate of thrombin inhibition by rATIII-
Increased Anticoagulant Activity of His₆-tagged HCII

Proteolysis of rATIII-CHis₆ with CPA should, theoretically, inhibit in the presence of heparin show the same trend. rATIII (5.26 × 10⁸ M⁻¹ min⁻¹) and increasing amounts of heparin comparing plasma purified ATIII to ATIII, gave thrombin inhibition rates that are increased 1.5-fold for rHCII-CHis₆ compared with wt-rHCII. Using DEF plasma, which is totally deficient in ATIII, the enhancement of thrombin inhibition by rHCII-CHis₆ over wt-rHCII was more apparent with a 4.6-fold increased rate. In a 50:50 mixture of REF/DEF, which mimics a heterozygous ATIII deficiency, rHCII-CHis₆ inhibition of thrombin was increased 1.5-fold compared with wt-rHCII. Furthermore, the rates of inhibition in the presence of 50 μg/ml of dermatan sulfate are also significantly greater with rHCII-CHis₆ than with wt-rHCII for each of the plasma conditions tested, with rates increased about 1.2–1.3-fold (Table IV). These data suggest that rHCII-CHis₆ is a significantly better thrombin inhibitor than is wt-rHCII in the presence of glycosaminoglycans in a more complex assay setting.

DISCUSSION

We have “serendipitously” constructed an HCII mutant that is a significantly better inhibitor of thrombin than the wild-type molecule. This mutant, rHCII-CHis₆, is a carboxyl-terminal hexahistidine-tagged heparin cofactor II. In the absence of glycosaminoglycan we see a small increase in rates of thrombin inhibition. In the presence of heparin, rHCII-CHis₆ has antithrombotic activity that reaches rates comparable to those of the physiologic thrombin inhibitor ATIII. Addition of the hexahistidine tag to HCII also increases the affinity of this molecule for heparin. In contrast, the enhanced activity of rHCII-CHis₆ is not seen with other sulfated polysaccharides like dermatan sulfate, desmin, or fucoidan. Our results demonstrate that the activity is solely a result of the addition of the carboxyl-terminal histidine tag and that rHCII-CHis₆ functions to inhibit thrombin through the same mechanism as wt-rHCII, which is highly dependent on ABE-1 of thrombin. Augmentation of heparin cofactor activity in rHCII-CHis₆ is reversible by CPA proteolysis. We also presented another mu-
Increased Anticoagulant Activity of His_6-tagged HCII

TABLE IV

Inhibition of thrombin activity in plasma

Inhibition of thrombin activity (1 nM) in the presence of wt-rHCII and rHCII-CHis_6 (10 nM) and glycosaminoglycan in normal human reference plasma (REF), antithrombin III-deficient human plasma (DEF) or a 50:50 mixture of these plasmas (REF/DEF). Inhibition rates are given as the average inhibition rate ± S.D. These assays were performed as described under “Experimental Procedures.”

Plasma addition	Heparin (1 μg/ml)	Dermatan sulfate (50 μg/ml)		
	wt-rHCII	rHCII-CHis_6	wt-rHCII	rHCII-CHis_6
Normal reference (REF)	2.2 ± 0.17	3.3 ± 0.37	5.7 ± 0.45	7.2 ± 0.55
ATIII-deficient (DEF)	0.26 ± 0.050	1.2 ± 0.10	6.5 ± 0.50	7.5 ± 0.59
50:50 mixture (REF/DEF)	1.9 ± 0.050	2.8 ± 0.18	5.8 ± 0.24	7.0 ± 0.48

* Rate constants are the mean values of 3–6 determinations with 3 different preparations of recombinant proteins.

** p ≤ 0.001 compared with wt-rHCII.

*** p ≤ 0.01 compared with wt-rHCII.

t

Hmant, rHCII-CHis_6 Pro, which retains the enhanced activity but is resistant to CPA. We also showed that the addition of a carboxyl-terminal hexahistidine tag to ATIII actually interferes with the ability of ATIII to inhibit two of its target serine proteases, thrombin and Factor Xa, and has no influence on the heparin binding of the molecule. This contrast in activity between HCII and ATIII with a carboxyl-terminal hexahistidine tag is especially notable since their reactive site loops are very similar in sequence and in length (1, 27). Therefore, the increase in antithrombin activity is not a general phenomenon for glycosaminoglycan-binding serpins.

Previous work has indicated that when the hexahistidin tag is left attached, it rarely affects the properties of the native protein (28–30). However, we have not found any examples of heparin-binding proteins being hexahistidine-tagged anywhere in the literature. This was the point at which we made our serendipitous finding.

As described in the Introduction, HCII is believed to inhibit thrombin through an unusual mechanism in the presence of glycosaminoglycan (2, 14, 20–25). Since the enhanced activity of the hexahistidine tag was only seen with the glycosaminoglycan-binding serpin HCII but not ATIII, the data presented support the concept that the D-helix region-acidic domain interaction is altered. The increase in antithrombin activity of rHCII-CHis_6 suggests that the acidic domain may be in an altered conformation to more easily encounter thrombin ABE-1. Data presented describing inhibition in the presence of hirugen, a peptide of the carboxyl-terminal region of hirudin, indicate that ABE-1 of thrombin is still very important in the mechanism of thrombin inhibition by rHCII-CHis_6. This is further supported by inhibition of γγ-thrombin, a proteolyzed form of thrombin defective at ABE-1. However, the slight residual increased activity of rHCII-CHis_6 toward γγ-thrombin might imply that other residues of ABE-1 not perturbed by proteolysis (or blocked by hirugen in α-thrombin) might be involved in this inhibition reaction. The increased binding of rHCII-CHis_6 to heparin-Sepharose compared with wt-rHCII also lends support to the notion that part of the D-helix region is more accessible to heparin interaction. The reduced heparin concentration needed for peak activity for rHCII-CHis_6 is related to heparin-Sepharose affinity and is consistent with that seen previously for heparin binding characteristics and activity for heparin-binding serpins (3, 42). The change in heparin but not dermatan sulfate binding of rHCII-CHis_6 further implies that the glycosaminoglycan-binding site of HCII has both distinct and overlapping structural elements for heparin and dermatan sulfate interactions and agrees with previous variants/mutants of HCII altered in the D-helix region (23, 24). The comparable inhibition rates of wt-rHCII and rHCII-CHis_6 with chymotrypsin (which does not use either the acidic domain of HCII or glycosaminoglycans for inhibition) indicate that the reactive site loop has not been altered to an “activated” conformation, further implicating an alteration between the D-helix acidic domain regions in the increased activity of rHCII-CHis_6.

We explored the contribution of the amino-terminal acidic domain of HCII to the enhanced activity of rHCII-CHis_6 by sequentially deleting the first 52, 68, or 75 amino acids from either wt-rHCII or rHCII-CHis_6. In 1991, van Deerlin and Tollefsen (22) described similar amino-terminal deletion mutants of HCII. Our data for deletions of wt-rHCII are in agreement with their results. No function has been assigned to the first 52 amino acids. However, within residues 53 and 75 there are 13 acidic amino acids (Asp, Glu, and sulfated-Tyr). These residues are grouped in two distinct clusters called “acidic region 1” and “acidic region 2” (AR-1 and AR-2). When glycosaminoglycans bind the D-helix of HCII it is believed that AR-2 is displaced, which allows AR-1 to be more accessible to bind ABE-1 of thrombin (22). The removal of amino acids 1–52 should be relatively benign based on this model of HCII. However, the removal of amino acids 1–68 or 1–75 should influence the interaction of HCII with thrombin, especially in the presence of glycosaminoglycans.

In the absence of glycosaminoglycan, the deletion mutants of wt-rHCII had no major loss of protease inhibition activity. Based on the results, the amino-terminal region of wt-HCII is not significantly involved in the inhibition of chymotrypsin or thrombin. In contrast, all three deletions in rHCII-CHis_6 lead to significant losses of both thrombin and chymotrypsin inhibition. The losses found in inhibition must be due to the presence of the hexahistidine tag in rHCII-CHis_6. Most likely the tag in the deletion mutants causes a change in the reactive site loop region of HCII since inhibition is dependent on this structure. These results suggest that either the amino-terminal
acids domain shields the reactive site loop from the hexahistidine tag or it interacts with the hexahistidine tag to then keep the tag from perturbing the reactive site loop.

In the presence of glycosaminoglycan, the thrombin inhibition rates are only slightly affected by deletion of the first 52 amino acids of wt-rHCII. In the presence of heparin or dermatan sulfate, the loss of residues 1–68 or 1–75 leads to decreased antithrombotic activity, in agreement with the accepted model of HCII. However, the rates of thrombin inhibition by the rHCII-CHis₆ deletions are somewhat different. The enhanced heparin cofactor activity of rHCII-CHis₆ is lost with the deletion of the first 52 amino acids. As expected, the 1–68 and 1–75 deletions caused a large loss of activity with both heparin and dermatan sulfate. The progressive loss of activity indicates that the protective effect the amino-terminal region of HCII imparts on the hexahistidine tag is partially mediated between residues 52 and 75. We believe these data provide evidence for the importance and specificity of an HCII carboxyl terminus (hexahistidine tag) and amino-terminal acidic domain interaction. Since there is no crystal structure of HCII, the data imply that the amino terminus may be in close proximity to the carboxyl terminus.

We compared rHCII-CHis₆, rHCII-CAla₆, and rHCII-CLys₆ to provide information about the character of the carboxyl-terminal hexapeptide tag. We hypothesized that if the enhanced activity of rHCII-CHis₆ was a result either of the extra length or of partial positive charge on the tag, then a hexa-alanine or a hexa-lysine tag could be used to probe this phenomenon further. We found that only the hexahistidine or hexa-ala-amine tag increased the rate of thrombin inhibition in the absence of glycosaminoglycan. The inhibition of another serine protease, chymotrypsin, is not affected by the addition of each tag. These experiments provide evidence that the rate increases seen with the hexahistidine tag are not fully a result of charge on the tag, but changes in thrombin inhibition do further suggest that the acidic domain-D-helix interaction is perturbed.

In the presence of heparin we see a large increase in the rate of thrombin inhibition by rHCII-CHis₆ and a shift to a lower heparin requirement. In contrast, with rHCII-CAla₆ and rHCII-CLys₆, we see either a loss or no change in activity. In the presence of dermatan sulfate we do not observe increased rates of thrombin inhibition when comparing rHCII-CHis₆ to wt-rHCII. The hexa-alanine and hexa-lysine tags actually are detrimental to the inhibition of thrombin in the presence of dermatan sulfate. The increase in both dermatan sulfate and heparin binding by rHCII-CLys₆ implies that this protein may have less specific glycosaminoglycan binding abilities than the altered binding properties of rHCII-CHis₆. These data indicate that neither the positive charge nor the addition of six amino acids to the carboxyl terminus of HCII is solely responsible for increased heparin binding. However, these results do suggest that the increase in rates of rHCII inhibition with heparin seems to be specific to the hexahistidine tag.

Current antithrombotic therapies include heparin, low molecular weight heparin, and other heparinoids, oral anticoagulants such as warfarin, synthetic molecules such as Argatroban, and naturally occurring peptides isolated from hematophagous parasites, most notably hirudin. Enzyme protease inhibitors and proteases are being investigated as anticoagulant therapies. Recombinant HCII-CHis₆ derivatives could offer a novel alternative to existing anticoagulant therapy.

Acknowledgments—We thank Nancy Melamed, Cory Dunnick, Julie Harris, and Matthew Sidowar for their assistance in the preliminary design of the HCII mutants presented herein. We thank Dr. Angela Ciaccia for advice in the early part of this work. We also thank Dr. Dougald Monroe and Dr. Herbert Whinna for their critical review of this manuscript and for their scientific assistance throughout this study.

REFERENCES

1. Huber, R., and Carroll, R. W. (1989) Biochemistry 28, 8951–8966
2. Ciaccia, A. V., Cunningham, D. D., Ginsburg, D., Hoffman, M., Stone, S. R., and Tollefsen, D. M. (eds) (1997) Advances in Experimental Medicine and Biology.
3. Pratt, C. W., and Church, F. C. (1993) Blood Coagul. & Fibrinolysis 4, 479–490
4. Schlichter, L., and Berger, A. (1967) Biochem. Biophys. Res. Commun. 27, 157–162
5. Gettins, P., Pataton, P. A., and Schapira, M. (1992) Hematol. Oncol. Clin. N. Am. 6, 1395–1408
6. Pratt, C. W., Church, F. C., and Pizzo, S. V. (1988) Arch. Biochem. Biophys. 262, 111–117
7. Hosie, J. A., Abreu, M., Belmonte, E., Frazzaro, S., Purton, R., and Brase, L. F. (1993) J. Biol. Chem. 268, 13756–13763
8. Kounnas, N. M., Church, F. C., Akraves, W. S., and Strickland, D. K. (1996) J. Biol. Chem. 271, 6523–6529
9. Porter, K. A., and Tollefsen, D. M. (1985) J. Biol. Chem. 260, 3501–3505
10. Church, F. C., Noyes, C. M., and Griffith, M. J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6431–6434
11. Olsen, S. T., Bjerk, I., Sheffer, R. C., Ainger, P. A., Shore, J. D., and Choay, J. (1992) J. Biol. Chem. 267, 12528–12538
12. Desai, U. R., Petitou, M., Bjerk, I., and Olsen, S. T. (1998) J. Biol. Chem. 273, 7478–7487
13. Tollefsen, D. M., Peskta, C. A., and Monojo, W. A. (1983) J. Biol. Chem. 258, 6713–6716
14. Rogers, S. J., Pratt, C. W., Whinna, H. C., and Church, F. C. (1992) J. Biol. Chem. 267, 3013–3017
15. McGuire, E. A., and Tollefsen, D. M. (1987) J. Biol. Chem. 262, 169–175
16. Roughley, P. J., and White, R. J. (1989) Biochem. J. 262, 823–827
17. Whinna, H. C., Choi, H. U., Rosenberg, L. C., and Church, F. C. (1993) J. Biol. Chem. 268, 3925–3929
18. Griffith, M. J., Noyes, C. M., and Tyrand, J. A., and Church, F. C. (1985) Biochem. Biophys. Res. Commun. 12528–12538
19. Tollefsen, D. M., Majerus, D. W., and Blank, M. K. (1982) J. Biol. Chem. 258, 5211–5218
20. Ragg, H., Ulshofer, T., and Gerewitz, J. (1990) J. Biol. Chem. 265, 5211–5218
21. Ragg, H., Ulshofer, T., and Gerewitz, J. (1990) J. Biol. Chem. 265, 22386–22391
22. van Deering, V. M. D., and Tollefsen, D. M. (1991) J. Biol. Chem. 266, 20203–20203
23. Tollefsen, D. M. (1995) Thromb. Haemostasis 74, 1209–1214
24. Ciaccia, A. V., and Church, F. C. (1997) Protein Pept. Lett. 4, 215–224
25. Myles, T., Church, F. C., Whinna, H. C., Monard, D., and Stone, S. R. (1998) J. Biol. Chem. 273, 31305–31308
26. Tollefsen, D. M., Majerus, D. W., and Blank, M. K. (1992) J. Biol. Chem. 257, 2162–2169
27. Griffith, M. J., Noyes, C. M., and Church, F. C. (1985) J. Biol. Chem. 260, 2218–2225
28. Peters, D., Frank, R., and Hengstenberg, W. (1995) Eur. J. Biochem. 228, 798–804
29. Bobeva, A. S., Woodard, R., Luthin, D. R., Taylor, H. E., and Linden, J. (1996) Biochem. Pharmacol. 51, 545–555
30. Khashlev, M., Nudler, R., Severinov, K., Borukhov, S., Komissarova, N., and Griford, A. (1996) Methods Enzymol. 264, 326–334
31. Hochuli, E., Dobeli, H., and Schacher, A. (1987) J. Chromatogr. 411, 177–184
32. Teien, A. N., Abildgaard, U., and Hoek, M. (1976) Thromb. Res. 8, 859–867
33. Church, F. C., and Whinna, H. C. (1986) Anal. Biochem. 157, 77–83
34. Ciaccia, A. V., Cunningham, E. L., and Church, F. C. (1995) Protein Expression Purif. 6, 806–812
35. Kunkel, T. A., Roberts, J. D., and Zarkov, R. A. (1987) Methods Enzymol. 154, 367–382
Increased Anticoagulant Activity of His$_6$-tagged HCII

36. Ciaccia, A. V., Willemze, A. J., and Church, F. C. (1997) *J. Biol. Chem.* 272, 888–893
37. Ciaccia, A. V., Monroe, D. M., and Church, F. C. (1997) *J. Biol. Chem.* 272, 14074–14079
38. Tollefsen, D. M., and Pestka, C. A. (1985) *Blood* 66, 769–774
39. Griffith, M. J., Carraway, T., White, G. C., and Dombrose, F. A. (1983) *Blood* 61, 111–118
40. Derechin, V. M., Blinder, M. A., and Tollefsen, D. M. (1990) *J. Biol. Chem.* 265, 5623–5628
41. Han, J. H., Van Deerlin, V. M. D., and Tollefsen, D. M. (1997) *J. Biol. Chem.* 272, 8243–8249
42. Pratt, C. W., Whinna, H. C., and Church, F. C. (1992) *J. Biol. Chem.* 267, 8795–8801
43. Borza, D.-B., Tatum, F. M., and Morgan, W. T. (1996) *Biochemistry* 35, 1925–1934
44. Borza, D.-B., and Morgan, W. T. (1998) *J. Biol. Chem.* 273, 5493–5499
45. Peterson, C. R., Morgan, W. T., and Blackburn, M. N. (1987) *J. Biol. Chem.* 262, 7567–7574
46. Mueller, R. L., and Scheidt, S. (1993) *Circulation* 89, 432–449
47. Weitz, J. I. (1997) *N. Engl. J. Med.* 337, 688–698
48. Leung, L., Bennett, J. S., and Schwartz, B. (1998) in *Hematology* (McArthur, J. R., Schechter, G. P., and Schrier, S. L., eds) pp. 136–153, American Society of Hematology, Washington, D. C.
49. Hall, S. W., Gibbs, C. S., and Leung, L. L. (1997) *Cell. Mol. Life Sci.* 53, 731–736
50. Grinnell, B. W., and Yan, S. B. (1998) *Coronary Artery Dis.* 9, 89–97
51. Lee, G. F., Lazarus, R. A., and Kelley, R. F. (1997) *Biochemistry* 36, 5607–5611
52. Chan, A., Berry, L., O'Brienovich, H., Klemeti, P., Mitchell, L., Baranowski, B., Monagle, P., and Andrew, M. (1997) *J. Biol. Chem.* 272, 22111–22117
53. Hopkins, P. C. R., Crowther, D. C., Carrell, R. W., and Stone, S. R. (1995) *J. Biol. Chem.* 270, 11866–11871
54. Cooper, S. T., Whinna, H. C., Jackson, T. P., Boyd, J. M., and Church, F. C. (1995) *Biochemistry* 34, 12991–12997
55. Hopkins, P. C. R., Chang, W.-S., Wardell, M. R., and Stone, S. R. (1997) *J. Biol. Chem.* 272, 3905–3909
56. Roth, M., and Rohner, A. (1983) *Clin. Chim. Acta* 135, 65–71