We describe generalized $D = 11$ Poincaré and conformal supersymmetries. The corresponding generalization of twistor and supertwistor framework is outlined with $OSp(1|64)$ superspinors describing BPS preons. The k BPS states as composed out of $n = 32 - k$ preons are introduced, and basic ideas concerning BPS preon dynamics is presented. The lecture is based on results obtained by J.A. de Azcarraga, I. Bandos, J.M. Izquierdo and the author.1.

1. Introduction

M-theory has been proposed as a hypothetical quantum theory describing elementary level of matter, which should incorporate and possibly explain various properties of “new string theory” (for review see e.g.2-4). One of the features of such new theory of fundamental interactions should be the appearance of many extended elementary objects (p-(super)branes, D-(super)branes etc.) related with each other via duality/dimensional reductions net. Such a variety of basic objects in the theory makes sensible a search for some underlying composite structure.

The basic dynamical degrees of freedom in M-theory yet are not known - there were presented only some proposals usually related with $D = 11$ space-time geometry. We postulate that the composite structure of M-theory should be formulated in terms of new degrees of freedom related with new geometry. Because M-theory is supersymmetric, and supersymmetry reveals more elementary nature of spinorial objects, we shall postulate that the basic fundamental geometric structure in M-theory is spinorial.

The only well-known part of the description of M-theory is algebraic. Assuming that M-theory lives in $D = 11$ (this assumption is consistent with description of $D = 11$ SUGRA as the low energy limit of M-theory) we can postulate the following

1Supported by KBN grant 5PO3B05620
GENERALIZED SUPERSYMMETRIES

basic $D = 11$ M-superalgebra

\[\{Q_r, Q_s\} = Z_{rs}(\Gamma_\mu C)_{rs}P^\mu + CT_{[\mu\nu]}C_{rs}Z^{[\mu\nu]} + (\Gamma_{[\mu_1-\mu_2]}C)_{rs}Z^{[\mu_1...\mu_5]} . \]

where $\mu, \nu = 0, 1, \ldots, 10$, $r, s = 1, \ldots, 32$. The collection of 528 Abelian generators Z_{rs} ($Z_{rs} = Z_{sr}$) describes the generalized momenta in M-theory. Introducing dual generalized coordinate space

\[X_{rs} = (\Gamma_\mu C)_{rs}X^\mu + (\Gamma_{[\mu\nu]}C)_{rs}X^{[\mu\nu]} + (\Gamma_{[\mu_5-\mu_2]}C)_{rs}X^{[\mu_5...\mu_2]} , \]

we obtain large generalized phase space, with coordinates and positions described by the adjoint representations of $Sp(32)$ algebra.

Let us recall the assumption of Penrose twistor formalism in $D = 4$ that basic spinorial degrees of freedom in twistorial theory of elementary particles are described by N twistors ($i = 1 \ldots N$)

\[t^{(i)} = (\lambda_A^{(i)}, \omega^{(i)\dot{A}}) , \]

where $\lambda_A^{(i)}$, $\omega^{(i)\dot{A}}$ ($A = 1, 2$) are the pairs of $D = 4$ Weyl spinors. The following formula for the composite fourmomentum is assumed

\[P_{AB} = \sum_{i=1}^{N} \lambda_A^{(i)} \lambda_B^{(i)} , \]

where $P_{AB} = \frac{1}{2} \sigma_{AB}^\mu P_\mu$. We shall propose analogous formula in $D = 11$ for generalized momenta

\[Z_{rs} = \sum_{i=1}^{N} \lambda_r^{(i)} \lambda_s^{(i)} , \]

where λ_r ($r = 1 \ldots 32$) are $D = 11$ real Majorana spinors. In $D = 4$ the twistors are the fundamental representations of the spinorial covering $SU(2, 2)$ of $D = 4$ conformal algebra ($SU(2, 2) = SO(4, 2)$). In $D = 11$ there exists only minimal conformal spinorial algebra describing the classical real algebra $Sp(64)$, containing $D = 11$ conformal algebra

\[SO(11, 2) \subset Sp(64; R) . \]

In Sect. 2 we shall consider the generalization of $D = 11$ Poincaré and conformal superalgebras, supersymmetrizing the minimal $D = 11$ conformal spinorial algebra. In Sect. 3 we shall introduce in $D = 11$ the generalization of twistor and supertwistor formalism, with the extensions of Penrose-Ferber relations, which relate $OSp(1|64)$ supertwistor space described by real coordinates ($\xi^2 = 0; R = 1 \ldots 65$)

\[T_R = (\lambda_r, \omega^{\dot{r}}) , \]
with the generalized phase space \((X_{rs}, P_{rs})\) (see (1)). In Sect. 4 we shall describe algebraically \(BPS\) states by \(n = 32 - k\) superspinors \(\Psi\) representing \(D = 11\) generalized super-twistors. These super-twistorial constituents we shall call BPS preons. It appears that our model geometrically corresponds to new type of Kaluza-Klein theory, with discrete internal extension of space-time coordinates.

2. \(D = 11\) Conformal \(M\)-(Super)Algebra

Let us observe that the \(D = 4\) conformal algebra \((P_{\mu}, M_{\mu\nu}, D, K_{\mu})\) is endowed with the following three - grading structure

\[
P_{\mu} \quad M_{\mu\nu} \quad D \quad K_{\mu}.
\]

Grading (8) is determined by the scale dimensions of generators

\[
[D, P_{\mu}] = P_{\mu}, \quad [D, M_{\mu\nu}] = 0, \quad [D, K_{\mu}] = -K_{\mu}
\]

and it is easy to see that the conformal algebra (9) has two Poincaré subalgebras: \((P_{\mu}, M_{\mu\nu})\) and \((K_{\mu}, M_{\mu\nu})\). For \(D = 4\) superconformal algebra \(SU(2, 2; 1) = (P_{\mu\nu}, M_{\mu\nu}, D, A, K_{\mu}; Q_{A}, \bar{Q}_{\bar{A}}, S_{A}, S_{\bar{A}})\) the three-grading (9) is extended to the following five-grading

\[
P_{\mu} \quad Q_{A}, \bar{Q}_{\bar{A}} \quad M_{\mu\nu}, D, A \quad S_{A}, S_{\bar{A}} \quad K_{\mu}.
\]

where consistently

\[
[D, Q_{A}] = \frac{1}{2} Q_{A}, \quad [D, S_{A}] = -\frac{1}{2} S_{A},
\]

\[
[D, \bar{Q}_{\bar{A}}] = \frac{1}{2} \bar{Q}_{\bar{A}}, \quad [D, \bar{S}_{\bar{A}}] = \frac{1}{2} \bar{S}_{\bar{A}}.
\]

and again \(SU(2, 2; 1)\) contains as subsuperalgebras the Poincaré superalgebras \((P_{\mu}, M_{\mu\nu}, Q_{A}; \bar{Q}_{\bar{A}})\) and \((K_{\mu}, M_{\mu\nu}, S_{A}, S_{\bar{A}})\).

The structure of \(D = 11\) generalized superconformal algebra, which we call conformal \(M\)-superalgebra is quite analogous. The \(D = 11\) conformal \(M\)-algebra \(Sp(64)\) can be in analogy to (9) described by the following three-grading

\[
L_{1} \quad L_{0} \quad L_{-1}
\]

\[
Z_{rs} \quad R_{rs} \quad \bar{Z}_{rs}
\]

\[
528 \text{ Abelian} \quad GL(32; R) \quad 528 \text{ Abelian}
\]

We see that \(Sp(64)\) contains two copies of generalized \(D = 11\) Poincaré algebras, described by inhomogeneous \(Sp(32)\) algebras \((Sp(32; R) \subset GL(32; R))\) with 528 Abelian translation generators.
The superextension of $D = 11$ conformal M-algebra $OSp(1; 64)$ which we call conformal M-superalgebra is described by the following five-grading (see also \cite{15,16})

\[
L_1 \quad L_{1/2} \quad L_0 \quad L_{-1/2} \quad L_{-1} \\
Z_{rs} \quad Q_r \quad R_{rs} \quad S_r \quad \bar{Z}_{rs} ,
\]

(13)

where (Q_r, S_r) are the pair of 32-component supercharges, transforming as fundamental representations of $Sp(32)$, with $R_{rs} \subset Sp(32)$ if $R_{rs} = R_{sr}$. The subalgebras spanned by the generators (Q_r, Z_{rs}) and (S_r, \bar{Z}_{rs}) describe two copies of M-superalgebra given by the relations \cite{[15]}. It should be added that the gradings (12,13) correspond to the grading structure of real Jordanian (super) algebras \cite{17,18}.

3. $D = 11$ Supertwistors and Their Relation with Generalized Superspace

Let us recall two basic relations of Penrose twistor theory in $D = 4$ $8 - 11$

(i) relation between the generators of Poincaré algebra and twistor components

\[
P_{A\dot{B}} = \lambda_A \lambda_B ,
\]

(14)

\[
M_{AB} = \lambda_{(A} \bar{\omega}_{B)} , \quad M_{\dot{A}\dot{B}} = \bar{\lambda}_{(\dot{A}} \omega_{\dot{B})}
\]

(15)

where $M_{AB} = \frac{1}{2} (\sigma_{\mu\nu})_{AB} M^{\mu\nu}$ and $M_{\dot{A}\dot{B}} = \frac{1}{2} (\tilde{\sigma}_{\mu\nu})_{\dot{A}\dot{B}} M^{\mu\nu}$! The relations (15) can be extended to all 15 generators of $D = 4$ conformal algebra.

(ii) Penrose incidence relation between twistor and space-time coordinates

\[
\omega_{\dot{A}} = i \lambda_B X^{B\dot{A}} \quad \bar{\omega}^A = -i X^{A\dot{B}} \bar{\lambda}_B
\]

(16)

where $X^{BA} = (X^{A\dot{B}})^*$ describe four real Minkowski coordinates if the $SU(2, 2)$ twistor norm vanishes

\[
(t, t) \equiv i \left(\lambda_A \bar{\omega}^A - \bar{\lambda}_A \omega^A \right) = 0 .
\]

(17)

The relations (14-17) can be supersymmetrized. If we introduce the $D = 4$ supertwistor (t_α, η), which is the fundamental representation of $SU(2, 2; 1)$ with complex Grassmann variable η $(\eta^2 = \eta = 0$, $\eta \eta = 0$), the relations (14-17) has been extended by Ferber\cite{19} to all generators of $D = 4$ superconformal group $SU(2, 2; 1)$.

The Penrose relations (16-17), firstly supersymmetrized in\cite{19} look as follows

\[
\omega_{\dot{A}} = i \lambda_B Z^{B\dot{A}} \equiv i \lambda_B \left(X^{B\dot{A}} - i \theta^B \theta_{\dot{A}} \right)
\]

\[\text{We recall that } (\sigma_{\mu\nu})_{AB} = \frac{1}{2} [(\sigma_{\mu})_{AB} \tilde{\sigma}_{\nu B} - (\sigma_{\nu})_{AB} \tilde{\sigma}_{\mu B}] = -\frac{i}{4} \epsilon_{\mu\nu\rho\tau} (\sigma^{\rho\tau})_{AB} = [(\tilde{\sigma}_{\mu\nu})_{BA}]^*\]
\[\omega^A = i \left(X^{AB} + i \theta^A \bar{\theta}^B \right) \lambda_B \]
\[\eta = \lambda_A \theta^A \quad \bar{\eta} = \bar{\lambda}_A \bar{\theta}^A. \] (18)

For \(D = 11 \) the generalized twistors and supertwistors are real (see 7) and the real \(OSp(1; 64) \) superalgebra \((R, S = 1 \ldots 64) \)
\[\{ Q_R, Q_S \} = R_{RS}, \] (19)
can be obtained if we assume that
\[R_{RS} = T_R T_S \quad Q_R = \frac{1}{\sqrt{2}} T_R \xi, \] (20)
where \(T_R \) describes \(D = 11 \) real twistorial quantum phase space \((\eta_{RS} = -\eta_{SR} \) is the \(Sp(64) \) antisymmetric metric)
\[[T_R, T_S] = i \eta_{RS}, \] (21)
supplemented with trivial one-dimensional Clifford algebra relation \(\xi^2 = 1. \)

The relations (19) are extended to \(D = 11 \) as follows:
\[\omega^r = (X^{rs} - i \theta^r \theta^s) \lambda_s \quad \xi = \theta^r \lambda_r. \] (22)

Relations (22) relate the \(D = 11 \) supertwistor space coordinates (7) with the extended \(D = 11 \) superspace \((X_{rs}, \theta_s) \), described by 528 bosonic and 32 fermionic coordinates.

4. BPS States in M-Theory and Composites of BPS Preons

The \(\frac{k}{32} \) BPS state \(|k\rangle \) can be defined as an eigenstate of generalized momenta generators
\[Z_{rs} |k\rangle = z_{rs} |k\rangle, \] (23)
such that \(\text{det} z_{rs} = 0 \). The number \(k \) determines the rank of generalized momenta matrix \(z_{rs} \)
\[\frac{k}{32} \text{BPS state: } \{ \text{rank } z_{rs} = n = 32 - k; \quad 1 \leq k < 32 \}. \] (24)

From (24) follows that the BPS state \(|k\rangle \) preserves a fraction \(\nu = \frac{k}{32} \) of supersymmetries.

We call BPS preon the hypothetical primary object carrying the following generalized momenta
\[Z_{rs} = \lambda_r \lambda_s. \] (25)

\(^3\)By Bott periodicity this realization is related with twistor framework in \(D = 3 \) (see\(^2\)), also with real structure. In \(D = 5, 6, 7 \) one has to use the extension of Penrose framework to quaternionic twistors (see e.g.\(^2\) for \(D = 6 \)).
The formula (25) corresponds to putting \(n = 1 \) in the relation (3) and describes \(\frac{k}{32} \) BPS state. More general formula (3) describes the generalized momenta of a system composed out of \(n \) BPS preons and it describes (for \(1 \leq n \leq 32 \)) the \(\frac{k}{32} \) BPS state (we recall that \(k = 32 - n \)).

The number \(n = 32 - k \) of zero eigenvalues of the matrix \(z_{rs} \) determines the number of independent supercharges \(Q_r^{(i)} \), anihilating the BPS state \(|k\rangle \). These supersymmetries, preserving the BPS state, are called in \(p \)-brane theory the \(\kappa \)-transformations. We see that the supersymmetric \(D = 11 \) single BPS preon dynamics should have 31 \(\kappa \)-symmetries. Recently\(^2\) such dynamical superparticle models\(^2\) with fundamental \(OSp(1; 2n) \) superspinor as basic variable has been proposed. It should be recalled here (see e.g.\(^2\)) that in the standard super \(p \)-brane formulations half of the supersymmetries are promoted to \(\kappa \)-transformations, i.e. in \(D = 11 \) we obtain 16 \(\kappa \)-transformations.

Using the \(D = 11 \) supertwistor description with the relations (22) and (25) providing a bridge between BPS preons and generalized space-time, we can formulate three different geometric pictures:

(i) Purely supertwistorial picture, with basic phase space parametrized by BPS preon coordinates \(T^{(i)}_R \) (see (7)). The canonical Liouville one-form describing free action is given by the relation

\[
\Omega_1 = \sum_{i=1}^{n} \left(\omega^{(i)r} d\lambda^{(i)}_r + i\xi^{(i)} d\xi^{(i)} \right),
\]

which can be supplemented by some algebraic constraints.

(ii) Mixed geometric picture, with the components \(\omega^{(i)} \) expressed by means of the relation (22). One obtains from (25)

\[
\Omega_2 = \sum_{i=1}^{n} \lambda^{(i)r}_s \lambda^{(i)r}_s \left(dX^{rs} - i\theta^r d\theta^s \right),
\]

(iii) Generalized space-time picture, with the relation (3) inserted in (27).

\[
\Omega_3 = Z_{rs} \left(dX^{rs} - i\theta^r d\theta^s \right).
\]

The application of these three geometric pictures to the description of \(D = 11 \) dynamics (for \(n > 1 \)) is under consideration.

5. Final Remarks

We mention here two interesting aspects of the presented approach which deserve further attention;

\(^\star\)For \(D = 4, 6 \) and 10 see\(^2,3\).
(i) geometric confinement of BPS preons

Because the space-time coordinates are composed out of preonic degrees of freedom, the $D=11$ space-time point can be determined only in terms of at least 16 preonic set of spinorial coordinates. This is the $D=11$ extension of known property of Penrose theory in four dimensions with two twistors needed for the definition of composite Minkowski space-time points.

(ii) internal symmetries

The formula (3) expresses 528 generalized momenta in terms of $32n$ preonic spinorial coordinates $\lambda^{(i)}_r$ ($i=1, \ldots n$). The internal symmetries can be obtained by interchanging BPS preons. For the case $n=16$ corresponding to the choice of $\nu=\frac{1}{2}$ SUSY one can introduce internal $O(16)$ symmetries, leaving the values of Z_{rs} invariant.

Acknowledgements

The author would like thank prof. Mo-Lin Ge for his warm hospitality at Nankai Symposium in Tianjin.

References

1. I.A. Bandos, J.A. de Azcarraga, J.M. Izquierdo and J. Lukierski Phys. Rev. Lett. 86, 4451 (2001).
2. M.J. Duff, R.R. Khuri and J.X. Lu, Phys. Rep. 259, 213 (1995).
3. P.K. Townsend, [hep-th/9712004].
4. K.S. Stelle, [hep-th/9803117].
5. E. Bergshoeff and E. Sezgin, Phys. Lett. B232, 96 (1989); B354, 256 (1995).
6. C. Chrissomalakis, J.A. de Azcarraga, J.M. Izquierdo and J.C. Perez Bueno, Nucl. Phys. B567, 293 (2000).
7. E. Sezgin, Phys. Lett. B392, 321 (1997).
8. R. Penrose and M.A.H. Mac Callum, Phys. Rep. 6, 241 (1972).
9. Z. Perjes, Phys. Rev. D11, 2031 (1975).
10. R. Penrose, Rep. Math. Phys. 12, 65 (1977).
11. L.P. Hogston, "Twistors and Particles". Lecture Notes in Physics, Vol 97 (Springer Verlag, Berlin, 1979).
12. S. Ferrara, Fortschr. Phys. 49, 485 (2001).
13. R. D’Auria, S. Ferrara, M.A. Lledo, V.S. Varadarajan J. Geom. Phys. 40, 101 (2001).
14. R. D’Auria, S. Ferrara, M.A. Lledo, Lett. Math. Phys. 57, 123 (2001).
15. I. Bars, Phys. Lett. B457, 275 (1999); B483, 248 (2000).
16. O. Baerwald and P. West, Phys. Lett. B476, 157 (2000).
17. M. Cederwall, Phys. Lett. B115, 389 (1988).
18. M. Gunaydin, Mod. Phys. Lett. A15, 1407 (1993).
19. A. Ferber, Nucl. Phys. B132, 55 (1978).
20. W. Heidenreich and J. Lukierski, Mod. Phys. Lett. A5, 439 (1990).
21. J. Lukierski and A. Nowicki, Mod. Phys. Lett. A6, 189 (1991).
22. I. Bandos, J. Lukierski and D. Sorokin, Phys. Rev. D61, 045002 (2000).
23. I. Bandos, J. Lukierski, Ch. Preitschopf and D. Sorokin, Phys. Rev. D61, 065009 (2000).
24. D. Sorokin, Phys.Rep. 329, 1 (2000).