کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در تدوین و جاب مقالات

روش تحقیق گمی

آموزش نرم‌افزار برای پژوهشگران

Word
Nanoencapsulation of n-butanol extract of Symphytum kurdicum and Symphytum asperrimum: Focus on phytochemical analysis, anti-oxidant and antibacterial activity

Elaheh Mahmoudzadeh 1, 2, Hossein Nazemiyeh 2, 3, Hadi Valizadeh 4, Farnaz Khaleseh 1, 5, 6, Samin Mohammadi 1, 2, Sanaz Hamedeyazdan 2, * 1

Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
2 Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
3 Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
4 Research Center for Pharmaceutical Nanotechnology, and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
5 Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
6 Pharmaceutical Sciences Research Center, Health Institute and School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
7 Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran

A R T I C L E I N F O

Article type: Original
Article history: Received: Dec 11, 2021, Accepted: Feb 19, 2022
Keywords: Anti-oxidants, Boraginaceae, Comfrey, Flavonoids, Liposome, Microbial sensitivity tests, Nanoparticle

A B S T R A C T

Objective(s): The current study’s objectives were to obtain different extracts and essential oils of Symphytum kurdicum and Symphytum asperrimum and to determine the chemical composition, as well as to evaluate free radical scavenging activity (IC50) and minimum bactericidal concentration (MBC), and the effect of liposomal formulation on antimicrobial properties.

Materials and Methods: Air-dried powdered aerial parts of S. kurdicum and S. asperrimum were used. The antioxidant and antibacterial properties, essential oil compositions, total phenol, and flavonoid contents of different fractions were determined by DPPH test, disk diffusion assay, gas chromatography-mass spectrometry, Folin-ciocalteau reagent, and colorimetric assay method, respectively. The film hydration method was used to fabricate nanoparticles.

Results: GC-MS analysis indicated that hexafarnesyl acetone was a major essential oil component. n-butanol and ethyl acetate extracts of S. kurdicum had the highest anti-oxidant activity. Extracts of both plants showed antimicrobial activity. The extracts’ maximum inhibition zones against Staphylococcus epidermidis were established. A particle size analyzer detected the formulation size of 140 nm. The optimum formulation of liposomes contains the ratio of 75 mg lecithin, 25 mg cholesterol, and 50 mg herbal extract. Despite the nanoparticles’ appropriate particle size, the liposomal extract’s antimicrobial effect was lower than that of the free form.

Conclusion: Our findings demonstrated that extracts have significant antibacterial and anti-oxidant activities, attributed to their bioactive constituents.

Introduction

In recent years, pharmacophores acquired from herbas have had an important role in medication discovery. Additionally, they were used for developing antibiotic-resistant microbial strains in search of novel antimicrobial agents (1). Frequently, there is a correlation between the polyphenolic content of herbs and the antimicrobial or anti-oxidant effects of plant extract preparations, which could help in the identification of the active ingredients (2). This genus is a member of the Boraginaceae family (3). These herbaceous plants are characterized mainly by large, hairy leaves, and tuberous roots (4).

The essential oil yield of Boraginaceae members is low (5, 6). According to the most recent research, plants in the Symphytum genus have numerous pharmacological effects, including antimicrobial, anti-oxidant, and anti-inflammatory properties. For example, in a study by Rocha et al., Symphytum officinale L. had a significant antifungal effect against Sclerotinia sclerotiorum (7, 8). An in vitro study revealed that S. officinale L. extracts have antimicrobial activity against various bacterial strains, particularly Staphylococcus aureus (9). It could be attributed to the aqueous extract’s phenolic content (allantoin, rosmarinic acid, caffeic, and chlorogenic acids) (10, 11).

Researchers investigated various carriers for herbal extracts loading, such as manganese nanoparticles and micelles (12, 13). Liposomes are some of the most interesting; additional studies have confirmed the effect of liposomal structures on herbal extract efficacy. The spherical form of liposomes composed of phospholipids provides the situation for loading both hydrophilic and lipophilic components that, in addition to biocompatibility and non-immunogenic properties, makes it a good choice for loading herbal extracts. Soybean lecithin is a natural phospholipid for preparation of liposomes with acceptable safety. As studied by Singh et al., liposomal neem (Azadirachta indica) gel composed of

*Corresponding author: Sanaz Hamedeyazdan. Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Tel: +98-413341315; Fax: +98-413341798; Email: yazdans@tbzmed.ac.ir
soybean lecithin and cholesterol demonstrated *in vitro* drug diffusion and skin retention equal to 62.178% ± 0.91 and 20.03% ± 0.63, respectively (14). Researchers studied the encapsulation of *Laurus nobilis* leaf extract in liposomes. The results showed that liposomal encapsulation improved the antimicrobial and anti-oxidant properties of the extract compared with non-encapsulated. They also confirmed the application of nano-formulation as a natural preservative for meat products (15).

The genus *Symphytum* produces allantoin, phenolic acids, and flavonoids (5) whose antibacterial and anti-oxidant properties have been recognized (16). The main distribution centers of the genus *Symphytum*, with 113 species, are humid meadow and lake edge parts of Asia, Europe, and America (3). Most phytochemical and biological studies have been conducted on these species. Different *Symphytum* species have various therapeutic applications (16). In the present study, we focused on native Iranian medicinal plants, *Symphytum* species, *S. asperrum* and *S. kurdicum*, the biological properties and phytochemicals of which are unknown. To the best of our knowledge, no research has been published on the two mentioned plants yet. The current study aimed to evaluate different extracts and essential oils in various aspects. The extracts were assessed for phytochemical characteristics, as well as potential antimicrobial and anti-oxidant activities.

The other goal of the study was to fabricate the preparation of liposomal formulation of extracts and assess the effect of encapsulation on the antibacterial properties of the extract.

Materials and Methods

Chemicals

Analytical grade solvents containing n-hexane, chloroform, ethanol, ethyl acetate, n-butanol, and methanol were obtained from Dr. Mojallali (Iran). Folin-Ciocalteu, gallic acid, aluminum chloride, sodium bicarbonate, sodium acetate, and dimethyl sulfoxide (DMSO) were acquired from Merck (Germany). 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and quercetin were acquired from Sigma-Aldrich (Germany). Mueller-Hinton agar and Mueller-Hinton broth were obtained from Quelab (Canada). Amikacin and Tetracycline antimicrobial susceptibility test disks were purchased from Padtan Teb (Iran).

Plant materials, solvent extractions, and fractionations

Aerial parts of *S. kurdicum* and *S. asperrum* were collected from ghosemlou valleys, West Azerbaijan province, and Arasbaran forest, East Azerbaijan province, (Iran May 2019), respectively. The specimens were identified and deposited in the Herbarium of the Faculty of Pharmacy, Tabriz Medical University, Iran (TBZFPF (No. 4072)) and (TBZFPF (No. 4073)). Aerial parts of the collected plants were separately air-dried, powdered, and subjected to soxhlet extraction. n-Hexane and chloroform solvents were used in the extraction process using soxhlet apparatus individually, and then the extraction process continued with the maceration technique. The subsequent solvent was ethanol: water (70:30 V:V). The obtained hydroalcoholic extracts were dried, dispersed in water, then fractionated, initially decanted with ethyl acetate and later with n-butanol. The yielded extracts were dried at low temperature under vacuum via a rotary evaporator (Heidolph, Germany). Dried extracts were stored at -8 °C until analysis.

Extraction of essential oil

Hydrodistillation was conducted separately for both plants using a Clevenger apparatus to extract the essential oil. One hundred grams of air-dried plant materials were weighed into a round 1000 ml flask. Then, 750 ml of distilled water and some glycerol were added to the flask. Extraction was performed for two hours. Ultimately, the essential oils were collected and placed into vials and stored at 4 °C for later analysis.

Gas chromatography- Mass (GC/MS) analysis

The components of the essential oils were assessed using a Shimadzu GCMS-QP5050A equipped with a DB-1 column (60 m × 0.25 mm; film thickness 0.25 µm). The split ratio was 1: 24. The primary oven temperature was 50 °C which was kept for 3 min then raised to 270 °C at a rate of 4 °C/min. As a final point, the predicted component's RI values (retention index) were calculated and compared with the valid RI values from the NIST 2018 library. Additionally, the qualified percentage of each compound was reported according to the area under the curve (17).

Antimicrobial activity

A disk diffusion assay was used to examine the antimicrobial activities of *S. kurdicum* and *S. asperrum*. Two gram-positive and two Gram-negative bacteria were used as the test organisms: *Staphylococcus aureus* Persian Type Culture Collection (PTCC 1337), *Staphylococcus epidermidis* (PTCC 1435), *Escherichia coli* (PTCC 1330), *Salmonella typhi* (PTCC 1074), and a fungal strain, *Candida albicans* (PTCC 5027). Different extracts were suspended in DMSO solvent; bacterial suspensions were cultivated on the Mueller-Hinton agar medium (0.5 McFarland standard (108 CFU/ml)). 30 µl of the extracts were transferred to the blank disks. The standard antibiotic discs and negative control were tetracycline (30 µg per disc), amikacin (30 µg per disc), and DMSO (30 µl per disc), respectively. The average diameter of inhibition zones was recorded after 24 hr of incubation at 37 °C. Furthermore, the extracts’ minimum bacteridal concentrations (MBCs) were measured. The microbial concentration in wells was 5*105 CFU/ml, and the concentration of extracts varied from 0.39 mg/ml to 25 mg/ml. After incubation of the 96-well plates at 37 °C for 24 hr, culturing on the Mueller-Hinton agar plates was done to assay the minimum concentrations that could inhibit fungal or bacterial growth (18).

Anti-oxidant activity

Among all extracts, the n-butanol and ethyl acetate extracts were assessed for anti-oxidant ability using the DPPH method with some modification. Briefly, the extracts were dissolved in methanol (1 mg/ml) and serially diluted. Then, the DPPH solution was added to all samples in the 1:1 ratio. Consequently, the samples were shaken and incubated at room temperature for 30 min in the dark, and then the mixture was placed in a 10 mm micro cuvette. The samples' absorbance was determined at 517 nm using a Spectronic Genesys 5 spectrophotometer. Inhibition percentages and average inhibition percentages were calculated to discover the correlation between the extract concentrations and average inhibition percentages. Subsequently, the concentrations which may reduce free radicals up to 50% (RC50) were measured according to the line balances (19).
Nanoencapsulation of two species of Symphytum

Total phenol contents

Total phenol content was acquired using the Folin-ciocalteu reagent. In the first instance, standard solutions of methanol and ethyl acetate extracts were prepared (0.1 mg/ml), then extract solutions (1 ml), Folin-ciocalteu reagent (200 µl), and sodium bicarbonate 2% solution (1 ml) were mixed in the test tubes. Test tubes were centrifuged for 5 min at 16128 G-force and incubated in the darkness for 30 min at 25 °C. The spectrophotometric absorbance of samples was measured at 750 nm. Moreover, gallic acid solutions in the 1-10 mg/ml concentration range were treated as samples to get the standard line equivalence (20).

Total flavonoid contents

Total flavonoid content was acquired using an aluminum chloride colorimetric assay reagent. Ten milligram of n-butanol and ethyl acetate extracts were dissolved in 10 ml of methanol (80%), then 2 ml of samples were added to the mixture of distilled water (400 µl) and the reagent (1 ml), which is formed of sodium acetate (49 M) and aluminum chloride (10 M). The absorbance values of arranged mixtures were determined after 20 min at 410 nm, using the spectrophotometer apparatus. Quercetin was the standard compound in the process. 5, 10, 15, 20, and 25 µg/ml concentrations of quercetin were prepared and assessed in the same way. As a final point, the total flavonoid content of the extracts was reported as a weight ratio percentage (quercetin equivalent: extract) (20).

Preparation of liposomal formulation

The fabrication method of the liposomal formulation was the film hydration method, according to Plangsombat et al., with some modification (21). Therefore, different ratios of soybean lecithin, cholesterol, and sample extracts of S. asperrimum and S. kurdicum, were dissolved in 8 ml of chloroform to form a clear solution (Table 5). Total flavonoid contents were arranged mixtures were determined after 20 min at 410 nm, using the spectrophotometer apparatus. Quercetin was the standard compound in the process. 5, 10, 15, 20, and 25 µg/ml concentrations of quercetin were prepared and assessed in the same way. As a final point, the total flavonoid content of the extracts was reported as a weight ratio percentage (quercetin equivalent: extract) (20).

Evaporation of chloroform was performed under vacuum by rotary evaporator (Rotavapor R-215, Buchi-Switzerland). Removing the organic solvent would lead to a homogeneity film at the bottom of the round bottom flask. For removing the different molecules of chloroform, N2 gas was applied. The lipid film was hydrated by water at the temperature of 70 °C, and for better hydration with fine particles, bath sonicator (Bandelin, Berlin, Germany) followed by probe sonicator (Bandelin, Germany) were utilized at 70 °C. The un-entrapped extract was precipitated by centrifugation at 4032 G-force (Eppendorf, Centrifuge 5810R, Hamburg, Germany), and for size reduction, the formulation was filtered through preheated 0.45 and then 0.22 filters (22). The formulation was freeze-dried to be dissolved in the proper amount of water with desired concentration for the antimicrobial test. A particle size analyzer evaluated the liposome’s size (Wing SOLD 2101, Shimadzu, Japan). The formulation was diluted using distilled water by the ratio of 10:1 to be detected by the instrument.

Results

Essential oil analysis

GC-MS analysis of the essential oils resulted in identification of 20 components for S. kurdicum, as shown in Table 1. A total of 95.62% of the S. kurdicum essential oils were identified, and any components found at 0.1% or less were not considered for identification. Hexahydrofarnesyl acetone (34.2%), phytol (33.4%), n-hentriacontane (11.4%), and dibutyl phthalate (3%) were the main components of this essential oil. The other significant compounds were β-turmerone (1.4%), 6, 10, 14-trimethylpentadecane-2-ol (1.4%), and β-ionone (1.01%).

GC-MS analysis of S. asperrimum essential oil identified 8 components, as shown in Table 2. The main compounds of the essential oil were hentriacontane (31.03%), hexafarnesyl acetone (24.14%), heptane (10.3%), and phytol (6.03%).

Table 1. GC-MS analysis of the Essential oil content of aerial parts of Symphytum kurdicum with their relative retention time, retention index and percentages

NO	Essential oil compounds	Rt	RI STD*	RI	Percentage	Formula
1	Octanal	16.7	979	979	0.3	C8H8O
2	Nonanal	20.9	1084	1082	0.7	C10H16O
3	1-Nonanal	23.9	1156	1153	0.7	C10H16O
4	Decanal	25.1	1186	1184	0.6	C16H18O
5	1-Decanol	27.8	1255	1254	0.7	C17H34O
6	B-Ionone	35.3	1469	1466	1.0	C15H22O
7	Phenol,2,4bis(1,1-dimethylethyl)	36.1	1480	1489	0.5	C13H12O
8	Caryophyllene oxide	38.9	1578	1578	0.7	C15H14O
9	Hexadecane	39.6	1604	1586	0.9	C16H32O
10	B-Turmerone	40.7	1637	1637	1.4	C16H30O
11	1-Decanol,2-methyl	43.3	1720	1721	0.9	C18H32O
12	Hexahydrofarnesyl acetone	46.3	1827	1829	3.4	C20H32O
13	6,10,14-trimethylpentadecane-2-ol	46.5	1830	1838	1.4	C26H44O
14	Farnesyl acetone	48.1	1903	1901	0.94	C20H34O
15	Dibutyl phthalate	48.7	1909	1919	3	C20H34O
16	Isophytol	49.2	1944	1938	1.01	C20H34O
17	Eicosane	50.7	2000	1996	0.27	C22H44O
18	Phytol	52.1	2097	2098	33.4	Phytol
19	1-Eicosanol	52.4	2276	2276	1.04	C24H46O
20	Hentriacontane	57.8	3000	3003	11.4	C31H52O

*Reference(23), Rt: Retention time; RI: Gas chromatographic retention index
Nanoencapsulation of two species of Symphytum

Mahmoudzadeh et al.

Table 2. Essential oil content of aerial parts of Symphytum asperrimum

NO	Essential oil compounds	Rt	RI STD*	RI	Percentage	Formula
1	Heptane	6.6	960	960	10.3	C7H16
2	Heptadecane, 2,6,10,15-tetramethyl	36.5	1496	1500	3.4	C20H34
3	Hexadecane	39.5	1604	1597	2.6	C16H34
4	B-tumorene	40.7	1637	1637	3.4	C16H2O
5	Hexafarnesyl acetone	46.3	1827	1828	24.1	C24H30
6	Dibutyl phthalate	48.7	1909	1909	4.3	C26H22O2
7	Phytol	53.2	2097	2097	5.0	C20H28
8	Hentriacontane	57.7	3000	2993	31.0	C22H20

Total 85.35

*Reference (23), Rt: Retention time; RI: Gas chromatographic retention index

Table 3. Total flavonoid and phenol contents of n-butanol and ethyl acetate extracts

	Total flavonoid (mg Que equivalent/g dried sample)	Total phenol (mg GA equivalent/g dried sample)		
	n-butanol	Ethyl acetate	n-Butanol	Ethyl acetate
Symphytum asperrimum	31.78±0.1	30.34±0.07	57.3±0.25	52.65±7.8
Symphytum kurdicum	20.35±1.95	21.62±0.04	42.59±3.01	45.77±2.77

Que: Quercetin; GA: Gallic acid

Total phenol and flavonoid contents

Total phenolic and flavonoid contents of n-butanol and ethyl acetate extracts of S. asperrimum and S. kurdicum collected from North-West of Iran were presented in Table 3. The results showed variations in total phenolic and flavonoid contents, even in the same parts of the two genera of Symphytum species. n-butanol extract of S. asperrimum had the highest total phenolic (57.3 mg GAE/g extract) and flavonoids contents (31.78 mg QE/g extract). While n-butanol extract of S. kurdicum contained less total phenolic (42.59 mg GAE/g extract) and flavonoids contents (20.55 mg QE/g extract) than S. asperrimum.

Anti-oxidant activity

In order to determine the anti-oxidant properties of the extracts of the two plants, the DPPH (2, 2-diphenyl-1-picrylhydrazyl) method, a widely used method for determining the scavenging activities of various natural components, was used. It was utilized to measure the in vitro anti-oxidant properties of the extracts of S. asperrimum and S. kurdicum; the higher the free radical scavenging activity, the lower the IC_{50} values. For the free radical scavenging activity, IC_{50} is defined as the amount of extract required to reduce the primary radical DPPH concentration by 50%. The results of the anti-oxidant properties are shown in Table 4. Increased concentration of the extracts shows a gradual increase in inactivity. The free radical scavenging activity of n-butanol and ethyl acetate extracts of S. kurdicum were 48.05±0.04 µg/ml and 48.51±0.09 µg/ml, respectively. The free radical scavenging activity of n-butanol and ethyl acetate extracts of S. asperrimum were 53.73±0.03 µg/ml and 51.22±0.02 µg/ml, respectively.

Evaluation of the particle size of liposomes

The preparation of the liposomal formulation was according to the film hydration method. The formulation ingredients were n-butanol extracts of S. asperrimum, S. kurdicum, lecithin, and cholesterol by the ratio mentioned in Table 5. The liposomes were filtered for size reduction, but only formulation four was filtered because it was smaller than others. The sizes shown in Table 5 are representative of particle sizes before filtration. The particle size of liposomes of formulation 1 was in the micrometer range that could

Table 4. Anti-oxidant activity of Symphytum kurdicum and Symphytum asperrimum extracts by DPPH assay

	n-Butanol extract	Ethyl acetate extract
Symphytum asperrimum	48.05±0.04	48.51±0.09
Symphytum kurdicum	53.73±0.03	51.22±0.02

Table 5. Ratio of lecithin, cholesterol, and an herbal extract for preparation of liposomal formulation

Number	Lecithin (mg)	Cholesterol (mg)	Herbal extract (mg)	Water (ml)	Size (nm)
1	90	30	40	10	1400
2	60	20	100	10	No homogenous film
3	75	25	45	10	500
4	75	25	50	20	450

Iran J Basic Med Sci, Vol. 25, No. 3, Mar 2022

367
be related to the high content of lecithin. Formulation 2 did not form a homogeny film. The non-homogeny parts developed because of the high content of herbal extract could be observed visually. This might be due to the lower lipid content capacity of particles for forming a homogeny film. Therefore, the optimum formulation of liposomes was formulation four by the ratio of 75 mg lecithin, 25 mg cholesterol, and 50 mg herbal extract. The formulation size was 140 nm, which was detected by a particle size analyzer.

Antimicrobial activity

The two Gram-positive (S. aureus and S. epidermidis), two Gram-negative standard bacterial strains (E. coli and S. typhi), and one fungus (C. albicans) have been used. According to the two-way ANOVA test conducted using GraphPad Prism software diameter of the inhibition zone (DIZ) results, ethyl acetate extract of S. asperrimum showed significant antibacterial activity against S. aureus, E. coli, S. typhi, and C. albicans. Chloroform, ethyl acetate, n-butanol, and nanoencapsulated n-butanol extracts of this plant demonstrated significant antibacterial activity against S. epidermidis (P-value<0.001). n-Butanol extract of S. asperrimum was effective against S. typhi and C. albicans. The antimicrobial activity of the different extracts of S. kurdicum against E. coli and S. aureus was not observed, but there are antimicrobial activities against S. epidermidis, S. typhi, and C. albicans (Figure 1). The effects of nanoencapsulated n-butanol extract of S. asperrimum and S. kurdicum were equal to the results of free n-butanol extracts and did not improve antimicrobial properties (Table 6).

Additionally, more precise data on the antibacterial activities were obtained by determining bactericidal concentration. The minimum bactericidal concentration (MBC; mg/ml) of extracts against the three bacteria is shown in Table 6. The ethyl acetate extract of S. asperrimum had the most bactericidal properties against S. epidermidis. MBC accredited the extracts antimicrobial activities data.

Discussion

Several factors, including the type of extraction technique, duration of extraction, temperature, location, soil composition, moisture, and altitude, may influence essential

![Graph](image_url)

Table 6. Comparative assessment of various extracts antimicrobial activity

Extract Type	E. c	S. t	S. e	S. a	E. c	S. t	S. e	S. a	
n-Hexane	-	-	-	-	13.8±0.05	-	-	-	
Chloroform	-	-	40.1±0.12	-	6.25	-	-	-	
S. asperrimum	Ethyl acetate	10.1±0.62	11.3±0.63	42.6±0.85	14.1±0.62	15±0	6.25	3.125	6.25
n-Butanol	-	10.1±0.47	29.3±0.85	13.6±0.25	-	6.25	25		
Nano encapsulated n-butanol	-	9.5±0.4	28.3±0.85	13.8±0.23	-	-	-		
n-Hexane	-	11.5±0.4	10.8±0.62	-	12.5	25			
Chloroform	-	21.3±0.47	10.8±0.23	-	6.25	25			
S. kurdicum	Ethyl acetate	-	22.5±0.4	10.5±0.4	-	6.25	25		
n-Butanol	-	21.8±0.62	11.7±0.23	-	-	6.25	25		
Nano encapsulated n-butanol	-	21.6±0.47	10.6±0.47	-	-	-			
DMSO	-	-	-	-	-	-	-	-	
Controls	Amikacin	19.5±0.70	ND	ND	ND	ND	ND	ND	
Tetracycline	ND	39.5±0.70	ND	ND	ND	ND	ND	ND	

DIZ: Diameter of the Inhibition Zone; MBC: Minimum Bactericidal Concentration; E.c: Escherichia coli; S.e: Staphylococcus epidermidis; S.a: Staphylococcus aureus; C.A: Candida albicans; S.t: Salmonella typhi; ND: Not detected.
oil components. The difference in the essential oil content between two species of the same genus is predictable, but they may also share many characteristics. The essential oil content of S. kurdicum and S. asperrimum was comparable; however, there is little information on other Symphytum species’ essential oil contents from previous studies. A study on the essential oil content of Glendora rosmarinifolia yielded similar results (a member of the Boraginaceae family). Eicosane, phytol, nonanal, β-ionone, α-pinene, and β-caryophyllene were identified as the main components of the essential oil (24). Eicosane and nonanal were identified in the essential oil compositions of Cordia verbenaecaeae (25). Dibutyl phthalate has been reported as the main essential oil constituent of Anchusa italica from Iran (26). One of the main components, hentriacontane, one of the main identified compounds in the current study, of the essential oils of the herbs, is a hydrocarbon with antioxidant effects, reducing inflammatory mediators (TNF-α, IL-6, PG12, COX-2, and iNOS), as well as activation of NF-xB and caspase-1 in LPS-stimulated peritoneal macrophages (27). This compound also has an antitumor and cytotoxic effect on lymphoma cells (28). This compound is present in large quantities in both plants so that the essential oils of S. kurdicum and S. asperrimum could be used as anti-inflammatory agents.

Symphytum genus belonging to the Boraginaceae family is a well-known herbal medicine with pharmacological potential due to its bioactive components (29). Flavonoids and phenolic derivatives are the significant chemical compounds in the Symphytum genus (30). Total phenolic and flavonoid contents in S. asperrimum aerial parts extract were significantly higher than those in S. kurdicum aerial parts extract. Phytochemical components in the different species are different and could affect their pharmacological activities. Secondary metabolites, including flavonoids and phenolic derivatives, are affected by various factors, such as soil composition, irrigation, and climatic conditions (31, 32). To the best of our knowledge, flavonoids and phenolic acids have significant beneficial biological activities such as antioxidant (33), anti-inflammatory (34), and anti-oxidative activity (35). Phenolics and flavonoids are free radical scavengers due to this facility (36), reducing agents, singlet oxygen, and hydrogen donors (37). Phenolic components inhibit lipid peroxidation and prevent enzyme oxidation (38). In a study, the total phenolic and flavonoid content of the methanol extract of S. anatolicum was measured, and the results were 32.7 mg GAE/g and 13.3 mg RE/g (39). The total phenolic and flavonoid contents of aerial parts of S. asperrimum and S. kurdicum were higher than those of other species in this genus, according to the bibliographic data.

Due to the many side effects and complications initiated by synthetic constituents, there is a demand for natural extracts or essential oils with antioxidant activities, particularly those derived from herbs (40). Recent studies show a positive correlation between anti-oxidant activity and total phenol and flavonoid levels (41). S. asperrimum and S. kurdicum extracts both demonstrated high levels of free-radical-scavenging activity, respectively. The total flavonoid and phenolic contents prove that phenolic components play a significant role in anti-oxidant activity. It is also notable that except phenolics, allantoin, rosmarinic acid, caffeic acid, and their derivatives, as identified in the Symphytum family, might be attributed to the high anti-oxidant activity.

There have been no previous reports on the anti-oxidant activities of S. kurdicum and S. asperrimum. At the same time, previous research on other Symphytum species, such as S. officinale, revealed that its ethanolic extract had high radical scavenging activity against DPPH radicals (39.97 µg/ml) in comparison with an aqueous extract (96.21 µg/ml) (35). The free radical scavenging activities of methanol and ethyl acetate extracts of S. anatolicum were 2.70 ± 0.15 mg/ml and 10.57 ± 0.01 mg/ml (42). According to the reports other Symphytum species that have also shown significant anti-oxidant properties (43, 44). The potent anti-oxidant properties could be attributed to their phenol and flavonoid contents, confirming that phenolic compounds like caffeic acid derivatives play a prominent role in anti-oxidant activity (39).

The in vitro antibacterial properties of these two Iranian native plants have been investigated for the first time. According to the results of the DIZ and MBC values, S. epidermidis was the most sensitive microorganism. One of the most influential herbal families with antimicrobial activities is the Boraginaceae (45). Previous research tested the inhibitory effects of methanolic extract of the S. officinale L. leaves against S. aureus, Pseudomonas aeruginosa, Salmonella typhimurium; Shigella sonnei, Klebsiella pneumonia, and Escherichia coli. The antibacterial test results revealed that S. officinale L. extract had antibacterial activity against the tested strains. DIZ was greater than 7 mm (46). The strong antimicrobial activities of the extracts related to the phytochemicals of the Symphytum genus, including phenolic compounds (caffeic acid, allantoin, and luteolin glycoside), are possibly related to the synergistic effects of compounds, as well as to other bioactive components existing in the whole parts of the plant (3). Mangonia et al. investigated the in vitro and in vivo characteristics of phycocyanin liposomal formulation. The liposome structure was composed of soy phosphatidylcholine and cholesterol, and results showed that the preparation method could affect the liposome characteristics. According to their findings, the liposomal formulation was an excellent choice for topical formulation containing phycocyanin as an anti-inflammatory agent, and encapsulation could increase the anti-inflammatory effect dose-dependently. Therefore, a lower concentration of liposomal formulation had an impact equal to the higher concentration of free phycocyanin (47). Aisha et al. evaluated the liposomal formulation of Orthosphon stamineus extracts containing soybean phospholipids.

Liposome structure could increase the ethanolic extract solubility about four times, and the liposome entrapment efficiency reached 66%. Evaluation of the intestinal absorption showed significant enhancement that could result from higher aqueous solubility of the liposomal extract. The mentioned formulation could be a choice for oral or topical drug delivery (48). Matouskova et al. examined the antimicrobial activities of several herbal extracts encapsulated in different particles and compared the results with non-encapsulated extracts. The prepared particles were stable, and the antimicrobial effect was evaluated against four bacterial strains. The stability of liposomes was higher than chitosan particles, but the inhibitory effect of chitosan particles was very high (49). In contrast to previous studies, the liposomal extract’s antimicrobial effect was lower than the free form in the present study. As the liposome contains a bilayer structure, the membrane will lead to the sustainable
release of the loaded component that can be a reason for the lower effect of the liposomal form, but confirmation needs further studies.

Conclusion

In this study, the most abundant constituent of both essential oil compositions with beneficial biological effects was a hydrocarbon compound, hentriacontane. Significant anti-oxidant and antimicrobial activities of n-butanol and ethyl acetate extracts were mainly attributed to the high levels of phenolic and flavonoid constituents of *S. asperrimum* and *S. kurdicum*. The extracts were encapsulated in the liposomal formulation using the film hydration method, and the size of final liposomes was in the nanometer range; the result of liposomes antimicrobial activity was in conflict with previous studies, and the probable reason might be the existence of bilayer structure of liposome which retards the release of the extract. Further studies should be conducted to confirm the results of the present study. In vivo assessment of anti-oxidant and antimicrobial properties besides the toxicology studies of the extracts of *S. asperrimum* and *S. kurdicum* are consequently suggested.

Acknowledgment

The authors would like to extend their sincere thanks to Dr Nastaran Hashemzadeh (Pharm D, PhD of Pharmaceutical Nanotechnology) for grammatical revision and unawevering support and would like to thank the Research Vice-Chancellor of Tabriz University of Medical Sciences for financial support of this study (grant no: 63073). The results presented in this paper were part of a student (PhD) thesis, registered in Tabriz University of Medical Sciences (thesis no. 166).

Authors’ Contributions

EM, HN, FKH, and SM Conceived the study; EM, HN, HV, FKH, SM, and SH Collected and processed the data and performed experiments; EM, SM, SH, HN, and FKH Analyzed the data and prepared the draft manuscript; HN, SH, and EM Critically revised the paper; HN, HV, and SH Supervised the research; EM, HN, HV, FKH, SM, and SH Approved the final version to be published.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

1. Bilal M, Rasheed T, Iqbal H, Hu H, Wang W, Zhang X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int J Biol Macromol 2017; 103:554-574.
2. Sirbu R, Gabriela S, Tomescu A, Ionescu A, Cadar E. Evaluation of antioxidant and antimicrobial activity in relation to total phenolic content of green algae from black sea. Revista de Chimie 2019; 50:140-148.
3. Salehi B, Salehi B, Boyunegmez Tumer T, Ozleyen A, Rodriguez-Perez C, Ezzat SM, et al. *Symphytum* species: A comprehensive review on chemical composition, food applications and phytopharmacology. Molecules 2019; 24.
4. Mohan A, Alzubaidy A. A comparative systematic study of the genus *Symphytum* l. (Boraginaceae) with new first record of the species *Symphytum tuberosum* l. From iraQ. Plant Arch 2018; 18:2068-2076.
5. Nastić N, Borrás-Linares I, Lozano-Sánchez J, Švarc-Gajić J, Segura-Carretero A. Comparative assessment of phytochemical profiles of comfrey (*Symphytum officinale* L.) root extracts obtained by different extraction techniques. Molecules (Basel, Switzerland) 2020; 25:837.
6. Karimov V, Alizada V, Mehdiyeva N. Useful features of the species of Boraginaceae juss. Family spread in azerbaijan. Web of Scholar 2018; 2:4-12.
7. Rocha R, da Luz DE, Engels C, Pileggi SA, de Souza Jaccoud Filho D, Mattiello RR, et al. Selection of endophytic fungi from comfrey (*Symphytum officinale* L.) for in vitro biological control of the phytopathogen *Sclerotinia sclerotiorum* (Lib.). Braz J Microbiol 2009; 40:73-78.
8. Staiger C. Comfrey root: from tradition to modern clinical trials. Wien Med Wochenschr Suppl 2013;163:58-64.
9. Knaak N, da Silva LD, Andreis TF, Fiuza LM. Chemical characterization and anti-fungal activity of plant extracts and essential oils on the *Bipolaris oryzae* and *Gerlachia oryzae* phytopathogens. Australas Plant Pathol 2013; 42:469-475.
10. Svetlichny G, Külkamp-Guerreiro IC, Dalla Lana DF, Bianchini MD, Pohlmann AR, Fuenteafria AM, et al. Assessing the performance of copaiba oil and allantoin nanoparticles on multidrug-resistant *Candida parapsilosis*. J Drug Deliv Sci Technol 2017; 40:59-65.
11. Le V, Dolganyuk V, Sukhihkh A, Babich O, Ivanova S, Prosekov A, et al. Phytochemical analysis of *Symphytum officinale* root culture extract. Appl Sci 2021; 11:11-16.
12. Danafar H, Davaran S, Rostamizadeh K, Valizadeh H, Hamidi M. Biodegradable m-PEG/PCI Core-Shell Micelles: preparation and characterization as a sustained release formulation for curcumin. Adv Pharm Bull 2014; 4:501-510.
13. Kamran U, Bhatti HN, Iqbal M, Jamil S, Zahid M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganous nanoparticles synthesized from *Cinnamomum verum* bark extract. J Mol Struct 2019; 1179:532-539.
14. Singh A, Vengurlekar P, Rathod S. Design, development and characterization of liposomal neem gel. Int J Pharm Sci Res 2014; 5:140-148.
15. Tometti SS, Ahmady M, Ariaaaii P, Soltani MS. Extraction and encapsulation of *Laurus nobilis* leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. J Food Meas Charact 2020; 14:3333-3344.
16. Zengin G, Sinan KI, Ak G, Angeloni S, Maggi F, Caprioli G, et al. Preliminary investigation on chemical composition and bioactivity of differently obtained extracts from *Symphytum aintabicum* Hub.-Mor. &Wickens. Biochem Syst Ecol 2021; 94:104203.
17. Hamedeyazdan S, Fatemeh F, Afsanaashri S. Chemical composition of the essential oil from *Marrubium persicum* C. A. Mey. (Lamiaceae). Pharm Sci 2013; 19:35-38.
18. Ghasemian-Yadegari J, Hamedeyazdan S, Nazemiyyeh H, Fathiazad F. Evaluation of phytochemical, antioxidant and antibacterial activity on *Astragalus Chrysostachys* Boiss. Roots. Iran J Pharm Res 2019; 18:1902-1911.
19. Hamedeyazdan S, Sharifi S, Nazemiyyeh H, Fathiazad F. Evaluating antiproliferative and antioxidant activity of *Marrubium crassidens*. Adv Pharm Bull 2014; 4:459-464.
20. Fathiazad F, Mazandarani M, Hamedeyazdan S. Phytochemical analysis and antioxidant activity of *Hyssopus officinalis* l. from Iran. Adv Pharm Bull 2011; 1:63-67.
21. Plangsombat N, Rungsardthong K, Kongkaneramit L, Waranuch N, Sarisuta N. Anti-inflammatory activity of liposomes of *Asparagus racemosus* root extracts prepared by various methods. Exp Ther Med 2016; 12:2790-2796.
22. Gortzi O, Lalas S, Chinou I, Tsaknis I. Reevaluation of bioactivity and antioxidant activity of *Myrtus communis* extract before and after encapsulation in liposomes. Eur Food Res Technol 2020; 35:529-539.
2007; 226:583-590.

23. Babushok V, Linstrom P and Zenkevich I. Retention indices for frequently reported compounds of plant essential oils. J Phys Chem Ref Data 2011; 40:3-47.

24. Poma P, Labbozzetta M, Notarbartolo M, Bruno M, Maggio A, Rosselli S, et al. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandula rosmarinifolia (Boraginaceae) essential oil. PloS one 2018; 13:e0196947-e0196947.

25. Meccia G, Rojas LR, Velasco J, Diaz T, Usubillaga A, Arzola JC, et al. Chemical composition and antibacterial activity of the essential oil of cordia verbenacea from the Venezuelan andes. Nat Prod Commun 2009; 4:1119-1122.

26. Kazemi M. Essential oil composition of Anachusa italica from Iran. Chem Nat Compd 2013; 49:369-370.

27. Kim SJ, Chung WS, Kim SS, Ko SG, Um JY. Antiinflammatory effect of Oldenlandia diffusa and its constituent, hentriacontane, through suppression of caspase-1 activation in mouse peritoneal macrophages. Phytother Res 2011; 25:1537-1546.

28. Quintanilla-Licea R, Morado-Castillo R, Gomez-Flores R, Laatsch H, Verde-Star MJ, Hernández-Martínez H, et al. Bioassay-guided isolation and identification of cytotoxic compounds from Gymnosperma glutinosum leaves. Molecules 2012; 17:11229-11241.

29. Paun G, Neagu E, Moroeanu V, Ionescu E, Radu G. Phytochemical analysis and biological activity of the phenolic rich extract of Impatiens noli-tangere and Symphytum officinale. Planta Medica 2016; 81:51-5381.

30. Varvouni E-F, Zengin G, Graikou K, Ganos C, Mroczek T, Chinou I. Phytochemical analysis and biological evaluation of the aerial parts from Symphytum officinale Boiss. and Cynoglossus barrelieri (All.) Vural & Kit Tan (Boraginaceae). Biochem Syst Ecol 2020; 92:104128.

31. Gharib A, Godarzee M. Determination of secondary metabolites and antioxidant activity of some Boraginaceae species growing in Iran. Trop J Pharm Res 2016; 15:2459-2465.

32. Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA. Complement Alternat Med 2014; 2014:253875.

33. Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A Review. Int J Mol Sci 2018; 19:3-16.

34. Vostinaru O, Conea S, Mogosan C, Toma C, Borza C, Vlase L. Anti-inflammatory and antinociceptive effect of Symphytum officinale root. Rom Biotechnol Lett 2018; 23:14160-14167.

35. Üstün Alkan F, Anlas C, Ustuner O, Bakirel T, Sari A. Antioxidant and proliferative effects of aqueous and ethanolic extracts of Symphytum officinale on 3T3 Swiss albino mouse fibroblast cell line. Asian J Plant Sci 2014; 4:62-68.

36. Amic D, Davidović-Amić D, Beslo D, Trinajstići N. Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 2003; 76:55-61.

37. Ghasemzadeh A, Ghasemzadeh N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J Med Plant Res 2011; 5:6697-6703.

38. Maqsood S, Benjakul S, Abushelaibi A, Alam A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: a detailed review. Compr Rev Food Sci Food Saf 2014; 13:1125-1140.

39. Elisavet-Foteini V. Phytochemical analysis and biological evaluation of the aerial parts from Symphytum officinale Boiss. and Cynoglossus barrelieri (All.) Vural & Kit Tan (Boraginaceae). Biochem Syst Ecol 2020; 92:104128.

40. Sevgi K, Tepe B, Sarikurucu C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem Toxicol 2015; 77:12-21.

41. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019; 8:6-12.

42. Ozer S, Tiliı N. LC-ESI-MS/MS characterization of phytochemical and enzyme inhibitory effects of different solvent extract of Symphytum officinale. Ind Crops Prod 2019; 140:116666.

43. Trifan A, Opitz SEW, Josuran R, Grubelnik A, Esslinger N, Peter S, et al. Is comfrey root more than toxic pyrrolizidine alkaloids? Salvianolic acids among antioxidant polyphenols in comfrey (Symphytum officinale) roots. Food Chem Toxicol 2018; 112:178-187.

44. Vergun O, Brindza J, Rakhmetov D. Total antioxidant activity of plants of Symphytum L. species. Agrobiodivers Improv Nutr Health Life Qual 2017; 1:488-492.

45. Tufa T, Damianakos H, Graikou K, Chinou L. Comparative study of naphthoquinone contents of selected greek endemic Boraginaceae plants - antimicrobial activities. Nat Prod Commun 2017; 12:179-180.

46. Bouzada M, Fabri R, Nogueira M, Konno T, Garcia G, Scio E. Antibacterial, cytotoxic and phytochemical screening of some traditional medicinal plants in Brazil. Pharm Biol 2009; 47:44-52.

47. Manconia M, Penadás J, Ledón N, Moreira T, Sinico C, Saso L, et al. Phytochemical lipid oximation for topical anti-inflammatory activity: in-vitro in-vivo studies. J Pharm Pharmacol 2009; 61:423-430.

48. Aisha AF, Majid AM, Ismail Z. Preparation and characterization of nano liposomes of Symphytum officinale. J Injury Prev Safety Promot 2009; 4:1125-1140.

49. Matouskova P, Marova I, Bokrova J, Benesova P. Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technol Biotechnol 2016; 54:304-316.
کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در تدوین و چاپ مقالات
روش تحقیق کمی
آموزش نرم‌افزار برای پژوهشگران

Word