Pre-supernova evolution of rotating massive stars

Hirschi Raphael1, Meynet Georges1, Maeder André1, and Goriely Stéphane2

1 Observatoire de Genève, CH–1290 Sauverny, Switzerland
raphael.hirschi@obs.unige.ch
2 Université Libre de Bruxelles, Bruxelles, Belgique

Summary. The Geneva evolutionary code has been modified to study the advanced stages (Ne, O, Si burnings) of rotating massive stars. Here we present the results of four 20\,M\odot stars at solar metallicity with initial rotational velocities, \(v_{\text{ini}}\), of 0, 100, 200 and 300\,km/s in order to show the crucial role of rotation in stellar evolution. As already known, rotation increases mass loss and core masses [4]. A fast rotating 20\,M\odot star has the same central evolution as a non-rotating 26\,M\odot. Rotation also increases strongly net total metal yields. Furthermore, rotation changes the SN type so that more SNIIb are predicted (see [5] and [6]). Finally, SN\,1987A–like supernovae progenitor colour can be explained in a single rotating star scenario.

1 Computer model

The computer model used is the Geneva evolutionary code (see [5]). Conve-
tective stability is determined by the Schwarzschild criterion. The overshooting parameter, \(\alpha_{\text{over}} = d_{\text{over}}/H_P\) is equal to 0.1 for Hydrogen– and Helium–burning cores and equal to 0 afterwards. Modifications have been made to study the advanced stages of the evolution of rotating massive stars. Dynamical shear has been included using \(Ri_c = 1/4\) [2]. Note that the computer model still includes secular shear and meridional circulation. The structure equations have been stabilised using Sugimoto’s prescription [7]. Furthermore, convection is treated as diffusion from the Oxygen (O) burning stage because convection is no longer instantaneous. The algorithm developed for rotational mixing is used for this purpose. Finally, the nuclear reaction network has been extended and contains all the multiple-\(\alpha\) elements up to \(^{56}\text{Ni}\) except \(^8\text{Be}\). The reaction rates are taken from the NACRE compilation or Hauser-Feschbach code calculations (ULB, Belgium).
2 Evolution

The early evolutionary stages are presented in [5]. Here we concentrate on solar metallicity \(20\, M_\odot\) stars and study the effect of rotation by examining four models with initial rotational velocities of 0, 100, 200 and 300\,km/s. Calculations have been followed until end of central O–burning for the \(v_{\text{ini}} = 100\) and 200\,km/s models, end of central Si–burning for the \(v_{\text{ini}} = 300\,\text{km/s}\) model and end of first shell Si–burning for the non-rotating model.

2.1 Hertzsprung–Russell (HR) diagram

![HR Diagram](image)

Fig. 1. HR diagram for the solar metallicity \(20\, M_\odot\) stars with initial rotational velocities of 0, 100, 200 and 300\,km/s.

Figure 1 shows the evolutionary tracks of the four different \(20\, M_\odot\) stars in the HR diagram. The non-rotating model ends up as a red supergiant (RSG) like other group models (see e.g., [1] or [3]). However, the rotating models show very interesting features. Although the 100\,km/s model remains a RSG, the 200\,km/s model undergoes a blue loop to finish as a yellow–red supergiant whereas the 300\,km/s model ends up as a blue supergiant (BSG). Thus rotation may strongly affect the shock wave travel time through the envelope when the star explodes in a supernova event, since this time is proportional to the radius of the star (RSG radii are about hundred times BSG ones). Moreover, the behaviour of the models with \(v_{\text{ini}}\) between 200 and 300\,km/s is reminiscent of the evolution of the progenitor of 1987A indicating that rotation may play a role in similar cases.
2.2 Central evolution

The central evolution is best seen in the central temperature, T_c, versus central density, ρ_c, diagram (Fig. 2). We can see that rotation makes the cores slightly less degenerate (higher T_c and smaller ρ_c). This is explained by the bigger core masses. We also see that the “C–bump” due to the convective central C–burning fades away when rotation increases (see also Fig. 3). This is again a consequence of more massive cores in rotating models which implies higher neutrino loss rates and smaller central carbon abundance at the end of He–burning phase.

![Fig. 2. T_c versus ρ_c diagram.](image)

3 “Pre-SN” models

3.1 Mass loss and core masses

We can see in Fig. 4 that both mass loss and Helium (He) core masses, M_α, increase with rotation as already known. There is a saturation effect at high rotation when the star is left with hardly any Hydrogen (H) envelope. As can be seen in [5], rotation noticeably increases the number of Wolf-Rayet stars (WR). Here we see that there is a smooth transition between SN type from IIP \rightarrow IIL \rightarrow IIb (\rightarrow Ib). We also note that the $v_{ini} = 300$ km/s $20 M_\odot$ model has a bigger He core than the non-rotating $25 M_\odot$ model (it would correspond to the core of a non-rotating $26 M_\odot$ model). The Carbon–Oxygen core mass, M_{CO}, increases with rotation in a similar way as M_α. The Silicium (Si) core mass at the end of central O–burning only slightly increases with rotation.
3.2 Abundances profile and net yields

In Fig. 5 we notice the smoother profiles due to rotational mixing and also the very small quantity of remaining H. The “pre-SN” net yields calculated at this stage show that rotation increases the total metal yield and ^{16}O yield. Typically, the total metal yield of the $v_{\text{ini}} = 300\text{ km/s}$ model is twice the one of the non-rotating model. On the other hand, rotation decreases H–burning products yields (notably ^4He) as can be seen in Fig. 6.
Fig. 5. Abundances profile for main elements at the end of central Si-burning. Left non-rotating 20 M_{\odot} model. Right $v_{\text{ini}} = 300$ km/s 20 M_{\odot} model.

Fig. 6. Net yields of the sum of all metals, Y_{Z}, and individual elements as a function of v_{ini}.

References

1. A. Heger, & N. Langer, ApJ, 544, 1016 (2000)
2. R. Hirschi et al.: Dynamical shear instability. In: Stellar rotation, IAU 215, ed by A. Maeder and P. Eenens (in press, astro-ph/0301357)
3. M. Limongi, O. Straniero, & A. Chieffi, ApJS, 129, 625 (2000)
4. G. Meynet, & A. Maeder, A&A, 361, 101 (2000)
5. G. Meynet, & A. Maeder, A&A, 404, 975 (2003)
6. N. Prantzos, & S. Boissier, A&A, 406, 259 (2003)
7. D. Sugimoto, ApJ, 159, 619 (1970)