Repulsion of the Futsal Ball Depending on the Pressure in it

Dusko Bjelica¹, Zoran Milosevic², Munir Talovic³, Izet Bajramovic³

¹University of Montenegro, Faculty for Sport and Physical Education, Niksic, Montenegro, ²University of Novi Sad, Faculty of Sport and Physical Education, Novi Sad, Serbia, ³University of Sarajevo, Faculty for Sport and Physical Education, Sarajevo, Bosnia and Herzegovina

Abstract

The aim of this research is to determine the elastic (repulsive) properties of the futsal ball depending on the air pressure in it. Futsal ball of standard dimensions was released on the flat solid surface from the height of nine meters for four times. At the first release the air in the ball was under prescribed pressure. At the second release the pressure in the pumped ball is reduced by 5%, at the third reduced by an additional 5%, at the fourth reduced by another 5%. The setting of the experiment was carried by cinema shooting of free fall of the prescribed futsal ball and a series of rebounds after the rejection of solid surfaces. One can conclude that the distance crossed and the total duration of four successive bouncing mostly dependent on inner pressure. In this study, the initial speed of a futsal ball was unchanged and only inner pressures were changed. It was determined how much the height of the rebound is reduced and the duration of the rebound, respectively, depending on the reduction of inner pressure. Overall, it can be concluded that the initial speed of the ball can be increased by increasing the inner pressure in the ball.

Key words: futsal, pressure in futsal ball, repulsion

Introduction

Within physical development program the games have a dominant role, and among all games the most important are the ball games. In our environment the futsal occupies one of leading roles when the ball games are in focus. The most important equipment of these games is ball (Karimi et al., 2015). Today, all kind of balls are produced whose construction has been getting closer to full symmetry, but the ideal symmetry of the ball has not been reached yet!

Basically, the futsal match is, strategically speaking, the battle for space and time. Those are the most important components in the ball games (Bjelica, Popović, Gardašević, & Krivokapić, 2016). Ball sports such as futsal place large metabolic demands on players (Hatamoto et al., 2014). In a good match, each player makes a lot of elementary muscular contractions at the field, providing a series of complex movements, in a struggle to come into possession of the ball before the opponent player, to enter the zone from where the score can be reached before being distracted by the opponent player (Bjelica, Popovic, Tanase, & Gardasevic, 2017; Bjelica, Popović, & Gardašević, 2016a; 2016b). Since such maneuver takes place continuously and it is time-consuming, furthermore the modern maneuver, where there are already well-coordinated combinations, is being performed in the highest speed and in a state of maximum fatigue, each good futsal game maximally exhaust all players at the field.

The result of a futsal game is not been assessed by the level of motor performance nor who ran longer, or who is running faster, or who has jumped more, but by the number of goals scored. Therefore, all maneuvering movements during a game are subordinated to the ball movement. Ball is a machine, whose properties each player must be fully aware of (Bjelica, 2008). This is the primary reason why every player must be fully aware of the nature of the elastic properties of a futsal. The aim of this research is to determine the elastic (repulsive) properties of the futsal ball depending on the air pressure in it, which basically fall under the kinematic researches.
Method

Research conducted in this study primarily refers to the standard futsal ball for seniors with the following performances (Table 1):

Table 1. Dimensions of the futsal ball

Weight (kg)	Radius (m)	Circumference (m)	Cross-section (m²)	Surface (m²)	Capacity (m³)
0.41	0.1025	0.644	0.033	0.132	0.0045

Recently, sophisticated finite element models of sports ball impacts have been developed for various sports (Nevinsa & Smitha, 2013). A standard futsal ball with full symmetry was acquired from the licensee manufacturer. Both layers, one of which is required to construct a ball, have inevitable flaws, affecting the appearance of asymmetry, not huge but enough to cause changes, which do not exist in the ideal spherical body. Since in the cavity of the inner layer has to be pumped the air, there must be a valve, which, no matter how small is represents the asymmetry of the ball.

Futsal ball of standard dimensions was released on the flat solid surface from the height of nine meters for four times. The flight of a ball through the air is a key part of many popular sports (Barber, 2009). At the first release the air in the ball was under prescribed pressure – p (Table 2). At the second release the pressure in the pumped ball is reduced by 5% - p1 (pressure prescribed minus 5%, Table 2.). At the third release the pressure in the pumped ball is reduced by an additional 5% - p2 (pressure prescribed minus 5%, minus 5%, Table 2.) At the fourth release the pressure in the pumped ball is reduced by another 5% - p3 (pressure prescribed minus 5%, minus 5%, minus 5%, Table 2.). By calibrated gauge pressure the internal pressures were respectively measured.

Table 2. Air pressure in the futsal ball

(p)	Prescribed	(p1) reduced by 5%	(p2) reduced by 5%	(p3) reduced by 5%
0.65	0.6175	0.5865	0.5575	

A rather demanding calculation of repulsions coefficient value was made with one of the basic programs. The setting of the experiment was carried by cinema shooting of free fall of the prescribed futsal ball and a series of rebounds after the rejection of solid surfaces. The recording was performed with the rapid-professional digital movie camera JVC GY-HM750E with fifty shots per second and the exposure sec/100. During the shooting, the camera was completely immobilized. In the projection of the futsal ball movement the markers were measured (in meters), in order to determine the extent (R) between the size of the screen and the real size (R-size screen natural). During the research the area of the collision was determined by transmission contrasting colors of the ball and surface before the collision with the ground and measuring the surface impressions on the ball and the ground after the rebound. The duration of the movements is measured in seconds, i.e. every fifty positions lasted one second and the duration between two neighboring positions lasted sec/50. The processing took positions of falls of each ball and its four rebounds.

Results

Table 3. shows a global view of spatiotemporal parameters of repulsion of the futsal ball with full symmetry depending on the air pressure in it.

Table 3. Spatiotemporal parameters of repulsion of the futsal ball with different air pressures

parameters	Pressure of the ball			
	p	p1	p2	p3
h1 Height of free fall (m)	9	9	9	9
t1 Duration of the first fall (s)	1.10	1.10	1.00	1.08
t2 Duration of the first climbing (s)	0.58	0.44	0.40	0.40
h2 Height of the first rebound (m)	2.52	1.34	1.43	1.26
t3 Duration of the second fall (s)	0.58	0.40	0.42	0.40
t4 Duration of the second climbing (s)	0.38	0.24	0.18	0.18
h3 Height of the second rebound (m)	1.26	0.38	0.34	0.34
t5 Duration of the third fall (s)	0.40	0.18	0.20	0.14
56 Duration of the third climbing (s)	0.30	0.08	0.10	0.08
h4 Height of the third rebound (m)	0.80	0.21	1.17	0.25
t7 Duration of the fourth fall (s)	0.30	0.04	0.06	0.08
18 Duration of the fourth climbing (s)	0.20	0.00	0.04	0.04
h5 Height of the fourth rebound (m)	0.55	0.00	0.08	0.08

At the first phase, the diagrams 1, 2, 3 and 4 shows the futsal ball paths with spatiotemporal parameters in the first four rejections of solid surface, depending on the air pressure in it. In the vertical, there are culmination points of each rejection of the surface, measured in meters, and in the horizontal the length of each rejection of the surface is shown in seconds.
At the second phase it was carried out the interpolation of diagrams of duration of individual rebounds in a function of distance covered on diagrams 5, 6, 7 and 8, as well as interpolation of diagrams of culmination points of individual rebounds over the time in diagrams 9, 10, 11 and 12 with the entered data.
Diagram 5. Duration of rebound for p

Diagram 6. Duration of rebound for p1

Diagram 7. Duration of rebound p2

Diagram 8. Duration of rebound p3

Diagram 9. Height of rebound for p

Diagram 10. Height of rebound for p1
At the third phase it was shown the contours of diagrams of time intervals and culminating points for futsal ball, comparing to the tested pressures summary:

Diagram 11. Height of rebound for p2

Diagram 12. Height of rebound for p3

The contours 1. The time intervals summary

The contours 2. The culmination points summary
At the fourth phase were shown indexes of total duration and distance taken for futsal ball for four rebounds and four values of inner pressure (Table 4.), as well as associated diagrams 13, 14, 15 and 16 for each value of inner pressure separately:

Table 4. Indexes of total duration and distance taken

Distance (m)	Duration (s)	Index = path/time										
p	p1	p2	p3	p	p1	p2	p3	p	p1	p2	p3	
After first rebound	10.34	10.34	10.43	10.26	1.46	1.54	1.50	1.48	7.082	6.714	6.950	6.932
After second rebound	10.63	10.72	10.77	10.60	2.06	1.82	2.10	2.06	5.160	5.890	5.129	5.146
After third rebound	10.84	10.69	11.94	10.85	2.21	2.08	2.40	2.28	4.905	5.140	4.975	4.759
After fourth rebound	0.00	0.00	10.55	10.53	0.00	0.00	2.50	2.40	0.000	0.000	0.000	0.000

- **Diagram 13.** Total duration and distance for p
- **Diagram 14.** Total duration and distance for p1
- **Diagram 15.** Total duration and distance for p2
- **Diagram 16.** Total duration and distance for p3
Discussion

Looking at the sum of ball paths from the time of release to the culmination point of the fourth rebound as well as the duration of the bouncing ball from the start of the free fall until culmination point of fourth rebound, one can conclude that the distance crossed and the total duration of four successive bouncing mostly depend on inner pressure. Inflated futsal ball, with the compressed air pressure greater than atmospheric, when the pressure decreases, it less bounces from the ground even though nothing in its structure has changed. The rebound of the ball is a consequence of the aspirations of compressed air, that in the period of restitution “correct” the deformed part of the ball, which was created by compression. When the air pressure in a ball is higher, the bigger is the compression, and the bigger compression, the greater will be the restitution i.e. the harder rebound from the ground.

The heights of culmination points of a futsal ball with all four rebounds, of which almost all were taken into account when concluding, are the metric values, which in this experiment at least unreliable. The degree of deviation from the ideal value is almost negligible and based on the obtained height values of culmination points can be reliably concluded. After calculating the futsal ball repulsions coefficient, for every air pressure and every rebound it was found that the repulsion coefficient is from 0.38 to 0.57.

In this study, the initial speed of a futsal ball was unchanged and only inner pressures were changed. It was determined how much the height of the rebound is reduced and the duration of the rebound, respectively, depending on the reduction of inner pressure. Overall, it can be concluded that the initial speed of the ball can be increased by increasing the inner pressure in the ball.

Acknowledgements

There are no acknowledgements.

Conflict of Interest

The authors declare that there are no conflict of interest.

Received: 09 January 2018 | Accepted: 15 February 2018

References

Barber, S., Chin, S. B., & Carré, M. J. (2009). Sports ball aerodynamics: A numerical study of the erratic motion of soccer balls. Computers and Fluids, 38(6), 1091-1100.
Bjelica, D., Popović, S., Tanase, G.D., & Gardasevic, J. (2017). Dependence of female ball in handball repulsion on the pressure within this sport. Acta Kinesiologica, 17(Suppl. 1), 67-72.
Bjelica, D., Popović, S., & Gardasevic, J. (2016a). Dependence of basketball repulsion on the pressure within this sport. Journal of Physical Education and Sport, 16(1), 125 - 131.
Bjelica, D., Popović, S., & Gardasevic, J. (2016b). Pressure dependence of handball repulsion within this sport. Journal of Physical Education and Sport, 16(Suppl 2), 1078-1083. doi:10.7752/jpes.2016.2172
Bjelica, D., Popović, S., Gardasevic, J., & Krivokapic, D. (2016). Dependence of Football Repulsion on the Pressure Within This Sport. Journal of Physical Education and Sport, 16(2), 452-458. doi:10.7752/jpes.2016.02069
Bjelica, D. (2014). Repulzija sportskih lopt, naučna studija. Crnogorska sportska akademija, Podgorica, Fakultet za sport i fizičko vaspitanje Nikšić.
Bjelica, D. (2008). Sportski trening. Nikšić: Fakultet za sport i fizičko vaspitanje.
Hatamoto, Y., Yamada, Y., Sagayama, H., Higaki, Y., Kyonaga, A., & Tanaka, H. (2014). The Relationship between Running Velocity and the Energy Cost of Turning during Running. Procedia Engineering 60, 1-8.
Karimi, A., Kudo, S., Razaghi, R., & Navidbakhsh, M. (2015). Measurement of the mechanical properties of the handball, volleyball, and basketball using DIC method: a combination of experimental, constitutive, and viscoelastic models. Sport Sciences for Health, 11(3), 295-303.
Nevinsa, D., & Smitha, L. (2013). Influence of ball properties on simulated ball-to-head impacts. Procedia Engineering 60, 4–9.

At the fifth phase calculated are the repulsion coefficients for futsal ball, for each pressure, for each duration and each height reached (Table 5).

Pressure	After first rebound	After second rebound	After third rebound	After fourth rebound	The average values
p (0.65)	0.39	0.47	0.85	0.00	0.57
p1 (0.6175)	0.38	0.41	0.88	0.00	0.57
p2 (0.5865)	0.37	0.38	0.80	0.00	0.38
p3 (0.5575)	0.37	0.34	0.75	0.00	0.49