The effects of a unique medium chain triglyceride complex on migraine symptoms: A beta pilot study

Neil Ernest Wolkodoff 1, *, Gerald Martin Haase 2 and Robert Alexander Firger 3

1 Medical Program Director, Colorado Center for Health & Sport Science, Denver, Colorado, USA.
2 Clinical Professor of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA.
3 Independent MCT Researcher & Investigator, Bloomfield, Connecticut, USA.

Publication history: Received on 05 December 2020; revised on 12 December 2020; accepted on 14 December 2020

Article DOI: https://doi.org/10.30574/wjarr.2020.8.3.0479

Abstract

Purpose: Migraine headaches are among the most common worldwide medical issues, and various drug therapies only offer limited relief. Medium chain triglyceride (MCT) oil has demonstrated clinical benefits in multiple domains, from enhanced overall energy to increased brain function. This pilot study investigated the potential relief provided from a unique proprietary formulation, including a high concentration MCT-containing blend on migraine frequency, duration, and severity over 30 days.

Methods: Fourteen (n=14) chronic migraine sufferers (migraineurs) were prospectively selected to participate in the open-label trial of this patented complex. Participants were instructed to maintain a consistent lifestyle, health factors, and medications while consuming the study compound. Because of the current Corona virus pandemic, the original paper version of the migraine survey was converted to an electronic response form to allow subjects increased safety in rating episodes and symptoms.

Results: Overall, the subjects reduced the number of migraine episodes by 39% from the baseline period compared to after 30 days of using the supplement. The average episode duration decreased from 388 minutes to 152 minutes, a 61% reduction. Days/events missed due to migraine severity or complications were reduced from five per month to two per month, a decrease of 60%. A combined measure of specific symptoms also decreased according to subject rating, by an average of 32%.

Conclusion: In this beta pilot study, consumption of a high concentration MCT complex produced significant improvements in migraine symptoms in the three significant episode realms of frequency, duration, and lost days due to dysfunction. In addition, migraine symptom surveys can be converted to electronic record keeping, a benefit for both the patient and the clinician. These outcomes have provided further impetus to pursue a rigorous study of specific MCT products to reduce migraine symptoms. A formal confirmatory placebo-controlled trial has been initiated.

Keywords: Migraine; medium chain triglyceride; MCT; headache; Onabotulinum toxin A; serotonin; metabolism; pain; ketones; ketogenic; migraine prevention; 3-hydroxybutyrate.

1. Introduction

Migraine headache is the 3rd most prevalent global illness, with an estimated 12% of the overall population suffering from this condition, including about 40 million people in the U.S. Also, migraine has a high percentage of episodes resulting in both temporary and long-term disability due to lost employment, education, housework, recreation, and other activities [1-4].
As this condition has been classified as a neurological disease, with a multiplicity of potential causes and factors, the diagnosis and treatment can be elusive [5-10]. Some migraines, depending upon the level of severity endured, do not seek help until the symptoms become so pervasive that it is apparent that the related morbidity and life disruption are overwhelming [11-14]. An additional consideration is that many sufferers are forced to miss work, education, or social events due to a migraine episode's length and severity. This factor has been attributed to why migraineurs may not admit symptoms, as there is a perceived negative social stigma to the condition.

While drug treatment for migraines has improved, it is not yet anywhere near 100% effective. There have been several types of drugs (as well as onabotulinum toxin A and neuromodulation for pain signaling) used historically to attempt to control symptoms [15, 16]. Relatively recently, pharmaceuticals have been approved directly for migraine prevention and treatment. There are two oral medications – dитans (5-HT receptor agonists of dopamine pathway) and gepants (calcitonin gene-related peptide receptor antagonists) used for treatment, as well as monoclonal antibodies administered by subcutaneous or intravenous injections targeted for prevention [17-19]. However, they have potential adverse side effects such as dizziness, nausea, fatigue, somnolence, and sedation. They are also expensive (up to several hundred dollars per month), yet some people may pay significantly less with commercial insurance [19, 20]. These drugs have been generally approved based on a reduction in episode frequency [21, 22]. The data shows that the best results (50% or more significant reduction in episodes) occur after taking the medications for extended periods. There appears to be increasing improvement, the longer the drug is taken.

Because of this situation, many migraineurs may express a high interest in "natural" non-pharmaceutical treatments. Ketones have gained increased awareness in a variety of positive roles, from energy to brain health. They are essentially made in the liver from MCTs and sent to the brain for fuel. Also, recent attention to the benefits of both ketogenic diets and compounds such as MCTs [23, 24, 25], has engendered momentum to use these strategies and products for migraine reduction as well as cognitive improvements [26, 27]. In brain function related to fuel availability, ketones are used independently of glucose and take on more importance as one gets older. Additional investigation has shown that ketogenic programs, and more potently MCT products, positively influence a wide range of cognitive functions from basic thinking to potential effects in dementia [28-31]. While there are some probable reasons for this positive response, providing consistent fuel for the brain in ketones usually has demonstrated clinical benefits and is often attributed as the dominant initial cause of positive effects.

It has been theorized that ketogenic approaches, and specifically MCT compounds, would provide a natural path for migraine improvement. While positive overall, investigations with ketogenic diets do not differentiate between the ketogenic component's benefits versus the reduction of simple carbohydrates. Thus, with a ketogenic nutritional approach, it may have been that much lower carbohydrate levels were contributing factors in migraine reduction and more evenly available energy sources. To a degree, exogenous MCT products, which are ketogenic by themselves, likely have a mediating effect of lowering glycemic index, thus acting biologically as part of the overall total nutritional intake [32-35]. This approach may allow migraineurs to receive the benefits of a ketogenic strategy while permitting less dietary restriction.

The purpose of this pilot investigation was two-fold. First, can a specifically formulated MCT complex, without restriction and reference to other factors such as dietary regimes, lifestyle, or medications, reduce migraine symptoms, severity, duration, and episode frequency? If the initial results were favorable, it would provide the impetus for further study to determine potential relief in a rigorous clinical trial model. Secondly, because migraine sufferers are often incapacitated due to the symptom severity and duration, it was essential to determine if a revised migraine scale, based on previously validated questionnaires, could be converted to an electronic format that would allow migraineurs to more efficiently, safely (especially in light of COVID-19), and rapidly provide their insights and responses thereby improving accuracy and decreasing recall bias.

2. Material and methods

Migraine sufferers were recruited based upon initial criteria that included an average of six to 15 migraine episodes per month and a consistent lifestyle and medication regimen. Applicants were also instructed to have a capable smartphone, tablet, or computer for forms and rating scales. Those meeting all requirements were then instructed to fill out complete medical history forms, a standard consent form, and a detailed migraine description evaluation, which would be completed again at the end of the project (Table 1). This novel hybrid instrument was developed to avoid common problems noted with other scales. These issues include being too lengthy, requiring responses too frequently, prolonged study periods leading to recall bias and lowered compliance, as well as proprietary forms that required payment for use [36-39]. Subject applicants were then reviewed and approved by the Colorado Center for Health and Sports Science Institutional Review Board (CCHSS IRB), with fourteen (N=14) subjects being accepted into and completing the study.
For the 30 days before initiating supplement consumption, participants rated migraine frequency, duration, missed life episodes (employment, education, housework, and social activities), as well as individual symptom factors for average episodes. The individual factors were rated on a scale from 0-100, with significant rating points of 0 being no issues, 50 having moderate issues, and 100 showing severe issues. It appeared reasonable that this approach would allow the subject more latitude in assigning values to symptom severity. The symptom details to be monitored are listed in Table 1. It was also determined from a literature review and subject interviews that a combination of migraine scales and individual factors was the appropriate strategy to determine the most meaningful effects of the study supplement [40-43]. This strategy appeared to provide a greater view concerning how a unique MCT compound might or might not benefit migraineurs.

Table 1 Survey Parameters

Primary Survey Measures	Secondary Survey Measures
Number of Migraine Incidents	Light Sensitivity
Average Minutes per Incident	Sound Sensitivity
Number of Days/Events Lost Due to Migraines	Nausea
	Pain on One Side
	Vision Changes/Blurred Vision
	Vomiting
	Mood Changes
	Feeling Drained
	Vertigo/Dizziness
	Throbbing/Pulsating Pain

As this was a contact-less study during the global pandemic, the supplement was individually shipped to each participant. The product consisted of the proprietary MCT complex, Fuel4Thought™ (F4T™), employing a mild fruit-flavor taste profile. Subjects were instructed to take the supplement (generally with some food) at the same time every day at their preference. They were further directed to maintain consistent lifestyle patterns, work, medical treatments, and anything else that was part of the daily routine.

3. Results

The self-reported scale and questionnaire data compared migraine parameters and symptoms for the 30-day baseline period before supplementation to that after consuming the supplement for 30 days. Values are reported as simple, descriptive numbers since this pilot study utilized an open-label design with no control group (Table 2).

Total 30-day reported migraine frequency decreased from an average of 9.91 episodes to 6.03, a reduction of 39%. In addition, the maximum and minimum reported values also dropped in a parallel manner (Figure 1).

![Figure 1 Total Migraine Episodes](image-url)
Table 2 Overall Results Summary

Parameter/Variable	Baseline	After Supplementation	Change	% Change
Primary Measures				
Episodes/30 Day Average	9.91	6.03	-3.88	39%
Minutes per Episode	388	152	-236	61%
Days Lost	5	2	-3	60%
Work/School/Social				
Throbbing, Pulsating Pain	77	51	-26	34%
Light Sensitivity	62	34	-28	45%
Sound Sensitivity	57	36	-21	37%
Nausea	40	37	-3	7%
Pain on One Side	72	54	-18	25%
Vision Changes	32	25	-7	22%
Vomiting	10	8	-2	20%
Mood Changes	6	4	-2	33%
Feeling Drained	61	38	-23	38%
Vertigo/Dizziness	30	19	-11	37%
Average	44.7	30.6	-14.1	32%

The average duration per migraine episode also decreased from 388 minutes to 152 minutes. The maximum and minimum values were also reduced from the baseline to post-supplement period further indicating the group trend (Figure 2).

![Average Minutes per Episode 30 Day Comparison](image)

Figure 2 Average Minutes per Migraine Episode

The number of days lost to migraine episodes in such areas as employment, education, housework, or social situations fell from an average of five per month to two per month (Figure 3). The maximum and minimum number levels also improved. For the maximum level, three subjects reported ten days lost during the baseline period, while only one participant lost ten days after supplementation. Four subjects reported no lost days during the baseline period for the minimum levels, which increased to seven participants who lost no days after supplementation.
The secondary migraine symptoms also showed decreases across the scale after consuming the supplement. (Figure 4). In this self-reported section, subjects were directed to rate the amount of disability or effect during each migraine incident. The scale allowed flexibility since subjects could use the sliding scale to add fine points of effect for each parameter. Percentage decreases were as follows: throbbing pain 34%, light sensitivity 45%, sound sensitivity 37%, nausea 7%, single-sided pain 25%, vision changes 22%, vomiting 20%, mood changes 33%, feeling drained 38%, and vertigo/dizziness 37%. The average decrease for the combination of all secondary measures was 32%.

4. Discussion

As this was a beta trial with a limited number of subjects and no placebo control group, the results should be considered observational and exploratory. However, the degree of beneficial outcomes was substantial, considering that the study compound was a natural supplement and not a pharmaceutical drug. While not directly comparable, the results appear quite favorable in terms of positive effect compared to migraine medications that recently received regulatory approval and became commercially available [15, 18].

In addition, while not formally reported, a survey of subjects after the initial 15 days of consuming the supplement already showed dramatic improvement, which was further heightened during the last 15 days of supplementation. A substantial portion of the ultimate 30-day benefit was already reported in the interim (15 days) survey for migraine frequency, duration, and symptom severity. This result trend appears to conform to what is observed for approved preventive pharmaceuticals that routinely demonstrate increasing benefit the longer the drug is taken [17, 22, 44].

It appears that exogenous MCT products and ketogenic diets can improve brain energy by increasing ketone and overall energy levels [26]. It also seems that MCTs have a function in repairing specific brain-cell damage. Another set of factors
to be considered is the relationship between the flora of the intestines and documented weight maintenance, and various applications from cognitive health to performance improvement [45, 46, 47]. In further physiological terms, MCT oils have been demonstrated to aid in energy regulation, both with regular activity and intense exertion [48-51].

Several mechanisms of action may be implicated in the effects related to ketogenesis in migraineurs. Mounting scientific data has recently shown that migraines are, in significant part, a response to cerebral energy deficiencies or oxidative stress levels exceeding those that can be managed by natural physiologic antioxidant activity. Ketones are an alternative fuel source for the brain and may address certain deficiencies in the human brain to adequately manage glucose metabolism that is imbalanced in migraines. Ketones act as signaling molecules for energy substrates and thus may manage other components of migraine physiology such as underlying mitochondrial function, inflammation, and oxidative stress.

Oxidative stress has injurious effects on cells, tissues, organs, body proteins, lipids, and DNA. If damage occurs to neurons, resulting neurological conditions may occur, including migraine headaches. In addition to excess free radicals, acute and chronic inflammatory reactions also contribute to the spectrum of injury. Neurogenic inflammation, cellular extravasation, vasodilatation, mast cell activation, and the release of pro-inflammatory mediators may stimulate trigeminal nerve afferents leading to symptom sensitization in the migraineur [52, 53]. Exogenous ketogenic MCT can impact these factors and improve migraine pathophysiology. Simultaneously, the ketone body 3-hydroxybutyrate, the principle ketone produced by MCTs metabolism and the active ketone agent for brain energy, can reduce inflammation and address aspects metabolic-related disorders. Ketones appear to have a strong anti-inflammatory response. Thus, various likely causative mechanisms in migraines may account for the positive MCT effect, including metabolites as signaling molecules, efficient mitochondrial energy generation, oxidative damage, inflammation, brain stimulation, and hyper-excitability, and even signaling feedback with the overall human microbiome [23, 26, 51].

Finally, it is theorized that the MCT combination used in this study also resulted in the subjects having more energy with subsequently improved attention to lifestyle, thereby mitigating migraine frequency and severity. Healthy intestinal flora and function are related to serotonin and dopamine, compounds that improve mood and may modulate migraine headaches [54]. Robust microbial health while reducing harmful bacterial levels can lower brain inflammation and other positive health benefits [24, 55, 56, 57, 58]. Quality of life factors, as noted previously, are serious components of the disease, and their improvement is a significant positive aspect of the management and improvement of the migraineurs’ experience.

5. Conclusion

This study introduces a natural, safe, cost-effective supplement intended to address migraine symptoms and rapidly provides beneficial effects. The supplement also shows improvements in episode frequency, duration, symptom severity, and limitation of daily activities. The product does not require a prescription and has not been associated with adverse side effects. In conclusion, there is now an efficacious alternative to pharmaceutical drugs in the challenge to improve the quality of life in migraineurs. It appears that this supplement can also be used alone or in combination with other drug and non-pharmaceutical interventions to address this disabling chronic medical condition. While this study had limited participant numbers and no control group, the results were so encouraging that a formal confirmatory clinical trial is being undertaken.

Compliance with ethical standards

Acknowledgments

The manufacturer of the product, Healthy Extracts (HE), provided the product for the study. Otherwise, HE had no input to study design, data gathering, or final format. GMH and RAF provided content relative to MCT background and mechanistic interactions from their extensive knowledge and experience with MCT products. They were not involved in study design, data acquisition, or initial study authorship. NEW was responsible for study design, research mechanics and protocol, and subject monitoring. In addition, NEW was the initial author of the paper and orchestrated the final form.

Disclosure of conflict of interest

RAF and GMH are shareholders in HE but did not contribute to study design, data collection, or result analysis. All parties did review the final document for accuracy. NEW reports no conflicts of interest with the project.
Statement of informed consent

All subjects were provided with an informed consent as to the study's purposes and possible side effects and alternatives. These were affirmed verbally with each subject before signature and then given to the CCHSS IRB for review and approval. Subjects were informed that results would be pooled into overall results, but no self-identifying information would be released during or after the study.

References

[1] Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF, et al. on behalf of the AMPP advisory group. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007; 68:343-3.

[2] Migraine research foundation. Migraine facts. 2 November 2020. Available at: https://migraineresearchfoundation.org/about-migraine/migraine-facts/

[3] Blumenfeld AM, Varon SF, Wilcox TK, Buse DC, Kawata AK, Manack A, et al. Disability, HRQoL and resource use among chronic and episodic migraineurs: results from the international burden of migraine study (IBMS). Cephalalgia. 2011; 31(3):301-315.

[4] World health organization. headache disorders. fact sheet N°277. 2016. Available at: https://www.who.int/news-room/fact-sheets/detail/headache-disorders

[5] Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016; 388:1545–1602.

[6] Katsarava Z, Buse DC, Manack AN, Lipton RB. Defining the differences between episodic migraine and chronic migraine. Curr pain headache rep. 2012; 16:86-92.

[7] Headache classification committee of the international headache society (IHS). The International classification of headache disorders, 3rd edition. Cephalalgia. 2018; 38(1):1-211.

[8] Hjalte F, Olofsson S, Persson U, Linde M. Burden and costs of migraine in a Swedish defined patient population - a questionnaire-based study. J headache pain. 2019; 20(1): 65.

[9] Waeb er C, Moskowitz CA. Migraine as an inflammatory disorder. Neurology. May 2005; 64(10 suppl 2): S9-S15.

[10] Buse DC, Manack AN, Fanning KM, Serrano D, Reed ML, Turkel CC, et al. Chronic migraine prevalence, disability, and sociodemographic factors: results from the American migraine prevalence and prevention study. Headache. 2012; 52(10):1456–1470.

[11] Pietrobon, D. and Moskowitz, M. Pathophysiology of migraine. Annu. rev. physiol. 2013; 75:365-91.

[12] Gross EC, Lisicki M, Fischer D, Sandor PS, Schoenen J. The metabolic face of migraine. Nat. neurosci. 2019; 7(50): 708–718.

[13] Nahin RL, Boineau R, Khalsa PS, Stussman BJ, Weber WJ. Evidence-based evaluation of complementary health approaches for pain management in the United States. Mayo clin proc. 2016; 91(9):1292-1306.

[14] Leonardi M, Raggi A. A narrative review on the burden of migraine: when the burden is the impact on people's life. J headache pain. 2019; 20(1): 41.

[15] Steiner TJ, Sovner LJ, Vos T, Jensen R, Katsarava Z. Migraine is first cause of disability in under 50s: will health politicians now take notice? J headache pain. 2018;19:17.

[16] Herd CP, Tomlinson CL, Rick C, et al. Botulinum toxins for the prevention of migraine in adults. Cochrane database syst rev. 2018; 6(6):CD011616.

[17] Do TP, Guo S, Ashina M. Therapeutic novelties in migraine: new drugs, new hope? J headache pain. 2019; 20(1): 37.

[18] Raffaelli B, Neeb L, Reuter U. Monoclonal antibodies for the prevention of migraine. Expert opin biol ther. 2019; 19(12): 1307-1317.

[19] Curto M, Capi M, Cipolla F, Cisale GY, Martelletti P, Lionetto L. Ubrogepant for the treatment of migraine. Expert opin pharmacother. 2020; 21(7):755-759.
[20] Dodick DW, Lipton RB, Ailani J, Lu K, Finnegan M, Trugman JM, et al. Ubrogepant for the treatment of migraine. N Engl J Med. 2019; 381(23):2230-2241.

[21] Tfelt-Hansen P, Loder E. The Emperor’s new gepants: Are the effects of the new oral CGRP antagonists clinically meaningful? Headache. 2019; 59(1):113-117.

[22] Nguyen J, Hu D. Further questioning of the significance of the gepants. Headache. 2019; 59(10):1829-1830.

[23] Croop R, Goadsby PJ, Stock DA, Conway CM, Forshaw M, Stock EG, et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo-controlled trial. Lancet. 2019; 394(10200):737–745.

[24] Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson GS, Hyde K, et al. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging. 2004; 25(3):311-4.

[25] Rial SA, Karels AD, Bergeron KF, Mounier C. Gut microbiota and metabolic health: the potential beneficial effects of a medium chain triglyceride diet in obese individuals. Nutrients. 2016; 8(5):281.

[26] Ricci A, Idzikowski MA, Soares CN, Brietzkze E. Exploring the mechanisms of action of the antidepressant effect of the ketogenic diet. Rev neurosci. 2020; 31(6):637-648.

[27] Gano LB, Patel M, Rho JM. Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. 2014; 55(11):2211-2228.

[28] Brietzkze, E., Mansur, R. B., Subramaniapillai, M., Balanž-Martínez, V., Vinberg, M., González-Pinto, A., et al. Ketogenic diet as a metabolic therapy for mood disorders: evidence and developments. Neurosci Biobehav Rev. 2018; 94:11-16.

[29] Croteau E, Castellano CA, Fortier M, Bocti C, Fulop T, Pacuet N, et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exp Gerontol. 2017; 107:18-26.

[30] Włodarczyk A, Cubala WJ. Mechanisms of action of the ketogenic diet in depression. Neurosci Biobehav Rev. 2019; 107:422-423.

[31] Rebello CJ, Keller JN, Liu AG, Johnson WD, Greenway FL. Pilot feasibility and safety study examining the effect of medium chain triglyceride supplementation in subjects with mild cognitive impairment: A randomized controlled trial. BBA Clin. 2015; 3:123-125.

[32] Zhao W, Varghese M, Vempati P, Dzhun A, Cheng A, Wang J, et al. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One. 2012; 7(11):e49191.

[33] Hufnagl KN, Peroutka SJ. Glucose regulation in headache: Implications for dietary management. Expert Rev Neurother. 2002; 2:311–317.

[34] Warrilow A, Mellor D, McKune A, Pumpa K. Dietary fat, fibre, satiation, and satiety—a systematic review of acute studies. Eur J Clin Nutr. 2019; 73(3):333-344.

[35] Bell KJ, Smart CE, Steil GM, Brand-Miller JC, King B, Wolpert HA. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care. 2015; 38(6):1008-1015.

[36] Liu YM, Wang HS. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biomed J. 2013; 36(1):9-15.

[37] Csépány É, Tóth M, Gyüre T, et al. The validation of the Hungarian version of the ID-migraine questionnaire. J Headache Pain. 2018; 19(1):106.

[38] Hagan TL, Belcher SM, Donovan HS. Mind the mode: differences in paper vs. web-based survey modes among women with cancer. J Pain Symptom Manage. 2017; 54(3):368-375.

[39] Rübsamen N, Akmatov MK, Castell S, Karch A, Mikolajczyk RT. Comparison of response patterns in different survey designs: a longitudinal panel with mixed-mode and online-only design. Emerg Themes Epidemiol. 2017; 14:4.

[40] Kawata AK, Hareendran A, Shaffer S, et al. Evaluating the psychometric properties of the migraine functional impact questionnaire (MFIQ). Headache. 2019; 59(8):1253-1269.
Bromberg J, Wood ME, Black RA, Surette DA, Zacharoff KL, Chiauzzi EJ. A randomized trial of a web-based intervention to improve migraine self-management and coping. Headache. 2012; 52(2):244-61.

Sajobi TT, Amoozegar F, Wang M, Wiebe N, Fiest KM, Patten SB, et al. Global assessment of migraine severity measure: preliminary evidence of construct validity. Bmc Neurol. 2019; 19(1):53.

Hareendran A, Skalicky A, Mannix S, Lavole S, Desai P, Bayliss M, et al. Development of a new tool for evaluating the benefit of preventive treatments for migraine on functional outcomes - the migraine functional impact questionnaire (MFIQ). Headache. 2018; 58(10):1612-1628.

Ebert JF, Huibers L, Christensen B, Christensen MB. Paper- or web-based questionnaires? as a method for data collection: cross-sectional comparative study of differences in response rate, completeness of data, and financial cost. J med internet res. 2018; 20(1):e24.

Gao B, Yang Y, Wang Z, et al. Efficacy and safety of rimegepant for the acute treatment of migraine: evidence from randomized controlled trials. Front pharmacol. 2020; 10:1577.

Maggioni F, Margoni M, Zanchin G. Ketogenic diet in migraine treatment: a brief but ancient history. Cephalalgia. 2011; 14:1150-1151.

Di Lorenzo C, Coppola G, Sirianni G, Pierelli F. Short term improvement of migraine headaches during ketogenic diet: a prospective observational study in a dietician clinical setting. J headache pain. 2013; 14(Suppl 1):P219.

De Almeida Rabello Oliveira M, da Rocha Ataíde T, Oliviera SL, de melo Lucena AL, Rodrigues de Lira CEP, Soares AA, et al. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci lett. 2008; 14:66-70.

Murray AJ, Knight NS, Cole MA, et al. Novel ketone diet enhances physical and cognitive performance. Faseb J. 2016; 30(12):4021-4032.

Berning JR. The role of medium-chain triglycerides in exercise. Int j sport nutr. 1996; 6(2):121-133.

Wang Y, Liu Z, Han Y, Xu J, Huang W, Li Z. Medium chain triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism. Plos one. 2018; 13(2):e0191182.

Gross EC, Klement RJ, Schoenen J, D’Agostino DP, Fischer D. Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients. 2019; 11(4):811.

Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature medicine. 2015; 21(3):263-269.

Augustin K, Khabbush A, Williams S, et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet neurol. 2018; 17(1):84-93.

Zhou S, Wang Y, Jacoby JJ, Jiang Y, Zhang Y, Yu LL. Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice. J agric food chem. 2017; 65(31):6599-6607.

Machate DJ, Figueiredo PS, Marcelino G, Guimarães RDCA, Hiane PA, Bogo D, et al. Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int j mol sci. 2020; 21(11):4093.

Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019; 47:529-542.

Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol ther. 2016; 158:52-62.