Unusual superparamagnetic behavior of Co$_3$O$_4$ nanoparticles

Vijay Bish† and K.P.Rajeev†

Department of Physics, Indian Institute of Technology Kanpur 208016, India

We report detailed studies on magnetic properties of Co$_3$O$_4$ nanoparticles of average size 12.5 nm. Temperature and field dependence of magnetization, wait time dependence of magnetic relaxation (aging), memory effects and temperature dependence of specific heat have been investigated to understand the magnetic behavior of these particles. We find that the particles show some features characteristic of nanoparticle magnetism such as bifurcation of field cooled (FC) and zero field cooled (ZFC) susceptibilities and a slow relaxation of magnetization. However, strangely, the temperature at which ZFC magnetization peaks coincides with the bifurcation temperature and does not shift on application of magnetic fields up to 1 kOe, unlike most other nanoparticle systems. Aging effects in these particles are negligible in both FC and ZFC protocol and memory effects are present only in FC protocol. Our results show that Co$_3$O$_4$ nanoparticles constitute a unique system where superparamagnetic blocking starts above the Néel temperature, in the paramagnetic state.

PACS numbers: 75.50.Tt,75.50.Lk,75.30.Cr,75.40.Gb
Keywords: Co$_3$O$_4$ nanoparticles, magnetic properties, superparamagnetism, memory, aging, antiferromagnetic correlations, FC-ZFC.

I. INTRODUCTION

In the past two decades, magnetic nanoparticles have attracted much attention due to (1) their potential uses in various areas such as data storage and biomedicine and (2) the challenge to understand the physics underlying the various exotic phenomena exhibited by them. Most of such work has focussed on ferromagnetic and ferri-magnetic nanoparticles because of their high magnetic moments that make them industrially valuable. However, there have been a few studies on antiferromagnetic nanoparticles and interestingly, their magnetic behavior is found to be more complex and intriguing.

Below a critical size, particles of a ferromagnetic or ferri-magnetic material consist of a single domain and each particle carries a magnetic moment, which can reverse its direction due to thermal agitation. In these particles, the magnetic dynamics is thermally activated leading to paramagnetic behavior above a particular temperature, called blocking temperature. Below this temperature, the moments appear blocked in a particular direction, on the time scale of the measurement. This phenomenon is known as superparamagnetism as instead of atomic spins, particle moments ("superspins") are involved. Thus ferromagnetic nanoparticles are expected to show superparamagnetism, though, interparticle interactions can complicate matters leading to spin glass like behavior. Antiferromagnetic nanoparticles can also develop a net moment due to uncompensated spins and can exhibit superparamagnetism as proposed by Néel. However, surface effects can also be important in the determination of their magnetic behavior and spin glass like behavior can arise due to freezing of spins at the surface in addition to interparticle interactions.

Magnetic nanoparticles show some characteristic features which are common to both spin glasses and superparamagnets. These include irreversibility in the field cooled (FC) and zero field cooled (ZFC) magnetizations, a peak in ZFC magnetization, slow magnetic relaxation and hysteresis at low temperature. However, some important features that distinguish these two are: (1) FC magnetization goes on increasing as the temperature is decreased in superparamagnets while it tends to saturate below the freezing temperature in particles showing spin glass behavior. (2) In systems showing spin glass like behavior, wait time dependence of relaxation (aging) and memory effects are present in both FC and ZFC magnetizations. In contrast, in superparamagnetic particles, these effects are present in FC magnetization only. (3) The field dependence of temperature at which the ZFC magnetization peaks (T_p) is known to behave differently in the two cases.

There have been studies on various antiferromagnetic nanoparticles in both bare and coated forms in the past several years and there is a lot of variation in the magnetic behavior of different materials. NiO nanoparticles have been reported to show spin glass like behavior. CuO nanoparticles show an anomalous magnetic behavior that cannot be described as superparamagnetic or spin glass like. Ferritin shows superparamagnetic behavior etc. Co$_3$O$_4$ is an antiferromagnetic material and in the bulk form, its Néel temperature has been reported to lie between 30 K and 40 K. There have been some reports on hysteresis, time dependence of magnetization, exchange bias and finite size effects in bare, coated and dispersed Co$_3$O$_4$ nanoparticles and various conflicting claims have been made in support of spin glass like and superparamagnetic behavior in these particles. It will be, therefore, worthwhile to investigate their magnetic behavior carefully. In the present work, we present temperature and field dependence of magnetization, aging and memory effects and specific heat measurements on Co$_3$O$_4$ nanoparticles.
II. EXPERIMENTAL DETAILS

Co$_3$O$_4$ nanoparticles are prepared by a sol gel method. Aqueous solution of sodium hydroxide is mixed with that of cobalt nitrate till the pH of the solution becomes 12. At this stage cobalt hydroxide separates from the solution forming a gel that is centrifuged to obtain a precipitate which is washed with water and ethanol several times and dried to obtain a precursor. This precursor is heated at 250$^\circ$C for 3 hours to obtain Co$_3$O$_4$ nanoparticles. The sample is characterized by X-ray diffraction (XRD) using a Seifert diffractometer with Cu K$_\alpha$ radiation. The average particle size as estimated from the broadening of XRD peaks using the Scherrer formula comes out to be 12.5 nm. All the magnetic measurements are done with a SQUID magnetometer (Quantum Design). Specific heat measurements are done with a PPMS (Quantum Design).

III. RESULTS AND DISCUSSION

A. Temperature and field dependence of magnetization

The temperature dependence of magnetization was done under field cooled (FC) and zero field cooled (ZFC) protocols at fields 100 Oe, 300 Oe and 1000 Oe. See Figure 1. We note that the FC magnetization in this case is increasing with decrease in temperature down to the lowest temperature of measurement without any sign of saturation, a feature characteristic of superparamagnets. However, the temperature at which ZFC magnetization peaks (31 K) i.e. T_P is also the temperature of bifurcation (T_{bf}) of FC and ZFC magnetizations. Strangely, in this case, T_P is independent of the magnetic field applied and the dc susceptibility data taken for different fields superpose. This is in contrast to other nanoparticles where the peak temperature is found to shift to lower temperatures on increasing the field even at fields as low as a few hundred Oersteds. Another distinct feature in Figure 1 is a sudden change in the slope of FC magnetization curve at the peak temperature. This will be discussed later in subsection D.

We have done hysteresis measurements at 5 K and a magnified view is shown in the inset of Figure 1. The virgin curve in this case is a straight line in contrast to spin glasses where it is usually S-shaped.

B. Néel temperature

When the particle size of an antiferromagnetic material is decreased to nanoscale, its Néel temperature (T_N) is known to decrease significantly due to finite size effects. We carried out specific heat measurements on pelletized nanoparticles to make an estimate of T_N and these data are presented in the inset of Figure 2. It can be observed that the specific heat decreases linearly with decrease in temperature down to 35 K below which it increases with a peak at 28 K. We have calculated the magnetic specific heat by subtracting a linear contribution from the total specific heat and this data has been shown in the main panel of Figure 2. It can be seen that a magnetic contribution is noticeable between 15 K and 40 K with a peak at 26 K, which should correspond to the Néel temperature.

In some works on antiferromagnetic nanoparticles, T_N
has been identified as the temperature of the peak of \(d(\chi T)/dT\) vs \(T\) curve. This is in accordance with Fisher’s equation relating specific heat \(C\) and magnetic susceptibility \(\chi\).

\[
C \propto d(\chi T)/dT
\]
(1)

This relation has been verified experimentally for some bulk materials. It will be interesting to check this relation for the present nanoparticle sample. In Figure 2, we have also shown the plot of \(d(\chi T)/dT\) as a function of \(T\), which has a peak somewhere in between 20 K to 25 K, giving an estimate of the Néel temperature. Thus the value of \(T_N\) extracted from the specific heat is somewhat greater than the value obtained from the Fisher relation.

C. Aging and memory effects

Nanoparticles that show spin glass like behavior are expected to show aging and memory effects in both FC and ZFC protocols while those showing superparamagnetic behavior show these effects only in FC protocol. Further the effects in FC protocol are weaker in superparamagnetic particles than in those showing spin glass like behavior. These experiments can thus give valuable information about the nature of magnetic behavior of a system.

For doing aging experiments in FC protocol, the sample is cooled to a particular temperature in a field of 100 Oe, the field is switched off after waiting for a specified period and magnetization is recorded as a function of time. In the corresponding ZFC case, the sample is cooled to the temperature of interest in zero field and the field is switched on after a certain wait time and subsequently magnetization is recorded as a function of time. We show the results of aging experiments at 20 K in Figure 3. It can be seen that aging effects are negligible in both FC and ZFC measurements.

For carrying out FC memory experiments, the system is cooled in the presence of a magnetic field to 20 K and a stop of one hour is taken at this temperature. Magnetic field is switched off for the duration of the stop and is turned on before further cooling the sample to 10 K. The magnetization is measured while cooling and then during subsequent heating. These data have been taken at 300 Oe field. See Figure 4. It can be observed that there is some indication of memory as the heating curve meets the cooling curve just after the temperature at which the stop was taken. We have also done memory experiments in ZFC protocol with a stop of one hour at 20 K and did not find any indications of memory. See the inset of Figure 4. In this case, \(\Delta M\) is less than 0.05% as opposed to canonical spin glasses or nanoparticle systems that show spin glass like behavior where differences of order 1% or more are observed.

D. DISCUSSION

Co$_3$O$_4$ nanoparticles show some features characteristic of nanoparticle magnetism. Some of these are due to finite size effects viz. a net magnetic moment due to uncompensated surface spins and a decrease in Néel temperature. Some are manifestations of non equilibrium in magnetic nanoparticles and are common to both superparamagnetic and spin glass like behaviors. These include irreversibility in FC and ZFC magnetization and...
a slow magnetic relaxation at low temperature. However there are several unusual features observed in this system, that deserve a second look.

1. **Behavior above \(T_P \)**

In ferromagnetic and ferrimagnetic nanoparticles, the ZFC magnetization generally shows a peak at a particular temperature, above which the behavior is superparamagnetic i.e. magnetization curves taken at various temperatures above \(T_P \) superpose when plotted against \(H/T \). Makhlof et al. have shown that magnetization vs \(H/(T+\theta) \) curves superpose at high temperatures in \(\text{Co}_3\text{O}_4 \) nanoparticles (\(\theta = 85 \text{ K} \)), a feature characteristic of antiferromagnets. Our data (50 K–300 K) also fits well to Curie-Weiss law, \(\chi \propto 1/(T+\theta) \), with \(\theta = 107 \text{ K} \) and coefficient of determination, \(R^2 = 0.9992 \). Further, \(T_P \) is independent of applied field in contrast to nanoparticles showing superparamagnetism. The preceding discussion implies that the system is not superparamagnetic above \(T_P \) and the peak in ZFC magnetization is a signature of a transition from paramagnetic to antiferromagnetic state. It may be noted that \(T_N \) as found by specific heat measurements is 5 K less than \(T_P \) and the Fisher relation gives an even lower estimate of \(T_N \). We note in passing that similar observation of \(T_N < T_P \) has been reported earlier.

At \(T_P \), there also occurs a bifurcation between FC and ZFC magnetization and this change looks abrupt as at this point a slope change in the FC magnetization can be seen. Thus even before the actual transition to an antiferromagnetic state, the particles develop a magnetic moment and go to a blocked state. This may be due to the short range antiferromagnetic correlations which are known to persist above the Néel temperature. These short ranged correlations can give rise to a net magnetic moment when the correlation length becomes comparable to the particle size and thus the particles can get blocked above \(T_N \).

2. **Behavior below \(T_P \)**

There have been some reports of spin glass like features in \(\text{Co}_3\text{O}_4 \) nanoparticles coated with organic surfactants and those dispersed in amorphous matrices at low temperature. However, in the present work and in other studies on bare nanoparticles, no such features have been found. Absence of aging and memory effects in ZFC protocol confirms that the behavior of \(\text{Co}_3\text{O}_4 \) nanoparticles is not spin glass like. Thus below \(T_P \), observation of a bifurcation in FC and ZFC magnetizations and slow relaxation of magnetization seems to correspond to a blocked state as observed in superparamagnetic particles. Presence of memory effects in FC protocol also support this inference.

The blocking temperature in superparamagnets is known to be field dependent, but in this case it is independent of field at least up to fields of 1 kOe. In superparamagnetic particles, the particle moment can have two directions along an axis determined by anisotropy. In zero field, these two states are separated by an energy barrier and are equally likely to be occupied. Application of a magnetic field breaks the degeneracy of these two states, making it easier for the particle to go from the higher energy state (antiparallel to field) to the lower energy state (parallel to field). At a particular temperature, if the thermal energy available is insufficient for crossing this barrier, the particles will be in a blocked state. We propose that in the present case, particles develop a magnetic moment at \(T_P \) and immediately get blocked with an energy barrier greater than \(k_B T_P \). The applied magnetic fields (up to 1 kOe in this case) are not sufficient to decrease the barrier significantly so that the particles are not able to get unblocked at this temperature. Hence the blocking temperature in this case is independent of field.

Another unique feature observed in this system is that the ZFC susceptibilities taken at different fields lie on the same curve while there is a slight mismatch between corresponding FC susceptibilities. This is due to the fact that in ZFC measurement the system is cooled in a zero field and then a field is applied at low temperature to measure the magnetization, and thus the corresponding values of magnetization lie on the virgin curve of hysteresis loop which is a straight line with zero intercept \((M/H = \text{constant}) \). However in FC measurements, the system is cooled in the presence of a field, and hence the magnetization values do not lie in the virgin curve, leading to slightly different susceptibilities at different fields.

IV. **Conclusion**

We have done a detailed study of the magnetic behavior of \(\text{Co}_3\text{O}_4 \) nanoparticles. We find that their behavior is unique among antiferromagnetic nanoparticles. There is a peak in ZFC magnetization and at this temperature \((T_P) \), a sudden bifurcation between FC and ZFC magnetization occurs. Strangely, this temperature lies above the Néel temperature as estimated by specific heat measurements and a sudden slope change in FC magnetization is seen at this point. The behavior of susceptibility above the peak temperature is paramagnetic rather than superparamagnetic and Curie-Weiss law holds as in the case of antiferromagnets. Further unlike other magnetic nanoparticles, \(T_P \) does not change with magnetic field. Aging and memory effects are not observed in ZFC magnetization measurements which show the absence of spin glass like behavior in this system. However observation of memory in FC protocol supports superparamagnetic blocking below \(T_P \). This system undergoes a transition from paramagnetic to blocked state even before the transition to an antiferromagnetic state and we ascribe this
to antiferromagnetic correlations present above Néel temperature.

Acknowledgments

VB thanks the University Grants Commission of India for financial support. Authors thank Prof. C.V. Tony, V. Bisht and K.P. Rajeev, J. Phys.: Condens. Matter 22, 016003 (2010).

1. J. L. Dormann, D. Fiorani, and E. Tronc, Advances in Chemical Physics 98, 283 (1997).
2. Steen Mørup, Daniel E. Madsen, Cathrine Frandsen, Christian R H Bahl and Mikkel F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).
3. Vijay Bisht and K P Rajeev, J. Phys.: Condens. Matter 22, 016003 (2010).
4. X. Battle and A. Labarta, J. Phys. D 35, R15 (2002).
5. M. Sasaki, P. E. Jonsson, H. Takayama, and H. Mamiya, Phys. Rev. B 71, 104405 (2005).
6. Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback, Phys. Rev. Lett. 91, 167206 (2003).
7. Malay Bandyopadhyay and Sushanta Dattagupta, Phys. Rev. B 74, 214410 (2006).
8. S. Sahoo, O. Petracic, W. Kleemann, P. Nordblad, S. Cardoso and P. P. Freitas, Phys.Rev.B 67, 214422 (2003).
9. L. Néel, Ann. Geophys. C.N.R.S. 5, 99 (1949).
10. W. F. Brown Jr., Phys. Rev. 130, 1677 (1963).
11. S. D. Tiwari and K. P. Rajeev, Phys. Rev. B 72, 104433 (2005).
12. Masatsugu Suzuki, Sharbani I. Fullem, Itsuko S. Suzuki, Lingyan Wang and Chuan-Jian Zhong, Phys. Rev. B 79, 024418 (2009).
13. S. Chakraverty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta, A. Frydman, S. Sengupta and P. A. Sreeram, Phys. Rev. B 71, 054401 (2005).
14. G. M. Tsoi, L. E. Wenger, U. Senaratne, R. J. Tackett, E. C. Buc, R. Naik, P. P. Vaishnav and V. Naik, Phys. Rev. B 72, 014445 (2005).
15. R. K. Zheng, Hongwei Gu, Bing Xu, and X. X. Zhang Phys. Rev. B 72, 014416 (2005).
16. B. Martinez, X. Obradors, L. Balcells, A. Rouanet and C. Monty, Phys. Rev. Lett. 80, 181 (1998).
17. R. L. de Almeida and D. J. Thouless, J. Phys. A 11, 983 (1978).
18. T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, and S. Chikazawa, J. Phys. Soc. Jpn. 64, 1305 (1995).
19. R. K. Zheng, Hongwei Gu, BingXu and X. X. Zhang, J. Phys.: Condens. Matter 18, 5905 (2006).
20. Vijay Bisht, K.P. Rajeev and Sangam Banerjee, Solid State Communications 150, 884 (2010).

S.H. Kilcoyne and R. Cywinski, Journal of Magnetism and Magnetic Materials 140, 1466 (1995).
21. D. A. Resnick et al. Journal of Applied Physics 99, 08Q501 (2006).
22. Yoko Ichiyanagi and Saori Yamada, Polyhedron 24, 2183 (2005).
23. Syozo Takada et al., Nano Letters 1, 379 (2001).
24. Y. Ichiyanagi, Y. Kimishima and S. Yamada, Journal of Magnetism and Magnetic Materials 272, e1245 (2004).
25. Salah A. Makhlouf, Journal of Magnetism and Magnetic Materials 246, 184 (2002).
26. Michi Sato et al. Journal of Applied Physics 88, 2771 (2000).
27. T. Mousavand et al., Physical review B 79, 144411 (2009).
28. Shandong Li et al., Journal of Applied Physics 95, 7420 (2004).
29. P. Dutta, M. S. Seehra, S. Thota and J Kumar, J. Phys.: Condens. Matter 20, 015218 (2008).
30. Some authors have observed a T_b which lies a few Kelvins above T_P and some others have found it even below T_P.
31. H. Kachachi, W T Coffey, D S F Crothers, A Eziriz, E C Kennedy, M Noguès and E Tronc., J. Phys.: Condens. Matter 12, 3077 (2000).
32. R. Sappey, E. Vincent, and N. Hadacek, Phys. Rev. B 56, 14551 (1997).
33. J. A. Mydosh, *Spin Glasses: An Experimental Introduction*, p89 (Taylor & Francis, 1993).
34. X. G. Zheng et al. Phys. Rev. B 72, 014464 (2005).
35. A. Punnoose, H. Magnone, M. S. Seehra and J. Bonevich, Phys. Rev. B 64, 174420 (2001).
36. M. E. Fisher, Philos. Mag. 7, 1731 (1962).
37. E. E. Bragg and M. S. Seehra, Phys. Rev. B 7, 4197 (1973).
38. R. Mathieu, M. Hudl and P. Nordblad, Europhysics Letters, 90, 67003 (2010).
39. C. P. Bean and J.D. Livingston, Journal of Applied Physics 30, 1205 (1959).
40. K. H. J. Buschow and F. R. de Boer, *Physics of Magnetism and Magnetic Materials*, p93 (Kluwer Academic Publishers, 2004).