Genetic Analysis of Various Agronomic Traits in Some Intra and Inter-Specific Crosses of Wheat

Imtiaz Ali¹, Abdul Majid Khan¹, *, Maria Ayub¹, Akash Zafar¹, Asad-ur-Rehman¹, Manzoor Hussain¹, Hafiz Muhammad Zia Ullah², Muhammad Zubair³, Zeeshan Hafeez⁴, Khalid Mahmood¹, Natasha Kanwal¹, Abdul Sattar Khetran⁵

¹Regional Agricultural Research Institute, Bahawalpur, Pakistan
²Oilseeds Research Station, Khanpur, Pakistan
³Agricultural Research Station, Bahawalpur, Pakistan
⁴Oilseeds Research Station, Bahawalpur, Pakistan
⁵Agricultural Research Institute, Quetta, Pakistan

Email address:
akhan3120@gmail.com (A. M. Khan)
*Corresponding author

To cite this article:
Imtiaz Ali, Abdul Majid Khan, Maria Ayub, Akash Zafar, Asad-ur-Rehman, Manzoor Hussain, Hafiz Muhammad Zia Ullah, Muhammad Zubair, Zeeshan Hafeez, Khalid Mahmood, Natasha Kanwal, Abdul Sattar Khetran. Genetic Analysis of Various Agronomic Traits in Some Intra and Inter-Specific Crosses of Wheat. Plant. Vol. 6, No. 2, 2018, pp. 43-48. doi: 10.11648/j.plant.20180602.14

Received: June 12, 2018; Accepted: August 7, 2018; Published: September 6, 2018

Abstract: Six wheat genotypes (4 hexaploid and 2 tetraploid) against plant height, days to heading, days to anthesis, days to maturity, grain filling period, grains per spike and 1000 grain weight characters were studied for combining ability and heterosis through 6 × 6 half diallel fashion. This experiment was conducted at Regional Agricultural Research Institute Bahawalpur during 2016-17. Results of mean square of general combining ability (GCA) and specific combining ability (SCA) was found significant for all studied characters except for plant height and grains per spike against SCA. Ratio of GCA/SCA showed the involvement of additive gene action in the inheritance of all under studied traits. Durum-1 was found best parent among all other parents against 1000 grain weight and days to heading. Miraj-08 was good general combiner as it reflected maximum grain yield per plant. Best specific combing ability and heterosis was exhibited by cross combination Ass-11 × Chakwal-50, Galaxy-13 × Chakwal-50 and Chakwal-50 × Miraj-08 against plant height, grain per spike and yield character. Results indicated that selection of best general combiner would be helpful in increasing yield through hybridization and superior hybrids may develop by the selection of superior best specific combiners.

Keywords: Triticumaestivum, General Combining Ability, Specific Combing Ability, Heterosis, Half Diallel Analysis

1. Introduction

Wheat is considered as important staple food and strategic crop worldwide with 27% contribution in world’s cereal production. It is first ever plant grown by the human beings and due to its wider adaption and resistance to biotic and abiotic stresses it is now widely cultivated throughout the world [8].

Wheat is most important food grain crop of Pakistan. Worldwide Pakistan ranked 6th in wheat with production 25.4 million tonnes on area 9260 thousand hectares [3].

The contribution of wheat in agriculture and total GDP of Pakistan is about 9.9% and 2% (Anonymous, 2016-17). The average wheat production has increased in Pakistan but its yield is still low when compared to many other countries. Population of Pakistan is increasing geometrically which has been a great challenge for agriculture scientists. Yield potential of recent wheat varieties is not increasing in parallel to overcome demand of population in Pakistan. To meet the challenge of increasing population there is a dire need to
develop high yielding varieties of wheat through different breeding methods which are adaptable to different climatic condition of the country. Breeder should develop few crosses, instead of maintaining many crosses, from parents having high genetic potential. Selection of best performing parents for hybridization is based on the production of desirable segregants when a specific line combine with other lines[7]. Heterosis play important role in combing ability of parents and can be included in breeding programme [14].

Combining ability analysis is important way to select parents with desirable characters along with information regarding nature and magnitude of controlling quantitative traits [9]. Better parents are selected on the basis of general combining ability while specific combining ability is associated with the selection of superior hybrids [1]. In GCA additive genetic effect is involved while SCA is due to non-additive genetic effect i.e dominance or epistasis. Information related to mechanism of genetic controlling different plant characters in parents may help in improving the genetic makeup of plant to maintain and improve crop production.

Diallel approach is a powerful tool for evaluating combining ability and heterosis in additiontoanalyse the genes nature involving in the inheritance of grain yield and its contributing traits[11]. Parental lines can be tested in all possible combinations through diallel crosses [6]. Selection of parents with desirable characteristics showing good GCAand SCA effects for yield and its trait components are essential [4].

The objectives of present study were to estimate the combining ability of some local bread and durum wheat genotypes and to assess the heterotic potential of intra and inter-specific crosses of wheat. Another important objective was to generate diversification in wheat germplasm to be used as base line for development of highly stable wheat varieties under changing climatic conditions.

2. Material and Methods

Six genotypes of *Triticum aestivum* were crossed in half diallel fashion at Regional Agricultural Research Institute Bahawalpur during 2015-16. Spikes of female were hand emasculated for crossing and covered by butter paper bag so that contamination of foreign pollen may not occur. Pollen of selected male parent was applied on the receptive ovaries of the emasculated spikes of the female parents. Sufficient number of spikes was emasculated for each of the 6 parents and pollinated to obtain maximum seed of 15 direct crosses which were to be planted in the following year. At harvesting F$_0$ seeds of each cross were threshed separately and stored.

In the next year (2016-17) the F$_0$ seeds of 15 crosses with six parents were sown in the field in randomized complete block design (RCBD) with three repeats. Sowing was done with manual dibbler maintaining plant to plant distance 15 cm and row to row distance 30 cm respectively. In each hole two seeds were sown and later thinned to one seedling per hole after 10-12 days of germination. Standard agronomic practices were performed from sowing to maturity of crop. At reproductive stage ten guarded plants were randomly selected from each experimental unit to record data for various traits including days to heading, days to anthesis, grain filling period, days to maturity, plant height (cm), grains per spike, 1000-grain weight (g) and grain yield per plant (g). Combining ability analysis and heterotic effect of F$_1$ hybrid was carried out by method given by Griffing [5].

3. Results and Discussion

3.1. Mean Performance

Means of parents and their cross combination were given in table 1. Broad range of expression was shown by parents for various plant characters especially for plant height ranging 88 cm to 102 cm. Among six parents, minimum plant height (88cm) was observed in parent Durum-1 followed by Durum-1 (90cm). Genotype Ass-11 exhibited maximum plant height 102 cm. Minimum days (94) against days to heading were recorded in Durum-2 while Chakwal-50 showed maximum days in heading i.e 102. Genotype Durum-2 took 100 days to anthesis while maximum days were recorded in galaxy-13 (109). Early maturity (139 days) was observed in Miraj-08 followed by Durum-1 in which 142 days were recorded for maturity. Galaxy-13 showed maximum days i.e 148 to mature. Genotype Miraj-08 exhibited minimum days (36) against grain filling character and maximum days (43) for grain filling was recorded in Durum-2. Maximum no of grain per spike shown by Ass-11 which was 54 followed by Chakwal-50 in which 50 grain/spike was recorded. Ass-11 and Durum-1 showed maximum weight (42g) against 1000 grain weight and minimum weight was observed in Chakwal-50 which was 39g. Highest grain yield/plant (35g) was observed in variety Galaxy-13 followed by Miraj-08 which exhibited 34g yield/plant while Durum-1 and Durum-2 showed minimum yield/plant 31g among all parents.

Mean values of 15 crosses were presented in table 1. Cross combination Durum-1 x Durum-2 performed better against plant height trait with minimum value 90cm followed by cross Miraj-08 x Durum-1 having plant height 92cm. Better performance with minimum value (94) for days to heading was performed by cross Ass-11 x Miraj-08 and maximum value was recorded for Ass-11 x Chakwal-50. Galaxy-13 x Durum-2 took 99 days for anthesis while maximum days i.e 109 was recorded for Galaxy-13 x Ass-1. Early maturity (140 days) was recorded in cross Miraj-08 x Durum-1 and cross combination Miraj-08 x Durum-2 took minimum days (32) for grain filling while maximum days was exhibited by Galaxy-13 x Durum-2 which was 45 days. Highest grains (50) in a spike was found in cross Ass-11 x Durum-2 followed by Chakwal-50 x Durum-2 (49). Weight of 1000-grain is a vital yield component and is more or less stable character of wheat. Cross combination Durum-1 x Durum-2 and Chakwal-50 x Miraj-09 exhibited maximum 1000 grain weight 44g and yield per plant 37g.
3.2. Combining Ability

3.2.1. Analysis of Variance (ANOVA)

Plant breeders rely on the availability of genetic diversity for the improvement of any plant trait. Significant differences (Table 2) of wheat varieties and their hybrids indicated the presence of genetic variation between genotypes and crosses. Highly significant or significant mean squares due to male, female and their interactions showed the involvement off both additive and non-additive i.e dominance and epistasis gene action in the expression of studied traits. [2] also found significant differences among wheat varieties and epistasis gene action in the expression of studied traits. Inheritance of studied traits although significant mean squares for specific combining ability of crosses were also observed against characters except plant height and grains per spike. Similar findings have also been observed in wheat by [12].

Table 1. Mean values of parents and crosses for yield related traits in wheat.

| Plant height | Days to heading | Days to anthesis | Days to maturity | Grain filling period | Grains per spike | 1000-grain weight | Grain yield per plant |
|--------------|----------------|------------------|-----------------|---------------------|-----------------|------------------|----------------------|
| Parents     |                |                  |                 |                     |                 |                  |                      |
| Galaxy-13   | 101            | 101              | 109             | 148                 | 39              | 46               | 39                   |
| Aas-11      | 102            | 101              | 108             | 144                 | 37              | 54               | 42                   |
| Chakwal-50  | 98             | 102              | 107             | 146                 | 39              | 50               | 39                   |
| Mairaj-08   | 93             | 95               | 103             | 139                 | 36              | 46               | 40                   |
| Durum-1     | 90             | 96               | 102             | 142                 | 39              | 44               | 42                   |
| Durum-2     | 88             | 94               | 100             | 143                 | 43              | 49               | 38                   |
| Crosses     |                |                  |                 |                     |                 |                  |                      |
| Galaxy-13 × Aas-11 | 102 | 100              | 109             | 146                 | 37              | 49               | 39                   |
| Galaxy-13 × Chakwal-50 | 100 | 99               | 106             | 145                 | 38              | 48               | 38                   |
| Galaxy-13 × Mairaj-08 | 97  | 96               | 102             | 141                 | 39              | 46               | 40                   |
| Galaxy-13 × Durum-1 | 96  | 100              | 105             | 144                 | 39              | 45               | 39                   |
| Galaxy-13 × Durum-2 | 96  | 95               | 99              | 145                 | 45              | 47               | 37                   |
| Aas-11 × Chakwal-50 | 99  | 102              | 109             | 144                 | 35              | 50               | 40                   |
| Aas-11 × Mairaj-08 | 100 | 94               | 101             | 142                 | 41              | 49               | 41                   |
| Aas-11 × Durum-1 | 101 | 100              | 107             | 142                 | 36              | 48               | 40                   |
| Aas-11 × Durum-2 | 101 | 101              | 108             | 144                 | 36              | 50               | 38                   |
| Chakwal-50 × Mairaj-08 | 97  | 96               | 101             | 142                 | 41              | 46               | 43                   |
| Chakwal-50 × Durum-1 | 94  | 102              | 108             | 144                 | 36              | 45               | 41                   |
| Chakwal-50 × Durum-2 | 94  | 98               | 105             | 145                 | 40              | 49               | 37                   |
| Mairaj-08 × Durum-1 | 92  | 99               | 106             | 140                 | 34              | 44               | 41                   |
| Mairaj-08 × Durum-2 | 93  | 102              | 108             | 140                 | 32              | 47               | 38                   |
| Durum-1 × Durum-2 | 90  | 95               | 101             | 141                 | 40              | 46               | 44                   |

3.2.2. General Combing Ability

The general combing ability gives information about better performing parents based on their hybrid performance to exploit heterosis breeding. Among parents, genotype Durum-2 was best general combiner against plant height and days to anthesis with minimum negative value 2.93 and 1.74. Durum-1 exhibited maximum 1000 grain weight (1.14). Minimum days to heading (1.38), days to maturity (2.38) and maximum grain yield per plant (1.06) was shown by Mairaj-08. Ass-11 showed best performance against grain filling period character with minimum negative value 1.22 and exhibited maximum no of grains per spike 2.61. Parents with maximum GCA effects were the best general combiners as valuable genes were present in them for the improvement of traits and such parents may be preferred for selection and hybrid development [10].

3.2.3. Specific Combing Ability

Among fifteen hybrids, best specific combing ability against plant height was exhibited by cross combination Ass-11 x Chakwal-50 with minimum negative value 1.91cm.
Minimum days to heading (4.14) and days to anthesis (4.68) was recorded in Ass-11 × Miraj-08. The hybrid Glaxy-13 × Chakwal-50 was found to be the best specific combiner against days to maturity and grains per spike with minimum negative value 1.61 and maximum positive value 0.58. Minimum days in grain filling period was recorded in cross Miraj-08 × Durum-2 as it showed minimum negative SCA value 7.10. High yield per plant (2.26g) was observed in cross combination Chakwal-50 × Miraj-08 (Table 3). Selection of such crosses with high specific combing ability would be fruitful in the development of superior hybrid through heterosis breeding. It is not a rule that hybrid should be produced by parents with best general combiners sometimes hybrid may be developed by the combination of either parent showing poor GCA (Patel et al., 1997). e.g Ass-11 × Chakwal-50 for plant height, Ass-11 × Miraj-08 for days to anthesis, Glaxy-13 × Chakwal-50 for days to maturity and Durum-1 × Durum-2 for 1000 grain weight respectively in this study.

### Table 3. Estimates of GCA effects of parents and SCA effects of crosses for yield related characters of wheat.

| Plant height | Days to heading | Days to anthesis | Days to maturity | Grain filling period | Grains per spike | 1000-grain weight | Grain yield per plant |
|--------------|----------------|-----------------|-----------------|---------------------|-----------------|-------------------|-----------------------|
| **GCA for parents** | | | | | | | |
| Galaxy-13 | 2.36 ** | 0.17 | 0.81 | 1.87 ** | 1.07 | -0.68 | -0.90 * | 0.85 * |
| Aas-11 | 3.82 ** | 1.08 * | 1.72 | 0.50 * | -1.22 * | 2.61 ** | 0.47 | 0.35 |
| Chakwal-50 | 0.69 | 1.58 ** | 0.97 | 1.17 ** | 0.19 | 0.61 | -0.07 | 0.22 |
| Mairaj-08 | -1.18 * | -1.38 ** | -1.36 * | -2.38 ** | -1.01 | -1.06 * | 0.60 | 1.06 ** |
| Durum-1 | -2.76 ** | -0.21 | -0.40 | -0.96 ** | -0.56 | -2.14 ** | 1.14 ** | -0.99 ** |
| Durum-2 | -2.93 ** | -1.25 ** | -1.74 * | -0.21 | 1.53 ** | 0.65 | -1.24 ** | -1.49 ** |

| **SCA for crosses** | | | | | | | |
| Galaxy-13 × Aas-11 | -0.91 | -0.01 ns | 1.82 * | 0.39 | -1.43 | -0.42 | -0.08 | 1.35 ** |
| Galaxy-13 × Chakwal-50 | 0.21 | -1.51 * | -0.43 | -1.61 ** | -1.18 | 0.58 | -0.54 | 1.14 * |
| Galaxy-13 × Mairaj-08 | -0.58 | -1.22 * | -2.10 ** | -1.40 ** | 0.69 | -0.09 | 0.80 | -1.70 ** |
| Galaxy-13 × Durum-1 | 0.34 | 1.28 * | 0.05 | 0.18 | 0.23 | 0.33 | -1.41 ** | -0.99 ** |
| Galaxy-13 × Durum-2 | 0.51 | -2.35 ** | -4.72 ** | -0.24 | 4.48 ** | -0.13 | -0.70 | 1.18 ** |
| Aas-11 × Chakwal-50 | -1.91 ** | 1.24 * | 1.32 | -0.57 * | 1.89 | -0.71 | 0.09 | 0.64 |
| Aas-11 × Mairaj-08 | 0.96 | -4.14 ** | -4.66 * | 0.30 | 4.98 ** | 1.05 | 1.09 | 1.80 ** |
| Aas-11 × Durum-1 | 3.21 ** | 0.36 | 0.36 | -0.45 | -0.81 | 0.04 | -1.12 * | 0.18 |
| Aas-11 × Durum-2 | 3.38 ** | 2.40 ** | 3.36 ** | 0.80 ** | -2.56 ** | -0.76 | -1.41 ** | -0.99 ** |
| Chakwal-50 × Mairaj-08 | 1.42 * | -2.30 ** | -3.26 ** | 0.30 | 3.57 ** | -1.05 | 2.63 ** | 2.26 ** |
| Chakwal-50 × Durum-1 | 0.01 | 1.86 ** | 2.45 ** | 0.22 | -2.23 ** | -1.30 * | 0.09 | 0.06 |
| Chakwal-50 × Durum-2 | -0.16 | -0.76 | 0.45 | 0.80 ** | 0.36 | -0.09 | -1.54 ** | -0.53 |
| Mairaj-08 × Durum-1 | -0.79 | 2.49 ** | 2.78 ** | 0.43 | 2.35 ** | -0.30 | -0.58 | 1.80 ** |
| Mairaj-08 × Durum-2 | 1.05 | 6.53 ** | 6.45 ** | -0.65 * | -7.10 * | 0.24 | -0.87 | 0.30 |
| Durum-1 × Durum-2 | -0.37 | 1.97 ** | -1.85 * | -1.07 ** | 0.77 | 0.33 | 3.92 ** | 0.35 |

#### 3.2.4. Heterosis

Means of eight characters of fifteen F1 hybrids were compared with values of mid parent (relative heterosis), better parent (heterobeltosis) and over standard parent (Table 4).

Short stature and early maturing plants of wheat are required to improve plant height and yield improving characters, hence negative heterosis is favourable for plant height, days to heading, days to anthesis, days to maturity and grain filling period. Heterosis for plant height was non-significant in all crosses. Maximum heterosis over Mid parent was exhibited by cross combinations Ass-11 × Chakwal-50 (-0.835 cm), Ass-11 × Miraj-08 (-3.918), Galaxy-13 × Durum-2 (-4.944), Glaxy-13 × Chakwal-50 (-1.699), Miraj-08 × Durum-2 (-20.50g), Durum-1 × Durum-2 (10.084g), and Chakwal-50 × Miraj-08 (12.562) against plant height, days to heading, days to anthesis, days to maturity, grain filling period, 1000 grain weight and yield/plant.

Highly significant negative heterobeltosis was found in Galaxy-13 × Durum-2 (-9.146) against days to heading and plant height (-4.934 cm) while Chakwal-50 × Miraj-08 showed positive heterotic effect i.e. 7.500g and 10.891g for thousand grain weight and yield/plant relative to better parent heterosis. Minimum day to heading (-6.623) and days to maturity (-4.719) was exhibited by Ass-11 × Miraj-08 and Galaxy-13 × Miraj-08. Minimum heterobeltosis for grain filling period was shown by hybrid Miraj-08 × Durum-2 (-26.923).

Significant positive results 8.695 and 6.666g relative to standard heterosis were recorded for cross combination Ass-11 × Chakwal-50 and Chakwal-50 × Miraj-08 for grain/spike and yield/plant. Durum-1 × Durum-2 reflected short stature (-10.855cm) and Ass-11 × Miraj-08 required minimum days to heading (-6.623). Early maturing characters like days to anthesis (-9.146) was observed by hybrid Glaxy-13 × durum-2 while minimum days for grain filling (-18.803) period and days to maturity (-5.617) were shown by Miraj-08 × Durum-2. These hybrids contained valuable genes from both parents and thus grain yield and yield contributing traits can be increased by exploring hybrids which exhibited maximum heterosis and heterobeltosis under studied traits [13].
4. Conclusion

Our results indicated the presence of both additive and non additive (dominant or epistasis) gene action in the inheritance of studied traits. General combing ability (GCA) of parents was observed higher than specific combing ability (SCA) of crosses for all traits like plant height, days to heading, days to anthesis, days to maturity, grain filling period, grains per spike, 1000 grain weight and grain yield per plant. Durum-1 was found best parent among all other parents against 1000 grain weight and days to heading. Miraj-08 was good general combiner as it reflected maximum grain yield per plant. These parents contain valuable genes for improvement of characters and may be preffered for selection and hybridization program. Best specific combing ability and heterosis was exhibited by cross combination Ass-11 × Chakwal-50, Galaxy-13 × Chakwal-50 and Chakwal-50 × Miraj-08 against plant height, grain per spike and yield character. Selection of such crosses would be beneficial for the development of superior hybrids through heterosis breeding.
References

[1] Ahuja SL & Dhayal LS, 2007. Combining ability estimates for yield and fibre quality traits in 4 x 13 line x tester crosses of Gossypium hirsutum. Euphytica. 153: 87-98.

[2] Akinci C, 2009. Heterosis and combining ability estimates in 6 x 6 half diallel crosses of durum wheat (Triticum durum desf.). Bulgarian. J. Agric. Sci. 15 (3): 214–221.

[3] Anonymous. 2016-17. Pakistan Economic Survey. Ministry of Finance, Economic Advisor’s Wing, Islamabad.

[4] Desale CS, Mehta DR & Singh AP, 2014. Combining ability analysis in bread wheat. J. Wheat Res. 6: 25–28.

[5] Griffing B, 1956. Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol. Sci. 9: 463-493.

[6] Hassan G, Mohammad F, Afridi SS & Khalil I, 2007. Combining ability in the F1 generation of diallel crosses for yield and yield components in wheat. Sarhad. J. Agric. 23: 937–942.

[7] Jaiswal, KK, Marker S & Kumar B, 2013. Combining ability analysis in diallel crosses of wheat (Triticum aestivum L.). The Bioscan. 8: 1557–1560.

[8] Khayatnejad M, Zaefizadeh M & Gholamin R, 2010. Study of genetic diversity and path analysis for yield of durum wheat under drought stress condition. Plant Ecophysiol. 2: 133-136.

[9] Masood SA, Ahmad S, Kashif M and Ali Q, 2014. Role of combining ability to develop high yielding wheat (Triticum aestivum L.) genotypes: An overview. Natural Sciences. 12: 155–161.

[10] Peng Z, Ru PH, Fu NZ, Hu LL, Jun W & Xin SQ, 2009. Heterosis and combining ability of major agronomic traits in crosses between ear branched wheat and common wheat. J. Triticeae Crops. 29: 212216.

[11] Rashid M, Cheema AA & Ashraf M, 2007. Line x tester analysis in basmati rice. Pakistan J. Bot. 39(6): 2035-2042.

[12] Sharma, P. K & Pawar IS, 2000. Genetic architecture of some wheat crosses through triple testcross method. Ind. J. Genet Plant Breed. 48: 45-48.

[13] Sharma SK, Singh KP & Singh I, 1991. Selection responses for grain weight in some intermated population of wheat (Triticum aestivum L.). Proc. Golden Jubilee Symp. Indian Soc. Genet. Plant Breed. New Delhi. Abstr. II: 357.

[14] Singh M, Devi EL, Glawe S, Kousar N & Behera C, 2013. Estimation of heterosis in different crosses of bread at (Triticum aestivum L.). The Bioscan. 8: 1393–1401.