Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors

Raluca-Ioana Stefan-van Staden1,2, Livia Alexandra Gugoasă1,2, Bogdan Calenic1 & Juliette Legler3

1Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021, Bucharest-6, Romania, 2Faculty of Applied Chemistry and Material Science, Politehnica University of Bucharest, Bucharest, Romania, 3Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.

Stochastic microsensors based on diamond paste and three types of electroactive materials (maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P)) were developed for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in children’s saliva. The main advantage of utilization of such tools is the possibility to identify and quantify all three hormones within minutes in small volumes of children’s saliva. The limits of quantification obtained for DHT, T2, and E2 (1 fmol/L for DHT, 1 pmol/L for T2, and 66 fmol/L for E2) determined using the proposed tools allows the utilization of these new methods with high reliability for the screening of saliva samples from children. This new method proposed for the assay of the three hormones overcomes the limitations (regarding limits of determination) of ELISA method which is the standard method used in clinical laboratories for the assay of DHT, T2, and E2 in saliva samples. The main feature of its utilization for children’s saliva is to identify earlier problems related to early puberty and obesity.

Hormones are natural substances formed in the body, with the role of chemical messengers released by endocrine glands, which can act on target cells from a distance. Besides cell communication, hormones are indispensable for complete and harmonious human growth. Three of the most important sex steroid hormones are 17β-estradiol (E2), testosterone (T2) and 5α-dihydrotestosterone (DHT). These derivates of cholesterol are responsible for the proper development of sexual characteristics and numerous essential processes in human development and reproduction. Clegg et al found a correlation between the steroid hormones and obesity1–4.

The accurate measurement of the sex hormones in biological samples is important in evaluating ovarian, prostate and testicular function7,8. E2 is checked in clinical laboratories for female infertility and ovarian tumor diagnosis, therefore E2 is a clinically important analyte7. DHT is a biomarker for benign prostatic hyperplasia (BPH) and for prostatic cancer (PCa). DHT formation is inhibited by the 5α-reductase inhibitors, so it is essential to measure the T2 levels in the body.

In children, measurement of serum E2 and T2 is used in the clinical diagnosis of precocious or delayed puberty in girls and boys, respectively9,10. In recent years, the use of saliva as a non-invasive alternative matrix to measure steroid hormones has gained attention11, though there are concerns about specificity and sensitivity of classical immunological (including ELISA) or liquid chromatography tandem mass spectrometry based methods for measuring the low androgen and estrogen levels in children’s saliva11. Therefore it is a real need to develop high sensitive and selective methods that can be used for reliable assay of steroid hormones in children’s saliva.

Stochastic microsensors represent a modern tool for qualitative and quantitative analysis of targeted analytes, with a better sensitivity and selectivity than classical electrochemical sensors. Their utilization in biomedical analysis represents a good alternative to chromatographic methods12–22. Stochastic response is based on channel conductivity, according to the mechanism described previously by Stefan-van Staden and Moldoveanu23. The stochastic sensors are highly selective for the assay of biological substances, because the value of t_off (known as signature of the analyte) depends on many parameters of the analyte such as: geometry and size of molecule,
capacity of unfolding, velocity related to the speed of passing through the channel; accordingly, there will be difficult to find two molecules that will have the same signature. In this paper we propose three tools based on stochastic microsensors designed using diamond paste and three different electroactive materials: maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P), for the assay of steroid hormones in saliva samples from children. Diamond powder is used as a matrix in the design of stochastic microsensors, due to its particular electrochemical proprieties, such as wide potential range, low background current and the ability of reaching low detection limits. The monocristalline form of diamond was preferred due to the diamond monocystal properties proprieties, such as enhanced holes and electron mobilities. Monocristallin diamond paste sensors have been used in differential potentiometric voltmmetry mode for the assay of biological compounds such as: L-fucose and D-fucose, sildenafil citrate and neurotransmitters. To our knowledge, the approach has not been previously to assay steroid hormones in biological matrices such as saliva. Here we show that the proposed method and tools can be reliable used for the assay of the three hormones in children’s saliva, and can be employed in clinics for early detection and prevention of problems related to children such as early puberty, endocrin disorders, and obesity.

Experimental

Materials and reagents. All chemicals were of analytical grade. 17β-estradiol (E2), testosterone (T2) and 5α-dihydrotestosterone (DHT), maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P), natural monocristalline diamond powder were purchased from Sigma Aldrich (Milwaukee, USA) and paraffin oil (d0.86, 0.86 g cm−3) from Fluka (Buchs, Switzerland).

The hormones solutions were firstly dissolved in dimethylsulfoxide (DMSO), with a concentration of 10 mmol L−1 T2 and DHT and 6.59 mmol L−1 E2. For the preparation of solutions with different concentrations (10−6 mol L−1–10−4 mol L−1), we used deionized water and the serial dilution technique.

Apparatus and methods. All measurements were performed with an AUTOLAB/PGSTAT 12 (Utrecht, The Netherlands) connected to a personal computer with a GPES software, used to record the measurements. A three electrode system electrochemical cell was employed. Ag/AgCl (0.1 mol L−1 KCl) electrode serves as a reference electrode in the cell and a platinum wire as a counter electrode in the cell, respectively.

Design of stochastic microsensors. Natural monocristalline diamond powder was mixed with paraffin oil until a homogenous paste was formed. 25 μL of 10−3 mol/L electroactive material solution (maltodextrin (MD), α-cyclodextrin (α-CD) and 5,10,15,20-tetraphenyl-21H,23H porphyrin (P)) were added to 100 mg of the paste to give the modified diamond pastes. Three plastic tubes (100 μm inner diameter) were filled with the three modified pastes and the electric contact was obtained by inserting a silver (0.5 mm in diameter) wire into the paste. Schematic representation of the microsensors is presented in Figure 1. Before each measurement, the microsensors were cleaned with deionized water. When not in use, they were kept at room temperature, in a dry place.

Samples. Saliva samples were obtained from children aged 4–10 years (6 boys, 6 girls) collected at the University Hospital in Bucharest (ethics committee approval nr. 11/2013). Saliva collection was done in the morning around 8 am before eating or drinking for all subjects included in the study. Saliva sampling was performed following a mouth rinse with 5 ml of water to wash out any debris or exfoliated cells. From each subject around 1 ml of unstimulated whole saliva was collected. The sample was divided in two: one part was used for the assay of hormones using stochastic sensing, and the other one was centrifuged at 2000 rpm for 10 min, and the three hormones were analysed using a standard method (see below).

Standard method. 5α-dihydrotestosterone, testosterone and estradiol were analysed using an enzyme immunoassay quantitative (ELISA) kit for DHT, E2 and T2 (IBL International GMBH, Hamburg, Germany) following manufacturer instructions. Briefly, 0.2 mL saliva samples and manufacturer provided standards were pipetted into wells precoated with an antibody specific for the tested hormone. After enzyme conjugate addition the wells were incubated at room temperature for one hour. Following a washing step with the provided buffer a substrate solution was added to wells. The color developed in proportion to the amount of the hormone bound in the first step. When color development was stopped, the optical density was determined using a microplate reader set to 450 nm. The limits of determination using ELISA where: 25 pg/mL for 5α-dihydrotestosterone, 6.4 pg/mL for testosterone and 1 pg/mL for estradiol.

Results and discussion

Response characteristics of stochastic microsensors. The diagrams obtained when a potential of 125 mV was applied were specific for stochastic sensors. The response of the proposed microsensors was based on channel conductivity: the current flowing through a channel under an applied potential of 125 mV is altered when DHT, E2, and T2 are binding on the channel wall. The molecular recognition of the hormones is taking part in two stages: stage 1 (molecular recognition stage) on which the hormone (DHT, E2, and T2) extracted from the solution into the membrane-solution interface is blocking the channel, and the intensity of the current is 0 for a certain period of time named signature of the analyte (t off). The value of t off is used for the qualitative assay of DHT, E2, and T2 in the diagrams obtained for children’s saliva analysis. When DHT, E2, and T2 are interacting with the wall of the channel (Stage 2, binding stage), the following equilibrium equations (equations (1), (2), (3)) are taking place:

$$Ch + DHT\leftrightarrow Ch\bullet DHT$$

(1)

$$Ch + E2\leftrightarrow Ch\bullet E2$$

(2)

$$Ch + T2\leftrightarrow Ch\bullet T2$$

(3)

where Ch is the channel, and i is the interface. The time of equilibrium for interaction with the channel process is defined as ton and is used for the quantitative assay of DHT, E2, and T2.

Signatures of DHT, E2, and T2 (t off values) are shown in Table 1. Standard solutions of each hormone, in the concentration range 0.1 fmol L−1 – 0.1 mmol L−1, were analysed to obtain the calibration equations for all three diamond paste based microsensors. The equations of calibration with the correlation coefficients, the linear concentration ranges, the sensitivities, and the limits of determination for DHT, E2 and T2 are shown in Table 1.

The microsensor based on MD showed the highest sensitivity for the assay of DHT (2.65 × 1011 s mol−1 L) and T2 (1.95 × 1010 s mol−1 L), while for the assay of E2 the highest sensitivity was obtained using
Table 1 | Response characteristics of stochastic microsensors used for the assay of DHT, T₂ and E₂

Microsensors based on diamond paste and	Calibration equation and correlation coefficient (r)	Linear concentration range (mol/L)	t_{off}	Sensitivity (s/mol L⁻¹)	Limit of detection (fmol L⁻¹)
DHT					
P	\(1/t_{on} = 0.05 + 1.86(\pm 0.35) \times 10^{10} \times c\) \(r = 0.9853\)	\(10^{-14} - 10^{-12}\)	4.0	\(1.86 \times 10^{10}\)	10
MD	\(1/t_{on} = 0.08 + 2.65(\pm 0.15) \times 10^{11} \times c\) \(r = 0.9996\)	\(10^{-15} - 10^{-13}\)	1.8	\(2.65 \times 10^{11}\)	1
α-CD	\(1/t_{on} = 0.05 + 6.92(\pm 0.21) \times 10^{8} \times c\) \(r = 0.9825\)	\(10^{-13} - 10^{-11}\)	5.1	\(6.92 \times 10^{8}\)	100
T₂					
P	\(1/t_{on} = 0.065 + 1.27(\pm 0.15) \times 10^{8} \times c\) \(r = 0.9942\)	\(10^{-10} - 10^{-8}\)	5.3	\(1.27 \times 10^{6}\)	100
MD	\(1/t_{on} = 0.061 + 1.95(\pm 0.12) \times 10^{8} \times c\) \(r = 0.9989\)	\(10^{-12} - 10^{-10}\)	3.5	\(1.95 \times 10^{8}\)	1
α-CD	\(1/t_{on} = 0.069 + 1.27(\pm 0.09) \times 10^{7} \times c\) \(r = 0.9999\)	\(10^{-11} - 10^{-9}\)	3.1	\(1.27 \times 10^{7}\)	10
E₂					
P	\(1/t_{on} = 0.03 + 2.51(\pm 0.21) \times 10^{9} \times c\) \(r = 0.9987\)	\(6.59 \times 10^{-14} - 6.59 \times 10^{-12}\)	7.4	\(2.51 \times 10^{9}\)	66
MD	\(1/t_{on} = 0.02 + 3.50(\pm 0.23) \times 10^{8} \times c\) \(r = 0.9966\)	\(6.59 \times 10^{-11} - 6.59 \times 10^{-8}\)	8.5	\(3.50 \times 10^{5}\)	66000
α-CD	\(1/t_{on} = 0.06 + 1.83(\pm 0.12) \times 10^{8} \times c\) \(r = 0.9976\)	\(6.59 \times 10^{-14} - 6.59 \times 10^{-12}\)	5.2	\(1.83 \times 10^{9}\)	66

Figure 2 | Pattern recognition of the hormones in saliva sample using the stochastic microsensors based on (a) porphyrin and diamond paste; (b) maltodextrin and diamond paste; and (c) α-cyclodextrin and diamond paste.
Table 2 | Determination of T2, DHT, and E2 in children’s saliva using stochastic microsensors. All results are in pg/mL

Microsensors based on diamond paste and	1	2	3	4	5	6	7	8	9	10	11	12
T2												
α-CD/DP	3.1±0.1	0.36±0.09	1.2±0.1	1.3±0.1	3.3±0.1	1.7±0.2	2.3±0.1	2.1±0.1	1.0±0.2	1.1±0.2	1.7±0.2	1.1±0.1
P/DP	3.3±0.2	0.36±0.08	2.2±0.2	2.1±0.2	3.9±0.3	1.9±0.2	2.7±0.2	1.9±0.2	1.3±0.2	1.4±0.2	1.7±0.1	1.3±0.1
MD/DP	3.2±0.1	0.34±0.08	1.9±0.2	1.1±0.2	1.1±0.1	1.1±0.1	2.0±0.1	1.8±0.2	1.1±0.1	1.2±0.1	1.6±0.1	1.5±0.2
ELISAa†	0.70±0.25	1.1±0.9	0.4±0.2	0.6±0.2	0.9±0.5	1.0±0.4	1.4±0.5	1.1±0.4	0.5±0.3	0.6±0.3	0.3±0.2	0.3±0.2
DHT												
α-CD/DP	0.30±0.03	0.30±0.04	0.30±0.02	0.20±0.02	0.10±0.01	0.30±0.02	0.30±0.02	0.30±0.02	0.30±0.02	0.30±0.01	0.10±0.01	0.20±0.01
P/DP	0.20±0.03	0.20±0.01	0.20±0.02	0.20±0.02	0.10±0.01	0.40±0.02	0.20±0.01	0.20±0.02	0.20±0.01	0.20±0.01	0.20±0.01	0.20±0.02
MD/DP	0.20±0.02	0.30±0.03	0.30±0.01	0.10±0.01	0.10±0.01	0.40±0.02	0.30±0.02	0.30±0.01	0.20±0.01	0.10±0.01	0.10±0.01	0.30±0.01
ELISAa†	0.20±0.12	0.40±0.23	0.20±0.12	0.50±0.21	0.40±0.15	0.70±0.23	0.80±0.21	0.40±0.13	0.11±0.21	0.30±0.15	0.30±0.15	0.30±0.15
E2												
α-CD/DP	1.9±0.1	2.9±0.3	1.1±0.1	1.1±0.2	2.2±0.2	2.2±0.2	1.8±0.2	1.7±0.2	2.0±0.1	1.0±0.2	0.80±0.03	0.9±0.1
P/DP	1.7±0.2	2.3±0.3	1.0±0.1	1.0±0.2	2.3±0.2	2.0±0.2	1.4±0.1	1.5±0.2	1.6±0.2	1.6±0.2	1.6±0.2	1.6±0.2
MD/DP	1.1±0.2	2.7±0.3	1.2±0.2	1.5±0.2	2.6±0.2	1.5±0.2	1.6±0.2	1.4±0.1	0.70±0.02	1.0±0.1	0.80±0.03	1.6±0.2
ELISAa†	1.8±0.7	1.7±0.9	1.3±0.8	1.1±0.8	1.5±0.9	2.0±0.9	1.3±0.7	1.7±0.8	0.50±0.15	1.1±0.4	1.0±0.5	0.9±0.4

*ELISA (standard method).
†The standard method (ELISA) could not determine the analyte.

Conclusions

The proposed method using stochastic microsensors based on diamond paste with porphyrin, maleic acid, and 2-hydroxy-4-nitrophenol for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in saliva. The limits of quantification (based on t on values) using the equation of quantification (based on t on values) using the equation of calibration for each sample were recorded in Table 2. The standard method used for the assay of the hormones in saliva samples.

Analytical applications

Pattern recognition of the three hormones in saliva samples from 6 boys and 6 girls age 4–10 was done using the signatures of the hormones in the patterns recorded using stochastic microsensors. The proposed pattern recognition method performed well in saliva samples from children older than 6, and frequently under the limit of quantification (based on t on values) using the equation of calibration for each sample.

The paper proposed the use of stochastic microsensors based on diamond paste with porphyrin, maleic acid, and 2-hydroxy-4-nitrophenol for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in saliva. The limits of quantification (based on t on values) using the equation of quantification (based on t on values) using the equation of calibration for each sample were recorded in Table 2. The standard method used for the assay of the hormones in saliva samples.

The proposed method using stochastic microsensors based on diamond paste with porphyrin, maleic acid, and 2-hydroxy-4-nitrophenol for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in saliva. The limits of quantification (based on t on values) using the equation of quantification (based on t on values) using the equation of calibration for each sample were recorded in Table 2. The standard method used for the assay of the hormones in saliva samples.

The proposed method using stochastic microsensors based on diamond paste with porphyrin, maleic acid, and 2-hydroxy-4-nitrophenol for the assay of estradiol (E2), testosterone (T2) and dihydrotestosterone (DHT) in saliva. The limits of quantification (based on t on values) using the equation of quantification (based on t on values) using the equation of calibration for each sample were recorded in Table 2. The standard method used for the assay of the hormones in saliva samples.
22. Gu, L. Q., Bahra, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by pore-forming protein containing a molecular adaptor. *Nature* **398**, 686–690 (1999).
23. Liu, A., Zhao, Q. & Guan, X. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. *Anal. Chim. Acta* **675**, 106–115 (2010).
24. De Heus, P. R. The applications and properties of monocrystal. *Ind. Diam. Rev.* **57**, 15–18 (1997).
25. Nebel, C. F. et al. Low temperature properties of the p-type surface conductivity of diamond. *Diamond. Relat. Mater.* **11**, 351–354 (2002).

Acknowledgments

This work was supported by UEFISCDI PNII Program Ideas 2011–2014, Contract nr. 123/05.10.2011 and the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement OBELIX n° 227391. Livia Alexandra Gugoasa acknowledge the funds obtained from the Sectorial Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/134398.

Author contributions

R.I.S.v.S., L.A.G., J.L. and B.C. conducted all experiments. All authors contributed to the design of the assay and discussed the results. R.I.S.v.S. and L.A.G. were the primary authors of the manuscript; J.L. and B.C. commented on the manuscript at all stages. All authors reviewed the article.

Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Stefan-van Staden, R.-I., Gugoasa, L.A., Calenic, B. & Legler, J. Pattern recognition of estradiol, testosterone and dihydrotestosterone in children’s saliva samples using stochastic microsensors. *Sci. Rep.* **4**, 5579; DOI:10.1038/srep05579 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/