Ethnobotanical survey of herbs used in the management of diabetes mellitus in Southern Katanga Area/DR Congo

Bakari Amuri1,2,*, Mwamba Maseho1, Lumbu Simbi3, Pierre Duez2, Kahumba Byanga1

1Laboratoire de Pharmacognosie, Université de Lubumbashi (UNILU), 27 Avenue Kato, Lubumbashi, Democratic Republic of Congo, 2Unit of Therapeutic Chemistry and Pharmacognosy, Mons (UMONS), Bât 6, Chemin du Champ de Mars 25, 7000 Mons, Belgium, 3Laboratoire de Chimie Organique, Département de Chimie, Faculté des Sciences, Université de Lubumbashi (UNILU), Université de Democratic Republic of Congo

*Corresponding author: Bakari Amuri, Laboratoire de Pharmacognosie, Université de Lubumbashi (UNILU), 27 Avenue Kato, Lubumbashi, Democratic Republic of Congo

Key words: Diabetes, medicinal plants, Ethnopharmacology, Katanga

Received: 21/01/2017 - Accepted: 22/06/2018 - Published: 18/07/2018

Abstract

Introduction: Diabetes is becoming a public health burden for sub-Saharan countries due to its prevalence which is growing rapidly. Traditional medicine is more and more used to treat diabetes in RD Congo as well as in other African countries. This study was undertaken in order to list plants used in the management of diabetes by traditional healers in four agglomerations of southern area of Katanga in the Democratic Republic of Congo. Methods: Forty-nine traditional healers were randomly met and interviewed about diabetes treatment in traditional medicine. The survey concerned the plant identification, their part used, method of preparation and the route of administration. The inquest concerned also traditional medicine users. Results: Ninety-five plants from 47 families were indicated as antidiabetic. Fabaceae (24.2%), Euphorbiaceae (7.4%), Apocynaceae and Strychnaceae (4.2 each) are the more representative families. This inventory showed that the root is the most used part of the cited plants, the decoction with water as the main preparation method and the oral administration as the principal way to give antidiabetic traditional formulations. Conclusion: In Lubumbashi region, many plant species are used to treat diabetes either through traditional praticians or by anyone from well-known ancestral knowledge.

Pan African Medical Journal. 2018;30:218. doi:10.11604/pamj.2018.30.218.11718

This article is available online at: http://www.panafrican-med-journal.com/content/article/30/218/full/

© Bakari Amuri et al. The Pan African Medical Journal - ISSN 1937-8688. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

Diabetes mellitus is a metabolic syndrome characterized by chronic high-blood glucose concentrations resulting from defects in insulin secretion, insulin action or both and having consequences on lipids and proteins metabolism [1,2]. According to the International Federation of Diabetes (IDF) there were 415 million people in the world with diabetes in 2015 and this is projected to increase to 642 million by 2040 [3]. In the Democratic Republic of Congo the prevalence of diabetes mellitus is rapidly growing up [4,5]. From 2003 to 2013 the number of diabetic patients has increased alarmingly from 552 thousands to 1.6 million; and the proportion of people with undiagnosed diabetes may reach 75% due to resource-limited health care [6,7]. On one side the limited access to conventional drugs and health care system, the faith on ancestral culture healing practices on the other hand, bring more people to traditional medicine where herbal drugs are widely used. Traditional medicine is still the mainstay of millions Congolese as well as other Africans [8]. In light of that, we decided to collect information about the plants used traditionally in the treatment of diabetes mellitus in southern Katanga area, DRC.

Methods

This ethnobotanical survey was realized by interviews conducted with the help of a guide-questionnaire in the town of Lubumbashi, and in the cities of Kasumbalesa, Kipushi and Likasi, in the southern area of Katanga province, in the Democratic Republic of Congo from September 2005 to July 2007, according to principles stated by the Declaration of Helsinki on personal data [9]. To be sure of the information veracity, each traditional healer was met at least three times to answer the same questions at different moments. From the collected sample, the plants pointed out as providing antidiabetic properties had been identified by their scientific name at the herbarium of Kipopo (30km far from Lubumbashi town to the North), by Professor Jean Lejoly of the Free University of Brussels.

Results

About fifty traditional healers were visited and interviewed on their knowledge and on diabetes treatment after their assent. The data obtained from different traditional healers on their knowledge and on vegetable species used in the management of diabetes are given in Table 1 and Annex 1. Table 1 gives information about traditional practitioners (tribe, age, sex and how he or she became healer). Annex 1 gives information about plant species: local name, plant parts used, methods of preparation, administration and different diseases treated. Scientific names were given after botanical identification of harvested samples and listed in the table in alphabetical order. As indicated in the Table 1, 49 traditional healers allotted between twelve tribes, whose 16 women (32.65 %) and 33 men (67.34 %) were interviewed. Without accurate sociological information on these different tribes, it is not easy to explain clearly why there are more men traditional healers than women. However, we think that three reasons would explain that: (i) the will of advertising (use of poster, streamer, cartoon) that is more remarkable to men than to women; (ii) the fact that during the inquest time, more women than men are absent for field work would explain why there are more men traditional healers known than women; and (iii) it is possible that the practice of traditional medicine is guided by socio-cultural characteristics such as kinship system (patriarchy or matriarchy) as observed in the Mafa tribe of Cameroun [10]. As it can be observed the main source of traditional medicine knowledge remains the ancestral transmission way from old people to young ones (39/49). This may be explained by the fact that, traditional medicine is a cultural component which spread through generations from ascendants to descendants and based on oral transmission in Africa [8,11,12]. We notify that the Luba and Bemba tribes are the most representative tribes among the traditional practitioners respectively with 28.57% and 16.32%, only because they are the most numerous in the areas of inquiry [13] Annex 1. The information about the plants used in managing diabetes collected from different traditional medical practitioners is gathered in the following table. In this study, the data show that, 95 plants from 47 families were indicated as traditionally used to treat diabetes. Fabaceae (24.2%), Euphorbiaceae (7.4%), Apocynaceae and Loganiaceae (4.2 each) are the most representative botanical families. The ethnobotanical survey revealed that the root (41.3% of citation) is the most used organ of plant followed by the leaves (28.6%) and the stem bark (20.6%). The decoction found to be the main way to prepare recipes (62.2%) and the oral administration (92%) as the principal way to give antidiabetic traditional formulations. The present study showed that, apart from diabetes, the 95 plants mentioned by traditional healers are also used in the treatment of others several diseases or symptoms (more than forty) such as diarrhea, rheumatism, infections and abdominal pain. Each

Annex 1

Table 1 gives information about plant species: local name, plant parts used, methods of preparation, administration and different diseases treated. Scientific names were given after botanical identification of harvested samples and listed in the table in alphabetical order. As indicated in the Table 1, 49 traditional healers allotted between twelve tribes, whose 16 women (32.65 %) and 33 men (67.34 %) were interviewed. Without accurate sociological information on these different tribes, it is not easy to explain clearly why there are more men traditional healers than women. However, we think that three reasons would explain that: (i) the will of advertising (use of poster, streamer, cartoon) that is more remarkable to men than to women; (ii) the fact that during the inquest time, more women than men are absent for field work would explain why there are more men traditional healers known than women; and (iii) it is possible that the practice of traditional medicine is guided by socio-cultural characteristics such as kinship system (patriarchy or matriarchy) as observed in the Mafa tribe of Cameroun [10]. As it can be observed the main source of traditional medicine knowledge remains the ancestral transmission way from old people to young ones (39/49). This may be explained by the fact that, traditional medicine is a cultural component which spread through generations from ascendants to descendants and based on oral transmission in Africa [8,11,12]. We notify that the Luba and Bemba tribes are the most representative tribes among the traditional practitioners respectively with 28.57% and 16.32%, only because they are the most numerous in the areas of inquiry [13] Annex 1. The information about the plants used in managing diabetes collected from different traditional medical practitioners is gathered in the following table. In this study, the data show that, 95 plants from 47 families were indicated as traditionally used to treat diabetes. Fabaceae (24.2%), Euphorbiaceae (7.4%), Apocynaceae and Loganiaceae (4.2 each) are the most representative botanical families. The ethnobotanical survey revealed that the root (41.3% of citation) is the most used organ of plant followed by the leaves (28.6%) and the stem bark (20.6%). The decoction found to be the main way to prepare recipes (62.2%) and the oral administration (92%) as the principal way to give antidiabetic traditional formulations. The present study showed that, apart from diabetes, the 95 plants mentioned by traditional healers are also used in the treatment of others several diseases or symptoms (more than forty) such as diarrhea, rheumatism, infections and abdominal pain. Each
of the 95 plants cited was mentioned at least by one respondent. Some species such as: *Albizia adianthifolia* (Schum.) WF Wight, *Antidesma venosum* Meyer, *Cassia occidentalis* L, *Jatropha curcas* L and *Strychnos spinosa* Lam, were known as antidiabetic by two or more traditional healers (Annex 1).

Discussion

This is a first report of an ethnobotanical survey of species used as antidiabetic in the study area. The predominance of Fabaceae, Euphorbiaceae as major botanical families comprising more species used in traditional medicine was also mentioned in a similar study in the same area [14,15]. This study has shown that the root is the most widely used organ for the preparation of recipes. Cheikhyoussef et al [16] as well as Tabuti et al [17], found also in their studies that root and leaves have been more used than other plant organ. The large use of decoction and oral administration respectively as the main preparation mode and the principal route to give traditional herbal drugs are generally observed in other African communities. The use of the different plants in the management of diabetes and other ailments demonstrates the importance of traditional medicine that is known to be a component of everyday life in many areas of the world and particularly in Africa [8,18]. When comparing this study with others, some resemblance can be pointed out: among 306 vegetables species cited as antidiabetic plants used in the treatment of diabetes in Mexico [19], 11 plants are identified in our study: *Allium cepa* L, *Aloe vera* L, *Ananas comosus* L, *Arachis hypogaea* L, *Bident pilosa* L, *Carica papaya* L, *Catharanthus roseus* L, *Persea americana* Mill, *Psidium guajava* L, *Ricinus communis* L, *Senna occidentalis* L as used by traditional healers in the management of diabetes. In the ethnobotanical investigation conducted by Abo, Fred-Jaiyesimi and Jaiyesimin in the South Western Nigeria area [20], 31 plants had been reported to be used traditionally as antidiabetic agents and *Carica papaya* cited in our study is revealed in that study. *Allium cepa*, *Allium sativum*, *Bident pilosa*, *Catharanthus roseus*, *Lantana camara*, *Musa sapientum* and *Psidium guajava* identified in this investigation are documented as antidiabetic used traditionally in other studies [21,22]. The antidiabetic properties of some species identified in this investigation have been experimentally demonstrated in the in vivo and in vitro diabetic models: *Allium cepa*, *Allium sativum* [23], *Aloe vera*, *Bident pilosa* [19,24]; *Catharanthus roseus* [25-27], *Lantana camara* [23,28], *Musa sapientum* [29,30]. Compared to another ethnobotanical survey of plants used as antidiabetic in Kisangani, Eastern province of DRC, 10 species cited in this study are also mentioned by Katemo et al [31].

Conclusion

In this study tradipraticians cited both medicinal herbs already known for their antidiabetic effect (34 plants, 35.8% of citations) and so far un-cited herbs that must be evaluated for hypoglycemic and antihyperglycemic and other diabetic related symptoms; so that they may possibly be used in the management of diabetes.

- **What is known about this topic**
 - For this topic, it is known that the population of Lubumbashi and its surroundings uses traditional medicine to treat various diseases. It is also known that in most cases, this traditional medicine exploits plant resources as a source of medicines. Some of these plants are used in the treatment of diabetes.

- **What this study adds**
 - The novelty of this study is summarized in that: (i) this study lists for the first time the plants used against diabetes in Lubumbashi and its surroundings; (ii) Among the inventoried species, some have not yet been studied in this field and are probably a particularity of Congolese traditional medicine; (iii) For the first time, the profile of providers of traditional diabetes care in Lubumbashi is given.

Competing interests

The authors declare no competing interests.

Authors’ contributions

All the authors have read and agreed to the final manuscript.
Table

Table 1: Information about the 49 traditional healers’ identity and source of knowledge

Annex

Annex 1: Plants used traditionally in the management of diabetes at Kasumbalesa, Kipushi, Likasi and Lubumbashi

References

1. WHO. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. WHO Geneva. 2006. 1-33.

2. Marshal WJ, Bangert SK. Biochimie médicale: physiopathologie et diagnostic. Paris, Masson. 2005.

3. International Diabetes Federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation. 2015.

4. Tshikongo AK, Kyandabike RK, Amuri SB, Otshudi AL, Kalala ZL. Profil des marqueurs lipidiques dans le diabète de type 2, cas de la ville de Lubumbashi en République Démocratique du Congo. Rev méd Madag. 2015; 5(2): 549-552.

5. On’Kin KL, Longo-Mbenza B, Okwe N, Kabangu NK, Mpandamadi SD, Wemakoy O, He J. Prevalence and risk factors of diabetes mellitus in Kinshasa Hinterland. Int J Diabetes & Metabolism. 2008; 16: 97-106. Google Scholar

6. International Diabetes Federation. IDF Diabetes Atlas, 2nd edn. Brussels, Belgium: International Diabetes Federation. 2003.

7. International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels, Belgium: International Diabetes Federation. 2013.

8. World Health Organization. Traditional Medicine strategy 2014-2023. 2013; 1-78.

9. World Medical Association. Declaration of Helsinki (2008). Accessed 12 December 2009.

10. Genest S. Savoir traditionnel chez les forgerons mafa. RCSA. 1974; 8(3): 495-516. Google Scholar

11. Chabas J. Le statut personnel des autochtones de l’Afrique noire française. Civilisations. 1953; 3(2): 199-213. Google Scholar

12. Scheub H. A review of african oral traditions and literature. ASR. 1985; 28(2/3): 1-72. Google Scholar

13. Bruneau JC. Les nouvelles provinces de la République Démocratique du Congo: construction territoriale et ethnicités. L’Espace Politique. 2009. Google Scholar

14. Muya K, Tshoto K, Cioci CC, Aseho MM, Kalonji M, Byanga K et al. Survol ethnobotanique de quelques plantes utilisées contre la schistosomiase urogénitale à Lubumbashi et environs. Phytothérapie. 2014; 12(4): 213-228.

15. Bashige CV, Manya MH, Ntabaza NV, Numbi EI, Bakari AS, et al. Étude ethnobotanique, biologique et chimique de plantes réputées anticariogènes à Lubumbashi-RD Congo. Phytothérapie. 2017; 15(1): 2-9.

16. Cheikhyoussef A, Shapi M, Matengu K, Ashekele HM. Ethnobotanical study of indigenous knowledge on medicinal plant use by traditional healers in Oshikoto region, Namibia. J Ethnobiol Ethnomed. 2011; 7: 10. PubMed | Google Scholar

17. Tabuti JRS, Lye KA, Dhillion SS. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. J Ethnopharmacol. 2003; 88(1): 19-44. PubMed | Google Scholar

18. Sonibare MA, Gbile ZO. Ethnobotanical survey on anti-asthmatic plants used in south Western Nigeria. Afr J Trad CAM. 2008; 5(4): 340-345. PubMed | Google Scholar

19. Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol. 2005; 99(3): 325-348. PubMed | Google Scholar
20. Abo KA, Fred-Jaiyesimi AA, Jaiyesimi AEA. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J Ethnopharmacol. 2008; 115(1): 67-71. PubMed | Google Scholar

21. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TA. Indian herbs used for the treatment of Diabetes. J Clin Biochem Nutr. 2007; 40(3): 163-173. PubMed | Google Scholar

22. Garg M, Garg C. Scientific alternative approach in diabetes-An overview. PHCOG Rev. 2008; 2(4): 284-301. Google Scholar

23. Bnouham M, Ziiyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity: a review of ten years of herbal medicine research (1990-2000). Int J Diabetes & Metabolism. 2006; 14(1): 1-25. Google Scholar

24. Hsu YJ, Lee TH, Chang CLT, Huang YT, Yang WC. Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J Ethnopharmacol. 2009; 122(2): 379-383. PubMed | Google Scholar

25. Nammi S, Boini MK, Lodagala SD, Behara RBS. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med. 2003; 3: 4. PubMed | Google Scholar

26. Mostofa M, Choudhury ME, Hossain MA, Islam MS, Sumon MH. Antidiabetic effects of Catharanthus roseus, Azadirachta indica, Allium sativum and glimepride in experimentally diabetic induced rat. BJVM. 2007; 5(1&2): 92-102. Google Scholar

27. Afolayan AJ, Sunmonu TO. In vivo studies on antidiabetic plants used in South Africa Herbal Medicine. J Clin Biochem Nutr. 2010; 47(2): 98-106. PubMed | Google Scholar

28. Garg SK, Shah MA, Garg KM, Farooqui MM, Sabir M. Antilymphocytic and immunosuppressive effects of Lantana camara leaves in rats. Indian J Exp Biol. 1997; 35(12): 1315-1318. PubMed | Google Scholar

29. Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC, Flores-Saenz JL. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998; 61(2): 101-110. PubMed | Google Scholar

30. Pari L, Umapaheswari J. Antihyperglycaemic activity of Musa sapientum flowers: effect on lipid peroxidation in alloxan diabetic rats. Phytother Res. 2000; 14(2): 136-138. PubMed | Google Scholar

31. Katemo M, Mpiana PT, Mbala BM, Mihigo SO, Ngbolua KN, Tshibangu DST et al. Ethnopharmacological survey of plants used against diabetes in Kisangani city (DR Congo). J Ethnopharmacol. 2012; 144(1): 39-43. PubMed | Google Scholar
| Site | N.A | Tribe and Sex | Age (year) | Source of knowledge |
|-----------|-----|---------------|------------|--|
| Kasumbalesa | 6 | Bemba 1F | 49 | Ancestral |
| | | Kabinda 1F | 52 | Initiation of another tribe |
| | | Luba 1M | 70 | Dreams |
| | | Round 1F | 49 | Ancestral |
| | | Tshokwe 1F; 1M| (71, 103) | Initiation of another tribe; Ancestral |
| Kipushi | 16 | Bemba 3M | (63, 63, 50)| Ancestral |
| | | Kabinda 2M | (52, 70) | Ancestral |
| | | Luba 2F; 2M | (68, 48, 50, 36)| Ancestral; dreams |
| | | Luba- Kasai 3F; 2M| (59, 60, 49, 53, 69)| Ancestral; initiation of another tribe |
| | | Rega 1M | 51 | Ancestral |
| | | Tshokwe 1M | 40 | Ancestral |
| Likasi | 5 | Bemba 1F | 41 | Ancestral |
| | | Luba 2M | 71, 75 | Ancestral; spirits |
| | | Lunda 1F | 75 | Ancestral |
| | | Tshokwe 1F | 57 | Spirits |
| Lubumbashi| 22 | Bemba 3M | 53, 66, 50 | Ancestral; spirits |
| | | Bembe 2M | 47, 40 | Ancestral |
| | | Hemba 1F; 3M | 51, 88, 46, 50f| Ancestral |
| | | Lélé 1M | 27 | Ancestral |
| | | Luba 1F, 7M | 42, 35, 45, 39, 55, 70, 55, 47| Ancestral; spirits; dreams |
| | | Luba- Kasai 1F; 1M| 45, 60 | Ancestral |
| | | Sanga 1M | 51 | Ancestral |
| | | Tshokwe 1F | 41 | Ancestral |

N.A: Number of Answers (respond); M= male; F=female
Annex 1: Plants used traditionally in the management of diabetes at Kasumbalesa, Kipushi, Likasi and Lubumbashi

Scientific name	Local names	Family	U.P	Treated diseases	Preparation and administration	Site	References
Acacia karroo Hayne	Munga (Luba), Mutonge (Sanga)	Fabaceae	Leave, Stem bark	Diabetes, vaginal infections, jaundice	Decoction/per os	Kasumbalesa	T41
	Muguniga (Hemba)						
Adansonia digitata L.	Mululu punga (Bemba)	Bombaceae	Stem bark	Diabetes	Decoction/per os	Lubumbashi	T37
Adenia gummiifera (Harv.) Harms	Komboponoke (Lamba), Kimboyi (Lala)	Passifloraceae	Stem bark	Diabetes, birth troubles, infections	Infusion/per os	Lubumbashi	T35
Adenia venenata Forssk.	Mafula (Luba)	Passifloraceae	Root, Leave	Diabetes	Decoction/per os	Likasi	T4
Afromosia angolensis Harms.	Mubanga (Bemba), Mubanga kyulu (Luba)	Fabaceae	Root	Diabetes, abdominal pain	Decoction/per os	Kasumbalesa	T40
Albizia adiantifolia (Schum.) W. F. Wight	Kasikeaze (Tshokwe), Kapeta nzovu (Bemba), kapeta nzovu (Luba), Kampetanzevu(Tshiluba)	Fabaceae	Root	Diabetes, syphilis, diarrhoea, blennorhoea, indigestion	Decoction/per os	Likasi, Kipushi, Lubumbashi	T7; T37; T42; T44;
Allium cepa L.	Matungulu sumu (Swahili)	Alliaceae	Seed	Diabetes, High blood pressure	Maceration/per os	Kipushi	T36
Allium sativum L.	Ali (Français)	Alliaceae	Bulb	Diabetes, abdominal pain	As a meal/per os	Lubumbashi	T2
Aloe vera L	Chigaka (Mashi)	Asphodelaceae	Leaves	Diabetes, dye, cancer	Maceration /per os	Lubumbashi	T19
Ananas Comisus Schult. F.	Nanasi (Swahili), Ananas (Français)	Bromeliaceae	Fruit	Diabetes, indigestion	Decoction/per os	Lubumbashi	T7
Anisophylla boehmii Engl.	Fungo (Sanga), Lufunga (Tabwa)	Rhizophoraceae	Root	Diabetes, abdominal pain	Decoction/per os	Kipushi	T6
Antidesma venosum (Tul.) E. Mey.	Kifubia (Luba), Musambafwa (Lamba)	Euphorbiaceae	Stem bark	Diabetes, gastrite, blennorhoea	Decoction/per os	Lubumbashi, Kasumbalesa	T18 ; T50
Arachis hypogaea Lam.	Mbaa (Bemba), mwema (Bembe)	Fabaceae	Leaves	Diabetes, infections	Decoction/per os	Lubumbashi	T5
Aristolochia hockii De Wild.	Kapanganganga	Aristolochiace	Root	Diabetes, measles,	Decoction/per os	Likasi	T8
Name	Plant Family	Part Used	Conditions	Preparation	Place of Use	Code(s)	
---	--------------	----------------------	-----------------------------	----------------------	-----------------------	---------	
Asparagus africanus Lam.	Asparagaceae	Leaves Root	Diabetes, syphilis, haemorrhoid	Decoction/per os	Likasi, Kasumbalesa	T18 ; T33	
Azanza garckeana (F. Hoffman) Excell & Hillc.	Malvaceae	Leaves Stem bark	Diabetes, oedema of the lower extremities, epilepsy	Decoction/per os Infusion/per os	Kasumbalesa	T40	
Balanites aegyptiaca (L.) Delile	Balanitaceae	Root	Diabetes, sexual impotence, diarrhoea	Decoction/per os	Lubumbashi	T37	
Bidens pilosa L.	Asteraceae	Leaves	Diabetes, hemostatic, urinary infections	Decoction/per os	Lubumbashi	T19	
Bougainvillaea spectabilis Wild	Nyctagynaceae	Flowers	Diabetes	Maceration/per os	Lubumbashi	T3	
Brassica oleracea L.	Brassicaceae	Leaves	Diabetes, skin diseases	Infusion/per os	Kasumbalesa, Kipushi	T15 ; T36	
Brillantaisia patula T. Anderson	Acanthaceae	Stem bark	Diabetes, gastrite	Decoction/per os	Lubumbashi	T45	
Canarium schweinfurthii Engl.	Burseraceae	Leaves	Diabetes, haemorrhoid	Decoction/per os	Lubumbashi	T5	
Carica papaya L.	Caricaceae	leaves Root	Diabetes, worms, infections	Decoction/enema	Lubumbashi	T3 ; T9	
Cassia occidentalis (L.) Link	Fabaceae	Seed Leaves Root	Diabetes, worms, constipation	Decoction/per os Maceration/enema	Lubumbashi, Kipushi	T3 ; T27	
Cassia petersiana Bolle.	Fabaceae	Root	Diabetes, sexual impotence	Maceration/per os	Lubumbashi	T11	
Cassia sieberiana DC.	Fabaceae	Leaves	Diabetes, worms	Decoction/per os	Lubumbashi	T31	
Catharanthus roseus (L.) G.Don	Apocynaceae	Leaves Root	Diabetes, High blood pressure, worms, cough, malaria, cancer	Decoction/per os Maceration/enema	Kasumbalesa, Kipushi, Lubumbashi	T22 ; T23 ; T29	
Latin Name	Common Name (Idioma)	Family	Part Utilized	Indications	Preparation/Route	Location	Code
----------------------------------	------------------------------------	--------------	--------------	---	-------------------	----------	-------
Citrus limon (L.) Burm. F.	Citronier (français)	Rutaceae	Root	Diabetes, cough, fever	Decoction/per os	Kasumbalesa	T15
Citrus sinensis Osbeck.	Ndimu (Swahili)	Rutaceae	Root	Diabetes, fever	Decoction/per os	Lubumbashi	T11
Coleus kilimandschari Guerke.	Mcubya (Bembe), Mulavumba (Swahili)	Lamiaceae	Leaves/Root	Diabetes, haemorrhoid, malaria, abdominal pain,	Decoction/per os	Kipushi	T23 ; T27
Combretum celastroides Exell & Garcia	Lukondambo (Luba), Mwina kyulu (Sanga)	Combretaceae	Leaves/Stem bark	Diabetes, skin diseases	Decoction/per os	Kipushi	T16
Crossopteryx febrifuga (G.Don)Benth.	Mutoshi (Tshiluba), Konsekonse (Lamba, Bemba)	Rubiaceae	Leaves/Root	Diabetes, abdominal pain	Maceration/per os	Lubumbashi	T39
Crotalaria spinosa (Benth) Hutch.	Kabalala (Sanga)	Fabaceae	Stem bark/Root	Diabetes, venereal diseases	Decoction/per os	Kupishi	T21
Croton macrostachyus (Delile) Hochst.	Mutara mutshi (Bemba)	Euphorbiaceae	Leaves	Diabetes, blennorrhoea, dysmenorrhoea	Decoction/enema	Likasi	T4
Cucumis sativus L.	Concombre (Français)	Cucurbitaceae	Fruit	Diabetes	As a meal/per os	Lubumbashi	T12
Cyperus alternifolius L.	Ndao (Luba)	Cyperaceae	Stem bark	Diabetes, asthma, abdominal pain	Decoction/per os	Lubumbashi	T35
Dalbergia boehmii Taub.	Katembo mutshi (Lubakassai), Katembo (Zela, sanga)	Fabaceae	Leaves/Stem bark	Diabetes, abdominal pain, rheumatism, diarrhoea, carie dentaire, abortion threat	Decoction/per os	Lubumbashi	T 30 ; T48
Diplorhynchus condylocarpon (Muell.Arg) Pichon.	Mwenge (Swahili)	Apocynaceae	Root	Diabetes, blennorrhoea	Decoction/per os	Lubumbashi	T37
Droogmansia munamensis De Wild.	Mununganunga (Bemba), Mulundeni (Lala)	Fabaceae	Leaves/Stem bark	Diabetes, dysentery	Decoction/per os	Lubumbashi	T38
Elaeis guineensis Jacq.	Ekaci (Bembe)	Arecales	Root	Diabetes, sterility	Decoction/per os	Lubumbashi	T31
Common Name	Local Name	Family	Part Used	Conditions	Preparation Method	Place Used	Code
-------------	------------	--------	-----------	------------	-------------------	------------	------
Entada abyssinica (Steud.ex A.Rich) Gilbert	Kipungu (Sanga)	Fabaceae	Root	Diabetes, haemorrhoid	Decoction/per os	Lubumbashi	T7
Erythrina abyssinica Lam.	Kisongwa (Hemba) ; Kisungwa (Bemba)	Fabaceae	Root	Diabetes	Decoction/per os	Kasumbalesa	T22 ; T45
Erythrophleum africanum (Benth.) Harms	Kayimbi (Tshiluba)	Fabaceae	Leaves Stem bark	diabetes, cancer, rheumatism	Decoction/per os Maceration/per os	Kipushi	T20
Faurea saligna Harv.	Mulemu (Sanga)	Proteaceae	Root	diabetes	Decoction/per os	Kipushi	T21
Ficus sycomorus L.	Mukunyu (Swahili), Tshikuvi (Luba)	Moraceae	Leaves Stem bark Root	Diabetes, Diarrhoea	Decoction/per os	Kipushi	T25 ; T39
Garcinia huillensis (Oliv.)Welw.	Mungindu (Tchokwe)	Clusiaceae	Root	Diabetes, rheumatism, gastro-intestinal troubles	Decoction/per os	Kasumbalesa	T34
Gladiolus klattianus Hook.	Kitala (Bemba), Kitokatoka (Luba)	Iridaceae	Bulb	Diabetes, blennorhoea, fever	Maceration/per os	Lubumbashi	T38
Glycine max (L.) Merr.	Soja (swahili)	Fabaceae	Leaves	Diabetes	Decoction/per os	Lubumbashi	T31
Grewia flava DC.	Bungwe (Luba)	Tiliaceae	Leaves Stem bark	Diabetes, hernia	Decoction/per os	Kasumbalesa	T18
Harungana madagascariensis Lam.ex Poir.	Mukuta (Tshiluba)	Hypericaceae	Stem bark Root	Diabetes, rheumatism, High blood pressure	Decoction/per os, enema	Kipushi	T13
Hymenocardia acida Tul.	Kapembe (Bemba), Ambalanga (Hemba), Lupep (Tshokwe)	Hymenocardiaeae	Root	Diabetes, haemorrhoid	Decoction/per os	Kasumbalesa	T37 ; T16
Ipomoea spathulata Hallier.f.	Mulapa (Sanga)	Convolvulaceae	Leaves	Diabetes, worms	Chewing/per os	Lubumbashi	
Jatropha curcas L.	Mbono (Swahili), Ntondondimba (Bemba), Kilembelembé (Luba)	Euphorbiaceae	Leaves Seed Root	Diabetes, gastrite, 10fricana10e, urinary infections	Pression/per os	Lubumbashi, Kipushi,	T32 ; T50; T46; T17; T2
Justicia flava (Forssk.) Vahl	Luhe (Luba)	Acanthaceae	Stem bark	Diabetes, dysmenorrhoea, amibiase	Decoction/per os	Lubumbashi	T48
Kigelia africana (Lam) Benth.	Kivungu (Luba)	Bignoniaceae	Stem bark	Diabetes, sexual	Decoction/per os	Lubumbashi	T48
Scientific Name	Common Name	Family	Part Used	Uses	Preparation	Place of Use	Code
---------------------------------------	------------------------	-------------	-----------	---	---------------------	--------------	------
Lantana camara L.	Mavi ya kuku (Swahili)	Verbenaceae	Leaves	Impotence, Vaginal diseases	Decoction/per os	Likasi	T8
Lonchocarpus katangensis De Wild.	Chuya (Bemba)	Fabaceae	Stem bark	Diabetes, fever, cough, cephalgia	Infusion/per os	Kasumba	T41
Maesopsis eminii Engl.	Ndunga (Luba)	Verbenaceae	Leaves	Diabetes, syphilis, dental carie	Maceration/per os	Kipushi	T27
Maprounea africana Müll. Arg.	Kafula ndime (Luba)	Euphorbiaceae	Root	Diabetes, vaginal pain	Decoction/per os	Kipushi	T17
Maytenus senegalensis (Lam.) Exell	Tshingala mutshi (Luba)	Celastraceae	Leaves	Diabetes, diarrhoea	Decoction/enema	Lubumbashi	T9
Mucuna poggei Taub.	Mpesa (Tshiluba)	Fabaceae	Root	Diabetes	Decoction/per os	Lubumbashi	T51
Musa sapientum L.	Bananier (français)	Musaceae	Bulb	Diabetes, rheumatism	Decoction/per os	Lubumbashi	T31
Olax obtusifolia De Wild.	Kulokumo (Bemba)	Olacaceae	Root	Diabetes, paralysis	Decoction/per os	Lubumbashi	T37
Opuntia ficus-indica (L.) Mill.	Cactus (Français)	Cactaceae	Leaves	Diabetes, haemorrhage	Chewing/per os	Lubumbashi	T50
Persea americana Mill.	Ikipapai (Lamba), Avocatier (Français)	Lauraceae	Leaves	Diabetes, fever, anemia	Decoction/per os	Kasumba, Kipushi	T17 ; T40
Phaseolus lunatus L.	Haricot (Français), Maharagi (swahili)	Fabaceae	Leaves	Diabetes, abdominal pain	Décocction/per os, Infusion/per os	Kipushi, Lubumbashi	T11 ; T14
Piliostigma thonningii (Schumach.) Milne-Redh.	Kifumbe (Bemba, Luba)	Fabaceae	Root	Diabetes, cough, anemia	Maceration/per os	Kasumba	T22 ; T45
Protea obtusifolia Oliv.	Mwinkala nikata (Tabwa)	Proteaceae	Root	Diabetes	Decoction/per os, enema	Lubumbashi	T43
Pseudolachnostylis maprouneifolia Pax.	Musangati (Swahili), Musangali (Bemba), Musaria (Tchokwe)	Euphorbiaceae	Leaves	Diabetes, gastrite, digestion troubles, cough, diarrhoea, dysméenorrhoea	Decoction/per os, Chewing/per os	Lubumbashi, Kasumba	T34 T37
Plant Name	Common Names	Family	Part Used	Uses	Preparation	Location	Reference
------------------------------------	-----------------------	--------------	--------------	-------------------------------	--------------	----------	-----------
Psidium guajava L.	Lipela (Swahili)	Myrtaceae	Leaves/Root	Diabetes, dysentery	Decoction/per os	Lubumbashi	T51
Pterocarpus angolensis DC.	Mukundambazu (Tabwa), Muyanga (Bemba)	Fabaceae	Stem bark	Diabetes, haemorrhoid	Decoction /per os	Likasi	T4
Pterocarpus tinctorius Welw.	Mukula (Chokwe)	Fabaceae	Root	Diabetes	Decoction/per os	Kasumbalesa	T34
Rauwolfia caffra Sond.	Mutalala (Bemba)	Apocynaceae	Leaves/Root	Diabetes, malaria, snake’s bites	Decoction/per os	Kasumbalesa	T23
Rauwolfia vomitoria Afzel.	Pandanganga (Luba)	Apocynaceae	Root	Diabetes, purgative	Decoction/per os	Kipushi	T17
Rhynchosia insignis (O.Hoffm.) R.E.Fr.	Munkoyo (swahili)	Fabaceae	Root	Diabetes, jaundice	Maceration/per os	Kasumbalesa	T22
Ricinus communis L.	Lundimba ndimba (Luba), Mubalika (Bemba)	Euphorbiaceae	Root	Diabetes	Decoction/per os	Lubumbashi	T46
Sesamum angolense Welw.	Kipalabwengo (Bemba)	Pedaliaceae	Root	Diabetes	Decoction/per os	Lubumbashi	T37
Solanum seretii De Wild.	Impwa (Bemba)	Solanaceae	Root	Diabetes, abdominal pain	Decoction/per os	Lubumbashi	T47
Solanum subsessile De Wild.	Mutete (Luba)	Solanaceae	Leaves/Seeds	Diabetes, abdominal pain	As meal/per os	Lubumbashi	T32
Solanum tuberosum L.	Pomme de terre (français)	solanaceae	Tubercule	Diabetes, anti acid	As a meal /per os	Lubumbashi	T2
Strychnos cocculoides Baker.	Katongatonga (Luba), Bukoke (Hemba), Kisongole (Bemba)	Loganiaceae	Root	Diabetes, abdominal pain, dysentery	Decoction/per os	Kasumbalesa, Lubumbashi	T41; T32; T35
Strychnos innocua Delile.	Kakomekone (Swahili)	Loganiaceae	Root	Diabetes, blennorhoea	Decoction/per os	Lubumbashi	T32
Strychnos spinosa Lam.	Kisongole (Bemba), Nsansa (Swahili)	Loganiaceae	Stem bark/Root	Diabetes, blennorhoea	Decoction/per os	Lubumbashi, Kipushi,	T1; T24; T37; T44; T50
Strychnos stuhlmannii Gilg.	Mubanga Kyulu (Bemba), Nkanga kyulu (Zela)	Loganiaceae	Root	Diabetes, Gangrene, syphilis	Decoction/per os	Lubumbashi	T12 ; T24
Swartzia madagascariensis Desv.	Munienie (Luba), Mpampi (Tshiluba)	Fabaceae	Root	Diabetes, Touthache	Decoction/per os	Kipushi, Lubumbashi	T26 ; T50
Plant Name	Common Name	Family	Part Used	Conditions	Preparation	Place of Use	Reference Numbers
-----------------------------------	-------------	--------------	------------	------------------	--------------	--------------	-------------------
Syzygium guineense (Willd) DC.	Musanfwa (Bemba)	Myrtaceae	Stem bark	Diabetes	Decoction/per os	Likasi	T42; T43
Terminalia mollis M.A. Lawson.	Kianga (Hemba), Tshibangu Mutshi (Tshiluba)	Combretaceae	Leaves Root	Diabetes, diarrhoea, syphilis	Decoction/per os	Lubumbashi, Kasumbalesa	T40; T28
Tithonia diversifolia (Hemsley.) A.Gray.	Bilomalomba (Lélé)	Asteraceae	Leaves	Diabetes, abdominal pain	Chewing/per os Maceration/per os	Lubumbashi	T32
Uapaka kirkiana Müll. Arg.	Masuku (Bemba, Luba)	Euphorbiaceae	Stem bark	Diabetes, diarrhoea, sterility, Headache	Decoction/per os	Likasi	T8
Vernonia shirensis Oliv. & Hiern.	Kilulukunja (Swahili), Muvurumen (Rund)	Asteraceae	Leaves Root	Diabetes, haemorrhoid, worms	Decoction/per os	Kasumbalesa	T23; T2; T1
Vigna sinensis A.Rich.	Lukunde (kikabinda)	Fabaceae	Leaves Root	Diabetes, headache	Decoction/per os Maceration/per os	Kipushi	T36
Vitex madiensis Oliv.	Mufutu (Luba)	Verbenaceae	Leaves Root	Diabetes	Decoction/per os	Kipushi	T34; T37
Vitis vinifera L.	Raisin (Français)	Ampelidaceae	Leaves	Diabetes	Decoction/per os	Lubumbashi	T50
Zanthoxylum chalybeum Engl.	Mpupwe kiulu (Luba), Pupwe (Bemba)	Rutaceae	Leaves Stem Root	Diabetes, gastrite, cough, otitis, hip pain, sterility	Decoction/per os	Lubumbashi, Kipushi, Likasi	T10; T24; T49
Ziziphus mucronata Wild.	Kankona (Luba, Bemba, sanga)	Rhamnaceae	Stem bark Root	Diabetes, dysentery, abdominal pain	Decoction/per os	Likasi	T33