Retracts of vertex sets of trees
and the almost stability theorem

Warren Dicks and M. J. Dunwoody

March 29, 2022

Abstract

Let G be a group, let T be an (oriented) G-tree with finite edge stabilizers, and let VT denote the vertex set of T. We show that, for each G-retract V' of the G-set VT, there exists a G-tree whose edge stabilizers are finite and whose vertex set is V'. This fact leads to various new consequences of the almost stability theorem.

We also give an example of a group G, a G-tree T and a G-retract V' of VT such that no G-tree has vertex set V'.

2000 Mathematics Subject Classification. Primary: 20E08; Secondary: 05C25, 20J05.

Key words. Group-action on a tree, retract of G-set, almost stability theorem.

1 Outline

Throughout the article, let G be a group, and let \mathbb{N} denote the set of finite cardinals, $\{0, 1, 2, \ldots \}$. All our G-actions will be on the left.

The following extends Definitions II.1.1 of [3] (where A is assumed to have trivial G-action).

1.1 Definition. Let E and A be G-sets.

Let (E, A) denote the set of all functions from E to A. An element v of (E, A) has the form $v: E \rightarrow A$, $e \mapsto v(e)$. There is a natural G-action on (E, A) such that $(gv)(e) := g(v(g^{-1}e))$ for all $v \in (E, A)$, $g \in G$, $e \in E$.

Two elements v and w of (E, A) are said to be almost equal if the set

$$\{ e \in E \mid v(e) \neq w(e) \}$$

is finite. Almost equality is an equivalence relation; the equivalence classes are called the almost equality classes in (E, A).

A subset V of (E, A) is said to be G-stable if V is closed under the G-action. In general, a G-stable subset is the same as a G-subset.

In this article, we wish to strengthen the following result.

1.2 The almost stability theorem [3, Theorem III.8.5]. If E is a G-set with finite stabilizers, and A is a nonempty set with trivial G-action, and V is a G-stable almost equality class in the G-set (E, A), then there exists a G-tree with finite edge stabilizers and vertex set V.

In the light of Bass-Serre theory, the almost stability theorem can be thought of as a broad generalization of Stallings’ ends theorem.

Let us now recall the notion of a G-retract of a G-set. The following alters Definition III.1.1 of [3] slightly.
1.3 Definition. A G-retract U of a G-set V is a G-subset of V with the property that, for each $w \in V - U$, there exists $u \in U$ such that $G_w \leq G_u$, or, equivalently, with the property that there exists a G-map, called a G-retraction, from V to U which is the identity on U.

Chapter IV of [3] collects together a wide variety of consequences of the almost stability theorem [2]. In some of these applications, the conclusions assert that certain naturally arising G-sets are G-retracts of vertex sets of G-trees with finite edge stabilizers. This leads to the question of whether or not the class of vertex sets of G-trees with finite edge stabilizers is closed under taking G-retracts. We are now able to answer this in the affirmative; in Section 2 below, we prove that any G-retract of the vertex set of a G-tree with finite edge stabilizers is itself the vertex set of a G-tree with finite edge stabilizers.

In Section 3 we record the resulting generalizations of the almost stability theorem and the applications which are affected. In the most classic example, if G has cohomological dimension one, and ωZG is the augmentation ideal of the group ring ZG, one can deduce that G acts freely on a tree whose vertex set is the G-set $1 + \omega ZG$, and, hence, G is a free group; this is a slightly more detailed version of a theorem of Stallings and Swan.

In Section 4 we record an even more general form of the almost stability theorem in which the G-action on A need not be trivial.

In Section 5 we construct a group G and a G-retract of a vertex set of a G-tree (with infinite edge stabilizers) that is not itself the vertex set of a G-tree.

2 Operations on trees

Throughout this section we will be working with the following.

2.1 Hypotheses. Let $T = (T,V,E,\iota,\tau)$ be a G-tree, as in [3] Definition I.2.3.

We write $VT = V$ and $ET = E$, and we view the underlying G-set of T as the disjoint union of T and E, written $T = V \cup E$. Here $\iota: E \to V$ is the initial vertex map and $\tau: E \to V$ is the terminal vertex map.

We first consider a simple form of retraction, which amplifies Definitions III.7.1 of [3]. Recall that a vertex v of a tree is called a sink if every edge of the tree is oriented towards v.

2.2 The compressing lemma. Suppose that Hypotheses 2.1 hold.

Let E' be a G-subset of E such that each component of the subforest $T - E'$ of T has a (unique) sink. Let V' denote the set of sinks of the components of $T - E'$.

Let $i: E' \to E$ denote the inclusion map, and let $\phi: V \to V'$ denote the G-retraction which assigns, to each $v \in V$, the sink of the component of $T - E'$ containing v.

Then the G-graph $T' = (T',V',E',\phi \circ \iota \circ i, \phi \circ \tau \circ i)$ is a G-tree.

Let $E'' = E - E'$ and let $V'' = V - V'$. Then $T - E'$ is the G-subforest of T with vertex set V and edge set E''. For each $v \in V$, $\phi(v)$ is reached in T by starting at v and travelling as far as possible along edges in E'' respecting the orientation. The initial vertex map $\iota: E \to V$ induces a bijective map $E'' \to V''$.

We say that T' is obtained from T by compressing the closures of the elements of E'' to their terminal vertices or by compressing the components of $T - E'$ to their sinks.

In applications, we usually first G-equivariantly reorient T and then, in the resulting tree, compress a G-set of closed edges to their terminal vertices; we then call the combined procedure a G-equivariant compressing operation.
Proof of Lemma 2.2. The map \(\phi \) induces a surjective \(G \)-map \(T \to T' \) in which the fibres are the components of \(T - E' \). It follows that \(T' \) is a \(G \)-tree. \(\square \)

We now recall the sliding operation of Rips-Sela [3] p. 59 as generalized by Forester [7] Section 3.6; see also the Type 1 operation of [3] p. 146]. We find it convenient to express the result and the proof in the notation of [3].

2.3 The sliding lemma. Suppose that Hypotheses 2.1 hold.

Let \(e \) and \(f \) be elements of \(E \).

Suppose that \(\tau e = \tau f \), \(G_e \leq G_f \), and \(G f \cap Ge = \emptyset \).

Let \(\tau' : E \to V \) denote the map given by

\[
e' \mapsto \tau'(e') := \begin{cases} \tau(e') & \text{if } e' \in E - Ge, \\ \tau(gf) & \text{if } e' = ge \text{ for some } g \in G, \end{cases}
\]

for all \(e' \in E \).

Then the \(G \)-graph \(T' = (T', V, E, \iota, \tau') \) is a \(G \)-tree.

Here, we say that \(T' \) is obtained from \(T \) by \(G \)-equivariantly sliding \(\tau e \) along \(f \) from \(\iota f \) to \(\tau f \).

In applications, we usually first \(G \)-equivariantly reorient \(Ge \), or \(G f \), or both, or neither, and then, in the resulting tree, \(G \)-equivariantly slide \(\tau e \) along \(f \) from \(\iota f \) to \(\tau f \), and then reorient back again. We then call the combined procedure a \(G \)-equivariant sliding operation.

Proof of Lemma 2.4. It is clear that \(T' \) is a \(G \)-graph.

Let \(X \) be the \(G \)-graph obtained from \(T \) by deleting the two edge orbits \(Ge \cup Gf \), and then inserting one new vertex orbit \(Gv \) and three new edge orbits \(Ge' \cup Gf_1 \cup Gf_2 \), with \(G_v = G_e, G_e = G_{f_1} = G_{f_2} = G_f \), and setting

\[
\iota(e') = \iota(e), \quad \iota(f_1) = \iota(f) = \tau(e), \quad \iota(f_2) = \tau(e) = \tau(f_1) = v, \quad \tau(f_2) = \tau(f).
\]

Thus we are \(G \)-equivariantly subdividing \(f \) into \(f_1 \) and \(f_2 \) by adding \(v \), and then sliding \(\tau e \) along \(f_1 \) from \(\iota f_1 \) to \(\tau f_1 = v \).

Then \(T \) is recovered from \(X \) by \(G \)-equivariantly compressing the closure of \(f_1 \) to \(\iota(f_1) \), and renaming \(f_2 \) as \(f, e' \) as \(e \). Thus \(X \) maps onto \(T \) with fibres which are trees. It follows that \(X \) is a tree; see [3] Proposition III.3.3.

Also \(T' \) is recovered from \(X \) by \(G \)-equivariantly compressing the closure of \(f_2 \) to \(\tau(f_2) \), and renaming \(f_1 \) as \(f, e' \) as \(e \). By Lemma 2.2 \(T' \) is a tree. \(\square \)

3 Filtrations

Throughout this section we will be working with the following.

3.1 Hypotheses. Let \(T = (T, V, E, \iota, \tau) \) be a \(G \)-tree, let \(U \) be a \(G \)-retract of the \(G \)-set \(V \), and let \(W = V - U \). \(\square \)

3.2 Conventions. We shall use interval notation for ordinals; for example, if \(\kappa \) is an ordinal, then \([0, \kappa)\) denotes the set of all ordinals \(\alpha \) such that \(\alpha < \kappa \).

If we have an ordinal \(\kappa \) and a specified map from a set \(X \) to \([0, \kappa)\), then we will understand that the following notation applies. Denoting the image of each \(x \in X \) by \(\height(x) \in [0, \kappa) \), we write, for each \(\alpha \in [0, \kappa) \) and each \(\beta \in [0, \kappa) \),

\[
X[\alpha] := \{ x \in X \mid \height(x) = \alpha \} \quad \text{and} \quad X[0, \beta) := \{ x \in X \mid \height(x) < \beta \}.
\]
3.3 Definitions. Suppose that Hypotheses 3.1 hold.
Let $P(T)$ denote the set of paths in T, as in Definitions I.2.3 of \cite{3}. Thus, for each $p \in P(T)$, we have the initial vertex of p, denoted i_p, the terminal vertex of p, denoted τp, the set of edges which occur in p, denoted $E(p) \subseteq E$, the length of p, denoted $\text{length}(p) \in \mathbb{N}$, and the G-stabilizer of p, denoted $G_p \leq G$.

Let κ be an ordinal and let
\[
(3.3.1) \quad T \to [0, \kappa), \quad x \mapsto \text{height}(x)
\]
be a map. Since T is nonempty, κ must be nonzero. As a set, $T = V \cup E$. Thus, for each $\alpha \in [0, \kappa)$, we have $T[\alpha]$, $E[\alpha]$ and $V[\alpha]$, and, for each $\beta \in [0, \kappa)$, we have $T[0, \beta)$, $E[0, \beta)$ and $V[0, \beta)$.

For each $w \in W$, we then define
\[
P_T(w) := \{ p \in P(T) \mid i_p = w, G_p = G_w, \text{height}(\tau p) < \text{height}(w), \text{height}(E(p)) \subseteq \{\text{height}(w), \text{height}(w) + 1\} \}.
\]

We say that (3.3.1) is a U-filtration of T if all of the following hold:
\begin{align*}
(3.3.2) \quad & \text{for each } \beta \in [0, \kappa), T[0, \beta) \text{ is a } G\text{-subforest of } T; \\
(3.3.3) \quad & T[0] = U; \\
(3.3.4) \quad & \text{for each } \alpha \in [1, \kappa), T[\alpha] \text{ is a } G\text{-finite } G\text{-subset of } T; \text{ and,} \\
(3.3.5) \quad & \text{for each } w \in W, P_T(w) \text{ is nonempty.}
\end{align*}

3.4 Lemma. If Hypotheses 3.1 hold, then there exists a U-filtration of T.

Proof. We shall recursively construct a family $(E[\alpha] \mid \alpha \in [0, \kappa))$ of G-subsets of E, for some nonzero ordinal κ.
We take $E[0] = \emptyset$.

Suppose that γ is a nonzero ordinal, and that we have a family $(E[\alpha] \mid \alpha \in [0, \gamma))$ of G-subsets of E.

For each $\beta \in [0, \gamma)$, we define
\[
E[0, \beta) := \bigcup_{\alpha \in [0, \beta)} E[\alpha] \quad \text{and} \quad V[0, \beta) := \begin{cases}
\emptyset & \text{if } \beta = 0, \\
U \cup (E[0, \beta)) \cup \tau(E[0, \beta)) & \text{if } \beta > 0.
\end{cases}
\]

For each $\alpha \in [0, \gamma)$, we define $V[\alpha] := V[0, \alpha + 1) - V[0, \alpha)$. Thus
\[
V[0, \beta) = \bigcup_{\alpha \in [0, \beta)} V[\alpha].
\]

If $E[0, \gamma) = E$, we take $\kappa = \gamma$ and the construction terminates.
Now suppose that $E[0, \gamma) \subset E$. We shall explain how to choose $E[\gamma]$.
If γ is a limit ordinal or 1, we take $E[\gamma]$ to be an arbitrary single G-orbit in $E - E[0, \gamma)$.
If γ is a successor ordinal greater than 1 then there is a unique $\alpha \in [1, \gamma)$ such that $\gamma = \alpha + 1$, and we want to construct $E[\alpha + 1]$. Notice that $V[0, \alpha]$ is a G-retract of V because $V[0, \alpha)$ contains U. Thus we can G-equivariantly specify, for each $w \in V[\alpha]$, a T-geodesic $p = p(w)$ from w to an element $v = v(w) \in V[0, \alpha)$ fixed by G_w. Since G_w fixes both ends of p, G_w fixes p. Hence we may assume that v is the first, and hence only, vertex of p that lies in $V[0, \alpha)$. Clearly G_p fixes w. Thus $G_w = G_p$. Let P_{n+1} denote the set of edges which occur in the $p(w)$, as w
ranges over $V[\alpha]$. Then $P_{\alpha+1} \subseteq E - E[0, \alpha]$, since each element of $E[0, \alpha]$ has both vertices in $V[0, \alpha]$. If $P_{\alpha+1} \subseteq E[\alpha]$, we choose $E[\alpha+1]$ to be an arbitrary single G-orbit in $E - E[0, \alpha + 1]$. If $P_{\alpha+1} \not\subseteq E[\alpha]$, we take $E[\alpha + 1] = P_{\alpha+1} - E[\alpha]$. This completes the description of the recursive construction.

We now verify that we have a U-filtration of T.

It can be seen that, for each ordinal γ such that $(E[\alpha] \mid \alpha \in [0, \gamma))$ is defined, the $E[\alpha]$, $\alpha \in [1, \gamma)$, are pairwise disjoint, nonempty, G-subsets of E. Hence the cardinal of γ is at most one more than the cardinal of E. Therefore the construction terminates at some stage. This implies that there exists a nonzero ordinal κ such that $E[0, \kappa) = E$. Also $V[0, \kappa) = V$, and $(V[\alpha] \mid \alpha \in [0, \kappa))$ gives a partition of V. Thus we have an implicit map $T \to [0, \kappa)$ and we denote it by $x \mapsto \text{height}(x)$.

Clearly (3.3.2), (3.3.3) and (3.3.4) hold. If $\alpha \in [1, \kappa)$ and $E[\alpha]$ is G-finite, then either $E[0, \alpha + 1] = E$ or $V[\alpha]$, $P_{\alpha+1}$ and $E[\alpha + 1]$ are G-finite. It follows, by transfinite induction, that $E[\alpha]$ and $V[\alpha]$ are G-finite for all $\alpha \in [1, \kappa)$. Thus (3.3.4) holds.

\section{The main result}

Let us introduce a technical concept which generalizes that of a finite subgroup.

\subsection{Definitions.}

A subgroup H of G is said to be G-conjugate incomparable if, for each $g \in G$, $H^g \not\subseteq H$ (if and) only if $H^g = H$. This clearly holds if H is finite.

We say that a G-set X has G-conjugate-incomparable stabilizers if, for each $x \in X$, the G-stabilizer G_x is a G-conjugate-incomparable subgroup, that is, for each $g \in G$, $G_x \not\subseteq G_{gx}$ (if and) only if $G_x = G_{gx}$.

Throughout this section we will be working with the following.

\subsection{Hypotheses.}

Let $T = (T, V, E, \iota, \tau)$ be a G-tree, let U be a G-retract of the G-set V, and let $W = V - U$.

Suppose that the G-set W has G-conjugate-incomparable stabilizers.

Let κ be an ordinal and let

\[(4.2.1) \quad \text{height} : V \cup E \to [0, \kappa), \quad x \mapsto \text{height}(x),\]

be a U-filtration of T.

\subsection{Definitions.}

Suppose that Hypotheses 4.2 hold.

Let $w \in W$. Define $d_T(w) := \min\{\text{length}(p) \mid p \in P_T(w)\}$. Then $d_T(w)$ is a positive integer and

\[(4.3.1) \quad d_T(gw) = d_T(w) \text{ for all } g \in G.\]

For v_0, v_1 in V, we say that v_1 is lower than v_0 if one of the following holds:

\[(4.3.2) \quad \text{height}(v_0) > \text{height}(v_1);\]
\[(4.3.3) \quad \text{height}(v_0) = \text{height}(v_1) > 0 \text{ and } G_{v_0} < G_{v_1}; \text{ or},\]
\[(4.3.4) \quad \text{height}(v_0) = \text{height}(v_1) > 0 \text{ and } G_{v_0} = G_{v_1} \text{ and } d_T(v_0) > d_T(v_1).\]

An edge e of T is said to be problematic if it joins vertices v_0, v_1 such that $\text{height}(e) = \text{height}(v_1) = \text{height}(v_0) + 1$. Notice that $\text{height}(e)$ is a successor ordinal and that v_0 is lower than v_1.

For each $v_0 \in W$, there exists a path

\[(4.3.5) \quad v_0, e_1^1, v_1, e_2^2, v_2, \ldots, e_d^d, v_d \text{ in } P_T(v_0) \text{ such that } d = d_T(v_0).\]
Here $\text{height}(v_1) \leq \text{height}(v_0) + 1$. We say that v_0 is a problematic vertex of T if there exists a path as in (4.3.1) such that $\text{height}(v_1) = \text{height}(v_0) + 1$. In this event $\text{height}(e_1) = \text{height}(v_1)$ and e_1 is a problematic edge of T.

4.4 Lemma. If Hypotheses 4.2 hold, then applying some transfinite sequence of G-equivariant sliding operations to T yields a G-tree $T' = (T', V, E, \iota', \tau')$ such that (4.2.1) is also a U-filtration of T' and T' has no problematic vertices.

Proof. We shall construct a family of trees

$$(T_\beta = (T_\beta, V, E, \iota, \tau_\beta) \mid \beta \in [0, \kappa])$$

such that, for each $\beta \in [0, \kappa]$, (4.2.1) is a U-filtration of T_β, and T_β has no problematic vertices in $V[0, \beta]$.

We take $T_0 = T$.

For each successor ordinal $\beta = \alpha + 1 \in [0, \kappa)$, $T_{\alpha+1}$ will be obtained from T_α by altering, if necessary, ι_α and τ_α on $E[\alpha+1]$, as described below.

For each limit ordinal $\beta \in [0, \kappa]$, we let ι_β be given on $E[\alpha]$ by ι_α, for each $\alpha \in [0, \beta)$, and similarly for τ_β.

Suppose then that $\beta = \alpha + 1 \in [0, \kappa)$, that we have a tree $T_\alpha = (T_\alpha, V, E, \iota_\alpha, \tau_\alpha)$, and that (4.2.1) is a U-filtration of T_α, and that T_α has no problematic vertices in $V[0, \alpha]$. We now describe a crucial problem-reducing procedure that can be applied in the case where there exists some $v_0 \in V[\alpha]$ which is a problematic vertex of T_α.

Let $d = d_{T_\alpha}(v_0)$. Thus, there exists a path

$$v_0, e_1^1, v_1, e_2^2, v_2, \ldots, e_d^d, v_d$$

in $P_{T_\alpha}(v_0)$ such that $v_1 \in V[\alpha+1]$. Hence, $e_1 \in E[\alpha+1]$. Without loss of generality, let us assume that $e_1 = -1$.

There exists a least $i \in [2, d]$ such that $v_i \in V[0, \alpha+1)$. Then

$$\{v_1, \ldots, v_{i-1}\} \subseteq V[\alpha+1] \quad \text{and, hence,} \quad \{e_1, \ldots, e_i\} \subseteq E[\alpha+1].$$

We claim that $Ge_1 \cap \bigcup_{j=2}^i Ge_j = \emptyset$. Suppose this fails. Then $e_1 \in \bigcup_{j=2}^i Ge_j$. Here, $v_0 \in \bigcup_{j=1}^i Gv_j$. Since $v_0 \in V[\alpha]$ and $\bigcup_{j=1}^{i-1} Gv_j \subseteq V[\alpha+1]$ we see that $v_0 \in Gv_1$. Hence $v_i \in V[\alpha]$ and, by Lemma 4.3, $d_{T_\alpha}(v_i) = d_{T_\alpha}(v_0) = d$. But $Gv_0 = Gp \subseteq Gv_i$. Since Gv_0 is a G-conjugate-incomparable subgroup, $Gv_0 = Gv_i$. It follows that

$$v_i, e_{i+1}^i, v_{i+1}, \ldots, e_d^d, v_d$$

lies in $P_{T_\alpha}(v_i)$. Hence $d_{T_\alpha}(v_i) \leq d - i$, which is a contradiction. This proves the claim.

By Lemma 2.8, we can G-equivariantly slide ιe_1 along e_2^2 from v_1 to v_2, and then G-equivariantly slide ιe_1 along e_3^3 from v_2 to v_3, and so on, up to v_i. We then get a new G-tree $T_{\alpha,1} = (T_{\alpha,1}, V, E, \iota_{\alpha,1}, \tau_{\alpha,1})$ by G-equivariantly sliding ιe_1 along our path from v_1 to v_i.

Let e'_1 denote e_1 viewed as an edge of $T_{\alpha,1}$. Wherever v_1, e_1, v_0 occurs in a path in $T_{\alpha,1}$, it can be replaced with the sequence

$$v_1, e_2^2, v_2, \ldots, v_{i-1}, e_i^i, v_i, e_1', v_0$$

to obtain a path in $T_{\alpha,1}$. It is important to note that all the edges involved here lie in $E[\alpha+1]$. In terms of the free groupoid on $E[\alpha+1]$, $e_1 = e_2^2 e_3^3 \cdots e_i^i e_1'$, and we are performing the change-of-basis which replaces e_1 with e_1'.

It is easy to see that Hypotheses 4.2 hold and Hypertheses 4.5 Lemma. Thus \(E^{[\alpha + 1]} \) is a \(G \)-filtration of \(T_{\alpha,1} \). Notice that \(T_{\alpha,1} \), like \(T_{\alpha} \), has no problematic vertices in \(V[0, \alpha] \). We have reduced the number of \(G \)-orbits of problematic edges in \(E^{[\alpha + 1]} \).

This completes the description of a problem-reducing procedure.

Since \(E^{[\alpha + 1]} \) is \(G \)-finite by Hypotheses 4.3, on repeating problem-reducing procedures as often as possible, we find some \(m \in \mathbb{N} \), and a sequence

\[T_\alpha = T_{\alpha,0}, T_{\alpha,1}, \ldots, T_{\alpha,m}, \]

such that \(T_{\alpha,m} \) has no problematic vertices in \(V[0, \alpha] \cup V[\alpha] = V[0, \alpha + 1] \). We define \(T_{\alpha+1} = (T_{\alpha+1}, V, E, \tau_{\alpha+1}, \tau_{\alpha+1}) \) to be \(T_{\alpha,m} \). Notice that \(\tau_{\alpha+1} \) agrees with \(\tau_\alpha \) on \(E - E^{[\alpha + 1]} \), and similarly for \(\tau_{\alpha+1} \).

Continuing this procedure transfinitley, we arrive at a tree \(T_\alpha \) which has no problematic vertices.

4.5 Lemma. If Hypotheses 4.2 hold and \(T \) has no problematic vertices, then applying some \(G \)-equivariant compressing operation on \(T \) yields a \(G \)-tree with vertex set \(U \).

Proof. We claim that any sequence in \(V \) is finite if each term is lower than all its predecessors.

Let \(\alpha \in [0, \kappa) \).

If \(v_0, v_1 \) are elements of the same \(G \)-orbit of \(V[\alpha] \), then \(v_1 \) is not lower than \(v_0 \), that is, Hypotheses 4.3.2, 4.3.3 all fail; this follows from 4.3.1 and the fact that \(V[\alpha] \) has \(G \)-conjugate-incomparable stabilizers.

Thus, if \(n \in \mathbb{N} \) and \(v_1, v_2, \ldots, v_n \) is a sequence in \(V[\alpha] \) such that each term is lower than all its predecessors, then \(G v_1, G v_2, \ldots, G v_n \) are pairwise disjoint, and \(n \) is at most the number of \(G \)-orbits in \(V[\alpha] \). It follows that any sequence in \(V[\alpha] \) is finite if each term is lower than all its predecessors. The claim now follows.

Let us \(G \)-equivariantly reorient \(T \) so that, for each edge \(e, \iota e \) is not lower than \(\tau e \).

Let \(v_0 \in W \). Let us \(G \)-equivariantly choose a path

\[v_0, e_1^{e_1}, v_1, e_2^{e_2}, v_2, \ldots, e_d^{e_d}, v_d \]

in \(P_T(v_0) \) such that \(d = d_T(v_0) \). Then we call \(e_1 \) the distinguished edge associated to \(v_0 \), and \(v_1 \) the distinguished neighbour of \(v_0 \).

Let \(E'' \) denote the set of distinguished edges chosen in this way.

Let us consider the above path for \(v_0 \). From Definitions 4.3 we see that, since \(T \) has no problematic vertices, \(\text{height}(v_0) \geq \text{height}(v_1) \). We claim that \(v_1 \) is lower than \(v_0 \). The claim is clear if \(\text{height}(v_0) > \text{height}(v_1) \) (in which case, \(d = 1 \)), and we may assume that \(\text{height}(v_0) = \text{height}(v_1) \) (\(> 0 \)). Again, the claim is clear if \(G v_0 < G v_1 \), and we may assume that \(G v_0 = G v_1 \). Here \(G v_1 \) fixes \(p \), and the path

\[v_1, e_2^{e_2}, v_2, \ldots, e_d^{e_d}, v_d \]

shows that \(d_T(v_1) \leq d - 1 < d = d_T(v_0) \), and the claim is proved. Hence \(e_1 = 1 \).

Thus \(\iota \) induces a bijection \(E'' \to W \).

Moreover, in travelling along the distinguished edge \(e_1 \) respecting the orientation, from \(v_0 \) to its distinguished neighbour \(v_1 \), we move to a lower vertex.

Thus, starting at any element \(v \) of \(V \), after travelling a finite number of steps along distinguished edges respecting the orientation, we arrive at a vertex, denoted \(\phi(v) \), with no distinguished neighbours, that is, \(\phi(v) \in U \).

By Lemma 4.2, compressing the closures of the distinguished edges to their terminal vertices gives a \(G \)-tree with vertex set \(U \) and edge set \(E - E'' \).
We now come to our main result. In Section 7, we will see that the G-conjugate-incomparability hypotheses cannot be omitted.

4.6 Theorem. Let T be a G-tree, and let U be a G-retract of the G-set VT. Suppose that the G-set ET has G-conjugate-incomparable stabilizers, or, more generally, that the G-set $VT - U$ has G-conjugate-incomparable stabilizers.

Then applying to T some transfinite sequence of G-equivariant sliding operations followed by some G-equivariant compressing operation yields a G-tree T' such that $VT' = U$.

Here ET' is a G-subset of ET, and there exists a G-set isomorphism $ET' \cong VT - VT' = VT - U$.

Proof. For each $w \in VT - U$, there exists $u \in U$ such that $G_w \leq G_u$. If e denotes the first edge in the T-geodesic from w to u, then $G_e = G_w$. Thus, if E has G-conjugate-incomparable stabilizers, then the same holds for $VT - U$.

By Lemma 3.4, we may assume that Hypotheses 4.2 hold. By Lemma 4.4, we may assume that T itself has no problematic vertices. Applying Lemma 4.5, we obtain the result; the final assertion follows from Lemma 2.2. □

We record the special case of Theorem 4.6 that is of interest to us.

4.7 The retraction lemma. Let T be a G-tree whose edge stabilizers are finite, and let U be any G-retract of the G-set VT. Then there exists a G-tree whose edge stabilizers are finite and whose vertex set is the G-set U. □

5 The almost stability theorem and applications

We now combine the almost stability theorem 1.2 and the retraction lemma 4.7.

5.1 Theorem. Let E and A be G-sets such that E has finite stabilizers and A has trivial G-action. If V is a G-retract of a G-stable almost equality class in (E, A), then there exists a G-tree whose edge stabilizers are finite and whose vertex set is the G-set V.

Proof. By the almost stability theorem 1.2 there exists a G-tree whose edge stabilizers are finite and whose vertex set is the given G-stable almost equality class in (E, A). By the retraction lemma 4.7, there exists a G-tree whose edge stabilizers are finite and whose vertex set is V. □

We now recall Definitions IV.2.1 and IV.2.2 of [3].

5.2 Definitions. Let M be a G-module, that is, an additive abelian group which is also a G-set such that G acts as group automorphisms on M. Thus a G-module is simply a left module over the integral group ring $\mathbb{Z}G$.

If $d: G \to M$ is a derivation, that is, a map such that $d(xy) = d(x) + xd(y)$ for all $x, y \in G$, then M_d denotes the set M endowed with the G-action

$$G \times M \to M, \quad (g, m) \mapsto g \cdot m := gm + d(g)$$

for all $g \in G$ and all $m \in M$.

It is straightforward to show that M_d is a G-set. This construction has made other appearances in the literature; see [1, Remarque 4.4].

We say that M is an induced G-module if there exists an abelian group A such that M is isomorphic, as G-module, to $AG := \mathbb{Z}G \otimes_{\mathbb{Z}} A$.

We say that M is a G-projective G-module if M is isomorphic, as G-module, to a direct summand of an induced G-module. □
5.3 Example. If R is any ring and P is a projective left RG-module, then there exists a free left R-module F such that P is isomorphic, as RG-module, to an RG-summand of

$$RG \otimes_R F = ZG \otimes_Z R \otimes_R F = ZG \otimes_Z F = FG.$$

Hence P is G-projective.

The following generalizes Theorem IV.2.5 and Corollary IV.2.8 of [3].

5.4 Theorem. If P is a G-projective G-module, and $d: G \to P$ is a derivation, then there exists a G-tree whose edge stabilizers are finite and whose vertex set is the G-set P_d.

Proof. There exists an abelian group A such that P is isomorphic to a G-summand of AG. We view P as a G-submodule of AG. There exists an additive G-retraction $\pi: AG \to P$.

We view AG as the almost equality class of (G, A) which contains the zero map. Thus AG is a G-submodule of (G, A), and we have a derivation

$$d : G \to P \subseteq AG \subseteq (G, A).$$

By a classic result of Hochschild’s, there exists $v \in (G, A)$ such that, for all $g \in G$, $d(g) = gv - v$. For example, we can take $v: x \mapsto -(d(x))(x)$, for all $x \in G$. See the proof of Proposition IV.2.3 in [3].

Let $U = v + P$ and $V = v + AG$. Then $U \subseteq V \subseteq (G, A)$, and V is the almost equality class which contains v. Also, U and V are G-stable, since, for each $g \in G$, $gv = v + d(g) \in v + P \subseteq v + AG$. The map

$$V \to U, \quad v + m \mapsto v + \pi(m), \text{ for all } m \in AG,$$

is a G-retraction, since, for all $m \in AG$,

$$g(v + m) = v + gm + d(g) \mapsto v + \pi(gm + d(g)) = v + g\pi(m) + d(g) = g(v + \pi(m)).$$

By Theorem 5.1 there exists a G-tree whose edge stabilizers are finite and whose vertex set is the G-set U.

The bijective map $P \to U$, $p \mapsto v + p$, is an isomorphism of G-sets $P_d \cong U$. Now the result follows.

5.5 Remark. Notice that, in Theorem 5.4 the stabilizer of a vertex $p \in P_d$ is precisely the kernel of the derivation

$$d + \text{ad } p: G \to P, \quad g \mapsto d(g) + gp - p = (g - 1)(v + p).$$

The following generalizes Corollary IV.2.10 of [3] and is used in the proof of Lemma 5.16 of [3].

5.6 Corollary. Let M be a G-module, let P be a G-projective G-submodule of M, and let v be an element of M. If the subset $v + P$ of M is G-stable, then there exists a G-tree whose edge stabilizers are finite and whose vertex set is the G-set $v + P$.

Proof. The inner derivation $\text{ad } v: G \to M$ restricts to a derivation $d: G \to P$, $g \mapsto gv - v \in P \subseteq M$, for all $g \in G$. The bijective map $P \to v + P$, $p \mapsto v + p$, is then an isomorphism of G-sets $P_d \cong v + P$. Now the result follows from Theorem 5.4. □
5.7 Example. Let R be a nonzero associative ring, and let ωRG be the augmentation ideal of the group ring RG.

Notice that, in the (left) G-set RG, both the coset $1 + \omega RG$ and $RG - \{0\}$ are G-stable, and that the G-set $RG - \{0\}$ has finite stabilizers.

If ωRG is projective as left RG-module, then, by Corollary 5.6, there exists a G-tree T with $VT = 1 + \omega RG \subseteq RG - \{0\}$; hence T has finite stabilizers. This sheds some light on the main step in the characterization of groups of cohomological dimension at most one over R. See, for example, [3, Theorem IV.3.13].

6 A more general form

We next want to generalize Theorem 5.1.

The following is similar to Lemma 2.2 of [4], and the proof is straightforward.

6.1 Lemma. Let E and A be G-sets such that, for each $e \in E$, G_e acts trivially on A.

Let \tilde{A} denote the G-set with the same underlying set as A but with trivial G-action.

Let E_0 be a G-transversal in E.

For each $\phi \in (E, A)$, let $\tilde{\phi} \in (E, \tilde{A})$ be defined by $\tilde{\phi}(ge) = g^{-1} \cdot \phi(ge)$ for all $(g, e) \in G \times E_0$, where \cdot denotes the G action on A.

For each $\psi \in (E, A)$, let $\tilde{\psi} \in (E, A)$ be defined by $\tilde{\psi}(ge) = g \cdot \psi(ge)$ for all $(g, e) \in G \times E_0$.

Then

$$(E, A) \rightarrow (E, \tilde{A}), \quad \phi \mapsto \tilde{\phi}, \quad \text{and} \quad (E, \tilde{A}) \rightarrow (E, A), \quad \psi \mapsto \tilde{\psi},$$

are mutually inverse isomorphisms of G-sets which preserve almost equality between functions.

Combined, Lemma 6.1 and Theorem 5.1 give the most general form that we know of the almost stability theorem.

6.2 Theorem. Let E and A be G-sets such that, for each $e \in E$, G_e is finite and acts trivially on A. If V is a G-retract of a G-stable almost equality class in (E, A), then there exists a G-tree whose edge stabilizers are finite and whose vertex set is the G-set V.

For each $e \in E$, if G_e is trivial, then G_e is finite and acts trivially on A. It was this case that was useful in [4].

7 An example

In this section, we shall give an example of a group G and a retract of a vertex set of a G-tree that is not the vertex set of any G-tree.

We shall use two technical lemmas. Recall that, for $x, y \in G$, x^y denotes $y^{-1}xy$.

7.1 Lemma. Let $G = \langle x, y \mid \rangle$, let $n \in \mathbb{N}$, and let $g \in G$.

(i) If $x^n y^n x^{-n} \in (x^2, y^2)^g$, then $n \neq 0$ and $g \in \langle x^2, y^2 \rangle$.

(ii) If $x^n y^n x^{-n} \in (x^4, xyx, y^4)^g$, then $n \neq 1$ and $g \in \langle x^4, xyx, y^4 \rangle$.
Proof. Let $T = X(G, \{x, y\})$, the Cayley graph of G with respect to \{x, y\}, as in [3 Definitions I.2.1]. Each (oriented) edge of T is labelled x or y.

Let $H \leq G$, and let $w = x^2y^{-2}x^2 \in G$. Let $X := H \setminus T$, let $Y := \langle w \rangle \setminus T$, and let $Z := G \setminus T$.

The pullback of the two natural maps $X \to Z$, $Y \to Z$ provides detailed information about all nontrivial subgroups of G of the form $\langle w \rangle \cap H^g$; see [2 p. 380]. However, this pullback can be rather cumbersome and we do not require detailed information. For our purposes, special considerations will suffice, as follows.

Define $g^{-1}X := (H^g) \setminus T$.

There is a graph isomorphism $X \simeq g^{-1}X$, $Hx \leftrightarrow H^g g^{-1}x$.

The fundamental group of X with basepoint $H1$, $\pi(X, H1)$, is naturally isomorphic to H, with the elements of H being read off closed paths based at $H1$.

Similarly, H^g is naturally isomorphic to $\pi(g^{-1}X, H^g1)$, and this in turn is naturally isomorphic to $\pi(X, Hg)$ via the graph isomorphism $g^{-1}X \simeq X$.

Suppose that w lies in H^g. Then w can be read off a closed path in X based at Hg. Since w is a cyclically reduced word, the closed path is cyclically reduced. The smallest subgraph of X which contains all the cyclically reduced closed paths in X is called the core of X, denoted $\text{core}(X)$. It follows that the vertex Hg lies in $\text{core}(X)$, and that we can start at Hg, read w and stay inside $\text{core}(X)$.

(i) Suppose that $H = \langle x^2, y^2 \rangle$.

Here $\text{core}(X)$ has vertex set $\{H1, Hx, Hy\}$ and labelled-edge set

$$\{(H1, x, Hx), (Hx, x, Hx^2), (H1, y, Hy), (Hy, y, Hx^2)\}$$

with $Hx^2 = Hy^2 = H1$.

We note that Hxy and Hyx are outside $\text{core}(X)$.

Since $(Hy)x = Hyx$ does not lie in $\text{core}(X)$, we see that $Hg \neq Hy$. Hence, $Hg \in \{H1, Hx\}$.

Notice that $(H1)(xy) = Hxy$ and $(Hx)(yx) = Hyx$. These lie outside $\text{core}(X)$. Thus $n \neq 0$. Hence, $x^2 \in H$.

Notice that $(Hx)(x^2y) = Hxy$ lies outside $\text{core}(X)$. Thus $Hg \neq Hx$. Hence, $Hg = H1$, that is, $g \in H$.

This proves (i).

(ii). Suppose that $H = \langle x^3, xyx, y^4 \rangle$.

Here $\text{core}(X)$ has vertex set

$$\{H1\} \cup \{Hx^i, Hy^i \mid 1 \leq i \leq 3\}$$

and labelled-edge set

$$\{(Hx^i, x, Hx^{i+1}), (Hy^i, y, Hy^{i+1}) \mid 0 \leq i \leq 3\} \cup \{(Hx, y, Hxy)\},$$

with $Hx^4 = Hy^4 = H1$ and $Hxy = Hx^3$.

We note that $Hxy^2 = Hx^2y^2, Hyx, Hy^2x$ and Hx^3y, all lie outside $\text{core}(X)$.

For any j with $1 \leq j \leq 3$, $(Hy^j)(x) = Hy^jx$ lies outside $\text{core}(X)$. It follows that $Hg \neq Hy^j$. Hence $Hg = Hx^i$ for some i with $0 \leq i \leq 3$.

Notice that $(Hx)(xy) = Hx^2y, (Hx^2)(xy) = Hx^3y$, and $(Hx^3)(xy) = Hxy$. These all lie outside $\text{core}(X)$. Thus, if $n = 0$, then $Hg = H1$.

Notice that $(H1)(x^2y) = Hx^2y, (Hx)(x^2y) = Hx^3y, (Hx^2)(x^2y^2x) = Hy^2x$, and $(Hx^3)(x^2y^2) = Hxy^2$. These all lie outside $\text{core}(X)$. Thus $n \neq 1$.

Now suppose that $n \geq 2$. Thus $x^{2n} = (x^4)^{2n-2} \in H$.

Notice that $(Hx)(x^2n^2y^2) = Hxy^2, (Hx^2)(x^2n^2y) = Hx^2y, and (Hx^3)(x^2n^2y) = Hx^3y$. These all lie outside $\text{core}(X)$. Thus $Hg = H1$.

This proves (ii).
It is straightforward to prove the following.

7.2 Lemma. Let \(G = (x, y, t \mid x^4t = x^8, y^4t = y^8, x^2y^2x^2 = x^4y^4x^4) \) and let \(n \in \mathbb{N} \).

(i) If \(n \neq 1 \), then \((xy)x)^n = x^{2n}y^{2n}x^{2n}\) in \(G \).

(ii) \((xy)x)^{n+2} = (x^4)^{2n}(y^4)^{2n}(x^4)^{2n}\) in \(G \). \(\square \)

Throughout the remainder of the section we work with the following example.

7.3 Hypotheses. Let \(G = (x, y, t \mid x^4t = x^8, y^4t = y^8, x^2y^2x^2 = x^4y^4x^4) \).

Let \(T = (T, V, E, \iota, \tau) \) be the \(G \)-graph given by the following data, where \(\lor \) denotes the disjoint union:

\[
\begin{align*}
V &= Gu \lor Gw, \quad G_u = \langle x, y \rangle, \quad G_w = \langle x^4, y^4 \rangle, \\
E &= Ge \lor Gf, \quad G_e = \langle x^4, xyx, y^4 \rangle, \quad G_f = \langle x^4, y^4 \rangle, \\
\iota(e) &= u, \quad \tau(e) = t^2w, \quad \iota(f) = w, \quad \tau(f) = tw.
\end{align*}
\]

Using Lemma 7.2 we see that the following hold:

\[
\begin{align*}
G_e &\leq G_u, \quad G_{1-2e} = G_{e}^{t^2} = \langle x^{16}, x^4y^4x^4, y^{16} \rangle \leq G_w, \\
G_f &\leq G_w, \quad G_{t^{-1}f} = G_{f}^{t} = \langle x^8, y^8 \rangle \leq G_w.
\end{align*}
\]

Thus \(T \) is a well-defined \(G \)-graph.

Let \(U = Gu \).

Let \(H = \langle x, y \rangle \leq G \).

For any subset \(S \) of \(T \), we let \(S^{xyz} \) denote \(\{s \in S \mid (xyx)s = s \} \). \(\square \)

Since \(G_w \leq G_u \), it is clear that \(U \) is a \(G \)-retract of \(V \). We shall see that \(T \) is a \(G \)-tree, and that no \(G \)-tree has vertex set \(U \).

7.4 Lemma. If Hypotheses 7.3 hold, then the \(G \)-graph \(T \) is a tree, and \(H \) is freely generated by \(\langle x, y \rangle \).

Proof. Let us momentarily forget Hypotheses 7.3.

Let \(Y = (Y, \overline{V}, \overline{E}, \overline{\iota}, \overline{\tau}) \) be the graph given as follows.

\[
\overline{V} = \{\pi, \overline{\pi}\}, \quad \overline{E} = \{\pi, \overline{f}\}, \quad \overline{\iota}(\overline{f}) = \overline{\pi}, \quad \overline{\tau}(\overline{f}) = \overline{\pi}(\overline{f}) = \overline{\tau}(\overline{f}) = \overline{\pi}.
\]

Let \(Y_0 := (Y_0, \overline{V}, \{\pi\}, \overline{\iota}, \overline{\tau}) \) be the unique maximal subtree of \(Y \).

Using the notation of Definitions I.3.1 of [3], let \((G(-), Y) \) be the graph of groups given by the following data.

\[
\begin{align*}
G(\pi) &= \langle x, y \rangle, \quad G(\overline{\pi}) = \langle x', y' \rangle, \quad G(\pi) = \langle x^4, xyx, y^4 \rangle, \quad G(\overline{f}) = \langle x', y' \rangle, \\
(x^4)^{\overline{\iota}} &= x'^4, \quad (xyx)^{\overline{\iota}} = x'y'x', \quad (y^4)^{\overline{\iota}} = y'^4, \quad (x')^{\overline{\tau}} = x'^2, \quad (y')^{\overline{\tau}} = y'^2.
\end{align*}
\]

Recall that, in the notation of Definitions I.3.1 of [3], \((-)^{\overline{\tau}} \) denotes the edge-group monomorphism associated to \(\overline{\tau} \).

Let \(G := \pi(G(-), Y, Y_0) \), as in Definitions I.3.4 of [3]. Writing \(t \) for the element of \(G \) that realizes the monomorphism \(\overline{\tau}: G(\overline{f}) \to G(\overline{\pi}) \), we have

\[
G = \langle x, y, x', y', t \mid x^4t = x'^4, xyx = x'y'x', y^4 = y'^4, x'^t = x'^2, y'^t = y'^2 \rangle.
\]

Then \(\langle x, y \rangle = G(\pi) \leq G \) by Corollary I.7.5 of [3].
Now \(x'^2 = x'^2t = x'^4 = x^4 \). Thus \(x' = x^{4t^{-2}} \). Similarly, \(y' = y^{4t^{-2}} \). Hence we can write

\[
G = \langle x, y, t \mid x^4 = x'^{16t^{-2}}, \ xyx = x'^{4t^{-2}}y'^{4t^{-2}}x^{-1}, \ y^4 = y'^{16t^{-2}} \rangle,
\]

\[
= \langle x, y, t \mid x^4t = x'^{8}, \ xyx^2x^{-2} = x'^4y'^{-4}x^4, \ y^4 = y'^{8} \rangle.
\]

Let \(T = (T, V, E, \iota, \tau) \) be \(T(G(-), Y, y_0) \), as in Definitions I.3.4 of \([3] \). Thus

\[
V = G\pi \lor G\nu, \quad G\pi = \langle x, y \rangle, \quad G\nu = \langle x', y' \rangle = \langle x^4, y^4 \rangle^{t^{-2}},
\]

\[
E = G\nu \lor G\overline{f}, \quad G\nu = \langle x^4, xyx, y^4 \rangle, \quad G\overline{f} = \langle x', y' \rangle = \langle x^4, y^4 \rangle^{t^{-2}},
\]

\[
\iota(\nu) = \pi, \quad \tau(\nu) = \nu, \quad \iota(\overline{f}) = \nu, \quad \tau(\overline{f}) = W.
\]

By Bass-Serre Theory, \(T \) is a \(G \)-tree; see \([3] \) Theorem I.7.6].

Let \(u := \nu, \ w := t^{-2}w, \ e := \pi, \ f := t^{-2}f \).

Then \(w = u, \ w = t^2w, \ i = w, \ t^f = tw \).

Thus the above \(G \) and \(T \) agree with the \(G \) and \(T \) of Hypotheses \(\text{T3} \) and the result is proved.

7.5 Lemma. Let \(n \in \mathbb{N} \). If Hypotheses \(\text{T3} \) hold, then the following also hold.

(i) \((tn^2G_w e)_{xyx} = \{tn^e\} \) if \(n \neq 1 \).

(ii) \((tn^2G_w t^{-2}e)_{xyx} = \begin{cases} \{tn^e\} & \text{if } n \neq 1, \\ \emptyset & \text{if } n = 1. \end{cases} \)

(iii) \((tn^2G_w t^{-1}f)_{xyx} = \begin{cases} \{tn^{+1}f\} & \text{if } n \neq 0, \\ \emptyset & \text{if } n = 0. \end{cases} \)

(iv) \((tn^2G_w f)_{xyx} = \{tn^2f\} \).

Proof. (i). Let \(g \in G_w = \langle x, y \rangle \).

Suppose that \(n \neq 1 \) and that \((xyx)tn^g = tn^ge \). Then \((xyx)^{tn}g \in G_e \). By Lemma \(\text{T2} \text{[3]} \)

\[
(x^2y^2x^2)g \in G_e = \langle x^4, xyx, y^4 \rangle.
\]

By Lemma \(\text{T4} \text{[3]} \), \(g \in \langle x^4, xyx, y^4 \rangle = G_e \). Hence \(t^ng = t^n e \). It is now easy to see that (i) holds.

(ii). Let \(g \in G_w = \langle x^4, y^4 \rangle \).

Suppose that \((xyx)tn^+g t^{-2}e = t^{n+2}gt^{-2}e \). Then \((xyx)^{tn+2}gt^{-2} \in G_e \). By Lemma \(\text{T2} \text{[3]} \),

\[
\langle (x^4)^{tn} (y^4)^{2n} (x^4)^{2n} \rangle \in G_e^2 = \langle x^4, xyx, y^4 \rangle^2 = \langle x^4, x^4, y^4, x^4 \rangle.
\]

By Lemma \(\text{T1} \text{[3]} \), \(n \neq 1 \) and \(g \in \langle x^4, x^4, x^4 \rangle = G_e^2 \). Hence \(t^{n+2}gt^{-2}e = t^n e \).

It is now clear that (ii) holds.

(iii). Let \(g \in G_w = \langle x^4, y^4 \rangle \).

Suppose that \((xyx)tn^+g t^{-1}f = t^{n+2}gt^{-1}f \). Then \((xyx)^{tn^+2}gt^{-1} \in G_f \). By Lemma \(\text{T2} \text{[3]} \),

\[
\langle (x^4)^{2n} (y^4)^{2n} (x^4)^{2n} \rangle \in G_f^t = \langle x^4, y^4 \rangle = \langle x^8, y^8 \rangle.
\]
By Lemma 7.3, \(n \neq 0 \) and \(g \in \langle x^8, y^8 \rangle = G_f \). Hence \(t^ngt^{-1}f = t^{n-1}f \). It is now clear that (iii) holds.

(iv) By Lemma 7.2, \((xyzt)^{n+2} \in \langle x^4, y^4 \rangle = G_f = G_w \). \(\Box \)

7.6 Lemma. If Hypotheses 7.3 hold, then

\[V^{xyz} = \{ t^n u \mid n \in \mathbb{N} - \{1\} \} \cup \{ t^{n+2} w \mid n \in \mathbb{N} \}. \]

Proof. Let \(n \in \mathbb{N} \).

From [8 Definitions I.3.4], we obtain the following.

\[\iota^{-1}(t^n u) = t^n G_u e, \quad \tau^{-1}(t^n u) = \varnothing, \]
\[\iota^{-1}(t^{n+2} w) = t^{n+2} G_w f, \quad \tau^{-1}(t^{n+2} w) = t^{n+2} G_w t^{-2} e \cup t^{n+2} G_w t^{-1} f. \]

By Lemma 7.5(ii), (iii) and (iv), the edges of \(T^{xyz} \) incident to \(t^2 w \) are \(e \) and \(t^2 f \), the edges of \(T^{xyz} \) incident to \(t^3 w \) are \(t^2 f \) and \(t^3 f \), and, for \(n \geq 2 \), the edges of \(T^{xyz} \) incident to \(t^{n+2} w \) are \(t^n e \), \(t^{n+1} f \) and \(t^{n+2} f \).

Hence, in \(T^{xyz} \), the neighbours of \(t^2 w \) are \(u \) and \(t^3 w \), the neighbours of \(t^3 w \) are \(t^2 w \) and \(t^4 w \), and, for \(n \geq 2 \), the neighbours of \(t^{n+2} w \) are \(t^n u \), \(t^{n+1} w \) and \(t^{n+3} w \).

By Lemma 7.6, and the fact that \(t^{n+1}w \) is \(t^n e \), and hence the unique neighbour of \(t^n u \) in \(T^{xyz} \) is \(t^{n+2} w \).

The result now follows. \(\Box \)

We now have the desired example.

7.7 Theorem. There exists a group \(G \) and a \(G \)-set \(U \) such that \(U \) is a \(G \)-retract of the vertex set of some \(G \)-tree but \(U \) is not the vertex set of any \(G \)-tree.

Proof. We assume that Hypotheses 7.3 hold.

By Lemma 7.3, \(U \) is a \(G \)-retract of the vertex set of some \(G \)-tree.

Suppose that there exists a \(G \)-tree \(T' \) with \(V T' = U = Gu \). We will derive a contradiction.

Temporarily returning to the tree \(T \), we let \(L \) denote the subtree of \(T \) with vertex set \(\{ t \} w \) and edge set \(\{ t \} f \). Then \(L \) is homeomorphic to \(\mathbb{R} \) and \(t \) acts on \(L \) by translation. In particular, \(\{ t \} \) acts freely on \(V T \). Hence, \(\{ t \} \) acts freely on \(V T' \subseteq V T \).

As in [8 Proposition I.4.11], there exists a subtree \(L' \) of \(T' \) homeomorphic to \(\mathbb{R} \) on which \(t \) acts by translation.

Let \(v' \) denote the vertex of \(L' \) closest to \(u \) in \(T' \). It is well known, and easy to prove, that the \(T' \)-geodesics from \(u \) to \(t^2 u \), denoted \(T'[u, t^2 u] \), is the concatenation of the four \(T' \)-geodesics \(T'[u, v'], T'[v', t^2 v'], T'[t^2 v', t^2 u], \) and \(T'[t^2 v', t^2 u] \).

By Lemma 7.3 and the fact that \(\{ t \} \) acts freely on \(V T' \),

\[(7.7.1) \quad V T^{xyz} = (Gu)^{xyz} = \{ t^n u \mid n \in \mathbb{N} - \{1\} \} \cup \{ t^n u \mid n \in \mathbb{N} \} - \{ tu \}. \]

By (7.7.1), or by direct calculation, \(xyzt \) fixes \(u \), moves \(tu \), and fixes \(t^2 u \). Thus, \(xyzt \) fixes \(T'[u, t^2 u] \), and, hence, \(xyzt \) fixes \(v' \), fixes \(t^2 v' \), and fixes \(t^2 v' \).

In particular, \(tu \neq v' \), hence \(u \neq v' \), that is, \(u \notin L' \).

Since \(xyzt \) fixes \(v' \), we see, by (7.7.1), that \(v' = t^n u \) for some \(n \in \mathbb{N} - \{1\} \). Hence \(u = t^{-n} v' \in t^{-n} L' = L' \). This is a contradiction. \(\Box \)

Acknowledgments

The research of the first-named author was funded by the DGI (Spain) through Project BFM2003-06613.

We are grateful to Gilbert Levitt for making us think about the sliding operation at a most opportune moment.

We thank a referee for several useful suggestions.
References

[1] Pierre de la Harpe and Alain Valette, *La propriétée (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger)*, Astérisque 175, Soc. Math. de France, 1989.

[2] Warren Dicks, *Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture*, Invent. Math. 117(1994), 373–389. Errata at http://mat.uab.cat/~dicks/invErr.html

[3] Warren Dicks and M. J. Dunwoody, *Groups acting on graphs*, Cambridge Stud. Adv. Math. 17, CUP, Cambridge, 1989. Errata at http://mat.uab.cat/~dicks/DDerr.html

[4] Warren Dicks and Peter Kropholler, *Free groups and almost equivariant maps*, Bull. London Math. Soc. 27(1995), 319–326. Addenda at http://mat.uab.cat/~dicks/almost.html

[5] Warren Dicks and Peter A. Linnell, *L^2-Betti numbers of one-relator groups*, Math. Ann. (to appear). http://arxiv.org/abs/math.GR/0508370

[6] M. J. Dunwoody, *Folding sequences*, pp. 139–158 in: The Epstein birthday schrift (eds. Igor Rivin, Colin Rourke and Caroline Series), Geom. Topol. Monographs 1, Geom. Topol. Publ., Coventry, 1998. http://www.maths.warwick.ac.uk/gt/GTMon1/paper7.abs.html

[7] Max Forester, *Deformation and rigidity of simplicial group actions on trees*, Geom. Topol. 6(2002), 219–267. http://www.maths.warwick.ac.uk/gt/GTVol6/paper8.abs.html

[8] E. Rips and Z. Sela, *Cyclic splittings of finitely presented groups and the canonical JSJ decomposition*, Ann. Math. 146(1997), 53–109.

Warren Dicks, Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
E-mail address: dicks@mat.uab.cat
URL: http://mat.uab.cat/~dicks/

M. J. Dunwoody, Department of Mathematics, University of Southampton, Southampton, England SO17 1BJ
E-mail address: M.J.Dunwoody@maths.soton.ac.uk
URL: http://www.maths.soton.ac.uk/staff/Dunwoody/