Generalized Busemann inequality

Alexander E. Litvak and Dmitry Zaporozhets

Abstract

We present a result which simultaneously extends the Busemann intersection inequality to the case of non-integer moments of the corresponding volumes and the Busemann random simplex inequality to the case of simplices of smaller dimensions.

AMS 2010 Classification: primary: 60D05, 52A22; secondary: 52A23, 46B06

Keywords: Blaschke–Petkantschin formula, Busemann intersection inequality, Busemann random simplex inequality, convex hull, expected volume, Furstenberg–Tzkoni formula, random section.

1 Introduction

1.1 Notation

We start with basic notation of integral geometry following [15]. Let $d \geq 1$ be an integer. A compact convex subset in \mathbb{R}^d with non-empty interior is called a convex body. The unit Euclidean ball in \mathbb{R}^k is denoted by B^k. By $|\cdot|$ we denote the d-dimensional volume. Given $k \leq d$, slightly abusing notation, considering the sets intersected with k-dimensional affine subspaces or the convex hulls of $k+1$ points, we denote the k-dimensional volume by $|\cdot|$ as well.

For $p > 0$ denote

$$
\kappa_p := \frac{\pi^{p/2}}{\Gamma\left(\frac{p}{2} + 1\right)} \quad \text{and} \quad \omega_p = p\kappa_p.
$$

The work of this author was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.
Note that for an integer \(k \) one has \(\kappa_k = |B^k| \) and \(\omega_k = |\partial B^k| \). We will also need the following numbers
\[
b_{q,k} := \frac{\omega_{q-k+1} \cdots \omega_q}{\omega_1 \cdots \omega_k}.
\] (2)

For \(k \in \{0, \ldots, d\} \), the linear (resp., affine) Grassmannian of \(k \)-dimensional linear (resp., affine) subspaces of \(\mathbb{R}^d \) is denoted by \(G_{d,k} \) (resp., \(A_{d,k} \)) and is equipped with a unique rotation invariant (resp., rigid motion invariant) Haar measure \(\nu_{d,k} \) (resp., \(\mu_{d,k} \)), normalized by
\[
\nu_{d,k}(G_{d,k}) = 1 \quad \text{and} \quad \mu_{d,k} \left(\{ E \in A_{d,k} : E \cap \mathbb{B}^d \neq \emptyset \} \right) = \kappa_{d-k},
\]
respectively. For \(L \in G_{d,k} \) (resp., \(E \in A_{d,k} \)) we denote by \(\lambda_L \) (resp., \(\lambda_E \)) the \(k \)-dimensional Lebesgue measures on \(L \) (resp., \(E \)).

1.2 Busemann intersection inequality

The seminal Busemann intersection inequality [1] states that for any convex body \(K \subset \mathbb{R}^d \) and for \(k = d - 1 \) one has
\[
\int_{G_{d,k}} |K \cap L|^d \nu_{d,k}(dL) \leq \frac{\kappa_d}{\kappa_k^d} |K|^k.
\] (3)

This inequality was later generalized in [3, 10] for all \(k = 1, \ldots, d - 1 \). Using the polar coordinates, it is easy to see that for \(k = 1 \) the inequality turns to the equality. Moreover, the equality in the case \(k = 1 \) can be generalized to other moments as follows:
\[
\int_{G_{d,1}} |K \cap L|^{d+p} \nu_{d,k}(dL) = \frac{(d+p)2^{d+p}}{d \kappa_d} \int_{K^k} |x|^p \, dx, \quad p \geq -d + k + 1.
\] (4)

If \(k \geq 2 \) then the equality holds if and only if \(K \) is an ellipsoid centered at the origin, and in this case (3) turns to the classical Fustenberg–Tskoni formula [7].

The affine counterpart of (3) was obtained by Schneider [11], namely
\[
\int_{A_{d,k}} |K \cap E|^{d+1} \mu_{d,k}(dE) \leq \frac{\kappa_{d+1} \kappa_{d(k+1)}}{\kappa_{d+1} \kappa_{k+1}} |K|^{k+1}.
\] (5)
As above, for $k = 1$ the inequality turns to equality, although it is not as trivial as in the linear case, see [5] for $d = 2$ and [12] for any d. As in the linear case, this equality can be generalized to other moments. It was done independently in [4, Eq. (21)] and [13, Eq. (34)]:

$$
\int_{A_{d,1}} |K \cap E|^{p+d+1} \mu_{d,1}(dE) = \frac{(d + p)(d + p + 1)}{2 d \kappa_d} \int_{K^2} |x_0 - x_1|^p \, dx_0 \, dx_1.
$$

If $k \geq 2$, then equality holds if and only if K is an ellipsoid.

Gardner [8] generalized (3) and (5) to bounded Borel sets and characterized the equality cases. Recently Dann, Paouris, and Pivovarov [6] extended (3), (5) to bounded integrable functions.

Given that (4) and (5) for $k = 1$ (which are the equalities in this case) can be generalized to other moments, the following question arises naturally.

Question I. Is it possible to generalize (3) and (5) to the case of non-integer moments of $|K \cap L|$?

1.3 Busemann random simplex inequality

Another group of inequalities deals with the volume of the random simplex in a body. The classical Busemann random simplex inequality states that

$$
|K|^{d+1} \leq (d + 1)! \frac{k_{d+1}^{d+1}}{2 k_{d+1}^{d+1}} \int_{K^d} |\text{conv}(0, x_1, \ldots, x_d)| \, dx_1 \ldots dx_d.
$$

This inequality can be generalized (see, e.g., [15, Theorem 8.6.1.]) as follows: for every $p \geq 1$,

$$
|K|^{p+d} \leq (d!)^p \frac{k_{d+1}^{p+d}}{2 k_{d+1}^{p+d}} \frac{b_{d+p,d}}{b_{d+p,d}} \int_{K^d} |\text{conv}(0, x_1, \ldots, x_d)|^p \, dx_1 \ldots dx_d. \quad (6)
$$

The equality holds if and only if K is a centered ellipsoid.

The affine counterpart of (6) is known as the Blaschke-Grömer inequality [11]: for every $p \geq 1$,

$$
|K|^{p+d+1} \leq (d!)^p \frac{k_{d+1}^{p+d+1}}{k_{d+1}^{d+1}} \frac{K(d+1)(d+p)}{K(d+p+1)} \int_{K^{d+1}} |\text{conv}(x_0, \ldots, x_d)|^p \, dx_0 \ldots dx_d. \quad (7)
$$
As before, the equality holds if and only if K is an ellipsoid.

The following question arises naturally.

Question II. *Is it possible to generalize (6) and (7) to the case of random simplices of all dimensions $k = 1, \ldots, d$?*

The aim of this note is to positively answer Questions I, II presenting inequalities that generalizes both the Busemann intersection inequality and the Busemann random simplex inequality.

2 Main results

Our first theorem generalizes (3) and (6).

Theorem 2.1. For any convex body $K \subset \mathbb{R}^d$, $k \in \{0, 1, \ldots, d\}$, and any real number $p \geq -d + k + 1$,

$$\int_{G_{d,k}} |K \cap L|^{p+d} \nu_{d,k}(dL) \leq (k!)^p \frac{k^{d+p}}{k^{d+p}_d} \frac{b_{d+p,k}}{b_{d,k}} \int_{K^k} |\text{conv}(0, x_1, \ldots, x_k)|^p \, dx_1 \ldots dx_k.$$

(8)

For $k \geq 2$ the equality holds if and only if K is a non-degenerate ellipsoid centered at the origin.

Remarks.

1. Applying (8) with $p = 0$ we obtain (3), while applying it with $k = d$ we obtain (6).

2. It was shown in [9, Theorem 1.6] that if K is a non-degenerate ellipsoid centered at the origin, then one has the equality in (8).

3. In the probabilistic language it may be formulated as

$$\mathbb{E} |K \cap \xi|^{p+d} \leq (k!)^p \frac{k^{d+p}}{k^{d+p}_d} \frac{b_{d+p,k}}{b_{d,k}} |K|^k \mathbb{E} |\text{conv}(0, X_1, \ldots, X_k)|^p$$

where X_1, \ldots, X_k are i.i.d. copies of a random variable uniformly distributed in K and ξ is uniformly distributed in $G_{d,k}$.

Our second theorem generalizes (5) and (7).
Theorem 2.2. For any convex body $K \subset \mathbb{R}^d$, $k \in \{0, 1, \ldots, d\}$, and any real number $p \geq -d + k + 1$,
\[\int_{A_{d,k}} |K \cap E|^{p+d+1} \mu_{d,k}(dE) \leq C(k, p, d) \int_{K^{k+1}} |\text{conv}(x_0, \ldots, x_k)|^p \, dx_0 \ldots dx_k, \]
(9)
where
\[C(k, p, d) = (k!)^p \frac{k_{k+1}^{p+d+1} \kappa_{d+p}^{(k+1)(d+p)} b_{d+p,k}}{\kappa_{d+k}^{k+1} \kappa_{k(d+p)+k} b_{d,k}^p}. \]

For $k \geq 2$ the equality holds if and only if K is a non-degenerate ellipsoid.

Remarks.

1. Applying (9) with $p = 0$ we obtain (5), while applying it with $k = d$ we obtain (7).

2. It was shown in [9, Theorem 1.4] that if K is a non-degenerate ellipsoid, then one has the equality in (9).

3. In probabilistic language it may be formulated as
\[\mathbb{E} \left| K \cap \eta \right|^{p+d+1} \leq C'(k, p, d) \frac{|K|^{k+1}}{V_{d-k}(K)} \mathbb{E} \left| \text{conv}(X_0, X_1, \ldots, X_k) \right|^p, \]
where
\[C'(k, p, d) = \frac{d!}{(d-k)!} \frac{(k!)^{p+1}}{(d-k)!(d-k)!} \frac{k_d^{p+d} \kappa_{d-k}^{k+1} \kappa_{k(d+p)+k} b_{d+p,k}}{\kappa_{k}^{k+1} \kappa_{d-k}^{k+1} \kappa_{k(d+p)+k} b_{d,k}}. \]

X_0, X_1, \ldots, X_k are i.i.d. copies of a random variable uniformly distributed in K, η is uniformly distributed among all affine k-planes intersected K, and V_{d-k} is the $(d-k)$-th intrinsic volume of K defined by the Crofton formula [15, Theorem 5.1.1] as the normalized measure of all affine k-planes intersected K:
\[V_{d-k} := \binom{d}{k} \frac{k_d}{\kappa_k \kappa_{d-k}} \mu_{d,k}(\{E \in A_{d,k} : E \cap K \neq \emptyset\}). \]
3 Proofs

3.1 Blaschke–Petkantschin formula

Recall that $b_{d,k}$ is defined by (2). Given points $x_0, x_1, \ldots, x_k \in \mathbb{R}^d$ we denote

$$V_k = V(x_0, x_1, \ldots, x_k) := |\text{conv}(x_0, x_1, \ldots, x_k)|$$

and

$$V_{0,k} = V(x_1, \ldots, x_k) := |\text{conv}(0, x_1, \ldots, x_k)|.$$

In our further calculations we will need to integrate some non-negative measurable function h of k-tuples of points in \mathbb{R}^d. To this end, we first integrate over the k-tuples of points in a fixed k-dimensional linear subspace L with respect to the product measure λ_L^k and then we integrate over $G_{d,k}$ with respect to $\nu_{d,k}$. The corresponding transformation formula is known as the linear Blaschke–Petkantschin formula (see [15, Theorem 7.2.1]):

$$\int_{(\mathbb{R}^d)^k} h \, dx_1 \ldots dx_k = (k!)^{d-k} b_{d,k} \int_{G_{d,k}} \int_{L^k} h V_{0,k}^{d-k} \lambda_L(dx_1) \ldots \lambda_L(dx_k) \nu_{d,k}(dL),$$

where $h = h(x_1, \ldots, x_k)$. The following is an affine counterpart of (10),

$$\int_{(\mathbb{R}^d)^{k+1}} h \, dx_0 \ldots dx_k = (k!)^{d-k} b_{d,k} \int_{A_{d,k}} \int_{E^{k+1}} h V_k^{d-k} \lambda_E(dx_0) \ldots \lambda_E(dx_k) \mu_{d,k}(dE),$$

where $h = h(x_0, x_1, \ldots, x_k)$ (see [15, Theorem 7.2.7]).

3.2 Proof of Theorem 2.1

Let

$$J := \int_{K^k} V_{0,k}^p \, dx_1 \ldots dx_k = \int_{(\mathbb{R}^d)^k} V_{0,k}^p \prod_{i=1}^k 1_K(x_i) \, dx_1 \ldots dx_k.$$

Applying the linear Blaschke–Petkantschin formula (10) with the function

$$h(x_1, \ldots, x_k) := V_{0,k}^p \prod_{i=1}^k 1_K(x_i),$$
we observe

\[J = (k!)^{d-k} b_{d,k} \int_{G_{d,k}} \int_{L^k} V_{0,k}^{p+d-k} \prod_{i=1}^{k} \mathbb{1}_{K}(x_i) \lambda_L(dx_1) \ldots \lambda_L(dx_k) \nu_{d,k}(dL) \]

\[= (k!)^{d-k} b_{d,k} \int_{G_{d,k} \cap (K \cap L)^k} V_{0,k}^{p+d-k} \lambda_L(dx_1) \ldots \lambda_L(dx_k) \nu_{d,k}(dL). \quad (12) \]

Fix \(L \in G_{d,k} \). Applying (11) with \(p+d-k \) and \(k \) instead of \(p \) and \(d \), we obtain

\[(k!)^{p+d-k} \frac{k^{d+p}}{k^{d+p}} b_{d+p,k} \int_{(K \cap L)^k} V_{0,k}^{p+d-k} \lambda_L(dx_1) \ldots \lambda_L(dx_k) \geq |K \cap L|^{p+d}, \quad (13) \]

which together with (12) implies (8).

Finally we consider the equality case. As was mentioned above, the equality holds for ellipsoids, see [9, Theorem 1.6]. Conversely, suppose that (8) turns to equality. Then it follows from (12) that (13) turns to equality for almost all \(L \in G_{d,k} \) which, in fact, means that it is true for all \(L \in G_{d,k} \). Indeed, if for some \(L \in G_{d,k} \) we had a strict inequality in (13), then the same would be true for some neighborhood of \(L \) which would contradict to the fact that (13) turns to equality for almost all \(L \in G_{d,k} \). Thus, according to the equality case in (11), \(K \cap L \) is a centered ellipsoid for all \(L \in G_{d,k} \). Now it remains to apply the following lemma from [2 (16.12)]: if for any \(E \in A_{d,k} \) passing through some fixed point from the interior of \(K \) the intersection \(K \cap E \) happens to be a \(k \)-dimensional ellipsoid, then \(K \) is an ellipsoid itself. \(\square \)

3.3 Proof of Theorem 2.2

The proof is similar to the previous one. Let

\[J := \int_{K^{k+1}} V_k^p \, dx_0 \ldots dx_k = \int_{(\mathbb{R}^d)^{k+1}} V_k^p \prod_{i=0}^{k} \mathbb{1}_E(x_i) \, dx_0 \ldots dx_k. \]

Applying the affine Blaschke–Petkantschin formula (11) with the function

\[h(x_0, \ldots, x_k) := |\text{conv}(x_0, \ldots, x_k)|^p \prod_{i=0}^{k} \mathbb{1}_E(x_i), \]
we observe

\[J = (k!)^{d-k} b_{d,k} \int_{A_{d,k}} \int_{E^{k+1}} V_{k}^{p+d-k} \prod_{i=0}^{k} 1_{K}(x_i) \lambda_E(dx_0) \ldots \lambda_E(dx_k) \mu_{d,k}(dE) \]

\[= (k!)^{d-k} b_{d,k} \int_{A_{d,k}} \int_{(K \cap E)^{k+1}} V_{k}^{p+d-k} \lambda_E(dx_0) \ldots \lambda_E(dx_k) \mu_{d,k}(dE). \tag{14} \]

Fix \(E \in A_{d,k} \). Applying (7) with \(p + d - k \) and \(k \) instead of \(p \) and \(d \), we obtain

\[(k!)^{d-k+p} b_{d+p,k} \frac{k^{p+1}}{k^{k+1}} \frac{k^{(k+1)(d+p)}}{k^{d+p+1}} \int_{(K \cap E)^{k+1}} V_{k}^{p+d-k} \lambda_E(dx_0) \ldots \lambda_E(dx_k) \]

\[\geq |K \cap E|^{d+p+1} \]

which together with (14) implies (9).

The equality case is treated the same way as in the linear case. \(\square \)

References

[1] H. Busemann, *Volume in terms of concurrent cross-sections*, Pacific J. Math. 3 (1953), 1–12.

[2] H. Busemann. *The geometry of geodesics*, Academic Press Inc., New York, N.Y., 1955.

[3] H. Busemann and E. G. Straus, *Area and normality*, Pacific J.Math. 10 (1960), 35–72.

[4] G.D. Chakerian, *Inequalities for the difference body of a convexbody*, Proc. Amer. Math. Soc. 18 (1967), 879–884.

[5] M. Crofton, Probability, In *Encyclopaedia Brittanica*, volume 19, pages 758–788. Encyclopedia Britannica Inc, 9th edition, 1885.

[6] S. Dann, G. Paouris, and P. Pivovarov, *Bounding marginaldensities via affine isoperimetry*, Proc. Lond. Math. Soc. 113 (2016), 140–162.
[7] H. Furstenberg and I. Tzkoni, *Spherical functions and integral geometry*, Israel J. Math. 10 (1971), 327–338.

[8] R.J. Gardner, *The dual Brunn-Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities*, Adv. Math. 216 (2007), 358–386.

[9] F. Götze, A. Gusakova, and D. Zaporozhets, *Random affine simplexes*, J. Appl. Probab. 56 (2019), 39–51.

[10] E.L. Grinberg, *Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies*, Math. Ann. 291 (1991), 75–86.

[11] H. Groemer, *On some mean values associated with a randomly selected simplex in a convex set*, Pacific J. Math. 45 (1973), 525–533.

[12] H. Hadwiger, *Ueber zwei quadratische Distanzintegrale für Eikörper*, Arch. Math. (Basel), 3 (1952), 142–144.

[13] J.F.C. Kingman, *Random secants of a convex body*, J. Appl. Prob. 6 (1969), 660–672.

[14] R. Schneider, *Inequalities for random flats meeting a convex body*, J. Appl. Probab. 22 (1985), 710–716.

[15] R. Schneider and W. Weil *Stochastic and integral geometry*. Probability and its Applications (New York), Springer-Verlag, Berlin, 2008

Alexander E. Litvak
Dept. of Math. and Stat. Sciences,
University of Alberta,
Edmonton, AB, Canada, T6G 2G1.
e-mail: aelitvak@gmail.com

Dmitry Zaporozhets
St. Petersburg Department of
Steklov Institute of Mathematics
St. Petersburg, Russia
e-mail: zap1979@gmail.com