ABSTRACT. Uncovering radiation toxicity is critical for the adaptation and expansion of advanced radiation therapies and for the development of novel cancer radiotherapy. In the near future, advanced radiotherapies, including heavy ion beam treatment, are expected to be applied in the treatment of dogs, but further basic research on the effects of radiation using canine normal and cancer cells is necessary to actually apply these techniques and achieve high therapeutic efficacy. The radiation sensitivity is varied by the activities of DNA damage response (DDR) and DNA repair. The development of radiosensitizers that target DDR- and DNA repair-kinases, like ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK), is progressing and is expected to be introduced into canine radiotherapy. However, there are no cytotoxicity reports on using the combination of radiation and these sensitizers as treatment in canine cells. In this study, we examined the cytotoxic effects of X-rays and/or radiosensitizers on the Madin–Darby canine kidney (MDCK) cell line. Our results show that X-rays suppress MDCK cell colony formation and proliferation in a dose-dependent manner. Additionally, our observations imply that the combination treatment with ATM inhibitor KU-55933 and DNA-PK inhibitor NU7441 significantly increased X-ray cytotoxicity in MDCK cells compared with the drugs alone. Furthermore, our findings further suggest that MDCK cells might be useful in clarifying the cytotoxicity in canine epithelial cells due to radiation and/or radiosensitizers, such as molecule-targeted drugs.

KEYWORDS: ataxia telangiectasia mutated, canine, companion animal, DNA-dependent protein kinase, radiation
DNA-PK phosphorylate H2AX surrounding the X-ray-induced DNA double strand break (DSB) sites in human and rodent cells, and phosphorylation regulation might not only depend on the cell type, but also the tissue type [5, 16–18]. The highly specific inhibitors KU-55933 and NU7441, for ATM and DNA-PK, respectively, have been reported to inhibit kinase activity, and together show a synergistic effect on γH2AX in MDCK cells [6]. These findings suggest that these kinase inhibitors are also attractive as radiosensitizers to overcome the radioresistance in canine cells. However, there are no reports on the cytotoxicity of the combination of these two drugs with X-irradiation and the effects on MDCK cell colony formation and proliferation.

In the present study, we examined the cytotoxicity of X-rays on the colony formation and proliferation abilities of MDCK cells. Our results show that X-rays affect MDCK cells in a dose-dependent manner. In addition, our data suggest that the combination of KU-55933 and NU7441 enhances the cytotoxicity of X-rays in MDCK cells.

MATERIALS AND METHODS

Cell cultures, drugs, and irradiation

MDCK cells (HSRRB, Osaka, Japan) were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum at 37°C with 5% CO₂ as previously described [19–22]. Irradiation was carried out using a Pantak HF320S (Shimadzu, Kyoto, Japan) at room temperature. Cells were irradiated with X-rays at 0.63, 1.25, 2.5, 5, or 10 Gy and at a dose rate of 0.81–0.88 Gy/min (200 kVp/20 mA with 0.5-mm Al and 0.5-mm Cu filters), as described in previous studies [19]. Images of the cells were obtained using an Olympus CKX41 Microscope equipped with a digital camera (Olympus DP12) (Olympus, Tokyo, Japan). NU7441 and KU-55933 were purchased from Wako Pure Chemical (Osaka, Japan). NU7441 and KU-55933 were diluted in DMSO (Sigma-Aldrich, St. Louis, MO, USA) and stored at −20°C. Both drugs were diluted in culture medium immediately before use.

Clonogenic cell assay

Cells were seeded at 100 cells per 60-mm dish in triplicate. The next day, the cells were irradiated with X-rays with the indicated doses. After 5 days, colonies were stained in 2% methylene blue stain solution (Wako Pure Chemical), and colonies containing more than 50 cells were counted manually. The survival rates were calculated as a ratio with the number of colonies in the untreated controls.

Cytotoxicity assay

Trypan blue exclusion test was used to determine the number of viable cells in accordance with our previously described methods [23] with the following modifications. For the radiation toxicity assay, cells were seeded at a density of 5.0 × 10⁴ cells per 60-mm dish. The next day, the cells were irradiated with X-rays and incubated for 72 hr post-irradiation. Subsequently, the cells were washed with phosphate-buffered saline (PBS), suspended in Trypsin-EDTA solution (T3924, Sigma-Aldrich), collected, centrifuged, stained with 0.4 w/v% Trypan Blue Solution (Wako Pure Chemical) or 0.4% Trypan Blue (Bio-Rad, Hercules, CA, USA), and counted using a hemocytometer. For the radiation-drug combination toxicity assay, cells were seeded at a density of 2.5 × 10⁴ cells per 35-mm dish. The following day, KU-55933 and/or NU7441 were added at the indicated concentrations 1 hr before irradiation. At 24 hr from irradiation, drugs were removed and cells were returned to the incubator. After 72 hr, the trypan blue exclusion test was performed. All assays were performed in triplicate.

DAPI staining

Nuclei were stained with 0.025 μg/mL of 4,6-diamino-2-phenylindole (DAPI) fluorescent dye (Boehringer Mannheim, Mannheim, Germany), in accordance with our previously described methods [15, 23]. Images of cells were obtained using an Olympus Fluorescence Microscope BX51 equipped with a digital camera Olympus DP50.

Statistical analysis

The mean values and standard deviations of each assay were calculated from the mean of three independent experiments. Statistical analysis was performed using the analysis of variance (ANOVA) and Ryan’s multiple comparison tests (ANOVA4 on the web, https://www.hju.ac.jp/~kiriki/anova4/) as previously described [23]. Statistical significance was set at a P-value of less than 0.05.

RESULTS

X-ray-induced cytotoxicity on MDCK cells

To examine the effect of X-rays on the clonogenic survival of MDCK cells, irradiation was performed at 0.63, 1.25, 2.5, and 5 Gy. Our results showed that the size and number of colonies formed by MDCK cells at 5 days from X-irradiation were dose dependent (Fig. 1A). As shown in Fig. 1B, clonogenic cell survival rates were significantly inhibited in a dose-dependent manner (P<0.05). These results indicate that the colony formation ability was inhibited by X-rays in a dose-dependent manner.

X-ray-induced suppression of MDCK cell proliferation

To examine the effect of X-rays on the proliferation of MDCK cells, irradiation was performed at 1.25, 2.5, 5, and 10 Gy. As expected, non-irradiated MDCK cells showed a typical paving stone-like morphology as the one found in normal epithelial cells (Fig. 2A, left panel). Each of these cells also had a single, distinct, and relatively homogeneous nucleus (Fig. 2A and 2B, left panels). After irradiation, we observed abnormal morphologies, including large and flat cellular shapes (Fig. 2A, right panel), and abnormal nuclei,
including enlarged and multi-nuclei (Fig. 2B, right panel). As shown in Fig. 2C, the cell proliferation was significantly suppressed in a dose-dependent manner ($P<0.05$). These results indicate that the cell proliferation was suppressed by X-rays at least between 1.25 and 10 Gy in response to dose.
DNA-PK and ATM quickly phosphorylate H2AX following DNA damage in MDCK cells [6]. Flassig et al. [6] reported that in γ-irradiated MDCK cells KU-55933 (10 μM) strongly inhibits the phosphorylation of H2AX by ATM, whereas NU7441 (1 μM) mildly inhibits it by DNA-PK. Therefore, studies in radiation-drug combination toxicity were performed using KU-55933 (10 μM) and NU7441 (2 μM) concentrations. We evaluated the effects on the proliferation of MDCK cells of KU-55933 (10 μM) and/or NU7441 (2 μM) together with the cytotoxic effects of X-rays at 1.25 Gy. As shown in Fig. 3, there were no significant differences between the non-treated (NT) and DMSO-treated control (DMSO) groups (A, B). *P<0.05, **P<0.01, and ***P<0.001.

KU-55933 and NU7441 combination enhances X-ray cytotoxicity in MDCK cells

DNA-PK and ATM quickly phosphorylates H2AX following DNA damage in MDCK cells [6]. Flassig et al. [6] reported that in γ-irradiated MDCK cells KU-55933 (10 μM) strongly inhibits the phosphorylation of H2AX by ATM, whereas NU7441 (1 μM) mildly inhibits it by DNA-PK. Therefore, studies in radiation-drug combination toxicity were performed using KU-55933 (10 μM) and NU7441 (2 μM) concentrations. We evaluated the effects on the proliferation of MDCK cells of KU-55933 (10 μM) and/or NU7441 (2 μM) together with the cytotoxic effects of X-rays at 1.25 Gy. As shown in Fig. 3, there were no significant differences between the non-treated (NT) and DMSO-treated control (DMSO) groups (A, B). *P<0.05, **P<0.01, and ***P<0.001.

DISCUSSION

Uncovering radiation toxicity in canine normal and cancer cells is critical for the adaptation and expansion of advanced radiation therapies to dogs and for the developing of novel canine radiotherapy [27, 28]. The development of radiosensitizers that target molecules working as vital transducers in the DDR and DNA repair pathways is underway [9, 12, 27] and is expected to be introduced into canine radiotherapy. However, there are no reports on the cytotoxicity due to the combination of radiation and these sensitizers in canine cells. In this research, we examined the effects of X-irradiation on the abilities of colony formation and proliferation of MDCK cells to gather basic information on the radiotoxic effects on canine cells. Our findings might provide fundamental information for a better understanding of canine cell cytotoxicity by X-radiation and for the development of molecularly targeted drugs aimed at ATM and DNA-PK.

The MDCK cell line retains the common physiological features of normal canine renal epithelial cells, including cell morphology, cell function and cell society [31, 33]. In fact, this cell line has contributed to the elucidation of general biological phenomena such as cell–cell interactions and cell polarity in mammalian epithelial cells as well as renal epithelial cell functions [31, 33]. In this study, we confirmed that MDCK cells show a typical paving stone-like morphology, demonstrating that the MDCK cells used maintain, at least in part, characters derived from normal renal epithelial cells. Moreover, the culture of established MDCK cell lines is easier and less expensive than that of primary cell cultures. The cells are commonly used throughout the world, so the data obtained can be used
for comparative studies with various published data. In fact, this cell line has contributed to clarify the carcinogenic mechanism of oncogenes, the tumor suppressor mechanisms (e.g., cell competition, DDR signaling and DNA repair), and the malignant transformation due to oncoviruses [1, 2, 19–22]. Thus, we consider that the MDCK cells may be useful for pre-assessing the cytotoxicity of X-radiation and anticancer drugs on normal canine renal epithelial cells.

Recent studies demonstrated that many human and canine cancer cells have abnormalities in certain DNA repair mechanisms [10, 13]. The development of drugs that target the DNA repair mechanisms, including synthetic lethal drugs, is underway in human medicine [7, 12, 34]. However, these drugs are thought to have cytotoxic effects on normal cells in addition to their therapeutic effects on cancer cells. ATM and DNA-PK, which have crucial functions in DDR and DNA repair, are promising targets not only as single-cancer treatment drugs but also as multi-treatment drugs, as sensitizers for radiation or other genotoxic anticancer drugs [7, 12, 24, 34]. The candidate molecule-targeted drugs for these two proteins have been developed, and clinical investigation on the anticancer effects of some candidates have already begun [12, 34]. KU-55933 and NU7441 are well-known inhibitors with high specificity for ATM and DNA-PK, respectively, in cells derived from various mammalian species, and have also been reported to show effects on MDCK cells [3, 6, 36]. In the present study, treatment with either KU-55933 (10 µM) or NU7441 (2 µM) did not affect MDCK cell proliferation, whereas their combination inhibited proliferation. Previous works reported that single mutant mice of either Atm or Prkdc genes are born alive, whereas double knockout mice are embryonic lethal [11]. These findings suggest that the combination of ATM- and DNA-PK-targeting drugs may be toxic to normal canine cells, even at concentrations that are not toxic in single-drug treatment. Our findings suggest that, when treating tumors in dogs, toxicity to normal cells should be kept in consideration when developing drug combinations to obtain anticancer effects, even if the drugs have no side-effect when administered alone.

In this study, our findings suggest that KU-55933 and NU7441 combination significantly increased X-ray-induced cytotoxicity in MDCK cells, greater than the combination of irradiation with KU-55933 alone. These results suggest that both ATM and DNA-PK play a key role in the DDR and DNA repair activated by X-irradiation in canine epithelial cells, as in MDCK cells. Previously, Flasig et al. (2014) showed that phosphorylation at serine139 on H2AX after γ-irradiation was synergistically inhibited by pre-treatment with KU-55933 and/or NU7441 either alone or together in MDCK cells [6]. The suppression of cell proliferation we observed may have been caused by DSBs that could not be repaired due to suppression of the DDR and DSB repair mechanism in MDCK cells, although further studies are needed to confirm this. On the other hand, three-dimensional (3D) culture models with MDCK cells are an excellent model for lumen formation and also widely used as a kidney cyst growth model in vitro [31]. Recently, it has been reported that pharmacological inhibition of only ATM or DNA-PK reduced kidney cyst growth using MDCK cells [3, 36]. Altogether, MDCK cells might be a suitable cell line for evaluating radioxicity and toxicity of the combination treatment with radiation and novel radiosensitizers in canine cells, not only in monolayer cultures, but also in 3D cultures, although further studies are needed to clarify this.

Generally, radiation therapies have been used for the treatments of malignant tumors, but recently, radiation therapy for human ventricular tachycardia, a non-cancerous disease, has been used and is highly effective [4]. Radiotherapy for non-cancerous diseases is also expected to be used in the veterinary setting, allowing to gain further clinical insight that might improve human treatment and help develop new therapies. Thus, it will become increasingly important to accurately understand radiation toxicity in canine cells. In this study, we confirmed that the toxicity of radiation and/or drugs in MDCK cells can be detected by the simple assay used in the present study. This simple and rapid experimental protocol can allow a pre-assessment of both the therapeutic efficacy and toxicity of various candidate compounds, including radiation sensitizers. Taken together, this and further basic studies using MDCK cells are likely to greatly contribute to gaining basic information for the advancement and expansion of various radiotherapy treatment in both dogs and human.

CONFLICT OF INTEREST. The authors declare no conflict of interest.

ACKNOWLEDGMENTS. This work was carried out with the support of National Institutes for Quantum Science and Technology, and Department of Regulatory Biology, Faculty of Science, Saitama University. This work was also supported in part by JSPS KAKENHI grant number 22K06036.

REFERENCES

1. Adhikari H, Kattan WE, Kumar S, Zhou P, Hancock JF, Counter CM. 2021. Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nat Commun 12: 5248. [Medline] [CrossRef]
2. Baker NE. 2020. Emerging mechanisms of cell competition. Nat Rev Genet 21: 683–697. [Medline] [CrossRef]
3. Chandra AN, Saravanabavan S, Rangan GK. 2021. Role of DNA-dependent protein kinase in mediating cyst growth in autosomal dominant polycystic kidney disease. Int J Mol Sci 22: 10512. [Medline] [CrossRef]
4. Cuculich PS, Schill MR, Kashani R, Mutic S, Lang A, Cooper D, Faddis M, Gleva M, Noheria A, Smith TW, Hallahan D, Rudy Y, Robinson CG. 2017. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med 377: 2325–2336. [Medline] [CrossRef]
5. Firsanov DV, Solovyeva LV, Svetlova MP. 2011. H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues. Clin Epigenetics 2: 283–297. [Medline] [CrossRef]
6. Flassig RJ, Maubach G, Täger C, Sundmacher K, Naumann M. 2014. Experimental design, validation and computational modeling uncover DNA damage sensing by DNA-PK and ATM. Mol Biosyst 10: 1978–1986. [Medline] [CrossRef]
7. Firsanov DV, Solovyeva LV, Sundmacher K, Naumann M. 2014. Experimental design, validation and computational modeling uncover DNA damage sensing by DNA-PK and ATM. Mol Biosyst 10: 1978–1986. [Medline] [CrossRef]
8. Firsanov DV, Solovyeva LV, Sundmacher K, Naumann M. 2014. Experimental design, validation and computational modeling uncover DNA damage sensing by DNA-PK and ATM. Mol Biosyst 10: 1978–1986. [Medline] [CrossRef]
Davies BR, Cadogan EB. 2019. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat Commun 10: 5065. [Medline] [CrossRef]

8. Gausch CR, Hard WL, Smith TF. 1966. Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 122: 931–935. [Medline] [CrossRef]

9. Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Paweleczak KS, Turchi JJ. 2016. DNA repair targeted therapy: the past or future of cancer treatment? Pharmacol Ther 160: 65–83. [Medline] [CrossRef]

10. Grosse N, van Loon B, Rohrer Bley C. 2014. DNA damage response and DNA repair-dog as a model? BMC Cancer 14: 203. [Medline] [CrossRef]

11. Guirley KE, Kemp CJ. 2001. Synthetic lethality between mutation in Atm and DNA-PKcs during murine embryogenesis. Curr Biol 11: 191–194. [Medline] [CrossRef]

12. Huang RX, Zhou PK. 2020. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 5: 60. [Medline] [CrossRef]

13. Knijnenburg TA, Wang L, Zimmermann MT, Chamwwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, Liu Y, Akbani R, Feng B, Donehower LA, Miller C, Shen Y, Karimi M, Chen H, Kim P, Jia P, Shinbrot E, Zhang S, Liu J, Hu H, Bailey MH, Yau C, Wolf D, Zhao Z, Weinstein JN, Li L, Ding L, Mills GB, Laird PW, Wheeler DA, Shmulevich I, Monnat RJ Jr, Xiao Y, Wang C. Cancer Genome Atlas Research Network. 2018. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 23: 239–254.e6. [Medline] [CrossRef]

14. Koike M. 2002. Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res (Tokyo) 43: 223–236. [Medline] [CrossRef]

15. Koike M, Awaji T, Kataoka M, Tsujimoto G, Kartasova T, Koike A, Shiomi T. 1999. Differential subcellular localization of DNA-dependent protein kinase components Ku and DNA-PKcs during mitosis. J Cell Sci 112: 4031–4039. [Medline] [CrossRef]

16. Koike M, Mashino M, Sugasawa J, Koike A. 2007. Dynamic change of histone H2AX phosphorylation independent of ATM and DNA-PK in mouse skin in situ. Biochem Biophys Res Commun 363: 1009–1012. [Medline] [CrossRef]

17. Koike M, Mashino M, Sugasawa J, Koike A. 2008. Histone H2AX phosphorylation independent of ATM after X-irradiation in mouse liver and kidney in situ. J Radiat Res (Tokyo) 49: 445–449. [Medline] [CrossRef]

18. Koike M, Sugasawa J, Yasuda M, Koike A. 2008. Tissue-specific DNA-PK-dependent H2AX phosphorylation and gamma-H2AX elimination after X-irradiation in vivo. Biochem Biophys Res Commun 376: 52–55. [Medline] [CrossRef]

19. Koike M, Yutoku Y, Koike A. 2017. Cloning, localization and focus formation at DNA damage sites of canine XLF. J Vet Med Sci 79: 22–28. [Medline] [CrossRef]

20. Koike M, Yutoku Y, Koike A. 2017. Cloning of canine Ku80 and its localization and accumulation at DNA damage sites. FEBS Open Bio 7: 1854–1863. [Medline] [CrossRef]

21. Koike M, Yutoku Y, Koike A. 2017. Cloning, localization and focus formation at DNA damage sites of canine XRCC4. J Vet Med Sci 78: 1865–1871. [Medline] [CrossRef]

22. Koike M, Yutoku Y, Koike A. 2017. Cloning, localization and focus formation at DNA damage sites of canine Ku70. J Vet Med Sci 79: 554–561. [Medline] [CrossRef]

23. Koike M, Yutoku Y, Koike A. 2021. Inhibition of crandell-rees feline kidney cell proliferation by X-ray-induced senescence. J Vet Med Sci 83: 798–804. [Medline] [CrossRef]

24. Liang S, Thomas SE, Chaplin AK, Hardwick SW, Chiragdzely D, Blundell TL. 2022. Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs. Nature 601: 643–648. [Medline] [CrossRef]

25. Mahaney BL, Meek K, Lees-Miller SP. 2009. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417: 639–650. [Medline] [CrossRef]

26. Moore AS. 2002. Radiation therapy for the treatment of tumours in small companion animals. Vet J 164: 176–187. [Medline] [CrossRef]

27. Nickoloff JA, Boss MK, Allen CP, LaRue SM. 2017. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 6 Suppl 3: S875–S891. [Medline] [CrossRef]

28. Nordean MW, Kent MS, Boss MK. 2019. Emerging translational opportunities in comparative oncology with companion canine cancers: radiation oncology. Front Oncol 9: 1291. [Medline] [CrossRef]

29. Printz C. 2011. Pet animals with cancer help advance human cancer research: similarities help to explore future human treatments. Cancer 117: 4807–4808. [Medline] [CrossRef]

30. Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. 2015. DNA damage foci: Meaning and significance. Environ Mol Mutagen 56: 491–504. [Medline] [CrossRef]

31. Sigurbjörnsdóttir S, Mathew R, Leptin M. 2014. Molecular mechanisms of de novo lumen formation. Nat Rev Mol Cell Biol 15: 665–676. [Medline] [CrossRef]

32. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Geretzbuch G, Lennernaes H, Ziemer M. 2010. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Mol Cell Biol 11: 225–236. [Medline] [CrossRef]

33. Vasquez CG, Vachharajani VT, Garzon-Coral C, Dunn AR. 2021. Physical basis for the determination of lumen shape in a simple epithelium. Nat Commun 12: 5608. [Medline] [CrossRef]

34. Wang M, Chen S, Ao D. 2021. Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm (2020) 2: 654–691. [Medline] [CrossRef]

35. Yi Y, Li L, Song F, Li P, Chen M, Ni S, Zhang H, Zhou H, Zeng S, Jiang H. 2021. L-tetrahydropalmatine reduces oxaliplatin accumulation in the dorsal root ganglion and mitochondria through selectively inhibiting the transporter-mediated uptake thereby attenuates peripheral neurotoxicity. Toxicology 499: 152853. [Medline] [CrossRef]

36. Zhang JQJ, Saravananabavan S, Rangan GK. 2021. Effect of reducing Ataxia-Telangiectasia Mutated (ATM) in experimental autosomal dominant polycystic kidney disease. Cells 10: 532. [Medline] [CrossRef]