MODELING CORE-COLLAPSE SUPERNOVAE IN THREE DIMENSIONS

CHRIS L. FRYER and MICHAEL S. WARREN
Theoretical Astrophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
Received 2002 April 28; accepted 2002 June 10; published 2002 June 24

ABSTRACT

We present the first complete three-dimensional simulations of the core collapse of a massive star from the onset of collapse to the resultant supernova explosion. We compare the structure of the convective instabilities that occur in three-dimensional models with those of past two-dimensional simulations. Although the convective instabilities are clearly three-dimensional in nature, we find that both the size scale of the flows and the net enhancement to neutrino heating does not differ greatly between two- and three-dimensional models. The explosion energy, explosion timescale, and remnant mass does not differ by more than 10% between two- and three-dimensional simulations.

Subject headings: stars: evolution — supernovae: general

1. INTRODUCTION

Convective instabilities have been invoked to help drive core-collapse supernova explosions since Epstein (1979) first argued that negative lepton gradients would drive Ledoux convection in the core. Epstein (1979) argued that this convection would increase the transport of energy out of the core and help facilitate a supernova explosion. Bruenn, Buchler, & Livio (1979) confirmed that this convection could indeed increase the neutrino luminosity and help drive a supernova explosion. Considerable work studying convective instabilities, including multidimensional models (e.g., Buchler, Livio, & Colgate 1980), followed soon after. Although entropy gradients caused by the shock were suggested during this time (see Bruenn et al. 1979), Burrows (1987) first suggested that this entropy-driven convection could also boost the neutrino luminosity and help drive a supernova explosion.

The work of the past two decades has led to two separate convective regions: one within the extremely dense proto–neutron star core (see Keil, Janka, & Müller 1996 for a review) and the other in the region between the proto–neutron star and the accretion shock where the bounce stalled. In this latter region, neutrino heating powers an unstable entropy gradient that drives convection (see Bethe 1990 for a review). In the dense proto–neutron star, convection driven by lepton gradients (Epstein 1979; Keil et al. 1996), entropy gradients (Burrows 1987; Burrows & Lattimer 1988), and doubly diffusive (“salt-finger”) instabilities (Mayle & Wilson 1988) have all been invoked to increase the neutrino luminosity, and hence, the neutrino heating. In the neutrino heating region, entropy-driven convection helps to convert thermal energy gained from neutrino heating into kinetic energy, improving the overall efficiency at which neutrinos from the core deposit energy into the outer layers of the star. This latter convection has been studied in a number of two-dimensional simulations over the last decade (Miller, Wilson, & Mayle 1993; Herant et al. 1994; Burrows, Hayes, & Fryxell 1995; Janka & Müller 1996; Mezzacappa et al. 1998).

This entropy-driven convection occurs shortly after the collapse of the massive star. When this core reaches nuclear densities and nuclear forces rapidly raise the pressure, its collapse halts, sending a bounce shock through the star. This bounce shock stalls and leaves behind an unstable entropy profile that seeds convection in the region between the proto–neutron star and the edge of the stalled supernova shock. Neutrinos leak out from the proto–neutron star and heat this region, continuing to drive this entropy-driven convection. It is this convection that many groups now agree helps drive the supernova explosion (Herant et al. 1994; Burrows, Hayes, & Fryxell 1995; Janka & Müller 1996).

However, owing to limitations in computer hardware and simulation software, all of the past work was limited to two-dimensional simulations, leaving behind a number of unanswered questions. Whether or not this increased efficiency is sufficient to drive a supernova explosion with the current supernova mechanisms is still a matter of debate: compare the explosions of Herant et al. (1994) and Burrows, Hayes, & Fryxell (1995) to the fizzes of Mezzacappa et al. (1998). A key uncertainty in all of these simulations lies in the fact that the two-dimensional simulations are being used to study an inherently three-dimensional event in nature. Some scientists have argued that nature will produce convective instabilities that are much different than what we see in the current two-dimensional simulations. In other convective problems (e.g., novae), it has been found that two-dimensional models of these inherently three-dimensional processes can lead to vastly incorrect answers (compare the differences between the two- and three-dimensional work of Kercek, Hillebrandt, & Truran 1998, 1999).

In this Letter, we present the first complete three-dimensional simulations of the evolution of a massive star from collapse to explosion, with particular emphasis on the differences between two- and three-dimensional models of the entropy-driven convection. We follow these simulations until a strong supernova shock has been launched and can hence see how these differences affect the final explosion energy, remnant mass, and nucleosynthetic yield of these supernovae.

2. THREE-DIMENSIONAL SIMULATIONS

Our collapse simulations use the smoothed particle hydrodynamics technique with the parallel tree algorithm developed by Warren & Salmon (1993, 1995). To this parallel code, we have added the equation of state and neutrino physics from the supernova code developed by Herant et al. (1994). The equation of state uses the nuclear equation of state by Lattimer & Swesty (1991) at high densities and the Blinnikov, Dunina-Barkovskaya, & Nadyozhin (1996) equation of state at low densities. Nuclear
burning is approximated by a nuclear statistical equilibrium scheme (Hix & Thielemann 1996). The neutrino transport is mediated by the single energy flux limiter developed by Herant et al. (1994) with appropriate geometrical factors for three-dimensional models. Details and tests of this code are described in M. S. Warren, M. A. Alvarez, & C. L. Fryer (2002, in preparation). To facilitate comparison with past two-dimensional simulations (Fryer 1999), the gravity is calculated assuming a spherically symmetric potential.

Our progenitor is the standard 15 M_{\odot} star (s15s7b2) produced by Woosley & Weaver (1995). By using the same equation of state for low densities used by Woosley & Weaver (1995), we can seamlessly map these one-dimensional progenitors into our three-dimensional collapse code. To study the convection in detail, we have run three core-collapse simulations of this progenitor with a range of resolutions from 300,000 to 3 million particles (see Table 1). We compare these simulations to past two-dimensional simulations that have the same physics implementations (Fryer 1999) to determine the differences between two-dimensional and three-dimensional models of convection and more fully understand the role convection plays in the supernova mechanism.

Figure 1 shows the results of models A, B, and C 75 ms after bounce. The isosurface shows material with radial velocities of 1000 km s$^{-1}$ and outlines the outward moving convective bubbles. Between this surface lies the convective downflows. Note that even in the high-resolution runs, the total number of bubbles is low, roughly consistent with the number of modes one might expect from the two-dimensional simulations. A two-dimensional slice of model B (Fig. 2) reveals convective overturns that are very similar to the two-dimensional simulations (see Fryer 1999).

The three-dimensional simulations produce nearly the same neutrino fluxes and energies that were found in the two-dimensional simulations (Fig. 3). Although this is not surprising because the transport methods were identical (except for geometrical factors), it does show that the small differences in the convective motions do not seem to dramatically affect the neutrino emission.

Given that the three-dimensional simulations appear similar to the two-dimensional simulations, it is not surprising that most of the quantitative results between these simulations are the same. The ultimate explosion energy, explosion times, and remnant masses are all within 10% of each other. Although on the surface, the amount of neutron-rich ejecta is similar, the three-dimensional simulations produce more extremely low ($Y_e < 0.45$) ejecta than the two-dimensional models, and three-dimensional models, if anything, exacerbate the problem of ejecting too much neutron-rich material.

3. IMPLICATIONS

Although the structure of the entropy-driven convection in core-collapse supernovae is definitely three-dimensional, there is close resemblance between our three-dimensional simulations and past two-dimensional simulations. This suggests that, for the accuracy currently needed in supernova simulations, two-dimensional models may be sufficient to determine the convective enhancement to the neutrino-driven supernova mechanism. Certainly, the uncertainties in the nuclear equation of state and in the neutrino cross sections and transport are much larger than the uncertainties caused by assuming two-dimensional convection. The fact that the three-dimensional

![Fig. 1.—Isosurface of material with radial velocities of 1000 km s$^{-1}$ for models A, B, and C. The isosurface outlines the outward moving convective bubbles. The open spaces mark the downflows. Note that the upwelling bubbles are large and have very similar size scales to the two-dimensional simulations.](image-url)
models continue to produce too much neutron-rich ejecta implies that there still persists missing pieces to the supernova puzzle (probably the neutrino transport, neutrino cross sections, and equation of state are all culprits).

Our simulations are designed to study the nature of the convection above the proto–neutron star in core-collapse supernovae. The convection arising in our three-dimensional simulations shows a remarkable resemblance to two-dimensional core-collapse simulations. Unlike the nova simulations of Kercek et al. (1998, 1999), the structure, extent, and energetics of the convection in core-collapse simulations are the same in two and three dimensions.

We cannot stress enough the fact that the numbers provided in this Letter are not final answers to the collapse of a 15 M_\odot star. With better neutrino transport techniques, neutrino cross sections, and equations of state, these values will change. However, changes in the neutrino physics and equation of state are unlikely to change the nature of the convection above the proto–neutron star. Unless the nature of the convection changes dramatically with these improvements, our three-dimensional models show that the convection above the proto–neutron star in core-collapse supernovae is modeled accurately in two dimensions. Indeed, for the level of convection arising from our simulations of the core collapse of a 15 M_\odot star, we find that two-dimensional models are sufficiently accurate to model the supernova mechanism. Of course, three-dimensional models will still be essential for studies of inherently three-dimensional aspects of core collapse (neutron star kicks, gravitational wave emission, etc.).

Note also that, for these simulations (where the gravity is set to be spherically symmetric), there are no large asymmetries in the explosion. Because there are so many convective modes, it is unlikely that any large asymmetry will develop without some large-scale force driving that asymmetry (e.g., asymmetries in the neutrino emission or initial collapse conditions). It is possible that the convection will reduce to fewer modes for those explosions with long delays (H.-T. Janka 2002, private communication). If so, it may be possible to produce the observed neutron star kicks. But with the current models, convection alone cannot explain the large neutron star kicks. In future work, we will address these asymmetry issues by mod-

![Fig. 2.—Slice of model B, colored by its entropy and showing velocity vectors. The cold, low-entropy material flows downward as the high-entropy material bubbles upward. Note that the size scale and even structure of this convection is very similar to two-dimensional models (see Herant et al. 1994; Fryer 1999).](image)

![Fig. 3.—Electron and anti-electron neutrino luminosities and energies for a two-dimensional model (Fryer 1999) and our three-dimensional models. Note that the neutrino luminosities and energies are very similar, indicating that the differences caused by convection in two and three dimensions are not large.](image)
eling with full gravity and considering changes to the initial conditions from rotation to initial asymmetries.

We are grateful to H.-Th. Janka, A. Hungerford, A. Burrows, S. Woosley, and W. Miller for useful discussions and support. This work was funded by a Feynman Fellowship at Los Alamos National Laboratory (LANL), a Department of Energy SciDAC grant, and an LANL-based ASCI grant.

REFERENCES

Bethe, H. A. 1990, Rev. Mod. Phys., 62, 801
Blinnikov, S. I., Dunina-Barkovskaya, N. V., & Nadyozhin, D. K. 1996, ApJS, 106, 171
Bruenn, S. W., Buchler, J. R., & Livio, M. 1979, ApJ, 234, L183
Buchler, J. R., Livio, M., & Colgate, S. A. 1980, Space Sci. Rev., 27, 571
Burrows, A. 1987, ApJ, 318, L57
Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830
Burrows, A., & Lattimer, J. 1988, Phys. Rep., 163, 51
Epstein, R. I. 1979, MNRAS, 188, 305
Fryer, C. L. 1999, ApJ, 522, 413
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A. 1994, ApJ, 435, 339
Hix, W. R., & Thielemann, F. K. 1996, ApJ, 460, 869

Janka, H.-Th., & Müller, E. 1996, A&A, 306, 167
Keil, W., Janka, H.-Th., & Müller, E. 1996, ApJ, 473, L111
Kercek, A., Hillebrandt, W., & Truran, J. W. 1998, A&A, 337, 379
———. 1999, A&A, 345, 831
Lattimer, J. M., & Swesty, F. D. 1991, Nucl. Phys. A, 535, 331
Mayle, R. W., & Wilson, J. R. 1988, ApJ, 334, 909
Mezzacappa, A., Calder, A. C., Bruenn, S. W., Blondin, J. M., Guidry, M. W., Strayer, M. R., & Umar, A. S. 1998, ApJ, 493, 848
Miller, D. S., Wilson, J. R., & Mayle, R. W. 1993, ApJ, 415, 278
Warren, M. S., & Salmon, J. K. 1993, in Supercomputing '93 (Los Alamitos: IEEE Comput. Soc.), 12
———. 1995, Comput. Phys. Commun., 87, 266
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181