The pp→K⁺nΣ⁺ reaction near threshold

Yu. Valdau a,b,*, V. Koptev a, S. Barsov a, M. Büscher b, S. Dymov c, M. Hartmann b, A. Kacharava d,e, S. Merzliakov b,c, S. Mikirtychyants a, A. Mussgiller e, M. Nekipelov a,b, R. Schleichert b, H. Ströher b, and C. Wilkin f

aHigh Energy Physics Department, Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia
bInstitut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany
cLaboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia
dHigh Energy Physics Institute, Tbilisi State University, 0186 Tbilisi, Georgia
ePhysikalisches Institut II, Universität Erlangen–Nürnberg, 91058 Erlangen, Germany
fPhysics and Astronomy Department, University College London, London, WC1E 6BT, UK

Abstract

Inclusive K⁺ production in proton-proton collisions has been measured at a beam energy of 2.16 GeV using the COSY-ANKE magnetic spectrometer. The resulting spectrum, as well as those corresponding to K⁺p and K⁺π⁺ correlated pairs, can all be well described using consistent values of the total cross sections for the pp→K⁺pΛ, pp→K⁺pΣ⁰, and pp→K⁺nΣ⁺ reactions. While the resulting values for Λ and Σ⁰ production are in good agreement with world data, our value for the total Σ⁺ production cross section, σ(pp→K⁺nΣ⁺) = (2.5 ± 0.6stat ± 0.4syst) µb at an excess energy of ε = 129 MeV, could only be reconciled with other recently published data if there were a highly unusual near-threshold behaviour.

Key words: Kaon production, Sigma production, Threshold effects

PACS: 13.75.-n, 14.20.Jn, 14.40.Aq, 25.40.Ve

The production of light hyperons in proton–proton collisions in the close-to-threshold region has been extensively studied at different experimental

* Corresponding author.

Email address: y.valdau@fz-juelich.de (Yu. Valdau)
facilities. The energy dependence of the total cross sections for \(pp \to K^+ p \Lambda \) and \(pp \to K^+ p \Sigma^0 \) has been well measured and both follow phase–space, though modified in the former case by the \(p \Lambda \) final–state interaction (FSI) \(^1\). On the other hand, little information is available on the \(pp \to K^+ n \Sigma^0 \) reaction. The COSY-11 collaboration has recently published surprisingly high values for the total cross sections in this channel at excess energies of \(\varepsilon = 13 \) MeV and 60 MeV \(^2\). According to these measurements, the ratios of the total cross sections \(R(\Sigma^+/\Sigma^0) = \sigma(pp \to K^+ n \Sigma^+)/\sigma(pp \to K^+ p \Sigma^0) \) at these two energies are 230±70 and 90±40, respectively \(^3\). These experimental results are in striking contrast to published theoretical estimates \(^4\). However, it has recently been suggested that the inclusion in the production model of the previously ignored \(\Delta^{++}(1620)1/2^- \) isobar, together with a strong \(n \Sigma^+ \) FSI, would allow one to achieve much better (factor 2–4) agreement with the COSY-11 data \(^5\).

A model–independent estimate for \(R(\Sigma^+/\Sigma^0) \) might be obtained from the isospin relation linking the different \(\Sigma \) production channels, the amplitudes for which satisfy:

\[
 f(pp \to K^+ n \Sigma^+) + f(pp \to K^0 p \Sigma^+) + \sqrt{2} f(pp \to K^+ p \Sigma^0) = 0. \tag{1}
\]

This leads to a triangle inequality between the total cross sections \(^6\):

\[
 \left[\sqrt{\sigma(pp \to K^0 p \Sigma^+)} - \sqrt{2\sigma(pp \to K^+ p \Sigma^0)} \right]^2 \leq \sigma(pp \to K^+ n \Sigma^+) \leq \left[\sqrt{\sigma(pp \to K^0 p \Sigma^+)} + \sqrt{2\sigma(pp \to K^+ p \Sigma^0)} \right]^2. \tag{2}
\]

At \(\varepsilon \approx 129 \) MeV (the excess energy corresponding to a proton beam energy of 2.16 GeV), \(\sigma(pp \to K^0 p \Sigma^+ \) \(^7\) is nearly equal to \(\sigma(pp \to K^+ p \Sigma^0) \) \(^1\) so that the inequality of Eq. (2) predicts that \(R(\Sigma^+/\Sigma^0) < 6 \) at this excess energy. The COSY-11 results exceed this limit by more than an order of magnitude, though they were obtained closer to threshold, where no other \(K^0 p \Sigma^+ \) data have been published\(^1\).

The authors of Ref. \(^9\) analysed published momentum spectra from inclusive \(K^+ \) production in \(pp \) collisions at different angles and beam energies, with the aim of extracting the contribution from the \(K^+ n \Sigma^+ \) channel. For \(K^+ \) missing–masses below the \(N\Lambda \pi \) threshold, only contributions from the \(K^+ p \Lambda, K^+ p \Sigma^0 \), and \(K^+ n \Sigma^+ \) channels are relevant. It was assumed that production in the first two channels could be described by three–body phase–space, with possible modifications coming from the FSI. By subtracting these known contributions

\(^1\) There are, however, data taken with the COSY-TOF detector and presented in PhD theses \(^8\).
from the inclusive spectra, an estimate of the \(pp \rightarrow K^+n\Sigma^+ \) cross section was deduced. The inclusive data available were restricted to relatively high excess energies, \(\varepsilon > 170 \text{ MeV} \), and had therefore no direct bearing on the COSY-11 results. However, the authors did conclude that there was no visible evidence for any strong \(N\Sigma \) FSI.

Since one cannot \textit{a priori} exclude an anomalous threshold behaviour associated with the isospin \(I=\frac{1}{2} \) \(K^+n \) (and \(K^0p \)) system, as suggested in Ref. [5], further experimental studies of the \(pp \rightarrow K^+n\Sigma^+ \) reaction are necessary to clarify the situation. We here present the analysis of new experimental data taken at a proton beam energy \(T_p = 2.157 \text{ GeV} \).

![Fig. 1. The time of flight (TOF) between start and stop counters for inclusive \(K^+ \) production in \(pp \) collisions at 2.16 GeV (left panel). Time difference (\(\Delta t \)) between the detection of the \(K^+ \) meson in the stop counter and a decay \(\pi^+ \) or \(\mu^+ \) in the corresponding veto counter of the same telescope (right panel). The solid line, which corresponds to the 12.4 ns lifetime of the \(K^+ \), reproduces well the data.](image)

The experiment was carried out using the magnetic spectrometer ANKE [10] at the COoler–SYnchrotron COSY-Jülich [11], with an internal cluster–jet target which had an average density of \(\sim 2 \times 10^{14} \text{ cm}^{-2} \) [12]. Only two of the ANKE detection systems were needed for the analysis of these data. The positive side system (PD), used for the \(K^+ \) and \(\pi^+ \) detection, consists of 23 thin start counters, placed close to the vacuum chamber window, two multiwire proportional chambers (MWPCs), and 21 stop counters for time–of–flight (TOF) measurements. The experimental efficiency of particle identification was 98% using time of flight and 90% on average for MWPCs and was known with an accuracy of \(\sim 1\% \). The first 15 stop counters are part of range telescopes used for the identification of the \(K^+ \) mesons. Each of these telescopes consists of a stop counter, energy–loss counter, two passive degraders and a veto counter. The thickness of the passive degraders in each telescope is chosen such that the \(K^+ \) deposits the maximum energy in the energy–loss counter and stops either at the edge of the counter or in the second passive degrader. Delayed signals for the kaon decay products are then registered by the so–called veto counter.
This method (see Fig. 1) allows one to identify the K^+-mesons by suppressing a background that is up to 10^6 times higher. Such data by themselves are sufficient for the determination of the inclusive kaon spectrum. The efficiency of the kaon identification by this method, which varies between 10–30% depending on the telescope number, is known with an accuracy of 10–15%. Details of the particle identification analysis using the delayed–veto technique are to be found in Ref. [13].

The ANKE forward detector system (FD) [14] was used for both the K^+p correlation measurements and luminosity determination. The FD consists of two layers of plastic scintillator and a set of three multiwire proportional chambers placed downstream of the magnet. The efficiency of track reconstruction using FD MWPCs, which was about 85%, was known with an accuracy of approximately 1%. The luminosity was determined by selecting proton–proton elastic scattering events in the angular range $6.8^\circ < \theta_{\text{lab}} < 8.8^\circ$ on the basis of a dedicated pre–scaled trigger. This is described in some detail in Ref. [15], where the same data set was used for the investigation of ω–meson production. The overall systematic uncertainty in the absolute normalisation was estimated to be of the order of 6% [15]. It is estimated that the amount of background in the K^+p and $K^+\pi^+$ correlation spectra is less then 2%. For the acceptance calculations, a model of the ANKE system has been implemented within the GEANT4 simulation package [16]. This contributes an overall uncertainty of about 5%.

Information on Σ^+ production was obtained from three simultaneously measured observables, viz. the K^+p, $K^+\pi^+$ correlation spectra and the K^+ inclusive double–differential cross section, which we first briefly outline. The measured missing–mass spectrum of the detected K^+p pairs allows one to fix the strength of the different K^+ production channels at this energy. Since the decay $\Sigma^+ \rightarrow p\pi^0$ is also possible (branching ratio BR 51.6%), this spectrum also contains some information on the Σ^+ production total cross section, $\sigma(\Sigma^+)$. The $pp \rightarrow K^+n\Sigma^+$ reaction can be cleanly identified either by using K^+n correlations, as at COSY-11 [2], or by detecting $K^+\pi^+$ pairs coming from the decay $\Sigma^+ \rightarrow \pi^+n$ (BR 48.3%). Although the $pp \rightarrow K^+n\Lambda\pi^+$ reaction is another potential source of $K^+\pi^+$ correlations, even at the much higher energy of 2.85 GeV its production is only about 4% of that of Σ^+ [6]. The contribution of this channel to the final distributions is therefore estimated to be less than 2%.

The inclusive K^+ double–differential cross section depends upon all possible production channels, though the contribution from the $pp \rightarrow K^+n\Sigma^+$ reaction at 2.16 GeV represents only a small fraction of the total. Therefore, within our systematic errors, only an upper limit for $\sigma(\Sigma^+)$ can be extracted from the inclusive data at this energy. Nevertheless, this spectrum does provide a valuable check on the consistency of the whole analysis by using simula-
tions where the individual weights of the channels are fixed by the total cross sections extracted from the correlation data.

\[N_\Lambda = 491 \pm 25 \]

\[N_\Sigma^0 = 84 \pm 13 \]

Fig. 2. Missing–mass distribution of \(K^+p \) pairs \((mm_{K^+p})\) produced in \(pp \) collisions at 2.16 GeV. Experimental data are shown by circles (resolution \(\sim 3 \text{ MeV}/c^2 \)). The two peaks correspond to direct protons from the \(pp \rightarrow K^+p\Lambda/\Sigma^0 \) reactions. The continuum contributions of secondary protons arising from the \(pp \rightarrow K^+p\Lambda/\pi^-p \) (histogram 1), \(pp \rightarrow K^+p(\Sigma^0 \rightarrow \gamma\Lambda \rightarrow \gamma\pi^-p) \) (histogram 2), and \(pp \rightarrow K^+n(\Sigma^+ \rightarrow \pi^0p) \) (histogram 3) have been obtained in Monte Carlo simulations. The sum of all contributions, including the two direct peaks, is shown by the solid histogram.

The \(K^+p \) missing–mass spectrum presented in Fig. 2 shows two prominent peaks corresponding to \(\Lambda \) and \(\Sigma^0 \) production. In addition there is a continuum resulting from the detection of protons from the \(\Lambda \rightarrow \pi^-p \) (BR 63.9\%) and \(\Sigma^0 \rightarrow \gamma\Lambda \rightarrow \gamma p\pi^- \) (BR 100\%) decay, as well as a contribution from the \(\Sigma^+ \rightarrow p\pi^0 \) decay. This continuum is described well by our simulations.

Following the authors of Ref. [17], a simple model has been developed for the \(pp \rightarrow K^+p\Lambda \) reaction. We here assume that (i) the \(N^*(1650) \)-resonance is the dominant contribution for \(\Lambda \) production, (ii) the \(p\Lambda \) FSI [11] has a significant effect on the experimental observables, (iii) use the angular distribution of the vertex-proton, as measured with the COSY-TOF detector [18]. A simple phase–space model has been used for the \(pp \rightarrow K^+p\Sigma^0 \) and \(pp \rightarrow K^+n\Sigma^+ \) reactions since there is no evidence for significant \(p\Sigma^0 \) or \(n\Sigma^+ \) FSI effects [19], and this is confirmed by our data.

The number of events extracted from the measured missing–mass spectrum of Fig. 2 together with our values for the total acceptances, luminosity, and
efficiencies, yields total cross sections of $\sigma(\Lambda) = (23.2 \pm 3.7_{\text{stat}} \pm 5.8_{\text{syst}}) \mu b$ and $\sigma(\Sigma^0) = (2.6 \pm 0.6_{\text{stat}} \pm 0.4_{\text{syst}}) \mu b$ for Λ and Σ^0 production, respectively. For the total cross sections calculations only the direct K^+p events are used, as their amount is precisely known (peaks in Fig. 2). These values are in agreement with the parameterisation of the world data (see Ref. [1]).

The high–mass part of the missing–mass spectrum in the Fig. 2 is sensitive to $R(\Sigma^+ / \Sigma^0)$. A good description of the spectrum can be obtained if $R(\Sigma^+ / \Sigma^0) \approx 1.5$. However our statistics do not permit us to draw meaningful conclusions on the associated error.

![Momentum distributions](image.png)

Fig. 3. Momentum distributions of K^+ and π^+ from the $pp \to K^+\pi^+X$ reaction at 2.16 GeV. The solid histograms correspond to simulations of the $pp \to K^+n(\Sigma^+ \to \pi^+n)$ reaction in the phase–space model.

The momentum distributions of the detected $K^+\pi^+$ pairs are presented in Fig. 3. Simulations carried out within the framework of the phase–space model show reasonable agreement with the experimental data. From the number of detected events the total cross section is determined to be:

$$\sigma_{\text{tot}}(\Sigma^+) = \left(2.5 \pm 0.6_{\text{stat}} \pm 0.4_{\text{syst}}\right) \mu b,$$

where both the statistical and systematic uncertainties are indicated.

The ratio of the Σ^+ and Σ^0 count rates, $N_{\Sigma^+} / N_{\Sigma^0}$, is practically independent of the conditions of the experiment (luminosity, telescope efficiencies etc.). It can therefore be used to cross check the experimental value of $\sigma(\Sigma^+)$ extracted from the analysis of $K^+\pi^+$ correlations. The $\sigma(\Sigma^+) / \sigma(\Sigma^0)$ ratio depends on the acceptances (A) and number of detected events ($N_{K^+\pi^+}$ for the Σ^+, and N_{K^+p} from direct proton for Σ^0):

$$\frac{\sigma(\Sigma^+)}{\sigma(\Sigma^0)} = \frac{N_{K^+\pi^+}(\Sigma^+)}{N_{K^+p}(\Sigma^0)} \times \frac{A_{K^+\pi^+}(\Sigma^+)}{A_{K^+p}(\Sigma^+)} \times \frac{1}{\text{BR}_{\Sigma^+ \to \pi^+n}}$$ (3)
Using the numbers of events extracted from the experimental spectra together with our estimates of the total acceptances, we obtain the following ratio of the Σ^+ / Σ^0 total cross sections:

$$\frac{\sigma(\Sigma^+)}{\sigma(\Sigma^0)} = \frac{(40 \pm 7)}{(84 \pm 13)} \times \frac{4.5 \times 10^{-4}}{5.1 \times 10^{-4}} \times \frac{1}{0.48} = 0.9 \pm 0.2 .$$ (4)

Fig. 4. Inclusive K^+ momentum spectrum for $\theta_{\text{lab}}^K < 4^\circ$ resulting from pp collisions at 2.16 GeV. The simulation of $pp \to K^+ p \Lambda$ with $\sigma(\Lambda) = 23.2 \mu b$ is shown by the histogram 1. The addition of the contribution from the $pp \to K^+ p \Sigma^0$ reaction using a total cross section of $\sigma(\Sigma^0) = 2.6 \mu b$ leads to the histogram 2. The total, corresponding to the further inclusion of the $pp \to K^+ n \Sigma^+$ reaction channel with $\sigma(\Sigma^+) = 2.5 \mu b$, is shown by the histogram 3.

Since the ratio is consistent with unity, the Σ^+ total cross section derived from Eq. (4) agrees with the value obtained directly from the $K^+ \pi^+$ data, as well as that estimated from the $K^+ p$ missing–mass spectrum. It is also reassuring that our simulation of the inclusive K^+ spectrum shown in Fig. 4 reproduces the experimental data so well. This means that the relation between the inclusive and correlation data seems to be well understood.

Our value of the Σ^+ production cross section falls well within the boundaries fixed by isospin invariance that are shown in Fig. 5. It is also in agreement with experimental data collected with the COSY-TOF detector at the same energy [19]. Compared to this the two COSY-11 points, which were taken even closer to the threshold, look extremely high.

In summary, we have presented new measurements of the $pp \to K^+ n \Sigma^+$ total cross section at 2.16 GeV that do not depend upon the detection of the final neutron. From the analysis of the $K^+ p$ and $K^+ \pi^+$ correlated pairs, total cross sections for the production of Λ, Σ^0 and Σ^+ have been extracted. The
values of $\sigma(\Lambda)$ and $\sigma(\Sigma^0)$ are in reasonable agreement with the trends of the experimental data defined at other energies. Our value of $\sigma(\Sigma^+) at \varepsilon = 129\,\text{MeV}$ satisfies well the triangle inequality of Eq. (2). Furthermore, the inclusive double–differential cross section is well described using the values of the total cross sections for the individual K^+ production channels determined in this work from the correlation studies. This shows an overall consistency of the methodology.

Our data show that at $\varepsilon \approx 128\,\text{MeV}$ the Σ^+ and Σ^0 production rates are rather similar and the expectation would be that this would continue as the threshold is approached. However, the value of the total Σ^+ cross section reported by the COSY-11 collaboration at $\varepsilon = 60\,\text{MeV}$ is over an order of magnitude larger than ours. Taken at face value, the two measurements would imply a very large threshold anomaly. Even if this seems to be very unlikely, it can and must be checked, and this is possible with our method [20].

This work has been partially supported by BMBF, DFG(436 RUS 113/768), Russian Academy of Science, and COSY FFE. We thank the COSY machine crew for their support during the experiment. J.-J. Xie and B.-S. Zou kindly provided us with the numerical values of the calculations in Ref. [5]. Useful discussions with A. Sibirtsev and other members of the ANKE Collaboration.
are gratefully acknowledged.

References

[1] A. Sibirtsev, J. Haidenbauer, H.–W. Hammer and S. Krewald, Eur. Phys. J. A 27 (2006) 269.

[2] T. Rożek et al., Phys. Lett. B 643 (2006) 251.

[3] T. Rożek, PhD thesis, University of Silesia in Katowice (2005), Jül-4184, ISSN 0944-2952.

[4] K. Tsushima, A. Sibirtsev, A.W. Thomas, Phys. Rev. C 59 (2000) 369.

[5] J.J. Xie, B.S. Zou, nucl-th/0701021.

[6] R.I. Louttit et al., Phys. Rev. 123 (1961) 1465.

[7] M. Abdel–Bary et al., Phys. Lett. B 595 (2004) 127.

[8] M. Wagner, PhD thesis, Universität Erlangen–Nürnberg (2002); http://www.fz-juelich.de/ikp/COSY-TOF/publikationen/index.html.

[9] A. Sibirtsev, J. Haidenbauer, H.–W. Hammer and Ulf-G. Meißner, hep-ph/0701269, FZJ-IKP(TH)-2007-07.

[10] S. Barsov et al., Nucl. Instr. Methods A 462 (2001) 364.

[11] R. Maier, Nucl. Instr. Methods A 390 (1997) 1.

[12] A. Khoukaz et al., Eur. Phys. J. D 5 (1999) 275.

[13] M. Bächler et al., Nucl. Instr. Methods A 481 (2002) 378.

[14] S. Dymov et al., Part. and Nucl. Lett. 2 (2004) 40.

[15] S. Barsov et. al., Eur. Phys. J. A 31 (2007) 95.

[16] S. Agostinelli et al., Nucl. Instr. Methods A 506 (2003) 250; http://geant4.web.cern.ch/geant4/.

[17] S. Abd El-Samad et al., Phys. Lett. B 632 (2006) 27; W. K. Eyrich, Prog. Part. Nucl. Phys. 50 (2003) 547.

[18] W. Schroeder, PhD thesis, Universität Erlangen–Nürnberg (2003).

[19] L. Karsch, PhD thesis, Technische Universität Dresden (2005).

[20] Yu. Valdau et al., COSY proposal #171 (2006); http://www.fz-juelich.de/ikp/anke/en/proposals.shtml.