Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review

Citation for published version:
Saunders, TS, Gadd, DA, Spires-Jones, TL, King, D, Ritchie, C & Muniz-Terrera, G 2022, 'Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review', European Journal of Neuroscience. https://doi.org/10.1111/ejn.15656

Digital Object Identifier (DOI):
10.1111/ejn.15656

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
European Journal of Neuroscience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review

Tyler S. Saunders1,2,3,4 | Danni A. Gadd3 | Tara L. Spires-Jones1,2 | Declan King3 | Craig Ritchie3,4 | Graciela Muniz-Terrera3,4

1 UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
2 Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
3 Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
4 Centre for Dementia Prevention, The University of Edinburgh, Edinburgh, UK
5 Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK

Correspondence
Tyler Saunders, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9DJ, UK
Email: tylersaunders@ed.ac.uk

Funding Information
Innovative Medicines Initiative; University of Edinburgh Translational Neuroscience Programme, Grant Award Number: T09002/11/11/7; UK Dementia Research Institute

Edited by: Anton Preziosi

Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synaptic loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer’s diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer’s-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.

Keywords
Alzheimer disease, biomarkers, cerebrospinal fluid, cognition, cognitive aging, dementia

1 | INTRODUCTION

Dementia is a syndrome characterised by progressive cognitive decline. An estimated 50 million people are living with a form of dementia worldwide, which is expected to reach 82 million by 2030 (World Health Organisation, 2020). The identification of a biomarker which correlates with cognition would have numerous benefits. An earlier indication of the pathophysiological processes underlying cognitive impairment is needed, as neuronal loss precedes detectable cognitive symptoms and so may be used to predict progression (Counts et al., 2017; DeKosky & Merek, 2000). Moreover, such markers could benefit our aetiological understanding of dementias as different synaptic markers could reflect different pathophysiological mechanisms. Next, in clinical trials, they could be used as surrogate endpoints for synapse-targeting pharmacological interventions and
could aid in the selection of participants who are in the earliest stages of dementia (Arii, 2017; Yannopoulos & Papapetrou, 2013). However, at present, there are no widely used biomarkers that predict cognitive status or cognitive decline in dementias.

Alzheimer’s disease, the leading cause of dementia (World Health Organisation, 2020), is characterised by the pathological hallmarks of extracellular deposition of amyloid-β (Aβ), intracellular accumulation of abnormally hyperphosphorylated tau into neurofibrillary tangles and brain atrophy due to neuronal and synapse loss (Blinn et al., 2006). These hallmarks of AD are present in mild cognitive impairment (MCI) and even before detectable symptoms begin to emerge—with Aβ accumulation possibly beginning up to two decades before symptom manifestation (Counts et al., 2017; Jack et al., 2010). Changes in the levels of these pathological proteins in the cerebrospinal fluid (CSF) have been observed as they aggregate in the brain and so the CSF may be a viable source of potential biomarkers.

The cerebrospinal fluid is a clear liquid which surrounds the brain and provides mechanical support, transfers micronutrients and signalling molecules to neurons and is involved in the removal of unnecessary metabolites (Spector et al., 2015). The CSF is an ideal source for biomarkers associated with cognition as it directly interacts with the extracellular space of the brain and so it can reflect the occurrence of pathological changes (Hampel et al., 2012). In AD, the deposition of extracellular Aβ is reflected by reduced CSF levels of the 42-aminoc acid form of Aβ (Aβ42) or the Aβ42/Aβ40 ratio, likely reflecting the reduced clearance of the protein (Potter et al., 2013; Tanafoe-Conway et al., 2015). In contrast, levels of both total tau (t-tau) and phosphorylated tau (p-tau) are increased in the brain and in the CSF in AD (Counts et al., 2017; Ortega et al., 2019; Savage et al., 2014). These core CSF biomarkers of AD have high diagnostic accuracy (Counts et al., 2017; Ortega et al., 2019; Savage et al., 2014) and can predict conversion from MCI to AD (Canninili et al., 2008; Li et al., 2016; Ortega et al., 2019). Indeed, they are currently accepted in international diagnostic criteria for use in the research diagnosis of AD and pre-clinical AD (Dubois et al., 2014; Jack et al., 2018). However, despite the utility of these core CSF biomarkers as diagnostic tools, they correlate weakly with cognitive impairment. Studies report weak or no significant associations between cognitive performance and CSF Aβ (Kester et al., 2009; Ottoy et al., 2019; Zhou et al., 2009) and moderate-to-poor relationships with CSF t-tau and p-tau (Buchhave et al., 2009; Eady-Torres et al., 2018; Mattheisen, Schill, et al., 2017; Wattmore et al., 2020; Zhou et al., 2009). Meanwhile, other neurodegenerative dementias such as frontotemporal dementia (FTD), vascular dementia (VaD) and dementia with Lewy bodies (DLB) also lack a validated biomarker that associated with cognition. For example, CSF t-tau and p-tau can accurately discriminate FTD from controls (Meeter, Vrijenborg, et al., 2018) but only have a moderate-to-weak correlation with neuropsychological performance (Bian et al., 2008; Borroni et al., 2011; Goossens et al., 2018). Accordingly, there is a need for additional validated CSF biomarkers which correlate with cognition and biomarkers of synapse loss that have been proposed as potential candidates.

Healthy synaptic function enables neuronal signal transmission, which is facilitated by pre-synaptic and post-synaptic compartments. Synaptic plasticity, formation, maturation and elimination involve processes essential for learning and memory, namely, long-term potentiation (LTP) and long-term depression (LTD) (Bear & Malenka, 1994). LTP refers to the strengthening of synaptic transmission by the addition of new receptors at the post-synaptic density and the enlargement of dendritic spine heads. Conversely, LTD refers to the weakening of synaptic strength and spine shrinkage/loss (Citri & Malenka, 2008). The total number of synapses in the brain decreases with typical ageing, which is exacerbated in AD and other dementias (Berton-Palmer et al., 1990; DeKosky & Scheff, 1990; Masliah et al., 1994, 2004). What is more, synapse loss is the strongest pathological correlate of cognitive decline in AD (De Wilde et al., 2016; DeKosky & Scheff, 1990; Masliah et al., 1994; Terry et al., 1991). Accordingly, CSF markers of synapse loss would be expected to correlate with cognitive impairment. Indeed, a number of CSF synapse and neuronal marker levels are altered in dementia syndromes and age-related cognitive decline, some of which will be discussed. Before continuing, it is important to note that any CSF biomarker associated with cognition is primarily a marker of changes in the brain. Such pathophysiological changes may lead to neuronal network breakdown/damage, which may translate into cognitive symptoms at a point in the future. Therefore, the term ‘biomarker for cognition’ is erroneous and should be avoided.

1.1 Neurofilament-light

Neurofilaments are classed as type IV intermediate filaments and are primarily located in axons. They play essential roles in radial growth, cytoskeletal support and transmission of electrical impulses along axons (Fuchs & Cleveland, 1996; Petzold, 2005). Neurofilaments are heteropolymers and are composed of four subunits in the
1.2 | Neurogranin (Ng)

Ng is a post-synaptic peripheral membrane protein involved in LTP and memory formation. Ng binds calmodulin (CaM) in the absence of calcium (Ca^{2+}) and thus regulates CaM availability (Petersen & Gerges, 2015). In the AD brain, full-length Ng levels are reduced (Kvartseberg et al., 2019; Reddy et al., 2005), whereas CSF levels are increased in AD and MCI (Dudeczek et al., 2020). Elevated CSF Ng levels appear to be specific to AD, rather than reflecting general synapse damage in other neurodegenerative diseases or dementias (Portelius et al., 2016; Wellington et al., 2016).

1.3 | Pre-synaptic and neuronal markers

Cerebrospinal fluid levels of proteins localised at the pre-synapse and post-synapse are an obvious choice for a CSF marker of synapse loss/damage. The localisation and normal function of such proteins suggest that they could be adequate surrogate markers for synapse loss, as they may be released into the extracellular fluid following synapse damage (Vergallo et al., 2018). Both Ng and Nf are some of the most researched markers. Next, we briefly discuss other pre-synaptic and neuronal markers with a short description of their function, localisation and potential roles in dementia syndromes.

Alpha-synuclein (α-syn) is a pre-synaptic protein, expressed predominately in the neocortex and subcortical areas, including the hippocampus (Einsmuth, 2016; Kim et al., 2014). Aggregates of hyperphosphorylated, misfolded α-syn are the main component of Lewy bodies (LHb), the characteristic pathological accumulates of α-synucleinopathies such as PD, Parkinson’s disease dementia (PDD) and DLB (Kim et al., 2014). The normal function of α-syn is not fully understood; however, it is thought to be involved in vesicle fusion and neurotransmitter release (Kim et al., 2014). The localization and normal function of α-syn suggests that it could be used as a surrogate marker for synapse loss as it may be released into the extracellular fluid following synapse damage (Vergallo et al., 2018). Studies measuring full-length α-syn (rather than LB-specific fragments) report significant elevations in AD and MCI and those with α-synucleinopathies (Hannon et al., 2014; Korff et al., 2013; Slaets et al., 2014).

Beta-synuclein (β-syn) is a pre-synaptic protein which is highly enriched in the hippocampus (Ubøen et al., 2015). It is homologous to and co-localises with α-syn (Williams et al., 2018). The normal function of β-syn is unknown, although there is evidence to suggest that it has a role in the inhibition of α-syn aggregation (Williams et al., 2018). Independent of its pathological form, β-syn may be a good marker of synapse loss due to its localization at the pre-synapse.

Contactin-2 is a pre-synaptic and axonal protein (Furley et al., 1990), expressed in frontal and temporal lobes—including hippocampal pyramidal cells (Gautam et al., 2014; Murai et al., 2002). Contactin-2 is involved in axonal guidance during development, neuronal fasciculation and axonal domain organisation (Masuda, 2017; Wolman et al., 2008). In AD, contactin-2 levels are reduced in the brain (Chatterjee et al., 2018; Gautam et al., 2014) and altered in the CSF, although findings are somewhat discrepant with regard to whether CSF levels are elevated or decreased (Chatterjee, Del Campo, et al., 2018; Gautam et al., 2014; Yin et al., 2009). Contactin-2 may be a potent marker of general synapse and axonal damage for neurodegenerative diseases as CSF levels are also increased in multiple sclerosis (MS) (Chatterjee, Koen-Simmelen, et al., 2018).

GAP-43 is a pre-synaptic protein widely expressed in the CNS during the development, which reduces with maturation (Holahan, 2017). In adulthood, GAP-43 is expressed in hippocampal pyramidal cells and association cortices (Chung et al., 2020; Neve et al., 1988; Rincon et al., 2014) and involved in axonal outgrowth, synaptic plasticity and functions associated with learning and memory (Chung et al., 2020; Holahan, 2017). Levels of GAP-43 in the frontal cortex are reduced in a number of dementia syndromes (Igadanovic et al., 2000; Davidson & Henneman, 1990; Rekhter et al., 2004). Moreover, CSF GAP-43 levels are increased in AD, PDD syndromes (Rensselaer et al., 2016) and other neurodegenerative diseases such as PD and ALS (Sandelius et al., 2019).

The neuronal pentraxin family includes neuronal pentraxin 1 (NPTX1), neuronal pentraxin 2 (NPTX2) and neuronal pentraxin receptor (NPTXR) which are highly enriched in excitatory pyramidal neurons of the hippocampus and cerebellum (Chung et al., 2010; Doods et al., 1997). All three neuronal pentraxins are involved in developmental and adult synaptic plasticity, formation
and remodelling, as well as the maintenance of parvalbumin interneuron activity (Chang et al., 2010; Otera et al., 2012). NPTX1/2 are secreted pre-synaptic proteins, whereas NPTXR is a membrane-anchored protein (Lee et al., 2017). In the brain and the CSF, NPTX1/2 levels are reduced in AD, MCI, PTSD and aged controls (Sakdol et al., 2019; van der Ende et al., 2020, 2019; Xiao et al., 2017).

Neuregulin 1 (nrg1), a subtype of BACE1, is a pre-synaptic protein thought to be implicated in a number of neurodegenerative diseases and psychiatric/neurodevelopmental disorders such as AD, attention deficit hyperactive disorder (ADHD) and schizophrenia (Shi & Bergson, 2020). Nrg1 is thought to be involved in synaptic transmission and plasticity (Fischbach, 2007); however, at least 31 isoforms have been described which all perform a broad range of functions throughout the body. It is unclear whether Nrg1 in the brain exerts protective or detrimental effects on cognition as both high and low levels of Nrg1 at synapses lead to cognitive impairment in animal models (Agarwal et al., 2014).

There are no known human post-mortem brain studies examining Nrg1 levels in dementia; however, elevations of CSF Nrg1 have been reported in AD and MCI (Mouton-Liger et al., 2020; Pankomin et al., 2009).

Synaptosomal-associated protein 25 (SNAP-25) is a pre-synaptic protein involved in vesicular exocytosis, LTP and the formation of SNARE complexes (Noor & Zahid, 2017). In post-mortem brain studies, levels of SNAP-25 are reduced across dementia syndromes (Connelly et al., 2011; Minger et al., 2001; Mukato-Ladinska et al., 2006; Sinclair et al., 2015). Levels of CSF SNAP-25 are increased in AD and MCI (Brittonmial et al., 2014; Galasko et al., 2019; Wang, Zhou, & Zhang, 2018; Zhang, Thelmaud, et al., 2018), potentially reflecting the release of SNAP-25 from synapses into the extracellular space. Elevations have also been reported in PD, Creutzfeldt-Jakob Disease (CJD) (Noor & Zahid, 2017) and a number of psychiatric disorders; hence, CSF SNAP-25 could be a general marker of synapse damage (Naraj et al., 2019).

Synaptotagmin-1 is a pre-synaptic protein involved in synaptic vesicle exocytosis and synaptic transmission (Baker et al., 2015; John & Fasshauer, 2012). Across dementia syndromes, synaptotagmin-1 levels are reduced in the brain (Bereczki et al., 2018; Davidson & Blennow, 1998; Yoo et al., 2001) and elevated in the CSF (Öhrfelt et al., 2016, 2019; Tilleke et al., 2020).

Vesin-like protein 1 (VILIP-1) is a neuronal calcium sensor protein which is widely expressed in neurons and involved in signalling pathways related to synaptic plasticity (Braunewell, 2012). In AD and PTSD, VILIP-1 expression is reduced in the temporal/entorhinal cortices (Braunewell et al., 2001; Kirkwood et al., 2016) and the superior frontal gyrus, respectively (Kirkwood et al., 2016). Additionally, in the CSF, a recent meta-analysis reported elevated CSF VILIP-1 levels in AD and MCI due to AD (Dulawa et al., 2020).

To date, there is no summary of the evidence examining the relationship between CSF markers of synapse loss and neuronal damage and cognition in ageing and disease. Hence, we conducted a systematic review examining the scientific literature for associations between these markers and cognition in healthy ageing and dementia syndromes. We searched for papers examining any type of dementia or cognition in typical ageing to characterise the cross-diagnostic specificity of markers. Levels of CSF Aβ or tau were not considered as this was beyond the scope of the current review. We searched for correlates of both cross-sectional cognition only.

2 | MATERIALS AND METHODS

The protocol for this review was prospectively registered on PROSPERO (CRD42020164456).

2.1 | Search strategy

The initial search was conducted in December 2019 within MEDLINE, EMBASE and Web of Science. The most recent update search was conducted on 4 January 2021. Search terms can be found in the supporting information Table S1. Reference lists of studies and reviews were manually searched to identify additional studies. No restrictions were applied for language or date of publication. Only published studies in peer reviewed journals were included; conference abstracts were excluded.

2.2 | Eligibility criteria

The inclusion criteria were that the study: (i) included a population with a diagnosis of Alzheimer’s disease, MCI, PTSD, any other type of dementia or a cognitively unimpaired (CU) sample; (ii) measured a cerebrospinal fluid marker of synapse loss and/or neuronal damage, excluding Aβ or tau; (iii) assessed cognition using a validated tool; and (iv) directly examined the relationship between the CSF marker and cognition.

Exclusion criteria included studies (i) where participants were diagnosed with a psychiatric disorder, (ii) review articles, (iii) conference abstracts, (iv) animal studies and (v) studies which only examined CSF Aβ or tau.

Two researchers (T.S.S. and D.A.G.) independently screened studies for inclusion/exclusion and resolved any discrepancies through discussion.
2.3 | Data extraction

T.S.S. and D.A.G. independently extracted data from eligible studies using Covidence software. This included the following: year of publication, demographics, sample size, medication status, apolipoprotein E (ApoE) status, mean/median CSF marker levels with the appropriate measure of variation and other related information. Researchers were not blinded to authors, journals or institutions. Any discrepancies were resolved by discussion and joint data extraction. Authors were contacted for additional clarification and to request missing data wherever possible.

2.4 | Risk of bias assessment

The Cochrane network advise against quality scales which generate a summary score and instead suggest placing importance on how each study performed on individual criteria (Boutron et al., 2020). Therefore, we assessed the risk of bias in study design and reporting using the National Institute of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies (National Institutes of Health, 2014). T.S.S. and D.A.G. independently assessed risk of bias, and any discrepancies were resolved by discussion.

2.5 | Synthesis of results

Correlation coefficients were selected as the standardised metric of the review. After extraction of results, a meta-analysis was not conducted due to substantial differences in study methodologies and a lack of reporting of correlation coefficients in published reports. Therefore, we grouped studies according to the CSF marker being measured due to a number of studies pooling participants across diagnostic groups in statistical analysis.

3 | RESULTS

3.1 | Search results

Two thousand, four hundred and eleven studies were identified. After screening studies for eligibility, 67 studies met criteria for inclusion in the systematic review (see Figure 1).

FIGURE 1 Search process
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)*	Sex (% female)
Abu-Boumelh et al., 2018	NIL	ELISA (JBL, Germany)	AD (46)	64.9 (9.8)	27 (42%)
Abou-Saleh et al., 2020	Ng	ELISA (Alzheimer, Belgium)	AD (29)	67.8 (6.4)	15 (51.7%)
Alosco et al., 2017	NIL	ELISA (Alois Diagnostics, Sweden)	FTDA (493)	67.12 (8.87)	121 (48.4%)
Aeschlimann et al., 2020	NIL	ELISA (Aloidia Diagnostics, Sweden)	CU Aβ + (94)	67.31 (8.99)	40 (42%)
Burton et al., 2012	NIL	ELISA (Progen, Germany)	AD (25)	70.8 (8.8)	21 (56%)
Beguicic et al., 2020	NPTX1, NPTX3	Mass spectrometry	Cohort 1 (38)	74.5 (7.8)	3 (38%)
			MCI (8)	71.4 (6.4)	3 (38%)
			MCI-AD (13)	73.7 (6.4)	13 (50%)
			Moderate AD (24)	74.9 (9.3)	6 (40%)
			Severe AD (13)	67.6 (9.2)	5 (38%)
			Cohort 2 (40)	76.2 (8.8)	3 (38%)
			MCI (5)	78.1 (8.9)	6 (50%)
			MCI-AD (8)	71.1 (6.6)	2 (38%)
			Moderate AD (16)	71.1 (6.6)	2 (28%)
			Severe AD (13)	71.1 (6.6)	2 (28%)
Bendlin et al., 2012	NIL	ELISA (in-house)	CU with family history of AD (48)	53.8 (7.7)	31 (73.1%)
Bjerve et al., 2009	NIL	ELISA (in-house)	MCI-SVD (9)	Median (25th, 75th) percentile	4 (44.4%)
			MCI-MD (13)	68 (55, 78)	13 (36.7%)
			MCI-MCI (138)	69 (54, 74)	65 (35.2%)
			MCI-AD (8)	69 (54, 74)	12 (100%)
			CU (52)	62 (57, 68)	30 (57.7%)
			69 (58, 72)	66 (63, 70)	30 (57.7%)
Boelen et al., 2021	NPTX2	ELISA (in-house)	AD (20)	65.3 (6.0)	2 (10%)
Bos et al., 2019	NIL	ELISA (Alois Diagnostics)	AD (186)	69.8 (8.8)	85 (54%)
	Ng	Elcochemiluminescence (in-house)	AD (157)	74.2 (7.8)	8 (34%)
			AD (12)	71.6 (17.1)	145 (55%)
			MCI (90)	88.9 (8.2)	80 (48%)
			AD + (263)	69.5 (8.1)	23 (51%)
			AD + (187)	62.7 (7.3)	40 (52%)

(Continues)
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)*	Sex (N, % female)
Brinkman et al., 2014	SNAP-25	Mass spectrometry	AD (36)	Median [IQR]	Cohort 1: 15 (86.7%)
			CU (33)	Cohort 1: 68 [68-79]	Cohort 2: 7 (70%)
				Cohort 2: 77 [73-82]	Cohort 3: 12 (76.6%)
				Cohort 3: 68 [66-79]	Cohort 2: 1 (77.7%)
				Cohort 3: 70 [68-74]	Cohort 2: 5 (83.3%)
				Cohort 2: 34 [40-63]	Cohort 2: 5 (67.1%)
				Cohort 2: 34 [40-63]	Cohort 2: 5 (67.1%)
Bruno et al., 2020	Ng	ELISA (in-house)	CU (30)	68.1 (7.3)	12 (62%)
	Alpha-synuclein	ELISA (Tean Sunrise, Austria)			
Cauvello et al., 2017	Ng	ELISA (in-house)	CU (30)	64.5 (7.4)	86 (85.2%)
Chatterjee et al., 2018	ELISA (R&D, USA)	ELISA (R&D, USA)	AD (106)	62 (8)	21 (38.3%)
			CU (40)	62 (3)	41 (98.8)
				60 (76)	15 (53.8%)
				62 (7)	6 (30.6%)
De Vos et al., 2016	Ng	ELISA (in-house)	AD (30)	73 (68.7)	27 (100%)
			MCT (36)	6 (68.7)	
De Jong et al., 2007	NIL	ELISA (in-house)	EAD (37)	73 (68.7)	22 (59.4%)
			LAD (33)	61 (53-69)	20 (60.6%)
			DLB (38)	76 (69-90)	5 (27.8%)
			PFD (29)	72 (58-80)	8 (28.6%)
				63 (43-79)	
Delatey et al., 2020	NIL	ELISA (UmanDiagnosics, Sweden)	CU (118)	59.4 (9.7)	68 (57.8%)
			AD (145)	70.4 (6.3)	73 (52.3%)
			PFD (26)	65.8 (5.2)	15 (26.8%)
			DLB (37)	76.7 (4.6)	19 (51.4%)
			Proenatal DLB (28)	82.2 (6.1)	13 (50.0%)
			PSF (12)	70.5 (7.4)	13 (50.0%)
			CBS (26)	72 (7.3)	13 (50.0%)
Dhiman et al., 2020	NIL	ELISA (UmanDiagnosics, Sweden)	AD (28)	74.6 (7.3)	12 (42%)
			MCT (34)	74.1 (7.4)	13 (38%)
			CUB (138)	72.8 (5.5)	84 (58%)
Study	C5F Marker	C5F analysis assay and brand	Population (N)	Age (years)*	Sex (N, % female)
-----------------------	----------------	--	----------------	--------------	-------------------
Galsak et al., 2019	Ng (Cohort 1)	ELISA (EUROMIMUN, Germany)	Cohort 1 (199)	70.7 (9.4)	19 (41%)
	SNAP-25 (Cohort 1)	SIMDA (home-brew)	AD	74.3 (6.5)	20 (39%)
	NPTX2 (Cohort 1,	ELISA (in-house)	MCI	73 (3.2)	52 (35%)
	Cohort 2)		CU	73.1 (7.4)	28 (32%)
			Cohort 2 (292)	74.7 (7.2)	44 (31%)
			AD	73.7 (5.2)	43 (30%)
			MCI	73.7 (5.2)	
			CU	73.7 (5.2)	
Gillfors et al., 2018	NIL	ELISA (UmanDiagnostics, Sweden)	Early MCI (9)	72 (7)	2 (22%)
			MCI (37)	74 (7)	17 (39%)
			CU (62)	73 (7)	20 (31%)
Headley et al., 2018	Ng	Electrochemiluminescence (Meso Scale Discovery, USA)	MCI (193)	73 (7)	64 (33%)
			CU (111)	73 (6)	55 (50%)
Hellweg et al., 2015	Ng	Electrochemiluminescence (Meso Scale Discovery, USA)	MCI-AD (13)	72 (5)	21 (53.9%)
			Non-AD dementia (14)	73.3 (68.76)	8 (61.5%)
			MCS-CI (29)	65.1 (59.75)	14 (48.3%)
			MCI-C (29)	69.4 (61.75)	
Hoglund et al., 2015	NIL	ELISA (UmanDiagnostics, Sweden)	CU Ap (43)	72 (7)	Total: 73 (56.6%)
	Ng	Electrochemiluminescence (Meso Scale Discovery, USA)	CU Ap (4+ (86)	72 (7)	Total: 73 (56.6%)
	VILIP-1			72 (7)	
Jia et al., 2020	Ng	ELISA (American Research Products, USA)	Cohort 1: AD (28)	66 (6)	14 (57.1%)
	GAP-43	ELISA (MyResource, USA)	Cohort 2: AD (75)	65 (6)	42 (57.5%)
	SNAP-25	ELISA (Preestech, USA)		66.8 (7.4)	
	Syngnostreanit-I	ELISA (AbiMIme, China)		66.7 (6.8)	
Kistemaker et al., 2018	Ng	ELISA (EUROMIMUN, Germany)	AD+ MCI (21)	61.2 (18.4)	12 (55.7%)
			AD+ MCI (14)	61.2 (18.4)	10 (52.6%)
Kurasberg et al., 2015	Ng	ELISA (in-house)	Median [IQR]	64 [58-71]	19 (48%)
Lee et al., 2008	VILIP-1	ELISA (in-house)	AD (33)	72.1 (9.3)	8 (57%)
Lim et al., 2019	NPTX2	ELISA (RayBiotech, USA)	MCI (14)	73.7 (8.3)	6 (29%)

(Continues)
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)*	Sex (N, % female)
Mattsson et al., 2016	NIL	ELISA (UmanDiagnostics, Sweden) ELISA (in-house)	Moderate AD (64) Severe AD (30)	77.0 (9.6)	19 (46%) 9 (30%)
	NIL	ELISA (UmanDiagnostics, Sweden) ELISA (in-house)	AD MCI CU	74.7 (8) 74.5 (7.5) 73.7 (5.2)	41 (44%) 62 (39%) 54 (50%)
McGuire et al., 2015	NIL	ELISA (UmanDiagnostics, Sweden ELISA BioVendor,Czech Republic)	HAD (3) ANV (15) MNCED (13) CU (13)	Median [IQR] 47 [38-50] 38 [31-40] 40 [35-48] 44 [36-65]	0 (0%) 6 (40%) 3 (20%) 3 (20%)
Meeter et al., 2016	NIL	ELISA (UmanDiagnostics, Sweden) FTLD with GRN, MAPT, C9orf72 mutation (101)	Median [IQR] 59 [56-65]	52 (51%)	
Meeter et al., 2018	NIL	ELISA (UmanDiagnostics) FTLD with C9orf72 mutation (64) Presymptomatic carriers of C9orf72 mutation (25)	Median [IQR] 60 [55-66] 47 [41-87]	20 (45.5%) 17 (66%)	
Meeter et al., 2019	NIL	ELISA (UmanDiagnostics, Sweden) s/PPA (147)	Median [IQR] 64 [58-68]	87 (54%)	
Meeter et al., 2017	NIL	ELISA (UmanDiagnostics) bvFTD (156) s/PPA (36) s/tPPA (19) hPPA (4) CBS (40) PEP (38)	Median [IQR] 61 [55-67] 62 [58-65] 62 [52-66] 64 [51-69] 65 [60-73] 66 [62-70]	78 (44%) 10 (53%) 3 (7%) 14 (33%) 16 (26%)	
Mielke et al., 2019a	NIL	ELISA (in-house) Dementia MCI CU Total (777)	Median [IQR] Total = 72.9 [64-84.3]	Total = 334 (43%)	
Mielke et al., 2019b	NIL	ELISA (in-house) SCI CU Total (79)	Median [IQR] Total = 76.4 [71.7-80.7]	Total = 27 (34%)	
Mouton-Liger et al., 2020	NIL	ELISA (R&D Systems, USA)	AD (54) MCI-AD (20) Non-AD dementia (30) Non-AD MCI (33) CU (27)	69 (7.5) 70.2 (8.6) 68.7 (7.4) 61.5 (9.6) 62 (11.3)	33 (61.1%) 12 (60%) 11 (36.7%) 13 (35.3%) 23 (85.2%)
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)*	Sex (N, % female)
------------------------	--------------	------------------------------	----------------	--------------	-------------------
Oesch et al., 2020	Beta-amyloid	Mass spectrometry	Cohort 1: AD (64)	Median [IQR]	42 (65.6%)
			Cohort 2: AD (40)	73 [68-78]	20 (50%)
			Cohort 3: AD (40)	70 [65-74]	25 (51.0%)
				72 [64-77]	
Offelt et al., 2016	Synapticamin	Mass spectrometry	Cohort 1: AD (17)	Median [IQR]	12 (70.6%)
			Cohort 2: AD (26)	65 [58-81]	17 (70.8%)
			Cohort 1: MCI-AD (15)	68 [64-72]	4 (26.5%)
			Cohort 2: MCI-AD (18)	78 [73-81]	13 (72.2%)
			Cohort 1: CU (17)	70 [69-78]	10 (58.8%)
			Cohort 2: CU (36)	60 [53-77]	23 (65.9%)
				62 [55-69]	
Offelti et al., 2019	SNAP-25	ELISA (in-house)	Cohort 1: AD (17)	Median [IQR]	12 (70.6%)
			Cohort 2: AD (26)	65 [58-81]	17 (70.8%)
			Cohort 1: MCI-AD (15)	68 [64-72]	4 (26.5%)
			Cohort 2: MCI-AD (18)	78 [73-81]	13 (72.2%)
			Cohort 1: CU (17)	70 [69-78]	10 (58.8%)
			Cohort 2: CU (36)	60 [53-77]	23 (65.9%)
				62 [55-69]	
Osborn et al., 2019	NIL	ELISA (UmanDiagnostec, Sweden)	Early MCI (27)	73 (6)	7 (28%)
			MCI (132)	73 (8)	58 (44%)
			CU (174)	72 (7)	71 (41%)
Porstius et al., 2015	Ng	Electrochemiluminescence (in-house)	AD (95)	Median [IQR]	42 (64%)
			pMCI (105)	76 [70-80]	37 (55%)
			sMCI (68)	75 [70-80]	22 (32%)
			CU (134)	74 [70-80]	55 (50%)
				76 [73-78]	
Racine et al., 2016	NIL	ELISA (UmanDiagnostec, Sweden)	MCI + CU (70)	66.26 (6.1)	40 (57.1%)
Rojas et al., 2018	NIL	ELISA (UmanDiagnostec, Sweden)	PSP (50)	67.7 (5.7)	30 (60%)
Reifraud et al., 2018	NIL	ELISA (in-house)	Dementia-vascular (65)	68.9 (6.3)	32 (49.2%)
			Dementia-non-vascular (128)	66.4 (7.4)	78 (90.9%)
			MCI-vascular (96)	67.4 (7.2)	50 (38.1%)
			MCI-non-vascular (175)	63.9 (7.7)	46 (24.2%)
			SCD-vascular (48)	65.6 (7.4)	28 (36.3%)
			SCD-non-vascular (120)	60.6 (7.1)	72 (60%)
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)	Sex (N, % female)
---------------------	------------	------------------------------	----------------	-------------	------------------
Rohleder et al., 2015b	NIL	ELISA (R&H Diagnostics)	CU (71)	37.8 (14.6)	44 (63.9%)
Sancesario et al., 2020	Ng	ELISA (EPUODS, UN, Germany)	CU (30)	64.04 (11.83)	18 (61%)
Sandholtz et al., 2019	GAP-43	ELISA (in-house)	AD (275)	71.2 (9.2)	56.2%
			MCI (86)	72 (8.9)	46.4%
			CU (49)	69 (9.1)	68.8%
			FTD (39)		
			DLB (27)		
			BvPPA (10)		
			PiB (15)		
			CBS (19)		
Sanfilippo et al., 2016	Ng	ELISA (in-house)	AD (23)	19 (76%)	30 (60%)
			MCI (30)	76 [75-76]	
			MCI-AD (36)	71 [68-76]	
			CU (44)	73 [71-76]	22 (53%)
			Median [IQR]	31 [70.8%]	
Santiello et al., 2019	Ng	Electrochemiluminescence (Meso Scale Discovery, USA)	CU (20)	25 (6)	9 (49%)
Schirmer et al., 2014	NIL	ELISA (R&H Diagnostics, Sweden)	Asymptomatic FTD mutation carriers (8)	54 (10%)	4 (100%)
			bvFTD (45)	61 (8)	13 (28.9%)
			sTDP-44PA (18)	70 (7)	7 (38.9%)
			sTDP-44PA (16)	63 (7)	10 (62.5%)
			CBS (17)	68 (8)	11 (66.6%)
			AD (36)	66 (9)	22 (44%)
			PiB (22)	68 (7)	11 (50%)
			Cu (47)	66 (11)	23 (44.7%)
Schindler et al., 2019	Ng	SIMDIA (Millipore, USA)	Carriers of mutations in PSEN1, PSEN2, or APP (235)	38.8 (12.1)	127 (54%)
			Mutation non-carriers (245)	38.8 (12.1)	80 (61%)
Sjögren et al., 2001	NIL	ELISA (in-house)	AD (22)	64 (7.7)	7 (31.8%)
			SVD (9)	70 (1.3)	9 (100%)
			CU (22)	66 (9.8)	15 (73%)
Sjögren et al., 2000	NIL	ELISA (in-house)	FTD (18)	62 (10)	7 (36.8%)
			AD (21)	73 (3.2)	14 (66.7%)
Skillman et al., 2014	NIL	ELISA (R&H Diagnostics, Sweden)	EAD (123)	59 (4)	Total = 54.4%
			AD (1194)	76 (6)	
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)*	Sex (N, % female)
-------	------------	------------------------------	----------------	-------------	------------------
Sun et al., 2016	Ng	Electrochemiluminescence (Meso Scale Discovery, USA)	Apo e & carriers	75 (8)	42 (44%)
			AD (67)	76 (5)	64 (35%)
			MCI (102)	76 (5)	53 (30%)
			CU (27)	76 (5)	53 (30%)
Swanson et al., 2016	NPTX2	Mass spectrometry	AD (64)	74.98 (7.57)	29 (45.29%)
			MCI (135)	74.99 (7.35)	44 (32.65%)
			CU (86)	75.70 (5.54)	42 (43.95%)
Teistadottir et al., 2020	NIL	ELISA (Uman/Diagnostic, Sweden)	AD CSF profile (28)	Median (range)	67 (46-80)
			SCT (2)	70 (51-84)	11 (39.30%)
			MCI (9)	70 (51-84)	8 (29.30%)
			AD (16)	70 (51-84)	11 (39.30%)
			DLB (1)	70 (51-84)	8 (29.30%)
			Non-AD CSF profile		
			MCI (10)	70 (51-84)	11 (39.30%)
			DLB (1)	70 (51-84)	8 (29.30%)
Van Der Ende et al., 2020	NPTX2	ELISA (in-house)	Symptomatic genetic FTD (54)	Median (IQR)	45 [34-56]
			Presymptomatic genetic FTD (106)	63 [56-69]	59 (35.75%)
			Presymptomatic genetic FTD (106)	63 [56-69]	59 (35.75%)
Van Steenoven et al., 2020	NPTX2	Mass spectrometry	Cohort 1: DLB (20)	66.9 (7.5)	3 (11.5%)
			Cohort 2: DLB (47)	67.8 (6.3)	4 (24%)
			Cohort 3: DLB (48)	67.8 (6.3)	6 (12.5%)
	NPTX6	Mass spectrometry	AD (91)	74.6 (7.6)	37 (45.7%)
			MCI (171)	74.2 (7.6)	58 (33.9%)
			CU (99)	75.3 (5.3)	49 (49.5%)
Wang et al., 2019	Ng	Electrochemiluminescence (Meso Scale Discovery, USA)	AD (16)	74.3 (6.5)	10 (62.5%)
			MCI (75)	74.3 (6.5)	21 (28%)
			CU (55)	74.3 (6.5)	24 (43.6%)
Wang et al., 2018	SNAP-25	ELISA (Eurema, USA)	AD (16)	74.3 (6.5)	10 (62.5%)
			MCI (75)	74.3 (6.5)	21 (28%)
			CU (55)	74.3 (6.5)	24 (43.6%)
Study	CSF Marker	CSF analysis assay and brand	Population (N)	Age (years)*	Sex (% female)
---	------------	-------------------------------	----------------	--------------	----------------
Wollington et al., 2016	NfB	Electrochemoluminescence (in-house)	AD (140)	Median [IQR] 63 [57-68]	90 (59%)
			bvFTD (20)	43.47	10 (100%)
			svFTD (21)	61.0 [55-60]	10 (48%)
			LBD (13)	60.0 [54-73]	10 (77%)
			PSP (46)	68.0 [60-76]	10 (41%)
			CU (19)	70.0 [66-72]	10 (58%)
				61.0 [50-64]	
Xia et al., 2017	NFTX2	ELISA (in-house)	AD (16)	Mean ± SE 72.24 ± 10.13	16 (53.8%)
Zetterberg et al., 2016	NfB	ELISA (UmanDiagnostics, Sweden)	AD (95)	Median [IQR] 66 [58-76]	42 (44.2%)
			pMCI (100)	76 [69-84]	37 (36.8%)
			sMCI (91)	74 [66-80]	26 (28.8%)
			CU (110)	74 [71-80]	
Zhang et al., 2018	VILIP-1	ELISA (Eurema, USA)	AD (24)	74.3 (6.79)	11 (61.5%)
			sMCI (24)	76.7 (5.34)	7 (29.2%)
			pMCI (24)	73.1 (6.66)	14 (29.8%)
			CU (24)	76.5 (5.66)	13 (40.6%)
Zhang et al., 2018	SNAP-25	ELISA (Eurema, USA)	AD (18)	74.3 (7.3)	14 (51.5%)
			sMCI (22)	76.5 (3.5)	7 (31.9%)
			pMCI (47)	73.1 (6.6)	14 (20.8%)
			CU (52)	76.2 (5.2)	14 (20.8%)

*Age and CSF levels presented as mean (SD) unless otherwise specified.
Study	CSF marker level (pg/mL)*	Cognitive assessment	Adjustment factors
Abu-Rumailah et al., 2018	Median [IQR] 2180 [1614-2878] 3293 [2230-7996]	BMDS, FAB	None
Agnifilo et al., 2020	Median [IQR] 490 [410-664] a-aps: 2844.02526.6-3534.5	MMSE	None
Aloisio et al., 2017	2099.39 (1833.92)	MMSE	None
Achenbrenner et al., 2020	1356.29 (574.42) 1382.72 (703.91)	Global, episodic memory, attention composite	Age, amyloid status
Barros et al., 2012	N.R	MMSE (derived from ACE-CE) ACE-CF	None
Begovic et al., 2020	N.R	MMSE	None
Benliver et al., 2012	N.R	BMVT, COWAT, TMT-A, TMT-R, WAIS-working memory index, AVLT	Age, education
Bjorka et al., 2009	Median [25th, 75th percentile] 424 [235, 1414] 230 [208, 230] 250 [280, 280] 250 [280, 230] 250 [280, 341] 250 [280, 208]	MMSE	None
Boisson et al., 2021	Median [95% interval] 453 [317-696] 474 [279 - 659]	Global, memory, attention, executive function, language, visual composites, MMSE	Age, education
Bos et al., 2019	NIL 1742.2 (2899.2) 1931.3 (1934.8) 1242.3 (2256.1) 1031.2 (919.1) 983.13 (678.4) 627.6 (293.3)	MMSE	Age, sex, years of education, baseline diagnosis
Brinkmalm et al., 2014	N.R.	MMSE	None
Bruno et al., 2020	Ng 100.8 [91.4] a-aps: 14.1 (14.1)	BSRT	None
Cassetti et al., 2017	Median [IQR] 335.9 [250.6-482.8]	AVLT, WAIS-III symbol digit coding, BNT, WAIS-III digit span forwards, WAIS-III digit span backwards.	Sex, CSF Aβ, CSF t-tau, CSF p-tau
Study	CSF marker level (pg/mL)*	Cognitive assessment	Adjustment factors
-----------------------	---------------------------	----------------------	------------------------------------
Chatterjee et al., 2018	Median [IQR]	MMSE	Hippocampal volume, ApoE status, Family history of AD
	59 [47-76]		
	61 [39-78]		
	78 [69-110]		
	63 [54-99]		
De Vos et al., 2016	Median [IQR]	MMSE	Age, Sex
	172 [141-230]		
	214 [141-296]		
De Jong et al., 2007	Median [range]	MMSE	None
	6.1 [0.0-40.3]		
	13.2 [6.0-70.1]		
	16.4 [8.0-60.6]		
	16.9 [8.0-76.4]		
Delaby et al., 2020	Median [IQR]	MMSE	None
	41 [34.9-58.7]		
	940 [763-1229]		
	1240 [899-2379]		
	1135 [869-1321]		
	934 [643-1094]		
	1402 [1094-1727]		
	1672 [923-2107]		
Dhimant et al., 2020	Median [IQR]	MMSE	Age, Sex, ApoE status
	2201 [826.9]		
	1977 [908.4]		
	1306 [510.5]		
Galasko et al., 2019	Np	SNAP-25, NPTX2, CVLT	Age, Sex, Education, ApoE status
	347.5 [215.6]	56 [15.6]	
	332.2 [199.9]	34 [15.5]	
	324.3 [183.4]	32.1 [8.8]	
Gifford et al., 2018	1145 [477]	PVT, T1	Age, sex, ethnicity, ApoE status, Cognitive diagnosis
	1385 [795]		
	939 [466]		
Study	CSF marker level (pg/mL)*	Cognitive assessment	Adjustment factors
--------------------------------------	---------------------------	---	----------------------------------
Headley et al., 2018	494 (353)	MMSE, ADAS-Cog, ADAS-Cog13, memory	Age, sex, years of education, ApoE status, CSF
	352 (284)	component, executive function composite	t-tau, CSF Aβ11
Hellwig et al., 2015	N.R	MMSE	None
Hughson et al., 2015	NIL	MMSE	N.R
	1847 (987.2)	VILIP-1	0.13 (0.06)
	1440 (735)		0.12 (0.05)
Ili et al., 2020	N.R	MMSE	Age, sex, ApoE status
Kishenon et al., 2018	428 (179)	MMSE	Age
	468 (217)	CERAD word list test, TMT-A, TMT-B	
Korsberg et al., 2015	Median [IQR]	MMSE	Age, sex
	210 [83-430]		
Lee et al., 2008	N.R	MMSE	None
Lim et al., 2019	N.R	MMSE	None
Marsson et al., 2016	N.R	MMSE, ADAS-Cog1 1	Age, sex, years of education
McGauley et al., 2015	N.R	WAIS-III Digit symbol WAIS-III Symbol search TMT-A	None
		Story memory test Figure memory test WCST TMT-B	
		COWAT	
		ANT	
		WAIS-III letter-number sequencing PASAT	
Meeter et al., 2016	6762 (N.R)	MMSE	None
Meeter et al., 2018	Median [IQR]	MMSE	None
	1885 [688-2641]		
	420 [336-830]		
Meeter et al., 2019	Median [IQR]	BNT, ANT, letter fluency, WAIS-III digit span forward and backwars, TMT-A, TMT-B, SCWT, CDT, AVLT, CVLT, CERAD word list test, Rey complex figure test	Age, sex, laboratory
	2300 [1420-3993]		
Meeter et al., 2017	Median [IQR]	MMSE, FAQ	None
	3158 [1792-4818]		
	3151 [1956-4992]		
	2341 [1999-2957]		
	1731 [1181-2472]		

Continued
Study	CSF marker level (pg/mL)*	Cognitive assessment	Adjustment factors
Mielke et al., 2019a	2664 [1715-4158]	Global, Memory, language, attention, visuospatial composites	Age, sex
	1807 [1347-2755]		
Mielke et al., 2019b	520.2 [374.3-745.4]	Memory, language, executive function, visuospatial composites	Age, sex, years of education
	166.6 [132.9-220.8]		
Mouton-Liger et al., 2020	364.7 [149.2]	MMSE	None
	242.6 [121.5]		
	287.5 [106.5]		
	304.9 [113.0]		
	267.7 [104.2]		
Oeckl et al., 2020	Median [IQR]	MMSE	None
	979 [736-1223]		
	694 [552-986]		
	917 [746-1185]		
Ohrfelt et al., 2016	N.R	MMSE	None
Ohrfelt et al., 2019	N.R	MMSE	None
Osteen et al., 2019	1086 [465]	Episodic memory composite, executive function composite, BNT, ANT, WAIS-IV coding, DKEFS number sequencing, Hooper visual organisation test	Age, sex, ethnicity, ApoE status!
	1290 [712]		
	930 [448]		
Portella et al., 2015	Median [IQR]	MMSE, ADAS-Cog	Age, sex, education
	481 [346-746]		
	462 [339-672]		
	386 [190-582]		
	304 [161-453]		
Racine et al., 2016	N.R	CAB	None
		CPAL errors	
		GMCT moves/sec	
		GML errors	
		GMR errors	
		OCL accuracy	
		GNB accuracy	
		T2W gradient	
		RAVLT delayed	
		Logical memory delayed	
		BVMT-L delayed	
Study	CSF marker level (pg/mL)*	Cognitive assessment	Adjustment factors
Rojas et al., 2018	5929 (6196)	RBANS, Color Trails 1 & 2 Letter-number sequencing, Phonemic fluency	Age, sex
Rolstad et al., 2015a	567.5 (635.0)	Attention, learning/memory, visuospatial, language, executive function composites	Age, sex
	569.4 (720.3)		
	611.2 (1110.9)		
	360.7 (299.6)		
	308.5 (158.2)		
	328.3 (283.8)		
Rolstad et al., 2015b	254.38 (55.42)	Memory, executive function, visuospatial, spatial attention, verbal composites	Age, sex
Sancesario et al., 2020	338.53 (193.40)	MMSE	None
Schindler et al., 2019	N.R.	MMSE	None
Sannillo et al., 2016	Median [IQR]	MMSE, CAMCOG	None
	687 [474-956]*		
	182 [83-310]*		
	481 [246-641]*		
	235.3 [171-356]*		
Santilli et al., 2019	427 (185)	MCCB	None
Scherfing et al., 2014		MMSE, Rey-Osterrieth figure, FDS, BDI, TMT, Stroop task, BNT, ANT, CVLT, phonemic fluency	None
Schindler et al., 2019	Ng	1572 (541)	
	2288 (2180)	SNP-35	
	6.4 (1.0)	VELJP*)	
	173.4 (77.9)	DIAN cognitive composite	Age, sex, education, ApoE status
Sjögren et al., 2001	569 (398)	MMSE	None
	1977 (436)	130 (66)	
Sjögren et al., 2000	1442 (1183)	MMSE	None
	1086 (725)	807 (1237)	
Skillmack et al., 2014	448 (415)	MMSE	Age, sex
	667 (664)	1220 (1626)	
	622 (1237)	109 (1207)	
	928 (1056)	503 (374)	
	807 (1237)	807 (1237)	
Study	CSF marker level (pg/mL)	Cognitive assessment	Adjustment factors
-----------------------	--------------------------	--	------------------------------
Sun et al., 2016	N.R	MMSE	None
Swanson et al., 2016	Mean ± SE	MMSE, ADAS-Cog, memory composite	Age, sex, education, ApoE status
Teohalittir et al., 2020	Median (range)	Verbal episodic memory composite	Age, education
Van Der Ende et al., 2020	Median [IQR]	MMSE, TMT-B, phonemic verbal fluency	Age, sex, years of education, study site
Van Vuuren et al., 2019	Median [IQR]	MMSE	Cohort
Wang et al., 2019	Median [IQR]	MMSE	None
Wang et al., 2018	N.R	MMSE	None
Wellington et al., 2016	Median [IQR]	MMSE	None
Xiao et al., 2017	Mean ± SE	MMSE, DSS, BNT, phonemic verbal fluency, semantic verbal fluency, Wisconsin card sorting task, visual reproduction test, block design, CDT, CVLT	None
Zetterberg et al., 2016	Median [IQR]	MMSE, ADAS-Cog	Age, sex, education
Zhang et al., 2018a	183.7 (70.43)	MMSE	Age, sex, education

(Continues)
3.2 | Study characteristics

3.2.1 | Sample size

Characteristics of included studies can be found in Table 1. Some cohorts were used in multiple studies. Ten studies used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Galasko et al., 2019; Haggard et al., 2018; Mattasio et al., 2016; Petersen et al., 2010; Portella et al., 2015; Sun et al., 2016; Swanson et al., 2016; Wang, 2016; Wang, Zhou, & Zhang, 2018; Zetterberg et al., 2016; Zhang et al., 2018; Zhang, Thijssen et al., 2018), five used the Amsterdam Dementia Cohort (Boitien et al., 2021; Chatterjee, Del Campo et al., 2018; Kvartbog, Duits, et al., 2015; Meeter, Vijverberg et al., 2018; van Der Flier & Scheltens, 2018; van Steenoven et al., 2020), three used the Wisconsin Registry for Alzheimer’s Prevention (Bendlin et al., 2012; Casalotto et al., 2017; Racine et al., 2016; Sager et al., 2005) and three used the Genetic Frontotemporal Dementia Initiative (GENFI—The Genetic Frontotemporal Initiative) (GENFI – The Genetic Frontotemporal Initiative, n.d.; Meeter et al., 2016; Meeter, Vijverberg et al., 2018; van Der Ende et al., 2003). The Gotthard Mild Cognitive Impairment Study (Bjerke et al., 2009; Brinkmann et al., 2014; Rolstad, Berg, et al., 2015; Wallin et al., 2016) was used in three studies, the Mayo Clinic Study of Ageing (Mielke, Syrjanen, Blednov, Zetterberg, Skoog, et al., 2019; Mielke, Syrjanen, Blednov, Zetterberg, Vermer, et al., 2019; Roberts et al., 2008) in two studies, the Vanderbilt Memory and Ageing Project (Gifford et al., 2018; Jefferson et al., 2016; Osborn et al., 2019) in two studies and finally, the University of California San Diego (UCSD) Shiley-Marcos Alzheimer’s Disease Research Center (Galasko et al., 2019; Xiao et al., 2017) in two studies.

Sample sizes of included studies ranged from 19 to 770. Only one of the included studies conducted a power analysis (Xiao et al., 2017), although others acknowledged a possible lack of power.

3.2.2 | Sociodemographic factors

Participants with AD were aged between 62 and 77 years, those with PTD were aged between 59 and 72 years and MCI participants’ age ranged from 62 to 76 years. The age ranges of participants are within the typical range for the detection of dementia/MCI-related cognitive decline. Those with an ‘other’ form of dementia were aged between 39.5 and 76.7 years. CU participants’ age varied widely (between 37.8 and 81.9)
due to the nature of the healthy ageing group: some findings were taken from studies investigating neurodegenerative diseases with age-matched controls, while few focused solely on CU younger participants. Most studies included a mix of both males and females.

3.2.3 | Group status and dementia definitions

As reported in Table 1, 46 studies included participants with AD or MCI, 15 examined those with an FTD-related syndrome, 39 examined controls or CU samples and 9 studies included those with an ‘other’ dementia. All studies used validated criteria for diagnosing dementia, MCI or identifying the absence of dementia. In AD, most studies used the National Institute of Neurological and Communicative Disorders and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) (McKhann et al., 1984) criteria to diagnose probable AD and others used the updated National Institute on Ageing/Alzheimer’s Association (NIA-AA) criteria (Jack et al., 2013). One study used The International Working Group 2 (IWG-2) (Dubois et al., 2014) criteria, and in five, diagnoses were made by clinicians (which were supplemented with CSF marker information in two). To confirm familial AD, one study used autopsy and medical records matched with NINCDS-ADRDA criteria, while another used autopsy records and the Kowa Dementia Questionnaire (Kawas et al., 1994). Studies with MCI patients used established criteria proposed by the IWG-2 (Winblad et al., 2004), NIA-AA criteria (Albert et al., 2011) or criteria proposed by Petersen and colleagues (Petersen, 2004). Two studies used criteria for early MCI proposed by Aisen and colleagues (Aisen et al., 2010) which defines early MCI as a milder episodic memory impairment relative to ‘late MCI’. All PTD studies used established criteria for the relevant subsyndrome, which were appropriate for the time of publication (Armstrong et al., 2013; Gorno-Tempini et al., 2011; Litvan et al., 1996; Neary et al., 1998; Rascovsky et al., 2011). Most CU studies ruled out dementia or cognitive impairment if participants had a Clinical Dementia Rating (CDR) of 0 or did not meet DSM-III-R criteria.

3.2.4 | Adjustment factors

As seen in Table 1, adjustment factors varied between studies. Thirty-four studies did not adjust for any covariates. One study conducted a partial correlation and adjusted for multiple cohorts (van Steenoven et al., 2020). Studies using regression techniques most often controlled for age, sex and years of education. Nine studies controlled for April et status, and two controlled for ethnicity.

3.2.5 | Cognitive assessments

A number of tools were used to assess neuropsychological performance (Table 1). Including composite measures as single tests, there were 37 different cognitive tests analysed across all 67 studies. The most commonly used test was the Mini Mental State Examination (MMSE) (Folstein et al., 1975), which was employed in 48 studies. The main domains assessed were global cognition, visuospatial abilities, language, attention, general executive functions and memory (working, episodic and semantic).

3.2.6 | Risk of bias

Risk of bias ratings is provided in the supporting information Table S2. Twenty studies were rated as ‘Good’, 45 rated as ‘Fair’ and 3 as ‘Poor’.

3.2.7 | CSF markers

As reported in Table 1, most studies assayed multiple markers. Thirty-one studies examined NfL, 22 examined Ng and 24 studies examined a different marker of interest. A description of each marker can be found in Table 2.

A number of immunooassay methods were used to measure CSF analytes. Enzyme-linked immunosorbent assays (ELISAs) were the most common immunooassay method, followed by electrochemiluminescence and mass-spectrometry based methods. Two studies used SIMOA assays. Of the included 67 studies, only 29 reported the intra-assay coefficient of variability (CV) (Abu-Rumeileh et al., 2018; Bartos et al., 2011; Bendlin et al., 2012; Björk et al., 2009; Brinkmalm et al., 2014; Cudetto et al., 2017; Chatterjee, Del Campo, et al., 2018; Dhiman et al., 2020; Gifford et al., 2018; Hellwig et al., 2015; Högland et al., 2017; Kirsebom et al., 2018; Kvarnberg, Duit, et al., 2015; Lim et al., 2019; Meeter et al., 2016; Meuter, Gendron, et al., 2018; Meuter et al., 2019; Meuter, Vrijbergen, et al., 2018; Mielcz, Sarjakoski, Bennett, Zetterberg, Vernini, et al., 2019; Öhrfelt et al., 2019; Osborn et al., 2019; Roblad, Jakobsen, et al., 2015; Sandelin et al., 2019; Skillback et al., 2014; Teitludottir et al., 2020; van der Ende et al., 2021).
Summary of CSF markers from included studies

CSF marker	Function	Localization
Alpha-1-synuclein	Regulation of synaptic vesicle trafficking	Pre-synaptic
Beta-2-synuclein	Unknown	Pre-synaptic
Contactin-2	Axonal guidance	Pre-synaptic
GAP-43	Axonal outgrowth	Pre-synaptic
NBI	Neuronal structure	Axonal
NIl	Neuronal structure	Axonal
Ng	Calmodulin-binding	Post-synaptic
NPTX1	Synaptic plasticity	Pre-synaptic
NPTX2	Synaptic plasticity	Pre-synaptic
NPTX3	Synaptic plasticity	Trans-synaptic
Nrg1	Synaptic plasticity	Pre-synaptic
SNAP-25	SNARE	Pre-synaptic
Synaptoplin	Calcium sensor	Pre-synaptic
VILIP-1	Calcium sensor	Neuronal

Abbreviations: CSF (cerebrospinal fluid), GAP-43 (growth-associated protein 43), NBI (neuromelanin heavy), NIl (neuromelanin light), Ng (neurogranin), NPTX1 (neuronal pentraxin 1), NPTX2 (neuronal pentraxin 2), NPTX3 (neuronal pentraxin receptor), Nrg1 (neuregulin 1), SNAP-25 (synapsosomal-associated protein 25), VILIP-1 (vitamin D1-binding protein 1).

Main outcome: Associations between CSF markers and neuropsychological performance

3.3.1 Papers on CSF NfL

In total, 31 studies examined the relationship between CSF NfL levels and neuropsychological performance. All studies analysed CSF NfL using ELISAs.

As reported in Table 3, a significant association between CSF NfL and neuropsychological performance was consistently reported in AD samples. Most studies found significant moderate-to-week relationships with MMSE scores (Abu-Rumeileh et al., 2018; Bos et al., 2019; Delaby et al., 2020; Sigren et al., 2000; Skillbeck et al., 2014; Zetterberg et al., 2016), while others showed no relationship (Bartos et al., 2011; de Jong et al., 2007; Rolstad, Berg, et al., 2015). However, sample sizes were relatively small in two of those studies. Only two studies included early-onset Alzheimer’s (EAO) samples, and both reported no significant associations with MMSE scores (de Jong et al., 2007; Skillbeck et al., 2014).

A relationship between CSF NfL and neuropsychological performance was not consistently reported in MCI samples, although cognitive assessments may have influenced findings. Three studies, with relatively large sample sizes, reported no significant association with MMSE scores (Bjerke et al., 2009; Bos et al., 2019; Zetterberg et al., 2016). However, several studies using other cognitive tests such as the ADAS-Cog and cognitive composite scores reported associations with CSF NfL levels (Osborn et al., 2019; Rolstad, Berg, et al., 2015; Zetterberg et al., 2016). One study included participants with subjective cognitive impairment (SCI) and showed a significant association with a number of cognitive composite scores in those with a vascular burden (Rolstad, Berg, et al., 2015). Four studies pooled MCI and age-matched CU samples and most reported a significant association with neuropsychological performance (Gillford et al., 2018; Osborn et al., 2019; Ractine et al., 2016), while one reported no associations after controlling for demographics (Mielke, Syrjanen, Blennow, Zetterberg, 2019). Five studies pooled AD, MCI and CU participants, and all reported a significant association with a number of neuropsychological assessments including the MMSE and ADAS-Cog (Osborn et al., 2019; Dihman et al., 2020; Mattsson et al., 2016; Mielke, Syrjainen, Blennow, Zetterberg, 2019; Teitsdottir et al., 2020). Interestingly, one study reported a stronger association in AP+ participants (Mattsson et al., 2016), while another reported a stronger association in AP- participants (Mielke, Syrjänen, Blennow, Zetterberg, Skoog, et al., 2019).
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, ▼: negative, ▲: non-significant; non-adjusted results reported where available)
Abu-Rumileh et al. (2018)	NIL	AD (40)	NMSE ▲
		FTD (24)	BMDM ▼
Alconó et al. (2017)	Ng	AD (29)	NMSE ▲
	Alpha-synuclein	AD (29)	FAB ▲
Achtenbrunner et al. (2020)	NIL	CU Af = 764	MMSE ▲
		CU Af = 161	Episode cognition composite ▲
			Attention composite ▲
Bartos et al. (2011)	NIL	AD (25)	MMSE (derived from ACE-CZ) ▲
			ACE-CZ ▲
			MMSE (derived from ACE-CZ) ▲
			ACE-CZ ▲
Begovic et al. (2018)	NPTX1	Cohort 1 (36)	MMSE ▲
		MCI (8)	
		Mild AD (11)	
		Moderate AD (24)	
		Severe AD (15)	
		Cohort 2 (43)	
		MCI (8)	
		Mild AD (8)	
		Moderate AD (16)	
		Severe AD (15)	
	NPTX1	Cohort 1 (36)	MMSE ▲
		MCI (8)	
		Mild AD (11)	
		Moderate AD (24)	
		Severe AD (15)	
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, *; negative, *; non-significant; non-adjusted results reported where available)
-----------------------	------------	------------------------------	--
			NMSE *
			BVMT *
			COWAT *
			TMT-A *
			TMT-B *
			WAIS-working memory index *
			AVLT *
			NMSE *
Beitz et al. (2009)	NPTX2	AD (20)	Global composite *
			Memory composite *
			Attention composite *
			Executive function composite *
			Language composite *
			Visuospatial composite *
			MMSE *
			Global composite *
			Memory composite *
			Attention composite *
			Executive function composite *
			Language composite *
			Visuospatial composite *
			MMSE *

(Continues)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, ▼: negative, *: non-significant; non-adjusted results reported where available)
Bos et al. (2019)	NIL	Total AD (485)	NMSE ▼
		Total AD (365)	
		AD (180)	
		MCI (450)	
		CU (140)	
	Ng	Total AD (485)	NMSE ▼
		Total AD (365)	
		AD (180)	
		MCI (450)	
		CU (140)	
Brinkman et al. (2014)	SNAP-25	AD (36)	NMSE ▼
		CU (33)	
Bruno et al. (2020)	Alpha-synuclein	CU (19)	BVRT *
		CU (19)	
Cauzletto et al. (2017)	Ng	CU with family history of dementia (132)	AVLT ▼ WMS-III symbol digit coding BNT * WMS-III DSF WMS-III DSB *
Charruette, Del Campo, et al. (2018)	Contactin-2	Total sample (134)	NMSE ▼
		AD (106)	
		CU (48)	
De Vos et al. (2015)	Ng	AD (50)	NMSE *
		MCI (38)	
De de Jong et al. (2007)	NIL	EAD (37)	NMSE *
		AD (33)	
		DLB (18)	
		FTD (28)	

(Continues)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, ▴ negative, * non-significant; non-adjusted results reported where available)
Delaby et al. (2020)	NIL	CU (118)	MMSE
		AD (116)	MMSE
		FTD (56)	MMSE
		DLB (37)	MMSE
		pDLD (26)	MMSE
		PSP (12)	MMSE
		CIB (26)	MMSE
Dhiman et al. (2020)	NIL	Total sample (221)	MMSE
Galasko et al. (2018)	Ng	Total AD, MCI, CU (193)	CVLT immediate recall ▴ CVLT delayed recall ▴
		Aβ/tau+	CVLT immediate recall ▴ CVLT delayed recall ▴
		Aβ/tau-	CVLT immediate recall ▴ CVLT delayed recall ▴
NFTx2		Total AD, MCI, CU (193)	CVLT immediate recall ▴ CVLT delayed recall ▴
		Aβ/tau+	CVLT immediate recall ▴ CVLT delayed recall ▴
		Aβ/tau-	CVLT immediate recall ▴ CVLT delayed recall ▴
SNAP-25		Total AD, MCI, CU (193)	CVLT immediate recall ▴ CVLT delayed recall ▴
		Aβ/tau+	CVLT immediate recall ▴ CVLT delayed recall ▴
		Aβ/tau-	CVLT immediate recall ▴ CVLT delayed recall ▴
Griffith et al. (2018)	NIL	Early MCI (9)	PVLT List Total learning
		MCI (37)	PVLT List Total learning
		CU (63)	PVLT List Total learning
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (≤, positive relationship, ≥, negative, * non-significant; non-adjusted results reported where available)
---------------------------	------------	----------------	---
			Short delay free recall *
			Short delay cued recall *
			Long delay free recall ≥
			Long delay cued recall ≥
			Discrimination ≥
			PViLT ≥
			List Total learning ≥
			Short delay free recall ≥
			Short delay cued recall ≥
			Long delay free recall ≥
			Long delay cued recall ≥
			Discrimination ≥
Headley et al. (2018)	Ng	MCI (165)	Memory composite ≥
			Executive function composite ≥
		CU (111)	Memory composite ≥
			Executive function composite ≥
		Total (306)	MMSE ≥
			ADAS-cog ≥
			ADAS-Cog1 ≥
			Memory composite ≥
			Executive function composite ≥
Hellwig et al. (2015)	Ng	AD + MCI-AD (35)	MMSE ≥
		Non-AD dementia + MCI-0 (43)	MMSE ≥
		CU Ap (86)	MMSE ≥
		CU Ap + (86)	MMSE ≥
Highland et al. (2017)	Nil	CU Ap (43)	MMSE ≥
		CU Ap + (86)	MMSE ≥
	Ng	CU Ap (43)	MMSE ≥
		CU Ap + (86)	MMSE ≥
		VILIP-1	MMSE ≥
	Cu Ap (43)		MMSE ≥
	Cu Ap + (86)		MMSE ≥

(Continued)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, ▼ negative, * non-significant; non-adjusted results reported where available)
Jia et al. (2020)	Ng	Discovery cohort AD (28) Validation cohort (73)	▼ ▼
			▼ ▼
	GAP-43	Discovery cohort AD (28) Validation cohort (73)	▼ ▼
			▼ ▼
	SNAP-25	Discovery cohort AD (28) Validation cohort (73)	▼ ▼
			▼ ▼
	Synaptophysin-1	Discovery cohort AD (28) Validation cohort (73)	▼ ▼
			▼ ▼
Kirsten et al. (2018)	Ng	Aβ + MCI (20) Aβ + CNT (19)	▼ ▼ CERAD word list test; ▼ TMT-A; * TMT-B
			▼ ▼
Kvarnberg, Duita, et al. (2015)	Ng	MCI (40)	▼ ▼ CERAD word list test; TMT-A
			▼ ▼
Lee et al. (2008)	VILIP-1	AD (33)	▼ ▼
			▼ ▼
Lim et al. (2019)	NPTX1	MCI (14) MODAD-21 MODAD-43	▼ ▼
			▼ ▼
Matasson et al. (2018)	NIL	Aβ + AD, MCI, CU (262)	▼ ▼ ADAS-Cog11
			▼ ▼ ADAS-Cog11
			▼ ▼ ADAS-Cog11
			▼ ▼ ADAS-Cog11
			▼ ▼ ADAS-Cog11
			▼ ▼ ADAS-Cog11
			▼ ▼ ADAS-Cog11

(Continued)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (± = positive relationship, ▼ = negative; * = non-significant; non-adjusted results reported where available)
McGuire et al. (2015)	NIL	HAD (3)	WAIS-III digit symbol *
		ANT (15)	WAIS-III symbol search ▼
		MNCD (15)	TMT-A ▼
		CU (15)	Story memory test ▼
			Figure memory test ▼
			WCST ▼
			TMT-B ▼
			COWAT ▼
			ANT ▼
			WAIS-III letter-number sequencing ▼
			PASAT ▼
pNPH	HAD (3)		WAIS-III digit symbol ▼
	ANT (15)		WAIS-III symbol search ▼
	MNCD (15)		TMT-A ▼
	CU (15)		Story memory test ▼
			Figure memory test ▼
			WCST ▼
			TMT-B ▼
			COWAT ▼
			ANT ▼
			WAIS-III letter-number sequencing ▼
			PASAT ▼
Meistir et al. (2016)	NIL	FTD with GRN, MAPT, C9orf72 mutation (101)	WAIS-III digit symbol *
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (↑, positive relationship, ↓, negative, * non-significant; non-adjusted results reported where applicable)
---	------------	---	---
Meeter, Gendron, et al. (2018)	NIL	FTD with C9orf72 mutation (66)	NMSE
		Pre-symptomatic carriers of C9orf72 mutation (25)	NMSE
		Total (91)	NMSE
Meeter et al. (2019)	NIL	NvPPA (147)	BNT
			ANT
			Letter fluency
			WAIS-III DSI
			WAIS-III DSB
			TMT-A
			TMT-B
			SCWT
			CDT
			AVLT
			CVLT
			CERAD word list test
			Rey complex figure test
Meeter, Vijnberg, et al. (2018)	NIL	bvFTD (164)	NMSE
			FAB
		aPPA (36)	NMSE
			FAB
		TVPPA (19)	NMSE
			FAB
		hPPA (4)	NMSE
			FAB
		CBS (40)	NMSE
			FAB
		PSP (38)	NMSE
			FAB
		Total sample (including FTD-MND;)	NMSE
			FAB
			(Continued)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (\(r\) positive relationship, \(r^*\) negative, * non-significant; non-adjusted results reported where available)
-----------------------------	------------	----------------	---
Mielsk, Kyryn, Nirenberg, Zeiherberg, Stocq, et al. (2019)	Nil	Dementia (7)	Global composite
		MCI (38)	Memory composite \(\downarrow\)
			Language composite \(\downarrow\)
			Attention composite \(\downarrow\)
			Visuospatial composite \(\downarrow\)
			Global composite \(\downarrow\)
			Memory composite \(\downarrow\)
			Language composite \(\downarrow\)
			Attention composite \(\downarrow\)
			Visuospatial composite \(\downarrow\)
	CU (687)		Total (777)
			Global composite \(\downarrow\)
			Memory composite \(\downarrow\)
			Language composite \(\downarrow\)
			Attention composite \(\downarrow\)
			Visuospatial composite \(\downarrow\)
Ng	Dementia (7)		Global composite
		MCI (38)	Memory composite \(\downarrow\)
			Language composite \(\downarrow\)
			Attention composite \(\downarrow\)
			Visuospatial composite \(\downarrow\)
	CU (687)		Total (777)
			Global composite
			Memory composite \(\downarrow\)
			(Continues)

Note: \(\downarrow\) indicates a negative relationship, * indicates non-significant results.
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (↓, positive relationship, ↑, negative; * non-significant; non-adjusted results reported where available)			
Mislke, Hiltunen, Bennet, Vemuri, et al. (2019)	NIL	MCI (15) CU (64) Total (79)	Global composite * ▼			
Mouton-Liger et al. (2020)	Negli	AD (54) MCI-AD (20) Total: AD (54) MCI-AD (20) Non-AD dementia (30) Non-AD MCI (31)	MMSE ▼			
Oexl et al. (2020)	Beta-synuclein	Cohort 1: AD (64) Cohort 2: AD (40) Cohort 3: AD (49)	MMSE *			
Otthfelt et al. (2016)	Synaptoasmalin	Cohort 1: AD (17) Cohort 2: AD (24) Cohort 1: MCI-AD (5) Cohort 2: MCI-AD (18) Cohort 1: CU (17) Cohort 2: CU (36)	MMSE			
Otthfelt et al. (2019)	SNAP-25	Cohort 1: AD (17) Cohort 2: AD (24)	MMSE			
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, \(\ast \); negative, \(\ast \) non-significant; non-adjusted results reported where available)			
---------------	------------	----------------	--			
			Cohort 1: MCI-AD (5)	NMSE	*	
			Cohort 2: MCI-AD (18)	NMSE	*	
			Cohort 2: CU (17)	NMSE	*	
Osborn et al. (2019)	NfL	Early MCI (27) MCI (132)	Episodic memory composite	*		
				Executive function composite	*	
				BNT	*	
				ANT	*	
				WAIS-IV coding	*	
				DKEFS number sequencing	*	
				Hooper visual organisation test	*	
				Episodic memory composite	*	
				Executive function composite	*	
				BNT	*	
				ANT	*	
				WAIS-IV coding	*	
				DKEFS number sequencing	*	
				Hooper visual organisation test	*	
				Episodic memory composite	*	
				Executive function composite	*	
				BNT	*	
				ANT	*	
				WAIS-IV coding	*	
				DKEFS number sequencing	*	
				Hooper visual organisation test	*	
				Total (333)	*	
Perlis et al. (2015)	Ng	AD (95)	NMSE	*		
				ADAS-cog	*	

(Continued)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, negative, * non-significant; non-adjusted results reported where available)
	pMCI (105)		BMSE *
	sMCI (86)		ADAS-cog *
	CU (110)		NSME *
Racine et al. (2006)	NIL	MCI + CU (76)	CPAL errors-visual memory
			GMCT memory: speed of visual processing *
			GML errors *
			GMR errors *
			OCL accuracy *
			GNB accuracy *
			TOWAB accuracy *
			AVLIT delayed *
			Logical memory delayed *
			BVMT-R delayed *
Rojas et al. (2018)	NIL	PSP (50)	RBANS
			Colour trails 1 *
			Colour trails 2 *
			Letter-number sequencing *
			Phonemic fluency *
Rolstad, Berg et al. (2015)	NIL	Dementia-vascular (65)	Attention composite *
			Learning/memory composite *
			Visuospatial composite *
			Language composite *
			Executive function composite *
		Dementia- non-vascular (128)	Attention composite *
			Learning/memory composite *
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (↑: positive relationship, ▼: negative, *: non-significant; non-adjusted results reported where available)
-----------------------------	------------	----------------	--
			Visuospatial composite ▼
			Language composite *
			Executive function composite *
MCI- vascular (86)			
			Attention composite ▼
			Learning/memory composite *
			Visuospatial composite *
			Language composite *
			Executive function composite *
MCI- non-vascular (175)			
			Attention composite *
			Learning/memory composite *
			Visuospatial composite *
			Language composite *
			Executive function composite *
SCI- vascular (48)			
			Attention composite ▼
			Learning/memory composite *
			Visuospatial composite *
			Language composite *
			Executive function composite *
SCI- non-vascular (120)			
			Attention composite ▼
			Learning/memory composite *
			Visuospatial composite *
			Language composite *
			Executive function composite *
Rolstad, Jakobsen, et al. (2015)	NIL	CU (72)	
			Memory composite *
			Executive functions composite *
			Visuospatial composite *
			Attention composite *
			Verbal functions composite *

(Continued)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, negative, * non-significant; non-adjusted results reported where available)
Sancesoastro et al. (2020)	Ng	CU (30)	MMSE *
Sandellius et al. (2018)	GAP-43	AD (1275)	MMSE
		MCI (84)	MMSE
		CU (43)	MMSE
		FTD (39)	MMSE
		DLB (27)	MMSE
		bvPFA (10)	MMSE
		svPFA (15)	MMSE
		PSP (18)	MMSE
		CBS (19)	MMSE
Total sample (862; CU, MCI, AD, ALS, FTD, PD, PD-MCI, PD-dementia, DLB, bvPFA, svPFA, PSP, CBS, PCA)		MMSE *	
Sani Filippo et al. (2016)	Ng	AD (28)	MMSE
		MCI (30)	MMSE
		MCI-AD (36)	MMSE
		CU (44)	MMSE
Sani Filippo et al. (2019)	Ng	CU (20)	MCI
Schurting et al. (2014)	NIL	Total: Asymptomatic FTD mutation carriers (8)	MMSE *
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (±, positive relationship, ▼, negative, * non-significant; non-adjusted results reported where available)
---------------	------------	----------------	---
			Roy-Osterrieth figure ▼
			DSB ▼
			TMT ▼
			Stroop colour naming task ▼
			BNT ▼
			ANT ▼
			CVLT ▼
			Phonemic fluency ▼
			MMSE ▼
			Roy-Osterrieth figure ▼
			DSB ▼
			TMT ▼
			Stroop colour naming task ▼
			BNT ▼
			ANT ▼
			CVLT ▼
			Phonemic fluency ▼
			MMSE ▼
			Roy-Osterrieth figure ▼
			DSB ▼
			TMT ▼
			Stroop colour naming task ▼
			BNT ▼
			ANT ▼
			CVLT ▼
			Phonemic fluency ▼
			(Continues)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (↓, negative relationship, ↑, positive relationship, * non-significant; non-adjusted results reported where available)
-----------------------	------------	------------------------------------	--
Schirrler et al. (2019)	Ng	Carriers of mutations in PSEN1, PSEN2, or APP (235)	DHA cognitive composite ▼
		Mutation non-carriers (145)	DHA cognitive composite
		SNAP-25	DHA cognitive composite ▼
		Carriers of mutations in PSEN1, PSEN2, or APP (235)	DHA cognitive composite
		Mutation non-carriers (145)	DHA cognitive composite
		VILIP-1	DHA cognitive composite ▼
		Carriers of mutations in PSEN1, PSEN2, or APP (235)	DHA cognitive composite
		Mutation non-carriers (145)	DHA cognitive composite
Sjogren et al. (2000)	NIL	Insufficient white matter changes (61); AD, BVD, CU	MMSE ▼
		Extensive white matter changes (14); AD, BVD, CU	MMSE
Sjogren et al. (2000)	NIL	FTLD (18)	MMSE ▼
		AD (21)	MMSE ▼
Skillhack et al. (2014)	NIL	EAD (223)	MMSE
		AD (1194)	MMSE
		FTD (146)	MMSE
		DLB (114)	MMSE
		VaD (465)	MMSE
		MWC (317)	MMSE
		PDC (45)	MMSE
		Dementia NOS (437)	MMSE
		Total (3303)	MMSE
Sun et al. (2016)	Ng	ApoE ε4 carriers: AD (67) NCI (102) CU (27)	MMSE
Swanson et al. (2016)	NPTX2	Total: AD (64) NCT (138) CU (86)	MMSE
		ADAS-Cog11	Memory composite
		(Continues)	

(Continued)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (i.e., positive relationship, ψ: negative, * non-significant; non-adjusted results reported where available)
Teisadottir et al. (2020)	NfL	AD CSF profile (28): SCI (2), MCI (16), DLB (1)	Verbal episodic memory composite ◼
		Non-AD CSF profile (14): SCI (10), MCI (15), DLB (1)	
van der Ende et al. (2020)	NPTX2	Symptomatic genetic PTD (54)	MMSE ◼ TMT-B ◼ Phonemic verbal fluency ◼
		Presymptomatic genetic PTD (108)	*
van Steenoven et al. (2020)	NPTX2	DLB (85)	MMSE ◼
	NPTX2	DLB (85)	*
Wang (2019)	Ng	AD (81)	MMSE *
		MCI (171)	MMSE *
		CU (99)	MMSE *
		Total (351)	MMSE ◼
Wang, Zhou, and Zhang (2018)	SNAP-25	AD (16)	MMSE ◼
		MCI (75)	*
		CU (55)	*
Wellington et al. (2016)	Ng	AD (100)	MMSE *
		bvPTD (20)	MMSE *
		sPTD (25)	MMSE *
		DLB (13)	MMSE *
		PBA (46)	MMSE *
		CU (19)	MMSE *
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (↓, positive relationship, ↑, negative, * non-significant; non-adjusted results reported where available)
--------------------------	------------	-------------------------------------	--
		Total (including PD, MSA, mood disorders)	↓ NSIE
		AD-like biomarker profile (151)	↑ NSIE
		Non-AD-like biomarker (109)	↑ NSIE
Xiao et al. (2017)	NPTX2	AD (30)	↓ NSIE
		Diss	↓ BNT
		Phonemic verbal fluency	↑
		Semantic verbal fluency	↑
		WCT	
		Visual reproduction test	
		Block design	
		CDT	
		CVLT	
Zetterberg et al. (2016)	NCL	AD (95)	↓ NSIE
		ADAS-cog	↓ NSIE
		MMSE	
		pMCI (181)	
		mMCI (91)	
		Cu (110)	
Zhang, Ng et al. (2018)	VILIP-1	Ajl + AD, MCI, CU (83)	↓ NSIE
		Ajl- MCI, CU (38)	↓ NSIE

(Continues)
Study	CSF marker	Population (N)	Cognitive assessment and direction of relationship (p, positive relationship, *p* negative, **p** non-significant; non-adjusted results reported where available)
Zhang, Thiriault, et al. (2018)	SNAP-25	AD (18)	MMSE *
		mCFT (22)	ADAS-cog *
		pMCI (47)	MMSE *
		CU (52)	ADAS-cog *

Abbreviations: ACE-CZ, Alzheimer’s Cognitive Examination-Czech Version; AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ALS, amyotrophic lateral sclerosis; ANL, asymptomatic neurocognitive impairment; ANT, animal naming test; Aud, auditory-verbal learning test; April, amyloid-beta negative; ApL, amyloid-beta positive; BMIH, brief nasal depression battery; BNT, Boston naming test; BVRT, Buschke selective reminding test; bvFTD, behavioural variant FTD; BVMT-R, Brief visuospatial memory test-revised; BVMT, Brief visuospatial memory test; CAMCOG, Cambridge cognitive examination; CBS, corticobasal syndrome; CDT, clock drawing test; CERAD, consortium to establish a registry for Alzheimer’s disease; CDR, Clinical Dementia Rating; COWAT, controlled oral word association test; CPAL, continuous paired associate learning; CU, cognitively unimpaired; CVLT, California verbal learning test; DAI, dominantly inherited Alzheimer network; DKEFS, Delis-Kaplan executive function system; DLS, dementias with Lewy bodies; DRR, digit span backwards; DSS, digit symbol substitution; EAD, early-onset Alzheimer’s disease; FAB, frontal assessment battery; FTD, frontotemporal dementia; GMC7, greats mean times chase test; GML, greats mean learning test; GMB, greats mean learning test delayed recall; HAD, HAM-D associated dementia; hPPA, hippocampal variant primary progressive ahydia; MCI, MCI-C, MATRICS consensus cognitive battery; MCI-AD, mild cognitive impairment due to Alzheimer’s disease; MCI-a, mild cognitive impairment not due to Alzheimer’s disease; MCI-C, mild cognitive impairment; MDS, mixed dementia; MMSE, mini mental state examination; MND, motor neuron disease; MSA, multiple system atrophy; NCL, neuroflament-light; nlPPA, non-fluent variant primary progressive ahydia; Ng, neocognist; NOH, not otherwise specified; OCL, one-case learning; ODN, one-back memory; PAAST, paced auditory serial addition test; PCA, posterior cortical atrophy; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; pGSLB, prodromal dementia with Lewy bodies; pKCL, progressive MCI; pMCI, phospho tau/protein neunflament heavy; PSP, progressive supranuclear palsy; PVT, Philadelphia verbal learning test; RBANS, repeatable battery for the assessment of neuropsychological status; SCWT, story word test; sMCI, status MCI; PDD, parkinson’s disease; sPPA, semantic primary variant primary progressive ahydia; TMT-A, trail making test A; TMT-A, trail making test A; TMT-B, trail making test B; TMT-B, trail making test B; TMT-B, trail making test B; TMT-C, trail making test C; WAL, Wernicke’s aphasia; WMS, Wechsler adult intelligence scale; WCST, Wisconsin card sorting test; WRI, Wernicke’s encephalopathy.
CSF marker	AD	MCI	CU	AD, MCI, CU Aβ+	AD, MCI, CU Aβ-	AD, MCI, CU Aβ-	MCI, CU	CUT	PTD-related syndromes	DLB	VaD	EAD	PSP	CBS	Other
NfL	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺
Ng	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺
α-Syn	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺
β-Syn	![Triangle]														
Cortactin-2	![Triangle]														
GAP-43	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺	🌺
NFTX1/2/R	![Triangle]														

(Continues)
CSF marker	AD	MCI	Cu	AD, MCI Cu Ap-	AD, MCI Cu Ap+	AD, MCI Cu	MCI, CU	CuF	FTD-related syndromes	DLB	VaD	EAD	PSP	CBS	Other
Ntg1	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼
SNAP-25	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼
Synaptotagmin-1	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼
VILIP-1	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼	◼

Note: Black inverted triangles (◼) indicate a significant negative association, and green triangles (▲) respectively, indicate a significant positive association between CSF marker levels and neuropsychological performance. Blank circles indicate no significant associations. Numerical value within shape corresponds to number of studies with this finding.

Abbriviations: AD, Alzheimer’s disease; Apβ, amyloid beta negative; Ap+, amyloid beta positive; Cu, cognitively unimpaired; CuF, cognitively impaired with familial history of AD; DLB, dementia with Lewy bodies; EAD, early-onset Alzheimer’s disease; FTD, frontotemporal dementia; GAP-43, growth-associated protein 43; MCI, mild cognitive impairment; NIs, neurofibrillary tangles; Ntg, neurogranin; NPTX2, neurexin 2 protein 1 receptor; Ntg1, neurogranin-1; PBP, progressive supranuclear palsy; SNAP-25, synaptosomal-associated protein 25; VaD, vascular dementia; VILIP-1, villin-like protein 1; α-syn, alpha-synuclein; β-syn, beta-synuclein.
A significant association between CSF NfL and neuropsychological performance was consistently reported in 15 FTD studies; however, the cognitive assessment used may have influenced results. In FTD, three studies report significant moderate-to-weak relationships with MMSE scores (Alcolea et al., 2017; Delaby et al., 2020; Sjögren et al., 2000), although three studies showed no significant correlation (Abu-Ramleh et al., 2018; de Jong et al., 2007; Skillback et al., 2014). Despite a lack of association with MMSE scores, one study showed a weak but significant correlation with the frontal assessment battery (FAB)—a tool which is more sensitive to FTD (Dubois et al., 2000). Similarly, findings in studies of familial FTD were also mixed. One study found a significant correlation with MMSE scores in patients with a C9orf72 mutation (Meeter, Gendron, et al., 2018), while another reported no association in those with mutations in the MAPT, GRN, or C9orf72 genes (Meeter et al., 2016). Nevertheless, four studies examining subvariants of FTD consistently reported significant associations between CSF NfL and neuropsychological performance across subvariants (Meeter, Vijverberg, et al., 2018; Meeter et al., 2019; Rojas et al., 2018; Schefling et al., 2014).

Other types of dementia, including DLB and VaD, were investigated in five studies. Most studies reported no association between CSF NfL and MMSE in DLB (de Jong et al., 2007; Delaby et al., 2020; Skillback et al., 2014), although interestingly one showed a significant correlation in prodromal DLB. In two studies, NfL was correlated with neuropsychological performance in VaD and mixed dementia (Sjögren et al., 2001; Skillback et al., 2014). Finally, one study investigated HIV-associated neurocognitive disorders (HAND) and while there were no associations between NfL and neuropsychological performance, there was a significant correlation with CSF levels of phosphorylated neurofilament heavy (pNFH) domains (McGuire et al., 2015).

Most studies including CU participants reported a significant association between CSF NfL and neuropsychological performance (Aschenbrenner et al., 2003; Gifford et al., 2018; Mielke, Syrjanen, Ilonen, Zetterberg, Skoog, et al., 2019; Osborn et al., 2019); however, three reported no significant correlation (Bendlin et al., 2012; Bos et al., 2019; Hoglund et al., 2017). Moreover, studies using the MMSE consistently reported no significant correlation with CSF NfL levels, while most studies using other validated cognitive assessments reported significant results. One study included a younger sample (mean age = 37.8 years) and reported no significant association with cognitive composite test scores (Rolstad, Jakobsen, et al., 2015).

As reported in Table 4, CSF NfL appears to be related to neuropsychological performance in AD, MCI, and some forms of FTD. Conflicting results could be attributed to the cognitive assessment used; many studies employing the MMSE tended to report no associations, whereas more sensitive test scores appear to correlate with CSF NfL levels.

3.3.2 Papers on CSF Ng

In total, 22 studies examined the association between CSF Ng and neuropsychological performance. Overall, CSF Ng was associated with neuropsychological performance in larger AD and MCI samples but not in CU or non-AD dementias.

Nine studies examined the relationship with neuropsychological performance in AD samples. Some studies reported significant correlations with global cognition (Agnello et al., 2020; Bos et al., 2019; Jia et al., 2020; Sanfilippo et al., 2016), while a number of others reported no significant associations (De Vos et al., 2016; Hellwig et al., 2015; Portelli et al., 2015; Wang, 2019; Wellington et al., 2018). However, all studies reporting no association had sample sizes of fewer than 100 participants. In studies pooling AD, MCI, and CU participants, sample sizes ranged from 193 to 770 and all three studies reported significant associations with neuropsychological performance (Bos et al., 2019; Galasko et al., 2019). In one study, this relationship was limited to ApoE- patients (Bos et al., 2019), while in another it was independent of CSF Aβ and t-tau (Galasko et al., 2019). In carriers of autosomal dominant AD mutations in PSEN1, PSEN2 or APP genes, one study reported a significant association between Ng and neuropsychological performance (Schindler et al., 2019). Finally, one study with a CU sample enriched for a familial history of AD and ApoE ε4 carriers reported a weak correlation with neuropsychological performance (Casalietto et al., 2017).

Most studies examining MCI samples found no significant association between CSF Ng and MMSE or ADAS-Cog scores (Bos et al., 2019; De Vos et al., 2016; Hellwig et al., 2015; Kwartsberg, Duits, et al., 2015; Portelli et al., 2015; Wang, 2019). Moreover, two studies using domain-specific tests reported significant correlations (Headley et al., 2018; Mielke, Syrjanen, Ilonen, Zetterberg, Skoog, et al., 2019). Interestingly, one study that reported no associations in MCI or SCI, however, did show a significant correlation between CSF Ng/BAE3 ratio and neuropsychological performance (Kirsibor et al., 2018).
Only two studies examined CSF Ng and neuropsychological performance in non-AD dementia. Both showed no significant relationships in bvFTD, eGPPA, PSP, DLB and non-AD related MCI (Hellwig et al., 2015; Wellington et al., 2016).

Eleven studies reported no associations between CSF Ng and neuropsychological performance in CU samples (Bruno et al., 2020; Headley et al., 2018; Hoglund et al., 2017; Mielle, Syljander, Blennow, Zetterberg, Skoog, et al., 2019; Sancesurra et al., 2020; Santillo et al., 2019; Schindler et al., 2019; Wang, 2019; Wellington et al., 2018). Cognitive domains assessed, immununoassay methods used or mean sample ages did not appear to influence results.

Overall, CSF Ng is associated with neuropsychological performance in AD studies (see Table 4) with large samples. Most studies reporting significant correlations had sample sizes of ~200 or above, while those reporting no relationship tended to have smaller samples. Findings for MCI were less convincing, as the majority of studies found no associations. No significant results were found for CU or non-AD dementia samples.

3.3.3 Papers on other CSF markers

Twenty-two papers examined another CSF marker of interest. Overall, CSF NPTX2, and to a lesser extent CSF SNAP-25, had the most promising evidence as markers associated with neuropsychological performance across diagnoses. Studies examining other CSF markers largely reported negative results.

A significant association between CSF NPTX2 and neuropsychological performance was consistently reported across studies. Three studies found a significant positive relationship with MMSE and domain-specific assessments across the AD spectrum (Galasko et al., 2019; Swanson et al., 2016; Xiao et al., 2017), while one study reported no significant association (Boitens et al., 2021). Additionally, three studies reported associations in non-AD dementias, namely, DLB (Boiten et al., 2021; van Steenoven et al., 2020) and PTD patients with GBR, C3,, and MAPT mutations (van der Ende et al., 2020). Moreover, two studies found significant associations between MMSE scores and CSF NPTX1 levels (Lim et al., 2019; van Steenoven et al., 2020). One study investigated CSF NPTX1 levels but reported no associations with MMSE scores (Reggevici et al., 2018).

Seven studies examined CSF SNAP-25 across the AD-spectrum, although findings were slightly more mixed. Two studies using the ultra-sensitive SIMOA assay reported significant associations with neuropsychological performance in carriers of autosomal AD mutations and in a pooled sample of AD, MCI and CU, respectively (Galasko et al., 2019; Schindler et al., 2019). The use of other immunoassay methods did not appear to impact findings as studies using ELISAs and MS methods both reported significant (Brinkmalm et al., 2014; Jia et al., 2020; Wang, Zhou, & Zhang, 2018) and non-significant (Öhrfelt et al., 2019; Zhang, Therriault, et al., 2018) associations. One paper did show an association between neuropsychological performance and a CSF SNAP-25/Ab42 ratio but not CSF SNAP-25 alone.

Three studies reported significant correlations between MMSE scores and CSF VILIP-1 in AD (Lee et al., 2008), a pooled sample of AD, MCI and CU participants (Zhang, Ng, et al., 2018) and in carriers of autosomal dominant AD mutations (Schindler et al., 2019). This relationship may be specific to those with AD pathology as one study reported no associations in a CU sample (Hoglund et al., 2017).

Few studies investigated the remaining CSF markers. Firstly, one small study showed a significant association between CSF tau levels and MMSE scores in AD and MCI but not in non-AD dementias (Moutier-Liger et al., 2020). Secondly, CSF contactin-2 levels were correlated with MMSE scores across the AD-spectrum (Chattejee, De Campo, et al., 2018), but this failed to replicate in a validation cohort. Thirdly, CSF beta-synuclein was correlated with MMSE scores but also failed to replicate in a validation cohort (Oekl et al., 2020). No relationship was found between neuropsychological performance and alpha-synuclein (Agnello et al., 2020; Bruno et al., 2020). Finally, findings concerning CSF GAP-43 (Sandellius et al., 2019) and synaptogamin-I were mixed; one small study reported significant associations with neuropsychological performance (Jia et al., 2020) while others failed to find such relationships (Öhrfelt et al., 2018; Sandellius et al., 2019).

Overall, CSF NPTX2 appears to be associated with neuropsychological performance across diagnoses (see Table 4). There was some evidence for an association with CSF SNAP-25 across the AD-spectrum, however, findings were somewhat mixed. Additionally, the few studies examining CSF VILIP-1 levels reported significant relationships across the AD-spectrum. Conversely, evidence for the remaining CSF markers is limited, owing to small samples and few studies examining such markers.

3.4 Heterogeneity

There was significant heterogeneity documented between the studies included in this review. Sources of variability were most evident in the number of difference cognitive assessments used. Although the MMSE was the most
commonly employed test, many studies used cognitive composite scores, which hampered our ability to conduct a comparison between the studies. Moreover, across studies using the MMSE only, many non-significant correlation coefficients were not reported. Differences in statistical analyses also contributed to heterogeneity, while some studies used Spearman or Pearson correlations to analyse data and others used various regression models with different adjustment factors. For these reasons, a quantitative meta-analysis of results was not possible.

4 | DISCUSSION

We conducted a systematic review to investigate the relationship between CSF markers of synapse and neuronal loss and neuropsychological performance in dementia and typical ageing. Overall, the substantial heterogeneity between studies makes it difficult to draw firm conclusions on any markers associated with cognition. However, there may be evidence for an association between cognition and CSF NfL across dementia syndromes/cognitive ageing and CSF Ng in those with an AD-like biomarker profile. There was some evidence CSF NPTX2 and SNAP-25 are associated with cognition.

We found evidence for an association between CSF NfL and neuropsychological performance in AD, FTD and aged CU samples. There was some evidence for an association in MCI participants, but those findings were conflicting. Elevations of CSF NfL have been reported across neurodegenerative diseases and is thought to reflect global degeneration as neurofilaments ‘leak’ out of damaged axons into the CSF (see Figure 2). However, the lack of consistent findings for MCI samples was surprising. Most studies reporting non-significant associations across diagnoses used the MMSE to assess cognitive impairment, while those using the ADAS-Cog or domain-specific tests tended to report significant correlations with CSF NfL levels. The MMSE is known to lack sensitivity, particularly in detecting MCI (Mitchell, 2009) and so it could be speculated that this test is not the most adequate to capture subtle cognitive impairments and therefore not a suitable tool for studies investigating potential biomarkers associated with cognition.

We also found some evidence that CSF Ng is associated with cognition in studies with large samples, possibly in Aβ+, participants (Ish et al., 2019) and Aβ+/Tau+ participants (Galasko et al., 2019). However, several studies focusing solely on participants with a clinical AD diagnosis reported no significant results. The use of the MMSE and small samples was a common feature of such studies indeed; those using larger samples tended to report significant associations. Meanwhile, CSF Ng was not associated with neuropsychological performance in non-AD dementias. It is possible that Ng

![Figure 2](https://onlinelibrary.wiley.com)
Figure 2 Schematic of localisation of synaptic and axonal markers included in the current review. Left: localisation in healthy synapses and axons. Right: possible mechanism of release into the cerebrospinal fluid (CSF) in degrading and damaged neurons.
is specifically lost from synapses damaged by Aβ or tau, which are both associated with synaptic toxicity (Jackson et al., 2019; Koffie et al., 2009, 2012; Pickett et al., 2019) (see Figure 2). Indeed, CSF Ng was only associated with neuropsychological performance in a CU sample when enriched for a familial history of AD. However, the substantial heterogeneity between studies makes it difficult to draw firm conclusions on the use of CSF Ng as a biomarker associated with cognition.

The current review also highlighted other potential emerging biomarkers associated with cognition, namely, NPTX2 and SNAP-25. CSF NPTX2 was consistently associated with neuropsychological performance in FTD, DLB and across the AD-spectrum. In addition to its essential role at the synapse, low CSF NPTX2 levels are associated with hippocampal atrophy (Swanson et al., 2016), supporting its role as a biomarker of synapse dysfunction. Our findings suggest that CSF NPTX2 is not a disease-specific marker of synapse loss but may instead reflect general synaptic dysfunction, although further research will be needed. CSF NPTX2, along with contactin-2, was positively correlated with neuropsychological performance, unlike all other markers which had negative correlations. A potential explanation for these findings is that some synaptic and axonal proteins may leak out into the CSF after neuronal damage (those which show negative correlations with cognition); however, NPTXs and contactin-2 levels may be reduced in surviving synapses, causing less to be secreted into the CSF as part of healthy synaptic turnover (see Figure 2).

SNAP-25 was also a promising marker associated with cognition, although the evidence was less convincing and findings may have been influenced by small sample sizes. Prior to 2019, an ELISA assay available for CSF SNAP-25 analysis was not available (Öhrfelt et al., 2019). With the growing accessibility of ELISA sampling technologies, we expect that further research will be able to employ larger sample sizes than those which are practical with mass-spectrometry methods. Both studies using the ultrasensitive SIMOA immunoassay reported an association between SNAP-25 levels and neuropsychological performance. Given the relatively low detected concentrations of CSF SNAP-25 in the included studies, the improved sensitivity provided by SIMOA immunoassays may be more suited for future research.

While out of the scope of the current review, longitudinal studies of cognitive decline are also needed and useful. Cross-sectional cognition can be dependent on several factors, such as age. While cross-sectional age trends in cognitive measures have been reported to have a linear pattern, different samples with different ages may not be directly comparable (Salthouse, 2019).

Longitudinal studies are needed to provide a direct measure of change with the same individuals assessed at each age. Longitudinal cohort studies such as the EPAD-LCS (Ritchie et al., 2020; Solomon et al., 2018) may provide useful insights into how CSF markers relate to cognitive decline.

4.1 Beyond CSF markers

It is unlikely that a single CSF marker will act as a reliable biomarker for neuronal and synaptic changes affecting cognition. As assays become more sensitive and specific, a combination of CSF markers capturing different aspects of neurodegeneration may be a better correlate of cognition than single markers alone. However, CSF biomarkers are a relatively crude measure of brain function as regional differences cannot be examined. Incorporating both structural imaging (e.g. MRI) and functioning imaging (e.g. FDG-PET and qEEG) along with cognitive testing is likely to provide a strong indication of neurodegeneration and cognitive status (Colom-Cadena et al., 2020). Magnetic resonance imaging (MRI) can provide further information on neurodegeneration occurring in the brain. As one of the most widely used and accessible imaging methods, it is currently recommended in diagnostic criteria for AD (Jack et al., 2018). T1- and T2-weighted images show different atrophy patterns and white matter alterations across different dementia syndromes (Harper et al., 2017), which all correlate with degree of the cognitive impairment (Bayram et al., 2018; Sudo et al., 2019; Wok & Dickerson, 2011). The 7T MRI can provide further information about cognitive decline at an ultra-high resolution, such as hippocampal subfield changes across dementias and MCI (McKee & O'Brien, 2017).

Functional imaging can also provide information about brain functioning. Positron emission tomography (PET) with 2 [18F]fluoro-2-deoxy-D-glucose (FDG-PET) provides visualisation of the metabolic rate of glucose in the brain (Hoffman et al., 2006; Phelps et al., 1979) which is a direct index of synaptic functioning and an indirect index of synaptic density (Atwell & Iadecola, 2002; Rocher et al., 2003; Sokoloff, 1977). Reduced (18F) FDG uptake correlates with cognition in AD and MCI (Chiaravalloti et al., 2020; Landau et al., 2011). Recently, a direct measure of synapse density has been developed by targeting proteins critical for synaptic functioning (Finnema et al., 2016, 2018). PET ligands such as [11C] UCB-J target synaptic vesicle glycoprotein 2A (SV2A), a ubiquitous protein expressed in pre-synaptic terminals which is critical to synaptic function (Vogl et al., 2015). SV2A PET provides the opportunity to visualise synapses...
in vivo which is vital when investigating synapse loss. Decreased \(^{11}C\)-UCB-J binding has been reported in early AD (Chen et al., 2018; Mecca et al., 2020) and correlates with episodic memory (Chen et al., 2018).

Additional functional imaging techniques, such as electroencephalography (EEG), provide a direct measure of neuronal field potentials. Reflecting the summed post-synaptic potentials of excitatory and inhibitory neurons (Lopes da Silva, 2013), EEG is able to detect synapse dysfunction in vivo. Quantitative EEG analysis provides data reflecting neuronal circuit changes as a result of synapse dysfunction. Increases in delta (0.5-4 Hz) and theta (4-8 Hz) power bands, with a parallel decrease in alpha (8-13 Hz) and beta (13-30 Hz) power, have been reported in AD (Jelic et al., 2000). Furthermore, an increase in theta power is associated with clinical progression from SCI to MCI in those with A\(\beta\) pathology (Gocu et al., 2017), suggesting that changes in theta power may be associated with synapse dysfunction or loss. Magnetoencephalography (MEG) also records a signal based on post-synaptic potentials; however, where EEG records electric potentials, MEG records the magnetic fields that are induced by electrical fields in the cortex (Lopes da Silva, 2013). Alterations have been reported in AD, MCI and SCI (López-Sanz et al., 2018; Serrano et al., 2020; Xie et al., 2019), and increases in theta and beta2 power (20-30 Hz) have been reported in progeric MCI versus stable MCI (López et al., 2016). An increase in parietal delta power was found to increase the probability of conversion from MCI to AD by 330% (Fernández et al., 2006). Advantages of EEG and MEG include accessibility and non-invasive nature, as well as the excellent temporal resolution provided. Both of these functional techniques could contribute to an accurate readout of brain function at the network level.

With the exception of EEG and MRE in certain cases, the above methods are not part of routine practice. The costs associated with these methods, along with the invasive nature of CSF sampling and PET scans, could be a barrier to implementation in general practice. A biomarker detectable in the blood via a blood test would be more accessible, relatively invasive and most patients would be familiar with the procedure. A robust blood-based biomarker of synapse loss or neuronal injury is not yet available; however, there is promising evidence for several markers.

A\(\beta\) and tau show promise as blood biomarkers for AD. Plasma A\(\beta\) is reduced in AD (Janellidze et al., 2016; Ovod et al., 2017; Zetterberg et al., 2011), correlates with CSF A\(\beta_42\) and can predict amyloid PET positivity (Nakamura et al., 2018). Plasma t-tau and p-tau levels are significantly increased in AD (Oloso et al., 2016; Randall et al., 2013; Zetterberg et al., 2013) and MCI (Yang et al., 2018). Plasma t-tau correlates with cognitive decline in MCI (Mielke et al., 2017), and plasma p-tau181 is associated with both A\(\beta\) and tau PET (Mielke et al., 2018) and is more closely associated with AD neuropathology than a clinical diagnosis (Lahtinen Rodriguez et al., 2020). Blood levels of p-tau217 are also elevated in AD and MCI and correlate with cognitive decline (Janellidze et al., 2010; Mattsson-Carlgren et al., 2020). Blood levels of N\(\epsilon\) show promise as a marker of general neurodegeneration; plasma or serum N\(\epsilon\) levels are altered and correlate with MMSE scores in dementia syndromes and other neurodegenerative diseases (Al Shweiki et al., 2019; Khalil et al., 2020; Mattsson, Andreasson, et al., 2017; Sagarman et al., 2020; Zetterberg, 2016). However, not all CSF markers may be useful as blood biomarkers. In the CSF, Ng is a promising marker associated with cognition whereas in the blood, evidence suggests its use may be limited. While detectable in the blood, levels do not correlate with CSF Ng nor do they differ between AD and controls (De Vos et al., 2015; Kvartibråten, Pentelius, et al., 2015). However, advancing technologies have made it possible to analyse neuron-derived exosomes (NDEs) in blood which may offer increased sensitivity (Zetterberg, 2019). Indeed, a meta-analysis reported a significant reduction of Ng plasma NDEs in AD and MCI (Liu et al., 2020). One study found an inverse correlation between GAP-43, SNAP-25, Ng and synaptogamin-1 NDEs and CSF levels of the protein, as well as a significant reduction in AD and MCI, and a significant decrease in with MMSE scores (Jia et al., 2020). While this is promising evidence, the validation of blood biomarkers faces additional challenges. The CSF contains more neurally derived molecules than blood (Zetterberg, 2019) which is particularly important to consider if the analyte of interest is expressed elsewhere in the body other than the brain, such as Ng expression in the lungs and kidneys which could explain the lack of correlation between blood and CSF levels (Diaz-Guerre, 2010). Blood bio-
markers require sensitive and specific assays with meticulous validation studies (Zetterberg & Rurram, 2019), and the issues surrounding low reproducibility for CSF markers is also relevant for the validation of blood biomarkers.

4.2 Limitations

While this is the first known systematic review to examine CSF biomarkers associated with cognition in ageing and disease, it was not possible to conduct a meta-analy-
sis. An independent academic librarian was consulted with regard to the overall search strategy; however, they
did not validate search terms. Furthermore, T.S.S. and D.A.G. were not blinded to studies when extracting data or rating the quality of studies which could introduce bias. Publication bias could also have affected the results of this review.

4.3 | Recommendations

The current review reported conflicting findings between similar populations. While biologically important differences could explain these apparent discrepant findings, methodological heterogeneity could also be a contributing factor. We were unable to assess heterogeneity statistically; however, our review indicated substantial variability in methodology between studies. For example, differences in adjustment factors, cognitive tests and statistical analyses performed were some of the most common variations noted. A recent review has discussed low reproducibility as a common issue for biomarker findings (Mattsson-Carlsgren, Palmqvist, et al., 2020). The authors highlighted a number of sources of variability including cohort factors, assay factors, pre-analytical factors and lack of validation methods. The field could improve on standardization with selecting a gold-standard cognitive assessment, common adjustment factors, and the complete reporting of results. For novel biomarkers, validation cohorts are the most robust validation method (Mattsson-Carlsgren, Palmqvist, et al., 2020) and may improve the low reproducibility in the field. The overall quality of studies was good/fair. All studies clearly stated research objectives and most defined the study population clearly. However, only one of the included studies conducted a power analysis which limits confidence in findings, particularly in studies with smaller sample sizes.

To improve study quality and reporting, we recommend that future studies should address standardising cognitive assessments. The MMSE may not be the most appropriate tool for floor and ceiling effects and a lack of sensitivity in detecting MCI (Mitchell, 2009). Other tests of global cognition such as The Repeatable Battery for the Assessment of Neuropsychological Status (Randolph, 1998) and the Addenbrooke’s Cognitive Examination (Mathuranath et al., 2000) could be potential gold-standard assessments for future studies, although further research is required. In addition to the assessment of global cognition, domain-specific tests should also be used in future research. The International Working Group note a specific episodic memory disorder in AD which can be identified by tests that include list learning, such as the free and cued selective reminding test, paired associate learning and the Rey auditory verbal learning tasks (Dubois et al., 2014). Such tests are likely to be important in exploring potential biomarkers associated with disease-specific cognitive impairments. A number of studies in the review used cognitive composite scores composed of various cognitive tools. These unstandardised composites contribute to variability in the field as they cannot be directly compared. Studies could improve on this by reporting the individual test scores in addition to composite scores or eliciting gold-standard cognitive composites.

Future studies should also improve on the balanced reporting of data, as many studies did not report non-significant correlation coefficients. Finally due to the nature of cohort studies, power analyses are unlikely to affect the final available sample but would still provide insight into whether individual studies are sufficiently powered to detect true relationships.

The reporting of sex and ethnicity differences was sparse. Concentrations of CSF biomarkers can vary with sex and ethnicity; CSF NfL is elevated in males, and elevations in CSF Ng have been reported for females (Mielke, 2020). Few studies have examined CSF marker changes across ethnicities; however, two studies report significant differences in CSF tau between African American and Caucasian groups (Garrett et al., 2019; Howell et al., 2017). Some studies in the current review controlled for sex (and less often for ethnicity), however, to work towards precision medicine, sex and ethnicity should be considered in the progression of cognitive decline, rather than treated as sources of random variability.

5 | CONCLUSION

The current systematic review aimed to examine the relationship between CSF levels of markers for synaptic and neuronal damage with cognition in ageing and disease. Overall, heterogeneity between studies means no firm conclusions can be drawn from our results. We found some evidence for an association between neurophysiological performance and CSF NfL across diagnoses and CSF Ng in those with AD-like pathology. Some studies found relationships with CSF NfL across diagnoses. Recommendations for the field include the improvement of consistent analyses, measurements and reporting, as well as the exploration of important demographic differences in samples. In future research, a combination of CSF biomarkers of synaptic and neuronal loss and structural and functional imaging is likely to be a powerful tool for tracking changes affecting cognition and as a readout for interventions aiming to preserve cognitive function.
ACKNOWLEDGEMENTS
The authors would like to thank Marshall Dozier at The University of Edinburgh and the following authors for providing additional data and clarification for papers included in the current review: Professor Alex Bartos and colleagues, Dr Isabelle Bos and colleagues, Professor Sabrina Capellari, Professor Piero Parchi and colleagues, Professor Serge Gauthier, Dr Hua Zhang, and colleagues, Dr Cristina Sanfilippo and colleagues, Dr Alexander Santillo and colleagues, Dr Eugene Vanmechelen and Dr Henrietta Wellington, colleagues and the following funders: Wolfben Foundation, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, FrimurareFonden, Alzheimersfondet, the Agneta PrytzFolke and Gösta Folke Foundation, the Tornstöm Söderberg Foundation, NIH, UCL/UCLH Biomedical Research Center and the NHRI Queen Square Dementia Biomedical Research Unit. We would also like to thank Professor Paul Worley and colleagues. Graphical abstract created with Biorender.com. Ts and DAG are supported by funding from the University of Edinburgh Translational Neuroscience Programme (108990/2/15/Z). TSI receives grant funding from the UK Dementia Research Institute, which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement no 681381; and two collaborating companies, neither of which had any influence over the current paper. CR is funded by the Innovative Medicines Initiative 115736 (EPAD).

CONFLICT OF INTEREST
The authors have no conflict of interest to report.

AUTHOR CONTRIBUTIONS
TS, DK, TSI, GM and CR conceived and designed the review. TS and DG performed the search, screened papers and extracted data. TSI, DK, CR and GM provided supervision and guidance. TS wrote the original manuscript, and DG, TSI, DK, GM and CR provided feedback and corrections.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/jgs.15656.

DATA AVAILABILITY STATEMENT
No new data were generated in this systematic literature review.

ABBREVIATIONS
\begin{tabular}{ll}
\textbf{Abbreviation} & \textbf{Meaning} \\
\hline
\alpha-syn & Alpha-synuclein \\
\beta-syn & Beta-synuclein \\
AB & Amyloid beta \\
ACE-CZ & Addenbrooke’s Cognitive Examination- Czech Version \\
AD & Alzheimer’s disease \\
ADAS-Cog & Alzheimer’s Disease Assessment Scale- Cognitive Subscale \\
ADHD & Attention deficit hyperactivity disorder \\
ADNI & Alzheimer’s Disease Neuroimaging Initiative \\
ALS & Amyotrophic lateral sclerosis \\
ANI & Asymptomatic neurocognitive impairment \\
ANT & Animal naming test \\
APOE & Apolipoprotein E \\
APP & Amyloid beta precursor protein \\
AVLT & Rey auditory verbal learning test \\
BACE & Beta-secretase 1 \\
BMDB & Brief mental deterioration battery \\
BNT & Boston naming test \\
BRST & Buschke selective reminding test \\
BvFTD & Behavioural-variant FTD \\
BVMT-R & Brief Visuospatial memory test- revised \\
Ca & Calcium \\
Cam & Calmodulin \\
CAMCOG & Cambridge cognitive examination \\
CBS & Corticobasal syndrome \\
CDR & Clinical dementia rating \\
CDT & Clock drawing test \\
CERAD & Consortium to establish a registry for Alzheimer’s disease \\
CID & Creutzfeldt-Jakob disease (CJD) \\
COWAT & Controlled oral word association test \\
CNS & Central nervous system \\
CPAL & Continuous paired associate learning \\
CSF & Cerebrospinal fluid \\
CU & Cognitively unimpaired \\
CUF & Cognitive unimpaired with familial history of Alzheimer’s disease \\
CV & Coefficient of variability \\
CVLT & California verbal learning test \\
DAN & Dominantly inherited Alzheimer network \\
DKEPS & Delis-Kaplan executive function system \\
DLB & Dementia with Lewy bodies \\
DSB & Digit span backwards \\
DSF & Digit span forwards \\
DSM-III-R & Diagnostic and statistical manual of mental disorders, 3rd edition revised \\
DSS & Digit symbol substitution \\
\end{tabular}
Abbr	Definition	Abbr	Definition
EAD	Early-onset Alzheimer’s disease	OCL	One-card learning
EEG	Electroencephalogram	ONB	One-back memory
ELISA	Enzyme-linked immunosorbent assay	P-tau	Phosphorylated tau
EMBASE	Excerpta Medica database	PASAT	Paced auditory serial addition test
FAB	Frontal assessment battery	PCA	Posterior cortical atrophy
FDG	2-[(18F)fluoro-2-deoxy-D-glucose]	PD	Parkinson’s disease
FTD	Frontotemporal dementia	PDD	Parkinson’s disease dementia
GAP-43	Growth-associated protein 43	pDLB	Promodel dementia with Lewy bodies
GENFI	The Genetic Frontotemporal Initiative	pMCI	Progressive MCI
GMCT	Groton maze timos chuse test	pH1	Phosphorylated neurofilament-heavy
GML	Groton maze learning test	PET	Positron emission tomography
GMR	Groton maze learning test delayed recall	PPA	Primary progressive aphasia
HAD	HIV-associated dementia	PSE	Presenilin
HAND	HIV-associated neurocognitive disorder	PSP	Progressive supranuclear palsy
HIV	Human immunodeficiency virus	PVLT	Philadelphia verbal learning test
hvPPA	Logopenic variant primary progressive aphasia	RBANS	Repeatable Battery for the Assessment of Neuropsychological Status
IWG-2	The International Working Group 2	SCI	Subjective cognitive impairment
LBP	Lewy body	SCWT	Stroop colour word test
LTD	Long-term depression	sMCI	Stable mild cognitive impairment
LTP	Long-term potentiation	SIMDQ	Single molecule array
MAPT	Microtubule Associated Protein Tau	SNAP-25	Synaptosom-associated protein 25
MCCB	MATRICS Consensus Cognitive Battery	SNAKE	Soluble NSF attachment protein receptor
MCI	Mild cognitive impairment	SY2A	Synaptic vesicle glycoprotein 2A
MCI-AD	Mild cognitive impairment due to Alzheimer’s disease	SVD	Small vessel disease
MCI-o	Mild cognitive impairment not due to Alzheimer’s disease	svPPA	Semantic variant primary progressive aphasia
MEG	Magnetoencephalography	T-Tau	Total tau
MI	Mixed dementia	TMT-A	Trail making test A
MMSE	Mini-mental state examination	TMT-B	Trail making test B
MNCID	Mild neurocognitive disorder	TWOB	Two-back memory
MND	Motor neuron disease	UCSD	University of California San Diego
MRI	Magnetic resonance imaging	VaD	Vascular dementia
MS	Multiple sclerosis	VILIP-1	Viminin like protein-1
MSA	Multiple system atrophy	WAIS	Wechsler adult intelligence scale
NDE	Neuron-derived exosomes	WCST	Wisconsin card sorting test
NHI	Neurofilament-heavy	WE	Wernicke’s Encephalopathy
NLT	Neurofilament-light	ORCID	https://orcid.org/0000-0002-745-3087
NIM	Neurofilament-medium	Danne A. Gadd https://orcid.org/0000-0002-6396-5407	
mvPPA	Nonfluent variant primary progressive aphasia	Tara L. Spates-Jones https://orcid.org/0000-0003-2530-0598	
Ng	Neurogmin	Deacon King https://orcid.org/0000-0002-2434-9317	
NIA-AA	National Institute on Aging/Alzheimer’s Association	Craig Risch https://orcid.org/0000-0002-6202-6906	
NINCDs	National Institute of Neurological and Communicative Disorders and the	Graciela Manzi Terrera https://orcid.org/0000-0002-4516-0337	
ADRA	Alzheimer’s Disease and Related Disorders Association	REFERENCES	
NOS	Not otherwise specified	REFERENCES	
NFTX	Neuronal pronestasin	REFERENCES	
NFTXR	Neuronal pronestasin receptor	REFERENCES	
Nrg1	Neuregulin-1	REFERENCES	

REFERENCES

- Abo-Ramieh, S., Momeni, N., Barottelli-Stella, A., Piatichi, B., Oppi, F., Poda, R., Stanzani-Marelli, M., Cortelli, P., Liguori, R., Capelli, S., & Parchi, P. (2018). Cerebral...
fluid biomarkers in patients with frontotemporal dementia spectrum: A single-center study. Journal of Alzheimer's Disease, 62(2), 551-563. https://doi.org/10.3233/JAD-180499

Agarwal, A., Zhang, M., Tremblay-Duff, I., Unterhausachski, T., Raduskiik, K., Dabich, P., Martin de Souza, D., Berrut, S., Brzotka, M. M., Steffen, H., Berning, S., Teng, Z., Guenther, M. N., Tarte, M., Gans, P. C., Willig, K. E., Frühm, J., Hill, S. W., Bahn, S., ... Schwab, M. H. (2014). Dysregulated expression of neuregulin-1 by cortical piriform neurons disrupts synaptic plasticity. Cell Reports, 4(6), 1130-1145. https://doi.org/10.1016/j.celrep.2014.07.028

Agrella, L., Gambino, C. M., Lo Sasso, B., Bivona, G., Milano, S., Ciuccio, A. M., Piccoli, T., La Bella, V., & Ciuccio, M. (2020). Neuromyosis as a Novel Biomarker in Alzheimer Disease (pp. 1-9). Laboratory Medicine. https://doi.org/10.1093/labcd/foaa728

Aiken, P. S., Peterson, R. C., Donohoo, M. C., Gamst, A., Ramas, R., Thomas, R. G., Walter, S., Trojanowski, J. Q., Snow, I. M., Beckett, L. A., Jack, C. R., Jagust, W., Toga, A. W., Saykin, A. J., Morris, J. C., Green, R. C., & Weiner, M. W. (2010). Clinical care of the Alzheimer disease neuroimaging initiative: Progress and plans. Alzheimer and Dementia, 6(3), 239-246. https://doi.org/10.1097/JAD.0b013e3181db3a9e

Al Sowinki, M. R., Steinacker, P., Osek, I., Honger, B., Danek, A., Fischbender, K., Diehl-Schmid, J., Jahn, H., Anderl-Strath, S., Lukas, A. C., Schiebendum-Lucasse, C., & Otto, M. (2019). Neonatal fluid light chains as a blood biomarker to differentiate psychiatric disorders from behavior variant frontotemporal dementia. Journal of Psychiatric Research, 113, 137-140. https://doi.org/10.1016/j.jpsychires.2019.03.019

Albert, M. S., Doakasy, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Peterson, B. C., Saykin, A. J., Carrillo, M. C., Thal, R. J., & Malamud, J. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer and Dementia, 7(1), 270-279. https://doi.org/10.1016/j.jalz.2010.12.002

Aleuoks, D., Villapaina, E., Suarez-Calvet, M., Blan-Gala, L, Blas, R., Clariona, J., Ibarra, A., Sanchez-Valle, R., Motoro, U., Garcia-Rubio, F., Martinez, M. J., Pinos-Ripoll, G., Amer-Farrer, G., Noguera, A., Garcia-Martín, A., Fortés, J., & Lloa, A. (2017). CSF aβPP beta, YKL-40, and neonatal fluid light in frontotemporal lobar degeneration. Neurology. 89(2), 178-188

Armstrong, M. J., Livan, L., Lang, A. E., Bak, T. H., Balsia, K. P., Bortoni, B., Bomer, A. L., Dickson, D. W., Grossman, M., Hallier, M., Josephs, K. A., Kertesz, A., Le, S. E., Miller, B. L., Reis, S. G., Ribbe, D. E., Tressel, E., Tröster, A. I., Vidalhelt, M., & Weiner, W. J. (2013). Criteria for the diagnosis of corticobasal degeneration. Neurology. 80(5), 496-503. https://doi.org/10.1212/WNL.0b013e3182784d81

Auchenstein, A., Gordon, R., Fagan, A., Schindler, S., Balasta, D., Moritz, S., & Frackowiak. (2020). Neonatal Fluid Predicts Decline in Attention but Not Epileptic Memory in Preclinical Alzheimer’s Disease. Neuropsychometric Light Predicts Decline in Attention but Not Epileptic Memory in Preclinical Alzheimer’s Disease, 7(4), 1129-1129. https://doi.org/10.1037/39331-004-1980-8

Arti, A. (2013). Effective pharmacological Management of Alzheimer Disease. The American Journal of Managed Care, 17(13), 5386-5353. https://www.aajmc.com/journal/13/13/13/download/39331-004-1980-8

Artrell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neuroscience, 25(12), 621-623. https://doi.org/10.1038/35020604

Baker, K., Gordon, S. L., Gruzov, D., Van Koggenland, M., Roberts, N. Y., Pike, M., Blair, E., Hurley, M. E., Chong, W. K., Balderwood, T., Kurian, M. A., Boyd, S. G., Coulin, M. A., & Raymond, F. L. (2015). Identification of a human synaptophysin-1 mutation that perturbs synaptotic vesicle cycling. Journal of Clinical Investigation, 125(6), 1670-1678. https://doi.org/10.1172/JCI77565

Berets, A., Ripper, D., Svarcova, J., Ceohora, L., Fialova, L., & Maltzhan, J. (2011). Cerebrospinal fluid and serum aminoacyl-tRNA synthetases in patients with Alzheimer’s disease. Journal of Neuroimmunol, 7(4), 100-105. https://doi.org/10.1016/j.jneuroim.2011.05.041

Boyar, E., Caldwell, J. Z. K., & Banks, S. J. (2018). Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer disease: Alzheimer and Dementia: Translational Research and Clinical Interventions, 4, 395-413. Elsevier Inc. https://doi.org/10.1016/j.trci.2018.04.007

Bor, M. F., & Malekza, R. C. (1994). Syaptic plasticity: LTP and LTD. Current Opinion in Neurobiology, 4(3), 389-399. https://doi.org/10.1016/0959-4388(94)90041-5

Broggi, C., Tumak, M., Brisc, D., Brown, M., Martinez-Morillas, E., Laveno, J., Rizoli, M., Tagliarini, F., Nentopauls, G., Gluck, M., Laveno, J., Lins, B., Batruch, I., & Diamandis, E. P. (2010). Neuronal pentraxin receptor-1 is a new cerebrospinal fluid biomarker of Alzheimer’s disease progression [review; see comments]. Journal of Neuroimmunol, 393(3), 139-145. https://doi.org/10.1016/j.jneuroim.2011.05.041

Bondilis, B. B., Carlsson, C. M., Johnson, S. C., Zetterberg, H., Binnero, K., Willetto, A. A., Okenow, O. C., Soldhi, A., Ries, M. L., Bondilis, A. C., Alexander, A. L., Bowley, H. A., Puglielli, L., Asthana, S., & Sagar, M. A. (2012). CSF T-tau/A42 predicts white matter microstructure in healthy older adults at risk for Alzheimer disease. PLoS One, 7(5), e37720. https://doi.org/10.1371/journal.pone.0037720

Borrelli, E., Branca, R. M., Fracass, F. T., Perez, J. B., Beck, J. H., Horrobyg, T., Watanl, B., Ballard, C., Lehtih, J., & Auerleem, D. (2010). Synaptic markers of cognitive decline in neurodegenerative diseases: A prototypic approach. Brain, 133(2), 502-595. https://doi.org/10.1093/brain/aws352

Bortoni-Frederici, C., Panzer, P., Cazzoli, T., Melo-Rage, W., & Ulrich, J. (1990). Morphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer’s disease. Brain Research, 537(3), 69-75. https://doi.org/10.1016/0006-8993(90)90109-6

Bos, H., Van Swieten, J. C., Lieb, S., Masuino, L., Wood, E., Fournier, M., Moere, P., De Kroon, J., Clerk, C. M., Rosso, A., Trojanski, J., Lee, V. M. Y., & Grossman, M. (2008). CSF Biomarkers in frontotemporal lobar degeneration with known pathology. Neurology, 70(19 PART 2)
corentis of the main indices of neuropsychological assessment in Alzheimer's disease. Journal of Personalized Medicine, 1(2), https://doi.org/10.3390/jpm10200523
Chung, D., Shern, A., & Carasso, G. (2020). GAP-45 and BAP-1 in asen regressions: Implications for the treatment of neurodegenerative diseases. Frontiers in Cell and Developmental Biology, 1(3), 106870. https://doi.org/10.3389/fcell.2020.568777
Citi, A., & Malovrh, R. C. (2000). Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropeptides, 34(2), 89–101. https://doi.org/10.1016/S0198-4609(00)00057-8
Colom-Cadona, M., Spina-Jones, T., Zeiterberg, H., Blenow, K., Caggiano, A., DeKosky, S. T., Filli, H., Harrison, J. E., Schneider, L. S., Scheltens, P., De Haan, W., Grundmuller, V., Dyck, C. H., Itoz, N. J., & Catalano, S. M. (2003). The clinical promise of biomarkers of synaptic damage or loss in Alzheimer's disease. Alzheimer's Research & Therapy, 1, 21. https://doi.org/10.1186/1750-937x-1-21
Corcilius, S. J., Makowska-Ladinska, E. B., Abdel-Ali, Z., da Silva, J. A., Bayne, C., Hoyer, W. G., & Mann, D. M. A. (2011). Synaptic changes in frontotemporal lobar degeneration: Correlation with MAPT haplotype and APOE genotype. Neuropharmacology and Applied Neurobiology, 37(4), 366–380. https://doi.org/10.1016/j.appneuro.2011.08.001
Costin, S. E., Boyanova, M. D., Mercado, N., Vega, I. E., & Mulero, E. J. (2017). Biomarkers for the early detection and progression of Alzheimer's Disease. Neuropharmacologia, 146(3), 35–53. https://doi.org/10.1016/j.neuropharm.2017.04.081
Davidson, P., & Blenow, K. (1998). Neurochemical changes in synaptic pathology in Alzheimer disease. International Psychogeriatrics, 10(1), 11–23. https://doi.org/10.1017/s1355617798001108
De Jong, D., Janssen, R. W. M. M., Pijnenborg, Y. A. L., Van Gool, W. J. A., Born, G. F., Kremer, H. P. H., & Verbeek, M. (2007). CSF neurofilament proteins in the differential diagnosis of neurodegenerative disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 78(9), 1006–1010. https://doi.org/10.1136/jnnp.2007.116010
De Vos, E., Struyf, H., Jacobs, D., Fransen, E., Klevsnauy, T., De Roos, J., Robberecht, C., Van Broeckhoven, C., De Deyn, G., Engelsbergha, S., & Vassouvlle, E. (2016). The cerebrospinal fluid neurotransin/β-ACE ratio is a potential correlate of cognitive decline in Alzheimer's disease. Journal of Alzheimer's Disease, 53(1), 153–158. https://doi.org/10.3233/JAD-150626
De Vos, A., Jacobs, D., Struyf, H., Fransen, E., Anderson, K., Poccellis, E., Andreu-Souza, U., De Sorgeloos, D., Herman, J., Sluiter, K., Robberecht, C., Van Broeckhoven, C., Zeiterberg, H., Blenow, K., Engelsbergha, S., & Vassouvlle, E. (2015). C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer's disease. Alzheimer's & Dementia, 11(2), 1481–1489. https://doi.org/10.1016/j.jalz.2015.05.012
De Wilde, M. C., Oertel, C. R., Sijbers, J. W. J., & Mathijs, E. (2016). Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vascular machinery vulnerability. Alzheimer's and Dementia, 12(2), 633–644. https://doi.org/10.1016/j.jalz.2015.12.1895
DeKosky, S. T., & Mirra, S. (2003). Looking backward to move forward: Early detection of neurodegenerative disorders. Science, 302(5646), 830–834. https://doi.org/10.1126/science.1090549
DeKosky, S. T., & Schofield, W. R. (1990). Synaptic loss in frontal cortex biopsies in Alzheimer's disease: Correlation with cognitive severity. Annals of Neurology, 27(5), 457–464. https://doi.org/10.1002/ana.410270508
Delaby, C., Alkhatatb, D., Carmona-Izaguir, M., Blatt-Gaia, L., Morenas-Rodriguez, E., Barroeta, I., Altmann, M., Estelles, T., Santos-Sanz, M., Perez-Sanz, J., Moner, L., Ribosa- Nogar, R., Sala-Mataveva, I., Sanchez-Saizos, B., Cabarasa, A., Vila, L., Beruj, S., Lehmann, S., & Lleo, A. (2020). Differential levels of Neuronfilament light protein in cerebrospinal fluid in patients with a wide range of neurodegenerative disorders. Scientific Reports, 10, 9161. https://doi.org/10.1038/s41598-020-69099-9
Dhiman, K., Gupta, V. R., Villemagne, V. L., Erroto, D., Graham, P. L., Fowler, C., Bourgeat, P., Li, Q., Collins, S., Roob, A. I., Rove, C. C., Masters, C. L., Ames, D., Hose, E., Blenow, K., Zeiterberg, H., & Martin, R. N. (2020). Cerebrospinal fluid Neuronfilament light concentration predicts brain atrophy and cognition in Alzheimer's disease. Alzheimer's & Dementia, 12(1), 1–9. https://doi.org/10.1002/tdm2.12403
Diez-Guevara, F. J. (2010). Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. JBMW Light, 3(3), 597–606. https://doi.org/10.1102/ jbm.2010/3.3.597
Dodda, D. C., Omei, I. A., Cusman, S. I., Helms, J. A., & Perin, M. S. (1997). Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxins 1 and 2 and transcripts associated calcium-binding protein 49. Journal of Biological Chemistry, 272(24), 2188–2194. https://doi.org/10.1074/jbc.272.24.2188
Debus, B., Feldman, H. H., Jacova, C., Hampel, H., Midoux, J. I., Blenow, K., DeKosky, S. T., Gachter, S., Selkoe, D., Bateman, R., Cappa, S., Crutch, S., Engelborghs, S., Friess, G. R., Fox, N. C., Galasko, D., Hebert, M. O., Jicha, G. A., Northcote, A., & Cummings, J. L. (2014). Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. The Lancet Neurology, 13(10), 846–862. https://doi.org/10.1016/S1474-4422(14)70080-4
Debus, B., Sladkova, A., Livan, I., & Dillon, B. (2006). The FAB: A frontal assessment battery at bedside. Neurology, 67(11), 1621–1626. https://doi.org/10.1212/01.wnl.0000231101.29461.99
Dulac, M., Kuclepok-proglyk, A., & Mruczek, B. (2020). Neurogranin and VILIP-1 as molecular indicators of neurodegeneration in Alzheimer disease: A systematic review and meta-analysis. International Journal of Molecular Sciences, 21(21), 1–19. MDPI AG. https://doi.org/10.3390/ijms21215833
Ezzy-Torres, M., Estrada, A., Tainta, M., Izaguir, A., Garcia-Sebastian, M., Villanueva, J., Cortegi, M., Irlando, A., Omei, I., Arroyo, A., Dias-Mantovani, C., Krispel, M., & Martinez-Lago, P. (2018). Increased CA14E dementia risk, cognition, CSF biomarkers, and vascular burden in healthy adults. Neurology, 91(3), e217–e226. https://doi.org/10.1212/WNL.0000000000005824
Emanuelsen, F. N. (2016). Alpha-synuclein: structure, functions, and interactions. Journal of Research in Medical Sciences, 22(7), Bidhan University of Medical Sciences (BIMS), 21–29. https://doi.org/10.17355/JRMS.1839898
Koffie, R. M., Hashimoto, T., Tai, H. C., Kiy, K. R., Serrano-Pozo, A., Joyner, D., Hsuo, S., Kopeikina, K. J., Frisch, M. P., Lee, V. M., Hofman, D. M., Hyman, B. T., & Spina-Jones, T. L. (2012). Amyloid precursor protein-E4 effects in Alzheimer's disease are mediated by synaptic plasticity: a diagnostic affordance. J. Neurosci., 32(19), 6625-6636. https://doi.org/10.1523/JNEUROSCI.1879-12.2012

Koffie, A., Liu, C., Genghina, C., Shi, M., & Zhang, J. (2013). α-Synuclein in cerebrospinal fluid of Alzheimer's disease and mild cognitive impairment. Journal of Alzheimer's Disease, 34(1), 479-488. https://doi.org/10.3233/JAD-122038

Kvittingen, H., Duits, F. H., Inglesho, M., Andrasova, N., Ondell, A., Anderson, K., Brinksmma, G., Lamelle, L., Meinlo, L., Hämmon, G., Andrasova, U., Tinnemaa, C. E., Schilita, F., Van der Flier, W. M., Zetterberg, H., Portenius, E., & Blomma, K. (2015). Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer's disease. Alzheimer's & Dementia, 11(10), 1189-1190. https://doi.org/10.1016/j.jalz.2014.10.009

Kvittingen, H., Ladby, T., Murny, C. E., Brinksmma, G., Cullen, N. C., Hillghost, K., Zetterberg, H., Blomma, K., & Portenius, E. (2019). The intact post synaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease. Acta Neuropsychologica, 107(1), 89-102. https://doi.org/10.1007/s00730-018-0139-3

Kvittingen, H., Portenius, E., Andrasova, U., Brinksmma, G., Hellweg, K., Lenti, N., Kornheiser, J., Hamson, O., Miro, L., Lepin, P., Maki, J. M., Zetterberg, H., Blomma, K., & Lepin, P. (2015). Characterization of the post synaptic protein neurogranin in paired cerebrospinal fluid and plasma samples of Alzheimer's disease patients and healthy controls. Alzheimer Research & Therapy, 7(1), 40. https://doi.org/10.1186/s13195-015-0123-1

Landau, S. M., Harvey, D., Madison, C. M., Koepp, R. A., Reiman, E. M., Foster, N. L., Weiner, M. W., & Jagust, W. J. (2013). Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiology of Aging, 34(7), 1207-1218. https://doi.org/10.1016/j.neurobiolaging.2012.10.003

Lantero Rodríguez, J., Kärkkäinen, T. K., Suárez-Calvet, M., Trovato, C., King, A., Ercoskici, A., Aordan, D., Fuy, A., Zetterberg, H., Blomma, K., & Ashton, N. J. (2020). Plasma p-tau181 accurately predicts Alzheimer's disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathologica, 140(3), 267-278. https://doi.org/10.1007/s00401-020-01954-2

Lee, J. M., Blomma, K., Andrasova, N., Lattenier, O., Modar, V., Olancho, J., Gao, F., Ohlendorf, M., & Lauhorf, J. H. (2008). The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clinical Chemistry, 54(4), 6167-6163. https://doi.org/10.1373/chim.2008.104997

Lee, S. J., Wei, M., Zhang, C., Maxie, S., Pok, C. H., Botelho, S. C., Trost, J., Steck, F. H., & Stuhlf, T. C. (2017). Pre synaptic neuronal nicotinic receptor organizes excitatory and inhibitory synapses. Journal of Neuroscience, 37(1), 1062-1066. https://doi.org/10.1523/JNEUROSCI.2786-16.2016

Li, J. Q., Tan, N., Wang, H. F., Tan, M. S., Tan, L., Xu, W., Zhao, Q. F., Wang, J., Jiang, T., & Yu, J. T. (2016). Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: A systematic review and meta-analysis of cohort studies. Journal of Neurology, Neurosurgery and Psychiatry, 87(3), 476-484. https://doi.org/10.1136/jnnp-2014-310099

Lin, R., Tsai, M., Souvannalit, A., Brown, M., Zitnaki, M., Tagnari, F., Frutos, D., Kontoukardou, E., Gros, E., Prassaa, L., & Diamandis, E. P. (2019). Liquid biopsy of cerebrospinal fluid identifies neuronal nicotinic receptor (NPTX2) as a biomarker of progression of Alzheimer's disease. Clinical Chemistry and Laboratory Medicine, 1-7, 57(12), 1875-1881. https://doi.org/10.1515/cclm-2019-0428

Litvan, I., Agid, Y., Calvi, D., Campbell, G., Dubois, B., Drorshone, R. C., Gout, C. G., Gwu, I., Grafman, J., Growdon, J. H., Hallet, M., Jankovic, J., Quinn, P. N., Tolosa, E., & Zee, D. S. (1996). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP International Workshop. Neurology, 47(1), 1-9. Uppercam: Williams & Wilkins. https://doi.org/10.1212/WNL.47.1.1

Liu, W., Lee, H., He, X., Chen, L., Dai, Y., Jia, W., Xue, X., Tao, J., & Chen, L. (2020). Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer's disease and mild cognitive impairment. Translational Psychiatry, 1-1. https://doi.org/10.1038/s41398-020-0881-2

Lopes da Silva, F. (2013) EEG and MEG: Relevance to neurocunc. Neuro, 80(3), 1112-1128. https://doi.org/10.1016/j.sbsr.2013.10.017

López, M. E., Turron, A., Castañeda, F., López-Sanz, D., Bruña, R., Marcon, A., Gil, F., Yax, M., Barahona, A., Cabrero, J. A., Maseo, F., & Fernández, A. (2015). Searching for primary predictors of conversion from MCI to mild cognitive impairment: Alzheimer's disease: A multivariate follow-up study. Journal of Alzheimer's Disease, 52(1), 133-145. https://doi.org/10.3233/JAD-131539

López-Sanz, D., Serrano, N., & Mastral, F. (2018). The role of mag-netomicroangiography in the early stages of Alzheimer's disease. Frontiers in Neuroscience, 12, 572. https://doi.org/10.3389/fnins.2018.00572

Maidi, E., Ceres, L., & Hassan, I. (2006). Synaptic remodeling during aging and in Alzheimer disease. Journal of Alzheimer's Disease, 9, 91-99. https://doi.org/10.3233/JAD-2006-9S031

Maidi, E., Mallory, M., Hannen, L., Richard, D., Alford, M., & Terry, R. (1994). Synaptic and neural alterations during the progression of Alzheimer's disease. Neuroscience Letters, 174(3), 67-72. https://doi.org/10.1016/0304-3940(94)00922-1

Maceso, T. (2017). Contact-2(TAG) is active on the front line for three decades. Cell Adhesion & Migration, 11(5-6), 524-531. Taylor and Francis Inc. https://doi.org/10.1080/19336473.2016.1309998

Muthuraman, P., Nester, P. J., Berros, G. E., Rakowicz, W., & Hodges, J. R. (2006). A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia.
14609568, 2022, 0, Downloaded from https://onlinelibrary.wiley.com. By Edinburgh University Library- on [04/07/2022]. Re-use and distribution is strictly not permitted, except for Open Access articles

Dementia, 13(1), 841–849. https://doi.org/10.1002/j.1564-2975.2017.00026.x

Farkomil, M. S., Sobel, J., Kambalova, J., & Lotha, J. A. (2009). Differential distribution of neocinolins in human brain and spinal fluid. Brain Research, 1258, 1–11. https://doi.org/10.1016/j.brainres.2008.12.047

Petersen, R. R., Westman, E., Hannan, O., & Alzheimer’s Disease Neuroimaging Initiative. (2017). Association between CSF t-tau/spinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer’s disease. Neurobiology of Aging, 58, 14–29. https://doi.org/10.1016/j.neurobiolaging.2017.06.002

Petersen, A., & Ngo, N. Z. F. (2015). Neogranins regulate CaM dynamics at dendritic spines. Scientific Reports, 4(1), 11135. https://doi.org/10.1038/srep11135

Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donahue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R., Jagust, W. J., Shaw, L. M., Fraga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s disease neuroimaging initiative (ADNI): Clinical characterization. Neurology, 74(3), 201–209. https://doi.org/10.1212/WNL.0b013e3181dc2535

Petrel, A., Keir, G., Warren, J., Fox, N., & Rosser, M. N. (2007). A systematic review and meta-analysis of CSF neogranulin protein levels as biomarkers in dementia. Neuro- Degenerative Diseases, 4(2–3), 185–194. https://doi.org/10.1080/13556190701401845

Petrel, A., Gass, A., Skovhus, I., Dalby, D., Gudmunsson, I., Skaug, P., Jonassen, O., Ravn, H., Andersen, P. O., & Dyhre, P. (2019). Apolipoprotein E epsilon4 is associated with higher amyloid-β levels in patients with Down syndrome. Neurobiology of Aging, 73, 100–106. https://doi.org/10.1016/j.neurobiolaging.2019.07.044

Pickett, E. K., Hermann, A. G., McQueen, J., Alca, K., Douadi, O., Yudiche, J., Apte, P., Damotte, S., Sohrab, S., Pfeifer, J. P., Calvini, M. P., Calkins, M., Maroun, L., German, J. J., Talonen, M., Sweeney, A., Doig, A., Hoyle, M., Davison, C., Colak-Cadasi, M., & Strza-Young, T. L. (2019). Amyloid beta and tau coalesce to cause neocortical behavioral and transmiprional deficits in a model of Alzheimer’s Disease. Cell Reports, 29(3), 3592–3604. https://doi.org/10.1016/j.celrep.2019.11.044

Porzelt, E., Okomoto, H., Highlund, K., Callier, N. C., Knauper, H., Andreasen, U., Zeiter, H., Phillips, A., Shaw, L. M., Lee, Y. M. Y., Imai, D. J., Grooman, M., Weintraub, D., Chen-Pokorny, A., Wolb, D. A., McCurley, J. E., Elman, L., McIlroy, T., Quilis, H. B., & Blesnove, K. (2016). Cerebrospinal fluid neogranulin concentration in neurodegeneration: Relation to clinical phenotypes and neuropathology. Acta Neuropathologica. 130(1), 307–318. https://doi.org/10.1007/s00401-015-1853-x

Porzelt, E., Zeiter, H., Skilick, T., Timpson, U., Andreasen, U., Trojanowski, J. Q., Weintraub, M. W., Shaw, L. M., Mattison, N., Blesnove, K., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Cerebrospinal fluid neogranulin: Relation to cognition and neurodegeneration in Alzheimers disease. Brain: A Journal of Neurology, 138(11), 3373–3385. https://doi.org/10.1093/brain/awv327

Petter, R., Petersen, B. W., Ethert, D. B., Ovits, V., Kasten, T., Sigaud, N., Masseroni, K., Haity, T., Gras, A., Chett, R., Yarzanibek, K. E., Hofmann, D. M., Moritz, J. C., Boeninger, T. J. S., & Bairey, N. R. J. (2015). Increased in vivo amyloid-b production, exchange, and loss in presenilin mutation carriers. Science Translational Medicine, 7(310), 300ra51. https://doi.org/10.1126/scitranslmed.3005615

Race, A., Clark, L., Berman, S., Kociski, R., Mueller, K., Norton, D., Nicholas, C., Blesnove, K., Zeiter, H., Johnkay, B., Siegel, M., Christe, C., Blesnove, C., Aslaha, S., & Johnson, S. (2016). Associations between performance on an abbreviated Cognitive battery, other measures of cognitive function, and biomarkers in people at Risk for Alzheimers disease. Journal of Alzheimer’s Disease, 54(4), 1393–1408. https://doi.org/10.3233/JAD140320

Rallad, J., Mörtberg, E., Pronovost, G. K., Fourtou, D. R., Dufty, D. C., Rübeny, S., Blesnove, K., Zetterberg, H., & Willse, D. H. (2013). Tau protein in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: Results of a pilot study. Resuscitation, 84(3), 351–356. https://doi.org/10.1016/j.resuscitation.2012.07.027

Rudolph, C. (1990). Repeatability of the Assay for Neuronal Protein Synthesis (NPSAN). The Psychological Corporation. http://www.barcoat.uk.com/product

Rozowsky, K., Hedges, J. R., Engstrom, D., Mendez, M. F., Kramer, J. H., Novotny, J., van Swieten, J. C., Schoofs, H., Dopper, E. G. P., Onothy, C. U., Hille, A. E., Josephs, K. A., Beve, B. F., Korten, A., Sesoy, W. K., Rankin, K. P., Johnson, J. K., Gort, T., Timpel, M. E., & Rosen, H. – Miller, B. S. (2011). Sensitivity of revised diagnostic criteria for the behavioral variant of frontotemporal dementia. Brain, 134(f), 2456–2471. https://doi.org/10.1093/brain/awq279

Rudy, P. E., Mani, G., Park, B. S., Jacques, J., Murdock, G., Whitehall, W., Kay, J., & Manasco, M. (2005). Differential loss of synaptic proteins in Alzheimer’s disease: Implications for synaptic dysfunction. Journal of Alzheimer’s Disease, 7(2), 103–117. https://doi.org/10.3233/JAD-2005-7203

Roktar, J. L., Quinn, R., Menad, M. M., & Rostenberg, A. (2004). Subfield-specific increase in brain protein in postmortem hippocampus of Alzheimer’s patients. Neuroscience, 133(3), 579–584. https://doi.org/10.1016/j.neuroscience.2004.03.060

Remmel, J., Just, D., Mihal, K., Rudolf, G., Mulder, J., Schwenk, J. M., Ulrich, M., Kolln, K., Ingham, M., Elzander, L., Laferl, S., Svenningsson, P., Nielsen, F., Zetterberg, H., Blesnove, K., Nilsson, P., & Höggermark- Månberg, A. (2016). CSF profiling of the human brain enriched proteome reveals associations of neocinolin and neogranulin to Alzheimer’s disease. Proteomics - Clinical Applications, 10(12), 1242–1253. https://doi.org/10.1002/prca.201500130

Rincon, D., Nicholas, A., Samawek, R., Yahuyaz, R., Menad, M. M., Bigio, E. H., Weintraub, S., Guo, L., & Gula, C. (2014). Alterations of Ca2+ - responsive proteins within cholinergic neurons in aging and Alzheimers disease.
Nutraceuticals of Aging, [X], X:125–133. https://doi.org/10.1007/s11060-017-3046-7
Ritchie, C. W., Munir-Terrera, G., Kripalani, M., Solomon, A., Toen, B., & Solomon, J. L. (2020). The European prevention of Alzheimer's dementia (EPAD) longitudinal cohort study: Baseline data release V500.0. The Journal of Prevention of Alzheimer's Disease, 7(1), 8–13. https://doi.org/10.32542/jpad.2019.46
Roberts, R. O., Goia, Y. E., Knoops, D. S., Cha, R. H., Parkosza, V. S., Boone, B. F., Ivnik, R. J., Tangalos, E. G., Petersen, R. C., & Rocca, W. A. (2008). The Mayo Clinic study of aging: Design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology, 30(3), 50–69. https://doi.org/10.1159/000157511
Rocher, A. B., Chaplin, F., Baines, X., Barnes, J. C., & Charkoudian, C. (2003). Resting-state brain glucose utilization as measured by PET is directly related to regional synaptic level: A study in baboons. Neuroimage, 19(6), 1894–1898. https://doi.org/10.1016/j.neuroimage.2003.07.002
Rojas, J., Bang, J., Lobeh, I., Taal, R., Ramonová, G., Miller, B., & Breuer, A. (2018). CSF neurofilament-light chains and phosphorylated-tau predict disease progression in PD. 50(4), e273-e281. https://doi.org/10.1012/WNL.2018.08.009
Rothard, S., Berg, A. J., Eckert, M., Johansen, B., & Walls, A. (2015). Differential impact of neurofilament light subunit on cognitive and functional outcome in memory clinic patients with and without vascular burden. Journal of Alzheimer's Disease, 43(2), 873–883. https://doi.org/10.3233/JAD-140946
Rothard, S., Johansen, I., Selgen, C., Elkan, C. J., Blerum, K., Zetterberg, H., Palsson, E., & Lundan, M. (2015). Cognitive performance and cerebrospinal fluid biomarkers of neurodegeneration: A study of patients with bipolar disorder and healthy controls. Mov Disord, 30(11), 2771-2780. https://doi.org/10.1002/mds.26744
Rosengren, L. E., Karlsson, J. E., Sjögren, M., Blerum, K., & Wallin, A. (1999). Neurofilament protein levels in CSF are increased in dementia. Neurology, 52(5), 1090-1093. https://doi.org/10.1212/wnl.52.5.1090
Sager, M. A., Hermann, B., & La Rue, A. (2005). Middle-aged chil- dren of persons with Alzheimer's disease: APoE genotypes and cognitive function in the Wisconsin registry for Alzheimers prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245-249. https://doi.org/10.1177/0891988705281182
Salihhouse, T. A. (2019). Trajectories of normal cognitive aging. Psychology and Aging, 34(1), 17-24. https://doi.org/10.1037/aging0000288
Sancario, G., Di Lauro, G., Ambrosi, M., Bricchi, R., Basile, V., Sollini, C., Luigi Colona, V., Stinbaldi, Salimini, P., Bernardini, S., Mercuri, N., Pianu, A., & Schirrmeier, T. (2020). Amyloid-beta(42)/Neurturin Ratio as a Potential Index for Cognitive Impairment in Parkinson's Disease. (Sancario, Mercuri, Pianu) BBBC Fondazione Santa Lucia, Rome, Italy (Sancario, Bricchi, Basile) Department of Experimental Medicine and Surgery, University of Roma Sapienza, Rome, Italy (Di Lauro, Ambrosi, Salimini, Luigi Colona, Bernardini, M), (Sancario, G), (Sancario, M), (Sancario, T). https://doi.org/10.3328/1096-9889.2020-6934
Sandellin, Å., Persson, E., Källén, Å., Zetterberg, H., Rot, U., Olsson, B., Toledo, J. B., Shaw, L. M., Lee, V. M. Y., Irwin, D. J., Grassman, M., Weintraub, D., Chen-Parkinson, A., Walk, D. A., McClure, L., Elson, L., Konstantinovic, V., Vandijck, M., McBride, J., & Broux, K. (2013). Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimer & Dementia, 9(1), 55-64. https://doi.org/10.1016/J.ADJ.2012.10.004
Sanfilippo, C., Forenza, O., Zetterberg, H., & Broux, K. (2016). Increased neurogranin concentrations in cerebrospinal fluid of Alzheimer's disease and in mild cognitive impairment due to AD. Journal of Neuroinflammation, 13(1), 1433-1447. https://doi.org/10.1186/s12974-016-0957-3
Santilli, A., Landgren, S., Xu, C., Orbán, F., Faziaux-Bergman, H., Blerum, K., Zetterberg, H., Portellus, E., Cervera, S., J. E. G., Erhardt, S., & Engberg, G. (2019). Neurturin as a potential synaptic marker in the cerebrospinal fluid of patients with a first episode psychosis. Schizophrenia Res, 208, 490-492. https://doi.org/10.1016/j.schres.2019.01.010
Savage, M. J., Kaltinski, J., Wolfe, A., Tagaudsev, K., Korn, B., Cash-Man, T., Mason, J. W., Hatcher, N. G., Haagabook, S. J., Wu, G., Howell, B. J., Reiner, J. J., Shurgin, P. J., & McAllister, A. (2014). A sensitive AP oligomer assay discriminates Alzheimers and aged control cerebrospinal fluid. Journal of Neurochemistry, 131(4), 2884-2897. https://doi.org/10.1111/jnc.12761
Scherling, C. S., Hall, T., Berisha, F., Klepac, K., Karydas, A., Cappeda, G., Kramer, J. H., Ramonová, G., Alj.orguan, M., Miller, B. L., Soley, W., Grötsch, L. T., Rosen, H., Meredith, J., & Benzer, A. L. (2014). Cerebrospinal fluid amyloid-β concentrations reflect disease severity in frontalotemporal degeneration. Annals of Neurology, 75(1), 116–126. https://doi.org/10.1002/ana.24052
Schneider, S., Li, Y., Todd, K. W., Herring, H. M., Grey, J. D., Wang, G., Graham, D. L., Shaw, L. M., Trojanowski, J., Hodes, J., Benzing, T. L. S., Craigmay, J., Drucker, L., Levy, J., Chihuri, J., P. B., Noble, J. M., Ringman, J. M., Gruff-Radford, N. R., ... Domini- nately Inherited Alzheimer's Network, (2015). Enrichment cere- brospinal fluid biomarkers in autosomal dominant Alzheimers disease: Alzheimer's & Dementia, 13(5), 653–665. https://doi. org/10.1016/j.jalz.2012.10.019
Serrano, N., López-Sanz, D., Bruto, R., Gancedo, P., Rodríguez-Rio, L. C., Arcas, A., Crespo, D. F., & Martí, P. (2020). Spatiotemporal oscillatory patterns during working memory maintenance in mild cognitive impairment and subjective cognitive decline. International Journal of Neural Systems, 30(1), 1950019. https://doi.org/10.1142/S0129065719500199
Shi, C., & Jorgenson, S. M. (2020). Neurturin 1: An intriguing thera- peutic target for neurodevelopmental disorders. Translational Psychiatry, 10(6), 190. https://doi.org/10.1038/s41398-020- 0830-0
Silicati, L., Taylor, H. M., & Love, S. (2015). Synaptic protein levels altered in vascular dementia. Neuropathology and Applied Neuroanatomy, 41(4), 533-543. https://doi.org/10.1111/nan.12215
Singh, T. R., Fodghan, M., Dufy, E. J., De Bre, F., Cooper, K., Lim, P., Peter, C., Murrough, J. W., Sano, G., Shelton, R. C., Kurian, B., Wisnower, A., Fava, M., Manji, H., Devra, W. C., & Van Nueten, L. (2016). A double-blind,
randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. American Journal of Psychiatry, 173(8), 818-826. https://doi.org/10.1176/appi.ajp.2016.16040057

Sjogren, M., Blomberg, M., Jonsson, M., Wahlund, L. O., Lind, K., Rosengren, L., Blennow, K., & Wallin, A. (2001). Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. Journal of Neuroimmunology, 106(3), 310-316. https://doi.org/10.1016/S0165-5728(01)00742-2

Sjogren, M., Rosengren, L., Mitrochen, L., Davidsson, P., Blennow, K., & Wallin, A. (2000). Cytokine monocytes in CSF distinguishes frontotemporal dementia from AD. Neurology, 54(10), 1960–1964. https://doi.org/10.1212/WNL.54.10.1960

Skillback, T., Farahmand, R., Bartlett, J. W., Rosen, C., Mattsson, N., Nagga, K., Kilander, L., Reijse, D., Wims, A., Winblad, B., Rosengren, L., Schelt, J. M., Blennow, K., Eriksson, M., & Zetterberg, H. (2014). CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology, 83(1), 1945-1953. https://doi.org/10.1212/zen.0000000000001015

Silven, S., Vaarsteholt, E., Le Baster, N., Diekmann, H., Varejko, J., Martin, J.-J., De Deyn, P. P., & Engberg, S. (2015). Increased CSF-a-synuclein levels in Alzheimer's disease: Correlation with tau levels. Alzheimer & Dementia, 1(3), 529-529. https://doi.org/10.1016/j.jalz.2014.10.004

Soderhall, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. Journal of Neurochemistry, 29(1), 13-36. https://doi.org/10.1111/j.1471-4159.1977.tb07151.x

Solerán, A., Mönkönen, M., Moinova, J. L., Tam, B., & Ritchie, C. W. (2018). European prevention of Alzheimer's disease long-term cohort study (EPA LCS). Study protocol. BMJ Open, 8(9), e022917. https://doi.org/10.1136/bmjopen-2017-022917

Spector, R., Robert Strohman, S., & Johannson, C. E. (2015). A balanced view of the cerebral blood flow and its functions. Focus on adult humans. In Experimental Neurobiology, 27, 57-68. https://doi.org/10.1016/j.exppsy.2015.07.027

Sudo, F. K., De Souza, A. S., Drummond, C., Anacono, N., Tsuchiuchi, A., Oliveira, N., Rodriguez, F., Santiago-Bravo, G., Catt, V., Lima, G., Enhad, F., Bernardes, G., Moreira, M., Towe-Molt, F., & Marins, P. (2019). Inter-method and anatomical correlates of episodic memory loss in the Alzheimer’s disease spectrum. PLoS ONE, 14(10), e023731. https://doi.org/10.1371/journal.pone.023731

Sugerman, M. A., Zotterberg, H., Blennow, K., Tripoplas, Y., Mckay, A. C., Steir, T. D., Martin, B., Palmgrens, J. N., Stenbeck, E. G., Simkin, I., Baden, A. E., Killiany, R., O'connor, M. E., Xu, C., Zhao, G., Qiu, W. W., Goldstein, L. E., Kosswall, N. W., Met, J., Stern, R. A., & Alosco, M. L. (2020). A longitudinal examination of plasma Neurofilament light and Total tau for the clinical detection and monitoring of Alzheimer's Disease. Neurobiology of Aging, 94, 60-76. https://doi.org/10.1016/j.neurobiolaging.2020.05.001

Sun, X., Dong, C., Levis, R., Crocco, E., Loerwenstein, D., Zetterberg, H., Blennow, K., Wright, C. B., & Alzheimer's Disease Neuroimaging Initiative. (2016). ADNI: can carriers may undergo synaptic damage conferring risk of Alzheimer’s disease. Alzheimers & Dementia, 12(11), 1159-1166. https://doi.org/10.1017/S1355615216001003

Swanson, A., Willette, A. A., & Alzheimer's Disease Neuroimaging Initiative. (2016). Neuronal Precursors 1 predicts medial temporal atrophy and memory decline across the Alzheimer’s disease spectrum. Brain Behav Immun, 58, 201-208. https://doi.org/10.1016/j.bbi.2016.07.148

Tarrasoff-Conway, J. M., Carran, R. O., Otero, R. S., Ghatrak, L., Butler, T., Fienemann, R., Andt, L., Rushton, H., Nicholson, C., Zlokovic, B. V., Frangione, B., Blennow, K., Ménard, J., Zetterberg, H., Wawrzewski, T., & De Leon, M. J. (2015). Clearance systems in the brain: Implications for Alzheimer disease. In Nature review neuroscience Vol. 11, (0), pp. 457-470. Nature Publishing Group. https://doi.org/10.1038/nn.3811

Tsalikier, U. D., Jandová, M. K., Land, S. H., Darreh-Shori, T., Snashall, J., & Petersen, P. H. (2020). Association of glial and neuronal degeneration markers with Alzheimer’s disease cerebrospinal fluid profile and cognitive functions. Alzheimer Research and Therapy, 12(1), 1-14. https://doi.org/10.1186/s13195-020-00567-8

Terry, R. D., Masiah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., & Katzman, R. (1991). Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572-580. https://doi.org/10.1002/ana.410300414

Tihó, M., Sandlás, Á., Hilpök, K., Brinkmann, A., Czogln, E., Duganegic, J., Zetterberg, H., Hugos, J., Paquet, C., & Blennow, K. (2020). Biomarker profiles through the CSF biomarkers for predicting Alzheimer’s disease. Neurology, 93(15), e951-e961. https://doi.org/10.1212/WNL.0000000000001038

Uhlén, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Steen, A., Kallmyr, J., Mardinoglu, K., Spelmeyer, E., Aplin, A., Olson, I. M., Edlund, K., Lundberg, E., Nissen, S., Segerman, C. A. K., Odberg, J., Furnell, D., Jackson, D., J. O., Reho, S., ... Pontes, E. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1230459. https://doi.org/10.1126/science.1230459

van der Ende, E. L., Xiao, M., Xu, D., Poes, J., Patman, J., Jaksot, L., Meirts, L., Dopper, E. G., Papma, J., Hoffer, C., Courey, R., Meun, K., Bocchetta, M., Neeun, M., Feitkne, G., Cash, D., Truong, C., Knapp, A., & van Swieten, J. (2000). Neuronal peroxin Z A synaptic-derived CSF biomarker in genetic frontotemporal dementia. J Neurol Neurosurg Psychiatry, 70(12), 670-671. https://doi.org/10.1136/jnnp.70.12.670

van der Ende, Emma J., Meirts, L., Stijng, C., Van Boeij, G. J. J., Stoop, M. P., Nijs, D. A. T., Sanchez-Yates, R., Graff, C., Ogieret, E., Gossman, M., Mcmillan, C., Pijnenburg, Y. A. L., Laforez, R., Benetti, G., Bersini, L., Ghidoni, R., Leirer, T. M., Secular, H., & Van Swieten, J. C. (2019). Novel CSF Biomarkers in genetic frontotemporal
dementia identified by proteomics. Annals of Clinical and Translational Neurology, 4(9), 980-97. https://doi.org/10.1002/acn3.745

day of death. Am J Geriatr Psychiatry, 29(1), 37-45. https://doi.org/10.1093/ajgp/aay080

van der Flier, W., & Scheltens, P. (2018). Amsterdam dementia cohort: Performing research to optimize care. Journal of Alzheimer’s Disease, 63(3), 1091-1111. IROS Press. https://doi.org/10.3233/JAD-172153

van Saarloos, I., Koel-Simmok, M. J., Vensvogel, L. J., Tijms, B., Pleunan, S., Pham, T., Bridel, C., Ferré, G.-L., Cozou, C., Nol, B., Worley, P., Xiao, M.-F., Xu, D., Oeckl, P., Otto, M., van der Flier, W., De Jong, F., Jansen, C., Lemstra, A., & Teunissen, C. (2020). Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: A proteomic approach. Mol Neurodegener, 15(1), 36. https://doi.org/10.1186/s13024-020-00383-2

Vergallo, A., Bon, R. S., Tochi, N., Baldacci, F., Zetterberg, H., Blennow, K., Cavado, E., Marzani, F., Hubert, M. O., Dubois, B., Floris, R., Gara, F., Leta, S., Hupfeld, M., Amdur, C., Aufrère, A., Bukanjman, H., Baldacci, F., Bartaccioni, B., & Younesi, E. (2018). Association of cerebrospinal fluid amyloid-β protein concentrations and brain amyloid load in cognitively normal subjective memory complainers stratified by Alzheimer’s disease biomarkers. Alzheimer’s & Dementia, 14(2), 1623-1631. https://doi.org/10.1016/j.jalz.2018.06.003

Vogt, C., Tarafdi, S., Durais, B., Daniels, V., Fourch, P., Wolf, C., Whalley, B. J., Mochida, S., & Stephen, G. J. (2013). Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function as peripheral sympathetic enophrenia. European Journal of Neuroscience, 41(4), 398-409. https://doi.org/10.1111/ejn.12379

Walls, A., Nordahl, A., Jonson, M., Lind, K., Edman, Å., Göbelin, M., Ståhlsmark, J., Eckström, M., Kern, S., Stjernberg-Isson, A., Carlsten, O., Eneroth, P., Zetterberg, H., Blennow, K., & Madsen, E. (2016). Interleukin-6 and disproportion between CSF volume and protein concentration across plasma. J Neurochem. https://doi.org/10.1111/jnc.13429

Wang, Y. (2019). Association of cerebrospinal fluid Neurogranin with Alzheimer’s Disease. Aging Clinical and Experimental Research, 31(2), 185-191. https://doi.org/10.1007/s40520-018-0468-3

Wang, G., Zhou, W., & Zhang, J. (2019). Levels of certain CSF are associated with SNAAP-25 and tau pathology but not amyloid-β. Frontiers in Aging Neuroscience, 10, 385. https://doi.org/10.3389/fnagi.2018.00385

Wang, S., Zheng, J., & Pan, T. (2018). APOE ε4 is associated with higher levels of CSF SNAP-25 in preclinical Alzheimer’s disease. Neuropsychology, 68(5), 109-113. https://doi.org/10.1037/neu.0000420

Watts, L., Blennow, K., & Hansson, O. (2009). Cerebrospinal fluid biomarker levels: Phosphorylated tau (T) and total tau (N) as markers of rate of progression in Alzheimer’s disease. BMC Neurology, 10(1), 10. https://doi.org/10.1186/1471-2379-10-1

Wellington, H., Paterson, R. W., Portelius, E., Timpson, N., Magalhães, N., Fox, N. C., Horowski, R., Schott, J. M., & Zetterberg, H. (2016). Increased CSF neurogranin concentration is specific to Alzheimer’s disease. Neurology, 86(9), 829-835. https://doi.org/10.1212/WNL.0000000000002423

Wellington, H., Paterson, H. W., Suárez-González, A., Poolo, T., Frost, C., Sjöqvist, U., Slater, C. F., Magalhães, N. K., Lehmann, M., Portelius, E., Fox, N. C., Blennow, K., Zetterberg, H., & Schott, J. M. (2018). CSF neurogranin or tau distinguishes typical and atypical Alzheimer disease. Annals of Clinical and Translational Neurology, 5(2), 162-171. https://doi.org/10.1002/acne.23158

Williams, J. E., Yang, X., & Inoue, J. (2014). Interactions between the Intrinsically Disordered Proteins β-Synuclein and α-Synuclein. Proteomics, 14(21-22), eiu00028. Wiley-VCH Verlag. https://doi.org/10.1002/pmic.201800006

Winblad, B., Palmer, K., Erkintalo, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Nordberg, A., Blackman, L., Albert, M., Almkvist, O., Arias, H., Basun, H., Blennow, K., De Leon, M., Di Carlo, C., Eriksson, T., Glaesmer, U., Graff, C., Hardy, J., ... Petersen, RC. (2000). Mild cognitive impairment–Beyond controversies, towards a consensus. Report of the International Working Group on Mild Cognitive Impairment. Journal of Neurological Medicine, 250(3), 240-246. https://doi.org/10.1310/jnmm.2503.240-246

Wolfe, D. A., & Dicks, B. C. (2011). Fractional ventral peri-episodic memory in Alzheimer’s disease. Neurobiology, 54(2), 1530–1539. https://doi.org/10.1016/j.neurobiolage.2010.09.005

Wolman, M. A., Steinman, V. K., Ennor, J. J., Yost, H. J., Chandra, A., Lackner, A., & Halloran, M. C. (2008). Transient axonal glycoprotein 1 (TAG-1) and laminin-α1 regulate dynamic synapse formation and axon guidance. Journal of Neuropathology and Experimental Neurology, 67(6), 616-626. https://doi.org/10.1097/PIN.0b013e31816b4d84

World Health Organization. (2020). Dementia fact sheet. https://www.who.int/news-room/fact-sheets/detail/dementia

Xiao, M.-F., Xu, D., Craig, M. T., Pelkey, K. A., Chien, C.-C., Shi, Y., Zhang, J., Husnik, C., Feng, Y., Brouwer, J., Edland, S., Weigel, J., Tycko, B., Sanuvorien, A., Reeves, R. B., Trojanowski, J. C., Mclennan, C. J., Gaitanis, D., & Worley, P. F. (2017). NPTX2 and cognitive dysfunction in Alzheimer’s disease. eLife, 6, e23798. https://doi.org/10.7554/eLife.23798

Xie, Y., Liu, T., Ai, J., Chen, D., Zhou, Z., Zhou, G., He, S., Wu, J., Han, Y., & Yan, T. (2019). Changes in centrality frequency of the default mode network in individuals with subjective cognitive decline. Frontiers in Aging Neuroscience, 11, 118. https://doi.org/10.3389/fnagi.2019.00118

Yang, C.-C., Chiu, M.-J., Chen, T.-H., Cheng, H. L., Liu, B.-H., & Yang, S. Y. (2018). Assay of plasma phosphorylated tau protein (tubulin) isoforms and total tau protein in early-stage Alzheimer’s disease. Journal of Alzheimer’s Disease, 64(4), 1323-1332. https://doi.org/10.3233/JAD-170810

Yenagopala, K. G., & Panagopoulous, S. G. (2013). Current and future treatments for Alzheimer’s disease: Therapeutic Advances in Neurological Disorders, 6(1), 19-33. https://doi.org/10.1177/1758838X12476979

Yin, G. N., Lee, H. W., Cho, Y. J., & Suk, E. (2009). Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker...
for neurodegenerative diseases. Brain Res. J26, 158–170.
Yoo, B. C., Craig, N., Foumoulidakis, M., & Luber, G. (2001). Synaptic proteins, beta-amyloid N-ethylmaleimide-
sensitive factor attachment protein (Beta-SNAP), gamma-SNAP and synaptogamin I in brain of patients with Down syndrome and Alzheimer’s disease. Heterotes and Gagnant (Catalysis Disorders), 12(3), 219-225. https://doi.org/10.1199/000001285
Zetterberg, H. (2016). Neurofilament Light: A dynamic cross-Disease fluid biomarker for neurodegeneration. Neuron, 90(3), 1-3. https://doi.org/10.1016/j.neuron.2016.08.000
Zetterberg, H. (2019). Blood-based biomarkers for Alzheimer’s disease—An update. Journal of Neuroscience Methods, 319, 2–6. Elsevier BV. https://doi.org/10.1016/j.jneumeth.2018.10.025
Zetterberg, H., & Barnham, S. C. (2019). Blood-based molecular biomarkers for Alzheimer’s disease. Molecular Brain, 12(1), 26. https://doi.org/10.1186/s13041-019-0488-1
Zetterberg, H., Mørk, E., Song, J., Chang, J., Prowscher, G. K., Patil, P. P., Forre, J., Fournier, D. R., Kan, C. W., Campbell, T. G., Meyer, R., Krimchik, A. J., Plenk, B. A., Mirahmadi, K. A., Pfeil, T., Rots, D. M., Duff, P. C., Roberson, S., Wilson, D. H., & Blennow, K. (2013). Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid p levels in humans. PLoS ONE 8(12), e82863. https://doi.org/10.1371/journal.pone.0082863
Zetterberg, H., Millhöck, T., Mattsson, N., Trojanowski, J. Q., Porcelli, E., Shaw, L. M., Weiner, M. W., Blennow, K., & Alzheimer’s Disease Neuroimaging Initiative. (2016). Association of cerebrospinal fluid neuritophlin light concentration with Alzheimer Disease Progression. JAMA Neurology, 7(1), 60-67. https://doi.org/10.1001/jamaneuro.2015.3017
Zetterberg, H., Wilson, D., Anstine, U., Minthon, L., Blennow, K., Randall, J., & Hanson, O. (2013). Plasma tau levels in Alzheimer disease. Alzheimer Research and Therapy, 5(2), 9. BioMed Central. https://doi.org/10.1186/alzrt50
Zhang, H., Ng, K. P., Theriault, J., Kang, M. S., Pascoal, T. A., Rosa-Neves, P., Gauthier, S., & Alzheimer Disease Neuroimaging Initiative. (2018). Cerebrospinal fluid phosphorylated tau, vimentin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer disease. Frontalional Neurodegeneration, 7(1), 23. https://doi.org/10.3389/fndo.2018.00237
Zhang, H., Theriault, J., Kang, M. S., Ng, K. P., Pascoal, T. A., Rosa-Neves, P., Gauthier, S., & Alzheimer Disease Neuroimaging Initiative. (2018). Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer disease. Alzheimer Res Ther, 10(1), 80. https://doi.org/10.1186/s13195-018-0407-6
Zhou, K., Teramukai, S., Yoshimura, K., & Fujishima, M. (2009). Validity of cerebrospinal fluid biomarkers as endpoints in early-phase clinical trials for Alzheimer disease. Journal of Alzheimer’s Disease: JAD, 16(1), 89-102. https://doi.org/10.3233/JAD-2009-1124

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Saunders, T. S., Gadd, D. A., Spino-Jones, T. L., King, D., Ritchie, C., & Munns-Terrera, G. (2022). Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. European Journal of Neuroscience, 1–64. https://doi.org/10.1111/ejn.15656

Acknowledgments

This study was funded by the National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust and King’s College London.