Abstract

The Collatz variations pattern seems not to have any recurrence relation between numbers. But knowing that there is at least a natural number that converges after several iterations we construct a function \(f_{X,Y} \) that is equal to the value of convergence for all convergent sequences. A canonical decomposition can be expressed for such numbers.

Keywords: Syracuse problem, 3N+1 problem, Collatz conjecture.

2010 Mathematics Subject Classification: primary 11B99; secondary 11T30.

1 Introduction

The Collatz conjecture has many denominations. It is also known as the Syracuse problem or the 3N+1 problem. The problem was first stated by the German mathematician Lothar Collatz in the 1930’s [1]. The conjecture is summarized as follows. Take any natural number \(n \) not equal to zero. If \(n \) is even divide by 2. If \(n \) is odd multiply it by 3 and add 1. Repeat the process to infinity. Does the sequence created reaches 1 for every initial number \(n \)? The Collatz sequence \((C_p)_{p \in \mathbb{N}}\) started with a natural number \(n \) different of zero is called convergent when after \(k \) iterations the sequence is equal to 1. The total stopping time \(\sigma_\infty(n) = \inf \{ k : T^k(n) = 1 \} \) [2]; \(k \) is the finite least iterations before \((C_p)\) converges. Consider the function:

\[
g(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even} \\ 3n + 1, & \text{if } n \text{ is odd} \end{cases}
\]

Form the sequence by performing an infinite operation of the function. Notation:

\[
C_p = \begin{cases} n, & \text{for } p = 0 \\ g(C_{p-1}), & \text{for } p > 0 \end{cases}
\]
C_p is the value of g applied to n recursively p times: in notation $C_p = g^p(n)$. The smallest p such that $C_p = 1$ is nothing than $\sigma_\infty(n)$ defined earlier as the total stopping time ($p = k$).

A divergent sequence isn’t yet found. The divergence would consist of a total stopping being infinity. In notation: $\sigma_\infty(n) = \infty$ [2]. Even though computational method had proven the convergence of all natural number $n < 20 \cdot 2^{58}$ [3], does not totally prove the Collatz conjecture. But it tells us the existence of several convergent numbers (The partition set of the convergent numbers in \mathbb{N} is not empty).

This document is intended to prove that all convergent numbers have their convergence same as a function $f_{X,Y}$. In general, $g^k(n) = f_{X,Y} = 1$. This paper also includes properties of convergent numbers by the Collatz sequence and a generalisation of the idea that the set of convergent n is never empty to an infinite set.

2 The odd and even iterations X and Y at convergence

2.1 The k−tuple associated to a Collatz sequence at the total stopping time $\sigma_\infty(n) = k$

Definition 2.1: The k−tuple associated to n after k total Collatz iterations is the chain constituted of all values C_p when p varies from 0 to $p − 1$ ($p = 0, 1, \ldots, k − 1$). Then the k−tuple is $(C_0, C_1, \ldots, C_{k−1})$.

Examples 2.1

For $n = 6$, $C_8 = 1$. The 8−tuple associated to 6 is $(6, 3, 10, 5, 16, 8, 4, 2)$.

Another example is $n = 19$, it takes 20 iterations before it gets to 1. $C_{20} = 1$ and its 20−tuple is $(19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2)$.

2.2 The smallest odd and even iterations X and Y

Consider the k−tuple $(C_0, C_1, \ldots, C_{k−1})$ associated to a convergent sequence of n. Let us make a set E of all the element in the k−tuple chain and 2 subsets E_1, E_2 defined respectively as set of all the odd and all even numbers of E.

$$E = \{C_0, C_1, \ldots, C_{k−1}\}. \quad (1)$$

Definition 2.2: The iterations on odd numbers X is the cardinal of the set E_1 and Y, the iterations on even number is the cardinal of the set E_2.

$$Card\{E_1\} = X \quad (2)$$
and,
\[\text{Card} \{ E_2 \} = Y. \] \hspace{1cm} (3)

Remark 2.2
\[
\text{Card} \{ E \} = \text{Card} \{ E_1 \} + \text{Card} \{ E_2 \}, \\
\{ E \} = E_1 \cup E_2, \\
\sigma_\infty(n) = k = X + Y.
\]
By convenience we'll note a convergent sequence of \(n \) after \(X \) and \(Y \) iterations \(n = n(X,Y) \), and we'll denote by \(\mathcal{N} \) the set of convergent natural numbers.
By definition of the Collatz conjecture \(n \neq 0 \), so \(\mathcal{N} \subseteq \mathbb{N}^* \).

3 The function \(f_{X,Y} \) associated to the convergence value \(C_k(n) \) of \(n \)

3.1 The value at the convergence

Definition 3.1: The sequence \((C_p)_{p \in \mathbb{N}} \) is called convergent when after \(p = k \) iterations \(C_k(n) = 1 \). The value at the convergence of any Collatz sequence started with \(n \) non-zero positive integer is the limit taken at the total stopping time. In terms of limit notation:

\[
\lim_{p \to \sigma_\infty} (C_p) = 1.
\]

3.2 The function \(f_{X,Y} \)

Definition 3.2: Let \(\mathcal{N} \) be the set of the convergent \(n = n(X,Y) \), with the couple \((X,Y) \) associated to the its respective \(n \). By a function at the convergence of \(n \) we mean a map
\[
f_{X,Y} : \mathcal{N} \to \mathbb{N}
\]
where:
\[
f_{X,Y}(n) = \left\lceil \frac{3^X(2n+1)-1}{2^Y+1} \right\rceil.
\] \hspace{1cm} (4)

Lemma 3.1: Let \(Z_n = \frac{3^X(2n+1)-1}{2^Y+1} \). \(\forall n = n(X,Y) \in \mathcal{N}, \exists \varepsilon \) such that
\[
0 \leq \varepsilon < \frac{1}{3}, \text{ for which,}
\]
\[
Z_n = 1 - \varepsilon.
\] \hspace{1cm} (5)

Proof: For \(n(0,i) = 2^i \ (i \in \mathbb{Z}^*_+) \), then \(Z_n = \frac{2^i}{2^i} = 1 \) where \(\varepsilon = 0 \).
Let \(n \neq n(0,i) \). Proceed by ABSURD i.e we suppose that \(\exists n = n(X,Y) \), and \(\varepsilon > \frac{1}{3} \) such that \(Z_n \neq 1 - \varepsilon \)
If \(Z_n < 1 - \varepsilon \)
\[Z_n < 1 - \varepsilon \implies \exists \varepsilon' \text{ such that } \frac{1}{3} < \varepsilon' < 1 \text{ and } Z_n = 1 - \varepsilon'. \text{ That’s ABSURD.} \]

If \(Z_n > 1 - \varepsilon \)
\[Z_n > 1 - \varepsilon \implies \exists \varepsilon' \text{ such that } 0 < \varepsilon' < \frac{1}{3} \text{ and } Z_n = 1 - \varepsilon' \text{ (ABSURD),} \]

or
\[\exists L > 1 \text{ and } \varepsilon'', \text{ for which } Z_n = L - \varepsilon'' \text{ with } \frac{1}{3} < \varepsilon'' < 1 \text{ (} L \in \mathbb{N} \text{).} \]

\[3Z_n + 1 = 3L - 3\varepsilon'' + 1 \]
\[= (3L + 1) - 3\varepsilon'' \]

\(n \) converges, \(n = n(X, Y) \implies Z_n = 1 - \varepsilon'' \text{ and } 0 < \varepsilon'' < \frac{1}{3} \left(n \neq n(0, i)\right). \)

\[3Z_n + 1 = 3 - 3\varepsilon'' + 1 \]
\[= 4 - 3\varepsilon'' \]

For the same \(n = n(X, Y) \), we have 2 values of \(3Z_n + 1 \) where one’s function of \(L \).

Since a number cannot differ from itself, \(L \) must be equal to 1 and \(0 < \varepsilon'' < \frac{1}{3} \).

There is a contradiction meaning that there is no such \(L \) greater than 1 and there is no \(\varepsilon'' \), such that \(\frac{1}{3} < \varepsilon'' < 1 \) for which \(Z_n = L - \varepsilon'' \).

Conclusion: \(\forall n = n(X, Y) \in \mathcal{N}, \exists \varepsilon \text{ such that } 0 \leq \varepsilon < \frac{1}{3} \text{ for which } Z_n = 1 - \varepsilon. \)

We can now prove the following theorem:

Theorem 3.1: For all \(n = n(X, Y) \in \mathcal{N}, \) there is a function \(f_{X,Y}(n) = \left\lceil \frac{3^X (2n + 1) - 1}{2^Y + 1} \right\rceil \) which is equal to the value of convergence \(C_k \) of \(n \).

\[\forall n = n(X, Y) \in \mathcal{N}, f_{X,Y}(n) = 1. \tag{6} \]

Proof: From Lemma 3.1 for all \(n = n(X, Y) \) there is always \(\varepsilon \) satisfying the condition \(0 \leq \varepsilon < \frac{1}{3} \) and we have \(Z_n = 1 - \varepsilon. \)

\[Z_n = 1 - \varepsilon \implies \left\lfloor Z_n \right\rfloor = 1, \]
\[f_{X,Y}(n) = \left\lfloor Z_n \right\rfloor \implies f_{X,Y}(n) = 1. \]

Corollary 3.1: \(\forall n = n(X, Y) \in \mathcal{N}, f_{X,Y}(n) \) is a constant function.
4 Canonical decomposition \(n' \) of \(n = n(X, Y) \)

Definition 4.1: For \(n \) in \(\mathcal{N} \) with its respective couple \((X, Y)\), the expression \(n' \) in \(\mathbb{R}_+^\ast \) of \(n \) is:

\[
n' = 2^Y (3^{-X} - \varepsilon_n);
\]
(7)

\(n' \) is called by definition the canonical decomposition of \(n \).

Lemma 4.1: For all convergent \(n = n(X, Y) \), \(0 < \frac{1}{2}(1 - 3^{-X}) < \frac{1}{2} \).

Proof: \(\forall X \in \mathbb{N} \),

\[
0 < 3^{-X} < 1
-1 < -3^{-X} < 0
0 < 1 - 3^{-X} < 1
0 < \frac{1}{2}(1 - 3^{-X}) < \frac{1}{2}
\]

Lemma 4.2: If \(\{n'\} \) is the fractionnal part of \(n' \) then, \(\{n'\} = \frac{1}{2}(1 - 3^{-X}) \) and \(\varepsilon_n = 3^{-X}\varepsilon \).

Proof: Let \(n(X, Y) \in \mathcal{N} \), then from (6) we know that \([Z_n] = 1\).

\[
\left\lceil Z_n \right\rceil = 1 \iff Z_n = 1 - \varepsilon
\]

\[
\frac{3^X (2n + 1) - 1}{2^{Y+1}} = 1 - \varepsilon
\]

\[
3^X (2n + 1) - 1 = 2^{Y+1}(1 - \varepsilon)
= 2^{Y+1} - 2^{Y+1}\varepsilon
\]

\[
2 \cdot 3^X n + 3^X - 1 = 2^{Y+1} - 2^{Y+1}\varepsilon
\]

\[
2 \cdot 3^X n = 1 - 3^X + 2^{Y+1} - 2^{Y+1}\varepsilon
\]

\[
n = \frac{1}{2}(3^{-X}) - \frac{1}{2} + 3^{-X} \cdot 2^Y - (3^{-X}\varepsilon) \cdot 2^Y
= \frac{1}{2}(3^{-X} - 1) + 3^{-X} \cdot 2^Y - 2^Y\varepsilon_n
= \frac{1}{2}(3^{-X} - 1) + 2^Y(3^{-X} - \varepsilon_n)
= 2^Y(3^{-X} - \varepsilon_n) - \frac{1}{2}(1 - 3^{-X})
= n' - \frac{1}{2}(1 - 3^{-X})
\]

\[
n = n' - \frac{1}{2}(1 - 3^{-X}).
\]
(8)
The number n is a natural number written as the difference of 2 real numbers which are positive. Also $0 < \frac{1}{2}(1 - 3^{-X}) < \frac{1}{2}$ and $n' > \frac{1}{2}(1 - 3^{-X})$. The relation $n = n' - \frac{1}{2}(1 - 3^{-X})$ is true if and only if $\frac{1}{2}(1 - 3^{-X})$ is the fractional part of n'; i.e $\{n'\} = \frac{1}{2}(1 - 3^{-X})$.

Lemma 4.3: If n' is the canonical decomposition of n then $0 \leq \varepsilon_n < \frac{1}{3^{X + 1}}$.

Proof: $\varepsilon_n = 3^{-X}\varepsilon$ and $0 \leq \varepsilon < \frac{1}{3}$.

Remarks 4.1: For the same iterations X and Y at the convergence of n and m, $\varepsilon_n = \varepsilon_m$, For $n = n(0, i)$ (or $n = 2^i$, $i \in \mathbb{Z}_+^*$), $\varepsilon_n = 0$.

We can now state the following theorem;

Theorem 4.1: Let n' be the canonical decomposition of $n = n(X, Y)$ in \mathbb{R}_+^*. The expression of n in function of n' is:

$$n = \lfloor n' \rfloor. \quad (9)$$

Proof: From (8) we have the equality $n = n' - \frac{1}{2}(1 - 3^{-X})$

$$n = n' - \frac{1}{2}(1 - 3^{-X})$$

$$n' = n + \frac{1}{2}(1 - 3^{-X})$$

$$\lfloor n' \rfloor = \lfloor n + \{n'\} \rfloor$$

$$\lfloor n' \rfloor = \lfloor n \rfloor$$

$$\lfloor n' \rfloor = n.$$

Corollary 4.1: $\forall n \in \mathcal{N}, n = n(X, Y) \iff n = \lfloor n' \rfloor$.

4.1 Properties

Consider \mathcal{N}, n' the canonical decomposition of $n = n(X, Y)$, and a and b be 2 elements of \mathcal{N}. We consider the following strong properties arising from the canonical decomposition:

Unicity of the couple (X, Y): $a = a(X, Y)$ and $b = b(X, Y)$ iff $a = b$.

6
Proof: Let \(a = a(X, Y) \) and \(b = b(X, Y) \) then \(a = \lfloor a' \rfloor \) and \(b = \lfloor b' \rfloor \)
\[
a - b = \lfloor a' \rfloor - \lfloor b' \rfloor, \\
a - b = \lfloor 2^Y(3^{-X} - \varepsilon_a) \rfloor - \lfloor 2^Y(3^{-X} - \varepsilon_b) \rfloor,
\]
It’s known from remark 4.1 that for the same iterations \(X \) and \(Y \) at the convergence of \(n \) and \(m \), \(\varepsilon_n = \varepsilon_m \) then:
\[
\varepsilon_a = \varepsilon_b, \\
a - b = 0, \\
a = b.
\]

The \(a + b \) addition: If \(a \) and \(b \) converge so does \(a + b \): i.e \(a = a(X, Y) \) and \(b = b(X', Y') \), then \(\exists (X'', Y'') \) such that \(a + b = [a + b](X'', Y'') \)

Proof: Let \(a = a(X, Y) \) and \(b = b(X, Y) \) then \(a = \lfloor a' \rfloor \) and \(b = \lfloor b' \rfloor \)
\[
a + b = \lfloor a' \rfloor + \lfloor b' \rfloor, \\
a + b = \lfloor a' + b' \rfloor.
\]
Because \(\{a'\} \) and \(\{b'\} \) are both less than \(\frac{1}{2} \). (See Lemma 4.1).

5 Algebra of the set \(\mathcal{N} \)

5.1 Equipotence to \(\mathbb{N} \)

Definition 5.1: \(\mathcal{N} \) is equipotent to \(\mathbb{N} \) or countably infinite when there exist a function bijective from \(\mathcal{N} \) to \(\mathbb{N} \).

Lemma 5.1: There is a bijection from \(\mathbb{N} \) to its infinite subsets especially to \(\mathcal{N} \).

Proof: \(\mathcal{N} \subseteq \mathbb{N} \); Let consider an order relation \(\leq \) on \(\mathcal{N} \) and let the set be finite,
\[
\exists M \in \mathcal{N}|M = \{k|\forall x \in \mathcal{N}, x < k\} \\
M + 1 \notin \mathcal{N}
\]
From properties above the addition of 2 convergent numbers is convergent so must \(M + 1 \) also be in \(\mathcal{N} \) i.e also convergent. We arrive at a contradiction. \(\mathcal{N} \) is not majored and not a finite set.
The application which to every single element of \(\mathcal{N} \) associate their perfect square in \(\mathbb{N} \) is bijective.
5.2 Total order relation in \mathbb{N}

The order relation \leq is total in \mathbb{N}. By definition \leq is a total relation order when $\forall a$ and b in the set such that $a \leq b$, there is also c in the set such $a + c = b$.

In \mathbb{N} this relation is verified. In fact, if there is M in \mathbb{N}, $M + 1$ also is in \mathbb{N} leading to state that two elements a and b in the set are always comparable: $a \leq b$ or $b \leq a$.

5.3 Conclusion

We recall some basic properties: Any partition of \mathbb{N} different from the empty set (\emptyset) has a least element. The least element to converge in \mathbb{N} is 1.

The addition in \mathbb{N} is an internal law of composition.

So we can assure these following inclusions:

$$\mathbb{N} \subset \mathbb{N}^*, \text{and } \mathbb{N}^* \subset \mathbb{N}$$ (10)

References

[1] Jeffrey C. Lagarias: The 3x+1 problem and its generalizations. AT&T Bell Laboratories, Murray Hill, NJ 07974. Also appeared in the American Mathematical Monthly Volume 92, 3-23, (1985)

[2] Marc Chamberland: An Update on the 3x+1 Problem. First appeared as "Una actualizacion del problema 3x+1" (Catalan, translated by Toni Guillamon i Grabolosa), Butlleti de la Societat Catalana de Matematiques, v.22, 1-27, (2003)

[3] Silva, Tomas Oliveira e Silva: "Computational verification of the 3x+1 conjecture". (2015)