On the occurrence of boundary solutions in two-way incomplete tables

S. GHOSH AND P. VELLAISAMY

Abstract. The analysis of incomplete contingency tables is an important problem, which is also of practical interest. In this paper, we consider boundary solutions under nonignorable nonresponse models in two-way incomplete tables with data on both variables missing. We establish a result similar to Park et al. (2014) on sufficient conditions for the occurrence of boundary solutions. We also provide a new result, which connects the forms of boundary solutions under various parameterizations of the missing data models. This result helps us to give the exact form of boundary solutions in the above tables, which improves a claim made in Baker et al. (1992) and avoids computational burden. A counterexample is provided to show that the sufficient conditions for the occurrence of boundary solutions are not necessary, thereby disproving a conjecture of Kim and Park (2014). Finally, we establish new necessary conditions for the occurrence of boundary solutions under nonignorable nonresponse models in square two-way incomplete tables, and show that they are not sufficient. These conditions are simple and easy to check as they depend only on the observed cell counts. They are useful and important for model selection also. Some real life data sets are analyzed for illustrating the results.

1. Introduction

Contingency tables with fully observed counts and partially classified margins (nonresponses) are called incomplete tables. The following three types of missing data mechanisms have been proposed in the literature (Little and Rubin (2002)): missing completely at random (MCAR), missing at random (MAR) and not missing at random (NMAR). The missing mechanism is said to be (a) MCAR when missingness is independent of both observed and unobserved data, (b) MAR when missingness depends only on observed data, and (c) NMAR if missingness depends only on unobserved data. Nonresponses are called ignorable when the missing data mechanism is MAR or MCAR, and the parameters governing the missing data mechanism are distinct from those to be estimated. They are nonignorable when the missing data mechanism is NMAR.

Log-linear models have generally been used to study missing data mechanisms in incomplete tables (see Park et al. (2014) and references therein). However, under nonignorable models, a boundary solution occurs when the cell probabilities of non-respondents are estimated to be zeros for certain levels of the missing variables. Note that the problem of boundary solutions is an important one as it has serious consequences for statistical inference. For example, the observed counts cannot be reproduced by a perfect fit model (a model for which the estimated expected counts are equal to the observed counts) if boundary solutions occur. This implies that the fit is inadequate and the parameter estimates are imprecise. The maximum likelihood estimators (MLE’s) of the parameters lie on the boundary of the parameter space.

2010 Mathematics Subject Classification. Primary : 62H17.
Key words and phrases. Incomplete tables; Boundary solutions; Log-linear models; NMAR models.
The research of S. Ghosh was supported by UGC, Govt. of India grant F.2-2/98 (SA-I)
The log likelihood function is flat due to which convergence of the EM algorithm to the boundary MLE’s requires a lot of iterations. Also, the eigenvalues of the covariance matrix are inappropriate (either around zero or negative), which implies some parameter estimates have large estimated standard errors and wide confidence intervals. Hence, it is useful to study various forms of boundary solutions and explore conditions for their occurrence in incomplete tables.

This problem was first considered by Baker and Laird (1988) who proposed a sufficient condition for the occurrence of boundary solutions in a $2 \times 2 \times 2$ incomplete table. Baker et al. (1992) studied the problem for an $I \times J \times 2 \times 2$ incomplete table, which has non-monotone missing value patterns. For an $I \times J \times 2$ incomplete table with simple monotone missing value patterns, Smith et al. (1999) and Clarke (2002) described the problem geometrically, while Clarke and Smith (2005) discussed properties of MLE’s in case of boundary solutions. Park et al. (2014) proposed sufficient conditions for the occurrence of boundary solutions under various NMAR models in an $I \times I \times 2 \times 2$ incomplete table. Recently, Ghosh and Vellaisamy (2016) provided forms of boundary solutions in arbitrary three-way and n-dimensional incomplete tables with one or more variables missing, and also established sufficient conditions for their occurrence under various NMAR models.

The purpose of this paper is to provide a comprehensive treatment of the problem of boundary solutions in two-way incomplete tables with both variables missing. To this effect, we first define boundary solutions that might occur under various NMAR models in such tables. We prove a new result that connects forms of boundary solutions under missing data models with various parameters. This helps us to obtain the exact boundary solutions in those models directly and hence avoid unnecessary calculations given in Baker et al. (1992). We provide sufficient conditions on the occurrence of boundary solutions in the above tables, which are similar to Park et al. (2014) but proved using direct arguments in a straightforward way. A counterexample is given to disprove a conjecture of Kim and Park (2014) on the necessity of the sufficient conditions. Finally, we establish new necessary conditions, using only the observed cell counts, for the occurrence of boundary solutions in the above tables. These conditions prove very helpful for fitting appropriate models to the incomplete data. An example is provided to show that these conditions are not sufficient.

The rest of the paper is organized as follows. In Section 2, we introduce some notations and consider various identifiable NMAR log-linear models (Models [M1]-[M5]) for an $I \times J \times 2 \times 2$ incomplete table. The problem of boundary solutions, along with their forms under the above models, is discussed in Section 3. We formally define boundary solutions for an $I \times J \times 2 \times 2$ incomplete table by extending the definition of Baker and Laird (1988). A new result is provided, which gives the relationship among forms of boundary solutions according to various parameterizations for the missing data models. In Section 4, we illustrate this result using some data analysis examples from Baker et al. (1992), thereby improving a claim made by them on the forms of boundary solutions in $I \times J \times 2 \times 2$ tables as well as eliminating computations.

In Section 5, we prove a result on sufficient conditions for the occurrence of boundary solutions under Models [M1]-[M5], based on a similar approach but using direct arguments instead of contrapositive ones used in Park et al. (2014). A real life data analysis is carried out using our result. We verify the occurrence of boundary solutions directly using the definitions from Baker et al. (1992), and not the EM algorithm as in Park et al. (2014). An example is
provided to show that the sufficient conditions for the occurrence of boundary solutions are not necessary, which refutes a conjecture due to Kim and Park (2014).

Finally, we propose necessary conditions for the occurrence of boundary solutions under Models [M1]-[M5] in square two-way incomplete tables, and later show that they are not sufficient through an example. Such conditions do not exist in the literature. Note that these conditions help us to identify the non-occurrence of boundary solutions, which is very useful for model selection. Also, these conditions involve only the observed cell counts and their sums in the tables, and hence can be easily verified. Section 6 provides some concluding remarks.

2. NMAR LOG-LINEAR MODELS

Suppose Y_1 and Y_2 are two categorical variables having I and J levels respectively. For $i = 1, 2$, let R_i denote the missing indicator for Y_i so that $R_i = 1$ or 2 if Y_i is observed or unobserved. Then we have an $I \times J \times 2 \times 2$ incomplete table, corresponding to Y_1, Y_2, R_1 and R_2, with cell counts $y = \{y_{ijkl}\}$ where $1 \leq i \leq I$, $1 \leq j \leq J$ and $1 \leq k, l \leq 2$. The vector of observed counts is $y_{obs} = \{\{y_{ij11}\}, \{y_{i+12}\}, \{y_{+j21}\}, y_{++22}\}$, where $\{y_{ij11}\}$ are the fully observed counts and $\{y_{i+12}\}, \{y_{+j21}\}, y_{++22}$ are the supplementary margins, all of which are assumed to be positive. Note that ‘+’ denotes summation over levels of the corresponding variable. Let $\pi = \{\pi_{ijkl}\}$ be the vector of cell probabilities, $\mu = \{\mu_{ijkl}\}$ be the vector of expected counts and $N = \sum_{i,j,k,l} y_{ijkl}$ the total number of cell counts. For $I = J = 2$, we have the $2 \times 2 \times 2 \times 2$ incomplete table (Table 1).

R_2 = 1	R_2 = 2			
$R_1 = 1$	$Y_1 = 1$	$Y_2 = 1$	Y_{1211}	y_{1+12}
$R_1 = 2$	Y_1 = 2	y_{2111}	y_{2211}	y_2+12
$R_1 = 2$	Y_1 missing	y_{+121}	y_{++21}	y_{++22}

We consider Poisson sampling for convenience, that is, $Y_{ijkl} \sim P(\mu_{ijkl})$. The likelihood function of μ is

\[
L(\mu; y_{obs}) = \frac{e^{-\sum_{i,j,k,l} \mu_{ijkl}} \prod_{i,j} \mu_{ij11}^{y_{ij11}} \prod_{i} \mu_{i+12}^{y_{i+12}} \prod_{j} \mu_{+j21}^{y_{+j21}} \mu_{++22}^{y_{++22}}}{\prod_{i,j,k,l} y_{ijkl}!}
\]

so that the log-likelihood function of μ is

\[
l(\mu; y_{obs}) = \sum_{i,j} y_{ij11} \log \mu_{ij11} + \sum_{i} y_{i+12} \log \mu_{i+12} + \sum_{j} y_{+j21} \log \mu_{+j21} + y_{++22} \log \mu_{++22} - \sum_{i,j,k,l} \mu_{ijkl} + \Delta,
\]

where Δ is independent of μ_{ijkl}’s. For an $I \times J \times 2 \times 2$ incomplete table, Baker et al. (1992) proposed the following log-linear model (with no three-way or four-way interactions):

\[
\log \mu_{ijkl} = \lambda + \lambda_{Y_1}(i) + \lambda_{Y_2}(j) + \lambda_{R_1}(k) + \lambda_{R_2}(l) + \lambda_{Y_1Y_2}(i,j) + \lambda_{Y_1R_1}(i,k) + \lambda_{Y_2R_1}(j,k) + \lambda_{Y_1R_2}(i,l) + \lambda_{Y_2R_2}(j,l) + \lambda_{R_1R_2}(k,l),
\]
where the sum over any argument of a log-linear parameter is zero, for example, \(\sum_i \lambda_{Y_1 Y_2}(i, j) = \sum_j \lambda_{Y_1 Y_2}(i, j) = 0 \). To study the various missing mechanisms of \(Y_1 \) and \(Y_2 \), Baker et al. (1992) introduced the following notations:

\[
\begin{align*}
\alpha_{ij} &= \frac{P(R_1 = 2, R_2 = 1 | Y_1 = i, Y_2 = j)}{P(R_1 = 1, R_2 = 1 | Y_1 = i, Y_2 = j)} = \frac{\pi_{ij12}}{\pi_{ij11}} = \frac{\mu_{ij21}}{\mu_{ij11}}, \\
\beta_{ij} &= \frac{P(R_1 = 1, R_2 = 2 | Y_1 = i, Y_2 = j)}{P(R_1 = 1, R_2 = 1 | Y_1 = i, Y_2 = j)} = \frac{\pi_{ij12}}{\pi_{ij11}} = \frac{\mu_{ij12}}{\mu_{ij11}}, \\
\gamma_{ij11} &= N_{ij11}, \quad g = \frac{P(R_1 = 1, R_2 = 1 | Y_1 = i, Y_2 = j)P(R_1 = 2, R_2 = 2 | Y_1 = i, Y_2 = j)}{P(R_1 = 1, R_2 = 2 | Y_1 = i, Y_2 = j)P(R_1 = 2, R_2 = 1 | Y_1 = i, Y_2 = j)}.
\end{align*}
\]

Note that \(\gamma_{ij11} = \mu_{ij11} \) and \(g \) denotes the odds ratio between the missing indicators of \(Y_1 \) and \(Y_2 \). Also, \(\mu_{ij21} = \gamma_{ij11} a_{ij} \), \(\mu_{ij12} = \gamma_{ij11} b_{ij} \) and \(\mu_{ij11} = \gamma_{ij11} a_{ij} b_{ij} g \). Note that \(a_{ij} \) is the conditional odds of \(Y_1 \) being missing given \(Y_2 \) is observed, while \(b_{ij} \) is the conditional odds of \(Y_2 \) being missing given \(Y_1 \) is observed. Here, \(a_{ij} \) and \(b_{ij} \) describe the missing mechanisms of \(Y_1 \) and \(Y_2 \), respectively. Under (2.3), \(a_{ij} = \exp[-2(\lambda_{R_1}(i) + \lambda_{Y_1 R_2}(i, 1) + \lambda_{Y_2 R_1}(j, 1))] \) and \(b_{ij} = \exp[-2(\lambda_{R_2}(i) + \lambda_{Y_2 R_1}(j, 1) + \lambda_{Y_1 R_2}(i, 1))] \). Denote \(a_{ij} \) (or \(b_{ij} \)) by \(\alpha_{ij} \) (or \(\beta_{ij} \)), where \(\alpha_i \) (or \(\beta_i \)) if it depends only on \(i \) or \(j \) respectively. Then we have the following definition.

Definition 2.1. The missing mechanism of \(Y_1 \) under (2.3) is NMAR if \(a_{ij} = \alpha_i \), MAR if \(a_{ij} = \alpha_j \) and MCAR if \(a_{ij} = \alpha_{..} \). Similarly, the missing mechanism of \(Y_2 \) is NMAR if \(b_{ij} = \beta_j \), MAR if \(b_{ij} = \beta_i \) and MCAR if \(b_{ij} = \beta_{..} \).

Using Definition 2.1 and the above notations, there are nine possible identifiable models (see pp. 647-648 of Baker et al. (1992)) based on different missing mechanisms for \(Y_1 \) and \(Y_2 \). The equivalent log-linear models can be obtained as submodels of (2.3). As an example, consider the model \((\alpha_i, \beta_i) \), for which the missing mechanism is NMAR for \(Y_1 \) and MAR for \(Y_2 \). Using the expressions of \(a_{ij} \) and \(b_{ij} \) above, the corresponding log-linear model is obtained from (2.3) by substituting \(\lambda_{Y_2 R_1}(j, k) = \lambda_{Y_2 R_2}(j, l) = 0 \). The following are the five models when the missing mechanism is NMAR for \(Y_1 \) or \(Y_2 \).

1. Model M1 (NMAR for \(Y_1 \), MCAR for \(Y_2 \)):
 \[
 \log \mu_{ijkl} = \lambda + \lambda_{Y_1}(i) + \lambda_{Y_2}(j) + \lambda_{R_1}(k) + \lambda_{R_2}(l) + \lambda_{Y_1 Y_2}(i, j) + \lambda_{Y_1 R_2}(i, k) + \lambda_{R_1 R_2}(k, l)
 \]
2. Model M2 (NMAR for \(Y_2 \), MCAR for \(Y_1 \)):
 \[
 \log \mu_{ijkl} = \lambda + \lambda_{Y_1}(i) + \lambda_{Y_2}(j) + \lambda_{R_1}(k) + \lambda_{R_2}(l) + \lambda_{Y_1 Y_2}(i, j) + \lambda_{Y_2 R_2}(j, l) + \lambda_{R_1 R_2}(k, l)
 \]
3. Model M3 (NMAR for \(Y_1 \), MAR for \(Y_2 \)):
 \[
 \log \mu_{ijkl} = \lambda + \lambda_{Y_1}(i) + \lambda_{Y_2}(j) + \lambda_{R_1}(k) + \lambda_{R_2}(l) + \lambda_{Y_1 Y_2}(i, j) + \lambda_{Y_1 R_2}(i, l) + \lambda_{R_1 R_2}(k, l)
 \]
4. Model M4 (NMAR for \(Y_2 \), MAR for \(Y_1 \)):
 \[
 \log \mu_{ijkl} = \lambda + \lambda_{Y_1}(i) + \lambda_{Y_2}(j) + \lambda_{R_1}(k) + \lambda_{R_2}(l) + \lambda_{Y_1 Y_2}(i, j) + \lambda_{Y_2 R_1}(j, k) + \lambda_{Y_2 R_2}(j, l) + \lambda_{R_1 R_2}(k, l)
 \]
5. Model M5 (NMAR for both \(Y_1 \) and \(Y_2 \)):
 \[
 \log \mu_{ijkl} = \lambda + \lambda_{Y_1}(i) + \lambda_{Y_2}(j) + \lambda_{R_1}(k) + \lambda_{R_2}(l) + \lambda_{Y_1 Y_2}(i, j) + \lambda_{Y_1 R_1}(i, k) + \lambda_{Y_2 R_2}(j, l) + \lambda_{R_1 R_2}(k, l)
 \]
Note that for Models \([M1]-[M5]\), there is an association term between a variable and its missing indicator if the missing mechanism is NMAR for that variable (for example, the term \(\lambda_{Y_1R_1}(i, k)\) in Model \([M1]\)), between a variable and the other missing indicator if the missing mechanism is MAR for that variable (for example, the term \(\lambda_{Y_2R_1}(j, k)\) in Model \([M4]\)) and none if the missing mechanism is MCAR for a variable (for example, \(\lambda_{Y_1R_1}(i, k)\) and \(\lambda_{Y_2R_1}(j, k)\) are absent in Model \([M2]\)).

3. Boundary solutions in NMAR models

In this section, we consider boundary solutions under non-ignorable nonresponse (NMAR) models for an \(I \times J \times 2 \times 2\) incomplete table. We first define boundary solutions under the above models and then present a result relating the forms of boundary solutions in terms of various parameterizations of the models.

For an incomplete table, boundary solutions in NMAR models occur when the MLE’s of nonresponse cell probabilities are all zeros for certain levels of the missing variables. For an \(I \times J \times 2\) incomplete table, where data on only \(Y_2\) is missing, Baker and Laird (1988) defined boundary solutions in the NMAR model for \(Y_2\) as \(\hat{\pi}_{ij2} = 0\) for at least one pair \((i, j)\). For the same model, Clarke and Smith (2005) showed that boundary solutions are given by \(\hat{\pi}_{+j2} = 0\) for at least one and at most \((J-1)\) values of \(Y_2\). Baker and Laird (1988) defined a nonresponse boundary solution under NMAR models in general to be a stationary point that lies on a boundary of the space of parameters modeling the nonignorable nonresponse. Using this, we may extend their definition to an \(I \times J \times 2 \times 2\) table as follows.

Definition 3.1. Consider an \(I \times J \times 2 \times 2\) incomplete table, and let \(1 \leq i \leq I, 1 \leq j \leq J\) and \(k, l = 1, 2\). Then we have the following.

1. A nonresponse boundary solution under the NMAR models for \(Y_1\) only, that is, Models \([M1]\) and \([M3]\) is an MLE given by \(\hat{\pi}_{ij2l} = 0\) for at least one combination \((i, j, l)\).
2. A nonresponse boundary solution under the NMAR models for \(Y_2\) only, that is, Models \([M2]\) and \([M4]\) is an MLE given by \(\hat{\pi}_{ijk2} = 0\) for at least one combination \((i, j, k)\).
3. A nonresponse boundary solution under the NMAR model for both \(Y_1\) and \(Y_2\), that is, Model \([M5]\) is an MLE given by \(\hat{\pi}_{ij2l} = 0\) for at least one combination \((i, j, l)\) or \(\hat{\pi}_{ijk2} = 0\) for at least one combination \((i, j, k)\).

Note that in the literature, boundary solutions have usually been defined in terms of cell probabilities because the cell probabilities are in some sense natural to the model for the incomplete table, whereas the loglinear parameters are not. The next proposition explores the relationships among boundary solutions under Models \([M1]-[M5]\) in terms of MLE’s of nonresponse cell probabilities, some specific log-linear parameters and \(\alpha_i\) or \(\beta_j\) for two-way incomplete tables with both variables missing.

Proposition 3.1. For an \(I \times J \times 2 \times 2\) incomplete table, we have the following.

1. For Models \([M1]\) and \([M3]\), if boundary solutions occur, then they are given by \(\hat{\lambda}_{Y_1R_1}(i, 2) = -\infty \iff \hat{\pi}_{i+2+} = 0 \iff \hat{\alpha}_i = 0\) for at least one and at most \((I-1)\) values of \(Y_1\).
2. For Models \([M2]\) and \([M4]\), if boundary solutions occur, then they are given by \(\hat{\lambda}_{Y_2R_2}(j, 2) = -\infty \iff \hat{\pi}_{+j2+} = 0 \iff \hat{\beta}_j = 0\) for at least one and at most \((J-1)\) values of \(Y_2\).
3. For Model \([M5]\), if boundary solutions occur, then they are given by \(\hat{\lambda}_{Y_1R_1}(i, 2) = -\infty \) or
\(\hat{Y}_{2|R_2}(j, 2) = -\infty \Leftrightarrow \hat{\pi}_{i+2} = 0 \) or \(\hat{\pi}_{+j+2} = 0 \Leftrightarrow \hat{\alpha}_i = 0 \) for at least one and at most \((I - 1)\) values of \(Y_1 \) or \(\hat{\beta}_j = 0 \) for at least one and at most \((J - 1)\) values of \(Y_2 \).

Proof. From Definition 3.1 it follows that if boundary solutions occur under the Models [M1]-[M5], then the MLE’s of the cell probabilities except some of the nonresponse ones are all non-zero. On substituting \(k = l = 1 \) (for response cell probabilities) in the above models and using the parameter constraints, we can then deduce that the MLE’s of the constant, the main effects and the association terms between \(Y \)'s, between \(R_i \)'s, and between \(Y_1 \) and \(R_j \) for \(i \neq j \) are all finite. This is because non-zero terms (response cell probabilities) on the LHS of the log-linear models imply that the log-linear parameters on the RHS are finite.

Consider part 1 first. For the Models [M1] and [M3], the log-linear parameters modelling the non-ignorable nonresponse (NMAR) mechanism of \(Y \) are \(\lambda_{R_i}(k) \) and \(\lambda_{Y|R_i}(i, k) \). If boundary solutions occur, then they are of the form \(\hat{\pi}_{ij2l} = 0 \) (see point 1 of Definition 3.1), which implies \(\hat{\lambda}_{Y|R_i}(i, 2) = -\infty \) for at least one \(i \) since the other parameters are finite as mentioned above. Then under Model [M1], we have

\[
\hat{\pi}_{i+2} = \sum_{j,l} \hat{\pi}_{ij2l} \\
= N \sum_{j,l} \exp\{\hat{\lambda} + \hat{\lambda}_{Y}(i) + \hat{\lambda}_{Y}(j) + \hat{\lambda}_{R_1}(2) + \hat{\lambda}_{R_2}(l) + \hat{\lambda}_{Y|R_1}(i, 2) + \hat{\lambda}_{Y|R_2}(i, j) + \hat{\lambda}_{R_1|R_2}(2, l)\} \\
= 0
\]

for at least one \(i \). Conversely, we have

\[
\hat{\pi}_{i+2} = 0 \quad \text{for at least one } i
\]

\[
\Rightarrow N \sum_{j,l} \exp\{\hat{\lambda} + \hat{\lambda}_{Y}(i) + \hat{\lambda}_{Y}(j) + \hat{\lambda}_{R_1}(2) + \hat{\lambda}_{R_2}(l) + \hat{\lambda}_{Y|R_1}(i, 2) + \hat{\lambda}_{Y|R_2}(i, j) + \hat{\lambda}_{R_1|R_2}(2, l)\} = 0
\]

\[
\Rightarrow \hat{\lambda}_{Y|R_1}(i, 2) = -\infty \quad \text{for at least one } i,
\]

so that \(\hat{\lambda}_{Y|R_1}(i, 2) = -\infty \Leftrightarrow \hat{\pi}_{i+2} = 0 \) for at least one \(i \) under Model [M1]. The same can be shown for Model [M3]. Under Models [M1] and [M3], \(a_{ij} = \exp[2\{\lambda_{R_1}(2) + \lambda_{Y|R_1}(i, 2) + \lambda_{R_1|R_2}(2, 1)\}] \). Since \(a_{ij} \) depends only on \(i \), we have \(a_{ij} = \alpha_i \). It is clear that \(\hat{\alpha}_i = 0 \Leftrightarrow \lambda_{Y|R_1}(i, 2) = -\infty \). Also, note that by definition of \(a_{ij} \), if \(\hat{\alpha}_i = 0 \) for all \(1 \leq i \leq I \), then \(y_{i+2} = 0 \) for all \(1 \leq j \leq J \), which is a contradiction since supplementary margins are assumed to be positive. Hence, under Models [M1] and [M3], boundary solutions are given by \(\hat{\lambda}_{Y|R_1}(i, 2) = -\infty \Leftrightarrow \hat{\pi}_{i+2} = 0 \Leftrightarrow \hat{\alpha}_i = 0 \) for at least one and at most \((I - 1)\) values of \(Y_1 \).

Consider part 2 now. Under Models [M2] and [M4], the log-linear parameters modelling the NMAR mechanism of \(Y_2 \) are \(\lambda_{R_2}(l) \) and \(\lambda_{Y|R_2}(j, l) \). Also, \(b_{ij} = \exp[2\{\lambda_{R_2}(2) + \lambda_{Y|R_2}(j, 2) + \lambda_{R_1|R_2}(1, 2)\}] \). Since \(b_{ij} \) depends only on \(j \), we have \(b_{ij} = \beta_j \). Then it can be shown similarly as above that boundary solutions in this case are given by \(\lambda_{Y|R_2}(j, 2) = -\infty \Leftrightarrow \hat{\pi}_{+j+2} = 0 \Leftrightarrow \hat{\beta}_j = 0 \) for at least one and at most \((J - 1)\) values of \(Y_2 \).
Finally, consider part 3. Under Model [M5], the log-linear parameters modelling the NMAR mechanisms of Y_1 and Y_2 are $\lambda_{R_1(k)}$, $\lambda_{R_2(l)}$, $\lambda_{Y_1R_1(i,k)}$ and $\lambda_{Y_2R_2(j,l)}$. The proof for the form of boundary solutions under Model [M5] follows on similar lines as for Models [M1]-[M4] shown above.

From the proof of Proposition 3.1, note that the one-to-one relation between the cell probabilities and the log-linear parameters cannot be used to derive the connection between the different forms of boundary solutions. This is because it is not obvious which specific log-linear parameters have infinite MLE’s just by noting the zero MLE’s of the nonresponse cell probabilities when boundary solutions occur.

4. SOME EXAMPLES OF BOUNDARY SOLUTIONS IN NMAR MODELS

In this section, we reanalyze some examples in Baker et al. (1992), illustrating the result in Section 3. We use Proposition 3.1 to investigate a claim made by Baker et al. (1992) regarding forms and occurrence of boundary solutions in an $I \times J \times 2 \times 2$ incomplete table. This improvement is useful as it avoids computation and provides the exact boundary solutions under a NMAR model by simply noting the level (s) of the variable (s) for which the MLE’s of the parameters are negative or infinite.

First, we present the correct expression of the likelihood ratio statistic for missing data models in such a table. Consider testing the goodness of fit of a null model (here one of the Models [M1]-[M5]) against the alternative model (perfect fit model). Let $\{\hat{\mu}_{ijkl}\}$ and $\{\tilde{\mu}_{ijkl}\}$ denote the MLE’s of the expected counts under a null model and a perfect fit model, respectively. Also, let L_0 and L_1 denote the log-likelihoods for the null and the alternative models, respectively. Then the likelihood ratio statistic is given by

$$G^2 = -2(L_0 - L_1)$$

$$= -2 \left[\sum_{i,j} y_{ij11} \ln \left(\frac{\hat{\mu}_{ij11}}{\tilde{\mu}_{ij11}} \right) + \sum_i y_{i+12} \ln \left(\frac{\hat{\mu}_{i+12}}{\tilde{\mu}_{i+12}} \right) + \sum_j y_{+j21} \ln \left(\frac{\hat{\mu}_{+j21}}{\tilde{\mu}_{+j21}} \right) \right. $$

$$+ y_{++22} \ln \left(\frac{\hat{\mu}_{++22}}{\tilde{\mu}_{++22}} \right) - \hat{\mu}_{++++} + \hat{\mu}_{++++} \right]$$

$$= -2 \left[\sum_{i,j} y_{ij11} \ln \left(\frac{\tilde{\mu}_{ij11}}{\hat{\mu}_{ij11}} \right) + \sum_i y_{i+12} \ln \left(\frac{\tilde{\mu}_{i+12}}{\hat{\mu}_{i+12}} \right) + \sum_j y_{+j21} \ln \left(\frac{\tilde{\mu}_{+j21}}{\hat{\mu}_{+j21}} \right) \right. $$

$$- \sum_{i,j} \tilde{m}_{ij11}(1 + \hat{a}_{ij} + \hat{b}_{ij} + \tilde{a}_{ij} \tilde{b}_{ij} \hat{g}) + N \right].$$

Note that the last two terms of (4.1) are missing in the expression of G^2 in Baker et al. (1992) (see p. 646). Observe that in general, $\sum_{i,j} \tilde{m}_{ij11}(1 + \hat{a}_{ij} + \hat{b}_{ij} + \tilde{a}_{ij} \tilde{b}_{ij} \hat{g}) \neq N$, unless the hypothetical (null) model is a perfect fit model for example, in which case $G^2 = 0$.

Using Definition 2.1 and the notations in Section 2, Models [M1]-[M5] can be represented as follows – Model [M1]: (α_i, β_j), Model [M2]: $(\alpha_i, \beta_j, \lambda)$, Model [M3]: (α_i, β_j), Model [M4]: (α_j, β_j) and Model [M5]: (α_i, β_j). Accordingly, the expression of G^2 in (4.1) for each of the above models may be obtained by making suitable substitutions and using the MLE’s in
Baker et al. (1992) (see pp. 647-648). For example, the MLE’s under the model \((\alpha_i, \beta_j)\) are

\[
\hat{m}_{ij1} = \frac{y_{ij1}y_{i+1}y_{++1}}{y_{i+1}y_{++1}}, \quad \sum_i \hat{m}_{ij1}\hat{\alpha}_i = y_{+j21}, \quad \hat{\beta}_j = \frac{y_{++12}}{y_{++11}}, \quad \hat{g} = \frac{y_{++11}y_{++21}}{y_{++12}}.
\]

Hence, from (4.1), the likelihood ratio statistic is

\[
G^2 = -2 \left[\sum_{i,j} y_{ij1} \ln \left(\frac{y_{i+1}y_{++11}}{y_{i+1}y_{++11}} \right) + \sum_i y_{i+12} \ln \left(\frac{y_{i+1}y_{++12}}{y_{i+1}y_{++12}} \right) \right].
\]

Baker et al. (1992) mentioned that if any solution \(\hat{\alpha}_i\) or \(\hat{\beta}_j\) to the systems of equations (5.3) and (5.4) is negative, then boundary solutions occur, that is, the MLE lies on the boundary of the parameter space. Closed-form boundary MLE’s under Models [M1]-[M5] may then be obtained (see p. 649 of Baker et al. (1992)) by setting certain parameter estimates \((\hat{\alpha}_i\) or \(\hat{\beta}_j)\) to 0 in the likelihood equations obtained from (2.2) for the models. They claimed that counterintuitively, the parameter estimate set to 0 need not be the estimate with a negative value as the solution to the above systems of equations. In particular, for a \(2 \times 2 \times 2 \times 2\) incomplete table, they suggested examining both boundaries \(\hat{\alpha}_1 = 0\) and \(\hat{\alpha}_2 = 0\); similarly \(\hat{\beta}_1 = 0\) and \(\hat{\beta}_2 = 0\) to determine the minimum value of \(G^2\), which corresponds to the MLE. We improve this claim and thereby obviate computations by showing that the MLE indeed always occurs on the specific boundary (level \((s)\) of the variable \((s)\)) for which \(\hat{\alpha}_i\) or \(\hat{\beta}_j\) is negative. In the next three examples, we use Proposition 3.1 to illustrate this point for Models [M1]-[M5].

Example 4.1. Consider the data in Table 2 discussed in Baker et al. (1992), which cross-classifies mother’s self-reported smoking status \((Y_1)\) \((Y_1 = 1(2)\) for smoker (non-smoker)) with newborn’s weight \((Y_2)\) \((Y_2 = 1(2)\) if weight < 2500 grams \((\geq 2500\) grams)). The supplementary margins contain data on only smoking status, data on only newborn’s weight and missing data on both variables.

Table 2. Birth weight and smoking: observed counts.

	\(R_2 = 1\)		\(R_2 = 2\)	
\(R_1 = 1\)	\(Y_1 = 1\)	4512	21009 \(Y_2 = 2\)	1049
\(R_1 = 2\)	\(Y_1 = 1\)	3394	24132 \(Y_2\) missing	1135
\(R_1 = 1\)	\(Y_1\) missing	142	464 \(Y_2\) missing	1224

Baker et al. (1992) mentioned that \(\hat{\alpha}_2 < 0\) is obtained on fitting models [M1], [M3] and [M5] to the data in Table 2. Also, the value of \(G^2\) corresponding to \(\hat{\alpha}_2 = 0\) is larger than that corresponding to \(\hat{\alpha}_1 = 0\) for all the above models, which is incorrect as shown below. When we fit the same models to the data in Table 2 using the ‘MASS’ package in R software, we obtain \(\hat{\alpha}_1 = 0.0493\) and \(\hat{\alpha}_2 = -0.0237\) under Models [M1], [M3] and [M5], that is, boundary solutions occur in each of the models. Also, \(G^2 = 55.2198\) \((12.4682)\) under Model [M1], \(G^2 = 55.2168\) \((12.4638)\) under Model [M3] and \(G^2 = 55.214\) \((12.464)\) under Model [M5] when \(\hat{\alpha}_1 = 0\) \((\hat{\alpha}_2 = 0)\). The \(G^2\) values for \(\hat{\alpha}_2 = 0\) upon rounding off in each of the models match those given in Table V of Baker et al. (1992). Hence, \(G^2\) is minimum for \(\hat{\alpha}_2 = 0\) in each case, which implies that boundary solutions are given by \(\hat{\alpha}_2 = 0\) or equivalently \(\hat{\pi}_{2+2+} = 0\). This result is consistent with points 1 and 3 of
Proposition 3.1. Further, it is the exact form of boundary solutions that we obtain on fitting Models [M1], [M3] and [M5] to the data in Table 2 using the EM algorithm (see the ‘ecm.cat’ function of ‘cat’ package in R software).

Example 4.2. Consider the example given in the last paragraph of p. 646 in Baker et al. (1992). The model [M1] was fitted to the following data:

\[
\begin{align*}
&y_{1111} = 100, \\
y_{1211} = 40, \\
y_{2111} = 50, \\
y_{2211} = 1000, \\
y_{1+12} = 0, \\
y_{2+12} = 0, \\
y_{y+12} = 100, \\
y_{y+22} = 10, \\
y_{y++22} = 0.
\end{align*}
\]

They mentioned that though $\hat{\alpha}_1 < 0$, G^2 is minimum for $\hat{\alpha}_2 = 0$ implying that the MLE is on the boundary $\hat{\alpha}_2$. However, we obtain $\hat{\alpha}_1 = 1.0098$ under [M1]. Also, note that $\hat{\mu} = \frac{y_{1111}y_{1211}y_{2111}y_{2211}}{y_{1+12}y_{2+12}y_{y+12}y_{y+22}}$ (see p. 649 of Baker et al. (1992)) is undefined since $y_{y+12} = 0$. Hence, we introduce the following changes: $y_{1+12} = 1$, $y_{2+12} = 1$ and $y_{y++22} = 2$ as shown in Table 3.

Table 3.

	$R_2 = 1$	$R_2 = 2$		
	$Y_2 = 1$	$Y_2 = 2$	Y_2 missing	
$R_1 = 1$	$Y_1 = 1$	100	40	1
$Y_1 = 2$	50	1000	1	
$R_1 = 2$	Y_1 missing	100	10	2

On fitting models [M1], [M3] and [M5] to the data in Table 3, we obtain $\hat{\alpha}_1 = 1.0098$ under [M1], and $\hat{\alpha}_1 = 1.0153$ under [M3] and [M5], along with $\hat{\alpha}_2 = -0.0306$ under all the above models, which implies boundary solutions occur in each case. Also, $G^2 = 426.1604 (17.4704)$ under Model [M1], $G^2 = 424.3288 (15.669)$ under Model [M3] and $G^2 = 424.3188 (15.664)$ under Model [M5] when $\hat{\alpha}_1 = 0$ ($\hat{\alpha}_2 = 0$). Hence, G^2 is minimum for $\hat{\alpha}_2 = 0$ in each model, which implies that boundary solutions are given by $\hat{\pi}_{2+2+} = 0$. This result is consistent with points 1 and 3 of Proposition 3.1. Further, it is the exact form of boundary solutions that we obtain on fitting Models [M1], [M3] and [M5] to the data in Table 2 using the EM algorithm.

Example 4.3. Consider the data in Table 2 discussed in Example 1. We introduce the following changes corresponding to supplementary margins in Table 2: $464 \rightarrow 700$ and $1135 \rightarrow 750$. The modified table is shown in Table 4.

Table 4. Birth weight and smoking: observed counts (modified).

	$R_2 = 1$	$R_2 = 2$		
	$Y_2 = 1$	$Y_2 = 2$	Y_2 missing	
$R_1 = 1$	$Y_1 = 1$	4512	21009	1049
$Y_1 = 2$	3394	24132	750	
$R_1 = 2$	Y_1 missing	142	700	1224

When we fit the models [M2], [M4] and [M5] to the data in Table 4, we obtain $\hat{\beta}_1 = 0.2538$ under [M2], and $\hat{\beta}_1 = 0.2543$ under [M4] and [M5] along with $\hat{\beta}_2 = -0.0047$ under all the above models, that is, boundary solutions occur in each of the models. Also, $G^2 = 98.5962 (3.3548)$ under Model [M2], $G^2 = 96.1622 (0.922)$ under Model [M4] and $G^2 = 96.162 (0.9276)$ under Model [M5] when $\hat{\beta}_1 = 0$ ($\hat{\beta}_2 = 0$). The G^2 values in brackets above match those obtained using the EM algorithm. Hence, G^2 is minimum for $\hat{\beta}_2 = 0$ in each case, which implies that boundary solutions are given by $\hat{\beta}_2 = 0$ or equivalently $\hat{\pi}_{+2+2} = 0$.

	$R_2 = 1$	$R_2 = 2$		
	$Y_2 = 1$	$Y_2 = 2$	Y_2 missing	
$R_1 = 1$	$Y_1 = 1$	4512	21009	1049
$Y_1 = 2$	3394	24132	750	
$R_1 = 2$	Y_1 missing	142	700	1224
This result is consistent with points 2 and 3 of Proposition 3.1. Further, it is the exact form of boundary solutions that we obtain on fitting Models [M2], [M4] and [M5] to the data in Table 4 using the EM algorithm.

For an $I \times J \times 2 \times 2$ incomplete table, Park et al. (2014) mentioned that boundary solutions have at least one of the following forms:

(i) $\hat{\pi}_{i+2+} = 0$ for at least one and at most $(I - 1)$ values of Y_1,
(ii) $\hat{\pi}_{i+j+2} = 0$ for at least one and at most $(J - 1)$ values of Y_2.

Specifically, only the first form ($\hat{\pi}_{i+2+} = 0$) may occur for Models [M1] and [M3], while only the second form ($\hat{\pi}_{i+j+2} = 0$) may occur for Models [M2] and [M4]. The boundary solutions are given by $\hat{\pi}_{i+2+} = 0$ or $\hat{\pi}_{i+j+2} = 0$ for Model [M5]. This is consistent with the forms of boundary solutions under Models [M1]-[M5] in Proposition 3.1.

5. Conditions for the occurrence of boundary solutions

In this section, we discuss sufficient conditions and also propose necessary conditions for the occurrence of boundary solutions in two-way incomplete tables with both variables missing. We show that the sufficient conditions are not necessary, which disproves a conjecture made by Kim and Park (2014). Further, we prove that the proposed necessary conditions are not sufficient. Both sets of conditions are simple to verify since they involve only the observed cell counts in the tables. The sufficient and the necessary conditions are of practical utility in identifying the occurrence and non-occurrence, respectively of boundary solutions in such tables.

5.1. Sufficient conditions for the occurrence of boundary solutions. Following Park et al. (2014), define the four odds based on the observed (joint/marginal) cell counts for any pair (j, j') of Y_2:

\begin{equation}
\nu_i(j, j') = \frac{\hat{\pi}_{ij11}}{\hat{\pi}_{ij'11}}, \quad \nu_n(j, j') = \min_i \{\nu_i(j, j')\}, \quad \nu_m(j, j') = \max_i \{\nu_i(j, j')\}, \quad \nu(j, j') = \frac{y_{j+j'1}}{y_{j+j'1}}.
\end{equation}

Similarly, for a given pair (i, i') of Y_1, define the four odds using the observed cell counts:

\begin{equation}
\omega_j(i, i') = \frac{\hat{\pi}_{ij11}}{\hat{\pi}_{ij'11}}, \quad \omega_n(i, i') = \min_j \{\omega_j(i, i')\}, \quad \omega_m(i, i') = \max_j \{\omega_j(i, i')\}, \quad \omega(i, i') = \frac{y_{i+i'1}}{y_{i+i'1}}.
\end{equation}

Note that $\nu_i(j, j')$ and $\omega_j(i, i')$ are called the response odds, while $\nu(j, j')$ and $\omega(i, i')$ are called the nonresponse odds. Using the MLE’s of $\{\pi_{ij11}\}$ under Models [M1]-[M5] (see pp. 647-648 of Baker et al. (1992)), we deduce that $\nu_i(j, j') = \frac{y_{j+i'11}}{y_{j'j11}}$ and $\omega_j(i, i') = \frac{y_{j+i'11}}{y_{ij'11}}$, which involve only the fully observed counts.

The following theorem provides sufficient conditions for the occurrence of boundary solutions in Models [M1]-[M5]. We provide a proof which is similar to that of Theorem 1 of Park et al. (2014), but we give direct arguments instead of using contrapositive ones as in Park et al. (2014).

Theorem 5.1. Consider the following conditions for an $I \times I \times 2 \times 2$ contingency table.

1. $\nu(j, j') \notin (\nu_n(j, j'), \nu_m(j, j'))$ for at least one pair (j, j') of Y_2,
2. $\omega(i, i') \notin (\omega_n(i, i'), \omega_m(i, i'))$ for at least one pair (i, i') of Y_1.

Then we have the following:
(a) Boundary solutions in NMAR models for only Y_1 (Models [M1] and [M3]) occur if Condition 1 holds.

(b) Boundary solutions in NMAR models for only Y_2 (Models [M2] and [M4]) occur if Condition 2 holds.

(c) Boundary solutions in the NMAR model for both Y_1 and Y_2 (Model [M5]) occur if Condition 1 or Condition 2 holds.

Proof. From Baker et al. (1992), the MLE’s $\hat{\alpha}_i$ under the NMAR model for only Y_1 (Models [M1] and [M3]) satisfy

\[\sum_i N\hat{\pi}_{ij11}\hat{\alpha}_i = y_{i+j21}, \quad \forall 1 \leq j \leq I, \]

while the MLE’s $\hat{\beta}_j$ under the NMAR model for only Y_2 (Models [M2] and [M4]) satisfy

\[\sum_j N\hat{\pi}_{ij11}\hat{\beta}_j = y_{i+j12}, \quad \forall 1 \leq i \leq I. \]

The MLE’s $\hat{\alpha}_i$ and $\hat{\beta}_j$ under the NMAR model for both Y_1 and Y_2 (Model [M5]) satisfy both \[\text{(5.3)}\] and \[\text{(5.4)}\]. Note that boundary solutions in Models [M1] and [M3] occur if $\hat{\alpha}_i \leq 0$ for at least one and at most $(I - 1)$ values of Y_1, while boundary solutions in Models [M2] and [M4] occur if $\hat{\beta}_j \leq 0$ for at least one and at most $(I - 1)$ values of Y_2. Also note that boundary solutions under [M5] occur if at least one of the following holds:

(i) $\hat{\alpha}_i \leq 0$ for at least one and at most $(I - 1)$ values of Y_1,

(ii) $\hat{\beta}_j \leq 0$ for at least one and at most $(I - 1)$ values of Y_2.

From \[\text{(5.1)}\] and \[\text{(5.3)}\], we have

\[\nu(j, j') = \frac{y_{i+j21}}{y_{i+j21}} = \frac{\sum_i \hat{\pi}_{ij11}\hat{\alpha}_i}{\sum_i \hat{\pi}_{ij11}\hat{\alpha}_i}, \]

\[\nu_m(j, j') - \nu(j, j') = \frac{\sum_{i \neq m_1}(\hat{\pi}_{m_1j11}\hat{\pi}_{ij11} - \hat{\pi}_{m_1j'11}\hat{\pi}_{ij11})\hat{\alpha}_i}{\hat{\pi}_{m_1j'11}\sum_i \hat{\pi}_{ij11}\hat{\alpha}_i}, \]

\[\nu(j, j') - \nu_n(j, j') = \frac{\sum_{i \neq n_1}(\hat{\pi}_{n_1j11}\hat{\pi}_{ij11} - \hat{\pi}_{n_1j'11}\hat{\pi}_{ij11})\hat{\alpha}_i}{\hat{\pi}_{n_1j'11}\sum_i \hat{\pi}_{ij11}\hat{\alpha}_i}, \]

where m_1 and n_1 are the levels of Y_1 corresponding to $\nu_m(j, j')$ and $\nu_n(j, j')$ respectively. From \[\text{(5.1)}\], we get

\[\nu_n(j, j') = \frac{\hat{\pi}_{m_1j11}}{\hat{\pi}_{n_1j'11}} \leq \nu_n(j, j') = \frac{\hat{\pi}_{ij11}}{\hat{\pi}_{ij'11}} < \nu_m(j, j') = \frac{\hat{\pi}_{m_1j11}}{\hat{\pi}_{m_1j'11}}. \]

From \[\text{(5.7)}\], we have the following inequalities

\[\hat{\pi}_{m_1j11}\hat{\pi}_{ij'11} > \hat{\pi}_{m_1j'11}\hat{\pi}_{ij11}, \quad \hat{\pi}_{n_1j11}\hat{\pi}_{ij11} > \hat{\pi}_{n_1j11}\hat{\pi}_{ij'11} \quad \text{for} \quad i \neq m_1, n_1. \]

Consider part (a). Suppose Condition 1 holds, which implies that $\hat{\alpha}_i < 0$ for at least one and at most $(I - 1)$ values of Y_1, that is, boundary solutions of the form $\hat{\pi}_{i+2+} = 0$ occur.
Again from (5.2) and (5.4), we have

\[
\omega(i, i') = \frac{y_{i+12}}{y_{i'+12}} = \frac{\sum_j \hat{\pi}_{ij11} \hat{\beta}_j}{\sum_j \hat{\pi}_{i'j11} \hat{\beta}_j},
\]

(5.9)

\[
\omega_m(i, i') - \omega(i, i') = \frac{\sum_{j \neq m_2} (\hat{\pi}_{im211} \hat{\pi}_{i'j11} - \hat{\pi}_{i'm211} \hat{\pi}_{ij11}) \hat{\beta}_j}{\hat{\pi}_{im211} \sum_i \hat{\pi}_{i'j11} \hat{\beta}_j},
\]

(5.10)

where \(m_2\) and \(n_2\) are the levels of \(Y_2\) corresponding to \(\omega_m(i, i')\) and \(\omega_n(i, i')\) respectively. From (5.11), we get

\[
\omega_n(i, i') = \frac{\hat{\pi}_{in11}}{\hat{\pi}_{i'n211}} < \omega_j(i, i') = \frac{\hat{\pi}_{ij11}}{\hat{\pi}_{i'j11}} < \omega_m(i, i') = \frac{\hat{\pi}_{im211}}{\hat{\pi}_{i'm211}}.
\]

(5.11)

From (5.11), we have the following inequalities

\[
\hat{\pi}_{m2j11} \hat{\pi}_{ij11} > \hat{\pi}_{m2j'11} \hat{\pi}_{ij11}, \quad \hat{\pi}_{n3j'11} \hat{\pi}_{ij11} > \hat{\pi}_{n2j11} \hat{\pi}_{ij11} \text{ for } j \neq m_2, n_2.
\]

(5.12)

Now consider part (b). Assume Condition 2 holds, which implies that (5.9) and (5.10) are of opposite signs. Using this fact and (5.12), we observe that \(\hat{\beta}_j < 0\) for at least one and at most \((I - 1)\) values of \(Y_2\), that is, boundary solutions of the form \(\hat{\pi}_{i+2j} = 0\) occur.

Finally consider part (c). Assume at least one of Conditions 1 and 2 holds. The cases when only Condition 1 holds or only Condition 2 holds follow from the proofs of part (a) and part (b) respectively. So it is sufficient here to assume both Conditions 1 and 2 hold. This implies, from part (a), \(\hat{\alpha}_i < 0\) for at least one and at most \((I - 1)\) values of \(Y_1\), that is, boundary solutions of the form \(\hat{\pi}_{i+2+} = 0\) occur. Also from part (b), we have \(\hat{\beta}_j < 0\) for at least one and at most \((I - 1)\) values of \(Y_2\), that is, boundary solutions of the form \(\hat{\pi}_{i+j+2} = 0\) occur. This completes the proof.

In the following example, we use Theorem 5.1 to establish the occurrence of boundary solutions. The verification thereafter follows directly from the definition of boundary solutions in Baker et al. (1992) and Proposition 3.1.

Example 5.1. Consider Table 5 discussed in Park et al. (2014), which cross-classifies data on bone mineral density \((Y_1)\) and family income \((Y_2)\) in a \(3 \times 3 \times 2 \times 2\) incomplete table. Both variables \(Y_1\) and \(Y_2\) have three levels. The total count is 2998 out of which data on \(Y_1\) and \(Y_2\) are available for 1844 persons, data on \(Y_1\) only for 231 persons, data on \(Y_2\) only for 878 persons, and data on neither of them for 45 persons.

Table 5. Bone mineral density \((Y_1)\) and family income \((Y_2)\).
Tables 6 and 7 are from Park et al. (2014) in which odds for the various NMAR models in Table 5 are given.

Table 6. Odds for the Models [M1], [M3] and [M5] in Table 5.

(j, j')	$\nu_1(j, j')$	$\nu_2(j, j')$	$\nu_3(j, j')$	$\nu(j, j')$
(1, 2)	2.14(= 621/290)	1.98(= 260/131)	3.10(= 93/30)	2.92(= 456/156)
(1, 3)	2.19(= 621/284)	2.22(= 260/117)	5.17(= 93/18)	1.71(= 456/266)
(2, 3)	1.02(= 290/284)	1.12(= 131/117)	1.67(= 30/18)	0.59(= 156/266)

Table 7. Odds for the Models [M2], [M4] and [M5] in Table 5.

(i, i')	$\omega_1(i, i')$	$\omega_2(i, i')$	$\omega_3(i, i')$	$\omega(i, i')$
(1, 2)	2.39(= 621/290)	2.21(= 290/131)	2.43(= 284/117)	1.96(= 135/69)
(1, 3)	6.68(= 621/93)	9.67(= 290/30)	15.78(= 284/18)	5.00(= 135/27)
(2, 3)	2.80(= 260/93)	4.37(= 131/30)	6.50(= 117/18)	2.56(= 69/27)

Let $I_{\nu}(j, j') = (\nu_n(j, j'), \nu_m(j, j'))$ and $I_{\omega}(i, i') = (\omega_n(i, i'), \omega_m(i, i'))$. Then from Tables 6 and 7, we observe that $I_{\nu}(1, 2) = (1.98, 3.10)$, $I_{\nu}(1, 3) = (2.19, 5.17)$, $I_{\nu}(2, 3) = (1.02, 1.67)$, $I_{\omega}(1, 2) = (2.21, 2.43)$, $I_{\omega}(1, 3) = (6.68, 15.78)$ and $I_{\omega}(2, 3) = (2.80, 6.50)$. Also, $\nu(1, 2) \in I_{\nu}(1, 2)$, $\nu(1, 3) \notin I_{\nu}(1, 3)$, $\nu(2, 3) \notin I_{\nu}(2, 3)$, $\omega(1, 2) \notin I_{\omega}(1, 2)$, $\omega(1, 3) \notin I_{\omega}(1, 3)$ and $\omega(2, 3) \notin I_{\omega}(2, 3)$ so that the sufficient conditions for the occurrence of boundary solutions in Theorem 5.1 are satisfied.

Hence, boundary solutions will occur when Models [M1]-[M5] are fitted to the data in Table 5. To verify this observation, we fit the above models to data in various subtables of Table 5. It is assumed that in a particular subtable, data on only the corresponding variable is missing, while that on other variables are observed. The MLE’s of the parameters, computed using the ‘MASS’ package in R software, are shown in Table 8.

Table 8. MLE’s of parameters in subtables of Table 5.

Subtable	NMAR model	MLE’s	Boundary solutions
Y_1	[M1]	$\hat{\alpha}_1 = 4.5205, \hat{\alpha}_2 = -8.2411, \hat{\alpha}_3 = -1.6019$	$\hat{\pi}_{2+2} = \hat{\pi}_{3+2} = 0$
Y_2	[M2]	$\beta_1 = 0.1008, \beta_2 = 1.2338, \beta_3 = -0.8060$	$\hat{\pi}_{2+2} = \hat{\pi}_{3+2} = 0$
Y_1Y_2	[M1]	$\hat{\alpha}_1 = 4.5205, \hat{\alpha}_2 = -8.2411, \hat{\alpha}_3 = -1.6019$	$\hat{\pi}_{2+2} = \hat{\pi}_{3+2} = 0$
	[M3]	$\hat{\alpha}_1 = 4.4716, \hat{\alpha}_2 = -8.3197, \hat{\alpha}_3 = -1.6962$	$\hat{\pi}_{2+2} = \hat{\pi}_{3+2} = 0$
Y_1Y_2	[M2]	$\beta_1 = 0.1008, \beta_2 = 1.2338, \beta_3 = -0.8060$	$\hat{\pi}_{2+2} = \hat{\pi}_{3+2} = 0$
	[M4]	$\hat{\beta}_1 = 0.1002, \hat{\beta}_2 = 1.1248, \hat{\beta}_3 = -0.8922$	$\hat{\pi}_{3+2} = 0$
Y_1Y_2	[M5]	$\hat{\alpha}_1 = 4.4716, \hat{\alpha}_2 = -8.3197, \hat{\alpha}_3 = -1.6962, \hat{\beta}_1 = 0.1002, \hat{\beta}_2 = 1.1248, \hat{\beta}_3 = -0.8922$	$\hat{\pi}_{2+2} = \hat{\pi}_{3+2} = 0$, $\hat{\pi}_{3+2} = 0$
From the above table, we observe in each subtable, at least one of \(\hat{\alpha}_i \) and \(\hat{\beta}_j \) is negative, which imply that boundary solutions occur. The forms of boundary solutions under the Models \([M1]-[M5]\) are also the same as described in Section 3. Note that this check follows directly from definitions in Baker et al. (1992) and Proposition 3.1. There is no need to use the EM algorithm.

5.2. The sufficient conditions are not necessary. The next example shows that the sufficient conditions for the occurrence of boundary solutions mentioned in Theorem 5.1 are not necessary. This result has not been discussed in the literature earlier. In fact, Kim and Park (2014) proved that the above conditions are both necessary and sufficient for a \(2 \times 2 \times 2\) incomplete table. They conjectured that a similar result would hold for general two-way incomplete tables as well.

Example 5.2. Consider Table 5 discussed in the previous example. We introduce the following changes corresponding to supplementary margins in Table 5: \(266 \rightarrow 125\), \(69 \rightarrow 60\) and \(27 \rightarrow 20\). The modified table is shown in Table 9.

Table 9. Table 5a.
\(R_1 = 1 \)
\(Y_1 = 1 \)
\(R_1 = 2 \)
Missing

From Table 9, \(\nu(1, 2) = 456/156 = 2.92\), \(\nu(1, 3) = 456/125 = 3.65\), \(\nu(2, 3) = 156/125 = 1.25\), \(\omega(1, 2) = 135/60 = 2.25\), \(\omega(1, 3) = 135/20 = 6.75\) and \(\omega(2, 3) = 60/20 = 3.00\). Also, \(\nu(1, 2) \in I_\nu(1, 2)\), \(\nu(1, 3) \in I_\nu(1, 3)\), \(\nu(2, 3) \in I_\nu(2, 3)\), \(\omega(1, 2) \in I_\omega(1, 2)\), \(\omega(1, 3) \in I_\omega(1, 3)\) and \(\omega(2, 3) \in I_\omega(2, 3)\) so that the sufficient conditions for the occurrence of boundary solutions in Theorem 5.1 are not satisfied. The MLE’s of the parameters obtained on fitting Models \([M1]-[M5]\) in various subtables of Table 9 are shown in Table 10.

Table 10. MLE’s of parameters in subtables of Table 9.
\(\hat{\alpha}_i \)
\(Y_1 \) \([M1] \)
\(Y_2 \) \([M2] \)
\(Y_1 \) \([M1] \)
\(Y_3 \) \([M3] \)
\(Y_1 \) \([M1] \)
\(Y_1 \) \([M2] \)
\(Y_1 \) \([M4] \)
\(Y_1 \) \([M5] \)

From the above table, note that in each subtable, at least one of \(\hat{\alpha}_i \) and \(\hat{\beta}_j \) is negative, which imply that boundary solutions occur. The forms of boundary solutions under the Models \([M1]-[M5]\) are also the same as described in Section 3. This shows that for an \(I \times J \times 2 \times 2 \)
incomplete table, where $I, J \geq 3$, the sufficient conditions for the occurrence of boundary solutions under Models [M1]-[M5] in Theorem 5.1 are not necessary.

5.3. Necessary conditions for the occurrence of boundary solutions. We next state below a result due to Kaykobad (1985), which will be used later to obtain a result on the occurrence of boundary solutions.

Lemma 5.1. Suppose $A = (a_{ij})$ is a matrix with $a_{ij} \geq 0$ for $i \neq j = 1, 2, \ldots, n$ and $a_{ii} > 0$. Also, let $b = (b_j)$, where $b_j > 0$ for $1 \leq j \leq n$. If

$$b_i > \sum_{j \neq i=1}^{n} a_{ij} \frac{b_j}{a_{jj}}, \quad \forall \ 1 \leq i \leq n,$$

then A is invertible and $A^{-1} b > 0$.

Using Lemma 5.1, the next result provides necessary conditions for the occurrence of boundary solutions under Models [M1]-[M5] in square two-way incomplete tables.

Theorem 5.2. For an $I \times I \times 2 \times 2$ incomplete table, consider the following conditions:

1. $y_{+j21} \leq \sum_{i \neq j=1}^{I} \hat{\mu}_{ij11} \frac{y_{+j21}}{\hat{\mu}_{ij11}}$ for at least one $j = 1, 2, \ldots, I$,
2. $y_{i+12} \leq \sum_{j \neq i=1}^{I} \hat{\mu}_{ij11} \frac{y_{i+12}}{\hat{\mu}_{ij11}}$ for at least one $i = 1, 2, \ldots, I$,

where $\hat{\mu}_{ij11}$ is the MLE of μ_{ij11}. Also, let $\{\hat{\mu}_{ij11}\} > 0$, $\{y_{i+12}\} > 0$ and $\{y_{+j21}\} > 0$. Then we have the following:

(a) If boundary solutions under Models [M1] and [M3] occur, then only Condition 1 holds.
(b) If boundary solutions under Models [M2] and [M4] occur, then only Condition 2 holds.
(c) If boundary solutions under the Model [M5] occur, then Condition 1 or Condition 2 holds.

Proof. From Theorem 5.1, the MLE’s $\hat{\alpha}_i$ and $\hat{\beta}_j$ under Model [M5] satisfy

$$\sum_i \hat{\mu}_{ij11} \hat{\alpha}_i = y_{+j21} \quad \text{for } j = 1, \ldots, I,$$

and

$$\sum_j \hat{\mu}_{ij11} \hat{\beta}_j = y_{i+12} \quad \text{for } i = 1, \ldots, I.$$

Also, the MLE $\hat{\alpha}_i$ under Models [M1] and [M3] satisfy (5.14) only, while the MLE $\hat{\beta}_j$ under Models [M2] and [M4] satisfy (5.15) only. Note that boundary solutions under [M5] occur if at least one of the following conditions hold:

(i) $\hat{\alpha}_i \leq 0$ for at least one and at most $(I - 1)$ values of Y_1,
(ii) $\hat{\beta}_j \leq 0$ for at least one and at most $(I - 1)$ values of Y_2.

Also, boundary solutions in Models [M1] and [M3] are given by only Condition (i), while boundary solutions in Models [M2] and [M4] are given by only Condition (ii). In Lemma 5.1 take $A = (\hat{\mu}_{ij11})$, $b = (b_j) = (y_{+j21})$ and $b^* = (b_i^*) = (y_{i+12})$ for $1 \leq i \leq I$, $1 \leq j \leq I$. Then (5.14) may be written as $A^T \alpha = b$, while (5.15) may be written as $A \beta = b^*$, where $\alpha = (\alpha_i)$ and $\beta = (\beta_j)$. We prove Theorem 5.2 by contrapositive.
Consider part (a) first. Suppose Condition 1 in Theorem 5.2 does not hold. Then by Lemma 5.1, \(\alpha = (A^T)^{-1}b > 0 \). In other words, \(\hat{\alpha}_i > 0 \) for all \(1 \leq i \leq I \), that is, boundary solutions under Models [M1] and [M3] do not occur.

Consider part (b) now. Assume Condition 2 in Theorem 5.2 does not hold. Then by Lemma 5.1, \(\beta = A^{-1}b^* > 0 \). In other words, \(\hat{\beta}_j > 0 \) for all \(1 \leq j \leq I \), that is, boundary solutions under Models [M2] and [M4] do not occur.

Finally consider part (c). Assume both Conditions 1 and 2 in Theorem 5.2 do not hold. Then by Lemma 5.1, both \(\hat{\alpha}_i > 0 \) and \(\hat{\beta}_j > 0 \) for all \(1 \leq i \leq I, 1 \leq j \leq I \), that is, boundary solutions under Model [M5] do not occur.

Hence, the result follows. \(\square \)

Henceforth, we denote \(A = (a_{ij}) = (\hat{\mu}_{ij11}) \), \(b = (b_j) = (y_{i+j21}) \) and \(b^* = (b^*_j) = (y_{i+j12}) \) for \(1 \leq i \leq I, 1 \leq j \leq I \). The example below is an application of Theorem 5.2.

Example 5.3. From Table 9 in Example 5.2, we have the following:

\[
A = \begin{pmatrix} 621 & 290 & 284 \\ 260 & 131 & 117 \\ 93 & 30 & 18 \end{pmatrix}, \quad b = (456, 156, 125), \quad b^* = (135, 60, 20).
\]

The MLE’s \(\hat{\alpha} = (\hat{\alpha}_i) \) and \(\hat{\beta} = (\hat{\beta}_j) \) under Model [M5] satisfy respectively the systems \(A^T\alpha = b \) from (5.14) and \(A\beta = b^* \) from (5.15) for \(i, j = 1, 2, 3 \). From Table 10, we observe that if Model [M5] is fitted to the data in Table 9, then we obtain \(\hat{\alpha}_2 < 0 \) and \(\hat{\beta}_3 < 0 \), that is, boundary solutions occur. Now we need to verify if both Conditions 1 and 2 of Theorem 5.2 hold. For the matrix \(A^T \) and the vector \(b \), we have

\[
\begin{align*}
456 < a_{12} & \times \frac{b_2}{a_{22}} + a_{13} \times \frac{b_3}{a_{33}} = 260 \times \frac{156}{131} + 93 \times \frac{125}{18} = 955.4516, \\
156 < a_{21} & \times \frac{b_1}{a_{11}} + a_{23} \times \frac{b_3}{a_{33}} = 290 \times \frac{456}{621} + 30 \times \frac{125}{18} = 421.2802, \\
125 < a_{31} & \times \frac{b_1}{a_{11}} + a_{32} \times \frac{b_2}{a_{22}} = 284 \times \frac{456}{621} + 117 \times \frac{156}{131} = 347.8693,
\end{align*}
\]

so that Condition 1 in Theorem 5.2 is satisfied. Also, for the matrix \(A \) and the vector \(b^* \), we have

\[
\begin{align*}
135 < a_{12} & \times \frac{b^*_2}{a_{22}} + a_{13} \times \frac{b^*_3}{a_{33}} = 290 \times \frac{60}{131} + 284 \times \frac{20}{18} = 448.38, \\
60 < a_{21} & \times \frac{b^*_1}{a_{11}} + a_{23} \times \frac{b^*_3}{a_{33}} = 260 \times \frac{135}{621} + 117 \times \frac{20}{18} = 186.5217, \\
20 < a_{31} & \times \frac{b^*_1}{a_{11}} + a_{32} \times \frac{b^*_2}{a_{22}} = 93 \times \frac{135}{621} + 30 \times \frac{60}{131} = 33.9578,
\end{align*}
\]

so that Condition 2 in Theorem 5.2 is satisfied. Further, from Table 10, we observe that boundary solutions also occur if Models [M1]-[M4] are fitted to data in Table 9. Then only Condition 1 is satisfied if boundary solutions under [M1] and [M3] occur, while only Condition 2 is satisfied if boundary solutions under [M2] and [M4] occur. This is because the MLE \(\hat{\alpha} = (\hat{\alpha}_i) \) under Models [M1] and [M3] satisfies the system \(A^T\alpha = b \), while the MLE \(\hat{\beta} = (\hat{\beta}_j) \) under Models [M2] and [M4] satisfies the system \(A\beta = b^* \).
5.4. The necessary conditions are not sufficient. The next example shows that the necessary conditions for the occurrence of boundary solutions in Theorem 5.2 are not sufficient.

Example 5.4. In Example 5.3 replace 456 by 366 in \(b \) and 20 by 15 in \(b^* \) so that \(b = (366, 156, 125) \) and \(b^* = (135, 60, 15) \) now. For the matrix \(A^T \) and the vector \(b \), we have

\[
366 < a_{12} \times \frac{b_2}{a_{22}} + a_{13} \times \frac{b_3}{a_{33}} = 260 \times \frac{156}{131} + 93 \times \frac{125}{18} = 955.4516,
\]

\[
156 < a_{21} \times \frac{b_1}{a_{11}} + a_{23} \times \frac{b_3}{a_{33}} = 290 \times \frac{366}{621} + 30 \times \frac{125}{18} = 379.2512,
\]

\[
125 < a_{31} \times \frac{b_1}{a_{11}} + a_{32} \times \frac{b_2}{a_{22}} = 284 \times \frac{366}{621} + 117 \times \frac{156}{131} = 306.7099,
\]

so that Condition 1 in Theorem 5.2 is satisfied. Also, for the matrix \(A \) and the vector \(b^* \), we have

\[
135 < a_{12} \times \frac{b_2^*}{a_{22}} + a_{13} \times \frac{b_3^*}{a_{33}} = 290 \times \frac{135}{621} + 284 \times \frac{15}{18} = 369.4911,
\]

\[
60 < a_{21} \times \frac{b_1^*}{a_{11}} + a_{23} \times \frac{b_3^*}{a_{33}} = 260 \times \frac{135}{621} + 117 \times \frac{15}{18} = 154.0217,
\]

\[
15 < a_{31} \times \frac{b_1^*}{a_{11}} + a_{32} \times \frac{b_2^*}{a_{22}} = 93 \times \frac{135}{621} + 30 \times \frac{60}{131} = 33.9578,
\]

so that Condition 2 in Theorem 5.2 is satisfied. Now, when we solve the system \(A^T \alpha = b \), then we obtain the MLE’s \(\hat{\alpha}_1 = 0.0133, \hat{\alpha}_2 = 0.7796 \) and \(\hat{\alpha}_3 = 1.6671 \). So, there are no boundary solutions under Model [M3]. Similarly, the system \(A \beta = b \) yields the MLE’s \(\hat{\beta}_1 = 0.041, \hat{\beta}_2 = 0.3655 \) and \(\hat{\beta}_3 = 0.0126 \), that is, there are no boundary solutions under Model [M4]. Since the MLE’s in Model [M5] satisfy both the systems \(A^T \alpha = b \) and \(A \beta = b^* \), there are no boundary solutions under [M5] as well. Similar results hold for Models [M1] and [M2]. Hence, the conditions in Theorem 5.2 are not sufficient for the occurrence of boundary solutions under Models [M1]-[M5].

5.5. Importance of the necessary conditions. Here, we discuss additional details about Theorem 5.2 and discuss its simplicity and effectiveness.

From Theorem 5.2 note that if \(\{y_{i+12}\}, \{y_{j+21}\}, \) and/or \(\{\hat{\mu}_{i11}\} \) are large, then Conditions 1 and 2 may not hold. Indeed, if the inequalities in Conditions 1 and 2 are reversed for all \(1 \leq i \leq I \) and \(1 \leq j \leq I \), then from statements (a), (b) and (c) of Theorem 5.2 boundary solutions do not occur on fitting Models [M1]-[M5] in an \(I \times I \times 2 \times 2 \) incomplete table.

It is known that when boundary solutions occur, perfect fit models (here Models M3), [M4] and [M5]) cannot reproduce the observed counts, indicating poor fit and imprecision of the parameter estimates. The MLE’s of the parameters under NMAR models lie on the boundary of the parameter space and the log likelihood function tends to be flat, which makes derivation of the MLE’s computationally intensive. Also, the corresponding covariance matrix has unreasonable eigenvalues (close to either zero or negative), which implies the estimated standard errors for some parameter estimates are large. Hence, for model selection, we prefer NMAR models which don’t yield boundary solutions upon fitting them to the given data.

Theorem 5.1 provides conditions, which help us identify the occurrence of boundary solutions. However, boundary solutions may occur under some NMAR models if any of the
sufficient conditions in Theorem 5.1 does not hold. This implies that Theorem 5.1 cannot
always provide us the set of plausible NMAR models for model selection. However, note
that Theorem 5.2 is very useful in this regard since it gives us an insight into verifying the
non-occurrence of boundary solutions under each of the NMAR models [M1]-[M5]. That is,
if any of the necessary conditions in Theorem 5.2 does not hold, then we know for sure that
boundary solutions do not occur. This always helps us to obtain the list of candidate NMAR
models suitable for fitting the given data. Hence, Theorem 5.2 is more reliable than Theorem
5.1 for the purpose of model selection in square two-way incomplete tables.

The non-boundary MLE’s of \(\hat{\mu}_{ij11} \) are \(\hat{\mu}_{ij11} = \frac{y_{ij11}y_{i+11} + y_{i1+1} + y_{++11}}{y_{j1+1}y_{++11}} \) under Model [M1], \(\hat{\mu}_{ij11} = \frac{y_{ij11}y_{i+11} + y_{i1+1} + y_{++11}}{y_{j1+1}y_{++11}} \) under Model [M2], and \(\hat{\mu}_{ij11} = y_{ij11} \) under Models [M3], [M4] and [M5] (see
pp. 647-648 of Baker et al. (1992)), which involve only the observed cell counts and their
sums. Hence, from Theorem 5.2 there is no need to solve any system of likelihood equations,
use the EM algorithm or compute odds (based on the observed (joint/marginal) cell counts)
to check for the non-occurrence of boundary solutions in an \(I \times I \times 2 \times 2 \) incomplete table.

Remark 5.1. If \(A_D = \text{diag}(a_{11}, \ldots, a_{II}) \), then from Kaykobad (1985), the solutions \(\alpha = (\alpha_i) \)
of the system \(A^T \alpha = b \) may be obtained iteratively as follows.

\[
\alpha^{(0)} = A^{-1}_D b \\
\alpha^{(n+1)} = \alpha^{(n)} + A^{-1}_D (b - A\alpha^{(n)}), \quad n = 0, 1, 2, \ldots.
\]

Similarly, the solutions \(\beta = (\beta_j) \) of the system \(A\beta = \mathbf{b}^* \) may be obtained iteratively as follows.

\[
\beta^{(0)} = A^{-1}_D \mathbf{b}^* \\
\beta^{(n+1)} = \beta^{(n)} + A^{-1}_D (\mathbf{b}^* - A\beta^{(n)}), \quad n = 0, 1, 2, \ldots.
\]

Both the sequences (5.16) and (5.17) converge to the solutions of the respective systems.

6. Conclusions

In this paper, we have discussed the problem of boundary solutions that occur under various
NMAR models for an \(I \times J \times 2 \times 2 \) table. We formally define boundary solutions for such
a table and provide a result that connects various forms of these solutions under alternative
parametrizations of the missing data models. This eliminates the need to use the EM algorithm
for verifying their occurrence. The above result is then used to improve a claim in Baker et
al. (1992) regarding the occurrence of boundary solutions. We give the precise form of such
solutions by just noting the corresponding level(s) of the variable(s) in the table, which
reduces computational burden.

As discussed earlier, boundary solutions pose a lot of problems for estimation and inference
under NMAR models in incomplete tables. Hence, it is important to investigate sufficient and
necessary conditions for their occurrence in such tables. We have provided a result on the
sufficient conditions for the occurrence of boundary solutions in an \(I \times J \times 2 \times 2 \) table. We use
a similar approach but give direct arguments instead of contrapositive ones used by Park et
al. (2014) for proving it. Kim and Park (2014) conjectured that these conditions would also
be necessary for general two-way incomplete tables. However, we show by a counterexample
that this is not the case for \(I, J \geq 3 \), thereby disproving the conjecture.

We have also established necessary conditions for the occurrence of boundary solutions in
an \(I \times J \times 2 \times 2 \) table, which have not been discussed in the literature so far. As discussed in
Section 5.5, these conditions are of practical utility to identify the non-occurrence of boundary solutions and hence for model selection. However, we show by a counterexample that these conditions are not sufficient. Note that a major advantage of the proposed sufficient conditions and necessary conditions is that they depend only on the observed cell counts in the table or their sums. As mentioned in Park et al. (2014), this makes the verification process much easier, and avoids using the EM algorithm or solving likelihood equations. Finally, all the above results are illustrated using numerous data analysis examples. It would be helpful to obtain a set of conditions involving only the observed cell counts, which are sufficient as well as necessary for the occurrence of boundary solutions in two-way incomplete tables with both variables missing.

REFERENCES

[1] Baker, S. G., Laird, N. M., 1988. Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. J. Amer. Stat. Assoc. 83, 62-69.
[2] Baker, S. G., Rosenberger, W. F., Dersimonian, R., 1992. Closed-form estimates for missing counts in two-way contingency tables. Stat. Med. 11, 643-657.
[3] Clarke, P. S. 2002. On boundary solutions and identifiability in categorical regression with non-ignorable non-response. Biom. J. 44, 701-717.
[4] Clarke, P. S., Smith, P. W. F., 2005. On maximum likelihood estimation for log-linear models with non-ignorable non-responses. Stat. Probab. Lett. 73, 441-448.
[5] Ghosh, S., Vellaisamy, P., 2016. On the occurrence of boundary solutions in multidimensional incomplete tables. Stat. Probab. Lett. 119, 63-75.
[6] Kaykobad, M., 1985. Positive Solutions of Positive Linear Systems. Linear Algebra and its Applications 64, 133-140.
[7] Kim, S., Park, Y., 2014. Power-linear models for incomplete contingency tables with nonignorable non-responses. Statistics, DOI: 10.1080/02331888.2013.869595.
[8] Little, J. A., Rubin, D. B., 2002. Statistical Analysis with Missing Data, second ed., Wiley, New York.
[9] Park, Y., Kim, D., Kim, S., 2014. Identification of the occurrence of boundary solutions in a contingency table with nonignorable nonresponse. Stat. Probab. Lett. 93, 34-40.
[10] Smith, P. W. F., Skinner, C. J., Clarke, P. S., 1999. Allowing for non-ignorable nonresponse in the analysis of voting intention data. J. R. Stat. Soc. Ser. C 48, 563-577.

SAYAN GHOSH, DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400076, INDIA.
E-mail address: sayang@math.iitb.ac.in

P. VELLAISAMY, DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400076, INDIA.
E-mail address: pv@math.iitb.ac.in