Dynamics of shock waves in bubble zones of finite size with a hydrate-forming gas

A S Chiglintseva, I K Gimaltdinov, I A Chiglintsev and A A Nasyrov

1 Ufa State Petroleum Technological University, 1, Cosmonauts ave., Ufa, 450062, Russia
2 Birsk branch of Bashkir State University, 10, International ave., Birsk, 452450, Russia

E-mail: nasaza@mail.ru

Abstract. The purpose of this study is to study the dynamics of the wave field, which is realized in a channel with a liquid containing a rectangular zone with bubbles of the freon-12 hydrate-forming gas during the propagation of a pressure shock wave. In the initial state, the considered gas-liquid system is under pressure P_0. After a sudden increase in pressure to the value of P_e, a pressure wave of a stepped profile propagates in the system and, as a result of the presence of a bubble curtain, its amplitude increases, which in turn has a more favorable effect on the formation of hydrate in gas bubbles. In the initial state, the hydrate formation process was not taken into account. As a result, the dynamics of the pressure wave is shown during its propagation in a semi-infinite channel containing a gas curtain with a hydrate-forming gas. The mechanism of gas hydrate formation is described in this work on the basis of the theory of nonequilibrium phase transitions in vapor-liquid systems.

1. Introduction

Bubble liquid is unique in its acoustic properties. So, the addition of a small amount of gas in the form of bubbles to the liquid leads to anomalous compressibility, therefore, a curtain of a mixture of liquid with gas bubbles can be used as a protective layer for underwater objects from shock waves, for "masking" during sonar, and also as an underwater sound channel [1]. Also, during the passage of impulse signals in a liquid containing a bubble curtain or a cluster of finite sizes, a significant increase in the amplitude of the pressure wave can be observed [2-7].

Currently, gas hydrates are attracting increased attention both as a potentially new source of energy and as a new way of storing large volumes of gas [8-10]. One of the methods for the synthesis of gas hydrate is to obtain it in a bubbly liquid by means of exposure to a shock wave [11, 12]. Another area of application of such effects can be the use of such channels to achieve the necessary conditions for hydrate formation during the propagation of pressure waves of small amplitude. The hydrate formation process is rather slow and needs to be intensified [13-15]. Increasing the amplitude of the compression wave can facilitate this process. This can be achieved in the same way in the case of a change in the volumetric content of gas in a liquid during the propagation of a pressure wave in it.
2. The Basic equations

Let us suppose that in a semi-infinite channel filled with water, there is a rectangular zone with a hydrate-forming gas Freon-12 and a volume concentration of the gas phase α_0. Gas bubbles in the cluster area have the same radius a_0. The bubble curtain itself is spaced from the plane $z=0$ at some distance l_{cl} (figure 1). At a moment in time $t=0$ at the end of the channel ($z=0$) the pressure jump to the value P_c. When the time $t>0$, the pressure wave propagates from left to right. It is known that the speed of wave propagation in a "pure" and bubbly liquid is very different, therefore, a wave in a "pure" liquid will outstrip the wave in the bubble zone, focusing in it and generating a complex wave structure in it, which will depend on the parameters of the bubble region (dimensions bubble cluster, volumetric content and dispersion of bubbles in the cluster). Focusing a wave in a bubble cluster leads to the formation there of a quasi-stationary shock wave propagating along it along the symmetry axis. A numerical study of the formation and propagation of a wave in the bubble zone is carried out within the framework of the equations of the mechanics of multiphase media [16].

![Figure 1. Layout of the bubble curtain: l_x and l_y are the measurements of the bubble zone, l_{cl} is the length from the front wall of the bubble curtain to the plane z.](image)

To describe the wave motion of bubble systems, assuming sticking or splitting of bubbles, we write down the linearized equations of masses, the number of bubbles, momenta and pressure in bubbles for the two-dimensional case [2]:

$$
\begin{align*}
\frac{d\rho_i}{dt} + \rho_i \left(\frac{\partial u}{\partial x} + \frac{\partial \vartheta}{\partial y} \right) &= 0 \quad (i = l, g), \\
\frac{dn}{dt} + n \left(\frac{\partial \alpha_l}{\partial x} + \frac{\partial \vartheta}{\partial y} \right) &= 0, \\
\rho \frac{du}{dt} + \frac{\partial p_l}{\partial x} &= 0, \\
\rho \frac{d\vartheta}{dt} + \frac{\partial p_l}{\partial x} &= 0, \\
w &= \frac{da}{dt} \left(\frac{d}{dt} = \frac{\partial u}{\partial t} + u \frac{\partial}{\partial x} + \vartheta \frac{\partial}{\partial y} \right), \\
\alpha_l + \alpha_g &= 1, \quad \alpha_g = \frac{4}{3} \pi a^3 n, \quad \rho_l = \rho_l^0 \alpha_l, \quad \rho = \rho_g + \rho_l
\end{align*}
$$

where a is a bubble radius, γ is a gas adiabatic exponent, p_l is the fluid pressure, ρ_l^0 are the true phase density, α_l are the volumetric phase contents, n is a number of bubbles per unit volume, w is a radial bubble velocity, u and ϑ are the velocity components along the x and y axes. The subscripts $i = l, g$ denote the parameters of the liquid and gas phases.
When describing the radial motion in accordance with the refinement proposed in [17], we will assume that \(w = w_R + w_A \), where \(w_R \) is determined from the Rayleigh–Lamb equation, and \(w_A \) is determined from the solution of the problem of spherical unloading on a sphere of radius \(a \) in the carrier fluid in the acoustic approximation:

\[
\frac{a}{\tau} \frac{dw_R}{dt} + \frac{3}{2} \frac{w_R}{a} + 4 \nu_l \frac{w_R}{a} = \frac{p_g - p_l}{\rho_l^2}, \quad w_A = \frac{p_g - p_l}{\rho_l^2 c_l a_g} \tag{2}
\]

where \(\nu_l \) is the fluid viscosity and \(C_l \) is the sound speed in a "clean" liquid.

To describe the change in pressure in gas bubbles, we will use the first law of thermodynamics. Taking into account the equations of conservation of masses (1), as well as the equation of state of the gas \(\varepsilon_g = c_{gv} T_g \) (\(c_{gv} \) is the specific heat capacity at constant volume and \(T_g \) is the average temperature of the gas in the bubble), we can write:

\[
m_g c_{gv} \frac{d p_g}{dt} = -4\pi a^2 (p_g w + j_g c_{gv} (T_g - T_a) + q(ga)). \tag{3}
\]

Here \(q(ga) \) is the heat flow from the phase of gas to the interface, \(T_{ga} \) is the interface temperature, \(p_g \) is the gas pressure, \(m_g \) is the mass of gas in a bubble.

The presented system of equations must be supplemented with expressions describing the kinetics of hydrate formation, the intensity of heat transfer at the interface and the heat effects of the phase transition.

The heat balance condition has the form:

\[-q(ga) + q(al) = j_h l_h, \tag{4}\]

where \(q(al) \) is the heat flux from the bubble surface into the liquid, \(l_h \) is the specific heat of hydrate formation per unit of its mass.

The hydrate formation process is quite complex. It can be accompanied by diffusion, nonequilibrium effects during phase transitions, and also depends on the degree of metastability [11, 18], which affects the heterogeneous centers of nucleation of hydrate crystals. Therefore, by analogy with the theory of nonequilibrium phase transitions in vapor-liquid systems, the intensity of mass transfer between bubbles and liquid can be represented as [16]:

\[j_g = \frac{\beta (p_g - p_s (T_a))}{\sqrt{2 \pi a^3 \tau_a}}, \quad p_s (T_a) = p_{s0} \exp \left(\frac{T_a - T_0}{T_u} \right), \quad p_{s0} = p_s (T_0) \tag{5}\]

Here \(\beta \) is a unified empirical parameter (reduced accommodation coefficient) responsible for diffusion phenomena, as well as features of the formation and growth of hydrate crystals in a liquid, \(p_s (T_a) \) is is equilibrium pressure of hydrate formation corresponding to temperature \(T_a \).

On the basis of [16], the heat flux \(q(ga) \) is given by the approximate final relation:

\[q(ga) = \text{Nu} \lambda_g \frac{T_a - T_0}{a}, \quad \text{Nu} = \begin{cases} \sqrt{\text{Pe}}, & \text{Pe} \geq 10^2 \\ 10, & \text{Pe} < 10^2 \end{cases}, \tag{6}\]

\[\text{Pe} = 12(y - 1) \left(\frac{T_a}{T_g - T_0} \right)^{g(T)}, \]

where \(g(T) \) is the gas thermal diffusivity. We write the intensity of the heat flux from the interface into the liquid as:

\[q(al) = -\lambda_l \left(\frac{\partial T}{\partial r} \right)_0 = -\lambda_l \left(\frac{a}{a_0} \right)^2 \left(\frac{\partial T}{\partial r} \right)_0. \tag{7}\]
Here T'_0 is the temperature distribution in liquid around bubbles, r and r_0 are Euler and Lagrangian radial microcoordinates. In order to determine heat fluxes around bubbles in accordance with (7), it is necessary to solve the heat conduction equation written in Lagrangian variables:

$$\rho'_0 c_1 \frac{\partial T'_l}{\partial t} = \frac{1}{r'_0} \frac{\partial}{\partial r_0} \left(r'_0^2 \lambda'_1 \frac{\partial T'_l}{\partial r_0} \right), \quad (a_0 < r_0 < \infty)$$

(8)

by the boundary conditions:

$T'_l = T_a$ when $r_0 = a_0$ and $T'_l = T_0$ when $r_0 \to \infty$.

Theoretical estimates, as well as calculation in relation to the data from [11] for water-freon, allows for the interface to accept the equality between the temperature system and the temperature at the interface and to consider it constant ($T'_a = T_0$).

We will also assume that the liquid is linearly compressible, and the gas is calorically perfect:

$$p_i = p_0 + C_i^2 (\rho'_0 - \rho_0^0), \quad p_g = \rho'_0 R_g T_g.$$

(9)

Here R_g is the reduced gas constant. Here and in what follows, subscripts 0 at the bottom indicate the parameters related to the initial unperturbed state.

In the case $a_g = 0$, this mathematical model leads to the wave equation of a linearly compressible fluid, which makes it possible to use end-to-end calculation methods to describe the propagation of pressure waves in the system under consideration.

3. Discussion

For numerical analysis in the initial state, a bubbly liquid with a hydrate-forming gas has the following values: $p_0 = 10^5$ Pa, $a_0 = 1 \cdot 10^{-3}$ m, $\rho_0^0 = 5.3$ kg/m3, $\alpha_\infty = 10^4$, $T_0 = 274$ K. Thermodynamic parameters for Freon-12 gas are $\lambda_g = 8.76 \cdot 10^{-3}$ W/m·K, $c_g = 590$ J/kg·K, $\gamma = 1.14$, $R_g = 68.76$ J/kg·K. When carrying out the calculations, the presence of surfactants in the liquid was not considered; therefore, the surface tension coefficient is $\sigma = 73 \cdot 10^{-3}$ N/m2. For the process of hydrate formation, we take: $p_{\infty} = 0.42 \cdot 10^5$ Pa, $G = 0.3$, $l_h = 3 \cdot 10^5$ J/kg, $T_* = 5.2$ K, $\beta = 3 \cdot 10^5$. The value of the parameter β was chosen in accordance with the agreement between the experimental and calculated data [19].

A bubble curtain in a semi-infinite channel, from the front wall of which to the z plane, the distance is equal to $l_z = 5$ cm, has dimensions $l_x = 2$ cm, $l_y = 10$ cm. At the center of it there is a pressure and mass sensor of the gas hydrate. The liquid at the boundary x_0 is influenced by a pressure wave of a stepped profile with an amplitude $\Delta p_0 = 3.3 \cdot 10^5$ Pa. Figure 2 shows the pressure distribution in the liquid at the moment of time 0.16 ms, when the maximum value of the burst is observed, which is formed as a result of nonlinear effects due to the presence of a bubble zone [6]. In this case, the hydrate formation process was not taken into account and the pressure surge shown exceeds the initial signal of $3.3 \cdot 10^5$ Pa by about $2.5 \cdot 10^5$ Pa.
Figure 2. Liquid pressure in a channel with a bubble curtain.

Figure 3 shows the change in pressure in the bubble zone over time, depending on the presence of the process of hydrate formation (black line) and its absence (red line). Figure 4 shows the change in the mass of the formed hydrate.

Figure 3. The dynamics of the shock wave in the bubble curtain with the formation of hydrate (black line) and without it (red line).
Figure 4. The mass of the formed hydrate.

The presented results show that at the considered time intervals, the hydrate formation process does not have a noticeable effect on the shock wave dynamics. But the very presence of a bubble curtain contributes to the formation of pressure surges in its area, which can contribute to the process of intensifying the transition of gas to a hydrated state.

4. Conclusion

In this work, a mathematical model of the propagation of shock waves in a semi-infinite channel with a liquid containing a gas curtain with a hydrate-forming gas is constructed for a two-dimensional case. On the basis of which the dynamics of the pressure wave is shown during its propagation along the channel, accompanied by hydrate formation. It has been established that, at certain parameters of the gas curtain and the wave, it is possible for it to form significant pressure surges, which in turn can contribute to the intensification of hydrate formation.

Acknowledgments

The research was funded by a grant of the President of the Russian Federation for state support of young Russian scientists - doctors of sciences (Competition - MD-2020), according to the research project No. MD-2179.2020.1.

References

[1] Shagapov V Sh, Gimaltdinov I K, Khabeev N S and Bailey S S 2003 Acoustic waves in a liquid with a bubble screen Shock Waves 13(1) 49-56

[2] Galimzyanov M N, Gimaltdinov I K and Shagapov V Sh 2002 Two-dimensional pressure waves in a liquid containing bubbles Izvestia RAN Mekhanika Zhidkosti i Gaza 2 139-47
[3] Kedrinskij V K, Shokin Yu I and Vshivkov V A 2001 Generation of shock waves in a liquid by spherical bubble clusters Doklady RAN 381(6) 773-6
[4] Kedrinskij V K, Vshivkov V A and Lazareva G G 2004 Focusing an oscillating shock wave emitted by a toroidal bubble cloud Zhurnal eksperimentalnoj i teoreticheskoj fiziki 125(6) 1302-10
[5] Kedrinskij V K, Vshivkov V A and Lazareva G G 2005 Formation and amplification of shock waves in the bubble "cord" Applied mechanics and technical physics 46(5) 46-52
[6] Gimaltdinov I K, Khusainov I G, Khusainova G Y and Gimaltdinova A A 2020 Reflection Of Acoustic Waves From A Bubble Screen In Water With Hydrate Bubbles IOP Conference Series: Materials Science and Engineering 919 062055 DOI: 10.1088/1757-899X/919/6/062055
[7] Gimaltdinov I K, Levina T M, Stolpovskii M V and Solovev D B 2018 Dynamics of the Localized Pulse in Bubbly Liquid IOP Conf. Series: Materials Science and Engineering 463 022002 DOI: 10.1088/1757-899X/463/2/022002
[8] Sloan E D and Koh C A 2008 Clathrate hydrates of natural gases (Abingdon: CRC Press) p 119
[9] Kuhls W F, Genov G, Staykova D K and Hansen T. 2004 Ice perfection and onset of anomalous preservation of gas hydrates J. Phys. Chem. B 105 1756-62
[10] Stern L A, Circone S, Kirby S H and Durham W B 2001 Anomalous Preservation of Pure Methane Hydrate at 1 atm J. Phys. Chem. B 105 1756-62
[11] Doncov V E, Nakoryakov V E and Chernov A A 2007 Shock waves in water with freon-12 bubbles with the formation of gas hydrate Applied mechanics and technical physics 48(3) 58-75
[12] Doncov V E, Chernov A A and Doncov E V 2007 Shock waves and the formation of carbon dioxide hydrate at an increased initial pressure in a gas-liquid medium Thermophysics and Aeromechanics 14(1) 23-9
[13] Karamoddin M, Varaminian F and Daraee M 2013 Experimental Measurement and Kinetic Modeling of Ethane Gas Hydrate in the Presence of Sodium Dodecyl Sulfate Surfactant Gas Processing Journal 1(2) 1-12
[14] Khanlarkhani M, Pahlavanzadeh H and Mohammadi A H 2015 Clathrate hydrates and nano particles Advances in Nanotechnology 14 149-62
[15] Pang W X, Chen G J, Dandekar A, Sun C Y and Zhang C L 2007 Experimental study on the scale-up effect of gas storage in the form of hydrate in a quiescent reactor Chemical Engineering Science 62 2198-208
[16] Nigmatulin R I 1987 Dynamics of multiphase media (Moscow: Nauka press) 360
[17] Nakoryakov V E, Pokusaev B G and Shreiber I R 1990 Wave dynamics of gas and vapor-liquid media (Moscow: Energoatomizdat press) 248
[18] Gumerov N A 1992 Self-similar growth of a gas hydrate layer separating gas and liquid Mechanics of liquid and gas 5 78-85
[19] Shagapov V Sh, Lepikhin S A and Chiglintsev I A 2010 Propagation of compression waves in bubbly liquid with hydrate formation Thermophysics and Aeromechanics 17(2) 1-13