実験動物 ニュース

The Japanese Association for Laboratory Animal Science

目次

日本実験動物学会からのお知らせ
公益社団法人日本実験動物学会 令和 2 年度第 1 回理事会議事録 89
公益社団法人日本実験動物学会 令和 2 年度第 67 回総会議事録 90
公益社団法人日本実験動物学会 令和 2 年度第 2 回理事会 91
令和 3 年度日本実験動物学会賞（功労賞、安東・田嶋賞、奨励賞）
受賞候補者の推薦受付について ... 92
第 70 回日本実験動物学会総会大会長立候補者の受付について 92
第 68 回日本実験動物学会総会の開催 ... 92
他学会情報 .. 93
理事長退任にあたって .. 94
幻の第 67 回日本実験動物学会総会を振り返って ... 96
実験動物感染症の現状
重度免疫不全動物などの易感染性動物の感染症 .. 97
研究室・施設便り
京都大学大学院 医学研究科 実験動物学分野（附属動物実験施設）........... 101
維持会員便り
日本クレア株式会社 .. 109
会員便り
“想い”が紡ぐ動物実験と私の未来 ... 113
私はこうして実験動物学の世界にたどり着きました 115
マウスの兄妹関係がもたらす影響とは？ 個体差に隠された謎を考える 117
Experimental Animals 69(3) 収載論文和文要約集 120
維持会員名簿 .. i
編集後記 ... iii
公益社団法人日本実験動物学会
令和2年度第1回理事会議事録

1. 理事会の決議があったものとみなされた事項の内容
 (1) 令和元年度事業報告書とする。
 (2) 令和元年度収支決算報告・監査報告とする。
 (3) 令和2-3年度役員候補者の選任とする。
 (4) 令和元年下半期新規入会会員の承認とする。
2. 理事会の決議があったものとみなされた事項の提案をした理事の氏名
 理事長 浦野 徹
3. 理事会があったものとみなされた日
 令和2年5月1日（金）
4. 議事録の作成に係る職務を行った理事及び監事の氏名
 理事長 浦野 徹
 監事 務部 衛
 監事 米川博通
5. 理事総数の20名の同意書
 別紙のとおり。
6. 監事総数2名の異議がないことを証する書類
 別紙のとおり。

新型コロナウイルス感染拡大により理事会の理事会への出席が困難となったため、令和2年4月22日、理事長 浦野 徹が理事会の全員に対して、理事会の決議の目的である事項について、上記内容の提案書を発送し、当該提案につき令和2年5月1日までに理事の全員から文書により同意する旨の意思表示を、また、監事から文書により異議がない旨の意思表示を新たに、定款第30条2項に基づき、当該提案を承認可決する旨の理事会の決議があったものとみなされた。

以上のとおり、理事会の決議があったとみなされたことを明確にするため、この議事録を作成し、議事録作成者が記名押印する。

令和2年5月1日
公益社団法人日本実験動物学会
令和2年度第67回総会議事録

日 時：令和2年5月26日（火）
13:00 ～ 13:40
場 所：公益社団法人日本実験動物学会事務局
総社員数：1,054名
本総会は新型コロナウイルス感染拡大により通常の開催形式が困難となったため、定款第18条により書面（議決権行使書）にて議決権を行使することを推奨し、会場は最少人数での出席開催とした。

[定足数の確認]
杉山文博庶務担当理事によって、出席者数・議決権行使数・定足数が下記のとおり確認され、定足数を満たし総会が成立している旨の報告が行われた。
出席者：6名
議決権行使数：555名
定足数：352名

[出席理事及び監事]
理事長：浦野 徹
常務理事：角田 茂、園田 智、杉山文博、林元展人
出席監事：0名

議長の選出
杉山庶務担当理事が議長の選出を出席者に語り、園田 智会員が選出された。
以後、園田会員を議長として総会が開催された。

議事録署名人の選出
園田議長より角田 茂会員、林元展人会員が議事録署名人として選出された。

[審議事項]
第1号議案 令和元年度事業報告
園田議長から第1号議案が上程され、杉山庶務担当理事が令和元年度事業報告の要点を第67回通常総会資料の第1頁から第5頁にもとづき説明した。
これに対して、園田議長は第1号議案を出席者に語り、承認数561名であり、本議案が承認された。
第2号議案 令和元年度収支決算ならびに監査報告
園田議長から第2号議案が上程され、杉山庶務担当理事が令和元年度収支決算の要点を第67回通常総会資料の第6頁から第15頁にもとづき説明した。
これに対して、園田議長は第2号議案を出席者に語り、承認数561名であり、本議案が承認された。
第3号議案 令和2－3年度役員の選任
園田議長から、本定時社員総会の終結をもって、理事及び監事の全員が任期満了により退任することとなるので、その後任者を選任する必要があるため、第3号議案が上程され、杉山庶務担当理事が令和2－3年度役員の選任を第67回通常総会資料の第17頁にもとづき選任したい旨説明した。
これに対して、園田議長は第3号議案を出席者に語り、承認数560名であり、本議案が承認された。

[閉会]
以上により本日の議事はすべて終了し、園田議長は閉会を宣言した。

令和2年5月26日
公益社団法人日本実験動物学会
今和2年度第2回理事会

1. 開催日時
令和2年5月26日（火）14:00～15:00

2. 会場
（公社）日本実験動物学会事務局

3. 理事現在数及び定足数並びに出席理事数及びその氏名
理事現在数 20 名
定足数 11 名
出席理事数 20 名
出席した理事の氏名
浅野雅秀、伊川正人、池 郁生、岡村匡史、小倉淳男、角田 茂、喜多正和、久和 茂、
庫本高志、越本知大、佐加真英治、杉山文博、高木博隆、高橋英樹、高橋利一、林元展人、
真下知士、三浦竜一、三好一郎、山田久陽

4. 監事現在数及び出席監事氏名
監事現在数 2 名
出席した監事の氏名
下田耕治、渡部一

5. 議長の氏名
杉山文博（第1号議題以前）
三好一郎（第2号議題以降）

6. 議題
第1号議題 代表理事の選定
第2号議題 業務執行理事の選定
第3号議題 委員会の設置と委員長の選定

7. 理事会の議題の経過の要領及びその結果
（1）定足数の確認等
冒頭で議長が定足数の充足及びWebシステムでの音声映像の伝達がスムーズであり、質疑応答に支障がないことを確認し、本会議の成立を宣言した。

（2）議案の審議状況及び議決結果等
第1号議題 代表理事の選定
議長より、定款5章第21条第3項に従い理事長の選定のための説明が行われ、代表理事（理事長）の自薦及び他薦が求められた。久和 茂理事より三好一郎理事を理事長に推薦する提案があった。
審議の結果、三好一郎理事を理事長とすることが、出席理事全員一致で承認された。

第2号議題 業務執行理事の選定
議長より、定款5章第21条第3項に従い業務執行理事（常務理事）の選定のための説明が行われ、以下の理事が三好理事長より常務理事に指名された。
理事長代行：久和 茂 常務理事

庶務担当：杉山文博 常務理事
庶務担当：真下知士 常務理事
会計担当：角田 茂 常務理事
会計担当：高橋英樹 常務理事

審議の結果、上記理事を常務理事とすることが、出席理事全員一致で承認された。

第3号議題 委員会の設置と委員長の選定
議長より、委員会・ワーキンググループ規程第1条及び2条に従い委員会の設置と委員長の選定のための説明が行われ、以下の委員会に以下の理事が三好理事長より指名が行われた。

編集委員会：小倉淳男 理事
学術集会委員会：浅野雅秀 理事
財務特別委員会：高木博隆 理事
国際交流委員会：林元展人 理事
広報・情報公開検討委員会：山田久陽 理事
動物福祉・倫理委員会：佐加真英治 理事
定款・細則等検討委員会：庫本高志 理事
実験動物感染症対策委員会：池 郁生 理事
実験動物管理者研修制度委員会：岡村匡史 理事
人材育成委員会：小倉淳男 理事
将来検討委員会：伊川正人 理事
動愛法等対策委員会：越本知大 理事
外部検討委員会：喜多正和 理事

審議の結果、上記委員会の設置と上記理事を委員長とすることが、出席理事全員一致で承認された。

（3）その他
議長よりその他の質疑等を理事に求めたところ、真下知士理事より、現在、大会長が独自に授与している着手優秀発表賞等の申送り事項について報告があった。討議した結果、今後大会間の統一性や公正性のためにも規定を含め、まずは将来検討委員会を中心に検討することになった。また小倉淳男理事より本学会に学術雑誌論文オンライン・データベースのEBSCOから契約願いが来ていることが報告があり、引き続き小倉編集委員長に検討をお願いすることになった。

以上をもって議案の審議等を終了したので、午後3時に議長が閉会を宣言し、解散した。
この議事録が正確であることを証するため、出席した理事長及び監事は記名押印する。

令和2年5月26日
令和3年度日本実験動物学会賞（功労賞、安東・田嶋賞、奨励賞）
受賞候補者の推薦受付について

令和3年度日本実験動物学会賞の推薦を下記の要領で受け付けます。学会ホームページ＞学会案内＞賞（https://www.jalas.jp/gakkai/prize.html）に、「推薦受付について」、「推薦募集要項」、「表彰規程」を掲載しておりますので、推薦募集要項および表彰規定に従いご応募下さい。
ご不明な点は事務局（Tel: 03-3814-8276 FAX: 03-3814-3990 e-mail JDK06323@nifly.com）までお問い合わせ下さい。

【受付期間】 令和2年7月1日（水）～9月30日（水）必着
【書類の提出先】 応募書類は簡易書留にてお送りください。
〒113-0033 東京都文京区本郷6-26-12 東京RSビル3F
公益社団法人日本実験動物学会理事長 三好一郎 宛

第70回日本実験動物学会総会大会長立候補者の受付について

第70回日本実験動物学会総会大会長の立候補を下記の要領で受け付けます。第70回総会の開催予定日は令和5年度5月中旬ないし下旬です。

【受付期間】 令和2年7月1日（水）～10月30日（金）（必着）
【書類の提出先】 申請書類は簡易書留にてお送りください。
〒113-0033 東京都文京区本郷6-26-12 東京RSビル3F
公益社団法人日本実験動物学会理事長 三好一郎 宛

申請書類の様式及び定期大会開催に関する申し込みについては本学会ホームページ＞お知らせ＞学会大会長の立候補受付（https://www.jalas.jp/info/teiki-kaisai.html）に掲載されております。
不明な点は事務局（Tel: 03-3814-8276 FAX: 03-3814-3990 e-mail JDK06323@nifly.com）までお問い合わせ下さい。

第68回日本実験動物学会総会の開催

テーマ： 医薬に貢献しつづける実験動物
日　時： 2021年5月19日（水）～21日（金）
会　場： タワーホール船堀
〒134-0091 東京都江戸川区船堀4-1-1
https://www.towerhall.jp/4access/access.html
Tel: 03-5676-2211（代） FAX: 03-5676-2501
大会長： 今井良悦（武田薬品工業）
公益社団法人日本実験動物協会の動き

I. 第36回定時総会

本協会は令和2年6月12日に第36回定時総会を、東京土地高橋ビルにおいて開催し、平成31年度決算を承認した。貸借照会は当協会のホームページに掲載する。

また、任期満了に伴い次期役員（令和2～3年度）を選任した。次いで開催された理事会にて役職を次のとおり決定した。

◇役員

会長　：福田勝洋（代表理事）
副会長　：高木博義（代表理事）　吉川泰弘（業務執行理事）
　　小山公成（新任、業務執行理事）
専務理事：田口義（業務執行理事）
常務理事：武石悟郎（業務執行理事兼事務局長）
理事　：外尾亮治（業務執行理事）、三宅誠司（業務執行理事）
　　新井秀夫、北村典、齋藤敏樹（新任）、武石勝、伊藤恵賢、樋橋明宏、
　　清水和一（新任）、関口志郎、三好一郎（新任）
監事　：夏目知恵子（新任）、村松久美子（新任）

更に、総会において、永年にわたり理事として協会に貢献された清水英男氏及び務齋衛氏に協会会長功労賞及び記念品を贈呈した。また、永年にわたり委員として当協会事務に貢献された小山公成氏及び関田清司氏に委員功労賞と記念品を贈呈した。

II. 実験動物技術者資格認定試験

1. 2級　学科試験 8月2日（日）　実技試験 11月28日（土）
2. 1級　学科試験 9月19日（土）　実技試験 11月29日（日）

なお、今年度の実験動物技術者資格認定試験については、新型コロナウイルス感染症をめぐる状況により、日程、場所などの変更。また、試験中止の可能性がありますので、詳細については、
日動協ホームページ http://www.nichidokyo.or.jp/ でご確認ください。

III. 各種実技研修会について

1. 実験動物高度技術者養成研修会（白河研修会）
　　令和2年度の実験動物高度技術者養成研修会（白河研修会）については、新型コロナウイルス感染症の感染拡大を受け、受講者及び関係者の安全確保が難しいと判断し中止となりました。受講を予定していた皆様にはご迷惑をお掛けですが、何卒ご理解いただきますようお願い申し上げます。

2. その他の研修会

例年開催している日密の管理研修会及び微生物モニタリング技術研修会については、新型コロナウイルス感染症の感染拡大防止のため当面延期としています。また、実験動物基本実技研修会（1級及び2級水準）及びブタ実技研修会については、現在調整中であります。いずれも詳細については、適宜、日動協ホームページ http://www.nichidokyo.or.jp/ にてお知らせいたします。
理事長退任にあたって

公益社団法人日本実験動物学会
理事長 浦野 徹

2014年5月16日に開催された第61回日本実験動物学会総会において理事長を拝命し、その後3期6年間を務め、2020年に大阪で開催される第67回総会において退任することとなりました。平成から令和にかけて6年間、長かったようでもあり、瞬く間に終わってしまったような気もします。そこで理事長退任にあたりご挨拶をさせて載ります。

私が理事長に就任した6年前といえば、前任の熊本大学を65歳で定年退職し、あらたに自然科学研究所・生理学研究所に着任した年で、自宅は東京に構えて、生理学会の草創期市に単身赴任した頃でした。生理学会の活動は、本務が研究力強化戦略で、動物実験センターを兼務することでした。前者の研究力強化戦略は、文字通り私が国の研究力を強化するための戦略を練り実行するための組織で、我が国の幾つかの大学等に予算措置された時間付きのプロジェクトでした。そして、生理学会としてはさらに後者の動物実験センターの面倒もみて欲しい、というものです。生理学会は共同利用共同研究のための組織であるため、そこに動物実験センターをみると、ということは、必然的に我が国の動物実験に関係した研究力を強化することにつながることになります。また、私が生理学会以外の動物実験に関わる仕事をするということでも、同時に我が国の動物実験に関係した研究力を強化することにつながるわけです。そうしたことで、日本実験動物学会の理事長職、さらには国内外の実験動物と動物実験に関することを行うことの私の職務の一つとも言えます。

日本実験動物学会は、1951年に実験動物研究会として設立されて以来69年の長きにわたる歴史を有しています。あらためて日本実験動物学会の定款をみると、その第3条に「この法人は、実験動物に関する基礎及び応用研究の発表、知識の交換、連絡、情報の提供を行うことにより、実験動物学及びその関連分野の進展、普及を図り、もって我が国における学術の発展および科学技術の振興に寄与することを目的とする。」とあります。すなわち、日本実験動物学会は実験動物学に関する学術団体であるのと同時に、その関連分野の進展や普及にも寄与する役割を果たした組織であるといえます。そこで、私はこの目的を果たすために、これまでの経緯も踏まえて、編集委員会、学術集会委員会、財務特別委員会、国際交流委員会、広報・情報公開検討委員会、動物福祉・倫理委員会、制定・細則・規定等検討委員会、実験動物感染症対策委員会、教育研修委員会、実験動物管理者研修制度制度、人材育成委員会、将来検討委員会、動物愛等対策委員会、外部検証委員会を設置し、活動を行ってきました。これらの委員会活動の幾つかは、本学会のこれまでの理事長であった津安清次（1951～1966：昭和26～41）、田崎嘉雄（1966～1978：昭和41～53）、川保厳一（1979～1988：昭和54～63）、片村武（1988～1991：昭和63～平成3）、光岡知足（1991～1994：平成3～6）、森脇和郎（1994～1999：平成6～11）、菅野茂（2000～2006：平成12～18）、芹川忠夫（2006～2010：平成18～22）、大神健一（2010～2014：平成22～26）の先生方により続いてくれられてきました。日本の実験動物学は、今日に至るまでの長い歴史の中で、これらの多くの理事長をはじめとして、さらに理事の先生方のリーダーシップのもとに、多くの会員のご協力によって確固たる基盤が構築され発展してきました。あたって、これまでの理事長さらには理事のご努力と残されたご功績に対して大きな敬意を払う次第です。

私はこれまでの理事長や理事が中心となって進められてきた活動、そしてその結果として残された実績を踏まえて、学術共同体としての学会活動をさらに推進するとともに、産業界
社会に向けた活動も視野に入れ、わが国のライフサイエンス研究のさらなる発展に向けて活動してきました。2014年に私が理事長職を拝命して後、多くの理事の方々や委員会委員の先生方のご助力を賜って、主には以下の事業を推進することができました。この場を借りて、これらの事業に関係した先生方にお深く御礼申し上げます。

① 定期学術集会さらには維持会員懇談会や実験動物科学シンポジウム及び実験動物管理者等研修会等の開催
② 会誌及び関係学術資料等の刊行
③ 研究の奨励、研究業績の表彰
④ 海外の国際実験動物科学会議（ICLAS）やアジア実験動物学会連合（AFLAS）及び米国実験動物学会（AALAS）などの海外関連学協会との学術・情報交流の推進
⑤ 実験動物の福祉・倫理に関する対応
⑥ ホームページの整備
⑦ 国内の実験動物関連団体や文部科学省・環境省・内閣府等との連携
⑧ 動物愛護管理法の改正や各種規制の見直しへの対応
⑨ 環境省による実験動物飼養保管基準の解説書作成への関与
⑩ AMED・ナショナルバイオリソースプロジェクト「外部検証促進のための人材育成」課題の立案、応募、採択後の推進
⑪ 外部検証専門員の資格付与事業及び外部検証事業の実施
⑫ その他

この中で唯一残念なことは、本年（2020年）5月23～25日に大阪国際会議場で開催予定であった塩谷芳子大会長による第67回日本実験動物学会総会が、新型コロナウイルス感染症蔓延により開催できなかったことです。新型コロナウイルス感染症が早く終息することを祈るばかりです。

②以後の事業は、これまでとは異なった新たな案件であり始めに話したばかりのものであれば、継続中の中もあります。そして上述の①から⑩の全ての事業は、三好一郎・新理事長を初めとする新執行部にバトンタッチします。どうぞよろしくお願い申し上げます。

最後になりましたが、私が理事長に就任してからの6年間、会員各位から戴いたご支援に厚く御礼申し上げます。有難うございました。そして、新しい執行部へのご支援を今後ともどうぞ宜しくお願いします。

（2020年5月18日 記す）
幻の第67回日本実験動物学会総会を振り返って

第67回日本実験動物学会総会
大会長 塩谷恭子

2020年5月の大東に向けての約2年間、本当にたくさんの皆様のお力添えをいただきました。組織委員会の皆さまには立ち上げから大会全体のコーディネートや特別講演をはじめとした数多くのシンポジウムのオーガナイズをしていただきました。プログラム委員会の皆様には関西の底力をいただきました。財務委員会の皆様には現在実験動物業界の厳しい状況の中、とても多くのご協力をいただきました。実行委員会の皆様には長年にわたる周到な準備のもと当日活躍していただく予定でした。陰で支えてくださった事務局の面々、数えきれないほどのご協力に心より感謝しております。

本当にありがとうございました。

みなさまのご期待に添えるよう元気いっぱい第67回日本実験動物学会総会を開催したかったので、本当にごめんなさい。

また、COVID-19で大変な中イギリスからたくさんの資料をお送りいただいたUnderstanding Animal ResearchのWendy Jarrettさん。お目かかってお話を伺いたかったです。ぜひ、次のチャンスがあると信じましょう。必ずお声をお掛けしますので！！

文部科学省・厚生労働省・農林水産省のご参加によるAll Japanの第1歩踏み出したかったです。図表のことも、大動物の感染症のことも、教育現場のことも、COVID-19最前線のことも伺いたかったです！！小さな小さな1歩だけど、きっと繋がるはず！！

患者様のご家族のお話も現役心臓外科医のかたのご講演もきっとこれから動物実験を進めていく上で心に響いて残ったはずです！！

そんな数多くの念願が今撮録集となりお手元にお送り致しました。

若手優秀発表賞の選考も終了しました。頑張ってくださった若者たちにエールと拍手を！！きっと、これからの実験動物界を支えてくれる逸材です！！

ファミリーデーも本当に残念です。少し変わった自分だから計画できたことと思っていまが、きっと、同じように変わったことと考える方もおられるはず。期待しています！！

学会の総会を運営できるチャンスを下さった浦野前理事長に感謝しております。本当に楽しい日々でした。たくさんの方仲間という財産をいただきました。ありがとうございます。

皆様に頂いたご恩は少しずつお返してまいります。老婆心ながら…

さてさて、会員の皆様がこれをご覧になるころ、きっと実験動物・動物実験界を駆使してCOVID-19に立ち向かってくださっているはず！！今が贈の見せ所！！

本当にたくさんのありがとう！！感謝しています！！

ありがとうございました。
実験動物感染症の現状

重度免疫不全動物などの易感染性動物の感染症

はじめに

実験動物のマウス、ラットなどの小型動物類の感染症起因微生物のほとんどは既知であり、その病原性、伝播性、流行度を元にし、さらに動物側の要因（実験内容、免疫機能など）を加味して微生物モニタリング項目が設定される。これらの項目は地域により若干の違いがあるものの世界的に見て大きな違いはない。近年、従来の免疫不全動物よりもさらに免疫機能が低いNOGマウスのような重度免疫不全動物や、実験の目的に合わせて感染症に関連する遺伝子を操作した動物が作出され、様々な実験に利用されるようになってきた。これらの動物、特に前者の重度免疫不全動物は微生物に感染しやすい、いわゆる易感染性であり、重要な微生物学的観察が必要である。

易感染性の動物では一般的に知られている感染症を特異的に増加させ、よりあらゆる育成環境中の微生物が感染症を引き起こす可能性があり、またこれらの微生物が起因とならないとしても感染症が増悪因子として関与する可能性がある。動物実験では易感染性の動物の利用は今後も増加していくと思われるが、これらの感染症の情報は非常に少ない。このような背景のもと今回著者らの所属する公益財団法人実験動物中央研究所ICLASモニタリングセンター（以下、実中研ICLASモニタリングセンターという）で経験したこと易感染性動物の感染症例のいくつかを紹介する。尚、ユーザー情報の保護の観点から情報が明確化されていない部分があるがご容赦願いたい。

症例1. Rag2ノックアウトマウスに見られたPneumocystis murina感染症

症状：Rag2ノックアウトマウス、雄、19週齢

感染経路：気道内に投与

検査：PCR

結果：Pneumocystis murina（P. murina）陽性

症例2. Myd88ノックアウトマウスにおけるStaphylococcus aureus感染症

症状：Myd88ノックアウトマウス、雄、7週齢

感染経路：気道内に投与

検査：PCR

結果：Staphylococcus aureus（S. aureus）陽性

本マウスでは、まずずうずくまりの状態が確認されるとともに、体全体で大きく呼吸をしている様子が観察された。剖検時には上述したように胸壁不全を中心とした肺の病変が観察された（図1）。肺をサンプルとしたPCRではPneumocystis murina（P. murina）が陽性となり、病理組織学的検査ではHE染色像で特徴的な肺胞胞内に充満する泡沫状浮腫が見られた。浮腫液中にGrocott & Giemsa染色で黒染する本菌のシストが確認された（図2）。

このマウスではP. murinaの検査は実施されていなかった。また育成環境においては本菌を不顕性で保有する可能性がある野生型マウス等の種常の免疫機能を持つ系統は育成されていなかった。Recombination-activating gene 2（Rag2遺伝子）はT細胞ならびにB細胞の受容体遺伝子の再構成に必要であり、Rag2が欠損することによりT細胞ならびにB細胞の分化が起こらず、免疫不全状態となる[1]。Rag2ノックアウトマウスにおけるP. murina感染症は著者の所属する実中研ICLASモニタリングセンターにおける検査でも年に数例程度検出される。

診断結果：Staphylococcus aureus（S. aureus）陽性（追加検査）
図1 Rag2ノックアウトマウスに見られた両肺の退縮不全と肝変化（黄色矢印）。PCR検査によりPneumocystis murinaの陽性が確認された。

図2 Rag2ノックアウトマウスに見られたPneumocystis murina感染による肺病変。肺胞腔内に泡状腔物の充満が見られる（赤色矢印）、HE染色（Bar=50 µm）。Inset: 腔物内にGrocott染色に黒染するP. murinaのシストが見られる（青色矢印）、Grocott & Giemsa染色（HE染色写真等倍）。

図3 Myd88ノックアウトマウスに見られた右側斜頭。Inset: 頚部側面の肉眼所見で右側耳腔内を閉塞する集積物が充満しており（赤色矢印）、Staphylococcus aureusが単独で分離された。

図4 Myd88ノックアウトマウスの右側耳腔に見られたStaphylococcus aureus感染による化膿性中耳炎および化膿性感し耳炎。中耳腔ならびに内耳への好中球を主体とした炎症性細胞浸潤（黄色矢印）が見られ、内耳にグラム陽性球菌塊を認める（赤色矢印）、HE染色（Bar=500 µm）。Inset: 内耳に見られたグラム陽性を示す球菌塊（赤色矢印）、Gram染色（Bar=20 µm）。

かった。また飼育環境中には本菌を不顕性で保有する可能性がある野生型マウス等の健全な免疫機能を持つ系統は飼育されていなかった。Myeloid differentiation primary response (MyD) 88は全てのToll-like receptorを介した病原微生物の構成成分に対する炎症性サイトカインの誘導に必須であり、Myd88ノックアウトマウスでは様々な細菌に対し易感染性となることが報告されている[2–4]。

症例3 NOGマウスにおけるStaphylococcus sciuri感染症
動物: NOGマウス（NOD.Cg-Prkdc^{scid}Il2rg^{tm1Sug}/ShiJic)、飼、32週齢

由来施設: 資料企業C
主訴: 脱毛、衰弱、突然死
検査結果: Staphylococcus sciuri陽性（追加検査）
他の免疫不全動物用検査項目（実中研ICLASモニタリングセンター免疫不全動物コアセット）は全て陰性

本マウスでは元気消失とともに頸背部を中心とした被毛粗剛、鱗屑、脱毛が確認された（図5）。剖検所見では胸腔、腹腔内に主要臓器に著変は認められな
かった。皮膚ならびに外耳道のスワブからは Staphylococcus sciuri (S. sciuri) が単独で分離された。病理組織学的検査では皮膚に過角化を伴った表皮肥厚症が観られ角質内には球菌の存在が確認された (図 6)。また中耳にも滲出性中耳炎が観られ、球菌の存在が確認された。NOG マウスは T 細胞、B 細胞とナチュラルキラー細胞を欠失する重度免疫不全動物である [5]。本マウスのコロニーにおいて、通常の免疫不全項目は定期的に検査され、全て陰性であることが確認されていた。本症例では起因菌として環境中の菌である S. sciuri の関与が強く疑われた。S. sciuri はコアグラーベ陰性のグラム陽性球菌で動物の皮膚や粘膜の常在菌の一種であり、ヒトの心内膜炎などからも分離された例がある。また土壤や水があるところなどの外環境にも存在することが知られている [6–8]。

症例 4. NOG マウスにおける Corynebacterium bovis 感染症

動物: NOG マウス (NOD.Cg-Prkdc^{scid}/L2rg^{-/-}Sug^{−/+}/ShiJic)、雌、20 週齢

由来施設: 精薬企業 D

主訴: 脱毛、衰弱

検査結果: Corynebacterium bovis 陽性（追加検査）

他の免疫不全動物用検査項目（実中研 ICLAS モニタリングセンター免疫不全動物コアセット）は全て陰性

本マウスでは元気消失とともに被毛粗朧化ならびに眼瞼浮腫が確認された（図 7）。剖検所見では胸腔、腹腔内の主要臓器に著変は認められなかった。皮膚スワブからは Corynebacterium bovis (C. bovis) が単独で分離された。病理組織学的検査では皮膚の過角化
化を伴った表皮肥厚症が確認された（図8）。本マウスのコロニーでは一般的な免疫不全項目は定期的に検査され、全て陰性であることが確認されていた。C. bovisは主に免疫不全マウスに皮膚疾患を起こすことが知られている[9]。また動物施設内に入り込むと飼育環境中に残存し、排除が難しいことが報告されている[10]。

おわりに

易感染性動物における感染症の発生は比較的多く、実中研ICLASモニタリングセンターではその程度の大小を問わず年に数十例ほど見出される。これらの原因のほとんどが偶然的に感染した日和見病原体や飼育環境中の細菌である。異常所見としては被毛粗剛や脱毛、肺の実質変化、肝臓の白斑、腸管壁の肥厚などが多く見られる。本稿には記載をしなかったがHelicobacter hepaticus（H. hepaticus）、H. bilis以外のHelicobacter属菌の感染例も散見される。易感染性動物に見られる異常は他の動物に見られる異常に比べ感染症に起因する可能性が高いことから、易感染性動物に異常が見られた際には微生物モニタリング項目の検査に加え病変部の培養検査や病理組織学的検査など、原因究明のための検査を行うべきである。本稿では実中研ICLASモニタリングセンターの検査において易感染性動物に見られた4つの感染症例を紹介した。今後、易感染性動物を用いた実験はさらに増えていくと思われる。これらの動物を扱う飼育者、研究者は微生物学的管理に対し、より一層の高い意識を持って頂きたいと思う。

謝辞

本稿において病理組織学的検査を担当して頂いた（公財）実験動物中央研究所病理解析センターの保田昌彦博士に感謝の意を表します。

文献

1. Shinkai, Y., Rathbun, G., Lam, K.P., Oltz, E.M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A.M. and Alt, F.W. (1992) RAG-2-Deficient Mice Lack Mature Lymphocytes Owing to Inability to Initiate V(D)J Rearrangement, Cell, 68: 855–867.
2. Takeda, K. (2005) Toll-like receptor, Jpn. J. Clin. Immunol., 28: 309–317.
3. Takeuchi, O., Hoshino, K., Akira, S. (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol., 165: 5392–5396.
4. Villano, J.S., Rong, F., Cooper, T.K. (2014) Bacterial infection in Myd88-deficient mice. Comp. Med., 64: 110–114.
5. 公益財団法人実験動物中央研究所 NOG マウス https://www.ciae.or.jp/laboratory_animal/nog.html (2020年5月29日)
6. Hedin, G., and M. Widerstrom. (1998) Endocarditis due to Staphylococcus sciuri. Eur. J. Clin. Microbiol. Infect. Dis., 17: 673–675.
7. Hauschild, T., and S. Schwarz. (2003) Differentiation of Staphylococcus sciuri strains isolated from free-living rodents and insectivores. J. Vet. Med. B Infect. Dis. Vet. Public Health, 50: 241–246.
8. Kloos, W. E. (1980) Natural populations of the genus Staphylococcus. Annu. Rev. Microbiol., 34: 559–592.
9. Kim, TH., Kim, DS., Han, JH., Chang, SN., Kim, KS., Seok, SH., Kim, DJ., Park, JH., Park, JH. (2014) Detection of Corynebacterium bovis infection in athymic nude mice from a research animal facility in Korea. J. Vet. Sci., 15: 583–586.
10. Holly N Burr, Felix R Wolf, Neil S Lipman. (2012) Corynebacterium bovis: Epizootiologic Features and Environmental Contamination in an Enzootically Infected Rodent Room. J. Am. Assoc. Lab. Anim. Sci., 51: 189–198.
研究室・施設便り

京都大学大学院 医学研究科
実験動物学分野（附属動物実験施設）

浅野雅秀（施設長、教授）

はじめに

私が担当しているところは、学内には「動物実験施設」の対面が強いですが、医学研究科の基礎医学系の講座「実験動物学分野」として、教育と研究も担っています。また、先代の芹川教授から引き続き「ナショナルバイオリソースプロジェクト（NBRP）ラット」も担当しており、3つの顔を持っています。これに3つ目もあり、何人である私には荷が重く、日々奮闘しているというんです。本稿ではこの3つのミッションについてご紹介したいと思います。

動物実験施設所在地

京都大学は京都市左京区にメインの吉田キャンパスがあり、医学部・医学研究科は最も南の医学部・病院構内に位置します。近衛通りを挟んで北側は基礎系研究室、南側は病院と臨床系研究室があります。施設内は赤レンガで統一されており、各研究棟の間には緑豊かで落ち着く雰囲気が感じられます（図1）。動物実験施設は基礎系エリアのほぼ中央に位置し（図2）、その手前には大きな桜の木があり、春には満開の桜を楽しむことができます（図3）。医学研究科の一つの特徴（自慢）はノーベル生理学・医学賞を受賞された山中伸弥教授と本庶佑特別教授が現在もこのキャンパスで活躍されていることです。

動物実験施設、研究室の歴史と現在の構成員

動物実験施設は1972年に設置され、地下2階、地上4階の施設棟は1974年に開所されました。設立当初は医学部の教授が施設長を兼任していましたが、1987年に故山田淳三先生が専任教授となり、施設長に就任されました。その後、1994年には芹川忠夫先生が施設長・教授に就任されました。2002年には施設棟の全面改修と拡張工事が行われ、現在の延床面積約9,400平方メートルの施設棟（本館）が完成しました。両先生ともラットを研究対象としていたので、当施設は日本のラット研究の中核を担うようになりました。2002年に文部省の支援のもと、我が国に重要な研究リソースを収集、保存して研究者に提供するNBRPが始まることになり、ラットは必然的に当施設が担うことになりました。NBRPは5年毎のプロジェクトで第1期と第2期は芹川先生が課題管理者を務め、第3期は筆者高志先生（現：東京農業大学 教授）が務められました。

2014年12月に金沢大学から浅野雅秀が3代目の
実験動物ニュース Vol. 69 No. 3

図 3 満開の桝と動物実験施設

専任教授として赴任しました。浅野は金沢大学学際科学実験センターでも約14年間にわたり実験動物施設の施設長・教授を務め、その経験を基盤としての就任となりました。金沢大学からも異動時には、成瀬智恵助教（現：准教授）と吉原清正助教（現：特別講師）、杉原一也教授職員（現：技術専門職員）が一緒に異動してきました。NBRP-Ratを担当する教員は本多新篤准教授と守田昭大部特別助教があり、定員内数員は教授と准教授の2名だけなのにですが、みんなで分担して3つのミッション何とかこなししております。

施設運営

施設棟（本館）は、地下2階と地上4階、屋上からなります。1階には受付と教職員の居室、研究室内の実験室などの施設専用スペースおよび4つのP2A飼育・実験室と検疫・検査室などがあります。2階は22のSPFマウス飼育室と4つの実験室、γ線照射室などがあって、マウス使用者が使用しており、最も使用者の数が多い領域です。3階は13のSPFラット飼育室と5つの実験室があり、ラット利使用者が使用しています。他施設と比べるとラットの飼育スペースはかなり大きく、NBRP-Ratのラットソリースもこのエリアで維持しています。また、3階には筋作業室や膣結胚・精子を保存しておく液体窒素タンク室があり、利用者のマウスの凍結胚・精子およびNBRP-Ratのラットの凍結胚・精子の作製と保存を行っています。4階は70％ぐらいの面積が空調機能の機械室となっており、それ以外は実験室。セミナー室、研究室の培養室と病理組織室があります。屋上にも空調関係の機器が並んでいます。地上階はSPFのマウスとラットを収容しているのに対して、地階は主に中・大動物を収容しています。地下1階はモルモット、ウサギ、イス、ブタ、マーモセットの飼育室があります。中・大動物用に4つの手術室とX線装置室、電気生理ができますらやラットの脳機能等検査室も設置されています。なお、近年のマウス・ラットの増加に伴い、SPFマウス飼育室やクリーンマウス飼育室、クリーンラット飼育室も増設されています。地下2階にはサルの飼育室と手術室。ウイルスベクターが接種可能なサルのP2A飼育室・実験室があります。現在は日本サルが飼育されています。施設棟の心臓部である洗浄室・滅菌室も地下2階にあります。2台の回転式ケージウォッシャーと4台の大型オートクレープが稼働しており、本館のすべてのケージや飼育機材の洗浄・滅菌を行っています。残りの約半分のスペースは機械室と電気室としています。

本館以外にも基礎系エリアにあるA研究棟地下1階SPFマウス飼育室および少し離れた薬学部棟内にある医薬系総合研究棟地下2階SPFマウス飼育室と地下1階サル飼育室も動物実験施設の管理のもとに運営されています。A研究棟地下1階には5つのSPFマウス飼育室と4つの実験室。1台の回転式ケージウォッシャー、3台の大型オートクレープがあります。

医薬系総合研究棟地下2階には6つのSPFマウス飼育室と3つの実験室、1台の回転式ケージウォッシャー、2台の大型オートクレープ、X線照射装置があります。

医薬系総合研究棟地下1階は、世界トップレベル研究拠点プログラム（WPI）に採択されたヒト生物学高等研究拠点（ASHBi、拠点長：斎藤通紀教授）が専用で使用するサルの飼育室と手術室・実験室およびCT撮影室があります。こちらは主に遺伝子組換えマウスやシグナル伝達経路を観察する予定である。また、医薬系総合研究棟地下1階では、浅野が室長を務める医学研究支援センターのマウス行動解析室も移転してくる予定となっています。現在は、全エリアを合わせるとマウスの最大収容ケージ数が約2万個、ラットが約3千個となり、我が国の大学では最大規模となっています。

日常の飼育管理をケージ・飼育機材の洗浄・滅菌を、当施設の技術職員の指導の元に技術補佐員や業務委託職員（KAC）が行っています。我が国最大規模のケージ数ですので、ケージ交換は原則各研究室で行ってもらっています。当施設の利用者は医学研究科に限定されていますが、利用登録者数は1,000名を超え、動物実験計画書は年間453件になります。技術職員は各利用者からの様々な質問や要望に対応し、初心者への利用者講習会を対面で行っています。研究技術支援としては、マウスの受精卵移植によるSPF化、胚や精子の凍結保存、それらからの個体復元を技術職員2名と技術補佐員1名が行っています。

教育

学部教育は医学科2年生の生理学の講義の中で実験動物学（5コマ）を分担しており、医学科独自の制度であるマイコース（基礎配属）やMD研究者コースの学生を毎年1名程度受け入れています。基礎系
現在の研究テーマ

浅野のこれまでの研究については、2019年の安東・
田嶋賞の受賞講演の内容をまとめたExperimental
Animalsの総説1）や生化学誌の総説2）を参照してく
ださい。ここでは現在の研究テーマについて簡単に
紹介します。私たちの研究室ではタンパク質の翻訳
後修飾の糖鎖修飾とヒストン修飾に注目して、遺伝
子変異マウスを作成・解析することで研究を進めて
います。

全タンパク質の約半分が糖鎖修飾を受けると言われ
ており、分泌されるタンパク質は小脳体とゴルジ
体を輸送される間に、複雑な糖鎖修飾を受けて機能
的な高次構造を形成します。タンパク質に糖鎖が付
加する部位はAsnに結合するN型糖鎖とSer/Thrに
結合するO型糖鎖があります。前者はSer-X-Asnの
コンセプト配列がありますが、後者は周辺の配列
に共通点はありません。また、二単糖の繰り返し単
位を持つグルコンサミノグリカンがあります。さらに、
脂質も糖鎖修飾を受けるものがあり、特にコレステ
ールと呼ばれる一連のスフィンゴ脂質があります。
哺乳類は200個くらいの糖鎖修飾関連遺伝子を
持っており、タンパク質が小脳体とゴルジ体を輸送
される間に、順次一つ一つの単糖がれども特異的
な糖転移酵素によって付加されて、3次元的な複雑
な構造が出来上がります。糖鎖はそのタンパク質や
脂質の高次構造、輸送、安定性に関与するだけでなく、
細胞と細胞の接着や分子と分子の結合、特に細胞間
走、がんの転移、炎症反応、細菌感染や抗体の結合、
ウイルス感染などの様々な生物学的機能に重要な働き
をしています。AsnやSer/Thrにどのような糖鎖構造
が付加するのかはそのアミノ酸配列、すなわち遺伝
コードでは決まってしまおらず、細胞内に存在する糖転
移酵素や糖分解酵素、スクレオチド糖供与体、基質
となるタンパク質や脂質の組み合わせで決まります。

図4 基礎系の講義を行う基礎医学記念講堂

の講義は戦前の解剖室を改修した木造の趣のある基
礎医学記念講堂（図4）で行っています。その入口に
は歴代のノーベル賞受賞者や文化勲章受章者、文化
功労者など輩出した先生の写真が飾られており（図
5）。講義の時は背筋が伸びる思いがします。2019年
度で人間健康科学科の総合医療科学コースも担当
するようになり、3回生の実験動物学の講義（7コマ）
と4回生の卒業研究も担当しています。大学院は医
学研究科の医学専攻（博士4年）と医学専攻（修士2年、博士後期3年）を担当しており、そこから
大学院生が入学してきます。また、人間健康科学専
攻（修士2年、博士後期3年）からも可能です。当
研究室には医師はいないので、大学院に医学科の卒
業生が来ることがなく、他大学の理系学部卒業生が
修士課程から入学者か、留学生が博士課程から入
学することがほとんどです。したがって、大学院生
数は少なく、2020年の春は博士2名（留学生）と
修士1名、4回生1名です。大学院では病理形態・
病態医学コースを担当しており、15名の博士課程の
院生に4日間の動物実験法実習を実施しています。

図5 歴代の著名な教授陣（基礎医学記念講堂）

103
複雑な糖鎖構造は暗号をコードしており、それをグライココードと呼びます。私たちの研究室ではこのグライココードを解読し、糖鎖が果たす様々な生物学的機能を解明することにあります。

一方、ヒストンはDNAをコンパクトに巻きつけて核内に収納するための芯の役目を担るものとして長年にわたって研究されてきました。しかし、近年ヒストンのN末端のテールに存在する Lys (K)やSer (S), Thr (T), Arg (R)などが、メチル化やアセチル化、リン酸化などの修飾を受けて、近傍の遺伝子の発現を制御していることがわかりました。主なヒストンはH2A, H2B, H3, H4の4つであり、これが8体となってひとつのヌクレオソーム構造を形成します。アセチル化 H3やH4の4番目のKがメチル化されたH3K4me2/3などは転写活性化マークとして知られ、H3K9me2/3やH3K27me3などは転写抑制マークとして知られています。それぞれのヒストンにどのようなマーク（修飾）が入っているかで、近傍の遺伝子の発現を制御していることから、ヒストン修飾のことをヒストンコードと呼びます。私たちの研究室ではこのヒストンコードを解読し、ヒストンにより遺伝子発現制御、特に発生過程などにおける精細な発現制御のメカニズムを解明することにあります。

糖鎖修飾の最近のトピックス

糖鎖修飾に関与する遺伝子は200個ぐらいあるのですが、私たちはガラクトース転移酵素に注目しました。ガラクトース転移酵素も結合様式にα1-3, α1-4, β1-3, β1-4の4種類があり、それぞれにさらに複数の遺伝子が存在します。特にβ1-3とβ1-4はそれぞれ7つの遺伝子が存在し、同じ結合様式のガラクトース転移酵素がなぜ7つも存在するのか、それぞれに役割分担があるのかは大きな疑問でした。私たちは7つのβ1-4ガラクトース転移酵素（β4GalT）のうち、これまで4つについて遺伝子欠損マウスを作製し、解析を行ってきましたが、ここではβ4GalT-1欠損マウスを用いた造血幹細胞（HSC）の移植後の骨髄へのホーミングの研究とβ4GalT-5/6ダブル欠損マウスを用いた脳神経系の研究について紹介します。

β4GalT-1欠損マウスについてはこれまでに炎症時の白血球の遊走と炎症反応の减弱、皮膚創傷治癒の遅延、IgA腎症の自然発症などの報告をしましたが、β4GalT-1欠損マウス由来の骨髄細胞は、移植しても骨髄にホーミング・生着せず、致死量のガンマ線を照射したレシピエントマウスの生存が維持できなかったことがわかりました。GFPで標識したβ4GalT-1欠損骨髓細胞を移植して24時間後に、レシピエントマウスの骨髄腔に生着した骨髄細胞はコントロールの約1/5に減少し、移植後24時間後にレシピエントマウスの骨髄から細胞を回収して、コロニーを形成させたところ、コントロールの約1/10に激減していました。また、レシピエントにNOD/Scidマウスを用いた場合もこの現象は見られ、逆の移植（野生型の骨髄細胞をβ4GalT-1欠損マウスに移植）の場合は正常にホーミング・生着が見られたことから、β4GalT-1欠損のHSCは移植後の骨髄へのホーミング・生着能力をほとんど失っていることがわかりました（図6）。

図6 HSCのホーミング研究のまとめ
β4GalT-1欠損HSCのコロニー形成能は正常でしたので、HSC表面のガラクトース含有糖鎖が骨髄ニッチへのHSCのホエニングに必須であることがわかり、現在その分子的な実態を追求しています。

β4GalT-2とβ4GalT-5は脳での発現が強く、β4GalT-2はHNK-1糖鎖の形成に必須で、β4GalT-2欠損マウスは空間学習・記憶と協調運動に障害があることがわかりました。一方、β4GalT-5欠損マウスは胎生中期に致死となり、胚体外組織の異常は疑わされません。β4GalT-5はタンパク質糖鎖の合成ではなく、スフィンゴ糖脂質の合成起点となるラクトロンセラミド（LacCer）合成酵素を担うことがわかりました。しかし、当初の目的である脳神経系の解析はできません。そこでβ4GalT-5 floxマウスとNestin-Creマウスを交配することにより、脳神経特異的β4GalT-5欠損マウスを作製しました。このマウスは発生過程には問題ありませんでしたが、脳神経系にも明らかな異常は見られませんでした。そこでβ4GalT-5と最も同様性が高いβ4GalT-6の欠損マウスを名古屋大学の古川鋼一先生から分与いただき、脳神経特異的β4GalT-5欠損マウスと交配して、脳神経特異的β4GalT-5/6ダブル欠損マウス（DKO）を作製しました。それぞれ単独の欠損マウスの脳におけるLacCer合成酵素活性は約半分に減少しましたが、DKOマウスの脳では完全に活性が消失したことから、脳ではβ4GalT-5と6がLacCer合成酵素活性を担うことがわかりました。LacCerより下流のガングリオシドがすべて欠損したガングリオシド欠損マウスができました（図7）。

このDKOマウスは生後2週齢ぐらいから成長遅延と運動失調を示し、すべてが離乳前（4週齢）に死亡しました。脊髄の軸索は不定形で細いものが多く、ミエリン鞘の形成が不全でした。ミエリン鞘の TGFB1欠損は軸索の周りに局在しておらず、DKOマウスはミエリン鞘形成が全面で、そのために運動失調、特に下肢の麻痺が発生したと考えられます（図7）。DKOマウスの神経幹細胞から培養で分化させた神経細胞は、神経突起の伸長や分歧が不全で、細胞外基質のうちラミニンの結合が減弱していました。また、DKOマウスの大脳皮質の神経細胞は、未熟な状態にあってベリニューアルネットが低形成であることわかりました。神経増殖因子（NGF）からのシグナルは受容体のTrkAを介して伝達されますが、強いシグナルが伝達されるためには、ガングリオシドのGM1aなどをも介したTrkAとラミニンの結合が重要との仮説があります。DKOマウスの神経細胞ではTrkAやその下流のLynのリン酸化が減弱しており、DKOマウスはGM1aなどのガングリオシド欠損子が欠損しているために、NGFからのシグナルが減弱して神経細胞の異常を生じたと考えられました。③

ヒストン修飾の最近のトピックス

4つのヒストンについて、それぞれ多くの修飾が知られていますが、私たちは転写抑制マークのH3K9me2/3とH3K27me3に注目して研究を進めています。H3K27のメチル化酵素はEzh2、脱メチル化酵素はJmjd3とUtxと言われていますが、生体内での機能についてはよくわかりません。Jmjd3欠損子を作製したところ、出生直後に致死となりました。出生仔は背中が曲げられ、骨盤が曲がり、耳が解放されて生まれず、前方ホモティック変異が起きていました。このような前後軸の位置情報はホメオボックス（Hox）遺伝子にによって制御されているので、胎生期のHox遺伝子群の発現を調べてみた。Jmjd3欠損子（E9.5）でのHox遺伝子、特に尾部側に発現する10-13番のHox

図7 ガングリオシド欠損マウスのまとめ

(A) セラミドからガングリオシド群が合成される経路。B4galnt5とB4galnt6はGlCerにガラクトースを転移してLacCerを合成するLacCer合成酵素として働く。ガングリオシド欠損マウスの脳ではこの2つの遺伝子が欠損するのでLacCer合成酵素が完全に消失し、LacCerや下流のガングリオシド群が合成されない。

(B) 神経変性機能障害を示したガングリオシド欠損マウス（生後25日齢）。

(C) 生野生型マウスとガングリオシド欠損マウスの骨髄の電子顕微鏡観察。ガングリオシド欠損マウスでは神経軸索が変形しており、ミエリン鞘が存在しない軸索や捲き方が残る軸索が多くみられる。
遺伝子の発現が抑制されていました。そこで発現が抑制されていたHox遺伝子の転写開始点（TSS）におけるヒストン修飾を調べました。H3全体や転写活性のH3K4me3に異常はありませんでしたが、H3K27me3は顕著に増加していました。Jmjd3の欠損によりH3K27me3が除去されず、そのためにHox遺伝子群の発現が抑制されたことがわかりました（図8）。しかし、この発現活性は一種性のもので、E14.5になるとHox遺伝子の発現は正常になり、尾部の椎骨が消失するような大きな影響はありませんでした。したがって、ヒストン修飾による転写制御は、発生過程の時期特異的な遺伝子の発現を精密にコントロールするような時に機能すると言えます。なお、もう一つの脱メチル化酵素であるUtx欠損マウスは心臓形成不全を起こすものの、椎骨の異常やHox遺伝子の発現遅延は観察されず、2つの脱メチル化酵素は、発生時に機能を分担していることがわかりました。

もう一つの転写抑制マークのH3K9me2/3については、このマークに結合してH3K9のメチル化酵素（Suv39h, G9a）をリクルートすることで、その領域をヘテロクロマチン化するヘテロクロマチン・プロテイン（HP）-1によって解析を行いました。H1はα, β, γの3つがあります。遺伝子トランスポンソム法でHP1γの欠損マウスを作製したことを出発点として、最初はこのマウスが不妊であることの解析を行いました。始原生殖細胞の増殖に問題があり生殖細胞の数が減少すること[11], さらに減数分裂時の相対染色体の対合に障害があること[12]を明らかにしました。また、別のグループからHP1γ欠損マウスは出生後の呼吸に問題があり、多くが出生直後に致死となることも報告されています。H3K9me2/3やH3K27me3は酵母の発生にも関与しているので、HP1γ欠損マウスから遺伝子群（Neurosphere）を採取して培養下での解析を行いました。Neurosphereはマリモ状の形態で浮遊して増殖しますが、HP1γ欠損細胞は増殖を続けるとブレートに接着するようになり、神経細胞特異的な遺伝子の発現が増加して神経細胞に分化する傾向を示しました。神経幹細胞を分化誘導すると、野生型細胞はアストロサイトに多く分化するのに対して、HP1γ欠損細胞は神経幹細胞に分化しました。その時に発現が増加した遺伝子群特異的遺伝子のTSSにおけるヒストン修飾を解析すると、H3K9me2/3やH3K4me3には異常がありませんでしたが、予想外にH3K27me3が減少していました。そこで、これらの遺伝子におけるH3K27のメチル化酵素や脱メチル化酵素の影響を調べたところ、脱メチル化酵素Jmjd3とUtxが増加していました。さらに、HP1γ欠損細胞にJmjd3/Utxの阻害剤やJmjd3/UtxのsiRNAを作用させると、これらの神経細胞特異的遺伝子の発現が抑制されました。以上より、
NBRP-Ratの活動

ナショナルバイオリソースプロジェクト（NBRP）は、文部科学省のNBRP委託事業として2002年にスタートし、NBRP-Ratは第1期から参画しています。現在、NBRP-Ratは、ラットの収集・保存・提供、及び育成・活用のための協力団体として、ラットの持つ特異性を活かした実験用動物の育成・活用を推進しています。NBRPは、多くの新しい生体模型を提供し、研究者のニーズに対応しています。今後の活動も、さらなるニーズに応じて展開されると期待されています。

NBRP-Ratの活動

NBRP-Ratは、ラットの収集・保存・提供のための協力団体として、ラットの持つ特異性を活かした実験用動物の育成・活用を推進しています。NBRPは、多くの新しい生体模型を提供し、研究者のニーズに対応しています。今後の活動も、さらなるニーズに応じて展開されると期待されています。

おわりに

私たちが担っている3つのミッション、動物実験施設の管理運営、基礎研究施設としての研究と教育、NBRP-Ratの運営と技術開発については別途ご紹介しまします。それぞれが密接に関連しており、互いに向上させて行くことができるので、うまく回せば効率的な運営が可能です。研究室としては大学院生の獲得が大きな課題ですが、そのためには十分な研究費を獲得して、魅力ある研究を常に展開することがより重要と考えています。今回ご紹介した研究に興味のある方は是非研究室のHP（http://www.anim.med.kyoto-u.ac.jp/research/index.html）をみて、見学に来ていただきたいと思っています（図10）。また、貴重なラット系の寄託や有用なラット系の提供も行っていますので、NBRP-RatのHP（http://www.anim.med.kyoto-u.ac.jp/NBR/default.jsp）もご覧ください。

参考文献

1) Asano, M. Various biological functions of carbohydrate chains learned from glycosyltransferase-deficient mice. Exp. Anim. 2020. in press.
2) 浅野雅雄. ガクラトース糖鎖と炎症, 発生, 神経. 生化学 86: 382-390, 2014.
3) Asano, M., Nakae, S., Kotani, N., Shirafuji, N., Nambu, A., Hashimoto, N., Kawashima, H., Hirose, M., Miyaoka, M., Takasaki, S., and Iwakura, Y. Impaired selectin ligand biosynthesis and reduced inflammatory responses in β-1,4-galactosyltransferase-I-deficient mice. Blood 102: 1678-1685, 2003.
4) Mori, R., Kondo, T., Nishie, T., Oshima, T., and Asano, M. Impairment of skin wound healing in β-1,4-
galactosyltransferase-deficient mice with reduced leukocyte recruitment. *Am. J. Pathol.* 164: 1303–1314, 2004.

5) Nishie, T., Miyaishi, O., Azuma, H., Kameyama, A., Naruse, C., Hashimoto, N., Yokoyama, H., Narimatsu, H., Wada, T., and Asano, M. Development of immunoglobulin A nephropathy-like disease in β-1,4-galactosyltransferase-I deficient mice. *Am. J. Pathol.* 170: 447–459, 2007.

6) Takagaki, S., Yamashita, R., Hashimoto, N., Sugihara, K., Kanari, K., Tabata, K., Nishie, T., Oka, S., Miyanishi, M., Naruse, C., and Asano, M. “Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow.” *Scientific Reports* 9: 7133, 2019.

7) Yoshihara, T., Sugihara, K., Kizuka, Y., Oka, S., and Asano, M. Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in β4-galactosyltransferase-II-deficient mice. *J. Biol. Chem.* 284: 12550–12561, 2009.

8) Nishie, T., Hikimochi, Y., Zama, K., Fukusumi, Y., Ito, M., Yokoyama, H., Naruse, C., Ito, M. and Asano, M. β4-Galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extraembryonic development. *Glycobiology* 20: 1311–1322, 2010.

9) Yoshihara, T., Satake, H., Nishie, T., Okino, N., Hatta, T., Otani, H., Naruse, C., Suzuki, H., Sugihara, K., Kamimura, E., Tokuda, N., Furukawa, K., Furukawa, K., Ito, M., and Asano, M. Lactosylceramide synthases encoded by B4galt5 and 6 genes are pivotal for neuronal generation and myelin formation in mice. *PLOS Genetics* 14: e1007545, 2018.

10) Naruse, C., Shibata, S., Tamura, M., Kawaguchi, T., Abe, K., Sugihara, K., Kato, T., Nishiuchi, T., Wakanaka, S., Ikawa, M., and Asano, M. New insights on the role of Jmd3 and Utx in axial skeletal formation in mice. *FASEB Journal* 31: 2252–2266, 2017.

11) Abe, K., Naruse, C., Kato, T., Nishiuchi, T., Saitou, M., and Asano, M. Loss of heterochromatin protein 1γ reduces the number of primordial germ cells via impaired cell-cycle progression. *Biol. Reprod.* 85: 1013–1024, 2011.

12) Takada, Y., Naruse, C., Costa, Y., Shirakawa, T., Tachibana, M., Sharif, J., Kezuka-Shiotani, F., Kakiuchi, D., Masumoto, H., Shinkai, Y., Ohbo, K., Peters, A.H., Turner, J.M., Asano, M. and Koseki, H. HP1γ links histone methylation marks to meiotic synopsis in mice. *Development* 138: 4207–4217, 2011.

13) Naruse, C., Abe, K., Yoshihara, T., Kato, T., Nishiuchi, T., and Asano, M. Heterochromatin protein 1γ deficiency decreases histone H3K27 methylation in mouse neurosphere neuronal genes. *FASEB Journal* 34: 2956–3968, 2020.

14) Honda, A., Tachibana, R., Hamada, K., Morita, K., Mizuno, N., Morita, K., and Asano, M. Efficient derivation of knock-out and knock-in rats using embryos obtained by in vitro fertilization. *Scientific Reports* 9: 11571, 2019.
日本クレア株式会社

維持会員便り

日本クレア（株）東京 AD 部 営業課 池田大志
中動物事業部 西井里衣（獣医師）

日本実験動物学会会員の皆様、並びに動物実験に携わる皆様。この度「維持会員便り」への寄稿を担当します日本クレア（株）東京 AD 部 営業課の池田と申します。本稿では弊社のコモンマーコメット（以下「マーコメット」とします）の生産を担当する中動物事業部の西井獣医師にマーコメットについて担当獣医師の目線から、またマーコメット関連の事業について池田より紹介させていただきます。マーコメットの取り扱いがあらゆる役に太い内容かもしれませんませんが、これまですべてのモンをまった試験・研究を行ない、マーコメットに触れられた事がない方々にはマーコメットを用いた試験・研究への第1歩となるかもしれません。

それがでは西井獣医師よりマーコメットについて紹介させて頂きます。

日本クレア（株）中動物事業部 獣医師の西井です。よろしくお願いします。近来実験動物として注目されているマーコメットですが、弊社のマーコメット繁殖・飼育施設は岐阜県南部にあり、周辺はニホンカモシカやイノシシ（ウリ坊）がひょこひょこ現れる様な里山、森林に囲まれています。マーコメットは広鼻類、オマキザル科のサルです。ブラジル北東部大西洋海岸地域が原産で、森林や灌木林、人間の生活環境に近い林縁部などにも生息しています。

成獣の体重はだいたいラットと同じくらいの250〜500 g。頭骨長が22.5 cmと小型です。見た目の特徴としては白い耳毛、縫模様の被毛、体長より長い尾が挙げられます。彼らの生活は好日行性で、群れて住むと、親子で構成されるファミリーグループで過ごします。マーコメットを利用した研究分野の数が年々増加しており、実験動物として様々な分野での有用性を発揮しています。その理由としては、アカゲザルやカニクイザルに比べて温厚な性格にあります。好奇心旺盛で、ヒトに慣れると脇や肩に乗ってきます。飼育に全く不服ではない人懐っこい性格のマーコメットもあります。また、小型で扱いやすいので、初心者でも難しくありません。数日で捕獲から保育までできるようになります。また、非臨床試験においては試薬が高価な場合が多いですが、体重が軽いため使用量が少なく済むので費用削減にもなります。マーコメットを用いる事でげっ
ており、何時でもどんな些細な事でも相談できるようになっています。

マーモセットは消化器疾患が多く、下痢や嘔吐への注意が必要です。下痢・嘔吐の激しい個体は脱水症状、体重減少、元気消失などの症状を示します。これらの症状は進行するとマーモセットウェスティング症候群の原因ともなり得ます。そのため、早い段階で正しい治療ができるよう獣医師が日々対応にあたっています。また、マーモセットの消化器疾患では糞便の直接鏡検や簡易検査キットなどを用いて原因を早期発見し、適切な抗菌薬・抗生物質等の投薬、生薬剤や補液の投与を行えば多くの症状は回復します。

マーモセットはマウスやラットに比べて表情、鳴き方などから彼らの気分を知ることが出来ます。そして飼育環境によって性格も変わってくる。ヒトとの関係性をよくすることは社会的エンリッチメントの一つであり、日々彼らとコミュニケーションをとることは大切であると言っています。彼らがヒトに慣れてきたら体調も安定します。こちらが喜んなど飼育担当者の見分けがついているようで、よく見かける人は食べているに見えないように反応も顕著に異なります。私にしか見せない姿、というものがあるのでも飼育担当者にとってはかわいいと言える部分です。

環境エンリッチメントへの配慮は飼育類であるという点からとても重要です。彼らの生活が単調にならないよう、空き箱や布などを使えて隠れ家やおもちゃをケージの中に設置しています。同じマーモセットでもよくおもちゃで遊ぶ個体、箱でじっとしているのが好きな個体など様々ですので、彼らの様子を見ながらも飼い主は飼育を楽しむ趣向が見えます。役割を両方兼ね、手で餌を与えたり、木の枝を投げて遊んで見せたり、テーブルの上に置くことで開けて食べたり、ひとり遊びを楽しむか子供のように遊んでいる姿、どれをとってもかわいくてあります。

西井さんがどうぞ。ここからはマーモセット担当者の池田に代わります。

弊社のマーモセット繁殖・飼育施設では1年365日、土日祝祭日も飼育担当者が交代で出勤し、日常観察、治療や給餌等の作業にあたっております。実験動物の飼育・管理に関して、外気を活用した半開放型の飼育環境を採用しており、個体により適応機能を発揮させ、健康を維持しております。
担当者と連絡を密に取り。「1頭でも無駄死にさせない！！」そんな意気込みで日々業務にあたってくれています。

皆様ご存知のように、弊社は公益財団法人 実験動物中央研究所の事業部門を継承して設立した会社です。

（公財）実験動物中央研究所で蓄積された治験技術、発生工学的な技術移管を受け、現在では未受精卵採取の業務受託も行っており、日々技術研鑼に携わっていません。

思い起こせば製品振れで塩漬け繁殖・飼育個体数を減少させた時期があり、そんな状況に納得できなかったことを切に思います。その後、国のプロジェクトが立ち上がり、気候にマーモセットフィーバーが始まり、その為需要と供給バランスが崩れてしまい皆様には大変なご迷惑をおかけしております。前述の通り（公財）実験動物中央研究所の技術移管を受け、繁殖ペアで中々妊娠に至らないペアには人工授精を試みたり、大型ケージを導入してファミリー繁殖に着手しております。また、グルテンフリーの発泡剤料にも現在進行形で開発を続けており、繁殖・育成個体の体重増加を図っております。

私自身もお客様担当の営業からマーモセット中心の営業にシフトし、5年になります。多くの時間を中動物事業部と費やし、新しいビジネスモデルに変更を頂きます。それらのいくつかを紹介させて頂きます。

「ハンドリング講習会」
弊社はマーモセットの繁殖・販売だけでなく、マーモセットを新規導入したいお客様に飼育施設の新改築、日常観察からハンドリング、静脈内投与と採血、麻醉管理や体調不良個体への治療方法などを提供する「ハンドリング講習会」を有償で行っております。1名～3名様まで、実際に弊社の繁殖・飼育施設内に実験いたします。動物に負担のかかる採血や麻醉管理には元気のいい種オスや老齢個体を用いて行いますので、何時でも実施が可能です。講習日数や複数回講習などアレンジは多彩ですのでお問い合わせください。

「レンタルラボ」
弊社のマーモセット繁殖・飼育施設には、レンタルラボもご用意しております。レンタルラボには大型ケージ8台収容部屋が3部屋、個別ケージ48台収容部屋が5部屋、人工哺育等が可能な小部屋、処置室や手術室を備えています。
このレンタルラボでは、マーモセットの飼育・実験室をお持ちでない研究者の方々や、施設改修等での一時預かり飼育にご利用頂いております。またWi-Fi設備を常設しておりますので、Webカメを設置して24時間のリモート観察や遠隔実験指示等にもご活用頂いております。マーモセットの飼育におすすめの環境を提供した上で、日常観察、洗浄・給餌作業をすべて弊社の従業員が

実験動物ニュース Vol. 69 No. 3

111
お世話になって頂きます。実験・測定機器を持ち込みも可能ですので、かなり自由度が高い設定となっております。
「マーモセットを使って試験をしたんだけど飼育場所も無いし飼育スタッフも居ない…」
お困りの際は一度ご相談ください。

「相互繁殖協力プロジェクト」
繁殖コロニーの近交系化を防ぐ目的で、一定の基準をクリアした個体であれば弊社の施設に受入れ、血縁の違い個体との施設内繁殖も可能です。例として「各種検査費用、輸送に掛かる費用はお客様負担として頂き、繁殖から生後1年までの飼育費用は弊社が負担し、仔を折半する。」と言った方法もございます。
種となる販売個体が中々取りにくい状況ですので、施設内繁殖を行っているお客様からのお問い合わせをお待ちしております。Win=Win となる着地点を見つけましょう。

「薬物動態試験」
薬物動態試験をマーモセットで試してみませんか？
1群 n=3（予備1頭付き）で薬物動態試験をお受けします。弊社の2歳以上300 g以上の種オス、種オ
ス候補を用いて行います。プランク用の採血を試験実施1週間前に行い、経口投与や皮下静脈または尾静脈から投与いたします。採血は左右の大脳静脈または大腿動脈からの採血を行い、採血量は1ポイント0.2～0.3 mlとし、1日最大1.5～2.0 mlの採血とし、
遠心分離後の血漿を凍結にてお届けいたします。休養期の希望期間は最低2週間ですが、同1個体で複数の被験薬を投与することが出来ます。体重が300～400 gの個体を使えば被験薬の量が他の動長類や犬に比べて多くて済みますし、動物の購入・飼
育施設・飼育管理者も不要です。
「国内最大の繁殖コロニーを持つ日本クレアだから
出来る事」
その強みを最大限活かした受託試験です。現在、
多種多様な被験薬の投与試験を共同研究で行ってお
り、本成果は近日に論文投稿を予定しております。

「抗体事業」
現在、マーモセットの早期妊娠判定を目的とした妊娠判定抗体の開発を行っております。
早期妊娠判定用抗体は既に抗原作製は終了しており、着々と次の段階に着手しております。
また、この抗体開発を行って行く段階で様々な抗原、抗体作製することが可能となるので、他の抗
体も作製することになっております。これらの抗体の開発が進めば、マーモセットを使用した実験の幅
が広がってくるものと考えております。

以上となりますが、まだまだお話ししたい事が沢
山あります。施設見学は随時受け付けておりますの
で、国内最大級のマーモセット繁殖・飼育施設の見
学にいらっしゃって下さい。1,000頭を超えるマーモセット
が皆様のお越しをお待ちしております。
「想い」が紡ぐ動物実験と私の未来

中西製薬株式会社 トランスレーショナルリサーチ本部
金丸干沙子

会員便り

本号でリーレエッセイ企画も3図目となりました。皆さんはこれまで6名の先生方のエッセイはもうお読みになりましたか？寄稿にあたり、私はもちろん隅々まで読んだ訳ですが、いずれも本当に面白く示唆に富んで、文才の乏しい私の中のハードルはとんと上がっております。まだ読まれていない方、ぜひ本稿をサラっとお読みになってからバックナンバーをお楽しみいただければ幸いです。

さて、我々が実験動と深く関わってきているのは、今から約12年前のこと。大学・学研で生物学と医学を学び、研究室ではもちろん神経細胞の培養を主導していた私は、中西製薬コラムをこの日本の当時製薬企業の研究職の業界を理解していたかと問われると甚だ疑問です。ただただ薬理学や動物学出身の同期の熱気に圧倒されながら、着想のないスーツを身に包んで新入社員研修を懸命に受ける日々でした。研修も終盤に近かったある日、各部門の先輩社員が研修会場を訪れて開催された懇談会で、懇談の秘要を知ることになります。

私：「（意気揚々）と私の配属はin vitro実験のグループでよね？」
先輩：「いやいや、がっつりin vivoだよ」
私：「え？in vivo？…ああ…そんなこと…（勤務を悟られまいと死）」

あれから12年。このような実験動物に関する寄稿の機会をいただくことになるとは、何どん転の法か本当に分からないものだしあいじめを感じております。

そんな経緯を踏んで非臨床安全性研究の部署に配属され、現在に至るまでに一般毒性領域に従事し来まいりました。低分子化合物・抗体医薬を問わずに対象疾患としては抗がん剤から慢性疾患治療薬まで、時には懸命な新製品コーディネートへの挑戦でも、そして動物種はマウス・ラットからイヌ・サルまで、幅広い安全性試験に試験責任者や実験担当者として携わっています。一般毒性試験では多くの検査を実施し得られる何十何百ものデータは単独ではどのような生物学的な意味を持つか分かりないことが多いんですけど、一つ一つを丁寧に蓄き合わせ、あらゆる可能性を考えながら複雑な生体内で一体何が起こっているのか考察し、最終的にヒトでの安全性を予測していきます。私の好きなテレビ番組に、以前NHKで放送されていた「総合診療医 ドクターG（ジェネラル）」があります。総合診療医が経験した実際の症例の再現ドラマを研修医たちが観覧して、カンファレンスを行い病名を推測していくという番組です。推測というくらいですから、どの症例も教科書に載っているような典型的な症状ではなく、病、感染症、腫瘍、服薬中の薬剤の影響など様々な可能性を考えながら診察と治療にあたる総合診療医の姿は、再現ドラマとはいえとても印象的でした。この番組を視て常々思っていたのが、私たちの仕事（動物実験）に通じるものがあるということでした。そう、一般毒性試験の評価はまさに総合診療だと思えるのです。余談ですが、番組を観ているうちに総合診療そのものに興味が湧いた私は、インターネットであれこれ調べ始めました。すると総合診療科をもつ病院のホームページの他にも、総合診療科のキャリアパスやこれからの目標に向けたアドバイスが書かれたサイトが数多く目に留まりました。「今ひとつの専門が見えにくい」、「キャリアパスに捉えどその方が少なく分かりにくい」…などどこかで聞いたことがあるような話です。こんなところで似ているとは、ただ、そこで見つかったある言葉に私は勇気づけられます。「専門性が見えにくいのはスペシャリストであり、かつジェネラリストでもあるから。医師の学問の広さ、対応できるレベルの高さ、コーディネート能力の高さなどが強み」まるで説っている自分へのエールのように感じました。非臨床安全性研究の総合評価のドクターGになるにはまだ知識も技術も足りませんが、将来を張って「専門は一般毒性研究です」と言えるよう、そして周りからも認められるよう、ジェネラリストのスペシャリストを目指して研鑽を積んでいきたいと思っています。

入社以来一般毒性領域にどっぷりと浸っている私ですが、日本実験動物学会に参加することになっただき確かでは、「in vivo実験に携わる者」実験動物を知らずしてどうするかという当時の上司からの鶏の一声だったと記憶しています。ここに少し、製薬企業の一研究員として学びに約10年間参加して感じたことについて、皆様にぐらいしてみたいと思います。初めて年会に参加した際、意外だったのは、製薬企業から動物医学の管理部門や動物実験委員会の担当者
は多く見かけるものの、私のような研究部門からの
参加者は比較的少ないということでした。もちろん
それはプログラムの内容や、各社の経費節減に伴う
基幹学会の選定が厳しい状況から致し方がないことと
理解しています。私が参加し始めた頃、動物実験の
福祉向上に関する議論がちょうど活発化してきた頃
ではなくなかったかと思います。当時、動物福祉はまだ
どこか“特別なもの”として取り上げられていた印
象がありましたが、回を重ねるにつれて徐々に裾広
がりに共有されて当たり前前ものになってきたよう
に思われます。さらに、動物福祉に関する議論の変
化として感じているのが、法・指針の遵守や規制強
化への対策の話だけでなく、倫理観やアウトリーチ
活動といった“想い”の話が増えたということです。
動物実験に携わるにあたり、私自身何の迷いもない
と言って嘘になります。だからこそ、学会という場を借りて、
外の世界を見て様々な立場の人々の思いと
を知り、時には酒を飲みながら語り合うことができ
たのは、私にとって大きな収穫であり、また多様な
利益の存在を感じ取る貴重な経験であったと考えて
います。もっと多くの動物実験に携わる人たちに、
そのような機会があっても良いのではないかと感じ
ています。そのためにも、実験動物学会は実験動物
と関わるあらゆる人たちに“コミュニケーションの
輪 = 想いを共有する場” を提供できる存在を目指し
て、これまで以上に施策・戦略を練ることが望まれ
るのでいないでしょうか。10年前、上司から言われ
た「実験動物を知らずしてどうする」という言葉。
当時は単に動物の特徴や最新のエンリッチメントの
ことも感じにしか捉えていませんでしたが、もっと
深い意味だったのかもしれませんが（本人には確認し
ておりませんが、そういうことにしておきます）。

拙文に最後までお付き合いいただき、ありがとうございます。新型コロナウイルス感染拡大防止のた
めに在宅勤務をするようになってから数週間が経ちました。これから治療薬やワクチンの開発においても、
世界の人々の健康と安寧に実験動物が大きな役
割を果たしていくことになるでしょう。動物たちに
感謝しつつ、一日も早い事態の収束を願って、もう
しばらく自宅のリビングでパソコンと自分の頭の中
でできる仕事に精一杯取り組みたいと思います。
私はこうして実験動物学の世界にたどり着きました

東北大学大学院医学系研究科附属動物実験施設 助教
原田伸彦
たり，気管挿管して人工呼吸器をつないで全身麻酔などもやれるようになりました．今後は動物の具合が悪い時に簡単な診察ができるようになれば良いと思っています。私の個人的な目標としては MD の研究者にも頼られるような施設獣医を目指したいと思っています。

施設獣医になってから感じる事があります。特に欧米の大学系の実験動物施設で多いのですが，マウス受受の際には先方から施設獣医と連絡を取りたいと要求が来て，獣医師を介在した許諾や情報提供が必要な事があり，獣医師の専門性と地位の高さが感じました。欧米と同じようにすれば良いというものではありませんが，日本の大学でも施設獣医という専門性と地位が確立されるように，我々獣医師も日々精進しますので，実験動物学会の協力もお願いしたいと思っています。

私の所属する動物実験施設についてですが，昭和 57 年に竣工された建物でさえがに老朽化が目立ってきました。東日本大震災にも耐えた堅牢な建物ですが，空調や水回り関係の機器および各種配管が限界を超えているようで，毎週のように何処かしら不具合を起こしています。そこでようやく今年度から改修工事が着手予定になりました。現在の姿の写真を載せておきますがこの姿はこれが見納めです，国立大学施設の改修のキーワードは省エネ，効率化，集約化で予算がかなり限られています。国からもう少しこういった基礎研究のための予算がつけられると日本の将来のためなると思うのですが，未来への投資というのは難しいなって思っています。それはさておき，改修されれば，施設の日々の不具合に対処しなくて良くなりますので，実験動物技術者の職員たちが動物を扱う業務に専念できるようになり，より質の高いケアが出来ればよい実験が出来るようになると期待しています。

最後に，実験動物学会もコロナの影響で中止になり，国連総会も獣医学会も中止になってしまいました。いつになるか分かりませんが，実験動物学会の皆さんとお目にかかれる様になる日が来るのは心待ちしております。

附属動物実験施設 38 歳
マウスの兄妹関係がもたらす影響とは？
個体差に隠された謎を考える

宮崎大学フロンティア科学総合研究センター実験支援部門生物資源分野 助教
名倉（加藤）悟郎

皆さま、初めましてご挨拶を申し上げます。宮崎大学フロンティア科学総合研究センターの名倉悟郎と申します。実は学生時代からの実験動物に参加させていただき、多くの先生にお世話になっております。現在は進んでおります。今や、兄妹関係の可換性を示す研究活動を続けているところでございます。ただ私がして言え、平成30年4月に着任して以来、学生時代からお世話をされている执教者に感謝していただきたく快適に仕事を続けさせております。本当に思っているもの、この目的を書きながら改めて実感しているところです。

さて、本稿では何を書いてでも良いとお話しがありましたので、堅苦しくはごく少なく、私らの研究を舞台に簡単に書かせていただくことにいたします。従いまして本稿では、まず私所属する動物実験施設の特色を紹介し、次に私の研究内容、そして我々の苦労（？）について、恐れながら書かせていただきました。ご一読いただけますと嬉しく思います。

私の所属する宮崎大学フロンティア科学総合研究センターは、宮崎大学における複合研究領域の拠点として、令和2年1月に改組されました。当センターが統括する動物実験施設は宮崎大学病院に隣接する宮崎大学病院キャンパスにあります。当施設では、施設長の趙本先生をはじめ、篠原先生、技術職員1名、非常勤の技能補佐員9名、そして私というメンバーで、より良い研究環境を利用者に提供するために日々尽力してございます。これは施設の運営業務のほかに実験動物技術指導員（日本実験動物協会認定）という立場を活かし、動物実験技術の相談や実験動物技術者を目指す学生の指導を中心にお願いしてございます。また当施設（生物資源分野）には現在14名の学生（博士課程3名、修士課程7名、学士課程6名）が配置されており、我々3名の教員の専門分野に関連した研究課題を取り組んでおります。当施設が有する最大の特徴は、何と言っても系統維持されている多くの種類の野生由来亜種歯類にあります（写真1）。現在ではアカネメス属2種、ハムスター類6種、ウスイアレチョウ、コックファント、ミラディア、マストリスクなどの約20種が生体として繁殖維持されており、他の国内施設にはない貴重なバイオリソースとして試験保存及び機関へと分与されております。

さて私は、と言いますと、「兄妹関係が哺乳類の休眠現象に及ぼす影響」という研究課題について、マウスを使ったアプローチを試みております。休眠とは、低温や飢餓などで対象が代謝活動や休眠、心拍数、呼吸数を大幅に減少させる適応戦略で、休眠維持に伴う喫茶エネルギー消費を最小限に留める役割をつとめています[6]。特定の誘発条件を施していれば、実験動物であるマウス[2]やハムスター類、スナネズミ、スニックなど休眠することが分かっています[6]。近年では、休眠中にみられる生命活動の抑制が薬剤反応性や細胞の代謝回転を変化させることから、研究目的によっては動物実験の選択要因となる可能性が指摘されています[5]。マウスの場合、実験などの過程で飼料や制限餌給をさせると、その数時間後から日休眠を開始することが知られています[2]。しかしながら同じ誘発条件に曝されたからといって、必ずしも全ての個体が休眠するわけではありません[1]。飢餓という命の懸かった状況で（おそらく）生存に有利な適応戦略である休眠の応答にどうして差が生じるのだろう。と普段であれば「個体差」で片付けられる程度のこととに、ふと疑問を感じたのが研究の始まりでした。色々とありましたが、結果としてマウスの休眠応答が同胚兄弟のなかで異なること、さらにはその違いは胎期または乳汁周期に生じる「兄弟内の競争」に起因する可能性を提示することができました[4]。つまり同種集団内で生じる休眠応答の個体差は「兄弟」という関係に紐付けられた、ある種の規則性をもった現象だと思われる、これまで未解明とした疑問でしかなかった「個体差」という現象が、何か意味をもっているのかかもしれないという可能性に即も着き、この時非常に興奮したことを今でも覚えています。近年、こうした哺乳類特有の母子・兄弟関係が成熟後の動物に長期的な影響を及ぼす例は、体サイズや血液状態、行動心理をはじめ様々な
表現型で明らかにされつつあります [3]。今後もこうした表現型との相互関係を整理しながら、より発展的な研究に取り組みたいと思っております。

我々が本当に面白い研究ができたあ、と自画自賛しておりますが、実はデータの獲得に至るまで、研究では各個体の成育歴を追跡するために、出産直後から1頭1頭を確実に個体識別していかなければなりませんでした。皆さんも良くご存知とは思いますので、後は間違いを生じないほど、毛も生えていなければ、同じ頭、顔をどうやって個体識別したものかは思いながらも、とりあえず盆型のアニマルマーカーで2、3日くらいは大丈夫だろうと思えっていた。しかし予想は見事に外れ、翌日には母親がいっそ線路に低めと tảりました。よく見れば何か見分けたのです。

しかし、実の場合は、もうこんな大変な研究は二度としない！と心に誓ったはずです。その上、愛井し上手くいくと、現金なもので、後から後から止めるなお疑問が消えていき、結果については今現在も研究の結果を残しております。これが研究というものの最悪です。ものに於ける魅力（魅力）なのかかもしれません。

実はこの試行錯誤の過程で、少しだけ発見がありました。マウス新生仔を個体識別する際に鍵となる判別をおこなっていたのですが、C57BL/6系統など代表的な有毛系統の新生仔では「オスの肛門周囲が黒い」(写真2, △)。教科書には記載がなかったのですが、メラニン色素の沈着ではないかと話し合っているところです。新生仔の個体識別に役立つそうなので時間があらゆるときに調べてみようと思っています。なお、もう知っているよう、という方がもらいながら見ました。今度の学会期間中こそこっそり教えてください。

さて、いかがだったでしょうか？他者の苦労話は、他に面白いものはない、と世の理なかもしれませんが、この研究に関しては、これが当てはまらないように思っております。我々研究者にとって、論文
1. Dikic, D., Heldmaier, G. and Meyer, C.W. (2008). Induced torpor in different strains of laboratory mice. In Hypometabolism in Animals: Hibernation, Torpor, and Cryobiology (ed. B.G. Lovegrove and A.E. McKechnie), pp. 223–230. Pietermaritzburg, KwaZulu-Natal, South Africa: University of KwaZulu–Natal.

2. Hudson, J.W. and Scott, I.M. (1979) Daily torpor in the laboratory mouse, Mus musculus var. albino. Physiol. Zool., 52, 205–218.

3. Hudson, R. and Trillmich, F. (2008). Sibling competition and cooperation in mammals: challenges, developments and prospects. Behav. Ecol. Sociobiol., 62, 299–307.

4. Kato, G.A., Sakamoto, S.H., Eto, T., Okubo, Y., Shi-nohara, A., Morita, T. and Koshimoto, C. (2018) Individual differences in torpor expression in adult mice are related to relative birth weight. J. Exp. Biol., jeb-171983.

5. Lo Martire, V., Valli, A., Bingaman, M.J., Zoccoli, G., Silvani, A. and Swoap, S.J. (2018) Changes in blood glucose as a function of body temperature in laboratory mice: implications for daily torpor. Am. J. Physiol. Endocrinol. Metab., 315, E662-E670.

6. Ruf, T. and Geiser, F. (2015) Daily torpor and hibernation in birds and mammals. Biol. Rev., 90, 891–926.
総説
糖転移酵素欠損マウスから学んだ糖鎖の多様な生物学的機能について261–268
浅野雅秀
京都大学大学院医学研究科附属動物実験施設
糖鎖は様々なタンパク質や脂質に結合してそれらの機能を修飾している。複雑な構造を持つ糖鎖は多様な生物学的機能を持っており、タンパク質の立体構造や輸送、安定性を制御しているだけでなく、細胞と細胞や細胞と基質の相互作用に促進している。このような機能的な糖鎖構造は「グライココード」と呼ばれれている。糖鎖は一つの細胞の中で、糖転移酵素、糖分解酵素、糖ヌクレオチド、そしてタンパク質や脂質の基質が関与した複雑な反応を介して形成される。糖鎖の機能を明示するために、私は同様とともにガラクトース転移酵素遺伝子ファミリーのノックアウトマウスを作製し、それらの解析を行った。本総説では、他の研究者らによる関連した研究を紹介しながら、私たちが行ったガラクトース転移酵素遺伝子ファミリーについての研究を紹介する。2019年に日本実験動物学会より私に授与された安東・田崎賞の受賞講演の内容に基づいた総説である。

原著
Effect of combined extracts of aged garlic, ginger, and chili peppers on cognitive performance and brain antioxidant markers in Aβ-induced rats269–278
Wanassanun PANNAGRONG1,2), Jariya Umka WELBAT1–3), Amnard CHAICHUN1) and Bungorn SRIPANIDKULCHA1)1)Department of Anatomy, Faculty of Medicine, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand, 2)Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand, 3)Neuroscience Research and Development Group, Khon Kaen University, 123 Moo 16 Mittraphap Road, Nai-Muang, Muang District, Khon Kaen 40002, Thailand
A combination of aged garlic, ginger, and chili peppers extracts (AGC) was studied by high-performance liquid chromatography, 2,2-diphenyl-1-picrylhydrazyl, and ferric-reducing antioxidant assays, and oxidative stress markers were analyzed in Aβ1-42-induced rats. The AGC was orally administered to Wistar rats at doses of 125, 250, and 500 mg/kg body weight (AGC125, AGC250, AGC500, respectively) for 64 days. At day 56, Aβ1-42 was injected via both sides of the lateral ventricles. The effects of the AGC on spatial and recognition memory were examined using a Morris water maze and novel object recognition tasks. Rats induced with Aβ1-42 exhibited obvious cognitive deficits, as demonstrated by their increased escape latency time (ET) and decreased retention time (RT) and percentage of discriminative index (DI). When compared with the control group, all AGC-
treated rats showed significantly shorter ETs and higher DIs during the 5-min delay testing phase. Rats treated with AGC250 also had significantly longer RTs. Administration of Aβ1-42 significantly increased malondialdehyde (MDA) levels and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) levels in the rat brain homogenate. Pretreatment with the AGC caused significant increases in SOD, GPx, and CAT activities, as well as a significant decrease in MDA in the rat brain homogenates after Aβ-induced neurotoxicity. Our results suggested that an AGC may ameliorate cognitive dysfunction in Aβ-treated rats due to its role in the upregulation of SOD, GPx, and CAT.

ロンクリードシーケンス法を用いた遺伝子導入マウスの外来遺伝子挿入形式の解析 ...279–286
鈴木 治・小浦美奈子・山田-内尾こずえ・佐々木光穂
医薬基盤・健康・栄養研究所疾患モデル小動物研究室
導入遺伝子の発現は挿入形式やゲノム内挿入位置に影響されるため、導入遺伝子の挿入形式の特定は遺伝子導入動物の解析に重要である。以前、ゲノムウォーキング法による導入遺伝子のゲノム内位置の特定や挿入形式の分析例を報告した。しかし、この方法では読み取り長の制限により、導入遺伝子のコピー数や導入遺伝子の挿入で生じるゲノムの大きな構造変化を決定できなかった。本研究では、このような制限を克服するため、ロンクリードシーケンサ（MinION, Oxford Nanopore Technologies）による解析を試みた。MinIONを用いて遺伝子導入マウス（4C30系）のゲノムDNA由来フラグメント922,210個の配列を決定した。その中からローカルBLAST検索により、導入遺伝子を含む21,457bpのフラグメントを検出した。スケレオチッドプロット解析により、導入遺伝子はほぼ全長（3,508bpのうち15〜3,508番目）と一部（4〜660番目）がタンパクに連結してゲノムに挿入されたことが明らかとなった。C57BL/6NゲノムデータベースでのBLAST検索により、挿入位置であるSgcd遺伝子のイントロンに9,388bpのゲノム欠失が見られることから、導入遺伝子の挿入時に大きなゲノム変異が発生しうることが確認できた。ロンクリードシーケンサーは、導入遺伝子挿入形式の分析に役立つツールである。

Dre-rox組換え系を利用した，Rosa26遺伝子座のにおけるThy1プロモーター活性の検証 ...287–294
田村沙亜希1）・安岡有紀子2）・三浦浩美1,3）・高橋 剛1,4）・佐藤正宏5）・大塚正人1,3,6）
1）東海大学医学部基礎医学系, 2）北里大学医学部生理学, 3）東京大学マトリックス医学生物学センター, 4）東京農業大学大学院生物産業学研究科生物生産学専攻, 5）鹿児島大学医用ミニブタ先端医療開発研究センター遺伝子発現制御分野, 6）東海大学総合医学研究所
独自のトランスジェニック（Tg）マウス作製法（PITT法）は、顕微注射法を介してRosa26座
位1コピーの目的遺伝子を挿入可能な手法である。これまでPITT法は、全性の遺伝子発現を
目的としたTgマウス作製に応用する場合が多かったが、組織特異発現への応用例は殆どとな
かった。また、Rosa26領域上で組織特異的プロモーター活性についてもあまり知られていない。
今回、脳変性病での遺伝子発現在目的として使用されるThy1プロモーターに着目し、Rosa26座
位におけるその活性と、得られた各Tg系統間における目的遺伝子発現の再現性を調べた。
PITT法を応用して得られた3系統のThy1-DreTgファウンダーマウスのそれぞれを、Dreレポー
タマウスと交配してダブルTgマウスを作製し、そのレポーター遺伝子発現を解析した。その
結果、3系統全てにおいて小脳の全てのプシキシソ細胞でレポーター遺伝子の発現が確認され
た。さらに、他系統の脳細胞においてもレポーター遺伝子の発現が認められたが、それらは全て
モザイク状であった。これらの発現パターンは、過去に報告されたThy1プロモーターTgマウ
スの遺伝子発現と極めて類似していた。以上の結果から、Rosa26座標は組織特異的プロモーターにも利用可能であること。また、PITT法で作製されたTgマウスにおける遺伝子発現の再現性は極めて高いことが示唆された。

コモンマーモセット（Callithrix jaccus）の右心房と心房中隔の形態学的特徴としての環状の稜の存在と冠状静脈洞口の位置339–349

鈴木良子1)2)・尾形雅君3)・村田祐造2)4)・鈴木さつき5)

1)筑波大学大学院生命環境科学研究科, 2)佐賀大学医学部生物体構造機能学講座,
3)東北医科薬科大学医学部解剖学, 4)国際医療福祉大学福岡保健医療学部医学検査学科,
5)日本歯科大学生命歯学部共同利用研究センター

実験動物としてコモンマーモセットを有効に利用するたためには、この動物の臓器の正常な特性と形態学的なデータを確立することが重要である。コモンマーモセットの心臓の肉眼的形態はヒトの心臓と類似していると報告されている。しかし、右心房と心房中隔に関する詳細な情報は殆どない。本研究はこの領域の形態学的特徴を解明することを目的とした。9－65ヶ月齢の、雄3匹と雌10匹のコモンマーモセットから得た心臓標本を用い評価を行った。心臓標本のうち10個を様々な方向から切開し、実体顕微鏡下で右心房内部の形態を観察した。また、残りの30個の標本から著色切片を作製し、ヘマトキシリン・エオシン、エラスタチカ・ワシントーソンおよびPAS染色を施して組織像を観察した。結果として、コモンマーモセットの右心房と心房中隔に、これまでに報告のない、ヒトには存在しない環状の稜の存在を認めた。また、冠状静脈洞口の位置がヒトとコモンマーモセットでは異なることを認めた。それを踏まえ、コモンマーモセットの心臓における環状の稜の存在状況を模式図に示した。コモンマーモセットの右心房では、この環状の稜が、上大静脈口、下大静脈口および冠状静脈洞口の弁として機能している可能性がある。ヒトのモデル動物として実験にコモンマーモセットを用いる場合には、ヒトとの形態学的な相違を考慮する必要がある。

Cre/loxPによる遺伝子組換えの前後で弱い赤色蛍光から強い緑色蛍光を発するようになるトランスジェニックモデルマウス ..306–318

赤井良子1)・齋藤美知子2)・河野憲二3)・岩篤隆夫1)

1)金沢医科大学総合医学研究所生命科学研究領域細胞医学研究分野,
2)京都薬科大学バイオサイエンス研究センター, 3)奈良先端科学技术大学院大学研究推進機構

Cre/loxPシステムはマウスを用いて分子の生体機能を研究するのに欠かせない遺伝子組換え技術となっている。それゆえにCre/loxPシステムに依存した遺伝子組換えを検討するためのレポーターマウスは高い需要があり、今までに幾つかのモチプが開発されている。本研究において私たちは新たなレポーターマウス（CREIマウス）を取得することができたので是非とも報告したい。CREIマウスはloxP-DsRed1-loxP-VenusをCAGプロモーターの制御下に置いたトランスジェンが導入されているトランスジェニックマウスであり、同じ遺伝子が導入されたNIH3T3細胞ではCreによる遺伝子組換えの前後で強い赤色蛍光から強い緑色蛍光を発するようになる。しかしCREIマウスはその前後で「弱い」赤色蛍光から強い緑色蛍光を発するようになる特性を示した。一般にVenusやDsRed1から発せられる蛍光シグナルにはそれぞれ赤色や緑色の蛍光成分も含まれるため、強い赤色蛍光を発するマウスモデルの場合だと偽のシグナルとCre依存的シグナルを混同しやすくなるかもしれない。しかし私たちが偶然に得たCREIマウスを用いれば、そのようなシグナルの判断ミスに関する心配は軽減され、Cre活性の検出に関する信頼性は向上すると思われる。
実験動物ニュース Vol. 69 No. 3

雄マウス超音波発声の音響特性が雌マウス超音波発声選好に与える影響は
C57BL/6 系統と BALB/c 系統で異なる...319–325

野元 謙作 1)・橋口 明子 1)・浅崎 聡子 1)・小坂田 拓哉 2, 3)・加藤 雅裕 4)
越田 信義 5)・茂木 一孝 1)・菊水 健史 1)

1) 麻布大学農学部健康動物学研究室、2) 東京大学大学院農学生命科学研究科応用生命化学専攻、
3) ERATO 東原化学感覚シグナルプロジェクト、4) 加藤建築環境研究所、5) 東京農工大学大学院

雄マウスは雌マウスおよびその尿に対して超音波発声を呈する。雄マウスの超音波発声は雌
マウスを近くに惹きつけ、その生殖機能を上げることが示されており、求愛欲と考えられてきて
た。先行研究により、雄マウスは自分とは違う系統の雄マウスの超音波発声を好むという異型
交配をすることが分かっていたが、雌マウスがどのような音響特性を手がかりとしているのか
は分かっていなかった。これを検証するため、我々は C57BL/6 系統と BALB/c 系統の雌マウス
を対象に、録音された超音波発声を用いたスリーチャンパーテストを施行した。ピーク周波数
とシップル構造の影響を分離するため、デジタル処理によりピーク周波数を操作した超音波発
声とオリジナルの超音波発声を使用した。雌マウスは自分の系統の雄マウスの超音波発声と異
なる超音波発声を選好した。さらに C57BL/6 系統はシップル構造とピーク周波数、BALB/c 系
統はシップル構造の変化の影響を受けやすかった。これらの結果から、ピーク周波数とシップル
構造という音響特性がネスマウスの超音波発声選好に与える影響には系統差があることが
示された。

High fat diet induced obesity model using four strains of mice:
Kunming, C57BL/6, BALB/c and ICR ...326–335

Jinglei LI, Haishan WU, Yuting LIU and Liu YANG

School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009,
PR China

High fat diet (HFD) treated mouse is widely used as experimental animal model for hyperlipidemia
and hyperglycemia study. Many factors contribute to establish animal model that meant to simulate
high fat and glucose diet induced phenotypes. In the present study, four strains of experiment mouse
treated by HFD were used to explore the impact of mouse strain on lipid profile, glucose level, and
major inflammation cytokines. HFD fed Kunming and ICR mouse gained significantly higher body
weight than control which was not shown by C57BL/6 and BALB/c mouse. All four strains fed
by HFD has heavier liver and adipose tissue than control ones. Obvious fat droplets and enlarged
adipose cells were observed in obese mouse of four strains. Additionally, obese mouse showed typical
response to glucose and insulin load in OGTT and ITT. Serum TC, LDL-c, and TC/HDL-c ratio, but
not TG, increased in all four strains. Major inflammatory cytokines and insulin level showed little
changes in obese mouse as well (P<0.05) The present study could provide basic information for diet
induced obesity developed by four commonly used experimental mouse strains.

広範囲年齢層のカニクイザルにおける心エコー図評価 ..336–344

中山駿矢 1, 2)・鯉江 洋 2)・白 仲玉 1, 2)・伊藤-藤城 康世 1, 2)・
金山 喜一 1)・山海 直 2)・保富 康宏 2, 3)・揚山 直英 2)

1) 日本大学生物資源科学部獣医学科獣医生理学研究室、
2) 国立研究開発法人医薬基盤・健康・栄養研究所 靈長類医科学研究センター、
3) 三重大学大学院 医学系科学研究科病態解明医学生理講座免疫制御分野

心エコー図検査は様々な心疾患の診断に有用な検査法である。非ヒト類動物を用いた循環
器病態研究は近年その重要性を増しているが、一方で非ヒト類動物における心エコー図検査
の基準的報告は少ない。本研究は大規模集団における幅広い年齢層の健康なカニクイザル 247
Therapeutic effects of Co-Venenum Bufonis Oral Liquid on radiation-induced esophagitis in rats

Yang Li1), Jiamao LIN2), Jun XIAO2), Zhenxiang Li2), Jin-song CHEN3)
Ling WEI1) and Xingwu WANG1)

1) Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, Shandong 250017, P.R.China
Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Jiyan Road, Jinan 250017, Shandong 250017, P.R.China
3) Shanxi C&Y Pharmaceutical Group Co., Ltd, No. 53 Hubin Street, Economic and Technological Development Zone, Datong, Shanxi 037010, P.R.China

To investigate the effects of Co-Venenum Bufonis Oral Liquid (cVBOL) on radiation-induced esophagitis in rats. Irradiation (30 Gy) with X-RAD 225 x-ray was applied to induce esophagitis in 64 Wistar rats and treated by different methods. The body weight of rats either in RT group, cVBOL+RT, or EM+RT group was significantly decreased when compared with that in normal group (P<0.0001). After irradiation, histopathological studies, immunohistochemistry, and MRI scanning on esophagus
Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer’s disease rats 363–373

Lin SONG1), Zhongyuan PIAO2), Lifen YAO3), Limei ZHANG4) and Yichan LU5)

1)School of Life Sciences, Huizhou University, 46 Yanda Avenue, Huizhou, Guangdong 516007, P.R. China, 2)Department of Neurology, Huizhou Third People’s Hospital, Huizhou Hospital of Guangzhou Medical University, 1 Xuebei Street, Huizhou, Guangdong 516002, P.R. China, 3)Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, P.R. China
4)Department of Obstetrics and Gynecology, Huizhou Third People’s Hospital, Huizhou Hospital of Guangzhou Medical University, 1 Xuebei Street, Huizhou, Guangdong 516002, P.R. China
5)Department of Chinese Medicine, Dalian Maternity and Child Health Care Hospital, 321 Jiefang Road, Dalian, Liaoning 116033, People’s Republic of China

Schisandrin, an active component extracted from Schisandra chinensis (Turcz.) Baill has been reported to alleviate the cognitive impairment in neurodegenerative disorder like Alzheimer’s disease (AD). However, the mechanism by which schisandrin regulates the cognitive decline is still unclear. In our study, intracerebroventricular injection of streptozotocin (STZ) was employed to establish AD model in male Wistar rats, and indicated dose of schisandrin was further administered. The Morris water maze test was performed to evaluate the ability of learning and memory in rats with schisandrin treatment. The results indicated that schisandrin improved the capacity of cognition in STZ-induced rats. The contents of pro-inflammatory cytokines in brain tissue were determined by ELISA, and the expressions of these cytokines were assessed by western-blot and immunohistochemistry. The results showed that treatment of schisandrin significantly reduced the production of inflammation mediators including tumor necrosis factor-α, interleukin-1β and interleukin-6. Further study suggested a remarkable decrease in the expressions of ER stress maker proteins like C/EBP-homologous protein, glucose-regulated protein 78 and cleaved caspase-12 in the presence of schisandrin, meanwhile the up-regulation of sirtuin 1 (SIRT1) was also observed in the same group. Additionally, the results of western-blot and EMSA demonstrated that schisandrin inhibited NF-κB signaling in the brain of STZ-induced rats. In conclusion, schisandrin ameliorated STZ-induced cognitive dysfunction, ER stress and neuroinflammation which may be associated with up-regulation of SIRT1. Our study provides novel mechanisms for the neuroprotective effect of schisandrin in AD treatment.
会 員 名	〒	住 所
(株)IHI	135-8710	東京都江東区豊洲3-1-1
(株)アイセイ	594-1151	大阪府和泉市唐国町1-6-1
(株)アイテクノ	391-0004	長野県茅野市城山10-10
快化成ファーマ（株）	410-2321	静岡県伊豆の国市三福632-1
味の素（株）	210-8681	神奈川県川崎市鶴見区鶴木町1-1
あすか製薬（株）	213-8522	神奈川県川崎市高津区下作延5-36-1
アステラス製薬（株）	305-8585	茨城県つくば市御幸台丘21
(株)アドスリー	164-0003	東京都中央区東中野4-27-37
(株)アニマルケア	160-0022	東京都新宿区新宿5-18-14 新宿北西ビル7F
(株)アニメック	183-0031	東京都府中市西府町3-17-4
EPトレーディング（株）	162-0825	東京都新宿区神楽坂4-8
(株)イナリサーチ	399-4501	長野県伊那市西筑輪2148-188
エーザイ（株）	300-2635	茨城県つくば市東光台5-1-3
(株)LSメディエンス	314-0255	茨城県神栖市砂山14-1
(株)大塚製薬工場	772-8601	埼玉県鶴ヶ島市栄町立谷字芥原115
小野薬品工業（株）	618-8585	大阪府三島郡北部町桜3-1-1
小原医科産業（株）	165-0022	東京都中央区古川町4-28-16
オリエンタル酵母工業（株）	174-8505	東京都板橋区小豆沢3-6-10
花王（株）	321-3497	愛知県名古屋市名東区本町
科研製薬（株）	426-8646	静岡県藤枝市原部301
鳥島建設（株）	107-8348	東京都港区赤坂6-5-11
北山ラベンス（株）	396-0025	長野県伊那市荒井3052-1
キッセイ薬品工業（株）	399-8304	長野県安曇野市高穂原4365-1
九動（株）	841-0075	佐賀県鳥栖市立石町恆楽883-1
立井製薬（株）	300-1252	茨城県つくば市高見原2-9-22
協和キリン（株）富士リサーチパーク	411-0943	静岡県駿東郡東部町下里狩1188
（有）葛生運送	287-0224	千葉県成田市新田280-1
クミアイ化学工業（株）	439-0031	静岡県静岡市加茂3360
(株)クレハ	169-8503	東京都新宿区百人町3-26-2
(株)ケー・エー・シー	604-8423	京都市京都市中央区西/西京月光町40
KMバイオロジクス（株）	869-1298	岡山県倉敷市東本町1314-1
興和（株）	189-0022	東京都新川市野口町2-17-43
三協ラボサービス（株）	132-0023	東京都江戸川区西一之江2-13-16
参天製薬（株）	630-0101	奈良県生駒郡高安町8916-16
(株)三和化学研究所	511-0406	三重県いなべ市北勢町塚崎363
(株)ジェー・エー・シー	153-0043	東京都目黒区東山1-2-7 第44興和ビル3階
シオノギテクノアドバンスリサーチ（株）	520-3423	滋賀県甲賀市甲賀町五反田1405
(公財)実験動物中央研究所	210-0821	神奈川県川崎市川崎区殿町3-25-12
清水建設（株）	104-0031	東京都中央区京橋2-16-1 8階
昭和セラミックス（株）	486-0934	愛知県春日井市長崎町1-1-9
(有)新東洋製作所	334-0073	埼玉県川口市赤井2-13-22
会 員 名	〒	住 所
----------	----	-------
(株) 新日本科学安全性研究所	891-1394	鹿児島県鹿児島市宮之浦町2438番地
住友化学 (株)	554-8558	大阪府大阪市此花区春日出中3-1-98
(株) 精研	542-0081	大阪府大阪市中央区南船場2-1-3
清和産業（株）	132-0033	東京都江戸川区東小松川4-57-7
ゼリア新興工業（株）	360-0111	埼玉県熊谷市押切字沼上2512-1
全国農業協同組合連合会飼料畜産中央研究所	300-4204	茨城県つくば市作谷1708-2
第一三共 (株)	134-8630	東京都江戸川区北葛西1-16-13
大正製薬 (株)	331-9530	埼玉県さいたま市北区吉野町1-403
タイザン (株)	102-8175	東京都千代田区富士見2-15-10
武田薬品工業 (株)	251-0012	神奈川県藤沢市村岡東二丁目26番地1
田辺三菱製薬	227-0033	神奈川県横浜市青葉区鳴志田町1000番地
(株) 中外医学研究所	247-8530	神奈川県鎌倉市幡原200
中外製薬 (株)	412-8513	静岡県御殿場市駒門1-135
千代田テクノエース（株）	221-0022	神奈川県横浜市神奈川区守屋町3-13
(株) イムラ	300-1192	茨城県稲敷郡阿見町吉原3586
帝人ファーマ（株）	191-8512	東京都目黒区旭が丘3-4-3
(一財) 動物繁殖研究所	300-0134	茨城県茨城駅かすみがうら市深谷103
東洋製薬工業 (株)	104-0031	東京都中央区京橋2-5-12 東洋ビル
トーアイヨー (株)	960-0280	福島県福島市飯坂町湯野字田中1
トキワ科学機械 (株)	110-0005	東京都台東区上野5-11-1
(株) 夏目製作所	113-8551	東京都文京区湯島2-18-6
(株) 日本医学動物資材研究所	179-0074	東京都練馬区春日町4-32-25
(合) 日本医学研究所	102-0071	東京都千代田区富士見2-12-8
日本エスエルシー (株)	431-1103	静岡県浜松市湖東町3371-8
日本化薬 (株)	115-8588	東京都北区志茂3-31-12
日本クレア (株)	153-8533	東京都目黒区東山1-2-7
日本実験動物器資材協議会	153-8533	東京都目黒区東山1-2-7 日本クレア (株) 内
(公社) 日本実験動物協会	101-0051	東京都千代田区神田神保町2-5-7 九段ロイヤルビル502号室
日本実験動物同組合	101-0032	東京都千代田区岩本町2-8-10 神田永谷マンション602
日本新業 (株)	601-8550	京都市京都市南区吉備院西/庄門町14
(一財) 日本生物科学研究所	198-0024	東京都世田谷区新町9-2221-2
日本たばこ産業 (株)	569-1125	大阪府高槻市紫町1-1
日本たばこ産業 (株) たばこ中央研究所	227-8512	神奈川県横浜市青葉区梅丘6-2
日本チャールスリバー (株)	222-0033	神奈川県横浜市港北区新横浜3-17-6
日本農業工業 (株)	300-2615	茨城県つくば市田倉5246
日本農業 (株) 極限定研究所	586-0094	大阪府河内長野市小野田町345番地
(株) ハクバイテック・ライフサイエンス・ ソリューションズ	180-0002	武蔵野市吉祥寺東町2-38-2
パニーグループ 日本事務所	370-0074	群馬県高崎市下小川町290-1
ハムリー (株)	306-0101	茨城県古河市尾崎2638-2
(一財) 豊大微生物研究会	565-0871	大阪府吹田市山田丘3-1 大阪大学内
フィード・ワン (株)	314-0103	茨城県神栖市東深芝4-2
(株) ポリジーサーチセンター	412-0039	静岡県御殿場市竜1284
三浦工業 (株)	108-0074	東京都港区港南2-15-35 三浦高輪ビル2F
Meiji Seika ファルマ (株) 横浜研究所	222-8567	神奈川県横浜市港北区師岡町760
持田製薬 (株)	412-8524	静岡県御殿場市神倉字上ノ原722
会 員 名 | 〒 | 住 所
---|---|---
(株) ヤクルト本社 | 186-8650 | 東京都国立市家5-11
八洲環境エンジニアリング (株) | 116-0014 | 東京都荒川区東日暮里3-11-17
ライオン (株) | 256-0811 | 神奈川県小田原市本田100
レッテンマイヤージャパン (株) | 101-0052 | 東京都千代田区神田小川町3-26-8
野村不動産小川町ビル3F
(株) レナテック | 259-1114 | 神奈川県伊勢原市高森4-19-15

(公社) 日本実験動物学会 会員の入会・退会・変更の申込みについて

会員の入会・退会・変更の申込みは下記の方法で受け付けております。

https://www.jalas.jp/

(公社) 日本実験動物学会ホームページより受け付け

【ご不明な点はこちらまで】

株式会社 アイベック
〒 170-0002 東京都豊島区飯 pigeon 24-12 アーバンポイント春鴨4F
TEL 03-6822-9767 FAX 03-5978-4068
Email jalas@ipec-pub.co.jp

● 編集後記 ●

世界中が新型コロナウイルス感染症の脅威に曝されており、国内におきても規制緩和はされているものの治まる気配はありません。また、今年の初夏は、九州地方をはじめとして豪雨による甚大な被害が発生いたしました。九州にお住いの会員の皆様におかれましては、ご無事でしたでしょうか。研究施設の被害等はありましたまいですか。近年、想定外のリスクが発生するようです。既存の概要を踏みリスク管理のレベルを一段上げることも、今後、考えたいといけないかもしれません。自然災害につきましては、これから台風のシーズンも到来することから、心配の種は尽きません。さて、本号では前理事長の浦野先生より「理事長退任にあたって」言うご挨拶があり、次号に掲載予定の新理事長、三好先生にリレーされる予定です。本年度、残念ながら学会総会は開催できませんでしたが、大会長の塚谷先生より「第2回日本実験動物学会総会を振り返って」と題し、関係者へのたいへん丁寧な感謝のお気持ちが述べられました。感染症のシリーズでは、「重度免疫不全動物などの易感染性動物の感染症」（実中研・林元先生）を寄稿いただきました。研究室・施設作りでは、「京都大学大学院医学研究科実験動物学分野（附属動物実験施設）田中先生」、「維持会員作り」では、「日本クレア株式会社」（池田、西井先生）に原稿をお願いし、「会員便り」には3名の先生（東北大・原田先生、宮崎大・名倉（加藤）先生、中野先生・金丸先生）に寄稿いただきました。後半の○○便りシリーズは、会員の皆様の積極的ご参加があって成り立つものです。どうか今後とも積極参加をお願い申し上げます。また、総説も受け付けしておりますので、是非、会員の皆様に情報を提供いただき、実りある「実験動物ニュース」にしたいと思っておりますので、どうか引き続きよろしくお願いいたします。

【広報、情報公開検討委員会】
企業名	事業内容
日本クレア株式会社	実験動物等企業広告
北山ラベンズ株式会社	実験動物等企業広告
日本エスエルシー株式会社	飼料
日本エスエルシー株式会社	実験動物
株式会社 ケーエーシー	実験動物総合受託事業
わかもと製薬株式会社	感染症診断キット
清和産業株式会社	ウォッシングシステムズ
株式会社 夏目製作所	気管内噴霧スプレー
株式会社 アニメックス	げっ歯類のエンリッチメント
ダイダン株式会社	実験動物飼育ラック
九動株式会社	マウス生殖工学試薬
ハムリー株式会社	実験動物等企業広告
マウス・ラット

● Closed Colony
 ○ Cj.Icr
 ○ Cj.SD, Cj.Winter
 ○ B6B1Cg-H2Bega
 ○ C3H/HeNj
 ○ C57BL/6j
 ○ BALB/cByJc
 ○ DBA/2j

● Inbred
 ○ C57BL/6Jc
 ○ C3H/HeJc

● マウスモデル
 ○ 親父引用代替モデル
 ○ マウスNRG1/2j

● 総合研究所
 ○ 日本クレア株式会社
 www.CLEA-Japan.com

新しい発見を変わりない品質で

マウス・ラット

● Closed Colony
 ○ Cj.Icr
 ○ Cj.SD, Cj.Winter
 ○ B6B1Cg-H2Bega
 ○ C3H/HeNj, C57BL/6j
 ○ BALB/cByJc
 ○ DBA/2j

● Inbred
 ○ C57BL/6Jc

● マウスモデル
 ○ 親父引用代替モデル
 ○ マウスNRG1/2j

● 総合研究所
 ○ 日本クレア株式会社
 www.CLEA-Japan.com

新しい発見を変わりない品質で

マウス・ラット

● Closed Colony
 ○ Cj.Icr
 ○ Cj.SD, Cj.Winter
 ○ B6B1Cg-H2Bega
 ○ C3H/HeNj, C57BL/6j
 ○ BALB/cByJc
 ○ DBA/2j

● Inbred
 ○ C57BL/6Jc

● マウスモデル
 ○ 親父引用代替モデル
 ○ マウスNRG1/2j

● 総合研究所
 ○ 日本クレア株式会社
 www.CLEA-Japan.com

新しい発見を変わりない品質で
確かな実験データは
確実なチェックから・・・

ELISAによる実験動物の感染症診断キット

モニライザ®
MONILISA®

- モニライザ「IV（96ウェル）」
- モニライザ「HV（96ウェル）」
- モニライザ「MHV（96ウェル）」
- モニライザ「Myco（96ウェル）」
- モニライザ「Tyzzer（96ウェル）」
- モニライザ「HANTA（48ウェル）」

特徴
- 抗体検出感度に優れ、特異性、再現性が高く、どのような場面でも簡便に検査が
- モニタリングに最適です。
- 酵素標識物として、プロテインAを使用していますので、同一試薬で、マウス・モルモット・
- ユサギ・ハムスターの抗体検査ができます。
KN-34700
気管内噴霧スプレー

気管内にウイルスや薬液を噴霧するときに、使用するスプレーです。

6タイプのスプレー管をご用意
マウス
ラット
モルモット
マーモセット
ウサギ
カニクイサル
「ダイクン」の一方向気流ラックがさらに進化！

実験動物飼育ラック アイラックシステム

Novel One Way Air Flow Rearing Equipment（I(Back System）

オープンラック

アイラックシステム

環境面の向上

発売した一方向気流により、爆発性、感染拡散を遮断し、実験結果の向上、動物使用の向上が可能。

操作性の向上

ラック水準に家であるように、ケージの操作性や便利性が向上。

ランニングコスト削減

さらに小容積化、省エネルギーを実現。

再生医療のための環境づくりに信頼と実績を
セラボヘルスケアサービス株式会社

https://www.cellabhs.co.jp/
新商品のご案内
凍結乾燥粉体のCARD HyperOva®F.D.新発売！

高効率に排卵を誘発する超過剰排卵誘起剤です。凍結乾燥品の為、4℃冷蔵保存が可能になり、従来品と比べ、保存性が格段に向上しました。

マウス生殖工学試薬一覧

CARD FERTIUP®マウス精子凍結保存液 (0.13 / 0.5 / 1.0 mL)	CARD HyperOva®過剰排卵誘起剤 (0.6 / 1.0 mL, F.D.)	CARD 0.25M Sucrose (2.0 / 5.0 mL)
CARD FERTIUP®マウス精子前培養培地 (0.5 / 1.0 mL)	CARD mHTF (2.0 / 5.0 mL)	CARD 1M DMSO (1.0 mL)
CARD MEDIUM®マウス体外受精用培地 (Kit / Set)	CARD KSOM (2.0 / 5.0 mL)	CARD DAP213 (0.5 / 1.0 mL)

骨の試験

骨代謝試験

高回転型骨粗しょう症モデル薬効評価試験
骨折モデル薬効評価試験

骨内埋植試験

大腿骨・脛骨・橈骨・顎骨への埋植

マウス、ラット、ウサギ、イス、サル類、ブタ、ヒツジ、多数の動物種での経験がございます

お問い合わせ

ハムリー株式会社
本社営業所 TEL 0280-76-4477 E-Mail hb@hamri.co.jp
東京営業所 TEL 048-650-4477 E-Mail ob@hamri.co.jp
大阪営業所 TEL 06-6306-4477 E-Mail ib@hamri.co.jp
国際事業部 TEL 0280-75-2416 E-Mail ib@hamri.co.jp

〒841-0075 佐賀県鳥栖市立石町惣楽883-1
TEL : 0942(82)6519 FAX : 0942(85)3175
E-mail: web_req@kyudo.co.jp URL : http://www.kyudo.co.jp/

CT撮影(FOV25,14 min)