Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution

RUGANG TANG1, FANG SHEN 1,2,*, YANQUN PAN1, KEVIN RUDDICK3, PEI SHANG1

1State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500, Dongchuan Rd., Shanghai 200241, China
2Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
3Royal Belgian Institute for Natural Sciences (RBINS), Operational Directorate Natural Environments, Brussels 1200, Belgium

*fsken@sklec.ecnu.edu.cn

Abstract: In this study, cross-comparisons of the reflectance at the top of atmosphere (ρTOA), atmospherically corrected water-leaving reflectance (Rrs), and suspended sediment matter (SPM) concentration derived from three high spatial resolution sensors (Landsat-8/OLI, Sentinel-2A/MSI and GF-1/WFV) were conducted. The purpose was to examine the consistency among multi-source satellite products and their potential to fill the temporal gap of high-resolution satellites time series. Geostationary ocean color imager (GOCI) data and in situ data were used to verify the accuracy and reliability of the high-resolution satellite derived products. The results showed that the ρTOA and Rrs data of high-resolution sensors were consistent with GOCI data, especially at the red spectral ranges. The satellite-derived SPM concentrations exhibited good agreement and acceptable errors when compared with both GOCI-derived and in situ SPM data. With regard to the influence of the signal-to-noise ratios, the results showed that the radiometric sensitivities of GF-1/WFV and Landsat-8/OLI were relatively high and presented minimally detectable variations greater than 0.06% in the ρTOA and 0.5 mg/L in the SPM concentration for solar zenith angles < 30°. However, the spatial resolution’s impact on the SPM data can be greater than that of the signal-to-noise ratio for turbid waters.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Estuaries are areas with strong land-sea interactions. Under the complex hydrodynamic environment caused by interactions among river runoff and tidal currents, a highly heterogeneous spatial and temporal distribution of sediments is observed in estuaries, which has a great impact on navigation paths and sediment dredging. Although acceptable sediment concentrations can be estimated using ocean color satellites with coarse spatial resolution (> 300 m), such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS) and GOCI [1], the subtle variations in the distribution of suspended particulate matter (SPM) in medium- and small-scale estuaries are difficult to observed with such sensors. Davis et al. [2] demonstrated that the optimal ground resolution of turbid nearshore waters should be less than 100 m.

High-resolution satellites have great potential for use in estuary and coastal applications [3–6]. However, the high-resolution satellites initially designed for terrestrial applications had a low revisit frequency and lower signal-to-noise ratio and radiation sensitivity, which resulted in errors in the inversion of water color components and concentrations. With the development of remote sensing technology in recent years, high-resolution satellite sensors...
have gradually supported applications for inland and coastal waters. The technical feature of the sensors, such as the signal-to-noise ratio (SNR), have been notably improved. The settings of short-wave infrared bands, e.g., from Landsat-8/OLI and Sentinel-2/MSI, are very helpful for performing atmospheric corrections of estuarine and coastal waters. In addition, the red-edge bands and part hyperspectral bands from Sentinel-2/MSI have also enriched water color information. The modes of multi-camera synchronous observation (e.g., GF-1 missions) and multi-satellite combination (e.g., Sentinel-2 missions) greatly shorten the revisit period and increase the observation frequency for targets.

The objectives of this work are as follows: (1) to explore whether high spatial resolution sensors initially designed for terrestrial applications, i.e., Landsat-8/OLI, Sentinel-2/MSI and GF-1/WFV, are adequate for SPM observations in medium- and small-scale estuaries, e.g., in the Yangtze Estuary; (2) to examine the consistency of estuarine observations by multiple high-resolution sensors to enhance our confidence in the use of such data and products by performing a cross-comparison of the ρ_{TOA}, R_s (also called remote sensing reflectance) and SPM concentration from multiple sensors; and (3) to assess the impacts of the SNR and spatial resolution of the different products. The data and products from three in-orbit high-resolution satellite sensors were selected for cross-comparison. Corresponding data from the GOCI and in situ turbidity data set were used to validate the high-resolution products.

2. Study area and data

2.1 Study area

The Yangtze (Changjiang) Estuary (Fig. 1) is one of the largest estuaries in the world in terms of river discharge and scale, and it has three-order bifurcations (see the South and North Branches, South and North Harbors and South and North Channels in Fig. 1) and four outlets into the East China Sea. The SPM concentration varies in each branch of the Yangtze Estuary and exhibits a heterogeneous spatial-temporal distribution, and this distribution is mainly influenced by the interactions of river outflows, tidal currents and wind-driven waves [7–9]. Thus, the Yangtze Estuary was selected as the study area to estimate the capability and accuracy of the inversions of products from high-resolution satellites sensors.

![Fig. 1. Map of the study area from the GF-1/WFV image on March 11, 2014. The colored dots indicate the locations of three autonomous turbidity observation stations.](image)

2.2 In situ data

An autonomous turbidity observation system installed at the Chongxi station was used to obtain in situ turbidity data set. Turbidity data from optical backscatter sensors (OBSs) at this hydrologic station have been collected since 2009, which greatly increased the number of
matchups between satellite derived and in situ SPM. The OBSs were calibrated before being installed or replaced to generate reliable parameters, such as pressure, salinity and turbidity data. Every two weeks, a regular cleaning of optical sensors is executed to eliminate data abnormalities caused by the attachment of biological organisms and water body occlusions. Liu et al. [10] indicated that a good correlation occurred between the turbidity measured by OBSs and SPM, and R^2 values over 0.9 were obtained for both spring-neap tides.

The formula for calculating SPM concentrations from in situ turbidity is based on two empirical algorithms [1,11]. Shen et al. [1] adopted in situ observations (e.g., from the Chongxi, Nanmen and Baozhen stations in Fig. 1) from OBSs with simultaneous water samplings for SPM concentration in the Yangtze Estuary from 2 to 3 July, 2011 and proposed a linear relationship:

$$ y = 0.001x - 0.07, \quad (1) $$

where $R^2 = 0.935$, $n = 17$ and $p < 0.001$. Another relationship proposed by Xue et al. [11] is based on water samples from the South Branch and synchronous OBS measurements, and it is expressed by:

$$ y = 0.0017x + 0.0202, \quad (2) $$

where $R^2 = 0.77$. In Eq. (1) and (2), x and y stand for turbidity and SPM concentration, respectively. The average of SPM concentration in Eq. (1) and (2) is considered the in situ SPM. However, the turbidity measured by an OBS instrument is influenced by the size, shape, particle composition, bubbles, and chemical and biological fouling [1]. Nevertheless, using the OBS data from the fixed station is the most effective method for validating the satellite-derived SPM.

2.3 Satellite data

Data from three high-resolution satellite sensors, i.e., Sentinel-2/MSI (S2/MSI), Landsat-8/OLI (L8/OLI) and GF-1/WFV, were used for cross-comparison with ocean color data. GOCI is a typical ocean color sensor with the SNR of more than 750, and its data and products were adopted as the references. The technical characteristics of the four sensors are listed in Table 1, and detailed spectral response curves are shown in Fig. 2.

Satellite and sensor	Sentinel-2/MSI	Landsat-8/OLI	GF-1/WFV	GOCI
B1:433-453				
B2:455-523				
B3:453-578				
B4:650-680				
B5:698-713				
B6:733-748				
B7:773-793				
B8:815-875				
B9:935-955				
B10:1360-1390				
B11:1565-1655				
B12:2100-2280				
Spatial resolution (m)	10, 20, 60	15, 30	16	500
Swath (km)	290	185	800	2500
revisit (days)	10	16	4	1/8
SNR range	50-174	166-450	34-294	750-1170

Due to different observation purposes, the design of satellite sensors may present variations in the position and width of the wavebands and spectral response functions. Figure 2 shows the spectral response curves of the four sensors (i.e., L8/OLI, S2/MSI, GF-1/WVF and GOCI), including the spectral curves of remote sensing reflectance from in situ
measurements for typical turbid and clear waters. Spectral response curves are obtained from satellite official networks (such as GF-1/WVF), internal data (such as GOCI), and commercial software ENVI 5.3.1 (L8/OLI and S2/MSI). Compared with GF-1/WVF, GOCI and S2/MSI have relatively narrow spectral bands, which exhibit more sensitive spectral responses to the specific features (e.g., phytoplankton) of water color components.

Landsat-8 (L8) was launched in February 2013. The OLI is a payload on L8 with a 30 m spatial resolution and 16-day revisit period. The L8/OLI is based on the Landsat satellite series, and it includes two shortwave infrared (SWIR) bands that allows for SWIR-based atmospheric corrections for coastal waters [12]. The L8/OLI level 1TP data products are released by the Earth Explorer (https://earthexplorer.usgs.gov/) with well-characterized radiometry and intercalibrated across the different Landsat instruments.

Sentinel-2A (S2) with the MSI payload was launched by the ESA in June 2015. The S2/MSI sensor has 13 bands and a 10 m resolution in the visible ranges and a 20 m resolution in the red to near-infrared (NIR) bands. The S2/MSI level 1C (L1C) products can be downloaded from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home), and the images are split into orthorectified 100 km × 100 km tiles. The L1C products are spectral reflectance data at the top of atmosphere in UTM WGS84 projection, and these products have been processed via orthorectification and spatial registration on a global reference system with subpixel accuracy.

GF-1 is the first satellite of the Chinese High-resolution Earth Observation System series, and it is equipped with 4 sets of multi-spectral WFV cameras with 4 bands and 16-m resolution. Through mosaic processing, the GF-1/WVF scanning range can have a swatch width of 800 km × 800 km. The revisit period of 4 days greatly increases the number of cloud-free images, especially over the Yangtze Estuary. The level 1A products from the GF-1/WVF can be downloaded from the China Center for Resources Satellite Data and Application (CRESDA, http://www.cresda.com/EN/) according to the data agreement, and these products represent spectral radiance at the top of atmosphere. The radiometric calibration coefficients of GF-1/WVF have been updated every year since it was launched through vicarious sensor calibrations, e.g., using reference targets such as alkaline lands, Gobi deserts and clear lakes from high to low reflectance, so that its precision can satisfy the need of various target measurements. More details can be found on the CRESDA website.
The Geostationary Ocean Color Imager (GOCI) was launched in June 2010 by the Korean Ocean Research and Development Institute and is the first geostationary-orbiting communication ocean and meteorological satellite in the world [13]. As a typical ocean color sensor, GOCI has a high SNR of more than 750 for each band. GOCI level 1 and 2 data can be downloaded from the Korea Ocean Satellite Center (KOSC, http://kosc.kiost.ac.kr/eng/p10/kosc_p11.html) according to the data policy. The level 1B product is radiance data at the top of atmosphere after radiometric and geometric corrections. The level 2 data products can be obtained after processing the level 1 data through the ground data processing system (GDPS, http://kosc.kiost.ac.kr/eng/p30/kosc_p34.html) released by KOSC.

3. Methods

3.1 Top of atmosphere (TOA) reflectance

The raw data received by the sensors in digital number (DN) format can be transformed into radiance \(L_{\text{TOA}} \) in W m\(^{-2}\) sr\(^{-1}\) µm\(^{-1}\) by the following formula:

\[
L_{\text{TOA}} = \text{gain} \times \text{DN} + \text{offset}.
\]

(3)

L8/OLI, S2/MSI and GF-1/WFV level 1 products provide the DN and the corresponding gain and offset in their header files, whereas GOCI level 1 products provide fixed gain and offset values equal to \(10^{-6}\) and 0, respectively, in their user manuals.

To remove the influence of sun geometry differences, \(L_{\text{TOA}} \) should be translated to the TOA reflectance before intercomparisons. Assuming that the TOA surface is a Lambertian reflectance plaque that is illuminated by irradiance \(M \) and the sunlight is incident to the surface at a zenith angle \(\theta \), the atmospheric surface irradiance \(E \) and the \(L_{\text{TOA}} \) are expressed as follows:

\[
E = E_0 \times \frac{\cos \theta}{d^2},
\]

(4)

\[
L_{\text{TOA}} = \frac{M}{\pi},
\]

(5)

where \(d \) is the Earth-Sun distance in astronomical units (AU) and \(E_0 \) is the average solar spectral irradiance in W m\(^{-2}\) µm\(^{-1}\). The TOA reflectance \(\rho_{\text{TOA}} \) is defined as follows:

\[
\rho_{\text{TOA}} = \frac{M}{E} = \frac{\pi \times L_{\text{TOA}}}{E_0 \times \cos \theta / d^2}.
\]

(6)

3.2 Atmospheric correction

Different atmospheric correction methods have been used for satellite data due to differences in the widths and positions of the four sensors.

The ACOLITE code (version 20170718) for atmospheric corrections of both L8/OLI and S2/MSI data with the SWIR bands was proposed by Vanhelmont and Ruddick [3,12]. It performs Rayleigh correction [14], land and cloud masking [15] and SWIR atmospheric correction [16] in each pixel. Afterwards, the water-leaving radiance reflectance is obtained from the L8/OLI and S2/MSI level 1 data.

In the absence of SWIR bands, the SWIR dark pixel method is not applicable to the atmospheric corrections for GOCI and GF-1 data. We employed a full-band iterative optimization method for atmospheric correction of GOCI level 1B images over turbid waters in the Yangtze Estuary area, which was proposed by Pan et al. [17,18]. This method is called the Enhanced Spectral Optimization Algorithm (ESOA). In the proposed method, an aerosol model built based on the Aerosol Robotic Network (AERONET) observation data [19] and a water model named the semiempirical radiative transfer (SERT) model from Shen et al.
were coupled. Four variables, i.e. the relative humidity (RH), fine-mode fraction (FMF), aerosol optical thickness (AOT) and the SPM, were included in the coupled water-atmosphere model and related to the different sensor bands using a genetic algorithm to optimize the variables from the initial inputs.

As for the atmospheric correction of the GF-1 data, the level 2 product generator in SeaDAS (SeaDAS/l2gen) was employed. In SeaDAS/l2gen, the calculations of both Rayleigh and aerosol radiance were based on a look-up table (LUT) method. However, the current SeaDAS/l2gen version cannot process GF-1 data and does not contain the LUTs for the GF-1 sensor. To solve this issue, a solution with two steps was adopted. In the first step, the Rayleigh and aerosol radiance for the Hyperspectral Imager for the Coastal Ocean (HICO), was calculated. Considering the high spectral resolution (approximately 5 nm) of HICO, the Rayleigh and aerosol radiance values were interpolated to 1 nm. In the second step, by introducing the spectral response curves for the GF-1 sensor, the band-averaged radiance was derived by integrating the radiance for the band range of the spectral response curve. See the Ocean Color website (https://oceancolor.gsfc.nasa.gov/docs/rsr) for the details of the integration method. In addition, to calculate the aerosol radiance for GF-1, the AOT and aerosol type (such as RH and FMF) should be known. In this study, the RH, FMF and AOT values for the atmospheric correction of GF-1 can be estimated from the GOCI data by using the ESOA algorithm [17], assuming that the GF-1 passes over the study area at nearly the same time as GOCI, and the quasi-simultaneous images from GF-1 and GOCI may have the same aerosol type and the AOT. A similar method is presented in Pan et al. [18].

3.3 SPM inversion

The SPM inversion algorithm proposed by Shen et al. [1,20,21] for highly turbid waters of the Yangtze Estuary area is arithmetically expressed as follows:

$$C_{SPM} = \frac{2 \times \alpha \times R_{rs}}{\beta \times (\alpha - R_{rs})},$$

where C_{SPM} is the SPM concentration in g/L, R_{rs} is the remote sensing reflectance in sr$^{-1}$ obtained from atmospheric correction, and α and β are empirical and wavelength-dependent coefficients. According to the spectral response curves of the four sensors (see Fig. 2), the α and β coefficients at corresponding sensor-based wavebands can be determined by in situ data sets, which are shown in Table 2. For the SPM in a wide range of concentrations over the Yangtze Estuary and adjacent coasts, the algorithm scheme for multiple spectral band shifting is applied to avoid reflectance saturation. However, the radiation calibration of GF-1 is not stable; thus, to illustrate the accuracy of the satellite inversion of SPM, only red bands were selected for inversion. In this case, the SPM concentration may be underestimated in the non-sensitive areas of the red band (SPM < 0.1 g/L or SPM > 0.8 g/L), such as in Hangzhou Bay. In this study, the L8/OLI band centered at 655 nm, S2/MSI band centered at 665 nm, GF-1/WFV band centered at 665 nm and GOCI band centered at 660 nm were proposed for the SPM retrieval using Eq. (7).

Sensor	Band number	Center band (nm)	α	β
L8/OLI	4	655	0.0763	11.5306
GOCI	5	660	0.0771	11.0158
S2/MSI	4	665	0.0779	10.7085
GF-1/WFV	3	665	0.0779	10.7085

Table 2. α and β coefficients in Eq. (7) for GF-1/WFV, GOCI, S2/MSI and L8/OLI data at red bands (~660 nm) appropriate for the highly turbid waters of the Yangtze Estuary.
3.4 Noise-equivalent reflectance and SPM

The SNR of a sensor is one of the most important parameters in quantitative remote sensing, which largely affects the accuracy and sensitivity of remote sensing products. High-resolution Landsat-8/OLI, Sentinel-2/MSI and GF-1/WFV sensors were initially designed for land applications and thus have lower SNR values than ocean color sensors (see Tables 1). To quantify the sensitivities of these sensors, the noise-equivalent reflectance (NE_{ρ}) is proposed to define the minimum detectable variation in reflectance [18] or the expected uncertainty caused by the sensor noise [14]. The sensor’s NE_{ρ} is determined as follows:

$$NE_{\rho} = \frac{NE_{L} \times \pi \times d^2}{E_0 \times \cos \theta},$$

and NE_{L} is expressed as follows:

$$NE_{L} = \frac{L_{\text{ref}}}{\text{SNR}},$$

where E_0 is the average solar spectral irradiance and θ is the solar zenith angle. NE_{L} is the noise-equivalent radiance, and d represents the Earth-Sun distance in AU. L_{ref} is the reference radiance, and SNR is the signal-to-noise ratio corresponding to L_{ref}. In Eq. (9), d can be regarded as 1, as it is changes by only 4% throughout the year. The SNR and L_{ref} values for different sensors are given in Table 3.

To assess how much the SNR impacts the satellite-derived SPM, we assume that the sensitivity of ρ_{TOA} is equal to that of R_{s} at the same sensor bands. NE_{SPM} can be calculated by substituting NE_{ρ} into the SERT model by the following equation:

$$NE_{\text{SPM}}(\lambda) = \text{SERT}(\frac{NE_{\rho}(\lambda)}{\pi}),$$

3.5 Coefficient of variation

To analyze the influence of different spatial resolutions on images, the coefficient of variation (CV) is proposed, which indicates the dispersion of L_{TOA}, and it can be expressed as follows:

$$\text{CV} = \frac{\text{SD}}{\text{MN}} \times 100\%,$$

where SD is the standard deviation of a data set (L_{TOA} in a box), and MN is the mean value of a data set.

4. Results

To evaluate the quality of the data products from the different satellite sensors and derived products, two methods, i.e., cross-comparison of multi-sensor data or products and comparison with in situ ground truth data, are usually adopted.

4.1 Cross-comparison of TOA reflectance

Cloudless GF-1/WFV, L8/OLI, and S2/MSI ρ_{TOA} images were collected on March 15, 2014, March 12, 2015, and July 20, 2016, and the GOCI ρ_{TOA} was determined at the time closest to the visit times of the three high-resolution satellites. To generate a uniform resolution dimension, these images were resized to 30 m × 30 m ground pixel sizes before conducting the cross-comparison.
Figure 3 shows that L8/OLI and GF-1/WFV exhibits the strong correlation with the ρ_{TOA} of GOCI in red bands. The ρ_{TOA} values of GF-1/WFV and L8/OLI are slightly lower than that of GOCI because the polar orbiting satellites usually have lower zenith angles than geostationary satellites and less light is backscattered by atmospheric molecules and aerosols along the path from water to sensor illuminated by the sunlight. S2/MSI has higher ρ_{TOA} values than GOCI, which may be related to the influence of sun glint. Nevertheless, all three scatterplots shown in Fig. 3 display good linear relations from low to high reflectance values, which can satisfy the need for satellite observations in waters with different turbidity. In addition to the ρ_{TOA} at the red bands, the ρ_{TOA} values were also compared to that of GOCI at other corresponding bands. Table 3 shows the correlation results of ρ_{TOA} at conventional sensor bands, e.g., blue (~490 nm), green (~560 nm), red (~660 nm) and NIR (~865 nm). The result show that the ρ_{TOA} from the three sensors in the red bands exhibits the closest similarity with that of GOCI in a 1:1 line, followed by the green bands. The ρ_{TOA} at the NIR band from S2/MSI versus that from GOCI presents a lower correlation with $R^2 = 0.6721$ and MAPE = 44.15%, which might be related to the lower SNR of the S2/MSI NIR band.

4.2 Cross-comparison of remote sensing reflectance

Through cross-comparison, it is found in Fig. 4 shows that the R_e values derived from the ρ_{TOA} data of each sensor exhibited a good linear correlation with values derived from the GOCI data. The R_e values in the red band derived from the L8/OLI, S2/MSI and GOCI data...
are basically equivalent for any type of water body. Figure 4(c) shows that the S2/MSI R_{rs} against the GOCI R_{rs} displays a “noisy” result (with RMSE = 0.0045 sr$^{-1}$ and MAPE = 33.22%), which may be related to its high dispersion in ρ_{TOA} as shown in Fig. 3(c).

Fig. 4. Scatterplots of GOCI versus GF-1/WVF, L8/OLI and S2/MSI of R_{rs} at red bands on March 15, 2014 (a), March 12, 2015 (b), and July 20, 2016 (c), in the Yangtze Estuary and adjacent coasts, respectively. The solid red line corresponds to the 1:1 line, and the blue dotted line corresponds to the linear regression for each sensor.

The correlation results of R_{rs} at the blue (~490 nm), green (~560 nm), red (~660 nm) and NIR (~865 nm) bands are shown in Table 4. The results indicate that the R_{rs} at the red band of the high-resolution sensors exhibits better correspondence and a lower MAPE compared with that of GOCI among the four visible and NIR bands, which is why this band is used to derive the SPM concentration. The R_{rs} of GF-1/WVF and L8/OLI is consistent with that of GOCI, especially at the red and blue bands, while the R_{rs} of S2/MSI exhibits a low R^2 value when compared with that of GOCI, which can be attributed to the low SNR of the sensor. S2/MSI presents lower R_{rs} values than GOCI, which may be influenced by sun glint, which can cause an overestimation of the AOT during atmospheric correction. Some large values of MAPE are observed in NIR bands, where the R_{rs} of GOCI in some regions are close to zero. For the blue band, the three sensors have low R^2 values when compared with GOCI because this band is insensitive to SPM changes; thus, the resolution differences have a significant effect on the R^2 value.

Table 4. Cross-comparison results of R_{rs} at four bands (GF-1/WVF, L8/OLI, and S2/MSI images on March 15, 2014, March 12, 2015, and July 20, 2016, respectively). The gain and offset values are the fitting coefficients (GOCI vs other sensors) shown in Fig. 4.

Bands	Gain R_{rs} GF-1/WVF	Gain R_{rs} L8/OLI	Offset R_{rs} L8/OLI	R^2	MAPE	RMSE (sr$^{-1}$)
Blue	1.0709	0.7775	−0.0026	0.7565	6.10%	0.0016
	L8/OLI					
	S2/MSI					
	GF-1/WVF					
	Green					
Green	LG/OLI	0.7775	0.0059	0.7302	4.33%	0.0013
	S2/MSI	0.9410	−0.0043	0.5625	65.94%	0.0061
	GF-1/WVF	1.1275	0.0025	0.8935	17.17%	0.0063
Red	LG/OLI	1.1838	−0.0068	0.9006	6.76%	0.0020
	S2/MSI	0.9936	−0.005	0.6271	34.80%	0.0058
	GF-1/WVF	0.9815	0.0001	0.9838	3.75%	0.0013
NIR	LG/OLI	1.0163	−0.0005	0.9430	5.87%	0.0019
	S2/MSI	1.0571	−0.005	0.9016	33.22%	0.0045
	GF-1/WVF	1.0200	−0.0001	0.9661	12.02%	0.0022
	L8/OLI	0.9343	−0.0041	0.9709	90.57%	0.0055
	S2/MSI	0.9115	−0.0032	0.8300	159.47%	0.0060
4.3 Cross-comparison of derived SPM and in situ data

Because of the wide range of SPM concentrations (from 10^0 to 10^3 mg/L) in the Yangtze Estuary, Shen et al. [1,20,21] proposed a scheme of multiple band shifting for SPM retrievals. To examine the compatibility of the SPM retrieval algorithm applied to multi-source satellite data, the R_{rs} value at the red bands from the GF-1/WFV, L8/OLI and S2/MSI products with the best consistency was adopted for the SPM inversion, although using a single red band for the retrieval might lead to underestimated SPM values for extremely high SPM waters. A comparison of three pairs of images, GF-1/WFV vs. GOCI images on March 15, 2014, L8/OLI vs. GOCI images on March 12, 2015, and S2/MSI vs. GOCI images on July 20, 2016, is shown in Fig. 5, and the results indicate that the SPM distributions from each pair of images exhibit a good consistency.

![SPM images](image)

Fig. 5. SPM concentrations derived from data from four satellites in the Yangtze Estuary and Hangzhou Bay area.
Furthermore, the scatterplots of the derived SPM shown in Fig. 6 indicate better agreements by the pairwise contrasts, although the L8/OLI-derived SPM exhibits slight underestimation for extremely turbid waters (e.g., SPM > 0.4 g/L) compared with the GOCI-derived SPM. This underestimation is caused by the underestimation of L8/OLI \(R_a \) (see Fig. 4(b)) originating from the SWIR-based method for the atmospheric correction algorithm, which may produce an error over extremely turbid waters according to Pan et al. [12]. GF-1-derived SPM shows the best result with \(R^2 = 0.9898 \) and RMSE = 0.0151 g/L.

A total of 55 SPM data points derived from GOCI imagery without cloud coverage over the Chongxi station were observed in 2014 to 2016, and 27 match-ups with GF-1/WFV data, 13 match-ups with L8/OLI data, 3 match-ups with S2/MSI data and 38 match-ups with in situ data were used for the cross-comparison. To ensure the quality of the GOCI images, only GOCI images collected at 10:30 were selected, and they are shown in Fig. 7. The empty points indicate that the high-resolution sensor-derived SPM concentrations have bigger differences from the GOCI-derived concentrations.

Figure 7 indicates that the GOCI-derived SPM and in situ SPM values are approximately the same and consistent with the overall change trend. The SPM values derived from GF-1/WFV are similar to those derived from GOCI. However, some empty squares shown in 2014 were mostly caused by the instability of the radiation calibration. The SPM values derived from L8/OLI on February 27, 2016, and July 20, 2016 (empty pink circles), are slightly lower due to the contribution from high reflectance in the SWIR band caused by high turbidity water and the differences between actual and standard atmosphere [3] in Rayleigh and ozone optical thickness. Therefore, these empty points are not included in the statistics. Obviously, multiple in-orbit high-resolution satellite missions can greatly increase the number of high-resolution images and shorten the revisit period, especially with the multi-camera
technology equipped on GF-1 and dual stars of S2 achieved in March 2017, which are beneficial to studies of aquatic environments in estuaries and coasts.

5. Discussion

5.1 Cross-comparison of multiple sensors

In the cross-comparison between multi-source satellite data, the first important step is the radiometric calibration for converting sensor-received signals to physical variables such as ρ_{TOA}. For in-orbit satellite missions, the coefficients for radiometric calibration can be recalibrated and readjusted by incorporating onboard solar/lunar calibration and in-orbit vicarious calibration. For instance, the absolute radiance-calibrated operational products from L8/OLI were determined to have an uncertainty of approximately 2-3% compared to ground measurements and other in-orbit measurements after the launch of the satellite [22]. Our results in Figs. 3 and 4 show that the L8/OLI data exhibit good consistency with the GOCI data in red band of the ρ_{TOA}. The results from Li et al. [23] indicated that the ρ_{TOA} of S2/MSI was approximately consistent with the ρ_{TOA} of L8/OLI at each waveband over coastal waters. However, the reflectance was slightly higher in the red band, which was also observed in our results as shown in Fig. 3. A study on the vicarious calibration of GF-1 data carried out in June 2013 showed that the uncertainty of the calibration based on multiple ground measurements was 5.35% [24], which was slightly higher than that of the L8/OLI data.

Figure 4(b) shows that the L8/OLI R_s derived from ACOLITE code compared to the GOCI R_s derived from the method proposed by Pan et al. [18] remained at approximately the 1:1 line. However, the L8/OLI R_s at the red band (e.g., 660 nm) was slightly lower than the GOCI R_s and seemed to be underestimated in extremely turbid waters, such as in Hangzhou Bay. The results suggested that the atmospheric correction of L8/OLI data based on the SWIR dark pixel method might not be ideal for extremely turbid waters. The S2/MSI sensor was also processed using the ACOLITE code, and it exhibited acceptable correspondence with GOCI R_s values along the 1:1 line. In addition, GF-1/WFV showed the closest relationship with the R_s values of GOCI, with $R^2 = 0.9838$ and RMSE = 0.0013 sr$^{-1}$.

5.2 Impact of SNR

The NE_{ρ} and NE_{SPM} were calculated according to section 3.4 and Table 5. Because NE_{ρ} and NE_{SPM} are largely influenced by the solar zenith angle, Fig. 8 shows the changes in the NE_{ρ} values (left panel) and NE_{SPM} values (right panel) with increases in the solar zenith angle from 0° to 80° in the visible and NIR bands.

![Fig. 8. NE_{ρ} values (left panel) and NE_{SPM} values (right panel) in the green, red and NIR bands of GF-1/WFV, S2/MSI, L8/OLI and GOCI with an increase in the solar zenith angle (θ).]
Table 5. Information on E_0, SNR and L_{ref} at the bands centered over the green, red and NIR spectral range for L8/OLI, GOCI, GF-1/WFV and S2/MSI sensors. SNR and L_{ref} for L8/OLI, GOCI and S2/MSI can also be found in Observing Systems Capability Analysis and Review Tool (OSCAR, http://www.wmo-sat.info/oscar/spacecapabilities).

Sensor	Center band (nm)	E_0 (W m$^{-2}$ μm$^{-1}$)	SNR	L_{ref} (W m$^{-2}$ sr$^{-1}$ μm$^{-1}$)
L8/OLI (Green)	565	1893	100 (low signal)	30 (low signal)
L8/OLI (Red)	655	1603	90 (low signal)	22 (low signal)
L8/OLI (NIR)	865	972.6	90 (low signal)	14 (low signal)
GOCI (Green)	555	1529	1070	56
GOCI (Red)	660	1529	1010	32
GOCI (NIR)	865	1529	750	16
GF-1/WFV (Green)	555	1849	125*	28.2*
GF-1/WFV (Red)	665	1529	77*	11.1*
GF-1/WFV (NIR)	823	1065	34*	2.9*
S2/MSI (Green)	560	1536	168	128
S2/MSI (Red)	665	1536	142	108
S2/MSI (NIR)	865	1536	72	52.4

*SNR and L_{ref} of GF-1/WFV are referred to Li et al. [25].

Figure 8 shows that S2/MSI has a high $NE_ρ$ and is influenced largely by noise. L8/OLI and GF-1/WFV have the same approximate $NE_ρ$ values. In contrast, GOCI has the lowest $NE_ρ$ value among the four sensors because it is an ocean color sensor. The three high-resolution satellite missions acquire earth imagery at approximately 10:00 am Beijing time, when the solar zenith angle is less than 60° and the $NE_ρ$ values are less than 0.45% throughout the year in the Yangtze Estuary. Additionally, the sensitivities of one sensor in various bands are basically the same and present a deviation of less than 0.09%.

NE_{SPM} is determined by both $NE_ρ$ and solar zenith angle. NIR bands have higher NE_{SPM} values than red and green bands for the same sensor. Among the three high-resolution satellite sensors, GF-1/WFV and L8/OLI had sensitivities greater than 0.5 mg/L in SPM ($θ < 30°$), while S2/MSI had lower sensitivity, especially in the NIR band, which can only detect variations greater than 10 mg/L in turbid waters ($θ < 30°$). As indicated by Shen et al. [20], the decreased sensitivity would impact ocean color inversions, for instance, the SPM inversion using the NIR band when the SPM > 0.25 g/L in extremely turbid waters. However, such sensitivity is appropriate for lake or ocean observations.

5.3 Impact of spatial resolution

The spatial resolution should have a remarkable impact on the imaging accuracy of objects with high spatial variability. To quantify the impact of the spatial resolution, the S2/MSI image on July 20, 2016, was selected; the targets of a bounding and nail dam in a zoomed-in subimage were located in the Hengsha Dongtan, as shown in Fig. 9(a). The spatial resolution of the image was resized to 10 m (origin), 30 m and 500 m (Figs. 9(a-c)). The areas circled by blue (I, I’, I”) and orange (II, II’, II”) boxes are the L_{TOA} samples in varied and unvaried regions. A cross-comparison of the L_{TOA} in these regions is shown in Figs. 9(d-g).
The bounding and nail dam targets can be identified on the images with 10 m and 30 m spatial resolutions but are not recognized on the image with a 500 m resolution. For estuarine-scale observations, the optimum spatial resolution should be less than 100 m (or 50 m for some cases) [25]. The cross-comparison of S2/MSI images with fine and coarse resolutions revealed that the degraded resolution of the \(L_{TOA} \) values (e.g., from 10 to 30 m and 10 to 500 m) results in significant errors, especially in the high CV regions, i.e., \(\text{RMSE} = 7.1 \, \text{W m}^{-2} \, \text{sr}^{-1} \, \mu\text{m}^{-1} \) in 10 m vs 30 m (see Fig. 9(d)) and \(\text{RMSE} = 13.2 \, \text{W m}^{-2} \, \text{sr}^{-1} \, \mu\text{m}^{-1} \) in 10 m vs 500 m (See Fig. 9(e)). Meanwhile, the degraded resolution also reduces the correlation with the original data, especially in the low CV region (see Fig. 9(g)). In addition, details of the satellite image are quickly lost when the resolution degrades. The CV values in regions I, I’, and I” change from 22.27% for the image at 10 m resolution to 16.57% for the image at 500 m resolution, which is characterized by increased horizontal striping [3] as well as decreased linear regression slopes in the scatterplots (see Figs. 9(d, e)). As a result, different spatial resolutions certainly impact the precision of the cross-comparisons of data/products, e.g., between multi-sensor data/products in fine and coarse resolutions or between satellite and \textit{in situ} data.

6. Conclusions

In this work, data from different product levels, such as \(P_{TOA} \) and atmospherically corrected \(R_a \) data, and products, e.g., SPM, that were derived separately from three in-orbit high-resolution satellite sensors, i.e., L8/OLI, S2A/MSI and GF-1/WFV, against corresponding data from GOCI, were utilized for cross-comparison. Satellite data from the GOCI ocean color sensor and \textit{in situ} data from autonomous observation stations were used to validate
high-resolution data and derived products. In this study, high-resolution land observation satellites are applied for ocean color applications in medium- and small-scale estuaries.

The results of the cross-comparison indicated that the ρ_{TOA} derived from the three high-resolution remote sensing sensors, i.e., S2/MSI, L8/OLI and GF-1/WFV, is consistent with the ρ_{TOA} of GOCI in the visible bands. The ρ_{TOA} at 660 nm from the three high-resolution sensors against the ρ_{TOA} of GOCI all display excellent linear functions with $R^2 > 0.95$ and RMSE < 0.03. After performing atmospheric correction, the R_n values at 660 nm separately from the three high-resolution sensors are in perfect correspondence with GOCI data and follow the 1:1 line.

The SPM data separately derived from the high-resolution sensors show good consistency with the SPM data derived from GOCI, except for the slight underestimation from L8/OLI for extremely turbid waters. However, some deviations between satellite- and OBS-derived SPM data still exist, which may be caused by the limited spatial resolution of remotely sensed data, the accuracy of the OBS measurements and the imperfect radiometric calibration and atmospheric correction.

The analysis of the impact of the SNR of the sensors on the satellite products reveals that the radiometric sensitivities of GF-1/WFV and L8/OLI are relatively high, with minimally detectable variations greater than 0.06% in reflectance and 0.5 mg/L in SPM for solar zenith angles $< 30^\circ$. The radiometric sensitivity of S2/MSI is slightly lower than that of the other sensors, with a detectable variation in SPM of 1.5 mg/L in moderately turbid water for solar zenith angles $< 30^\circ$. In regard to the impact of satellite spatial resolution, the details and variances (defined as CV) of satellite imagery can be lost when the spatial resolution is downscaled. Importantly, the spatial characteristics of the SPM distribution and pattern will be lost at coarse resolutions, e.g., from CV = 22.27% at 10 m to CV = 16.57% at 500 m. Moreover, a coarse spatial resolution can lead to a decline in precision, e.g., RMSE = 7.1 W m$^{-2}$ sr$^{-1}$ μm$^{-1}$ at 10 m vs 30 m (a variation of approximately 0.013 g/L in the SPM) and RMSE = 13.2 W m$^{-2}$ sr$^{-1}$ μm$^{-1}$ at 10 m vs 500 m (a variation of approximately 0.026 g/L in the SPM) for the high CV regions, which also means that the impacts from the spatial resolution on the SPM are larger than those from the SNR.

As a result, our confidence in ocean color applications in medium- and small-scale waters using high-resolution satellites that were initially developed for terrestrial applications is therefore enhanced because of these sensors have advantages of high spatial resolution, acceptable SNR and radiometric sensitivity. Cross-comparisons of sensor-measured data and derived products from multi-source satellite can promote improvements to sensor calibration, and they can also be used to examine the consistency of algorithms for atmospheric corrections and water component inversions. This method will also allow for the production of merged multi-source high-resolution satellite products with high frequency time series in the future, which are required for port and waterway traffic and maintenance in estuaries.

Funding

National Key R&D Program of China (2016YFE0103200); BELSPO-funded HYPERMAQ project (SR/00/335); Natural National Science Foundation of China (NSFC) (41771378, 51739005).

Acknowledgments

We greatly thank the CRESDA for providing the GF-1/WFV data, the USGS and NASA for the Landsat-8 data, the ESA for the Sentinel-2 data and the KORDI/KOSC for the GOCI data. The Remote Sensing and Ecosystem Modelling (REMSEM) team of the Royal Belgian Institute of Natural Sciences is thanked for the ACOLITE software. Two reviewers and Yangyang Liu are acknowledged for their careful reading of the manuscript and helpful comments.
References

1. F. Shen, Y. Zhou, X. Peng, and Y. Chen, “Satellite multi-sensor mapping of suspended particulate matter in turbid estuarine and coastal ocean, China,” Int. J. Remote Sens. 35(11-12), 4173–4192 (2014).

2. C. O. Davis, M. Kavaunagh, R. Letelier, W. P. Bissett, and D. Kohler, “Spatial and spectral resolution considerations for imaging coastal waters,” (International Society for Optics and Photonics, 2007), p. 66800P.

3. Q. Vanhellemont and K. Ruddick, “Turbid wakes associated with offshore wind turbines observed with Landsat 8,” Remote Sens. Environ. 145, 105–115 (2014).

4. Y. Wang, J. Shen, Q. He, L. Zhu, and D. Zhang, “Seasonal variations of transport time of freshwater exchanges between Changjiang Estuary and its adjacent regions,” ESTUAR COAST SHELF S 157, 109–119 (2015).

5. P. Shang and F. Shen, “Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary,” Sensors (Basel) 16(12), 1997 (2016).

6. D. Doxaran, J. M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters,” Remote Sens. Environ. 81(1), 149–161 (2002).

7. S. L. Yang and P. X. Ding, “Temporal change in bed level of a river mouth channel, Yangtze River mouth: with emphasis on the response to river discharge and storm,” J COASTAL RES 17, 297–308 (2001).

8. C. Shenliang, Z. Guoan, and Y. Shilun, “Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary,” J. Geogr. Sci. 13(4), 498–506 (2003).

9. S. Zuo, N. Zhang, B. Li, and S. Chen, “A study of suspended sediment concentration in Yangshan deep-water port in Shanghai, China,” Int. J. Sediment Res. 27(1), 50–60 (2012).

10. H. Liu, Q. He, Y. Wang, and X. Zhai, “OBS situ calibration research in the turbidity maximum of the Changjiang Estuary,” J. Sediment. Res. 5, 52–58 (2006).

11. Y. Z. Xue, Q. He, and Y. Wang, “The method and application of OBS in the measurement of sediment concentration,” J. Sediment. Res. 4, 56–60 (2004).

12. Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).

13. J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. Oceans 117, 4357–4360 (2012).

14. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 coastal zone color scanner,” Appl. Opt. 27(5), 862–871 (1988).

15. M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE T GEOSCI REMOTE 44(11), 3196 (2006).

16. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).

17. Y. Pan, F. Shen, and W. Verhoef, “An improved spectral optimization algorithm for atmospheric correction over turbid coastal waters: A case study from the Changjiang (Yangtze) estuary and the adjacent coast,” Remote Sens. Environ. 191, 197–214 (2017).

18. Y. Pan, F. Shen, and X. Wei, “Fusion of Landsat-8/OLI and GOCI Data for Hourly Mapping of Suspended Particulate Matter at High Spatial Resolution: A Case Study in the Yangtze (Changjiang) Estuary,” Remote Sens. (Basel) 10(2), 158 (2018).

19. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowski, J. Wendell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).

20. F. Shen, W. Verhoef, Y. Zhou, M. S. Salamova, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” ESTUAR COAST 33(6), 1420–1429 (2010).

21. F. Shen, Y. Zhou, J. Li, Q. He, and W. Verhoef, “Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast,” Cont. Shelf Res. 69, 52–61 (2013).

22. B. Markham, J. Barsi, G. Kvaran, L. Ong, E. Kaita, S. Biggar, J. Czaplaners, N. Mishra, and D. Helder, “Landsat-8 Operational Land Imager Radiometric Calibration and Stability,” Remote Sens. (Basel) 6(12), 12275–12308 (2014).

23. S. Li, S. Ganguly, J. L. Dungan, W. Wang, and R. R. Nemani, “Sentinel-2 MSI Radiometric Characterization and Cross-Calibration with Landsat-8 OLI,” ADV REMOTE SENS 06(02), 147–159 (2017).

24. Q. Han, X. Zhang, Z. Qiao, L. Yang, Z. Pan, and L. Liu, “Wide dynamic radiometric calibration of GF-1 PMS sensors using multi-test sites,” ISPRS J PHOTOGRAMM 106, 145–156 (2015).