Post-Quantum Authenticated Encryption Against Chosen-Ciphertext Side-Channel Attacks

Melissa Azouaoui, Yulia Kuzovkova, Tobias Schneider and Christine van Vredendaal
firstname.lastname@nxp.com

CHES 2022 - September 18-21, 2022 - Leuven, Belgium
PQC KEY ENCAPSULATION MECHANISM

3rd round of the NIST PQC standardization

- Crystals-Kyber
- Classic McEliece
- Saber
- NTRU
- NTRU-prime
- Frodo-KEM
- BIKE
- HQC
- SIKE

Primary KEM to standardize
KEM moving to 4th round
FUJISAKI OKAMOTO TRANSFORM

3rd round of the NIST PQC standardization

Crystals-Kyber
Classic McEliece
NTRU
NTRU-prime
Saber
NTRU
Frodo-KEM
BIKE
HQC

IND-CPA-secure PKE

FO

IND-CCA-secure KEM

FO = Fujisaki-Okamoto Transform
FUJISAKI OKAMOTO TRANSFORM

- CCA KEM Decapsulation -
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

Chosen-Ciphertext SCA

- CCA KEM Decapsulation -
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

When maliciously crafted ciphertexts are decrypted, they depend on a small/enumerable part of the secret key.
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

Decapsulator

Malicious Encapsulator

Dec $= F(\text{Decapsulator})$
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

Decapsulator

Malicious Encapsulator

Dec = Decapsulator

Encapsulator

\[\text{Dec} = \text{Decapsulator} \]

\[\text{Encapsulator} = \text{Encapsulator} \]

\[\text{Dec} = \text{F}(\text{Decapsulator}) \]

\[\text{Encapsulator} = \text{F}(\text{Encapsulator}) \]

\[\text{Decapsulator} \xrightarrow{\text{Dec}} \text{F}(\text{Decapsulator}) \xrightarrow{\text{FO}} \text{Encapsulator} \]
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

Decapsulator

Malicious Encapsulator

\[\text{Decapsulator} = \text{Decapsulator} \]

\[\text{Encapsulator} = \text{Encapsulator} \]

\[\text{Dec} = \text{Dec} \]

\[\text{FO} = \text{FO} \]

\[\text{Malicious} = \text{Malicious} \]
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

Decapsulator

Malicious Encapsulator

Dec = FO = Encapsulator

Dec

FO = F(Dec)
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

- Ravi et al. “Generic Side-channel attacks on CCA-secure lattice-based PKE and KEMs” TCHES 2020
- Xu et al. “Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber” IEEE Transactions on Computers, 2021
- Qin et al. “A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs” ASIACRYPT 2021
- Ngo et al. “A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM Implementation” TCHES 2021
- Ravi et al. “Will You Cross the Threshold for Me? - Generic Side-Channel Assisted Chosen-Ciphertext Attacks on NTRU-based KEMs” TCHES 2022
- Ueno et al. “Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum KEMs” TCHES 2022
- Shen et al. “Find the Bad Apples: An efficient method for perfect key recovery under imperfect SCA oracles – A case study of Kyber” IACR ePrint archive 2022
- Ngo et al. “Side-Channel Attacks on Lattice-Based KEMs Are Not Prevented by Higher-Order Masking” IACR ePring archive 2022
- Rajedran et al. “Pushing the Limits of Generic Side-Channel Attacks on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber KEM and Beyond” IACR ePrint archive 2022
- …
SIDE-CHANNEL ATTACKS ON THE FO-TRANSFORM

- Ravi et al. “Generic Side-channel attacks on CCA-secure lattice-based PKE and KEMs” TCHES 2020
- Xu et al. “Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber” IEEE Transactions on Computers, 2021
- Qin et al. “A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs” ASIACRYPT 2021
- Ngo et al. “A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM Implementation” TCHES 2021
- Ravi et al. “Will You Cross the Threshold for Me? - Generic Side-Channel Assisted Chosen-Ciphertext Attacks on NTRU-based KEMs” TCHES 2022
- Ueno et al. “Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum KEMs” TCHES 2022
- Shen et al. “Find the Bad Apples: An efficient method for perfect key recovery under imperfect SCA oracles – A case study of Kyber” IACR ePrint archive 2022
- Ngo et al. “Side-Channel Attacks on Lattice-Based KEMs Are Not Prevented by Higher-Order Masking” IACR ePring archive 2022
- Rajedran et al. “Pushing the Limits of Generic Side-Channel Attacks on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber KEM and Beyond” IACR ePrint archive 2022
- ...
High order masking is the main countermeasure against SCA

- The leakage of the FO implies an increase of 1 to 2 masking shares to achieve a target security \([ABF+22]\)
- Implies slowdown factors ranging from \(\times 1.2\) to \(\times 3\)

\[ABH+21\] Azouaoui, M., Bronchain, O., Hoffmann, C., Kuzovkova, Y., Schneider, T., Standaert, FX. “Systematic Study of Decryption and Re-encryption Leakage: The Case of Kyber”. COSADE 2022.
A CLOSER LOOK AT THE COST OF DECAPSULATION

Table 4: STM32F4 ARM Cortex-M4 MCU Performance numbers for masked Kyber.CCAKEM.Dec and its subroutines in kCycles.

Operation	Number of shares					
	2	3	4	5	6	7
Kyber.CCAKEM.Decaps	3178	57141	97294	174220	258437	350529
Kyber.CPAPKE.Dec	200	4203	7047	13542	20323	27230
Kyber.CPAPKE.Enc	2024	18879	32594	53298	75692	104191
comparison (c = c')	693	32293	54725	102922	156075	210518
G	98	1639	2801	4489	6456	8794
H	113	113	113	113	113	113
H'	13	13	13	13	13	13

- Masked decryption is <8% of the cost of masked decapsulation
- Cost of masked decapsulation is dominated by the masked FO
A VERY SIMPLE IDEA

Replace expensive FO by a signature verification of the ciphertext. Signature verification only uses public data and does not require SCA protection. Never decrypt untrusted ciphertexts.
A VERY SIMPLE IDEA

Replace expensive FO by a signature verification of the ciphertext. Signature verification only uses public data and does not require SCA protection. Never decrypt untrusted ciphertexts.

- Based on the Encrypt-then-Sign ($\mathcal{E}_t\mathcal{S}$) paradigm
- CCA security shown in [ADR02]

Theorem 2. If \mathcal{E} is IND-CPA-secure, and \mathcal{S} is UF-CMA-secure, then $\mathcal{E}_t\mathcal{S}$ is IND-gCCA2-secure in the Outsider- and UF-CMA-secure in the Insider-security models.

- Post-quantum CCA security shown in [CPPS20]

[ADR02] An, JH., Dodis, Y., Rabin, R. “On the Security of Joint Signature and Encryption”. EUROCRYPT 2002.

[CPPS20] Chatterjee, S., Pandit, T., Puria, SKP., Shah, A. “Signcryption in a Quantum World”. IACR ePrint Arch., 2020.
- CCA FO KEM Decapsulation -
THE $\mathcal{E}tS$ KEM VS. THE FO KEM

- CCA FO KEM Decapsulation -
THE E_tS KEM VS. THE FO KEM

- CPA PKE Decryption -
THE $\mathcal{E}tS$ KEM VS. THE FO KEM

- CCA $\mathcal{E}tS$ KEM Decapsulation -
Outsider vs. Insider security models

Outsider security
- Adversary is not a legitimate user of the system.
- Adversary does not have a trusted signature key pair and cannot sign ciphertexts.

Insider security
- Adversary can be the sender.
- Adversary can sign ciphertexts and receiver verifies these signatures.

[ADR02] An, JH., Dodis, Y., Rabin, R. “On the Security of Joint Signature and Encryption”. EUROCRYPT 2002.
OUTSIDER VS. INSIDER SECURITY

Outsider vs. Insider security models

Outsider security
- Adversary is not a legitimate user of the system.
- Adversary does not have a trusted signature key pair and cannot sign ciphertexts.

Insider security
- Adversary can be the sender.
- Adversary can sign ciphertexts and receiver verifies these signatures.

[ADR02] An, JH., Dodis, Y., Rabin, R. “On the Security of Joint Signature and Encryption”. EUROCRYPT 2002.
THE \mathcal{E}_tS KEM FOR SECURE ENCRYPTED UPDATE MECHANISM

Step 1: provisioning

Step 2: update ready

Step 3: KEX/KEM

Step 4: encrypt and sign

Step 5: send update

Outsider security

\mathcal{E}_tS KEM
THE \(\textit{EtS} \) KEM VS. THE FO KEM

Num. of shares	Kyber.Decaps	\(\textit{EtS} \) Kyber + Dilithium 3	\(\textit{EtS} \) Kyber + Falcon-1024
2	3178	2568 (80.8%)	1316 (41.41%)
3	57141	6571 (11.5%)	5319 (9.3%)
4	97294	9415 (9.7%)	8163 (8.4%)
5	174220	15910 (9.1%)	14658 (8.4%)
6	258437	22691 (8.9%)	21439 (8.3%)
7	350529	29598 (8.4%)	28346 (8.1%)

Kannwischer, MJ., Rijneveld, J., Schwabe, P., Stoffelen, K. "pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4". 2019.
THE $\mathcal{E}tS$ KEM VS. THE FO KEM

Num. of shares	Kyber-Decaps	$\mathcal{E}tS$ Kyber + Dilithium 3	$\mathcal{E}tS$ Kyber + Falcon-1024
2	3178	2568 (80.8%)	1316 (41.41%)
3	57141	6571 (11.5%)	5319 (9.3%)
4	97294	9415 (9.7%)	8163 (8.4%)
5	174220	15910 (9.1%)	14658 (8.4%)
6	258437	22691 (8.9%)	21439 (8.3%)
7	350529	29598 (8.4%)	28346 (8.1%)

Kannwischer, MJ., Rijneveld, J., Schwabe, P., Stoffelen, K. "pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4". 2019.
The ℓtS KEM vs. The FO KEM

Num. of shares	Scheme		
	Kyber.Decaps	ℓtS Kyber + Dilithium 3	ℓtS Kyber + Falcon-1024
2	3178	2568 (80.8%)	1316 (41.41%)
3	57141	6571 (11.5%)	5319 (9.3%)
4	97294	9415 (9.7%)	8163 (8.4%)
5	174220	15910 (9.1%)	14658 (8.4%)
6	258437	22691 (8.9%)	21439 (8.3%)
7	350529	29598 (8.4%)	28346 (8.1%)

Kannwischer, MJ., Rijneveld, J., Schwabe, P., Stoffelen, K. "pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4". 2019.
THE $\mathcal{E}tS$ KEM VS. THE FO KEM

Num. of shares	Scheme	Kyber.Decaps	$\mathcal{E}tS$ Kyber + Dilithium 3	$\mathcal{E}tS$ Kyber + Falcon-1024
2		3178	2568 (80.8%)	1316 (41.41%)
3		57141	6571 (11.5%)	5319 (9.3%)
4		97294	9415 (9.7%)	8163 (8.4%)
5		174220	15910 (9.1%)	14658 (8.4%)
6		258437	22691 (8.9%)	21439 (8.3%)
7		350529	29598 (8.4%)	28346 (8.1%)

Ciphertext size

- 1088 bytes
- 4381 bytes
- 2368 bytes

Kannwischer, MJ., Rijneveld, J., Schwabe, P., Stoffelen, K. "pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4". 2019.
THE $\mathcal{E}tS$ KEM VS. THE FO KEM

Pros	Cons
− More efficient ($\times8$ to $\times12$ depending on signature verification speed and number of masking shares)	− Larger ciphertext ($\times2$ to $\times4$ depending on choice of signature scheme)
− We remove the FO SCA vector	− We introduce the signature verification FIA vector
THE $\mathcal{E}tS$ KEM VS. THE FO KEM

- FO SCA vector \rightarrow Signature verification FIA vector
- SCA protecting FO vs. FIA protecting signature verification
- Ad hoc countermeasure against FIA is re-computation (Recomputing m times protects against $m - 1$ faults)

Impact of protecting the signature verification against fault injection is trivial compared to the cost of masking the FO at high order
The \kem vs. The FO KEM

Pros	Cons
− More efficient ($\times 8$ to $\times 12$ depending on signature verification speed and number of masking shares)	− Larger ciphertext ($\times 2$ to $\times 4$ depending on choice of signature scheme)
− We remove the FO SCA vector	− We introduce the signature verification FIA vector
− Fault protection of signature verification is less challenging and costly than SCA protection of the FO	
CONCLUSION

- The $\mathcal{E}t\mathcal{S}$ KEM is a simple solution to achieve improved leakage resilience for post-quantum KEMs for practical use cases in the outsider security model
- The $\mathcal{E}t\mathcal{S}$ KEM significantly speeds up and reduces the attack surface for post-quantum secure encrypted updates

OUTLOOK

- Find other applications that could benefit from the $\mathcal{E}t\mathcal{S}$ KEM (e.g., IoT edge communication, banking applications)
- Investigate lattice-based PQC schemes for encryption and signature (e.g., SETLA [GM18])

[GM18] Gérard. F., Merckx. K., “SETLA: Signature and Encryption from Lattices”. CANS 2018.
THANK YOU.

QUESTIONS?

CONTACT: PQC@NXP.COM | NXP.COM/PQC