Spin-liquid insulators can be Landau’s Fermi liquids

Michele Fabrizio

1International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy

The long search for insulating materials that possess low-energy quasiparticles carrying electron’s quantum numbers except charge – inspired by the neutral spin-1/2 excitations, the so-called spinons, exhibited by Anderson’s resonating-valence-bond state – seems to have reached a turning point after the discovery of several Mott insulators displaying same thermal and magnetic properties as metals, including quantum oscillations in a magnetic field. Here, we show that such anomalous behaviour is not inconsistent with Landau’s Fermi liquid theory of quasiparticles at a Luttinger surface. That is the manifold of zeros within the Brillouin zone of the single-particle Green’s function at zero frequency, and which thus defines the spinon Fermi surface conjectured by Anderson.

Nonetheless, the insulating character poses constraints to Landau’s Fermi liquid theory, most notably the vanishing of Drude weight and of charge compressibility. Here, we show that these constraints can be fulfilled. We conclude that a Landau Fermi liquid can well be insulating, and analyse its physical properties with special emphasis on the quantum oscillations in a magnetic field.

Uncovering Landau quasiparticles – In what follows, we consider a periodic model with a single band of interacting electrons, and assume that neither translational symmetry nor spin rotational one are broken. The single-particle Green’s function is therefore diagonal in momentum \(\mathbf{k} \) and spin \(\sigma = \uparrow, \downarrow \), and independent of the latter. In Matsubara frequencies, \(\epsilon = (2n + 1)\pi T \), the Green’s function satisfies Dyson’s equation

\[
G(i\epsilon, \mathbf{k}) = \frac{1}{i\epsilon - \epsilon(\mathbf{k}) - \Sigma(i\epsilon, \mathbf{k})},
\]

where \(\epsilon(\mathbf{k}) \) is the non-interacting energy dispersion in momentum space measured with respect to the chemical potential, and \(\Sigma(i\epsilon, \mathbf{k}) \) the self-energy that, like \(G(i\epsilon, \mathbf{k}) \), has a real part even in \(\epsilon \), while

\[
\text{Im} \Sigma(i\epsilon, \mathbf{k}) = -\text{Im} \Sigma(-i\epsilon, \mathbf{k}) \begin{cases} < 0 & \epsilon > 0, \\ > 0 & \epsilon < 0. \end{cases}
\]

We define the real function

\[
Z(\epsilon, \mathbf{k}) = Z(-\epsilon, \mathbf{k}) = \left(1 - \frac{\text{Im} \Sigma(i\epsilon, \mathbf{k})}{\epsilon}\right)^{-1},
\]

which, because of \(\Sigma \), varies in the interval \([0, 1]\). Through \(Z(\epsilon, \mathbf{k}) \) we can rewrite Eq. 1 as

\[
G(i\epsilon, \mathbf{k}) = \frac{Z(\epsilon, \mathbf{k})}{i\epsilon - \epsilon(\mathbf{k}) - \epsilon(\mathbf{k}) - \Sigma(i\epsilon, \mathbf{k})},
\]

with real

\[
\epsilon_+(\epsilon, \mathbf{k}) = \epsilon_+(-\epsilon, \mathbf{k}) = Z(\epsilon, \mathbf{k}) \left(\epsilon(\mathbf{k}) + \text{Re} \Sigma(i\epsilon, \mathbf{k})\right).
\]

Landau’s Fermi liquid theory can be formally derived under the assumption that \(\epsilon_+(\epsilon, \mathbf{k}) \) and \(Z(\epsilon, \mathbf{k}) \) are analytic,
at least to leading order, in ϵ around $\epsilon = 0$, as well as in k close to the surface defined by $\epsilon_s(0, k) = 0$ \cite{38}. This assumption is equivalent to assuming that $\Sigma(i\epsilon, k)$ is analytic at any non-zero ϵ, which includes conventional Fermi liquids as the special case of $\Sigma(i\epsilon, k)$ analytic also at $\epsilon = 0$, but also allows for poles of $\Sigma(i\epsilon, k)$ for $\epsilon \to 0$.

The actual quasiparticles have energy dispersion $\epsilon_s(k) \equiv \epsilon_s(0, k)$ and residue $Z(k) \equiv Z(0, k)$. The roots of $\epsilon_s(k)$ in momentum space define the \textit{quasiparticle Fermi surface} that, because of the definition \cite{40}, correspond

- either to the roots of $\epsilon(k) + \text{Re} \Sigma(0, k)$, the conventional Fermi surface, or
- those of $Z(0, k)$, the so-called Luttinger surface \cite{41}.

Therefore, well-defined quasiparticles exist at Fermi as well at Luttinger surfaces, and that despite the vanishing quasiparticle residue $Z(k)$ at the Luttinger surface implies the absence of quasiparticle peaks in the physical electron density of states.

\textit{Fermi liquid properties} – We recall that Landau’s Fermi liquid theory allows calculating linear response functions at low temperature, low frequency and long wavelength in terms of two unknown functions: the quasiparticle dispersion $\epsilon_s(k)$ and the Landau parameters $f_{k\sigma, k'\sigma'}$, where σ and σ' are the spins of the quasiparticles with momentum k and k', respectively. In reality, this huge simplification just applies to densities of conserved quantities and their currents defined through the continuity equation. Indeed, only in those cases one can exploit the Ward-Takahashi identities and relate vertex to self-energy corrections \cite{39}.

In a single-band periodic model, the conserved quantities are the electron number $N = N_\uparrow + N_\downarrow$, the energy E, and the magnetisation along a given axis, e.g., $M = N_\uparrow - N_\downarrow$. We denote by $\chi_{\rho q}(\omega, q)$ and $\chi_{Jq}(\omega, q)$ the proper response functions, respectively, of the density, ρ_q, and current, J_Q, operators associated to the conserved quantity $Q = N, E, M$, i.e., the response functions irreducible with respect to cutting a Coulomb interaction line. The thermodynamic susceptibilities are simply obtainable through $\chi_Q = -\chi_{\rho q}^q$, where $\chi_{\rho q}^q \equiv \chi_{\rho q}(\omega = 0, q \to 0)$ is the so-called q-limit of the density response function. We recall that the specific heat is actually defined through $C_v = \chi_E / T$.

In absence of impurities, the low-temperature conductivities have the standard Drude-like expression $\sigma_Q(\omega) = i D_Q / (\omega + i0^+)$, where the Drude weights D_Q coincide with the so-called ω-limit of the corresponding current response functions: $D_Q = \chi_{JQ}^\sigma \equiv \chi_{JQ}(\omega \to 0, q = 0)$. Similarly to the specific heat, the thermal conductivity is defined by $\sigma_E(\omega) / T$.

According to Landau’s Fermi-liquid theory \cite{37},

\begin{equation}
\begin{aligned}
\chi_{N/M}(k) &= -2 \int \frac{dk}{(2\pi)^d} \frac{\partial f(\epsilon_s(k))}{\partial \epsilon_s(k)} \left(1 - A_{S/A}(k)\right),
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
D_{N/M}(k) &= -\frac{2}{d} \int \frac{dk}{(2\pi)^d} \frac{\partial f(\epsilon_s(k))}{\partial \epsilon_s(k)} v_s(k) \cdot v_{S/A}(k),
\end{aligned}
\end{equation}

where $d > 1$ is the dimension (in $d = 1$ Landau’s Fermi liquid theory is not applicable \cite{38}), $f(x)$ the Fermi distribution function, $v_s(k) = \partial\epsilon_s(k) / \partial k$ the quasiparticle group velocity, and

\begin{equation}
\begin{aligned}
A_{S/A}(k) &= - \int \frac{dk}{(2\pi)^d} \frac{\partial f(\epsilon_s(k'))}{\partial \epsilon_s(k')} A_{S/A}^{k,k'},
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\tau_{S/A}(k) &= v_s(k) + \int \frac{dk'}{(2\pi)^d} \frac{\partial f(\epsilon_s(k'))}{\partial \epsilon_s(k')} v_s(k') f_{S/A}^{k,k'}. \tag{7}
\end{aligned}
\end{equation}

The parameters $A_{S/A}^{k,k'}$ correspond to the q-limit of the quasiparticle scattering amplitudes in the spin-singlet (S) and spin-triplet (A) particle-hole channels, and are related to the f-parameters, the ω-limit counterparts,

\begin{equation}
\begin{aligned}
f_{S,k,k'} &= f_{k\uparrow,k'\uparrow} + f_{k\uparrow,k'\downarrow},
\end{aligned}
\end{equation}

through the Bethe-Salpeter equation

\begin{equation}
\begin{aligned}
A_{S/A}^{k,k'} = f_{S/A}^{k,k'} + \int \frac{dp}{(2\pi)^d} \frac{\partial f(\epsilon_s(p))}{\partial \epsilon_s(p)} f_{k,p}^{S/A} A_{S/A}^{p,k'}. \tag{8}
\end{aligned}
\end{equation}

Similarly, the specific heat C_v and the Drude weight K of the thermal conductivity read

\begin{equation}
\begin{aligned}
C_v &= -\frac{2}{T} \int \frac{dk}{(2\pi)^d} \frac{\partial f(\epsilon_s(k))}{\partial \epsilon_s(k)} \epsilon_s(k)^2
- \frac{2}{T} \int \frac{dk dk'}{(2\pi)^d} \frac{\partial f(\epsilon_s(k))}{\partial \epsilon_s(k)} \frac{\partial f(\epsilon_s(k'))}{\partial \epsilon_s(k')} \epsilon_s(k) \epsilon_s(k') A_{S/A}^{k,k'},
\end{aligned}
\end{equation}

\begin{equation}
K = -\frac{2}{dT} \int \frac{dk}{(2\pi)^d} \frac{\partial f(\epsilon_s(k))}{\partial \epsilon_s(k)} \epsilon_s(k)^2 |v_s(k)|^2 + \frac{2}{dT} \int \frac{dk dk'}{(2\pi)^d} \frac{\partial f(\epsilon_s(k))}{\partial \epsilon_s(k)} \frac{\partial f(\epsilon_s(k'))}{\partial \epsilon_s(k')} \epsilon_s(k) \epsilon_s(k') v_s(k) \cdot v_s(k') f_{S/A}^{k,k'}.
\end{equation}

The first term on the right hand side of both equations is linear in temperature T. Conversely, the second terms give a finite contribution at low T only upon expanding $A_{S/A}^{k,k'}$ and $f_{S/A}^{k,k'}$ in $\epsilon_s(k)$ and $\epsilon_s(k')$, as well as including higher order corrections in the heat vertex as obtained through the Ward-Takahashi identity. All those corrections yield at first sight terms of order T^3. In reality, the expansion is not regular. For instance, the corrections to the linear term of the specific heat are actually of order T^d \cite{42, 43}, with logarithmic corrections in $d = 3$.

$T^3 \ln 1/T$. Nonetheless, at leading order in T only the first terms contribute, and thus

$$C_v \simeq \frac{2\pi^2}{3} T \rho_s, \quad K \simeq C_v \frac{v^2}{d},$$

where

$$\rho_s \equiv \int \frac{d\mathbf{k}}{(2\pi)^d} \delta(\epsilon_s(\mathbf{k})), \quad (10)$$
is the quasiparticle density of states at the chemical potential, and

$$v_s^2 \equiv \frac{1}{\rho_s} \int \frac{d\mathbf{k}}{(2\pi)^d} \delta(\epsilon_s(\mathbf{k})) |v_s(\mathbf{k})|^2. \quad (11)$$

Mott insulators with a Luttinger surface - Let us now consider a hypothetical model that has only a Luttinger surface in the Brillouin zone, with finite quasiparticle density of states at the chemical potential, $\rho_s \neq 0$ in Eq. (10). Since quasiparticles at the Luttinger surface are invisible in the single-particle density of states and incompressible [35], the system describes a non-symmetry breaking Mott insulator that may only occur at half-filling in a single-band model.

In a Mott insulator with localised electrons, we expect that $f^S_{k^+k^+} \simeq 0$, which implies $f^S_{k,k'} \simeq -f^A_{k,k'}$ and $A^S_{k,k'} \simeq -A^A_{k,k'}$. However, for the system to be a charge insulator, we need to impose that the compressibility χ_N and charge Drude weight D_N in Eq. (1) vanish, which implies, through Eq. (7), that $A_S(\mathbf{k}) = 1$ plus a correction that averages to zero on the Luttinger surface, as well as that the flux of $\nu_s(\mathbf{k})$ out of the Luttinger surface is zero. In turn, since $A_A(\mathbf{k}) \simeq -A_S(\mathbf{k}) = -1$ and $\nu_A(\mathbf{k}) \simeq 2\nu_s(\mathbf{k}) - \nu_s(\mathbf{k})$, then, through Eqs. (10) and (11), the spin susceptibility χ_M and Drude weight D_M become simply

$$\chi_M \simeq 4\rho_s, \quad D_M \simeq \frac{4}{d} \rho_s v_s^2. \quad (12)$$

Comparing (12) with (9), we find that the Wilson ratio, which measures the effective correlation strength, is

$$R_W = \frac{\pi^2 T}{3C_v} \chi_M \simeq 2. \quad (13)$$

Therefore, a Landau Fermi liquid characterised by a Luttinger surface without Fermi pockets may indeed have charge properties of an insulator, while spin and thermal ones of a metal, in that not dissimilar from a spin-liquid insulator with gapless spinons.

We mention that conventional Fermi liquids often do not survive down to $T = 0$, since they may encounter an instability at $T_c > 0$ towards a different phase that, most of the times, breaks symmetries and opens gaps in the quasiparticle spectrum. Well known examples are the superconducting and superfluidity instabilities in normal metals and 3He, respectively. A Fermi liquid description of such an instability is justified when quasiparticles have already reached quantum degeneracy at T_c, which implies that T_c must be much smaller than the quasiparticle Fermi energy ϵ_F.

Similarly, we cannot exclude that also quasiparticles at a Luttinger surface, the gapless spinons, may become unstable at $T_c \ll \epsilon_F$ towards, e.g., a magnetically ordered phase, and eventually acquire a gap. In this case, which presumably corresponds to highly frustrated magnets, the above Fermi liquid properties would still be observable for $T_c \ll T \ll \epsilon_F$. On the contrary, if $T_c \sim \epsilon_F$, likely the case of unfrustrated magnets, the quantum degenerate behaviour of quasiparticles at the Luttinger surface cannot set in before the instability.

Quantum oscillations - The next relevant question to be addressed is whether quasiparticles at a Luttinger surface contribute to quantum oscillations in a magnetic field B. On one hand, the semiclassical approach to the de Haas-van Alphen (dAvH) effect by Lifshitz and Kosevich [44], which just relies on the existence of quasiparticles, would suggest a positive answer. However, the vanishing Drude weight implies, through (10) and (7), that

$$0 = -\int d\mathbf{k} \frac{\partial f(\epsilon_s(\mathbf{k}))}{\partial \mathbf{k}} \cdot \nu_S(\mathbf{k})$$

$$= \int d\mathbf{k} f(\epsilon_s(\mathbf{k})) \nabla_\mathbf{k} \cdot \nu_S(\mathbf{k})$$

$$= \int d\mathbf{k} f(\epsilon_s(\mathbf{k})) \text{Tr} \left(\hat{m}_c(\mathbf{k})^{-1} \right),$$

where $\hat{m}_c(\mathbf{k})$ is the cyclotron mass tensor as it emerges from the Landau-Boltzmann transport equation. Considering, for simplicity, an isotropic $\hat{m}_c(\mathbf{k}) = m_c(\mathbf{k}) \hat{I}$, it follows that vanishing Drude weight is equivalent to vanishing $1/m_c(\mathbf{k})$, or, equivalently, vanishing cyclotron frequency, once integrated over the volume enclosed by the Luttinger surface. That hints at the absence of quantum oscillations, in contrast to the previous observation.

To resolve this issue, we resort to Luttinger’s theory of the de Haas-van Alphen effect in interacting electron systems [43]. Luttinger showed that the leading oscillatory part of the free energy derives from

$$\Delta F_{osc} = -T \sum_\epsilon e^{i\epsilon \tau_+} \text{Tr} \ln \left(ie - \hat{H}_0 - \hat{\Sigma}(ie) \right), \quad (14)$$

where \hat{H}_0 is the non-interacting Hamiltonian, which includes the static and uniform magnetic field B, represented in a generic basis of single particle wavefunctions. The self-energy matrix $\hat{\Sigma}(ie)$ in (14) must include any polynomial in B but not oscillatory terms in $1/B$ [43].
In matrix notations, we now define
\[\hat{Z}(\epsilon)^{-1} = 1 - \frac{\text{Im} \hat{\Sigma}(\epsilon)}{\epsilon}, \]
which is a positive-definite matrix with eigenvalues \(\geq 1 \), and the hermitian matrix
\[\hat{H}_s(\epsilon) = \sqrt{\hat{Z}(\epsilon) \left(\hat{H}_0 + \text{Re} \hat{\Sigma}(i\epsilon) \right)} \sqrt{\hat{Z}(\epsilon)}. \]
With these definitions that generalise \(3 \) and \(5 \), the free energy component \(14 \) becomes
\[\Delta F_{\text{osc}} = -T \sum_\epsilon e^{i\epsilon 0^+} \text{Tr} \ln \left(i\epsilon - \hat{H}_s(\epsilon) \right) \]
\[+ T \sum_\epsilon e^{i\epsilon 0^+} \text{Tr} \ln \hat{Z}(\epsilon) \]
\[= \Delta F_{\text{osc}}^{(1)} + \Delta F_{\text{osc}}^{(2)}. \tag{15} \]
In conventional Fermi liquids, where \(\hat{Z}(0) \) has no null eigenvalue, the first term, \(\Delta F_{\text{osc}}^{(1)} \), is the only that contributes and yields the Lifshitz and Kosevich theory of the dHvA effect, as shown by Luttinger \(15 \). Indeed, in the semiclassical limit, \(\hat{H}_s(\epsilon) \) becomes the representation in the chosen basis of the operator \(\epsilon_s(\epsilon, \mathbf{K}(\mathbf{r})) \), Eq. \(15 \) with \(\mathbf{k} \) replaced by
\[\mathbf{K}(\mathbf{r}) = -i \hbar \frac{\partial}{\partial \mathbf{r}} + \frac{e}{2c} \mathbf{B} \wedge \mathbf{r}, \tag{16} \]
and thus
\[\Delta F_{\text{osc}}^{(1)} \simeq -T \sum_\epsilon e^{i\epsilon 0^+} \text{Tr} \ln \left(i\epsilon - \epsilon_s(\mathbf{K}(\mathbf{r})) \right). \tag{17} \]
After that, one can simply follow Lifshitz and Kosevich \(14 \) and derive the expression of the dHvA oscillations. However, in the present case of a Luttinger surface, also \(\Delta F_{\text{osc}}^{(2)} \) in \(15 \) may contribute since \(\hat{Z}(\epsilon) \) has zero eigenvalues at \(\epsilon = 0 \). To assess their role, we note that \(\hat{Z}(\epsilon) \) in the semiclassical limit is the representation of the operator \(Z(\epsilon, \mathbf{K}(\mathbf{r})) \), i.e., of \(Z(\epsilon, \mathbf{k}) \) in Eq. \(3 \) with \(\mathbf{k} \to \mathbf{K}(\mathbf{r}) \). Moreover, the contribution of \(\Delta F_{\text{osc}}^{(2)} \) to quantum oscillations only derives from the region around the zeros of \(Z(\epsilon, \mathbf{k}) \) \(46 \), i.e., small \(\epsilon \) and \(\mathbf{k} \) close to the Luttinger surface. In that region, we can write, without loss of generality and consistently with the analytic assumption, that \(38, 47 \)
\[\Sigma(\epsilon, \mathbf{k}) \simeq \frac{\Delta(k)^2}{\epsilon - E(k)}, \tag{18} \]
where \(\mathbf{k}_L : E(k_L) = 0 \) defines the Luttinger surface pro-
vided \(\Delta(k_L) \neq 0 \), so that, for \(\epsilon \approx 0 \) and \(\mathbf{k} \approx \mathbf{k}_L \),
\[Z(\epsilon, \mathbf{k}) = \frac{\epsilon^2 + E(k)^2 + \Delta(k)^2}{\epsilon^2 + E(k)^2 + \Delta(k)^2}, \]
\[\simeq \frac{\epsilon^2 + E(k)^2}{\Delta(k)^2}, \tag{19} \]
which, as anticipated, are analytic. Therefore,
\[Z(\epsilon, \mathbf{K}(\mathbf{r})) \simeq \epsilon^2 + \epsilon_s(\mathbf{K}(\mathbf{r}))^2 \]
\[= \left(i\epsilon - \epsilon_s(\mathbf{K}(\mathbf{r})) \right) \left(-i\epsilon - \epsilon_s(\mathbf{K}(\mathbf{r})) \right), \]
and, correspondingly,
\[\Delta F_{\text{osc}}^{(2)} \simeq T \sum_\epsilon e^{i\epsilon 0^+} \left[\ln \left(i\epsilon - \epsilon_s(\mathbf{K}(\mathbf{r})) \right) \right. \]
\[+ \ln \left(-i\epsilon - \epsilon_s(\mathbf{K}(\mathbf{r})) \right) \right] \tag{20} \]
so that, through \(17 \) and \(20 \), Eq. \(15 \) becomes
\[\Delta F_{\text{osc}} \simeq T \sum_\epsilon e^{i\epsilon 0^+} \ln \left(-i\epsilon - \epsilon_s(\mathbf{K}(\mathbf{r})) \right) \]
\[\simeq -\Delta F_{\text{osc}}^{(1)}, \tag{21} \]
as can be readily verified following Lifshitz and Kosevich \(14 \). As a result, quasiparticles at the Luttinger surface of a Mott insulator do yield dHvA oscillations in the magnetisation \(-\partial F_{\text{osc}} / \partial B \) alike conventional quasiparticles with dispersion \(\epsilon_s(\mathbf{k}) \), apart from a \(\pi \)-shift.

Concluding remarks – Few remarks are now in order. Conventional theories of spin-liquids \(14, 51 \) predict that a spinon Fermi surface is most likely associated to so-called \(U(1) \) spin liquids, apart from few known exceptions \(52, 55 \). In that \(U(1) \)-case, the specific heat behaves at low temperature as \(T^{2/3} \) and \(T \ln 1/T \) in \(d = 2 \) and \(d = 3 \), respectively \(52, 59, 60 \), and, correspondingly, \(\kappa/T \) diverges for \(T \to 0 \) \(22 \). These thermal properties, different from the observed ones, challenge the spin-liquid interpretation. Finite \(C_v/T \) and \(\kappa/T \) for \(T \to 0 \) may be, for instance, attributed to magnetic impurities, assuming a gapped spin liquid phase lacking a spinon Fermi surface \(20 \). However, this explanation implies that also quantum oscillations are not due to spinons, and thus that all intriguing thermal and magnetic properties observed in experiments are unrelated to the purported spin liquid nature of the material, which is a bit disappointing.

On the contrary, the Fermi liquid properties of a Mott insulator with a Luttinger surface seem to account for
all experimental evidences. Nonetheless, the analyticity assumption on the self-energy underlying Landau’s Fermi liquid theory is evidently incompatible with the above mentioned non-analytic behaviour of U(1) spin liquids with a spinon Fermi surface. Therefore, either that analytic behaviour never occurs in physical models, or Mott insulators with a Luttinger surface realise one of the above mentioned exceptions of spin liquids with a spinon Fermi surface.

Indeed, an example of a spin liquid with $C_v \sim T$ is very well known: the half-filled Hubbard model in one dimension. Even though interacting electrons in $d = 1$ behave as Luttinger liquids, their low-frequency, low-temperature and long-wavelength properties are just alike conventional Fermi liquids, including the specific heat that, as we mentioned, is obtainable by the q-limit of the heat–heat response function. In particular, the half-filled Hubbard model in $d = 1$ is an insulator that has a Luttinger surface at $k = \pm \pi/2$ as well as gapless spinons that yield a finite spin susceptibility, a “FIRSTORM”. Under the European Union’s Horizon 2020 research and innovation programme, this work was funded by the European Research Council (ERC), including decisive contributions from Enrico Tosatti for helpful discussions and comments. This work was further further supported by the ERC under the European Union’s Horizon 2020 research and innovation programme, Grant agreement No. 692670 "FIRSTORM".

The author is very grateful to Andrey Chubukov and Erio Tosatti for helpful discussions and comments. This work was funded by the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme, Grant agreement No. 692670 "FIRSTORM".

[1] B. S. Tan, Y.-T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlapou, A. Srivastava, M. D. Johannes, T. P. Murphy, J.-H. Park, L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Science 349, 287 (2015) https://science.sciencemag.org/content/349/6245/287.full.pdf

[2] M. Hartstein, W. H. Toews, Y.-T. Hsu, B. Zeng, X. Chen, M. C. Hatnean, Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano, J. H. Park, L. Balicas, N. Harrison, N. Shirsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, M. Sutherland, and S. E. Sebastian, Nature Physics 14, 166 (2018)

[3] Z. Xiang, Y. Kasahara, T. Asaba, B. Lawson, C. Tinsman, L. Chen, K. Sugimoto, S. Kawaguchi, Y. Sato, G. Li, S. Yao, Y. L. Chen, F. Iga, J. Singleton, Y. Matsuda, and L. Li, Science 362, 65 (2018) https://www.science.org/doi/pdf/10.1126/science.aap9607

[4] Y. Sato, Z. Xiang, Y. Kasahara, T. Taniguchi, S. Kasahara, L. Chen, T. Asaba, C. Tinsman, H. Murayama, O. Tanaka, Y. Mizukami, T. Shibaiuchi, F. Iga, J. Singleton, L. Li, and Y. Matsuda, Nature Physics 15, 954 (2019)

[5] M. Hartstein, H. Liu, Y.-T. Hsu, B. S. Tan, M. Ciomaga, N. Yamashita, N. Nakata, Y. Senshu, M. Na-

[6] A. Ribak, I. Silber, C. Baines, K. Chashka, M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, H. Murayama, Y. Sato, T. Taniguchi, R. Kurihara, J. M. Ni, B. L. Pan, B. Q. Song, Y. Y. Huang, J. Y. Zeng, S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, Y. J. Yu, Y. Xu, L. P. He, M. Kratochvilova, Y. Y. S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, M. Hartstein, H. Liu, Y.-T. Hsu, B. S. Tan, M. Ciomaga, P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, M.-E. Boulanger, F. Laliberté, M. Dion, S. Badoux, N. Doiron-Leyraud, W. A. Phelan, S. M. Koollpayeh, W. T. Fuhrman, J. R. Chamorro, T. M. McQueen, X. F. Wang, Y. Nakajima, T. Metz, J. Pagdione, and L. Taillefer, Phys. Rev. B 97, 245111 (2018)

[7] A. Kitaev, J. I. Cirac, C. Baines, K. Chashka, M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, H. Murayama, Y. Sato, T. Taniguchi, R. Kurihara, J. M. Ni, B. L. Pan, B. Q. Song, Y. Y. Huang, J. Y. Zeng, S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, Y. J. Yu, Y. Xu, L. P. He, M. Kratochvilova, Y. Y. S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, M. Hartstein, H. Liu, Y.-T. Hsu, B. S. Tan, M. Ciomaga, P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, M.-E. Boulanger, F. Laliberté, M. Dion, S. Badoux, N. Doiron-Leyraud, W. A. Phelan, S. M. Koollpayeh, W. T. Fuhrman, J. R. Chamorro, T. M. McQueen, X. F. Wang, Y. Nakajima, T. Metz, J. Pagdione, and L. Taillefer, Phys. Rev. B 97, 245111 (2018)

[8] A. Kitaev, J. I. Cirac, C. Baines, K. Chashka, M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, H. Murayama, Y. Sato, T. Taniguchi, R. Kurihara, J. M. Ni, B. L. Pan, B. Q. Song, Y. Y. Huang, J. Y. Zeng, S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, Y. J. Yu, Y. Xu, L. P. He, M. Kratochvilova, Y. Y. S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, M. Hartstein, H. Liu, Y.-T. Hsu, B. S. Tan, M. Ciomaga, P. Czajka, T. Gao, M. Hirschberger, P. Lampen-Kelley, M.-E. Boulanger, F. Laliberté, M. Dion, S. Badoux, N. Doiron-Leyraud, W. A. Phelan, S. M. Koollpayeh, W. T. Fuhrman, J. R. Chamorro, T. M. McQueen, X. F. Wang, Y. Nakajima, T. Metz, J. Pagdione, and L. Taillefer, Phys. Rev. B 97, 245111 (2018)
