Effect of biocide addition on plantlet growth and contamination occurrence during the in vitro culture of blueberry

Yoon Sun Huh · Joung Kwan Lee · Ik Jei Kim · Bo Goo Kang · Ki Yeol Lee

Received: 16 March 2015 / Revised: 11 May 2015 / Accepted: 11 May 2015 © Korean Society for Plant Biotechnology

Abstract Interest and great demand for blueberry (Vaccinium corymbosum) have increased, as V. corymbosum is now one of the most economically important crops in Korea. It is expected that blueberry production and the area planted for cultivation will increase consistently in the years ahead because of high profitability and the consumer’s demand for healthy ingredients. Effective mass production of blueberry is urgently needed for commercial cultivation establishment, but a main limitation is lack of a propagation system that produces a disease-free plant material for commercial plantation. A large amount of research has focused entirely on developing tissue culture techniques for blueberry propagation. However, controlling fungal and bacterial contamination of woody plant material is extremely difficult. Our study was conducted to investigate the effect of biocide addition during the in vitro culture of blueberry on plantlet growth and contamination occurrence. Four biocides, including Plant Preservative Mixture (PPM™), vancomycin, nystatin and penicillin G, were used in varying concentrations during the in vitro propagation of blueberry. When nystatin was added into the medium at low concentrations, the overall growth of blueberry plantlets was retarded. Addition of vancomycin and penicillin G in high concentrations decreased contamination but induced plantlet mortality. On the other hand, when 1ml/L PPM™ was added, the growth characteristics of blueberry plantlets did not significantly differ from non-treatment (control), and the contamination occurrence rate was very low. From these results, we found that the addition of the appropriate biocide could provide an effective method to reduce contamination in the culture process, thereby raising in vitro production efficiency.

Keywords Contaminant, In vitro culture, Nystatin, Penicillin G, PPM, Vancomycin

Introduction

Vaccinium fruits are now considered as a health food because they exhibit relatively high antioxidant and anti-inflammatory properties (Prior et al. 1998; Ehlenfeldt and Prior 2001; Zheng and Wang 2003). Blueberry (Vaccinium corymbosum) is by far the most important commercial crop worldwide, as well as in Korea. Cultivars of these crops are vegetatively propagated by stem cuttings to maintain their hereditary characteristics (Douglas 1966). This propagation method is slow and many genotypes do not properly respond to root-inducing growth regulators. As an effective alternative, tissue culture techniques have been used for rapid mass propagation of superior genotypes (regardless of season) and the production of virus-free plants. In addition, these in vitro culture techniques are broadly applied in conventional breeding programs (Meiners et al. 2007).

However, microbial contamination usually occurs during the plant tissue culture process, causing many serious problems. Contamination by different sources, such as bacteria and fungi, reduces productivity and prevents successful culture procedures. Therefore, various methods are used to eliminate bacterial and fungal contamination, including the application of sterilizing agents and antibiotics and fungicides, and inactivation by heat and light (Kneifel and Leonhardt 1992; Leifert et al. 1992; Salehi et al. 1997; Haldeman et al. 1987; Reed and Tanprasert 1995; Seckinger 1995). After surface sterilization, explants are either submerged in an antibiotic-antimycotic solution, or these agents are added
to the culture medium to hinder the growth of microorganisms on the explants (Colgecen et al. 2011).

Contaminants are often difficult to detect because they predominantly remain within the plant tissue (Viss et al. 1991). Contaminated plants may exhibit no visible symptoms, reduced multiplication and rooting rates, or may die (Leifert et al. 1989). Introduction of microorganisms results from poor aseptic technique or inadequately sterilized equipment, but can be overcome with improvements in training or equipment handling. However, elimination of internal contaminants is much more serious and problematic (Buckley et al. 1995). Ideal antimicrobial agents should be soluble, stable, unaffected by pH and media, lacking in side effects, broadly bactericidal and fungicidal, suitable in combinations, nonresistance-inducing, inexpensive and nontoxic to human health (Falkiner 1990). Therefore, many biocides have been evaluated on the bacterial and fungal contaminants of various plants.

Plant Preservative Mixture (PPM™) is a combination of two broad-spectrum industrial isothiazolone biocides, chloromethylisothiazolone and methylisothiazolone. The active ingredients in PPM™ also include magnesium chloride, magnesium nitrate, potassium sorbate and sodium benzoate. This agent is heat stable and can be autoclaved with culture medium (Lunghusen 1998). Mutants resistant to PPM™ rarely develop because it targets specific multiple enzymatic sites in the Krebs cycle and electron transport chain of microorganisms (Chapman and Diehl 1995). Niedz (1998) tested PPM™ with many types of citrus tissue culture and demonstrated that it could be used with culture media to prevent bacterial and fungal contamination. The positive effects of PPM™ have been reported in a number of plants, including the non-embryogenic callus of sweet orange, shoot regeneration of rough lemon, adventitious melon, petunia, tobacco and pepper (Compton and Koch 2001; Guri and Patel 1998).

Nystatin is a fungistatic and fungicidal polyene antibiotic that increases the permeability of the cell membrane of sensitive fungi by binding to sterols, chiefly ergosterol (Brezzis et al. 1984). Its main action is against Candida species. It is also effective against Aspergillus, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum, Blastomyces dermatidis and other yeasts and fungi (Garrod et al. 1981; Medoff and Kobayashi 1980).

Vancomycin is an amphoteric glycopeptide antibiotic produced by Streptomyces orientalis. It inhibits bacterial cell wall synthesis by binding to peptidoglycans. This antibiotic has a relatively narrow spectrum of activity and prevents the growth of Gram-positive bacteria. All Gram-negative bacteria are known to be resistant (Pollock et al. 1983).

Penicillin G acts by inhibiting cell wall synthesis through binding to penicillin binding proteins (PBPs), inhibiting peptidoglycan chain cross-linking. This antibiotic is active against Gram-positive bacteria but much less effective against Gram-negative organisms (Pollock et al. 1983).

Nowadays various biocides are industrially used as bactericidal and fungicidal compounds, but careful checks need to be performed to confirm that they do not inhibit or alter plant growth during in vitro culture procedures. Therefore, in this study we describe contamination inhibition using different biocides incorporated into the culture media and verify their effects on plantlet growth during the in vitro culture of blueberries.

Materials and Methods

In vitro culture of blueberry plantlets

Three blueberry cultivars (‘Spartan’, ‘Northland’ and ‘Woodard’), which were cultured for in vitro shoot proliferation in woody plant medium (WPM) and Murashige and Skoog medium adjusted to pH 5 and supplemented with growth regulators were used in our experiments. These plantlets were individually obtained from meristem cultures and incubated in 450 ml glass vessels containing 90 ml of culture medium (medium composition depended on the cultivar) at 23±1 °C with a 16h photoperiod (40 μmol·m⁻²·s⁻¹ light intensity).

Biocide addition into the culture medium

Four biocides were used: Plant Preservative Mixture (PPM™), vancomycin, nystatin and penicillin G. For culturing, 0, 0.5, 1, 2 and 4 ml/L PPM™ were added into the blueberry culture medium before autoclaving. Stock solutions of other biocides were made up fresh, filter-sterilized and added to the medium after autoclaving. Vancomycin (0, 1, 2.5, 5, and 10 mg/L), nystatin (0, 10, 25, 50, and 100 mg/L) and penicillin G (0, 0.5, 1, 2, and 4 mg/L) were tested at various concentrations. Blueberry plantlets cultured in proliferation medium were transferred into a separate biocide-containing medium, and each treatment was replicated 5 times. After three months, contamination occurrence, as well as growth characteristics, such as shoot number, shoot length and death rate, were calculated.

Statistical analysis

Data were subjected to a two-way analysis of variance.
Addition with higher concentrations of biocides decreased occurrence in blueberry cultivar ‘Northland’

Effect of biocide addition on plantlet growth and contamination

Results and Discussion

Effect of biocide addition on plantlet growth and contamination occurrence in blueberry cultivar ‘Northland’

Addition with higher concentrations of biocides decreased *in vitro* contamination, increased death rate, and prevented the overall plantlets growth of blueberry cultivar ‘Northland’ (Table 1). In particular, nystatin treatment at a low concentration induced plantlet death, as well as growth retardation.

Table 1 Effect of biocide type and concentration on plantlet growth and contamination after three-month culture of blueberry cultivar ‘Northland’

Biocides Type	Conc.	Shoot No. (plantlet)	Shoot length (mm)	Death rate (%)	Contamination rate (%)	
Vancomycin	0 mg/L	9.8a	20.4a	12.2de	19.2a	
	0.5 mL/L	9.6ab	19.0ab	10.5e	13.4bc	
	PPM	1 mL/L	9.6ab	19.2ab	14.8cede	9.2def
		2 mL/L	9.2ab	17.0abc	25.2abde	8.5def
		4 mL/L	8.4b	17.8abce	26.2abcede	7.9ef
Penicillin G	0 mg/L	9.8a	20.4a	12.2de	19.2a	
	1 mg/L	9.5ab	20.3a	15.9cede	16.4ab	
	2.5 mL/L	9.6ab	17.9abce	33.1ab	14.5b	
	5 mL/L	9.7a	16.8abc	31.7abc	11.5bced	
	10 mL/L	9.3ab	17.3abce	25.3abde	7.7ef	
Nystatin	0 mg/L	9.8a	20.4a	12.2de	19.2a	
	10 mL/L	9.7a	16.0abc	20.2abde	10.7de	
Penicillin G	25 mL/L	9.7a	15.0bcd	19.7abede	9.4def	
	50 mL/L	9.7a	12.9cd	30.5abc	8.2def	
	100 mL/L	9.5ab	11.1d	35.9a	6.8f	
	0 mg/L	9.8a	20.4a	12.2de	19.2a	
	0.5 mL/L	9.5ab	18.9ab	21.2abede	14.8b	
	PPM	1 mL/L	9.6a	18.7ab	18.8bcde	13.1bcde
		2 mL/L	9.5ab	16.6abc	28.2abcd	10.1cdef
		4 mL/L	9.3ab	16.7abc	30.9abc	7.1f

Two-way ANOVA:

Type(A)	Conc.(B)	A × B
1.07^{NS}	1.91^{NS}	0.37^{NS}
6.66***	6.95***	0.62^{NS}
1.80^{NS}	10.48**	0.92^{NS}
7.18**	81.18**	1.58^{NS}

*Mean separation within columns by Duncan's multiple range test at *P* = 0.05.

^{NS}, **Nonsignificant or significant at *P* ≤ 0.05 or 0.01, respectively.
Niedz (1998) demonstrated that PPM could be used with citrus culture medium as a powerful biocide without deteriorating the plant material. On the other hand, Crompton and Koch (2001) tested the effects of PPM on adventitious shoot regeneration in petunia, somatic embryogenesis in melon and androgenesis in tobacco, and reported that the effectiveness of PPM was largely dependent on the plant species tested. Most studies demonstrated the positive effect of PPM to control contamination and emphasized the importance of PPM at the proper concentration, which was indicated to be different depending on the plant species. Therefore, PPM should be used at the proper concentration, as comparatively high concentrations could induce negative effects on the growth and development of plant tissue.

Effect of biocide addition on plantlet growth and contamination occurrence in blueberry cultivar ‘Spartan’ and ‘Woodard’

Biocide addition at relatively higher concentrations also decreased in vitro contamination, increased death rate and prevented plantlet elongation of the blueberry cultivar ‘Spartan’ (Table 2). Nystatin was found to be effective in reducing the contamination rate by half, but had a phytotoxic effect on plantlets in vitro at low concentrations. Vancomycin and penicillin G treatments at higher concentrations decreased

Table 2 Effect of biocide type and concentration on plantlet growth and contamination after three-month culture of blueberry cultivar ‘Spartan’

Biocides	Shoot No./plantlet	Shoot length (mm)	Death rate (%)	Contamination rate (%)
0 ml/L	10.0a	23.7a	13.7d	20.2a
0.5 ml/L	9.4a	22.4ab	12.6d	13.0cd
PPM	0.5 ml/L	9.7a	19.7ab	13.2d
	2 ml/L	9.6a	19.8ab	15.8cd
	4 ml/L	9.4a	17.8bc	21.3abc
1 ml/L	10.0a	22.8ab	12.5d	16.8b
2.5 mg/L	9.5a	21.9ab	21.2abc	14.0c
5 mg/L	9.3a	19.9ab	18.2abcd	10.5defg
10 mg/L	9.5a	19.7ab	21.5abc	8.5fghij
0 mg/L	10.0a	23.7a	13.7d	20.2a
10 mg/L	9.9a	22.6ab	18.1abcd	9.7efgh
Nystatin	25 mg/L	9.8a	20.1ab	21.0abc
	50 mg/L	9.9a	14.6cd	22.8ab
	100 mg/L	9.8a	13.2d	23.9a
Penicillin	0 mg/L	10.0a	23.7a	13.7d
G	0.5 mg/L	9.5a	22.7ab	16.1bcd
	1 mg/L	9.5a	21.0ab	15.7cd
	2 mg/L	9.4a	19.1ab	20.6abc
	4 mg/L	9.5a	20.9ab	24.4a

Two-way ANOVA

Type(A) F value	1.52NS	2.49NS	0.65NS	14.87**
Conc.(B) F value	2.05NS	7.89**	10.21**	89.86**
A × B F value	0.54NS	0.84NS	1.11NS	1.70**

*Mean separation within columns by Duncan’s multiple range test at \(P = 0.05 \).

Table 3 Effect of biocide type and concentration on plantlet growth and contamination after three-month culture of blueberry cultivar ‘Woodard’

Biocides	Shoot No./plantlet	Shoot length (mm)	Death rate (%)	Contamination rate (%)
0 ml/L	9.0a	23.0a	24.3d	21.5a
0.5 ml/L	9.0a	22.1a	23.3d	14.0bcd
PPM	1 ml/L	8.8ab	20.4a	24.9d
	2 ml/L	7.8abc	21.7a	24.7d
	4 ml/L	7.8abc	20.2a	29.8d
10 mg/L	9.0a	23.0a	24.3d	21.5a
1 mg/L	8.0abc	23.7a	25.9d	16.0b
Nystatin	2.5 mg/L	8.1abc	20.4a	23.4d
	5 mg/L	8.1abc	20.5a	26.4d
	10 mg/L	6.7bcd	18.4ab	35.6cd
Penicillin	0 mg/L	9.0a	23.0a	24.3d
G	0.5 mg/L	8.2abc	20.1a	19.1d
	1 mg/L	8.0abc	23.7a	25.9d
	2 mg/L	7.3abcd	20.1a	23.0d
	4 mg/L	7.4abcd	19.3a	25.1d

Two-way ANOVA

Type(A) F value	30.45**	9.51**	20.66**	9.34**
Conc.(B) F value	16.63**	10.06**	6.48**	181.22**
A × B F value	3.83**	2.56**	3.04**	1.22NS

*Mean separation within columns by Duncan’s multiple range test at \(P = 0.05 \).

NS**, **Nonsignificant or significant at \(P \leq 0.05 \) or 0.01, respectively.
contamination efficaciously, but phytotoxicity, as indicated by plantlet death, increased severely. When PPMTM was incorporated into medium at 1 ml/L, the negative effect impairing shoot growth was rarely observed, as contamination considerably declined by 58%. Table 3 shows that 1 ml/L PPMTM was consistently very effective in controlling contamination while being gentle to the shoot growth and proliferation of the blueberry cultivar ‘Woodard’.

Our results from these experiments demonstrated that the industrial biocide PPMTM can be used effectively to control the growth of bacteria and fungi in blueberry tissue cultures. The isothiazolones present in PPMTM exhibited little phytotoxicity at the recommended levels. PPMTM appears to be most effective in inhibiting the growth of air- and waterborne bacteria and fungi. Since it is heat stable and can be autoclaved with the plant growth medium, it may be best suited for use as a preservative agent in culture medium to control contamination.

Acknowledgements

This research was supported by Agricultural Biotechnology Development Program from the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries in 2013.

References

Babaoglu M, Yorgancilar M (2000) TDZ-specific plant regeneration in salad burnet. Plant Cell Tiss Org Cult 63:31-34
Brezis M, Rosen S, Silva P, Spokes K, Epstein FH (1984) Polyene toxicity in renal medulla: injury mediated by transport activity. Science 224:66-68
Buckley PM, De Wilde TN, Reed BM (1995) Characterization and identification of bacteria isolated from micropropagated mint plants. In vitro Cell Dev Bio 21:58-64
Chapman JS, Diehl MA (1995) Methylchloroisothiazolone-induced growth inhibition and lethality in Escherichia coli. Appl Bacteriol 78:134-141
Colgecen H, Koca U, Toker G (2011) Influence of different sterilization methods on callus initiation and production of pigmented callus in Arnebia densiflora Ledeb. Turk J Biol 35:513-520
Compton M, Koch J (2001) Influence of plant preservative mixture (PPM) on adventitious organogenesis in melon, petunia and tobacco. In vitro Cell Dev Biol Plant 37:259-261
Douglas J (1966) The propagation of highbush blueberries by softwood cuttings. Euphytica 15:304-312
Duncan DB (1955) Multiple range and multiple F-test. Biometrics 11:1-42
Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49:2222-2227
Haldeman JH, Thomas RL, MaKamy DL (1987) Use of benomyl
and rifampicin for in vitro shoot tip culture of *Camellia sinensis* and *C. japonica*. Hort Science 22:306-307

Falkiner FR (1990) The criteria for choosing an antibiotic for control of bacteria in plant tissue culture. Newsletter Intl Assoc Plant Tiss Cul 60:13-23

Garrod LP, Lambert HP, O’Grady F, Waterworth PM (1981) Antibiotics and chemotherapy (5th ed). Churchill Livingstone. Edinburgh.

George MW, Tripepi RR (2001) Plant Preservative Mixture TM can affect shoot regeneration from leaf explants of chrysanthemum, European birch and rhododendron. Hortsci 36: 768-769

Gholamhoseinpour AS, Carapetian J, Dejampour J (2012) Effects of nanosilver and vancomycin in sterilization of peach x almond hybrids in the in vitro cultures. Intl J Agri Sci 2:457-465

Guri AZ, Patel KN (1998) Compositions and methods to prevent microbial contamination of plant tissue culture media. U.S. Patent 5:398-402

Kneifel W, Leonhardt W (1992) Testing of different antibiotics against gram positive and gram negative bacteria isolated from plant tissue cultures. Plant Cell Tiss Organ Cult 29:139-144

Leifert C, Camotta H, Waites WM (1992) Effect of combinations of antibiotics on micropropagated Clematis, Delphinium, Hosta, Iris and Photinia. Plant Cell Tiss Organ Cult. 29:153-160

Leifert C, Waites WM, Nicholas JR (1989) Bacterial contamination of micropropagated plant tissue cultures. J Appl Bact 64: 353-361

Lunghusen J (1998) An effective biocide for plant tissue culture. Aust Hortic 96:46-48

Martina S (1999) Possibility to eliminate endophytic bacteria from plant tissue cultures of *Primula vulgaris* Huds. Europ J Hort Sci 64:9-13

Medoff G, Kobayashi GA (1980) D.C.E. Speller (ed) Antifungal Chemotherapy. Jhon Wiley and Son. Chichester. 3-33

Meiners J, Schwab M, Szankowski I (2007) Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tiss Organ Cult 89:169-176

Mukherji S, Biswas AK (1985) Penicillin action stimulating growth and metabolism in seedlings of rice (*Oryza sativa*). Can J Bot 63:1150-1156

Niedz R (1998) Using isothiazolone biocides to control microbial and fungal contaminants in plant tissue cultures. Hortc Technol 8:598-601

Plant-Cell-Technology (2006) PPM: A powerful tool to prevent or eliminate microbial contamination in plant tissue culture. Downloaded on 19th June 2006. http://www.ppm4plant-tc.com/

Pollock K, Barfield DG, Shields R (1983) The toxicity of antibiotics to plant cell cultures. Plant Cell Rep 2:36-39

Prior RL, Cao G, Martin A, Sofic E, McEwen J, O’Brien C, Lischner N, Ehlenfeldt M, Kalt W, Kremer G, Mainand CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of *Vaccinium* species. J Agric Food Chem 46:2686-2693

Reed BM, Tanprasert P (1995) Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. Plant Tiss Cult Biotechnol 1:137-142

Salehi H, Khosh-Khiu MA (1997) A simple procedure for disinfection of ‘Baby Masquerade’ miniature rose explants. Scientia Horticultura 68:145-148

Seckinger G (1995) The use of antibiotics in plant tissue culture. In vitro cell Dev Biol Plant. 31:25A

Teng WL, Nicholson L (1997) Pulse treatments of penicillin G and streptomycin minimize internal infections and have post-treatment effects on the morphogenesis of ginseng root culture. Plant Cell Rep 16:531-535

Viss PR, Brooks EM, Driver JA (1991) A simplified method for the control of bacterial contamination in woody plant tissue culture. In Vitr Cell Dev Biol 27P:42

Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. J Agric Food Chem 51:502-509