Neutrophils in type 1 diabetes

Juan Huang1, Yang Xiao1, Aimin Xu2, Zhiguang Zhou1*

1Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, and 2State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China

Keywords
Immune cells, Neutrophils, Type 1 diabetes

*Correspondence
Zhiguang Zhou
Tel: +86-138-7310-4348
Fax: +86-731-8529-4018
E-mail address: zhouzg@hotmail.com

J Diabetes Investig 2016; 7: 652–663
doi:10.1111/jdi.12469

INTRODUCTION
Neutrophils, produced in the bone marrow from myeloblasts, were first discovered by Paul Ehrlich in 18791,2. They were also called polymorphonuclear leukocytes by Elie Metchnikoff in 18933. After a 14-day maturation in the bone marrow, neutrophils can be provisionally stored in a pond before being released into the blood4, where they circulate as dormant cells2. When activated, neutrophils are the first cells to be recruited to the locations of inflammation, and provide the first line of defense. They have traditionally been considered as short-lived effector cells (just 8–12 h in the circulation and 1–2 days in tissues), possessing limited capacity for biosynthetic activity and releasing granules and reactive oxygen species (ROS)5,6. However, this classical view was challenged by the development of more sensitive approaches and research tools. It has recently been shown that neutrophils have a longer circulatory life span (up to 5 days) than first suggested (Figure 1)5,6. As an important element of the inflammatory response, neutrophils directly and guide the innate immune response by engaging in complex interactions with macrophages, natural killer cells, dendritic cells and through cross-talk with most of the cellular effector mediators6,7. Stimulated by type I interferons (IFNs), neutrophils can contribute to the host response towards intracellular pathogens by involving gene expression8. After activation, neutrophils can promote an innate immune response through releasing soluble pattern recognition molecules (PRMs), which have the capacity to augment phagocytosis, stimulate complement and modulate inflammation. They can also secrete a diversity of cytokines, neutrophil extracellular traps (NETs), and microorganism- and tissue-damaging molecules to participate in innate resistance6. Through a combination of these cytotoxic substances, neutrophils not only eliminate inflammation, but also damage cells and tissues of the host. Additionally, neutrophils are implicated in the activation, recruitment, programing, and modulation of both innate and adaptive immune cells, and can help mediate the initiation of specific T and B cell immunity through soluble mediators or by direct cell–cell contact3,7,9. Accordingly, an aberrant neutrophil...
response can exacerbate and even initiate a variety of diseases, including autoimmune diseases, such as antineutrophil cytoplasmic antibodies-mediated vasculitis, systemic lupus erythematosus and multiple sclerosis. Over the past decades, a number of studies have implied that neutrophils are involved in the initiation and perpetuation of autoimmune diabetes as follows: (i) circulating neutrophil counts and functions were found to change in diabetes patients; (ii) they can be activated and recruited to pancreatic islets, and were found to initiate autoimmunity in diabetic NOD mice. Furthermore, neutrophils were observed to infiltrate the pancreas in type 1 diabetes patients; (iii) neutrophil toxic tools, such as neutrophil elastase, were proved to increase in type 1 diabetes patients and associate with the pathogenesis of β-cell autoimmunity as well as diabetic complications; and (iv) related antineutrophil treatments were shown to dampen and reduce the development of insulitis and autoimmune diabetes as follows: (i) circulating neutrophil counts and functions were found to change in diabetes patients; (ii) they can be activated and recruited to pancreatic islets, and were found to initiate autoimmunity in diabetic NOD mice. Furthermore, neutrophils were observed to infiltrate the pancreas in type 1 diabetes patients; (iii) neutrophil toxic tools, such as neutrophil elastase, were proved to increase in type 1 diabetes patients and associate with the pathogenesis of β-cell autoimmunity as well as diabetic complications; and (iv) related antineutrophil treatments were shown to dampen and reduce the development of insulitis and autoimmune diabetes. Therefore, it is logical to hypothesize that neutrophils are involved in the pathogenesis of type 1 diabetes.

Figure 1 | Neutrophil-derived multiple effector molecules. During the process of maturation or on stimuli activation, neutrophils can express and/or release numerous cytotoxic substances. Three categories of granules, including azurophil granules, specific granules and gelatinase granules, are discharged during the degranulation process and are recognized as the basis content of their enzyme. Apart from these classical granules, neutrophils contain highly mobilizable secretory vesicles that serve as a reservoir primarily for plasma membrane receptors. Simultaneously with their degranulation, the initiation of nicotinamide adenine dinucleotide phosphate oxidase activity (a part of the cellular respiratory burst) in neutrophils occurs, and then various reactive oxygen species (ROS) are generated. Furthermore, neutrophils can produce numerous cytokines, which are considered to be the most critical effectors because of their vast and diverse of biological activities. In addition, neutrophils can be activated to undergo NETosis (a novel form of cell death) and extrude extracellular fibrillary networks termed neutrophil extracellular traps (NETs).

Figure 1 | Neutrophil-derived multiple effector molecules. During the process of maturation or on stimuli activation, neutrophils can express and/or release numerous cytotoxic substances. Three categories of granules, including azurophil granules, specific granules and gelatinase granules, are discharged during the degranulation process and are recognized as the basis content of their enzyme. Apart from these classical granules, neutrophils contain highly mobilizable secretory vesicles that serve as a reservoir primarily for plasma membrane receptors. Simultaneously with their degranulation, the initiation of nicotinamide adenine dinucleotide phosphate oxidase activity (a part of the cellular respiratory burst) in neutrophils occurs, and then various reactive oxygen species (ROS) are generated. Furthermore, neutrophils can produce numerous cytokines, which are considered to be the most critical effectors because of their vast and diverse of biological activities. In addition, neutrophils can be activated to undergo NETosis (a novel form of cell death) and extrude extracellular fibrillary networks termed neutrophil extracellular traps (NETs). APRIL, a proliferation-inducing ligand; BAFF, B cell activating factor; BPI, bactericidal permeability increasing protein; DNA, deoxyribonucleic acid; EGF, epidermal growth factor; G-CSF, granulocyte colony stimulating factor; HB-EGF, heparin binding epidermal growth factor; HGF, hepatocyte growth factor; IL-1α, interleukin-1 receptor antagonist; MIF, macrophage migration inhibitory factor; PBEF, pre-B cell colony enhancing factor; RANKL, receptor activator for nuclear factor-κB ligand; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; TRAIL, tumor necrosis factor-related apoptosis inducing factor.

NEUTROPHIL COUNTS AND FUNCTIONS IN TYPE 1 DIABETES

Early studies showed that type 1 diabetes patients had higher neutrophil numbers than the controls, and increased neutrophil counts were reported to correlate with an augmented risk of vascular disease (Table 1 lists the changes of neutrophil numbers). It has been concluded that increased levels of circulating neutrophils could be caused by immediate enlistment from the bone marrow and/or the return of marginated cells to the circulatory pond. However, more recent studies showed that circulating neutrophil numbers decreased in patients with type 1 diabetes and healthy autoantibody-positive subjects, which might be associated with β-cell specific autoimmunity. Reduced numbers of blood neutrophils in type 1 diabetes could be a result of abnormal neutrophil yield and maturation, peripheral consumption or damage, and tissue detainment. It was suggested that neutrophils confined in the pancreas should account for the decreased blood neutrophils. The discrepancy in alterations of neutrophil counts from different studies might result from the discoveries from different stages of diabetes or different ethnic groups. Further investigations are required to explain the variance in the changes of neutrophil counts, and a more comprehensive and longitudinal study might clarify the difference. Neutrophil functions were also reported to change at different steps in type 1 diabetes. Clinical studies and experimental data in animal models clearly showed that consistent defects in neutrophil chemoattractant, adhesion and microbicidal activities (Table 1).
Table 1 | Neutrophil counts and functions in autoimmune type 1 diabetes

Neutrophil counts and functions	Alteration	Reference
Counts		
Neutrophil counts	Upregulated	13,14
	Downregulated	15–17
Functions		
Chemotaxis	No change	19,20
Adhesion	Downregulated	21
Microbicidal activities	Downregulated	22–24
Oxidative burst activity	Downregulated	24,25
Migration	Upregulated	26
	Downregulated	22,27
Phagocytosis	No change	23
	Downregulated	22,24,28
Apoptosis	Upregulated	27,29,30

However, literature to date is contradictory in regard to other host defense functions of neutrophil including oxidative burst activity24–26, migration19,22,27, phagocytosis22–24,28 and apoptosis27,29,30. The changed neutrophil functions can be caused by upregulated expression of adhesion molecules28, downregulated receptors31, impaired calcium signaling32 and anomalous activities of adenosine triphosphate synthases on neutrophils33. Although the neutrophil apoptosis rate was significantly correlated with glycated hemoglobin (HbA1c) levels in patients with type 2 diabetes30, research has shown that HbA1c level and history of infection did not seem to affect neutrophil functions in type 1 diabetes patients28. It was reported that neutrophil functions might be closely related to β-cell autoimmunity, as a significant decrease in neutrophil numbers can be detected in type 1 diabetes patients diagnosed within 1 year and in prediabetes, but not in type 1 diabetes patients with long duration17,18. There is abundant evidence showing the effects of environmental factors, such as hyperglycemia and advanced glycation end-products (AGEs) on neutrophil functions, but literature regarding the association of neutrophil dysfunction and genes is scarce. It was suggested that human leukocyte antigen-D related-associated genes were not related to impaired neutrophil functions, though they were closely correlated with type 1 diabetes pathogenesis.

NEUTROPHIL-DERIVED EFFECTOR MOLECULES AND TYPE 1 DIABETES

Adhesion Molecules

Adhesion molecules, existing as soluble and membrane forms, not only play an essential role during neutrophil migration from the bloodstream into target tissue34, but are also involved in the regulation of the immune system35. In autoimmune diabetes, the migration of immune cells from blood vessels into the pancreatic islet is important to exert their potential36. Various studies have shown an involvement of two families of adhesion molecules including selectins and integrins in the development of type 1 diabetes. The selectin family consists of P-selectin (CD62P, GMP-140), L-selectin (CD62L) and E-selectin (CD62E; Table 2 summarizes the neutrophil-related adhesion molecules). L-selectin is predominantly expressed on the surface of various immune cells37. It is rapidly fluxed after the activation of neutrophil38. Soluble L-selectin (sL-selectin) was found to alter in patients with type 1 diabetes, as well as subjects in the preclinical stage of the disease39. Early studies suggested that L-selectin could be one of the new risk markers for type 1 diabetes development in humans and animal models40. Subsequent studies further suggested that elevated levels of sL-selectin are associated with high titers of insulinoma-associated protein 2 antibody in children with type 1 diabetes41 and siblings of diabetic children34. Therefore, augmented sL-selectin expression in patients can manifest an active destructive insulitis process44,41. Furthermore, increased levels of sL-selectin were also reported to correlate with seroconversion to autoantibody positivity, proposing that the activation of leukocytes coincides with the occurrence of β-cell autoimmunity42. However, from the prospective aspect (10 and 2 years, respectively), it was shown that early-onset of β-cell autoimmunity cannot be displayed entirely by elevated concentrations of circulating adhesion molecules42,44. No differences were discovered in the integrated concentrations of sL-selectin associating with distinct autoantibody specificities and titers.

Integrins, heterodimers with an α chain and a common β chain, are composed of β1-integrins and β2-integrins. The three β2-integrin complexes comprise CD11a (leucocyte function antigen-1 [LFA]), CD11b (macrophage-1 [MAC-1] and CD11c (p150,95). LFA is expressed on neutrophil membranes, whereas MAC-1 glycoprotein complex is stored in secondary granules4. LFA-1 was shown to be involved in the initiation of insulitis in humans and type 1 diabetes animal models44,45. Treatment with anti-LFA-1 monoclonal antibodies can delay the spontaneous onset of the disease in NOD mice46,47, and

Table 2 | Neutrophil-related adhesion molecules

Type	Expressed cells	Ligand
Slectins		
P-selectin (CD62P)	Endotheliocyte	PGSL
L-selectin (CD62L)	Neutrophils	Unknown
E-selectin (CD62E)	Endotheliocyte	Unknown
Integrins		
VLA-4 (CD49d)	Neutrophils	VCAM-1 (CD106)
LFA-1 (CD11a)	Neutrophils	ICAM-1 (CD54)
Mac-1 (CD11b)	Neutrophils	ICAM-1 (CD54)
p150 (CD11c)	Neutrophils	Unknown
CD29	Unknown	Unknown

ICAM-1, intercellular adhesion molecule 1; LFA-1, leucocyte function antigen-1; Mac-1, macrophage-1; PGSL, P-selectin glycoprotein ligand; VCAM-1, vascular adhesion molecule-1; VLA-4, very late antigen 4.
has a strong preventive effect on the progression of the disease48,49. The mechanism of prevention appears to result from suppressing effector cells to home to the pancreas. It is well known that LFA-1 can be expressed on neutrophil membranes as well as lymphocytes, monocytes and natural killer cells. To our knowledge, the expression of LFA-1 on neutrophils in type 1 diabetes has not been reported. However, a variety of studies have reported the expression of LFA-1 on monocytes. An early study found that LFA-1 alpha chain expression decreased and the percentage of LFA-1 beta chain-positive monocytes was normal in newly diagnosed patients with type 1 diabetes50. While another study showed that a higher level of LFA-1 on mononuclear cells was observed in overt diabetics in comparison with the controls51, there was a positive interrelation between LFA-1 expression and islet cell autoantibodies (ICA) titer, indicating that LFA-1 plays an important role in type 1 diabetes pathogenesis51. MAC-1, another member of the beta2-integrins, is considered to be associated with vascular event rates, because it is prothrombotic and can mediate leukocytes vascular infiltration52. In type 1 diabetes patients, neutrophils showed higher expression of MAC-1 receptors that are independent of duration of diabetes and HbA1c53. Increased expression of MAC-1 can be caused by acute hyperglycemia54, and might result from impaired neutrophil actin polymerization54. It was observed that elevated expression of MAC-1 could contribute to the pathogenesis of diabetic complications by enhancing adhesion between neutrophils and endothelial cells54,55.

Degranulation Products

Neutrophils are sophisticated cells that communicate with their environment by dislodging and releasing various kinds of granules and vesicles, such as azurophil granules, specific granules, gelatinase granules and secretory vesicles (Figure 1)1,56,57. Normally, a variety of proteases, formed during the process of neutrophil maturation, are stored intracellularly in granules, and might be liberated into the extracellular space after neutrophil activation and degranulation58. It has been suggested that neutrophil proteases show activity in membrane-bound form and soluble form, the latter of which acts extracellularly in plasma and tissues59. Among these proteases, neutrophil elastase and myeloperoxidase, found in the azurophil granules, are considered as relatively neutrophil-specific. Plasma lactoferrin, a member of the specific granules, is thought to derive principally from neutrophils, and is markedly associated with circulating neutrophil numbers, although it can be excreted by other diversified cells60.

Neutrophil elastase is capable of degrading most of the extracellular matrix proteins and plasma proteins61. In addition, neutrophil elastase can regulate inflammation by splitting different agents, such as cytokines, chemokines and cell surface receptors62,63. Plasma and total neutrophil elastase were reported to rise substantially in type 1 diabetes patients when compared with the control13,14. High concentrations of plasma neutrophil elastase can also be considered as a marker of the development of complications, such as diabetic angiopathy and coronary artery disease, because it might contribute to the progression of vascular disease64-66. Furthermore, the previous work in our laboratory discovered that levels of circulating neutrophil elastase released from activated neutrophils was positively associated with the counts and titers of the autoantibodies against beta-cell-specific antigens, which suggested that neutrophil activation and elevated proteases activities might play an anetiogenic role in the process of beta-cell autoimmunity. Therefore, serum neutrophil elastase could act as a susceptible biomarker for the prediction and early diagnosis of type 1 diabetes57. Although some studies showed that poor short-term glycemic and metabolic control in type 2 diabetes patients were correlated with higher elastase concentration in plasma and neutrophils59,64, it has been shown in several studies that increased plasma neutrophil elastase level in type 1 diabetes patients was not related to age, leucocyte count, Hba1c, plasma glucose or duration of diabetes13,14. Myeloperoxidase (MPO), a powerful oxidative medium, is located mainly in neutrophil primary granules and constitutes approximately 5% of the total neutrophil protein56. MPO is relevant to oxidative stress, because it catalyzes ROS formation that can facilitate atherogenesis and alter lipid as well as proteins60. Activity of MPO can be inhibited in patients with diabetes, resulting in diminished phagocytic activity of neutrophils and thus increasing susceptibility to infections67. It has been shown that no significant differences were found in plasma MPO values when children and adolescents with type 1 diabetes were compared with controls. However, another study found that diabetic children had significantly higher serum concentrations of MPO than the healthy control group, which can reflect increased risk of cardiovascular diseases in type 1 diabetes patients68. Regardless of whether the MPO level is increased or decreased, there are no significant interrelations between MPO serum concentration and diabetes duration, Hba1c value, and the level of actual blood glucose68.

Cytokines

Neutrophils, either constitutively or after appropriate motivation, not only synthesize a variety of polypeptides that are directly involved in their effector functions, but can also produce numerous inflammatory modulation proteins (Figure 1)69,70. Among these molecules, cytokines are considered to be the most critical effectors because of their vast and diverse biological activities69,71. Cytokines are not liberated immediately after synthesis, but are deposited in temporarily intracellular ponds and are released quickly when neutrophils are activated72. Human and mouse neutrophils were reported to have a different capacity to express cytokines, especially interleukin (IL)-6, IL-17A, IL-17F and IFN-γ73. Whether activated neutrophils secrete cytokines or not depends on the state of the cells and the type of triggering stimulus. Although it is evident that neutrophils make substantially less quantities of cytokines than other immune cells, it must be stressed that neutrophils constitute most of the infiltrating cells in inflamed tissues, and might be considered as an important origin of cytokines in...
those tissues. In view of the broad spectrum of biological activities exerted by cytokines, it is reasonable to infer that neutrophils have crucial effects not only on inflammatory response, but also on innate and adaptive immune responses.

Cytokines, produced locally in and around islets during islet insulinitis by more than a single cell type, are shown to play considerable roles in the development of autoimmune diabetes. It has been proposed that cytokines, such as tumor necrosis factor (TNF)-α, IL-1, IFN-γ and TNF-β, can stimulate toxic free radical production, which might initiate pancreatic β-cell destruction. Furthermore, β-cell function can be impaired and β-cell mass can be reduced by IL-1 derived from macrophages. In addition, cytokines like IFN-γ, IL-1 and TNF-α can exacerbate autoimmunity by intensifying adaptive immune responses. Increased expression of cytokines (IFN-α, TNF-α and IL-1) is associated with β-cell destructive insulinitis. In patients with recent-onset type 1 diabetes, increased IL-18 is reported to be related to multiple autoantibody presence. As a result of their important roles in type 1 diabetes, serum cytokines are promising candidates as additional markers and for monitoring interventions beyond autoantibodies to predict type 1 diabetes. However, many problems and conflicting observations exist – the major difficulty is the absence of a normal range for the majority of cytokines. Furthermore, the concept of physiological disparities, and technical alterations in assay methodologies and assay perturbations cannot be neglected. Another obstacle is the lack of specificity to diseases, even though certain cytokines have normal reference ranges and the levels in plasma can be measured by current technologies. Finally, cytokines concentrations are dynamic, especially under the condition of infections, allergies and medications. Cytokines and ROS, such as type 1 diabetes, small vessel vasculitis and systemic lupus erythematosus are involved in a number of autoimmune diseases, such as type 1 diabetes, small vessel vasculitis and systemic lupus erythematosus. Dysregulated NET formation and NETosis were reported to be involved in a number of autoimmune diseases, such as type 1 diabetes, small vessel vasculitis and systemic lupus erythematosus patients. However, literature regarding the role of NETs in autoimmune diabetes development is relatively scarce. In young NOD mice, NET formation was observed in pancreatic islets as early as 2 weeks after birth. In autoimmune type 1 diabetes patients, NET formation was found to be elevated and closely associated with increased circulating neutrophil elastase levels, suggesting that it might play a key role in the initiation of β-cell autoimmunity. However, conflicting reports showed that neutrophils from diabetic patients (the diabetes type was not mentioned) released NETs at a lower level than that of healthy subjects, because a high-glucose condition might impair and delay neutrophil NET formation. Therefore, expression of neutrophil NETs possessing antimicrobial property was reduced, providing a partial explanation for elevated susceptibility of diabetes mellitus patients to infection.

CELL–CELL INTERACTIONS IN TYPE 1 DIABETES

Neutrophils and Other Immune Cells

Apart from using a set of membrane and intracellular molecules to respond to their local environment signals and to
modify their phenotype, neutrophils engage in complex bidirectional interactions with most other types of immune cells, and shape their activation, maturation and effector functions directly or indirectly, depending on the context. They instruct other immune cells through secreting cytokines, granules and ROS. They can also participate in the communication networks through cell–cell contact. By interplaying with other cells, neutrophils are representatively the predominant immune cells responding to inflammatory response and exacerbating inflammation. In autoimmune type 1 diabetes, interactions between pancreatic β-cells and immune cells including neutrophils, as well as other immune cells, play significant roles in the progression of the disease. Recently, Diana et al. found that physiological β-cell death can induce recruitment and activation of neutrophils, B-1a cells, and plasmacytoid dendritic cells in young NOD mice. The cross-talk between these innate immune cells was found to take place in the pancreas, and was required for the initiation of type 1 diabetes. They also found another novel cross-talk between macrophages and β-cells in the pancreas, which was responsible for neutrophil infiltration in the pancreas during the initiation phase of autoimmune diabetes (Figure 2).

There is considerable evidence that T cells play an essential role in the development of type 1 diabetes in both animal models and humans. In the early stage of diabetes, CD8 T lymphocytes are considered as the most affluent immune cell type infiltrated in the pancreas during the occurrence of insulin. They can drive adaptive immune responses and damage pancreatic β-cells by major histocompatibility complex class I molecules-regulated pathogenic cytotoxicity, and both CD4 and CD8 T cells can secrete cytokines that could contribute to β-cell apoptosis directly or indirectly. In NOD mice, neutrophil trafficking into the pancreatic islets is mainly regulated by CXCR2 ligands, and neutrophils are recruited by chemokines CXCL1 and CXCL2 produced by β-cells and macrophages. CXCR2 blockade in early stages can lead to a dramatic reduction in specific CD8 T cells within the islets, and then can inhibit diabetogenic T-cell response, as well as the following development of diabetes. Recently, decreased expressions of Cxcr1 messenger ribonucleic acid were found in both neutrophils and CD4 T lymphocytes isolated from NOD mice when compared with diabetes-resistant mice. Low Cxcr1 expression in NOD mice could contribute to the pathogenesis of autoimmune diabetes. In addition, IL-17 β-cell-specific autoreactive CD4 T cells can be observed in the circulation of type 1 diabetes patients at diagnosis. This pro-inflammatory IL-17 circumstance in the pancreas can attract neutrophils to infiltrate the pancreatic tissue. It seems that both neutrophils and T cells might contribute to the pathogenesis of type 1 diabetes with a variable degree of synergism. Therefore, interactions between neutrophils and T cells in the development of type 1 diabetes deserve us to focus on.

Neutrophils and Endothelial Cells

Interaction between neutrophils and endothelial cells is one of the earliest events in the inflammatory process and normally occurs in post-capillary venules. Adhesion of neutrophils to endothelial cells facilitates neutrophils to enter to the pancreatic islet and causes damage to it. However, most of the research about neutrophil–endothelial cell adhesion in diabetes have focused on the development of atherosclerosis-mediated diseases, such as diabetic microvascular and macrovascular complications, and studies about neutrophil–endothelial cell adhesion in type 1 diabetes pathogenesis are relatively scarce. Several endothelial adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), CD62E, CD62P and vascular adhesion molecule-1 (VCAM-1), can attract circulating neutrophils then bind with neutrophil adhesion molecules. It has been shown that ICAM-1, which is the best characterized cell surface adhesion molecule, is implicated in the pathogenesis of type 1 diabetes by being involved in the extravasation of leukocytes from the circulation into the inflamed pancreas. ICAM-1 expression on vascular endothelial cells was reported to increase in the pancreatic islets of the NOD mouse, as well as in individuals with new-onset type 1 diabetes. Serum levels of circulating ICAM-1 were also significantly increased in recent-onset type 1 diabetes patients and their first-degree relatives when compared with healthy controls. Among these subjects, soluble ICAM-1 levels in prediabetics with positive autoantibodies were relatively higher than in patients with clinical diabetes, and were positively correlated with ICA and glutamic acid decarboxylase autoantibody (GADA) values. These aforementioned advances, together with research reporting that neutrophils were found to infiltrate in the pancreatic islets, suggest that neutrophil–endothelial cell interactions are undoubtedly involved in the accumulation of inflammatory neutrophils into the pancreas and the destruction of pancreatic islets, but the mechanism that controls the process remains unclear.

Neutrophils and Platelets

Platelets and leukocytes, the latter of which consist of neutrophils, have been proven to regulate and influence each other’s function by platelet–leukocyte contact and releasing soluble effector mediators. Activated platelets promoted neutrophil activation and recruitment through expressing selectins, inflammatory cytokines, and chemokines. Conversely, apoptotic and activated leukocytes can promote platelet recruitment and attachment. Adhesion of activated platelets to leukocytes was reported to be implicated in the development of thrombotic occurrence, and apoptotic leukocytes can induce a prothrombotic course. It was found that type 1 diabetes patients showed increased blood platelet–leukocyte aggregation and cross-talk in their blood. Promotion of leukocyte–platelet interaction in the disease is probably caused by enhanced plasma elastase levels, which can induce platelet activation and increase production of important soluble mediators, such as platelet-activating factor (PAF) and beta thromboglobulin (β-TG).
as platelet-activating factor and superoxide anion109,116,117. AGE-BSA, a model substance for AGEs, can augment platelet–neutrophil aggregation by inducing neutrophils apoptosis and enhancing Mac-1 expression113. As the interplay between leukocytes and platelets connects inflammation with thrombosis and might facilitate vascular obstruction as well as tissue ischemia118,119, elevated circulating platelet–leukocyte aggregation and cross-talk in type 1 diabetes individuals might contribute to platelet hyperactivity and the development of microvascular complications117. It was also found that an increase of platelet–neutrophil aggregation in patients with diabetes might be one of the factors leading to serious cardiovascular disease120.

ANTINEUTROPHIL THERAPY

The previous studies showed that neutrophils play important roles in the progression of autoimmune type 1 diabetes, raising the possibility that neutrophils might be a candidate for therapeutic interventions for the disease. The processes of neutrophil activation, binding to the endothelium, transendothelial migration, emigration into the pancreatic islet and release of cytotoxic products, are all potential targets towards which pharmacological therapy can be achieved. Therapies directed against neutrophil-mediated injury in diabetes include direct inhibition of neutrophil recruitment and anti-adhesion therapy.

Recruitment of neutrophils from the circulation into the pancreas is necessary for these cells to infiltrate in the pancreatic islet and bring about their effects. It was reported that macrophages and β-cells recruit CXCR2-expressing neutrophils by producing chemokines CXCL1 and CXCL2109. Blockade of neutrophil recruitment by CXCR2 antagonist can depress diabetogenic T-cell response and dampen the subsequent progression of autoimmune diabetes. As aforementioned, neutrophil adhesion to endothelial venules within pancreatic sections is an important early step in the inflammatory response, and is considered as one of the essential steps in the initiation of autoimmune diabetes. Therefore, blocking different adhesion
molecules, such as selectins and integrins expressed on neutrophils by specific antagonists, might be an effective approach to reduce the migration of neutrophils to the inflamed pancreas, thus inhibiting the development of insulitis. Antibodies of anti-L-selectin and anti-VLA-4 were reported to delay the appearance of insulitis by inhibiting leukocyte adhesion to the inflamed blood vessels and interpreting the recruitment of leukocyte to the islets. Administration of anti-ζ4-integrin and/or anti-LFA-1 antibodies has been found to lead to an inhibition of β-cells destruction, and protect against spontaneous and adoptively transferred diabetes in NOD mice. Combination treatment with the two monoclonal antibodies might have a longer delayed influence in the initiation of diabetes. Furthermore, long-term inhibition of both LFA-1 and ζ4-integrin not only prevents diabetes during treatment, but also has a persistent resistance to the disease long after the interference has ceased, suggesting that adhesion molecule inhibition can reduce islet insulitis by affecting effector cell functions through stimulation of suppressor cells involved in immunoregulation. In addition, a short-term blockade of the LFA-1/ICAM-1 pathway at critical periods was shown to induce a unique peripheral tolerance against β-cell Ags at an early age in NOD mice, resulting in complete protection from autoimmune diabetes. Therefore, adhesion molecules, such as L-selectin, VLA-4 and LFA-1, play significant roles in the development of type 1 diabetes, and the disease can be prevented by blocking these adhesion pathways. However, it is known that adhesion molecules are expressed not only on neutrophils, but also on lymphocytes, monocytes and natural killer cells. Studies have shown that anti-LFA-1 treatment can ameliorate neutrophil-mediated injury by reducing the adhesion, recruitment, accumulation and infiltration of neutrophils into tissues. In addition, the activation of neutrophil respiratory burst can also be restricted by anti-LFA-1 interference. Therefore, further exhaustive studies are required to better understand the preventive effects of neutrophil-specific anti-adhesion therapies in the progression of spontaneous diabetes.

CONCLUDING REMARKS

Progress over the past decades shows that neutrophils play essential roles in the onset and progression of autoimmune type 1 diabetes. Recently, exciting discoveries have provided new insights into the actions of neutrophils in the initiation of the disease, which found that neutrophils can induce type 1 diabetes through infiltrating into the pancreatic islets and interacting with other immune cells. Unfortunately, only a few studies have specifically concentrated on the relationship between neutrophils and diabetes, though neutrophils are known to the most abundant cell type in the circulation and the first cells recruited to the site of inflammation. Detailed studies are required to elucidate how neutrophils are activated and recruited to cause damage to pancreatic islets through neutrophil-derived toxic substances or interactions with other cells. A better understanding of the role of neutrophils in type 1 diabetes pathogenesis will provide additional information for early diagnosis, therapy and even for the prevention of the disease. Although many challenges still remain in exploring the correlation between neutrophils and autoimmune type 1 diabetes, it is an encouraging and interesting research topic that deserves to be focused on.

ACKNOWLEDGMENTS

This work is supported by the National Key Technology R&D Program (2013BAI09B12) and the Fundamental Research Funds for the Central Universities of Central South University (2014zzts085). We thank Professor Qianjin Lu and Dr Peilin Zheng for their guidance and advice.

DISCLOSURE

The authors declare no conflict of interest.

REFERENCES

1. Borregaard N, Lollike K, Kjeldsen L, et al. Human neutrophil granules and secretory vesicles. Eur J Haematol 1993; 51: 187–198.
2. Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010; 33: 657–670.
3. Amulic B, Cazalet C, Hayes GL, et al. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 2012; 30: 459–489.
4. Brown KA, Brain SD, Pearson JD, et al. Neutrophils in development of multiple organ failure in sepsis. Lancet 2006; 368: 157–169.
5. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol 2014; 9: 181–218.
6. Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11: 519–531.
7. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006; 6: 173–182.
8. Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466: 973–977.
9. Mocai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 2013; 210: 1283–1299.
10. Kessenbrock K, Krumbholz M, Schonermann U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15: 623–625.
11. Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187: 538–552.
12. Naegeli M, Tillack K, Reinhardt S, et al. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol 2012; 242: 60–71.
13. Collier A, Jackson M, Bell D, et al. Neutrophil activation detected by increased neutrophil elastase activity in type 1
Huang et al. Review Article

660 J Diabetes Investig Vol. 7 No. 5 September 2016

http://onlinelibrary.wiley.com/journal/jdi

(insulin-dependent) diabetes mellitus. Diabetes Res 1989; 10: 135–138.

14. Jackson MH, Collier A, Nicoll JJ, et al. Neutrophil count and activation in vascular disease. Scott Med J 1992; 37: 41–43.

15. Vallee A, Giamporcaro GM, Scavini M, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 2013; 62: 2072–2077.

16. Harsunen MH, Puff R, D’Orlando O, et al. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm Metab Res 2013; 45: 467–470.

17. Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes. Diabetes 2014; 63: 4239–4248.

18. Battaglia M. Neutrophils and type 1 autoimmune diabetes. Curr Opin Hematol 2014; 21: 8–15.

19. Debczynski W, Pietrusza Z. [Chemotaxis and spontaneous migration of neutrophil leukocytes from patients with diabetes]. Pol Tyg Lek 1994; 49: 11–13.

20. Valerius NH, Eff C, Hansen NE, et al. Neutrophil and lymphocyte function in patients with diabetes mellitus. Acta Med Scand 1982; 211: 463–467.

21. Kelly MK, Brown JM, Thong YH. Neutrophil and monocyte adherence in diabetes mellitus, alcoholic cirrhosis, uremia and elderly patients. Int Arch Allergy Appl Immunol 1985; 78: 132–138.

22. Cutler CW, Eke P, Arnold RR, et al. Defective neutrophil function in an insulin-dependent diabetes mellitus patients. A case report. J Periodontol 1991; 62: 394–401.

23. Wilson RM, Reeves WG. Neutrophil phagocytosis and killing in insulin-dependent diabetes. Clin Exp Immunol 1986; 63: 478–484.

24. Marhoffner W, Stein M, Schleinkofer L, et al. Evidence of ex vivo and in vitro impaired neutrophil oxidative burst and phagocytic capacity in type 1 diabetes mellitus. Diabetes Res Clin Pract 1993; 19: 183–188.

25. Thomson GA, Fisher BM, Gemmell CG, et al. Attenuated neutrophil respiratory burst following acute hypoglycaemia in diabetic patients and normal subjects. Acta Diabetol 1997; 34: 253–256.

26. Wierusz-Wysock B, Wysocki H, Siekierka H, et al. Evidence of polymorphonuclear neutrophils (PMN) activation in patients with insulin-dependent diabetes mellitus. J Leukoc Biol 1987; 42: 519–523.

27. Chanchamroen S, Kewcharoenwong C, Susaengrat W, et al. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun 2009; 77: 456–463.

28. Delamaire M, Maugendre D, Moreno M, et al. [Exploration of the various steps of polymorphonuclear neutrophil function in diabetic patients]. J Mal Vasc 1995; 20: 107–112.

29. Tennenberg SD, Finkenauer R, Dwivedi A. Absence of lipopolysaccharide-induced inhibition of neutrophil apoptosis in patients with diabetes. Arch Surg 1999; 134: 1229–1233; discussion 1233–1234.

30. Sudo C, Ogawara H, Saleh AW, et al. Clinical significance of neutrophil apoptosis in peripheral blood of patients with type 2 diabetes mellitus. Lab Hematol 2007; 13: 108–112.

31. Spiller F, Carlos D, Souto FO, et al. alpha1-Acid glycoprotein decreases neutrophil migration and increases susceptibility to sepsis in diabetic mice. Diabetes 2012; 61: 1584–1591.

32. Advani A, Marshall SM, Thomas TH. Impaired neutrophil store-mediated calcium entry in Type 2 diabetes. Eur J Clin Invest 2004; 34: 43–49.

33. Nath N, Biswas S, Bhelwa A, et al. Plausible involvement of a diabetic serum factor in neutrophil membrane pathology. Indian J Biochem Biophys 1993; 30: 244–246.

34. Toivonen A, Kulmala P, Savola K, et al. Soluble adhesion molecules in preclinical type 1 diabetes. The Childhood Diabetes in Finland Study Group. Pediatr Res 2001; 49: 24–29.

35. Martin S. Soluble adhesion molecules in type 1 diabetes mellitus. Horm Metab Res 1997; 29: 639–642.

36. Nicoletti F, Conget I, Di MM, et al. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/ CXCL10 are augmented in both newly diagnosed Type 1 diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia 2002; 45: 1107–1110.

37. Kretowski A, Kinalska I. L-selectin gene T668C mutation in type 1 diabetes patients and their first degree relatives. Immunol Lett 2000; 74: 225–228.

38. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 2004; 61: 481–497.

39. Lampeter ER, Kishimoto TK, Rothlein R, et al. Elevated levels of circulating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes 1992; 41: 1668–1671.

40. Yang XD, Michie SA, Meibus RE, et al. The role of cell adhesion molecules in the development of IDDM: implications for pathogenesis and therapy. Diabetes 1996; 45: 705–710.

41. Toivonen A, Kulmala P, Rahko J, et al. Soluble adhesion molecules in Finnish schoolchildren with signs of preclinical type 1 diabetes. Diabetes Metab Res Rev 2004; 20: 48–54.

42. Toivonen AM, Kimpimaki T, Kupila A, et al. Soluble adhesion molecules in young children with signs of beta-cell autoimmunity–prospective follow-up from birth. Diabetes Metab Res Rev 2006; 22: 176–183.

43. Toivonen AM, Kulmala P, Savola K, et al. Soluble adhesion molecules in pre-clinical Type 1 diabetes: a prospective study. Diabetologia 2003; 46: 492–495.

44. Linn T, Strate C, Federlin K, et al. Intercellular adhesion molecule-1 (ICAM-1) expression in the islets of the non-
obese diabetic and low-dose streptozocin-treated mouse. _Histochemistry_ 1994; 102: 317–321.

45. Somoza N, Vargas F, Roura-Mir C, _et al._ Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. _J Immunol_ 1994; 153: 1360–1377.

46. Ninova D, Dean PG, Stegall MD. Immunomodulation through inhibition of multiple adhesion molecules generates resistance to autoimmune diabetes in NOD mice. _J Autoimmun_ 2004; 23: 201–209.

47. Yang XD, Karin N, Tisch R, _et al._ Inhibition of insulin sensitivity and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. _Proc Natl Acad Sci USA_ 1993; 90: 10494–10498.

48. Hasegawa Y, Yokono K, Taki T, _et al._ Prevention of autoimmune insulin-dependent diabetes in non-obese diabetic mice by anti-LFA-1 and anti-ICAM-1 mAb. _Int Immunol_ 1994; 6: 831–838.

49. Scheynius A, Camp RL, Pure E. Reduced contact sensitivity reactions in mice treated with monoclonal antibodies to leukocyte function-associated molecule-1 and intercellular adhesion molecule-1. _J Immunol_ 1993; 150: 665–663.

50. Martin S, Rothe H, Tschope D, _et al._ Decreased expression of adhesion molecules on monocytes in recent onset IDDM. _Immunology_ 1991; 73: 123–125.

51. Mysliwiec J, Kretowski A, Kinalski M, _et al._ CD11a expression and soluble ICAM-1 levels in peripheral blood in high-risk and overt type 1 diabetes subjects. _ImmunoLett_ 1999; 70: 69–72.

52. Sampson MJ, Davies IR, Brown JC, _et al._ Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type 2 diabetes and control patients. _Arterioscler Thromb Vasc Biol_ 2002; 22: 1187–1193.

53. Grykiel K, Zozulinska D, Kostrzewa A, _et al._ [Evaluation of expression of polymorphonuclear neutrophil surface receptors in patients with type 1 diabetes]. _Pol Arch Med Wewn_ 2001; 105: 377–381.

54. Advani A, Marshall SM, Thomas TH. Impaired neutrophil actin assembly causes persistent CD11b expression and reduced primary granule exocytosis in Type 2 diabetes. _Diabetologia_ 2002; 45: 719–727.

55. Chello M, Mastroroberto P, Crillo F, _et al._ Neutrophil-endothelial cells modulation in diabetic patients undergoing coronary artery bypass grafting. _Eur J Cardiothorac Surg_ 1998; 14: 373–379.

56. Segal AW. How neutrophils kill microbes. _Annu Rev Immunol_ 2005; 23: 197–223.

57. Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. _Trends Immunol_ 2007; 28: 340–345.

58. Witko-Sarsat V, Rieu P, Descamps-Latscha B, _et al._ Neutrophils: molecules, functions and pathophysiological aspects. _Lab Invest_ 2000; 80: 617–653.

59. Zurawska-Plaksej E, Piwowar A, Knapik-Kordecka M, _et al._ Activities of neutrophil membrane-bound proteases in type 2 diabetic patients. _Arch Med Res_ 2014; 45: 36–43.

60. Vengen IT, Dale AC, Wiseth R, _et al._ Lactoferrin is a novel predictor of fatal ischemic heart disease in diabetes mellitus type 2: long-term follow-up of the HUNT 1 study. _Atherosclerosis_ 2010; 212: 614–620.

61. Kawabata K, Hago T, Matsuoka S. The role of neutrophil elastase in acute lung injury. _Eur J Pharmacol_ 2002; 451: 1–10.

62. Chua F, Laurent GJ. Neutrophil elastase: mediator of extracellular matrix destruction and accumulation. _Proc Am Thorac Soc_ 2006; 3: 424–427.

63. Owen CA, Campbell MA, Sannes PL, _et al._ Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. _J Cell Biol_ 1995; 131: 775–789.

64. Piwowar A, Knapik-Kordecka M, Warwas M. Concentration of leukocyte elastase in plasma and polymorphonuclear neutrophil extracts in type 2 diabetes. _Clin Chem Lab Med_ 2000; 38: 1257–1261.

65. Greer IA, Haddad NG, Dawes J, _et al._ Increased neutrophil activation in diabetic pregnancy and in nonpregnant diabetic women. _Obstet Gynecol_ 1989; 74: 878–881.

66. Amaro A, Gude F, Gonzalez-Juanatey R, _et al._ Plasma leukocyte elastase concentration in angiographically diagnosed coronary artery disease. _Eur Heart J_ 1995; 16: 615–622.

67. Saeed FA, Castle GE. Neutrophil chemiluminescence during phagocytosis is inhibited by abnormally elevated levels of acetoacetate: implications for diabetic susceptibility to infections. _Clin Diagn Lab Immunol_ 1998; 5: 740–743.

68. Heilman K, Zilmer M, Zilmer K, _et al._ Arterial stiffness, carotid artery intima-media thickness and plasma myeloperoxidase level in children with type 1 diabetes. _Diabetes Res Clin Pract_ 2009; 84: 168–173.

69. Cassatella MA. The production of cytokines by polymorphonuclear neutrophils. _Immunol Today_ 1995; 16: 21–26.

70. Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. _Adv Immunol_ 1999; 73: 369–509.

71. Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. _Front Immunol_ 2014; 5: 508.

72. Scapini P, Bazzoni F, Cassatella MA. Regulation of B-cell activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. _Immunol Lett_ 2008; 116: 1–6.
73. Rabinovitch A. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. *Diabetes Metab Rev* 1998; 14: 129–151.

74. Nerup J, Mandrup-Poulsen T, Helqvist S, et al. On the pathogenesis of IDDM. *Diabetologia* 1994; 37(Suppl 2): 582–589.

75. Rabinovitch A, Suarez-Pinzon WL, Strynadka K, et al. Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production. *J Clin Endocrinol Metab* 1996; 81: 3197–3202.

76. Dominguez C, Ruiz E, Gussinye M, et al. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. *Diabetes Care* 1998; 21: 1736–1742.

77. Padgett LE, Broniowska KA, Hansen PA, et al. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. *Ann N Y Acad Sci* 2013; 1281: 16–35.

78. Hanifi-Moghaddam P, Schloot NC, Kappler S, et al. An association of autoantibody status and serum cytokine levels in type 1 diabetes. *Diabetes* 2003; 52: 1137–1142.

79. Wasserfall CH, Atkinson MA. Autoantibody markers for the diagnosis and prediction of type 1 diabetes. *Autoimmun Rev* 2006; 5: 424–428.

80. Perren A, Nielsen SE, Rask-Madsen J. High glucose impairs superoxide production from isolated blood neutrophils. *Intensive Care Med* 2003; 29: 642–645.

81. Zozulinska DA, Wierusz-Wysocka B, Wysocki H, et al. Reduced hydrogen peroxide production in neutrophils from patients with diabetes. *Diabetes Res Clin Pract* 1996; 33: 119–127.

82. Segal AW, Dorling J, Coade S. Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes. *Biochemical and morphological studies. J Cell Biol* 1980; 85: 42–59.

83. Rocha RE, Coelho I, Pequito DC, et al. Interval training attenuates the metabolic disturbances in type 1 diabetes rat model. *Arq Bras Endocrinol Metabol* 2013; 57: 594–602.

84. Uchimura K, Nagasaka A, Hayashi R, et al. Changes in superoxide dismutase activities and concentrations and myeloperoxidase activities in leukocytes from patients with diabetes mellitus. *J Diabetes Complications* 1999; 13: 264–270.

85. Pitozzi V, Giovannelli L, Bardini G, et al. Oxidative DNA damage in peripheral blood cells in type 2 diabetes mellitus: higher vulnerability of polymorphonuclear leukocytes. *Mutat Res* 2003; 529: 129–133.

86. Dincer Y, Akcay T, Ilkova H, et al. DNA damage and antioxidant defense in peripheral leukocytes of patients with Type 1 diabetes mellitus. *Mutat Res* 2003; 527: 49–55.

87. Wong RK, Pettit AJ, Davies JE, et al. Augmentation of the neutrophil respiratory burst through the action of advanced glycation end products: a potential contributor to vascular oxidant stress. *Diabetes* 2002; 51: 2846–2853.

88. Inoue S, Lan Y, Muran J, et al. Reduced hydrogen peroxide production in neutrophils from patients with diabetes. *Diabetes Res Clin Pract* 1996; 33: 119–127.

89. Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. *Am J Kidney Dis* 1999; 34: 384–399.

90. Horio F, Fukuda M, Katoh H, et al. Reactive oxygen intermediates in autoimmune islet cell destruction of the NOD mouse induced by peritoneal exudate cells (rich in macrophages) but not T cells. *Diabetologia* 1994; 37: 22–31.

91. Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. *Nat Rev Rheumatol* 2011; 7: 691–699.

92. Diana J, Simoni Y, Furio L, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. *Nat Med* 2013; 19: 65–73.

93. Riyapa D, Buddhisa S, Korbsrisate S, et al. Neutrophil extracellular traps exhibit antibacterial activity against burkholderia pseudomallei and are influenced by bacterial and host factors. *Infect Immun* 2012; 80: 3921–3929.

94. Joshi MB, Lad A, Bharath PAS, et al. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. *FEBS Lett* 2013; 587: 2241–2246.

95. Jaillon S, Galdiero MR, Del PD, et al. Neutrophils in innate and adaptive immunity. *Semin Immunopathol* 2013; 35: 377–394.

96. van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, et al. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. *J Exp Med* 2005; 201: 1281–1292.

97. Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. *Nat Med* 2012; 18: 1407–1412.

98. Diana J, Lehuem A. Macrophages and beta-cells are responsible for CXCR2-mediated neutrophil infiltration of the pancreas during autoimmune diabetes. *EMBO Mol Med* 2014; 6: 1090–1104.

99. Wilcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. *Clin Exp Immunol* 2009; 155: 173–181.

100. Lehuem A, Diana J, Zaccone P, et al. Immune cell crosstalk in type 1 diabetes. *Nat Rev Immunol* 2010; 10: 501–513.

101. Haurogne K, Pavlovic M, Rogniaux H, et al. Analysis of islet cell infiltration and inflammation in human type 1 diabetes. *Diabetes* 2011; 60: 2112–2119.

102. Omi H, Okayama N, Shimizu M, et al. Participation of high glucose concentrations in neutrophil adhesion and surface interactions in polymorphonuclear leukocytes. *Nat Med* 2005; 11: 501–513.

103. Partsch H, Moore C, Hopp R, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. *Nat Med* 2012; 18: 1407–1412.

104. Arif S, Moore F, Marks K, et al. Periarterial and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated beta-cell death. *Diabetes* 2011; 60: 2112–2119.
expression of adhesion molecules on cultured human endothelial cells: effect of antidiabetic medicines. J Diabetes Complications 2002; 16: 201–208.

104. Okouchi M, Okayama N, Imai S, et al. High insulin enhances neutrophil transendothelial migration through increasing surface expression of platelet endothelial cell adhesion molecule-1 via activation of mitogen activated protein kinase. Diabetologia 2002; 45: 1449–1456.

105. Rawling LD, Advani A, Marshall SM, et al. Neutrophil antigen exposure is altered with age in relatives of patients with Type 2 diabetes. Diabetologia 2004; 47: 353–355.

106. Okayama N, Omi H, Okouchi M, et al. Mechanisms of inhibitory activity of the aldose reductase inhibitor, epalrestat, on high glucose-mediated endothelial injury: neutrophil-endothelial cell adhesion and surface expression of endothelial adhesion molecules. J Diabetes Complications 2002; 16: 321–326.

107. Hanninen A, Salmi M, Simell O, et al. Endothelial cell-binding properties of lymphocytes infiltrated into human diabetic pancreas. Implications for pathogenesis of IDDM. Diabetes 1993; 42: 1656–1662.

108. Itoh N, Hanafusa T, Miyazaki A, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993; 92: 2313–2322.

109. Li N, Hu H, Lindqvist M, et al. Platelet-leukocyte cross talk in whole blood. Arterioscler Thromb Vasc Biol 2000; 20: 2702–2708.

110. Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11: 264–274.

111. Repka J, Nicoluzi J, Bellia R, et al. Neutrophil oxidative metabolism in diabetic patients undergoing pancreas transplantation. Transplant Proc 2006; 38: 3023–3025.

112. Hartz S, Menart B, Tschoepe D. Leukocyte apoptosis in whole blood involves platelet-dependent coaggregation. Cytometry A 2003; 52: 117–121.

113. Gawlowski T, Stratmann B, Stirban AO, et al. AGEs and methylglyoxal induce apoptosis and expression of Mac-1 on neutrophils resulting in platelet-neutrophil aggregation. Thromb Res 2007; 121: 117–126.

114. Jain SK, Krueger KS, McVie R, et al. Relationship of blood thromboxane-B2 (TXB2) with lipid peroxides and effect of vitamin E and placebo supplementation on TXB2 and lipid peroxide levels in type 1 diabetic patients. Diabetes Care 1998; 21: 1511–1516.

115. Renesto P, Chignard M. Enhancement of cathepsin G-induced platelet activation by leukocyte elastase: consequence for the neutrophil-mediated platelet activation. Blood 1993; 82: 139–144.

116. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405–412.

117. Hu H, Li N, Yngen M, et al. Enhanced leukocyte-platelet cross-talk in Type 1 diabetes mellitus: relationship to microangiopathy. J Thromb Haemost 2004; 2: 58–64.

118. Entman ML, Ballantyne CM. Association of neutrophils with platelet aggregates in unstable angina. Should we alter therapy. Circulation 1996; 94: 1206–1208.

119. Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001; 103: 1718–1720.

120. Tuttle HA, Davis-Gorman G, Goldman S, et al. Platelet-neutrophil conjugate formation is increased in diabetic women with cardiovascular disease. Cardiovasc Diabetol 2003; 2: 12.

121. Baron JL, Reich EP, Visintin I, et al. The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1. J Clin Invest 1994; 93: 1700–1708.

122. Burky LC, Jakubowski A, Hattori M. Protection against adoptive transfer of autoimmune diabetes mediated through very late antigen-4 integrin. Diabetes 1994; 43: 529–534.

123. Moriyma H, Yokono K, Amano K, et al. Induction of tolerance in murine autoimmune diabetes by transient blockade of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway. J Immunol 1996; 157: 3737–3743.

124. Dunne JL, Collins RG, Beaudet AL, et al. Mac-1, but not LFA-1, uses intercellular adhesion molecule-1 to mediate slow leukocyte rolling in TNF-alpha-induced inflammation. J Immunol 2003; 171: 6105–6111.

125. Oubenaissa A, Mous C, Bourgeois F, et al. Evidence for an involvement of the neutrophil integrin lymphocyte function-associated antigen-1 in early failure of heart transplants. Circulation 1996; 94: 11254–11259.

126. Basit A, Reutershan J, Morris MA, et al. ICAM-1 and LFA-1 play critical roles in LPS-induced neutrophil recruitment into the alveolar space. Am J Physiol Lung Cell Mol Physiol 2006; 291: L200–L207.

127. Forsyth KD, Levinsky RJ. Role of the LFA-1 adhesion glycoprotein in neutrophil adhesion to endothelium and plastic surfaces. Clin Exp Immunol 1989; 75: 265–268.

128. Asaduzzaman M, Zhang S, Lavasani S, et al. LFA-1 and MAC-1 mediate pulmonary recruitment of neutrophils and tissue damage in abdominal sepsis. Shock 2008; 30: 254–259.

129. Berton G, Laudanna C, Sorio C, et al. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J Cell Biol 1992; 116: 1007–1017.