Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion

Domèneç Farré1, Pablo Martínez-Vicente1, Pablo Engel1,2 and Ana Angulo1,2

1 Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
2 Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain

Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools.

Keywords: Horizontal gene transfer · Immune evasion · Immunoglobulin superfamily · Large DNA viruses · Viral evolution

Introduction

The evolution of the immune system has led to the creation of complex defense mechanisms designed to efficiently control microbial pathogens such as viruses. In turn, viruses have been forced to develop specific tactics to circumvent host immune surveillance. Although RNA viruses adopted antigenic hypervariation as the principal mechanism of immune evasion, large DNA viruses have evolved strategies such as the expression of host gene homologs with immunomodulatory properties. During co-evolution, viruses frequently capture cellular genes by horizontal gene transfer, duplicate and modify them to either mimic or interfere with the original host function, or to perform new tasks. These host-derived viral genes, which can account for almost 30% of the coding potential of large DNA viruses, are predominantly implicated in immune defense, although they also participate in other processes such as apoptosis, cell cycle regulation, and/or metabolism [1–3].

A number of cellular homologs found in viruses come from genes encoding members of the immunoglobulin superfamily (IgSF). The IgSF is the largest family of glycoproteins with more
than 700 gene members in the human genome [4]. IgSF members share a structural domain of 70–100 amino acids, known as the immunoglobulin-like domain, which is named after the immunoglobulin or antibody molecules. These domains show the typical Ig-fold formed by seven or more beta strands arranged into two beta sheets [5]. Although there is a great diversity within this superfamily, based on the number of strands and sequence length, three principal classes of IgSF domains have been defined: the variable (or IgV) domain, and the constant (or IgC) domains, IgC1 and IgC2. IgV domains are composed by nine beta strands, resembling the antibody variable domains. However, these IgV domains do not present the sequence variability that characterizes the antibodies or the TcR, but instead they share similarity in the overall sequence. IgC domains, on the other hand, are shorter and usually constituted by seven strands, with the IgC2 domains displaying some sequence patterns characteristic of IgV domains [5]. The structure of the Ig domain is ideally shaped for ligand binding, accommodating broad amino acid sequence variability without changing the conserved structure, thus allowing a high degree of interaction specificity and diversity. IgSF members include cell–cell adhesion and cell-surface recognition molecules, which are pivotal elements of the immune response. Most IgSF molecules are localized at the cell-surface and contain an ectodomain, encompassing one or several Ig domains, a transmembrane region, and a cytoplasmic tail. Some members of the IgSF bear signaling motifs such as the immunoreceptor tyrosine-based activation motif (ITAM) or immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic regions, regulating key leukocyte functions. Additionally, soluble IgSF proteins also exist, arising from secreted isofoms or cell surface shedding, a number of which function as decoy receptors acting as molecular traps recognizing their ligands with high affinity and specificity, and thus preventing their binding to the natural receptor [6]. Due to all these characteristics, IgSF molecules represent excellent targets for viral gene capture to manipulate immune responses, and might therefore be regarded as an important source of viral genome evolution.

Bioinformatic analyses that aim to identify parent cellular genes are often complicated due to a high evolutionary rate of viral genomes resulting in a rapid sequence divergence between the viral protein and the original cellular counterpart. In addition, in many instances, amino acid conservation is only limited to specific domains essential to maintaining the structure or function of the original protein. In this review we performed an exhaustive search analysis of IgSF members present in the genomes of three families of double-stranded DNA viruses: herpesviruses, poxviruses, and adenoviruses. Due to length restrictions, viral homologs of host IgSF members (vIgSF) bearing Ig domains that do not constitute their amino-terminal functional domains (best exemplified by MHC class I related proteins) have not been included. To identify viral IgSF homologs, we used the NCBI’s blast tools blastp and DELTA-BLAST, entering as query sequences of human IgSF members to search in the database of herpesviral, poxviral, and adenoviral proteins [7]. The amino acid sequences of the viral proteins resulting from this search were aligned with the corresponding host protein sequences using BLAST-Global Align to directly calculate the amino acid identity percentages. In addition, we scrutinized through the bibliography previously reported viral IgSF homologs. Altogether, we present a compilation of a diversity of IgSF-derived molecules of eight different types: homologs of CD200, CD47, Fc receptors, interleukin-1 (IL-1) receptor 2 (IL-1R2), interleukin-18 (IL-18) binding protein (IL-18BP), CD80, carcinoembryonic antigen-related cell adhesion molecules (CEA-CAMS), and signaling lymphocyte activation molecules (SLAMs), some of which were newly uncovered here. We also discuss in this review the structure and the current understanding of the functions of these host-derived viral immunomodulatory proteins.

CD200 homologs

CD200 and its receptor, known as CD200 receptor (CD200R), are type I membrane glycoproteins containing two extracellular Ig domains, an N-terminal IgV domain responsible for ligand binding followed by an IgC2 domain [8, 9]. CD200 is broadly expressed on a wide variety of cell types, including neurons, epithelial cells, endothelial cells, and lymphocytes [8]. In contrast, CD200R is preferentially expressed on myeloid cells, but is also present on lymphocytes and NK cells [10–12]. CD200R functions as a coinhibitory receptor that, upon interaction with CD200, hinders myeloid cell function [13–15]. In addition, CD200 has also been demonstrated to downmodulate T- and NK-cell functions [16–18]. Several herpesviruses, poxviruses, and adenoviruses have captured CD200 (Table 1). It is quite remarkable that, while nearly all virus-encoded homologs of CD200 (vCD200) identified in herpesviruses possess the two Ig-like domains, adenoviral and poxviral CD200 orthologs bear only the IgV domain. Notably, a number of herpesvirus vCD200s have been shown to bind host CD200R, independently of the percentage of sequence identity in their N-terminal Ig domain with their host genes. For instance, one of the best-studied vCD200, the K14 gene of the Kaposi’s sarcoma-associated herpesvirus (KSHV), which encodes a protein showing a 44% amino acid sequence identity with the human CD200 in its N-terminal Ig domain, is able to interact with human CD200R with almost identical affinity and kinetics as CD200 (Fig. 1A). Consistent with these observations, K14 has been reported to diminish the activation of macrophages and other immune cells [11, 18–20]. Paradoxically, the rat cytomegalovirus (CMV) England isolate (RCMV-E) vCD200, e127, does not seem to alter myeloid cell activity in vitro or in vivo despite efficiently interacting with the rat CD200R [21]. As shown in Table 1, the sequence identity of the N-terminal Ig domain of all known poxvirus and adenovirus vCD200 with their host genes is relatively low (21–31%). Consequently, the only vCD200 studied in poxviruses, the myxoma virus (MV) M141R protein, does not bind to CD200R, although it has been documented to exert a potent immunosuppressive role [22, 23]. It is also worth mentioning that a number of vCD200s, such as the R15 protein of rhesus macaque rhadinovirus or the 141R protein of the Yaba-like disease poxvirus have been shown or predicted to be
Virus	Viral gene(s)	% aa identity	% aa identity	Protein structure	CD200R binding	Functions	References
Herpesviruses							
Betaherpesviruses							
HHV-6	U85	22	23	1 IgV, 1 IgC2, 1 TM	Yes		[11]
HHV-7	U85	22	22	1 IgV, 1 IgC2, 1 TM	Yes		[11]
RCMV-E	e127	49	90	1 IgV, 1 IgC2, 1 TM	Yes	No alteration of myeloid cell activity (in vitro or in vivo).	[21, 68]
EEHV-1	EE22	23	18	1 IgV, 1 IgC2, 1 TM	n.t.		[73]
" EE23	21	15	1 IgV, 1 IgC2, no TM (s)	n.t.			
" EE51	55	100	1 IgV, 1 IgC2, 1 TM	n.t.			[73]
EEHV-4	E24B	22	8	1 IgC2, no TM (s)	n.t.		[73]
EEHV-5	EE22	22	17	1 IgV, 1 IgC2, 1 TM	n.t.		[73]
" EE22A	24	21	1 IgV, 1 IgC2, 1 TM	n.t.			[73]
" EE23	23	17	1 IgV, 1 IgC2, no TM (s)	n.t.			[73]
" EE51	59	100	1 IgV, 1 IgC2, 1 TM	n.t.			[73]
Gammaherpesviruses							
KSHV	K14	28	44	1 IgV, 1 IgC2, 1 TM	Yes	Downregulation of myeloid, NK, and T-cell activity. Reduction of cytokines (TNF-α, IL-8, CCL2, IFN-γ). Th1 response suppression.	[11, 18–20, 74]
RRV	R15	33	54	1 IgV, 1 IgC2, 1 TM (or s)	Yes		[24, 75]
BGHV-8	E11	55	91	1 IgV, 1 IgC2, 1 TM	n.t.		[76, 77]
EHV-5	E11	86	100	1 IgV, 1 IgC2, 1 TM	n.t.		[78]
Poxviruses							
Capripoxviruses							
GTPV	GTPV131	19	31	1 IgV, 1 TM	n.t.		[79]
LSDV	LW138	18	31	1 IgV, 1 TM	n.t.		[19, 22, 79]
SPPV	SPPV_131	18	31	1 IgV, 1 TM	n.t.		[19, 79]
Cervidpoxviruses							
DPV	DPV153	18	24	1 IgV, 1 TM	n.t.		[80]
Leporipoxviruses							
MV	M141R	19	31	1 IgV, no TM (s), in virion	No	In vivo downregulation of macrophage and T-cell activity. Reduction of cytokines (IFN-γ, TNF-α, G-CSF). Downregulation of NF-κB. Virulence factor.	[19, 22, 23, 81]
SFV	S141R	17	21	1 IgV, 1 TM	n.t.		[19, 22]
Yatapoxviruses							
TANV	141R	12	25	1 IgV, no TM (s)	n.t.		[82]
YLDV	141R	12	29	1 IgV, no TM (s)	n.t.		[19, 22, 83]
YMTV	141R	12	27	1 IgV, no TM (s)	n.t.		[19, 84]

(Continued)
CD47 homologs

CD47 is a heavily glycosylated protein consisting of a single IgV domain followed by five transmembrane-spanning regions and a short cytoplasmic tail [25, 26]. CD47 recognizes with a high affinity the signal regulatory protein alpha (SIRPα), a cell surface receptor that contains three extracellular Ig domains and a long intracellular tail bearing four ITIMs. While CD47 is ubiquitously expressed, SIRPα is only found in myeloid-lineage cells such as dendritic cells and macrophages, and also in neurons [25, 26]. Engagement of SIRPs by CD47, which occurs through their N-terminal IgV domains, triggers inhibitory signals. Thus, among other functions, CD47 acts as a “don’t eat me” signal that prevents the phagocytosis of the CD47-expressing cell by delivering inhibitory signals to macrophages via SIRPs. In addition, CD47 can interact in cis with integrins, and in trans with thrombospondin, and, albeit with a lower affinity than SIRPα, binds to the activating molecule SIRPγ [25]. CD47 homologs (vCD47s) have been found exclusively in poxviruses (Table 2). All chor-dopoxviruses (poxviruses that infect vertebrates) except four genera (parapoxviruses, molluscipoxviruses, crocodylipoxviruses, and avipoxviruses) contain predicted vCD47s. Since the rest of chor-dopoxviruses diverged from these four poxvirus genera 249 000 years ago and began to separate between them 166 000 years ago, we hypothesize that CD47 was most likely captured between these two time points [27]. Interestingly, even though these CD47 poxviral homologs have a low amino acid sequence identity (18–29%) with respect to their host parent gene, all of them conserve the structure of CD47, retaining an N-terminal IgV domain, five transmembrane helices, and a short cytoplasmic tail. The structural conservation of vCD47s among such diverse poxvirus species points to their functional importance. To date, only two vCD47s have been functionally studied: the A38L gene of the vaccinia virus (VACV) and M128L gene of the MV [28, 29]. Although the binding of the two vCD47s to SIRPα has not yet been evaluated, in vivo analyses have shown that M128L contributes to impair macrophage activation and functions as a key virulence factor (Fig. 1B) [29]. This immune-modulatory role of M128L might, however, occur independently of SIRPα binding and, instead, be mediated by additional proteins that interact with the five-span transmembrane regions and/or the Ig domain, such as integrins [25].

FcyR homologs

The family of Fc receptors for IgG (FcyRs) is composed of type I transmembrane or glycosylphosphatidylinositol (GPI)-anchored glycoproteins containing two or three IgC2 domains in their extracellular region, which are responsible for binding the Fc region of the IgG, and ITAM or ITIM motifs in their cytoplasmic region [30]. The different FcyRs bind distinct IgG subclasses with varying affinity and specificity. The members of this family, which are expressed in several immune cell types, constitute a link between the innate and adaptive immune systems. FcyRs are implicated in the regulation of multiple immune responses, including phagocytosis by myeloid cells, antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells or macrophages, and the modulation of B-cell activity. Several herpesviruses encode cell surface glycoproteins with homology to the Fc of IgGs (vFcyRs) and accordingly, in the cases where it has been evaluated, they are capable of binding the Fc of IgGs, thus functioning as viral IgG Fc receptors. As
Figure 1. Homologs of IgSF host members encoded by herpesviruses, poxviruses, or adenoviruses. Each type of viral homologs is illustrated with one selected example (infected cell in the right panel); the corresponding host protein and its function is also shown (uninfected cell in the left panel). (A) vCD200: KSHV K14 mimics CD200, binding CD200R to inhibit myeloid cell functions, such as TNF-α and CSF1 secretion. (B) vCD47: MV M128L conserves the structure of CD47, but it is still unknown if it binds to SIRPs or other proteins. (C) vFcγR: HCMV UL119, a molecule that it is also present in the virion surface, binds to the Fc of all human IgGs, preventing their interaction with FcγRs of NK cells, and thus blocks ADCC. (D) vIL-1R2: VACV B15R, a soluble protein, binds specifically to IL-1β, hindering its interaction with cellular activating IL-1 receptors. (E) vIL-18BP: MOCV MC054L, both as a soluble protein or attached to the surface of the infected cell through glycosaminoglycans, binds to IL-18, precluding its interaction with cellular activating IL-18 receptors. (F) vCD80: instead of binding CD28 or CTLA4, EBV BARF1 is secreted and forms soluble hexamers that can attach up to three CSF1 dimers. (G) vSLAM: OMCMV A43 is shed and binds CD244, preventing its interaction with CD48.

shown in Table 3, all of them present low amino acid sequence identity compared with the host FcγRs. The first described vFcγR was the complex formed by gE and gI, two structural proteins encoded by the US8 and US7 genes, respectively, of the herpes simplex virus 1 (HSV-1). gE presents homology to the second Ig domain of host FcγR, being the Fc-binding unit of the complex. Although gE alone binds with low affinity to IgG, its interaction with the Fc region is much higher when associated with gI [31]. Recently, it has been demonstrated that gE/gI performs the clearance of antiviral IgGs and viral antigens from the surface of viral-infected cells and blocks ADCC antibody-dependent in vivo [32, 33]. vFcγRs have been also found in betaherpesviruses. For instance, human CMV (HCMV) encodes four vFcγRs containing a single Ig domain. In contrast with the inability of the rest...
Table 2. CD47 homologs

Virus	Viral gene(s)	% aa identity protein	% aa identity IgV	Functions	References
Poxviruses					
Orthopoxviruses					
VACV	A38L	24	27	Overexpression of A38L increase Ca\(^{2+}\) influx into cells. No virulence factor.	[28, 85]
VARV	A41L	25	28		
ECTV	EVM138	27	30		[86]
CPXV	CPXV175	24	29		
MPV	A40L	26	28		
RFXV	RFXV146	24	28		[87]
CMLV	CMLV158	26	28		[88]
RCNV	gp156	29	34		[89]
SKPV	gp159	27	31		[90]
TATV	163	29	30		
HSPV	HSPV160	22	27		[91]
VPXV	gp159	25	30		[90]
YKV	YKV144	28	31		[67]
Capripoxviruses					
GTPV	GTPV123	21	24		[79]
LSDV	LW128	20	23		[79]
SPPV	SPPV_123	20	25		[79]
Cervidpoxviruses					
DPV	DPV139	22	28		[80]
Leporipoxviruses					
MV	M128L	22	22	Downregulation of macrophage activity. Virulence factor.	[29]
Suipoxviruses					
SFV	S128L	20	22		[92]
Yatapoxviruses					
TANV	128L	20	22		[82]
YLDV	128L	20	22		[83]
YMTV	128L	18	19		[84]
Unclassified poxviruses					
SQPV	A38L	21	26		[94]
COTV	COTV146	18	21		[95]

\(^a\)Genes in bold encode proteins whose functions have been tested.

\(^b\)The percentage of amino acid (% aa) identity was calculated as in Table 1.

All the vCD47s conserve the structure of CD47: 1 IgV domain, 5 transmembrane domains, and a short cytoplasmic tail.

CMLV: camelpox virus; CPXV: cowpox virus; COTV: cowpox virus; DPV: deepopox virus; ECTV: ectromelia virus; GTPV: goatpox virus; HSPV: horsepox virus; LSDV: lumpy skin disease virus; MPV: monkeypox virus; RCNV: raccoonpox virus; RFXV: rabbitpox virus; SFV: shope fibroma virus; SKPV: skunkpox virus; SPPV: sheeppox virus; SWPV: swinepox virus; TANV: tanapox virus; TATV: taterapox virus; VARV: variola virus; VPXV: volepox virus; YKV: Yoka poxvirus; YLDV: Yaba-like disease virus; YMTV: Yaba monkey tumor virus.

of the vFcyRs characterized, including HSV-1 gE/gI incapable of recognizing IgG3, two of the HCMV FcyRs (UL119 and RL11) bind all human IgG subclasses (IgG1–IgG4; Fig. 1C) [31]. Moreover, these two HCMV proteins are also present in the virion. Interestingly, the gene m138 (fcr1) of the murine CMV (MCMV), whose deletion produces a strong attenuation of viral replication in vivo, encodes a vFcyR that, apart from binding IgG, affects the surface expression of CD80 and several NKG2D ligands in infected cells [34–36]. In fact, it has been shown that the MCMV attenuation observed in the absence of m138 is dependent on these latter activities of the viral protein rather than on its ability to bind IgG. Finally, our bioinformatic analysis suggests that the K1 protein of KSHV and its orthologs in macaque gammaherpesviruses are putative FcyR homologs. Indeed, the amino acid sequence identity of the K1 protein, compared to the host FcyRs, is slightly higher than those observed in alpha- and betaherpesviral vFcyRs.
Virus	Viral gene	% aa identity	Protein structure	Type of IgG binding	Functions	References
Herpesviruses						
Alphaherpesviruses						
HSV-1						
US8 (gE)	16	1 IgV, 1 TM		Human IgG1, IgG2, IgG4	Inhibition of some host FcGRs. Clearing antiviral IgGs and viral antigens from the cell surface. In vivo ADCC blocking. Enhancing viral cell-to-cell spread.	[32, 33]
US7 (gI)	15	no Ig, 1 TM	heterodimers gE/gI			
Betaherpesviruses						
HCMV	UL119	19	1 IgC2, 1 TM, 1 ITIM, in virion	Human IgG1, IgG2, IgG3, IgG4	Inhibition of most host FcGRs. Clearing antiviral IgGs and viral antigens from the cell surface. Blocking ADCC by NK cells.	[31, 96–98]
	RL11	18	1 IgC2, 1 TM, homodimers, in virion	Human IgG1, IgG2, IgG3, IgG4, Rabbit and rat IgG.	Inhibition of most host FcGRs. Blocking ADCC by NK cells.	[31, 96, 97]
	RL12	17	1 IgC2, 1 TM	Human IgG1, IgG2, Rabbit IgG.		[31]
	RL13	18	1 IgC2, 1 TM, in virion	Human IgG1, IgG2, Rabbit IgG.		[31, 99]
CCMV	UL119	17	1 IgC2, 1 TM	n.t.		
RhCMV	UL119	15	1 IgC2, 1 TM	n.t.		
GMCMV	UL119	16	1 IgC2, 1 TM	n.t.		
SMCMV	UL119	16	1 IgC2, 1 TM	n.t.		
OMCMV	UL119	17	1 IgC2, 1 TM	n.t.		
MCMV	m138 (fcr1)	15	3 IgC2s, 1 TM	Mouse IgG.	Crucial for in vivo virus replication. Cell surface downregulation of NKG2D ligands and B7-1.	[34–36]
RCMV-E	e138	16	3 IgC2s, no TM(s)	n.t.		[100]
RCMV-M	r138	15	3 IgC2s, no TM(s)	n.t.		[100]
Gammaherpesviruses						
KSHV	K1	20	2 IgC2, 1 TM, 1 ITAM	n.t.	Oncogenicity. Cell transformation. Induction of cellular cytokines. Enhancing lytic reactivation and/or replication.	[101, 102]
RRV	R1	21	2 IgC2, 1 TM, 1–2 ITAMs	n.t.	Oncogenicity. Cell transformation.	[103]
Table 3. Continued

Virus	Viral gene	% aa identity protein	Protein structure	Type of IgG binding	Functions	References
MfRV	JM2	20	2 IgC2, 1 TM, 1–2 ITAMs	n.t.		
MneRV-2	N1	21	2 IgC2, 1 TM, 1–2 ITAMs	n.t.		

a Genes in bold encode proteins whose functions and/or binding capacity have been tested.

b The percentage of amino acid (% aa) identity was calculated as in Table 1 for the different host FcGRs, selecting the maximum value.

c TM means “transmembrane domain”; s means “soluble”.

d n.t. means “not tested”.

e HSV-1 selected as a representative, as all Alphaherpesviruses have gE and all of them except Scutaviruses also have gl.

CCMV: chimpanzee CMV; GMCMV: green monkey CMV; MfRV: Macaca fuscata rhadinovirus; MneRV: Macaca nemestrina rhadinovirus; RCMV-M: rat CMV Maastricht isolate; RhCMV: rhesus macaque CMV; RRV: rhesus macaque rhadinovirus.

IL-1R2 and IL-18BP homologs

The IL-1R2 and the IL-18BP, two secreted proteins that bind cytokines of the IL-1 family, have been identified among poxviruses. Both cellular molecules act as decoy cytokine receptors with an anti-inflammatory role [37]. IL-1R2 is a type I cell surface protein with an extracellular region formed by three IgC2 domains, and a nonsignaling short cytoplasmic tail. It is released as a soluble form, generated by enzymatic cleavage or alternative splicing [6]. IL-1R2 downregulates IL-1 activity by binding to IL-1α and IL-1β. This receptor is expressed by a limited number of cell types, including neutrophils, monocytes, and B cells. Three poxvirus genera that infect mammals contain soluble versions of the IL-1R2 (vIL-1R2) that conserve the three Ig domains or have evolved to encode only two (Table 4). Interestingly, the vIL-1R2s of vaccinia, cowpox, and ectromelia virus bind to IL-1β, but not to IL-1α (Fig. 1D) [38, 39]. Thus far, only the role of the vIL-1R2 of VACV, B15R, has been analyzed in infected mice and shown to act as a virulence factor [38].

IL-18BP, on the other hand, is a constitutively secreted protein with only one IgC2 domain that binds to IL-18 with high affinity and blocks its interaction with the IL-18 receptor.

Table 4. IL-1R2 homologs

Virus	Viral gene	% aa identity protein	% aa identity N-term. IgC2	Protein structure	IL-1β binding	Functions	References
Poxviruses							
Orthopoxviruses							
VACV	B15R	25	33	3 IgC2, no TM (s)	Yes	Virulence factor. Inhibition of fever.	[38, 69, 70]
ECTV	C9R	26	36	3 IgC2, no TM (s)	Yes		[39, 86]
CPXV	CPXV209	24	33	3 IgC2, no TM (s)	Yes		[38, 69]
MPV	B14R	25	32	3 IgC2, no TM (s)	n.t.		[104]
RCVN	gp188	24	35	3 IgC2, no TM (s)	n.t.		[89]
SKPV	gp192	26	36	3 IgC2, no TM (s)	n.t.		[90]
TAVT	203	27	35	3 IgC2, no TM (s)	n.t.		[91]
HSPV	HSPV192	26	34	3 IgC2, no TM (s)	n.t.		[90]
VPXV	gp192	24	32	3 IgC2, no TM (s)	n.t.		
Capripoxviruses							
GTPV	GTPV004	12	26	2 IgC2, no TM (s)	n.t.		[79]
LSDV	LW006	14	22	2 IgC2, no TM (s)	n.t.		[79]
“	LW013	19	25	2 IgC2, no TM (s)	n.t.		[79]
SPPV	SPPV04	12	22	2 IgC2, no TM (s)	n.t.		[79]
Cervidpoxviruses							
DPV	DPV015	13	24	2 IgC2, no TM (s)	n.t.		[80]

a Genes in bold encode proteins whose functions and/or binding capacity have been tested.

b The percentage of amino acid (% aa) identity was calculated as in Table 1.

c TM means “transmembrane domain”; s means “soluble.”

d n.t. means “not tested.”

CPXV: cowpox virus; DPV: deerpox virus; ECTV: ectromelia virus; GTPV: goatpox virus; HSPV: horsepox virus; LSDV: lumpy skin disease virus; MPV: monkeypox virus; RCVN: raccoonpox virus; SKPV: skunkpox virus; SPPV: sheeppox virus; TAVT: taterapox virus; VPXV: volepox virus.
Table 5. IL-18BP homologs

Virus	Viral gene(s)^a	% a.a identity^b	IL-18 binding^c	Functions	References
Poxviruses					
Orthopoxviruses					
VACV	vIL-18BP (C12L)	27	Yes	In vivo suppression of IFN-γ production and cytotoxic T-lymphocyte activity. In vivo inhibition of NK-cell cytotoxicity. Virulence factor.	[41, 105]
VARV	D5L	28	Yes	Suppression of NF-κB activation and IFN-γ production. In vivo inhibition of NK-cell cytotoxicity.	[106]
ECTV	EVM013	25	Yes		[40, 86, 105]
CPXV	CPXV024	28	Yes		[105]
MPV	D6L	30	n.t.		[104]
RPXV	RPXV009	27	n.t.		[87]
SKPV	gp015	26	n.t.		[90]
TATV	017	25	n.t.		
HSPV	HSPV019	23	n.t.		[91]
VPXV	gp015	22	n.t.		[90]
YKV	YKV006	24	n.t.		[67]
Capripoxviruses					
GTPV	GTPV012	23	n.t.		[79]
LSDV	LW015	23	n.t.		[79]
SPPV	SPPV12	22	n.t.		[79]
Cervidpoxviruses					
DPV	DPV021	19	n.t.		[80]
Suipoxviruses					
SWPV	SPV011	22	n.t.		[93]
Yatapoxviruses					
TANV	14L	24	n.t.		[82]
YLDV	14L	24	Yes		[83, 107]
YMTV	14L	27	Yes	Partial inhibition of IFN-γ production.	[84, 108]
Molluscipoxvirus					
MOCV	MC051L	24	n.t.		[105, 109]
“	MC0531	33	Yes	Suppression of IFN-γ production.	[105, 109]
“	MC0541	42	Yes	Suppression of IFN-γ production. Simultaneously binding to IL-18 and to glycosaminoglycans on the cell surface.	[42, 105, 109]
Avipoxvirus					
CNPV	CNPV100	16	n.t.		[110]
“	CNPV284	16	n.t.		[110]
“	CNPV289	23	n.t.		[110]
FPV	FPV073	21	n.t.		[111]
“	FPV0714	21	n.t.		[111]
TPKV	gp048	20	n.t.		[112]
“	gp156	30	n.t.		[112]
PGPV	gp222	23	n.t.		[113]
PEPEV	PEPV228	22	n.t.		[113]

^a Genes in bold encode proteins whose functions and/or binding capacity have been tested.

^bThe percentage of amino acid (% a.a) identity was calculated as in Table 1.

^cn.t. means “not tested”.

All the vIL-18BPs are soluble forms with only one Ig domain.

CNPV: canarypox virus; CPXV: cowpox virus; DPV: deerpox virus; ECTV: ectromelia virus; FPV: fowlpox virus; GTPV: goatpox virus; HSPV: horsepox virus; LSDV: lumpy skin disease virus; MPV: monkeypox virus; PEPV: penguinpox virus; PGPV: pigeonpox virus; RPXV: rabbitpox virus; SKPV: skunkpox virus; SPPV: sheeppox virus; SWPV: swinepox virus; TANV: tanapox virus; TATV: taterapox virus; TPKV: turkeypox virus; VARV: variola virus; VPXV: volepox virus; YKV: Yoka poxvirus; YLDV: Yaba-like disease virus; YMTV: Yaba monkey tumor virus.
dampening IFN-γ production from T cells and macrophages [6]. Most chordopoxviruses, including viruses that infect birds, have one or more copies of IL-18BP homologs (vIL-18BPs). vIL-18BPs of the molluscum contagiosum virus (MOCV), vaccinia, and ectromelia viruses, in addition to binding to IL-18, have been proven to suppress IFN-γ production in vitro (Table 5). Moreover, the vIL-18BPs encoded by the latter two viruses have also been characterized in murine models of infection and have been shown to counteract the potent proinflammatory role of IL-18, thus promoting virulence [40, 41]. Additionally, MC054L, the secreted vIL18-BP of the MOCV, can bind to glycosaminoglycans and remain attached to the surface of the infected cell, maintaining its IL-18-binding capacity (Fig. 1E) [42].

CD80 homologs

CD80 (B7.1), the prototype of the B7 family, is expressed on activated antigen-presenting cells. Its natural ligands are the T cell cell-surface molecules CD28 and cytotoxic T-lymphocyte-associated protein 4 (CTLA4, CD152), which exert opposite regulatory roles, controlling T-cell activation and tolerance [43]. CD80, a type I transmembrane protein with an N-terminal IgV domain followed by an IgC2 domain, is found on the cell surface predominantly as a homodimer [44]. A CD80 homologous gene, named BARF1, is present in the genome of the human Epstein-Barr virus (EBV) and two other EBV-like gammaherpesviruses that infect macaques (rhesus lymphocryptovirus and cynomolgus lymphocryptovirus). The EBV BARF1 glycoprotein is a secreted molecule that shows a 23% amino acid identity with the human CD80 (rising to 32% in the IgV domain) and conserves the two Ig domains of CD80. However, in contrast to CD80, BARF1 forms hexamers and, instead of interacting with CD28 or CTLA4, binds to the colony-stimulating factor 1 (CSF1), a cytokine secreted by many cell types (Fig. 1F) [45, 46]. Each BARF1 hexameric ring is capable of interacting with three CSF1 dimers [47]. Binding of BARF1 to CSF1, which occurs through a binding site on CSF1 located away from its cognate receptor-binding site, induces a conformational change that blocks the interaction of the cytokine with its cognate receptor [48]. In this way, BARF1 hampers the different roles of CSF1, mainly inhibiting macrophage differentiation and function [49]. The importance of BARF1 has been assessed in vivo using the macaque model with rhesus lymphocryptovirus infections, showing that rhBARF1 is required for immune evasion [50]. Additionally, several reports indicate that BARF1 is involved in driving EBV-oncogenic effects [51].

CEACAM homologs

The CEACAM family of receptors is a group of structurally related cell-surface glycoproteins that encompasses nine members (CD150 [SLAMF1], CD48 [SLAMF2], CD229 [SLAMF3, LY9], CD244 [SLAMF4], CD84 [SLAMF5], CD352 [SLAMF6], CD319 [SLAMF7], CD353 [SLAMF8], and CD84-H1 [SLAMF9]) [56, 57]. They are differentially expressed by a wide range of hematopoietic cells, including B and T cells, NK cells, and myeloid cells [57, 58]. SLAM family receptors are type I transmembrane proteins, possessing an ectodomain composed of an N-terminal IgV domain followed by an IgC2 domain. Exceptions to this common structure are as follows: CD48, which is a GPI-anchored protein, and CD229, which displays an ectodomain formed by a tandem repeat of two IgV/IgC2-region sets of domains. In their cytoplasmic domains several members of this family contain one or more copies of the immunoreceptor tyrosine-based switch motif (ITSM) [56]. Typically, SLAMs are self-ligands. CD244 and CD48, however, do not follow this rule, participating in heterophilic interactions among themselves. SLAM engagement, which occurs through their N-terminal IgV domains, results in signaling transduction events that ultimately modulate (positively or negatively) multiple aspects of the innate and adaptive immune responses, such as cytokine production, cytotoxicity, or cell differentiation and proliferation [58, 59]. A number of SLAM homologs have been described or predicted in herpesviruses, poxviruses, and adenoviruses (vSLAMs; Table 6). The first vSLAM characterized was the soluble UL7
Table 6. SLAM homologs

Virus	Viral gene(s)	Host SLAM homolog(s)	% aa identity protein	% aa identity IgV	Protein structure	SLAM ligand binding	Functions	References
Herpesviruses								
Alphaherpesviruses								
ChHV-5 F-US1	n.d.	SLAM	11	17	1 IgV, 1 TM, long protein	n.t.		[114]
Betaherpesviruses								
HCMV UL7	L Y9	11	23	1 IgV, 1 TM (or s)	No		Mediation of adhesion to leukocytes. Downregulation of proinflammatory cytokines.	[60]
CCMV UL7	L Y9	11	17	1 IgV, 1 TM	n.t.			
RhCMV rhUL7	L Y9	12	15	1 IgV, 1 TM	n.t.			
CyCMV UL7	L Y9	12	15	1 IgV, 1 TM	n.t.			
SMCMV S1	SLAMF6	S1	62	97	1 IgV, 1 IgC2, 1 TM	SLAMF6		[61]
“	CD48 S30	S30	28	36	1 IgV, 1 IgC2, 1 TM	n.t.		[61]
“	CD48 S31	S31	20	36	1 IgV, 1 IgC2, 1 stalk, 1 TM	n.t.		[61]
OMCMV A33	L Y9	23	80	1 IgV, 1 IgC2, 1 TM (or s)	LY9			[61]
“	CD48 A43	A43	45	90	1 IgV, 1 IgC2, 1 TM (or s)	CD244		[61]
“	CD48 A44	A44	28	34	1 IgV, 1 IgC2, 1 TM	n.t.		[61]
“	CD48 A45	A45	15	24	1 IgV, 1 IgC2, 1 stalk, 1 TM	n.t.		[61]
EEHV-1A ES2	CD48	18	21	1 IgV, no TM (s)	n.t.			
EEHV-5 EE49B	CD48	17	22	1 IgV, 1 TM	n.t.			
Poxviruses								
Molluscipoxvirus								
MOCV MC002L	SLAMF1	18	20	1 IgV, 1 IgC2, 1 TM	n.t.			[62]
“	SLAMF1	15	14	1 IgV, 1 IgC2, 1 TM	n.t.			[62]
“	SLAMF1	15	15	1 IgV, 1 IgC2, 1 TM	n.t.			[62]
Unclassified poxviruses								
SQPV F5	CD48	13	19	1 IgV, 1 TM	n.t.			[94]
Adenoviruses								
Mastadenoviruses								
HAdV-A E3 CR1-β	n.d.	SLAM	20	21	1 IgV, 1 IgC2, 1 TM	CD244		[63]
HAdV-F E3 CR1-β	n.d.	SLAM	18	18	1 IgV, 1 IgC2, 1 TM	CD244		[63]
HAdV-G E3	n.d.	SLAM	15	19	1 IgV, 1 IgC2, 1 TM	n.t.		
SAdV-A E3 CR1-β1	n.d.	SLAM	16	19	1 IgV, 1 IgC2, 1 TM	n.t.		
SAdV-B E3 CR1-α	n.d.	SLAM	12	15	1 IgV, 1 IgC2, 1 TM	n.t.		
SAdV-C E3 CR1-β	n.d.	SLAM	14	24	1 IgV, 1 IgC2, 1 TM	n.t.		
SAdV-19 E3 CR1-β	n.d.	SLAM	17	21	1 IgV, 1 IgC2, 1 TM	n.t.		
SAdV-20 E3 CR1-β	n.d.	SLAM	17	21	1 IgV, 1 IgC2, 1 TM	n.t.		
TSAdV-1 105R	n.d.	SLAM	16	25	1 IgV, no TM (s)	n.t.		
BAdV-A E3 ORFA	n.d.	SLAM	15	15	1 IgV, 1 IgC2, 1 TM	n.t.		
EAdV-A E3 ORFA	n.d.	SLAM	17	20	1 IgV, 1 IgC2, 1 TM	n.t.		
EAdV-B hORF1	n.d.	SLAM	15	18	1 IgV, 1 IgC2, 1 TM	n.t.		
Aviadenoviruses								
FAdV-A ORF11	CD48	21	34	1 IgV, 1 IgC2, 1 TM	n.t.			
FAdV-1 ORF11	CD48	17	34	1 IgV, no TM (s)	n.t.			
FAdV-D ORF11	CD48	23	38	1 IgV, 1 IgC2, 1 TM	n.t.			
FAdV-E ORF11	CD48	23	41	1 IgV, 1 IgC2, no TM (s)	n.t.			
FAdV-6,7,8 ORF11	CD48	27	43	1 IgV, 1 IgC2, 1 TM	n.t.			

(Continued)
Table 6. Continued

Virus	Viral gene(s)a	Host SLAM homologb	% aa identity proteinc	% aa identity IgVd	Protein structuree	SLAM ligand bindingf	Functions	References
TAdV-1	ORF11	CD48	14	34	1 IgV, no TM (s)	n.t.		
TAdV-5	ORF11	CD48	25	35	1 IgV, 1 IgC2, no TM (s)	n.t.		

a) Genes in bold encode proteins whose functions and/or binding capacity have been tested.
b) n.d. means “not determined”.
c) The percentage of amino acid (% aa) identity was calculated as in Table 1.
d) TM means “transmembrane domain”; s means “soluble”.
e) n.t. means “not tested”.
f) BAdV: bovine adenovirus; CCMV: chimpanzee CMV; ChHV: chelonid herpesvirus; CyCMV: cynomolgus macaque CMV; EAdV: equine adenovirus; EEHV: elephant endotheliotropic herpesvirus; FAdV: fowl aviadenovirus; RhCMV: rhesus macaque CMV; SAdV: simian adenovirus; SQPV: squirrelpox virus; TAdV: turkey aviadenovirus; TSAdV: tree shrew adenovirus.

Viral acquisition of novel genes by horizontal gene transfer from hosts

Horizontal gene transfer is a process through which genomes can acquire genetic material from distantly related organisms. This process provides genes with new functions, allowing viruses to enhance their adaption to the host environment. Given the strong evolutionary pressures that viruses encounter, as well as their genome size constraints, any superfluously incorporated genes that do not increase their fitness will be rapidly discarded. To date, however, the mechanisms of horizontal gene transfer to explain the origin of these viral genes remain poorly understood. Some viral captured genes conserve the intron structure of the parental host gene, suggesting that they were acquired by direct recombination between the viral and host genomes [64]. However, most viral homologs are intronless. Thus, it is believed that host genes can be incorporated into viral genomes already in a spliced form, as a cDNA copy, during co-infections with retroviruses, since DNA viruses do not have the capacity for reverse transcription [65]. While this latter hypothesis has been widely accepted, direct evidence supporting it has not been provided. Interestingly, we have recently proposed that large DNA viruses may exploit the L1-driven and Alu-aided retrocopy cellular machinery in order to facilitate the incorporation of host genes [66]. The occurrence of virally encoded cellular homologs, as previously shown by other authors [2], may result from either a unique transfer event or from multiple independent acquisition events at different times during viral evolution. This aspect is also reflected within the vlgsf molecules. A clear example of a single capture event is the case of CD47 in poxviruses, as vCD47 molecules have been detected in all poxviruses that infect mammals except in the more phylogenetically distant molluscipoxviruses and parapoxviruses [67]. Herpesviral homologs of CD200, on the other hand, probably stem from several independent insertions, as they are present in diverse unrelated herpesvirus species. For instance, a recent capture of CD200 in RCMV-E is the most parsimonious explanation of the existence of e127, a CD200 homolog absent from the rat CMV Maastricht isolate and the MCMV [68].
Viral homologs of host genes as a source of functional diversity

Once incorporated into the viral genome, host homologs will often mimic the effects of the original cellular ancestors. In this regard, functional mimicry is largely exhibited among the vIgSF molecules with assigned biological activities described in this review. Alternatively, they can evolve to generate related or completely new functions. Quite frequently, they may also suffer processes of gene duplication, with one of the copies usually maintaining the original function and the other(s) diverging and gaining new functional roles. Moreover, successive gene duplications can lead to multigene families. Evidence of gene duplication has been found in homologs of CD200, FcyR, IL-1R2, IL-18BP, and CD48 in several viral species (see examples in Tables 1, 3 and 6). The acquisition of new functions after gene duplication is likely favored in IgSF genes due to the moldable nature of the Ig domains, as proven by their extraordinary evolutionary expansion, generating one of the largest protein families in vertebrates.

It is evident that, over time, proteins encoded by captured genes have been meticulously crafted within the viral genomes in ingenious ways to gain distinctive structural and functional features in order to selectively target and disarm several immune pathways. In some instances, these changes have included substantial structural alterations, which frequently imply size reductions, usually through removal of superfluous regions (e.g. Ig domains not involved in ligand binding), or alternatively, by expanding particular segments of the proteins to meet specific functional requirements. A paradigmatic example of the generation of highly diverse structural variants is provided by the five homologs of CD48 found in the New World monkey CMVs [61]. Some of the vIgSF molecules have also been optimized to change their cellular localization or to form part of the virion particle, as demonstrated for a number of the herpesviral FcγR homologs or the CEACAM homolog UL1 of HCMV (Fig. 1C) [31, 54]. Notably, a large number of the described viral homologs are soluble versions of the homolog UL1 of HCMV (Fig. 1C) [31, 54]. Notably, a large number of the described viral homologs are soluble versions of the homologs due to the moldable nature of the Ig domains, as proven by their extraordinary evolutionary expansion, generating one of the largest protein families in vertebrates.

Viral decoy receptors can be secreted into the environment of the virus-infected cells, sequestering cytokines or blocking different target molecules. Two of the best examples of this type of secreted receptor are the VACV IL-1R2 homolog B15R and the MOCV IL-18BP homolog MC054L, which are able to bind and block the cytokines IL-1β and IL-18, respectively (Fig. 1D and E) [42, 69, 70]. Additionally, a different kind of viral decoy receptor comprised molecules lacking the relevant intracellular signaling motifs of their cellular ancestors, thus being able to block the transmission of biological responses when exposed at the surface of the infected cell. While not yet functionally studied, a number of vIgSF members could be also classified in this category, such as the SLAM family homologs possessing transmembrane regions but lacking the ITSM cytoplasmic signaling motifs [61]. In other instances, viral proteins are able to dramatically alter their ligand recognition, exhibiting higher affinity or broader, more limited, or completely different binding specificity. This latter case is well illustrated by the EBV protein BARF1, a homolog of CD80, which can bind to cytokine CSF1, instead of its natural T-cell ligands CD28 or CTLA4, resulting in the inhibition of macrophage differentiation and function, and thus contributing to EBV immune evasion (Fig. 1F) [48–51]. Finally, an intriguing aspect that also emerges from the study of these viral products is the fact that a number of them can perform the immunomodulatory function of the original host molecule without binding to the cognate cellular ligand/receptor, while others, despite retaining the binding specificity of the ancestor cellular protein, do not perform the expected biological function. These two cases are exemplified within the virally encoded CD200 homologs by the MV M141R and the RCMV-E e127, respectively [21–23].

Translating functional optimization by viral evolution to immune therapy

The fact that these virally encoded proteins have been functionally optimized through thousands or even millions of years of evolution by altering their ligand specificities and affinities in order to counteract specific immune processes, places them as promising immunomodulatory reagents for the development of novel immune suppressive therapeutic strategies to treat inflammatory disorders [71]. Indeed, these viral molecules can likely offer additional advantageous characteristicst, such as low immunogenicity and low toxicity. Thus far, no viral IgSF protein has entered clinical trials. However, the serine proteinase inhibitor 1 encoded by the MV has already been tested in a phase II study as an anti-inflammatory drug for arterial trauma [72]. As with any biological drug, it remains to be seen whether unexpected problems might appear when these proteins are tested in patients, such as allergic reactions, immunogenicity, and/or other unforeseen side effects. To circumvent some of these potential complications, an alternative approach would be to utilize not the viral protein itself, but rather the cellular protein mutated according to the structural-functional information extracted from the viral homolog, thereby creating a new generation of engineered biologics. In conclusion, the study of host-virus co-evolution holds hidden treasures for immunologists and clinicians, especially since the repertoire of novel viral gene products with immunomodulatory functions is quickly rising. Comprehensive mechanistic insights into how these proteins target the immune system will facilitate the development of novel therapeutic approaches.

Acknowledgments: This work was supported by grants from the Ministerio de Economía y Competitividad (MINECO, Spain; grant numbers SAF2014-55683 to A.A. and SAF2015-69829 to P.E.).
Conflict of interest: The authors declare no commercial or financial conflict of interest.

References

1 Holzerlandt, R., Oreno, C., Kellam, P. and Albà, M. M., Identification of new herpesvirus gene homologs in the human genome. Genome Res. 2002. 12: 1739–1748.

2 Hughes, A. L., Irausquin, S. and Friedman, R., The evolutionary biology of poxviruses. Infect. Genet. Evol. 2010. 10: 50–59.

3 Engel, P. and Angulo, A., Viral immunomodulatory proteins: usurping host genes as a survival strategy. Adv. Exp. Med. Biol. 2012. 738: 256–276.

4 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K. et al., Initial sequencing and analysis of the human genome. Nature 2001. 409: 860–921.

5 Barclay, A. N., Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. Semin. Immunol. 2003. 15: 215–223.

6 Garlanda, C., Dinarello, C. A. and Mantovani, A., The interleukin-1 family: back to the future. Immunity 2013. 39: 1093–1018.

7 Borstyn, G. M., Schäffer, A. A., Agarwala, R., Alictsul, S. F., Lipman, D. J. and Madden, T. L., Domain enhanced lookup time accelerated BLAST. Bio. Direct. 2012. 7: 12.

8 Barclay, A. N., Wright, G. J., Brooke, G. and Brown, M. H., CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002. 23: 285–290.

9 Hatherley, D., Lea, S. M., Johnson, S. and Barclay, A. N., Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure 2013. 21: 820–832.

10 Preston, S., Wright, G. J., Starr, K., Barclay, A. N. and Brown, M. H., The leukocyte/neuron cell surface antigen OX2 binds to a ligand on macrophages. Eur. J. Immunol. 1997. 27: 1911–1918.

11 Shiratori, I., Yamaguchi, M., Suzukiawa, M., Yamamoto, K., Lanier, L. L., Saito, T. and Arase, H., Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J. Immunol. 2005. 175: 4441–4449.

12 Rijkers, E. S., de Ruiter, T., Baridi, A., Veninga, H., Hoek, R. M. and Meynard, L., The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol. Immunol. 2008. 45: 1126–1135.

13 Hoek, R. M., Ruuls, S. R., Murphy, C. A., Wright, G. J., Goddard, R., Zurawski, S. M., Blom, B. et al., Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000. 290: 1768–1771.

14 Wright, G. J., Puklavec, M. J., Willis, A. C., Hoek, R. M., Sedgwick, J. D., Brown, M. H. and Barclay, A. N., Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000. 13: 233–242.

15 Snelgrove, R. J., Goulding, J., Didierlaurent, A. M., Lyonga, D., Vekaria, S., Edwards, L., Gwyer, E. et al., A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 2008. 9: 1074–1083.

16 Coles, S. J., Wang, E. C., Man, S., Hills, R. K., Burnett, A. K., Tonks, A. and Darley, R. L., CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 2011. 25: 792–799.

17 Coles, S. J., Hills, R. K., Wang, E. C., Burnett, A. K., Man, S., Darley, R. L. and Tonks, A., Expression of CD200 on AML blasts directly suppresses memory T-cell function. Leukemia 2012. 26: 2148–2151.

18 Misstear, K., Chanas, S. A., Rezaee, S. A., Colman, R., Quinn, L. L., Long, H. M., Gooyear, O. et al., Suppression of antigen-specific T cell responses by the Kaposi’s sarcoma-associated herpesvirus viral OX2 protein and its cellular orthologue, CD200. J. Virol. 2012. 86: 6246–6257.

19 Foster-Cuevas, M., Wright, G. J., Puklavec, M. J., Brown, M. H. and Barclay, A. N., Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J. Virol. 2004. 78: 7667–7676.

20 Rezaee, S. A., Gracie, J. A., McNees, I. B. and Blackbourn, D. J., Inhibition of neutrophil function by the Kaposi’s sarcoma-associated herpesvirus vOX2 protein. AIDS 2005. 19: 1907–1910.

21 Foster-Cuevas, M., Westerholt, T., Ahmed, M., Brown, M. H., Barclay, A. N. and Voigt, S., Cytomegalovirus e127 protein interacts with the inhibitory CD200 receptor. J. Virol. 2011. 85: 6055–6059.

22 Cameron, C. M., Barrett, J. W., Liu, L., Lucas, A. R. and McFadden, G., Myxoma virus M141R expresses a viral CD200 (vOX2)-1 that is responsible for down-regulation of macrophage and T-cell activation in vivo. J. Virol. 2005. 79: 6052–6067.

23 Akkaya, M., Kwong, L. S., Akkaya, E., Hatherley, D. and Barclay, A. N., Rabbit CD200R binds host CD200 but not CD200-like proteins from poxviruses. Virology 2016. 488: 1–8.

24 Estep, R. D., Rawlings, S. D., Li, H., Manoharan, M., Blaine, E. T., O’Connor, M. A., Messaoudi, I. et al., The rhesus rhadinovirus CD200 homologue affects immune responses and viral loads during in vivo infection. J. Virol. 2014. 88: 10635–10654.

25 Barclay, A. N. and Van den Berg, T. K., The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu. Rev. Immunol. 2014. 32: 25–50.

26 Murata, Y., Kotani, T., Ohnishi, H. and Matozaki, T., The CD47-SIRPα signalling system: its physiological roles and therapeutic application. J. Biochem. 2014. 155: 335–344.

27 Babkin, I. V. and Babkina, I. N., Molecular dating in the evolution of vertebrate poxviruses. Interivirology 2011. 54: 253–260.

28 Parkinson, J. E., Sanderson, C. M. and Smith, G. L., The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. Virology 1995. 214: 177–188.

29 Cameron, C. M., Barrett, J. W., Mann, M., Lucas, A. and McFadden, G., Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology 2005. 337: 55–67.

30 Nimmerjahn, F. and Ravetch, J. V., Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008. 8: 34–47.

31 Corrales-Aguilar, E., Hoffmann, K. and Hengel, H., CMV-encoded Fcγ receptors: modulators at the interface of innate and adaptive immunity. Semin. Immunopathol. 2014. 36: 627–640.

32 Lubinski, J. M., Lazear, H. M., Awasthi, S., Wang, F. and Friedman, H. M., The herpes simplex virus 1 gIg fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J. Virol. 2011. 85: 3239–3249.

33 Ndjamen, B., Farley, A. H., Lee, T., Fraser, S. E. and Bjorkman, P. J., The herpes virus Fc receptor gIf-g mediates antibody bipolar bridging to clear viral antigens from the cell surface. PLoS Pathog. 2014. 10: e1003961.

34 Cmoković-Mertens, I., Messerle, M., Milotić, I., Szepan, U., Kocić, N., Krmposić, A., Jonjč, S. et al., Virus attenuation after deletion of the cytomegalovirus Fc receptor gene is not due to antibody control. J. Virol. 1998. 72: 1377–1382.
Smith, V. P. and Alcamí, A.

Bonecchi, R.

49

Born, T. L.

40

Alcamí, A. and Smith, G. L.

48

Shim, A. H.

Elegheert, J.

45

Strockbine, L. D.

44

Greenwald, R. J.

Reading, P. C. and Smith, G. L.

41

Lenac, T.

35

www.eji-journal.eu

hematopoietic CSF-1 signaling by the viral decoy receptor BARF1.

chemokine inhibitors by ectromelia virus.

G.

pronged attenuation of macrophage-colony stimulating factor signaling

1998.

Front. Immunol.

ulation of immunological synapse dynamics by B7 ligand recognition.

Annu. Rev. Immunol.

cleaved form with only the IL-18 binding domain.

(IL-18) binding protein is secreted as a full-length form that binds cell

inactivates IL-18, and inhibits NK cell response.

BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator.

Rev. Med. Virol. 2013. 23: 367–383.

Kuespert, K., Pils, S. and Hauck, C. R., CEACAMs: their role in physiology and pathophysiology.

Curr. Opin. Cell Biol. 2006. 18: 565–571.

Gray-Owen, S. D. and Blumberg, R. S., CEACAM1: contact-dependent control of immunity.

Nat. Rev. Immunol. 2006. 6: 433–446.

Shikhaghe, M., Mercé-Maldonado, E., Isern, E., Muntasell, A., Albá, M. M., López-Botet, M., Hengel, H. et al., The human cytomegalovirus-specific UL1 gene encodes a late-phase glycoprotein incorporated in the virion envelope.

J. Virol. 2012. 86: 4091–4101.

Baker, K. S. and Murcia, P. R., Poxviruses in bats . . . so what?

Viruses 2014. 6: 1564–1577.

Engel, P., Eck, M. J. and Terhorst, C., The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease.

Nat. Rev. Immunol. 2003. 3: 813–821.

Cannons, J. L., Tange, S. G. and Schwartzberg, P. L., SLAM family receptors and SAP adapters in immunity.

Ann. Rev. Immunol. 2011. 29: 665–705.

Calpe, S., Wang, N., Romero, X., Berger, S. B., Lanyi, A., Engel, P. and Terhorst, C., The SLAM and SAP gene families control innate and adaptive immune responses.

Adv. Immunol. 2008. 97: 177–250.

Veillette, A., Dong, Z., Pérez-Quintero, L. A., Zhong, M. C. and Cruz-Munoz, M. E., Importance and mechanism of ‘switch’ function of SAP family adapters.

Immunol. Rev. 2009. 232: 229–239.

Engel, P., Pérez-Carmona, N., Albá, M. M., Robertson, K., Ghazal, P. and Angulo, A., Human cytomegalovirus UL7, a homologue of the SLAM-family receptor CD229, impairs cytokine production.

Cell Biol. 2011. 89: 753–766.

Pérez-Carmona, N., Farré, D., Martínez-Vicente, P., Terhorst, C., Engel, P. and Angulo, A., Signaling lymphocytic activation molecule family receptor homologs in New World monkey cytomegaloviruses.

J. Virol. 2015. 89: 11323–11336.

Bugert, J. J., Melquiot, N. V. and Darai, G., Mapping of mRNA transcripts in the genome of molluscum contagiosum virus: transcriptional analysis of the viral slam gene family.

Virus Genes 2000. 21: 189–192.

Martínez-Martín, M., Ramani, S. R., Hackney, J. A., Tom, I., Wranik, B. J., Chan, M., Wu, J. et al., The extracellular interactome of the human adenovirus family reveals diverse strategies for immunomodulation.

Nat. Commun. 2016. 7: 11473.

Jayawardane, G., Russell, G. C., Thomson, J., Deane, D., Cox, H., Gatherer, D., Ackermann, M. et al., A captured viral interleukin 10 gene with cellular exon structure.

J. Gen. Virol. 2008. 89: 2447–2455.

Shackelton, L. A. and Holmes, E. C., The evolution of large DNA viruses: combining genomic information of viruses and their hosts.

Trends Microbiol. 2004. 12: 458–465.

Farré, D., Engel, P. and Angulo, A., Novel role of 3’UTR-embedded Alu elements as facilitators of processed pseudogene genesis and host gene capture by viral genomes.

PloS One 2016. 11: e0169196.

Zhao, G., Droit, L., Tesh, R. B., Popov, V. L., Little, N. S., Upton, C., Virgin, H. W. et al., The genome of Yoka poxvirus.

J. Virol. 2011. 85: 10230–10238.

Voigt, S., Sandford, G. R., Hayward, G. S. and Burns, W. H., The English strain of rat cytomegalovirus (CMV) contains a novel captured CD200 (vOX2) gene and a spliced CC chemokine upstream from the major immediate-early region: further evidence for a separate evolutionary lineage from that of rat CMV Maastricht.

J. Gen. Virol. 2005. 86: 263–274.

Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M. and VanSlyke, J., Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein.

Cell 1992. 71: 145–152.
Domène Farré et al.

Eur. J. Immunol. 2017. 47: 780–796

Abbreviations: ADCC: antibody-dependent cell-mediated cytotoxicity · CD200R: CD200 receptor · CEACAM: carcinoembryonic antigen-related cell adhesion molecule · CMV: cytomegalovirus · CSF1: colony-stimulating factor 1 · CTLA4: cytotoxic T-lymphocyte-associated protein 4 · EBV: Epstein-Barr virus · FcγR: Fc receptors for IgG · GPI: glycosylphosphatidylinositol · HAdV: human adenovirus · HCMV: human CMV · HSV-1: herpes simplex virus 1 · IgSF: immunoglobulin superfamily · IL-1: interleukin-1 · IL-18: interleukin-18 · IL-18BP: IL-18-binding protein · IL-1R2: interleukin-1 receptor 2 · ITAM: immunoreceptor tyrosine-based activation motif · ITIM: immunoreceptor tyrosine-based inhibitory motif · ITSM: immunoreceptor tyrosine-based switch motif · KSHV: Kaposi’s sarcoma-associated herpesvirus · MCMV: murine CMV · MOCV: molluscum contagiosum virus · MV: myxoma virus · OMCMV: owl monkey CMV · RCMV-E: rat CMV England isolate · SIRPa: signal regulatory protein alpha · SLAM: signaling lymphocyte activation molecule · SMCMV: squirrel monkey CMV · VACV: vaccinia virus

Full correspondence: Dr. Ana Angulo, Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, C/ Casanova 143, Barcelona 08036, Spain
Fax: +34 93 4021907
e-mail: aangulo@ub.edu

Received: 7/2/2017
Revised: 11/3/2017
Accepted: 29/3/2017
Accepted article online: 6/4/2017

Smith, V. P., Bryant, N. A. and Alcamí, A., Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J. Gen. Virol. 2000. 81: 1223–1230.

Meng, X., Leman, M. and Xiang, Y., Variola virus IL-18 binding protein interacts with three human IL-18 residues that are part of a binding site for human IL-18 receptor alpha subunit. Virology 2007. 358: 211–220.

Krumm, B., Meng, X., Wang, Z., Xiang, Y. and Deng, J., A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein. PLoS Pathog. 2012. 8: e1002876.

Nazarian, S. H., Rahman, M. M., Werden, S. J., Villeneuve, D., Meng, X., Brunetti, C., Valeriano, C. et al., Yaba monkey tumor virus encodes a functional inhibitor of interleukin-18. J. Virol. 2008. 82: 522–528.

Xiang, Y. and Moss, B., IL-18 binding and inhibition of interferon-γ induction by human poxvirus-encoded proteins. Proc. Natl. Acad. Sci. USA 1999. 96: 11537–11542.

Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Kutish, G. F. and Rock, D. L., The genome of canarypox virus. J. Virol. 2004. 78: 353–366.

Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Kutish, G. F. and Rock, D. L., The genome of fowlpox virus. J. Virol. 2000. 74: 3815–3831.

Bányai, K., Palya, V., Dénes, B., Glávits, R., Ivanics, É., Horváth, B., Farkas, S. L. et al., Unique genomic organization of a novel Avipoxvirus detected in turkey (Meleagris gallopavo). Infect. Genet. Evol. 2015. 35: 221–229.

Offerman, K., Carulei, O., van der Walt, A. P., Douglass, N. and Williamson, A. L., The complete genome sequences of poxviruses isolated from a penguin and a pigeon in South Africa and comparison to other sequenced avipoxviruses. BMC Genomics 2014. 15: 463.

Ackermann, M., Koiriphine, M., Hartmann-Fritsch, F., de Jong, P. J., Lewis, T. D., Schette, N., Work, T. M. et al., The genome of Chelonid herpesvirus 5 harbors atypical genes. PLoS One 2012. 7: e46623.