Restoration of fatty acid composition of common carp *Cyprinus carpio* (Linnaeus, 1758) fed terrestrial oil based diets using fish oil finishing diet

SONU BAWEJA AND BHUPINDER KAUR BABBAR

Department of Zoology, Punjab Agricultural University, Ludhiana - 141 004, Punjab, India
e-mail: sonubaweja3@gmail.com

ABSTRACT

This study investigated effects of fish oil finishing diets on growth performance, fatty acid profiles and proximate composition of common carp *Cyprinus carpio*. Three isonitrogenous, isolipidic and isoenergetic diets were formulated. Diet 1 contained 50% fish oil and 50% canola oil and Diet 2 contained 50% fish oil and 50% poultry fat. The finishing diet (Diet 3) contained 100% fish oil. Fish were given different dietary treatments viz., T1 = 60 day feeding with Diet 1, T2 = 40 day (1-40) feeding with Diet 1 and 20 day (41-60) feeding with Diet 3, T3 = 60 day feeding with Diet 2, T4 = 40 day (1-40) feeding with Diet 2 and 20 day (41-60) feeding with Diet 3 and T5 = 60 day feeding with Diet 3. There was non-significant difference in the growth performance and proximate composition of fish in all the treatments. Inducing a dietary shift from canola oil based and poultry fat based feeds to fish oil based feeds supplied as finishing diet (i.e., T2 and T4) significantly increased long-chain PUFA concentrations in common carp as compared to those fed only canola oil (T1) and poultry fat (T3) based feeds. Amongst T2 and T4, treatment T2 appeared to be better with comparatively higher n-3 PUFAs and n-3/n-6 ratio.

Keywords: Canola oil, Common carp, Fatty acids, Finishing diet, Poultry fat

Introduction

The need for fish oil for aquafeed production is viewed as the most demanding obstacle to overcome sustainable development of the aquaculture sector (Naylor *et al*., 2009). Consequently, the substitution of fish oil in aquafeed formulations with readily available and more economical terrestrial alternatives has been the object of intensive research effort (Turchini *et al*., 2009). This research focus has widely demonstrated that the substitution of fish oil with any alternative source results in a reflection of the dietary fatty acid composition in fish flesh, a potentially undesirable trait from an omega-3 long chain polyunsaturated fatty acid (n-3 LC-PUFA) consumption viewpoint (Rosenlund *et al*., 2010). Terrestrial alternatives to fish oil are characterised by a wide range of fatty acid compositions and are notably lacking in meaningful concentrations of LC-PUFA (Turchini *et al*., 2010). One way to boost the LC-PUFA concentration of farmed fish fed on alternative lipid sources may be to use ‘finishing’ feeds containing 100% fish oil. The fatty acid composition of the fish flesh could thus be altered to meet the consumer expectation of a product that is rich in n-3 highly unsaturated fatty acids (n-3 HUFAs) and low in n-6 fatty acids (Jobling *et al*., 2002; Bell *et al*., 2003a; b; Glencross *et al*., 2003; Robin *et al*., 2003). Consumption of food rich in n-3 HUFA particularly fish, which are a good source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are beneficial for human health (Mozaffarian and Rimm, 2006). These fatty acids (FA) play an important role in biological functions, including brain development, inflammatory response, homeostasis and prevention of cardiovascular disease (Calder, 2006; Mraz and Pickova, 2012).

Such a finishing diet strategy has been suggested and developed for carnivorous fish species, including medium fatty fish species such as turbot (*Psetta maxima*) (Robin *et al*., 2003), fatty fish such as Atlantic salmon (*Salmo salar*) (Jobling, 2003; 2004) and lean fish species such as Atlantic cod (*Gadus morhua*) (Jobling *et al*., 2008) and Murray cod (*Maccullochella peeli peelli*) (Turchini *et al*., 2006). The results so far have been promising and adoption of finishing feed strategy for commercial applications has been proposed.

Common carp (*Cyprinus carpio*) is one of the most widely cultured fish species globally (FAO, 2008) with a production volume of around 0.3 million t annually (FAO, 2010). Thus, from a worldwide nutrition perspective, a method to increase the amount of n-3 HUFA in carp fillet is valuable. Optimisation of the fatty acid composition of carp has been examined in previous studies (Steffens, 1997; Domaizon *et al*., 2000; Steffens and Wirth, 2007; Chen *et al*., 2011; Mraz *et al*., 2012). Mraz and Pickova
Table 1. Formulation and proximate composition of experimental diets

Ingredients (%)	Diets	Diets	Diets
	Diet 1	Diet 2	Diet 3
Fish oil	10	10	20
Canola oil	10	-	-
Poultry fat	-	10	-
Soybean meal	20	20	20
Groundnut oil cake	20	20	20
Mustard oil cake	20	20	20
Wheat flour	5	5	5
Rice bran	5	5	5
Corn starch	5	5	5
Vitamin & mineral mixture	1	1	1
Molasses	3.5	3.5	3.5
Iodised salt	0.5	0.5	0.5

Proximate composition (%)

Moisture	5.11±0.08	5.15±0.11	5.21±0.08
Crude protein	25.95±0.77	26.24±0.50	26.83±0.58
Total lipid	20.06±0.13	20.10±0.15	19.93±0.13
Ash	8.43±0.07	8.36±0.04	8.43±0.07
Carbohydrate	40.42±0.75	40.07±0.26	39.58±0.80

Table 2. Fatty acid composition of experimental diets

Fatty acid (%)	Diets	Diets	Diets
	Diet 1	Diet 2	Diet 3
18:0	2.54±0.42b	2.32±0.06c	3.89±0.31c
18:1 n-9	0.86±0.14b	0.76±0.00b	1.66±0.04b
18:2 n-6	3.56±0.32a	1.79±0.10b	3.92±0.38a
18:3 n-3	11.13±0.35a	8.39±0.08b	12.31±0.40a
20:4 n-6	59.00±1.20a	36.50±0.36b	39.28±0.94a
22:6 n-3	3.04±0.12a	1.18±0.03a	2.46±0.30a
Σn-3 PUFA	13.88±0.38a	9.53±0.13b	17.90±0.35c
Σn-6 PUFA	14.20±0.65a	14.98±0.12b	19.51±0.09c
Σ PUFA	31.30±0.98b	28.08±0.58b	33.16±1.45b
Σ UFA	73.56±0.54a	62.90±1.71a	59.00±1.20b
18:0/18:1 n-9	0.80±0.04c	0.51±0.00c	1.17±0.05c
Σ SFA	38.02±0.02c	1.30±0.03c	1.18±0.03c
Σ MUFA	38.02±0.02c	1.30±0.03c	1.18±0.03c
Σ PUFA	38.02±0.02c	1.30±0.03c	1.18±0.03c
Σ UFA	73.56±0.54a	62.90±1.71a	59.00±1.20b
Σ PUFA	31.30±0.98b	28.08±0.58b	33.16±1.45b
Σ UFA	73.56±0.54a	62.90±1.71a	59.00±1.20b
Σ MUFA	38.02±0.02c	1.30±0.03c	1.18±0.03c
Σ PUFA	31.30±0.98b	28.08±0.58b	33.16±1.45b
Σ UFA	73.56±0.54a	62.90±1.71a	59.00±1.20b
Σ MUFA	38.02±0.02c	1.30±0.03c	1.18±0.03c
Σ PUFA	31.30±0.98b	28.08±0.58b	33.16±1.45b
Σ UFA	73.56±0.54a	62.90±1.71a	59.00±1.20b
Σ MUFA	38.02±0.02c	1.30±0.03c	1.18±0.03c
Σ PUFA	31.30±0.98b	28.08±0.58b	33.16±1.45b

Experimental design and sampling

Common carp, C. carpio fingerlings were procured from the Sahib Bachan Farm, Pandori, Ludhiana, Punjab, India and acclimatised for one week to laboratory conditions in 100 l plastic tubs. The experiment was run in triplicates for 60 days in 15 plastic tubs of 34 l capacity each, holding 25 l water, fitted with complete aeration and filtration systems. Twelve fishes were stocked in each tub. The level of 25 l of water in each tub was maintained throughout the experiment by adding fresh dechlorinated water in order to compensate the daily loss of water through evaporation. Entire water in each tub was changed after every month throughout the 60 day feeding experiment. Fish were given different dietary treatments viz., T1 = 60 day feeding with Diet 1, T2 = 40 day (1-40) feeding with Diet 1 and 20 day (41-60) feeding with Diet 2, T3 = 60 day feeding with Diet 2 and 20 day (41-60) feeding with Diet 3, T4 = 60 day feeding with Diet 3. Fish were fed twice daily on experimental diets @5% of fish biomass.
At the end of the experiment, each fish was descaled, finned, beheaded and gutted. The fish samples were then cleaned with tap water and the muscle tissues were collected from whole fish body. Bones were removed and the boneless muscles were thoroughly mixed to form a composite or representative sample of edible portion of the fish. The whole procedure was done on ice that took about 10 min. The tissue samples were packed in clean labelled ziploc polythene bags and stored at -25°C for further analyses.

Water quality parameters

The weekly water quality parameters viz., total alkalinity, total hardness, salinity, dissolved oxygen (DO) and ammonia were estimated by the standard methods (APHA, 1991). Water temperature was recorded with the help of an ordinary mercury thermometer (0-50°C) and pH was recorded using a digital pH meter (model ELICO LI120).

Survival and growth performance

Survival (%) was calculated by comparing the live fishes recovered at the end of the experiment with the total number stocked at the start of the experiment. Growth was estimated in terms of net weight gain (NWG), average daily weight gain (ADWG) and specific growth rate (SGR) using the following formulae:

\[
\text{NWG (g)} = \text{Final body weight (g)} - \text{Initial body weight (g)}
\]

\[
\text{ADWG (%W d}^{-1}) = \frac{\text{Average final body weight} - \text{Average initial body weight}}{\text{Period of culture (days)}}
\]

\[
\text{SGR (%W d}^{-1}) = \frac{\ln \text{final body weight} - \ln \text{initial body weight}}{\text{Period of culture (days)}} \times 100
\]

Biochemical composition analysis

Proximate analysis of experimental diets and fish flesh was done following standard procedures (AOAC, 2000). Percentage moisture was determined by drying 2 g sample at 100±2°C (to constant weight), crude proteins (CP) measured by Kjeldhal method, total lipid content by solvent extraction method and ash by incineration in a muffle furnace. Carbohydrate content was calculated by difference (FAO, 2004):

\[
\% \text{ Carbohydrate} = 100 - (\% \text{ moisture} + \% \text{ crude proteins} + \% \text{ total lipids} + \% \text{ ash})
\]

Fatty acid analysis was carried out by Gas Chromatography (AOAC, 2000) using M/s Nucon Engineers AMLIL Gas Chromatograph (solid state) model Nucon series 5700/5765 equipped with flame ionisation detector.

Statistical analysis

The data on survival, growth performance, proximate and fatty acid composition were subjected to one-way analysis of variance (ANOVA) with the help of STATGRAPH and Microsoft Excel. Differences were regarded as significant at p≤0.05.

Results

Water quality parameters

Water quality parameters showed no statistically significant differences between different dietary treatment systems, and the observed values indicated that none of the experimental diets affected the quality of water. Water quality parameters were within the suitable range for grow out of the species (Table 3).

Treatment*	Temperature (°C)	DO (mg l\(^{-1}\))	pH	Alkalinity (mg l\(^{-1}\))	Hardness (mg l\(^{-1}\))	Ammonia (mg l\(^{-1}\))	Salinity (ppt)
T1	Mean 31.11	9.22	7.48	111.86	228.20	0.051	0.051
	Max. 36.50	9.45	7.64	117.33	239.33	0.37	0.060
	Min. 25.00	8.80	7.30	105.33	218.66	0.29	0.040
T2	Mean 31.11	9.32	7.54	111.33	228.46	0.34	0.053
	Max. 36.50	9.60	7.72	116.67	237.33	0.35	0.060
	Min. 25.00	8.93	7.17	104.67	220.00	0.31	0.048
T3	Mean 31.11	9.34	7.57	112.26	230.13	0.34	0.053
	Max. 36.50	9.60	7.71	118.00	238.66	0.35	0.061
	Min. 25.00	9.06	7.40	105.33	221.33	0.31	0.043
T4	Mean 31.11	9.22	7.51	112.06	235.00	0.34	0.049
	Max. 36.50	9.60	7.67	118.00	244.00	0.36	0.056
	Min. 25.00	8.80	7.27	103.33	225.33	0.32	0.040
T5	Mean 31.11	8.97	7.53	112.00	231.06	0.33	0.054
	Max. 36.50	9.33	7.66	116.67	240.00	0.35	0.060
	Min. 25.00	8.26	7.36	106.00	221.33	0.29	0.050

* T1=60 day feeding with Diet 1; T2=40 day (1-40) feeding with Diet 1 and 20 day (41-60) feeding with Diet 3; T3=60 day feeding with Diet 2; T4=40 day (1-40) feeding with Diet 2 and 20 day (41-60) feeding with Diet 3, T5= 60 day feeding with Diet 3; Values are mean±S.E
Growth

Average daily weight gain (ADWG) of fish were not significantly different (0.013-0.014 g) among different dietary treatments. The NWG and SGR of fish ranging from 0.82-0.85 g and 0.23-0.24%, respectively were not significantly different among different treatments (Table 4). At the end of the experiment, survival was 100% in all the treatments (Table 4).

Proximate composition

The data on proximate composition of common carp fed different experimental diets are given in Table 5. No significant differences were detected in moisture, crude protein, total lipid, ash and carbohydrate content among different treatments.

Table 4. Growth performance of Cyprinus carpio fed different experimental diets

Parameters	Treatments				
	T1	T2	T3	T4	T5
ADWG (%W day⁻¹)	0.013±0.001	0.014±0.001	0.013±0.001	0.014±0.001	0.014±0.001
NWG (g)	0.83±0.02	0.85±0.01	0.82±0.01	0.84±0.01	0.85±0.00
SGR (%W day⁻¹)	0.23±0.00	0.24±0.00	0.23±0.01	0.23±0.00	0.24±0.00
Survival (%)	100±0.00	100±0.00	100±0.00	100±0.00	100±0.00

Values are means±S.E

Table 5. Proximate composition (%) of Cyprinus carpio fed different experimental diets

Parameters	Treatments				
	T1	T2	T3	T4	T5
Moisture	75.45±0.52	74.11±0.31	74.40±0.75	73.96±0.28	74.20±0.76
Crude protein	14.58±0.50	14.58±0.50	14.58±0.29	14.28±0.58	14.87±0.50
Total lipid	3.78±0.02	3.92±0.08	3.94±0.07	3.95±0.07	3.87±0.07
Ash	1.43±0.04	1.40±0.07	1.48±0.06	1.46±0.04	1.43±0.04
Carbohydrate	5.53±0.40	5.99±0.64	5.59±0.82	6.35±0.92	5.63±0.40

Values are means±S.E

Fatty acid composition

Muscle fatty acid composition of total lipids showed the effect of the dietary treatment. There was significant difference (p≤0.05) in the concentration of SFAs, MUFAs and PUFAs in the muscle of C. carpio fed different experimental diets (Table 6). Total SFA was observed in higher concentrations in T5 (32.30±0.05%) followed by T4 (30.14±0.15%), T3 (28.78±0.22%), T2 (26.50±0.31%) and T1 (23.44±0.60%). Palmitic acid (16:0) was the predominant SFA in all the treatments except in T5 where stearic acid (18:0) was the predominant SFA. Level of the only MUFA, oleic acid (18:1) was maximum in T1 (37.01±1.38%) and minimum in T5 (9.40±0.32%). The highest total n-6 fatty acids were found in T1 (21.00±0.47%) and T2 (21.10±0.27%) followed by T5 (18.98±0.13%), T4 (15.09±0.10%) and T3 (11.72±0.0). On the other hand, total n-3 fatty acids were highest in T5 (22.11±0.22%) followed by T2 (19.73±0.16%), T1 (14.95±0.53%), T4 (11.74±0.08%) and T3 (7.83±0.05%). Fig. 1 shows the levels of certain essential fatty acids in the fish muscle fed different experimental diets. The n-3/n-6 ratio was maximum (1.16±0.01) in T5 and lowest in T1 (0.67±0.04) and T3 (0.66±0.00). Differences in n-3/n-6 ratio were statistically significant (p≤0.05) (Table 6, Fig. 2). The SFA/PUFA, SFA/UFA and 18:1 n-9/n-3 ratios were highest in T3 and T4 respectively (Fig. 3).
Table 6. Fatty acid composition of *Cyprinus carpio* fed different experimental diets

Fatty acid (%)	T1	T2	T3	T4	T5
10:0	2.75±0.38	3.32±0.03	2.33±0.26	3.26±0.03	4.25±0.04
11:0	1.42±0.03	2.04±0.03	0.73±0.12	1.40±0.06	2.26±0.07
14:0	3.26±0.02	0.20±0.01	0.25±0.01	0.20±0.01	
16:0	11.88±0.12	19.80±0.01	15.10±0.05	9.58±0.15	
18:0	4.01±0.16	8.98±0.17	5.062±0.00	9.98±0.21	16.01±0.12
ΣSFA	3.26±0.03	2.87±0.22	30.14±0.15	32.30±0.20	
18:1 n-9	37.01±1.38	27.68±1.23	36.05±0.01	27.78±0.30	9.40±0.32
Σ MUFA	37.01±1.38	27.68±1.23	36.05±0.01	27.78±0.30	9.40±0.32
18:3 n-3	15.00±0.60	15.66±0.14	6.77±0.09	10.15±0.09	18.29±0.07
20:5 n-3	0.98±0.09	1.42±0.06	0.24±0.02	0.65±0.03	1.80±0.03
22:6 n-3	0.95±0.02	1.64±0.04	0.87±0.03	0.94±0.03	2.35±0.02
Σn-3PUFA	14.95±0.53	19.73±0.16	7.83±0.05	11.74±0.08	22.11±0.22
18:2 n-6	11.48±0.96	10.20±0.14	8.60±0.00	8.83±0.00	8.07±0.11
20:4 n-6	9.52±0.50	10.91±0.24	3.12±0.00	6.26±0.06	10.90±0.07
Σn-6PUFA	21.00±1.46	21.10±0.27	11.72±0.06	15.09±0.10	18.98±0.13
Σ PUFA	35.95±1.65	40.83±0.36	19.61±0.06	26.84±0.17	41.09±0.24
Σ UFA	72.96±1.70	68.35±1.09	55.66±0.08	54.62±0.40	50.48±0.47
n3/n6	0.67±0.04	0.93±0.01	0.66±0.00	0.77±0.00	1.16±0.01
SFA/PUFA	0.65±0.04	0.65±0.01	1.47±0.01	1.12±0.01	0.78±0.00
SFA/UA	0.32±0.01	0.38±0.00	0.51±0.00	0.55±0.00	0.63±0.01
18:1 n-9/n-3	2.47±0.02	1.40±0.06	4.60±0.03	2.36±0.03	0.42±0.01

ΣSFA includes Capric acid (10:0), Undecylenic acid (11:0), Myristic acid (14:0), Palmitic acid (16:0) and Stearic acid (18:0); ΣMUFA includes Oleic acid (18:1n-9); Σn-3 PUFA includes Linolenic acid (18:3n-3), Eicosapentaenoic acid (20:5n-3) and Docosahexaenoic acid (22:6n-3); Σn-3 PUFA includes Linoleic acid (18:2n-6) and Arachidonic acid (20:4n-6); ΣPUFA includes Σn-3 PUFA and Σn-6 PUFA; Σ UFA includes ΣPUFA and Σ MUFA; Values are means ± S.E; Values with different superscripts in a row differ significantly (p<0.05).

Fig. 3. SFA/PUFA, SFA/UFA and 18:1 n-9/n-3 ratios of *C. carpio* fed different experimental diets

Discussion

In this study, it was shown that, irrespective of any significant difference in the growth performance and proximate composition of common carp received different dietary treatments, a 20 days feeding of fish oil based finishing feed improved the fatty acid composition. The 20 days supplementation of finishing feed at the end of the cultivation period markedly increased n-3 PUFA concentrations of common carp. The diet shift from canola oil and poultry fat, poor in n-3 PUFA to finishing feed rich in n-3 PUFA suggested that common carp very efficiently retained high quality supplementary feeds within a short period of time. This is in agreement with previous findings that it is possible to boost the content of beneficial EPA and DHA in fish fillet by n-3 HUFA supplementation prior to harvest in Atlantic salmon (Bell et al., 2004; Torstensen et al., 2005); in gilthead sea bream (Benedico-Palos et al., 2009); in common carp (Steffens, 1997; Steffens and Wirth, 2007); and in murray cod (Turchini et al., 2006).

PUFA conversions are known to occur in a variety of freshwater fish species (Buzzi et al., 1996, 1997; Tocher et al., 2006), including common carp (Farkas et al., 1980; Tocher and Dick, 1999). It was also demonstrated that dietary LA and ALA stimulate gene expression of desaturases and elongases (Zheng et al., 1996, 1997; Zheng et al., 1996; 1997; Tocher et al., 2006; Vagner and Santigosa, 2011). In this study, feeding C18 PUFA rich feed to common carp did not result in considerable conversion to long-chain PUFA-enriched fish. Although previous studies in common carp suggest that, compared with C18-PUFA, dietary C20-22 PUFA requirements for carp are low (Radunz-Neto et al., 2006).
1996; Glencross, 2009). Present study showed an increase in C20–22 PUFA in carp exposed to finishing feed for only 20 days. Schultz et al. (2014) reported that supply of short chain PUFA to carp resulted in higher short chain but not long chain PUFA indicating little PUFA conversion in carp. However moderate supply of dietary long chain PUFA in finishing diet increased long chain PUFA concentration in carp.

It is evident from the present study that short-term supplementation of fish oil results in significantly higher C20-22 PUFA concentrations compared with those fed 50% canola oil feed and 50% poultry fat feed throughout the experimental period. Absorption efficiency of dietary fatty acids in fish is known to increase with the degree of fatty acid unsaturation, chain length and position of the first double bond (n-3-n-6 > n-9 fatty acids; Olsen et al., 1998; Francis et al., 2007). Therefore, it can be suggested that the lower accumulation of C20-22 n-3 PUFA in the treatment T1 and T3 is primarily the result of limited dietary C20-22 n-3 PUFA supply along with low endogenous bioconversion rates of C18 PUFA, whereas higher dietary supply and potentially highly efficient uptake of dietary EPA and DHA supplied by fish oil feeds accounts for the rapid increase in EPA and DHA within the 20 days of feeding the finishing diet. Finally, these results suggest that such increase in highly desirable PUFA may potentially lead to increased fish performance (Bell et al., 1998), subsequently to higher fish quality with respect to enhanced fish production yields (Copeman et al., 2002), and to increased nutritional values for human consumption.

Beneficial from fish fitness and human nutrition perspectives, C20-22 PUFA were increased in carp fed finishing feed for 20 days of the experimental period compared with those exposed only to canola oil and poultry fat based feeds for the whole experimental period. Canola oil and poultry fat based feeds can be used as suitable alternatives to reduce use of marine resources in aquaculture nutrition if fish oil based finishing diet is fed to fish for a short period before harvest to increase n-3 PUFA concentrations in common carp. This feeding strategy could therefore be used in production of common carp with defined flesh quality to fulfill dietary needs for humans. By adopting this strategy, fish farmers could easily control the final carp flesh quality and produce fish with standardised and tailored quality which could increase the market value of common carp and support consumption of this locally produced fish.

In conclusion, the results of the present study suggests that inducing a dietary shift from terrestrial oil (vegetable oil or animal fat) based feeds to fish oil based feeds supplied as finishing diet before harvesting strongly increases long chain PUFA concentration in common carp as compared to those fed only terrestrial oil based feeds throughout the rearing period.

Acknowledgements

The authors are thankful to the University Grants Commission for providing the financial help through Maulana Azad National Fellowship.

References

AOAC 2000. Official methods of analysis, 17th edn. Association of Official Analytical Chemists, North Frederick Avenue Gaithersburg, Maryland 20877-2417, USA.

APHA 1991. Standard methods for the examination of water and waste water. American Public Health Association, Washington, USA.

Bell, J. G., McGhee, F., Campbell, P. J. and Sargent, J. R. 2003a. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): changes in flesh fatty acids composition and effectiveness of subsequent fish oil ‘wash out’. Aquaculture, 218: 515-528.

Bell, J. G., Tocher, D. R., Farndale, B. M. and Sargent, J. R. 1998. Growth, mortality, tissue histopathology and fatty acid compositions, eicosanoid production and response to stress, in juvenile turbot fed diets rich in [gamma]-linolenic acid in combination with eicosapentaenoic acid or docosahexaenoic acid. Prostag. Leukotr. Ess., 58: 353-364.

Bell, J. G., Tocher, D. R., Henderson, R. J., Dick, J. R. and Crampton, V. O. 2003b. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. J. Nutr., 33: 2793-2801.

Bell, J. G., Henderson, R. J., Tocher, D. R. and Sargent, J. R. 2004. Replacement of dietary fish oil with increasing levels of linseed oil: Modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids, 39: 223-232.

Benedito-Palos, L., Navarro, J. C., Bermejo-Nogales, A., Saena-Vila, A., Kaushik, S. and Perez-Sanchez, J. 2009. The time course of fish oil wash-out follows a simple dilution model in gilthead sea bream (Sparus aurata L.) fed graded levels of vegetable oils. Aquaculture, 288: 98-105.

Buzzi, M., Henderson, R. J. and Sargent, J. R. 1996. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets...
containing fish oil or olive oil. *BBA. Lipid. Lipid Metab.*, 1299: 235-244.

Buzzi, M., Henderson, R. J. and Sargent, J. R. 1997. The biosynthesis of docosahexaenoic acid [22: 6(n-3)] from linolenic acid in primary hepatocytes isolated from wild northern pike. *J. Fish Biol.*, 51: 1197-1208.

Calder, P. C. 2006. n-3 polyunsaturated fatty acids, inflammation and inflammatory diseases. *Am. J. Clin. Nutr.*, 83: 1505S-1519S.

Calder, P. C. and Yaqoob, P. 2010. Omega-3 (n-3) fatty acids, cardiovascular disease and stability of atherosclerotic plaques. *Cell Mol. Biol.*, 56: 28-37.

Chen, J., Zhu, X., Han, D., Yang, Y., Lei, W. and Xie, S. 2011. Effect of dietary n-3 HUFA on growth performance and tissue fatty acid composition of gibel carp *Carassius auratus gibelio*. *Aquac. Nutr.*, 17: 476-485.

Copeman, L. A., Parrish, C. C., Brown, J. A. and Harel, M. 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (*Limanda ferruginea*): a live food enrichment experiment. *Aquaculture*, 210: 285-304.

Domaizon, I., Desvillettes, C., Debrosa, D. and Bourdier, G. 2000. Influence of zooplankton and phytoplankton on the fatty acid composition of digesta and tissue lipids of silver carp: mesocosm experiment. *J. Fish Biol.*, 57: 417-432.

FAO 2004. *Codex Alimentarius Commission*, Joint FAO/WHO food standards programme, March 8-12, 2004. Budapest, Hungary.

FAO 2010. The state of world fisheries and aquaculture. www.fao.org/docrep/013/i1820e/i1820e01.pdf (Accessed 17th December 2014).

FAO 2008. The state of world fisheries and aquaculture 2010. Food and Agricultural Organization of the United Nations, Rome, Italy.

Farkas, T., Csengeri, I., Majoros, F. and Olah, J. 1980. Metabolism of fatty acids in fish II. Combined effect of environmental temperature and diet on formation and deposition of fatty acids in the carp, *Cyprinus carpio Linnaeus* 1758. *Aquaculture*, 20: 29-40.

Francis, D. S., Turchini, G. M., Jones, P. L. and De Silva, S. S. 2007. Effects of fish oil substitution with a mix blend vegetable oil on nutrient digestibility in Murray cod, *Macquullochella peeli peeli*. *Aquaculture*, 269: 447-455.

Glencross, B. D., Hawkins, W. E. and Curnow, J. G. 2003. Restoration of the fatty acid composition of red seabream (*Pagrus auratus*) using a fish oil finishing diet after grow-out on plant oil based diets. *Aquac. Nutr.*, 9: 409-418.

Glencross, B. D. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. *Rev. Aquac.*, 1: 71-124.

Jobling, M. 2003. Do changes in Atlantic salmon, *Salmo salar* L., fillet fatty acids following a dietary switch represent wash-out or dilution? Test of a dilution model and its application. *Aquac. Res.*, 34: 1215-1221.

Jobling, M. 2004. Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. *Aquaculture*, 232: 551-562.

Jobling, M., Larsen, A.V., Andreassen, B., Olsen, R. L. and Sigholt, T. 2002. Influence of a dietary shift on temporal changes in fat deposition and fatty acid composition of Atlantic salmon post-smolt during the early phase of seawater rearing. *Aquac. Res.*, 33: 875-889.

Jobling, M., Leknes, O., Saether, B. S. and Bendiksen, E. A. 2008. Lipid and fatty acid dynamics in Atlantic cod, *Gadus morhua* tissues: Influence of dietary lipid concentrations and feed oil sources. *Aquaculture*, 281: 87-94.

Mozaffarian, D. and Rimm, E. B. 2006. Fish intake, contaminants, and human health: evaluating the risks and the benefits. *J. Am. Med. Assoc.*, 296: 1885-1899.

Mraz, J., Machova, J., Kozak, P. and Pickova, J. 2012. Lipid content and composition in common carp - optimisation of n-3 fatty acids in different pond production systems. *J. Appl. Ichthyol.*, 28: 238-244.

Mraz, J. and Pickova, J. 2011. Factors influencing fatty acid composition of common carp (*Carassius carpio*) muscle. *Neuroendocrinol. Lett.*, 32: 3-8.

Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D. M., Goldberg, R. J., Hua, K. and Nichols, P. D. 2009. Feeding aquaculture in an era of finite resources. *Proc. Natl. Acad. Sci. USA*, 106: 15103-15110.

Olsen, R. E., Henderson, R. J. and Ringo, E. 1998. The digestion and selective absorption of dietary fatty acids in Arctic char, *Salvelinus alpinus*. *Aquac. Nutr.*, 4: 13-21.

Radunz-Neto, J., Corraze, G., Bergot, P. and Kaushik, S. J. 1996. Estimation of essential fatty acid requirements of common carp larvae using semi-purified artificial diets. *Arch. Anim. Nutr.*, 49: 41-48.

Robin, J. H., Regost, C., Arzel, J. and Kaushik, S. J. 2003. Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. *Aquaculture*, 225: 283-293.

Rosenlund, G., Corraze, G., Izquierdo, M. and Torstensen, B. E. 2010. The effects of fish oil replacement on nutritional and organoleptic qualities of farmed fish. In: Turchini, G. M., Ng, W. K., Tocher, D. R. (Eds.), *Fish oil replacement and alternative lipid sources in aquaculture feeds*. CRC Press, Taylor & Francis group, Boca Raton, FL, USA, p. 487-522.

Schultz, S., Roussos, A. M., Changizi-Maghboor, Z., Watzke, J. and Kainz, M. 2014. Fish oil based finishing diets strongly increase long-chain polyunsaturated fatty acid concentrations in farm-raised common carp (*Carassius carpio L*). *Aquac. Res.*, 1-11.
Steffens, W. 1997. Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. *Aquaculture*, 151: 97-119.

Steffens, W. and Wirth, M. 2007. Influence of nutrition on the lipid quality of pond fish: common carp (*Cyprinus carpio*) and tench (*Tinca tinca*). *Aquac. Int.*, 15: 313-319.

Tocher, D. R. and Dick, J. R. 1999. Polyunsaturated fatty acid metabolism in a cell culture model of essential fatty acid deficiency in a freshwater fish, carp (*Cyprinus carpio*). *Fish Physiol. Biochem.*, 21: 257-267.

Tocher, D. R., Dick, J. R., MacGlaughlin, P. and Bell, J. G. 2006. Effect of diets enriched in [Delta]6 desaturated fatty acids (18:3n–6 and 18:4n–3), on growth, fatty acid composition and highly unsaturated fatty acid synthesis in two populations of Arctic char (*Salvelinus alpinus* L.). *Comp. Biochem. Phys. B*, 144: 245-253.

Torstensen, B. E., Bell, J. G., Rosenlund, G., Henderson, R. J., Graff, I. E., Tocher, D. R., Lie, O. and Sargent, J. R. 2005. Tailoring of Atlantic salmon (*Salmo salar* L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. *J. Agr. Food Chem.*, 53: 10166-10178.

Turchini, G. M., Francis, D. S. and De Silva, S. S. 2006. Modification of tissue fatty acid composition in Murray cod (*Mackellochella peeli peeli*, Mitchell) resulting from a shift from vegetable oil diets to a fish oil diet. *Aquac. Res.*, 37: 570-585.

Turchini, G. M., Ng, W. K. and Tocher, D. R. 2010. Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA. 551 pp.

Turchini, G. M., Torstensen, B. E. and Ng, W. K. 2009. Fish oil replacement in finfish nutrition. *Rev. Aquac.*, 1: 10-57.

Vagner, M and Santigosa, E. 2011. Characterisation and modulation of gene expression and enzymatic activity of delta-6 desaturase in teleosts: a review. *Aquaculture*, 315: 131-143.

Zheng, X., Torstensen, B. E., Tocher, D. R., Dick, J. R., Henderson, R. J. and Bell, J. G. 2005. Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (*Salmo salar*). *BBA-Mol. Cell. Biol. L.*, 1734: 13-24.