Large Hiatal Hernia Repair with Urinary Bladder Matrix Graft Reinforcement and Concomitant Sleeve Gastrectomy

Kent C. Sasse, MD, MPH, FACS, FACRS, Jonathan Gevorkian, MS, BS, Rachel Lambin, BS, Rami Afshar, PA-C, Amy Gardner, PA-C, Aradhana Mehta, MPH, BS, John-Henry Lambin, BS, Austin Shinagawa, BS

ABSTRACT

Background: There is no current consensus on the management of large hiatal hernias concomitant with performance of a sleeve gastrectomy procedure. Proposed solutions have included performing a modified Nissen fundoplication, performing cruroplasty alone, utilizing the Linx device, performing cruroplasty with reinforcement material, and avoiding the sleeve procedure altogether in favor of a bypass procedure in order to minimize gastroesophageal reflux. Urinary bladder matrix (UBM) represents a biologically derived material for use in hiatal hernia repair reinforcement with the potential to improve durability of repair without incurring the risks of other reinforcement materials.

Methods: This study reports the results of a retrospective chart review of 32 cases of large hiatal hernia repair utilizing both primary crural repair and UBM reinforcement concomitant with laparoscopic sleeve gastrectomy by a single surgeon. Hernia diameter averaged 6 cm (range 4–9 cm). After an average of 1 year followup, 30 patients were assessed for subjective symptoms of gastroesophageal reflux (GERD) using the Gastroesophageal Reflux Disease-Health Related Quality of Life (GERD-HRQL) score. Twenty patients were evaluated with either upper gastrointestinal (GI) series, endoscopy, or both.

Results: Each repair was successful and completed laparoscopically concomitant with sleeve gastrectomy. Anterior and posterior cruroplasty was performed using interrupted 0-Ethibond suture using the Endostitch device. The UBM graft exhibited favorable handling characteristics placed as a keyhole geometry sutured to the crura with absorbable suture. A careful chart review was undertaken to assess for complications. There have been no reoperations. After a median of 12 months (range, 4–27 months) of followup, an assessment of recurrences or long-term complications was completed. Median GERD-HRQL score was 6, with a range of 0 to 64 (of possible 75), indicating very low-level reflux symptomatology. Follow-up upper GI radiographs or endoscopy were obtained in 20 cases and show intact repairs.

Conclusion: In this series of 32 cases, laparoscopic cruroplasty with UBM graft reinforcement has been effective and durable at 12 months of followup. This technique may offer one satisfactory solution for large hiatal hernia repair concomitant with laparoscopic sleeve gastrectomy that may achieve a durable repair with low GERD symptoms.

Key Words: Urinary bladder matrix, Hiatal hernia, Sleeve Gastrectomy, GERD, Upper GI surgery.

INTRODUCTION

Laparoscopic sleeve gastrectomy provides durable weight-loss results that are comparable to Roux-en-Y gastric bypass at 5 years, but with lower overall complications.1,2 However, published series report both de novo and worsening of existing GERD symptoms following the sleeve procedure, and hiatal hernia contributes to this problem.3 As sleeve gastrectomy has risen in popularity, bariatric surgeons must grapple with the best approach when a large hiatal hernia is present so as to minimize postoperative GERD, maximize weight loss, and minimize complications. No current consensus exists on the management of large hiatal hernias concomitant with performance of a sleeve gastrectomy procedure. Unique challenges include the
risk of esophagitis, GERD symptoms after sleeve gastrec-
tomy, and the durability of repairs of large hiatal hernias. While some authors have advised against the sleeve pro-
cedure when a large hiatal hernia is present, others have 
proposed solutions such as performing a modified Nissen 
fundoplication,4 performing cruroplasty alone,5 utilizing 
the Linx device,6 and performing cruroplasty with rein-
forcement material.7 Synthetic and biologically derived 
mesh reinforcement result in lower rates of hiatal hernia 
recurrence than native tissue repair alone in reports of 
stand-alone hiatal hernia repair.8–12 Concerns have been 
raised in the literature with respect to the complications of 
synthetic mesh repairs.13,14 Biologically derived graft ma-
terials, proposed as an alternative to minimize mesh-re-
lated complications of erosion and infection, are increas-
ingly utilized for hiatal hernia repairs.10–12 Urinary bladder 
matrix (UBM) consists of the epithelial basement mem-
brane and lamina propria of the porcine urinary bladder. 
After decellularization, it retains biochemical diversity, 
an architecture that is similar to the normal tissue, and robust 
mechanical behavior.15 UBM has shown promise in ani-
mal studies for surgical repair of soft tissue with connec-
tive tissue remodeling in anatomic settings as diverse as 
esophageal, urinary bladder, pelvic floor, body wall re-
pair.15,16 In the clinical setting, UBM has shown efficacy 
for management of a variety of complex wounds, and in 
the setting of soft-tissue reinforcement in general surgery, 
where the efficacy has been observed without reports of 
complications associated with synthetic mesh.17,18 While 
UBM undergoes a resorption process, site-appropriate tis-

eue is deposited and remodels to support the local phys-
iiologic loads as the UBM implant is resorbed.19 A previ-
ously published series demonstrated effective resolution 
of reflux symptoms as well as radiographic durability of 
hiatal hernia with UBM repair over 3 years.20

METHODS

Thirty-two cases of large hiatal hernia repair with UBM 
graft reinforcement and concomitant laparoscopic sleeve 
gastrectomy were performed between 2012 and 2017. Under 
an approved Institutional Review Board (IRB) proto-
col, each chart was retrospectively reviewed, and pa-
tients were assessed for symptoms of GERD. Thirty female 
and 2 male patients, with an average age of 51 years and 
an average body mass index (BMI) of 42 kg/m², under-
went surgery. Twenty-eight patients reported GERD 
symptoms preoperatively and 25 patients were known to 
have a hiatal hernia on preoperative upper GI radio-
graphs. Patient information is presented in Table 1. The 
sleeve gastrectomy was performed with the use of a 40 

| N | 32 |
|---|---|
| Mean age | 51 (25–73) |
| Female/male | 30/2 |
| Mean BMI | 42 (33–54) |
| Mean LOS (days) | 1.5 |
| Mean OR time (minutes) | 54 minutes |
| Complication | 1 gastric sleeve stenosis |
| Follow-up (months) | 12 (4–27) |
| Recurrence | 0 |

1-year GERD-HRQL score (mean) 6 (0–64 out of possible 75)

BMI, Body Mass Index; GERD, Gastroesophageal reflux disease; 
HRQL, Health-related quality of life; LOS, Length of stay; OR, 
Operating room.

Figure 1. Hiatal hernia defect exposed and 2–3 cm intra-abdom-
nal esophagus freed.

French sizing calibration tube, with a previously pub-
lished technique,22 with full exposure of the left and right 
crura, and reduction of any herniated stomach and fat 
pad. Laparoscopic repair was performed in all 32 cases 
utilizing crural repair followed by UBM device placement. 
In each case, 2–3 cm of distal esophagus was freed below 
the crura (Figure 1). The crural defect averaged 6 cm in 
diameter, and posterior and anterior cruroplasty was per-
formed using 0-Ethibond sutures (Figure 2). The crural 
reinforcement was performed with a keyhole-shaped 
UBM graft ranging in size from 5 × 5 cm to 10 × 15 cm, (Gentrix® Surgical Matrix Thin or Gentrix Surgical Matrix, ACell®, Inc., Columbia, Maryland, USA) secured circum-
ferentially with absorbable sutures to the crura (Figures 3 
and 4).

After an average of 12 months, 30 patients completed 
GERD-HRQL reflux score survey23 responses via tele-

Table 1. Patient and Procedure Information
Follow-up upper GI radiographs or endoscopy, or both, were obtained in 20 cases and show intact repairs. Sixteen patients were studied with radiographic upper GI series examinations (Figures 5 and 6). Six patients were evaluated with surveillance esophagogastroduodenoscopy by the primary surgeon or have records from esophagogastroduodenoscopy performed at outside facilities.

RESULTS

Each repair with concomitant sleeve gastrectomy was successful. The average BMI prior to surgery was 42 kg/m².

Figure 2. Crural closure sutures anterior and posterior.

Figure 3. Placement of UBM graft and securing to crura.

Figure 4. Securing UBM graft circumferentially.

Figure 5. Preoperative esophogram showing presence of hiatal hernia.

Figure 6. Postoperative Upper GI series 13 months showing intact repair of hiatal hernia with UBM reinforcement and concomitant sleeve gastrectomy.
and the BMI after 12 months averaged 32 kg/m². The handling properties of the UBM material were favorable, including ease of insertion via a 12-mm trocar, maneuvering into position, and suturing to the crura. There were no major complications, no leaks, and no mortality. With an average followup of 12 months, there has been no evidence of erosion, infection, fistulization, seroma, abscess, stenosis, or late stricture. A median GERD-HRQL score of 6 was observed in 30 patients 1 year after surgical repair of the hiatal hernia and concomitant sleeve procedure (range 0 to 64 of possible 75). All patients but one reported little to no reflux, with scores ranging from 0 to 29 (Table 2).

Table 2. Patient-Reported Symptoms of Reflux, GERD-HRQL Scores

| Score Range | Number of Participants |
|-------------|------------------------|
| 0–9         | 24                     |
| 10–19       | 4                      |
| 20–29       | 1                      |
| 30–39       | 0                      |
| 40–49       | 0                      |
| 50–59       | 0                      |
| 60–69       | 1                      |
| 70–75       | 0                      |

GERD-HRQL, Gastroesophageal Reflux Disease-Health Related Quality of Life.

One patient has experienced dysphagia and reflux related to a stenosis of the mid stomach related to the sleeve gastrectomy, managed with gastric balloon dilation. No patients have required endoscopic or surgical intervention related to the hiatal hernia repair. Upper GI series radiographs in 16 patients at 1–2 years after repairs showed intact repair compared to preoperative upper GI series images, and no evidence of recurrence (Figures 5 and 6). Endoscopy in a subset of 6 patients demonstrated no recurrent hiatal hernias and no other complications.

DISCUSSION

In the past, more authors favored avoidance of sleeve gastrectomy when GERD and a large hiatal hernia was present, but recent trends indicate a greater comfort among surgeons in performing hiatal hernia repair concomitant with sleeve gastrectomy. If GERD and the other potential complications of hiatal hernia may be durably resolved using UBM graft reinforcement concomitant with sleeve, then surgeons and patients who favor the sleeve may be more comfortable choosing this approach. While we do not have clear data on rates of recurrence following hiatal hernia repair at the time of sleeve gastrectomy, we do know that recurrence of hiatal hernia after stand-alone repairs is not uncommon. Short-term recurrence rates of 16.7% and 3.7% for suture repair and mesh repair, respectively, were reported in a review of cases of hiatal hernia repair reported by Antioniou et al. There is no consensus on a single best method for hiatal hernia repair. The cases presented in this series represent successful treatment of hiatal hernias concomitant with sleeve gastrectomy, using biologically derived graft reinforcement UBM material, with satisfactorily durable repairs to 12 months on average with little symptomatic reflux.

Stand-alone repair of hiatal hernias with mesh derived from small intestinal submucosa has been shown to reduce early recurrence rates but not at 5 years when compared to native tissue repair alone. Reoperations and repairs of recurrent hiatal hernias are challenging cases with higher potential for complications. Mesh erosion or infection remain late complications in hiatal hernia repair with synthetic mesh, including polytetrafluoroethylene (PTFE). Synthetic mesh repair has been found to offer superior rates of durability when compared to primary sutured repair, but has not been measured against biologically derived graft repairs. In a randomized, controlled prospective trial comparing use of mesh to primary repair for hiatal hernia, use of mesh significantly reduced the rate of recurrent hernias over native tissue repair alone. Widespread use of UBM in hiatal, abdominal wall and rectopexy reinforcement have resulted in no reports of erosion or fistulization over the past 10 years. The UBM grafts handle favorably in the laparoscopic surgical environment and prove easier to suture than some materials. At a cost of $650 to $1600 per graft, the UBM grafts cost more than synthetic grafts and less than a Linx device which costs approximately $5000 at our institution, and many comparable biological grafts, which range from $1400 to $3000 at our facility.

A rationale for utilizing biologically derived grafts is the potentially improved durability over cruroplasty alone with a lower rate of erosion or infection compared to synthetic. While UBM undergoes a degradation process, the UBM implant provides mechanical support in the immediate postoperative period, and then is replaced by host con-
nective tissue that has mechanical characteristics and histology similar to normal healthy tissue, as reported in both animal and human studies.\textsuperscript{15,16,27} In a hiatal hernia animal model, UBM implants showed an improvement in strength of repair compared to a nonreinforced control between 2 to 3 months after surgery.\textsuperscript{28} Two recent retrospective series of hiatal hernia repairs reinforced with UBM showed rare short-term complications.\textsuperscript{17,19} One study of 62 patients, including 5 patients with concomitant sleeve gastrectomy, patients reported only one reoperation at 24 months for symptomatic recurrence.\textsuperscript{19} Based on these published early experiences, and the detailed study of biological mechanism in conferring strength in hernia repairs, UBM material is considered potentially advantageous in the reinforcement of the repair of large hiatal hernias.

Weaknesses of the study include the relatively short duration of followup and the lack of complete radiographic and endoscopic evaluation of the cohort who may have enjoyed favorable results from the cruroplasty alone. While low GERD-HRQL scores 12 months after surgery are favorable, this cohort does not have preoperative scores for comparison, and hiatal hernia recurrences, as well as GERD, may be asymptomatic and thus under-reported. A further weakness is that follow-up endoscopy to assess asymptomatic reflux esophagitis and metaplasia has not taken place for most of the patients.

CONCLUSIONS

In this series of 32 cases, laparoscopic cruroplasty with a UBM graft resulted in successful repair, no recurrences at 12 months, and little reflux symptomatology among patients undergoing concomitant sleeve gastrectomy. This technique may offer one satisfactory solution for repair of large hiatal hernias concomitant with laparoscopic sleeve gastrectomy. After an average of 12 months of followup, there were no recurrences, strictures, abscesses, or erosions. Future investigation and long-term followup will determine which techniques and implants offer the most cost-effective hernia repair reinforcement that reduces the risk of erosion, stenosis, GERD, and recurrence while providing the most durable repair among sleeve gastrectomy patients.

References:
1. Peterli R, Wölnerhanssen BK, Peters T, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: The SM-BOSS randomized clinical trial. \textit{JAMA}. 2018;319(3):241–254.
2. Nocca D, Skalli EM, Boulay E, Nedelcu M, Michel Fabre J, Loureiro M. Nissen Sleeve (N-Sleeve) operation: Preliminary results of a pilot study. \textit{Surg Obes Relat Dis}. 2016;12(10):1832–1837.
3. Barr AC, Fredlich MJ, Bosler ME, Goldblatt MI, Gould JC. GERD and acid reduction medication use following gastric bypass and sleeve gastrectomy. \textit{Surg Endosc.} 2017;31(1):410–415.
4. Peterli R, Wölnerhanssen BK, Peters T, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: The SLEEVEPASS randomized clinical trial. \textit{JAMA}. 2018;319(3):241–254.
5. Nocca D, Skalli EM, Boulay E, Nedelcu M, Michel Fabre J, Loureiro M. Nissen Sleeve (N-Sleeve) operation: Preliminary results of a pilot study. \textit{Surg Obes Relat Dis}. 2016;12(10):1832–1837.
6. Nocca D, Skalli EM, Boulay E, Nedelcu M, Michel Fabre J, Loureiro M. Nissen Sleeve (N-Sleeve) operation: Preliminary results of a pilot study. \textit{Surg Obes Relat Dis}. 2016;12(10):1832–1837.
behavior of extracellular matrix scaffolds derived from the porcine urinary bladder. *Biomaterials*. 2008;29(36):4775–4782.

16. Gilbert TW, Nieponice A, Spievack AR, Holcomb J, Gilbert S, Badylak SF. Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. *J Surg Res*. 2007;147(1):61–67.

17. Howell RS, Fazzari M, Petrone P, et al. Paraesophageal Hiatal Hernia Repair With Urinary Bladder Matrix Graft. *JSLS*. 2018;22(2):e201700100.

18. Sasse KC, Ackerman EM, Brandt JR. Complex wounds treated with MatriStem xenograft material: case series and cost analysis. *OA Surg*. 2013;1(1):3.

19. Zografakis J, Johnston G, Haas J, et al. Urinary Bladder Matrix Reinforcement for Laparoscopic Hiatal Hernia Repair. *JSLS*. 2018;22(2):e201700060.

20. Young DA, Jackson N, Ronaghan CA, Brathwaite CE, Gilbert TW. Retrorectus repair of incisional ventral hernia with urinary bladder matrix reinforcement in a long-term porcine model. *Regen Med*. 2018;13(4):395–408.

21. Sasse KC, Warner DL, Ackerman E, Brandt J. Hiatal hernia repair with novel biological graft reinforcement. *JSLS*. 2016;20(2):e201600016.

22. Warner DL, Sasse KC. Technical details of laparoscopic sleeve gastrectomy leading to lowered leak rate: Discussion of 1070 consecutive cases. *Minim Invasive Surg*. 2017;2017:4367059.

23. Velanovich V. The development of the GERD-HRQL symptom severity instrument. *Dis Esophagus*. 2007;20(2):130–134.

24. Poulose BK, Gosen C, Marks JM, et al. Inpatient mortality analysis of paraesophageal hernia repair in octogenarians. *J Gastrointest Surg*. 2008;12(11):1888–1892.

25. Garg H, Vigneshwaran B, Aggarwal S, Ahuja V. Impact of concomitant laparoscopic sleeve gastrectomy and hiatal hernia repair on gastro-oesophageal reflux disease in morbidly obese patients. *J Minim Access Surg*. 2017;13(2):103–108.

26. Oelschlager BK, Pellegrini CA, Hunter JG, et al. Biologic prosthesis to prevent recurrence after laparoscopic paraesophageal hernia repair: Long-term follow-up from a multi-center, prospective, randomized trial. *J Am Coll Surg*. 2011;213(4):461–468.

27. Sasse KC, Lambin JH, Gevorkian J, et al. Long-term clinical, radiological, and histological follow-up after complex ventral incisional hernia repair using urinary bladder matrix graft reinforcement: A retrospective cohort study. *Hernia*. 2018;22(6):899–907.

28. Costa A, Naranjo JD, Turner NJ, et al. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect. *Biomaterials*. 2016;108:81–90.