Reactive oxygen species are involved in regulating α_1-adrenoceptor-activated vascular smooth muscle contraction

Ming-Ho Tsai¹, Meei Jyh Jiang¹,²,³*

Abstract

Background: Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate α_1-adrenoceptor-activated contraction by altering myosin phosphatase activities.

Methods: Using endothelium-denuded rat tail artery (RTA) strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC$_{20}$), and myosin phosphatase stimulated by α_1-adrenoceptor agonist phenylephrine were examined.

Results: An antioxidant, N-acetyl-L-cysteine (NAC), and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC$_{20}$ phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1 Thr855 and myosin phosphatase inhibitor CPI-17 Thr38.

Conclusions: ROS, probably derived from NADPH oxidase and mitochondria, partially regulate α_1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC$_{20}$ phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.

Background

Excessive production of reactive oxygen species (ROS) causes oxidative stress, which represents an important mechanism in the pathogenesis of vascular diseases such as hypertension and atherosclerosis. However, ROS act as intracellular signaling molecules mediating various cellular functions including proliferation, apoptosis and survival [1]. Emerging evidence also indicated that ROS can regulate vasoconstriction or vasodilatation depending on the vascular bed studied and oxygen radicals formed [2]. Superoxide anion (·O$_2^-$) was shown to mediate hypertension induced by vasoactive factors such as angiotensin II [3,4] and endothelin [5] or by deoxycorticosterone acetate-salt [6]. In addition, superoxide anion amplifies allergen-induced airway hypercontractility [7]. How superoxide anion accomplishes these effects remains poorly understood.

In the vasculature, the potential sources of ROS include NADPH oxidase, uncoupled endothelial nitric oxide synthase, xanthine oxidase, cyclooxygenase and the mitochondrial respiratory chain. Among these, NADPH oxidase is generally considered the major source of vascular ROS [8] and has been shown to regulate myogenic constriction [9] and endothelin 1-activated vascular tone [10]. However, a recent study suggested that mitochondria-derived, not NADPH...
oxidase-derived, ROS are involved in agonist-stimulated vasoconstriction [11].

Phosphorylation of the 20-kDa myosin light chains (MLC20) is a key determinant for smooth muscle contraction. The levels of MLC20 phosphorylation are determined by the activity ratio between myosin light chain kinase (MLCK) and myosin phosphatase. While MLCK activation depends on the cytoplasmic calcium concentration, myosin phosphatase activity is subject to the modulation by various signaling molecules [12]. Myosin phosphatase is a heterotrimer consisting of a 37- to 38-kDa catalytic subunit, PP1β, a 110- to 130-kDa regulatory subunit referred to as myosin phosphatase targeting subunit 1 (MYPT1), and a 20-kDa subunit. Multiple vasoconstrictors inhibit myosin phosphatase activities through the phosphorylation of MYPT1 and/or an endogenous myosin phosphatase inhibitor CPI-17 [13].

In vivo evidence showed that Rho kinase plays important roles in MYPT1 phosphorylation whereas protein kinase C catalyzes CPI-17 phosphorylation [13,14].

Recent evidence indicated that ROS mediate α1-adrenoceptor-stimulated hypertrophy of vascular smooth muscle and cardiomyocytes, a long-term effect of catecholamines [15-17]. Currently, the contribution of ROS to the acute vasoconstrictor effect of α1-adrenoceptor agonist phenylephrine and the maximal force was used to normalize later contractile responses. To determine the involvement of ROS and NAD[P]H oxidase, tissues were incubated for 30 min in PSS containing vehicle, N-acetyl-L-cysteine (NAC), apocynin or VAS2870. A cumulative concentration-response for phenylephrine was then performed again. In all other experiments, 10 μM phenylephrine was used.

Measurement of superoxide anion production

Superoxide production in RTA strips was measured by a lucigenin-enhanced chemiluminescence assay according to a published method [20]. RTA strips 10 mm long were equilibrated in modified PSS-HEPES buffer (in mM: 119 NaCl, 20 HEPES, 4.6 KCl, 1 MgSO4, 0.15 Na2HPO4, 0.4 KH2PO4, 5 NaHCO3, 5.5 glucose, 1.2 CaCl2, pH 7.4) at 37°C for 30–60 min. After equilibration, RTA strips were incubated for 30 min in prewarmed PSS-HEPES buffer containing 10 mM DETC (Sigma) in the presence or absence of inhibitors for superoxide generation. DETC was used to inhibit the endogenous Cu2+/Zn2+ superoxide dismutase (SOD) activity. Following DETC treatment, RTA strips were placed in temperature-controlled (37°C) sample dishes containing 2 ml HEPES buffer with lucigenin (20 μM, Sigma) plus or minus inhibitors and placed in the dark chamber of the Chemiluminescence Analyzing System (Tohoku Electronic Industrial Co., Japan). The background counts were measured for 5 min, phenylephrine in 100 μl HEPES buffer was then injected into the chamber and the chemiluminescence was measured for another 10 min. Lucigenin chemiluminescence was expressed as counts per min (cpm) per milligram tissue weight after subtracting background counts (without vessel).

Measurement of Vascular NAD[P]H Oxidase activity

RTA strips were stimulated with phenylephrine, snap-frozen in liquid nitrogen at designated time points, and stored at -80 °C until use. NAD[P]H oxidase activity was assayed according to a published method [21]. Briefly, RTA strips were homogenized on ice with a glass-to-glass homogenizer for 2 min in phosphate buffer (20 mM K2HPO4, pH 7.4, 10 μg ml⁻¹ aprotinin, 10 μg ml⁻¹ leupeptin, and 0.5 mM phenylmethylsulfonyl fluoride). Following 10-min centrifugation at 1,000 g, supernatant (30-40 μl) was mixed with reaction buffer containing (in mM) 37 NaCl, 2.7 KCl, 4.3 Na2HPO4,

"Guide for the Care and Use of Laboratory Animals" was not cited in the text. It is likely that the reference is included in the full document.
were stimulated with phenylephrine for 1 min. rotenone or vehicle was added 30 min before RTA strips (Upstate) or anti-CPI-17Thr38 antibody (1:500, Upstate).

The reaction was started by the addition of NADPH (100,000 g, 4 °C for 30 min (Beckman Optima TLX Ultracentrifuge, TLA 120.2 rotor). The supernatant was collected as cytosolic fraction, and membrane proteins were extracted by incubating the pellet for 30 min in homogenization buffer containing 1% Triton X-100 and 0.25% sodium cholate. The extract was clarified at 800 g for 10 min, and the supernatant was collected as the particulate fraction. Protein concentrations were determined with a bicinchoninic acid kit (Pierce). Equal amounts of protein were electrophoresed on 12.5% SDS-PAGE for CPI-17 and transferred electrically onto nitrocellulose membranes. Following 1.5 h blocking in a Tris-buffered saline (TBS) solution containing 3% nonfat dry milk at room temperature, membranes were incubated overnight at 4°C with phosphospecific anti-RhoA antibody (1:500, Santa Cruz). The result was expressed as the ratio of membrane RhoA/total RhoA (membrane RhoA + cytosolic RhoA).

Measurement of MLC20 phosphorylation
MLC20 phosphorylation was measured by two-dimensional polyacrylamide gel electrophoresis (PAGE) as previously described [19]. Briefly, homogenates of RTA strips were sequentially resolved by isoelectric focusing gel electrophoresis (Pharmalytes of 80% pH 4.5-5.4 and 20% pH 3-10, Amersham Pharmacia Biotech) in the first dimension and SDS-PAGE in the second dimension. The gels were silver stained and analyzed by densitometry. Data are expressed as the ratio of phosphorylated MLC20 over total (phosphorylated plus unphosphorylated) MLC20.

Western blot analysis of MYPT-1 and CPI-17 phosphorylation levels
Equal amounts of protein were resolved under reducing conditions on 8% SDS-PAGE (for MYPT1) or 12.5% SDS-PAGE (for CPI-17) and transferred electrophoretically onto nitrocellulose membranes. Following 1.5 h blocking in a Tris-buffered saline (TBS) solution containing 3% nonfat dry milk at room temperature, membranes were incubated overnight at 4°C with phosphospecific anti-MYPT1Thr697 or anti-MYPT1Thr855 antibody (1:1000, Upstate) or anti-CPI-17Thr38 antibody (1:500, Upstate). The blots were washed and incubated with horseradish peroxidase-conjugated anti-rabbit IgG (1:5000, Chemicon) for 1.5 h at room temperature. Immunoreactive bands were visualized by enhanced chemiluminesence (PerkinElmer Life Sciences). Membranes were then stripped of bound antibodies by incubation in a buffer containing 62.5 mM Tris-HCl (pH 6.8), 2% SDS, and 10 mM DTT for 30 min at 50°C with agitation. The blots were reprobed with anti-MYPT1 (1:7500, Covance) or anti-CPI-17 (1:2000, Upstate) for loading control.

RhoA translocation assay
Translocation of RhoA from the cytosol to membrane fractions was determined according to a published method [22] with modifications. RTA strips stimulated with phenylephrine for 1 min or 15 min with or without inhibitors were snap frozen in liquid nitrogen. After RTA strips were homogenized in ice-cold buffer (in mM: 50 HEPES, pH 7.5, 50 NaCl, 1 MgCl2, 2 EDTA, 10 μg ml-1 aprotinin and leupeptin, 1 phenylmethylsulfonyl fluoride, 50 sodium orthovanadate, 10 pyrophosphate, 10 NaF), the homogenates were centrifuged at 100,000 g, 4 °C for 30 min (Beckman Optima TLX Ultracentrifuge, TLA 120.2 rotor). The supernatant was collected as particulate fraction. Protein concentrations were determined with a bicinchoninic acid kit (Pierce). Equal amounts of protein were electrophoresed on 12.5% SDS-PAGE followed by immunoblotting with a monoclonal anti-RhoA antibody (1:500, Santa Cruz). The result was expressed as the ratio of membrane RhoA/total RhoA (membrane RhoA + cytosolic RhoA).

Statistical Analysis
Data were expressed as means ± SEM. For multiple comparisons, ANOVA followed by Newman-Kuels or Dunnett’s post-hoc test was used (Prism 4.0; GraphPad Software, San Diego, CA). An unpaired Student’s t test was used for comparison between control and treatment group. P-values less than 0.05 were considered statistically significant.

Results
Antioxidant and NADPH oxidase inhibitors decrease phenylephrine-induced force
The involvement of ROS in α1-adrenoceptor-activated contraction was assessed by the effects of an antioxidant and two NAD(P)H oxidase inhibitors on phenylephrine-stimulated isometric force of RTA strips. As shown in Figure 1, pretreating RTA with antioxidant NAC (A) or NAD(P)H oxidase inhibitors, apocynin (0.3-3 mM, B) and VAS2870 (1-10 μM, C), caused a rightward shift of the concentration-response curve and reduced the maximal force to phenylephrine. These results suggested that ROS, possibly derived from NADPH oxidase, are involved in phenylephrine-activated contraction.

Phenylephrine stimulates ROS generation in RTA
We next examined whether phenylephrine stimulated ROS production in RTA strips using lucigenin-enhanced chemiluminescence assay. As shown in Figure 2, phenylephrine significantly increased chemiluminescence signals compared to those of non-stimulated control (1611 ± 125.9 cpm mg tissue-1 vs. 464.3 ± 58.8 cpm mg tissue-1, p < 0.05). Pretreatment with a selective α1-adrenoceptor antagonist prazosin (1 μM) nearly abolished phenylephrine-stimulated
superoxide production (672.0 ± 142.6 cpm mg tissue⁻¹) and contractile response (data not shown). This result indicated that phenylephrine stimulates superoxide production in a 1-adrenoceptor-dependent manner. To further unravel sources for phenylephrine-stimulated superoxide anions, we examined the effect of inhibitors for various ROS generation systems. Phenylephrine-induced ·O₂⁻ production was inhibited by the pretreatment with NAD(P)H oxidase inhibitors apocynin (1 mM) and VAS2870 (10 μM), a superoxide scavenger tiron (10 mM), and mitochondria respiratory chain inhibitor rotenone (10 μM). In contrast, xanthine oxidase inhibitor allopurinol (100 μM) and cyclooxygenase inhibitor indomethacin (10 μM) had no effect. These results suggested that NAD(P)H oxidase and mitochondria, but not xanthine oxidase or cyclooxygenase, may contribute to phenylephrine-stimulated superoxide production.

The role of NAD(P)H oxidase in phenylephrine-induced superoxide production was further corroborated by activity assay in RTA homogenates. We tested both NADH and NADPH as the substrate for activity assay and found that 300 μM NADPH, but not NADH, elicited detectable signals. As shown in Figure 3A, activation of NAD(P)H oxidase occurred within 1 min upon phenylephrine stimulation and persisted for at least 2 min.
ROS regulate phenylephrine-stimulated MLC₂₀ phosphorylation

To determine whether ROS are involved in regulating phenylephrine-activated MLC₂₀ phosphorylation, we measured MLC₂₀ phosphorylation levels in the presence and absence of apocynin. As depicted in Figure 4A, at 1-min phenylephrine stimulation, MLC₂₀ phosphorylation increased markedly from 10 ± 1.1% to 43 ± 1.2% (p < 0.001), pretreatment of apocynin (1.5 or 3 mM) dose-dependently inhibited phenylephrine-stimulated MLC₂₀ phosphorylation. Similarly, at 15-min phenylephrine stimulation, MLC₂₀ phosphorylation was inhibited by apocynin in a dose-dependent manner (p < 0.05, Figure 4B). These results suggest that ROS modulate phenylephrine-stimulated MLC₂₀ phosphorylation.

10 min (113 ± 6 cpm µg protein⁻¹ for control, 179 ± 5 and 217 ± 32 cpm µg protein⁻¹ for 1-min and 10-min phenylephrine stimulation, respectively, p < 0.05 compared to control). As shown in Figure 3B, apocynin (1 mM) effectively reduced phenylephrine-stimulated chemiluminescence at 1 min (185 ± 14 cpm µg protein⁻¹ for vehicle control, 86 ± 16 cpm µg protein⁻¹ for apocynin; p < 0.05). In contrast, neither allopurinol (100 µM) nor rotenone (10 µM) exhibited significant inhibition. These results implied that NAD(P)H oxidase is involved in phenylephrine-stimulated superoxide anion production in RTA strips.
ROS regulate phenylephrine-induced MYPT1 phosphorylation

To elucidate whether ROS affect MLC\textsubscript{20} phosphorylation through inhibiting myosin phosphatase, MYPT1 phosphorylation levels at two regulatory sites, Thr\textsubscript{697} and Thr\textsubscript{855}, were examined. As shown in Figure 5B, within 1 min of phenylephrine stimulation, MYPT1Thr855 phosphorylation increased approximately 2-fold and was eliminated with apocynin pretreatment. At 15 min, phenylephrine caused a small but significant increase in MYPT1Thr697 phosphorylation, which was attenuated by apocynin. In contrast to MYPT1Thr855 phosphorylation, no change was detected in MYPT1Thr697 phosphorylation in response to phenylephrine or apocynin (Figure 5A).

ROS regulate phenylephrine-induced RhoA translocation

Since phenylephrine-stimulated MYPT1Thr855 phosphorylation is Rho kinase-dependent [19], the effects of suppressing ROS generation on phenylephrine-induced RhoA activation were examined by translocation assay. As illustrated in Figure 6A, the fraction of membrane RhoA (membrane RhoA/total RhoA) in the resting state was 32 ± 4.5% and rapidly increased to 48 ± 4.0% at 1 min after phenylephrine stimulation (\(p < 0.05\), \(n = 6\)). Pretreatment of RTA with apocynin abolished phenylephrine-induced RhoA translocation (32 ± 4.4% for apocynin, \(p < 0.05\) compared to phenylephrine alone, \(n = 6\)). Similar results were obtained at 15-min phenylephrine stimulation (Figure 6B). The results of Figure 5 and 6 suggest that ROS are involved in \(\alpha_1\)-adrenoceptor-stimulated RhoA/Rho kinase activation.

ROS regulate phenylephrine-stimulated CPI-17 phosphorylation

Our previous results showed that phenylephrine stimulated CPI-17Thr38 phosphorylation at the initial phase of contraction in RTA strips [19]. Therefore, we examined whether ROS regulate myosin phosphatase activity through CPI-17Thr38 phosphorylation. As shown in Figure 7, CPI-17Thr38 phosphorylation at 1 min of phenylephrine stimulation was markedly inhibited by apocynin pretreatment. This result suggests that CPI-17 phosphorylation also provides a mechanism for ROS to regulate myosin phosphatase activity during \(\alpha_1\)-adrenoceptor activation.

Discussion

Results of this study show that \(\alpha_1\)-adrenoceptor activation induced ROS (probably \(\cdot\text{O}_2^-\)) production to regulate vasoconstriction. While inhibition of xanthine oxidase or cyclooxygenase did not affect ROS production in phenylephrine-stimulated RTA, two structurally distinct
inhibitors of NAD(P)H oxidase abolished this response. Our results also indicated that phenylephrine-activated contractile response in RTA is only partially regulated by ROS because apocynin and VAS2870, at concentrations that attenuated 50~80% of ROS production, only decreased force by 30%~40%.

Our results showed that α1-adrenoceptor activation upon phenylephrine challenging increased ROS production. What is responsible for α1-adrenoceptor-mediated vascular ROS generation? Xanthine oxidase and cyclooxygenase can be excluded since inhibition of either enzyme had no effect on phenylephrine-induced ROS formation. One probable source is NADPH oxidase. Our finding that phenylephrine-induced ROS production was attenuated by apocynin or VAS2870 pretreatment supports this notion. Furthermore, phenylephrine stimulation increased NADPH oxidase activity in RTA homogenate, which was abolished by apocynin. For more than a decade, apocynin has been used as a specific inhibitor to explore the role of NADPH oxidase in the field of vascular biology. However, Heumueller et al recently reported that apocynin is not an inhibitor of vascular NADPH oxidase and instead acts as an antioxidant, thereby reducing ROS bioavailability [23]. These authors found that in the presence of myeloperoxidase (MPO), apocynin is oxidized to form active dimers capable of blocking the assembly and activation of NADPH oxidase.
oxidase. As vascular smooth muscle cells do not express MPO, apocynin may not form active dimers and hence can not block NADPH oxidase activation. Regardless of mechanisms acted by apocynin, a novel NADPH oxidase inhibitor, VAS2870 [24], inhibited phenylephrine-activated force and superoxide production by ~30% in RTA strips. Taken together, NADPH oxidase-derived ROS are likely to be involved in α₁-adrenoceptor-activated vasoconstriction.

Mitochondria present another likely source for α₁-adrenoceptor-induced ROS generation. An inhibitor of mitochondrial respiratory chain, rotenone, markedly decreased phenylephrine-induced ROS formation. This finding is in good agreement with a previous study showing that mitochondria are a major source of ROS in response to phenylephrine stimulation in rat mesenteric artery [11]. Using mitochondria-selective ROS scavenger and fluorescent probe, the authors provide convincing evidence to support the essential role of mitochondria-derived ROS in the maintenance of α₁-adrenergic-dependent vasoconstriction [11]. Another study by Bailey et al also reported that mitochondria-derived ROS in smooth muscle initiate cold-induced constriction of cutaneous arteries [25]. Further experiments are needed to elucidate the underlying mechanisms for mitochondria-derived ROS to regulate α₁-adrenergic-activated vasoconstriction.

Myosin light chain phosphorylation levels are determined by the activity ratio between myosin light chain kinase and myosin phosphatase. Phosphorylation of MYPT1 inhibits myosin phosphatase activity, resulting in increased MLC₂₀ phosphorylation and smooth muscle contraction [26,27]. Results of this study showed that at initial phase α₁-adrenoceptor stimulation activates NAD(P)H oxidase with concomitant increases in RhoA translocation, MYPT1ₜhr₈₅₅ and MLC₂₀ phosphorylation. Apocynin at concentrations that abolished increase in ROS production eliminated RhoA translocation and MYPT1ₜhr₈₅₅ phosphorylation and decreased MLC₂₀ phosphorylation. These results are consistent with the idea that ROS play upstream signaling roles in RhoA/Rho kinase activation and myosin phosphatase inhibition. At sustained phase, similar results were obtained with apocynin on RhoA translocation, MYPT1ₜhr₈₅₅ phosphorylation and MLC₂₀ phosphorylation. These results suggest that ROS may regulate α₁-adrenoceptor-stimulated contraction through RhoA/Rho kinase-mediated myosin phosphatase inhibition and thereby increasing MLC₂₀ phosphorylation. It was previously reported that exogenousously generated -O₂⁻ activates Rho/Rho kinase pathway to promote contraction [18]. Knock et al. recently showed that LY83583-generated superoxide activates Rho kinase-mediated phosphorylation of MYPT1ₜhr₈₅₅, resulting in enhanced MLC₂₀ phosphorylation and contraction in rat pulmonary arteries [28]. Up to date, superoxide-dependent Rho/Rho kinase activation in the artery under physiological conditions has only been documented in chronic angiotensin II-induced hypertensive rats [29]. Results of this study provide the first evidence indicating that ROS-mediated RhoA activation occurs under the activation of vasoconstrictor receptors. In this context, RhoA was recently reported to be directly activated by ROS through a redox-sensitive motif involving two cysteines within the phosphorl binding loop [30], a redox-active domain present in most Rho GTPases [31].

Phosphorylation of CPI-17, a smooth muscle-specific protein inhibitor of myosin phosphatase, by PKC presents another important mechanism to inhibit myosin phosphatase activity [32,33]. It was shown that PKC isoforms, including α, β₁, γ, δ, ε, and ζ are activated by tyrosine phosphorylation, which can be regulated by protein-tyrosine phosphatases (PTP) [34]. As PTP are well-established targets of ROS [35], inhibition of PTP by ROS can enhance PKC- and CPI-17-mediated inhibition of myosin phosphatase, resulting in increased MLC₂₀ phosphorylation and smooth muscle contraction. The result that α₁-adrenoceptor-induced CPI-17 phosphorylation was inhibited by apocynin suggested that CPI-17-mediated myosin phosphatase inhibition provides another mechanism accounting for ROS actions. Interestingly, apocynin was recently reported to inhibit Rho kinase without involving vascular NAD(P)H oxidase [36]. Our result that apocynin inhibited both Rho kinase-dependent MYPT-1 phosphorylation and protein kinase C-dependent CPI-17 phosphorylation strongly suggested that apocynin acts as an antioxidant to inhibit RhoA/Rho kinase and protein kinase C.

In addition to modulating myosin phosphatase activity, ROS modulate intracellular Ca²⁺ mobilization [37]. It was reported that ROS increase cytoplasmic Ca²⁺ by inhibiting Ca²⁺-ATPase activity and by promoting inositol trisphosphate-induced Ca²⁺ release [38]. A recent report illustrated that a functional NAD(P)H oxidase system exists in the sarcoplasmic reticulum of coronary artery smooth muscle, which produces -O₂⁻ locally to regulate ryanodine receptor activity and Ca²⁺ release from sarcoplasmic reticulum [39]. Whether ROS also increase MLC₂₀ phosphorylation via the activation of MLCK remains to be examined.

In summary, the present study showed that α₁-adrenoceptor-activated smooth muscle contraction is modulated by ROS generation. Alpha1 adrenoceptor-stimulated increases in ROS production, acting through RhoA/Rho kinase-mediated MYPT1ₜhr₈₅₅ phosphorylation and Rho kinase-independent CPI-17ₜhr₈₅₅ phosphorylation, lead to myosin phosphatase inhibition, MLC₂₀ phosphorylation, and smooth muscle contraction.
References
1. Irani K: Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Curr Res 2000, 87:179-183.
2. Rubanyi GM: Vascular effects of oxygen-derived free radicals. Free Radic Biol Med 1988, 4:107-120.
3. Laursen JB, Rajagopalan S, Galis ZS, Freeman BA, Harrison DG: Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997, 95:588-93.
4. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Greindling KK, Harrison DG: Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADPH/NADH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996, 97:1916-1923.
5. Sedeek MH, Linas MT, Drummond H, Fontesmani L, Abram SR, Alexander BT, Rockeheodt JF, Granger JP: Role of reactive oxygen species in endothelin-induced hypertension. Hypertension 2003, 42:806-810.
6. Somers MJ, Mavromatis K, Galis ZS, Harrison DG: Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 2000, 101:1722-1728.
7. de Boer J, Meurs H, Flendrig L, Koopal M, Zaastra J: Role of nitric oxide and superoxide in allergen-induced airway hyperreactivity after the late asthmatic reaction in guinea-pigs. Br J Pharmacol 2001, 133:1253-1242.
8. Cai H, Greindling KK, Harrison DG: The vascular NADPH/NOS oxides as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 2003, 24:471-8.
9. Nowicki PT, Flavahan S, Hassanain H, Mitra S, Holland S, Goldschmidt-Clermont PJ, Flavahan NA: Redox signaling of the arteriolar myogenic response. Circ Res 2001, 89:114-6.
10. Loomis ED, Sullivan JC, Osmond DA, Pollock DM, Pollock JS: Endothelin Mediates Superoxide Production and Vasoconstriction through Activation of NADPH Oxidase and Uncoupled Nitric-Oxide Synthase in the Rat Aorta. J Pharmacol Exp Ther 2005, 315:1058-1064.
11. Hao L, Nishimura T, Wu H, Fernandez-Patron C: Vascular responses to alpha1-adrenergic receptors in small rat mesenteric arteries depend on mitochondrial reactive oxygen species. Arterioscler Thromb Vasc Biol 2006, 26:819-25.
12. Hirano K, Derkach DN, Hirano M, Nishimura J, Kanade H: Protein kinase network in the regulation of phosphorylation and dephosphorylation of smooth muscle myosin light chain. Mol Cell Biochem 2003, 248:105-114.
13. Somlyo AP, Somlyo AV: Calmodulin Ca2+-sensitization of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003, 83:1325-1358.
14. Hartshorne DJ, Ito M, Erddi F: Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem 2004, 279:23721-23724.
15. Arim Jr, Xiao L, Pimentel DR, Pagano PJ, Singh K, Sawyer DB, Colucci WS: Reactive oxygen species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 2001, 33:131-139.
16. Bleeke T, Zhang H, Madamanchi N, Patterson C, Faber JE: Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res 2004, 94:37-45.
17. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB: Role of reactive oxygen species and NADPH oxidase in alpha1-adrenergic signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 2002, 282:C926-C934.
18. Jin L, Ying Z, Webb RC: Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol 2004, 287:H1405-H1500.
19. Tsai MH, Jiang MJ: Rho-kinase-mediated regulation of receptor agonist-stimulated smooth muscle contraction. Pfugers Arch 2006, 453:223-232.
20. Pagano PJ, Ito Y, Tomkhin G, Gallop PM, Tauber AI, Cohen RA: An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol 1995, 268:H1227-H12280.
21. Miller FJ Jr, Greindling KK: Functional evaluation of nonphagocytic NAD(P)H oxidases. Methods Enzymol 2002, 353:203-231.
22. Bailey SR, Mitra S, Flavahan S, Flavahan NA: Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 2005, 289:H243-50.
23. Trinkle-Mulcahy L, Ichikawa K, Hartshorne DJ, Siegmam JT, Butler TM: Thio phosphorylation of the 130-kDa subunit is associated with a decreased activity of myosin light chain phosphatase in alpha-toxin-permeabilized smooth muscle. J Biol Chem 1995, 270:18191-18194.
24. Jin L, Ying Z, Webb RC: Activation of RhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 1997, 272:10704-10709.
25. Sabine Heumuller SW, Barbosa-Sicard Eduardo, Schmidt HHHarald, Busse Rudi, Schroder Katrin, Brandes PR: Apocynin is not an inhibitor of vascular NADPH oxidase but an antioxidant. Hypertension 2008, 51:211-217.
26. ten Freyhaus H, Huntegeburt M, Winger K, Schnitker J, Baumer AT, Vantler M, Bekhte MW, Wartenberg M, Sauer H, Rosenkrans S: Novel NOx inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 2006, 71:351-41.
27. Bailey SR, Mitra S, Flavahan S, Flavahan NA: Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 2005, 289:H243-50.
28. Trinkle-Mulcahy L, Ichikawa K, Hartshorne DJ, Siegmam JT, Butler TM: Thio phosphorylation of the 130-kDa subunit is associated with a decreased activity of myosin light chain phosphatase in alpha-toxin-permeabilized smooth muscle. J Biol Chem 1995, 270:18191-18194.
29. Jin L, Ying Z, Webb RC: Activation of RhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 1997, 272:10704-10709.
30. Sabine Heumuller SW, Barbosa-Sicard Eduardo, Schmidt HHHarald, Busse Rudi, Schroder Katrin, Brandes PR: Apocynin is not an inhibitor of vascular NADPH oxidase but an antioxidant. Hypertension 2008, 51:211-217.
31. ten Freyhaus H, Huntegeburt M, Winger K, Schnitker J, Baumer AT, Vantler M, Bekhte MW, Wartenberg M, Sauer H, Rosenkrans S: Novel NOx inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 2006, 71:351-41.
32. Bailey SR, Mitra S, Flavahan S, Flavahan NA: Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 2005, 289:H243-50.
33. Trinkle-Mulcahy L, Ichikawa K, Hartshorne DJ, Siegmam JT, Butler TM: Thio phosphorylation of the 130-kDa subunit is associated with a decreased activity of myosin light chain phosphatase in alpha-toxin-permeabilized smooth muscle. J Biol Chem 1995, 270:18191-18194.
34. Jin L, Ying Z, Webb RC: Activation of RhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 1997, 272:10704-10709.
35. Sabine Heumuller SW, Barbosa-Sicard Eduardo, Schmidt HHHarald, Busse Rudi, Schroder Katrin, Brandes PR: Apocynin is not an inhibitor of vascular NADPH oxidase but an antioxidant. Hypertension 2008, 51:211-217.
36. ten Freyhaus H, Huntegeburt M, Winger K, Schnitker J, Baumer AT, Vantler M, Bekhte MW, Wartenberg M, Sauer H, Rosenkrans S: Novel NOx inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 2006, 71:351-41.
37. Bailey SR, Mitra S, Flavahan S, Flavahan NA: Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol 2005, 289:H243-50.
38. Trinkle-Mulcahy L, Ichikawa K, Hartshorne DJ, Siegmam JT, Butler TM: Thio phosphorylation of the 130-kDa subunit is associated with a decreased activity of myosin light chain phosphatase in alpha-toxin-permeabilized smooth muscle. J Biol Chem 1995, 270:18191-18194.
39. Jin L, Ying Z, Webb RC: Activation of RhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 1997, 272:10704-10709.
40. Sabine Heumuller SW, Barbosa-Sicard Eduardo, Schmidt HHHarald, Busse Rudi, Schroder Katrin, Brandes PR: Apocynin is not an inhibitor of vascular NADPH oxidase but an antioxidant. Hypertension 2008, 51:211-217.
35. Meng TC, Fukada T, Tonks NK: Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 2002, 9:387-399.
36. Schluter T, Steinbach AC, Steffen A, Retten R, Gisk O: Apocynin-induced vasodilation involves Rho kinase inhibition but not NADPH oxidase inhibition. Cardiovasc Res 2008, 80:271-9.
37. Lounsbury KM, Hu Q, Ziegelstein RC: Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 2000, 28:1362-1369.
38. Grover AK, Samson SE: Effect of superoxide radical on Ca$$^{2+}$$ pumps of coronary artery. Am J Physiol 1988, 255:C297-C303.
39. Yi XY, Li VX, Zhang F, Yi F, Nabson DR, Jiang MT, Li PL: Characteristics and actions of NADPH oxidase on the sarcoplasmic reticulum of coronary artery smooth muscle. Am J Physiol Heart Circ Physiol 2006, 290:H1136-H1144.

doi:10.1186/1423-0127-17-67
Cite this article as: Tsai and Jiang. Reactive oxygen species are involved in regulating $$\alpha_1$$-adrenoceptor-activated vascular smooth muscle contraction. Journal of Biomedical Science 2010 17:67.