CONTRASTS ON DISSIPATIVE NON-EQUILIBRIUM
DARK ENERGY MODELS FROM RECENT
SUPEROVNA DATA

V. A. MITSOU
Instituto de Física Corpuscular (IFIC), CSIC – Universitat de València,
Edificio Institutos de Investigación, P.O. Box 22085, E-46071 Valencia, Spain
E-mail: vasiliki.mitsou@cern.ch

Non-critical string cosmologies may be viewed as the analogue of off-equilibrium
models arising within string theory as a result of a cosmically catastrophic event in
the early Universe. Such models entail relaxing-to-zero dark energies provided by
a rolling dilaton field at late times. We discuss fits of such non-critical models to
high-redshift supernovae data, including the recent ones by HST and ESSENCE
and compare the results with those of a conventional model with Cold Dark Matter
and a cosmological constant and a model invoking super-horizon perturbations.

1. Introduction
There is a plethora of astrophysical evidence today, from supernovae mea-
surements,1–5 the cosmic microwave background,6 baryon oscillations7 and
other cosmological data, indicating that the expansion of the Universe is
currently accelerating. The energy budget of the Universe seems to be dom-
inated at the present epoch by a mysterious dark energy component. Many
theoretical models provide possible explanations for the latter, ranging from
a cosmological constant8 to super-horizon perturbations9 and time-varying
quintessence scenarios,10 in which the dark energy is due to a smoothly
varying scalar field dominating cosmology in the present era. In the con-
text of string theory, such a time-dependent ‘quintessence’ field is provided
by the scalar dilaton field of the gravitational string multiplet.11–13

2. Dissipative Q-Cosmology Basics
Most of the astrophysical analyses so far are based on effective four-
dimensional Robertson-Walker Universes, satisfying on-shell dynamical
equations of motion of the Einstein-Friedman form. Even in modern ap-
proaches to brane cosmology, described by equations deviating during early
eras of the Universe from the standard Friedman equation, the underlying
dynamics is assumed to be of classical equilibrium (on-shell) nature.

However, cosmology may not be an entirely classical equilibrium situ-
atuation. The initial Big Bang or other catastrophic cosmic event, such as a
collision of two brane worlds in the modern approach to strings, which led
to the initial rapid expansion of the Universe, may have caused a signifi-
cant departure from classical equilibrium dynamics in the early Universe,
whose signatures may still be present at later epochs including the present
era. One specific model for the cosmological dark energy which is of this
type, being associated with a rolling dilaton field that is a remnant of this
non-equilibrium phase, was formulated\(^{11,14}\) in the framework of non-critical
string theory.\(^{12,15}\) This scenario is called ‘Q-cosmology’. It is of utmost
importance to confront the currently available precision astrophysical data
with such non-equilibrium stringy cosmologies. The central purpose of this
talk is to present a first step towards this direction, namely a confrontation
of cosmological data on high-redshift supernovae\(^{16,17}\) with Q-cosmologies
and compare the results with the predictions of the conventional ΛCDM
model\(^{8}\) and the super-horizon model.\(^{9}\) Care must be taken in interpreting
the Q-cosmology scenario. Since such a non-equilibrium, non-classical the-
ory is not described by the equations of motion derived by extremising an
effective space-time Lagrangian, one must use a more general formalism\(^{16}\)
to make predictions that can be confronted with the current data.

3. Supernova Data Analysis

We use recent type-Ia supernovae (SN) data released by the Hubble Space
Telescope (HST)\(^3\) and the ESSENCE collaboration.\(^4\) Among 16 newly dis-
covered high-redshift SNe,\(^3\) the so-called ‘gold’ dataset \((Riess07)\) embraces
SNe from other sets: 14 SNe discovered earlier by HST,\(^1\) 47 SNe reported
by SNLS,\(^2\) and 105 SNe detected by ground-based discoveries, amounting
a total of 182 data points. An additional set of 77 SNe tagged as ‘sil-
ver’ due to lower quality of photometric and spectroscopic record is also
listed. The ESSENCE dataset \((WV07)\), on the other hand, consists out
of 60 SNe of 0.015 < \(z\) < 1.02 discovered by ESSENCE,\(^4\) 57 high-z SNe
discovered during the first year of SNLS\(^3\) and 45 nearby SNe. The re-
results presented here were obtained by analysing a compilation of the afore-
mentioned data \((WV07+Riess07)\),\(^5\) normalised to account for the different
light-curve-fitters employed.

These data are given in terms of the distance modulus \(\mu = 5 \log d_L + 25\),
where the luminosity distance \(d_L \) (in megaparsecs) for a flat universe is related to the redshift \(z \) via the Hubble rate \(H \): \(d_L = c(1+z) \int_0^z \frac{dz'}{H(z')} \). We note that this observable depends on the expansion history of the Universe from \(z \) to the present epoch, and recall that, although most of the available supernovae have \(z < 1 \), there is a handful with larger values of \(z \). In the analysis that follows, the predictions for the Hubble rate \(H(z) \) of the following three cosmological models are investigated:

ΛCDM: In a CDM model with a cosmological constant,\(^8\) we have

\[
H(z) = H_0 \left(\Omega_M (1+z)^3 + \Omega_\Lambda (1+z)^{3(1+w_0)} \right)^{1/2}.
\]

Super-horizon model: The Universe is assumed to be filled with non-relativistic matter only,\(^9\) and there is no dark energy of any sort:

\[
H(z) = \pi^{-1} \frac{d\mathcal{A}(t)}{dt} = \frac{H_0}{1 - \Psi_{t0}} \left(a^{-3/2} - a^{-1/2} \Psi_{t0} \right),
\]

where \((1+z)^{-1} = \mathcal{A}(t)\), \(\Psi(\vec{x},t)\) is the gravitational potential, and \(\Psi_{t0}\) is a free parameter.

Q-cosmology: A parametrisation for \(H(z) \) in the Q-cosmology framework at late eras, such as the ones pertinent to the supernova and other data \((0 < z < 2)\), where some analytic approximations are allowed,\(^{16}\) is used in the analysis:

\[
\frac{H(z)}{H_0} = \sqrt{\Omega_3 (1+z)^3 + \Omega_\delta (1+z)^6 + \Omega_2 (1+z)^2}, \quad \Omega_3 + \Omega_\delta + \Omega_2 = 1,
\]

with the densities \(\Omega_2,\Omega_3,\Omega_\delta\) corresponding to present-day values \((z = 0)\). However, a complete analysis of the non-critical and dilaton effects, which turn out to be important in the present era after the inclusion of matter, requires a numerical treatment.\(^{14}\) In general, the three parameters to be determined by the fit are \(\Omega_3, \Omega_\delta \) and \(\delta\). Here, a fixed value of \(\delta = 4\) is assumed for simplicity, justified by earlier results,\(^{16}\) whilst a more complete analysis is given in Ref. 17.

For illustration purposes, both data and predictions of cosmological models are expressed in the following as residuals, \(\Delta \mu\), from the empty-Universe prediction (Milne’s model, \(\Omega_M = 0\)). The VW07+Riess07 dataset, which amounts to a sample of 192 supernovae in total, is shown in Fig. 1, where the predictions of the cosmological models under study are also displayed for the best-fit parameter values, listed in Table 1.
Figure 1. Residual magnitude versus redshift for supernova from the WV07+HST dataset and model predictions for the best-fit parameter values.

The analysis involves minimisation of the standard χ^2 function with respect to the cosmological model parameters. The best-fit parameter values, the 1σ errors and the corresponding χ^2 values are listed in Table 1 for the three cosmological models.

Model	Best-fit parameters	χ^2	χ^2/dof
ΛCDM flat	$\Omega_M = 0.259 \pm 0.019$	169	1.02
ΛCDM	$(\Omega_M, \Omega_\Lambda) = (0.33, 0.85)$	195	1.03
Super-horizon	$\Psi_{10} = -0.90 \pm 0.07$	200	1.05
Q-cosmology	$\Omega_3 = -2.8 \pm 0.5, \Omega_4 = 0.86 \pm 0.22$	195	1.02

It is evident from Fig. 1 and Table 1 that the standard ΛCDM model fits the supernova data very well, as expected from earlier analyses. The super-horizon dark matter model also fits the supernova data quite well. Both of these models are on-shell, i.e., they satisfy the pertinent Einstein’s equations. Moreover, off-shell cosmology models are also compatible with the data. As we discussed above, off-shell effects are important in our Q-cosmology model. Introducing the appropriate parametrisation Eq. (3) to allow for these off-shell effects, we find that the Q-cosmology model may fit the supernovae data as well as the standard ΛCDM model.
constraints17 on cosmological models may be imposed by observations of high-\(z\) red galaxies constraining the Hubble parameter, \(H(z)\).18

4. Conclusions

We show that recent high-redshift supernovae data confirm17 the constraints established in earlier studies16 which demonstrated that cosmological models with no dark energy may be viable alternatives to the Standard \(\Lambda\)CDM model. As more precision astrophysical data are coming into play, more stringent constraints can be imposed on our non-critical string \(Q\)-cosmologies.

References

1. A. G. Riess \textit{et al.}, Astrophys. J. \textbf{607} (2004) 665.
2. P. Astier \textit{et al.}, Astron. Astrophys. \textbf{447} (2006) 31.
3. A. G. Riess \textit{et al.}, Astrophys. J. \textbf{659} (2007) 98.
4. W. M. Wood-Vasey \textit{et al.}, arXiv:astro-ph/0701041.
5. T. M. Davis \textit{et al.}, arXiv:astro-ph/0701510.
6. D. N. Spergel \textit{et al.}, arXiv:astro-ph/0603449.
7. D. J. Eisenstein \textit{et al.}, Astrophys. J. \textbf{633} (2005) 560.
8. N. A. Bahcall \textit{et al.}, Science \textbf{284} (1999) 1481.
9. E. W. Kolb \textit{et al.}, arXiv:hep-th/0503117; E. W. Kolb, S. Matarrese and A. Riotto, New J. Phys. \textbf{8} (2006) 322.
10. A. Upadhye, M. Ishak and P. J. Steinhardt, Phys. Rev. D \textbf{72} (2005) 063501.
11. J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B \textbf{619} (2005) 17; J. R. Ellis \textit{et al.}, Int. J. Mod. Phys. A \textbf{21} (2006) 1379.
12. I. Antoniadis \textit{et al.}, Nucl. Phys. B \textbf{328} (1989) 117.
13. M. Gasperini, F. Piazza and G. Veneziano, Phys. Rev. D \textbf{65}, 023508 (2002).
14. G. A. Diamandis \textit{et al.}, Int. J. Mod. Phys. A \textbf{17} (2002) 4567; G. A. Diamandis \textit{et al.}, Int. J. Mod. Phys. A \textbf{17} (2002) 2241; G. A. Diamandis \textit{et al.}, Phys. Lett. B \textbf{642} (2006) 179.
15. J. R. Ellis, N. E. Mavromatos and D. V. Nanopoulos, Phys. Lett. B \textbf{293} (1992) 37; Mod. Phys. Lett. A \textbf{10} (1995) 1685; Chaos Solitons Fractals \textbf{10} (1999) 345. F. David, Mod. Phys. Lett. A \textbf{3} (1988) 1651; J. Distler and H. Kawai, Nucl. Phys. B \textbf{321} (1989) 509; J. Distler, Z. Houscut and H. Kawai, Int. J. Mod. Phys. A \textbf{5} (1990) 391; N. E. Mavromatos and J. L. Miramontes, Mod. Phys. Lett. A \textbf{4} (1989) 1847; E. D’Hoker and P. S. Kurzepa, \textit{ibid.} \textbf{5} (1990) 1411.
16. J. R. Ellis, N. E. Mavromatos, V. A. Mitsou and D. V. Nanopoulos, Astropart. Phys. \textbf{27} (2007) 185; N. E. Mavromatos, “LHC Physics and Cosmology,” these proceedings [arXiv:0708.0134 [hep-ph]].
17. N. E. Mavromatos and V. A. Mitsou, arXiv:0707.4671 [astro-ph].
18. R. Jimenez, L. Verde, T. Treu and D. Stern, Astrophys. J. \textbf{593} (2003) 622; J. Simon, L. Verde and R. Jimenez, Phys. Rev. D \textbf{71} (2005) 123001.