Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila

Péter Nagy, Krisztina Hegedűs, Karolina Pircs, Ágnes Varga, Gábor Juhász *

Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary

A R T I C L E I N F O

Article history:
Received 17 October 2013
Revised 6 December 2013
Accepted 10 December 2013
Available online 24 December 2013

Edited by Noboru Mizushima

Keywords:
Atg2
Atg7
Atg8a
Atg18
Ref(2)P/p62

A B S T R A C T

The Atg2–Atg18 complex acts in parallel to Atg8 and regulates Atg9 recycling from phagophore assembly site (PAS) during autophagy in yeast. Here we show that in Drosophila, both Atg9 and Atg18 are required for Atg8a puncta formation, unlike Atg2. Selective autophagic degradation of ubiquitinated proteins is mediated by Ref(2)P/p62. The transmembrane protein Atg9 accumulates on refractory to Sigma P (Ref(2)P) aggregates in Atg7, Atg8a and Atg2 mutants. No accumulation of Atg9 is seen on Ref(2)P in cells lacking Atg18 or Vps34 lipid kinase function, while the Atg1 complex subunit FIP200 is recruited. The simultaneous interaction of Atg18 with both Atg9 and Ref(2)P raises the possibility that Atg18 may facilitate selective degradation of ubiquitinated protein aggregates by autophagy.

Structured summary of protein interactions:
Ref(2)P physically interacts with Atg18 by anti tag coimmunoprecipitation (View interaction) Atg18 physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) CG8678 physically interacts with Atg8 by anti tag coimmunoprecipitation (View interaction) Atg18 physically interacts with Atg9 by anti tag coimmunoprecipitation (View interaction)

1. Introduction

Autophagy is a major catabolic pathway capable of degrading all kinds of intracellular material including proteins, lipids, polysaccharides, and nucleic acids. During its main pathway, phagophores capture cytosol and organelles to form autophagosomes, followed by the fusion of these double-membrane vesicles with lysosomes [1]. Autophagy was initially considered to be a non-specific, bulk degradation system, in contrast with the ubiquitin–proteasome pathway, in which individual polyubiquitinated proteins are recognized, unfolded and degraded in the inner proteolytic chamber of proteasomes. More recently, multiple studies showed that ubiquitination also signals for selective autophagic degradation, and characterization of ubiquitin-specific autophagy receptors revealed the molecular mechanism involved [2,3]. Proteins such as p62 contain distinct domains mediating multimerization, ubiquitin binding and interaction with Atg8 family proteins. Atg8 is a ubiquitin-like protein bound to phagophores and autophagosomes through a lipid anchor [1,4,5]. Ubiquitinated proteins are captured into aggregates by binding to p62 multimers, and the interaction of p62 with Atg8-positive autophagosomes is considered to be responsible for their elimination by autophagy [2,3,6–8]. In contrast with this simple model, p62 was found to colocalize with proteins involved in the initiation of phagophores independent of the presence of mammalian Atg8 homologs such as LC3 [9]. These results suggest that additional factors also contribute to the recognition of p62 aggregates by phagophores.

Atg9 is the only transmembrane protein of core autophagy factors, and it likely supplies initial vesicles for phagophore nucleation from multiple membrane sources including endosomes, plasma membrane and Golgi [10–12]. Atg9 is considered to be an upstream factor in the hierarchy of autophagy-related (Atg) proteins in yeast, but the molecular determinants of Atg9...
recruitment to the phagophore assembly site (PAS) are incompletely characterized [13]. A recent study shows that mammalian Atg9 is recruited to damaged mitochondria independent of lipidated Atg8 homologs and the upstream kinase Atg1/ULK1 during selective autophagic degradation of mitochondria [14]. In yeast, the Atg2–Atg18 protein complex is thought to act in parallel to the Atg8 system, and regulates Atg9 recycling from PAS [13,15]. Diverse Atg18-like proteins are found in eukaryotes. The four mammalian homologs fall into two groups based on bioinformatic analysis: WIP1/2 and WIP1/3/4 [16,17]. Of these, both WIP2 and WIP4 were suggested to promote autophagosome formation based on siRNA experiments in cultured cells [16,18]. Yeast Atg18 and its paralogs Atg21 belong to the WIP1/2 group [16,17]. Atg21 only functions in an autophagy-related biosynthetic pathway called cytoplasm to vacuole targeting (cvt) which delivers a subset of hydrolyses to the vacuole under growth conditions, whereas Atg18 is required for both autophagy and cvt in yeast [19]. Ygr223c, the third Atg18 family protein in yeast, belongs to the WIP1/3/4 group and regulates micronucleophagy, a selective autophagy pathway for degradation of nuclear components [16,20].

Clear orthologs of most Atg proteins are found in the popular metazoan model Drosophila, and the p62 ortholog refractory to Sigma P (Ref(2)P) also promotes ubiquitinated protein aggregation [21,22]. Single genes code for Atg9 and Atg2, and the WIP1/2 homolog CG7986 is referred to as Atg18, as it is required for autophagy in Drosophila [23–26]. The roles of another WIP1/2 family Drosophila protein, CG8678, and of the WIP1/3/4-like CG11975 are unknown [16,17]. Here we show that loss of Atg2 or Atg18 have different consequences on Atg8a puncta formation and Atg9 recruitment to Ref(2)P aggregates during starvation in Drosophila, raising the possibility that these proteins act differently during autophagosome formation in Drosophila.

2. Materials and methods

2.1. Molecular cloning, immunoprecipitation and antibody production

Atg18 coding sequences were PCR amplified from LD38705 (DGRC), and cloned into appropriate vectors to generate R4-mCherry-Atg18, UAS-3xHA-Atg18, and UAS-3xFLAG-Atg18, respectively. Coding sequences were amplified from genomic DNA or GH07816 (DGRC) to generate UAS-3xFLAG-Atg2 or UAS-3xHA-CG8678, respectively. These UAS plasmids, together with UAS-3xHA-Atg9, UAS-3xFLAG-Ref(2)P and mt-Gal4, were used to transfect D.Mel-2 cells (Invitrogen), followed by processing for immunoprecipitation as described [25,27]. His-tagged recombinant Atg9 protein fragment (amino acids 541–845) was purified from bacteria and used for immunization of rats as before [27].

2.2. Drosophila genetics

Flies were reared on standard cornmeal-yeast-agar diet, and well-fed mid-third instar larvae were floated in a 20% sucrose solution for 3 h in starvation experiments. Genotypes used in this study are RNAi lines Atg9

Flies were reared on standard cornmeal-yeast-agar diet, and well-fed mid-third instar larvae were floated in a 20% sucrose solution for 3 h in starvation experiments. Genotypes used in this study are RNAi lines Atg9

Fig. 1. (A) Atg8a colocalizes with Ref(2)P in Drosophila fat body cells of fed, starved and wandering wild type L3 larvae. The colocalization of Ref(2)P with Atg8a increases during starvation or developmental autophagy, as much more autophagosomes are generated under these circumstances. N = 6–15 per stage, *p < 0.001, ANOVA, errors bars: S.D. (B) Atg8a-positive autophagosomes are induced by starvation or during the wandering stage. (C) Larger Ref(2)P aggregates observed in fat body cells of well-fed animals are eliminated during starvation or wandering.
starvation-induced or developmental autophagy (Fig. 1C). Thus, Ref(2)P aggregates are selectively eliminated by autophagy in Drosophila.

Atg2 and Atg18 act in parallel to Atg8 in yeast, whereas Atg2 appears to function downstream of Atg8 family proteins in worms and mammals, respectively [18,30]. We also found that punctate Atg8a structures form in fat bodies of starved Atg2 mutants previously shown to be defective in autophagic degradation (Fig. 2A, B and E) [23,26]. In contrast, Atg8a dots were rarely detected in starved Atg18 mutants, and they were restored by expression of mCherry-Atg18 (Fig. 2C–E). Similarly, RNAi depletion of Atg2 failed to block the formation of Atg8a-positive structures, while Atg18 knockdown inhibited punctate Atg8a in GFP-marked RNAi cells (Fig. 2F–H). Immunoprecipitation experiments suggested that Atg2 may interact with Drosophila Atg18, and more efficiently knockdown inhibited punctate Atg8a in GFP-marked RNAi cells to block the formation of Atg8a-positive structures, while Atg9 knockdown cells, and the selective cargo Ref(2)P accumulated sensitive autophagosomes and autolysosomes were also blocked in starved Atg18 and E) [23,26]. In contrast, Atg8a dots were rarely detected in fat body cells expressing dominant-negative Vps34 (Fig. 3A and B). These data suggested that either Atg9 or Ref(2)P is not recruited to the PAS in the absence of Atg18 or Vps34 function. To distinguish between these possibilities, we looked at the localization of FIP200/Atg17. FIP200 is a subunit of the Atg1 kinase complex, and it accumulates on Ref(2)P aggregates in fat body cells of starved Atg7 null mutant larvae [34]. FIP200 was also enriched on Ref(2)P aggregates in cells lacking Atg2, Atg18 or Vps34 function (Fig. 3H–J), suggesting that Atg9 recruitment to PAS may specifically be affected by the absence of Atg18 or Vps34. Moreover, overlapping mCherry-Atg18 and Ref(2)P structures were readily observed in Atg2 and Atg8a RNAi cells (Figs. 3K and 3N).

These data suggested that Ref(2)P aggregates with associated upstream Atg proteins may represent stalled PAS in Atg mutants. The ultrastructure of protein inclusions is well-characterized in Atg mutant neurons of adult flies and mice, respectively [28,35,36]. These aggregates contain ubiquitinated protein, and are often surrounded by small vesicles (Fig. 3L). Double immunolabeling experiments revealed that at least a subset of vesicles associated with Ref(2)P-positive inclusions are positive for endogenous Atg9 in neurons of Atg7 and Atg8a null mutant adult brains (Fig. 3M and N).

The lack of Atg9 accumulation on Ref(2)P aggregates in Atg18 mutants raised the possibility that Atg18 may facilitate Atg9 recruitment to Ref(2)P. Indeed, HA-Atg18 coprecipitated with FLAG-Ref(2)P in cultured cells (Fig. 4A). HA-Atg9 showed strong binding to FLAG-Atg18, but not to FLAG-Ref(2)P (Fig. 4B), suggesting that the colocalization of Atg9 with Ref(2)P may not map a direct physical interaction. We hypothesized that Atg18 may potentially facilitate Atg9 recruitment to Ref(2)P aggregates by simultaneously binding to both proteins. In line with this model, coexpression of HA-Atg18 resulted in coprecipitation of HA-Atg9 with FLAG-Ref(2)P (Fig. 4B).

Fig. 2. (A–D) Punctate endogenous Atg8a staining is seen in fat body cells of wild type (A) and Atg2 mutant (B) starved larvae. The Atg8a dot formation defect of Atg18 mutants (C) is rescued by transgenic expression of Atg18 (D). Note that Atg8a is pseudocolored red in panel D, as Alexa 488 was used to avoid bleedthrough from the mCherry channel. (E) Quantification of data shown in (A–D). N = 5/genotype, *P < 0.001, ANOVA, errors bars: S.D. (F) Atg2 RNAi in GFP-positive cells does not block Atg8a puncta formation. Note that Atg8a structures in RNAi cells appear brighter, and a fraction of these are also bigger than Atg8a dots observed in surrounding control cells lacking GFP. (G) RNAi knockdown of Atg18 in GFP-marked cell clones blocks Atg8a puncta formation. Note that the Atg8a dots that do form in RNAi cells appear smaller and are much less bright than those observed in neighboring control cells. (H) Quantification of data shown in F, G. N = 5/genotype, *P < 0.001, two-tailed, two-sample Student’s t test, errors bars: S.D. Bar in A equals 20 μm for A–D, F, G, and the relevant channels are shown in grayscale as indicated.
4. Discussion

Previous studies established the importance of the interaction between p62 and Atg8 family proteins (such as LC3) during selective autophagy in mammalian cells [2,3,6]. A recent live imaging-based report shows that these two proteins are recruited together to the PAS, but later than the Atg1/ULK kinase complex, the Vps34 lipid kinase complex and its effectors such as WIPI1 [31]. How p62 and LC3 are recruited to the PAS is still not understood completely. Several interactions have been recently described between Atg proteins belonging to distinct functional groups and complexes, which likely cooperatively coordinate the recruitment of downstream factors. For instance, LC3-interacting regions have been characterized in ULK1/Atg1 and its binding partners Atg13 and FIP200, which may facilitate LC3 recruitment to PAS [37].

Atg9 likely supplies lipids in the form of small vesicles to initiate phagophore formation, and most of it is normally recycled from phagophores [10,31]. Atg18 is a phospholipid effector, and its complex with Atg2 regulates Atg9 recycling from phagophores in yeast [15]. Atg18 and Atg2 are considered to function together, genetically in parallel to Atg8 in yeast [13]. A recent paper shows that Atg18 recruitment to PAS requires PI3P and Atg2, and the Atg18-related protein Atg21 also appears to facilitate its localization to pro-aminopeptidase I aggregates in yeast [38]. Loss of Atg2 leads to formation of stalled phagophores in worms and mammalian cells, and it does not block the recruitment of worm Atg18 to protein aggregates [18,30], which are entirely consistent with our findings in Drosophila. Loss of Atg21 suppressed Atg8a puncta formation unlike the lack of Atg2 function, indicating that Atg18 acts upstream of Atg8a in Drosophila. Similar to our findings, RNAi depletion of the Atg18 homolog WIPI2 was found to prevent LC3 puncta formation in cultured mammalian cells, and mutation of Atg18 attenuates efficient Atg8 puncta formation in the 50 cell stage worm embryo [16,18]. Interestingly, Atg18 and Atg21 were
also suggested to promote the recruitment of lipidated Atg8 to the PAM in yeast, based on experiments carried out in a multiple knock-out strain which contains only a subset of Atg genes [19].

Our data raise the possibility that the selective autophagy cargo Ref(2)P may be used as a potential PAS marker in Atg mutant Drosophila cells, as most Ref(2)P aggregates become positive for upstream Atg proteins. The Atg1 complex subunit FIP2000 is enriched on Ref(2)P aggregates in the absence of Atg7, Atg2, Atg18 or Vps34 function. Atg9 also accumulates on Ref(2)P aggregates in Atg7, Atg8a and Atg2 mutants, but not in Atg18 mutants. Atg18 family proteins contain a WD40 domain with 7 beta-propellers. This structure likely enables the binding of Atg18 to multiple targets simultaneously, including the autophagy proteins Atg2 and Atg9 that we also show here, and PI3P on autophagic membranes [15,19,33,38]. In line with the interaction of Atg18 with this phospholipid, accumulation of Atg9 on Ref(2)P aggregates also requires the lipid kinase Vps34. Our data suggest that Atg18 may play an important role in phagophore nucleation, potentially by facilitating the recruitment of Atg9-containing vesicles to Ref(2)P for selective capture and degradation of ubiquitinated protein aggregates through autophagy in Drosophila.

Acknowledgements

We thank Sarolta Pálfia and Eszter Papp for technical assistance, Zsolt Venkei for purifying recombinant Atg9, and the Wellcome Trust (087518/Z/08/Z), the Hungarian Scientific Research Fund (OTKA K83509), and Hungarian Academy of Sciences (BO/00552/11) for support.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jfislet.2013.12.012.

References

[1] Mizushima, N., Levine, B., Cuervo, A.M. and Klionsky, D.J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075.
[2] Shaid, S., Brandts, C.H., Serve, H. and Dikic, I. (2013) Ubiquitination and selective autophagy. Cell Death Differ. 20, 21–30.
[3] Johansen, T. and Lamark, T. (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296.
[4] Ichimura, Y. et al. (2000) A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492.
[5] Mizushima, N., Yamamoto, A., Matsu, M., Yoshimori, T. and Ohsumi, Y. (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111.
[6] Komatsu, M. et al. (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163.
[7] Bjørkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H. and Johansen, T. (2005) P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614.
[8] Pankiv, S. et al. (2007) P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145.
[9] Itakura, E. and Mizushima, N. (2011) P62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 192, 17–27.
[10] Orsi, A., Razi, M., Dooley, H., Robinson, D., Weston, A., Collinson, L. and Tooze, S. (2012) Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy. Mol. Biol. Cell 23, 1850–1873.
[11] Yamamoto, H. et al. (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198, 219–231.
[12] Puri, C., Renna, M., Bento, C.F., Moreau, K. and Rubinsztein, D.C. (2013) Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154, 1285–1299.
[13] Suzuki, K., Kubota, Y., Sekito, T. and Ohsumi, Y. (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209–218.
[14] Itakura, E., Kishi-Itakura, C., Koyama-Honda, I. and Mizushima, N. (2012) Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125, 1488–1499.
[15] Reggiori, F., Tucker, K.A., Strohmaier, P.E. and Klionsky, D.J. (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell 6, 79–90.
[16] Polson, I.E., de Lartigue, J., Rigden, D.J., Reddijk, M., Urbe, S., Clague, M.J. and Tooze, S.A. (2010) Mammalian Atg18 (WIP12) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506–522.
[17] Proikas-Cezanne, T., Waddell, S., Gaugel, A., Frickey, T., Lupas, A. and Nordheim, A. (2004) WIPI-1α (WIPI49), a member of the novel 7-bladed β-propeller family, is required for the formation of protein aggregates in adult mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol. 180, 1065–1071.
[23] Scott, R.C., Schuldiner, O. and Neufeld, T.P. (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7, 167–178.

[24] Low, P., Varga, A., Pirics, K., Nagy, P., Szatmari, Z., Sass, M. and Juhasz, G. (2013) Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol. 14, 29.

[25] Nagy, P., Varga, A., Pirics, K., Hegedus, K. and Juhasz, G. (2013) Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet. 9, e1003664.

[26] Pirics, K., Nagy, P., Varga, A., Venkei, Z., Erdi, B., Hegedus, K. and Juhasz, G. (2012) Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS One 7, e44214.

[27] Takats, S. et al. (2013) Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531–539.

[28] Juhasz, G., Erdi, B., Sass, M. and Neufeld, T.P. (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 21, 3061–3066.

[29] Juhasz, G., Hill, J.H., Yan, Y., Sass, M., Baehrecke, E.H., Backer, J.M. and Neufeld, T.P. (2008) The class III PI(3)X Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181, 655–666.

[30] Velikkakath, A.K., Nishimura, T., Oita, E., Ishihara, N. and Mizushima, N. (2012) Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23, 896–909.

[31] Koyama-Honda, I., Itakura, E., Fujwara, T.K. and Mizushima, N. (2013) Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9, 1491–1499.

[32] Itakura, E. and Mizushima, N. (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776.

[33] Obara, K., Sekito, T., Niimi, K. and Ohsumi, Y. (2008) The Atg18–Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980.

[34] Nagy, P. et al. (2014) Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy 10 (3) (in press).

[35] Hara, T. et al. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889.

[36] Komatsu, M. et al. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884.

[37] Alemu, E.A. et al. (2012) ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287, 39275–39290.

[38] Rieter, E., Vinke, F., Bakula, D., Cebollero, E., Unger mann, C., Proikas-Cezanne, T. and Reggiori, F. (2013) Atg18 function in autophagy is regulated by specific sites within its beta-propeller. J. Cell Sci. 126, 593–604.