SUPPORTING INFORMATION

Follicular helper T cell signature of replicative exhaustion, apoptosis and senescence in common variable immunodeficiency

Giulia Milardi¹, Biagio Di Lorenzo¹, Jolanda Gerosa¹, Federica Barzaghi²,³, Gigliola Di Matteo⁴,⁵, Maryam Omrani³,⁶, Tatiana Jofra¹, Ivan Merelli³,⁷, Matteo Barcella⁵, Matteo Filippini¹, Anastasia Conti³, Francesca Ferrua²,³, Francesco Pozzo Giuffrida²,³, Francesca Dionisio³, Patrizia Rovere-Querini⁸, Sarah Marktel⁹, Andrea Assanelli⁹, Simona Piemontese⁹, Immacolata Brigida³, Matteo Zoccolillo³, Emilia Cirillo¹⁰, Giuliana Giardino¹⁰, Maria Giovanna Danieli¹¹, Fernando Specchia¹², Lucia Pacillo⁴,⁵, Silvia Di Cesare⁴,⁵, Carmela Giancotta⁴,⁵, Francesca Romano²,³, Alessandro Matarese¹³, Alfredo Antonio Chetta¹⁴, Matteo Trimarchi¹⁵,²³, Andrea Laurenzi¹, Maurizio De Pellegrin¹⁶, Silvia Darin², Davide Montin¹⁷, Maddalena Marinoni¹⁸, Rosa Maria Dellepiane¹⁹, Valeria Sordi¹, Vassilios Lougaris²⁰, Angelo Vacca²¹, Raffaella Melzi¹, Rita Nano¹, Chiara Azzari²², Lucia Bongiovanni²³, Claudio Pignata¹⁰, Caterina Cancrini⁴,⁵, Alessandro Plebani²⁰, Lorenzo Piemonti¹,²⁴, Constantinos Petrovas²⁵, Raffaella Di Micco³, Maurilio Ponzoni²,³,²⁴, Alessandro Aiuti²,³,²⁴*, Maria Pia Cicatele²,³*, and Georgia Fousterti¹⁵*

1. Division of Immunology, Transplantation, and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
2. Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
3. San Raffaele Telethon Institute for Gene Therapy, Sr-TIGET, IRCCS San Raffaele Hospital, Milan, Italy
4. Department of Systems Medicine University of Rome Tor Vergata, Rome, Italy
5. Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
6. Department of Computer Science, Systems and Communication University of Milano-Bicocca, Milan, Italy
7. Institute for Biomedical Technologies, National Research Council, Segrate, Italy
8. Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital, Milan, Italy
9. Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
10. Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Italy
11. Marche Polytechnic University of Ancona, Clinica Medica, Ancona, Italy
12. Department of Pediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
13. Santi Antonio, Biagio and Cesare Arrigo Hospital, Alessandria, Italy
14. Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
15. Otorhinolaryngology Unit, Head and Neck Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
16. Unit of Orthopaedics, IRCCS San Raffaele Scientific Institute, Milan, Italy
17. Regina Margherita Hospital, Turin, Italy
18. Pediatric Unit, Ospedale "F. Del Ponte", Varese, Italy
19. Department of Pediatrics, Fondazione IRCCS Cà Grande Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
20. Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
21. Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy

22. Pediatric Immunology Division, Department of Pediatrics, Anna Meyer Children's University Hospital, Florence, Italy
23. Pathology Unit, IRCCS San Raffaele Hospital, Milan, Italy
24. University Vita-Salute San Raffaele, Milan, Italy
25. Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA

*corresponding authors
Correspondence should be addressed to fousteri.georgia@hsr.it, aiuti.alessandro@hsr.it and cicalese.mariapia@hsr.it.
Materials and Methods

Multiplexing protein level measurements on a single Luminex platform

Secreted protein levels in sera were detected using the Invitrogen™ ProcartaPlex™ Human 65-plex panel kit (Thermo Fisher Scientific Cat. No. EPX650-10065-901). Samples were assayed according to the manufacturer’s instructions (1), and the plates were read on a Luminex xMAP instrument (BioRad). The acquisition and analysis of the samples were performed with the Bio-Plex Manager 6.0 software (BioRad).

Intracellular cytokine analysis

100 uL of peripheral whole blood (EDTA) were cultured in 96-well V bottom plates and stimulated with 12-O-Tetradecanoylphorbol-13-acetate (TPA; 20 ng/mL) and Ionomycin (1µg/mL) (both from Sigma-Aldrich) in the presence of Brefeldin A (1µg/mL) (Sigma-Aldrich), and antibody anti-CXCR5 Brilliant Violet 421 (J252D4, BioLegend) was added during the cell activation. Cultures were maintained 3 h at 37°C in a 5% CO₂ atmosphere. Surface staining was performed with mAbs including: CD4-PE (REA623, Miltenyi Biotec), CD3-APC-Vio770 (BW264/56, Miltenyi Biotec), CD45-Brilliant Violet 510 (HI30, BioLegend). Cytokines were analyzed performing an intracellular staining with the BD Cytofix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences) and with two panels of mAbs (Table E2, panel G-H). The first panel consisted of: IFNγ-Alexa Fluor 488 (4S.B3, BioLegend), IL-17-PE (eBio64CAP17, Invitrogen), IL-21-Alexa Fluor 647 (3A3-N2, BioLegend) (Table E2, panel G). The second one was: IFNγ-Alexa Fluor 488 (4S.B3, BioLegend), IL-10-PE (JES3-9D7, BD Biosciences), IL-4-APC (8D4-8, Invitrogen) (Table E2, panel H). Cells were acquired on FACSCantoII (BD) and analyzed with FlowJo (Tree Star) software.

Supplementary Figures
FIGURE E1. Representative gating strategy for (A) cTfh (CXCR5+FoxP3−), cTfr (CXCR5+FOXP3+, cTreg (CXCR5−FOXP3+) cells, the activation marker (PD-1), (B) Tfh subsets and (C) Highly Functional cTfh (PD-1+CXCR3+) cells.
FIGURE E2. Phenotypic analysis of circulating B cells and their subsets in CVID patients. (A) Phenotypic characterization of peripheral blood B cells and B-cell subsets. Gating strategy to identify naïve, memory and switch memory B cells based on expression of CD24, CD38, CD27, and (B) IgH isotypes. (C) Flow cytometric analysis of B cells and B-cell subpopulations isolated from spleen of CVID003 patient with RTEL1 mutation compared to age-matched HC. Frequency of CD19+ B cells, (D) naïve (CD19+CD27−) and (E) memory (CD19+CD27+) B cells, (F) transitional B cells (CD38hiCD24hi), (G) switched memory (CD27+IgM+) B cells and (H-I) their 2 subclasses CD27+IgG+ and CD27+IgA+. (J) Frequencies of mature memory B cells (CD27+IgM+), (K) CD21lo B cells (IgM+IgD+) and (L) plasma cells (CD24−CD38+). In all graphs, red dots represent individual donors and
asterisks indicate statistical significance as calculated by Mann Whitney test. Black bars: median with interquantile range. *p<0.05; **p<0.005; ***p<0.001; ****p<0.0001.

FIGURE E3. Expression analysis of several gene targets in CVID Group A patients (red dots) vs CVID Group B (blue dots). The ProcartaPlex 65-plex data was analyzed using the Bio-Plex Manager Software 6.1.
FIGURE E4. Transcriptomic analysis of sorted CD4+CXCR5+CD25− cTfh cells. (A) Principal component analysis (PCA) on the entire transcriptomic profile, showing Group A and B based on 1000 top differentially expressed genes. Volcano plot showing the transcriptomic analysis of sorted cTfh cells in total CVID patient vs. HC (B) and in Group B patients vs. HC (C). In the volcano plots, red color represent a higher gene expression compare to green color which is for genes low expressed.
FIGURE E5. Cytokine production by group A CVID cTfh cells. (A) Representative flow cytometry gating strategy. (B) Percentages of cTfh expressing pro-inflammatory, activation and Tfh cytokines compared to age-matched HC. In all graphs, dots represent individual donors. Statistical significance was calculated by Mann Whitney test.
FIGURE E6. Telomere length analysis in three group A CVID patients. Nomogram of Telomere Length (TL) in CD45RA+ naive T cells, CD45RA- memory T cells, CD20+ B cells and CD57+ NK from CVID003 (A), CVID010 (B), CVID028 (C)). Percentile lines as annotated. Black dot represents CVID patients. Red, green, and blue curves representing expected telomere length for the indicated proportion of HC.
FIGURE E7. XBP1 and Bcl-6 expression analysis in sorted tonsillar GC Tfh cells, centroblasts (CBs) and centrocytes (CCs) from control donors by ddPCR. (A). Representative gating strategy for Tfh cells, CBs, and CCs sorting. Cells were sorted as follow; Tfh cells as CD3+CD20-, CD4+, PD-1+CXCR5+; CCs as CD20+CD3-, CD27+CD38dim, CXCR4+; CBs as CD20+CD3-, CD27CD38dim, CXCR4+. The complete antibody mix is described in Supplementary Table E3, panel E. (B). XBP1 and Bcl-6 expression was assessed in sorted Tfh cells, CBs and CCs (n = 3). XBP1 was included as quality indicator for CCs and CBs sorting, since evidences from published dataset (http://biogps.org/dataset/E-GEOID-15271/) indicates that XBP1 expression in CCs is 2x increased compared to CBs. The average for technical duplicates was estimated, normalized on HPRT as housekeeping gene, and represented as dark circles; HPRT expression (set at 1) is represented by the dotted line; mean and SD are also shown.
FIGURE E8. Spleen histopathology of CVID003 patient detected in formalin-fixed paraffin-embedded sections by haematoxylin and eosin (H&E) staining (above) or by immunohistochemistry staining (below) showing a reduced white pulp (WP) and down sized germinal centers (GC) while the red pulp (RP) retained a normal appearance. On immunohistochemistry a reduced marginal zone is evident (IgD); sparse plasma cells can also be detected (CD38). Original magnification: H&E 100X; IgD and CD38 200X. GC is highlighted with a dotted circle.
FIGURE E9. Phenotypic characterization of B cells and B-cell subsets isolated from spleen of CVID003 patient. (A) Gating strategy to identify naïve, memory and switch memory B cells based on expression of CD24, CD38, CD27, and (B) IgH isotypes.
FIGURE E10. Flow cytometric analysis of (A) CD4⁺ T cells, Tfh (CD4⁺CXCR5⁺), PD-1⁺ and CD57⁺ Tfh and germinal center’s markers (Ki67 and Bcl-6) on the spleen of CVID003 compared to age-matched HC. (B) Activated CD8⁺ T cells were also investigated.
Supplementary Tables

Supplementary Table E1.

Gene pipeline for the discovery of causative mutations

SCIDA3: AG18A1A3: AG17A3: AA3:AD20	CID	CID with associated dysmorphic / dermatological / neurological features	Prevalent Ab deficiency											
CD3D ADA	TTC7	ZAP7	ATM	CHD7	ACTB	AID	CD79	PRKCD	CD40	PMS2	IL36RN	NIK/ MAP3 K14	IgG	
CD3E AK2	CARD1	TRAC	IKBA	BLM	DKC1	FOXN1	BLNK	CXC4	TNFRSF13B	CD40	RNF168	TCF3	IGH	IL21
CORONINA DCLRE1 C	CD4	CD3G	IKBKG	MRE11	RTEI	IKAROS	BTK	ICOS	TNFRSF13C	LRBA	HOIP	CD20	CD21	CD21
IL2RG DNAPK	CD81	ITK	UNCI19	NBS1	TINF2	MST1/ST4	CD1	PIK3CD	UNG	IL21R	HOIL	TWEAK	IGLL1	CXC4
IL7R RAG1 CD8A IL21R DOCK2	RNF1	68	NHP2	POLE1	CD7	9A	PIK3R1	PLCg2	IKAROS	INOS	0	NFKB2	LRRC8	
JAK3 RAG2 TAP1 ORAI1 TBX1 SPIN	NOP10	TBX1	TERT	POLE2	CD3Z									
PTPRC LIG4 TAP2 MAGT1	MST1/ST4	RAD50	TERC											
CERNUN NOS TAPB MALT1	TPP2	LIG4	TERT	CD3Z										
B2M MCM4/PRKDC	RHOH	PMS2	COH1	ORA11										
CIITA FOXN1 BCL10	PNP	CTLA4	CERNUN NOS											
RFX5 PNP	CTPS1	STAT3	TTC7A	IKBA										
RFXANK IKAROS GFI1 STIM1 LYST	IKBKG													
RFXAP IKBK	PGM3	PLCg2	RAB27A	PGM3										
Autoimmunity and lymphoproliferation

Autoinflammatory disorders (includes periodic fevers)	Defects of Phagocytes counts / function	Cytopenias	Lymphoproliferation	Enteropathy										
Autoimmunity and lymphoproliferation	**Defects of Phagocytes counts / function**	**Cytopenias**	**Lymphoproliferation**	**Enteropathy**										
AIRE	PRF1	CASP10	ZAP70	WASL	LCK	IL1RN	TNFRSF1A	ELANE	SBDS	CSF3R	CARD9	ALPS genes	MAGT1	WAS
FOX3	UNC13D	CASP8	PLCg2	WIP1	ORAI1	LPIN2	PLCg2	GFI1	ITGB2 (CD18)	MPO	IL17F	STK4	ITK	WASL
IL2RA	STX1	FADD	PIK3CD	WAS	PIK3CD	MEFV	CECR1	HAX1	SLC35C1	CEBPE	IL17RA	PNP	PRKCD	FOXP3
STAT1	STXB2P2	FAS	TYK2	IL10	CD27	MVK	HOIP	LAMTOR2	KINDLIN3	CXCR4	IL17RC	IKAROS	CTPS1	CD25
STAT3	SH2D1A	FASL	STIM1	IL10RA	TPP2	NLRP12	HOIL	G6PC3	CYBA	MST1/STK4	IRAK4	TPP2	CD27	XIAP
CTLA4	XIAP	NRAM1	STAT5B	IL10RB	NFAT5	CIA1	PRKCDB	GFI1	CYBB	ACTB	MYD88	GATA2	RHOH	ITCH
ITCH	LYST	KRAF2	SH2D1A	CD27	IKBA	NOD2	IL36RN	RAC2	NCF1	IFNGR1	IFNGR2	ICOS	STK4	TRAC
LRB4	RAB27A	PRKCD	TRAC	IKBKG	PTPPIP1	ROBL3	NCF2	IFNGR2				LYST	LYST	CD40
												RAB27A	RAB27A	CD40L
												TWEAK	TPP2	IKBA
												CD40	PN5L	NFAT5
												CD40L	NOD2	
												LRBA	IL21R	
												FOXP3	IL21R	
												WAS	IL10R	
														IL10

Genes

- **AIRE**
- **PRF1**
- **CASP10**
- **ZAP70**
- **WASL**
- **LCK**
- **IL1RN**
- **TNFRSF1A**
- **ELANE**
- **SBDS**
- **CSF3R**
- **CARD9**
- **ALPS genes**
- **MAGT1**
- **WAS**
- **FOX3**
- **UNC13D**
- **CASP8**
- **PLCg2**
- **WIP1**
- **ORAI1**
- **LPIN2**
- **PLCg2**
- **GFI1**
- **ITGB2 (CD18)**
- **MPO**
- **IL17F**
- **STK4**
- **ITK**
- **WASL**
- **IL2RA**
- **STX1**
- **FADD**
- **PIK3CD**
- **WAS**
- **PIK3CD**
- **MEFV**
- **CECR1**
- **HAX1**
- **SLC35C1**
- **CEBPE**
- **IL17RA**
- **PNP**
- **PRKCD**
- **FOXP3**
- **STAT1**
- **STXB2P2**
- **FAS**
- **TYK2**
- **IL10**
- **CD27**
- **MVK**
- **HOIP**
- **LAMTOR2**
- **KINDLIN3**
- **CXCR4**
- **IL17RC**
- **IKAROS**
- **CTPS1**
- **CD25**
- **STAT3**
- **SH2D1A**
- **FASL**
- **STIM1**
- **IL10RA**
- **TPP2**
- **NLRP12**
- **HOIL**
- **G6PC3**
- **CYBA**
- **MST1/STK4**
- **IRAK4**
- **TPP2**
- **CD27**
- **XIAP**
- **CTLA4**
- **XIAP**
- **NRAF1**
- **STAT5B**
- **IL10RB**
- **NFAT5**
- **CIA1**
- **PRKCDB**
- **GFI1**
- **CYBB**
- **ACTB**
- **MYD88**
- **GATA2**
- **RHOH**
- **ITCH**
- **ITCH**
- **LYST**
- **KRAF2**
- **SH2D1A**
- **CD27**
- **IKBA**
- **NOD2**
- **IL36RN**
- **RAC2**
- **NCF1**
- **IFNGR1**
- **ICOS**
- **STK4**
- **TRAC**
- **LRBA**
- **RAB27A**
- **PRKCD**
- **TRAC**
- **DOC8K**
- **IKBKG**
- **PTPIP1**
- **ROBL3**
- **NCF2**
- **IFNGR2**
- **LOT**
- **LYST**
- **CD40**
- **CD40L**
- **TWEAK**
- **TPP2**
- **IKBA**
- **CD40**
- **PN5L**
- **NFAT5**
- **CD40L**
- **NOD2**
- **LRBA**
- **IL21R**
- **FOXP3**
- **IL21R**
- **WAS**
- **IL10R**
- **IL10**
- **JAGN1**
- **NCF4**
- **GATA2**
- **PGM3**
Therapeutic and clinical features of CVID patients of group A and B

Patients (Group A)	Gender	Age at diagnosis	Age at analysis	IgG at diagnosis	IgM at diagnosis	Treatment
CVID003	M	22	22	6.36	0.63	Ig iv; Sirolimus; MMF
CVID008	M	35	36	0.9	0.19	Ig iv
CVID010	M	11	12	4.21	<0.05	Ig iv; Sirolimus
CVID013	M	16	16	3.44	0.33	RTX for neuritis; Ig iv
CVID017	F	12	38	na	na	Ig iv; CyA, then steroids and AZA for Autoimmune Hepatitis
CVID022	M	35	36	3.87	0.37	Ig iv; CCS + Rituximab (for ITP)
CVID024	F	28	53	na	na	Ig iv; Endoxan + Vincristine + Rituximab for ITP
CVID028	M	14	16	5.21	0.26	Hyqvia CCS for ITP
CVID030	F	46	52	4.75	<0.18	Ig iv

Patients (Group B)	Gender	Age at diagnosis	Age at analysis	IgG at diagnosis	IgM at diagnosis	Treatment
CVID009	M	15	15	2.76	0.11	Ig iv; Rituximab for ITP
PTPN22	M	20	20	2.79	0.21	Ig sc
CVID011	M	37	38			Ig iv
CVID019	M	14	15	3.88	0.46	none
CVID020	F	10	14	5.4	1.17	none
CVID021	M	10	11	5.13	0.15	Ig iv; CCS + MMF + Eltrombopag + Sirolimus for ITP
CVID023	F	29	48	na	na	Hyqvia
CVID025	F	34	35	na	na	Ig sc
CVID027	M	26	27	5.04	0.3	Hyqvia
CVID029	F	57	63	5.45	0.34	Ig iv
CVID032	F	5	7	2.66	1.67	none
CVID033	M	10	10	na	na	Hizentra
CVID034	M	17	17	3.18	4.19	Hyqvia; CCS, ciclofosfamide, ciclosporina, tacrolimus e micofenolato, Rituximab
CVID035	F	13	14	na	na	Privigen
CVID036	M	24	25	3.19	0.2	Hizentra
CVID037	M	24	25	4.18	0.32	Hizentra
TID197	F	35	49	na	na	Ig iv
CVID015	M	3	37	na	na	Ig iv

na: not available
CCS: corticosteroids
Supplementary Table E3.

Healthy controls

Sample	Age	Date of birth	Date of analysis	Exact Age	Sex	
HC212	ped	20/10/2003	26/10/2015	12	F	
HC213	ped	07/10/2003	26/10/2015	12	M	
HC214	ped	20/10/2002	26/10/2015	13	M	
HC215	ped	12/09/2002	26/10/2015	13	M	
HC216	ped	14/09/2001	26/10/2015	14	F	
HC273	ped	22/07/2003	15/02/2016	12	F	
HC275	ped	15/05/1999	15/02/2016	16	F	
HC277	ped	13/04/2003	29/02/2016	12	M	
HC278	ped	15/11/2001	29/02/2016	14	F	
HC280	ped	08/07/2002	29/02/2016	13	M	
HC307	ped	17/05/2004	30/05/2016	12	M	
HC308	ped	08/08/2003	30/05/2016	12	M	
HC309	ped	18/08/2002	30/05/2016	13	M	
HC310	ped	09/04/2005	30/05/2016	11	M	
HC325	ped	09/10/2004	14/11/2016	12	F	
HC326	ped	12/02/2004	14/11/2016	12	M	
HC327	ped	18/11/2002	14/11/2016	14	M	
HC328	ped	09/09/2002	14/11/2016	14	F	
HC331	ped	27/01/2005	05/12/2016	11	F	
HC333	ped	11/03/2003	05/12/2016	13	F	
HC334	ped	06/08/2002	05/12/2016	14	F	
HC335	ped	11/09/2000	05/12/2016	16	M	
HC336	ped	30/09/2004	12/12/2016	12	M	
HC337	ped	28/12/2007	12/12/2016	8	M	
HC344	ped	13/04/2004	09/01/2017	12	M	
HC346	ped	03/03/2003	09/01/2017	13	F	
HC349	ped	13/11/2011	25/01/2017	5	M	
HC350	ped	13/08/2008	25/01/2017	8	M	
HC396	ped	17/06/2009	20/09/2017	8	F	
HC397	ped	27/06/2010	21/09/2017	7	F	
HC398	ped	27/07/2013	25/09/2017	4	F	
HC400	ped	13/06/2005	12/10/2017	12	M	
HC401	ped	28/11/2005	12/10/2017	11	M	
HC431	ped	15/11/2005	12/04/2018	12	F	
HC462	ped	29/10/2009	13/05/2019	9	M	
ID	Type	Name	DOB	DoD	Age	Gender
------	------	------	---------------	---------------	-----	--------
HC449	ped		01/10/2016	22/07/2019	2	F
HC409	ped		31/12/2004	22/11/2017	12	M
HC421	ped		07/11/2008	14/02/2018	9	F
HC436	ped		01/09/2002	16/05/2018	15	F
HC359	ad		12/05/1990	03/05/2017	27	F
HC055	ad		29/08/1982	12/10/2017	35	F
HC068	ad		12/05/1977	12/10/2017	40	F
HC145	ad		04/08/1981	10/05/2017	35	F
HC148	ad		23/04/1976	21/03/2016	39	F
HC151	ad		03/04/1969	08/05/2017	46	F
HC159	ad		04/11/1990	08/05/2017	26	M
HC184	ad		28/04/1963	24/03/2016	52	F
HC194	ad		24/03/1989	05/06/2016	27	F
HC198	ad		22/11/1996	08/10/2015	18	F
HC199	ad		29/07/1996	08/10/2015	19	F
HC200	ad		22/12/1989	08/10/2015	25	F
HC211	ad		05/03/1992	14/10/2015	23	M
HC221	ad		23/05/1995	11/12/2015	20	M
HC232	ad		10/09/1993	18/01/2016	22	M
HC233	ad		11/08/1996	18/01/2016	19	F
HC234	ad		15/08/1996	18/01/2016	19	F
HC235	ad		18/11/1992	18/01/2016	23	M
HC236	ad		17/10/1995	18/01/2016	20	M
HC242	ad		31/05/1996	19/01/2016	19	F
HC243	ad		05/04/1996	19/01/2016	19	F
HC247	ad		13/02/1996	21/01/2016	20	F
HC248	ad		03/08/1996	21/01/2016	19	F
HC249	ad		13/09/1994	25/01/2016	21	M
HC250	ad		21/06/1995	25/01/2016	20	M
HC251	ad		02/11/1993	25/01/2016	22	F
HC252	ad		17/09/1995	25/01/2016	20	F
HC253	ad		21/03/1996	25/01/2016	19	F
HC262	ad		02/10/1996	27/01/2016	19	F
HC263	ad		25/10/1995	27/01/2016	20	F
HC268	ad		06/10/1996	28/01/2016	19	F
HC269	ad		25/06/1988	13/04/2016	27	F
HC271	ad		26/12/1988	09/02/2016	27	F
HC276	ad		15/03/1980	16/02/2016	35	F
HC282	ad		18/07/1980	08/03/2016	35	M
HC283	ad		01/01/1980	08/03/2016	36	M
Antibodies and immunostaining panels used for whole blood and PBMC

Immunostaining panel	Antibody	Fluorochrome	Clone	Manufacturer
cITh/cTfr cell panel	FOXP3	FITC	259D	BioLegend
(PBMC)				
CD45RA	PE	PE	H1100	Miltenyi
PD-1	PE-Cy7	PE-Cy7	J105	eBioscience
CD4	PerCP	VIT4		Miltenyi

Supplementary Table E4.
CD25	APC	2A3	BD Biosciences
ICOS	PE-Cy7	ISA-3	eBioscience
CD3	APC-Cy7	BW264/56	Miltenyi
CXCR5	BV421	J252D4	BioLegend
CD19	PO	SJ25C1	BD Biosciences
CD14	PO	TUK4	Miltenyi
CD8	PO	BW135/80	Miltenyi

cTfh subsets panel (whole blood)

CD45RA	FITC	T6D11	Miltenyi
CD4	PE	REA623	Miltenyi
CCR6	PerCP	G034E3	BioLegend
CXCR3	APC	IC6	BD Biosciences
ICOS	PE-Cy7	ISA-3	Invitrogen
CD3	APC-Cy7	BW264/56	Miltenyi
CXCR5	BV421	J252D4	BioLegend
CD45	PO	HI30	BioLegend

Highly functional cTfh cell panel (whole blood)

CD45RA	FITC	T6D11	Miltenyi
CD4	PerCP	VIT4	Miltenyi
ICOS	PE-Cy7	ISA-3	eBioscience
CXCR3	APC	IC6	BD Biosciences
PD-1	PE	J43	ThermoFisher
CD3	APC-Cy7	BW264/56	Miltenyi
CXCR5	BV421	J252D4	BioLegend
CD45	PO	HI30	BioLegend

Sorting set up (PBMC)

CD45RA	FITC	REA1047	Miltenyi
CD3	PE	SK7	BD Biosciences
CD4	PO	VIT4	Miltenyi
CD25	APC	BC96	BioLegend
CXCR5	BV421	J252D4	BioLegend

Apoptosis panel (PBMC)

Annexin-V	FITC	BD Biosciences	
P.I.	PE	BD Biosciences	
CD4	PerCP	OKT4	BioLegend
CD3	APC	SK7	BD Biosciences
PD-1	PE-Cy7	eBioJ105	Invitrogen
CD45RA	APC-H7	HI100	BioLegend
CXCR5	BV421	J252D4	BioLegend
CD45	PO	HI30	BioLegend

B cell helper assay panel (PBMC)

CD19	FITC	4G7	BD Biosciences
CD27	PE	L128	BD Biosciences
CD25	APC	2A3	BD Biosciences
CD4	PE-Vio770	M-T321	Miltenyi
CXCR5	BV421	J252D4	BioLegend
Supplementary Table E5.

Antibodies and immunostaining panels used for PBMC and spleen

Immunostaining panel	Antibody	Fluorochrome	Clone	Manufacturer
B cells (Mix 1)	IgM	FITC	G20-127	BD Biosciences
	CD21	PE	B-LY4	BD Biosciences
	CD27	APC	M-T271	BD Biosciences
	CD38	PerCP-Cy5.5	HIT2	BD Biosciences
	CD19	PE-Cy7	SJ 25C1	BD Biosciences
	CD24	PB	SN3	EXBIO
	IgD	BIO	IA6-2	BD Biosciences
	Streptavidin	PO	-	ThermoFisher
B cells (Mix 2)	IgA	FITC	polyclonal	Jackson Immunoresearch
	CD21	PE	B-LY4	BD Biosciences
	CD27	APC	M-T271	BD Biosciences
	CD38	PerCP-Cy5.5	HIT2	BD Biosciences
	CD19	PE-Cy7	SJ 25C1	BD Biosciences
	CD24	PB	SN3	EXBIO
	IgD	BIO	IA6-2	BD Biosciences
	Streptavidin	PO	-	ThermoFisher
B cells (Mix 3)	IgG	FITC	polyclonal	Jackson Immunoresearch
	CD21	PE	B-LY4	BD Biosciences
	CD27	APC	M-T271	BD Biosciences
	CD38	PerCP-Cy5.5	HIT2	BD Biosciences
	CD19	PE-Cy7	SJ 25C1	BD Biosciences
	CD24	PB	SN3	EXBIO
Antibodies and immunostaining panel used for immunohistochemistry

Immunostaining panel	Antibody (Primaries)	Chromogen	Clone	Manufacturer
B cells	CD20	DAB	L26	Ventana
	Bcl-6	DAB	GI19E/A8	Cell Marque
	Bcl-2	DAB	SP66	Ventana
	Ki-67	DAB	30-9	Ventana
	IgM	DAB	rabbit polyclonal	Cell Marque
	IgD	DAB	rabbit polyclonal	Cell Marque
	CD38	DAB	SP149	Cell Marque
T cells	CD3	DAB	2GV6	Ventana
	Bcl-2	DAB	SP66	Ventana
	CD4	DAB	SP35	Ventana
	CD8	DAB	SP57	Ventana
	Ki-67	DAB	30-9	Ventana
Plasma cells	kappa chain	DAB	rabbit polyclonal	Ventana
	lambda chain	DAB	rabbit polyclonal	Ventana
	IgM	DAB	rabbit polyclonal	Cell Marque
	IgD	DAB	rabbit polyclonal	Cell Marque
	CD38	DAB	SP149	Cell Marque
Tfh cells	CD3	DAB	2GV6	Ventana
Supplementary Table E7.

Primers used for amplification and sequencing of genomic DNA

Exon	Forward	Reverse	Gene	Patient
68	GCTGTGCTAGGCTCAAATCC	TTTGGGCAGGAAGTTTGAAT	PRKDC	CVID003
15	CAGGTTTTCCACTTTGCTC	GAACCACACCGTGCTGT	STXBP2	CVID003
9	GAAATGGGAGCAGACCAGGAG	TAGCATGTACATACCAGGCTCT	NOD2	CVID019
2	CAGTCGTTGCGGATGCTAC	AGGGTGCGGAGCGTGACAGCGAG	PRF1	CVID003, CVID019
28	AGAGGAAAGACTCTGAACTGTG	GGAACCCGAGAGTCAAGCA	PTPRC	CVID017
3	GAGCTGAATTTGATTTCAGGAC	TGAGTACGGAGCTCTACCC	TNFRSF13C	CVID013
5	GCCACCCACACACATACAAA	TGCTTTTAAATGGCCAGCAC	LYST2	CVID028, CVID017
26	CGCAGTGCCATTGGATTCTTT	CTGAGGCTCTGTGCTCCACA	INO80	CVID013
24	TGGATGAGATGAAAGGGGCGAG	TCAGAGGGAAGACAGCTCC	RTEL1	CVID010
5	CAGATTGAAAGTGGTGCCGAG	TCCGGGCATAAGAAACCAGTG	TINF2	CVID010
5	GACCCAGTCTGACAGCTTCT	GGTACCCCTTCCTCCCAACAT	UNC119	CVID017
---	---------------------	-----------------------	--------	--------
8	AGAGGGAGGAGGACTGTTAGT	CCTTTACCTGATCTCCCC	NOD2	CVID011
4	TGTCTGGTCAGCTTGCTACA	AGCTGGTTCTCTTGAGGACC	RTEL1	CVID011
23	GTTTGATGGAAAGCGTACACA	AGGCTGGCTTGAGGTTTGTA	STAT1	CVID019
2	TCTCGGAGACCAGATTCTGC	CAGTCTCCGAGTCCCCCTAAC	CASP8	CVID019
29	GAAGCAGGAGTTGAGCCAAG	TTCTGGGTCTCCACTCAGAAA	RTEL1	CVID003
8	TTTGAGCCGCTGTTAACAGCC	TGTCCTCCCACCTATCCCA	PI3KCD	CVID028
4	CAGCTTGCTACACCGGACCGACATC	AGCTGGTTCTCTTGAGGACC	RTEL1	CVID028
24	GGTAAGCCGGTCTGGTGA	TCACAGAGGAAGACAGCTCC	RTEL1	CVID024
8	CACAGCCAATACCACCACCTG	CTACCTCTCCCCGCTCAC	MST1	CVID024
5	GTCACCCCTACCTAGTGC	AGAAGCTGCAGGTCTCCAC	TNFRSF13B	CVID024