Solving unsolved rare neurological diseases—a Solve-RD viewpoint

Rebecca Schüle1,2,3, Dagmar Timmann4, Corrie E. Erasmus5, Jennifer Reichbaumer1,2, Melanie Wayand1,2, Solve-RD-DITF-RND, Bart van de Warrenburg3,6, Ludger Schöls1,2,3, Carlo Wilke1,2,3, Andrea Bevot7, Stephan Zuchner8, Sergi Beltran9,10,11, Steven Laurie9, Leslie Matalonga9, Holm Graessner3,12, Matthis Synofzik1,2,3, The Solve-RD Consortium

Received: 13 October 2020 / Revised: 9 April 2021 / Accepted: 16 April 2021 / Published online: 10 May 2021
© The Author(s) 2021. This article is published with open access

Introduction

Rare genetic neurological disorders (RND; ORPHA:71859) are a heterogeneous group of disorders comprising >1700 distinct genetic disease entities. However, genetic discoveries have not yet translated into dramatic increases of diagnostic yield and indeed rates of molecular genetic diagnoses have been stuck at about 30–50% across NGS modalities and RND phenotypes [1, 2]. Existence of yet unknown disease genes as well as shortcomings of commonly employed NGS technologies and analysis pipelines in detecting certain variant types are typically cited to explain the low diagnosis rates.

To increase the diagnostic yield in RNDs - one of the four focus disease groups in Solve-RD - we follow two major approaches, that we will here present and exemplify: (i) systematic state-of-the art re-analysis of large cohorts of unsolved whole-exome/genome sequencing (WES/WGS) RND datasets; and (ii) novel-omics approaches. Based on the way Solve-RD systematically organizes researchers’ expertise to channel this approach [3], the European Reference Network for Rare Neurological Diseases (ERN-RND) has established its own Data Interpretation Task Force (DITF) within SOLVE-RD, which is currently composed of clinical and genetic experts from 29 sites in 15 European countries.

Systematic re-analysis of coding variation

Unsolved WES datasets (fastq) from 2048 families with RNDs were submitted by clinical sites of ERN-RND [4] to the RD-Connect Genome-Phenome Analysis Platform. Genomic data were processed and filtered as detailed [5]. The Solve-RD SNV/Indel working group reported back 74,456 variants in

Members of the Solve-RD-DITF-RND and The Solve-RD Consortium are listed in below Acknowledgements.

These authors contributed equally: Holm Graessner, Matthis Synofzik

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s41431-021-00901-1.

Rebecca Schüle
rebecca.schuele-freyer@uni-tuebingen.de

1 Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany
2 German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
3 European Reference Network for Rare Neurological Diseases, Tübingen, Germany
4 Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
5 Department of Pediatric Neurology, Radboud University Medical Center, Amalia Children’s Hospital, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
6 Department of Neurology, Donders Centre for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
7 Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
8 Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
9 CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
10 Universitat Pompeu Fabra (UPF), Barcelona, Spain
11 Facultat de Biologia, Departament de Genetica, Microbiologia i Estadistica, Universitat de Barcelona (UB), Barcelona, Spain
12 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
2246 individuals, which were ranked according to their likelihood of being causative. One thousand nine hundred and forty-three variants in 1155 individuals (average 1.68 variants/individuum) were classified as rank 1 (genotype matches OMIM and variant (likely) pathogenic according to ACMG). Based on these results and the work of the RND DITF 44 cases could be solved by this systematic re-analysis approach, which equals 29% of the re-analysed cases for which feedback was available. Reasons for solving cases were firstly updates of the respective ClinVar entry of identified variants between the time of the initial genetic workup and the Solve-RD re-analysis due to now additional available evidence. One example is the re-classification of variants in highly variably genes like *ITPR1* between 2016 and 2020 [6] (Fig. 1A).

Second, use of human phenotype ontology-based phenotypes [7] rather than diagnostic categories as well as consideration of variant-specific rather than gene-specific phenotypes enabled detection of functionally relevant variants because initial analysis focused on disease-specific panels. Mis-classification of phenotypes in RNDs is a common problem due to the considerable overlap between diagnostic categories especially in phenotypes affecting more than one neurological system. This approach i.e. allowed identification of a causative variant in *EXOSC3* (c.395A>C) that is typically associated with a ‘milder’ clinical disease course and lacking the hallmark pontine atrophy characteristic for EXOSC3-associated disease (Fig. 1B).

Analysis of non-coding variation

The relative contribution of non-coding variation to RNDs has not been established yet and will be systematically explored by Solve-RD by combining WGS and RNA Seq. We will evaluate the added value of RNA Seq in early onset sporadic cases (Trio-WGS), multiplex recessive and dominant families.

In the meantime, the exon–intron boundaries commonly covered by WES already allow at least a glimpse into the realm of non-coding variants. Indeed, the systematic Solve-RD re-analysis top-listed a single heterozygous intronic POLR3A variant (NM_007055.3(POLR3A): c.1909+22C>T) that had recently been shown to lead to inclusion of the first 19 nucleotides from intron 14 into the final transcript and consequently to shift of the reading frame [8].
Finding novel variations through novel omics

Scientific rationale drives application of novel-omics technologies in Solve-RD. From the large variety of different omics technologies that will be used by SOLVE-RD, we here present the example of long-range WGS for ataxias, which has just been initiated. For ataxias >25% of all autosomal-dominant and >50% of all autosomal-recessive ataxia patients remain unsolved despite advanced WES analysis [9]. Ataxias are unique in so far as repeat expansions represent the most frequent disease cause. Seventy-five percent of all known autosomal-dominant ataxia cases and 50% of all known autosomal-recessive ataxia cases are caused by repeat expansions [10]. We thus hypothesize that a substantial share of repeat-expansion disorders is still to be found in the large share of still unsolved WES-negative ataxia cases. Therefore, in Solve-RD we will be using long-range WGS in family ‘triplets’ from autosomal-dominant ataxia families, which will be stringently enriched for novel repeat-expansion disorders: namely only families negative not only on WES and frequent SCA repeats, but also on short-read WGS and for which DNA from >2 affected and >2 non-affected family members are available. In a first round of submission, 20 families with 44 ‘slots’ have been submitted and we are awaiting data in 2021.

Conclusion

This viewpoint presents and exemplifies the approach being taken by Solve-RD to diagnostically solve unsolved RND. While re-analysis so far succeeded in 29% of cases, scientifically rational ‘beyond the exome’ approaches are being implemented to further unravel new RND causing genes.

Acknowledgements

We thank the patients and their families for supporting this study.

Solve-RD-DITF-RND

Jonathan Baets,13,14,15, Peter Balicza,16 Patrick Chinnery,17, Alexandra Dürr,18,19,20, Tobias Haack,12, Holger Hengel,21, Rita Horvath,22, Henry Houlden,23, Erik-Jan Kamsteeg,24, Christoph Kamsteeg,25, Katja Lohmann,26, Allons Macaya,26, Anna Marcé-Grau,26, Ales Mavé,27, Judith Molnar,28, Alexander Münchau,29, Borut Peterlin,30, Olaf Riess,12,28, Ludger Schöls,21,22, Rebecca Schüle,2,21, Giovanni Stevanin,18,19,20,28, Matthys Synofzik,2,21, Vincent Timmerman,31,32, Bart van de Warrenburg,33,34, Nienke van Ooij,33,34, Iris te Paske,24,28, Erik Jansen,24,30, Elke de Boe,24,33, Marloes Steehouwer,24, Bardu Yalduz,24, Tijsske Kleefstra,24,33, Anthony J. Brooks,24, Colin Veal,25, Stephen Gibson,39, Marc Wadsley,39, Mehdi Mehtarizadeh,39, Umar Riaz,39, Greg Warren,39, Farid Yayavi Dizijkan,39, Thomas Shorter,39, Ana Topić,39, Volker Straub,40, Chiara Marini Bettolo,40, Sabine Specht,40, Jill Clayton-Smith,41, Siddharth Bankait,42, Elizabeth Alexander,43, Adam Jackson,43, Laurence Faivre,44,45,46,47, Christel Thuauvin,44,45,46, Alex- ander Vitoz,45, Anne-Sophie Denommé-Pichon,45, Yannis Duf- fourd,45, Emilie Tissierant,45, Ange-Line Bruel,45, Christine Peyron,48,49, Aurore Pélissier,50, Sergi Beltran,50, Ivo Glynie Gütt,50, Steven Laurie,51, Davide Piscia,52, Leslie Matalonga,53, Anastasios Papakonstantinou,53, Gemma Bullrich,54, Alberto Corvo,55, Carles Gar- cía,55, Marcos Fernandez-Callejo,55, Carles Hernández,55, Daniel Pico,55, Ida Paramonov,56, Hanns Lochmüller,56, Gulcin Gumus,56, Virginie Bros-Face,57, Ana Rath,52, Marc Hanauer,52, Annie Oly,52, David Lagorce,52, Svitlana Havrylenko,52, Katia Izenz,52, Fanny Rigour,52, Giovanni Stevanin,18,19,20,29,30, Alexandra Durr,29,20,29,30, Claire-Sophie Davoine,19,20,29,30, Léna Guillot-Noel,19,20,29,30, Anna Heinz- mann,19,20,29,30, Giulia Coarelli,19,20,29,30, Gisele Bonne,35,36, Teresinha Evangelista,35, Valérie Allamand,35, Isabelle Nelson,35, Rabab Ben Yaou,35,36,37, Corinne Metay,35,37,28, Bruno Eymard,36, Elena Cohen,36, Antonio Atalaia,35, Tanya Stoikovic,35,56,57, Milan Macek Jr,35, Marek Turnovec,36, Dana Thomasová,36, Radka Pourová Kremliková,36, Vera Franková,36, Markéta Havlovicová,36, Vlastimil Kremlik,39, Helen Parkin-son,58, Thomas Keane,58, Dylan Spalding,58, Alexander Senf,58, Peter Robinson,58, Daniel Danis,59, Glenn Robert,59, Alessia Costà,59, Christine Papakonstantinou,60,61,62,63,64, Mike Hanna,60,61,62,63,64, Henry Houlden,60,61,62,63,64, Mary Reilly,60, Jana Vanyurovova,60,61,62,63,64, Francesco Munton,62,63,64, Irina Zaharieva,66, Anna Sar- kony,66, Vincent Timmerman,11,12, Jonathan Baets,13,14,15, Liebedee Vande Vondel,13,12, Danique Beijer,13,12, Peter de Jonghe,14,12, Vincenzo
Solving unsolved rare neurological diseases—a Solve-RD viewpoint

35Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands; 36Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; 37Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands; 38Center for Molecular and Biomedical Informatics, Radboud University Medical Center, Nijmegen, The Netherlands; 39Department of Genetics and Genome Biology, University of Leicester, Leicester, UK; 40John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; 41Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; 42Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; 43Dijon University Hospital, Genetics Department, Dijon, France; 44Dijon University Hospital, Centre of Reference for Rare Diseases: Development disorders and malformation syndromes, Dijon, France; 45Inserm - University of Burgundy-Franche Comté UMR1231 GAD, Dijon, France; 46Dijon University Hospital, FHU-TRANSAL, Dijon, France; 47Dijon University Hospital, GIMI Institute, Dijon, France; 48University of Burgundy-Franche Comté, Dijon Economics Laboratory, Dijon, France; 49University of Burgundy-Franche Comté, FHU-TRANSAL, Dijon, France; 50EURORDIS-Rare Diseases Europe, Sant Antoni Maria Claret 167, Barcelona, Spain; 51EURORDIS-Rare Diseases Europe, Plateforme Maladies Rares, Paris, France; 52INSEMM, US14 - Orphanet, Plateforme Maladies Rares, Paris, France; 53Centre de Référence de Genomique Cellulaire, G.H. Pitie-Salpêtrière, Paris, France; 54Department of Biology and Medical Genetics, Charles University Prague-2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; 55European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK; 56Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; 57Florencée Nightingale Faculty of Nursing and Midwifery, King’s College, London, UK; 58Genetic Counselling, Genomics England, Queen Mary University of London, Dawson Hall, London, UK; 59MRC Centre for Neuromuscular Diseases and National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; 60Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; 61Dubowitz Neuromuscular Center, UCL Great Ormond Street Hospital, London, UK; 62NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK; 63Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy; 64Teletihon Institute of Genetics and Medicine, Pozzuoli, Italy; 65Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy; 66Institute of Human Genetics, University of Bonn, Bonn, Germany; 67i2SIS - Instituto de Investigación y Inovación en Salud, Universidade do Porto, Porto, Portugal; 68IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; 69Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; 70Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; 71CHUJ, Centro Hospitalar e Universitário de São João, Porto, Portugal; 72Faculty of Sciences, University of Porto, Porto, Portugal; 73Department of Genetics, Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 74NeuroCure Cluster of Excellence, Charité Universitätsklinikum, Charitéplatz 1, Berlin, Germany; 75College of Health, Well-being and Life-Sciences, Sheffield Hallam University, Sheffield, UK; 76Department of Genetics, Assistance Publique-Hôpitaux de Paris - Université de Paris, Robert DEBRE University Hospital, 48 bd SERURIER, Paris, France; 77INSERM UMR 1141 “NeuroDiderot”, Hôpital R DEBRE, Paris, France; 78University of Bordeaux, MRG INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France; 79Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, CHU Bordeaux – Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux Cedex, France; 80Institute of Rare Diseases Research, Spanish Undiagnosed Rare Diseases Cases Program (SpainUDP) & Undiagnosed Diseases Network International (UDNI), Instituto de Salud Carlos III, Madrid, Spain; 81Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy; 82Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; 83Medical Genetics, University of Siena, Siena, Italy; 84Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy; 85Institute of Genomic Medicine and Rare Diseases, Semmelweis University, Budapest, Hungary; 86Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; 87Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; 88Neurology Research Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; 89Neuromuscular Disorders Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; 90Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; 91Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; 92Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; 93Nuffield Department of Clinical Neurosciences, University
of Oxford, Oxford, UK; Folkhälsan Research Centre and Medicum, University of Helsinki, Helsinki, Finland; Tampere Neuromuscular Center, Tampere, Finland; Vasa Central Hospital, Vaasa, Finland; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Medical Genetics Center (MGZ), Munich, Germany; Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany; Center for Personalized Oncology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany

Funding The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 779257. Data were analysed using the RD-Connect Genome-Phenome Analysis Platform, which received funding from EU projects RD-Connect, Solve-RD and EJP-RD (Grant Numbers FP7 305444, H2020 799257, H2020 825575), Instituto de Salud Carlos III (Grant Numbers PT13/00018044, PT17/00090019; Instituto Nacional de Bioinformática, INB) and ELIXIR Implementation Studies. The study was further funded by the Federal Ministry of Education and Research, Germany, through the TreatHSP network (01GM1905 to RS and LS), the National Institute of Neurological Diseases and Stroke (R01NS072248 to SZ and RS), the European Joint Program on Rare Diseases-EJP-RD COFUND-EJP N° 825575 through funding for the PROSPAX consortium (441409627 to MS, RS and BvW). CW was supported by the PATE program of the Medical Faculty, University of Tübingen. CEE received support from the Dutch Princess Beatrix Muscle Fund and the Dutch Spieren voor Spieren Muscle fund. Authors on this paper are members of the European Reference Network for Rare Neurological Diseases (ERN-RND, Project ID 739510). Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical standards

Conflict of interest HG receives/has received research support from the Deutsche Forschungsgemeinschaft (DFG), the Bundesministerium für Bildung und Forschung (BMBF), the Bundesministerium für Gesundheit (BMG) and the European Union (EU). He has received consulting fees from Roche. He has received a speaker honorarium from Takeda. The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bardakjian TM, Helbig I, Quinn C, Elman LB, McCluskey LF, Scherer SS, et al. Genetic test utilization and diagnostic yield in adult patients with neurological disorders. Neurogenetics. 2018; 19:105–10.
2. Marques Matos C, Alonso I, Leao M. Diagnostic yield of next-generation sequencing applied to neurological disorders. J Clin Neurosci. 2019;67:14–8.
3. Zurek B, Ellwanger K, Vissers LELM, Schüle R, Synofzik M, Töpf A, et al. Solve-RD: systematic Pan-European data sharing and collaborative analysis to solve rare diseases. EJHG. in press.
4. Reinhard C, Bachoud-Levi AC, Baumer T, Bertini E, Brunelle A, Buizer AI, et al. The European reference network for rare neurological diseases. Front Neurol. 2020;11:616569.
5. Matalonga L, Hernández-Ferrer C, Piscia D, group S-RS-IW, Vissers LELM, Schüle R, et al. Diagnosis of rare disease patients through programmatic reanalysis of genome-phenome data. EJHG. in press.
6. Synofzik M, Helbig KL, Harmuth F, Deconinck T, Tanpaiboon P, Sun B, et al. De novo ITPR1 variants are a recurrent cause of early-onset ataxia, acting via loss of channel function. Eur J Hum Genet. 2018;26:1623–34.
7. Kohler S, Gargano M, Matenzoglou N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49:D1207–17.
8. Minnerup M, Kurzwelly D, Wagner H, et al. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain. 2017;140:1561–78.
9. Synofzik M, Nemeth AH. Recessive ataxias. Handb Clin Neurol. 2018;155:73–89.
10. Synofzik M, Puccio H, Mochel F, Schols L. Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies. Neuron. 2019;101:560–83.