Supplementary Information of “The scaled-invariant Planckian metal and quantum criticality in Ce$_{1-x}$Nd$_x$Coln$_5$”

Yung-Yeh Chang1,2, Hechang Lei3,4, C. Petrovic3,†, and Chung-Hou Chung1,2,‡

1Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan, Republic of China
2Department of Electrophysics, National Yang-Ming Chiao-Tung University, Hsinchu, 300 Taiwan, R.O.C.
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
4Present Address: Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, China
†Corresponding author: petrovic@bnl.gov
‡Corresponding author: chung0523@nycu.edu.tw

ABSTRACT

In this Supplementary Information, we provide additional details and derivations that are not included in the main text.

Supplementary Note 1: Specific heat coefficient and its scaling for zero Nd doping ($x = 0$)

Supplementary Figure 1 shows the specific heat coefficient and its scaling at zero Nd doping ($x = 0$) under different magnetic fields. A $T \sim (B)$-power-law scaling behavior within the quantum-critical regime, $\gamma(T/B) \sim (T/B)^{-m}$, with exponent $m = 0.51$, closed to the exponents for $x = 0.02$ and $x = 0.05$, is also found here (Supplementary Figure 1b).

Supplementary Note 2: Estimation of carrier concentration n and α coefficient

In this section, we provide derivation of the relevant equations for carrier concentration n based on the quantum oscillation measurements. We will further use those equations to reproduce n and the Planckian coefficients α shown in Table 1 of the main text.

We start from the formula of quantum oscillation frequency F, given by

$$F = \frac{(h/2\pi)S_F}{2\pi e}$$ \hspace{1cm} (S1)

with S_F being the extremal cross-sectional area of the Fermi surface. For simplicity, we assume a circular cross-section of Fermi surface here, hence $S_F = \pi k_F^2$ with k_F being the “averaged” Fermi wave vector of the circular Fermi surface. This links the dHvA frequency and the “average” Fermi wave vector of the Fermi surface by $F = \frac{(h/2\pi)k_F^2}{2\pi e}$. Here, we can make a link of F and the carrier concentration n through k_F. While considering the effective dimensionality of critical modes, the carrier concentration takes the following form1:

$$n = \frac{2k_F}{\pi d_b d_c} = \frac{2}{\pi d_b d_c} \sqrt{\frac{2eF}{h/2\pi}} \quad \text{(for 1d)},$$

$$n = \frac{k_F^2}{2\pi d_c} = \frac{1}{2\pi d_c} \left(\frac{2eF}{h/2\pi} \right) \quad \text{(for 2d)},$$

$$n = \frac{k_F^3}{3\pi^2} = \frac{1}{3\pi^2} \left(\frac{2eF}{h/2\pi} \right)^{3/2} \quad \text{(for 3d)},$$ \hspace{1cm} (S2)

where d_b and d_c are the lattice constants of unit cell along the b and c axes. Note that, for the 2d case of Eq. (S2), we assume the system has a strong anisotropy along the c direction while it remains isotropic in the a-b plane.

As an example, we provide detailed derivation of carrier concentration for the 2d case shown in Eq. (S2) and then generalize this derivation to the case with fractional quasi-2d dimension.

Assume the critical modes occur on the isotropic ab-plane. The total number of states can be expressed as

$$N = N_{ab}N_c = 2 \times \frac{\pi k_F^2}{\Delta V_k} \times \frac{L_c}{d_c} = 2 \times \frac{A\pi k_F^2}{4\pi^2} \frac{L_c}{d_c}$$

$$\rightarrow n = \frac{N}{V'} = \frac{N}{AL_c} = \frac{k_F^2}{2\pi d_c},$$ \hspace{1cm} (S3)

where $N_{ab} = \frac{\pi k_F^2}{2\Delta V_k}$ is the number of states on the ab plane per spin while $N_c = L_c/d_c$ for that along the c-axis. Here, ΔV_k represents the unit volume in k space occupied by a state, L_c denotes the sample site along c, $A = L^2$ is the area of the sample on the ab plane. This indicates the total volume of the sample $V' = AL_c$.

The above approach of deriving the carrier concentration for the effective 2d critical modes embedded in a 3d lattice can
Supplementary Figure 1. Specific heat coefficient \(C/T \) and its scaling for zero Nd doping \((x = 0)\). a shows the electronic specific heat coefficient \(C/T \) with different fields \(B \parallel c \) for zero Nd doping \((x = 0)\) while b displays the power-law \(T/B \) scaling of a.

The total number of states per spin for an isotropic \(d \)-dimensional system is given by

\[
N = \sum_{|k| \leq k_F} \Theta(k) = \int_{0}^{k_F} d^d k \frac{\Delta V_k}{\Delta V_k} = \frac{V_d(k_F)}{V_d}, \tag{S4}
\]

where \(\Delta V_k = (2\pi/L)^d = (2\pi)^d/V_d \) with \(V_d \equiv L^d \) and \(V_d(k_F) \) is the volume of a \(d \)-dimensional sphere with radius \(k_F \).

\[
V_d(k_F) = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} k_F^d. \tag{S5}
\]

In the above equation, \(\Gamma(x) \) denotes the Gamma function. For a general \(d \)-dimensional critical modes embedded in a \(3d \) lattice, the total number of states reads

\[
N = 2 \times N_{ab}^{(d)} \times N_c^{(3-d)}, \tag{S6}
\]

where the prefactor 2 comes from the spin degrees of freedom. Here, we assume that the quasi-\(2d \) critical modes mostly arise from the \(ab \)-plane.

From Eq. (S4), we have

\[
N_{ab}^{(d)} = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} \frac{k_F^d}{V_d} = \frac{\pi^{d/2} V_d k_F^d}{(2\pi)^d \times \Gamma(d/2 + 1)}, \tag{S7}
\]

while

\[
N_c^{(3-d)} = \left(\frac{L_c}{d_c} \right)^{3-d} \tag{S8}
\]

The total number of states is then given by

\[
N = \frac{\gamma k_F^d}{2^{d-1} \pi^{d/2} d_c^{3-d} \Gamma(d/2 + 1)}, \tag{S9}
\]

giving rise to the carrier concentration

\[
n = \frac{N}{\gamma} = \frac{k_F^d}{2^{d-1} \pi^{d/2} d_c^{3-d} \Gamma(d/2 + 1)}. \tag{S10}
\]
Using the relation of k_F and F, we obtain the expression of carrier concentration for arbitrary d-dimensional critical modes,

$$
n = \frac{1}{2^{d-1} \pi^{d/2} d! \Gamma\left(\frac{d}{2} + 1\right)} \left(\frac{2eF}{\hbar/2\pi}\right)^d. \tag{S11}\n$$

When taking $d = 2$, the above expression of n goes back the 2d case in Eq. (S2).

Supplementary Note 3: Estimating the Planckian coefficients α for Ce$_{1-x}$Nd$_x$CoIn$_5$

Below, we estimate the carrier concentration n and Planckian coefficients α shown in Table 1 of the main text for Ce$_{1-x}$Nd$_x$CoIn$_5$ with $x = 0, 0.02, 0.05$, and 0.1 using the dHvA frequency F and effective mass m^* in Ref. 2 (for α-band) and in Refs. 1,3 (for β-band).

- **For $x = 0$.** The average dHvA frequency for the α-band is $F = 4.9$KT while $m^* = 11.7m_0$ is its average effective mass. Since Fermi surface of pure CeCoIn$_5$ has been shown to be 2d-like, we thus use the equation of the 2d version in Eq. (S2) to estimate the carrier density, given by

$$
n = \frac{(2 \times 1.6 \times 10^{-19}) \times (4.9 \times 10^3)}{(7.549 \times 10^{-10}) \times (6.6 \times 10^{-34})} \approx 0.31 \times 10^{28} \text{m}^{-3} \quad \text{(for α-band).} \tag{S12}\n$$

For the β-band of pure CeCoIn$_5$, we adopt its Fermi surface parameters: $F = 9.75$KT and $m^* = 100m_0$. Following the similar approach, the carrier concentration for β-band is

$$
n = 0.63 \times 10^{28} \text{m}^{-3} \quad \text{(for β-band).} \tag{S13}\n$$

The Planckian coefficient from the α-band can be straightforwardly obtained via $\alpha = \frac{e^2(\hbar/2\pi)}{k_BT} A_1 \frac{n}{m^*}$, suggesting

$$
\alpha = \frac{(1.6 \times 10^{-19})^2 \times (9.98 \times 10^{-8}) \times (0.31 \times 10^{28})}{(1.38 \times 10^{-23}) \times (11.7 \times 9.11 \times 10^{-34})} \times (1.05 \times 10^{-34}) = 0.56 \quad \text{(for α-band),} \tag{S14}\n$$

and, for the β-band, we have

$$
\alpha = 0.13 \quad \text{(for β-band).} \tag{S15}\n$$

These two contributions give $\alpha \approx 0.7$ for pure CeCoIn$_5$. The A_1 coefficient for pure CeCoIn$_5$ at zero field, $A_1 = 0.98 \mu\Omega \cdot \text{cm/K}$, is used for the estimation of the α coefficients shown above.

- **For $x = 0.02$.** The average dHvA frequency for the α-band is $F = 4.89$KT while $m^* = 11.7m_0$ is its average effective mass. Angular dependence of the dHvA frequencies indicates a 2d Fermi surface of the α-band for $x = 0.02$. Following the similar approach, the carrier concentration of the α-band is calculated as

$$
n = 0.32 \times 10^{28} \text{m}^{-3} \quad \text{(for α-band).} \tag{S16}\n$$

Here, we assume that the carrier density and the relevant band parameters as well as the effective dimension of the β-band do not significantly altered while doping 2% of Nd, indicating that $n = 0.63 \times 10^{28} \text{m}^{-3}$ and $m^* = 100m_0$ for the β-band here. The α-coefficients for the α- and β-band are thus estimated

$$
\alpha = 0.58 \quad \text{(for α-band),} \quad \alpha = 0.14 \quad \text{(for β-band),} \tag{S17}\n$$

giving the total Planckian coefficient $\alpha = 0.72$ for $x = 0.02$. The gradient of the linear-T resistivity $A_1 = 1.0\mu\Omega \cdot \text{cm/K}$ is used in this case.

- **For $x = 0.05$.** The fundamental band parameters of the α-band for $x = 0.05$ is $F = 4.88$KT and $m^* = 9.15m_0$. Angular dependence of the dHvA frequencies indicates a 2d-to-3d dimensional crossover of Fermi surface of the α-band at $x = 0.05$. Accompanying with the prediction of a QCP at $x_c = 0.03$ and the theoretical studies on that QCP, we treat the dimensionality for $x = 0.05$ to be $d = 2.45$. Using Eq. (S11), the carrier concentration of α-band is estimated as

$$
n = 0.26 \times 10^{28} \text{m}^{-3} \quad \text{(for α-band).} \tag{S18}\n$$

Likewise, we assume the band parameters of the β-band also remains the same for $x = 0.05$, thus $m^* = 100m_0$ and $F = 9.75$KT. The carrier concentration of the β-band with $d = 2.45$ is found to be

$$
n = 0.6 \times 10^{28} \text{m}^{-3} \quad \text{(for β-band).} \tag{S19}\n$$

Using $A_1 = 1.17\mu\Omega \cdot \text{cm/K}$ for $x = 0.05$, the α-coefficients for the α- and β-band can be straightforwardly calculated as

$$
\alpha = 0.7 \quad \text{(for α-band),} \quad \alpha = 0.15 \quad \text{(for β-band),} \tag{S20}\n$$

giving the total Planckian coefficient $\alpha = 0.85$.

- **For $x = 0.1$.** The fundamental band parameters of the α-band for $x = 0.1$ is $F = 4.41$KT and $m^* = 7m_0$. We treat the effective dimensionality of Fermi surface of the α-band to be three-dimensional as this compound at $x = 0.1$ is deep inside the AF state. Using Eq. (S11) and
\(d = 3 \), the carrier concentration of \(\alpha \)-band is estimated as

\[n = 0.17 \times 10^{28} \text{ m}^{-3} \quad \text{(for \(\alpha \)-band).} \quad \text{(S21)} \]

Similarly, we assume that \(m^* = 100m_0 \) and \(F = 9.75kT \)
are also applicable for the \(\beta \)-band for \(x = 0.1 \) here. The carrier concentration of the \(\beta \)-band with \(d = 3 \) is found to be

\[n = 0.55 \times 10^{28} \text{ m}^{-3} \quad \text{(for \(\beta \)-band).} \quad \text{(S22)} \]

Using \(A_1 = 1.49\mu\Omega \cdot \text{cm/K} \) for \(x = 0.1 \), the \(\alpha \)-coefficients for the \(\alpha \)- and \(\beta \)-band can be straightforwardly estimated as

\[\alpha = 0.77 \quad \text{(for \(\alpha \)-band),} \]
\[\alpha = 0.19 \quad \text{(for \(\beta \)-band),} \quad \text{(S23)} \]

giving the total Planckian coefficient \(\alpha = 0.96 \).

Supplementary References

1. Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of Scattering Rates in Metals Showing T-Linear Resistivity. *Science* **339**, 804–807, 10.1126/science.1227612 (2013). https://science.sciencemag.org/content/339/6121/804.full.pdf.

2. Klotz, J. *et al.* Fermi surface reconstruction and dimensional topology change in Nd-doped CeCoIn\(_5\). *Phys. Rev. B* **98**, 081105, 10.1103/PhysRevB.98.081105 (2018).

3. Settai, R. *et al.* Quasi-two-dimensional Fermi surfaces and the de Haas-van Alphen oscillation in both the normal and superconducting mixed states of CeCoIn\(_5\). *J. Physics: Condens. Matter* **13**, L627–L634, 10.1088/0953-8984/13/27/103 (2001).

4. Hu, R., Lee, Y., Hudis, J., Mitrovic, V. F. & Petrovic, C. Composition and field-tuned magnetism and superconductivity in Nd\(_{1-x}\)Ce\(_x\)CoIn\(_5\). *Phys. Rev. B* **77**, 165129, 10.1103/PhysRevB.77.165129 (2008).