Impact of Central Nervous System International Prognostic Index on the treatment of Diffuse Large B Cell Lymphoma

Mohammad Ma'koseh (maakoseh727@yahoo.com)
King Hussein Cancer Foundation: King Hussein Cancer Center
https://orcid.org/0000-0002-5103-0694

Mohammad Ma'koseh
King Hussein Cancer Center

Faris Tamimi
King Hussein Cancer Center

Alaa Abufara
King Hussein Cancer Center

Lana Abusalem
King Hussein Cancer Center

Osama Salama
King Hussein Cancer Center

Jacob Saleh
King Hussein Cancer Center

Rnad Khader
KHCC: King Hussein Cancer Center

Baha A. Faiyoumi
KHCC: King Hussein Cancer Center

Mohammad Al-Rwashdeh
KHCC: King Hussein Cancer Center

Khaled Halahleh
KHCC: King Hussein Cancer Center

Research article

Keywords: Diffuse large B cell lymphoma, Central nervous system relapse, Central Nervous System International Prognostic Index

DOI: https://doi.org/10.21203/rs.3.rs-81458/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

The central nervous system international prognostic index [CNS-IPI] is being used widely for the identification of patients with diffuse large B cell lymphoma [DLBCL] with high risk of CNS relapse. The aim of our study is to confirm the value of the CNS-IPI in predicting CNS relapse in our young study population and to evaluate the impact on selection of patients for CNS prophylaxis.

Methods

We retrospectively reviewed patients with pathological diagnosis of DLBCL who were treated with R-CHOP [rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone] regimen from January 2004 till December 2016 with no evidence of CNS involvement on diagnosis. Different demographic, disease characteristics and treatment given including the use of intrathecal chemotherapy prophylaxis were collected. Correlation between CNS-IPI and CNS relapse was examined through chi square test. Median time to CNS relapse and median overall survival [OS] after CNS relapse were estimated using the Kaplan-Meier plots.

Results

354 patients were included. Median age was 46 years. 52 [15%] patients were given intrathecal chemotherapy [ITC] prophylaxis, of whom CNS-IPI was high in 7[13%]. Overall, 5% of the patients [n = 17] developed CNS relapse. The median survival after CNS relapse was 7 months. The rate of CNS relapse in patients with low, intermediate and high risk CNS-IPI was 0.6%, 3% and 22% respectively [p = < 0.001]. On multivariate analysis, involvement of bone marrow [p = 0.039] and renal or adrenal glands [p = 0.023] significantly correlated with CNS relapse. Considering the CNS-IPI and high risk anatomical sites [breast, uterus, testis and epidural space], 26% of our patients with DLBCL would have needed prophylaxis.

Conclusion

Although CNS-IPI helps in better selection of DLBCL patients for CNS prophylaxis, it will significantly and possibly unnecessarily increase the number of patients exposed to prophylaxis. More investigational biomarkers and methods are necessary to better refining high risk patients.

Introduction:

Diffuse large B cell lymphoma [DLBCL] is the most common lymphoma in adults, representing about one third of newly diagnosed cases [1, 2]. Using the standard combination chemo-immunotherapy RCHOP regimen [rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone], 70% of cases are
expected to be cured, while 30% will have refractory or relapsed disease [3.4]. Although relapse in the central nervous system [CNS] is relatively rare, occurring in about [2–4%] [5, 6], it is a devastating event with a median survival of usually less than 6 months [7.8].

Many studies have attempted to identify risk factors for CNS relapse, with inconsistent results due to the heterogeneity in patient population, limited sample size and the fact that many were performed in the pre-rituximab era [9–11]. Accordingly, patients were variably selected for administration of CNS prophylaxis, mostly based on anatomical location [breast, testis, bone, cranial sinuses and epidural space] and disease stage [12].

In 2016, Schmitz et al developed the CNS-IPI using data of 2164 patients treated on prospective German High-Grade Non-Hodgkin Lymphoma Study Group [DSHNHL] studies, and was validated in 1597 patients treated with RCHOP in British Columbia Cancer Agency [BCCA] [13]. Since then, the CNS-IPI has been adopted to evaluate the risk of CNS relapse by several national and international guidelines [14, 15].

An accurate selection of the patients who need administration of various treatments to prevent CNS relapse is crucial, given the associated toxicities and the demand it causes on hospital services. The impact of CNS-IPI in selecting patients for screening of CNS involvement and administration CNS directed prophylaxis is not well studied. Our study aims to validate CNS-IPI in our patient population and to evaluate the indications for intra-thecal chemotherapy [ITC] prophylaxis before the adoption CNS-IPI to estimate the impact of using CNS-IPI on the treatment of DLBCL.

Patients And Methods:

We retrospectively analysed medical records of adult patients diagnosed with DLBCL without evidence of CNS involvement at diagnosis and treated with RCHOP regimen at Medical Oncology Department, King Hussein Cancer Centre in Jordan from January 2004 till December 2016.

The following variables were retrieved from patients charts and electronic medical records; age, gender, Eastern Cooperative Oncology Group [ECOG] performance status, lactate dehydrogenase [LDH], albumin, alkaline phosphatase [ALP], stage, extranodal sites involved, the use of ITC, indications for ITC, systemic and CNS relapse.

Selection of patients for administration of CNS prophylaxis was done based on decision of the team in the lymphoma multidisciplinary meeting. Previous guidelines didn’t specify specific indications. ITC was the only treatment given to prevent CNS relapse.

Staging was done according to Lugano staging system [16] depending on computed tomography [CT] scan and positron emission tomography [PET-CT] scan [in patients diagnosed after 2010] [16]. Bulky disease was defined as tumor bulk more than 10 centimetres. Breast, testis, uterus and epidural space were considered high risk anatomical sites [9]. Refractory disease was defined as radiological evidence of disease progression during or within 3 months after finishing the last cycle of chemotherapy or
radiotherapy, whereas relapsed disease was defined as radiological evidence of disease progression beyond 3 months after completion of therapy.

Patients were followed every 3 months in the first two years, then every 6–12 months thereafter, with clinical examination as well as CT scans for total of 5 years after which, they were followed with clinical examination of a yearly basis. Lumbar puncture or brain imaging (CT or MRI) were done only in patients who developed symptoms of CNS relapse.

CNS relapse was diagnosed based on either the radiological findings, cerebrospinal fluid cytology or brain biopsy.

The rate of relapse was calculated by dividing on the number of patient with CNS relapse by the whole number of the patients included.

The CNS-IPI was calculated using age, stage, ECOG performance status, LDH, number of extranodal sites and renal and adrenal gland involvement, and patients were classified as low risk, intermediate or high risk, as previously described [13].

The correlation between different clinical and laboratory variables with CNS-IPI risk groups and CNS relapse was assessed by univariate and multivariate analysis utilizing the backward stepwise Cox-regression model.

The median time from diagnosis to CNS relapse and survival after CNS relapse were calculated and plotted by the Kaplan-Meier method and compared by the Log-Rank test.

Results:

Patients' characteristics and treatment:

A total of 354 patients were included, 193 [54.5%] were males, with a median age of 46 [range, 18-90]. CNS-IPI was low in 148 [41.9%] patients, intermediate in 161 [45.5%] and high in 45 [12.7%] patients [table 1], whereas 30 patients [8.5%] were considered to have high risk anatomical sites [15 paraspinal, 8 breast, 4 testicles, 3 uterus]. In these patients, CNS-IPI was low in 8 [26.6%], intermediate in 20 [66.7%] and high in 2 [6.7%].

All patients were treated with RCHOP. The number of chemotherapy cycles was based on the initial disease stage and interim radiological response, with a median of 6 cycles [range, 3-8].

Two-hundred and eighty-eight patients [81.3%] achieved a complete response [CR], and the rest were considered to have refractory disease. After a median follow-up of 27.7 months, 39 [11%] patients developed relapse and 249 [70.3%] patients remained disease free.

Intrathecal chemotherapy:
Intrathecal methotrexate [IT MTX] with each cycle of chemotherapy was given to prevent CNS relapse to 52 [14.6%] patients. A median of 4 doses [range, 2-8] was given. The characteristics of the patients and the indications for IT MTX are detailed in table 2. Sixteen patients [53%] with high risk anatomical sites were given IT MTX.
Feature	Number [%]	
Age >60	98 [27.7%]	
Gender		
Male	193 [54.5%]	
Female	161 [45.5%]	
B symptoms	143 [41%]	
ECOG performance status		
0-1	316 [89.3%]	
>1	38 [10.7%]	
High LDH	207 [59.3%]	
Albumin <3.5 g/dl	53 [15.5%]	
High Alkaline phosphatase	62 [18.3%]	
Bulky disease	114 [32%]	
Stage		
I-II	140 [39.5%]	
III-IV	214 [60.5%]	
Extranod al involvement	230 [65.3%]	
Number of extranodal sites		
<2	266 [75%]	
≥2	88 [24.9%]	
Selected high risk anatomical sites		
Renal or adrenal gland involvement	26 [7.3%]	
Epidural mass	15 [4.3%]	
Bone marrow	32 [9%]	
Breast	8 [2.2%]	
Stage IE	3 [0.8%]	
Advanced stage	5 [1.4%]	
Uterus	3 [0.8%]	
Testis	4 [1.1%]	
CNS-IPI		
-------	--------	------------------
0-1	[low]	148 [41.8%]
2-3	[intermediate]	161 [45.5%]
4-6	[high]	45 [12.7%]

Intrathecal chemotherapy

Yes		52 [14.6%]
No		302 [85.4%]

CNS relapse

Yes		17 [4.8%]
No		337 [95.2%]

Table [1] patients' characteristics
Feature	Number [%]
Age > 60	8 [15.4%]
Median age	46.5 years
Gender	
Male	24 [46.1%]
Female	28 [53.9%]
ECOG performance status	
0-1	47 [90.4%]
>1	5 [9.6%]
High LDH	32 [61.5%]
Albumin <3.5 g/dl	7 [13.4%]
High Alkaline phosphatase	11 [21.2%]
Bulky disease	12 [23%]
Stage	
I-II	19 [36.6%]
III-IV	33 [63.4%]
Extranodal involvement	44 [84.6%]
Number of extranodal sites	
< 2	33 [63.5%]
≥ 2	19 [36.5%]
Indications for IT chemotherapy	
One high risk anatomical site	
Skull bones and nasal sinuses	17 [32.7%]
Tonsils	5 [9.6%]
Epidural mass and spine	7 [13.5%]
Testicles	3 [5.8%]
Kidneys	2 [3.8%]
Bone marrow/bone	6 [11.5%]
Multiple extranodal sites [including high risk anatomical sites]	12 [23.1%]
Table [2]: IT chemotherapy patients.

CNS relapse:

Four of 52 patients [7.6%] who received intrathecal chemotherapy [n=52], presented CNS relapse, amongst them CNS-IPI was intermediate in 1 patient and high in 3 patients.

The CNS-IPI significantly correlated with the risk of CNS relapse as the rate of relapse was [1/148] 0.06%, [6/161] 3.7% and [10/45] 22.2% among patients with low, intermediate and high scores [p = <0001].

ECOG performance status of >1, advanced stage [III or IV], high LDH, bulky disease, renal or adrenal involvement, and bone marrow involvement were associated with an increased risk of CNS relapse in univariate analysis [table 3]. Bone marrow and renal or adrenal involvement were significantly associated with CNS relapse in multivariate analysis [table 4].

Among patients with high risk anatomical sites [n=30], 2 patients [6.6%] developed CNS relapse; one with breast involvement who didn’t receive ITC and the other with epidural mass who received ITC.

The median survival of patients with no CNS relapse was not reached, while for patients with relapse/refractory disease who had CNS vs. no CNS relapse was 14 vs 29 months, respectively [p =0.444][Figures 1,2].

Table [3]: Univariate analysis
	Total	No CNS relapse	CNS relapse (%)	P value
Sex [male/female]	193/161	183/149	10(5.1%)/7(4.3%)	0.724
Age >60 years	98	95	3(3%)	0.823
B symptoms	143	134	9 (6.2%)	0.205
ECOG PS 2 or more	38	32	6 (15.8%)	0.001
High LDH	207	202	15 (7.2%)	0.004
Albumin <3.5	53	49	4 (7.5%)	0.189
High ALP	62	57	5(8%)	0.083
Bulky disease	114	104	10 (8.7%)	0.013
Stage III or IV	214	197	17(7.9%)	0.001
2 or more extranodal sites	88	75	13 (14.7%)	<0.001
Renal or suprarenal gland	26	14	12 (46.1%)	<0.001
Bone marrow involvement	32	27	5(15.6%)	0.003
Liver involvement	33	31	2(6%)	0.685

	P value	Odds ratio [95% confidence interval]
ECOG PS 2 or more	0.195	2.367 [0.642-8.798]
High LDH	0.274	3.399 [0.379-30.480]
Bulky disease	0.375	1.743 [0.51-5.955]
Stage III or IV	0.996
2 or more extranodal sites	0.221	2.594 [0.563-11.945]
Renal or suprarenal gland	0.023	4.995 [1.253-19.914]
Bone marrow involvement	0.039	4.156 [1.074-16.079]

Table [4]: Multivariate analysis
Table 5
Candidates for CNS prophylaxis according to CNS-IPI and high risk anatomical sites

Indication	Number [%]
High CNS-IPI	45 [12.7%]
Bone marrow involvement with low-intermediate risk CNS-IPI	18 [5%]
Renal and adrenal gland involvement with low-intermediate risk CNS-IPI	1 [0.2%]
Breast, epidural space, testis and uterine involvement with low-intermediate risk CNS-IPI	28 [7.9%]
Total	92 [25.9%]

Discussion:

Analysing the risk CNS relapse in DLBCL is challenging as this is a rare event. The selection of patients for CNS prophylaxis is even more complex and depends on clinical and biological factors with varied indications in most of the published trails.

In 5 of the DHSNHL trials, prophylaxis was mandated for patients with bone marrow, testicular or head and neck lymph nodes involvement [13] while in the United Kingdom National Cancer Research Institute [UK NCRI] trial, prophylaxis was given to patients with bone marrow, peripheral blood, nasal/paranasal sinuses, orbit and testicular involvement [6].

In our study, 12.7% of patients had high risk CNS-IPI, which is consistent with the data reported by Schmitz et al. Among this group, the rate of CNS relapse in our study was relatively high [22% compared to 12% in Schmitz et al]. Although we included a smaller number of patients, the risk of CNS relapse was variable even in the high risk group; in our study, 15% and 32.5% of patients with CNS-IPI of 5 and 6 respectively developed CNS relapse [13].

We confirmed the value of CNS-IPI in predicting CNS relapse in a relatively younger age group as the median age of our patients is 15–20 years less than patients included in most of the studies published in this regard [6, 11, and 13].

In our study, bone marrow involvement was associated with an increased risk of CNS relapse, which was observed in several trials [17, 18] and in the BCAA confirmation cohort of Schmitz et al trial, and explained by exclusion of patient with >25% bone marrow involvement from DSHNHL trials [13].

In addition to high CNS-IPI, involvement of certain anatomical sites [breast, uterus, testis and epidural space] may increase the risk of CNS relapse irrespective of the CNS-IPI [19, 22]. Given the fact that involvement of these sites is rare, they were underrepresented or even excluded from many prospective trials [9]. Guidelines vary in selecting these patients for CNS prophylaxis. For example, National Comprehensive Cancer Network [NCCN] guidelines recommend prophylaxis for patients with testicular,
breast and cutaneous DLBCL [14], while Spanish Lymphoma group recommends that patients with testicular, breast, kidneys or adrenal glands and epidural space involvement should receive prophylaxis [15]. In our study 30 [8.4%] patients had high risk anatomical sites, among which CNS-IPI was high in 2 [6.6%] patients and CNS relapse occurred in 2 [6.6%] of the 30. Involvement of the tonsils and paranasal sinuses were associated with increased risk of CNS relapse [6%] in pre-rituximab era, but this risk decreased to 1.6% when rituximab was incorporated in the primary therapy [23].

Our data showed that 15% of the whole DLBCL patients were given IT chemotherapy, which is similar to previously published trials [24–26]. However, if we included patients with bone marrow, renal or adrenal glands involvement and low-intermediate risk CNS-IPI [19 patients; 5.3%] and patients with high risk anatomical sites with low-intermediate risk CNS-IPI [28 patients; 7.6%] as candidates for CNS prophylaxis, as some guidelines or trials recommend [9, 29], a total of 92 [25, 9%] of DLBCL patients would have been considered for CNS prophylaxis [Table 5].

Despite the high correlation of CNS-IPI with risk of CNS relapse, its positive predictive value is low [12%], resulting in a significant proportion of patients that may unnecessarily receive prophylaxis.

The use of biomarkers may further help to identify high risk patients. Two large studies evaluated the impact of the cell of origin [defined by gene expression profiling] on CNS relapse with conflicting results [27, 28]. High grade lymphomas with MYC and BCL 2 translocation [double hit] represent about 5% of all large B cell lymphomas with CNS involvement at diagnosis or at relapse approaching 50% [29, 30]. On the other hand, expression of MYC and BCL2 [double expressor] without translocation occurs in about 30% of DLBCL, the risk of CNS relapse appears to be increased in patient with activated B cell subtype and intermediate or high risk CNS-IPI [31].

Another emerging approach is the use of pre-treatment PET-CT scan total lesion glycolysis [TLG]. In one study, among different predictive factors, TLG of more than 2000 was the only factor that significantly correlated with CNS relapse [22% vs 0.8%] [32]. These findings may need to be confirmed in larger studies.

The best approach for prevention of CNS relapse is still controversial because of lack of well randomized prospective trials, conflicting evidence and potential toxicity. Although IT chemotherapy is commonly used, evidence of efficacy is conflicting. Some studies showed that it is effective [24, 33] but many failed to demonstrate a benefit, especially in high risk patients [34, 35]. The lack of efficacy of IT chemotherapy may be due to the uneven distribution in the neuro axis as well as failure of significant penetration to the brain parenchyma as most relapses in the rituximab era are parenchymal rather than leptomeningeal [6, 36]. Systemic high dose methotrexate produces more equal concentration in the subarachnoid space and has been shown to be effective in high risk patients [36, 37]. However, there is still a debate regarding the optimal schedule and dose to be used [9]. Due to the small number of patients with high CNS-IPI given IT chemotherapy in our study, we could not conclude on the efficacy of IT chemotherapy. However, among patients with high CNS-IPI, relapse rate appears to be high [3 out 7 patients developed relapse].
Conclusion:

Inclusion of CNS-IPI in the evaluation of all DLBCL for deciding on CNS prophylaxis may help in better selection of patients with high risk for CNS relapse, but it can result in exposure of many patients to unnecessary treatments. Further studies using different biomarkers including the cell of origin, double hit or expressor subtypes and TLG on PET-CT scan are needed to help in more proper selection of patients.

Abbreviations

CNS-IPI: central nervous system international prognostic index, DLBCL: diffuse large B cell lymphoma, R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, ITC: intrathecal chemotherapy, DSHNHL: German High-Grade Non-Hodgkin Lymphoma Study Group, BCCA: British Columbia Cancer Agency, ECOG: Eastern Cooperative Oncology Group, LDH: lactate dehydrogenase, ALP: alkaline phosphatase, CT: computed tomography, PET-CT: positron emission tomography, CR: complete response, IT MTX: intrathecal methotrexate, UK NCRI: United Kingdom National Cancer Research Institute, NCCN: National Comprehensive Cancer Network, TLG: total lesion glycolysis.

Declarations

Availability of data and materials:

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate:

This study was approved by our institutional review board in King Hussein Cancer Centre. Consent for publication: Not applicable.

Competing interests:

The authors declare that they have no competing interests.

Funding:

Not applicable.

Authors’ contributions:

All authors have read and approved the manuscript, and ensure that this is the case. MM: Project development, Data Collection, Data analysis, Manuscript writing. FT: Project development, data analysis.
AA: Project development, Data Collection, Data analysis, LA: Data collection. OS: Data collection. RK: Data Collection, BF: Data collection, MR: Project development, Data analysis, KH: Project development, Manuscript writing.

Acknowledgements:

Study team would like to thank Dr. Silvia Montoto, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK for critically reviewing the manuscript.

References

1. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood. 2006 Jan 1;107[1]:265 – 76.
2. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016 May 19;127[20]:2375–90.
3. Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfreundschuh M, et al. Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20 + B-cell lymphoma in the rituximab era. Journal of clinical oncology. 2010 May 10;28[14]:2373–80.
4. Smith A, Crouch S, Howell D, Burton C, Patmore R, Roman E. Impact of age and socioeconomic status on treatment and survival from aggressive lymphoma: a UK population-based study of diffuse large B-cell lymphoma. Cancer epidemiology. 2015 Dec 1;39[6]:1103–12.
5. Zhang J, Chen B, Xu X. Impact of rituximab on incidence of and risk factors for central nervous system relapse in patients with diffuse large B-cell lymphoma: a systematic review and meta-analysis. Leukemia& lymphoma. 2014 Mar 1;55[3]:509 – 14.
6. Gleeson M, Counsell N, Cunningham D, Chadwick N, Lawrie A, Hawkes EA, et al. P. Central nervous system relapse of diffuse large B-cell lymphoma in the rituximab era: results of the UK NCRI R-CHOP-14 versus 21 trial. Annals of Oncology. 2017 Oct 1;28[10]:2511-6.
7. Bokstein F, Lossos A, Lossos IS, Siegal T. Central nervous system relapse of systemic non-Hodgkin's lymphoma: results of treatment based on high-dose methotrexate combination chemotherapy. Leukemia& lymphoma. 2002 Jan 1;43[3]:587 – 93.
8. Bernstein SH, Unger JM, LeBlanc M, Friedberg J, Miller TP, et al. Natural history of CNS relapse in patients with aggressive non-Hodgkin's lymphoma: a 20-year follow-up analysis of SWOG 8516—the Southwest Oncology Group. Journal of clinical oncology. 2009 Jan 1;27[1]:114.
9. Chin CK, Cheah CY. How I treat patients with aggressive lymphoma at high risk of CNS relapse. Blood, The Journal of the American Society of Hematology. 2017 Aug 17;130[7]:867 – 74.
10. Feugier P, Virion JM, Tilly H, Haioun C, Marit G, Macro M, et al. Incidence and risk factors for central nervous system occurrence in elderly patients with diffuse large-B-cell lymphoma: influence of rituximab. Annals of Oncology. 2004 Jan 1;15[1]:129 – 33.
11. Hollender A, Kvaloy S, Nome O, Skovlund E, Lote K, Holte H. Central nervous system involvement following diagnosis of non-Hodgkin’s lymphoma: a risk model. Annals of Oncology. 2002 Jul 1;13[7]:1099 – 107.

12. McMillan A, Ardesna KM, Cwynarski K, Lyttelton M, McKay P, Montoto S. Guideline on the prevention of secondary central nervous system lymphoma: British Committee for Standards in Haematology. British journal of haematology. 2013 Oct;163[2]:168 – 81.

13. Schmitz N, Zeynalova S, Nickelsen M, Kansara R, Villa D, Sehn LH, et al. CNS International Prognostic Index: a risk model for CNS relapse in patients with diffuse large B-cell lymphoma treated with R-CHOP. Journal of Clinical Oncology. 2016 Sep 10;34[26]:3150-6.

14. National Comprehensive Cancer Network. Clinical practice guidelines for management of B cell lymphoma, version 1,2020.

15. Peñalver FJ, Sancho JM, de la Fuente A, Olave MT, Martín A, Panizo C, et al. Guidelines for diagnosis, prevention and management of central nervous system involvement in diffuse large B-cell lymphoma patients by the Spanish Lymphoma Group [GELTAMO]. Haematologica. 2017 Feb 1;102[2]:235 – 45.

16. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. Journal of clinical oncology. 2014 Sep 20;32[27]:3059..

17. Cai QQ, Hu LY, Geng QR, Chen J, Lu ZH, Rao HL, et al. New risk factors and new tendency for central nervous system relapse in patients with diffuse large B-cell lymphoma: a retrospective study. Chinese journal of cancer. 2016 Dec 1;35[1]:87.

18. Tai WM, Chung J, Tang PL, Koo YX, Hou X, Tay KW, et al. Central nervous system [CNS] relapse in diffuse large B cell lymphoma [DLBCL]: pre-and post-rituximab. Annals of hematology. 2011 Jul 1;90[7]:809 – 18.

19. Zucca E, Conconi A, Mughal TI, Sarris AH, Seymour JF, Vitolo U, et al. Patterns of outcome and prognostic factors in primary large-cell lymphoma of the testis in a survey by the International Extranodal Lymphoma Study Group. Journal of Clinical Oncology. 2003 Jan 1;21[1]:20 – 7.

20. Yhim HY, Kang HJ, Choi YH, Kim SJ, Kim WS, Chae YS at al. Clinical outcomes and prognostic factors in patients with breast diffuse large B cell lymphoma; Consortium for Improving Survival of Lymphoma [CISL] study. BMC cancer. 2010 Dec 1;10[1]:321.

21. Salvati M, Cervoni L, Artico M, Raco A, Ciappetta P, Delfini R. Primary spinal epidural non-Hodgkin's lymphomas: a clinical study. Surgical neurology. 1996 Oct 1;46[4]:339 – 43.

22. El-Galaly TC, Cheah CY, Hutchings M, Mikhaeel NG, Savage KJ, Sehn LH, et al. Uterine, but not ovarian, female reproductive organ involvement at presentation by diffuse large B-cell lymphoma is associated with poor outcomes and a high frequency of secondary CNS involvement. British journal of haematology. 2016. Dec;175[5]:876 – 83.

23. Murawski N, Held G, Ziepert M, Kempf B, Viardot A, Hänel M, Witzens-Harig M, Mahlberg R, Rübe C, Fleckenstein J, Zwick C. The role of radiotherapy and intrathecal CNS prophylaxis in extralymphatic
craniofacial aggressive B-cell lymphomas. Blood, The Journal of the American Society of Hematology. 2014 Jul 31;124[5]:720-8.

24. Arkenau HT, Chong G, Cunningham D, Watkins D, Agarwal R, Sirohi B, et al. The role of intrathecal chemotherapy prophylaxis in patients with diffuse large B-cell lymphoma. Annals of oncology. 2007 Mar 1;18[3]:541–5.

25. Shimazu Y, Notohara K, Ueda Y. Diffuse large B-cell lymphoma with central nervous system relapse: prognosis and risk factors according to retrospective analysis from a single-center experience. International journal of hematology. 2009 Jun 1;89[5]:577 – 83.

26. Guirguis HR, Cheung MC, Mahrous M, Piliotis E, Berinstein N, Imrie KR, et al. Impact of central nervous system [CNS] prophylaxis on the incidence and risk factors for CNS relapse in patients with diffuse large B-cell lymphoma treated in the rituximab era: a single centre experience and review of the literature. British journal of haematology. 2012 Oct;159[1]:39–49.

27. Staiger AM, Ziepert M, Horn H, Scott DW, Barth TF, Bernd HW, et al. Clinical impact of the cell-of-origin classification and the MYC/BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German High-Grade Non-Hodgkin's Lymphoma Study Group. Journal of Clinical Oncology. 2017 Aug 1;35[22]:2515–26.

28. Klanova M, Sehn LH, Bence-Bruckler I, Cavallo F, Jin J, Martelli M, et al. Integration of cell of origin into the clinical CNS International Prognostic Index improves CNS relapse prediction in DLBCL. Blood. 2019 Feb 28;133[9]:919 – 26.

29. Petrich AM, Gandhi M, Jovanovic B, Castillo JJ, Rajguru S, Yang DT, et al. Impact of induction regimen and stem cell transplantation on outcomes in double-hit lymphoma: a multicenter retrospective analysis. Blood, The Journal of the American Society of Hematology. 2014 Oct 9;124[15]:2354–61.

30. Qualls D, Abramson JS. Advances in risk assessment and prophylaxis for central nervous system relapse in diffuse large B-cell lymphoma. haematologica. 2019 Jan 1;104[1]:25–34.

31. Savage KJ, Slack GW, MottokA, Sehn LH, Villa D, Kansara R, et al. Impact of dual expression of MYC and BCL2 by immunohistochemistry on the risk of CNS relapse in DLBCL. Blood, The Journal of the American Society of Hematology. 2016 May 5;127[18]:2182–8.

32. Song YS, Lee WW, Lee JS, Kim SE. Prediction of central nervous system relapse of diffuse large B-cell lymphoma using pretherapeutic [18F] 2-fluoro-2-deoxyglucose [FDG] positron emission tomography/computed tomography. Medicine. 2015 Nov;94[44].

33. Tomita N, Kodama F, Kanamori H, Motomura S, Ishigatsubo Y. Prophylactic intrathecal methotrexate and hydrocortisone reduces central nervous system recurrence and improves survival in aggressive non-hodgkin lymphoma. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2002 Aug 1;95[3]:576 – 80.

34. Cheah CY, Herbert KE, O’rourke K, Kennedy GA, George A, Fedele PL, et al. A multicentre retrospective comparison of central nervous system prophylaxis strategies among patients with high-risk diffuse large B-cell lymphoma. British journal of cancer. 2014 Sep;111[6]:1072–9.
35. Chua SL, Seymour JF, Streater J, Wolf MM, Januszewicz EH, Prince HM. Intrathecal chemotherapy alone is inadequate central nervous system prophylaxis in patients with intermediate-grade non-Hodgkin's lymphoma. Leukemia & lymphoma. 2002 Jan 1;43[9]:1783–8.

36. Shapiro WR, Young DF, Mehta BM. Methotrexate: distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. New England Journal of Medicine. 1975 Jul 24;293[4]:161-6.

37. Abramson JS, Hellmann M, Barnes JA, Hammerman P, Toomey C, Takvorian T, et al. Intravenous methotrexate as central nervous system [CNS] prophylaxis is associated with a low risk of CNS recurrence in high-risk patients with diffuse large B-cell lymphoma. Cancer. 2010 Sep 15;116[18]:4283–90.

Figures

Figure 1

Survival of patients with no CNS relapse vs CNS relapse.
Figure 2

Survival of relapsed/refractory patients with no CNS relapse vs CNS relapse.