Competitive advantage of oral streptococci for colonization of the middle ear mucosa

Kristin M. Jacob, Gemma Reguera *

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

ARTICLE INFO

Keywords:
Middle ear
Eustachian tube
Otic microbiome
Ocular cavity
Otopathogen
Mucin

ABSTRACT

The identification of a diverse microbiome in otic secretions from healthy young adults challenged the entrenched dogma of middle ear sterility and underscored previously unknown roles for oral commensals in the seeding of otic biofilms. We gained insights into the selective forces that enrich for specific groups of oral migrants in the middle ear mucosa by investigating the phylogeny and physiology of 19 strains isolated previously from otic secretions and representing otic commensals (Streptococcus) or transient migrants (Staphylococcus, Neisseria and actinobacterial Micrococcus and Corynebacterium). Phylogenetic analyses of full length 16S rRNA sequences recovered from partially sequenced genomes resolved close relationships between the isolates and (peri)oral commensals. Physiological functions that facilitate mucosal colonization (swarming motility, surfactant production) and nutrition (mucin and protein degradation) were also widespread among the cultivars, as was their ability to grow in the presence or absence of oxygen. Yet, streptococci stood out for their enhanced biofilm-forming abilities under oxic and anoxic conditions and ability to ferment host-derived mucosal substrates into lactate, a key metabolic intermediate in the otic trophic webs. Additionally, the otic streptococci inhibited the growth of common otopathogens, an antagonistic interaction that could exclude competitors and protect the middle ear mucosa from infections. These adaptive traits allow streptococcal migrants to colonize the otic mucosa and grow microcolonies with syntrophic anaerobic partners, establishing trophic interactions with other commensals that mirror those formed by the oral ancestors in buccal biofilms.

1. Introduction

The oral cavity provides a heterogenous landscape of surfaces and microenvironments (teeth, gingiva, tongue, cheek, hard and soft palate, etc.) for diverse microbial communities [16]. The availability of dietary substrates supports the growth and diversification of oral commensals and makes these communities some of the richest and most diverse in the human body [79]. Many of these microbes readily disperse via saliva and saliva aerosols into perioral regions [16] and, from there, to other parts of the aerodigestive tract [23]. The saliva aerosols also enter the middle ear through the tubal extension of the tympanic cavity (the tympanic or Eustachian tube, Fig. 1) [6]. The tube is passively collapsed at rest to sound proof the tympanic cavity and minimize microbial entry, yet it opens when we swallow or yawn to draw in air from the lower airways (Fig. 1) [6]. The cycles of aperture and collapse of the Eustachian tube promote the intermittent aeration of the tympanic cavity, relieve negative pressure across the eardrum and drain into the nasopharynx excess mucus and fluids [6].

The episodic ventilation of the middle ear reduces oxygen availability to the otic mucosa and establishes redox conditions that favor the growth of anaerobes [44]. In support of this, strictly anaerobic genera in the Bacteroidetes (Prevotella and Alloprevotella), Fusobacteria (Fusobacterium and Leptotrichia) and Firmicutes (Veillonella) are more abundant in otic secretions collected at the nasopharyngeal orifice of the Eustachian tube than in oral samples [44]. The genus Streptococcus, which includes mostly facultative anaerobes [54], is also enriched in otic secretions [44]. The co-enrichment of streptococci with Bacteroidetes and Veillonella spp. in otic secretions suggests that these groups are part of syntrophic consortia (Fig. 1) similar to those described in oral biofilms [44]. This model (Fig. 1) is based on the metabolic co-dependency of Bacteroidetes to break down mucin glycoproteins and other mucosal proteins into sugars and peptides, which some streptococci ferment into lactate [33] to sustain propionate and acetate production by Veillonella [12,15]. The lactate dependency of Veillonella spp. may also favor direct metabolic interactions with lactate-producing Bacteroidetes partners [62]. Through their collective activities,
of healthy young adults [44] supports the establishment of a trophic web (inset) in air and drain otic secretions. The microbiome sequenced from otic secretions extends as a tube (tympanic or Eustachian tube) into the nasopharynx to draw

This suggests that streptococcal migrants have a competitive advantage individual, staphylococcal-like sequences are seldom detected [44]. Yet, while streptococci are abundant in otic secretions from healthy the middle ear during the intermittent openings of the Eustachian tube. Most prominent members in the oral and nasal microbiomes, respec

(Staphylococcus, Neisseria, and the actinobacterial genera Micrococcus and Corynebacterium). Phylogenetic analysis of partial 16S rDNA amplicons sequenced from the isolates revealed close relationships with oral (oropharyngeal and buccal) strains recovered from the same hosts [44]. To reach the resolution needed for species-level demarcation, we sequenced and partially assembled the genomes of the otic cultivars and retrieved full-length 16S rRNA sequences for each of the isolates. A species sequence identity cutoff of >98.7% [70] matched each otic isolate to more than one species within each genus (Table 1 shows the top identity hit for each strain). Phylogenetic inference methods

Table 1

Strain	GenBank no.	Reference Strain (Accession; ±% ID)
Streptococcus		
L0020-02	MW866489	Streptococcus parasangsignis (NR_024842.1; 99.47)
L0021-01	MW866494	Streptococcus salivarius (NR_042776.1; 99.81)
L0021-04	MW866496	Streptococcus salivarius (NR_042776.1; 99.81)
L0021-05	MW866497	Streptococcus salivarius (NR_042776.1; 99.81)
L0022-03	MW866499	Streptococcus salivarius (NR_042776.1; 99.81)
L0022-04	MW866500	Streptococcus salivarius (NR_042776.1; 99.81)
L0022-05	MW866501	Streptococcus salivarius (NR_042776.1; 99.81)
L0022-06	MW866502	Streptococcus salivarius (NR_042776.1; 99.81)
L0023-01	MW866503	Streptococcus agalactiae (NR_040821.1; 100)
L0023-02	MW866504	Streptococcus oralis (NR_117719.1; 99.47)
L0023-03	MW866505	Streptococcus agalactiae (NR_040821.1; 100)
Staphylococcus		
L0020-04	MW866491	Staphylococcus hominis (NR_036956.1; 99.61)
L0021-02	MW866495	Staphylococcus aureus (NR_037007.2; 99.87)
L0021-06	MW866498	Staphylococcus saccharolyticus (NR_113405.1; 99.4)
Micrococcus		
L0020-05	MW866492	Micrococcus luteus (NR_075062.2; 99.61)
Corynebacterium		
L0020-06	MW866493	Corynebacterium pseudodiphthericum (NR_042137.1; 99.47)
Neisseria		
L0020-03	MW866490	Neisseria perflava (NR_114694; 99.93)
L0023-05	MW866507	Neisseria perflava (NR_117694.1; 99.74)
L0023-06	MW866506	Neisseria perflava (NR_117694.1; 99.74)

Bacteroidetes, streptococci and Veillonella are predicted to degrade and ferment host-derived nutrients (mucins and proteins) into short chain fatty acids known to contribute to mucosal health in other body sites [5].

Although oral-like consortia are predicted to colonize the middle ear in health [44], the physiological traits that facilitate mucosal colonization remain largely unknown. The presence of bacterial microcolonies in biopsy specimens of the mucosal lining of the tympanic cavity [28, 71] points at biofilm formation as a critical selective factor for the growth of otic commensals. Microcolonies protect mucosal colonizers against immunooattack and clearance [68]. The latter is particularly vigorous closer and within the Eustachian tube, due to the higher density of ciliated cells in these regions and the pumping force exerted by the periodic contraction and relaxation of muscles around the Eustachian tube (muscular clearance) [29, 63]. Additionally, microcolonies protect anaerobic commensals from oxygen intrusions when the Eustachian tube opens [6]. The aggregative nature of many oral streptococci is expected to facilitate firm attachment of colonizers to the otic epithelium and the formation of microcolonies with anoxic niches for anaerobic syntrophic partners [39]. To test this, we investigated the colonization potential of streptococcal commensals and transient migrants (Staphylococcus, Neisseria and actinobacterial Micrococcus and Corynebacterium) previously recovered from otic secretions [44]. Streptococcal and staphylococcal species are, for example, among the most prominent members in the oral and nasal microbiomes, respectively [8, 23]. Both groups disperse in the aerodigestive tract and enter the middle ear during the intermittent openings of the Eustachian tube. Yet, while streptococci are abundant in otic secretions from healthy individuals, staphylococcal-like sequences are seldom detected [44]. This suggests that streptococcal migrants have a competitive advantage over the transient staphylococcal species during the colonization of the middle ear mucosa. Hence, we sequenced and partially assembled the genomes of otic streptococcal and non-streptococcal cultivars (19 in all) [44] and used the full length 16S rRNA sequences to identify their closest relatives. We then screened the cultivars for adaptive traits predicted to be important for mucosal colonization (e.g., motility in mucus, microcolony formation) and for growth under conditions (redox, nutritional) relevant to the middle ear microenvironment. Our study revealed similar adaptive traits for mucosal growth by the isolates but aggregative and metabolic properties of streptococci critical for successful colonization of the middle ear mucosa. These same properties are retained from their closest oral ancestors, with whom they share the ability to establish trophic webs with anaerobes and antagonize competitors. These findings provide novel insights into the adaptive responses that sustain the growth and functionality of otic communities and could influence the outcome of infections.

2. Results

2.1. Phylogenetic analysis supports the oral ancestry of otic streptococcal commensals

A previous study of the microbiology of the middle ear [44] recovered from healthy young adults 19 cultivars representing otic Streptococcus commensals and transient or low abundant groups (Staphylococcus, Neisseria, and the actinobacterial genera Micrococcus and Corynebacterium). Phylogenetic analysis of partial 16S rDNA amplicons sequenced from the isolates revealed close relationships with oral (oropharyngeal and buccal) strains recovered from the same hosts [44]. To reach the resolution needed for species-level demarcation, we sequenced and partially assembled the genomes of the otic cultivars and retrieved full-length 16S rRNA sequences for each of the isolates. A species sequence identity cutoff of >98.7% [70] matched each otic isolate to more than one species within each genus (Table 1 shows the top identity hit for each strain). Phylogenetic inference methods
resolved, however, close evolutionary ties with oral commensals or species that disperse from perioral regions (Fig. 2).

The nearest neighbor to most of the Streptococcus sequences (7 of them) was *Streptococcus salivarius* (subspecies *salivarius* and *thermophilus*) (Fig. 2). Genomic divergence (size and gene content) for species and subspecies within the Salivarius group is high [14]. As a result, strains of *S. salivarius* can have very different metabolic and physiological characteristics or even habitat/host preferences despite sharing high 16S rRNA sequence identity [14, 21]. Thus, the physiology of otic and oral strains in the *S. salivarius* subclade may differ substantially. The remaining streptococcal sequences clustered separately with oral relatives within the Mitis group (L0020-02 and *Streptococcus pseudopneumoniae*) and the Lancefield’s group B streptococci or GBS (L0023-01 and L0023-03 and *Streptococcus agalactiae*) [21, 30] (Fig. 2). Hence, 16S rRNA phylogeny supports the oral ancestry of all the streptococcal cultivars [44].

The 16S rRNA sequence identity of the non-streptococcal strains also produced more than one match to species of *Staphylococcus*, *Neisseria*, *Micrococcus* and *Corynebacterium* (Table 1). A catalase positive test confirmed the classification of the three staphylococcal isolates as *Staphylococcus* spp. (Fig. 2). The closest neighbors to the otic staphylococci were species (*Staphylococcus hominis*, *Staphylococcus aureus*, and *Staphylococcus epidermidis*) that are highly represented in the nasal passages [8]. Their nasal abundance facilitates dispersal in the contiguous oral cavity [52] and their transient detection in perioral regions [48, 52]. On the other hand, the three *Neisseria* isolates were closely related to oropharyngeal commensals [36, 45] (*Neisseria perflava*, *Neisseria subflava* and *Neisseria flavescens*; Fig. 2) that transiently disperse in the aerodigestive tract and the middle ear [44] via saliva aerosols [2]. The otic isolates also included two actinobacterial *Micrococcus* and *Corynebacterium* strains (Table 1). The *Micrococcus* isolate was catalase-positive, a general phenotypic trait of the genus [37], and branched closely to *Micrococcus yunnanensis* (Fig. 2). This is a soil *Micrococcus* species [84] that, like other environmental micrococci, enters the human aerodigestive tract with air [40]. The second actinobacterial isolate was closely related to *Corynebacterium pseudodiphtheriticum* (Fig. 2). *Corynebacterium* commensals are prominent members of the nasal microbiomes and antagonists of nasal pathobionts, including some of the most important otopathogens [9]. Their abundance in the nasal microflora explains their detection in oral and perioral regions [41]. However, actinobacteria only account for ~1% of the operational taxonomic units (OTUs) in otic secretions, suggesting they are negatively selected for growth and reproduction in the middle ear mucosa [44].

2.2. Surfactant-mediated swarming motility is widespread among the otic cultivars

Successful colonization of respiratory mucosae requires bacterial migrants to move rapidly across the mucus layer in order to avoid immune attack and clearance [68]. Some flagellated bacteria can reach the underlying epithelial lining by rapidly swarming in groups through the viscous mucoid layer, a process that is stimulated by the lubricating effect of surfactants and mucin glycoproteins [53]. Swarming (flagellated) and swarming-like (non-flagellated) behaviors can be identified in laboratory plate assays that test the expansion of microcolonies on a soft agar (0.4–0.5%) surface [53]. Thus, we tested the ability of the 19 otic isolates to swarm on the surface of 0.5% tryptone soy agar (TSA) plates in reference to the robust swarmer *Pseudomonas aeruginosa* PA01 [38].

Fig. 3A shows the average expansion of triplicate colonies over time.
Biofilm 4 (2022) 100067

Although *P. aeruginosa* showed large zones of swarming expansion already at 18 h, we only detected swarming activity in the otic isolates after 42 or 62 h of colony growth (Fig. 3A). Lag phases are not unusual prior to swarming on agar plates as cells reprogram their physiology to be able to grow on the agar-solidified medium [53]. Consistent with this, the strains that grew faster on the semisolid TSA

![Fig. 3](image-url)

Fig. 3. Swarming motility and surfactant production by otic cultivars in reference to *Pseudomonas aeruginosa* PA01. (A) Average surfactant production (halo of mineral oil dispersal around 24 h colonies grown on 1.5% TSA), and size of swarming expansion (0.5% TSA plates at 18, 42 and 62 h) measured in triplicate replicates of the otic isolates (*Streptococcus*, gray circles; *Staphylococcus*, orange triangles; *Neisseria*, purple squares; actinobacterial strains of *Corynebacterium* and *Micrococcus*, green diamonds) and the positive control (*P. aeruginosa* PA01, white circles). (B) Representative images of swarming (0.4% TSA, 42 h) and surfactant (1.5% TSA, 24 h) plate assays for *P. aeruginosa* PA01 (positive control, boxed) and otic strains of *Streptococcus*, *Corynebacterium*, and *Micrococcus* (scale bars, 0.5 cm). The edge of the surfactant halo is highlighted with a dashed white line. The orange box identifies approximate areas of the colony edge and surfactant dispersion zone enlarged in the bottom images. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Coaggregation, swarming motility and surfactant production of otic isolates in reference to positive control (*P. aeruginosa* PA01).

Species/closest relative	Strain	Aggregation	Surfactant	Swarming
		18 h	42 h	62 h
Streptococcus				
S. parasanguinis	L0020-02	+	–	–
				0.07 (0.10)
S. salivarius	L0021-01	+	0.23 (0.19)	–
				0.16 (0.05)
S. salivarius	L0021-04	+	0.46 (0.09)	–
				0.05 (0.13)
S. salivarius	L0021-05	+	–	–
				0.05 (0.07)
S. salivarius	L0022-03	+	0.28 (0.19)	–
				0.19 (0.04)
S. salivarius	L0022-04	+	–	–
				0.20 (0.08)
S. salivarius	L0022-05	+	0.18 (0.12)	–
				0.20 (0.03)
S. salivarius	L0022-06	+	0.09 (0.06)	–
				0.18 (0.02)
S. agalactiae	L0023-01	+	–	–
				0.21 (0.02)
S. pseudopneumoniae	L0023-02	+	–	–
				0.07 (0.10)
S. agalactiae	L0023-03	+	0.31 (0.11)	–
				0.19 (0.01)
Staphylococcus				
S. hominis	L0020-04	–	–	–
				0.37 (0.004)
S. aureus	L0021-02	–	–	–
				0.66 (0.08)
S. epidermidis	L0021-06	–	0.53 (0.02)	–
				0.79 (0.001)
Actinobacteria				
M. yunnanensis	L0020-05	–	0.86 (0.13)	–
				0.54 (0.05)
C. pseudodiphtericus	L0020-06	–	2.64 (0.05)	–
				0.75 (0.04)
Neisseria				
N. perfura	L0022-03	–	–	–
				0.44 (0.03)
N. flavescens	L0023-05	+	–	–
				0.23 (0.32)
N. flavescens	L0023-06	+	–	–
				0.25 (0.35)
P. aeruginosa	PA01	–	1.37 (0.06)	–
				1.24 (0.35)

		18 h	42 h	62 h
P. aeruginosa		1.58 (0.53)	2.18 (0.47)	

* Aggregative (+) or uniform (−) growth of cultures spotted on 0.5% TSA plates.

* Average (and standard deviation) of triplicate surfactant haloes (cm) measured as the zone of mineral oil dispersion around colonies grown at 37°C on 1.5% TSA plates. (−, not detected).

* Average (and standard deviation) of triplicate swarming expansion zones (cm) around colonies grown at 37°C on soft agar (0.5%) TSA plates for 18, 42 and 62 h (−, not detected).
plates (three staphylococcal and the two actinobacterial isolates) produced visible zones of swarming expansion at 42 h, while the slowest growers (*N. perflava* L0023-05 and L0023-06) required 62 h of incubation (Table 2). Notably, most of the streptococcal grew well in tryptone soy broth (TSB), yet they aggregated strongly when growing on the surface of the soft-agar plates (Fig. 3B), which delayed swarming (Table 2). We partially rescued the swarming delay by lowering the agar concentration from 0.5 to 0.4% (Fig. 3B). For example, the streptococcal strain L0022-03 did not swarm on 0.5% TSA plates until after 62 h (Table 2) but expanded 0.28 cm away from the edge of the initial colony after 42 h of growth on 0.4% TSA plates (Fig. 3B). This is because lowering the agar concentration facilitates water movement to the surface and immerses the cells in a layer of liquid that reduces frictionally forces between the cell and the surface and stimulates swarming [53].

The need for some bacteria to express cellular components (flagella, exopolysaccharide, surfactants, etc.) mediating swarming on semisolid agar can also delay the appearance of expansion zones [53]. Secretion of surfactants is particularly important to reduce frictional resistance between the surface of swarming cells and the underlying substratum [53]. As a result, the concentration and diffusion rates of secreted surfactants in soft-agar medium often correlate well with the extent of swarming expansion [10]. Therefore, we also screened for surfactant production by colonies grown on hard agar plates (1.5% TSA) for 24 h and air-dried on soft-agar medium often correlate well with the extent of swarming expansion [10]. Nevertheless, we observed halos of door plate dispersal around surfactant-producing strains and provided a semiquantitative estimation of surfactant production, even at concentrations too low to be detected by traditional methods such as the water drop collapse assay [10]. The assay detected haloes of oil dispersal around 9 of the isolates (Table 2) and identified positive correlations between surfactant production and the onset of swarming on 0.5% TSA for most strains (Fig. 3A). For example, the actinobacterial isolates, which were robust swarmers, produced the highest levels of surfactant (Table 2). By contrast, temperate swarmers such as the streptococcal isolates produced low or undetectable levels of surfactants under the experimental conditions. As an exception, the staphylococcal isolates swarmed robustly on the soft agar plates (Fig. 3) although they did not produce detectable halos of mineral oil dispersal (Table 2). Although staphylococcal cells lack flagellar locomotion, they can passively ‘spread’ on soft agar surfaces [32] through the coordinated synthesis of lubricating peptides known as phenol-soluble modulins (PSMs) [73]. PSM surfactants accumulate very close to the colony edge [56]. Hence, they are unlikely to produce a halo of oil dispersal in the atomized assay used for testing.

2.3. Redox and nutritional advantage of *otic* streptococci in the middle ear mucosa

Successful colonizers of the middle ear mucosa face sharp redox fluctuations due to the brief (400 ms) yet infrequent (approximately every minute when we swallow) openings of the Eustachian tube [6]. For this reason, we tested the ability of the *otic* cultivars to grow under aerobic or anaerobic conditions (Fig. 4A). All the isolates grew well in the oxic environment and anaerobic medium (Table 3). The aerobically grown isolates and those grown anaerobically (Table 3) but expanded 0.28 cm away from the edge of the initial colony after 42 h of growth on 0.4% TSA plates (Fig. 3B). This is because lowering the agar concentration facilitates water movement to the surface and immerses the cells in a layer of liquid that reduces frictionally forces between the cell and the surface and stimulates swarming [53].

![Fig. 4](image-url) Growth of *otic* isolates as a function of oxygen availability and host nutrients (protein and mucin). (A) Average doubling times of *otic* isolates growing in at least triplicate TSB cultures aerobically or anaerobically at 37°C. Symbols: *Streptococcus* (gray circles), *Staphylococcus* (orange triangles), *Neisseria* (purple squares) and actinobacterial genera *Micrococcus* and *Corynebacterium* (green diamonds). The flocculating strains of *Neisseria* are labeled. The raw data plotted in this graph and significant differences between aerobic and anaerobic generations times for each strain are shown in Table 3. (B) Protease and mucinase activity (haloes of milk casein or porcine gastric mucin degradation, respectively) of representative *otic* strains and *P. aeruginosa* PA01 (positive control, boxed). The milk casein plates were photographed without staining after 24 h of incubation at 37°C. The mucin plates were incubated for 48 h and stained with 0.1% amido black prior to photography. Scale bars, 0.5 cm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
able to degrade mucin under these conditions, although some strains required additional incubation (48 h) to produce a clear halo (Table 3). As an example of delayed hydrolysis, three aggregate strains of S. salivarius (L0021-01, L0022-03 and L0022-04) produced only faint mucin clearings after 24 h (+/- in Table 3) but the zone of degradation expanded after incubating for 48 h. While mucinase activity was widespread, protease activity was only detected in the streptococcal and staphylococcal groups (Table 3). It is unlikely that the casein substrate used in the assays produced false negatives, because extracellular proteases typically have low substrate selectivity and cleave a wide range of substrates [76]. This is particularly advantageous in the middle ear mucosa, where colonizers must scavenge nitrogen sources by breaking down mucosal proteins and the protein backbone of mucus [60]. In addition to providing a metabolic advantage, proteases facilitate mucosal penetration, control mucus viscosity, modulate host immune responses, and antagonize competitors [35]. Hence, protease secretion confers on staphylococci and streptococci a competitive advantage for otic colonization.

2.4. Metabolic advantage of streptococci for syntrophic growth in biofilms

The presence of bacterial microcolonies on the epithelial surface of biopsy specimens collected from the tympanic cavity of healthy individuals [71] motivated us to investigate the biofilm-forming abilities of the otic isolates. For these assays, we stained 24-h biofilms with crystal violet and measured the absorbance of the biofilm-associated dye to estimate the biofilm biomass (Fig. 5A). All but two streptococcal strains (S. pseudopneumoniae L0023-02 and S. galactiae L0023-03) formed robust biofilms under aerobic conditions (Fig. 5A). The group of S. salivarius L0021-04 and L0021-05, S. parasanginis L0020-02, and S. galactiae L0023-01 clustered separately with a staphylococcal isolate (S. aureus L0021-02) based on their ability to form robust biofilms in both anoxic and oxic media (Fig. 5A). A group comprised of S. salivarius L0021-01, L0022-03, L0022-04, L0022-05 and L0022-06 had a biofilm growth advantage in oxic medium only (Fig. 5A). The enhanced biofilm abilities of these isolates correlated well with the pH drops measured in the culture broth at 24 h (Fig. 5B). Indeed, K-means clustering analyses partitioned the best biofilm formers (9 streptococci and S. aureus L0021-02 with an average biofilm biomass AS50~2.2) separately from all other strains based on the low pH (average pH~4.8) of the medium. The culture pH also partitioned the low biofilm formers (average biofilm biomass AS50<0.1) in two clusters: one with the two actinobacterial strains (average pH~7.7) and another with the remaining strains (average pH~5.6). Collectively, the clustering of strain phenotypes in three separate groups explained 91.3% of the data variance.

The pH measurements correlated well with lactate levels in the culture broth (p = 0.03) and entry in stationary phase (Fig. 5C). Thus, the best biofilm formers produced more lactate than any other strain and entered stationary phase (0.62 ± 0.05 OD600) once the pH dropped below 5. This response is similar to that described for oral streptococcal commensals, which also produce lactic acid as the main fermentation byproduct [69] and stop growing once the pH drops to inhibitory levels, usually at or below 5 [67]. To prevent growth inhibition, commensal oral streptococci co-aggregate with lactate-utilizing bacteria such as Veillonella [46]. A similar metabolic dependence via lactate helps explain the co-enrichment of Streptococcus and Veillonella sequences in othic secretions [44].

2.5. Antagonistic interactions of otic streptococci with common otopathogens

Commensal oral streptococci mediate intra- and interspecies antagonistic interactions in oral biofilms that are critical to dental and mucosal health [39]. Given their oral ancestry, we screened the otic streptococci for their ability to inhibit the growth of known otopathogens (Streptococcus pneumoniae, Moraxella catarrhalis, and non-typeable Haemophilus influenzae). For these assays, we followed the same protocol as in other plate assays and spot-plated overnight cultures on TSA plates before incubating them at 37°C. After allowing the colonies to grow for 24 h, we covered them with a soft (0.75%) agar overlay containing a diluted cell suspension of each otopathogen in a growth medium suitable for their growth. Incubation of the overlayed plates for an additional 24 h revealed clear zones of growth inhibition on top and around some of the underlying streptococcal colonies. Fig. 6 shows

Table 3

Species/closet relative	Strain	Doublet time (h)	Extracellular enzymes		
		Aerobic	Anaerobic	Protease	Mucinase
Streptococcus					
S. parasanginis L0020-02	02	0.629	0.558	–	+
	04	(0.011)	(0.026)*		
S. salivarius L0021-01	01	0.389	0.431	– +/-	
	04	(0.008)	(0.006)		
S. salivarius L0021-03	03	0.376	0.419	–	+
	04	(0.018)	(0.012)		
S. salivarius L0021-05	03	0.407	0.375	+	
	05	(0.054)	(0.041)		
S. salivarius L0022-01	03	0.419	0.567	+ +/-	
	04	(0.008)	(0.004)**		
S. salivarius L0022-02	03	0.451	0.352	+ +/-	
	04	(0.003)	(0.009)**		
S. salivarius L0022-05	05	0.459	0.381	+	
	06	(0.042)	(0.041)		
S. salivarius L0022-06	06	0.487	0.661	+	
	07	(0.037)	(0.021)		
S. agalactiae L0023-01	01	0.561	0.583	+	
	03	(0.071)	(0.009)		
S. pseudopneumoniae L0021-01	02	1.026	0.682	- +	
	04	(0.404)	(0.058)		
S. galactiae L0023-01	03	0.918	0.614	+	
	06	(0.026)	(0.022)		
Staphylococcus					
S. hominis L0020-01	04	0.907	0.621	+	
	06	(0.073)	(0.091)*		
S. aureus L0021-02	02	0.406	0.446	+	
	04	(0.006)	(0.037)		
S. epidermidis L0021-01	06	0.406	0.498	+	
	07	(0.013)	(0.012)		
Actinobacterial species					
M. yunnanensis L0020-01	05	1.048	0.495	+	
	06	(0.060)	(0.026)*		
C. pseudodiphtericum L0020-01	06	0.173	0.546	+	
	07	(0.042)	(0.127)		
Neisseria					
N. flavescens L0023-01	03	0.885	1.008	+	
	06	(0.008)	(0.026)		
N. flavescens L0023-05	05	9.089	1.307	+	
	06	(0.058)	(0.305)		
P. aeruginosa PA01	nt	nt	nt	+	

* Two-tailed t-test significance identifying fastest growth conditions (aerobic or anaerobic): p < 0.05*, p < 0.005**, p < 0.0005***.
representative plate assays for all the otic strains against each otopathogen and the zones of growth inhibition, which reveal antagonistic interactions due to nutrient competition, secretion of growth inhibitors by the streptococci, or both. The zones of growth inhibition are particularly large against *S. pneumoniae* and *M. catarrhalis*, consistent with the secretion of a diffusible inhibitory compound. By contrast, antagonistic effects against *H. influenzae* were less pronounced and strain-specific (Fig. 6).

We also used the plate assay to screen for potential antagonism of the otic streptococci towards the nasopharyngeal staphylococci. As a test strain, we used *S. aureus* subsp. *aureus* JE2 [22], a plasmid-cured derivative of the epidemic community-associated methicillin-resistant *S. aureus* (CA-MRSA) isolate USA300 [17]. We observed antagonism by all the non-Salivarius isolates (Fig. 6), indicative of a species-specific mechanism for growth inhibition by these streptococcal groups (*S. pseudopneumoniae*, *S. parasanguinis* and *S. agalactiae*). The ability of non-Salivarius streptococci to inhibit the growth of *S. aureus* is not uncommon. Despite being catalase positive, *S. aureus* is sensitive to hydrogen peroxide produced by *S. pneumoniae* in the nasal mucosa [61]. This is because hydrogen peroxide is converted into a highly toxic hydroxyl radical (•OH) that rapidly kills *S. aureus* [82]. However, non-Salivarius otic streptococci release hydrogen peroxide as a byproduct of their metabolism [19,59,80] and use catalase-independent mechanisms for anti-oxidative stress resistance [11]. These phenotypic traits confer on the streptococcal isolates a competitive advantage during the colonization of the middle ear mucosa and help explain why *Staphylococcus* sequences are seldom detected in otic secretions [44].
3. Discussion

The recovery from otic secretions of close relatives of oral bacteria (Fig. 2) highlights the role that saliva aerosols play in the dispersal of bacteria through the aerodigestive tract. Human saliva carries bacteria shed from oral surfaces such as teeth and gums and spreads them to distant mucosae [13,47]. The constant flux of saliva to the oropharynx (back of the throat) facilitates the formation of aerosols and oral bacterial carriage to the middle ear every time the Eustachian tube opens [44]. In support of this, phylogenetic analysis of full-length 16S rRNA sequences resolved close evolutionary relationships between the otic cultivars and species that reside or transiently disperse in the oral cavity (Fig. 2). Particularly important were the ancestral ties between the otic streptococci and pioneer species of oral biofilms. Most of the otic streptococci were closely related to *S. salivarius*, one of the first colonizers of the human oral cavity after birth and an abundant commensal throughout the life of the host [31]. This bacterium disperses as aggregates that survive stomach passage [26] and seed the mucosa of the small intestine [78]. *S. salivarius* aggregates may also disperse in saliva aerosols, a dispersal path that provides the primary mechanism for seeding of the otic mucus [44]. Streptococcal aggregation could facilitate immunoescape and the formation of microcolonies on the otic mucosal epithelium. It may also promote coaggregation with anaerobic syntrophic partners and support trophic interactions (Fig. 1) that mirror those described in oral biofilms. Additionally, oral *S. salivarius* strains mediate antagonistic interactions with virulent streptococci that prevent tooth decay, periodontal disease, and the spread of respiratory pathogens such as the otopathogen *S. pneumoniae* [74,75]. We observed similar interspecies interference of otic *S. salivarius* strains towards common otopathogens (Fig. 6), suggesting similar roles for these middle ear residents in disease prevention.

The non-Salivarius otic streptococci were also close relatives of oral species (Fig. 2). For example, one of the isolates (L0020-02) was closely related to *S. parasanginis*, a bacterium that groups with species in the Mitis group based on 16S rRNA gene sequence analysis and that shares with them many phenotypic characteristics [21]. Like *S. salivarius*, *S. parasanginis* is one of the early colonizers of the oral cavity [39] and disperses in saliva [77]. It produces fimbiae to firmly attach to and co-disperse within syntrophic oral aggregates [24]. The otic streptococci also included strains closely related to *S. pseudopneumoniae* (L0023-02; Viridans group) and *S. agalactiae* (L0023-01 and L0023-03; GBS group), which are oral streptococci linked to infective processes in the aerodigestive tract and other body sites [34,58]. Yet, the otic relatives readily inhibited the growth of the three most common otopathogens (*S. pneumoniae*, *M. catarrhalis*, and non-typeable *H. influenzae*) and were the only otic streptococci that interfered with the growth of *S. aureus* (Fig. 6). Antagonism towards *S. aureus* may involve the production of hydrogen peroxide as a metabolic byproduct, as noted for related oral streptococcal species [19,59,80]. Hydrogen peroxide also functions as a signaling molecule for the co-aggregation of non-salivarius streptococci in syntrophic biofilms [19]. Future studies will need to evaluate the role of these streptococcal lineages in producing hydrogen peroxide as a signal for intra and interspecies co-aggregation and as an antagonist of bacterial competitors in the middle ear mucus.

The results presented in this study also identified physiological traits of streptococci that could facilitate the colonization of the middle ear mucus and the formation of syntrophic biofilms. The otic streptococci utilized all temperature growth on soft agar plates (Fig. 3) and secreted mucins and secreted surfactants (Table 2). Endogenous surfactants stimulate swarming on semisolid agar surfaces but may not be needed for efficient swarming through the native mucus layers [53]. This is particularly true for bacteria colonizing the middle ear mucus, which is rich in host surfactants [49]. Furthermore, surfactant production by bacterial colonizers may be undesirable in the middle ear mucus, as it could change the mucus rheology and interfere with critical mucosal functions such as antimicrobial activity, immunomodulation and Eustachian tube mechanics [49]. Indeed, careful control of host surfactants regulates the viscosity and surface tension of the tympanic mucus layer [25] and keeps the surface tension of the mucus sufficiently low (58 mN/m) to facilitate the opening of the collapsed Eustachian tube [49]. Disruption of surfactant homeostasis increases the pressure needed to open the Eustachian tube, risking barotrauma and making the middle ear mucus more vulnerable to infections [49].

An important finding of our study was the identification of pheno- typic traits in streptococcal and staphylococcal cultivars that could give both groups a competitive advantage during the colonization of the middle ear. For example, the streptococcal and staphylococcal isolates grew well with and without oxygen (Fig. 4A) and secreted mucins and proteases (Table 3), which are adaptive responses for growth and reproduction under otic redox fluctuations using the available mucosal nutrients. Moreover, both groups produced lactate as the main fermentation byproduct (Fig. 5C), a key metabolic intermediate in the syntrophic otic communities [44]. By contrast, the otic Neisseria strains L0020-05 and L0020-06 grew poorly and flocculated extensively in oxic broth (Fig. 4A). Furthermore, the strains did not form robust biofilms (Fig. 5A), nor did they produce lactate fermentatively (Fig. 5C). These two Neisseria species formed a separate clade with species in the family *Neisseriaceae* that populate the tongue dorsum [18]. And although these species readily disperse via saliva into the oropharynx [45], they are not positively selected in the middle ear [44]. Additionally, the *Neisseria* cultivars were, along with the actinobacterial isolates (*Micrococcus* spp. L0020-05 and *Corynebacterium* spp. L0020-06), the only strains that did not secrete proteases on casein plates (Table 3). Not surprisingly, despite their abundance in the oral and perioral regions [41], these groups are not enriched in otic secretions [44].

The most notable difference between the staphylococcal and strep- tococcal isolates was arguably the aggregative properties of most *Streptococcus* species (Fig. 3B). Aggregation allows oral streptococci to recognize and recruit other bacteria to biofilms [46]. For example, oral streptococci coaggregate with actinomycetes to colonize the tooth surface and recruit other bacteria during the formation of the dental plaque [39,42]. Lactate exchange between streptococcal and *Veillonella* strains is critical for coaggregation during the early stages of biofilm formation on oral surfaces [46]. Fusobacteria also mediate early coaggregation in oral biofilms, forming physical bridges across the microcolonies that facilitate the attachment of non-coaggregating bacteria [39,42]. Thus, aggregative behaviors drive syntrophic interactions that sustain the growth of the dental plaque throughout all dentition stages and during the formation of subgingival biofilms in the predentate and postdentate states [47]. Being widespread and abundant, oral co-aggregates promote the co-dispersal of streptococci and syntrophic partners in saliva [3] and afford immunoprotection in non-oral mucosae [72].

The fact that the otic streptococci, like the oral ancestors, were highly aggregative (Fig. 4), formed robust biofilms (Fig. 5A) and produced lactate (Fig. 4C) suggests that they are the primary colonizers of the middle ear mucus. These adaptive traits allow streptococci to grow and reproduce in the middle ear mucus with obligate anaerobic, syn- tropic partners such as *Prevotella*, *Fusobacterium* and *Veillonella* [44]. The syntrophic microcolonies metabolize and ferment host mucins and proteins in the otic mucus (Fig. 1), indirectly controlling the visco-elastic properties of the mucus layer and Eustachian tube functionality [49]. The detection of a differential gradient of mucin gene expression along the tympanic cavity and Eustachian tube [49] suggests a high degree of spatial heterogeneity in bacterial colonization as well. Shaped like an inverted flask [6], the posterior region of the Eustachian tube is more readily seeded with saliva aerosols during the cycles of tubal aperture. Concentration of streptococcal aggregates in this region closer to the nasopharyngeal opening of the Eustachian tube could provide increased protection against otopathogens, which typically reside in nasal reservoirs. Future research should therefore consider the mecha-
zisms that allow otic streptococci to co-aggregate with syntrophic partners, their spatial distribution in the otic mucus and antagonistic
interactions with transient migrants. This knowledge is important to understand the functionality of the otic communities and how they influence host functions and the outcome of infections.

4. Methods

Bacterial strains and culture conditions. The bacterial strains used in this study include 19 cultivars previously isolated from otic secretions [44]. Briefly, the samples were collected with a single swab from the left and right nasopharyngeal openings of the Eustachian tube in 4 young (19–32 years old), healthy adults recruited as part of a larger study approved by the Michigan State University Biomedical and Physical Health Review Board (IRB # 17–502). All the strains were isolated as single colonies on Tryptic Soy Agar (TSA) plates (30 g/L of Tryptic Soy Broth from Sigma Aldrich and 15 g/L of Bacto Agar from BD) grown at 37°C. The isolates were routinely grown overnight in 5 ml of Tryptic Soy Broth (TSB) at 37°C with gentle agitation. For growth studies, we transferred mid-log phase (OD600 ~0.5) TSB cultures twice (initial OD600 of 0.1) to prepare a stationary phase (~0.9–1.0 OD600) inoculum for growth assays in Corning® 96-well clear round bottom TC-treated microplates (Corning 3799). Growth was initiated with the addition of 18 μl of the inoculum to 162 μl of TSB per well and monitored spectrophotometrically every 30 min (OD600 readings after 0.1 s of gentle agitation) while incubating the plates at 37°C inside a PowerWave HT (BioTek) plate reader. Each microtiter plate contained a control well with TSB medium (no cells) to use as a blank. To test for growth in anoxic medium, we introduced the inoculated plates in an 855-ABC Portable Anaerobic Chamber (Plas Labs, Inc.) containing a headspace of N2:CO2 (80:20), removed the lid several times to disperse the air, and allowed the media to equilibrate in the anoxic atmosphere for 10 min. We then placed the plate in a plate reader (PowerWave HT, BioTek) housed inside the anaerobic chamber. Microplate OD readings were every 30 min after 0.1 s of agitation. We used the ANOVA (Analysis of Variance) test in the Microsoft Excel® software to determine the significance of the difference between the means of aerobic and anaerobic growth (generation times) for each taxonomic group.

DNA sequencing and phylogenetic analyses. For taxonomic and phylogenetic analyses, we grew the 19 otic isolates (Table 1) in 2 ml of TSB at 37°C for 24 h and harvested the cells by centrifugation (25,000 × g for 5 min) in an Eppendorf 5417R refrigerated centrifuge prior to extracting the genomic DNA with a FastDNA® Spin kit (MP Biomedicals). Library preparation with an Illumina Nextera kit and whole genome sequencing in an Illumina NextSeq 550 platform were at the Microbial Genome Sequencing Center (MiGS; Pittsburgh, PA). We used the FastQC tool from the Babraham Institute (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for sequence quality control and Trimmomatics [7] for cleaning/trimming of the Illumina short reads. After assembling the genomes of novo with the Spades assembler [1], we identified the 16S rRNA gene sequences in the contigs with the BAsic Rapid Ribosomal RNA Predictor (Barrnap) (https://github.com/tesemann/barrnap). The 16S rRNA gene sequences were deposited in the GenBank database under individual accession numbers (Table 1). We used these sequences to identify the closest species (% identity) in the GenBank database using the nucleotide Basic Local Alignment Search Tool (BLAST) at the U.S. National Center of Biological Information (NCBI) using a species identity cutoff value of 98.7% [70]. We retrieved the 16S rRNA gene sequences from the closest type strains listed in the SILVA rRNA database (https://www.arb-silva.de) and aligned them to the otic sequences with the MUSCLE program using the MEGA X software [45]. We used the alignment to build a maximum-likelihood phylogenetic tree and calculate bootstrap confidence values for each node using 1,000 replications. The tree shows bootstrap values above 50% [27].

Catalase assay. Frozen stocks of the otic isolates were directly streaked on 1.5% (w/v) TSA plates to grow individual colonies at 37°C overnight. We spread each colony onto a microscope slide and added a drop of freshly prepared 3% hydrogen peroxide. Catalase-positive strains break down the hydrogen peroxide into water and oxygen gas, which generates bubbles. Lack or weak production of bubbles was used to designate a strain as catalase negative.

Swarming motility and surfactant detection assays. We screened each otic isolate for their ability to move on soft (0.5%) and, when indicated, 0.4% w/v agar) TSA plates, as a modification of a previously described assay [57]. For these assays, we first grew each isolate and the positive control (P. aeruginosa PA01) in TSB at 37°C overnight (OD600 ~1) and prepared a diluted TSB inoculum (OD600 0.1). We pipetted a 5-μl drop of the diluted culture onto the surface of the soft agar plates and allowed it to absorb until completely dry (~30 min). We then incubated the plates at 37°C and photographed the areas of growth at 18, 42 and 62 h against a ruler using a dissecting scope (Leica MZ6) at a magnification of 0.8X and 1X. The photographs were then analyzed with the ImageJ software [66] to measure the colony diameter over time and calculate the area expansion (swarming distance) from the initial inoculation spot.

We also screened the ability of the otic isolates to produce surfactants with a previously described atomized oil assay [10]. For this, we plated a 5-μl drop of the diluted TSB culture (OD600 of 0.1) on agar-solidified (1.5% w/v) TSA medium, allowed the inoculum to absorb for ~30 min, and incubated the plates at 37°C for 24 h. Using an airbrush (type H; Paasche Airbrush Co., Chicago, IL), we applied a fine mist of mineral oil onto the plate surface. Surfactant-producing colonies readily display a halo of mineral oil dispersal whose size provides a semiquantitative measure of surfactant secretion [10]. Photography and halo diameter visualization were as described above for the swarming assays, except that we measured the size of the oil dispersal zone from the colony edge. All strains were tested in three independent swarming and surfactant assays plates to calculate the average and standard deviation values.

Protease and mucinase plate assays. We used TSA plates containing 5% lactose-free, skim milk (Fairlife, LLC) or 0.5% Type II porcine gastric mucin (Sigma Aldrich) to screen the otic isolates for mucinase and protease secretion, respectively, using P. aeruginosa PA01 as a positive control. For these assays, we spot-plated 5 μl of overnight TSB cultures and incubated at 37°C for 24 h, as described earlier for the surfactant assays. Strains that secrete proteases to the medium degrade the milk’s casein and produce a clear halo around the area of growth after 24 h of incubation. Mucinase producers have clearings (mucin lysis) around or under the colony that show as zones of discoloration after staining with 7 ml of 0.1% amido black for 30 min and destaining with 14 ml of 2.5 M acetic acid for 30 min. When indicated, plates were incubated for 48 h to confirm emerging phenotypes. Each strain was tested in triplicate and photographed on a lightboard (A4 LED Light Box 9x12 Inch Light Pad, ME456) with an iPhone 11 at 2.4x magnification.

Organic acid detection in culture supernatant fluids. We grew triplicate stationary phase cultures of the otic isolates in oxic and anoxic TSB medium at 37°C and harvested the culture supernatant fluids by centrifugation (14,000 rpm, 10 min). We measured the pH of the supernatant fluids (5 ml) with a pH probe (Thermo Scientific® Orion® 720A – benchtop pH meter) and stored 1 ml of the samples at −20°C for chemical analyses by high performance liquid chromatography (HPLC). Once thawed, we filter-sterilized 250 μl of the supernatant fluid into 1 ml HPLC vials and measured their organic acid content in a Shimadzu 20A HPLC equipped with an Aminex HPX-87H column and a MicroGuard cation H+ guard column (Bio-Rad, Hercules, CA) at 55°C, as previously described [20]. As controls, we included samples with TSB medium and standard solutions of acetate, lactate, and pyruvate (provided at 1, 2, 5, 10 or 20 mM).

Biofilm assays. We used a previously described assay [50] to test the ability of the otic cultivars to form biofilms in Corning® 96-well clear round bottom TC-treated microplates (Corning 3799). We first grew overnight cultures in TSB with gentle agitation (~200 rpm) and used them to prepare a diluted cell suspension (OD600 ~0.1) for inoculation (18 μl) into TSB medium (162 μl per well). Each isolate was tested in 8
replicate wells. After incubating the plates at 37°C for 24 h, we removed the planktonic culture, washed the wells with ddH2O and stained the surface-attached cells with 0.1% (w/v) crystal violet. We then rinsed the wells with water and let the stained biofilms to dry overnight at room temperature before solubilizing the biofilm-associated crystal violet with 180 μl of 30% glacial acetic acid and measuring the crystal violet in the solution spectrophotometrically at 550 nm [50]. Correlations between aerobic biofilm formation and culture acidification were statistically analyzed and visualized with the K-mean clustering R functions (https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans) available in the RStudio software (version 4.0.4). Clustering visualization in R-Studio was achieved by plotting k-mean cluster results against desired averaged datasets (oxic-anoxic biofilm formation, aerobic pH, or aerobic doubling time).

Growth inhibition plate assays. We screened the otic streptococcal isolates for their ability to inhibit the growth of bacterial species (S. pneumoniae, M. catarrhalis, and non-typeable H. influenzae) commonly associated with infections of the middle ear [64]. As test strains, we used S. pneumoniae ATCC 6303 and M. catarrhalis ATCC 25238 (from the laboratory strain collection of Dr. Martha Mulks, Department of Microbiology and Molecular Genetics, Michigan State University) and a non-typeable H. influenzae (NTHi) strain isolated by Dr. Poorna Viswanathan in the teaching lab of the Department of Microbiology and Molecular Genetics (Michigan State University). The NTHi strain was confirmed prior to experimental use by multiplex PCR confirmation, as described previously [81]. We also included for testing the laboratory strain S. aureus JE2, which was kindly provided by Dr. Neal Hammer (Department of Microbiology and Molecular Genetics, Michigan State University). The otic streptococci and S. aureus JE2 were routinely spotted 5 μl of an overnight culture of each cultivar to retrieve 16S rRNA sequences, performed the taxonomic and phylogenetic analyses and all the physiological characterization assays. All authors read and approved the final version of the manuscript.

K.M. Jacob and G. Reguera

Availability of data and materials

The 16S rRNA gene sequences retrieved from Illumina sequences were deposited in the GenBank database under individual accession numbers (Table 1).

Ethics approval and consent to participate

The isolates used in this study were originally recovered from human mucosal samples using a protocol approved on May 17 of 2017 by the Institutional Review Board (IRB) at Michigan State University, East Lansing, Michigan, United States of America. The committee found the research project to be appropriate in design, to protect the rights and welfare of human subjects, and to meet the requirements of Michigan State University’s Federal Wide Assurance and the Federal Guidelines (45 CFR 46 and 21 CFR Part 50).

Consent for publication

Not applicable.

Funding

This research was funded by grants N00014-17-2678 and N00014-20-1-2471 from the Office of Naval Research (ONR) to GR. KJ acknowledges support from a summer 2020 G. D. Edith Hsiung and Margaret Everett Kimball Endowed fellowship from the department of Microbiology and Molecular Genetics at Michigan State University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of manuscript.

CRediT authorship contribution statement

Kristin M. Jacob: Formal analysis, processed samples for cultivation experiments, sequenced and partially assembled the genomes of otic cultivars to retrieve 16S rRNA sequences, performed the taxonomic and phylogenetic analyses and all the physiological characterization assays. All authors read and approved the final version of the manuscript.

Gemma Reguera: conceived the study and planned and interpreted the experiments with KJ, Writing – original draft, wrote the first draft of the manuscript and incorporated contributions from KJ. All authors read and approved the final version of the manuscript.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Gemma Reguera reports financial support was provided by Office of Naval Research. Kristin J Jacob reports a relationship with Michigan Department of Health and Human Services that includes: non-financial support.

Acknowledgements

The authors would like to thank Dr. Michaela TerAvest and Nicholas Tefft at Michigan State University for assistance with the HPLC analyses and Drs. Batsirai Mabvakure and Heather Blankenship at the Michigan Department of Health and Human Services Bureau of Laboratory for guidance on Illumina short read assembly and contig gene analysis. We are also thankful to Drs. Martha Mulks, Poorna Viswanathan and Neal Hammer for providing the test strains used in the growth inhibition plate assays.
