Distributional Sentence Entailment Using Density Matrices

Esma Balkır 1, Mehrnoosh Sadrzadeh1, and Bob Coecke2

1Queen Mary University of London
2University of Oxford

Abstract

Categorical compositional distributional model of Coecke et al. (2010) suggests a way to combine grammatical composition of the formal, type logical models with the corpus based, empirical word representations of distributional semantics. This paper contributes to the project by expanding the model to also capture entailment relations. This is achieved by extending the representations of words from points in meaning space to density operators, which are probability distributions on the subspaces of the space. A symmetric measure of similarity and an asymmetric measure of entailment is defined, where lexical entailment is measured using von Neumann entropy, the quantum variant of Kullback-Leibler divergence. Lexical entailment, combined with the composition map on word representations, provides a method to obtain entailment relations on the level of sentences.

1 Introduction

The term distributional semantics is almost synonymous with the term vector space models of meaning. This is because vector spaces are natural candidates for modelling the distributional hypothesis and contextual similarity between words (Firth, 1957). In a nutshell, this hypothesis says that words that often occur in the same contexts have similar meanings. So for instance, ‘ale’ and ‘lager’ are similar since they both often occur in the context of ‘beer’, ‘pub’, and ‘pint’. The obvious practicality of these models, however, does not guarantee that they possess the expressive power needed to model all aspects of meaning. Current distributional models mostly fall short of successfully modelling subsumption and entailment (Lenci and Benotto, 2012). There are a number of models that use distributional similarity to enhance textual entailment (Glickman et al., 2005; Beltagy et al., 2013). However, most of the work from the distributional semantics community has been focused on developing more sophisticated metrics on vector representations (Lin, 1998; Kotlerman et al., 2010; Weeds et al., 2004).

In this paper we suggest the use of density matrices instead of vector spaces as the basic distributional representations for the meanings of words. Density matrices are widely used in quantum mechanics, and are a generalization of vectors. There are several advantages to using density matrices to model meaning. Firstly, density matrices have the expressive power to represent all the information vectors can represent: they are a suitable implementation of the distributional hypothesis. They come equipped with a measure of information content, and so provide a natural way of implementing asymmetric relations between words such as hyponymy-hypernymy relations. Furthermore, they form a compact closed category. This allows the previous work of Coecke et al. (2010) on obtaining representations for meanings of sentences from the meaning of words to be applicable to density matrices. The categorical map from meanings of words to the meaning of the sentence respects the order induced by the relative entropy of density matrices. This promises, given suitable representations of individual words, a method to obtain entailment relations on the level of sentences, inline with the lexical entailment of natural logic, e.g. see MacCartney and Manning (2007), rather than the traditional logical entailment of Montague semantics.

Related Work. This work builds upon and relates to literature on compositional distributional models, distributional lexical entailment, and the use of density matrices in computational linguistics and information retrieval.

There has been a recent interest in methods of composition within the distributional semantics framework. There are a number of composition methods in literature. See Grefenstette (2013) for a survey of compositional distributional models and a discussion of their strengths and weaknesses. This work extends the work presented in Coecke et al.
a compositional model based on category theory. Their model was shown to outperform the competing compositional models by Grefenstette and Sadrzadeh (2011).

Research on distributional entailment has mostly been focused on lexical entailment. One notable exception is Baroni et al. (2012), who use the distributional data on adjective-noun pairs to train a classifier, which is then utilized to detect novel noun pairs that have the same relation. There are a number of non-symmetric lexical entailment measures which all rely on some variation of the Distributional Inclusion Hypothesis: “If \(w \) is semantically narrower than \(v \), then a significant number of salient distributional features of \(w \) are also included in the feature vector of \(v \)” (Kotlerman et al. 2010). In their experiments, Gefet and Dagan (2005) show that while if a word \(v \) entails another word \(w \) then the characteristic features of \(v \) is a subset of the ones for \(w \), it’s not necessarily the case that the inclusion of the characteristic features \(v \) in \(w \) indicate that \(v \) entails \(w \). One of their suggestions for increasing the prediction power of their method is to include more than one word in the features.

Santus et al. (2014) use a measure based on entropy to detect hyponym-hypernym relationships in given pairs. The measure they suggest rely on the hypothesis that hypernyms are semantically more general than hyponyms, and therefore tend to occur in less informative contexts. Herbelot and Ganesalingam (2013) rely on a very similar idea, and use KL-divergence between the target word and the basis words to quantify the semantic content of the target word. They conclude that this method performs equally well in detecting hyponym-hypernym pairs as their baseline method only considers the overall frequency of the word in corpus. They reject the hypothesis that more general words occur in less informative contexts. Their method differs from ours in that they use relative entropy to quantify the overall information content of a word, and not to compare two target words to each other.

Piedeleu et al. (2015) extend the compositional model of Coecke et al. (2010) to include density matrices as we do, but use it for modeling homonymy and polysemy. Their approach is complementary to ours, and in fact, they show that it is possible to merge the two constructions. Bruza and Cole (2005) use density matrices to model context effects in a conceptual space. In their quantum mechanics inspired model, words are represented by mixed states and each eigenstate represents a sense of the word. Context effects are then modelled as quantum collapse. Blacoe et al. (2013) use density matrices to encode dependency neighbourhoods, with the aim of modelling context effects in similarity tasks. Van Rijsbergen (2004) uses density matrices to sketch out a theory of information retrieval, and connects the logic of the space and of density matrices via an order relation that makes the set of projectors in a Hilbert space into a complete lattice. He uses this order to define an entailment relation. Sordoni et al. (2013) show that using density matrices to represent documents provides significant improvement on realistic IR tasks.

This paper is based on the MSc Thesis of the first author (Balkır, 2014).

2 Background

Definition 2.1. A monoidal category is compact closed if for any object \(A \), there are left and right dual objects, i.e. objects \(A^\vee \) and \(A^! \), and morphisms \(\eta^\vee : I \rightarrow A \otimes A^\vee \), \(\eta^! : I \rightarrow A^\vee \otimes A \), \(\epsilon^\vee : A^\vee \otimes A \rightarrow I \) and \(\epsilon^! : A \otimes A^! \rightarrow I \) that satisfy:

\[
(1_A \otimes \epsilon^\vee) \circ (\eta^\vee \otimes 1_A) = 1_A \\
(\epsilon^\vee \otimes 1_A) \circ (1_A \otimes \eta^\vee) = 1_A \\
(\epsilon^\vee \otimes 1_A) \circ (1_A \otimes \eta^\vee) = 1_A \\
(\epsilon^\vee \otimes 1_A) \circ (1_A \otimes \eta^\vee) = 1_A
\]

Compact closed categories are used to represent correlations, and in categorical quantum mechanics they model maximally entangled states. (Abramsky and Coecke, 2004) The \(\eta \) and \(\epsilon \) maps are useful in modeling the interactions of the different parts of a system. To see how this relates to natural language, consider a simple sentence with an object, a subject and a transitive verb. The meaning of the entire sentence is not simply an accumulation of the meanings of its individual words, but depends on how the transitive verb relates the subject and the object. The \(\eta \) and \(\epsilon \) maps provide the mathematical formalism to specify such interactions. The distinct left and right duals ensure that compact closed categories can take word order into account.

There is a graphical calculus used to reason about monoidal categories (Coecke, 2010). In the graphical language, objects are wires, and morphisms are boxes with incoming and outgoing wires of types corresponding to the input and output types of the morphism. The identity object is depicted as empty space, so a state \(\psi : I \rightarrow A \) is depicted as a box with no input wire and an output wire with type \(A \). The duals of states are called effects, and they are of type \(A \rightarrow I \).

Let \(f : A \rightarrow B \), \(g : B \rightarrow C \) and \(h : C \rightarrow D \), and \(1_A : A \rightarrow A \) the identity function on \(A \). \(1_A, f, f \otimes h, g \circ f \), the state \(\psi : I \rightarrow A \), the effect \(\pi : A \rightarrow I \), and the scalar \(\psi \circ \pi \) are depicted as follows:
The maps η^r, η^l, e^l and e^r take the following forms in the graphical calculus:

$\eta^r: \begin{array}{c} \eta^l: \begin{array}{c} e^l: \begin{array}{c} e^r: \begin{array}{c} A \xrightarrow{f} B \quad A \xrightarrow{f} C \\ B \xrightarrow{g} D \quad B \xrightarrow{g} C \end{array} \quad \psi \xrightarrow{\phi} A \quad \psi \xrightarrow{\phi} A \end{array} \quad \psi \xrightarrow{\phi} A \quad \psi \xrightarrow{\phi} A \\ A \xrightarrow{A} A \quad A \xrightarrow{A} B \quad A \xrightarrow{A} C \quad A \xrightarrow{A} D \end{array}$

The axioms of compact closure, referred to as the *snake identities* because of the visual form they take in the graphical calculus, are represented as follows:

$A = A^r A = A^l A^r = A^l A^r = A^l A^r = A^l A^r = A^l A^r$

More generally, the reduction rules for diagrammatic calculus allow continuous deformations. One such deformation we will make use of is the *swing rule*:

$\psi = \psi = \psi = \psi$

Definition 2.2. ([Lambek, 2001]) A pregroup $(P, \leq, \cdot, 1, (-)^l, (-)^r)$ is a partially ordered monoid in which each element a has both a left adjoint a^l and a right adjoint a^r such that $a^l a \leq 1 \leq a^r a$ and $a a^r \leq 1 \leq a^l a$.

If $a \leq b$ it is common practice to write $a \rightarrow b$ and say that a reduces to b. This terminology is useful when pregroups are applied to natural language, where each word gets assigned a pregroup type freely generated from a set of basic elements. The sentence is deemed to be grammatical if the concatenation of the types of the words reduce to the simple type of a sentence. For example reduction for a simple transitive sentence is $n(n^r s n^l)n \rightarrow 1 s n^l n \rightarrow 1 s 1 \rightarrow s$.

A pregroup P is a concrete instance of a compact closed category. The η^l, η^r, e^l, e^r maps are $\eta^l = [1 \leq p \cdot p^l], \eta^r = [1 \leq p^r \cdot p], e^l = [p^l \cdot p \leq 1], e^r = [p \cdot p^r \leq 1]$.

FVect as a concrete compact closed category. Finite dimensional vector spaces over the base field \mathbb{R}, together with linear maps form a monoidal category, referred to as \mathbf{FVect}. The monoidal tensor is the usual vector space tensor and the monoidal unit is the base field \mathbb{R}. It is also a compact closed category where $V^l = V^r = V$. The compact closed maps are defined as follows:

Given a vector space V with basis $\{ \overrightarrow{e_i} \}$,

$\eta^l_V: \mathbb{R} \rightarrow V \otimes V \quad 1 \mapsto \sum_i \overrightarrow{e_i} \otimes \overrightarrow{e_i} \quad \eta^r_V: V \otimes V \rightarrow \mathbb{R} \quad \sum_i \overrightarrow{e_i} \otimes \overrightarrow{e_i} \mapsto \sum_i e_i \langle \overrightarrow{v_i} | \overrightarrow{w_i} \rangle$
Categorical representation of meaning space. The tensor in FVect is commutative up to isomorphism. This causes the left and the right adjoints to be the same, and thus for the left and the right compact closed maps to coincide. Thus FVect by itself cannot take the effect of word ordering on meaning into account. Coecke et al. (2010) propose a way around this obstacle by considering the product category $\text{FVect} \times \text{P}$ where P is a pregroup.

Objects in $\text{FVect} \times \text{P}$ are of the form (V, p), where V is the vector space for the representation of meaning and p is the pregroup type. There exists a morphism $(f, \leq) : (V, p) \to (W, q)$ if there exists a morphism $f : V \to W$ in FVect and $p \leq q$ in P.

The compact closed structure of FVect and P lifts componentwise to the product category $\text{FVect} \times \text{P}$:

$$
\eta^l : (\mathbb{R}, 1) \to (V \otimes V, p \cdot p^l) \\
\epsilon^l : (V \otimes V, p^l \cdot p) \to (\mathbb{R}, 1) \\
\epsilon^r : (V \otimes V, p \cdot p^r) \to (\mathbb{R}, 1)
$$

Definition 2.3. An object (V, p) in the product category is called a meaning space, where V is the vector space in which the meanings $\vec{v} \in V$ of strings of type p live.

Definition 2.4. From-meanings-of-words-to-the-meaning-of-the-sentence map. Let $v_1 v_2 \ldots v_n$ be a string of words, each v_i with a meaning space representation $\vec{v}_i \in (V_i, p_i)$. Let $x \in P$ be a pregroup type such that $[p_1 p_2 \ldots p_n \leq x]$ Then the meaning vector for the string is $\vec{v}_1 \vec{v}_2 \vec{v}_n := f(\vec{v}_1^i \otimes \vec{v}_2^i \otimes \ldots \otimes \vec{v}_n^i) \in (W, x)$, where f is defined to be the application of the compact closed maps obtained from the reduction $[p_1 p_2 \ldots p_n \leq x]$ to the composite vector space $V_1 \otimes V_2 \otimes \ldots \otimes V_n$.

This framework uses the maps of the pregroup reductions and the elements of objects in FVect. The diagrammatic calculus provides a tool to reason about both. As an example, take the sentence “John likes Mary”. It has the pregroup type $\text{sn} \times \text{sn}$, and the vector representations $\text{John}, \text{Mary} \in V$ and $\text{likes} \in V \otimes S \otimes V$. The morphism in $\text{FVect} \times \text{P}$ corresponding to the map defined in Definition 2.4 is of type $(V \otimes (V \otimes S \otimes V) \otimes V, \text{sn} \times \text{sn}) \to (S, s)$. From the pregroup reduction $[\text{sn} \times \text{sn} \to s]$ we obtain the compact closed maps $\epsilon^1 1^l$. In FVect this translates into $\epsilon^V \otimes 1_S \otimes \epsilon^V : V \otimes (V \otimes S \otimes V) \otimes V \to S$. This map, when applied to $\text{John \otimes likes \otimes Mary}$ has the following depiction in the diagrammatic calculus:

Note that this construction treats the verb ‘likes’ essentially as a relation that takes two inputs of type V, and outputs a vector of type S. For the explicit calculation, note that $\text{likes} = \sum_{ijk} c_{ijk} \vec{v}^i_1 \otimes \vec{s}^j_2 \otimes \vec{v}^k_3$, where $\{\vec{v}^i_1\}_i$ is an orthonormal basis for V and $\{\vec{s}^j_2\}_j$ is an orthonormal basis for S. Then

$$
\text{John likes Mary} = \epsilon^V \otimes 1_S \otimes \epsilon^V (\text{John \otimes likes \otimes Mary}) \\
= \sum_{ijk} (\text{John} | \vec{v}^i_1_j) \vec{s}^j_2_k (\text{Mary} | \vec{v}^k_3_j)
$$

The reductions in diagrammatic calculus help reduce the final calculation to a simpler term. The non-reduced reduction, when expressed in dirac notation is $(\epsilon^V | \otimes 1_S \otimes (\epsilon^V | \circ \text{John \otimes likes \otimes Mary})$. But we can swing John and Mary in accord with the reduction rules in the diagrammatic calculus. The diagram then reduces to:

This results in a simpler expression that needs to be calculated: $((\text{John} | \otimes 1_S \otimes (\text{Mary} | \circ \text{likes})$.
3 Density Matrices as Elements of a Compact Closed Category

Recall that in FVect, vectors $|v\rangle \in V$ are in one-to-one correspondence with morphisms of type $v : I \to V$. Likewise, pure states of the form $|\langle v|\rangle$ are in one-to-one correspondence with morphisms $v \circ v^\dagger : V \to V$ such that $v^\dagger \circ v = \text{id}_I$, where v^\dagger denotes the adjoint of v (notice that this corresponds to the condition that $\langle v|v\rangle = 1$). A general (mixed) state ρ is a positive morphism of the form $\rho : V \to V$. One can re-express the mixed states $\rho : V \to V$ as elements $\rho : I \to V^* \otimes V$. Here $V^* = V^\dagger = V$.

Definition 3.1. f is a completely positive map if f is positive for any positive operator A, and $(\text{id}_V \otimes f)B$ is positive for any positive operator B and any space V.

Completely positive maps in FVect form a monoidal category (Selinger, 2007). Thus one can define a new category CPM(FVect) where the objects of CPM(FVect) are the same as those of FVect, and morphisms $A \to B$ in CPM(FVect) are completely positive maps $A^* \otimes A \to B^* \otimes B$ in FVect. The elements $I \to A$ in CPM(FVect) are of the form $I^* \otimes I \to A^* \otimes A$ in FVect, providing a monoidal category with density matrices as its elements.

CPM(FVect) in graphical calculus. A morphism $\rho : A \to A$ is positive if and only if there exists a map $\sqrt{\rho}$ such that $\rho = \sqrt{\rho}^\dagger \circ \sqrt{\rho}$. In FVect, the isomorphism between $\rho : A \to A$ and $\sqrt{\rho}^\dagger : I \to A^* \otimes A$ is provided by $\eta^\dagger = \eta^\star$. The graphical representation of ρ in FVect then becomes:

\[
\begin{array}{c}
\rho \\
\end{array}
\begin{array}{c}
\sqrt{\rho}^\dagger \\
\sqrt{\rho} \\
\end{array}
\begin{array}{c}
\rho
\end{array}
\]

Notice that the categorical definition of a positive morphism coincides with the definition of a positive operator in a vector space, where $\sqrt{\rho}$ is the square root of the operator.

The graphical depiction of completely positive morphisms come from the following theorem:

Theorem 3.1. (Stinespring Dilation Theorem) $f : A^* \otimes A \to B^* \otimes B$ is completely positive if and only if there is an object C and a morphism $\sqrt{f} : A \to C \otimes B$ such that the following equation holds:

\[
\begin{array}{c}
A \\
f \\
\end{array}
\begin{array}{c}
A \\
\sqrt{f} \\
\end{array}
\begin{array}{c}
C \\
B
\end{array}
\]

\sqrt{f} and C here are not unique. For the proof of the theorem see Selinger (2007).

Theorem 3.2. CPM(FVect) is a compact closed category where as in FVect, $V^r = V^\dagger = V$ and the compact closed maps are defined to be:

\[
\begin{align*}
\eta^l &= (\eta^l_V \otimes \eta^l_V) \circ (1_V \otimes \sigma \otimes 1_V) \\
\epsilon^l &= (1_V \otimes \sigma \otimes 1_V) \circ (\epsilon^l_V \otimes \epsilon^l_V)
\end{align*}
\]

\[
\begin{align*}
\eta^r &= (\eta^r_V \otimes \eta^r_V) \circ (1_V \otimes \sigma \otimes 1_V) \\
\epsilon^r &= (1_V \otimes \sigma \otimes 1_V) \circ (\epsilon^r_V \otimes \epsilon^r_V)
\end{align*}
\]

where σ is the swap map defined as $\sigma(v \otimes w) = (w \otimes v)$.

Proof. The graphical construction of the compact closed maps boils down to doubling the objects and the wires. The identities are proved by adding bends in the wires. Consider the diagram for η^r:
compact closed maps can likewise be expressed by a single thick wire.

Since the underlying category FVect is symmetric, it has the swap map σ. This provides us with the isomorphism:

$$(V_1 \otimes V_2 \otimes \ldots \otimes V_n)^* \otimes (V_1 \otimes V_2 \otimes \ldots \otimes V_n) \sim (V_1^* \otimes V_1) \otimes (V_2^* \otimes V_2) \otimes \ldots \otimes (V_n^* \otimes V_n)$$

So ρ can be equivalently expressed as $\rho : I \rightarrow (V_1^* \otimes V_1) \otimes (V_2^* \otimes V_2) \otimes \ldots \otimes (V_n^* \otimes V_n)$. With this addition, we can simplify the diagrams used to express density matrices by using a single thick wire for the doubled wires. Doubled compact closed maps can likewise be expressed by a single thick wire.

These maps satisfy the axioms of compact closure since the components do.

The diagrammatic expression of a from-meanings-of-words-to-the-meaning-of-the-sentence map using density matrices will therefore look exactly like the depiction of it in FVect, but with thick wires.

4 Using Density Matrices to Model Meaning

If one wants to use the full power of density matrices in modelling meaning, one needs to establish an interpretation for the distinction between mixing and superposition in the context of linguistics. Let contextual features be the salient, quantifiable features of the contexts a word is observed in. Let the basis of the space be indexed by such contextual features. Individual contexts, such as words in an n-word window of a text, can be represented as the superposition of the bases corresponding to the contextual features observed in it. So each context corresponds to a pure state. Words are then probability distributions over the contexts they appear in. The simple co-occurrence model can be cast as a special case of this more general approach, where features and contexts are the same. Then all word meanings are mixtures of basis vectors, and they all commute with each other.

Similarity for density matrices. Fidelity is a good measure of similarity between two density matrix representations of meaning because of its properties listed below.

Definition 4.1. The fidelity of two density operators ρ and σ is $F(\rho, \sigma) := \text{tr} \sqrt{\rho^{1/2} \sigma \rho^{1/2}}$.

Some useful properties of fidelity are:

1. $F(\rho, \sigma) = F(\sigma, \rho)$
2. $0 \leq F(\rho, \sigma) \leq 1$
3. $F(\rho, \sigma) = 1$ if and only if $\rho = \sigma$
4. If $|\phi\rangle\langle\phi|$ and $|\psi\rangle\langle\psi|$ are two pure states, their fidelity is equal to $|\langle\phi|\psi\rangle|$.

These properties ensure that if the representations of two words are not equal to each other, they will not be judged perfectly similar, and, if two words are represented as projections onto one dimensional subspaces, their similarity value will be equal to the usual cosine similarity of the vectors.
Entailment for density matrices. To develop a theory of entailment using density matrices as the basic representations, we assume the following hypothesis:

Distributional hypothesis for hyponymy. The meaning of a word \(w \) subsumes the meaning of a word \(v \) if and only if it is appropriate to use \(w \) in all the contexts \(v \) is used.

This is a slightly more general version of the *Distributional Inclusion Hypothesis* (DIH) stated in [Kotlerman et al. (2010)](https://example.com). The difference lies in the additional power the density matrix formalism provides: the distinction between mixing and superposition. Further, DIH only considers whether or not the target word occurs together with the salient distributional feature at all, and ignores any possible statistically significant correlations of features; here again, the density matrix formalism offers a solution.

Note that [Geffet and Dagan (2005)](https://example.com) show that while there is ample evidence for the distributional inclusion hypothesis, this in itself does not necessarily provide a method to detect hyponymy-hypernymy pairs. One of their suggestions for improvement is to consider more than one word in the features, equivalent to what we do here by taking correlations into account in a co-occurrence space where the bases are context words.

Relative entropy quantifies the distinguishability of one distribution from another. The idea of using relative entropy to model hyponymy is based on the assumption that the distinguishability of one word from another given its usual contexts provides us with a good metric for hyponymy. For example, if one is given a sentence with the word *dog* crossed out, it will be not be possible for sure to know whether the crossed out word is not *animal* just from the context (except perhaps very particular decelerational sentences which rely on world knowledge, such as ‘All – bark’.)

Definition 4.2. The (quantum) relative entropy of two density matrices \(\rho \) and \(\sigma \) is \(N(\rho||\sigma) := \text{tr}(\rho \log \rho) − \text{tr}(\rho \log \sigma) \), where \(0 \log 0 = 0 \) and \(x \log 0 = \infty \) when \(x \neq 0 \) by convention.

Definition 4.3. The representativeness between \(\rho \) and \(\sigma \) is \(R(\rho, \sigma) := 1/(1 + N(\rho||\sigma)) \), where \(N(\rho||\sigma) \) is the quantum relative entropy between \(\rho \) and \(\sigma \).

Quantum relative entropy is always non-negative. For two density matrices \(\rho \) and \(\sigma \), \(N(\rho||\sigma) = \infty \) if \(\text{supp}(\rho) \cap \text{ker}(\sigma) \neq 0 \), and is finite otherwise. The following is a direct consequence of these properties:

Corollary 1. For all density matrices \(\rho \) and \(\sigma \), \(R(\rho, \sigma) \leq 1 \) with equality if and only if \(\rho = \sigma \), and \(0 \leq R(\rho, \sigma) \) with equality if and only if \(\text{supp}(\rho) \cap \text{ker}(\sigma) \neq 0 \)

The second part of the corollary reflects the idea that if there is a context in which it is appropriate to use \(v \) but not \(w \), then \(v \) is perfectly distinguishable from \(w \). Such contexts are exactly those that fall within \(\text{supp}(\rho) \cap \text{ker}(\sigma) \).

Characterizing hyonyms. The quantitative measure on density matrices given by representativeness provide a qualitative preorder on meaning representations as follows:

\[
\rho \vdash \sigma \quad \text{if} \quad R(\rho, \sigma) > 0
\]

\[
\rho \sim \sigma \quad \text{if} \quad \vdash \sigma \quad \text{and} \quad \sigma \vdash \rho
\]

Proposition 4.1. The following are equivalent:

1. \(\rho \vdash \sigma \)
2. \(\text{supp}(\rho) \subseteq \text{supp}(\sigma) \)
3. There exists a positive operator \(\rho' \) and \(p > 0 \) such that \(\sigma = p\rho + \rho' \)

Proof. (1) \(\Rightarrow \) (2) and (2) \(\Rightarrow \) (1) follow directly from Corollary 1:

(2) \(\Rightarrow \) (3) since \(\text{supp}(\rho) \subseteq \text{supp}(\sigma) \) implies that there exists a \(p > 0 \) such that \(\sigma - p\rho \) is positive. Setting \(\rho' = \sigma - p\rho \) gives the desired equality.

(3) \(\Rightarrow \) (2) since \(p > 0 \), and so \(\text{supp}(\rho) \subseteq \text{supp}(\sigma) = \text{supp}(p\rho + \rho') \).

The equivalence relation \(\sim \) groups any two density matrices \(\rho \) and \(\sigma \) with \(\text{supp}(\rho) = \text{supp}(\sigma) \) into the same equivalence class, thus maps the set of density matrices on a Hilbert space \(\mathcal{H} \) onto the set of projections on \(\mathcal{H} \). The projections are in one-to-one correspondence with the subspaces of \(\mathcal{H} \) and they form an orthomodular lattice, providing
a link to the logical structure of the Hilbert space \(\text{Van Rijsbergen (2004)} \) aims to exploit by using density matrices in IR.

Let \(\hat{w} \) and \(\hat{v} \) be density matrix representations of the words \(v \) and \(w \). Then \(v \) is a hyponym of \(w \) in this model if \(\hat{v} \vdash \hat{w} \) and \(\hat{v} \sim \hat{w} \).

Notice that even though this ordering on density matrices extracts a yes/no answer for the question “is \(v \) a hyponym of \(w \)?”, the existence of the quantitative measure lets us to also quantify the extent to which \(v \) is a hyponym of \(w \). This provides some flexibility in characterizing hyponymy through density matrices in practice. Instead of calling \(v \) a hyponym of \(w \) even when \(R(\hat{w}, \hat{w}) \) gets arbitrarily small, one can require the representativeness to be above a certain threshold \(\varepsilon \). This modification, however, has the down side of causing the transivity of hyponymy to fail.

5 From meanings of words to the meanings of sentences passage

As in the case for \(\text{FVect} \times \text{P}, \text{CPM(FVect)} \times \text{P} \) is a compact closed category, where the compact closed maps of \(\text{CPM(FVect)} \) and \(\text{P} \) lift component-wise to the product category.

Definition 5.1. A meaning space in this new category is a pair \((V^* \otimes V, p) \) where \(V^* \otimes V \) is the space in which density matrices \(v : I \rightarrow V^* \otimes V \) of the pregroup type \(p \) live.

Definition 5.2. Let \(v_1 v_2 \ldots v_n \) be a string of words, each \(v_i \) with a meaning space representation \(\hat{v}_i \in (V^*_i \otimes V_i, p_i) \). Let \(x \in P \) be a pregroup type such that \([p_1 p_2 \ldots p_n \leq x] \). Then the meaning density matrix for the string is defined as:

\[
v_1 v_2 \ldots v_n := f(\hat{v}_1 \otimes \hat{v}_2 \otimes \ldots \otimes \hat{v}_n) \in (W^* \otimes W, x)
\]

where \(f \) is defined to be the application of the compact closed maps obtained from the reduction \([p_1 p_2 \ldots p_n \leq x] \) to the composite density matrix space \((V_1 \otimes V_1^*) (V_2^* \otimes V_2) \ldots (V_n^* \otimes V_n) \).

From a high level perspective, the reduction diagrams for \(\text{CPM(FVect)} \times \text{P} \) look no different than the original diagrams for \(\text{FVect} \times \text{P} \), except that we depict them with thick instead of thin wires. Consider the previous example: “John likes Mary”. It has the pregroup type \(n(n^* s n^t)n \), and the compact closed maps obtained from the pregroup reduction is \((\epsilon^t \otimes 1 \otimes \epsilon^l) \).

One can also depict the diagram together with the internal anatomy of the density representations in \(\text{FVect} \):

![Diagram](https://via.placeholder.com/150)

The graphical reductions for compact closed categories can be applied to the diagram, establishing \((\epsilon^t \otimes 1 \otimes \epsilon^l)(\text{John} \otimes \text{likes} \otimes \text{Mary}) = (\text{John} \otimes 1 \otimes \text{Mary}) \circ \text{likes} \).

As formalised in natural logic, one expects that if the subject and object of a sentence are common nouns which are, together with the verb of the sentence, moreover, upward monotone, then if these are replaced by their hyponyms, then the meanings of the original and the modified sentences would preserve this hyponymy. The following proposition shows that the sentence meaning map for simple transitive sentences achieves exactly that.

Theorem 5.1. If \(\rho, \sigma, \delta, \gamma \in (N^* \otimes N, n) \), \(\alpha, \beta \in (N^* \otimes N \otimes S^* \otimes S \otimes N^* \otimes N, n^t s n^t \rho \vdash \sigma, \delta \vdash \gamma \) and \(\alpha \vdash \beta \) then

\[
f(\rho \otimes \alpha \otimes \delta) \vdash f(\sigma \otimes \beta \otimes \gamma)
\]

where \(f \) is the from-meanings-of-words-to-the-meaning-of-the-sentence map in definition 5.2.
Proof. If $\rho \vdash \sigma, \delta \vdash \gamma$, and $\alpha \vdash \beta$, then there exists a positive operator ρ' and $r > 0$ such that $\sigma = r\rho + \rho'$, a positive operator δ' and $d > 0$ such that $\gamma = d\delta + \delta'$ and a positive operator α' and $a > 0$ such that $\beta = a\alpha + \alpha'$ by Proposition \ref{prop:positive}. Then

\[
f(\sigma \otimes \beta \otimes \gamma) = (e^r \otimes 1 \otimes e^d)(\sigma \otimes \beta \otimes \gamma)
= (\sigma \otimes 1 \otimes \gamma) \circ \beta
= ((r\rho + \rho') \otimes 1 \otimes (d\delta + \delta')) \circ (a\alpha + \alpha')
= (r\rho \otimes 1 \otimes d\delta) \circ (a\alpha + \alpha') + (\rho' \otimes 1 \otimes \delta') \circ (a\alpha + \alpha'),
\]

since $r, d, a \neq 0$, $\text{supp}(f(\rho \otimes \alpha \otimes \delta)) \subseteq \text{supp}(f(\sigma \otimes \beta \otimes \gamma))$, which by Proposition \ref{prop:positive} proves the theorem. \hfill \square

6 Proof of Concept

Lexical entailment As a proof of concept example, suppose we have a noun space N, and the subspace relevant for this part of the example is spanned by words ‘pub’, ‘pitcher’, ‘tonic’. Suppose the (non-normalized version of the) vectors of the atomic words ‘lager’ and ‘ale’ in this subspace are as follows:

\[
\begin{align*}
\overrightarrow{\text{lager}} &= 6 \times \overrightarrow{\text{pub}} + 5 \times \overrightarrow{\text{pitcher}} + 0 \times \overrightarrow{\text{tonic}} \\
\overrightarrow{\text{ale}} &= 7 \times \overrightarrow{\text{pub}} + 3 \times \overrightarrow{\text{pitcher}} + 0 \times \overrightarrow{\text{tonic}}
\end{align*}
\]

Suppose further that we are given taxonomies such as ‘beer = lager + ale’. Atomic words (i.e. leafs of the taxonomy), correspond to pure states and their density matrices are the projections onto the one dimensional subspace spanned by $|\overrightarrow{w}\rangle$. Non-atomic words (such as ‘beer’) are also density matrices, harvested from the corpus using a feature-based method similar to that of Geffet and Dagan (2005). This is done by counting (and normalising) the frequency of times a word has co-occurred with a subset of bases in a window in which other bases (the ones not in B) have not occurred. Formally, for a subset of bases $\{b_1, b_2, \ldots, b_n\}$, we collect co-ordinates C_{ij} for each tuple $|b_i\rangle|b_j\rangle$ and build the density matrix $\sum_{ij} C_{ij}|b_i\rangle|b_j\rangle$. We denote all such density matrices as before, that is by putting a hat on top their corresponding word w.

For example, suppose we see ‘beer’ six times with just ‘pub’, seven times with both ‘pub’ and ‘pitcher’, and none-whatever with tonic. Its corresponding density matrix will be as follows:

\[
\begin{align*}
\hat{\overrightarrow{\text{beer}}}&= 6 \times |\overrightarrow{\text{pub}}\rangle\langle\overrightarrow{\text{pub}}| + 7 \times (|\overrightarrow{\text{pub}}\rangle + |\overrightarrow{\text{pitcher}}\rangle)(\langle\overrightarrow{\text{pub}}| + \langle\overrightarrow{\text{pitcher}}|)
= 13 \times |\overrightarrow{\text{pub}}\rangle\langle\overrightarrow{\text{pub}}| + 7 \times |\overrightarrow{\text{pub}}\rangle\langle\overrightarrow{\text{pitcher}}| + 7 \times |\overrightarrow{\text{pitcher}}\rangle\langle\overrightarrow{\text{pub}}| + 7 \times |\overrightarrow{\text{pitcher}}\rangle\langle\overrightarrow{\text{pitcher}}|
\end{align*}
\]

To calculate the similarity and representativeness between the words, we first normalize them via the operation $\hat{\rho}/\text{Tr}\hat{\rho}$, then apply the corresponding formulae.

The degree of similarity between ‘beer’ and ‘lager’ using fidelity is as follows:

\[
\text{Tr} \sqrt{\overrightarrow{\text{lager}} \cdot \overrightarrow{\text{beer}} \cdot \overrightarrow{\text{lager}}} = 0.93
\]

The degree of entailment ‘lager \vdash beer’ is 0.82 as computed below; the degree of entailment ‘beer \vdash lager’ is 0, like one would expect.

\[
1 / \left(1 + \text{Tr}(\overrightarrow{\text{lager}} \cdot \log(\overrightarrow{\text{lager}}) - \overrightarrow{\text{lager}} \cdot \log(\overrightarrow{\text{beer}}))\right) = 0.82
\]

Sentence entailment To see how one might get the entailment of sentences from the entailments of words, consider the sentences ‘Psychiatrist is drinking lager’ and ‘Doctor is drinking beer’. For the sake of brevity, we assign the meanings of ‘psychiatrist’ and ‘doctor’ to be mixtures of basis elements:

\[
\begin{align*}
\text{psychiatrist} &= 2 \times |\text{patient}\rangle\langle\text{patient}| + 5 \times |\text{mental}\rangle\langle\text{mental}|
\text{doctor} &= 5 \times |\text{patient}\rangle\langle\text{patient}| + 2 \times |\text{mental}\rangle\langle\text{mental}| + 3 \times |\text{surgey}\rangle\langle\text{surgey}|
\end{align*}
\]
The similarity and the representativeness of the words are:

\[
S(\hat{\text{psychiatrist}}, \hat{\text{doctor}}) = 0.76 \quad R(\hat{\text{psychiatrist}}, \hat{\text{doctor}}) = 0.49 \quad R(\hat{\text{doctor}}, \hat{\text{psychiatrist}}) = 0
\]

We can obtain matrices for the verb ‘drink’ following the method of Grefenstette and Sadrzadeh (2011). Intuitively, the value in entry \((i, j)\) of this matrix will reflect how typical it is for the verb to have a subject related to the \(i\)th basis and an object related to the \(j\)th basis. The small part of the matrix that interests us for this example might look like the following:

	patient	pub	pitcher	tonic
drink	4	5	3	
mental	6	3	2	
surgery	1	2	1	

This representation can be seen as a pure state living in a second order tensor. Therefore the density matrix representation of the same object is \(\hat{\text{drink}} = \langle \text{drink} | \text{drink} \rangle\), a fourth order tensor. Lifting the simplifications introduced in Grefenstette and Sadrzadeh (2011) from vectors to density matrices, we obtain the following linear algebraic closed forms for the meaning of the sentences:

\[
\hat{\text{Psychiatrist is drinking lager}} = \hat{\text{drink}} \otimes (\hat{\text{psychiatrist}} \otimes \hat{\text{lager}})
\]

\[
\hat{\text{Doctor is drinking beer}} = \hat{\text{drink}} \otimes (\hat{\text{doctor}} \otimes \hat{\text{beer}})
\]

Applying the formulas of fidelity and representativeness to the sentence representations, we obtain the values:

\[
S(\hat{\text{Psychiatrist is drinking lager}}, \hat{\text{Doctor is drinking beer}}) = 0.81
\]

\[
R(\hat{\text{Psychiatrist is drinking lager}}, \hat{\text{Doctor is drinking beer}}) = 0.53
\]

\[
R(\hat{\text{Doctor is drinking beer}}, \hat{\text{Psychiatrist is drinking lager}}) = 0
\]

From the relations ‘psychiatrist’ \(\vdash\) ‘doctor’ and ‘lager’ \(\vdash\) ‘beer’ we obtain ‘Psychiatrist is drinking lager’ \(\vdash\) ‘Doctor is drinking beer’.

7 Conclusion and Future Work

The often stated long term goal of compositional distributional models is to merge distributional and formal semantics. However, what formal and distributional semantics do with the resulting meaning representations is quite different. Distributional semanticists care about similarity while formal semanticists aim to capture truth and inference. In this work we presented a theory of meaning using basic objects that will not confine us to the realm of only distributional or only formal semantics. The immediate next step is to develop methods for obtaining density matrix representations of words from corpus, that are more robust to statistical noise, and testing the usefulness of the theory in large scale experiments.

The problem of integrating function words such as ‘and’, ‘or’, ‘not’, ‘every’ into a distributional setting has been notoriously hard. We hope that the characterization of compositional distributional entailment on these very simple types of sentences will provide a foundation on which we can define representations of these function words, and develop a more logical theory of compositional distributional meaning.

References

Abramsky, S. and B. Coecke (2004). A categorical semantics of quantum protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425. IEEE.

Balkır, E. (2014). Using density matrices in a compositional distributional model of meaning. Master’s thesis, University of Oxford.

Baroni, M., R. Bernardi, N.-Q. Do, and C.-c. Shan (2012). Entailment above the word level in distributional semantics. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 23–32. Association for Computational Linguistics.
Beltagy, I., C. Chau, G. Boleda, D. Garrette, K. Erk, and R. Mooney (2013). Montague meets markov: Deep semantics with probabilistic logical form. In Second Joint Conference on Lexical and Computational Semantics, Volume 1, pp. 11–21. Association of Computational Linguists.

Blacoe, W., E. Kashefi, and M. Lapata (2013). A quantum-theoretic approach to distributional semantics. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 847–857.

Bruza, P. D. and R. Cole (2005). Quantum logic of semantic space: an exploratory investigation of context effects in practical reasoning. We Will Show Them: Essays in Honour of Dov Gabbay, 339–361.

Clarke, D. (2009). Context-theoretic semantics for natural language: an overview. In Proceedings of the Workshop on Geometrical Models of Natural Language Semantics, pp. 112–119. Association for Computational Linguistics.

Coecke, B. (2010). Quantum picturalism. Contemporary physics 51(1), 59–83.

Coecke, B., M. Sadrzadeh, and S. Clark (2010). Mathematical foundations for a compositional distributional model of meaning. Linguistic Analysis 36.

Firth, J. R. (1957). A Synopsis of Linguistic Theory, 1930-1955. Studies in Linguistic Analysis, 1–32.

Geffet, M. and I. Dagan (2005). The distributional inclusion hypotheses and lexical entailment. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 107–114. Association for Computational Linguistics.

Glickman, O., I. Dagan, and M. Koppel (2005). Web based probabilistic textual entailment. In Proceedings of the PASCAL Challenges Workshop on Recognizing Textual Entailment.

Grefenstette, E. (2013). Category-theoretic quantitative compositional distributional models of natural language Semantics. Ph. D. thesis, University of Oxford.

Grefenstette, E. and M. Sadrzadeh (2011). Experimental support for a categorical compositional distributional model of meaning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1394–1404. Association for Computational Linguistics.

Herbelot, A. and M. Ganesalingam (2013). Measuring semantic content in distributional vectors. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Volume 2, pp. 440–445. Association for Computational Linguistics.

Kotlerman, L., I. Dagan, I. Szpektor, and M. Zhitomirsky-Geffet (2010). Directional distributional similarity for lexical inference. Natural Language Engineering 16(04), 359–389.

Lin, D. (1998). An information-theoretic definition of similarity. In Proceedings of the International Conference on Machine Learning, pp. 296–304.

MacCartney, B. and C. D. Manning (2007). Natural logic for textual inference. In ACL Workshop on Textual Entailment and Paraphrasing. Association for Computational Linguistics.

Piedeleu, R., D. Kartsaklis, B. Coecke, and M. Sadrzadeh (2015). Open system categorical quantum semantics in natural language processing. arXiv preprint arXiv:1502.00831.

Santus, E., A. Lenci, Q. Lu, and S. S. Im Walde (2014). Chasing hypernyms in vector spaces with entropy. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, Volume 2, pp. 38–42.

Selinger, P. (2007). Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical Computer Science 170, 139–163.

Sordoni, A., J.-Y. Nie, and Y. Bengio (2013). Modeling term dependencies with quantum language models for ir. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 653–662. Association for Computational Linguistics.

Van Rijsbergen, C. J. (2004). The geometry of information retrieval. Cambridge University Press.

Weeds, J., D. Weir, and D. McCarthy (2004). Characterising measures of lexical distributional similarity. In Proceedings of the 20th International Conference on Computational Linguistics, Number 1015. Association for Computational Linguistics.