Parallel Global Voices: a Collection of Multilingual Corpora
with Citizen Media Stories

Prokopis Prokopidis, Vassilis Papavassiliou and Stelios Piperidis
Institute for Language and Speech Processing
Athena Research and Innovation Center, Athens, Greece
{prokopis, vpapa, spip}@ilsp.gr

Abstract
We present a new collection of multilingual corpora automatically created from the content available in the Global Voices websites, where volunteers have been posting and translating citizen media stories since 2004. We describe how we crawled and processed this content to generate parallel resources comprising 302.6k document pairs and 8.36M segment alignments in 756 language pairs. For some language pairs, the segment alignments in this resource are the first open examples of their kind. In an initial use of this resource, we discuss how a set of document pair detection algorithms performs on the Greek-English corpus.

Keywords: parallel corpus, independent news stories, document pair detection

1. Introduction
This work describes Parallel Global Voices (PGV), a collection of parallel corpora created from the Global Voices project description, GV “is a border-less, largely volunteer community of more than 1400 writers, analysts, online media experts and translators”. The GV community has been reporting since 2004 on trending issues and stories published on social media and independent blogs in 167 countries.

In this paper we provide an overview of how we used this content to automatically generate an open set of parallel corpora that exhibit some interesting features as far as topics and language pairs are concerned. The rest of the paper is organized as follows. After discussing related work in Section 2, we report in Section 3 on how the Global Voices content was crawled, processed and aligned at document and sentence level. Section 4 provides details on the size and characteristics of monolingual and parallel sub-corpora in PGV and on format and availability. As an example of the potential use of the parallel corpora presented here, we use them to examine methods for the detection of parallel web pages and discuss results in Section 5.

2. Related Work
Parallel corpora like PGV are important for a number of applications (Tiedemann, 2011) including SMT, induction of bilingual lexica and contrastive studies of language use. Tlaxcala (Toral, 2014) was the first publicly available collection of parallel and monolingual corpora acquired from independent news sources. The largest parallel corpus in this 15-language resource is English-Spanish with 66.8K sentence pairs. Rettinger et al. (2014) compiled a parallel corpus of 300 English/Spanish/German GV articles, which they hand-annotated with semantic groundings of named entities and concepts to cross-lingual linked data extracted from Wikipedia. Chahuneau et al. (2013) used an English-Swahili parallel corpus obtained by crawling GV and reported significant improvements in translation quality when translating to Swahili. Finally, a GV Malagasy-English parallel corpus, collected and aligned at sentence level by V. Chahuneau, is available from http://www.ark.cs.cmu.edu/global-voices/. This work is to the best of our knowledge the first that extracts parallel and monolingual resources for all languages and language pairs in the GV websites. The datasets comprising this resource are smaller than the ones obtained from mining large scale crawls (e.g. Smith et al. (2013)). In contrast, this work is a focused effort to extract highly parallel documents by exploiting the well-defined structure of a multilingual site.

In another research line, Harlow and Johnson (2011) discuss how the 2011 Egyptian protests were depicted in, among other sources, 66 stories from a major US newspaper and 49 documents on the English GV site. The datasets presented in this paper could make similar comparisons easier, even from a multilingual perspective.

3. Acquisition and Processing
The content of the GV websites was crawled in July-August 2015 and in January 2016 by the authors. The crawl resulted in 174.63K documents in 41 languages (with traditional and simplified Chinese counting as two different languages). After crawling, we exported each document’s content to XCES-compatible XML files. At this stage, we took advantage of the fairly homogeneous HTML structure of the crawled web documents to identify the actual content, remove boilerplate, and export text segmented into paragraphs. As a result, we obtained a total of 2.50M paragraphs, of which approximately 293K were annotated in the exported files as in a language other than the main language of the document. This annotation was predominately based on the largely consistent markup of related text chunks in the original HTML documents. For the rest of the content, we relied on the results of a language identifier to similarly annotate certain types of obvious errors in the authors’ markup like, for example, a paragraph with Chinese text in an English document.

1https://globalvoices.org/
During this stage, we also extracted and stored in the XML files metadata information regarding publication date, authors and translators. The year with the largest number of published documents (according to the number of files crawled) was 2011 with 25.8K posts for all languages. The metadata set in the exported files also included information on the language-dependent topic and region key terms with which authors and translators tagged their documents (Fig. 1). We observed that each document may be tagged with more than one key term. The temporal evolution of certain key terms’ frequency (cf. Fig. 2) illustrates the interest of content creators in posting content about breaking events. As in Smith et al. (2013), we applied Latent Dirichlet Allocation (Blei et al., 2003) to explore the topics of the crawled dataset. In Table 1 we select 10 of the 20 topics generated from the 61.5K documents of the English corpus using the Mallet toolkit (McCallum, 2002). The top representative tokens for the selected topics reflect the interest of the content creators in, among other things, politics and elections (1), civil, sexual and socio-economic rights (2), disasters and the environment (3), demonstrations and police reaction (4), labour (5), specific geographic regions (6-8), organization of the GV network (9) and culture and online media (10). In a similar experiment with a lemmatized and unaccented version of the much smaller Greek dataset (3.6K documents), we observed interest for similar topics: topics 1-8 seem quite similar to their English counterparts with the same id.

Figure 1: Key terms exported from a September 2015 English document on the refugee crisis and the reactions it generates among social media users across Europe

Most importantly for generating the parallel resources, at the exporting stage, we parsed the links of each document and stored information about its translation counterparts, thus creating a set of document pairs. We then used the language dependent sentence splitters included in the Morphological NLP suite (Burns, 2013) to split paragraphs in the XML files into sentences. Segment alignments (with alignments of up to 1:2 and 2:1 sentences) were then extracted from each document pair with the Maligna sentence aligner (Jassem and Lipski, 2008) using default values and without any adaptation of the aligner to the language pair under examination. Paragraphs that were annotated as being in a language other from the main document language were excluded from the alignment process.

4. Resource Description

Most of the crawled documents (151K, 86.51%) are involved in at least one document pair. English is the only language with a relatively large (21.8K, 35.39%) percentage of documents for which a translation in another language does not exist. Table 2 presents the set of languages involved, the 3-letter language codes used and basic size information for those documents participating in translation pairs, and the number of their paragraphs. As Fig. 3 shows, English is the only language with a larger number of source documents (90.65% of total documents). For Spanish, the second largest language in the resource, only 7.37% of the texts are source documents. We detect whether a document is a translation based on whether it includes metadata for a translator. We did not find a way to reliably identify the source language from which a specific translation was created. However, we observed that each source document is translated (potentially via a pivot document) into 2.77 languages on average, thus generating combinations of sentence alignments as in the examples of Table 3.

Overall, the parallel resource comprises 302,617 document pairs and 8,356,943 segment alignments for 756 language pairs, with 27.62 segment alignments per document pair on average. The information on segment alignments is calculated after filtering out circa 427.4K 0:1 and 1:0 cases. The distribution of the number of segment alignments on all document pairs (Fig. 4) reflects the fact that a substantial part of original and translated content contains short descriptions (“quick reads” in the GV Posting Guide terminology) of online content external to GV. The main part of the rest of the content includes longer stories that follow a distribution which, as far as size in segment alignments is considered, seems to be in agreement with the GV guideline for longer articles of 500-1000 words length. Language pairs involving combinations of each of eng, fra, ita, milg.

https://community.globalvoices.org/ guide/technical-guides/gv-posting-guide/
Table 1: Ten English and ten Greek topics and their representative tokens

Code	Language	Documents	Paragraphs	Code	Language	Documents	Paragraphs
amh	Amharic	41	917	khm	Khmer	32	575
ara	Arabic	3560	46570	kor	Korean	350	7583
aym	Aymara	679	10368	mkd	Macedonian	2249	37053
ben	Bengali	7348	113333	mlg	Malagasy	9200	181388
bul	Bulgarian	288	4417	mya	Burmese	106	1519
cat	Catalan	727	16648	nld	Dutch	1273	24424
ces	Czech	464	9168	ori	Odia	20	264
dan	Danish	316	8327	pol	Polish	1606	35703
deu	German	2608	47280	por	Portuguese	5128	80320
ell	Greek	3623	43270	rum	Romanian	69	1765
eng	English	39743	524103	rus	Russian	3530	67970
epo	Esperanto	144	1673	spa	Spanish	30425	451721
fas	Farsi	760	7273	sqi	Albanian	293	4208
fil	Filipino	254	3587	srp	Serbian	978	21428
fra	French	15422	243926	swa	Swahili	1405	20590
heb	Hebrew	22	469	swe	Swedish	339	8542
hin	Hindi	164	1158	tur	Turkish	153	3350
hun	Hungarian	515	9169	urd	Urdu	136	2604
ind	Indonesian	505	10084	zhs	Chinese-simplified	4996	88301
ita	Italian	4700	95133	zht	Chinese-traditional	5014	88861
jpn	Japanese	1886	39961	Total	151,071	2,365,003	

Table 2: Number of documents (participating in translation pairs) and paragraphs for each language in the PGV

Code	Language	Documents	Paragraphs
amh	Amharic	41	917
ara	Arabic	3560	46570
aym	Aymara	679	10368
ben	Bengali	7348	113333
bul	Bulgarian	288	4417
cat	Catalan	727	16648
ces	Czech	464	9168
dan	Danish	316	8327
deu	German	2608	47280
ell	Greek	3623	43270
eng	English	39743	524103
epo	Esperanto	144	1673
fas	Farsi	760	7273
fil	Filipino	254	3587
fra	French	15422	243926
heb	Hebrew	22	469
hin	Hindi	164	1158
hun	Hungarian	515	9169
ind	Indonesian	505	10084
ita	Italian	4700	95133
jpn	Japanese	1886	39961

The largest language pair is eng-spa with 29.6K/724.8K document pairs/segment alignments, followed by eng-fra and fra-spa (Table 4).

An examination of the resource has led us to the conclusion that the overwhelming majority of the document pairs consists of parallel documents, i.e. that the percentage of links between comparable documents is negligible. Concerning another aspect of the resource related to alignment quality, we also believe that a large percentage of zero to one alignments in a document pair is a potential indication of exporting, sentence splitting and/or alignment problems, especially in pairs where one non-latin language (e.g. ben and zh[st]) is involved.
His family were all still in Syria and he didn’t want to leave them or his friends.

In Bolivia, where unions are extensively formed by members of society, another group of workers have unionized: children.

Angola is a plurilingual country, with six African languages recognised as national languages as well as Portuguese as the official language.

But there is no solid evidence that such a planet exists.

The original content from the Global Voices websites is available by the authors and publishers under a Creative Commons Attribution-Only license. The current version of the derivative resources described in this paper (i.e. the results of the automatic alignment at document and segment level) is distributed under the same Creative Commons li-

Table 3: Examples of alignments in different languages and topics (with War & Conflict/Labor/Language/Science used as key terms in the English documents)

Lang. Pair	Doc. Pairs	Seg. Alignments
eng-spa	29,645	724,800
eng-fra	14,930	393,686
fra-spa	11,366	338,114
eng-mlg	8,893	262,177
mlg-spa	7,607	240,186
ben-eng	7,294	170,696
fra-mlg	4,805	154,117
eng-ita	4,699	152,887
ben-spa	5,524	144,091
zhs-zht	4,957	134,361

Table 4: The 10 language pairs with the highest number of segment alignments

The fact that boilerplate detection and paragraph-level language identification are predominately based on the HTML structure could also affect resource quality. Taking into account that alignments suffering from noise related to these issues might be of limited or no use for downstream tasks (including training SMT systems), we counted, for the top language pairs, the number of (almost) identical alignments ($l_1 \approx l_2$ and $l_2 \approx l_1$) and of alignments in which the segment in l_1 is identical to the segment in the l_2 ($l_1 \approx l_2$). We observed that on average such alignments comprise less than 2.4% of these datasets. We did not include in these counts identical segments in l_1 that have been aligned with different segments in l_2, as in the examples of alternative translations in Fig. 5.

The original content from the Global Voices websites is available by the authors and publishers under a Creative Commons Attribution-Only license. The current version of
sense from http://nlp.ilsp.gr/pgv/. This webpage includes links from where non-0:1|1:0 aligned segments for each language pair can be downloaded as one TMX file. Alternatively, segment-aligned versions of document pairs for each language pair can be downloaded and examined independently. Finally, compressed archives of the monolingual corpora in the XML format mentioned above are also available and, together with the list of document pairs, they can be used for further document and sentence alignment experiments.

5. Document Pair Detection Experiment

As mentioned in Section 3 the document pairs were detected by exploiting the web site graph and identifying pairs of web pages that are connected with specific links which denote that one web page is the translation of the other. Since this is not the case in many multilingual web sites, several methods have been proposed for extracting parallel content from multilingual websites. To this end, we carried out an experiment of examining methods that are integrated into ILSP-FC (Papavassiliou et al., 2013), an open source focused crawler for automatic acquisition of domain-specific monolingual and bilingual corpora from the web. Our aim was to test methods that are language-independent and do not take advantage of specific properties of the Global Voices website. The current version of the Pair Detector module of the crawler does not use any language resources such as bilingual dictionaries or generated translations by MT engines (as in Barbosa et al. (2012)) to mine parallel webpages. In addition, during the experiment described here, we omitted a tool’s method that exploits special patterns in URLs and links that point to candidate translations. Thus, we only used methods that are based on a) cooccurrences of images with the same filename in HTML source, b) edit distance of sequences of digits in the main content of web pages and c) structural similarity.

We evaluated these methods in the task of reconstructing the English-Greek parallel collection, that is of identifying the 3581 document pairs of this language pair. The recall and precision rates were 68.56% and 92.50% respectively. Even though the precision could be considered high enough for providing data to train an SMT system, the recall seems poor. Given that the GV site includes two types of documents (i.e. “quick reads” and longer articles), we examined how these metrics are affected by the length of document pairs (in terms of total words in the main content of both documents in a pair). Thus, we counted the number of real, detected, and correctly detected pairs (GT, Detected, and Correct columns in Table 5 respectively) with a length higher than the number in column Pair Len. In addition, we calculated recall, precision and F-measure for each case. As expected, the module performs better for long pairs since it is more likely that such web pages contain images and digits and that their text is split into more than one paragraphs. On the other side, it is hard to identify pairs of very short documents as shown in the last four rows of Table 5 for which the total length of a pair is less than 200 words. For instance, we present in Fig. 6 three documents, each consisting of two paragraphs: the module wrongly predicted a pair between documents a and c where 2012 appears the same number of times. However, it is worth mentioning that the main effect in the tool’s performance concerns recall (< 87%) while precision remains high.

6. Conclusions

We presented Parallel Global Voices, a new and open parallel resource comprising 302.6K document pairs and 8.36M segment alignments that were automatically generated for 756 language pairs, based on content provided by volunteers contributing to the Global Voices effort. Although most segment alignments concern only a few of these language pairs, we think that PGV presents several interesting features including the domains covered and the fact that, for certain pairs (e.g. ell-zh[s]), similar open resources are not available. For other pairs we improve the current situation with new resources. In future work, we aim to further augment the resource with newly published content and to exploit it in experiments involving comparison of sentence alignment algorithms, induction of bilingual lexica, SMT domain adaptation and cross-lingual annotation projection.

Acknowledgements

This work was supported by the Abu-MaTran (FP7-People-IAPP, Grant 324414) project and the European Language Resource Coordination effort, CEF Programme. We would like to thank Sokratis Sofianopoulos for his help with sentence alignment.

7. Bibliographical References

Barbosa, L., Sridhar, V. K. R., Yarmohammadi, M., and Bangalore, S. (2012). Harvesting parallel text in multiple languages with limited supervision. In COLING, pages 201–214.

Blei, D. M., Ng. A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach. Learn. Res., 3.993–1022.

Burns, P. R. (2013). Morphadorner v2: A java library for the morphological adornment of english language texts.

Chahuneau, V., Schlinger, E., Smith, N. A., and Dyer, C. (2013). Translating into morphologically rich languages with synthetic phrases. In Proc. of EMNLP.

Harlow, S. and Johnson, T. (2011). Overthrowing the Protest Paradigm? How The New York Times, Global
Pair Len.	GT	Detected	Correct	Recall	Precision	F
1500	554	536	533	96.21%	99.44%	97.80%
1000	1011	984	973	96.24%	98.88%	97.54%
900	1110	1079	1067	96.13%	98.89%	97.49%
800	1185	1150	1138	96.03%	98.96%	97.47%
700	1273	1235	1222	95.99%	98.95%	97.45%
600	1367	1329	1314	95.12%	98.87%	97.48%
500	1442	1404	1384	95.98%	98.58%	97.26%
400	1524	1480	1456	95.54%	98.38%	96.94%
300	1644	1591	1556	94.65%	97.80%	96.20%
200	1854	1771	1710	92.23%	96.56%	94.34%
150	2198	2007	1910	86.90%	95.17%	90.84%
100	2890	2399	2243	77.61%	93.50%	84.82%
50	3514	2643	2445	69.58%	92.51%	79.42%
0	3581	2654	2455	68.56%	92.50%	78.75%

Table 5: Evaluation results on document pair detection

(a) gv-ell-20120731-12924.xml (b) gv-eng-20120729-342659.xml (c) gv-eng-20121115-373025.xml

Figure 6: Three short documents (a and b are ell-eng translations) that can confuse document pair detection methods based on document structure and number co-occurrence similarity only

Voices and Twitter Covered the Egyptian Revolution. *International Journal of Communication*, 5(0).

Jassem, K. and Lipski, J. (2008). A new tool for the bilingual text aligning at the sentence level. In *Proc. of Intelligent Information Systems Conference*, Zakopane, Poland.

McCallum, A. K. (2002). Mallet: A Machine Learning for Language Toolkit. http://www.cs.umass.edu/~mccallum/mallet.

Papavassiliou, V., Prokopidis, P., and Thurmair, G. (2013). A modular open-source focused crawler for mining monolingual and bilingual corpora from the web. In *Proceedings of the Sixth Workshop on Building and Using Comparable Corpora*, pages 43–51, Sofia, Bulgaria.

Rettinger, A., Zhang, L., Berović, D., Merkler, D., Srebačić, M., and Tadić, M. (2014). RECSA: resource for evaluating cross-lingual semantic annotation. In *Proc. of the Ninth International Conference on Language Resources and Evaluation (LREC’14)*, Reykjavik, Iceland.

Smith, J. R., Saint-Amand, H., Plamada, M., Koehn, P., Callison-Burch, C., and Lopez, A. (2013). Dirt cheap web-scale parallel text from the common crawl. In *Proceedings of the 51st ACL*, pages 1374–1383, Sofia, Bulgaria.

Tiedemann, J. (2011). *Bitext alignment*. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.

Toral, A. (2014). TLAXCALA: a multilingual corpus of independent news. In *Proc. of the Ninth International Conference on Language Resources and Evaluation (LREC’14)*, Reykjavik, Iceland.