SUPPLEMENTARY MATERIAL

Isolation of a new β-carboline alkaloid from aerial parts of *Triclisia sacleuxii* and its antibacterial and cytotoxicity effect.

Fidelis Samita\(^a\), Charles Otieno Ochieng\(^a\), Philip Okinda Owuor\(^a\), Lawrence Onyango Arot Manguro\(^a\)* and Jacob Ogwen Midiwo\(^b\).

\(^a\)Department of Chemistry, School of Physical and Biological Sciences, Maseno University, P.O. Box 333-40105 Maseno, Kenya.

*Corresponding author: E-mail address: kamanguro@yahoo.com

\(^b\)Department of Chemistry, School of Biological and Physical Sciences, University of Nairobi, P. O. Box 30197-00100 Nairobi, Kenya.

Abstract.

A new β-carboline alkaloid named sacleuximine A (1) together with known compounds palmatine (2), isotetrandrine (3), *trans*-N-feruloyltyramine (4), *trans*-N-caffeoyltyramine (5), yangambin (6), syringaresinol (7), sesamin (8), (+) epi-quercitol (9), 4-hydroxybenzaldehyde (10), β-sitosterol (11), quercetin 3-*O*-rutinoside (12) and myricetin 3-*O*-β-glucose (1→6) α-rhamnoside (13) have been isolated from methanol extract of *Triclisia sacleuxii* aerial parts. Compounds 1-10 were evaluated for their cytotoxicity against human adenocarcinoma (HeLa), human hepatocarcinoma (Hep3B), and human breast carcinoma (MCF-7) cells lines and also for antibacterial activities against both Gram-positive and Gram-negative bacteria. The cytotoxicity (IC\(_{50}\)) values ranged between 0.15 and 36.7 µM while the minimum inhibitory concentrations (MICs) were found to be in the range of 3.9 and 125 µM, respectively. This is the first report of antibacterial compounds and the isolation of lignans together with a β-carboline alkaloid from *Triclisia sacleuxii*.
Keywords: *Triclisia sacleuxii*; Menispermaceae; secondary metabolites; cytotoxicity; antibacterial, aerial parts.

List of figures:

Fig. S1. LC-MS chromatogram report for 1

Fig. S2. ESI-MS spectrum for 1

Fig. S3. 1H NMR spectrum of 1 (CDCl$_3$, 600 MHz)

Fig. S4. 13C NMR spectrum of 1 (CDCl$_3$, 150 MHz)

Fig. S5. HMQC spectrum of 1 (CDCl$_3$, 600 MHz)

Fig. S6. HMBC spectrum of 1 (CDCl$_3$, 600 MHz)

Fig. S7. 1H-1HCOSY spectrum of 1 (CDCl$_3$, 600 MHz)

Fig. S8. NOESY spectrum of 1 (CDCl$_3$, 600 MHz)

Fig. S9. Significant NOESY and HMBC cross-peaks of compound 1

Fig. S10. Proposed ESI-MS fragmentation of compound 1

Fig. S11: Cytotoxicity (IC$_{50}$ μM) of Compounds 1–10.

Table S1: 1H and 13C NMR (CDCl$_3$) data of Sacleuximine A (1)

Table S2: Minimum Inhibitory Concentrations (μg/ml) of Compounds 1-10 Isolated from aerial parts of *Triclisia sacleuxii* against Selected Bacterial Strains.
Fig. S1. LC-MS chromatogram report for 1
Fig. S2. ESI-MS spectrum for 1

Mass List:

#	m/z	I	I %	S/N
1	337.2	236098	19.7	593684.3
2	444.4	135100	11.3	339716.6
3	488.4	196677	16.4	494557.4
4	576.4	189078	15.8	475447.6
5	644.4	546547	45.7	1374325.8
6	645.5	1196479	100.0	3000620.9
7	647.5	126974	10.6	319283.1
8	667.5	224950	18.8	565650.0
9				
Fig. S3. 1H NMR spectrum of 1 (CDCl$_3$, 600 MHz)
Fig. S4. 13C NMR and DEPT spectra of 1 (CDCl$_3$, 150 MHz)
Fig. S5. HMQC spectrum of 1 (CDCl₃, 600 MHz)
Fig. S6. HMBC spectrum of 1 (CDCl₃, 600 MHz)
Fig. S1: 1H-1HCOSY spectrum of 1 (CDCl$_3$, 600 MHz)
Fig. S2. NOESY spectrum of 1 (CDCl$_3$, 600 MHz)
Fig. S9. Significant NOESY and HMBC cross-peaks of compound 1
Fig. S10. Proposed ESI-MS fragmentation of compound 1
Figure S11: Cytotoxicity (IC$_{50}$ μM) of Compounds 1–10.
Table S1: 1H and 13C NMR (CDCl$_3$) data of Sacleuximine A (1)

Atom	13C (ppm)	1H (ppm)	HMBC
1	51.1	5.82 (1H, dd, J=9.6, 4.3)	H-3α,β, H-1’
3	41.0	4.07 (1H, dd, J=13.7, 4.1Hz)	3.38 (1H, dd, J=13.0, 4.6Hz)
4	22.9	2.76 (2H, m)	
4a	107.7		
4b	127.1		
5	102.9	6.86 (1H, d, J=2.4Hz)	H-7
6	149.5		H-8
7	111.3	6.67 (1H, dd, J=8.6, 2.4Hz)	
8	111.6	7.00 (1H, d, J=8.6Hz)	
8a	131.1		H-7
9a	135.2		
-NH	-	6.90 (1H, s)	
1’	39.3	3.14 (1H, dd, J=13.0, 4.6Hz)	2.93 (1H, dd, J=12.9, 9.8Hz)
2’	129.8		H4’/6’
3’, 7’	131.0	7.15 (2H, d, J=8.4Hz)	H-1’α,β
4’, 6’	115.7	6.82 (2H, d, J=8.4Hz)	
5’	154.9		
1’’	177.1		H-2’’
2’’	34.1	2.35 (1H, t, J=7.5Hz)	
3’’	24.9	1.67 (2H, m)	
(-CH$_2$)$_{20}$	29.9-32.1	1.25 (br m)	
-CH$_3$	14.1	0.88 (3H, t, J=6.7 Hz)	
Table S2: Minimum Inhibitory Concentrations (μg/ml) of Compounds 1-10 Isolated from aerial parts of *Triclisia sacleuxii* against Selected Bacterial Strains.

Compound	E.coli^a	*P. aeruginosas*^a	*S. epidermis*^b	*S. aureus*^b
1	125	31.3	62.5	*S. aureus*^b
2	62.5	31.3	31.3	62.5
3	31.3	15.7	7.8	15.7
4	15.7	15.7	7.8	7.8
5	31.3	62.5	31.3	15.7
6	7.8	7.8	7.8	62.5
7	7.8	7.8	3.9	3.9
8	7.8	7.8	7.8	3.9
9	125	125	62.5	7.8
10	125	125	125	125
Tetracyline	0.97	0.97	0.97	125

^aGram negative bacteria ^bGram positive bacteria