Whey Protein and *Nigella sativa* Oil Mitigate Potassium Dichromate Induced Hepatic Injury, Oxidative Stress and Hematotoxicity in Rats

Samir A. E. Bashandy\(^{1*}\), Mohamed M. Amin\(^{1}\), Salma A. El-Marasy\(^{1}\), Fatma A. A. Ibrahim\(^{2}\) and Hafiza A. Sharaf\(^{3}\)

\(^1\)Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, Egypt; bashandys@hotmail.com

\(^2\)Biophysics Group, Department of Biochemistry, Genetic Engineering and Biotechnology Division, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, Egypt

\(^3\)Department of Pathology, Medical Division, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, Egypt

Abstract

The present study was carried out to evaluate the antioxidant property of whey protein and/or *Nigella sativa* Oil (NSO) against hepatotoxicity evoked by potassium dichromate (K\(_2\)Cr\(_2\)O\(_7\)). Designed for this purpose, we detected the 8 weeks challenge result of whey protein (100 and 200 mg/kg, p.o) with/or without *Nigella sativa* oil (5ml/kg, p.o) in contradiction of poisoned albino rats with one dose of potassium dichromate (30mg/Kg, LP) at the end of challenge period. Concerning plasma level, whey protein with/or without *Nigella sativa* oil were ameliorated the potassium dichromate liver damage concerns, so it exhibited a major progress in Aspartate Aminotransferase (AST), Alanine Amino Transferase (ALT), Alkaline Phosphatase (ALP), and Gamma-Glutamyl Transferase (GGT). Moreover, whey protein or *Nigella sativa* oil reduce the deleterious effects of potassium dichromate on Triiodothyronine (T3), Thyroxine (T4), Thyroidstimulating Hormone (TSH), glucose and Complete Blood Count (CBC). In addition, they displayed an important improvement in hepatic antioxidant enzymes, Catalase (CAT) and Superoxide Dismutase (SOD) beside reduced Glutathione (GSH), and with a subsequent decrease in Malondialdehyde (MDA) or Nitric Oxide (NO) levels in comparison with the untreated K\(_2\)Cr\(_2\)O\(_7\) group. Also, whey protein with/or without *Nigella sativa* oil improve the histopathological alterations produced by the potassium dichromate. These outcomes suggest that whey protein or *Nigella sativa* oil can be used as effective antioxidant against potassium dichromate intoxication as they modulate liver function and decrease oxidative stress.

Keywords: Hepatotoxicity, *Nigella sativa* Oil, Oxidative Stress, Potassium Dichromate, Whey Protein

1. **Introduction**

Human beings are subjected to a number of diverse chemicals that harm the liver. The liver has a notable role in the metabolism of xenobiotics let this organ particularly liable to injury by chemicals to which we are exposed. The pathogenesis of most chemical-induced liver injuries is commenced by the metabolic transformation of chemicals into reactive intermediate species, such as free radicals, that can probably modify the structure and function of cellular macromolecules. Many reactive intermediate species can produce oxidative stress\(^1\).

One of these hazardous hepatotoxic complexes is potassium dichromate, it is a powerful reacting mediator exhibiting a noticeable attraction, when converted to trivalent chromium (Cr\(^{3+}\)) through several cell reactions, to form a number of compounds with varied organic roots, together with nucleic acids\(^3\). Similarly, chromium triggered the production of Reactive Oxygen Species (ROS) which generate various poisonous properties, as well as DNA damage and phospholipid peroxidation that triggering hepatotoxicity\(^3\).

Whey protein is a mixture derived from milk, containing lactoferrin, beta-lactoglobulin, alpha-
lactalbumin, and glycomacropeptide, reveals a wide range of immune-enhancing mechanisms besides the facility to play as a powerful antioxidant and scavenging agent for free radicals. Also, whey protein is containing a great proportion of cysteine and methionine, which improve immune system via intracellular conversion to glutathione. In addition, Lactoferrin, plays as an iron-chelating glycoprotein, acting a major character as an antioxidant.

Nigella sativa kernels include 36-38% stable oils, alkaloids, proteins and (0.5-2.6%) volatile oil. Investigational literatures have verified that *Nigella sativa* concentrate has a variety of medicinal properties used in treatment of hypertension, type 2 diabetes, immune-regulative and liver defense. *Nigella sativa* can afford important improvement of the hepatotoxic consequences of rats linked to its reactive oxygen species hunting and antioxidant effects.

Since whey protein and the *Nigella sativa* oil were appeared selected as essential supplements, the aim of our study is the evaluation of their proficiency to repairing liver injury and alleviating hematotoxicity accompanying potassium dichromate complications.

2. Material and Methods

2.1 Drugs and Chemicals

Whey protein (WP) was brought out from Davisco Food International Company, USA, whereas *Nigella sativa* oil (NSO) was purchased from Mepaco, Cairo, Egypt, and potassium dichromate (K$_2$Cr$_2$O$_7$) was bought from Sigma Aldrich, USA. Whey protein was administered orally, which suspended in distilled water.

2.2 Animals

Adult male Wistar albino rats weighing 130-140 g were obtained from the National Research Centre Laboratory (Dokki, Giza, Egypt) and were accommodated in standard polypropylene cages and kept under constant environmental conditions with equal light-dark cycles. Rats were adapted for 1 week and were served rat normal fat pellet diet and water ad libitum.

2.3 Ethics Statement

This experiment was carried out in according to recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (NIH publication No. 85-23, revised 1996) and under regulations of Animal Care and Use of National Research Centre in Egypt. All surgery was performed under deep sodium pentobarbital anesthesia and all efforts were made to minimize suffering.

2.4 Induction of Hepatotoxicity using Potassium Dichromate and Experimental Design

70 rats were separated into 7 equal groups (Each group contained 10 rats) as follows:

- **Group 1:** Control group received the vehicle.
- **Group 2:** Rats injected with potassium dichromate only (30 mg/Kg IP, single injection) and considered as a hepatotoxic group.
- **Group 3:** Rats treated with 100mg/Kg whey protein (Low dose) administered orally daily for 2 months, and then intoxicated with potassium dichromate (30 mg/Kg IP, single injection).
- **Group 4:** Rats given both low dose of whey protein and *Nigella sativa* oil (5ml/Kg), orally for two months, then intoxicated with potassium dichromate (30 mg/Kg IP, single injection).
- **Group 5:** Rats treated with 200mg/Kg (high dose) whey protein only daily for 2 months, then injected with potassium dichromate (30 mg/Kg IP, single injection).
- **Group 6:** Rats administered a high dose of whey protein plus *Nigella sativa* oil, then intoxicated with potassium dichromate (30 mg/Kg IP, single injection).
- **Group 7:** The seventh group administered orally *Nigella sativa* oil only for two months then intoxicated with potassium dichromate (30 mg/Kg IP, single injection).

Potassium dichromate and whey protein were dissolved in water. The samples were collected 24 hours post potassium dichromate injection.

2.5 Complete Blood Count (CBC)

CBC was done using Sysmex XT-1800i (Sysmex, Kobe, Japan), for determination of total leukocyte count (TLC), neutrophils (%), lymphocytes (%), eosinophils (%),...
monocytes (%), Red Blood Cells (RBCs), Hemoglobin, Mean Cell Volume (MCV), Mean Cell Hemoglobin (MCH), Mean Cell Hemoglobin Concentration (MCHC %), red blood cell distribution width (RDW%), Platelets (PLTs), and Mean Platelet Volume (MPV).

2.6 Multi-Component Spectrophotometric Method for the Simultaneous Determination of Four Hemoglobin Derivative Concentrations

Concentrations of Sulphhemoglobin (SHb), Methemoglobin (MetHb), Carboxyhemoglobin (HbCO) and Oxyhemoglobin (HbO2) were measured by the multi-component method developed in our laboratory with some modifications. The hemolysate was prepared as described in this method. For absorbance measurements, about 30 μl of the purified hemolysate to 5 mL of temperature equilibrated (25°C) phosphate buffer (Na2HPO4 27.50 mmol/L and KH2PO4 13.16 mmol/L, pH 7.28) containing 0.4% Triton-X100. This technique has been applied in the simultaneous determination of SHb, MetHb, HbCO and the remaining functional Hb in the OxyHb form, with a conventional spectrophotometer. In this method, the measurements for the latter prepared extremely diluted Hb solutions were made, at four wavelengths (λ = 500, 569, 577 and 620 nm).

2.7 Plasma Collection for Analysis

Blood was collected in heparinized tubes from the retro-orbital plexus of veins under brief sodium pentobarbital anesthesia and was centrifuged (700xg, 4°C, 15 min) to separate the plasma. Colorimetric kits were bought from Salucea Company, Netherlands to determine serum AST, ALT, GGT, ALP, and glucose. ELISA kits were purchased for the assessment of serum T3, T4, and TSH from R&D Systems, USA.

2.8 Liver Tissue Extract

After blood collection, rats were decapitated under a deep sodium pentobarbital anesthesia. Rats’ liver was separated out, washed, weighed and homogenized in Phosphate Buffer Solution [PBS] [10%]. Tissue homogenate was centrifuged at 15000xg at 4°C for 20 minutes and the supernatant was collected and stored at -80°C for the direct assessment of parameters.

2.9 Assessment of Hepatic Oxidative Stress Parameters

Hepatic malondialdehyde (MDA), Glutathione (GSH), Catalase (CAT), Superoxide Dismutase (SOD), and Nitric Oxide (NO) were determined using colorimetric kits obtained from Bio-diagnostic, Egypt.

2.10 Histopathological Examination of the Liver

Liver samples from all groups were fixed in 10% formal saline, embedded in paraffin, and dehydrated in ascending concentrations of ethyl alcohol (70-100%). Subsequently, 5μm tissue sections were cut, mounted on slides, stained with hematoxylin and eosin (H&E) for liver histopathology.

2.11 Statistical Analysis

Values were stated as mean ± S.E. of 8-10 rats and the variances between groups were tested for significance using Analysis of Variance (ANOVA), followed by Tukey-Kramer posthoc test estimated by SPSS software, version 21. The level of statistical significance was at P<0.05.

3. Results

3.1 Liver Function Tests

In our work, next the poisoning of animals with potassium dichromate, animals displayed a condition of hepatotoxicity which was established by a substantial up-shot of plasma AST, ALT, GGT, and ALP levels in relation with normal group. In the meantime, hepatotoxic groups treated with either both doses of whey protein and/or Nigella sativa oil demonstrated an obvious enhancement in these factors in comparison with a control hepatotoxic group (Table 1).

3.2 Complete Blood Count and the Percentage of Hemoglobin Derivatives Parameters

Also, next to intoxication of rats with potassium dichromate, animals showed a significant alteration in complete blood count [except monocytes, MCV, MCH, and MCHC (%)] and an increase in the percentage of hemoglobin
Whey Protein and Nigella sativa Oil Mitigate Potassium Dichromate…

Unexpectedly, all treated groups with whey protein or Nigella sativa oil + K₂Cr₂O₇ revealed a notable improvement in most of these aforementioned parameters in comparison with K₂Cr₂O₇ group. (Table 2 and 3).

Table 1. Protective effect of whey protein, Nigella sativa oil and their combination on the activity of plasma hepatic enzymes (AST, ALT, GGT, and ALP) in different groups of potassium dichromate intoxicated rats

Parameters	Control	K₂Cr₂O₇	K₂Cr₂O₇ + 100 mg/Kg WP	K₂Cr₂O₇ + 200 mg/Kg WP	K₂Cr₂O₇ + 5ml/Kg NSO		
AST (U/l)	48.87±1.12	150.62±2.25	70±1.22*	44.12±1.03*	47.5±0.95	45±0.81	65.87±1.18*
ALT (U/l)	37±0.56	84±1.31	39.87±0.61	41.37±0.68	42.12±0.75*	32.87±0.48	58.75±0.89*
GGT (U/l)	3.24±0.1	6.47±0.21	5.26±0.18	4.96±0.16	4.3±0.15	3.73±0.13	4.85±0.19**
ALP (U/l)	135.87±2.7	238.5±4.32	188.25±3.23**	187.25±3.3**	180±3.07	152.62±2.81**	167.12±2.9**

Values are means ± S.E of 6-10 animals. As compared with control (*), K₂Cr₂O₇ (#) groups, and the differences between groups were confirmed for significance using analysis of variance (ANOVA), followed by Tukey-Kramer posthoc test, at P<0.05.

3.3 Oxidative Stress Markers

Table 4 indicated important alterations in the antioxidant defense system of K₂Cr₂O₇ group as mirrored on the decrease of CAT, GSH and SOD with increase of MDA and NO levels compared with the normal control group.

Table 2. Effect of whey protein and/or Nigella sativa oil on the complete blood count (CBC) in different groups of potassium dichromate poisoned rats

CBC	Control	K₂Cr₂O₇	K₂Cr₂O₇ + 100 mg/Kg WP	K₂Cr₂O₇ + 200 mg/Kg WP	K₂Cr₂O₇ + 5ml/Kg NSO		
TLC (10³/mm³)	5.78±0.21	11.28±0.3	7.86±0.26**	7.05±0.24*	8.03±0.28	7.73±0.25*	6.73±0.22*
Neutrophils (%)	3.53±0.11	5.92±0.23	3.52±0.12	3.64±0.13	4.56±0.21	4.2±0.2	3.85±0.15
Lymphocytes (%)	2.82±0.05	4.15±0.21	6.01±0.4	2.9±0.06	2.85±0.04	3.85±0.13	2.25±0.03
Eosinophils (%)	0.6±0.01	1±0.05	0.1±0.008	0.21±0.01	0.13±0.01	0.46±0.02	0.11±0.04
Monocytes (%)	0.46±0.02	0.5±0.03	0.36±0.01**	0.41±0.02	0.51±0.03	0.48±0.02	0.41±0.03
RBCs (10⁶/mm³)	4.62±0.23	2.47±0.1	3.29±0.12	4.05±0.2	3.4±0.13	3.74±0.15	3.59±0.14
Hemoglobin (g/dL)	12.26±0.45	6.66±0.25	8.41±0.36	10.06±0.47	8.81±0.37	9.21±0.41	9±0.39
MCV (fL)	79.63±2.51	78.85±2.4	76.68±2.1	77.5±1.8	78.05±2	79.25±2.62	76.11±2.25
MCH (Pg)	27.43±1.15	25.65±0.9	25.48±1.05	25.15±1.2	25.88±1.6	26.48±1.36	25.1±1.25
MCHC (%)	33.3±1.25	32.06±1.06	33.3±1.32	33.06±1.14	33.15±1.1	33.43±0.97	32.98±1.13
RDW (%)	13.58±0.43	19.6±0.65	19.61±0.6	15.81±0.51**	17.25±0.49**	16.51±0.56**	20.06±0.71
PLTs (10³/mm³)	300.5±6.22	644.83±10	302.16±5.6	326±5.7	296.83±4.8	359.33±6.1	330.66±6.3
MPV (fL)	8.71±0.34	6.23±0.18	7.31±0.21**	7.43±0.23**	7.6±0.26**	7.4±0.24**	8.25±0.31

Values are means ± S.E of 6-10 animals. As compared with control (*), K₂Cr₂O₇ (#) groups, and the differences between groups were confirmed for significance using analysis of variance (ANOVA), followed by Tukey-Kramer posthoc test, at P<0.05.
Meanwhile, groups of K$_2$Cr$_2$O$_7$ treated with either whey protein and/or Nigella sativa oil demonstrated a superb clear improvement in these parameters in comparison with untreated hepatotoxic group except the hepatotoxic group treated with either small dose of whey protein or concomitant with Nigella sativa oil.

3.4 Hormonal Parameters

Potassium dichromate group manifested a significant remarked decline in serum T3, and T4 levels with a subsequent elevation in plasma glucose, and TSH levels in comparison with the normal group as presented in Table 5. The rats treated with whey protein or Nigella sativa oil + K$_2$Cr$_2$O$_7$ revealed a substantial improvement in these aforementioned markers level compared with the K$_2$Cr$_2$O$_7$ group, nevertheless the result of high dose of whey protein plus Nigella sativa oil was extra pronounced and obvious than other treated intoxicated rats.

3.5 Histopathological Examination

Microscopic picture of the liver of control rat showed the normal architecture of liver, comprising several hepatic lobules, each hepatic lobule formed of radially organized cords of liver cells from central vein to the margin of lobule separated by blood sinusoids (Figure 1a).

The section of liver treated with potassium dichromate at a dose of 30 mg/Kg revealed severe liver damage, including marked cytoplasmic vacuolar degeneration,

Table 3. Effect of whey protein and/or Nigella sativa oil on the percentage of hemoglobin derivatives in different groups of potassium dichromate poisoned rats

Hemoglobin derivatives	Control	K$_2$Cr$_2$O$_7$	K$_2$Cr$_2$O$_7$ + 100 mg/Kg WP	K$_2$Cr$_2$O$_7$ + 100 mg/Kg WP + NSO	K$_2$Cr$_2$O$_7$ + 200 mg/Kg WP	K$_2$Cr$_2$O$_7$ + 200 mg/Kg WP + NSO	K$_2$Cr$_2$O$_7$ + 5ml/Kg NSO
SHb (%)	0.23±0.01	0.31±0.01*	0.12±0.005*	0.06±0.001*	0.15±0.006*	0.13±0.004*	0.17±0.007*
Met-Hb (%)	0.87±0.05	2.86±0.11*	2.64±0.1*	1.62±0.08*	1.48±0.07*	2.08±0.09*	1.87±0.08*
HbCo (%)	0.88±0.04	2.71±0.12*	1.62±0.09*	0.72±0.03*	1.98±0.02*	1.45±0.07*	1.27±0.06*
HbO$_2$ (%)	97.8±3.25	93.4±3.12	112.26±4.1*	97.58±3.2	96.38±3.02	96.32±2.8	96.68±2.9

Values are means ± S.E of 6-10 animals. As compared with control (*), K$_2$Cr$_2$O$_7$ (#) groups, and the differences between groups were confirmed for significance using analysis of variance (ANOVA), followed by Tukey-Kramer posthoc test, at P<0.05.

Table 4. Protective effect of whey protein, Nigella sativa oil and their combination on hepatic tissue oxidative stress [catalase enzyme (CAT), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase enzyme (SOD)] levels in different groups of potassium dichromate intoxicated rats

Parameters	Control	K$_2$Cr$_2$O$_7$	K$_2$Cr$_2$O$_7$ + 100 mg/Kg WP	K$_2$Cr$_2$O$_7$ + 100 mg/Kg WP + NSO	K$_2$Cr$_2$O$_7$ + 200 mg/Kg WP	K$_2$Cr$_2$O$_7$ + 200 mg/Kg WP + NSO	K$_2$Cr$_2$O$_7$ + 5ml/Kg NSO
CAT (U/g. tissue)	15.76±0.71	8.36±0.42*	8.64±0.44*	9.01±0.47*	10.74±0.56*	12.22±0.63*	10.14±0.51*
MDA (nmol/ mg)	2.98±0.02	7.66±0.16*	6.27±0.14*	5.61±0.12*	5.13±0.11*	5±0.09*	5.44±0.13*
GSH (mg/g. tissue)	7.72±0.21	4.21±0.12*	4.91±0.15*	5.42±0.13*	5.33±0.14*	6.88±0.19*	6.09±0.17*
SOD (U/g. tissue)	239.87±4.1	168.75±3.6*	186.88±3.7*	186.29±4.2*	194.66±3.8*	213.95±3.9*	189.55±3.5*
NO (nmol/l)	1.92±0.03	4.19±0.1*	3.49±0.09*	3.6±0.08*	3.12±0.05*	2.84±0.06*	3.51±0.07*

Values are means ± S.E of 6-10 animals. As compared with control (*), K$_2$Cr$_2$O$_7$ (#) groups, and the differences between groups were confirmed for significance using analysis of variance (ANOVA), followed by Tukey-Kramer posthoc test, at P<0.05.
Whey Protein and Nigella sativa Oil Mitigate Potassium Dichromate...

4. Discussion

Potassium dichromate is a formula of chromium and it has stayed used in the induction of hepaticinjury10-13. And it is described that acute contact encourages hepatic structural alteration in the hepatocytes and phospholipid oxidation in the liver13. Chromium produced metabolites were supposed to be induced by H2O2 to form OH- radicals14, with successive changes in amino acids, DNA, and lipids structure principal to changing cellular activities and itsstructure14.

For that reason, rats were challenged with Potassium dichromate showed a subsequent increase in the serum AST, ALT, GGT, and ALP levels with highly changes in liver histopathological investigation compared with normal group, via increase of Reactive Oxygen Species (ROS) that triggers liver tissue injury15. ROS produced through this way can cause damage to tissue amino acids, phospholipids, and DNA principal to oxidative stress16.

In the same way, the significant elevation in MDA and NO levels and the significant decline of GSH, SOD and CAT levels were are presentative markers for the elevated free radicals due to the stimulation of Inducible Nitric Oxide Synthase (iNOS), principal to excessive generation of NO and production of toxic peroxy-nitrite that indicated the overproduction of ROS13,17.

The elevation of plasma activity of ALT, AST, and ALP is indicative of hepatocellular damage since the disruption of the plasma membrane leak intracellular enzymes into the bloodstream18.

The increase in oxidative stress induced by potassium dichromate can explain hepatotoxicity and the alterations of CBC, the percentage of hemoglobin derivatives, glucose, and thyroid hormone levels. It was reported that chromium might elevate ROS production, trigger the Akt, NF-κB, and MAPK mechanisms alongside the increase

Parameters	Control	K2Cr2O7	K2Cr2O7+ 100 mg/Kg WP	K2Cr2O7+ 200 mg/Kg WP	K2Cr2O7+ 5ml/Kg NSO
Glucose (mg/dl)	85.44±2.56	133.43±6.87*	105.00±3.98*	100.53±8.53*	96.44±5.91*
T3 (ng/ml)	3.8±0.07	1.32±0.06*	1.66±0.02*	1.87±0.05*	1.55±0.11*
T4 (ng/ml)	4.50±0.14	2.34±0.07*	2.58±0.03*	2.83±0.12*	2.60±0.07*
TSH (ng/ml)	5.00±0.16	17.03±0.73*	12.65±0.47*	10.03±0.21*	9.24±0.18*

Values are means ± S.E of 6-10 animals. As compared with control (*), K2Cr2O7 (#) groups, and the differences between groups were confirmed for significance using Analysis of Variance (ANOVA), followed by Tukey-Kramer posthoc test, at P<0.05.
Figure 1. Effect of whey protein and/or *Nigella sativa* oil on the liver histopathological findings in different groups of potassium dichromate poisoned rats. (a). Section of the liver of control rat showing the normal structure of hepatic lobule, cords of cells radiated from acenral vein (cv), separated by blood sinusoid (s). (b). Section of liver treated with K.dichromat at dose 30 mg/Kg revealed marked damage in liver tissue, distortion of hepatic cells, shrunken nuclei, cytoplastic vacuolar degeneration, sing of nuclear degeneration in the form of necrosis, pyknosis, and karyolysis. (c). Section of liver treated with K.dichromat at dose 30 mg/Kg showing cytoplastic vacuolar degeneration (v), focal necrosis(N), nuclear degeneration in the form of pyknosis (arrow), karyolysis and increase in basophilia, slight dilatation of portal area and minute vacuolar degeneration in the bile duct around the dilated portal tract. (d). Section of liver treated with K.dichromat at dose 30 mg/Kg plus whey protein (Low dose) showing regular hepatic cords, the majority of hepatocytes around central vein appear healthy, while, slight dilation in central vein and blood sinusoids, sing of vacuolar degeneration and necrotic (n), pyknotic as well as karyolitic nuclei could be observed. (e). Section of liver treated with K.dichromat at dose 30 mg/Kg plus whey protein (High dose) showing minute vacuolar degeneration, and fatty degeneration around the portal area infiltrated by inflammatory cells, besides, sing of nuclear degeneration as necrosis, karyolysis and karyorrhexis also were seen. (f). Section of the liver of rats treated with K. dichromat at dose 30 mg/Kg plus Nigella S. Oil exhibiting some improvement, most of the hepatocytes appeared healthy and the radial arrangement around the central vein was restored, although slight dilatation of central vein and blood sinusoid and minute vacuolation of peripheral hepatocytes still present. (Hx&Ex200).
of cytokines19,20. Our results showed that potassium dichromate produced a toxic effect on hematological parameters such as total erythrocyte count, total leucocyte count, and hemoglobin value. Potassium dichromate altered the erythropoietin factors signifying anemia as evidenced by the decrease in the count of erythrocytes and hemoglobin concentration. The decrease in hemoglobin concentrations can be attributed to structural alteration of heme or to the resistance of the enzyme mechanism convoluted in the synthesis of hemoglobin, as proposed previously with other heavy metals21.

It was reported that the ability of whey protein to induce the expression of the enzymes associated with GSH synthesis might represent an important mechanism for the protective effect of whey protein22. Glutathione protects cells against exogenous and endogenous toxins, including reactive oxygen species and reactive nitrogen species23,24.

Also, whey protein complex showed a substantial anti-inflammatory and antioxidant properties \textit{via} elevating hepatic SOD, GSH, CAT and declining MDA, and NO through its ROS chelating effects which is evidenced from the improvement of liver biomarkers (AST, ALT, GGT, and ALP)25, CBC, the percentage of hemoglobin derivatives, glucose, and thyroid hormone levels.

\textit{Nigella sativa} oil revealed an important enhancement in entirely affected markers since it has antioxidant scavenging activity26. The advantageous effects of this oil influence are to be linked to their cytoprotective and antioxidant activities, by their influence on inflammatory markers. \textit{Nigella sativa} oil exhibited a hepatoprotective effect against carbon tetrachloride27.

In our investigation, the rats given Nigella sativa oil and whey protein in combination indicated the best significant outcome compared to corresponding separated groups.

5. Conclusion

Our results reveal that protection with whey protein and/or \textit{Nigella sativa} Oil exhibited possible anti-oxidant and anti-inflammatory effects in albino rats, which they were capable to decrease chromium triggered hepatotoxicity and hematotoxicity. Nevertheless, the particular and full mechanistic effect of whey protein and \textit{Nigella sativa} oil is not perfect in former literatures, so, we focused to spotlight on their action \textit{via} diverse investigations to be added further explored in the forthcoming studies.

6. Conflict of Interest

The authors have declared that no competing interests exist.

7. Funding

The authors have funding support from National Research Centre (NRC) under interior projects (project no. P100515).

8. Author Contributions

All authors of the current manuscript contributed equally to accomplish different parts of this work.

9. References

1. Gu X, Manautou JE. Molecular mechanisms underlying chemical liver injury. Expert Rev Mol Med. 2012; 14:1-22. https://doi.org/10.1017/S1462399411002110 PMid:22306029 PMCid:PMC370158
2. Levis AG, Buttiignol M, Vettorato L. Inhibition of DNA synthesis in BHK fibroblasts treated in vitro with potassium dichromate. Experientia. 1977; 33(1):82–4. https://doi.org/10.1007/BF01936767 PMid:836428
3. Niki E, Noguchi N. Dynamics of antioxidant action of vitamin E. Acc Chem Res. 2004; 37(1):45–51. https://doi.org/10.1021/ar030069m PMid:14730993
4. Safaeian L, Zabolian H. Antioxidant effects of bovine lactoferrin on Dexamethasone-Induced Hypertension in Rat. ISRN Pharmacology. 2014.p. 1-6.
5. Begum NA, Dewan ZF, Nahar N, Rouf Memun MI. Effect of n-Hexane extract of \textit{Nigella sativa} on gentamicin induced nephrotoxicity in rats. Bangladesh J Pharmacol. 2006; 1(1):16–20.
6. Mahmood T, Qureshi IZ, Iqbal MJ. Histopathological and biochemical changes in rat thyroid following acute exposure to hexavalent chromium. Histol Histopathol. 2010; 25(11):1355–70. PMid:20865659
7. Elyamany MF, Omara EA, Asaaf N. Evaluation of the therapeutic effect of whey proteins on the hepatotoxicity induced by paracetamol and alcohol coadministration in rats. Int J Pharm Res Bio-Sci. 2014; 3(2):295–314.
8. Develi S, Evran B, Betul Kalaz E, Kocak-Toker N, Erata GO. Protective effect of *Nigella sativa* oil against binge ethanol-induced oxidative stress and liver injury in rats. Chin J Nat Med. 2014; 12(7):495–9. https://doi.org/10.1016/S1875-5364(14)60077-7

9. Attia, AM, El-Hefnawy AM, Conformational stability against auto-oxidation for mice and human oxyhemoglobins. Romanian J Biophys., 2009; 19(3):187–98.

10. Stohs SJ, Bagchi D, Hassoun E, Bagchi M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol. 2000; 19(3):201–13. PMid:10983887

11. Franchini I, Cavatorta A, D’Errico M, De Santis M, Romita G, Gatti R, et al. Studies on the etiology of the experimental neuropathy from industrial neuropathy (glues). Experientia. 1978; 34(2):250-2. https://doi.org/10.1007/BF01944708 PMid:624366

12. Norseth T. The carcinogenicity of chromium. Environ Health Perspect. 1981; 40:121–30. https://doi.org/10.1289/ehp.8140121 PMid:7023928 PMCid:PMC1568823

13. Patlolla AK, Barnes C, Hackett D, Tchounwou PB. Potassium dichromate induced cytotoxicity, genotoxicity and oxidative stress in human liver carcinoma (HepG2) cells. Int J Environ Res Public Health. 2009; 6(2):643–53. https://doi.org/10.3390/ijerph6020643 PMid:19440407 PMCid:PMC2672371

14. Bagchi D, Vuchetich PJ, Bagchi M, Hassoun EA, Tran MX, Tang L, et al. Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radic Biol Med. 1997; 22(3):471–8. https://doi.org/10.1016/S0891-5849(96)00352-8

15. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001; 31(11):1287–312. https://doi.org/10.1016/S0891-5849(01)00274-9

16. Stift A, Friedl J, Langle F, Berlakovitch G, Steininger R, Muhlbacher F. Successful treatment of a patient suffering from severe acute potassium dichromate poisoning with liver transplantation. Transplantation. 2000; 69(11):2454–5. https://doi.org/10.1097/00007890-200006150-00044 PMid:10868660

17. Wang BJ, Sheu HM, Guo YL, Lee YH, Lai CS, Pan MH, et al. Hexavalent chromium induced ROS formation, Akt, NF-kappaB, and MAPK activation, and TNF-alpha and IL-1alpha production in keratinocytes. Toxicol Lett. 2010; 198(2):216–24. https://doi.org/10.1016/j.toxlet.2010.06.024 PMid:20619327

18. Amacher DE. Serum transaminase elevations as indicators of hepatic injury following the administration of drugs. Regul Toxicol Pharmacol. 1998; 27(2):119–30. https://doi.org/10.1006/rtph.1998.1201 PMid:9671567

19. Gueniche A, Viaj J, Lizard G, Charveron M, Schmitt D. Effect of various metals on intercellular adhesion molecule-1 expression and tumour necrosis factor alpha production by normal human keratinocytes. Arch Dermatol Res. 1994; 286(8):466–70. https://doi.org/10.1007/BF00371573 PMid:7864660

20. Lu SC, Bao Y, Huang ZZ, Sarthy VP, Kannan R. Regulation of gamma-glutamylcysteine synthetase subunit gene expression in retinal Muller cells by oxidative stress. Invest Ophthalmol Vis Sci. 1999; 40(8):1776–82. PMid:10393048

21. Dinagaran S, Sridhar S, Eganathan P. Chemical composition and antioxidant activities of black seed oil (*Nigella sativa* L). Inter J Pharma Sci Res. 2016; 7(11):4473–9. https://doi.org/10.18173/ijpsr.2016.7.11.4473-9

22. Al-Seeni MN, El Rabey HA, Zamzami MA, Alnefayee AM. The hepatoprotective activity of olive oil and *Nigella sativa* oil against CCl4 induced hepatotoxicity in male rats. BMC Complement Altern Med. 2016; 16:1–14. https://doi.org/10.1186/s12906-016-1422-4 PMid:27814700 PMCid:PMC5097446