A Finitely Stable Edit Distance for Merge Trees

Matteo Pegoraro

November 22, 2024

Abstract

In this paper we define a novel edit distance for merge trees, which we argue to be suitable for a good range of applications. Relying also on some technical results contained in other works, we investigate its stability properties, which end up being analogous to the ones of the 1-Wasserstein distance between persistence diagrams. In the appendix, we extensively compare our metric in relationship with other metrics appearing in the literature, with both theoretic and practical considerations and a simulation.

Keywords: Topological Data Analysis, Merge Trees, Tree Edit Distance, Stability

1. Introduction

Topological Data Analysis (TDA) is a particular set of techniques within the field of geometric data analysis which aim at including topological information into data analysis pipelines. Topological information is usually understood in terms of generators of homology groups (Hatcher, 2000) with coefficients in some field. With persistent homology these generators are extracted along a filtration of topological spaces to capture the shape of the initial datum, typically a function or a point cloud, at “different resolutions” (Edelsbrunner and Harer, 2008). To proceed with the analysis, this ordered family of vector spaces is then represented with a topological summary. There are many different kinds of topological summaries such as persistence diagrams (Edelsbrunner et al., 2002) (PDs), persistence images (Adams et al., 2017), persistence silhouettes (Chazal et al., 2015), and persistence landscapes (Bubenik, 2015). Each of these summaries live in a space with different properties and purposes: for instance persistence diagrams are highly interpretable and live in a metric space, persistence landscapes are embedded in a linear space of functions, but the embedding is not closed under linear combinations, persistence images are instead obtained as vectors in \mathbb{R}^n, making them suitable for many Machine Learning techniques.

Along with the aforementioned summaries, there are also tree-shaped objects called merge trees. Merge trees arise naturally within the framework of TDA when dealing with zero dimensional homology groups, as they capture the merging structure of path connected components along a filtration of topological spaces. Originally, such objects stem out of Morse Theory (Milnor, 2016) as a topological summary related to Reeb graphs (Shinagawa et al., 1991; Biasotti et al., 2008) and are frequently used for data visualization purposes (wu and Zhang, 2013; Bock et al., 2017). Analogously, other different but related kinds of trees like hierarchical clustering dendrograms (Murtagh and Contreras, 2017) or phylogenetic trees (Felsenstein and Felenstein, 2004) have also been used extensively in statistics and biology to infer information about a fixed set of labels. When considered as unlabelled objects, however, both clustering dendrograms and phylogenetic trees can be obtained as particular instances of merge trees. The uprising of TDA has propelled...
works aiming at using merge trees and Reeb graphs as topological summaries in data analysis contexts and thus developing metrics and frameworks to analyze populations of such objects (Beketayev et al., 2014; Morozov et al., 2013; Gasparovic et al., 2019; Touli, 2020; Sridharamurthy et al., 2020; Wetzels et al., 2022; Di Fabio and Landi, 2016; Bauer et al., 2020).

Previous Works on Merge Trees

The works that have been dealing with the specific topic of merge trees can be divided into two groups: the first group is more focused on the definition of a suitable metric structure on merge trees and the second is more focused on the properties of merge trees and their relationships with PDs (Kanari et al., 2020; Curry et al., 2024; Beers and Leygonie, 2023). The first group, in turns, splits into a) works dealing with the interleaving distance between merge trees and other metrics with very strong theoretical properties (Beketayev et al., 2014; Morozov et al., 2013; Farahbakhsh Touli and Wang, 2022; Gasparovic et al., 2019; Touli, 2020; Curry et al., 2022; Cardona et al., 2022), b) metrics which are more focused on the computational efficiency (Sridharamurthy et al., 2020; Wetzels et al., 2022; Pont et al., 2022; Sridharamurthy and Natarajan, 2021; Wetzels and Garth, 2022) at the cost of sacrificing stability properties and trying to mitigate the resulting problems with pre-processing and other computational solutions. In particular, all these computationally-friendly metrics are framed as different variations stemming from the classical tree edit distance between unlabeled trees, which is obtained minimizing the edit distance for labeled trees (Tai, 1979; Bille, 2005) over all possible sets of labels. We further comment on this fact in the following section.

Main Contributions

The aim of this manuscript is to propose a novel edit distance for merge trees and to investigate it’s stability properties with a data analysis perspective. Plus, we extensively compare it with the other edit distances for merge trees appeared in literature. A very concise summary of this comparison can be found in Table 2, which we also comment in the upcoming lines.

- The metric we propose has stability properties analogous to the ones of 1-Wasserstein distance between PDs. In particular, the 1-Wasserstein distance (W_1) and the bottleneck distance between PDs (d_B) enjoy the following relationship for every couple of diagrams D_1, D_2:

$$d_B(D_1, D_2) \leq W_1(D_1, D_2) \leq (\text{rank}(D_1) + \text{rank}(D_2))d_B(D_1, D_2).$$

With $\text{rank}(D_i)$ being the cardinality of the diagrams D_i. Similarly, we prove that the edit distance that we define (d_E) and the interleaving distance between merge trees (d_I) satisfy:

$$d_I(T_1, T_2) \leq d_E(T_1, T_2) \leq 2(\text{dim}(T_1) + \text{dim}(T_2))d_I(T_1, T_2).$$

With $\text{dim}(T_i)$ being the number of edges in the merge tree T_i. We point out that the rightmost inequality is obtained in Pegoraro and Secchi (2024), which investigates some of the statistical properties of the metric we define here. While we prove the leftmost inequality in Theorem 3.

In Section 4.3 we claim that Equation (1) and Equation (2) make W_1 and d_E better suited for general data analysis purposes, compared to their universal counterparts,
that is, \(d_B\) and \(d_I\). Table 2 highlights that no other edit distance for merge trees is stable. We expand on that in Appendix E giving precise examples on how the metrics in Sridharamurthy et al. (2020); Wetzels et al. (2022); Pont et al. (2022); Sridharamurthy and Natarajan (2021); Wetzels and Garth (2022) fail to be stable.

- Call \(D_E\) the classical edit distance between unlabeled trees. Table 1 compares the computational costs of \(D_E\) (Hong et al., 2017) and \(d_E\) in terms of binary linear programming (BLP). In particular, it shows that \(d_E\) differs from \(D_E\) only by two \(\log\) factors in the number of variables. Thus, we argue that \(d_E\) is relatively efficient.

\[
\begin{array}{ccc}
\text{BLP Problems} & \text{Variables} & \text{Constraints} \\
D_E(T,G) & O(M \cdot N) & O(M \cdot N) \\
d_E(T,G) & O(M \cdot N) & O(M \cdot \log_2(M) \cdot N \cdot \log_2(N))
\end{array}
\]

Table 1: Computational costs of the classical edit distance for unlabeled trees (Hong et al., 2017) and our edit distance for merge trees. With \(N = \dim T\) and \(M = \dim G\).

We highlight that Sridharamurthy et al. (2020); Wetzels et al. (2022); Pont et al. (2022); Sridharamurthy and Natarajan (2021); Wetzels and Garth (2022) all have a polynomial time algorithm/approximation. These algorithms are obtained in similar ways (see also Table 2). Selkow (1977); Jiang et al. (1995); Zhang (1996) contain some approximations of \(D_E\), which can also be regarded as metrics on their own. Such “approximated” edit distances have polynomial time complexity. Sridharamurthy et al. (2020); Wetzels et al. (2022); Pont et al. (2022); Sridharamurthy and Natarajan (2021); Wetzels and Garth (2022) frame their metrics as edit distances and then resort to these variations to obtain their feasible algorithms. Table 2 and Appendix D highlight that, for instance, a constrained variation (Zhang, 1996) is easily allowed also for our metric, but we still haven’t worked on an algorithm to compute it. Since incorporating our modifications into \(D_E\) to obtain \(d_E\) does not significantly increase its computational cost, we strongly believe that also the computational complexity of the constrained edit distance is only marginally affected by such modifications. And so, in particular, a constrained version of \(d_E\) should admit a polynomial time algorithm.

To summarize, we aim at providing a metric which is interpretable and with good discriminative power due to its stability properties, computable at least in small data regimes and which has a potential polynomial time approximation to be studied in future works.

Outline

This paper is organized as follows. Section 2, and Section 3 contain the preliminary definitions needed in the paper, which are collected from previous works in the field. In the latter one, in particular, we review the definition of an edit distance between weighted trees, which we use in Section 4 to define a metric structure for merge trees and to investigate its stability properties. In Section 5 we draw some conclusions.

The appendix reports definitions taken from literature (Appendix A, Appendix B, Appendix C) which can help the reader in navigating the manuscript. Plus, it features
Metric	Stability	Cost	Approx. Def.	Approx. Alg.	
\(d_E\)	Yes	\(d_I \leq d_E \leq 2(N + M)d_I\)	\(\geq D_E\)	Yes	–
Wass	Yes	No	\(\sim D_E\)	Yes	Yes
BDI	No	No	\(\geq D_E\)	Yes	Yes
DB	Yes	No	\(\geq D_E\)	Yes	Yes
Local	Yes	No	\(\sim D_E\)	Yes	Yes

Table 2: A summary of Edit Distances for Merge Trees. As in the main text, \(D_E\) refers to the classical edit distance between unlabeled trees. “Wass” stands for the metrics in (Sridharamurthy et al., 2020; Pont et al., 2022); “BDI” is for the one in Wetzels et al. (2022); “DB” stands for Wetzels and Garth (2022), and “Local” for (Sridharamurthy and Natarajan, 2021). Column “Metric” states which distances are also metrics. Column “Stability” underlines that \(d_E\) is the only edit distance satisfying stability properties. Column “Cost” compares the cost of the other edit distances with \(D_E\): \(\sim D_E\) stands for the cost being equivalent, up to nuances, to the one of \(D_E\); while \(\geq D_E\) stands for the cost being higher. “Approx. Def.” and “Approx. Alg.” tell for which edit distances an approximated version was given, along with a polynomial time algorithm. In particular: Sridharamurthy et al. (2020); Pont et al. (2022) are obtained employing the metric \(D_E\) (with some modifications on the costs) on trees built from the original merge trees, which encode the hierarchical properties of persistence pairs, and use Zhang (1996) to find a polynomial time algorithm. Wetzels et al. (2022) tries to overcome the cons that come with fixing such hierarchical structure, but ends up losing the triangular inequality. The tractable algorithm is again inspired by Zhang (1996). Wetzels and Garth (2022) shares some similarities with our approach, see Appendix E, but fails to achieve stability, and obtains a polynomial algorithm via Selkow (1977). Sridharamurthy and Natarajan (2021) uses Zhang (1996) to compare local structures in merge trees via a modified constrained edit distance.
our comments on the potential polynomial time approximation we foresee for our metric (Appendix D), and the detailed comparison between the metrics for merge trees we mention in the introduction (Appendix E). Appendix F contains the proofs of the results in the manuscript.

2. Preliminary Definitions - Merge Trees

We introduce merge trees coherently with most of the scientific literature dealing with such topics (Gasparovic et al., 2019; Sridharamurthy et al., 2020; Wetzels et al., 2022; Pont et al., 2022); a combinatorial object, which we call tree structure, with a monotone increasing function defined on its vertices.

Definition 1 A tree structure T is given by a set of vertices V_T and a set of edges $E_T ⊂ V_T × V_T$ which form a connected rooted acyclic graph. We indicate the root of the tree with r_T. We say that T is finite if V_T is finite. The order of a vertex $v ∈ V_T$ is the number of edges which have that vertex as one of the extremes, and is called ord$_T(v)$. Any vertex with an edge connecting it to the root is its child and the root is its father: this is the first step of a recursion which defines the father and children relationship for all vertices in V_T. The vertices with no children are called leaves or taxa and are collected in the set L_T. The relation child $<$ father generates a partial order on V_T. The edges in E_T are identified in the form of ordered couples (a, b) with $a < b$. A subtree of a vertex v, called sub$_T(v)$, is the tree structure whose set of vertices is $\{x ∈ V_T \ | \ x ≤ v\}$.

Given a tree structure T, identifying an edge $(v, v′)$ with its lower vertex v, gives a bijection between $V_T − \{r_T\}$ and E_T, that is $E_T ≈ V_T − \{r_T\}$ as sets. Given this bijection, we often use E_T to indicate the vertices $v ∈ V_T − \{r_T\}$, and viceversa, to simplify the notation.

Now we want to identify merge trees independently of their vertex set.

Definition 2 Two tree structures T and T' are isomorphic if exists a bijection $η : V_T → V_{T'}$ that induces a bijection between the edges sets E_T and $E_{T'}$: $(a, b) → (η(a), η(b))$. Such $η$ is an isomorphism of tree structures.

Then, we can give the definition of a merge tree.

Definition 3 A merge tree is a finite tree structure T with a monotone increasing height function $h_T : V_T → \mathbb{R} ∪ \{+∞\}$ and such that 1) ord$_T(r_T) = 1$ 2) $h_T(r_T) = +∞$ 3) $h_T(v) ∈ \mathbb{R}$ for every $v < r_T$. Two merge trees (T, h_T) and $(T', h_{T'})$ are isomorphic if T and T' are isomorphic as tree structures and the isomorphism $η : V_T → V_{T'}$ is such that $h_T = h_{T'} ∘ η$. Such $η$ is an isomorphism of merge trees. We use the notation $(T, h_T) ≈ (T', h_{T'})$. The set of all merge trees up to isomorphism is called \mathcal{MT}.

With some slight abuse of notation we set $\max h_T = \max_{v ∈ V_T | v < r_T} h_T(v)$ and $\arg\max h_T = \max\{v ∈ V_T \ | \ v < r_T\}$. Note that, given (T, h_T) merge tree, there is only one edge of the form (v, r_T) and we have $v = \arg\max h_T$.

Definition 4 Given a tree structure T, we can eliminate an order two vertex, connecting the two adjacent edges which arrive and depart from it. Suppose we have two edges $e = (v_1, v_2)$ and $e′ = (v_2, v_3)$, with $v_1 < v_2 < v_3$. And suppose v_2 is of order two. Then, we can remove v_2 and merge e and e' into a new edge $e'' = (v_1, v_3)$. This operation is called the ghosting of the vertex. Its inverse transformation is called the splitting of an edge.

Consider a merge tree (T, h_T) and obtain T' by ghosting a vertex of T. Then $V_{T′} ⊂ V_T$ and thus we can define $h_{T′} := h_T|_{V_{T′}}$.

Now we can state the following definition.

Definition 5 Merge trees are equal up to order 2 vertices if they become isomorphic after applying a finite number of ghostings or splittings. We write \((T, h_T) \cong_2 (T', h_{T'})\). The set of all merge trees up to order 2 vertices is called \(MT / \sim_2\).

Merge trees are usually employed to give a combinatorial representation of persistent sets (Patel, 2018; Curry et al., 2022) which are generated via usual TDA pipelines, applying the functor \(\pi_0\) on filtrations of topological spaces. Going through such details is not essential for defining and understanding the metric \(d_E\), however it is necessary to introduce the interleaving distance between merge trees and discuss stability properties. Thus, we report them in Appendix B.

3. Preliminary Definitions - Weighted Trees Edit Distance

In this section we introduce the last pieces of notation we need to define the merge tree edit distance. In Section 3.1 we report how Pegoraro (2023) builds a metric for weighted trees and in Section 3.2 we recall from Pegoraro (2023) the definition of mapping, a combinatorial object which will be used throughout the manuscript.

3.1 Weighted Trees and Edits

Definition 6 A tree structure \(T\) with a weight function \(w_T : E_T \to \mathbb{R}_{>0}\) is called weighted tree. Isomorphisms of weighted trees are defined as in Definition 3. The set of all weighted trees up to isomorphism is called \((T, \mathbb{R}_{>0})\).

Given a weighted tree \((T, w_T)\) we can modify its edges \(E_T \cong V_T - \{r_T\}\) with a sequence of the following edit operations:

- we call **shrinking** of a vertex/edge a change of the weight function. The new weight function must be equal to the previous one on all edges, a part from the “shrunk” one, whose weight can become bigger or smaller. In other words, for an edge \(e\), this means changing the value \(w_T(e)\) with another value in \(\mathbb{R}_{>0}\).

- A **deletion** is an edit with which a vertex/edge is deleted from the dendrogram. Consider an edge \((v_1, v_2)\). The result of deleting \(v_1\) is a new tree structure, with the same vertices a part from \(v_1\) (the smaller one), and with the father of the deleted vertex which gains all of its children. The inverse of the deletion is the **insertion** of an edge along with its lower vertex. We can insert an edge at a vertex \(v\) specifying the name of the new child of \(v\), the children of the newly added vertex (that can be either none, or any portion of the children of \(v\)), and the value of the weight function on the new edge.

- Lastly, we can remove or add order two vertices via the **ghosting** and **splitting** edits, which have already been defined in Definition 4. The weight function is obtained by summation of the merged edges in case of ghostings, and must be arbitrarily defined in case of splittings. With the condition that splitting an edge and then ghosting the order two vertex obtained must restore the original edge weight.

The set of all weighted trees considered up to ghostings and splittings is called \((T_2, \mathbb{R}_{>0})\). A weighted tree \(T\) can be edited to obtain another weighted tree, on which one can apply a new edit to obtain a third tree and so on. Any finite composition of edits is called...
Figure 1: (b)→(e) form an edit path made from the left weighted tree in Figure 1a to the right one. Each time the edges involved in the editing are highlighted with different colors. In the following plot such vertices return black. This edit path can clearly be represented with a mapping - Section 3.2 - made by couples (v, "D") for all the red vertices in Figure 1b, (v,"G") for all the yellow vertices in Figure 1c, (v,w) for all the vertices associated via the green color in Figure 1d, ("G", w) for all the yellow vertices in Figure 1c and ("D", w) for all the red vertices in Figure 1f.
edit path. See Figure 1 for an example of an edit path. The set of finite edit paths between
T and T' is called $\Gamma(T, T')$.

The cost of the edit operations is defined as follows:

- the cost of shrinking an edge is equal to the absolute value of the difference of the two weights;
- for any deletion/insertion, the cost is equal to the weight of the edge deleted/inserted;
- the cost of ghostings and splittings is zero.

The cost of an edit path is the sum of the costs of its edit operations. Putting all the pieces together, the edit distance d_E between weighted trees is defined as $d_E(T, T') = \inf_{\gamma \in \Gamma(T, T')} \text{cost}(\gamma)$, where $\Gamma(T, T')$ indicates the set of edit paths which start in T and end in T'. In Pegoraro (2023) it is proved that d_E is a metric on the space of weighted trees considered up to order two vertices.

3.2 Mappings

Given an edit path between two weighted trees, its cost is often invariant up to many permutations of the edits. To better work in such environment, we start considering paths up to some permutation of the edits. Objects called mappings, as defined in Pegoraro (2023), Section “Trees”, help us in doing this, as well as making the metric d_E more tractable. For this reason now we report their definition. As in Pegoraro (2023), ”D” and ”G” are be used to indicate “deletion” and “ghosting”.

A mapping between T and T' is a set $M \subset (E_T \cup \{"D", "G"\}) \times (E_{T'} \cup \{"D", "G"\})$ satisfying:

(M1) consider the projection of the Cartesian product $(E_T \cup \{"D", "G"\}) \times (E_{T'} \cup \{"D", "G"\})$ into $(E_T \cup \{"D", "G"\})$; we can restrict this map to M obtaining $\pi_T : M \to (E_T \cup \{"D", "G"\})$. The maps π_T and $\pi_{T'}$ are surjective on $E_T \subset (E_T \cup \{"D", "G"\})$ and $E_{T'} \subset (E_{T'} \cup \{"D", "G"\})$ respectively;

(M2) π_T and $\pi_{T'}$ are injective;

(M3) $M \cap (V_T \times V_{T'})$ is such that, given (a, b) and $(c, d) \in M \cap (V_T \times V_{T'})$, $a > c$, if and only if $b > d$;

(M4) if $(a,"G") \in M$ (or analogously ("$G", a))$, then after applying all deletions of the form $(v,"D") \in M$, the vertex a becomes an order 2 vertex. In other words: let $\text{child}(a) = \{b_1, ..., b_n\}$. Then there is one and only one i such that for all $j \neq i$, for all $v \in V_{\text{sub}(b_j)}$, we have $(v,"D") \in M$; and there is one and only one c such that $c = \max\{x \leq b_i | (x, y) \in M \text{ for any } y \in V_{T'}\}$.

We call $\text{Mapp}(T, T')$ the set of all mappings between T and T'. We may refer to edges which appear in the couples in $M \cap (V_T \times V_{T'})$ as the coupled or matched edges/vertices.

As in Pegoraro (2023), we use the properties of $M \in \text{Mapp}(T, T')$ to parametrize a set of edit paths starting from T and ending in T', which are collected under the name γ_M.

- γ_d^T a path made by the deletions to be done in T, that is, the couples $(v,"D")$, executed in any order. So we obtain $T_d^M = \gamma_d^T(T)$, which, instead, is well defined and not depending on the order of the deletions.
• One then proceeds with ghosting all the vertices \((v, "G")\) in \(M\), in any order, getting a path \(\gamma_g^T\) and the dendrogram \(T_M := \gamma_g^T \circ \gamma_d^T(T)\).

• Since all the remaining points in \(M\) are coupled, the two dendrograms \(T_M'\) (defined in the same way as \(T_M\), but starting from \(T'\)) and \(T_M\) must be isomorphic as tree structures. This is guaranteed by the properties of \(M\). So one can shrink \(T_M\) onto \(T_M'\), and the composition of the shrinkings, executed in any order is an edit path \(\gamma_s^T\).

By construction \(\gamma_s^T \circ \gamma_g^T \circ \gamma_d^T(T) = T_M\), and \((\gamma_d^T')^{-1} \circ (\gamma_g^T')^{-1} \circ \gamma_s^T \circ \gamma_g^T \circ \gamma_d^T(T) = T'\).

Where the inverse of an edit path is thought as the composition of the inverses of the single edit operations, taken in the inverse order.

Lastly, we call \(\gamma_M\) the set of all possible edit paths of the form \((\gamma_d^T')^{-1} \circ (\gamma_g^T')^{-1} \circ \gamma_s^T \circ \gamma_g^T \circ \gamma_d^T(T)\), obtained by changing the order in which the edit operations are executed inside \(\gamma_d, \gamma_g\) and \(\gamma_s\). Even if \(\gamma_M\) is a set of paths, its cost is well defined:

\[
\text{cost}(M) := \text{cost}(\gamma_M) = \text{cost}(\gamma_g^T) + \text{cost}(\gamma_s^T) + \text{cost}(\gamma_d^T').
\]

See Figure 1 for an example of a mapping between weighted trees. We conclude this section by recalling that Pegoraro (2023) proves that given two weighted trees \(T\) and \(T'\), for every finite edit path \(\gamma \in \Gamma(T, T')\), there exists a mapping \(M \in \text{Mapp}(T, T')\) such that \(\text{cost}(M) \leq \text{cost}(\gamma)\).

Lastly, consider \(M_2(T, T') \subset \text{Mapp}(T, T')\) defined as follows.

Definition 7 (Pegoraro (2023)) A mapping \(M \in \text{Mapp}(T, T')\) has maximal ghostings if \((v, "G") \in M\) if and only if \(v\) is of order 2 after the deletions in \(T\) and, similarly \(("G", w) \in M\) if and only if \(w\) is of order 2 after the deletions in \(T'\).

A mapping \(M \in \text{Mapp}(T, T')\) has minimal deletions if \((v, "D") \in M\) only if neither \(v\) nor father\((v)\) are of order 2 after applying all the other deletions in \(T\) and, similarly, \(("D", w) \in M\) only if \(w\) is not of order 2 after applying all the other deletions in \(T'\).

We collect all mappings with maximal ghostings and minimal deletions in the set \(M_2(T, T')\).

Lemma 1 (Pegoraro (2023))

\[
\min\{\text{cost}(M) \mid M \in \text{Mapp}(T, T')\} = \min\{\text{cost}(M) \mid M \in M_2(T, T')\}
\]

4. **Merge Trees Edit Distance**

In this section we finally exploit the notation established in the previous sections to obtain a (pseudo) metric for merge trees.

4.1 **Truncation Operators**

First we need to bridge between merge trees and weighted trees, in order to induce a metric on merge trees by means of the edit distance defined in Section 3. The general idea is that we want to truncate the edge going to infinity of a merge tree to obtain a weighted tree.

Starting from a merge tree \((T, h_T)\) it is quite natural to turn the height function \(h_T\) into a weight function \(w_T\) via the rule \(w_T((v, v')) := h_T(v') - h_T(v)\). The monotonicity of \(h_T\) guarantees that \(w_T\) take values in \(\mathbb{R}_{>0}\). However, we clearly have an issue with the edge \((v, r_T)\) as \(h_T(r_T) = +\infty\). To solve this issue we need some novel tools - see Figure 2.

First consider the set of merge trees \(\mathcal{MT}\) and build the subset \(\mathcal{MT}_K := \{(T, h_T) \in \mathcal{MT} \mid \)
max $h_T \leq K$, for some $K \in \mathbb{R}$. Then define the truncation operator at height K as follows:

$$\text{Tr}_K : \mathcal{MT}_K \rightarrow (\mathcal{T}, \mathbb{R}_{\geq 0})$$

with $h_K(v) = h_T(v)$ if $v < r_T$ and $h_K(r_T) = K$. Then we set $w_T((v, v')) = h_K(v') - h_K(v)$. To avoid $w_T((v, r_T)) = 0$, if $\max h_T = K$, we take $(T, h_T) \mapsto (T', h_T') \mapsto (T', w_T')$ with T' obtained from T via the removal of r_T from V_T and (v, r_T) from E_T. The map $h_{T'}$ is $h_{T|_{V_{T'}}}$. Then $w_{T'}((v, v')) := h_{T'}(v') - h_{T'}(v)$.

In other words, with Tr_K we are fixing some height K, truncating the edge $(\arg\max h_T, r_T)$ at height K, and then obtaining a positively weighted tree, as in Figure 2. To go back with $(\text{Tr}_K)^{-1}$ we “hang” a weighted tree at height K and extend the edge (v, r_T) to $+\infty$.

We formally state these ideas in the following proposition which we state without proof.

Proposition 1 The operator $\text{Tr}_K : \mathcal{MT}_K \rightarrow (\mathcal{T}, \mathbb{R}_{\geq 0})$ can be inverted via $(T, w_T) \mapsto \text{Tr}_K^{-1}((T, w_T)) = (T', h_{T'})$ with the following notation: the tree structure T' is obtained from T via adding $r_{T'}$ to V_T and $(r_T, r_{T'})$ to E_T and ghosting r_T if it becomes an order 2 vertex. Then we have $h_{T'}(r_{T'}) = K$ (if it is not ghosted, i.e. if it is of order greater than 2), $h_{T'}(r_{T'}) = +\infty$ and, recursively, for $(v, v') \in E_T$, $h_{T'}(v) = h_{T'}(v') - w_T((v, v'))$.

Clearly $\text{Tr}_K^{-1}((\text{Tr}_K((T, h_T)))) \cong (T, h_T)$. Thus $\mathcal{MT}_K \cong (\mathcal{T}, \mathbb{R}_{\geq 0})$ as sets, for every $K \in \mathbb{R}$. Moreover $\text{Tr}_K((T, h_T)) \sim_2 \text{Tr}_K((T', h_{T'}))$ if and only if $(T, h_T) \sim_2 (T', h_{T'})$.

4.2 Edit Distance For Merge Trees

Consider $(T, h_T), (T', h_{T'}) \in \mathcal{MT}$ and select K such that $(T, h_T), (T', h_{T'}) \in \mathcal{MT}_K$. Let $(G, w_G) = \text{Tr}_K((T, h_T))$ and $(G', w_{G'}) = \text{Tr}_K((T', h_{T'}))$. Lastly, set:

$$d_K((T, h_T), (T', h_{T'})) := d_E((G, w_G), (G', w_{G'})).$$

Despite being a promising and natural pseudo metric, d_K is not defined on the whole \mathcal{MT} and, on top of that, it is not clear if its value depends on the K we choose. The following result solves these issues and proves that we can use d_K to define a metric on \mathcal{MT}.
Remark 1

Say that the one between merge trees. The arguments of the distances should clarify which of the K for any O.

Proposition 3 (Pegoraro (2023))

Let T define a pseudo metric on MT and compute $d_E(T, T') = d_E(sub_G(v'), sub_G(w'))$.

We now exploit Proposition 2 to define the edit distance between merge trees.

Theorem 1 (Merge Tree Edit Distance) Given two merge trees $(T, h_T), (T', h_{T'})$ such that $(T, h_T), (T', h_{T'}) \in MT_K$ and $(T, h_T), (T', h_{T'}) \in MT_K'$, then $d_K(T, T') = d_{K'}(T, T')$.

Thus, for any couple of merge trees in MT, we can define the merge tree edit distance

$$d_E((T, h_T), (T', h_{T'})) := d_K((T, h_T), (T', h_{T'}))$$

for any $K \geq \max\{\max h_T, \max h_{T'}\}$.

For ease of notation we call d_E both the edit distance between weighted trees and the one between merge trees. The arguments of the distances should clarify which of the two metrics we are referring to. By Proposition 1 we also have the following corollary of Theorem 1.

Corollary 1 The distance d_E is a pseudo metric on MT and a metric on MT / \sim_2: given two merge trees (T, h_T) and $(T', h_{T'})$, $d_E((T, h_T), (T', h_{T'})) = 0$ if and only if $(T, h_T) \sim_2 (T', h_{T'})$.

Remark 1 Theorem 1 and Corollary 1 have a series of important implications. First, they say that $(MT_K / \sim_2, d_E)$ is isometric and isomorphic to (T_2, d_E) and thus, if we have a subset of merge trees contained in MT_K / \sim_2, for some K, we can map them in (T_2, d_E) via T_{1K} and carry out our analysis there. Second, suppose we are given a merge tree T'' with $\max h_{T''} > K$. For any two merge trees T, T' with $K \geq \max h_T, \max h_{T'}$, we can consider $K' \geq \max h_{T''}$ and compute $d_E(T, T'') = d_{K'}(T, T'')$ and $d_E(T', T'') = d_{K'}(T', T'')$. But we do not have to compute again $d_{K'}(T, T')$ for we have $d_E(T, T') = d_{K'}(T, T') = d_K(T, T')$.

See Appendix E.1 for some examples. We close this section with the following remark.

Remark 2 A more naive approach could have been to model each merge tree as a triplet $(G, w_G, h_T(v)) \in (T, R_{\geq 0}) \times \mathbb{R}$, with $v = \arg \max h_T$ and $G = sub_T(v)$ - i.e. to record the height of the last merging point in T and then remove (v, r_T) from E_T. Then one could define a pseudo metric on MT via the rule:

$$d((T, h_T), (T', h_{T'})) = | h_T(v) - h_{T'}(v') | + d_E((G, w_G), (G', w_{G'})).$$

but this leads to unpleasant and unstable behaviors, as in Figure 3.

By definition, computing d_E for merge trees amounts to computing d_K, and so we can exploit the algorithm presented in Pegoraro (2023) to compute d_E for weighted trees.

Proposition 3 (Pegoraro (2023)) Let T and T' be two merge trees with full binary tree structures with $\#E_T = N$ and $\#E_{T'} = M$. Then $d_E(T, T')$ can be computed by solving $O(N \cdot M)$ BLP problems with $O(N \cdot \log(N) \cdot M \cdot \log(M))$ variables and $O(\log_2(M) + \log_2(N))$ constraints.

As anticipated in Section 1, the classical edit distance can be computed by solving $O(N \cdot M)$ BLP problems with $O(N \cdot M)$ variables and $O(\log_2(M) + \log_2(N))$ constraints (Hong et al., 2017). Thus, Proposition 3 also suggests that there could be polynomial time approximation algorithms also for the metric d_E, as for the classical edit distance (Zhang, 1996).
4.3 Stability

Merge trees are trees which are used to represent data and, considering populations of such objects, to explore the variability of a data set. Thus, any metric which is employed on merge trees (and on any data representation in general) needs to measure the variability between merge trees in a “sensible” way, coherently with the application considered. A formal way to assess such properties often comes in the form of continuity results of
the operator mapping data into representations, which, in TDA’s literature, are usually referred to as stability results.

Stability results are usually understood in terms of interleavings between persistence modules (Chazal et al., 2008): the distance one measures between (a summary of) the persistence modules should not deviate too much from the interleaving distance between the modules themselves. The rationale behind these ideas follows from the fact that given two functions \(f, g : X \to \mathbb{R} \) with suitable properties and such that \(\| f - g \|_\infty < \varepsilon \), then their sublevel set filtrations induce \(\varepsilon \)-interleaved persistence modules via homology functors. Moreover, interleaving distances are taken as reference because they are universal among the metrics bounded from above by \(\| f - g \|_\infty \) (Lesnick, 2015; Cardona et al., 2022): for any other metric \(d \) on persistence modules/merge trees such that \(d(S_f, S_g) \leq \| f - g \|_\infty \) then \(d(S_f, S_g) \leq d_\varepsilon(S_f, S_g) \), with \(S_f, S_g \) being the persistence modules/merge trees representing \(f, g \) and \(d_\varepsilon \) being the interleaving distance between them. Thus, a good behavior in terms of interleaving distance implies a good handling of pointwise noise between functions and so also interpretability of the metric.

Being the edit distance a summation of the costs of local modifications of trees we expect that \(d_E \) cannot be bounded from above by the interleaving distance between merge trees as such metric (see Appendix B) in some sense, measures only the biggest modification needed optimally match two merge trees. Thus, a suitable stability condition, which we name finite stability, would be for \(\varepsilon \)-interleaved trees to be obtained one from the other just by means of edits with cost \(\varepsilon \), and with edit paths whose number of operations is bounded by the sizes of the trees. That is, the cost of the local modifications we need to match the two merge trees goes to 0 as their interleaving distance gets smaller and smaller. As is the case for Wasserstein metrics between PDs.

In the following we need to use persistence modules, persistent sets and, in particular, those persistent sets that can be represented via merge trees, which we call regular abstract merge trees (RAMTs). For the formal definitions, see Appendix A. Here we just say that an abstract merge tree is a functor \(\pi_0(X, \cdot) : (\mathbb{R}, \leq) \to \mathbb{FSet} \) that before some real number is always empty, while after some other real number is always a singleton, and its arrows are all isomorphisms but for a finite number of \(t, t' \in \mathbb{R} \), which are called critical values. Regularity refers to the behavior of \(\pi_0(X, \cdot) \) at critical values. To such \(\pi_0(X, \cdot) \) we can assign a merge tree \(M(\pi_0(X, \cdot)) \) without order 2 vertices. Informally, \(\pi_0(X, \cdot) \) is an algebraic representation of the geometric realization of the tree structure of a merge tree, with the height function defined on all the points of such geometric realization. Similarly, we make use of the interleaving distance and \(\varepsilon \)-compatible maps between persistent sets, which are established in TDA literature and thus we just report their definition in Appendix B.

Definition 8 Given a persistence module \(S : \mathbb{R} \to \mathbb{Vec}_K \), we define its rank as \(\text{rank}(S) := \#PD(S) \) i.e. the number of points in its persistence diagram (if it exists). When \(S \) is generated on \(K \) by a regular abstract merge tree \(\pi_0(X, \cdot) \) we have \(\text{rank}(S) := \#PD(S) = \#L_T \), with \((T, h_T) = M(\pi_0(X, \cdot)) \). In this case, we use \(\text{rank}(T) \) to refer to \(\text{rank}(S) \). We also fix the notation \(\dim(T) := \#E_T \). Note that \(\dim(T) \leq 2 \text{rank}(T) \). Lastly, we define the space of merge trees with uniform upper bound on their dimension:

\[
\mathcal{MT}^N = \{ T \in \mathcal{MT} \mid \dim(T) \leq N \}.
\]

With these pieces of notation we can introduce the notion of finitely stable metrics.

Definition 9 A metric for merge trees is finitely stable if there is \(C > 0 \) such that for every RAMTs \(\pi_0(X, \cdot) \) and \(\pi_0(Y, \cdot) \), upon setting \(T = M(\pi_0(X, \cdot)) \) and \(T' = M(\pi_0(Y, \cdot)) \),
we have:

\[d(T, T') \leq C(\text{rank}(T) + \text{rank}(T'))\varepsilon. \]

In view of these definitions we can rewrite the following theorem from Pegoraro and Secchi (2024).

Theorem 2 (Pegoraro and Secchi (2024)) If there are \(\alpha, \beta \in \epsilon \)-compatible maps between two RAMTs \(\pi_0(X) \) and \(\pi_0(Y) \), then there exist a mapping \(M \) between \(T = \mathcal{M}(\pi_0(X)) \) and \(G = \mathcal{M}(\pi_0(Y)) \) such that \(\text{cost}_M((a, b)) \leq 2\varepsilon \) for every \((a, b) \in M \). Since \(\dim(T) \leq 2\text{rank}(T) \), \(d_E \) is finitely stable.

Now we prove a complementary result, which gives the complete picture of the stability properties of \(d_E \), allowing the comparison with Wasserstein distances between PDs. Note that in the remaining part of the manuscript, to lighten the notation, we often deliberately confuse the a RAMT \(\pi_0(X) \) and the associated merge tree \(\mathcal{M}(\pi_0(X)) \).

Theorem 3 We always have \(d_I(T, G) \leq d_E(T, G) \).

The bound given by Theorem 3 cannot be improved.

Example Consider \(f : I \to \mathbb{R} \) and \(g(x) = f(x) + h \) for some fixed \(h \in \mathbb{R} \), and let \(X \), be the sublevel set filtration of \(f \) and \(Y \), of \(g \). Taking \((T, h_T) \) and \((G, h_G) \) as the merge trees representing \(\pi_0(X) \) and \(\pi_0(Y) \), we have \(d_I(T, G) = d_E(T, G) = h \).

Putting together Theorem 3 and Theorem 2 we obtain the following inequalities.

Corollary 2

\[d_I(T, G) \leq d_E(T, G) \leq 2(\dim(T) + \dim(G))d_I(T, G). \]

Equation (2) is the inequality that better summarizes the stability properties of \(d_E \). Moreover, inequalities similar to the ones expressed by Equation (2) relate also the bottleneck and the 1-Wasserstein distances between PDs. See Appendix C for definitions. In fact, if \(d_B \) is the bottleneck distance between PDs, and \(W_1 \) is the 1-Wasserstein distance, for every pair of persistence diagrams \(D_1, D_2 \) we have:

\[d_B(D_1, D_2) \leq W_1(D_1, D_2) \leq (\text{rank}(D_1) + \text{rank}(D_2))d_B(D_1, D_2). \]

The similarity between Equation (2) and Equation (1) qualifies \(d_E \) as an analogous for merge trees of the 1-Wasserstein distance for PDs, as they have analogous stability properties w.r.t. the universal distance of, respectively, merge trees and PDs. Those properties are in line with our expectations: when editing \(\varepsilon \)-interleaved merge trees we need to produce small local modification for each vertex of the merge tree, and then add up all the contributions. In the same way, with the 1-Wasserstein distance, one measures the difference between \(\varepsilon \)-interleaved diagrams aggregating the small discrepancies between all persistence pairs.

Universal distances like the interleaving and the bottleneck ones satisfy such strong stability properties because, in some sense, they measure the maximum cost of the modifications that we have to make on the considered objects. In other words, they are very stable because they are heavily insensitive: one could add an infinite amount of deformations to the considered objects, smaller than the biggest one (like, infinite points close
enough to the diagonal of PDs) without these changes affecting the distance. That is, they are very poor in discriminating between different objects, and not just when local deformations are small, as shown in Appendix E.2. More formally, the topology induced by d_E is strictly richer than the one induced by d_I as, for any $T' \in \mathcal{MT}$ and $C > 0$, the following hold:

$$\{ T \in \mathcal{MT} \mid d_E(T, T') < C \} \subset \{ T \in \mathcal{MT} \mid d_I(T, T') < C \}.$$

On the other hand it is not difficult to build a tree T and a sequence $\{ T_n \}_{n \in \mathbb{N}}$ such that $d_I(T_n, T) \to 0$ and $d_E(T_n, T) \to +\infty$. See also the upcoming example.

Example Let $h_n : [0, 1] \to \mathbb{R}$ be $h_n(x) = 1/n \cdot \sin(2\pi n^2 x)$ and $f : [0, 1] \to \mathbb{R}$ being $f(x) = x$. Let T be the merge tree of f and T_n the merge tree of $f_n := f + h_n$. We have $d_I(T, T_n) \leq 1/n$ while $d_E(T, T_n) \sim O(n)$. Similarly, let D be the PD of f and D_n the PD of f_n. We have $d_E(D, D_n) \leq 1/n$ while $W_1(D, D_n) \sim O(n)$.

This reinforces the fact that, in general, d_E is potentially better than d_I at discriminating trees, as is has more open sets to separate objects. From the data analysis perspective these facts have interesting consequences, which we try to sum up merging some ideas which are commonly found in TDA theoretical works, with others which are diffused among practitioners.

Universal metrics are of great use whenever we need to work with topological summaries extracted from noisy data, that we cannot carefully denoise. Suppose for instance that we observe an iid sample $\{(x_i, y_i)\}_{i=1}^n$ from the model $Y \mid X = x \sim f(x) + \varepsilon$, with ε being a noise random variable with zero mean and finite variance, X, Y being two real valued random variables, and $f : [a, b] \to \mathbb{R}$ a smooth function. Which is a standard statistical model in functional data analysis and regression problems (Ramsay and Silverman, 2005). Suppose we can build an estimate \hat{f}_n of $f(\cdot) = \mathbb{E}(Y \mid X = \cdot)$ from $\{(x_i, y_i)\}_{i=1}^n$. Universal stability implies that \hat{f}_n can be a very naive estimator of f, as $d_I(T_f, T_{\hat{f}_n}) \leq \| f - \hat{f}_n \|_\infty$.

Thus, as long as the estimator provides a low point wise error, we know that $T_{\hat{f}_n}$, which we obtained from our samples, is a good estimate of T_f in terms of d_I. Having a rough estimate \hat{f}_n (e.g. piecewise affine interpolation of $\{(x_i, y_i)\}_{i=1}^n$) would instead be very bad for d_E and W_1 as \hat{f}_n is likely to have many ancillary/noisy oscillations, which can blow up $\dim(T_{\hat{f}_n})$ and $\text{rank}(PD(\hat{f}_n))$, so that $T_{\hat{f}_n}$ and $PD(\hat{f}_n)$ are potentially very poor approximations of T_f and $PD(f)$ in terms of d_E and W_1, respectively. So, whatever analysis is run with such metrics will produce no reliable results.

However, as shown in Pegoraro and Secchi (2024), one can build \hat{f}_n with good enough properties (e.g. not just uniform convergence, but also uniform convergence of the derivatives), so that $T_{\hat{f}_n}$ ends up being a good estimator of T_f also in terms of d_E. Thus, upon designing careful denoising procedures, for instance relying on more refined statistical estimators for the kind of data considered, one can solve the problem of dealing with noise, and is not constrained to use universally stable metrics. Of course, the same applies if the analysts and the field experts can assume that the data generating process is affected by noise only in negligible terms.

In any of the aforementioned situations, the analysts can build statistically grounded pipelines involving metrics like d_E and W_1, which are much more sensitive and whose discriminative power is arguably more useful in many data analysis scenarios compared to their universal counterparts, to the point that, to the best of our knowledge, Wasserstein metrics are more frequently used in applications than the bottleneck one. On the other hand, if data is heavily corrupted by noise and cannot be effectively denoised, this will
affect the results obtained with W_p and d_E much more than if the analysis had been carried out with d_B and d_I.

We complement these comments with two additional results. With the first easy one, which we state without proof, we motivate our terminology of “finite” stability: it indicates that d_I-Lipschitz operators (like the one mapping tame functions with the sup norm into the merge trees of their sublevel sets) are also d_E-Lipschitz on all finite dimensional subspaces of merge trees. With the second one, instead, we highlight that any $\varphi : (X, d_X) \to (MT, d_I)$ which is continuous, is also arbitrarily close (in terms of d_I) to being d-continuous, for every finitely stable metric d. More precisely, φ can locally be approximated via its smoothing: $S_\varepsilon \circ \varphi$. Where S_ε is the smoothing operator used to define the interleaving distance in Appendix B

Proposition 4 Let d be a finitely stable metric between merge trees and let $\varphi : (X, d_X) \to (MT, d_I)$ be a Lipschitz operator from some metric space (X, d_X) to the space of regular merge trees considered with the interleaving distance. Then φ is Lipschitz w.r.t. d on all finite dimensional subspaces of MT. That is, for every $N \in \mathbb{N}$ the following operator is Lipschitz:

$$\varphi_{|_{\varphi^{-1}(MT^N)}} : (\varphi^{-1}(MT^N), d_X) \to (MT^N, d).$$

Proposition 5 Consider T and $\{T_n\}_{n \in \mathbb{N}}$ merge trees such that $d_I(T, T_n) \to 0$, and let d be a finitely stable distance between merge trees. For any $\varepsilon > 0$, there exists $\varepsilon > 0$ (depending also on T) such that, for $G_n := S_\varepsilon(T_n)$ we have:

1. $d_I(T_n, G_n) \leq \varepsilon$ for all n;
2. $\lim_{n \to \infty} d(T, G_n) \leq \varepsilon$.

5. Conclusions

In this manuscript we introduce a novel edit distance for merge trees, and study its stability properties. To the best of our knowledge, our metric is the only edit distance for merge trees with proven stability properties. We devote a good portion of the work to support the claim that, a priori, the stability properties we prove are more suited for general data analysis scenarios w.r.t. the universal ones of the interleaving distance. The appendix further expands on that, with a detailed comparison with the other edit distances for merge trees and a simulation involving the interleaving distance. Notably, other works employ this metric in applications (Pegoraro and Secchi, 2024; Cavinato et al., 2022).

This works opens a series of further developments in complementary directions: 1) aiming at closing the computational gap with the other edit distances for merge trees by obtaining an algorithm for the constrained version of our edit distance. In the manuscript we claim that this algorithm should have polynomial time complexity, and we support this claim with the relationships between our metric and the classic edit distance between unlabeled trees; 2) developing data analysis tools to work in the space of merge trees. In particular, we are currently working on defining means of finite sets of trees and in defining embeddings of finite sets of trees into euclidean spaces, trying to preserve some metric properties of the original set of trees.
Figure 4: On the first line we see an example of a filtration along with its abstract merge tree. In the bottom line there are a regular abstract merge tree and the associated merge tree. The colors are used throughout the plots to highlight the relationships between the different objects.

Appendix A. Abstract Merge Trees

Following Patel (2018); Curry et al. (2022) we introduce persistent sets. Figure 4 illustrates some of the objects we introduce in this section.

Definition 10 (Curry et al. (2022)) A filtration of topological spaces is a (covariant) functor $X: \mathbb{R} \to \text{Top}$ from the poset (\mathbb{R}, \leq) to Top, the category of topological spaces with continuous functions, such that: $X_t \to X_{t'}$ for $t < t'$, are injective maps.

Example Given a real valued function $f: X \to \mathbb{R}$ the sublevel set filtration is given by $X_t = f^{-1}((\infty, t])$ and $X_{t < t'} = i: f^{-1}((\infty, t]) \hookrightarrow f^{-1}((\infty, t'))$.

Example Given a finite set $C \subset \mathbb{R}^n$ its the Céch filtration is given by $X_t = \bigcup_{c \in C} B_t(c)$.

Given a filtration X, we can compose it with the functor π_0 sending each topological space into the set of its path connected components. We recall that, according to standard topological notation, $\pi_0(X)$ is the set of the path connected components of X and, given a continuous functions $q: X \to Y$, $\pi_0(q): \pi_0(X) \to \pi_0(Y)$ is defined as:

$$U \mapsto V$$ such that $q(U) \subset V$.

17
Definition 11 (Carlsson and Mémoli (2013); Curry (2018)) A persistent set is a functor $S : \mathbb{R} \to \text{Sets}$. In particular, given a filtration of topological spaces X_\cdot, the persistent set of components of X_\cdot is $\pi_0 X_\cdot$. A (one dimensional persistent module) is a functor $S : \mathbb{R} \to \text{Vec}_K$ with values in the category of vector spaces Vec_K.

By endowing a persistent set with the discrete topology, every persistence set can be seen as the persistence set of components of a filtration. Thus a general persistent set S can be written as $\pi_0(X_\cdot)$ for some filtration X_\cdot.

Based on the notion of constructible persistent sets found in Patel (2018); Curry et al. (2022) one then builds the following objects.

Definition 12 (Pegoraro (2024a)) An abstract merge tree is a persistent set $S : \mathbb{R} \to \text{Sets}$ such that there is a finite collection of real numbers $\{t_1 < t_2 < \ldots < t_n\}$ which satisfy:

- $S(t) = \emptyset$ for all $t < t_1$;
- $S(t) = \{\star\}$ for all $t > t_n$;
- if $t, t' \in (t_i, t_{i+1})$, with $t < t'$, then $S(t < t')$ is bijective.

The values $\{t_1 < t_2 < \ldots < t_n\}$ are called critical values of the tree and there is always a minimal set of critical values (Pegoraro, 2024a). We always assume to be working with such minimal set.

If $S(t)$ is always a finite set, S is a finite abstract merge tree.

Consider an abstract merge tree $\pi_0(X_\cdot)$ and let $t_1 < t_2 < \ldots < t_n$ be its (minimal set of) critical values and let $i_j' := X_{t \leq t'} : X_t \to X_{t'}$. Take $\varepsilon > 0$ small enough. We have that at least one between $\pi_0(i_{t_j-\varepsilon})$ and $\pi_0(i_{t_j+\varepsilon})$ is not bijective. So we have the following definition.

Definition 13 (Pegoraro (2024a)) An abstract merge tree $\pi_0(X_\cdot)$ is said to be regular if $\pi_0(i_{t_j+\varepsilon})$ is bijective for every critical value t_j and for every $\varepsilon > 0$ small enough.

Assumption 1 We consider only regular abstract merge trees. In Pegoraro (2024a) it is shown that this choice is non-restrictive.

We report a result summarizing the relationship between abstract merge trees and merge trees. The main consequence of such result is that merge trees considered up to order 2 vertices are an appropriate discrete tool to represent the information contained in RAMTs. Figure 4b and Figure 4d can help the reader going through the following proposition.

Proposition 6 (Pegoraro (2024a)) The following hold:

1. we can associate a merge tree without order 2 vertices $M(\pi_0(X_\cdot))$ to any regular abstract merge tree $\pi_0(X_\cdot)$;
2. we can associate a regular abstract merge tree $F((T, h_T))$ to any merge tree (T, h_T). Moreover, we have $M(F((T, h_T))) \cong_2 (T, h_T)$;
3. given two merge trees (T, h_T) and $(T', h_{T'})$, we have $F((T, h_T)) \cong F((T, h_T))$ if and only if $(T, h_T) \cong_2 (T', h_{T'})$.

18
Remark 3 For the sake of brevity, we don’t report the explicit construction of \(\mathcal{M}\) and \(\mathcal{F}\), which can be found in the proof of Proposition 4 in Pegoraro (2024a). Intuitively, \(\mathcal{M}\) gives a discretization of a regular abstract merge tree \(\pi_0(X_\epsilon)\), by sending it in the “smallest” graph (in terms of vertices) needed to describe the maps \(\pi_0(X_{t\leq \epsilon})\), together with the induced function defined on the vertices. In particular, this can be done without using order 2 vertices, which are superfluous. Viceversa, \(\mathcal{F}\) associates to a merge tree a functor which is roughly an algebraic equivalent of its geometric realization, where one can actually consider all the individual points on the edges. Clearly, order two vertices are lost in this procedure.

Appendix B. Interleaving Distance Between Merge Trees

We adapt the definition of the interleaving distance between merge trees, which is originally stated by Morozov et al. (2013) with a different notation.

Definition 14 (adapted from Morozov et al. (2013) and De Silva et al. (2016))

Given \(X\), filtration and \(\epsilon > 0\), we define \(X_\epsilon\) as \(X_\epsilon := X_{t+\epsilon}\) and \(X_\epsilon^\prime := X_{t+\epsilon+\epsilon}\). Coherently with the literature on Reeb graphs, we define the called the \(\epsilon\)-smoothing operator \(\mathcal{S}_\epsilon\) as: \(\mathcal{S}_\epsilon(\pi_0(X_\epsilon)) := \pi_0(X_\epsilon^\prime)\). Note that \(\mathcal{S}_\epsilon\) also acts on natural transformations \(\alpha : \pi_0(X_\epsilon) \to \pi_0(Y_\epsilon)\); by setting \(\mathcal{S}_\epsilon(\alpha_t) := \alpha_{t+\epsilon}\) one obtains \(\mathcal{S}_\epsilon(\alpha) : \mathcal{S}_\epsilon(\pi_0(X_\epsilon)) \to \mathcal{S}_\epsilon(\pi_0(Y_\epsilon))\). Lastly, we have the natural transformation \(i_{\pi_0(X_\epsilon)}^\epsilon : \pi_0(X_\epsilon) \to \mathcal{S}_\epsilon(\pi_0(X_\epsilon))\) given by \(i_{\pi_0(X_\epsilon)}^\epsilon := \pi_0(X_{t+\epsilon}) : \pi_0(X_t) \to \pi_0(X_{t+\epsilon})\).

Definition 15 (adapted from Morozov et al. (2013)) Take two abstract merge trees \(\pi_0(X_\epsilon)\) and \(\pi_0(Y_\epsilon)\). Two natural transformations \(\alpha : \pi_0(X_\epsilon) \to \mathcal{S}_\epsilon(\pi_0(Y_\epsilon))\), \(\beta : \pi_0(Y_\epsilon) \to \mathcal{S}_\epsilon(\pi_0(X_\epsilon))\) are \(\epsilon\)-compatible if:

- \(\mathcal{S}_\epsilon(\beta) \circ \alpha = i_{\pi_0(X_\epsilon)}^\epsilon\);
- \(\mathcal{S}_\epsilon(\alpha) \circ \beta = i_{\pi_0(Y_\epsilon)}^\epsilon\).

Unfolding the definitions, this means:

- \(\beta_{t+\epsilon} \circ \alpha_t = \pi_0(X_{t\leq t+2\epsilon})\)
- \(\alpha_{t+\epsilon} \circ \beta_t = \pi_0(Y_{t\leq t+2\epsilon})\).

Then, the interleaving distance between \(\pi_0(X_\epsilon)\) and \(\pi_0(Y_\epsilon)\) is:

\[
\text{d}_I(\pi_0(X_\epsilon), \pi_0(Y_\epsilon)) = \inf\{\epsilon > 0 | \exists \alpha, \beta \text{ \(\epsilon\)-compatible}\}.
\]

We also say that \(\pi_0(X_\epsilon)\) and \(\pi_0(Y_\epsilon)\) are \(\text{d}_I(\pi_0(X_\epsilon), \pi_0(Y_\epsilon))\)-interleaved.

To lighten the notation we may also write \(\text{d}_I(T, G)\), implying \(\text{d}_I(\pi_0(X_\epsilon), \pi_0(Y_\epsilon))\), with \(T = \mathcal{M}(\pi_0(X_\epsilon))\) and \(G = \mathcal{M}(\pi_0(Y_\epsilon))\).

Remark 4 We have introduced the interleaving distance with this notation, because we use smoothing operators in Proposition 5. The name smoothing operator comes from the interleaving distance between Reeb graphs. Introducing Reeb graphs and such distance to motivate our definition is outside the scope of this work. However, for the reader familiar with such notions, we point out the following facts. Merge trees can be obtained as Reeb graphs of the epigraph of a function \(f : X \to \mathbb{R}\) with the projection on \(\mathbb{R}\): consider
f : X → R and define \(\Gamma_f = \{(x,t) \in X \times R \mid f(x) \leq t\} \). Then one can take the projection to \(R \) and obtain: \(F : \Gamma_f \to R \). Then \(F^{-1}(t) = \{(x,t) \mid f(x) \leq t\} = \Gamma^{-1}_f((-\infty,t]) \). Thus, the merge tree of \(f \) is equivalently represented by the Reeb cosheaf (De Silva et al., 2016) \(U \to \pi_0(F^{-1}(U)) \). The smoothed version of this Reeb cosheaf, as defined in De Silva et al. (2016), is induced by \(F^{-1}_\varepsilon(t) := F^{-1}_\varepsilon((t-\varepsilon,t+\varepsilon)) = f^{-1}_\varepsilon((-\infty,t+\varepsilon]) \). Which is implies that the smoothed Reeb cosheaf corresponds to the smoothed merge tree in the sense that we define. This also implies that the interleaving distance between merge trees can be induced by the one between Reeb graphs.

Appendix C. Wasserstein Distance Between Persistence Diagrams

Given two persistence diagrams \(D_1 \) and \(D_2 \), the expression of the \(p \)-Wasserstein distance between them is the following:

\[
W_p(D_1, D_2) = \left(\inf_{\gamma} \sum_{x \in D_1} \| x - \gamma(x) \|_\infty^p \right)^{1/p},
\]

where \(\gamma \) ranges over the functions partially matching points between diagrams \(D_1 \) and \(D_2 \), and matching the remaining points of both diagrams with the line \(y = x \) on the plane (for details see Cohen-Steiner et al. (2007)). In other words we measure the distances between the points of the two diagrams, pairing each point of a diagram either with a point on the other diagram, or with a point on \(y = x \). Each point (also called persistence pair) can be matched once and only once. The minimal cost of such matching provides the distance. The case \(p = \infty \) is usually referred to as the bottleneck distance \(d_B \).

Appendix D. Constrained Edit Distance

The constrained edit distance presented in Zhang (1996) is obtained adding to the mapping properties of the classical edit distance \(D_E \) an additional requirement, which we now report. Consider a weighted tree \((T, w_T)\) and consider \(A \subset V_T \). The least common ancestor (LCA) of the vertices in \(A \) is defined as:

\[
\text{LCA}(A) = \min \bigcap_{v \in A} \{w \in V_T \mid w \geq v\}.
\]

A mapping \(M \) between a weighted tree \((T, w_T)\) and a weighted tree \((T', w_{T'})\) for the constraint edit distance Zhang (1996) is a mapping for the classical edit distance with an additional requirement that can be formulated as:

\[
(C) \quad \text{for every } a, b, c \in E_T \text{ and } a', b', c' \in E_{T'} \text{ such that } (a, a'), (b, b'), (c, c') \in M, \text{ we have:}
\]

\[
\text{LCA}(\{a, b\}) \geq c \text{ if and only if } \text{LCA}(\{a', b'\}) \geq c'.
\]

There are not obstacles to adding requirement (C) to the properties (M1)-(M4), defining a constrained version of \(d_E \). Since incorporating the ghosting edits into \(D_E \) does not significantly increase its computational cost, as shown by Proposition 3, we strongly believe that also the computational complexity of the constrained edit distance is only marginally affected by such edit operations. And so, in particular, a constrained version of \(d_E \) should admit a polynomial time algorithm.
Appendix E. Comparison with Other Distances For Merge Trees

In this section we illustrate some behaviors of the metric d_E, we comment on its potential polynomial time approximation, and extensively compare d_E with other definitions of distances between merge trees which appeared in literature. In this way we can better portrait how the variability between merge trees is captured by the proposed edit distance. We consider separately the different metrics we compare d_E against, plus, at the end, we consider some topics which are common to all/most of the different comparisons. We avoid a comparison with Sridharamurthy and Natarajan (2021) as the goal of such metric is comparing subtrees of merge trees, and so it behaves very differently from all other distances.

E.1 Editing a Merge Tree

We devote this subsection to explore with some easy examples the definitions and results given in Section 4.1 and Section 4.2.

First note that, by construction, $\text{Tr}_K((T, h_T))$ - for K big enough - is a representation of the merge tree (T, h_T) coherent with the metric d_E and thus can be used also to visually compare two merge trees. We can then consider a merge tree (T, h_T) and edit (T, w_T) according to the rules in Section 3.1: via shrinking, deletions and ghosting of vertices.

We consider separately the different metrics we compare d_E against. We can then consider a merge tree (T, h_T) and thus can be used also to visually compare two merge trees. We can then consider a merge tree (T, h_T) and edit (T, w_T) according to the rules in Section 3.1: via shrinking, deletions and ghosting of vertices.

Let $(T, h_T) = \mathcal{M}(\pi_0(X, \cdot))$ and consider an edge $e = (v, v') \in E_T$, with $t = h_T(v)$ and $t' = h_T(v')$. Since the height of the root is fixed and equal to K, shrinking e reducing its weight by some value $\varepsilon > 0$ (with $\varepsilon < w_T(e)$) amounts to “moving upwards” $\text{sub}_T(v')$ by ε, that is changing $h_T(v'') \mapsto h_T(v'') + \varepsilon$ - as in Figure 1c→Figure 1d or in Figure 7a and Figure 7c (left). Having $\varepsilon > w_T(e)$ means deleting e. Similarly, increasing $w_T(e)$ by ε, amounts to lowering $\text{sub}_T(v')$ by ε - as it partially happens in Figure 1f inserting the red internal vertex. Consider now the splitting of the edge e into $e_1 = (v, v''')$ and $e_2 = (v''', v')$ with T' being the novel tree structure and $w_{T'}(e_1) = \varepsilon_1$ and $w_{T'}(e_2) = \varepsilon_2$ - as for any of the yellow vertices in Figure 1e. We must have $\varepsilon_1 > 0$ and $w_T(e) = \varepsilon_1 + \varepsilon_2$. This clearly induces a well defined height function $h_{T'}(v')$. The merge tree $(T', w_{T'})$ differs from (T, w_T) by the order two vertex v'', while the height function on $V_{T'} - \{v''\}$ is still the same. And, accordingly, the associated RAMTs are the same $\pi_0(X, \cdot) = \mathcal{F}((T, h_T)) \cong \mathcal{F}((T', h_{T'}))$ (with \mathcal{F} bein as in Proposition 6).

Thus we have changed the graph structure of T without changing the topological information it represents.

Remark 5 In light of this paragraph, it would be natural to try to define a family of metrics indexed by integers $p \geq 1$ by saying that the costs of an edit path the p-th root of sum of the costs of the edit operations to the p-th power. But now we can easily see that for any $p > 1$ this has no hope of being a meaningful pseudo metric for weighted trees. In fact, consider the case of a weighted tree made by two vertices and one edge with weight 1. The cost of shrinking the p-metric would be $\|1\|_p = 1$. At the same time one can split it in half with 0 cost and the cost of shrinking this other tree would be $\|(1/2, 1/2)\|_p < 1$. Splitting the segment again and again will make its shrinking cost go to 0. In other words all weighted trees, if considered up to order 2 vertices, would be at distance zero from the tree with no branches.

21
E.2 Interleaving Distance (Morozov et al., 2013) and Persistence Diagrams

We extensively discussed similarities and differences between d_I and d_E in Section 4.3. We complement such analysis with a simulation to further showcase the differences between d_E and d_I (see also Figure 5a).

For $i = 0, \ldots, 9$, let $g_i : [0, 11] \to \mathbb{R}$ be such that $g_i \equiv 0$ on $[0, 11] - [i + 1/3, i + 2/3]$ while, on $[i + 1/3, i + 2/3]$, g_i is the linear interpolation of $(i + 1/3, 0), (i + 1/2, 1)$ and $(i + 2/3, 0)$. Then, for $i = 0, \ldots, 9$, define G_i as $G_i \equiv 0$ on $[0, 11] - [i, i + 1]$, while, on $[i, i + 2/3]$, G_i is the linear interpolation of $(i + 2/3, 0), (i + 3/4, 5)$ and $(i + 1, 0)$.

Then $f_i, i = 0, \ldots, 9$, is obtained as follows:

$$f_i = G_i + \sum_{j=0}^{9} g_j.$$

See Figure 5a to better visualize this data set: we have a constant set of lower peaks at height 1 and an higher peak with height 5 which is shifting left to right as i increases. In this way we are just changing the left-right distribution of the smaller peaks wrt the highest one.

We obtain the associated merge trees and then compute the pairwise distances between the merge trees with d_E. The results are represented in Figure 5d: the shortest edit path between the i-th merge tree and $i + 1$-th is given by the deletion of one leaf in each tree to make the disposition of leaves coincide between the two trees. The more the peaks’ disposition is different between the two trees, the more one needs to delete leaves in both trees to find the path between them. Note that the first function (the one in which the highest peak is the second peak) and the last function (the one in which the highest peak is the second-last peak) can be obtained one from the other via a y-axis symmetry and translation. Similarly, the second function is equal, up to homeomorphisms of the domain, to the third-last one, etc. (see also Pegoraro and Secchi (2024)). Thus the merge trees are the same. To sum up the situation depicted in the first row of Figure 5d, first we get (left-to-right) farther away from the first merge tree, and then we return closer to it. This intuition is confirmed by looking at the multidimensional scaling (MDS) embedding in \mathbb{R}^2 of the pairwise distance matrix (see Figure 5e - note that the shades of gray reflect, from white to black, the ordering of the merge trees). The discrepancies between the couple of points which should be identified are caused by numerical errors.

First, it is very easy to observe that all such functions can’t be distinguished by PDs, since they all share the PD in Figure 5c. Second, the interleaving distance between any two merge trees representing two functions f_i and f_j is $1/2$ if $i \neq j$ and 0 otherwise. Thus the metric space obtained with d_I from the data set $\{f_i\}_{i=0}^{9}$ is isometric to the discrete metric space on 5 elements, where each point is on the radius 1 sphere of any other point.

We point out that there are applications in which it would be important to separate f_0 and f_4 more than f_0 and f_1, because they differ by “an higher amount of edits”: for instance in Cavinato et al. (2022) merge trees are used to represent tumors, with leaves being the lesions, and it is well known in literature that the number of lesions is a non-negligible factor in assessing the severity of the illness (Ost et al., 2014), and thus a metric more sensible to the cardinality of the trees is more suitable than d_I.

E.3 Edit Distance Between Merge Trees (Sridharamurthy et al., 2020) and Wasserstein Distance (Pont et al., 2022)

The edit distance in Sridharamurthy et al. (2020) is similar to classical edit distances, with the edit operations being restricted to insertion and deletion of vertices and with a
(a) The functions \(f_0, f_3 \) belonging to the simulated data set described in Appendix E.2.

(b) The merge trees \((T_{f_0}, h_{f_0}) \) and \((T_{f_3}, h_{f_3}) \) associated to the functions in Figure 5a.

(c) The persistence diagram representing the functions in Figure 5a. The point \((0, 1)\) has multiplicity equal to the number of local minima minus 1.

(d) Matrix of pairwise distances of the merge trees obtained from \(\{f_i\}_{i=0}^{10} \).

(e) Multidimensional Scaling Embedding in \(\mathbb{R}^2 \) of the matrix of pairwise distances shown in Figure 5d. The shades of gray describe, from white to black, the ordering of the trees.

Figure 5: Plots related to the simulated scenario presented in Appendix E.2.
relabeling operation which is equivalent to our shrinking operation. There is however the
caveat that vertices are in fact understood as persistence pairs \((m, s)\), with \(m\) being the leaf
representing the local minimum giving birth to the component and \(s\) the internal vertex
representing the saddle point where the components merge with an earlier born component
and thus dies according to the elder rule. There is thus a one-to-one correspondence
between persistence pairs in the merge tree and in the associated persistence diagram.
Editing a vertex \(m\) implies editing also its saddle point \(s\): deleting \((m, s)\) means deleting
all vertices \(m'\) such that their persistent pair \((m', s')\) satisfies \(s' < s\). If then \(s\) becomes
of order 2, it is removed. In particular the authors highlight the impossibility to make
any deletion - with the word “deletion” to be understood according to our notation - on
internal vertices, without deleting a portion of the subtree of the vertex. So they cannot
delete and then insert edges to swap father-children relationships. To mitigate the effects
of such issue they remove in a bottom-up fashion, as a preprocessing step, all saddles
\(s \in V_T\) such that \(w_T((s, s')) < \varepsilon\) for a certain positive threshold \(\varepsilon\). All persistent pairs of
the form \((m, s)\) are turned into \((m, s')\). Such issue is further discussed in Appendix E.7.

Two merge trees are then matched via mappings representing these edit operations. To
speed up the computations, the set of mappings between the trees is constrained so that
disjoint subtrees are matched with disjoint subtrees. The cost of the edit operation on an
edit pair \((m, s)\) is equal to the edit operation being applied on the corresponding points in
the associated PDs with the 1-Wasserstein distance: deleting a persistent pair has the cost
of matching the corresponding point to the diagonal and relabeling a persistent pair with
another in the second tree has the cost of matching the two points of the two diagrams -
see Sridharamurthy et al. (2020) Section 4.3.1.

A closely related metric between merge trees is the Wasserstein distance defined in Pont
et al. (2022), which extends the metric by Sridharamurthy et al. (2020) producing also
further analysis on the resulting metric space of merge trees by addressing the problem of
barycenters and geodesics. In this work the authors rely on a particular branch decomposi-
tion of a merge tree, as defined in Wetzels et al. (2022), from which they induce the branch
decomposition tree (BDT - Pont et al. (2022), Section 2.3) used to encode the hierarchical
relationships between persistence pairs. A branch decomposition is roughly a partition of
the graph \(T\) of a merge tree \((T, h_T)\) via ordered sequences of adjacent vertices (Wetzels
et al., 2022). The chosen branch decomposition is the one induced by the elder rule and
persistence pairs. Edit operations on such BDTs entail improved matchings and deletions
between persistence pairs. To obtain the (squared) 2-Wasserstein distance the vertices of
two BDTs are matched and the resulting costs are squared and then added. However, the
authors then explain that with this first definition geodesics cannot be found via linear
interpolation of persistence pairs for the hierarchical structure of the merge tree can be
broken. To mitigate that, they employ a normalization which shrinks all the branches on
\([0, 1]\), irrespective of their original persistence - Pont et al. (2022), Section 4.2 - leading
to simple geodesics obtained with linear interpolation between persistence pairs. To miti-
gate for this invasive procedure they introduce yet another preprocessing step artificially
modifying small persistence features to reduce the normalization effects.

Some of the limitations of this approaches are listed in Pont et al. (2022), Section 7.3.
Also Wetzels et al. (2022), Section 3.3 adds on that with further details and examples.
Namely, the restricted space of possible matchings between trees - which is key to obtain
the computational performances of the metrics - forces unstable behaviours: issues with
saddle swaps (see Pont et al. (2022), Section 4.4 and Fig. 10) and instability of persistence
pairs, so that elder ruled-based matchings may force very high persistence features to be
matched with other very high persistence features even in situations where this implies
making many unreasonable changes in the tree structures as in Figure 8f (see also Wetzels et al. (2022), Figure 1, Figure 2b), Section 3.3, and Pont et al. (2022), Section 7.3). Moreover, Pont et al. (2022) does not address the interactions between the normalization and the two preprocessing steps.

E.4 Branch Decomposition-Independent Edit Distances for Merge Trees (Wetzels et al., 2022)
The work Wetzels et al. (2022) starts from the shortcomings of Sridharamurthy et al. (2020) and Pont et al. (2022) trying to overcome them. Namely it defines branch decompositions, - for instance, the persistence pairs of Sridharamurthy et al. (2020), induce one such branch decomposition - and in order to avoid issues related with the instability of the persistence pairs, (Wetzels et al., 2022) introduce also the possibility to optimize the chosen branch decomposition. The only big issue with such approach is that it does not define a metric on the space of merge trees, for the triangle inequality is not satisfied - see Wetzels et al. (2022) Theorem 2 and Figure 3.

E.5 A Deformation-based Edit Distance for Merge Trees (Wetzels and Garth, 2022)
We consider the metric defined in Wetzels and Garth (2022). The approach of Wetzels and Garth (2022) shares many similarities with the starting point of ours, to the point that we believe that the metric \(d_E \) between weighted trees and the metric in Wetzels and Garth (2022) should coincide in some cases. In fact, Wetzels and Garth (2022) requires that, any time we obtain an order 2 vertex via some deletions, that vertex is removed from the tree, with a ghosting-like procedure. However 1) they don’t explicitly model mathematically the ghosting of an order 2 vertex 2) the metric in Wetzels and Garth (2022) is applied on merge trees without any truncation strategy and by simply turning merge trees into weighted trees by taking differences between the heights of the vertices and removing the edge at infinity (calling these objects abstract merge trees, see Definition 1 in Wetzels and Garth (2022)).

These fact have three consequences:

1. it results in an unstable metric on merge trees, due to the issues presented in Figure 3;
2. it results in a metric which is completely insensitive to vertical translation, that is, it is not able to distinguish between the merge tree of \(f \) and the merge tree of \(f + h \), for any \(h \in \mathbb{R} \);
3. even considering just weighted trees, we believe that explicitly modeling order 2 vertices removal and addition is fundamental to study the geometric and topological properties of the space of merge trees, and designing data analysis tools. See Figure 6.

E.6 Heights vs Weights
In this section we try to better understand the different behavior of \(d_E \) when compared to the persistence-based metrics presented in the previous sections. The basic idea is that \(w_T \) encodes the reciprocal positions of the merging points, instead of having the persistence pairs being free to move independently - at least locally - inside a constrained space.

Using \(d_B(PD(T), PD(G)) \leq d_I(T, G) \) Morozov et al. (2013) and Theorem 3, one obtains:

\[
W_1(PD(T), PD(G)) \leq (\text{rank}(T) + \text{rank}(G))d_E(T, G),
\]
Figure 6: In this figure we show the potential of explicitly modeling the addition and removal of order 2 vertices. Consider the weighted trees T_0, T_1, and T_2 represented in the figure. Let $M_{0,i}$, with $i = 1, 2$ be two mappings $M_{0,i}$ defined, respectively, by the matchings given by the straight arrows (via the usual edge-vertex identification). $M_{0,1}$ is then completed by the deletion of a_3 and the ghosting of its father. And similarly, $M_{0,2}$ is then completed by the deletion of a_2 and the ghosting of its father. Suppose now that we split T_1 and T_2 inserting the yellow vertices and obtaining the yellow edges and the weighted trees T'_1 and T'_2. At this point we would be able to match b_1 with a_1 and b_2 with a_2 without raising the cost of $M_{0,1}$ and, similarly to match c_1 with a_1 and c_2 with a_3 without raising the cost of $M_{0,2}$. Thus we “refined” our weighted trees and obtained mappings as expensive as the starting ones, but which involve only deletions and shrinkings, which are the operations giving the classical edit distance. Such distance is much more regular compared to d_E (and to the one defined in Wetzels and Garth (2022)). For instance, with the identifications $a_1 \sim b_1 \sim c_1$, $a_2 \sim b_2$, and $a_3 \sim c_2$, we can represent T_0 with the vector $v_0 = (3, 3, 2)$, T'_1 with the vector $v_1 = (4, 4, 0)$ and T'_2 with the vector $v_0 = (2, 0, 2)$ and the mappings we described between those trees are straight lines in \mathbb{R}^3 with $\| \cdot \|_1$. This cannot be done with the edits in Wetzels and Garth (2022).
with $PD(T)$ being the persistence diagram associated to the merge tree T. As we will see shortly, this bound cannot be improved. It is thus evident that working with weights $w_T(e)$ instead of persistence pairs, as PDs do, creates differences in how the variability between trees is captured by these two metrics, despite the similarity in their stability properties.

Take, for instance, the merge trees in Figure 3b: the persistence pairs are (c,v) and (d,r_T). The pairs of the rightmost tree instead are $(c',v'),(e',f')$ and $(d',r_{T'})$. Deleting (e',f') according to Sridharamurthy et al. (2020); Wetzels et al. (2022); Pont et al. (2022) amounts to deleting e' according to our framework. Instead, shrinking (v,r_T) on $(v',r_{T'})$, after the deletion of (e',f'), for us means lengthening (v,r_T) by $t_2 - t'_2$ and so lowering v and all the vertices below v by the same amount, as in Figure 7a. On the other hand, matching the persistence pair (c,v) with (c',v') for Sridharamurthy et al. (2020); Pont et al. (2022) is equivalent to shifting the edge (c,v) downwards towards (c',v') leaving all other vertices fixed, as in Figure 7b. We can compare the results of such edits in Figure 7c.
Thus, given a persistence pair \((m, s)\) inside a merge tree, corresponding to the point \((b, d)\) inside the persistence diagram, moving \(s\) upwards by some \(\varepsilon > 0\) such that \(h_T(s) + \varepsilon < h_T(s')\) costs \(\varepsilon\) in terms of the other edit distances, of the interleaving distance and in terms of the 1-Wasserstein distance between PDs and leaves all other points with the same height. In terms of the edit distance \(d_E\), instead, moving \(s\) upwards by \(\varepsilon > 0\) shortens the edge above \(s\) keeping all other edges of a fixed lengths and thus moves the vertices upwards by \(\varepsilon\).

We can interpret this fact as the metrics in Morozov et al. (2013), Sridharamurthy et al. (2020) and Pont et al. (2022) better capturing similarities between trees via the location of their vertices in terms of heights; while \(d_E\) better captures the “shape” of the tree i.e. relative positions of its vertices, being less sensible on the height variability since you can move more vertices at one. And this is exactly what happens in the example \(f : I \to \mathbb{R}\) and \(g(x) = f(x) + h, h \in \mathbb{R}\) - as in Figure 7: we have \(W_1(PD(T), PD(G)) = d_E(T, T')(\text{rank}(T) + \text{rank}(G))\).

E.7 Stability vs Preprocessing

As already mentioned, the metrics in Sridharamurthy et al. (2020) and Pont et al. (2022) lack stability properties for similar reasons, which means that there are certain situations in which such metrics may perceive as very far trees which are in fact very close in terms of interleaving distance. In particular they are unable to model “saddle swaps”, that is, with our terminology, deleting and inserting internal vertices to change father-children relationships. As noted also by the authors themselves, this issue needs to be addressed in some way. As already mentioned, to do so authors resort to a computational solution implemented as a preprocessing step: they fix a threshold \(\varepsilon > 0\) for any couple of persistence pairs \((m, s)\) and \((m', s')\) with \(s' > s\) and \(s' - s < \varepsilon\), they change \((m, s)\) into \((m, s')\) merging the two saddle points - in a bottom-up recursive fashion.

In this section, we produce a brief investigation of such procedure, which is absent in the aforementioned works. We represent the possible outcomes of this preprocessing in Figure 8. All merge trees in Figure 8 are drawn with colors representing persistence pairs, and similar colors yields persistence pairs with the same persistence throughout the whole figure. They ideally should be matched by the metrics to achieve optimal distances as the differences between edges of different colors could be arbitrary big.

In Figure 8a (left) we suppose that the edges marked with a red cross represent distances between saddles smaller or equal than \(\varepsilon > 0\), thus we recursively merge each saddle point with the higher one, starting from the bottom and going upwards. In this way we obtain the merge tree \(T'\) in Figure 8a (right) which is then used as input for the metric.

In Figure 8b we see two merge trees \(T\) and \(G\) such that their interleaving distance is \(\varepsilon + \varepsilon'\), for we need to move points of \(T\) upwards by \(\varepsilon + \varepsilon'\) to match persistence pairs of the same color in \(G\). Their edit distance \(d_E\) would be \(3(\varepsilon + \varepsilon')\) for we need to delete and then insert back three small edges in \(T\) to swap father-children relationships in a suitable way. Note that one can replicate analogous situations to make the interleaving distance between the two merge trees high at will: informally speaking it is enough to add other persistence pairs as needed and force matchings between pairs in very “different positions”.

In Figure 8c we see a possible output of the preprocessing routine. If the preprocessing threshold is bigger than \(\varepsilon\) and \(\varepsilon'\) then the pre-processed trees \(T'\) and \(G'\) are equal. This in some sense is the desired output of the authors of Sridharamurthy et al. (2020) and Pont et al. (2022) for now their metric can match the colors of the persistence pairs. They suggest that such loss of variability - \(d(T', G') = 0\) even if \(T \approx_2 G\) - could be mitigated by adding to the distance between the preprocessed trees the fixed threshold as many
times as there are saddles merging in the procedure. Note that, if this artificial addition approximately matches the variability removed from the pairs attached to the orange vertical pair, it introduces artificial variability at the level of the branches attached to the brown edge, for they do not need any modification to be matched correctly.

In Figure 8d instead, we suppose that the preprocessing threshold is smaller than ε and ε'. The metrics then are forced to match persistence pairs with different colors causing an excess of variability which is pictured with red edges in the figure. We point out that, depending on the weights of the persistence pairs involved, these edges could be of arbitrary length.

In Figure 8e we represent the last possible output of the preprocessing procedure, which is a situation in which the threshold we fix is greater than ε' but smaller then ε. This is possibly the worst scenario: pairs are matched in an optimal way but we have introduced a lot of artificial variability, symbolized with red edges, in G. Again, because of additive phenomena caused by recursive saddle merging, these edges can be arbitrarily long.

Note that the preprocessing does not fix the issues presented in Figure 8f, in Wetzels et al. (2022), Figure 1, Figure 2 b), Section 3.3, and Pont et al. (2022), Section 7.3.

To conclude, we point out the following fact. We deem fundamental to have metrics being able to measure different kinds of variability in a data set, especially if the information captured is interpretable, however, any attempt to adapt our edit distance d_E to work with heights instead of weights, would face the problem of coherently define deletion edits. While it seems reasonable to have $w_T((v, v'))$ as a cost to delete and edge - for instance, this cost amounts to the persistence of the feature if (v, v') is a persistence pair - any change in the height of v' changes the weight of (v, v') and thus the cost of its deletion, invalidating all the results about mappings in Pegoraro (2024a) and the algorithm therein. Similarly, adapting Sridharamurthy et al. (2020) or Pont et al. (2022) to handle saddle swaps, would mean at least removing from their mappings the property that would be (M3) in our notation, creating many issues from the theoretical and computational point of view. In fact, internal edges are not really available in the representation used by such metrics, where all points are instead understood as part of a persistence pair.

Appendix F. Proofs

Proof of Proposition 2.

Consider a minimizing mapping $M \in M_2(G, G')$.

Apply the deletions and ghostings described by M both on G and on G' obtaining, respectively, the merge trees G_M and G'_M. Note that, since $M \in M_2(G, G')$, if v' is coupled with another edge by M, then v must be deleted, otherwise v' would be of order 2 after the deletions, and thus it should be ghosted. Similarly, if v' is deleted then v must be deleted as well as: otherwise v' would be of order 2 after all the other deletions, and thus it cannot be deleted by M. The same of course applies to w' and w.

Let $w_T(v') = n'$, $w_T(v) = n$, $w_G'(w') = m'$ and $w_G(w) = m$. By construction $n' = m'$ and thus the cost of the couple (v', w'), if it can be added a mapping, is zero. Since $M \in M_2(G, G')$, we know $(v', w') \notin M$. Our goal is to build a mapping containing (v', w') with cost equal to the cost of M.

- First suppose that v is not deleted and w is not deleted.

Then there exist $a = v_1 \leq \ldots \leq v_k \leq v'$ and $b = w_1 \leq \ldots \leq w_r \leq w'$ vertices in T and T' respectively such that:
(a) A merge tree T (left) with its pre-processed version (right) according to the procedure in Sridharamurthy et al. (2020); Pont et al. (2022).

(b) Two merge trees T and G which are going to be preprocessed as in Appendix E.7.

(c) A possible output of the preprocessing: the preprocessing threshold is bigger than ε and ε'.

(d) Another possible output of the preprocessing: the preprocessing threshold is smaller than ε and ε'.

(e) The last possible output of the preprocessing: the preprocessing threshold is smaller than ε but bigger than ε'.

(f) As noted by Wetzels et al. (2022) and Pont et al. (2022), metrics which are based on persistence pairs may force unnatural scenarios like deleting all the pairs with the red cross, in order to match the orange and the brown persistence pairs of T, respectively, with the orange and the brown of G. Instead, it would be much more natural to match the orange and the brown ones according to the green arrows and then matching the other pairs according to colors.

Figure 8: Plots related to Appendix E.7
Theorem 1.

Proof of

Thus we can always add \((v', w')\) to \(T\) without increasing the cost of \(M\).

- Suppose now \(v\) (and so \(v'\)) is deleted but \(w\) is not. For what we have said before, it means that \(w'\) is ghosted and \(w\) is either coupled or deleted. This implies that the root of \(G'_M\) is of order 1. But then also the root of \(G_M\) must be of order 1. In other words, there exist \(a = v_1 \leq \ldots \leq v_k < v\) and \(b = w_1 \leq \ldots \leq w_r \leq w\) vertices in \(T\) and \(T'\) respectively such that:

\[(a, b) \in M; \]

\[v_i \text{ and } w_i \text{ are ghosted for all } i \text{ (as } M \in M_2(G, G') \text{ they cannot be deleted).} \]

Let \(n_i = w_T(v_i)\) and \(m_i = w_T(w_i)\) for all \(i\).

We have seen that if \(a = v'\), then \(v\) must be deleted, which is absurd. Similarly we cannot have \(b = w'\). Thus: \(a = v_1 \leq \ldots \leq v_k = v < v'\) and \(b = w_1 \leq \ldots \leq w_r = w < w'\). We have:

\[
| n' + \sum_{i=1}^k n_i - (m' + \sum_{i=1}^r m_i) | = | n' - m' | + \sum_{i=1}^k n_i - \sum_{i=1}^r m_i.
\]

This implies that we can add the couple \((v', w')\) to \(M\) without increasing the cost of \(M\).

- Suppose lastly, \(v\) and \(w\) are all deleted. Which implies that also \(v'\) and \(w'\) are deleted.

In this case we can add \((v, w)\) and \((v', w')\) to \(M\) decreasing its cost.

Thus we can always add \((v', w')\) to \(M\) and since the cost of such couple is zero, we have \(d_E(T, T') = d_E(G, G') = d_E(\text{sub}_G(v'), \text{sub}_G(w')).\)

\[\blacksquare \]

Proof of Theorem 1.

Consider \((T, h_T)\) and \((T', h_{T'})\) such that \(max h_T < K'\) and \(max h_{T'} < K'\). Consider \((G, w_G) = Tr_{K'}((T, h_T))\) and \((G', w_{G'}) = Tr_{K'}((T', h_{T'}))\). For any \(K\) such that \(max h_T < K < K'\) and \(max h_{T'} < K < K'\) there is a splitting of \((v, r_G) \in E_G\) with a vertex \(w'\) and a splitting of \((v', r_{G'})\) with a vertex \(w'\) such that the obtained weighted trees \((R, w_R)\) and \((R', w_{R'})\) satisfy: \(w_R((v, r_G)) = w_{R'}((v', r_{G'}))\). Thus by Proposition 2 we obtain \(d_E(G, G') = d_E(R, R') = d_E(\text{sub}_R(w), \text{sub}_R(w'))\). Moreover, \(\text{sub}_R(w) = Tr_K((T, h_T))\) and \(\text{sub}_R(w') = Tr_K((T', h_{T'}))\).

Being \(K, K'\) arbitrary we have that \(d_K((T, h_T), (T', h_{T'}))\) does not depend on \(K\), for \(K > max\{max h_T, max h_{T'}\}\). We need to prove the case \(K = max\{max h_T, max h_{T'}\}\).

Let \((G, w_G) = Tr_K((T, h_T))\) and \((G', w_{G'}) = Tr_K((T', h_{T'}))\), for \(K' > K\). And consider now the weighted tree \(* = (\{\}, w(\emptyset) = 0)\).

We have that \(d_E(G, *) = \sum_{e \in E_G} w_G(e)\) and \(d_E(G', *) = \sum_{e \in E_{G'}} w_{G'}(e)\). Thus by the reversed triangle inequality:

\[
| d_E(G, *) - d_E(G', *) | = K' - K \leq d_E(G, G'),
\]

So we have:

\[
d_E(Tr_K((T, h_T)), Tr_K((T, h_{T}))) = K' - K.
\]

31
and we can set $K = \max\{\max h_T, \max h_T\}$ and take K' arbitrarily close to K to finish the proof.

Proof of Theorem 3

Let $\pi_0(X, \cdot)$ and $\pi_0(Y, \cdot)$ be two RAMTs which are represented by the merge trees (T, h_T) and (G, h_G), respectively. Then we obtain the weighted trees (T, w_T) and (G, w_G) via the some Tr$_K$. The proof is quite long and requires some technical definitions. We split it into different parts to make it more easily readable.

Introduction - Display Posets

For ease of notation, we introduce the following objects.

Definition 16 (Curry et al. (2022))

Given a persistent set $S : \mathbb{R} \to \text{Sets}$ we define its display poset as:

$$D_S := \bigcup_{t \in \mathbb{R}} S(t) \times \{t\}.$$

The set D_S can be given a partial order with $(a, t) \leq (b, t')$ if $S(t \leq t')(a) = b$.

Let $D_{\pi_0(X, \cdot)}$ and $D_{\pi_0(Y, \cdot)}$ be the display posets induced by $\pi_0(X, \cdot)$ and $\pi_0(Y, \cdot)$. We call $h_{\pi_0(X, \cdot)}$ the height function of $D_{\pi_0(X, \cdot)}$ and $h_{\pi_0(Y, \cdot)}$ the height function of $D_{\pi_0(Y, \cdot)}$. This construction is natural, in the sense that natural transformation between persistent sets become order preserving maps between the display posets. Given $\alpha : S \to S'$ natural transformation between persistent sets, then we have: $D_\alpha : D_S \to D_{S'}$ defined by:

$$D_\alpha((a, t)) = (\alpha_t(a), t).$$

Given $(a, t) \leq (b, t')$ we have that:

$$(\alpha_t(a), t) \leq (\alpha_{t'}(b), t'),$$

because α is a natural transformation. For more details, see Curry et al. (2022).

Introduction - Couplings

Here we leverage on the notion of couplings between merge trees defined in Pegoraro (2024b). Before recalling such definition that we highlight a subtle difference in merge trees as defined in Pegoraro (2024b) compared to the definition we give here. In Pegoraro (2024b) the edge going to infinity which we require in our merge trees - (v, r_T) with $h_T(r_T) = \infty$ - is not needed and thus such edge is removed. In other words, a merge tree (T, h_T) is the sense of Pegoraro (2024b) is such that $ord_T(r_T) > 1$ and $h_T(r_T) \in \mathbb{R}$. We state the results in Pegoraro (2024b) with the notation of the present manuscript.

Consider $C \subset V_T \times V_G$ and the projection $\pi_T : V_T \times V_G \to V_T$, we define the multivalued map $\Lambda_T^C : V_T \to V_T$ as follows:

$$\Lambda_T^C(v) = \begin{cases} \max_{v' < v} \pi_T(C) & \text{if } \#\{v' \in V_T \mid v' < v \text{ and } v' \in \pi_T(C)\} > 0 \\ \emptyset & \text{otherwise.} \end{cases}$$

The term “multivalued” means that Λ_T^C is a function $\Lambda_T^C : V_T \to \mathcal{P}(V_T)$ with $\mathcal{P}(V_T)$ being the power set of V_T.

A coupling between the merge trees (T, h_T) and (G, h_G) - with the definition given in the present work - is then a set $C \subset V_T - \{r_T\} \times V_G - \{r_G\}$ such that:
(C1) \(\# \max C = 1 \) or, equivalently, \(\# \max \pi_T(C) = \# \max \pi_G(C) = 1 \)

(C2) the projection \(\pi_T : C \to V_T \) is injective (the same for \(G \))

(C3) given \((a, b)\) and \((c, d)\) in \(C \), then \(a < c \) if and only if \(b < d \)

(C4) \(a \in \pi_T(C) \) implies \(\# \Lambda_C(a) \neq 1 \) (the same for \(G \)).

Similarly to mappings each couple in \(C \) is associated to a cost, and \(\| C \|_\infty \) is defined as the highest of such costs. In Pegoraro (2024b) it is proven that \(d_l(T, G) \leq \| C \|_\infty \) for all couplings \(C \).

Define the following functions as in Pegoraro (2024b):

- define \(\varphi_C^T : V_T \to V_T \) so that \(\varphi_C^T(x) = \min \{ v \in V_T \mid v > x \text{ and } \# \Lambda(v) \neq 0 \} \). Note that since the set \(\{ v \in V_T \mid v > x \} \) is totally ordered, \(\varphi_C^T(x) \) is well defined;
- similarly, define \(\delta_C^T : V_T \to V_T \), defined as \(\delta_T(x) = \min \{ v \in V_T \mid v \geq x \text{ and } v \in \pi_T(C) \} \);
- set \(\gamma_C^G : V_T - D_C^T \to V_G \) to be:
 \[
 \gamma_C^G(x) = \begin{cases}
 \text{arg min} \{ g(w) \mid (v, w) \in C, v < x \} & \text{if } \# \{ (v, w) \mid (v, w) \in C, v < x \} > 0 \\
 0 & \text{otherwise.}
 \end{cases}
 \]
 Note that if \(\# \{ (v, w) \mid (v, w) \in C, v < x \} > 0 \), by \((G) \), \(\gamma_C^G(x) \) is uniquely defined. Moreover, \(\gamma_C^G(\varphi_C^T(x)) \) is well defined for any \(v \in V_T \);
- lastly, set \(\eta_C^G(x) := \gamma_C^G(\varphi_C^T(x)) \).

To lighten the notation, when clear from the context, we may omit subscripts and superscripts. The costs of the elements a coupling are defined in Pegoraro (2024b) as follows.

- if \((x, y) \in C\), \(\text{cost}_C(x) = |h_T(x) - h_G(y)| \);
- if \(x \notin \pi_T(C) \), we have two different scenarios:
 - if \(\# \Lambda(x) = 0 \), then \(\text{cost}_C(x) = \max \{ (h_T(\varphi(x)) - h_T(x))/2, h_G(\eta(x)) - f(x) \} \);
 - if \(\# \Lambda(x) > 1 \), we have \(\text{cost}_C(x) = |h_T(x) - h_G(w)| \) with \((\delta(x), w) \in C\);
 - zero otherwise.

Lastly, via Remark 3, Theorem 1, and Theorem 3 Pegoraro (2024b) shows that, \(C \) induces

\[
\alpha_C : D_{\pi_0(X_\ast)} \to D_{\pi_0(Y_\ast)} \text{ and } \beta_C : D_{\pi_0(Y_\ast)} \to D_{\pi_0(X_\ast)}
\]

such that

\[
\text{cost}_C(v) = | h_{\pi_0(Y_\ast)}(\alpha_C(v)) - h_{\pi_0(X_\ast)}(v) |
\]

for any \(v \in V_T \) and

\[
\text{cost}_C(w) = | h_{\pi_0(X_\ast)}(\beta_C(w)) - h_{\pi_0(Y_\ast)}(w) |
\]

for any \(w \in V_G \).
Main body of the proof We now want to establish relations between mappings between $\text{Tr}_K((T, h_T))$ and $\text{Tr}_K((G, h_G))$ - with $K > \max h_T, \max h_G$ - and couplings between (T, h_T) and (G, h_G). When working with $\text{Tr}_K((T, h_T))$ and $\text{Tr}_K((G, h_G))$ we can apply the following corollary of Proposition 2.

Corollary 3 Given (T, w_T) and $(T', w_{T'})$ weighted trees, if r_T and $r_{T'}$ are of order 1, there exist a minimizing mappings M with $\sharp \max M = 1$.

Consider a minimizing mapping $M \in M_2(T, T')$ with $\sharp \max M = 1$. Thanks to Lemma 1, we have that $a \in \pi_T(M)$ implies $\# \Lambda_T^M(a) \neq 1$ (the same for G). In fact (C4) is equivalent to having no vertices of order two after deletions and ghostings. This means that $C_M := \{(a, b) \in M | a \in V_T \text{ and } b \in V_G\}$ is a coupling. Conversely, given a minimizing coupling C, the set

$$M_C := C \bigcup \{(a, "D") | a \notin \pi_T(C) \text{ and } \# \Lambda_T^C(a) \neq 1\}$$

$$\bigcup \{("D", b) | b \notin \pi_G(C) \text{ and } \# \Lambda_G^C(b) \neq 1\}$$

$$\bigcup \{(a, "G") | a \notin \pi_T(C) \text{ and } \# \Lambda_G^C(a) = 1\}$$

$$\bigcup \{"G", b) | b \notin \pi_G(C) \text{ and } \# \Lambda_G^C(b) = 1\}$$

is a mapping. Clearly $M_{CM} = M$ and $C_{MC} = C$.

Now we prove the following lemma.

Lemma 2 Let $f : [a, K] \to [b, K]$ be a monotone function such that $f(K) = K$, $K \in \mathbb{R}$. For every $\{x_1 < \ldots < x_{n+1} = K\} \subset [a, K]$:

$$\max_{i=1,\ldots,n+1} d(f(x_i), x_i) \leq \sum_{i=1}^{n} | d(x_i, x_{i+1}) - d(f(x_i), f(x_{i+1})) |$$

(6)

Proof Let $v_i = f(x_i) - x_i$. And let $m \in \{1, \ldots, n+1\}$ be such that $| f(x_m) - x_m | = \max | f(x_i) - x_i |$.

Then we set:

$$v_1 = v_m + \varepsilon_1$$

$$v_2 = v_m + \varepsilon_1 + \varepsilon_2$$

$$\ldots$$

$$v_i = v_m + \sum_{j=1}^{i} \varepsilon_j$$

$$\ldots$$

$$v_n = v_m + \sum_{j=1}^{n} \varepsilon_j.$$

Thus we can write Equation (6), which we need to prove, as:

$$| v_m | \leq \sum_{i} \ | x_i - f(x_i) - (x_{i+1} - f(x_{i+1})) | = \sum_{i} \ | v_i - v_{i+1} | = \sum_{i=1}^{n} \ | \varepsilon_{i+1} |.$$
Clearly we have some constraints on ε_i, in fact:

$$x_i + v_m + \sum_{j=1}^{i} \varepsilon_j \leq x_{i+1} + v_m + \sum_{j=1}^{i+1} \varepsilon_j$$

which means:

$$x_i - x_{i+1} \leq \varepsilon_{i+1}.$$

In particular $x_n + v_n = x_n = 1$ means that $v_m + \sum_{j=1}^{n} \varepsilon_j = 0$ i.e. $-v_m = \sum_{j=1}^{n} \varepsilon_j$.

Thus:

$$|v_m| = \left| \sum_{j=1}^{n} \varepsilon_j \right| \leq \sum_{i=1}^{n} |\varepsilon_{i+1}|.$$

Consider now a leaf $l \in L_T$ and take $\zeta_l = \{ p \in V_T \mid v \geq l \}$. Consider the interval $[h_T(l), K]$. The map $v \in \zeta_l \mapsto h_T(v)$ gives a 1 : 1 correspondence between ζ_l and a finite collection of points in $[h_T(l), K]$. We define $f(h_T(v)) = h_{\pi_0(\cdot)}(\alpha_C(v))$ for $v \in \zeta_l - \{ r_T \}$. And $f(K) = K$. Note that α_C is constructed such that $\alpha_C(v) = w$ if $(v, w) \in C$. Thus $f(h_T(v)) \leq K$ for $v \in \zeta_l$.

We extend f on $[h_T(l), K]$ via linear interpolation. Since α_C is monotone wrt the partial order on $D_{\pi_0(X, \cdot)}$, then f is monotone on $[h_T(l), K]$.

Now consider T and apply on it all the deletions and ghostings which involve points which are not in ζ_l. We call $\{ v_1 = l < \ldots < v_{n+1} = r_T \}$ the coupled points in ζ_l. Then:

$$| h_T(v_i) - h_T(v_{i+1}) - f(h_T(v_i)) - f(h_T(v_{i+1})) | \leq \text{cost}_{M_C}([v_i, v_{i+1}] \mapsto [\alpha_C(v_i), \alpha_C(v_{i+1})])$$

(7)

With $\text{cost}_{M_C}([v_i, v_{i+1}] \mapsto [\alpha_C(v_i), \alpha_C(v_{i+1})])$ being the cost of the edits associated to points $v_i \leq p \leq v_{i+1}$ and $\alpha_C(v_i) \leq q \leq \alpha_C(v_{i+1})$. In fact we have equality in Equation (7) if there are no deletions for any $p \in V_T$ such that $v_i \leq p \leq v_{i+1}$ and any $q \in V_T$ such that $\alpha_C(v_i) \leq q \leq \alpha_C(v_{i+1})$. Otherwise the total cost of the deletions and shrinking exceeds $| h_T(v_i) - h_T(v_{i+1}) - f(h_T(v_i)) - f(h_T(v_{i+1})) |$ since:

$$| n_1 + n_2 - (n_3 + n_4) | \leq n_1 + n_3 + | n_2 - n_4 |$$

for any $n_1, \ldots, n_4 \in \mathbb{R}_{\geq 0}$. Lastly note that $| h_T(v_i) - f(h_T(v_i)) | = \text{cost}_C(v)$.

By Lemma 2, we have:

$$\max \text{cost}_C(v_i) = \max h_T(v_i) - f(h_T(v_i))$$

$$\leq \sum_{i=1}^{n} | h_T(v_i) - f(h_T(v_i)) + f(h_T(v_{i+1}) - h_T(v_{i+1}) |$$

(8)

$$\leq \text{cost}_{M_C}([l, r_T] \mapsto [w, r_G])$$

with $(v, w) \in M_C$ and $v = \min \zeta_l \cap \pi_T(C)$.

Conclusion Let $\| C \|_\infty = \text{cost}_C(x)$. WLOG $x \in V_T$. Then $x \in \zeta_l$ for some $l \in L_T$. By applying Equation (8) we obtain the result.

\begin{proof}
\end{proof}

Proof of Proposition 5.
In the following proof, we employ display posets, which are introduced in the proof of Theorem 3.

Consider \(\mathcal{M}(\pi_0(X_\ast)) \) and \(\pi_0(X_\ast^n) \) such that \(T = \mathcal{M}(\pi_0(X_\ast)) \) and \(T_n = \mathcal{M}(\pi_0(X_\ast^n)) \). Note that we may often deliberately confuse merge trees and RAMTs to lighten the notation.

Take any \(\varepsilon > 0 \) and then take \(N \) such that \(d_I(T, T_n) \leq \varepsilon \) for every \(n > N \). Let \(G_n := \mathcal{S}_{2\varepsilon}(T_n) \). Clearly, we always have \(d_I(T_n, G_n) = 2\varepsilon \). Suppose that \(\sup_{n \in \mathbb{N}} \dim(G_n) = +\infty \). If this is the case, for every \(K > 0 \), there is a merge tree \(T_n \), with more than \(K \) leaves \(v \) such that \(i^{2\varepsilon}_{\pi_0(X_\ast^n)}(v) \) (more precisely, \((i^{2\varepsilon}_{\pi_0(X_\ast^n)})_{\pi_0}(v) \)) is a leaf for \(G_n \) and thus \(h_{T_n}(father(v)) - h_{T_n}(v) > 2\varepsilon \). We now show that if \(K \) is bigger than the number of leaves of \(T \), we obtain a contradiction as, in order to have \(d_I(T, T_n) \leq \varepsilon \), we cannot contract edges which are longer than \(2\varepsilon \).

More formally, let \(\alpha, \beta \) be \(\varepsilon \)-compatible maps between \(T \) and \(T_n \). We know they exist as \(d_I(T, T_n) \leq \varepsilon \). These natural transformations, as mentioned in the proof of Theorem 3, induce order preserving maps between display posets. In particular:

\[
D_\alpha : D_{\pi_0}(X_\ast) \to D_{\mathcal{S}_\varepsilon(\pi_0(X_\ast^n))},
D_\beta : D_{\pi_0}(X_\ast^n) \to D_{\mathcal{S}_\varepsilon(\pi_0(X_\ast))}.
\]

Note that \(G_n = \mathcal{S}_{2\varepsilon}(\pi_0(X_\ast^n)) = \mathcal{S}_\varepsilon(\mathcal{S}_\varepsilon(\pi_0(X_\ast^n))) \) and, in particular, \(\mathcal{S}_\varepsilon(\pi_0(X_\ast^n)) \) cannot have less leaves than \(G_n \).

Since \(T \) has less leaves than \(G_n \) and so of \(\mathcal{S}_\varepsilon(\pi_0(X_\ast^n)) \), we claim that there exist \(v, w \) leaves of \(T_n \), with \(t = h_{T_n}(w) \) and \(t' = h_{T_n}(v) \), such that:

1. \((i^{2\varepsilon}_{\pi_0(X_\ast^n)})_{\pi_0}(w) \) and \((i^{2\varepsilon}_{\pi_0(X_\ast^n)})_{\pi_0}(v) \) are leaves of \(\mathcal{S}_\varepsilon(\pi_0(X_\ast^n)) \), and \((i^{2\varepsilon}_{\pi_0(X_\ast^n)})_{\pi_0}(w) \) and \((i^{2\varepsilon}_{\pi_0(X_\ast^n)})_{\pi_0}(v) \) are leaves of \(G_n \);
2. \(h_{T_n}(father(v)) - t' > 2\varepsilon \) and \(h_{T_n}(father(w)) - t > 2\varepsilon \);
3. \(D_\beta((w, t)) \leq D_\beta((v, t')) \).

We already know that 1. and 2. need to be satisfied for some leaves. Not being able to find two such leaves which also satisfy 3. would imply \(T \) having at least \(K \) leaves.

Since \(D_\beta((w, t)) \leq D_\beta((v, t')) \), we have \(D_\alpha(D_\beta((w, t))) \leq D_\alpha(D_\beta((v, t'))) \). By definition, we know that \(D_\alpha(D_\beta((w, t))) = (X_{v \leq t' + 2\varepsilon}(v), t' + 2\varepsilon) \). In particular, this means that \((v, t'), (w, t') \leq (X_{v \leq t' + 2\varepsilon}(v), t' + 2\varepsilon) \). This is absurd because we have found a point on the abstract merge tree (assiated to) \(T_n \), which is a common ancestor of both \(v \) and \(w \) and whose height differs from the ones of \(v \) and \(w \) by exactly \(2\varepsilon \). But we know that the edges \((v, father(v)) \) and \((w, father(w)) \) are both longer than \(2\varepsilon \).

Thus \(\sup_{n > N} \dim(G_n) = K \) for some \(K \in \mathbb{R} \) such that \(K \leq \dim(T) \). WLOG we can suppose \(K = \dim(T) \). Since \(d \) is finitely stable, for some \(C > 0 \) we have:

\[
d(T, G_n) \leq C \cdot 2Kd_I(T, G_n) \leq C \cdot 2K(d_I(T, T_n) + d_I(T_n, G_n)) = C \cdot 2K(d_I(T, T_n) + \varepsilon).
\]

Thus by choosing \(\varepsilon \) such that:

\[
\max\{2\varepsilon, 2KC\varepsilon\} \leq \varepsilon,
\]

we obtain the thesis.

\[\blacksquare \]
References

H. Adams, Tegan Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman, Sofya Chepushtanova, E. Hanson, F. Motta, and Lori Ziegelmeier. Persistence images: A stable vector representation of persistent homology. *Journal of Machine Learning Research*, 18(1):1–35, 2017.

Ulrich Bauer, Claudia Landi, and Facundo Mémoli. The reeb graph edit distance is universal. *Foundations of Computational Mathematics*, pages 1–24, 2020.

David Beers and Jacob Leygonie. The fiber of persistent homology for trees. *arXiv*, 2303.16176, 2023.

Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov, Gunther H. Weber, and Bernd Hamann. Measuring the distance between merge trees. In *Topological Methods in Data Analysis and Visualization*, pages 151–166. Springer International Publishing, Cham, 2014.

Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. Reeb graphs for shape analysis and applications. *Theoretical Computer Science*, 392(1-3):5–22, 2008.

Philip Bille. A survey on tree edit distance and related problems. *Theoretical Computer Science*, 337(1-3):217 – 239, 2005.

Alexander Bock, Harish Doraiswamy, Adam Summers, and Claudio Silva. Topoangler: Interactive topology-based extraction of fishes. *IEEE Transactions on Visualization and Computer Graphics*, 2017.

Peter Bubenik. Statistical topological data analysis using persistence landscapes. *Journal of Machine Learning Research*, 16(3):77–102, 2015.

Robert Cardona, Justin Curry, Tung Lam, and Michael Lesnick. The universal lp-metric on merge trees. In *38th International Symposium on Computational Geometry (SoCG 2022)*, volume 224, page 24. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022.

Gunnar Carlsson and Facundo Mémoli. Classifying clustering schemes. *Foundations of Computational Mathematics*, 13, 2013.

Lara Cavinato, Matteo Pegoraro, Alessandra Ragni, Martina Sollini, Paola Anna Erba, and Francesca Ieva. Author correction: Imaging-based representation and stratification of intra-tumor heterogeneity via tree-edit distance. *Scientific Reports*, 12(1):22540, 2022.

F. Chazal, Brittany Terese Fasy, F. Lecci, A. Rinaldo, and L. Wasserman. Stochastic convergence of persistence landscapes and silhouettes. *Journal of Computational Geometry*, 6(2):140–161, 2015.

Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas Guibas, and Steve Oudot. Proximity of persistence modules and their diagrams. *Proc. 25th ACM Sympos. Comput. Geom.*, 12 2008.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. *Discrete & Computational Geometry*, 37:103–120, 2007.
Justin Curry. The fiber of the persistence map for functions on the interval. *Journal of Applied and Computational Topology*, 2:301–321, 2018.

Justin Curry, Haibin Hang, Washington Mio, Tom Needham, and Osman Berat Okutan. Decorated merge trees for persistent topology. *Journal of Applied and Computational Topology*, 2022.

Justin Curry, Jordan DeSha, Adélie Garin, Kathryn Hess, Lida Kanari, and Brendan Mallery. From trees to barcodes and back again ii: Combinatorial and probabilistic aspects of a topological inverse problem. *Computational Geometry*, 116:102031, 2024.

Vin De Silva, Elizabeth Munch, and Amit Patel. Categorified reeb graphs. *Discrete & Computational Geometry*, 55(4):854–906, 2016.

Barbara Di Fabio and Claudia Landi. The edit distance for reeb graphs of surfaces. *Discrete & Computational Geometry*, 55(2):423–461, 2016.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. *Discrete & Computational Geometry*, 28:511–533, 2002.

Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In *Surveys on discrete and computational geometry*, volume 453 of *Contemporary Mathematics*, pages 257–282. American Mathematical Society, Providence, RI, 2008.

Elena Farahbakhsh Touli and Yusu Wang. Fpt-algorithms for computing gromov-hausdorff and interleaving distances between trees. *Journal of Computational Geometry*, 13(1):89–124, 2022.

Joseph Felsenstein and Joseph Felenstein. *Inferring phylogenies*, volume 2. Sinauer associates Sunderland, MA, 2004.

Eunpyeong Hong, Yasuaki Kobayashi, and Akihiro Yamamoto. Improved methods for computing distances between unordered trees using integer programming. In *International Conference on Combinatorial Optimization and Applications*, pages 45–60. Springer, 2017.

Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees—an alternative to tree edit. *Theoretical computer science*, 143(1):137–148, 1995.

Lida Kanari, Adélie Garin, and Kathryn Hess. From trees to barcodes and back again: theoretical and statistical perspectives. *Algorithms*, 13(12):335, 2020.

Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. *Foundations of Computational Mathematics*, 15(3):613–650, 2015.

John Milnor. *Morse theory.(am-51)*, volume 51. In *Morse Theory.(AM-51), Volume 51*. Princeton university press, 2016.

Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge trees. *Discrete & Computational Geometry*, 49:22–45, 2013.
Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: An overview, ii. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6):e1219, 2017.

Piet Ost, Karel Decaestecker, Bieke Lambert, Valérie Fonteyne, Louke Delrue, Nicolaas Lumen, Filip Ameye, and Gert De Meerleer. Prognostic factors influencing prostate cancer-specific survival in non-castrate patients with metastatic prostate cancer. The Prostate, 74(3):297–305, 2014.

Amit Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology, 1(3-4):397–419, 2018.

Matteo Pegoraro. A persistence-driven edit distance for graphs with abstract weights. arXiv, 2304.12088v3 [math.CO], 2023.

Matteo Pegoraro. A finitely stable edit distance for functions defined on merge trees. arXiv, 2108.13108v7 [math.CO], 2024a.

Matteo Pegoraro. A graph-matching formulation of the interleaving distance between merge trees. arXiv, 2111.15531v6 [math.co], 2024b.

Matteo Pegoraro and Piercesare Secchi. Functional data representation with merge trees. arXiv, 2108.13147v6 [stat.ME], 2024.

Mathieu Pont, Jules Vidal, Julie Delon, and Julien Tierny. Wasserstein distances, geodesics and barycenters of merge trees. IEEE Transactions on Visualization and Computer Graphics, 28(1):291–301, 2022.

James O. Ramsay and Bernard W. Silverman. Functional Data Analysis. Springer, New York, NY, USA, 2005.

Stanley M Selkow. The tree-to-tree editing problem. Information processing letters, 6(6):184–186, 1977.

Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Surface coding based on morse theory. IEEE Computer Graphics and Applications, 11(5):66–78, 1991.

R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan. Edit distance between merge trees. IEEE Transactions on Visualization and Computer Graphics, 26(3):1518–1531, 2020.

Raghavendra Sridharamurthy and Vijay Natarajan. Comparative analysis of merge trees using local tree edit distance. IEEE Transactions on Visualization and Computer Graphics, 29(2):1518–1530, 2021.

Kuo-Chung Tai. The tree-to-tree correction problem. Journal of the ACM (JACM), 26(3):422–433, 1979.

Elena Farahbakhsh Touli. Frechet-like distances between two merge trees. ArXiv, 2004.10747v1[cs.CC], 2020.

Florian Wetzels and Christoph Garth. A deformation-based edit distance for merge trees. In 2022 Topological Data Analysis and Visualization (TopoInVis), pages 29–38. IEEE, 2022.
Florian Wetzels, Heike Leitte, and Christoph Garth. Branch decomposition-independent edit distances for merge trees. *Comput. Graph. Forum*, 41(3):367–378, 2022.

Keqin Wu and Song Zhang. A contour tree based visualization for exploring data with uncertainty. *International Journal for Uncertainty Quantification*, 3:203–223, 2013.

Kaizhong Zhang. A constrained edit distance between unordered labeled trees. *Algorithmica*, 15(3):205–222, 1996.