Triple Cohomology of Lie–Rinehart Algebras and the Canonical Class of Associative Algebras

J.M. Casas¹, M. Ladra² and T. Pirashvili³

(1) Dpto. Matemática Aplicada I, Univ. de Vigo, 36005 Pontevedra, Spain
(2) Dpto. Álgebra, Univ. de Santiago, 15782 Santiago de Compostela, Spain
(3) Math. Inst., Alexidze str.1, Tbilisi, 0193, Republic of Georgia

Abstract We introduce a bicomplex which computes the triple cohomology of Lie–Rinehart algebras. We prove that the triple cohomology is isomorphic to the Rinehart cohomology [13] provided the Lie–Rinehart algebra is projective over the corresponding commutative algebra. As an application we construct a canonical class in the third dimensional cohomology corresponding to an associative algebra.

Key words: Lie–Rinehart algebra, Hochschild cohomology, cotriple.
A. M. S. Subject Class. (2000): 18G60, 16W25, 17A99.

1 Introduction

Let A be a commutative algebra over a field K. A Lie–Rinehart algebra is a Lie K-algebra, which is also an A-module and these two structures are related in an appropriate way [9]. The leading example of Lie–Rinehart algebras is the set Der(A) of all K-derivations of A. Lie-Rinehart algebras are algebraic counterpart of Lie algebroids [9].

The cohomology $H^*_{Rin}(\mathcal{L}, \mathcal{M})$ of a Lie–Rinehart algebra \mathcal{L} with coefficient in a Lie-Rinehart module \mathcal{M} first was defined by Rinehart [13] and then was further developed by Huebschmann [6]. However these groups have good properties only in the case, when \mathcal{L} is projective over A. In this paper following to [12] we introduce a bicomplexes $C^{**}(A, \mathcal{L}, \mathcal{M})$, whose cohomology $H^*(A, \mathcal{L}, \mathcal{M})$ is isomorphic to $H^*_{Rin}(\mathcal{L}, \mathcal{M})$ provided \mathcal{L} is projective as an A-module. It turns out, that for general \mathcal{L} the group $H^*(A, \mathcal{L}, \mathcal{M})$ is isomorphic to the triple cohomology of Barr-Beck [11] applied to Lie–Rinehart algebras. We also prove that for general \mathcal{L}, unlike to the Rinehart cohomology $H^*_{Rin}(\mathcal{L}, \mathcal{M})$, the groups $H^*(A, \mathcal{L}, \mathcal{M})$ in dimensions two and three classify all abelian and crossed extensions of \mathcal{L} by \mathcal{M}.

As an application we consider the following situation. Let S be an associative algebra over a field K. We let $H^*(S, S)$ be the Hochschild cohomology of S. It is well-known that $H^1(S, S)$ is a Lie K-algebra. It turns out that $H^1(S, S)$ is in fact a Lie-Rinehart algebra over A, where $A=H^0(S, S)$ is the center of S. Thus one can consider the cohomology $H^*(A, H^1(S, S), A)$. We construct an element

$$o(S) \in H^3(A, H^1(S, S), A)$$
which we call the canonical class of S. We prove that $o(S)$ is a Morita invariant. The construction of $o(S)$ uses crossed modules of Lie-Rinehart algebras introduced in [3].

2 Preliminaries on Lie-Rinehart algebras

The material of this section is well-known. We included it in order to fix terminology, notations and main examples. In what follows we fix a field K. All vector spaces are considered over K. We write \otimes and Hom instead of \otimes_K and Hom_K.

2.1 Definitions, Examples

Let A be a commutative algebra over a field K. Then the set $\text{Der}(A)$ of all K-derivations of A is a Lie K-algebra and an A-module simultaneously. These two structures are related by the following identity

$$[D, aD'] = a[D, D'] + D(a)D', \quad D, D' \in \text{Der}(A).$$

This leads to the following notion, which goes back to Herz under the name "pseudo-algèbre de Lie" (see [5]) and which are algebraic counterpart of Lie algebroids [9].

Definition 2.1 A Lie-Rinehart algebra over A consists with a Lie K-algebra L together with an A-module structure on L and a map $\alpha: L \to \text{Der}(A)$ which is simultaneously a Lie algebra and A-module homomorphism such that

$$[X, aY] = a[X, Y] + X(a)Y.$$

Here $X, Y \in L$, $a \in A$ and we write $X(a)$ for $\alpha(X)(a)$ [6]. These objects are also known as (K, A)-Lie algebras [13] and d-Lie rings [11].

Thus $\text{Der}(A)$ with $\alpha = \text{Id}_{\text{Der}(A)}$ is a Lie-Rinehart A-algebra. Let us observe that Lie-Rinehart A-algebras with trivial homomorphism $\alpha: L \to \text{Der}(A)$ are exactly Lie A-algebras. Therefore the concept of Lie-Rinehart algebras generalizes the concept of Lie A-algebras. If $A=K$, then $\text{Der}(A)=0$ and there is no difference between Lie and Lie-Rinehart algebras. We denote by $\mathcal{LR}(A)$ the category of Lie-Rinehart algebras. One has the full inclusion

$$\mathcal{L}(A) \subset \mathcal{LR}(A),$$

where $\mathcal{L}(A)$ denotes the category of Lie A-algebras. Let us observe that the kernel of any Lie-Rinehart algebra homomorphism is a Lie A-algebra.
Example 2.2 If \(g \) is a \(K \)-Lie algebra acting on a commutative \(K \)-algebra \(A \) by derivations (that is there is given a homomorphism of Lie \(K \)-algebras \(\gamma : g \to \text{Der}(A) \)), then the transformation Lie-Rinehart algebra of \((g, A) \) is \(\mathcal{L} = A \otimes g \) with the Lie bracket

\[
[a \otimes g, a' \otimes g'] := aa' \otimes [g, g'] + a\gamma(g)(a') \otimes g' - a'\gamma(g')(a) \otimes g
\]

and with the action \(\alpha : \mathcal{L} \to \text{Der}(A) \) given by \(\alpha(a \otimes g)(a') = a\gamma(g)(a') \).

Definition 2.3 A Lie-Rinehart module over a Lie-Rinehart \(A \)-algebra \(\mathcal{L} \) is a vector space \(M \) together with two operations

\[
\mathcal{L} \otimes M \to M, \quad (X, m) \mapsto X(m)
\]

and

\[
A \otimes M \to M \quad (a, m) \mapsto am,
\]

such that the first one makes \(M \) into a module over the Lie \(K \)-algebra \(\mathcal{L} \) in the sense of the Lie algebra theory, while the second map makes \(M \) into an \(A \)-module and additionally the following compatibility conditions hold

\[
(aX)(m) = a(X(m)),
\]

\[
X(am) = aX(m) + X(a)m.
\]

Here \(a \in A, \ m \in M \) and \(X \in \mathcal{L} \).

It follows that \(A \) is a Lie-Rinehart module over \(\mathcal{L} \) for any Lie-Rinehart algebra \(\mathcal{L} \). We let \((\mathcal{L}, A)\text{-mod} \) be the category of Lie-Rinehart modules over \(\mathcal{L} \).

2.2 Rinehart cohomology of Lie-Rinehart algebras

Let \(M \) be a Lie-Rinehart module over \(\mathcal{L} \). Let us recall the definition of the Rinehart cohomology \(\mathcal{H}^{*}_{\text{Rin}}(\mathcal{L}, M) \) of a Lie-Rinehart algebra \(\mathcal{L} \) with coefficients in a Lie-Rinehart module \(M \) (see \(^{13}\) and \(^{11}\)). One puts

\[
C^{n}_{\Lambda}(\mathcal{L}, M) := \text{Hom}_{A}(\Lambda^{n}_{A} \mathcal{L}, M),
\]

where \(\Lambda^{n}_{A}(V) \) denotes the exterior algebra over \(A \) generated by an \(A \)-module \(V \). The coboundary map

\[
\delta : C^{n-1}_{\Lambda}(\mathcal{L}, M) \to C^{n}_{\Lambda}(\mathcal{L}, M)
\]

is given by

\[
(\delta f)(X_{1}, \ldots, X_{n}) = (-1)^{n} \sum_{i=1}^{n} (-1)^{(i-1)} X_{i}(f(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{n})).
\]
\((-1)^{n} \sum_{j<k} (-1)^{j+k} f([X_i, X_j], X_1, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_n).\)

Here \(X_1, \ldots, X_n \in \mathcal{L}, f \in C^{n-1}_{\mathcal{A}}(\mathcal{L}, M).\) By the definition \(H^*_{\text{Rin}}(\mathcal{L}, M)\) is the cohomology of the cochain complex \(C^*_\mathcal{A}(\mathcal{L}, M).\) One observes that if \(A = K,\) then this definition generalizes the classical definition of Lie algebra cohomology. For a general \(A\) by forgetting the \(A\)-module structure one obtains the canonical homomorphism

\[H^*_{\text{Rin}}(\mathcal{L}, M) \rightarrow H^*_{\text{Lie}}(\mathcal{L}, M), \]

where \(H^*_{\text{Lie}}(\mathcal{L}, M)\) denotes the cohomology of \(\mathcal{L}\) considered as a Lie \(K\)-algebra.

It follows from the definition that one has the following exact sequence

\[0 \rightarrow H^0_{\text{Rin}}(\mathcal{L}, M) \rightarrow M \rightarrow \text{Der}_A(\mathcal{L}, M) \rightarrow H^1_{\text{Rin}}(\mathcal{L}, M) \rightarrow 0, \quad (1) \]

where \(\text{Der}_A(\mathcal{L}, M)\) consists with \(A\)-linear maps \(d : \mathcal{L} \rightarrow M\) which are derivations from the Lie \(K\)-algebra \(\mathcal{L}\) to \(M.\) In other words \(d\) must satisfy the following conditions:

\[
\begin{aligned}
&d(ax) = ad(x), \ a \in A, \ x \in \mathcal{L}, \\
&d([x,y]) = [x,d(y)] - [y,d(x)].
\end{aligned}
\]

For a Lie-Rinehart module \(M\) over a Lie-Rinehart algebra \(\mathcal{L}\) one can define the semi-direct product \(\mathcal{L} \rtimes M\) to be \(\mathcal{L} \oplus M\) as an \(A\)-module with the bracket

\[
[(X,m),(Y,n)] = ([X,Y], [X,m] - [Y,n]).
\]

Lemma 2.4 Let \(\mathcal{L}\) be a Lie-Rinehart algebra over a commutative algebra \(A\) and let \(M \in (\mathcal{L}, A)\text{-mod}.\) Then there is a 1-1 correspondence between the elements of \(\text{Der}_A(\mathcal{L}, M)\) and the sections (in the category \(\mathcal{LR}(A)\)) of the projection \(p : \mathcal{L} \rtimes M \rightarrow \mathcal{L}.

Proof. Any section \(\xi : \mathcal{L} \rightarrow \mathcal{L} \rtimes M\) of \(p\) has the form \(\xi(x) = (x, f(x))\) and one easily shows that \(\xi\) is a morphism in \(\mathcal{LR}(A)\) iff \(f \in \text{Der}_A(\mathcal{L}, M).\) \(\Box\)

2.3 Abelian and crossed extensions of Lie-Rinehart algebras

Definition 2.5 Let \(\mathcal{L}\) be a Lie-Rinehart algebra over a commutative algebra \(A\) and let \(M \in (\mathcal{L}, A)\text{-mod}.\) An abelian extension of \(\mathcal{L}\) by \(M\) is an exact sequence

\[
0 \longrightarrow M \overset{i}{\longrightarrow} \mathcal{L}' \overset{\partial}{\longrightarrow} \mathcal{L} \longrightarrow 0
\]

where \(\mathcal{L}'\) is a Lie-Rinehart algebra over \(A\) and \(\partial\) is a Lie-Rinehart algebra homomorphism. Moreover, \(i\) is an \(A\)-linear map and the following identities hold

\[
i([i(m), i(n)] = 0,
\]
\[[i(m), X'] = (\partial(X'))m, \]

where \(m, n \in M\) and \(X' \in L'\). An abelian extension is called A-spit if \(\partial\) has an A-linear section.

We also need the notion of crossed modules for Lie-Rinehart algebras introduced in [3]. The following definition is equivalent to one given in [3].

Definition 2.6 A crossed module \(\partial : R \to L\) of Lie-Rinehart algebras over \(A\) consists of a Lie-Rinehart algebra \(L\) and a Lie-Rinehart module \(R\) over \(L\) together with an A-linear homomorphism \(\partial : R \to L\) such that for all \(r, s \in R, X \in L, a \in A\) the following identities hold:

1. \(\partial(X(r)) = [X, \partial(r)]\)
2. \((\partial(r))(s) + (\partial(s))(r) = 0\)
3. \(\partial(r)(a) = 0\).

It follows from this definition that \(R\) is a Lie A-algebra under the bracket \([r, s] = (\partial(r))(s)\) and \(\partial\) is a homomorphism of Lie \(K\)-algebras. Moreover, \(\text{Im}(\partial)\) is simultaneously a Lie \(K\)-ideal of \(L\) and an A-submodule, therefore \(\text{Coker}(\partial)\) is a Lie-Rinehart algebra. Furthermore \(\text{Ker}(\partial)\) is an abelian A-ideal of \(R\) and the action of \(L\) on \(R\) yields a Lie-Rinehart module structure of \(\text{Coker}(\partial)\) on \(\text{Ker}(\partial)\).

Let \(P\) be a Lie-Rinehart algebra and let \(M\) be a Lie-Rinehart module over \(P\). We consider the category \(\text{Cross}(P, M)\), whose objects are the exact sequences

\[0 \to M \to R \xrightarrow{\partial} L \xrightarrow{\nu} P \to 0 \]

where \(\partial : R \to L\) is a crossed module of Lie-Rinehart algebras over \(A\) and the canonical maps \(\text{Coker}(\partial) \to P\) and \(M \to \text{Ker}(\partial)\) are isomorphisms of Lie-Rinehart algebras and modules respectively. The morphisms in the category \(\text{Cross}(P, M)\) are commutative diagrams

\[
\begin{array}{ccccccccc}
0 & \to & M & \to & R & \xrightarrow{\partial} & L & \xrightarrow{\nu} & P & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & M' & \to & R' & \xrightarrow{\partial'} & L' & \xrightarrow{\nu'} & P' & \to & 0 \\
\end{array}
\]

where \(\beta\) is a homomorphism of Lie-Rinehart algebras, \(\alpha\) is a morphism of Lie A-algebras and for any \(r \in R, X \in L\) one has

\[\alpha([X, r]) = [\beta(X), \alpha(r)]. \]

Furthermore, we let \(\text{Cross}_{A\text{-split}}(P, M)\) be the subcategory of \(\text{Cross}(P, M)\) whose objects and morphisms split in the category of A-modules, in other words one requires that the epimorphisms \(L \to P, R \to \text{Im}(\partial), L' \to P', R' \to \text{Im}(\partial'), L \to \text{Im}(\beta), L' \to \text{Coker}(\beta), R \to \text{Im}(\alpha), R' \to \text{Coker}(\alpha)\) have A-linear sections.

5
2.4 Main properties of Rinehart cohomologies

Theorem 2.7

i) If L is projective as an A-module, then

$$H^n_{Rin}(L, M) \cong \text{Ext}^n_{(L, A)-\text{mod}}(A, M).$$

ii) If $0 \to M_1 \to M \to M_2 \to 0$ is an exact sequence in the category (L, A)-\text{mod}, then one has a long exact sequence on cohomology

$$\cdots \to H^n_{Rin}(L, M_1) \to H^n_{Rin}(L, M) \to H^n_{Rin}(L, M_2) \to \cdots$$

provided $0 \to M_1 \to M \to M_2 \to 0$ splits in the category of A-modules, or L is projective as A-module.

iii) The cohomology $H^2_{Rin}(L, M)$ classifies such abelian extensions

$$0 \to M \to L' \to L \to 0$$

of L by M in the category of Lie-Rinehart algebras which splits in the category of A-modules.

iv) For any Lie-Rinehart algebra P which is projective as an A-module and any Lie-Rinehart module M there exists a natural bijection between the classes of the connected components of the category $\text{Cross}_{A-spl}(P, M)$ and $H^3_{Rin}(P, M)$.

Proof. For the isomorphism of the part i) see Section 4 of [13]. The part ii) is trivial and for part iii) see Theorem 2.6 in [6]. Finally the part iv), which is in the same spirit as the classical result for group and Lie algebra cohomology (see [8] and [7]), was proved in [3].

Let \mathfrak{g} be a Lie algebra over K and let M be a \mathfrak{g}-module. Then we have the Chevalley–Eilenberg cochain complex $C^n_{\text{Lie}}(\mathfrak{g}, M)$, which computes the Lie algebra cohomology (see [2]):

$$C^n_{\text{Lie}}(\mathfrak{g}, M) = \text{Hom}(\Lambda^n(\mathfrak{g}), M).$$

Here Λ^* denotes the exterior algebra defined over K.

Lemma 2.8 Let \mathfrak{g} be a Lie K-algebra acting on a commutative algebra A by derivations and let L be the transformation Lie-Rinehart algebra of (\mathfrak{g}, A) (see Example 2.2). Then for any Lie-Rinehart L-module M one has the canonical isomorphism of cochain complexes $C^n_{\text{Lie}}(\mathfrak{g}, M) \cong C^n_{L}(\mathfrak{g}, M)$ and in particular the isomorphism

$$H^n_{Rin}(L, M) \cong H^n_{\text{Lie}}(\mathfrak{g}, M).$$

Proof. Since $L = A \otimes \mathfrak{g}$ one has $\text{Hom}_A(\Lambda^n L, M) \cong \text{Hom}(\Lambda^n \mathfrak{g}, M)$ and Lemma follows.
3 The main construction

Thanks to Theorem 2.7 the cohomology theory $H^*_\text{Rin}(\mathcal{L}, -)$ has good properties only if \mathcal{L} is projective as an A-module. In this section we introduce the bicomplex $C^{**}(A, \mathcal{L}, M)$, whose cohomology are good replacement of the Rinehart cohomology $H^*_\text{Rin}(\mathcal{L}, -)$ for general \mathcal{L}. The idea of the construction is very simple. First one observes that the transformation Lie-Rinehart algebras (see Example 2.2) are always free as A-modules, therefore the Rinehart cohomology of such algebras are the right objects. Secondly, for any Lie-Rinehart algebra \mathcal{L} the two-sided bar construction $B_*(A, A, \mathcal{L})$ gives rise to a simplicial resolution of \mathcal{L} in the category of Lie–Rinehart algebras. Since each term of this resolution is a transformation Lie-Rinehart algebra one can mix the Chevalley–Eilenberg complexes with the bar resolution to get our bicomplex.

3.1 A bicomplex for Lie–Rinehart algebras

Let \mathcal{L} be a Lie–Rinehart algebra and let M be a Lie–Rinehart module over \mathcal{L}. We have two cochain complex: the Rinehart complex $C^*(A, \mathcal{L}, M)$ and Chevalley–Eilenberg complex $C^*_{\text{Lie}}(\mathcal{L}, M)$. If one forgets A-module structure on \mathcal{L}, we get a Lie K-algebra acting on A via derivations, thus the construction of Example 2.2 gives a Lie-Rinehart algebra structure on $A \otimes \mathcal{L}$. One can iterated this construction to conclude that $A^{\otimes n} \otimes \mathcal{L}$ is also a Lie–Rinehart algebra for any $n \geq 0$. The A-module structure comes from the first factor, while the bracket is a bit more complicated, for example for $n = 2$, one has

$$[a_1 \otimes a_2 \otimes X, b_1 \otimes b_2 \otimes Y] := a_1 b_1 \otimes a_2 b_2 \otimes [X, Y] + a_1 b_1 \otimes a_2 X(b_2) \otimes Y +$$

$$+ a_1 a_2 X(b_1) \otimes b_2 Y - a_1 b_1 \otimes b_2 Y(a_2) \otimes X - b_1 b_2 Y(a_1) \otimes a_2 \otimes X.$$

Let us also recall that the two-sided bar construction $B_*(A, A, \mathcal{L})$ is a simplicial object, which is $A^{\otimes n+1} \otimes \mathcal{L}$ in the dimension n, while the face maps are given by

$$d_i(a_0 \otimes \cdots \otimes a_n \otimes X) = a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n \otimes X,$$

if $i < n$ and

$$d_n(a_0 \otimes \cdots \otimes a_n \otimes X) = a_0 \otimes \cdots \otimes a_{n-1} \otimes \cdots \otimes a_n X,$$

if $i = n$. The degeneracy maps are given by

$$s_i(a_0 \otimes \cdots \otimes a_n \otimes X) = a_0 \otimes \cdots \otimes a_i \otimes 1 \otimes \cdots a_n \otimes X.$$

In fact $B_*(A, A, \mathcal{L})$ is an augmented simplicial object in the category of Lie-Rinehart algebras, the augmentation $B_0(A, A, \mathcal{L}) = A \otimes \mathcal{L} \to \mathcal{L}$ is given by
(a, X) \mapsto aX. We can apply the functor $C^*_A(-, M)$ on $B_*(A, A, L)$ to get a cosimplicial object in the category of cochain complexes

$$[n] \mapsto C^*_A(A^\otimes n+1 \otimes L, M).$$

Finally we let $C^{**}(A, L, M)$ be the bicomplex associated to this cosimplicial cochain complex. We let $H^*(A, L, M)$ be the cohomology of the corresponding total complex. The augmentation $B_*(A, A, L) \to L$ yields the homomorphism

$$\alpha^n : H^n_{Rin}(L, M) \to H^*(A, L, M).$$

The bicomplex $C^{**}(A, L, M)$ has the following alternative description. According to Lemma 2.8 one has the isomorphism of complexes:

$$C^{pq}_*(A, L, M) \cong C^*_{Lie}(A^\otimes p \otimes L \otimes M),$$

where M is considered as a module over $A^\otimes p \otimes L$ by

$$(a_1 \otimes \cdots \otimes a_p \otimes r)m := (a_1 \cdots a_p r)m.$$

To define the horizontal cochain complex structure one observes that elements of C^{pq} can be identified with functions $f : A^\otimes pq \otimes L^\otimes q \to M$, which are alternative with appropriate blocks of variables. Then the corresponding linear map

$$d(f) : A^\otimes (p+1)q \otimes L^\otimes q \to M$$

is given by

$$df(a_{01}, \cdots, a_{0q}, a_{11}, \cdots, a_{1q}, \cdots a_{pq}, X_1, \cdots, X_q) =$$

$$a_{01} \cdots a_{0q} f(a_{11}, \cdots, a_{1q}, \cdots a_{pq}, X_1, \cdots, X_q) +$$

$$\sum_{0 \leq i < p} (-1)^{i+1} f(a_{01}, \cdots, a_{0q}, \cdots a_{i1}a_{i+1,1}, \cdots, a_{iq}a_{i+1,q}, \cdots a_{pq}, X_1, \cdots, X_q) +$$

$$(-1)^{p+1} f(a_{01}, \cdots, a_{0q}, \cdots, a_{p-1,1}, \cdots, a_{p-1,q}, a_{p1}X_1, \cdots, a_{pq}X_q).$$

Theorem 3.1 i) The homomorphism

$$\alpha^n : H^n_{Rin}(L, M) \to H^n(A, L, M)$$

is isomorphism for $n = 0, 1$. The homomorphism α^2 is a monomorphism. Moreover α^n is an isomorphism for all $n \geq 0$ provided L is projective over A.

ii) If $0 \to M_1 \to M \to M_2 \to 0$ is an exact sequence in the category (L, A)-mod, then one has a long exact sequence on cohomology

$$\cdots \to H^n(A, L, M_1) \to H^n(A, L, M) \to H^n(A, L, M_2) \to \cdots.$$
iii) The cohomology $H^2(A, \mathcal{L}, M)$ classifies all abelian extensions

$$0 \to M \to \mathcal{L}' \to \mathcal{L} \to 0$$

of \mathcal{L} by M in the category of Lie-Rinehart algebras.

iv) For any Lie-Rinehart algebra \mathcal{L} and any Lie-Rinehart module M there exists a natural bijection between the classes of the connected components of the category $\text{Cross}(\mathcal{L}, M)$ and $H^3(A, \mathcal{L}, M)$.

Proof. i) The statement is obvious for $n = 0, 1$. For $n = 2$ it follows from the part iii) below and part iii) of Theorem 2.7. It remains to prove the last assertion. It is well-known that the augmentation $B_*(A, A, \mathcal{L}) \to \mathcal{L}$ is a homotopy equivalence in the category of simplicial A-modules and therefore, for each s a weak equivalence in the category of simplicial A-modules. Assume now \mathcal{L} is projective as an A-module, then $B_*(A, A, \mathcal{L}) \to \mathcal{L}$ is a homotopy equivalence in the category of simplicial A-modules and therefore, for each $k \geq 0$ the induced map $\Lambda^k_A(B_*(A, A, \mathcal{L})) \to \Lambda^k_A(\mathcal{L})$ is a homotopy equivalence in the category of simplicial A-modules, which implies that the same is true after applying the functor $\text{Hom}_A(\mathcal{L}, M)$. Thus for each $k \geq 0$ the induced map $C^k_A(\mathcal{L}, M) \to C^k_A(B_*(A, A, \mathcal{L}))$ is a weak equivalence of cosimplicial objects and the comparison theorem for bicomplexes yields the result.

ii) Since Hom and exterior powers involved in $C^m_{\text{Lie}}(g, M)$ are taken over K it follows that for each p and q the functor $C^q_{\text{Lie}}(\Lambda^p \otimes \mathcal{L}, -)$ is exact and the result follows.

iii) Thanks to a well-known fact from topology we can use the normalized (in the simplicial direction) cochains to compute $H^*(A, \mathcal{L}, M)$. Having this in mind we have $H^2(A, \mathcal{L}, M) = Z^2/B^2$, where Z^2 consists with pairs (f, g) such that $f : \Lambda^2(\mathcal{L}) \to M$ is a Lie 2-cocycle and $g : A \otimes \mathcal{L} \to M$ is a linear map such that $g(1, X) = 0,$

$$ag(b, X) - g(ab, X) + g(a, bX) = 0$$

and

$$abf(X, Y) - f(ax, by) = aXg(b, Y) - bYg(a, X) - g(ab, [X, Y]) - g(aX(b), Y) + g(bY(a), X).$$

Here $a, b \in A$ and $X, Y \in \mathcal{L}$. Moreover (f, g) belongs to B^2 iff there exist a linear map $h : \mathcal{L} \to M$ such that $f(X, Y) = Xh(Y) - h([X, Y]) - Yh(X)$ and $g(a, X) = ah(X) - h(aX).$ Starting with $(f, g) \in Z^2$ we construct an abelian extension of \mathcal{L} by M by putting $\mathcal{P} = M \oplus \mathcal{L}$ as a vector space. An A-module structure on \mathcal{P} is given by $a(m, X) = (am + g(a, X), aX)$, while a Lie bracket on \mathcal{P} is given by $[(m, X), (n, Y)] = (Xn - Ym + f(X, Y), [X, Y]).$ Conversely, given an abelian extension (\mathcal{P}) and a K-linear section $h : \mathcal{L} \to \mathcal{P}$ we put $f(X, Y) =$
$[h(X), h(Y)] - h([X, Y])$ and $g(a, X) := h(aX) - ah(X)$. One easily checks that $(f, g) \in Z^2$ and one gets iii).

iv) Similarly, we have $H^3(A, \mathcal{L}, M) = Z^3/B^3$. Here Z^3 consists with triples (f, g, h) such that $f : \Lambda^3(\mathcal{L}) \to M$ is a Lie 3-cocycle, $g : \Lambda^2(A \otimes \mathcal{L}) \to M$ and $h : A \otimes A \otimes \mathcal{L} \to M$ are linear maps and the following relations hold:

$$f(aX, bY, cZ) - abc \cdot f(X, Y, Z) =$$

$$= aX \cdot g(b, c, Y, Z) - bY \cdot g(a, c, X, Z) + cZ \cdot g(a, b, X, Y) - g(ab, c, [X, Y], Z) +$$

$$+ g(aX(b), c, Y, Z) - g(bY(a), c, X, Z) + g(ac, b, [X, Y], Y) - g(aX(c), b, Z, Y) +$$

$$+ g(cZ(a), b, X, Y) - g(bc, a, [Y, Z], X) + g(bY(c), a, Z, X) - g(cZ(b), a, Y, X)$$

and

$abX \cdot h(c, d, Y) - cdX \cdot h(a, b, X) - h(ac, bd, [X, Y]) - h(ac, bX(d), Y) -$

$$- h(abX(c), d, Y) + h(ac, dY(b), X) - h(cdY(a), b, X) =$

$$= abg(c, d, X, Y) - g(ac, bd, X, Y) + g(a, b, cX, dY).$$

Moreover, (f, g, h) belongs to B^3 iff there exist a linear maps $m : \Lambda^2(\mathcal{L}) \to M$ and $n : A \otimes \mathcal{L} \to M$ such that

$$f(X, Y, Z) = Xm(Y, Z) - Ym(X, Z) + Zm(X, Y) -$$

$$-m([X, Y], Z) + m([X, Z], Y) - m([Y, Z], X),$$

$$g(a, b, r, s) = abm(X, Y) - m(aX, bY) - aXn(b, Y) +$$

$$bYn(a, X) + n(ab, [X, Y]) + n(aX(b), Y) + n(bY(a), X)$$

and

$$h(a, b, X) = an(b, X) - n(ab, X) + n(a, bX).$$

Let

$$0 \to M \to \mathcal{R} \xrightarrow{\partial} \mathcal{P} \xrightarrow{\pi} \mathcal{L} \to 0$$

be a crossed extension. We put $V := \text{Im}(\partial)$ and consider K-linear sections $p : \mathcal{L} \to \mathcal{P}$ and $q : V \to \mathcal{R}$ of $\pi : \mathcal{P} \to \mathcal{L}$ and $\partial : \mathcal{R} \to V$ respectively. Now we define $t : \mathcal{L} \otimes \mathcal{L} \to \mathcal{R}$ and $s : A \otimes \mathcal{L} \to \mathcal{R}$. by $t(X, Y) := q([p(X), p(Y)]) - p([X, Y])$ and $s(a, X) := q(ap(X) - p(aX))$. Finally we define three functions as follows. The function $f : \Lambda^3(\mathcal{L}) \to M$ is given by

$$f(X, Y, Z) := p(X)g(Y, Z) - p(Y)g(X, Z) + p(Z)g(X, Y) -$$

$$-g([X, Y], Z) + g([X, Z], Y) - g([Y, Z], X).$$

The function $g : \Lambda^2(A \otimes \mathcal{L}) \to M$ is given by

$$g(a, b, X, Y) := p(aX)s(b, Y) - p(bY)s(a, X) - p(ab, [X, Y]) -$$
while the function and $h : A \otimes A \otimes \mathcal{L} \to M$ is given by

$$h(a, b, X) := a s(b, X) - s(ab, X) + s(a, bX).$$

Then $(f, g, h) \in Z^3$ and the corresponding class in $H^3(A, R, M)$ depends only on the connected component of a given crossed extension. Thus we obtain a well-defined map $\text{Cros}(A, R, M) \to H^3(A, R, M)$ and a standard argument (see [7]) shows that it is an isomorphism.

4 Triple cohomology of Lie–Rinehart algebras

In this section we prove that the cohomology theory developed in the previous section in canonically isomorphic to the triple cohomology of Barr-Beck [1] applied to Lie-Rinehart algebras.

4.1 Cotriples and cotriple resolutions

The general notion of (co)triples (or (co)monads, or (co)standard construction) and (co)triple resolutions due to Godement [4] and then was developed in [1]. Let \mathcal{C} be a category. A cotriple on \mathcal{C} is an endofunctor $T : \mathcal{C} \to \mathcal{C}$ together with natural transformations $\epsilon : T \to 1_\mathcal{C}$ and $\delta : T \to T^2$ satisfying the counit and the coassociativity properties. Here $T^n = T \circ T$ and a similar meaning has T^n for all $n \geq 0$. For example, assume $U : \mathcal{C} \to \mathcal{B}$ is a functor which has a left adjoint functor $F : \mathcal{B} \to \mathcal{C}$. Then there is a cotriple structure on $T = FU : \mathcal{C} \to \mathcal{C}$ such that ϵ is the counit of the adjunction. Given a cotriple T and an object C one can associate a simplicial object $T^\ast C$ in the category \mathcal{C}, known as Godement or cotriple resolution of C. Let us recall that $T_n C = T^{n+1} C$ and the face and degeneracy operators are given respectively by $\partial_i = T^i \epsilon T^{n-i}$ and $s_i = T^i \delta T^{n-i}$. To explain why it is called resolution, consider the case when $T = FU$ is associated to the pair of adjoint functors. Then firstly ϵ yields a morphism $T_\ast C \to C$ from the simplicial object $T_\ast C$ to the constant simplicial object C and secondly the induced morphism $U(T_\ast C) \to U(C)$ is a homotopy equivalence in the category of simplicial objects in \mathcal{B}. The cotriple cohomology is now defined as follows. Let M be an abelian group object in the category \mathcal{C}/\mathcal{C} of arrows $X \to C$ then $\text{Hom}_{\mathcal{C}/\mathcal{C}}(T_\ast C, M)$ is a cosimplicial abelian group, which can be seen also as a cochain complex. Thus $H^\ast(\text{Hom}_{\mathcal{C}/\mathcal{C}}(T_\ast C, M))$ is a meaningful and they are denoted by $H^\ast_\ast(C, M)$. Of the special interest is the case, when $T = FU$ is associated to the pair of adjoint functors and the functor $U : \mathcal{C} \to \mathcal{B}$ is tripliable [1]. In this case the category \mathcal{C} is completely determined by the triple $E = U F : \mathcal{B} \to \mathcal{B}$. Because of this fact $H^\ast_\ast(C, M)$ in this case are known as triple cohomology of \mathcal{C} with coefficients in M.

11
4.2 Free Lie–Rinehart Algebras

We wish to apply these general constructions to Lie–Rinehart algebras. One has the functor

$$U : \mathcal{LR}(A) \to \text{Vect}/\text{Der}(A)$$

which assigns $$\alpha : \mathcal{L} \to \text{Der}(A)$$ to a Lie–Rinehart algebra $$\mathcal{L}$$. Here Vect/ Der(A) is the category of $$K$$-linear maps $$\psi : V \to \text{Der}(A)$$, where $$V$$ is a vector space over $$K$$. A morphism $$\psi \to \psi_1$$ in Vect/ Der(A) is a $$K$$-linear map $$f : V \to V_1$$ such that $$\psi = \psi_1 \circ f$$. Now we construct the functor

$$F : \text{Vect}/\text{Der}(A) \to \mathcal{LR}(A)$$

as follows. Let $$\psi : V \to \text{Der}(A)$$ be a $$K$$-linear map. We let $$\mathcal{L}(V)$$ be the free Lie $$K$$-algebra generated by $$V$$. Then one has the unique Lie $$K$$-algebra homomorphism $$\mathcal{L}(V) \to \text{Der}(A)$$ which extends the map $$\psi$$, which is still denoted by $$\psi$$. Now we can apply the construction from Example 2.2 to get a Lie–Rinehart algebra structure on $$A \otimes \mathcal{L}(V)$$. We let $$F(\psi)$$ be this particular Lie–Rinehart algebra and we call it the free Lie–Rinehart algebra generated by $$\psi$$. In this way we obtain the functor $$F$$, which is the left adjoint to $$U$$.

Lemma 4.1 Let $$\mathcal{L}$$ be a free Lie–Rinehart algebra generated by $$\psi : V \to \text{Der}(A)$$ and let $$M$$ be any Lie–Rinehart module over $$\mathcal{L}$$. Then

$$H^i_{\text{Rin}}(\mathcal{L}, M) = 0, \ i > 1.$$

Proof. By our construction $$\mathcal{L}$$ is a transformation Lie–Rinehart algebra of $$(\mathcal{L}(V), A)$$. Thus one can apply Lemma 2.8 to get an isomorphism $$H^i_{\text{Rin}}(\mathcal{L}, M) \cong H^i_{\text{Lie}}(\mathcal{L}(V), M)$$ and then one can use the well-known vanishing result for free Lie algebras. \square

4.3 The cohomology $$H^*_{LR}(\mathcal{L}, M)$$

Since we have a pair of adjoint functors we can take the composite

$$T = FU : \mathcal{LR}(A) \to \mathcal{LR}(A)$$

which is a cotriple. Thus for any Lie–Rinehart algebra $$\mathcal{L}$$ one can take the cotriple resolution $$T_*(\mathcal{L}) \to \mathcal{L}$$. It follows from the construction of the cotriple resolution that each component of $$T_*(\mathcal{L})$$ is a free Lie–Rinehart algebra. Moreover, according to the general properties of the cotriple resolutions the natural augmentation $$T_*(\mathcal{L}) \to \mathcal{L}$$ is a homotopy equivalence in the category of simplicial vector spaces. It follows that $$T_*(\mathcal{L}) \to \mathcal{L}$$ is a weak homotopy equivalence in the category of $$A$$-modules.
Let M be a \mathcal{L}-module. Then M is also a module over $T_n(\mathcal{L})$ for any $n \geq 0$ thanks to the augmentation morphism $T_*(\mathcal{L}) \to \mathcal{L}$. Thus one can form the following bicomplex

$$C^*_A(T_*(\mathcal{L}), M)$$

which is formed by the degreewise applying the Rinehart cochain complex. The cohomology of the total complex of the bicomplex $C^*_A(T_*(\mathcal{L}), M)$ is denoted by $H^*_{LR}(\mathcal{L}, M)$.

Lemma 4.2 For any Lie–Rinehart algebra \mathcal{L} and any Lie–Rinehart module M one has a natural isomorphism

$$H^*(A, \mathcal{L}, M) \cong H^*_{LR}(\mathcal{L}, M).$$

Proof. We denote by $C^*(A, \mathcal{L}, M)$ the total complex associated to the bicomplex $C^{**}(A, \mathcal{L}, M)$. Recall that it comes with a natural cochain map

$$C^*_A(\mathcal{L}, M) \to C^*(A, \mathcal{L}, M)$$

which is quasi-isomorphism provided \mathcal{L} is projective as an A-module. Let us apply $C^*(A, -, M)$ on $T_*(\mathcal{L})$ degreewise. Then we obtain the morphism of bicomplex

$$C^*_A(T_*(\mathcal{L}), M) \to C^*(A, T_*(\mathcal{L}), M)$$

which is quasi-isomorphism because each $T_n(\mathcal{L})$ is free as an A-module. It remains to show that the augmentation $T_*(\mathcal{L}) \to \mathcal{L}$ yields the quasi-isomorphism

$$C^*(A, \mathcal{L}, M) \to C^*(A, T_*(\mathcal{L}), M).$$

To this end, one observes that $T_*(\mathcal{L}) \to \mathcal{L}$ is a quasi-isomorphism thanks to the general properties of cotriple resolutions and therefore is a homotopy equivalence in the category of simplicial vector spaces. Thus the same is true for $\Lambda^n(T_*(\mathcal{L})) \to \Lambda^n(\mathcal{L})$ and therefore $C^n(A, \mathcal{L}, M) \to C^n(A, T_*(\mathcal{L}), M)$ is also a homotopy-equivalence for each n and the result follows from the comparison theorem of bicomplexes.

4.4 Triple cohomology and $H^*_{LR}(\mathcal{L}, M)$

According to the Backs triplibility criterion the functor $U : \mathcal{LR}(A) \to \text{Vect}/\text{Der}(A)$ is tripliable, so we have also the triple cohomology theory for Lie–Rinehart algebras. Let \mathcal{L} be a Lie–Rinehart algebra. There is an equivalence from the category of Lie–Rinehart modules over \mathcal{L} to the category of abelian group objects in $\mathcal{LR}(A)/\mathcal{L}$, which assigns the projection $\mathcal{L} \times M \to \mathcal{L}$ to $M \in (\mathcal{L}, A)\text{-mod}$. Having in mind this equivalence, Lemma 4.1 says that for any object $\mathcal{P} \to \mathcal{L}$ of $\mathcal{LR}(A)/\mathcal{L}$ the homomorphisms from $\mathcal{P} \to \mathcal{L}$ to $\mathcal{L} \times M \to \mathcal{L}$ in the category of abelian group objects in $\mathcal{LR}(A)/\mathcal{L}$ is nothing else, but $\text{Der}_A(\mathcal{P}, M)$. Therefore the triple cohomology $H^*_T(\mathcal{L}, M)$ is the same as $H^q(\text{Der}_A(T_*(\mathcal{L}), M))$.

13
Theorem 4.3 For any Lie–Rinehart algebra \(\mathcal{L} \) and any \(\mathcal{L} \)-module \(M \) there is a natural isomorphism:

\[
H_{LR}^{q+1}(\mathcal{L}, M) \cong H_{LR}^q(\mathcal{L}, M), \quad q > 0.
\]

In other words the cotriple cohomology of \(\mathcal{L} \) with coefficients in \(M \) is isomorphic to the cohomology \(H_{LR}^*(\mathcal{L}, M) \) up to shift in the dimension.

Proof. As usual with bicomplex we have a spectral sequence

\[
E^2_{pq} \Rightarrow H^*_LR(\mathcal{L}, M)
\]

where \(E^2_{pq} \) is obtained in two steps: First one takes \(p \)-th homology in each \(C^*(T_q(\mathcal{L}), M), q \geq 0 \) and then one takes the \(q \)-th homology. But \(C^*(T_q(\mathcal{L}), M) \) is just the Rinehart complex of \(T_q(\mathcal{L}) \). Since \(T_q(\mathcal{L}) \) is free we can use Lemma 4.1 to conclude that \(E^1_{pq} = 0 \) for all \(p \geq 2 \). According to the exact sequence (1) one has also an exact sequence

\[
0 \to E^1_{0q} \to M \to \text{Der}_A(T_q(\mathcal{L}), M) \to E^1_{1q} \to 0
\]

One observes that \(E^1_{0*} \) and \(M \) are constant cosimplicial vector spaces and therefore \(E^2_{0q} = 0 \) for all \(q > 0 \). Thus we get

\[
H_{LR}^{q+1}(\mathcal{L}, M) \cong E^2_{1q} \cong H^q(\text{Der}_A(T^*(\mathcal{L}), M)), \quad q > 0.
\]

5 The canonical class of associative algebras

Let \(S \) an associative algebra over \(K \). We let \(A \) be the center of \(S \). As an application of our results we construct a canonical class \(o(S) \in H^3(A, H^1(S, S), A) \), where \(S \) is an associative algebra and \(H^*(S, S) \) denotes the Hochschild cohomology of \(S \).

Let us first recall the definitions of the zero and the first dimensional Hochschild cohomology involved in this construction. Let \(S \) be an associative \(K \)-algebra. A \(K \)-derivation \(D : S \to S \) is a \(K \)-linear map, such that \(D(ab) = D(a)b + aD(b) \). We let \(\text{Der}(S) \) be the set of all \(K \)-derivations. It has a natural Lie \(K \)-algebra structure, where the bracket is defined via the commutator \([D, D_1] = DD_1 - D_1D \).

There is a canonical \(K \)-linear map

\[
ad : S \to \text{Der}(S)
\]

given by \(\text{ad}(s)(x) = sx - xs, s, x \in S \). Then the zero and the first dimensional Hochschild cohomology groups are defined via the exact sequence:

\[
0 \to H^0(S, S) \to S \xrightarrow{\text{ad}} \text{Der}(S) \to H^1(S, S) \to 0
\]
It follows that $A = H^0(S, S)$ is the center of S. We claim that $\text{Der}(S)$ is a Lie–Rinehart algebra over A. Indeed, the action of A is defined by $(aD)(s) = aD(s)$, $D \in \text{Der}(S)$, $s \in S$, $a \in A$, while the homomorphism $\alpha : \text{Der}(S) \to \text{Der}(A)$ is just the restriction. To see that α is well-defined, it suffices to show that $D(A) \subset A$ for any $D \in \text{Der}(S)$. To this end, let us observe that for any $s \in S$ and $a \in A$ one has

$$D(a)s - sD(a) = (D(as) - aD(s)) - (D(sa) - D(s)a) = 0$$

and therefore $D(a) \in A$. On the other hand the commutator $[s, t] = st - ts$ defines a Lie A-algebra structure on S and $\text{ad} : S \to \text{Der}(S)$ is a Lie K-algebra homomorphism. Actually more is true: ad is a crossed module of Lie–Rinehart algebras over A, where the action of the Lie–Rinehart algebra $\text{Der}(S)$ on S is given by $(D, s) \mapsto D(s)$. It follows that $H^1(S, S) = \text{Coker}(\text{ad} : S \to \text{Der}(S))$ is also a Lie–Rinehart algebra over A and $A = \ker(\text{ad} : S \to \text{Der}(S))$ is a Lie–Rinehart module over $H^1(S, S)$. In particular the groups $H^n(A, H^1(S, S), A)$ are well-defined. According to Theorem 3.1 the vector space $H^3(A, H^1(S, S), A)$ classifies the crossed extension of $H^1(S, S)$ by A. By our construction the exact sequence (2) is one of such extension and therefore it defines a canonical class $o(S) \in H^3(A, H^1(S, S), A)$.

Lemma 5.1 $o(S)$ is a Morita invariant.

Proof. Let R be the K-algebra of $n \times n$ matrices. We have to prove that $o(S) = o(R)$. Let D be a derivation of S. We let $g(D)$ be the derivation of R which is componentwise extension of D. Furthermore, for an element $s \in S$ we let $f(s)$ be the diagonal matrix with s on diagonals. Then one has the following commutative diagram

$$
\begin{array}{ccc}
S & \xrightarrow{\text{ad}} & \text{Der}(S) \\
\downarrow f & & \downarrow g \\
R & \xrightarrow{\text{ad}} & \text{Der}(R)
\end{array}
$$

in the category $\mathcal{LR}(A)$ and the result follows from the fact that Hochschild cohomology is a Morita invariant. \square

Let us observe that if S is a smooth commutative algebra, then $A = S$ and $H^3(A, H^1(S, S), A)$ is isomorphic to the de Rham cohomology of S (of course $o(S) = 0$ in this case). So, in general one can consider the groups $H^3(A, H^1(S, S), A)$ as a sort of noncommutative de Rham cohomology.

By forgetting A-module structure, one obtains an element

$$o'(S) \in H^3_{\text{Lie}}(H^1(S, S), A).$$

These groups and probably the corresponding elements can be compute in many cases using the results of Strametz [14].
Acknowledgments

The authors were supported by MCYT, Grant BSM2003-04686-C02. The third author is very grateful to Universities of Santiago and Vigo for hospitality. The two first authors were supported also by DGES BFM2000-0523.

References

[1] M. Barr and J. Beck, Homology and standard constructions. In *Seminar on Triples and Categorical Homology theory*. Springer Lect. Notes in Math. 80(1969), 245-335.

[2] H. Cartan and S. Eilenberg, Homological algebra. Princeton University Press, Princeton, N. J., 1956. xv+390 pp.

[3] J. M. Casas, M. Ladra, T. Pirashvili, Crossed modules for Lie–Rinehart algebras, J. Algebra, to appear.

[4] R. Godement, *Topologie Algébrique et Théorie des Faisceaux*. Paris. Hermann. 1958.

[5] J. Herz, *Pseudo-algèbres de Lie*, C. R. Acad. Sci. Paris *236* (1953), 1935-1937.

[6] J. Huebschmann, *Poisson cohomology and quantization*, J. Reine Angew. Math. *408* (1990), 57-113.

[7] C. Kassel and J.-L. Loday, *Extensions centrales d’algèbres de Lie*, Ann. Inst. Fourier, Grenoble, *32*, 4 (1982), 119-142.

[8] J.-L. Loday, *Cohomologie et groupe de Steinberg relatifs*, J. Algebra *54* (1978), 178-202.

[9] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lect. Note Series. 124, Cambridge, 1987.

[10] S. Mac Lane, *Homology*. Classics in Mathematics. Springer-Verlag. Berlin, 1995, x+422 pp.

[11] R. Palais, The cohomology of Lie rings, Proc. Sympos. Pure Math. III (1961) 130-137.

[12] T. Pirashvili, Algebra cohomology over a commutative algebra revisited, arXiv:math.KT/0309184

[13] G. S. Rinehart, *Differential forms on general commutative algebras*, Trans. Amer. Math. Soc. *108* (1963), 195-222.
[14] C. Strametz, *The Lie algebra structure of the first Hochschild cohomology group for monomial algebras*. C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, 733–738.