Decoupling of inorganic and organic carbon during slab mantle devolatilisation

P. Bouilhol1✉, B. Debret2, E. C. Inglis3, M. Warembourg2, T. Grocolas1, T. Rigaudier1, J. Villeneuve1 & K. W. Burton3

Serpentinites are an important sink for both inorganic and organic carbon, and their behavior during subduction is thought to play a fundamental role in the global cycling of carbon. Here we show that fluid-derived veins are preserved within the Zermatt-Saas ultra-high pressure serpentinites providing key evidence for carbonate mobility during serpentinite devolatilisation. We show through the O, C, and Sr isotope analyses of vein minerals and the host serpentinites that about 90% of the meta-serpentinite inorganic carbon is remobilized during slab devolatilisation. In contrast, graphite-like carbonaceous compounds remain trapped within the host rock as inclusions within metamorphic olivine while the bulk elemental and isotope composition of organic carbon remains relatively unchanged during the subduction process. This shows a decoupling behavior of carbon during serpentinite dehydration in subduction zones. This process will therefore facilitate the transfer of inorganic carbon to the mantle wedge and the preferential slab sequestration of organic carbon en route to the deep mantle.

1 Université de Lorraine, CNRS, CRPG, 54000 Nancy, France. 2 Université de Paris, Institut de physique du globe de Paris, CNRS UMR 7154, 1 rue Jussieu, 75005 Paris, France. 3 Department of Earth Sciences, Arthur Holmes Building, Durham University, South Road, Durham DH1 3LE, UK.
✉email: pierre.bouilhol@univ-lorraine.fr
During subduction, slab devolatilization supplies fluids to the mantle wedge and upper plate, whereas the residual slab is subducted to greater depth, playing a key role in Earth’s geochemical cycle. Much attention has been given to the recycling of H2O, with an emphasis on the role of the serpentinized slab mantle which dominates the water budget of subduction systems. In comparison, the carbon budget of subduction systems remains poorly understood, with little consensus on flux estimates. Most of the carbon subducted in sediments and the oceanic crust is scavenged by slab dehydration reaction to the overlying mantle wedge during the low-pressure stage of slab devolatilization in the fore-arc region. These fluids contribute to the hydration and carbonation of the fore-arc mantle, while the residual slab contributes to the deep earth cycle. Serpentinites have the capacity to hold more than 1 wt% of C, and therefore, represent a substantial sink for atmospheric C through the carbonation of peridotite (i.e., ophicarbonate formation) during serpentinization or the precipitation of hydrocarbons accompanying, for example, Fischer–Tropsch Type reactions. In addition, during subduction, these rocks have the potential to regulate redox-sensitive elements, such as carbon. As such, the high fO2-H2O rich fluids released during serpentine dehydration promote the oxidation and leaching of carbon in percolated lithologies during fluid transfer. Although several studies have stressed the role of external serpentinite-derived fluids for the remobilization of carbonate in percolated lithologies (structurally overlying slab crust) or the precipitation of hydrocarbons accompanying, for example, Fischer–Tropsch Type reactions. Although some discrepancies regarding the conditions of serpentineite dehydration in the massif, these are estimated to lie between 2.2 and 2.8 GPa, and between 550 and 650 °C. These conditions are consistent with those recorded by the Zermatt-Saas metagabbros ranging from 1.9–3 GPa and 530–650 °C, e.g., refs. 23,28–30 and in agreement with the discovery of microdiamonds and coesite in Zermatt-Saas metasedimentary rocks. The whole massif experienced retrograde reactions and associated deformation, often obscuring the mineralogy relating to peak metamorphic conditions, with the generation of tremolites and serpentines overprinting the UHP minerals. Here we present in situ and bulk-rock isotopic (O, C, and Sr) data on carbonate-bearing eclogitic veins and meta-serpentinites found in the Zermatt-Saas meta-ophiolite. We show that these veins are derived from fluids released during serpentine dehydration at eclogite facies and that the presence of fluid-derived carbonates demonstrates the loss of isotopically heavy carbonate from the host serpentine. Whereas the elemental and isotopic composition of organic carbon remains as graphite-like.

Fig. 1 Simplified geological map and sample localization in the investigated area of the Zermatt-Saas meta-ophiolite. Upper inset shows the Zermatt body in the frame of the alpine metamorphic facies.
carbonaceous compounds in the residue and is relatively unchanged. These observations constitute natural evidence of serpentinite-hosted carbonate devolatilization accompanying slab mantle dehydration, suggesting that deep recycling of the serpentinized slab mantle leads to the preferential burial of organic carbon relative to carbonate, which may, at least in part, contribute to the light carbon isotopic signature of ocean island basalts e.g., ref. 32 and the isotopic diversity of diamond C e.g., refs. 10,33.

Results

High-pressure veins. The Zermatt serpentinites were variably deformed, ranging from massive to foliated, during a complex polyphase metamorphic history34. Relicts indicative of oceanic metamorphism and deformation are rare in the serpentinites and most often overprinted by high-pressure metamorphic events. The oceanic stage is marked by the occurrence of relict mantle assemblages (olivine, pyroxenes, and spinels) overprinted by low-temperature fluid mediated metamorphism, typified by the occurrence of lizardite35, the low-temperature form of serpentine. The subduction-related metamorphic history is marked by the development of antigorite, olivine, and TiCho/TiChu. These features are overprinted by the main mesostructures of the massif acquired near the subduction-related metamorphic peak D234, which is overall expressed as a strong foliation and by the crystallization of oriented Atg–Ol–TiChu–Mgt ± diopside (Di) and chlorite (Chl) in foliated serpentinites (Fig. 2a, b). This deformation is often marked by C/S planes and associated Riedel shear structures that drove fluid percolation and crystallization leading to D2 related vein formation (Fig. 2a–c). These fluids are most likely derived from serpentinite devolatilization, for which there is evidence in massive outcrops (Fig. 2d). All the previous structures can be reworked by exhumation-related deformation and recrystallization, with the appearance of late folds and crenulation (Fig. 2e), associated with amphibole and low-temperature serpentinitic crystallization (e.g., chrysotile and/or lizardite)34,35. In some places, veins and tension gashes, with talc and calcite fillings crosscut all the previous features (Fig. 2f) and are interpreted to form during late-stage exhumation27.

The veins related to the D2 event are widespread throughout the ultramafic rocks and are dominated by a paragenesis of Ol, TiChu, TiCho, Chl ± Mgt, and/or ilmenite (Ilm), symptomatic of HP (e.g., Br + Atg → Ol + H₂O) to UHP (e.g., TiChu + H₂O → TiCho + Atg + Ol) reactions, associated with calcite and diopside (Fig. 2b, c). The presence of olivine replacing TiCho and TiChu (Fig. 3b, c), as well as the structural habit of the veins, which are often present in shear bands related to the main episode of deformation of the massif (D2 event, Fig. 2a), places the P-T
formation conditions of the veins at eclogite facies, during serpentinite dehydration. Texturally, calcite is found crystallizing at grain boundaries, replacing olivine (Fig. 3c), or displays a faceted contact with olivine (Fig. 3d) showing that both calcite and olivine ultimately precipitated from the same fluid at high pressure. Diopside crystallizes as a sub-automorphic millimeter to centimeter blades overprinting all minerals (Fig. 3c, d). When diopside is abundant, the veins display brecciated textures with a diopside matrix dismembering olivine and TiChu clasts (Fig. 2c). Such observations suggest that diopside crystallized at the expense of the calcite-olivine-TiChu-TiCho paragenesis. We interpret the calcite to be fluid derived and to have formed together with the symptomatic eclogitic minerals during serpentinite dehydration. We did not find any evidence for aragonite, but as the polymorphic transition is highly reversible, aragonite could have readily transformed to calcite during the P-T path followed by the massif. Indeed, the absence of aragonite is not uncommon in HP or UHP terrains and can be attributed either to back reacted crystals during massif exhumation, or metastable HP calcite polymorphs that may dominate Ca-carbonate forms in HP to UHP conditions. Indeed, Raman spectroscopy (see Supplementary Fig. 1) shows that most of the crystals are calcite s.s., but one spectrum could be interpreted as a CaCO3 III HP-polymorph. Based on the peak shifts, we can estimate the pressure of crystallization of this calcite polymorph. Based on peak shifts, we can estimate the pressure of crystallization of this calcite polymorph. Based on peak shifts, we can estimate the pressure of crystallization of this calcite polymorph. Based on peak shifts, we can estimate the pressure of crystallization of this calcite polymorph.

Near the contact with the overlying crustal lithologies, calcite is also found associated with t alc in pluri-centimeter tension gashes crosscutting the serpentinite foliation (Fig. 2f), as well as in pods in the serpentinites (thereafter referred to as talc-calcite pods). Those are most likely related to fluid circulation during the massif exhumation.

Meta-serpentinite hosts. The meta-serpentinite hosts are carbonate-free (i.e., no carbonate is observed in the thin section). They are mainly made of Atg-Ol-Mgt assemblages associated with minor TiChu-TiCho. The meta-serpentinite forming olivine contains numerous mineral inclusions (Fig. 4) consistent with a metamorphic origin. Based on high XMg of olivine, Kempf et al. suggested that these crystallized at temperatures nearby 500–550 °C, under eclogitic conditions. Careful SEM and Raman spectroscopy mapping of metamorphic olivine grains reveals the existence of endogenous carbonaceous compounds in inclusion within olivine (Fig. 4b–e). Their Raman spectra are characterized by a first-order region comprising a sharp and intense band nearby 1585 cm–1 and a broad and small band nearby 1355 cm–1 corresponding to graphite (G) and disordered (D) carbon, respectively (Fig. 4f). These spectra are similar to those reported in graphite-like carbonaceous compounds from eclogitic meta-sediments where the carbonaceous material is derived from biological organic matter originally present in sedimentary rock. Indeed, by using conventional Raman thermometry, temperature estimates range from 470 to 610 °C. These values are close to the peak temperatures of the massif suggesting that these carbonaceous compounds are likely to be derived from biological organic matter originally present in the serpentinites prior to subduction. However, it must be noted that the scattering of temperature estimates in a single sample (Fig. 4f) is larger than usually observed in metasedimentary rocks (50 °C maximum). This uncertainty may reflect the existence of heterogeneous carbonaceous compounds in serpentinites prior to subduction. Indeed, these rocks can incorporate a large variety of not only biologic but also abiogenic carbonaceous compounds, including hydrocarbons, amino acids, and condensed carbonaceous matter. The thermal evolution of these carbonaceous compounds during subduction might differ from that observed in metasedimentary rocks. Similarly, recent thermodynamic studies have also suggested that these carbonaceous compounds can be stable during subduction and might therefore also be formed at high pressure during serpentinite dehydration reactions. Considering this, the disorder observed in the Raman spectra might either correspond to the formation of aromatic hydrocarbons with complex aliphatic chains (e.g., carboxylic groups) or to different thermal evolution of complex abiogenic carbonaceous compounds (e.g., hydrocarbons, amino acids, and condensed carbonaceous matter) during subduction.
Meta-serpentinite compositions. Overall, the total carbon contents of the meta-serpentinites (127 to 379 µg/g) and their δ13CTOC (−19.82 to −11.65‰) (Table S1) are within the range of those observed in abyssal serpentinites (Fig. 5a). Nonetheless, as shown below, their C isotopic characteristics allow a clear distinction between eclogite meta-serpentinites and abyssal serpentinites. Although the inorganic compounds have a rather uniform δ18OTIC (from +15.00 to +17.95‰), similar to other alpine serpentinites (+10; +18‰, Fig. 5), these values are lower than present-day abyssal serpentinites δ18OTIC (−30‰; e.g., ref. 12). Furthermore, the Zermatt meta-serpentinites have low Total Inorganic Carbon (TIC) concentrations, ranging from 58 to 161 µg/g, and low δ13CTIC between −7.48 to −60.61‰, compared to abyssal serpentinites (−2.0 and +2.3‰,12, Fig. 5). Conversely, the Total Organic Carbon (TOC) concentrations (44–218 µg/g) and δ13CTOC (−31.11 to −26.65‰) of Zermatt meta-serpentinites are comparable to those of abyssal serpentinites (47–7000 µg/g; δ13CTOC = −21.5, −28.3; Fig. 6). Altogether, the C concentrations and isotopic characteristics of the Zermatt meta-serpentinites are similar to those of UHP meta-serpentinites (meta-peridotites) from other eclogite ultramafic masses (Fig. 5,10,26). One serpentinite devoid of metamorphic veins, has a 87Sr/86Sr of 0.707433 (±0.2, 2 s.e.), and the talc-calcite pods have similar Sr isotopic composition (87Sr/86Sr = 0.706825 (08)), all within the range of other alpine meta-serpentinites (0.7039 < 87Sr/86Sr < 0.7105, 0.7060 in average15,48,49).

Vein isotopic composition. In the veins, the in situ calcite analyses show a restricted range of δ13C, from −0.15 to +2.85‰ (except 2 points at +3.53 and +4.36‰ in TROCK16-12) and a wide range of δ18O, spanning between +5.0 and +12.1‰, which is lower than any other calcites found in alpine terranes e.g., ref. 50 (Fig. 5c and Table S1) or during sub-surface alteration of ultramafic UHP meta-serpentinites (meta-peridotites) from other eclogite terrains51,52. In TROCK16-12 and ZE17-05, olivine and diopside compositions are relatively constant, (+3.07 < δ18O_diopside < 5.74‰; +2.34 < δ18O_diopside < +4.67‰). In sample ZE17-21, which does not contain diopside, the olivine and magnetite show variable isotopic compositions (−8.0 < δ18O_diopside < +3.60‰; −4.59 < δ18O_magnetite < +7.19‰). These variations most likely reflect different states of mineral-mineral equilibrium, and or different states of equilibrium with an evolving fluid composition. The temperature estimates derived from O isotopic equilibrium between mineral species55 are consistent with the metamorphic conditions of the massif. In detail, Ol-Cal equilibrium temperatures range between 420 and 640 °C, with an average of 550 °C, in the same range as Ol-Mgt and Cal-Mgt (in ZE17-21: 460 and 520 °C respectively); whereas Ol-Di and Cal-Di equilibrium estimates show a restricted temperature range around 400 °C, which most likely reflects the late character of diopside, which is observed as overprinting olivine or calcite, and other phases crystallizing in the veins. Overall, the 87Sr/86Sr of vein calcite is homogeneous within error (weighted mean of all measurements: 0.7067(18)), with ZE17-21 having the highest value (0.7081(26)) and is similar to that of meta-serpentinites bulk rock (0.707433(02)) and other alpine meta-serpentinites23,48,49. The δ18O and δ13C of the calcite of the talc + calcite assemblage in the tension gashes are nearly identical to those of the talc + calcite pod, close to the maximum δ18O of the calcite veins. Furthermore, the pod has a 87Sr/86Sr value of 0.706825 (08) identical within error to the vein calcite. These talc-bearing samples, a paragenesis typical of low-temperature fluid conditions54, notably present in brittle tension gashes that crosscut all structures, most likely represent low-temperature fluid-derived precipitates formed during the exhumation of the massif57,55.

Discussion

Along average slab thermal gradients, carbonates are remarkably stable within the subducting oceanic lithosphere56, and only a substantial percolation of H2O-rich fluids can promote significant carbon remobilization in sediments, oceanic crust, and mantle lithologies through leaching5–7. It has recently been predicted, based on thermodynamic models, that the large volumes of fluids released during serpentinite dehydration can promote such mobilization of slab mantle carbon in fluids16. Here we document such a process, where serpentinite-hosted C has been remobilized in fluids during dehydration at eclogitic conditions under oxidizing form (e.g., CO2). We further show that serpentine devolatilization fractionates the C compounds, where the inorganic C would be remobilized, leaving the organic C as a graphite-like carbonaceous compound (Fig. 4), to be recycled in the deep mantle.

Total C concentrations and isotope compositions of abyssal serpentinites are considered to reflect a two-component mixing, between an organic carbon endmember (δ13C = −25‰) and an inorganic carbonate endmember (δ13C = +5‰)57. Although comparable in terms of concentration and isotopic values, high-pressure meta-serpentinites tend to display lower carbon concentration and δ13CTOC relative to abyssal serpentinites and their composition cannot be explained by a simple mixing between carbonate and organic carbon. Indeed, the CTOC and δ13CTOC in meta-serpentinites are very low relative to abyssal serpentinites (Fig. 5b). It must be noted that little is known about the δ13CTOC in abyssal serpentinites. In particular, there is a lack of data regarding the δ13CTOC in low [CTOC] abyssal serpentinite...
Fig. 5 Carbon bulk-rock and calcite isotopic and elemental variations. a Bulk rock total carbon isotopic composition ($\delta^{13}C_{TC}$) versus total carbon content for the Zermatt samples, compared to abyssal12,25,7 and subduction-related serpentinites and meta-serpentinites/meta-peridotites from the Almirez (Spain), Voltri (Italy), Syros (Greece), and Cima di Gagnone (Cdg, Switz.) blueschist and eclogite massifs. b Bulk rock inorganic carbon isotopic composition ($\delta^{13}C_{TIC}$) versus inorganic carbon concentrations of the same sample suite. Green box = possible extent of abyssal serpentinite composition. c O and C isotopic composition ($\delta^{18}O_{TIC}$ and $\delta^{13}C_{TIC}$) of the calcites present in veins (red dots) and the bulk meta-serpentinites (red stars). Bulk veins from Zermatt55, calcite compositions of Alpine samples50 for comparison. On top of the three figures, a simple Rayleigh decarbonation model at 600°C is presented with the % of devolatilization (see Method) and calculated fluid composition in equilibrium with measured calcites (blue dots).
Hence, the low [13CTIC] and formation of carbonates with low δserpentinites that exclude a contribution of organic matter-rich study), abyssal peridotites (Green) (data as in Fig.3) and subducted subduction-related (meta-) serpentinites (Orange; Stars the δserpentinites have very low Sr concentrations, any interaction on sub-surface alteration of ultrama zones processes. Although inorganic carbon commonly displays high δ^{13}CTIC values (>0‰), the serpentinization of abyssal peridotites at mid-oceanic ridges leads to complex redox processes (i.e., methane oxidation or carbonate reduction) that might influence the δ^{13}C in unexpected ways. Indeed, several studies on sub-surface alteration of ultramafic terrains31,52 report the formation of carbonates with low δ^{13}CTIC in ultramafic host paleo-hydrothermal systems. These values are attributed to the percolation of hydrous fluids with a light isotopic signature, potentially derived from decarboxylation of organic matter-rich sediments, at low temperatures. Here, the low δ^{18}O$_{\text{OC}}$ of calcite veins associated with meta-serpentinites are incompatible with such low-temperature hydrothermal processes, thus inferring that the δ^{13}CTIC of the meta-serpentinite do not reflect a hydrothermal origin and/or late processes accompanying the exhaustion of the massif during alpine collision. This is further supported by the 87Sr/86Sr of both the veins and host meta-serpentinites that exclude a contribution of organic matter-rich sediments. Because sediments have 87Sr/86Sr > 0.712, and meta-serpentinites have very low Sr concentrations, any interaction between meta-serpentinites and sediment-derived fluids prior or during subduction would give rise to radiogenic Sr isotopic values, which are not observed here. Rather, the meta-serpentinite host rock Sr isotopic composition is inherited from the interaction of a depleted mantle (DMM) with Jurassic seawater during serpentinization of the protolith, giving rise to the observed 87Sr/86Sr values around ~0.7074, which is a similar value to other alpine meta-serpentinite that have not interacted with sediment-derived fluids (0.7046 < 87Sr/86Sr < 0.7083, 0.7060 in average25,48,49). Under these conditions, the δ^{13}C$_{\text{DIC}}$ of the protolith is expected to be formed in equilibrium with seawater and therefore to display a heavy signature (δ^{13}C$_{\text{DIC}}$ > 0‰). Hence, the low [C$_{\text{DIC}}$] and δ^{13}C$_{\text{DIC}}$ in UHP meta-serpentinites can be interpreted as evidence for the leaching of isotopically heavy C in metamorphic fluids during meta-serpentinite dehydration. As such, the carbonate-bearing veins are a good candidate to represent the crystallization products of such fluids. Indeed, although the carbonates are found in veins associated with an eclogitic paragenesis comprising olivine-TiChu-TiCho-magnetite-chlorite (Figs. 2, 3), they, nevertheless, have Sr isotopic values similar to the meta-serpentinite host rock. As the vein carbonate, isotopic values represent the composition of the fluid from which they crystallized, and they are identical within error to the host meta-serpentinites, we thus interpret the fluid to mainly arise from the dehydration of adjacent meta-serpentinite. Such an interpretation is further strengthened by the B isotopic composition of antigorite and secondary olivine of Zermatt meta-serpentinites that is also incompatible with the input of external fluids38. Overall, these observations suggest that the carbonate-bearing veins crystallized from a fluid derived from the devolatilization of the meta-serpentinite. Accordingly, the eclogitic vein-hosted carbonate displays a complementary high δ^{13}C value relative to that of the meta-serpentinite host rocks.

To establish the complementarity between the isotopic signatures of the vein calcite and the meta-serpentinite host rock, we use a simple Rayleigh devolatilization model (Fig. 5), whereby the serpentinite inorganic carbon stored as calcite is remobilized during serpentinite dehydration. In this model, the elemental and isotopic behavior of carbon is approximated to an equilibrium between carbonate and CO$_2$(aq) (See Appendix B for details). This assumption allows the calculation of the fluid C and O isotopic composition to be compared to the fluid in equilibrium with the vein carbonate. Ocean floor serpentinites are shown to contain a wide range of [C$_{\text{TIC}}$], between 50 and 96150 µg/g and as such we show in Fig. 4 two models which differ in starting [C$_{\text{TIC}}$], at 500 and 8000 ppm, which encompasses most of the concentrations measured in abyssal peridotites (green box of Fig. 5b). The chosen starting values of +2 for δ^{13}C$_{\text{DIC}}$ and +20 for δ^{18}O$_{\text{DIC}}$ are representative of the average Ligurian Ocean calcites values found in unmetamorphosed alpine carbonated serpentinites (Fig. 5), whereas the chosen value of ~25% for δ^{13}C$_{\text{DIC}}$ is the average value of abyssal serpentinites that ranges between ~28.3 to ~21.5‰. Note that changing the starting δ^{13}C$_{\text{DIC}}$ has little impact on the model results, as for the TIC/TOC starting ratio. The model shows that the δ^{13}C$_{\text{DIC}}$ and [C$_{\text{TIC}}$] of the meta-serpentinites (Fig. 5b) can be explained by a nearly complete loss of inorganic carbon (>90%) as a result of devolatilization up to 600 °C (the modeled temperature). The calculated fluid composition in equilibrium with the vein calcite at those conditions ranges between +3.1 to +7.9‰ for δ^{13}C and between +10.2 to +16.9‰ for δ^{18}O (Fig. 5c), which encompasses the trend of the modeled fluid (Fig. 5c) up to 50% devolatilisation (Fig. 5c). This typifies snapshots of the devolatilisation process, whereby the measured calcites represent early fluids, saturated in carbonate, whereas later fluids with a much higher H$_2$O proportion will not be recorded through carbonate precipitation. In Fig. 5c, the modeled residue has a higher δ^{18}O (~8‰) at 90% devolatilization than the measured meta-serpentinite carbonate compound, most likely reflecting the model assumption that do not take into account the O isotopic fractionation between the H$_2$O fluid species and the carbonate but only the CO$_2$ fluid species (see methods). The devolatilization trend is thus typified by the modeled fluid composition released during devolatilization confirming that the UHP-vein calcite could be derived from a C-bearing fluid released from serpentinites at high temperature and pressure.

Taken together, this modeling suggests that the serpentinite inorganic C has been almost completely remobilized in the fluid during dehydration. As for most subduction, the slab thermal architecture implies serpentinite devolatilization at a depth that would imply that this fluid was able to participate in mantle wedge melting39,60, and as such the involvement of C-bearing fluids with a heavy δ^{13}C potentially may account for the positive deviation of arc magmas to higher δ^{13}C than the MORB mantle e.g., refs. 61,62.

Our data shows a low TIC and δ^{13}C$_{\text{TIC}}$ in the meta-serpentinites, which we interpret as being the results of C loss during fluid
mediated devolatilization, where the calcite bearing veins represent the crystallization product of this fluid. As such subducting serpentinites (i.e. with up to ~1 wt% [TC], Fig 5) may have lost as much as 90% of their original C, but the striking feature of this process is the behavior of the inorganic C. A simple isotopic exchange between organic C and inorganic C could potentially explain a low δ13COC e.g., ref. 3, but this would imply a comitant increase in δ13CTOC, which is not observed here, making this solution unlikely. Indeed, Fig. 6 shows that HP and UHP meta-serpentinites have a near-constant δ13COrg for a wide range of COrg. Given that most of the samples display an abyssal like COrg or δ13COrg, it is reasonable to propose that most of the serpentinite organic carbon with highly negative δ13C values preserved as graphite-like carbonaceous compounds (Fig. 4) is transferred towards the deep mantle.

Recent stable isotope studies of oceanic island basalt (OIB) have shown that the genesis of this magmatism involves the melting of a C-bearing component recycled in the convecting mantle by subduction.63 The presence of such a C component is further emphasized by diamonds isotopic composition e.g., ref. 33. Based on the heavy δ13CCO3 and δ66Zn of OIBs, these studies also propose that carbon must be mostly present as the organic form in the source of these magmas. This requires a preferential release of inorganic C at the volcanic arc and deep recycling of organic C during subduction.

We show here that the devolatilization of serpentinites during subduction can control such decoupling behavior between organic and inorganic carbon during subduction and therefore exerts a major control on global C cycling.

Although the inorganic C distribution in the oceanic lithosphere is thought to be mainly controlled by sediments, the distribution of organic C is much less well constrained. The δ13CTOC of metasedimentary rocks tends to increase during subduction, ranging from ~23.3 and ~8.5‰ in eclogitic metasedimentary rocks.64 These authors interpret such an increase through the isotopic re-equilibration between organic and inorganic carbon during subduction and therefore exerts a major control on global C cycling.

The carbon must be mostly present as the organic form in the source of these magmas. This requires a preferential release of inorganic C at the volcanic arc and deep recycling of organic C during subduction. We show here that the devolatilization of serpentinites during subduction can control such decoupling behavior between organic and inorganic carbon during subduction and therefore exerts a major control on global C cycling.

Methods

Analysed material. We selected 4 UHP veins containing olivine, calcite ± diopside, TiChu, TiCho, magnetite, and ilmenite for both in situ and bulk oxygen (δ18O) analyses. Secondary Ion Mass Spectrometry (SIMS) analyses were performed on calcite for δ13C, δ18O, and δ18O/δ13C. Two types of reference materials were used to calculate the total carbon and oxygen isotopic compositions (TC and isotopic composition (δ13C) of the samples were performed online using the Thermo Scientific EA IsoLink IRMS System at CRPG laboratory (Nancy, France). Samples were wrapped in tin capsules (~30 mg) and then combusted at 1020°C in a combustion reactor consisting of quartz tube filled with chromium oxide, pure copper, and silvered cobalt oxide. Produced gases (N2 and CO2) were separated on a chromatographic column maintained at 70°C and the total carbon and isotope composition of the produced CO2 was then measured with a Thermo Scientific Delta V Advantage continuous flow isotope ratio mass spectrometer. Carbon isotopic compositions were determined by comparison with two internal and two international standards routinely included during the analysis: (i) BFR-5 (δ13C = −31.59 wt%, δ18O = 11.55 ‰), (ii) BR 8107: CaCO3 = 6.21 wt%, (iii) CA 10-8: CaCO3 = 11.94 wt% and (iv) NAG-7 RF: CaCO3 = 17.22 wt%. Errors (2σ) on carbon content are estimated to be ±3.5‰ for samples containing more and less than 0.1 wt% CaCO3, respectively. TIC was then calculated following TIC (%) = wt% CaCO3/100. 12.

Carbon and oxygen isotopic compositions of the calcite associated with talc hosted within tension gashes (ZE17-09), and calcite pod (ZE17-10), were analyzed for bulk CO2 using a continuous flow isotope ratio mass spectrometer. Carbon isotopic compositions were determined by using an autosampler Gasbench coupled to a Thermo Scientific Delta V Advantage continuous flow isotope ratio mass spectrometer. Values are quoted in the delta notation in parts per thousand (‰) relative to V-PDB and the reproducibility was better than 0.2‰. Carbonates content of the samples were determined by comparison with four international standards consisting in fine-grained marine sediments from the Bay of Bengal and South Pacific Ocean. Internal and two international standards were used to calculate the total carbon and oxygen isotopic compositions (TC) and isotopic composition (δ13C) of the samples were performed online using the Thermo Scientific EA IsoLink IRMS System at CRPG laboratory (Nancy, France). Samples were wrapped in tin capsules (~30 mg) and then combusted at 1020°C in a combustion reactor consisting of quartz tube filled with chromium oxide, pure copper, and silvered cobalt oxide. Produced gases (N2 and CO2) were separated on a chromatographic column maintained at 70°C and the total carbon and isotope composition of the produced CO2 was then measured with a Thermo Scientific Delta V Advantage continuous flow isotope ratio mass spectrometer. Carbon isotopic compositions were determined by comparison with two internal and two international standards routinely included during the analysis: (i) BFR-5 (δ13C = −31.59 wt%, δ18O = 11.55 ‰), (ii) BR 8107: CaCO3 = 6.21 wt%, (iii) CA 10-8: CaCO3 = 11.94 wt% and (iv) NAG-7 RF: CaCO3 = 17.22 wt%. Errors (2σ) on carbon content are estimated to be ±3.5‰ for samples containing more and less than 0.1 wt% CaCO3, respectively. TIC was then calculated following TIC (%) = wt% CaCO3/100. 12.

Carbon characterization. Sample preparation for carbon characterization was performed at the Institut de Physique du Globe de Paris (IPGP, France). Rock samples were sawn with a Cu-blade and sterile ultrapure water to extract the inner core, free of possible post-sampling contamination. The inner core was then polished without using clean pliers (thickened and polished on both faces (down to a thickness of tens of micrometers) with pure ethanol using alumina polishing disks) without any use of resin or glue. Raman data were obtained at IPGP, on resin-free samples with a Renishaw InVia spectrometer using the 514 nm wavelength of a 20 mW argon laser focused through an Olympus BX61 microscope with an x100 objective (numerical aperture: 0.9, respectively). This configuration yields a planar resolution close to 1 µm. The laser power delivered at the surface sample was 0.5 mW with integration times of 100 s, well below the critical dose of radiation that can damage the carbonaceous material (Ménez et al., 2012). Spectra were fitted with BSI-Edit software based on the method of Beyssac et al. (2002), with a T uncertainty of about ±50°C.

SEM observations were performed at the IPGP using a Zeiss Auriga FEG-FIB field emission scanning electron microscope. Samples were Au-coated. Images were collected using a backscattered electron detector (BSE) and secondary electron (SE) detector at high and low currents, respectively, with accelerating voltage ranging from 10 to 15 kV. Energy-dispersive X-ray spectrometry (EDXS) measurements were performed at 15 kV accelerating voltage using a Bruker detector (Nano GmbH, Germany).

Bulk rock and bulk calcite analyses. Carbon and oxygen isotopic compositions of calcite were determined by using an autosampler Gaebisch coupled to a Thermo Scientific MAT 253 isotope ratio mass spectrometer (IRMS) at the CRPG UMR 7358 laboratory. For each sample, an aliquot between 1 to 100 mg was used. The powder was reacted with 2 mL of supersaturated orthophosphoric acid at 70°C for at least 10 h under a He atmosphere. Carbon and oxygen isotopic compositions of the produced CO2 were then measured with a Thermo Scientific MAT 253 continuous flow isotope ratio mass spectrometer. Values are quoted in the delta notation in parts per thousand (‰) relative to V-PDB for carbon and V-SMOW for oxygen. The reproducibility was better than 0.2‰. Carbonates content of the samples were determined by comparison with four internal standards consisting in fine-grained marine sediments from the Bay of Bengal and South Pacific Ocean. Carbon and oxygen isotopic compositions of the produced CO2 were then measured with a Thermo Scientific Delta V Advantage continuous flow isotope ratio mass spectrometer. Carbon isotopic compositions were determined by comparison with two internal and two international standards routinely included during the analysis: (i) BFR-5 (δ13C = −31.59 wt%, δ18O = 11.55 ‰), (ii) BR 8107: CaCO3 = 6.21 wt%, (iii) CA 10-8: CaCO3 = 11.94 wt% and (iv) NAG-7 RF: CaCO3 = 17.22 wt%. Errors (2σ) on carbon content are estimated to be ±3.5‰ for samples containing more and less than 0.1 wt% CaCO3, respectively. TIC was then calculated following TIC (%) = wt% CaCO3/100.

In situ SIMS analyses. The Sr analyses were carried out at CRPG (Nancy, France) with the Cameca IMS 1280 HR. The primary O− beam was set in Gaussian mode at an intensity of 50 nA and the spot size was ~25 µm. The secondary positive ions were collected in rectangular mode with a mass resolution (M/AM) of 22000 to separate peaks of interest from isobaric interferences. The field aperture was set at 2500 µm, the transfer magnification at 80 µm, and the energy window at 30 eV.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-27970-0 | NATURE COMMUNICATIONS
Masses of interest were measured by peak-jumping for 20 cycles on the axial electron multiplier as follows: 83.7 (3 s), 84 (3 s), 85Ca (3 s), 85Rb (8 s), and 86Sr (8 s). A pre-sputtering of 90 s and automatic centerings of mass, energy, and secondary beam were applied. Our in-house calibrate standard CCIgA ([Sr] = 1061.9 ppm and 87Sr/86Sr = 0.708484 ± 0.000006) was used for the calibration of the instrumental mass fractionation. The typical analytical uncertainty on the 87Sr/86Sr ratio is 0.3% relative (1σ) and the external reproducibility on the Sr standard over the position is -0.07% relative (1σ).

The C analyses were carried out at CRPG (Nancy, France) with the Cameca IMS 1270 E7. 12C- and 13C-ions produced by a Cs+ primary ion beam (~20 µm, ~4 nA) were measured in multi-collection mode using two off-axis Faraday cups for 16O and the axial electron multiplier for 13C. In order to remove the 12C/13C interference on the 13C-peak and to get maximum flatness on the top of the 12C-peak, entrance and exit slits were adjusted to get an MRP of ±5000 for 13C- on the central EM. The multi-collection FC was set on slit 1 (MRP = 2500). The field aperture was set at 2000 µm, the transfer magnification at 107 µm, and the energy window at 40 eV. Automatic centerings of mass and secondary beam were applied. The total measurement time was 290 s (200 s measurement + 90 s pre-sputtering). We used our in-house calibrate standard CCIgA (δ13C_CCIgA = 1.04%) to correct the instrumental mass fractionation due to the matrix effect in samples. Typical count rates obtained on the calibrate standard were 1.8 x 10^8 cps for 12C and 2 x 10^7 cps for 13C. The typical internal error was ±0.3% (2σ) and the external reproducibility on the calibrate standard CCIgA was ±0.2% (2σ).

We measured the oxygen isotope compositions with a CAMECA IMS 1270 E7 at CRPG-CNRS (Nancy, France). 16O- and 18O- ions produced by a Cs+ primary ion beam (~20 µm, ~4 nA) were measured in multi-collection mode using two off-axis Faraday cups (FCs) for 16O and 18O. The multi-collection FCs were set on slit 1 (MRP = 2500). The field aperture was set at 2000 µm, the transfer magnification at 107 µm, and the energy window at 40 eV. Automatic centerings of mass and secondary beam were applied. The total measurement time was 210 s (150 s measurement + 60 s pre-sputtering). We used four in-house terrestrial standard materials (San Carlos olivine, CCIgA calcite, Charroy magnetite, and JV1) to correct the instrumental mass fractionation (IMF) due to the matrix effect in samples. Typical count rates obtained on the San Carlos olivine standard were 2 x 10^5 cps for 16O and 5 x 10^4 cps for 18O. The typical internal error was ±0.15% (2σ) for all the standards and the external reproducibility was ±0.2–0.5% (2σ) depending on the standard.

Geochemical model. On top of the three panels of Fig. 5, a simple Rayleigh distillation model at 60°C is presented, where carbonate-bearing serpentinite with an initial δ13C_CTOC = +20‰, δ18O_CTOC = +2‰, and δ13C_CTOC = −25‰. (80% of the total C is considered as inorganic) lose its carbonate component simultaneously with water (e.g., 10% volatilization corresponds to F = 0.1 and residual carbonate = 90%). In A and B, the residual rocks models is presented with two models: one with a starting [CTC] of 500 ppm, the other with a starting [CTC] of 8000 ppm; the green box in B represents the range of oceanic [IC]. Fractionation factors calculated following δ56Co (See Supplementary data for other details).

Data availability
All the data is available in the supplementary dataset.

Received: 10 December 2020; Accepted: 10 December 2021; Published online: 14 January 2022

References

1. Magni, V., Bouilhol, P. & van Hunen, J. Deep water recycling through time. Geochim. Geophys. Geosyst. 15, 4203–4216 (2014).

2. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

3. Kelemen, P. B. & Manning, C. E. Reevaluating carbon and oxygen isotope fractionation in subduction zones. Earth Planet. Sci. Lett. 543, 116328 (2020).

4. Frezzotti, M. L., Selverstone, J., Sharp, Z. D. & Compagnoni, R. Carbonate carbonate fractionation in subduction zone fluids. Geochim. Cosmochim. Acta 71, 703–711 (2007).

5. Frezzotti, M., Selverstone, J., Sharp, Z. & Compagnoni, R. Carbonate-Carbonate fractionation in subduction zone fluids. Geochim. Cosmochim. Acta 71, 703–711 (2007).

6. Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic and melt systems for carbonate fluids in subduction zones. Geochem. Perspect. Lett. 10, 383–402 (2020).

7. Piccoli, F., Vitale Brovarone, A. & Ague, J. J. Field and petrological study of metamorphic reactions and high-pressure carbonation in lawsonite eclogite-facies terrains. Alpine Corsica. Lithos 304–307, 16–37 (2018).

8. Scambelluri, M. et al. Carbonation of subduction-zone serpentinite (high-pressure orthoarbonates; Ligurian Western Alps) and implications for the deep carbon cycle. Earth Planet. Sci. Lett. 151, 145–156 (1997).

9. Alt, J. C. et al. Recycling of water, carbon, and sulfur during subduction of oceanic crust: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327, 50–60 (2012).

10. Skora, S. et al. Evidence for protracted prograde metamorphism followed by rapid exhumation of the Zermatt-Saas Feo ophiolite. J. Metamorph. Geol. 33, 711–734 (2015).

11. Angiboust, S., Agard, P., Jolivet, L. & Bessac, O. The Zermatt-Saas ophiolite: the largest (60 km wide) and deepest (c. 70–80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Terra Nova 21, 171–180 (2009).

12. Buscher, K., Fatiz, Y., De Capitani, C. & Grapes, R. Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: high-pressure metamorphism of subducted Tethys lithosphere. Am. Mineral. 90, 821–835 (2005).

13. Alt, J. C. et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327, 50–60 (2012).

14. Frezzotti, M. L., Selverstone, J., Sharp, Z. & Compagnoni, R. Carbonate-Carbonate fractionation in subduction zone fluids. Geochim. Cosmochim. Acta 71, 703–711 (2007).

15. Frezzotti, M., Selverstone, J., Sharp, Z. & Compagnoni, R. Carbonate-Carbonate fractionation in subduction zone fluids. Geochim. Cosmochim. Acta 71, 703–711 (2007).

16. Kempf, E. D., Hermann, J., Reuss, E., Baumgartner, L. P. & Lanari, P. The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland). Swiss J. Geosci. 113, 16 (2020).

17. Frezzotti, M., Selverstone, J., Sharp, Z. & Compagnoni, R. Carbonate-Carbonate fractionation in subduction zone fluids. Geochim. Cosmochim. Acta 71, 703–711 (2007).

18. Kempf, E. D., Hermann, J., Reuss, E., Baumgartner, L. P. & Lanari, P. The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland). Swiss J. Geosci. 113, 16 (2020).

19. Dale, C. et al. Highly siderophile element behaviour accompanying subduction of oceanic crust: whole rock and mineral–layer insights from a high-pressure terrain. Geochim. Cosmochim. Acta 73, 1394–1416 (2009).

20. Groppo, C., Beltrando, M. & Compagnoni, R. The P–T path of the ultra-high pressure Lago Di Cignana and adjoining high-pressure meta-ophiolite units: insights into the evolution of the subducting Tethyan slab. J. Metamorph. Geol. 27, 207–231 (2009).

21. Meyer, J. The development of the high-pressure metamorphism in the Albian metagabbro (Switzerland). High-pressure metamorphism: indicator of subduction and crustal thickening. Terra Cognita 3, 187 (1983).

22. Frezzotti, M., Selverstone, J., Sharp, Z. & Compagnoni, R. Carbonate-Carbonate fractionation in subduction zone fluids. Geochim. Cosmochim. Acta 71, 703–711 (2007).

23. Eguchi, J., Seales, J. & Dasgupta, R. Great oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13, 71–76 (2020).

24. Cartigny, P., Palot, M., Thomasat, E. & Harris, J. W. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42, 699–732 (2014).

25. Rebay, G., Spalla, M. & Zanoni D. Interaction of deformation and metamorphism during subduction and exhumation of hydrated oceanic
mantle: Insights from the Western Alps. *J. Metamorph. Geol.* **30**, 687–702 (2012).
35. Li, X. P., Rahn, M. & Bucher, K. Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. *J. Metamorph. Geol.* **22**, 159–177 (2004).
36. Crossley, R. J., Evans, K. A., Reddy, S. M. & Lester, G. W. Redistribution of iron and titanium in high-pressure ultramafic rocks. *Geochem. Geophys. Geosyst.* **18**, 3869–3890 (2017).
37. Carlson, W. D. & Rosenfeld, J. I. Optical determination of topatoclastic aragonite-calcite growth kinetics: metamorphic implications. *J. Geol.* **89**, 615–638 (1981).
38. Liu, M. & Yun, R. A. Transformation kinetics of polycrystalline aragonite to calcite: new experimental data, modelling, and implications. *Contrib. Mineral. Petrol.* **114**, 465–478 (1993).
39. Merlino, M., Hanfland, M. & Crichton, W. A. CaCO3-III and CaCO3-IV, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. *Earth Planet. Sci. Lett.* **333**, 265–271 (2012).
40. Yuan, X., Gao, C. & Gao, J. An in situ study of the phase transitions among CO2 high-pressure polymorphs. *Mineral. Mag.* **83**, 191–197 (2019).
41. Beyssac, O., Golfe, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasemiprecipitates: a new geothermometer. *J. Metamorph. Geol.* **20**, 859–871 (2002).
42. Aoya, M. et al. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. *J. Metamorph. Geol.* **28**, 895–914 (2010).
43. Henry, D. G., Jarvis, I., Gillmore, G. & Stephenson, M. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology. *Earth Sci. Rev.* **198**, 102936 (2019).
44. Proskurovski, G. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. *Science* **319**, 604–607 (2008).
45. Ménez, B. et al. Abiogenic synthesis of amino acids in the recesses of the oceanic lithosphere. *Nature* **564**, 59–63 (2018).
46. Sforza, M. C. et al. Abiogenic formation of condensed carbonaceous matter in the hydrating oceanic crust. *Nat. Commun.* **9**, 1–8 (2018).
47. Sverjensky, D. A., Stagno, V. & Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. *Nat. Geosci.* **7**, 909–913 (2014).
48. Scambelluri, M. & Tonarini, S. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. *Geology* **40**, 907–910 (2012).
49. Cannào, E., Scambelluri, M., Agostini, S., Tonarini, S. & Godard, M. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the Voltri Massif case study (Ligurian Western Alps, Italy). *Geochim. Cosmochim. Acta* **190**, 115–133 (2016).
50. Lafay, R. et al. Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophiolites, Western Alps, France): processes of carbonate cementation. *Lithos* **294**, 319–338 (2017).
51. Noël, J. et al. Evidence of polygenetic carbon trapping in the Oman Ophiolite: the Piemonte Zone, western Alps, Italy: a review. *Per. Mineral.* **76**, 127–153 (2007).
52. Collins, N. C. et al. Subduction zone metamorphic pathway for deep carbon cycling: II. Evidence from HP/UHP meta-basaltic rocks and ophiolites. *Chem. Geol.* **412**, 132–150 (2015).
53. Kerrick, D. M. & Connolly, J. A. D. Subduction of ophiocarbonates and recycling of CO2 and H2O. *Geology* **26**, 375–378 (1998).
54. Delacour, A., Frih-Green, G. L., Bernasconi, S. M., Schaeffer, P. & Kelley, D. S. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30 N, MAR). *Geochim. Cosmochim. Acta* **72**, 3681–3702 (2008).
55. Clarke, E., De Hoog, J., Kirstein, L., Harvey, J. & Debret, B. Metamorphic olivine records external fluid infiltration during serpentinite dehydration. *Geochem. Perspect. Lett.* **16**, 25–29 (2020).
56. Ulmer, P. Partial melting in the mantle wedge - the role of H2O in the genesis of arc-related magmas. *Phys. Earth Planet. Inter.* **127**, 215–232 (2001).
57. Bouilhol, P., Magni, V., van Hunen, J. & Kalsiandani, L. A numerical approach to melting in warm subduction zones. *Earth Planet. Sci. Lett.* **411**, 37–44 (2015).
58. Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. *Science* **357**, 290–294 (2017).
59. Varekamp, J., Kreulen, R., Poorter, R., Van Bergen, M. Carbon sources in arc volcanism, with implications for the carbon cycle. *Terra Nova* **4**, 363–373 (1992).
60. Beunon, H., Mattielli, N., Doucet, I. L., Moine, B. & Debret, B. Mantle heterogeneity through Zn systematics in oceanic basalts: evidence for a deep carbon cycling. *Earth Sci. Rev.* **103174** (2020).
61. Cook-Kollars, J., Bebout, G. E., Collins, N. C., Angiboust, S. & Agard, P. Subduction zone metamorphic pathway for deep carbon cycling. *L Evidence from HP/UHP metabasaltic rocks, Italian Alps. Chem. Geol.* **386**, 31–48 (2014).
62. Chacko, T. & Deines, P. Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. *Geochim. Cosmochim. Acta* **72**, 3642–3660 (2008).
63. Chacko, T., Mayeda, T. K., Clayton, R. N. & Goldsmith, J. R. Oxygen and carbon isotope fractionations between CO2 and calcite. *Geochim. Cosmochim. Acta* **55**, 2867–2882 (1991).

Acknowledgements
This study, part of El Ph.D. project, has been supported by a NERC UK grant (NE/N003926/1) to KWB, CNRS/INSU-Tellus2020 and OTELO-JC2018 to PB; and the LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001) to BD. We thank H. Bou- quet (IPGP) for her help during sample preparation and analyses.

Author contributions
P.B. and B.D. designed the study. P.B., E.C.I., B.D., and K.W.B. collected the samples. P.B.D., B.D., T.R.V., K.W.B., T.G., and M.W. produced the data. All authors contributed to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-27970-0.

Correspondence and requests for materials should be addressed to P. Bouilhol.

Peer review information *Nature Communications* thanks Manuel Menzel and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.