On the existence of a glass transition in a random energy model

Florian Angeletti, Eric Bertin and Patrice Abry

Université de Lyon, Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS, 46 allée d’Italie, F-69007 Lyon, France

E-mail: florian.angeletti@ens-lyon.fr, eric.bertin@ens-lyon.fr and patrice.abry@ens-lyon.fr

Received 22 March 2013, in final form 18 June 2013
Published 17 July 2013
Online at stacks.iop.org/JPhysA/46/315002

Abstract
We consider a generalized version of the random energy model in which the energy of each configuration is given by the sum of N independent contributions (local energies) with finite variances but otherwise arbitrary statistics. Using the large deviation formalism, we find that the glass transition generically exists when local energies have a smooth distribution. In contrast, if the distribution of the local energies has a Dirac mass at the minimal energy (e.g., if local energies take discrete values), the glass transition ceases to exist if the number of energy levels grows sufficiently fast with system size. This shows that the statistical independence of energy levels does not imply the existence of a glass transition.

PACS numbers: 05.90.+m, 64.70.P—, 02.50.—r

(Some figures may appear in colour only in the online journal)

1. Introduction

In the context of condensed matter physics, the glass transition is a rather generic phenomenon through which the state of a system becomes partially frozen below a threshold temperature [1–3]. One of the simplest models exhibiting a glass transition is the random energy model (REM) introduced by Derrida [4], in which the energies of microscopic configurations are independent and identically distributed random variables drawn from a distribution \(P(E) \), chosen to be Gaussian in the original version of the model. The REM provides a simple illustration of the so-called one-step replica symmetry breaking scenario of the glass transition [5], which is known to hold in more sophisticated mean-field models [6, 7]. Several generalizations of the REM have been proposed, mostly to incorporate correlations in simple ways [8–11]. In addition, interesting connections of the REM with probabilistic issues such as the convergence properties of sums [12] and extreme values [10, 13, 14] of random variables, as well as with signal processing issues such as moment estimation [15], have been pointed out. Potential connections with string theories [16] and analytic number theory [17] have even been recently outlined.
In this paper, we explore the question whether uncorrelated random energy levels are enough to generate a glass transition. With this aim, we consider a generalized version of the REM offering some freedom in the energy distribution as well as in the scaling of the number of configuration with system size. The paper is organized as follows. The model is introduced in section 2, and the necessary framework to analyze the glass transition is presented in section 3. Then in section 4, which constitutes the core of this paper, we derive necessary conditions for the absence of glass transition and show that these conditions are also sufficient. In addition, we determine the behavior of the glass transition temperature close to onset. Finally, section 5 summarizes the results and discusses some analogies with related problems.

2. Model

2.1. Definition

We consider a disordered system having a number M of microscopic configurations, labeled by index $k = 1, \ldots, M$; with each configuration is associated a quenched random energy E_k. The energies E_k are assumed to be independent and identically distributed. At variance with the standard REM, we do not directly specify the distribution $P(E)$ from which the energies E_k are drawn, but we rather assume that E_k is given by a sum of N individual contributions,

$$E_k = \sum_{i=1}^{N} \eta_{k,i}, \quad k = 1, \ldots, M,$$

where the terms $\eta_{k,i}$ are independent and identically distributed random variables with a finite variance distribution $p(\eta)$. A standard assumption is that the number M of configurations scales as $M \sim e^{\alpha N} \quad (\alpha > 0)$. (2)

For the standard REM, $\alpha = \ln 2$. Note that this model may be considered as a simplified version of the directed polymer problem in a random medium [18], neglecting correlations between local energies on different paths.

One can interpret equation (1) as the decomposition of the total energy over the N degrees of freedom of the system, with the strong assumption that local contributions associated with different microscopic configurations k are statistically independent. Such an approach provides an alternative interpretation (besides the standard one in terms of the p-spin model in the limit $p \to \infty$ [4]) of the Gaussian energy distribution of variance proportional to N used in the standard REM [4] (though more general energy distributions have also been considered [5]). But it also gives many ways to depart from the Gaussian distribution, in the sense that equilibrium at finite temperature is dominated by energy values in the lower tail of the energy distribution, far from the maximum of the distribution around which the Gaussian approximation holds. As we shall see below, the key ingredient of our generalized version of the REM is the introduction of both the arbitrary distribution $p(\eta)$ and the free parameter α, which leads to a richer behavior than in the standard REM.

2.2. Large deviation function

To characterize the distribution $P(E)$ of the energies E_k from the distribution $p(\eta)$, we use large deviation theory [19, 20]. Let us define the energy density $\epsilon = E/N$, and its distribution $P(\epsilon) = NP(N\epsilon)$. The Gärtner–Ellis theorem [19, 20] implies that, if the cumulant-generating function

$$\lambda(q) = \ln \langle e^{q\eta} \rangle$$

(3)
is defined and differentiable on the real axis, then the distribution \(P(\epsilon) \) is given by

\[
P(\epsilon) \approx e^{-N\phi(\epsilon)},
\]

(4)

where \(\phi \) is the Legendre transform of \(\lambda, \phi(\epsilon) = \max_q [\epsilon q - \lambda(q)] \). Note that the properties of the Legendre transform imply that \(\phi(\epsilon) \) is a convex function. Similarly, since for all \(\epsilon \), \((\epsilon q - \lambda(q))_{q=0} = 0\), we have \(\phi(\epsilon) \geq 0 \). Moreover, the lower bound 0 is attained at \(\epsilon = \lambda'(0) \): \(\phi(\lambda'(0)) = 0 \). In the present statistical physics context, it is, however, more natural to use the function

\[
\mu(\beta) = \ln \langle e^{-\beta \eta} \rangle = \lambda(-\beta)
\]

(5)

instead of \(\lambda(q) \), and we shall thus use \(\mu(\beta) \) in the following, together with the relation

\[
\phi(\epsilon) = -\min_{\beta} \{ \epsilon \beta + \mu(\beta) \}.
\]

(6)

3. Analysis of the glass transition

In this section, we briefly set up the general framework, allowing the glass transition to be studied. This framework mainly relies on the existence of a finite-size cutoff in the density of state [4].

3.1. Finite-size cutoff

Considering a given sample with a finite number of configurations, the energies \(E_k \) are necessarily confined to a finite subdomain of the support of \(P(E) \). In the low temperature regime, the lower bound of this domain is known to play an important role [4]. Although the boundaries of this domain are also random variables, it is nevertheless possible to define a sharp lower boundary on the energy density in the large \(M \) limit. Defining the cumulative \(F(\epsilon) = \int_{-\infty}^{\epsilon} d\epsilon' P(\epsilon') \), we consider the probability

\[
\mathbb{P}(\epsilon_1, \ldots, \epsilon_M > \epsilon) = [1 - F(\epsilon)]^M
\]

(7)

that all energy densities \(\epsilon_k, k = 1, \ldots, M \), are larger than a given value \(\epsilon \). We denote as \(\epsilon_0 \) the value of \(\epsilon \) for which \(P(\epsilon) \) is maximum (i.e., \(\phi(\epsilon_0) = 0 \)). Note that \(\phi(\epsilon) \), being a convex function, necessarily decreases for \(\epsilon < \epsilon_0 \). Using a standard saddle-point method and neglecting non-exponential prefactors, we have for \(\epsilon < \epsilon_0 \), \(F(\epsilon) \approx e^{-N\phi(\epsilon)} \), so that \([1 - F(\epsilon)]^M \approx e^{-MF(\epsilon)}\). Equation (7) can then be rewritten as

\[
\ln \mathbb{P}(\epsilon_1, \ldots, \epsilon_M > \epsilon) \approx -MF(\epsilon) = -e^{N(\alpha - \phi(\epsilon))},
\]

(8)

using \(\ln M = \alpha N \) (see equation (2)). Let us define \(\epsilon^\dagger < \epsilon_0 \) such that

\[
\phi(\epsilon^\dagger) = \alpha.
\]

(9)

Equation (8) shows that \(\mathbb{P}(\epsilon_1, \ldots, \epsilon_M > \epsilon) \) exhibits a sharp crossover at \(\epsilon = \epsilon^\dagger \). For \(\epsilon < \epsilon^\dagger \), \(\alpha - \phi(\epsilon) < 0 \) and \(\mathbb{P}(\epsilon_1, \ldots, \epsilon_M > \epsilon) \to 1 \) when \(N \to \infty \), so that there are with probability 1 no energy levels below \(\epsilon \). In contrast, for \(\epsilon > \epsilon^\dagger, \alpha - \phi(\epsilon) > 0 \), so that \(\mathbb{P}(\epsilon_1, \ldots, \epsilon_M > \epsilon) \to 0 \) when \(N \to \infty \), which means that with probability 1, there are energy levels lower than \(\epsilon \). In the limit \(N \to \infty \), the value \(\epsilon^\dagger \) thus corresponds essentially to a border below which there are no more energy levels. In other words, the value \(\epsilon^\dagger \) can be considered as the ground-state energy density in almost all samples\(^1\).

\(^1\) Note that similarly an upper bound also exists for the energy levels, but we do not take it into account as it plays no role in the thermodynamic properties.
3.2. Free energy and glass transition temperature

To evaluate the disorder-averaged free energy \(\langle F \rangle = -\beta^{-1} \langle \ln Z \rangle \), where \(Z \) is the partition function \(Z = \sum_{k=1}^{M} e^{-\beta E_k} \) and \(\beta = 1/T \) the inverse temperature, a usual method (beyond the replica trick [5]) is to determine the typical value \(Z_{typ} \) (rather than the averaged one) of the partition function, yielding \(\langle F \rangle \approx -T \ln Z_{typ} \). \(Z_{typ} \) is evaluated taking into account the threshold \(\epsilon^\dagger \), and approximating the density of states \(n(\epsilon) \) by the disorder-averaged one \(\langle n(\epsilon) \rangle = M P(\epsilon) \) in the energy range \(\epsilon > \epsilon^\dagger \), where \(\langle n(\epsilon) \rangle \) is large. One finds, using the large deviation form equation (4),

\[
Z_{typ} = \int_{\epsilon^\dagger}^{\infty} e^{N g(\epsilon)} d\epsilon, \quad g(\epsilon) = \alpha - \phi(\epsilon) - \beta \epsilon. \tag{10}
\]

For large \(N \), the partition function equation (10) can be evaluated through a saddle-point approximation. Equating the derivative \(g'(\epsilon) \) to zero yields

\[
\phi'(\epsilon_m) = -\beta. \tag{11}
\]

As \(g''(\epsilon) \leq 0 \), \(g(\epsilon) \) decreases for \(\epsilon > \epsilon_m \). If \(\epsilon_m > \epsilon^\dagger \), the saddle-point evaluation yields \(Z_{typ} \approx e^{N(\alpha - \phi(\epsilon^\dagger) - \beta \epsilon^\dagger)} \). In the opposite case \(\epsilon_m < \epsilon^\dagger \), the global maximum of \(g(\epsilon) \) is no longer relevant as it falls outside the integration interval. The maximum of \(g(\epsilon) \) over the interval \([\epsilon^\dagger, \infty) \) is then \(g(\epsilon^\dagger) \), leading to \(Z_{typ} \approx e^{N(\alpha - \phi(\epsilon^\dagger) - \beta \epsilon^\dagger)} \). The border between these two regimes, \(\epsilon_m = \epsilon^\dagger \), defines the glass transition temperature \(T_g = \beta_{g}^{-1} \) through the implicit relation

\[
\epsilon_m(\beta_g) = \epsilon^\dagger. \tag{12}
\]

As \(\phi(\epsilon) \) is a convex function, \(\phi'(\epsilon) \) is an increasing function of \(\epsilon \). Hence from equation (11), \(\epsilon_m \) is a decreasing function of \(\beta \). The glassy regime \(\epsilon_m < \epsilon^\dagger \) thus corresponds to \(\beta > \beta_g \) or equivalently to \(T < T_g \). Altogether, the free energy per degree of freedom \(f = \langle F \rangle/N \) reads for \(N \rightarrow \infty \), using equation (9),

\[
f(\beta) = \frac{1}{\beta^2} \phi(\epsilon_m(\beta)) + \epsilon_m(\beta) - \frac{\alpha}{\beta}, \quad \beta < \beta_g. \tag{13}
\]

\[
f(\beta) = \alpha, \quad \beta > \beta_g. \tag{14}
\]

Inverting the Legendre transform equation (6), one finds

\[
\mu(\beta) = -\beta \epsilon_m(\beta) - \phi(\epsilon_m(\beta)), \tag{15}
\]

so that the free energy can be rewritten for \(\beta < \beta_g \) as \(f(\beta) = -\frac{1}{\beta} \mu(\beta) - \frac{\alpha}{\beta} \). Introducing the function

\[
\zeta(\beta) = \beta \mu'(\beta) - \mu(\beta), \tag{16}
\]

the entropy \(s = -df/dT = \beta^2 df/d\beta \) then reads

\[
s(\beta) = \begin{cases}
\alpha - \zeta(\beta), & \beta < \beta_g, \\
0, & \beta > \beta_g.
\end{cases} \tag{17}
\]

Note that \(\zeta'(\beta) = \beta \mu''(\beta) \) and that \(\mu(\beta) \) is a convex function with \(\mu(0) = 0 \), so that \(\zeta(\beta) \) is an increasing function of \(\beta \), starting from \(\zeta(0) = 0 \). Accordingly, the entropy \(s \) is a decreasing function of \(\beta \) for \(\beta < \beta_g \). We thus recover in this general framework the standard interpretation of the glass transition in terms of a vanishing entropy per degree of freedom, meaning that in the low temperature phase, the probability distribution concentrates on a few microscopic configurations [4]. Equation (17) provides us with an alternative characterization of the transition temperature \(\beta_g \):

\[
\zeta(\beta_g) = \alpha. \tag{18}
\]
Figure 1. Sketch of the phase diagram of the REM in the (α, β) plane. Left: case when the function $\zeta(\beta)$ diverges when β goes to infinity. The line corresponds to the glass transition (inverse) temperature $\beta_g(\alpha)$, illustrated here on the standard REM with a Gaussian energy distribution—see equation (19). Right: the same diagram in the case when the function $\zeta(\beta)$ has a finite limit α_c. The vertical dashed line $\alpha = \alpha_c$ corresponds to the asymptote of $\beta_g(\alpha)$. For $\alpha > \alpha_c$, no glass transition occurs.

From equation (18), one sees that the glass transition exists if the function $\zeta(\beta)$, which is defined for all $\beta > 0$, reaches the value α for some finite inverse temperature β_g. In the standard REM, which is recovered by choosing for $p(\eta)$ a centered Gaussian distribution of variance $J^2/2$, one has $\zeta(\beta) = J^2 \beta^2 / 4$, so that $\zeta(\beta)$ can reach any value α, implying the existence of the glass transition. More precisely, as shown in the left panel of figure 1, we have

$$\beta_g(\alpha) = \sqrt{\frac{4\alpha}{J^2}}.$$

(19)

However, in the present more general setting of an arbitrary $p(\eta)$, $\zeta(\beta)$ may be bounded and the glass transition may not exist, as we shall see in the following section.

4. Conditions for the existence or absence of glass transition

In this section, we study the asymptotic behavior of $\zeta(\beta)$ for $\beta \to \infty$, to see if $\zeta(\beta)$ converges to a finite limit or diverges. If $\zeta(\beta)$ diverges when $\beta \to \infty$, it will necessarily cross (assuming continuity) the value α for some finite β_g. In contrast, if $\zeta(\beta)$ converges to a finite limit ζ_∞, equation (18) has a solution only if $\alpha < \zeta_\infty$. Hence, a glass transition exists only if $\alpha < \alpha_c \equiv \zeta_\infty$, as illustrated in the right panel of figure 1. The question is then to know for which form of the distribution $p(\eta)$—see equation (5)—the function $\zeta(\beta)$ can have a finite limit α_c.

4.1. Necessary conditions for the absence of glass transition

Here, we wish to derive some necessary conditions for the absence of glass transition. We thus start by assuming that $\zeta(\beta)$ has a finite limit α_c, and we explore the implications of this assumption on the distribution $p(\eta)$ of the local energies.

4.1.1. Asymptotic behavior of $\mu'(\beta)$ and $\mu(\beta)$. In order to derive the behavior of $\mu(\beta)$ from the hypothesis that $\zeta(\beta)$ admits a finite limit, it is useful to express $\mu(\beta)$ as a functional of
\[\zeta(\beta) \] by solving equation (16) as a differential equation in \(\mu \), for a given function \(\zeta \). Using classical ordinary differential equation methods, the following result is obtained:

\[\mu(\beta) = -\beta \left[\int_{\beta}^{+\infty} \frac{\zeta(t)}{t^2} \, dt - \mu'_{\infty} \right], \] (20)

where \(\mu'_{\infty} \) is a constant. One should note that the integral in equation (20) is always well defined if \(\zeta \) admits a finite limit.

The next step is to use this integral form of \(\mu \) to show that \(\mu'_{\infty} \) is rightfully the limit of \(\mu'(\beta) \) when \(\beta \to +\infty \). Differentiating equation (20) yields

\[\mu'(\beta) = -\beta \left[\int_{\beta}^{+\infty} \frac{\zeta(t)}{t^2} \, dt - \mu'_{\infty} \right] + \frac{\zeta(\beta)}{\beta}. \] (21)

Consequently, in the limit \(\beta \to +\infty \), \(\mu'(\beta) \) admits a finite limit

\[\lim_{\beta \to +\infty} \mu'(\beta) = \mu'_{\infty}. \] (22)

Note that from the convexity of \(\mu(\beta) \), \(\mu'(\beta) \) is an increasing function, so that

\[\mu'(\beta) - \mu'_{\infty} \leq 0, \] (23)
a property which will prove useful later on. We shall show that \(\mu(\beta) \) has a linear asymptote, which is actually not obvious from equation (22).² Equation (20) can be rewritten as

\[\mu(\beta) - \beta \mu'_{\infty} = -\beta \int_{\beta}^{+\infty} \frac{\zeta(t)}{t^2} \, dt. \] (24)

Since \(\zeta(\beta) \) admits a finite upper bound \(K \), we have

\[\mu(\beta) - \beta \mu'_{\infty} \geq -\beta \int_{\beta}^{+\infty} K \, dt = -K. \] (25)

From equation (23), \(\mu(\beta) - \beta \mu'_{\infty} \) is a decreasing function. Therefore, the existence of the lower bound derived in equation (25) implies that \(\mu(\beta) - \beta \mu'_{\infty} \) has a finite limit, namely

\[\lim_{\beta \to +\infty} \mu(\beta) - \beta \mu'_{\infty} = \mu_{\infty}. \] (26)

In other words, \(\mu(\beta) \) has a linear asymptote with slope \(\mu'_{\infty} \). Furthermore, one necessarily has \(\mu_{\infty} \leq 0 \), since \(\mu(\beta) - \beta \mu'_{\infty} \) is a decreasing function starting from the value 0 at \(\beta = 0 \).

4.1.2. Support of \(p(\eta) \). We shall now focus on the case \(\mu'_{\infty} = 0 \), as the case of an arbitrary value \(\mu'_{\infty} \) can be obtained from the case \(\mu'_{\infty} = 0 \) by a shift of the variable \(\eta \). We shall first specify the support of \(p(\eta) \). One of the properties of the cumulant-generating function \(\lambda \) introduced in equation (3) is that the image of \(\mathbb{R} \) by \(\lambda' \) is the support of the probability density function \(p(\eta) \), i.e.

\[\{\lambda'(\beta), \beta \in \mathbb{R}\} = \{\eta, \ p(\eta) > 0, \ \eta \in \mathbb{R}\}. \] (27)

Given that \(\mu(\beta) = \lambda(-\beta) \) (see equation (5)), the lower bound of the support of \(p(\eta) \) is directly related to \(\mu'_{\infty} \):

\[\eta_{\min} \equiv \inf\{\eta, \ p(\eta) > 0\} = -\mu'_{\infty}. \] (28)

Notably, \(\mu'_{\infty} = 0 \) implies that only the positive values of \(\eta \) have a non-zero probability. Taking into account the fact that the support of \(p(\eta) \) is \([0, \infty)\), \(\mu(\beta) \) can be rewritten as

\[\mu(\beta) = \ln \int_{0}^{\infty} p(\eta) e^{-\beta \eta} \, d\eta. \] (29)

² For instance, a function of the type \(f(x) = ax + b \ln x \) has a finite derivative equal to \(a \) when \(x \to +\infty \), but has no linear asymptote.
4.1.3. Characterization of \(p(\eta) \) in the neighborhood of \(\eta_{\min} \). Equation (29) implies that the asymptotic behavior of \(\mu(\beta) \) (for \(\beta \to \infty \)) is directly linked to the behavior of \(p(\eta) \) in the neighborhood of \(\eta_{\min} = -\mu'_\infty \). Moreover, as stated by equation (26), for \(\mu'_\infty = 0 \), \(\mu(\beta) \) admits a finite limit \(\mu_\infty \). We shall now explore the consequences on \(p(\eta) \) of the existence of this finite limit \(\mu_\infty \).

If \(\mu_\infty = 0 \), the property \(\mu(0) = 0 \) and the monotonicity of \(\mu(\beta) \) imply that \(\mu(\beta) = 0 \). The only possibility for \(p(\eta) \) is the degenerate distribution \(p(\eta) = \delta(\eta) \). This is obviously not a situation of interest, since all configurations of the model would have the same energy, equal to zero.

If \(\mu_\infty < 0 \), \(p(\eta) \) has to satisfy

\[
\lim_{\beta \to +\infty} \int_{0}^{\infty} p(\eta) e^{-\beta \eta} d\eta = e^{\mu_\infty}, \quad 0 < e^{\mu_\infty} < 1. \tag{30}
\]

The integral in equation (30) can be rewritten as, assuming \(\beta \) has been dimensionless,

\[
\int_{0}^{\infty} p(\eta) e^{-\beta \eta} d\eta = \int_{0}^{1/\sqrt{\beta}} p(\eta) e^{-\beta \eta} d\eta + \int_{1/\sqrt{\beta}}^{\infty} p(\eta) e^{-\beta \eta} d\eta. \tag{31}
\]

We first note that the second integral on the rhs of equation (31) can be bounded as

\[
\int_{1/\sqrt{\beta}}^{\infty} p(\eta) e^{-\beta \eta} d\eta \leq e^{-\sqrt{\beta}} \int_{1/\sqrt{\beta}}^{\infty} p(\eta) d\eta \leq e^{-\sqrt{\beta}}, \tag{32}
\]

and thus goes to zero when \(\beta \to \infty \) for any distribution \(p(\eta) \). We now focus on the behavior of the first integral on the rhs of equation (31). If \(p(\eta) \) does not contain a Dirac mass (i.e., a Dirac delta) at \(\eta = 0 \), this integral goes to zero when \(\beta \to \infty \), while in the presence of a Dirac mass at \(\eta = 0 \), the integral takes a finite limit when \(\beta \to \infty \). As a result, equation (30), which is a consequence of the assumption that \(\xi(\beta) \) has a finite limit when \(\beta \to \infty \), can only be satisfied if \(p(\eta) \) contains a Dirac mass at \(\eta = 0 \). (We recall that \(\eta = 0 \) is the lowest accessible value of \(\eta \).

In this latter case, a natural form for \(p(\eta) \) then consists of the following mixture:

\[
p(\eta) = D \delta(\eta) + (1 - D) c(\eta), \tag{33}
\]

where \(0 < D < 1 \) and \(c(\eta) \) is a probability density function with support \([0, \infty)\) and no Dirac mass at \(\eta = 0 \). For instance, \(c(\eta) \) can be a regular distribution (which may have an integrable divergence at \(\eta = 0 \)) or a sum of Dirac masses, meaning that \(\eta \) takes discrete values.

Finally, as mentioned above, the case \(\mu'_\infty \neq 0 \) can be easily obtained through a shift of the variable \(\eta \), so that the same results hold in full generality. The generalization of the distribution given in equation (33) reads

\[
p(\eta) = D \delta(\eta + \mu'_\infty) + (1 - D) c(\eta) \tag{34}
\]

with the support of \(c(\eta) \) limited to \([-\mu'_\infty, \infty)\).

In the following subsection, we check that the distribution given in equation (33), obtained through necessary conditions, indeed leads to a finite \(\alpha_c \), and thus to the possibility of the absence of the glass transition.

4.2. Distributions with a discrete mass at the minimal energy

We now wish to show that if one starts from the distribution \(p(\eta) \) given in equation (33), the resulting function \(\xi(\beta) \) converges to a finite limit \(\alpha_c \). This result is not obvious from the previous subsection, where we used necessary conditions only, and did not study the behavior of the term \(\beta \mu'(\beta) \) in \(\xi(\beta) \). Starting from equation (33), \(\mu(\beta) \) can be expressed as

\[
\mu(\beta) = \ln(D + (1 - D) I(\beta)), \tag{35}
\]
Figure 2. Phase diagram in the \((\alpha, D)\) plane, for the distribution \(p(\eta)\) defined in equation (33). The line \(\alpha_c = -\ln D\) separates regions where the glass transition exists \((\alpha < \alpha_c)\) from regions where no glass transition occurs.

where we have defined

\[
I(\beta) = \int_0^\infty c(\eta) e^{-\beta \eta} d\eta.
\]

(36)

The derivative \(\mu'(\beta)\) is then given by

\[
\mu'(\beta) = \frac{(1-D)I'(\beta)}{D + (1-D)I(\beta)},
\]

(37)

As shown in equation (31), an integral of the form of \(I(\beta)\) converges to zero when \(\beta \to \infty\) for any distribution \(c(\eta)\) which has no Dirac delta at \(\eta = 0\). We thus have \(\mu'(\beta) \sim (1-D)I'(\beta)/D\) for \(\beta \to \infty\). The evaluation of \(\beta \mu'(\beta)\), which is needed to compute \(\zeta(\beta)\), thus boils down to

\[
\beta I'(\beta) = -\int_0^\infty d\eta(\eta c(\eta)) e^{-\beta \eta} d\eta.
\]

(38)

The behavior of \(\beta I'(\beta)\) can be evaluated by performing an integration by part, yielding

\[
\beta I'(\beta) = -\int_0^\infty d\eta(\eta c(\eta)) e^{-\beta \eta} d\eta.
\]

(38)

Following the same arguments as for \(I(\beta)\), one can then show that \(\beta I'(\beta)\) goes to zero when \(\beta \to \infty\), and so does \(\beta \mu'(\beta)\). Hence from equation (16), \(\zeta(\beta)\) converges to the finite limit \(\alpha_c = -\ln D > 0\) when \(\beta \to \infty\).

In conclusion, for a distribution \(p(\eta)\) of the form equation (33), we have shown that the glass transition disappears for \(\alpha > \alpha_c\), with

\[
\alpha_c = -\ln D,
\]

(39)

as sketched in figure 2.

4.3. Behavior of the glass transition close to the onset threshold

We explore some interesting consequences of the above results. For \(\alpha < \alpha_c\), the glass transition exists, but the temperature range of the glassy phase is expected to shrink when \(\alpha \to \alpha_c\). Let us make the argument quantitative. The glass transition temperature is determined from the relation \(\zeta(\beta_g) = \alpha\) (see equation (18)). For \(\alpha\) close to (and smaller than) \(\alpha_c\), \(\beta_g\) is thus determined by the asymptotic behavior of \(\zeta(\beta)\) for large \(\beta\).

To make concrete calculations, we assume that \(c(\eta) \sim c_0 \eta^{\nu-1}\) when \(\eta \to 0\) (\(\nu > 0\)). Using the change of variables \(u = \beta \eta\) in the integral defining \(I(\beta)\), see equation (36), one finds for \(\beta \to \infty\) that

\[
I(\beta) \sim \frac{1}{\beta} \int_0^\infty c_0 \left(\frac{u}{\beta}\right)^{\nu-1} e^{-u} du = \frac{\Gamma(\nu)c_0}{\beta^\nu}.
\]

(40)
\(I'(\beta) \) can be computed in the same way, simply replacing \(c(\eta) \) by \(-c(\eta)\), which amounts to replacing \(\nu \) by \(\nu + 1 \) and \(c_0 \) by \(-c_0\). One then finds \(I'(\beta) \sim -\Gamma(v + 1)c_0/\beta^{v+1} \). Taking into account equations (35), (37) and (40), we obtain

\[
- \ln D - \zeta(\beta) \sim \frac{(1 - D)(v + 1)\Gamma(v)c_0}{D \beta^v}, \tag{41}
\]

Using \(\zeta(\beta_g) = \alpha \), we obtain

\[
- \ln D - \alpha \sim \frac{(1 - D)(v + 1)\Gamma(v)c_0}{D \beta_g^v}. \tag{42}
\]

At this stage, two different viewpoints can be adopted, namely either considering \(\alpha \) as the control parameter for a fixed \(D \) or considering \(D \) as the control parameter for a fixed \(\alpha \).

We first fix \(D \) and use \(\alpha \) as the control parameter. In this case, the glass transition occurs for \(\alpha = \alpha_c \equiv -\ln D \). From equation (42), we obtain for the glass transition temperature \(T_g = \beta_g^\alpha \):

\[
T_g \sim A (\alpha_c - \alpha)^{1/\nu}, \quad \alpha \to \alpha_c^-, \tag{43}
\]

with \(A = [(1 - D)(v + 1)\Gamma(v)c_0/D]^{-1/\nu} \).

Alternatively, using \(D \) as a control parameter for a fixed \(\alpha \), the transition exists only for \(D < D_c \equiv e^{-\alpha} \). Equation (42) then leads to

\[
T_g \sim \tilde{A} (D_c - D)^{1/\nu}, \quad D \to D_c^-, \tag{44}
\]

with \(\tilde{A} = [(1 - e^{-\nu})(v + 1)\Gamma(v)c_0]^{-1/\nu} \).

5. Discussion

In summary, we have shown that by tailoring the distribution \(p(\eta) \) of local energies (and thus modifying the global energy distribution \(\mathcal{P}(E) \)), the glass transition can be avoided in some parameter regimes, so that the presence of uncorrelated random energy levels is not a sufficient condition for the emergence of a glass transition. Reversing the perspective, one could also interpret the onset of a glass transition when varying either \(\alpha \) or the weight \(D \) of the Dirac mass, as a kind of critical phenomenon, the order parameter of this transition being the glass transition itself. We have seen in section 4.3 that the glass transition temperature indeed behaves as a power law close to threshold. However, the corresponding exponent is non-universal, as it depends on the behavior of the distribution \(p(\eta) \) close to the lower bound of its support.

These results further suggest an interesting analogy with another type of critical phenomenon. We have seen that if we build the random energies \(E_k \) of the model by adding up random positive terms \(\eta_{k,i} \), such that each term is either equal to zero with probability \(D \) or drawn from a continuous distribution \(c(\eta) \) with probability \(1 - D \), the glass transition disappears if the fraction of zero terms exceeds some threshold \(D_c \). This situation is reminiscent of the dilute Ising model, where the coupling constants between neighboring sites are randomly set to zero with a given probability. Above a critical fraction of zero couplings, the transition disappears [21–23]. The mechanism at play in the dilute Ising model is however different, as it is related to the percolation of the bonds with non-zero couplings, and thus has a geometric interpretation. A similar mechanism appears also in the localization transition for sparse random matrices [24].

Besides, it is interesting to study the properties of the large deviation function \(\phi(\epsilon) \), which is related to the microcanonical entropy \(s_m(\epsilon) \) through \(s_m(\epsilon) = \alpha - \phi(\epsilon) \) (see equation (10)). Using equation (15) and the properties of the Legendre transform, one can show
that \(\phi(\epsilon_m(\beta)) = \zeta(\beta) \). Denoting as \(\eta_{\text{min}} \) the lower bound of the support of the distribution \(p(\eta) \), one has \(\epsilon_m(\beta) \to \eta_{\text{min}} \) when \(\beta \to \infty \). (Note that \(\eta_{\text{min}} \) may be equal to \(-\infty\).) Hence if \(\zeta(\beta) \to \infty \) for \(\beta \to \infty \), \(\phi(\epsilon) \) also diverges for \(\epsilon \to \eta_{\text{min}} \). In this case, the equation \(\phi(\epsilon) = \alpha \) always has a solution \(\epsilon^\dagger > \eta_{\text{min}} \), assuming that \(\phi(\epsilon) \) is continuous. Furthermore, as \(\phi(\epsilon) \) is regular at \(\epsilon = \epsilon^\dagger \), its derivative is finite, and so does the glass transition temperature \(\beta_g = -\phi'(\epsilon^\dagger) \)—see equations (11) and (12).

In contrast, if \(\zeta(\beta) \) converges to a finite limit, \(\phi(\epsilon) \) also has a finite limit, equal to \(\alpha_c \), for \(\epsilon \to \eta_{\text{min}} \). In this case, as \(\phi(\epsilon_m) = -\beta \) (see equation (11)), the large deviation function necessarily has an infinite negative slope for \(\epsilon \to \eta_{\text{min}} \). Hence, the absence of glass transition in this case does not have the same origin as in non-disordered systems. For such systems, there is intrinsically no cut-off \(\epsilon^\dagger \), and energies down to \(\eta_{\text{min}} \) can be explored. In the presence of disorder, the cut-off generally exists but can disappear for tailored \(\phi(\epsilon) \) such that the equation determining the cut-off \(\epsilon^\dagger \) has no solution \(\epsilon^\dagger > \eta_{\text{min}} \), hence avoiding the glass transition.

Let us finally mention that the glass transition in the REM also has applications in other fields, like the empirical estimation of moments in statistical signal processing. It has been recently emphasized that the so-called linearization effect in multifractal analysis, occurring when empirically determined moments \(S_m(q) = M^{-1} \sum_{x \in \Omega} x^q \) significantly depart from the theoretical ones \(\langle x^q \rangle \), can be interpreted as an analogue of the glass transition in the REM [15, 25–29], the inverse temperature \(\beta \) being mapped onto the moment order \(q \). Similar effects also occur even when considering uncorrelated signals, as long as the marginal distribution of the signal is sufficiently broad, but with finite moments (for instance a lognormal distribution) [30]. Along this line of thought, the present version of the REM can be seen as the analogue of the moment estimator of variables built as products of a large number of independent random variables (which is a possible way to build broadly distributed variables with finite moments). This study then shows that in most cases, this moment estimator will also present a linearization effect and depart from the theoretical moments for \(q \) above some threshold \(q^c \). However, if the underlying distribution of the variables presents a Dirac mass at its upper bound, this Dirac mass generates a linear branch in the logarithm of the theoretical moments which can mask the empirical linearization effect.

References

[1] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[2] Liu A J and Nagel S R 2010 Annu. Rev. Condens. Matter Phys. 1 347
[3] Berthier L, Biroli G, Bouchaud J-P, Cipelletti L and van Saarloos W (ed) 2011 Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford: Oxford University Press)
[4] Derrida B 1980 Phys. Rev. Lett. 45 79
Derrida B 1981 Phys. Rev. B 24 2613
[5] Bouchaud J-P and Mézard M 1997 J. Phys. A: Math. Gen. 30 7997
[6] Kirkpatrick T and Wolynes P 1987 Phys. Rev. B 36 8552
[7] Kirkpatrick T, Thrumalai D and Wolynes P 1989 Phys. Rev. A 40 1045
[8] Derrida B and Gardner E 1986 J. Phys. C: Solid State Phys. 19 2253
Derrida B and Gardner E 1986 J. Phys. C: Solid State Phys. 19 5783
[9] Carpentier D and Le Doussal P 2001 Phys. Rev. E 63 026110
[10] Fyodorov Y V and Bouchaud J-P 2008 J. Phys. A: Math. Theor. 41 372001
[11] Fyodorov Y V, Le Doussal P and Rosso A 2009 J. Stat. Mech. P10005
[12] Ben Arous G, Bogachev L V and Molchanov S A 2005 Probab. Theory Relat. Fields 132 579
[13] Bogachev L V 2007 CRM Proceedings and Lecture Notes vol 42 (Providence, RI: American Mathematical Society) p 41
[14] Angeletti F, Bertin E and Abry P 2012 J. Phys. A: Math. Theor. 45 115004
[15] Angeletti F, Mézard M, Bertin E and Abry P 2011 Physica D 240 1245
[16] Saakian D B 2009 J. Stat. Mech. P07003

F Angeletti et al
[17] Fyodorov Y V, Hiary G A and Keating J P 2012 Phys. Rev. Lett. 108 170601
[18] Derrida B and Spohn H 1988 J. Stat. Phys. 51 817
[19] Ellis R S 1985 *Entropy, Large Deviations, and Statistical Mechanics* (New York: Springer)
[20] Touchette H 2009 Phys. Rep. 478 1
[21] Aizenman M, Chayes J T, Chayes L and Newman C M 1987 J. Phys. A: Math. Gen. 20 L313
[22] Ballesteros H G, Fernández I A, Martín-Mayor V, Muñoz Sudupe A, Parisi G and Ruiz-Lorenzo J J 1998 Phys. Rev. B 58 2740
[23] Calabrese P, Martin-Mayor V, Pelissetto A and Vicari E 2003 Phys. Rev. E 68 036136
[24] Mirlin A D and Fyodorov Y V 1991 J. Phys. A: Math. Gen. 24 2273
[25] Muzy J-F, Bacry E, Baille R and Poggi P 2008 Europhys. Lett. 82 60007
[26] Muzy J-F, Bacry E and Kozhemyak A 2006 Phys. Rev. E 73 066114
[27] Bacry E, Gloter A, Hoffmann M and Muzy J-F 2010 Ann. Appl. Probab. 20 1729–60
[28] Fyodorov Y V 2010 Physica A 389 4229
[29] Lashermes B, Abry P and Chainais P 2004 *Int. J. Wavelets, Multiresolut. Inf. Process.* 2 497
[30] Angeletti F, Bertin E and Abry P 2012 *Signal Process.* 92 2848