Antimalarial activities of plants with medicinal potential: a systematic review of the literature

Atividades antimaláricas de plantas com potencial medicinal: uma revisão sistemática da literatura

Abstract
Objective: This is a qualitative study, whose objective was to investigate the scientific literature on plant species potentially active against Plasmodium sp. Method: This is a systematic literature review, which aimed to analyze the most recent articles published between the years 2005-2020 in the languages: English and Portuguese. The studies were chosen in an integrative way from the following databases: PubMed (National Library of Medicine), LILACS (Latin American and Caribbean Health Sciences Literature), Science Direct (Explore, scientific and medical) and SciELO (Scientific Electronic Library Online). Results and discussion: 115 species distributed in 50 botanical families were found in antiplasmodial inhibition studies, of which 66 different types of extracts showed action in eliminating these parasites, while 59 of these extracts were inactive. Of this total number, the most studied species belong to the Asteraceae and Fabaceae families. In addition, another 141 botanical species were cited in ethnobotanical surveys in different regions of the world. Aponynameae and Lamiales were the most representative plant families among the studies focused on this topic. The data also allowed us to understand how popular knowledge can help to establish scientific discoveries about plants with antimalarial potential. In addition, environmental conditions were identified as determining factors for the production of chemical constituents in these plants. Conclusion: Efforts to identify plants with active potential in combating the parasite have increased significantly in recent years; however, it is important to emphasize that the preservation of biodiversity needs to be an important aspect of ethnobotanical research in order to guarantee the sustainable use of available resources.

Keywords: Medicinal plants; Herbal medicine; Malaria; Ethnobotany.

Resumo
Objetivo: Trata-se de um estudo qualitativo, cujo objetivo foi investigar a literatura científica sobre espécies vegetais potencialmente ativas contra Plasmodium sp. Método: Trata-se de uma revisão sistemática da literatura, no qual objetivou-se analisar os artigos mais recentes publicado entre os anos de 2005-2020 nos idiomas: inglês e português. Os estudos foram escolhidos de forma integrativa nas seguintes bases de dados: PubMed (National Library of Medicine), LILACS (Latin American and Caribbean Health Sciences Literature), Science Direct (Explore, scientific and medical) e SciELO (Scientific Electronic Library Online). Resultados e discussão: Foram encontradas 115 espécies distribuídas em 50 famílias botânicas em estudos de inibição antimalária, das quais 66 diferentes tipos de extratos mostraram ação na eliminação desses parasitas, enquanto 59 desses extratos foram inativos. Deste número total, as...
1. Introduction

Despite advances in malaria chemotherapy, the disease still remains a serious public health problem, especially in tropical and subtropical countries (Tajbakhsh et al., 2021). This parasitic disease is caused by the protozoan of the genus Plasmodium, which in turn is present in more than 90 countries in practically all continents of the world (Santos et al., 2021). It is estimated that only in the year 2020, were more than 200 million new cases were reported and more than 600 thousand people died due to the clinical complications of this disease. It should be noted that this increase is directly linked to the rise of the COVID-19 pandemic (World Health Organization – WHO, 2021).

According to data from the Organização Pan Americana de Saúde (2020), as the spread of COVID-19 increases, the situation in all areas at risk for malaria, especially rural ones, will become more critical, given the inconspicuousness of these populations and fragmentation in the healthcare system. How much will this impact active surveillance of the disease and how can we reduce these impacts which reinforce barriers to treatment, are still some of the challenges of this century (Sherrard-Smith et al., 2020).

Currently, five species are described as capable of infecting humans and causing the characteristic clinical picture of this pathology. Among these species, *Plasmodium vivax*, *Plasmodium falciparum*, *Plasmodium malariae*, *Plasmodium ovale*, *Plasmodium knowlesi* and more recently *Plasmodium simium* are described (Bassat et al., 2022; Brasil et al., 2017; Sabbatani et al., 2010).

Malaria has a major impact on peripheral communities in insalubrious localities, such as miners/excavators, riverside dwellers, indigenous villages, agricultural settlement projects, and squatters, who often engage in disorderly migration, favoring exposure to *Anopheles*. Patient care therefore becomes vulnerable since it depends on an effective and timely diagnosis and treatment. In addition, the phenomenon of drug resistance is a barrier to the elimination of this disease (Pluijm et al., 2021).
On the other hand, medicinal plants have historically been a means through which studies seek for antimalarial targets; for example, the discovery of quinine extracted from the bark of *Cinchona pubescens*, artemisinin which was evaluated from extracts of *Artemisina annua* L., a traditional Chinese plant used to reduce fever (Bero et al., 2009; Tu, 2011). In this scenario, the search for compounds applicable towards the development of new drugs as alternatives to current antimalarial agents which are facing cases of resistance, remains important (Ménard et al., 2016; Leang et al., 2015; Pluijm et al., 2021).

From this perspective, the discovery of new antimalarials with action against different morphological stages of the parasite and with different mechanisms of action, becomes essential in the control and elimination of this disease (Tse et al., 2019). Thus, considering the lack of access to rapid treatment in some communities, over the decades, plants with medicinal potential have been used as an alternative means of treatment in these locations (Moraes et al., 2020; Martinez et al., 2020).

Considering the importance of adequate and effective treatments as a tool to contain episodes of malaria caused by *Plasmodium* spp, including the severe cases described in the study by Kotepui et al. (2020), the present study aimed to investigate in the scientific literature active and inactive medicinal plants against malaria parasites, emphasizing changes between different ecosystems.

2. Materials and Methods

The literature was reviewed in search of scientific articles reporting antispasmodics activities (IC$_{50}$ or µg/mL) of plants with medicinal potential used around the world for the treatment of malaria.

2.1 Search strategy and selection criteria

The study is a systematic and integrative review of the literature carried out in accordance with the study published by Tajbakhsh et al. (2021). A review of studies was carried out in PubMed (National Library of Medicine), LILACS (Latin American and Caribbean Health Sciences Literature), Science Direct (Explore, scientific and medical) databases and in the SciELO virtual library (Scientific Electronic Library Online).

Articles in both English and Portuguese were selected that had the descriptors MESCH/DECS and the following terms combined with the Boolean operators “AND” and “OR”: “plant medicine malaria”, “herbal malaria”, “antimalarials vivax” and “ethnobotany *Plasmodium*”.

Studies carried out between 2005 and 2020, the search was limited to studies published in English and Portuguese that were available in full and addressed this theme of medicinal plants, antimalarials and ethnobotanics, were selected.

Project documents, reports, grey literature, papers presented at conferences, articles that overlap the theme, studies on *in vivo* tests with animals and those repeated in the databases were excluded.

For synthetic compounds, IC$_{50}$ values ≤ 10 µM were considered potentially active compounds (Mahmoudi et al., 2006). Regarding compounds derived from plant extracts, the activity values considered active were IC$_{50}$ ≤ 10 µg/mL, and inactive IC$_{50}$ ≥ 25 µg/mL (Bagavan et al., 2013; Lima et al., 2015).

The following data were extracted from the selected articles by the reviewers: plant species, plant family, place of collection of plant, parts of the plant used, solvent used, isolated compounds. The entire selection process is presented in (Figure 1).

Data collection and analysis were performed by reading the titles and abstracts, choosing the complete texts based on the eligibility criteria, and extracting the data in a standardized Microsoft Office Excel® 2019 spreadsheet, tabulated in GraphPad Prisma Software (version 6).
3. Results and Discussion

In carrying out this study, it was possible to identify relevant aspects of empirical knowledge and common sense in relation to the use of medicinal plants as antimalarials by populations in different regions of the world, after using the keywords.

In this research, the evaluation of individual plant species was considered as an independent study, so it is common for an article to have more than one study depending on the number of plant species evaluated (Tajbakhsh et al., 2021).

In the PubMed data platform, 987 articles were found, but only 110 were selected according to the exclusion criteria. Similarly, 22 articles were selected from a total of 105 found in LILACS. In the SciELO database, 67 articles were found, but after applying the exclusion criteria, only 3 were in accordance with the objectives of this theme, and of the 2,047 articles found in the Science Direct database, 112 articles were selected. Ultimately, a total of 3,206 articles were found and only 247 were retained after analysis (Figure 1).

In this study, 115 plant species were cited within studies aimed at inhibiting *P. falciparum*, which in turn are distributed among 50 botanical families (Table 1). When analyzing the literature, the most expressive families in relation to species were: Asteraceae, Fabaceae, Euphorbiaceae, Annonaceae, Lamiaceae, Papaveraceae, Cucurbitaceae, Rubiaceae, Rutaceae, and Celastraceae (Figure 2).
Figure 2. Number of botanical species most cited in *P. falciparum* inhibition studies.

![Pie chart showing the proportion of species cited from different families.]

Source: Authors.

As for the results obtained from the ethnobotanical surveys, 141 botanical species used for the treatment of malaria were found, distributed among 59 botanical families (Table 2), namely: Apocynaceae, Lamiaceae, Rutaceae, Solanaceae, Arecales, Asteraceae, Euphorbiaceae, Leguminosae, Meliaceae, and Anacardiaceae (Figure 3).

Figure 3. Number of botanical species most cited in Surveys.

![Pie chart showing the proportion of species cited from different families.]

Source: Authors.

The parts of the plants most used for the extraction of chemical constituents with a possible action on malaria parasites were: leaf, aerial part, root, stem and stem bark, of which 66 botanical extracts, extracted using a variety of methodologies, were active in inhibiting *P. falciparum*, and 59 extracts were inactive (Table 1). The most cited plant parts in ethnobotanical surveys for therapeutic preparations were leaves, roots, stem bark, aerial part and stem. (Table 2).
Finally, the countries that contain the most plants utilized in studies on *P. falciparum* inhibition belong to the African continent, especially to the countries of Cameroon and Kenya. The countries with the highest number of botanical species cited were Brazil and Kenya.

It is important to highlight that all the studies came from *in vitro* assays with *P. falciparum*. No studies related to *P. vivax* were found in the literature, since this species presents limitations when maintained in culture (Bermúdez et al., 2018).

Table 1. Medicinal plant species used in inhibition studies of *P. falciparum* in vitro.

Species and botanical family	Country	Part of the plant used	Extraction method	Inhibition results	References
(a) Andrographis paniculata Nees	(a) India, (b) Burkina Faso	(a) Whole plant, (b) Aerial part	(a) MeOH, Combination (AP+HC+curcumin), (b) CH₂Cl₂, MeOH, H₂O	(a) Active, (b) Inactive	(a) Mishra et al. (2009); (b) Jansen et al. (2010)
(b) Dyschoriste perrottetii O. Kuntze					
ACANTHACEAE					
(a) Alstonia congensis Engl.	(a) -	(a) Root	(a) -	(a) Active	(a) Adams et al. (2011)
ALISMATACEAE					
(a) Achyranthes aspera Duss	(a) Sri Lanka	(a) Stem, leaf, root	(a) EtOH	(a) Inactive	(a) Inbaneson, Ravikumar and Suganthi, (2012)
AMARANTHACEAE					
(a), (b), (c), (d) Alchornea latifolia Klotsch	(a), (b), (c), (d), (e) Cameroon, (f) Ghana, (g), (h) Colombia	(a) Stem, (b) Leaf, (c) Bough, (d) Bark, (e) Flowers, (f) Stem bark, (g) Leaf, bark, (h) Whole plant	(a), (b), (c), (d) EtOH (e) -, (f) EtOH, (g), (h) C₆H₁₄, C₄H₈O₂, MeOH	(a), (b), (c), (d), (e) Inactive, (f), (g), (h) Active	(a), (b), (c), (d), (e) Marie et al. (2018); (f) Gbedema et al. (2015); (g), (h) Osorio et al. (2007)
(f) Polyalthia longifolia (Lam.) Hook.f. & Thomson					
(g) Pseudomalmea boyacana (J.F.Machr.) Chatrou					
(h) Rollinia pittieri Saff.					
ANNONACEAE					
(a) Ferula oopoda Boiss.	(a) Iran	(a) Root	(a) MeOH	(a) Active	(a) Esmaeili et al. (2009)
APIACEAE					
(a) Alstonia congensis Engl.	(a) Congo	(a) Root bark	(a) MeOH	(a) Active	(a) Cimanga et al. (2019)
APOCYNACEAE					
(a) Schefflera umbellifera Ball.	(a), (b)	(a), (b), (c) Leaf	(a), (b) MeOH	(a), (b) Inactive	(a), (b) De Villiers et al. (2010)
(b) Seemannaralia gerrardii R.Vig.					
ARALIACEAE					
(a) Vernonia amygdalina Delile	(a), (b), (c), (d) Uganda, (e) Burkina Faso, (f) Réunion island,	(a), (b) Leaf, (c) Aerial part, (d) Leaf, (e) Whole plant, (f) Leaf,	(a) Éter, MeOH, (b) C₄H₈, éter, CH₂Cl₂, MeOH, (c) C₆H₁₄, éter, (d), (e) Active, (f), Active	(a) Inactive, (b) Active, (c) Inactive, (d), (e) Active, (f), Active	(a), (b), (c) Obbo et al. (2019); (d) Adia et al. (2016); (e) Jansen et al. (2010); (f) Jonville et al. (2008);
Plant Name	Country	Part Used	Solvent(s)	Activity	Reference(s)
------------	---------	-----------	------------	----------	--------------
Stanleya pinnata Britton	(g) India, (h) Kenya	(g) Aerial part, (h) Whole plant	(d) EtOAc, H₂O, MeOH, (e) CH₂Cl₂, MeOH, H₂O, (f) CH₃Cl₂, MeOH, (g) MeOH, CHCl₃, C₆H₆O₂, BuOH, C₆H₁₄, (h) CH₂Cl₂	(g), C₆H₁₂/Active	(g) Mohanty et al. (2013); (h) Owuor et al. (2012)
Microglossa pyrifolia (Lam.) O. Ktze					
Dicoma tomentosa Cass.					
Psidia arguta Voigt					
Pluchea lanceolata (DC.) C.B.Clarke					
Ageratum conyzoides L.					
Balanites aegyptiaca Delile	(a) Togo	(a) Aerial part	(a) -	(a) Inactive	(a) Karou et al. (2011)
Buddleja salviifolia (Lam.) Lam.	(a), (b) Reunion island	(a) Stem, leaf, (b) Leaf	(a) CH₂Cl₂, (b) CH₂Cl₂, MeOH	(a), (b) Inactive	(a) Jansen et al. (2010); (b) Jonville et al. (2008)
Nuxia verticillata Lam.					
Boswellia dalzielii Hutch.	(a) Burkina Faso	(a) Leaf	(a) CH₂Cl₂, MeOH, H₂O	(a) Active	(a) Jansen et al. (2010)
Buxus hyrcana Pojark.	(a) Iran	(a) Root	(a) MeOH	(a) Active	(a) Esmaeili et al. (2009)
Tamarindus indica L.	(a) Togo, (b) Burkina Faso	(a) - (b) Leaf	(a) CH₂Cl₂ EtOH, MeOH, (b) -	(a), (b) Active	(a) Koudouvo et al. (2011); (b) Traoré et al. (2008)
Daniellia ogaea (Harms) Holland	(a) Nigeria	(a) Root	(a) EtOH	(a) Inactive	(a) Ezenyi et al. (2020)
Warburgia stuhlmannii Engl.	(a), (b) Kenya	(a), (b) Stem bark	(a), (b) MeOH, H₂O	(a), (b) Active	(a), (b) Muthaura et al. (2007)
Psorospermum senegalense Spach.	(a) Burkina Faso	(a) Leaf	(a) CH₂Cl₂, MeOH, H₂O	(a) Active	(a) Julianti et al. (2013)
Loeseneriella africana N.Hallé	(a) Burkina Faso, (b), (c) Kenya	(a) Leaf, (b) Stem root, (c) Leaf	(a) CH₂Cl₂, MeOH, H₂O, (b), (c) MeOH, H₂O	(a) Inactive, (b) Active, (c) Active	(a) Jansen et al. (2010); (b), (c) Muthaura et al. (2007)
Maytenus putterlikioides (Loes.) Exell & Mendonça					
Maytenus undata (Thunb.) Blakelock					
Carica papaya L.	(a) Indonesia	(a) Leaf	(a) MeOH	(a) Active	(a) Julianti et al. (2013)
Loeseneriella africana N.Hallé	(a) Burkina Faso, (b), (c) Kenya	(a) Leaf, (b) Stem root, (c) Leaf	(a) CH₂Cl₂, MeOH, H₂O, (b), (c) MeOH, H₂O	(a) Inactive, (b) Active, (c) Active	(a) Jansen et al. (2010); (b), (c) Muthaura et al. (2007)
Psorospermum senegalense Spach.	(a) Burkina Faso	(a) Leaf	(a) CH₂Cl₂, MeOH, H₂O	(a) Active	(a) Jansen et al. (2010)
Plant	Country/Region	Part Used	Extraction Method	Activity	Reference
-----------------------------	----------------	-----------------	-------------------------	------------	--
Warburgia stuhlmannii	Burkina Faso	Leaf	-	Active	Traoré et al. (2008)
Terminalia catappa	Cameroon	Leaf	Methanol	Active	Marie et al. (2018); Jonville et al. (2008)
Terminalia bentzeo	Cameroon	Leaf	Methanol	Inactive	Marie et al. (2018); Jonville et al. (2008)
Terminalia mantaly	Cameroon	Leaf, bark	Methanol	Active	Marie et al. (2018); Jonville et al. (2008)
Combretum bentzeo	Cameroon	Leaf	Methanol	Inactive	Marie et al. (2018); Jonville et al. (2008)
Momordica foetida	U.S.A.	Bark, fruit	Ethanol	Inactive	Grazioso et al. (2012)
Momordica balsamina	Kenya	Leaf	Methanol	Inactive	Obbo et al. (2019); Adia et al. (2016); Benoit-Vical et al. (2006); Kamaraj et al. (2012)
Momordica charantia	Colombia	Leaf, root	Methanol	Inactive	Obbo et al. (2019); Adia et al. (2016); Benoit-Vical et al. (2006); Kamaraj et al. (2012)
Cajanus cajan	Cameroon	Seed, root	Methanol	Active	Jasra et al. (2010)
Glycine max	U.S.A.	Leaf, stem	Methanol	Active	Jasra et al. (2010)
Glycyrrhiza glabra	Iran	Leaf	Methanol	Active	Ajaiyeoba et al. (2008); Esmaeili et al. (2009)
Bauhinia rufescens	Burkina Faso	Whole plant	Methanol	Active	Esmaeili et al. (2009)
Jatropha gossypifolia	Burkina Faso	Whole plant	Methanol	Active	Jansen et al. (2010); Marie et al. (2018); Kamaraj et al. (2012); Traoré et al. (2008); Vical et al. (2006); Ravi Kumar and Suganthi (2012); Jansen et al. (2010)
Cassia siamea	Malaysia	Leaf	Methanol	Inactive	Marie et al. (2018); Kamaraj et al. (2012); Traoré et al. (2008); Vical et al. (2006); Ravi Kumar and Suganthi (2012); Jansen et al. (2010)

Notes:
- Active: Indicates activity in the respective biological assay.
- Inactive: Indicates no activity in the respective biological assay.
- H: Methanol
- MeOH: Methanol
FABACEAE

(a) *Aphloia theiformis* Benn.
FLACOURTIACEAE

(a) Reunion island
(a) Leaf
(a) CH$_2$Cl$_2$, MeOH
(a) Active
(a) Jonville et al. (2008)

(a) *Erodium oxyrrhynchum* M. Bieb.
GERANIACEAE

(a) Iran
(a) Aerial part
(a) MeOH
(a) Active
(a) Esmaeili et al. (2009)

(a) *Andropogon schirensis* Hochst.
GRAMINACEAE

(a) Nigeria
(a) Root
(a) EtOH
(a) Inactive
(a) Ezenyi et al. (2020)

(a) *Icacina trichanta* Oliv.
ICACINACEAE

(a) Nigeria
(a) Leaf
(a) EtOH
(a) Inactive
(a) Ezenyi et al. (2020)

(a), (b), (c) *Ocimum gratissimum* C.A.Sm.
(d) *Clerodendrum rotundifolium* Oliv.
LAMIACEAE

(a), (b), (c) Cameroon,
(d) Uganda,
(e) India,
(f), (g) Kenya
(a) Stem,
(b) Leaf,
(c) Root,
(d), (e) Leaf,
(f) Leaf, bough,
(g) Leaf, peduncle
(a), (b), (c) C$_4$H$_8$O$_2$, MeOH
(b) C$_4$H$_8$O$_2$, MeOH
(c) C$_4$H$_8$O$_2$, MeOH,
(d) EtOAc, H$_2$O, MeOH,
(e) C$_4$H$_8$O$_2$,
(g) CH$_2$Cl$_2$
(a), (b), (c)Inactive,
(d), (e), (f) Active,
(g) Inactive
(a), (b), (c) Marie et al. (2018);
(d) Adia et al. (2016);
(e) Kamaraj et al. (2012);
(f), (g) Owuor et al. (2012)

(a) *Albezia gummifera* C.A.Sm.
LEGUMINOSAE

(a) Kenya
(a) Root bark
(a) MeOH
(a) Inactive
(a) Rukunga et al. (2007)

(a) *Punica granatum* L.
LYTHRACEAE

(a) India
(a) Fruit peel
(a) MeOH
(a) Inactive
(a) Dell’Agli et al. (2009)

(a) *Khaya anthotheca* C.DC.
(b) *Entandrophragma utile* Sprague
MELIACAE

(a), (b) Uganda
(a), (b) Seed
(a) C$_6$H$_{14}$, éter, CH$_2$Cl$_2$, MeOH, H$_2$O,
(béter, CH$_2$Cl$_2$, MeOH
(a), (b) Inactive
(a), (b) Obbo et al. (2019)

(a) *Chasmanthera dependens* Hochst.
(b) *Albertisia delagoensis* (N.E.Br.) Forman
(c) *Triclisia sacleuxii* Diels
MENISPERMACEAE

(a), (b), (c), (d), (e) *Ficus benjamina* (Miq.) Corner
(f) *Ficus exasperata* Vahl
(g) *Ficus thonningii* Blume
MORACEAE

(a), (b), (c), (d), (e) Cameroon,
(g) Burkina Faso
(a) Fruit,
(b) Leaf,
(c) Stem,
(d) Bark,
(e) Stem,
(f), (g) Leaf
(a), (b), (c), (d), (e), (f) Hydroethanol,
(g) CH$_2$Cl$_2$, MeOH, H$_2$O
(a), (b), (c), (d), (e), (f) Inactive
(a), (b), (c), (d), (e) Marie et al. (2018);
(g) Jansen et al. (2010)
Plant	Country	Part	Method	Result	References
Callistemon citrinus	Cameroon	Leaf	CH$_2$Cl$_2$, MeOH	Active	Larayetan et al. (2019); Naghibi et al. (2013)
Myrtus communis	Iran	Aerial part	CH$_2$Cl$_2$, MeOH	Active	
Opilia celtidifolia	Togo	-	CH$_2$Cl$_2$, MeOH	Inactive	Koudouvo et al. (2011)
Fumaria ciliica	Cameroon	Leaf	MeOH	Active	
Fumaria densiflora	Iran	Aerial part	MeOH	Active	
Fumaria Kralikii	Togo	Leaf	MeOH	Active	
Fumaria parviflora	India	Aerial part	MeOH	Active	
Fumaria rostellata	Togo	Leaf	MeOH	Active	
Flueggea virosa	Kenya	Leaf	MeOH	Active	Muthaura et al. (2007)
Piper tricuspe	Colombia	Leaf, stalk	MeOH	Active	Vargas-Sinisterra et al. (2018); Kamaraj et al. (2012)
Piper nigrum	India	Seed	MeOH	Active	
Plantago major	Colombia	Leaf, stalk	EtOH	Inactive	Vargas-Sinisterra et al. (2018)
Crossopteryx febrifuga	Burkina	Leaf, (c) -	EtOH, C$_2$H$_6$O$_2$	Active	Jansen et al. (2010); Koudouvo et al. (2011); Mesia et al. (2012)
Gardenia sokotensis	Togo	Stem bark	CH$_2$Cl$_2$, MeOH, H$_2$O	Active	
Pavetta corymbosa	Congo	Root bark, fruit, leaf	CH$_2$Cl$_2$, EtOH, MeOH	Active	
Nauclea pobeguinii	Togo	Aerial part	CH$_2$Cl$_2$, MeOH, H$_2$O	Active	Jansen et al. (2010); Kamaraj et al. (2012); Orwa et al. (2013); Waffo et al. (2007)
Zanthoxylum chalybeum	Uganda	Stem bark	EtOAc, H$_2$O, MeOH	Active	Adia et al. (2016); Kamaraj et al. (2012); Orwa et al. (2013); Waffo et al. (2007)
Aegle marmelos	India	Leaf	EtOAc, MeOH, H$_2$O/ Active	Active	Bertani et al. (2012); Bhat and Karim, (2010)
Toddalia asiatica	South	Stem bark	EtOAc, H$_2$O/ Active	Active	
Teclea gerrardii	Africa	Stem bark	EtOAc, H$_2$O/ Active	Active	
Vitellaria paradoxa	Burkina	Aerial part	CH$_2$Cl$_2$, MeOH, H$_2$O	Active	Jansen et al. (2010)
Quasia amara	French	Leaf	CH$_2$Cl$_2$, (b) -	Inactive	Houël et al. (2009); Bertani et al. (2012); Bhat and Karim, (2010)
Quasia amara	Guiana	(c) stem bark			
Eurycoma longifolia	Jack	(a), (b)	CH$_2$Cl$_2$, (b), (c) -	Inactive	
Simaroubaceae					
Table 2. Species of medicinal plants used for the treatment of malaria cited in ethnobotanical surveys.

Species and botanical family	Country	Part of the plant used	References
(a) Justicia betonica L.	(a) Kenya, (b) India	(a) Aerial part, (b) Whole plant	(a) Mukungu et al., (2016); (b) Nagendrappa, Naik and Payyappallimana, (2013)
(b) Andrographis paniculata Nees			
ACANTHACEAE			
(a) Acorus calamus L.	(a) Indonesia	(a) Rhizome	(a) Taek et al. (2019)
ACORACEAE			
(a) Allium cepa L.	(a) Indonesia	(a) Bulb	(a) Taek et al. (2019)
ALLIACEAE			
(a) Elaeis guineensis Jacq.	(a) Ghana, (b), (c) Kenya	(a) Root, (b), (c) Leaf	(a) Asase, Akwetey and Achel, (2010); (b), (c) Nguta et al. (2010)
(b) Aloe deserti A.Berger			
(c) Aloe macrocrophon Baker			
ALOACEAE			
(a) Alternanthera sessilis (L.) R.Br.	(a) Brazil, (b) Kenya	(a), (b) Leaf	(a) Tomchinsky et al. (2017); (b) Nguta et al. (2010)
(b) Amaranthus hybridus L.			
AMARANTHACEAE			
(a) Crimum asiaticum L.	(a) Indonesia	(a) Leaf, bulb	(a) Taek et al. (2019)
AMARYLLIDACEAE			

(AM+HC) combination of Andrographis paniculata and Hedyotis corymbosa; (-) No information; Dichloromethane=CH₂Cl₂; Hexane=C₆H₁₄, EtOAc=Ethyl Acetate; BuOH=Butanol; Propyl methanoate=C₄H₈O₂, Chloroform=CHCl₃.
Anacardiaceae	Origin	Part Used	Authors
Searsia natalensis (Bernh.ex C. Krauss)	Kenya, Uganda, Cameroon	Root, stem bark, leaf	Mukungu et al. (2016); Tabuti, (2008); Tsabang et al. (2012)
Rhoicissus tridentata (L.f.) Wild and R.B.Drumm.	Kenya, Uganda, Cameroon	Leaf, (d)	
Mangifera indica L.	Kenya, Uganda, Cameroon	Root, bark, leaf	Mukungu et al. (2016); Tabuti, (2008); Tsabang et al. (2012)
Mangifera indica L.	Kenya, Uganda, Cameroon	Leaf,	

Annonaceae	Origin	Part Used	Authors
Annona reticulata L.	Indonesia	Stem bark	Taek et al. (2019)
Annona muricata L.	Indonesia	Leaf	Taek et al. (2019)

Apocynaceae	Origin	Part Used	Authors
Aspidosperma nitidum Ex Müll.Arg.	Brazil, Indonesia, Kenya, Nigeria	Bark, bark, sap, leaf	Tomchinsky et al. (2017); Taek et al. (2019); Mukungu et al. (2016); Nguta et al. (2010); Tsabang et al. (2012); Dike, Obembe and Adebiyi, (2012)
Aspidosperma schultesii Woodson*	Brazil, Indonesia, Kenya, Nigeria	Leaf, root, bark	Taek et al. (2019); Mukungu et al. (2016); Nguta et al. (2010); Tsabang et al. (2012); Dike, Obembe and Adebiyi, (2012)
Himatanthus stenophyllus Plumel	Brazil, Indonesia, Kenya, Nigeria	Bark, leaf	Taek et al. (2019); Mukungu et al. (2016); Nguta et al. (2010); Tsabang et al. (2012); Dike, Obembe and Adebiyi, (2012)
Himatanthus sucuuba (Spruce ex Müll.Arg.) Woodson*	Brazil, Indonesia, Kenya, Nigeria	Leaf	
Calotropis gigantea (L.) R. Br.	Brazil, Indonesia, Kenya, Nigeria	Leaf	Taek et al. (2019); Mukungu et al. (2016); Nguta et al. (2010); Tsabang et al. (2012); Dike, Obembe and Adebiyi, (2012)

Arecales	Origin	Part Used	Authors
Astrocaryum aculeatum G.Mey	Brazil, Indonesia, Kenya	Stalk, root, leaf	Tomchinsky et al., (2017); Taek et al. (2019); Mukungu et al. (2016); Nguta et al., (2010)
Euterpe catinga Wallace	Brazil, Indonesia, Kenya	Root, leaf	Taek et al., (2017); Mukungu et al. (2016); Nguta et al., (2010)
Euterpe oleracea Mart.	Brazil, Indonesia, Kenya	Root, leaf	Taek et al., (2017); Mukungu et al. (2016); Nguta et al., (2010)
Euterpe precatoria Mart.*	Brazil, Indonesia, Kenya	Root, leaf	Taek et al., (2017); Mukungu et al. (2016); Nguta et al., (2010)
Socratea exorrhiza (Mart.) H.Wendl	Brazil, Indonesia, Kenya	Root, leaf	Taek et al., (2017); Mukungu et al. (2016); Nguta et al., (2010)
Elaeis guineensis Jacq.	Brazil, Indonesia, Kenya	Root	Taek et al., (2017); Mukungu et al. (2016); Nguta et al., (2010)

Asteraceae	Origin	Part Used	Authors
Blumea balsamifera (L.) DC.	Indonesia, Uganda, Kenya	Leaf, stem bark, root	Taek et al., (2019); Tabuti, (2008); Chinsembu (2015); Nguta et al., (2010)
Vernonia amygdalina Delile	Indonesia, Uganda, Kenya	Root	Taek et al., (2019); Tabuti, (2008); Chinsembu (2015); Nguta et al., (2010)
Tithonia diversifolia A.Gray	sub-Saharan African, Kenya	Leaf	Taek et al., (2019); Tabuti, (2008); Chinsembu (2015); Nguta et al., (2010)
Launaea cornuta (Hochst. ex Oliv. & Hiern) C.Jeffrey	Kenya	Root	Taek et al., (2019); Tabuti, (2008); Chinsembu (2015); Nguta et al., (2010)
Senecio syringifolius O.Hoffm.	Kenya	Leaf	Taek et al., (2019); Tabuti, (2008); Chinsembu (2015); Nguta et al., (2010)

Bignoniaceae	Origin	Part Used	Authors
Handroanthus barbatus (E.Mey.) Mattos	Brazil, Kenya	Leaf, stem bark	Tomchinsky et al. (2017); Mukungu et al. (2016)
Markhamia lutea (Benth.) K.Schum.	Kenya	Leaf, stem bark	Mukungu et al. (2016)
Spathodea campanulata P.Beauv.	Kenya	Leaf, stem bark	Mukungu et al. (2016)

Burseraceae	Origin	Part Used	Authors
Garuga floribunda Decne.	Indonesia	Leaf	Taek et al. (2019)

Canellaceae	Origin	Part Used	Authors
Warbugia ugandensis Sprague.	Kenya	Leaf, stem bark	Mukungu et al. (2016)

Capparaceae	Origin	Part Used	Authors
Cleome rutidosperma DC.	Indonesia	Whole plant	Taek et al. (2019)

Caricaceae	Origin	Part Used	Authors
Carica papaya L.*	Brazil, Indonesia	Leaf	Tomchinsky et al. (2017); Taek et al. (2019)
Carica papaya L.	Brazil, Indonesia	Leaf	Taek et al. (2019)
Plant Name	Country	Part(s)	Author(s)
--	---------------	----------------------	-----------------------------------
Elaeis guineensis Jacq.	Kenya	Leaf	Nguta et al. (2010)
Acnella caulirhiza Del.	(a), (b), (c), (d) Kenya	Aerial part, Root, leaf, Leaf	Mukungu et al. (2016)
Microglossa pyrifolia (Lam.) Kuntze			
Tithonia diversifolia (Hemsd.) A. Gray			
Vernonia amygdalina Del. Compositae			
Acmella caulirhiza (Choisy) Hallier f.	Brazil	Leaf	Tomchinsky et al. (2017)
Microglossa pyrifolia (Lam.) Kuntze	Indonesia	Leaf	Taek et al. (2019); Nguta et al. (2010); Tabuti (2008); Mukungu et al. (2016)
Microglossa pyrifolia (Lam.) Kuntze	Kenya	Leaf	
Tithonia diversifolia (Hemsd.) A. Gray	Uganda	Leaf	
Vernonia amygdalina Del. Compositae	Kenya	Leaf	
Bonamia ferruginea (Choisy) Hallier f.	Benin	Leaf	Yetein et al. (2013)
Momordica charantia L.a	Indonesia, Kenya, Uganda, Kenya	Leaf, fruit, Leaf, Leaf	Tomchinsky et al. (2017)
Gerranthus lobatus (Cogn.) Jeffrey	(c)		
Momordica foetida Schumach.	(d)		
Cucumis aculeatus Cogn	Kenya	Leaf	
Vernonia amygdalina Del. Compositae			
Momordica achyriopsis	Brazil	Leaf	
Acmella caulirhiza	(a), (b), (c), (d) Brazil, Kenya, Uganda, Kenya	Seed, Root, Leaf, Leaf, Stem bark	Tomchinsky et al. (2017)
Microglossa pyrifolia (Lam.) Kuntze			
Tithonia diversifolia (Hemsd.) A. Gray			
Vernonia amygdalina Del. Compositae			
Jatropha curcas L.*	Brazil	Seed	Tomchinsky et al. (2017); Taek et al. (2019); Mukungu et al. (2016)
Manihot esculenta Crantz	(d)	Root, Leaf	
Croton cajucara Benth.*	(e)	Leaf	
Jatropha curcas L.	(a), (b), (c), (d) Brazil, Kenya, Uganda, Kenya	Seed	Tomchinsky et al. (2017)
Crotom macrostachys Hochst. ex Del.		Stem bark	
Doliocarpus magnificus Sleumer Dilleniiaceae	Brazil	Leaf	Tomchinsky et al. (2017)
Phanera splendens (Kunth) Vaz*	Brazil	Sead	(a), (b), (c) Tomchinsky et al. (2017)
Phaseolus vulgaris L.		Bough	
Senna occidentalis (L.) Link* Fabeaee		Seed	(a), (b), (c) Tomchinsky et al. (2017)
Potalia resinifera Mart. Gentianaceae	Brazil	Bark	Tomchinsky et al. (2017)
Harungana madagascariensis Lam. ex Poir. HYPERICACEAE	Kenya	Stem bark	Mukungu et al. (2016)
Poraqueiba sericea Tul. Luc. ICACINACEAE	Brazil	Seed	Tomchinsky et al. (2017)
Plectranthus amboinicus (Lour.) Spreng.	(a), (b), (c), (d) Brazil, Kenya, Uganda, Kenya	Leaf, Aerial part, Leaf, Leaf, Leaf, Leaf	Tomchinsky et al. (2017); Mukungu et al. (2016)
Plectranthus ornatus Codd	(e)	Root, leaf, leaf, Leaf, Leaf	
Ajuga integrifolia Buch.-Ham.	(f)		
Clerodendrum johnstonii Oliv.	(g)		
Rotheca myricoides (Hochst.) Steane and Mahb.	(h)		
Fuerstia africana T.C.Fr.	(i)		
Leucas calostachys Oliv.	(j)		
Ocimum kilimandscharicum Gürke	(k)		
Plectranthus barbatus Andrews	(l)		
Ocimum basilicum L.	(m)		
Ocimum suave Willd. Lamiaceae	(n)		
Name	Country/Region	Part	Authors
--	-----------------	-----------------------	------------------
Lauraceae			
Persea americana Mill.*	(a) Brazil, (b) Nigeria	(a), (b) Leaf	(a) Tomchinsky et al. (2017); (b) Dike, Obembe and Adebiyi (2012)
Bertholletia excelsa Bonpl.*	(a) Brazil	(a) Bark	(a) Tomchinsky et al. (2017)
Tamarindaceae			
Tamarindus indica L.	(a) Indonesia, (b), (c), (d), (e) Kenya	(a) Leaf, (b), (c) Stem bark, (d) Leaf, (e) Root	(a) Taek et al. (2019); (b), (c), (d), (e) Mukungu et al., 2016)
Albizia gummifera (J.F.Gmel.) C.A.Sm.			
Erythrina abyssinica DC.			
Senna didmobotrya (Fresen.) H.S.Irwin and Barneby			
Leguminosae			
Bertholletia excelsa Bonpl.*			
Tamarindus indica L.	(a) Indonesia, (b), (c), (d), (e) Kenya	(a) Leaf, (b), (c) Stem bark, (d) Leaf, (e) Root	(a) Taek et al. (2019); (b), (c), (d), (e) Mukungu et al., 2016)
Albizia gummifera (J.F.Gmel.) C.A.Sm.			
Erythrina abyssinica DC.			
Senna didmobotrya (Fresen.) H.S.Irwin and Barneby			
Oleaceae			
Strychnos ligustrina Blume	(a) Indonesia	(a) Stem bark	(a) Taek et al. (2019)
Meliaceae			
Guarea pubescens (Rich.) A.Juss.	(a) Brazil, (b) Indonesia, (c), (d), (e) Kenya	(a) Bark, root, (b) Stem bark, leaf, (c) Stem bark, leaf, (d) Stem bark, (e) Leaf	(a), Mukungu et al., 2016); (b) Taek et al. (2019); (c), (d) Mukungu et al. (2016); (e) Dike, Obembe and Adebiyi (2012)
Melia azedarach L.			
Mellia azedarach L.			
Trichilia emetica Vahl			
Azadirachta indica A.Juss.			
Menispermaceae			
Abuta grandifolia (Mart.) Sandwith.	(a), (b) Brazil, (c) Kenya	(a) Leaf (b), (c) Root	(a), (b), (c) Tomchinsky et al. 2017
Abuta imene (Mart.) Eichler			
Cissampelos mucronata A.Rich.			
Moraceae			
Ficus hispida L.f. (L.) DC.	(a) Indonesia, (b) Kenya	(a) Leaf, (b) Stem bark	(a) Taek et al. (2019); (b) Mukungu et al. (2016)
Ficus thonningii Blume (L.) DC.			
Menispermaceae			
Moringa oleifera Lam.	(a) Indonesia	(a) Root	(a) Taek et al. (2019)
Myristicaceae			
Iryanthera hostmannii (Benth.) Warb.	(a) Brazil	(a) Sap	(a) Tomchinsky et al. 2017
Myrtaceae			
Psidium guajava L.	(a) Indonesia	(a) Leaf	(a) Taek et al. (2019)
Oleaceae			
Nyctanthes arboristis L.	(a) India	(a) Leaf	(a) Nagendrappa, Naik and Payyappallimana, (2013)
Phyllanthaceae			
Flueggea virosa (Roxb. ex Willd.) Royle	(a), (b) Kenya	(a) Aerial part, (b) Leaf	(a), (b) Mukungu et al. (2016)
Phyllanthus sepialis Mill. Arg.			
Piperaceae			
Piper nigrum L.	(a) India	(a) Fruit	(b) Nagendrappa, Naik and Payyappallimana, (2013)
Plant Name	Country	Part(s) of Plant	Reference(s)
------------	---------	-----------------	--------------
Pittosporum viridiflorum	Kenya	Leaf, stem bark	Mukungu et al. (2016)
Paspalum gardnerianum	Brazil	Whole plant	Tomchinsky et al. (2017); Asase, Akwetey and Achel (2010); Dike, Obembe and Adebiyi (2012)
Paspalum gardnerianum	Ghana	Leaf	Mukungu et al. (2016)
Paspalum gardnerianum	Nigeria	Stem bark	Mukungu et al. (2016)
Bambusa vulgaris	Kenya	Leaf	Mukungu et al. (2016)
Cymbopogon citratus	Brazil	Whole plant	Tomchinsky et al. (2017); Asase, Akwetey and Achel (2010); Dike, Obembe and Adebiyi (2012)
Cymbopogon citratus	Ghana	Leaf	Mukungu et al. (2016)
Cymbopogon citratus	Nigeria	Stem bark	Mukungu et al. (2016)
Rumex abyssinicus	Kenya	Leaf	Mukungu et al. (2016)
Rumex steudelii	Kenya	Root	Mukungu et al. (2016)
Drynaria quercifolia	Indonesia	Tubercle	Taek et al. (2019)
Maesa lanceolata	Kenya	Stem bark, root bark	Mukungu et al. (2016)
Ampelozizyphus amazonicus	Brazil	Root	Tomchinsky et al. (2017)
Rubus pinnatus	Kenya	Leaf, fruit	Mukungu et al. (2016)
Citrus limon	Brazil	Fruit peel	Tomchinsky et al. (2017); Taek et al. (2019); Mukungu et al. (2016); Nguta et al. (2010); Tabuti (2008)
Melicope latifolia	Indonesia	Leaf	Mukungu et al. (2016)
Clausena anisata	Kenya	Leaf	Mukungu et al. (2016)
Zanthoxylum gilletii	Kenya	Stem bark	Mukungu et al. (2016)
Zanthoxylum gilletii	Uganda	Leaf	Taek et al. (2019)
Deinbollia pinnata	Ghana	Leaf	Asase, Akwetey and Achel (2010)
Quassia amara	(a), (b), (c) Brazil	Leaf, Root, Leaf	(a), (b) Tomchinsky et al. (2017); (c) Taek et al. (2019)
Simaba cedron	(a), (b) Brazil, (c) Nigeria	Leaf	Taek et al. (2019)
Brucea javanica	(a), (b), (c) Brazil, (d) Indonesia, (e), (f), (g), (h) Kenya, (i) Uganda	Leaf, Stem bark, Leaf, Leaf, Stem bark, Leaf, Root	Mukungu et al. (2016); Nguta et al. (2010); Tabuti (2008)
Capsicum frutescens	Brazil	Whole plant	Tomchinsky et al. (2017); Taek et al. (2019); Mukungu et al. (2016); Asase, Akwetey and Achel (2010)
Physalis angulata	Brazil	Root	Tomchinsky et al. (2017); Taek et al. (2019); Mukungu et al. (2016); Asase, Akwetey and Achel (2010)
Physalis peruviana	Kenya	Leaf	Mukungu et al. (2016)
Solanum torvum	Ghana	Fruit	Tabuti (2008)
Solanum incanum	Kenya	Root	Mukungu et al. (2016)
Solanum torvum	Kenya	Fruit	Mukungu et al. (2016)
Zanthoxylum gilletii	Kenya	Fruit	Mukungu et al. (2016)
Teclea simplicifolia	Kenya	Root	Mukungu et al. (2016)
Zanthoxylum chalybeum	Kenya	Root	Mukungu et al. (2016)
Deinbollia pinnata	Ghana	Leaf	Asase, Akwetey and Achel (2010)
Grewia hexaminta	Ghana	Leaf, root	Nguta et al. (2010)
In the present study, the most frequently cited species were selected during the review of the literature, which describes in detail which part of the plant was used, which method was used for the extraction of chemical compounds and the result of inhibition of \(P. falciparum \) for each species studied (only for the studies that report these details). In addition, scientific knowledge is also linked to common sense, in order to clarify the real effects of these plants with medicinal potential.

In this regard, the botanical species \(\textit{Plectranthus barbatus} \) Andrews, mentioned in the ethnobotanical survey by Mukungu et al. (2016), was tested for its ability to inhibit \(P. falciparum \) \textit{in vitro}. After extraction of the possible active component by Owuor et al. (2012), it was observed that the leaf extract of this plant was inactive when evaluated against strain D6 (sensitive to chloroquine) and strain W2 (resistant to chloroquine).

For the species \(\textit{Mormodica charantia} \) L., studies such as those by Abdillah et al. (2019) demonstrate a high plasmodial inhibition of \(0.17 \pm 0.12 \mu \text{g/mL} \) against \(P. falciparum \) strain 3D7 (chloroquine-sensitive), in addition, this ethnospecies has been studied regarding its anti-inflammatory potential (Fang et al., 2007) and antimicrobial activity (Ponzi et al., 2010).

The species \(\textit{Momordica foetida} \) Schumach., belonging to the Cucurbitaceae family, showed low inhibitory concentration against strains D10 (sensitive to chloroquine) and K1 (resistant to chloroquine) (Waako et al., 2005). However, the study by Adia et al. (2016) using \(P. falciparum \) strains NF54 (sensitive to chloroquine) and FCR3 (resistant to chloroquine), showed high inhibition (\(\leq 10 \mu \text{g/mL} \)) with the ethyl acetate and water extraction method. The extraction method, plant species and part of the plant used were the same for both studies, so it is not clear why the results diverged. One of the factors that possibly influenced this divergence of results may have been the differences in the extraction solvent, therefore, in the extraction yield and in the extracted metabolite. For example, with dichloromethane, mainly non-polar metabolites are extracted. In contrast, with methanol, polar to nonpolar metabolites are extracted (Tajbakhsh et al., 2021).

Similar to the species \(\textit{M. foetida} \), another result of inactivity was also observed for the plant \(\textit{Carica papaya} \) L. when the ethanolic extracts of the leaves were tested against two strains \(P. falciparum \), one chloroquine-sensitive and the other chloroquine-resistant (Kovendan et al., 2012). However, the study by Julianti et al. (2013), revealed a high inhibition of 4.8 \(\mu \text{g/mL} \) against the \(P. falciparum \) K1 strain using a methanolic extract of the leaves. Upon analysis of the two studies, it is evident that the extraction method directly influenced the antiplasmodial action of this ethnospecies.
Unlike the species *M. foetida* e *C. papaya*, the results of two studies for the ethnospecies *Albizia gummifera* (J.F.Gmel.) C.A.Sm. corroborated the inhibition of *P. falciparum* in vitro at concentrations below 5.0 µg/mL (Orulla *et al.*, 1996; Ofulla *et al.*, 1995). These data reveal high antiplasmodial inhibition, a promising result for this plant.

Similar to that observed for *A. gummifera*, two studies on the botanical species *Flueggea virosa* (Roxb. ex Willd.) Royle’s inhibition of *P. falciparum* in vitro showed promising results. Inhibitory activity against chloroquine-sensitive (D6 and 3D7) and chloroquine-resistant (W2 and K1) strains was obtained with concentrations below 25 µg/mL (Muthaura *et al.*, 2007; Singh *et al.*, 2017).

Although other plants with results of proven activity were not mentioned in ethnobotanical surveys in this study, they also showed promising results of in vitro inhibition against *P. falciparum* (Table 1), however, other studies must be carried out in order to confirm this inhibition in models (*in vivo*) and characterization of secondary metabolites since few studies describe this part of the photochemistry.

The results observed for these ethnospecies validate how important it is to have scientific proof of their true therapeutic effects for medicinal use, not only for the treatment of malaria, but of all the pathologies for which the population makes use of these plant extracts (Martinez *et al.*, 2020).

In this study, in addition to correlating scientific knowledge with popular knowledge, we also sought to carry out a survey of the main environmental conditions that can affect the production of secondary metabolites in a plant, and, consequently, make its possible principle active component ineffective.

Due to challenges along the way, some factors have affected the quality and quantity of active compounds in plants; thus, throughout evolution, plant species have adapted and developed mechanisms that allowed for their survival in different ecosystems of the world. That is, the same plant species is found in different countries with different climates. However, it should be noted that the metabolites depend on conditions such as: temperature, hydric stress, age (period), altitude, seasonality, circadian rhythm, UV radiation, atmospheric composition and the region or biome in which the plant species is adapted or inserted (Figura 4) (Gobbo-Neto *et al.*, 2007).

Figure 4. Main factors that can influence the accumulation of metabolites secondaries in plant.
In addition, it is important to consider some issues regarding the period in which a plant was collected, since the quality and nature of the active constituents are not constant throughout the year (Gobbo-Neto et al., 2007). In this sense, variations in their chemical compounds may occur at different times of the year. Studies report that there are seasonal variations in the secondary metabolites of essential oils (Pitarević et al., 1984; Schwob et al., 2013), phenolic acids (Grace, Logan e Adams, 1998; Zidorn e Stuppner, 2001), flavonoids (Brooks et al., 2004; Jalal et al., 1982), saponins (Kim et al., 1981; Ndamba et al., 1993), alkaloids (Elgorashi et al., 2002; Roca-Pérez et al., 2004), and tannins (Feeny et al., 1968; Salminen et al., 2001).

In the spring, Digitalis obscura leaves present very low concentrations of cardenolides and lanatosides. However, it is possible to observe a rapid accumulation of these substances in the summer, and during the autumn they decrease again (Roca-Pérez et al., 2004). This same variation also occurs with Hypericum perforatum, popularly known as São João’s herb. These substances increase from 100 ppm (parts per million) in the winter to 3000 ppm in the summer (Southwell et al., 2001).

The age and development of the plant, as well as the different types of plant organs, can also contribute to the total amount of metabolites produced (Bowers et al., 1993). The sesquiterpene lactones produced by Arnica montana are used as anti-inflammatory agents. This plant species in the young phase accumulates helenalin derivative. This substance is reduced to almost zero around six weeks after leaf formation. However, unlike helenalin, the levels of dihydrohelenalin increase greatly and remain constant for a long period of time (Schmidt et al., 1998). Gentiana lutea leaves have a high concentration of C-glycosides in the flowering stage; O-glycosides and isoorientin are found in large amounts before their floral development (Menković et al., 2000).

In addition to age and seasons of the year, the adaptation of each plant species to different biomes has allowed plants to develop in a considerable temperature range, from tropical climates to arid environments and temperatures below 0. However, variations in temperature, as well as hydric variation, directly affect the production of secondary metabolites (Evans, 1996). Studies by Zobayed, Afreen e Kozai (2005) evaluated the alteration of secondary metabolites under temperature stress in Hypericum perforatum. In this study, it was possible to observe that temperatures above 35ºC and below 15ºC reduced the photosynthetic efficiency of the leaves, resulting in a low assimilation of CO₂, compromising the production of secondary metabolites.

Along with high temperatures, low temperatures also significantly influence the quantity of secondary metabolites. Artemisia annua, for example, after suffering metabolic stress showed a 60% increase in its levels of artemisinin, an active substance against P. falciparum. On the other hand, it was possible to observe a rapid decrease in dihydroartemisinic acid, which had been converted to artemisinin (Wallarta et al., 2000).

Issues related to seasonality and amount of rainfall can influence the production of secondary metabolites. In Hypericum perforatum, it is possible to observe an increase in the production of flavonoids, hypericins and chlorogenic acid in flowers under hydric stress, while the concentration levels of hyperforins drop drastically (Waterman e Mole, 1989).

Few studies report the relationship between changes in active compounds in high altitude regions. Of the few studies documented, a decrease was observed in deterpene alkaloids in Aconitum napellus and piperidines in Lobelia inflata at high altitudes (Evans, 1996).

4. Conclusions

In view of the results obtained in this study, it is possible to observe the growth in in vitro studies with plants with medicinal potential for treating malaria, in addition, it is worth mentioning that many important findings have already been reported and implemented by the pharmaceutical industries. However, it is still necessary to invest in studies and technologies to detect new chemical targets with antimalarial potential.

In this study, in addition to conducting a systematic literature review, we also sought to confirm whether the plants mentioned in ethnobotanical surveys and in vitro studies had effects on malaria parasites. Of the 8 plants cited in botanical
surveys, 5 ethnospecies were also being studied for their therapeutic potential for malaria in vitro. This correlation demonstrated the importance of combining empirical and scientific knowledge in the search for strategies for new prototypes of natural origin for various diseases, as well as the geo-environmental conditions of the site of this plant, since these factors can alter its chemical components.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The team from the Research Centro de Pesquisa em Medicina Tropical (CEPEM/SESAU) and Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO), Porto Velho-CALAMA, and the study collaborators.

Funding

The authors express their gratitude to the staff of the Centro de Pesquisa em Medicina Tropical (CEPEM/SESAU) and Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO), Porto Velho-CALAMA, for their financial support.

References

Abdillah, S., Farida, Y., Kartiningisih, Sandhuatami, N. M. D., & Mohamad, K. (2019). Antimalarial activity and toxicity evaluation of the alkaloid-rich fraction of Momordica charantia fruits. *International Journal of Pharmaceutical Sciences and Research, 10*(5), 2516–2522. doi: 10.13040/IJPSR.0975-8232.10(5).2516-22

Adams, M., Gschwind, S., Zimmermann, S., Kaiser, M., & Hamburger, M. (2011). Renaissance remedies: Antiplasmodial protostane triterpenoids from *Alisma plantago-aquaticum* L. (Alismataceae). *Journal of Ethnopharmacology, 135*(1), 43–47. doi: 10.1016/j.jep.2011.02.026

Adia, M. M., Emami, S. N., Byamukama, R., Faye, I., & Borg-Karlson, A.-K. (2016). Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. *Journal of Ethnopharmacology, 186*, 14–19. doi: 10.1016/j.jep.2016.03.047

Adinortey, M. B., Galyuon, I., & Asamoah, N. O. (2013). Trema orientalis Linn. Blume: A potential for prospecting for drugs for various uses. *Pharmacognosy Reviews, 7*(13), 67–72. doi: 10.4103/0973-7847.112582

Ajayeoba, E. O., Ashidi, J. S., Okpako, L. C., Houghton, P. J., & Wright, C. W. (2008). Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitis amurensis. *Phytotherapy Research, 22*(4), 544–549. doi: 10.1002/ptr

Asase, A., Akwetey, G. A., & Achel, D. G. (2010). Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. *Journal of Ethnopharmacology, 129*(3), 367–376. doi: 10.1016/j.jep.2010.04.001

Bassat, Q., Maiga-Ascofaré, O., May, J., Clain, J., Mombo-Ngoma, G., Groger, M., Adegnika, A. A., Agobé, J.-C. D., Djimde, A., Mischlinger, J., & Ramharter, M. (2022). Challenges in the clinical development pathway for triple and multiple drug combinations in the treatment of uncomplicated falciparum malaria. *Malaria Journal, 21*(1), 61. doi: 10.1186/s12936-022-04079-9

Benoit-Vical, F., Grellier, P., Abdoulaye, A., Moussa, I., Ousmane, A., Berry, A., Bhiri, K., & Poupat, C. (2006). *In vitro and in vivo* antiplasmodial activity of *Momordica balsamina* alone or in a traditional mixture. *Chemotherapy, 52*(6), 288–292. doi: 10.1159/000095960

Bermúdez, M., Moreno-Pérez, D. A., Arévalo-Pinzón, G., Curtidor, H., & Patarroyo, M. A. (2018). *Plasmodium vivax in vitro* continuous culture: the spoke in the wheel. *Malaria Journal, 17*(1), 301. doi: 10.1186/s12936-018-2456-5

Bero, J., Banon, H., Jonville, M.-C., Frédérich, M., Bghuidi, F., DeMol, P., Moudachirou, M., & Quetin-Leclercq, J. (2009). *In vitro* antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria. *Journal of Ethnopharmacology, 122*(3), 439–444. doi: 10.1016/j.jep.2009.02.004

Bertani, S., Houël, E., Jullian, V., Bourdy, G., Valentin, A., Sten, D., & Deharo, E. (2012). New findings on Simalikalacton D, an antimalarial compound from Quassia amara L. (Simaroubaceae). *Experimental Parasitology, 130*(4), 341–347. doi: 10.1016/j.exppara.2012.02.013

Bhat, R., & Karim, A. A. (2010). Tongkat Ali (Eurycoma longifolia Jack): A review on its ethnobotany and pharmacological importance. *Fitoterapia, 81*(7), 669–679. doi: 10.1016/j.fitote.2010.04.006

Bowers, M. D., & Stamp, N. E. (1993). Effects of Plant Age, Genotype and Herbivory on Plantago Performance and Chemistry. *Ecology, 74*(6), 1778–1791. doi: 10.2307/1939936
Kumaraj, C., Kaushik, N. K., Rahuman, A. A., Mohanakrishnan, D., Bagavan, A., Elango, G., Zahir, A. A., Santoshkumar, T., Marinuthu, S., Jayaseelan, C., Kirthi, A. V., Rajakumar, G., Velayutham, K., & Sahal, D. (2012). Antimalarial activities of medicinal plants traditionally used in the villages of Dharmapuri regions of South India. Journal of Ethnopharmacology, 141(3), 796–802. doi:10.1016/j.jep.2012.03.003

Karlo, S. D., Tchacundo, T., Ouattara, L., Anani, K., Savadogo, A., Agbonon, A., Attaia, M., Ben, de Souza, C., Sakly, M., & Simpore, J. (2011). Antimicrobial, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. Asian Pacific Journal of Tropical Medicine, 4(10), 808–813. doi:10.1016/S1995-7645(11)60199-5

Kim, S., Sakamoto, I., Morimoto, K., Sakata, M., Yamasaki, K., & Tanaka, O. (1981). Seasonal Variation of Saponins, Sucrose and Monosaccharides in Cultivated Ginseng Roots. Planta Medica, 42(06), 181–186. doi:10.1055/s-2007-971623

Kotepevi, M., Kotepevi, K. U., De Jesus Milanez, G., & Masangkay, F. R. (2020). Plasmodium spp. mixed infection leading to severe malaria: a systematic review and meta-analysis. Scientific Reports, 10(1), 11068. doi:10.1038/s41598-020-68082-3

Koudouvo, K., Karou, S. D., Ilboudo, L., Baghade, K., Essien, K., Aklkokou, K., de Souza, C., Simpore, J., & Gbéassor, M. (2011). In vitro antiplasmodal activity of crude extracts from Togolese medicinal plants. Asian Pacific Journal of Tropical Medicine, 4(2), 129–132. doi:10.1016/S1995-7645(11)60052-7

Kovenden, K., Murugan, K., Panneerselvam, C., Aaruthi, N., Kumar, P. M., Subramaniam, J., Amerasan, D., Kalimuthu, K., & Vincent, S. (2012). Antimalarial activity of Curcica papaya (Family: Caricaceae) leaf extract against Plasmodium falciparum. Asian Pacific Journal of Tropical Disease, 2(SUPPL.1), S306–S311. doi:10.1016/S2222-1808(12)60171-6

Larayetan, R., Ologola, Z. S., Ogumnola, O. O., & Ladokun, A. (2019). Phytochemical Constituents, Antioxidant, Cytotoxicity, Antimicrobial, Antityrpanosomal, and Antimalarial Potentials of the Crude Extracts of Callistemon citrinus. Evidence-Based Complementary and Alternative Medicine, 2019, 1–14. doi:10.1155/2019/5410923

Leang, R., Taylor, W. R. J., Bouth, D. M., Song, L., Tarning, J., Char, M. C., Kim, S., Sakamoto, I., Morimoto, K., Sakata, M., Yamasaki, K., & Tanaka, O. (1981). Seasonal Variation of Saponins, Sucrose and Monosaccharides in Cultivated Ginseng Roots. Planta Medica, 42(06), 181–186. doi:10.1055/s-2007-971623

Menković, N., Savikin-Fodulović, K., & Savin, K. (2000). Chemical Composition Variations in the Amount of Secondary Compounds in Gentiana lutea Leaves and Flowers. Planta Medica, 66(02), 178–180. doi:10.1055/s-0029-1243126

Menardo, D., Khim, N., Bégahin, J., Adegnika, A. A., Shafiul, Alam, M., Amoudou, O., Rahim-Awah, G., Barnadas, C., Berry, A., Boum, Y., Bustos, M. D., Cao, J., Chen, J.-H., Collet, L., Cui, L., Thakur, G.-D., Dieye, A., Djallé, D., Donkenoo, M. A., ... Mercereau-Pujolas, O. (2016). A Worldwide Map of Plasmodium falciparum K13-Propellor Polymorphisms. New England Journal of Medicine, 374(25), 2453–2464. doi:10.1056/NEJMoa1511317

Kariuki, M., Tona, L., Mampunza, M., Niamayralio, N., Muanda, T., Muyembe, T., Musamba, T., Mets, T., Cimanga, K., Totté, J., Pieters, L., & Vlietinck, A. (2012). Antimalarial Efficacy of a Quantified Extract of Nauclea obgenii Stem Bark in Human Adult Volunteers with Diagnosed Uncomplicated falciparum Malaria. Part 2: A Clinical Phase IIB Trial. Planta Medica, 78(09), 853–860. doi:10.1055/s-0031-1298488

Misra, K., Dash, A. P., Swain, B. K., & Dey, N. (2006). Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malaria Journal, 5(1), 26. doi:10.1186/1475-2875-5-26

Mohanty, S., Srivastava, P., Maurya, A. K., Cheema, H. S., Shanker, K., Dhawan, S., Darokar, M. P., & Bawankule, D. U. (2013). Antimalarial safety evaluation of Placbea lanceolata (DC.) Oliv. & H.: In vitro and in vivo study. Journal of Ethnopharmacology, 149(3), 797–802. doi:10.1016/j.jep.2013.08.003

Moraes, C. F., Jesus, P. G. de, Chechetto, F., & Machado, V. F. S. (2020). Plantas medicinales e fitoterapia no SUS em Itapeva/SP: integrando saberes e conhecimentos para o cuidado em saúde. Revista Fitos, 14(3), 333–340. doi:10.32712/2446-4775.2019.898

Mukungu, A., Abega, K., Okalebo, F., Ingwela, R., & Mwangi, J. (2016). Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-county, Kenya. Journal of Ethnopharmacology, 194, 98–107. doi:10.1016/j.jep.2016.08.050

Murebwayire, S., Ingkaninan, K., Changwijit, K., Frédéric, M., & Dzuz, P. (2009). Trichilia scelexii (Pierre) Diele (Menispermaceae), a potential source of acetylcholinesterase inhibitors. Journal of Pharmacy and Pharmacology, 61(1), 103–110. doi:10.1211/jpp61/01.0014

Muthaura, C. N., Rukungu, G. M., Chhabra, S. C., Omar, S. A., Guantai, A. N., Gathirwa, J. W., Tolo, F. M., Mwitiari, P. G., Keter, L. K., Kirira, P. G., Kimani, C. W., Mungi, G. M., & Nyagi, E. N. M. (2007). Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. Journal of Ethnopharmacology, 112(3), 545–551. doi:10.1016/j.jep.2007.04.018

Nagendrappa, P. B., Naik, M. P., & Payyappallimani, U. (2013). Ethnobotanical survey of malaria prophylactic remedies in Odisha, India. Journal of Ethnopharmacology, 146(3), 768–772. doi:10.1016/j.jep.2013.02.003

Naghibi, F., Esmaeili, S., Abdullah, N. R., Nateghpour, M., Taghvai, M., Kamkar, S., & Mosaddegh, M. (2013). In Vitro and In Vivo Antimalarial Evaluations of Myrtle Extract, A Plant Traditionally Used for Treatment of Parasitic Disorders. BioMed Research International, 2013, 1–5. doi:10.1155/2013/316185

Ndamba, J., Lemmich, E., & Malgaard, P. (1993). Investigation of the diurnal, ontogenetic and seasonal variation in the molluscidal saponin content of Phytoecia dendrocandra aqueous berry extracts. Phytochemistry, 35(1), 95–99. doi:10.1016/S0031-9422(00)90515-6
Tajbakhsh, E., Kwenti, T. E., Kheyri, P., Nezaratizade, S., Lindsay, D. S., & Khamesipour, F. (2021). Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature. *Malaria Journal, 20*(1), 349. doi: 10.1186/s12936-021-03866-0

Tommichsky, B., Ming, L. C., Kinupp, V. F., de Chaves, F. C. M. (2017). Ethnobotanical study of antimalarial plants in the middle region of the Negro River, Amazonas, Brazil. *Acta Amazonica, 47*(3), 203–212. doi: 10.5900/1809-4392201701191

Traoré, M., Diallo, A., Nicolaé, J. B., Tinto, H., Dakuyo, P., Ouédraogo, J. P., & Guiguemdé, T. R. (2008). Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitus amurensis. *Phytotherapy Research, 22*(4), 544–549. doi: 10.1002/ptr

Tomchinsky, B., Ming, L. C., Kinupp, V. F., Hidalgo, A. de F., & Chaves, F. C. M. (2017). Ethnobotanical study of antimalarial plants in the middle region of the Negro River, Amazonas, Brazil. *Acta Amazonica, 47*(3), 203–212. doi: 10.1590/1809-4392201701191

Traoré, M., Diallo, A., Nicolaé, J. B., Tinto, H., Dakuyo, P., Ouédraogo, J. P., Guiguemdé, T. R. (2008). Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitus amurensis. *Phytotherapy Research, 22*(4), 544–549. doi: 10.1002/ptr

Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. *Nature Medicine, 17*(10), 1217–1220. doi: 10.1038/nm.2471

van der Pluijm, R. W., Amaratunga, C., Dhorda, M., & Dondorp, A. M. (2021). Triple Artemisinin-Based Combination Therapies for Malaria – A New Paradigm? *Trends in Parasitology, 37*(1), 15–24. doi: 10.1016/j.pt.2020.09.011

Vargas-Smístera, A. F., Pabon-Vidal, Adriana; Rios-Orrego, Alexandra; Ramerez, G., & López-Barrios, E. P. (2018). Evaluacion in vitro de la actividad Antiplasmodia y citotoxica de plantas del sur pacífico Colombiano (Tumaco, Nariño). *Biotecnología en el Sector Agropecuario y Agroindustrial Métricas, 16*(2), 79–87. doi: https://doi.org/10.18684/bsaa.16n2.1168

Waako, P. J., Gumede, B., Smith, P., & Folb, P. I. (2005). The in vitro and in vivo antimalarial activity of *Cardiospermum halicacabum* L. and *Momordica foetida* Schumch. Et Thom. *Journal of Ethnopharmacology, 99*(1), 137–143. doi: 10.1016/j.jep.2005.02.017

Waffo, K. A. F., Coombes, P. H., Crouch, N. R., Mulholland, D. A., El Amin, S. M. M., & Smith, P. J. (2007). Acridone and furanoquinoline alkaloids from *Teclea gerrardii* (Rutaceae: Toddalioideae) of southern Africa. *Phytochemistry, 68*(5), 665–667. doi: 10.1016/j.phytochem.2006.10.011

Wallaart, T. E., Pras, N., & Quax, W. J. (2000). Seasonal Variation of Artemisinin and its Biosynthetic Precursors in Plants of *Artemisia annua* of Different Geographical Origin: Proof for the Existence of Chemotypes. *Planta Medica, 66*(1), 57–62. doi: 10.1055/s-2000-11115

WATERMAN, P. G., & MOLE, S. (1989). In Insect-plant interactions (B. Raton (org.); 1º ed.). 4.

World Health Organization – WHO. (2021). World malaria report. Recuperado de https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021

Yetein, M. H., Houessou, L. G., Lougbégnon, T. O., Teka, O., & Tente, B. (2013). Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). *Journal of Ethnopharmacology, 146*(1), 154–163. doi: 10.1016/j.jep.2012.12.022

Zidorn, C., & Stuppner, H. (2001). Evaluation of chemosystematic characters in the genus *Leontodon* (Asteraceae). *TAXON, 50*(1), 115–133. doi: 10.2307/1224515

Zobayed, S. M. A., Afreen, F., & Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. *Plant Physiology and Biochemistry, 43*(10–11), 977–984. doi: 10.1016/j.plaphy.2005.07.013