ON TRACES AND MODIFIED FREDHOLM DETERMINANTS
FOR HALF-LINE SCHRÖDINGER OPERATORS
WITH PURELY DISCRETE SPECTRA

FRITZ GESZTESY AND KLAUS KIRSTEN

Abstract. After recalling a fundamental identity relating traces and modified
Fredholm determinants, we apply it to a class of half-line Schrödinger operators
\((-d^2/dx^2) + q\) on \((0, \infty)\) with purely discrete spectra. Roughly speaking, the
class considered is generated by potentials \(q\) that, for some fixed \(C_0 > 0, \, \varepsilon > 0, \, x_0 \in (0, \infty)\), diverge at infinity in the manner that \(q(x) \geq C_0 x^{(2/3)+\varepsilon_0}\) for all \(x \geq x_0\). We treat all self-adjoint boundary conditions at the left endpoint 0.

1. Introduction

To set the stage for describing the principal purpose of this note, we assume that
\(q\) satisfies \(q \in L^1_{\text{loc}}(\mathbb{R}_+; dx)\), \(q\) real-valued a.e. on \(\mathbb{R}_+\), and that for some \(\varepsilon_0 > 0, \, C_0 > 0, \, x_0 \in \mathbb{R}_+\), and sufficiently large \(x_0 > 0\),

\[q(x) \geq C_0 x^{(2/3)+\varepsilon_0}, \quad x \in (x_0, \infty). \]

(1.1)

Next, we introduce the half-line Schrödinger operator \(H_{+\alpha}\) in \(L^2(\mathbb{R}_+; dx)\) as the
\(L^2\)-realization of the differential expression \(\tau_+\) of the type

\[\tau_+ = -\frac{d^2}{dx^2} + q(x) \quad \text{for a.e. } x \in \mathbb{R}_+ \]

(1.2)

(here \(\mathbb{R}_+ = (0, \infty)\)), and a self-adjoint boundary condition of the form

\[\sin(\alpha)g'(0) + \cos(\alpha)g(0) = 0, \quad \alpha \in [0, \pi] \]

(1.3)

Date: April 23, 2018.

2010 Mathematics Subject Classification. Primary: 47A10, 47B10, 47G10. Secondary: 34B27, 34L40.

Key words and phrases. Traces, (modified) Fredholm determinants, semi-separable integral kernels, Sturm–Liouville operators, discrete spectrum.

K.K. was supported by the Baylor University Summer Sabbatical Program.
for g in the domain of $H_{+,\alpha}$. Then under appropriate additional technical assumptions on q (cf. Hypothesis 3.1), we will prove in Theorem 3.3 that

$$\text{tr}_{L^2(\mathbb{R}_+;dx)}((H_{+,\alpha} - z I_+)^{-1} - (H_{+,\alpha} - z_0 I_+)^{-1}) = -\frac{d}{dz} \ln \left(\det_{2,L^2(\mathbb{R}_+,dx)}(I_+ - (z - z_0)(H_{+,\alpha} - z_0 I_+)^{-1}) \right)$$

$$= \frac{d}{dz} \ln \left(\sin(\alpha) f'_{+,1}(z,0,x_0) + \cos(\alpha) f_{+,1}(z,0,x_0) \right) \bigg|_{z=z_0}$$

$$- \frac{d}{dz} \ln \left(\sin(\alpha) f'_{+,1}(z,0,x_0) + \cos(\alpha) f_{+,1}(z,0,x_0) \right)$$

$$+ \frac{1}{2} I(z, z_0, x_0),$$

(1.4)

(with I_+ abbreviating the identity operator in $L^2(\mathbb{R}_+;dx)$) and

$$\det_{2,L^2(\mathbb{R}_+,dx)} \left(I_+ - (z - z_0)(H_{+,\alpha} - z_0 I_+)^{-1} \right)$$

$$= \left[\begin{array}{c} \sin(\alpha) f'_{+,1}(z,0,x_0) + \cos(\alpha) f_{+,1}(z,0,x_0) \\ \sin(\alpha) f'_{+,1}(z,0,x_0) + \cos(\alpha) f_{+,1}(z,0,x_0) \end{array} \right]$$

$$\times \exp \left(- (z - z_0) \frac{\sin(\alpha) f'_{+,1}(z,0,x_0) + \cos(\alpha) f_{+,1}(z,0,x_0)}{\sin(\alpha) f'_{+,1}(z,0,x_0) + \cos(\alpha) f_{+,1}(z,0,x_0)} \right)$$

$$\times \exp \left(- \frac{1}{2} \int_{z_0}^{z} d\zeta I(\zeta, z_0, x_0) \right).$$

(1.5)

Here we abbreviated $t = d/dx$, $\cdot = d/dz$,

$$I(z, z_0, x_0) = \int_{z_0}^{\infty} dx \{ [q(x) - z]^{-1/2} - [q(x) - z_0]^{-1/2} \},$$

(1.6)

and $f_{+,1}(z,x,x_0)$ represents an analog of the Jost solution in the case where q denotes a short-range potential (i.e., one that decays sufficiently fast as $x \to \infty$). Finally, $\det_{2}(\cdot)$ abbreviates the modified Fredholm determinant naturally associated with Hilbert–Schmidt operators.

Following the recent paper by Menon [22], which motivated us to write the present note, we then revisit the exactly solvable example $q(x) = x$, $x \in \mathbb{R}_+$, in Example 3.4.

In our final result, Theorem 3.5, we will also treat the case of different boundary condition parameters $\alpha_j \in [0, \pi]$, $j = 1, 2$, and derive the following extension of (1.4),

$$\text{tr}_{L^2(\mathbb{R}_+;dx)}((H_{+,\alpha_2} - z I_+)^{-1} - (H_{+,\alpha_1} - z_0 I_+)^{-1})$$

$$= -\frac{d}{dz} \ln \left(\sin(\alpha_2) f'_{+,1}(z,0,x_0) + \cos(\alpha_2) f_{+,1}(z,0,x_0) \right)$$

$$+ \frac{1}{2} I(z, z_0, x_0).$$

(1.7)

Our proofs of (1.4), (1.5), and (1.6) in Section 3 are based on fundamental connections between traces and modified Fredholm determinants briefly discussed in Section 2 in particular, we will employ the relation (with I_H the identity operator
in \(\mathcal{H} \)
\[
\text{tr}_\mathcal{H} \left((A - zI_\mathcal{H})^{-1} - (A - z_0I_\mathcal{H})^{-1} \right) = - (d/dz) \ln \left(\det_{\mathcal{H},2} \{ I_\mathcal{H} - (z - z_0)(A - z_0I_\mathcal{H})^{-1} \} \right),
\]
where \(A \) denotes a densely defined and closed operator in \(\mathcal{H} \) with \(\rho(A) \neq \emptyset \), and \((A - zI_\mathcal{H})^{-1} \in \mathcal{B}_2(\mathcal{H}), z \in \rho(A) \).

Finally, we briefly summarize some of the basic notation used in this paper. Let \(\mathcal{H} \) be a separable, complex Hilbert space, \((\cdot, \cdot)_\mathcal{H} \) the scalar product in \(\mathcal{H} \) (linear in the second factor), and \(I_\mathcal{H} \) the identity operator in \(\mathcal{H} \). The domain and range of an operator \(T \) are denoted by \(\text{dom}(T) \) and \(\text{ran}(T) \), respectively. The kernel (null space) of \(T \) is denoted by \(\ker(T) \). The spectrum, point spectrum, and resolvent set of \(T \) (i.e., points in \(\sigma(T) \) which are isolated from the rest of \(\sigma(T) \), and which are eigenvalues of \(T \) of finite algebraic multiplicity) is abbreviated by \(\sigma_a(T) \).

The algebraic multiplicity \(m_a(z_0; T) \) of an eigenvalue \(z_0 \in \sigma_a(T) \) is the dimension of the range of the corresponding Riesz projection \(P(z_0; T) \),
\[
m_a(z_0; T) = \dim(\text{ran}(P(z_0; T))) = \text{tr}_\mathcal{H}(P(z_0; T)),
\]
where (with the symbol \(\hat{\cdot} \) denoting counterclockwise oriented contour integrals)
\[
P(z_0; T) = \frac{-1}{2\pi i} \oint_{C(z_0; \varepsilon)} d\zeta (T - \zeta I_\mathcal{H})^{-1},
\]
for \(0 < \varepsilon < \varepsilon_0 \) and \(D(z_0; \varepsilon_0) \setminus \{ z_0 \} \subset \rho(T) \); here \(D(z_0; r_0) \subset \mathbb{C} \) is the open disk with center \(z_0 \) and radius \(r_0 > 0 \), and \(C(z_0; r_0) = \partial D(z_0; r_0) \) the corresponding circle.

The Banach spaces of bounded and compact linear operators in \(\mathcal{H} \) are denoted by \(\mathcal{B}(\mathcal{H}) \) and \(\mathcal{B}_\infty(\mathcal{H}) \), respectively. Similarly, the Schatten–von Neumann (trace) ideals will subsequently be denoted by \(\mathcal{B}_p(\mathcal{H}), p \in [1, \infty) \). In addition, \(\text{tr}_\mathcal{H}(T) \) denotes the trace of a trace class operator \(T \in \mathcal{B}_1(\mathcal{H}) \), \(\det_{\mathcal{H}}(I_\mathcal{H} - T) \) the Fredholm determinant of \(I_\mathcal{H} - T \), and for \(p \in \mathbb{N}, p \geq 2 \), \(\det_{\mathcal{H},p}(I_\mathcal{H} - T) \) abbreviates the \(p \)-th modified Fredholm determinant of \(I_\mathcal{H} - T \).

2. TRACES AND (MODIFIED) FREDHOLM DETERMINANTS OF OPERATORS

In this section we recall some well-known formulas relating traces and (modified) Fredholm determinants. For background on the material used in this section see, for instance, \([11, 12, 13, \text{Ch. XIII}], [14, \text{Ch. IV}], [21, \text{Ch. 17}], [25], [26, \text{Ch. 3}]\).

To set the stage we start with densely defined, closed, linear operators \(A \) in \(\mathcal{H} \) having a trace class resolvent, and hence introduce the following assumption:

Hypothesis 2.1. Suppose that \(A \) is a densely defined and closed in \(\mathcal{H} \) with \(\rho(A) \neq \emptyset \), and \((A - zI_\mathcal{H})^{-1} \in \mathcal{B}_1(\mathcal{H}) \) for some (and hence for all) \(z \in \rho(A) \).

Given Hypothesis \(2.1 \) and \(z_0 \in \rho(A) \), consider the bounded, entire family \(A(\cdot) \) defined by
\[
A(z) := I_\mathcal{H} - (A - zI_\mathcal{H})(A - z_0I_\mathcal{H})^{-1} = (z - z_0)(A - z_0I_\mathcal{H})^{-1}, \quad z \in \mathbb{C}.
\]
Employing the formula (cf. \([14, \text{Sect. IV.1}]\), see also \([28, \text{Sect. I.7}]\)),
\[
\text{tr}_\mathcal{H}(I_\mathcal{H} - (T(z))^{-1}T'(z)) = -(d/dz)\ln(\det_{\mathcal{H}}(I_\mathcal{H} - T(z))),
\]
\[1\text{One applies the resolvent equation for } A \text{ and the binomial theorem.}
valid for a trace class-valued analytic family $T(\cdot)$ on an open set $\Omega \subset \mathbb{C}$ such that $(I_H - T(\cdot))^{-1} \in \mathcal{B}(\mathcal{H})$, and applying it to the entire family $A(\cdot)$ then results in

$$\text{tr}_H((A - zI_H)^{-1}) = -(d/dz)\ln(\det_H((A - zI_H)(A - z_0I_H)^{-1})), \quad z \in \rho(A).$$

(2.3)

One notes that the left- and hence the right-hand side of (2.3) is independent of the choice of $z_0 \in \rho(A)$.

Next, following the proof of [26, Theorem 3.5(c)] step by step, and employing a Weierstrass-type product formula (see, e.g., [26, Theorem 3.7]), yields the subsequent result (see also [28, Sect. I.7]).

Lemma 2.2. Assume Hypothesis 2.1 and let $\lambda_k \in \sigma(A)$ then

$$\det_H(I_H - (z - z_0)(A - z_0I_H)^{-1}) = (\lambda_k - z)^{m_s(\lambda_k)}[C_k + O(\lambda_k - z)], \quad C_k \neq 0$$

(2.4)

as z tends to λ_k, that is, the multiplicity of the zero of the Fredholm determinant $\det_H(I_H - (z - z_0)(A - z_0I_H)^{-1})$ at $z = \lambda_k$ equals the algebraic multiplicity of the eigenvalue λ_k of A.

In addition, denote the spectrum of A by $\sigma(A) = \{\lambda_k\}_{k \in \mathbb{N}}$, $\lambda_k \neq \lambda_{k'}$ for $k \neq k'$. Then

$$\det_H(I_H - (z - z_0)(A - z_0I_H)^{-1}) = \prod_{k \in \mathbb{N}} \left[1 - (z - z_0)(\lambda_k - z_0)^{-1}\right]^{m_s(\lambda_k)}$$

(2.5)

$$= \prod_{k \in \mathbb{N}} \left(\frac{\lambda_k - z}{\lambda_k - z_0}\right)^{m_s(\lambda_k)},$$

with absolutely convergent products in (2.5).

The case of trace class resolvent operators is tailor-made for a number of one-dimensional Sturm–Liouville operators (e.g., finite interval problems). But for applications to half-line problems with potentials behaving like x, or increasing slower than x at $+\infty$, and similarly for partial differential operators, traces of higher-order powers of resolvents need to be involved which naturally lead to modified Fredholm determinants as follows.

Hypothesis 2.3. Let $p \in \mathbb{N}$, $p \geq 2$, and suppose that A is densely defined and closed in \mathcal{H} with $\rho(A) \neq \emptyset$, and $(A - zI_H)^{-1} \in \mathcal{B}_p(\mathcal{H})$ for some (and hence for all) $z \in \rho(A)$.

Applying the formula

$$\text{tr}_H((I_H - T(z))^{-1}T(z)^{p-1}T'(z)) = -(d/dz)\ln(\det_{H,p}(I_H - T(z))),$$

(2.6)

valid for a $\mathcal{B}_p(\mathcal{H})$-valued analytic family $T(\cdot)$ on an open set $\Omega \subset \mathbb{C}$ such that $(I_H - T(\cdot))^{-1} \in \mathcal{B}(\mathcal{H})$, [14, Sect. IV.2] (see also [28, Sect. I.7]) to the entire family $A(\cdot)$ in (2.1), assuming Hypothesis 2.3 then yields

$$\begin{align*}
(z - z_0)^{p-1}\text{tr}_H((A - zI_H)^{-1}(A - z_0I_H)^{-1-p}) \\
= -(d/dz)\ln(\det_{H,p}(I_H - (z - z_0)(A - z_0I_H)^{-1})), \quad z \in \rho(A).
\end{align*}$$

(2.7)
In the special case \(p = 2 \) this yields
\[
\text{tr}_H((A - zI_H)^{-1} - (A - z_0I_H)^{-1}) = -(d/dz)\ln(\det_H(I_H - (z - z_0)(A - z_0I_H)^{-1})).
\]
(2.8)

We refer to Section 3 for an application of (2.8) to half-line Schrödinger operators with potentials diverging at infinity. For additional background and applications of (modified) Fredholm determinants to ordinary differential operators we also refer to [2], [3], [5], [7], [8], [10], [16]–[21], [23], and the extensive literature cited therein.

3. Schrödinger Operators on a Half-Line

We now illustrate (2.8) with the help of self-adjoint Schrödinger operators \(-d^2/dx^2 + q\) on the half-line \(\mathbb{R}_+ = (0, \infty)\) in the particular case where the potential \(q\) diverges at \(\infty\) and hence gives rise to a purely discrete spectrum (i.e., the absence of essential spectrum).

To this end we introduce the following set of assumptions on \(q\):

Hypothesis 3.1. Suppose \(q\) satisfies
\[
q \in L^1_{\text{loc}}(\mathbb{R}_+; dx), \quad q \text{ is real-valued a.e. on } \mathbb{R}_+,
\]
and for some \(\varepsilon_0 > 0, C_0 > 0,\) and sufficiently large \(x_0 > 0,\)
\[
q, q' \in AC([x_0, R]) \text{ for all } R > x_0, \quad q(x) \geq C_0 x^{2/3 + \varepsilon_0}, \quad x \in (x_0, \infty),
\]
\[
q'/q = o(q^{1/2}), \quad \text{as } x \to \infty,
\]
\[
(q^{-3/2}q')' \in L^1((x_0, \infty); dx).
\]

Given Hypothesis 3.1, we take \(\tau_+\) to be the Schrödinger differential expression
\[
\tau_+ = -d^2/dx^2 + q(x) \text{ for a.e. } x \in \mathbb{R}_+,
\]
and note that \(\tau_+\) is regular at 0 and in the limit point case at \(+\infty\). The maximal operator \(H_{+,\text{max}}\) in \(L^2(\mathbb{R}_+; dx)\) associated with \(\tau_+\) is defined by
\[
H_{+,\text{max}} f = \tau_+ f,
\]
\[
f \in \text{dom}(H_{+,\text{max}}) = \{ g \in L^2(\mathbb{R}_+; dx) \mid g, g' \in AC([0, b]) \text{ for all } b > 0; \tau_+ g \in L^2(\mathbb{R}_+; dx) \},
\]
while the minimal operator \(H_{+,\text{min}}\) in \(L^2(\mathbb{R}_+; dx)\) associated with \(\tau_+\) is given by
\[
H_{+,\text{min}} f = \tau_+ f,
\]
\[
f \in \text{dom}(H_{+,\text{min}}) = \{ g \in L^2(\mathbb{R}_+; dx) \mid g, g' \in AC([0, b]) \text{ for all } b > 0; \}
\]
\[
g(0) = g'(0) = 0; \tau_+ g \in L^2(\mathbb{R}_+; dx) \}.
\]

One notes that the operator \(H_{+,\text{min}}\) is symmetric and that
\[
H_{+,\text{min}}^* = H_{+,\text{max}}, \quad H_{+,\text{max}}^* = H_{+,\text{min}}
\]
(3.9)
Moreover, all self-adjoint extensions of $H_{+, \text{min}}$ are given by the one-parameter family in $L^2(\mathbb{R}_+; dx)$

$$H_{+, \alpha}f = \tau_+ f,$$

$$f \in \text{dom}(H_{+, \alpha}) = \{g \in L^2(\mathbb{R}_+; dx) \mid g, g' \in AC([0, b]) \text{ for all } b > 0; \}
\sin(\alpha)g'(0) + \cos(\alpha)g(0) = 0; \tau_+ g \in L^2(\mathbb{R}_+; dx)\},$$

$$\alpha \in [0, \pi).$$

Next, we introduce the fundamental system of solutions $\phi_\alpha(z, \cdot)$ and $\theta_\alpha(z, \cdot)$, $\alpha \in [0, \pi)$, $z \in \mathbb{C}$, associated with $H_{+, \alpha}$ satisfying

$$\tau_+ \psi(z, \cdot)(x) = z \psi(z, x), \quad z \in \mathbb{C}, \quad x \in \mathbb{R}_+, \quad (3.11)$$

and the initial conditions

$$\phi_\alpha(z, 0) = -\sin(\alpha), \quad \phi'_\alpha(z, 0) = \cos(\alpha), \quad \theta_\alpha(z, 0) = \cos(\alpha), \quad \theta'_\alpha(z, 0) = \sin(\alpha). \quad (3.12)$$

Explicitly, one infers

$$\phi_\alpha(z, x) = \phi_\alpha^{(0)}(z, x) + \int_0^x dx' \frac{\sin(z^{1/2}(x - x'))}{z^{1/2}} q(x') \phi_\alpha(z, x'), \quad z \in \mathbb{C}, \quad \text{Im}(z^{1/2}) \geq 0, \quad x \geq 0,$$

with

$$\phi_\alpha^{(0)}(z, x) = \cos(\alpha) - \frac{\sin(z^{1/2}x)}{z^{1/2}} - \sin(\alpha) \cos(z^{1/2}x), \quad z \in \mathbb{C}, \quad \text{Im}(z^{1/2}) \geq 0, \quad x \geq 0,$$

and

$$\theta_\alpha(z, x) = \theta_\alpha^{(0)}(z, x) + \int_0^x dx' \frac{\sin(z^{1/2}(x - x'))}{z^{1/2}} q(x') \theta_\alpha(z, x'), \quad z \in \mathbb{C}, \quad \text{Im}(z^{1/2}) \geq 0, \quad x \geq 0,$$

with

$$\theta_\alpha^{(0)}(z, x) = \cos(\alpha) \cos(z^{1/2}x) + \sin(\alpha) \frac{\sin(z^{1/2}x)}{z^{1/2}}, \quad z \in \mathbb{C}, \quad \text{Im}(z^{1/2}) \geq 0, \quad x \geq 0. \quad (3.16)$$

The Weyl–Titchmarsh solution, $\psi_{+, \alpha}(z, \cdot)$, and Weyl–Titchmarsh m-function, $m_{+, \alpha}(z)$, corresponding to $H_{+, \alpha}$, $\alpha \in [0, \pi)$, are then related via,

$$\psi_{+, \alpha}(z, \cdot) = \theta_\alpha(z, \cdot) + m_{+, \alpha}(z) \phi_\alpha(z, \cdot), \quad z \in \rho(H_{+, \alpha}), \quad \alpha \in [0, \pi), \quad (3.17)$$

where

$$\psi_{+, \alpha}(z, \cdot) \in L^2(\mathbb{R}_+; dx), \quad z \in \rho(H_{+, \alpha}), \quad \alpha \in [0, \pi). \quad (3.18)$$

Let I_+ be the identity operator on $L^2(\mathbb{R}_+; dx)$. One then obtains for the Green’s function $G_{+, \alpha}$ of $H_{+, \alpha}$ expressed in terms of ϕ_α and $\psi_{+, \alpha}$,

$$G_{+, \alpha}(z, x') = (H_{+, \alpha} - zI_+)^{-1}(x, x')$$

$$= \begin{cases} \phi_\alpha(z, x) \psi_{+, \alpha}(z, x'), & 0 \leq x \leq x' < \infty, \\ \phi_\alpha(z, x') \psi_{+, \alpha}(z, x), & 0 \leq x' \leq x < \infty, \end{cases}, \quad z \in \rho(H_{+, \alpha}), \quad \alpha \in [0, \pi), \quad (3.19)$$

utilizing

$$W(\theta_\alpha(z, \cdot), \phi_\alpha(z, \cdot)) = 1, \quad z \in \mathbb{C}, \quad \alpha \in [0, \pi), \quad (3.20)$$
implying $W(\psi_{+,\alpha}(z, \cdot), \phi_{\alpha}(z, \cdot)) = 1$, $z \in \rho(H_{+,\alpha})$.

By [6 Corollary 2.2.1], Hypothesis 3.1 implies the existence of two solutions $f_{+,j}(\lambda, \cdot, x_0)$, $j = 1, 2$, of $\tau_+ \psi(\lambda, \cdot) = \lambda \psi(\lambda, \cdot)$, $\lambda < 0$ sufficiently negative (and below $\inf(\sigma(H_{+,\alpha})))$, satisfying

$$f_{+,j}(\lambda, x, x_0) = 2^{-1/2} |q(x) - \lambda|^{-1/4} \exp \left(-1j \int_{x_0}^{x} \frac{dx'}{q(x') - \lambda} \right) \times [1 + o(1)],$$

$$f'_{+,j}(\lambda, x, x_0) = -2^{-1/2} |q(x) - \lambda|^{-1/4} \exp \left(-1j \int_{x_0}^{x} \frac{dx'}{q(x') - \lambda} \right) \times [1 + o(1)], \quad j = 1, 2,$$

with

$$W(f_{+,1}(\lambda, \cdot, x_0), f_{+,2}(\lambda, \cdot, x_0)) = 1.$$ \hfill (3.22)

(Here we explicitly introduced the x_0 dependence of $f_{+,j}$, implied by the choice of normalization in (3.21), as keeping track of it later on will become a necessity.) In particular, $f_{+,1}(\lambda, \cdot, x_0)$ now plays the analog of the Jost solution in the case of a short-range potential q (i.e., $q \in \mathcal{L}^1(\mathbb{R}^3; (1 + x)dx)$, q real-valued a.e. on \mathbb{R}^3.

By the limit point property of τ_+ at $+\infty$ and the asymptotic behavior of $f_{+,1}$ in (3.21) one infers, in addition,

$$\psi_{+,\alpha}(\lambda, \cdot) = f_{+,1}(\lambda, \cdot, x_0) \frac{[\sin(\alpha) f_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f_{+,1}(\lambda, 0, x_0)]}{[\sin(\alpha) f'_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f'_{+,1}(\lambda, 0, x_0)]},$$

$$\phi_{\alpha}(\lambda, \cdot) = [\cos(\alpha) f_{+,2}(\lambda, 0, x_0) + \sin(\alpha) f_{+,2}(\lambda, 0, x_0)] f_{+,2}(\lambda, \cdot, x_0) - \left[\cos(\alpha) f_{+,2}(\lambda, 0, x_0) + \sin(\alpha) f'_{+,2}(\lambda, 0, x_0) \right] f_{+,2}(\lambda, \cdot, x_0)$$

for $\lambda < 0$ sufficiently negative. Analytic continuation with respect to λ in (3.21) then yields the existence of a unique Jost-type solution $f_{+,1}(z, \cdot, x_0)$ satisfying

$$\tau_+ f_{+,1}(z, \cdot, x_0) = z f_{+,1}(z, \cdot, x_0), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

$$f_{+,1}(z, \cdot, x_0) \in \mathcal{L}^2(\mathbb{R}^3; dx), \quad z \in \mathbb{C} \setminus \mathbb{R},$$

coinciding with $f_{+,1}(\lambda, \cdot, x_0)$ for $z = \lambda < 0$ sufficiently negative. In addition one has

$$W(f_{+,1}(z, \cdot, x_0), \phi_{\alpha}(z, \cdot, x_0)) = \cos(\alpha) f_{+,1}(z, 0, x_0) + \sin(\alpha) f'_{+,1}(z, 0, x_0),$$

$$z \in \rho(H_{+,\alpha}),$$

which should be compared with the Jost function $f_+(z, 0)$ in the case where q represents a short-range potential and $\alpha = 0$.

In the following we want to illustrate how Hypothesis 2.3 and 2.7 apply to $H_{+,\alpha}$ in the case $p = 2$. For this purpose we first recall the following standard convergence property for trace ideals in \mathcal{H}:

Lemma 3.2. Let $q \in [1, \infty)$ and assume that $R, R_n, T, T_n \in \mathcal{B}(\mathcal{H})$, $n \in \mathbb{N}$, satisfy $s\text{-}\lim_{n \to \infty} R_n = R$ and $s\text{-}\lim_{n \to \infty} T_n = T$ and that $S, S_n \in \mathcal{B}(\mathcal{H})$, $n \in \mathbb{N}$, satisfy $s\text{-}\lim_{n \to \infty} \|S_n - \mathcal{T}_R S_n\|_{\mathcal{B}(\mathcal{H})} = 0$. Then \(\lim_{n \to \infty} \|R_n S_n T_n^* - R \mathcal{T}_R S_n T_n^*\|_{\mathcal{B}(\mathcal{H})} = 0\).

This follows, for instance, from [13 Theorem 1], [26, p. 28–29], or [28 Lemma 6.1.3] with a minor additional effort (taking adjoints, etc.).

Next, we introduce the family of self-adjoint projections P_R in $\mathcal{L}^2(\mathbb{R}^3; dx)$ via

$$(P_R f)(x) = \chi_{[0,R]}(x) f(x), \quad f \in \mathcal{L}^2(\mathbb{R}^3; dx), \quad R > 0,$$ \hfill (3.28)
with \(\chi_{[0, R]}(\cdot) \) the characteristic function associated with the interval \([0, R], R > 0\). \((P_0)\) will play the role of \(R_n, T_n \) in our application of Lemma 3.2 in the proof of Theorem 3.3 below.

One then obtains the following results.

Theorem 3.3. Assume Hypothesis 3.3, \(z, z_0 \in \rho(H_{+, \alpha}), \) and \(\alpha \in [0, \pi) \). Then,

\[
[(H_{+, \alpha} - zI_+)^{-1} - (H_{+, \alpha} - z_0I_+)^{-1}] \in \mathcal{B}_1(L^2(\mathbb{R}_+; dx)),
\]

(3.29)

and

\[
\text{tr}_{L^2(\mathbb{R}_+; dx)}((H_{+, \alpha} - zI_+)^{-1} - (H_{+, \alpha} - z_0I_+)^{-1})
\]

\[
= -\frac{d}{dz}\ln\left(\det_{L^2(\mathbb{R}_+; dx)}(I_+ - (z - z_0)(H_{+, \alpha} - z_0I_+)^{-1}) \right)
\]

\[
= \frac{d}{dz}\ln\left(\sin(\alpha)f_{+,1}'(z, 0, x_0) + \cos(\alpha)f_{+,1}(z, 0, x_0) \right)_{|z=z_0}
\]

\[
- \frac{d}{dz}\ln\left(\sin(\alpha)f_{+,1}'(z, 0, x_0) + \cos(\alpha)f_{+,1}(z, 0, x_0) \right)
\]

\[
+ \frac{1}{2} I(z, z_0, x_0),
\]

(3.30)

as well as,

\[
\det_{L^2(\mathbb{R}_+; dx)}(I_+ - (z - z_0)(H_{+, \alpha} - z_0I_+)^{-1})
\]

\[
= \left[\frac{\sin(\alpha)f_{+,1}'(z, 0, x_0) + \cos(\alpha)f_{+,1}(z, 0, x_0)}{\sin(\alpha)f_{+,1}'(z_0, 0, x_0) + \cos(\alpha)f_{+,1}(z_0, 0, x_0)} \right]
\]

\[
\times \exp\left(- (z - z_0)\frac{\sin(\alpha)f_{+,1}'(z, 0, x_0) + \cos(\alpha)f_{+,1}(z, 0, x_0)}{\sin(\alpha)f_{+,1}'(z_0, 0, x_0) + \cos(\alpha)f_{+,1}(z_0, 0, x_0)} \right)
\]

\[
\times \exp\left(- \frac{1}{2} \int_{z_0}^{z} d\zeta I(\zeta, z_0, x_0) \right),
\]

(3.31)

where we abbreviated \(\cdot = d/dz \) and

\[
I(z, z_0, x_0) = \int_{z_0}^{\infty} dx \{ [q(x) - z]^{-1/2} - [q(x) - z_0]^{-1/2} \}.
\]

(3.32)

Proof. Since the resolvents of \(H_{+, \alpha}, \alpha \in (0, \pi), \) and \(H_{+, 0} \) differ only by a rank-one operator, it suffices to choose \(\alpha = 0 \) when establishing (3.29). Employing the resolvent equation,

\[
(H_{+, 0} - zI_+)^{-1} - (H_{+, 0} - z_0I_+)^{-1} = (z - z_0)(H_{+, 0} - zI_+)^{-1}(H_{+, 0} - z_0I_+)^{-1},
\]

\[
z, z_0 \in \rho(H_{+, 0}),
\]

(3.33)

relation (3.29) follows upon establishing

\[
(H_{+, 0} - zI_+)^{-1} \in \mathcal{B}_2(L^2(\mathbb{R}_+; dx)), \quad z \in \rho(H_{+, 0}).
\]

(3.34)

To prove (3.34) in turn it suffices to establish the Hilbert–Schmidt property for some \(z = \lambda < 0 \) sufficiently negative. Given the Green’s function of \(H_{+, 0} \) in (3.19), it thus suffices to prove that

\[
\int_{\mathbb{R}_+} \int_{\mathbb{R}_+} dx\, dx' |\phi_0(\lambda, x) \psi_{+,0}(\lambda, x')|^2 < \infty.
\]

(3.35)
This can be verified, however, it is quicker to prove \(\text{(3.29)} \) directly, upon employing monotonicity of resolvents with respect to \(\lambda < 0 \) sufficiently negative, that is,

\[
(H_{+,0} - \lambda I_+)^{-1} \geq (H_{+,0} - \lambda_0 I_+)^{-1}, \quad \lambda_0 < \lambda < 0,
\]

with \(\lambda < 0 \) sufficiently negative, which will be assumed for the remainder of this proof.

We recall that a bounded, nonnegative (hence self-adjoint) integral operator with continuous integral kernel in \(L^2((a,b); dx) \), \([a,b] \subseteq \mathbb{R}_+ \) (specializing to the situation at hand), has a nonnegative integral kernel on the diagonal (cf., e.g., [4, Proposition 5.6.8]). Moreover, we will rely on Mercer’s theorem (see, e.g., [4, Proposition 5.6.9]), according to which a bounded, nonnegative integral operator in \(L^2((a,b); dx) \), with continuous integral kernel belongs to the trace class if and only if its integral kernel on the diagonal lies in \(L^1((a,b); dx) \).

Equations \(\text{(3.23)} \) and \(\text{(3.24)} \) yield for \(\alpha = 0 \),

\[
\phi_0(\lambda, \cdot) \psi_{+,0}(\lambda, \cdot) = f_{+,1}(\lambda, \cdot, x_0) f_{+,2}(\lambda, \cdot, x_0)
- f_{+,1}(\lambda, 0, x_0)^{-1} f_{+,2}(\lambda, 0, x_0) f_{+,1}(\lambda, \cdot, x_0)^2,
\]

and since by \(\text{(3.21)} \) for \(j = 1 \) integrability properties of \(\text{(3.37)} \) over \(\mathbb{R}_+ \) depend on those of \(f_{+,1}(\lambda, \cdot, x_0) f_{+,2}(\lambda, \cdot, x_0) \), we now investigate the latter on \([x_0, \infty) \).

Employing \(\text{(3.21)} \) once more then yields

\[
0 \leq [\phi_0(\lambda, x) \psi_{+,0}(\lambda, x) - \phi_0(\lambda_0, x) \psi_{+,0}(\lambda_0, x)]
= 2^{-1} \left\{ [q(x) - \lambda]^{-1/2} - [q(x) - \lambda_0]^{-1/2} \right\} [1 + o(1)]
\xrightarrow{x \to \infty} 4^{-1} (\lambda - \lambda_0) q(x)^{-3/2} [1 + o(1)]
\xrightarrow{x \to \infty} 4^{-1} (\lambda - \lambda_0) C_0 x^{-1-3\varepsilon_0/2} [1 + o(1)],
\]

according to \(\text{(3.33)} \), proving integrability near \(+\infty \) and hence \(\text{(3.29)} \).

By \(\text{(3.7)} \) with \(p = 2 \) this proves the first equality in \(\text{(3.30)} \).

To prove the second equality in \(\text{(3.30)} \), we now apply Lemma \(\text{3.2} \) in the trace class case \(q = 1 \) and combine it with \(\text{(3.29)} \) to arrive at

\[
\text{tr}_{L^2([a,b]; dx)} ((H_{+,\alpha} - \lambda I_+)^{-1} - (H_{+,\alpha} - \lambda_0 I_+)^{-1})
= \lim_{R \to \infty} \text{tr}_{L^2([a,b]; dx)} \left(P_R [(H_{+,\alpha} - \lambda I_+)^{-1} - (H_{+,\alpha} - \lambda_0 I_+)^{-1}] P_R \right)
= \lim_{R \to \infty} \int_0^R d\lambda \left[\phi_0(\lambda, x) \dot{\psi}_{+,\alpha}(\lambda, x) - \dot{\phi}_0(\lambda_0, x) \dot{\psi}_{+,\alpha}(\lambda_0, x) \right]
\]

\[
= \lim_{R \to \infty} \left[W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(R) - W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(R) \right]
+ W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(0) - W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(0)
\]

\[
= \lim_{R \to \infty} \left[W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(R) - W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(R) \right], \tag{3.39}
\]

since

\[
W(\phi_0(\lambda_0, \cdot), \dot{\psi}_{+,\alpha}(\lambda_0, \cdot))(0) = -\sin(\alpha) \dot{\psi}_{+,\alpha}(\lambda_0, 0) - \cos(\alpha) \dot{\psi}_{+,\alpha}(\lambda_0, 0)
= -\frac{d}{d\lambda} [\sin(\alpha) \psi_{+,\alpha}(\lambda, 0) + \cos(\alpha) \psi_{+,\alpha}(\lambda, 0)] = 0. \tag{3.40}
\]
It remains to analyze the right-hand side of (3.39). To this end we note that
\[\tau_+ \hat{f}_{+1}(z, x, x_0) = z \hat{f}_{+1}(z, x, x_0) + f_{+1}(z, x, x_0), \] (3.41)
and hence
\[\hat{f}_{+1}(z, x, x_0) = c_1(z) f_{+1}(z, x, x_0) + c_2(z) f_{+2}(z, x, x_0) + f_{+1}(z, x, x_0) \int_0^x dx' f_{+1}(z, x', x_0) f_{+2}(z, x', x_0) \] (3.42)
\[- f_{+2}(z, x, x_0) \int_0^x dx' f_{+1}(z, x', x_0)^2, \]
\[\hat{f}_{+1}(z, x, x_0) = c_1(z) f'_{+1}(z, x, x_0) + c_2(z) f'_{+2}(z, x, x_0) + f'_{+1}(z, x, x_0) \int_0^x dx' f_{+1}(z, x', x_0) f_{+2}(z, x', x_0) \] (3.43)
\[- f'_{+2}(z, x, x_0) \int_0^x dx' f_{+1}(z, x', x_0)^2. \]
Next, we claim that
\[c_2(z) = \int_0^\infty dx' f_{+1}(z, x', x_0)^2, \] (3.44)
and hence (3.42), (3.43) simplify to
\[\hat{f}_{+1}(z, x, x_0) = c_1(z) f_{+1}(z, x, x_0) + f_{+1}(z, x, x_0) \int_0^x dx' f_{+1}(z, x', x_0) f_{+2}(z, x', x_0) \] (3.45)
\[f_{+2}(z, x, x_0) \int_0^\infty dx' f_{+1}(z, x', x_0)^2, \]
\[\hat{f'}_{+1}(z, x, x_0) = c_1(z) f'_{+1}(z, x, x_0) + f'_{+1}(z, x, x_0) \int_0^x dx' f_{+1}(z, x', x_0) f_{+2}(z, x', x_0) \] (3.46)
\[f'_{+2}(z, x, x_0) \int_0^\infty dx' f_{+1}(z, x', x_0)^2. \]
To infer the necessity of (3.44) one can argue by contradiction as follows: If (3.44) does not hold, then integrating \(\hat{f}_{+1}(z, x) \) with respect to \(z \) from \(\lambda_0 \) to \(\lambda \) along the negative real axis on the left-hand side of (3.42) yields
\[\int_{\lambda_0}^{\lambda} dz \hat{f}_{+1}(z, x, x_0) = f_{+1}(\lambda, x, x_0) - f_{+1}(\lambda_0, x, x_0) \xrightarrow{\lambda \to \infty} 0 \] (3.47)
by the first asymptotic relation in (3.21). However, with (3.44) violated, integrating the right-hand side of (3.42) with respect to \(z \) from \(\lambda_0 \) to \(\lambda \) along the negative real axis now yields several contributions vanishing as \(x \to \infty \) (again invoking (3.21)), but there will also be one integral of the type
\[\int_{\lambda_0}^{\lambda} dz f_{+2}(z, x, x_0) A(z, x) \xrightarrow{x \to \infty} 0 \] (3.48)
where $A(z, \cdot)$ is bounded with a finite nonzero limit, $\lim_{x \to \infty} A(z, x) = A(z, \infty) \neq 0$. Relation (3.48) contradicts (3.47), proving (3.44).

Investigating the leading asymptotic behavior (3.21), then shows that to obtain the leading relations (3.21) with respect to λ, finally implies $\psi_\alpha f'_{+,1}(\lambda, x, x_0)$, $\hat{f}_{+,2}(\lambda, x)$ (3.41) with respect to λ, where $\hat{f}_{+,2}(\lambda, x)$ (3.41) with respect to λ, $\hat{f}_{+,2}W_{\alpha}(\lambda, \cdot), \psi_{+,\alpha}(\lambda, \cdot)) = f_{+,2}(\lambda, R, x_0) \hat{f}_{+,1}(\lambda, R, x_0)
- f_{+,2}(\lambda, R, x_0) f'_{+,1}(\lambda, R, x_0) \frac{\sin(\alpha) \hat{f}_{+,1}(\lambda, 0, x_0) + \cos(\alpha) \hat{f}_{+,1}(\lambda, 0, x_0)}{\sin(\alpha) \hat{f}_{+,1}(\lambda, 0, x_0) + \cos(\alpha) \hat{f}_{+,1}(\lambda, 0, x_0)}
- f_{+,2}(\lambda, R, x_0) f_{+,1}(\lambda, R, x_0)
+ f_{+,2}(\lambda, R, x_0) f_{+,1}(\lambda, R, x_0) \sin(\alpha) f_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f_{+,1}(\lambda, 0, x_0)
+ f_{+,1}(\lambda, R, x_0) f_{+,2}(\lambda, R, x_0) - f_{+,1}(\lambda, R, x_0) f_{+,2}(\lambda, R, x_0)
+ \frac{\sin(\alpha) f_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f_{+,1}(\lambda, 0, x_0)}{\sin(\alpha) f_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f_{+,1}(\lambda, 0, x_0)}.

(3.50)

for $\lambda < 0$ sufficiently negative. Insertion of (3.29) and (3.30) into (3.50) finally implies

$$W(\phi_\alpha(\lambda, \cdot), \psi_{+,\alpha}(\lambda, \cdot), \psi_{+,\alpha}(\lambda, \cdot)) = \frac{\sin(\alpha) f_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f_{+,1}(\lambda, 0, x_0)}{\sin(\alpha) f_{+,1}(\lambda, 0, x_0) + \cos(\alpha) f_{+,1}(\lambda, 0, x_0)}
- 2^{-1} \left(\int_{x_0}^{R} dx [q(x) - \lambda]^{-1/2} \right) [1 + o(1)].$$

(3.51)
Returning to (3.39) this yields

\[
\begin{align*}
\text{tr}_{L^2(\mathbb{R}^+; dx)}((H_{+,\alpha} - \lambda I_{+})^{-1} - (H_{+,\alpha} - \lambda_0 I_{+})^{-1}) \\
= \lim_{{R \to \infty}} \left[W(\phi_{\alpha}(\lambda_0, \cdot), \psi_{+,\alpha}(\lambda_0, \cdot))(R) - W(\phi_{\alpha}(\lambda, \cdot), \psi_{+,\alpha}(\lambda, \cdot))(R) \right], \\
= \frac{\sin(\alpha)f_{+,1}(\lambda_0, 0, x_0) + \cos(\alpha)f_{+,1}(\lambda_0, 0, x_0)}{\sin(\alpha)f_{+,1}(\lambda_0, 0, x_0) + \cos(\alpha)f_{+,1}(\lambda_0, 0, x_0)} \\
- \frac{\sin(\alpha)f'_{+,1}(\lambda_0, 0, x_0) + \cos(\alpha)f'_{+,1}(\lambda_0, 0, x_0)}{\sin(\alpha)f'_{+,1}(\lambda_0, 0, x_0) + \cos(\alpha)f'_{+,1}(\lambda_0, 0, x_0)} \\
+ 2^{-1}\left(\int_0^R dx \left\{ [q(x) - \lambda]^{-1/2} - [q(x) - \lambda_0]^{-1/2} \right\}[1 + o(1)] \right)
\end{align*}
\]

(3.52)

and hence (3.30) for \(z = \lambda < 0 \), \(z_0 = \lambda_0 < 0 \), both sufficiently negative. In this context one observes that for \(x_0 > 0 \) sufficiently large,

\[
2^{-1}\left(\int_0^R dx \left\{ [q(x) - \lambda]^{-1/2} - [q(x) - \lambda_0]^{-1/2} \right\} \right) = \frac{1}{4}(\lambda - \lambda_0) \left(\int_0^R dx q(x)^{-3/2} \right)[1 + o(1)]
\]

(3.53)

with \(q^{-3/2} \in L^1([x_0, \infty); dx) \) by Hypothesis (3.3).

Analytic continuation in \(z \) of both sides in (3.52) extends the latter to \(z \in \rho(H_{+,\alpha}) \). Similarly, analytic continuation in \(z_0 \) of both sides in (3.52) extends the latter to \(z_0 \in \rho(H_{+,\alpha}) \), completing the proof of (3.30).

Relation (3.31) then follows from integrating (3.30) with respect to the energy variable from \(z_0 \) to \(z \).

Next, we apply Theorem (3.3) to the following explicitly solvable example concerning the linear potential and denote by \(\text{Ai}(\cdot), \text{Bi}(\cdot) \) the Airy functions as discussed, for instance, in [1 Sect. 10.4].
Example 3.4. Consider the special case $q(x) = x$, $x \in \mathbb{R}_+$, and $\alpha = 0$. Then, for $x \in \mathbb{R}_+$, $z, z_0 \in \rho(H_{+,0})$,

\begin{align*}
 f_{+,1}(z, x, x_0) &= (2\pi)^{1/2}e^{(2/3)(x_0 - z)^{3/2}}Ai(x - z), \\
 f_{+,2}(z, x, x_0) &= (\pi/2)^{1/2}e^{-(2/3)(x_0 - z)^{3/2}}Bi(x - z), \\
 W(f_{+,1}(z, \cdot, x_0), f_{+,2}(z, \cdot, x_0)) &= 1, \\
 \phi_0(z, x) &= \pi[Ai(-z)Bi(x - z) - Bi(-z)Ai(x - z)], \\
 \psi_{+,0}(z, x) &= Ai(x - z)/Ai(-z), \\
 W(\phi_0(z, \cdot), \psi_{+,0}(z, \cdot))(x) &= \pi[Ai'(x - z)Bi'(x - z) - (x - z)Ai(x - z)Bi(x - z)] - [Ai'(-z)/Ai(-z)], \\
 I(z, z_0, x_0) &= \int_{x_0}^{\infty} dx \{ [x - z]^{-1/2} - [x - z_0]^{-1/2} \} \\
 &= 2((x_0 - z_0)^{1/2} - (x_0 - z)^{1/2}), \\
 \text{tr}_{L^2(\mathbb{R}_+:dx)}((H_{+,0} - zI_+)^{-1} - (H_{+,0} - z_0I_+)^{-1}) \\
 &= \psi'_{+,0}(z, 0) - \psi'_{+,0}(z_0, 0) = [Ai'(z)/Ai(z)] - [Ai'(-z)/Ai(-z)], \\
 \det_{L^2(\mathbb{R}_+:dx)}(I_+ - (z - z_0)(H_{+,0} - z_0I_+)^{-1}) \\
 &= [Ai(-z)/Ai(-z_0)] \exp \left((z - z_0)[Ai'(-z_0)/Ai(-z_0)] \right).
\end{align*}

We note that (3.62) was recently considered in [22], but the exponential factor in (3.62) was missed in [22].

Finally, we generalize Theorem 3.3 to the following setting.

Theorem 3.5. Assume Hypothesis 3.1. $z \in \rho(H_{+,\alpha_2})$, $z_0 \in \rho(H_{+,\alpha_1})$, and $\alpha_1, \alpha_2 \in [0, \pi)$. Then,

\begin{align*}
 [(H_{+,\alpha_2} - zI_+)^{-1} - (H_{+,\alpha_1} - z_0I_+)^{-1}] \in B_1(L^2(\mathbb{R}_+:dx)),
\end{align*}

and (cf. 3.32)

\begin{align*}
 \text{tr}_{L^2(\mathbb{R}_+:dx)}((H_{+,\alpha_2} - zI_+)^{-1} - (H_{+,\alpha_1} - z_0I_+)^{-1}) = -\frac{d}{dz} \ln \left(\frac{\sin(\alpha_2)f_{+,1}^{(1)}(z, 0, x_0) + \cos(\alpha_2)f_{+,1}(z, 0, x_0)}{\sin(\alpha_1)f_{+,1}^{(1)}(z, 0, x_0) + \cos(\alpha_1)f_{+,1}(z, 0, x_0)} \right), \\
 + \frac{1}{2}I(z, z_0, x_0).
\end{align*}

Proof. Eq. (3.63) is established exactly as in the proof of Theorem 3.3. Furthermore, as argued there one has

\begin{align*}
 \text{tr}_{L^2(\mathbb{R}_+:dx)}((H_{+,\alpha_2} - \lambda I_+)^{-1} - (H_{+,\alpha_1} - \lambda_0 I_+)^{-1}) \\
 = \lim_{R \to \infty} \left[W(\phi_{\alpha_1}(\lambda_0, \cdot), \psi_{+,\alpha_1}(\lambda_0, \cdot))(R) - W(\phi_{\alpha_2}(\lambda, \cdot), \psi_{+,\alpha_2}(\lambda, \cdot))(R) \right].
\end{align*}

Using eq. (3.61) then immediately implies (3.64).
Setting $z = z_0$, we obtain in particular
\[
\begin{align*}
\text{tr}_{L^2(\mathbb{R}^+; dx)}(H_{+,\alpha_2} - zI_+)^{-1} - (H_{+,\alpha_1} - zI_+)^{-1} = & -\frac{d}{dz} \ln \left(\frac{\sin(\alpha_1)f'_{+,1}(z, 0, x_0) + \cos(\alpha_1)f_{+,1}(z, 0, x_0)}{\sin(\alpha_2)f_{+,1}(z, 0, x_0) + \cos(\alpha_2)f'_{+,1}(z, 0, x_0)} \right). \\
\end{align*}
\]
(3.66)

Remark 3.6 In order to prove Theorem 3.5 one could instead have proven the slightly simpler result (3.66) and then note that
\[
\begin{align*}
\text{tr}_{L^2(\mathbb{R}^+; dx)} (H_{+,\alpha_2} - zI_+)^{-1} - (H_{+,\alpha_1} - z_0I_+)^{-1} = & \text{tr}_{L^2(\mathbb{R}^+; dx)} (H_{+,\alpha_2} - zI_+)^{-1} - (H_{+,\alpha_1} - zI_+)^{-1} \\
+ & \text{tr}_{L^2(\mathbb{R}^+; dx)} (H_{+,\alpha_1} - zI_+)^{-1} - (H_{+,\alpha_1} - z_0I_+)^{-1}, \\
\end{align*}
\]
(3.67)

which, using (3.66) together with Theorem 3.3 implies Theorem 3.5.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
[2] D. Burghhelea, L. Friedlander, and T. Kappeler, On the determinant of elliptic boundary value problems on a line segment, Proc. Amer. Math. Soc. 123, 3027–3038 (1995).
[3] S. Clark, F. Gesztesy, R. Nichols, and M. Zinchenko, Boundary data maps and Krein’s resolvent formula for Sturm–Liouville operators on a finite interval, Operators and Matrices 8, 1–71 (2014).
[4] E. B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, Vol. 106, Cambridge University Press, Cambridge, 2007.
[5] T. Dreyfus and H. Dym, Product formulas for the eigenvalues of a class of boundary value problems, Duke Math. J. 45, 15–37 (1978).
[6] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Application of the Levinson Theorem, Clarendon Press, Oxford, 1989.
[7] F. Gesztesy and K. Kirsten, Effective computation of traces, determinants, and ζ-functions for Sturm–Liouville operators, J. Funct. Anal. (to appear).
[8] F. Gesztesy and K. A. Makarov, (Modified) Fredholm determinants for operators with matrix-valued semi-separable integral kernels revisited, Integral Eqs. Operator Theory 47, 457–497 (2003). (See also Erratum 48, 425–426 (2004) and the corrected electronic only version in 48, 561–602 (2004).)
[9] F. Gesztesy and R. Weikard, Floquet theory revisited, in Differential Equations and Mathematical Physics, I. Knowles (ed.), International Press, Boston, 1995, pp. 67–84.
[10] F. Gesztesy and M. Zinchenko, Symmetrized perturbation determinants and applications to boundary data maps and Krein-type resolvent formulas, Proc. London Math. Soc. (3) 104, 577–612 (2012).
[11] I. Gohberg, S. Goldberg, and N. Krupnik, Traces and determinants of linear operators, Integral Eqs. Operator Theory 26, 136–187 (1996).
[12] I. Gohberg, S. Goldberg, and N. Krupnik, Hilbert–Carleman and regularized determinants for linear operators, Integral Eqs. Operator Theory 27, 10–47 (1997).
[13] I. Gohberg, S. Goldberg, and N. Krupnik, Traces and Determinants for Linear Operators, Operator Theory: Advances and Applications, Vol. 116, Birkhäuser, Basel, 2000.
[14] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., Vol. 18., Amer. Math. Soc., Providence, RI, 1969.
[15] H. R. Grützm, Two theorems about C_p, Rep. Math. Phys. 4, 211–215 (1973).
[16] K. Kirsten, Spectral Functions in Mathematics and Physics, CRC Press, Boca Raton, 2001.
[17] K. Kirsten and A. J. McKane, Functional determinants by contour integration methods, Ann. Physics 308, 502–527 (2003).
[18] M. Lesch, Determinants of regular singular Sturm–Liouville operators, Math. Nachr. 194, 139–170 (1998).
[19] M. Lesch and J. Tolksdorf, On the determinant of one-dimensional elliptic boundary value problems, Commun. Math. Phys. 193, 643–660 (1998).
[20] M. Lesch and B. Vertman, Regular singular Sturm–Liouville operators and their zeta-determinants, J. Funct. Anal. 261, 408–450 (2011).
[21] S. Levit and U. Smilansky, A theorem on infinite products of eigenvalues of Sturm–Liouville type operators, Proc. Amer. Math. Soc. 65, 299–302 (1977).
[22] G. Menon, The Airy function is a Fredholm determinant, J. Dyn. Diff. Eqn. 28, 1031–1038 (2016).
[23] J. Östensson and D. R. Yafaev, A trace formula for differential operators of arbitrary order, in A Panorama of Modern Operator Theory and Related Topics. The Israel Gohberg Memorial Volume, H. Dym, M. A. Kaashoek, P. Lancaster, H. Langer, and L. Lerer (eds.), Operator Theory: Advances and Applic., Vol. 218, Birkhäuser, Springer, 2012, pp. 541–570.
[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press, New York, 1978.
[25] B. Simon, Notes on infinite determinants of Hilbert space operators, Adv. Math. 24, 244–273 (1977).
[26] B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs, Vol. 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005.
[27] J. Weidmann, Lineare Operatoren in HIlberträumen. Teil II, Mathematische Leitfäden. Teubner, Stuttgart, 2003.
[28] D. R. Yafaev, Mathematical Scattering Theory. General Theory, Translations of Mathematical Monographs, Vol. 105, Amer. Math. Soc., Providence, RI, 1992.

DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, ONE BEAR PLACE #97328, WACO, TX 76798-7328, USA
E-mail address: Fritz_Gesztesy@baylor.edu
URL: http://www.baylor.edu/math/index.php?id=935340

GCAP-CASPER, DEPARTMENT OF MATHEMATICS, BAYLOR UNIVERSITY, ONE BEAR PLACE #97328, WACO, TX 76798-7328, USA
E-mail address: Klaus_Kirsten@baylor.edu
URL: http://www.baylor.edu/math/index.php?id=54012