Square-free Walks on Labelled Graphs

Tero Harju
Department of Mathematics
University of Turku, Finland
harju@utu.fi

June 27, 2011

Abstract
A finite or infinite word is called a G-word for a labelled graph G on the vertex set $A_n = \{0, 1, \ldots, n-1\}$ if $w = i_1i_2\cdots i_k \in A_n^*$, where each factor i_ji_{j+1} is an edge of E, i.e. w represents a walk in G. We show that there exists a square-free infinite G-word if and only if G has no subgraph isomorphic to one of the cycles C_3, C_4, C_5, the path P_5 or the claw $K_{1,3}$. The colour number $\gamma(G)$ of a graph $G = (A_n, E)$ is the smallest integer k, if it exists, for which there exists a mapping $\varphi: A_n \to A_k$ such that $\varphi(w)$ is square-free for an infinite G-word w. We show that $\gamma(G) = 3$ for $G = C_3, C_5, P_5$, but $\gamma(G) = 4$ for $G = C_4, K_{1,3}$. In particular, $\gamma(G) \leq 4$ for all graphs that have at least five vertices.

Note The author is thankful for James Currie for pointing out that, apart from some technical differences, the results of the present paper are covered by his paper James D. Currie: Which graphs allow infinite nonrepetitive walks? Discrete Math. 87 (1991) 249–260.

Keywords: Square-free words, infinite words, G-words, graphs.

1 Introduction

Alon et al. [1] initiated the study of non-repetitiveness of simple paths in edge coloured graphs. In [1] an edge colouring of a graph G is square-free if the sequence of colours on every simple path in G consists of a square-free word. The problem for vertex coloured graphs was consider, e.g., by Barát and Varjú [2]. For results on these settings, see also [3, 6, 5, 9]. In the present paper we consider the problem when a vertex colouring of a graph has an infinite square-free walk.

We consider square-freeness of infinite words $w: \mathbb{N} \to A_n$ over the alphabets $A_n = \{0, 1, \ldots, n-1\}$ of cardinality n. An infinite word w will be represented as a sequence of letters from A_n, i.e., $w = i_1i_2\cdots$ with $i_j \in A_n$ for all $j \in \mathbb{N}$.

1
A (finite) word is a finite sequence of letters. The set of all finite words over \(A_n \) is denoted by \(A_n^* \). This set contains the empty word. The length of a word \(w \) is denoted by \(|w| \). If \(w = u_1v_2 \), then \(v \) is a factor of \(w \). If here \(u_1 \) is the empty word, then \(v \) is a prefix of \(w \) and if \(u_2 \) is empty, then \(v \) is a suffix of \(w \). The above terminology generalizes to infinite words in a natural way.

A finite or infinite word \(w \) is square-free if it does not contain any factor of the form \(u^2 = uu \) for a nonempty word \(u \). Thue [12] showed a hundred years ago that there are infinite square-free words over the ternary alphabet \(A_3 \); see Lothaire [11] or the historical survey by Berstel and Perrin [4]. An example of an infinite square-free word can be obtained by iterating the morphism

\[
\tau(0) = 012, \quad \tau(1) = 02, \quad \tau(2) = 1
\]

starting from the letter \(0 \in A_3 \). The result is the infinite word

\[
t = 0120210201210120122 \cdots.
\]

Observe that \(t \) does not have factors 010 and 212. We call \(t \) the Thue word although it is due to Istrail [10].

A mapping \(\alpha : A^* \rightarrow B^* \) between word sets over the alphabets \(A \) and \(B \) is a morphism, if \(\alpha(w) = \alpha(u)\alpha(v) \) for all words \(u, v \in A^* \). Clearly, each morphism \(\alpha : A^* \rightarrow B^* \) is determined by its images \(\alpha(a) \) of the letters \(a \in A \). A morphism \(\alpha \) is square-free, if it preserves square-freeness of words, i.e., if \(v \in A^* \) is square-free, then so is the image \(\alpha(v) \in A^* \).

Let \(G = (A_n, E) \) be an undirected graph on the vertex set \(A_n \) such that the edge set \(E \) does not contain self-loops from a vertex \(i \) to itself nor parallel edges between the same vertices. An edge between \(i \) and \(j \) is denoted by \(ij \). We say that a word \(w = i_1i_2 \cdots i_k \in A_n^* \) is a G-word if each factor \(i_ji_{j+1} \) is an edge of \(E \). Thus a G-word is a walk on \(G \).

A \(k \)-colouring of a graph \(G \) on \(A_n \) is a morphism \(\varphi : A_n^* \rightarrow A_k^* \). The graph \(G \) has an infinite \(k \)-coloured square-free walk, if there is an infinite G-word \(w \) such that \(\varphi(w) \) is square-free for some \(k \)-colouring \(\varphi \). We denote by \(\gamma(G) \) the smallest \(k \), if it exists, for which \(G \) has an infinite \(k \)-coloured square-free G-word.

Let \(P_n \) denote the (simple) path on the vertices \(A_n \) with the \(n-1 \) edges \(i(i+1) \), for \(i = 0, 1, \ldots, n-2 \). Similarly, \(C_n \) denotes the cycle on \(A_n \) with the \(n \) edges \(i(i+1) \), where the indices are modulo \(n-1 \). Finally, let \(K_{1,3} \) be the graph on \(A_4 \), called the claw, with the edges \(01, 02, 03 \).

The following theorem is our main result. It will be proven in the next section. In particular, we show that, for connected graphs, there exists an infinite square-free G-word if the graph \(G \) is a cycle \(C_m \), for \(m \geq 3 \), or a path \(P_m \), for \(m \geq 5 \), or it contains the claw \(K_{1,3} \) as an induced subgraph.

Theorem 1. There exists an infinite square-free G-word if and only if the graph \(G \) has a connected subgraph isomorphic to one of the graphs

\[
C_3, \ C_4, \ C_5, \ P_5, \ K_{1,3}.
\]
Moreover, if \(G \) has a subgraph \(C_m \) with \(m = 3 \) or \(P_n \) with \(n \geq 5 \), then \(\gamma(G) = 3 \), and, otherwise, if \(G \) has \(G = C_4 \) or \(K_{1,3} \) then \(\gamma(G) = 4 \).

Corollary 1. For each graph \(G \) of at least five vertices, \(\gamma(G) \leq 4 \).

Proof. If \(G \) does not have a subgraph \(K_{1,3} \), then the maximum degree of \(G \) is at most two, and in this case the connected components of \(G \) are either paths \(P_m \) or cycles \(C_k \). The claim follows, since each path or cycle of five vertices has a subgraph \(P_5, C_3, C_4 \) or \(C_5 \). (Note that \(C_k \) for \(k \geq 6 \) contains \(P_5 \).) \(\square \)

2 Proof of the theorem

Recall that in general a subgraph \(H \) of a graph \(G \) need not be induced, i.e., \(H \) might miss some edges of \(G \) that are between vertices of \(H \).

Lemma 2. Let \(G \) be a graph. The following cases are equivalent.

(i) There exists an infinite square-free \(G \)-word.

(ii) \(G \) has a connected subgraph \(H \) that has an infinite square-free \(H \)-word.

Proof. First, for each subgraph \(H \) of \(G \), each square-free \(H \)-word is also a square-free \(G \)-word. Secondly, if the vertices \(i \) and \(j \) of \(G \) belong to different connected components, then the letters \(i, j \in A_n \) (where \(n \) is the order of \(G \)) never occur in the same \(G \)-word. \(\square \)

2.1 Negative cases

Recall that \(P_3 \) has only three vertices and two edges \(01 \) and \(12 \). Hence every second letter in a square-free \(P_3 \)-word \(w \) must be 1, and hence the word \(w' \) obtained by deleting all occurrences of 1 must be a binary square-free word, and thus of length at most three.

The case for the graph \(P_4 \) is somewhat more complicated, but a systematic study, by hand or aided by a computer, quickly ends. The longest square-free \(P_4 \)-words are of length 15. They are 012101231021201021202101201021012021 and the dual 321232101232123 obtained by the permutation \((03)(12)) \).

Lemma 3. There are no square-free \(P_4 \)-words of length 16.

2.2 The cases \(P_m \) for \(m \geq 5 \)

Consider the morphism \(\alpha : A_3^* \rightarrow A_3^* \) defined by

\[
\begin{align*}
\alpha(0) &= 20102120210120102102102101202101201021012021 & \text{of length } 24, \\
\alpha(1) &= 201021202101201021012021 & \text{of length } 16, \\
\alpha(2) &= 20102101 & \text{of length } 8.
\end{align*}
\]
Note that the morphism α is not square-free, since
\[
\alpha(010) = 2010212021012010210120(2120102120210120)^2 1021012021.
\]
However, as we have seen, the Thue word t does not contain 010.

The first case of the next lemma is seen to hold by checking the short words by a computer program. The second claim is obvious, since for $i \neq j$, the word $\alpha(i)$ does not have a suffix that is a prefix of $\alpha(j)$, i.e., different words $\alpha(i)$ and $\alpha(j)$ do not overlap. (Although $\alpha(2)$ is a factor of $\alpha(0)$.)

Lemma 4. (a) If w is of length 5 is square-free and does not contain 010, then also $\alpha(w)$ is square-free.

(b) The word $\alpha(i)$ with $i \in \{0, 1\}$ is aligned in $\alpha(A_3^*)$, i.e., if $w = i_1i_2 \cdots i_n \in A_3^*$ and $\alpha(w) = u_1\alpha(i)u_2$ then $u_1 = \alpha(i_1 \cdots i_{k-1})$, $i = i_k$ and $u_2 = \alpha(i_{k+1} \cdots i_n)$.

Lemma 5. Let w be a square-free word that does not have a factor 010. Then also $\alpha(w)$ is a square-free. For the Thue word t, the infinite word $\alpha(t)$ is a 3-coloured square-free P_5-word.

Proof. Assume that $\alpha(w)$ contains a nonempty square, say, for some $u \in A_3^*$ and letters $p, p_1, p_2 \in A_3$,
\[
\alpha(w) = w_1u_2w_2, \quad \text{where} \quad u = v_1\alpha(v)v_2 = v'_1\alpha(v')v'_2,
\]
\[
v_2v'_1 = \alpha(p), \quad v_1 \quad \text{is a suffix of} \quad \alpha(p_1), \quad v'_2 \quad \text{is a prefix of} \quad \alpha(p_2).
\]
By Lemma 3(a), v and v' are nonempty, and by Lemma 3(b), $v = v'$ and also $v_1 = v'_1$ and $v_2 = v'_2$. Now $\alpha(p) = v_2v_1$, where v_1 is a suffix and v_2 a suffix of some words $\alpha(i)$ and $\alpha(j)$, respectively. One sees that this is not the case for any p, i, j, simply because $\alpha(p)$ begins with the special word 2010 that occurs only as prefix of the words and once in the middle of $\alpha(0)$.

Therefore, $\alpha(t)$ is square-free, since all its finite prefixes are square-free and t does not have any occurrences of the factor 010.

For the second claim, consider the path P_5 with the edges 01, 12, 23, 34, and let the colouring of the vertices be $\varphi : A_5 \to A_3$ defined by $\varphi(0) = 1$, $\varphi(1) = 0$, $\varphi(2) = 2$, $\varphi(3) = 0$, $\varphi(4) = 1$. Then the morphism $\beta : A_5^* \to A_3^*$ defined by
\[
\begin{align*}
\beta(0) &= 2010232023432010234320233201023432023
\\
\beta(1) &= 201023202343201023432023
\\
\beta(2) &= 20102343
\end{align*}
\]
satisfies $\alpha = \varphi\beta$. Since $\alpha(t)$ is square-free, so is $\beta(t)$. Clearly $\beta(t)$ is a P_5-word.

Corollary 2. We have $\gamma(G) = 3$ for all connected graphs containing a subgraph P_5. In particular, for each P_n and C_n with $n \geq 5$ there exists an infinite 3-coloured square-free P_n-word.

Proof. Indeed, each P_n and C_n, with $n \geq 5$, has a subgraph equal to P_5. Moreover, we always have that if G contains a P_5, then $\gamma(G) \geq 3$, since there are no infinite square-free binary words. Hence the first claim holds. \hfill \qedsymbol
2.3 The case for graphs with subgraphs C_3, C_4 or $K_{1,3}$

We first consider the claw $K_{1,3}$.

Lemma 6. Let G be a graph with a vertex of degree at least three. Then there exists an infinite 4-coloured square-free G-word. Moreover, there does not exist any infinite 3-coloured square-free $K_{1,3}$-words.

Proof. Without loss of generality, we can assume that the vertex 3 of G has the neighbours $0, 1, 2$. Let w be an infinite square-free word over A_3, and consider the infinite word w' obtained by replacing each $i \in A_3$ by the word $i3$ of length two. It is clear that w' is still square-free and also that it is a G-word, where four colours are present.

For the negative case, let $w = \varphi(u)$ for a 3-colouring φ of G and a G-word $u = 3i_1i_2\cdots$. Now also $\varphi(i_1i_2\cdots)$ must be square-free. However, we have two equicoloured neighbours i and j of the vertex 3, say $\varphi(i) = \varphi(j)$, and thus $\varphi(i_1i_2\cdots)$ is a binary word, and not square-free at all. \hfill \Box

By Lemma 6, we can assume that the maximum degree of the graph G is two, and hence the connected components are either paths or cycles. By Lemma 3 and Corollary 2 this leaves the connected graphs that are cycles C_3 or C_4.

Lemma 7. There exists an infinite square-free C_n-graph in all cases $n \geq 3$. We have $\gamma(C_3) = 3$ and $\gamma(C_4) = 4$.

Proof. For $n = 3$, we observe that every square-free word over the alphabet A_3 is also a C_3-word. Thus the case for C_3 is clear.

Let then $n = 4$. If $w \in A_{n-1}^*$ is a square-free C_{n-1}-word, then $w' \in A_n^*$ is a square-free C_n-word, where w' is obtained by inserting the letter $n - 1$ between every pair $(0, n - 2)$ and $(n - 2, 0)$. Indeed, if w' has a square u^2, then the deletion of $n - 1$ would yield a nonempty square in w; a contradiction. This shows that $\gamma(C_4) \leq 4$.

Consider then a 3-colouring φ of C_4, and assume $\varphi(w)$ is a square-free C_4-word. Then two diagonal elements of the square C_4 must obtain the same colour, say $\varphi(1) = \varphi(3)$; otherwise the C_4-word coloured by φ would be a P_4-word. Now, the colour $\varphi(1) = \varphi(3)$ occurs in every second place in $\varphi(w)$, and hence as in the proof of Lemma 6 the case reduces to binary words, giving a contradiction. \hfill \Box

We have now a simplified proof of a result due to Dean [8].

Corollary 3 (Dean). There exists an infinite square-free word w that is reduced in the free group of two generators.

Proof. We apply Lemma 7 to C_4. Let w be a square-free C_4-word. One interprets 2 as the inverse element of the generator 0 and 3 as the inverse element of the generator 1. Since 0 and 2, and 1 and 3, respectively, are never adjacent in w the word w is reduced in the free group. \hfill \Box
We also can show the existence of an infinite square-free \(C_4 \)-word by considering a suitable uniform morphism, where there is a constant \(m \) such that \(|\alpha(a)| = m \) for all letters \(a \). Define \(\alpha: A_4^+ \rightarrow A_4^+ \) by

\[
\begin{align*}
\alpha(0) &= 010301210323, \\
\alpha(1) &= 010301230323, \\
\alpha(2) &= 010301232123, \\
\alpha(3) &= 010321030123,
\end{align*}
\]

where the images have length 12. For this we rely on the following theorem by Crochemore [7].

Theorem 8 (Crochemore). A uniform morphism \(h: A^* \rightarrow A^* \) is square-free if and only if \(h \) preserves square-freeness of words of length 3.

One can deduce, or check by a computer, that \(\alpha \) preserves square-freeness of length three words. Therefore, by Theorem 8, \(\alpha(w) \) is square-free for all square-free infinite words \(w \) over \(A_4 \). Clearly, \(\alpha(w) \) is \(C_4 \)-word.

3 Tournament words

The above problem can be modified for oriented graphs, i.e., directed graphs \(G = (A_n, E) \), where \(ij \in E \) implies \(ji \notin E \). A tournament is an orientation of a complete graph. A word \(w \in A_n^+ \) is a tournament word, if for each different \(i, j \in A_n \), if the word \(ij \) is a factor of \(w \), then \(ji \) is not a factor.

The case first case of the following result is obtained by a systematic computer search.

Theorem 9. (a) The longest square-free tournament word over the four letter alphabet \(A_4 \) has length 20. These longest words are \(w = 01201320120320132032 \) and those obtained from \(w \) by permuting the letters.

(b) There exists infinite square-free tournament words over \(A_5 \).

Proof. For the second claim, consider the uniform morphism \(\alpha: A_3^+ \rightarrow A_4^+ \) defined by

\[
\begin{align*}
\alpha(0) &= 0123014, \\
\alpha(1) &= 0130124, \\
\alpha(2) &= 0120134.
\end{align*}
\]

The images \(\alpha(i) \) have length 7. The morphism \(\alpha \) can be easily seen to be square-free, since the letter \(4 \) occurs only at the end of the images, and in \(\alpha(i) \) the letter is preceded by the letter \(i \). Hence if \(w \) is an infinite square-free word over \(A_3 \), also \(\alpha(w) \) is square-free, and clearly it is a tournament word a \(G \)-word over \(A_5 \).
References

[1] Noga Alon, Jarosław Grytczuk, Mariusz Hałuszczak, and Oliver Riordan. Nonrepetitive colorings of graphs. *Random Structures Algorithms*, 21(3-4):336–346, 2002. Random structures and algorithms (Poznan, 2001).

[2] János Barát and Péter P. Varjú. On square-free vertex colorings of graphs. *Studia Sci. Math. Hungar.*, 44(3):411–422, 2007.

[3] János Barát and David R. Wood. Notes on nonrepetitive graph colouring. *Electron. J. Combin.*, 15(1):Research Paper 99, 13, 2008.

[4] Jean Berstel and Dominique Perrin. The origins of combinatorics on words. *European J. Combin.*, 28(3):996–1022, 2007.

[5] B. Brešar, J. Grytczuk, S. Klavžar, S. Niwczyk, and I. Peterin. Nonrepetitive colorings of trees. *Discrete Math.*, 307(2):163–172, 2007.

[6] Boštjan Brešar and Sandi Klavžar. Square-free colorings of graphs. *Ars Combin.*, 70:3–13, 2004.

[7] Max Crochemore. Sharp characterizations of squarefree morphisms. *Theoret. Comput. Sci.*, 18(2):221–226, 1982.

[8] Richard A. Dean. A sequence without repeats on x, x^{-1}, y, y^{-1}. *Amer. Math. Monthly*, 72:383–385, 1965.

[9] Jarosław Grytczuk. Nonrepetitive colorings of graphs—a survey. *Int. J. Math. Math. Sci.*, pages Art. ID 74639, 10, 2007.

[10] Sorin Istrail. On irreducible languages and nonrational numbers. *Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.)*, 21(69)(3-4):301–308, 1977.

[11] M. Lothaire. *Combinatorics on words*. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1997.

[12] Axel Thue. Über unendliche zeichenreihen. *Norske Vid. Selsk. Skr. I Math-Nat. Kl.*