Leaching of monomers from bulk-fill composites: An in vitro study

Ankit Rajesh Sajnani, Mithra Nidharsh Hegde
Department of Conservative Dentistry and Endodontics, A B Shetty Memorial Institute of Dental Sciences, Nitte University, Deralakatte, Karnataka, India

Abstract

Aim and Objectives: To evaluate the elution of bisphenol A-glycidyl methacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) from two bulk-fill composites at different polymerization times, for different storage periods when cured with quartz-tungsten-halogen (QTH) curing unit.

Materials and Methods: Tetric N-Ceram bulk fill and EverX Posterior were analyzed using high-performance liquid chromatography unit. Totally, 68 samples were prepared, two groups (n = 17) from both the composites, one for each tested polymerization time. Each sample was cured with a QTH curing unit, using soft-start curing technique and stored in 2 ml of ethanol for 24 h. Storage medium was renewed and then stored again for 1 week. Data acquired were statistically analyzed.

Results: The elution of BisGMA was significantly higher from Tetric N-Ceram bulk fill and BisGMA and TEGDMA from EverX Posterior composite at the end of 24 h, irrespective of the curing time. In EverX Posterior, a higher amount of TEGDMA was eluted at the end of 24 h, while at the end of 1 week, significantly higher amount of BisGMA was released.

Conclusion: A significant amount of the release of BisGMA as well as TEGDMA was seen from both the composites when stored for different time intervals.

Keywords: Bisphenol A-glycidyl methacrylate; bulk-fill composites; high-performance liquid chromatography; triethylene glycol dimethacrylate

INTRODUCTION

Composite resins are made up of a complex mixture of the organic resin matrix, inorganic fillers, and a silane coupling agent connecting the two. Base monomers such as bisphenol A-glycidyl methacrylate (BisGMA) and urethane dimethacrylate (UDMA) along with low-viscosity monomer like triethylene glycol dimethacrylate (TEGDMA) constitute the polymerizable resin matrix.[1] The common drawbacks of dental composites include polymerization shrinkage and high residual monomer content.[2]

Dentists use incremental placement techniques to manage the polymerization shrinkage. This technique is time-consuming, and there is a risk of contamination while placing, adapting, and curing each increment. Recently, a new class of resin-based composite, called “bulk fill” composites, has been introduced with the purpose of saving clinical chairside time.[3] Its unique advantage is that it can be placed and cured in an increment of 4-mm thickness, without adverse effect on polymerization shrinkage.

One of the alternatives to overcome polymerization shrinkage is the use of soft-start curing which involves, low-intensity light during the initial phase of polymerization and later switched to high-intensity light for the remaining curing time reducing the rate of polymerization.[4]

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
The elution of residual monomers, oligomers, and other degradation products into the oral environment has raised concerns regarding composites. It occurs by diffusion of the resin matrix or by its degradation or erosion over a period.[5,6]

According to Ferracane,[7] the factors affecting elution are: (i) amount of polymerization reaction, (ii) chemistry of the solvent, and (iii) chemical nature and size of the released components. The unpolymerized monomers can get eluted directly into the pulp by means of dentinal microchannels.[8] BisGMA has a strong hemolytic potency which can cause time- and concentration-dependent cytotoxicity in human gingival and pulp fibroblasts.[9] TEGDMA can easily penetrate cell membranes and react with intracellular molecules, thereby causing cytotoxicity.[10]

Thus, the aim of this study was to evaluate the amount of the elution of BisGMA and TEGDMA from these composite resins cured by a quartz-tungsten-halogen (QTH) light using “Soft Start” curing technique, when stored at a storage period of 24 h and 1 week using two polymerization times: 30 and 40 s.

MATERIALS AND METHODS

Sample preparation

Two nanohybrid dimethacrylate bulk-fill composite resins were used [Table 1]. From each of them, 34 samples were prepared. A total of 68 samples. These samples were divided into two groups of 17 samples each based on different polymerization times: 30 and 40 s.

- Group 1: 30 s polymerization (30 s)
- Group 2: 40 s polymerization (40 s).

A standard teflon mold of 2 mm × 2 mm × 2 mm dimension was used to prepare the specimens. It was placed on a glass plate, and underneath the mold, a transparent plastic matrix strip was positioned. The material was inserted into the mold followed by the placement of one more transparent plastic matrix strip over them, to prevent oxidation of the superficial layer. Each specimen was cured using “Soft Start curing technique” with QTH curing units for 30 and 40 s, i.e., initial curing with the low intensity of 450 mW/cm2 for 10 s using QHL-75 curing light (Dentsply) and the remaining 20 and 30 s, respectively, were cured with a higher intensity of 750 mW/cm2 using Astralis 7 curing light (Ivoclar Vivadent). A calibrated radiometer system was used to verify the irradiance at each use of the light cure unit. A 1-cm glass plate was used to standardize the distance between the light source and the specimen.

Immediately after curing, the specimens were immersed in 2 ml of 99.99% ethanol[10-12] (Hayman Limited, Eastways Park, Witham, Essex, CM88YE, England). The storage of these samples was done for a time period of 24 h at room temperature. After 24 h, the storage medium was changed, and the specimens were again stored for 7 days.

Sample evaluation

After 24 h and 7 days, the samples were measured using the high-performance liquid chromatography (HPLC) unit (Shimadzu, Model SPD 20A, Shimadzu Corporation, Kyoto, Japan). The separation of monomers took place with a CC 125/4 Nucleodur 100-5 C18 ec HPLC -Column. The mobile phase was acetonitrile/water (75/25% v/v) at a flow rate of 1 mL/min, and detection was performed at a wavelength of 254 nm for 30 min. For the analysis of extracted residual monomers, reference standards of BisGMA (CAS No. 261548, Sigma-Aldrich Chemical Co., USA) and TEGDMA (CAS No. 494356, Sigma-Aldrich Chemical Co., USA) were purchased and stock solutions were prepared by appropriate quantitative dilution. Twenty microliters from the solution was injected into HPLC system and standard chromatograms were obtained for both the monomers individually.

Material used	Composition	Manufacturer
EverX Posterior	Dimethacrylates monomers	GC, UK
	BisGMA, TEGDMA	
	Fillers	
	Silicon dioxide: 1-5 (weight %)	
	Barium glass: 60-70 (weight %)	
	Glass fibers: 5-15 (weight %)	
Tetric N-Ceram Bulk Fill	Dimethacrylates monomers	Schaan, Liechtenstein, Germany
	BisGMA, BisEMA, UDMA	
	Fillers	
	Barium glass filler (0.4 μm-0.7 μm),	
	ytterbium	
	Trifluoride (200 nm), mixed	
	Oxide (160 nm): 61 (weight %)	
	Polymer filler: 17 (weight %)	

UDMA: Urethane dimethacrylate, BisGMA: Bisphenol A-glycidyl methacrylate, BisEMA: Bisphenol A polyethylene glycol diether dimethacrylate, TEGDMA: Triethylene glycol dimethacrylate
Statistical analysis

The acquired data were statistically analyzed using Student’s t-test and paired t-test. Statistical Package for Social Science software version 15 (IBM SPSS Statistics, NY, USA) was used.

The level of significance was set at $p = 0.05$.

RESULTS

Significantly higher amount of BisGMA was eluted from Tetric N-Ceram bulk-fill composite at the end of 24 h as compared to 1 week when cured for 30 s, i.e., $P < 0.001$ and 40 s, i.e., $P = 0.004 < 0.05$. Furthermore, significantly higher amount of BisGMA was eluted from EverX Posterior composite at the end of 24 h as compared to 1 week when cured for 30 s, i.e., $P < 0.001$ and 40 s, i.e., $P = 0.022 < 0.05$. On comparing the elution of TEGDMA from EverX Posterior, significantly higher amount was eluted at the end of 24 h as compared to 1 week when cured for 30 s, i.e., $P < 0.001$ and 40 s, i.e., $P < 0.001$ [Table 2].

Student’s t-test showed that from EverX Posterior, a higher amount of TEGDMA was released at the end of 24 h as compared to BisGMA, when cured for 30 s, i.e., $P = 0.166$ and when cured for 40 s, i.e., $P = 0.456$, but it was not statistically significant. At the end of 1 week, significantly higher amount of BisGMA was released as compared to TEGDMA, when cured for 30 s, i.e., $P < 0.001$ and when cured for 40 s, i.e., $P < 0.001$ [Table 3].

DISCUSSION

The degree of conversion for dental composites is approximately between 35% and 77%. Asmussen and Peutzfeldt reported that a linear polymer structure with a fewer cross-links is significantly more prone to softening in ethanol. Thus, incomplete polymerization may increase residual monomer.

Studies show the cytotoxic potency of basic monomers to be in the following order: BisGMA > UDMA > TEGDMA >> HEMA.[1] BisGMA is cytotoxic and has shown synthetic estrogenic effects.[15,16] According to the National Institute for Occupational Safety and Health, since TEGDMA is lipophilic nature, it can penetrate the cytosol and membrane lipid compartments of mammalian cells.[17] 99.99% ethanol was used as a solvent, owing to its maximum ability to extract residual monomers and solubility parameter similar to BisGMA.[13]

The maximum elution, i.e., 85–100% of monomers was reported to occur within 24 h by Ferracane and Condon and within 7 days by Ortengren et al.[18,19] Hence, the elution of monomers after polymerization was tested at the end of 24 h and 7 days in the present study. The molecules of BisGMA and UDMA, which are high molecular weight base monomers, get decompose in the gas chromatograph and, hence, only their decomposition products can be evaluated.[19] HPLC, being an accurate and common separation method, was preferred to qualify and quantify the elutable monomers.[20]

In the present study, the overall elution of BisGMA was higher than TEGDMA, for both composite materials [Table 2], which correlates with the results of Komurcuoglu et al., Polydorou et al., and Hegde et al.[1,13] Predominantly, it could be because BisGMA had low double-bond conversion as compared to TEGDMA or due to the degree of conversion for dental composites.

Table 2: Paired t-test was applied to compare the mean amount of release of bisphenol A-glycidyl methacrylate from Tetric N-Ceram bulk fill and EverX Posterior and triethylene glycol dimethacrylate from EverX Posterior based on different storage times.

Paired samples statistics	Leaching agent	Curing time	Mean	n	SD	Paired differences	Mean	SD	t	P
Tetric N-Ceram bulk fill	BisGMA	30 s	38.995	17	7.797	5.508	3.912	5.804	<0.001	
		After 24 h	33.487	17	7.669					
		After 1 week	38.875	17	11.517	5.353	6.590	3.349	0.004	
		40 s	33.521	17	6.911					
EverX posterior	BisGMA	30 s	37.369	17	6.102	6.201	4.476	5.712	<0.001	
		After 24 h	31.168	17	5.314					
		After 1 week	37.148	17	13.217	6.098	9.890	2.542	0.022	
		40 s	31.050	17	7.923					
	TEGDMA	30 s	40.344	17	6.120	18.934	6.012	12.983	<0.001	
		After 24 h	21.409	17	7.113					
		After 1 week	40.091	17	9.180	18.892	9.705	8.026	<0.001	
		40 s	21.198	17	5.919					

BisGMA: Bisphenol A-glycidyl methacrylate, TEGDMA: Triethylene glycol dimethacrylate, SD: Standard deviation
variation in the reactive potentials and chemical properties of the two.[21] In addition to the above, 99.99% ethanol used for the storage of the samples could also be one of the probable reasons for higher elution of BisGMA.[1] When the elution of BisGMA from both the bulk-fill nano hybrid dimethacrylate resins was compared, paired t-test revealed that 24 h samples showed significantly higher release at \(P < 0.05 \), irrespective of the different polymerization time. The release of TEGDMA was also significantly higher from the 24 h samples, irrespective of the curing time [Table 2], and is in accordance with Ferracane and Condon.[13] Varying polymerization time groups of 30 and 40 s showed no significant difference in the elution of BisGMA and TEGDMA from the two bulk-fill composite resins [Graph 1].

At the end of 24 h, a higher amount of TEGDMA was eluted from EverX Posterior as compared to BisGMA but not significantly, i.e, \(P = 0.166 \) \((P > 0.05) \) when cured for 30 s and \(P = 0.456 \) \((P > 0.05) \) when cured for 40 s [Table 3]. It is in agreement with Hegde et al.[1] and Nathanson et al., who have shown that within the first 4 min, the maximum amount of TEGDMA was released which reduced thereafter.[22] In addition, Durner et al. reported that initially, the elution of TEGDMA was higher than BisGMA.[23] This could be because of its hydrophilicity and small molecular weight, exhibiting higher mobility.[24] While at the end of 7 days, the elution of BisGMA from the same material was significantly higher than TEGDMA, irrespective of the curing times, i.e, \(P < 0.05 \) [Table 3], which is similar to the results of the study by Polydorou et al.[10]

Of the two bulk-fill composites evaluated, Tetric N-Ceram Bulk fill showed higher elution of BisGMA than EverX Posterior, irrespective of the varying polymerization and storage time. This might be due to the absence of TEGDMA. Furthermore, it contains prepolymer fillers, due to which any remaining unreacted or pendant \(\mathrm{C} = \mathrm{C} \) double bond increases the amount of elutable monomers [Graph 2].[25]

CONCLUSION

Within the limitations of the study, the following conclusions were drawn:

- For BisGMA and TEGDMA elution, a significantly higher amount of monomer was eluted after 24 h than after 1 week
- Higher quantity of BisGMA was eluted from Tetric N-Ceram bulk fill in comparison to EverX Posterior, irrespective of the polymerization time and storage periods
- Although samples were cured using soft-start curing technique, the elution of monomers from bulk-fill composites was still observed.

Manufacturers recommend 20 s curing time with QTH unit to polymerize bulk-fill composites.

Table 3: Student’s t-test was applied to the mean amount of release of bisphenol A-glycidyl methacrylate and triethylene glycol dimethacrylate from EverX Posterior bulk-fill composite based on different storage times

Leaching agent	n	Mean	SD	t	P
EverX Posterior					
30 s					
After 24 h BisGMA	17	37.36977	6.102676	-1.419	0.166
TEGDMA	17	40.34424	6.120872	<0.001	0.456
After 24 h BisGMA	17	31.16824	5.314855	-0.456	<0.001
TEGDMA	17	21.19859	7.919885		
40 s					
After 24 h BisGMA	17	37.14853	13.21705	-0.754	0.456
TEGDMA	17	40.09129	9.180097		
After 24 h BisGMA	17	31.05041	7.923286	4.107	<0.001
TEGDMA	17	21.19859	5.919885		

BisGMA: Bisphenol A-glycidyl methacrylate, TEGDMA: Triethylene glycol dimethacrylate, SD: Standard deviation

Graph 1: Bar graph depicting the mean amount of the release of bisphenol A-glycidyl methacrylate from Tetric N-Ceram Bulk fill and EverX Posterior and triethylene glycol dimethacrylate from EverX Posterior based on different polymerization times

Graph 2: Bar graph depicting the mean amount of the release of bisphenol A-glycidyl methacrylate between Tetric N-Ceram Bulk fill and EverX Posterior composite resins
However, from the present study, even though 30 and 40 s of curing time, composite resins showed no notable effect in the elution of monomers. Further considerations and research on suitable modifications in the composite materials, curing lights, or curing techniques to reduce monomer elution from composite resins are required.

Clinical relevance
Residual monomers were eluted from bulk-fill composite resins at all time periods, even when cured using an alternative curing technique like “Soft Start” curing technique.

Limitation
Since absolute alcohol was used to immerse the cured composite samples, it did not simulate the oral cavity environment, but quantifies the amount of residual monomer which can be correlated.

Acknowledgment
We are grateful to Prof. (Dr.) Vaman C. Rao, Professor and Head, Department of Biotechnology, NMAMIT Institute of Biotechnology, Nitte, Karnataka, for generously granting us the permission to work with the HPLC unit in the department to carry out our study.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Hegde MN, Bhat G, Nagesh SC. Release of monomers from dental composite materials – An in-vitro study. Int J Pharm Sci 2012;4:500-4.
2. Burgess JO, DeGoes M, Walker R, Ripp AH. An evaluation of four light-curing units comparing soft and hard curing. Pract Periodontics Aesthet Dent 1998;11:125-32.
3. Furness A, Tadros MY, Looney SW, Rueggeberg FA. Effect of bulk/ incremental fill on internal gap formation of bulk-fill composites. J Dent 2014;42:439-49.
4. Sakaguchi RL, Willbank BD, Murchison CF. Contraction force rate of polymer composites is linearly correlated with irradiance. Dent Mater 2004;20:402-7.
5. Jandt KD, Sigusch BW. Future perspectives of resin-based dental materials. Dent Mater 2009;25:1001-6.
6. Mousavinasab SM. Biocompatibility of composite resins. Dent Res J(Spec Issue) 2011;8:21-9.
7. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994;21:441-52.
8. Bouillaguet S, Wataha JC, Hanshaw PC, Ernst A. In vitro cytotoxicity and dentin permeability of HEMA. J Endod 1996;22:244-8.
9. Volk J, Engelmann J, Leyhausen G, Geurtsen W. Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts. Dent Mater 2006;22:499-505.
10. Polydorou O, Trittler R, Hellwig E, Kummen K, Elution of monomers from conventional dental composite materials. Dent Mater 2007;23:1535-41.
11. Michelsen V, Moe L, Skålevik R, Jensen E, Lygre H. Quantification of organic eluates from polymerized resin-based dental restorative materials by use of GC/MS. J Chromatogr B Analyt Technol Biomed Sci 2007;850:83-91.
12. Arf, Alpoz AR, Bayraktar O, Ertugrul F. Monomer release from resin-based dental materials cured with LED and halogen lights. Eur J Dent 2010;4:34-40.
13. Ferracane JL, Condon JR. Release of leachable components from composite. Dent Mater 1990;6:282-7.
14. Asmussen E, Peutzfeldt A. Influence of pulse-delay curing on softening of polymer structures. J Dent Res 2001;80:1570-3.
15. Becher R, Köpperud HM, Airh, Samuelsson JT, Morisbak E, Dahlman HJ, et al. Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two composite extracts. Dent Mater 2006;22:630-40.
16. Chang MC, Lin LD, Chan CP, Chang HH, Chen Li, Lin HJ, et al. The effect of BisGMAon cyclooxygenase-2 expression, PGE2 production and cytotoxicity via reactive oxygen species- and MEK/ERK-dependent and -independent pathways. Biomaterials 2009;30:4070-7.
17. Geurtsen W, Leyhausen G. Chemical-biological interactions of the resin monomer triethylene glycol-dimethacrylate (TEGDMA). J Dent Res 2001;80:2046-50.
18. Orstgaard U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil 2001;28:1106-15.
19. Geurtsen W, Spahl W, Leyhausen G. Variability of cytotoxicity and leaching of substances from four light-curing pit and fissure sealants. J Biomed Mater Res 1999;44:73-7.
20. Moharamzadeh K, Van Noort R, Brook IM, Scutt AM. HPLC analysis of eluates from polymerized resin-based dental restorative materials by use of GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007;850:83-91.
21. Komurcuoglu E, Olmez S, Vural N. Evaluation of residual monomer elimination methods in three different fissure sealants. J Oral Rehabil 2001;28:1106-15.
22. Nathanson D, Lertpitayakun P, Lamkin MS, Edalatpour M, Chou LL. In vitro elution of leachable components from dental sealants. J Biomed Mater Res 1997;29:151-7.
23. Durner J, Spahl W, Stassaneli O, Schweikl H, Hickel R, Reichl FX. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater 2010;26:91-9.
24. Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin. J Oral Rehabil 1994;21:441-52.
25. Manojlovic D, Radisic M, Vasiljevic T, Zečković S, Lausevic M, Mićetic V. Monomer elution from nanohybrid and nanofiller-based composites cured with different light sources. Dent Mater 2011;27:371-8.