Genu valgum and primary hyperparathyroidism in children

Ramkumar S, Devasenathipathy Kandasamy, Vijay MK, Madhavi Tripathi, Jyotsna VP

ABSTRACT

Introduction: Bony deformity due to primary hyperparathyroidism is a rare entity in children. Case Series: We describe two children who presented with genu valgum to the Endocrine Department. Ten children with primary hyperparathyroidism presenting with genu valgum have been reported in literature and have been reviewed by us. Biochemical investigations revealed parathyroid hormone dependent hypercalcemia despite a deficiency of vitamin D in both children. A single parathyroid adenoma was identified by ultrasonography and (99mTc)-sestamibi (MIBI) scan. Both children underwent resection of the solitary parathyroid lesion which was confirmed as adenoma by histopathological examination. All cases reported in literature had solitary parathyroid adenoma and had onset around puberty consistent with our observation that pubertal growth spurt is responsible for the occurrence of genu valgum in children with previously undiagnosed primary hyperparathyroidism. Conclusion: Genu valgum is a common skeletal deformity in children with primary hyperparathyroidism. Solitary parathyroid adenoma was identified in all reported cases and all underwent parathyroidectomy. Pubertal growth spurt seems to contribute to the occurrence of genu valgum in children with primary hyperparathyroidism.

Keywords: Genu valgum, Hypercalcemia, Hyperparathyroidism, Parathyroid adenoma, Technetium-99m sestamibi

How to cite this article

Ramkumar S, Kandasamy D, Vijay MK, Tripathi M, Jyotsna VP. Genu valgum and primary hyperparathyroidism in children. Int J Case Rep Images 2014;5(6):401–407.

doi:10.5348/ijcri-201455-CS-10041

INTRODUCTION

Primary hyperparathyroidism (PHPT) is one of the most common causes of hypercalcemia and metabolic bone disease in adults but it is a relatively uncommon disorder in children. Parathyroid adenomas are the most common cause of PHPT, other causes being four gland hyperplasia and rarely parathyroid carcinoma. Parathyroid adenoma can occur sporadically or as part of multiple endocrine neoplasia type 1 or type 2A (MEN-1/MEN-2A). Primary hyperparathyroidism presenting with bony deformities such as genu valgum has rarely been reported in children its mechanism is not understood. We report two cases of hyperparathyroidism who presented to the endocrine outpatient department with genu valgum.
CASE SERIES

Case 1: A 16-year-old boy was presented with symptoms of progressively increasing bowing of the legs for four years and bilateral leg pain for two years. He also had generalized arthralgia and polyuria. There was no history of recurrent fractures, recurrent vomiting, constipation or neck swelling. There was no past history of native treatment, the use of anti-tubercular or anti-epileptic drugs, jaundice or renal problems. There was no family history of renal calculi, hypertension or multiple endocrine neoplasia (MEN) related disorders. His height, weight and body mass index were 177 cm, 67 kg and 21.38 kg/cm², respectively. Apart from genu valgum (Figure 1A), no other skeletal deformity was noted. He was in Tanner’s stage 4. Hemogram, electrolytes, renal and liver functions test were normal. Serum prolactin was 11.2 (normal range 4.6–21.4 ng/mL) and serum albumin was 4.4 g/L. Radiological evaluation showed a brown tumor in the right proximal humerus (Figure 1C). His base line calcium and vitamin D status are given in Table 1. He was vitamin D deficient and after treatment of vitamin D deficiency, his hypercalcemia worsened and parathyroid hormone remained high. 24 hours urinary calcium excretion was 570 mg per day. Ultrasonogram (Figure 1D) and Tc-99m MIBI (Figure 2) scan showed presence of a left inferior parathyroid adenoma. No thyroid nodule was seen in the neck ultrasonogram.

Case 2: A 13-year-old boy was presented with bowing of legs (Figure 3A) which was noted in last three months and was slowly progressive. Apart from myalgia, nausea and occasional abdominal pain, there was no other history of hypercalcemic symptoms, bone pain or fractures. There was no history of malabsorption, recurrent diarrhea, native treatment, anti-tubercular or antiepileptic drug intake, jaundice or renal problems. There was no family history of renal calculi, hypertension or MEN related disorders. His height, weight and body mass index were 154 cm, 50 kg and 21.08 kg/cm², respectively. Apart from genu valgum, no other skeletal deformity was noted. He was in Tanner stage 2. His hemogram, electrolytes, renal and liver functions test were normal. Serum prolactin was 11.6 (normal range 4.6–21.4 ng/mL) and serum albumin was 4.9 g/L. Radiological evaluation showed brown tumor in the distal femur and patella (Figure 3B–C). Patient was initially suspected of rickets by a private practitioner and treated with injection arachitiol six lac units stat. Baseline calcium and vitamin are given in Table 1. Similar to the first case, his hypercalcemia worsened and parathyroid hormone remained high. Urine showed calcium oxalate crystals. A 24-hour urinary calcium excretion was 520 mg per day. Ultrasonogram (Figure 3D) and (99m) Tc-sestamibi (MIBI) (Figure 4) scan showed presence of a right inferior parathyroid adenoma. No thyroid nodule was seen in neck ultrasonogram.

Both the children underwent resection of the parathyroid lesion. Biopsy in both cases was consistent with parathyroid adenoma. Cut section of both the
Table 1: Serum total calcium, phosphate, alkaline phosphate, intact parathyroid hormone (iPTH) and 25-hydroxy vitamin D levels in both patients

Patient	Total Calcium (mg%)	Phosphate (mg%)	SAP (IU/mL)	iPTH (pg/mL)	25-OH Vit-D (ng/mL)
At presentation					
Case 1	11	3.7	2416	760.2	9.0
Case 2	10.7	3.7	1001	1136	5.1
After correction of vitamin D deficiency					
Case 1	14.5	2.7	1099	569.9	21
Case 2	14.7	4.3	1673	644	47.9
After surgical removal of parathyroid adenoma					
Case 1	8.4	2.0	646	23.9	
Case 2	8.2	2.7	970	24	

specimen showed grayish brown lobulated lesion surrounded by a thin connective tissue capsule. Microscopically, the tumor was encapsulated with a rim of compressed non-neoplastic parathyroid tissue at the periphery. The tumor was hypercellular and predominantly comprises chief cells (Figure 5). No nuclear atypia, mitotic activity or necrosis was identified. Postoperatively, both had symptomatic hypocalcemia secondary to transient hypoparathyroidism and were managed with calcium and calcitriol.

DISCUSSION

Primary hyperparathyroidism in children is uncommon and usually presents with bone disease or renal stones [1–3]. The clinical spectrum of hyperparathyroidism in children is non-specific with vague signs and symptoms such as fatigue, anorexia,
children. The second case described by us had evidence of genu valgum in hyperparathyroidism in deficiency alone is insufficient to explain the isolated occurrence of rickets. Vitamin D deficiency in children. These children rarely manifest with other features of rickets. They have elevated parathyroid hormone levels with radiological features like brown tumors favoring hyperparathyroidism. Ultrasonogram and technetium 99M sestamibi scan are useful in localizing the parathyroid adenoma. Though the exact mechanism for development of genu valgum in PHPT still needs to be defined, a possible explanation could be due to the direct effect of elevated parathyroid hormone on the growth plates during pubertal growth spurt.

CONCLUSION

Genu valgum is a rare presentation of PHPT in children. These children rarely manifest with other features of rickets. They have elevated parathyroid hormone levels with radiological features like brown tumors favoring hyperparathyroidism. Ultrasonogram and technetium 99M sestamibi scan are useful in localizing the parathyroid adenoma. Though the exact mechanism for development of genu valgum in PHPT still needs to be elucidated, it is proposed that elevated parathyroid hormone levels may have a direct effect on the growth plates during pubertal growth spurt resulting in genu valgum.

Author Contributions

Ramkumar S – Substantial contribution to conception, design, Acquisition of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Devasenathipathy Kandasamy – Substantial contribution to conception, design, Acquisition of data, Drafting and revising article critically for important radiology related content, Final approval of the version to be published

Vijay MK – Substantial contribution to conception, design, Acquisition of data, Drafting the article and revising it critically for important Pathology related content.

Figure 5: Microscopic section examined (Case 1 (A, B) and case 2 (C, D)) showing a well-encapsulated tumor predominantly comprises of chief cells. A compressed rim of normal parathyroid tissue is evident at the periphery.
Author	Age/gender	Clinical features	Total calcium (mg%)	iPTH (pg/mL)	25-OH Vitamin D (ng/mL)	Radiological features reported
1 Harman et al.	14/F	Genu valgum at age 11	Not available**	No material	Not available**	Multiple brown tumors in metacarpal bones
2 Kauffman et al.	13/F	Genu valgum (1 yr duration), backache, pain in legs,	3.66 mmol/l, 1066	125		Subperiosteal resorption, demineralization of skull vault, bilateral coxa vara and zones of calcification on knee metaphyses
		became lame later	3.8mmol/l			
3 PS Menon [6]	14/F	Genu valgum (6 yr duration), rachitic features, renal	2.69 - 2.89	760 - 790		Generalised osteopenia, erosions of lateral ends of clavicles, subperiosteal resorption, bilateral femoral epiphyseal displacement and irregular destruction of metaphyses, bilateral brown tumours in femur and tibia
		calculi	mmol/l			
4 Ratnasingham	15/F	Only genu valgum	12.4	1649	28	Osteopenia, subperiosteal resorption, terminal resorption of distal tufts
5 Hary E. Balch	21/F	Genu valgum, fever, nausea, vomiting, loin pain,	21.2	-	-	Osteitis fibrosa generalisata
		headache, nocturia				
6 Arne Bjernulf	14/F	Tiredness, genu valgum	15	2.6	-	Osteoporosis
7 Arne Bjernulf	15/M	Genu vaglum	17	2.8	-	Osteoporosis
8 Arne Bjernulf	15/M	Genu valgum, apathy	12	1.1	-	Deficient lamina dura, osteoporosis, subperiosteal resorptions, brown tumor in left fifth metacarpal
9 Rapaport et al.	15/F	Weight loss, irritability, constipation, polyuria	17.6	1.6	-	Moth eaten skull, tibial cyst
10 Rapaport et al.	15/M	Painless hematuria, genu valgum	13.7	3.3	-	
11 Case 1	16/M	Genu valgum noted for last 4 years, bone pains	11*	760.2*	9.0*	Brown tumor in right upper humerus
12 Case 2	13/M	Genu valgum noted last 3 months, myalgia, abdominal	10.7*	1136*	5.1*	Brown tumor in lower femur and patella
		pain				

*values mentioned are at the time of presentation, ** mean serum calcium of 12.1 mg% and iPTH of 22.1 pg/mL reported in case series of 33 case
content, Final approval of the version to be published.

Madhavi Tripathi – Substantial contribution to conception, design and acquisition of data, Drafting the article and revising it critically for important nuclear medicine related content, Final approval of the version to be published.

Jyotsna VP – Substantial contribution to conception, design and acquisition of data, Drafting the article and revising it critically for important intellectual content, Final approval of the version to be published.

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2014 Ramkumar S et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Kollars J, Zarroug AE, van Heerden J, et al. Primary hyperparathyroidism in pediatric patients. Pediatrics 2005;115(4):974–80.
2. Lawson ML, Miller SF, Ellis G, Filler RM, Kooh SW. Primary hyperparathyroidism in a paediatric hospital. QJM 1996;89(12):921–32.
3. Harman CR, van Heerden JA, Farley DR, Grant CS, Thompson GB, Curlee K. Sporadic primary hyperparathyroidism in young patients: A separate entity? Arch Surg 1999;134(6):651–5.
4. Eastell R, Arnold A, Brandi ML, et al. Diagnosis of asymptomatic primary hyperparathyroidism: Proceedings of the third international workshop. J Clin Endocrinol Metab 2009;94(2):340–50.
5. Kauffmann C, Leroy B, Sinassamy P, Carlioz H, Gruner M, Bensman A. A rare cause of bone pain in children: Primary hyperparathyroidism caused by adenoma. Arch Fr Pediatri 1993;50(9):771–4. [Article in French].
6. Menon PS, Madhavi N, Mukhopadhyaya S, Padhy AK, Bal CS, Sharma LK. Primary hyperparathyroidism in a 14 year old girl presenting with bone deformities. J Paediatt Child Health 1994;30(5):441–3.
7. Ratnasingam J, Tan AT, Vethakkan SR, et al. Primary hyperparathyroidism: A rare cause of genu valgus in adolescence. J Clin Endocrinol Metab 2013;98(3):869–70.
8. Balseh HE, Spiegel EH, Upton AL, Kinsell LW, Hyperparathyroidism: Report of 2 cases with some relatively unusual manifestations. J Clin Endocrinol Metab 1953;13(6):733–8.
9. Bjernulf A, Hall K, Sjögren L, Werner I. Primary hyperparathyroidism in children. Brief review of the literature and a case report. Acta Paediatr Scand 1970;59(3):249–58.
10. Rapaport D, Ziv Y, Rubin M, Huminer D, Dinstan M. Primary hyperparathyroidism in children. J Pediatr Surg 1986;21(5):395–7.
11. Katharia R, Agarwala S, Mitra DK, et al. Primary hyperparathyroidism in children. Pediatr Surg Int 1996;11(5-6):374–7.
ABOUT THE AUTHORS

Article citation: Ramkumar S, Kandasamy D, Vijay MK, Tripathi M, Jyotsna VP. Genu valgum and primary hyperparathyroidism in children. Int J Case Rep Images 2014;5(6):401–407.

Ramkumar is Consultant Endocrinologist at Apollo Hospitals, Chennai, India. He earned the undergraduate degree MBBS from Thanjavur Medical College, Dr. MGR medical university, Chennai and postgraduate degree MD from Madras Medical College, Dr. MGR medical university, Chennai. He also obtained D.M Endocrinology Degree from All India Institute of Medical Sciences (AIIMS), New Delhi. He has published four research papers in national and international academic journals and authored two books. His research interests include pediatric endocrinology, pubertal disorders, disorders of sexual differentiation and pituitary disorders.

Madhavi Tripathi is Assistant Professor at the Department of Nuclear Medicine and PET, All India Institute of Medical Sciences, New Delhi. She earned the undergraduate degree MBBS from MKCG Medical College, Berhampur and postgraduate degree (MD) from SGPGIMS, Lucknow, India and a DNB in Nuclear Medicine from NBE, Delhi. She has published 45 research papers in national and international academic journals. Her research interests include functional imaging in movement disorders and dementia and use of non-FDG PET tracers in medicine. She intends to pursue a PhD degree in future.

Vijay Maneesh is Senior Resident at Department of Pathology, All India Institute of Medical Sciences, New Delhi. He earned the undergraduate degree MBBS from S.M.S medical college, Jaipur and postgraduate degree MD Pathology from All India Institute of Medical Sciences, New Delhi. He has published 10 research papers in national and international academic journals and his research interest include renal pathology.

Devasenathipathy Kandasamy is Assistant Professor at Department of Radiodiagnosis (IRCH), All India Institute of Medical Sciences, New Delhi, India. He earned the undergraduate degree MBBS from Madras Medical College, Chennai and Postgraduate degree MD (Radiodiagnosis) from All India Institute of Medical Sciences, New Delhi, India. He has published 14 research papers in national and international academic journals and authored six books. His research interests include body imaging and interventions and imaging informatics.

Viveka P. Jyotsna is Additional Professor at Department of Endocrinology at All India Institute of Medical Sciences, Delhi, India. She earned the undergraduate MBBS and postgraduate degree MD, DM form Institute of Medical Sciences, BHU, Varanasi. She has published 40 research papers in national and international academic journals. Her research interests include diabetes and neuroendocrinology.