Laser frequency comb techniques for precise astronomical spectroscopy

Michael T. Murphy,1* Clayton R. Locke,2 Philip S. Light,2 Andre N. Luiten2 and Jon S. Lawrence3,4

1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
2Frequency Standards and Metrology Group, School of Physics, University of Western Australia, Nedlands, WA 6009, Australia
3Australian Astronomical Observatory, Eastwood, Sydney, NSW 1710, Australia
4Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia

Accepted 2012 January 30. Received 2012 January 4; in original form 2011 December 4

ABSTRACT

Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for example, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching \(\sim 1 \text{ cm s}^{-1}\) will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High-Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the two-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by \(< 8\) per cent if it is assumed to vary symmetrically about the pixel centre. We also demonstrate that a series of comb exposures with absolutely known offsets between them can yield tighter constraints on symmetric IPS variations from \(\sim 100\) pixels. We discuss measurement of asymmetric IPS variations and absolute wavelength calibration of astronomical spectrographs and CCDs using frequency combs.

Key words: instrumentation: detectors – instrumentation: spectrographs – methods: laboratory – techniques: spectroscopic.

1 INTRODUCTION

A growing variety of measurements in astrophysics rely on, or are enabled by, precise astronomical spectroscopy. For example, searches for extra-solar planets via the radial velocity method (e.g. Mayor & Queloz 1995; Marcy & Butler 1996) rely on the reproducibility of stellar radial velocities over time-scales up to several years. Night-to-night reproducibility better than 1 m s\(^{-1}\) has been achieved when integrated over spectral ranges of \(\sim 1000–3000\) Å (e.g. Lovis et al. 2006). Another example is the use of relative velocity shifts between ionic and molecular transitions in highly redshifted quasar absorption systems to constrain cosmological variations in fundamental constants, such as the fine-structure constant (e.g. Bahcall, Sargent & Schmidt 1967; Webb et al. 1999) and proton-to-electron mass ratio (e.g. Varshalovich & Levshakov 1993; Ivanchik et al. 2005). Velocity precisions averaged over several transitions in hundreds of absorption systems reach \(\sim 20\) m s\(^{-1}\) (Murphy, Webb & Flambaum 2003; Malec et al. 2010; King et al. 2011; Webb et al. 2011).

Much more precise and accurate spectroscopy would be required if the acceleration of the Universal expansion is to be measured by monitoring the slowly changing redshifts of Lyman \(\alpha\) forest absorption lines in quasar spectra (e.g. Sandage 1962; Loeb 1998). This is one possible aim of the CODEX spectrograph proposed for the European Extremely Large Telescope (e.g. Pasquini et al. 2006; Liske et al. 2008). Two epochs of spectra are required, taken decades apart, with velocity precision approaching 1 cm s\(^{-1}\) integrated over \(\sim 1000–3000\) Å ranges. The calibration of individual quasar exposures would therefore need to be reproducible to within \(\sim 1\) cm s\(^{-1}\) over several decades. Many optical and mechanical elements of the telescope and spectrograph may need replacing on such a time-scale, or observations from other telescopes may need to be employed to achieve the required signal-to-noise ratio (S/N). Thus, it would be preferable to absolutely calibrate the wavelength scale of each quasar exposure.

Laser frequency combs (LFCs; e.g. Reichert et al. 1999; Jones et al. 2000; Udem, Holzwarth & Hänsch 2002) are a promising...
candidate for such highly precise, and possibly absolute, wave-
length calibration of astronomical spectographs (Murphy et al.
2007; Schmidt, Kimeswenger & Kaeufl 2008). The train of pulses
that are output from a frequency comb appear in frequency space
as a spectrum of line ‘modes’ uniformly spaced by the pulse repet-
tion rate. This repetition rate can readily be synchronized with an
absolute radio frequency reference, e.g. a global positioning system
(GPS) signal or atomic clock. Thus, an absolute, very dense and
perfectly regular calibration spectrum could be used to calibrate as-
tronomical spectographs. Murphy et al. (2007) demonstrated that,
in principle, recording such a frequency comb signal on a conven-
tional charge-coupled device (CCD) typical of modern astronomical
spectographs would provide enough spectral information to reach the
≈1 cm s⁻¹ calibration precision required for measuring real-
time drifts in the redshifts of Lyman α absorption lines in quasar
spectra.

Prototype frequency comb calibration systems are now being tested
at various observatories. The first LFC demonstration on an
astronomical spectograph by Steinmetz et al. (2008) achieved state-of-the-art calibration precision of ≈9 m s⁻¹ in near infrared
(IR; 1.5 μm) astronomical spectroscopy. Wilken et al. (2010) used a
frequency-doubled Yb-doped fibre laser to calibrate a single echelle
order at ≈500 nm of a highly stable vacuum spectograph (HARPS)
with 15 m s⁻¹ accuracy, precision and reproducibility over several-
hour time-scales. Benedick et al. (2010) calibrated the TRES spect-
ograph with an accuracy better than 1 m s⁻¹ at ≈400 nm using a
tunable Ti:Sapphire LFC. While these tests demonstrate the main
advantage of LFC calibration – the high density of high-S/N, equally
spaced modes – some challenges discussed by Murphy et al. (2007)
still remain. For example, the above tests employed LFCs covering
only small wavelength ranges (typically ≈10 nm). Simultaneously
and uniformly illuminating the entire optical wavelength range cov-
ered by modern echelle spectographs is highly desirable.

Another important advantage of LFC calibration is that the high
density of recorded modes and the absolute frequency scale should
disable direct characterization of many, if not all, instrumental sys-
tematic errors (Murphy et al. 2007). For example, in calibrating a
single echelle order of HARPS, Wilken et al. (2010) found dis-
continuities in the calibration curve (i.e. wavelength versus spectral
pixel) at regular intervals of 512 spectral pixels. They attributed
this to imperfections in CCD pixel size, shape and/or sensitivity
imparted to every 512th pixel during the manufacturing process of
the CCD mask. Even subtler problems in the CCD or spectograph
optics are likely to limit spectroscopic accuracy unless they are first
detected, measured and then removed with LFCs.

One such problem is possible intra-pixel sensitivity (IPS) vari-
atations. Individual CCD pixels can show large spatial variations in
sensitivity to photons depending on the manufacturing process and
depth of the depletion layer (Toyozumi & Ashley 2005). Pixels can
also vary in size or shape and may contain small defects. Electron
counts may also be registered in a pixel when a photon enters
near the edge of a neighbouring one, depending on incidence angle.
These, and many other effects, lead to apparent IPS variations. The
development of ‘deep depletion’ CCDs has mitigated many of these
effects, however, for mode-locked lasers, one attempts to have many modes
circulating simultaneously. In addition, by including an intensity-
dependent loss in the cavity it is possible to bring about a mode-
locked state in which the laser’s output energy is delivered in a
single, intense and temporally very short pulse. In this condition
each mode maintains a fixed and well-defined phase relationship
with all other modes. The frequency spacing between all pairs of
adjacent modes, called the repetition frequency, is exactly the same
and equal to the reciprocal of the round-trip pulse circulation time
in the cavity. Further details of the operation of mode-locked lasers
can be found in Cundiff & Ye (2003).

The output spectrum of the mode-locked laser appears as a comb of
modes where the nth mode has a frequency, , given by

\[ f_n = \frac{n f_{\text{rep}} + f_{\text{CEO}}}{N} \quad (1) \]

where \( f_{\text{rep}} \) is the mode spacing between the ‘teeth’ of the comb. The
carrier-envelope offset (CEO) frequency \( f_{\text{CEO}} \) represents the offset
of each mode from an exact harmonic of the repetition frequency,
while in the time domain it expresses the rate at which the relative
phase of the carrier and pulse envelope evolves between each pulse.
For the comb to be useful as a high-precision frequency scale, \( f_{\text{rep}} \)
must be stabilized and \( f_{\text{CEO}} \) should be either stabilized or monitored.
The advantage of the mode-locked laser is that both \( f_{\text{rep}} \) and \( f_{\text{CEO}} \) are
in the radio frequency range so they can be locked (or monitored)
using relatively simple electronics. Such a comb provides a series of
regular and closely spaced modes, the absolute frequencies of which

2 EXPERIMENTAL SETUP

To demonstrate that the IPS variations in an astronomical spectro-
ograph’s CCD can be measured in situ, we tested an LFC at the
Anglo-Australian Telescope (AAT), Australia, on 2010 April
9. The Ultra-High-Resolution Facility (UHRF) spectograph has a
very high resolution mode, with resolving power \( R = \lambda /\Delta \lambda \approx 10^9 \) (where \( \Delta \lambda \) is resolution element’s full width at half-
maximum), which means a relatively simple LFC can be employed
(Section 2.2).

Our experimental setup is illustrated in Fig. 1. After summarizing
the basics of LFCs immediately below, we describe the important
elements of our particular setup, including our LFC, the interface
with the UHRF spectograph and the CCD whose IPS variations we
seek to measure. We also describe the data reduction steps taken
before the analyses described in subsequent sections.

2.1 Laser frequency comb basics

A laser will generate light at discrete frequency modes throughout
the spectral bandwidth of its gain material as long as the optical gain
exceeds the losses for a full round-trip in the laser cavity at each of
the mode frequencies. The frequency of a mode is determined by
ensuring that there is a whole number of wavelengths in one cavity
round-trip. Conventionally, much effort is expended in ensuring
that only a single mode can circulate at any time in the cavity;
however, for mode-locked lasers, one attempts to have many modes
circulating simultaneously. In addition, by including an intensity-
dependent loss in the cavity it is possible to bring about a mode-
locked state in which the laser’s output energy is delivered in a
single, intense and temporally very short pulse. In this condition
each mode maintains a fixed and well-defined phase relationship
with all other modes. The frequency spacing between all pairs of
adjacent modes, called the repetition frequency, is exactly the same
and equal to the reciprocal of the round-trip pulse circulation time
in the cavity. Further details of the operation of mode-locked lasers
can be found in Cundiff & Ye (2003).

The output spectrum of the mode-locked laser appears as a comb of
modes where the nth mode has a frequency, , given by

\[ f_n = \frac{n f_{\text{rep}} + f_{\text{CEO}}}{N} \quad (1) \]

where \( f_{\text{rep}} \) is the mode spacing between the ‘teeth’ of the comb. The
carrier-envelope offset (CEO) frequency \( f_{\text{CEO}} \) represents the offset
of each mode from an exact harmonic of the repetition frequency,
while in the time domain it expresses the rate at which the relative
phase of the carrier and pulse envelope evolves between each pulse.
For the comb to be useful as a high-precision frequency scale, \( f_{\text{rep}} \)
must be stabilized and \( f_{\text{CEO}} \) should be either stabilized or monitored.
The advantage of the mode-locked laser is that both \( f_{\text{rep}} \) and \( f_{\text{CEO}} \) are
in the radio frequency range so they can be locked (or monitored)
using relatively simple electronics. Such a comb provides a series of
regular and closely spaced modes, the absolute frequencies of which
The first frequency combs were based on solid-state Ti:Sapphire crystals (e.g. Ma et al. 2004) which, despite having exceptional frequency stability, typically require extensive supporting infrastructure and careful expert maintenance. In contrast, fibre-based mode-locked lasers are of low cost, have ‘turn-key’ operation and, importantly for demonstration at remote astronomical observatories, are portable. For these reasons we employ a commercial fibre-laser for this experiment using a stabilization scheme developed at the University of Western Australia (Locke et al. 2009). This laser delivers a 100-fs duration pulse at 1560 nm with $f_{\text{rep}} = 94$ MHz repetition frequency at an average power of approximately 250 mW. The laser output is frequency-doubled in a periodically poled lithium niobate (PPLN) crystal, simultaneously producing a red comb with 90 mW at 780 nm together with a green comb with 200 µW at the third harmonic, 520 nm. The extraction of the offset frequency is as follows (illustrated in Fig. 1). First, the green (third harmonic) comb is separated from the red (second harmonic) comb and travels a separate path on the optical table. Meanwhile, the red comb is frequency-shifted to the green wavelength (520 nm) using a unique, highly non-linear optical fibre developed at the University of Bath (Benabid et al. 2008). A delay arm in the beam path is adjusted so that femtosecond pulses from both combs arrive at an avalanche photodiode simultaneously. The difference-frequency generated by interference of the green third harmonic comb and the frequency-shifted red comb (both at 520 nm) contains the offset frequency.

Although it is possible to feed this $f_{\text{CEO}}$ measurement back into the laser, thus actively stabilizing $f_{\text{CEO}}$, it was not necessary for the purposes of our LFC demonstration and IPS measurement. This minimized the equipment required at the remote AAT site. Because $f_{\text{CEO}}$ is not multiplied by $n$ (unlike $f_{\text{rep}}$), it was easily logged and monitored with simple electronics during our experiments. In principle, this record could be used in post-processing to calibrate the comb, though for the purposes of our analysis in Section 4, this was not necessary.

One important characteristic of the frequency comb used here, as with all previous tests of LFCs on astronomical spectrographs, is that $f_{\text{rep}}$ is too low for the teeth of the comb to be resolved from each other by the UHRF in its $R \approx 940$ k mode. The cavity’s FSR is locked to the filtered comb’s effective repetition frequency by the servo electronics. The filtered comb light is transported to the UHRF pre-slit chamber where it is launched through a diffuser on to the spectrograph slit.
stability of the spectrograph on short time-scales using a series of short exposures (see Section 5.1). By comparison, the usual wavelength calibration method – a hollow-cathode ThAr emission-line lamp – provides only three emission lines near 780 nm which provide only moderate S/N (∼50 per pixel) even after several minutes of exposure.

Finally, we note that our LFC setup enables a simple method for ‘flat-fielding’ (dividing out the pixel-to-pixel sensitivity variations in) the CCD exposures: we simply bypass the FP cavity to provide a high-intensity spectrum whose spectral structure is unresolved by UHRF. Again, the usual flat-field calibration method, which utilizes a quartz lamp, would have involved averaging many exposures lasting several minutes each.

2.3 UHRF spectrograph setup

The UHRF is a (grating) cross-dispersed echelle spectrograph mounted in the (east) coude room of the AAT (Diego et al. 1995). It was selected for our LFC test because its very high resolution mode (R = 940 000) allows us to use a relatively inexpensive, commercial LFC with a ‘low’ (actually typical) f\textsubscript{rep}. The demands on the finesse of the FP cavity mirrors (which was F ∼ 300) are also reduced because ‘only’ 10 out of every 11 comb modes need to be interferometrically suppressed. Moreover, while UHRF in this mode only allows ∼1 nm of a single echelle order to be observed in a single exposure, a wider bandwidth was not required for measuring possible IPS variations. Also, pre-defined echelle and cross-disperser angles were already available for observing at 780 nm, so minimal time was spent configuring the spectrograph itself.

The FP-filtered comb light was coupled into a single-mode optical fibre for transport to UHRF’s pre-slit chamber where it was launched in free space through a rotating paper diffuser to over-fill the slit in the spectral direction and almost fill it in the spatial direction. The full UHRF resolving power of R = 940 000 was achieved by using the smallest slit-width possible, just 40 μm, or 0.059 arcsec projected on the sky. The slit had an unvignetted length of ∼3.4 mm, or ∼5 arcsec. The alignment of this simple launch setup was checked only by eye using a television camera system to view the 780 nm light falling on cards placed along UHRF’s optical axis. The laser light (almost) filled the UHRF collimator symmetrically about its centre. The alignment was not altered throughout the exposure sequences reported in this paper.

Once the optical alignment of the launch system was finalized, the CCD dewar was manually rotated around the optical axis and fixed so that UHRF’s spectral direction roughly aligned with the CCD rows. This simplified the analysis by ensuring that comb spectra from individual CCD rows spanned the entire length of the CCD.

2.4 Charge-coupled device details

The CCD studied here, called ‘MITLL3’ at the AAT, is chip 2 from wafer 67 (i.e. device W76c2) of fabrication run CCID-20 from MIT/Lincoln Labs. It has 2048 × 4096 15 × 15-μm pixels and was designed to have a deep depletion layer (i.e. high resistivity), with a thickness of 13.5 μm. The latter is used for precise radial velocity work at the AAT (e.g. Tinney et al. 2003) which might benefit from knowing the IPS variations in that device. Nevertheless, chips from the same fabrication run (CCID-20) as the MITLL3 are used at many telescopes world-wide in many different instruments including, for example, the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope, Chile (Dekker et al. 2000). Another consideration is that, being thinned and back-side illuminated, the EEV chip’s IPS variations may be larger and more easily detected by our LFC test. Conversely, IPS variations in the deep-depletion MITLL3 chip might be harder to detect.

However, the main factor in selecting the MITLL3 chip was its very low fringing level at 780 nm. The much larger fringing level of the EEV would have prevented adequate flat-fielding of our comb exposures and precluded any measurement of the IPS variations in the EEV chip.

For reference, the MITLL3 CCD pixel size in the spectral direction of 15 μm translates to 2.63 mÅ or, at 780 nm, 129 MHz or 101 m s\textsuperscript{-1}. The nominal resolving power of R = 940 000 at 780 nm translates to an FWHM resolution of 8.3 mÅ, 409 MHz or 319 m s\textsuperscript{-1}. The FWHM resolution is sampled by 3.15 pixels.

2.5 Data reduction

Before any analysis of IPS variations, only basic data-reduction steps were required. The bias level was estimated using the median of 51 zero-second CCD exposures and subtracted from each CCD exposure. As mentioned in Section 2.2, flat-field exposures were obtained by bypassing the FP cavity stage. A master flat-field, formed from the median of 31 such exposures with high photo-electron counts, was used to normalize each LFC exposure used in our analysis. Part of a bias-corrected, flat-fielded LFC exposure is shown in Fig. 2. Note that the spectrum’s spatial direction is tilted with respect to the CCD columns, a fact which assists our subsequent analysis.

It is important that the error spectrum – the flux uncertainty in each CCD pixel – is estimated for our analysis of possible IPS variations. The dominant noise source is the Poisson noise of the LFC photons; the CCD’s read-noise was only ∼3 photo-electrons per pixel. Thus, the error spectrum varies strongly along the spectral direction of any given CCD row. An error image was generated for each bias-corrected, flat-fielded LFC exposure by taking the square root of the bias-corrected flux image and normalizing by the master flat-field image. The error spectrum is shown for a single CCD row in Fig. 2.

3 MODELLING THE FREQUENCY COMB CCD EXPOSURES

To understand the extent of IPS variations in the CCD pixels, we model the frequency comb flux using non-linear least-squares χ\textsuperscript{2} minimization (e.g. Fisher 1958). The reliability of this technique is demonstrated using simulated comb CCD recordings where relevant in the following sections. It is possible that other techniques would be effective, perhaps even simpler or faster but, for the demonstration purposes of this paper, a full exploration of other techniques is not important. The χ\textsuperscript{2} minimization code is custom-written but employs the standard Levenberg–Marquardt method with an implementation following the basic structure of that set out in Press et al. (1992).

We begin by modelling the UHRF instrumental line-shape (ILS; or instrumental profile) from the one-dimensional (1D) comb spectrum in individual rows of the comb CCD exposures (Section 3.1). That model is constrained by the assumption that other observed spectrum properties (e.g. average flux, frequency dispersion per CCD pixel) vary only slowly across the CCD. This basic model of
3.1 Modelling the instrumental line-shape

For our purposes, the ILS is defined as the profile formed in a single CCD row by an infinitely narrow LFC mode after passing through the spectrograph. Note that our LFC’s modes are completely unresolved by UHRF and so each recorded comb mode will directly represent the ILS at its observed wavelength. The frequency stability of our LFC implies that the spectral width of each comb mode is $\sim 1$ MHz, or $\sim 0.8 \text{ m s}^{-1}$ at the observed wavelength of 780 nm. Given the nominal UHRF resolution of $\approx 320 \text{ m s}^{-1}$, the comb modes are very much unresolved.

For a single CCD row, we initially model the comb flux, $F_i$ (in electron counts), in CCD pixel $i$ as the product of an ‘envelope intensity’ function, $E(x)$, and a ‘comb function’, $C(x)$, both of which are functions of position in the spectral direction of the CCD, $x$:

$$F_i = \int_{i-1/2}^{i+1/2} E(x) C(x) \, dx \approx E_i \int_{i-1/2}^{i+1/2} C(x) \, dx.$$  

(2)

The sensitivity of $F_i$ to IPS variations is directly linked to the fact that the comb function varies quickly on the scale of a single CCD pixel, so it is important to integrate the model of the comb across the pixel rather than approximate it by taking, e.g., its value at the pixel’s centre. However, the envelope intensity of the comb, $E(x)$ – the variation in the measured peak intensity from mode to mode – varies very slowly along the spectrum; the approximation in the right-hand side of equation (2) reflects this. For all the fits conducted in this paper, $E(x)$ is simply approximated as a second-order polynomial.

Because the LFC modes are much narrower than the UHRF resolution, in equation (2) the comb function, $C(x)$, can be written as a sum of ILSs from each comb mode,

$$C(x) = \sum_{n=1}^{\infty} \text{ILS}(x, x_n).$$  

(3)

The $n$th mode of the comb transmitted through the FP cavity occurs at pixel position $x_n$ given by

$$x_n = x_0 + \omega_1 n + \omega_2 n^2 + \cdots,$$  

(4)

with $\omega_1$ the ‘pixel-space repetition frequency’. Equation (4) is analogous to equation (1) but, because we model the comb in pixel space rather than frequency space, higher-order terms are required, characterized by $\omega_2$, $\omega_3$, etc. In this work we found no need to include terms beyond second order in equation (4) because we model such short frequency ranges of comb spectra. Visual inspection of Fig. 2 reveals that comb modes fall on approximately every eighth pixel – i.e. $\omega_1 \approx 8$ pixels – without any obvious non-linearity, i.e. $n \omega_2 \ll \omega_1$. Indeed, in our detailed modelling below, $\omega_2$ is typically $\sim 1 \times 10^{-4}$ with $-50 \lesssim n \lesssim 50$. 

Figure 2. Part of a CCD exposure at 780 nm from the AAT/UHRF frequency comb test (top panel) and the electron count spectrum extracted from a single CCD row ($y = 750$; second panel from top, black histogram). The raw CCD image was bias-corrected and flat-fielded before plotting. The spatial direction is clearly tilted with respect to the CCD columns. The lower two panels show a zoomed-in portion of the upper two panels. The lowest panel shows a small number of the comb modes transmitted through the FP cavity (see Fig. 1) which have a spacing of $\sim 8$ pixels in the spectral direction ($x$ coordinate). Plotted below the single-row spectrum (black histogram) is the error spectrum derived from photon statistics (red line) exaggerated by a factor of 50.
1. $\Delta \sigma = 0$ and the ratio of Gaussian amplitudes,

$$A_2/A_1 \approx 2,$$

in equation (4), the zero-point of the comb function. For

errors, are plotted

$\pm 5 \sigma$ instead of 2). The two models are not readily

the two fits:

structure, unlike that for the single-Gaussian model. We attempted

greater than unity in Section 4.2. The residual spectrum for the

models, respectively. We discuss why the latter value is noticeably

with the ILS model derived from the comb spectra: in the simple fits

the ILS, and the weaker one was 20 per cent

In the absence of IPS variations (which we seek to measure in this

3.2 Modelling CCD intra-pixel sensitivity variations

In our comb test with UHRF we sought to detect or limit any IPS

variations only in the spectral direction across the CCD pixels. This

possibility because the flux measured in a given pixel will depend on

IPS variations most strongly when the comb flux changes sub-

stantially across a pixel. From the example comb exposure shown in

Fig. 2 it is clear that the flux variations in the spatial direction

are much more slowly varying compared with those in the spec-

tral direction. Therefore, we do not attempt to model or detect IPS

variations in the spatial direction across pixels.

Thus, when fitting the comb flux in a single CCD row, or part

thereof, we insert a term for the IPS map, IPS$(x)$, in equation (2) to obtain

$$F_i \approx E_i \int_{x_i - 1/2}^{x_i + 1/2} C(x) \, \text{IPS}(x) \, dx,$$

where, as discussed above, IPS$(x)$ is the same for all $i$, or IPS$(x) = \text{IPS}(x)$.

Our aim here is to measure the average IPS variations, not the

IPS map for individual pixels. The latter possibility is discussed

in Section 5. We therefore make two important assumptions in the

modelling that follows.

(i) The IPS variations in all CCD pixels under consideration are

assumed to be the same. While previous laboratory studies have

shown that IPS variations are different in different pixels, they also

demonstrate a high degree of correlation across large portions of

the CCD (e.g. Toyozumi & Ashley 2005).

(ii) The IPS variations are modelled as a symmetric function

about the centre of the pixel (in the spectral direction). We report

results here from a Gaussian function with variable width, truncated

$\chi^2 = 29.5$ and 2.7 for the single- and double-Gaussian

models, respectively. We discuss why the latter value is noticeably

greater than unity in Section 4.2. The residual spectrum for the
double-Gaussian model, also plotted in Fig. 3, does not appear to
show any features which repeat on the scale of the comb mode
structure, unlike that for the single-Gaussian model. We attempted

to include a third Gaussian (i.e. $M = 3$) in the ILS but its best-fitted

amplitude was typically very small ($A_3/A_1 \lesssim 0.02$) and, upon

fitting different CCD rows and using different CCD exposures,

its separation from the main Gaussian component was sporadic

and very weakly constrained. This is consistent with the lack of

periodic structure in the residuals from the double-Gaussian model

in Fig. 3. Also, including the third Gaussian barely reduced $\chi^2$

in most cases; when fitting some CCD rows from some exposures it

actually increased. That is, there is no clear evidence for additional

structure in the ILS beyond the double-Gaussian model.

Diego et al. (1995) measured the UHRF ILS using an He–Ne laser. From their fig. 10, their measured ILS can be described as comprising two main Gaussian-like components separated by

$\sim 0.25$ km s$^{-1}$ with similar widths of FWHM $\approx 0.28$ km s$^{-1}$ and with one being $\approx 20$ per cent the height of the other. This accords well with the ILS model derived from the comb spectra: in the simple fits above, the Gaussian components were separated by $\sim 0.23$ km s$^{-1}$; they had FWHM $\approx 0.30$ km s$^{-1}$ and the weaker one was $20$ per cent

the height of the stronger one. Thus, the double-Gaussian model of

the UHRF ILS seems well justified, both from the comb spectra themselves and from the He–Ne spectra of Diego et al. (1995).

When fitting different parts of the same CCD exposure studied

in Figs 2 and 3, and the others taken over the course of our LFC
test, we found no significant variations in the ILS structure. That

is, no further Gaussians seem to be required. Nor do we observe

large variations in the parameters of the two Gaussians constituting

our preferred ILS model; when modelling a 2D comb spectrum in

Section 4 we explicitly test for this possibility. However, throughout

the rest of this work we adopt the basic double-Gaussian model of

the ILS with free parameters as specified in equation (5).

Finally, a by-product of the above fits is the statistical uncertainty

on $x_0$ in equation (4), the zero-point of the comb function. For

example, the double-Gaussian fit to the 150 spectral pixels in Fig. 3

returns a $1\sigma$ uncertainty on $x_0$ of $9.9 \times 10^{-3}$ pixels, or $\approx 1$ m s$^{-1}$.

Visual inspection of the example comb spectrum recorded in a

single CCD row (see Fig. 2) reveals UHRF’s ILS to be slightly

asymmetric. Our initial guess for the ILS was therefore a double-

Gaussian model: a central Gaussian flanked by a weaker second one

with the same width. That is,

$$\text{ILS}(x, x_0) = \sum_{m=1}^{M} A_m \exp \left[ -\frac{(x - \Delta_m - x_0)^2}{2\sigma^2_{ILS}} \right]$$

with $M = 2$, $\Delta_1 = 0$ and the ratio of Gaussian amplitudes, $A_2/A_1$, normalized so that $\int_{-\infty}^{\infty} \text{ILS}(x, x_0) \, dx = 1$.

Fig. 3 shows the model specified in equations (2)–(5) fitted to a

small section of a single row of one comb exposure. Also plotted is

the height of the stronger one. Thus, the double-Gaussian model

provides a closer match to the data. This is also reflected in the values of $\chi^2$ per degree of freedom, $\nu$, for the two fits: $\chi^2/\nu = 29.5$ and 2.7 for the single- and double-Gaussian models, respectively. We discuss why the latter value is noticeably

greater than unity in Section 4.2. The residual spectrum for the
double-Gaussian model, also plotted in Fig. 3, does not appear to
show any features which repeat on the scale of the comb mode
structure, unlike that for the single-Gaussian model. We attempted
to include a third Gaussian (i.e. $M = 3$) in the ILS but its best-fitted

amplitude was typically very small ($A_3/A_1 \lesssim 0.02$) and, upon

fitting different CCD rows and using different CCD exposures,

its separation from the main Gaussian component was sporadic

and very weakly constrained. This is consistent with the lack of

periodic structure in the residuals from the double-Gaussian model

in Fig. 3. Also, including the third Gaussian barely reduced $\chi^2$

in most cases; when fitting some CCD rows from some exposures it

actually increased. That is, there is no clear evidence for additional

structure in the ILS beyond the double-Gaussian model.

Diego et al. (1995) measured the UHRF ILS using an He–Ne laser. From their fig. 10, their measured ILS can be described as comprising two main Gaussian-like components separated by

$\sim 0.25$ km s$^{-1}$ with similar widths of FWHM $\approx 0.28$ km s$^{-1}$ and with one being $\approx 20$ per cent the height of the other. This accords well with the ILS model derived from the comb spectra: in the simple fits above, the Gaussian components were separated by $\sim 0.23$ km s$^{-1}$; they had FWHM $\approx 0.30$ km s$^{-1}$ and the weaker one was $20$ per cent

the height of the stronger one. Thus, the double-Gaussian model of

the UHRF ILS seems well justified, both from the comb spectra themselves and from the He–Ne spectra of Diego et al. (1995).

When fitting different parts of the same CCD exposure studied

in Figs 2 and 3, and the others taken over the course of our LFC
at the pixel edges and a base fixed at zero with no slope. For Gaussian widths larger than FWHM $\sim 0.5$ pixels, which we find are always preferred for the UHRF CCD, a variable base would be closely degenerate with the width parameter. Similar functions – e.g. symmetric linear slopes away from a central IPS peak (or trough) to the pixel edges – give very similar results. It is also important to realize that a variable baseline slope would be closely degenerate with the parameters in equation (4) which characterize the position of the comb modes. That is, a general slope in the IPS map of the fitted pixels is not detectable in our work. We discuss this further in Section 5.2.

We will see in Section 4.2 that it is only by fitting many hundreds of pixels (all assumed to have the same IPS map) that the degeneracies in the fitted model are reduced to a level where the Gaussian width of the IPS model can be constrained. For example, it is the small asymmetry in the UHRF ILS which allows us to constrain a symmetric IPS map, as we have chosen to use here. Nevertheless, this proves sufficient for measuring IPS variations in the MITLL3 chip using the assumptions above. As we demonstrate in Section 5, it may be possible to measure non-symmetric average IPS maps in future using additional information.

To summarize the above discussion, we may write our model of the IPS map for all pixels as a function of $x$ (where we note that $x = 0$ is the middle of a pixel) as

$$\text{IPS}(x) = B \exp \left(-x^2/2\sigma_{\text{IPS}}^2\right),$$

where the amplitude, $B$, is normalized such that $\int_{-\infty}^{\infty} \text{IPS}(x) \, dx = 1$. Here, $\sigma_{\text{IPS}}$, measured in units of pixels, is the IPS Gaussian width parameter which we measure. For example, $\sigma_{\text{IPS}} \gg 1$ pixel indicates a flat average IPS map whereas $\sigma_{\text{IPS}} \lesssim 1$ pixel indicates a strongly variable average IPS map.

Finally, that the form of equation (6) is convenient because the integrand is the sum of a product of Gaussian functions, thereby allowing trivial numerical integration using the well-known Gamma function (e.g. Press et al. 1992).

4 AVERAGE INTRA-Pixel SENSITIVITY MAP FROM A SINGLE COMB EXPOSURE

To measure the IPS variations using a single CCD exposure we assume that they are the same in all pixels and utilize the fact that each pixel (i.e. ‘copy’ of the IPS map) is probed with a different flux distribution. By using a well-constrained model of the flux distribution across many pixels, $\sigma_{\text{IPS}}$ – the Gaussian width of the average IPS map in our model – can be measured. From preliminary fits to $\sim 200$-pixel sections of single CCD rows, it became clear that $\sigma_{\text{IPS}}$ was covariant (i.e. somewhat degenerate) with several other parameters in our comb and ILS models, e.g. $\sigma_{\text{ILS}}$, the width of the two Gaussian ILS components. Rather than attempting to fit many more pixels in a single CCD row, which may necessitate higher-order representations of the intensity envelope function, $E(x)$, and comb function, $C(x)$, we instead utilized the full 2D comb information in our UHRF CCD exposures.

4.1 2D modelling of a single comb exposure

The example CCD exposure in Fig. 2 illustrates how the comb signal occupies more than 100 pixels in the spatial direction. That is, there are many ‘copies’ of almost the same comb signal available for constraining $\sigma_{\text{IPS}}$. This means that, under our assumption that all CCD pixels have the same IPS variations, we can fit many CCD rows simultaneously by adding a very small number of additional free parameters to the model in equation (6).

First, each of the terms of the comb function in equation (4) now becomes a function of CCD row, $j$. That is, the $n$th mode in row $j$ can be written as

$$x_n^j = x_0 + (a_1 j + a_2 j^2) + \sigma_n (1 + b_1 j) + \omega_n j^2,$$

where we have now explicitly truncated the series at second order in $n$ and limited the order in $j$ in each term. Fig. 2 clearly shows that the spatial direction of the spectrograph is tilted with respect to the CCD columns, i.e. $a_1 > 0$ to account for this tilt. But after exploring many 2D fits to various comb exposures and portions of the CCD, we found no evidence for distortions in this tilt, or for variations in the pixel-space repetition frequency with row. That is, both $a_2$ and $b_1$ were consistent with zero. Therefore, for all fits reported here we fixed $a_2$ and $b_1$ to zero.

Similarly, each of the parameters of the ILS could vary with $j$. By appropriately altering equation (5) to include polynomial dependence on $j$ for all free parameters (e.g. $\sigma_{\text{ILS}}$), we explored various fits to search for evidence of this. However, we found no significant variations in the ILS in the spatial direction.

Finally, note that while the intensity envelope function, $E(x)$, clearly varies (slowly) with CCD row, $j$, it will not be strongly covariant with any IPS variations, the measurement of which is our main aim. Therefore, we simply allowed the parameters of $E(x)$ to be independently determined for each $j$.

4.2 Main results: limits on IPS variations from individual exposures

We searched for IPS variations in our 10 highest S/N (20-s long) exposures. In each exposure we concentrated on fitting a 50 × 320 pixel (rows × columns) region near the centre (highest S/N) of the comb signal. This represents about half the comb’s spatial extent and about 10 per cent of its spectral extent on the CCD. Preliminary fits showed that some portions of the fitted area were not well flat-fielded. From inspection of the raw images and the master flat-field frame, we determined that dust particles on the UHRF optics were most likely resulting in small flat-field residuals which varied slightly from exposure to exposure or at least between the comb and flat-field exposures. The portions of the fitted area were the same in the 10 exposures we studied in detail. Therefore, we simply masked these portions out of our $\chi^2$ minimization analysis. We note in passing that 2D fits to different regions of the CCD did not reveal any obvious periodic CCD defects like those identified by Wilken et al. (2010).

Fig. 4 shows part of a 2D fit to a representative exposure. In general, the fit is clearly a reasonable representation of the recorded data. The $\chi^2$ per degree of freedom, $\nu$, was similar for all 10 exposures, $\chi^2/\nu = 2.9$ which, while not $\approx 1$, is not unreasonable, especially in the possible presence of additional, low-level flat-fielding errors. The residual spectra generally do not show coherent structures which repeat over $\sim 8$ pixel ranges, i.e. the transmitted comb mode spacing. Fig. 4 clearly shows some exceptions to this general statement. However, we did not observe any obvious correlation between the positions of these exceptions in different exposures. They may very well reflect from IPS variations in small clusters of pixels, but we cannot quantitatively address that possibility with the data in hand. Again, we attempt here to constrain a model of the average IPS variations for the whole fitted area.

For all of the 10 individual exposures, simply including $\sigma_{\text{IPS}}$ as a free parameter in the fit yielded best-fitting values $\sigma_{\text{IPS}} > 2$ pixels
in all cases. This was independent of the starting guess for $\sigma_{\text{IPS}}$ (and other parameters in the model), which was generally $\sim 0.5$ pixels. In most cases $\sigma_{\text{IPS}}$ grew from the starting guess value to 100 pixels, the arbitrary limit imposed in our code. Moreover in all cases, the best-fitting value was entirely consistent with $\sigma_{\text{IPS}} = \infty$. That is, under the assumptions of our IPS model, we do not detect significant average IPS variations.

To ensure that our $\chi^2$ minimization code was functioning correctly we fitted simulated versions of the 10 comb spectra. The real comb flux was replaced with the best-fitting model (without IPS variations) with Gaussian noise added which was derived using the real flux error estimates. The synthetic realizations were fitted in the same way, and with the same free parameters, as the real spectra. Fig. 5 illustrates one aspect of the comparison between the results from one comb exposure and the average results from 25 simulated versions of it. By holding $\sigma_{\text{IPS}}$ fixed at certain values and plotting the deviation in $\chi^2$ from its minimum, $\Delta \chi^2$, we gain a more accurate understanding of the minimum value of $\sigma_{\text{IPS}}$ allowed for each exposure. Because $\chi^2$ is not close to unity for the real exposures, but it is (by construction) for the simulations, we can test the veracity of the usual assumption that confidence intervals for $\sigma_{\text{IPS}}$ may be derived after normalizing $\chi^2$ by $(\chi^2_{\mathrm{min}})^{1/2}$, the square root of the minimum $\chi^2$. Under this normalization, Fig. 5 shows very similar results for the real and simulated spectra.

For the particular exposure studied in Fig. 5 we can rule out $\sigma_{\text{IPS}} < 1.0$ pixels ($< 0.5$ pixels) at the 68 per cent (95 per cent) significance level. These constraints on $\sigma_{\text{IPS}}$ were uniformly replicated for the same fitted region across the 10 exposures we studied in detail. By co-adding the plots of $\Delta \chi^2/(\chi^2_{\mathrm{min}})^{1/2}$ versus $\sigma_{\text{IPS}}$ for all 10 exposures, and recalling that we fitted the same region of the CCD in all cases, we form a joint constraint on the Gaussian width of our assumed IPS variation map: $\sigma_{\text{IPS}} > 1.2$ pixel at 99.7 per cent ($3\sigma$) confidence. This value of $\sigma_{\text{IPS}}$ corresponds to variations in the IPS across the spectral direction of the pixel of $< 8$ per cent.

Instead of a decrease in the IPS from the pixel centre to its edges, we also explored an IPS map with a minimum at the pixel centre by adding unity to equation (7) and allowing $B < 1$. We find very similar results to those above: $\sigma_{\text{IPS}}$ is constrained to be $> 1.3$ pixels at 99.7 per cent confidence. That is, we rule out IPS variations of $> 7$ percent at $3\sigma$ significance under the assumptions of our modified (up-side down Gaussian) model.

Finally, to demonstrate that detecting non-zero IPS variations is possible using our $\chi^2$ minimization technique (under the assumptions of our 2D modelling), we again fit simulated versions of the real comb spectra, this time with finite values of $\sigma_{\text{IPS}}$. The S/N of the simulated spectra again matched the corresponding real spectra. In all simulations the best-fitting value of $\sigma_{\text{IPS}}$ broadly matched the input value. This was simple to assess for input values $\sigma_{\text{IPS}} \leq 1.5$ pixels but judging formal statistical consistency between the input and best-fitting values was more difficult when $\sigma_{\text{IPS}}$ was larger. The ultimate reason for this is that the IPS map is very flat for large $\sigma_{\text{IPS}}$. This is illustrated in Fig. 5 which shows the variation in $\chi^2$ with fixed fitted values of $\sigma_{\text{IPS}}$ for a single realization with an input $\sigma_{\text{IPS}} = 1$. In this example there is a clear minimum in $\chi^2$ near the input value of $\sigma_{\text{IPS}}$. However, it is also clear that $\chi^2$’s sensitivity to $\sigma_{\text{IPS}}$ diminishes with increasing $\sigma_{\text{IPS}}$, i.e. the $\chi^2$ curve is not parabolic at $\sigma_{\text{IPS}} \gtrsim 1$. Thus, the formal statistical error on $\sigma_{\text{IPS}}$ derived from the covariance matrix in our $\chi^2$ minimization scheme will not be reliable for large $\sigma_{\text{IPS}}$. This problem clearly also applies to the constraints on $\sigma_{\text{IPS}}$ derived above from our real comb exposures. This is the reason we used the $\chi^2$ curve for the fit to each exposure, rather than the formal error.
from the covariance matrix, to derive confidence limits on any IPS variations.

To summarize the above results, we have demonstrated that any symmetric component of the average IPS variations can be detected in a single LFC exposure provided that many hundreds of pixels can be modelled simultaneously. The AAT/MITLL3 chip’s average IPS map deviates from being flat by <8 per cent in a symmetric manner about the pixel centre in the direction along CCD rows. However, under our model assumptions, we cannot measure or rule out a significant asymmetric component to the average IPS map. For example, the IPS map may slope from one side of the pixel to the other, but we cannot detect this by modelling a single exposure. The simple reason for this is that such a slope is closely degenerate with the measured position of the comb with respect to the CCD pixel grid. We return to this point in Section 5.2. In the previous section we discuss how a series of offset comb exposures might allow that degeneracy to be removed.

5 INTRA-PIXEL SENSITIVITY MAP FROM A SERIES OF OFFSET COMB EXPOSURES

5.1 Observed series

With a view to detecting any very small average IPS variations, the 10 × 20-s comb exposures with high S/N utilized in the previous section were taken in a series with small offsets in the LFC signal applied between exposures. The offsets were generated by slightly altering the repetition frequency of the mode-locked laser, $f_{\text{rep}}$, which was observed to be stable between exposures. The offset in $f_{\text{rep}}$ between each exposure was $\sim 15$ Hz so that the comb modes at 780 nm would shift by $\sim 50$ m s$^{-1}$, or 0.5 spectral pixels. The CEO frequency, $f_{\text{CEO}}$, was also monitored and fluctuations were negligible ($<10$ m s$^{-1}$) during the series of exposures.

However, upon inspecting the series of offset comb exposures, it was apparent that the observed shifts in the comb modes did not accurately reflect those expected from the offsets applied to $f_{\text{rep}}$ between successive exposures. To investigate this we took another series of 10 short (1-s) exposures with no offsets in $f_{\text{rep}}$ applied between them. That is, including the CCD read-out time of each exposure, a 1-s exposure was taken approximately every minute and, since neither $f_{\text{rep}}$ nor $f_{\text{CEO}}$ changed appreciably during the 10 min series, we expected no shifts between the comb modes. However, we discovered fairly large stochastic shifts between successive comb exposures. These were typically $\lesssim 0.2$ pixels but some were as large as $\sim 0.4$ pixels. An example from three successive 1-s exposures is shown in Fig. 6. Furthermore, no two successive exposures had zero shift between them, indicating that the time-scale for these shifts is substantially less than 1 min.

The origin of these shifts is not clear from our comb spectra, but the fast time-scale suggests that a purely thermal drift within UHRF is an unlikely culprit and that a more likely explanation is small mechanical oscillations or jumps/relaxations in the spectrograph. UHRF’s main components and camera are mounted on a large (3-m), vibration-damped and isolated bench. The slit assembly is mounted on the same bench. However, the pre-slit area upon which our LFC launch setup was mounted (see Fig. 1) is, at least in principle, decoupled from the spectrograph bench. Thus, oscillations induced by moving components in the pre-slit area (e.g. the rotating diffuser) should not cause the slit itself to oscillate. However, it remains possible the other equipment in the pre-slit area might transmit some vibrations to the slit assembly, which may have been responsible for the short time-scale, stochastic shifts we observe. If such oscillations/vibrations did not originate from our equipment, they may also affect astronomical observations with UHRF; however, they are unlikely to have been detectable in UHRF before because of the much longer ThAr exposure times required (i.e. several minutes). Observations with the University College London Echelle Spectrograph (UCLES), which uses the same coude room and slit assembly as UHRF, might also be affected. We would be interested to learn whether users of UCLES have identified such problems before, but to our knowledge they have not been reported in the literature.
Unfortunately, these stochastic shifts between exposures mean that we cannot reliably model the observed series of offset comb exposures to constrain IPS variations. One should consider whether the analysis of the individual 20-s exposures in Section 4 was affected by this instability. The effect of quickly varying shifts in the comb position, averaged over a comparably long exposure, should be to increase the observed comb mode width, or $\sigma_{\text{ILS}}$ as parametrized in our comb models. We do not observe a larger $\sigma_{\text{ILS}}$ for the $10 \times 20$-s comb exposures compared to the $10 \times 1$-s ones: ($\sigma_{\text{ILS}} = 1.632$ compared to ($\sigma_{\text{ILS}} = 1.629$ pixels, respectively. However, the rms variations in these quantities ~0.006 and 0.011 pixels, respectively – may be too large to detect the increase in width expected: if random comb shifts have rms ~0.2 pixels then $\sigma_{\text{ILS}}$ would broaden by just ~0.01 pixel. Even if this effect were present in the 20-s comb exposures, our model of the comb flux across the CCD pixels is still likely to be adequate and so the constraints on IPS variations we derive are unlikely to be strongly affected.

5.2 Simulated series

While the short time-scale instabilities in UHRF prevent us from constraining the average IPS variations using a real series of offset comb exposures, we can nevertheless demonstrate this possibility using simulated comb spectra. We simulated 10 spectra, each with a single CCD row 320 pixels long. The comb signal was generated using the best-fitting parameters derived from row 750 of the CCD exposure studied in Section 4.2 (see Figs 2 and 3), including the double-Gaussian ILS. Gaussian random noise was added to each spectrum independently, with the average S/N set to the same value as in the real CCD exposure. However, we introduced 0.8-pixel offsets between the comb functions for successive spectra. We then simultaneously fitted comb functions to all 10 spectra, the key assumption being that the relative offsets between spectra were known; if the LFC system is absolutely calibrated then this will be true to very high precision.

Fig. 7 shows the results of the fits to the simulated spectra. Similar to the simulations in the previous section, the input IPS model was a Gaussian with $\sigma_{\text{IPS}} = 0.4$ pixel centred at $x = 0$. That is, the Gaussian was centred at the middle of the pixel and $\sigma_{\text{IPS}}$ was a free parameter. Note that the ILS and envelope function parameters were also free in this fit. Fig. 7 shows that this symmetric IPS model is recovered with a relatively small uncertainty in $\sigma_{\text{IPS}}$ of 0.03 pixel. This demonstrates that a series of offset comb spectra can be used to characterize the symmetric component of the average IPS map.

The main reason a series of offset spectra can strongly constrain the IPS variations, even with fairly few pixels (e.g. a single CCD row) assumed to have the same IPS map, is that the comb flux distribution across each pixel is changed by a known amount when the comb is offset by a known amount. However, as with the 2D analysis of a single exposure in Section 4, any asymmetric component of the IPS map is highly degenerate with the overall position of the comb. That is, without knowing where the comb modes fall with respect to the CCD pixel grid, asymmetries in the average IPS map cannot be reliably determined. If some additional information could be gained about where the comb light is striking pixels, perhaps by adjusting a physical mask in front of the CCD, then the same fitting technique could be used to recover asymmetries in the IPS map.

As an example of this, we simulated another ten 320-pixel, single-row comb spectra in the same way as above but with an asymmetric input IPS map, i.e. a Gaussian, as before, but shifted with respect to the pixel centre. It was then assumed that the absolute position of the comb modes with respect to the pixel grid was known. Fig. 7 shows that the fitting technique indeed recovers the asymmetry in the input IPS model with high accuracy. Much higher precision measurements of the average IPS variations should be possible if the ILS is also known accurately a priori (or measured independently) and not simultaneously constrained by the comb spectra. With a large enough number of high S/N exposures with very small, known offsets, and with known comb-mode–CCD-grid positioning and ILS information, it should be possible to measure the IPS map of every illuminated CCD pixel.

6 SUMMARY

We reported the successful test of an LFC system on the UHRF spectrograph at the AAT. Fig. 1 shows the experimental setup used. The high spectral resolution of UHRF ($R \approx 940000$) allowed a commercial fibre laser with a fairly typical repetition frequency ($f_{\text{rep}}$) to be used.

An FP cavity was used to widen the effective separation between modes to ~1 GHz (by suppressing 10 of every 11 modes) so that they could be resolved apart by UHRF. The LFC spectra were recorded with the ‘MITLL3’ CCD chip at ~780 nm in a single echelle order of UHRF covering ~10 Å. An example exposure is shown in Fig. 2.

Our main goal in the LFC test was to demonstrate that LFC spectra could be used to characterize the average IPS map of astronomical CCDs in situ. This meant that actively self-calibrating the LFC (i.e. controlling $f_{\text{rep}}$ and $f_{\text{CFO}}$, not just measuring/monitoring them) was not necessary, which minimized the equipment required on-site.

We demonstrated the measurement of IPS variations using a single comb exposure by modelling the comb flux in 50 $\times$ 320 pixels...
in the spatial and spectral directions, respectively (see Figs 4 and 5). For a simple Gaussian model of the average IPS variations where the sensitivity falls off symmetrically about the pixel centre, the IPS map of the AAT/MITLL3 chip deviates from flat by ≲8 per cent. A similar constraint on an inverted map (i.e. sensitivity increasing towards the pixel edges) was also obtained.

The ILS was also modelled in this process, and we found that a double-Gaussian ILS was sufficient to fit our comb spectra (see Fig. 3). This ILS is very similar to that found when commissioning UHRF (Diego et al. 1995).

By slightly adjusting the repetition frequency between comb exposures (by changing the length of the fibre laser’s free-space section), we obtained a series of exposures with known offsets between their respective comb signals along the spectral direction of the CCD. In this way we intended to more strongly constrain the IPS variations in a single CCD row. However, a series of shorter exposures without offsets between them revealed short time-scale (∼1 min) random shifts between exposures of up to ≈0.4 pixels (or ≈40 m s⁻¹) (see Fig. 6). This precludes a thorough analysis of the series of offset comb exposures for constraining IPS variations. Nevertheless, we used simulated spectra whose parameters closely matched our real spectra to demonstrate that, with a stable spectrograph, such a series of comb exposures should allow symmetric departures from a flat average IPS map of a single CCD row (320 pixels) to be strongly constrained (see Fig. 7).

Despite demonstrating that the symmetric component of average IPS variations can be constrained using LFCs, it is clear that, without knowing a priori where the comb modes fall with respect to the CCD grid, any asymmetric component of the IPS map cannot be reliably measured. This could be an important aspect of IPS variations to measure for some applications, especially those where long-term, effectively absolute calibration is required (e.g. the real-time observation of the drift in Lyman α forest lines in quasar spectra). In future, perhaps the relationship between the physical position of the comb modes and the CCD grid might be established through some kind of physical CCD masking procedure, or by ‘switching off’ some CCD pixels and obtaining a series of offset comb exposures. Exploring such possibilities may be required to fully realize absolute wavelength calibration using CCDs in astronomy.

ACKNOWLEDGMENTS

We are indebted to the truly exceptional staff at the Australian Astronomical Observatory for enabling the experiment reported here. In particular, the expertise and resourcefulness of Stuart Barnes, Steve Lee, Rob Dean, Stephen Marsden, Doug Gray, Steve Chapman, John Collins and Winston Campbell ensured its success. MTM thanks the Australian Research Council for a QEII Research Fellowship (DP0877998), while AL, CL and PL thank it for supporting this work under DP0877938.

REFERENCES

Bahcall J. N., Sargent W. L. W., Schmidt M., 1967, ApJ, 149, L11
Benabid F., Biancalana F., Light P. S., County F., Luiten A., Roberts P. J., Peng S., Sokolov A. V., 2008, Opt. Lett., 33, 2680
Benedick A. J. et al., 2010, Opt. Express, 18, 19175
Cundiff S. T., Ye J., 2003, Rev. Mod. Phys., 75, 325
Dekker H., D’Odorico S., Kaufer A., Delabre B., Kotzlowski H., 2000, in Iye M., Moorwood A. F. M., eds, Proc. SPIE. Vol. 4008, Optical and IR Telescope Instrumentation and Detectors. SPIE, Bellingham, p. 534
Diego F. et al., 1995, MNRAS, 272, 323
Fisher R. A., 1958, Statistical Methods for Research Workers. Harper, New York
Ivanochik A., Petitjean P., Varshalovich D., Aracil B., Srianand R., Chand H., Ledoux C., Boisse P., 2005, A&A, 440, 45
Jones D. J., Diddams S. A., Ranka J. K., Stentz A., Windeler R. S., Hall J. L., Cundiff S. T., 2000, Sci, 288, 635
King J. A., Murphy M. T., Ubachs W., Webb J. K., 2011, MNRAS, 417, 3010
Liske J. et al., 2008, MNRAS, 386, 1192
Locke C. R., Ivanov E. N., Light P. S., Benabid F., Luiten A. N., 2009, Opt. Express, 17, 5897
Loeb A., 1998, ApJ, 499, L111
Lovis C. et al., 2006, Nat, 441, 305
Ma L.-S. et al., 2004, Sci, 303, 1843
Malec A. L. et al., 2010, MNRAS, 403, 1541
Marcy G. W., Butler R. P., 1996, ApJ, 464, L147
Mayor M., Queloz D., 1995, Nat, 378, 355
Murphy M. T., Webb J. K., Flambaum V. V., 2003, MNRAS, 345, 609
Murphy M. T. et al., 2007, MNRAS, 380, 839
Pasquini L. et al., 2006, in Whitelock P., Dennefeld M., Leibundgut B., eds, IAU Symp. Ser. Vol. 232, The Art of Scientific Computing. Cambridge Univ. Press, Cambridge, p. 193
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical Recipes in C. The Art of Scientific Computing. Cambridge Univ. Press, Cambridge
Reichert J., Holzwarth R., Udem T., Hänsch T. W., 1999, OptCo, 172, 59
Sandage A., 1962, ApJ, 136, 319
Schmidt P. O., Kimeswenger S., Kauff H. U., 2008, in Kaufer A., Kerber F., eds, The 2007 ESO Instrument Calibration Workshop, ESO Astrophysics Symposia Series, Springer-Verlag, Berlin, Heidelberg, Germany, p. 409
Steinmetz T. et al., 2008, Sci, 321, 1335
Tinney C. G., Butler R. P., Marcy G. W., Jones H. R. A., Penny A. J., McCarthy C., Carter B. D., Bond J., 2003, ApJ, 587, 423
Toyozumi H., Ashley M. C. B., 2005, PASA, 22, 257
Udem T., Holzwarth R., Hänsch T. W., 2002, Nat, 416, 233
Varshalovich D. A., Levshakov S. A., 1993, JETP Lett., 58, 237
Webb J. K., Flambaum V. V., Churchill C. W., Drinkwater M. J., Barrow J. D., 1999, Phys. Rev. Lett., 82, 884
Weber J. K., King J. A., Murphy M. T., Flambaum V. V., Carswell R. F., Bainbridge M. B., 2011, Phys. Rev. Lett., 107, 191101
Wilken T. et al., 2010, MNRAS, 405, L16

This paper has been typeset from a LaTeX file prepared by the author.