For an electric power system (EPS) of the combined propulsion complex (CPC), working on a constant-power hyperbola (CPH), the strategy of managing power distribution between propulsion electric motors and own needs consumers has been improved. The study reported here aimed to reduce fluctuations in current consumption and load by optimizing voltage controllers and the rotation frequency of generator assemblies (GA). The system of EPS GA voltage and frequency stabilization was synthesized by determining, in the system of equations, the dynamics of the values of EPS links’ time constants and the coefficients that correspond to control parameters. To define the characteristics of the control signals from the regulators of EPS GA rotation frequency and excitation voltage, the laws that control the speed and excitation current were calculated. After sampling the coefficients of the GA speed control regulator, the tasks for the excitation voltage controller were determined. The methodology of data acquisition was applied on the basis of a correlation between the EPS characteristics and the experimental characteristics of GA. The system of EPS dynamics equations was optimized in accordance with the structure and settings of the optimal controller and the probability of a situational error by using Spearman’s rank correlation coefficient. The optimization has made it possible to reduce the likelihood of a situational error during the synchronization of GA and enable the stable operation of GA close to the mode of operation on CPH. The power controller was tested under conditions with the power controller turned on was 5%. The range of EPS power deviations of the current consumed with an enabled GA rotation controller was 10% of the average value. The range of EPS power deviations of the system of EPS GA voltage and frequency stabilization was synthesized by determining, in the system of equations, the dynamics of the values of EPS links’ time constants and the coefficients that correspond to control parameters. To define the characteristics of the control signals from the regulators of EPS GA rotation frequency and excitation voltage, the laws that control the speed and excitation current were calculated. After sampling the coefficients of the GA speed control regulator, the tasks for the excitation voltage controller were determined. The methodology of data acquisition was applied on the basis of a correlation between the EPS characteristics and the experimental characteristics of GA. The system of EPS dynamics equations was optimized in accordance with the structure and settings of the optimal controller and the probability of a situational error by using Spearman’s rank correlation coefficient. The optimization has made it possible to reduce the likelihood of a situational error during the synchronization of GA and enable the stable operation of GA close to the mode of operation on CPH. The power controller was tested under conditions with the power controller turned on was 5%.

Keywords: electric power system, constant-power hyperbola, control system, optimization, correlation analysis.

References

1. Haseltalah, A., Wani, F., Negenborn, R. R. (2022). Multi-level model predictive control for all-electric ships with hybrid power generation. International Journal of Electrical Power & Energy Systems, 133, 107484. doi: https://doi.org/10.1016/j.ijepes.2021.107484
2. Boričić, A., Torres, J. L. R., Popov, M. (2021). Fundamental study on the influence of dynamic load and distributed energy resources on power system short-term voltage stability. International Journal of Electrical Power & Energy Systems, 131, 107141. doi: https://doi.org/10.1016/j.ijepes.2021.107141
3. Ortega, A., Milano, F. (2019). Voltage Stability of Converter-Interfaced Energy Storage Systems. IFAC-PapersOnLine, 52 (4), 222–227. doi: https://doi.org/10.1016/j.ifacol.2019.08.187
4. Soomro, A. H., Lark, A. S., Mahar, M. A., Sahito, A. A., Soomro, A. M., Kaloi, G. S. (2021). Dynamic Voltage Restorer – A comprehensive review. Energy Reports, 7, 6786–6805. doi: https://doi.org/10.1016/j.eryr.2021.09.004
5. Chen, Y., Huang, Z. (2014). A High Performance Computing Platform for Performing High-Volume Studies with Windows-based Power Grid Tools. IFAC Proceedings Volumes, 47 (3), 10772–10777. doi: https://doi.org/10.3182/20140824-6-zu-1003-08839
6. Neuman, P. (2009). Models of synchronous generator and transformers for Dispatch Training Simulators and Real Time Digital Simulators. IFAC Proceedings Volumes, 42 (9), 398–403. doi: https://doi.org/10.3182/20090705-4-sf-2005.00070
7. The RTDS Simulator is the world’s benchmark for real-time power system simulation. Available at: https://www.rtds.com/
8. Budashko, V., Shevchenko, V. (2021). The synthesis of control system to synchronize ship generator assemblies. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 45–63. doi: https://doi.org/10.15587/1729-4061.2021.225517
9. Nivel, J. J. O., Coello, J. A. C., Pereira, G. G. C., Passos, F. O., Filho, J. M. C., Guerrero, C. A. V. et al. (2021). Evaluating voltage drop snapshot and time motor starting study methodologies – An offshore platform case study. Electric Power Systems Research, 196, 107187. doi: https://doi.org/10.1016/j.epsrc.2021.107187
10. Hvozdeva, I., Myrhorod, V., Budashko, V., Shevchenko, V. (2020). Problems of Improving the Diagnostic Systems of Marine Diesel Generator Sets. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.838205
11. Vitalii, B., Vitalii, N., Mark, N., Sergii, K. (2018). Parametrization and identification of energy flows in the ship propulsion complex. 2018 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). doi: https://doi.org/10.1109/tcset.2018.838205
12. Myrhorod, V., Hvozdeva, I., Budashko, V. (2020). Multi-parameter Diagnostic Model of the Technical Conditions Changes of Ship Diesel Generator Sets. 2020 IEEE Problems of Automated Electrodive. Theory and Practice (PAEP). doi: https://doi.org/10.1080/paep498870.2020.9240905
13. Budashko, V., Shevchenko, V. (2021). Solving a task of coordinated control over a ship automated electric power system under a changing load. Eastern-European Journal of Enterprise Technologies, 2 (2 (110)), 54–70. doi: https://doi.org/10.15587/1729-4061.2021.229033
14. Van den Broeck, G., Stuyts, J., Driesen, J. (2018). A critical review of power quality standards and definitions applied to DC microgrids. Applied Energy, 229, 281–288. doi: https://doi.org/10.1016/j.apenergy.2017.06.058
15. Budashko, V. V. (2017). Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex. Electrical Engineering & Electromechanics, 2, 62–72. doi: https://doi.org/10.20998/2074-272s.2017.2.10
16. Balog, R. S., Weaver, W. W., Krein, P. T. (2012). The Load as an Energy Asset in a Distributed DC SmartGrid Architecture. IEEE Transactions on Smart Grid, 3 (1), 253–260. doi: https://doi.org/10.1109/tsg.2011.2167722
17. Lu, X., Sun, K., Guerrero, J. M., Vasquez, J. C., Huang, L., Wang, J. (2015). Stability Enhancement Based on Virtual Impedance for DC Microgrids With Constant Power Loads. IEEE Transactions on Smart Grid, 6 (6), 2770–2783. doi: https://doi.org/10.1109/tsg.2015.2455017
This paper reports a study into the influence of the main design parameters of power transmission lines on energy losses associated with the corona discharge; a method has been devised to reduce them. The structure of the split-phase wire, the distance to the ground, and between the centers of the phases of the line are determined at the design stage. Based on these structural parameters, the value of specific energy losses associated with the corona discharge is calculated. Studying the impact exerted on the amount of losses by each structural parameter makes it possible at the design stage to determine the structure of a power transmission line (PTL) with low energy losses. Reducing energy loss when transporting it along the line is one of the most important issues in the strategy for the development of the energy industry at the stage of the “green transition”. It has been established that most structural parameters have a weak effect on the values of corona losses, and, if there is a significant impact, the implementation of such solutions leads to a large increase in the cost of constructing an overhead transmission line. Based on the analysis of the results of calculations of corona losses in power transmission lines, it was determined that the corona losses in the middle phase of the transmission line are much greater than in the extreme phases. That has made it possible to devise a method for reducing power corona losses associated with the alignment of the capacities of all phases of PTL. This effect is achieved by calculating, based on the developed method, the splitting step of the middle phase of PTL. The calculation of the splitting step is based on the preliminary determination of the capacity of the extreme phases and the substitution of calculated values in the resulting expression for the splitting step. The possibility of such a reduction in corona losses should significantly increase the energy efficiency of AC power transmission lines, especially in areas with large periods of different weather that provoke the occurrence of a corona discharge on the wires of their phases. This circumstance causes an increase in this type of power loss.

Keywords: power transmission line, structural parameters of power transmission line, power corona losses, line phase capacitance.

References
1. Breido, I., Kaverin, V., Voytkovich, S. (2018). Distribution of Power Losses on High-Voltage Supports. DAAAM Proceedings, 0329–0337. doi: https://doi.org/10.2507/29th.daaam.proceedings.047
2. Shevchenko, S., Koval, A., Danylenko, D., Koval, V. (2020). Energy Crisis and Electricity Reform of Ukraine - First Results. 2020 IEEE KhPI Week on Advanced Technology (KhPWeek). doi: https://doi.org/10.1109/khipweek51551.2020.9250119
3. Diahovchenko, I., Mykhailyshyn, R., Danylenko, D., Shevchenko, S. (2019). Rogowsky coil applications for power measurement under non-sinusoidal field conditions. Energetika, 65 (1). doi: https://doi.org/10.6001/energetika.v65i1.3972
4. Kuchansky, V., Zaitsev, I. O. (2020). Corona Discharge Power Losses Measurement Systems in Extra High Voltage Transmit deux Lines. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS). https://doi.org/10.1109/ess50319.2020.9160088
5. Błinov, I., Zaitsev, I. O., Kuchansky, V. V. (2020). Problems, Methods and Means of Monitoring Power Losses in Overhead Transmission Lines. Studies in Systems, Decision and Control, 123–136. doi: https://doi.org/10.1007/978-3-030-48583-2_8
6. Riba, J.-R., Larzeler, W., Dickmann, J. (2018). Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review. Energies, 11 (7), 1998. doi: https://doi.org/10.3390/en11071998
7. Leman, J. T., Olsen, R. G. (2020). Bulk FDTD Simulation of Distributed Corona Effects and Overvoltage Profiles for HSIL Transmission Line Design. Energies, 13 (10), 2474. doi: https://doi.org/10.3390/en13102474
8. Liu, Y., Chen, S., Huang, S. (2018). Evaluation of Corona Loss in 750 kV Four-Circuit Transmission Lines on the Same Tower Considering Complex Meteorological Conditions. IEEE Access, 6, 67427–67433. doi: https://doi.org/10.1109/access.2018.2878763
9. Bousiou, E. I., Mikropoulos, P. N., Zagkanas, V. N. (2020). Corona inception field of typical overhead line conductors under variable atmospheric conditions. Electric Power Systems Research, 178, 106032. doi: https://doi.org/10.1016/j.epsr.2019.106032
10. Tamazov, A. (2016). Poteri na korone v yyskovoskonyh liniyah elektroperedelich. Moscow: Sputnik+, 372.
11. Rukovodstva ukazaniya po uchetu poter na korone i pomekh ot korony pri vybore provodov yyskovoskonyh liniy elektroperedelich peremenogo toka 330 – 750 kv i postoyannogo toka 800 – 1500 kv (1975). Moscow: STSNTI ORGRES, 87.
12. Gul, V. I., Zhievski, I. V., Homonen, I. V., Shevchenko, S. Yu., Chevychelov, V. A. (2009). Koordinatsiya izolyatsi i peremnoprivody v elektricheskih yyskovoskonyh setyah. Kharkiv, 270.
13. Pravila ulastuvannia elektrotransanoiok (2017). Kyiv. 617. Available at: https://art-energetykacom.ua/Pravila-ulastuvannia-elektrotransanoiok.pdf
14. Aleksandrov, G. N. (1989). Ustanovki sverhuvoskogo napryazheniya i ohrama okruzhayushche sredy. Leningrad: Energoatomizdat. Available at: https://www.elec.ru/viewer/url-files/11/2020/aleksandrov-gn-ustanovki-sverhuvoskogo-napryazheniya.pdf

DOI: 10.15587/1729-4061.2022.251760

DETERMINATION OF OPTIMAL SIZE AND LOCATION OF STATIC SYNCHRONOUS COMPENSATOR FOR POWER SYSTEM BUS VOLTAGE IMPROVEMENT AND LOSS REDUCTION USING WHALE OPTIMIZATION ALGORITHM (p. 26–34)

Ali Abdulqadir Rasool
University of Salahaddin-Erbil, Erbil, Iraq
ORCID: https://orcid.org/0000-0002-4735-9155

Najimaldin M. Abbas
University of Kirkuk, Kirkuk, Iraq
ORCID: https://orcid.org/0000-0001-8802-2738

Kamal Sheikhyounis
University of Salahaddin-Erbil, Erbil, Iraq
ORCID: https://orcid.org/0000-0002-7254-5337

Power systems are usually expected to become heavily loaded as the demand for electrical energy grows and economic consideration limits the installation of additional transmission and generating capacity. Keeping the bus voltage in the power system within the standard permissible limits is an important concern to improve the voltage stability and avoid voltage collapse of the whole power system. The common and effective way to achieve this purpose is by adding flexible AC transmission line devices to the power system. One of these devices is static synchronous compensator. In this paper an approach is proposed to find optimal location and size of static synchronous compensator for improving bus voltage in the power system. A load flow is conducted to identify the low voltage buses which are the weak buses in the system and they are considered as suitable buses for static synchronous compensator connection. An objective function is formulated for optimization process which contains four parts, the voltage deviation, static synchronous compensator size, active and reactive power losses of the whole power system. Whale optimization algorithm is used for the optimization process. The proposed approach is applied on the real power system of Kurdistan Region using power system simulator for engineering software for simulating the power system and finding the optimal size and location of static synchronous compensator for bus voltage improvement. The results are encouraging for applying the approach to any power system. What distinguishes this method is that it accomplishes two things, namely reducing the bus voltage deviation to...
zero which means that all bus voltages are within the permissible limits and minimizing losses as well.

Keywords: voltage stability, voltage improvement, static synchronous compensator, whale optimization algorithm.

References

1. Shah, S. O., Arshad, A., Alam, S. (2021). Reactive Power Compensation Utilizing FACTS Devices. 2021 International Conference on Emerging Power Technologies (ICEPT). doi: https://doi.org/10.1109/icept51706.2021.9435455

2. Joshi, B. S., Mahela, O. P., Ola, S. R. (2016). Reactive power flow control using Static VAR Compensator to improve voltage stability in transmission system. 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE). doi: https://doi.org/10.1109/icraie.2016.7939504

3. Moghalvemi, M., Farquen, M. O. (2000). Effects of FACTS devices on static voltage stability. 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119). doi: https://doi.org/10.1109/tencon.2000.888762

4. Telang, A. S., Bedekar, P. P. (2016). Application of voltage stability indices for proper placement of STATCOM under load increase scenario. International Journal of Energy and Power Engineering, 10 (7), 998–1003. Available at: https://publications.waset.org/10006054/application-of-voltage-stability-indices-for-proper-placement-of-statcom-under-load-increase-scenario

5. Lakireddy, J., Rastgoufard, R., Leevongwat, I., Rastgoufard, P. (2015). Steady state voltage stability enhancement using shunt and series FACTS devices. 2015 Clemson University Power Systems Conference (PSC). doi: https://doi.org/10.1109/psc.2015.711706

6. Minguez, R., Milano, F., Zarate-Minano, R., Conejo, A. J. (2007). Optimal Network Placement of SVC Devices. IEEE Transactions on Power Systems, 22 (4), 1851–1860. doi: https://doi.org/10.1109/tpwrs.2007.907543

7. El Metwally, M. M., El Emary, A. A., El Bendary, F. M., Mosaad, M. I. (2008). Optimal allocation of FACTS devices in power system using genetic algorithms. 2008 12th International Middle-East Power System Conference. doi: https://doi.org/10.1109/mepscon.2008.4562386

8. Farsangi, M. M., Nezamabadi-pour, H., Song, Y.-H., Lee, K. Y. (2007). Placement of SVCs and Selection of Stabilizing Signals in Power Systems. IEEE Transactions on Power Systems, 22 (3), 1061–1071. doi: https://doi.org/10.1109/tpwrs.2007.901285

9. Kumarasamy, K., Raghavan, R. (2012). Particle Swarm Optimization algorithm for voltage stability improvement using multiple STATCOM. 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM). doi: https://doi.org/10.1109/iceteeem.2012.6494493

10. Rao, P., Crow, M. L., Yang, Z. (2000). STATCOM control for power system voltage control applications. IEEE Transactions on Power Delivery, 15 (4), 1311–1317. doi: https://doi.org/10.1109/61.891520

11. Sharma, N. K., Ghosh, A., Varma, R. K. (2003). A novel placement strategy for FACTS controllers. IEEE Transactions on Power Delivery, 18 (3), 982–987. doi: https://doi.org/10.1109/tpwrd.2003.813874

12. Xiao, Y., Song, Y. H., Sun, Y. Z. (2002). Power flow control approach to power systems with embedded FACTS devices. IEEE Transactions on Power Systems, 17 (4), 943–950. doi: https://doi.org/10.1109/tpwrs.2002.804919

13. Yang, C.-F., Lai, G. G., Lee, C.-H., Su, C.-T., Chang, G. W. (2012). Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement. International Journal of Electrical Power & Energy Systems, 37 (1), 50–57. doi: https://doi.org/10.1016/j.ijepes.2011.12.003

14. Mahmood, F. B. K., Ahmad, S., Mukit, G., Shuvo, M. T. I., Razwan, S., Maruf, M. N. I., Albatsh, F. M. (2017). Weakest location exploration in IEEE-14 bus system for voltage stability improvement using STAT-
In regions with a continental climate, refrigerators with air-cooled condensers operate at high condensation pressures during the summer season which reduces their efficiency and accelerates the wear of compressors. To reduce condensation pressure, it was proposed to use radiative cooling which is a way of heat removal through the planet’s atmosphere to outer space in a form of infrared radiation. A refrigerating machine with an assembly of condensation heat removal including air and liquid cooling condensers connected in series has been developed. To reduce the condensation temperature, a pre-cooled heat-transfer agent is fed to the liquid cooling condenser during the day hours at high atmospheric temperatures. At night, the heat-transfer agent is cooled by radiative cooling.

An experimental study of the operation of a 600 W refrigerating machine including a sealed piston compressor was conducted. R134a refrigerant was used. Supply of pre-cooled heat-transfer agent at +33.1 °C has provided a reduction of condensation temperature from +47.0 to +39.1 °C. The study was conducted at an atmospheric air temperature of +38.0 °C. The degree of pressure growth was decreased by 30 %. The refrigeration coefficient was increased by 11 %. In comparison with the conventional scheme with an air-cooled condenser, energy consumption by the system did not change in the daytime.

The offered scheme of condensation heat removal reduces the pressure of condensation and provides stability for refrigerating machine operation. It can be used in stationary refrigerating machines at high daytime temperatures.

Keywords: radiative cooling, energy efficiency, condensation pressure reduction, refrigerating machine.

References

1. Wang, S. K. (2001). Handbook of air conditioning and refrigeration. McGraw-Hill. Available at: https://gmpua.com/CleanRoom/HVAC/Cooling/Handbook%20of%20Air%20Conditioning%20and%20Refrigeration.pdf
2. Kurylev, E. S., Gerasimov, N. A. (1980). Holodil'nye ustanoovki. Leningrad: Mashinostroenie, 622. Available at: https://www.twirp.info/file/1835600/
3. Fugmann, H., Niemborg, B., Trommler, G., Dalibard, A., Schnabel, L. (2015). Performance Evaluation of Air-Based Heat Rejection Systems. Energies, 8 (2), 714–741. doi: https://doi.org/10.3390/en8020174
4. Xiao, L., Ge, Z., Yang, L., Du, X. (2018). Numerical study on performance improvement of air-cooled condenser by water spray cooling. International Journal of Heat and Mass Transfer, 125, 1028–1042. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.006
5. Zhao, B., Hu, M., Ao, X., Chen, N., Pei, G. (2019). Radiative cooling: A review of fundamentals, materials, applications, and prospects. Applied Energy, 236, 489–513. doi: https://doi.org/10.1016/j.apenergy.2018.12.018
6. Hossain, M. M., Gu, M. (2016). Radiative Cooling: Principles, Progress, and Potentials. Advanced Science, 3 (7), 1500360. doi: https://doi.org/10.1002/advs.201500360
7. Samuel, D. G. L., Nagendra, S. M. S., Maiya, M. P. (2013). Passive alternatives to mechanical air conditioning of buildings: A review. Building and Environment, 66, 54–64. doi: https://doi.org/10.1016/j.buildenv.2013.04.016
8. Ahmad, M. I., Jarimi, H., Rifiat, S. (2019). Nocturnal Cooling Technology for Building Applications. SpringerBriefs in Applied Sciences and Technology doi: https://doi.org/10.1007/978-981-13-5835-7
9. Van der Sluis, S. M., Oostendorp, P. A., Hendriksen, L. J. A. M. (2006). Refrigeration or cooling system. WO/2006/054897 A1. Available at: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006054897
10. Liu, J., Zhou, Z., Zhang, J., Feng, W., Zuo, J. (2019). Advances and challenges in commercializing radiative cooling. Materials Today Physics, 11, 100161. doi: https://doi.org/10.1016/j.matpr.2019.100161
11. Goldstein, E. A., Raman, A. P., Fan, S. (2017). Sub-ambient non-evaporative fluid cooling with the sky. Nature Energy, 2 (9). doi: https://doi.org/10.1038/nenergy.2017.143
12. Goldstein, E. A., Nasuta, D., Li, S., Martin, C., Raman, A. (2018). Free Subcooling with the Sky: Improving the efficiency of air conditioning systems. 17th International Refrigeration and Air Conditioning Conference at Purdue, 2293. Available at: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2912&context=iaccc
13. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515 (7528), 546–544. doi: https://doi.org/10.1038/nature13883
14. Ali, A., Zhao, D., Lu, J., Zhai, Y., Yin, X., Tan, G., Yang, R. (2019). A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Conversion and Management, 186, 386–396. doi: https://doi.org/10.1016/j.enconman.2019.03.006
15. Zhao, D., Alii, A., Zhai, Y., Lu, J., Kidd, D., Tan, G. et. al. (2019). Subambient Cooling of Water: Toward Real-World Applications of Daytime Radiative Cooling. Joule, 3 (1), 111–123. doi: https://doi.org/10.1016/j.joule.2018.10.006
16. Maslov, O. S., Nikishin, V. K., Zhokhovsky, A. V., Lemeshko, M. A. (2017). Issledovaniya vliyaniya eksploatatsionnykh faktorov na teploenergeticheskie karakteristiki malykh holodil'nyh mashin. Innovatsionnye tekhnologii v obrazovani i nauke: Sbornik materialov III Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Cheboksary, 234–242. Available at: https://www.elibrary.ru/item.asp?id=32266338
17. Meir, M. G., Rekstad, J. B., Løvsvik, O. M. (2002). A study of a polymer-based radiative cooling system. Solar Energy, 73 (6), 403–417. doi: https://doi.org/10.1016/s0038-092x(03)00012-0
18. Tsyo, A. P., Granovskiy, A. S., Jamasheva, R. A. (2021). Methodology for determining of the main characteristics of a refrigeration system with condensation heat removal by radiative cooling. The Journal of Almaty Technological University, 3, 34–41. doi: https://doi.org/10.48184/2304-568x-2021-3-34-41
19. Tsyo, A. P., Granovskiy, A. S., Tsyo, D. A. (2020). Modelling of the operation of a refrigeration unit using radiative cooling to maintain the storage temperature in the cold room. MATEC Web of Conferences, 324, 02006. doi: https://doi.org/10.1051/matecconf/202032402006
20. Tsyo, A. P., Granovskiy, A. S., Tsyo, D. A., Baranenko, A. V. (2019). Simulation of radiation cooling system for air conditioning. Journal International Academy of Refrigeration, 3, 3–14. doi: https://doi.org/10.17586/1606-4313-2019-18-3-3-14
21. Golaka, A. R. T., Exell, R. H. B. (2003). Night radiative cooling and underground water storage in a hot humid climate: a preliminary investigation. Proceedings of the 2nd Regional Conference on Energy Technology Towards a Clean Environment. Phuket. Available at: https://www.researchgate.net/profile/Autapol-Golaka/publication/267299862_3-012_O_Night_radiative_cooling_and_underground_water_storage_in_a_hot_humid_climate_a_preliminary_investigation_links/5504638e0f24cc9fcfbdb7c3-012-O-Night-radiative-cooling-and-underground-water-storage-in-a-hot-humid-climate-a-preliminary-investigation.pdf
22. Houghton, D. (2006). Radiant Night-Sky Heat Rejection and Radiant Cooling Distribution for a Small Commercial Building. ACEEE Summer Study on Energy Efficiency in Buildings, 139–147. Available at: https://www.aceee.org/files/proceedings/2006/data/papers/SS06_Panel3_Paper12.pdf
23. Coolselector® 2. Danfoss. Available at: https://www.danfoss.com/en/service-and-support/downloads/dcs/coolselector-2/
More than 60 % of electric energy in industry and agriculture is consumed by an electric drive. In a number of production mechanisms, machines and aggregates of various industries, synchronous rotation of several electric motors connected to each other mechanically, electrically or technologically is needed. This requires the use of more complex methods of controlling electromechanical systems, since two or more electric motors must work in concert for one load, which, in turn, entails the use of a new element base, power and control, allowing to implement these technological cycles of work.

The object of research is a three-motor electromechanical system interconnected and operating according to the "electric working shaft" (EWS) system. The main fundamental difference from earlier works is that they consider a system of coordinated rotation of only two asynchronous motors, respectively, only one misalignment angle between two asynchronous motors was taken into account. At the same time, the conclusions of the moments and currents of the motors were significantly simplified.

In the proposed study, the number of consistently (synchronously) rotating motors from three and above is taken into consideration. In this case, the number of misalignment angles is assumed to be equal to the number of engines, that is, three involved in rotation.

The analytical expressions of the basic electromechanical relations of the "electric working shaft" system with the regulation of the supply voltage are developed. A method is proposed for calculating the statistical characteristics of the regulated EWS system, which is easy to use and allows calculations in a wide range of rotor misalignment angles at various engine loads.

Keywords: multi-motor electric drive, electric working shaft, experimental mechanical characteristics, mathematical model, drying, technological process, synchronizing moment, additional resistance, rotor link, misalignment angle.

References

1. Sadowskiy, I. M. (1948). Soglasovannoe vraschenie asinkhronnykh dvigateley. Moscow-Leningrad: Gosenergoizdat, 210.

2. Sanzybaevich, I. S., Sanzybaevich, I. Z., Nurzhandy, N. N., Amergalevich, M. S. (2017). Development of algorithm flow graph, mealy automaton graph and mathematical models of microprogram control mealy automaton for microprocessor control device. 2017 International Siberian Conference on Control and Communications (SIBCON). doi: https://doi.org/10.1109/sibcon.2017.7986502

3. Onischenko, G. B. (2018). Teoriya elektroprivoda. Moscow: Infra-M, 384.

4. Tergemes, K. T. (2016). Mnogodvigatel’nye asinkhronnye elektroprivody chesal’nykh apparatov s tiristornymi proobrazovatelyami napryazheniya. Almaty: KazNTU, 108.

5. Chilikin, M. G., Sandler, A. S. (1981). Obschii kurs elektroprivoda. Moscow: Energizdat, 576.

6. Donskoy, N. V. (2012). Asinkhronnyy dvigatel’ v sistemakh avtomaticheskogo upravleniya. Cheboksary: Izd-vo Chuvashskogo universiteta, 284.

7. Masandilov, L. B. (2012). Mashinostroenie. Entsiklopediya. Vol. 4-2. Elektroprivod. Moskow: Mashinostroenie, 520.

8. Frolov, Yu. M., Shelyakin, V. P. (2018). Reguliruemiy asinkhronnyiy elektroprivod. Sankt-Peterburg: Lan’, 484.

9. Firago, B. I., Pavlyachik, L. B. (2006). Reguliruemiy elektroprivod peremenennogo toka. Moskow: Tekhnoperspektiva, 363.

10. yakunicheva, O. N., Proko‘eva, A. P. (2014). Proektirovание elektroprivoda promyshlennykh mekanizmov. Sankt-Peterburg: Lan’, 448.

11. Astashev, V. K. (2012). Mashinostroenie. Entsiklopediya. Moskow: Elektroprivod. Vol. IV-2. Moskow: Mashinostroenie, 304.

12. Epifanov, A. P., Guschinskiy, A. G., Malaychuk, L. M. (2016). Elektroprivod v sel’skom khozyaystve. Sankt-Peterburg: Lan’, 224.

13. Kisarimov, R. A. (2012). Elektroprivod. Moscow: Radio i svyaz’, 352.

14. Nikitenko, G. V. (2013). Elektroprivod proizvodstvennykh mekanizmov. Sankt-Peterburg: Lan’, 224.

15. Novikov, V. A. (2014). Elektroprivod v sovremennykh tehnologiakh. Moskow: Academia, 143.

16. Krylov, Yu. A., Karamdaev, A. S., Medvedev, V. N. (2013). Energoberezhienie i avtomatizatsiya prilozhestva v teploenergeticheskoi khlozyaystve goroda. Chechotnost-regulyuvannya elektroprivod. Sankt-Peterburg: Lan’, 497–602.

17. Iskakov, R. M., Halam, S., Issenov, S. S., Iskakova, A. M., Beisebekova, D. M. (2013). Heat-and-Moisture Transfer at the Feed Meal Particles Drying and Grinding. Life Science Journal, 10 (12S), 497–502. Available at: https://library.rus.ru/itm.asp?id=27889297

18. Iskakov, R. M., Iskakova, A. M., Issenov, S. S., Beisbekova, D. M., Khaumuldinova, A. K. (2019). Technology of Multi-stage Sterilization of Raw Materials with the Production of Feed Meal of High Biological Value. Journal of Pure and Applied Microbiology, 13 (1), 307–312. doi: https://doi.org/10.22207/jpam.13.1.33

19. Iskakov, R. M., Issenov, S. S., Iskakova, A. M., Halam, S., Beisbekova, D. M. (2015). Microbiological Appraisal of Feed Meal of Animal Origin, Produced by Drying and Grinding Installation. Journal of Pure and Applied Microbiology, 9 (1), 587–592. Available at: https://www.scopus.com/record/display.uri?eid=2-s2.0-84930038169&origin=resultslist

DOI: 10.15587/1729-4061.2021.251232

DEVELOPMENT OF MATHEMATICAL DESCRIPTION OF INTEGRATED MULTI-MOTOR ELECTRIC DRIVE FOR DRYING PLANT (p. 46–54)

Sultanbek Issenov
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4756-4621

Ruslan Iskakov
S. Seifullin Kazakh Agro Technical University, Nur-Sultan, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-5948-2636

Kazhybek Tergemes
Almaty University of Power Engineering and Telecommunications, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4798-2817

Zhanat Issenov
Toraighyrov University, Pavlodar, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-2388-602X
The drying of crushed plant-derived materials, in particular crushed cotton stems, is a complex heat-exchange and technological task. Resolving this task successfully ultimately determines the specific energy costs of the drying process and the quality of the resulting products. The rational drying regime of crushed cotton stems should ensure the minimum possible process duration, energy costs, and provide the necessary quality characteristics of the dried material. To address this issue, it is necessary to investigate the influence of technological parameters of the process (the temperature and filtration rate of the heat agent), as well as the thickness of the stationary layer of crushed cotton stems, on drying kinetics.

This paper has generalized experimental studies into the kinetics of filtration drying of crushed cotton stems during the period of complete saturation of the heat agent with moisture. The influence of the temperature of the drying agent, the speed of its filtration through a stationary layer of different heights of wet crushed cotton stems, on the kinetics of filtration drying has been shown. The study's results demonstrate the dynamics of moisture removal at different parameters of the heat agent and the heights of the stationary layer of crushed cotton stems.

The resulting dependence \(\eta = 3.3 \cdot 10^{-1} t^{\alpha \cdot 1} c^{\alpha \cdot w} \), has been established, which is used to determine the value of the kinetic coefficient \(\eta \) for crushed cotton stems; the value of the kinetic coefficient has been calculated, \(\alpha = 20.74 \). The dependence \(\frac{w}{c} = 1 - 3.3 \cdot 10^{-1} t^{\alpha \cdot 1} c^{\alpha \cdot w} \cdot e^{-20.74 t} \), has been derived, using which makes it possible to generalize the kinetics of filtration drying of crushed cotton stems during the period of complete saturation of the heat agent with moisture within the limits of changing the moisture content of the veneer \(w' \geq w \geq w' \).

The comparison of the experimental data with those obtained theoretically has shown that the maximum absolute value of relative error does not exceed 15.2 %.

Keywords: cotton stalks, kinetics, filtration drying, relative humidity, pressure loss, stationary layer, fibrous particles.

References

1. Atamanuky, V., Gnativ, Z., Kindzera, D., Janabayev, D., Khusussanov, A. (2020). Hydrodynamics of Cotton Filtration Drying. Chemistry & Chemical Technology, 14 (3), 426–432. doi: https://doi.org/10.2393/chct14.03.426

2. Zhou, L., Shi, C.-Q., Liu, C.-Y., Jiang, E.-C., Xu, X.-W. (2009). Pyrolysis Characteristics And Kinetics Of Cotton Stalk. 2009 International Conference on Energy and Environment Technology doi: https://doi.org/10.1109/iecet.2009.192

3. Yang, Y., Zhang, Y., Zheng, W., Yuan, Q. (2013). Optimizing Technological Parameters of Cotton Stalk and Pyrolysis Products. Transactions of the Chinese Society for Agricultural Machinery, 44 (12), 160–163.

4. Ullah, S., Zaidi, S. B. A., Aman, A. (2021). Evaluating the Properties of Bio-oil Modified Bitumen Derived from Cotton Stalk Waste. Proceedings of the International Conference on Engineering, Technology and Social Science (ICONETOS 2020). doi: https://doi.org/10.2991/assehr.k.210421.087

5. Negmatov, S. S., Holmurodova, D. K., Abel, N. S., Negmatova, K. S., Boydadaev, M. B., Tulyaganova, V. S. (2020). Development of effective compositions of composite wood-plant-based materials based on local raw materials and industrial waste. Plasticheskie massy, 1 (11-12), 28–32. doi: https://doi.org/10.35164/0554-2901-2020-11-12-28-32

6. Reddy, N., Yang, Y. (2014). Fibers from Cotton Stalks. Innovative Biofibers from Renewable Resources, 13–14. doi: https://doi.org/10.1016/j.rser.2016.08.033

7. Atif, R., Pfeifer, C., Proll, T. (2020). Bioenergy Recovery from Cotton Stalks. Advances in Cotton Research. doi: https://doi.org/10.5772/intechopen.98005

8. Ahmetsova, G. N. (2011). World experience and review of the development of cotton production in Kazakhstan. Modern problems of science and education, 1, 53–58.

9. Hamawand, I., Sandell, G., Pittaway, P., Chakraborty, S., Yusa, T., Chen, G. et. al. (2016). Bioenergy from Cotton Industry Wastes: A review and potential. Renewable and Sustainable Energy Reviews, 66, 435–448. doi: https://doi.org/10.1016/j.rser.2016.08.033

10. Kobyeva, Z. S., Khussanov, A. Y., Atamanuky, V. M., Khussanov Z. Y. (2021). Determination of physico-chemical characteristics of crushed cotton stems for further processing. Reports of the NAS RK, 6 (340), 106–113. https://doi.org/10.32021/2021.2518-1483.117

11. Kobyeva, Z., Khussanov, A., Atamanuky, V., Hnativ, Z., Kaldbayeva, B., Janabayev, D. (2021). Research of hydrodynamics of gas flow filtration through a stationary layer of crushed cotton stalks (wild cotton). Technology Audit and Production Reserves, 3 (1 (61)), 46–51. doi: https://doi.org/10.15387/2106-5448.2021.240250

12. Mujumdar, A. S. (Ed.) (2015). Handbook of Industrial Drying. Mumbai: CRC Press, 1352.

13. Atamanuky, V. M., Humnytskyy, Ya. M. (2013). Naukovi osnovy filtratsiynoho sushennia dyspersnykh materialiv. Lviv: Vydavnystvo Natsionalnoho universytetu “Lvivska politekhnika”, 276.

14. Peters, B., Bruch, C. (2003). Drying and pyrolysis of wood particles: experiments and simulation. Journal of Analytical and Applied Pyrolysis, 70 (2), 233–250. doi: https://doi.org/10.1016/S0142-2061(02)00034-1

15. Saatamoinen, I., Richard, J.-R. (1996). Simultaneous drying and pyrolysis of solid fuel particles. Combustion and Flame, 106 (3), 288–300. doi: https://doi.org/10.1016/0010-2180(96)00006-1

16. Chen, D., Zheng, Y., Zha, X. (2013). In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 131, 40–46. doi: https://doi.org/10.1016/j.biortech.2012.12.136

17. Collignan, A., Nadeau, J. P., Puggali, J. R. (1993). Description and analysis of timber drying kinetics. Drying Technology, 11 (3), 288–300. doi: https://doi.org/10.1016/0010-2180(96)00001-6

18. Tsirna, N., Kindzera, D., Huzova, I., Atamanuky, V. (2021). Study of the kinetics of drying iron (II) sulfate heptahydrate by filtration method. ScienceRise, 1 (72), 11–21. doi: https://doi.org/10.2991/asshr.k.210421.087

19. Matkivska, I., Gumnytskyy, Y., Atamanuky, V. (2014). Kineticssof Diffusion Mass Transfer during Filtration Drying of Grain Materials. Chemistry & Chemical Technology, 8 (3), 359–363. doi: https://doi.org/10.2393/chct08.03.359

20. Ivaschuk, O. S., Atamanuky, V. M., Gnativ, Z. Y., Chyzhyrovych, R. A., Zherebetskyi, R. R. (2021). Research into kinetics of filtration drying of alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 58–65. doi: https://doi.org/10.32434/0321-4905-2021-137-58-65

21. Guzova, I., Khany, Ya., Atamanuky, V. (2003). Calculation of kinetic factors of filtration drying of disperse materials in conditions of reducing a height lay. Naukovyi visnyk NILTU Ukrainy, 13.1, 117–121.

22. Lykov, A. V. (1968). Teoriya sushki. Moscow: Energgiya, 472.
Для електроенергетичної системи (ЕЕС) комбінованого пропульсивного комплексу (КПК), працюючого на гіперболі незмінної потужності, є домінуючим стратегічним підходом управління розподілом потужності між гребними електродвигунами і споживачами власних потреб. Дослідження проводилися з метою зниження кількісного статичного струму та навантаження за рахунок оптимізації регуляторів напруги та частоти обертання генераторних агрегатів (ГА). Синтез системи стабілізації напруги та частоти ГА ЕЕС відбувалося за рахунок виснаження в системі рівень динаміки величин постійних часу занок ЕЕС та відповідних параметрів керування коефіцієнтів. Для визначення характеристик керуючих сигналів регуляторів частоти обертання та напруги збуження ГА ЕЕС було обґрунтовано закони регулювання швидкості та струму збуження. Після дискретизації коефіцієнтів регулятора керування швидкістю ГА, були визначені задачі для регулятора напруги збуження. Було застосовано методологію збору даних на підставі кореляції характеристик ЕЕС до експериментальних характеристики ГА. Оптимізація системи рівень динаміки ЕЕС у відповідності до структури та налаштувань оптимального регулятора та ймовірності появи ситуаційної помилки здійснювалося за рахунок використання коефіцієнту кореляції R-Спірмана. Оптимізація дозволяла знизити ймовірність появи ситуаційної помилки під час синхронізації ГА та забезпечити стабільність керування ГА, близьку до режиму роботи на ГНП. Випробування регулятору потужності проводились у режимі зміни навантаження власних потреб з рівнями потужності ЕЕС на ГНП в межах 50–100 % від номінальної. Діапазон відхилення статичного синхронного струму при включеному регуляторі обертання ГА склав 10 % від середнього значення. Діапазон відхилення потужності ЕЕС при умовному розподілі регулятора становив 5 %.

Ключові слова: електроенергетична система, гіпербола незмінної потужності, система керування, оптимізація, кореляційний аналіз.
Poшук оптимального розташування та розмірів статичного синхронного компенсатора для підвищення напруги на шинах в енерго- системі. Потік навантаження проводиться для визначення шин низької напруги, які є слабкими шинами в системі і розглядатимуться як шини для підключення статичних синхронних компенсаторів. Сформульовано цільову функцію процесу оптимізації, що містить чотири частини: відхилення напруги, розмір статичного синхронного компенсатора, втрати активної та реактивної потужності відкриті енергосистеми. Алгоритм оптимізації кітів використовується для процесу оптимізації. Пропонований підхід застосовується до реальної енергосистеми регіону Курдистан з використанням симулятора енергосистеми для інженерного програмного забезпечення для моделювання енергосистеми та визначення оптимального розміру та розташування статичного синхронного компенсатора для підвищення напруги на шинах. Результати дослідження дозволяють застосовувати цей підхід до будь-якої енергосистеми. Цю відносину цей метод, те, що він виконує дві речі, а саме: зменшує відхилення напруги на шинні до нуля, що означає, що всі напруги на шинні знаходяться в допустимих межах, а також мінімізує втрати.

Ключові слова: стабільність напруги, підвищення напруги, статичний синхронний компенсатор, алгоритм оптимізації кітів.

DOI: 10.15587/1729-4061.2022.251834

ПІДВИЩЕННЯ ЕНЕРГЕТИЧНОЇ ЕФЕКТИВНОСТІ ХОЛОДИЛЬНОЇ УСТАНОВКИ ЗА РАХУНОК РАДІАЦІЙНОГО ВІДВЕДЕННЯ ТЕПЛОТИ КОНДЕНСАЦІЇ (с. 35–45)

Alexandr Tsoy, Oleksandr Titlov, Alexandr Granovskiy, Dmitriy Koretskyi, Olga Vorobyova, Diana Tsoy, Rita Jamasheva

У регіонах з континentalним кліматом у літню пору холодильні машини з конденсаторами повітряного охолодження працюють при підвищених температурах, що знижує їх ефективність та прискорює знос компресорів. Для зниження тиску конденсації пропонується використовувати радіаційне охолодження, яке є способом відведення теплоти через атмосферу планети в космічний простір у вигляді інфрачервоного випромінювання. Розроблено холодильну установку з вулоз неміцької теплоти конденсації, що складається з послідовно-з’єднаних конденсаторів повітряного та рідинного охолодження. Вдень при високих температурах атмосферного повітря для зниження температури конденсації в конденсатор рідинного охолодження подається попередньо-охолоджений теплоносій. Теплоносій охолоджується вночі за рахунок радіаційного охолодження.

Проведено експериментальне дослідження роботи холодильної установки на холодоагенті R134а з герметичним поршневим компрессором продуктивністю 600 Вт. При температурі атмосферного повітря +38.0 С° подача попередньо-охолодженої теплоносії з температурою +33.1 °С забезпечила зниження температури конденсації з +47.0 до +39.1 °С. Ступінь зниження температури конденсації знижено на 30 %. Вдень холодильний коефіцієнт підвищений на 11 %. Енергоспоживання системи за добу практично не змінилося порівняно зі стандартою схемою з вулоз неміцької теплоти конденсації.

Пропонована схема відведення теплоти конденсації знижує тиск конденсації, забезпечує стабільність роботи холодильної установки. Її можна використовувати в станційних холодильних установках за високих денніх температур атмосферного повітря.

Ключові слова: радіаційне охолодження, енергетична ефективність, зниження тиску конденсації, холодильна машина.

DOI: 10.15587/1729-4061.2021.251232

РОЗРОБКА МАТЕМАТИЧНОГО ОПИСУ МЕХАНІЧНИХ ХАРАКТЕРИСТИК ВЗАЄМНОГО БАГАТОДВИГУННОГО ЕЛЕКТРОПРИВОДУ СУШИЛЬНОЇ УСТАНОВКИ (с. 46–54)

Sultanbek Issenov, Ruslan Iskakov, Kazhybek Tergemes, Zhanat Issenov

Понад 60 % електроенергії у промисловості та сільському господарстві споживається електроприводами. У ряді виробничих механізмів, машин та агрегатів, які відповідають вагомій величині здійсненої енергії, експлуатація та ефективність електромеханічних систем є ключовим фактором для різноманітних промислових процесів.

У запропонованому дослідженні враховується робота електромеханічних систем енергосистем з розподіленням електромоторчів на вузли, що працюють за системою "електричний робочий вал" (ЕРВ). Основна принципова відмінність від більш раннього робота полягає в тому, що в них розглядається система з двома вузлами, у яких існує відносно висока стабільність напруги, підвищення напруги, статичний синхронний компенсатор, алгоритм оптимізації кітів.

Об’єктом дослідження є тривагову електромеханічну систему, взаємопов’язану та працюча за системою "електричний робочий вал" (ЕРВ). Основна принципова відмінність від більш раннього робота полягає в тому, що в них розглядається система з двома вузлами, у яких існує відносно висока стабільність напруги, підвищення напруги, статичний синхронний компенсатор, алгоритм оптимізації кітів.

У запропонованому дослідженні враховується робота електромеханічних систем енергосистем з розподіленням електромоторчів на вузли, що працюють за системою "електричний робочий вал" (ЕРВ). Основна принципова відмінність від більш раннього робота полягає в тому, що в них розглядається система з двома вузлами, у яких існує відносно висока стабільність напруги, підвищення напруги, статичний синхронний компенсатор, алгоритм оптимізації кітів.

Ключові слова: радіаційне охолодження, енергетична ефективність, зниження тиску конденсації, холодильна машина.

DOI: 10.15587/1729-4061.2022.252352

АНАЛІЗ КІНЕТИКИ ФІЛЬТРАЦІЙНОГО СУШІННЯ ПОДРІБНЕНИХ СТЕБЕЛ БАВОВНИКА (с. 55–66)

Zagira Kobeyeva, Alisher Khussanov, В. М. Атаманюк, З. Я. Гнатів, Botagoz Kaldybayeva, Dauren Janabayev, Л. Й. Гнилянська

Кінєтику фільтраційного сушиння крохмалю можна віднести до технологічної задачі. У спішне розв’язання цієї задачі, у кінцевому результаті, визначає питомі енергетичні затрати на процес
сушіння та якість готової продукції. Рациональний режим сушіння подрібнених стебел бавовника повинен забезпечити мінімально можливе тривалість процесу, енергетичні витрати та забезпечити необхідні якісні характеристики висушеного матеріалу. Для вирішення цієї задачі необхідно дослідити вплив технологічних параметрів процесу (температури та швидкості фільтрування теплового агенту), а також товщини стаціонарного шару подрібнених стебел бавовника на кінетику сушіння.

Проведені узагальнення експериментальних досліджень кінетики фільтраційного сушіння подрібнених стебел бавовника в періоді повного насичення теплового агенту вологою.

Показано вплив температури сушильного агенту, швидкості його фільтрування крізь стаціонарний шар різної висоти вологих подрібнених стебел бавовника на кінетику фільтраційного сушіння. Представлені результати дослідження динаміки видалення вологи за різних параметрів теплового агенту та висот стаціонарного шару подрібнених стебел бавовника.

Отримана залежність \[\eta = 3,3 \cdot 10^{-5} \cdot \frac{t}{v} \cdot e^{0,5} \cdot \left(\frac{t}{v} \right)^{0,5} \], згідно якої визначають значення кінетичного коефіцієнту \(\eta \) для подрібнених стебел бавовника та розраховано значення кінетичного коефіцієнта \(a = 20,74 \) 1/м. Отримана залежність \[\frac{w'}{w_0} = 1 - 3,3 \cdot 10^{-5} \cdot \frac{t}{v} \cdot e^{0,5} \cdot \left(\frac{t}{v} \right)^{0,5} \cdot e^{-20,74} \]. за допомогою якої можна узагальнити кінетику фільтраційного сушіння подрібнених стебел бавовника у періоді повного насичення теплового агенту вологою в межах зміни вологовмісту шпону \(w'_0 \leq w' \leq w'_{\infty} \).

Порівнюючи експериментальні дані із теоретично розрахованими показано, що максимальне абсолютне значення відносної похибки не перевищує 15.2 %.

Ключові слова: стебла бавовника, кінетика, фільтраційне сушіння, відносна волоність, втрати тиску, стаціонарний шар, волокнисти частинки.