Profiles’ classifier of hot-rolled rolling

S M Belskiy¹*, V A Pimenov² and A N Shkarin¹

¹Lipetsk State Technical University, Lipetsk, Russia
²Novolipetsk Steel, Lipetsk, Russia

*Belsky-55@yandex.ru

Abstract. The geometric parameters describing the features of the cross-sectional profile of the hot-rolled strips do not give a complete picture of the flatness acquired by the cold-rolled strips rolled from these strips. An additional analysis showed that there are four characteristic classes of cross-sectional profiles of hot rolled strips that have a significant effect on the shape of the strips during cold rolling, three of which negatively affect the flatness of the cold rolled strips. The cross-sectional profiles of hot-rolled strips with a concave middle part and (or) marginal thickenings lead to the appearance of edge waviness, peak-like cross-sectional profiles cause central warping. Therefore, the actual task is to determine the factual shape of cross-sectional profile. Sixth order polynomials were used to digitalize and parameterize hot-rolled profile. As a result, we developed analytic function of the transverse profile, which keeps important information about its near-edge areas and features in the middle part. To assign a specific cross-sectional profile of a hot-rolled strip to one of four characteristic classes of cross-sections, mathematical software was developed, called a classifier, and implemented with the programming environment R. To classify the profiles of the hot-rolled cross-section according to characteristic classes, a linear discriminant method was used as a machine learning method analysis. The result is an adequate mathematical model for recognizing the shape of the cross-sectional profile.

1. Introduction
The peculiarities of the cross-section profile of a hot-rolled rolling significantly influence on the flatness of the cold-rolled strips, rolled from this rolling [1–35]. Taking into account only geometric parameters does not give a complete picture of flatness which the cold-rolled strips acquire [5, 9, 14, 17, 21, 26]. For this purpose, it is necessary to take into account not only the geometric parameters, describing the peculiarities of the cross-section profile of the hot-rolled rolling, but also the specific shape of the contour of the cross-section profile [6, 10, 13, 18, 22, 27].

The shape of the cross-section profile can be uniquely described using a finite vector V, whose components are the classification features. Four classes of profiles we define as a set $\Omega = (\Omega_r)$, where $r = 1, \ldots, N$ (in our case, $N = 4$); Ω_r is the number of r-th class; N is the number of classes. To assign a real cross-section profile to one of four characteristical classes, you need to construct a function $f: V \rightarrow \Omega$, called a classifier, which assigns a set of vectors of the classificational features V corresponding to the real cross-section profiles of strips, to the selected classes Ω.

To parameterize the contour of the cross-section profile and to construct a vector of the classificational features V, we apply a polynomial regression. To exclude the influence of the thickness of the hot-rolled strip on the polynomial’s coefficients, we normalize the measurements of the cross-
section profiles so that the maximum relative height of the section is equal to one:

\[h(x) = \frac{h[x_i] - h_{\text{min}}}{h_{\text{max}} - h_{\text{min}}}, \]

where \(h_{\text{min}} \) and \(h_{\text{max}} \) are respectively the minimum and maximum strip’s thickness.

Let’s write the approximating polynomial in the generalized form:

\[h(x) = a_0g_0(x) + a_1g_1(x) + \ldots + a_ng_n(x), \tag{1} \]

where \(n \) is the order of the polynomial; \(a_0, \ldots, a_n \) are the parameters of the generalized polynomial.

If \(g_n(x) = x^n \), then the approximating function (1) has the form of a multidimensional regression model, whose coefficients are calculated by means of the least squares method. Increasing the order of the polynomial does not lead to a significant increasing in accuracy, and at \(n > 5 \) there are oscillations in the edge zones. Therefore, in order to avoid these disadvantages, we used the Chebyshev’s polynomials for an approximation.

The Chebyshev’s polynomials are the orthogonal algebraic polynomials defined by the recurring relations, where each subsequent \(k \)-th coefficient is calculated by \((k-1)\) previous coefficients:

\[
\begin{align*}
\lambda_1 &= \frac{1}{m} \sum_{i=1}^{m} x_i, \\
\lambda_k &= \frac{\sum_{i=1}^{m} x_i g_{k-1}(x_i)}{\sum_{i=1}^{m} g_{k-1}^2(x_i)}, \\
\beta_k &= \frac{\sum_{i=1}^{m} x_i g_{k-2}(x_i) g_{k-1}(x_i)}{\sum_{i=1}^{m} g_{k-2}^2(x_i)}.
\end{align*}
\]

2. Checking adequacy of mathematical model

To check the adequacy of the model (1), we calculate the value of the average approximation’s error \(\langle A \rangle \). According to [1, 5, 6] the model can be considered adequate at \(\langle A \rangle < 15\% \):

\[\langle A \rangle = \frac{1}{m} \sum_{i=1}^{m} \frac{|H[x_i] - h[x_i]|}{H[x_i]} \cdot 100\%. \]

As a recognition method of images, that allows you obviously to set the function \(f \), we use a linear discriminant analysis [2, 13, 14]. The essence of the method is to find such the linear combinations of parameters of the classification feature vectors, called the canonical discriminant functions, whose values differ as much as possible from each other for the objects of the different classes:

\[f_u = w_0^u a_0 + w_1^u a_1 + \ldots + w_n^u a_n, \]

where \(u = 1, \ldots, (N - 1) \) is the number of discriminant functions; \(w_0^u, \ldots, w_n^u \) are the coefficients of \(u \)-th discriminant function; \(a_0, \ldots, a_n \) are the parameters of Chebyshev’s polynomial (1).

Let’s write a system of discriminant functions in a matrix form:

\[F = W^T V, \tag{2} \]

\[F_{(N-1)\times 1} = [f_1 \ldots f_{N-1}]^T, \quad V_{(n+1)\times 1} = [a_0, \ldots, a_n]^T, \quad W_{(n+1)\times (N-1)} = \begin{bmatrix} w_0^1 & w_0^2 & \ldots & w_0^{N-1} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
w_n^1 & w_n^2 & \ldots & w_n^{N-1} \end{bmatrix} = \begin{bmatrix} w_1 & w_2 & \ldots & w_{N-1} \end{bmatrix}. \]

The matrix \(W \) in the model (2), called the linear Fischer’s discriminant [3, 21, 22], is chosen so that the linear functional \(J(W) \) reaches a maximum:
\[
J(W) = \frac{W^T S_B W}{W^T S_B W} \rightarrow \max,
\]
where \(S_B \) is the inter-class scattering matrix; \(S_W \) is the inside-class scattering matrix.

The scattering matrices \(S_B \) and \(S_W \) are calculated as follows:

\[
S_B = \sum_{r=1}^{N} N_r (\mu_r - \mu)(\mu_r - \mu)^T, \quad S_W = \sum_{r \in \Omega} S_r, \quad S_r = \sum_{v \in \Omega_r} (V - \mu)(V - \mu)^T,
\]

\[
\mu_r = \frac{1}{M_r} \sum_{v \in \Omega_r} V, \quad \mu = \frac{1}{M} \sum_{v \in \Omega} V = \frac{1}{M} \sum_{v \in \Omega} M \mu_v,
\]

where \(M \) is the analyzed number of the hot-rolled profiles; \(M_r \) is the number of the cross-section’s profiles belonging to the class \(\Omega_r \).

To find the maximum of the functional \(J(W) \), it is necessary to differentiate it by the variable \(W \) and equate the result to zero. Whence we get the system of equations:

\[
S_W^{-1} S_B w = k_s w_s,
\]

where \(k_s \) and \(w_s \) are the eigenvalues and eigenvector of the matrix \(S_W^{-1} S_B \).

To check the adequacy of the model (2) and visually the representation of an application of a discriminant analysis, we construct a classification matrix – the square matrix of an order \(N \), whose columns represent the predicted solutions, and whose rows are a known class of the object. On the diagonal of the matrix is placed the number of correctly recognized the cross-section profiles, and outside the diagonal is placed the number of the errors of the first and second kind:

\[
CostM = \begin{bmatrix}
\text{Известные Predsказанные} & \Omega_1 & \Omega_2 & \cdots & \Omega_N \\
\Omega_1 & t_{11} & e_{12} & \cdots & e_{1N} \\
\Omega_2 & e_{21} & t_{22} & \cdots & e_{2N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\Omega_N & e_{N1} & e_{N2} & \cdots & t_{NN}
\end{bmatrix},
\]

where \(t_{rs} \) is the number of correctly classified the objects of class \(r \); \(e_{rs} \) is the number of the objects of class \(r \) assigned to class \(s \).

3. Numerical evaluation of classifier’s quality

To numerically evaluate the quality of the classifier, we calculate the accuracy \(Acc \), which shows the proportion of the hot-rolled profiles for which the classifier made the right decision:

\[
Acc = \frac{1}{M} \sum_{r=1}^{N} t_{rr}.
\]

As a criterion for how well the model (2) is able to work with different data, we use the cross-verification method (the cross-validation method). The essence of the method is to divide the initial selection of the classified objects into training (most of the data) and test (a smaller part of the data) samples. The training sample is used for parameterizing the classifier, and the test sample is used for checking the resulting model. If the accuracy of the classification \(Acc \) for the test sample \(Acc_{\text{test}} \) and the training sample \(Acc_{\text{train}} \) is approximately equal (\(Acc_{\text{test}} \approx Acc_{\text{train}} \)), then the worked out model is considered to have passed cross-checking.

For the model (1), the approximations of the cross-section profiles were performed by means of the Chebyshev’s polynomials of the sixth degree, which preserve significant information as about the middle part of the profile and fairly accurately model the edge thickening (Figure 1).
Figure 1. Examples of approximation of real cross-section’s profiles by Chebyshev’s polynomials of the sixth order:

- **a** – without edge thickenings (class 1);
- **b** – with a peak-shaped convex of the middle (class 2);
- **c** – with edge thickenings (class 3);
- **d** – concave profile with edge thickenings (class 4).

To quantify the adequacy of the model (1), we will find the average approximation error \(\langle A \rangle \) for each of the 520 analyzed hot-rolled rolling profiles and present the obtained results as a diagram in Figure 2. We note that \(\langle A \rangle \) does not exceed 15 %, which means that model (1) is adequate.

Figure 2. Histogram of values \(\langle A \rangle \).

We performed the parametrical identification of the model (2) in the programming environment R [4, 6, 14, 22]. The number of the canonical discriminant functions is one less than the number of classes, so there are four characteristic profile classes for which the functions were calculated:

- \(f_1 = -5,9a_0 + 0,2a_1 + 5,5a_2 - 0,1a_3 - 3,5a_4 - 0,1a_5 + 2,1a_6, \)
- \(f_2 = 0,9a_0 - 1,5a_1 + 4,1a_2 + 0,1a_3 - 3,8a_4 + 0,5a_5 + 0,2a_6, \)
- \(f_3 = 4,3a_0 - 9,2a_1 - 10,8a_2 - 0,01a_3 - 2,2a_4 - 0,2a_5 - 0,1a_6, \)

where \(f_1, f_2, f_3 \) are the discriminant functions.

To determine the shape of the specific cross-section profile, that has a certain vector of the classification features \(\hat{V} = [\hat{a}_0, ..., \hat{a}_n] \), it is necessary to find the projection of this vector on the first
discriminant axis $\hat{f}_1 = w_i \hat{V}$. The resulting value \hat{f}_1 is compared with the values of $f_1(\mu)$. The cross-section profile of a hot-rolled rolling belongs to the class where the calculation result $|f_1(\mu, \Omega) - \hat{f}_1|$ is minimal. If the found minimum values are equal, then we construct a projection on the next discriminant axis. The classification accuracy reaches about 90%, so this classifier is adequate.

4. Conclusions
The analysis of the cross-section profile of hot-rolled strips and the flatness of the cold-rolled strips has shown that there are four main forms of the cross-section profile of hot-rolled rolling, which have a significant impact on the formation of the cold-rolled strips. The mathematical models have been developed: 1) the description of the profile shape, including the edge thickening and peculiarities of the middle part, 2) the recognition and classification of the profile shape. Taking into account the class of the profile contour allows you to adjust the cold rolling technology at the stage of forming the assembly party.

Acknowledgments
The reported study was funded by RFBR, project number 19-38-90257.

References
[1] Freedman D A 2009 Statistical Models: Theory and Practice (Cambridge University Press)
[2] Hastie T, Tibshirani R and Friedman J 2017 The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer)
[3] Venables W N and Ripley B D 2002 Modern Applied Statistic with S (Springer)
[4] Maindonald J and Braun W J 2010 Data Analysis and Graphics Using R: An Example-Based Approach (Cambridge University Press)
[5] Bel’skii S M and Mukhin Yu A 2009 Classification of regulation principles for strip flatness Steel in Translation 39 (11) 1012–5
[6] Bel’skii S M, Mukhin Yu A, Mazur S I and Goncharov A I 2013 Influence of the cross section of hot-rolled steel on the flatness of cold-rolled strip Steel in Translation 43 (5) 313–6
[7] Shinkin V N 2017 Calculation of bending moments of steel sheet and support reactions under flattening on the eight-roller straightening machine Chernye Metally 4 49–53
[8] Shinkin V N 2017 Calculation of steel sheet’s curvature for its flattening in the eight-roller straightening machine Chernye Metally 2 46–50
[9] Shinkin V N 2016 The mathematical model of the thick steel sheet flattening on the twelve-roller sheet-straightening machine. Message 1. Curvature of sheet CIS Iron and Steel Review 12 37–40
[10] Shinkin V N 2017 Mathematical model of technological parameters’ calculation of flanging press and the formation criterion of corrugation defect of steel sheet’s edge CIS Iron and Steel Review 13 44–7
[11] Hingole R S 2015 Advances in Metal Forming: Expert System for Metal Forming (Springer)
[12] Lim Y, Venugopal R and Ulsoy A G 2014 Process Control for Sheet-Metal Stamping Process Modeling, Controller Design and Stop-Floor Implementation (Springer)
[13] Belskiy S M 2017 Parameters of evaluation of shape cross section of hot-rolled steel strips. Message 1. The determination coefficient Chernye Metally 10 65–70
[14] Belskiy S M 2017 Parameters for evaluation of shape cross-section of hot rolled steel strips. Message 2. The saddle coefficient Chernye Metally 11 42–7
[15] Dixit P M and Dixit U S 2008 Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods (Springer)
[16] Shinkin V N 2017 Failure of large-diameter steel pipe with rolling scabs Steel in Translation 47 (6) 363–8
[17] Shinkin V N 2016 Preliminary straightening of thick steel sheet in a seven-roller machine
Steel in Translation 46 (12) 836–40

[18] Shinkin V N 2016 Geometry of steel sheet in a seven-roller straightening machine Steel in Translation 46 (11) 776–80

[19] Kumar S and Hussein H M A 2017 AI Applications in Sheet Metal Forming (Springer)

[20] Banabic D 2010 Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation (Springer)

[21] Belskiy S M, Kotsar S L and Polyakov B A 1990 Calculation of the distribution of rolling force over the width of the strip and residual stresses in the strip by the variational method Izvestiya VUZov. Chernaya Metallurgiya 10 32–4

[22] Bel’skii S M and Mukhin Yu A 2009 Hot strip rolling with local thickening Steel in Translation 39 (5) 420–4

[23] Shinkin V N 2017 Arithmetical method of calculation of power parameters of 2N-roller straightening machine under flattening of steel sheet CIS Iron and Steel Review 14 22–7

[24] Rees D 2006 Basic Engineering Plasticity: An Introduction with Engineering and Manufacturing Applications (Butterworth-Heinemann)

[25] Calladine C R 2000 Plasticity for Engineers: Theory and Applications (Woodhead Publishing)

[26] Shinkin V N and Kolikov A P 2011 Elastoplastic shaping of metal in an edge-bending press in the manufacture of large-diameter pipe Steel in Translation 41 (6) 528–31

[27] Shinkin V N and Kolikov A P 2011 Simulation of the shaping of blanks for large-diameter pipe Steel in Translation 41 (1) 61–6

[28] Shinkin V N 2017 Simplified calculation of the bending torques of steel sheet and the roller reaction in a straightening machine Steel in Translation 47 (10) 639–44

[29] Fedorov V A, Ushakov I V and Permyakova I E 2004 Mechanical properties and crystallization of an annealed cobalt-based amorphous alloy Russian Metallurgy (Metally) 3 293–7

[30] Ushakov I V and Fedorov V A 2002 Effect of annealing temperature of amorphous metal alloy on cobalt base on cracks formation under local loading Fizika i Khimiya Obrabotki Materialov 6 77–80

[31] Lenard J G 2002 Metal Forming Science and Practice (Elsevier Science)

[32] Frank V 2013 Lecture Notes in Production Engineering (Springer)

[33] Ushakov I V 2008 How a crack and the defect material in its neighborhood affect the radiation strength of transparent materials Journal of Optical Technology 75 (2) 128–31

[34] Fedorov V A, Ushakov I V and Permyakova I E 2004 Mechanical properties and crystallization of an annealed cobalt-based amorphous alloy Metally 3 108–13

[35] Klocke F 2013 Manufacturing Processes 4: Forming (Springer)