NONLINEAR DIFFUSION IN THE KELLER-SEGEL MODEL OF PARABOLIC-PARABOLIC TYPE

XIANGSHENG XU

Department of Mathematics & Statistics
Mississippi State University
Mississippi State, MS 39762, USA

Abstract. In this paper we study the initial boundary value problem for the system
\[u_t - \Delta u^m = -\text{div}(u^q \nabla v), \quad v_t - \Delta v + v = u. \]
This problem is the so-called Keller-Segel model with nonlinear diffusion. Our investigation reveals that nonlinear diffusion can prevent overcrowding. To be precise, we show that solutions are bounded as long as \(m > q > 0 \), thereby substantially generalizing the known results in this area. Furthermore, our result seems to imply that the Keller-Segel model can have bounded solutions and blow-up ones simultaneously.

1. Introduction

Theoretical and mathematical modeling of chemotaxis dates back to the works of Patlak in the 1950s [16] and Keller and Segel in the 1970s [12]. The general form of the model reads:
\begin{align}
\frac{\partial u}{\partial t} &= \text{div} \left(k_1(u,v) \nabla u - k_2(u,v) \nabla v \right) + k_3(u,v) \quad \text{in } \Omega_T \equiv \Omega \times (0,T], \\
\frac{\partial v}{\partial t} &= k_c \Delta v + k_4(u,v) \quad \text{in } \Omega_T, \\
\frac{\partial u}{\partial n} &= \frac{\partial v}{\partial n} = 0 \quad \text{on } \Sigma_T \equiv \partial \Omega \times (0,T], \\
(u,v) \big|_{t=0} &= (u_0(x),v_0(x)) \quad \text{on } \Omega.
\end{align}
Here \(u \) denotes the cell density and \(v \) is the concentration of the chemical signal. The function \(k_1 \) is the diffusivity of the cells, \(k_2 \) is the chemotactic sensitivity, \(k_3 \) describes the cell growth and death. In the signal concentration model, \(k_4 \) describes the net effect of the production and degradation of the chemical signal. As for the remaining terms in the problem, \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) with \(C^{1,1} \) boundary \(\partial \Omega \), \(n \) the unit outward normal to \(\partial \Omega \), and \(T \) any positive number.

Motivated by applications, various assumptions on the given data were suggested to further simplify the model [6, 19]. In this paper we focus our attention on the so-called nonlinear-diffusion model. In this case,
\[k_1 = mu^{m-1}, \quad k_2 = u^q, \quad k_3 = 0, \quad k_c = 1, \quad k_4 = u - v, \]
where \(m, q \in (0, \infty) \).

The resulting problem is:
\begin{align}
\frac{\partial u}{\partial t} - \Delta u^m &= -\text{div}(u^q \nabla v) \quad \text{in } \Omega_T, \\
\frac{\partial v}{\partial t} - \Delta v + v &= u \quad \text{in } \Omega_T, \\
\frac{\partial u^m}{\partial n} &= \frac{\partial v}{\partial n} = 0 \quad \text{on } \Sigma_T, \\
(u,v) \big|_{t=0} &= (u_0(x),v_0(x)) \quad \text{on } \Omega.
\end{align}
It is certainly beyond the scope of this paper to give a comprehensive review for the Keller-Segel model. In this regard, we would like to refer the reader to [8, 9]. A problem similar to (1.5)-(1.8) was investigated in [10, 11, 20] under the assumptions that \(N \geq 2, m \geq 1, q \geq 1 \) (note that our \(q \) here is their \(q - 1 \)). The global existence of a weak solution was established if, in addition, \(m > q + 1 - \frac{2}{N} \). When this inequality fails, one obtains local existence and the global existence only holds for small data. Hölder continuity and uniqueness of weak solutions were considered in [13]. Some relevance of nonlinear diffusion in chemotaxis was discussed in [2].

The objective of this paper is to show that the results in the preceding papers can be substantially improved. Before stating our results, let us define our notion of a weak solution.

Definition 1.1. We say that \((u, v)\) is a weak solution to (1.5)-(1.8) if
\[
\begin{align*}
u &\in L^\infty(\Omega_T), \ u \geq 0, \ \nu^m \in L^2(0, T; W^{1,2}(\Omega)), \\
v &\in L^\infty(0, T; W^{1,\infty}(\Omega)), \ v \geq 0
\end{align*}
\]
and
\[
\begin{align*}
-\int_{\Omega_T} \frac{\partial u}{\partial t} \xi dx dt + \int_{\Omega_T} \nabla u^m \cdot \nabla \xi dx dt &= \int_{\Omega_T} u_0 \xi(x, 0) dx + \int_{\Omega_T} u^q \nabla v \cdot \nabla \xi dx dt, \\
-\int_{\Omega_T} \frac{\partial v}{\partial t} \eta dx dt + \int_{\Omega_T} \nabla v \cdot \nabla \eta dx dt &= \int_{\Omega_T} v_0 \eta(x, 0) dx + \int_{\Omega_T} (u - v) \eta dx dt
\end{align*}
\]
for each pair of smooth functions \((\xi, \eta)\) with \(\xi(x, T) = \eta(x, T) = 0\).

Our main result is:

Theorem 1.2 (Main theorem). Assume:

(H1) \(\Omega \) is a bounded domain in \(\mathbb{R}^N \), \(N \geq 3 \), with \(C^{1,1} \) boundary \(\partial \Omega \);

(H2) \(u_0 \in L^\infty(\Omega), \ v_0 \in W^{1,\infty}(\Omega) \) with \(u_0 \geq 0, v_0 \geq 0 \);

Then there is a weak solution \((u, v)\) to (1.5)-(1.8), provided that one of the following conditions holds.

(H3) \(m > 0, \ q > 0, \ and \ m > q \);

(H4) \(m > 0, \ 1 \geq q > 0, \ and \ q + \frac{q-1}{N+1} \leq m \leq q \).

Note that (H4) allows the possibility that \(m = q = 1 \). This is the classical Keller-Segel system, which is well known to have blow-up solutions. Thus our theorem actually implies that the Keller-Segel model can have bounded solutions and blow-up ones simultaneously. As far as we know, this is the first result in this direction. Our method seems to suggest that solutions blow up as \(m \to q^+ \), while solutions remain bounded as \(m \to q^- \) with \(q \leq 1 \). All the results are established under the assumption \(N > 2 \). But it is not difficult to see that Theorem 1.2 remains true for \(N = 2 \).

Motivated by numerical and modeling issues, the question of how blow-up of cells can be avoided has received a lot of attention. One way of doing this is to add a cross-diffusion term to the equation for \(v \) [7]. A second way is to alter the cell diffusion [1]. There are other related works. See, e.g., [2] in the context of volume effects. Here we show that nonlinear diffusion can also prevent blow-up.

Throughout this paper the letter \(c \) is always used to represent a positive number whose value is determined by the given data. The norm of a function in \(L^p(\Omega) \) is denoted by \(\|\cdot\|_{p,\Omega} \). The Lebesgue measure of a set \(D \) in \(\mathbb{R}^N \) is represented by \(|D|\). Whenever there is no confusion, we suppress the dependence of a function on its variables, e.g., we write \(u \) for \(u(x, t) \).

2. Preliminaries

In this section we collect a few preparatory results. The first one deals with sequences of non-negative numbers which satisfy certain recursive inequalities.
Proposition 2.1. Let \(\{y_n\}, n = 0, 1, 2, \cdots \), be a sequence of positive numbers satisfying the recursive inequalities
\[
y_{n+1} \leq cb^n y_n^{1+\alpha} \text{ for some } b > 1, c, \alpha \in (0, \infty).
\]
If
\[
y_0 \leq c^{-\frac{1}{\alpha}} b^{-\frac{1}{\alpha^2}},
\]
then \(\lim_{n \to \infty} y_n = 0 \).

This proposition can be found in ([4], p.12).

The following proposition plays a key role in the proof of our main theorem. It can be viewed as a continuous version of Lemma 3.1 in [15, 17].

Proposition 2.2. Let \(h(\tau) \) be a continuous non-negative function defined on \([0, T_0]\) for some \(T_0 > 0 \). Suppose that there exist three positive numbers \(\varepsilon, \delta, b \) such that
\[
(2.1) \quad h(\tau) \leq \varepsilon h^{1+\delta}(\tau) + b \text{ for each } \tau \in [0, T_0].
\]
Then
\[
(2.2) \quad h(\tau) \leq \frac{1}{|\varepsilon(1+\delta)|^{\frac{1}{\delta}}} \equiv s_0 \text{ for each } \tau \in [0, T_0],
\]
provided that
\[
(2.3) \quad \varepsilon \leq \frac{\delta}{(b+\delta)^\delta(1+\delta)^{1+\delta}} \quad \text{and } h(0) \leq s_0.
\]

Proof. Consider the function \(f(s) = \varepsilon s^{1+\delta} - s + b \) on \([0, \infty)\). Then condition (2.1) simply says
\[
(2.4) \quad f(h(\tau)) \geq 0 \text{ for each } \tau \in [0, T_0].
\]
It is easy to check that the function \(f \) achieves its minimum value at \(s_0 = \frac{1}{|\varepsilon(1+\delta)|^{\frac{1}{\delta}}} \). The minimum value
\[
(2.5) \quad f(s_0) = \frac{\varepsilon}{|\varepsilon(1+\delta)|^{\frac{1}{\delta}}} - \frac{1}{|\varepsilon(1+\delta)|^{\frac{1}{\delta}}} + b = b - \frac{\delta}{\varepsilon^{\frac{1}{\delta}}(1+\delta)^{\frac{1}{\delta}}}.\]

By the first inequality in (2.3), \(f(s_0) \leq -\delta \). Consequently, the equation \(f(s) = 0 \) has exactly two solutions \(0 < s_1 < s_2 \) with \(s_0 \) lying in between. Evidently, \(f \) is positive on \([0, s_1) \), negative on \((s_1, s_2)\), and positive again on \((s_2, \infty)\). The range of \(h \) is a closed interval because of its continuity, and this interval is either contained in \([0, s_1) \) or \((s_2, \infty)\) due to (2.4). The latter cannot occur due to the second inequality in (2.3). Thus the proposition follows. \(\square \)

Proposition 2.3. Let \(v \) be the solution of the problem
\[
(2.6) \quad v_t - \Delta v + v = u \text{ in } \Omega_T,
\]
\[
(2.7) \quad \frac{\partial v}{\partial n} = 0 \text{ on } \Sigma_T,
\]
\[
(2.8) \quad v(x, 0) = v_0(x) \text{ on } \Omega.
\]
If (H1) holds, then for each \(p > \frac{N+2}{2} \) there is a positive number \(c \) such that
\[
(2.9) \quad \sup_{0 \leq t \leq T} \|\nabla v\|_{W^{1,\infty}(\Omega)} \leq c\|\nabla v_0\|_{W^{1,\infty}(\Omega)} + c\|u\|_{2p, \Omega_T}.
\]
Proof. We do not believe that this result is new. However, we cannot find a good reference to it. So we offer a proof here. First we obtain a local interior estimate. The boundary estimate is achieved by flattening the relevant portion of the boundary.

Now fix a point \(z_0 = (x_0, t_0) \in \Omega_T \). Then pick a number \(R \) from \((0, \min\{\text{dist}(x_0, \partial \Omega), \sqrt{t_0}\})\). Define a sequence of cylinders \(Q_{R_n}(z_0) \) in \(\Omega_T \) as follows:

\[
Q_{R_n}(z_0) = B_{R_n}(x_0) \times (t_0 - R_n^2, t_0],
\]

where

\[
R_n = \frac{R}{2} + \frac{R}{2^{n+1}} \quad n = 0, 1, 2, \ldots.
\]

Choose a sequence of smooth functions \(\theta_n \) so that

\[
\begin{align*}
\theta_n(x, t) &= 1 \quad \text{in } Q_{R_n}(z_0), \\
\theta_n(x, t) &= 0 \quad \text{outside } B_{R_{n-1}}(x_0) \text{ and } t < t_0 - R_{n-1}^2, \\
|\partial_t \theta_n(x, t)| &\leq \frac{c4^n}{R^2} \quad \text{on } Q_{R_{n-1}}(z_0), \\
|\nabla \theta_n(x, t)| &\leq \frac{c2^n}{R} \quad \text{on } Q_{R_{n-1}}(z_0), \quad \text{and}
\end{align*}
\]

\[0 \leq \theta_n(x, t) \leq 1 \quad \text{on } Q_{R_{n-1}}(z_0).
\]

Let \(p \) be given as in the lemma. Select

\[
(2.10) \quad K \geq R^{1 - \frac{N+2}{2p}} \|u\|_{2p, Q_R(z_0)}
\]

as below. Set

\[
K_n = K - \frac{K}{2^{n+1}}, \quad n = 0, 1, 2, \ldots.
\]

Fix an \(i \in \{1, \ldots, N\} \). Define

\[
(2.11) \quad w = v_{x_i}.
\]

Then \(w \) satisfies the equation

\[
(2.12) \quad w_t - \Delta w + w = u_{x_i} \quad \text{in } \Omega_T.
\]

Without loss of generality, assume \(\sup_{\Omega_T} w = \|w\|_{\infty, \Omega_T} \). We use \(\theta_{n+1}^2(w - K_{n+1})^+ \) as a test function in (2.12) to derive

\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega} \theta_{n+1}^2 [(w - K_{n+1})^+]^2 \, dx + \int_{\Omega} \theta_{n+1}^2 \nabla (w - K_{n+1})^+ \cdot \nabla w \, dx + \int_{\Omega} \theta_{n+1}^2 w (w - K_{n+1})^+ \, dx
\]

\[
= \int_{\Omega} \theta_{n+1} \partial_t \theta_{n+1} [(w - K_{n+1})^+]^2 \, dx - 2 \int_{\Omega} \theta_{n+1} \nabla \theta_{n+1} \cdot \nabla w (w - K_{n+1})^+ \, dx
\]

\[
- \int_{\Omega} u \theta_{n+1} \partial_{x_i} (w - K_{n+1})^+ - 2 \int_{\Omega} u \theta_{n+1} \partial_{x_i} \theta_{n+1} (w - K_{n+1})^+ \, dx,
\]

from whence follows

\[
\sup_{0 \leq t \leq t_0} \int_{\Omega} \theta_{n+1}^2 [(w - K_{n+1})^+]^2 \, dx + \int_0^{t_0} \int_{\Omega} \theta_{n+1}^2 |\nabla (w - K_{n+1})^+|^2 \, dx \, dt
\]

\[
\leq \frac{c4^n}{R^2} \int_{Q_{R_n}(z_0)} [(w - K_{n+1})^+]^2 \, dx \, dt + c \int_{A_{n+1}} u \theta_{n+1}^2 \, dx \, dt
\]

\[
(2.14) \quad \leq \frac{c4^n}{R^2} y_n + c \|u^2\|_{p, Q_R(z_0)} |A_{n+1}|^{1 - \frac{1}{p}},
\]
It immediately follows that
\begin{align}
(2.15) \quad y_n &= \int_{Q_{R_n}(z_0)} [(w - K_n)^+]^2 \, dx dt, \\
(2.16) \quad A_{n+1} &= \{(x, t) \in Q_{R_n}(z_0) : w(x, t) \geq K_{n+1}\}.
\end{align}

By Poincaré’s inequality,
\begin{align*}
&\int_0^{t_0} \int_{\Omega} [\theta_{n+1}(w - K_{n+1})^+]^N \frac{\partial}{\partial t} dx dt \\
&\leq \int_0^{t_0} \left(\int_{\Omega} [\theta_{n+1}(w - K_{n+1})^+]^2 dx \right)^{\frac{N}{N+2}} \left(\int_{\Omega} [\theta_{n+1}(w - K_{n+1})^+]^\frac{2N}{N+2} \right)^{\frac{N}{N+2}} dt \\
&\leq \left(\sup_{0 \leq t \leq t_0} \int_{\Omega} [\theta_{n+1}(w - K_{n+1})^+]^2 dx \right)^{\frac{N}{N+2}} \int_0^{t_0} \int_{\Omega} \left| \nabla \theta_{n+1}(w - K_{n+1})^+ \right|^2 dx dt \\
&\leq c (1 + 4^n) \left(\frac{c^n R^2}{R^2} y_n + c \|u^2\|_{p, Q_{R_n}(z_0)} |A_{n+1}|^{1 - \frac{1}{p}} \right)^{\frac{N}{N+2}}.
\end{align*}

Subsequently,
\begin{align}
(2.17) \quad y_{n+1} &= \int_{Q_{R_{n+1}}(z_0)} [(w - K_{n+1})^+]^2 \, dx dt \\
&\leq \int_0^{t_0} \int_{\Omega} [\theta_{n+1}(w - K_{n+1})^+]^2 dx dt \\
&\leq \left(\int_0^{t_0} \int_{\Omega} [\theta_{n+1}(w - K_{n+1})^+]^2 dx \right)^{\frac{N}{N+2}} |A_{n+1}|^{\frac{2}{N+2}} \\
&\leq c A_{n+1} \left(\frac{c^n R^2}{R^2} y_n + c \|u^2\|_{p, Q_{R_n}(z_0)} |A_{n+1}|^{1 - \frac{1}{p}} \right)^{\frac{N}{N+2}} |A_{n+1}|^{\frac{2}{N+2}}. \\
&\leq c A_{n+1} \left(\frac{c^n R^2}{R^2} y_n + c R^{\frac{N+2}{2} - 2} K^2 |A_{n+1}|^{1 - \frac{1}{p}} \right)^{\frac{N}{N+2}} |A_{n+1}|^{\frac{2}{N+2}}. \\
&\leq c A_{n+1} \left(\frac{c^n R^2}{R^2} y_n + c R^{\frac{N+2}{2} - 2} K^2 |A_{n+1}|^{1 - \frac{1}{p}} \right)^{\frac{N}{N+2}} |A_{n+1}|^{\frac{2}{N+2}}.
\end{align}

The last step is due to (2.10). We also have
\begin{align}
(2.18) \quad y_n \geq \int_{A_{n+1}} (K_{n+1} - K_n)^2 \, dx dt = \frac{K^2}{4^n+1} |A_{n+1}|.
\end{align}

It immediately follows that
\begin{align}
(2.19) \quad y_n |A_{n+1}|^{\frac{1}{N+2}} &= y_n |A_{n+1}|^{\frac{1}{p}} |A_{n+1}|^{\frac{2}{N+2} - \frac{1}{p}} \\
&\leq \frac{c R^{\frac{N+2}{p} - 2} (\frac{n+1}{2} - \frac{2}{p} - (N+2))}{p(N+2)} \frac{1 + 2p - (N+2)}{p(N+2)} y_n. \\
(2.20) \quad K^2 |A_{n+1}|^{1 - \frac{1}{p}} |A_{n+1}|^{\frac{2}{N+2}} &= K^2 |A_{n+1}| |A_{n+1}|^{\frac{2}{N+2} - \frac{1}{p}} \\
&\leq \frac{c R^{\frac{N+2}{2} - 2} (\frac{n+1}{2} - \frac{2}{p} - (N+2))}{2p(N+2)} \frac{1 + 2p - (N+2)}{p(N+2)} y_n.
\end{align}

Use these in (2.18) to derive
\begin{align}
(2.21) \quad y_{n+1} \leq \frac{c R^{\frac{N+2}{p} - 2} y_n}{K^{2p - (N+2)}} y_n.
\end{align}
By Proposition 2.1, if we choose K so large that
\begin{align}
y_0 &\leq cK^2R^{N+2}, \tag{2.23} \\
\end{align}
then
\begin{align}
\sup_{Q_{\frac{2}{3}}(z_0)} w &\leq K. \tag{2.24}
\end{align}

In view of (2.10), it is enough for us to take
\begin{align}
K &= c\left(\frac{y_0}{R^{N+2}}\right)^\frac{1}{2} + R^{1-\frac{N+2}{2p}}\|u\|_{2p, Q_{R}(z_0)}. \tag{2.25}
\end{align}

Recall that
\begin{align}
y_0 &= \int_{Q_{\frac{2}{3}}(z_0)} \left[\left(w - \frac{K}{2}\right)^+\right]^2 dxdt \leq \int_{Q_{R}(z_0)} (w^+)^2 dxdt. \tag{2.26}
\end{align}

Hence,
\begin{align}
\sup_{Q_{\frac{2}{3}}(z_0)} w &\leq c\left(\frac{1}{R}\int_{Q_{\frac{2}{3}}(z_0)} (w^+)^2 dxdt\right)^\frac{1}{2} + R^{1-\frac{N+2}{2p}}\|u\|_{2p, Q_{R}(z_0)}. \tag{2.27}
\end{align}

This is the so-called local interior estimate. Now we proceed to derive the boundary estimate.

Suppose $x_0 \in \partial \Omega$. Our assumption on the boundary implies that there exist a neighborhood $U(x_0)$ of x_0 and a $C^{1,1}$ diffeomorphism T defined on $U(x_0)$ such that the image of $U(x_0) \cap \Omega$ under T is the half ball $B^+(y_0) = \{y : |y - y_0| < \delta, y_i > 0\}$, where $\delta > 0, y_0 = T(x_0)$, and i is given as in (2.11). This implies that we have flatten $U(x_0) \cap \partial \Omega$ into a region in the plane $y_i = 0$ in the y space [3].

Set
\begin{align}
\tilde{v} &= v \circ T^{-1}, \quad \tilde{w} = \tilde{v}_y.
\end{align}

We can choose T so that $\tilde{w} = \tilde{w}(y, t)$ satisfies the boundary condition
\begin{align}
\tilde{w} |_{y_i=0} = \tilde{v}_y |_{y_i=0} = \frac{\partial \tilde{v}}{\partial n} |_{y_i=0} = 0. \tag{2.28}
\end{align}

One way of doing this is to pick $T = \begin{pmatrix} f_1(x) \\ \vdots \\ f_N(x) \end{pmatrix}$ so that the graph of $f_1(x) = 0$ is $U(x_0) \cap \partial \Omega$ and the set of vectors $\{\nabla f_1, \cdots, \nabla f_N\}$ is orthogonal. By a result in [21], \tilde{w} satisfies the equation
\begin{align}
\partial_t \tilde{w} - \text{div} \left[(J_T^T J_T) \circ T^{-1} \tilde{w}_\nabla\right] + \tilde{w} = (hJ_T) \circ T^{-1} \tilde{w} + (J_T \circ T^{-1} \tilde{v}_\nabla)_i \quad \text{in } B^+(y_0),
\end{align}

where J_T is the Jacobian matrix of T, i.e.,
\begin{align}
J_T = \nabla T,
\end{align}

$(J_T \circ T^{-1} \tilde{v}_\nabla)_i$ is the i-th component of the vector $J_T \circ T^{-1} \tilde{v}_\nabla$, and the row vector h is roughly $\text{div}(J_T^T J_T)$ and is, therefore, bounded by our assumption on T. In view of (2.28), the method employed to prove (2.27) still works here. The only difference is that we use $B^+_{R_n}(y_0)$ instead of $B_{R_n}(y_0)$ in the proof. If $t_0 = 0$, then we just need to change $Q_{R_n}(z_0)$ to $B_{R_n} \times [0, R_n^2)$ and require
\begin{align}
K &\geq 2\|\nabla v_0\|_{\infty, \Omega},
\end{align}
in addition to (2.10) in the proof. Subsequently, (2.27) follows.

Finally, use v as a test function in (3.14) to derive
\begin{align}
\frac{1}{2} \frac{d}{dt} \int_{\Omega} v^2 + \int_{\Omega} |\nabla v|^2 dx + \int_{\Omega} v^2 dx = \int_{\Omega} uv dx. \tag{2.29}
\end{align}
It immediately follows that
\[(2.30) \quad \int_{\Omega_T} |\nabla v|^2 dx \,dt \leq c \int_{\Omega_T} u^2 dx \,dt + c \int_{\Omega} v_0^2 dx.\]

Finally, we have
\[(2.31) \quad \| v \|_{\infty, \Omega_T} \leq c \| u \|_{p, \Omega_T} + \| v_0 \|_{\infty, \Omega}.\]

This completes the proof. \(\square\)

3. Proof of Theorem 1.2

A solution to (1.5)-(1.8) is constructed as the limit of a sequence of approximate solutions. Our approximate problems are formulated as follows (also see [20]):
\[(3.1) \quad \partial_t U - m \text{div} ((U^+ + \sigma)^{m-1} \nabla U) = -\text{div} ((U^+) \nabla V) \quad \text{in } \Omega_T,\]
\[(3.2) \quad \partial_t V - \Delta V + V = U \quad \text{in } \Omega_T,\]
\[(3.3) \quad \frac{\partial U}{\partial n} = \frac{\partial V}{\partial n} = 0 \quad \text{on } \Sigma_T,\]
\[(3.4) \quad (U, V) \mid_{t=0} = (u_0, v_0) \quad \text{on } \Omega,\]

where \(\sigma > 0\). The existence of a solution to the above problem can be established via the Leray-Schauder fixed point theorem ([5], p.280). To this end, we define an operator \(T: L^\infty(\Omega_T) \to L^\infty(\Omega_T)\) as follows: Let \(U \in L^\infty(\Omega_T)\). We say \(w = T(U)\) if \(w\) is the unique solution of the problem
\[(3.5) \quad \partial_t w - m \text{div} ((U^+ + \sigma)^{m-1} \nabla w) = -\eta \text{div} ((U^+) \nabla V) \quad \text{in } \Omega_T,\]
\[(3.6) \quad \frac{\partial w}{\partial n} = 0 \quad \text{on } \Sigma_T,\]
\[(3.7) \quad w \mid_{t=0} = u_0 \quad \text{on } \Omega,\]

where \(V\) solves the problem
\[(3.8) \quad \partial_t V - \Delta V + V = U \quad \text{in } \Omega_T,\]
\[(3.9) \quad \frac{\partial V}{\partial n} = 0 \quad \text{on } \Sigma_T,\]
\[(3.10) \quad V \mid_{t=0} = v_0 \quad \text{on } \Omega.\]

To see that \(T\) is well-defined, we conclude from Proposition 2.3 that \(|\nabla V| \in L^\infty(\Omega_T)\). Moreover, the two initial boundary value problems in the definition of \(T\) are both linear and uniformly parabolic. We can infer from ([14], Chap. III) that \(w\) is Hölder continuous in \(\Omega_T\). It follows that \(T\) is continuous and maps bounded sets into precompact ones. We still need to show that there is a positive number \(c\) such that
\[(3.11) \quad \| U \|_{\infty, \Omega_T} \leq c\]
for all \(U \in L^\infty(\Omega_T)\) and \(\eta \in (0,1)\) satisfying \(U = \eta T(U)\). This equation is equivalent to the following problem
\[(3.12) \quad \partial_t U - m \text{div} ((U^+ + \sigma)^{m-1} \nabla U) = -\eta \text{div} ((U^+) \nabla V) \quad \text{in } \Omega_T,\]
\[(3.13) \quad \partial_t V - \Delta V + V = U \quad \text{in } \Omega_T,\]
\[(3.14) \quad \frac{\partial U}{\partial n} = \frac{\partial V}{\partial n} = 0 \quad \text{on } \Sigma_T,\]
\[(3.15) \quad (U, V) \mid_{t=0} = (\eta u_0, v_0) \quad \text{on } \Omega.\]
Use U^- as a test function in (3.6) to get
\[-\frac{1}{2} \frac{d}{dt} \int_\Omega (U^-)^2 dx - m \int_\Omega (U^+ + \sigma)^{m-1} |\nabla U^-|^2 dx = 0.\]
Integrate to get
(3.10) $U \geq 0$ a.e. on Ω_T.
This implies that
(3.11) $V \geq 0$ a.e. on Ω_T.
We introduce the following change of dependent variables
(3.12) $u = U + \sigma, \quad v = V + \sigma$.
Then (u, v) satisfies the problem
(3.13) $u_t - \Delta u^m = -\eta \text{div}(u - \sigma)^q \nabla v$ in Ω_T,
(3.14) $v_t - \Delta v + v = u$ in Ω_T,
(3.15) $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$ on Σ_T,
(3.16) $(u, v)_{t=0} = (\eta u_0(x) + \sigma, v_0(x) + \sigma)$ on Ω.

There is no loss of generality for us to assume that $T \leq 1$. Otherwise, we simply consider $(u(x, Tt), v(x, Tt))$ on $[0, 1]$. From here on we will do that, and also let
(3.17) $\sigma \in (0, 1)$.
We already have $\eta \in (0, 1)$. The generic positive number c will be independent of all three of them.

Lemma 3.1. Let (H3) hold. Then for each s sufficiently large there is a positive number c such that
(3.18) $\sup_{0 \leq t \leq T} \int_\Omega u^{s+1} dx + \int_\Omega \left| \nabla u^{\frac{m+s}{2}} \right|^2 dx dt \leq c \|\nabla v\|_{\infty, \Omega_T}^{\frac{m+s}{2}} + c.$

Proof. First remember that
(3.19) $\sigma \leq u \in L^\infty(\Omega_T)$.
Thus for each $r \in \mathbb{R}$, we have
(3.20) $u^r \in L^2(0, T; W^{1,2}(\Omega))$.
Now pick a number
(3.21) $s > \max\{0, m - 2q\}$.
Use u^s as a test function in (3.13) to derive
\[
\frac{1}{s+1} \frac{d}{dt} \int_\Omega u^{s+1} dx + ms \int_\Omega u^{m+s-2} |\nabla u|^2 dx
= s\eta \int_\Omega (u - \sigma)^q u^{s-1} \nabla v \nabla u dx \leq s \int_\Omega u^{q+s-1} |\nabla v| \nabla u dx
\leq \frac{1}{2} ms \int_\Omega u^{m+s-2} |\nabla u|^2 dx + \frac{s \|\nabla v\|^2_{\infty, \Omega_T}}{2m} \int_\Omega u^{2q-m-s} dx.
\]
To estimate the last integral, first notice that
(3.22) $\int_\Omega u^{m+s-2} |\nabla u|^2 dx = \frac{4}{(m+s)^2} \int_\Omega |\nabla u^{\frac{m+s}{2}}|^2 dx.$
Recall the Sobolev embedding theorem which states that for each \(r \in [1, N) \) there is a positive number \(c \) such that

\[
\|w\|_{N/r, \Omega} \leq c\|\nabla w\|_{r, \Omega} + c\|w\|_{1, \Omega} \quad \text{for each } w \in W^{1,r}(\Omega).
\]

We wish to apply this inequality with \(w = u^{m+s} \) and \(r = 2 \). For this purpose, we further require

\[
\frac{2q - m + s}{m + s} \leq \frac{N}{N - 2}.
\]

Or equivalently,

\[
s \geq \frac{(2q - m)(N - 2) - Nm}{2}.
\]

We derive from Hölder’s inequality and (3.24) that

\[
\int_{\Omega} u^{2q - m + s} \, dx = \int_{\Omega} \left(\int_{\Omega} \left(u^{m+s} \right)^{\frac{2q-m+s}{m+s}} \right)^{\frac{N}{N-2}} \, dx
\]

\[
\leq c \left(\int_{\Omega} \left| \nabla u^{\frac{m+s}{2}} \right|^2 \, dx + \left(\int_{\Omega} u^{\frac{m+s}{2}} \, dx \right)^2 \right)^{\frac{2q-m+s}{m+s}}
\]

\[
\leq c \left(\int_{\Omega} \left| \nabla u^{\frac{m+s}{2}} \right|^2 \, dx \right)^{\frac{2q-m+s}{m+s}} + c \left(\int_{\Omega} u^{\frac{m+s}{2}} \, dx \right)^{\frac{2(2q-m+s)}{m+s}}.
\]

We integrate (3.13) over \(\Omega \) to get

\[
\frac{d}{dt} \int_{\Omega} u \, dx = 0.
\]

Subsequently,

\[
\int_{\Omega} u(x,t) \, dx = \int_{\Omega} (\eta u_0(x) + \sigma) \, dx \leq c \quad \text{for each } t > 0.
\]

If we further assume that

\[
\frac{m + s}{2} < 2q - m + s,
\]

then we can appeal to the interpolation inequality ([5], p.146), thereby deriving

\[
\|u\|_{m+s/2, \Omega} \leq c \|u\|_{2q-m+s, \Omega} + \frac{1}{\varepsilon_h} \|u\|_{1, \Omega} \leq c \|u\|_{2q-m+s, \Omega} + \frac{c}{\varepsilon_h},
\]

where \(\varepsilon > 0, \quad \mu = \left(1 - \frac{2}{m+s}\right) / \left(\frac{2}{m+s} - \frac{1}{2q-m+s}\right) \). Condition (3.29) is equivalent to

\[
s > 3m - 4q.
\]

Use (3.30) in (3.27) and choose \(\varepsilon \) suitably small in the resulting inequality to obtain

\[
\int_{\Omega} u^{2q-m+s} \, dx \leq c \left(\int_{\Omega} \left| \nabla u^{\frac{m+s}{2}} \right|^2 \, dx \right)^{\frac{2q-m+s}{m+s}} + c.
\]
Plug this into (3.22) to get
\[
\frac{1}{s+1} \frac{d}{dt} \int_\Omega u^{s+1} dx + \frac{2ms}{(m+s)^2} \int_\Omega \left| \nabla u^{\frac{m+s}{2}} \right|^2 dx \\
\leq c \left(\int_\Omega \left| \nabla u^{\frac{m+s}{2}} \right|^2 dx \right)^{\frac{2q-m+s}{m+s}} \left\| \nabla v \right\|_{L^2(\Omega_T)}^2 + c\left\| \nabla v \right\|_{L^2(\Omega_T)}^2 \\
\leq \varepsilon \int_\Omega \left| \nabla u^{\frac{m+s}{2}} \right|^2 dx + c(\varepsilon) \left\| \nabla v \right\|_{L^2(\Omega_T)}^{\frac{m+s}{m-q}} + c\left\| \nabla v \right\|_{L^2(\Omega_T)}^2.
\]
(3.33)

The last step is due to the assumption \(m > q \) and Young’s inequality ([5], p. 145). Once again, by taking \(\varepsilon \) suitably small, we arrive at
\[
\sup_{0 \leq t \leq T} \int_\Omega u^{s+1} dx + \int_\Omega \left| \nabla u^{\frac{m+s}{2}} \right|^2 dx dt \leq c\left\| \nabla v \right\|_{L^2(\Omega_T)}^{\frac{m+s}{m-q}} dt + c.
\]
(3.34)

Here we have used the fact \(\frac{m+s}{m-q} > 2 \) due to (3.21). That is to say, the lemma is valid for any \(s \) that satisfies (3.21), (3.26), and (3.31). This completes the proof. \(\square \)

Lemma 3.2. Let (H3) hold and \(s \) be given as in Lemma 3.1. Then there is a positive number \(c \) such that
\[
\left\| u \right\|_{L^\infty(\Omega_T)} \leq c\left\| \nabla v \right\|_{L^\infty(\Omega_T)}^\gamma + c,
\]
where
\[
\gamma = \frac{((s+1)(N+2) + N(m-1)^+)(m+s) + (s+1)N(m-q)(N+2)}{(s+1)(m-q)[(N+2)(s+1) + 2N(m-q)]}.
\]
(3.36)

Proof. Let
\[
K \geq 2(\left\| u_0 \right\|_{L^\infty(\Omega)} + 1)
\]
be selected as below. Define
\[
K_n = K - \frac{K}{2^{n+1}}, n = 0, 1, \ldots
\]
(3.38)

Obviously,
\[
\frac{K}{2} \leq K_n \leq K.
\]
(3.39)

Set
\[
S_n(t) = \{ x \in \Omega : u(x,t) \geq K_n \},
\]

(3.40)

\[
A_n = \cup_{0 \leq t \leq T} S_n(t) = \{ (x,t) \in \Omega_T : u(x,t) \geq K_n \}.
\]

(3.41)

Subsequently,
\[
\int_0^T |S_{n+1}(t)| dt = |A_{n+1}|.
\]
(3.42)

To simplify our presentation, we also introduce two parameters
\[
m_s = (s+1)\frac{2}{N} + m + s,
\]
(3.43)

\[
q_s = m_s - (2q - m + s).
\]
(3.44)
where s is given as in Lemma 3.1, i.e., s is sufficiently large. Then use $(u^s - K_{n+1}^s)^+$ as a test function in (3.13) to derive

\[
\frac{d}{dt} \int_\Omega \int_0^t (\tau^s - K_{n+1}^s)^+ d\tau dx + ms \int_{S_{n+1}(t)} u^{m+s-2} |\nabla u|^2 dx
\]

\[
= s\eta \int_{S_{n+1}(t)} (u - \sigma)^q u^{s-1} \nabla v \nabla u dx \leq s \int_{S_{n+1}(t)} u^{q+s-1} |\nabla v||\nabla u| dx.
\]

After a suitable application of Cauchy’s inequality ([14], p. 58), we integrate to obtain

\[
\sup_{0 \leq t \leq T} \int_\Omega \int_0^t (\tau^s - K_{n+1}^s)^+ d\tau dx + \int_{A_{n+1}} |\nabla u_m^{m+s}|^2 dx dt
\]

\[
\leq c \int_{A_{n+1}} u^{2q-m-s} |\nabla v|^2 dx dt \leq c ||\nabla v||^2_{\infty, \Omega_T} \int_{A_{n+1}} u^{2q-m-s} dx dt.
\]

Since $s > 1$, we have

\[
\int_{K_{n+1}} (\tau^s - K_{n+1}^s)^+ d\tau \chi_{A_{K_{n+1}}} \geq \int_{K_{n+1}} [(\tau - K_{n+1})^+]^s d\tau
\]

\[
= \frac{1}{s+1} [(u - K_{n+1})^+]^{s+1}.
\]

Recall that $m_s = (s + 1)\frac{2}{N} + m + s$. We estimate, with the aid of Hölder’s inequality and (3.24), that

\[
y_{n+1} = \int_0^T \int_\Omega [(u - K_{n+1})^+]^{m_s} dx dt
\]

\[
\leq c \left(\sup_{0 \leq t \leq T} \int_\Omega [(u - K_{n+1})^+]^{s+1} dx \right)^{\frac{2}{N}} \left(\int_\Omega [(u - K_{n+1})^+]^{(m_s+N-2)} dx \right)^{\frac{N-2}{N}} dt
\]

\[
\leq c \left(\int_\Omega |\nabla [(u - K_{n+1})^+]|^{\frac{m+1}{2}} dx + \left(\int_\Omega [(u - K_{n+1})^+]^{m_s} dx \right)^{\frac{m+1}{2}} \right)^2 dt
\]

We can easily verify that

\[
|\nabla [(u - K_{n+1})^+]|^{\frac{m+1}{2}} = \frac{m+1}{2} [(u - K_{n+1})^+]^{\frac{m+1}{2}-1}|\nabla u|
\]

\[
\leq \frac{m+1}{2} u^{\frac{m+1}{2}-1} |\nabla u| \chi_{S_{n+1}(t)} = |\nabla u^{\frac{m+1}{2}}| \chi_{S_{n+1}(t)}
\]

\[
\int_\Omega [(u - K_{n+1})^+]^{m_s} dx \leq \left(\int_\Omega [(u - K_{n+1})^+]^{m_s} dx \right)^{\frac{m+1}{2m_s}} |S_{n+1}(t)|^{\frac{m+1}{2m_s}}.
\]
The latter yields
\[
\int_0^T \left(\int_\Omega \left[(u - K_{n+1})^+ \right]^{m+s} \right)^2 \, dx \, dt \\
\leq \int_0^T \left(\int_\Omega \left[(u - K_{n+1})^+ \right]^{m+s} \right)^{\frac{m+s}{m+s}} |S_{n+1}(t)|^{2-\frac{m+s}{m+s}} \, dt \\
\leq \left(\int_\Omega_T \left[(u - K_{n+1})^+ \right]^{m+s} \, dx \, dt \right)^{\frac{m+s}{m+s}} \left(\int_0^T |S_{n+1}(t)|^{1+\frac{N ms}{2(s+1)}} \, dt \right)^{\frac{2(s+1)}{N ms}} \\
\leq c |A_{n+1}|^{\frac{2(s+1)}{N ms}} y_n^{m+s}. \tag{3.51}
\]

Here we have used the fact that \(\{y_n\} \) is a decreasing sequence. Use (3.49) and (3.51) in (3.48) and take (3.46) into account to derive
\[
y_{n+1} \leq c \|\nabla v\|_{\infty, \Omega_T} \left(\int_{A_{n+1}} u^{2q-m+s} \, dx \right)^{\frac{N+2}{N}} \\
+ c \|\nabla v\|_{\infty, \Omega_T} \left(\int_{A_{n+1}} u^{2q-m+s} \, dx \right)^{\frac{2}{N}} \left(\int_{A_{n+1}} u^{m+s} \, dx \right)^{\frac{2(s+1)}{N ms}} y_n^{m+s}. \tag{3.52}
\]

The first integral on the right-hand side of (3.52) can be estimated as follows:
\[
\left(\int_{A_{n+1}} u^{2q-m+s} \, dx \right)^{\frac{N+2}{N}} = \frac{(N+2)(2q-m+s)}{K_{n+1}^{N+2}} \left(\int_{A_{n+1}} \left(\frac{u}{K_{n+1}} \right)^{2q-m+s} \, dx \right)^{\frac{N+2}{N}} \\
\leq \frac{1}{K_{n+1}^{N+2}} \left(\int_{A_{n+1}} \left(\frac{u}{K_{n+1}} \right)^{2q-m+s} \, dx \right)^{\frac{N+2}{N}} \\
= \frac{1}{K_{n+1}^{N+2}} \int_{A_{n+1}} u^{m+s} \, dx \tag{3.53}
\]

Similarly,
\[
\left(\int_{A_{n+1}} u^{2q-m+s} \, dx \right)^{\frac{2}{N}} \leq \frac{1}{K_{n+1}^{N+2}} \int_{A_{n+1}} u^{m+s} \, dx \tag{3.54}
\]

Recall that
\[
K_{n+1} - K_n = \frac{K}{2n+2}, \quad \frac{K_{n+1} - K_n}{K_{n+1}} = \frac{1}{2n+2 - 1} > \frac{1}{2n+2}.
\]

With the aid of the preceding two results, we obtain
\[
y_n \geq \int_{A_{n+1}} \left[(K_{n+1} - K_n)^+ \right]^{m_s} \, dx \, dt = \frac{K_{n+1}^{m_s}}{2(n+2)m_s} |A_{n+1}|, \tag{3.55}
\]
\[
y_n \geq \int_{A_{n+1}} u^{m_s} \left[\left(\frac{1 - K_n}{u} \right)^+ \right]^{m_s} \, dx \, dt \\
\geq \int_{A_{n+1}} u^{m_s} \left(1 - \frac{K_n}{K_{n+1}} \right)^{m_s} \, dx \, dt \tag{3.56}
\]
By (3.55),

$$|A_{n+1}| \leq \frac{2(n+2)(s+1)}{N} \frac{2(s+1)}{N} y_n^{\frac{2}{N}}.$$

Keeping this, (3.54), (3.39), and (3.56) in mind, we derive from (3.52) that

$$y_{n+1} \leq c \frac{2(n+2)ms(N+2)}{K} \frac{2}{N} y_n^{\frac{2}{N}} + \frac{1}{2} \frac{2(s+1)+2ms}{N} y_n^{\frac{2}{N}}$$

\[\leq \begin{array}{l}
\frac{cb^n}{K} \left(\frac{2(n+2)}{N} \frac{2}{N} y_n^{\frac{2}{N}} + \frac{\| \nabla v \|^4_{\infty, \Omega_T}}{2(s+1)+2ms} \right) y_n^{\frac{2}{N}},
\end{array} \]

where

$$b = \max \left\{ 2 \frac{ms(N+2)}{N}, 2 \frac{2(s+1)+2ms}{N} \right\}.$$

We can easily check from (3.43) and (3.44) that

$$(N+2)qs \geq 2(s+1) + 2qs \quad \text{if and only if} \quad m \geq q.$$

Recall that $K_n \geq 1$. Thus if (H3) holds, we can deduce from (3.57) that

$$y_{n+1} \leq \frac{cb^n}{K} \left(\frac{2(n+2)}{N} \frac{2}{N} y_n^{\frac{2}{N}} + \frac{\| \nabla v \|^4_{\infty, \Omega_T}}{2(s+1)+2ms} \right) y_n^{\frac{2}{N}}.$$

According to Proposition 2.1, if we choose K so large that

$$y_0 = \int_{\Omega_T} \left[\left(u - \frac{K}{2} \right)^+ \right]^{ms} dt \leq \int_{\Omega_T} u^{ms} dt$$

$$\leq \frac{cK^{s+1+qs}}{\| \nabla v \|^{N+2}_{\infty, \Omega_T} + \| \nabla v \|^2_{\infty, \Omega_T}},$$

then

$$\sup_{\Omega_T} u \leq K.$$

In view of (3.37), it is enough for us to take

$$K = c \left(\int_{\Omega_T} u^{ms} dt \right)^{\frac{1}{s+1+qs}} \left(\frac{\| \nabla v \|^{N+2}_{\infty, \Omega_T} + \| \nabla v \|^2_{\infty, \Omega_T}}{s+1+qs} \right)^{\frac{1}{s+1+qs}}$$

\[+ 2 \| u_0 \|_{\infty, \Omega} + 2. \]
In light of (3.48), (3.51), and (3.18), we have
\[
\int_{\Omega_T} u^{m_s} \, dx \, dt \leq \left(\sup_{0 \leq t \leq T} \int_{\Omega} u^{s+1} \, dx \right) \frac{2}{N} \int_{\Omega_T} \left| \nabla u^{m_s} \right|^2 \, dx \, dt \\
+ c \left(\sup_{0 \leq t \leq T} \int_{\Omega} u^{s+1} \, dx \right)^{\frac{2}{N}} \left(\int_{\Omega_T} u^{m_s} \, dx \, dt \right)^{\frac{m_s}{m_s}} \\
\leq c \left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{N+2}{m} \right) \left(m-s \right)} + c + \varepsilon \int_{\Omega_T} u^{m_s} \, dx \, dt + c(\varepsilon) \left(\sup_{0 \leq t \leq T} \int_{\Omega} u^{s+1} \, dx \right)^{\frac{m_s}{s+1}}.
\]
Choosing ε suitably small, we arrive at
\[
\int_{\Omega_T} u^{m_s} \, dx \, dt \leq c \left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{N+2}{m} \right) \left(m-s \right)} + c + c \left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{s+1}{m} \right) \left(m-s \right)}.
\]
Substituting this into (3.58) yields
\[
\left\| u \right\|_{\infty, \Omega_T} \leq c \left[\left(\left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{N+2}{m} \right) \left(m-s \right)} + \left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{s+1}{m} \right) \left(m-s \right)} \right) + 1 \right] \left(\left\| \nabla v \right\|_{\infty, \Omega_T}^{N+2} + \left\| \nabla v \right\|_{\infty, \Omega_T}^{2} \right) \frac{1}{s+1+q} + c
\]
\[
\leq c \left[\left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{N+2}{m} \right) \left(m-s \right)} + \left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{s+1}{m} \right) \left(m-s \right)} + 1 \right] \left(\left\| \nabla v \right\|_{\infty, \Omega_T}^{N+2} + 1 \right) \frac{1}{s+1+q} + c
\]
\[
\leq c \left\| \nabla v \right\|_{\infty, \Omega_T}^{\left(\frac{s+1}{m} \right) \left(m-s \right)} \left(\frac{1}{s+1+q} \right) \frac{1}{s+1+q} + c
\]
This together with (3.44) implies the lemma. \hfill \Box

Proof of Theorem 1.2 under (H3). We wish to show
\[
\left\| v \right\|_{L^\infty(0,T;W^{1,\infty}(\Omega))} + \left\| u \right\|_{\infty, \Omega_T} \leq c.
\]
Let γ be given as in Lemma 3.2. Note that
\[
\lim_{s \to \infty} \gamma = \lim_{s \to \infty} \frac{(s+1)(N+2) + N(m-1)^+ (m+s) + (s+1)N(m-q)(N+2)}{(s+1)(m-q)(s+1) + 2N(m-q)} = \frac{1}{m-q}.
\]
If $\frac{1}{m-q} > 1$, then there is a $\beta > 0$ such that
\[
\gamma = 1 + \beta \quad \text{for some suitably large s.}
\]
Fix this s and let p be given as in Proposition 2.3. We can derive from (2.9) and Lemma 3.2
\[
\left\| v \right\|_{L^\infty(0,T;W^{1,\infty}(\Omega))} + \left\| u \right\|_{\infty, \Omega_T} \leq c \left\| u \right\|_{2p, \Omega_T} + c \left\| \nabla v \right\|_{\infty, \Omega_T}^{1+\beta} + c
\]
\[
\leq c T^{\frac{1}{2p}} \left\| u \right\|_{\infty, \Omega_T} + c \left\| u \right\|_{2p, \Omega_T}^{1+\beta} + c
\]
\[
\leq c T^{\frac{1}{2p}} \left\| \nabla v \right\|_{\infty, \Omega_T}^{1+\beta} + c T^{\frac{1+\beta}{2p}} \left\| u \right\|_{\infty, \Omega_T}^{1+\beta} + c
\]
(3.61)
\[
\leq c T^{\frac{1}{2p}} \left(\left\| v \right\|_{L^\infty(0,T;W^{1,\infty}(\Omega))} + \left\| u \right\|_{\infty, \Omega_T} \right)^{1+\beta} + c.
\]
Here we have used the fact that $T \leq 1$. Set
\[
h(\tau) = \left\| v \right\|_{L^\infty(0,\tau;W^{1,\infty}(\Omega))} + \left\| u \right\|_{\infty, \Omega_T}.
\]
Let $T_0 \in (0, T]$ be selected below. It follows from (3.61) that

$$h(\tau) \leq cT_0^{\frac{1}{2p}}h^{1+\beta}(\tau) + c \quad \text{for each } \tau \in [0, T_0].$$

It is not difficult for us to see from the proof of Proposition 2.3 that ∇v is actually Hölder continuous on Ω_T, so is u for each fixed $\sigma > 0$. Thus $h(\tau)$ is a continuous function of τ. In view of Proposition 2.2, if we choose T_0 so that

$$cT_0^{\frac{1}{2p}} \leq \frac{\beta^2}{(c+\beta)^2(1+\beta)^{1+\beta}}$$

and $\|\nabla(v_0 + 1)\|_{W^{1,\infty}(\Omega)} + \|u_0 + 1\|_{\infty,\Omega} \leq \frac{1}{cT_0^{\frac{1}{2p}}(1+\beta)}$, then

$$\|\nabla v\|_{\infty,\Omega \times [0, T_0]} \leq \frac{1}{\left[cT_0^{\frac{1}{2p}}(1+\beta)\right]^{\frac{1}{\beta}}}.\]$$

By setting $T = 0$ in (3.61), we see that $\|\nabla(v_0 + 1)\|_{W^{1,\infty}(\Omega)} + \|u_0 + 1\|_{\infty,\Omega} \leq c$. If we take

$$cT_0^{\frac{1}{2p}} = \frac{\beta^2}{(c+\beta)^2(1+\beta)^{1+\beta}},$$

then the second inequality in (3.64) is automatically satisfied. Upon doing so, we arrive at

$$\|v\|_{L^\infty(0,T_0;W^{1,\infty}(\Omega))} + \|u\|_{\infty,\Omega \times [0, T_0]} \leq \frac{(c+\beta)(1+\beta)}{\beta}.$$

Set $k = \lfloor \frac{T_0}{T_0} \rfloor$, the integer part of the number $\frac{T_0}{T_0}$. If $k \geq 1$, we consider

$$u_{T_0}(x,t) = u(t + T_0, x), \quad v_{T_0}(x,t) = v(t + T_0, x) \quad \text{on } [0, T_0].$$

Obviously, (u_{T_0}, v_{T_0}) satisfies the same conditions as (u, v) on $\Omega \times (0, T_0)$. Thus we can repeat the previous arguments to yield (3.67) for (u_{T_0}, v_{T_0}). After a finite number of steps, we obtain (3.59). Of course, in the last step, we will have to use $\min\{T_0, T - kT_0\}$ instead of T_0.

If $\frac{1}{m-q} < 1$, an application of Young’s inequality is enough to reach (3.59).

If $\frac{1}{m-q} = 1$, this can also be handled easily. We verify that $\frac{dx}{dt}$ changes signs at least three times. Thus either γ decreases toward 1 as $s \to \infty$, which can be treated like the first case, or γ increases toward 1 as $s \to \infty$, which is essentially the second case.

Clearly, (3.5) is a consequence of (3.59). Thus we can conclude from the Leray-Schauder fixed point theorem that (3.1)-(3.4) has a solution. Denote the solution by (U_{σ}, V_{σ}). In view of (3.10), we can rewrite (3.1)-(3.4) as

$$\partial_t U_{\sigma} - m\text{div}((U_{\sigma} + \sigma)^{m-1}\nabla U_{\sigma}) = -\text{div}(U_{\sigma}^q\nabla V_{\sigma}) \quad \text{in } \Omega_T,$$

$$\partial_t V_{\sigma} - \Delta V_{\sigma} + V_{\sigma} = U_{\sigma} \quad \text{in } \Omega_T,$$

$$\frac{\partial U_{\sigma}}{\partial n} = \frac{\partial V_{\sigma}}{\partial n} = 0 \quad \text{on } \Sigma_T,$$

$$(U_{\sigma}, V_{\sigma}) \big|_{t=0} = (u_0, v_0) \quad \text{on } \Omega.$$

Furthermore,

$$U_{\sigma} \geq 0, \quad V_{\sigma} \geq 0, \quad \text{and } \|V_{\sigma}\|_{L^\infty(0,T;W^{1,\infty}(\Omega))} + \|U_{\sigma}\|_{\infty,\Omega_T} \leq c.$$

We wish to show that we can take $\sigma \to 0$ in (3.69)-(3.72). For this purpose, we use $(U_{\sigma} + \sigma)^m$ as a test function in (3.69) to derive

$$\frac{1}{m+1} \sup_{0 \leq t \leq T} \int_{\Omega} (U_{\sigma} + \sigma)^{m+1} dx + \int_{\Omega_T} |\nabla(U_{\sigma} + \sigma)^{m}|^2 dxdt \leq c.$$
We compute
\[
\partial_t (U_\sigma + \sigma)^{m+1} = (m + 1)(U_\sigma + \sigma)^m \partial_t U_\sigma \\
= (m + 1) \text{div} ((U_\sigma + \sigma)^m \nabla (U_\sigma + \sigma)^m) - (m + 1) |\nabla (U_\sigma + \sigma)^m|^2 \\
- (m + 1) \text{div} ((U_\sigma + \sigma)^m U_\sigma^g \nabla V_\sigma) + (m + 1) U_\sigma^g \nabla V_\sigma \cdot \nabla (U_\sigma + \sigma)^m,
\]
\[
\nabla (U_\sigma + \sigma)^{m+1} = \frac{m + 1}{m} (U_\sigma + \sigma)^m \nabla (U_\sigma + \sigma)^m.
\]

Thus the sequence \(\{\partial_t (U_\sigma + \sigma)^{m+1}\} \) is bounded in \(L^2(0, T; (W^{1,2}(\Omega))^*) + L^1(\Omega_T) \equiv \{\psi_1 + \psi_2 : \psi_1 \in L^2(0, T; (W^{1,2}(\Omega))^*), \psi_2 \in L^1(\Omega_T)\} \) and the sequence \(\{(U_\sigma + \sigma)^{m+1}\} \) is bounded in \(L^2(0, T; W^{1,2}(\Omega)). \)

This puts us in a position to apply the Lions-Aubin lemma [19]. Upon doing, we obtain the pre-compactness of \(\{(U_\sigma + \sigma)^{m+1}\} \) in \(L^2(\Omega_T) \). We can extract a subsequence of \(\{U_\sigma + \sigma\} \), still denoted by \(\{U_\sigma + \sigma\} \), such that \(U_\sigma + \sigma \) converges a.e. on \(\Omega_T \). This is enough to justify passing to the limit in (3.69)-(3.72). The proof is complete.

□

We would like to remark that as \(m \to q^+ \) the upper bound in (3.67) deteriorates. This foretells the possibility that solutions blow up if \(m = q \).

Proof of Theorem 1.2 under (H4). We will show that an estimate like (3.35) remains true even without the benefit of Lemma 3.1. Let \(s \) be given as before, i.e., \(s \) is large enough. With the aid of (H4), we can derive from (3.57) that
\[
y_{n+1} \leq \frac{c b^n \left(\|\nabla v\|_{\infty, \Omega_T}^{2(N+2)} + \|\nabla v\|_{\infty, \Omega_T}^{q+2} \right)}{K^{(N+2)q_s}} y_n^{1+\frac{q}{N}}.
\]

In light of Proposition 2.1, if \(K \) is so chosen that
\[
y_0 \leq \frac{c K^{(N+2)q_s}}{2 \|\nabla v\|_{\infty, \Omega_T}^{N+2} + \|\nabla v\|_{\infty, \Omega_T}^{2q+4}},
\]
then
\[
(3.74) \quad \sup_{\Omega_T} u \leq K.
\]

In view of (3.37), it is enough for us to take
\[
K = c \left(\int_{\Omega_T} u_m s \ dx \ dt \right)^{\frac{2}{(N+2)q_s}} \left(\|\nabla v\|_{\infty, \Omega_T}^{N+2} + \|\nabla v\|_{\infty, \Omega_T}^{2q+4} \right)^{\frac{2}{(N+2)q_s}}
+ 2\|u_0\|_{\infty, \Omega_T} + 2.
\]

If
\[
(3.76) \quad \frac{2m_s}{(N + 2)q_s} < 1,
\]
or equivalently,
\[
q < 1 \quad \text{and} \quad m > q + \frac{q - 1}{N + 1},
\]
then Young’s inequality asserts
\[
K \leq \varepsilon \|u\|_{m_s, \Omega_T} + c(\varepsilon) \left(\|\nabla v\|_{\infty, \Omega_T}^{N+2} + \|\nabla v\|_{\infty, \Omega_T}^{2q+4} \right)^{\frac{2}{(N+2)q_s - 2m_s}}
+ 2\|u_0\|_{\infty, \Omega_T} + 2.
\]

Use this in (3.74) to derive
\[
(3.77) \quad \|u\|_{\infty, \Omega_T} \leq c \|\nabla v\|_{\infty, \Omega_T}^{\frac{N+2}{(N+1)m - (N+2)q+1}} + c \|u_0\|_{\infty, \Omega_T} + c.
\]
If
\begin{equation}
\frac{2m_s}{(N + 2)q_s} = 1,
\end{equation}
we can appeal to the interpolation inequality ([5], p. 146) to obtain
\begin{equation}
\|u\|_{m_s, \Omega_T} \leq \varepsilon \|u\|_{\infty, \Omega_T} + \frac{1}{\varepsilon^{m_s-1}} \|u\|_{1, \Omega_T} \leq \varepsilon \|u\|_{\infty, \Omega_T} + \frac{c}{\varepsilon^{m_s-1}}.
\end{equation}
With this in mind, we derive from (3.75) that
\begin{equation}
K \leq c \left(\varepsilon \|u\|_{\infty, \Omega_T} + \frac{c}{\varepsilon^{m_s-1}} \right) \left(\|\nabla v\|_{\infty, \Omega_T}^{N + 2} + \|\nabla v\|_{\infty, \Omega_T}^2 \right)^{\frac{2}{(N + 2)q_s}} + 2\|u_0\|_{\infty, \Omega} + 2
\end{equation}
\begin{equation}
= \alpha \|u\|_{\infty, \Omega_T} + \frac{c}{\alpha^{m_s-1}} \left(\|\nabla v\|_{\infty, \Omega_T}^{N + 2} + \|\nabla v\|_{\infty, \Omega_T}^2 \right)^{\frac{m_s}{(N + 2)q_s} + 2} + 2\|u_0\|_{\infty, \Omega} + 2.
\end{equation}
Plug this into (3.74) and choose \(\alpha\) suitably small in the resulting inequality to derive
\begin{equation}
\|u\|_{\infty, \Omega_T} \leq c\|\nabla v\|_{\infty, \Omega_T}^{N + 2} + c\|u_0\|_{\infty, \Omega} + c.
\end{equation}
The rest of the proof is similar to that under (H3). That is, (3.59) can be inferred from either (3.77) or (3.80).

\section*{References}
\begin{enumerate}
\item M. Burger, M. Di Francesco, and Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, \textit{SIAM J. Math. Anal.}, \textbf{38} (2006), 1288-1315.
\item V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, \textit{J. Math. Pures Appl.}, \textbf{86} (2006), 1551-175.
\item F. Chiarenza, M. Frasca, and P. Longo, \(W^{2,p}\)-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, \textit{Trans. Amer. Math. Soc.}, \textbf{336} (1993), 841-853.
\item E. DiBenedetto, \textit{Degenerate Parabolic Equations}, Springer-Verlag, New York, 1993.
\item D. Gilbarg and N. S. Trudinger, \textit{Elliptic Partial Differential Equations of Second Order}, Springer-Verlag, Berlin, 1983.
\item T. Hillen and K. J. Painter, A users guide to PDE models for chemotaxis, \textit{J. Math. Biol.}, \textbf{58} (2009), 183-217.
\item S. Hittmeir and A. J"{u}ngel, Cross diffusion preventing blow-up in the two-dimensional Keller-Segel model, \textit{SIAM J. Math. Anal.}, \textbf{43} (2011), 997-1022.
\item D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Part I, \textit{Jahresbericht der DMV}, \textbf{105} (2003), no. 3, 1031-165.
\item D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Part II, \textit{Jahresbericht der DMV}, \textbf{106} (2004), no. 2, 5169.
\item S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, \textit{J. Dierential Equations}, \textbf{252} (2012), 1421-1440.
\item S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, \textit{J. Dierential Equations}, \textbf{252} (2012), 2469-2491.
\item E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, \textit{J. Theor. Biol.}, \textbf{26} (1970), 399-415.
\item S. Kim and Ki-Ahm Lee, Hölder regularity and uniqueness theorem on weak solutions to the degenerate Keller-Segel system, \textit{Nonlinear Anal.}, \textbf{138} (2016), 229-252.
\item Q.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva, \textit{Linear and Quasi-linear Equations of Parabolic Type}, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968.
\item C. Miao, Weak solution of class of nonlinear heat equation systems and application to the Navier-Stokes system, \textit{J. Differential Equations}, \textbf{61} (1986), 1411-151.
\item C. S. Patlak, Random walk with persistence and external bias, \textit{Bull. Math. Biophys.}, \textbf{15} (1953), 311-338.
\item A.N. Sandjo, S. Moutari, and Y. Guingue, Solutions of fourth-order parabolic equation modeling thin film growth, \textit{J. Differential Equations}, \textbf{259} (2015), 7260-7283.
\item J. Simon, \textit{Compact sets in the space \(L^p(0, T; B)\)}, Ann. Mat. Pura Appl., \textbf{146} (1987), 65-96.
\end{enumerate}
[19] A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, *SIAM J. Appl. Math.*, 61 (2000), 183212.

[20] Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, *J. Differential Equations*, 227 (2006), 333-364.

[21] X. Xu, Global existence of strong solutions to a groundwater flow problem, arXiv:1912.03793 [math.AP], 2019. *Z. angew. Math. Phys.*, 71 (2020), Art# 127.

E-mail address: xxu@math.msstate.edu