Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.

Keywords: tolerance, dendritic cells, regulatory T cells, autoimmunity, transplantation, cell therapy, clinic, immunomonitoring

INTRODUCTION

The number of patients with autoimmune diseases, severe allergies and recipients of organ or stem cell transplants is increasing worldwide. Currently, many of these patients require lifelong administration of immunomodulatory drugs, which cause generalized immunosuppression and hereby only partially alleviate the symptoms but do not cure the disease. Besides these drugs are inevitably associated with a risk of immediate or late-occurring severe adverse effects (e.g., life-threatening infections, cancer). Targeting the fundamental cause of autoimmunity, i.e., loss of tolerance to self-antigens, or inhibiting induction or execution of undesired immunity in transplantation and allergy will provide the next steps forward to avoid general immunosuppression. Accumulating knowledge on mechanisms of immune activation and tolerance has led to the development of tolerance-inducing cellular therapies with regulatory T cells (Treg) and tolerogenic antigen presenting cells (tolAPC), such as tolerogenic dendritic cells (tolDC) and regulatory macrophages (Mreg) [as reviewed in (1, 2)], with the specific objective to restrain unwanted immune reactions long-term.
The development of cell-based therapies is clinically attractive for many reasons, not in the least through their potential of being of low-toxicity, to simultaneously control many different inflammatory cells and induction of antigen-specific immunity. Since immunological tolerance is a self-reinforcing state (3), the therapeutic effects of cell therapy are expected to outlast the lifespan of the therapeutic cells themselves, opening the possibility of curative treatments. Production costs for these tolerogenic cell products range from 10,000 to 40,000 Euro depending on the therapeutic cell product and production site, which is relatively low considering that few injections of cells may be sufficient to induce long-lasting tolerance.

In recognition of the potential of tolerance inducing cell-based therapies and to join forces in the ongoing efforts in the field, A FACTT (Action to Focus and Accelerate Cell Based Tolerance-inducing Therapies (CTT) was initiated through EU COST Action Funding. Our goal was to initiate a network that would coordinate European CTT efforts to minimize overlap and maximize comparison of the diverse approaches across Europe. Now, looking back at 4 years of very active network interactions, we have evaluated our combined current stance in the field and defined avenues to support future directions.

TOLEROGIC THERAPY WITH ANTIGEN PRESENTING CELLS IN CLINICAL PRACTICE

Over the past 20 years extensive experimental research has been invested in the generation and characterization of tolAPC, including tolDC and Mreg, with the aim to restore tolerance in autoimmune diseases (4–10) and transplant rejection (5, 11–14). To date, clinical trials exploring the safety, feasibility and efficacy of different types of tolAPC are a reality [reviewed in (1) and Table 1], and have confirmed so far that tolAPC therapy is safe, with no relevant side effects, and is well-tolerated by patients. Hence, to advance tolerogenic therapy with antigen-presenting cells (APC), we should stand on the shoulders of these pioneers and address remaining challenges, such as the optimal dose, injection route, frequency of administration, antigen-specificity, and the related issue of suitable biomarkers of cell therapy-induced reduction of general inflammatory state and induction of tolerance, in the design of the next-generation clinical trials.

Phenotypic and Functional Identification of in vitro Generated TolAPC

Both tolDC and Mreg can be generated in vitro starting from CD14+ monocytes and share some phenotypic and functional characteristics. Indeed, both tolAPC types express low to intermediate levels of T-cell costimulatory molecules, and secrete low amounts of pro-inflammatory cytokines, indicative of a partially matured APC. Similarly, immature DC (iDC) display minimal expression of costimulatory molecules and little secretion of inflammatory cytokines, demonstrating potential optimal requirements for tolerance induction in vivo (23, 24). However, iDC are unstable and may differentiate into immunogenic DC under inflammatory conditions (25, 26).

This invalidates their putative use as therapeutic products for tolerance induction. Therefore, different strategies to generate stable tolAPC have been explored, including treatment with pharmacological agents or cocktails of immunomodulatory cytokines, genetic engineering, and exposure to apoptotic cells (9, 27, 28). Most of these in vitro conditioning regimens aim at stabilizing a semi-mature state of tolDC, maintaining the capacity to induce immune hyporesponsiveness of T cells, even in presence of powerful pro-inflammatory signals.

Importantly, tolAPC inhibit T cell proliferation, albeit through different immunosuppressive mechanisms depending on the approach used to generate tolAPC in vitro. Induction of peripheral T cell anergy and apoptosis (29), attenuation of effector and memory T cell responses and the generation and activation of Treg populations (30, 31) result in part from presentation of low levels of antigen in the absence of costimulation; these are typical mechanisms attributed to a variety of tolerogenic subtypes (10, 32, 33). Additionally, tolerogenic DC may express various inhibitory receptors such as programmed death-ligand (PD-L1), PD-L2 (34), immunoglobulin-like transcripts (ILT) (35), FasL (36, 37), and TRAIL (38). Secretion of anti-inflammatory cytokines such as IL-10 (39, 40) and TGF-β (41, 42), as well as reduced expression of pro-inflammatory cytokines, also may contribute to tolerance induction. A study comparing tolDC generated in presence of dexamethasone and rapamycin demonstrated that while both tolDC subsets were able to impair T cell proliferation, rapamycin-treated tolDC have a mature phenotype and are not able to produce IL-10 upon stimulation with LPS, as opposed to vitamin D3- or dexamethasone-treated tolDC (27). Whereas, it was demonstrated that rapamycin-treated tolDC induce Treg (27), vitD3-treated tolDC induce T-cell hyporesponsiveness and antigen-specific Treg (7, 43). Moreover, DC-10 induce Tr1 cells (44), while autologous tolDC have a weak capacity to stimulate allogeneic T cells and suppress T-cell proliferation and IFN-γ production (45). Mreg have been shown to convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+, FoxP3+-induced Treg (46). Variations in the process to generate tolAPC may initiate regulation through distinctive mechanisms, making it difficult to compare these different types of tolAPC. Therefore, efforts have been made to find common features unique for tolerance-inducing cells (47). For example, since tolDC conditioned using vitamin D3 and dexamethasone exhibit high cell surface expression of TLR2 (48) or CD52 (49), such markers might be considered to assess the quality and stability of tolDC in future cell-based clinical trial protocols. In addition, it was demonstrated that the expression of single immunoglobulin IL-1-related receptor has a role in maintaining low levels of costimulatory molecules and in regulation of Treg expansion (50). Others demonstrated that C-lectin receptor CLEC-2 upregulation by DC is associated with Treg induction (51). So far, however, gene expression studies comparing different tolDC and Mreg protocols have not been able to identify common biomarkers of tolerance induction [reviewed by (52, 53) and (54)].

The difficulty in comparing characteristics of different clinical tolAPC suggests the need for a uniform set of metrics for
TABLE 1 | Completed or ongoing trials with tolAPC in autoimmunity and transplantation.

Study ID	Phase	Cell product	Indication	Dosing scheme	tolDC per dose	Route of administration	Outcome	Center	References
NCT00445913	I	Antisense ODN targeting CD40/CD80/CD86 tolDC	T1D	4 injections, bi-weekly	1×10^7	Intradermal	-No adverse effects (AE)	Pittsburgh/USA	(15)
							-Increase of B220+CD11c+ B cells		
							-Evidence for C-peptide reactivation		
NCT02354911	II	Antisense ODN targeting CD40/CD80/CD86 tolDC	Recent onset T1D	4 injections, bi-weekly	1×10^7	Intradermal	Not Recruiting	DiaVacs Inc., Pittsburgh/USA	
NTR5542	I	VitD3 and Dex tolDC pulsed with proinsulin peptide	T1D	2 injections, 4 weeks apart		Intradermal	Finished	Leiden/NL	
Rheumavax	I	NF-κB inhibitor Bay 11-7082 tolDC pulsed with 4 citrullinated peptides	HLA-risk positive RA (minimal disease activity)	Single injection	Low dose $0.5-1 \times 10^6$	Intradermal	-Grade I AE, Decrease DAS28, Decrease eff T cells, ratio Teff/Treg, Decrease pro-inflammatory cytokines and chemokines	Brisbane/AUS	(16)
NCT01352858 (AutoDECRA)	I	Dex and VitD3 tolDC pulsed with autologous synovial fluid	Inflammatory Arthritis	Single injection	1×10^7	Intraarticular	-Safe, feasible, acceptable	Newcastle upon Tyne/UK	(17)
							-Knee symptoms stabilized in 2 patients receiving the highest doses		
							-Treatment well tolerated, Antigen –specific autoantibodies decreased in 5/9 positive patients	Seoul/KOR	(18)
CreaVax-RA CRIS KCT0000035	I	tolDC pulsed with recombinant PAD4, RA33, citrullinated, fillagrin and vimentin	RA	5 injections	Low dose 0.5×10^7	Not indicated			
NCT03337165 (TolDCfoRA)	I	Dex and IFN-α tolDC	RA	Single injection	1×10^7	Intraarticular	Recruiting, Novosibir/RUS		
NCT02283671	I	Dex tolDC pulsed with relevant disease peptides	MS and Neuro-myelitis optica	3 injections, bi-weekly		Intravenous	Recruiting, Barcelona/ES		
NCT02618902 I/IIa	I/IIa	VitD3 tolDC pulsed with myelin-derived peptides	Active MS patients	6 injections, 4 bi-weekly and 2 monthly	5×10^6	Intradermal	Recruiting, Antwerp/BE		
NCT02908533 (Tolervit-MS)	I/IIa	VitD3 tolDC pulsed with myelin-derived peptides	Active MS patients	6 injections, 4 bi-weekly and 2 monthly	5×10^6	Intranodal	Recruiting, Badalona, Pamplona/ES		
TABLE 1 | Continued

Study ID	Phase	Cell product	Indication	Dosing scheme	tolDC per dose	Route of administration	Outcome	Center	References
NCT02622763	I	Dex and VitA tolDC	Refractory Crohn’s disease	Single injection or 3 injections bi-weekly	Dose-escalation: \(2 \times 10^6\) \(5 \times 10^6\) \(10 \times 10^6\)	Intra-peritoneal	-No AE (3 patients withdrew due to worsening of symptoms) -Clinical improvement in 3 patients -Increase of Treg and decrease of IFN-γ levels	Barcelona/ES	(19)
NCT02252055	I/II	Low-dose GM-CSF-recipient tolDC	Kidney Tx from living donor	Single injection, 1 day before Tx	100 × 10^6	Intravenous	Recruiting	Barcelona/ES	(20)
NCT03726307	I	VitD3 and IL-10 donor tolDC (Dcreg)	Kidney Tx from living donor	Single injection, 7 days before Tx	Dose-escalation: 0.5 ± 0.1 \(10^6\)/kg bw, 1.2 ± 0.2 \(10^6\)/kg bw, 2.5 to 5 \(10^6\)/kg bw	Intravenous	Not yet recruiting	Pittsburgh/USA	
NCT03164265	I	VitD3 and IL-10 donor tolDC (Dcreg)	Liver Tx	Single injection, 7 days before Tx	Not described	Intravenous	Enrolling by invitation	Pittsburgh/USA	
TAIC-I	I/II	Cell product containing donor Mreg	Kidney Tx from deceased donor	Single injection, 5 days after Tx	0.5–7.5 \(10^6\)/kg bw	Intravenous	Safe	Regensburg/DE	(21)
TAIC-II	I	Cell product containing donor Mreg	Kidney Tx from living donor	Single injection, 5 days before Tx	1.7–10.4 \(10^7\)/kg bw	Intravenous	Safe	Regensburg/DE	(22)
NCT02085629	I/II	Donor derived Mreg	Kidney Tx from living donor	Single injection, 7 days before Tx	2.5–7.5 \(10^6\)/kg bw	Intravenous	Completed, no results yet	Regensburg/DE	(20)

This table is based on information deposited on www.clinicaltrials.gov, www.clinicaltrialsregister.eu and/or indicated references. AE, adverse event; RA, rheumatoid arthritis; T1D, type 1 diabetes; Tx, transplantation; Dex, dexamethasone; MS, multiple sclerosis; /kg bw, per kg body weight; VitD3, vitamin D3.
their description, including full characterization of (at least) the immune phenotype and their functional activity (potency). Hence, a better identification of the characteristics that identify the tolerance-inducing properties of tolAPC, irrespective of the conditioning regimen, would be valuable for safe cell therapy delivery into patients. Joint efforts in translating tolAPC into the clinic by harmonizing protocols and defining functional quality parameters have been initiated (1, 55). A Minimum Information Model on Antigen-presenting cells (MITAP) has been designed to harmonize reporting on tolAPC therapy to ultimately allow the uncovering of commonalities between tolAPC and to define common quality control biomarkers and potency assays for the various tolAPC products for clinical use (55). Likewise, using similar immunomonitoring protocols in different clinical trials could help to better understand the in vivo mechanism of action of these cells (56).

Antigen Specificity of TolAPC-Based Immunomodulation

Targeted regulation of antigen-specific T cell responses would avoid generalized immunosuppression as observed with immunosuppressive drugs and monoclonal antibodies currently in use in the clinics and may thus overcome occurrence of impaired immune-surveillance leading to infections or development of malignancies. Ex vivo generated tolAPC have the potential to therapeutically induce, enhance, or restore antigen-specific tolerance. Indeed, after loading these cells with exogenous or endogenous antigens, one major advantage is their capability to act in an antigen-specific manner.

A number of in vivo studies demonstrate that antigen loading of tolAPC is indispensable to reach efficient clinical responsiveness following tolAPC therapy. For instance, a beneficial effect of vitamin D3-tolDC loaded with MOG40–55 peptide was demonstrated in experimental autoimmune encephalomyelitis (EAE), whereas no clear beneficial effect on the clinical score of EAE mice was found when mice were treated with vitamin D3-tolDC not loaded with myelin peptides (57, 58). Similar findings have been demonstrated in other animal models of autoimmune diseases, including collagen-induced arthritis and autoimmune thyroiditis (59–61). Altogether, these findings suggest that selection of the target self-antigen is critical for disease-specific tolerance induction in vivo. Suitable disease-associated self-antigens responsible for T cell priming have been identified for T1D and multiple sclerosis (MS). However, this is not the case for other autoimmune diseases, such as rheumatoid arthritis or Crohn’s disease, for which specific disease-associated antigens are unknown or not tissue specific. Moreover, not all patients uniformly display the same set of self-antigens for a given disease. MS, for example, is associated with a range of self-antigens and auto-antibodies that are differentially expressed among patients and at different points during the disease (62). While the targetable autoreactive T cell populations may be limited to a select number of antigens at the onset of clinical disease, other “late antigen” or spreading epitope autoreactive T cell populations may drive autoimmunity during progression of the disease. To overcome this hurdle, some groups have chosen to load the tolerance-inducing therapeutic cells with a broad pool of distinct, candidate disease-related peptides (63–65) (NCT02283671, NCT02618902, and NCT02903537).

In contrast to autoimmunity, transplant rejection is mediated by an undesired immune response against epitopes that differ between the transplanted donor graft and the recipient host, so-called allore cognition (66). Specifically, recipient T cells may initiate a strong immune response leading to transplant rejection in the absence of adequate immunosuppression. To avoid transplant rejection, the induction of tolerance to donor-specific antigens has been coined as a therapeutic target for decades. For this, both donor tolAPC and recipient tolAPC loaded with donor-specific antigens are being considered for development of cell-based immunotherapeutic protocols in the transplantation setting (67). However, whereas the clinical use of donor-derived tolAPC is only feasible in the context of living donor transplantation and entails a risk of sensitization (including development of allo-antibodies), the use of autologous, i.e., recipient-derived, tolAPC is a less risky approach to begin with. Indeed, the use of recipient autologous tolAPC is likely to be more feasible than that of donor-derived tolAPC, since cell products can be prepared from the peripheral blood of the recipient before transplantation, stored while the patient is on the waiting list, and loaded with donor-derived antigens (such as HLA peptides or donor cell lysates) at the time of transplantation. In the context of the ONE study, two trials using tolDC and Mreg are being performed in living-donor kidney transplant recipients (Table 1).

Route of Administration of TolAPC

Although it is generally accepted that the route of administration is important for optimal tolAPC effector function, the best route of tolAPC administration is not known. To date, a variety of routes of administration have been used (see Table 1), including intradermal, intraperitoneal (19), intravenous and intra-articular (17). Different routes of administration may be required to allow tolDC to reach the relevant draining lymphoid tissue for T cell encounter or to end up at the site of inflammation. Especially since tolDC demonstrate a reduced expression of CCR7 and consequently a reduced (but not absent) ability to migrate in response to the CCR7 ligand CCL19 (68), the capacity of tolDC to reach the lymph nodes is a critical concern. While the migration of DC toward the lymph nodes increases following intradermal as compared to subcutaneous administration, only 2–4% of DC migrate to the draining lymph nodes after intradermal administration, but the situation may be different in patients with autoimmune diseases where monocyte-derived DC from MS patients have shown a significantly higher proportion of CCR7-expressing cells compared to healthy controls (69). Given these observations, and that in the setting of cancer vaccine development, DC injected into a lymphatic vessel showed a prolonged half-life as compared to DC injected intravenously (70, 71), direct intranodal injection of tolDC is being evaluated in a clinical setting (see Table 1).

As an alternative to lymph node targeting of tolAPC, tolAPC may also be introduced directly into the site of inflammation. Indeed, injection into the affected disease site (i.e., an inflamed joint) where the tolAPC could suppress auto-reactive effector T cell responses is logical. In this context, intra-articular injection
of tolDC differentiated using dexamethasone and vitamin D₃ and loaded with autologous synovial fluid in patients with rheumatoid arthritis was demonstrated to be safe and feasible. Hence, despite the fact that tolDC were directly injected at the site of inflammation, no adverse events were observed in most patients and hypertrophy, vascularity and synovitis were stable in all treated cohorts. Moreover, two patients receiving 10 million cells showed a decrease in synovitis score (17). Similarly, a phase I randomized clinical study currently evaluates the safety and efficacy of tolDC injected into the intestinal lesions in patients with refractory Crohn’s disease (Table 1). In some conditions such as T1D, direct injection of cells in the inflammatory site, e.g., pancreas, might not be possible and require tolDC administration adjacent to the inflammation site. For the treatment of inflammatory diseases of the brain, the blood–brain barrier (BBB) may represent a major hurdle. Considering this potential problem, it was demonstrated that enhancing CCR5 expression in tolDC using mRNA electroporation endowed these cells with CCR5-driven migratory capacity. This enabled the cells to migrate to inflammatory sites, even when it required crossing of functional barriers such as the BBB (72). Similarly, introducing CCR7 expression in tolDC using the proposed approach of chemokine receptor mRNA electroporation could overcome the limited lymphoid homing capacity of tolDC. Indeed, DC transduced with lentiviral vectors coding for CCR7 and IL-10 genes were able to migrate to the lymph nodes and spleen, prolonging cardiac allograft survival in mice (73). However, there are still many unknowns and there is a clear clinical need to characterize the pharmacodynamics of tolDC in humans and relate this to clinical efficacy. Advances in cell imaging techniques, for example magnetic resonance imaging of 19F-labeled cells, have made it possible to address this question in future studies.

TolAPC Therapy: What Does the Future Hold?

In vivo Targeting

While our knowledge of tolAPC biology has expanded greatly, and *in vitro* generated tolDC and Mreg are currently being used in various clinical trials (Table 1), clinical-grade manufacturing of tolAPC is still a time-consuming and expensive process. It requires cell precursors that need to be isolated from the patient’s blood, modulated *ex vivo* and reintroduced into the patient. Direct antigen delivery to tolAPC *in vivo* may limit the workload and costs. Indeed, specific antigen-targeting of DC-restricted endocytic receptors (DEC-205) with monoclonal antibodies has been shown to induce antigen-specific T cell hyporesponsiveness in experimental models (74). Interestingly, a phase I clinical trial demonstrated that *in vivo* targeting of human DC could be achieved by antibodies against DEC205 with subsequent antigen presentation and robust humoral and cellular responses (75). *In vivo* targeting of DC with biomaterials such as liposomes, microparticles and nanoparticles is also a promising approach [as reviewed in (76–78)]. This is exemplified by the fact that liposomes loaded with NFkB inhibitors targeting APC *in situ*, suppress the cellular responsiveness to NF-kB and induce antigen-specific FoxP3+ regulatory T cells in an animal model of arthritis (79) and that administration of phosphatidylserine-rich liposomes loaded with disease-specific autoantigens lead to a beneficial effect in experimental models of T1D and MS (80, 81). Nevertheless, DC represent a heterogeneous cell population arising from bone marrow-restricted precursors identified in humans. While multiple subsets of DC have been found in the peripheral blood, lymphoid organs and tissues, most of the hallmark DC markers are promiscuously expressed making it difficult to unambiguously discriminate between DC subpopulations and specifically target those DC subpopulations that induce tolerance. Extensive phenotypic screening combined with gene expression profiling allows the identification of tolerance-inducing DC counterparts present *in vivo*. For instance, Gregori and co-workers identified a DC subset expressing HLA-DR+CD14+CD16+ that exhibits potent tolerogenic activity (44). In targeting only such tolerance-inducing DC cell type-specific targeting may emerge as another promising approach in DC-based immunotherapy.

Combination Therapy

Since a variety of often complementary mechanisms are involved in the maintenance of immune tolerance, a more complex therapeutic approach using combinations that target different pathways that contribute to induction and maintenance of tolerance may be required to fully control autoimmunity. For instance, combinations of tolAPC with disease-modifying treatments that reduce the frequency of disease-causing cells, e.g., alemtuzumab, should be explored as the latter therapy reduces the disease-causing cells to a number that may be more effectively controlled by antigen-specific tolerance-inducing strategies, such as tolDCs. Alternatively, therapies like fingolimod, an antagonist of sphingosine-1-phosphate receptor which retains naïve and central memory T cells in the lymph nodes, are promising as co-medication with tolAPC as it could increase the number of tolDC-T cell interactions in the lymph node thereby facilitating Treg priming and consequently the efficacy of tolDC-based strategies. Also in the context of solid organ transplantation, tolDC therapy could be improved by the addition of a complementary treatment. For instance, the combination of adoptive transfer of tolDC and CTLA-4 Ig, a fusion protein that blocks B7-CD28 costimulation, resulted in extended survival of MHC-mismatched heart allografts in mice (82, 83), while the pancreatic islet allograft survival improved by combination of autologous tolDC and CD3 targeting antibodies (84). With the recent data on the important role of other coinhibitory molecules for T cell-mediated inflammation such as CD96 the portfolio of combination therapies might increase in the next years (85). However, since antigens can easily trigger immunity instead of tolerance, a primary concern remains the safety of combining two immune-modulatory vaccination strategies in autoimmune diseases and in the prevention of transplant rejection. Although one can envisage that concomitant use of immunosuppressive therapies might synergistically reduce the risk to unexpectedly worsen antigen-specific reactions (86), any novel manipulation of the immune system may involve...
an unpredictable risk. Furthermore, combination therapy may introduce confounding factors inducing additive, synergistic or antagonistic effects complicating the evaluation of the precise mode of action.

Conclusion
Several protocols to generate and administer tolAPC have been tested in phase I clinical trials with highly encouraging results from a safety point of view and in terms of adverse effects (Table 1). Further phase I/II studies are under way in Crohn’s disease, T1D, rheumatoid arthritis, MS and kidney transplantation (Table 1). However, for the success of future tolAPC trials, there is great need to define the optimal vaccination protocol; to ensure optimal in vivo-acting of the tolAPC, future trials may require changes in administration route, dose or could demand repeated tolAPC administration. Furthermore, the identification of a common set of tolerogenic markers would enable optimized comparison of tolAPC products and their tolerance-inducing potential and provide an improved understanding of how these cells modulate the T cell response both locally and systemically. It would be of great help to analyze critical pathways contributing to programming and function of tolAPC. Ultimately, this may set the stage for new approaches improving the therapeutic potential of tolAPC for the future.

CD4+ REGULATORY T CELLS (TREG)
CD4+ Treg are recognized as a dominant cell population responsible for induction and maintenance of immune tolerance. They may be generated either in the thymus as natural regulatory T cells (nTreg or iTreg) or in the periphery as induced regulatory T cells (iTreg). Both subsets can induce tolerance toward auto- and alloantigens utilizing a variety of mechanisms including cell-to-cell contacts, secretion of immunosuppressive cytokines and inhibitory molecules (e.g., adenosine or prostaglandin E), local depletion of IL-2, or through killing of other cells (87). Treg actively traffic to inflammatory sites and the suppressive activity is usually localized without a significant impact on the general immunity. Since their more precise identification 2–3 decades ago in the mouse, and more recently in the human, steady advances in understanding Treg biology have eventually provided sufficient knowledge to culture, manipulate and expand the cells in vitro under Good Manufacturing Practice (GMP) conditions for therapeutic purposes. Indeed, Treg have become a promising cellular drug that can potentially be used to control disease-causing immune responses.

Treg in Clinical Practice
While the application of Treg for the treatment of autoimmune diseases is currently under intense investigation, Treg were first used in the clinic to treat patients with graft vs. host disease (GvHD) after hematopoietic stem cell transplantation (HSCT) (88) (Table 2). Results from the clinical trials in GvHD with polyclonal expanded Treg have suggested that altogether these cells are safe, but there is some concern about the occurrence of mild to moderate infections, and it still is unclear whether Treg treatment could promote cancer (92, 94). The latter problem has been reported in only one trial to date, however it was concluded that the tumor was present before the therapy with Treg was applied (94). The safety and feasibility of adoptive transfer of ex vivo expanded Treg was further confirmed in T1D patients (2), which has driven the application of Treg therapy to clinical trials in other autoimmune conditions such as MS, autoimmune hepatitis, systemic lupus erythematosus, Crohn’s disease, and autoimmune uveitis (102) (Table 2). Another clinical trial was recently published where polyclonal Treg were injected into T1D patients; results from this trial confirm the safety of this type of therapy and also show for the first time, by deuterium labeling of the Treg, that some of the injected Treg can be detected for up to 1 year after infusion (103).

Treg therapy is now being applied as a “tolerogenic” therapy to reduce dependency on immunosuppressant drugs in patients receiving solid organ transplants. The idea behind this strategy is very similar to the application of Treg in autoimmune diseases, namely to tilt the balance toward Treg dominance over rejection-causing Teff cells. The first reports using adoptive transfer of Treg in kidney transplant patients have been recently published demonstrating the safety of this strategy in the context of solid organ transplantation (103, 104). Recently, clinical trials are being completed using different variations of Treg products (The ONE Study and ThRIL) (Table 2). The ONE Study includes Phase I clinical trials comparing the safety of different types of regulatory cells, including polyclonal and donor-reactive Treg in patients receiving kidney transplants (www.onestudy.org) (20). The ThRIL trial is a Phase I/IIa dose-escalation clinical trial in the setting of liver transplantation. Results from the ThRIL and the various ONE Study trials are currently being prepared for publication. The impact of Treg on the recipient immune system will be revealed only when the very detailed immunomonitoring is completed, which is a major objective of the described clinical trials (105–107).

Altogether, from the outcomes of the completed clinical trials so far, it can be concluded that adoptive transfer of Treg is safe and technically feasible (Table 2). Therefore, increasing efforts are currently focusing on clinical trials to test their therapeutic efficacy. Importantly, several lessons have been learned from recent experiences with Treg to improve future trial designs. For example, the clinical state of the patients has been shown to influence the function and properties of Treg, and therefore can condition the success of ex vivo cell product expansion (108). Furthermore, the specific expansion protocol can affect Treg function and specificity, and can improve tissue targeting and suppression capacity (108). Finally, the immune modulatory therapies received by patients at the time of Treg adoptive transfer can positively or negatively impact therapeutic outcome (109, 110).

Treg Therapy: What Does the Future Hold? Antigen-Specificity of Treg Therapy
Studies in preclinical models using murine Treg have demonstrated that specificity for either the auto or allo (transplantation) -antigens may offer an advantage for Treg function compared to polyclonal Treg (111). Adoptively transferred allospecific murine Treg generated by using either
Study ID	Phase	Cell product	Indication	Dosing scheme	Tregs per dose	Outcome	Center	References
NKEBN 458-310/2008	I	Expanded polyTregs	GvHD treatment	Single injection or 3 injections	1 x 10^5/kg bw 3 x 10^6 cells/kg bw	- Safe		
Reduced immunosuppression in chronic GvHD								
Only transient improvement in acute GvHD	Gdansk/PL	(88)						
NCT00602693	I	Expanded CB polyTregs	GvHD prophylaxis	Single injection	Dose-escalation: 1, 3, 10, 30, 30+30, 100, 300, 1,000 and 3,000 x 10^6/kg bw	- Safe		
Increased incidence of infections								
Reduced incidence of acute GvHD/GvL effect	Minnesota/USA	(89, 90)						
01/08	I	Fresh polyTregs	GvHD prophylaxis	Single injection	Dose-escalation: 0.5 x 10^6 Tcons/kg bw with 2 x 10^6 Tregs/kg bw			
1 x 10^6 Tcons/kg bw with 2 x 10^6/Tregs kg bw								
-2 x 10^6 Tcons/kg bw with 4 x 10^6 Tregs/kg bw	Safe							
Reduced number of leukemia relapses								
Reduced incidence of GVHD	Perugia/IT	(91, 92)						
Treg002	I	Fresh polyTregs	GvHD prophylaxis	Single injection	up to 5 x 10^6/kg bw	Safe	Regensburg/DE	(93)
EK 206082/008	I	Expanded polyTregs	GvHD treatment	Single or 2 injections	0.97–4.45 x 10^5/kg bw	- Two cases of tumors		
Stable chronic GvHD	Dresden/DE	(94)						
ALT-TEN	I	Tr1 (IL-10 DLI or DC-10 DLI)	GvHD prophylaxis	Single injection	Dose-escalation: 1 x 10^5, 3 x 10^5 and 1 x 10^6, 3 x 10^6 CD3^+ T cells/kg bw	Safe		
Long-term disease survival in 4 patients	MIlan/IT	(95)						
NCT02749084	I/II	Multiple Treg DLI	Severe Refractory Chronic GvHD prophylaxis	3 injections	Dose-escalation: 1.7 x 10^5, 3.3 x 10^5 and 6.6 x 10^5/kg bw per injection	Recruiting	Bologna/IT	
NCT02991898	I	Fresh CB polyTregs with IL-2	aGvHD prophylaxis after CB Tx	Single injection	No data	Recruiting	Minnesota/USA	
NCT01911039	I	Steroid Dependent/ Refractory Chronic GvHD treatment	GvHD treatment	Single injection	Dose-escalation: 1 x 10^5, 5 x 10^5, 1.5 x 10^6/kg bw	Unknown	Stanford/USA	
NCT02385019	I/II	Fresh donor polyTregs	Steroid Refractory Chronic GvHD treatment	Single injection	Dose-escalation: 0.5 x 10^5, 1.0 x 10^6 and 2.0–3.0 x 10^6/kg bw	Recruiting	Lisboa/PT	
NCT01937468	I	Fresh polyTregs with IL-2	Steroid Refractory Chronic GvHD treatment	Unknown	Unknown	Recruiting	Boston/USA	

(Continued)
Study ID	Phase	Cell product	Indication	Dosing scheme	Tregs per dose	Outcome	Center	References
NCT01903473	I	Fresh polyTregs with rapamycin	aGvHD and cGvHD treatment	Single injection	≥ 0.5 × 10^6/kg bw	Unknown	Liege/BE	EudraCT:2012-000301-71
NCT01795573	I	Donor polyTregs expanded with recipient DC	aGvHD treatment	Unknown	Unknown	Recruiting	Tampa/USA	
NCT01660607	I	Fresh polyTregs with Tconv	aGvHD prophylaxis	Single injection	Initial doses will be 1 × 10^6 Treg/kg bw to 3 × 10^6 Tconv/kg bw (ratio 1:3)	Recruiting	Stanford/USA	
NCT02423915	I	Fucosylated fresh CB polyTregs	GvHD prophylaxis	Single injection	Dose-escalation:	Active/Not Recruiting	Houston/USA	
BMT Protocol 204 NCT01050764	I	Fresh allogeneic polyTregs with Tconv	GvHD prophylaxis	Single injection	Dose-escalation: 1 × 10^5 Treg and 3 × 10^5 Tconv/kg bw or 1 × 10^6 Treg and 3 × 10^5 Tconv/kg bw	Terminated, GvHD was within parameters to continue, but the study was terminated due to poor outcomes prior to sufficient accrual to set the MTD, even at the only dose tested (1 × 10^6 Treg and 3 × 10^5 Tconv/kg bw). Primary outcome result is null.	Stanford/USA	
NCT01634217	I/II	iTregs	GvHD prophylaxis	Unknown	Unknown	Active, not recruiting	Minnesota/USA	
NCT02129881	I/II	Expanded polyTregs	Living donor kidney Tx	Single injection	1–10 × 10^6/kg bw	Completed, no results yet	London, Oxford/UK (20)	
ONEnTreg13 NCT02371434 EudraCT:2013-001294-24	I/II	Expanded polyTregs	Living donor kidney Tx	Single injection	Dose-escalation: 0.5 × 10^6, 1 × 10^6, and 3 × 10^6/kg bw	Completed, no results yet	Berlin/DE (20)	
DART NCT02244801	I/II	Donor-Alloantigen-Reactive (dar) Tregs	Living donor kidney Tx	Single injection	Dose-escalation: 300 × 10^6 darTreg or 900 × 10^6 darTreg	No longer recruiting	San Francisco/USA (20)	
NCT02091232	I/II	Belatacept-conditioned Tregs	Living donor kidney Tx	Unknown	Unknown	No longer recruiting	Boston/USA (20)	
ThRIL NCT02166177	I	Expanded polyTregs	Liver Tx	Single injection	low dose and high dose	Completed, no results yet	London/UK	

(Continued)
TABLE 2 | Continued

Study ID	Phase	Cell product	Indication	Dosing scheme	Tregs per dose	Outcome	Center	References
NCT02188719	I	Donor-Alloantigen-Reactive Tregs	Liver Tx	Single injection	Dose-escalation: 0 × 10⁶ darTreg or 50 × 10⁶ darTreg or 200 × 10⁶ darTreg or 800 × 10⁶ darTreg	Recruiting	San Francisco/USA	
NCT02088931	I	Expanded polyTregs	Subclinical rejection in kidney Tx	Single injection	200 × 10⁶	Open/Not recruiting	San Francisco/USA	
NCT02474199	I	Donor-Alloantigen-Reactive Tregs	CNI reduction in liver Tx	Single injection	300-500 × 10⁶ /Ag bw	Recruiting	San Francisco/USA	
NCT01624077	I	Donor-antigen expanded Tregs	Liver Tx	Multiple injections at several intervals	1 × 10⁶ /Ag bw per injection	Unknown	Nanjing/CHN	
NCT01446484	I	polyTregs	Living donor kidney Tx	Single injection sub-cutaneous	2 × 10⁶ s.c.	Unknown	Moscow/RUS	
TRACT	I	Expanded polyTregs	Living donor kidney Tx	Unknown	Unknown	Active, Not recruiting	Chicago/USA	
NCT02145325	I	Expanded polyTregs	Unknown	Unknown	Unknown	Active, Not recruiting	Chicago/USA	
NCT02711826	I/II	Donor-Alloantigen-Reactive Tregs vs. polyTregs	Subclinical rejection in kidney Tx	Single injection	400 ± 100 × 10⁶ darTregs	Recruiting	Birmingham, Los Angeles, San Francisco, Ann Arbor, Cleveland/USA	

AUTOIMMUNITY

Study ID	Phase	Cell product	Indication	Dosing scheme	Tregs per dose	Outcome	Center	References
TregVAC ISRCT N06128462	I	Expanded polyTregs	Recent T1D	Single or 2 injections	Dose-escalation: 10 × 10³, 20 × 10⁶, or 30 × 10⁶ /Ag bw	-Completed Safe Reduced insulin consumption (insulin independence in 2 out of 12 patients) Better stimulated C-peptide secretion profiles	Gdansk/PL (96–98)	
NCT01210664	I	Expanded polyTregs	T1D	Single injection	Dose-escalation: 0.05 × 10⁶, 0.4 × 10⁶, 3.2 × 10⁶, 26 × 10⁶	Completed/Safe	San Francisco/USA	
CATS1	I/II	Ovalbumin-specific Tr1	Refractory Crohn’s disease	Single injection	Dose-escalation: 1 × 10⁶, 1 × 10⁶, or 1 × 10⁶ /kg bw	-Safe Clinical response in 40% of patients	Lille/FR (100)	
CATS29	I	Ovalbumin-specific Tr1	Refractory Crohn’s disease	Single injection	1 × 10⁶ /kg bw	Terminated/completed	Valbomme/FR Multicenter: AT, BE, FR, GE, IT, UK	

(Continued)
Study ID	Phase	Cell product	Indication	Dosing scheme	Tregs per dose	Outcome	Center	References
TregVAC2.0 EudraCT: 2014-004319-35	II	Expanded polyTregs combined with antiCD20 antibody	Recent T1D	2 injections, 3 months apart	30×10^6/kg bw per injection	Recruitment closed/Follow up in progress	Gdansk/PL	
TregSM EudraCT: 2014-004320-22	I	Expanded polyTregs	MS	Single injection: Cohort I - intravenous Cohort II - intrathecal	Up to 40×10^6/kg bw	Recruiting	Gdansk/PL	
NCT02704338	I	Expanded polyTregs	Autoimmune hepatitis	Single injection	$10-20 \times 10^6$/kg bw	Not yet recruiting	Nanjing/CHN	
NCT02772679	II	Expanded polyTregs with IL2	Recent T1D	Single injection	$3 \times 20 \times 10^6$/kg bw	Suspended	San Francisco/USA	
NCT02428309	II	Expanded polyTregs	Systemic lupus erythematosus	Single injection	Dose-escalation: 1×10^6 or 4×10^6 or 16×10^6	Active/Not Recruiting	San Francisco/USA	
NCT02932826	I	Expanded third-party CB polyTregs	Recent T1D	Single injection	$1-5 \times 10^6$/kg bw	Recruiting	Hunan/CHN	
NCT03011021	I	Expanded third-party CB polyTregs and Liraglutide	Recent T1D	Single injection	$1-5 \times 10^6$/kg bw	Recruiting	Hunan/CHN	
T-Rex Study NCT02691247	II	Expanded polyTregs	Recent T1D	Single injection low dose and high dose		Active/Not Recruiting	San Francisco, Aurora, New Haven, Gainesville, Miami, Indianapolis, Boston, Fargo, Kansas City, Portland, Sioux Falls, Nashville/USA	
NCT03101423	I	Donor polyTregs DLI	Beta Thalassemia Major	Unknown	Unknown	Active/Not Recruiting	Nanning/CHN	
NCT03241784	I	Donor polyTregs DLI	Amyotrophic Lateral Sclerosis (ALS)	8 injections iv in total concomitant with IL2 sc; 4 injections over 2 months at early stage and 4 injections over 4 months at later stages	1×10^6/kg bw per injection	Active/Not Recruiting completed	Houston/USA	(101)

This table is an updated version of the table in (102) and is based on information deposited on www.clinicaltrials.gov, www.clinicaltrialregister.eu and/or indicated references. Route of administration of the Tregs is intravenous, except where otherwise noted. AE, adverse event; T1D, type 1 diabetes; Tx, transplantation; MS, multiple sclerosis; /kg bw, per kg body weight; HSCT, hematopoietic stem cell transplantation; CB, cord blood; GvHD, graft vs. host disease.
donor-derived APC or TCR transduction promote indefinite heart allograft survival, even in completely mismatched mouse strains (111). This strategy was subsequently applied to human Treg in a humanized mouse model, where Treg were generated in the presence of donor APC/DCs or B cells) and shown to be superior to polyclonal Treg in protecting from human skin graft rejection (112). More recently, by conferring specificity using a chimeric antigen receptor (CAR), human Treg transduced with a lentivirus encoding for HLA-A2-CAR were superior to polyclonal Treg in protecting HLA-A2+ human skin grafts (113–115). CAR constructs are now being developed to increase Treg stability and function.

Based on promising results with antigen-specific Treg in pre-clinical models, the use of alloantigen-specific Treg generated by culturing recipient Treg with donor-specific cells, either using activated donor-derived B cells (112) or donor-derived DCs is being tested in clinical trials (Table 2). Compared to the transplantation field where the antigens are known, generation of antigen-specific Treg in autoimmunity is more challenging because the inciting antigens are often not known (see also paragraph Antigen Specificity of tolAPC-Based Immunomodulation). New data suggest that regulatory and effector cell subsets are driven by different epitopes (116, 117). In addition, the auto-antigen targeting the autoimmune condition can change during disease progression due to epitope spreading and antigen-specific Treg may thus need to be tuned toward specific stages of disease.

Combination Therapy

Since adoptive transfer with Treg alone, particularly with a one-time infusion, may not be sufficient to control the immune response, combined or successive therapies are being tested. One approach is based on evidence that low doses of IL-2 can preferentially increase the endogenous pool of Treg; so far, low-dose IL-2 treatment has been safe in inflammatory conditions such as GvHD after HSCT (118). In a preclinical model it was demonstrated that IL-2/anti-IL-2 complexes not only promote Treg proliferation, they increase Treg survival and function while synergizing with calcineurin inhibitors to prolong graft survival (119). Recently, in a murine model of transplantation it was shown that by combining donor-specific Treg with the IL-2/anti-IL-2 complexes, a synergistic effect in extending skin transplant survival is observed (Ratnasothy et al., unpublished data). These results pave the way for the first clinical trial in liver transplant patients to combine Treg and low-dose IL-2 therapy (NCT02949492). More caution is being exercised regarding the preferential Treg isolation method. However, while rapamycin administered to T1D patients preferentially increased Treg levels, pancreas function deteriorated due to islet toxicity (125). Nonetheless, the complex and specific pathogenesis of autoimmune syndromes may provide hints toward the design of new combined therapies. Tandemly targeting different effector mechanisms involved in particular syndromes with Treg therapy may improve outcomes. For example, an ongoing trial in early phase of T1D (EudraCT: 2014-004319-35) supports the idea of a synergistic approach by combining Treg administration with B cell depletion.

New Technical Advancements

It is now accepted that the optimal way to manufacture Treg for clinical use requires an efficient ex vivo expansion rate while maintaining purity and suppression potency before GMP product release. Two main Treg isolation strategies are currently being used in clinical trials to purify the starting Treg, immunomagnetic selection and flow cytometry cell sorting. The magnetic platform (CliniMACS CD4+CD25+ selection) provides a highly automated GMP-grade approach which is easy to standardize across centers. However, the resultant Treg product does generally contain a minor population of CD127+ cells that could jeopardize product purity after expansion. Addition of rapamycin to the culture media has helped to maintain Treg purity and function, without reducing the expansion rate too much (126). The second method, which uses a flow cytometry approach, results in a highly pure Treg population due to CD127+ cell depletion ability. However, this cell-sorting strategy entails more complex protocols and challenges to maintain GMP grade. With the appearance of new GMP-compatible cell sorters (Tyto MacQuant, Miltenyi or Influx, BD Biosciences), this sorting approach is likely to become the preferential Treg isolation method.

Although cell-sorting of Tregs increases their initial purity, a search for an optimally stable final Treg product is critical therapeutically. It is well known that prolonged in vitro culture results in epigenetic changes in Treg—methylation of TSDR—gene—which in-turn reduces suppressive ability (127). The use of anti-methylation agents in cultures to prevent epigenetic changes has failed due to culture viability issues. The addition of rapamycin to the expansion culture, as used in both The ONE Study and ThrRIL, was proposed as a remedy to such changes as the drug preferentially expands Treg both in vitro and in vivo (122). However, proper choice of media, addition of autologous serum, limited time frame for the expansion and temperature decreases during in vitro culture to ≈33°C, all impact the suppressive capacity of final Treg products (128–130).

Conclusion

Treg therapies are currently undergoing intense testing. An interest in therapeutic Treg preparations has resulted in several ongoing clinical trials in the transplantation setting, in autoimmune diseases, but now also in conditions such as beta thalassemia major and amyotrophic lateral sclerosis (101) (Table 2). We await new testing in the setting of hypersensitivity and cardiovascular disease (102), and anticipate that Treg therapy
will be considered for any condition where there is evidence for an immune regulation imbalance.

TIMING OF TOLERANCE-INDUCING CELL THERAPY

Timing of tolerance-inducing cell therapy in relation to the transplant or in the course of autoimmune disease development needs specific consideration. Clinical trials using Treg for GvHD indicate that Treg should be injected as early as possible, preferentially before disease onset (89, 91, 131). Early treatment is particularly important to achieve a high ratio between Treg and detrimental effector T cells, and thus prevent development of acute rejection or GvHD. In both HSCT and solid organ transplantation, tolerance-inducing cells are therefore mainly given around, just before or shortly after, the transplantation (see Tables 1, 2). Although early treatment is likely more effective, this approach encounters limitations such as increased immunosuppression doses and anti-CD25 treatment, which can interfere with the activity of infused cells. Thus, Tregs have also been infused at later time points e.g., 6 months after kidney transplantation in patients with biopsies showing evidence of inflammatory infiltrates to treat ongoing chronic rejection (103). It must also be considered that disease diagnosis timing is a factor in this respect. Although it is likely best to give the tolerance-inducing cell treatment as early as possible in disease development, it is currently not feasible in treating autoimmunity since a majority of autoimmune diseases start long before clinical symptoms and diagnosis, this brings in the added factor that the functional capacity of the attacked organ may already be irreparably damaged by the ongoing autoimmune process. Future insight into autoimmune disease development and early biomarkers will hopefully allow for earlier treatment with tolerance-inducing cell products.

REGULATIONS

The perspectives of tolerance-inducing cellular therapy depend also on recently introduced regulations. The majority of tested preparations in Europe are now classified as drugs under the 1394/2007 EU directive on advanced therapy medicinal products (ATMP). This significantly changes the legal path for their registration requirements, for manufacturing license and marketing authorization. While the idea of an ATMP in Europe is relatively nascent, and it is continuously evolving through public consultations with interested parties, cellular drugs have a distinct central paneuropean path for registration. While the Committee for Advanced Therapies (CAT) steers this process in Europe to optimize safety for patients, it would be useful to introduce wider rules allowing for introduction of the cells as a routine treatment. To accelerate the whole process, acknowledgment of flexible new types of manufacturing cGMP equipment and reagents could open the way to more widespread ATMP use. Furthermore, measures to reduce manufacturing costs would lessen this major limitation to new trials. When considering cell therapy, scientists, physicians and regulators must keep in mind that ATMP must be affordable for patients and society. Interestingly, scientists are largely responsible for current guidelines, and should revisit those recommendations based on factors such as cost (55, 132).

IMMUNOMONITORING OF TOLERANCE-INDUCING CELLULAR THERAPIES

Tackling Immunomonitoring in Tolerogenic Therapies

Since cell-based therapies are becoming more common, it is important to reliably monitor the immune system for both desired and undesired immunological effects. Rigorous immunomonitoring will therefore provide information about the safety of these treatments, ideally at early time points after CTT administration. In addition it will give insight in the therapy-related mechanisms of tolerance-induction and maintenance and may aid in patient-tailoring of therapy. To accurately measure the effects, especially across different trials, it will require introduction of harmonized and validated immunomonitoring assays.

There are a number of possible assays that can determine cell therapy effects in humans. For instance, measurement of circulating cytokines, C-reactive protein or changes in antibody titer can determine immune status. Similarly, measuring CD4+ T cell responses after viral-antigen stimulation is possible by flow cytometry via CD40L expression or cytokine production in a functional assay; these assays could potentially identify non-specific immunosuppressive effects (133). Although the completed clinical trials have shown so far that cell-based tolerogenic therapies are safe and do not cause serious undesirable immune responses (96, 99, 103, 104), the extent to which these treatments achieve therapeutic efficacy remains largely undetermined. Current cell-based tolerogenic trials in autoimmunity and transplantation include clinical outcome measures such as C-peptide response, insulin consumption or reduction of immunosuppressive doses. However, clinical endpoints may not necessary reflect the efficacy of cell-based therapies, since the tolerogenic effect of the transferred cells may not directly lead to immediate changes in systemic parameters such as inflammation, potentially underestimating a longer term effect. It is therefore important that future clinical trials incorporate suitable monitoring methods to assess the immunomodulatory effects of cellular therapies.

General vs. Specific Monitoring Assays

To assess therapeutic effectiveness, different methods have been proposed to identify tolerogenic responses. The assessment of *in vitro* autoreactive or donor-specific T cells responses prior to and after treatment could provide a precise evaluation of therapeutic efficacy. Antigen-specific assays allow discrimination between targeted tolerance to the induction of general immune suppression and loss of responses to pathogens. In addition, these methods provide an efficacy readout for antigen-specific therapies such as tolerogenic APC loaded with antigens or the
generation of donor-specific Treg. The identification of antigen-specific immune responses by ELISPOT (134) or through flow cytometry detection of CD40L upregulation (135) have shown promising results in predicting kidney and liver allograft rejection, suggesting potential applicability for the evaluation of tolerogenic therapies. Monitoring targets will be different depending on the main immune population involved in the disease (e.g., CD4, CD8 T cells or antibodies). Unfortunately, the antigens mediating the immune responses in autoimmunity are not always available or identified (as discussed in paragraph Antigen Specificity of tolAPC-Based Immunomodulation); HLA antigens in the case of transplantation are known and can be used, or stimulation with donor or donor-matched cells is possible. Though less specific, identification of phenotypic or functional changes by flow cytometry on the total pool of cells targeted (e.g., Treg) by the tolerogenic treatment may reveal therapeutic effectiveness. Indeed, the acquisition of tolerance in animal models and in the clinic is associated with an increased number of regulatory cells and decreased pro-inflammatory function of innate and adaptive immune cells (5, 136, 137). Therefore, flow cytometry analysis to delineate the distribution and activation status of different cell types, or in vitro assays to evaluate the suppressive and inflammatory function of circulating cells can provide a non-specific approach to assess the development of tolerogenic properties (138). Other non-specific strategies such as gene expression profiling of circulating immune cells or tissue biopsies can add to the functional assessment of immune responses. Furthermore, there is a growing body of work focusing on the validation of transcriptional signatures to predict transplantation tolerance in liver and kidney transplant recipients (139–141), which may prove to be a valuable tool in assessing the efficacy of tolerogenic therapies.

Tracking of Cellular Product

The evaluation of homeostatic characteristics of infused cells such as survival, stability or tissue migration, constitutes another monitoring objective to assess therapeutic efficacy. Being able to track infused cells will help to determine the best site for administration/application of tolerogenic cell products. While simple phenotypic detection (flow cytometry) of the transferred cell subset after treatment suggests the presence of infused cells, it does not distinguish transferred from endogenous cells. Therefore, current techniques for tracking infused cells depend on direct cell labeling strategies, such as indium labeling or deuterium introduction during ex vivo expansion, with subsequent isotope detection in the different tissues or compartments (99, 103, 142). Unfortunately, this method is only semi-quantitative, since individual cells are not detected. Individual cells can be labeled with rare earth metals and detected with precision in vivo using laser ablation-inductively coupled plasma-mass spectrometry, but so far this has only been tested in mouse models (143, 144). Other emerging therapeutic approaches such as CAR-Treg could take advantage of genetic modifications to adapt reported gene imaging strategies to detect the transferred cells by non-invasive methods (e.g., MRI, PET, SPECT) (145, 146). Additionally, the use of T cell receptor (TCR) engineered Treg or ex vivo expanded antigen-specific Treg create the opportunity to track infused cells by predefining the TCR clones and identifying them among the T cell compartment repertoire through TCR sequencing analysis (147).

Harmonization to Allow Comparison

Current tolerogenic cell-based trials are highly heterogeneous, comprising different cell types with variable manufacturing approaches, and targeting various autoimmune diseases and transplantation settings. Furthermore, by their very nature such trials tend to involve low numbers of patients, often participating in different centers or countries. It is therefore essential to establish common immunomonitoring strategies in the research community to achieve robust and reliable data which can be compared and combined between trials. First, not all the immunomonitoring methods are similarly standardisable, and second, not all the centers have the technical expertise or infrastructure to perform certain assays. Sample collection and storage of whole blood or tissue biopsies for transcriptional analysis does not involve extensive sample manipulation, making standardization of this method achievable. On the contrary, while flow cytometry analysis of circulating blood is an accessible technology, instrument must be calibrated appropriately to accurately define cell subsets, and analysis of the data needs to be strictly regulated. Although centralized phenotypic analysis in multicenter trials is feasible (105), this involves significant logistical challenges, including the decision to either test fresh or frozen samples; frozen samples sacrifice accuracy due to loss of certain cell populations during separation and freezing procedures. In general, flow cytometry standardization requires extensive cooperation between centers and precise planning. To further harmonize flow cytometry data implementation of automated gating approaches will be of outmost importance in the future (148–150). Finally, functional in vitro assays also represent a challenging method to standardize, involving different approaches depending of the cell type and function. Nevertheless, several efforts have been made to establish a minimal harmonization of antigen-specific functional assays (56). While these assays are likely to be the most informative in the assessment of therapeutic efficacy, it is unlikely that current assay results will be directly comparable between independent trials. Therefore, the inclusion of adequate control cohorts and reference groups in the assays, considering the specific cell therapy approaches and disease characteristics, remains an objective to achieve feasible comparisons (107).

FINAL CONCLUSION

Tolerance-inducing cellular therapies have great potential. Several cell types are now in early-stage clinical trials, including various types of Treg and tolAPC (including tolDC and Mreg) (Tables 1, 2). At the present time it is unclear which of these cell types will prove most suitable as a cell-based therapy; each likely has particular advantages that may be suitable for one particular disease or another. In Table 3, the main specific limitations to be considered for the treatment of autoimmunity or transplantation with tolerance-inducing cell therapies are summarized. It becomes clear that although we might treat these
TABLE 3 | Main specific differences in tolerance-inducing cell treatment between transplantation and autoimmune disease setting.

	Transplantation	Autoimmunity
Antigen	- Alloantigens (MHC alleles and other disparities)	- Autoantigen not always known
	- Autoantigens in case of underlying or de novo developed autoimmune diseases	- Epitope spreading might occur during disease progression
Pathogenic immune response	- Normal, but undesired, immune response against foreign antigen	- Loss of tolerance to self-antigen
Timing	- Time point of antigen contact is known, treatment can be given around time point of transplantation	- Disease already develops before clinical symptoms
		- Better diagnosis and biomarkers are needed to be able to intervene at earlier time point
Route of administration	- Intravenous	- Intradermal
		- Local injection in affected tissue or draining lymph node of the tissue is to be considered
Co-medication	- High dose of conventional immune suppression (steroids, CNI, MMF) +/- antibody-based induction therapy at the moment of transplantation	- Varies and is disease specific
Clinical efficacy evaluation	- Prevention of acute rejections	- Disease-dependent. E.g. In T1D C-peptide response or insulin consumption can be determined. In other AID disease-specific scores can be used.
	- Reduction conventional immune suppression. It is difficult to lower co-medication without good markers to predict transplant tolerance	- Depending on disease progression on moment of application. Irreversible tissues destruction will not improve. New relapses/lesions can be scored.
Immunomonitoring	- Donor antigen-specific T cells	- Autoantigen not always known.
	- Donor specific antibodies	When known, T cell responses are difficult to detect, since they are very low frequent and of low affinity

Immunomonitoring

Immunomonitoring is an indispensable aspect of current and future tolerogenic cell-based therapies that will provide fundamental information to understand and optimize cell therapies. Monitoring will also aid in identifying biomarkers with the capacity for early identification of therapy responders and non-responders and patient-tailoring of therapy. As part of the overall strategy to increase implementation of ATMPs, it will be critical to harmonize GMP manufacturing protocols, product characterization and immunomonitoring. Minimal information models such as MITAP and MiTREG (132, 151) will serve as important tools in this respect.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This article is based upon work from COST Action A FACTT (BM1305: www.afactt.eu), supported by COST (European Cooperation in Science and Technology) (www.cost.eu). COST is a funding agency for research and innovation networks. COST Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. COST is supported by the EU Framework Programme Horizon 2020. Part of the work discussed is funded by The ONE Study, EU FP7 Funding Program, BIO-DrIM, EU FP7 Funding Program and ReSToRe, EU H2020 Funding Program. PT is supported by the National Center for Research and Development, PL (grant no: STRATEGMED1/233368/1/NCBR/2014). EM-C acknowledges the support by projects PI14/01175, PI16/01737 and PI17/01521, integrated in the Plan Nacional de I+D+I and co-supported by the ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER). NC and EM-C acknowledge the support by project 140191 from the Institute for the Promotion of Innovation by Science and Technology (IWTTM) in Flanders (Belgium).

ACKNOWLEDGMENTS

This work has been supported by positive discussion by all AFACTT members during A FACTT network meetings. We specifically like to thank Juan Navarro Barriuso and Tanja Nikolic for their input on the manuscript.

REFERENCES

1. Ten Brinke A, Hilkens CM, Cools N, Geissler EK, Hutchinson JA, Lombardi G, et al. Clinical use of tolerogenic dendritic cells-harmonization approach in European collaborative effort. *Mediators Inflamm.* (2015) 2015:471719. doi:10.1155/2015/471719
2. Trzonkowski P, Bacchetta R, Battaglia M, Berglund D, Bohnenkamp HR, Ten Brinke A, et al. Hurdles in therapy with regulatory T
cells. *Sci Transl Med.* (2015) 7:304ps318. doi: 10.1126/scitranslmed.aaa7721

3. Qin S, Cobbold SP, Pope H, Elliott J, Kiousis D, Davies J, et al. "Infectious" transplantation tolerance. *Science* (1993) 259:974–7. doi: 10.1126/science.8499491

4. Mahnké K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inattentive: the tolerogenic function of immature dendritic cells. *Immunol Cell Biol.* (2002) 80:477–83. doi: 10.1046/j.1440-1711.2002.01115.x

5. Thomson AW, Robbins PD. Tolerogenic dendritic cells for autoimmune disease and transplantation. *Ann Rheum Dis.* (2008) 67(Suppl. 3):ii90–6. doi: 10.1136/ard.2008.099716

6. Hilkens CM, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. *Int Rev Immunol.* (2010) 29:156–83. doi: 10.3109/08830180903281193

7. Raich-Regue D, Grau-Lopez L, Naranjo-Gomez M, Ramo-Tello C, Pujol-Borrell R, Martinez-Caceres E, et al. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. *Eur J Immunol.* (2012) 42:771–82. doi: 10.1002/eji.201141835

8. Nikolic T, Roep BO. Regulatory multitasking of tolerogenic dendritic cells. *Crit Rev Immunol.* (2015) 35:284–300. doi: 10.1615/CritRevImmunol.v35.i4.50

9. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. *J Exp Med.* (2000) 192:1357–400. doi: 10.1084/jem.2001257

10. Raich-Regue D, Grau-Lopez L, Naranjo-Gomez M, Ramo-Tello C, Pujol-Borrell R, Martinez-Caceres E, et al. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. *Eur J Immunol.* (2012) 42:771–82. doi: 10.1002/eji.201141835

11. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. *Nature* (1998) 392:245–52. doi: 10.1038/32588

12. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? *Trends Immunol.* (2002) 23:445–9. doi: 10.1016/S1471-4906(02)02281-0

13. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? *Trends Immunol.* (2002) 23:445–9. doi: 10.1016/S1471-4906(02)02281-0

14. Kryczmanow F, Raker V, Graulich E, Domogalla MP, Steinbrink K. IL-10-modulated human dendritic cells for clinical use: identification of a stable and migratory subset with improved tolerogenic activity. *J Immunol.* (2016) 197:3607–17. doi: 10.4049/jimmunol.1501769

15. Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. *Diabetes Care* (2015) 38(6):1066–71. doi: 10.2337/dc15-1116

16. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. *J Exp Med.* (2000) 192:1357–400. doi: 10.1084/jem.2001257

17. Leibovich SJ, Steinman RM. Dendritic cells and the control of immunity. *J Exp Med.* (2000) 192:1357–400. doi: 10.1084/jem.2001257

18. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? *Trends Immunol.* (2002) 23:445–9. doi: 10.1016/S1471-4906(02)02281-0

19. Zhang HG, Mountz JD, Fleck M. Differential regulation of naive and memory CD4+ T cells by Fas ligand (FasL/CD95L)-expressing Killer-cell lineages. *Immunobiology* (2003) 208:463–75. doi: 10.1016/S0303-6947(03)00113-4

20. Kryczmanow F, Raker V, Graulich E, Domogalla MP, Steinbrink K. IL-10-modulated human dendritic cells for clinical use: identification of a stable and migratory subset with improved tolerogenic activity. *J Immunol.* (2016) 197:3607–17. doi: 10.4049/jimmunol.1501769

21. Hutchinson JA, Riquelme P, Brem-Exner BG, Schulze M, Matthai M, Renders L, et al. Transplant acceptance-inducing cells as an immune-conditioning therapy in renal transplantation. *Transpl Int.* (2008) 21:728–41. doi: 10.1111/j.1432-2277.2008.00860.x

22. Hutchinson JA, Brem-Exner BG, Riquelme P, Roelen D, Schulze M, Enk V, et al. A cell-based approach to the minimization of immunosuppression in renal transplantation. *Transpl Int.* (2008) 21:742–54. doi: 10.1111/j.1432-2277.2008.00862.x

23. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8+-regulatory T cells in vivo. *Blood* (2002) 100:174–7. doi: 10.1182/blood.V100.1.174

24. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8+-regulatory T cells in vivo. *Blood* (2002) 100:174–7. doi: 10.1182/blood.V100.1.174
alternatively activated dendritic cells. *J Leukoc Biol.* (2008) 84:124–33. doi: 10.1189/jlb.1107744

41. Speck S, Lim J, Shelake S, Matka M, Stoddard J, Farr A, et al. TGF-beta signaling initiated in dendritic cells instructs suppressive effects on Th17 differentiation at the site of neuroinflammation. *PloS ONE* (2014) 9:e102390. doi: 10.1371/journal.pone.0102390

42. Anderson AE, Swan DJ, Wong OY, Buck M, Elltherington O, Harry RA, et al. Tolerogenic dendritic cells generated with dexamethasone and vitamin D3 regulate rheumatoid arthritis CD4(+) T cells partly via transforming growth factor-beta. *Clin Exp Immunol.* (2017) 187:113–23. doi: 10.1111/cei.12870

43. Beringer DX, Kleijwegt FS, Wiede F, Van Der Slik AR, Loh KL, Petersen J, et al. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex. *Nat Immunol.* (2015) 16:1155–61. doi: 10.1038/nl.3271

44. Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magna Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N, et al. *Rheumatology* (2016) 52:368. doi: 10.11891/jlb.0608374

45. Agrawal S, Ganguly S, Hajian P, Cao JN, Agrawal A. PDGF upregulates transcriptional profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin. *Sci Rep.* (2018) 8:14985. doi: 10.1038/s41598-018-33248-7

46. Shi YH, Zhang X, Chen M, Lu X, Deng R, Ma Y. Dendritic cells of tolerogenic dendritic cells pulsed with autoantigens as a potential therapy for multiple sclerosis patients. *J Neuroinflammation* (2016) 13:113. doi: 10.1186/s12974-016-0584-9

47. Lord P, Li HS, Carayannisiotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4(+)CD25(+) T cells. *J Immunol.* (2005) 174:7433–39. doi: 10.4049/jimmunol.174.11.7433

48. Stoop JN, Harry RA, Von DA, Isaacs JD, Robinson JH, Hilkins CM. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. *Arthritis Rheum.* (2010) 62:3675–40. doi: 10.1002/art.27756

49. Yang J, Yang Y, Ren Y, Xie R, Zou H, Fan H. A mouse model of adoptive immunotherapeutic targeting of autoimmune arthritis using allo-tolerogenic dendritic cells. *PloS ONE* (2013) 8:e77729. doi: 10.1371/journal.pone.0077729

50. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. *Nat Rev Immunol.* (2002) 2:85–95. doi: 10.1038/nri724

51. Grau-Lopez L, Raich D, Ramo-Tello C, Naranjo-Gomez M, Dvalos A, Pujol-Borrell R, et al. Specific T-cell proliferation to myelin peptides in relapsing-remitting multiple sclerosis. *Eur J Neurosci.* (2011) 18:1101–4. doi: 10.1111/j.1468-1331.2010.03307.x

52. Lutterotti A, Yousef S, Sputtek A, Sturner KH, Stellung JP, Breiden P, et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. *Sci Transl. Med.* (2013) 5:188ra175. doi: 10.1126/scitranslmed.3006168

53. Chatay W, Martin K, Barrell K, Sharrack B, Stolt P, Wrath DC, et al. Effects of ATX-MS-1467 immunotherapy over 16 weeks in relapsing multiple sclerosis. *Neurology* (2018) 90:e955–62. doi: 10.1212/WNL.0000000000005118

54. Ingulli E. Mechanism of cellular rejection in transplantation. *Pediatr Nephrol.* (2010) 25:61–74. doi: 10.1007/s00467-008-1020-x

55. Marin E, Cuturi MC, Moreau A. Tolerogenic dendritic cells in solid organ transplantation: where do we stand? *Front Immunol.* (2018) 9:274. doi: 10.3389/fimmu.2018.00274

56. Anderson AE, Swan DJ, Sayers BL, Harry RA, Patterson AM, Von Delwig A, et al. LPS activation is required for migratory activity and antigen presentation to tolerogenic dendritic cells. *J Leukoc Biol.* (2005) 77:98–106. doi: 10.1189/jlb.0608374

57. Mansilla MJ, Selles-Moreno C, Fabregas-Puig S, Amoedo J, Navarro-Barruso J, Teniente-Serra A, et al. Beneficial effect of tolerogenic dendritic cells pulsed with MOG autoantigen in experimental autoimmune encephalomyelitis. *CNS Neurosci Ther.* (2015) 21:222–30. doi: 10.1111/cns.12342

58. Mansilla MJ, Contreras-Cardone R, Navarro-Barruso J, Cools N, Berneman Z, Ramo-Tello C, et al. Cryopreserved vitamin D₃-tolerogenic dendritic cells pulsed with autoantigens as a potential therapy for multiple sclerosis patients. *J Neuroinflammation* (2016) 13:113. doi: 10.1186/s12974-016-0584-9
74. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. (2001) 194:679–80. doi: 10.1084/jem.194.6.6796

75. Dhoopar et al. Mucosal tolerance requires the expression of periporter molecules in the context of T cell-intrinsic signals. Immunity. (2004) 20:385–97. doi: 10.1016/j.immuni.2004.05.007

76. Hotaling NA, Tang L, Irvine DJ, Babensee JE. Biomaterial strategies for immunomodulation. Annu Rev Biomed Eng. (2015) 17:317–49. doi: 10.1146/annurev-bioeng-071813-104814

77. Tostanoski LH, Gosselin EA, Jewell CM. Engineering tolerance using biomaterials to target and control antigen presenting cells. Discov Med. (2016) 21:403–10. doi: 10.7150/dm.38856

78. Ochando J, Braza MS. Nanoparticle-based modulation and monitoring of antigen-presenting cells in organ transplantation. Front Immunol. (2017) 8:1888. doi: 10.3389/fimmu.2017.01888

79. Capini C, Jaturanpinyo M, Chang HI, Mutalik S, McNally A, Street S, et al. Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded T regulatory cells in humans treated with IL-10-anergized donor T cells. Front Immunol. (2014) 5:16. doi: 10.3389/fimmu.2014.00016

80. Pujol-Autonell I, Serracant-Prat A, Cano-Sarabia M, Ampudia RM, Garber K. Immunology: a tolerant approach. Nature Rev Immunol. (2013) 13:189–205. doi: 10.1038/nri2343

81. Pujol-Autonell I, Mansilla MJ, Rodriguez-Fernandez S, Cano-Sarabia M, Navarro-Barriuso J, Ampudia RM, et al. Liposome-based immunotherapy to target and control antigen-presenting cells in type 1 diabetes. Discov Med. (2015) 21:467–73. doi: 10.7150/dm.1264401

82. Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, De Crea A, et al. “Alternatively Activated” dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol. (2006) 177:5868–70. doi: 10.4049/jimmunol.0500767

83. Ezzelarab MB, Zahorchak AF, Li U, Morelli AE, Chalasani G, Demetris AJ, et al. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates. Am J Transplant (2015) 13:1989–2005. doi: 10.1111/ajt.13210

84. Baas MC, Kuhn C, Valette F, Mangez C, Duarte MS, Hill M, et al. Combining autologous dendritic cell therapy with CD3 antibodies promotes regulatory T cells and permanent islet allograft acceptance. J Immunol. (2014) 193:696–703. doi: 10.4049/jimmunol.1401423

85. Stanko K, Iwert C, Appelt C, Vogt K, Schumann J, Strunk FJ, et al. CD96 expression determines the inflammatory potential of IL-9-producing Th9 cells. Proc Natl Acad Sci USA. (2018) 115:E2940–9. doi: 10.1073/pnas.1708329115

86. Garber K. Immunology: a tolerant approach. Nature (2014) 507:418–20. doi: 10.1038/507418a

87. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. (2008) 8:523–32. doi: 10.1038/nri2343

88. Trzonkowski P, Bieniaszewska M, Jusicsinska J, Dobyszuk A, Krzyzniatka A, Marek N, et al. First-in-man clinical results of the treatment of polyclonal regulatory T cell therapy in living donor kidney transplants. Transplantation. (2013) 96:2173–86. doi: 10.1097/TP.0b013e3182a20236

89. Brunstein CG, Miller J, Cao Q, Mckenna DH, Hippen KL, Curtisinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood (2011) 117:1061–70. doi: 10.1182/blood-2010-07-293795

90. Brunstein CG, Blazar BR, Miller JS, Cao Q, Hippen KL, Mckenna DH, et al. Adoptive transfer of umbilical cord blood-derived regulatory T cells and early viral reactivation. Biol Blood Marrow Transplant. (2013) 19:1271–3. doi: 10.1016/j.bbmt.2013.06.004

91. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood (2011) 117:3921–8. doi: 10.1182/blood-2010-11-311894

92. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood (2014) 124:638–44. doi: 10.1182/blood-2014-03-56401
vivo expanded human regulatory T cells. *Haematologica* (2016) 101:91–100. doi: 10.3324/haematol.2015.128934

111. Tsang FY, Tanriver Y, Jiang S, Xue SA, RatnaSothy K, Chen D, et al. Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice. *J Clin Invest.* (2008) 118:3619–28. doi: 10.1172/JCI31843

112. Putnam AL, Safinia N, Medvec A, Laskowska M, Wray M, Mintz MA, et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. *Am J Transplant.* (2013) 13:3010–20. doi: 10.1111/j.1131.14233

113. MacDonald KG, Hopple RE, Huang Q, Gillies J, Luciani DS, Orban PC, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. *J Clin Invest.* (2016) 126:1413–24. doi: 10.1172/JCI82771

114. Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MA, Hannen RF, Cooper D, et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. *Am J Transplant.* (2017) 17:931–43. doi: 10.1111/1425-4753

115. Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R, et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. *Am J Transplant.* (2017) 17:917–30. doi: 10.1111/1651-2214.13175

116. Bacher P, Heinrich F, Sterbo U, Nienan M, Vahldeic M, Iwert C, et al. Regulatory T cell specificity directs tolerance versus allograft against aeroallergens in humans. *Clin Immunol.* (2016) 167:1067–78.e16. doi: 10.1016/j.clim.2016.09.050

117. Lei H, Kuchenbecker L, Streitz M, Sawitzki B, Vogt K, Landwehr-Kenzel S, et al. Human CD45RA(-) FoxP3(hi) memory-type regulatory T cells show distinct TCR repertoires with conventional T cells and play an important role in controlling early immune activation. *Am J Transplant.* (2015) 15:2625–35. doi: 10.1111/1394-5974.12815

118. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP III, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. *N Engl J Med.* (2011) 365:2055–66. doi: 10.1056/NEJMoa1101888

119. Whitehouse G, Gray E, Mastoridis S, Merritt E, Kodela E, Yang JHM, et al. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. *Proc Natl Acad Sci USA.* (2017) 114:7083–8. doi: 10.1073/pnas.1620835114

120. Von Spee-Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T, et al. Forti focuses on deep analysis of regulatory T cell function. *Int Immunopharmacol.* (2017) 57:237–48. doi: 10.1016/j.intimp.2017.03.016

121. Marek-Trzonkowska N, Piekarska K, Filipowicz N, Piotrowski A, Gucwa M, Vogt K, et al. Mild hypothermia provides Treg stability. *Sci Rep.* (2017) 1:7. doi: 10.1038/s41598-017-01051-1

122. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands *T* cells for clinical trials. *Mol Ther Methods Clin Dev.* 2018; 17:635–68. doi: 10.1016/j.omtm.2013.02.016

123. Fuchs A, Gliwinski M, Grageda N, Spiering R, Abbas AK, Appel S, et al. Minimum information about T regulatory cells: a step toward reproducibility and standardization. *Front Immunol.* (2018) 8:1844. doi: 10.3389/fimmu.2017.01844

124. Verbi FC, Turkmwa AW, De Heij F, Kajjen P, Lardy N, Fijneheer R, et al. CD4+ T cells from patients with acquired thrombotic thrombocytopenic purpura recognize CUB2 domain-derived peptides. *Blood.* (2017) 12:1606–9. doi: 10.1182/blood-2015-10-688053

125. Crespo E, Lucia M, Cruzado JM, Luque S, Mellili E, Manonelles A, et al. Pre-transplant donor-specific T-cell alloreactivity is strongly associated with early acute cellular rejection in kidney transplant recipients not receiving T-cell depleting induction therapy. *PLoS ONE* (2015) 10:e011761. doi: 10.1371/journal.pone.0117618

126. Sindhu R, Ashokkumar C, Higgs BW, Levy S, Soltsk Y, Bond G, et al. Profile of the Pleximmune blood test for transplant rejection risk prediction. *Expert Rev Mol Diagn.* (2016) 16:837–93. doi: 10.1586/14737195.2016.1139455

127. Andreola G, Chittenden M, Shaffer J, Cosimi AB, Kawai T, Cottier P, et al. Mechanisms of donor-specific tolerance in recipients of haploidentical combined bone marrow/kidney transplantation. *Am J Transplant.* (2011) 11:1236–47. doi: 10.1111/j.1600-6143.2011.03566.x

128. Taubert R, Danger R, Londono MC, Christakoudi S, Martinez-Picola M, Rimola A, et al. Hepatic infiltrates in operational tolerant patients after liver transplantation show enrichment of regulatory T cells before proinflammatory genes are downregulated. *Am J Transplant.* (2016) 16:1285–93. doi: 10.1111/aht.13617

129. Newell KA, Adams AB, Turka LA. Biomarkers of operational tolerance following kidney transplantation - the immune tolerance network studies of spontaneously tolerant kidney transplant recipients. *Hum Immunol.* (2018) 79:380–7. doi: 10.1016/j.humimm.2018.02.007

130. Newell KA, Asare A, Kirk AD, Gisler TD, Bourcier K, Suthanthiran M, et al. Identification of a B cell signature associated with renal transplant tolerance in humans. *J Clin Invest.* (2010) 120:1836–47. doi: 10.1172/JCI39993

131. Bohne F, Martinez-Llорeda M, Lozano JJ, Mirel R, Benitez C, Londono MC, et al. Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. *J Clin Invest.* (2012) 122:368–82. doi: 10.1172/JCI59411

132. Rebollo-Mesa I, Nova-Lamperti E, Mobillo P, Runglall M, Christakoudi S, Norris S, et al. Biomarkers of tolerance in kidney transplantation - are we predicting tolerance or response to immunosuppressive treatment? *Am J Transplant.* (2016) 16:3443–57. doi: 10.1111/ajt.13932

133. Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Christakoudi S, Martínez-Picola M, et al. Laser ablation inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections. *Sci Transl Med.* (2011) 3:78ra154. doi: 10.1126/scitranslmed.3002609

134. Hutchinson RW, Mclachlin KM, Riquelme P, Haerer J, Broichhausen C, Ritter U, et al. Laser ablation inductively coupled plasma mass spectrometry
an emerging technology for multiparametric analysis of tissue antigens.
Transplant Direct (2015) 1:e32. doi: 10.1097/TXD.0000000000000541

145. Sharif-Paghaleh E, Sunassee K, Tavare R, Ratnasothy K, Koers A, Ali N, et al. In vivo SPECT reporter gene imaging of regulatory T cells. PLoS ONE (2011) 6:e25857. doi: 10.1371/journal.pone.0025857

146. Lee HW, Gangadaran P, Kalmuthu S, Ahn BC. Advances in molecular imaging strategies for in vivo tracking of immune cells. Biomed Res Int. (2016) 2016:1946585. doi: 10.1155/2016/1946585

147. Theil A, Wilhelm C, Kuhn M, Petzold A, Tuve S, Oelschlagel U, et al. T cell receptor repertoires after adoptive transfer of expanded allogeneic regulatory T cells. Clin Exp Immunol. (2017) 187:316–24. doi: 10.1111/cei.12887

148. Malek M, Taghiyar MJ, Chong L, Finak G, Gottardo R, Brinkman RR. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics (2015) 31:606–7. doi: 10.1093/bioinformatics/btu677

149. Schlickeiser S, Streitz M, Sawitzki B. Standardized multi-color flow cytometry and computational biomarker discovery. Methods Mol Biol. (2016) 1371:225–38. doi: 10.1007/978-1-4939-3139-2_15

150. Rahim A, Meskas J, Drissler S, Yue A, Lorenc A, Laing A, et al. High throughput automated analysis of big flow cytometry data. Methods (2018) 134–5:164–76. doi: 10.1016/j.ymeth.2017.12.015

151. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. (2009) 10:1000–7. doi: 10.1038/nri.1774

Conflict of Interest Statement: PT Medical University of Gdańsk–owns a patent related to presented content.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.