Positive predictive value of stroke identification by ambulance clinicians in North East England: a service evaluation

Graham McClelland 1, 2, Darren Flynn, 3 Helen Rodgers, 2 Christopher Price 2

ABSTRACT

Introduction/background Accurate prehospital identification of patients who had an acute stroke enables rapid conveyance to specialist units for time-dependent treatments such as thrombolysis and thrombectomy. Misidentification leads to patients who had a ‘stroke mimic’ (SM) being inappropriately triaged to specialist units. We evaluated the positive predictive value (PPV) of prehospital stroke identification by ambulance clinicians in the North East of England.

Methods This service evaluation linked routinely collected records from a UK regional ambulance service identifying adults with any clinical impression of suspected stroke to diagnostic data from four National Health Service hospital trusts between 1 June 2013 and 31 May 2016. The reference standard for a confirmed stroke diagnosis was inclusion in Sentinel Stroke National Audit Programme data or a hospital diagnosis of stroke or transient ischaemic attack in Hospital Episode Statistics. PPV was calculated as a measure of diagnostic accuracy.

Results Ambulance clinicians in North East England identified 5645 patients who had a suspected stroke (mean age 73.2 years, 48% male). At least one Face Arm Speech Test (FAST) symptom was documented for 93% of patients who had a suspected stroke but a positive FAST was only documented for 51%. Stroke, or transient ischaemic attack, was the final diagnosis for 3483 (62%) patients. SM (false positives) accounted for 38% of suspected strokes identified by ambulance clinicians and included a wide range of non-stroke diagnoses including infections, seizures and migraine.

Discussion In this large multisite data set, identification of patients who had a stroke by ambulance clinicians had a PPV rate of 62% (95% CI 61 to 63). Most patients who had a suspected stroke had at least one FAST symptom, but failure to document a complete test was common. Training for stroke identification and SM rates need to be considered when planning service provision and capacity.

INTRODUCTION

Approximately two-thirds of patients who had an acute stroke in England are conveyed to hospital by emergency ambulance. 1 Prehospital identification enables earlier access to centralised hyperacute stroke units (HASU) 2 which deliver specialist stroke care and time-critical reperfusion treatments (thrombolysis and thrombectomy). The accuracy of prehospital stroke identification depends on the tools used and the population in question. In the UK, the National Clinical Guidelines encourage ambulance clinicians to use a validated screening tool (eg, Face Arm Speech Test, FAST) 3 to recognise different possible combinations of symptoms across a broad range of patients. 4

The FAST is a simple test looking for facial droop, arm weakness or slurred speech as common symptoms of stroke. It remains the test most commonly used by UK ambulance services 5 due to good sensitivity for anterior circulation stroke (79%–97%), but the specificity is lower (13%–88%). 6 As most symptom checklists do not include symptoms of posterior stroke, such as vertigo or visual deficits, guidelines also recommend that practitioners apply their clinical judgement which is likely to further reduce specificity.

Prioritisation of sensitivity (stroke detection) over specificity (avoiding other conditions being identified as stroke) means that a large number of patients who had a suspected stroke identified by ambulance clinicians receive a final diagnosis other than stroke, that is, stroke mimics (SM). The positive predictive value (PPV) of popular prehospital stroke identification tools ranges from 40% to 94% 7 with an average of 27% of suspected strokes identified in...
prehospital care subsequently diagnosed as SM. Due to the increasing centralisation of emergency stroke care, including the provision of thrombectomy, patients with SM conditions are becoming an increasingly important consideration as they are likely to be displaced from more appropriate local care in significant numbers and impact on efficient use of specialist resources.

In view of the broad range of prehospital stroke identification performance within the literature and the implications of SM presentations for planning service reconfiguration, the primary objective of this study was to describe the current accuracy of stroke identification by clinicians working for a regional ambulance service in North East England using PPV as a measure of diagnostic accuracy.

The secondary objectives were to describe: (1) FAST documentation by ambulance clinicians and how this impacted on the accuracy of stroke identification; and (2) the proportion and type of ‘false positive’ SM conditions.

METHODS

Study design

A retrospective service evaluation linked routinely recorded ambulance and hospital data sets in order to calculate the PPV of stroke identification by ambulance clinicians.

Study setting

The North East Ambulance Service NHS Foundation Trust (NEAS) is the regional ambulance provider for around 2.5 million people in North East England covering Northumberland, Tyne and Wear, County Durham, Darlington and Teesside.

The study included patients who had a suspected stroke conveyed to four hospital trusts with HASUs: County Durham and Darlington NHS Foundation Trust (691 stroke admissions/year); Northumbria Healthcare NHS Foundation Trust (1008 stroke admissions/year); North Tees and Hartlepool Hospitals NHS Foundation Trust (576 stroke admissions/year); and Newcastle Hospitals NHS Foundation Trust (748 stroke admissions/year). All figures are for April 2016 to March 2017.

Inclusion/exclusion criteria

A consecutive series of patients across 3 years (1 June 2013 to 31 May 2016) were identified by an electronic search for a documented NEAS clinician impression of suspected stroke (the index test) for any reason (FAST positive or FAST negative/not recorded). Internal NEAS data show that impression stroke accounts for around 4% of cases where an ambulance attends a patient. Other inclusion criteria were: adult (aged ≥18 years) patients; GCS ≥8 (reflecting the difficulty to assess patients with a low GCS and the population used to develop FAST); and conveyed to a relevant hospital. Records made by qualified paramedics of all grades and technician personnel were included.

The exclusion criteria were interhospital transfers, GCS <8 and admission other than by emergency ambulance.

Prehospital data

NEAS clinicians routinely record patient details using a portable electronic patient record form (EPRF). A ‘clinical impression’, selected from predetermined categories including stroke, is recorded at the end of each patient encounter. Clinical impression could include multiple differential diagnoses so stroke may not have been the only impression. Other data on the EPRF are recorded in two formats: (1) structured data on predetermined variables including demographics, common signs and symptoms, physiological observations as well as standard assessments such as FAST, and (2) a free text section recording narrative aspects of the patient encounter including symptoms. These were extracted from the EPRF for all patients who met the inclusion criteria by a combination of automated and manual data extraction according to the nature of the data field. A complete picture of the prehospital data on patients who had a suspected stroke was created by combining any recording of variables of interest in either the structured or free text sections. The results of the data extraction are described in table 1. These data included patients identified by paramedics and non-paramedic clinicians. NEAS clinicians follow the UK National Ambulance guidelines for stroke identification which recommends patients with stroke symptoms, identified using FAST or clinical judgement, starting within the previous 5 hours, are transported directly to the nearest HASU.

Hospital diagnosis data

Stroke or SM diagnoses were established according to (1) whether each patient was included in the admitting hospital’s Sentinel Stroke National Audit Programme (SSNAP) data set, and (2) primary discharge diagnoses in Hospital Episode Statistics (HES) according to the International Statistical Classification of Diseases and Related Health Problems (ICD-10) codes. SSNAP is a mandatory individual patient audit that measures and regularly reports the quality of stroke care in the National Health Service (NHS) in England, Wales and Northern Ireland using clinical and organisational measures. All patients in SSNAP have a specialist confirmed diagnosis of stroke that is cross-referenced with national HES data through the Office for National Statistics. All participating trusts had high (≥90%) case ascertainment rates for SSNAP, that is, <10% of patients who had an acute stroke treated as inpatients were not listed on the SSNAP database. The reference standard to confirm a final diagnosis of stroke was inclusion in SSNAP, or a local HES discharge diagnosis including ICD-10 codes of I61, I63 and I64 if patients’ records could not be confidently matched with SSNAP. Patients with an HES diagnosis including ICD-10 codes G458 or G459 were recorded as transient ischaemic attacks (TIA). TIs were grouped with patients who had a stroke on the basis that prehospital triage to specialist stroke units would still be appropriate, similar to other prehospital stroke studies. All other diagnoses were recorded as SM (false positives). Where a diagnosis could not be established from SSNAP or HES data it was assumed that the patient had an SM condition.

Ambulance cases were linked to hospital data using a stepwise approach. First, an attempt was made to link NEAS patients who had a suspected stroke with SSNAP data using the ambulance service case number. Where the case number was not recorded, probabilistic matching was used based on admitting hospital, date/time of admission, gender and age. Patients with a potential match (eg, admission time >20 min difference, identical gender but missing age) were re-examined with access to the original NEAS EPRF to identify additional information which might assist with matching such as location of the incident. Discharge diagnoses for patients who could not be linked with SSNAP data were sought from HES using common identifiers within the NEAS data (name, age, date of birth, NHS number, date/time of admission).

Data analysis

All data were analysed in IBM SPSS Statistics V.23. The PPV of ambulance clinician identification of stroke was calculated based on the linked data. The sensitivity of ambulance clinician stroke
Table 1 Characteristics of patients who had a suspected stroke recorded by ambulance clinicians

Stroke/TIA	Stroke mimics	P value	
Patients (n)	3483	2162	
Mean age (SD)	75 (13)	70 (16)	<0.001
Gender (% male)	50	45	<0.001

FAST signs and symptoms	% patients who had a stroke	% patients who had a stroke mimic	P value	
Arm weakness	3617 (64)	71	54	<0.001
Facial droop or weakness	3100 (55)	61	48	0.001
Speech symptoms	3768 (68)	73	61	<0.001

Medical history	% patients who had a stroke	% patients who had a stroke mimic	P value	
Alcohol misuse	98 (2)	2	0.001	
Angina	520 (9)	9	9	0.514
Diabetes	959 (17)	18	16	0.062
Epilepsy	216 (4)	2	7	<0.001
Heart failure	167 (3)	3	2	0.021
High cholesterol	991 (18)	18	16	0.022
Hypertension	1865 (33)	36	27	<0.001
Myocardial infarction	512 (9)	9	8	0.156
Migraine	79 (1)	2	0.001	
Smoking	142 (3)	3	2	0.152
Stroke	1415 (25)	20	31	<0.001
Transient ischaemic attack	939 (17)	15	18	0.001

Physiological observation	% patients who had a stroke	% patients who had a stroke mimic	P value	
Blood sugar (mmol/L)	5385 (95)	7.6 (2.8)	7.4 (2.7)	0.001
GCS	5645 (100)	14 (2)	14 (2)	0.205
HR (bpm)	5639 (>99)	82 (18)	84 (19)	<0.001
Pulse rhythm (% regular)	5485 (97)	75	83	<0.001
Pain (0–10)	3659 (65)	0.3 (1.2)	0.7 (1.8)	<0.001
Peripheral oxygen saturations	5066 (99)	96 (3)	96 (3)	0.524
RR	5639 (>99)	17 (3)	17 (3)	0.006
Systolic BP (mm Hg)	5066 (99)	160 (28)	153 (29)	<0.001
Diastolic BP (mm Hg)	5596 (99)	88 (17)	87 (18)	0.001
Temperature (°C)	4940 (88)	36.5 (0.7)	36.6 (0.9)	<0.001

Signs and symptoms	% patients who had a stroke	% patients who had a stroke mimic	P value	
Abnormal gait	535 (9)	11	8	0.001
Atial fibrillation (presence or history)	662 (12)	13	8	<0.001
Alcohol/drug use reported	162 (3)	2	4	<0.001
Altered sensation	542 (10)	9	11	<0.001
Chest pain	58 (1)	1	2	0.001
Confusion	1602 (28)	27	31	0.001
Dizziness	515 (9)	8	10	0.095
Eye issues	282 (5)	6	3	<0.001
Floppy	282 (5)	5	5	0.450
General weakness	1256 (22)	20	25	<0.001

Continued

Table 1 Continued

Signs and symptoms	% patients who had a stroke	% patients who had a stroke mimic	P value	
Headache	1226 (22)	19	27	<0.001
Leg weakness	2665 (47)	54	36	<0.001
Nausea and/or vomiting	667 (12)	10	12	0.024
Neck stiffness	75 (1)	1	2	0.003
Seizures	171 (3)	1	6	<0.001
Syncope	65 (1)	1	2	<0.001
Tremors	146 (3)	2	4	<0.001
Unconscious	229 (4)	3	6	<0.001
Visual disturbances	490 (9)	8	10	0.002

FAST, Face Arm Speech Test; TIA, transient ischaemic attack.

RESULTS

The study included 5645 ‘impression stroke’ cases transported to the four HASUs identified from the NEAS EPRFs. The results of the data linking process are summarised in figure 1. Half of the patients who had a suspected stroke were confirmed as definite stroke by direct linkage with SSNAP data (n=2828). A further 335 patients were not included in the local SSNAP data set but were confirmed as stroke based on HES data. One thousand and four hundred four of the remaining 2162 patients were linked with HES data and had an SM diagnosis. In 758 patients no positive match could be made with either SSNAP or HES, and were classed as SM. In total, 3163 (56%) patients had a final diagnosis of stroke, 320 (6%) patients were TIAs, and 2162 (38%) patients were SM.

The mean age of all patients was 73.2 years (SD 14.4) and 48% of patients were male. A formal FAST result was documented in the structured data for 2877 (51%) patients but one or more FAST symptoms were documented for 5244 (93%) overall. Table 1 shows the characteristics of patients extracted from ambulance records according to stroke/TIA and SM categorisation.

Ambulance clinician documentation of ‘impression stroke’ identified 3483 confirmed cases of acute stroke/TIA out of 5645 total patients, that is, a PPV of 62% (95% CI 61 to 63). Patients with a final stroke diagnosis had higher rates of FAST documentation than patients who had an SM (54% vs 46% in structured data, p<0.001; 96% vs 91% for all documented FAST symptoms, p<0.001). A sensitivity analysis of the differing sources of FAST documentation showed that presence of a structured FAST-positive record had a PPV of 66% (95% CI 65 to 66); any FAST positive (structured FAST test or narrative FAST symptoms; or no documentation of FAST).

Patient and public involvement

There was no patient and public involvement.

RESULTS

The study included 5645 ‘impression stroke’ cases transported to the four HASUs identified from the NEAS EPRFs. The results of the data linking process are summarised in figure 1. Half of the patients who had a suspected stroke were confirmed as definite stroke by direct linkage with SSNAP data (n=2828). A further 335 patients were not included in the local SSNAP data set but were confirmed as stroke based on HES data. One thousand and four hundred four of the remaining 2162 patients were linked with HES data and had an SM diagnosis. In 758 patients no positive match could be made with either SSNAP or HES, and were classed as SM. In total, 3163 (56%) patients had a final diagnosis of stroke, 320 (6%) patients were TIAs, and 2162 (38%) patients were SM.

The mean age of all patients was 73.2 years (SD 14.4) and 48% of patients were male. A formal FAST result was documented in the structured data for 2877 (51%) patients but one or more FAST symptoms were documented for 5244 (93%) overall. Table 1 shows the characteristics of patients extracted from ambulance records according to stroke/TIA and SM categorisation.

Ambulance clinician documentation of ‘impression stroke’ identified 3483 confirmed cases of acute stroke/TIA out of 5645 total patients, that is, a PPV of 62% (95% CI 61 to 63). Patients with a final stroke diagnosis had higher rates of FAST documentation than patients who had an SM (54% vs 46% in structured data, p<0.001; 96% vs 91% for all documented FAST symptoms, p<0.001). A sensitivity analysis of the differing sources of FAST documentation showed that presence of a structured FAST-positive record had a PPV of 66% (95% CI 65 to 66); any FAST positive (structured FAST test or narrative FAST symptoms) 63% (95% CI 63 to 63); and no FAST symptom documentation 47% (95% CI 44 to 49).

These data were used to estimate the sensitivity of ambulance clinician recognition of stroke. SSNAP data from the four
participating acute trusts included 8538 patients who had a stroke over the study time frame. These records were filtered to include only those conveyed by NEAS, which equalled 6424 (75%) patients who had a suspected stroke. As the total number of NEAS patients who had a suspected stroke subsequently confirmed as correct was 3163 (not including TIA) then the sensitivity of stroke identification based on ambulance clinician impression was 49% (95% CI 48 to 50). When only patients with documented FAST symptoms were included the sensitivity decreased to 47% (95% CI 45 to 48).

There were 299 different ICD-10 codes recorded for patients with an SM diagnosis. The 10 most frequently recorded SM ICD-10 codes accounted for 33% of reported SM diagnoses (table 2).

DISCUSSION

In a large data set linking regional ambulance service data with patient diagnoses from four hospital trusts in North East England, identification of patients who had a stroke by ambulance clinicians had a PPV of 62%. FAST-positive patients were more likely to have a final stroke diagnosis than FAST-negative patients. SM (false positives) accounted for 38% of suspected stroke admissions identified by ambulance clinicians and included a wide range of diagnoses. These real-world performance data have implications for the efficiency of service reconfiguration towards a smaller number of larger HASUs and future provision of mechanical thrombectomy.

Forty factors were identified with statistically (p<0.05) different associations between patients who had a stroke and SM, but it may not be possible to use these to improve the specificity of prehospital stroke identification without increasing the risk that patients who had a genuine stroke do not rapidly access specialist care. Compared with stroke/TIA, patients who had an SM were more likely to be younger and female and less likely to have a history of hypertension. However, the absolute differences between the clinical characteristics of the stroke and SM populations were small. Many of the factors described have been reported by previous studies seeking to identify SM based on analyses of hospital data, including: younger age; absence of atrial fibrillation; absence of facial droop; and absence of historical hypertension. Seizures were still evident among the SM group despite being a clinical exclusion from many prehospital stroke pathways, including the NEAS pathway. This may indicate that some types of seizure activity and postictal states are complex presentations to identify in the prehospital setting. Clinical pathway clarification and additional training may be beneficial for these presentations.

Individual FAST symptoms were all significantly (p<0.001) associated with a final diagnosis of stroke, but were also recorded for large numbers of patients who had an SM. The FAST was inconsistently documented by ambulance clinicians with 51% of patients formally designated as FAST positive, whereas 93% of patients had one or more FAST symptoms recorded.

The PPV of 62% calculated in the current study is at the lower end of the range described for prehospital FAST use. Other prehospital services using FAST have reported similar PPV rates, with a PPV of 57% reported in FAST-positive ambulance prealerts in Ireland and a PPV of 68% for stroke/TIA.

Table 2 The 10 most frequently recorded SM diagnoses

ICD-10 diagnosis	Patients who had an SM, n (%)
Urinary tract infection, site not specified	66 (5)
Syncopa and collapse	55 (4)
Convulsions, not elsewhere classified	55 (4)
Other and unspecified symptoms and signs involving the nervous and musculoskeletal systems	46 (3)
Bell’s palsy	45 (3)
Hemiplegia, unspecified (non-stroke)	43 (3)
Epilepsy, unspecified	41 (3)
Migraine, unspecified	39 (3)
Lobar pneumonia, unspecified organism	38 (3)
Unspecified acute lower respiratory infection	22 (2)

ICD-10, International Statistical Classification of Diseases and Related Health Problems; SM, stroke mimic.
premiers reported in Scotland. The inclusion of TIA and FAST-negative patients might be an explanatory factor for the lower PPV observed, however this appears to increase the sensitivity of prehospital stroke identification. Modifications to FAST such as Balance, Eyes, Face, Arm, Speech, Time have been suggested to better identify patients currently missed by FAST by seeking posterior circulation symptoms such as balance and visual disturbances, but these have been developed from retrospective examination of hospital records and prospective impact during prehospital assessment has not been evaluated. Various scores have also been suggested to identify large vessel occlusive strokes suitable for mechanical thrombectomy, but their ability to exclude SM in real-world populations remains uncertain.

Previous smaller studies have reported lower SM rates (22%–23%) than the 38% observed but these were in the context of a rapid ambulance diversion protocol in a single urban unit. The high SM rate has implications in terms of planning clinical pathways; organisation of specialist care services; transportation times and ambulance resource availability; and repatriation and travel for relatives when SMs are displaced. The common SMs identified in this study (infection, seizures and migraine) are similar to those reported by two systematic reviews of SM and suggest opportunities for development of point-of-care diagnostics. Mobile stroke units have already demonstrated improvements in the prehospital treatment of stroke but may only be cost-effective and sustainable in dense urban areas. A more generalisable approach to improve prehospital stroke identification would be including content about common SM presentations and FAST-negative strokes in standardised training for ambulance clinicians. In future, patients who have a suspected stroke may benefit from ambulance clinicians being able to remotely access support from stroke specialists.

The estimated sensitivity of prehospital stroke identification by ambulance clinicians was 49% (95% CI 48 to 50). This is below the reported figures for FAST sensitivity in prehospital care (79%–97%), so may reflect ‘real world’ performance or differences in training and data collection.

Limitations
This is a service evaluation, therefore results cannot be generalised. Ambulance personnel could select more than one ‘impression’ per patient without indicating the most likely, thereby leading to inclusion of patients where stroke may not have been considered the main problem. Incorporation and workup biases may be present as the hospital response is influenced by the prehospital identification, or lack of identification, of stroke so the index test is not independent of the prehospital actions. Hospital coding is imperfect and the use of single ICD-10-based primary diagnoses does not represent the multiple conditions which some patients present with, but it is assumed that acute stroke would be the primary diagnosis if present. The hospital diagnoses used reflect diagnoses based on specialist input documented at discharge which may have been made after a prolonged admission, so are based on access to more data than were available to the ambulance clinicians. The hospital data set may have included small numbers of inpatient stroke which cannot be distinguished through HES. Narrative data were used, as well as structured clinical data, to describe factors recorded by ambulance clinicians, which have limitations due to the wide variability in documentation. These data made the results more representative of clinical practice, but introduced an element of interpretation. The probabilistic record matching process was also a limitation due to inconsistencies such as misspelling of names, missing data and differences in formatting between prehospital and hospital data sets. Patient diagnoses were established for the majority of patients but the assumption that the 13% of patients unmatched with SSNAP data (and without a confirmed diagnosis in HES) were SM may have been incorrect and led to underestimating the PPV. While PPV is the main measure reported in this study sensitivity has been estimated as well, more robust data on the true sensitivity of prehospital stroke identification would be valuable as this could inform improvements to identification which is a key role of the ambulance services.

In summary, the PPV of prehospital stroke identification by ambulance clinicians in the North East England was 62%, which is below the original performance from FAST validation studies but similar to other prehospital settings. SMs continue to make up a sizeable proportion of patients who had a suspected stroke identified by ambulance clinicians. Further training and technological innovation are needed to improve prehospital stroke stratification if services are to achieve optimal efficiency in patient flow and resource utilisation.

Twitter Graham McClelland @mcclg

Acknowledgements The Stroke Association; the North East Ambulance Service NHS Foundation Trust Charitable Foundation; the North East Ambulance Service NHS Foundation Trust and specifically Marc Birckett and Zarna Phipps; Judith Plank at Northumbria Healthcare NHS Foundation Trust; Dr Anand Dixit, Guy Galpin and Lorraine Bell at Newcastle Hospitals NHS Foundation Trust; Dr Izaj Anwar and James Andrew at North Tees and Hartlepool Hospitals NHS Foundation Trust; Dr Yogish Pai and Michael Nixon at County Durham and Darlington NHS Foundation Trust.

Contributors GM designed and conducted this study, analysed the data and wrote the manuscript. DE, HR and CP advised on all stages of the study and contributed to the final manuscript.

Funding The Stroke Association funded this work through their postgraduate fellowship scheme.

Competing interests GM reports grants from the Stroke Association, during the conduct of the study. DF reports grants from the National Institute for Health Research (Programme Grants for Applied Research, title: Promoting Effective and Rapid Stroke care (PEARS), project number: RP-PG-1211-20012), during the conduct of the study. HR reports grants from the NIHR, during the conduct of the study; personal fees from Bayer, outside the submitted work; and member of NIHR HTA CET panel 2010–2014. CP reports grants from the Stroke Association, during the conduct of the study.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Ethics approval No ethical approval was required as this service evaluation used routinely recorded information. Caldicott guardian approvals were granted by each NHS organisation for data sharing and use. This service evaluation project was registered with Newcastle Hospitals (project 7506, 29 March 2017).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

ORCID iD
Graham McClelland http://orcid.org/0000-0002-4502-5821

REFERENCES
1 Price CI, Rae V, Duckett J, et al. An observational study of patient characteristics associated with the mode of admission to acute stroke services in North East, England. PLoS One 2013;8:e76997.
2 Morris S, Hunter RM, Ramsay AIG, et al. Impact of centralising acute stroke services in English metropolitan areas on mortality and length of hospital stay: difference-in-differences analysis. BMJ 2014;349:g4757.
3 Harbison J, Hossain O, Jenkinson D, et al. Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test. Stroke 2003;34:71–6.
4 Association of Ambulance Chief Executives. Uk ambulance service clinical practice guidelines. Bridgewater, UK: Class Publishing, 2016.
5 Intercollegiate Stroke Working Party. National clinical guideline for stroke. Royal College of Physicians, 2016. Available: https://www.strokeaudit.org/SupportFiles/
McClelland G, et al. Emerg Med J 2020;37:474–479. doi:10.1136/emermed-2019-208902

6 McClelland G, Flynn D, Rodgers H, et al. A survey of UK paramedics’ views about their stroke training, current practice and the identification of stroke mimics. British Paramedic Journal 2017;2:4–15.

7 Rudd M, Buck D, Ford GA, et al. A systematic review of stroke recognition instruments in hospital and prehospital settings. Emerg Med J 2016;33:818–22.

8 McClelland G, Rodgers H, Flynn D, et al. The frequency, characteristics and aetiology of stroke mimic presentations: a narrative review. Eur J Emerg Med 2019;26:2–8.

9 SSNAP: Results: Clinical Audit: Regional: April 2016 – March 2017. [Internet], 2019. Available: https://www.strokeaudit.org/results/Clinical-audit/Regional-Results.aspx [Accessed 9 Apr 2019].

10 Sentinel Stroke National Audit Programme. Home: Welcome to the SSNAP website. [Internet], 2019. Available: https://www.strokeaudit.org/ [Accessed 13 Jun 2019].

11 Fothergill RT, Williams J, Edwards MJ, et al. Does use of the recognition of stroke in the emergency room stroke assessment tool enhance stroke recognition by ambulance clinicians? Stroke 2013;44:3007–12.

12 Goyal N, Tsivgoulis G, Male S, et al. FABS: an intuitive tool for screening of stroke mimics in the emergency department. Stroke 2016;47:2216–20.

13 Merino JG, Luby M, Benson RT, et al. Predictors of acute stroke mimics in 8187 patients referred to a stroke service. J Stroke Cerebrovasc Dis 2013;22:e397–403.

14 McClelland G, Rodgers H, Price CI. A survey of pre-hospital stroke pathways used by UK ambulance services. Int J Stroke 2018;13:35.

15 Feeley A, Barry T, Hayden D, et al. Pre-Hospital fast positive cases identified by DFB ambulance Paramedics: final clinical diagnosis. Ir Med J 2016;109:397.

16 Brown CW, Macleod MJ. The positive predictive value of an ambulance prealert for stroke and transient ischaemic attack. Eur J Emerg Med 2018;25:411–5.

17 Aroor S, Singh R, Goldstein LB. BE-FAST (balance, eyes, face, arm, speech, time): reducing the proportion of strokes missed using the fast mnemonic. Stroke 2017;48:479–81.

18 Lima FO, Silva GS, Furtie KI, et al. Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes. Stroke 2016;47:1997–2002.

19 Nor AM, McAllister C, Louw SJ, et al. Agreement between ambulance paramedic- and physician-recorded neurological signs with face arm speech test (fast) in acute stroke patients. Stroke 2004;35:1355–9.

20 Gibson LM, Whiteley W. The differential diagnosis of suspected stroke: a systematic review. J R Coll Physicians Edinb 2013;43:114–8.

21 Purines for rapid identification of stroke mimics (PRISM study). ISRCTN registry. Reference ISRCTN 22232981. [Internet], 2019. Available: http://www.isrctn.com/ISRCTN22232981 [Accessed 13 Jun 2019].

22 Cerebrotech Medical Systems. Cerebrotech Medical Systems [Internet], 2018. Available: http://www.cerebrotechmedical.com/ [Accessed 18 Aug 2018].

23 Fassbender K, Grotta JC, Walter S, et al. Mobile stroke units for prehospital thrombolysis, triage, and beyond: benefits and challenges. Lancet Neurol 2017;16:227–37.

24 Barrett KM, Pizzi MA, Kesari V, et al. Ambulance-based assessment of NIH stroke scale with telemedicine: a feasibility pilot study. J Telemed Telecare 2017;23:476–83.

25 Chapman Smith SN, Govindanajan P, Padrick MM, et al. A low-cost, tablet-based option for prehospital neurologic assessment: the iTREAT study. Neurology 2016;87:19–26.