PARAMETRIZATIONS OF CANONICAL BASES AND IRREDUCIBLE COMPONENTS OF NILPOTENT VARIETIES

BASED ON THE TALK BY YONG JIANG

Throughout the talk Q is a fixed quiver with the set of vertices I.
Let \mathfrak{g} be the Kac–Moody Lie algebra associated with Q. By the $U_q^- (\mathfrak{g})$ we denote the subalgebra of the quantized enveloping algebra $U_q (\mathfrak{g})$ of \mathfrak{g} generated by the elements $f_i, i \in I$. By the crystal basis of $U_q^- (\mathfrak{g})$ we mean a pair $(\mathcal{L}, \mathcal{B})$ such that \mathcal{L} is an \mathcal{A}_0-lattice of $U_q^- (\mathfrak{g})$, i.e. $\mathcal{L} \otimes \mathbb{Q}(q) \simeq U_q^- (\mathfrak{g})$, where

$$\mathcal{A}_0 := \left\{ \frac{f}{g} \in \mathbb{Q}(q) : g(0) \neq 0 \right\},$$

and \mathcal{B} is a \mathbb{Q}-basis of $\mathcal{L} / q \cdot \mathcal{L}$ (observe that $\mathcal{A}_0 / q \cdot \mathcal{A}_0 \simeq \mathbb{Q}$).

Now let w be an element of the Weyl group W associated with Q. We also fix a sequence $i = (i_1, \ldots, i_r)$ of vertices of Q inducing a reduced expression of w. For each $k \in [1, r]$ we put

$$F_{i,k} := (T_{i_1} \circ \ldots \circ T_{i_{k-1}})(f_{i_k}),$$

where, for $i \in I$, T_i is the Lusztig’s braid automorphism associated with i. Finally, if $a = (a_1, \ldots, a_r) \in \mathbb{N}^r$, then we put

$$F_i(a) := F_{i_1}^{(a_1)} \cdot \ldots \cdot F_{i_r}^{(a_r)},$$

where

$$x^{(a)} := \frac{x^a}{[a]!}$$

for an element x of $U_q^- (\mathfrak{g})$ and $a \in \mathbb{N}$,

$$[a]! = [1] \cdot \ldots \cdot [a]$$

for $a \in \mathbb{N}$, and

$$[a] = \frac{q^a - q^{-a}}{q - q^{-1}}$$

for $a \in \mathbb{N}$. Lusztig has proved that for each $a \in \mathbb{N}^r$ there exists unique element b of \mathcal{B} such that the elements $F_i(a)$ and b are congruent modulo $q \cdot \mathcal{L}$. We denote the map induced in this way by Φ_i.

Let Λ be the preprojective algebra associated with Q. For a dimension vector d we denote by Λ_d the variety of the nilpotent Λ-modules with dimension vector d. By $\text{Irr} \, \Lambda$ we denote the set of the irreducible components of the varieties Λ_d, $d \in \mathbb{N}^I$. Kashiwara and Saito have

\textit{Date:} 04.11.2011.
Yong Jiang proved that there is a natural bijection Ψ between B and $\text{Irr} \Lambda$. Consequently, we have the function $\Psi_1 := \Psi \circ \Phi_1 : \mathbb{N}^r \to \text{Irr} \Lambda$. We describe this map explicitly.

For $i \in I$ we denote by I_i the injective envelope of the simple Λ-module at i. For $k \in [1, r]$ we put

$$V_{i,k} := S_{i_1, \ldots, i_k} I_k.$$

Here, for $i \in I$ and a Λ-module V, we denote by $S_i V$ the maximal submodule of V whose composition factors are isomorphic to S_i. Moreover, if $j_1, \ldots, j_t \in I$ and $t > 1$, then $S_{j_1, \ldots, j_t} V := S_{j_1} (S_{j_2, \ldots, j_t} V)$. Next, for $k \in [1, r]$ we denote by k^- the maximal $s \in [1, k - 1]$ such that $i_s = i_k$ (we put $k^- := 0$ if there is no such s). There is a natural embedding $V_{i,k^-} \hookrightarrow V_{i,k}$ and we put $M_{i,k} := V_{i,k}/V_{i,k^-}$. If $a \in \mathbb{N}^r$, then we denote by $Z_i(a)$ the closure of the set consisting of the Λ-modules X such that there exists a filtration

$$0 = X_0 \subseteq X_1 \subseteq \cdots \subseteq X_r = X$$

such that $X_k/X_{k-1} \simeq M_{i,k}^{a_k}$ for each $k \in [1, r]$. Then $Z_i(a) \in \text{Irr} \Lambda$ and $\Psi_1(a) = Z_i(a)$ for each $a \in \mathbb{N}^r$.
