Superiority of Siriraj Stroke Score Over Guy’s Hospital Score in Diagnosing Acute Hemorrhagic Stroke at Bedside.

Raseul Kabir1, Md. Amjad Hossain Pramanik2, S.M Emdadul Haque1, Muhatarima Tabassum4, Fateha Sultana5.

Abstract
Background: The clinical diagnosis of stroke in a patient admitted in the intensive care unit (ICU) is undeniably challenging. Several point-based risk scores have been developed to predict clinical outcomes after ischemic stroke. Objective: To assess the Siriraj stroke score and Guy’s Hospital stroke score in the clinical diagnosis of acute stroke.

Materials and Methods: All patients were subjected to Computed tomography (CT) scan head within 72 hours of admission. The sensitivity, specificity, positive predictive value was calculated for both the scores. Comparability between the scores and CT scan head finding was determined with the help of Kappa statistic program. Results: Sensitivity of Guy’s Hospital stroke score for ischemic stroke is 100%, specificity is 96.4%, accuracy 97.1%, positive predictive value of 87.5% and negative predictive value 100%. The sensitivity of Guy’s Hospital stroke score for hemorrhage stroke is 96.4%, specificity is 100%, accuracy 97.1%, positive predictive value of 100% and negative predictive value 87.5%. Conclusion: Siriraj stroke score as a simple method of screening patients for intracerebral hemorrhage, as it is easier to use at bedside and has a greater accuracy in diagnosing hemorrhage than Guy’s Hospital score.

Key words: Siriraj Stroke Score, Guy’s Hospital Stroke Score

Introduction
Stroke is the leading cause for severe disability, a major cause for cardiovascular death worldwide and one of the most time-critical emergencies in medicine. Clinical parameters such as the presence of stroke risk factors can lead to changes in the cerebral vasculature and may influence infarct lesion evolution. In the era of extended time windows for endovascular thrombectomy (EVT) and intravenous thrombolysis for patients with salvageable brain tissue, infarction growth dynamics tremendously gain importance, and factors influencing individual stroke progression may guide clinical decision-making on further patient management (eg, treatment selection and decision, which patient to transfer for EVT). The clinical diagnosis of stroke in a patient admitted in the intensive care unit (ICU) is undeniably challenging. The acute imaging work-up for patients suspected of stroke has evolved quite significantly over the past decades, evolving from a mere non-contrast head CT (NCT) to a NCT/CT-angiogram (CTA) up to now when perfusion imaging has become part of the clinical mainstay to identify salvageable tissue. Several point-based risk scores have been developed to predict clinical outcomes after ischemic stroke. However, the predictors and their assigned points remarkably differ depending on the scores. Prognostic scores may not fit all cohorts because there are differences in racial or ethnic groups, the patients’ background, hospital type, the healthcare system, and acute stroke treatment. Majority of patients with stroke do not have access to brain imaging. Because the shortage of brain imaging in the region is most unlikely to be resolved in the near future, it is of practical importance to know if clinical stroke scores enhance the clinicians’ bedside assessment of pathologic stroke type in SSA.

Materials and Methods
The study was conducted on 50 patients admitted with acute stroke over a period of one year. Siriraj stroke score was calculated on admission and Guy’s Hospital stroke score was
calculated 24 hours after admission. The aim of the study to assess the Siriraj stroke score and Guy’s Hospital stroke score in the clinical diagnosis of acute stroke. All patients were subjected to CT scan head within 72 hours of admission. The sensitivity, specificity, positive predictive value was calculated for both the scores. Comparability between the scores and CT scan head finding was determined with the help of Kappa statistic program. The study group consisted of patients admitted to medical wards with a clinical diagnosis of acute stroke (stroke as defined by WHO definition). A detailed history, thorough clinical examinations were performed at admission and at end of 24 hours. Siriraj stroke score and Guy’s Hospital stroke score were evaluated. All patients were subjected to CT scan head within 72 hours of admission. Patients were excluded who had previous history of stroke, subarachnoid hemorrhage, patients with clinical picture suggestive of postictal paralysis and patients with history of trauma. The Siriraj stroke score is calculated as (2.5x level of consiounness) + (2 x vomiting) + (2 x headache) + (0.1 x diastolic B.P.)– (3 x atheroma markers) -12. A score of less than -1 was considered as infarction and a score of more than +1 as hemorrhage. Scores between -1 and +1 were considered as equivocal. The score of <4 was considered as infarction and a score of >24 was considered as hemorrhage. Scores between 4 and 24 were considered as equivocal. Both the Siriraj stroke score and Guy’s Hospital stroke score were compared with CT findings and sensitivity, specificity and positive predictive value were calculated. Comparability between the scores and CT findings was determined with the help of Kappa statistic programme.

Results

Out of 65 patients, mean age was found 45.7±11.5 years in infarction group and 47.3±10.6 years in hemorrhage group. Male was predominant in both groups 16(59.3%) in infarction group and 23(60.5%) in hemorrhage group, that was statistically significant (p>0.05) between two groups (Table-I). Cardiovascular disease was found 5(18.5%) in infarction group but found in hemorrhage group that was statistically significant (p<0.05) compared between two groups. However, other risk factors such as history of hypertension, smoking, alcohol consumption, diabetes mellitus and hypercholesterolemia were not statistically significant (p>0.05) between two groups (Table-II). Mortality was found 3(11.1%) in infarction group and 12(31.6%) in hemorrhage group, that was not statistically significant (p>0.05) between two groups (Table-III). Siriraj Stroke Score < -1 was found 8(29.6%) in infarction group and 1(2.6%) in hemorrhage group. Siriraj Stroke Score > +1 was observed 27(71.1%) in hemorrhage group not found in infarction group. Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score >24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Sensitivity of Guy’s Hospital stroke score for ischemic stroke is 100%, specificity is 96.4%, accuracy 97.1%, positive predictive value of 87.5% and negative predictive value 100%. The sensitivity of Guy’s Hospital stroke score for hemorrhage stroke is 96.4%, specificity is 100%, accuracy 97.1%, positive predictive value of 100% and negative predictive value 87.5% (Table. VII-XI).

Table I: Socio-demographic characteristics of the study patients (n=65)

Variables	Infarction (n=27)	Hemorrhage (n=38)	P value
Age (years) Mean ± SD	45.7±11.5	47.3±10.6	0.564^{ns}
Sex			
Male	16 59.3	23 60.5	0.918^{ns}
Female	11 40.7	15 39.5	
History of Hypertension	10 37.0	16 42.1	0.744^{ns}
Smoking	11 40.7	17 44.7	0.748^{ns}
Cardiovascular disease	5 18.5	0 0.0	0.009^s
Alcohol consumption	9 33.3	21 55.3	0.080^{ns}
Diabetes mellitus	4 14.8	5 13.2	0.562^{ns}
Hyper choleseterolemia	3 11.1	4 10.5	0.621^{ns}

s=significant; ns=not significant; P value reached from unpaired t-test and Chi square test

Table II: Distribution of the study patients by risk factors (n=65)

Risk factors	Infarction (n=27)	Hemorrhage (n=38)	P value
	n %	n %	
History of Hypertension	10 37.0	16 42.1	0.744^{ns}
Smoking	11 40.7	17 44.7	0.748^{ns}
Cardiovascular disease	5 18.5	0 0.0	0.009^s
Alcohol consumption	9 33.3	21 55.3	0.080^{ns}
Diabetes mellitus	4 14.8	5 13.2	0.562^{ns}
Hyper choleseterolemia	3 11.1	4 10.5	0.621^{ns}

s=significant; ns=not significant; P value reached from Chi square test

Table III: Distribution of the study patients by mortality (n=65)

Mortality	Infarction (n=27)	Hemorrhage (n=38)	P value
Yes	3 11.1	12 31.6	0.053^{ns}
No	24 88.9	26 68.4	
Table IV: Siriraj stroke score and CT correlation for ischemic stroke

Siriraj Stroke Score	CT Scan diagnosis	Infarction (n=27)	Hemorrhage (n=38)	
	n	%	n	%
< -1				
-1 to +1	18	66.7	4	10.5
> +1	1	3.7	33	86.8

Table V: Siriraj stroke score and CT correlation for hemorrhagic stroke

Siriraj Stroke Score	CT Scan diagnosis	Hemorrhage (n=38)	Infarction (n=27)	
	n	%	n	%
> +1	33	86.8	1	3.7
-1 to +1	4	10.5	18	66.7
< -1	1	2.6	8	29.6

Table VI: Sensitivity, specificity, accuracy, positive and negative predictive values of the Siriraj Stroke Score evaluation of acute stroke

Validity test	Ischemic stroke	Hemorrhage
Sensitivity	88.9	97.1
Specificity	97.1	88.9
Accuracy	95.3	95.3
Positive predictive value	88.9	97.1
Negative predictive value	97.1	88.9

Table VII: Guy’s Hospital stroke score and CT correlation for ischemic stroke

Guy’s Hospital stroke score	CT Scan diagnosis	Infarction (n=27)	Hemorrhage (n=38)	
	n	%	n	%
< 4	7	25.0	1	2.6
>4 to <24	20	75.0	10	26.3
> 24	0	0.0	27	71.1

Table VIII: Guy’s Hospital stroke score and CT correlation for Hemorrhage stroke

Guy’s Hospital stroke score	CT Scan diagnosis	Hemorrhage (n=38)	Infarction (n=27)	
	n	%	n	%
> 24	27	71.1	0	0.0
>4 to <24	10	26.3	20	75.0
< 4	1	2.6	7	25.0

Table IX: Sensitivity, specificity, accuracy, positive and negative predictive values of the Guy’s Hospital stroke score evaluation of acute stroke

Validity test	Ischemic stroke	Hemorrhage
Sensitivity	100	96.4
Specificity	96.4	100
Accuracy	97.1	97.1
Positive predictive value	87.5	100
Negative predictive value	100	87.5

Discussion

In this study observed that mean age was found 45.7±11.5 years in infarction group and 47.3±10.6 years in hemorrhage group. Male was predominant in both groups 16(59.3%) in infarction group and 23(60.5%) in hemorrhage group. The difference was not statistically significant (p>0.05) between two groups. In Nyoduet al.14 study, the age of the patients ranged from 22 to 90 years with a mean of 62 ± 14 years, and result of the present study is also similar with the findings of Emmanuel et al.15 in which the mean age of stroke was 64.2 years. Men have a greater frequency of stroke than women, but because life expectancy is higher in women, women often outnumber men in many stroke studies.16 During the pre-menopausal years, women have fewer strokes than men, but incidence levels off after age 60 years. Yukihiro et al.17 in their hospital-based study of the Care and Cost of Acute Ischemic Stroke in Japan found 69% male-to female predominance.

In our study also, male has more percentage (60%) of stroke than that of his counterpart female (40%); this is true in both types of strokes, but gender does not have any significant role to distinguish the types of strokes (P = 0.423). Massaroet al.18 reported the mean age was found 67±0.37 years infarction group and 59±1.06 years in hemorrhage group. Whereas male was 47.5% and 56.5% in infarction and hemorrhage group respectively. The difference was statistically significant (p>0.05) between two groups. Upadhaya et al19 observed that the maximum incidence was between 60-70 yrs (32%) in both infarction and hemorrhage groups. There were 2 patients who were in the age group < 30yrs. Out of 50 cases, 27 were males...
In this study observed that Guy’s Hospital score < 4 was found 27(71.1%) in hemorrhage group and 1(2.6%) in infarction group. Guy’s Hospital stroke score > 24 was observed 25(68.9%) in hemorrhage group and 23(62.1%) in infarction group. In this study observed that Guy’s Hospital score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 30 patients diagnosed as haemorrhage by CT scan head Guy’s hospital score was suggestive of hemorrhage in 21 cases. In 8 cases the score was equivocal and it wrongly diagnosed 1 case of hemorrhage as infarction.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.

In present study observed that Guy’s Hospital stroke score < 4 was found 7(25.0%) in infarction group and 1(2.6%) in hemorrhage group. Guy’s Hospital stroke score > 24 was observed 27(71.1%) in hemorrhage group not found in infarction group. Upadhaya et al.19 reported out of 20 patients diagnosed as infarction by CT scan head Guy’s hospital score was suggestive of infarction in 5 cases. In 15 cases the score was equivocal.
2. Tirschwell DL, Smith NL, Heckbert SR, Lemaire RN, Longstreth WT Jr, Psaty BM. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology. 2004;63:1868–1875.

3. Shah RS, Cole JW. Smoking and stroke: the more you smoke the more you stroke. Expert Rev Cardiovasc Ther. 2010;8:917–932.

4. Boehme AK, Esenwa C, Elkind MS. Stroke risk factors, genetics, and prevention. Cire Res. 2017;120:472–495.

5. Hendrix P, Sofoluke N, Adams MD, Kumparayoon S, Zand R, Kolinvsky AN, et al. Risk factors for acute ischemic stroke caused by anterior large vessel occlusion. Stroke. 2019;50:1074–1080.

6. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al; WAKE-UP Investigators. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379:611–622.

7. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al; EXTEND Investigators. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380:1795–1803.

8. Nogueira RG, Jadhav AP, Haussen DC. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018;378:11–21.

9. Campbell BC, Christensen S, Levi CR. Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke 2012; 43:2648–2653.

10. Wintemark M, Sanelli PC, Albers GW. Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery. J Am Coll Radiol. 2013; 10:828–832.

11. Matsumoto K, Nohara Y, Soejima H, Yonehara T, Nakashima N, Kamouchi M. Stroke prognostic scores and data-driven prediction of clinical outcomes after acute ischemic stroke. Stroke. 2020;51:1745–1753.

12. Ogun SA, Oluwole O, Fatade B, Ogunseyinde AO, Ojini F, Oduote A. Accuracy of the Siriraj stroke score in differentiating cerebral hemorrhage and infarction in African Nigerians. Asian J Neurosurg 2001;20:21-26.

13. Hung LY, Wang PY, Wang Y, Chia LG. Clinical distinction between acute hemorrhagic and acute ischemic stroke by Siriraj stroke score. Zhonghua Yi Xue Za Zhi1995;55:248-252.

14. Nyodu T, Singh K, Singh J, Kenny S, Singh C, Singh MK. A comparison of clinical diagnosis with Computed Tomography findings in stroke patients. J Med Soc 2013;27:216-221.