Factors associated with development of nephrotoxicity in patients treated with vancomycin versus daptomycin for severe Gram-positive infections: A practice-based study

José Barberán¹
José Mensa²
Arturo Artero²
Francisco Epelde³
Juan-Carlos Rodríguez³
Josefa Ruiz-Morales⁴
José-Luis Calleja⁴
José-Manuel Guerra⁵
Iñigo Martínez-Gil¹
María-José Giménez⁵
Juan-José Granizo⁶
Lorenzo Aguilar⁷

ABSTRACT

Objectives. To evaluate nephrotoxicity development in patients treated with vancomycin (VAN) and daptomycin (DAP) for proven severe Gram-positive infections in daily practice.

Patients and methods. A practice-based, observational, retrospective study (eight Spanish hospitals) was performed including patients ≥18 years with a baseline glomerular filtration rate (GFR) >30 mL/min and/or serum creatinine level <2 mg/dL treated with DAP or VAN for >48 h. Nephrotoxicity was considered as a decrease in baseline GFR to <50 mL/min or decrease of >10 mL/min from a baseline GFR <50 mL/min. Multivariate analyses were performed to determine factors associated with 1) treatment selection, 2) nephrotoxicity development, and 3) nephrotoxicity development within each antibiotic group.

Results. A total of 133 patients (62 treated with DAP, 71 with VAN) were included. Twenty-one (15.8%) developed nephrotoxicity within patients treated with VAN (R²=0.232; p=0.018) were congestive heart failure (OR=4.35, 95%CI:1.23-15.37), endocarditis (OR=7.63, 95%CI:1.02-57.31) and basal creatinine clearance <80 mL/min (OR=7.73, 95%CI:1.20-49.71).

Conclusions. Nephrotoxicity with VAN was significantly higher than with DAP despite poorer basal renal status in the DAP group.

Key words: Nephrotoxicity, daptomycin, vancomycin

RESUMEN

Objetivos. Evaluar el desarrollo de nefrotoxicidad en la práctica clínica diaria en pacientes con infecciones graves probadas por grampositivos, tratados con vancomicina (VAN) y daptomicina (DAP).

Pacientes y métodos. Se diseñó un estudio observacional retrospectivo, basado en la práctica clínica diaria (ocho hospitales españoles), en el que se incluyeron pacientes ≥18 años con una tasa basal de filtrado glomerular (GFR) > 30 mL/min y/o una creatinina sérica < 2 mg/dL para los pacientes tratados con DAP o vancomicina durante > 48 horas. La nefrotoxicidad fue considerada como una disminución del GFR basal a < 50 mL/min o una disminución de > 10 mL/min desde un GFR basal de < 50 mL/min. Se diseñaron análisis multivariantes para determinar los factores asociados con: 1) la selección del tratamiento, 2) el desarrollo de nefrotoxicidad y 3) el desarrollo de nefrotoxicidad con cada antibiótico.

Resultados. Se incluyeron 133 pacientes (62 tratados con DAP, 71 con vancomicina). Veintiuno (15.8%) desarrollaron nefrotoxicidad: 4/62 (6.3%) pacientes con DAP y 17/71 (23.3%) con VAN (p=0.006). No se encontraron diferencias entre los
MATERIALS AND METHODS

Study design and population. A practice-based, observational, retrospective study was conducted to evaluate nephrotoxicity in patients admitted to eight Spanish hospitals with proven Gram-positive cocci infections that had been treated with DAP or VAN according to clinical practice. The study protocol was approved by the Ethical Review Board of Hospital Central de la Defensa Gomez Ulla, Madrid, Spain.

Clinical records of antibiotic-treated patients discharged from Internal Medicine Departments of participating hospitals, at least six months prior to study approval, were reviewed and studied if they were patients ≥18 years of age that had received parenteral DAP or VAN treatment for >48 h, and had a baseline glomerular filtration rate (GFR) >30 mL/min and/or a serum creatinine level <2 mg/dL. Transplant recipients, patients presenting neutropenia (<1000 neutrophils/mm³), AIDS (≤200 CD4/mm³), and concomitant disease or infection that in opinion the investigator might confound the results of the study were not considered. Medical records were reviewed for demographic, clinical (concomitant antibiotic treatment, length of treatment, outcome...), microbiological and analytical data.

Study definitions. Nephrotoxicity was defined as a decrease in baseline GFR to <50 mL/min or a decrease of >10 mL/min from a baseline GFR <50 mL/min. Clinical response was considered as resolution of baseline signs/symptoms. Clinical failure was defined as death, persistence or worsening of baseline signs/symptoms, emergence of new signs/symptoms, or requirement of additional antibiotics different from those empirically prescribed. Microbiological response was considered as eradication (negative cultures after treatment) or absence of post-treatment cultures due to favourable clinical response. Patients were assessed at the end of parenteral treatment and until hospital discharge or death. Standard definitions for sepsis, severe sepsis or septic shock were employed [27].

Statistical analysis. Differences between treatments were assessed by t test or U-Mann-Whitney non-parametric tests (continuous variables) or by Chi square/Fish exact tests (discrete variables). Significance level was established at p ≤ 0.05. Several stepwise logistic regression multivariate analyses were conducted in order to determine: 1) factors associated with treatment selection, 2) factors associated with development of nephrotoxicity, 3) factors associated with development of nephrotoxicity among patients treated with VAN, and 4) factors associated with development of nephrotoxicity among patients treated with DAP. All variables showing differences in bivariate analyses (p <0.1) were considered for inclusion in the models. In addition, based on the well-known nephrotoxicity of aminoglycosides, concomitant administration of these drugs was introduced in the model as independent variable. All statistical calculations were computed using SAS system version 9.2® for Windows®.

INTRODUCTION

Until recent years, vancomycin (VAN) has been the cornerstone antibiotic for the treatment of severe methicillin-resistant Staphylococcus spp. infections. However, the progressive loss of susceptibility of Staphylococcus aureus to VAN has led to the use in daily practice of doses higher than those approved by the Food and Drug Administration (1g/12h) to maintain its effectiveness [1-7]. Particularly, high-dose treatments targeting a serum trough concentration of 15-20 mg/L has been recommended in several guidelines [8-14]. This increasing dosage of VAN has been significantly associated with the development of renal failure in several studies [7,15-19]. The incidence of nephrotoxicity related with VAN treatment varies greatly due to the different baseline characteristics of the populations evaluated and the different dosing regimens. Available data suggests its association with concomitant administration of nephrotoxic agents, high serum trough levels, and prolonged duration of therapy [15,20,21]. This is important since small increases in serum creatinine of hospitalized patients are associated with increased mortality, hospital stay and health costs [22-24].

Alternative compounds such as daptomycin (DAP) and linezolid, specific agents against Gram-positive infections, have demonstrated to be less nephrotoxic than VAN (as comparator drug at 1g/12h) [25,26]. However, no comparative study has specifically evaluated nephrotoxicity as primary end-point between DAP and VAN.

The aim of the present study was to evaluate nephrotoxicity development in patients treated with VAN and DAP for severe Gram-positive infections, and factors associated with it, in daily practice.
RESULTS

A total of 133 patients were included, 62 patients treated with DAP and 71 patients with VAN. The median (range) total daily dose for DAP was 390 mg (500 mg-700 mg), and for VAN, doses were 1-2g/12h, with 76.1% patients having received 2g/12h. Treatment duration [median (interquartile range)] was significantly higher for DAP [15 (8-28.5) days] than for VAN [10 (6-15) days] (p=0.002). Overall, nephrotoxicity occurred in 21 out of 133 (15.8%) patients: 4 out of 62 (6.3%) patients treated with DAP and 17 out of 71 (23.3%) with VAN (p=0.006). Median (interquartile range) time to nephrotoxicity was 9.5 (2.8-29.8) days with DAP and 7.0 (4.0-18.5) days with VAN (p=0.893).

Table 1 shows microorganisms isolated and concomitant antibiotics. Drugs other than antibiotics with potential nephrotoxicity (furosemide, salicylic acid, non-steroidal anti-inflammatory drugs...) were administered to 15 out of 133 (11.3%) patients, without differences between antibiotic groups and between patients developing or not nephrotoxicity. Methicillin-resistant Staphylococcus aureus (MRSA) accounted for 29.3% of all isolates. The percentage of the different species isolated did not show differences between groups. With respect to concomitant antibiotics during DAP or VAN treatment, β-lactams administration was more frequent among patients not developing nephrotoxicity, with cephalosporins more frequently used among patients receiving VAN (vs. DAP).

Tables 2 and 3 show characteristics of patients, comorbidities, and type and severity of infections distributing patients by antibiotic treatment and development of nephrotoxicity or not, respectively. More than 65% patients were ≥65 years old, without differences between antibiotic groups but being significantly higher the percentage of patients from this age group among those developing nephrotoxicity. Up to 31.6% patients had a Charlson index ≥3; median (interquartile range) index value for the study population was 2 (0-3), without differences between antibiotic groups or patients developing nephrotoxicity or not. Patients with sepsis/severe sepsis/septic shock represented 88.7% of the study population (118 out of 133 patients), without differences between groups.

In bivariate analysis (table 2), acute myocardial infarction and stroke (as comorbidities) and primary bacteremia (type of infection) were significantly more frequent among patients treated with VAN than among those with DAP, whereas hypertension, basal creatinine and endocarditis were more frequent.

Table 1

Isolated microorganisms, concomitant antibiotics and outcome
Isolated microorganisms
Total (n=133)
CNS⁵
MRSA⁶
MSSA⁷
Enterococcus spp.
Other Gram-positive bacteria
Gram-negative bacteria
Concomitant antibiotics
Penicillins
Cephalosporins
Aztreonam
Carabapenem
Total β-lactams
Aminoglycosides
Quinolones
Rifampicin
Others
Clinical cure
Eradication + presumed eradication

CNS: Coagulase-negative staphylococci; MRSA: Methicillin-resistant Staphylococcus aureus; MSSA: Methicillin-susceptible Staphylococcus aureus
among patients treated with DAP. In the multivariate analysis for treatment selection ($R^2=0.209; p<0.001$), factors associated with DAP treatment were diabetes mellitus (DM) with organ lesion (OR=7.73, 95%CI: 1.98-30.93) and basal creatinine clearance lower among patients developing nephrotoxicity during treatment (table 3), with higher percentage of patients with congestive heart failure. On the contrary, the percentage of patients with malignancies was higher among patients not developing nephrotoxicity. In the multivariate analysis ($R^2=0.142; p=0.001$), factors associated with nephrotoxicity were basal creatinine clearance <80 mL/min (OR=9.22, 95%CI: 1.98-30.93) and treatment with VAN (OR=6.07, 95%CI: 1.86-19.93).

Table 4 shows basal data potentially influencing development of nephrotoxicity for patients treated with VAN. In the bivariate analysis, patients developing nephrotoxicity were significantly older and presented more frequently congestive heart failure, higher values of basal creatinine and lower values of basal creatinine clearance. In the multivariate analysis ($R^2=0.232; p=0.018$), factors associated with nephrotoxicity were congestive heart failure (OR=4.35, 95%CI: 1.23-15.37), endocarditis (OR=7.63, 95%CI: 1.02-57.31) and basal creatinine clearance <80 mL/min (OR=7.73, 95%CI: 1.20-49.71).

Table 5 shows basal data potentially influencing development of nephrotoxicity for patients treated with DAP. All patients developing nephrotoxicity presented a basal GFR ≤50 mL/min/1.73 m2. In the multivariate analysis ($R^2=0.080; p=0.029$) only DM with organ lesion (OR=16.00, 95%CI: 1.25-204.11) was associated with nephrotoxicity.

No differences in outcome were found between antibiotics (88.7% for DAP vs. 87.3% for VAN), but the percentage of clinical cure among patients developing nephrotoxicity was significant lower (71.4% vs. 91.1% for patients without nephrotoxicity, $p=0.011$). Eradication or presumed eradication was obtained in 82.2% patients without differences between groups.
Factors associated with development of nephrotoxicity in patients treated with vancomycin versus daptomycin for severe Gram-positive infections: A practice-based study

J. Barberán, et al.
Rev Esp Quimioter 2019;32(1): 22-30

Table 3

Basal data potentially influencing development of nephrotoxicity: patient’s characteristics, comorbidities (present in >9% patients), type of infection and severity. Data expressed as n (%) or mean ± SD
Nephrotoxicity

Males
Age
≥65 years
Congestive heart failure
Diabetes mellitus (DM)
COPD*
Acute myocardial infarction
Malignancies
Dementia
Stroke
DM with organ lesion
Hypertension
Basal GFR* (mL/min/1.73 m²)
Basal GFR* ≥50 mL/min/1.73 m²
Basal creatinine (mg/dL)
Basal creatinine ≥0.9 mg/dL
Basal creatinine >1.2 mg/dL
Basal creatinine clearance (mL/min)
Basal creatinine clearance <80 mL/min
Basal CPK (U/L)

*COPO: Chronic obstructive pulmonary disease; GFR: Glomerular filtration rate; CPK: Creatine phosphokinase

DISCUSSION

The present study, to our knowledge the first comparative study assessing VAN- and DAP-induced nephrotoxicity in the treatment of Gram-positive infections in the uncon- trolled setting of daily medical practice, showed significantly higher nephrotoxicity among patients treated with VAN than with DAP, not attributable to previous conditions or concomitant treatment with other potential nephrotoxic drugs.

In the literature, high daily doses of VAN providing serum trough levels of 15–20 mg/L, which are recommended when the MIC for MRSA is >1 mg/L, have been independently associated with an increased risk of nephrotoxicity [7,15-19]. A recent retrospective multicenter study with VAN trough levels of 17 mg/L concluded that rates of acute kidney injury were significantly lower in the DAP group in the treatment of bloodstream infections [28]. Two clinical trials, compared DAP with VAN at the dose of 1 g every 12 h [25,29]. Arbeit et al. in a study analyzing patients with complicated skin and soft tissue infections did not document significant statistical differences between both antibiotics (DAP 2.2% vs VAN 2.7%; p >0.05) [29]. On the contrary, Fowler et al. in a randomized controlled trial that evaluated DAP versus standard therapy (VAN or anti-staphylococcal penicillin ± gentamicin) in patients with S. aureus bacteremia and endocarditis reported higher rates of nephrotoxicity with VAN (18.1% vs 6.7% with DAP; p = 0.009) [25]. However, the incidence of renal impairment was similar among patients who received gentamicin and VAN (20.4%) and patients who received gentamicin and an anti-staphylococcal penicillin (18.6%) [25]. Thus, as reported, the presence of other nephrotoxic factors such as aminoglycosides and a great variety of comorbidities confound the VAN-induced nephrotoxicity [20]. For these reasons, the present study was carried out to assess factors associated with treatment selection in daily practice and development of nephrotoxicity in a non-selected population with different comorbidities. Although the retrospective nature of the study represents a limitation, the lack of differences between groups in the administration of potential nephrotoxic drugs as aminogly-
Factors associated with development of nephrotoxicity in patients treated with vancomycin versus daptomycin for severe Gram-positive infections: A practice-based study

J. Barberán, et al.
Rev Esp Quimioter 2019;32(1): 22-30

Table 4

| Basal data potentially influencing development of nephrotoxicity for patients treated with vancomycin: patient’s characteristics, comorbidities (present in ≥9% patients), type of infection and severity. Data expressed as n (%) or mean ± SD |
|---------------------------------|---------------------------------|------------------|
| Basal creatinine clearance (mL/min) | Basal creatinine >1.2 mg/dL | Basal creatinine >0.9 mg/dL |
| Basal GFR ≥ 50 mL/min | Basal GFR ≥ 27 mL/min | Basal creatinine <1.8 mg/dL |
| Basal GFR ≥ 60 mL/min | Basal GFR ≥ 45 mL/min | Basal creatinine <1.2 mg/dL |
| Basal GFR ≥ 70 mL/min | Basal GFR ≥ 30 mL/min | Basal creatinine <0.9 mg/dL |
| Basal GFR ≥ 80 mL/min | Basal GFR ≥ 20 mL/min | Basal creatinine <0.6 mg/dL |
| Basal GFR ≥ 90 mL/min | Basal GFR ≥ 10 mL/min | Basal creatinine <0.4 mg/dL |
| Basal GFR ≥ 100 mL/min | Basal GFR ≥ 5 mL/min | Basal creatinine <0.2 mg/dL |
| Basal GFR ≥ 110 mL/min | Basal GFR ≥ 1 mL/min | Basal creatinine <0.1 mg/dL |

In conclusion, the present practice-based study showed that among hospitalized elderly population with Gram-positive severe infections, treatment selection was associated with comorbidities and basal values of creatinine, and nephrotoxicity was associated with VAN treatment and not to other concomitant antibiotics.
Factors associated with development of nephrotoxicity in patients treated with vancomycin versus daptomycin for severe Gram-positive infections: A practice-based study

J. Barberán, et al.
Rev Esp Quimioter 2019;32(1): 22-30

Table 5

Basal data potentially influencing development of nephrotoxicity for patients treated with daptomycin: patient’s characteristics, comorbidities (present in >9% patients), type of infection and severity. Data expressed as n (%) or mean ± SD
Nephrotoxicity

Males
Age
≥65 years
Congestive heart failure
Diabetes mellitus (DM)
COPD†
Acute myocardial infarction
Malignancies
Dementia
Stroke
DM with organ lesion
Hypertension
Basal GFR* (mL/min/1.73 m²)
Basal GFR ≥50 mL/min/1.73 m²
Basal creatinine (mg/dL)
Basal creatinine ≥0.9 mg/dL
Basal creatinine >1.2 mg/dL
Basal creatinine clearance (mL/min)
Basal creatinine clearance <80 mL/min
Basal CPK (U/L)
Osteoarticular infection
Skin & Soft tissue infection
Catheter-related bacteremia
Endocarditis
Primary bacteremia
Intraabdominal infection
Respiratory infection
Urinary tract infection
Others
Sepsis
Severe sepsis
Shock

†COPD: Chronic obstructive pulmonary disease; *GFR: Glomerular filtration rate; †CPK: Creatine phosphokinase

CONFLICT OF INTERESTS

J. B. and J. M. have received grants for the present study design and coordination, and A. A., F. E., J.-C. R., J. R.-M., J.-L. C., J.-M.- G., I. M.-G. have received funds for this research from Novartis Farmacéutica S.A.

J. B. has received funds for speaking at symposia and support for travel to meetings from Novartis Farmacéutica S.A., and funds for research from Pfizer S.L.U., Madrid, Spain.

M.-J. has received support for travel to meetings from Pfizer S.L.U., Madrid, Spain.

L.A. and J.-J. G.: None to declare.

REFERENCES

1. Choi EY, Huh JW, Lim CM, Koh Y, Kim SH, Choi SH et al. Relationship between the MIC of vancomycin and clinical outcome in patients with MRSA nosocomial pneumonia. Intensive Care Med 2011; 37: 639-47. DOI: 10.1007/s00134-011-2130-7

2. Soriano A, Marco F, Martinez JA, Pisos E, Almela M, Dimova VP et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 2008; 46: 193-200. DOI: 10.1086/524667

3. Lodise TP, Graves J, Evans A, Graftunder E, Helmecke M, Lomaestro BM et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 2005; 52: 3315-20. DOI: 10.1128/AAC.00113-08

4. Lin SH, Liao WH, Lai CC, Liao CH, Tan CK, Wang CY et al. Risk factors for mortality in patients with persistent methicillin resistant Staphylococcus aureus bacteraemia in a tertiary care hospital in Taiwan. J Antimicrob Chemother 2010; 65: 1792-8. DOI: 10.1093/jac/dkq188

5. Haque NZ, Zuniga LC, Peyrani P, Reyes K, Lambert LA and J.-J. G.: None to declare.

6. Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 2011; 52: 975-81. DOI: 10.1093/cid/cir124

7. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High

FUNDING

This study was supported in part by an unrestricted grant from Novartis Farmacéutica S.A., Barcelona, Spain.

Rev Esp Quimioter 2019;32(1): 22-30
Factors associated with development of nephrotoxicity in patients treated with vancomycin versus daptomycin for severe Gram-positive infections: A practice-based study

J. Barberán, et al.
Rev Esp Quimioter 2019;32(1): 22-30

dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 2006; 166: 2138-44. DOI: 10.1001/archinte.166.19.2138

8. Badour LM, Wilson WR, Bayer AS, Fowler VG, Tleyjeh IM, Rybak MJ et al. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications: a statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: endorsed by the Infectious Diseases Society of America. Circulation 2005; 111: e394-434. DOI: 10.1161/CIRCULATIONAHA.105.165564

9. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 388-416. DOI: 10.1164/rcm.200405-645ST

10. Mensa J, Soriano A, Linares P, Barberán J, Montejo M, Salavert M et al. Guidelines for antimicrobial treatment of the infection by Staphylococcus aureus. Rev Esp Quimioter 2013; 26 (Suppl 1): 1-84. PMID: 23824510

11. Gudiol F, Aguado JM, Pascual A, Pujol M, Almirante B, Miró JM et al. Consensus document for the treatment of bacteremia and endocarditis caused by methicillin-resistant Staphylococcus aureus. Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Enferm Infecc Microbiol Clin 2009; 27: 105–15. DOI: 10.1016/j.eimc.2008.09.003

12. Rybak M, Lomaestro B, Rotschafer JC, Moellerling RC Jr, Craig WA, Billeter M et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009; 66: 82-98. DOI: 10.2146/ajhp080434

13. Habib G, Hoen B, Tornos P, Thuny F, Prendergast B, Vilacosta I et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J 2009; 30: 2369-413. DOI: 10.1093/eurheartj/ehp285

14. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011; 52: e18-55. DOI: 10.1093/cid/ciq146

15. Pritchard L, Baker C, Leggett J, Sehdev P, Brown A, Bayley KB. Increasing vancomycin serum trough concentrations and incidence of nephrotoxicity. Am J Med 2010; 123: 1143-9. DOI: 10.1016/j.amjmed.2010.07.025

16. Hermen ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu IMC, Rupp ME. Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin Drug Saf 2010; 9: 9-14. DOI: 10.1517/1474033090413514

17. Jeffres MN, Isakov W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther 2007; 29: 1107–15. DOI: 10.1016/j.clinthera.2007.06.014

18. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 2008; 52: 1330-6. DOI: 10.1128/AAC.01602-07

19. Lodise TP, Patel N, Lomaestro BM, Rudvoid KA, Drusano G. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis 2009; 49: 507-14. DOI: 10.1086/600884

20. Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents 2011; 37: 95-101. DOI: 10.1016/j.ijantimicag.2010.10.013

21. Tongsa S, Koomanachai P. The safety and efficacy of high versus low vancomycin trough levels in the treatment of patients with infections caused by methicillin-resistant Staphylococcus aureus: a meta-analysis. BMC Res Notes 2016; 9: 455. DOI: 10.1186/s13104-016-2252-7

22. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 2006; 16: 3365-70. DOI: 10.1681/ASN.2004090740

23. Coca SG, Peixoto AJ, Garg AX, Krumholz HM, Parkh CR. The prognostic importance of a small acute decrement in kidney function in hospitalized patients: a systematic review and meta-analysis. Am J Kidney Dis 2007; 50: 712-20. DOI: 10.1053/j.ajkd.2007.07.018

24. Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Becker D et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006; 10: R73. DOI: 10.1186/cc4915

25. Fowler VG Jr, Boucher HW, Corey GR, Abruyn E, Karchmer AW, Rupp ME et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 2006; 355: 653-65. DOI: 10.1056/NEJMoa053783

26. Wang Y, Zou Y, Xie J, Wang T, Zheng X, He H et al. Linezolid versus vancomycin for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a systematic review employing meta-analysis. Eur J Clin Pharmacol 2015; 71: 107-15. DOI: 10.1007/s00228-014-1775-x

27. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644-55. PMID: 1303622

28. Moise PA, Culshaw DL, Wong-Beringer A, Bensman J, Lamp KC, Smith WJ et al. Comparative effectiveness of vancomycin versus
daptomycin for MRSA bacteremia with vancomycin MIC >1 mg/L: A multicenter evaluation. Clin Ther 2016; 38: 16-30. DOI: 10.1016/jclinthera.2015.09.017

29. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 2004; 38: 1673-81. DOI: 10.1086/420818

30. Liang SY, Khair HN, McDonald JR, Babcock HM, Marschall J. Daptomycin versus vancomycin for osteoarticular infections due to methicillin-resistant Staphylococcus aureus (MRSA): a nested case-control study. Eur J Clin Microbiol Infect Dis 2014; 33: 659-64. DOI: 10.1007/s10096-013-2001-y

31. Jugun K, Vaudaux P, Garbino J, Pagani L, Hoffmeyer P, Lew D, Uckay I. The safety and efficacy of high-dose daptomycin combined with rifampicin for the treatment of Gram-positive osteoarticular infections. Int Orthop 2013; 37: 1375-80.