Data in Brief

Genome-wide copy number profiling to detect gene amplifications in neural progenitor cells

U. Fischer⁹, A. Keller⁵, C. Backes⁵, E. Meese⁹

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

ARTICLE INFO

Keywords:
aCHG
Neural progenitor cells
Copy number variation

DNA sequence amplification occurs at defined stages during normal development in amphibians and flies and seems to be restricted in humans to drug-resistant and tumor cells only. We used array-CGH to discover copy number changes including gene amplifications and deletions during differentiation of human neural progenitor cells. Here, we describe cell culture features, DNA extraction, and comparative genomic hybridization (CGH) analysis tailored towards the identification of genomic copy number changes. Further detailed analysis of amplified chromosome regions associated with this experiment, was published by Fischer and colleagues in PLOS One in 2012 (Fischer et al., 2012). We provide detailed information on deleted chromosome regions during differentiation and give an overview on copy number changes during differentiation induction for two representative chromosome regions.

Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30636.

Experimental design, materials and methods

Cell culture and differentiation

NHNP cells (P1) were grown in 75 cm² cell culture flasks with NPMM (neuronal progenitor maintenance medium) for initial 24 h after thawing. For the undifferentiated approach NHNP cells (approximately 4 × 10⁵ cells) were cultivated for additional 24 h in NPMM, harvested and the cell pellet was frozen before DNA extraction. For differentiation induction NHNP cells were transferred to 25 cm² laminin-coated cell culture flasks in NPDM (neural progenitor differentiation medium) supplemented with BDNF (brain-derived neurotrophic factor) at 25 ng/ml. We used approximately 4 × 10⁵ cells for 24 h differentiation induction, approximately 2.5 × 10⁵ cells for 48 h differentiation induction and approximately 2.5 × 10⁵ cells for 5d differentiation induction approach. Cells were harvested and cell pellet was frozen before proceeding to DNA extraction.

DNA extraction

Cell pellets were resuspended in lysis buffer (75 mM NaCl, 25 mM EDTA, pH 8) with 10% SDS. Undifferentiated NHNP cells, 24 h differentiation-induced and 5d differentiation-induced NHNP cell pellets were treated with proteinase K for >18 h at 55 °C. 48 h differentiation-induced NHNP cell pellets were treated with proteinase K for 5 h at 55 °C. All samples were extracted with 6 M NaCl/chloroform for 1 h on a rotator, centrifuged and the aqueous layer was precipitated with isopropanol and/or with sodium acetate ethanol. Genomic DNA from blood lymphocytes was extracted accordingly with proteinase K digest for >18 h at 55 °C. Genomic DNA from male and female healthy individuals was pooled.

Array-CGH data analysis

The array-CGH experiments were done with independently derived primary cells with different lot numbers. Array data were deposited in...
Table 1
Overview of deleted chromosome regions.
Start and end points of deleted chromosome regions are according to NCBI36/HG18.

Deleted chromosomal regions in undifferentiated NHNP cells	Start	End	log2	Size (Mb)
chr1	1962499	2837499	−0.157	0.87
chr2	13312499	13712499	−0.105	0.40
chr3	50137499	50562499	−0.148	0.42
chr4	120387499	128912499	−0.117	0.32

Deleted chromosome regions in 1d differentiating NHNP cells	Start	End	log2	Size (Mb)
chr1	150737499	151562499	−0.145	0.82
chr2	89037499	89887499	−0.121	0.85
chr3	116887499	118062499	−0.126	1.17
chr4	132212499	132762499	−0.153	0.55

Deleted chromosome regions in 2d differentiating NHNP cells	Start	End	log2	Size (Mb)
chr1	68912499	70687499	−0.123	1.77
chr2	44062499	49762499	−0.109	5.70
chr3	68912499	70687499	−0.139	1.77
chr4	104487499	105012499	−0.157	0.52

Deleted chromosome regions in 5d differentiating NHNP cells	Start	End	log2	Size (Mb)
chr1	587212499	68587499	−0.100	11.37
chr2	28237499	32287499	−0.106	4.05
chr3	40637499	43612499	−0.100	2.97
chr4	43862499	66987499	−0.130	23.12

Deleted chromosomal regions in undifferentiated NHNP cells	Start	End	log2	Size (Mb)
chr1	138112499	139262499	−0.178	1.15
chr2	130087499	135326317	−0.114	5.23
chr3	123337499	123612499	−0.166	0.27
chr4	112837499	114108681	−0.103	1.72
chr5	75637499	75962499	−0.132	0.32
chr6	83912499	84237499	−0.212	0.32

Deleted chromosome regions in 1d differentiating NHNP cells	Start	End	log2	Size (Mb)
chr1	150512499	150937499	−0.267	0.42
chr2	89037499	89887499	−0.121	0.85
chr3	116887499	118062499	−0.126	1.17
chr4	132212499	132762499	−0.153	0.55

Deleted chromosome regions in 2d differentiating NHNP cells	Start	End	log2	Size (Mb)
chr1	68912499	70687499	−0.123	1.77
chr2	44062499	49762499	−0.109	5.70
chr3	68912499	70687499	−0.139	1.77
chr4	104487499	105012499	−0.157	0.52

Deleted chromosome regions in 5d differentiating NHNP cells	Start	End	log2	Size (Mb)
chr1	587212499	68587499	−0.100	11.37
chr2	28237499	32287499	−0.106	4.05
chr3	40637499	43612499	−0.100	2.97
chr4	43862499	66987499	−0.130	23.12

U. Fischer et al. / Genomics Data 2 (2014) 162–165
GEO under accession number GSE30636. Signal intensity data were extracted from scanned images of each array using Roche NimbleGen NimbleScan v2.6 software. After spatial correction, the Cy3 and Cy5 signal intensities were normalized using qspline normalization. Following normalization a 10× window-averaging step is applied. For amplification and deletion detection we used the dynamic segMNT algorithm that identifies segments by minimizing the squared error relative to the segment means. To detect representative alterations and to minimize the identification of random alterations, we extracted segments with segment means greater 0.1 threshold and a size greater than 250 kb. Deletions detected in undifferentiated, 24 h differentiated, 48 h differentiated and 5 d-differentiated NHNP cells were summarized in Table 1.

The array plots at 25 kb resolution obtained by segmentation algorithm impressively demonstrate changes of the complex pattern of different copy numbers along a given chromosome. Fig. 1 summarizes the array plots for all probes of chromosome 12 and Fig. 2 of the array plots of all probes for chromosome 17. Interestingly at day zero the pattern of log2 ratios appears rather smooth. However, only after a 1 day-differentiation a wavy pattern appears that increases in number and amplitude heights over time. Recently, several studies explained the wavy CGH pattern by DNA extraction and replication timing [1,2].

Our results, however, do not support this hypothesis as we detected wavy CGH pattern indicative of imbalances in cells seeded for differentiation in different cell densities. In addition, DNA digestion with proteinase K for 5 h or >18 h did not lead to reduction of the wavy CGH pattern. In fact after 5d of differentiation and after more than 18 h protein digest we detected the highest amplitudes for copy number changes as shown in Figs. 1 and 2. Further gene amplification analysis using fluorescence in situ hybridization confirmed our results [3].
Discussion

Here, we report detailed information on DNA extraction method used for detection of copy number changes using NimbleGen 730K whole genome array. Here and in our previous report we detected a complex pattern of amplifications and deletions. This wavy pattern of copy number changes was independent from cell number and protein digest duration. This dataset is a first step towards uncovering copy number changes upon differentiation in human stem cells.

References

[1] G. Manukjan, M. Tauscher, D. Steinemann, Replication timing influences DNA copy number determination by array-CGH. BioTechniques 55 (2013) 231–232, http://dx.doi.org/10.2144/000114097.

[2] S. van Heesch, et al., Systematic biases in DNA copy number originate from isolation procedures. Genome Biol. 14 (2013) R33, http://dx.doi.org/10.1186/gb-2013-14-4-r33.

[3] U. Fischer, et al., Genome-wide gene amplification during differentiation of neural progenitor cells in vitro. PLoS One 7 (2012) e37422, http://dx.doi.org/10.1371/journal.pone.0037422.