ТЕКУЩЕЕ СОСТОЯНИЕ ПРОИЗВОДСТВА ФЕРРОСПЛАВОВ В РОССИИ И СТРАНАХ СНГ

Павлов А.В.1, д.т.н., профессор кафедры металлургии стали, новых произведенных технологий и защиты металлов (email@email)

Островский Д.Я.2, к.т.н., коммерческий директор (email@email)

Аксенова В.В.1, аспирант кафедры металлургии стали, новых произведенных технологий и защиты металлов (email@email)

Бишенов С.А.1, соискатель степени к.т.н. (email@email)

1 Национальный исследовательский технологический университет «МИСиС» (119049, Россия, Москва, Ленинский пр., 4)
2 ООО НПТК «Объединенная сырьевая компания» (107996, Россия, Москва, ул. Гиляровского, д. 57, стр. 1, офис 18)

Аннотация. Развитие ферросплавного производства напрямую зависит от развития сталеплавильной области. Поэтому увеличение выплавки стали неизбежно влечет за собой увеличение объемов производства ферросплавов. За последние 10 лет мировой объем производства стали увеличился примерно на 30 %. В данной статье рассмотрено общее состояние ферросплавного сектора в странах СНГ и, в частности, в Российской Федерации. Перечислены основные потребители (среди российских металлургических предприятий) ферросплавной продукции на внутреннем рынке, а также частично рассмотрена структура производства и потребления в других странах-производителях (Китай, Индия, ЕС, США, Япония). Выявлено, что перепроизводство ферросплавов в странах СНГ составляет около 400 %. Также рассмотрены пути развития ферросплавной отрасли, направленные на снижение вклада в производственную себестоимость рудного сырья, восстановителя и электроэнергии, которое достигается за счет использования более дешевой руды, применения новых типов процессов и агрегатов, разработки других альтернативных видов ферросплавов, заменяющих классические. Это, например, развитие плавки в печах постоянного тока, которая позволяет использовать мелкую неподготовленную хромовую руду в качестве сырья для производства феррохroma в замену дефицитной кусковой в комбинации с мелким дешевым восстановителем (антрацитом). Плавка в кислородном реакторе также является перспективной технологией, в основе которой лежит принцип дожигания газообразным кислородом выделяющегося в ходе процессов восстановления оксида угля внутри самого агрегата. Также может получить распространение применение альтернативных видов ферросплавной продукции, таких как кальций углеродистый «КАУР», который заменит карбид кальция в сталеплавильном производстве.

Ключевые слова: ферросплавы, крупнотоннажные ферросплавы, мировой рынок, страны СНГ, ферросилиций, ферромарганец, силикомарганец, феррохром.

DOI: 10.17073/0368-0797-2020-8-600-605

Введение

Ферросплавы играют значительную роль в получении качественных сталей, которые используются в строительной области и инфраструктуре (52 %), машиностроении (16 %), автомобильном (12 %), производстве металлопродукции (10 %), электрическом оборудовании (3 %), бытовой технике (2 %) и других областях (5 %) [1]. Увеличение объемов выплавки стали неизбежно влечет за собой увеличение производства ферросплавов. В свою очередь, развитие ферросплавной промышленности в основном определяется состоянием сталеплавильного сектора [2–4]. Объем выплавки стали в мире достиг 1869,9 млн т в 2019 г. Общий прирост объема производства составил 3,4 % относительно предшествующего года (1808,6 млн т в 2018 г.). Первое место по производству стали занимает Китай с объемом выплавки 996,3 млн т. Российская Федерация в 2019 г. выплавила 71,6 млн т стали, что означает незначительное снижение производства на 0,6 % относительно 2018 г. (72,0 млн т) [5]. Производство стали в остальных странах СНГ в 2019/2018 гг. составило: Украина 20,8/21,1 млн т (–1,4 %); Казахстан 4,1/4,0 млн т (+2,5 %); Беларусь 2,7/2,5 млн т (+8 %); Узбекистан 625/646 тыс. т (–3,3 %); Молдова 360/497 тыс. т (–27,6 %). Таким образом, общий объем производства стали в странах СНГ составил 100,4 млн т в 2019 г., снизившись на 0,5 % относительно 2018 г. (100,9 млн т) [6].

Общее состояние ферросплавного производства стран СНГ

Традиционно, основными потребителями ферросплавов в Российской Федерации являются крупные металлургические комбинаты, такие как Новолипец-
кий металлический комбинат (НЛМК), ЕВРАЗ, Магнитогорский металлический комбинат (ММК), Северсталь, Металлонвест и Мечел. На их долю приходится 90% реализуемых в стране крупнотоннажных сплавов марганица, кремния и хрома. Оставшиеся 10% составляют крупные трубные компании: Трубная металлургическая компания (ТМК); Объединенная металлургическая компания (ОМК); Челябинский трубопрокатный завод (ЧТПЗ) и остальные металлургические предприятия [7]. В общей сложности объем потребления ферросплавов российскими предприятиями в 2018 г. составил 850 тыс. т (табл. 1).

Общий объем производства ферросплавов в странах СНГ на 25 ферросплавных заводах – около 4,8 млн т в 2018 г., а основными странами-производителями являются Россия, Казахстан, Украина и Грузия (см. рисунок). Основными производителями крупнотоннажных ферросплавов в странах СНГ являются промышленные группы ЧЭМК (Российская Федерация), ERG (Республика Казахстан) и Privat (Украина).

Таблица 1. Структура потребления ферросплавов российскими предприятиями

Предприятие	SiMn	FeSi-45/65/75	FeMn78	НС FeCr	НС FeCr	Сумма
ЕВРАЗ	108 000	22 000	9 600	3 600	2 520	145 720
ММК	72 000	24 000	–	2 520	122 520	
Северсталь	36 000	24 000	140	76 220		
НЛМК	36 000	40 000	–	140	100 140	
Металлонвест	48 000	3 600	12 000	83 400		
Мечел	21 600	30 000	6 000	84 120		
ТМК	24 000	5 000	6 000	41 120		
ЧТПЗ	15 600	840	1 680	17 640		
ОМК	8 400	840	14 260			
Другие	70 400	33 120	12 000	165 620		
Общее	440 000	172 000	39 360	850 760		

Ферросплавные предприятия в странах СНГ
Уровень производства ферросплавов в странах СНГ составляет 4,8 млн т, что означает почти четырехкратное превышение над внутренним потреблением – 1,087 млн т (табл. 2). Доля России в общем объеме производства ферросплавов составляет почти 35 % (1,67 млн т). В свою очередь, группа ЧЭМК производит 75 % российских ферросплавов.

В странах Европы, США и Японии картина производства и потребления ферросплавов иная [8–10]. В Китае производство и потребление ферросплавной продукции почти сбалансировано – произведено 19 млн т ферросплавов, а использовано внутри страны 18,5 млн т.

Большая часть объема производства ферросплавов в России приходится на сплавы марганца, из которых 440 тыс. т силикомарганца и 172 тыс. т ферромарганца. Второе место в данном списке занимает ферросплавы кремния с общим объемом потребления 174 тыс. т в 2018 г. Основным индикатором низкого объема производства нержавеющей стали в России является потребление ферросплавов хрома: 39,36 тыс. т и 25,4 тыс. т углеродистого и низкоуглеродистого феррохрома соответственно.

В 2018 г. к структуре ферросплавного производства присоединился Узбекистан. В г. Бекабад ввели в эксплуатацию ферросплавный цех в составе предприятия АО «Узметкомбинат» [11, 12]. Проектная мощность цеха составляет 25 тыс. т ферросплавов: 15 тыс. т ферросилиция и 10 тыс. т ферромарганца. Работа осуществляется на местных кварцитах (месторождение Кокпатас) и импортируемой марганцевой руде. Планируется, что около 30 % (8 тыс. т) ферросплавов будет экспортироваться.

Структура внутреннего потребления стали в Российской Федерации не самая благоприятная для ферросплавного производства. Около 65 % производства приходится на изделия из низколегированных сталей. Кроме того, объем производства нержавеющей стали в РФ в 2019 г. составил 106 тыс. т, т. е. всего 0,15 % общего объема производства стали (56,3 млн т). Между тем, импорт изделий из нержавеющей стали в страну находится на уровне 380 тыс. т, что в 3,5 раза больше, чем внутреннее производство. Также Россия экспортит примерно 8 тыс. т нержавеющей стали, что составляет примерно 8 % объема производства. Следовательно, рост производства нержавеющей стали в России может благоприятно сказаться на развитии внутреннего рынка ферросплавов, так как российский рынок кремниевых, марганцевых и, в большей степени, хромовых сплавов может легко покрыть потребность производства. Но согласно статистике International Stainless Steel Forum (ISSF), мировой объем производства нержавеющей стали (в том числе и в странах СНГ) в 2020 г. может достигнуть четырехлетнего минимума приблизительно в 48 млн т, тем самым снизиться почти на 7 % [13]. Это непосредственно повлияет на структуры рынка ферросплавов.

ПУТИ РАЗВИТИЯ ФЕРРОСПЛАВНОГО ПРОИЗВОДСТВА

Одним из основных перспективных направлений развития ферросплавного производства является снижение себестоимости производства.

В структуре себестоимости при выплавке ферросплавов кремния наибольшую величину имеют расходы на электроэнергию, затраты на руду минимальны. Поэтому наибольший интерес со стороны производителей вызывают именно ферросплавы кремния.

Структура себестоимости крупнотоннажных ферросплавов представлена в табл. 3.

Пути развития ферросплавного производства

Продолжение первоначального рассуждения о себестоимости производства ферросплавов приведено в табл. 3.

Таблица 2. Производство и потребление ферросплавов в мире в 2018 г.

Страна	Производство, т	Потребление, т	Перепродажа, т	%
СНГ	4 800 000	1 087 000	3 037 000	400
Индия	2 917 000	1 817 000	1 100 000	60
Китай	19 060 000	18 500 000	560 000	3
ЕС	2 158 000	3 796 000	–	–
США	210 000	1 194 000	–	–
Япония	300 000	1 540 000	–	–
снижение вклада в себестоимость руды, восстановления и электроэнергии, которое достигается за счет использования более дешевого сырья, применения новых типов процессов и агрегатов, разработки других видов ферросплавов, заменяющих классические сплавы.

Таким образом, были введены в эксплуатацию новые ферросилициевые заводы в г. Юрга (Россия) и г. Караганда (Казахстан). Основным нововведением является практически полная замена кокса на уголь и возможность утилизации тепла отходящих газов рудовосстановительной печи [15].

В последнее время получила распространение ферросплавная плавка на постоянном токе [16–19]. Такая технология позволяет использовать мелкую не подготовленную коксовой руды в комбинации с мелким дешевым восстановителем (антрацитом), что значительно снижает себестоимость ферросплавов хрома. Запущен и практически выведен на проектную мощность плавильный цех №4 Актюбинского завода ферросплавов (АЗФ), компании «Казхром», использующий инновационные ферросплавные печи постоянного тока мощностью 72 МВА. Данные печи являются самыми мощными ферросплавными печами в мире. Также на АЗФ используется технология экструзионного брикетирования для утилизации хромсодержащих пылей в печах переменного тока [20, 21].

Падение цен на малотоннажные ферросплавы и истощение запасов кондиционных руд привело к полному прекращению в РФ производства ферросплавов никаля из окисленных никелевых руд и сокращению выплавки ферросплавов молибделена [22].

Для возобновления производства необходима разработка и внедрение новых технологий переработки имеющегося рудного сырья. Одна из таких разработок — плавка в кислородном реакторе, предложенная в ИИТУ «МИСиС» [23]. В основе этой технологии лежит принцип дожигания газообразным кислородом выделяющегося в ходе процессов восстановления оксида углерода внутри самого агрегата. В результате в разы снижаются расходы на обеспечение физико-химических процессов энергии.

Все больше получают распространение нетрадиционные виды легирующих материалов, в первую очередь технические карбиды металлов и легкоплавкие композиции на их основе — карбид кальция и карбид кремния. За счет более дешевой технологии производства и сырья единица ведущего элемента стоит меньше, чем в традиционных ферросплавах, а области применения практически одинаковые. Одним из таких новых ферросплавов является кальций углеродистый «КАУР» [24]. Как и карбид кальция, кальций углеродистый производят в электропечах. «КАУР» является гомогенным сплавом карбида кальция CaC2 с легкоплавким флюсом системы CaO·Al2O3. Это позволяет повысить степень усвоения раскислителя кислородом стали с одновременным развитием процессов десульфурации и удаления неметаллических включений образующимся жидкокипящим известково-глиноземистым шлаком. Данный раскислитель обеспечивает разливаемость стали и повышает обрабатываемость. Заменяет алюминий при первичном раскислении в отношении 1:1, а также дорогостоящий силикокальций и кальций металлический при ковшовой обработке.

Выводы

Особенностью ферросплавного производства в странах СНГ является почти четырехкратное превышение выпуска ферросплавов над внутренним потреблением в сталелитейной сфере. В последние годы также изменилась структура себестоимости кремнистых ферросплавов в сторону увеличения вклада электроэнергии (около 50%), а для ферросплавов марганца и хрома в сторону увеличения вклада себестоимости руды (около 60%). Рациональным способом решения проблемы в ферросплавном производстве является внедрение новых перспективных технологий, позволяющих снизить себестоимость производимой продукции, а также разработка новых эффективных видов ферросплавов.

Таблица 3. Structure of production cost of the ferroalloys

Статья расходов	ФС75	МиС	ФХ (углеродистый)
Цена, ед	0,03	0,25	0,4
Электроэнергия, кВт·ч/т	8500	50	129
Кокс, долл/т	0,1	0,3	0,1
Уголь, долл/т	0,6	0,3	0,6
Руда	2,1	2,1	1,6
Прочее	150	100	100
Итого	500	100	855

По итогам конференции «Физико-химические основы металлургических процессов» им. А.М. Самарина

603
CURRENT STATE OF FERROALLOYS PRODUCTION IN RUSSIA AND CIS

A.V. Pavlov¹, D.Ya. Ostrovskii², V.V. Aksenova¹, S.A. Bishe nov³

¹ National University of Science and Technology “MISIS” (MISIS), Moscow, Russia
² I.I.C “United Raw Materials”, Moscow, Russia
³ A.V. Pospelov

Abstract. Development of ferroalloy production directly depends on progress of steel industry. Therefore, an increase in steel production inevitably entails an increase in the production of ferroalloys. Over the past 10 years, global steel production has increased by about 30%. This article discusses general condition of the ferroalloy sector in the CIS countries and, in particular, in the Russian Federation. The main consumers (among Russian metallurgical enterprises) of ferroalloy products in the domestic market were listed, and the structure of production and consumption in other producing countries (China, India, the EU, USA, Japan) was examined. It was revealed that the overproduction of ferroalloys in the CIS countries is about 400%. In addition, the ways of development of the ferroalloy field were also considered, aimed at reducing the contribution to the production cost of ore raw materials, reducing agent and electricity, which is achieved through the use of cheaper ore, the use of new types of processes and units, and development of other alternative types of ferroalloys, replacing classic ones. For example, it can be smelting in DC furnaces, which allows the use

1. World Steel Association. World Steel in Figures 2020. Available at URL: https://www.worldsteel.org/en/dam/jcr:7982217-cfde-46dc-8a0-795ed807f513/World%2520Steel%2520in%2520Figures%25202020i.pdf (Accessed 3.06.2020).
2. Жуков В.И., Леонтьев Л.И., Дапяковский В.Я. Состояние и развитие металлургии ферросплавов в России // Перспективы развития металлургии и машиностроения с использованием завершенных фундаментальных исследований и НИОКР: ФЕРРОСПЛАВЫ: Тр. науч.-практич. конф. с междунар. участием, 29 октября – 2 ноября 2018. – Екатеринбург: Альфа Принт, 2018. С. 12 – 20.
3. Романова О.А., Позднякова Е.А. Развитие сырьевой базы ферросплавного производства: новые тенденции и экономические возможности // Экономика региона. 2013. №1 (33). С. 167 – 177.
4. Ford K., Hobbs D., Urquhart R. CIS ferroalloys industry: commercial opportunities, technical challenges and strategic implications // 11th Int. Conference on Innovations in the Ferroalloy Industry, New Delhi, India. February 2007. P. 18 – 21.
5. World Steel Association. Global crude steel output increases by 3.4% in 2019. Available at URL: https://www.worldsteel.org/media-center/press-releases/2020/Global-crude-steel-output-increases-by-3.4--in-2019.html (Accessed 30.01.2020).
6. World Steel Association. Global crude steel production 2019. Available at URL: https://www.worldsteel.org/media-center/press-releases/2020/Global-crude-steel-output-increases-by-3.4--in-2019.html (Accessed 25.05.2020).
7. Jones A. The market & cost environments for bulk ferroalloys // Journal of the Southern African Institute of Mining and Metallurgy. 2004. Vol. 104. No. 9. P. 541 – 549.
8. Гасин М.И., Ляховец Н.П., Емлин Б.И. Теория и технология производства ферросплавов: Учебник для вузов. – М.: Металлургия, 1988. – 784 с.
9. Бельских Т.Б. Анализ воздействия производства ферросплава на объекты окружающей среды (на примере предприятия ОАО «Юргинские ферросплавы»). [Электронный ресурс]. Доступ к: http://earchive.tpu.ru/handle/11683/27903 (Дата обращения: 24.05.2020).
10. Нехамин С.М. Рудно-термические пересчеты постоянного тока для ферросплавного производства // Сталъ. 2008. № 6. С. 43 – 47.
11. Gegenhuiys I.J. Aspect of DC chromite smelting at Mintekan overview // Proceedings of the 13th Int. Ferroalloys Congress. Almaty, Kazakhstan. INFACTON XIII. July 9 – 12, 2013. P. 149 – 156.
12. Privalov O., Abdulalbecov Ye., Nurmukhanbetov Zh. etc. Adjustment of high carbon ferrochrome composition in DC furnaces // Proceedings of the 13th Int. Ferroalloys Congress. Almaty, Kazakhstan: INFACTON XIII. July 9 – 12, 2013. P. 109 – 114.
13. Daavittila J., Honkanieni M., Jokinen P. The transformation of ferrochromium smelting technologies during the last decades // Journal of the Southern African Institute of Mining and Metallurgy. 2004. Vol. 104. No. 9. P. 541 – 549.
14. Анджеева К.В. Характеристика современного состояния промышленного сектора Оренбургской области // Наука в современном обществе: закономерности и тенденции развития: Сб. статей Междунар. науч.-практич. конф., 10 ноября 2017, Оренбург: Азетера, 2017. С. 11 – 14.
15. Пат. 2109817 РФ. Способ получения чугуна и ферросплавов / В.А. Григорян, А.В. Павлов, Е.Ф. Вегман и др. // Бюл. изобретений. 1998. № 6.
16. Пат. 2738470 РФ. Расширитель для сталей / С.Н. Неретин, А.В. Павлов, Э.Н. Хромагин, А.Н. Хромагин, Ю.В. Главатских. Опубликовано 12.13.2017.
17. Жучков В.И., Кель И.Н. Использование отходов предприятий ферросплавного производства // Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований. Уральский рынок лома, промышленных и коммунальных отходов: «Техноген-2017», Екатеринбург, 5 – 9 июня 2017. – Екатеринбург: Изд-во АМБ, 2003. С. 269 – 271.
18. Андреева К.В. Характеристика современного состояния промышленного сектора Оренбургской области // Наука в современном обществе: закономерности и тенденции развития: Сб. статей Междунар. науч.-практич. конф., 10 ноября 2017, Оренбург: Азетера, 2017. С. 11 – 14.
19. Пат. 2109817 РФ. Способ получения чугуна и ферросплавов / В.А. Григорян, А.В. Павлов, Е.Ф. Вегман и др. // Бюл. изобретений. 1998. № 6.
of small unprepared chrome ore as a raw material for the production of ferrochrome containing scarce lump in combination with small cheap reducing agent (anthracite). Melting in an oxygen reactor is also a promising technology, based on the principle of gaseous oxygen, which results in the reduction of carbon monoxide inside the unit itself. The alternative types of ferroalloy products can be used, such as calcium carbon “KAUR”, which can replace calcium carbide in steelmaking.

Keywords: ferroalloys, bulk ferroalloy, world market, CIS countries, ferro-silicon, ferromanganese, siliconmanganese, ferrochrome.

DOI: 10.17073/0368-0797-2020-8-600-605

REFERENCES

1. World Steel Association. World Steel in Figures 2020. Available at URL: https://www.worldsteel.org/en/dam/jcr:7982217-cfid-4ffdc-8ba0-795cd807f51/World%2520Steel%2520in%2520Figures%25 2020.pdf (Accessed 3.06.2020).

2. Zhuchkov V.I., Leon’t’ev L.I., Dashkevskii V.Ya. State and development of ferroalloys metallurgy in Russia. In: Perspektiv razvitiya metallurgii i mashinostroeniya s ispol’zovaniem zavershennykh fundamental’nykh issledovanii i NIOKR: FERROSPLAY: Trudy nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, 29 oktyabrya – 2 noyabrya 2018, Ekaterinburg [Prospects for the Development of Metallurgy and Mechanical Engineering using Completed Fundamental Research and R&D: FERROALLOYS: Proc. of Sci. and Pract. Conf. with Int. Participation, 29 October – 2 November, 2018, Ekaterinburg]. Ekaterinburg: Al’fa Print, 2018, pp. 12–20. (In Russ.).

3. Romanova O.A., Pozdnjakova E.A. Development of raw materials base for ferroalloy production: new trends and economic facilities. Ekonomika regiona. 2013, no. 1 (33), pp. 167–177. (In Russ.).

4. Ford K., Hobbs D., Urquhart R. CIS ferroalloys industry: commercial opportunities, technical challenges and strategic implications. In: 11th Int. Conference on Innovations in the Ferroalloy Industry, New Delhi, India, February, 2007, pp. 18–21.

5. World Steel Association. Global crude steel output increases by 3.4% in 2019. Available at URL: https://www.worldsteel.org/med ia-centre/press-releases/2020/Global-crude-steel-output-increases-by-3-4-r-in-2019.html (Accessed 30.01.2020).

6. World Steel Association. Global crude steel production 2019. Available at URL: https://www.worldsteel.org/en/dam/jcr:3911be61-488d-46d1-b611-c9432249f8b8/2019%2520global%2520crude%2 520steel%2520production.pdf (Accessed 30.01.2020).

7. Ostrovskiy D. Ferroalloys market of Russia and CIS. Available at URL: https://www.urnn-company.ru/upload/iblock/47d/47d138f59f 688fda4fdea20bb7c707.pdf (Accessed 25.01.2020).

8. Jones A. The market & cost environments for bulk ferroalloys. In: Nauchnye osnovy i praktika razvedki i prorabotki rud i tekhnogennykh obrazovanii: Uchebnik dlya vuzov – 3-e vydanie / pod red. V.V. Romanova, O.A. Privalov, Ye. Abdulabekov, M. Nurmukhanbetov, M. Kospanov, A.V. Mussabekov, Zh. Zhdanov. Ekaterinburg: Izd-vo AMB, 2003, pp. 269-271. (In Russ.).

9. Gregurek D., Peng Zh., Wenzl Chr. etc. Fe Alloys: Production and Metallurgical Aspects: Part II. JOM, 2017, vol. 69, no. 2, pp. 323–324.

10. Leon’t’ev L.I., Smirnov L.A., Zhuchkov V.I., Zhdanov A.V., Dashkevskii V.Ya., Gurova S.A. Status and prospects of ferroalloys production in the Russian Federation. Metallurgist. 2016, vol. 59, no. 11, pp. 1001–1006.

11. Official’nyi sait AO “Uzmetkombinat”. Tsekh po proizvodstvu ferroplavov [Official site of AO “Uzmetkombinat” JSC. Ferroalloy production workshop]. Available at URL: http://uzmetallov.com/main production/2406 (Accessed 21.01.2020). (In Russ.).

12. Gaiberdiev B.K. Proekt tsekh dlya proizvodstva 100 tys. tonn ferroalloy v uslovijakh Uzbekskogo metallurgicheskogo zavoda: dis... kand. tekh. nauk [Design of a workshop for the production of 100 thousand tons of ferrosilicon in conditions of Uzbekskiy Metallurgical Plant: Cand. Tech. Sci. Diss.]. Yuzhno-Ural’skiy gosudarstvennyy universitet: 2016, 74 p. (In Russ.).

13. International Stainless Steel Forum. Stainless Steel in Figures 2020. Available at URL: https://www.worldstainless.org/files/issf/ non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2020_Eng lish_public_version.pdf (Accessed 25.05.2020).

14. Gasik M.I., Lyakisev N.P., Emlyn B.I. Teoriya i tekhnologiya proizvodstva ferroplavov: Uchebnik dlya vuzov [Theory and production technology of ferroalloys: Textbook for universities]. Moscow: Metallurgiya, 1988, 784 p. (In Russ.).

15. Bel’skikh T.B. Analiz vozdeystviya proizvodstva ferrosilitsiya na obekt okryzhhayuschei sredy (na primere predpriyatiya OAO “Yurginski ferroplav”) [Analysis of the impact of ferrosilicon production on environmental objects (for example, the company OJSC “Yurginsky ferroalloys”)]. Available at URL: http://archieve.tpu.ru/handle/11683/27903 (Accessed 24.05.2020). (In Russ.).

16. Nekhamin S.M. Direct-current ore-heating furnace for ferroalloy production. Steel in Translation. 2008, vol. 38, no. 6, pp. 470–474.

17. Gelgenyus I.J. Aspect of DC chromite smelting at Mintek: an overview. In: Proceedings of the 13th Int. Ferroalloys Congress. Almaty, Kazakhstan: INFECON XIII. July 9 – 12, 2013, pp. 149–156.

18. Privalov O., Abdulabekov Ye., Nurmukanbetov Zh., Kospmanov M., Mussabekov Zh. Adjustment of high carbon ferrochrome composition in DC furnaces. In: Proceedings of the 13th Int. Ferroalloys Congress. Almaty, Kazakhstan: INFECON XIII. July 9 – 12, 2013, pp. 109–114.

19. Darvillita J., Honkaniemi M., Jokinen P. The transformation of ferrochromium smelting technologies during the last decades. Journal of the Southern African Institute of Mining and Metallurgy. 2004, vol. 104, no. 9, pp. 541–549.

20. Gal’perin L.L. etc. Technology of high-carbon ferrochrome production using chromium ore briquettes. In: Nauchnye osnovy i praktika razvedki i prorabotki rud i tekhnogennykh obrazovanii: Uchebnik dlya vuzov – 3-e vydanie / pod red. V.V. Romanova, O.A. Privalov, Ye. Abdulabekov, M. Nurmukhanbetov, M. Kospanov, A.V. Mussabekov, Zh. Zhdanov. Ekaterinburg: Al’fa Print, 2018, pp. 12–20. (In Russ.).

21. Zhuchkov V.I., Kel’ I.N. Use of waste from ferroalloy enterprises. In: Fundamental’nye issledovaniiya i prikladnye razrabotki protsessov prorabotki i utilizatsii tekhnogennykh obrazovanii. Ural’skiy riony loma, promyslennykh i kommunal’nykh otkhodov: “Tekhnogen-2017”, Ekaterinburg, 5 – 9 iyunya 2017 [Fundamental research and applied development of processes for processing and utilization of technogenic formations. Ural Market of Scrap, Industrial and Municipal Waste: “Tekhnogen-2017”, Ekaterinburg, June 5 – 9, 2017]. Ekaterinburg: IMET URORAN, 2017, pp. 553–556.

22. Andreeva K.V. Characteristics of current state of industrial sector of Orenburg region. In: Nauka v sovremennom obshchestve: zakonomernosti i tendentsii razvitiya: sbornik materialov Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii. Ekaterinburg, 18 – 23 iyunya 2003 [Scientific foundations and practice of exploration and processing of ores and industrial raw materials: Papers of Int. Sci.-Pract. Conference. Ekaterinburg, June 18 – 21]. Ekaterinburg: Izd-vo AMB, 2003, pp. 269-271. (In Russ.).