Protein Kinase Cθ Is Not Essential for T-Cell-Mediated Clearance of Murine Gammaherpesvirus 68

Francesca Giannoni,† Ashley B. Lyon,† Mark D. Wareing,‡ Peter B. Dias,† and Sally R. Sarawar*

Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121

Received 2 November 2004/Accepted 18 January 2005

Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen with significant homology to human pathogens Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. T cells are essential for primary clearance of MHV-68 and survival of mice following intranasal infection. Previous reports have suggested that protein kinase Cθ (PKCθ) is essential for T-cell activation and cytokine production in vitro. To determine the role of this molecule in vivo during the immune response to a viral infection, PKCθ−/− mice were infected with MHV-68. Despite the essential role of T cells in viral clearance, PKCθ−/− mice survived infection, cleared lytic virus, and maintained effective long-term control of latency. CD8 T-cell expansion, trafficking to the lung, and cytotoxic activity were similar in PKCθ−/− and PKCθ+/+ mice, whereas antiviral antibody and T-helper cell cytokine production were significantly lower in PKCθ−/− mice than in PKCθ+/+ mice. These studies demonstrate a differential requirement for PKCθ in the immune response to MHV-68 and show that PKCθ is not essential for the T-cell activation events leading to viral clearance.

Materials and Methods

Mice. 129/Sv mice that were heterozygous (PKCθ+/−) for the disruption of the PKCθ gene (29) were kindly provided by Amnon Altman, La Jolla Institute for Allergy and Immunology, San Diego, Calif., with the prior permission of Dan Littman, Skirball Institute, New York. Mice were bred and housed under specific-pathogen-free conditions in the vivarium at the La Jolla Institute for Allergy and Immunology or Torrey Pines Institute for Molecular Studies. PKCθ−/− homozygous knockout mice and PKCθ+/+ littermates were obtained from pairings of heterozygous mice. The genotypes of the progeny were determined by PCR on tail snips. Age-matched 6- to 15-week-old female PKCθ+/+ and PKCθ−/− mice were used in all experiments.

Viral infection and sampling. MHV-68 (clone G2.4) (5, 30) was propagated in BHK-21 cells (ATCC CCL-10). Mice were anesthetized with Avertin (2,2,2-trichloroethanol) and infected intranasally with 100 TCID50 in 20 μl of PBS. Mice were monitored for clinical symptoms of illness, such as weight loss, ruffled feathers, and hunched posture.

Protein kinase Cθ (PKCθ) is an isoenzyme of the PKC family that is selectively expressed in T lymphocytes (2, 19, 20). In mature T cells, stimulation with antigen and CD28 induces PKCθ translocation from the cytosol into plasma membrane lipid rafts, where it colocalizes with T-cell receptor at the central core of the immune synapse (4, 21). PKCθ subsequently mediates activation of several transcription factors, including NF-κB, NFAT, and AP-1, resulting in T-cell activation and increased interleukin 2 (IL-2) gene expression (reviewed in references 1 and 11). Studies of cell lines have led to the conclusion that PKCθ is essential for T-cell activation and that this isoenzyme of PKC appears to function by integrating signals from CD28 and the T-cell receptor (reviewed in references 1 and 11). Studies in mice deficient in PKCθ have tended to support this view and have shown that PKCθ is critical for NF-κB activation in mature T lymphocytes (29). NFAT activation (22), pulmonary allergic hypersensitivity responses (17), TH2 responses to *Nippostrongylus brasiliensis* (17), and the induction of T-cell activation versus tolerance in vivo (3). However, recent studies have demonstrated PKCθ-dependent pathway was utilized.

To determine the role of PKCθ in T-cell activation during the immune response to MHV-68, we infected wild-type or PKCθ−/− mice with the virus, a rodent pathogen (5), which is closely related to Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus (8, 36). Intranasal administration of MHV-68 results in acute productive infection of lung alveolar epithelial cells and a latent infection in various cell types, including B lymphocytes (9, 10, 28, 30, 35, 37). The virus induces an inflammatory infiltrate in the lungs, splenomegaly, and an increase in the number of activated CD8 T cells in the blood (30, 33). Virus-specific CD8 T cells traffic to the lungs and clear infectious virus by a cytolytic mechanism 10 to 15 days after infection (30, 31), while both B and T cells appear to function in the long-term control of latent virus (12, 28).

Our previous studies (14) showed that CD28 is not essential for cytotoxic T-lymphocyte (CTL) responses to MHV-68 or for primary viral clearance. However, lack of CD28 resulted in a significant reduction in antiviral antibody titers. Furthermore, Kim et al. (12) demonstrated that the compromised antiviral antibody response in CD28−/− mice was ineffective in the long-term control of latent MHV-68, whereas T-cell responses remained effective. To further delineate signaling pathways in T-cell activation during MHV-68 infection, in the current study we utilized PKCθ−/− mice to determine whether T-cell activation and viral clearance were mediated via PKCθ in a CD28-independent pathway or whether an alternative PKCθ-independent pathway was utilized.

*Corresponding author. Present address: Viral Immunology, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121. Phone: (858) 909-5139. Fax: (858) 909-5141. E-mail: ssarawar@tpims.org.

† Present address: Viral Immunology, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121.

‡ Present address: Department of Medicine, Karolinska Institute, Huddinge University Hospital, SE-141 86 Stockholm, Sweden.
PKC in the Immune Response to a Viral Infection

RESULTS

PKC"++" mice can clear replicating MHV-68 from their lungs and maintain effective long-term control of the virus. Despite the essential role of T cells in viral clearance, mice homozygous for a targeted disruption of the PKC gene were able to clear lytic MHV-68 with normal kinetics (Fig. 1). Both PKC"−/−" and PKC"+/+" mice had cleared infectious virus from their lungs by day 10 after intranasal infection with 10^4 PFU MHV-68. Thus, in this in vivo model, PKC did not appear to be essential for the T-cell activation events leading to viral clearance. The lungs of both PKC"−/−" and PKC"+/+" mice remained clear of replicating virus at days 35 and 50 after infection (Fig. 1), demonstrating effective long-term control of the virus.

PKC is not required for CD8 T-cell expansion or trafficking to the lungs. Intranasal infection with MHV-68 induces an inflammatory infiltrate in the lungs comprising mainly T cells and monocytes/macrophages. There was no significant difference in the total number of cells recovered in the BAL in PKC"−/−" and PKC"+/+" mice (Fig. 2A) or in the percentages of CD4 and CD8 T cells in this population determined by flow cytometric analysis (Fig. 2C). In both PKC"−/−" and PKC"+/+" mice, CD8 T cells greatly outnumbered the CD4 T cells. MHV-68 also induces splenomegaly by a mechanism that is dependent on both T and B cells (7, 9, 34, 35). Lack of PKC did not diminish MHV-68-induced splenomegaly (Fig. 2B). In contrast, splenic cellularity was significantly increased in PKC"−/−" mice on day 15 after infection. However, this appeared to be a temporary phenomenon, and the cell numbers were similar in PKC"−/−" and PKC"+/+" mice by day 35 after infection (Fig. 2B). The percentages of CD4 and CD8 T cells and B cells were similar in the spleens of PKC"−/−" and PKC"+/+" mice (Fig. 2D). The cell numbers and phenotypes were similar in the spleens of uninfected PKC"−/−" and PKC"+/+" mice (data not shown).

The proportion of virus-specific CD8 T cells in the BAL and spleen was also determined by evaluating the number of CD8 cells producing IFN-γ in response to stimulation with two different viral peptide epitopes by intracellular staining. There was no significant difference in the percentages of CD8 T cells responding to the p56 and p79 viral epitopes in the BAL (Fig. 3A) or in the spleens of infected animals (Fig. 3B). Taken together, these data indicate that CD8 T cells from PKC"−/−" mice are capable of expansion and trafficking to an inflammatory site in response to MHV-68 infection.

PKC is not required for the development of CTL responses during MHV-68 infection. MHV-68 is cleared from the lungs by cytotoxic T cells 10 to 13 days after infection (31). The normal kinetics of viral clearance in PKC"−/−" mice suggested an intact CTL response. To verify this, CTL assays were performed on BAL and spleen cell populations from infected animals. Previous studies in this model have shown that the majority of the CTL activity is mediated by CD8 T cells (7, 31). There was also a significant reduction in IL-10 production (Fig. 3C and D). Therefore, PKC is not essential for the CTL response to MHV-68 infection.

Reduced T-helper cell cytokine responses in PKC"−/−" mice. To determine the effect of absence of PKC on cytokine production during the immune response to viral infection, splenocytes from virus-infected mice were restimulated in vitro with virus-infected splenic antigen-presenting cells as described previously (24). Recall cytokine production was measured in the supernatant by ELISA. IFN-γ production was dramatically reduced in splenocytes from PKC"−/−" mice (Fig. 4A). Subset depletion experiments have shown that CD4 T cells are the predominant cell type producing IFN-γ in these cultures (14). There was also a significant reduction in IL-10 production (Fig. 4B) while no IL-2, IL-4, or IL-5 was detected in the culture supernatants of cells from either PKC"+/+" or PKC"−/−" mice (data not shown).
Reduced serum antibody responses to MHV-68 in PKC^{−/−} mice. Substantial changes in the antibody response to MHV-68 were also noted in PKC^{−/−} mice. Virus-specific serum antibody titers were determined by ELISA 50 days after infection with MHV-68. Data are means ± standard deviations (error bars) of data from two separate experiments on cells 15 days after infection and one experiment on cells 35 days after infection. Cell counts from three or four individual mice were performed at each time point. BAL (C) or spleen cells (D) were stained with phycoerythrin- or fluorescein isothiocyanate-conjugated monoclonal antibodies, and the resulting populations were analyzed by flow cytometry. The means ± standard deviations (error bars) of data from two separate experiments on cells 15 days after infection and one experiment each on cells 10 and 35 days postinfection are shown. Groups of two to four mice were used at each time point. BAL cells were pooled in each experiment, whereas individual spleen cell suspensions were analyzed. The asterisk denotes that there was a statistically significant difference in spleen cell numbers at day 15 after infection in PKC^{−/−} and PKC^{+/+} mice (P < 0.05 by Student’s t test).

FIG. 2. Cell numbers and lymphocyte subsets in the BAL or spleens of PKC^{−/−} and PKC^{+/+} mice. The numbers of cells in the BAL (A) or spleen (B) were determined at intervals after intranasal infection of PKC^{−/−} and PKC^{+/+} mice with MHV-68. Data are means ± standard deviations (error bars) of cell counts for two separate experiments on cells 15 days after infection and for one experiment on cells 35 days after infection. Cell counts from three or four individual mice were performed at each time point. BAL (C) or spleen cells (D) were stained with phycoerythrin- or fluorescein isothiocyanate-conjugated monoclonal antibodies, and the resulting populations were analyzed by flow cytometry. The means ± standard deviations (error bars) of data from two separate experiments on cells 15 days after infection and one experiment each on cells 10 and 35 days postinfection are shown. Groups of two to four mice were used at each time point. BAL cells were pooled in each experiment, whereas individual spleen cell suspensions were analyzed. The asterisk denotes that there was a statistically significant difference in spleen cell numbers at day 15 after infection in PKC^{−/−} and PKC^{+/+} mice (P < 0.05 by Student’s t test).
tain effective long-term control of latent MHV-68, whereas mice lacking CD4 T cells, CD40, or CD40L show viral reactivation in the lungs (6, 7, 14, 25). In the case of CD28−/− mice, it has been shown that T cells are the effector cells maintaining long-term control of latent MHV-68 (12), whereas both antibody and T-cell responses are compromised in mice lacking CD4 or CD40 costimulation (6, 7, 25).

Our preliminary data (M. D. Wareing and S. R. Sarawar, unpublished) suggest that the nonessential role of PKCδ in viral clearance is not limited to MHV-68, as PKCδ−/− mice also survive infection with influenza virus, whereas T-cell-deficient mice rapidly succumb to both viruses. Like MHV-68, influenza virus is cleared from the lungs by cytotoxic T cells (32). Furthermore, in a recent study, Berg-Brown et al. (3) were also able to demonstrate a CTL response to lymphocytic choriomeningitis virus in virally infected PKCδ−/− mice. Our

FIG. 3. CD8 T-cell responses in PKCδ−/− mice. Frequency of virus-specific CD8 T cells in BAL (A) and spleen (B). BAL or spleen cells were harvested 15 days after infection and stimulated for 6 h with either p56 or p79 MHV-68 peptide in the presence of monensin prior to staining for CD8 and IFN-γ. Results are means ± standard deviations (error bars) for two separate experiments. Cell suspensions from three or four mice were analyzed individually in each experiment. CTL responses in BAL (C) and spleen (D). Single-cell suspensions were prepared from BAL or spleens at day 10 after intranasal infection with MHV-68. CTL activity was determined in a 6-h 51Cr release assay. Mean percentages of specific lysis ± standard deviations (error bars) are shown for two separate experiments. Groups of two or three mice were used in each experiment. BAL cells were pooled in each experiment, whereas spleen cell suspensions were analyzed individually.

FIG. 4. Cytokine responses to MHV-68 in PKCδ−/− mice. Splenocytes were restimulated with MHV-68-infected antigen-presenting cells, and IFN-γ (A) or IL-10 (B) concentrations were determined in culture supernatants by ELISA. Data are expressed as mean cytokine concentrations (pg/ml) ± standard deviations (error bars) for two separate experiments of cells, one 15 days after infection and one 35 days after infection. Splenocyte cultures from two to four individual PKCδ−/− or PKCδ+/+ mice were tested in each experiment. Asterisks denote that there was a statistically significant difference in cytokine responses in PKCδ−/− and PKCδ+/+ mice (P < 0.05 [*] and P < 0.01 [**] by the Mann-Whitney rank sum test).
ELISA. Data are expressed as mean absorbance values with MHV-68. Virus-specific antibody responses were determined by where the antibody response in wild-type mice controlled the preventing reactivation of latent MHV-68 in the lungs, whereas the antibody response in wild-type mice was ineffective in virus effectively. They showed that it was the T-cell response that maintained effective control of latency in CD28–/– mice (12). It is likely that this is also the case in PKC0–/– mice, although it is possible that the reduced antibody response is still capable of exerting some control of latency. Our data showed that lack of PKC0 had a more dramatic effect on IgG1 than IgG2b or IgG2a. A similar differential effect on antiviral IgG1 versus IgG2 was noted following MHV-68 infection of CD28–/– mice in our earlier study (14) and by McAdam et al. (18) in vesicular stomatitis virus (VSV)-infected CD28–/– mice. However, Berg-Brown et al. (3) reported that PKC0 was not required for an in vitro neutralizing antibody response to VSV, although they did not examine the subclass distribution of the antiviral antibody response. The reason for this difference in the PKC0 dependence of the antibody response during MHV-68 and VSV infection is not readily apparent. However, the antibody responses are somewhat different in the two viral infections. The helper-dependent IgG response develops much more rapidly following infection with VSV (3) than with MHV-68 (23, 27). It is possible that VSV is able to trigger costimulatory molecules that utilize PKC0-independent signaling pathways for B-cell help, while MHV-68 may be unable to trigger such signals.

The reason that PKC0 is dispensable for certain T-cell functions during a viral infection in vivo but is required for T-cell activation in vitro is currently unclear. However, similar disparities between the in vitro and in vivo requirements for T-cell activation have been observed in other systems. For example, studies in IL-2–/– mice showed that, although IL-2 is essential for T-cell proliferation in vitro, in vivo it does not appear to be required for T-cell expansion and CTL activity in response to viral infection (13). This likely reflects substitution of IL-2 function in vivo by other cytokines that also signal through the common gamma chain and by the ability of viruses to trigger costimulatory events. Viral infection activates the innate immune system, leading to the production of proinflammatory cytokines and other mediators, while viral components can act as ligands for cell surface receptors. These events can induce potent NF-κB activation, and it is possible that PKC0–independent NF-κB activation, triggered by innate immune responses, can partially compensate for the lack of PKC0 in adaptive immunity to viruses.

In summary, our data provide novel insights into the role of PKC0 in T-cell activation during the immune response to a viral infection. No previous studies have examined T-cell trafficking, cytokine production, or antiviral IgG subclass distribution during a viral infection in CD28–/– mice. Furthermore, no previous studies have examined viral clearance or the long-term control of persistent virus in CD28–/– mice. Our data show that PKC0 is not universally required for T-cell activation in vivo—rather it is differentially required for different arms of the immune response. The idea that distinct signaling pathways, not all of which converge at the level of PKC0, regulate T-cell activity, suggests that it may be possible to selectively block certain T-cell functions while preserving others. In this respect, it of interest that Marsland et al. (17) have recently shown that PKC0 is required for pulmonary allergic inflammation. Taken together with our findings, these data suggest further evaluation of PKC0 as a possible target for novel immu-
nosuppressive drugs that could block T-cell functions leading to lung damage, without compromising viral clearance.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the Infectious Disease Science Center.

We thank Anamn Altman for helpful advice and discussion and Svetlana Lebedeva and Erin Campbell for assistance with the maintenance and genotyping of the PKCθ mice.

REFERENCES

1. Arendt, C. W., B. Albrecht, T. J. Soos, and D. R. Littman. 2002. Protein kinase C-theta: signaling from the center of the T-cell synapse. Curr. Opin. Immunol. 14:523–530.
2. Baier, G., D. Telford, L. Giampa, K. M. Coggeshall, G. Baier-Bitterlich, N. Nagel, and I. Horak. 1997. Cytolytic T lymphocytes are precursors of NK cells. J. Exp. Med. 184:863–871.
3. Blaskovic, D., M. Stancekova, J. Svobodova, and J. Mistrikova. 1980. Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol. 24:468.
4. Brooks, J. W., A. M. Hamilton-Easton, J. P. Christensen, R. D. Cardin, C. L. Stevenson, P. G., G. T. Belz, J. D. Altman, and P. C. Doherty. 1999. Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur. J. Immunol. 29:1059–1067.
5. Cardin, R. D., J. W. Brooks, S. R. Sarawar, and P. C. Doherty. 1996. Progressive loss of CD8+ T cell-mediated control of a gammaherpesvirus in the absence of CD4+ T cells. J. Exp. Med. 184:863–871.
6. Doherty, P. C., D. R. Littman, and M. A. Blackman. 1997. Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J. Virol. 71:5247–5252.
7. Flano, E., S. M. Husain, J. T. Sample, D. L. Woodland, and M. A. Blackman. 2000. Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J. Immunol. 165:1074–1081.
8. Isakov, N., and A. Altman. 2002. Protein kinase Cθ in T cell activation. Annu. Rev. Immunol. 20:761–794.
9. Kim, I. J., E. Flano, D. L. Woodland, and M. A. Blackman. 2002. Antigen-specific control of CD8+ T cell-mediated control of gamma-herpesvirus infection. J. Immunol. 168:3958–3964.
10. Kundig, T. M., H. Schorle, M. F. Bachmann, H. Hengartner, R. M. Zinkernagel, and I. Horak. 1993. Immune responses in interleukin-2-deficient mice. Science 262:1095–1098.
11. Lee, B. J., S. Santee, S. Von Gesjen, C. F. Ware, and S. R. Sarawar. 2000. Lympho-Thomas-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J. Virol. 74:2786–2792.
12. Liu, L., E. Flano, E. J. Usherwood, S. Surman, M. A. Blackman, and D. L. Woodland. 1999. Lytic cycle T cell ephesins are expressed in two distinct phases during MHV-68 infection. J. Immunol. 163:868–874.
13. Marsland, B. J., T. J. Soos, G. Spath, D. R. Littman, and M. Kopf. 2004. Protein kinase C theta is critical for the development of in vivo T helper (Th2) cell but not Th1 cell responses. J. Exp. Med. 200:181–189.
14. Mcclard, A. J., E. A. Farkash, B. E. Gewurz, and A. H. Sharpe. 2000. B7 costimulation is critical for antibody class switching and CD8+ cytotoxic T lymphocyte generation in the host response to vesicular stomatitis virus. J. Virol. 74:2623–268.
15. Meller, N., A. Altman, and N. Isakov. 1998. New perspectives on PKCθ, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J. Biol. Chem. 268:4997–5004.
16. Berg-Brown, N. M., N. A. Gronski, R. G. Jones, A. R. Elford, E. K. Deenick, and P. S. Ohashi. 2000. PKCθ signals activation versus tolerance in vivo. J. Exp. Med. 199:743–752.
17. Bi, K., Y. Tanaka, N. Coudronniere, K. Sugie, S. Hong, M. J. van Stipdonk, and J. Arno. 1997. Protein kinase C theta is required for the development of in vivo T helper (Th)2 cell but not Th1 cell responses. J. Exp. Med. 184:402–407.
18. Brokow, N., J. D. Topham, S. D’Costa, R. D. Cardin, T. N. Marion, L. K. Myers, and P. C. Doherty. 2000. Analysis of the virus-specific and non-specific B cell response to a persistent B-lymphotrophic gammaherpesvirus. J. Immunol. 164:1820–1828.
19. Cardin, R. D., J. W. Brooks, J. W. Brooks, M. Mehrpouya, R. A. Tripp, and P. C. Doherty. 1996. Cytokine production in the immune response to murine gammaherpesvirus 68. J. Virol. 70:3264–3268.
20. Sarawar, S. R., R. D. Cardin, J. W. Brooks, D. R. Littman, and P. S. Ohashi. 2001. Stimulation via CD40 can substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Proc. Natl. Acad. Sci. USA 98:6325–6329.
21. Stevenson, P. G., G. T. Belz, J. D. Altman, and P. C. Doherty. 1999. Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur. J. Immunol. 29:1059–1067.
22. Stevenson, P. G., and P. C. Doherty. 1998. Kinetic analysis of the specific host response to a murine gammaherpesvirus. J. Virol. 72:943–949.
23. Tripp, R. A., A. M. Hamilton-Easton, R. D. Cardin, P. Nguyen, F. G. Behm, D. L. Woodland, P. C. Doherty, and M. A. Blackman. 1997. Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen? J. Exp. Med. 185:1641–1650.
24. Usherwood, E. J., A. J. Ross, D. J. Allen, and A. A. Nash. 1992. Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J. Gen. Virol. 73:2347–2356.
25. Topham, D. J., R. A. Tripp, and P. C. Doherty. 1997. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol. 159:5197–5200.
26. Usherwood, E. J., P. Latrelle, P. Wamsley, K. Halloworth, K. E. Week, A. J. Dal Canto, and S. H. Speck. 1997. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71:5894–5904.
27. Week, K. E., S. S. Kim, H. I. Virgin, and S. H. Speck. 1999. Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J. Virol. 73:3273–3283.
ERRATUM

Protein Kinase C θ Is Not Essential for T-Cell-Mediated Clearance of Murine Gammaherpesvirus 68

Francesca Giannoni, Ashley B. Lyon, Mark D. Wareing, Peter B. Dias, and Sally R. Sarawar

Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, California 92121

Volume 79, no. 11, p. 6808-6813, 2005. Page 6812, column 2, lines 11 and 13 from the bottom: “CD28−/− mice” should read “PKCθ−/− mice.”