THE EFFECTS OF ANGULAR MOMENTUM ON HALO PROFILES

ERIK W LENTZ 1, THOMAS R QUINN 2, AND LESLIE J ROSENBERG 1

1 Physics Department, University of Washington, Seattle, WA 98195-1580, USA; lentze@phys.washington.edu, ljrosenberg@phys.washington.edu
2 Astronomy Department, University of Washington, Seattle, WA 98195-1580, USA; trq@astro.washington.edu

Received 2015 December 18; accepted 2016 March 8; published 2016 May 10

Abstract

The near universality of DM halo density profiles provided by N-body simulations proved to be robust against changes in total mass density, power spectrum, and some forms of initial velocity dispersion. Here we study the effects of coherently spinning up an isolated DM-only progenitor on halo structure. Halos with spins within several standard deviations of the simulated mean ($\lambda \lesssim 0.20$) produce profiles with negligible deviations from the universal form. Only when the spin becomes quite large ($\lambda \gtrsim 0.20$) do departures become evident. The angular momentum distribution also exhibits a near universal form, which is also independent of halo spin up to $\lambda \lesssim 0.20$. A correlation between these epidemic profiles and the presence of a strong bar in the virialized halo is also observed. These bar structures bear resemblance to the radial orbit instability in the rotationless limit.

Key words: dark matter – galaxies: halos – galaxies: structure – instabilities – line: profiles

1. INTRODUCTION

The ΛCDM model is considered by many to be the most successful model to date for predicting cosmological structure formation in our universe, and is often referred to as the standard model of cosmology (see Planck Collaboration et al. 2014, 2015 for a review). ΛCDM matches large-scale structure observations down to a few megaparsecs (Eisenstein et al. 2005). Even below 1 Mpc, ΛCDM provides vast insight into the formation of clusters, galactic halos, and subhalos; but its limitations also become more evident.

One of these limitations is the so-called core-cusp problem, which can be described as an inconsistency between the inner density profiles of halos found in numerical simulations and those extracted from galactic observations (Flores & Primack 1994; Moore 1994), with the density inside a scale radius being much shallower than expected (Walker et al. 2010). Approximating the density ρ scaling as a power law at small radii ($\rho \propto r^{\alpha}$ for $r \to 0$), cold dark matter (CDM) numerical predictions show a nearly universal profile with $\alpha = -1$ or steeper, which closely resembles the curve put forth by Navarro et al. (1996a; Moore 1994; Navarro et al. 1996b; Moore et al. 1998, 1999). Current observations, however, provide scaling much closer to $\alpha = -0.5$ or are even flat ($\alpha = 0.0$) (Navarro et al. 2010). Furthermore, the central density of a dwarf DM halo is observed to be constant ($\sim 10^8 M_\odot$ kpc$^{-3}$) over multiple orders of magnitude in halo mass (Strigari et al. 2006; Gilmore et al. 2007; Hayashi & Chiba 2015).

In response to the core-cusp problem and other concerns, an abundance of new physics has been proposed to resolve a new model with the data. These theories’ effects range from heating the dark matter by power truncation (Moore et al. 1999; Governato et al. 2015), giving the DM the ability to repulsively self-interact beyond means gravity (Burkert 2000; Moore et al. 2000; Spergel & Steinhardt 2000; Dave et al. 2001; Zavala et al. 2013; Vogelsberger et al. 2014; Fry 2015; Fry et al. 2015), to having a DM structure include its own sector of forces and other physics (Jungman et al. 1996; Sikivie 2012). These new physics create a model landscape, much of which is currently unexplored.

Attempts have been made to understand the nature of the universal profile, which we will approximate using the Navarro–Frenk–White (NFW) profile (Navarro et al. 1996a, 1996b). Statistical techniques applied to this understanding include analysis of approximate integrals of motion during entropy maximization (Pontzen & Governato 2013), semi-analytic equilibrium phase-space density estimation (Taylor & Navarro 2001; Barnes & Williams 2006), and mass accretion history (Ludlow et al. 2013). Under various constraints, the integral and equilibrium studies produce NFW-like profiles, though there are still gaps in understanding each technique’s motivations, keeping the physical cause of NFW ambiguous.

Accretion history studies have also made progress in identifying the limits of NFW, but still fall short when identifying the fundamental mechanisms responsible for the observed similarity. Other semi-analytical approaches include spherical shell collapse models, which produce results that appear to challenge universality (Zukin & Bertschinger 2010a, 2010b).

The evolution equations governing structure formation are in general nonlinear, and as a result, both direct and semi-analytic approaches are used to solve them. To date, semi-analytic methods have probed structure formation before the time of first-crossing, contributing to topics from angular momentum distribution to the cosmic web (Ryden & Gunn 1987; Binney & Quin 1991; Quinn & Binney 1992; Pichon et al. 2014; Casuso & Beckman 2015; Codis et al. 2015). While these methods cannot probe the current epoch, their form and computational efficiency provide agility when surveying classes of models. To reach virialization, a full nonlinear approach is needed to retain any sort of accuracy. Thankfully, powerful numerical schemes have been developed that leverage the ever-increasing computational power available. These techniques include both particle, mesh, and hybrid codes, many with sophisticated optimizations that allow them to scale quite efficiently (Couchman et al. 1995; O’Shea et al. 2004; Springel 2005; Jetley et al. 2008).

This letter concentrates on how computational methods have been used to study the feature of angular momentum and its role in structure formation (Barnes & Efstathiou 1987; Bullock et al. 2001; Gardner 2001; van den Bosch 2002; Bellovary et al. 2008; Herpich et al. 2015). Most angular momentum studies
quantify a structure’s spin by the parameter λ (Peebles 1969),

$$\lambda = \frac{J E^{1/2}}{GM^2/2},$$ \hspace{1cm} (1)

where J is the magnitude of the total angular momentum, E is the total energy, and M is the total mass of the halo.

Angular momentum analysis of cosmological structures has a decade-long history, with analyses that span both the linear and nonlinear approaches. Chief among their findings is the log-normal distribution to total halo spins, with semi-analytics producing a mean value of $\lambda \sim 0.09$ (Ryden 1988) and nonlinear means giving $\lambda \sim 0.035$ (Barnes & Efstathiou 1987; Bullock et al. 2001), both essentially contained well within the small rotational energy limit.

This paper focuses on how halo formation is affected over the range of possible spin values and the subsequent difference of the density profiles from the universal form. In Section 2, we describe the series of N-body isolated collapse simulations used to consistently study spin’s contribution to a virialized halo. Section 3 displays the resulting structures and how they relate to the universal profile. Section 4 discusses what effects, if any, can be attributed to the angular momentum content of the halo or its progenitor. We end with a summary of these findings and discuss potential directions for future studies in Section 5.

2. METHODS

To isolate the effects of angular momentum on the structure of halos, isolated spherical perturbations with a range of spin values are evolved in an expanding universe to form halos of a prescribed virialized size at zero redshift.

Initial profiles of the collapse are generated by the Isolated Collapse Initial Conditions Generator (ICInG) package (Tremmel et al. 2015), which was made specifically for isolated spherical collapse. The initial condition distributions follow from Evrard (1988) and assume an Einstein–deSitter cosmology. ICInG uses a glass distribution to avoid numerical artifacts and includes the ability to impart angular momentum as well as random motions.

The generator begins with a density profile at a prescribed initial redshift z_i given by a top-hat overdensity of the form

$$\delta(r) = \frac{\delta_0}{2}(1 + \cos(\pi r/R_i)),$$ \hspace{1cm} (2)

where R_i is the radius of the sphere and δ_0 parameterizes the magnitude of the overdensity, both of which help specify the mass of the resultant halo.

Given a collection of particles initially distributed in the homogeneous sphere, the radii are shifted to match the perturbed density profile

$$r_0 \rightarrow r_1 = r_0(1 - \delta(r_0)/3).$$ \hspace{1cm} (3)

The velocity distribution is comprised of the radial expansion rate of the embedding universe, a peculiar velocity given by linear growing mode theory (Evrard 1988), a rigid rotor condition parameterized by the spin λ, and a random velocity seed of magnitude equal to the peculiar velocity added to prevent singular collapse:

$$v = v_{hub} + v_{pec} + v_{rot} + v_{rand}$$

$$= Hr_0 - \frac{2}{3} H\delta(r_0)r_0 + \omega \times r_1 + v_{rand},$$ \hspace{1cm} (4)

where

$$\omega = \frac{5\lambda GM^{1/2}}{2E^{1/2}R^3}.$$ \hspace{1cm} (5)

The N-body code ChaNGa is then used to evolve the distribution using collisionless dynamics. The code uses a Barnes–Hut tree to calculate gravity, with a hexadecapole expansion of nodes. Time-stepping is done with a leapfrog integrator with individual time-steps for each particle. The code base has been thoroughly tested and has contributed to many astronomical topics, including DM candidate testing (Kim et al. 2014; Governato et al. 2015; Menon et al. 2015).\footnote{We used the public distribution of ChaNGa available via the UW N-Body Shop GitHub page (https://github.com/N-BodyShop/chaNGa). Literature on its operation can be found on its wikipage (https://github.com/N-BodyShop/chaNGa/wiki/ChaNGa).}

Although the collapse is scale-free, we have chosen a physical scale to simulate the equivalent of a large MW-sized halo ($M_{200} \approx 1.5 \times 10^{12} M_\odot$) starting at $z_i = 6$ with an effective initial overdensity $\delta_0 \approx 0.71$ for all halos save $\lambda = 0.00$, where $\delta_0 \approx 0.84$. The progenitor particle number is \sim million with a softening length of \sim0.4 kpc, which is more than sufficient to resolve core depletion at the \sim4 kpc scale. The system is evolved for \sim10 Gyr with a force accuracy/node opening criterion $\theta = 0.7$ and a time-stepping accuracy such that the time-step $\Delta t < \eta\sqrt{\epsilon/a}$, where ϵ is the gravitational softening, a is the acceleration of a particle, and η is an accuracy criterion; we used $\eta = 0.00013$. Also note that as these are DM-only simulations, the configuration may be rescaled to a halo size of our choosing because Newtonian gravity is scale-free. Cosmological expansion is turned on, but to model the system as isolated, boundary conditions are not periodic.

To survey the effects of angular momentum, we explore the λ landscape at the points $\lambda \in \{0.00, 0.03, 0.06, 0.08, 0.10, 0.15, 0.25, 0.50\}$, where 0.03 is a typical value for galactic halos (Barnes & Efstathiou 1987; Ryden 1988; Bullock et al. 2001), and 0.50 is considered to be quite unusual. In the next section, we discuss the outcome of these simulations.

3. RESULTS

After the progenitor is evolved to $z \approx 0$, properties such as the radial density profile are calculated, shown for our halos in Figure 1. For the lower λ in our range {0.00, 0.03, 0.06, 0.08}, the profiles tightly match a universal form as expected. By that we mean they closely follow the NFW (Navarro et al. 1996a) density curve with the slightly faster than r^{-3} growth toward the center that has become expected by some for virialized halos (Moore 1994; Moore et al. 1998, 1999; Fry 2015). Surprisingly, the form persists into the higher-spin halos until $\lambda = 0.25$, which lies in the 99.9 percentile of halos according to some N-body studies (Barnes & Efstathiou 1987; Bullock et al. 2001). Deviations in the higher-spin profiles, $\lambda \in \{0.25, 0.50\}$, include a divergence from the two-power-law form, a shrinking virial radius, and a lowered density, the last two of which may be partially attributed to the limitations of ICInG in the high-spin regime to set the final virial mass. Our definitions of the virial radius and mass are in line with Bullock et al. (2001), with the virial radius taken to be the distance at which the average interior density equals 200 times
the critical density. The particles within the virial radius at this
time are called the virialized component, while the remainder
are the non-virialized component. The relation between the
λ values supplied to ICInG and the measured spins of the
virialized halos are provided in Table 1.

Cumulative mass profiles of prograde particles within the
virial radius versus specific angular momentum also show a
consistency over the lower-spin halos (Figure 2), despite their
initial differences in rotation rate. Bullock et al. (2001) (BDK)
performed a similar analysis and proposed a universal pro
file of the form

$$M_{\text{enc}}(j) = M_{\text{en}} \left(\frac{j}{j_0} \right)^{\alpha},$$

where j is the z-component of the specific angular momentum
as defined by the imposed spin axis (Equation (5)). This
cumulative mass uses only the prograde bodies in the virialized
halo, summing the masses of particles with specific angular
momentum between 0 and j. For reasonable λ, the inner power
law ($M_{\text{enc}} \propto j^{\alpha}$ for $j \approx 0$) of the calculated profiles is
noticeably shallower with $\alpha \approx 0.7$. The primary difference
between our analysis and BDK’s is the presence of some
retrograde ($j_z < 0$) constituents due to the differences of their
binning process. Due to the consolidated profiles over reason-
able λ, we suggest a similar profile shape for the slower halos:

$$M_{\text{enc}}(j) = M_{\text{en}} \left(\frac{j}{j_0} \right)^{0.7}, \quad \alpha \approx 0.7.$$ (7)

The difference between profiles (6) and (7) points to the
existence of a retrograde component to the halo (Figure 3),
which was not present in the initial configuration. This is
curious, as the approximate cylindrical symmetry of the initial
state should translate to a particle-wise near conservation of the z
component of angular momentum. Instead, these halos form a
strong bar structure in the rotation plane (Figure 4), reminiscent
of the radial orbit instability (ROI; Polyachenko 1981; Barnes
et al. 1986; Bellovary et al. 2008) in the $\lambda \to 0$ limit. The
presence of a strong bar ruins the cylindrical symmetry of the
initial conditions, allowing for non-trivial particle-wise angular

![Figure 1](image1.png)
Figure 1. Spherically averaged density profile for the various spin values after collapse. The lower-spin progenitors form virialized states that match the nearly universal NFW form, save for the notable increase in power law within the scale radius. The reference NFW profile has a scale radius of 30 kpc and a scale density of $2.2 \times 10^6 M_\odot \text{kpc}^{-3}$, which were chosen by eye to match the low-spin profiles. The inset plot displays the power-law behavior of each profile at 10 kpc.

![Figure 2](image2.png)
Figure 2. Enclosed-mass profile of prograde particles vs. the vertical component of specific angular momentum, reminiscent of Figure 4 of Bullock et al. (2001), showing that the lower-spin halos take a similar form while the higher-spin halos have a steeper inner slope. A difference in technique may be responsible for the discrepancy: Bullock removed large amounts of retrograde ($j_z < 0$) material from the halos before profiling, whereas we have removed every retrograde particle.

![Figure 3](image3.png)
Figure 3. Probability density function of the isolated distributions after collapse. The initial configurations for each distribution were well-represented by a rotating solid sphere, which would give a distribution with support in positive j. The retrograde component ($j_z < 0$) to the final distributions implies a breaking of the initial axial symmetry.

![Table 1](image4.png)
Table 1
Relation between the λ Parameter Values Supplied to ICInG and Those Measured in the Virialized Halo

λ (parameter)	λ (measured)
0.00	0.000
0.03	0.035
0.06	0.064
0.08	0.094
0.10	0.109
0.15	0.168
0.25	0.248
0.50	0.381
momentum evolution and the presence of retrograde particles after virialization. The bar is prevalent in all of the generated halos, save for \(\lambda = 0.25, 0.50 \) where it weakens significantly. The strength of the bar can in part be quantified in terms of its triaxial factor (Binney & Tremaine 2008),

\[
T = \frac{\gamma_1 - \gamma_2}{\gamma_1 - \gamma_3},
\]

where \(\{ \gamma_i \} \) are the eigenvalues of the halo’s mass quadrupole ordered from largest to smallest (Figure 5). Note that the lack of constraint on the principal axes adds ambiguity to whether or not this figure measures the strength of axial symmetry breaking. Since we are only interested in elongation in the plane normal to the \(z \)-axis, a more relevant measure of bar strength is in the bar parameter (Binney & Tremaine 2008)

\[
B = \frac{\chi_1 - \chi_2}{\chi_1 + \chi_2},
\]

where \(\{ \chi_1, \chi_2 \} \) are the eigenvalues of the projected trace-full quadrupole moment sorted in decreasing value (Figure 6).

Despite the breaking of cylindrical symmetry, the transfer of angular momentum between virialized and non-virialized components appears to be minimal over the initial and final configurations (Figure 7). This effective lack of coupling implies that the instability can exist in isolation, similar to the ROI. We can also see that the amount of retrograde material in the halos is significant, and it can be shown that the density profiles for prograde and retrograde components look very similar for barred halos, and only diverge when the bar weakens.

There appears to be a theme here: for our class of initial distributions, the universality of the density and angular momentum profile shapes persist if and only if a strong bar is present.

4. DISCUSSION

The NFW and enclosed mass profiles appear to be robust over a wide range of spin values (Figures 1 and 2). Also present over these spins is a strong in-plane bar, which contains large amounts of prograde and retrograde material (Figure 3). The formation of the bar is analogous to the structure formed by an ROI where a slight breaking of a distribution’s spherical or cylindrical symmetry evolves exponentially into a significant asymmetry. Bellovary et al. (2008, hereafter BDB) showed that for a non-rotating spherical mass, velocity perturbations of the 3D thermal variety disrupted the instability, but purely radial dispersions were ineffective. BDB also made the claim that the ROI is a key physical mechanism contributing to the nearly universal profiles of simulated DM halos. Binney & Tremaine (2008) also parameterize the instability in the non-rotating small angular momentum limit by relating a spherical distribution’s tangential velocity dispersion to spherical stability

\[
\vartheta^2 \gtrsim L^2/(G\rho^2I),
\]

where \(L \) is the typical angular momentum per orbit, \(\rho \) is the typical density, \(r \) is the radial extent of the halo, and
Tremaine which found that stability against the ROI is driven by tangential velocity dispersion. As their conclusions were derived under different conditions, namely in a non-rotating small angular momentum limit, tangential dispersion alone may be insufficient to determine a halo’s stability.

Cylindrical symmetry in the isolated halo may be restored to some degree by the presence of a strong central mass such as a BH or heavy baryonic bulge. Such objects do not exist for certain classes of dwarf galaxies, making our study particularly pertinent to them. Such dwarfs may still exhibit DM cores, which must overcome this propensity for bar creation.

5. SUMMARY

In this paper we present a study of structure formation on isolated spherical distributions over a range of solid-body spins. This is accomplished via ChaNGa’s gravity solvers provided with ICing N-body initial conditions. Our analysis of the collapses show that for reasonable spin values, the radial density and angular momentum enclosed mass profiles are consolidated and closely conform to NFW and BDK-like profiles, respectively. Further investigation into this conundrum reveals that while there is minimal exchange of angular momentum between the virialized halo and the non-virialized remainder, a great dispersion of angular momentum within the halo occurs, which includes retrograde material. As no retrograde material exists at the onset of the collapses, a breakdown of the axial symmetry must occur. The breakdown takes the form of a bar-like structure, which correlates strongly with the persistence of the universal $\rho(r)$ and $M_{\text{enc}}(j)$ profiles.

Based on these findings, we speculate that the NFW and BDK profiles are robust over the range of probable halo spins due to susceptibility to an instability that bears resemblance to the ROI. The breakdown of such an instability is consistent with the departure from a low angular momentum limit. A study of the robustness of axial symmetry and spin provides insight into the nature of this instability and its profile. Also, for galaxies with a strong central baryonic mass, a study of DM-only collapse with enforced cylindrical symmetry is needed to eliminate spin as a possible solution to the core-cusp problem.

Ultimately, in the larger picture of halo formation, where a cosmological setting leads to hierarchical halo formation, the role of these instabilities becomes less clear. A halo’s history consists of periods of gentle minor mergers, interrupted occasionally by more violent major mergers. Bellovary et al. (2008) performed preliminary simulations of halos subject to controlled minor and major mergers to investigate the realistic role of the ROI, where they speculate that the ROI does not play a significant role in the subsequent relaxation process after a major merger. However, they also state that there are indications of an operational ROI during the minor merger periods, acting on nearly radial tidal streams associated with disrupted subhalos. A similar study with non-radial inflow and torquing may provide insight into the rotational regime.

We gratefully acknowledge the support of the U.S. Department of Energy Office of High Energy Physics and the National Science Foundation. T.Q. was supported in part by the NSF grant AST-1311956. E.L. and L.R. were supported by the DOE grant DE-SC0011665.
REFERENCES

Anderson, L., Aubourg, E., Bailey, S., et al. 2014, MNRAS, 441, 24
Barnes, E. I., & Williams, L. L. R. 2006, ApJ, 643, 797
Barnes, J., & Efstathiou, G. 1987, ApJ, 319, 575
Barnes, J., Goodman, J., & Hut, P. 1986, ApJ, 300, 112
Bellovary, J. M., Dalcanton, J. J., Babul, A., et al. 2008, ApJ, 685, 739
Binney, J., & Quinn, T. 1991, MNRAS, 249, 678
Binney, J., & Tremaine, S. 2008, Galactic Dynamics (2nd ed.; Princeton, NJ: Princeton Univ. Press)
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2012, MNRAS, 422, 1203
Bullock, J. S., Dekel, A., Kolatt, T. S., et al. 2001, ApJ, 555, 240
Burkert, A. 2000, ApJL, 534, L143
Casuso, E., & Beckman, J. E. 2015, MNRAS, 449, 2910
Codis, S., Pichon, C., & Pogosyan, D. 2015, MNRAS, 452, 3369C
Couchman, H. M. P., Thomas, P. A., & Pearce, F. R. 1995, ApJ, 452, 797
Dave, R., Spergel, D. N., Steinhardt, P. J., & Wandelt, B. D. 2001, ApJ, 547, 574
Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560
Evraz, A. E. 1988, MNRAS, 235, 911
Flores, R. A., & Primack, J. R. 1994, ApJ, 427L, 1F
Fry, A. B. 2015, PhD thesis, Univ. of Washington
Fry, A. B., Governato, F., Pontzen, A., et al. 2015, MNRAS, 452, 1468F
Garder, J. 2001, ApJ, 557, 616G
Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., et al. 2007, ApJ, 663, 948
Governato, F., Weisz, D., Pontzen, A., et al. 2015, MNRAS, 448, 792G
Hayashi, K., & Chiba, M. 2015, ApJL, 803, L11
Herpich, J., Stinson, G. S., Dutton, A. A., et al. 2015, MNRAS, 448L, 99H
Jetley, P., Gioachin, F., Mendes, C., Kale, L. V., & Quinn, T. R. 2008, in Proc. IEEE Int. Parallel and Distributed Processing Symp. 2008, Massively Parallel Cosmological Simulations with ChaNGa
Jetley, P., Wesolowski, L., Gioachin, F., Kale, L. V., & Quinn, T. R. 2010, in Proc. 2010 ACM/IEEE Int. Conf. for High Performance Computing, Networking, Storage and Analysis SC 10, Scaling Hierarchical N-body Simulations on GPU Clusters (Washington, DC: IEEE Computer Society)
Jungman, G., Kamionkowski, M., & Griest, K. 1996, PhR, 267, 195J
Kim, J.-h., Abel, T., Agertz, O., et al. 2014, ApJS, 210, 14
Klypin, A., Kravsov, A. V., Valensuela, O., & Prada, F. 1999, ApJ, 522, 82
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Ludlow, A. D., Navarro, J. F., Boylan-Kolchin, M., et al. 2013, MNRAS, 432, 1103L
Mateo, M. L. 1998, ARAA, 36, 435
McConnachie, A. W. 2012, AJ, 144, 4
Menon, H., Wesolowski, L., Zheng, G., et al. 2015, ComAC, 2, 1M
Moore, B. 1994, Natur, 370, 629M
Moore, B., Gelato, S., Jenkins, A., Pearce, F. R., & Quinn, V. 2000, ApJL, 535, L21
Moore, B., Ghihna, S., Governato, F., et al. 1999, ApJL, 524, L19
Moore, B., Governato, F., Quinn, T., et al. 1999, ApJL, 499, L5
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996a, MNRAS, 283, 349
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996b, ApJ, 462, 563
Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, MNRAS, 402, 21
O’Shea, B. W., Bryan, G., Bordner, J., et al. 2004, arXiv:astro-ph/0403044
Peebles, P. J. E. 1969, ApJ, 155, 393
Pichon, C., Codis, S., Pogosyan, D., et al. 2014, arXiv:1409.2608v1
Planck Collaboration, Ade, P. A. R., et al. 2014, A&A, 571, A16
Planck Collaboration, Ade, P. A. R., et al. 2015, arXiv:1502.01589
Polyachenko, V. L. 1981, SvAL, 7, 79
Pontzen, A., & Governato, F. 2013, MNRAS, 430, 121
Quinn, T., & Binney, J. 1992, MNRAS, 255, 729
Ryden, B. S. 1988, ApJ, 329, 589
Ryden, B. S., & Gunn, J. E. 1987, ApJ, 318, 15
Sikivie, P. 2012, arXiv:1210.0840
Spergel, D. N., & Steinhardt, P. J. 2000, PhRvL, 84, 3760
Springel, V. 2005, MNRAS, 364, 1105
Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al. 2006, ApJ, 652, 306
Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483
Tremmel, M., Governato, F., Volonteri, M., et al. 2015, MNRAS, 451, 1868T
van den Bosch, F. C. 2002, MNRAS, 331, 98
Vogelsberger, M., Zavala, J., Springel, V., & Sijacki, D. 2012, MNRAS, 421, 24
Walker, M. G., McGaugh, S. S., Mateo, M., et al. 2010, ApJL, 717, L87
Zavala, J., Vogelsberger, M., & Walker, M. G. 2013, MNRAS, 431L, 20Z
Zukin, P., & Bertschinger, E. 2010a, PhRvD, 82, 104044
Zukin, P., & Bertschinger, E. 2010b, PhRvD, 82, 104045

The Astrophysical Journal, 822:89 (6pp), 2016 May 10

Lentz, Quinn, & Rosenberg