Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants

Chao Min¹ | Yang Chen²

¹School of Mathematical Sciences, Huaqiao University, Quanzhou, China
²Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau, China

Correspondence
Chao Min, School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China.
Email: chaomin@hqu.edu.cn

This paper studies the monic semi-classical Laguerre polynomials based on previous work by Boelen and Van Assche, Filipuk et al., and Clarkson and Jordaan. Filipuk et al. proved that the diagonal recurrence coefficient $a_n(t)$ satisfies the fourth Painlevé equation. In this paper, we show that the off-diagonal recurrence coefficient $\beta_n(t)$ fulfills the first member of Chazy II system. We also prove that the sub-leading coefficient of the monic semi-classical Laguerre polynomials satisfies both the continuous and discrete Jimbo–Miwa–Okamoto σ-form of Painlevé IV. By using Dyson’s Coulomb fluid approach together with the discrete system for $a_n(t)$ and $\beta_n(t)$, we obtain the large n asymptotic expansions of the recurrence coefficients and the sub-leading coefficient. The large n asymptotics of the associated Hankel determinant (including the constant term) is derived from its integral representation in terms of the sub-leading coefficient.

KEYWORDS
asymptotic expansions, Chazy II system, Hankel determinants, Painlevé IV, recurrence coefficients, semi-classical Laguerre polynomials

MSC CLASSIFICATION
42C05, 33E17, 41A60

1 INTRODUCTION

Orthogonal polynomials play an important role in mathematical physics (e.g., random matrix theory and integrable systems), approximation theory, mechanical quadrature, and so forth. The relationship between recurrence coefficients of semi-classical orthogonal polynomials and Painlevé equations has been studied extensively over the past decade; see [1–8] for reference. Semi-classical orthogonal polynomials are defined as orthogonal polynomials whose weight functions $w(x)$ satisfy the Pearson equation

$$\frac{d}{dx}(\rho(x)w(x)) = \tau(x)w(x), \quad (1.1)$$

where $\rho(x)$ and $\tau(x)$ are polynomials with $\deg \rho > 2$ or $\deg \tau \neq 1$ [8, Section 1.1.1].

Boelen and Van Assche [1] considered the orthonormal polynomials with respect to the so-called semi-classical Laguerre weight

$$w(x) = w(x; t) := x^t e^{-x^2+tx}, \quad x \in \mathbb{R}^+, \quad (1.2)$$

This paper considers the monic semi-classical Laguerre polynomials based on previous work by Boelen and Van Assche, Filipuk et al., and Clarkson and Jordaan. Filipuk et al. proved that the diagonal recurrence coefficient $a_n(t)$ satisfies the fourth Painlevé equation. In this paper, we show that the off-diagonal recurrence coefficient $\beta_n(t)$ fulfills the first member of Chazy II system. We also prove that the sub-leading coefficient of the monic semi-classical Laguerre polynomials satisfies both the continuous and discrete Jimbo–Miwa–Okamoto σ-form of Painlevé IV. By using Dyson’s Coulomb fluid approach together with the discrete system for $a_n(t)$ and $\beta_n(t)$, we obtain the large n asymptotic expansions of the recurrence coefficients and the sub-leading coefficient. The large n asymptotics of the associated Hankel determinant (including the constant term) is derived from its integral representation in terms of the sub-leading coefficient.
with \(\lambda > -1, \ t \in \mathbb{R} \). We mention that we just follow the terminology of [1]. In fact, the semi-classical Laguerre polynomials are different from the classical Laguerre polynomials, since the former are related to the parabolic cylinder functions [3, Appendix 1]. It is easy to check that (1.2) is indeed a semi-classical weight since it satisfies the Pearson equation (1.1) with

\[
\phi(x) = x, \quad r(x) = -2x^2 + tx + 1 + \lambda.
\]

It was shown in [1, Theorem 1.1] that the recurrence coefficients of the semi-classical Laguerre polynomials satisfy a discrete system, which is related to an asymmetric discrete Painlevé IV equation. Later, Filipuk et al. [6, Theorem 1.1] proved that the recurrence coefficient \(b_n(t) \), which is equal to \(a_n(t) \) below, satisfies the (continuous) Painlevé IV equation.

More recently, Clarkson and Jordaan [3] studied the monic orthogonal polynomials with respect to the weight (1.2), that is,

\[
\int_0^\infty p_m(x; t) p_n(x; t) w(x; t) \, dx = h_n(t) \delta_{mn}, \quad m, n = 0, 1, 2, \ldots .
\]

(1.3)

Here, \(p_n(x; t) \) has the monomial expansion

\[
p_n(x; t) = x^n + p(n, t)x^{n-1} + \cdots + p_n(0; t), \quad n = 0, 1, 2, \ldots ,
\]

(1.4)

and \(p(n, t) \) denotes the coefficient of \(x^{n-1} \) and we set \(p(0, t) = 0 \).

It is well known that the orthogonal polynomials \(p_n(x; t) \) obey the three-term recurrence relation of the form [9]

\[
x P_n(x; t) = P_{n+1}(x; t) + a_n(t) P_n(x; t) + \beta_n(t) P_{n-1}(x; t),
\]

(1.5)

with the initial conditions

\[
P_0(x; t) = 1, \quad \beta_0(t) P_{-1}(x; t) = 0.
\]

The combination of (1.3), (1.4), and (1.5) gives

\[
a_n(t) = p(n, t) - p(n+1, t), \quad \beta_n(t) = \frac{h_n(t)}{h_{n-1}(t)}.
\]

(1.6, 1.7)

Taking a telescopic sum of (1.6), we have

\[
\sum_{j=0}^{n-1} a_j(t) = -p(n, t).
\]

(1.8)

Based on the results in [1] and [6], Clarkson and Jordaan [3] showed the following two lemmas.

Lemma 1.1. The recurrence coefficients \(a_n(t) \) and \(\beta_n(t) \) satisfy the discrete system:

\[
a_n(2a_n - t) + 2\beta_n + 2\beta_{n+1} = 2n + 1 + \lambda, \quad (1.9a)
\]

\[
(2a_n - t)(2a_{n-1} - t)\beta_n = (2\beta_n - n)(2\beta_n - n - \lambda). \quad (1.9b)
\]

Lemma 1.2. The recurrence coefficients \(a_n(t) \) and \(\beta_n(t) \) are given by

\[
a_n(t) = \frac{1}{2} q_n(s) + \frac{1}{2} t, \quad \beta_n(t) = -\frac{1}{8} q_n'(s) - \frac{1}{8} q_n^2(s) - \frac{1}{4} s q_n(s) + \frac{1}{2} n + \frac{1}{4} \lambda.
\]
Statement of main results

In this subsection, we present the main results obtained in this paper, which are not considered in previous works [1, 3, 6]. For convenience, we will take λ in the weight (1.2) to be strictly positive in the following discussions. This is due to two reasons. First, it makes the weight vanish at the endpoints of the orthogonality interval and then the ladder operator approach can be applied. Second, in this case, the potential for the weight is convex such that the equilibrium density discussed in Section 4 is supported in a single interval (the so-called one-cut case).

For brevity, we will not show the t-dependence of all the quantities, such as the recurrence coefficients α_n and β_n, considered in this paper from now on. By applying the ladder operators to the monic semi-classical Laguerre polynomials, we have the following theorem.

The Hankel determinant generated by the semi-classical Laguerre weight, satisfies the fourth Painlevé equation [10]

$$q_n''(s) = \frac{(q_n'(s))^2}{2q_n(s)} + \frac{3}{2} q_n^3(s) + 4 s q_n^2(s) + 2(s^2 - 2n - 1 - \lambda)q_n(s) - \frac{2\lambda^2}{q_n(s)}. \tag{1.10}$$

The Hankel determinant generated by the weight (1.2) is defined by

$$D_n(t) := \det(M_{t+j})(n-1)_{j=0} = \begin{vmatrix} \mu_0(t) & \mu_1(t) & \cdots & \mu_{n-1}(t) \\ \mu_1(t) & \mu_2(t) & \cdots & \mu_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n-1}(t) & \mu_n(t) & \cdots & \mu_{2n-2}(t) \end{vmatrix},$$

where $\mu_j(t)$ is the jth moment given by

$$\mu_j(t) := \int_0^\infty x^j w(x; t) dx \quad = \frac{1}{2} \Gamma\left(\frac{j + 1 + \lambda}{2}\right)_{1F1}\left(\frac{j + 1 + \lambda}{2}; \frac{1}{2}; \frac{t^2}{4}\right) + t \Gamma\left(\frac{j + 2 + \lambda}{2}\right)_{1F1}\left(\frac{j + 2 + \lambda}{2}; \frac{3}{2}; \frac{t^2}{4}\right),$$

where $_1F_1(\cdot; \cdot; \cdot)$ is Kummer’s confluent hypergeometric function (see, e.g., [11, p. 1023]). The moments can also be expressed in terms of the parabolic cylinder functions [3].

It is a known fact that the Hankel determinant can be expressed as a product of the square of L^2 norms for the monic orthogonal polynomials [12, (2.1.6)],

$$D_n(t) = \prod_{j=0}^{n-1} h_j(t). \tag{1.11}$$

In addition, it was shown in [3] that the Hankel determinant $D_n(t)$, generated by the semi-classical Laguerre weight, satisfies the Toda molecule equation [13]

$$\frac{d^2}{dt^2} \ln D_n(t) = \frac{D_{n+1}(t)D_{n-1}(t)}{D_n^2(t)}.$$

The rest of the paper is organized as follows. In the next subsection, we give a summary of the main results obtained in this paper. In Section 2, we recall some important results of the paper by Filipuk et al. [6], from which we derive the second-order differential equation for the semi-classical Laguerre polynomials. In Section 3, we show that the auxiliary quantities $R_n(t)$ and $r_n(t)$ satisfy the coupled Riccati equations. This enables us to obtain the second-order differential equation for $\beta_n(t)$, which is equivalent to a Chazy type equation under the suitable transformation. Furthermore, we find that $p(n, t)$, the sub-leading coefficient of the monic semi-classical Laguerre polynomials, satisfies both the continuous and discrete Jimbo–Miwa–Okamoto σ-form of Painlevé IV. In Section 4, we derive the large n asymptotics of the recurrence coefficients, the sub-leading coefficient, and the Hankel determinant by using the Coulomb fluid approach.

1.1 Statement of main results

In this subsection, we present the main results obtained in this paper, which are not considered in previous works [1, 3, 6]. For convenience, we will take λ in the weight (1.2) to be strictly positive in the following discussions. This is due to two reasons. First, it makes the weight vanish at the endpoints of the orthogonality interval and then the ladder operator approach can be applied. Second, in this case, the potential for the weight is convex such that the equilibrium density discussed in Section 4 is supported in a single interval (the so-called one-cut case).

For brevity, we will not show the t-dependence of all the quantities, such as the recurrence coefficients α_n and β_n, considered in this paper from now on. By applying the ladder operators to the monic semi-classical Laguerre polynomials, we have the following theorem.
\textbf{Theorem 1.3.} The semi-classical Laguerre polynomials $P_n(x)$ satisfy the linear second-order ordinary differential equation

$$P_n''(x) + \Phi_n(x)P_n'(x) + \Psi_n(x)P_n(x) = 0,$$

(1.12)

where $\Phi_n(x)$ and $\Psi_n(x)$ are expressed in terms of α_n and β_n as follows:

$$\Phi_n(x) = t - 2x + \frac{\lambda}{x} - \frac{t - 2\alpha_n}{x(t - 2\alpha_n)},$$

(1.13)

$$\Psi_n(x) = 2n - \frac{nt - 4\alpha_n \beta_n}{x} - \frac{2(n - 2\beta_n)(n + \lambda - 2\beta_n)}{x(t - 2\alpha_n)} + \frac{n - 2\beta_n}{x^2} + \frac{(t - 2\alpha_n)(n - 2\beta_n)}{x^2(t - 2\alpha_n)}.$$

(1.14)

\textbf{Theorem 1.4.} The recurrence coefficient $\beta_n(t)$ satisfies the second-order differential equation

$$[2\beta_n'' + 12\beta_n^2 - 4(2n + \lambda)\beta_n + n(n + \lambda)]^2 = t^2 \left[(\beta_n')^2 + 4\beta_n^3 - 2(2n + \lambda)\beta_n^2 + n(n + \lambda)\beta_n \right].$$

(1.15)

Let $t = \sqrt{2} z$ and

$$\beta_n(t) = \frac{2n + \lambda}{6} - \frac{v(z)}{2}.$$

Then $v(z)$ admits the first member of Chazy II system [14, (1.17)]

$$\left(v'' - 6v^2 - \tilde{a}_1 \right) = z^2 \left((v')^2 - 4v^3 - 2\tilde{a}_1 v - \tilde{\beta}_1 \right),$$

(1.16)

with the parameters

$$\tilde{a}_1 = -\frac{2}{3}(n^2 + n\lambda + \lambda^2), \quad \tilde{\beta}_1 = -\frac{4}{27}(2n^3 + 3n^2\lambda - 3n\lambda^2 - 2\lambda^3).$$

(1.17)

\textbf{Remark 1.} We use here $v(\cdot)$ to match with [14, (1.17)]. Do not confuse it with the notation $v(\cdot)$ for the potential in (2.3).

The Chazy equations were first found by Chazy [15, 16] and subsequently derived by a number of authors. These equations also arose in the problems on the Gaussian, Laguerre, and Jacobi weights with jump discontinuities [17–19]. The following theorem reveals the relation between the sub-leading coefficient $p(n, t)$ and the Painlevé IV equation.

\textbf{Theorem 1.5.} Let

$$\sigma_n(s) := -2p(n, t) - (n + \lambda)t, \quad s = \frac{1}{2} t.$$

(1.18)

Then $\sigma_n(s)$ satisfies the Jimbo–Miwa–Okamoto σ-form of Painlevé IV [20, (C.37)]:

$$(\sigma_n''(s))^2 = 4(\sigma_n'(s) - \sigma_n(s))^2 - 4(\sigma_n'(s) + v_0)(\sigma_n'(s) + v_1)(\sigma_n'(s) + v_2),$$

(1.19)

with the parameters

$$v_0 = 0, \quad v_1 = 2\lambda, \quad v_2 = 2n + 2\lambda.$$

Moreover, $\sigma_n(s)$ also admits the discrete σ-form of Painlevé IV:

$$2[\sigma_n + n(\sigma_{n-1} - \sigma_{n+1}) + 2\lambda s][\sigma_n + (n + \lambda)(\sigma_{n-1} - \sigma_{n+1})] = [\sigma_n + 2(n + \lambda)s][\sigma_{n+1} - \sigma_{n-1} + 2s][\sigma_{n-1} - \sigma_n][\sigma_n - \sigma_{n+1}].$$

(1.20)

The following results are concerned with the large n asymptotics of the recurrence coefficients α_n and β_n, the sub-leading coefficient $p(n, t)$, and the Hankel determinant $D_n(t)$. The derivation is based on the Coulomb fluid approach together with the discrete system satisfied by the recurrence coefficients.
Theorem 1.6. The recurrence coefficients a_n and b_n have the asymptotic expansions as $n \to \infty$:

\[
\begin{align*}
\alpha_n &= \sqrt{\frac{2n}{3}} \left[t + t^2 + 12(1 + \lambda) \frac{24\sqrt{6n}}{2304\sqrt{6n^{3/2}}} \right] + \frac{t(9\lambda^2 - 2)}{144n^2} + \frac{t^2 + 24t^2(1 + \lambda) - 48(6\lambda^2 - 6\lambda - 5)}{110592\sqrt{6n^{5/2}}} + \frac{t \left[t^2(27\lambda^2 - 7) - 12(9\lambda^3 + 9\lambda^2 - 2\lambda - 2)\right]}{1728n^3} + O(n^{-7/2}), \\
\beta_n &= \frac{n}{6} + \frac{t\sqrt{n}}{6\sqrt{6}} + \frac{t^2 + 6\lambda}{72} + \frac{t(t^2 + 12\lambda)}{288\sqrt{6n}} - \frac{t(t^2 + 18\lambda)}{216} + \frac{-t^4 + 24\lambda t^2 + 3168\lambda^2 - 816}{1152(n^2)} + \frac{t \left[t^2(7 - 27\lambda^2) + 4\lambda(9\lambda^2 - 2)\right]}{165888\sqrt{6n^{3/2}}} + \frac{t \left[t^2(27\lambda^2 - 7) + 12\lambda(2 - 9\lambda^2)\right]}{3456n^2} + O(n^{-5/2}).
\end{align*}
\]

Theorem 1.7. The sub-leading coefficient $p(n, t)$ has the large n asymptotic expansion

\[
\begin{align*}
p(n, t) &= -\frac{2}{3} \sqrt{\frac{2}{3}} \frac{n^{3/2}}{n} - \frac{nt}{6} - \frac{(t^2 + 12\lambda)\sqrt{n}}{12\sqrt{6}} - \frac{t(t^2 + 18\lambda)}{216} - \frac{-t^4 + 24\lambda t^2 - 288\lambda^2 + 48}{1152\sqrt{6n}} + \frac{t(9\lambda^2 - 2)}{144n^2} + \frac{t^6 + 36\lambda t^4 + 144t^2(66\lambda^2 - 17) - 1728\lambda(8\lambda^2 - 1)}{165888\sqrt{6n^{3/2}}} + \frac{t \left[t^2(27\lambda^2 - 7) + 12\lambda(2 - 9\lambda^2)\right]}{3456n^2} + O(n^{-5/2}).
\end{align*}
\]

Theorem 1.8. The Hankel determinant $D_n(t)$ has the large n expansion

\[
\begin{align*}
\ln D_n(t) &= \frac{1}{2} n^2 \ln n - \frac{3 + 2 \ln 6}{4} n^2 + \frac{2}{5} \sqrt{\frac{2}{3}} n^{3/2} t + \frac{\lambda}{2} n \ln n + C_1 n + \frac{t(t^2 + 36\lambda)\sqrt{n}}{36\sqrt{6}} + \frac{3\lambda^2 - 1}{6} \ln n + C_2 + \frac{t \left[t^4 + 40\lambda t^2 + 240(1 - 6\lambda^2)\right]}{5760\sqrt{6n}} - \frac{(9\lambda^2 - 2)t^2 - 12\lambda(5\lambda^2 - 2)}{288n} + O(n^{-3/2}),
\end{align*}
\]

where

\[
C_1 = \frac{t^2}{12} + \ln(2\pi) - \frac{\lambda(1 + \ln 6)}{2},
\]

\[
C_2 = \frac{t^2(t^2 + 36\lambda)}{864} + \frac{1}{24} \left[48\zeta^2(-1) - 24\ln G(\lambda + 1) - 12\lambda^2 \ln \frac{3}{2} + 12\lambda \ln(2\pi) - 4\ln 2 + 3\ln 3 \right],
\]

and $\zeta(\cdot)$ is the Riemann zeta function and $G(\cdot)$ is the Barnes G-function, which satisfies the relation [21, 22]

\[
G(z + 1) = \Gamma(z)G(z), \quad G(1) := 1.
\]
Finally, we make a remark about the differential equation (1.12) as $n \to \infty$. Substituting the large n expansion of α_n and β_n in Theorem 1.6 into (1.13) and (1.14), we obtain

$$\Phi_n(x) = t - 2x + \frac{1+\lambda}{x} + O(n^{-1/2}),$$
$$\Psi_n(x) = \frac{4\sqrt{6} n^{3/2}}{9x} + O(n).$$

Considering the equation

$$\ddot{P}_n(x) + \left(t - 2x + \frac{1+\lambda}{x} \right) \dot{P}_n(x) + \frac{4\sqrt{6} n^{3/2}}{9x} P_n(x) = 0,$$

one would find that this is the biconfluent Heun equation (BHE) [23, p. 194 (1.2.5)]. The relations between orthogonal polynomials and Heun’s differential equations have been discussed in recent years; see [24–26] for reference.

2 | LADDER OPERATORS AND SECOND-ORDER DIFFERENTIAL EQUATION

The ladder operator approach has been applied to solve problems on orthogonal polynomials for many years. This approach is especially useful to establish the relations between Painlevé equations and recurrence coefficients of semi-classical orthogonal polynomials. See [2, 5–8] for reference.

Following the general set-up (see, e.g., [2]) and noting that $w(0) = w(\infty) = 0$ since we require $\lambda > 0$ in (1.2), Filipuk et al. [6] showed that the monic semi-classical Laguerre polynomials $P_n(x)$ satisfy the following ladder operator equations:

$$\left(\frac{d}{dx} + B_n(x) \right) P_n(x) = \beta_n A_n(x) P_{n-1}(x), \quad (2.1)$$
$$\left(\frac{d}{dx} - B_n(x) - v'(x) \right) P_{n-1}(x) = -A_{n-1}(x) P_n(x), \quad (2.2)$$

where $v(x)$ is the potential

$$v(x) = -\ln w(x) = x^2 - tx - \lambda \ln x \quad (2.3)$$

and

$$A_n(x) = 2 + \frac{R_n(t)}{x}, \quad (2.4)$$
$$B_n(x) = \frac{r_n(t)}{x}, \quad (2.5)$$

with

$$R_n(t) := \frac{\lambda}{h_n} \int_0^\infty P_n^2(y)y^{n-1}e^{-y^2+ty}dy,$$
$$r_n(t) := \frac{\lambda}{h_{n-1}} \int_0^\infty P_n(y)P_{n-1}(y)y^{n-1}e^{-y^2+ty}dy.$$

Substituting (2.4) and (2.5) into the compatibility conditions for the ladder operators, Filipuk et al. [6] obtained the following results.

Lemma 2.1. The auxiliary quantities $R_n(t)$, $r_n(t)$ and the recurrence coefficients α_n, β_n satisfy the relations:

$$R_n(t) = 2\alpha_n - t, \quad (2.6)$$
$$r_n(t) + r_{n+1}(t) = \lambda - \alpha_n R_n(t), \quad (2.7)$$
\begin{align*}
 r_n(t) & = 2\beta_n - n, \tag{2.8} \\
 r_n^2(t) - \lambda r_n(t) & = \beta_n R_n(t) R_{n-1}(t), \tag{2.9} \\
 \sum_{j=0}^{n-1} R_j(t) - tr_n(t) & = 2\beta_n (R_n(t) + R_{n-1}(t)). \tag{2.10}
\end{align*}

We would like to point out that one will obtain the results in Lemma 1.1 by substituting (2.6) and (2.8) into (2.7) and (2.9), respectively. We now prove Theorem 1.3.

\textbf{Proof of Theorem 1.3.} It was shown in [2] that the orthogonal polynomials \(P_n(x) \) satisfy the second-order differential equation

\[P_n''(x) - \left(\frac{A'_n(x)}{A_n(x)} \right) P'_n(x) + \left(B'_n(x) - B_n(x) \frac{A'_n(x)}{A_n(x)} + \sum_{j=0}^{n-1} A_j(x) \right) P_n(x) = 0, \tag{2.11} \]

which is obtained by eliminating \(P_{n-1}(x) \) from the ladder operators (2.1) and (2.2).

Next, we will express the coefficients in the above equation in terms of \(\alpha_n \) and \(\beta_n \). Inserting (2.6) into (2.4) and (2.8) into (2.5) gives

\[A_n(x) = 2 + \frac{2\alpha_n - t}{x}, \quad B_n(x) = \frac{2\beta_n - n}{x}. \tag{2.12} \]

From (2.4) and with the aid of (2.10), we have

\[\sum_{j=0}^{n-1} A_j(x) = 2n + \frac{\sum_{j=0}^{n-1} R_j(t)}{x} = 2n + \frac{tr_n(t) + 2\beta_n R_n(t) + 2\beta_n R_{n-1}(t)}{x}. \]

It follows from (2.9) that

\[\beta_n R_{n-1}(t) = \frac{r_n(t)(r_n(t) - \lambda)}{R_n(t)}. \]

By making use of (2.6) and (2.8), we then obtain

\[\sum_{j=0}^{n-1} A_j(x) = 2n - \frac{nt - 4\alpha_n \beta_n}{x} - \frac{2(n - 2\beta_n)(n + \lambda - 2\beta_n)}{x(t - 2\alpha_n)}. \tag{2.13} \]

Substituting (2.12) and (2.13) into (2.11), we establish the theorem. \qed

\section{Chazy II and \(\sigma \)-Form of Painlevé IV}

In this section, we will prove that the recurrence coefficient \(\beta_n \) is related to a Chazy type equation, and the sub-leading coefficient \(p(n, t) \) satisfies the Jimbo–Miwa–Okamoto \(\sigma \)-form of Painlevé IV. To prove the results, we introduce the following lemma at first.

\textbf{Lemma 3.1.} The auxiliary quantities \(R_n(t) \) and \(r_n(t) \) admit the coupled Riccati equations:

\[r_n'(t) = \frac{n + r_n(t)}{2} R_n(t) - \frac{r_n^2(t) - \lambda r_n(t)}{R_n(t)}, \tag{3.1} \]

\[R_n'(t) = \lambda - 2r_n(t) - \frac{R_n(t)(t + R_n(t))}{2}. \tag{3.2} \]
Proof. From (1.3) we have
\[\int_0^\infty P_n^2(x; t)x^4 e^{-x^2 + \mu x} \, dx = h_n(t) \]
and
\[\int_0^\infty P_n(x; t)P_{n-1}(x; t)x^2 e^{-x^2 + \mu x} \, dx = 0. \]
By taking derivatives with respect to \(t \), we obtain
\[\frac{d}{dt} \ln h_n(t) = \alpha_n = \frac{t + R_n(t)}{2} \] \((3.3) \)
and
\[\frac{d}{dt} p(n, t) = -\beta_n = \frac{n + r_n(t)}{2}, \]
respectively. Taking account of (1.7), it follows from (3.3) that
\[2\beta_n' = \beta_n R_n(t) - \beta_n R_{n-1}(t). \] \((3.5) \)
Using (2.8) and (2.9), we arrive at (3.1).
On the other hand, taking a derivative in (1.6) and in view of (3.4), we find
\[2\alpha_n' = 1 + r_{n+1}(t) - r_n(t) = 1 + \lambda - \alpha_n R_n(t) - 2r_n(t), \]
where use has been made of (2.7) in the second equality. Finally we obtain (3.2) with the aid of (2.6). \(\Box \)

Proof of Theorem 1.4. Solving \(R_n(t) \) from (3.1), we have two solutions:
\[R_n(t) = \frac{r_n'(t) \pm \sqrt{(r_n'(t))^2 - 2r_n(t)(n + r_n(t))(\lambda - r_n(t))}}{n + r_n(t)}. \]
Substituting either solution into (3.2), we obtain the second-order differential equation satisfied by \(r_n(t) \) after removing the square roots:
\[4[r_n''(t) + 3r_n'(t) + 2(n - \lambda)r_n(t) - n\lambda] = t^2 [(r_n'(t))^2 + 2r_n^3(t) + 2(n - \lambda)r_n^2(t) - 2n\lambda r_n(t)]. \]
Then Equation (1.15) follows from the relation (2.8). Under the given transformation, Equation (1.15) turns into the Chazy equation (1.16). \(\Box \)

Remark 2. In the appendix of the paper [14], Cosgrove gave the relationship between Chazy II system and Painlevé equations. It is easy to check that our results in Theorem 1.4 are coincident with (A.1) and (A.2) in [14] by using Lemma 1.2. To be specific, we have \(z = \sqrt{2}x \) and \(v(z) = \frac{1}{4}q_n'(s) + \frac{1}{4}q_n^3(s) + \frac{1}{2}q_n(s) - \frac{n}{3} - \frac{\lambda}{6} \), where \(q_n(s) \) satisfies the Painlevé IV equation (1.10). This corresponds to \(A = \frac{1}{2}, \epsilon_1 = 1 \) and \(q = \frac{1}{3}(2n + \lambda) \) (one solution of the cubic equation \(4q^3 + 2\alpha_1q + \beta_1 = 0 \) with the values of \(\alpha_1 \) and \(\beta_1 \) given by (1.17)) in [14, (A.2)].

Remark 3. From (3.2) we have
\[r_n(t) = \frac{1}{4} \left(2\lambda - tR_n(t) - R_n^2(t) - 2R_n'(t) \right). \]
Substituting it into (3.1), we obtain the second-order differential equation for \(R_n(t) \):
\[8R_n(t)R_n''(t) - 4(R_n'(t))^2 - 3R_n^3(t) - 4tR_n^3(t) + (8n + 4\lambda + 4 - t^2)R_n^2(t) + 4\lambda^2 = 0. \]
Letting \(t = 2s \) and \(R_n(t) = q_n(s) \), we find that \(q_n(s) \) satisfies the Painlevé IV equation

\[
q_n''(s) = \frac{(q_n'(s))^2}{2q_n(s)} + \frac{3}{2} q_n'(s) + 4s q_n^2(s) + 2(s^2 - 2n - \lambda - 1)q_n(s) - \frac{2\lambda^2}{q_n(s)}.
\]

These results are equivalent to those in Lemma 1.2.

Proof of Theorem 1.5. Recall that from (3.4) we have

\[
\beta_n = -\frac{d}{dt} p(n, t). \tag{3.6}
\]

Then Equation (3.5) becomes

\[
\beta_n R_n(t) - \beta_{n-1} R_n(t) = -2 \frac{d^2}{dt^2} p(n, t). \tag{3.7}
\]

On the other hand, from (1.8) and (2.6) we find

\[
\sum_{j=0}^{n-1} R_j(t) = -2p(n, t) - nt. \tag{3.8}
\]

The combination of (2.8) and (3.6) gives

\[
r_n(t) = -2 \frac{d}{dt} p(n, t) - n. \tag{3.9}
\]

In view of (3.8) and (3.9), Equation (2.10) turns into

\[
\beta_n R_n(t) + \beta_{n-1} R_n(t) = t \frac{d}{dt} p(n, t) - p(n, t). \tag{3.10}
\]

The sum and difference of (3.7) and (3.10) produce

\[
2\beta_n R_n(t) = t \frac{d}{dt} p(n, t) - p(n, t) - 2 \frac{d^2}{dt^2} p(n, t) \tag{3.11}
\]

and

\[
2\beta_{n-1} R_{n-1}(t) = t \frac{d}{dt} p(n, t) - p(n, t) + 2 \frac{d^2}{dt^2} p(n, t), \tag{3.12}
\]

respectively. The product of (3.11) and (3.12) gives

\[
4\beta_n \cdot \beta_{n-1}(t) R_{n-1}(t) = \left(t \frac{d}{dt} p(n, t) - p(n, t) \right)^2 - 4 \left(\frac{d^2}{dt^2} p(n, t) \right)^2. \tag{3.13}
\]

From (2.9) and (3.9) we have

\[
\beta_n R_n(t) R_{n-1}(t) = \left(n + 2 \frac{d}{dt} p(n, t) \right) \left(n + \lambda + 2 \frac{d}{dt} p(n, t) \right). \tag{3.14}
\]

Substituting (3.6) and (3.14) into (3.13), we obtain

\[
4 \left(\frac{d^2}{dt^2} p(n, t) \right)^2 = \left(t \frac{d}{dt} p(n, t) - p(n, t) \right)^2 + 4 \frac{d}{dt} p(n, t) \left(n + 2 \frac{d}{dt} p(n, t) \right) \left(n + \lambda + 2 \frac{d}{dt} p(n, t) \right). \tag{3.15}
\]

This equation is converted into (1.19) under the transformation (1.18).
Next, we derive the second-order difference equation satisfied by \(p(n, t) \). Substituting (2.6) and (2.8) into (2.10) and using (3.8), we have
\[
p(n, t) = \beta_n (t - 2a_n - 2a_{n-1}).
\] (3.16)

Taking account of (1.6), we can express \(\beta_n \) in terms of \(p(n, t) \) and \(p(n \pm 1, t) \):
\[
\beta_n = \frac{p(n, t)}{t + 2p(n + 1, t) - 2p(n - 1, t)}.
\] (3.17)

Substituting (2.6) and (2.8) into (2.9) gives
\[
(2\beta_n - n)(2\beta_n - n - \lambda) = \beta_n (2a_n - t)(2a_{n-1} - t)
\] (3.18)
\[
= \beta_n (2p(n, t) - 2p(n + 1, t) - 2p(n - 1, t) - 2p(n, t) - t).
\]

Inserting (3.17) into (3.18), we obtain the second-order difference equation satisfied by \(p(n) := p(n, t) \):
\[
[2p(n) - n (t + 2p(n + 1) - 2p(n - 1))] [2p(n) - (n + \lambda) (t + 2p(n + 1) - 2p(n - 1))]
\] (3.19)
\[
= p(n) (t + 2p(n + 1) - 2p(n - 1)) (t + 2p(n + 1) - 2p(n) (t + 2p(n) - 2p(n - 1))).
\]

Equation (1.20) follows from the transformation (1.18). The proof is complete. \(\square \)

Remark 4. Let \(H_n(t) \) be the logarithmic derivative of the Hankel determinant, that is,
\[
H_n(t) := \frac{d}{dt} \ln D_n(t).
\] (3.19)

From (1.11) we have
\[
H_n(t) = \sum_{j=0}^{n-1} \frac{d}{dt} \ln h_j(t).
\]

Using the first equality in (3.3) and (1.8), we obtain
\[
H_n(t) = -p(n, t).
\] (3.20)

In this case, Equation (1.19) is equivalent to the result obtained in [3, Theorem 4.11].

4 Large \(n \) Asymptotics of the Recurrence Coefficients and the Hankel Determinant

In random matrix theory (RMT), it is known that our Hankel determinant \(D_n(t) \) can be viewed as the partition function for the semi-classical Laguerre unitary ensemble [12, Corollary 2.1.3]. That is,
\[
D_n(t) = \frac{1}{n!} \int_{(0, \infty)^n} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{k=1}^{n} x_k^2 e^{-x_k^2 + tx_k} dx_k,
\]

where \(x_1, x_2, \ldots, x_n \) are the eigenvalues of \(n \times n \) Hermitian matrices from the ensemble with the joint probability density function
\[
p(x_1, x_2, \ldots, x_n) = \frac{1}{n! D_n(t)} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{k=1}^{n} x_k^2 e^{-x_k^2 + tx_k}.
\]

See [27–29] for more discussions of this topic.
Dyson’s Coulomb fluid approach [30] shows that the collection of eigenvalues (particles) can be approximated as a continuous fluid with a density \(\sigma(x) \) supported in \(J \), a subset of \(\mathbb{R} \), when \(n \) is sufficiently large. It is easy to see that the potential \(v(x) \) in (2.3) is convex for \(x \in \mathbb{R}^+ \) when \(\lambda > 0 \). In this case, \(J \) is a single interval denoted by \((a, b)\); see Chen and Ismail [31] and also [32, p. 198].

Following [31], the equilibrium density \(\sigma(x) \) is determined by the constrained minimization problem:

\[
\min_{\sigma} F[\sigma] \quad \text{subject to} \quad \int_a^b \sigma(x) dx = n,
\]

where

\[
F[\sigma] := \int_a^b \sigma(x) v(x) dx - \int_a^b \int_a^b \sigma(x) \ln |x - y| \sigma(y) dx dy
\]

and \(v(x) \) is the potential given by (2.3).

It follows that the density \(\sigma(x) \) satisfies the integral equation

\[
v(x) - 2 \int_a^b \ln |x - y| \sigma(y) dy = A, \quad x \in (a, b),
\]

where \(A \) is the Lagrange multiplier that fixes the constraint. Differentiating the above equation with respect to \(x \) gives the singular integral equation

\[
v'(x) - 2P \int_a^b \frac{\sigma(y)}{x - y} dy = 0, \quad x \in (a, b),
\]

where \(P \) represents the Cauchy principal value. The solution of (4.2) subject to the boundary condition \(\sigma(a) = \sigma(b) = 0 \) is

\[
\sigma(x) = \frac{\sqrt{(b - x)(x - a)}}{2\pi^2} P \int_a^b \frac{v'(y)}{(y - x)\sqrt{(b - y)(y - a)}} dy,
\]

with a supplementary condition

\[
\int_a^b \frac{v'(x)}{\sqrt{(b - x)(x - a)}} dx = 0.
\]

In addition, using (4.3), the normalization condition \(\int_a^b \sigma(x) dx = n \) becomes

\[
\frac{1}{2\pi} \int_a^b \frac{x v'(x)}{\sqrt{(b - x)(x - a)}} dx = n.
\]

The endpoints \(a \) and \(b \) are determined by (4.4) and (4.5). Furthermore, it is shown in [31] that

\[
\alpha_n = \frac{a + b}{2} + O \left(\frac{\partial^3 A}{\partial n^3} \right),
\]

\[
\beta_n = \left(\frac{b - a}{4} \right)^2 \left(1 + O \left(\frac{\partial^4 A}{\partial n^3} \right) \right).
\]

Substituting (2.3) for \(v(x) \) into (4.4) and (4.5) respectively, we get two equations for \(a \) and \(b \):

\[
(X - t)^2 Y = \lambda^2,
\]

\[
3X^2 - 2tX - 4Y = 8n + 4\lambda.
\]
where
\[X = a + b, \quad Y = ab. \]

Eliminating \(Y \) from (4.7) and (4.8), we have the following result.

Lemma 4.1. The quantity \(X = a + b \) satisfies a quartic equation
\[(X - t)^2(3X^2 - 2tX - 8n - 4\lambda) = 4\lambda^2. \] (4.9)

Using MATHEMATICA, we find that Equation (4.9) has only one positive solution when \(n \to \infty \) and the series expansion reads
\[
X = 2\sqrt{\frac{2n}{3}} + \frac{t^2 + 12\lambda}{12\sqrt{6n}} - \frac{t^4 + 24\lambda t^2 - 288\lambda^2}{1152\sqrt{6}n^{3/2}} + \frac{a^2 t}{8n^2} \\
+ \frac{t^6 + 36\lambda t^4 + 9504\lambda^2 t^2 - 13824\lambda^3}{55296\sqrt{6}n^{5/2}} + \frac{\lambda^2 t(t^2 - 4\lambda)}{32n^3} + O(n^{-7/2}).
\]

It follows that
\[
a + b \over 2 = \frac{\sqrt{2n}}{3} + \frac{t^2 + 12\lambda}{24\sqrt{6n}} - \frac{t^4 + 24\lambda t^2 - 288\lambda^2}{2304\sqrt{6}n^{3/2}} + \frac{\lambda^2 t}{16n} \\
+ \frac{t^6 + 36\lambda t^4 + 9504\lambda^2 t^2 - 13824\lambda^3}{110592\sqrt{6}n^{5/2}} + \frac{\lambda^2 t(t^2 - 4\lambda)}{64n^3} + O(n^{-7/2}),
\] (4.10a)

and
\[
\left(b - a \over 4 \right)^2 = \frac{X^2 - 4Y}{16} = \frac{4n + 2\lambda + tX - X^2}{8} \\
= \frac{n}{6} + \frac{t\sqrt{n}}{6\sqrt{6}} + \frac{t^2 + 6\lambda}{72} + \frac{t(t^2 + 12\lambda)}{288\sqrt{6n}} - \frac{\lambda^2 t}{16n} - \frac{t(t^4 + 24\lambda t^2 + 3168\lambda^2)}{27648\sqrt{6}n^{3/2}} \\
- \frac{\lambda^2 (3t^2 - 4\lambda)}{128n^2} + \frac{t(t^6 + 36\lambda t^4 - 35424\lambda^2 t^2 + 110592\lambda^3)}{1327104\sqrt{6}n^{5/2}} + O(n^{-3}).
\] (4.10b)

where use has been made of (4.8) in the second equality.

By using the similar method in [33], we evaluate the Lagrange multiplier \(A \) in the following lemma. The proof will be omitted. The key is that we multiply by \(1/\sqrt{(b - x)(x - a)} \) on both sides of Equation (4.1) and then integrate with respect to \(x \) from \(a \) to \(b \).

Lemma 4.2. We have
\[
A = \frac{3a^2 + 2ab + 3b^2}{8} - \frac{(a + b)t}{2} - \lambda \ln \frac{a + b + 2\sqrt{ab}}{4} - 2n \ln \frac{b - a}{4} \\
= \frac{4n + 2\lambda + tX}{4} - \lambda \ln \frac{X^2 - tX + 2\lambda}{4(X - t)} - n \ln \frac{4n + 2\lambda + tX - X^2}{8}.
\]

Then as \(n \to \infty \),
\[
A = -n \ln n + n(1 + \ln 6) - t\sqrt{\frac{2n}{3}} - \frac{\lambda}{2} \ln n + \frac{6\lambda \ln 6 - t^2}{12} - \frac{t(t^2 + 36\lambda)}{72\sqrt{6n}} - \frac{\lambda^2}{2n} \\
+ \frac{t(t^4 + 40\lambda t^2 - 1440\lambda^2)}{11520\sqrt{6}n^{3/2}} - \frac{\lambda^2 (3t^2 - 20\lambda)}{96n^2} + O(n^{-5/2}).
\] (4.11)
Proof of Theorem 1.6. From (4.6), (4.10) and (4.11), we see that \(\alpha_n \) and \(\beta_n \) have the large \(n \) expansion form

\[
\alpha_n = \sqrt{\frac{2n}{3}} + \sum_{j=0}^{\infty} \frac{a_j}{n^j} \tag{4.12a}
\]

and

\[
\beta_n = \frac{n}{6} + \sum_{j=-1}^{\infty} \frac{b_j}{n^j}, \tag{4.12b}
\]

respectively. Substituting (4.12) into the discrete system (1.9) and taking a large \(n \) limit, we obtain the expansion coefficients \(a_j \) and \(b_j \) recursively by equating the powers of \(n \):

\[
a_0 = \frac{t}{6}, \quad b_{-1} = \frac{t}{6\sqrt{6}}, \quad a_1 = \frac{t^2 + 12(1 + \lambda)}{24\sqrt{6}}, \quad b_0 = \frac{t^2 + 6\lambda}{72},
\]

\[
a_2 = 0, \quad b_1 = \frac{t(t^2 + 12\lambda)}{288\sqrt{6}}, \quad a_3 = \frac{t^4 + 24t^3(1 + \lambda) - 48(6\lambda^2 - 6\lambda - 5)}{2304\sqrt{6}}, \quad b_2 = \frac{2 - 9\lambda^2}{144},
\]

and so on. The theorem is then established.

Remark 5. Recently, Clarkson and Jordaan studied the generalized Airy polynomials and derived the large \(n \) formal asymptotic expansions for the recurrence coefficients; see [34, Lemma 3.15]. We expect Dyson’s Coulomb fluid approach can be applied to justify the assumption of the expansion forms for the recurrence coefficients in the proof [34, (46)]. That is, there should also be an algebraic equation similar to (4.9) to determine the endpoints of the support interval of the equilibrium density.

Proof of Theorem 1.7. Recall that \(p(n, t) \) can be expressed in terms of \(\alpha_n \) and \(\beta_n \) (see (3.16)):

\[
p(n, t) = \beta_n(t - 2\alpha_n - 2\alpha_{n-1}).
\]

Substituting (1.21) and (1.22) into the above, we obtain (1.23) after taking a large \(n \) limit.

Proof of Theorem 1.8. Following the similar development in [7, 33] and using the fact

\[
\beta_n = \frac{D_{n+1}(t)D_{n-1}(t)}{D_n^2(t)},
\]

we obtain the large \(n \) asymptotic expansion of \(D_n(t) \):

\[
\ln D_n(t) = \frac{1}{2} n^2 \ln n - \frac{3 + 2 \ln 6}{4} n^2 + \frac{\sqrt{2}}{3} n^{3/2} t + \frac{\lambda}{2} n \ln n + C_1 n + \frac{t(t^2 + 36\lambda) \sqrt{n}}{36\sqrt{6}} + \frac{3\lambda^2 - 1}{6} \ln n + C_2 + \frac{t [t^4 + 40\lambda t^2 + 240(1 - 6\lambda^2)]}{5760\sqrt{6} n} - \frac{(9\lambda^2 - 2)t^2 - 12\lambda(5\lambda^2 - 2)}{288n} + O(n^{-3/2}),
\]

where \(C_1 \) and \(C_2 \) are two undetermined constants independent of \(n \). We proceed to determine them in the following analysis.

It is easy to see from (3.19) and (3.20) that

\[
\ln \frac{D_n(t)}{D_n(0)} = \int_0^t H_n(u) du = -\int_0^t p(n, u) du.
\]
Taking account of (1.23), we find
\[
\ln \frac{D_n(t)}{D_n(0)} = \frac{2}{3} \sqrt{\frac{2}{3}} n^{3/2} t + \frac{n t^2}{12} + \frac{t(t^2 + 36 \lambda) \sqrt{n}}{36 \sqrt{6}} + \frac{t^2(t^2 + 36 \lambda)}{864} + \frac{t^3(2 - 9 \lambda^2) t^2}{288 n} + \frac{t^4(5 t^6 + 252 \lambda t^4 + 1680(66 \lambda^2 - 17)t^2 - 60480 \lambda(8 \lambda^2 - 1))}{5760 \sqrt{6n}} \\
+ \frac{t^5(7 - 27 \lambda^2) t^2 + 24 \lambda(9 \lambda^2 - 2)}{13824 n^2} + O(n^{-3/2}).
\]

Next, we will use the results of Deaño and Simm [35] (see also [36]) to evaluate \(D_n(0)\). By making a simple change of variables, we have
\[
D_n(0) = \frac{n^{n(1+\lambda)/2}}{n!} Z_n(1),
\]

where
\[
Z_n(s) := \int_{(0, \infty)^n} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2 \prod_{k=1}^n x_k^s e^{-n(x_k^2 + n(x_k^2 - x_i))} dx_k, \quad 0 \leq s \leq 1.
\]

It follows that
\[
\ln D_n(0) = \frac{1}{2} n^2 \ln n + \frac{\lambda}{2} n \ln n - n \ln n - n \ln \Gamma(n) + \ln \frac{Z_n(1)}{Z_n(n)} + \ln Z_n(0).
\]

Taking account of (2.31) and (A.3) in [35] and with the aid of Stirling's formula (see, e.g., [11, p. 895]), we obtain
\[
\ln D_n(0) = \frac{1}{2} n^2 \ln n - \frac{3 + 2 \ln 6}{4} n^2 + \frac{\lambda}{2} n \ln n + \left[\ln(2\pi) - \frac{\lambda (1 + \ln 6)}{2} \right] n + \frac{3 \lambda^2 - 1}{6} \ln n \\
+ \frac{1}{24} \left[48 \zeta(-1) - 24 \ln G(\lambda + 1) - 12 \lambda^2 \ln \frac{3}{2} + 12 \lambda \ln(2\pi) - 4 \ln 2 + 3 \ln 3 \right] \\
+ O(n^{-1}),
\]

where \(\zeta(.)\) is the Riemann zeta function and \(G(.)\) is the Barnes G-function [21, 22].

The combination of (4.13) and (4.14) shows that
\[
C_1 = \frac{t^2}{12} + \ln(2\pi) - \frac{\lambda (1 + \ln 6)}{2},
\]
\[
C_2 = \frac{t^2(t^2 + 36 \lambda)}{864} + \frac{1}{24} \left[48 \zeta(-1) - 24 \ln G(\lambda + 1) - 12 \lambda^2 \ln \frac{3}{2} + 12 \lambda \ln(2\pi) - 4 \ln 2 + 3 \ln 3 \right].
\]

This completes the proof. \(\square\)

ACKNOWLEDGEMENTS

The work of C. Min was partially supported by the National Natural Science Foundation of China under grant number 12001212, by the Fundamental Research Funds for the Central Universities under grant number ZQN-902, and by the Scientific Research Funds of Huaqiao University under grant number 17BS402. The work of Y. Chen was partially supported by the Macau Science and Technology Development Fund under grant number FDCT 0079/2020/A2.

CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest to declare that are relevant to the content of this article.

ORCID

Chao Min https://orcid.org/0000-0002-6682-3830
REFERENCES

1. L. Boelen and W. Van Assche, Discrete Painlevé equations for recurrence coefficients of semiclassical Laguerre polynomials, Proc. Amer. Math. Soc. 138 (2010), 1317–1331.

2. Y. Chen and A. Its, Painlevé III and a singular linear statistics in Hermitian random matrix ensembles, I, J. Approx. Theory 162 (2010), 270–297.

3. P. A. Clarkson and K. Jordaan, The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation, Constr. Approx. 39 (2014), 223–254.

4. P. A. Clarkson, K. Jordaan, and A. Kelil, A generalized Freud weight, Stud. Appl. Math. 136 (2016), 288–320.

5. D. Dai and L. Zhang, Painlevé VI and Hankel determinants for the generalized Jacobi weight, J. Phys. A: Math. Theor. 43 (2010), no. 5, 055207. (14pp).

6. G. Filipuk, W. Van Assche, and L. Zhang, The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation, J. Phys. A: Math. Theor. 45 (2012), no. 20, 205201.

7. C. Min and Y. Chen, Hankel determinant and orthogonal polynomials for a perturbed Gaussian weight: from finite n to large n asymptotics. arXiv: 2203.10526 (28pp).

8. W. Van Assche, Orthogonal polynomials and Painlevé equations, Australian Mathematical Society Lecture Series 27, Cambridge University Press, Cambridge, 2018.

9. G. Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, RI, 1975.

10. V. I. Gromak, I. Laine, and S. Shimomura, Painlevé differential equations in the complex plane, Walter de Gruyter, Berlin, 2002.

11. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products: Seventh edition, Academic Press, New York, 2007.

12. M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of mathematics and its applications 98, Cambridge University Press, Cambridge, 2005.

13. K. Sogo, Time-dependent orthogonal polynomials and theory of soliton-applications to matrix model, vertex model and level statistics, J. Phys. Soc. Japan 62 (1993), 1887–1894.

14. C. M. Cosgrove, Chazy’s second-degree Painlevé equations, J. Phys. A: Math. Gen. 39 (2006), 11955–11971.

15. J. Chazy, Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sci. Paris 148 (1909), 1381–1384.

16. J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), 317–385.

17. S. Lyu and Y. Chen, The largest eigenvalue distribution of the Laguerre unitary ensemble, Acta Math. Sci. 37 (2017), 439–462.

18. C. Min and Y. Chen, Painlevé transcendent and the Hankel determinants generated by a discontinuous Gaussian weight, Math. Meth. Appl. Sci. 42 (2019), 301–321.

19. N. S. Witte, P. J. Forrester, and C. M. Cosgrove, Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles, Nonlinearity 13 (2000), 1439–1464.

20. M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407–448.

21. E. W. Barnes, The theory of the G-function, Quart. J. Pure Appl. Math. 31 (1900), 264–314.

22. A. Voros, Spectral functions, special functions and the Selberg zeta function, Commun. Math. Phys. 110 (1987), 439–465.

23. A. Ronveaux, Heun’s differential equations, Oxford Science Publications, Oxford, 1995.

24. A. D. Alhaidari, Series solutions of Heun-type equation in terms of orthogonal polynomials, J. Math. Phys. 59 (2018), 113507.

25. Y. Chen, G. Filipuk, and L. Zhan, Orthogonal polynomials, asymptotics, and Heun equations, J. Math. Phys. 60 (2019), 113501.

26. A. P. Magnus, F. Ndayiragije, and A. Ronveaux, About families of orthogonal polynomials satisfying Heun’s differential equation, J. Approx. Theory 263 (2021), 105522.

27. P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, Courant Lecture Notes 3, New York University, New York, 1999.

28. P. J. Forrester, Log-gases and random matrices, Princeton University Press, Princeton, 2010.

29. M. L. Mehta, Random matrices Edited by 3rd, Elsevier, New York, 2004.

30. F. J. Dyson, Statistical theory of the energy levels of complex systems, I, II, III, J. Math. Phys. 3 (1962), 140–156, 157–165, 166–175.

31. Y. Chen and M. E. H. Ismail, Thermodynamic relations of the Hermitian matrix ensembles, J. Phys. A: Math. Gen. 30 (1997), 6633–6654.

32. E. B. Saff and V. Totik, Logarithmic potentials with external fields, Springer, Berlin, 1997.

33. C. Min and Y. Chen, Differential, difference, and asymptotic relations for Pollaczek-Jacobi type orthogonal polynomials and their Hankel determinants, Stud. Appl. Math. 147 (2021), 390–416.

34. P. A. Clarkson and K. Jordaan, Generalised Airy polynomials, J. Phys. A: Math. Theor. 54 (2021), 185202.

35. A. Deaño and N. J. Simm, On the probability of positive-definiteness in the gGUE via semi-classical Laguerre polynomials, J. Approx. Theory 220 (2017), 44–59.

36. P. Han and Y. Chen, The recurrence coefficients of a semi-classical Laguerre polynomials and the large n asymptotics of the associated Hankel determinant, Random Matrices: Theor. Appl. 6 (2017), no. 04, 1740002.

How to cite this article: C. Min and Y. Chen, Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants, Math. Meth. Appl. Sci. 46 (2023), 15270–15284. DOI 10.1002/mma.9377