Microvessel density as a prognostic factor in esophageal squamous cell cancer patients

A meta-analysis

Guangzhi Ma, MMa,b, Jing Zhang, MDc, Hai Jiang, MDd, Nannan Zhang, MDb, Yunjie Zhu, MDb, Yunfu Deng, MMe, Qinghua Zhou, MDe.∗

Abstract

Background: To date, literature has emerged that shows contradictory results about the prognostic role of microvessel density (MVD) in esophageal squamous cell cancer (ESCC). The aim of the study set out to evaluate the correlation between MVD and the prognosis of ESCC.

Methods: Identified publications from various databases were obtained and reviewed. A meta-analysis was performed to evaluate the prognostic role of MVD among ESCC patients.

Results: A total of 11 eligible studies containing 891 ESCC cases were included in the meta-analysis. The pooled hazard ratio for overall survival was 2.39 (95% confidence interval 1.92–2.96, P < .001). Heterogeneity among the studies was not significant, and publication bias was not found. Subgroup analyses were also performed on different issues, such as districts, antibodies, and median age.

Conclusion: High MVD is a prognostic factor among ESCC that indicated worse prognosis in these patients. More studies are needed, and through abundant evidence, the topic could be re-evaluated by then.

Abbreviations: CI = confidence interval, ESCC = esophageal squamous cell cancer, HR = hazard ratio, MVD = microvessel density, NOS = Newcastle–Ottawa Scale, OS = overall survival, PCNA = proliferating cell nuclear antigen, VEGF = vascular endothelial growth factor, vWF = von Willebrand Factor.

Keywords: esophageal squamous cell cancer, meta-analysis, microvessel density, prognostic factor

1. Introduction

Esophageal cancer is the eighth most frequent cancer worldwide. It is also the sixth most common cause of cancer death, accounting for over 5.4% of all cancer deaths.[1] The occurrence of the disease varies from geographic regions. The incidence is 4.5 per 100,000 individuals in USA, while some of the highest incidences are found in Asia, with approximately 100 per 100,000 individuals affected in the Linxian district of China.[1,2]

It remains one of the most lethal cancers of all malignancies, with a 5-year survival rate of 17% once diagnosed.[3] Esophageal squamous cell cancer (ESCC) comprises the majority cases of esophageal malignancies, followed by adenocarcinomas.[4] Apart from independent prognostic factors such as histological type, tumor size, lymph node metastases,[5,6] several biological factors have been recognized to affect the outcomes of the disease as well. These biomarkers include vascular endothelial growth factor (VEGF), p53, proliferating cell nuclear antigen (PCNA), Her-2, and microvascular density (MVD).[7–10] The correlation between tumor metastasis and angiogenesis was first reported by Weidner et al.[11] Angiogenesis as an intratumoral process to form new blood vessels was later proved to be related with the outcomes of various malignancies, such as lung cancer,[12] colorectal cancer,[13] breast cancer,[14] etc. MVD is the most common pathological approach to assess angiogenesis, involving microscopic estimation and microvessel staining.[11] Currently, routine antibodies for staining endothelial cells of microvessel include those against pan-endothelial marker CD34,[15] homodimer trans-membrane protein CD105,[16] platelet/endothelial cell adhesion molecule CD31,[17] and von Willebrand Factor (vWF).[18] The prognostic role of MVD in ESCC was reported in various studies, and many suggested MVD as a crucial prognostic factor in ESCC and led to adverse outcomes,[17–20] whereas some did not reach to any conclusive result indicating that MVD is associated with the prognosis of ESCC.[21,22]

Due to those inconsistent results above, we herein aimed to perform a systematic review and meta-analysis with summarized evidence to determine the prognostic role of MVD among ESCC patients.
2. Methods

2.1. Literature search

The current study is a meta-analysis; hence, ethical approval was not necessary. Two reviewers (GM and JZ) independently searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang Database for eligible studies up till March 25, 2017. The search keywords were as follows: “Microvascular Density” or “Microvessel Density” and “Esophageal Neoplasms” or “Esophageal Cancer” or “Esophageal Carcinoma” and ”Survival” or “Prognosis” or “Outcome.”

2.2. Inclusion criteria

Eligible studies should meet all the criteria as follows: In studies on esophageal cancer, all included patients should be confirmed with squamous cell carcinoma; MVD was assessed and its association with ESCC prognosis was reported; Data provided within the literatures were feasible for log hazard ratio (log HR) calculation, with ESCC prognosis was reported; Data provided within the squamous cell carcinoma; MVD was assessed and its association esophageal cancer, all included patients should be con Eligible studies should met all the criteria as follows: In studies on esophageal cancer, all included patients should be confirmed with squamous cell carcinoma; MVD was assessed and its association with ESCC prognosis was reported; Data provided within the literatures were feasible for log hazard ratio (log HR) calculation, according to methods by Parmar et al,[23] Williamson et al,[24] literatures were feasible for log hazard ratio (log HR) calculation, according to methods by Parmar et al,[23] Williamson et al,[24] and Tierney et al[25]; Eligible study categories include cohort study, case-control study, and randomized controlled trials (RCTs), if any.

2.3. Exclusion criteria

Literatures should be excluded if any of the following was matched: review or systematic review; case reports; studies on animals, in vitro studies, or any other types of laboratory studies; and studies that lack credible or extractable data.

2.4. Data extraction

Basic information was extracted as follows: names of first author, publication year, country, median age, number of patients involved and gender, clinical stage, tumor stages, antibodies applied for immunohistochemical staining, and evaluation of high MVD.

The primary data for calculation were multivariate/univariate Cox hazard regression analysis, the Kaplan–Meier survival curves with P values, or HR with 95% confidence interval (95% CI) for overall survival (OS). The literature selection and data extraction were performed by 2 reviewers (GM and JZ) independently, with any discrepancies being discussed and reassessed.

2.5. Methodological assessment

Quality of each study was assessed according to Newcastle–Ottawa Scale (NOS) criteria.[26] Three aspects of each study were evaluated as follows: subject selection: 0 to 4; comparability of subject: 0 to 2; and clinical outcome: 0 to 3. The total score ranged from 0 to 9; study that scored 6 or more was eligible for data-pooling and any literature that scored 7 or more was considered of good quality. The whole evaluation process was conducted by 2 reviewers independently.

2.6. Statistical analysis

The STATA (version 11; Stata Corporation, College Station, TX) was applied for data analysis. LogHRs and variances were applied for calculation. Multivariate analyses were prior used if univariate and multivariate survival analyses were both provided. Adjusted HR was first applied if adjusted and unadjusted HRs all existed. Heterogeneity assumption of pooled HRs was assessed by F statistic test and Chi-square based Q-test.[27] The fixed-effect model (the Mantel–Haenszel method)[28] was applied if the heterogeneity between studies was not statistically significant (P > 0.10 or I^2 < 50%). If else, to reduce the impact of heterogeneity, HR should be evaluated by the random-effect model. Publication bias was assessed through methods of Begg and Mazumdar[29]; if P value was no more than .05, then publication bias was considered statistically significant.

3. Results

3.1. Study selection

A total of 248 studies were retrieved from initial search for eligible studies. Abstracts were carefully screened of each identified literatures. Studies were excluded for reasons as follows: duplicate literatures (n = 25), laboratory studies (n = 113), reviews (n = 48), and case reports (n = 34). Full texts of 28 potential studies were retrieved, and then 16 studies were further excluded: 7 studies aimed on irrelevant topics, 5 focused on biological techniques such as immunostaining, 3 studies lack available data for quantitative synthesis, 1 study[30] scored no more than 5 according to quality assessment, and 1 literature[31] reported the association between MVD and survival of esophageal adenocarcinoma. In all, 11 studies eventually met our criteria of inclusion for the final analyses.

The process to obtain eligible publication is displayed in Fig. 1.

3.2. Study characteristics

Among the 11 eligible studies, 10 were from Asia, including 8 from Japan[17–19,32–36] and 2 from Korea.[20,21] The study from Turkey[37] was the only one conducted on Caucasian. Altogether, 891 patients were included, with mast majority of male patients.

All cases included were ESCC, and tumor stages varied from 0 to IV. Antibodies applied for immunohistochemical staining were against CD34, CD31, Factor VIII, or WVF. HRs were directly given in 6 studies,[17,19–21,32,33] and the rest were extracted from survival curves.[18,34–37] All eligible studies scored no less than 6. High MVDs were assessed quantitatively or defined through intensity levels of staining.

To conclude, basic information for all included studies is summarized in Table 1.

3.3. Meta-analysis results

The prognostic role of high MVD was valued by survival time OS. All 11 studies were eligible to examine OS, and the pooled HR was 2.39 (95% CI 1.92–2.96, P < .001), indicating that high intratumoral MVD was associated with inferior outcomes on OS (Fig. 2). The heterogeneity was statistically insignificant (I^2 = 0%, P = .625); therefore, fixed-effect model was applied for calculation.

3.4. Subgroup analysis

In accordance with basic information and extracted data from all eligible literatures, subgroups were sorted due to varied districts (Asian/Japanese), antibodies for staining (CD34), median age etc.
60 years), and specific definition of high MVD (>60/mm²). Disease-free survival (DFS) was reported in 2 studies, thus the data were also combined for a pooled result.

3.4.1. Asian/Japanese. Altogether, among 10 Asian studies, 8 were from Japan. The combined HR for OS in Asian was 2.26 (95% CI 1.80–2.84, P < .001), heterogeneity was not significant (I²=0%, P=.747), and fixed-effect model was applied (Fig. 2).

With regard to Japanese patients, heterogeneity was not found and the pooled HR for OS was 2.31 (95% CI 1.81–2.95, P < .001, I²=0%).

3.4.2. Antibodies for immunohistochemical staining. Antibodies against CD34 were used within 7 of the included studies for vasculature staining. The combined HR was 2.26 (95% CI 1.74–2.94, P < .001). Heterogeneity was not detected and fixed-

| Table 1 | Characteristics of the included literatures. |
Author	Year	Country	Median age	N (F/M)	Clinical stage	Antibody	HR estimation	Evaluation of high MVD	MVD results (high/low)	Quality score
Ha et al[21]	2014	Korea	—	115	I–IV	CD34	HR+Cl	>60/mm²	70/45	8
Faried et al[19]	2007	Japan	62	130 (16/114)	0–IV	CD34	HR+Cl	LL	64/66	6
Zhang et al[17]	2006	Japan	61.7	51 (8/43)	II–III	CD31	HR+Cl	LL	20/31	7
Choi et al[23]	2006	Korea	63	51 (4/47)	0–IV	CD34	HR+Cl	>60/mm²	8/43	8
Kato et al[25]	2002	Japan	61.4	64 (9/55)	I–IV	CD34	HR+Cl	LL	30/34	7
Hirose et al[26]	2002	Japan	62	73 (13/60)	I–II	CD31	HR+Cl	LL	36/37	6
Nakagawa[26]	2001	Japan	60.7	95	0–IV	Pctt	Survival curves	LL	48/47	7
Epele et al[27]	2001	Turkey	—	53 (23/30)	I–IV	CD34	Survival curves	>92/mm²	30/23	6
Shih et al[29]	2000	Japan	61.5	95	I–III	vWF	Survival curves	>60/mm²	28/67	7
Kitada et al[30]	1998	Japan	63.5	71	0–IV	CD34	Survival curves	>43/mm²	35/36	6
Igarashi et al[31]	1998	Japan	64.3	93 (8/94)	0–IV	CD34	Survival curves	>116/mm²	48/45	7

CI=confidence interval, F=female, HR=hazard ratio, I.L.=intensity level, M=male, MVD=microvessel density, N=number of patients.
3.4.3. Definition of high MVD. The quantitative measurement to define high MVD varied between studies, whereas 3 studies were coherent that vessel counts over 60/mm² be considered as high MVD. The pooled result for OS was also indicative. The HR was 2.31 (95% CI 1.34–3.99, \(P = .003 \)), and heterogeneity was statistically insignificant (\(P = .27, I^2 = 23.5\% \)).

3.4.4. DFS. The pooled HR for DFS was 2.37 (95% CI: 0.66–8.56, \(P = .189 \)). Heterogeneity was significant (\(P = .052, I^2 = 73.6\% \)) and random-effect model was used.

3.4.5. Age. Median age was provided in 9 studies that were all over 60 years old. Combined HR for OS in this case was 2.35 (95% CI 1.85–2.99, \(P < .001 \)). Heterogeneity was not significant, thus fixed-effect model was applied (\(P = .799, I^2 = 0\% \)). All summarized results are listed in Table 2.

3.5. Publication bias
Publication bias was not found in this meta-analysis, with reference to the plots of publication in Fig. 3 (\(P = .213 \)).

4. Discussion
The present study set out to determine the prognostic role that MVD might have among ESCC patients. Data were pooled and a meta-analysis was performed. As a result, high MVD was a prognostic factor, which indicated poorer outcomes among ESCC patients. Accordingly, the correlation between MVD and Asian/Japanese patients who suffered ESCC was also identified; high MVDs have an adverse impact on these cases. When precisely defined (>60/mm²), the prognostic role of high MVD in ESCC resulted the same. As to ESCC patients whose median ages were above 60 years and intratumoral vessels stained by CD34, high MVD was also a poor prognostic factor among ESCC patients, respectively. As to DFS, the number of included studies is very limited, and heterogeneity was also significant. Therefore, no conclusion could be drawn on the topic of correlation between MVD and DFS of ESCC.

In accordance with the results above, high MVD is related with poorer outcomes among ESCC patients. Such is the case in squamous cell cancer, but when it comes to other histological types of esophageal cancer, little was reported and the correlation remains unclarified. In a cohort study involving 98 adenocarcinomas, no significant association between MVD and survival was found according to Dutta et al.[31] In ESCC, the occurrence of lymph node metastasis is also an independent poor prognostic factor.[38] MVD with lymph node (LMVD) was also reported in several studies. Seemingly, LMVD that indicated lymphatic metastasis should have a negative impact on ESCC survival; interestingly, no correlation between LMVD and OS was detected among any of these studies.[39–41] As to other malignances such as lung adenocarcinoma, LMVD was reported to cause worse prognosis,[42,43] so was the same with colorectal cancer.[44,45] To conclude, although the role of MVD in ESCC has been identified in this study, the prognostic role of MVD in other pathological types and the role of LMVD remains unclear.

Table 2

N of studies	Model	HR (95% CI)	Log-rank \(P \)	Heterogeneity (\(P, I^2 \))	
Total OS	11	Fixed	2.39 (1.92–2.96)	<.001	.625, 0%
Asian OS	10	Fixed	2.26 (1.80–2.84)	<.001	.747, 0%
Japanese OS	8	Fixed	2.31 (1.81–2.99)	<.001	.777, 0%
Anti-CD34 OS	7	Fixed	2.26 (1.74–2.94)	<.001	.414, 1.4%
>60/mm² OS	3	Fixed	2.31 (1.34–3.99)	.003	.270, 23.5%
Total DFS	2	Random	2.37 (0.66–8.56)	.189	.052, 73.6%
Median age >60 OS	9	Fixed	2.35 (1.85–2.99)	<.001	.799, 0%

CI = confidence interval; DFS = disease-free survival; HR = hazard ratio; N = number; OS = overall survival.
and they should be revalued when abundant clinical evidence has emerged by then.

Similar to other malignancies, ESCC growth is closely associated with vascularization. Folkman[46] firstly revealed the correlation between tumor growth and angiogenesis. Tumor angiogenesis is a complicated process mediated by various angiogenic factors that were either released from cancer cells or synthesized by host cells.[47] Among these factors, VEGF was considered to be the key factor of most specificity.[46,49] Various prior studies were conducted on the topic to recognize the correlation between VEGF and MVD when ESCC was diagnosed; however, the results were incoherent. Some studies reported a positive relation between VEGF expression and MVD,[35,36] On the contrary, however, no significant result was found on the question of whether VEGF level correlates with MVD.[31,51] Therefore, more studies are needed to further explore the question and MVD results should be referred together with VEGF level to assess the angiogenesis condition of ESCC cases.

With regards to MVD, several issues should be considered. Although MVD is closely related with tumor behavior such as invasion and metastasis, the parameter itself has restrictions. First of all, evaluation of MVD value was mostly based on subjective judgments, such as hot-spot selection and vessel-counting.[32] Although software, such as CIAS (computer-aided image analysis system), was designed to mellow these bias, yet its accuracy needs to be further tested.[17,53] Second, the MVD was derived from a tissue section, which means that MVD could not indicate the whole in vivo condition or the dynamic tumoral status. Lastly, to date, debate continues on which antibody was most suitable for immunohistochemical staining in MVD assessment. CD34 was a frequently used marker, but it failed to differentiate normal tissue section, which means that MVD could not indicate the whole in vivo condition or the dynamic tumoral status. Instead of CD34, immunohistochemical staining in MVD assessment. CD34 was a frequently used marker, but it failed to differentiate normal행사와 같이,”

were either cohort study or retrospective study, with no RCTs found on the question of whether VEGF level correlates with

To conclude, high MVD is a prognostic factor among ESCC, and would lead to worse outcomes in these patients. Antibody for histological staining is a crucial issue, and needs to be further compared for liability. More studies are in need to examine the correlation between MVD and clinical outcome of ESCC patients, and through abundant evidence, we may re-evaluate the topic by then.

Acknowledgment

We would like to thank all the reviewers for their constructive comments.

References

[1] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.
[2] Ke L. Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970–90. Int J Cancer 2002;102:271–4.
[3] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012;62:10–29.
[4] Kamangar F, Doros GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006;24:2137–50.
[5] Greenstein AJ, Little VR, Swanson SJ, et al. Effect of the number of lymph nodes sampled on postoperative survival of lymph node-negative esophageal cancer. Cancer 2008;112:1239–46.
[6] Siewert JR, Stein HJ, Feith M, et al. Histologic tumor type is an independent prognostic parameter in esophageal cancer: lessons from more than 1,000 consecutive resections at a single center in the Western world. Ann Surg 2001;234:360–7, discussion 368–369.
[7] Shimaya K, Shiozaki H, Inoue M, et al. Significance of p53 expression as a prognostic factor in esophageal squamous cell carcinoma. Virchows Arch A Pathol Anat Histopathol 1993;422:271–6.
[8] Takebayashi Y, Natugoe S, Baba M, et al. Angiogenesis in esophageal squamous cell carcinoma. Oncol Rep 1998;5:401–4.
[9] al-Kasspooles M, Moore JH, Orringer MB, et al. Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinomas. Int J Cancer 1993;54:213–9.
[10] Kimos MC, Wang S, Borkowski A, et al. Esophagin and proliferating cell nuclear antigen (PCNA) are biomarkers of human esophageal neoplastic progression. Int J Cancer 2004;111:415–7.
[11] Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8.
[12] Fontanini G, Bigini D, Vignati S, et al. Microvessel count predicts metastatic disease and survival in non-small cell lung cancer. J Pathol 1995;177:57–63.
[13] Des Guetz G, Uzzan B, Nicolas P, et al. Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature. Br J Cancer 2006;94:1823–32.
[14] Uzzan B, Nicolas P, Cucherat M, et al. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 2004;64:2941–55.
[15] Kimura H, Nakajima T, Kagawa K, et al. Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver 1998;18:14–9.
Ma et al. Medicine (2017) 96:29

[16] Kubota Y, Kaneko K, Konishi K, et al. The onset of angiogenesis in a multistep process of esophageal squamous cell carcinoma. Front Biosci (Landmark Ed) 2009;14:3872–8.

[17] Zhang SC, Hironaka S, Ohtsu A, et al. Computer-assisted analysis of biopsy specimen microvessels predicts the outcome of esophageal cancers treated with chemoradiotherapy. Clin Cancer Res 2006;12:1735–42.

[18] Shih GH, Ozawa S, Ando N, et al. Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. Clin Cancer Res 2000;6:1161–8.

[19] Faried A, Kimura H, Faried IS, et al. Expression of carbohydrate antigens in human esophageal squamous cell carcinoma: prognostic application and its diagnostic implications. Ann Surg Oncol 2007;14:960–7.

[20] Choi JY, Jang KT, Shim YM, et al. Prognostic significance of vascular endothelial growth factor expression and microvessel density in esophageal squamous cell carcinoma: comparison with positron emission tomography. Ann Surg Oncol 2006;13:1054–62.

[21] Ha SY, Yeo SY, Xuan YH, et al. The prognostic significance of vascular microvessel density and inflammation, micro-angiogenesis and mast cells in squamous cell carcinoma of the esophagus. J Cancer 2008;9:499–505.

[22] Dutta S, Going JJ, Crumley AB, et al. The relationship between tumour necrosis, tumour proliferation, local and systemic inflammation, microvessel density and survival in patients undergoing potentially curative resection of oesophageal adenocarcinoma. Br J Cancer 2012;106:702–10.

[23] Hironaka S, Hasebe T, Kamijo T, et al. Biopsy specimen microvessel density is a useful prognostic factor in patients with T2-4M0 esophageal cancer treated with chemoradiotherapy. Clin Cancer Res 2006;12:838–40.

[24] Kitada Y, Haruma K, Tokutomi T, et al. Significance of vessel count and vascular endothelial growth factor in human esophageal carcinomas. Clin Cancer Res 1998;4:2195–200.

[25] Nakagawa S, Nishimaki T, Suzuki T, et al. Tumor angiogenesis as an independent prognostic factor after extended radical esophagectomy for invasive squamous cell carcinoma of the esophagus. Surgery 2001;129:302–8.

[26] Elpek GO, Gelen T, Aksoy NH, et al. The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the esophagus. J Clin Pathol 2003;54:940–4.

[27] Millikan KW, Silverstein J, Hart V, et al. A 15-year review of esophagectomy for carcinoma of the esophagus and cardia. Arch Surg 1995;130:617–24.

[28] Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16.

[29] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719–48.

[30] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.

[31] Igarashi M, Dhar DK, Kubota H, et al. The prognostic significance of vascular endothelial growth factor expression and microvessel density in squamous cell carcinoma of the esophagus. Anticancer Res 2002;22:3977–84.

[32] Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442–3.

[33] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1995;332:1793–804.

[34] Schweiger T, Nikolowski C, Graeter T, et al. Increased lymphangioendothelial growth factor in human esophageal carcinomas. Int J Cancer 1998;77:116:646–53.

[35] Weidner N, Carroll PR, Flax J, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993;143:401–9.

[36] Chen B, Fang WK, Wu ZY, et al. The prognostic implications of microvascular density and lymphatic vessel density in esophageal squamous cell carcinoma: comparative analysis between the traditional and the tissue microarray. Acta Histochem 2014;116:646–53.

[37] Dallas NA, Samuel S, Xia L, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 2008;14:1931–7.