Supporting Information

Enantioselective Michael Addition/Iminium Ion Cyclization Cascades of Tryptamine-Derived Ureas

Isabelle Aillaud, David M. Barber, Amber L. Thompson and Darren J. Dixon

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

darren.dixon@chem.ox.ac.uk
Contents

1. General experimental ... 3
2. Practical experimental ... 5
 2.1 Synthesis and characterisation of tryptamine derived ureas 5 5
 2.2 Synthesis and characterisation of cyclised products 9 15
3. 1H and 13C NMR spectra of tryptamine derived ureas 5 33
4. 1H and 13C NMR spectra of cyclised products 9 61
5. HPLC traces of cyclised products 9 107
6. Single crystal X-ray diffraction data of 9r 130
1. General experimental

All non-aqueous reactions were conducted using oven-dried glassware and were magnetically stirred unless otherwise stated. Yields refer to chromatographically purified and spectroscopically pure compounds, unless otherwise stated.

1.1 Solvents and reagents

Concentration under reduced pressure was performed by rotary evaporation at 40 °C at the appropriate pressure. Reagents used were obtained from commercial suppliers or purified according to standard procedures. Triethylamine was distilled from calcium hydride under a positive pressure of dry nitrogen and stored over potassium hydroxide. Tryptamines,\(^1\) tryptamine-derived thiourea \(^5\)h,\(^2\) tryptamine-derived urea \(^5\)i,\(^3\) unsaturated ketones \(^6\)c-\(^d\)\(^4\) and catalysts \(^10\)\(^5\) were prepared according to reported procedures. Petroleum ether (PE) refers to distilled light petroleum of fraction 30 - 40 °C. Anhydrous dichloromethane and toluene were dried by filtration through activated alumina (powder ∼150 mesH; pore size 58Å, basic) columns. Deuterated solvents were used as supplied.

1.2 Chromatography

Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualised by fluorescence quenching under UV light. In addition, TLC plates were stained with \(p\)-anisaldehyde. Chromatographic purification was performed on VWR 60 silica gel 40-63 µm using technical grade solvents that were used as supplied.

1.3 Melting points

Melting points were obtained on a Leica Galen III Hot-stage melting point apparatus and microscope and are uncorrected.

1.4 NMR spectra

NMR spectra were recorded on a Bruker Spectrospin spectrometer operating at 400 MHz or 500 MHz (\(^1\)H acquisitions) and 100 MHz or 125 MHz (\(^13\)C acquisitions). Chemical shifts (\(\delta\)) are reported in ppm with the solvent resonance as the internal standard (e.g. DMSO \(\delta\) 2.50 ppm for \(^1\)H and 39.52 ppm for \(^13\)C). Coupling constants (\(J\)) are reported in hertz (Hz). Data are reported as follows: \(s\) = singlet, \(d\) = doublet, \(t\) = triplet, \(q\) = quartet, \(dd\) = doublet of doublets, \(ddd\) = doublet of doublets of doublets, \(dt\) = doublet of triplets, \(td\) = triplet of doublets, \(m\) = multiplet, \(br\). \(s\). = broad signal, coupling constants in Hz, integration, assignment. Two-dimensional

1. M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt, D. J. Dixon, J. Am. Chem. Soc. 2009, 131, 10796–10797.
2. R. J. Herr, J. L. Kuhler, H. Meckler, C. J. Opalka, Synthesis 2000, 11, 1569-1574.
3. S. A. Rogers, D. C. Whitehead, T. Mullikin, C. Melander, Org. Biomol. Chem. 2010, 8, 3857–3859.
4. L. A. Batory, C. E. McInnis, J. T. Njardarson, J. Am. Chem. Soc. 2006, 128, 16054–16055.
5. R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84–86.
spectroscopy (COSY, HSQC and HMBC) was used to assist in the assignment. The data are not reported.

1.5 Mass spectra
Low-resolution mass spectra (ESI) were recorded on a Waters LCT Premier XE Micromass mass spectrometer. High-resolution mass spectra (ESI) were recorded on Bruker Daltonics MicroTOF mass spectrometer. High-resolution mass spectra (EI) were recorded on a Bruker FT-ICR Apex III mass spectrometer.

1.6 Infrared spectra
Infrared spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as a thin film on a sodium chloride plate. Only selected maximum absorbances are reported.

1.7 Determination of enantiomeric excesses
Enantiomeric excesses were determined using high performance liquid chromatography (HPLC) performed on Agilent Technologies 1200 Series or 1260 Infinity Series systems (column and solvent conditions are given for each compound).

1.8 Optical rotations
Optical rotations were recorded using a Perkin-Elmer 241 polarimeter; specific rotation (SR) ([α]D23) are reported in 10⁻¹ deg cm²g⁻¹; concentrations (c) are quoted in g/100 mL; D refers to the D-line of sodium (589 nm), temperatures (T) are given in degrees Celsius (°C).

All atom numbering used in this section is arbitrary and does not follow any particular convention.
2. Practical experimental

2.1 Synthesis of starting materials

2.1.1 General procedure I for the preparation of tryptamine-derived ureas 5a-g

Concentrated HCl (37% in water, 1.2 eq.) was added to tryptamine (1.0 eq.) at 0 °C and the mixture was dissolved in refluxing ethanol (1.05 mL/mmol). The solution was cooled to room temperature and added to a solution of KOCN (1.2 eq.) dissolved in distilled water (1.05 mL/mmol). The resulting mixture was stirred at room temperature for the indicated time. The reaction mixture was then concentrated in vacuo and the residue was purified by flash column chromatography on silica gel to afford the desired ureas 5a-g.

2.1.1.1 Synthesis and characterisation of 1-[2-(1H-indol-3-yl)ethyl]urea 5a

The title compound was synthesised according to general procedure I. Tryptamine (10.0 g, 62.4 mmol) was reacted with KOCN (6.08 g, 74.9 mmol) in ethanol (65 mL) and water (65 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 5a in 55% yield (7.03 g) as a white powder.

m.p. 140-142 °C; IR (neat) ν=3413, 3376, 3344, 3146, 1637, 1552, 1455, 1348, 1088, 747, 737; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.83 (br. s., 1H; NH indole), 7.55 (d, J=7.5 Hz, 1H; H₆), 7.36 (d, J=7.5 Hz, 1H; H₉), 7.15 (d, J=2.5 Hz, 1H; H₁₁), 7.08 (td, J=7.5, 1.0 Hz, 1H; H₈), 6.99 (td, J=7.5, 1.0 Hz, 1H; H₇), 6.01-5.98 (m, 1H; NH urea), 5.49 (br. s., 2H; NH₂ urea), 3.30 (q, J=7.5 Hz, 2H; H₂), 2.81 (t, J=7.5 Hz, 2H; H₃); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=158.8 (C₁), 136.3 (C₁₀), 127.3 (C₅), 122.6 (C₁₁), 120.9 (C₈), 118.4 (C₇), 118.2 (C₆), 112.0 (C₄), 111.4 (C₉), 39.6 (C₂), 26.1 (C₃); MS m/z (ES⁺) 226 ([M+Na⁺], 100%); HRMS (ES⁺) exact mass calculated for [M+Na⁺]⁺ (C₁₁H₁₃N₃NaO⁺) requires m/z 226.0951, found m/z 226.0956.
2.1.1.2 Synthesis and characterisation of 1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea 5b

The title compound was synthesised according to general procedure I. 5-Methoxytryptamine (500 mg, 2.63 mmol) was reacted with KOCN (256 mg, 3.16 mmol) in ethanol (2.8 mL) and water (2.8 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 5b in 52% yield (307 mg) as a brown powder.

m.p. 141-143 °C; IR (neat) ν=3489, 3385, 3184, 1655, 1608, 1491, 1455, 1215, 800, 702; \(^1\)H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.65 (br. s., 1H; NH indole); 7.23 (d, J=8.5 Hz, 1H; H10), 7.10 (d, J=1.5 Hz, 1H; H12), 7.04 (d, J=2.0 Hz, 1H; H6), 6.72 (dd, J=8.5, 2.0 Hz, 1H; H9), 5.96 (br. s., 1H; NH urea), 5.45 (br. s., 2H; NH₂ urea), 3.76 (s, 3H; H8), 3.28-3.25 (m, 2H; H2), 2.76 (t, J=7.0 Hz, 2H; H3); \(^13\)C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=158.7 (C1), 152.9 (C7), 131.4 (C11), 127.6 (C5), 123.3 (C12), 111.9 (C10), 111.8 (C4), 111.0 (C9), 100.2 (C6), 55.3 (C8), 39.5 (C2), 26.1 (C3); MS m/z (ES+) 489 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₂H₁₅N₃NaO₂) requires m/z 256.1056, found m/z 256.1058.

2.1.1.3 Synthesis and characterisation of 1-[2-(5-fluoro-1H-indol-3-yl)ethyl]urea 5c

The title compound was synthesised according to general procedure I. 5-Fluorotryptamine (500 mg, 2.81 mmol) was reacted with KOCN (274 mg, 3.37 mmol) in ethanol (3.0 mL) and water (3.0 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 5c in 53% yield (330 mg) as a brown powder.

m.p. 159-161 °C; IR (neat) ν=3501, 3343, 3305, 1694, 1634, 1580, 1118, 935, 774; \(^1\)H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.92 (br. s., 1H; NH indole); 7.33 (dd, J=9.0, 4.5 Hz, 1H; H8), 7.30 (dd, J=10.0, 2.5 Hz, 1H; H6), 7.22 (d, J=2.0 Hz, 1H; H11), 6.91 (t, J=9.0 Hz, 2H; H9), 5.96 (br. s., 1H; NH urea), 5.44 (br. s., 2H; NH₂ urea), 3.23-3.19 (m, 2H; H2), 2.75 (t, J=7.0 Hz, 2H; H3); \(^13\)C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=158.7 (C1), 156.1 (d, J=229 Hz, C7),
132.9 (C5), 127.5 (d, J=10 Hz, C10), 124.8 (C11), 112.4 (d, J=5 Hz, C4), 112.2 (d, J=10 Hz, C8), 108.9 (d, J=25 Hz, C9), 103.0 (d, J=25 Hz, C6), 48.6 (C2), 26.0 (C3); MS m/z (ES+) 465 ([2M+Na]+, 100%); HRMS (ES+) exact mass calculated for [M+Na]+ (C11H12FN3NaO+) requires m/z 244.0857, found m/z 244.0862.

2.1.1.4 Synthesis and characterisation of 1-[2-(5-chloro-1H-indol-3-yl)ethyl]urea 5d

The title compound was synthesised according to general procedure I. 5-Chlorotryptamine (500 mg, 2.16 mmol) was reacted with KOCN (211 mg, 2.59 mmol) in ethanol (2.3 mL) and water (2.3 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH2Cl2/MeOH 95/5) to afford product 5d in 49% yield (252 mg) as a pale yellow powder.

m.p. 169-171 °C; IR (neat) ν=3481, 3440, 3345, 1646, 1553, 1333, 1100, 796, 662; 1H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=11.06 (br. s., 1H; NH indole), 7.59 (d, J=2.0 Hz, 1H; H6), 7.36 (d, J=8.5 Hz, 1H; H9), 7.23 (s, 1H; H11), 7.06 (dd, J=8.5, 2.0 Hz, 1H; H8), 5.97 (br. s., 1H; NH urea), 5.49 (br. s., 2H; NH₂ urea), 3.26-3.22 (m, 2H; H2); 13C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=158.7 (C1), 134.6 (C10), 128.4 (C5), 124.6 (C11), 122.9 (C7), 120.8 (C8), 117.7 (C6), 112.8 (C9), 112.1 (C4), 39.5 (C2), 25.9 (C3); MS m/z (ES+) 497 ([2M+Na]+, 100%); HRMS (ES+) exact mass calculated for [M+Na]+ (C11H12ClN3NaO+) requires m/z 260.0561, found m/z 260.0559.

2.1.1.5 Synthesis and characterisation of 1-[2-(6-fluoro-1H-indol-3-yl)ethyl]urea 5e

The title compound was synthesised according to general procedure I. 6-Fluorotryptamine (400 mg, 2.25 mmol) was reacted with KOCN (218 mg, 2.69 mmol) in ethanol (2.4 mL) and water (2.4 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH2Cl2/MeOH 95/5) to afford product 5e in 52% yield (260 mg) as a brown powder.
m.p. 161-163 °C; **IR** (neat) ν=3500, 3359, 3334, 1638, 1577, 1566, 1134, 1097, 800; 1H NMR (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.89 (br. s., 1H; NH indole), 7.53 (dd, J=8.5, 5.5 Hz, 1H; H6), 7.14 (d, J=2.5 Hz, 1H; H11), 7.10 (dd, J=10.0, 2.0 Hz, 1H; H9), 6.83 (td, J=8.5, 2.5 Hz, 1H; H7), 5.93 (br. s., 1H; NH urea), 5.42 (br. s., 2H; NH$_2$ urea), 3.28-3.21 (m, 2H; H2), 2.75 (t, J=7.0 Hz, 2H; H3); 13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ=158.79 (d, J=231 Hz, C8), 158.7 (C1), 136.0 (d, J=10 Hz, C4), 124.1 (C5), 123.2 (C11), 119.3 (d, J=10 Hz, C6), 112.3 (C10), 106.6 (d, J=25 Hz, C7), 97.2 (d, J=25 Hz, C9), 39.5 (C2), 26.0 (C3); **MS** m/z (ES+) 465 ([2M+Na]$^+$, 100%); HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{11}$H$_{12}$FN$_3$NaO$^+$) requires m/z 244.0857, found m/z 244.0859.

2.1.1.6 Synthesis and characterisation of 1-[2-(7-methyl-1H-indol-3-yl)ethyl]urea 5f

![Chemical structure](image)

The title compound was synthesised according to general procedure I. 7-Methyltryptamine (1.00 g, 5.74 mmol) was reacted with KOCN (561 mg, 6.91 mmol) in ethanol (6.0 mL) and water (6.0 mL) for 60 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH$_2$Cl$_2$/MeOH 95/5) to afford product 5f in 55% yield (0.690 g) as a white powder.

m.p. 144-146 °C; **IR** (neat) ν=3402, 3392, 3322, 3201, 1643, 1607, 1516, 777, 743; 1H NMR (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.78 (br. s., 1H; NH indole), 7.38 (d, J=7.5 Hz, 1H; H6), 7.14 (d, J=2.5 Hz, 1H; H12), 6.92-6.87 (m, 2H; H7 and H8), 5.96 (t, J=5.5 Hz, 1H; NH urea), 5.46 (br. s., 2H; NH$_2$ urea), 3.31-3.27 (m, 2H; H2), 2.79 (t, J=7.0 Hz, 2H; H3), 2.45 (s, 3H; H10); 13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ=158.8 (C1), 135.8 (C11), 126.9 (C5), 122.3 (C12), 121.4 (C8), 120.4 (C9), 118.4 (C7), 116.0 (C6), 112.4 (C4), 39.6 (C2), 26.2 (C3), 16.8 (C10); **MS** m/z (ES+) 457 ([2M+Na]$^+$, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]$^+$ (C$_{12}$H$_{15}$N$_3$NaO$^+$) requires m/z 240.1107, found m/z 240.1110.
2.1.1.7 Synthesis and characterisation of 1-[2-(7-ethyl-1H-indol-3-yl)ethyl]urea 5g

The title compound was synthesised according to general procedure I. 7-Ethyltryptamine (1.00 g, 5.31 mmol) was reacted with KOCN (517 mg, 6.37 mmol) in ethanol (5.6 mL) and water (5.6 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 5g in 59% yield (0.730 g) as a brown powder.

m.p. 164-166 °C; IR (neat) ν=3390, 3322, 3206, 2964, 1643, 1607, 1097, 1081, 799, 742; ¹H NMR (400 MHz, [D₆]DMSO, 25 °C) δ=10.77 (br. s., 1H; NH indole), 7.36 (d, J=7.0 Hz, 1H; H6), 7.11 (d, J=2.0 Hz, 1H; H13), 6.93-6.85 (m, 2H; H7 and H8), 5.93 (br. s., 1H; NH urea), 5.42 (br. s., 2H; NH₂ urea), 3.30-3.24 (m, 2H; H2), 2.86-2.81 (m, 2H; H10), 2.89-2.75 (m, 2H; H3), 1.25 (t, J=7.5 Hz, 3H; H11); ¹³C NMR (100 MHz, [D₆]DMSO, 25 °C) δ=159.6 (C1), 135.8 (C12), 128.0 (C9), 127.6 (C5), 123.1 (C13), 120.5 (C8), 119.4 (C7), 116.9 (C6), 113.3 (C4), 39.5 (C2), 27.1 (C3), 24.6 (C10), 15.3 (C11); MS m/z (ES+) 485 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₃H₁₇N₃NaO⁺) requires m/z 254.1264, found m/z 254.1265.

2.1.2 General procedure II for the preparation of tryptamine-derived ureas 5j-p

Tryptamine (1.0 eq.) was dissolved in CH₂Cl₂ at room temperature. Triethylamine (2.0 eq.) was added and the reaction mixture was cooled to 0 °C. Isocyanate (0.90 eq.) was then added dropwise and the reaction mixture was allowed to slowly warm to room temperature over the indicated time. The resulting precipitate was filtered off washing with CH₂Cl₂ and dried under vacuum to afford the desired ureas 5j-p. The ureas were used in the next step without further purification.
2.1.2.1 Synthesis and characterisation of 1-[2-(7-ethyl-1H-indol-3-yl)ethyl]-3-(ethyl)urea 5j

The title compound was synthesised according to general procedure II. 7-Ethyltryptamine (500 mg, 2.66 mmol) was reacted with ethylisocyanate (0.190 mL, 2.39 mmol) in CH$_2$Cl$_2$ (50 mL) for 14 hours. Product 5j was isolated in 99% yield (623 mg) as a brown powder.

m.p. 142-144 °C; **IR** (neat) ν=3317, 3063, 2971, 2874, 1571, 1450, 1256, 738, 657; **1H NMR** (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.76 (br. s., 1H; NH indole), 7.36 (d, J=7.5 Hz, 1H; H8), 7.10 (d, J=2.0 Hz, 1H; H15), 6.93-6.88 (m, 2H; H9 and H10), 5.83-5.78 (m, 1H; NH urea), 5.75-5.71 (m, 1H; NH urea), 3.31-3.23 (m, 2H; H4), 3.04-2.99 (m, 2H; H2), 2.83 (q, J=7.5 Hz, 2H; H12), 2.77 (t, J=7.5 Hz, 2H; H5), 1.25 (t, J=7.5 Hz, 3H; H13), 0.98 (t, J=7.0 Hz, 3H; H1); **13C NMR** (125 MHz, [D$_6$]DMSO, 25 °C) δ=158.0 (C3), 134.9 (C14), 127.1 (C11), 126.7 (C7), 122.2 (C15), 119.6 (C10), 118.5 (C9), 116.0 (C8), 112.4 (C6), 39.5 (C4), 34.0 (C2), 26.2 (C5), 23.7 (C12), 15.7 (C1), 14.4 (C13); **MS** m/z (ES$^+$) 541 ([2M+Na]$^+$, 100%); **HRMS** (ES$^+$) exact mass calculated for [M+Na]$^+$ (C$_{15}$H$_{21}$N$_3$NaO$^+$) requires m/z 282.1577, found m/z 282.1585.

2.1.2.2 Synthesis and characterisation of 1-[2-(1H-indol-3-yl)ethyl]-3-(dodecyl)urea 5k

The title compound was synthesised according to general procedure II. Tryptamine (1.00 g, 6.24 mmol) was reacted with dodecylisocyanate (1.35 mL, 5.62 mmol) in CH$_2$Cl$_2$ (100 mL) for 14 hours. Product 5k was isolated in 70% yield (1.62 g) as a white powder.

m.p. 110-112 °C; **IR** (neat) ν=3431, 3353, 3322, 2920, 2848, 1618, 1583, 735; **1H NMR** (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.74 (br. s., 1H; NH indole), 7.52 (d, J=7.5 Hz, 1H; H18), 7.33 (d, J=7.5 Hz, 1H; H21), 7.10 (d, J=2.0 Hz, 1H; H23), 7.06 (td, J=7.5, 1.0 Hz, 1H; H20), 6.96 (td,
J=7.5, 1.0 Hz, 1H; H19), 5.87 (t, J=5.5 Hz, 1H; NH urea), 5.82 (t, J=5.5 Hz, 1H; NH urea), 3.28-3.24 (m, 2H; H14), 2.97-2.93 (m, 2 H; H12), 2.77 (t, J=7.0 Hz, 2H; H15), 1.35-1.30 (m, 2H; H11), 1.28-1.14 (m, 18H; H2-H10), 0.83 (t, J=7.0 Hz, 3H; H1);

13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ= 158.4 (C13), 136.2 (C22), 127.2 (C17), 122.6 (C23), 120.9 (C20), 118.3 (C19), 118.2 (C18), 112.0 (C16), 111.3 (C21), 40.2 (C14), 39.2 (C12), 31.2 (1C of C2-C10), 29.9 (C11), 29.0 (1C, C2-C10), 29.0 (1C of C2-C10), 28.9 (1C of C2-C10), 28.7 (1C of C2-C10), 28.6 (1C of C2-C10), 28.6 (1C of C2-C10), 26.3 (1C of C2-C10), 26.0 (C15), 22.0 (1C of C2-C10), 13.9 (C1);

MS m/z (ES+) 743 ([2M+H]$^+$, 100%); HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{23}$H$_{37}$N$_3$NaO$^+$) requires m/z 394.2829, found m/z 394.2832.

2.1.2.3 Synthesis and characterisation of 1-[2-(1H-indol-3-yl)ethyl]-3-(4-fluorophenyl)urea 5l

The title compound was synthesised according to general procedure II. Tryptamine (1.00 g, 6.24 mmol) was reacted with 4-fluorophenylisocyanate (0.640 mL, 5.62 mmol) in CH$_2$Cl$_2$ (100 mL) for 14 hours. Product 5l was isolated in 99% yield (1.67 g) as a white powder.

m.p. 172-174 °C; IR (neat) ν=3368, 3292, 2918, 2877, 1556, 1505, 1219, 838, 738; 1H NMR (500 MHz, [D$_6$]DMSO, 25 °C) δ= 10.84 (br. s., 1H; NH indole), 8.52 (s, 1H; C4-NH urea), 7.58 (d, J=8.0 Hz, 1H; H12), 7.41-7.38 (m, 2H; H3 and H5), 7.35 (d, J=8.0 Hz, 1H; H15), 7.18 (d, J=2.0 Hz, 1H; H17), 7.09-7.03 (m, 3H; H2, H6 and H14), 6.98 (td, J=8.0, 1.5 Hz, 1H; H13), 6.11 (t, J=5.5 Hz, 1H; C8-NH urea), 3.42-3.36 (m, 2H; H8), 2.86 (t, J=7.5 Hz, 2H; H9); 13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ= 156.8 (d, J=236 Hz, C1), 155.3 (C7), 136.9 (C4), 136.3 (C16), 127.2 (C11), 122.7 (C17), 120.9 (C14), 119.2 (d, J=8 Hz, C3 and C5), 118.3 (C13), 118.2 (C12), 115.1 (d, J=21 Hz, C2 and C6), 111.7 (C10), 111.4 (C15), 39.5 (C8), 25.8 (C9); MS m/z (ES+) 617 ([2M+Na]$^+$, 100%); HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{17}$H$_{16}$FN$_3$NaO$^+$) requires m/z 320.1170, found m/z 320.1166.
2.1.2.4 Synthesis and characterisation of 1-[2-(7-methyl-1H-indol-3-yl)ethyl)-3-(4-fluorophenyl)urea 5m

The title compound was synthesised according to general procedure II. 7-Methyltryptamine (500 mg, 2.87 mmol) was reacted with 4-fluorophenylisocyanate (0.290 mL, 2.58 mmol) in CH₂Cl₂ (50 mL) for 14 hours. Product 5m was isolated in 53% yield (476 mg) as a white powder.

m.p. 164-166 °C; **IR** (neat) ν=3414, 3322, 1630, 1570, 1506, 1215, 832, 748; **¹H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ=10.81 (br. s., 1H; NH indole), 8.52 (s, 1H; C4-NH urea), 7.42-7.38 (m, 3H; H3, H5 and H12), 7.17 (d, J=2.0 Hz, 1H; H18), 7.07-7.04 (m, 2H; H2 and H6), 6.87-6.92 (m, 2H; H13 and H14), 6.10 (t, J=5.5 Hz, 1H; C8-NH urea), 3.46-3.39 (m, 2H; C9), 2.86 (t, J=7.0 Hz, 2H; H9), 2.45 (s, 3H; H16); **¹³C NMR** (125 MHz, [D₆]DMSO, 25 °C) δ=156.8 (d, J=240 Hz, C1), 155.2 (C7), 137.0 (C4), 135.8 (C17), 126.9 (C11), 122.5 (C18), 121.4 (C14), 120.4 (C15), 119.1 (d, J=8 Hz, C3 and C5), 118.5 (C13), 116.0 (C12), 115.1 (d, J=21 Hz, C2 and C6), 112.2 (C10), 39.5 (C8), 26.0 (C9), 16.8 (C16); **MS** m/z (ES⁺) 645 ([2M+Na]⁺, 100%); **HRMS** (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₈H₁₈F₃N₃O⁺) requires m/z 334.1326, found m/z 334.1326.

2.1.2.5 Synthesis and characterisation of 1-[2-(1H-indol-3-yl)ethyl)-3-(4-methoxyphenyl)urea 5n

The title compound was synthesised according to general procedure II. Tryptamine (1.00 g, 6.24 mmol) was reacted with 4-methoxyphenylisocyanate (0.730 mL, 5.62 mmol) in CH₂Cl₂ (100 mL) for 14 hours. Product 5n was isolated in 99% yield (1.88 g) as a white powder.
m.p. 165-167 °C; **IR** (neat) ν=3370, 3288, 1624, 1556, 1506, 1244, 834, 745; **1H NMR** (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.84 (br. s., 1H; NH indole), 8.28 (s, 1H; C5-NH urea), 7.58 (d, J=7.5 Hz, 1H; H13), 7.36 (d, J=8.0 Hz, 1H; H16), 7.29 (dd, J=8.0, 1.5 Hz, 2H; H4 and H6), 7.18 (d, J=2.0 Hz, 1H; H18), 7.08 (td, J=7.5, 1.5 Hz, 1H; H15), 6.99 (td, J=8.0, 1.5 Hz, 1H; H14), 6.82 (dd, J=8.0, 1.5 Hz, 2H; H3 and H7), 6.03 (t, J=5.5 Hz, 1H; C9-NH urea), 3.71 (s, 3H; H1), 3.40-3.38 (m, 2H; H9), 2.86 (t, J=7.5 Hz, 2H; H10); **13C NMR** (125 MHz, [D$_6$]DMSO, 25 °C) δ=155.5 (C8), 153.9 (C2), 136.3 (C17), 133.7 (C5), 127.2 (C12), 122.7 (C18), 120.9 (C15), 119.4 (C4 and C6), 118.2 (C14), 118.2 (C13), 113.9 (C3 and C7), 111.8 (C11), 111.4 (C16), 55.1 (C1), 39.5 (C9), 25.9 (C10); **MS** m/z (ES+) 310 ([M+H]$^+$, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]$^+$ requires m/z 332.1369, found m/z 332.1369.

2.1.2.6 Synthesis and characterisation of 1-[2-(5-fluoro-1H-indol-3-yl)ethyl]-3-(4-methoxyphenyl]urea 5o

The title compound was synthesised according to general procedure II. 5-Fluorotryptamine (747 mg, 4.19 mmol) was reacted with 4-methoxyphenylisocyanate (0.490 mL, 3.77 mmol) in CH$_2$Cl$_2$ (75 mL) for 14 hours. Product 5o was isolated in 44% yield (605 mg) as a brown powder.

m.p. 179-181 °C; **IR** (neat) ν=3369, 3278, 2917, 1622, 1553, 1505, 1200, 1108, 834, 803; **1H NMR** (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.95 (br. s., 1H; NH indole), 8.28 (s, 1H; C5-NH urea), 7.37-7.31 (m, 2H; H13 and H15), 7.29-7.26 (m, 3H; H4, H6 and H18), 6.92 (td, J=9.0, 2.5 Hz, 1H; H16), 6.81 (d, J=9.0 Hz, 2H; H3 and H7), 6.02 (t, J=5.5 Hz, 1H; C9-NH urea), 3.70 (s, 3H; H1), 3.40-3.36 (m, 2H; H9), 2.82 (t, J=7.0 Hz, 2H; H10); **13C NMR** (125 MHz, [D$_6$]DMSO, 25 °C) δ=156.6 (d, J=231 Hz, C14), 155.4 (C8), 153.9 (C2), 133.7 (C5), 132.9 (C17), 127.5 (d, J=10 Hz, C12), 124.9 (C18), 119.4 (C4 and C6), 113.9 (C3 and C7), 112.2 (d, J=25 Hz, C15), 112.2 (C11), 109.1 (d, J=25 Hz, C16), 103.1 (d, J=21 Hz, C13), 55.1 (C1), 39.5 (C9), 25.8 (C10); **MS** m/z (ES+) 655 ([2M+H]$^+$, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]$^+$ requires m/z 350.1275, found m/z 350.1276.
2.1.2.7 Synthesis and characterisation of 1-[2-(7-ethyl-1H-indol-3-yl)ethyl]-3-(4-methoxyphenyl)urea 5p

The title compound was synthesised according to general procedure II. 7-Ethyltryptamine (500 mg, 2.66 mmol) was reacted with 4-methoxyphenylisocyanate (0.310 mL, 2.39 mmol) in CH₂Cl₂ (50 mL) for 14 hours. Product 5p was isolated in 45% yield (405 mg) as a pale brown powder.

m.p. 160-162 °C; IR (neat) ν=3454, 3426, 3391, 2966, 2934, 1630, 1575, 1245, 1030, 832, 738; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.80 (br. s., 1H; NH indole), 8.27 (s, 1H; C5-NH urea), 7.40 (d, J=7.5 Hz, 1H; H13), 7.28 (d, J=9.0 Hz, 2H; H4 and H6), 7.15 (d, J=2.5 Hz, 1H; H20), 6.94-6.88 (m, 2H; H14 and H15), 6.81 (d, J=9.0 Hz, 2H; H3 and H7), 6.01 (t, J=5.5 Hz, 1H; C8-NH urea), 3.42-3.36 (m, 2H; H9), 3.69 (s, 3H; H1), 2.82-2.86 (m, 4H; H10 and H17), 1.26 (t, J=7.5 Hz, 3H; H18); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=155.5 (C8), 153.9 (C2), 135.0 (C19), 133.7 (C5), 127.1 (C16), 126.8 (C12), 122.4 (C20), 119.6 (C15), 119.4 (C4 and C6), 118.6 (C14), 116.0 (C13), 113.9 (C3 and C7), 112.2 (C11), 55.1 (C1), 39.5 (C9), 26.0 (C10), 23.7 (C17), 14.4 (C18); MS m/z (ES+) 697 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₂₀H₂₃N₃NaO₂⁺) requires m/z 360.1682, found m/z 360.1681.
2.2 General procedure III for the enantioselective synthesis of products 9

(Thio)urea derivative 5 (1.0 eq.) was suspended in dry PhMe (200 mL/mmol) and enone 6 (5.0 eq.) was added in one portion at room temperature, immediately followed by the addition of catalyst 10a (0.10 eq.) in one portion. The resulting suspension was heated at 110 °C for the indicated time. The solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to afford the desired cyclised products 9a-w. [Racemic samples were synthesised in an analogous manner to general procedure III, replacing catalyst 10a with p-TsOH (0.10 eq.).]

2.2.1 Synthesis and characterisation of (R)-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9a

The title compound was synthesised according to general procedure III. Urea derivative 5a (61 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9a in 76% yield (58 mg) as a white powder.

73% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=19.3 min; t_r (minor)=38.0 min; [α]_D²³⁺=+50 (c=0.08, MeOH).

m.p. 178-180 °C; IR (neat) ν=3406, 3284, 3228, 1633, 1508, 743; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.92 (br. s., 1H; NH indole), 7.40 (d, J=8.0 Hz, 1H; H8), 7.32 (d, J=8.0 Hz, 1H; H11), 7.06 (td, J=8.0, 1.0 Hz, 1H; H10), 6.97 (td, J=8.0, 1.0 Hz, 1H; H9), 6.45 (d, J=4.0 Hz, 1H; NH urea), 4.62 (dd, J=13.0, 4.5 Hz, 1H; H4’), 3.35-3.30 (m, 1H; H2’), 3.21-3.14 (m, 1H; H1’), 2.93 (td, J=13.0, 4.5 Hz, 1H; H4), 2.66-2.60 (m, 1H; H5’), 2.59-2.53 (m, 1H; H5), 2.40-2.37 (m, 1H; H1’), 1.75 (td, J=13.0, 5.5 Hz, 1H; H1), 1.54 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=154.3 (C3), 139.3 (C13), 135.9 (C12), 126.3 (C7), 120.9 (C10), 118.5 (C9), 117.9 (C8), 111.0 (C11), 106.1 (C6), 53.7 (C14), 35.9 (C4), 35.4 (C2), 33.8 (C1), 23.7 (C15), 21.3 (C5); MS m/z (ES+) 533 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₇N₃NaO⁺) requires m/z 278.1264, found m/z 278.1267.
2.2.2 Synthesis and characterisation of \((R)\)-12b-heptyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one 9b

The title compound was synthesised according to general procedure III. Urea derivative 5a (20 mg, 0.10 mmol) was reacted with heptyl vinyl ketone 6c (77 mg, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH2Cl2/MeOH 95/5) to afford product 9b in 59% yield (20 mg) as a white powder.

78% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1 mL/min, 220 nm, \(t_r\) (major)=7.9 min; \(t_r\) (minor)=18.8 min); [\(\alpha\)]\textsubscript{D}23 =+40 (c=0.16, MeOH).

m.p. 112-114 °C; IR (neat) \(\nu=3405, 3227, 2925, 2853, 1632, 1504, 1449, 740, 703\); \(^1\)H NMR (500 MHz, [D\textsubscript{6}]DMSO, 25 °C) \(\delta=10.85\) (br. s., 1H; NH indole), 7.34-7.30 (m, 2H; H8 and H11), 7.06 (t, \(J=7.5\) Hz, 1H; H10), 6.97 (td, \(J=7.5, 1.0\) Hz, 1H; H9), 6.42 (d, \(J=3.5\) Hz, 1H; NH urea), 4.67 (dd, \(J=13.0, 5.0\) Hz, 1H; H4’), 3.27 (td, \(J=12.0, 4.5\) Hz, 1H; H2’), 3.12-3.08 (m, 1H; H2), 3.00 (td, \(J=13.0, 5.0\) Hz, 1H; H4), 2.67-2.63 (m, 1H; H5’), 2.58-2.53 (m, 1H; H5), 2.40-2.36 (m, 1H; H1’), 2.02-1.95 (m, 1H; H15’), 1.88-1.83 (m, 1H; H15), 1.74 (td, \(J=12.5, 5.5\) Hz, 1H; H1), 1.39-1.33 (m, 1H; H16’), 1.28-1.15 (m, 9H; H16-H20), 0.82 (t, \(J=7.0\) Hz, 3H; H21); \(^{13}\)C NMR (125 MHz, [D\textsubscript{6}]DMSO, 25 °C) \(\delta=154.7\) (C3), 137.8 (C13), 135.0 (C12), 126.2 (C7), 120.8 (C10), 118.4 (C9), 117.8 (C8), 111.1 (C11), 107.0 (C6), 56.5 (C14), 38.0 (C15), 37.0 (C4), 35.5 (C2), 32.8 (C1), 31.2 (1C of C17-C20), 29.7 (1C of C17-C20), 28.8 (1C of C17-C20), 24.6 (C16), 22.0 (1C of C17-C20), 21.0 (C5), 13.9 (C21); MS \(m/z\) (ES+) 701 ([2M+Na]+, 100%); HRMS (ES+) exact mass calculated for [M+Na]+ (C\textsubscript{21}H\textsubscript{29}N\textsubscript{3}NaO+) requires \(m/z\) 362.2203, found \(m/z\) 362.2204.
2.2.3 Synthesis and characterisation of (R)-9-methoxy-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9c

The title compound was synthesised according to general procedure III. Urea derivative 5b (47 mg, 0.20 mmol) was reacted with methyl vinyl ketone 6a (81 µL, 1.0 mmol) in PhMe (40 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9c in 77% yield (44 mg) as a white powder.

60% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, tᵣ (major)=27.9 min; tᵣ (minor)=43.8 min; [α]D²³=+71 (c=0.16, MeOH).
m.p. 140-142 °C; IR (neat) ν=3410, 3275, 2930, 1626, 1508, 1160, 800, 754; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.74 (br. s., 1H; NH indole), 7.19 (d, J=8.5 Hz, 1H; H12), 6.90 (d, J=2.5 Hz, 1H; H8), 6.70 (dd, J=8.5, 2.5 Hz, 1H; H11), 6.44 (d, J=3.5 Hz, 1H; NH urea), 4.61 (dd, J=13.0, 4.5 Hz, 1H; H4'), 3.75 (s, 3H; H10), 3.33-3.29 (m, 1H; H2'), 3.18-3.12 (m, 1H; H2), 2.91 (td, J=13.0, 4.5 Hz, 1H; H4), 2.61-2.53 (m, 2H; H5), 2.37-2.34 (m, 1H; H1'), 1.75 (td, J=13.0, 5.0 Hz, 1H; H1), 1.52 (s, 3H; H16); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=154.3 (C3), 153.1 (C9), 140.0 (C14), 131.0 (C13), 126.6 (C7), 111.6 (C12), 110.7 (C11), 106.0 (C6), 100.1 (C8), 55.4 (C10), 53.7 (C15), 35.9 (C4), 21.4 (C5), 35.4 (C2), 33.8 (C1), 23.7 (C16); MS m/z (ES⁺) 593 ([2M+Na]+, 100%); HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₆H₁₉N₃NaO₂⁺) requires m/z 308.1369, found m/z 308.1370.

2.2.4 Synthesis and characterisation of (R)-9-fluoro-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9d

The title compound was synthesised according to general procedure III. Urea derivative 5c (15 mg, 0.07 mmol) was reacted with methyl vinyl ketone 6a (28 µL, 0.34 mmol) in PhMe (14 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9d in 75% yield (14 mg) as a yellow powder.

70% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, tᵣ (major)=22.6 min; tᵣ (minor)=49.3 min; [α]D²³=+99 (c=0.09, MeOH).
m.p. 168-170 °C; IR (neat) ν=3401, 3283, 2926, 1630, 1509, 1449, 1158, 801, 754; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=11.04 (br. s., 1H; NH indole), 7.29 (dd, J=9.0, 4.5 Hz, 1H;
H10), 7.09 (dd, J=9.5, 2.0 Hz, 1H; H8), 6.89 (td, J=9.0, 2.5 Hz, 1H; H11), 6.46 (d, J=4.0 Hz, 1H; NH urea), 4.61 (dd, J=13.0, 4.5 Hz, 1H; H4'), 3.20-3.10 (m, 1H; H2), 3.36-3.31 (m, 1H; H2'), 2.92 (td, J=13.0, 4.5 Hz, 1H; H4), 2.67-2.58 (m, 1H; H5'), 2.57-2.53 (m, 1H; H5), 1.75 (td, J=13.0, 5.5 Hz, 1H; H1); 1.53 (s, 3H; H15), 13C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=156.8 (d, J=230 Hz, C9), 154.3 (C3), 141.5 (C13), 134.4 (C12), 127.4 (C7), 123.1 (C9), 120.7 (C10), 117.3 (C8), 112.5 (C11), 106.3 (C6), 53.7 (C14), 35.8 (C4), 35.3 (C2), 33.6 (C1), 23.6 (C15), 21.1 (C5); MS m/z (ES+) 288 ([M-H]+' 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₆ClN₂NaO⁺) requires m/z 312.0874, found m/z 312.0869.

2.2.5 Synthesis and characterisation of (R)-9-chloro-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one 9e

The title compound was synthesised according to general procedure III. Urea derivative 5d (24 mg, 0.10 mmol) was reacted with methyl vinyl ketone 6a (41 µL, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9e in 77% yield (23 mg) as a pale brown powder.

68% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 300 nm, t_r (major)=21.4 min; t_r (minor)=51.9 min); [α]_D²³+96 (c=0.09, MeOH).

m.p. 160-162 °C; IR (neat) ν=3305, 3188, 2917, 1632, 1507, 1433, 800, 759; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=11.16 (br. s., 1H; NH indole), 7.44 (d, J=2.0 Hz, 1H; H8), 7.32 (d, J=8.5 Hz, 1H; H11), 7.06 (dd, J=8.5, 2.0 Hz, 1H; H10), 6.47 (br. s., 1H; NH urea), 4.61 (dd, J=13.0, 4.5 Hz, 1H; H4'), 3.32-3.37 (m, 1H; H2'); 2.91 (td, J=13.0, 4.5 Hz, 1H; H4), 2.67-2.58 (m, 1H; H5'), 2.57-2.53 (m, 1H; H5), 1.75 (td, J=13.0, 5.5 Hz, 1H; H1)), 1.53 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=154.2 (C3), 141.2 (C13), 134.4 (C12), 127.4 (C7), 123.1 (C9), 120.7 (C10), 117.3 (C8), 112.5 (C11), 106.3 (C6), 53.7 (C14), 35.8 (C4), 35.3 (C2), 33.6 (C1), 23.6 (C15), 21.1 (C5); MS m/z (ES-) 288 ([M-H]' 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₆ClN₂NaO⁺) requires m/z 312.0874, found m/z 312.0869.
2.2.6 Synthesis and characterisation of (R)-10-fluoro-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]pyrido[3,4-b]indol-4(12H)-one 9f

The title compound was synthesised according to general procedure III. Urea derivative 5e (20 mg, 0.09 mmol) was reacted with methyl vinyl ketone 6a (37 µL, 0.45 mmol) in PhMe (18 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9f in 73% yield (20 mg) as a yellow oil.

67% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=20.8 min; t_r (minor)=42.0 min; [α]_D^{23} =+70 (c=0.13, MeOH).

IR (neat) ν=3275, 2966, 2924, 2854, 1629, 1505, 1472, 1378, 1282, 1259, 1114, 954; ^1H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=11.06 (br. s., 1H; NH indole). 7.39 (dd, J=8.5, 5.5 Hz, 1H; H8), 7.09 (dd, J=10.0, 2.0 Hz, 1H; H11), 6.83 (ddd, J=10.0, 8.5, 2.0 Hz, 1H; H9), 6.45 (d, J=4.0 Hz, 1H; NH urea), 4.61 (dd, J=12.5, 4.0 Hz, 1H; H4'), 3.19-3.11 (m, 1H; H2'), 3.38-3.31 (m, 1H; H2'), 2.91 (td, J=12.5, 4.0 Hz, 1H; H4), 2.66-2.59 (m, 1H; H5'), 2.57-2.53 (m, 1H; H5), 2.38-2.35 (m, 1H; H1'), 1.74 (td, J=13.0, 5.5 Hz, 1H; H1), 1.52 (s, 3H; H15); ^13C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=158.7 (d, J=233 Hz, C10), 154.3 (C3), 139.9 (C13), 135.8 (d, J=10 Hz, C12), 123.1 (C7), 118.9 (d, J=10 Hz, C8), 106.7 (d, J=25 Hz, C9), 106.4 (C6), 97.2 (d, J=25 Hz, C11), 53.7 (C14), 35.8 (C4), 35.3 (C2), 33.7 (C1), 23.6 (C15), 21.2 (C5); MS m/z (ES+) 547 ([2M+H]^+, 100%); HRMS (ES+) exact mass calculated for [M+Na]^+ (C₁₅H₁₆FN₃NaO^+)) requires m/z 296.1170, found m/z 296.1164.

2.2.7 Synthesis and characterisation of (R)-11,12b-dimethyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]pyrido[3,4-b]indol-4(12H)-one 9g

The title compound was synthesised according to general procedure III. Urea derivative 5f (65 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9g in 78% yield (63 mg) as a white powder.

92% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=12.2 min; t_r (minor)=14.4 min; [α]_D^{23} =+133 (c=0.22, MeOH).
2.2.8 Synthesis and characterisation of \((R)-12b\text{-ethyl-11-methyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12\text{H})\text{-one 9h}}

The title compound was synthesised according to general procedure III. Urea derivative 5f (65 mg, 0.30 mmol) was reacted with ethyl vinyl ketone 6b (0.15 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH\text{2}Cl\text{2}/MeOH 95/5) to afford product 9h in 74% yield (63 mg) as a brown powder.

92% ee (Chiralcel AD 95:5 Hexane:Isopropanol, 1.0 mL/min, 220 nm, \(t_r\) (major)=29.9 min; \(t_r\) (minor)=50.9 min; \([\alpha]_D^{23}=+103\) (c=0.13, MeOH).
2.2.9 Synthesis and characterisation of (R)-11-methyl-12b-heptyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9i

The title compound was synthesised according to general procedure III. Urea derivative 5f (22 mg, 0.10 mmol) was reacted with heptyl vinyl ketone 6c (77 mg, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH$_2$Cl$_2$/MeOH 95/5) to afford product 9i in 54% yield (19 mg) as a yellow powder.

90% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=7.7 min; t_r (minor)=11.8 min); [α]$_D^{23}$ =+42 (c=0.25, MeOH).

m.p. 187-189 °C; IR (neat) ν=3309, 3286, 3195, 2921, 2853, 1633, 1513, 1449, 1026, 746, 700; 1H NMR (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.47 (br. s., 1H; NH indole), 7.31 (d, J=7.5 Hz, 1H; H8), 6.90-6.85 (m, 2H; H9 and H10), 6.41 (d, J=3.0 Hz, 1H; NH urea), 4.68 (dd, J=13.0, 5.0 Hz, 1H; H4'), 3.33-3.25 (m, 1H; H2'), 3.12-3.10 (m, 1H; H2), 2.97 (td, J=13.0, 5.0 Hz, 1H; H4), 2.66-2.60 (m, 1H; H5'), 2.56-2.51 (m, 1H; H5), 2.50-2.48 (m, 1H; H1'), 2.47 (s, 3H; H12), 2.00-1.94 (m, 2H; H16), 1.78 (td, J=13.0, 5.5 Hz, 1H; H1), 1.40-1.33 (m, 1H; H17'), 1.25-1.19 (m, 9H; H17-H21), 0.82 (t, J=7.0 Hz, 3H; H22); 13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ=154.9 (C3), 137.7 (C14), 135.5 (C13), 125.9 (C7), 121.6 (C10), 120.2 (C11), 118.6 (C9), 115.3 (C8), 107.6 (C6), 56.7 (C15), 38.1 (C16), 37.2 (C4), 35.5 (C2), 33.1 (C1), 31.2 (1C of C18-C21), 29.6 (1C of C18-C21), 28.5 (1C of C18-C21), 24.6 (C17), 22.0 (1C of C18-C21), 21.0 (C5), 17.1 (C12), 13.9 (C22); MS m/z (ES+) 354 ([M+H]$^+$, 100%); HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{22}$H$_{31}$N$_3$NaO$^+$) requires m/z 376.2359, found m/z 376.2356.
2.2.10 Synthesis and characterisation of (R)-11-ethyl-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1′,6′:1,2]pyrido[3,4-b]indol-4(12H)-one 9j

The title compound was synthesised according to general procedure III. Urea derivative 5g (23 mg, 0.10 mmol) was reacted with methyl vinyl ketone 6a (41 µL, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9j in 71% yield (20 mg) as a pale brown powder.

92% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_{r (major)}=27.6 min; t_{r (minor)}=38.8 min); [α]_D²³=+98 (c=0.12, MeOH).

m.p. 288-290 °C (dec.); IR (neat) ν=3412, 3285, 2967, 2931, 1633, 1506, 1352, 1153, 794; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.57 (br. s., 1H; NH indole), 7.22 (d, J=7.5 Hz, 1H; H8), 6.93-6.88 (m, 2H; H9 and H10), 6.43 (d, J=4.0 Hz, 1H; NH urea), 4.61 (dd, J=13.0, 4.5 Hz, 1H; H4'), 3.38-3.22 (m, 1H; H2'), 3.21-3.12 (m, 1H; H2), 2.92 (td, J=13.0, 4.5 Hz, 1H; H4), 2.86 (q, J=7.5 Hz, 2H; H12), 2.60-2.55 (m, 3H; H1' and H5), 1.73 (td, J=13.0, 5.5 Hz, 1H; H1), 1.57 (s, 3H; H17), 1.27 (t, J=7.5 Hz, 3H; H13); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=154.3 (C3), 139.0 (C15), 134.6 (C14), 126.6 (C11), 126.1 (C7), 119.7 (C10), 118.8 (C9), 115.5 (C8), 106.6 (C6), 53.8 (C16), 35.8 (C4), 35.4 (C2), 33.6 (C1), 23.7 (C17), 23.4 (C12), 21.4 (C5), 14.5 (C13); MS m/z (ES+) 567 ([2M+H]⁺), 100%; HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₂₁N₃NaO⁺) requires m/z 306.1577, found m/z 306.1577.

2.2.11 Synthesis and characterisation of (R)-2,2,11,12b-tetramethyl-1,2,3,6,7,12b-hexahydropyrimido[1′,6′:1,2]pyrido[3,4-b]indol-4(12H)-one 9k

The title compound was synthesised according to general procedure III. Urea derivative 5f (65 mg, 0.30 mmol) was reacted with mesityl oxide 6e (0.17 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9k in 78% yield (70 mg) as an off-white powder.

43% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 0.7 mL/min, 220 nm, t_{r (minor)}=16.7 min; t_{r (major)}=18.6 min); [α]_D²³=+91 (c=0.09, MeOH).
m.p. 288-290 °C (dec.); IR (neat) ν=3261, 3193, 2962, 2928, 1608, 1484, 1421, 1185, 778, 744; \(^1\)H NMR (500 MHz, [D\(_6\)]DMSO, 25 °C) δ=10.57 (s, 1H; NH indole), 7.20 (d, \(J=7.5\) Hz, 1H; H9), 6.94-6.79 (m, 2H; H10 and H11), 6.46 (s, 1H; NH urea), 2.65-2.55 (m, 2H; H6), 2.46 (s, 3H; H13), 2.34 (d, \(J=14.0\) Hz, 1H; H1'), 2.23 (d, \(J=14.0\) Hz, 1H; H1), 1.63 (s, 3H; H17), 1.26 (s, 3H; H3'), 0.92 (s, 3H; H3);

13C NMR (125 MHz, [D\(_6\)]DMSO, 25 °C) δ=155.3 (C4), 139.6 (C15), 135.2 (C14), 126.1 (C8), 121.5 (C11), 120.2 (C12), 118.6 (C10), 115.3 (C9), 106.1 (C7), 54.1 (C16), 48.3 (C2), 45.8 (C1), 36.4 (C5), 30.6 (C3'), 30.5 (C3), 27.1 (C17), 20.9 (C6), 17.0 (C13); MS m/z (ES+) 595 ([2M+H]+, 100%); HRMS (ES+) exact mass calculated for [M+Na]+ (C\(_{18}\)H\(_{23}\)N\(_3\)NaO\(_7\)+) requires m/z 320.1733, found m/z 320.1724.

2.2.12 Synthesis and characterisation of (R)-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12H)-thione 9l

The title compound was synthesised according to general procedure III. Thiourea derivative 5h (66 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH\(_2\)Cl\(_2\)/MeOH 95/5) to afford product 9l in 72% yield (59 mg) as a white powder.

31% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 240 nm, \(t_r\) (major)=15.3 min; \(t_r\) (minor)=33.5 min); [\(\alpha\)]\(_{D}^{23}\)=+38 (c=0.40, MeOH).

m.p. 153-155 °C; IR (neat) ν=3403, 3236, 2975, 2933, 1521, 1493, 1328, 1176, 748; \(^1\)H NMR (500 MHz, [D\(_6\)]DMSO, 25 °C) δ=10.98 (br. s., 1H; NH indole), 8.26 (d, \(J(H,H)=4.5\) Hz, 1H; NH urea), 7.43 (d, \(J(H,H)=7.5\) Hz, 1H; H8), 7.33 (d, \(J(H,H)=8.0\) Hz, 1H; H11), 7.08 (td, \(J(H,H)=8.0, 1.5\) Hz, 1H; H10), 6.99 (td, \(J(H,H)=7.5, 1.5\) Hz, 1H; H9), 5.66-5.61 (m, 1H; H4'), 3.34-3.26 (m, 2H; H2' and H4), 3.23-3.11 (m, 1H; H2), 2.69-2.65 (m, 2H; H5), 2.53-2.49 (m, 1H; H1'), 1.77 (td, \(J(H,H)=13.0, 5.5\) Hz, 1H; H1), 1.61 (s, 3H; H15); 13C NMR (125 MHz, [D\(_6\)]DMSO, 25 °C) δ=176.5 (C3), 138.0 (C13), 136.1 (C12), 126.9 (C7), 124.8 (C15), 120.8 (C14), 118.6 (C9), 118.0 (C8), 111.1 (C11), 106.4 (C6), 55.3 (C14), 43.6 (C4), 36.2 (C2), 33.0 (C1), 24.0 (C15), 20.8 (C5); MS m/z (ES+) 565 ([2M+Na]+, 100%); HRMS (ES+) exact mass calculated for [M+Na]+ (C\(_{15}\)H\(_{17}\)N\(_3\)NaO\(_7\)+) requires m/z 294.1035, found m/z 294.1030.
2.2.13 Synthesis and characterisation of \((R)-3\text{-ethyl-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido}[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one\) 9m

The title compound was synthesised according to general procedure III. Urea derivative 5i (69 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/Acetone 95/5) to afford product 9m in 73% yield (62 mg) as a yellow powder.

83% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, \(t_r\) (major)=18.2 min; \(t_r\) (minor)=32.9 min); \([\alpha]_D^{23}=+110\) (c=0.12, MeOH).

m.p. 263-265 °C (dec.); IR (neat) ν=3406, 3233, 3195, 2972, 2928, 1604, 1403, 1453, 1352, 1297, 1279, 741; \(^1\)H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.92 (br. s., 1H; NH indole), 7.40 (d, \(J=8.0\) Hz, 1H; H8), 7.31 (d, \(J=8.0\) Hz, 1H; H11), 7.06 (td, \(J=8.0, 1.5\) Hz, 1H; H10), 6.97 (td, \(J=8.0, 1.5\) Hz, 1H; H9), 4.64 (dd, \(J=13.0, 4.5\) Hz, 1H; H4’), 3.48 (td, \(J=12.5\) Hz, 1H; H2’), 3.41-3.35 (m, 1H; H16’), 3.27-3.15 (m, 2H; H16 and H2), 2.93 (td, \(J=13.0, 4.5\) Hz, 1H; H4), 2.64-2.59 (m, 2H; H5), 2.49-2.45 (m, 1H; H1’), 1.83 (td, \(J=12.5, 5.5\) Hz, 1H; H1), 1.52 (s, 3H; H15), 0.71 (t, \(J=7.0\) Hz, 3H; H17); \(^{13}\)C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=153.8 (C3), 139.3 (C13), 136.0 (C12), 126.2 (C7), 120.9 (C10), 118.5 (C9), 117.9 (C8), 111.0 (C11), 106.2 (C6), 53.8 (C14), 42.2 (C16), 41.3 (C2), 36.6 (C4), 33.7 (C1), 23.4 (C15), 21.3 (C5), 12.6 (C17); MS m/z (ES⁺) 589 ([2M+Na]⁺, 100%); HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₇H₂₁N₃NaO⁺) requires m/z 306.1577, found m/z 306.1575.

2.2.14 Synthesis and characterisation of \((R)-3,12b\text{-diethyl-1,2,3,6,7,12b-hexahydropyrimido}[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one\) 9n

The title compound was synthesised according to general procedure III. Urea derivative 5i (69 mg, 0.30 mmol) was reacted with ethyl vinyl ketone 6b (0.15 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/Acetone 95/5) to afford product 9n in 73% yield (65 mg) as a pale yellow powder.

86% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, \(t_r\) (major)=13.6 min; \(t_r\) (minor)=22.5 min); \([\alpha]_D^{23}=+144\) (c=0.07, MeOH).
m.p. 188-190 °C; IR (neat) ν=3234, 2971, 2933, 1604, 1452, 1348, 741; 1H NMR (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.85 (br. s., 1H; NH indole), 7.41 (d, J=8.0 Hz, 1H; H8), 7.33 (d, J=8.0 Hz, 1H; H11), 7.06 (td, J=8.0, 1.5 Hz, 1H; H10), 6.97 (td, J=8.0, 1.5 Hz, 1H; H9), 4.70 (dd, J=13.0, 4.5 Hz, 1H; H4'), 3.43-3.35 (m, 1H; H2'), 3.41-3.29 (m, 1H; H17'), 3.26-3.20 (m, 1H; H17), 3.19-3.11 (m, 1H; H2'), 3.04 (td, J=13.0, 4.5 Hz, 1H; H4'), 2.67-2.63 (m, 1H; H5'), 2.60-2.52 (m, 1H; H5), 2.47-2.42 (m, 1H; H17'), 2.02-1.95 (m, 1H; H17'), 1.94-1.90 (m, 1H; H15), 1.86 (td, J=13.0, 4.0 Hz, 1H; H1), 1.02 (t, J=7.5 Hz, 3H; H18), 0.89 (t, J=7.5 Hz, 3H; H19); 13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ=154.2 (C3), 137.6 (C13), 136.1 (C12), 126.2 (C7), 120.9 (C10), 118.4 (C9), 117.8 (C8), 111.1 (C11), 107.2 (C6), 56.9 (C14), 42.2 (C17), 40.5 (C2), 37.6 (C4), 32.2 (C1), 30.5 (C15), 21.0 (C5), 12.5 (C18), 9.5 (C16); MS m/z (ES+) 617 ([2M+Na]$^+$, 100%); HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{18}$H$_{23}$N$_3$NaO$^+$) requires m/z 320.1733, found m/z 320.1731.

2.2.15 Synthesis and characterisation of (R)-3,11-diethyl-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one 9o

The title compound was synthesised according to general procedure III. Urea derivative 5j (78 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH$_2$Cl$_2$/MeOH 95/5) to afford product 9o in 76% yield (71 mg) as a red oil. 90% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=8.5 min; t_r (minor)=12.0 min); [α]$^D_{23}$=+109 (c=0.78, MeOH).

IR (neat) ν=3262, 2967, 2931, 2872, 1604, 1455, 1355, 1277, 1176, 741; 1H NMR (500 MHz, [D$_6$]DMSO, 25 °C) δ=10.57 (br. s., 1H; NH indole), 7.22 (d, J=7.5 Hz, 1H; H8), 6.93-6.88 (m, 2H; H9 and H10), 4.65 (dd, J=13.0, 5.0 Hz, 1H; H4'), 3.49 (td, J=12.0, 4.5 Hz, 1H; H2'), 3.45-3.38 (m, 1H; H18'), 3.25-3.18 (m, 2H; H2 and H18), 2.93 (td, J=13.0, 5.0 Hz, 1H; H4'), 2.86 (q, J=7.5 Hz, 2H; H12), 2.63-2.53 (m, 3H, H1' and H5), 1.82 (td, J=13.0, 5.5 Hz, 1H; H1), 1.55 (s, 3H; H17), 1.27 (t, J=7.5 Hz, 3H; H13), 1.04 (t, J=7.5 Hz, 3H; H19); 13C NMR (125 MHz, [D$_6$]DMSO, 25 °C) δ=153.8 (C3), 139.0 (C15), 134.6 (C14), 126.6 (C11), 126.0 (C7), 119.7 (C10), 118.8 (C9), 115.5 (C8), 106.7 (C6), 56.9 (C16), 42.2 (C18), 40.4 (C2), 36.5 (C4), 33.5 (C1), 23.7 (C12), 23.12 (C17), 21.4 (C5), 14.5 (C13), 12.6 (C19); MS m/z (ES+) 645 ([2M+Na]$^+$, 100%); HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{19}$H$_{25}$N$_3$NaO$^+$) requires m/z 334.1890, found m/z 334.1888.
2.2.16 Synthesis and characterisation of \((R)-3\text{-dodecyl-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one} \text{9p}\)

The title compound was synthesised according to general procedure III. Urea derivative \(5k\) (0.11 g, 0.30 mmol) was reacted with methyl vinyl ketone \(6a\) (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CHCl\(_2\)/MeOH 95/5) to afford product \(9p\) in 75% yield (95 mg) as an orange oil.

87% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, \(t_\text{r (major)}\)=11.3 min; \(t_\text{r (minor)}\)=19.1 min); \([\alpha]_D^{23} = +80\) (c=0.56, MeOH).

\(\text{IR (neat)} v=3231, 2923, 2852, 1602, 1502, 1453, 1352, 1297, 1275, 1173, 739; \text{\(1H NMR (500 MHz, [D_6]DMSO, 25 ^\circ\text{C}\)} \delta=10.91 \text{ (br. s., 1H; NH indole), 7.39 (d, \(J=8.0\text{ Hz, 1H; H8}), 7.31 (d, \(J=8.0\text{ Hz, 1H; H11}), 7.06 (td, \(J=8.0, 1.0\text{ Hz, 1H; H10}), 6.97 (td, \(J=8.0, 1.0\text{ Hz, 1H; H9}), 4.65 (dd, \(J=13.0, 4.5\text{ Hz, 1H; H4'}\)), 3.47 (td, \(J=13.0, 4.0\text{ Hz, 1H; H2'}\)), 3.41-3.36 (m, 1H; H16'), 3.24-3.19 (m, 1H; H2), 3.15-3.07 (m, 1H; H16), 2.94 (td, \(J=13.0, 4.5\text{ Hz, 1H; H4'}\)), 2.65-2.60 (m, 1H; H5'), 2.58-2.54 (m, 1H; H5), 2.46-2.39 (m, 1H; H1'), 1.83 (td, \(J=13.0, 5.5\text{ Hz, 1H; H1'}\)), 1.52 (s, 3H; H15), 1.49-1.42 (m, 2H; H17), 1.29-1.20 (m, 18H; H18-H26), 0.86 (t, \(J=7.5\text{ Hz, 3H; H27}); \text{\(13C NMR (125 MHz, [D_6]DMSO, 25 ^\circ\text{C}\)} \delta=154.0 \text{ (C3), 139.3 (C13), 136.0 (C12), 126.2 (C7), 120.9 (C10), 118.4 (C9), 117.9 (C8), 111.0 (C11), 106.2 (C6), 53.8 (C14), 47.5 (C16), 41.0 (C2), 36.7 (C4), 33.7 (C1), 31.3 (C1 of C18-C26), 29.0 (C1 of C18-C26), 29.0 (C1 of C18-C26), 29.1 (C1 of C18-C26), 29.0 (C1 of C18-C26), 28.8 (C1 of C18-C26), 28.7 (C1 of C18-C26), 28.1 (C17), 26.3 (C1 of C18-C26), 23.5 (C15), 22.1 (C1 of C18-C26), 21.3 (C5), 13.9 (C27); \text{MS m/z (ES+)} 869 ([2M+Na]^+, 100%); \text{HRMS (ES+)} \text{exact mass calculated for [M+Na]^+ (C}_{27}\text{H}_{41}\text{N}_3\text{NaO}^+\text{ requires m/z 446.3142, found m/z 446.3139.}
2.2.17 Synthesis and characterisation of (S)-3-dodecyl-12b-phenyl-1,2,3,6,7,12b-
hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9q

The title compound was synthesised according to general procedure III. Urea derivative 5k (37 mg, 0.10 mmol) was reacted with phenyl vinyl ketone 6d (66 µL, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9q in 64% yield (31 mg) as a brown powder.

71% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=16.1 min; t_r (minor)=18.8 min; [α]_D^23 = -128 (c=0.50, MeOH).

m.p. 187-189 °C; IR (neat) ν=3257, 2922, 2852, 1603, 1496, 1453, 1354, 1272, 742, 701; ^1H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=11.35 (br. s., 1H; NH indole), 7.45-7.37 (m, 6H; H8, H11, H16, H17, H19 and H20), 7.34-7.28 (m, 1H; H18), 7.11 (td, J=7.5, 1.0 Hz, 1H; H10), 6.99 (td, J=7.5, 1.0 Hz, 1H; H9), 4.74 (dd, J=13.0, 5.0 Hz, 1H; H4’), 3.45-3.39 (m, 1H; H2’), 3.17-3.01 (m, 2H; H2 and H21’), 2.99-2.89 (m, 1H; H21), 2.82 (td, J=13.0, 5.0 Hz, 1H; H4), 2.74-2.66 (m, 2H; H1’ and H5’), 2.62-2.58 (m, 1H; H5), 2.30 (td, J=13.0, 5.0 Hz, 1H; H1), 1.43-1.35 (m, 2H; H22), 1.25-1.07 (m, 18H; H23-H31), 0.86 (t, J=7.5 Hz, 3H; H32); ^13C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=155.0 (C3), 143.4 (C15), 136.3 (C13 or C12), 136.2 (C12 or C13), 128.5 (C17 and C19), 127.2 (C18), 126.3 (C7), 125.7 (C16 and C20), 121.3 (C10), 118.7 (C9), 118.1 (C8), 111.2 (C11), 107.9 (C6), 61.3 (C14), 47.4 (C21), 41.1 (C2), 38.5 (C4), 35.4 (C1), 31.3 (C31 or C30), 29.1 (1C of C23-C29), 29.0 (1C of C23-C29), 28.9 (1C of C23-C29), 28.8 (1C of C23-C29), 28.7 (1C of C23-C29), 28.6 (1C of C23-C29), 27.0 (C22), 26.1 (1C of C23-C29), 22.1 (C30 or C31), 20.9 (C5), 14.0 (C32); MS m/z (ES+) 508 ([M+Na]+, 100%); HRMS (ES−) exact mass calculated for [M−H]− (C₃₂H₄₂N₆O³⁻) requires m/z 484.3333, found m/z 484.3332.
2.2.18 Synthesis and characterisation of (R)-3-(4-fluorophenyl)-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9r

The title compound was synthesised according to general procedure III. Urea derivative 5l (90 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9r in 74% yield (78 mg) as a white powder.

83% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 240 nm, tᵣ (major)=4.2 min; tᵣ (minor)=11.6 min; [α]D²³⁺=+100 (c=0.05, MeOH).
The sample has been recrystallised from MeOH to give crystals suitable for X-Ray (99% ee).
m.p. 190-191 °C; IR (neat) ν=3401, 3273, 2932, 1622, 1509, 1454, 1214, 835, 745; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.99 (br. s., 1H; NH indole), 7.43 (d, J=7.5 Hz, 1H; H8), 7.36-7.32 (m, 3H; H11, H17 and H21), 7.17-7.14 (m, 2H; H18, H20), 7.09 (td, J=13.0, 5.0 Hz, 1H; H4’), 4.67 (dd, J=13.0, 5.0 Hz, 1H; H4’), 3.94 (td, J=12.0, 4.0 Hz, 1H; H2’), 3.55 (dd, J=12.0, 4.0 Hz, 1H; H2’), 3.06 (td, J=13.0, 5.0 Hz, 1H; H4), 2.72-2.61 (m, 2H; H5), 2.57-2.54 (m, 1H; H1’), 2.08 (td, J=12.0, 5.5 Hz, 1H; H1), 1.68 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=159.3 (d, J=240 Hz, C19), 153.4 (C3), 140.8 (C16), 139.1 (C13), 136.0 (C12), 128.0 (d, J=9 Hz, C17 and C21), 126.2 (C7), 121.0 (C10), 118.5 (C9), 118.0 (C8), 114.9 (d, J=23 Hz, C18 and C20), 111.1 (C11), 106.2 (C6), 54.5 (C14), 44.3 (C2), 37.0 (C4), 34.0 (C1), 24.3 (C15), 21.2 (C5); MS m/z (ES⁺) 721 ([2M+Na]⁺, 100%); HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₂₁H₂₀FN₃NaO⁺) requires m/z 372.1483, found m/z 372.1488.

2.2.19 Synthesis and characterisation of (R)-3-(4-fluorophenyl)- 12b-heptyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9s

The title compound was synthesised according to general procedure III. Urea derivative 5l (30 mg, 0.10 mmol) was reacted with heptyl vinyl ketone 6c (77 mg, 0.5 mmol) in PhMe (20 mL) for...
15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9s in 55% yield (24 mg) as a white powder.

85% ee (Chiralcel AD 80:20 Hexane:Isopropanol, 1.0 mL/min, 220 nm, tᵣ (major)=5.8 min; tᵣ (minor)=15.4 min); [α]²³⁺+=118 (c=0.31, MeOH).

m.p. 108-110 °C; IR (neat) ν=3270, 2924, 2853, 1616, 1596, 1509, 1448, 1215, 835, 743; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.92 (br. s., 1H; NH indole), 7.43 (d, J=7.5 Hz, 1H; H8), 7.37-7.30 (m, 3H; H11, H23 and H27), 7.19-7.13 (m, 2H; H24 and H26), 7.08 (td, J=7.5, 1.5 Hz, 1H; H10), 6.99 (td, J=13.5, 4.5 Hz, 1H; H4’), 3.78 (td, J=11.5, 4.0 Hz, 1H; H2), 3.56-3.51 (m, 1H; H2), 3.13 (td, J=13.5, 4.5 Hz, 1H; H4), 2.72-2.60 (m, 2H; H5), 2.59-2.51 (m, 1H; H1’), 2.12-2.06 (m, 2H; H1 and H15’), 2.03-1.98 (m, 1H; H15), 1.49-1.46 (m, 1H; H16’), 1.41-1.38 (m, 1H; H16), 1.27-1.18 (m, 8H; H17-H20), 0.84 (t, J=7.0 Hz, 3H; H21); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=159.3 (d, J=240 Hz, C25), 153.9 (C3), 140.8 (C22), 137.7 (C13), 136.1 (C12), 127.8 (d, J=10 Hz, C23 and C27), 126.2 (C7), 121.0 (C10), 118.5 (C9), 117.9 (C8), 114.9 (d, J=21 Hz, C24 and C26), 111.1 (C11), 107.1 (C6), 57.3 (C14), 44.4 (C2), 38.4 (C15), 37.8 (C4), 32.9 (C1), 31.2 (1C of C17-C20), 29.5 (1C of C17-C20), 28.6 (1C of C17-C20), 24.5 (C16), 22.0 (1C of C17-C20), 20.9 (C5), 13.9 (C21); MS m/z (ES+) 434 ([M+H]+, 100%); HRMS (ES+) exact mass calculated for [M+Na]+ (C₂₇H₃₂FN₃NaO⁺) requires m/z 456.2422, found m/z 456.2416.

2.2.20 Synthesis and characterisation of (R)-3-(4-fluorophenyl)-11-methyl-12b-ethyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9t

The title compound was synthesised according to general procedure III. Urea derivative 5m (93 mg, 0.30 mmol) was reacted with ethyl vinyl ketone 6b (0.15 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9t in 75% yield (85 mg) as a white powder.

94% ee (Chiralcel AD 80:20 Hexane:Isopropanol, 1.0 mL/min, 220 nm, tᵣ (major)=7.0 min; tᵣ (minor)=12.1 min); [α]²³⁺+=122 (c=0.10, MeOH).

m.p. 191-193 °C; IR (neat) ν=3284, 3192, 2930, 1610, 1508, 1444, 1213, 832, 778, 746; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.55 (br. s., 1H; NH indole), 7.35-7.30 (m, 2H; H19 and H23), 7.25 (d, J=7.5 Hz, 1H; H8), 7.18-7.13 (m, 2H; H20 and H22), 6.93-6.87 (m, 2H; H9 and H10), 4.70 (dd, J=13.0, 4.5 Hz, 1H; H4’), 3.77 (td, J=11.0, 4.5 Hz, 1H; H2’), 3.56-3.51 (m, 1H; H2), 3.14 (td, J=13.0, 4.5 Hz, 1H; H4), 2.69-2.61 (m, 3H; H1’ and H5), 2.48 (s, 3H; H12), 2.18-2.10 (m, 3H; H1 and H16), 0.96 (t, J=7.5 Hz, 3H; H17); ¹³C NMR (125 MHz, [D₆]DMSO,
25 °C) δ=159.2 (d, J=239 Hz, C21), 154.2 (C3), 140.8 (C18), 137.4 (C14), 135.5 (C13), 127.8 (d, J=9 Hz, C19 and C23), 126.0 (C7), 121.8 (C10), 120.3 (C11), 118.7 (C9), 115.4 (C8), 114.9 (d, J=21 Hz, C20 and C22), 107.8 (C6), 57.8 (C15), 44.5 (C2), 38.0 (C4), 32.6 (C1), 31.2 (C16), 20.9 (C5), 17.1 (C12); MS m/z (ES+) 777 ([2M+Na]^+, 100%);
HRMS (ES+) exact mass calculated for [M+Na]^+ (C23H24FN3NaO^+^) requires m/z 400.1796, found m/z 400.1798.

2.2.21 Synthesis and characterisation of (R)-3-(4-methoxyphenyl)-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9u

The title compound was synthesised according to general procedure III. Urea derivative 5n (93 mg, 0.30 mmol) was reacted with methyl vinyl ketone 6a (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH2Cl2/MeOH 95/5) to afford product 9u in 76% yield (82 mg) as a white powder.

81% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_r (major)=5.4 min; t_r (minor)=20.1 min); [α]_D^23 =+94(c=0.13, MeOH).

m.p. 122-124 °C; IR (neat) ν=3345, 3295, 2963, 2918, 1633, 1594, 1513, 1491, 751; ^1H NMR (500 MHz, [D_6]DMSO, 25 °C) δ=10.98 (br. s., 1H; NH indole), 7.43 (d, J=7.5 Hz, 1H; H8), 7.34 (d, J=7.5 Hz, 1H; H11), 7.21 (d, J=9.0 Hz, 2H; H17 and H21), 7.08 (td, J=7.5, 1.0 Hz, 1H; H10), 6.99 (td, J=7.5, 1.0 Hz, 1H; H9), 6.89 (d, J=9.0 Hz, 2H; H18 and H20), 4.67 (dd, J=13.0, 5.0 Hz, 1H; H4'), 3.89 (td, J=12.0, 4.0 Hz, 1H; H2'), 3.71 (s, 3H; H22), 3.54-3.48 (m, 1H, H2), 3.04 (td, J=13.0, 5.0 Hz, 1H; H4), 2.68-2.62 (m, 2H; H5), 2.56-2.53 (m, 1H; H1'), 2.06 (td, J=13.0, 5.0 Hz, 1H; H1), 1.67 (s, 3H; H15); ^13C NMR (125 MHz, [D_6]DMSO, 25 °C) δ=156.62 (C19), 153.60 (C3), 139.20 (C16), 137.56 (C13), 136.00 (C12), 127.48 (C17 and C21), 126.22 (C7), 120.97 (C10), 118.52 (C9), 117.95 (C8), 113.59 (C18 and C20), 111.07 (C11), 106.23 (C6), 55.21 (C22), 54.37 (C14), 44.66 (C2), 36.93 (C4), 34.11 (C1), 24.15 (C15), 21.21 (C5); MS m/z (ES+) 745 ([2M+Na]^+, 100%); HRMS (ES+) exact mass calculated for [M+H]^+ (C22H24N3O2^+^) requires m/z 362.1863, found m/z 362.1860.
2.2.22 Synthesis and characterisation of (R)-3-(4-methoxyphenyl)-9-fluoro-12b-heptyl-1,2,3,6,7,12b-hexahydropyrimido[1′,6′:1,2]pyrido[3,4-b]indol-4(12H)-one 9v

The title compound was synthesised according to general procedure III. Urea derivative 5o (33 mg, 0.10 mmol) was reacted with heptyl vinyl ketone 6c (77 mg, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9v in 60% yield (28 mg) as a yellow oil.

89% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 240 nm, tᵣ (major)=5.0 min; tᵣ (minor)=8.6 min; [α]D²³=+101 (c=0.21, MeOH).

IR (neat) ν=3247, 2928, 2856, 1602, 1512, 1445, 1170, 1034, 797, 747; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=11.02 (br. s., 1H; NH indole), 7.33 (dd, J=9.0, 4.0 Hz, 1H; H10), 7.22-7.15 (m, 3H; H8, H23 and H27), 6.94-6.86 (m, 3H; H11, H24 and H26), 4.68 (dd, J=13.0, 5.0 Hz, 1H; H4'), 3.75 (s, 3H; H28), 3.73-3.69 (m, 1H; H2'), 3.54-3.44 (m, 1H; H2), 3.10 (td, J=13.0, 5.0 Hz, 1H; H4), 2.73-2.57 (m, 3H; H1' and H5), 2.15-2.02 (m, 2H; H1 and H15'), 2.01-1.96 (m, 1H; H15), 1.42-1.39 (m, 1H; H16'), 1.30-1.20 (m, 9H; H16-H20), 0.84 (t, J=7.5 Hz, 3H; H21); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=156.8 (d, J=229 Hz, C9), 156.6 (C25), 154.1 (C3), 139.9 (C13), 137.5 (C22), 132.7 (C12), 127.3 (C23 and C27), 126.4 (d, J=10 Hz, C7), 113.6 (C24 and C26), 112.0 (d, J=10 Hz, C10), 108.8 (d, J=24 Hz, C11), 107.5 (C6), 102.8 (d, J=24 Hz, C8), 57.2 (C14), 55.2 (C28), 44.7 (C2), 38.3 (C15), 37.7 (C4), 32.9 (C1), 31.2 (1C of C17-C20), 29.5 (1C of C17-C20), 28.6 (1C of C17-C20), 24.5 (C16), 22.1 (1C of C17-C20), 20.9 (C5), 13.9 (C21); MS m/z (ES+) 464 ([M+H]+, 100%); HRMS (ES+) exact mass calculated for [M+H]+ (C₂₈H₃₅FN₃O₂⁺) requires m/z 464.2708, found m/z 464.2714.
2.2.23 Synthesis and characterisation of (R)-3-(4-methoxyphenyl)-11-ethyl-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1’,6’:1,2]pyrido[3,4-b]indol-4(12H)-one 9w

The title compound was synthesised according to general procedure III. Urea derivative 5p (68 mg, 0.20 mmol) was reacted with methyl vinyl ketone 6a (81 µL, 1.0 mmol) in PhMe (40 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product 9w in 74% yield (58 mg) as a brown powder.

96% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 220 nm, tₘₐᵢₐᵢᵢ = 4.3 min; tᵣ (minor) = 7.0 min); [α]D²³ = +106 (c=0.16, MeOH).

m.p. 121-123 °C; IR (neat) ν=3401, 3280, 2964, 2933, 1602, 1512, 1458, 1246, 1173, 1033, 830, 747; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ=10.63 (br. s., 1H; NH indole), 7.26-7.19 (m, 3H; H8, H19 and H23), 6.96-6.86 (m, 4H; H9, H10, H20 and H22), 4.65 (dd, J=13.0, 5.5 Hz, 1H; H4’), 3.89 (td, J=12.0, 4.0 Hz, 1H; H2’), 3.55-3.50 (m, 1H; H2), 3.75 (s, 3H; H24), 3.03 (td, J=13.0, 5.5 Hz, 1H; H4), 2.87 (q, J=7.5 Hz, 2H; H12), 2.66-2.61 (m, 2H; H5), 2.73-2.67 (m, 1H; H1’), 1.28 (t, J=7.5 Hz, 3H; H13), 2.04 (td, J=13.0, 5.0 Hz, 1H; H1), 1.70 (s, 3H; H17); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=156.6 (C21), 153.6 (C3), 138.9 (C15), 137.6 (C18), 134.7 (C14), 127.5 (C19 and C23), 126.6 (C11), 126.0 (C7), 119.8 (C10), 118.9 (C9), 115.5 (C8), 113.6 (C20 and C22), 106.7 (C6), 55.2 (C24), 54.5 (C16), 44.7 (C2), 36.9 (C4), 34.0 (C1), 23.9 (C17 or C12), 23.7 (C12 or C17), 21.3 (C5), 14.5 (C13); MS m/z (ES+) 390 ([M+H]⁺, 100%); HRMS (ES+) exact mass calculated for [M+H]⁺ (C₂₄H₂₈N₃O₂⁺) requires m/z 390.2176, found m/z 390.2176.
3.1.1 1H NMR of compound 5a

Chemical Shift (ppm)
3.1.2 13C NMR of compound 5a

![Chemical Structure](image)

$125\text{ MHz, [D$_6$]DMSO}$
3.2.1 1H NMR of compound 5b

500 MHz, [D$_6$]DMSO
3.2.2 13C NMR of compound 5b

Chemical Shift (ppm)

125 MHz, [D$_6$]DMSO
3.3.1 1H NMR of compound 5c

500 MHz, [D$_6$]DMSO
3.3.2 13C NMR of compound 5c

125 MHz, [D$_6$]DMSO
3.4.1 1H NMR of compound 5d

\[
\begin{align*}
\text{Chemical Shift (ppm)}
\end{align*}
\]

500 MHz, [D$_6$]DMSO
3.4.2 13C NMR of compound 5d

Chemical Shift (ppm)
3.5.1 1H NMR of compound 5e

500 MHz, [D$_6$]DMSO
3.5.2 13C NMR of compound 5e

\[
\text{Chemical Shift (ppm)}
\]

\[
\begin{align*}
125 \text{ MHz, [D}_6\text{]DMSO} \\
\end{align*}
\]
3.6.1 1H NMR of compound 5f

500 MHz, [D$_6$]DMSO
3.6.2 ^{13}C NMR of compound 5f

[Chemical structure image]

125 MHz, [D$_6$]DMSO
3.7.1 1H NMR of compound 5g

![Chemical structure of compound 5g]

400 MHz, [D$_6$]DMSO
3.7.2 13C NMR of compound 5g

![Chemical structure and NMR spectrum](image-url)

Chemical Shift (ppm)

- 176
- 168
- 160
- 152
- 144
- 136
- 128
- 120
- 112
- 104
- 96
- 88
- 80
- 72
- 64
- 56
- 48
- 40
- 32
- 24
- 16
- 8
- 0

100 MHz, [D$_6$]DMSO
3.8.1 1H NMR of compound 5j

500 MHz, [D$_6$]DMSO
3.8.2 13C NMR of compound 5j

125MHz, [D$_6$]DMSO

Chemical Shift (ppm)
3.9.1 1H NMR of compound 5k

500 MHz, [D$_6$]DMSO
3.9.2 13C NMR of compound 5k
3.10.1 1H NMR of compound 5l

500 MHz, [D$_6$]DMSO
3.10.2 13C NMR of compound 5l

Chemical Shift (ppm)

125 MHz, [D$_6$]DMSO
3.11.1 1H NMR of compound 5m
3.11.2 13C NMR of compound 5m

13C NMR spectrum of compound 5m.

Diagram of compound 5m.

125 MHz, $[D_6]$DMSO
3.12.1 1H NMR of compound 5n

500 MHz, [D$_6$]DMSO
3.12.2 13C NMR of compound 5n

125 MHz, [D$_6$]DMSO
3.13.1 1H NMR of compound 5o

![Chemical Structure](image)

500 MHz, [D$_8$]DMSO

[journal image]
3.13.2 13C NMR of compound 5o

13C NMR spectrum of compound 5o in $[D_6]$DMSO at 125 MHz.

Chemical Shift (ppm)
3.14.1 1H NMR of compound 5p

500 MHz, [D$_6$]DMSO

Chemical Shift (ppm)

0.90 0.87 1.00 1.86 0.96 2.13 0.96 1.86 1.00 0.87 0.90 3.31 4.09 1.91 3.15 1.32 0.89 1.32 0.89
3.14.2 13C NMR of compound 5p
4.1.1 1H NMR of compound 9a

500 MHz, [D$_6$]DMSO
4.1.2 13C NMR of compound 9a

125 MHz, [D$_6$]DMSO
4.2.1 1H NMR of compound 9b

500 MHz, $[D_6]$DMSO
4.2.2 13C NMR of compound 9b

125 MHz, [D$_6$]DMSO
4.3.1 1H NMR of compound 9c

500 MHz, [D$_6$]DMSO
4.3.2 13C NMR of compound 9c
4.4.1 1H NMR of compound 9d

500 MHz, [D$_6$]DMSO
4.4.2 13C NMR of compound 9d

13C NMR spectrum of compound 9d in [D$_6$]DMSO at 125 MHz.
4.5.1 1H NMR of compound 9e

500 MHz, [D$_6$]DMSO
4.5.2 13C NMR of compound 9e

Chemical Shift (ppm)
4.6.1 1H NMR of compound 9f

500 MHz, [D$_6$]DMSO
4.6.2 13C NMR of compound 9f

125 MHz, [D$_6$]DMSO
4.7.1 1H NMR of compound 9g

500 MHz, [D$_6$]DMSO
4.7.2 13C NMR of compound 9g

125 MHz, [D$_5$]DMSO
4.8.1 1H NMR of compound 9h

500 MHz, [D$_6$]DMSO
4.8.2 13C NMR of compound 9h

125 MHz, [D$_6$]DMSO
4.9.1 1H NMR of compound 9i
4.9.2 13C NMR of compound 9i

![Chemical Structure of Compound 9i](image)

125 MHz, [D$_6$]DMSO
4.10.1 1H NMR of compound 9j

500 MHz, [D$_6$]DMSO
4.10.2 13C NMR of compound 9j

125 MHz, [D$_6$]DMSO
4.11.1 1H NMR of compound 9k

500 MHz, [D$_6$]DMSO
4.11.2 13C NMR of compound 9k

125 MHz, [D$_6$]DMSO
4.12.1 1H NMR of compound 9l

500 MHz, [D$_6$]DMSO

Chemical Shift (ppm): 3.06, 1.20, 2.03, 2.90, 1.02, 1.07, 1.05, 0.98, 1.03, 0.98, 0.99, 2.90, 2.03, 1.20, 3.06
4.12.2 13C NMR of compound 9l

125 MHz, [D$_6$]DMSO
4.13.1 1H NMR of compound 9m

500 MHz, [D$_6$]DMSO
4.13.2 13C NMR of compound 9m

13C NMR of compound 9m

125 MHz, [D$_6$]DMSO
4.14.1 1H NMR of compound 9n

500 MHz, [D$_6$]DMSO
4.14.2 13C NMR of compound 9n

125 MHz, [D$_6$]DMSO
4.15 1H NMR of compound 9o

500 MHz, [D$_6$]DMSO
4.15.2 13C NMR of compound 9o

125 MHz, [D$_6$]DMSO
4.16.1 1H NMR of compound 9p

1H NMR of compound 9p

500 MHz, [D$_6$]DMSO
4.16.2 13C NMR of compound 9p

125 MHz, [D$_6$]DMSO
4.17.1 1H NMR of compound 9q

500 MHz, [D$_6$]DMSO
4.17.2 13C NMR of compound 9q

125 MHz, [D$_6$]DMSO
4.18 1H NMR of compound 9r

500 MHz, [D$_6$]DMSO
4.18.2 13C NMR of compound 9r

125 MHz, [D$_6$]DMSO
4.19.1 1H NMR of compound 9s

500 MHz, [D$_6$]DMSO
4.19.2 13C NMR of compound 9s

125 MHz, [D$_6$]DMSO
4.20.1 1H NMR of compound 9t

1H NMR of compound 9t

$500 \text{ MHz, } [D_6]\text{DMSO}$
4.20.2 13C NMR of compound 9t

125 MHz, [D$_6$]DMSO
4.21.1 1H NMR of compound 9u

$500 \text{ MHz, } [D_6]\text{DMSO}$
4.21.2 13C NMR of compound 9u

![Chemical Structure](image)

125 MHz, [D$_6$]DMSO
4.22.1 1H NMR of compound 9v

500 MHz, [D$_6$]DMSO
4.22.2 13C NMR of compound 9v

![Chemical structure](image)

125 MHz, [D$_6$]DMSO
4.23.1 1H NMR of compound 9w

500 MHz, [D$_6$]DMSO
4.23.2 13C NMR of compound 9w

125 MHz, [D$_6$]DMSO
5.1.1 HPLC trace of racemic 9a

5.1.2 HPLC trace of enantioenriched 9a
5.2.1 HPLC trace of racemic 9b

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	8.128 BB	0.3820	1.21420e4	488.52164	50.4201
2	19.090 BB	0.9003	1.19397e4	202.38368	49.5799

Totals: 2.40817e4 690.90532

5.2.2 HPLC trace of enantioenriched 9b

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	7.851 BB	0.3594	3.82643e4	1633.63770	89.1371
2	18.834 BB	0.8287	4665.60693	86.58440	10.8629

Totals: 4.29499e4 1720.22209
5.3.1 HPLC trace of racemic 9c

Signal 3: DAD1 C, Sig=220, 8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	27.420	MM	1.459	4988.99219	56.96652	49.9655
2	42.316	MM	1.848	4995.88818	45.04830	50.0345

Totals: 9984.88037 102.01482

5.3.2 HPLC trace of enantioenriched 9c

Signal 4: DAD1 D, Sig=220,16 Ref=400,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	27.856	MM	1.399	3.85139e+4	458.61905	80.1036
2	43.799	MM	1.858	9566.22363	85.77356	19.8964

Totals: 4.80801e+4 544.39261
5.4.1 HPLC trace of racemic 9d

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]	
1	BB	23.173	1.0948	2.75907e4	384.66782	50.3224
2	BB	49.187	2.4675	2.72372e4	148.11012	49.6776

Totals: 5.48279e4 532.77794

5.4.2 HPLC trace of enantioenriched 9d

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]	
1	MM	22.648	1.1936	2.56941e4	358.76926	84.9782
2	MM	49.341	2.1947	4542.00195	34.49198	15.0218

Totals: 3.02361e4 393.26123
5.5.1 HPLC trace of racemic 9e

![HPLC trace of racemic 9e](image1)

Peak	RetTime	Type	Width	Area	Height	Area
1	22.823	MM	1.1244	2586.76172	38.34214	49.8124
2	53.698	MM	2.8856	2606.24707	15.05342	50.1876

Totals: 5193.00879 53.39557

5.5.2 HPLC trace of enantioenriched 9e

![HPLC trace of enantioenriched 9e](image2)

Signal 6: DAD1 F, Sig=300,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
1	21.402	MM	1.2289	1.94268e4	263.47858	83.7520
2	51.908	MM	3.0132	3768.82812	20.84603	16.2480

Totals: 2.31956e4 284.32461
5.6.1 HPLC trace of racemic 9f

5.6.2 HPLC trace of enantioenriched 9f
5.7.1 HPLC trace of racemic 9g

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area 100%	Area 150%
1	12.425	MF	0.7049	1.38450e4	327.35123	49.5858	
2	14.204	FM	0.7906	1.40763e4	296.74359	50.4142	

Totals : 2.79213e4 624.09482

5.7.2 HPLC trace of enantioenriched 9g

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area 100%	Area 150%
1	12.189	BB	0.6222	3.11330e4	747.04541	96.1247	
2	14.392	BB	0.7902	1255.12329	22.60222	3.8753	

Totals : 3.23881e4 769.84763
5.8.1 HPLC trace of racemic 9h

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	28.666	MM	1.856	4.77348e4	428.45740	49.9924
2	45.579	MM	3.0576	4.77494e4	260.27856	30.0076

Totals: 9.54842e4 688.73596

5.8.2 HPLC trace of enantioenriched 9h

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	29.851	MM	2.0953	8.08408e4	643.03217	95.8639
2	50.946	MM	3.1174	3487.94824	18.64770	4.1361

Totals: 8.43287e4 661.67986
5.9.1 HPLC trace of racemic 9i

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	%
1	7.731	VB	0.3864	1.81636e4	724.63928	49.7133	
2	11.581	BB	0.5562	1.83731e4	505.28064	50.2867	

Totals: 3.65367e4 1229.91992

5.9.2 HPLC trace of enantioenriched 9i

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	%
1	7.693	BB	0.4075	6.59833e4	2519.54248	94.9799	
2	11.848	BB	0.5960	3407.51880	88.07508	5.0201	

Totals: 6.94708e4 2607.61756
5.10.1 HPLC trace of racemic 9j

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	27.442	MF	2.1193	1.96387	154.44676	50.0023
2	35.000	EM	2.8073	1.96369	116.58168	49.9977

Totals: 3.92756e4 271.02844

5.10.2 HPLC trace of enantioenriched 9j

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	27.553	MM	2.2048	4.45403e4	336.69745	95.7887
2	38.844	MM	2.6787	1.958.16724	12.18364	4.2113

Totals: 4.64985e4 348.88109
5.11.1 HPLC trace of racemic 9k

![HPLC trace of racemic 9k](image)

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.519 VV	8.15249e4	1722.64880	49.6028
2	18.615 VB	8.28304e4	1386.34863	50.3972

Totals: 1.64355e5 3108.99744

5.11.2 HPLC trace of enantioenriched 9k

![HPLC trace of enantioenriched 9k](image)

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.678 BV	2.93723e4	628.60034	28.6708
2	18.638 VB	7.30743e4	1251.29919	71.3292

Totals: 1.02447e5 1879.89954
5.12.1 HPLC trace of racemic 9l

5.12.2 HPLC trace of enantioenriched 9l
5.13.1 HPLC trace of racemic 9m

![HPLC trace of racemic 9m](image1)

Signal 4: DAD1 D, Sig=220,16 Ref=360,100

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
#					
1	18.306 VB	0.7677	5.26164e4	990.61047	50.3879
2	31.910 MM	1.5287	5.18063e4	564.81622	49.6121

Totals: 1.04423e5 1555.42670

5.13.2 HPLC trace of enantioenriched 9m

![HPLC trace of enantioenriched 9m](image2)

Signal 4: DAD1 D, Sig=220,16 Ref=360,100

Peak RetTime Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
#					
1	18.157 VB	0.8547	8.84266e4	1615.15283	91.4768
2	32.867 MM	1.3423	8239.05469	102.30173	8.5232

Totals: 9.66657e4 1717.45456
5.14.1 HPLC trace of racemic 9n

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	Ret Time [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.570	VB	0.6803	2.60506e4	595.58911	50.2209
2	21.638	BB	0.9189	2.58214e4	431.04242	49.7791

Totals: 5.18720e4 1026.63153

5.14.2 HPLC trace of enantioenriched 9n

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	Ret Time [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.583	MM	0.8133	1.16450e5	2386.23022	92.7655
2	22.519	MM	0.9697	9081.65625	156.08818	7.2345

Totals: 1.25532e5 2542.31841
5.15.1 HPLC trace of racemic 9o

![HPLC trace of racemic 9o]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	8.817	FM	0.7018	1.65011e4	391.85361	50.9273
2	11.348	HH	0.6821	1.59002e4	340.96487	49.0727

Totals: 3.24012e4 732.81848

5.15.2 HPLC trace of enantioenriched 9o

![HPLC trace of enantioenriched 9o]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	8.486	MM	0.3900	6.09343e4	2604.19678	94.9505
2	11.982	MM	0.3750	3240.48462	144.01950	5.0495

Totals: 6.41747e4 2748.21628
5.16.1 HPLC trace of racemic 9p

![HPLC trace of racemic 9p]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	11.519	VB	0.6965	1.93258e4	443.37531	50.1671
2	18.964	BB	0.7236	1.91970e4	406.00046	49.8329

Totals: 3.85229e4 849.37576

5.16.2 HPLC trace of enantioenriched 9p

![HPLC trace of enantioenriched 9p]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	11.319	VV	0.6470	8.95164e4	2171.06934	93.2987
2	19.106	BB	0.8106	6429.60840	123.25988	6.7013

Totals: 9.59460e4 2294.32922
5.17.1 HPLC trace of racemic 9q

![HPLC trace of racemic 9q](image)

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	Ret Time [min]	Type	Width [min]	Area [mAU*sec]	Height [mAU]	Area [%]
1	16.931	MM	0.9069	2.46081e4	452.25519	49.4765
2	19.381	MM	0.9167	2.51288e4	456.87338	50.5235

Totals:

Area [mAU*sec]	4.97370e4
Area [%]	908.12557

5.17.2 HPLC trace of enantioenriched 9q

![HPLC trace of enantioenriched 9q](image)

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	Ret Time [min]	Type	Width [min]	Area [mAU*sec]	Height [mAU]	Area [%]
1	16.083	VV	0.9892	5.07680e4	739.23029	85.3385
2	18.751	VV	0.9612	8722.18164	139.93593	14.6615

Totals:

Area [mAU*sec]	5.94902e4
Area [%]	879.16621
5.18.1 HPLC trace of racemic 9r

![HPLC trace of racemic 9r](image)

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.234 VV	0.1774	3.35204e4	2845.25171	49.8565
2	11.313 BB	0.9883	3.37134e4	869.59191	50.1435

Totals: 6.72338e4 3714.83362

5.18.2 HPLC trace of enantioenriched 9r

![HPLC trace of enantioenriched 9r](image)

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.216 MF	0.1924	2.21129e4	1915.04517	91.3112
2	11.610 VB	0.4788	2104.17700	68.42592	8.6888

Totals: 2.4217e4 1983.47108
5.19.1 HPLC trace of racemic 9s

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak RetTime	Type	Width	Area	Height	Area	%
1	5.787 BV	0.2448	4665.55713	294.60724	56.1021	
2	15.050 BB	0.6542	4646.53906	110.13287	49.8979	

Totals: 9312.09619 404.74011

5.19.2 HPLC trace of enantioenriched 9s

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width	Area	Height	Area	%
1	5.842 NM	0.2959	837.00934	47.14312	92.5368	
2	15.409 NM	0.7438	67.50617	1.51255	7.4632	

Totals: 904.51551 48.65567
5.20.1 HPLC trace of racemic 9t

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	6.949	VB	0.282	587.42609	49.6517	
2	11.938	BB	0.4931	342.60583	50.3483	

Totals: 2.17638e4 930.03192

5.20.2 HPLC trace of enantioenriched 9t

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	6.972	MM	0.3129	5237.81445	97.1925	
2	12.117	MM	0.5935	151.29684	2.8075	

Totals: 5389.11130 283.22456
5.21.1 HPLC trace of racemic 9u

![HPLC trace of racemic 9u]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
1	5.469	VV	0.2079	1.97446e4	1458.60791	50.3041
2	20.098	BB	1.0570	1.95059e4	281.99466	49.6959

Totals:
3.92505e4 1740.60257

5.21.2 HPLC trace of enantioenriched 9u

![HPLC trace of enantioenriched 9u]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
1	5.388	MM	0.2943	5.95899e4	3374.79736	90.6073
2	20.139	MM	1.0297	6177.33545	99.98903	9.3927

Totals:
6.57673e4 3474.78639
5.22.1 HPLC trace of racemic 9v

5.22.2 HPLC trace of enantioenriched 9v
5.23.1 HPLC trace of racemic 9w

Signal 3: DAD1 C, Sig=220.8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	%
1	4.301	MM	0.2031	2.52962e4	2076.03149	49.6473	
2	6.875	MM	0.3434	2.56557e4	1245.01917	50.3527	

Totals: 5.09519e4 3321.05066

5.23.2 HPLC trace of enantioenriched 9w

Signal 3: DAD1 C, Sig=220.8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	%
1	4.288	MM	0.2089	3.46789e4	2767.33862	96.2489	
2	6.965	MM	0.3215	618.07465	32.04358	1.7511	

Totals: 3.52970e4 2799.38220
6. Single crystal X-ray diffraction data for compound 9r
Crystal data

$\text{C}_{21}\text{H}_{20}\text{FN}_3\text{O}$

$M_r = 349.41$

Monoclinic, $P2_1$

Hall symbol: $P 2yb$

$\alpha = 7.1383 (1) \text{ Å}$

$\beta = 10.6018 (1) \text{ Å}$

$\gamma = 12.0383 (1) \text{ Å}$

$\beta = 102.3752 (6) ^\circ$

$V = 889.88 (2) \text{ Å}^3$

$Z = 2$

$F(000) = 368$

$D_x = 1.304 \text{ Mg m}^{-3}$

Melting point: not measured K

Cu $K\alpha$ radiation, $\lambda = 1.54180$ Å

Cell parameters from 59434 reflections

$\theta = 4^\circ - 77^\circ$

$\mu = 0.72$ mm$^{-1}$

$T = 150$ K

Block, Clear pale colourless

$0.20 \times 0.15 \times 0.08$ mm

Data collection

Oxford Diffraction SuperNova diffractometer

Graphite monochromator

ω scans

Absorption correction: Multi-scan

CrysAlis, (Oxford Diffraction, 2002)

$T_{\text{min}} = 0.75$, $T_{\text{max}} = 0.94$

76919 measured reflections

3711 independent reflections

Refinement

Refinement on F^2

Least-squares matrix: Full

$R[F^2 > 2\sigma(F^2)] = 0.026$

$wR(F^2) = 0.067$

$S = 0.97$

3711 reflections

236 parameters

1 restraint

Primary atom site location: Structure-invariant direct methods

Hydrogen site location: Difference Fourier map

H-atom parameters constrained

Method = Modified Sheldrick

$P = (\max(F_o^2,0) + 2F_c^2)/3$

$(\Delta/\sigma)_{\text{max}} = 0.0004$

$\Delta_{\text{pmax}} = 0.14 \text{ e Å}^{-3}$

$\Delta_{\text{pmin}} = -0.14 \text{ e Å}^{-3}$

Absolute structure: Flack (1983), 1743 Friedel-pairs

Flack parameter: 0.06 (11)

Special details

Refinement. The Flack x parameter [Flack, 1983; Flack & Bernardinelli (2000)] refined to 0.05 (12), reducing to -0.001 (8) on the application of Bijvoet difference restraints [Thompson & Watkin, 2010]. Analysis of the Bijvoet differences [Hooft et al., 2008] gave a Hooft y parameter of -0.03 (3), G of 1.06 (6), and a probability that the structure was the correct hand of >99.99% given that the structure is enantiopure or a racemic twin using the Bayesian method.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso/ueq
F1	-0.00358 (14)	0.99563 (10)	0.98412 (8)	0.0521
C2	0.08003 (19)	0.91592 (13)	0.92023 (10)	0.0338
C3	0.03623 (17)	0.78974 (13)	0.92022 (10)	0.0307
C4	0.12329 (16)	0.70895 (12)	0.85599 (9)	0.0265
C5	0.24939 (15)	0.75645 (12)	0.79293 (9)	0.0234
N6	0.34433 (12)	0.67285 (11)	0.72988 (8)	0.0266
C7	0.24483 (14)	0.61977 (12)	0.63222 (9)	0.0245
O8	0.06797 (10)	0.63142 (11)	0.60392 (7)	0.0354
N9	0.34627 (13)	0.55022 (10)	0.57476 (9)	0.0218
C10	0.55571 (14)	0.56518 (11)	0.66405 (9)	0.0263
C11	0.63833 (15)	0.64699 (13)	0.66405 (9)	0.0263
C12	0.55036 (14)	0.65099 (13)	0.76740 (9)	0.0295
H122	0.5690	0.5654	0.8010	0.0358*
H121	0.6061	0.7131	0.8290	0.0358*
H111	0.6023	0.7505	0.6305	0.0308*
H112	0.7748	0.6552	0.6829	0.0315*
C13	0.66062 (18)	0.43964 (12)	0.60394 (11)	0.0347
H131	0.7933	0.4519	0.6016	0.0510*
H132	0.6064	0.3733	0.5510	0.0514*
H133	0.6515	0.4144	0.6805	0.0517*
C14	0.57102 (14)	0.61045 (11)	0.45813 (8)	0.0212
N15	0.73261 (13)	0.66928 (10)	0.43752 (7)	0.0239
C16	0.69180 (16)	0.71246 (11)	0.32716 (9)	0.0254
C17	0.50181 (16)	0.67627 (12)	0.27700 (9)	0.0273
C18	0.42830 (14)	0.61120 (12)	0.36264 (9)	0.0251
C19	0.23178 (16)	0.55907 (15)	0.36077 (10)	0.0356
C20	0.23698 (17)	0.48506 (13)	0.46907 (10)	0.0329
H201	0.1072	0.4720	0.4813	0.0390*
H202	0.3000	0.4056	0.4636	0.0387*
H192	0.1893	0.5047	0.2969	0.0433*
H191	0.1373	0.6304	0.3556	0.0438*
C21	0.4220 (2)	0.71176 (14)	0.16416 (10)	0.0375
C22	0.5310 (2)	0.78393 (14)	0.10684 (11)	0.0435
C23	0.7175 (2)	0.82134 (13)	0.15866 (12)	0.0414
C24	0.8014 (2)	0.78619 (12)	0.26938 (11)	0.0329
H241	0.9257	0.8092	0.3035	0.0375*
H231	0.7898	0.8695	0.1190	0.0488*
H221	0.4770	0.8096	0.0284	0.0521*
H211	0.2899	0.6869	0.1277	0.0455*
H151	0.8427	0.6708	0.4829	0.0304*
C25	0.28774 (18)	0.88460 (13)	0.79390 (10)	0.0307
C26	0.20334 (19)	0.96629 (13)	0.85882 (10)	0.0349
H261	0.2290	1.0539	0.8611	0.0430*
Geometric parameters (Å, °)

	F1—C2	1.3634 (13)	C13—H133	0.975
C2—C3	1.3738 (18)	C14—N15	1.3798 (13)	
C2—C6	1.3730 (18)	C14—C18	1.3628 (14)	
C3—C4	1.3869 (16)	N15—C16	1.3761 (14)	
C3—H31	0.925	N15—H151	0.856	
C4—C5	1.3903 (15)	C16—C17	1.4143 (16)	
C4—H41	0.958	C16—C24	1.3931 (16)	
C5—N6	1.4288 (14)	C17—C18	1.4304 (15)	
C5—C25	1.3855 (17)	C17—C21	1.4070 (16)	
N6—C7	1.3585 (14)	C18—C19	1.5035 (15)	

Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U¹²	U¹³	U¹³
F1	0.0684 (6)	0.0416 (4)	0.0565 (5)	0.0120 (4)	0.0357 (4)	−0.0078 (4)
C2	0.0395 (6)	0.0338 (6)	0.0304 (6)	0.0095 (5)	0.0125 (5)	−0.0018 (5)
C3	0.0290 (6)	0.0386 (6)	0.0272 (5)	0.0000 (5)	0.0124 (4)	−0.0001 (4)
C4	0.0272 (5)	0.0276 (5)	0.0255 (5)	−0.0021 (4)	0.0075 (4)	0.0002 (4)
C5	0.0211 (5)	0.0291 (5)	0.0200 (5)	0.0014 (4)	0.0045 (4)	−0.0007 (4)
N6	0.0186 (4)	0.0368 (5)	0.0248 (4)	0.0014 (4)	0.0058 (3)	−0.0041 (4)
C7	0.0211 (4)	0.0288 (5)	0.0250 (5)	−0.0027 (4)	0.0081 (4)	−0.0016 (4)
C8	0.0184 (4)	0.0559 (5)	0.0319 (4)	−0.0008 (4)	0.0052 (3)	−0.0121 (4)
N9	0.0203 (4)	0.0284 (5)	0.0290 (4)	−0.0048 (3)	0.0094 (3)	−0.0052 (4)
C10	0.0184 (5)	0.0237 (5)	0.0244 (5)	0.0001 (4)	0.0074 (4)	0.0015 (4)
C11	0.0185 (4)	0.0362 (5)	0.0244 (5)	−0.0024 (4)	0.0055 (4)	−0.0017 (4)
C12	0.0199 (5)	0.0443 (7)	0.0240 (5)	0.0030 (4)	0.0042 (4)	0.0009 (5)
C13	0.0356 (6)	0.0293 (6)	0.0421 (6)	0.0087 (5)	0.0149 (5)	0.0101 (5)
C14	0.0206 (4)	0.0194 (4)	0.0247 (5)	0.0021 (4)	0.0076 (4)	−0.0008 (4)
N15	0.0221 (4)	0.0277 (4)	0.0224 (4)	−0.0021 (3)	0.0060 (3)	−0.0007 (4)
N16	0.0343 (6)	0.0212 (5)	0.0222 (5)	0.0027 (4)	0.0098 (4)	−0.0023 (4)
C17	0.0307 (5)	0.0285 (5)	0.0229 (5)	0.0085 (4)	0.0060 (4)	−0.0025 (4)
C18	0.0225 (5)	0.0290 (5)	0.0240 (5)	0.0028 (4)	0.0052 (4)	−0.0047 (4)
C19	0.0234 (5)	0.0512 (7)	0.0316 (6)	−0.0045 (5)	0.0042 (4)	−0.0137 (6)
C20	0.0268 (5)	0.0365 (6)	0.0384 (6)	−0.0107 (5)	0.0135 (5)	−0.0156 (5)
C21	0.0429 (7)	0.0448 (7)	0.0233 (5)	0.0136 (6)	0.0038 (5)	−0.0002 (5)
C22	0.0631 (9)	0.0436 (8)	0.0250 (6)	0.0160 (6)	0.0121 (6)	0.0064 (5)
C23	0.0690 (9)	0.0284 (6)	0.0342 (6)	0.0037 (6)	0.0277 (6)	0.0050 (5)
C24	0.0444 (7)	0.0264 (5)	0.0322 (6)	−0.0043 (5)	0.0175 (5)	−0.0027 (4)
C25	0.0339 (6)	0.0319 (6)	0.0288 (6)	−0.0026 (5)	0.0126 (4)	0.0045 (5)
C26	0.0441 (7)	0.0263 (6)	0.0360 (6)	0.0033 (5)	0.0124 (5)	0.0028 (5)
Bond	Distance (Å)	Bond	Angle (°)			
-----------------------	--------------	-----------------------	-----------			
N6—C12	1.4615 (13)	C19—C20	1.5152 (19)			
C7—O8	1.2413 (13)	C19—H192	0.956			
C7—N9	1.3644 (14)	C19—H191	1.006			
N9—C10	1.4923 (12)	C20—H201	0.978			
N9—C20	1.4682 (14)	C20—H202	0.964			
C10—C11	1.5311 (15)	C21—C22	1.377 (2)			
C10—C13	1.5307 (15)	C21—H211	0.987			
C10—C14	1.5098 (14)	C22—C23	1.401 (2)			
C11—C12	1.5160 (14)	C22—H221	0.980			
C11—H111	1.006	C23—C24	1.3900 (19)			
C11—H112	0.957	C23—H231	0.928			
C12—H122	0.990	C24—H241	0.927			
C12—H121	1.008	C25—C26	1.3877 (17)			
C13—H131	0.962	C25—H251	0.969			
C13—H132	0.972	C26—H261	0.946			
F1—C2—C3	118.46 (11)	C10—C14—N15	122.74 (9)			
F1—C2—C26	118.12 (12)	C10—C14—C18	126.60 (9)			
C3—C2—C26	123.42 (11)	N15—C14—C18	110.38 (9)			
C2—C3—C4	118.18 (11)	C14—N15—C16	108.17 (9)			
C2—C3—H31	121.6	C14—N15—H151	125.6			
C4—C3—H31	120.3	C16—N15—H151	125.8			
C3—C4—C5	120.04 (10)	N15—C16—C17	107.89 (9)			
C3—C4—H41	119.7	N15—C16—C24	130.05 (11)			
C5—C4—H41	120.3	C17—C16—C24	121.94 (11)			
C4—C5—N6	120.11 (10)	C16—C17—C18	106.83 (9)			
C4—C5—C25	120.03 (10)	C16—C17—C21	119.49 (11)			
N6—C5—C25	119.83 (10)	C18—C17—C21	133.61 (11)			
C5—N6—C7	119.81 (9)	C17—C18—C14	106.70 (9)			
C5—N6—C12	119.65 (9)	C17—C18—C19	130.67 (10)			
C7—N6—C12	120.44 (9)	C14—C18—C19	122.47 (10)			
N6—C7—O8	120.57 (10)	C18—C19—C20	109.07 (10)			
N6—C7—N9	117.29 (9)	C18—C19—H192	111.5			
O8—C7—N9	122.10 (10)	C20—C19—H192	109.0			
C7—N9—C10	124.52 (9)	C18—C19—H191	109.6			
C7—N9—C20	117.27 (9)	C20—C19—H191	109.6			
C10—N9—C20	115.60 (8)	H192—C19—H191	108.1			
N9—C10—C11	109.41 (8)	C19—C20—N9	112.27 (10)			
N9—C10—C13	110.69 (9)	C19—C20—H201	110.7			
C11—C10—C13	110.01 (9)	N9—C20—H201	107.1			
N9—C10—C14	105.64 (8)	C19—C20—H202	108.6			
C11—C10—C14	109.88 (9)	N9—C20—H202	107.1			
C13—C10—C14	111.12 (9)	H201—C20—H202	111.0			
C10—C11—C12	110.19 (9)	C17—C21—C22	118.50 (13)			
C10—C11—H111	108.3	C17—C21—H211	120.5			
C12—C11—H111	107.5	C22—C21—H211	120.9			
C10—C11—H112	108.3	C21—C22—C23	121.26 (12)			
C12—C11—H112 112.0 C21—C22—H221 119.4
H111—C11—H112 110.5 C23—C22—H221 119.4
C11—C12—N6 107.31 (8) C22—C23—C24 121.64 (12)
C11—C12—H122 112.4 C22—C23—H231 120.5
N6—C12—H122 108.0 C24—C23—H231 117.9
C11—C12—H121 112.0 C16—C24—C23 117.14 (13)
N6—C12—H121 109.7 C16—C24—H241 120.8
H122—C12—H121 107.4 C23—C24—H241 122.0
C10—C13—H131 108.2 C5—C25—C26 120.52 (11)
C10—C13—H132 111.9 C5—C25—H251 118.8
H131—C13—H132 109.5 C26—C25—H251 120.6
C10—C13—H133 109.1 C25—C26—C2 117.79 (12)
H131—C13—H133 109.3 C25—C26—H261 121.6
H132—C13—H133 108.9 C2—C26—H261 120.6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C11—H112···O8i	0.96	2.49	3.3175 (18)	145
N15—H151···O8i	0.86	1.97	2.8017 (18)	164

Symmetry code: (i) x+1, y, z.