ORIGINAL ARTICLE

Long-Term Clinical Impact of Intravascular Ultrasound Guidance in Stenting for Left Main Coronary Artery Disease

Do-Yoon Kang, MD; Jung-Min Ahn, MD; Sung-Cheol Yun, PhD; Hanbit Park, MD; Sang-Cheol Cho, MD; Tae Oh Kim, MD; Sangwoo Park, MD; Pil Hyung Lee, MD; Seung-Whan Lee, MD; Seong-Wook Park, MD; Duk-Woo Park, MD; Seung-Jung Park, MD

BACKGROUND: Compared with angiographic guidance, intravascular ultrasound (IVUS)-guided percutaneous coronary intervention (PCI) is associated with better clinical outcomes. However, its very long-term clinical effect is still unclear in patients undergoing PCI for unprotected left main coronary artery disease.

METHODS: To compare 10-year outcomes of IVUS-guided versus angiography-guided PCI for left main coronary artery disease, we evaluated 975 patients who underwent unprotected left main coronary artery PCI between January 2000 and June 2006 from the MAIN-COMPARE (The Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty Versus Surgical Revascularization) registry. The 10-year rates of clinical outcomes (death; the composite of death, Q-wave myocardial infarction [MI], or stroke; and target-vessel revascularization) were compared between IVUS guidance and angiography guidance. Adjusted analyses were performed with the use of inverse-probability-treatment-weighting and propensity score matching.

RESULTS: Among the 975 patients, 756 (77.5%) had IVUS guidance. The observed 10-year incidence rate of death (16.4% versus 31.0%, \(P < 0.001 \)) and composite of death, Q-wave MI, or stroke (19.2% versus 32.9%, \(P < 0.001 \)) was significantly lower in the IVUS-guided than in the angiography-guided group. The 10-year incidence rate of target-vessel revascularization was similar between the 2 groups (21.3% versus 18.3%, \(P = 0.41 \)). After adjusting for potential confounders with inverse-probability-treatment-weighting, IVUS was associated with lower incidence of mortality (hazard ratio, 0.75 [95% CI, 0.55–1.03]; \(P = 0.07 \)) and composite outcome of death, Q-wave MI, or stroke (hazard ratio, 0.79 [95% CI, 0.59–1.06]; \(P = 0.11 \)). In 208 propensity score–matched pairs, IVUS was also associated with lower incidence of death (hazard ratio, 0.73 [95% CI, 0.53–1.02]; \(P = 0.07 \)) and composite outcome of death, Q-wave MI, or stroke (hazard ratio, 0.71 [95% CI, 0.52–0.97]; \(P = 0.03 \)). The benefit of IVUS-guided PCI was consistent in the various subsets of clinical and anatomic characteristics.

CONCLUSIONS: In patients undergoing PCI for unprotected left main coronary artery disease, IVUS-guided PCI compared with angiography-guided PCI was associated with lower long-term (10-year) risks of mortality and composite outcome of death, Q-wave MI, or stroke.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02791412.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: coronary disease ■ myocardial infarction ■ percutaneous coronary intervention ■ stents

See Editorial by Alasnag and Weisz
Left main coronary artery (LMCA) disease is a high-risk subset of obstructive coronary artery disease owing to the large area of involvement of myocardium and therefore coronary artery bypass grafting has been recommended as the choice of revascularization.\(^1\)\(^2\) Despite this, percutaneous coronary intervention (PCI) for such complex lesion has substantially evolved. The remarkable advancements in stent technology, technical improvement, and adjunctive drug therapy have not only widened the indication of PCI for LMCA disease but also improved procedural- and long-term clinical outcomes.\(^3\)\(^4\)\(^5\) Although LMCA PCI has expanded rapidly in the real-world clinical practice on the basis of compelling evidence,\(^6\)\(^7\)\(^8\) intervention for this high-risk anatomic lesion remains a challenging procedure and many unresolved technical issues still remain. In particular, accurate pre-PCI anatomic assessment (eg, the vessel size, lesion morphology, and delineation of the carina) and post-PCI evaluation (eg, adequate stent expansion/apposition, side branch and carina assessment, and edge dissections) may be crucial for optimizing procedural outcomes and ensuring long-term durability of LMCA PCI; thus, the utilization of intracoronary imaging as one of the adjunctive PCI tools has increased.\(^9\) A prior clinical trial showed that compared with angiographic guidance, intracoronary ultrasound (IVUS)-guided stenting was associated with better clinical outcomes in patients with complex coronary artery disease as well as in the all-comer setting.\(^10\)\(^11\)\(^12\) In this context, the benefit of IVUS may be more conspicuous for complex LMCA PCI with regard to preinterventional lesion assessment and postinterventional stent optimization rather than for simple lesions.\(^13\) Several studies suggested that IVUS-guided intervention was associated with reduced risks of mortality and major cardiovascular events in LMCA PCI, compared with angiography-guided intervention.\(^14\)\(^15\)\(^16\) However, data are still limited with regard to very long-term clinical effect of IVUS guidance in patients undergoing LMCA stenting.

Recently, we reported the 10-year clinical outcomes after myocardial revascularization for LMCA disease in the MAIN-COMPARE (The Revascularization for Unprotected Left Main Coronary Artery Stenosis: Comparison of Percutaneous Coronary Angioplasty Versus Surgical Revascularization) registry, which showed similar rates of death and a composite outcome of death, Q-wave myocardial infarction (MI), or stroke after PCI and coronary artery bypass grafting.\(^17\) In the present study, we evaluated the impact of IVUS guidance on 10-year mortality and major adverse events in patients undergoing PCI using data from the extended follow-up of the MAIN-COMPARE study.

METHODS
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Study Population and Procedure

The design of the MAIN-COMPARE study was described previously. Briefly, the MAIN-COMPARE study included consecutive patients with unprotected LMCA disease (diameter stenosis of >50%) who underwent PCI or coronary artery bypass grafting in 12 major cardiac centers in Korea between January 2000 and June 2006. Patients with prior coronary artery bypass grafting, concomitant valvular or aortic surgery, ST-elevation MI, or
cardiogenic shock at presentation were excluded. This study was approved by the local ethics committee of each hospital, and all the patients provided written informed consent. All the authors assumed responsibility for the accuracy and completeness of the data, reported analyses, and data interpretation.

All the PCI procedures were performed with standard interventional techniques. For the purpose of the present study, patients who underwent elective stenting for unprotected LMCA disease were categorized into 2 groups as follows: patients who underwent PCI with IVUS guidance and those who underwent PCI with angiographic guidance. The use of IVUS was determined by the treating operator. The procedure was considered IVUS-guided PCI when an IVUS examination was performed during the procedure. The timing of the IVUS (before stenting, after stenting, or both) evaluation was also left to the operator’s discretion. The IVUS images were obtained using a manual or automatic pullback system with commercially available systems (Boston Scientific Corporation, San Jose, CA; or Volcano Corporation, Rancho Cordova, CA). Our registry had no specific IVUS criteria for device sizing, or identification and treatment of malapposition and/or underexpansion. The final decision for additional procedures taken after the IVUS examination was left to the operator.

The standard regimens were followed in the antiplatelet therapy and periprocedural anticoagulation. Before or during the procedure, the patients were received loading doses of aspirin (200 mg) and clopidogrel (300 or 600 mg), unless they had previously received antiplatelet medications. After the procedure, the patients were maintained on aspirin indefinitely and clopidogrel for at least 6 months, with longer duration at the physician’s discretion. During follow-up, patient management including medical treatment was performed in accordance with accepted guidelines and established standards of care.

Clinical Outcomes and Follow-Up
The main outcomes of this study were death from any cause; the composite of all-cause death, Q-wave MI, or stroke; and target-vessel revascularization (TVR).18,19 In the current study, all-cause mortality was assessed, which was the most unbiased method to report deaths in a clinical trial or observational study. Q-wave MI was defined as the documentation of a new pathological Q-wave after the index PCI. Stroke, as detected by neurological deficits, was confirmed by a neurologist and inverse-probability-of-treatment-weighting. 21 Subsequently, we also conducted analyses using propensity score matching. Propensity score matching was conducted with a 1:1 matching ratio for the IVUS guidance group, as compared with the angiography guidance group.

Table 2. Observed 10-Year Event Rates and Crude HRs for Clinical Outcomes Between IVUS and Angiography Guidance

Event	IVUS guidance (n=756)	Angiography guidance (n=219)	HR (95% CI)	P value
Death	125 (16.4%)	67 (31.0%)	0.54 (0.41–0.70)	<0.001
Composite outcome (death, Q-wave MI, or stroke)	146 (19.2%)	72 (32.9%)	0.57 (0.44–0.73)	<0.001
Q-wave MI	18 (2.4%)	6 (2.7%)	0.74 (0.29–1.87)	0.53
Stroke	21 (2.8%)	7 (3.2%)	0.74 (0.31–1.74)	0.49
TVR	159 (21.8%)	195 (18.3%)	1.16 (0.83–1.63)	0.41

HR indicates hazard ratio; IVUS, intravascular ultrasound; MI, myocardial infarction; and TVR, target-vessel revascularization.

Statistical Analysis
Summary statistics are presented as percentages in the case of categorical variables and as means with SDs in the case of continuous variables. Differences in baseline clinical, angiographic, and procedural characteristics between the IVUS- and angiography-guided stenting groups were compared using the Student t test for continuous variables and the χ² test for categorical variables. In case of a categorical variable with expected count <5, Fisher exact test was used. Event rates were based on Kaplan-Meier estimates in time-to-first-event analyses and were compared using log-rank test. All available follow-up data were used for the long-term outcome analyses without censoring clinical events beyond 10 years.

To reduce the influence of selection bias and the potential confounders, we performed propensity score-adjusted analyses for rigorous adjustment for differences in baseline characteristics between the IVUS- and angiography-guided group. First, we performed analyses using inverse-probability-treatment-weighting based on propensity scores. Propensity scores were estimated without regard to outcomes using nonparsimonious multiple logistic-regression analysis, which included all variables outlined in Table 1. The cumulative event curves were estimated using a weighted Kaplan-Meier method and inverse-probability-treatment-weighting. Subsequently, we also conducted analyses using propensity score matching. Propensity score matching was conducted with a 1:1 matching ratio for the IVUS guidance group, as compared with the angiography guidance group.
protocol without replacement (a nearest-neighbor matching algorithm with a “greedy” heuristic), with a caliper width equal to 0.15 of the SD of the logit of the propensity score. In the matched cohort, event curves were constructed with the Kaplan-Meier estimates and compared using Cox proportional hazard regression models. Finally, we assessed whether the relative benefit of IVUS-guided PCI over angiography-guided PCI is consistent in major subgroups of clinical, anatomic, and procedural characteristics.

All reported \(P \) are 2-sided, and any value <0.05 was considered statistically significant. Statistical analyses were performed with the SAS version 9.3 software (SAS Institute, Cary, NC) and the R programming language (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Study Population and Baseline Characteristics

Between January 2000 and June 2006, a total of 2240 patients with unprotected LMCA disease were enrolled in the MAIN-COMPARE registry. Among 1102 patients who underwent PCI with stent implantation, 975 had detailed information on the PCI guidance strategy, of whom 756 (77.5%) underwent IVUS-guided stent implantation and 219 (22.5%) underwent angiography-guided stent implantation. The baseline clinical, angiographic, and procedural characteristics of the IVUS- and the angiography-guided group are shown in Table 1. Compared with the patients in the angiography-guided group, those in the IVUS-guided group were younger and more likely to have a lower prevalence of insulin-dependent diabetes, prior PCI, prior heart failure, peripheral disease, and renal failure, and higher ejection fraction. With regard to anatomic characteristics, the locations of the LMCA disease were similar between the 2 groups, but the angiography-guided group had higher number of diseased coronary vessels. The type of stent and procedural characteristics were similar between the groups. The size of the LMCA stent was significantly larger in the IVUS-guided group (3.56±0.46 versus 3.44±0.42 mm, \(P=0.002 \)), while the length was similar between the groups (27.3±20.9 versus 30.1±20.7 mm, \(P=0.08 \)).

After adjustment with inverse-probability-treatment-weighting, all the clinical covariates, except for dyslipidemia, were well balanced (Table 1). After propensity score matching, 208 pairs of patients with similar baseline characteristics were assembled and most baseline characteristics were also well balanced between the 2 groups (Table I in the Data Supplement).

Ten-Year Clinical Outcomes

The overall median follow-up duration was 11.9 years (interquartile range, 10.7–13.4 years), and the maximum follow-up was 17.0 years. In the overall period, 251 deaths (25.7%; 171 in the IVUS-guided group and 80 in the angiography-guided group); 284 composite outcomes (29.1%; 197 in the IVUS-guided group and 87 in the angiography-guided group), and 216 TVRs (22.2%; 175 in the IVUS-guided group and 41 in the angiography-guided group) were reported.
The observed (unadjusted) 10-year rates of clinical outcomes between the IVUS- and angiography-guided groups are shown in Table 2, Figure 1, and Figure I in the Data Supplement. As compared with angiography-guided PCI, IVUS-guided PCI was significantly associated with a lower 10-year mortality (31.0% versus 16.4%, \(P<0.001 \)) and composite of death, Q-wave MI, or stroke (32.9% versus 19.2%, \(P<0.001 \)). The 10-year incidence rate of TVR was similar between IVUS- and angiography-guided groups (21.8% versus 18.3%, \(P=0.40 \)).

The propensity score–adjusted (inverse-probability-treatment-weighting-weighted and propensity-matching) event rates and curves for clinical outcomes are shown in Table 3, Figure 2, and Figure II in the Data Supplement. IVUS-guided PCI tended to be associated with lower 10-year risk of death (hazard ratio [HR], 0.75 [95% CI, 0.55–1.03]; \(P=0.07 \)) and composite of death, Q-wave MI, or stroke (HR, 0.79 [95% CI, 0.59–1.06]; \(P=0.11 \)), as compared with angiography-guided PCI. The 10-year adjusted risk of TVR was similar between the 2 groups (HR, 1.20 [95% CI, 0.82–1.74]; \(P=0.36 \)). After propensity score matching, the use of IVUS was associated with lower risk of 10-year mortality (HR, 0.73 [95% CI, 0.53–1.02]; \(P=0.07 \)) and composite outcome (HR, 0.71 [95% CI, 0.52–0.97]; \(P=0.03 \)). A similar risk of TVR remained in the propensity-matched cohort. Throughout the follow-up period, 13 (1.3%) patients had a definite or probable stent thrombosis (1.2% in the IVUS-guided group and 1.8% in the angiography-guided group).

In the subgroup analysis, the benefit of IVUS guidance over angiography guidance was consistent in various subsets of clinical and anatomic characteristics with respect to the 10-year risks of mortality and composite of death, Q-wave MI, or stroke (Figure 3).

DISCUSSION

In this large-scale, longest-term, multicenter cohort of patients who underwent PCI with stent implantation for unprotected LMCA disease, as compared with angiography guidance, IVUS-guided stent implantation was associated with lower 10-year adjusted risks of death and the composite of death, Q-wave MI, or stroke. The adjusted risk of TVR was similar between the 2 groups. The benefit of IVUS guidance was consistent regardless of clinical, lesion, or procedural characteristics. This is the first report that presented the very long-term and sustained clinical effect of IVUS guidance over 10 years in patients who underwent LMCA PCI.

Compared with the conventional angiography, which reveals the 2-dimensional luminal shadowing of the coronary anatomy, IVUS provides accurate tomographic measurement for the assessment of the coronary lumen and vessel characteristics and thus helps in the decision on the stent implantation technique, selection of optimal stent size and landing zones, and optimization of the final stenting result. Prior trials and meta-analysis demonstrated that compared with angiographic guidance, IVUS-guided stent implantation was associated with favorable outcomes in terms of target-lesion revascularization, MI, stent thrombosis, or major adverse cardiac events at 1 year in patients with complex lesions such as long lesions or chronic total occlusions. A recent single-center report also showed that IVUS-guided PCI was associated with the lower long-term (median, 5 years) risk of mortality and major adverse cardiac events compared with angiography-guided PCI in patients with complex coronary artery lesion. In the Intravascular ULTIMATE trial (Ultrasound-Guided Drug-Eluting Stents Implantation in “All-Comers” Coronary Lesions), the clinical effect of IVUS guidance in comparison with that of angiography guidance was determined in all-comer patients and the primary end point of target-vessel failure at 1 year was significantly lower in the IVUS guidance group than in the angiography guidance group.

In this respect, the beneficial effect of IVUS on clinical outcomes may be remarkable in patients undergoing PCI for the complex anatomic features of LMCA disease. The use of IVUS for LMCA PCI has increased in routine clinical practice, and IVUS-guided PCI was performed in >70% of patients enrolled in the recent EXCEL (Evaluation of XIENCE Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) and NOBLE (Nordic–Baltic–British Left Main Revascularization) clinical trials. Data are still limited with regard to the impact of the IVUS guidance on the clinical outcome

Table 3. Adjusted HRs for 10-Year Clinical Outcomes Between IVUS and Angiography Guidance

	Adjusted risk with the inverse probability weighting	Adjusted Risk with the propensity score matching		
	HR (95% CI)	\(P \) value	HR (95% CI)	\(P \) value
Death	0.75 (0.55–1.03)	0.07	0.73 (0.53–1.02)	0.07
Composite outcome (death, Q-wave MI, or stroke)	0.79 (0.59–1.06)	0.11	0.71 (0.52–0.97)	0.03
Q-wave MI	0.76 (0.20–1.98)	0.58	0.60 (0.17–2.14)	0.44
Stroke	1.44 (0.55–3.72)	0.46	1.02 (0.37–2.83)	0.98
TVR	1.20 (0.82–1.74)	0.36	1.17 (0.75–1.81)	0.50

HRs are for the IVUS guidance group, as compared with the angiography guidance group. HR indicates hazard ratio; IVUS, intravascular ultrasound; MI, myocardial infarction; and TVR, target-vessel revascularization.
The adjusted event curves for 10-year clinical outcomes are shown in Figure 2. A–C, Adjusted curves with the inverse-probability-treatment-weighting, and (D–F) adjusted curves with the propensity score matching. HR indicates hazard ratio; and IVUS intravascular ultrasound.

 Despite these observational findings, our study also showed the clear benefit of IVUS guidance on very long-term mortality and incidence of serious composite outcome. Despite this, these observational findings should be interpreted with caution. In most previous studies and in our study, IVUS was more frequently employed in younger lower-risk individuals. Therefore, a possible healthy candidate bias for IVUS use could have influenced the study results. A remarkable reduction in mortality and hard clinical end point cannot be fully supported by the true clinical effect of IVUS guidance. In addition, residual confounding and, in particular, unknown confounders may have biased the results favoring IVUS-guided PCI. Second, IVUS guidance was...
predominantly common in elective PCI situations. As acute clinical presentation (ie, unstable clinical settings or MI) is more catastrophic in LMCA disease than in non-LMCA disease, angiography-directed PCI without time-consuming imaging support in urgent or emergent situations may penalize the angiography-only group. To minimize this bias, patients who underwent PCI in emergent settings were excluded in our study. Considering these inherent limitations of observational studies, a randomized controlled trial is required to determine the true clinical effect of IVUS guidance in patients undergoing LMCA PCI and therefore ongoing RCTs (ie, OPTIMAL [Optimization of Left Main Percutaneous Coronary Intervention With Intravascular Ultrasound; NCT04111770] and INFINITE [Intravascular Ultrasound- Versus Angiography-Guided Percutaneous Coronary Intervention for Patients With Left Main Bifurcation Lesion; NCT04072003]) will provide more compelling evidence for IVUS-guided LMCA PCI.

The exact mechanism of IVUS guidance for LMCA PCI with a relevant clinical benefit is still unclear and only hypothetical. IVUS can provide a more detailed information than angiography on lesion characteristics about lumen size, plaque characterization, and plaque distribution in the LMCA and its branches, thereby guiding optimal stent sizing, length, and positioning. This would contribute to the bigger stent size of the IVUS-guided group, which is associated with decreased rate of stent restenosis. In particular, IVUS may be helpful to decide the optimal stenting strategy (ie, provisional or complex dual stenting) for distal complex LMCA bifurcation lesions. Last, post-PCI IVUS examination can ensure optimal stent strut apposition and expansion with subsequent post-dilatation and achieve larger stent diameters. Although theoretical and practical advantages may be evident with IVUS guidance for LMCA PCI, the direct linkage of mechanistic PCI optimization with relevant clinical benefit is still a hypothetical judgment. In addition, the selective or routine application of IVUS for LMCA intervention in the real-world PCI setting is associated with the particulars of clinical practice and experience, as well as the specific expertise of the interventional cardiologists. Last, it should be further determined how contemporary state-of-the-art PCI with combined use of imaging guidance (whether by IVUS or optical coherent tomography) and invasive functional testing (ie, fractional flow reserve) can improve outcomes of complex PCI including LMCA interventions.

This study had several limitations. First, it was observational and had inherent methodological limitations;
thus, its overall findings must be considered hypotheti-
cal and hypothesis generating only. Second, the choice
of IVUS- or angiography-guided PCI was left to the
physician’s discretion; thus, our findings might be ven-
erable to selection bias. Although the propensity score
analyses were performed to adjust for this selection
bias, the possibility of other unmeasured confounders
having affected the results cannot be excluded. Third,
quantitative IVUS or angiographic analyses were not
performed in this registry. Therefore, the relationship
of quantitative imaging parameters and clinical outcomes
could not be assessed. Fourth, our study was not suf-
ficiently powered to detect the hard clinical end points
such as stent thrombosis, death, or individual com-
ponent of the serious composite outcome. Fifth, we only
considered objective Q-wave MI without including
enzyme-based periprocedural MI owing to nonuniform
definitions and controversial prognostic impact. Finally,
our study evaluated first-generation drug-eluting stents
and bare-metal stents for the treatment of LMCA dis-
ease. Thus, the present findings should be confirmed
through an extended follow-up of the EXCEL trial and
NOBLE trial by using the contemporary drug-eluting
stents.

CONCLUSIONS

In this longest-term study of LMCA PCI, IVUS-guided
stent implantation was associated with lower adjusted
risks of mortality and serious composite outcome of
death, Q-wave MI, or stroke, as compared with angiog-
raphy-guided stent implantation. IVUS may be a valu-
able adjunctive tool for PCI for preinterventional lesion
assessment and postinterventional stent optimization
for LMCA PCI. However, the true clinical effect of IVUS
guidance for LMCA PCI can only be confirmed or refuted
through large-scale RCTs.

ARTICLE INFORMATION

Received April 28, 2021; accepted July 30, 2021.

Affiliations

Department of Cardiology (D.-Y.K, J.-M.A, H.P, S.-C.C, T.O.K, S.P, P.H.L, S.-W.L, S.-W.P, D.-W.P, S.J.P) and Division of Biostatistics (S.-C.Y.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Sources of Funding

This work was partly supported by grants from the Cardiovascular Research Foun-
dation of South Korea and the Korea Medical Device Development Fund grant
funded by the Korea government (the Ministry of Science and ICT, the Ministry of
Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food
and Drug Safety) (Project Number: KMDF_PR_20200091_0018, 1711137892).
There was no industry involvement in the design, conduct, or analysis of the study.

Disclosures

None.

Supplemental Materials

Online Table I
Online Figures I and II

REFERENCES

1. Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, Fonorow GC, Lange RA, Levine GN, Maddox TM, et al. 2014 ACC/AHA/ AATS/ACCP/ACR/ASNC/SFCA/SIR/STI focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circula-
tion. 2014;130:1749–1767. doi: 10.1161/CIR.0000000000000099
2. Neumann FJ, Sousa-Uva M, Alhosson A, Alfonso F, Banning AP, Benetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascu-
larization. Eur Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394
3. Park SJ, Park SW, Hong MK, Cheong SS, Lee CW, Kim JJ, Hong MK, Mintz GS, Leon MB. Stenting of unprotected left main coronary artery ste-
noses: immediate and late outcomes. J Am Coll Cardiol. 1998;31:37–42. doi: 10.1016/s0735-1097(97)x00425-7
4. Seung KB, Park DW, Kim YH, Lee SW, Lee CW, Hong MK, Park SW, Yun SC, Gwon HC, Jeong MH, et al. Stents versus coronary-artery bypass grafting for left main coronary artery disease. N Engl J Med. 2008;358:1781–1792. doi: 10.1056/NEJMoai0801441
5. Park SJ, Kim YH, Park DW, Yun SC, Ahn JM, Song HG, Lee JY, Kim WJ, Kang SJ, Lee SW, et al. Randomized trial of stents versus bypass surgery for left main coronary artery disease. N Engl J Med. 2011;364:1718–1727. doi: 10.1056/NEJMoai1100452
6. Stone GW, Sabik JF, Serruys PW, Simonton CA, Généreux P, Puskas J, Kandzari D, Morice MC, Lemos N, Brown WM, et al. EXCEL Trial Inves-
tigators. Everolimus-eluting stents or bypass surgery for left main coro-
nary artery disease. N Engl J Med. 2016;375:2223–2236. doi: 10.1056/
NEJMoai1610227
7. Mäkikallio T, Holm NR, Lindsay M, Spenic MS, Erglis A, Menown IB, Trovik T, Eiskola M, Rompannen H, Kellerh T, et al; NOBLE study investigators. Per-
cutaneous coronary angioplasty versus coronary artery bypass grafting in
 treatment of unprotected left main stenosis (NOBLE): a prospective, ran-
donised, open-label, non-inferiority trial. Lancet. 2016;388:2743–2752. doi: 10.1016/S0140-6736(16)30262-9
8. Head SJ, Milovic M, Daemen J, Ahn JM, Boersma E, Christiansen EH, Domanski MJ, Farkouh ME, Flather M, Fuster V, et al. Mortality after coronary
artery bypass grafting versus percutaneous coronary intervention with stent-
ing for coronary artery disease: a pooled analysis of individual patient data.
Lancet. 2018;393:993–948. doi: 10.1016/S0140-6736(18)30423-9
9. Koskinas KC, Nakamura M, Räber L, Colleran R, Kadota K, Capodanno D, Wiens W, Akasaka T, Valgimigli M, Guagliumi G, et al. Current use of intra-
coronary imaging in interventional practice - Results of a European Associa-
tion of Percutaneous Cardiovascular Interventions (EAPCI) and Japanese
Association of Cardiovascular Interventions and Therapeutics (CVIT)
Clinical Practice Survey. EuroIntervention. 2018;14:e475–e484. doi: 10.4244/EUJ18M03_01
10. Hong SJ, Kim BK, Shin DH, Nam CM, Kim JS, Ko YG, Choi D, Kang TS, Kang WC, Her AF, et al; IVUS-XPL Investigators. Effect of intravascular
ultrasound-guided vs angiography-guided everolimus-eluting stent implanta-
tion: the IVUS-XPL randomized clinical trial. JAMA. 2015;314(25):
2163. doi: 10.1001/jama.2015.15454
11. Kim JS, Kang TS, Mintz GS, Park BE, Shin DH, Kim BK, Ko YG, Choi D, Yang J, Hong MK. Randomized comparison of clinical outcomes between
intravascular ultrasound and angiography-guided drug-eluting stent
implantation for long coronary artery stenoses. JACC Cardiovasc Interv.
2013;6(369–376). doi: 10.1016/j.jcin.2012.11.009
12. Kim BK, Shin DH, Hong MK, Park HS, Rha SW, Mintz GS, Kim JS, Kim JS, Lee SJ, Kim HY, et al; CTO-IVUS Study Investigators. Clinical
impact of intravascular ultrasound-guided chronic total occlusion inter-
vention with zotarolimus-eluting versus biolimus-eluting stent
implantation: randomized study. Circ Cardiovasc Interv. 2015;8:e002592. doi: 10.1161/CIRCINTERVENTIONS.115.002592
13. Zhang J, Gao X, X. Kian, Zhan G, Han L, Li S, Tian N, Lin S, Lu Q, Wu X, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent
implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018;72:3126–3137. doi: 10.1016/j.jacc.2018.09.013
14. Kang SJ, Ahn JM, Song H, Kim WJ, Lee JY, Park DW, Yun SC, Lee SW, Kim YH, Lee CW, et al. Comprehensive intravascular ultrasound assess-
ment of stent area and its impact on restenosis and adverse cardiovascular
outcomes in 403 patients with unprotected left main disease. Circ Cardiovasc
Interv. 2011;4:562–569. doi: 10.1161/CIRCINTERVENTIONS.111.964643
