Virtual reality simulation of epiretinal stimulation highlights the relevance of the visual angle in prosthetic vision

Jacob Thomas Thorn 1, Enrico Migliorini 1 and Diego Ghezzi 2

1 Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne, Switzerland
2 Author to whom any correspondence should be addressed.

E-mail: diego.ghezzi@epfl.ch

Keywords: artificial vision, retinal prosthesis, visual field, virtual reality

Supplementary material for this article is available online

Abstract

Objective. Retinal prostheses hold the potential for artificial vision in blind patients suffering from outer retinal dystrophies. The optimal number, density and coverage of the electrodes that a retinal prosthesis should have to provide adequate artificial vision in daily activities is still an open question and an important design parameter needed to develop better implants. Approach. To address this question, we investigated the interaction between the visual angle, the pixel number and the pixel density without being limited by a small electrode count. We implemented prosthetic vision in a virtual reality environment in order to simulate the real-life experience of using a retinal prosthesis. We designed four different tasks simulating: object recognition, word reading, perception of a descending step and crossing a street. Main results. The results of our study showed that in all the tasks the visual angle played the most significant role in improving the performance of the participant. Significance. The design of new retinal prostheses should take into account the relevance of the restored visual angle to provide a helpful and valuable visual aid to profoundly or totally blind patients.

1. Introduction

Retinal prostheses are neuroprostheses able to revert blindness caused by outer retinal dystrophies, such as retinitis pigmentosa and dry age-related macular degeneration [1, 2]. Over two decades, retinal prostheses yielded extraordinary results in patients [3–5]; however, despite the progresses made in the research field, there are still several limitations affecting the possibility to provide useful vision in daily life [6].

Blindness is defined as visual acuity of less than 20/400 or a corresponding visual field loss to less than 10 degrees, in the better eye with the best possible correction (World Health Organization). In North America and most of European countries, legal blindness is defined as visual acuity of 20/200 or visual field no greater than 20 degrees. Although visual acuity is an important measure of the quality of vision (both natural and artificial), another relevant feature is the size of the visual field, which might affect several visually-guided behaviours important in daily life. For retinal prostheses, as a rule of thumb, the visual field is linked to the retinal coverage of the prosthesis, while the visual acuity to the density of the stimulating electrodes. Therefore, the number, density and coverage of the electrodes is an important design parameter for retinal prostheses to provide adequate artificial vision in daily life. The retinal prostheses in clinical use are limited by the number of pixels that can be wired to the implantable stimulator, which impose a small retinal coverage and/or a low pixel density. As a consequence, the clinical devices were intrinsically limited to either increase the pixel density in a small surface area [3] or enlarge the surface area at the expense of the pixel density [4, 7, 8]. Recently, photovoltaic retinal prostheses allowed for wireless retinal stimulation [9–16], thus overcoming in principle the problem of prioritizing between pixel density or surface area. Photovoltaic retinal prostheses have the ability to embed a large number of pixels, limited only by the manufacturing capability...
and the conversion efficiency of the pixel. Moreover, conformable wide-field retinal prostheses enabled the enlargement of the retinal coverage without affecting the pixel density [17].

Since high-density wide-field retinal prostheses hold the potential to avoid a trade-off between pixel density and visual field, simulated prosthetic vision tools could be exploited to quantitatively evaluate the benefit of increasing both the visual angle and the pixel density in the same device. Computer monitors or head mounted display (HMD) were extensively used to simulate prosthetic vision in normally sighted volunteers [18, 19] in order to evaluate several functional parameters such as: visual acuity [20–22], reading performance [23–26], face recognition [27, 28], manipulation tasks [29] and mobility [30–32]. These experiments provided significant information to better understand artificial vision and to better design retinal implants. A study on normally sighted participants under pixelated vision indicated that an array of 25 × 25 pixels and 30 degrees of visual angle could provide adequate mobility skills [30]. It is worth noting that, combined together, these parameters (625 pixels and 30 degrees) are beyond what is offered by retinal prostheses in clinical use today. A follow up study confirmed the results reporting that a visual angle of 33 × 23 degrees was preferred by participants for mobility with more than 1000 pixels to allow for safer decision-making [33]. Other studies estimated that, to be useful in daily life, a retinal prosthesis should have at least 500 pixels in the central area of about 5 mm in diameter [25, 34]. More recently, a trial on normally sighted participants showed that the number of pixels required to recognize common objects is on the order of 3000 to 5000 [35]. Collectively, these results suggest that covering a large visual angle even with a limited resolution seems sufficient for mobility skills, while high pixel density is required for object recognition. Unfortunately, all of these previous studies focused on only one part of the problem, either the wide visual angle or the high pixel density.

In addition, these studies were often based on a conversion of images into an idealized phosphene representation, where phospheses are round and perfectly aligned. Although this might hold true for subretinal prostheses, this is not the case for epiretinal devices. Due to the direct activation of axons in the nerve fibre layer, phosphenses are often elongated or with a complex shape [36, 37]. Since, wide-field arrays have been so far designed for epiretinal placement only, the complex shape of phosphenses must be considered when simulating artificial vision.

To investigate the interaction between the retinal coverage and the pixel density without being limited to a small number of electrodes, we took advantage of virtual reality (VR) software paired with a portable HMD and evaluated the performance of normally sighted participants under simulated prosthetic vision with variable pixel density and retinal coverage. The stimulation layout was mapped accordingly to the epiretinal wide-field retinal prosthesis known as POLYRETINA [17], which allows in the same device both a high pixels density and a wide visual field. Since POLYRETINA is an epiretinal prosthesis, the direct activation of axons resulting in elongated phosphenses was considered according to recent computational models [36]. Also, taking advantage of the flexibility allowed by VR, we tested behavioural performances not only for word and object recognition, but also in common daily activities, such as recognising a descending pair of steps or crossing a busy street. Our results provide insights about the optimal number, density and coverage required for a retinal prosthesis to be useful in daily life. In particular we found that the visual angle had the most significant effect in improving the performance of the tested participant. These results led to the conclusion that in order to be useful in daily life, retinal prostheses must restore artificial vision in a large visual angle so as to overcome limitations related to head movements for space scanning and mental reconstruction of the visual scene.

2. Methods

2.1. Experiment design

The participants performed four behavioural tests, described as ‘object recognition’, ‘word reading’, ‘step perception’, and ‘street crossing’.

The tests were performed using a Dell Precision 3630 desktop computer with an Intel Xeon E-2146 G CPU (3.50 GHz) and an Nvidia GeForce GTX 1080 GPU. To simulate prosthetic vision two commercial VR HMDs were used: the FOVE (‘object recognition’ and ‘word reading’) and the VIVE Pro Eye (‘step perception’ and ‘street crossing’). The FOVE has a resolution of 2560 × 1440 pixels (1280 × 1440 pixels per eye), covers a visual field of approximately 95 degrees, and updates at 70 Hz. The HMD collects data about the participant’s head orientation through internal gyroscopes, and tracks eye gaze through two integrated infrared eye-tracking cameras at a frequency of 120 Hz. Correspondingly, the VIVE Pro Eye has a resolution of 2880 × 1600 (1440 × 1600 pixels per eye), a maximum field of view of 110 degrees and a 90 Hz refresh rate. Head orientation and position is provided using two external cameras aimed at the headset, and eye-tracking is similarly accomplished using integrated infrared cameras operating at 120 Hz.

During the ‘object recognition’ and ‘word reading’ tests, the participants (14 in total) were seated, wearing the FOVE HMD, and holding a game controller. Participants were then shown a series of objects or words and asked to identify them. When the participants felt like they had recognized the object or word, they would press a button on the game controller and then tell their guess to the examiner, who would mark the answer as correct or incorrect and
Figure 1. Images of the 108 common objects used during the 'object recognition' test. Reproduced with permission from TurboSquid.
4, 6, or 8 s on the right (note that the length of the opening on the two sides could be different) where no cars would be present. If the participants felt that it was safe to cross the street, they would take two steps forward. The program would then determine that the participant had crossed the road, based on data received from the VIVE motion capture system. In case there was a car too close to the participant’s position, the system would mark the crossing as failed and play the sound of a car crashing, otherwise the crossing would be marked as successful. In either case, the participant would then return to the starting position and a new layout would be loaded. There was no time limit set to provide an answer or to complete the study as a whole. The length of the openings determined if the crossing would be impossible (•), possible but requiring a quick decision (++), or relatively easy (+++), as in Table 1.

2.2. Simulation of prosthetic vision

All of the test environments as well as the simulation of prosthetic vision were developed using Unity (www.unity.com). The entire code of the project is available online at https://github.com/lnedlab/polyretina_vr. Data collection was also performed in Unity. For tests using the FOVE headset, eye-tracking information was obtained via the FOVE software development kit (SDK). Otherwise, when using the VIVE Pro Eye HMD, the SRanipal eye-tracking SDK was used to track participants’ eye.

The simulated prosthetic vision was computed using Cg shaders, allowing the system to run in real-time. Briefly, shaders are pieces of code that are run on a computer’s graphics hardware for each output pixel (FOVE: 1280 × 1440; VIVE Pro Eye: 1440 × 1600), every update frame (FOVE: 75 Hz; VIVE Pro Eye: 90 Hz). To save on computing time, phosphene centres were pre-calculated and saved as a texture which could be accessed by the shaders. In this sense, the texture equated to a data matrix with a width and height equal to the resolution of the output image, where each element in the matrix held the coordinate of the centre of the closest phosphene to the pixel. Pixels were then activated in the Cg shader depending on the following criteria:

- (a) they are inside the POLYRETINA field of view,
- (b) they are inside their closest phosphene,
- (c) their closest electrode is not ‘broken’ (10% chance),
- (d) the luminance of the input image at the equivalent pixel exceeded 0.5.

Images were converted into a texture which could be accessed by the shaders. A second Cg shader was used to account for the axonal fibre passing through each pixel. The tail's brightness would dissipate as a function of the distance from its phosphene, using the activation function described in [39]. Finally, the tails were superimposed on top of the original phosphene image. This image representation is called an axon map (AM) model. After this, one final Cg shader applies a small 3-pixel Gaussian blur to the image in order to soften the pixel edges for both the SB and AM models. The image is then displayed in the right eye only of the VR headset, since retinal prostheses have so far been implanted in only one eye of the patient.

For the ‘object recognition’, ‘step perception’ and ‘street crossing’ tests, an edge detection algorithm was used these values to generate each phosphene’s tail, following the underlying axon fibres. The tail’s brightness would dissipate as a function of the distance from its phosphene, using the activation function described in [39]. Finally, the tails were superimposed on top of the original phosphene image. This image representation is called an axon map (AM) model. After this, one final Cg shader applies a small 3-pixel Gaussian blur to the image in order to soften the pixel edges for both the SB and AM models. The image is then displayed in the right eye only of the VR headset, since retinal prostheses have so far been implanted in only one eye of the patient.

For the ‘object recognition’, ‘step perception’ and ‘street crossing’ tests, an edge detection algorithm was used these values to generate each phosphene’s tail, following the underlying axon fibres. The tail’s brightness would dissipate as a function of the distance from its phosphene, using the activation function described in [39]. Finally, the tails were superimposed on top of the original phosphene image. This image representation is called an axon map (AM) model. After this, one final Cg shader applies a small 3-pixel Gaussian blur to the image in order to soften the pixel edges for both the SB and AM models. The image is then displayed in the right eye only of the VR headset, since retinal prostheses have so far been implanted in only one eye of the patient.

| Table 1. Gaps combination in the ‘street crossing’ test. Values are in seconds. |
|-----------------|---------|--------|--------|--------|
| Gap on the right | 4 | 6 | 8 |
| Gap on the left | 2 | • | • | • |
| | 4 | ** | • | • |
| | 6 | ** | ** | *** |
| | 8 | ** | ** | *** |

| Table 2. Number of phosphenes for each layout. |
|-----------------|-----------------|-----------------|-----------------|
| | Visual angle | Layout 1: 100/150 | Layout 2: 80/120 | Layout 3: 60/90 | Layout 4: 40/60 |
| Angle (°) | 5° | 10° | 15° | 25° | 35° | 45° |
| 1 | 86 | 355 | 800 | 2244 | 4417 | 7321 |
| 2 | 119 | 477 | 1088 | 3045 | 5995 | 9914 |
| 3 | 214 | 855 | 1942 | 5437 | 10688 | 17681 |
| 4 | 475 | 1932 | 4374 | 12241 | 24073 | 39814 |

The electrode size, the phosphene brightness was randomly varied between 50% (grey) to 100% (white) of the phosphene's default brightness, and 10% of the electrode were considered not functional. Lastly, image presentation was not continuous but pulsed. Ideally, we would have planned 10 ms image presentation followed by 40 ms of dark (equivalent to a 20 Hz refresh rate). However, due to the refresh rate of both the FOVE and VIVE Pro Eye being higher than 10 ms (13 ms for the FOVE and 11 ms for the VIVE Pro Eye), the black pause was 39 ms for the FOVE and 44 ms for the VIVE Pro Eye.

The process just described generates a phosphene image, often called a scoreboard (SB) model. However, based on the report from participants implanted with epiretinal prostheses, phosphenes are more likely to be interpreted as curved oblong-like shapes [36]. A second Cg shader was used to account for the axonal fibre activation, having as an input the phosphene image. The values describing the trajectory of the axonal fibre passing through each pixel were pre-generated using a mathematical model [38] to reduce the amount of real-time processing. The shader then used these values to generate each phosphene's tail, following the underlying axon fibres.

For the ‘object recognition’, ‘step perception’ and ‘street crossing’ tests, an edge detection algorithm was used these values to generate each phosphene’s tail, following the underlying axon fibres. The tail’s brightness would dissipate as a function of the distance from its phosphene, using the activation function described in [39]. Finally, the tails were superimposed on top of the original phosphene image. This image representation is called an axon map (AM) model. After this, one final Cg shader applies a small 3-pixel Gaussian blur to the image in order to soften the pixel edges for both the SB and AM models. The image is then displayed in the right eye only of the VR headset, since retinal prostheses have so far been implanted in only one eye of the patient.
Table 3. List of normally sighted volunteers enrolled in the study.

Participant	Sex	Age	Mother tongue	Figure 2	Figure 3	Figure 4	Figure 6	Figure 7	Figure 8
1	Female	25	Italian	x	x				
2	Female	29	French	x		x			
3	Male	26	Italian	x					
4	Female	28	French	x					
5	Male	38	Italian	x	x	x			
6	Female	31	French	x		x	x		
7	Female	25	French	x	x	x			
8	Female	28	Italian	x	x	x			
9	Female	29	Italian	x	x	x			
10	Male	28	French	x	x	x			
11	Female	25	Italian	x	x	x			
12	Male	28	French	x					
13	Female	25	Italian	x	x	x			
14	Female	22	French	x					
15	Female	25	English	x	x				
16	Male	24	Italian	x	x				
17	Female	33	Farsi	x	x				

3. Results

3.1. Object recognition

The first test assesses the capability to recognize common objects (35° in size) under prosthetic vision (figure 1).

In a first cohort of participants (n = 4; participants 1 to 4), images were converted using the SB model and the layout with the lowest resolution (100/150). The participant’s visual field was restricted to various visual angles: 5, 10, 15, 25, 35, and 45° (figure 2(a)). For each visual angle, 18 objects were randomly presented (108 objects per participant). We evaluated the success rate as percentage of correct answers (figure 2(b)) and the time required to provide a correct answer (figure 2(c)). In the latter, the time was not considered when the given answer was not correct. Both measures showed that the increase of the visual angle resulted in a higher success rate and lower...
time to response. For each participant, we quantified a performance index to account for both the success rate and the time taken to provide a correct answer [27, 41], defined as in equation (1):

\[
\text{Performance index} = \frac{\text{Success rate} \times \text{Chance level}}{\text{Time to correct answer}}.
\]

(1)

For the ‘object recognition’ experiment, the chance level was 0 since the objects were unknown. A linear regression model showed that the performance index (figure 2(d)) increased with the visual angle (slope = 0.50; R squared = 0.87) and the slope is significantly non-zero (p < 0.0001, F = 141.1, DFn = 1, DFD = 22). This result highlights the important role of the visual angle in retinal prostheses.

The SB model is a simplified representation of the visual perceptions occurring with epiretinal prostheses. Therefore, in a second cohort of participants (n = 10, participants 5 to 14), we implemented the AM model which accounts for the activation of the fibres of passage. We tested the impact of the pixel layout and the tail length on the capability to recognise objects. The visual field of the participant was kept unconstrained (45°), to highlight only the effect of the above-mentioned parameters. Four layouts (100/150, 80/120, 60/90, and 40/60) and three tail lengths (1, 2, 3°) were randomly varied to obtain a total of 12 possible configurations (figure 3(a)). For each configuration 9 different objects were randomly presented (108 different objects per participant).

From those parameters we estimated the performance index (figure 3(d)). For each tail length, the linear regression model revealed that the slopes are not significantly different than zero, thus suggesting that the layout had not a relevant role once the visual angle was maximised (table 4).

Polling the data together, the differences between the slopes (obtained with the three tail lengths) are also not statistically significant (p = 0.7430, F = 0.2978, DFn = 2, DFD = 114). Since the slopes are not significantly different, it is possible to calculate one slope for all the data (B1 = 1.430). However, the line

Table 4. Result of the linear regression model: \(y = B_0 + B_1 x \).

Tail length: 1°	Tail length: 2°	Tail length: 3°	
Slope/B1			
R squared	0.04905	0.01034	0.02214
p value	0.1696	0.5324	0.3595
F	1.9600	0.3971	0.8604
DFn	1	1	1
DFD	38	38	38

Figure 3. (a) Rendering of one object with the AM model as a function of the tail length (columns) and the pixel layout (rows). (b) Success rate as a function of the pixel layout for the three tail lengths (mean ± s.d., n = 10 participants). The grey dashed line shows a success rate of 100%. (c) Time to provide a correct answer as a function of the pixel layout for the three tail lengths (mean ± s.d., n = 10 participants). The grey dashed lines show the linear regression model. In panels (b–d) the x-axis was scaled according to the proportion of the number of pixels for each layout: 1 for L1 (layout 1, 100/150), 1.36 for L2 (layout 2, 80/120), 2.42 for L3 (layout 3, 60/90), and 5.32 for L4 (layout 4, 40/60).
Figure 4. (a) Rendering of one word (letter heights 7°) with the axon map model as a function of the visual angle (columns) and the tail length (rows). The grey dashed line shows a success rate of 100%. (b) Success rate (mean ± s.d., n = 4 participants) as a function of the visual angle for the three tail lengths. (c) Time to provide a correct answer (mean ± s.d., n = 4 participants) as a function of the visual angle for the three tail lengths. (d) Performance index (mean ± s.d., n = 4 participants) as a function of the visual angle for the three tail lengths. The grey dashed lines show the nonlinear regression model (second order polynomial).

Table 5. Result of the nonlinear regression model: $y = B_0 + B_1x + B_2x^2$.

Tail length	R squared	B0	B1	B2
1$^\circ$	0.7340	-6.022	2.789	-0.03632
2$^\circ$	0.8752	-5.929	2.385	-0.03213
3$^\circ$	0.7823	-4.671	2.116	-0.3119

	B0	B1	B2
Best-fit values	0.3625	0.0003	0.0099
p value	0.0002	9.105	DFn = 2, DFd = 116
F	8.051	24.25	20.02
DFn	21	21	21
DFd	21	21	21

Elevations (B_0) showed a statistically significant difference ($p = 0.0002$, $F = 9.105$, $DFn = 2$, $DFd = 116$) suggesting that the tail length affected the performance index.

The ‘object recognition’ experiment revealed that the pixel layout had little or no effect. On the other hand, the performance is highly dependent on the visual angle. The tail length also affected object recognition, with longer tails reducing the performance.

3.2 Word reading

An advantage of a large visual field is the possibility to display entire words in the patient’s field of view instead of single letters. This second test assesses the capability to read words under wide-field prosthetic vision. A list of words composed by 4 to 6 letters was generated in the mother language of each participant and presented with the AM model (tail lengths: 1, 2, 3$^\circ$).

In the first cohort of participants ($n = 4$, participants 1 to 4), images were converted using the 100/150 layout and the letter height was fixed to 7°, thus each word occupied a visual field ranging from 15.6$^\circ$ (4 letters) to 40.6$^\circ$ (6 letters). The participant’s visual field was restricted to various visual angles: 5, 10, 15, 25, 35, and 45$^\circ$. For each configuration (visual angle and tail length) 10 different words were randomly presented for a total of 180 different words per participant (figure 4(a)). Similar to the ‘object recognition’ test, both the success rate (figure 4(b)) and the time required to provide a correct answer (figure 4(c)) showed that the increase of the visual angle resulted in a higher success rate and lower time to response. As a consequence, the performance index also increased with the visual angle (figure 4(d)). For the ‘word reading’ experiment, the chance level was 0 since the words were unknown. For each tail length, a nonlinear regression model (second order polynomial) was fitted to the data.
polynomial) revealed that the second order polynomials are significantly non-zero (B₁ and B₂ coefficients) thus suggesting that the visual angle significantly affected the performance index (table 5). Polling the data together, one curve cannot fit all the data sets (p < 0.0001, F = 5.893, DFn = 6, DFd = 63) suggesting that the tail length also affected the performance index.

The visual angle is a key parameter to improve the performance in reading words, so in the second cohort of participants (n = 10, participants 5 to 14), we tested the combined impact of the pixel layout, the tail length, and the letter height on the word recognition capability. The visual angle of the participant was kept unconstrained (45°), to highlight only the effect of the above-mentioned parameters. The underlying hypothesis is that with a wide visual angle, the same word can be enlarged to maximise its readability. Five letter heights (from 3° to 7°), four layouts (100/150, 80/120, 60/90, and 40/60), and three tail lengths (1, 2, and 3°) were randomly varied to obtain a total of 60 possible configurations (figure 5). The words occupied an average visual field ranging from 6.4° (4 letters, 3° height) to 40.6° (6 letters, 7° height). For each configuration 10 different words were randomly presented for a total of 600 different words per participant. The experiment was split in three sessions of 200 words each to limit fatigue.

Qualitatively, for all the three tail lengths considered, both the success rate (figure 6(a)) and the time required to provide a correct answer (figure 6(b)) improved by increasing the pixel density and the letter height, in particular for the smallest letter heights (3° and 4°) and the sparser layouts (100/150 and 80/120). To quantitively estimate the effect of the pixel layout, we split the dataset in three groups based on the tail length and performed linear and nonlinear regression on the performance index (figure 6(c)–(e)). For each tail length, the two sparser layouts (100/150 and 80/120) were fitted by a nonlinear regression model (second order polynomial), while the two denser layouts (60/90 and 40/60) were fitted with a linear regression model. The nonlinear regression model revealed that the second order polynomials were significantly non-zero for all the tail lengths (table 6). This result suggested that for the sparser layouts increasing the letter height up to the maximum allowed by the visual angle is a good strategy to improve the reading performance. For the denser layouts, the linear regression model revealed that the slopes were not significantly different than zero (table 6). Only for tail length 3° and layout 60/90 the slope is significantly not-zero. This result suggested that when the pixel number and density increased (i.e. the visual resolution increases) small characters can be easily recognised, and the increase in the letter height became less important.
The ‘word reading’ experiment demonstrated that, similar to object recognition, the visual angle has the strongest effect on performance, in particular when the pixel layout does not allow for extremely high resolution. A large visual angle allows words to be presented with a larger letter’s height, which is a good strategy to improve reading performance.

3.3. Step perception

The third test assesses the capability to identify shallow steps, which would be useful for safe ambulation. In this cohort of participants \((n = 11, \text{participants 5 to 11, 13 and 15 to 17})\), images were converted using the 100/150 layout and four tail lengths: 0, 1, 2, 3°. The tail length equal to zero corresponds to the SB model. The participant’s visual angle was restricted to various visual angles: 5, 10, 15, 25, 35, and 45°. Four differences in step height were tested: 10, 20, 30 and 40 cm. For each configuration (tail length, visual angle and step height) 4 repetitions were randomly presented for a total of 384 different conditions per participant (figure 7(a)). The participants were encouraged to take a break during the experiment to reduce fatigue. The participants were instructed to answer only if they were convinced, they knew the correct answer, otherwise to say ‘I do not know’ and the trial considered as failed. Similar to previous tests, both the percentage of correct answers (figure 7(b)) and the time required to provide a correct answer (figure 7(c)) showed that the increase of the visual angle resulted in a higher success rate and lower time to response. The performance index (figure 7(d)) were computed with a chance level of 50%, therefore the performance index was set to 0 when the success rate was 0%, as well as when the performance index was negative (i.e. success rate below the chance level). For each tail length, a nonlinear regression model (second order polynomial) revealed that the second order polynomials are significantly non-zero (slope, \(B_1\) coefficient) thus suggesting that the visual angle significantly affected the performance index (table 7).

Polling the data together, one curve cannot fit all the data sets \((p = 0.0134, F = 2.380, DFn = 9, DFd = 252)\) suggesting that the tail length also affected the performance index.

The ‘step perception’ experiment confirmed that the visual angle has a strong effect for the increase of the performance.

3.4. Street crossing

The last test is a representation of typical outdoor daily activity which requires orientation capability.
Table 6. Result of the linear ($y = B_0 + B_1 x$) and nonlinear ($y = B_0 + B_1 x + B_2 x^2$) regression models.

Tail length: 1°	100/150	80/120	60/90	40/60
R squared	0.7125	0.4293	0.02253	0.04248

B_0	B_1	B_2	B_0	B_1	B_2	Slope/B_1	Slope/B_2
-150.9	77.51	-6.299	-77.02	59.43	-5.117	1.946	-2.865

p value	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
F	24.61	36.28	24.61	4.938	16.44	4.938	1.106
DFn	1	1	1	1	1	1	1
DFd	47	47	47	47	47	47	48

Tail length: 2°	150/100	80/120	60/90	40/60
R squared	0.7261	0.5020	0.03924	0.04495

B_0	B_1	B_2	B_0	B_1	B_2	Slope/B_1	Slope/B_2
-151.4	71.63	-5.824	-109.2	64.90	-5.498	2.503	-2.853

p value	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
F	31.10	38.90	26.07	9.898	14.23	1.960	2.259
DFn	1	1	1	1	1	1	1
DFd	47	47	47	47	47	47	48

Tail length: 3°	100/150	80/120	60/90	40/60
R squared	0.7170	0.5252	0.1290	0.02389

B_0	B_1	B_2	B_0	B_1	B_2	Slope/B_1	Slope/B_2
-123.8	56.50	-4.432	-86.88	49.72	-3.985	4.214	-2.294

p value	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
F	25.62	29.82	18.60	8.097	9.653	7.111	1.175
DFn	1	1	1	1	1	1	1
DFd	47	47	47	47	47	47	48

Polling the data together, the differences between the slopes are not statistically significant ($p = 0.7074$, $F = 1.443$, DFn = 3, DFd = 172). Since the slopes are not significantly different, it is possible to calculate one slope for all the data ($B_1 = 1.430$). However, the line elevations (B_0) showed a statistically significant difference ($p < 0.0001$, $F = 12.15$, DFn = 3, DFd = 175) suggesting that the tail length affected the success rate.

As for the previous tests, also the ‘street crossing’ test highlighted the importance of the visual angle for users of retinal prostheses.

4. Discussion

In the past decade, several studies assessed the performance of participants under pixelated vision using either HMDs or computer monitors.

A first subset of studies focused mostly on resolution and the capability to recognise faces, objects or text [41–45]. In these studies, the pixel number ($m \times n$) was the parameter addressed the most, within a range from 8×8 to 40×50, and the effect of grey levels and pixel dropout was also evaluated. A common result among the studies is the increase in performance with an increase in the number of pixels. Remarkably, the visual angle was consistently not taken into account, even if it was not a fixed parameter since it was changing with the pixel number: if a 20×20 array would provide

in a dynamic environment. In this cohort of participants ($n = 9$, participants 7 to 11, 13 and 15 to 17), images were converted using the 100/150 layout and four tail lengths: 0, 1, 2, 3°. The tail length equal to zero corresponds to the SB model. The participant’s visual angle was restricted to various visual angles: 10, 15, 25, 35, and 45°. The smallest visual angle (5°) was removed because it was not possible for participants to perform the test. For each configuration (tail length and visual angle) 6 repetitions were randomly presented for a total of 120 different conditions per participant (figure 8(a)–(c)). The participants were instructed to safely cross the street regardless of the time taken. Since the gaps were randomly presented, we quantified only the percentage of correct passages (figure 8(b)) and not the time required. For each tail length, the linear regression model revealed that the slopes are significantly non-zero for tail lengths 0°, 2° and 3°. The slope is not significantly different than zero for the tail length 1°, for which the linear regression does not fit well the data (figure 8).

As for the previous tests, also the ‘street crossing’ test highlighted the importance of the visual angle for users of retinal prostheses.
a 7 × 7 degrees of visual angle, a 34 × 34 array would provide a 12 × 12 degrees of visual angle [45]. In this latter report, the reading speed was found to decrease with the reduction of the visual angle.

For object localisation and recognition, a study with patients implanted with the Argus® II retinal prosthesis showed that subjects were less accurate and took longer to complete the tasks with higher visual angle and lower pixel density [46]. This result can be explained in view of the limited number of electrodes (60) available in the Argus® II retinal prosthesis. With conventional wired retinal prostheses, the limiting parameter was always the maximum number of electrodes which could fit in the device due to the presence of the implantable pulse generator, the efficiency of the wireless power transfer and the size of the trans-scleral cable. Therefore, while keeping the electrode number constant, it might be preferable to increase the electrode density at expenses of the visual angle since a large retinal coverage with poor electrode resolution will result in an increasing difficulty to recognise objects and shapes, which is essential also for safe navigation.

Other studies focused more on navigation skills and obstacle avoidance [30, 33, 47]. Here, the visual angle becomes an important factor to improve behavioural performance, provided that at least some hundreds of pixels were available.

While both approaches (maximisation of the pixel number or the visual angle) are currently adopted respectively to improve recognition skills or mobility skills, it appears reasonable that the two parameters are highly related and cannot be decoupled so that the visual angle is increased while keeping a high
Table 7. Result of the nonlinear regression model: \(y = B_0 + B_1x + B_2x^2 \).

R squared	Tail length: 0°	Tail length: 1°	Tail length: 2°	Tail length: 3°
	\(B_0 \)	\(B_1 \)	\(B_2 \)	\(B_0 \)
0.3936	-1.999	0.9224	-0.0096	-3.120
	0.4352	0.8704	-0.0083	0.3182
0.4083	-3.751	0.8762	-0.0098	0.1926
0.4391	-4.738	0.8864	-0.0116	0.0356
	0.0099	0.0002	0.0099	0.0099

p value	0.5503	0.0077	0.1507	0.3182
F	0.3607	7.570	2.117	1.012
DFn	1	1	1	1
DFd	63	63	63	63

Figure 8. (a)–(c) Original view of the 'street crossing' test with three views: left view (a), central view (b) and right view (c). (d) Rendering of the 'street crossing' test (left view) as a function of the visual angle (columns) and the tail length (rows). Only four visual angles (15°, 25°, 35° and 45°) and two tail length (1° and 3°) are shown. (e) Success rate (mean ± s.d., n = 9 participants) as a function of the visual angle for the four tail lengths. The grey dashed line shows a success rate of 100%. The grey dashed lines show the linear regression model.

Pixel density. The development of large-field and high-density devices like POLYRETINA opens up the possibility to combine both features in a single device. The advantage of a photovoltaic prosthesis like POLYRETINA is the possibility to include a theoretically unlimited number of pixels, scaled proportionally to the visual angle. In this manner, a trade-off between pixel density and visual angle is no longer needed. Under such conditions, it appeared that the visual angle played a major role for object recognition, safe navigation and other common daily activities. Indeed, our results showed that the visual...
angle is consistently the most significant factor to increase behavioural performance, if a sufficient visual resolution is guaranteed by a high enough number of pixels in the device.

Another important parameter is the tail length. It is intuitive that the distortion of the phosphene's shape impairs the behavioural performance. This distortion is caused by the activation of the axon of passages, which is a main limitation of epiretinal prostheses. However, several approaches were recently reported to overcome the direct activation of retinal ganglion cells and favor the network-mediated activation, mainly based on waveform shaping [48, 49] and input filters [50]. In humans, it was also demonstrated that long sinusoidal-like pulses promote the perception of circular phosphenes [51]. Improving the epiretinal stimulation to avoid distorted phosphenes is a fundamental step to improve performance during daily activities.

5. Conclusion

We believe that profoundly and totally blind patients will benefit from artificial vision within a substantially large visual angle. However, the visual angle cannot be decoupled from the pixel count and density. Wide-field and high-density photovoltaic prostheses possess the advantage of restoring a large visual angle with a moderate pixel resolution, and thus become a helpful and valuable visual aid to patients with retinitis pigmentosa. Experiments with simulated prosthetic vision might help in designing the layout of wide-field and high-density to be tailored to the patient's needs. However, results from these models must be considered carefully, since the model cannot recapitulate the complex psychophysical situation that implanted patients' experience. For instance, the model implemented in this work considered the irregular shape of the phosphenes, which is relevant for those devices aiming at direct stimulation of retinal ganglion cells. However, other known phenomena, such as the desensitization of the retinal ganglion cells activity upon repetitive stimulation during network-mediated stimulation, are not yet implemented. Desensitization is an important parameter to be considered in those devices, like POLYRETINA, which relies mostly on the network-mediated stimulation.

Acknowledgments

We would like to acknowledge The Virtual Reality Facility at Campus Biotech in Geneva. This work was supported by École polytechnique fédérale de Lausanne, Medtronic and The Fondation E. Et G. Gelbert.

Author contributions

J.T.T. wrote the code and ran the tests. E.M. participated in writing the code. D.G. designed and led the study, and wrote the manuscript. All the authors read and accepted the manuscript.

Competing Financial Interests statement

The authors declare no competing financial interests.

ORCID iDs

Jacob Thomas Thorn https://orcid.org/0000-0002-0873-4266
Diego Ghezzi https://orcid.org/0000-0002-0554-7510

References

[1] Ghezzi D 2015 Retinal prostheses: progress toward the next generation implants Front. Neurosci. 9 290
[2] Mills J O, Jalil A and Stanga P E 2017 Electronic retinal implants and artificial vision: journey and present Eye 31 1383–98
[3] Stingl K et al 2017 Interim results of a multicenter trial with the new electronic subretinal implant alpha AMS in 15 patients blind from inherited retinal degenerations Front. Neurosci. 11 445
[4] Humayun M S et al 2012 Interim results from the international trial of second sight's visual prosthesis Ophthalmology 119 779–88
[5] Palanker D, Le Mer Y, Mohand-Said S, Muqit M and Sahel J A 2020 Photovoltaic restoration of central vision in atrophic age-related macular degeneration Ophthalmology 127 1097–104
[6] The Lasker/IRRF Initiative for Innovation in Vision Science 2014 Chapter 1 - Restoring vision to the blind: the new age of implanted visual prostheses Transl. Vis. Sci. Technol. 3 3–3
[7] Waschkowski F et al 2014 Development of very large electrode arrays for epiretinal stimulation (VLARS)—a concept study J. Neural Eng. 16 066031

Table 8. Result of the linear regression model: $y = B_0 + B_1x$.

Tail length: 0°	Tail length: 1°	Tail length: 2°	Tail length: 3°	
Slope/B₁	0.6640	0.3907	0.7136	1.061
R squared	0.1796	0.05728	0.1580	0.3848
p value	0.0037	0.1133	0.0069	< 0.0001
F	9.416	2.613	8.068	26.90
DFn	1	1	1	1
DFd	43	43	43	43
