Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck *Antilope cervicapra* L.

Ashutosh Kumar Upadhyay1, A. Andrew Emmanuel2, Ansa Sarah Varghese3 & D. Narasimhan4

1 Central National Herbarium, Botanical Survey of India, Acharya Jagdish Chandra Bose Indian Botanic Garden, Howrah, West Bengal 711103, India.
2 Door No. 1, Block-I, Met Quarters, College Road, Chennai, Tamil Nadu 600006, India.
3 Inchackal (H), Cherukole, P.O, Mavelikara, Alappuzha, Kerala 690104, India.
4 Department of Botany, Madras Christian College (Autonomous) Tambaram, Tamil Nadu 600059, India.

Abstract: A rapid but intense survey was conducted using visual landmarks in the Point Calimere Wildlife Sanctuary to enumerate the flora and foraging habits of the Blackbuck *Antilope cervicapra*. The area was divided into various segments such as the sanctuary entrance, Maattu muni kovil, Savukku plot or Casuarina plantation, 5-Bend road and the old light house for precise enumeration. A total of 111 plant species that include 50 herbs, 16 climbers/lianas, 30 shrubs and sub-shrubs, and 15 trees belonging to 39 plant families were recorded in this study. Visual observations showed that Blackbucks grazed on grasses such as the Mangrove Grass *Avicennia alba* L., Indian Daju *Aeluropus lagopoides* (L.) Thwaites, Dog’s Tooth Grass *Cynodon barberi* Rang. & Tadul., Indian Durva Grass *Cynodon dactylon* (L.) Pers., Feather Finger Grass *Chloris virgata* Sw., and a sedge, the pointed fimbristylis *Fimbristylis acuminata* Vahl during the day time. They were also observed browsing on the leaves and pods of Algaroba *Prosopis juliflora* (Sw.) DC. in the evenings. Our observation on the presence of feral horses and stray cattle in the Point Calimere Wildlife Sanctuary shows that they compete for food and water with the Blackbuck. The spread of invasive alien plant species competes with and reduces the space for native species.

Keywords: Feral, foraging habits, Nagapattinam District, tropical dry evergreen forests, Fodder species, alien species, habitat, survey, Bishnoi community.

Editor: L.A.K. Singh, Bhubaneswar, Odisha, India. Date of publication: 26 January 2022 (online & print)

Citation: Upadhyay, A.K., A.A. Emmanuel, A.S. Varghese & D. Narasimhan (2022). Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck *Antilope cervicapra* L. *Journal of Threatened Taxa* 14(1): 20433–20443. https://doi.org/10.11609/jott.5942.14.1.20433-20443

Copyright: © Upadhyay et al. 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: Mr. ASHUTOSH KUMAR UPADHYAY has worked in University of Agricultural Sciences (GKVK) as a Junior Research Fellow and in Botanical Survey of India as Senior Research Fellow. He was recently working on the Taxonomy and Ethnobotany of Elatostema J.R.Forster & G.Forster in India. Mr. A. ANDREW EMMANUEL has a master’s degree from Madras Christian College in Botany and a degree in Education. He is interested in plant ecology and plant-animal interaction. Currently he is a teacher handling Biology and Biotechnology. Ms. ANSA SARAH VARGHESE has worked on the Flora of Rishi Valley School, Andhra Pradesh and has good knowledge of Angiosperm taxonomy. She has also been part of several research programs on Plant breeding at ICAR-IIHR. Dr. D. NARASIMHAN is a retired Head of Department of Botany, Madras Christian College. During his tenure he worked extensively towards botanising various parts of India. He currently is a member of Tamil Nadu State Biodiversity Board.

Author contributions: AKU, AAE and ASV were involved in the field survey, identification of plants and preparation of the manuscript. DN supervised the work and gave important inputs for the study. All authors contributed towards writing the manuscript.

Acknowledgements: The authors wish to thank Mr. S. Soundarajan, IFS, wildlife warden (Retd.), Nagapattinam District for facilitating us to carry out the study. We would like to thank Mr. Leslie Lawrence, assistant professor, Department of Botany, Madras Christian College and Dr. Sheeba J. Irwin for their help during the study. We also extend our gratitude to the Director, Botanical Survey of India for providing lab facilities.
INTRODUCTION

Point Calimere Wildlife Sanctuary harbours a rich diversity of animals, among them is the Blackbuck which is the most exquisite animal in the sanctuary. The name Blackbuck is in reference to the dark-coloured coat of the adult male which varies from dark brown to black. The belly and hind side of the legs are white. The horns of the males are ridged and twisted. Blackbuck Antilope cervicapra L. is listed under Schedule I, Part I of the Indian Wildlife Protection Act, 1972. Habitats of the Blackbuck have been declared as protected areas in several parts of India, with the support of the local people. Punjab and Haryana have honoured the animal as their state animal (Hundal 2004) and the Bishnoi community of Rajasthan considers the blackbuck as a sacred animal. There are six protected areas in Tamil Nadu where Blackbucks occur in considerable numbers. They include: (a) the Guindy National Park and its contiguous campuses such as Raj Bhavan and the Indian Institute of Technology, Madras (IIT-M), though these campuses do not fall under the protected category; (b) Vallanadu Sanctuary, Tuticorin; (c) Point Calimere Wildlife Sanctuary, Kodiakkarai; (d) Sathyamangalam Wildlife Sanctuary and Tiger Reserve, Erode; (e) Kanyakumari Wildlife Sanctuary, Kanyakumari; and (f) Mudumalai Wildlife Sanctuary and National Park, Nilgiris.

Blackbucks are sensitive and get disturbed by human presence. They prefer open grasslands and like to graze during early mornings and late afternoons. There are no direct predators for the Blackbucks in the Point Calimere Wildlife Sanctuary (PCWS). A census conducted in 2015 by the forest department, Tamil Nadu in coalition with the A.V.C Engineering College, Mayiladuthurai and Government Arts and Science College, Poompuhar recorded 948 Blackbucks, 172 feral horses, 82 Wild Boars, 12 Black-naped Hares, and 20 Jackals in the sanctuary (Suresh 2015). The objectives of this study were (a) to survey the plant diversity and highlight the species of herbs, shrubs, and trees seen in PCWS and (b) to document the grasses and other plant species grazed by the Blackbucks.

MATERIALS AND METHODS

Study area

PCWS is one of the largest tropical dry evergreen forests (TDEF) in India located between 10.2878°N & 79.8651°E with an expanse of 1,729 ha located in the Nagapattinam district of Tamil Nadu (Figure 1) (Ali 2005; Parthasarthy et al. 2015). TDEF are the areas of vegetation without a distinct differentiation between the small and canopy forming trees, having coriaceous leaves with an average height of less than 12 m, having a luxuriant growth of lianas and climbers along with an inconspicuous presence of grasses (Champion & Seth 1968; Parthasarthy et al. 2015). This vegetation receives both summer and winter monsoons due to depressions and cyclones in the Bay of Bengal (Meher-Homji 1974). It forms an interface between the coastal and the deciduous vegetation, having varied ecosystems with a visible change in the soil type from sandy, saline to alluvial.

Point Calimere was declared a wildlife sanctuary in 1967 for conserving the Blackbuck population that was dwindling due to intensive poaching and hunting (Baruah 2005). PCWS is bordered by Vedaraniyam salt pans in the north, Palk Strait in the south, Bay of Bengal in the east, and Kodiakadu in the west. It gets its name from the point at which both the Bay of Bengal and the Palk Strait meet. The human habitations around the forest are found mainly in two villages namely, Kodiakkarai and Kodiakadu. The sanctuary is an island which is connected to the mainland by the Vedaraniyam-Kodiakkarai road.

Data collection and analyses

The methods of assessment used were very simple and based on visual observations in the field, i.e., observing Blackbucks while they grazed, followed by visiting the grazing sites to identify the plant species (Altman 1974). Since, this was a rapid survey, methods such as quadrates and other indices were not planned for in the study. However, the sanctuary was divided into the following segments using visual landmarks for effective and efficient data collection: (a) sanctuary entrance, (b) Maattu muni kovil - a temple visited by local cowherds, (c) Savukku plot or Casuarina plantation, (d) S-Bend road, and (e) the old light house. Rapid survey was conducted within the sanctuary for almost a month and a total of about 120 hours were spent exclusively for observing foraging and resting habits of Blackbucks in the PCWS. During the study period, field binoculars were used to observe the grazing activities. The segments were explored to interpret the foraging pattern of Blackbucks and to make a list of plants available in the sanctuary, which was further used to understand the components of the vegetation. Most of the plant species were identified on the site and undesignated plant specimens especially the grasses were taken to the laboratory for identification. All the identified plant species were classified based on their
habitats. The botanical names of the plant species were updated using online databases such as POWO (2020), The Plant list (2013) and The International Plant Name Index (IPNI 2018). Specimens were also photographed and kept for reference.

RESULTS

A total of 111 plant species that included 50 herbs (12 grasses, five sedges and four creepers), 16 climbers/ lianas, 30 shrubs & subshrubs, and 15 trees belonging to 39 plant families were recorded in this study (Figure 2). Of the plant families recorded Fabaceae, Poaceae, Amaranthaceae, Lamiaceae, Cyperaceae, Rubiaceae, Convolvulaceae, and Asteraceae were the most species-rich families having four or more species each (Figure 3). The habitats of different plant species observed were divided into five major types, namely, (a) Inundated plains—areas getting seasonally flooded, dominated by Chloris virgata Sw., Cynodon barberi Rang. & Tadul., C. dactylon (L.) Pers., Perotis indica (L.) Kuntze, Fimbristylis acuminata Vahl, F. argentea (Rottb.) Vahl,

Epilites pygmaea DC., and Platostoma menthoides (L.) A.J.Paton; (b) Low mounds—an elevated land c. a meter high, dominated by Eragrostis viscosa (Retz.) Trin.; (c) High mounds—an elevated land c. 1.5–2 m high, having Cyanthillium cinereum (L.) H.Rob., (d) Sand dunes—small hills of loose sand, with species such as Calotropis gigantea (L.) W.T.Alton. and Ipomoea pes-caprae (L.) R.Br.; and (e) Mangrove—tropical coastal vegetation comprising of salt tolerant species such as Avicennia marina (Forssk.) Vierh. and Excoecaria agallocha L. The term ‘mound’ used here is to distinguish elevated patches of land from the rest of the study area. Many plant species (except mangroves) were not rigidly habitat specific and were observed occurring in different habitats. A checklist of plants with their local Tamil names and habitats within the sanctuary was also prepared (cf. Appendix I).

Visual observations from a distance followed by instantaneous site visits in the field showed that the Blackbucks preferred to graze on selected grasses such as Aeluropus lagopoides (L.) Thwaites, Cynodon barberi Rang. & Tadul., C. dactylon (L.) Pers., Chloris virgata Sw.,
Plants of Point Calimere WS and fodder grazed by Blackbuck

Table 1. Suggested fodder species for introduction in Point Calimere Wildlife Sanctuary.

	Grass species for Blackbucks	Grasses to be introduced in saline areas	Grasses to be introduced in sandy areas	Tree species to be introduced within the sanctuary
1.	Cynodon radiatus Roth	Sprangle top Leptochloa obtusiflora Hochst.,	Dactylis Desmostachya bipinnata (L.) Stapf,	Babul Vachellia nilotica (L.) P.J.H.Hurter & Mabb.,
	Blue panic grass Panicum coloratum L.,	Coastal rat tail grass Sporobolus virginicus (L.) Kunth	Dimeria avenacea (Retz.) C.E.C.Fisch.,	Reonja treeeaauhnia racemosa Lam.,
	Panicum repens L.,			Flame of the forest Butea monosperma (Lam.) Kunth,
	Setaria flavida (Retz.) Veldkamp			Siris tree Albizia lebbeck (L.) Benth.,
				Krishna Siris Albizia amara (Roxb.) B.Boivin,
				Black Siris Albizia odoratissima (L.f.) Benth.,
				Indian Coral tree Erythrina variegata L.

a sedge *Fimbristyris acuminata* Vahl during the day time and they were seen browsing on the leaves and pods of *Prosopis juliflora* (Sw.) DC. in the evenings usually before sunset. They preferred grazing in open areas and around mounds. They were usually observed grazing in herds and rarely in solitude.

DISCUSSION

Conservation of the whole habitat of blackbucks in the sanctuary initially resulted in multiplication of their numbers but that was impeded due to the increase in the number of feral horses and stray cattle over the years. Entry of feral horses and stray cattle into the sanctuary poses two main problems: (a) competition for food and water and (b) spread of invasive alien plant species. Pods of *Prosopis juliflora* (Sw.) DC., one of the most aggressive invasive alien species is preferred by these cattle and the seeds were dispersed through their faeces into the sanctuary area, leading to the spread and increase in its population. By trampling the vegetation, altering the soil texture and overgrazing, these animals have a penetrating effect on the ecosystem. Feral horses build up to high numbers during good years, and many starve during drought (Wilson et al. 1992). Quality and nutritional value of plants available for grazing influences the diet and habitat relationship in large herbivores (Ahrestani et al. 2012). The distribution pattern of plant species and their dominance in an area plays an important role in their preference by these herbivores (Chamaille-Jammes & Bond 2010). Blackbucks, cattle from nearby villages, and feral horses, all compete for the same forage stock and there are not many differences between their foraging habits.

To control the competition faced by Blackbucks in PCWS by feral horses and stray cattle a few steps may be implemented.

1. Native fodder species can be introduced into the sanctuary on an experimental basis to provide more fodder to herbivores and to enhance local biodiversity (Dayanandan 1994). A few fodder species including grasses and leguminous trees have been listed for this purpose. (Table 1).

2. Stray cattle from the nearby villages can be stopped by fencing at strategic places where they are most probable to enter inside, and awareness programs can be conducted to educate the nearby villagers about the ecological and cultural significance of Blackbucks and the ill-effects of stray cattle grazing in the sanctuary premises. The population of feral horses can be controlled by methods such as relocation and sterilization (Khan et al. 2019).

CONCLUSION

This study has employed a very simple direct observational methodology for collection of data sets from PCWS. In spite of the seasonal limitations experienced, it provides a base for possible furthering of full-fledged ecological, floristic, and conservation studies in the area. Field surveys in different seasons need to be undertaken for a holistic understanding of the ecology of Blackbuck in Point Calimere with emphasis on the fodder species, especially the grasses. This study is expected to help prepare policies for plantation of fodder species in the sanctuary, and help in conservation of Blackbuck population with their long-term survival. The suggested mitigation measures are expected to help in controlling the spread of invasive alien plant species too, thereby, enriching the local flora.
Image 1. 1—A view of the tropical dry evergreen forest (TDEF) in Blackbuck habitat of Point Calimere Wildlife Sanctuary | 2—Vegetation on sand dunes | 3—The sanctuary entrance and beginning of study segment at Maattu-muni Kovil | 4—Constructed water pool by used spotted deers and feral horses during dry seasons | 5—Blackbucks in the Sanctuary | 6—Local cattle grazing in the sanctuary, a competition for Blackbucks for fodder and water | 7—Feral horses spotted in the sanctuary | 8—Blackbucks grazing in slightly inundated plains. © Ashutosh Kumar Upadhyay
Image 2. Flora of Point Calimere Wildlife Sanctuary: 9—*Salicornia brachiata* Roxb. | 10—*Pithecellobium dulce* (Roxb.) Benth. | 11—*Tecticornia indica* (Willd.) K.A. Sheph. & Paul | 12—*Epaltes divaricata* Cass. | 13—*Cressa cretica* L. | 14—*Glycosmis mauritiana* (Lam.) Tanaka | 15—*Jasminum angustifolium* (L.) Willd. | 16—*Fimbristylis acuminata* Vahl | 17—*Gmelina asiatica* L. | 18—*Pentatropis capensis* (L.f.) Bullock | 19—*Olax scandens* Roxb. | 20—*Opuntia dillenii* (Ker Gawl.) Haw. © Ashutosh Kumar Upadhyay
Image 3. Flora of Point Calimere Wildlife Sanctuary: 21—Prosopis juliflora (Sw.) DC. | 22—Rivea hypocrateriformis (Desr.) Choisy | 23—Ruellia patula Jacq. | 24—Scutia myrtina (Burm.f.) Kurz | 25—Suaeda maritima (L.) Dumort. | 26—Vincetoxicum indicum (Burm.f.) Mabb. | 27—Vitex negundo L. (inset- fruits) | 28—Lantana camara L. | 29—Pandanus odorifer (Forssk.) Kuntze | 30—Sesuvium portulacastrum (L.) L. | 31—Avicennia marina (Forssk.) Vierh. | 32—Suaeda monoica Forssk. ex J.F. Gmel. © Ashutosh Kumar Upadhyay
REFERENCES

Ahrestani, F.S., I.M.A. Heitkonig & H.H.T Prins (2012). Diet and habitat-niche relationships within an assemblage of large herbivores in a seasonal tropical forest. Journal of Tropical Ecology 28: 385–394.

Ali, R. (2005). Field studies for the conservation and management of point Calimere Complex. Foundation for Ecological Research, Advocacy and Learning. A Report for the Tamil Nadu Forest Department, 40 pp.

Altman, J. (1974). Observational study of behaviour: Sampling methods. Behaviour 49: 227–267.

Baruah, A.D. (2005). Point Calimere Wildlife & Bird Sanctuary–A Ramsar Site. Tamil Nadu Forest Department, 180 pp.

Chamaille-Jammes, S. & W.J. Bond (2010). Will global change improve grazing quality of grasslands? A call for a deeper understanding of the effects of shifts from C-4 to C-3 grasses for large herbivores. Oikos 119: 1857–1861.

Champion, H.G. & S.K. Seth (1968). A Revised Survey of the Forest Types of India. Manager of Publications, Delhi, xxvii+404 pp.

Dayanandan, P. (1994). Wildlife Conservation Strategies and Management of point Calimere Complex. Foundation for Ecological Research, Advocacy and Learning. A Report for the Tamil Nadu Forest Department, 52 pp.

Hundal, S.S. (2004). Field studies for the conservation and management of point Calimere Complex. Foundation for Ecological Research, Advocacy and Learning. A Report for the Tamil Nadu Forest Department, 40 pp.

Indian Grassland and Grazing Lands (1995). The Wildlife Protection Act (1972). Ministry of Forests, Government of India, 177 pp.

International Plant Names Index. Published on the Internet.

IPNI (2018). International Plant Names Index. Published on the Internet [http://www.ipni.org], The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. [Retrieved 03 June 2018].

Khan, K.A., S. Savan, B. Singh, R. De, V.B. Mathur, A. Rajvashi, B. Habib, S.P. Goyal & A.K. Bhardwaj (2019). Abohar-Sito Gunnu-Dabwali road (NH-354E) section passing through Abohar Wildlife Sanctuary, Punjab, India. Technical Report. Wildlife Institute of India, Dehradun, 57 pp.

Meher-Homji, V.M. (1974). On the origin of the tropical dry evergreen forest of south India. International Journal of Ecology and Environmental Sciences 1: 19–39.

Parthasarthy, N., P. Vivek & K. Anil (2015). Liana diversity and their Ecosystem Services in Tropical Dry Evergreen Forest on the Coromandel Coast of India. Proceedings of the 1st World Congress on Biodiversity, Victoria B.C., Canada, 1: 2–6.

POWO (2020). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/. Retrieved 21 February 2020.

The Plant List (2013). Version 1.1. Published on the Internet. Accessed 3 June 2015; http://www.theplantlist.org/

The Wildlife Protection Act (1972). http://nbaindia.org/uploaded/Biodiversityindia/Legal/15.%20Wildlife%20Protection%20Act,%201972.pdf

USDA Agricultural Research Service (2015). Germplasm Resources Information Network (GRIN). Ag Data Commons. https://doi.org/10.15482/USDA.ADC/1212393. Accessed 2018-03-03.

Wilson, G., A. Mcnee & P. Platts (1992). Wild animal resources: their use by aboriginal communities. Australian Government Publishing Service, Canberra, xi+122 pp.

Appendix I. List of plants observed at Point Calimere Wildlife Sanctuary

Sno	Binomial & Common names	Family	Habitat
GRASSES			
1	Aeluropus lagopoides (L.) Thwaites	Poaceae	Inundated plains
2	Stapfochloa elata (Desv.) P.M.Peterson	Poaceae	Inundated plains
3	Chloris virgata Sw.	Poaceae	Inundated plains
4	Cynodon barberi Rang. & Tadul.	Poaceae	Inundated plains
5	Cynodon doxyliflorus (L.) Pers. Tamil name: Arugam pullu	Poaceae	Inundated plains
6	Dactyloctenium aegyptium (L.) Wild.	Poaceae	Inundated plains
7	Eragrostis sp.	Poaceae	Inundated plains with sparse trees
8	Eragrostis tenella (L.) P.Beauv. ex Roem. & Schult Tamil name: Poorn Pullu	Poaceae	Low mounds
9	Eragrostis viscosa (Retz.) Trin.	Poaceae	Low mounds
10	Panicum sp.	Poaceae	High mounds and inundated plains
11	Pennisetum indica (L.) Kunze Tamil name: Narival, Kudiraival pullu, Thoppai pullu	Poaceae	Inundated plains
12	Spinifex littoreus (Burm.f.) Men. Tamil name: Poom Pullu	Poaceae	Sand dunes
SEDGES			
1	Cyperus dubius Rottb.	Cyperaceae	Inundated plains
2	Fimbristylis acuminata Vahl	Cyperaceae	Inundated plains
3	Fimbristylis argentea (Rottb.) Vahl	Cyperaceae	Inundated plains
4	Fimbristylis falcata (Vahl) Kunth	Cyperaceae	Inundated plains
5	Fimbristylis sp.	Cyperaceae	Inundated plains
HERBS			
1	Achyranthes aspera L. Tamil name: Nayurivi	Amaranthaceae	Inundated plains with sparse trees
Sno	Binomial & Common names	Family	Habitat
-----	--------------------------	--------	---------
2	Ouret lanata (L.) Kuntze	Amaranthaceae	Inundated plains with sparse trees
3	Solanum brachistioides Roxb.	Amaranthaceae	Inundated plains with sparse trees and low mounds
4	Asystasia gongetica (L.) T. Anderson	Acanthaceae	Inundated plains with sparse trees and low mounds
5	Boerhavia diffusa L.	Nyctaginaceae	Inundated plains with sparse trees
6	Cressa cretica L.	Convolvulaceae	Inundated plains
7	Croton bongolondianus Baill.	Euphorbiaceae	Inundated plains with sparse trees and low mounds
8	Cyanthillium cinereum (L.) H. Rob.	Asteraceae	Low mounds with sparse trees
9	Epilobium divaricata (L.) Cass.	Asteraceae	Inundated plains
10	Epilobium sp.	Asteraceae	Inundated plains
11	Geniosporum sp.	Lamiaceae	Inundated plains
12	Rooticia indica (Wild.) K.A.Sheph. & Paul G.Wilson	Amaranthaceae	Halophytic
13	Leucas diffusa Benth.	Lamiaceae	Inundated plains with sparse trees
14	Ocimum americanum L.	Lamiaceae	Inundated plains with sparse trees
15	Ocimum tenuiflorum L.	Lamiaceae	Inundated plains with sparse trees
16	Oldenlandia herbacea (L.) Roxb.	Rubiaceae	Inundated plains with sparse trees
17	Oldenlandia umbellata L.	Rubiaceae	Inundated plains with sparse trees
18	Vicia indica (L.) DC.	Lamiaceae	Inundated plains with sparse trees
19	Plastosoma menthoides (L.) A.J.Paton	Lamiaceae	Inundated plains with sparse trees
20	Ruellia patula Jacq.	Acanthaceae	Inundated plains with sparse trees
21	Synostemon bacciformis (L.) G.L.Webster	Phyllanthaceae	Inundated plains with sparse trees and low mounds
22	Sesuvium portulacastrum (L.) L.	Aizoaceae	Halophytic
23	Spermacoce hispida L.	Rubiaceae	Sand dunes
24	Suaeda maritima (L.) Dumort.	Amaranthaceae	Halophytic
25	Suaeda vermiculata Forsk.ex I.F. Gmel.	Amaranthaceae	Halophytic
26	Tephrosia maxima (L.) Pers.	Fabaceae	Inundated plains with sparse trees and low mounds
27	Tephrosia purpurea (L.) Pers.	Fabaceae	Inundated plains with sparse trees and low mounds
28	Vahlia dichotoma (Murray) Kuntze	Vahliaeeae	Inundated plains
29	Vigna trilobata (L.) Verdc.	Fabaceae	Inundated plains with sparse trees

CLIMBER / LIANA

Sno	Binomial & Common names	Family	Habitats
1	Abrus precatorius L.	Fabaceae	Inundated plains with sparse trees
2	Asparagus racemosus Wild.	Asparagaceae	Inundated plains with sparse trees
3	Cassia brevifolia DC.	Capparaceae	High mound with sparse trees
4	Capparis zeylanica L.	Capparaceae	Inundated plains with sparse trees
5	Cissus quadrangularis L.	Vitaceae	Inundated plains and low mounds
6	Cissus sicyoides L.	Vitaceae	Inundated plains with sparse trees
7	Coccinia grandis (L.) Voigt	Cocciniaeeae	Inundated plains with sparse trees
Sno	Binomial & Common names	Family	Habitat
-----	-------------------------	--------	------------------------------
8	Gmelina asiatica L.	Lamiaceae	Inundated plains
9	Jasminum angustifolium (L.) Willd.	Oleaceae	Inundated plains with sparse trees
10	Jasminum cuspidatum Rottler	Oleaceae	Inundated plains with sparse trees
11	Olaax scandens Roxb.	Olacaceae	Low mound with sparse trees
12	Pentatropis capsensis (L. f.) Bullock	Apocynaceae	Halophytic
13	Rivea hypozononiformis (Dess.)Choisy	Convolvulaceae	Low mound with sparse trees
14	Scuta myrtilin (Burm. f.) Kurz	Rhamnaceae	Inundated plains
15	Solanum trilobatum L.	Solanaceae	Inundated plains with sparse trees
16	Vincetoxicum indicum (Burm.f.) Mabb.	Apocynaceae	Inundated plains with sparse trees

SHRUBS & SUB-SHRUBS

Sno	Binomial & Common names	Family	Habitat
1	Azima tetracantha Lam.	Salvadoreaceae	Inundated plains
2	Acacia sp.	Fabaceae	Inundated plains
3	Guilandina bonduc L.	Fabaceae	Inundated plains and sand dunes
4	Calotropis gigaes (L.) W.T.Aiton	Apocynaceae	Sand dunes
5	Canthium parviflorum Roxb.	Rubiaceae	Inundated plains with sparse trees
6	Catunaregam spinosa (Thrub.) Tirveng.	Rubiaceae	Inundated plains with sparse trees
7	Chamaeophorus humilis L.	Arecaceae	Inundated plains with sparse trees
8	Crotalaria laburnifolia L.	Fabaceae	Inundated plains with sparse trees
9	Crotalaria pallida Aiton	Fabaceae	Inundated plains with sparse trees
10	Dichrostachys cinerea (L.) White & Arn.	Fabaceae	Inundated plains
11	Diospyros ferrree (Willd.) Bakh.	Ebenaceae	Inundated plains with sparse trees
12	Ehretia microphylla Lam.	Boraginaceae	Inundated plains
13	Flueggea leucopsis Willd.	Phyllanthaceae	Inundated plains
14	Glycosmis mauritiana (Lam.) Tanaka	Rutaceae	Inundated plains with sparse trees
15	Grewia carpinifolia Juss.	Malvaceae	Inundated plains with sparse trees
16	Gymnosporis emarginata (Willd.) Thwaites	Celastraceae	Inundated plains
17	Hygrophila auriculata (Schumach.) Heine	Acanthaceae	Inundated plains
18	Lantana camara L.	Verbenaceae	Inundated plains
19	Opuntia dillenii (Ker Gawl.) Haw.	Cactaceae	Inundated plains and low mounds
20	Pandanus odorifer (Forsk.) Kuntze	Pandanaceae	Inundated plains
21	Prosopis juliflora (Sw.) DC.	Fabaceae	Inundated plains
22	Psilotrichum eliotii Baker	Amaranthaceae	Inundated plains and low mounds
23	Senna auriculata (L.) Roxb.	Fabaceae	Inundated plains and low mounds
24	Senna occidentalis (L.) Link	Fabaceae	Inundated plains and low mounds
25	Senna timoniensis (O.C.) H.S. Irwin & Barneby	Fabaceae	Inundated plains
Sno	Binomial & Common names	Family	Habitat
-----	--	-----------------	--
26	Suaeda monoica Forssk. ex J.F. Gmel.	Amaranthaceae	Halophytic
27	Vitex negundo L.	Lamiaceae	High mound with sparse trees
28	Vollomera inermis L.	Lamiaceae	Inundated plains
29	Ziziphus jujuba Mill.	Rhamnaceae	Inundated plains
30	Ziziphus oenopolia (L.) Mill.	Rhamnaceae	Inundated plains with sparse trees

SMALL AND BIG TREES

Sno	Binomial & Common names	Family	Habitat
1	Albizia lebbeck (L.) Benth.	Fabaceae	Inundated plains with sparse trees
2	Avicennia marina (Forsk.) Vieh.	Avicenniaceae	Mangrove
3	Azadirachta indica A. Juss.	Meliaceae	Inundated plains
4	Cossa fistula L.	Fabaceae	Inundated plains
5	Casuarina equisetifolia L.	Casuarinaceae	Inundated plains
6	Excoecaria gallocho L.	Euphorbiaceae	Mangrove
7	Ficus benghalensis L.	Moraceae	Sand dunes
8	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae	Inundated plains
9	Manilkara hexandra (Roxb.) Dubard	Sapotaceae	Inundated plains with sparse trees
10	Peltophorum pterocarpum (DC.) Backer ex K. Heyne	Fabaceae	Inundated plains with sparse trees
11	Pithecellobium dulce (Roxb.) Benth.	Fabaceae	Inundated plains and high mounds
12	Pongamia pinnata (L.) Pierre	Fabaceae	Inundated plains
13	Premna serratifolia L.	Lamiaceae	Inundated plains with sparse trees
14	Salvadora persica L.	Salvadoreaceae	Inundated plains
15	Thespesia populnea (L.) Sol. ex Correa	Malvaceae	Inundated plains

CREEPERS

Sno	Binomial & Common names	Family	Habitat
1	Grona triflora (L.) H.Ohashi & K.Ohashi	Fabaceae	Inundated plains
2	Euphorbia thymifolia L.	Euphorbiaceae	Low level shady moist area
3	Evolvulus alsinoides (L.) L.	Convolvulaceae	Inundated plains with sparse trees
4	Ipomoea pes-caprae (L.) R. Br.	Convolvulaceae	Sand dunes
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2022 | Vol. 14 | No. 1 | Pages: 20311–20538
Date of Publication: 26 January 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.1.20311-20538

Articles

Estimating the completeness of orchid checklists and atlases: a case study from southern India
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India – a checklist
– Asaq Ahmad Dar, Akhtar Hussain Malik & Narayanwaswamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western Arun Pratap Singh, Pp. 20346–20370 – lowland of Nepal
– Jagan Nath Adhikari, Janak Raj Khatwida, Dipendra Adhikari, Suman Sapkota, Bishnu Prasad Bhattarai, Deepak Rijal & Lila Nath Sharma, Pp. 20371–20386

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Pteropus vampyrus) in western Sarawak, Malaysian Borneo
– Jayasihod Mohd-Azlan, Joon Yee Yong, Nabila Norshuhadah Mohd Hazzrol, Philoveny Pengiran, Ariantii Atong & Sheema Abdul Azit, Pp. 20387–20399

Communications

Macrolichens of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records
– Aswathi Anilkumar, Stephen Sequeira, Arun Christy & S.M. Arsha, Pp. 20400–20405

New distribution record of globally threatened Ocean Turf Grass Helophila beccarii Ascherson, 1871 from the North Andaman Islands highlights the importance of seagrass exploratory surveys
– Swapnali Gole, Prasad Gaidhani, Srabani Bose, Anant Pande, Jeyaraj Antony John & Kuppusamy Sivakumar, Pp. 20406–20412

An inventory of new orchid (Orchidaceae) records from Kozhikode, Kerala, India
– M. Sulaiman, C. Murugan & M.U. Sharief, Pp. 20413–20425

Abundance and spatial distribution analyses of Stemonoporus moonii (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka
– K.A.M.R.P. Atapattu, H.D.D.C.K. Perera, H.S. Kathriarachchi & A.R. Gunawardena, Pp. 20426–20432

Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck Antilope cervicapra L.
– Ashutosh Kumar Upadhyya, A. Andrew Emmanuel, Amsa Sarah Varghese & D. Narasimon, Pp. 20433–20443

Raptors observed (1983–2016) in National Chambal Gharial Sanctuary: continuity in Khathiar-Gir Ecoregion, India
– L.A.K. Singh, R.K. Sharma & Udayan Rao Pawar, Pp. 20444–20460

Nesting success of Sharpe’s Longclaw (Macronyx sharpei Jackson, 1904) around the grasslands of lake O’Bolosat Nyandarua, Kenya
– Hamisi Ann Risper, Charles M. Warui & Peter Njoroge, Pp. 20461–20468

Population, distribution and diet composition of Smooth-coated Otter Lutrogale perspicillata Geoffroy, 1826 in Hosur and Dharmapuri Forest Divisions, India
– Nagarajan Baskaran, Raman Sivaraj Sundarraj & Raveendranathanpillai Sanil, Pp. 20469–20477

Utilization of home garden crops by primates and current status of human-primate interface at Galigamuwa Divisional Secretariat Division in Kegalle District, Sri Lanka
– Charmalie Anuradhie Dona Nahallage, Dahanakge Ayeshya Madushani Dasanayake, Dilan Thisaru Hewamanna & Dissanayakakilage Tharaka Harshani Ananda, Pp. 20478–20487

Revival of Eastern Swamp Deer Rucervus duvaucellii ranjitsinhi (Grosves, 1982) in Manas National Park of Assam, India
– Nazrul Islam, Aftab Ahmad, Rathin Barman, Sanatan Deka, Bhaskar Choudhury, Prasanta Kumar Saikia & Joythishman Deka, Pp. 20488–20493

Trypanosoma evansi infection in a captive Indian Wolf Canis lupus pallipes
– molecular diagnosis and therapy
– Manoji Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjana Sahoo & Debarat Mohapatra, Pp. 20494–20499

View Point

COVID-19 and civil unrest undoing steady gains in karst conservation and herpetological research in Myanmar, and an impediment to progress
– Evan S.H. Quah, Lee L. Grismer, Perry L. Wood, Jr., Aung Lin & Myint Kyaw Thura, Pp. 20500–20502

Short Communications

Morphological characterization and mt DNA barcode of a tiger moth species, Asota ficus (Fabricius, 1775) (Lepidoptera: Noctuoidea: Erebidae: Aganainae) from India
– Aparna Sureshchandra Kalawate, K.P. Dinesh & A. Shabnam, Pp. 20503–20510

Distribution of Smooth-coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
– Swamand Patil & Kranti Yardi, Pp. 20511–20516

Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
– Muzaffar A. Kichloo, Asha Sohil & Neeraj Sharma, Pp. 20517–20522

Notes

Robiquetia gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Debtta (Convolvulaceae): new records for the Western Ghats and semiarid regions
– Sachin M. Patil, Ajit M. Vasava, Vinay M. Raole & Kishore S. Rajput, Pp. 20526–20529

Counting the cost: high demand puts Bunium persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar
– Sai Sein Lin Oo, Myint Kyaw, L.C.K. Yun, Min Zaw Tun, Yar Zar Lay Naung, Soe Naing Aye & Swen C. Renner, Pp. 20534–20536

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538