Injury programs shape glioblastoma

Lucy J. Brooks 1,*, Holly Simpson Ragdale,1 Ciaran Scott Hill,1,2 Melanie Clements,1 and Simona Parrinello1,*

Glioblastoma is the most common and aggressive primary brain cancer in adults and is almost universally fatal due to its stark therapeutic resistance. During the past decade, although survival has not substantially improved, major advances have been made in our understanding of the underlying biology. It has become clear that these devastating tumors recapitulate features of neurodevelopmental hierarchies which are influenced by the microenvironment. Emerging evidence also highlights a prominent role for injury responses in steering cellular phenotypes and contributing to tumor heterogeneity. This review highlights how the interplay between injury and neurodevelopmental programs impacts on tumor growth, invasion, and treatment resistance, and discusses potential therapeutic considerations in view of these findings.

The landscape of glioblastoma

Glioblastoma (see Glossary) is the most common and aggressive primary brain cancer in adults, and is almost universally lethal with overall survival times among the worst of any cancer. This is in part due to pronounced therapy resistance [1–3]. Intratumoral heterogeneity is pervasive and is often credited as the major hurdle to effective therapeutic intervention, because subpopulations of cells show different sensitivities to treatment [4–6]. One of the most prevalent patterns of transcriptional heterogeneity results from recapitulation of neurodevelopmental lineage hierarchies [7,8], a remnant of the neural origin of these tumors [9–11]. These lineage states exhibited by malignant cells are strongly influenced by the microenvironment in a region- and context-specific manner [6]. Recent evidence highlights a prominent role of injury responses as additional drivers of phenotypic heterogeneity [12–14] which result from damage caused by the growing tumor mass to the surrounding brain tissue via physical, ischemic, metabolic, neuro-inflammatory, and neurotoxic insults [15–22]. The interplay between neurodevelopmental and injury programs is emerging as an important factor impacting on treatment sensitivity [12].

In this review we describe how tissue injuries induced by developing tumors have two important consequences: (i) by eliciting injury responses in non-malignant cells, which feed back to shape tumor biology, and (ii) through the activation of similar albeit aberrant injury programs in tumor cells, which influence their malignant behavior. We explore the emerging concept that malignant cells respond to such injury cues by activating latent reactive and regenerative responses. Throughout we describe observations from both human and rodent studies. We highlight key outstanding questions and discuss how progress in our understanding of injury–tumor crosstalk may pave the way for greater insights into tumor biology, and ultimately translate to novel therapeutic applications.

Neurodevelopmental hierarchies in glioblastoma

Single-cell analyses have demonstrated that, despite interpatient differences, intratumoral transcriptional patterns converge on a handful of hierarchically organized states that resemble normal neural lineages (Figure 1) [7,8,23]. These states are commonly referred to as oligodendrocyte progenitor cell-like (OPC-like), neural progenitor-like (NPC-like), astrocyte-like (AC-like), and

Highlights

Glioblastoma is a deadly brain cancer comprising cells that recapitulate normal neurodevelopmental lineage hierarchies. Increasing evidence suggests that injury responses superimpose onto these neurodevelopmental programs to fuel tumor heterogeneity and result from the growing tumor mass physically damaging the surrounding brain tissue, as well as from therapeutic intervention. Non-malignant cells within the normal brain tissue respond to tumor-induced injury by activating reactive programs, which in turn modulate glioblastoma biology. Tumor cells aberrantly mirror injury programs of their non-malignant counterparts by enacting latent reactive and regenerative responses. The interplay between neurodevelopmental and injury programs has therapeutic implications, and increased understanding of the molecular basis of these programs may lead to improved treatments.

1Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
2Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK

*Correspondence: lucy.j.brooks@ucl.ac.uk (L.J. Brooks) and s.parrinello@ucl.ac.uk (S. Parrinello).
The cell-of-origin may in part also in
enrichment for expression of oligodendrocyte-lineage genes, whereas those derived from more imma-
the differentiation status of the transformed cell [25,30]. Tumors derived from OPCs show an
ferent lineage states within a tumor. In mice, identical tumorigenic stimuli induced in different
studies in mice have shown that selective induction of somatic mutations in NSCs leads to tumorigenesis [10,11,25]. Although NSCs can
give rise to tumors, in the normal brain they are outnumbered by OPCs, which exhibit a low level of proliferation throughout adulthood in humans [20]. As such, OPCs also represent a prime candidate as cell-of-origin for glioblastoma. Indeed, the same genetic alterations that drive tumorigenesis in NSCs also give rise to tumors when induced specifically in OPCs in mice [10]. Moreover, p53/NF1 dele-
tion in NSCs has been shown to drive tumorigenesis through expansion of their OPC progeny [11].
Conversely, deletion of the same tumor suppressors in more mature cells of the neuronal lineage does not lead to tumor formation, indicating that the ability of these mutations to induce tumors de-
clines with differentiation [27]. Although immature cell types are far more susceptible to malignant transformation, it is possible that tumors may also derive from mature cells in some circumstances. For example, p53 deletion in combination with overexpression of oncogenic Ras can drive tumorigenesis in cortical astrocytes [28]. However, it should be noted that, although Ras signaling is frequently altered in glioblastoma, Ras mutations are uncommon [29].

The presence of multilineage differentiation reflects the cellular origin of these tumors which are believed to derive mainly from neural stem cells (NSCs) or lineage-restricted progenitor cells such as OPCs [9,11,24]. In patients, low-level driver mutations have been observed in the subventricular zone (SVZ) of the brain, suggesting that, at least in some cases, tumors originate from this stem cell niche [3]. In support, functional studies in mice have shown that selective

mesenchymal-like (MES-like) [7]. The MES-like state, although it does not resemble a normal
neurodevelopmental phenotype, does show similarities to reactive astrocytes and will be dis-
cussed in detail later. It is important to note that these states are not discrete entities; instead, tumor cells display a continuum of ‘differentiation’ ranging from stem-like to more differentiated states, and exhibit plasticity between lineages [7].

The cell-of-origin may in part also influence the proportion of malignant cells that occupy the differ-
ent lineage states within a tumor. In mice, identical tumorigenic stimuli induced in different stem/progenitor subpopulations produce markedly different glioma phenotypes, depending on the differentiation status of the transformed cell [25,30]. Tumors derived from OPCs show an enrichment for expression of oligodendrocyte-lineage genes, whereas those derived from more imma-
ture GFAP+ NSCs have a greater capacity for self-renewal and shorter survival [10,25]. Although ascer-
taining the cell-of-origin in human glioblastoma is much more challenging, patient tumors show biases towards enrichment of transcriptional signatures associated with either an NSC or OPC cell-of-origin in mouse [30]. In addition to cell-of-origin biases, the lineage trajectory of a cell is also influenced by so-
matic mutations [7,13,31,32]. Common alterations such as amplification of EGFR, PDGFR, or CDK4 can favor AC-like, OPC-like, or NPC-like states, respectively, whereas deletion of NF1 favors a MES-
like state [7,33]. However, although both cell-of-origin and genetic alterations bias cells towards a particular cell fate, genetic subclones comprise multiple phenotypes, indicating that non-genetic factors play a prominent role in determining cellular identity [7]. In this regard, different tumor micro-
environments have been shown to promote stemness or drive differentiation [13,31–36] (Figure 1).

A prominent emerging feature of many of these microenvironments is the involvement of injury-
associated processes which occur as a result of tumor expansion. Indeed, recent single-cell RNA sequencing (scRNA-seq) analyses of human glioblastoma found that injury-associated inflammatory and wound-response signatures account for much of the transcriptional heteroge-
eity in glioblastoma [12]. Furthermore, spatially separated injury-associated microenvironmental stimuli including hypoxia, immune infiltration, and white matter damage have all been implicated in steering cell fate, as determined by recent spatially resolved transcriptomic, metabolomic, and proteome analyses, as well as by bulk RNA-seq or scRNA-seq from distinct tumor regions [13,37,38] (Figure 1). These processes will be the focus of the following sections.
Glioblastoma injures the brain

Injury is a complex phenomenon driven by tissue damage, and involves a range of biological processes aimed at restoring tissue homeostasis. Injury of brain tissue encompasses insults ranging from traumatic brain injury (TBI), which causes stretching and tearing of axons and Wallerian degeneration [39], to ischemia, which occurs when blood flow and oxygenation do not meet demand, leading to metabolic collapse and cell death [40]. Such insults can lead to disruption of the blood–brain barrier (BBB), death of neurons and oligodendrocytes, and the release of inflammatory molecules and/or particles, including apoptosis-associated extracellular vesicles and damage-associated molecular patterns (DAMPs) [41,42]. In response, microglia and astrocytes, as well as peripheral immune cells which infiltrate the injury site following breakdown of the BBB, elicit diverse inflammatory and neurotrophic programs aimed at restricting the area of injury, clearing debris, and promoting wound healing [43,44].

Similar processes are induced in the context of glioblastoma, where the growing tumor mass injures the brain by exerting physical forces on the surrounding tissue [15], and/or by inducing hypoxia/nutrient stress [16] and releasing tumor-derived factors, which include toxic levels of cytokines [17], glutamate [18], and free radicals [19] (Figure 2). In addition, standard-of-care treatments also induce forms of injury [20–22]. For example, surgical brain injury is an unavoidable aspect of tumor resection because of the nature of neurosurgical maneuvers which involve incision and electrocauterization of brain tissue [20,21]. Furthermore, tumor cell death caused by chemotherapy and radiation can impact on the function and viability of the surrounding brain tissue [22].

In the following, we first explore how normal non-neural cells respond to tumor growth, focusing on microglia/macrophages. We then focus on the reactive and regenerative injury processes of neural lineage cells (astrocytes, OPCs, NPCs) which are echoed by their malignant counterparts and can impact on proliferation, invasion, and treatment resistance.

Microglia/macrophages

The brain is under constant surveillance by microglia, the resident macrophages of the CNS and first line of defense against insult [45,46]. In the healthy brain, microglia contribute to CNS homeostasis by secreting neurotrophic factors [47] and playing a role in synaptic pruning [48]. They express a wide repertoire of pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and C lectin receptors, that allow them to sense DAMPs such as those released by dead or dying cells [49]. In glioblastoma, DAMPs are also detected by circulating monocytes which, facilitated by BBB breakdown, infiltrate the tumor where they mature to become macrophages. During tumor development, the evolving injury and progressive BBB breakdown are associated with a shift in the tumor-associated macrophage (TAM) population from largely microglial to a predominance of infiltrating monocytes/macrophages within the tumor mass [50–53]. Once activated, macrophages exert a combination of pro- and anti-inflammatory effects. They can contribute to a proinflammatory microenvironment by secreting tumor necrosis factor alpha (TNF-α), interleukin 1 alpha (IL-1α), complement component 1q (C1q), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12), and CC motif chemokine ligand 2 (CCL2), recruiting peripheral immune cells, generating reactive oxygen species (ROS) and nitric oxide (NO), and high expression of MHC class II [54,55]. Conversely, macrophages can also elicit an anti-inflammatory response and secrete interleukin 10 (IL-10) and transforming growth factor beta (TGF-β), as well as growth factors and neurotrophic factors such as fibroblast growth factor (FGF), colony stimulating factor 1 (CSF1), insulin-like growth factor 1 (IGF1), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophins, and glial cell-derived neurotrophic factor (GDNF) [54,55]. The complex interplay of these apparently heterogeneous response profiles differs in a region-specific manner, and analysis of scRNA-seq data from patients shows that TAMs within
the core of the tumor, which are largely bone marrow-derived, tend towards more proinflammatory features, whereas those at the periphery, which are largely microglia-derived, tend towards more anti-inflammatory features [50–53]. Such spatial heterogeneity is consistent with recent scRNA-seq findings in the context of demyelinating injuries [56,57] and lipopolysaccharide (LPS) exposure (a model of neuroinflammation) [58], where even more complex spatial and temporal diversity of microglia in their restig or activated states has been described. Although TAMs have not yet been profiled with the same spatial and temporal resolution in glioblastoma, it is conceivable that the effect of TAMs on tumor biology may also be modulated by their anatomical location within the brain, duration of activation, or even sex, because sex-specific differences have been observed in glioma-activated microglia in mice [55]. What is clear is that TAMs play a central role in forming tumor niches and influencing glioblastoma cell fate by inducing reactive/mesenchymal phenotypes in neighboring tumor cells (see below).

Reactive astrocytic processes are echoed in glioblastoma

Astrocytes respond to injury stimuli by undergoing a program of reactive astrogliosis. This reactive state was classically defined by the upregulation of GFAP; however, it is now clear that...
reactive astrocytes comprise a functionally heterogeneous population of cells \[59\]. Following injury, astrocytes can activate a diverse repertoire of molecular signaling networks which include proinflammatory, anti-inflammatory, immunosuppressive, neurotoxic, or neurotrophic responses, and are influenced in a context- and region-dependent manner \[60\]. Astrocytes become reactive through either direct or indirect activation. They can sense DAMPs directly through PRRs, such as TLRs and nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), and sense mechanical stress via mechanosensitive ion channels \[61,62\]. Increases in extracellular ATP caused by cell death/damage induce a wave of calcium signaling between astrocyte networks that leads to ATP release from the astrocytes themselves, thereby recruiting microglia to the site of injury \[62\]. Astrocyte reactivity can also be induced by crosstalk with microglia/
macrophages. In the context of LPS treatment, activated microglia release TNF-α, IL-1α, and C1q to induce a reactive proinflammatory astrocyte state which is cytotoxic to neurons and oligodendrocytes [63,64]. A similar proinflammatory astrocyte state has been identified in amyotrophic lateral sclerosis (ALS), and was associated with downregulation of genes involved in neuronal support, such as glutamate uptake [65]. Conversely, reactive astrocytes can also exert neuroprotective effects, as observed in ischemic stroke and experimental autoimmune encephalomyelitis (EAE), whereby microglial/macrophage-derived oncostatin M (OSM) was shown to promote a neuroprotective astrocyte phenotype [66]. These extracellular cues are transduced intracellularly by the transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB) to elicit neuroprotective and neurotoxic states, respectively [63,67–70]. In addition to influencing inflammation, a subset of reactive astrocytes proliferate to form a physical barrier known as an astrocytic scar that restricts the site of injury, thereby limiting the spread of inflammation. This can be neuroprotective because ablation of scar-forming astrocytes leads to worse neuronal survival [71].

Astrocytes also play a central role in glioblastoma, where they have been shown to acquire a reactive state within the tumor microenvironment [68,72,73]. In the tumor bulk, transcriptional profiling has found that tumor-associated astrocytes (TAAs) acquire a progenitor- and anti-inflammatory-like state which is regulated in part by microglia, as demonstrated by depletion of microglial cells [68,72], whereas at the margin TAAs can form a peritumoral scar [73]. Thus, TAAs share similarities to reactive astrocytes that are associated with other insults to brain tissue.

The presence of neurodevelopmental hierarchies in glioblastoma poses the question of whether malignant AC-like cells enact similar reactive processes in non-malignant astrocytes. Recent evidence indicates that this might be the case; data highlighting the contribution of injury programs to tumor heterogeneity have found that the injury-associated genes expressed in glioblastoma show significant overlap with those associated with a reactive astrocyte state [12,74]. This reactive AC-like state corresponds to MES-like signatures described in the wider literature [7,12,33,75], suggesting that the MES-like state encompasses cells which have activated latent reactive programs in response to microenvironmental stressors [37].

In a similar manner to normal astrocytes, which can be induced to a reactive state by crosstalk with microglia/macrophages, the MES-like signature is strongly associated with the presence of TAMs [6,23,31,33,72,76,77] (Figure 2). In mouse models and in patient samples, there is an enrichment of macrophages adjacent to MES-like glioblastoma cells [31]. Furthermore, recent spatial transcriptomic analysis from patient tissue demonstrates that areas enriched in myeloid populations are also enriched in both MES-like and AC-like signatures [37]. Depletion of TAMs has been shown to decrease the density of MES-like cells in a mouse model of glioblastoma, indicating that TAMs promote this reactive state in a manner similar to that observed for non-malignant astrocytes [31]. There are also further striking parallels at the molecular level whereby signaling events that underlie astrocyte reactivity also regulate the MES-like program in glioblastoma and astrocyte reactivity. In glioblastoma the MES-like program is mediated, at least in part, by TAM secreted factors – OSM, TNF-α, C1q, IL-1α, interferon gamma (IFN-γ), and to a lesser extent leukemia inhibitory factor (LIF) [6,12,31,72,76,78] – and is enforced by the transcription factors CCAAT/enhancer-binding protein beta (CEBPβ), STAT3 [79], TAZ [80], and NF-κB [6].

Considering the similarities between MES-like cells and reactive astrocytes in glioblastoma, it is tempting to speculate that the MES-like state may derive from an AC-like state. RNA-velocity analysis of scRNA-seq data suggests that this may be true in many patient samples [8]. This in turn raises the important question of whether tumors with an increased proportion of AC-like cells may respond to injury with a more pronounced transition to a MES-like state. In support
of this idea, mouse tumors derived from NSCs as opposed to OPCs, which show an enrichment for AC-like signatures, are also enriched for MES-like transcripts [10,30]. However, an AC-like precursor state is unlikely to be essential because direct proneural to mesenchymal transition has been observed in several studies, particularly following treatment [81]. It would be important to ascertain in future studies whether astrocytic competency is required for the expression of a MES-like state in treatment-naive tumors.

Regenerative processes are echoed in glioblastoma

In addition to restricting the area of injury and clearing harmful cellular debris, a final aspect of the normal injury response is to promote wound healing and regeneration. Although the ability of the healthy adult human brain to generate new neurons is a matter of ongoing debate [82], in the context of injury an increase in neurogenesis has been observed within the SVZ following ischemic stroke [83,84], and cells expressing markers of newborn neurons [doublecortin (DCX)+, polysialylated neuronal cell adhesion molecule (PSA-NCAM)+, and SRY (sex determining region Y)-box 2 (SOX2)+] are present at the infarct region of patients who have experienced either stroke [85] or TBI [86]. However, even if new neurons are generated, data from mice demonstrate that they largely fail to achieve long-term replacement, and eventually succumb to cell death [87]. Similar mechanisms are observed in glioblastoma, whereby NSCs migrate towards the tumor mass, a mechanism which is currently being explored as a means to deliver therapeutics through implantation of exogenous functionalized NSCs [88,89].

Glioblastoma cells, in line with their stemness properties, retain the potential to differentiate towards an immature neuronal-like state [90,91], as captured within the NPC-like subgroup which encompasses cells expressing degrees of stemness and differentiation within the neuronal lineage [7,8,23,90,91]. However, specific niche factors associated with NPC-like differentiation and the degree to which this phenotype recapitulates normal neurodevelopment versus regenerative signaling remain largely unexplored and would be an interesting topic for future investigation.

In contrast to neurogenesis, the reintegration of new oligodendrocytes is relatively straightforward and leads to more efficient cell replacement. Following acute insult, OPCs migrate to the site of injury and undergo a period of proliferation before differentiating and remyelinating axons [92,93]. Multiple signaling networks regulate these phases of oligodendrogenesis in response to injury and are intimately linked to the activity of microglia, leukocytes, and astrocytes via the release of cytokines, neurotrophins, and growth factors including TNF-α, FGF, IGF1, BDNF, and PDGF which expand the OPC population, as well as of molecules such as activin-A that can promote differentiation [94,95]. However, in chronic conditions these repair processes are limited and often fail to generate myelinating oligodendrocytes. One reason for this is that chronic inflammation can have detrimental effects on differentiation. For example, although TNF-α promotes OPC proliferation via TNF receptor type II (TNFR2) [96], cytokines TNF-α and IFN-γ have both been shown to inhibit differentiation [97,98].

This process appears to be conserved in glioblastoma in that malignant cells have been found to differentiate in response to tumor-induced injury to white matter regions, thus acquiring an immature oligodendrocyte-like state [13,92,93] (Figure 1). Although tumor cells do not mature to form myelinating oligodendrocytes, as is also frequently the case for non-malignant oligodendrocytes in chronic injury as described above, this partial differentiation is sufficient to suppress proliferation and cell motility [13,14]. The extracellular signals that induce malignant cell differentiation remain to be determined, but an association between activated microglia and astrocytes was observed, as is found in normal injury-related oligodendrogenesis [94,99]. Interestingly, this phenotype was only present in tumors that contained a subset of cells with retained expression of SOX10, a key oligodendrocyte-lineage marker and master regulator [13,14]. This indicates
that only tumors capable of enacting oligodendrocyte-lineage programs undergo this regenerative-like response to injured white matter. Given that the frequency of OPC-like cells within glioblastoma is influenced by the cell-of-origin, as discussed above, one might hypothesize that cells derived from the malignant transformation of OPCs may be more prone to white matter injury-induced oligodendrocyte-like differentiation than NSC-derived tumors, and that this bias could be exploited for patient stratification and treatment [7,10,25].

A final and particularly pertinent aspect of the regenerative process for glioblastoma is the role of growth factors at the injury site that are likely to stimulate expansion and self-renewal of the stem-like/progenitor pool. TAMs and reactive astrocytes secrete potent mitogens including FGF and EGF ligands which are essential for the proliferation and self-renewal of glioma stem-like cells (GSCs) [100], as well as PDGF, a known driver of gliomagenesis [35,38,75,81,101,102]. Consistent with this, the density of TAMs expressing markers associated with an anti-inflammatory state correlates with tumor proliferation [103], and suppression of the microglial anti-inflammatory program can slow tumor growth in a proneural mouse model of glioblastoma [101]. Furthermore, suppressing microglia-driven astrocyte reactivity via janus kinase (JAK)/STAT inhibition in human ex vivo brain slices can also reduce the proliferation of subsequently implanted GSCs [88]. In addition to driving proliferation, EGF and FGF are sufficient to induce dedifferentiation of AC- and OPC-like differentiated tumor cells in vitro and in vivo [13,104], which could indicate that regenerative cues at injury sites shift tumor cells to a more stem-like state (Figure 2). Although this hypothesis remains to be tested in vivo, collectively this evidence suggests that signaling from reactive microglia and astrocytes, which evolved to aid in the regeneration of the nervous system, may be hijacked by malignant cells to fuel their growth and stemness.

Therapeutic implications

The impact of injury on cell fate in glioblastoma has important therapeutic consequences because distinct subpopulations exhibit different sensitivities to treatment [4–6]. MES-like populations that form as a result of reactive injury-like programs exhibit enhanced resistance following irradiation [6,81,105]. It is possible that this resistance is in part related to their similarity to reactive astrocytes. The ability of astrocytes to respond to insults allows them to survive and to endure inflammation and oxidative stress. To this end, reactive astrocytes are resistant to Fas- and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis [106] and exhibit enhanced radiation-induced DNA damage repair compared to non-reactive astroglial cells [107]. When transposed onto a malignant backdrop, these same reactive mechanisms may contribute to therapy resistance. Concordantly, MES-like tumors have been shown to exhibit an enhanced capacity for DNA repair following irradiation [6]. Future studies should examine whether the molecular underpinnings of enhanced DNA repair are common to both reactive astrocytes and MES-like tumor cells.

In addition, MES-like glioblastomas have been shown to express higher levels of the immune checkpoint molecule programmed cell death ligand 1 (PD-L1) compared to proneural tumors [108], and this may contribute to the highly immunosuppressive nature of this tumor subtype [76]. This property may again reflect the similarities between MES-like cells and reactive astrocytes. Reactive astrocytes upregulate PD-L1 as part of their neuroprotective response to injury, resulting in inhibition of T cell responses, and thereby protecting against excessive neuroimmune and neuroinflammatory responses and attenuating brain damage [109,110]. Because immune evasion is a major therapeutic hurdle, it stands to reason that approaches that suppress MES-like reactivity identified through increased understanding of injury/inflammatory pathways may improve treatment outcomes.

Stem-like cells, which lie at the apex of the neurodevelopmental hierarchy, have long been acknowledged to display enhanced resistance to chemo- and radiotherapy, and are believed
to be largely responsible for driving tumor recurrence [4,5,111]. It has been posited that this resistance may reflect the enhanced capacity for DNA repair observed in non-malignant stem cells which allows the perpetuation of intact genomes to their progeny [112]. Similarly, enhanced DNA repair mechanisms are observed in GSCs and are believed to contribute to treatment resistance [4,5]. It therefore stands to reason that injury signals that maintain stemness and self-renewal, such as EGF and FGF described above, would contribute to treatment resistance. Conversely, in injury microenvironments that promote prodifferention regenerative responses, such as infiltrated white matter, cells would be predicted to become less resistant. In support, stem-like-to-neuronal transition has been shown to reduce tumorigenicity and increase radiation sensitivity in vivo [91]. Although the relative sensitivity of the OPC-like population is currently unknown, normal oligodendrocytes are particularly vulnerable to oxidative stress. It is therefore tempting to speculate that NPC-like and OPC-like cells, which are encompassed by the proneural signature, may be more vulnerable to radiation than GSC or MES-like cells, and that this sensitivity may, in part, contribute to the proneural to mesenchymal transition observed following radiation therapy [6,113].

A final important consideration regarding the role of injury in glioblastoma is how treatment-induced injury may impact on tumor biology and contribute to recurrence. Surgical resection, radiotherapy, and chemotherapy all cause tissue damage and cell death [20–22,114] which, as described, may influence malignant cell fates in prognostically and therapeutically meaningful ways. The contribution of treatment-induced injury to glioma biology has thus far been largely neglected, but with new discoveries on injury responses in glioma, it is emerging as an important area of investigation. About 90% of tumors reoccur within a few centimeters of the resection margin [115]. The higher density of residual cancer cells in this region has often been proposed as the main underlying reason. However, some limited evidence suggests that injury processes within the post-treatment tumor margin could also be at play [21,101].

Owing to difficulties in accessing tissue within an acute and consistent post-treatment window in humans, most studies examining the immediate or early response of the margin microenvironment and residual tumor cells to treatment have been carried out in animal models. Such work has demonstrated that irradiation is associated with an acute accumulation of TAMs in the peritumoral area, which are not observed at later timepoints or in recurrent tumors [102]. Such accumulation may contribute to resistance because depleting TAMs or blocking infiltration of bone marrow-derived macrophages has been shown to synergize with radiation therapy to extend survival [101,102]. Irradiation can also induce normal astrocytes to become reactive or even senescent, further contributing to inflammation within the post-treatment microenvironment [116,117]. In addition to irradiation, surgical resection is also likely to profoundly alter the microenvironment at the tumor margin. Indeed, there is some evidence that resection may increase the density of reactive astrocytes in the peritumoral region, and this may enhance tumor cell proliferation and migration [21].

This acute, reactive post-treatment microenvironment would be predicted to promote a MES-like state. Indeed, analysis of proneural glioblastoma mouse models has shown an enrichment of injury-associated MES-like populations following irradiation [6,81,105]. In line with this, bulk genomic approaches comparing primary and recurrent human glioma samples reveal that around half to two-thirds of tumors switch subtype following treatment, and that the MES-like subtype is the most stable [33,118]. The variability in penetrance may, in part, be due to the variation in time to the second surgical intervention, as well as to regional sampling bias. Nonetheless, when early and late recurrences have been compared, the proportion of immune cells and reactive astrocytes has been found to be elevated in early recurrences, suggestive of the presence of an acute treatment-induced inflammatory process as observed in animal models [72].
Concluding remarks and future perspectives

Injury in its plethora of forms is a major threat to the homeostasis of the brain, and hence robust biological processes have evolved to minimize and repair tissue damage. As described in this review, injury is inextricably linked to tumor expansion. Biological processes designed to protect the brain are preserved in malignancy and shape cellular phenotypes through the acquisition of reactive astrocyte features, expansion of progenitor-like cells, or differentiation towards an oligodendrocyte fate. Although many knowledge gaps remain (see Outstanding questions), it is anticipated that further injury-driven phenotypes will be uncovered in the context of glioblastoma, and that these phenotypes may be regulated by various spatial and temporal cues. Considering the observed differences in tumorigenicity and resistance between cell states, blocking mesenchymal transition or promoting injury-induced differentiation may provide new ways to control tumor growth and enhance treatment sensitivity. A crucial consideration is the impact of injury microenvironments on residual margin cells following treatment. Although the pronounced molecular heterogeneity of glioblastoma hampers targeted therapies, collapsing reactive injury programs may prove to be a more successful strategy for blocking or slowing down recurrence. More generally, determining the contribution of injury to glioblastoma progression and recurrence has the potential to uncover more effective treatments.

Acknowledgments

The authors thank all members of the laboratory as well as Drs Chris Tape and Jamie Dean for their expert viewpoints. The authors acknowledge funding to L.J.B. from Cancer Research UK (CRUK) RadNet in the form of an early career fellowship. C.S.H. receives funding from a National Institute for Health Research (NIHR) Academic Clinical Lectureship and the UCLH Biomedical Research Centre, a CRUK Pioneer award, an Academy of Medical Sciences (AMS) Starter Grant, and The National Brain Appeal. The laboratory receives funding from CRUK (H.S.R. and S.P.) and the Oli Hilsdon Foundation via The Brain Tumor Charity (M.C. and S.P.). Figures were created with BioRender.com.

Declaration of interests

The authors declare no conflicts of interest.

References

1. Miller, K.D. et al. (2021) Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 71, 381–406
2. McKinnon, C. et al. (2021) Glioblastoma: clinical presentation, diagnosis, and management. BMJ 374, n1560
3. Louis, D.N. et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 23, 1231–1251
4. Bao, S. et al. (2006) Glioma stem cells promote radioreistance by preferential activation of the DNA damage response. Nature 444, 756–760
5. Chen, J. et al. (2012) A restricted cell population propagates glioblastoma growth following chemotherapy. Nature 488, 522–526
6. Bhat, K.P.L. et al. (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24, 331–348
7. Netall, C. et al. (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849
8. Couturier, C. P. et al. (2020) Single-cell RNA-Seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat. Commun. 11, 3406
9. Lee, J.H. et al. (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 550, 243–247
10. Alcantara Laguno, S.R. et al. (2015) Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 28, 439–444
11. Liu, C. et al. (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146, 599–521
12. Richards, L.M. et al. (2021) Gradient of developmental and injury response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. Nat. Cancer 2, 157–173
13. Brooks, L.J. et al. (2021) The white matter is a pro-differentiative niche for glioblastoma. Nat. Commun. 12, 2184
14. Wu, Y. et al. (2020) Glioblastoma epigenome profiling identifies SOWT as a master regulator of molecular tumour subtype. Nat. Commun. 11, 6434
15. Seano, G. et al. (2019) Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230–245
16. Latha, J.D. et al. (2011) Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 8, 432–445
17. Albulescu, R. et al. (2013) Cytokine patterns in brain tumour progression. Mediat. Inflamm. 2013, 979748
18. Ye, Z.C. and Sontheimer, H. (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59, 4393–4401
19. Ramirez-Expósito, M.J. and Martínez-Martos, J.M. (2019) The delicate equilibrium between oxidants and antioxidants in brain glioma. Curr. Neuropharmacol. 17, 342
20. Travis, Z.D. et al. (2019) Surgically-induced brain injury: where are we now? Chinese Neurosurg. J. 5, 29
21. Okole, O. et al. (2018) Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol. 16, 1622–1633
22. Tumpey, T. et al. (2000) Radiation-induced brain injury: current concepts and therapeutic strategies targeting neuroinflammation. Neurononal. Adv. 2, vdaa057
23. Yuan, J. et al. (2018) Single-cell transcriptome analysis of lineage diversity in high-grade glioma. Genome Med. 10, 57

Outstanding questions

The growing tumor mass in glioblastoma has been shown to physically damage the surrounding brain tissue. What are the precise mechanisms by which the growing tumor injures the brain?

What is the specific role of neuronal injury (including cell-autonomous processes, axon-specific pathways, and Wallerian degeneration) in the behavior of glioblastoma, and can neuroprotective strategies reduce or alter the course and manifestations of disease?

Can we identify the injury-related microenvironmental differentiation factors that are sufficiently potent to overcome oncogenic signaling and exploit them to suppress tumor growth?

To what degree is tumor proliferation dependent on injury-related neurotrophic/growth factors that maintain stemness, and is this specific to the tumor bulk?

Is there a niche for neural progenitor cell-like differentiation? If so, does it correlate with injury microenvironments, by analogy to the well-known increase in the production of normal neural progenitor cells in response to brain injury?

Standard-of-care treatments in glioblastoma cause tissue damage and cell death. Do injury responses at the tumor resection margin contribute to tumor recurrence, and, if so, how?

Would targeting injury programs that appear to be conserved across patients prevent recurrence, independently of genetic heterogeneity?
24. Zhu, Y. et al. (2005) Early inactivation of p53 tumor suppressor gene cooperates with NFI loss to induce malignant astrocytoma. Cancer Cell 8, 119–130
25. Jiang, Y. et al. (2017) Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin. Cell Rep. 18, 977–990
26. Geha, S. et al. (2011) NG2/"Olig2": cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol. 20, 399–411
27. Akarsu, L. et al. (2019) Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat. Neurosci. 22, 545–555
28. Friedmann-Morvinski, D. et al. (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1060–1064
29. McLendon, R. et al. (2017) Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin. Cell Rep. 18, 977–990
30. Wang, Z. et al. (2020) Cell lineage-based stratification for glioblastoma. Cancer Cell 38, 366
31. Han, T. et al. (2021) Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792
32. Brooks, L.J. and Panagiotou, S. (2017) Vascular regulation of glioma stem-like cells: a balancing act. Curr. Opin. Neurobiol. 47, 8–15
33. Wang, Q. et al. (2017) Tumor evolution of glioma intrinsically genetic expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56
34. Ciblat, S. et al. (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82
35. Charles, N. et al. (2010) Perivascular nitric oxide activates Notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152
36. Zhu, T.S. et al. (2011) Endothelial cells create a stem cell niche in glioblastoma by providing Notch ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061–6072
37. Ravi, V.M. et al. (2022) Spatially resolved multi-omics decipher bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 40, 639–655
38. Garcia-Diaz, C. et al. (2021) Glioblastoma cell fate is differentially regulated by the microenvironments of the tumour bulk and infiltrative margins. BioRxiv. Published online June 11, 2021. https://doi.org/10.1101/2021.06.11.447915
39. Koliatos, V.E. and Alexandris, A.S. (2019) Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr. Opin. Neurobiol. 52, 798–795
40. Kalogeris, T. et al. (2012) Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229
41. Paviyakul, M.S. et al. (2018) Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via crosscellular transfer of splicing factors. Cancer Cell 34, 119–135
42. Abu, N. et al. (2021) Extracellular vesicles and DAMPs in cancer: a mini-review. Front. Immunol. 12, 3023
43. Mira, R.G. et al. (2021) Traumatic brain injury: mechanisms of glial response. Front. Physiol. 12, 740099
44. Muldoon, L.L. et al. (2013) Immunologic privilege in the central nervous system and the blood-brain barrier. J. Cereb. Blood Flow Metab. 33, 11–21
45. Davalos, D. et al. (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758
46. Nimmethan, A. et al. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318
47. Parkhurst, C.N. et al. (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 152, 1596–1603
48. Hong, S. et al. (2016) New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 35, 128–134
49. Saljo, K. et al. (2013) Regulation of microglia activation and deactivation by nuclear receptors. Gene 61, 104–111
50. Chen, Z. et al. (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77, 2266–2278
51. Müller, A. et al. (2015) Resident microglia, and not peripheral macrophages, are the main source of brain tumor monoclonal cells. Int. J. Cancer 137, 278–288
52. Landry, A.P. et al. (2020) Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci. Rep. 10, 19542
53. Ochocka, N. et al. (2021) Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat. Commun. 12, 1511
54. Jung, A.M. et al. (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci. 14, 198
55. Colonna, M. and Butovsky, O. (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468
56. Masuda, T. et al. (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 576, 389–395
57. Hammond, T.R. et al. (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271
58. Scouras, C. et al. (2016) Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. 19, e46171
59. Eiscarein, C. et al. (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325
60. Sofroniew, M.V. (2020) Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol. 41, 759–770
61. Kigerl, K.A. et al. (2014) Pattern recognition receptors and central nervous system repair. Exp. Neurol. 258, 5–16
62. Burda, J.E. et al. (2016) Astrocyte roles in traumatic brain injury. Exp. Neurol. 275, 305–315
63. Liddelow, S.A. et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487
64. Zamanian, J.L. et al. (2012) Genomic analysis of reactive astroglia. J. Neurosci. 32, 6001–6101
65. Ziff, O.J. et al. (2022) Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states. Genome Res. 32, 71–84
66. Deethake, M.S. et al. (2021) Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Cardi-independent expression of Oncoctatin M. Immunity, 54, 484–498
67. Crespiat, K. et al. (2016) The complex STATes of astrocyte reactivity: how are they controlled by the JAK–STAT3 pathway? Neuroscience 330, 205–218
68. Heiland, D.H. et al. (2019) Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun. 10, 2541
69. Anderson, M.A. et al. (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 196–200
70. Liu, H. et al. (2016) Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci. 36, 577
71. Mathys, H. et al. (2019) Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 322–327
72. Couturier, C.P. et al. (2022) Glioblastoma scRNA-seq shows treatment-induced, immune-dependent increase in mesenchymal cancer cells and structural variants in distal neural stem cells. Neuro Oncol. 24, 1494–1508
73. Campbell, S.C. et al. (2023) Potassium and glutamate transport is impaired in scar-forming tumor-associated astrocytes. Neurochem. Int. 133, 104628
74. Niklasson, M. et al. (2019) Mesenchymal transition and increased therapy resistance of glioblastoma cells is related to astrocyte reactivity. J. Pathol. 249, 295–307
75. Verhaak, R.G. et al. (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities of PGFRA, IDH1, EGFR, and NFI. Cancer Cell 17, 98–110
76. Gangoso, E. et al. (2021) Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immuneediting to elicit immune evasion. Cell 174, 2454–2470
77. Ravi, V.M. et al. (2022) T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloïd cells releasing interleukin-10. Nat. Commun. 13, 925
78. Schmitt, M.J. et al. (2021) Phenotypic mapping of pathologic cross-talk between glioblastoma and innate immune cells by synthetic genetic tracing. Cancer Discov. 11, 754–777
79. Carro, M.S. et al. (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325
80. Bhat, K.P.L. et al. (2011) The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 25, 2594–2609
81. Hallday, J. et al. (2014) In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. Proc. Natl. Acad. Sci. U. S. A. 111, 5248–5253
82. Kempermann, G. (2006) Persistent production of neuronal progenitors after ischemic injury in the aged adult human forebrain. J. Neurosci. 26, 13114–13119
83. Martí-Fàbregas, J. et al. (2010) Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74, 367–365
84. Jin, K. et al. (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl. Acad. Sci. U. S. A. 103, 13198–13202
85. Macas, J. et al. (2006) Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J. Neurosci. 26, 13114–13119
86. Zheng, W. et al. (2013) Neurogenesis in adult human brain after traumatic brain injury. J. Neurotrauma 30, 1572–1583
87. Thorel, P. et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem CellsDev. 25, 739–747
88. Jeong, Y.J. et al. (2009) Migration of human neural stem cells toward an intracranial tumor. Exp. Mol. Med. 41, 84–91
89. Benmouela, A.Y. et al. (2021) Neural stem cell-based therapies and glioblastoma management: current evidence and clinical challenges. Int. J. Mol. Sci. 22, 2258
90. Park, N.J. et al. (2017) ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Stem Cell Dev. 21, 209–224
91. Sabelström, H. et al. (2019) Driving neuronal differentiation through reversal of an ERK1/2- and MYC-344-SDX9 axis abrogates glioblastoma aggressiveness. Cell Rep. 28, 2064–2079
92. Gensert, J.A.M. and Goldman, J.E. (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203
93. Carroll, W.M. et al. (1998) Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121, 295–302
94. Miron, V.E. et al. (2013) M2 microglia and macrophages drive oligodendrogenesis during CNS remyelination. Nat. Neurosci. 16, 1211–1218
95. Fukos, N. et al. (2018) Tumour necrosis factor-a impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ. 221, 1196–1208
96. Chew, L.J. et al. (2005) Interferon-y inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia 52, 127–143
97. Myambo, N. et al. (2019) Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J. Neurosci. 35, 14002–14008
98. Carroll, W.M. et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells Dev. 25, 2594–2609
99. Sabelström, H. et al. (2015) STAT3 blockade inhibits radiation-induced malignant progression in glioma. Cancer Res. 75, 4302–4311
100. Song, J.H. et al. (2006) Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J. Neurosci. 26, 3294–3308
101. Yong, R.L. et al. (2014) Cell transcriptional state alters genomic patterns of DNA double-strand break repair in human astrocytes. Nat. Commun. 5, 5793
102. Berghoff, A.S. et al. (2015) Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 17, 1064–1075
103. Pittet, C.L. et al. (2011) The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD-L1 levels on CNS cells. Glia 59, 841–856
104. Gao, X. et al. (2012) PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. J. Neuroinflammation 19, 43
105. Singh, S.K. et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828
106. Frosina, G. (2011) The bright and the dark sides of DNA repair in stem cells. J. Biomed. Biotechnol. 2011, 845396
107. Newcomb, J.K. et al. (1999) Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp. Neurol. 158, 76–88
108. Arnett, H.A. et al. (2007) TNF-a promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4, 1116–1122
109. Bonina, M. et al. (2014) Tumor necrosis factor-a impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ. 221, 1196–1208
110. Park, N.I. et al. (2009) Gliona stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4, 589–589
111. Pyonteck, S.M. et al. (2013) CSF-1R inhibition alters macrophage polarization and blocks gloma progression. Nat. Med. 19, 1264–1272
112. Akkan, L. et al. (2003) Dynamic changes in gloma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12, 7843
113. Gensert, J.A.M. and Goldman, J.E. (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203
114. Newcomb, J.K. et al. (1999) Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp. Neurol. 158, 76–88
115. Pittet, C.L. et al. (2011) The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD-L1 levels on CNS cells. Glia 59, 841–856
116. Gao, X. et al. (2012) PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. J. Neuroinflammation 19, 43
117. Singh, S.K. et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828
118. Frosina, G. (2011) The bright and the dark sides of DNA repair in stem cells. J. Biomed. Biotechnol. 2011, 845396
119. Newcomb, J.K. et al. (1999) Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp. Neurol. 158, 76–88
120. Petrocca, K. et al. (2013) Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J. Neuro-Oncol. 111, 19–23
121. Hwang, S.Y. et al. (2008) Ionizing radiation induces astrocyte gliosis through microglial activation. Neurobiol. Dis. 21, 457–467
122. Turnquist, C. et al. (2019) Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro Oncol. 21, 474
123. Wang, J. et al. (2018) Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776