Global burden of chronic obstructive pulmonary disease attributable to ambient particulate matter pollution and household air pollution from solid fuels from 1990 to 2019

Yinglin Wu1 · Shiyu Zhang1 · Bingting Zhuo1 · Miao Cai1 · Zhengmin Min Qian2 · Michael G. Vaughn3 · Stephen Edward McMillin3 · Zilong Zhang1 · Hualiang Lin1

Received: 23 August 2021 / Accepted: 20 November 2021 / Published online: 12 January 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We aimed to estimate the spatiotemporal trends in the global burden of chronic obstructive pulmonary disease (COPD) attributable to both household air pollution from solid fuels (HAP) and ambient particulate matter (APM) from 1990 to 2019 and compared the possible differences between the burdens attributable to APM and HAP. The number of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLLs) of COPD attributable to HAP from solid fuels and APM during 1990–2019 were extracted from the Global Burden of Diseases Study 2019. The proportion of YLLs in DALYs and average YLLs per COPD death were also calculated. Subgroup analyses by sex, age, and socio-demographic index (SDI) were conducted. The estimated annual percentage change (EAPC) was used to assess the temporal trend of age-standardized rate of mortality (ASMR) and DALYs (ASDR). Over the past 30 years, we observed a clear downward trend in COPD deaths attributable to HAP and an upward trend by 97.61% in COPD deaths attributable to APM. The global COPD burden attributable to APM in 2019 was higher than those due to HAP, except in low-SDI regions. For both HAP and APM, YLLs continued to predominate in DALYs of COPD, with an average YLLs per death of more than 10 years in different regions. The ASMR was higher in males and lower in high-SDI regions. The ASMR and ASDR attributable to HAP decreased globally in all age groups during 1990–2019, while those attributable to APM increased among people older than 80 years and in regions with lower SDI. Our study reveals an increasing trend in APM-attributable COPD burden over the past three decades. Comparatively, the global burden due to HAP decreased markedly, but it was still pronounced in low-SDI regions. Continued efforts on PM mitigation are needed for COPD prevention.

Keywords Particulate matter · Chronic obstructive pulmonary disease · Global burden of disease · Mortality · Disability-adjusted life-years

Introduction
Chronic obstructive pulmonary disease (COPD) poses a threat to global health, with an estimated prevalence of approximately 300 million in 2017 (GBD Chronic Respiratory Disease Collaborators 2020). It is also a leading cause of mortality and disability-adjusted life-years (DALYs) globally (GBD 2019 Diseases and Injuries Collaborators 2020), accounting for 3.20 million deaths and 81.60 million DALYs in 2017 (Li et al. 2020). The etiology of COPD is complicated and involves multiple factors such as genetics, lifestyle, and environmental exposures (Ni et al. 2020, Sadhra et al. 2020, Singanayagam and Johnston 2020, Tian et al. 2020). Compelling epidemiologic studies suggested that particulate matter (PM) air pollution is an important
environmental risk factor for COPD (Cao et al. 2021; Li et al. 2016; Park et al. 2021).

The source of PM includes ambient PM pollution (APM) mainly originating from transportation and power plants, and household air pollution from the combustion of solid fuels (HAP) (GBD 2019 Risk Factors Collaborators 2020). Long-term exposure to PM pollution, especially PM with an aerodynamic diameter smaller than or equal to 2.5 μm (PM$_{2.5}$), may transport deep into the lung and trigger oxidative stress and inflammatory responses, leading to chronic respiratory inflammation and fibrosis (Liu et al. 2017; Niu et al. 2021; Xia et al. 2020).

However, previous studies have focused on the effects of APM and HAP on COPD and their potential mechanism, usually in a certain region or at a specific time, and no studies have systematically assessed the trend of the population attributable burden over the past 30 years from a global perspective. Furthermore, the majority of previous studies only assessed morbidity and mortality attributable to either APM or HAP, and a comparison is needed to explore the possible differences between APM and HAP. Therefore, we conducted this study to estimate the spatiotemporal trends of the global burden of COPD attributable to both HAP and APM from 1990 to 2019 using data from the Global Burden of Disease Study (GBD) 2019. Given the scope of the present study, our findings would help to inform the development of more effective strategies to reduce the PM-associated COPD burden.

Methods

Data sources

We retrieved the relevant data on the burden of COPD attributable to PM air pollution from the GBD 2019 through the Global Health Data Results Tool (GHDx, http://ghdx.healthdata.org/gbd-results-tool). The GBD 2019 comprehensively estimated the mortality and disability-adjusted life-years (DALYs) of 369 diseases and injuries for 204 countries and territories from 1990 to 2019, using a unified and comparable approach. Details of this study have been described elsewhere (GBD 2019 Risk Factors Collaborators 2020). Four indicators of COPD disease burden attributable to APM and HAP were used in the present study, including mortality, DALYs, years of life lost (YLLs), and years lived with disability (YLDs).

In the GBD 2019, countries and territories were divided into 21 regions according to epidemiological and geographical characteristics (GBD 2019 Diseases and Injuries Collaborators 2020). Their locations are illustrated in Fig. S1. We also classified countries and territories into different regions based on SDI, which was a comprehensive indicator of average year of education, total fertility rate (TFR), and the lag-distributed income per capita in a country (GBD 2019 Demographics Collaborators 2020, GBD 2019 Diseases and Injuries Collaborators 2020).

Assessment of PM air pollution exposure

HAP in the GBD 2019 was defined as the HAP from household combustion of solid fuels, and the estimation methods have been described in detail elsewhere (GBD 2019 Risk Factors Collaborators 2020). Briefly, it was estimated from both the proportion of individuals using solid fuels and the level of excess PM$_{2.5}$ exposure for these individuals. Solid fuels included coal, wood, charcoal, dung, and agricultural residues such as crop stalks, husks, or straw. The GBD 2019 synthesized the household solid fuels use data from a variety of standard multi-country surveys that surveyed the household information, such as Demographic and Health Surveys, Living Standards Measurement Surveys, Multiple Indicator Cluster Surveys, and World Health Surveys (GBD 2019 Risk Factors Collaborators 2020). The proportion of PM exposure from solid fuels at the individual level was then modeled using linear, spatiotemporal, and Gaussian regression three-step modeling strategy. The individual excess PM$_{2.5}$ exposure due to using solid fuels was estimated by a linear model using the study database from the Global Household Air Pollution measurement database from WHO (Shupler et al. 2018a). The level of HAP exposure due to combustion of solid fuels was then estimated using a Bayesian, hierarchical model based on the excess HAP data aforementioned (GBD 2019 Risk Factors Collaborators 2020, Shupler et al. 2018b).

APM exposure in the GBD 2019 study was defined as the population-weighted annual average concentration of PM$_{2.5}$ (μg/m3), which was estimated by multiple sources using ground measurements, satellite observations, chemical transport model simulations, population estimates, and land-use data. The estimation approach has been previously detailed (GBD 2019 Risk Factors Collaborators 2020). In brief, the PM$_{2.5}$ ground measurement database consisted of updated data from the WHO Global Ambient Air Quality Database, including measurements of concentrations of PM$_{10}$ and PM$_{2.5}$ from 10,408 ground air monitors from 116 countries. GEOS Chem chemical transport model was used to evaluate the sum of particulate sulfate, nitrate, ammonium, organic carbon, and the compositional concentrations of mineral dust, combined with elevation and the distance to the nearest urban land surface in a 0.1°×0.1° resolution (van Donkelaar et al. 2016). Satellite-based estimates of PM$_{2.5}$ were calculated based on the algorithms used in the GBD 2017 (van Donkelaar et al. 2016), with updated satellite retrievals, chemical transport modeling, and ground-based monitoring at 0.1°×0.1° resolution. Population data were obtained from the Gridded Population of the World (GPW) database, adjusted by UN2015 Population Prospectus.
A Bayesian model was then used to estimate the gridded concentrations, and data integration model for air quality (DIMAQ) was used to estimate ambient PM2.5 by matching the gridded estimates with the corresponding coefficients from the calibration (Shadrick et al. 2018).

COPD mortality and DALYs attributable to particulate matter pollution

The GBD 2019 used the results of different types of studies that explored the association between COPD and APM and HAP from solid fuels and then used these results to fit the risk curve via meta-regression Bayesian, regularized, trimmed (MR-BRT) splines. Theoretical minimum-risk exposure level (TMREL) was incorporated to fit the risk curve beginning at null exposure (Turner et al. 2016), which was defined as a uniform distribution given by the air pollution exposure distributions from cohort studies conducted in North America (GBD 2019 Risk Factors Collaborators 2020). In the GBD 2019, the lower and upper bounds of the distribution were 2.4 and 5.9 μg/m³, respectively. To calculate the attributable burden due to APM and HAP, the GBD 2019 used the integrated exposure response (IER) to obtain proportional population attributable fraction (PAF). In short, the COPD burden attributable to APM or HAP was estimated by splitting the PAF attributable to PM at a country level based on the average exposure levels.

We utilized age- and sex-specific mortality and DALYs to quantify the global burden of COPD attributable to APM and HAP. Deaths due to COPD were estimated as the number of deaths in a population over the specific study period, identified using the 9th and 10th International Classification of Diseases and Injuries (ICD-9 and ICD-10). DALYs were calculated as the sum of YLLs and YLDs, where YLLs were the number of years of life lost due to premature death under the GBD standard life expectancy for each age group, and YLDs were the number of years lived with any short-term or long-term health loss weighted by severity of the disability.

To further examine whether the disability or premature death contributed more to DALYs, we calculated the proportion of YLLs in DALYs as follows:

\[
\text{proportion of YLLs in DALYs} = \frac{\text{the number of YLLs}}{\text{the number of DALYs}}.
\]

We also estimated average YLLs per COPD death to assess the average life lost due to premature death for COPD patients, using the following algorithm:

\[
\text{the average YLLs per COPD death} = \frac{\text{the number of YLLs}}{\text{the number of deaths}}
\]

Statistical analysis

To control the impact of demographic differences, we used age-standardized mortality rate (ASMR) and DALYs rate (ASDR). We then used percentage change and estimated annual percentage change (EAPC) over 1990 to 2019 to estimate the temporal trends of ASMR and ASDR of COPD attributable to PM air pollution (Liu et al. 2019). Age-standardized rate (ASR) was fitted in a regression model:

\[
\ln(\text{ASR}) = \alpha + \beta x + \epsilon
\]

where \(x\) was the calendar year, and:

\[
EAPC = (\exp(\beta) - 1) \times 100\%
\]

The ASMR and ASDR would increase if the lower boundary of 95% confidence interval (CI) of EAPC is higher than 0 (Liu et al. 2019). In contrast, if the higher boundary of its 95% CI is lower than 0, there is a decreasing trend for the ASMR and ASDR.

Pearson correlation coefficients were calculated between SDI and the ASMR and ASDR. A two-sided \(P\) value of < 0.05 was considered statistically significant. All statistical analyses were performed using R (version 3.6.1).

Results

Disease burden attributable to household air pollution from solid fuels

According to the GBD 2019, the COPD deaths attributable to HAP decreased by 57.28%, from 0.93 [95% uncertainty interval (UI) 0.59, 1.28] million in 1990 to 0.40 (95% UI 0.24, 0.61) million in 2019 (Table S1). In 2019, the largest number of deaths was found in South Asia [0.23 (95% UI 0.13, 0.35) million], accounting for 58.00% of the total COPD deaths attributable to HAP. Figure 1 presents the global distribution of ASMR, ASDR, and their EAPC due to COPD attributable to HAP in 1990 and 2019. In 2019, the largest decreasing EAPC in ASMR was found in high-income Asia Pacific [−10.29% (95% CI −10.97%, −9.60%)]. Over the study period, a clear declining trend was observed in global DALYs of COPD.
attributable to HAP from 21.41 (95% UI 13.75, 29.30) million in 1990 to 9.30 (95% UI 5.69, 14.04) million in 2019 (Fig. 1; Table S2), and the EAPC of ASDR was -5.48% (95% CI $-5.67\%, -5.29\%$).

The changes of YLL-related indicators in 1990 and 2019 are presented in Table 1. A decreasing trend of the proportion of YLLs in DALYs due to COPD attributable to HAP was found over the past three decades. The proportion of YLLs in DALYs decreased by approximately 10.00% during 1990–2019 at the global level and ranged from 54.48% in high-income Asia Pacific to 88.68% in Oceania in 2019 (Table 1).

The average YLLs per COPD death attributable to HAP also decreased globally from 19.66 years in 1990 to 18.01 years in 2019 (Table 1). However, it increased in four regions, including North Africa and Middle East, Western Sub-Saharan Africa, Central Asia, and Southern Sub-Saharan Africa. The highest average YLLs per COPD death in 2019 was seen in Oceania (23.31 years) and the lowest in high-income Asia Pacific (11.24 years).

Disease burden of COPD attributable to ambient particulate matter pollution

In contrast to COPD deaths attributable to HAP, the COPD deaths attributable to APM increased by 97.61%, from 0.35 [95% UI 0.22, 0.51] million people in 1990 to 0.70 (95% UI 0.55, 0.86) million people in 2019 (Table S3). And the global DALYs due to COPD attributable to APM increased by 93.11%, from 7.98 (95% UI 5.06, 11.67) million in 1990 to 15.41 (95% UI 12.39, 18.97) million in 2019. However, the global ASMR and ASDR declined, and the EAPCs of ASMR and ASDR during 1990–2019 were -0.58% (95% CI $-0.72\%, -0.44\%$) and -0.40% (95% CI $-0.51\%, -0.29\%$), respectively (Table S4). Figure 2 shows the global distribution of ASMR, ASDR, and their EAPC due to COPD attributable to APM in 1990 and 2019.

The proportion of YLLs in DALYs due to COPD attributable to APM decreased across the world except in the Caribbean and high-income North America, similar to that of HAP (Table 2). However, the proportion of YLLs in DALYs (75.96%) was still much higher than that of YLDs in DALYs (24.04%) in 2019. In 2019, the greatest proportion of YLLs in DALYs was observed in Oceania and the smallest in high-income Asia Pacific.

The global average YLLs per COPD death attributable to APM was 19.08 years in 1990, and declined to 16.85 years in 2019 (Table 2). Among different regions, Oceania had the highest average YLLs per COPD death (23.09 years) in 2019. Other regions with average YLLs per COPD death exceeding 20 years in 2019 included Central Asia, Western Sub-Saharan Africa, Eastern Sub-Saharan Africa, and Central Sub-Saharan Africa. The lowest average YLLs per COPD death in 2019 was observed in high-income Asia Pacific (11.84 years).

Comparison on COPD burden attributable to HAP and APM

The contribution of APM and HAP to the global COPD burden has changed over the past three decades. In 1990, HAP was the leading risk factor for COPD. The deaths and DALYs due to COPD attributable to HAP declined since 1990 and reached a similar level to those attributable to
APM in 2010 (Fig. 3). APM became the second leading risk factor of COPD in 2019. The opposite phenomenon was observed in the low-SDI region, in which the ASMR and ASDR due to COPD attributable to HAP were higher than those attributable to APM (Fig. S2).

The sex-specific and age-specific COPD burden was similar between those attributable to APM and HAP (Fig. 4). The global ASR of COPD deaths and DALYs were higher in males than in females and increased with age in 2019. The ASMR and ASDR of COPD in both males and females had declined, with a greater EAPC in males (Table S1; Table S2; Table S3; Table S4). Consequently, the between-sex disparity was narrowed. By contrast to the mortality rate and DALY rate due to COPD attributable to HAP decreasing in all age groups, the mortality rate and DALYs rate from COPD attributable to APM among people younger than 80 years decreased from 1990 to 2019 but increased among people elder than 80 years (Fig. S4).

Figure 5 shows that the ASMR and ASDR of COPD attributable to HAP decreased in all different SDI regions from 1990 to 2019. A greater decline was observed in regions with lower SDI, and the disparity among regions in ASR due to COPD attributable to HAP narrowed over the past 30 years. Compared with the ASMR and ASDR due to COPD attributable to HAP, those attributable to APM decreased in the middle-SDI region, high-middle-SDI

Table 1

Focal regions	Number of YLLs, number × 10³	Proportion of YLLs in DALYs	Average YLLs per death			
	1990	2019	1990	2019	1990	2019
Global	18,335.37	7175.21	85.65%	77.15%	19.66	18.01
Gender						
Male	9903.91	3787.21	88.46%	81.98%	20.67	18.89
Female	8431.45	3388.00	82.56%	72.38%	18.60	17.12
SDI quintile						
Low SDI	1980.05	1928.54	81.11%	75.37%	21.63	19.78
Low-middle SDI	6763.86	3913.89	84.72%	79.23%	20.74	18.11
Middle SDI	6918.40	1142.41	87.37%	74.69%	19.13	15.91
High-middle SDI	2635.26	183.25	87.39%	69.53%	17.44	14.60
High SDI	33.33	2.48	76.03%	65.67%	17.38	13.02
GBD region						
High-income Asia Pacific	0.94	0.10	62.78%	54.48%	15.85	11.24
Central Asia	51.66	11.78	82.75%	78.23%	20.61	20.62
East Asia	9644.79	1329.73	89.73%	78.92%	18.67	15.29
South Asia	6317.75	4233.46	82.81%	79.27%	20.96	18.32
Southeast Asia	943.65	470.77	79.84%	71.31%	20.40	18.63
Australasia	0.24	0.03	68.26%	61.53%	17.08	14.16
Caribbean	19.13	20.26	87.31%	85.67%	21.05	20.78
Oceania	39.12	62.36	90.36%	88.68%	23.98	23.31
Central Europe	63.79	12.03	79.45%	69.53%	18.55	16.51
Eastern Europe	35.32	3.17	80.68%	74.46%	19.40	17.87
Western Europe	5.44	0.80	71.87%	64.91%	14.93	11.51
High-income North America	0.65	0.38	61.44%	63.46%	17.45	15.93
Andean Latin America	13.72	6.15	82.52%	76.62%	17.59	14.54
Central Latin America	67.26	49.91	83.03%	82.35%	17.66	15.46
Southern Latin America	8.04	1.87	80.10%	76.09%	18.09	14.78
Tropical Latin America	120.02	29.52	84.71%	82.08%	19.10	16.68
North Africa and Middle East	159.42	72.09	79.00%	73.44%	21.74	22.84
Central Sub-Saharan Africa	123.81	152.50	78.40%	72.16%	22.70	21.26
Eastern Sub-Saharan Africa	388.50	397.59	77.05%	69.41%	22.41	21.10
Southern Sub-Saharan Africa	39.46	21.11	64.80%	61.50%	19.27	19.49
Western Sub-Saharan Africa	292.67	299.58	70.90%	65.31%	21.25	21.38

Abbreviations: COPD chronic obstructive pulmonary disease, DALYs disability-adjusted life-years, GBD Global Burden of Diseases Study, SDI socio-demographic index, YLLs years of life lost
region, and high-SDI region but increased in low- and low-middle SDI regions (Fig. 5). Furthermore, the greatest number of deaths \[0.26 (95\% \text{ UI } 0.20, 0.32) \text{ million}\] was observed in the middle-SDI region in 2019, accounting for 37.03% of the total number of global COPD deaths attributable to APM (Table S4). The correlation between SDI and ASMR or ASDR was negative in both those attributable to APM and HAP (ASDR attributable to APM: \(r = -0.28, p < 0.001\); ASDR attributable to HAP: \(r = -0.70, p < 0.001\); Fig. S5).

Discussion

To the best of our knowledge, this is the first study to estimate the global spatial and temporal trends of mortality and DALYs due to COPD attributable to both HAP and APM from 1990 to 2019 and compare the differences between the two risk factors using a comprehensive approach. Notably, we found a clear decreasing trend in COPD mortality and DALYs attributable to HAP from solid fuels exposure, whereas an increasing trend was observed for APM. APM overtook HAP to become the leading risk factor for COPD in 2019.

Several previous studies have explored the potential burden of disease attributable to PM air pollution, but only at a national level (Bennett et al. 2019; Chen et al. 2017; Khomenko et al. 2021). For example, one national study from the USA found that approximately 130 thousand deaths due to cardiorespiratory diseases, including COPD, were estimated attributable to \(\text{PM}_{2.5}\) pollution during 1999–2015 (Bennett et al. 2019). Another study conducted in China showed that 250 thousand COPD deaths were attributable to \(\text{PM}_{2.5}\) in 2017 (Liu et al. 2021). However, most of these studies have focused on the outcome of all-cause mortality, and few studies assessed the COPD burden from a global perspective. In this study, using the latest data of the GBD 2019, we mainly focused on the COPD burden attributable to both APM and HAP from solid fuels exposure. The COPD burden attributable to PM pollution estimated in the GBD 2019 was slightly higher than that in GBD 2017. These differences might be due to the newly added data, updated PM exposure assessment, and the changes in the exposure-risk curve (GBD 2019 Risk Factors Collaborators 2020).

The substantial reduction in COPD mortality and DALYs attributable to HAP observed in our study might have benefited from global efforts on mitigation of household PM air pollution (Watts et al. 2018). Universal access to affordable and clean energy is one of the United Nations Sustainable Development Goals, and government interventions have led to achievements in promoting clean energy, especially in Asia and Sub-Saharan Africa (IEA et al. 2019). For example, the Chinese government had implemented a series of measures to reduce HAP, such as China’s National Improved Stove Program and the Air Pollution Prevention and Control Action Plan (Edwards et al. 2007; Huang et al. 2018), which were aimed to reduce air pollution emission by optimizing the industrial infrastructure, increasing clean energy application, and so on. Some studies reported that such transition in household fuels has resulted in a reduction in household \(\text{PM}_{2.5}\) exposure and HAP-associated burden of diseases (Pope et al. 2017; Quansah et al. 2017; Thakur et al. 2021).
Previous measurements were imperative to reduce the HAP-attributable COPD burden. However, around three billion people globally still rely on solid fuels for cooking and heating (IEA et al. 2019).

Comparatively, the number of COPD deaths and DALYs attributable to APM increased worldwide during 1990–2019. This change was probably due to population growth, population aging, and the increase of ambient PM pollution exposure in regions with lower SDI (GBD 2019 Risk Factors Collaborators 2020). After adjusting for population growth and age structure, the global age-standardized rate of mortality and DALYs for COPD decreased slightly. However, over 90% of the world population still lives in areas with APM exceeding the WHO limits (World Health Organization (WHO) 2021), and APM still remains a challenge to global public health.

Interestingly, we found that the proportion of YLLs in DALYs due to COPD attributable to APM and HAP decreased from 1990 to 2019, which might be due to the improvement of COPD treatment, such as better control of COPD risk factors, advanced pharmacotherapy, and other interventions (Rabe and Watz 2017). Similarly, a decreasing trend of the average YLLs per COPD death attributable to APM and HAP was observed. However, the average loss of life due to COPD premature death attributable to APM and HAP in 2019 was still as high as 16.85 years

Abbreviations: COPD chronic obstructive pulmonary disease, DALYs disability-adjusted life-years, GBD Global Burden of Diseases Study, SDI socio-demographic index, YLLs years of life lost	Number of YLLs, number \(\times 10^3 \)	Proportion of YLLs in DALYs	Average YLLs per death			
Global	6710.77	11,708.53	84.07%	75.96%	19.08	16.85
Gender						
Male	4222.49	7253.28	86.78%	80.47%	20.02	17.62
Female	2488.28	4455.25	79.83%	69.61%	17.68	15.72
SDI quintile						
Low SDI	287.95	1017.38	82.64%	78.10%	21.41	19.13
Low-middle SDI	1267.55	4368.10	85.61%	80.88%	20.94	18.33
Middle SDI	2724.27	4195.93	86.42%	74.94%	19.50	16.30
High-middle SDI	1968.25	1724.52	84.98%	70.99%	17.88	14.60
High SDI	461.68	400.46	67.55%	61.84%	16.53	14.30
GBD region						
High-income Asia Pacific	38.43	63.08	60.24%	53.28%	15.77	11.84
Central Asia	46.12	57.09	82.62%	78.90%	20.95	20.56
East Asia	3611.58	4013.85	89.66%	77.28%	21.53	14.84
South Asia	1533.88	5669.80	82.65%	78.15%	20.64	14.83
Southeast Asia	252.05	452.15	78.17%	70.35%	20.51	18.63
Australasia	4.34	4.15	70.13%	62.29%	17.03	14.04
Caribbean	6.82	17.64	78.99%	79.09%	18.16	17.51
Oceania	2.48	6.88	90.54%	88.96%	23.69	23.09
Central Europe	132.22	85.95	78.80%	68.87%	19.94	16.71
Eastern Europe	234.40	75.27	82.05%	75.60%	19.64	18.21
Western Europe	291.70	186.09	71.32%	63.81%	15.48	12.89
High-income North America	142.15	116.42	60.08%	62.31%	17.55	15.73
Andean Latin America	9.59	18.47	83.08%	75.31%	17.55	14.03
Central Latin America	59.69	129.87	82.82%	80.58%	17.30	14.88
Southern Latin America	20.89	33.32	80.98%	76.81%	18.43	15.04
Tropical Latin America	59.55	88.50	86.23%	82.37%	19.83	17.00
North Africa and Middle East	165.12	408.70	74.26%	64.77%	21.08	19.73
Central Sub-Saharan Africa	12.32	37.46	79.59%	71.04%	22.64	21.50
Eastern Sub-Saharan Africa	20.46	62.28	77.73%	69.76%	22.11	20.99
Southern Sub-Saharan Africa	25.63	48.63	67.14%	64.53%	20.04	19.48
Western Sub-Saharan Africa	41.36	132.93	70.02%	64.29%	20.79	20.57

Table 2 The number of YLLs, proportion of YLLs in DALYs, and average YLLs per death due to COPD attributable to ambient particulate matter pollution in 1990 and 2019

(IEA et al. 2019).
and 18.01 years, respectively, which were close to 23% and 25% of global life expectancy (World Health Organization (WHO) 2020). Given the high average YLL per death, more attention should be allocated to COPD amelioration efforts.

In 2019, considerable regional differences in the age-standardized mortality rate and DALYs of COPD attributable to HAP and APM were observed. These differences could be attributable to multiple factors, such as the geographical differences in the composition of the PM and the influence of SDI. Differences in chemical compositions with different toxicity might result in different health impacts (Yang et al. 2019). Moreover, the correlation analysis in this study revealed a negative correlation between SDI and the ASMR of COPD attributable to HAP and APM. The finding is consistent with previous studies (Liu et al. 2008; Siddharthan et al. 2018), suggesting the development inequalities across different SDI regions may affect the impact of PM on COPD death and DALYs. As low- and middle-income countries mainly rely on traditional energy sources for household cooking and heating, HAP exposure levels are much higher in these countries than in high-income countries (Gordon et al. 2014). In addition, the lack of high-quality public health care in low-income countries due to economic deprivation and the relatively poor health awareness of the population may amplify the COPD burden due to PM pollution (Bazargani et al. 2014; GBD 2019 Demographics Collaborators 2020). Interestingly, the largest mortality and DALYs attributable to APM were observed in the middle-SDI region, which was possibly due to the rapid industrialization in these countries driven by massive energy
consumption and power generation (GBD 2019 Risk Factors Collaborators 2020). On the other hand, a series of air quality control measures were conducted in the study period in countries with higher SDI, such as coordinated policies and other interventions on industries and vehicles, which promoted the reduction of APM in these regions (Burns et al. 2020).

Given the increasing trend in COPD burden attributable to APM observed in our study, continued efforts are needed to mitigate ambient air pollution to reduce COPD disease burden, especially in more developed regions (i.e., regions with middle and high SDI). As for low-SDI regions, HAP still remains an important risk factor to COPD, and effective measures targeting household air pollution are needed, such as the promotion of the transitions from solid fuels to clean energy.

In subgroup analyses, we found higher age-standardized mortality and DALYs of COPD attributable to PM in males than in females, except for DALYs attributable to HAP in Oceania and Central Sub-Saharan Africa. Such sex disparity, especially those attributable to HAP, might seem to be unplausible, which could be partially due to the improvement in household energy consumption, the differences in risk behaviors related to COPD, and the higher number of COPD mortality in males (GBD Chronic Respiratory Disease Collaborators 2020; IEA et al. 2019). Males had a greater prevalence of some other risk factors of COPD (GBD 2019 Risk Factors Collaborators 2020, GBD Chronic Respiratory Disease Collaborators 2020), such as smoking and occupational dust exposure, which might influence the effect of PM air pollution on COPD burden. For example, both epidemiological and animal studies have found that the joint effect of smoking and particulate matter on COPD was more pronounced than their separate effects (Su et al. 2021; Wang et al. 2019). However, the underlying mechanisms remain unknown, and more studies are needed to illuminate this sex difference.

Although APM and HAP are mainly composed of air-suspended particles, their sources are different. In the GBD 2019, HAP mainly originated from the combustion of solid fuels, in contrast to APM which had more different types of sources, such as traffic pollution and industrial pollution (GBD 2019 Risk Factors Collaborators 2020, Zhang et al. 2019). These different sources for APM and HAP may result in different compositions, leading to different toxic effects on cardiopulmonary function (Wu et al. 2014;
Zhou et al. 2021). For example, one study found that HAP was associated with a decrement in forced expiratory volume in the first second (FEV1), while APM was associated with a reduction in peak expiratory flow (PEF) (Chi et al. 2019). Other studies also reported that PM from different constituents and sources had different cardiopulmonary effects (Wu et al. 2016; Zhang et al. 2021).

Our study has some limitations. First, the estimates in the GBD 2019 depended on the availability and quality of the primary data in each country or territory with inevitable variations (GBD 2019 Diseases and Injuries Collaborators 2020, Li et al. 2020). Second, misdiagnosis and underdiagnosis due to lack of adequate equipment might lead to underestimation of COPD burden attributable to PM pollution (Li et al. 2020). Third, HAP can originate from various sources other than solid fuel combustion, such as tobacco smoke, furnishing, and construction materials (Ni et al. 2020), whereas HAP exposure in the GBD study was estimated only based on the consumption of solid fuels (GBD 2019 Risk Factors Collaborators 2020). This might have led to an underestimation of the COPD burden attributable to HAP. Fourth, there is possible residual confounding due to unmeasured or unknown confounding factors in these studies included in the GBD 2019, which could have affected the assessment of the risk curves. Finally, the GBD 2019 did not take into account PM components, though studies have shown that different PM components have different health effects (Yang et al. 2019). These limitations increase the uncertainty of the results, and therefore, more studies on HAP and COPD, as well as the component of PM and COPD, are needed in the future.

Fig. 5 The age-standardized rates of COPD mortality and DALYs attributable to household air pollution from solid fuels (A) and ambient particulate matter pollution (B) from 1990 to 2019 by socio-demographic index region. COPD, chronic obstructive pulmonary disease; SDI, socio-demographic index.
Conclusions

In conclusion, we found that the number of mortality and DALYs for COPD attributable to HAP decreased markedly over the past three decades, while those attributable to APM increased. Geographical differences were observed as the global COPD burden attributable to APM in 2019 was higher than those due to HAP in high- and middle-SDI regions, whereas in low-SDI regions, HAP was still a major contributor. More effective control measures should be implemented to reduce the COPD burden associated with APM pollution, while improvement of household clean energy is still needed to reduce household air pollution in low-SDI countries.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-17732-8.

Acknowledgements We appreciate the work by GBD 2019 collaborators.

Author contribution YW: conceptualization, methodology, data analysis, visualization, writing—original draft, and writing—review and editing. SZ: formal analysis and writing—review and editing. BZ: methodology, data analysis, and writing—review and editing. MC: methodology, visualization, and writing—review and editing. ZQ: writing—review and editing. MGV: writing—review and editing. SEM: methodology, data curation, validation, and writing—review and editing. HL: conceptualization, data curation, validation, writing—review and editing, and funding acquisition.

Funding This work was supported by the National Natural Science Foundation of China (82041021) and the Bill & Melinda Gates Foundation (No.: INV-006371). The funders had no role in the study design or implementation, data collection, management, analysis, data interpretation, manuscript preparation, review, approval, or the decision to submit the manuscript for publication.

Data availability Data sources are available in the Global Burden of Disease Study 2019 (http://ghdx.healthdata.org/gbd-results-tool).

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Bazargani YT, de Boer A, Leufkens HG, Mantel-Teeuwisse AK (2014) Essential medicines for COPD and asthma in low and middle-income countries. Thorax 69:1149–1151

Bennett JE, Tamura-Wicks H, Parks RM, Burnett RT, Pope CA 3rd, Bechle MJ, Marshall JD, Daneai G, Ezzati M (2019) Particulate matter air pollution and national and county life expectancy loss in the USA: a spatiotemporal analysis. PLoS Med 16:e1002856

Burns J, Boogaard H, Polus S, Pfadenhauer LM, Rohwer AC, van Erp AM, Turley R, Rehfuess EA (2020) Interventions to reduce ambient air pollution and their effects on health: an abridged Cochrane systematic review. Environ Int 135:105400

Cao D, Li D, Wu Y, Qian Z, Liu Y, Liu Q, Sun J, Guo Y, Zhang S, Jiao G, Yang X, Wang C, McMillin SE, Zhang X, Lin H (2021) Ambient PM2.5 exposure and hospital cost and length of hospital stay for respiratory diseases in 11 cities in Shaxi Province, China. Thorax 76:815–820. https://doi.org/10.1136/thoraxjnl-2020-215838

Chen R, Yin P, Meng X, Liu C, Wang L, Xu X, Ross JA, Tse LA, Zhao Z, Kan H, Zhou M (2017) Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities. Am J Respir Crit Care Med 196:73–81

Chi R, Chen C, Li H, Pan L, Zhao F, Deng F, Guo X (2019) Different health effects of indoor- and outdoor-originated PM2.5 on cardio-pulmonary function in COPD patients and healthy elderly adults. Indoor Air 29:192–201

Edwards RD, Liu Y, He G, Yin Z, Sinton J, Peabody J, Smith KR (2007) Household CO and PM measured as part of a review of China’s National Improved Stove Program. Indoor Air 17:189–203

GBD 2019 Demographics Collaborators (2020) Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 396:1160–1203

GBD 2019 Diseases and Injuries Collaborators (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1204–1222

GBD 2019 Risk Factors Collaborators (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1223–1249

GBD Chronic Respiratory Disease Collaborators (2020) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 8:585–596

Gordon SB et al (2014) Respiratory risks from household air pollution in low and middle income countries. Lancet Respir Med 2:823–860

Huang J, Pan X, Guo X, Li G (2018) Health impact of China’s Air Pollution Prevention and Control Action Plan: an analysis of national air quality monitoring and mortality data. Lancet Planet Health 2:e313–e323

IEA, IRENA, UNSD, WB, WHO (2019) Tracking SDG 7: the Energy Progress Report 2019. Washington DC. https://www.un.org/susta

Inabledevelopment/energy/. Accessed 05 April 2021

Khomenko S, Cirach M, Pereira-Barboza E, Mueller N, Barrera-Gómez J, Rojas-Rueda D, de Hoogh K, Hoek G, Nieuwenhuijsen M (2021) Premature mortality due to air pollution in European cities: a health impact assessment. Lancet Planet Health 5:e121–e134

Li MH, Fan LC, Mao B, Yang JW, Choi AMK, Cao WJ, Xu JF (2016) Progress Report 2019, Washington DC. https://
dia.

org/10.1136/rapidxjnl-2020-177328.

Liu S, Zhou Y, Liu S, Chen X, Zou W, Zhao D, Li X, Pu J, Huang L, Chen J, Li B, Liu S, Pan P (2017) Association between exposure...
to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax 72:788–795
Liu Z, Jiang Y, Yuan H, Fang Q, Cai N, Suo C, Jin L, Zhang T, Chen X (2019) The trends in incidence of primary liver cancer caused by specific etiologies: results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention. J Hepatol 70:674–683
Liu M, Saari RK, Zhou G, Li J, Han L, Liu X (2021) Recent trends in premature mortality and health disparities attributable to ambient PM2.5 exposure in China: 2005–2017. Environ Pollut 279:116882
Ni Y, Shi G, Qu J (2020) Indoor PM2.5, tobacco smoking and chronic lung diseases: a narrative review. Environ Res 181:108910
Niu X, Jones T, BeruBe K, Chuang HC, Sun J, Ho KF (2021) The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity. Sci Total Environ 767:144391
Park J, Kim HJ, Lee CH, Lee HW (2021) Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Environ Res 194:110703
Pope D, Bruce N, Dherani M, Jagoe K, Rehfuess E (2017) Real-life effectiveness of ‘improved’ stoves and clean fuels in reducing PM2.5 and CO: systematic review and meta-analysis. Environ Int 101:7–18
Quansah R, Semple S, Ochieng CA, Juvekar DS, Armah FA, Lugainha I, Emina J (2017) Effectiveness of interventions to reduce household air pollution and/or improve health in homes using solid fuel in low- and middle-income countries: a systematic review and meta-analysis. Environ Int 103:73–90
Rabe KF, Watz H (2017) Chronic obstructive pulmonary disease. Lancet 389:1931–1940
Sadhra SS, Mohammed N, Kurmi OP, Fishwick D, De Matteis S, Hutchings S, Jarvis D, Ayres JG, Rushton L (2020) Occupational exposure to inhaled pollutants and risk of airflow obstruction: a large UK population-based UK Biobank cohort. Thorax 75:468–475
Shaddick G, Thomas ML, Green A, Brauer M, van Donkelaar A, Burnett R, Chang HH, Cohen A, Van Dingenen R, Dora C, Guney S, Liu Y, Martin R, Wailer LA, West J, Zidek JV, Pruss-Ustun A (2018) Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution. J R Stat Soc A Appl 67:231–253
Shupler M, Balakrishnan K, Ghosh S, Thangavel G, Stroud-Drinkwater S, Adair-Rohani H, Lewis J, Mehta S, Brauer M (2018a) Global household air pollution database: kitchen concentrations and personal exposures of particulate matter and carbon monoxide. Data Brief 21:1292–1295
Shupler M, Godwin W, Frostad J, Gustafson P, Arku RE, Brauer M (2018b) Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environ Int 120:354–363
Siddharthan T, Griggsby MR, Goodman D, Chowdhury M, Rubinstein A, Irazola V, Gutierrez L, Miranda JJ, Bernabe-Ortiz A, Alam D, Kirenga B, Jones R, van Gemert F, Wise RA, Checkley W (2018) Association between household air pollution exposure and chronic obstructive pulmonary disease outcomes in 13 low- and middle-income country settings. Am J Respir Crit Care Med 197:611–620
Singanayagam A, Johnston SL (2020) Long-term impact of inhaled corticosteroid use in asthma and chronic obstructive pulmonary disease (COPD): review of mechanisms that underlie risks. J Allergy Clin Immunol 146:1292–1294
Su J, Ye Q, Zhang D, Zhou J, Tao R, Ding Z, Lu G, Liu J, Xu F (2021) Joint association of cigarette smoking and PM2.5 with COPD among urban and rural adults in regional China. BMC Pulm Med 21:87
Thakur M, Nuyts PAW, Boudewijns EA, Flores Kim J, Faber T, Babu GR, van Schayck OCP, Been JV (2018) Impact of improved cookstoves on women’s and child health in low and middle income countries: a systematic review and meta-analysis. Thorax 73:1026–1040
Tian F, Qi J, Wang L, Yin P, Qian Z, Ruan Z, Liu J, Liu Y, McMillin SE, Wang C, Lin H, Zhou M (2020) Differentiating the effects of ambient fine and coarse particles on mortality from cardiopulmonary diseases: a nationwide multicity study. Environ Int 145:106096
Turner MC, Jerrett M, Pope CA 3rd, Krewski D, Gapstur SM, Diver WR, Beckerman BS, Marshall JD, Su J, Crouse DL, Burnett RT (2016) Long-term ozone exposure and mortality in a large prospective study. Am J Respir Crit Care Med 193:1134–1142
van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, Lyapustin A, Sayer AM, Winker DM (2016) Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Sci Environ Technol 50:3762–3772
Wang Z, Zhao J, Wang T, Du X, Xie J (2019) Fine-particle matter aggravates cigarette smoke extract-induced airway inflammation via Wnt5a-ERK pathway in COPD. Int J Chron Obstruct Pulmon Dis 14:979–994
Watts N et al (2018) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630
World Health Organization (WHO) (2020) GHE: life expectancy and healthy life expectancy. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/gha-life-expectancy-and-health-life-expectancy. Accessed 28 April 2021
World Health Organization (WHO) (2021) Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_2. Accessed 25 April 2021
Wu S, Deng F, Wei H, Huang J, Wang X, Hao Y, Zheng C, Qin Y, Lv H, Shima M, Guo X (2014) Association of cardiopulmonary health effects with source-allocated ambient fine particulate in Beijing, China: a combined analysis from the Healthy Volunteer Natural Relocation (HVNR) study. Environ Sci Technol 48:3438–3448
Wu S, Yang D, Pan L, Shan J, Li H, Wei H, Wang B, Huang J, Baccarelli AA, Shima M, Deng F, Guo X (2016) Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China. Sci Total Environ 560–561:141–149
Xia X, Qiu H, Kwok T, Ko FWS, Man CL, Ho K-F (2020) Time course of blood oxygen saturation responding to short-term fine particulate matter among elderly healthy subjects and patients with chronic obstructive pulmonary disease. Sci Total Environ 723:138022
Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, Tian L (2019) Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ Pollut 247:874–882
Zhang J, Liu W, Xu Y, Cai C, Liu Y, Tao S, Liu W (2019) Distribution characteristics of and personal exposure with polycyclic aromatic hydrocarbons and particulate matter in indoor and outdoor air of rural households in Northern China. Environ Pollut 255:113176
Zhang W, Li H, Pan L, Xu J, Yang X, Dong W, Shan J, Wu S, Deng F, Chen Y, Guo X (2021) Chemical constituents and sources of indoor PM2.5 and cardiopulmonary function in patients with chronic obstructive pulmonary disease: estimation of individual and joint effects. Environ Res 197:111191
Zhou L, Tao Y, Li H, Niu Y, Li L, Kan H, Xie J, Chen R (2021) Acute effects of fine particulate matter constituents on cardiopulmonary function in a panel of COPD patients. Sci Total Environ 770:144753
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.