Phylogenetic Analysis of Phenotypically Characterized Cryptococcus laurentii Isolates Reveals High Frequency of Cryptic Species

Kennio Ferreira-Paim1*, Thatiana Bragine Ferreira1, Leonardo Andrade-Silva1, Delio Jose Mora1, Deborah J. Springer2, Joseph Heitman2,3,4, Fernanda Machado Fonseca1, Dulcileia Matos5, Márcia Souza Carvalho Melhem5, Mario León Silva-Vergara1

1 Department of Infectious and Parasitic Diseases, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil, 2 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America, 3 Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America, 4 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America, 5 Public Health Reference Laboratory, Adolfo Lutz Institute, São Paulo, São Paulo, Brazil

Abstract

Background: Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States.

Methods: In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit RNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region.

Results: BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified.

Conclusions: Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU sequences reinforces its applicability as a DNA barcode.

Introduction

The Cryptococcus genus includes more than 100 species of which most are considered non-pathogenic, with the exceptions of Cryptococcus neoformans and Cryptococcus gattii. During the last decade Cryptococcus laurentii has occasionally been described to infect severely immunocompromised hosts [1–3]. In most of these reports from which isolates were obtained, the blood and the cerebrospinal fluid (CSF) were the predominant sources [2–5].

C. laurentii was first identified from palm wine in the Congo by Kufferath in 1920 as Torula laurentii [6]. This isolate was then reclassified as Torula laurentii [7] and renamed in 1950 as Cryptococcus laurentii (CBS 139) [8]. Later in Japan, an isolate with identical phenotypic characteristics was described as Torula flavescens [9], reclassified in 1922 as Torulopsis flavescens [7], and then renamed as Cryptococcus flavescens (CBS 942) [8].

Cryptococcus aures, Cryptococcus carnescens, and Cryptococcus penneus, in addition to C. flavescens, were also considered to be synonymous of C. laurentii until phylogenetic analysis of the internal transcribed spacer (ITS) and D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU) demonstrated that they are different species [10,11].
Table 1. Isolate, species, source, and GenBank accession numbers of **Cryptococcus** spp. environmental isolates.

Isolate	Species	Source	Country	GenBank 18S-SSU	GenBank 28S-LSU	GenBank ITS	Hap
CL01	C. laurentii	Peri-hospital	Brazil	JX393937	JN626943	JO968462	1
CL02	C. laurentii	Peri-hospital	Brazil	JX393938	JN626944	JO968463	1
CL03	C. laurentii	Peri-hospital	Brazil	JX393939	JN626945	JO968464	1
CL04	C. laurentii	Peri-hospital	Brazil	JX393940	JN626946	JO968465	1
CL05	C. laurentii	Peri-hospital	Brazil	JX393941	JN626947	JO968466	1
CL06	C. laurentii	Peri-hospital	Brazil	JX393942	JN626948	JO968467	1
CL07	C. laurentii	Peri-hospital	Brazil	JX393943	JN626949	JO968468	1
CL08	C. laurentii	Peri-hospital	Brazil	JX393944	JN626950	JO968469	1
CL09	C. laurentii	Peri-hospital	Brazil	JX393945	JN626951	JO968470	1
CL10	C. laurentii	Peri-hospital	Brazil	JX393946	JN626952	JO968471	1
CL11	C. laurentii	Trees	Brazil	JX393947	JN626953	JO968472	1
CL12	C. laurentii	Peri-hospital	Brazil	JX393948	JN626954	JO968473	1
CL13	C. laurentii	Peri-hospital	Brazil	JX393949	JN626955	JO968474	1
CL14	C. laurentii	Peri-hospital	Brazil	JX393950	JN626956	JO968475	1
CL15	C. laurentii	Peri-hospital	Brazil	JX393951	JN626957	JO968476	1
CL16	C. laurentii	Peri-hospital	Brazil	JX393952	JN626958	JO968477	1
CL17	C. laurentii	Peri-hospital	Brazil	JX393953	JN626959	JO968478	1
CL18	C. laurentii	Trees	Brazil	JX393954	JN627000	JO968479	1
CL19	C. laurentii	Peri-hospital	Brazil	JX393955	JN627001	JO968480	1
CL20	C. laurentii	Peri-hospital	Brazil	JX393956	JN627002	JO968481	1
CL21	C. laurentii	Peri-hospital	Brazil	JX393957	JN627003	JO968482	1
CL22	C. laurentii	Trees	Brazil	JX393958	JN627004	JO968483	1
CL23	C. laurentii	Peri-hospital	Brazil	JX393959	JN627005	JO968484	1
CL24	C. laurentii	Peri-hospital	Brazil	JX393960	JN627006	JO968485	1
CL25	C. laurentii	Trees	Brazil	JX393961	JN627007	JO968486	1
CL26	C. laurentii	Peri-hospital	Brazil	JX393962	JN627008	JO968487	2
CL27	C. laurentii	Peri-hospital	Brazil	JX393963	JN627009	JO968488	1
CL28	C. laurentii	Peri-hospital	Brazil	JX393964	JN627010	JO968489	1
CL29	C. laurentii	Peri-hospital	Brazil	JX393965	JN627011	JO968490	1
CL30	C. laurentii	Peri-hospital	Brazil	JX393966	JN627012	JO968491	1
CL31	C. laurentii	Peri-hospital	Brazil	JX393967	JN627013	JO968492	1
CL32	C. laurentii	Pets shops	Brazil	JX393968	JN627014	JO968493	1
CL33	C. laurentii	Pets shops	Brazil	JX393969	JN627015	JO968494	1
CL34	C. laurentii	Pets shops	Brazil	JX393970	JN627016	JO968495	1

Phylogenetic Analysis of **Cryptococcus laurentii** Strains
Isolate	Species	Source	Country	GenBank Hap 1	GenBank Hap 2	GenBank Hap 3	GenBank Hap 4
CL36	C. laurentii	Pets shops	Brazil	JX393971	JX394050	JQ968496	1
CL37	C. laurentii	Pets shops	Brazil	JX393972	JX394051	JQ968497	1
CL38	C. laurentii	Pets shops	Brazil	JX393973	JX394052	JQ968498	1
CL39	C. laurentii	Pets shops	Brazil	JX393974	JX394053	JQ968499	1
E4	C. laurentii	Pigeon dropping	Brazil	JX393977	JX394054	JQ968501	3
E5	C. laurentii	Pigeon dropping	Brazil	JX393978	JX394055	JQ968502	3
E6	C. laurentii	Pigeon dropping	Brazil	JX393979	JX394056	JQ968503	3
E7	C. laurentii	Pigeon dropping	Brazil	JX393980	JX394057	JQ968504	1
E11	C. laurentii	Pigeon dropping	Brazil	JX393981	JX394058	JQ968505	3
E12	C. laurentii	Pigeon dropping	Brazil	JX393982	JX394059	JQ968506	3
DS288	C. laurentii	Mopane tree	Botswana	KC469712	KC485478	KC469756	1
DS386	C. laurentii	Mopane tree	Botswana	KC469715	KC485481	KC469757	1
DS388	C. laurentii	Mopane tree	Botswana	KC469718	KC485483	KC469759	1
DS390	C. laurentii	Mopane tree	Botswana	KC469720	KC485484	KC469760	3
DS391	C. laurentii	Mopane tree	Botswana	KC469722	KC485486	KC469761	3
DS392	C. laurentii	Mopane tree	Botswana	KC469723	KC485487	KC469762	3
DS400	C. laurentii	Mopane tree	Botswana	KC469724	KC485488	KC469764	5
DS402	C. laurentii	Mopane tree	Botswana	KC469725	KC485489	KC469765	6
DS403	C. laurentii	Mopane tree	Botswana	KC469726	KC485490	KC469766	6
DS444	C. laurentii	Mopane tree	Botswana	KC469727	KC485491	KC469767	6
DS447	C. laurentii	Mopane tree	Botswana	KC469728	KC485492	KC469768	6
DS448	C. laurentii	Mopane tree	Botswana	KC469729	KC485493	KC469769	6
DS455	C. laurentii	Mopane tree	Botswana	KC469730	KC485494	KC469770	6
DS529	C. laurentii	Norway spruce	USA	KC469735	KC485495	KC469771	3
DS530	C. laurentii	Norway spruce	USA	KC469736	KC485496	KC469772	3
DS531	C. laurentii	Norway spruce	USA	KC469737	KC485497	KC469773	3
DS532	C. laurentii	Norway spruce	USA	KC469738	KC485498	KC469774	3
DS533	C. laurentii	Norway spruce	USA	KC469739	KC485499	KC469775	3
DS534	C. laurentii	Norway spruce	USA	KC469740	KC485500	KC469776	3
DS535	C. laurentii	Norway spruce	USA	KC469741	KC485501	KC469777	3
DS536	C. laurentii	Norway spruce	USA	KC469742	KC485502	KC469778	3
DS537	C. laurentii	Norway spruce	USA	KC469743	KC485503	KC469779	3
DS538	C. laurentii	Norway spruce	USA	KC469744	KC485504	KC469780	3
DS539	C. laurentii	Norway spruce	USA	KC469745	KC485505	KC469781	3
DS540	C. laurentii	Norway spruce	USA	KC469746	KC485506	KC469782	3
DS744	C. laurentii	Douglas Fir tree	Canada	KC469730	KC485495	KC469771	1
DS746	C. laurentii	Douglas Fir tree	Canada	KC469731	KC485496	KC469772	1
DS748	C. laurentii	Douglas Fir tree	Canada	KC469732	KC485497	KC469773	1
DS778	C. laurentii	Douglas Fir tree	Canada	KC469733	KC485498	KC469774	1
DS782	C. laurentii	Douglas Fir tree	Canada	KC469734	KC485499	KC469775	1
DS784	C. laurentii	Douglas Fir tree	Canada	KC469735	KC485500	KC469776	1
DS786	C. laurentii	Douglas Fir tree	Canada	KC469736	KC485501	KC469777	1
DS788	C. laurentii	Douglas Fir tree	Canada	KC469737	KC485502	KC469778	1
DS790	C. laurentii	Douglas Fir tree	Canada	KC469738	KC485503	KC469779	1
DS792	C. laurentii	Douglas Fir tree	Canada	KC469739	KC485504	KC469780	1
DS794	C. laurentii	Douglas Fir tree	Canada	KC469740	KC485505	KC469781	1
DS796	C. laurentii	Douglas Fir tree	Canada	KC469741	KC485506	KC469782	1
DS798	C. laurentii	Douglas Fir tree	Canada	KC469742	KC485507	KC469783	1
DS800	C. laurentii	Douglas Fir tree	Canada	KC469743	KC485508	KC469784	1
DS802	C. laurentii	Douglas Fir tree	Canada	KC469744	KC485509	KC469785	1
DS804	C. laurentii	Douglas Fir tree	Canada	KC469745	KC485510	KC469786	1
DS806	C. laurentii	Douglas Fir tree	Canada	KC469746	KC485511	KC469787	1
DS808	C. laurentii	Douglas Fir tree	Canada	KC469747	KC485512	KC469788	1

Phylogenetic Analysis of Cryptococcus laurentii Strains
Table 1. Cont.

Isolate	Species	Source	Country	GenBank 18S-SSU	GenBank 28S-LSU	GenBank ITS	Hap
DS782	C. laurentii	Tree	Canada	KC469747	KC469749	KC469793	5
DS783	C. laurentii	Tree	Canada	KC469748	KC469750	KC469792	5
DS797	C. laurentii	Tree	Canada	KC469751	KC485515	KC469794	3
DS798	C. laurentii	Tree	Canada	KC469752	KC485517	KC469796	3
DS799	C. laurentii	Tree	Canada	KC469753	KC485518	KC469777	7
DS802	C. laurentii	Tree	Canada	KC469754	KC485519	KC469797	5
O242A	C. flavescens	Tree	Brazil	JX393984	JX394006	JQ968509	10
I113A	C. flavescens	Air	Brazil	JX393985	JX394007	JQ968510	10
I283A	C. flavescens	Air	Brazil	JX393989	JX394011	JQ968513	12
CBS 942T	C. flavescens	Air	Japan	AB085796	AB035042	AB035046	12
I572B	C. terrestris	Tree	Brazil	JX393991	JX394012	JQ968512	13
I573B	C. terrestris	Tree	Brazil	JX393992	JX394014	JQ968514	13
1B2011	C. terrestris	Pigeon dropping	Brazil	JX393993	JX394015	JQ968517	13
1C2011	C. terrestris	Pigeon dropping	Brazil	JX393994	JX394016	JQ968518	13
DS233	C. terrestris	Mopane tree	Botswana	KC469710	KC469711	KC469735	13
DS234	C. terrestris	Mopane tree	Botswana	KC469712	KC469713	KC469737	13
DS290	C. terrestris	Mopane tree	Botswana	KC469714	KC469715	KC469739	13
DS291	C. terrestris	Mopane tree	Botswana	KC469716	KC469717	KC469741	13
DS401	C. terrestris	Mopane tree	Botswana	KC469718	KC469719	KC469743	13
DS402	C. terrestris	Mopane tree	Botswana	KC469720	KC469721	KC469745	13
DS403	C. terrestris	Mopane tree	Botswana	KC469722	KC469723	KC469747	13

Phylogenetic Analysis of Cryptococcus laurentii Strains
In 2005, Cryptococcus rajasthanensis (CBS 10406) was described and differentiated from C. laurentii due to 1.6% and 7.5% divergence of the nucleotide identity of the 28-LSU and ITS regions, respectively [12]. More recently, Cryptococcus terrestris (CBS 10810), the cryptic species of C. flavescens, was isolated and described from soil in Brazil [13].

Currently, most C. laurentii isolates described around the world have been identified by morphological criteria, which can miss subtle differences and misidentify cryptic species [1,14,15]. Unlike C. neoformans and C. gattii, few studies have applied DNA sequencing to describe the molecular phylogeny of C. laurentii [11,16,17]. Thus, considering the potential pathogenicity of this species, this study aimed to evaluate the molecular phylogeny of clinical and environmental C. laurentii isolates through the sequencing of multiple ribosomal DNA regions.

Methods

Identification and fungal strains

We evaluated 100 environmental isolates of C. laurentii that were identified by classical mycological methods, such as India ink test, urease and phenoloxidase activity, thermotolerance at 37°C on Sabouraud dextrose agar, nitrate and carbon assimilation assays, carbohydrate fermentation, and microculture on cornmeal with Tween 80 [18,19]. Of the 56 Brazilian isolates, 26 were obtained from peri-hospital areas, 5 from unidentified trees species, 7 from captive bird droppings in Uberaba, Minas Gerais State, and 18 from various environmental sources (bird droppings, trees, and air samples) from São Paulo State. The 18 isolates from Botswana were isolated from Mopane trees (Colophospermum mopane), the 14 isolates from New York State from Norway spruce (Picea abies) and trembling aspen (Populus tremuloides), and the 12 isolates from Vancouver, Canada from Douglas fir (Pseudotsuga menziesii) and other unidentified trees (Table 1). Isolates from Canada and the United States were isolated from swab samples collected in 2010 using single-swab BD CultureSwab Liquid Amies (Becton, Dickinson and Company, Sparks, Maryland, USA). The swabs were streaked onto yeast peptone dextrose agar (YPD, Becton, Dickinson and Company, Sparks, Maryland, USA) or Niger seed (NGS) agar containing chloramphenicol (0.5 g/L, Sigma-Aldrich, St. Louis, MO, USA), and yeast colonies were selected and colony purified [20].

All isolates were stored at -20°C in 70% YPD broth with 30% glycerol in 2-mL eppendorf tubes at the Mycology Laboratory at the Triangulo Mineiro Federal University (UFTM) for further analyses.

DNA sequencing

Genomic DNA was extracted from yeast cells in accordance with previously described methodology [21]. The 5' end of the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU) (AFTol project available at http://aftol.org/primers.php), internal transcribed spacer (ITS) region [10,22], and D1/D2 region of 28S-LSU [10,23] were amplified from genomic DNA by PCR using the primers and conditions denoted in Table 2. PCR of the 18S-SSU, 28S-LSU, and ITS regions were performed using a PTC-100 Thermocycler (MJ Research Inc., Watertown, MA, USA) in a final volume of 50 μL. Each reaction contained 20 ng of genomic DNA, 1 x PCR buffer (10 mmol L$^{-1}$ Tris-HCl pH 8.3, 50 mmol L$^{-1}$ KCl, and 1.5 mmol L$^{-1}$ MgCl$_2$), 0.25 mmol L$^{-1}$ each of dATP, dCTP, dGTP and dTTP, and 1.25 U of Taq DNA polymerase (Invitrogen, São Paulo, SP, Brazil). The amplicons were stained with 0.5 mg mL$^{-1}$ of

Isolate	Species	Source	Country	GenBank Hap	18S-SSU	28S-LSU	ITS
DS446	C. terrestris	Mopane tree	Botswana	KC646401	KF267575	KF557797	NA
CBS 10810T	C. terrestris	Soil	USA	EF370393	EU200782	NA	NA
CBS 142	C. albidus	Air	Japan	AB000826	AB000826	NA	NA

NA: Not applicable. T: Type strain.
ethidium bromide and visualized under UV light after two hours of electrophoresis at 80 V [22].

Each PCR product was independently sequenced with the forward and reverse primers of each region using the BigDye terminator v. 3.1 reagent kit (Applied Biosystems, Foster City, CA, USA) including Tag DNA polymerase (Invitrogen, São Paulo, SP, Brazil) in an automated DNA sequencer (ABI PRISM 3130xl Genetic Analyzer, Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions.

Sequencing analysis

Sequences were edited using the software Sequence Scanner V. 1.0 (Applied Biosystems, USA). Only nucleotide sequences with a Phred quality score ≥20 were included in our analysis to limit the possibility of incorporating an incorrect base to ≤1 in 100 (≥99% accuracy). Bioedit software was used to obtain consensus sequences from aligned forward and reverse sequence reads. Each consensus sequence was submitted to the Basic Local Alignment Search Tool (BLAST), and identity values ≥99% were obtained to assign species. All generated sequences were deposited in GenBank (Table 1) and The Barcode of Life Database (BOLD) (http://www.barcodinglife.org) [24].

Phylogenetic relationships

Consensus sequences from newly identified isolates and those obtained from GenBank were aligned with the Clustal W2 algorithm (https://www.ebi.ac.uk/Tools/msa/clustalw2/) [25]. The phylogenetic analysis was calculated by the neighbor-joining, unweighted pair group method with arithmetic mean (UPGMA), and maximum likelihood methods in the MEGA 6.0 software [26]. For the neighbor-joining and maximum likelihood methods, the evolutionary distances were calculated in accordance with Kimura [27], while the Tamura 3-parameters method with the variation rate among sites modeled with a gamma distribution (shape parameter = 1) was used for UPGMA [28]. Phylogenetic relationships were calculated for each of the three regions and for the concatenated sequences applying a bootstrap analysis with 1,000 random resamplings. The type strain Cryptococcus albidus CBS 142 was designated as the outgroup in all phylogenetic analyses [29,30]. Nucleotide sequences from the CBS-KNAW Fungal Biodiversity Centre (CBS) type strains were obtained from GenBank (Table 1).

To evaluate which of the three regions presented the highest variability, the intraspecific and interspecific pairwise distance was calculated by the Kimura 2-parameter model [27] in the MEGA 6.0 software [26].

Haplotype network and goeBURST analysis

Haplotype networks were generated from the three concatenated sequence regions to visualize the differences and diversity among the C. laurentii isolates. The number and diversity of each haplotype were estimated using the software DNAsp v5.10 (http://www.molekulare-evol.de/dnaasp/) [31]. Median-joining networks [32] for the concatenated dataset were obtained and graphed using the software Network 4.610 (http://fluxus-engineering.com).

To confirm the haplotypes obtained by median-joining networks the analyses were replicated in MLSTest software (available at http://mltest.codeplex.com) and graphed by goeBURST algorithm in PHILOVIZ software [33,34]. The minimum spanning tree representing the comparison between the isolates sources and their haplotype was also calculated by goeBURST.

Coalescent species analyses

In order to estimate the time divergence between species and haplotypes, the interspecific and intraspecific net nucleotides substitutions (d) and standard error of the concatenated sequences were calculated in accordance to Kimura [27] with a bootstrap (500 replicates) as a variance method in the MEGA 6.0 software [35,36]. The distance and standard error between closest species e. g. (C. laurentii x C. rapsthananensis 0.016±0.003; C. aspenensis x C. flavescens 0.071±0.007; C. terrestris x C. flavescens 0.009±0.002) were obtained and applied in the equation $d = 2kt$, where d is the number of nucleotide substitutions per site between a pair of sequences, t is the divergence time, and k the rate of nucleotide substitution. Here, we applied the constant (λ)
10−3/bp/year previously obtained for the Eurotiumysites lineage due to the absence of a known fossil for C. laurentii species [36]. The resulting time of divergence were used as prior parameters to calibrate the tree in the coalescent analyses.

The optimal molecular evolutionary model for the concatenated sequences was determined using the corrected Akaike Information Criterion (AICc) as executed in the software jModelTest 2 [37,38]. The optimal molecular evolutionary model General Time Reversible (GTR+I+G) with the respective parameters: AC: 0.7675, AG: 2.3377, AT: 1.8759, CG: 0.4999, GT: 1.0, alpha (IG): 0.5430, and pinv (IG): 0.5130 were obtained and used as priors in the coalescence analyses.

The BEAST software version 1.8.0 [39] was used to calculate the mean time to the most common recent ancestor (TMRCA) by applying the Bayesian Markov-chain Monte Carlo (MCMC) method assuming a relaxed log-normal model of molecular rate heterogeneity. The chain lengths were 107 generations with parameters sampled every 103 generations with an initial burn-in of 10%. The posterior probability for a given clade was the frequency that the clade was present among the posterior trees which means that the probability of the lineage be considered monophyletic in the used dataset. Convergence of parameter values in the MCMC were assessed by the effective sample size (ESS) in the Tracer software version 1.6 [40].

Nucleotide diversity of C. laurentii isolates

The extent of DNA polymorphisms, such as the number of polymorphic sites (S), nucleotide diversity (π), number of haplotypes (h), haplotype diversity (Hd), and average number of nucleotide differences (k), were calculated using DNAsp v5.10 [31]. In addition, Tajima’s D, Fu & Li’s D*, Fu & Li’s F*, and Fu’s Fs neutrality were calculated. Negative or positive results in these tests suggest evidence of purifying or balancing selection, respectively.

Fluorescence-activated cell-sorting (FACS) analysis

The FACS protocol was modified from Tanaka et al. [41]. Cells were grown overnight at 25°C in YPD broth, collected by centrifugation, and washed with 1 x PBS. Cells were then fixed in 1 ml of 70% ethanol overnight at 4°C with mild agitation. Cell pellets were obtained by centrifugation and the supernatants were discarded. Cells were resuspended and washed with 1 mL of NS buffer (10 mM Tris-HCl pH 7.2, 0.25 M sucrose, 1 mM EDTA, 1 mM MgCl2, 0.1 mM CaCl2, 0.55 mM Phenylmethylsulfonyl fluoride, 0.1 mM ZnCl2, 0.049% 2-mercaptoethanol). Cells were then resuspended in 180 μL NS buffer with, 14 mL RNase A (15 mg/μL, Qiagen) and 6 μL of Propidium iodide (1.0 μg/μL, CALBIOCHEM) and incubated in the dark for 4–8 hrs at room temperature. After incubating 50 μL of the cells were mixed with 500 μL of Tris-PI mix [482 μL 1M Tris pH 7.5+18 μL Propidium Iodide (1 μg/μL)]. Flow cytometry was performed on 10,000 cells with slow laser scan, on the FL1 channel with a Becton-Dickinson FACScan.

This study was approved by the Ethical Board of Triangulo Mineiro Federal University and is registered under the protocol number 32 CBIO/UFTM.

Nomenclature

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide print copies. In addition, new names contained in this work have been submitted to MycoBank from where they will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=MB009723. The online version of this work is archived and available from the following digital repositories: PubMed Central and LOCKSS.

Results

All isolates produced capsule and urease but not melanin and were phenotypically characterized as C. laurentii due to their ability to assimilate arabinose, α-methyl-D-glucoside, cellobiose, D-glucose, D-mannitol, D-ribose, D-trehalose, DL-lactate, dulcitol, galactose, inositol, L-rhamnose, lactose, maltose, melitizose, raffinose, sacarose, sorbose, xylose, and 2-keto-glutarate. However, the isolates were negative for fermentation of dextrose and assimilation of inulin and potassium nitrate. FACS analysis indicated that most of the isolates are haploid (Figure S1).

A 550-bp product was amplified from the 5’ end of 18S-SSU and sequenced with the primers NS-1 and NS-2, from which a 339-bp alignment was obtained. In this analysis, 75 isolates shared 99–100% identity with the C. laurentii CBS 139 (AB032640) type strain. Another 16 isolates shared 99% identity with C. flavescentis CBS 942 (AB085796). The remaining 9 shared 99% identity with both Bullera sp. VY-68 (AB106094) from Japan and with C. laurentii RY1 from India (EF063147). High bootstrap values generated by neighbor-joining, UPGMA, and maximum likelihood analyses supported the differentiation of the following clades: C. laurentii (bootstrap values of 79, 87, and 78, respectively), C. flavescentis (bootstrap values of 96, 99, and 98, respectively) and Bullera sp./C. laurentii (bootstrap values of 63, 65, and 64, respectively) (Figure 1A).

Due to the low genetic variability of the C. laurentii clade obtained at the 5’ end of the 18S-SSU gene, we sequenced two additional ribosomal loci: D1/D2 of the 28S-LSU and the ITS gene regions. The alignment and analysis of the 530-bp long amplicon of the 28S-LSU region confirmed the identification of 75 isolates as C. laurentii and showed more intraspecific variability differentiating three major groups (group Ia, Iib, and Ibc) within C. laurentii isolates. Of the 16 C. flavescentis isolates identified by the 18S-SSU sequencing, only 6 were confirmed in the C. flavescentis clade by the 28S-LSU region with high bootstrap values of 79 (neighbor-joining), 95 (UPGMA), and 96 (maximum likelihood). The C. flavescentis clade was split into two groups (Group Ia and a possible hybrid) by 28S-LSU and three groups (Groups Ia, Ib, and a possible hybrid) by ITS and analyses of the 1,328-bp amplicon of the concatenated regions. The two possible hybrid isolates I322A and O242A from Brazil were more related to C. terrestris in the ITS and concatenated sequences analyses (Figure 1B and 2). The remaining 10 isolates shared 99% identity with C. terrestris (CBS 108110), which has been recently described in Brazil and the United States (Figure 1B).

Among the nine Bullera sp./C. laurentii isolates identified by the 18S-SSU, isolate 4P82A shared 99% identity of the 28S-LSU and ITS regions with Cryptococcus rajasthanensis CBS 10406 (AM262324) from India. The eight remaining isolates (DS569, DS570, DS572, DS573, DS712, DS713, DS715, and DS716) recovered from a trembling aspen tree (Populus tremuloides) were designated as Cryptococcus aspenensis sp. nov. because they shared 100% identity with two undescribed isolates of Cryptococcus sp. APSS-862 (FM178286) and Cryptococcus sp. APSS-823.
eight isolates exhibited a genetic distance of 3.8% and 7.1% from C. rajasthanensis and 2.3–2.7% and 6.4–7.3% from C. laurentii by 28S-LSU and ITS region analysis, respectively (Figure 1B and 2A).

Overall, the pairwise distance of the three sequenced regions showed the highest intraspecific and interspecific variability in the ITS region (genetic distance higher than 15%) when compared with the 2.5% and 5.0% obtained with 18S-SSU and 28S-LSU, respectively (Figure 3).

The haplotype diversity of the concatenated regions was assessed using DNAsp and MLSTTest software. Multiple haplotype groups were identified within C. laurentii and C. flavescens, but not the C. aspenensis sp. nov. and C. terrestris (Figure 4A and 4B). The C. laurentii isolates were represented by seven haplotypes (H1 to H7). Haplotype 1 (H1) included 44 isolates, of which 38 (86.4%) were from Brazil, followed by the H3 composed of 6 from Brazil, 6 isolates from Canada, and 6 from the United States (Figure 4C and 4D). The highest genetic distance (12 polymorphisms) in the C. laurentii haplotypes was observed between H7 (CBS 132 type strain) and H6 (DS402 and DS444 isolates). Five of the seven C. laurentii isolates were recovered from Africa despite very limited sampling; three were unique haplotypes (H4, H6, and H7) and two were only observed in Brazil (H1) or Canada (H5). H4, which was obtained from Mopane trees in Botswana, was identified as the ancestral of C. laurentii in both Network and MLSTTest analyses. H7 (C. laurentii type strain CBS 139) was restricted to the Congo and was in much closer proximity to Botswana than any other

Figure 1. Phylogenetic analysis of 100 environmental Cryptococcus spp. isolates generated by the neighbor-joining, UPGMA, and maximum likelihood methods using partial nucleotide sequences of the (A) 5’ end of 18S SSU-rDNA and (B) D1/D2 region of 28S LSU-rDNA. Numbers at each branch indicate bootstrap values >50% based on 1,000 replicates (NJ/UPGMA/ML). The analysis involved 103 and 105 nucleotide sequences for the 18S-SSU and 28S-LSU respectively. T: Type strain.

doi:10.1371/journal.pone.0108633.g001
sample region. H3 was distinct from Botswana and was comprised of isolates from North and South America (Figure 4).

Three haplotypes were identified in *C. flavescens* isolates (H10, H11, and H12), with the ancestral haplotype H11 restricted to Brazil. H10 presented the highest genetic distance (9 polymorphisms) when compared with H11 and H12 (2 polymorphisms). H10 was also positioned closer to the *C. terrestris* haplotype H13 and could be a unique species, or ancestral genotype, or recombinant hybrid isolate between *C. flavescens* and *C. terrestris*. The *C. aspenensis* sp. nov. H9 was a completely unique genotype from New York, USA (Figure 4).

Estimates of the mean time to divergence for the *C. flavescens* and *C. terrestris* isolates were 4.02–5.46 ± 0.87 million years (about 9 million years ago) with an effective sample size (ESS) of 1213.3 and 1006.8, respectively. For *C. laurentii* population, the TMRCA were 8.03–9.61 ± 1.83 million years (about 16.4 million years ago) (ESS = 6615.0) while for the new species *C. aspenensis* sp. nov. 26.7 ± 3.9 million years (about 37.9 million years ago) (ESS = 355.5). Coalescent analysis was strongly supported with >95.0 Bayesian posterior values (Figure 5). Phylogenetic and coalescent analyses agree demonstrating additional support for the recognition of additional related haplotypes and species.

The *C. laurentii* nucleotide sequences of the 18S-SSU, 28S-LSU, ITS, and the concatenated regions presented 0, 3, 11, and 14 polymorphic sites, respectively (Table 3). The highest nucleotide diversity (π) of 0.0039 was observed for ITS. Low values of haplotype (Hd = 0.604) and nucleotide diversity (π = 0.0014) of the concatenated regions may suggest clonal reproduction in this species (Table 3).
Taxonomy

Cryptococcus aspenensis. Ferreira-Paim, K., Ferreira, T. B., Andrade-Silva, L., Mora, D. J., Springer, D. J., Heitman, J., Fonseca, F. M., Matos, D., Melhem, M. S. C., et Silva-Vergara, M. L. sp. nov. [urn:lsid:mycobank.org:names:MB809723].

After 3 days on YPD agar at 25°C, *Cryptococcus aspenensis* colonies are circular, cream-colored with an entire margin, smooth, mucous to butyrous, glistening, and raised. Growth (poor) at 37°C was also observed. After 3 days at 25°C in YPD broth, the cells are ellipsoid to globose (7.5–8.7 to 5–6.2 μm), and they may be single or with one attached polar bud (Figure 6). After 15 days in slide cultures on commeal agar, pseudomycelium or mycelium is not formed. Fermentation ability is negative. Arabinose, α-methyl-D-glucoside, cellobiose, D-glucose, D-mannitol, D-ribose, D-trehalose, DL-lactate, dulcitol, galactose, inositol, L-rhamnose, lactose, maltose, melitioze, raffinose, sacarose, sorbose, xylose, and 2-keto-glutarate are assimilated. Cells were haploid by FACS analysis (Figure S1).

Unambiguous identification and phylogenetic placement is based on DNA sequences of the following nuclear loci: ITS (KC469778), 18S-SSU (KC469734), D1/D2 of 28S-LSU (KC485500). The type strain DS573 was isolated from the bark of a trembling aspen (*Populus tremuloides*) in the New York, United States and has been deposited in the Centraalbureau voor Schimmelcultures, The Netherlands, as CBS 13867 and in the Westmead Millennium Institute, Australia, as WM 14.137. Other strains belonging to this species include DS570 (CBS 13868, WM 14.138), and DS715 (CBS 13869, WM 14.139) which were isolated from a single trembling aspen tree in New York.

Etymology: The specific epithet *aspenensis* L. adj. *aspenensis* associated with trembling aspen (*Populus tremuloides*), the tree substrate from which the type strain was isolated.

Discussion

Fungal identification and taxonomy has markedly improved during the last decade and as a result, several recognized species, such as *Sporothrix schenckii*, *Paracoccidioides brasiliensis*, and *Coprinopsis cinerea*, have been distinguished as cryptic species complexes [35,42,43]. In this context, the sequencing of the 18S-SSU, D1/D2 of 28S-LSU, and ITS of the ribosomal region have been useful in yeast identification for more than 10 years. However, the low variability of the 18S-SSU and 28S-LSU regions may prohibit identification of cryptic species, while the variability of the ITS region has been frequently utilized for fungal phylogenetic studies and the fungal tree of life barcoding projects [44,45].

C. laurentii has classically been considered a saprophytic yeast, although 24 cases of human infection have been described, suggesting that *C. laurentii* is an opportunistic pathogen with potential similarities to the distantly related pathogenic *C. neoformans* and *C. gattii* species [3,44,46–48]. Cryptococcosis due to *C. laurentii* has been associated with severely immuno-compromised patients and/or those presenting with other underlying diseases. In such cases, *C. laurentii* was most frequently
Figure 4. Median-joining haplotype network (A) of environmental *C. laurentii* isolates based on concatenated nucleotide sequences of the 5' end of 18S-SSU, D1/D2 of 28S-LSU, and ITS regions. The tree represents 103 *Cryptococcus* spp. isolates from Brazil, Botswana, Canada, Japan, India, and the United States. The seven *C. laurentii* and three *C. flavescens* haplotypes are clearly distinguished. The Botswana ancestral haplotype (H4) of *C. laurentii* is presented and highlighted in yellow. Each circle represents a unique haplotype (H), and the circumference is
isolated from the blood, but also from several other body sites such as the CSF, skin, and lungs [49,50].

In this study, we evaluated 100 phenotypically identified \textit{C. laurentii} isolates from several countries. Of these, 75 were confirmed to be \textit{C. laurentii} by phylogenetic analysis of the 18S-SSU, 28S-LSU, and ITS regions. The obtained sequences shared 99–100\% identity with sequences from Brazil, China, South Africa, and the United States, demonstrating its worldwide and overlapping geographic distribution with \textit{C. neoformans} and \textit{C. gattii}. Although, in North America, \textit{C. gattii} has been associated with clinical infection in patients from New York, Rode Island, and other states [51–53]. At present, \textit{C. gattii} has only been environmentally isolated from the Western United States [54] and Canada [55], while \textit{C. neoformans} is broadly associated with pigeon guano in many regions of the United States, including the state of New York [56]. Hence, our study suggests that in the United States, \textit{C. laurentii} appears have a much broader distribution than \textit{C. gattii} as noted from its isolation in association with grasses in the USA, and goose guano and trees in New York State [57].

Within the \textit{C. laurentii} clade, intraspecific variability of 0.2\% (1 polymorphism), 0.2–0.4\% (1–3 polymorphisms), and 0.3–2.4\% (1–11 polymorphisms) was obtained for the analysis of the 18S-SSU, 28S-LSU, and ITS regions, respectively. These features are proportional to haplotype frequency (H1: 44 isolates; H2: 1; H3: 18; H4: 2; H5: 8; H6: 2; H7: 1; H8: 1; H9: 8; H10: 2; H11: 3; H12: 2; H13: 10; H14: 1; outgroup \textit{C. albidos} CBS 142). Yellow dots represents the number of mutation sites, excluding gaps, between the haplotypes. Black dots (median vectors) are hypothetical missing intermediates. Minimum spanning trees (B) using the goeBURST algorithm confirm the haplotype relationships among \textit{C. laurentii} isolates determined by median-joining network analysis. The size of the circle corresponds to the number of isolates within that haplotype, and the numbers between haplotypes represent the genetic distance of each haplotype, excluding the gaps. Minimum spanning trees as described in B modified to show the distribution of haplotypes according to the country of origin (C) or environmental source (D).

doi:10.1371/journal.pone.0108633.g004

Figure 5. Species tree of the \textit{C. laurentii} species complex resulting from coalescent analyses of the concatenated data set. The speciation of \textit{C. aspenensis} from \textit{C. laurentii} and \textit{C. rajasthanensis} took place 37.9 million years ago. The \textit{C. laurentii} haplotype (H4) from Botswana was the first haplotype to be differentiated (6.8 million years ago). Numbers at branches represent the Bayesian posterior support values while the bold numbers represent the nodes ages (in millions of years).

doi:10.1371/journal.pone.0108633.g005
consistent with a previously published report indicating that one polymorphism exhibited in the 28S-LSU region exist up to 11 substitutions in the ITS region [58]. Through phylogenetic analysis of the 28S-LSU and ITS regions, three divergent groups were distinguishable from the 75 C. laurentii isolates. Groups Ia and II of the 28S-LSU and ITS regions contained eight isolates from Botswana and Vancouver, which differed from the remaining 67 isolates in 1–3 and 5–11 nucleotides in the 28S-LSU and ITS regions, respectively, and constituted H5 in the network and goeBURST analysis. Additional analysis of environmental and clinical samples from outside of Brazil will be valuable to determine whether H5 is distinct to Brazil. The majority of Brazilian isolates are H1 (44 isolates). The high frequency of the H1 haplotype may be related to microevolution and/or adaptation of these isolates to the environment, while the H2 haplotype may be rare.

Despite the differences in the total number of C. laurentii isolates, those from Botswana (n = 12) shared five of the seven haplotypes observed, two of them unique (H4 and H6). Interestingly, the ancestral H4 is only represented in Botswana suggesting that similar to C. neoformans var. grubii, C. laurentii may have originated from Africa [59]. The historical haplotype (H7) from palm wine is also restricted to the Congo, which is near to Botswana. Other haplotypes common in Africa are only also observed from Brazil (H1) or Canada (H5). Therefore, it is possible that C. laurentii was introduced into Brazil and Canada from Africa. To test this hypothesis, the coalescent gene analyses was performed which showed that the isolates within the haplotype 4 are the oldest in our data set (6.8 million years ago).

The remaining 25 isolates that were originally identified as C. laurentii by standard phenotypic assays were identified by ITS, 18S-SSU, and 28S-LSU analyses as C. terrestris (n = 10), the C. aspenensis sp. nov. (n = 8), C. flavescens (n = 6), and C. rajasthanensis (n = 1). C. rajasthanensis isolates are rare, and few have been previously reported in GenBank from India, Thailand, China, and Brazil. The C. rajasthanensis isolate in our study was recovered from hollow trees in São Paulo, Brazil and differed from C. laurtenii by 0.4–0.6%, 1.7–2.1%, and 4.3–4.8% in the 18S-SSU, 28S-LSU, and ITS regions, respectively. In previous studies, the C. laurentii type strain (CBS 139) differed from the known Indian C. rajasthanensis reference isolate (CBS 10406) by 1.6% in the 28S-LSU region and 7.5% in the ITS region.

Despite the genetic distance observed between C. flavescens and C. laurentii (4–5.2% in 28S-LSU and 16.8–18.9% in the ITS), the species have long been considered phenotypically indistinguishable. For example, one previously identified clinical isolate of C. laurentii was later distinguished to be C. flavescens [4,60], suggesting that opportunistic pathogen traits may have evolved more than once within this group, similar to the presence of sporadic opportunistic pathogens in K. variicola and Cryptoococcus heveanensis species groups [61].

C. flavescens has only recently been differentiated as a sibling species of C. terrestris [13] with the advancements in multi-locus sequence analysis. It is likely that the delayed recognition of C. terrestris and C. flavescens hindered the recognition of divergent phenotypic traits now recognized as important species characteristics. C. terrestris can be differentiated phenotypically from C. flavescens by delayed and/or weak assimilation of ribose and salicin [13,44]. Our analysis supports the previous reported genetic differentiation; C. flavescens diverged from C. terrestris by 1.2–1.6% (6–10 polymorphisms) and 0.5–2.5% (2–10 polymorphisms) in the 28S-LSU and ITS regions, respectively. This difference probably occurred 9.1 million years ago as demonstrated by the coalescent analyses.

Region	Length	S	π	k	μ	δ	D_{FS}	D_{FD}	D_{TT}
18S-SSU	530	-	0.039	-	0.015	-0.521	0.0006	0.3291	0.280
28S-LSU	281	-	0.0006	-	0.0001	0.028	4	0.570	0.737
ITS	399	-	0.0039	-	0.0014	0.591	4	0.560	1.079
Concatenated	1328	-	0.0014	-	0.0014	0.591	7	0.604	2.373

Table 3. DNA polymorphisms in the ribosomal loci of the 75 C. laurentii environmental isolates.

S: number of polymorphic sites; π: nucleotide diversity; k: average number of nucleotide differences per sequence; μ: number of hapatotypes; H: haplotype diversity; D, D_{FS}, and D_{FD}: Tajima’s D, Fu and Li’s D^{*}, Fu and Li’s F^{*} and d, Fu’s F_{S}, respectively.

...
The six *C. flavescens* isolates recovered from Brazil were similar to isolates from China, Egypt, Italy, Japan, South Africa, and the United States, confirming the ubiquity of this species. The intraspecific variability of 0.2%, 0.4% and 0.8–2.2% observed in the 18S-SSU, 28S-LSU, and ITS regions, respectively, and the description of one haplotype in 18S-SSU, two in 28S-LSU, and three in the ITS region and concatenated analyses for the first time is relevant in the biological context of this species. Both isolates within H10 (I332A and O242A) share higher similarity with *C. terrestris* in 18S-SSU, the ITS region, and concatenated sequence but are more similar to *C. flavescens* in 28S-LSU. H10 may be a second haplotype of *C. terrestris* or a possible hybrid haplotype between the two species, as has been observed between *C. gattii* and *C. neoformans* [62–64]. Both isolates within this unique haplotype appear haploid by FACS which suggest this isolate may be a recombinant between *C. flavescens* and *C. terrestris* or an ancestral genotype. Coalescent analysis does not support the hypothesis that the two isolates in haplotype 10 are ancestral to both species and hence it is likely this haplotype arose from a productive introgression between *C. flavescens* and *C. terrestris*. Whole genome sequencing and the development of multilocus sequence primers specific to *C. laurentii* will be needed to support these hypotheses. Furthermore, the ancestral haplotype of *C. flavescens* appears to be H11 (revealed by MLSTest but not by DNAp), which is confined to Brazil, suggesting that it may have originated in Brazil. Additional environmental and clinical isolates must be evaluated to better define the place of origin of *C. flavescens*.

A newly identified but distinct haploid group that we designated as *C. aspenensis* sp. nov. was identified consistently through phylogenetic analyses of individual and concatenated loci and confirmed by coalescent analyses. At present, this constitutes a previously unidentified species that appears to be restricted to New York, United States. All eight isolates obtained in the H9 group appear to be nearly identical/clonal and were obtained from sampling one trembling aspen tree in Long Island, New York, United States. An additional isolate was just identified from soil sample collect on July 13 in Copake, New York (personal communication D. J. Springer) and supports the recognition of a potential haplotypes within *C. aspenensis* and resolve the phylogenetic placement of the closely related species *C. rajasthanensis*, *C. flavescens*, *C. terrestris*, and the *C. aspenensis* sp. nov. described in this analysis.

Supporting Information

Figure S1 Representative Fluorescence-activated cell-sorting (FACS) analysis of the *Cryptococcus* spp. included in the study. All isolates except three *C. laurentii* (CL11, CL19, and E11) and one *C. flavescens* (I234A) appear haploid. Positive haploid (CBS10574) and diploid controls (XL143) were included in each FACS run.

Acknowledgments

We thank Mrs. Ângela Azôr for her technical assistance. DNA samples were sequenced at the Laboratório Multiusuaário of UFTM. We would like to thank Edmund Byrne and Laura Rasche for obtaining environmental samples from Vancouver, BC, Canada and Botswana, Africa, respectively. We thank Wieland Meyer, Catriona Halliday, and Marc Ramsperger for discussions and advice.

Author Contributions

Conceived and designed the experiments: KFP TBF FMF MLSV. Performed the experiments: KFP TBF FMF LAS DJS. Analyzed the data: KFP LAS DJM DJS JH MSCM MLSV. Contributed reagents/materials/analysis tools: KFP FMF DJS JH DM MSCM MLSV. Wrote the paper: KFP DJS JH MLSV.
References

1. Averbach D, Boekhout T, Falk R, Engelhard D, Shapiro M, et al. (2002) Fungemia in a cancer patient caused by fluconazole-resistant Cryptococcus laurentii. Clin Infect Dis 34: 749–754.

2. Bauters TG, Swinne D, Boekhout T, Noens I, Nelis HJ (2002) Repeated isolation of Cryptococcus laurentii from the oropharynx of an immunocompromized patient. Mycopathologia 153: 133–135.

3. Manfredi R, Falgou P, Sabatini S, Legname G, Faulo G (2006) Emergence of amphotericin B-resistant Cryptococcus laurentii meningocerebritis shortly after treatment for Cryptococcus neoformans meningitis in a patient with AIDS. AIDS Patient Care STDS 20: 227–232.

4. Kordousi T, Avrami A, Velegraki A, Stefanou I, Georgakopoulou G, et al. (1998) First report of Cryptococcus laurentii meningitis and a fatal case of Cryptococcus albicans cryptoacaeemia in AIDS patients. Med Mycol 36: 333–339.

5. Banerjee P, Haider M, Trehan V, Mishra B, Thakur A, et al. (2013) Cryptococcus laurentii fungemia. Indian J Med Microbiol 31: 75–77.

6. Kuffner H (1928) Prakt-on obern di mitte de biere alckins! Annales de la Socité royale des sciences médicales et naturelles de Bruxelles 74: 16–46.

7. LODDER J. (1949) Die anisakosporengen Helen, I. Halite. Verh. K nedak Wet Afd Natuurkd v. 52: 1–256.

8. Skinner CE (1950) Generic name for imperfect yeasts, Cryptococcus or Torulopsis? The American Midland Naturalist Journal 43: 242–250.

9. Saito K (1922) Untersuchungen über die atmospha¨rischen Pilzkeime. Mitt Socie´te´ royale des sciences me´dicales et naturelles de Bruxelles 74: 16–46.

10. Kasuga T, White TJ, Taylor JW (2002) Estimation of nucleotide substitution rates in Eurotomyces fungi. Mol Biol Evol 19: 2318–2324.

11. Darriba D, Taboada GL, Doallo R, Pedrosa D, et al. (2012) ModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772.

12. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

13. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.

14. Teixeira MM, Theodoro RC, de Carvalho ML, Fernandes L, Paes HC, et al. (2012) Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol 52: 273–283.

15. Andrade-Silva L, Ferreira-Paim K, Silva-Vergara ML, Pedrosa AL (2010) Cryptococcus terrestris sp. nov., a trematodean anamorphically related to Cryptococcus flavescens. Int J Syst Evol Microbiol 56: 1585–1589.

16. Simon G, Simon G, Erdos M, Marodi L (2005) Invasive cryptococcal meningitis and a fatal case of Cryptococcus laurentii cryptococcaemia in AIDS patients. Med Mycol 36: 333–339.

17. Nanney LG, Desjardin DE, Vagvolgyi C, Kemp R, Papp T (2013) Phylogenetic analysis of Cryptopus sectores Linneaus and Armaturnia identifies multiple species within morphologically defined taxa. Mycologia 105: 112–124.

18. Fell JW, Boekhout T, Fonseca A, Scorretti G, Stattel-Tallman A (2000) Biodiversity and systematics of basidiomycotous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50 Pt 4: 1351–1371.

19. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109: 6241–6246.

20. Shank EM, Kumaramany N, Bella D, Renuka S, Kwonhur H, et al. (2006) Pneumonia and pleural effusion due to Cryptococcus laurentii in a clinically proven case of AIDS. Can Respir J 13: 275–278.

21. Andrade-Silva L, Ferreira-Paim K, Silva-Vergara ML, Pedrosa AL (2010) Molecular characterization and evaluation of virulence factors of Cryptococcus laurentii and Cryptococcus neoformans strains isolated from external hospital areas. Fungal Biol 114: 438–445.

22. Daneri P, Farinace C, Cojoi M, Otranto D, Capelli G, et al. (2014) Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongst Cryptococcus species obtained from Italian veterinary isolates. Vet Microbiol 165: 798–801.

23. Kiriburanurak S, Sungkanuparph S, Pracharern R (2001) Cryptococcus laurentii fungemia: A case report. Jpn J Med Microbiol 49 Pt 2: 131–137.

24. Lockhart SR, Ishai N, Harris JR, Grossman NT, DeBess E, et al. (2013) Cryptococcus gattii in the United States: genotypic diversity of human and veterinary isolates. PLoS One 8: e74737.

25. Byrnes EJ 3rd, Li W, Levit Y, Ma H, Voelk K, et al. (2010) Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6: e1000580.

26. Kidd SE, Chow Y, Mak S, Bach PJ, Chen H, et al. (2007) Characterization of environmental sources of the human and animal pathogens Cryptococcus gattii in
British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol 73: 1433–1443.

56. Steenbergen JN, Casadevall A (2000) Prevalence of Cryptococcus neoformans var. neoformans (Serotype D) and Cryptococcus neoformans var. grubii (Serotype A) isolates in New York City. J Clin Microbiol 38: 1974–1976.

57. Filion T, Kidd S, Aguirre K (2006) Isolation of Cryptococcus laurentii from Canada Goose guano in rural upstate New York. Mycopathologia 162: 363–368.

58. Yurkov AM, Golubev WI (2013) Phylogenetic study of Cryptococcus laurentii mycocinogenic strains. Mycological Progress 12: 777–782.

59. Litvintseva AP, Carbone I, Rossouw J, Thakur R, Govender NP, et al. (2011) Evidence that the human pathogenic fungus Cryptococcus neoformans var. grubii may have evolved in Africa. PLoS One 6: e19680.

60. Brown JK, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297: 537–541.

61. Guerreiro MA, Springer DJ, Rodrigues JA, Rusche LN, Findley K, et al. (2013) Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast Kaznella mangrovensis and two novel sibling species. Eukaryot Cell 12: 746–760.

62. Bovers M, Hagen F, Kuramata EE, Diaz MR, Spanjaard L, et al. (2006) Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 6: 599–607.

63. Bovers M, Hagen F, Kuramata EE, Hoogveld HL, Dromer F, et al. (2008) AIDS patient death caused by novel Cryptococcus neoformans x C. gattii hybrid. Emerg Infect Dis 14: 1105–1108.

64. Animerajed M, Diaz M, Arabatzis M, Castaneda E, Lazera M, et al. (2012) Identification of novel hybrids between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII. Mycopathologia 173: 337–346.

65. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6: e19254.

66. Pino-Bodas R, Martin MP, Burgaz AR, Lumbsch HT (2013) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Mol Ecol Resour 13: 1050–1068.

67. Scicluna SM, Tawari B, Clark CG (2006) DNA barcoding of Blastocystis. Protist 157: 77–85.