Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

Nan Su*, Min Jin* and Lin Chen

Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.

INTRODUCTION
Skeletons are formed through two distinct developmental modes, namely intramembranous ossification and endochondral ossification. The former is directly accomplished by osteoblast differentiation from mesenchymal cells; the latter involves initial differentiation of mesenchymal cells into chondrocytes to form a cartilage template and subsequent replacement by bone. The cranium and medial clavicles are formed through intramembranous ossification. Long bones, including the appendicular skeleton, facial bones and vertebrae, are formed through endochondral ossification.

Various signaling molecules control the process of skeleton development, such as fibroblast growth factor (FGF), wingless-type MMTV integration site family members (Wnt) and bone morphogenetic protein (BMP) signaling pathways. Among these signaling pathways, FGF/fibroblast growth factor receptor (FGFR) signaling is very essential. The 22 members of the FGF family mediate their cellular responses by binding to FGFRs and induce the phosphorylation of tyrosine residues in the intracellular domain of FGFRs. The activated FGFRs recruit target proteins to its cytoplasmic tail and modifies these proteins by phosphorylation, leading to the activation of intracellular downstream signaling pathways, such as mitogen-activated protein kinase (Ras/MAPK), phosphoinositide 3-kinase/Akt (also known as protein kinase B), phospholipase C and protein kinase C pathways. Furthermore, FGF signaling can also stimulate the signal transducers and activators of transcription (STAT) 1/p21 pathway (Figure 1). Multiple kinds of mouse models with genetic modifications of FGF/FGFR have been generated. In our review, we summarize the use of these mouse models in the research of the role of FGF/FGFR signaling in skeleton development and homeostasis.

ROLE OF FGFRS IN BONE GENETIC DISEASES AND HOMEOSTASIS

FGFR1
FGFR1 is first expressed in the early limb bud. At the epiphyseal growth plate, FGFR1 is expressed in perichondrium,
prehypertrophic and hypertrophic chondrocytes.9,11–12 FGFR1 is also expressed in osteoblasts and osteocytes (Table 1).13–16

A series of mouse models of Fgfr1 have been generated to genetically dissect the functions of Fgfr1 during gastrulation and later developmental processes. Fgfr1-deficient (Fgfr1-/-) embryos display severe growth retardation, and died prior to or during gastrulation because of intrinsic blocks in mesodermal differentiation.17–18 Deletion of the Ig domain IIIC of Fgfr1 (Fgfr1IIIC) leads to gastrulation defects resembling the Fgfr1-/- alleles. However, mice with Fgfr1IIICb ablation are viable and fertile, suggesting that IIIC is the dominant isoform for the majority of FGFR1 functions in embryogenesis.19 Chimeras were generated by injecting Fgfr1-/- embryonic stem cells into wild-type blastocysts to circumvent the gastrulation defect. The milder mutant chimeras exhibit deformed limb buds and varying degrees of reduction in limb skeletal elements.19–21

Mice with targeted deletion of FGFR1 in all limb bud mesenchymal cells (via T (brachyury)-cre),22 or posterior limb bud mesenchyme (via Shh-cre)23 were used to further study the role of FGFR1 in limb development. T-cre; Fgfr1 mice die at birth and show reduced limb skeleton, misshapen forelimb/hindlimb bud and missing digits, whereas Shh-cre Fgfr1 mice display normal limb bud size, but missed a digit.10 Li et al.24 assessed the roles of FGFR1 signaling in forelimb and hindlimb development by disrupting this gene, using AP2-Cre and Hoxb6-Cre transgenic mice that express Cre recombinase in complementary temporal and spatial patterns during limb bud formation. The results indicate that disruption of Fgfr1 at an earlier stage, prior to thickening of limb mesenchyme, results in

![Signaling pathways activated by FGF/FGFR](image-url)
more severe defects, characterized by malformation of the apical ectodermal ridge (AER).

FGF receptor-specific substrates (Frs) act as the principal mediators for FGFR1 signal transduction. Mice that lack the Frs-binding site on FGFR1 (Fgfr1^{Δfrs/Δfrs}) die during late embryogenesis, and exhibit defects in neural tube closure, and in the development of the tail bud and pharyngeal arches. However, mutant FGFR1 still has functions during gastrulation and somitogenesis, indicating that distinct signal transduction mechanisms of FGFR1 signaling in different developmental contexts.25

Osteoglophonic dysplasia (OD) patients, resulting from activating mutations of FGFR1, exhibit rhizomelic dwarfism,26 indicating that FGFR1 is a negative regulator of long bone growth. Embryos with conditional deletion of Fgfr1 in osteochondro-progenitor cell lineages show increased height of the hypertrophic zone due to delayed degradation, or maturation of hypertrophic chondrocytes, or decreased osteoclastogenesis.15

Studies in humans and mice also reveal that FGFR1 play crucial role in bone formation. A gain-of-function mutation in FGFR1 (P252R) leads to Pfeiffer syndrome (PS), one type of craniosynostoses, characterized by premature fusion of one or several calvarial sutures.27 Several activating mutations of FGFR1 in OD patients also lead to craniosynostosis in addition to rhizomelic dwarfism.26 Mice carrying a P250R mutation in FGFR1 were generated to mimic human PS. Studies using these mutant mice uncovered that FGFs/FGFR1 signals may regulate intramembranous bone formation.28

Jacob et al.15 found that adult mice, with deletion of Fgfr1, exhibited increased bone mass. Deletion of Fgfr1, in osteochondro-progenitor cells in mice (via Col2-cre), leads to increased proliferation and delayed differentiation, and matrix mineralization of osteoblasts, while inactivation of Fgfr1 in differentiated osteoblasts (via Col1-cre) causes accelerated osteoblast mineralization differentiation.15 It has been proposed that FGFR1 promotes the differentiation of mesenchymal progenitors into preosteoblasts, but inhibits the proliferation of mesenchymal progenitor cells, as well as the maturation and mineralization of osteoblasts.15 Impaired osteoclast activity is another reason for increased bone mass in mice with Fgfr1-deficient in differentiated osteoblasts. To explore the direct effect of FGFR1 on osteoclasts, Lu et al.29 generated mice with targeted deletion of Fgfr1 in bone marrow monocytes and osteoclasts using LysM-cre. The mutant mice exhibit increased bone mass, impaired osteoclast formation and activity indicating the positive regulation of FGFR1 on osteoclasts. The role of FGFR1 in osteocytes is still not

Table 1. The expression patterns of FGFs/FGFRs during skeleton development.2,7,11,31,46,60,161–162,204,262–263

FGFs/FGFRs	Limb bud	Osteoblast lineage	Cartilage	Cranial bone	Receptor specificity
FGFR2	Developing condensation	Perioskeletal cells, Osteoblasts in trabecular bone	Perichondrium, Chondrocytes	Mesenchymal cells in the suture	FGFR1, FGFR2, FGFR3c, FGFR4
FGFR4	Posterior AER at E10.5-11.0	Cortical bone at embryonic stage	Perichondrium, Chondrocytes	Osteoblasts	FGFR2b, FGFR3c, FGFR4
FGFR7	Loose mesenchyme	Periosteum, Primary spongiosa	Perichondrium, Chondrocytes	Mesenchyme of suture in early craniofacial development stages	FGFR2c, FGFR3c, FGFR4
FGFR8	AER	Prehypertrophic and hypertrophic chondrocytes of growth plate, Perichondrium, Cartilage of the cranial base	Osteoblasts	FGFR2b, FGFR3c, FGFR4	
FGFR9	AER, Developing condensation	Periosteum, Trabecular bone	Perichondrium, Chondrocytes	FGFR2b, FGFR3c	
FGFR10	Lateral plate mesoderm	Periosteum, Trabecular bone, Osteocytes	Chondrocytes	FGFR2b, FGFR3c	
FGFR11	Osteoblasts, Osteocytes in trabecular bone	Periosteum, Trabecular bone	Chondrocytes	FGFR2b, FGFR3c	
FGFR12	Center of the mesenchyme condensation	Periosteum, Trabecular bone	Chondrocytes	FGFR2b, FGFR3c	
FGFR13	Strictly in osteoblasts between the periosteal and endosteal layers	Periosteum, Trabecular bone	Chondrocytes	FGFR2b, FGFR3c	

© 2014 Sichuan University

Bone Research (2014) 14003
clarified and should be studied by deletion of Fgfr1 in osteocytes using dentin matrix protein-1(Dmp1)-Cre (Figure 2).

In addition to the effect of FGFR1 on limb development and bone formation or remodeling, FGFR1 also participates in phosphorus metabolism. Osteoglophonic dysplasia patients have non-ossifying bone lesions, hypophosphatemia and increased serum level of FGF23, a member of the FGF family, which is a circulating phosphaturic hormone produced mainly by osteoblasts and osteocytes.30–31 Pharmacological inhibition of FGFR1 inhibits FGF23 transcription in bone of animal models.32 Integrative nuclear FGFR1 can activate the transcription factor cyclic AMP response element-binding protein (CREB),33 which also binds the proximal Fgf23 promoter; thus, it is hypothesized that FGFR1 may regulate FGF23 by binding CREB.

FGFR2

FGFR2 is expressed in condensing mesenchyme of early limb bud,9,34–35 and later appears as the marker of prechondrogenic condensations. In developing bone, FGFR2 is predominantly localized to perichondrial and periosteal tissue, and weakly to endosteal tissue and trabecular bone.36 FGFR2 is intensely expressed in the cartilage of the cranial base and growth plate.11,37–40 In cranial sutures, FGFR2 is mainly expressed in osteoprogenitor cells13 and differentiating osteoblasts.41–42 The expression pattern of FGFR2 indicates its important role in skeleton development (Table 1).

Mice with deletion of transmembrane domain and part of kinase I domain of Fgfr2 (Fgfr2−/−) die at E4.5–5.5 due to stopped inner cell mass growth.43 Targeted deletion of the Ig domain III of FGFR2 results in embryonic lethality at E10–11 because of failures in the formation of functional placenta. Mutant embryos also fail to form limb buds completely, indicating that FGFR2 Ig domain III is essential for limb initiation.24,44–45

Activating FGFR2 mutations have variable effects on cranial cell replication, or differentiation in mice and humans.40,46 More than 10 gain-of-function mutations in FGFR2 cause multiple types of craniosynostoses, such as Apert syndrome (AS), Crouzon syndrome (CS) and PS, as well as Beare–Stevenson cutis gyrata syndrome (BSS).40,47 Among them, AS is one of the most severe craniosynostoses. S252W and P253R mutations in FGFR2 are responsible for nearly all known cases of AS.2,47

Several gain-of-function mutant mouse models, mimicking human craniosynostoses, have been generated to study the mechanism of FGFR2 for regulating the suture development. Fgfr2+/S252W mutant mice mimicking human AS have smaller body size, midline suture defect and craniosynostosis with abnormal osteoblastic proliferation and differentiation.48 Fgfr2+/S252W mice also show ectopic cartilage at the midline sagittal suture, increased cartilage in the basicranium, nasal turbinates and trachea. These mutant mice display long bone abnormalities, as evidenced by the disorganized growth plates and more prominent cartilage mineralization.48 Fgfr2+/P253R mice have growth retardation of the synchondroses of cranial base and growth plates of the long bones with decreased proliferation of chondrocytes, which may be responsible for the smaller body size and shortened cranial base in Fgfr2+/P253R mice.39 Furthermore, Fgfr2+/P253R mice also show ectopic cartilages in the sagittal suture39,49 consistent with the skull phenotypes in Fgfr2+/S252W mice and the symptom in AS patients.48,50 However, Chen et al.51 found that the growth plates of Fgfr2+/S250W mice showed slightly shorter columns of proliferating chondrocytes, but no abnormal hypertrophic zone; and premature closure of cranial base synchondrosis have been detected in Fgfr2+/S250W mice.

In Fgfr2+/P253R mice or Fgfr2+/Y394C mice mimicking human BSS (also characterized by skull abnormalities), the premature fusion of coronal suture is associated with enhanced osteoblast differentiation similar to Fgfr2+/S252W mice.39,49,52 In another mouse model with a C342Y mutation in FGFR2IIIc (Fgfr2c+/C342Y) (equivalent to mutation in human causes CS/PS), premature fusion of...
craniocutaneous features is accompanied by abnormal cranial sutures and increased proliferation of osteoprogenitor cells in the cranial sutures.53 Chen et al.51 also found decreased bone formation and premature closure of the coronal suture in \textit{Fgfr2}+/S250W mice similar to phenotypes in human AS.51 However, increased apoptosis is responsible for premature fusion in \textit{Fgfr2}+/S250W coronal suture.51 These results suggest that different activating mutations in FGFR2 result in craniosynostosis through distinct mechanisms.

\textit{Fgfr2illic}−/− mice also show delayed differentiation and mineralization of the skull vault, and premature coronal suture due to decreased cell proliferation.54 The retarded ossification in \textit{Fgfr2illic}−/− mice is correlated with the decreased osteoblast markers \textit{OP} and \textit{Cbfal}, which is emphasized by increased osteogenesis of Crouzon-like \textit{Fgfr2IIIc} ossification in \textit{C223}−/− mice. This leads to premature fusion of cranial sutures.51 However, increased apoptosis is responsible for premature fusion in \textit{Fgfr2}+/S250W coronal suture.51 These results suggest that different activating mutations in FGFR2 result in craniosynostosis through distinct mechanisms.

FGFR3

FGFR3 is first expressed in chondrocytes, differentiated initially from the core of the mesenchyme condensation.58 FGFR3 is expressed in reserve and proliferating chondrocytes as the epiphyseal growth plate is formed.12,58–59 Immunohistochemistry results have indicated that FGFR3 is also expressed in mature osteoblasts and in osteocytes.14 During calvarial bone development FGFR3 is expressed at low levels in sutural osteogenic fronts at the late stages (Table 1).34,38

Gain-of-function point mutations in FGFR3 cause several types of the human skeletal dysplasias, including achondroplasia (ACH), hypochondroplasia (HCH), thanatophoric dysplasia (TD) and severe achondroplasia, with developmental delay and acanthosis nigricans (SADDAN).60 Among these diseases, ACH is the most common type of human dwarfism characterized by short stature, especially in the proximal upper and lower limbs, central facial dysplasia, macrocephaly and spine protrusion.61–63 The phenotype of HCH is similar to ACH, but much milder than ACH, whereas TD is the most common form of lethal skeletal dysplasia characterized by macrocephaly, narrow bell-shaped thorax, severe shortening of the limbs and lethality in the neonatal period. TD has been classified into TDI and TDII. TDI patients have curved, short femurs, with or without cloverleaf skull, and TDII patients have relatively longer femurs with severe cloverleaf skull.64 Patients with SADDAN exhibit acanthosis nigricans and anomalies in the central nervous system, in addition to severe skeletal dysplasia.65–66

Currently, multiple FGFR3-related mouse models have been generated using genetic approach to study the role of FGFR3 in skeleton development and diseases. Mice carrying activating mutations of FGFR3 mimicking human ACH exhibit smaller body size, dome-shaped skull and shortened long bones with disorganized chondrocyte columns in growth plates.60,67–71 Mice carrying FGFR3 K644E mutation mimicking human TDII die within few hours after birth, whereas mice carrying FGFR3 S365C mutation, which corresponds to FGFR3 S371C mutation in human
FGFR3 negatively regulates chondrogenesis of long bones by affecting the proliferative activity and differentiation of chondrocytes. A number of reports have demonstrated that FGFR3 signaling inhibits chondrocyte proliferation through STAT1 signaling by inducing the expression of cell cycle suppressor genes such as the CDK inhibitor p21.73-76 Loss of Stat1 restored the reduced chondrocyte proliferation in ACH mice, but did not rescue the reduced hypertrophic zone or the delayed formation of secondary ossification centers in ACH mice. The expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibits skeletal overgrowth, strongly suggesting that FGFR3 inhibits chondrocyte differentiation through the ERK/MAPK pathway.76 In contrast, evidence suggests that FGFR3 promotes chondrocyte terminal hypertrophic differentiation.77-78 Conversely, mice carrying targeted deletion of Fgfr3 exhibit overgrowth of long bone, wider hypertrophic zone, proliferative zone and enhanced proliferative activity of chondrocytes.59,79

Moreover, the activity and the signaling outcomes of the FGFR3 pathway during chondrogenesis are also influenced by many intracellular and extracellular signals. Activated FGFR3 inhibits BMP4 expression in post-natal mouse growth plates.80 While BMP treatment rescues the retarded growth of long bone in ACH mouse model.77 These studies emphasize the antagonistic interaction between FGFR3 and BMP signaling in the control of chondrogenesis. Moreover, Ihh expression is reduced in mice carrying activating Fgfr3.80 PTHrP partially reverses the inhibition of long bone growth caused by FGFR3 activation.72 It was suspected that FGFR3 signaling may act upstream of the IHH/PTHrP system in regulating the onset of hypertrophic differentiation.77 In addition, it was reported that IGF1 prevents the apoptosis, induced by FGFR3 mutation, through the phosphoinositide 3-kinase pathway and MAPK pathways.81

FGFR3 signaling is also an important regulator of osteogenesis. Chondrocyte-specific activation of Fgfr3 in mice causes premature synchondrosis closure and enhanced osteoblast differentiation around synchondroses. Premature synchondrosis closure is also observed in the spine and cranial base in human cases of homozygous ACH and TD, as well as in mouse models of ACH, with increased bone formation.70,72,82 Activated FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities.83-84 Mice lacking Fgfr3 also have decreased bone mineral density and osteopenia.14,85 FGFR3 can inhibit proliferation of BMSCs in vitro.83,85 However, both deletion and activation of Fgfr3 can lead to increased differentiation, but impaired mineralization of osteoblasts (Figure 2).83,85 The reasons for these seemingly inconsistent results need to be explored.

Given its causal role in some skeletal disorders, including ACH, FGFR3 and/or its downstream pathways, are attractive targets for therapy. C-type natriuretic peptide is a newly identified potential therapeutic antagonist of FGFR3 signaling that alleviates the dwarfism phenotype of mice mimicking human ACH through its inhibition on FGFR3/MAPK pathway.86-87 It was reported that parathyroid hormone (PTH) (1–34) stimulates the longitudinal bone growth in rats and improves the growth of the cultured femurs from mice carrying a gain-of-function mutation (G380R) of Fgfr3.88-89 In addition, we have found previously that PTHrP partially reversed the shortening of cultured bone rudiments from ACH mice.72 Recently, we found that systemic intermittent injection of PTH (1–34) can rescue the lethal phenotype of Tdii mice and significantly alleviate the retarded skeleton development of ACH mice.90 We also have identified a novel inhibitory peptide for FGFR3 signaling, which alleviated the bone growth retardation in bone rudiments from mice mimicking human TDII and reversed the neonatal lethality of TDII mice.91

FGFR4
In addition to its expression in the resting and proliferative zones of growth plates,1 FGFR4 is also highly expressed in rudimentary membranous bone and strictly localized in osteoblasts between the peristeal and endosteal layers (Table 1).92 Interestingly, Fgfr4-deficient mice are developmentally normal, but the Fgf3/Fgfr4 double null mice grow more slowly.93 However, the effect of FGFR4 on bone development remains unclear and needs further studies.

FGFS PARTICIPATE IN SKELETON DEVELOPMENT AND BONE METABOLISM

FGF2
FGF2 is one of the earliest members identified in the FGF polypeptide family, and is expressed in majority of cells and tissues including limb bud, chondrocytes and osteoblasts. FGF2 is stored in the extracellular matrix.11,94-96 FGF2 contributes to the growth and patterning of the limb.96 Overexpression of human FGF2 in mice (TgFGF2) results in dwarfism, with shortening and flattening of long bones and moderate macrocephaly.97 Deletion of Stat1 leads to a significant correction of the chondrodysplasic phenotype of TgFGF2 mice.98 These results indicate the essential role of Stat1 in FGF-mediated regulation of epiphyseal growth plates. Fgf2-knockout (Fgf2^{−/−}) mice have normal limbs. The normal skeleton in Fgf2^{−/−} mice indicates that the function of FGF2 may be replaced by FGF8 and FGF4,99 which is also expressed in the limb bud. FGF2 also plays important roles in bone homeostasis. Deletion of Fgf2 in mice leads to decreased bone mass, bone formation and mineralization.95,100 Endogenous
FGF2 promotes the differentiation of bone marrow stromal cells (BMSCs) into osteoblasts, since FGF2 deficiency results in adipogenesis and reduced osteogenesis of BMSCs.\(^{75,101}\) Similar to Fgf2\(^{-/-}\) mice, TgFGF2 mice also have reduced bone mass, which may result from impaired endochondral ossification, or continuous exposure to high levels of FGF2 in vivo.\(^{114,102}\) Targeted overexpression of FGF2 in chondrocytes and osteoblasts should provide important information about the role of FGF2 in dwarfism and bone formation.\(^{102}\)

Other important factors for bone homeostasis also exert their effects through FGF2. PTH and BMP2-induced bone formation in Fgf2\(^{-/-}\) mice are greatly impaired, and osteoclast formation stimulated by PTH and BMP2 are also disrupted in Fgf2\(^{-/-}\) bone marrow stromal cultures.\(^{103-105}\) The impaired bone anabolic effect of PTH in Fgf2\(^{-/-}\) mice is associated with reduced expression of activating transcription factor 4, a critical regulator for osteoblast differentiation and function.\(^{106}\) Furthermore, prostaglandin F2\(\alpha\) also induces osteoblast proliferation through endogenous FGF2.\(^{107}\)

FGF2 has three isoforms: a low molecular weight isoform (lmw, 18 kDa) and two high molecular weight isoforms (hmw, 21 and 22 kDa). FGF2lmw is secreted and activates FGFRs, whereas FGF2hmw remains intranuclear. Their roles in bone formation are largely unknown. Transgenic mice with targeted overexpression of FGF2lmw and FGF2hmw in immature and mature osteoblast lineage (via Col3.6-cre) are used to elucidate the differential functions of FGF2 isoforms in bone formation.\(^{108-109}\) Col3.6-FGF2lmw mice have increased bone mineral density (BMD), bone mass and enhanced mineralization of BMSCs, which is related to the reduced expression of the Wnt antagonist secreted frizzled receptor 1.\(^{110}\) In contrast to TgFGF2lmw mice, Fgf2lmw\(^{-/-}\) mice show significantly reduced BMD and impaired mineralization.\(^{108}\)

Col3.6-FGF2hmw mice display dwarfism, decreased BMD, increased FGF23 level, hypophosphatemia and rickets/osteomalacia, which is similar to X-linked hypophosphatemia (XLH).\(^{109-110}\) A potential mechanism is that FGF2 enhances FGF23/FGFR1/KLOTHO signaling, and then downregulates renal Na\(^+\)/Pi cotransporter NPT2a, causing Pi wasting, osteomalacia and decreased BMD.\(^{109}\) The upregulation of FGF23 level by FGF2hmw depends on FGFR1/MAPK pathway.\(^{110}\) These studies indicate that FGF2 isoforms have important effects on bone homeostasis and different FGF2 isoforms perform distinct roles.

FGF4

Vertebrate limb development largely depends on signals from the AER. During limb development, FGF4 is first expressed in the developing murine forelimb bud at E10.0. Its expression is strongest in the posterior AER at E10.5–11.0 and is undetectable at E12.0.\(^{111}\) FGF4 provides mitogenic and morphogenic signals to regulate normal limb development.\(^{111-112}\) Fgf4 knockout (Fgf4\(^{-/-}\)) mice die on E4.5 (early embryonic stages),\(^{113}\) preventing the direct evaluation of FGF4 function in the developing limb. Mice with targeted deletion of Fgf4 in limbs (via Rarb-Cre) are viable and have normal skeletal patterns.\(^{111}\) The expression pattern of Sonic hedgehog (Shh), another key signaling molecule in AER maintenance, is normal in the limb buds, suggesting that FGF4–Shh feedback loop is not essential for limb development.

In addition to its essential roles in the AER of normal embryo, FGF4 can also promote intramembranous ossification and participate in the development of calvarial bone. FGF4 is expressed in sutural mesenchyme during early craniofacial skeletogenesis.\(^{60}\) Treatment with FGF4 on developing mouse coronal suture leads to synostotic coronal sutures accompanied by the induction of apoptosis and accelerated mineralization.\(^{114}\) FGF4 can also cause premature suture fusion with increased cell proliferation, both in cultured calvaria and in mice.\(^{115}\) Furthermore, systemic administration of FGF4 and its 134 amino-acid residues leads to increased bone formation in rats and mice in vivo.\(^{116}\) FGF4 can also promote BMSC proliferation in vitro,\(^{117-118}\) and strongly stimulate Runx2 expression in osteoblast-like MC3T3-E1 and murine premyoblast C2C12 cells.\(^{119}\) However, studies especially genetic studies on the role of FGF4 in bone formation, are still lacking.

FGF8

FGF8 is expressed throughout the AER, indicating its important role in limb development.\(^{120-122}\) Mice with deleted Fgf8 show early embryonic lethality before limb development.\(^{123-124}\) Lewandoski et al. generated mice with targeted deletion of Fgf8\(^{124}\) (via Msx2-cre) in limb bud.\(^{112}\) These mice display failed limb development with substantial reduction in limb-bud size, and hypoplasia or aplasia of specific skeletal elements.\(^{112}\) However, the Msx2 promoter driven cre is not expressed sufficiently early to completely ablate Fgf8 function during forelimb formation, which results in a complex forelimb phenotype. Using Rarb-Cre mice, Fgf8 is conditionally deleted in the developing forelimb AER. These mice have severe forelimb deformity, including the absence of radius and first digit.\(^{125-126}\)

In addition to its important role in limb development, FGF8 also regulates osteoblast and chondrocyte differentiation. FGF8 is expressed in chondrocytes and perichondrium of dorsal costal bone, as well as in the osteoblast compartment of calvarial bone in cortical bone and the growth plate of developing bones.\(^{120,127}\) FGF8 can effectively predetermine mouse BMSCs and C2C12 cell line to differentiate to osteoblasts and increase bone formation in vitro.\(^{128-129}\) However, Lin et al.\(^{130}\) found
that FGF8 stimulated the proliferation of MC3T3E1 or primary rat osteogenic cells, but inhibited osteogenic differentiation and mineralization. These controversial results may be attributed to the different cells used in in vitro experiments. As to cartilage, FGF8 can promote the degradation of cartilage and exacerbation of osteoarthritis.131 However, the influence of FGF8 on bone and cartilage remains unclear.

FGF9

FGF9 has the highest affinity to FGFR3, and can also bind FGFR2 with a lower affinity (Table 1).135 FGF9 is broadly expressed in different tissues including in AER, perichondrium/periosteum, chondrocytes of growth plate, as well as primary spongiosa.133–135

Colvin \textit{et al.}136 generated \textit{Fgf9} knockout (\textit{Fgf9}−−/−) mice and showed that deletion of \textit{Fgf9} alleles led to lethality at the neonatal stage mainly due to malformations of the lung, and causing male-to-female sex reversal.136–137 These results indicate that loss of \textit{Fgf9} function after mesenchymal condensation. The rhizomelia results from the loss of \textit{Fgf9} function after mesenchymal condensation. Similarly, transgenic mice, with overexpression of \textit{Fgf9} in chondrocytes (\textit{Col2a1–Fgf9}), also show dwarfism, short limb and vertebral defect because of the reduced proliferation and terminal differentiation of chondrocytes. These results are similar to bone phenotypes, caused by activated FGFR3.133 These seemingly inconsistent results between \textit{Fgf9} null and transgenic mice may result from distinct effect of \textit{Fgf9} on different stages of skeletogenesis.

In addition, \textit{Fgf9}−−/− mice also show impaired osteogenesis, which may be secondary to the earlier defective chondrogenesis and vascularization.135 or \textit{Fgf9} may directly regulate osteogenesis, as demonstrated by in vitro calvarial bone cell culture studies.138 Furthermore, the loss of \textit{Fgf9} results in a deficiency of osteoclasts in the perichondrium and primary spongiosa of developing bone.135 These findings suggest that \textit{Fgf9} can positively regulate osteogenesis and osteoclastogenesis in endochondral ossification.

\textit{Fgf9} is also expressed in the mesenchyme of suture in the early craniofacial development stages.115 By contrast to its promoting effects on osteogenesis in endochondral ossification, targeted overexpression of \textit{Fgf9} in cranial mesenchymal cells leads to a switch from intramembranous to endochondral ossification in mouse parietal bones, indicating that \textit{Fgf9} may regulate bone development by affecting the direction of mesenchyme differentiation.139

Recently, missense mutations in \textit{Fgf9} have been identified to result in elbow-knee synostosis, premature fusion of cranial sutures in mice140 and multiple synostosis syndrome in humans.141 These data further suggest the important effect of \textit{Fgf9} on bone development.

However, the different impacts of \textit{Fgf9} on different stages of limb development and the direct effect of \textit{Fgf9} on adult bone homeostasis are still unclear. Targeted deletion of \textit{Fgf9} in different stages and cells using \textit{Fgf9} CKO mice142 are necessary to answer these questions in the future.

FGF10

FGF10 is expressed in the lateral plate mesoderm and serves as a mesenchymally expressed limb bud initiator,144–146 and the expression persists in the mesenchyme under AER after initial limb bud formation. FGF10 acts epistatically at the upstream of FGF8.145 Positive feedback exists between FGF8 and FGF10, which is essential for limb development.44 To define the role of FGF10, \textit{Fgf10} knockout (\textit{Fgf10}−−/−) mouse strain was generated. These mice show complete absence of fore- and hindlimbs, and die after birth associated with complete absence of lungs.145–146 The limb bud formation in \textit{Fgf10}−−/− embryos is initiated but outgrowth of the limb buds is impaired, while the clavicle formation is normal.146 However, the impact of FGF10 on postnatal bone development and modeling remains unclear.

FGF18

FGF18 is expressed in osteogenic mesenchymal cells and differentiating osteoblasts of developing calvaria, in the perichondrium and joints, as well as growth plates of developing long bones.11,147–148

\textit{Fgf18} knockout (\textit{Fgf18}−−/−) mice die shortly after birth, and display expanded zones of proliferating and hypertrophic chondrocytes with increased chondrocyte proliferation and differentiation, similar to that observed in mice lacking \textit{Fgfr3}.147–148 Bone cultures of fetal mouse tibias treated with FGF18 show decreased bone length and hypertrophic differentiation of chondrocytes.87,149 These studies demonstrate the inhibitory effect of FGF18 in chondrogenesis. In contrast to the negative role of FGF18 in chondrogenesis found in \textit{Fgf18}−−/− mice or FGF18-treated cultured bone, the proliferation and differentiation of primary chondrocytes and prechondrocytic ATDC5 cells are stimulated by FGF18 treatment in vitro.150 FGF18 also enhances BMP function and stimulates chondrogenesis in earlier stages of cartilage formation by suppressing noggin expression.151 These seemingly contradictory data suggest that the in vivo role of FGF18 in chondrogenesis need to be further studied. In addition, FGF18 regulates bone development by inducing skeletal vascularization and
subsequent recruitment and formation of osteoclasts in developing long bone.152

Fgf18−/− mice also show delayed suture closure with decreased proliferation of calvarial osteogenic mesenchymal cells and delayed osteogenic differentiation. The calvarial bone mineralization in Fgf18−/− mice is also decreased.148,152 The delayed osteogenic differentiation is also observed in the developing long bones of Fgf18−/− mice.152 In vitro studies show that FGF18 treatment results in enhanced proliferation of MC3T3-E1 cells and perichondrial cells in cultured metatarsals,150 supporting the promoting effect of FGF18 on osteogenesis. These data indicate that FGF18 may be an important modulator for both endochondral and intramembranous bone formation in adult mice.

Although FGF18 is a key regulator for chondrogenesis, osteogenesis and vascularization of early skeleton development, the mechanism and the direct effect of FGF18 on the three critical stages in skeleton developmental or bone homeostasis at adult period need to be further studied.

FGF21

FGF21 is a member of the FGF19/21/23 subfamily that functions as an endocrine hormone.153–154 FGF21 is a powerful regulator of glucose and lipid metabolism.155–158 Recently, FGF21 has also been found to participate in bone homeostasis. The overexpression of Fgf21 in liver driven by Apoe promoter in transgenic mice show decreased bone mass, impaired bone formation and increased osteoclast function, which is consistent with the phenotypes of mice with pharmacological FGF21 treatment. In contrast, Fgf21−/− mice have increased bone mass with improved osteogenesis and decreased osteoclast function. The possible mechanism is that FGF21 stimulates adipogenesis from bone marrow mesenchymal stem cells by potentiating the activity of peroxisome proliferator-activated receptor γ, but inhibits osteoblastogenesis.159 These results indicate that FGF21 is a negative regulator of bone turnover and a key integrator of bone and energy metabolism, and underscores the importance of the whole body energy metabolism in bone physiology.159

Furthermore, FGF21 is expressed in the growth plate,160–161 and is associated with reduced skeletal growth and growth hormone (GH) insensitivity caused by undernutrition. After food restriction, FGF21 expression is increased in the tibial growth plates of mice. Fgf21−/− mice exhibit greater body and tibia growth than their wild-type controls after food restriction because of reduced GH binding and GH receptor expression in the liver and in the growth plates of wild-type mice, but not in that of Fgf21−/− mice.161 FGF21 also has direct effect on chondrocytes. Higher concentrations of FGF21 inhibit chondrocyte proliferation and differentiation by reducing GH binding in cultured chondrocytes.160 FGFR1 may participate as receptors of FGF21 in the regulation of chondrocytes by FGF21.160,162

Owen et al.163 found that physiological levels of FGF21 regulate the HPA axis and glucocorticoid levels, as well as the kisspeptin pathway in female fertility, which may also have effect on bone homeostasis.

FGF23

FGF23 is an approximately 32-kDa protein with an N-terminal FGF homology domain and a novel 72-amino-acid C-terminus, which permits interaction with FGF receptor–α-Klotho coreceptor complexes in cell membranes of target tissues.31,164 FGF23 is mainly secreted by osteoblasts and osteocytes,165–167 and as a hormone to regulate systemic phosphate homeostasis and vitamin D metabolism.

FGF23 downregulates serum phosphate. Mutations in an RXXR site in FGF23 prevents its cleavage resulting in autosomal-dominant hypophosphatemic rickets (ADHR), characterized by low serum phosphorus concentrations, rickets, osteomalacia, lower extremity deformities, short stature, bone pain and dental abscesses.168–172 The overproduction of FGF23 by tumors173 and osteogenic cells in fibrous dysplastic lesions174 may be responsible for the hypophosphatemia in tumor-induced osteomalacia and fibrous dysplasia, respectively. In addition to its role in hypophosphatemic diseases, FGF23 is involved in hyperphosphatemic diseases. Hyperphosphatemic familial tumoral calcinosis is a relatively rare genetic disease characterized by enhanced renal tubular phosphate reabsorption and elevated serum phosphorus, as well as paraarticular calcific tumors.175 Multiple mutations in FGF23 gene that lead to decreased FGF23 activity have been identified in patients with hyperphosphatemic familial tumoral calcinosis.176–178 These human studies help to define the critical role of FGF23 in regulating phosphate metabolism.

The transgenic mice, ubiquitously expressing human FGF23, reproduce the common clinical features of hypophosphatemia, including decreased serum phosphorus concentration, increased renal phosphate wasting, inappropriately low serum 1,25-dihydroxyvitamin D [1,25(OH)2D] level, and rachitic bone.179 Overexpression of human FGF23 in osteoblastic lineage or FGF23R176Q (a mutant form that fails to be degraded by furin proteases) in liver results in phenotypic changes similar to those of patients with ADHR or transgenic mice expressing FGF23 ubiquitously.180–181 Serum phosphate level is regulated by renal NaPi-2a in the brush border membrane of proximal tubules.182 The renal phosphate wasting in the transgenic mice is accompanied by the reduced expression of NaPi-2a.179 The reduction of serum 1,25(OH)2D levels may result
from a significant decrease in renal mRNA level for 25-hydroxyvitamin D-1a-hydroxylase (1a-OHase) and a simultaneous elevation of 24-hydroxylase mRNA, induced by increased serum level of FGF23 (Figure 3).183

Consistently, Fgf23 knockout (Fgf23−/−) mice have opposite features including significantly increased serum levels of phosphate, calcium and 1,25(OH)2D because of the upregulated renal phosphate reabsorption and enhanced expression of renal 1a-OHase, respectively.184 The Fgf23−/− mice also exhibit premature aging-like phenotypes including reduced lifespan, infertility, osteoporosis and renal dysfunction.184 The elimination or reduction of vitamin D activity from Fgf23−/− mice can rescue the premature aging-like features and ectopic calcifications. These in vivo experimental data strongly support the very essential roles of FGF23 in the regulation of phosphate homeostasis, vitamin D activity and in the pathogenesis of premature aging.185

Recent studies have indicated the regulation of iron on FGF23. Reduced serum iron concentrations are strongly correlated with increased serum FGF23 in ADHR patients,186 and C-terminal FGF23 is negatively correlated with ferritin.187 To investigate the effect of iron on the development of the ADHR phenotype, R176Q-Fgf23 knock-in mice mimicking human ADHR are generated and placed on control or low-iron diets.188–189 R176Q-Fgf23 knock-in mice on low-iron diet have elevated intact C-terminal Fgf23 with hypophosphatemic osteomalacia and low serum 1,25(OH)2D. Iron chelation in vitro results in a significantly increased Ftg23 mRNA level that depends on MAPK signaling.189 However, the mechanism for the regulation of FGF23 by iron is still unclear.

Increased FGF23 level is also found in patients with hypophosphatemic diseases including XLH and autosomal dominant hypophosphatemic rickets (ARHR). XLH is caused by inactivating mutations in phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX).190–191 Mice with ablation of Phex gene (Hyp mice) have increased FGF23 expression and hypophosphatemia.192 Both the serum phosphate levels and skeletal changes in Hyp mice can be reversed by introducing Fgf23 null mutation into Hyp mice,166,193–194 indicating that enhanced FGF23 level is responsible for the hypophosphatemia in XLH patients and Hyp mice. The increased FGF23 level is due to the improved Ftg23 expression, but not decreased degradation.165,194–195 ARHR results from missense mutations in DMP-1. Dmp1 knockout mice exhibit hypophosphatemic rickets and osteomalacia similar to ARHR patients.196–197 Both Dmp1 null mice and patients with ARHR show elevated serum FGF23 levels. Considering the role of FGF23 in ADHR and other hypophosphatemic diseases, ARHR has been proposed to be associated with excessive actions of FGF23.

FGF23 also participates in some clinical pathological processes, in addition to its role in genetic diseases. In patients with chronic kidney disease (CKD), FGF23 level is elevated due to increased serum calcium and phosphate concentrations and PTH,31,198 and is associated with increased FGF23 transcription in bone.199 Some researchers proposed that FGF23 might be an early biomarker for earlier interventions in CKD.200 However, the reason for the high serum levels of FGF23 in CKD is unclear. Furthermore, elevated level of FGF23 in CKD patients have been linked to greater risks of left ventricular hypertrophy (LVH).201–202 Using animal models, Faul et al.203 found that increased level of FGF23 in mice resulted in pathological hypertrophy of cardiomyocytes and LVH. To avoid redundancy and

Parathyroid glands	Bone
PTH	FGF23
FGF23	PHEX
1,25(OH)2D	1a-hydroxylase
NaPi-2a	phosphate resorption
Renal tubules	

Figure 3. FGF23 regulates systemic phosphate homeostasis and vitamin D metabolism. FGF23 can reduce expression of NaPi-2a in kidney tubules and lead to renal phosphate wasting. FGF23 downregulates activity of 25-hydroxyvitamin D 1a-hydroxylase in kidney tubules and reduces 1,25(OH)2D level. Furthermore, FGF23 also have relationship with PTH and PHEX.
Table 2: Mouse models with genetically modified FGF/FGFR signaling in skeletal development and homeostasis

Gene Model	Exon	Cre line (tissue)	Survival	Phenotype	Reference	Related human skeleton disease	
FGFR1 KO Exon 4	Germline	Die at E7.5–9.5	Severe growth retardation, defect of mesodermal differentiation	[17]	NA		
FGFR1-deficient ES chimeras Exons 8-14	Germline	Die at E7.5–9.5	Early growth defects, aberrant mesodermal patterning	[18]	NA		
FGFR1-deficient ES chimeras Exon 4; Exons 8-14	Germline	Die during gastrulation	Defective cell migration through primitive streak, malformation of chimeric limb buds	[21,228]	NA		
FGFR1-deficient ES chimeras Exon 3 (α-isoforms)	Germline	Die at E9.5-12.5	Distal truncation of limb bud, lethal at E9.5-12.5 due to posterior embryonic defects	[20]	NA		
FGFR1-deficient ES chimeras Exon 8 (IIb)	Germline	Viable	No obvious phenotype	[19]	NA		
FGFR1-deficient ES chimeras Exon 9 (IIc)	Germline	Lethal	Gastrulation defects	[19]	NA		
FGFR1-deficient ES chimeras Exons 8-17 (Frs2/3-binding site)	Germline	Die during late embryogenesis	Defects in neural tube closure and in the development of the tail bud and pharyngeal arches	[25]	NA		
CKO Exons 8-14 T(brachyury)-cre (all LMB cells)	Die at birth	Later reduction of limb skeleton, misshapen forelimb/hindlimb bud, missing digits	[10,229]	NA			
CKO Exons 8-14 Shh-cre (posterior LBM cells)	Die at birth	Normal limb bud size, missing digit 3	[10,229]	NA			
CKO Exons 8-14 Ap2-Cre (progress zone of the mouse limb at E10.5)	Die at birth	Abnormal development of the anterior digits	[24]	NA			
CKO Exons 8-14 Hoxb6-Cre (lateral plate mesoderm of E8.5)	Die at birth	Severe abnormalities in autopod formation in hindlimbs	[24]	NA			
CKO Exons 8-15 Col2a1-cre (osteochondrocyte lineage)	Viable	Increased bone mass, delayed osteoblast differentiation, increased proliferation of osteochondro-progenitor cells, increased height of the hypertrophic chondrocyte zone at E16.5	[15,230]	NA			
CKO Exons 8-15 Col1-cre (differentiated osteoblasts)	Viable	Increased bone mass, accelerated osteoblast differentiation and mineralization, impaired osteoclast activity	[15,230]	NA			
CKO Exons 8-15 LysM-cre	Viable	Increased bone mass, impaired osteoclast formation and activity	[29]	NA			
CKO Exons 8-15 OC-cre	Viable	Increased bone mass	Su et al. unpublished data	NA			
DN Transgene (Tyrp1-FGFR1*IIc)	Retinal pigment epithelium	Die at E11.5	Developmental delay, mesodermal migration and patterning defects, craniorachischis and posterior truncations	[25]	NA		
GOF (KI) Exon 7 (P250R)	Germline	Viable	PS including decreased body size, premature suture closure, increased bone formation at suture	[28]	PS (P250R)		
OE Transgene (BAC-FGFR1P252R)	Various	Viable	Premature suture closure	[232]	PS (P250R)		
Gene	Model	Exon	Cre line (tissue)	Survival	Phenotype	Reference	Related human skeleton disease
-------	-------	------	-------------------	-------------------	--	----------	-----------------------------
FGFR2	KO	Exons 10,11 and part of exon 12 (transmembrane domain and part of its kinase I domain)	Germline	Die at E4.5–5.5	The growth of the inner cell mass stopped, no visceral endoderm formed, trophoblast defects	[43]	NA
	KO-LacZ	Exons 7–9 (Entire Ig III)	Germline	Die at E10–11	Failure of limb bud initiation and placenta formation	[44,45]	NA
	KO	Exon 8 (IIIb) (A translational stop codon inserted into exon 9)	Germline	Die at birth	Impaired limb outgrowth, severe dysgenesis of multiple organs	[233]	NA
	KO	Exon 9 (Iic) (Resulting in a GOF mutation associated with exon switching within the Fgfr2 gene)	Germline	Viable	Delayed ossification in the sphenoid region of the skull base, dwarfism in the long bones and axial skeleton	[54]	NA
	CKO	Exon 8 (IIIb)	CMV-Cre (germline)	Die at birth	Defects of limb outgrowth and branching morphogenesis	[234]	NA
	CKO	Exon 9 (Iic) (Resulting in a GOF mutation associated with exon switching within the Fgfr2 gene)	ZP3-Cre (germline)	Die within 9 days	Coronal synostosis, ocular proptosis, precocious sternal fusion, and abnormalities in secondary branching in several organs	[235]	CS/PS
	CKO	Exons 8–10	Dermo1-Cre (mesenchymal condensations)	Viable	Skeletal dwarfism and decreased bone density, impaired proliferation of osteoprogenitors and function of mature osteoblasts	[36]	NA
	KD (RNAi)	Transgene (U6-ploxPneo-Fgfr2)	EIIa-Cre (germline)	Lethal	Displayed limb defects	[57]	NA
GOF (KI)	Exon 7 (S250W)	Germline	Viable	Several features similar to AS including smaller body size, brachycephaly, and midface hypoplasia	[51]	AS	
GOF (KI)	Exon 7 (S252W)	Germline	Neonatal lethality	Smaller size, midline sutural defect and craniosynostoses, increased cartilage in the basiscranium, nasal turbinates and long bone	[48]	AS(S252W)	
GOF (KI)	Exon 7 (P253R)	Germline	Viable	Smaller body size, brachycephaly and syndactyly, premature of cranial sutures	[39]	AS(P253R)	
GOF (KI)	Exon 7 (P253R)	Germline	Die at P1–3w	Smaller body size, brachycephaly and syndactyly, premature of cranial sutures	[49]	AS(P253R)	
GOF (ENU-induced)	Exon 7 (W290R)	Germline	Neonatal lethality	Features resembling those found in patients with CS	[236]	CS	
GOF (KI)	Exon 9 (Iic) (C342Y)	Germline	Viable	Shortened face, protruding eyes, premature fusion of cranial sutures, and enhanced Spp1 expression in the calvaria, just like human Crouzon syndrome/Pfeiffer syndrome	[55]	CS/PS (C342Y)	
GOF (KI)	Exon 9 (Iic) and Exon 10 (transmembrane domain) (C342Y; L424A; R424A, CLR)	Germline	Viable	Normal skull development	[53]	NA	
GOF (KI)	Exon 10 (transmembrane domain) (Y394C)	Germline	Postnatal lethality	Epidermal hyperplasia and premature closure of cranial sutures (craniosynostosis) due to abnormal cell proliferation and differentiation	[52]	BSS	
Gene	Model	Exon	Cre line (tissue)	Survival	Phenotype	Reference	Related human skeleton disease
--------	--------	----------	-------------------	----------	---	----------	-------------------------------
FGFR3	KO	Exon 5	Germline	Viable	Bone overgrowth, decreased bone mass	[79]	CATSHL syndrome
FGFR3	KO	From Ig-like domain II to the transmembrane domain	Germline	Viable	Bone overgrowth, defective bone mineralization and osteopenia, early arthritids, deafness	[59,85,237]	CATSHL syndrome
KO (a stop codon inserted)	Exon 8 (IIb)	Germline	Viable	No obvious phenotype	[238]	NA	
KO (a stop codon inserted)	Exon 9 (IIc)	Germline	Viable	Skeletal overgrowth, decreased bone mineral density	[238]	NA	
OKO	Exons 9–10	EIIa-Cre	Viable	Increased length of long bone and decreased bone mineral density	[239]	NA	
GOF (K1)	Exon 7 (P244R)	Germline	Viable	Abnormal craniofacial morphology	[240]	MS (P250R)	
GOF (K1)	Exon 9 (Y367C)	Germline	Viable	Skeletal dysplasia more severe than ACH	[241]	TD I (Y373C)	
		(die at 6–8 weeks after birth)					
GOF (K1)	Exon 10 (S365C)	Germline	Viable	Skeletal dysplasia more severe than ACH	[72]	TD I	
GOF (K1)	Exon 10 (G369C)	Germline	Viable	Macroprephal and shortened limbs due to retarded endochondral bone growth and premature closure of cranial base synchondroses	[70]	ACH (G375R)	
GOF (K1)	Exon 10 (G374R)	Germline	Viable	Small size, short tail, macrocephaly and dome-shaped heads, the narrower epiphyseal growth plates and decreased hypertrophic chondrocyte zone	[67,68]	ACH (G380R)	
GOF (K1)	K644E cDNA knock-in	Germline	Viable	Retardation of bone growth, macrocephaly and shortening of the long bones resembling ACH patients	[73]	ACH	
GOF (K1)	Exon 15 (K644E)	Germline	Neonatal lethality	Die within few hours after birth, skeletal dysplasia more severe than ACH	[71]	TD II (K650E)	
GOF (K1)	Exon15 (K644M)	Germline	Viable	Acanthosis nigricans and anomalies in central nervous system in addition to severe skeletal dysplasia	[242]	SADDAN	
OE	Transgene (Col2-G374R)	Chondrocyte	Viable	Mice are dwarfed, with axial, appendicular and craniofacial, skeletal hypoplasia	[80]	ACH	
OE	Transgene (FGFR3-hG380R)	Germline	Viable	Disproportionate dwarfism similar to those of human achondroplasia	[243]	ACH	
FGFR4	KO	Exon 6 (Ig II)	Germline	Viable	Morphologically normal, no obvious defects in skeleton	[93]	NA
FGFR3/ FGFR4	Double KO	Exon 8 (G385R)	Germline	Viable	Skeleton phenotype not reported	[244]	NA
FGFR4	KO	Exon1	Germline	Viable	Neonatal growth retardation, lung abnormalities	[93]	NA

Continued
Gene Model	Gene	Exon	Cre line (tissue)	Survival	Phenotype	Reference	Related human skeleton disease
KO	FGF2	Exon1 (all three isoforms)	Germline	Viable	Impaired cerebral cortex development, blood pressure regulation	[245]	NA
KO	FGF2	Exon1 (all three isoforms)	Germline	Viable	Decreased bone mass, decreased vascular smooth muscle contractility, low blood pressure and thrombocytosis	[95,100]	NA
KO	FGF2	Exon1 (All three isoforms)	Germline	Viable	Delayed wound healing and neuronal defects and impaired development of the cerebral cortex	[99]	NA
KO	FGF2	Exon 1 (CTGCAG replacing the wild-type CCATGC) (Lmw)	Germline	Viable	Decreased bone mineral content, bone, BMD and impaired mineralization of BMSCs	[108,246]	NA
KO	FGF2	Exon 1 (the 14-bp oligo was designed to introduce stop codons in all three reading frames) (hmw)	Germline	Viable	Skeleton phenotype was not reported	[247]	NA
KO	FGF2	Heterozygous (Fgf2+/−)	Exon1	Viable	Decreased bone mass and bone formation	[104]	NA
OE	FGF2	Transgene (PGK-hFGF2)	Various	Viable	Dwarf mouse with premature closure of the growth plate and shortening of bone length, defective bone mineralization and osteopenia	[97,102]	NA
OE	FGF2	Transgene (3.6 kb Col1a-18-kDa FGF2-IRES-GFPsaph)	Immature and mature osteoblast lineage	Viable	Increased BMD, bone volume, trabecular thickness, and cortical bone thickness	[108]	NA
OE	FGF2	Transgene (3.6 kb Col1a-HMW FGF2-IRES-GFPsaph)	Immature and mature osteoblast lineage	Viable	Dwarfism, decreased BMD, osteomalacia, increased FGF23 level and hypophosphatemia	[109,110]	similar to XLH
KO	FGF3	Exon1b (leaky expression of the mutant Fgf3)	Germline	Die in the early postnatal period	A short, dorsally curled tail and caudal vertebrae, smaller body, Inner ear defects	[205]	NA
KO	FGF3	Exons1b-3	E11.5-Cre (germline)	Viable	Shortened, thickened and curved tail, normal inner ears	[248,249]	NA
KO	FGF3	Exon 2	CMV–cre (germline)	Viable	Short, curly tails, abnormal olf morphologies	[250]	NA
KO	FGF3	Exon 2	Not used for skeleton research	Viable	Not used for skeleton research	[251]	NA
OE	FGF3/4	Upregulation of FGF3/4 caused by retroviral insertion	Cranial sutures	Viable	Facial shortening with increased interorbital distance and precocious closure of several cranial sutures (craniosynostosis)	[252]	Craniosynostosis
KO	FGF4	Exon 1	Disrupted prior to limb bud initiation	Died at E5.0	Severely impaired proliferation of the inner cell mass	[113]	NA
KO	FGF4	Exons 1–3	Rarb/Cre (developing forelimb region)	Viable	Normal forelimbs and hindlimbs	[111,126]	NA
KO	FGF5	Exons 2–3	MSX2-cre	Viable	Normal forelimbs and hindlimbs	[112]	NA
KO	FGF6	Exon 1	Germine	Viable	Abnormally long hair, impaired skeletal muscle	[207]	NA
KO	FGF7	Exon 1	Germine	Viable	No abnormal phenotype of skeleton detected	[208]	NA
KO	FGF7	Exon 1	Germine	Viable	No abnormal phenotype of skeleton detected	[209]	NA
Gene Model	Exon	Cre line (tissue)	Survival	Phenotype	Reference	Related human skeleton disease	
------------	------	------------------	----------	-----------	-----------	--------------------------------	
FGF8 KO	Exons 2–3 + neo	Germine	Lethal	Early embryonic lethality before limb development	[123,124]	NA	
FGF8 KO	Exons 2–3	α-actin-cre (early embryo)	Lethal	Early embryonic lethality	[123,124]	NA	
	Exons 2–3	MSX2-cre (functions initiated after FGF8 expression in forelimb, but before FGF8 expression in hindlimb)	Not mentioned	Substantial reduction in limb-bud size, and hypoplasia or aplasia of specific skeletal elements	[112]	NA	
	Exons 2–3	Rarb-Cre (developing forelimb region)	Not mentioned	Severe forelimb deformity including absence of radius and first digit	[125,126]	NA	
FGF9 KO	Exon 1	Germine	Die at birth	Lung hypoplasia, male-to-female sex reversal, inner ear morphogenesis defect, slightly smaller body, short proximal skeletal	[135–137,253]	NA	
FGF9 Heterozygous (Fgf9+/−)	Exon 1	Germine	Viable	Reduced bone regeneration, impaired neovascularization and decreased cell proliferation	[254]	NA	
	Exon 1	Nestin Cre (germline)	Die at birth	Lung hypoplasia, skeleton phenotype not mentioned	[142]	NA	
	Exon encoding the ATG translational start site	Germline	Perinatal lethality	Complete absence of both fore- and hindlimbs, pulmonary branching morphogenesis was completely disrupted	[145]	NA	
FGF10 KO	Exon 1	Germline	Die after birth	Complete truncation of the fore- and hindlimbs, normal clavicles, lung defect	[146]	NA	
FGF11 KO	Exon 2	Germline	Viable	Skeleton phenotype was not analyzed	[251]	NA	
FGF12 KO	Exon 2	Germline	Viable	Skeleton phenotype was not analyzed	[213]	NA	
FGF13 KO	Exons 2–3	Germline	Viable	Skeleton phenotype was not analyzed	[214]	NA	
FGF14 KO-LacZ	Exon 2	Germline	Viable	Skeleton phenotype was not analyzed, developed ataxia and a paroxysmal hyperkinetic movement disorder; reduced responses to dopamine agonists	[215]	NA	
FGF15 KO	Exon 3	Germline	Die at E13.5–P21	Skeleton phenotype was not analyzed, enhanced bile acid synthesis and contracted gallbladder	[216]	NA	
FGF16 KO-LacZ	Exons 2–3	Germline	Viable	No bone phenotype was analyzed, decreased proliferation of embryonic cardiomyocytes	[217]	NA	
FGF17 KO	Exons 1a–1b	Germline	Viable	Normal skeletal patterns, abnormal cerebellar development and social behaviors	[210,211]	NA	
Table 2. continued

Gene	Model	Exon	Cre line (tissue)	Survival	Phenotype	Reference	Related human skeleton disease
FGF18	KO	Exon 3	Germline	Die just before or at birth	Impaired ossification and increased chondrocyte proliferation, increased alveolar spaces in the lung	[148,257]	NA
KO-LacZ	Exon 1	Germline	Die after birth		Impaired ossification and increased chondrocyte proliferation, respiratory failure	[147,152]	NA
Heterozygous		Exon 3	Germline	Viable	Reduced bone regeneration	[258]	NA
KO	Exon 1	Germline	Viable			[259]	NA
FGF20	KO-LacZ	Exons 2, part of exon 1 and exon 3	Germline	Viable	No bone phenotype was analyzed, deafness	[218]	NA
	KO	Exons 1–3	Germline	Viable	Greater body and tibia growth after food restriction	[157,161]	NA
KO (LacZ)	Exons 1–3	Mox-cre (Germline)	Viable		Skeleton phenotype was not reported	[156]	NA
CKO	Exons 1–3	Meox-cre (Germline)	Viable		Increased bone mass, metabolic defects including decreased circulating glucose level and oxygen consumption	[155,159]	NA
OE Transgene	Apoe-FGF21	Liver	Viable		Decreased bone mass, increased osteoblast and bone resorption	[158,159]	NA
	Transgene	Apoe-hFGF21	Liver	Viable	Skeleton phenotype was not reported	[260]	NA
FGF22	KO	Exon 1 and part of Exon 2	Germline	Viable	Normal skeletal patterns; decreased susceptibility to pharmacologically induced seizures	[212]	NA
KO	Exons 1–3	Germline	Viable		Normal skeletal patterns; decreased incidence of tumors by chemical induction	[261]	NA
FGF23	KO	Exon 1	Germline	Viable	Increased serum levels of phosphate, calcium and 1,25(OH)2D, severe growth retardation with abnormal bone phenotype	[184]	NA
KO-Lacz	Exons 1–3	Germline	Viable		Hyperphosphatemia and impaired skeletogenesis	[193]	NA
KO-eGFP	Exon 1	Germline	Viable		Hyperphosphatemia and impaired skeletogenesis	[166]	NA
OE Transgene	CAG-hFGF23	Various	Viable		Hyperphosphatemia, low serum 1,25(OH)2D level, and rachitic bone, growth retardation	[179]	ADHR
OE Transgene	Apoe3-hFGF23	Osteoblastic lineage	Viable		Smaller body, decreased serum phosphate concentrations, low serum 1,25(OH)2D level	[180]	ADHR
GOF (KI)	Knock in (R176Q-hFGF23)	Germline	Viable		Increased serum level of FGF23, hypophosphataemia and low serum 1,25(OH)2 vitamin D after receiving low-iron diets	[188,189]	ADHR

Abbreviations: ACH,achondroplasia; ADHR, autosomal dominant hypophosphatemic rickets; AS, Apert syndrome; BSS, Beare–Stevenson cutis gyrata syndrome; CATSHL, camptotactyly, tall stature and hearing loss; CKO, conditional knock out; CS, Crouzon syndrome; EKS, elbow knee synostosis; GOF, gain of function; KD, knockdown; KI, knock-in; KO, knockout; LMB, limb bud mesenchyme; LOF, loss of function; MS, Muenke syndrome; NA, not applicable; OE, overexpression; PS, Pfeiffer syndrome; SADDAN, severe achondroplasia with developmental delay and acanthosis nigricans; TD, thanatophoric dysplasia; XLH, X-linked hypophosphatemia.
give full attention of the exciting results from FGF23 studies, we encourage you to read the recently published review by Quarles and Bhattacharyya.21,204

OTHER FGFs
In addition to the FGFs mentioned above, the roles of majority of these 22 FGFs are not defined in skeleton development and homeostasis. Researchers have generated knockout or CKO mouse models of these FGFs (Table 2). Fgf3 knockout mice show a short, dorsally curled tail, caudal vertebrae and smaller body.205 Some mouse models show normal skeleton phenotypes, such as mice lacking FGF1, FGF5, FGF6, FGF7, FGF17 or FGF22.206–212 The skeleton phenotypes of knockout mice lacking FGF11–FGF16, or FGF20, are still not analyzed.213–217 The effect of these FGFs on bone development or homeostasis need be further studied.

CONCLUSIONS
Studies in human patients and mouse models with FGFs/FGFRs mutations have shown important roles of FGF signaling in skeletal development, genetic skeletal diseases and bone homeostasis. So, FGF/FGFR signalings will be attractive targets for treating bone related diseases. FGF/FGFR signals control the balance among skeletal cell growth, differentiation and apoptosis during development and adult homeostasis, as well as regulate systemic phosphate homeostasis. However, many unresolved issues still need to be explored.

Many studies have investigated the role of FGFRs in endochondral and intramembranous bone formation during development, but the effects of FGFRs on osteoclasts, especially on osteocytes, have not be clarified. Osteocytes are the most abundant and longest-living cells in the adult skeleton and have essential roles in bone homeostasis.220–221 Thus, uncovering the impact of FGFRs on osteocytes using osteocyte-specific Cre mice is critical.

Compensation, or crosstalk, may occur between different FGFRs during skeleton development. For example, conditional knock out of Fgfr1 in mature osteoblasts leads to increased FGFR3 expression,15 whereas both cultured bone marrow stromal cells from Fgfr3 null mice, or mice carrying gain-of-function mutation in FGFR3, have increased expression of FGFR1.33,85 Crossing between mouse strains harboring various FGFRs mutations is extremely important to elucidate the interactions between different FGFRs.

So far, only part of the 22 known FGF ligands have been shown to be essential for skeletal development, such as FGF8, FGF9 and FGF10. However, the mechanisms remain unclear because most of the knockout mice die before or after birth. Conditional deletion of these FGFs using bone cell-specific Cre mice is necessary to study their roles during bone development. The function of other unexplored FGFs in skeletogenesis remains to be discovered. Furthermore, which FGFRs are the relatively specific receptors of these unexplored FGFs during bone development and metabolism are unknown. Crossing mouse strains harboring different FGFRs mutations with FGFRs mutant mouse models is necessary to discover the interactions between FGFs and FGFRs in skeleton development and homeostasis.

Recently, studies have indicated that the bone is closely related with whole-organism physiology.222 For example, bone can regulate energy metabolism, male reproduction and hematopoiesis.223–224 Some hormone secreted from other organs or tissues also have effect on bone, such as Leptin secreted by adipocyte.222 In addition, systemic disease also influence skeleton such as CDK225 and inflammatory disease.226–227 The roles of FGF signaling in the effect of systemic diseases on bone or bone on whole-organism physiology remain unclear and need further exploration.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgments
The work is supported by grants from the National Natural Science Foundation of China (81030003, 81270012, 81170809), the Special Funds for Major State Basic Research Program of China (973 Program) (2014CB942904) and the Committee of Science and Technology of Chongqing (CSTC 2011jjA1468), the foundation from national key laboratory (SKLZZ201017). In addition, we apologized to those whose work could not be cited due to space constraints.

References
1 Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2: 389–406.
2 Su N, Du X, Chen L. FGF signaling: its role in bone development and human skeletal diseases. Front Biosci 2008; 13: 2842–2865.
3 Chen L, Deng CX. Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci 2005; 10: 1961–1976.
4 Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993; 60: 1–41.
5 Ornitz DM, Xu J, Colvin JS et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271: 15292–15297.
6 Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocrine Relat Cancer 2000; 7: 165–197.
7 Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005; 16: 205–213.
8 Yamaguchi TP, Conlon RA, Rossant J. Expression of the fibroblast growth factor receptor FGF-R1/Flg during gastrulation and segmentaton in the mouse embryo. Dev Biol 1992; 152: 75–88.
9 Peters KG, Werner S, Chen G, Williams LT. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 1992; 114: 233–243.
10 Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X. Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development 2005; 132: 4235–4245.
Deng C, Bedford M, Li C. Fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning. *Dev Dyn* 1995; 204: 446–456.

Iseki S, Wilkie AO, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. *Development* 1999; 126: 5611–5620.

Xia L, Naganawa T, Obuguende E et al. Statl controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. *J Biol Chem* 2004; 279: 27743–27752.

Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondroblastic cell lineage regulates sequential steps of osteoblast maturation. *Dev Bio*2006; 296: 315–328.

Kyono A, Avishai N, Ouyang Z, Landreth GE, Murakami S. FGF and ERK signaling coordinately regulate mineralization-related genes and play essential roles in osteocyte differentiation. *J Bone Miner Metab* 2012; 30: 19–30.

Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P. Murine FGFR-1 is required for early postimplantation growth and axial organization. *Genes Dev* 1994; 8: 3045–3057.

Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. *J Cell Biol* 1994; 120: 3032–3044.

Partanen J, Schwartz L, Rossant J. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. *Genes Dev* 1998; 12: 2332–2344.

Xu X, Li C, Takahashi K, Slavkin HC, Shum L, Deng CX. Murine fibroblast growth factor receptor 1alpha isoforms mediate node regression and are essential for posterior mesoderm development. *Dev Biol* 1999; 220: 293–306.

Deng C, Bedford M, Li C et al. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. *Dev Biol* 1997; 185: 42–54.

Perantoni AO, Timofeeva O, Naillat F et al. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. *Development* 2005; 132: 3893–3871.

Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. *Cell* 2004; 118: 517–528.

Li C, Xu X, Nelson DK, Williams T, Kuehn MR, Deng CX. FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. *Development* 2005; 132: 4755–4764.

Hoch RV, Soriano P. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. *Development* 2006; 133: 663–673.

White KE, Cabral JM, Davis SL et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. *Am J Hum Genet* 2005; 76: 361–367.

Roscioni T, Flanagan S, Kumar P et al. Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature. *Am J Med Genet* 2000; 93: 22–28.

Zhou YX, Xu X, Chen L, Li C, Brodie SG, Deng CX. A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfal1 and premature fusion of calvarial sutures. *Hum Mol Genet* 2000; 9: 2001–2008.

Lu X, Su N, Yang J et al. Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway. *Biochem Biophys Res Commun* 2009; 390: 494–499.

Yin L, Du X, Li C et al. A Pro253Arg mutation in fibroblast growth factor receptor-2 (FGFR2) causes skeletal malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. *Bone* 2008; 42: 631–643.

Wilkie AO. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. *Cytokine Growth Factor Rev* 2005; 16: 187–203.

Britto JA, Chan JC, Evans RD, Hayward RD, Thorogood P, Jones BM. Fibroblast growth factor receptors are expressed in craniosynostotic suture. *Plast Reconstr Surg* 1998; 101: 540–543.

Britto JA, Evans RD, Hayward RD, Jones BM. From genotype to phenotype: the differential expression of FGF, FGFR, and TGFbeta genes characterizes human cranioskeletal development and reflects clinical presentation in FGFR syndromes. *Plast Reconstr Surg* 2001; 108: 2026–2039; discussion 2040–2046.

Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. *Proc Natl Acad Sci USA* 1998; 95: 5082–5087.

Xu X, Weinstein M, Li C et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGFI0 is essential for limb induction. *Development* 1998; 125: 753–765.

Li X, Chen Y, Scheele S et al. Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. *J Cell Biol* 2001; 153: 811–822.

Marie PJ, Coffin JD, Hurley MM. FGF and FGF signaling in chondrodysplasias and craniosynostosis. *J Cell Biochem* 2005; 96: 888–896.

Cunningham ML, Seto ML, Ratisoontorn C, Heike CL, Hing AV. Syndromic craniosynostosis: from history to hydrogen bonds. *Orthod Craniofac Res* 2007; 10: 67–81.
Abnormalities in cartilage and bone development in the Apert syndrome FGFR2c(+/+252W) mouse. Development 2005; 132: 3537–3548.

Wang Y, Sun M, Uihlhorn VL et al. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2c(+/+252W) mice. BMC Dev Biol 2010; 10: 22.

Kreiborg S, Aduss H, Cohen MM Jr. Cephalometric study of the Apert syndrome in adolescence and adulthood. J Craniofac Genet Dev Biol 1999; 19: 1–11.

Chen L, Li D, Li C, Engel A, Deng CX. A Ser252Trp [corrected] substitution in mouse fibroblast growth factor receptor 2 (Fgf2r) results in craniosynostosis. Bone 2003; 33: 169–178.

Wang Y, Zhou X, Oberoi K. A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. Am J Hum Genet 1999; 64: 722–731.

Wang JM, Du XL, Li CL, et al. Gly374Arg mutation in Fgfr3 causes achondroplasia in mice. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2004; 21: 537–541. Chinese.

Wang Y, Spatz MK, Kannan K et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci USA 1999; 96: 4455–4460.

Nasaki MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 1998; 125: 4977–4988.

Chen L, Adar R, Yang X et al. Gly369Cys mutation in mouse Fgfr3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999; 104: 1517–1523.

Iwata T, Chen L, Li C et al. A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 2000; 9: 1603–1613.

Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PThp signals and causes severe achondroplasia. Hum Mol Genet 2001; 10: 457–465.

Li C, Chen L, Iwata T, Kitagawa M, Fu NY, Deng CX. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 1999; 8: 35–44.

Su WC, Kitagawa M, Xue N et al. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997; 386: 288–292.

Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilio C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev 1999; 13: 1361–1366.

Murakami S, Balmes G, McKinsey S, Zhang Z, Givol D, de Crombrugghe B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev 2004; 18: 290–305.

Minina E, Kreschel C, Nasaki MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/PThp, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002; 3: 439–449.

Dailey L, Laplantine E, Priore R, Basilio C. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. J Cell Biol 2003; 161: 1053–1066.

Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84: 911–921.

Nasaki MC, Ornitz DM. FGF signaling in skeletal development. Front Biosci 1998; 3: 781–794.

Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R, Seino Y. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res 2003; 18: 2043–2051.

Matsushita T, Wilcox WR, Chan YY et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet 2009; 18: 227–240.

Su N, Sun Q, Li C et al. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum Mol Genet 2010; 19: 1199–1210.
Bone Research (2014) 14003

N Su et al

104 Naganawa T, Xiao L, Abogunde E et al. In vivo and in vitro comparison of the effects of FGF-2 null and haplo-insufficiency on bone formation in mice. Biochem Biophys Res Commun 2006; 339: 490–498.

105 Okada Y, Montero A, Zhang X et al. Impaired osteoclast formation in bone marrow cultures of Fgf2 null mice in response to parathyroid hormone. J Biol Chem 2003; 278: 21258–21266.

106 Fei Y, Xiao L, Hurley MM. The impaired bone anabolic effect of PTH in the absence of endogenous FGF2 is partially due to reduced ATF4 expression. Biochem Biophys Res Commun 2011; 412: 160–164.

107 Sabbieti MG, Agas D, Marchetti L et al. Signaling pathways implicated in FGF2alpha effects on Fgf2+/− and Fgf2−/− osteoblasts. J Cell Physiol 2010; 224: 465–474.

108 Xiao L, Liu P, Li X et al. Exported 18-kDa isoform of fibroblast growth factor-2 is a critical determinant of bone mass in mice. J Biol Chem 2009; 284: 3170–3182.

109 Xiao L, Naganawa T, Lorenzo J, Carpenter TO, Cofﬁn JD, Hurley MM. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO. J Biol Chem 2010; 285: 2843–2846.

110 Xiao L, Eslinger A, Hurley MM. Nuclear ﬁbroblast growth factor 2 (FGF2) isoforms inhibit bone marrow stromal cell mineralization through FGF23/FGFR/MAPK in vitro. J Bone Miner Res 2013, 28: 35–45.

111 Moon AM, Boulet AM, Capecchi MR. Normal limb development in conditional mutants of Fgfr4. Development 2000; 127: 989–996.

112 Lewandoski M, Sun X, Martin GR. Fgﬁ8 signalling from the AER is essential for normal limb development. Nat Genet 2000; 26: 460–463.

113 Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. Requirement of FGF4 for postimplantation mouse development. Science 1995; 267: 246–249.

114 Mathijsen IM, van Leeuwen H, Vermeij-Keers C, Vaandragrer JGM. FGF-4 or FGF-2 administration induces apoptosis, collagen type I expression, and mineralization in the developing coronal suture. J Craniofac Surg 2001; 12: 399–400.

115 Kim HJ, Rice DP, Kettunen PJ, Thesleff I, FGF-2, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 1998; 125: 1241–1251.

116 Kuroda S, Kasugai S, Oida S, Limura T, Ohyka H, Ohyama Y. Anabolic effect of aminoterminally truncated ﬁbroblast growth factor 4 (FGF4) on bone. Bone 1999; 25: 431–437.

117 Choi SC, Kim SJ, Choi JH, Park CY, Shin WJ, Lim DS. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K–Akt and ERK1/2 signaling pathways. Stem Cells Dev 2008; 17: 725–736.

118 Fare J, Roua S, Prat-Vidal C et al. FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells. Growth Factors 2007; 25: 71–76.

119 Kim HJ, Kim JH, Baee SC, Choi JY, Ryoo HM. The protein kinase C pathway plays a central role in the ﬁbroblast growth factor-stimulated expression and transcription activity of Runx2. J Biol Chem 2003; 278: 319–326.

120 Heikinheimo M, Lavshe A, Shackelford GM, Wilson DB, MacArthur CA. Fgﬁ8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 1994; 48: 129–138.

121 Mahmood R, Bresnick J, Hornbruch A et al. A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr Biol 1995; 5: 797–806.

122 Crossley PH, Minowada G, MacArthur CA, Martin GR. Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell 1996; 84: 127–136.
123 Sun X, Meyers EN, Lewandoski M, Martin GR. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. *Genes Dev* 1999; 13: 1834–1846.

124 Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. *Nat Genet* 1998; 18: 136–141.

125 Moon AM, Capecchi MR. Fgf8 is required for outgrowth and patterning of the limbs. *Nat Genet* 2000; 26: 455–459.

126 Boulet AM, Moon AM, Aurenkle BR, Capecchi MR. The roles of Fg4 and Fgf8 in limb bud initiation and outgrowth. *Dev Biol* 2004; 273: 361–372.

127 Xu J, Lawshe A, MacArthur CA, Ornitz DM. Genomic structure, mapping, activity and expression of fibroblast growth factor 17. *Mech Dev* 1999; 83: 165–178.

128 Valta MP, Huntenton T, Qu Q et al. Regulation of osteoblast differentiation: a novel function for fibroblast growth factor 8. *Endocrinology* 2006; 147: 2171–2182.

129 Omoteyama K, Takagi M. FGF8 regulates myogenesis and induces Runx2 expression and osteoblast differentiation in cultured cells. *J Cell Biochem* 2009; 106: 546–552.

130 Lin JM, Callon KE, Lin J et al. Actions of fibroblast growth factor-8 in bone cells in vitro. *Am J Physiol Endocrinol Metab* 2009; 297: E142–E150.

131 Uchii M, Tamura T, Suda T, Kakuni M, Tanaka A, Miki I. Role of fibroblast growth factor 8 (FGF8) in animal models of osteoarthritis. *Arthritis Res Ther* 2008; 10: R90.

132 Hecht D, Zimmerman N, Bedford M, Avivi A, Yayon A. Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4. *Growth Factors* 1995; 12: 223–233.

133 Garofalo S, Kliger-Spatz M, Cooke JL et al. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. *J Bone Miner Res* 1999; 14: 1909–1915.

134 Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. *Dev Dyn* 1999; 216: 72–88.

135 Hung IH, Yu K, Lavine KJ, Ornitz DM. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. *Dev Biol* 2007; 307: 300–313.

136 Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. *Development* 2001; 128: 2095–2106.

137 Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. *Cell* 2001; 104: 875–889.

138 Fakhr Y, Ratisoontorn C, Vedhachalam C et al. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. *Bone* 2005; 36: 254–266.

139 Govindarajan V, Overbeek PA. FGF9 can induce endochondral ossification in cranial mesenchyme. *BMC Dev Biol* 2006; 6: 7.

140 Harada M, Murakami H, Okawa A et al. FGF9 monomer-dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. *Nat Genet* 2009; 41: 289–298.

141 Wu XL, Gu MM, Huang L et al. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. *Am J Hum Genet* 2009; 85: 53–63.

142 Lin Y, Liu G, Wang F. Generation of an Fgf9 conditional null allele. *Genes Dev* 2006; 44: 150–154.

143 Martin GR. The roles of FGFs in the early development of vertebrate limbs. *Genes Dev* 1998; 12: 1571–1586.

144 Ohuchi H, Nakagawa T, Yamamoto A et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. *Development* 1997; 124: 2235–2244.

145 Min H, Danilenko DM, Scully SA et al. Fgf10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. *Genes Dev* 1998; 12: 3156–3161.

146 Sekine K, Ohuchi H, Fujisara M et al. Fgf10 is essential for limb and lung formation. *Nat Genet* 1999; 21: 138–141.

147 Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. *Genes Dev* 2002; 16: 859–869.

148 Ohbayashi N, Shibayama M, Kurotaki Y et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. *Genes Dev* 2002; 16: 870–879.

149 Mukherjee A, Dong SS, Clemens T, Alvarez J, Serra R. Co-ordination of TGF-beta and FGF signaling pathways in bone organ cultures. *Mech Dev* 2005; 122: 557–571.

150 Shimoaka T, Ogasawara T, Yonamine A et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF-18) in comparison with FGF-2 and FGF-10. *J Biol Chem* 2002; 277: 7493–7500.

151 Reinhold MI, Abe M, Kapadia RM, Liao Z, Naski MC. FGF18 represses noggin expression and is induced by calcineurin. *J Biol Chem* 2004; 279: 38209–38219.

152 Liu Z, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. *Dev Biol* 2007; 302: 80–91.

153 Goetz R, Beenken A, Ibrahim OA et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. *Mol Cell Biol* 2007; 27: 3417–3428.

154 Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fg family gene. *Dev Dyn* 2008; 237: 18–27.

155 Pothoff MJ, Inagaki T, Satapati S et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. *Proc Natl Acad Sci USA* 2009, 106: 10853–10858.

156 Hotta Y, Nakamura H, Konishi M et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. *Endocrinology* 2009; 150: 4625–4633.

157 Badman MK, Koester A, Flier JS, Kharitonenev A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. *Endocrinology* 2009; 150: 4931–4940.

158 Inagaki T, Dutschak P, Zhao G et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. *Cell Metab* 2007; 5: 415–425.

159 Wei W, Dutschak PA, Wang X et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. *Proc Natl Acad Sci USA* 2012; 109: 3143–3148.

160 Wu S, Levenson A, Kharitonenev A, de Luca F. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. *J Biol Chem* 2012; 287: 26060–26067.

161 Kubicky RA, Wu S, Kharitonenev A, de Luca F. Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. *Endocrinology* 2012; 153: 2287–2295.

162 Kliever SA, Mangelsdorf DJ. Fibroblast growth factor 21: from pharmacology to physiology. *Annu Rev Nutr* 2010; 91: 2545–2575.

163 Owen BM, Bookout AL, Ding X et al. FGF21 contributes to neuroendocrine control of female reproduction. *Nat Med* 2013; 19: 1153–1156.
thalamus of the brain. Biochem Biophys Res Commun 2000; 277: 494–498.

165 Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 2003; 278: 37419–37426.

166 Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006; 291: E38–E49.

167 Yoshiko Y, Wang H, Minamizaki T et al. Mineralized tissue cells are a principal source of FGF23. Bone 2007; 40: 1565–1573.

168 Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 1997; 82: 674–681.

169 Bianchini JW, Stambler AA, Harrison HE. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser 1971; 7: 287–295.

170 Consortium A. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26: 345–348.

171 Shimada T, Muto T, Urakawa I et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 2002; 143: 3179–3182.

172 White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001; 60: 2079–2085.

173 Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98: 6500–6505.

174 Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Cell Biol 2003; 162: 683–692.

175 Lyles KW, Halsey DL, Friedman NE, Lobaugh B. Correlations of serum concentrations of 1,25-dihydroxyvitamin D, phosphorus, and parathyroid hormone in tumoral calcinosis. J Clin Endocrinol Metab 1988; 67: 88–92.

176 Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005; 14: 385–390.

177 Araya K, Fukumoto S, Backenroth R et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005; 90: 5523–5527.

178 Larsson T, Yu X, Davis SI et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab 2005; 90: 2424–2427.

179 Shimada T, Urakawa I, Yamazaki Y et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun 2004; 314: 409–414.

180 Larsson T, Marsell R, Schipani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 2004; 145: 3087–3094.

181 Bai X, Miao D, Li J, Goltzman D, Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 2004; 145: 5269–5279.

182 Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalcemia, and skeletal abnormalities. Proc Natl Acad Sci USA 1998; 95: 5372–5377.

183 Shimada T, Hasegawa H, Yamazaki Y et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004; 19: 429–435.

184 Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113: 561–568.

185 Razzazaq MS, Lanske B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med 2006; 12: 298–305.

186 Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab 2011; 96: 3541–3549.

187 Durham BH, Joseph F, Bailey LM, Fraser WD. The association of circulating ferritin with serum concentrations of fibroblast growth factor-23 measured by three commercial assays. Ann Clin Biochem 2007; 44: 463–466.

188 Clinkenbeard EL, Farrow EG, Summers LJ et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res 2014; 29: 361–369.

189 Farrow EG, Yu X, Summers LJ et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA 2011; 108: E1146–E1155.

190 Yamazaki Y, Okazaki R, Shibata M et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 2002; 87: 4957–4960.

191 Fukumoto S, Yamashita T. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 2003; 349: 505–506; author reply 505–506.

192 Strom TM, Francis F, Lorenz B et al. Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 1997; 6: 165–171.

193 Sitiara D, Razzazaq MS, Hesse M et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004; 23: 421–432.

194 Owen C, Chen F, Flenniken AM et al. A novel Phex mutation in a new mouse model of hypophosphatemic rickets. J Cell Biochem 2012; 113: 2432–2441.

195 Martin A, Liu S, David V et al. Bone proteins PHEX and DMP1 regulate fibroblast growth factor Fg f23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J 2011; 25: 2551–2562.

196 Feng QJ, Ward LM, Liu S et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006; 38: 1310–1315.

197 Lorenz-Depiereux B, Bastepem B, Benet-Pages A et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006; 38: 1248–1250.

198 Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 2003; 64: 2272–2279.

199 Stubbs JR, He N, Iadicilla A et al. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J Bone Miner Res 2012; 27: 38–46.
200 Quarelles LD. The bone and beyond: ’Dem bones’ are made for more than walking. *Nat Med* 2011; 17: 428–430.

201 Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. *Atherosclerosis* 2009; 207: 546–551.

202 Gutierrez OM, Januzzi JL, Isakova T et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. *Circulation* 2009; 119: 2545–2552.

203 Foul C, Amalar AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. *J Clin Invest* 2011; 121: 4393–4408.

204 Bhattacharyya N, Chong WH, Gafni RI, Collins MT. Fibroblast growth factor 23: state of the field and future directions. *Trends Endocrinol Metab* 2012; 23: 610–618.

205 Mansour SL, Goddard JM, Capechi MR. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. *Development* 1993; 117: 13–28.

206 Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. *Mol Cell Biol* 2000; 20: 2260–2268.

207 Hebert JM, Rosenquist T, Gotz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. *Cell* 1994; 78: 1017–1025.

208 Fiore F, Planche J, Gibier P, Sebille A, deLapeyriere O, Birnbaum D. Fgf17 functions as an enterohepatic signal to regulate bile acid homeostasis. *Cell Metab* 2007; 6: 344–354.

209 Gao L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. *Genes Dev* 1996; 10: 165–175.

210 Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgfr1 regulate proliferation and differentiation of midline cerebellar structures. *Development* 2000; 127: 1833–1843.

211 Scearce-Levie K, Roberson ED, Gerstein H et al. Abnormal social behaviors in mice lacking Fgfl7. *Genes Brain Behav* 2008; 7: 344–354.

212 Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Scearce-Levie K, Roberson ED, Gerstein H et al. FGF16 and FGF20 maintain the stemness of mesenchymal progenitors. *Cell* 2012; 483–354.

213 Goldfarb M, Schoorlemmer J, Williams A et al. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. *Neuron* 2007; 55: 449–463.

214 Wu QF, Yang L, Li S et al. Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. *Cell* 2012; 149: 1549–1564.

215 Wang Q, Bardgett ME, Wong M et al. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. *Neuron* 2002; 38: 25–38.

216 Inagaki T, Choi M, Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. *Cell Metab* 2005; 2: 217–225.

217 Hotta Y, Sasaki S, Konishi M et al. Fgf6 is required for cardiomycocyte proliferation in the mouse embryonic heart. *Dev Dyn* 2008; 237: 2947–2954.

218 Barak H, Huh SH, Chen S et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. *Dev Cell* 2012; 22: 1191–1207.

219 Velocigene. Alleles produced for the KOMP project by Velocigene (Regeneron Pharmaceuticals). MGI Direct Data Submission 2008.

220 Neve A, Corrado A, Cantatore FP. Osteocytes: central conductors of bone biology in normal and pathological conditions. *Acta Physiol* 2012; 204: 317–330.

221 Galli C, Passeri G, Macaluso GM. Osteocytes and WNT: the mechanical control of bone formation. *J Dent Res* 2010; 89: 331–343.

222 Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. *Nature* 2012; 481: 314–320.
vascularization and ossification in human FGFR-3(G380R) transgenic mice. *Hum Mol Genet* 2000; 9: 249–258.

244 Seitzer N, Mayr T, Streit S, Ullrich A. A single nucleotide change in the mouse genome accelerates breast cancer progression. *Cancer Res* 2010; 70: 802–812.

245 Dono R, Texido G, Dussel R, Ehmke H, Zeller R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. *EMBO J* 1998; 17: 4213–4225.

246 Garmy-Susini B, Delmas E, Gourdy P et al. Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation. *Circ Res* 2004; 94: 1301–1309.

247 Azhar M, Yin M, Zhou M et al. Gene targeted ablation of high molecular weight fibroblast growth factor-2. *Dev Dyn* 2009; 238: 351–357.

248 Alvarez Y, Alonso MT, Vendrell V et al. Requirements for FGF3 and FGF10 during inner ear formation. *Development* 2003; 130: 6329–6338.

249 Holzenberger M, Lenzner C, Leneuve P et al. Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. *Nucleic Acids Res* 2000; 28: E92.

250 Hatch EP, Noyes CA, Wang X, Wright TJ, Mansour SL. Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. *Development* 2007; 134: 3615–3625.

251 Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL. FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. *Dev Biol* 2010; 340: 595–604.

252 Carlton MB, Colledge WH, Evans MJ. Crouzon-like craniofacial dysmorphology in the mouse is caused by an insertion mutation at the Fgf8/Fgf4 locus. *Dev Dyn* 1998; 212: 242–249.

253 Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J. Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. *Dev Biol* 2004; 273: 350–360.

254 Behr B, Leucht P, Longaker MT, Quarto N. Fgf9 is required for angiogenesis and osteogenesis in long bone repair. *Proc Natl Acad Sci USA* 2010; 107: 11853–11858.

255 Murakami H, Okawa A, Yoshida H, Nishikawa S, Moriya H, Koseki H. Elbow knee synostosis (Eks): a new mutation on mouse Chromosome 14. *Mamm Genome* 2002; 13: 341–344.

256 Puk O, Moller G, Geerlof A et al. The pathologic effect of a novel neomorphic Fgfg9(Y162C) allele is restricted to decreased vision and retarded lens growth. *PLoS ONE* 2011; 6: e23678.

257 Usui H, Shibayama M, Ohbayashi N, Konishi M, Takaoka S, Itoh N. Fgf18 is required for embryonic lung alveolar development. *Biochem Biophys Res Commun* 2004; 322: 887–892.

258 Longaker MT, Behr B, Sorkin M, Manu A, Lehnhardt M, Quarto N. Fgf-18 is required for osteogenesis but not angiogenesis during long bone repair. *Tissue Eng Part A* 2011; 17: 2061–2069.

259 Kimura-Ueki M, Oda Y, Oki J et al. Hair cycle resting phase is regulated by cyclic epithelial FGF18 signaling. *J Invest Dermatol* 2012; 132: 1338–1345.

260 Kharitonenko A, Shiyanova TL, Koester A et al. FGF-21 as a novel metabolic regulator. *J Clin Invest* 2005; 115: 1627–1635.

261 Jarosz M, Robbez-Masson L, Chioni AM, Cross B, Rosewell I, Grose R. Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis. *PLoS ONE* 2012; 7: e39436.

262 Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. *Cytokine Growth Factor Rev* 2005; 16: 139–149.

263 Raimann A, Erll DA, Helmreich M, Sagmeister S, Egerbacher M, Haeusler G. Fibroblast growth factor 23 and Klotho are present in the growth plate. *Connect Tissue Res* 2013; 54: 108–117.