Seltene Erkrankungen der Speicheldrüsen und des Nervus Facialis
Rare Diseases of the Salivary Glands and of Facial Nerve

Referat

Seltene Erkrankungen der Speicheldrüsen und des Nervus Facialis
Rare Diseases of the Salivary Glands and of Facial Nerve

Autor
Claudia Scherl

Institut
Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Mannheim

Schlüsselwörter
Speicheldrüsen, Nervus Facialis, Speicheldrüsentumoren, Speicheldrüsenentzündungen, Facialisparesen, Facialistumoren

Key words
salivary glands, facial nerve, salivary gland tumor, salivary gland infection, facial palsy, facial tumor

Bibliografie
Laryngo-Rhino-Otol 2021; 100: S1–S28
DOI 10.1055/a-1337-6994
ISSN 0935-8943
© 2021. The Author(s).

ZUSAMMENFASSUNG
Speicheldrüsenkrankheiten sind, insgesamt gesehen eher selten. In der Europäischen Union (EU) gilt eine Erkrankung als selten, wenn nicht mehr als 5 von 10,000 Menschen in der EU von ihr betroffen sind. Allein in Deutschland leben Schätzungen zufolge etwa 4 Millionen Menschen mit einer seltenen Erkrankung, in der gesamten EU geht man von 30 Millionen aus [1]. Die meisten in der vorliegenden Arbeit beschriebenen Krankheitsbilder der Speicheldrüsen und des N. facialis fallen unter diese Kategorie. Sie bilden eine sehr heterogene Gruppe, deren Behandlung sich auf spezialisierte Zentren konzentriert. Dennoch ist es für den HNO-Arzt unerlässlich, auch diese seltenen Erkrankungen zu erkennen und zu diagnostizieren, um dann die richtigen therapeutischen Schritte einzuleiten. Die Arbeit ist eine Zusammenstellung des gesamten Spektrums angeborener und erworbener seltener Speicheldrüsen- und N. facialis-Erkrankungen. Dabei werden die Ätiologien entzündlicher Erkrankungen, Autoimmunerkrankungen und Tumoren berücksichtigt. Für die einzelnen Themenkomplexe wurde, soweit vorhanden, die aktuelle Literatur ausgewertet und für den Leser in Fakten zusammengefasst. Dazu wird auf die Entwicklung neuer Verfahren in Diagnostik, Bildgebung und Therapie eingegangen. Auch genetische Hintergründe von Tumorerkrankungen bei Speicheldrüsensezündungen und die Trends in der Behandlung tumoröser Läsionen des N. facialis werden aufgegriffen. Des Weiteren werden auch seltene Erkrankungen der Speicheldrüsen im Kindesalter betrachtet. Diese können zwar teilweise auch bei Erwachsenen vorkommen, unterscheiden sich aber doch in Häufigkeit und Symptomatik. Auf Grund der Seltenheit der hier abgehandelten Erkrankungen ist es zu empfehlen, diese in spezialisierten Zentren mit entsprechender Erfahrung zu behandeln. Abschließend werden die Schwierigkeiten der Studiendurchführung und die Problematik der Erstellung von Krankheitsregistern beim Thema Speicheldrüsenkrankheiten besprochen, da diese auf Grund der allgemeinen Seltenheit dieser Pathologien besonders relevant sind.

ABSTRACT
Salivary gland diseases are rare. In the European Union (EU) a disease is considered to be rare if not more than 5 of 10,000 people are affected by it. According to estimates in Germany are about 4 million people with a rare disease. In the EU are about 30 million people with rare diseases [1]. In the present work most of the described diseases of salivary glands and of the facial nerve fall in this category. They form a very heterogeneous group whose treatment takes place mainly in specialized centers. Still, it is essential for the otolaryngologist to identify and to diagnose these diseases in order to initiate the right therapeutic steps. The work is a compilation of innate and acquired rare salivary gland disorders and of rare facial nerve disorders. The etiologies of inflammatory diseases, autoimmune disorders and tumors are taken into account. For the individual topics, the current literature, if available, was evaluated and turned into summarized facts. In this context the development of new processes, diagnostics, imaging and therapy are considered. Genetic backgrounds of salivary gland tumors and the trends in the treatment of tumorous lesions of the facial
nerve are picked up. Furthermore, also rare diseases of the salivary glands in childhood are described. Some of them can occur in adults as well, but differ in frequency and symptoms. Due to the rarity of these diseases, it is recommended to tread these in centers with special expertise for it. Finally, the difficulties of initiation of studies and the problems of establishing disease registries concerning salivary gland disorders are discussed. This is very relevant because these pathologies are comparatively seldom.

Referat

nerve are picked up. Furthermore, also rare diseases of the salivary glands in childhood are described. Some of them can occur in adults as well, but differ in frequency and symptoms. Due to the rarity of these diseases, it is recommended to tread these in centers with special expertise for it. Finally, the difficulties of initiation of studies and the problems of establishing disease registries concerning salivary gland disorders are discussed. This is very relevant because these pathologies are comparatively seldom.
Allgemeines

In dieser Übersicht werden die Publikationen, die sich mit häufigen Speicheldrüsenerkrankungen beschäftigen, nicht berücksichtigt. Obwohl Speicheldrüsenerkrankungen in der Gesamtheit aller Erkrankungen des Kopf-Hals-Bereiches selten sind, werden im Folgenden lediglich die „Seltenen der Seltenen“ betrachtet. Die Berücksichtigung aller Speicheldrüsenerkrankungen hätte den Rahmen der Arbeit überschritten. Aus Gründen der Lesbarkeit wurde im Text die männliche Form verwendet, Männer und Frauen sind aber gleichermaßen gemeint.

1. Historisches

Im Rahmen des 100-jährigen Bestehens der deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf-und Hals-Chirurgie (DGHNO-KHC) darf es nicht ausbleiben, einen Blick auf die Geschichte der Erkrankungen von Speicheldrüsen und des Nervus facialis zu werfen. Die ersten Beschreibungen der Speicheldrüsen sind mehr als 4000 Jahre alt. Die älteste Erwähnung der Speicheldrüsen und insbesondere des Speichels fand sich im alten Mesopotamien auf Tontafeln des syrischen König Assurbanipal um 2500 v. Chr. Die Inschrift bezieht sich auf Belladonna, was als nützliches Medikament bestand, die notwendigen Flüssigkeiten aus der Lymphe zu extrahieren und sie zu den Nerven zu bringen“ [3, 8].

Der dänische Anatom Niels Steenson oder Nicolaus Stenonis (sein lateinischer Name; 1638–1668) entdeckte im April 1660 den Parotisgang [9]. Der deutsche Chirurg Lorenz Heister beschrieb die erste Parotidektomie im Jahr 1765 sowie die Behandlung von Rätseln und Steinen im Mundboden [10]. Ab dem Beginn des 19. Jahrhunderts wurde gefordert, den Gesichtsnerv während der Parotisoperation zu erhalten [11]. Johann Ferdinand Heyfelder, Professor in Erlangen, beschrieb 1825 als erster die Erhaltung des Gesichtsnervs während einer Parotidektomie, der seine Funktion beihielt. Alle anderen früheren Chirurgen hatten dabei bisher versagt. Danach, am 24. Januar 1847, beschrieb er die erste Narkose in Deutschland unter Verwendung von Schwefeläther. Er operierte 100 Patienten in seiner Klinik, darunter 2 Parotidektomien unter Schwefeläther [12]. Theodor Billroth (1829–1894) und Rudolph Virchow (1821–1902) beschrieben das pleomorphe Adenom [13]. Die Teilung der Glandula parotis in einen oberflächlichen und einen tiefen Anteil, die durch den N. facialis getrennt werden, wurde erst 1947 durch Hamilton Bailey beschrieben. Bahnbrechend ist auch sein Aufruf, die bisher üblichen Tumorausschäления (Enukleationen) zu verlassen, die aus Angst vor einer postoperativen Facialisparese gängig waren: „Ich gehe davon aus, dass bösartige Zellen, die während der intrakapsulären Enukleation verschüttet wurden, oder Zellen, die im Inneren eines Teils der Kapsel verbleiben, der nicht vollständig entfernt wurde, 90% der Rezidive aus machen“. Er bereitete den Grundstein für die heute verbreitete extrakapsuläre Dissektion von Parotistumoren und die laterale Parotidektomie [14]. Die Technik der lateralen Parotidektomie wurde 1951 von Henry Samuel Shucksmith noch verfeinert, in dem er empfahl, zunächst den Facialishauptstamm am Foramen stylomastoideum darzustellen und von da ab anterograd die einzelnen Äste zu präparieren. Dies war und ist bis heute eine der Haupttechniken der Parotidektomie [15]. Verschiedene weitere Chirurgen wie Blair, McEvedy, Watkin, Patey, Thackray, Hobsley und Maynard aus England sowie Sobin, Seifert, Küttner und Mielhke aus Deutschland haben das Wissen der Neuzeit deutlich vorangetrieben [13].

In Anbetracht dieser Jahrtausende bestehenden Geschichte wirkt die „nur“ 100 Jahre alte DGHNO-KHC fast jugendlich. Allerdings war die Entwicklung in gerade diesen 100 Jahren hinsichtlich der Speicheldrüsen- und der N. facialis-Erkrankungen so rasant wie nie zuvor. Die meisten heute bekannten Speicheldrüsenerkrankungen und Läsionen des N. facialis, sowie die in dieser Arbeit abgehandelten seltenen Erkrankungen, wurden allein während der letzten 100 Jahre beschrieben. Seitdem wir uns 1921 zur damaligen „Gesellschaft Deutscher Hals-, Nasen- und Ohrenärzte“ zusammengekommen, wurden große Beiträge zur Erkenntnis geleistet und auf zahlreichen Jahrestagungen und in Publikationen diskutiert und ausgefeilt.

Scherl C. Seltene Erkrankungen im Kopf-Hals-Bereich… Laryngo-Rhino-Otol 2021; 100: S1–S28 | © 2021. The Author(s).
2. Seltene Erkrankungen der Speicheldrüsen

2.1 Erkennen von seltenen Speicheldrüsenerkrankungen

Neben Anamnese, klinischem Befund und Labordiagnostik spielt v. a. die Bildgebung zur Erkennung von seltenen Läsionen eine große Rolle.

2.1.1 Sonografie

Die schonendste und am leichtesten zugängliche Untersuchung ist die Sonografie. Eine zuverlässige Befundung ist bei den seltenen Erkrankungen sehr stark von der klinischen und sonografischen Erfahrung des Untersuchers abhängig. Während die Identifikation von tumorösen Strukturen oder Steinbildungen noch relativ leicht ge lingt, ist die Differenzierung von Sialadenitiden und Sialadenoosen selbst für den erfahrenen Untersucher herausfordernd. Akute und chronische Sialadenitiden unterscheiden sich im Parenchymmuster. Dieses ist im akuten Fall aufgelockert, echoarm und mit einer erweiterten Ganguktur als Hinweis auf eine Eiteransamm lung gekennzeichnet. Im chronischen Fall kommt es je nach Dauer und Ausmaß des Entzündungsprozesses eher zur Verdichtung des Parenchyms mit inhomogener Textur als Folge narbiger Fibrosierungen. Eventuell sind kleine zystische Areale sichtbar, die Gangektasien entsprechen. Sonografisch kann nicht sicher zwischen den verschiedenen pathogenetischen Formen einer akuten oder chronischen Sialadenitis differenziert werden. Im Gegensatz dazu zeigen die seltenen Sialadenoosen entweder eine gleichmäßige echo dichte Vergrößerung aller Drüsen oder sehr spezielle Veränderungen, wie beim M. Sjögren oder der Sarkoidose (siehe unten) [16].

2.1.2 CT und MRT

MRT und CT haben gegenüber der Sonografie den Vorteil, dass sie die Ausdehnung und Invasion von Nachbarstrukturen besser abbilden. Sie eignen sich daher besonders gut zur Diagnostik von Tumoren. Die Bildgebung bei Speicheldrüsentumoren ist zur Bestimmung der Entität hilfreich. Allerdings ist die Treffsicherheit mit rein morphologischen Verfahren (Ultraschall, CT, MRT), wenn keine Lymphknotenvergrößerung vorhanden sind, eingeschränkt und sehr von der Erfahrung des Untersuchers abhängig [17]. Die CT erlaubt eine bessere Diagnose bei Entzündungen, Knocheninfiltration und vaskulärer Beteiligung. Bei tumorösen Prozessen sollte insgesamt der MRT der Vorzug gegeben werden, da sie das Aus maß der Infiltration und Tumormarkierungen besser abbildet [18]. Tumorbegrenzung und das Vorhandensein von zystischen Arealen geben Hinweise zur Unterscheidung zwischen High- and Low-Grade-Tumoren [19].

2.2 Seltene kindliche Erkrankungen der Speicheldrüsen

Speicheldrüsenerkrankungen im Kindesalter sind insgesamt sehr selten. Ausnahmen bilden die viral induzierten Erkrankungen und die chronisch juvenile Parotitis, auf die deshalb hier nicht näher eingegangen werden soll. Gerade bei Kindern ist es eine Herausforde rung die seltenen Speicheldrüsenerkrankungen zu erkennen, um dann auch die richtige Therapie einzuleiten.

Speicheldrüsenerkrankungen äußern sich bei Kindern in Allgemeinen eher unspezifisch mit einer schmerzhaften oder schmerzlosen Schwellung, Speichelflussveränderung oder Facialisparese. Neben der klinischen Untersuchung kommt v. a. die Sonografie zum Einsatz. Hier eignen sich wegen der geringen Eindringtiefe Schallköpfe mit 7,5–12 MHz, um Entzündungen, Steine, Tumoren und Lymphknoten zu diagnostizieren. Mittels Farbdoppler kann die Durchblutung bestimmt werden, was bei Hämangiomen und arte rivenösen (AV)–Malformationen hilfreich ist [20]. MRT und CT kommen nur bei Raumforderungen oder speziellen Indikationen in Betracht. Auch die Indikationsstellung zur Biopsie ist bei Kindern reduziert, da dies in der Regel in Narkose erfolgen muss. Sie hat aber den Vorteil, dass eine seit. Neben der klinischen und sonografischen Erfahrung des Untersuchers abhängig [17]. Die CT erlaubt eine bessere Diagnose bei Entzündungen, Knocheninfiltration und vaskulärer Beteiligung. Bei tumorösen Prozessen sollte insgesamt der MRT der Vorzug gegeben werden, da sie das Ausmaß der Infiltration und Tumormarkierungen besser abbildet [18]. Tumorbegrenzung und das Vorhandensein von zystischen Arealen geben Hinweise zur Unterscheidung zwischen High- und Low-Grade-Tumoren [19].

2.2.2 Seltene kindliche Erkrankungen der Speicheldrüsen

Speicheldrüsenerkrankungen im Kindesalter sind insgesamt sehr selten. Ausnahmen bilden die viral induzierten Erkrankungen und die chronisch juvenile Parotitis, auf die deshalb hier nicht näher eingegangen werden soll. Gerade bei Kindern ist es eine Herausforderung die seltenen Speicheldrüsenerkrankungen zu erkennen, um dann auch die richtige Therapie einzuleiten.

Speicheldrüsenerkrankungen äußern sich bei Kindern in Allgemeinen eher unspezifisch mit einer schmerzhaften oder schmerzlosen Schwellung, Speichelflussveränderung oder Facialisparese. Neben der klinischen Untersuchung kommt v. a. die Sonografie zum Einsatz. Hier eignen sich wegen der geringen Eindringtiefe Schallköpfe mit 7,5–12 MHz, um Entzündungen, Steine, Tumoren und Lymphknoten zu diagnostizieren. Mittels Farbdoppler kann die Durchblutung bestimmt werden, was bei Hämangiomen und arterivenösen (AV)–Malformationen hilfreich ist [20]. MRT und CT kommen nur bei Raumforderungen oder speziellen Indikationen in Betracht. Auch die Indikationsstellung zur Biopsie ist bei Kindern reduziert, da dies in der Regel in Narkose erfolgen muss. Sie hat aber den Vorteil, dass einerseits die Dignität von Tumoren bestimmt werden und andererseits auch Material zur mikrobiologischen Abklärung oder zum Erregernachweis gewonnen werden kann [20]. Im Kontext der Vollnarkose muss in Betracht gezogen werden, gleich eine Komplettexstirpation der Raumforderung vorzunehmen.

Wirklich selten sind angeborene Erkrankungen der Speicheldrüsen. Die Inzidenz der Parotisaplasien liegt bei 1 von 5000 Le bensgeborenen [21]. Von Submandibularaplasien wurde bisher lediglich in ca. 40 Fällen berichtet [22]. Sie können alleine oder in Kombination mit anderen Fehlbildungen des Gesichtes auftreten. Beim Treacher Collins Syndrom wurde bei 29 % der Patienten eine Speicheldrüsensyndapsyase und bei 19 % eine Speicheldrüsenaplasie festgestellt. Davon weisen mehr als die Hälfte eine fehlende Parotis sekretion auf. Dies führt aber nur in 35 % der Fälle zur Xerostomie, da möglicherweise die kleinen Speicheldrüsen eine kompensatorische Sekretion liefern können. Die kleinen Speicheldrüsen tragen bei gesunden Personen zwar relativ wenig zum gesamten Speichervolumen bei, aber aufgrund ihrer Sekretion spielen sie eine wichtige Rolle bei der Befeuchtung der Mundschleimhaut. Die kleinen Speicheldrüsen selbst wurden in dieser Studie nicht untersucht [23]. Beim lacrimo-auriculo-dento-digitalen Syndrom gibt es Fehlbildungen verschiedener Ausprägungen. Die Kinder fallen durch Taubheit, Anomalien an Zähnen und Gliedmaßen oder Ausprägung extremer Karies durch Xerostomie auf [24]. Auch Ranulae, als gutartige Tumoren der Glandula sublingualis, können in seltenen Fällen angeborne sein [25]. Ein weiterer seltener kongenitaler Tumor ist das Sialoglomblastom, auch als Embryon bekannt. Dieser Tumor sollte komplett chirurgisch entfernt werden, da er sehr aggressiv wächst und zu Rezidiven neigt [26].

Neubildungen der Speicheldrüsen im Kindesalter gelten mit 5 % aller Speicheldrüsentumoren als selten. Sie machen jedoch insgesamt 39 % aller diagnostizierten kindlichen Speicheldrüsenläsionen aus [27], dabei sind 68 % gutartig und 32 % bösartig. Häufigster gutartiger Tumor ist das pleomorphe Adenom (> 90 %) [28]. Es tritt vorwiegend in der Glandula parotis (85 %), gelegentlich aber auch in der Glandula submandibularis (11,7 %) und in der Glandula sublingualis (3,2 %) bzw. in den kleinen Speicheldrüsen auf [27]. Therapeutisch wird wie bei Erwachsenen die chirurgische Sanierung durchgeführt. Maligne Tumoren sind in mehr als 50 % der Fälle Mukopiepermoidkarzinom, seltener sind Azinuszellkarzinome und adenozytische Karzinome [29]. Hier unterscheidet sich die Therapie von der bei Erwachsenen insofern, dass eine Strahlentherapie nur in Ausnahmefällen zu empfehlen ist, denn die Rate an sekundären Neubildungen der Speicheldrüsen ist bei Kindern geringer als bei Erwachsenen [30]. Trotz allem empfehlen Thariat et al. und Kupfermann et al. die adjuvante Ra-
Scherl C. Seltene Erkrankungen im Kopf-Hals-Bereich … Laryngo-Rhino-Otol 2021; 100: S1–S28 | © 2021. The Author(s).

**Zwei Drittel aller kindlichen Tumoren sind Hämatiome, davon sind rund 80 % in der Glandula parotis gelegen, 18 % in der Submandibularregion und 2 % mit den kleinen Speicheldrüsen assoziiert [33]. Histologisch unterscheidet man echte Hämatiome (z. B. juvenile kapilläre Hämatiome) von AV-Malformationen und Lymphangiomen [34].

Eine seltene Form der eitrigen akuten Sialadenitis ist die neonatale eitrige Parotitis, die direkt nach der Geburt auftritt. Bisher sind nur wenige Fälle in Fallberichten beschrieben worden. Das klinische Bild entspricht mit Schwellung und Rötung dem der herkömmlichen eitrigen Parotitis. Es ist mit Dehydration und niedrigem Geburtsge- wicht, duktaler Obstruktion und strukturellen Anomalien der Glan- dula parotis assoziiert. Häufigste Erreger sind Staphylococcus aureus, gramnegative Streptokokken und selten Anaerobier [35].

Die Pneumonparotitis ist eine seltene schmerzhaftere Erkrankung, bei der sich die betroffenen Kinder und Jugendlichen Luft in den Stenongang blasen. Dazu kommt es beim Spielen von Blasinstru- menten oder im Rahmen von psychischen Auffälligkeiten [36]. Die Diagnose erfolgt mittels Sonografie, in der zahlreiche echoreiche Reflexe sichtbar sind. Die Therapie ist symptomatisch mit Drüsen- massage, Sialogoga und Analgesie sowie ggf. Psychotherapie [37].

Im Vergleich zur Infektion mit tuberkulösen Myobakterien, die die zahlreichen Lymphknoten in der Glandula parotis befallen kön- nen, ist die Infektion mit atypischen Myobakterien noch relativ selten. Da die Inzidenz aber weltweit steigt, soll hierauf eingegangen werden [38]. Die typischen Klinik sind einseitige, eher harte Schwellungen der intraglandulären Lymphknoten. Kutane Fistelbildungen sind möglich und können sogar Monate und Jahre be- stehen bleiben. Die Diagnostik umfasst den mikrobiologischen Er- regernachweis mittels Kultur und PCR. Therapeutisch kommt die chirurgische Exzision der betroffenen Lymphknoten oder die medikamentöse Behandlung in Frage. Mahadevan et al. geben der chirurgischen Behandlung den Vorzug, da sich die medikamentöse Therapie (Clarithromycin und Rifabutin oder Ethambutol) mehrere Wochen hinzieht und damit ein Compliancerisiko darstellt [39].

Die Heilungsraten sind bei chirurgischer Therapie im Vergleich zur Infektion mit tuberkulösen Myobakterien deutlich höher. Die mykobakteriöse Sialadenitis mit primärer oder sekun- därer Manifestation in den Lymphknoten der Glandula parotis tritt hierzulande selten auf und ist häufiger in den Entwicklungsländern anzutreffen. Durch zunehmende Globalisierung und Flücht- lingsströme steigt aber deren Inzidenz in Deutschland. Die Glan- dula parotis ist zu 70 % betroffen. Bei Befall der Glandula subman- dibularis ist häufig auch mit einer aktiven Lungen tuberkulose zu rechnen. Ursächlich wird eine aufsteigende Infektion von den Ton- sillen oder Zähnen vermutet [40]. Desweiteren wird eine hämato- gene Infektion oder eine Infektion über zervikale Lymphknoten diskutiert [41]. Bei sonografisch unilateral diffus vergrößerter Glan- dula parotis mit prominenten intraglandulären Lymphknoten muss an diese Differenzialdiagnose gedacht werden. CT-morphologisch wird eine asymmetrische Lymphadenopathie mit nekrotischen Are- alen und ringartiger Kontrastmittelanreicherung bis ins subkutane Fettgewebe beschrieben. Der endgültige Nachweis erfolgt immer mikrobiologisch als Kultur und dem Nachweis säurefester Stäbchen und mittels PCR. Das Material kann mittels Feinnadelbiopsie ge- wonnen werden. Sensitivität und Spezifität liegen zwischen 81–100 und 94–100 % [42].

Man unterscheidet eine akute von einer chronischen Form. Die akute Form präsentiert sich schmerzhaft mit kurzer Anamnese. Die chronische und häufigere Form zeigt sich durch eine einseitige harte Schwellung. Hier müssen ein Lymphom oder andere tumoröse Läsionen ausgeschlos- sen werden [43, 44].

Die Therapie ist medikamentös und muss über mehrere Mona- te erfolgen. Bei der Infektion mit atypischen Myobakterien steht wie bei Kindern die chirurgische Therapie im Vordergrund [39, 40].

2.3 Seltene entzündliche Erkrankungen

Akute und chronische Sialadenitiden können vielfach schon durch gezielte Anamnese und die klinische Untersuchung erkannt wer- den. Zur genaueren Differenzierung bedarf es weiterer Untersu- chungen mittels Sonografie, ggf. MRT/CT, Blutbild, Serologie und ggf. Biopsie.

2.3.1 Infektiose Erkrankungen

2.3.1.1 Infektion mit tuberkulösen und nicht-tuberkulösen Myko- bakterien. Die mykobakteriöse Sialadenitis mit primärer oder sekun- därer Manifestation in den Lymphknoten der Glandula parotis tritt hierzulande selten auf und ist häufiger in den Entwicklungsländern anzutreffen. Durch zunehmende Globalisierung und Flücht- lingsströme steigt aber deren Inzidenz in Deutschland. Die Glan- dula parotis ist zu 70 % betroffen. Bei Befall der Glandula subman- dibularis ist häufig auch mit einer aktiven Lungen tuberkulose zu rechnen. Ursächlich wird eine aufsteigende Infektion von den Ton- sillen oder Zähnen vermutet [46]. Desweiteren wird eine hämato- gene Infektion oder eine Infektion über zervikale Lymphknoten diskutiert [47]. Bei sonografisch unilateral diffus vergrößerter Glan- dula parotis mit prominenten intraglandulären Lymphknoten muss an diese Differenzialdiagnose gedacht werden. CT-morphologisch wird eine asymmetrische Lymphadenopathie mit nekrotischen Are- alen und ringartiger Kontrastmittelanreicherung bis ins subkutane Fettgewebe beschrieben. Der endgültige Nachweis erfolgt immer mikrobiologisch als Kultur und dem Nachweis säurefester Stäbchen und mittels PCR. Das Material kann mittels Feinnadelbiopsie ge- wonnen werden. Sensitivität und Spezifität liegen zwischen 81–100 und 94–100 % [48].

2.3.1.2 HIV

Während der frühen HIV-Pandemie, bei der noch keine antivirale Therapie zur Verfügung stand, kam es in 50 % bei HIV-positiven Pa- tienten und in 80 % bei Patienten mit AIDS zu einer Speicheldrüsen- beteiligung im Sinne einer Schwellung [51]. Nach Einführung der antiretroviralen Therapie war die Inzidenz von HIV-assoziierten...
Scherl C. Seltene Erkrankungen im Kopf-Hals-Bereich … Laryngo-Rhino-Otol 2021; 100: S1–S28 | © 2021. The Author(s).

Referat

lichen Ländern die Inzidenz von HIV-bedingten Glandula parotis zeitig erkannt wird. Untersuchen und die Diagnose chirurgisch zu sichern. Arzt gefragt, um die entsprechende Drüse mittels Sonografie zu

hauptsächlich die Glandula parotis, selten auch die Glandula submandibularis. Prädominanz des weiblichen Geschlechts und der Nachweis von –besonderes Epithel in intraglandulären Lymphknoten führt zur Ausbil- dung von charakteristischen lymphoepithelialen Zysten v. a. in der Glandula parotis. Die Zysten lassen sich sonografisch deutlich nach- weisen. So resultiert das für eine HIV-Infektion pathognomische Bild der zystendurchsetzten Drüse. Die wichtigste Differenzialdiag- nose ist somit das Sjögrensyndrom, bei dem ebenfalls lympho- epitheliale Zysten nachweisbar sind. CT und MRT lassen auch un- spezifische zystische Läsionen erkennen [58]. Die Diagnosesiche- rung erfolgt serologisch.

Bei AIDS-Patienten kann eine Speicheldrüsenschwellung auch durch eine begleitende Hepatitis C- oder Mumpsinfektion bedingt sein. Neben einem direkten Drüsenbefall kann es auch zu HIV-be- bundenen Malignitäten kommen, die sich v. a. in der Glandula pa- rotis manifestieren. Diese sind das Kaposi-Sarkom und ein Lym- phombefall der intraglandulären Lymphknoten [53].

2.3.1.3 Hepatitis C

Die Hepatitis C ist nicht nur mit einer chronischen Leberläsion assoziiert, sondern auch mit zahlreichen extrahepatischen Manifesta- tionsen. An den Speicheldrüsen kommt es zu einer Sjögren-arti- gen Sialadenitis [59]. In einer französischen Studie von Haddad konnte schon 1992 gezeigt werden, dass 57 % der Hepatitis C-pozitiven Patienten eine Grad 3 bis 4 Sialadenitis zeigen [60]. Der Un- terschied zum Sjögren-Syndrom besteht darin, dass die Xerosto- mie und die Augentrockenheit weniger stark ausgeprägt sind. Die Prädominanz des weiblichen Geschlechts und der Nachweis von anti-SSA-Antikörpern fehlen. Dafür kann das Virus in 83 % der Fälle im Speichel nachgewiesen werden [61]. Doeffel-Hantz et al. be- schreiben eine Verbesserung der Sicca-Symptomatik durch die Behandlung mit Interferon alpha und Ribavirin [62]. Wie auch beim Sjögren-Syndrom, so ist auch bei einer HCV-Infektion die Entwick- lung eines B-Zell-Non-Hodgkin-Lymphoms eine Komplikation [63].

Sjögren-Syndrom, so ist auch bei einer HCV-Infektion die Entwick- lung von charakteristischen lymphoepithelialen Zysten v. a. in der Glandula parotis. Die Zysten lassen sich sonografisch deutlich nach- weisen. So resultiert das für eine HIV-Infektion pathognomische Bild der zystendurchsetzten Drüse. Die wichtigste Differenzialdiag- nose ist somit das Sjögrensyndrom, bei dem ebenfalls lympho- epitheliale Zysten nachweisbar sind. CT und MRT lassen auch un- spezifische zystische Läsionen erkennen [58]. Die Diagnosesiche- rung erfolgt serologisch.

Bei AIDS-Patienten kann eine Speicheldrüsenschwellung auch durch eine begleitende Hepatitis C- oder Mumpsinfektion bedingt sein. Neben einem direkten Drüsenbefall kann es auch zu HIV-be- bundenen Malignitäten kommen, die sich v. a. in der Glandula pa- rotis manifestieren. Diese sind das Kaposi-Sarkom und ein Lym- phombefall der intraglandulären Lymphknoten [53].

2.3.1.4 Aktinomykose

Bei der Aktinomykose handelt es sich um eine Mischinfektion mit anaeroben und aeroben Aktinomyzeten, v. a. Actinomyces israelii [65]. Der Hals- und Gesichtsbereich ist die am häufigsten befallene Körperregion. Eine rein submandibuläre oder parotideale Mani- festation ist selten. Sie zeigt sich als eine derbe Schwellung mit multiplen Fisteln. In der Regel ist der Verlauf langsam progredient und schmerzlos. Es gibt aber auch eine akute fieberige Form [66]. Differenzialdiagnostisch muss die Aktinomykose von der atypi- schen Mykobakteriose abgegrenzt werden, die ebenfalls mit einer fistelartigen Raumforderung einhergeht. Weitere Differenzialdia- gnosen sind Neoplasien und granulomatöse Läsionen. Prädiposi- nierende Faktoren sind Zahninfektionen, Zahnbehandlungen oder enorale Verletzungen, wodurch der Erreger austritt und retrograd in die Glandula parotis oder die Glandula submandibularis aufsteigt. Damit das möglich wird, muss es zu einer massiven Vermehrung des auch in der normalen Mundflora vorhandenen Bakteriums kom- men. Eine erhöhte anaerobe Begleitflora verstärkt durch Enzym- wirkung und Toxinbildung die relativ geringe Invasionskraft der Ak- tinomyzeten und kann somit eine floride Infektion hervorrufen [67]. Die Diagnostik stützt sich auf das klinische Bild und den mikrobiologischen Erregernachweis. Hierfür eignet sich eine Feinma- delpunktion oder eine Biopsie. Wichtig für den mikrobiologischen Nachweis ist die Angabe der Verdachtsdiagnose, denn oft ergibt die Kultur ein negatives Ergebnis, da keine strikten anaeroben Kulturbedingungen vorgehalten werden [68]. Die Therapie erfolgt chi- rugisch und antibiotisch. Abszessformationen und Nekrosen wer- den chirurgisch entfernt. Die Antibiotikagabe mit Penicillin oder Cephalosporinen muss über 3–12 Monate erfolgen [69].

2.3.1.5 Katzen-Kratz-Krankheit

Strenggenommen involviert die Katzen-Kratz-Krankheit nicht die Speicheldrüsen, sondern die periparotideal und submandibulä- ren Lymphknoten, von denen die Infektion auf die Speicheldrüsen übergeht [46]. Die Inzidenz beträgt 0,77–0,86 auf 100 000 Einwoh- ner [70]. Da die Erkrankung beim Menschen häufig inapparent ver- läuft, ist die tatsächliche Durchseuchungsrate in der Bevölkerung höher anzunehmen. Die Erkrankung ist trotz allem nicht ganz un- gefährlich, denn in der Literatur wurden über 100 enzephalitische Komplikationen beschrieben [71, 72]. Pathogenes Agens ist das Bakterium Bartonella henselae, welches erst in den 90iger Jahren mit dieser Krankheit in Verbindung gebracht werden konnte [73]. Übertragen wird die Krankheit durch junge Katzen. Ältere Katzen haben die Infektion durchlaufen und sind nicht mehr infektiös [74]. Die häufigsten Symptome der Katzen-Kratz-Krankheit sind nach einer Untersuchung von Dalton et al. regionale Lymphknoten- schwellung (85 %), Fieber (54 %), sowie allgemeines Krankheitsge- fühl (45 %). Aus den Kratzdefekten der Haut, entstehen innerhalb von etwa 1–3 Wochen papulomatöse bis pustulöse Effloreszenzen [75]. Bei positiver Anamnese erfolgt der Nachweis über Antikörper, als Erregernachweis mit PCR oder histologisch, bei einem erfahre- nen Zytologen auch zytologisch durch die Warthin-Starry-Silberfärbung. Bei immunkompetenten Patienten kann die Spontanhei- lung abgewartet werden. Bei absziedierenden Entzündungen sollte chirurgisch vorgegangen werden in Kombination mit einem Mak- rolid oder Tetrazyklin [76].
2.3.2. Chronisch nicht-infektiöse Erkrankungen

Die chronischen Erkrankungen treten insgesamt seltener auf als die akuten Speicheldrüsenerkrankungen. Als Schlüsselsache aller chronischen nicht-infektiösen Sialadenitiden wird eine verminderte Speichelsekretionsrate mit nachfolgender Stase angenommen. Davon ist hauptsächlich die Clandula parotis betroffen. Im Laufe der Zeit kommt es zu duktagalen Ekstasen und zur Destruktion der Azini in Kombination mit einer lymphozytären Infiltration. Bis zu 80 % der Patienten entwickeln eine Xerostomie. Wichtig ist, dass zu Beginn häufige obstruktive Erkrankungen, wie Steinleiden und Ganganomalien beim Sjögren-Syndrom bei [81].

2.3.2.1 Autoimmunerkrankungen

2.3.2.1.1 Sjögren-Syndrom

Das Sjögren-Syndrom ist mit einer Prävalenz von 0,3 bis 1 pro 1000 Personen [77] zwar durchaus nicht selten, soll aber der Wichtigkeit und der mit dieser Krankheit im Zusammenhang stehenden und hier beschriebenen Pathologien nun betrachtet werden. Das Verhältnis von Frauen zu Männern beträgt: 9:1. 80 % der Patienten beklagen die 3 Leitsymptome: Mund- und Augentrockenheit, Müdigkeit und Gelenkschmerzen, was zu einer deutlichen Reduktion der Lebensqualität führt [78]. Es wird von einer primären oder sekundären Form gesprochen. Der Begriff sekundär oder assoziiert, wird angewendet, wenn die Krankheit in Verbindung mit anderen Pathologien, die auch die Speicheldrüsen betreffen können auftritt, wie bspw. den IgG4-assoziierten Erkrankungen, Lupus oder HIV- und Hepatitis C-Infektionen. Die größte diagnostische Herausforderung betrifft die Tatsache, dass Trockenheit der Schleimhäute, Schmerzen in den Gliedmaßen und Müdigkeit sehr häufig in der Allgemeinbevölkerung auftreten ohne dass ein Krankheitswert besteht. Von einem Sjögren-Syndrom spricht man deshalb nur, wenn auch immunologische Befunde (Vorhandensein von Anti-SS-Antikörpern oder fokale lymphatische Sialadenitis bei Biopsie labialer Speicheldrüsen) nachzuweisen sind [79]. Die kürzlich vom American College of Rheumatology (ACR) und der Europäischen Liga gegen Rheuma (EULAR) zum Zweck der Klassifizierung entwickelten Kriterien sind auch für die Diagnose des Sjögren-Syndroms hilfreich (Tab. 1) [42, 80].

Ergänzend zu diesen Kriterien kann der erfahrene Untersucher in der Sonografie eine inhomogene Drüsenvergrößerung sehen, durchsetzt von zahlreichen echoarmen Raumforderungen, die einerseits zystischen Gangerweiterungen, andererseits vergrößerten intraglandulären Lymphknoten entsprechen. Es ergibt sich eine insgesamt „wolkige“ Struktur [16]. Leider wurde die Sonografie aus historisch-geografischen Gründen noch nicht in diese Klassifikationskriterien aufgenommen. Allerdings wird die Integration der Sonografie als Diagnostikum unterdessen in Betracht gezogen [80].

Die Sialendoskopie wird leider nach den Kriterien der American-European-Consensus Group auch noch nicht als empfohlene Untersuchung zur Beurteilung der Beteiligung der Speicheldrüsen am Sjögren Syndrom aufgeführt. Auch hier ist der Grund für den Ausschluss bedingt: Die überarbeiteten AECG-Kriterien stammen aus dem Jahr 2002, während die Sialendoskopie ein relativ neues Verfahren darstellt und zu diesem Zeitpunkt noch keine globale Ausbreitung erfahren hatte. Diese Technik ermöglicht jedoch die endoskopische transluminale Visualisierung und bietet einen Mechanismus zur Diagnostik und Behandlung. Sowohl entzündliche als auch obstruktive Pathologien im Zusammenhang mit dem Gangsystem können detektiert werden. Das trägt zur Erkennung der Ganganomalien beim Sjögren-Syndrom bei [81].

Pathophysiologisch wird aktuell von einer viralen Aktivierung des Schleimhautepithels ausgegangen, was zur Produktion von Antigendeterminanten führt, wodurch ein immunologisches Antwortsystem ausgelöst wird. Die erworbenen Antikörper und entzündliche Infiltrate führen zur Destruktion der Schleimhaut [82, 83].

Die Behandlung des Krankheitsbildes erfolgt symptomatisch mit Anticholinergika (Pilocarpin), Cyclosporin-Augentropfen, analgetisch und zahnärztlich zur Prophylaxe und Behandlung von Karunkel, die durch die Xerostomie ausgelöst wird. Bisher konnte kein Benefit einer speziellen Immuntherapie nachgewiesen werden [84].

Dem HNO-Arzt kommt eine besondere Bedeutung in der Nachsorge dieser Patienten zu, da Patienten mit Sjögren-Syndrom ein 15- bis 20fache erhöhtes Risiko haben, an einem B-Zell-Lymphom...
zu erkranken. Hierbei handelt es sich hauptsächlich um Non-Hodgkin-Lymphome. Es ist wichtig für den HNO-Arzt zu wissen, dass sich die Lymphome oft in dem Organ entwickeln, in denen das Sjögren-Syndrom erstmals aktiv wurde, somit häufig in den Speicheldrüsen. Demzufolge handelt es sich in der Regel um Mukosa-assoziiertes lymphatisches Gewebe (MALT)-Lymphome [85]. Risikofaktoren für die Entwicklung eines MALT-Lymphoms sind rezidivierende Schwellungen der Glandula parotis, Splenomegalie, Purpura, positiver Rheumafaktor, Kryoglobulinämie, erniedrigter C4- und CD4 T-Zell-Spiegel, Keimzellmutationen, erhöhte mononukleäre Zellinfiltrate in der Unterflippenbiopsie. Patienten mit diesem Risikoprofil sollten alle 6 Monate kontrolliert werden [79]. Hier ist eine sehr enge Zusammenarbeit zwischen Rheumatologie und HNO-Arzt erforderlich, da Bildgebung mittels Sonografie der Speicheldrüsen und bei Bedarf eine MRT erfolgen muss. Fest Ultra schallcharakteristika sind allerdings bislang nicht beschrieben worden. Bei Speicheldrüsenmanifestation sichert der HNO-Arzt durch eine gezielte Lymphknotentfernung meist in schonender extrakapsulärer Technik die Diagnose.

2.3.2.1.2 IgG4-assoziierte Sialadenitis in Form von Mikulicz-Syndrom und Küttner-Tumor

IgG4-assoziierte Erkrankungen manifestieren sich als zweihäufigsten in der Kopf-Hals-Region nach dem Pankreas und einigen pseu dotumoralen Erkrankungen unbekannter Pathogenese. In den letzten 10 Jahren wurden das Mikulicz-Syndrom und der Küttner-Tumor den IgG4-assoziierten Erkrankungen zugeordnet [86]. Die Identifizierung von IgG4-positiven Plasmazellen sowohl beim Mikulicz-Syndrom als auch beim Küttner-Tumor führte zu einem er neuten Interesse an diesen Krankheiten und bewirkte basierend auf immunologischen Analysen eine Reklassifizierung entzündeter Speicheldrüsen [87].

Die von Küttner 1896 identifizierte Speicheldrüsenerkrankung [88] betrifft üblicherweise eine oder beide submandibulären Drüsen, die sich klinisch als harte tumorähnliche Massen mit einer Tendenz zur knotigen Schwellung präsentieren, die leicht mit bösartigen Tumoren verwechselt werden können. Die Krankheit ist oft mit einer Mikrolithiasis verbunden. Histologische Schnitte zeigen die Erhaltung der lobulären Architektur, eine ausgeprägte lymphoplasmatische Entzündung, große unregelmäßige lymphoide Follikel mit erweiterten Keimzentren und eine Azinsatrophie ohne auffällige lymphoepitheliale Läsionen. Charakteristischerweise wird eine ausgeprägte zelluläre interlobuläre Fibrose aufgrund aktiverer Fibroblasten und einer Infiltration von Lymphozyten und IgG4-positiv gefärbten Plasmazellen beobachtet [87].

Auch die Beschreibung des Mikulicz-Syndrom entstammt dem Ende des 19. Jahrhunderts durch den Freiherrn von Mikulicz-Radecki [89]. Er beschrieb erstmals eine idiopathische, bilaterale, schmerzlose, symmetrische und anhaltende Schwellung der Tränenränder, der Glandula parotis und der submandibulären Drüsen. Da sich das Mikulicz-Syndrom und das Sjögren-Syndrom histologisch ähnlich sind, wurde das Mikulicz-Syndrom lange als Subtyp des Sjögren-Syndroms angesehen. Bei der Hämatoxylin-Eosin-Färbung zeigte Speicheldrüsegewebe beim Mikulicz-Syndrom eine Infiltration von mononukleären Zellen und lymphoide Follikel um die Gang- und Azinuszellen herum. Die Unterscheidung vom Sjögren-Syndrom gelang erst durch den Nachweis von zahlreichen IgG4-positiven Plasmazellen in der Nähe von Azinus- und Gangzel len beim Mikulicz-Syndrom im Gegensatz zum Sjögren-Syndrom [90]. Das Vorhandensein von IgG4-positiven Plasmazellen in der entzündlichen Infiltration des Speicheldrüsegewebes legt daher nahe, dass das Mikulicz-Syndrom und auch der Küttner-Tumor nur 2 verschiedene Phänotypen einer IgG4-assoziierten Erkrankung sind [81]. Die Begriffe Mikulicz-Syndrom und Küttner-Tumor sind demzufolge nur noch historisch zu sehen.

Derzeit wird angenommen, dass IgG4-assoziierte Erkrankungen hauptsächlich Männer mittleren Alters betrifft, die einseitig oder beidseitig eine anhaltende Schwellung der Glandula parotis und/oder der submandibulären Drüsen aufweisen. Klinisch kommt es nur in 30 % der Fälle zu einer Xerostomie. Häufige Begleiterscheinungen (70 %) sind die Tränenründenbeteiligung, sinusale Störungen und eine zervikale Lymphadenopathie [91].

Diagnostisch ist die Sonografie primäres bildgebendes Verfahren. Bei der einst als Küttner-Tumor bekannten Störung zeigt sich häufig ein noduläres Muster mit erweiterten Gängen und einer Mikrolithiasis [87]. Die Diagnose wird histologisch durch eine Biopsie der großen Speicheldrüsen gesichert [81]. Labortests bestätigen die Diagnose und zeigen erhöhte Gesamt-IgG-, IgG2-, IgG4- und IgE-Level. Eine Serum-IgG4-Konzentration > 135 mg/dl gilt als Schwellwert für die Diagnose [92].

In der Literatur gibt es nur sehr wenige Veröffentlichungen, die sich mit der Behandlung von IgG4-assoziierten Erkrankungen befas sen. Die meisten Autoren geben eine systemische Steroidtherapie als Erstbehandlung an. Prednisolon ist das am häufigsten verwendete Medikament. Eine Langzeitbehandlung mit Glukokortikoiden scheint die Symptome im Zusammenhang mit einer verminderten Speichelsekretion signifikant zu verbessern, was nach einigen Studien sogar zur Wiederherstellung histologischer Anomalien führt. Die Rolle anderer Immunsuppressiva wie Azathioprin oder Methotrexat ist noch unklar [81, 92, 93].

2.3.2.1.3 Sarkoidose

Die Sarkoidose ist eine multisystemische Erkrankung unbekannter Ursache, die durch die Bildung von Immungranulomen in den beteiligten Organen gekennzeichnet ist. Es handelt sich um eine Krankheit, die hauptsächlich 20–bis 40-Jährige betrifft. Die vor herrschende Hypothese ist, dass verschiedene nur noch nicht identifi zierte Antigene, entweder infektiös oder umweltbedingt, bei genetisch anfälligen Wirten eine überschießende Immunreaktion mit Beschwerden auslösen können [94]. Hauptsächlich ist die Lunge (90 %) betroffen [95], aber die Erkrankung kann theoretisch jedes Organ befallen. Die Speicheldrüsen sind in 5–10 % der Fälle involviert [58]. Dabei werden 3 klinische Manifestationen unterschieden: (1) Die häufigste Manifestation geht mit Schwellung der großen Speicheldrüsen und dem histologischen Nachweis von nicht-verblassenden Granulomen einher. (2) Bei der zweiten Form zeigt sich eine Mikrolithiasis [87]. Die Diagnose wird histologisch durch eine Biopsie der großenSpeicheldrüsen gesichert [81]. Die Begriffe Mikulicz-Syndrom und Küttner-Tumor sind demzufolge nur noch historisch zu sehen. Die Patienten leiden unter Xerostomie, inter alia die Proportion der Granulomatisierung infl-
nen unterschiedlich stark ausgeprägt sein und auch einseitig auftreten [96, 97].

Die Diagnose ist aufgrund der zahlreichen weiteren Ursachen von Speicheldrüsenschwellungen eine Herausforderung. Es gibt keine spezifischen Labortests und keine charakteristischen bildgebenden Befunde. Die Diagnose stützt sich allein auf die Klinik und wird durch den histologischen Nachweis nicht-verkäsender Granulome gesichert. Teymoorlash und Werner [98] untersuchten sechs Fälle mit Parotissarkoidose hinsichtlich ihrer sonografischen Befunde. Alle zeigten eine Drüsenvergrößerung und sonst unspezifische multiple echogene Septen, echoleere Foci oder echoarme Areale im Drüsenrandbereich. Die Unspezifität der Befunde konnte auch von anderen Autoren im deutschsprachigem Raum bestätigt werden [99, 100]. Lediglich beim Heerfordt-Syndrom zeigt sich sonografisch eine echoreiche Binnenstruktur, die durchsetzt ist von zahlreichen, vergrößerten Lymphknoten entsprechenden echoarmen Arealen [16]. Die MRT zeigt in der T2-Wichtung ein homogenes Enhancement.

In der Speicheldrüsenbiopsie werden die verkäsenden Granulome nachgewiesen, nicht zuletzt auch um Differentialdiagnosen, wie Neoplasien und andere granulomatöse Erkrankungen, auszuschließen. Die Behandlung der Parotis-Sarkoidose erfolgt individualisiert und medikamentös. Dabei stehen Kortikosteroide im Vordergrund. Der grundlegende Ansatz sollte sein, die kleinmögliche Kortisondosis zu finden. Einige alternative Medikamente wie Azathioprin, Chloroquin, Methotrexat, Pentoxifyllin, Cyclophosphamid, Tacrolimus oder Infliximab können bei refraktären Erkrankungen oder als kortikosteroidsparende Alternativen verwendet. Isolierte Veränderungen der Glandula parotis können auch facialis-schonend entfernt werden. Wenn keine anderen Anzeichen der Krankheit vorliegen, ist auch keine Pharmakotherapie erforderlich. Bei einigen Patienten kommt es zur Spontanheilung [101]. Aufgrund der Seltenheit der Speicheldrüsenerkrankung der Sarkoidose gibt es nur wenige Daten bezüglich der Spontanremissionsrate. Die Prognose wird für die meisten Patienten als gut angesehen. Die schwerste und häufigste Komplikation einer Sarkoidose ist das Auftreten einer pulmonalen Fibrose in Verbindung mit pulmonaler Hypertorie und Vergrößerung der Speicheldrüsen. In den meisten Fällen handelt es sich aber um eine schmerzlose zervikale Lymphadenopathie. Zweithäufigste Manifestation außerhalb der zervikalen Lymphknoten sind die großen Speicheldrüsen [106]. Die Schwierigkeit in der Diagnose der Erkrankung liegt darin, sie von anderen Drüsenschwellungen zu unterscheiden. Dies gelingt nur histologisch nach einer Biopsie. Aber auch für den Pathologen stellt diese Erkrankung eine Herausforderung dar. Hier muss zwischen Rosai-Dorfman-Histiiozyten, Langerhanszell-Histiiozyten und normalen Sinus-Histiiozyten unterschieden werden. Die ersten beiden lassen sich nur durch die Expression des S100-Proteins von normalen Sinus-Histiiozyten unterscheiden, Langerhanszell-Histiiozyten sind aber CD1-negativ [107]. Die meisten Patienten sind jung (mittleres Erkrankungsalter 20,6). Männer sind etwas häufiger betroffen. Die Rosai-Dorfman-Krankheit hat im Allgemeinen einen langfristigen klinischen Verlauf, der durch den Wechsel von Exazerbationen und Remissionen gekennzeichnet ist. Letztlich erfahren die meisten Patienten eine komplette Remission, es sei denn, es liegt eine Prädisposition für andere immunologische Erkrankungen vor [108].

2.4 Seltene Sialadenosen

Sialadenosen sind nichtentzündliche, nichtneoplastische, parenchymatöse Speicheldrüsenerkrankungen, die auf Stoffwechsel- und Sekretionsstörungen des Drüsenparenchyms beruhen [109]. Sie finden wenig Beachtung, führen aber zur Einschränkung der Lebensqualität und sollen deshalb im Kontext dieses Referats betrachtet werden.

2.4.1 Endokrine Sialadenosen

2.4.1.1 Diabetes mellitus

Mehrere epidemiologische Studien haben gezeigt, dass Speicheldrüsenfunktionsstörungen bei Diabetes-mellitus-Patienten häufig sind [110]. Beide Typen des Diabetes mellitus (I und II) sind davon betroffen [111, 112]. Diese Speichelsekretionsstörungen könnten mit einer schlechten Lebensqualität verbunden sein und die Anfälligkeit für Karies und orale Infektionen bei Diabetes-mellitus-Patienten erhöhen, insbesondere bei Dehydration und unzureichender Blutzuckerkontrolle [110]. Es kommt sowohl zur Xerostomie als auch zu verminderner basaler und postprandialer Sekretionsrate [113]. Eine verlängerte Hyperglykämie, die für Diabetes mellitus charakteristisch ist, kann nicht nur systemische Veränderungen hervorrufen, sondern auch die Funktion der Speicheldrüsen verändern sowie Veränderungen in der Zusammensetzung und im Volumen des sekretierten Speichels verursachen [114].

2.4.1.2 Schildrüsenfunktionsstörungen

Es gibt nur wenig Literatur und Forschung zu den Auswirkungen von Schildrüsenfunktionsstörungen auf die Speicheldrüsen. Tierversuche haben gezeigt, dass eine Hyperthyreose eine Zunahme der Größe und Anzahl der Tubuli in der Glandula submandibularis von Ratten und eine verringerte Prävalenz von Zahnkaries verursacht, während eine Hypothyreose zu einer deutlichen Atrophie der submandibulären Speicheldrüsen zusammen mit einer Zunahme von Zahnkaries führte [115]. Muralidharan et al. haben an einer indischen Kohorte gezeigt, dass eine Hypothyreose zu einer verminderten Speichelsekretionsrate führt. Die Prävalenz der Hypothyreose war geringer ausgeprägt als beim Diabetes mellitus. Die
Speichelflussraten verbesserten sich nach Behandlung der Hyperthyreose [116].

2.4.2 Metabolische Sialadenosen
Unterernährung und Essstörungen haben Auswirkungen auf die Funktion und Größe der Speicheldrüsen. Psoter et al. haben an haitianischen Kindern festgestellt, dass eine frühe postnatale Mangernährung noch Jahre später zu einem reduzierten basalen und postprandialen Speichelfluss führt (n = 1017) [117]. Bulimische Patienten und Patienten mit Anorexia nervosa haben oft Speicheldrüsenschwellungen. Da diese Patienten ihre Essstörung häufig negieren oder nicht spontan offen legen, ist eine Anamnese schwierig und in manchen Fällen ist die bilaterale Schwellung der großen Speicheldrüsen das einzige sichtbare Symptom [118]. Die Ursache der Drüsenschwellung ist unklar, es wird eine trophische Stimulation der Drüsen durch einen Pankreasreiz vermutet oder eine entzündliche Sialadenose [119, 120]. Bei unklaren, nicht spontan offenen Schwellungen und -schmerzen hervorrufen können. Während der postprandialen Speichelabsonderung charakterisieren. Im selben Eingriff kann die Behandlung der Speicheldrüsen durchfahren werden. Koch et al. beschrieben, dass eine endoskopische Sialogravie wertvolle Instrumente zur Diagnose von Gangstenosen und -strikturen sind sowohl Ultraschall als auch Sialogravie wertvolle Instrumente zur Diagnose von Gangstenosen und -strikturen sind. Die Qualität der Diagnose hängt jedoch von der Erfahrung des Untersuchers ab. Alternativ wurde die Sialogravie in vielen Zentren als Goldstandard etabliert und mit hohen Erfolgsraten eingesetzt [126–128]. Der Hauptvorteil der Sialogravie gegenüber dem Ultraschall besteht darin, dass man die Anzahl und auch die Länge der Strikturen angemessen bestimmen können. Im Vergleich zu Ultraschall handelt es sich jedoch um ein invasives Verfahren, das mit Bestrahlung, möglichen allergischen Reaktionen aufgrund der Anwendung von Kontrastmittel und zusätzlichen Kosten verbunden ist. Eine Alternative zur konventionellen Sialogravie ist die MR-Sialogravie. Hiermit können Stenosen visualisiert werden und der Zustand der Drüsenfunktion angezeigt werden [129]. Diese Technik basiert auf Prinzipien der MR-Hydrografie, bei denen sehr stark T2-gewichtete (T2W) Pulsequenzen verwendet werden, um eine statische Flüssigkeit abzubilden. Die Vorteile der MR-Hydrografie liegen in ihrer nicht-invasiven Natur. Der Speichelfluss wird mittels Zitronensäure angeregt. Es sind weder Kontrastmittel noch Strahlenexposition oder ein erfahrener Untersucher erforderlich. Der Nachteil ist die geringere räumliche Auflösung [130]. Bei angemessener Durchführung sind sowohl Ultraschall als auch Sialogravie wertvolle Instrumente zur Diagnose von Gangstenosen und -strikturen der großen Speicheldrüsen [131].

2.5 Seltene obstruktive Erkrankungen
Die obstruktive Sialadenitis macht ungefähr die Hälfte aller gutartigen Drüsenerkrankungen aus. Die Obstruktionen betreffen in 80 bis 90% der Fälle die Glandula submandibularis und in 5–10% die Glandula Parotis. Als Ursachen kommen die Sialolithiasis, Stenosen, Schleimretentionen, Polyphen, Fremdkörper, externe Kompression oder anatomische Variationen der Gangsysteme in Frage. Die mit Abstand häufigste Ursache ist mit 60% aller Obstruktionen die Sialolithiasis [123]. Die Häufigkeit beträgt circa 6/100 000. Im Folgenden werden die selteneren nicht-steinbedingten obstruktiven Erkrankungen näher beschrieben.

2.5.1 Sprechelgangstenosen und Gangstrukturen
Zehn bis fünfzehn Prozent aller obstruktiven Erkrankungen sind Stenosen. Sie führen zu einer Verstopfung mit verringertem Speichelfluss und einer Infektion des aufsteigenden Ganges und der Bildung von schleimigen oder fibrinösen Plaques. Duktale Wandveränderungen, insbesondere Strikturen, sind die Folge. Strikturen betreffen häufiger die Parotisgänge und treten typischerweise im vierten, fünften oder sechsten Lebensjahrzehnt, insbesondere bei Frauen auf. Sie entwickeln sich sekundär nach eosinophiler Entzündung der Speicheldrüsen und können einfach oder multipel auftreten [124]. In den stenosierten Gängen sammelt sich Schleim und Fibrin an. Schleim kann die organische Matrix für eine spätere Steinnbildung sein. Stenosen und Strikturen sind nicht ohne weiteres von einer Sialolithiasis zu unterscheiden. Sie führen ebenfalls zu Schwellungen der großen Speicheldrüsen und können oftmals nicht mit herkömmlichen radiologischen Mitteln oder sogar mit hochauflösendem Ultraschall gestellt werden [125]. Mit dem Ultraschall können indirekte Anzeichen einer Struktur, die aus einer Gangerweitung und ohne Anzeichen einer Sialolithiasis besteht, nachgewiesen werden. Bei korrekter Durchführung ist der Ultraschall ein kostengünstiges, schnelles, nichtinvasives und hochprädiktives Diagnosewerkzeug. Die Qualität der Diagnose hängt jedoch von der Erfahrung des Untersuchers ab. Alternativ wurde die Sialogravie in vielen Zentren als Goldstandard etabliert und mit hohen Erfolgsraten eingesetzt [126–128]. Der Hauptvorteil der Sialogravie gegenüber dem Ultraschall besteht darin, dass die Anzahl und auch die Länge der Strikturen angemessen bestimmen werden können. Im Vergleich zu Ultraschall handelt es sich jedoch um ein invasives Verfahren, das mit Bestrahlung, möglichen allergischen Reaktionen aufgrund der Anwendung von Kontrastmittel und zusätzlichen Kosten verbunden ist. Eine Alternative zur konventionellen Sialogravie ist die MR-Sialogravie. Hiermit können Stenosen visualisiert werden und der Zustand der Drüsenfunktion angezeigt werden [129]. Diese Technik basiert auf Prinzipien der MR-Hydrografie, bei denen sehr stark T2-gewichtete (T2W) Pulsequenzen verwendet werden, um eine statische Flüssigkeit abzubilden. Die Vorteile der MR-Hydrografie liegen in ihrer nicht-invasiven Natur. Der Speichelfluss wird mittels Zitronensäure angeregt. Es sind weder Kontrastmittel noch Strahlenexposition oder ein erfahrener Untersucher erforderlich. Der Nachteil ist die geringere räumliche Auflösung [130]. Bei angemessener Durchführung sind sowohl Ultraschall als auch Sialogravie wertvolle Instrumente zur Diagnose von Gangstenosen und -strikturen der großen Speicheldrüsen [131].

Seit der Implementierung der Sialendoskopie in den frühen 90er Jahren [132] hat sie sich zum diagnostischen und therapeutischen Goldstandard bei Speicheldrüsenobstruktionen entwickelt [133–135]. Die Sialendoskopie kann die Diagnose erhärten und die Störung charakterisieren. Im selben Eingriff kann die Behandlung durchgeführt werden. Koch et al. beschrieben, dass eine endosko-
pisch kontrollierte, entzündungshemmende Behandlung die Symptome von parotideal en Strukturen verbesserte und das Fortschreiten der Krankheit bei 17,9 % ihrer Patienten verhinderte. In ihrem Patientengut war die interventionelle Sialendoskopie bei 75,8 % zur Erweiterung der Stenongangstrukturen wirksam und 56,4 % aller Patienten wurden erfolgreich im „Single-Mode“-Verfahren damit behandelt [131]. Für Patienten, bei denen diese Behandlung fehlgeschlagen wird ein operatives Vorgehen vorgeschlagen. Im Falle einer distalen Stenose sollte ein breites Neoostium geschaffen werden, indem der Stenongang reisierst wird und mit der Wangenschleimhaut zirkulär vernäht wird. Ein zusätzlicher Stent kann zur temporären Schli enung hilfreich sein. Damit bleibt die Parotidektomie als ultima ratio nur wenigen Fällen (< 6 %) vorbehalten [131, 136].

Auf Grund der Seltenheit gibt es nur sehr wenige ausführliche Berichte zu Diagnose und Behandlung von submandibulären Stenosen [124, 137, 138]. Wegen des langen Gangverlaufs im Mundboden spielen Lage und Ausmaß der Stenose eine wichtige Rolle bei der Wahl der Behandlungs methode [124, 138]. Bei Stenosen im distalen Gangbereich ist die transorale Gangschlitzung und Marsupialisation die Methode der Wahl. Bei mehr zentral gelegenen Stenosen ist die interventionelle Sialendoskopie eine sehr wichtige Methode. Bei proximalen und posthären Stenosen erwies sich die interventionelle Sialendoskopie als wichtigstes therapeutisches Instrument. Durch endoskopische Verfahren kann in 80 % bis 90 % Symptomfreiheit erreicht werden [126, 139]. Bei Patienten mit begleitender Entzündungshemmung ist die inter ventionelle Spülung mit Kortison als erfolgreich erwiesen [137]. Vereinzelt werden Therapie mit einer Sialografie-gesteuerten Ballondilatation beschrieben. Dieses Verfahren hat den Nachteil, dass es nur eine indirekte Visualisierung der Stenose ermöglicht, eine Strahlenexposition einbehalten und das Risiko einer Kontrastmittelreaktion mit sich bringt [140]. Die Submandibulektomie bleibt nur noch den diffusen und langstreckigen Stenos vorbehalten oder den Fällen in denen alle konservativen Behandlungsmöglichkeiten ausgeschöpft wurden [137, 139].

2.5.2 Speichelgangentzündungen und andere seltene Obstruktionen

Die Speichelgangentzündung (Sialodochitis) ist eine besondere und frühe Form der Gangstenose. Sie macht etwa 5–10 % aller Obstruktionen aus. Man findet eine ödematöse Ver dickung der Wandstruktur. Das Gangsystem ist durch eingedickten Schleim und Plaques verlegt. Im Sekret von entzündeten Drüsen zeigte sich eine deutlich erhöhte Anzahl an eosinophilen Zellen [125]. Die Sialodochitis betrifft v. a. die Glandula parotis. Therapie ist die operative Entfernung im Sinne eines lateralen Re sektoms und treten mehrheitlich in der Glandula parotis auf. Histologisch werden 4 Formen unterschieden: solide, trabekulär, tubulär und membranös. Klinisch präsentiert sich der Tumor als glatt begrenzte, gut ver schiebbliche und etwas prallelastische Raumforderung. Die Therapie besteht aus der operativen Entfernung im Sinne eines lateralen oder in seltenen Fällen auch kompletten Parotidektomie. Maligne Entartungen sind sehr selten [145, 146]. Ein Zweitauflauf des Basalzellan denoms ist selten, mit Ausnahme des membranösen Subtyps, von dem berichtet wurde, dass er in bis zu 25 % der Fälle erneut auftritt [147].

2.6 Seltene Speicheldrüsentumoren

2.6.1 Gutartige Tumoren

Gutartige Speicheldrüsentumoren haben eine Inzidenz von ca. 6/100 000 Einwohnern. Die mit Abstand häufigsten Benignome sind das pleomorphe Adenom (70–94 %) und der Warthintumor (25 %) [144]. Im Folgenden wird auf seltenere und trotzdem klinisch relevante Läsionen eingegangen.

2.6.1.1 Basalzelladenome

Basalzelladenome sind seltene benigne monomorphe Speicheldrüsentumoren und treten mehrheitlich in der Glandula parotis auf. Die Abgrenzung zum Basalzellenkarzinom ist schwierig. Das Basalzelladenom repräsentiert 54 % aller monomorpher Adenome und 1–3 % der Tumoren der großen Speicheldrüsen. Das Erkran kungsalter liegt später als bei den meisten gutartigen Tumoren zwischen dem 50. und 70. Lebensjahr. Histologisch werden 4 Formen unterschieden: solide, trabekulär, tubulär und membranös. Gutartige Speicheldrüsentumoren haben eine Inzidenz von ca. 6/100 000 Einwohnern. Die mit Abstand häufigsten Benignome sind das pleomorphe Adenom (70–94 %) und der Warthintumor (25 %) [144]. Im Folgenden wird auf seltenere und trotzdem klinisch relevante Läsionen eingegangen.

2.6.1.2 Lipome

Lipome in den Speicheldrüsen sind selten (<0,5 %) und treten normalerweise die Glandula parotis. Sie sind gut umschrieben und werden als Sialolipom bezeichnet, wenn sie eine intratumorale duk tale Komponente haben. Das onkozytische Lipoadenom scheint ein charakteristischer Subtyp des Sialolipoms mit Onkozyten und
2.6.1.3 Onkozytome und noduläre Hyperplasien

Bei Onkozytomen handelt es sich überwiegend um Tumoren, die bei Frauen mittleren Alters und darüber hinaus auftreten. Die Glandula parotis ist die häufigste Lokalisation (80%). Onkozytome können aber in auf zahlreichen anderen Organen auftreten. Das Tumorwachstum ist langsam und ggf. auch bilaterales. Namensgeber für das Onkozytom war der histologische schichtartige Aufbau aus Onkozyten. Pathogenetisch liegt eine mitochondriale Fehlfunktion vor, die zu einer Degeneration der epithelialen Drüsenzellen führt. Maligne Entartungen zum onkozytären Karzinom sind möglich. Die Therapie besteht aus der chirurgischen Resektion. Die noduläre onkozytäre Hyperplasie ist seit 2017 eine eigenständige, dem Onkozytom verwandte Läsion. Im Gegensatz zum Onkozytom präsentiert sich diese Läsion nicht als solitär abgrenzbare Raumforderung, sondern als Läsion bestehend aus multiplen onkozyotären Knötchen. Sie ist oft nur ein Zufallsbefund und es besteht keine Tendenz zur malignen Entartung [149, 150].

2.6.1.4 Sklerosierende polyzystische Adenose

Die sklerosierende polyzystische Adenose ist eine seltene Erkrankung der Speicheldrüsen mit histologischen Merkmalen, die fibro-nös-zystischen Veränderungen in der Brustdrüse ähneln. Die Läsion tritt häufig bilateral in den Parotiden auf. Klinisch zeigt sich eine gut abgrenzbare Raumforderung mit knotiger Struktur. Betroffen sind überwiegend Frauen im höheren Lebensalter. Pathologisch kann diese Erkrankung mit einem pleomorphen Adenom oder einem invasivem Karzinom verworfen werden. Rezidue wurden zu 19% beschrieben und können sogar noch nach mehr als 20 Jahren auftreten. Vermutlich kommt es durch incomplete Resektionen oder ein multifokales Auftreten zur Wiederkehr der Läsion. Bis jetzt gibt es keinen Hinweis auf eine maligne Entartung [146, 149].

2.6.1.5 Mesenchymale Tumoren

Primär benigne Weichteiltumoren des Kopf- und Halsbereichs sind relativ selten. Die meisten sind nicht charakteristisch für diese Region obwohl sie im allgemeinen häufig sind, aber im Kopf-Hals-Bereich und speziell in den Speicheldrüsen selten vorkommen [151]. Die meisten berichteten Fälle waren Einzelberichte oder kleine Fallserien. Hierzu gehören Leiomyme, Rhabdomyme oder Mymoepitheliome.

Leiomyme gehören zu den benignen mesenchymalen Tumoren. Dieser Tumor besteht aus glatten Muskelfasern und kommt v. a. im Uterus vor. Die Kopf-Hals-Region ist in 8–13% betroffen, wobei hiervon die Speicheldrüsen in weniger als 1% betroffen sind [152–154]. Leiomyme wachsen sehr langsam und weisen eine niedrige Entartungsrate auf. Deshalb sollte eine komplette Resektion nur bei entsprechender Klinik und nach Abwägung der Operationsrisiken angestrebt werden [152].

Das Rhabdomyom ist ein gutartiger mesenchymaler Tumor mit einer Skelett Muskeldifferenzierung. Topografisch werden kardiale und extrakardiale Typen unterschieden. Die extrakardialen Rhabdomyme werden noch in die adulte, die fetale und die genitale Form unterschieden. Adulte extrakardiale Rhabdomyme können auch die Kopf-Halsregion betreffen. Es tritt überwiegend bei älteren Menschen mit einer männlichen Prädisposition auf [155]. Es wurden Manifestationen im Bereich der kleinen Speicheldrüsen, der Glandula sublingualis und der Glandula submandibularis beschrieben [156–159]. Wegen der hohen Lokalrezidivrate (bis zu 42%) wird eine vollständige Exzision empfohlen. Bei malignen Entartungen wurde bisher nicht berichtet [160].

Das benign myoepitheliome ist eine sehr seltene Form eines Speicheldrüsentumors, der vollständig aus Myoepithelzellen besteht [161]. Es macht weniger als 1% aller Speicheldrüsentumoren aus und befindet sich am häufigsten in der Glandula parotis (40%) und in den kleinen Speicheldrüsen des harten Gaumens (21%). Eine maligne Transformation ist selten und ihr geht oft ein längerer klinischer Verlauf mit mehreren Rezidiven der benignen Form voraus. Im Gegensatz zur gutartigen Läsion zeigt die bösartige Form ein infiltratives Wachstumsmuster auf [151]. Die Prognose für Myoepitheliome der Speicheldrüsen ist günstig. Die Behandlung besteht in einer chirurgischen Resektion. Wegen der hohen Lokalrezidivrate müssen die Patienten regelmäßig nachkontrolliert werden [161].

2.6.1.6 Vaskuläre Formationen im Bereich der Glandula parotis

Schwellungen im Glandula Parotisbereich können selten auch durch vaskuläre Formationen, wie Aneurysmen oder Pseudoaneurysmen der A. carotis externa oder ihrer Äste, bedingt sein. Bei älteren Menschen kommt ursächlich am ehesten eine Arteriosklerose in Betracht. Bei jüngeren Menschen ist die häufigste Ursache ein Trauma, seltener auch Bindegewebsveränderungen oder Vaskulitiden [162]. Bei Pseudoaneurysmen handelt es sich fast ausschließlich um traumatische Läsionen [163]. Klinisch wird eine Parotisraumforderung vorgetäuscht. In der Bildgebung mittels Sonografie oder Ultraschall zeigt sich dann aber eine unauffällige, durch eine meist medial gelegene Raumforderung, nach außen verlagerte Drüse. In der Literatur werden Fallberichte von Aneurysmen und Pseudoaneurysmen der A. carotis externa oder ihrer Äste beschrieben, die durch eine einseitige Schwellung im Kieferwinkel aufgelenkten [162, 164–166]. Interessanterweise wurden auch 2 Fälle beschrieben, in denen ein Aneurysma der A. temporalis superficialis nach einer Parotidektomie entstanden ist [167, 168]. Aneurysmen mit Beteiligung der A. carotis externa und ihrer Abgänge sind selten und machen 0,4–4% aller Aneurysmen aus [165]. Sonografisch zeigt sich eine stark vaskularisierte Raumforderung. Bei teil thrombosierten Aneurysmen ist in der Dopplersonografie ein zwei farbiges Bild durch zirkulierendes Blut im Aneurysma zu sehen. Das Blut fließt auf den Schallkopf zu und wieder weg. Damit liegen die rote und die blau Farbkodierung im Bereich des Aneurysmas nebeneinander („Yin-Yang-Zeichen“). Weiterversuchte Bildgebung ist eine CT, MRT oder Angiografie [167]. Differenzialdiagnostisch müssen Kinking und Coiling der A. carotis interna, Lymphadenopathie, Glomustumoren, Neurinome oder Lymphangiome in Betracht gezogen werden [162]. Auch arterio-venöse Fisteln kommen differenzialdiagnostisch in Betracht und können mit Aneurysmen oder Pseudoaneurysmen zusammen auftreten [169]. Therapeutisch kommt für ältere asymptomatische Patienten ein beobachtendes Vorgehen in Frage. Weitere Behandlungsoptionen sind die Embolisation oder die chirurgische Entfernung. Da eine Schwellung im Glandula Paro-
2.6.1.7 Metastasierendes pleomorphes Adenom
Das metastasierende pleomorphe Adenom tritt nach mehreren Lokalrezidiven eines pleomorphen Adenoms auf und breitet sich typischerweise auf Lunge und Knochen aus. Das Phänomen wurde schon in den 1940er Jahren beschrieben. Man geht davon aus, dass die Metastasierung durch hämatologische Tumoraussaat bei wiederholten Resektionen im Lokalgebiet entsteht. Die Metastasen können bis zu 22 Jahre später auftreten, 20 % der Patienten sterben an dieser Krankheit [170].

Wegen seines infiltrativen und metastasierendem Wachstums wurde es früher zu den malignen Tumoren gezählt. Die aktuelle Reklassifikation der WHO orientiert sich vorrangig am histologischen Erscheinungsbild und nachrangig am biologischen Verhalten. Histologisch entspricht das metastasierende pleomorphe Adenom „nur“ einem pleomorphen Adenom und muss rein histologisch von Carcinoma ex pleomorphen Adenom abgegrenzt werden [171]. Deshalb wurde es aus der Kategorie der malignen Neo- plasien herausgenommen und zu einem gutartigen epithelialen Tumor „herabgestuft“ [171, 172]. Ob diese Einordnung unter Berücksichtigung der aggressiven Natur des Tumors so bestehen bleiben kann, gilt es abzuwarten.

2.6.2 Bösartige Tumoren
Trotz ihrer extremen Seltenheit weisen Speicheldrüsenneoplasien eine Vielfalt auf, die im Vergleich zu anderen Organen ihresgleichen sucht. Basierend auf dem „Surveillance, Epidemiology, and End Results“ (SEER) Register ist hinsichtlich der Epidemiologie von 1975 bis 2015 ein leichter Aufwärtstrend der primären Speicheldrüsenkarzinome von 1,1 auf 1,3 Fälle/100 000 Einwohner zu verzeichnen. Das Verhältnis von Mann zu Frau liegt bei 1,6:1. Die Inzidenz steigt nach dem 50. Lebensjahr auf mehr als 7 Fälle/100 000 im Alter von 70 Jahren an [173]. In der klinischen Praxis weisen die folgenden 5 Karzinome eine gewisse Häufigkeit auf: Mukoepidermoidkarzinom (20 %), adenozytisches Karzinom (16 %), Carcinoma ex pleomorphem Adenom (12 %), Azinuszellkarzinom (10 %), polymorphes (früher: Low-Grade) Adenokarzinom (10 %) [174, 175, 176]. Diese Karzinome sollen in dieser Arbeit nur hinsichtlich ihrer molekulargenetischen Unterscheidung zum aggressiveren adenoidzystischen Karzinom und des intestinalen Adenokarzinoms, das Adenokarzinom NOS zu [149]. Das Überleben wird entscheidend von der histologischen Graduierung geprägt. High-Grade-Adenokarzinome NOS weisen im Vergleich zu Low-Grade Karzinomen eine schlechte Prognose mit einer sehr hohen Rate an Lymphknotenmetastasen (>40 %) und an Fernmetastasen auf (>40 %) auf. Hierbei verbessert nach chirurgischer Resektion eine postoperative Radiotherapie mit 64–66 Gy, 2 Gy/d die Überlebensrate [182].

2.6.2.2 Adenokarzinome not otherwise specified (NOS)
Bis zum Jahre 2005 war das Adenokarzinom NOS noch einer der häufigsten Speicheldrüsenmalignitäten [181]. Aktuell ist es selten geworden, denn viele Tumoren mit kribiformer bis mikropapillärer Differenzierung und häufiger Positivität für Androgenrezeptoren und für HER2/neu werden nun dem Speichelgangkarzinom zugeordnet. Durch die Fortschritte in der Molekulargenetik (siehe unten) können heutzutage etliche Tumoren richtig zugeordnet werden und fallen aus der „NOS“-Kategorie heraus. Andererseits ordnet die aktuelle Klassifikation die bisher eigenständigen Entitäten des Zystadenokarzinoms, des muzinösen Adenokarzinoms und des intestinalen Adenokarzinoms dem Adenokarzinom NOS zu [183]. Das Überleben wird entscheidend von der histologischen Graduierung geprägt. High-Grade-Adenokarzinome NOS weisen im Vergleich zu Low-Grade Karzinomen eine schlechte Prognose mit einer sehr hohen Rate an Lymphknotenmetastasen (>40 %) und an Fernmetastasen auf (>40 %) auf. Hierbei verbessert nach chirurgischer Resektion eine postoperative Radiotherapie mit 64–66 Gy, 2 Gy/d die Überlebensrate [182].

2.6.2.3 Speichelgangkarzinome
Das Speichelgangkarzinom gilt als hochaggressiver Tumor unter den Speicheldrüsenkarzinomen, denn die meisten Patienten leben nicht länger als 3 Jahre nach Diagnosestellung [183]. Es ist ein seltenes Karzinom, welches erstmalig 1968 von Kleinasser als Speichelgangkarzinom, dem histologisch dem Milchgangkarzinom der Brust ähnelt, beschrieben wurde [184]. Die Inzidenz wird mit 1,8–6 % aller Speicheldrüsenkarzinome beschrieben [185, 186]. Die Mehrheit exprimiert Androgenrezeptoren. Der Nachweis dieser Rezeptoren kann für die Unterscheidung zu anderen Tumortypen von entscheidender Bedeutung sein [187]. Es tritt häufiger in der Glandula parotis als in den submandibulären oder den kleinen Speichelknoten auf. Charakteristisch sind die frühzeitige Regionär- und Fernmetastasierungsraten, die Ausbildung von Fernmetastasen sowie eine hohe Rezidivrate. Das erklärt auch den aggressiven Behandlungsansatz mit Tumorresektion im Sinne einer kompletten Parotidektomie und häufiger Facialisresektion (40–73 %), um eine onkologisch einwandfreie R0-Situation zu erreichen [181, 188]. Da das Risiko einer okkuloten Metastasierung 24 % beträgt wird auch bei einem cN0-Hals eine elekive Neck dissection empfohlen [189]. In den meisten beschriebenen Fällen wird eine adjuvante Be- strahlung durchgeführt. Neben dem Nachweis von Androgenrezeptoren ist auch die HER2/neu-Rezeptorexpression ein unabhängiger Prognosefaktor für ein vermindertes krankheitsspezifisches
und fernmetastasen-freies Überleben (Abb. 2). Deshalb sollten neben der Radiotherapie künftig auch Erstbehandlungsschemata mit einer an den Rezeptorstatus angepassten Target-Therapie oder Antiandrogen-Therapie evaluiert werden [190].

2.6.2.4 (Mamma-analoge) sekretorische Karzinome
Das sekretorische Karzinom, wurde 2010 von Skalova et al. erstmalig beschrieben [191]. Im Jahr 2017 wurde es offiziell in die WHO-Klassifikation aufgenommen [192]. Wie das Speichelgangkarzinom hat auch dieses Karzinom Ähnlichkeiten mit einem Mammakarzinom (sekretorisches juveniles Mammakarzinom). Früher wurden diese Karzinome dem Azinuszellkarzinom oder dem Adenokarzinom NOS zugeordnet. Das sekretorische Mammakarzinom und das sekretorische Speicheldrüsenkarzinom weisen beide die ETV6-NTRK3-Genfusion auf. Angesichts dieser Ähnlichkeit und um die Nomenklatur über die Organstandorte hinweg zu standardisieren, lautet die offizielle Bezeichnung für diese Entität auch in den Speicheldrüsen jetzt einfach „sekretorisches Karzinom“ [171]. Das sekretorische Karzinom ist typischerweise eher indolent, so wie das Azinuszellkarzinom. Es kann jedoch eine geringfügig höhere Lymphknoten-Metastasierungsrate (bis zu 25 %) als das echte Azinuszellkarzinom aufweisen [193]. Zu den prognostischen Merkmalen gehören das Tumorstadium und die High-Grade-Transformation (siehe unten). Der zunehmendem Einsatz von selektiven Tyrosinkinase-Inhibitoren kann möglicherweise auch für fortgeschrittene Stadien des sekretorischen Karzinoms direkte therapeutische Relevanz haben [194].

2.6.2.5 High-Grade transformierende Tumoren
High-Grade-Transformation ist die bevorzugte Terminologie (gegenüber Dedifferenzierung) für das Fortschreiten eines normalerweise niedriggradigen Karzinoms zu einem hochgradigen Karzinom [195]. Zu den Tumoren, für die dieses Phänomen gut charakterisiert ist, gehören das Azinuszellkarzinom, das adenoidzystische Karzinom, selten das Mukoepidermoidkarzinom, das epithel- myo-epitheliale-Karzinom, das sekretorische Karzinom und das polymorphe (früher: Low-Grade) Adenokarzinom. Das war der Grund, den Terminus „Low-Grade“ beim polymorph en Adenokarzinom nicht mehr aufzuführen. Tumoren mit High-Grade-Transformation können Speichelgangkarzinome imitieren, und tatsächlich sind die meisten nicht-apokrinen Androgenrezeptor-negativen „Speichelgangkarzinome“ eigentlich nicht erkannte High-Grade-Transformationen eines anderen Tumortyps [196].

2.6.2.6 Translokationen und Genfusionen
Wegen der wachsenden klinischen Bedeutung soll auf das neue Paradigma der Translokationen und Genfusionen, die häufig bei Speichelrüsentumoren vorkommen, besonders eingegangen werden. Einen Überblick gibt Tab. 3. In vielen Fällen sind molekulare Veränderungen, insbesondere die Fusionssignale, zur Diagnosefindung wichtig. Somit konnte bei etlichen Karzinomen das Suffix „not otherwise specified“ effektiv vom Terminus Adenokarzinom entfernt und der jeweilige Speichelrüsentumor zur richtigen Entität zugeordnet werden. Damit wird die Gruppe der Adenokarzinome NOS immer kleiner.

Das Mukoepidermoidkarzinom weist die klinisch relevantesten Translokationen auf, an denen die Gene MAML2 und CRTC1 oder CRTC3 beteiligt sind. Das Vorherrschen einer MAML2-Translokation ist prognostisch höchst bedeutsam, denn sie korreliert mit der Prognose und dem Tumorstadium. Tumoren mit dieser Translokation sind tendenziell weniger aggressiv und meistens niedrig malign. Dies kann für die Entscheidung für oder gegen eine adjuvan te Therapie nach operativer Tumorresektion eine Rolle spielen [197].
Tab. 3 Wichtigste genomische Alteration bei Speicheldrüsentumoren.

Tumor Typ	Fusion/Amplifikation
Pleomorphes Adenom	PLAG-1 Fusion
Carcinoma ex pleomorphem Adenom	HMGA2 Fusion
Adenoidzystisches Karzinom	MYB-NIFB
Mukoepidermoidkarzinom	CRCT1-MAML2, CRCT2-MAML3
Speichelgangkarzinom	TP53 Mutation, ERBB2 Amplifikation, PIK3CA Mutation
Klarzellenkarzinom	EWSR1-ATF1
Sekretorisches Karzinom	ETV6-NTRK3

Beim sekretorischen Karzinom gelang durch die Entdeckung der
\(t(12;15)(p13;q25)\) chromosomalen Translokation mit ETV6-NTRK3-Fusion die Unterscheidung zum Azinuszellkarzinom oder Adenokarzinom NOS. Darüber hinaus kodierte die ETV6-NTRK3-Fusion eine Tyrosinkinase, die als therapeutischer Angriffspunkt genutzt werden könnte [198].

Auch etliche hyaline Klarzellenkarzinome wurden früher zu den Adenokarzinomen NOS eingruppiert. Die meisten Adenokarzinome weisen eine \(t(12;22)(q13; q12)\)-chromosomale Translokation auf, was zur Fusion der EWSR1- und ATM-Gene führt. Damit ist diese Entität leichter einzuordnen. Das ist von klinischer Bedeutung, da Klarzellenkarzinome häufiger als andere Speicheldrüsenkarzinome zur Knochen- und Nerveninfiltration neigen [199].

Das adenoidzystische Karzinom, gekennzeichnet durch langsamen, hochinfiltrativen Wachstumstrend mit Tendenz zur perineuralen Invasion, ist durch die \(t(6;9)(q22–23;p23–24)\) Translokation mit MYB-NIFB-Fusion charakterisiert. Es wurde nicht konsistent gezeigt, dass der MYB-Status mit der Prognose oder anderen klinisch-pathologischen Merkmalen korreliert, aber der Nachweis dient als robuster Marker bei der routinemäßigen Diagnostik von Speicheldrüsentumoren, bei denen ein adenoidzystisches Karzinom differentialdiagnostisch in Frage kommt [200, 201].

Wie das duktile Mammakarzinom ist auch das Speichelgangkarzinom durch die fast einheitliche Expression des Androgenrezeptors charakterisiert. Der Nachweis der Androgenrezeptor-Expression hilft bei der Differenzialdiagnose zu anderen High-Grade-Karzinomen. Zusätzliche häufige molekulare Veränderungen sind Mutationen in TP53, PIK3CA und HRAS. Eine weitere Ähnlichkeit zum duktilen Mammakarzinom umfasst die HER2 (ERBB2)-Genamplifikation, die aber nur zu 20 bis 30% auftritt. Beide Rezeptorexpressionen (Androgen- und HER2-Rezeptor) gewinnen durch den gezielten Einsatz von Antikörpern (Taget-Therapie mit Bicalutamide oder Trastuzumab) zunehmend an Bedeutung. Die Behandlung mit einer Anti-HER2-Therapie in Kombination mit einer Antiandrogentherapie und einer Radio(chemo)therapie hat bei einigen Patienten zu einer nachweislichen Tumorreduktion geführt. In Einzelfällen wurden beispielsweise Paclitaxel und/oder Carboplatin in Kombination Trastuzumab gestestet [202, 203]. Ob die Reduktion der Tumorlast durch die zusätzliche Gabe einer Chemotherapie zur Target-Therapie bedingt war ist fraglich. Eine vollständige Remission auf eine Anti-HER2-Therapie ist jedoch auch selten. Es gibt Hinweise darauf, dass zusätzliche Mutationen die Wirksamkeit der HER2-Blockade verringern [202, 204, 205].

2.7 Aktuelle Studienlandschaft im Bereich der Speicheldrüsen

Da Speicheldrüsenkarzinome insgesamt selten sind, ist die Durchführung von Studien mit adäquaten Fallzahlen nur sehr begrenzt möglich. Es gibt viele monozentrische Studien, die hauptsächlich retrospektiver Natur sind oder im prospektiven Ansatz nur kleine Fallzahlen haben. Wünschenswert sind Untersuchungen in einem multizentrischen Setting. In der U.S. National Library of Medicine sind derzeit 285 Studien zum Thema Speicheldrüsen ge- listet, davon als Multicenterstudien. Von den sieben angegebenen deutschen Studien ist keine Studie multizentrisch. Die onkologischen Speicheldrüsentumoren erfahren in neuester Zeit einen starken Aufwärtstrend. Allein zum Thema Speicheldrüsenonkologie werden 115 Studien aufgeführt. Der größte Teil davon beschäftigt sich mit einer Antikörpertherapie oder Chemotherapie (81). Top-Themen der Studien zu malignen Speicheldrüsentumoren sind die Identifizierung von Hochrisikopatienten [206], die Anwendung von Targettherapien und Checkpointinhibitoren sowie Genpanelanalysen. Am vielversprechendsten ist der Einsatz des HER2-Antikörpers Trastuzumab, entweder in Reinform oder als Konjugat. Es werden Gesamtansprechraten von bis zu 90% und teilweise sogar ein vollständiges Ansprechen beschrieben [206]. Obwohl viele Speicheldrüsenkarzinome Androgenrezeptor-positiv sind, scheinen erste Ergebnisse der Targettherapie mit einem Antiandrogen noch nicht sehr vielversprechend zu sein (NCT02749903) [207]. Weitere Studien, wie z.B. die multizentrische EORTC-Phase-2-Studie zur Wirksamkeit und Sicherheit der Chemotherapie (Cisplatin + Doxorubicin/Carboplatin + Paclitaxel) versus einer Antiandrogentherapie (Bicalutamide + Triptorelin) bei Patienten mit rezidivierenden und/oder metastasierten Androgenrezeptor-positivem Speichelgangskarzinom (EORTC-1206-HNCG; NCT01969578 [208]), befinden sich noch in der Rekrutierungsphase. Genpanelanalysen zu Speicheldrüsenkarzinomen liegen noch in den Anfängen, sodass zwar anwendbare Zielstrukturen bei Patienten identifiziert werden können, aber derzeit nur mit einem erheblichen Aufwand, der den klinischen Kosten-Nutzen-Effekt noch in Frage stellt [209]. Checkpointinhibitoren erzielen beim Plattenepithelkarzinom im Kopf-Hals-Bereich sehr gute Ansprechraten. Bei den Speicheldrüsenkarzinomen sind die Ergebnisse eher ernüchternd (NCT03132038) [210], NCT03087019 [211], NCT03172624) [212].

2.8 Speicheldrüsenregister

Neben der Durchführung von Studien und Meta-Analysen ist die Fallsammlung in Krankheitsregistern eine weitere Möglichkeit, große Krankheitskohorten zu erstellen. Guntinas-Lichius geht in seinem Referat zur Qualität der Therapie von Speicheldrüsenkarzinomen auf die noch bestehende Problematik der Speicheldrüsenregistererstellung ein und zeigt gleichzeitig die enormen Chancen, die mit solchen Registern verbunden sind. Er veranschaulichte, dass durch niederländische und dänische Register bspw.
Aussagen zu Rezidivraten und malignen Transformationen von pleomorphen Adenomen oder die Inzidenz von Speicheldrüsenkarzinomen sehr valide bestimmt werden konnten, da sich die Untersuchungen auf mehrere Tausend Fälle beziehen [213]. Die Geschichte deutscher Krankheitsregister ist noch keine 100 Jahre alt. Das älteste deutsche Register ist das 1926 gegründete Krebsregister der Stadt Hamburg. Es wurde durch den Stadtphysikus Sievking ursprünglich für die Nachsorge und Überwachung eingerichtet und war das erste Krebsregister der Welt. Es folgten weitere regional begrenzte (Krebs)register [214]. Große nationale Krankheitsregister werden in den USA (SEER, NCDB), in skandinavischen Ländern und den Niederlanden geführt. Hier werden auch Speicheldrüserkrankungen erfasst. So konnten allein aus den SEER- und NCDB-Daten über 100 Studien zu Speicheldrüsentumoren mit immensen Fallzahlen entstehen. Ein Beispiel dafür ist die NCDB-Analyse von 2362 Acinuszellkarzinomen der Speicheldrüsen. Nur durch die nationale Registerstruktur ist es gelungen, von einem so seltenen Tumor eine sehr große Fallzahl zu analysieren. So haben die Untersuchungen ergeben, dass dieses bisher als prognostisch günstig angesehene Karzinom eine aggressive Untergruppe (Gruppe G3, N+, T3/4) aufweist, bei der das 5-Jahresüberleben von sonst über 90% auf unter 20% reduziert ist [215]. Deutsche Vorreiter bei Krankheitsregistern sind die Kinder- und Jugendmediziner. Allein für chronische Erkrankungen und Fehlbildungen existieren mehr als 20 nationale Register [216]. Dazu kommen noch onkologische Register. Somit ist offensichtlich, dass auch von und an deutschen HNO-Kliniken ausgefeilte, onkologische Register entwickelt werden, die für die zukünftige Weiterentwicklung der Therapie von Speicheldrüserkrankungen unabdingbar sind.

3. Seltene Erkrankungen des N. facialis

Der N. facialis ist der siebte Hirnnerv. Die Tatsache, dass der periphere anatomische Verlauf des Gesichtsnervs fast durch den kompletten HNO-Bereich zieht, gibt ihm eine zentrale Bedeutung für den HNO-Arzt. Er ist ein multifunktioneller Nerv, der motorische, sensorische, sekretorische und sensible Fasern führt. Einerseits macht diese „Multitasking-Fähigkeit“ den N. facialis zum wichtigsten Hirnnerven. Andererseits birgt sie Schattenseiten, die dement sprechend von multifunktionalen Störungen gekennzeichnet sind.

3.1 Erkennen von seltenen Erkrankungen des N. facialis

Die primäre Diagnostik sollte zunächst klinisch und mittels Funktions tests erfolgen. Eine direkte Diagnostik ist aufgrund seines langsamen Vortretens intraoperativ nachgewiesener Dehiszenzen des Fallopio-Kanals in der Literatur zwischen 6,0 und 33% [228, 229]. 2 Drittel der Dehiszenzen werden während Ohroporationen entdeckt [230]. Abb. 3 zeigt einen erweiterten dehiszenten N. facialis Kanal bei einem Patienten mit Mittelohrhypoplasie, der das Runde Fenster verdeckt. Bei einer Dehiszenz des Kanals kann der N. facialis nur von einer dünnen Membran bedeckt sein und in der Paukenhöhle hernieren. Hier zieht er entweder über die ovale Nische oder das Promontorium und kann sogar Verzweigungen aufweisen. Damit ist er exponiert. Das Risiko für unbeabsichtigte Verletzungen während einer Mittelohroperation steigt. Eine Schallleitungsschwerhörigkeit kann das einzige Symptom sein. Die meisten Patienten weisen jedoch keine klinischen Symptome auf [231]. Allerdings kann es durch das Fehlen der knöchernen Umhüllung des N. facialis zu entzündlichen Nervenalterationen kommen. Somit können Fallopio-Kanal-Dehiszenzen sowohl bei akuter als auch bei chronischer Mittelohrentzündung und beim Cholesteatom mit dem Auftreten von Facialisneuritis und Facialisparese assoziiert sein [232]. Die Ursache von Fallopio-Kanal-Dehiszenzen liegt in einer Fehlbildung des 2. Kiemenbogens. Bei Fehlbildung des Reichert-Knorpels, als Knorpelspange des 2. Kiemenbogens, kommt es zu einem unvollständigen oder fehlenden Verschluss des Sulcus des N. facialis. Dies führt zu Dehiszenzen oder sogar zum Fehlen seines knöchernen Kanals im Mittelohr. Abgesehen von onkogenetischen Ursachen können Dehiszenzen auch infolge früherer Operationen, lang anhaltender Entzündungen oder Tumoren auftreten [230]. Deshalb ist die Häufigkeit der Dehiszenzen zum Zeitpunkt der Cholesteatomoperation bei pädiatrischen Patienten geringer als bei nicht pädiatrischen Patienten [233].
3.2.2 Facialisanomalien und Ohrfehlbildungen

Die Entwicklung des Gesichtsnervs hängt eng mit der Entwicklung des Mittelohrs und der Ohrmuschel zusammen. Ohrmuschelatresien und Atresien des äußeren Gehörgangs treten bei etwa 1/10 000 bis 20 000 Geburten infolge einer aberranten Entwicklung des ersten und zweiten Kiemenbogens auf [234] (siehe auch Referat "Seltene Erkrankungen Mittelohres und der lateralen Schädelbasis", Nora M. Weiss). Aufgrund einer fehlenden Verschmelzung der Ossifikationszentren neigt der tympanale Anteil des N. facialis dazu, bei angeborenen Ohrmuschelatresien dehiszent zu verlaufen. Infolge der beeinträchtigten Entwicklung des Mastoids und des Trommelfells liegt das vertikale Facialissegment anterior und lateraler und nimmt auf seinem Weg zum Foramen stylomastoideum einen horizontalen Verlauf ein. Das zweite Facialisknie befindet sich weiter lateral und kann den Zugang zum Mittelohr verdecken. Zusätzlich kommt es häufiger zu Überkreuzungen des ovalen Fensters und zum Kontakt mit dem Stapesoberbau. Ein fehlgebildeter Stapes ist somit ein Warnzeichen für eine Facialisanomalie. Es ist auch möglich, dass der N. facialis nicht aus dem Foramen stylomastoideum austritt, sondern weiter superior in Höhe des Kiefergelenkes [235]. Diese anatomischen Variationen fördern den Nervus facialis bei Mittelohr- und Atresieoperationen erheblich. Deshalb ist es sehr wichtig, dass präoperativ eine hochauflösende CT durchgeführt wird, damit der Operateur die Position des Nervus facialis präoperativ einschätzen und die Operation entsprechend planen kann. Dennoch ist zu beachten, dass die Auswertung der CT nicht immer dem intraoperativen Befund entspricht. Auf jeden Fall sollte bei Ohroperationen bei Patienten mit Ohrmusceldystrophien immer ein intraoperatives Facialismonitoring verwendet werden. Der N. facialis kann durch seinen untypischen Verlauf leicht mit der Chorda tympani, Weichgewebe oder Narbensträngen verwechselt werden.

3.3 Seltene Ursachen für eine Parese des peripheren N. facialis

Die häufigsten Ursachen der peripheren Facialisparese sind die idiopathische (Bell) Facialisparese (die mit einer Inzidenz von 30–40/100 000 keine seltene Erkrankung ist), gefolgt von iatrogenen Läsionen durch Kleinhirnbrückenwinkeloperationen und Tumoroperationen. Auch traumatische Ursachen (Felsenbeinfrakturen, Ge-}

| Abb. 3 Transmastoidaler Blick auf einen erweiterten N. facialis. a Dehiszenter und aberrant verlaufender linker N. facialis (Sternchen), detektiert während einer Cochlea Implant Operation. Die Spitze des gestrichelten Pfieles deutet auf das vom N. facialis Kanal verdeckte runde Fenster. Pfeilkopf: vergrößertes Hammer-Amboß-Rudiment. b CT-Felsenbein mit erweitertem N. facialis Kanal links (gelber Pfeil). |

3.2.2 Facialisanomalien und Ohrfehlbildungen

Die Entwicklung des Gesichtsnervs hängt eng mit der Entwicklung des Mittelohrs und der Ohrmuschel zusammen. Ohrmuschelatresien und Atresien des äußeren Gehörgangs treten bei etwa 1/10 000 bis 20 000 Geburten infolge einer aberranten Entwicklung des ersten und zweiten Kiemenbogens auf [234] (siehe auch Referat „Seltene Erkrankungen Mittelohres und der lateralen Schädelbasis“, Nora M. Weiss). Aufgrund einer fehlenden Verschmelzung der Ossifikationszentren neigt der tympanale Anteil des N. facialis dazu, bei angeborenen Ohrmuschelatresien dehiszent zu verlaufen. Infolge der beeinträchtigten Entwicklung des Mastoids und des Trommelfells liegt das vertikale Facialissegment anteriorer und lateraler und nimmt auf seinem Weg zum Foramen stylomastoideum einen horizontalen Verlauf ein. Das zweite Facialisknie befindet sich weiter lateral und kann den Zugang zum Mittelohr verdecken. Zusätzlich kommt es häufiger zu Überkreuzungen des ovalen Fensters und zum Kontakt mit dem Stapesoberbau. Ein fehlgebildeter Stapes ist somit ein Warnzeichen für eine Facialisanomalie. Es ist auch möglich, dass der N. facialis nicht aus dem Foramen stylomastoideum austritt, sondern weiter superior in Höhe des Kiefergelenkes [235]. Diese anatomischen Variationen fördern den Nervus facialis bei Mittelohr- und Atresieoperationen erheblich. Deshalb ist es sehr wichtig, dass präoperativ eine hochauflösende CT durchgeführt wird, damit der Operateur die Position des Nervus facialis präoperativ einschätzen und die Operation entsprechend planen kann. Dennoch ist zu beachten, dass die Auswertung der CT nicht immer dem intraoperativen Befund entspricht. Auf jeden Fall sollte bei Ohroperationen bei Patienten mit Ohrmusceldystrophien immer ein intraoperatives Facialismonitoring verwendet werden. Der N. facialis kann durch seinen untypischen Verlauf leicht mit der Chorda tympani, Weichgewebe oder Narbensträngen verwechselt werden.

3.3 Seltene Ursachen für eine Parese des peripheren N. facialis

Die häufigsten Ursachen der peripheren Facialisparese sind die idiopathische (Bell) Facialisparese (die mit einer Inzidenz von 30–40/100 000 keine seltene Erkrankung ist), gefolgt von iatrogenen Läsionen durch Kleinhirnbrückenwinkeloperationen und Tumoroperationen. Auch traumatische Ursachen (Felsenbeinfrakturen, Ge-
Im Rahmen einer subakuten Sonderform der Sarkoidose, dem Heerfordt-Waldenström-Syndrom, kommt es auch zu einer Trias mit Facialisparese, Vergrößerung der Kopfspeicheldrüsen und einer Uveitis anterior. In den betroffenen Organen finden sich Granulo-
me. Diese Form der Sarkoidose ist normalerweise nach ein bis 3 Jahren selbstlimitierend. Es wurden aber auch latente Fälle beschrie-
ben. Die Sterblichkeitsrate liegt zwischen 1 und 5 % der Fälle. Die Diagnose wird klinisch gestellt. Die Behandlung hängt vom Grad der systemischen Beeinträchtigung ab und erfolgt mittels Kortiko-
steroiden [239]. Auch im Rahmen einer Amyloidose kommt es zur Beteiligung des peripheren Nervensystems. Bei der Leichtketten-
Amyloidose gehen die Hirnnervendefizite, auch isolierte Facialis-
paresen, der Diagnose einer Amyloidose voraus. Die periphere Fa-
cialisparese kann der systemischen Beteiligung um Monate und Jahre vorausgehen. Tatsächlich schlagen einige Autoren vor, dass eine
Peripher-Facialisparese vermutet werden sollte, wenn eine Faci-
alisparese mit einer Proteinurie oder einer monoklonalen Gammo-
pathie einher geht [240, 241].

3.3.2 Seltene infektiöse periphere Facialisparesen
Neben Herpes zoster- und Herpes simplex-Infektionen und der Ly-
me-Borreliose als häufigste infektiöse Ursachen für eine Facialis-
parese [242] gibt es noch eine Reihe weiterer, seltener, v. a. viraler In-
fektionen, die im Folgenden betrachtet werden sollen. Bakteriell verursachte Facialisparesen treten abgesehen von der Infektion mit Borrelia burgdorferi (Lyme-Borreliose) hauptsächlich als Kompla-
kation einer akuten Otitis media oder einer Mastoiditis auf. Neuro-
trope Viren, wie das humane Immundefizienz-Virus, das Epstein-
Barr-Virus, das Cytomegalovirus und das humane Herpesvirus 6 kön-
nen auch eine Gesichtsnervenläsion hervorrufen [243].

Eine Gesichtsnervenläsion ist die häufigste mit einer HIV-In-
fektion verbundene Neuropathie im Kopfbereich. In Abhängigkeit von der Immunkompetenz des Wirtes können sich sowohl eine uni-
laterale als auch eine bilaterale Lähmung im Verlauf der HIV-Infek-
tion jederzeit über verschiedene pathogene Mechanismen entwic-
klern. Wichtig ist, dass sie insbesondere als erstes oder einziges Symptom einer asymptomatischen HIV-Infektion auftreten kann und der idiopathischen Form (Bell-Lähmung) ähneln. Die Bell-Läh-
mung ist viel häufiger und der Zusammenhang zwischen Facialis-
parese und HIV-Infektion wird in der Literatur selten erwähnt. Des-
halb wird der Zusammenhang zwischen Facialisparese und einer HIV-Infektion oft nicht erkannt und die Diagnose einer frühen HIV-
Infektion nicht gestellt [244].

Zur Epstein-Barr-Virus-Infektion beschränkt sich die Literatur auf pädiatrische und adulte Fallbeschreibungen. Ähnlich der HIV-
Infektion tritt die Parese uni- oder bilateral auf. Die Diagnose wird
merklich gestellt mit einer Erhöhung der anti-VCA IgM-Antikör-
er ohne Erhöhung der ENBA-Antikörper bei der primären Infekti-
on. In uneindeutigen Fällen kann eine in-situ-Hybridisierung das
Vorhandensein von EBV-spezifischer RNA bestätigen. Die primäre
Infektion tritt häufiger bei Kindern auf, während es bei Erwachs-
enen als auch zu einer Virusreaktivierung kommen kann. Hierbei sind
auch ENBA-Antikörper erhöht [245]. Vogelnik und Matos beschrei-
ben 5 eigene und 4 berichtete pädiatrische Fälle, bei denen klinisch die Facialisparese im Zusammenhang mit einer akuten Otitis media
stand [246]. Die Prognose war in allen beschriebenen Fällen gut. Im Verlauf kam es zu einer Restitutio ad integrum. Die Behandlung
folgte symptomatisch. Ein Benefit durch eine antivirale Therapie
wird nicht beschrieben.

Das humane Herpesvirus 6 als Verursacher des Drei-Tages-Fie-
bers von Kleinkindern gilt auch als Verursacher von Gesichtsner-
venläsionen. Es wurde im Liquor bei Kindern und Erwachsenen
mit Facialisparese nachgewiesen. humane Herpes 6-Viren haben
eine besondere Affinität zum Gehirn. Sie wurden post mortem auch
bei asymptomatischen Patienten im Hirngewebe nachgewiesen.
Eine enzephalitische Komplikation der Facialisparese ist dennoch
möglich und sollte bedacht werden. Die Lähmung kann während
einer primären Infektion oder im Rahmen einer Virusreaktivierung
auftreten. Bei der primären Infektion tritt die Parese nach dem drei-
tägigen Fieber auf. Die optimale Behandlung ist bislang nicht be-
kannt. Ganciclovir und Foscarnet können einen antiviralen Effekt
gegen das humane Herpes 6-Virus haben und sollten insbesonde-
re bei einer Assoziation mit einer Enzephalitis eingesetzt werden
[247, 248].

3.3.3 Periphere Facialisparesen während der Schwangerschaft
Die Angaben zur Häufigkeit einer Facialisparese während der
Schwangerschaft sind uneinheitlich. Während einige Autoren das
Auftreten als nicht häufiger als in der Normalbevölkerung einschät-
zen [249], sprechen andere Autoren von einer erhöhten Inzidenz,
v. a. im 3. Trimenon [250]. Ätiologisch werden eine Reihe von Fak-
toren diskutiert. Darunter sind Präeklampsie, veränderte Immuni-
tätslage, eine erhöhte Empfindlichkeit gegenüber Virusinfektionen
und vermehrte Ödenniedigung insbesondere im letzten Trimenon.
Hinsichtlich der Therapie herrscht eine Unsicherheit, ob die übli-
kte Kortisontherapie für Schwangere vertretbar ist. Nach neuerer
Meinung wird eine rechtzeitige Behandlung mit Kortikoiden emp-
fohlen [251]. Bei Schwangeren gelten die gleichen diagnostischen
und therapeutischen Prinzipien. Die Glukokortikoidtherapie sollte
allerdings unter stationären Bedingungen in einer spezialisierten
geburtshilflichen Klinik vorgenommen werden [252]. Der Einsatz
von Virustatika konnte bisher keinen therapeutischen Benefit be-
legen [253] und sollte deshalb erst recht nicht in der Schwangers-
chaft erfolgen.

3.3.4 Kongenitale periphere Facialisparesen
Kongenitale Facialislähmungen treten nur bei 0,8–18/10.000 Ge-
burten auf. Bei einer isolierten angeborenen Gesichtslähmung geht
man von einem perinatalen Trauma aus, das durch den oberfläch-
lichen extrakraniellen Verlauf des Gesichtsners verursacht wird.
Zusätzlich zu isolierten angeborenen Fällen gibt es eine Reihe von
Syndromen, die Facialisläsionen umfassen. Dazu gehören das Mö-
bius-Syndrom, das Goldenhar-Syndrom und das CHARGE-Syndrom
[254]. Während bei der perinatalen traumatischen Facialisläsion in
90 % eine komplette Remission ohne Therapie auftritt, bleibt bei
den Syndromen die Facialislähmung teil der Erkrankung.

Patienten mit einem klassischen Möbius-Syndrom haben eine
vollständige bilaterale Gesichts- und Abducens-Nervenläsion und
einen fehlenden M. pectoralis major. Bei Patienten mit unvoll-
ständigem Mõbiussyndrom tritt, obwohl sie das klinische Bild des
Syndroms haben, eine Restmotorik auf einer Seite des Gesichts auf.
Neben der Behandlung der Anomalien der Gliedmaßen und des
Syndroms haben, eine Restmotorik auf einer Seite des Gesichts auf.
Neben der Behandlung der Anomalien der Gliedmaßen und des
Syndroms haben, eine Restmotorik auf einer Seite des Gesichts auf.
Neben der Behandlung der Anomalien der Gliedmaßen und des
Syndroms haben, eine Restmotorik auf einer Seite des Gesichts auf.
lisrehabilitation mittels eines dynamischen chirurgischen Eingriffs zu ermöglichen. Die mikroneurovasculäre freie Muskeltransplantation ist das Verfahren der Wahl. Ideal dafür geeignet ist der Gracilis-Muskel, da er gut zugänglich ist und kein Funktionsdefizit hinterlässt [255].

Das Goldenhar-Syndrom ist durch eine beeinträchtigte Entwicklung der Augen, Ohren (mit oder ohne Hörverlust), Lippen, Zunge, Gaumen, Unterkiefer, Oberkiefer und Zahnstrukturen gekennzeichnet. Außerdem werden Anomalien in inneren Organen, im Zentralnervensystem oder im Skelett beobachtet. Aus diesem Grund sollte die Bezeichnung „Hemifaziale Mikrosomie“ nicht mehr verwendet werden. Das Spektrum der Anomalien umfasst Patienten mit kaum wahrnehmbarer Gesichtssymmetrie bis zu sehr ausgeprägten Gesichtsdefekten mit mehr oder weniger ausgeprägter Facialisparese. Die Behandlung von Patienten mit Goldenhar-Syndrom ist komplex und sollte je nach Alter des Patienten auf das Ausmaß und den Schweregrad der beobachteten Anomalien abgestimmt werden. Die Therapie beginnt normalerweise früh und ist lang anhaltend [256].

Das CHARGE-Syndrom wurde erstmals 1979 von Hall et al. bei 17 Kindern mit multiplen angeborenen Anomalien beschrieben, die zunächst durch eine Choanalatresie auffielen [257]. Es ist neben der Choanalatresie, Kolobomen, Herzvitien, mentaler Retardierung, Ohmschleifenbildung und Hörminderung/Taubheit auch häufig mit einer kongenitalen Facialisparese vergesellschaftet. (siehe auch Referat „Seltene Erkrankungen Innenohres“, Athanasia Warneck). Die Therapie ist von zahlreichen chirurgischen Interventionen geprägt. Angefangen vom Atemwegs- und Ernährungsmanagement über Herzoperationen, Cochlea-Implant-Operationen bis hin zur dynamischen Facialisrehabilitation [258].

3.4 Hemispasmus facialis

Der Hemispasmus facialis ist eine seltene Erkrankung mit einer Prävalenz von etwa 1/10 000 und einer Prädominanz des weiblichen Geschlechts von 2:1 [259]. Schultze berichtete 1875 wahrscheinlich über den ersten Fall eines Hemispasms facialis in der Literatur, als er einen 56-jährigen Mann mit unwillkürlichen linkss seitigen Gesichtsbehinderungen beschrieb, die Folge eines Aneurysmas der A. cerebelli inferior. Als operatives Verfahren gilt die Dekompression nach Jannetta, bei der der pathologische Gefäß-Nerven-Kontakt beseitigt wird, als Standardverfahren. Bei sorgfältiger bzw. kritischer Indikationsstellung sind die Erfolgsraten mit 80 bis zu > 90 % sehr hoch [263]. Aber auch Rezidive (25 %) und Komplikationen sind nicht selten (Hörverlust 20 %, Facialisparese 2 %, Liquoristhmus 2 %). Infolgedessen ist die chirurgische Option hauptsächlich denjenigen Patienten vorbehalten, die entweder nicht auf eine Botulinumtoxin-Therapie ansprechen oder sich für eine dauerhafte Heilung der Erkrankung entscheiden [259].

3.5 Seltene Tumoren des N. facialis

Primärtumoren des Gesichtsnervs sind selten und stellen eine schwierige Behandlungsausforderung dar. Jeder Tumor kann in der Regel anhand der Bildgebung diagnostiziert werden. Die Auswahl der optimalen Behandlungs option ist anspruchsvoll, da die Literatur spärlich und häufig inkonsistent ist. Es ist jedoch eindeutig, dass die Behandlung von N. facialis-Tumoren im Laufe der Zeit viel konservativer geworden ist.

3.5.1 Schwannome

Facialisschwanome als auch Neurinome und Neurilemmome bezeichnet, sind zwar die häufigsten Facialistumoren, aber immer noch so selten, dass die echte Inzidenz in der Bevölkerung schwer zu bestimmen ist. Saito und Baxter fanden 5 (0,83 %) zufällige Fascialisschwanome in 600 Felsenbeinpräparaten, was natürlich nicht repräsentativ für die allgemeine Bevölkerung ist, aber eine gewisse Abschätzung darstellt [264]. Im Rahmen einer Neurofibromatoseserie Typ II treten sie mit einer häufigen Inzidenz von 58 % auf [265]. Bei der Läsion handelt es sich um einen gut abgekapselten, langsam wachsenden Tumor, der aus den Schwannschen Zellen des N. facialis hervorgeht. Prinzipiell kann jedes Segment des Nerven betroffen sein. Meistens ist das Ganglion geniculum oder der tympanale Anteil involviert [266]. Viele Tumoren sind asymptomatisch. Die Symptome variieren je nach Tumogröße und Lokalisation. In bis zu 78,6 % kommt es zu einem Hörverlust, ein Tinnitus tritt in 7 bis 51,8 % und Schwindel in 46 % der Fälle auf. Speziell in Bezug auf die Facialisfunktion haben die meisten Patienten eine schlechtesten Erkrankungen im Kopf-Hals-Bereich ... Laryngo-Rhino-Otol 2021; 100: S1–S28 | © 2021. The Author(s).
Einsetzende Parese oder rezidivierende Lähmungen über mehrere Monate. Rezidivierende Fazialislähmungen sollten immer an ein Facialis-Schwannom denken lassen [267, 268]. Die rein klinische Diagnostik gestaltet sich wegen der vielschichtigen Symptome schwierig. Die Ohnmikroskopie ist in der Regel normal, es sei denn, das tympanale Segment ist betroffen, dann zeigt sich eventuell eine Raumforderung hinter dem Trommelfell [269]. MRT und CT können hilfreich sein. In der Dünnschicht-MRT mit Gadolinium kann sich eine kontrastmittelanreichernde Läsion entlang der N. facialis im Felsenbein zeigen. Wenn die Fazialissegmente der ventralen Fraktion im Bereich des N. petrosus major und der dorsalen Fraktion im Bereich des tympanalen Verlaufes betroffen sind, tritt das typische Sanduhrbild im MRT auf (Abb. 4). In der CT zeigt sich typischerweise einen vergrößerten Fallopkanal im Vergleich zur kontralateralen Seite [270]. Die Therapie richtet sich sehr stark nach individuellen Gesichtspunkten. Das übergeordnete Ziel ist die Erhaltung der Fazialisfunktion. In der Literatur wird eine Vielzahl von Behandlungsmodalitäten beschrieben, die von konservativem „Wait-and-Scan“-Management über Dekompression, Tumorœdulking bis hin zur Resektion mit Facialistransplantaten reicht. Eine der Hauptschwierigkeiten bei der Diagnose und Behandlung von Fazialis-Schwannomen besteht darin, dass viele Fazialis-Schwannome zunächst als das häufigere Vestibularisschwannom angenommen werden, bis der Tumor während der Operation freigelegt wird. Solange die Fazialisfunktion normal ist, empfehlen viele Autoren ein konservatives Vorgehen mit regelmäßiger Durchführung einer MRT [270–272]. Angeli und Brackmann beschrieben die Fazialisdekompression als „konservative“ chirurgische Behandlung. Dabei wird der Druck entlastet, aber die Nervenkontinuität gewahrt. Der Tumor wächst zwar weiter, aber langsam und mit weniger neurologischen Verletzungen [273]. Die Methode des Tumorœdulking wird dagegen nicht empfohlen, da der Tumor wächst, aber langsam und mit weniger neurologischen Verletzungen [273]. Die Methode des Tumorœdulking wird dagegen nicht empfohlen, da der Tumor wächst, aber langsam und mit weniger neurologischen Verletzungen [273].

![Abb. 4 T1-gewichtete MRT mit Kontrastmittel eines N. Facialis Schwannoms. Die axiale Ansicht zeigt ein typisches Sanduhrphanomen (Pfeil). Die ventrale Fraktion befindet sich im Bereich des N. petrosus major und die dorsale Fraktion ist im Bereich des tympanalen Verlaufes des N. facialis. Mit freundlicher Genehmigung von Professor Christoph Groden, Neuroradiologie Universitätsklinikum Mannheim.](image)
Beim Neurofibrom dringen die Axone direkt in den Tumor ein. Das ist der Grund warum ein Facialis-Schwannom vom Nerven schonend getrennt werden kann, ein Neurofibrom aber nicht. Eine Komplettexzision ist deshalb gleichbedeutend mit einer Nervenschädigung. Somit sollte das Neurofibrom, mit Ausnahme bei maligner Entartung oder Typ I Neurofibromatose, möglichst nicht chirurgisch behandelt werden [280]. Falls eine Resektion unumgänglich ist, sollte eine Nervenrekonstruktion mittels Interponat oder (selten möglich) End-zu-End-Anastomose erfolgen.

3.5.3 Hämangiome

Hämangiome des N. facialis gehen vom Ganglion geniculi aus. Sie sind sehr selten und machen 0,7 % der Tumoren im Schlafenbereich aus [281]. Diese Tumoren sind genaugenommen keine neuralen Tumoren, sondern extraneurale Neoplasien, die aus dem den Nerv umgebenden Gefäßplexus entstehen. Am Ganglion geniculi ist dieser Gefäßplexus besonders dicht [282]. Hämangiome wachsen zwar sehr langsam, aber schon im Frühstadium kommt es zu einer fortschreitenden Facialisparese. Eine signifikante Anzahl von Patienten leidet zusätzlich unter Facialispausen. Fünfundzwanzig Prozent der Patienten erleiden eine Hörminderung. Mit zunehmendem Wachstum entsteht entweder eine Cochleafistel mit sensori-neuralen Hörverlust oder eine Destruktion der Gehörknöchelchenkette mit einer Schallleitungsschwerhörigkeit oder beides [283]. Elektronurografisch zeigt sich eine signifikante Abnahme der Amplituden. In der Elektromyografie zeigt sich ein charakteristisches Wechselmuster von Regeneration und Degeneration bei gleichzeitig Anwesenheit von Fibrillationspotentialen und mehrphasigen Aktionspotentialen. Diese anhaltende Degeneration und Regeneration scheint für das Facialislähmung charakteristisch zu sein [284]. Computertomographisch zeigt sich ein sogenanntes „Mottenfraßbild“ bedingt durch eine Erosion des Bodens der mittleren Schädelgrube mit fein punktierten Verkalkungen. In der MRT zeigt sich der sich auf T2-gewichteten Bildern im Gegensatz zu den isointensen Hämangiomen ein „Fraßbild“ bedingt durch eine Erosion des Bodens der mittleren Schädelgrube mit fein punktierten Verkalkungen. In der MRT zeigt sich der sich auf T2-gewichteten Bildern im Gegensatz zu den isointensen Schwannomen eine heterogene hyperintense Raumforderung. Zu beachten ist, dass 80 % der Hämangiome kleiner als 1 cm sind und damit leicht übersehen werden [284]. Die optimale Behandlungs- methode für das Hämangiom ist angesichts der geringen Anzahl von Berichten in der Literatur schwer zu bestimmen. Basierend auf wenigen verfügbaren Daten sollten diese zunächst überwacht werden, sofern keine Parese oder ein Hörverlust vorliegt. Bei guter Hörfunktion sollte ab einer Facialisparese über einen transkranialen (subtemporalen) Zugang zur mittleren Schädelgrube erfolgen. Hierbei ist eine gute Exposition der Ganglion geniculare mit einer hohen Chance des Hörerhalts möglich. Die Resektion erfolgt mikrochirurgisch unter Facialismonitoring. Bei bereits bestehender Taubheit oder hochgradiger Schwerhörigkeit kann der Zugang translabyrinthär erfolgen [284].

3.5.4 Paragangiome

Das Paragangiom des N. facialis ist eine äußerst seltene Erkrankung. Die meisten Paragangiome (Glomustumoren) der Region manifestieren sich als Glomus tympanicum oder als Glomus jugulare. Wenn diese Läsionen wachsen, kann der Gesichtsnerv sekundär beteiligt sein. Primäre faciale Paragangiome sind extrem selten. In der Literatur konnten seit der ersten Beschreibung im Jahr 1986 nur 21 weitere primäre Fälle gefunden werden [285–300]. Die meisten dieser Tumoren wurden im vertikalen Anteil des N. facialis in der Nähe des Bulbus venae jugularis und des Foramen stylo-mastoidéum identifiziert. In den wenigen beschriebenen Fällen scheint die Facialisparese das häufigste Symptom zu sein, gefolgt von einem pulsierenden Tinnitus. Die Bildgebungseigenschaften von CT und MRT ähneln denen anderer Paragangiome: Knochen- destruction, hohes T2 Signal, „Salz und Pfeffer“-Bild mit deutlichem Enhancement auf den T1 gewichteten Bildern. Die 18F-Dihydroxyphenylalanin (DOPA) -Positronenemissionstomografie (PET) scheint bei sehr kleinen Tumoren (< 1 cm) der MRT überlegen zu sein [301]. Der Großteil der beschriebenen Tumore wurde reseziert. Wie bei anderen Paragangiomen richtet sich die Therapie nach der Lage des Tumors und seiner Größe. Die Behandlung der Paragangiome hat sich allgemein im letzten Jahrzehnt von einer radikalen Resektion hin zu einer chirurgischen Tumorreduktion unter Beibehaltung der Funktion sowie lokaler Kontrolle von Residualgewebe bewegt. Je nach Einzelfall kann die lokale Kontrolle eine primäre oder postoperative Strahlentherapie oder eine „Wait-and-Scan“-Strategie umfassen.

FAZIT

Die vorliegende Arbeit stellt eine Übersicht über die aktuelle Literatur seltener Speicheldrüsenerkrankungen und seltener Erkrankungen des N. facialis dar. Besonders herausfordernd ist die Diagnostik und Behandlung seltener chronischer nicht-infektiöser Sialadenitiden und Sialadenosen. Ein interdisziplinäres Vorgehen ist hierbei entscheidend. Die rapide Entwicklung in der Molekularanatomie macht die Behandlung von seltenen Speicheldrüsentumoren noch komplexer, bietet aber gerade hinsichtlich zielgerichteter medikamentöser Therapien möglicherweise bald neue Optionen. Bei der Behandlung der sehr seltenen Tumoren des N. facialis hat sich die Therapie zu Gunsten des Funktionserhalts von einem radikalen Vorgehen zu einer eher zurückhaltenden Behandlung verändert. Die Betrachtung aller in dieser Arbeit beschriebenen Erkrankungen macht deutlich, dass gerade die Behandlung der seltenen Pathologien den spezialisierten Zentren vorbehalten sein sollte. In diesen Zentren kann auf ausreichend Erfahrung zurückgegriffen werden. Unter dem Aspekt der Erlangung von großen Fallzahlen ist die Initiierung multizentrischer Studien und eine Sammlung der Fälle in nationalen und internationalen Registern wünschenswert.

Danksagung

Mein besonderer Dank gilt Frau Prof. Nicole Rotter für die wertvol- len Kommentare zu diesem Referat. Herrn PD Dr. Johannes Veit danke ich für die sialendoskopische Abbildung. Herrn Prof. Dr. Alexander Marx gilt mein Dank für die Übergabe der Abbildung zum Speicheldrangkarzinom. Bei Herrn Professor Christoph Groden bedanke ich mich für die Überlassung der Abbildung zum Facialis-Schwannom. Bei Frau Dr. Elena Schäfer bedanke ich mich für die unermüdliche Unterstützung bei der Literatursuche.
Referat

S22

Literatur

[1] Bundesgesundheitsministerium. Im Internet: https://www.bundesgesundheitsministerium.de/themen/praevention/gesundheitsgefahren/seltene-erkrankungen.html; Stand: 28.06.2020. In
[2] Thompson RC. Assyrian Medical Texts. Proc R Soc Med 1924; 17: 1–34
[3] Melo GM, Cervantes O, Abrahao M et al. A brief history of salivary gland surgery. Rev Col Bras Cir 2017; 44: 403–412
[4] Adams F. The genuine work of Hippocrates. Translated from the Greek with a preliminary discourse and annotations by the Royal Society 1849
[5] Coxe JR. The writings of Hippocrates and Galen Lindsay and Blakiston 1846
[6] Kaadan AN, Dababo MH. Ranula in the Arab Medical Heritage JISHIM. 2016; 5: 57–59
[7] Vesalius A. De humani corporis fabrica liber septem. Basileae: Ex officina Ioannis Oporini 1543
[8] Cook HJ. Thomas Wharton’s Adenography. Med Hist 1998; 42: 411–412
[9] Stenonis N. Disputatio Anatomica De glandulis oris, et nuper observati inde prodeuntibus vasis prima Apud Johanneum Elsevirium. 1661
[10] Heister L. A general system of surgery in three parts. London: W. Innys, C Davis; 1750
[11] Pattison GS. Lecture delivered in Jefferson Medical College. Has the parotid gland ever been extirpated Philadelphia: Jefferson Medical College; 1833
[12] Heyfelder JF. Die Versuche mit dem Schwefeläther. Erlangen: Verlag von Carl Heyder; 1847
[13] Bradley Patrick J., Guntinas-Lichius O. Salivary Gland Disorders and Diseases: Diagnosis and Management. 1. Auflg. Stuttgart: Thieme; 2011
[14] Bailey H. Parotidectomy: indications and results. Br Med J 1947; 1: 404–407
[15] Shucksmith HS, Boyle TM, Walls WK. The surgery of parotid tumours; exposure of main trunk of facial nerve. Br Med J 1951; 2: 830–831
[16] Iro H, Uttenweiler V, Zenk J. Kopf-Hals-Sonographie. 1. Aufl. Berlin: Heidelberg: Springer; 2000. doi.org/10.1007/978-3-642-57012-4
[17] Vogl TJ, Albrecht MH, Nour-Eldin NA et al. Assessment of salivary gland tumors using MRI and CT: impact of experience on diagnostic accuracy. Radiol Med 2018; 123: 105–116
[18] Vogl TJ, Harth M, Siebenhandl P. Different imaging techniques in the head and neck: Assets and drawbacks. World J Radiol 2010; 2: 224–229
[19] Lell M, Mantopoulos K, Uder M et al. Imaging of the head and neck region. Radiologie 2016; 56: 181–201; quiz 202
[20] Iro H, Zenk J. Salivary gland diseases in childhood. Laryngorhinootologie 2014; 93: S103–S125
[21] Miyamoto RT, Hamaker RC, Lingeman RE. Goldenhar syndrome. Associated with submandibular gland hyperplasia and hemihypoplasia of the mobile tongue. Arch Otolaryngol 1976; 102: 313–314
[22] Sun Z, Sun L, Zhang Z et al. Congenital salivary fistula of an accessory parotid gland in Goldenhar syndrome. J Laryngol Otol 2012; 126: 103–107
[23] Österhus IN, Skogedal N, Akre H et al. Salivary gland pathology as a new finding in Treacher Collins syndrome. Am J Med Genet A 2012; 158a: 1320–1325
[24] Wiedermann HR. Salivary gland disorders and heredity. Am J Med Genet 1997; 68: 222–224
[25] Morton RP, Ahmad Z, Jain P. Plunging ranula: congenital or acquired? Otolaryngol Head Neck Surg 2010; 142: 104–107
[26] Taylor GP. Congenital epithelial tumor of the parotid-sialoloblastoma. Pediatr Pathol 1988; 8: 447–452
[27] Krolls SO, Trodahl JN, Boyers RC. Salivary gland lesions in children. A survey of 430 cases. Cancer 1972; 30: 459–469
[28] Muenscher A, Diegel T, Jaehe M et al. Benign and malignant salivary gland diseases in children A retrospective study of 549 cases from the Salivary Gland Registry, Hamburg. Auris Nasus Larynx 2009; 36: 326–331
[29] Seifert G, Okabe H, Caselitz J. Epithelial salivary gland tumors in children and adolescents. Analysis of 80 cases (Salivary Gland Register 1965–1984). ORL J Otorhinolaryngol Relat Spec 1986; 48: 137–149
[30] Callender DL, Frankenthaler RA, Luna MA et al. Salivary gland neoplasms in children. Arch Otolaryngol Head Neck Surg 1992; 118: 472–476
[31] Thariat J, Vedrine PO, Temam S et al. The role of radiation therapy in pediatric mucoepidermoid carcinomas of the salivary glands. J Pediatr 2013; 162: 839–843
[32] Kupferman ME, de la Garza GO, Santillan AA et al. Outcomes of pediatric patients with malignancies of the major salivary glands. Ann Surg Oncol 2010; 17: 3301–3307
[33] Mehta D, Williging JP. Pediatric salivary gland lesions. Semin Pediatr Surg 2006; 15: 76–84
[34] Agaimy A, Iro H, Zenk J. Pediatric salivary gland tumors and tumor-like lesions. Pathologe 2017; 38: 294–302
[35] Megg ed O, Baskin E. Neonatal Parotitis. J Pediatr 2018; 196: 319
[36] Markowitz-Spence L, Brodsky L, Seidell G et al. Self-induced pneumoparotitis in an adolescent. Report of a case and review of the literature. Int J Pediatr Otorhinolaryngol 1987; 14: 113–121
[37] Han S, Isaacson G. Recurrent pneumoparotid: cause and treatment. Otolaryngol Head Neck Surg 2004; 131: 758–761
[38] Tremblay V, Ayad T, Lapointe A et al. Nontuberculous mycobacterial cervicofacial adenitis in children: epidemiologic study. J Otolaryngol Head Neck Surg 2008; 37: 616–622
[39] Mahadevan M, Neef M, Van Der Meer G et al. Non-tuberculous mycobacterial head and neck infections in children: Analysis of results and complications for various treatment modalities. Int J Pediatr Otorhinolaryngol 2016; 82: 102–106
[40] Lindeboom JA, Kuijper EJ, Brujinesteijn van Coppenraat ES et al. Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial. Clin Infect Dis 2007; 44: 1057–1064
[41] Zeharia A, Eidlitz-Markus T, Haimi-Cohen Y et al. Management of nontuberculous mycobacteria-induced cervical lymphadenitis with observation alone. Pediatr Infect Dis J 2008; 27: 920–922
[42] Vitali C, Bombardieri S, Jonsson R et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002; 61: 554–558
[43] Nikitakis NG, Rivera H, Lariccia C et al. Primary Sjögren syndrome in childhood: report of a case and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 96: 42–47
[44] Shiboski SC, Shiboski CH, Criswell LA et al. American College of Rheumatology classification criteria for Sjögren’s syndrome: a data-driven, expert consensus approach in the Sjögren’s Internatio...
Scherl C. Selten Erkrankungen im Kopf-Hals-Bereich ... Laryngo-Rhino-Otol 2021; 100: S1–S28 | © 2021. The Author(s).

[61] Mullins JE Jr., Ogle O, Cottrell DA. Painless mass in the parotid region. J Laryngol Otol 2005; 119: 311–313

[65] Bartels LJ, Vrabec DP. Cervicofacial actinomycosis. Arch Otolaryngol

[62] Haddad J, Deny P, Munz-Gotheil C et al. Lymphocytic sialadenitis of the parotid gland. J Laryngol Otol 2005; 119: 311–313

[59] Carrozzo M. Oral diseases associated with hepatitis C virus infection. J Oral Pathol Med 2003; 32: 544–551

[60] Haddad J, Iro H, Klintworth N et al. Diagnostic imaging in sialadenitis. Head and neck pathology 2011; 5: 41–50

[58] Jing B, Wang J, Yang Z et al. Epidemiology of primary Sjögren's syndrome: a systematic review and meta-analysis. Ann Rheum Dis 2015; 74: 913–919

[66] Mullins JE Jr., Ogle O, Cottrell DA. Painless mass in the parotid region. J Oral Maxillofac Surg 2000; 58: 316–319

[67] Lang-Roth R, Schippers C, Eckel HE. Cervical actinomycosis. A rare differential diagnosis of parotid tumor. Hno 1998; 46: 354–358

[68] Ernös I, Topalan M, Aydin A et al. Actinomycosis of the frontal and parotid regions. Ann Plast Surg 2001; 46: 55–58

[69] Barabás J, Suba Z, Szabó G et al. False diagnosis caused by Warthin tumor of the parotid gland combined with actinomycosis. J Craniocaud Surg 2003; 14: 46–50

[70] Jackson LA, Perkins BA, Wenger JD. Cat scratch disease in the United States: an analysis of three national databases. Am J Public Health 1993; 83: 1707–1711

[71] Hadley S, Albrecht MA, Tarsy D. Cat-scratch encephalopathy: a cause of status epilepticus and coma in a healthy young adult. Neurology 1995; 45: 196

[72] Xu DL, Wang Z, Song YJ. Cat-scratch disease encephalopathy. Chin Med J (Engl) 1994; 107: 104–106

[73] Dolan MJ, Wong MT, Regnery RL et al. Syndrome of Rochalimaea henselae adenitis suggesting cat scratch disease. Ann Intern Med 1993; 118: 331–336

[74] Demers DM, Bass JW, Vincent JM et al. Cat-scratch disease in Hawaii: etiology and seroepidemiology. J Pediatr 1995; 127: 23–26

[75] Dalton MJ, Robinson LE, Cooper J et al. Use of Bartonella antigens for serologic diagnosis of cat-scratch disease at a national referral center. Arch Intern Med 1995; 155: 1670–1676

[76] Finkensieper M, Volf GF, Guntinas-Lichius O. Inflammatory salivary gland diseases. Laryngorhinootologie 2013; 92: 119–136, quiz 137

[77] Qin B, Wang J, Yang Z et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis 2015; 74: 1983–1989

[78] Meijer JM, Meiners PM, Huddleston Slater J et al. Health-related quality of life, employment and disability in patients with Sjögren’s syndrome. Rheumatology (Oxford) 2009; 48: 1077–1082

[79] Mariette X, Criswell LA. Primary Sjögren’s Syndrome. N Engl J Med 2018; 378: 931–939

[80] Shiboski CH, Shiboski SC, Seror R et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol 2017; 69: 35–45

[81] Gallo A, Benazzo M, Capaccio P et al. Sialoendoscopy: state of the art, challenges and further perspectives. Round Table, 101(st) SIO National Congress, Catania 2014. Acta Otorhinolaryngol Ital 2015; 35: 217–233

[82] Rusakiewicz S, Nocturne G, Lazure T et al. NCR3/NKp30 contributes to pathogenesis in primary Sjögren’s syndrome. Sci Transl Med 2013; 5: 195ra196

[83] Hall JC, Casciola-Rosen L, Berger AE et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci U S A 2012; 109: 17609–17614

[84] Ramos-Casals M, Tzioufas AG, Stone JH et al. Treatment of primary Sjögren syndrome: a systematic review. Jama 2010; 304: 452–460

[85] Nocturne G, Mariette X. B cells in the pathogenesis of Sjögren’s syndrome. Nat Rev Rheumatol 2018; 14: 133–145

[86] Himi T, Takano K, Yamamoto M et al. A novel concept of Mikulicz’s disease as IgG4-related disease. Auris Nasus Larynx 2012; 39: 9–17

[87] Li W, Chen Y, Sun ZP et al. Clinicopathological characteristics of immunoglobulin G4-related sialadenitis. Arthritis Res Ther 2015; 17: 186

[88] Küttnner H. Über entzündliche Tumoren der submaxillären Speicheldrüse. Beitr Klin Chir, bruns beitrag klin chir 1896; 15: 815–828
Scherl C. Seltene Erkrankungen im Kopf-Hals-Bereich ... Laryngo-Rhino-Otol 2021; 100: S1–S28 | © 2021. The Author(s).
Referat
Hillman TA, Chen DA, Fuhrer R. An alternative treatment for facial neurofibromas. Arch Otolaryngol 1972; 95: 415–419

Nam SI, Linthicum FH Jr., Merchant SN. Temporal bone histopathology in neurofibromatosis type 2. Laryngoscope 2011; 121: 1548–1554

Thompson AL, Aviv RI, Chen JM et al. Magnetic resonance imaging of facial nerve schwannomas. Otolaryngology 2000; 119: 2428–2436

Abdullah A, Mahmud MR, Sabir HA et al. The different faces of facial nerve schwannomas. Med J Malaysia 2003; 58: 450–453

Spasm with Botulinum Toxin. Laryngorhinootologie 2019; 98: 247–251

Mowry S, Hansen M, Gantz B. Surgical management of internal auditory canal and cerebellopontine angle facial nerve schwannoma. J Laryngol Otol 2012; 33: 1071–1076

Wilkinson EP, Hoa M, Slattery WH 3rd et al. Evolution in the management of facial nerve paralysis: microvascular surgery for facial nerve repair after resection of a rare racial nerve paraganglioma. Laryngoscope 2011; 121: 2065–2074

Park SH, Kim J, Moon IS et al. The best candidates for nerve-sparing stripping surgery for facial nerve schwannoma. Laryngoscope 2014; 124: 2610–2615

Angeli SI, Brackmann DE. Is surgical excision of facial nerve neurofibromas always indicated? Otolaryngol Head Neck Surg 1997; 117: S144–S147

Bartels LJ, Pennington J, Kamerer DB et al. Primary fallopian canal hemangiomas: clinical results and long-term follow-up. Otol Neurotol 2010; 31: 665–670

Semaan MT, Slattery WH, Brackmann DE. Geniculate ganglion hemangiomas: clinical results and long-term follow-up. Otol Neurotol 2011; 32: 1059–1076

Jost WH, Laskawi R, Palmowski-Wolfe A et al. Therapy of Hemifacial Spasm with Botulinum Toxin. Laryngorhinootologie 2019; 98: 247–251

Magliulo G, Parnasi E, Savastano V et al. Multiple familial facial glomus tumors. Otolaryngology 2003; 113: 82–84

Sheehan JP, Kano H, Xu Z et al. Gamma Knife radiosurgery for facial nerve schwannomas. AJNR American journal of neuroradiology 1996; 17: 171–174

Sanchez-Cuadrado I, Lasaleta L, González-Otero T et al. Radiology quiz case 1: glomus facialis paragangioma. JAMA Otolaryngol Head Neck Surg 2013; 139: 93–94

Toth JC, T, Meulens P, Funk T et al. Hemangiomas of the head and neck: a retrospective study of 33 years. Clin Oral Invest 2007; 11: 165–169

Magliulo G, Parnasi E, Savastano V et al. Multiple familial facial glomus: case report and review of the literature. Ann Otol Rhinol Laryngol 2003; 112: 986–989

Kazemi J, Zender MA, Kwon M et al. Paraganglioma of the facial nerve, a rare differential diagnosis for facial nerve paralysis: case report and review of the literature. Eur Arch Otorhinolaryngol 2012; 269: 693–698

Kuebler JR, Brackmann DE. Management of intratemporal vascular tumors. Laryngoscope 1981; 91: 867–876

Balkany T, Fradis M, Jafek BW et al. Hemangioma of the facial nerve: role of the geniculate capillary plexus. Skull Base Surg 1991; 1: 59–63

Friedman O, Neff BA, Wilcox TO et al. Temporal bone hemangiomas involving the facial nerve. Otol Neurotol 2002; 23: 760–766

Ramirez JA, Reiter GL, Scherer OA et al. Paragangliomas of the head and neck: diagnosis and treatment. Fam Cancer 2005; 4: 55–59