Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 Rapid Letter

COVID-19 safe and fully operational radiotherapy: An AIRO survey depicting the Italian landscape at the dawn of phase 2

Barbara Alicja Jereczek-Fossa a,b,1, Matteo Pepa a,1, Mattia Zaffaroni a,e, Giulia Marvasso a,b, Alessio Bruni c, Michela Buglione di Monale e Bastia d, Gianpiero Catalano 1, Andrea Riccardo Filippi f, Pierfrancesco Franco g, Maria Antonietta Gambacorta h, Domenico Genovesi i, Giuseppe Iatì j, Alessandro Magli k, Luigi Marafiotti l, Icro Meattini m,n, Anna Merlotti o, Marcello Mignagna p, Daniela Musio q, Roberto Pacelli r, Stefano Pergolizzi s, Vincenzo Tombolini q, Marco Trovo k, Maria Cristina Leonardi a, Umberto Ricardi g, Stefano Maria Magrini d, Renzo Corvò s,t, Vittorio Donato u,v, on the behalf of AIRO (Italian Association of Radiotherapy and Clinical Oncology)
Barbara Alicja Jereczek-Fossa, M. Pepa, M. Zaffaroni et al. Radiotherapy and Oncology 155 (2021) 120–122

Table 1
Summary of activity reorganisation in Italian RT departments during Phase 1 and Phase 2 and trend between the two phases.

Therapeutic activity reorganisation	Phase 1 (18th March–3rd May 2020)	Phase 2 (4th May 2020–today)	Trend
N (%)	N (%)	N (%)	
Procrastinating treatment on a case-by-case basis	46 (36.8)	41 (46.1)	
Optimising home cures of symptomatic patients	17 (13.6)	24 (27.0)	
Keeping only curative treatments otherwise not procrastinable	14 (11.2)	2 (2.2)	
Favouring short-term treatments (hypofractionation)	51 (40.8)	14 (15.7)	
Ongoing treatments interruption for particularly fragile patients	5 (0.04)	13 (14.6)	

Outpatient activity reorganisation

N (%)	N (%)		
No substantial change	9 (0.07)		
Ordinary check-ups have been cancelled	80 (64.0)	69 (77.5)	
First visits have been cancelled	2 (0.02)	11 (12.4)	
Telematic consultations activated for cancelled visits	54 (43.2)	15 (16.9)	

List of abbreviations: COVID-19: Coronavirus disease 19; N: number of centres.

NB: P1 results refer to the previously published work [Jereczek-Fossa BA, Pepa M, Marvao G, et al. COVID-19 outbreak and cancer radiotherapy disruption in Italy: Survey endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO) Radiother Oncol. 2020;149:89–93. doi:https://doi.org/10.1016/j.radonc.2020.04.061]. P2 results, instead, were collected in the context of the current investigation.

decrease of activity. Triage procedures put in place during P1 remained active in all facilities during P2 to limit the contagion. Analogously, with regards to admitted patients, most measures adopted during P1 were maintained during P2. (121/482 surgical masks, 89 (100%); gloves, 13 (15%); hydro-alcoholic solution prior to entry 59 (66%); interpersonal distancing, 85 (96%).) In P2 a marked increase in the supply of all PPE was registered, especially for FFP2 and FFP3 (from 49.6% to 64% and from 9.6% to 13.5%, respectively, for the radiation oncologists. Meetings were allowed as per usual in 6 (7%) centres, with restrictions (i.e. interpersonal distancing) in 68 (76%), and in remote settings in 37 (42%). Remote working solutions for non-medical staff was maintained in the transition from P1 to P2 in 37 (42%) centres, and an additional 7% (6) of centres also enforced this working modality for radiation oncologists. In P2 a drop in the quarantined personnel was registered, with 80 (90%) of the centres registering no staff in quarantine against 50 (56%) centres during P1. Six and two centres registered 1 and 2 unit of quarantined staff respectively during P2. A single COVID-19 related fatality was reported among the personnel. Thirty-one centres (35%) reported positive or suspect cases among staff. In particular, 15/231 (6.5%) radiation oncologists, 23/302 (7.6%) RT technicians, 13/97 (13%) nurses, 1/49 (2%) administrative units and 2/101 (2%) physicists were tested positive. Thirty-nine (44%) centres reported COVID-19 positive cases among patients both before the start of RT and during treatment in P1 or P2. Out of these, 29 centres discontinued treatment of all positive cases, five proceeded with treatment for asymptomatic patients, and three continued RT for asymptomatic patients excluding chest tumour patients. For patients with a documented contact with a positive subject, the majority of the RT facilities requested a swab (25/48 52.1%) while 9/48 (18.8%) decided for a temporary interruption of the treatment. Fourteen centres instead opted for continuing the treatment, with (10/48, 20.8%) or without (4, 8.3%) extra precautions.

The previous investigation [3] revealed that the prime focus of RT centres during P1 was to guarantee the continuity and the safety of the treatments for patients with high-risk conditions, while minimising undue risk for cases for which care can be safely deferred. Thanks to all the adopted measures to limit contagion among staff and patients, the pandemic effect on the Italian RT centres during P1 was, ultimately, modest, with most centres (55, 61.8%) reporting no reduction or a decrease in clinical activity not higher than 10%. Therefore, the average reduction of clinical activities in Italy turned out to be much less marked than that of Europe (38% centres reporting a reduction <80%) and US (84% centres reporting a reduction <80%) [4]. The preventive measures put in place remained virtually unchanged during the transition from P1 to P2. This was reflected by the proportion of centres registering positive cases which dropped down from 43.8% in P1 to 10.1% in P2, and in the maximum reported number of positive staff cases per centre, which decreased from 18 to 2. The reduction of registered daily cases is imputable to the strict safety measures adopted and not to the decrease in number of treated patients. On the contrary, with the advent of P2, RT Directors globally reported a progressive realignment with the pre COVID-19 era workload for both outpatient and clinical activities, with a partial or complete reactivation of the previously interrupted or postponed treatments, also thanks to the several guidelines published to help clinicians coping with the novel pandemic scenario [5–14,15–17]. Therefore, the present survey demonstrated how the planned pro-
gressive return to a novel routine during P2 has been attained by most Italian RT centres, maintaining high safety standards against a possible new spread of the infection and registering a lower number of positives cases among both patients and health professionals despite the resumption of a pre COVID-19 era workload. Such reorganisation will be crucial in prevention of the potentially detrimental impact of a possible second wave of pandemic on the society and health system.

Acknowledgments

The institution of authors BAJF, MP, MZ, GM and MCL (IEO, European Institute of Oncology IRCCS, Milan) is partially supported by the Italian Ministry of Health with Ricerca Corrente and 5 x 1000 funds. MZ was supported by a research grant from Accuray Inc. entitled “Data collection and analysis of Tomotherapy and CyberKnife breast clinical studies, breast physics studies and prostate study”. The sponsors did not play any role in the study design, collection, analysis and interpretation of data, nor in the writing of the manuscript, nor in the decision to submit the manuscript for publication. The authors wish to thank Lars Johannes Isaksson, MSc for the English revision of the manuscript. The authors wish to acknowledge all the Italian RT Directors who participated in the study. All the responders agreed for the publication of the results of the survey. Those who accepted to be acknowledged in the present work are listed in the Acknowledgments, Supplementary Materials.

Funding

None.

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Authors’ contribution

BAJF, MP, MZ, GM, RC and VD were responsible for conception and design of the study and wrote the first draft of the manuscript. AB, MB, GC, ARF, PF, MAG, DG, GI, AM, LM, iM, AM, MM, DM, RP, SP, VT, MT, MCL were responsible for data collection and wrote sections of the manuscript. BAJF, MP, MZ and GM were responsible for data analysis. All authors contributed to manuscript revision and read and approved the submitted version.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.radonc.2020.09.049.

References

[1] Lancia A et al. Radiotherapy in the era of COVID-19. Expert Rev Anticancer Ther 2020;1–3. https://doi.org/10.1080/14737144.2020.1785220.
[2] COVID-19 Virus Pandemic – Worldometer. https://www.worldometers.info/coronavirus/. Accessed the 18th September 2020.
[3] Jereczek-fossa BA et al. COVID-19 outbreak and cancer radiotherapy disruption in Italy: Survey endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO). Radiol Oncol 2020;149:89–93.
[4] Slotman BJ et al. Effect of COVID-19 pandemic on practice in European Radiation Oncology Centers. Radiol Oncol 2020;150:40–2. https://doi.org/10.1016/j.radonc.2020.06.007.
[5] Alfero D et al. Head and neck cancer radiotherapy amid COVID-19 pandemic: Report from Milan. Italy. Head Neck 2020;1–9.
[6] Coles CE et al. International Guidelines on Radiation Therapy for Breast Cancer during the COVID-19 pandemic. Clin Oncol 2020;32:279–81.
[7] De Azambuja E et al. ESMSO Management and treatment adapted recommendations in the COVID-19 era: Breast Cancer. ESMO Open 2020;5:1–12.
[8] Han K et al. Management of gynecologic cancer: Choosing radiotherapy wisely by 3 Southern Ontario academic centers during the COVID-19 pandemic. Radiol Oncol 2020;151:115–6.
[9] Siavashpour Z, Taghizadeh-Hesary F, Rakhsa A. Recommendations on management of locally advanced rectal cancer during the COVID-19 pandemic: an Iranian consensus. J Gastrointest Cancer 2020;51.
[10] Catane S, Pentheroudakis G, Douillard JY, Lordick F. ESMSO Management and treatment adapted recommendations in the COVID-19 era: pancreatic cancer. ESMO Open 2020;5.
[11] De Azambuja E et al. ESMSO Management and treatment adapted recommendations in the COVID-19 era: breast cancer. ESMO Open 2020;5:1–12.
[12] Slotman BJ et al. Effect of COVID-19 pandemic on practice in European Radiation Oncology Centers. Radiol Oncol 2020;150:40–2. https://doi.org/10.1016/j.radonc.2020.06.007.
[13] Thomson DJ et al. Practice recommendations for risk-adapted head and neck cancer radiation therapy during the COVID-19 pandemic: an ASTRO-ESTRO consensus statement. Radiol Oncol 2020;146:223–9.
[14] Tsao AS et al. Practice recommendations for lung cancer radiotherapy during COVID-19 pandemic: An ESTRO-ASTRO consensus statement. Radiat Oncol 2020;146:223–9.
[15] Liao Z et al. Optimizing lung cancer radiation treatment worldwide in COVID-19 outbreak. Lung Cancer 2020;146:230–5.
[16] Thomson DJ et al. Practice recommendations for risk-adapted head and neck cancer radiation therapy during the COVID-19 pandemic: an ASTRO-ESTRO consensus statement. Int J Radiat Oncol Biol Phys 2020;10.1016/j.ijrobp.2020.04.016.
[17] Pissari A et al. ESMSO Management and treatment adapted recommendations in the COVID-19 era: Lung cancer. ESMO Open 2020;5.
[18] Magrini SM et al. Letter to the Editor regarding ESTRO-ASTRO guidelines on lung cancer radiotherapy during COVID-19 pandemic. Radiol Oncol 2020;147.
[19] De Felice F, Polimeni A, Valentini V. The impact of Coronavirus (COVID-19) on head and neck cancer patients’ care. Radiol Oncol 2020;147:84–5.
[20] Vavassori A et al. Practical indications for management of patients candidate to Interventional and Intraoperative Radiotherapy (Brachytherapy, IORT) during COVID-19 pandemic – A document endorsed by AIRO (Italian Association of Radiotherapy and Clinical Oncology) Interventional Radiotherapy Working Group. Radiol Oncol 2020;149:73–7.