溶接残留応力を考慮したき裂先端特異場の特性テンソル法による評価*

齊藤 啓***, 平島 榊****, 麻 寧緒*****. 村川 英一******

Crack singular field evaluation with characteristic tensor considering residual stress*

To accurately evaluate the fracture behaviors and fatigue life of welded structures, it is necessary to consider welding residual stress in addition to the stress produced by the applied loads. Characteristic tensor, which has a proportional relationship to stress intensity factor (SIF), is one new approach to evaluate stress singularity caused by a crack. Characteristic tensor is the tensor which is easily calculated by integrating stresses in a simple sphere zone around a crack tip using coarse mesh without special limitation in the mesh division, even under general case like mixed-mode loading conditions. In this study, the stress singularity in the welded plate is evaluated by characteristic tensor and its effectiveness with the residual stress field is verified. Firstly, the residual stress distribution in butt welded plates is calculated by finite element method. Secondly, the singular stress field is obtained by introducing a straight single crack in the welded plates. A crack with different lengths and the crack tip located at different residual stress states are considered in reproducing the stress singularity. In each case, SIF is estimated from the characteristic tensor calculated from stress distribution nearby a crack tip and compared to those from the green function or virtual crack extension method. Additionally, the stress singularity caused by the external load is evaluated in the same manner. The estimated SIFs with coarse mesh are in good agreement with the conventional methods. The results suggest that characteristic tensor provides a practical approach to evaluating stress singularity in welding structures.

Key Words: Characteristic tensor, Stress intensity factor, Stress singularity, Residual stress, Finite element method

1. 緒 言

溶接構造物に存在するき裂の進展挙動は、溶接残留応力に大きく影響されることが知られている1). そのため、例えば高精度な溶接構造物の破壊現象や寿命予測のためには、構造物の自重などの死荷重による応力や外部からの活荷重による応力に加えて、残留応力を考慮した評価が重要となる。溶接残留応力場を得るためには、試験および計測を用いる方法、並びに、数値計算を用いる手法がある。残留応力場を試験および計測から決定する場合、中性子回折による内部残留応力場の推定方法2)、X線回折法による表面残留応力場の推定法3)および固有ひずみに基づく測定法4)、5)がある。

Cut compliance methodは、コンパクトテンション試験片を用いたひずみの計測結果から破壊力学パラメータを算出する手法である5)、6). ここで得られた破壊力学パラメータを用いた無限小領域を用いることにより、残留応力場を得る。本手法では、対象物として形状に適合した無限小領域の同定が必要である。様々な形状に適合する多くの無限小領域が選定されているものの、適用対象は限られている5). 一方、有限要素法を代表とする数値計算による予測手法では、熱解析と構造解析を連成させることにより、溶接による残留応力場を計算する。任意の形状における複雑な応力場を高効率かつ高精度で取得できるため、良く利用されている手法である。有限要素法は、溶接構造物のき裂進展挙動を評価するためにも有用である。溶接による発生する残留応力を引き継いだ応力解析から、き裂進展挙動の評価に必要な破壊力学パラメータを導出のための様々な手法が提案されている9)、10)。これらの手法の計算精度は高く、多くの研究において妥当性が証明されている。一方、これらの手法は計算プロセスが複雑であり、工業界で用いられている汎用数値計算コードへの導入の難易度は高い。また、計算コストも高いため、製品設計への適用を妨げるものと考えられる。数値計算を用いた設計効率の向上のために、より実用的かつ高精度な手法が求められている。

著者らが提案した特性テンソル法14)、15)は、き裂先端近傍の無限小領域における平均応力をもとに定義される特性テンソルにより特異場を評価する手法である。特性テンソルは、数値計算から得られた応力場から簡単に算出することが可能である。特性テンソル法は、既存の特性テンソル法を用いる特性テンソル法の適用に伴う新たな特異場の評価が有効である。
有限要素解析コードとの親和性も高く、比較的簡単に破壊力学パラメーターに基づいた特異場の評価が可能である。き裂進展解析の製品設計への適用拡大に大きく貢献できる可能性がある。

本研究では、固有ひずみの概念に基づく有限要素法を用いて突き合わせ溶接の残留応力分布を模倣し、溶接残留応力場中のき裂に特性テンソル法を適用し、き裂進展評価に必要な破壊力学パラメーターの推定を行う。具体的に、残留応力や外荷重により形成される特異場の応力拡大係数を特性テンソルから算出し、解析解または他の手法で得られた値と比較することにより、残留応力場における本手法の有効性と優位性を示す。

2. 特性テンソル

2.1 特性テンソルの定義

本章では、特性テンソルの定義および応力場からの導出方法について示す。特性テンソルは、き裂先端近傍の無限小領域で定義されるテンソル量である。等方弾性体である無限平板中の長さ2aのき裂と座標系を、Fig. 1のように想定する。き裂先端から無限小の半径r=0内の領域Ω₀における平均応力μ_ijは以下のよう表される。

\[\mu_{ij} = \frac{1}{V_{Ω₀}} \int_{Ω₀} \sigma_{ij} dV \ (r \to 0) \] \[(1) \]

ここで、V_{Ω₀}は領域Ω₀の体積、σ_{ij}はFig. 1に示した座標系にに基づく応力成分を示す。特性テンソルは平均応力μ_ijに平均化半径Rの平方根を乗じることで得られ、応力拡大係数と同一次元の物理量として定義される。

\[X₀ = \sqrt{R} \mu_{ij} \ (r \to 0) \] \[(2) \]

一方、応力拡大係数を用いた以下の式は、き裂近傍の特異応力場を近似する式として広く用いられている。

\[\sigma_{ij} = K_{I} \frac{f_{ij}(θ)}{\sqrt{2πr}} + K_{II} g_{ij}(θ) + T \delta_{i} \delta_{j} + O(\sqrt{r}) + \cdots \] \[(3) \]

ここで、K_{I}, K_{II}はそれぞれMode-I, Mode-IIの応力拡大係数、

\[f_{ij}(θ), \ g_{ij}(θ) \] はFig. 1に示した座標系における円周方向の位置を表すθの関数、Tはき裂に平行な一定応力（応力）、δ_{i}はクロネッカーのデルタである。応力場の特性を表す第一項および二項に着目すると、それらの平均から計算される特性テンソルは、与えられたき裂長さと載荷荷重に対して確定値となる。

\[X_{I} = \text{const.} \ (R \to 0) \] \[(4) \]

従って、特性テンソルは、式(3)で近似されるき裂周辺の特異応力場の評価に適している。

2.2 特性テンソルの性質

特性テンソルは、き裂による特異性の評価に用いられる破壊力学パラメーターと密接に関連するテンソル量である。応力解析結果から特性テンソルの計算を通じ、比較的簡単に破壊力学パラメーターを予測することが可能である。応力拡大係数と特性テンソルの関連を示すため、Fig. 2に示す無限平板中のき裂を想定する。Fig. 1に示す座標系に従うと、応力分布は以下のよう表される。

\[\sigma_{ij} = \frac{K_{I}}{\sqrt{2πr}} f_{ij}(θ) + T \delta_{i} \delta_{j} + O(\sqrt{r}) + \cdots \] \[(5) \]

ここで、(i,j)∈{(1,1), (2,2), (1,2)}、0≤θ≤π とするとき、f_{ij}(θ) はそれぞれ

\[f_{11}(θ) = \cos θ / 2 (1 - \sin^2 θ \cos \frac{3θ}{2}) \] \[(6) \]

\[f_{22}(θ) = \cos θ / 2 (1 + \sin^2 θ \cos \frac{3θ}{2}) \] \[(7) \]

\[f_{12}(θ) = \cos θ / 2 \sin θ \cos \frac{3θ}{2} \] \[(8) \]

と表される。式(5)の第三項以降はr→0を考えるとO(\sqrt{r})→0となる。また、き裂近傍の応力の対称性を考慮し、式(6), (7)を円周方向に積分すると以下のよう表される。

\[f_{11}(θ) = \frac{K_{I}}{\sqrt{2πr}} \cos θ / 2 (1 - \sin^2 θ \cos \frac{3θ}{2}) \] \[(6) \]

\[f_{22}(θ) = \frac{K_{II}}{\sqrt{2πr}} \cos θ / 2 (1 + \sin^2 θ \cos \frac{3θ}{2}) \] \[(7) \]

\[f_{12}(θ) = \frac{K_{I}}{\sqrt{2πr}} \sin θ \cos \frac{3θ}{2} \] \[(8) \]
一方、式(8)の積分値は0となる。式(1)、(2)の定義に従って計算すると、mode-Iにおける特性テンソルは以下のよう
に表される。

\[x_{11} = \sqrt{2} \mu_{11} = 1.6 \left(\frac{8}{3\pi^2} k_1 (R \to 0) \right) \]
\[x_{22} = \sqrt{2} \mu_{22} = 2.4 \left(\frac{8}{3\pi^2} k_1 (R \to 0) \right) \]
\[x_{12} = 0 (R \to 0) \]

式(11)、(12)は、特性テンソルがmode-I荷重下の応力拡大係数と比例関係となることを示している。応力拡大係数は
式(11)、(12)で表される特性テンソル成分を用いて算出することができる。また、式(13)で示される特性テンソルの
成分は、mode-I荷重下においては0となるが、mode-II荷重下においては比例関係となる。一方で、特性テンソル
の\(x_{11} \)成分と\(x_{22} \)成分は、mode-II荷重下においては0となる。このように、特性テンソル法では応力解析結果から得
られたき裂周辺の応力を積分し、積分半径の平方根を乗じるという比較的簡単な操作で、破壊力学パラメー
ターと密接に関連したテンソル量を導出することができる。

3. 溶接残留応力場

3.1 解析モデル

有限寸法の板の突き合わせ溶接を想定した残留応力場を
有限要素法により計算するためには、Fig.3に示す解析モデ
ルを用いる。平板の形状はメッシュサイズを最小0.5 mmと
し、二次元平面板要素としてモデル化する。材料特性は
Table 1に示す値とし、温度やひずみに依らず一定とする。
平板中央において全体座標系\(\gamma \)方向と平行な溶接線を定義
し、溶接線上に初期温度200℃を与える。Fig.4には、平板
中央の溶接線上に原点を置いた局所座標系における\(x \)軸方
向の初期温度分布を示す。初期温度20℃から定常状態
(200℃)に冷却する際の熱収縮ひずみ(固有ひずみ)から残
留応力場を熱弾性解析で算出する。Fig.5には、平板全体お
よび溶接線付近の\(\gamma \)方向における溶接残留応力分布を示す。

Table 1 Material properties
Young Modulus [MPa]
2.0 × 10^7

Fig.3 Dimension of plane plate with butt weld

Fig.4 Initial temperature in direction

Fig.5 Residual stress field in the self-balanced condition
3.2 特異要素

き裂先端の特異性支配域における応力場を正確にとらえるため、き裂先端周辺に八節点二次要素に基づいた特異要素を導入する16)。Fig.6 に要素の模式図を示す。本要素では、き裂先端の節点を含む要素辺の中間節点をき裂先端から要素辺長1/4の位置に移動することで、変位場をき裂から要素辺長の関数として補間することができる。これにより、変位を微分して得られる帯みおよび応力場は1/√r の特異性を有することとなり、線形破壊力学に即した特異場を正確に表すことができる。本研究では、要素面内に九点の積分点を設定し、特異場を精度高く表現する。

3.3 き裂の導入

Fig.5 に示した溶接残留応力を有する突き合わせ溶接板にき裂を導入し、残留応力の再分配による特異応力場を得る。き裂は、平板中央の位置に溶接線上に対し垂直に設定する。本研究では、き裂長さaを2.5 mmから15.0 mmとし、計6ケース(C1 ~ C6)のき裂長さを考慮する。Table 2 に各ケースのき裂長さを示す。Fig.7 には、残留応力場中のC1 (a=2.5 mm) のき裂を、Fig.8 には、Fig.5の平板中央の溶接線上に定義した局所座標x 軸に沿ったY方向の応力分布とき裂先端の位置を示す。残留応力は、溶接線に対して垂直方向に、き裂から遠ざかるに従い引張から圧縮へ応力状態が遷移している。き裂長さaが変化することにより、応力状態が異なる位置にき裂先端が配置される。これにより、き裂先端ではそれぞれ性質が異なる特異場が形成される。特異応力場は、Fig.5に示した応力場を引き継いた有限要素モデルのき裂に位置する節点を分離してき裂表面を生成し、応力分配後のつり合い状態を求めることで取得する。き裂周辺のメッシュサイズは、0.5 mmである。Fig.9には、き裂導入後のき裂周辺のY方向応力分布を示す。き裂先端の特異応力場は、溶接線中央の引張応力場によって励起される。そのため、き裂長aが大きくなりき裂先端が溶接線から離れると、特異場の強さも小さくなる。

Table 2 Crack length in each case

C1	C2	C3	C4	C5	C6
2.5 mm	5.0 mm	7.5 mm	10.0 mm	12.5 mm	15.0 mm

Fig.6 Quadrilateral quadratic isoparametric element

Fig.7 Crack location of C1 in the residual stress field (before stress redistribution)

Fig.8 Residual stress distribution and crack tip location
特性テンソルを用いた破壊力学パラメーターの同定

4.1 特性テンソルの計算手法

応力再分配後の応力分布から特性テンソルを算出し、破壊力学パラメーターの同定を行う。ここで、Fig.1 に示したき裂先端に原点を置き、1 方向をき裂進展方向にとした座標系を想定する。特性テンソルは、式 (1), (2) で示した通り、特異性支配領域となるき裂近傍の無限小領域 Ω_{r=R→0} において定義され、与えられたき裂長さと荷重に対して確定値となる。一方、有限要素法を代表とする数値計算においては、き裂先端の無限小領域の応力場を表現するためには離散化精度を限りなく大きくする必要があるが、計算時間やリソースの制約から現実的ではない。そのため、本来無限小となるべき平均化半径 𝑅 は有限値とならない。この場合、式 (3) の第三項目以降で示した 𝑇 应力を高次項が無視できなくなるため、評価すべき特性テンソルの確定値から乖離が発生する。よって、高精度な特性場の評価には、特性テンソル法の構築理論を有限要素法に適用するための手法が必要となる。そこで、本研究では、最小二乗法を利用して補完した特性テンソルを近似する。この場合、式 (3) の第三項目以降で示した 𝑇 応力や高次項が無視できないため、評価すべき特性テンソルの確定値から乖離が発生する。よって、高精度な特性場の評価には、特性テンソル法の構築理論を有限要素法に適用するための手法が必要となる。そこで本研究では、最小二乗法を利用して補完した特性テンソルを近似する。有限要素法から得られた応力場から特性テンソルを計算するため、式 (1) に従って平均応力を算出する。この時、有限値をとる半径 𝑅 の領域内にある積分点の応力を、ガウス求積法を用いて積分する。

\[
\bar{\sigma}_{ij} = \frac{1}{\Lambda} \sum_{k=1}^{n_p} \sigma_{ij, k} \psi_k \det J_k
\] \hspace{1cm} (14)

ここで、 \(\bar{\sigma}_{ij} \) は有限領域における平均応力成分、 \(n_p \) は半径 𝑅 内にある積分点の総数、 \(\sigma_{ij} \) は応力成分、 \(\psi_k \) はガウス求積点を用いて積分する際の離散点にかかる重み、 \(\det J \) はヤコピアン、 \(\Lambda \) はガウス求積法により積算した面積を示す。式中で \(k \) の指標が付いた変数は、対応する積分点の値であることを示す。式 (2) より、特性テンソルは以下のように算出される。

\[
\bar{\chi}_{ij}(R) = \sqrt{R} \bar{\sigma}_{ij}
\] \hspace{1cm} (15)

ここで、 \(\bar{\chi}_{ij}(R) \) は半径 𝑅 の有限な積分領域から求められた特性テンソルである。特性性支配領域となる無限小半径で定義される特性テンソル \(\chi_{ij} \) を推定するため、式 (15) で算出された有限領域の特性テンソルを以下のように近似する。

\[
\bar{\chi}_{ij}(R) = \chi_{ij} + \sum_{m=1} \psi_{m,ij} R^{m/2}
\] \hspace{1cm} (16)

ここで、 \(\psi_{m,ij} \) は半径 𝑅 に関する多項式の第 m 番目の項の係数である。最小二乗法により係数を同定し、\(R=0 \) における特性テンソルを算出する。応力拡大係数の推定

本研究では、まず有限要素法を用いて特性テンソルを計算し、次に式 (16) に基づき線形近似関数を用いて \(R=0 \) における特性テンソルから破壊力学パラメーターである応力拡大係数を推定する。なお、有限の半径 𝑅 で特性テンソルを計算する場合、\(\chi_{11} \) 成分に関しては、\(T \) 応力の作用によって生じる \(TR^{1/2} \) の項が無視できなくなることがあるため、線形近似で計算することは不適当である。
似には不向きである。従って，\(\chi_{22} \)成分を対象とした以下の式によって，無限小領域における特性テンソルを推定する。また，線形近似には，今回対象としたケースにおいて，特性テンソルが平均化半径 \(R \) に対しておよそ線形に変化しているとみなせる \(R \leq 2.0 \text{ mm} \) の範囲の算出値を用いる。

\[
\chi_{22}(R) = \chi_{22} + \psi_{1,22}R
\]
(17)

ここで，\(\chi_{22} \)は \(R=0 \)における特性テンソル値である。特性テンソル成分 \(\chi_{22} \)および式（12）の関係を用いて，以下の式よりMode-Iの応力拡大係数を算出する。

\[
K_I = \frac{1}{2\pi} \sqrt{\frac{1 - \nu^2}{E}} \chi_{22}
\]
(18)

4.3 残留応力場が生成する特異場の評価

Fig. 9に示した六ケースの応力分布から式（14），（15）により特性テンソル成分を算出する。算出した特性テンソルから応力拡大係数を推定し，他の手法による予測値と比較することで妥当性を検証する。C1からC4については，グリーン関数を用いて解析的に算出した応力拡大係数を比較する。残留応力場中の応力拡大係数は，重み関数法と同様の形として以下の式で表される（19）。

\[
K_I^G = \int_{-a}^{a} p(x)g(a,x)dx
\]
(19)

この手法はき裂半径，\(p(x) \)はき裂面上の圧力分布，\(g(a,x) \)は以下の式で表されるグリーン関数である。

\[
g(a,x) = \frac{1}{\sqrt{\pi a}} \sqrt{a + x \over a - x}
\]
(20)

有限要素法で取得した残留応力分布からき裂面上の圧力分布を抽出し，式（20）に乗して対応するき裂長さの範囲で積分することにより，応力拡大係数を算出する。C5とC6については，領域積分法にて同定したJ積分値から以下の式により変換した応力拡大係数と比較する。

\[
K_I^{VCE} = \sqrt{\frac{1 - \nu^2}{E}}
\]
(21)

Fig. 10には，き裂を中心とした半径 \(R \) の有限領域において算出された特性テンソル成分 \(\chi_{22} \)から式（18）を用いて変換した応力拡大係数 \(K_I(\chi_{22}) \)と，これらのデータ点を用いて式（17）による最小二乗法により同定した直線近似関数を，グリーン関数および領域積分法によって求めた応力拡大係数 \(K_I^G \)および \(K_I^{VCE} \)と併せて示している。特性テンソルから推定した応力拡大係数は，平均応力を算出する半径 \(R \) が大きくなるに従い，応力拡大係数の推定誤差は大きくなる傾向にある。これは，半径 \(R \) が大きくなると，式（3）の第四項以降に示した高次項の影響が大きくなり，無限小領域で定義された特性テンソルとの乖離が大きくなるためであるが，いずれのケースにおいても，\(R \to 0 \)において他の手法で算出した

![Fig. 10 Estimated stress intensity factor at each radius and the linear approximate function, \(K_I^G \) and \(K_I^{VCE} \) are the stress intensity factors estimated by green function and virtual crack extension method and shown as constant solid line.](image-url)
応力拡大係数に収束する様子が確認できる。Table 3 には、き裂位置 C1 ～ C6 において、R = 0.25 mm における特性テンソル値から推定した応力拡大係数および線形近似関数から推定したき裂先端 (R = 0 mm) における応力拡大係数を、比較対象となる応力拡大係数との誤差とともに示している。算出した特性テンソル値のうち、最小の半径は R = 0.25 mm であるが、これは本解析で用いたメッシュサイズ 0.5 mm のおよそ半分の大きさである。このときに評価される積分値は、特性要素を用いたため、き裂先端に隣接する要素に含まれる積分点 9×4 = 36 点のうちき裂先端に近い 3×4 = 12 点のみであるが、他の手法を用いた算出値との誤差は最大で 5% 程度である。き裂近傍の 1 要素の評価でも良好に応力拡大係数を予測できており、比較的大きく実用的なメッシュサイズでも十分評価が可能である。線形近似関数より同定した R = 0 における応力拡大係数の誤差はおおむね 3% 以下であり、さらに精度良く予測できていることがわかる。

Fig. 11 は、C1 ～ C6 における溶接線中心からき裂に沿った方向の各積分点の \(\gamma = 0 \) 方向応力の値を示す。また、応力拡大係数から算出した応力特異場 \(\sigma_{yy} = K_I / \sqrt{2\pi(x - a)} \) を破線として示す。いずれのケースにおいても、積分点の応力はき裂先端近傍においては破線に漸近し、き裂先端からの距離が増加するに従って破線から離れしている。これは、式 (3) で示される \(1/\sqrt{r} \) の特異性以外の項の影響である。

Table 3 は、溶接残留応力および外力が生成する特異場の評価

Crack location	SIF for comparison \((N \cdot mm^{-2})\)	\(K_I (R=0 \text{ mm}) \)	Error (%)	\(K_I (R=2.5 \text{ mm}) \)	Error (%)
C1	1494.4	1503.6	-0.62	1572.0	5.19
C2	2102.4	2161.3	-2.80	2185.8	3.97
C3	2050.1	2118.8	-3.35	2095.9	2.24
C4	1479.3	1499.1	-1.34	1500.4	1.43
C5	1107.8	1121.6	-1.25	1119.5	1.05
C6	-904.9	-900.3	0.51	901.7	-0.36

溶接学会論文集 第 39 巻(2021) 第 2 号
る。Fig.12に模式図を示す。Fig.9に示したC1からC6の形状と応力状態を引き継いだ平板の境界にY方向の垂直応力 \(\sigma_{YY} = 200 \text{ MPa} \)を載荷し、改善して切り合い状態を求める。Fig.13には、外力載荷前のき裂周辺のY方向応力分布を示す。前章と同様の方法で、き裂先端の応力場から特性テンソルを算出し、破壊力学パラメータである応力拡大係数を推定する。本研究では、平板の物性を等方弾性体と想定しており、応力拡大係数は残留応力および載荷による特異場の重ね合わせとして表すことができる。中央にき裂を有した平板に対し、き裂と垂直な方向に一軸引張荷重が作用する場合、き裂周辺の応力拡大係数は有限寸法の影響を考慮した補正項によって以下のようにあらわされる。

\[
K_I^{\text{EXT}} = \sigma \sqrt{\pi a} \left[\sec \left(\frac{\pi a}{2W} \right) \right]^{1/2} \left[1 - 0.025 \left(\frac{a}{W} \right)^2 + 0.06 \left(\frac{a}{W} \right)^3 \right] \tag{22}
\]

ここで、\(W \) は板幅を表す。前章で比較に用いた溶接残留応力による応力拡大係数 \(K_I^G \) および \(K_I^{VCE} \) と外力による応力拡大係数 \(K_I^{\text{EXT}} \) を足し合わせた値を比較対象とし、本手法の妥当性を検証する。

\[
K_I^{G+\text{EXT}} = K_I^G + K_I^{\text{EXT}} \tag{23}
\]

\[
K_I^{VCE+\text{EXT}} = K_I^{VCE} + K_I^{\text{EXT}} \tag{24}
\]

Fig.14には、C1～C6それぞれにおいて、有限な平均化半径 \(R \) よりも算出された特性テンソル成分 \(\chi_{22} \) から式(18)を用いて推定した応力拡大係数 \(K_I(\chi_{22}) \) と、これらのデータ点を用いて最小二乗法より同定した直線近似関数を示す。また、比較対象とする応力拡大係数を平均化半径 \(R \) に対して一定となる直線で示す。いずれのケースにおいても、特性テンソルから推定した応力拡大係数は、\(R \rightarrow 0 \) において他の手法から導出した応力拡大係数と近づく様子が確認できる。Table 4には、き裂位置C1～C6において、\(R = 0.25 \text{ mm} \)における特性テンソル値から推定した応力拡大係数、線形近似関数から予測した \(R = 0 \)における特性テンソル値から推定した応力拡大係数、比較対象とする応力拡大係数と比較した誤差を示した。有限な平均化半径 \(R \) に対して推定した応力拡大係数は、最小の平均化半径 \(R = 0.25 \text{ mm} \) では、他の手法と最大5％程度の誤差である。また、線形近似関数を用いて予測した \(R = 0 \)における応力拡大係数は、最大3％程度の誤差である。
前章の検証と同様、き裂先端の位置に依存して特異場を形成する応力分布が異なるため、平均化半径 \(R \) に対する応力拡大係数の予測値のプロファイルが異なる。一方、ここで示したように、荷重が載荷された場合も残留応力の勾配が大きく変動しない領域で特性テンソルを計算し、Fig. 12 (a) ~ (f) に示すようにほぼ線形で推移するプロファイルを捉えることができれば、線形補間を用いて無限小領域で定義される特性テンソルを精度よく予測することができる。このように、必要な精度に応じて誤差を許容しながら簡便に応力拡大係数を予測することや、無限小領域の特性テンソル値を求めて予測精度を高めるといった選択をすることができる。

4. 結 言

本研究では、突き合わせ溶接を想定した残留応力場中のき裂に対して特性テンソル法を適用し、性質の異なる残留応力と外力の複合的な作用による特異場において応力拡大係数を予測した。予測に使用した応力場は有限要素法より計算し、2.5 ～15 mm のき裂半長に対し 0.5 mm 程度の粗いメッシュサイズを用いた。予測した応力拡大係数を解析解と比較することで妥当性を評価した。得られた結論を以下に示す。

1) 特異要素を用いてき裂先端の特異性を再現することで、
残留応力場の応力拡大係数を5%以内の精度で推定することができる。

2) 最小二乗法などにより求めた補間関数を用いて無限小領域の特性テンソル成分を導出することにより、さらに高精度な特異場の評価が可能である。

3) 特性テンソル法を用いることで、残留応力場中のき裂進展予測に必要な特異場の評価を、計算コストを抑えつつ実施することができる。

参考文献
1) R. John, K. V. Jata, and K. Sadananda: Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys, International Journal of fatigue, 25.9-11 (2003), 939-948.
2) A. J. Allen M. T. Hutchings C. G. Windsor, C. Andreani: Neutron diffraction methods for the study of residual stress fields, Advances in Physics, 34-4 (1985), 445-473.
3) J. Lin N. Ma Y. Lei and H. Murakawa: Measurement of Residual Stress in Arc Welded Lap Joints by cosα X-ray Diffraction Method, JMPT, 243 (2017), 387-394.
4) Y. Ueda K. Fukuda K. Nakacho and S. Endo: A New Measuring Method of Residual Stresses with the Aid of Finite Element Method and Reliability of Estimated Values, Journal of the Society of Naval Architects of Japan, 138 (1975), 499-507.
5) Y. Ueda N. Ma: Estimating and Measuring Methods of Residual Stresses Using Inherent Strain Distribution Described as Functions (Report 1), Quarterly Journal of the Japan Welding Society, 11-1 (1993), 189-195.
6) M. B. Prime: Measuring residual stress and the resulting stress intensity factor in compact tension specimens, Fatigue & Fracture of Engineering Materials & Structures, 22(1999), 195-204.
7) C. D. Donne G. Raimbeaux: Residual stress effects on fatigue crack propagation in friction stir welds, ICFT10, Honolulu (2001).
8) T. Fett D. Munz: Stress Intensity Factors and Weight Functions, Computational Mechanics Publications (1997).
9) Y. Lei N. P. O’dowd and G. A. Webster: Fracture mechanics analysis of a crack in a residual stress field, International Journal of Fracture, 106-3 (2000), 195-216.
10) G. Servetti X. Zhang: Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect, Engineering Fracture Mechanics, 76-11 (2009), 1589-1602.
11) C. T. Sun Z. H. Jin: Fracture Mechanics, Academic Press (2012).
12) Y. Ueda H. Murakawa and N. Ma: Welding deformation and residual stress prevention, Elsevier (2012), 202-203.
13) T. L. Anderson: Fracture mechanics: fundamentals and applications, CRC press (2005).
14) H. Murakawa: Fatigue crack growth simulation using characteristic tensor, Proceedings of the International Offshore and Polar Engineering Conference (2018), 393-399.
15) K. Saito T. Hirashima N. Ma and H. Murakawa: Characteristic Tensor for Evaluation of Singular Stress Field Under Mixed-Mode Loadings, Computer Modeling in Engineering & Sciences, 122-2 (2020), 415-432.
16) M. A. Hussain W. E. Lorensen and G. Pflegel: The quarter-point quadratic isoparametric element as a singular element for crack problems, (1976).
17) R. Bao X. Zhang and N. A. Yahaya: Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods, Engineering Fracture Mechanics, 77-13 (2010), 2550-2566.
18) F. Z. Li C. F. Shih and A. Needleman: A comparison of methods for calculating energy release rates, Engineering fracture mechanics, 21-2 (1985), 405-421.