Supplementary Information

Enantiodivergent epoxidation of alkenes with a photoswitchable phosphate manganese-salen complex

Xiaofei Chen,¹,⁴ Pieter J. Gilissen,¹,⁴ Paul Tinnemans,¹ Nicolas Vanthuyne,² Floris P. J. T. Rutjes,¹ Ben L. Feringa,³ Johannes A.A.W. Elemans,¹ and Roeland J.M. Nolte¹

¹ Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. ² Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France. ³ Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. ⁴ These authors contributed equally to this work.

E-mail: r.nolte@science.ru.nl; j.elemans@science.ru.nl; b.l.feringa@rug.nl
Contents
1. Experimental details .. 1
 1.1 General information ... 1
 1.2 Synthesis of phosphate photo-switch .. 2
 1.3 Synthesis of substrates ... 15
 1.4 Synthesis of catalysts ... 17
 1.5 General epoxidation procedure ... 18
 1.6 Epoxide products .. 19
2. Resolution of enantiomers of phosphoric acid Rac-1 ... 22
 2.1 Analytical chiral HPLC separation data for compound Rac-1 .. 22
 2.2 Preparative separation data for compound Rac-1 ... 23
 2.3 Optical rotations ... 24
 2.4 Electronic Circular Dichroism ... 25
3. Optimized conditions for catalysis ... 26
4. Crystal data ... 30
5. UV-Vis and ECD spectra of catalysts ... 46
6. Details of catalytic epoxidation reactions and assignment of absolute configurations of
 enantioenriched epoxides ... 47
7. Mn2 obtained via different route and the corresponding catalytic results 49
8. Supporting references ... 51
9. Copies of NMR spectra of new compounds and chiral HPLC results 52
1. Experimental details

1.1 General information

Tetrahydrofuran was distilled from potassium under a nitrogen atmosphere. Chloroform was distilled from phosphorus pentoxide under a nitrogen atmosphere. Benzene was distilled from sodium under an argon atmosphere. n-Heptane was distilled from sodium under an argon atmosphere. Dichloromethane was distilled from calcium hydride under a nitrogen atmosphere. Acetonitrile was distilled from calcium hydride under an argon atmosphere. Other solvents and reagents were obtained from commercial suppliers and used without further purification. Reactions were followed by using thin-layer chromatography (TLC) on silica gel-coated plates (Merck 60 F254). Detection was performed with UV light at 254 nm and/or by charring at 150 °C after dipping in an aqueous solution of potassium permanganate. Column chromatography was performed manually using Acros silica gel, 0.035−0.070 mm, 60A, and Merck silica gel, 60H. Melting points were taken on a polarization microscope with a programmable hot-stage. NMR spectra were recorded at 298 K (unless stated otherwise) on a Bruker Avance III 500 spectrometer (500 MHz) equipped with a Prodigy BB cryoprobe. \(^1\)H NMR chemical shifts (\(\delta\)) are given in parts per million (ppm) and were referenced to tetramethylsilane (0.00 ppm). Coupling constants are reported as \(J\) values in Hertz (Hz). Data for \(^1\)H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration, assignment if applicable). Multiplicities are abbreviated as s (singlet), d (doublet), t (triplet), q (quartet), p (quintet), m (multiplet), b (broad). Mass spectra were recorded on a JEOL AccuTOF CS JMS-T100CS mass spectrometer. UV-vis spectra and ECD spectra were recorded at 298 K on a JASCO J-815 CD spectrophotometer (1 mm or 2 mm quartz cell). Irradiation experiments were carried out using Thorlabs Fiber-Coupled LEDs (M365FP1 and M470F3). Optical rotationary values are performed by Anton Paar Modular Circular Polarimeter MCP 100.
1.2 Synthesis of phosphate photo-switch
6,8-Dibromo-7-methoxy-3,4-dihydronaphthalen-1(2H)-one (4)

A solution of bromine (4.1 mL, 80 mmol, 3.0 equiv) in dry chloroform (20 mL) was added dropwise over 10 minutes to a solution of 4-(4-methoxyphenyl)butanoic acid 3 (5.2 g, 27 mmol, 1.0 equiv) and iron powder (0.15 g, 2.7 mmol, 10 mol%) in dry chloroform (50 mL). The resulting red-brown solution was stirred at 20 °C for 67 hours under an argon atmosphere. The reaction mixture was carefully poured into aqueous sodium metabisulfite (10% by weight, 400 mL) and the product was extracted with chloroform (3 × 100 mL). The combined organic extracts were dried over sodium sulfate and the solvent was removed in vacuo to afford crude 4-(3,5-dibromo-4-methoxyphenyl)butanoic acid (10 g) as a tan solid. This solid was added portion wise over 10 minutes to a preheated 40 °C solution of phosphorus pentoxide in methanesulfonic acid (7.7% by weight, Eaton’s reagent, 125 mL). The resulting red solution was stirred at 40 °C for 4 hours under an argon atmosphere. Upon cooling, the mixture was poured into ice-water (500 mL) and the resulting suspension was stirred vigorously for 1 hour. Then, the product was extracted with chloroform (2 × 250 mL). The combined organic extracts were washed with water (500 mL) and brine (250 mL); then dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified twice by 60A silica gel column chromatography (eluent first column: CHCl₃/n-heptane, 1:1 following 1:0, v/v; eluent second column: EtOAc/n-heptane, 1:20, v/v) to afford ketone 4 (4.4 g, 49% over 2 steps) as a white solid.

m.p. 95–97 °C.

1H NMR (500 MHz, CDCl₃) δ 7.46 (t, J = 0.9 Hz, 1H, H-5), 3.89 (s, 3H, H-11), 2.94–2.89 (m, 2H, H-4), 2.72–2.66 (m, 2H, H-2), 2.13–2.05 (m, 2H, H-3).

13C NMR (126 MHz, CDCl₃) δ 196.28 (C-1), 154.22 (C-7), 143.20 (C-10), 132.56 (C-5), 132.10 (C-9), 123.14 (C-6), 118.72 (C-8), 60.69 (C-11), 39.90 (C-2), 30.30 (C-4), 22.58 (C-3).

HRMS (ESI) calcd. for [C₁₁H₁₀⁷⁹Br₂O₂ + Na]⁺ 354.8945, found 354.8962.
A Schlenk flask was charged with aryl dibromide 4 (3.8 g, 11 mmol, 1.0 equiv), 4-(tert-butyl)phenylboronic acid (2.0 g, 11 mmol, 1.0 equiv), K$_3$PO$_4$ (19 g, 91 mmol, 8.0 equiv), Pd$_2$dba$_3$ (0.21 g, 0.23 mmol, 2.0 mol%) and DPEPhos (0.25 g, 0.46 mmol, 4.0 mol%). The flask was evacuated and refilled with argon (3×). Then, deoxygenated THF/water (110 mL, 4:1, v/v) was added and the resulting mixture was stirred at 50 °C for 46 hours under an argon atmosphere. Upon cooling, the reaction mixture was diluted with water (100 mL) and the product was extracted with EtOAc (2 × 150 mL). The combined organic extracts were dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by 60A silica gel column chromatography (eluent: CH$_2$Cl$_2$/n-heptane, 1:1 → 1:0, v/v). All fractions containing the desired product were combined and the solvent was removed in vacuo. The purified material was dissolved in CH$_2$Cl$_2$/n-heptane (40 mL, 1:1, v/v). Most CH$_2$Cl$_2$ was removed under reduced pressure and the resulting suspension was allowed to settle. The yellow n-heptane layer was decanted and the residual white solid was dried under high vacuum to afford ketone 5 (3.0 g, 68%) as a white solid.

m.p. 168–172 °C.

1H NMR (500 MHz, CDCl$_3$) δ 7.56–7.51 (m, 2H, H-13), 7.48–7.43 (m, 2H, H-14), 7.20 (t, J = 0.9 Hz, 1H, H-5), 3.45 (s, 3H, H-11), 2.98–2.94 (m, 2H, H-4), 2.74–2.69 (m, 2H, H-2), 2.15–2.08 (m, 2H, H-3), 1.37 (s, 9H, H-17).

13C NMR (126 MHz, CDCl$_3$) δ 196.77 (C-1), 154.46 (C-7), 151.62 (C-15), 142.47 (C-10), 140.15 (C-6), 133.96 (C-12), 131.36 (C-9), 130.31 (C-5), 128.76 (C-14), 125.54 (C-11), 125.54 (C-13), 118.55 (C-8), 60.43 (C-11), 40.16 (C-2), 34.83 (C-16), 31.47 (C-17), 30.64 (C-4), 22.84 (C-3).

HRMS (ESI) calcd. for [C$_{21}$H$_{23}$BrO$_2$ + H]$^+$ 387.0960, found 387.0960; calcd. for [C$_{21}$H$_{23}$BrO$_2$ + Na]$^+$ 409.0779, found 409.0779.
4’-(tert-Butyl)-2-methoxy-1,1’-biphenyl (7)

A Schlenk flask was charged with 2-bromoanisole 6 (16 g, 86 mmol, 1.0 equiv), 4-(tert-butyl)phenylboronic acid (23 g, 0.13 mol, 1.5 equiv), K$_2$CO$_3$ (35 g, 0.26 mol, 3.0 equiv) and Pd(dppf)Cl$_2$·CH$_2$Cl$_2$ (0.90 g, 1.1 mmol, 1.3 mol%). The flask was evacuated and refilled with argon (3×). Then, deoxygenated dioxane/water (400 mL, 4:1, v/v) was added and the resulting red mixture was refluxed for 22 hours under an argon atmosphere, quickly turning from red to black. Upon cooling, water (200 mL) was added and the product was extracted with EtOAc (2 × 300 mL). The combined organic extracts were washed with brine (200 mL); then dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by 60A silica gel column chromatography (eluent: EtOAc/n-heptane, 1:20, v/v). The purified material was recrystallized from methanol (100 mL) to afford biphenyl 7 (15.2 g, 74%) as a white solid.

1H NMR (500 MHz, CDCl$_3$) δ 7.50–7.45 (m, 2H, H-9), 7.45–7.40 (m, 2H, H-10), 7.33 (dd, J = 7.5, 1.8 Hz, 1H, H-6), 7.30 (ddd, J = 8.2, 7.4, 1.8 Hz, 1H, H-4), 7.02 (td, J = 7.5, 1.1 Hz, H-5), 6.97 (dd, J = 8.2, 1.1 Hz, H-3), 3.81 (s, 3H, H-7), 1.36 (s, 9H, H-13).

13C NMR (126 MHz, CDCl$_3$) δ 156.66 (C-2), 149.81 (C-11), 135.64 (C-8), 131.02 (C-6), 130.67 (C-1), 129.27 (C-9), 128.47 (C-4), 125.11 (C-10), 120.94 (C-5), 111.27 (C-3), 55.67 (C-7), 34.67 (C-12), 31.54 (C-13).

Spectral data were in agreement with literature values.$^\text{S1}$
(4’-[tert-Butyl]-2-methoxy-[1,1’-biphenyl]-3-yl)boronic acid (8)

n-Butyllithium (1.6M in hexanes, 23 mL, 38 mmol, 1.5 equiv) was added at −78 °C to a solution of arene 7 (6.0 g, 25 mmol, 1.0 equiv) and TMEDA (5.6 mL, 38 mmol, 1.5 equiv) in dry diethyl ether (75 mL) and the resulting mixture was stirred at 20 °C for 3 hours under an argon atmosphere. Then, the solution was cooled to −78 °C again and trimethyl borate (28 mL, 0.25 mol, 10 equiv) was added. The resulting mixture was stirred at 20 °C for 19 hours. Then, aqueous NaOH (6M, 125 mL) was added and the biphasic mixture was stirred for 1 hour and then the pH was brought to 1 with aqueous sulfuric acid (4M). The product was extracted with CH2Cl2 (2 × 300 mL). The combined organic extracts were washed with water (200 mL); then dried over sodium sulfate and the solvent was removed in vacuo to afford a yellow oil. The crude product was purified by 60A silica gel column chromatography (eluent: CH2Cl2/MeOH, 1:0 → 99:1). The first eluted fraction contained traces of the starting material. The second eluted fraction contained the desired boronic acid and monomethyl/dimethyl ester derivatives. The latter mixture was dissolved in CH2Cl2 (100 mL) and aqueous sulfuric acid (1M, 100 mL) was added. The biphasic mixture was stirred vigorously for 15 minutes to hydrolyze the boronic esters. Then, the organic layer was separated, dried over sodium sulfate and the solvent was removed in vacuo. Recrystallization from n-heptane (50 mL) afforded boronic acid 8 (4.1 g, 58%) as a white solid.

m.p. 108–110 °C.

1H NMR (500 MHz, CDCl3) δ 7.83 (dd, J = 7.4, 1.9 Hz, 1H, H-4), 7.52–7.48 (m, 2H, H-9), 7.48–7.43 (m, 2H, H-10), 7.46 (dd, J = 7.5, 1.9 Hz, 1H, H-6), 7.24 (t, J = 7.4 Hz, 1H, H-5), 6.33 (s, 2H, H-14), 3.42 (s, 3H, H-7), 1.37 (s, 9H, H-13).

13C NMR (126 MHz, CDCl3) δ 163.44 (C-2), 150.58 (C-11), 135.57 (C-4), 135.34 (C-8), 135.09 (C-6), 134.01 (C-1), 128.66 (C-9), 125.57 (C-10), 124.77 (C-5), 123.10 (C-3), 61.55 (C-7), 34.74 (C-12), 31.53 (C-13). Note: C-3 was detected indirectly through 1H-13C HMBC correlations from H-5 and H-14.

HRMS (ESI) calcd. for [C19H25BO3 + Na]+ 334.1831, found 334.1837; calcd. for [C19H25BO3 + Na]+ 335.1794, found 335.1801. Note: the measurement was performed using methanol as the solvent, therefore, instead of the boronic acid (C19H23BO3), the dimethyl boronate (C19H23BO3) was detected.
A Schlenk flask was charged with the aryl bromide 5 (2.9 g, 7.5 mmol, 1.0 equiv), boronic acid 8 (3.3 g, 12 mmol, 1.5 equiv), K$_2$CO$_3$ (3.1 g, 23 mmol, 3.0 equiv) and Pd(dppf)Cl$_2$·CH$_2$Cl$_2$ (0.31 g, 0.38 mmol, 5.0 mol%). The flask was evacuated and refilled with argon (3×). Then, deoxygenated dioxane/water (75 mL, 4:1, v/v) was added and the resulting red mixture was refluxed for 18 hours under an argon atmosphere, quickly turning from red to black. Upon cooling, water (100 mL) was added and the product was extracted with EtOAc (3 × 100 mL). The combined organic extracts were dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by 60A silica gel column chromatography (eluent: CH$_2$Cl$_2$/n-heptane, 3:1, v/v) to afford ketone 9 (3.5 g, 85%) as a white solid.

m.p. 103–107 °C.

1H NMR (500 MHz, CDCl$_3$) δ 7.62–7.57 (m, 2H, H-13), 7.57–7.52 (m, 2H, H-26), 7.46–7.42 (m, 2H, H-14), 7.42–7.38 (m, 2H, H-27), 7.33 (dd, J = 7.6, 1.8 Hz, 1H, H-23), 7.29 (s, 1H, H-5), 7.17 (t, J = 7.6 Hz, 1H, H-22), 7.06 (dd, J = 7.5, 1.7 Hz, 1H, H-21), 3.21 (s, 3H, H-24), 3.18 (s, 3H, H-11), 3.01 (t, J = 6.1 Hz, 2H, H-4), 2.61–2.55 (m, 2H, H-2), 2.18–2.10 (m, 2H, H-3), 1.36 (s, 9H, H-17), 1.35 (s, 9H, H-30).

13C NMR (126 MHz, CDCl$_3$) δ 197.95 (C-1), 154.95 (C-19), 154.77 (C-7), 151.06 (C-15), 149.73 (C-28), 140.72 (C-10), 139.35 (C-6), 136.52 (C-25), 134.95 (C-12), 134.28 (C-8), 134.23 (C-18), 132.74 (C-20), 131.53 (C-9), 130.89 (C-5), 130.18 (C-23), 129.00 (C-21), 128.89 (C-26), 128.77 (C-13), 125.43 (C-14), 125.13 (C-27), 123.46 (C-22), 60.58 (C-11), 60.31 (C-24), 40.47 (C-2), 34.78 (C-16), 34.66 (C-29), 31.58 (C-17 or C-30)*, 31.51 (C-17 or C-30)*, 30.54 (C-4), 23.33 (C-3). Note: carbon signals marked with an asterisk (*) could not be assigned unambiguously.

HRMS (ESI) calcd. for [C$_{38}$H$_{42}$O$_3$ + H]$^+$ 547.3212, found 547.3218; calcd. for [C$_{38}$H$_{42}$O$_3$ + Na]$^+$ 569.3032, found 569.3029.
8-(4′-[tert-Butyl]-2-methoxy-[1,1′-biphenyl]-3-yl)-6-(4-[tert-butyl]phenyl)-7-methoxy-2-methyl-3,4-
dihyronaphthalen-1(2H)-one (10)

n-Butyllithium (1.6M in hexanes, 5.1 mL, 8.1 mmol, 1.3 equiv) was added dropwise at 0 °C to a solution of
diisopropylamine (1.3 mL, 9.3 mmol, 1.5 equiv) in dry THF (20 mL) under an argon atmosphere. The resulting
mixture was stirred at 0 °C for 30 minutes and then it was cooled to −78 °C. Then, a solution of ketone 9 (3.4 g, 6.2
mmol, 1.0 equiv) in dry THF (10 mL) was added dropwise at −78 °C. The resulting pale orange
solution was stirred at −78 °C for 1 hour and then iodomethane (0.67 mL, 11 mmol, 1.7 equiv) was
added. The resulting yellow solution was stirred for 21 hours, while the temperature was gradually
increased from −78 °C to 20 °C. The reaction was quenched by the addition of aqueous NH₄Cl (2M,
50 mL). The product was extracted with EtOAc (3 × 50 mL). The combined organic extracts were
dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by
60A silica gel column chromatography (eluent: EtOAc/Hexane, 1:40, v/v) to afford ketone 10 (3.3
g, 95%) as a white solid. The product was obtained as a >9:1 mixture of conformers.

m.p. 101–104 °C.

1H NMR (500 MHz, CDCl₃, major conformer) δ 7.61–7.57 (m, 2H, H-13), 7.57–7.52 (m, 2H, H-26),
7.46–7.42 (m, 2H, H-14), 7.42–7.38 (m, 2H, H-27), 7.33 (dd, J = 7.5, 1.9 Hz, 1H, H-23), 7.29 (s, 1H,
H-5), 7.20 (t, J = 7.5 Hz, 1H, H-22), 7.15 (dd, J = 7.6, 1.9 Hz, 1H, H-21), 3.17 (s, 6H, H-11 + H-24),
3.09 (ddd, J = 16.6, 11.5, 4.7 Hz, 1H, H-4a), 3.01 (dt, J = 16.6, 4.4 Hz, 1H, H-4b), 2.66–2.56 (m, 1H,
H-2), 2.18 (dq, J = 13.3, 4.5 Hz, 1H, H-3a), 1.88 (dt, J = 13.3, 11.5, 4.9 Hz, 1H, H-3b), 1.36 (s, 9H,
H-17), 1.35 (s, 9H, H-30), 1.16 (d, J = 6.7 Hz, 3H, H-31).

13C NMR (126 MHz, CDCl₃, major conformer) δ 200.82 (C-1), 154.56 (C-7 or C-19)*, 154.48 (C-7 or
C-19)*, 150.86 (C-15), 149.63 (C-28), 139.93 (C-10), 139.00 (C-6), 136.46 (C-25), 134.95 (C-12),
134.06 (C-18), 133.72 (C-8), 132.46 (C-20), 131.80 (C-9), 130.77 (C-5), 130.15 (C-23), 129.48 (C-
21), 128.79 (C-26), 128.72 (C-13), 125.33 (C-14), 125.06 (C-27), 123.43 (C-22), 60.44 (C-11 or C-
24)*, 60.16 (C-11 or C-24)*, 43.50 (C-2), 34.69 (C-16), 34.57 (C-29), 31.57 (C-3), 31.52 (C-17 or C-
30)*, 31.46 (C-17 or C-30)*, 29.31 (C-4), 15.82 (C-31). Note: carbon signals marked with an asterisk
(*) could not be assigned unambiguously.

HRMS (ESI) calcd. for [C₃₉H₄₅O₃ + H]+ 561.3369, found 561.3375; calcd. for [C₃₉H₄₆O₃ + Na]+
583.3188, found 583.3179.
{(E)-8-(4′-[tert-Butyl]-2-methoxy-[1,1′-biphenyl]-3-yl)-6-(4-[tert-butyl]phenyl)-7-methoxy-2-methyl-3,4-dihydranaphthalen-1(2H)-ylidene}hydrazine (11)

Hydrazine monohydrate (55 mL) was added to a solution of ketone 10 (3.1 g, 5.5 mmol, 1.0 equiv) and Sc(OTf)$_3$ (0.27 g, 0.55 mmol, 10 mol%) in n-butanol (55 mL) and the resulting mixture was refluxed for 69 hours. Upon cooling, the mixture was diluted with water (100 mL) and the product was extracted with EtOAc (3 × 50 mL). The combined organic extracts were washed with brine (50 mL); then dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by 60A silica gel column chromatography (elucent: CH$_2$Cl$_2$/MeOH, 1:0 → 50:1, v/v) to afford hydrazone 11 (2.9 g, 90%) as a pale-yellow solid. The product was obtained as a 1:1 mixture of conformers. Note: if desired, the conformers could be separated by column chromatography. Note 2: the hydrazone has limited stability in CDCl$_3$ solution.

m.p. 121–123 °C.

1H NMR (500 MHz, CDCl$_3$, first conformer) δ 7.65–7.60 (m, 2H, H-13), 7.60–7.55 (m, 2H, H-26), 7.45–7.38 (m, 4H, H-14 + H-27), 7.26 (dd, $J = 7.6$, 1.8 Hz, 1H, H-23), 7.13 (s, 1H, H-5), 7.04 (t, $J = 7.5$ Hz, 1H, H-22), 6.85 (dd, $J = 7.5$, 1.8 Hz, 1H, H-21), 5.03 (bs, 2H, H-32), 3.44 (s, 3H, H-24), 3.16 (s, 3H, H-11), 2.92 (dp, $J = 8.8$, 6.9 Hz, 1H, H-2), 2.70 (dt, $J = 14.7$, 4.2 Hz, 1H, H-4a), 2.59–2.49 (m, 1H, H-23), 2.13 (s, 1H, H-5), 3.47 (dd, $J = 16.3$, 12.6, 8.9, 3.7 Hz, 1H, H-3b), 1.47 (s, 1H, H-31).

1H NMR (500 MHz, CDCl$_3$, second conformer) δ 7.57–7.53 (m, 2H, H-13), 7.53–7.49 (m, 2H, H-26), 7.44–7.36 (m, 5H, H-14 + H-21 + H-27), 7.27 (dd, $J = 7.6$, 1.8 Hz, 1H, H-23), 7.20 (t, $J = 7.6$ Hz, 1H, H-22), 7.12 (s, 1H, H-5), 5.03 (bs, 2H, H-32), 3.21 (s, 3H, H-11), 3.10 (s, 3H, H-24), 2.97–2.87 (m, 1H, H-2), 2.75–2.65 (m, 1H, H-4a), 2.59–2.49 (m, 1H, H-4b), 2.29–2.19 (m, 1H, H-3a), 1.52–1.42 (m, 1H, H-3b), 1.35 (s, 9H, H-17), 1.35 (s, 9H, H-30), 1.14 (d, $J = 6.9$ Hz, 3H, H-31).

13C NMR (126 MHz, CDCl$_3$, 1:1 mixture of conformers) δ 157.20, 154.66, 154.48, 153.65, 150.94, 150.06, 150.01, 149.81, 149.64, 149.59, 136.83, 136.60, 136.40, 136.07, 136.00, 134.97, 134.18, 133.91, 133.74, 133.60, 133.55, 133.70, 132.37, 132.14, 130.48, 129.53, 129.37, 129.16, 128.93, 128.86, 128.80, 128.74, 125.25, 125.21, 125.12, 125.06, 123.26, 122.60, 60.65, 60.50, 60.03, 59.58, 34.68, 34.66, 34.64, 32.51, 32.08, 31.59, 31.57, 31.55, 29.94, 29.03, 28.99, 28.76, 16.90, 16.25. Note: carbon signals could not be assigned unambiguously.

HRMS (ESI) calcd. for [C$_{39}$H$_{48}$N$_2$O$_2$ + H]$^+$ 575.3637, found 575.3625.
9H-Fluorene-9-thione (12)

Lawesson’s reagent (10 g, 25 mmol, 1.0 equiv) was added to a solution of 9H-fluorene-9-one (4.5 g, 25 mmol, 1.0 equiv) in dry toluene (25 mL) and the resulting mixture was stirred at 90 °C for 1 hour under an argon atmosphere. The color of the mixture gradually turned from yellow to dark green. Upon cooling, the mixture was directly loaded onto a 60A silica gel column, eluting with CH₂Cl₂/n-pentane (1:10, v/v). The green fraction was collected and the solvent was removed in vacuo to afford thioketone 12 (2.3 g, 47%) as a dark green solid. Note: The thioketone has limited stability and therefore should be used immediately in the next reaction.

¹H NMR (500 MHz, CDCl₃) δ 7.76 (ddd, J = 7.5, 1.1, 0.7 Hz, 2H), 7.48 (td, J = 7.3, 1.1 Hz, 2H), 7.45 (ddd, J = 7.4, 1.4, 0.7 Hz, 2H), 7.22 (td, J = 7.3, 1.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 228.21, 144.02, 141.01, 134.28, 129.06, 124.11, 119.83.
A solution of PIFA (2.3 g, 5.3 mmol, 1.1 equiv) in dry DMF (10 mL) was added at −50 °C to a solution of hydrazone 11 (2.8 g, 4.8 mmol, 1.0 equiv) in dry DMF (40 mL) under an argon atmosphere. The color of the solution quickly turned from yellow to orange-pink. After 1 minute of stirring at −50 °C, a solution of thioketone 12 (1.6 g, 8.2 mmol, 1.7 equiv) in dry DMF (10 mL) was added dropwise at −50 °C. The addition of the thioketone resulted in effervescence. The resulting brown solution was stirred at 20 °C for 4 hours. Then, the mixture was diluted with EtOAc (100 mL) and successively was washed with aqueous NH₄Cl (2M, 100 mL), water (2 × 100 mL) and brine (100 mL); then dried over sodium sulfate and the solvent was removed in vacuo to afford the crude episulfide intermediate. Then, HMPT (5.0 mL, 28 mmol, 5.8 equiv) was added to a solution of the crude episulfide in toluene (50 mL) and the resulting mixture was refluxed for 40 hours under an argon atmosphere. Upon cooling, the solvent was removed in vacuo. The crude product was purified by 60A silica gel column chromatography (eluent: CH₂Cl₂/n-pentane, 1:10 → 1:4, v/v). The yellow fraction was collected and the solvent was removed in vacuo. The resulting yellow solid was dissolved in CH₂Cl₂/EtOH (50 mL, 1:1, v/v). Most CH₂Cl₂ was removed under reduced pressure and the resulting yellow suspension was filtered. The precipitate was washed with EtOH (20 mL) and dried under high vacuum to afford overcrowded alkene 13 (2.4 g, 71% over 3 steps) as a yellow solid. The product was obtained as a >9:1 mixture of conformers. The relative stereochemistry of the major and minor conformers was deduced from 2D NOESY experiments. The initial part of the yellow fraction from the column was enriched in the minor conformer.

m.p. 202–206 °C.

¹H NMR (500 MHz, CDCl₃, major conformer) δ 7.87 (d, J = 7.6 Hz, 1H, H-43), 7.69–7.65 (m, 2H, H-13), 7.59–7.55 (m, 1H, H-40), 7.50 (dt, J = 7.6, 1.0 Hz, 1H, H-37), 7.49–7.45 (m, 2H, H-14), 7.32 (s, 1H, H-5), 7.29–7.24 (m, 3H, H-27 + H-42), 7.21 (td, J = 7.3, 1.1 Hz, 1H, H-41), 7.16–7.11 (m, 3H, H-26 + H-36), 6.96 (ddd, J = 8.3, 7.3, 1.2 Hz, 1H, H-35), 6.88 (dd, J = 7.7, 1.7 Hz, 1H, H-21), 6.86 (dd, J = 7.7, 1.7 Hz, 1H, H-23), 6.85 (dt, J = 7.9, 1.0 Hz, 1H, H-34), 6.51 (t, J = 7.7 Hz, 1H, H-22), 4.08 (sextet, J = 6.9 Hz, 1H, H-2), 3.25 (s, 3H, H-11), 3.11 (s, 3H, H-24), 2.78 (dt, J = 15.0, 5.0 Hz, 1H, H-4a), 2.60–2.52 (m, 1H, H-4b), 2.33 (ddt, J = 12.6, 7.2, 5.3 Hz, 1H, H-3a), 1.55–1.45 (m, 1H, H-3b), 1.49 (d, J = 7.0 Hz, 3H, H-31), 1.38 (s, 9H, H-17), 1.32 (s, 9H, H-30).

¹H NMR (400 MHz, CDCl₃, minor conformer) δ 7.78–7.68 (m, 3H), 7.58–7.52 (m, 1H), 7.50 (dt, J = 7.5, 1.0 Hz, 1H), 7.49–7.45 (m, 2H), 7.35 (s, 1H), 7.28–7.18 (m, 5H), 7.12 (dt, J = 7.9, 0.9 Hz, 1H), 7.09 (dd, J = 7.5, 1.8 Hz, 1H), 7.04 (dd, J = 8.1, 7.2, 1.2 Hz, 1H), 6.84 (dd, J = 7.5, 1.8 Hz, 1H),
6.83–6.78 (m, 2H), 6.74 (t, J = 7.5 Hz, 1H), 4.13 (sextet, J = 7.1 Hz, 1H), 3.26 (s, 3H), 3.08 (s, 3H), 2.70–2.60 (m, 1H), 2.46–2.34 (m, 2H), 1.56–1.46 (m, 1H), 1.52 (d, J = 6.9 Hz, 3H), 1.38 (s, 9H), 1.32 (s, 9H).

13C NMR (126 MHz, CDCl$_3$, major conformer) δ 154.86 (C-7), 154.25 (C-19), 150.26 (C-15), 149.41 (C-28), 146.80 (C-1), 140.24 (C-39), 139.82 (C-33), 139.22 (C-38), 138.75 (C-44), 137.90 (C-9), 136.55 (C-10), 136.37 (C-25), 136.03 (C-12), 134.89 (C-6), 133.95 (C-32), 133.88 (C-18), 133.35 (C-8), 132.28 (C-21), 130.34 (C-20), 130.09 (C-23), 129.40 (C-5), 128.91 (C-13), 128.68 (C-26), 126.88 (C-41), 126.63 (C-36), 126.54 (C-42), 126.20 (C-35), 125.33 (C-14), 124.86 (C-27), 124.66 (C-43), 124.23 (C-34), 121.83 (C-22), 119.49 (C-40), 118.89 (C-37), 61.04 (C-11), 59.67 (C-24), 35.91 (C-2), 34.73 (C-16), 34.57 (C-29), 32.08 (C-3), 31.57 (C-17), 31.55 (C-30), 28.23 (C-4), 20.28 (C-31).

HRMS (ESI) calcld. for [C$_{52}$H$_{52}$O$_2$ + Na]$^+$ 731.3865, found 731.3864.
1-(4'-[tert-Butyl]-2-hydroxy-[1,1'-biphenyl]-3-yl)-3-(4-[tert-butyl]phenyl)-8-(9H-fluoren-9-ylidene)-7-methyl-5,6,7,8-tetrahydroanaphthalen-2-ol (14)

MeMgI (3M in Et₂O, 6.7 mL, 20 mmol, 10 equiv) was added to methyl aryl ether 13 (1.4 g, 2.0 mmol, 1.0 equiv) under an argon atmosphere. The resulting yellow slurry was stirred at 20 °C for 5 minutes. Then, the mixture was heated to 80 °C under a positive argon pressure with continuous outflow. After 1 hour of gentle evaporation of the diethyl ether, the solid mixture was heated to 160 °C for and it was kept at this temperature for 1 hour. Upon cooling, the reaction was quenched with ice-water (100 mL) and then aqueous NH₄Cl (1M, 100 mL). The product was extracted with CH₂Cl₂ (2 × 100 mL). The combined organic extracts were washed with brine (100 mL); then dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by 60H silica gel column chromatography (eluent: Et₂O/\(\text{n-heptane, 1:25, v/v}\)) to afford diol 14 (1.28 g, 95%) as a yellow solid. The product was obtained as a 2:1 mixture of conformers. The relative stereochemistry of the major and minor conformers was deduced from 2D NOESY experiments. Note: longer reaction times resulted in substantial decomposition of the overcrowded alkenyl moiety.

m.p. 155–160 °C.

\(^1\)H NMR (500 MHz, CDCl₃, major conformer) δ 7.86–7.80 (m, 1H, H-43), 7.68–7.64 (m, 2H, H-13), 7.58–7.53 (m, 1H, H-40), 7.53–7.47 (m, 3H, H-14 + H-37), 7.35 (s, 1H, H-5), 7.35–7.31 (m, 2H, H-27), 7.28–7.22 (m, 2H, H-41 + H-42), 7.20 (dd, \(J = 7.7, 1.8\) Hz, 1H, H-21), 7.20–7.16 (m, 1H, H-36), 7.08 (dt, \(J = 7.8, 0.9\) Hz, 1H, H-34), 6.96 (ddd, \(J = 8.1, 7.3, 1.2\) Hz, 1H, H-35), 6.83–6.79 (m, 2H, H-26), 6.78 (dd, \(J = 7.5, 1.7\) Hz, 1H, H-23), 6.63 (t, \(J = 7.6\) Hz, 1H, H-22), 5.97 (s, 1H, H-11), 5.38 (s, 1H, H-24), 4.14 (sextet, \(J = 7.1\) Hz, 1H, H-2), 2.75–2.67 (m, 1H, H-4a), 2.52–2.39 (m, 2H, H-3a + H-4b), 1.59 (d, \(J = 6.9\) Hz, 3H, H-31), 1.50–1.40 (m, 1H, H-3b), 1.38 (s, 9H, H-17), 1.32 (s, 9H, H-30).

\(^1\)H NMR (500 MHz, CDCl₃, minor conformer) δ 7.81–7.77 (m, 1H, H-43), 7.70–7.66 (m, 2H, H-13), 7.64–7.60 (m, 1H, H-40), 7.60–7.55 (m, 1H, H-40), 7.57–7.52 (m, 1H, H-37), 7.52–7.48 (m, 2H, H-14), 7.37 (s, 1H, H-5), 7.37–7.33 (m, 2H, H-27), 7.28–7.22 (m, 2H, H-41 + H-42), 7.18 (td, \(J = 7.3, 1.1\) Hz, 1H, H-36), 7.09–7.05 (m, 2H, H-26), 7.00 (ddd, \(J = 8.4, 7.3, 1.2\) Hz, 1H, H-35), 6.89 (dd, \(J = 7.6, 1.7\) Hz, 1H, H-23), 6.84 (dt, \(J = 7.9, 0.9\) Hz, 1H, H-34), 6.79 (dd, \(J = 7.7, 1.7\) Hz, 1H, H-21), 6.43 (t, \(J = 7.6\) Hz, 1H, H-22), 5.22 (s, 1H, H-11), 4.97 (s, 1H, H-24), 4.05 (sextet, \(J = 6.9\) Hz, 1H, H-2), 2.76 (dt, \(J = 14.5, 4.7\) Hz, 1H, H-4a), 2.61–2.52 (m, 1H, H-4b), 2.37–2.29 (m, 1H, H-3a), 1.50–1.40 (m, 1H, H-3b), 1.40 (d, \(J = 6.9\) Hz, 3H, H-31), 1.38 (s, 9H, H-17), 1.33 (s, 9H, H-30).

\(^1\)C NMR (126 MHz, CDCl₃, major conformer) δ 150.63 (C-28), 150.37 (C-15), 149.22 (C-7), 149.06 (C-19), 144.56 (C-1), 140.51 (C-39), 139.16 (C-38), 138.48 (C-44), 138.24 (C-33), 137.44 (C-9),
135.33 (C-12), 135.21 (C-10), 135.00 (C-32), 134.04 (C-25), 132.84 (C-21), 130.03 (C-6), 129.71 (C-23), 129.62 (C-18), 129.36 (C-13), 129.01 (C-26), 128.99 (C-5), 127.02 (C-8 + C-41), 126.89 (C-36), 126.71 (C-42), 126.59 (C-35), 125.83 (C-27), 125.51 (C-14), 124.90 (C-34), 124.63 (C-43), 123.13 (C-20), 120.15 (C-22), 119.49 (C-40), 118.69 (C-37), 35.04 (C-2), 34.76 (C-16), 34.71 (C-29), 31.66 (C-3), 31.53 (C-17), 31.46 (C-30), 28.94 (C-4), 21.87 (C-31).

\(^{13}\text{C} \text{NMR (126 MHz, CDCl}_3, \text{minor conformer)} \delta 150.50 (C-15), 150.45 (C-28), 149.68 (C-7), 149.64 (C-19), 145.74 (C-1), 140.44 (C-39), 139.71 (C-33), 139.34 (C-38), 138.61 (C-44), 137.10 (C-9), 135.01 (C-12), 134.47 (C-32), 134.46 (C-25), 133.57 (C-10), 131.23 (C-21), 130.75 (C-23), 129.69 (C-5), 129.21 (C-13), 128.97 (C-6), 128.84 (C-26), 128.65 (C-18), 127.14 (C-41), 126.98 (C-36), 126.67 (C-42) 126.64 (C-35), 125.70 (C-27), 125.51 (C-14), 124.53 (C-43), 124.34 (C-34), 122.99 (C-8), 120.42 (C-20), 119.99 (C-22), 119.59 (C-40), 119.08 (C-37), 35.59 (C-2), 34.77 (C-16), 34.70 (C-29), 32.00 (C-3), 31.53 (C-17), 31.46 (C-30), 27.86 (C-4), 20.36 (C-31).

HRMS (ESI) calcd. for \([C_{50}H_{48}O_2 + Na]^+\) 703.3552, found 703.3541.
4,8-Bis(4-[tert-butyl]phenyl)-13-(9H-fluoren-9-ylidene)-6-hydroxy-12-methyl-10,11,12,13-tetrahydrobenzo[d]naptho[1,2-f][1,3,2]dioxaphosphepine 6-oxide (I)

POCl₃ (0.74 mL, 7.9 mmol, 3.0 equiv) was added dropwise to a solution of diol 14 (1.8 g, 2.6 mmol, 1.0 equiv) in dry pyridine (40 mL) under an argon atmosphere. The resulting mixture was heated to 70 °C and stirred for 2 hours. Then, the solution was cooled to 20 °C and water (8 mL) was added. The resulting mixture was heated to 70 °C and stirred for another hour. Upon cooling, the reaction mixture was poured into aqueous HCl (1M, 600 mL). The product was extracted with CHCl₃ (2 × 150 mL). The combined organic extracts were dried over sodium sulfate and the solvent was removed in vacuo. The crude product was purified by 60H silica gel column chromatography (CH₂Cl₂/MeOH, 1:0 → 19:1, v/v). The yellow fraction was collected and the solvent was removed in vacuo.

The resulting yellow solid was dissolved in CHCl₃ (100 mL) and washed with aqueous HCl (1M, 3 × 100 mL); then dried over sodium sulfate and the solvent was removed in vacuo to afford phosphoric acid Rac-I (1.8 g, 92%) as a yellow solid. Each enantiomer was present as a single conformer.

m.p. 255–257 °C.

1H NMR (500 MHz, c = 4 × 10⁻² M in TFA/CDCl₃, 1:24, v/v) δ 7.93–7.87 (m, 1H, H-43), 7.61–7.57 (m, 2H, H-13), 7.56–7.50 (m, 1H, H-40), 7.50–7.46 (m, 2H, H-14), 7.48 (s, 1H, H-5), 7.42 (dt, J = 7.5, 1.0 Hz, 1H, H-37), 7.39 (dd, J = 7.8, 1.7 Hz, 1H, H-21), 7.34–7.30 (m, 2H, H-27), 7.30–7.25 (m, 2H, H-41 + H-42), 7.18 (td, J = 7.4, 1.0 Hz, 1H, H-36), 7.04 (td, J = 7.6, 1.2 Hz, 1H, H-35), 7.02–6.98 (m, 2H, H-26), 6.95 (ddd, J = 7.5, 1.6, 0.9 Hz, 1H, H-23), 6.90 (dt, J = 7.9, 0.9 Hz, 1H, H-34), 6.84 (td, J = 7.7, 1.2 Hz, 1H, H-22), 4.23 (sextet, J = 7.0 Hz, 1H, H-2), 2.86–2.77 (m, 1H, H-4a), 2.63–2.48 (m, 2H, H-3a + H-4b), 1.64 (d, J = 6.9 Hz, 3H, H-31), 1.46–1.38 (m, 1H, H-3b), 1.36 (s, 9H, H-17), 1.31 (s, 9H, H-30).

13C NMR (126 MHz, c = 4 × 10⁻² M in TFA/CDCl₃, 1:24, v/v) δ 151.32 (C-15), 150.69 (C-28), 144.10 (d, 2J_C,P = 8.9 Hz, C-19), 143.17 (d, 2J_C,P = 9.2 Hz, C-7), 141.48 (d, 2J_C,P = 1.8 Hz, C-10), 141.41 (C-1), 140.84 (C-39), 139.21 (C-38), 137.99 (C-44), 137.64 (C-33), 136.71 (d, 4J_C,P = 1.3 Hz, C-9), 136.06 (C-32), 134.52 (d, 3J_C,P = 1.6 Hz, C-6), 134.49 (d, 3J_C,P = 1.7 Hz, C-18), 133.58 (C-12 + C-25), 131.04 (d, 4J_C,P = 1.3 Hz, C-21 or C-23)*, 131.02 (d, 4J_C,P = 1.3 Hz, C-21 or C-23)*, 130.46 (d, 4J_C,P = 1.3 Hz, C-5), 129.66 (d, 3J_C,P = 1.9 Hz, C-8), 129.32 (C-13), 129.24 (C-26), 127.71 (C-41), 127.62 (C-36), 127.30 (d, 3J_C,P = 1.7 Hz, C-20), 127.15 (C-35), 126.95 (C-42), 125.47 (C-14), 125.02 (C-27), 124.95 (C-43), 124.78 (d, 3J_C,P = 1.9 Hz, C-22), 124.26 (C-34), 119.61 (C-40), 118.89 (C-37), 34.77 (C-16), 34.65 (C-29), 34.56 (C-2), 31.47 (C-3), 31.34 (C-17), 31.32 (C-30), 29.46 (C-4), 21.35 (C-31). Note: carbon signals marked with an asterisk (*) could not be assigned unambiguously.

31P NMR (202 MHz, c = 4 × 10⁻² M in TFA/CDCl₃, 1:24, v/v) δ 2.20.

HRMS (ESI) calcd. for [C₉H₄O,P + Na]⁺ 765.3110, found 765.3131.
1.3 Synthesis of substrates2

2,2-Dimethyl-6-nitro-2H-chromene (17a)82

This compound was purchased from Sigma-Aldrich and purified further by silica gel column chromatography (elucent: ethyl acetate/n-pentane, 1:4, v/v) to give light-yellow solid 17a as a white solid.

2,2-Dimethyl-2H-chromene-6-carbonitrile (18a)84

Titanium tetraethoxide (1.14 g, 5 mmol) and 1.7 g (10 mmol) of [1,1’-biphenyl]-4-ol were added to a three-neck flask and diluted with dry toluene until a final volume of 16 mL was reached. The mixture was heated to 90 °C and kept at this temperature for 50 minutes, after which distilled ethanol was carefully added under argon. Thereafter, a solution of 2.52 g (30 mmol) of 3-methylbut-2-enal dissolved in 50 mL dry toluene was added to the flask. The mixture was refluxed for 6 hours and an aqueous saturated solution of ammonium chloride was added. The mixture was extracted with diethyl ether, the combined fractions concentrated and the obtained product purified by silica gel chromatography (elucent: ethyl acetate/ pentane, 1:5, v/v) to give a light-yellow solid in 48% yield (2.4 mmol, 0.57 g).

2H NMR (500 MHz, CDCl$_3$) δ 5.84 (m, 2H), 7.40 (m, 2H), 7.34 (dd, $J = 8.4$, 2.3 Hz, 1H), 7.28 (t, $J = 7.4$ Hz, 1H), 7.20 (d, $J = 2.3$ Hz, 1H), 6.84 (d, $J = 8.3$, 1H), 6.38 (dd, $J = 9.8$, 0.7 Hz, 1H), 5.65 (d, $J = 9.8$ Hz, 1H), 1.46 (s, 6H). 13C NMR (126 MHz, CDCl$_3$) δ 152.55, 140.86, 133.84, 131.07, 128.67, 127.72, 126.62, 124.96, 122.31, 121.39, 116.57, 76.43, 28.10. GC-MS (C$_{17}$H$_{14}$O): Calculated 236.1201, Found 236.1290.
6-Bromospiro[chromene-2,1'-cyclohexane] (20a)S2

Ammonium chloride (1.5 g, 27.5 mmol), copper(I) chloride (290 mg, 3.0 mmol), and aqueous 37.5% hydrochloric acid (15.0 mL) were added to a three-neck flask and the mixture was cooled with an ice bath. After 15 minutes, 3-ethylpent-1-yn-3-ol (1.72 g, 15.6 mmol) was slowly added to the flask and the mixture was stirred for 2 hours. Subsequently, it was extracted with diethyl ether and the combined organic layers were concentrated under vacuum. Dichloromethane was added and the product was filtrated. The compound 1-ethynyl-1-chlorocyclohexane was obtained as a light-yellow oily solid and directly used for next stepS3 in which 4-bromo-phenol (173 mg, 1 mmol) was used as the starting material. All further procedures were the same as described for the synthesis of 17. After reaction, the product was purified by silica gel column chromatography (eluent: CH2Cl2/n-pentane, 1:1, v/v) to give 20a as a pale-yellow solid with 65% yield (0.65 mmol, 0.18 g).

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.17 (dd, \(J = 8.5, 2.4\) Hz, 1H), 7.07 (d, \(J = 2.4\) Hz, 1H), 6.69 (dd, \(J = 8.5, 0.7\) Hz, 1H), 6.25 (dd, \(J = 9.9, 0.7\) Hz, 1H), 5.67 (d, \(J = 9.8\) Hz, 1H), 1.32 - 1.93 (m, 10H). 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 151.93, 131.76, 131.41, 128.71, 124.05, 121.74, 118.17, 112.58, 77.15, 35.86, 25.24, 21.28. GC-MS (C\textsubscript{14}H\textsubscript{15}BrO): Calculated 278.0306, Found 278.0392.
1.4 Synthesis of catalysts

The synthetic procedure was based on a previously reported protocol.52

Rac-Mn2.

Manganese(III) salen complex Mn15 (29.0 mg, 50 µmol, 1.0 equiv) and phosphoric acid Rac-1 (37.8 mg, 51 µmol, 1.02 equiv) were dissolved in acetone (0.40 mL). Then, aqueous 2.5M NaOH (20.4 µL, 51 µmol, 1.02 equiv) was added and the resulting mixture was stirred for 4 hours in the dark. The solvent was removed in vacuo to afford a brown solid. This brown solid was dissolved in dry CH\textsubscript{2}Cl\textsubscript{2} (6 mL) leaving behind a white precipitate of NaCl. The solution was separated from the precipitate, and the solvent was removed in vacuo to afford again a brown solid. This dissolution, separation, and evaporation process was repeated two more times to ensure complete removal of NaCl. The thus obtained brown material was dried under high vacuum (<1 mbar) for 2 days to afford the racemic catalyst Rac-Mn2 (61.8 mg, 48 μmol, 96%) as a brown solid.

M.p. 264–266 °C. HRMS (ESI) Calcd. for [C\textsubscript{82}H\textsubscript{92}MnN\textsubscript{2}O\textsubscript{6}P + H]+ 1287.6152, Found 1287.6224.

Anal. Calcd. for C\textsubscript{82}H\textsubscript{92}MnN\textsubscript{2}O\textsubscript{6}P + H\textsubscript{2}O: C, 75.44; H, 7.26; N, 2.15. Found: C, 74.70; H, 7.34; N, 2.11. UV-Vis (CH\textsubscript{2}Cl\textsubscript{2}) λ/\text{nm} (log(ε/M\textsubscript{−1}\cdot cm−1)) 335 (4.46), 353 (4.46).

(R,S,M)-Mn2.

According to the procedure for Rac-Mn2, the reaction of Mn15 (29.0 mg, 50 µmol, 1.0 equiv), enantiopure (S,M,R)-1 (37.8 mg, 51 µmol, 1.02 equiv), and aqueous 2.5M NaOH (20.4 µL, 51 µmol, 1.02 equiv) in acetone (0.40 mL) afforded (S,M,R)-Mn2 (63.1 mg, 49 µmol, 98%) as a brown solid.

M.p. 258–260 °C. UV-Vis (CH\textsubscript{2}Cl\textsubscript{2}) λ/\text{nm} (log(ε/M\textsubscript{−1}\cdot cm−1)) 335 (4.44), 353 (4.45). ECD (CH\textsubscript{2}Cl\textsubscript{2}) λ/\text{nm} (Δε/M\textsubscript{−1}\cdot cm−1) 257 (+7.4), 279 (−56.5), 322 (+9.1), 433 (+5.2).

(R,P,Sa)-Mn2.

According to the procedure for Rac-Mn2, the reaction of Mn15 (29.0 mg, 50 µmol, 1.0 equiv), enantiopure (R,P,Sa)-1 (37.8 mg, 51 µmol, 1.02 equiv), and aqueous 2.5M NaOH (20.4 µL, 51 µmol, 1.02 equiv) in acetone (0.40 mL) afforded (R,P,Sa)-Mn2 (61.8 mg, 48 µmol, 96%) as a brown solid.

M.p. 267–269 °C. UV-Vis (CH\textsubscript{2}Cl\textsubscript{2}) λ/\text{nm} (log(ε/M\textsubscript{−1}\cdot cm−1)) 335 (4.44), 353 (4.45). ECD (CH\textsubscript{2}Cl\textsubscript{2}) λ/\text{nm} (Δε/M\textsubscript{−1}\cdot cm−1) 257 (+7.4), 279 (−56.5), 322 (+9.1), 433 (+5.2).
1.5 General epoxidation procedure
A pre-dried Schlenk finger was charged with racemic or enantiopure catalyst Mn2 (3.2 mg, 2.5 mol%). The Schlenk finger was evacuated and backfilled with argon (3×). Then, olefin substrate (0.10 mmol, 1.0 equiv) and dry benzene (1.9 mL) were added and the resulting brown solution was stirred at 20 °C for 5 minutes. Subsequently, iodosylbenzene (26.4 mg, 0.12 mmol, 1.2 equiv) was added in one portion. The resulting mixture was stirred for 16 hours in the dark under an argon atmosphere. Thereafter, the solvent was removed in vacuo and the crude product was purified by preparative TLC (eluent: EtOAc/n-heptane, 1:3, v/v) to afford the isolated epoxide product. Enantiomeric excess values were determined by chiral HPLC analysis.
1.6 Epoxide products
2,2-Dimethyl-6-nitro-1a,7b-dihydro-2H-oxireno[2,3-c]chromene (17b)

Compound 17b (19.7 mg, 89 µmol, yield 89%) was obtained from compound 17a (20.5 mg, 0.10 mmol) with (S,M,Rα)-Mn2 according to the general epoxidation procedure.1H NMR (500 MHz, CDCl3) δ 8.30 (d, J = 2.7 Hz, 1H), 8.15 (dd, J = 9.0, 2.8 Hz, 1H), 6.89 (d, J = 9.0 Hz, 1H), 3.99 (d, J = 4.3 Hz, 1H), 3.56 (d, J = 4.4 Hz, 1H), 1.62 (s, 3H), 1.32 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 158.28, 141.46, 126.30, 125.80, 120.26, 118.48, 75.19, 62.08, 50.04, 25.47, 23.15. GC-MS (C11H11NO3): Calculated 221.0688, Found 221.0743. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 9:1, v/v, flow rate 0.8 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers at 26.5 and 28.3 min.). [α]D20 = +104.895° (c = 0.257 g/100 mL in ethyl acetate) obtained by (S,M,Rα)-Mn2. [α]D20 = -45.752° (c = 0.153 g/100 mL in ethyl acetate) obtained by (S,P,Sα)-Mn2. [α]D20 = -128.384° (c = 0.358 g/100 mL in ethyl acetate) obtained by (R,P,Sα)-Mn2. [α]D20 = +55.306° (c = 0.217 g/100 mL in ethylacetate) obtained by (R,M,Rα)-Mn2.

2,2-Dimethyl-1a,7b-dihydro-2H-oxireno[2,3-c]chromene-6-carbonitrile (18b)

Compound 18b (17.1 mg, 85 µmol, yield 85%) was obtained from compound 18a (18.5 mg, 0.10 mmol) with (S,M,Rα)-Mn2 according to the general epoxidation procedure.1H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 2.1 Hz, 1H), 7.55 (dd, J = 8.5, 2.1 Hz, 1H), 6.89 (d, J = 8.5 Hz, 1H), 3.93 (dd, J = 4.4, 0.6 Hz, 1H), 3.56 (d, J = 4.4 Hz, 1H), 1.62 (s, 3H), 1.32 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 156.49, 134.41, 133.80, 121.09, 119.03, 118.42, 104.33, 74.67, 62.30, 49.88, 25.50, 23.04. GC-MS (C12H11NO2): Calculated 201.0790, Found 201.0786. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 7:3, v/v, flow rate 0.5 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers at 22.2 and 23.1 min.). [α]D20 = +79.470° (c = 0.151 g/100 mL in ethyl acetate) obtained by (S,M,Rα)-Mn2. [α]D20 = -42.373° (c = 0.118 g/100 mL in ethylacetate) obtained by (S,P,Sα)-Mn2. [α]D20 = -0.151 g/100 mL in ethyl acetate) obtained by (S,P,Sα)-Mn2.

2,2-Dimethyl-6-phenyl-1a,7b-dihydro-2H-oxireno[2,3-c]chromene (19b)

Compound 19b (18.9 mg, 75 µmol, yield 75%) was obtained from compound 19a (23.6 mg, 0.10 mmol) with (S,M,Rα)-Mn2 according to the general epoxidation procedure.1H NMR (400 MHz, CDCl3) δ 7.58 (dt, J = 8.1, 1.6 Hz, 3H), 7.50 (dd, J = 8.4, 2.3 Hz, 1H), 7.45 (m, 2H), 7.34 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 4.00 (dd, J = 4.4 Hz, 1H), 3.55 (d, J = 4.4 Hz, 1H), 1.64 (s, 3H), 1.33 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 152.12, 140.45, 134.31, 129.00, 128.77, 128.30, 126.89, 126.72, 120.16, 118.36, 73.27, 62.78, 51.11, 25.71, 22.73. GC-MS (C11H16O2): Calculated 252.1150, Found 252.1125. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 98:2, v/v, flow rate 0.5 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers 16.3 and 23.3 min.). [α]D20 = +43.410° (c = 0.253 g/100 mL in ethyl acetate) obtained by (S,M,Rα)-Mn2. [α]D20 = -22.099° (c = 0.362 g/100 mL in ethyl acetate) obtained by (S,P,Sα)-Mn2.

6'-Bromo-1a',7b'-dihydrospiro[cyclohexane-1,2'-oxireno[2,3-c]chromene] (20b)
Compound 20b (23.9 mg, 81 µmol, yield 81%) was obtained from compound 20a (27.9 mg, 0.10 mmol) with \((S,M,R_\alpha)-\text{Mn2}\) according to the general epoxidation procedure. 1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, $J = 2.4$ Hz, 1H), 7.35 (dd, $J = 8.6, 2.4$ Hz, 1H), 6.77 (dd, $J = 8.6, 0.6$ Hz, 1H), 3.83 (dd, $J = 4.4, 0.6$ Hz, 1H), 3.50 (d, $J = 4.4$ Hz, 1H), 2.09 (m, 1H), 1.94 (m, 1H), 1.62 (m, 4H), 1.45 (m, 4H). 13C NMR (126 MHz, CDCl$_3$) δ 151.44, 133.00, 132.09, 122.92, 119.94, 112.74, 74.00, 62.23, 49.83, 34.03, 30.22, 25.33, 21.11, 20.85. GC-MS \((C_{10}H_{13}BrO_2)\): Calculated 294.0255, Found 294.0341. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, v/v, 98:2, flow rate 0.5 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers at 13.7 and 14.7 min.). $[\alpha]^{20}_D = +20.661^\circ$ (c = 0.387 g/100 mL in ethyl acetate) obtained by \((S,M,R_\alpha)-\text{Mn2}\). $[\alpha]^{20}_D = -7.160^\circ$ (c = 0.419 g/100 mL in ethyl acetate) obtained by \((S,P,S_\alpha)-\text{Mn2}\).

Styrene oxide (21b)

Compound 21b (7.9 mg, 66 µmol, yield 66%) was obtained from compound 21a (10.4 mg, 0.10 mmol) with \((S,M,R_\alpha)-\text{Mn2}\) according to the general epoxidation procedure. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.35 (m, 5H), 3.87 (dd, $J = 4.1, 2.5$ Hz, 1H), 3.15 (dd, $J = 5.5, 4.1$ Hz, 1H), 2.82 (dd, $J = 5.5, 2.6$ Hz, 1H). GC-MS \((C_8H_{18}O)\): Calculated 120.0575, Found 120.0583. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 98:2, v/v, flow rate 0.5 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers at 12.6 and 13.5 min).

2-(4-Chlorophenyl)oxirane (22b)

Compound 22b (13.6 mg, 88 µmol, yield 88%) was obtained from compound 22a (13.8 mg, 0.10 mmol) with \((S,M,R_\alpha)-\text{Mn2}\) according to the general epoxidation procedure. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7.35 (m, 2H), 7.24 (m, 2H), 3.86 (dd, $J = 4.1, 2.5$ Hz, 1H), 3.17 (dd, $J = 5.4, 4.0$ Hz, 1H), 2.78 (dd, $J = 5.4, 2.5$ Hz, 1H). 13C NMR (101 MHz, CD$_2$Cl$_2$) δ 136.18, 133.95, 129.00, 128.72, 126.84, 51.80, 51.25. GC-MS \((C_9H_{16}ClO)\): Calculated 154.0185, Found 154.0189. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 98:2, v/v, flow rate 0.5 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers at 11.2 and 11.9 min.).

4-(Oxiran-2-yl)phenyl acetate (23b)

Compound 23b (15.8 mg, 89 µmol, yield 89%) was obtained from compound 23a (16.2 mg, 0.10 mmol) with \((S,M,R_\alpha)-\text{Mn2}\) according to the general epoxidation procedure. 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (m, 2H), 7.10 (m, 2H), 3.89 (dd, $J = 4.1, 2.6$ Hz, 1H), 3.16 (dd, $J = 5.5, 4.0$ Hz, 1H), 2.79 (dd, $J = 5.5, 2.6$ Hz, 1H), 2.32 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 169.42, 150.54, 135.23, 126.56, 121.72, 51.92, 51.22, 21.11. GC-MS \((C_{10}H_{14}O_2)\): Calculated 178.0630, Found 178.0562. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 98:2, v/v, flow rate 0.5 mL/min, detection at λ 215 nm, 35 °C, eluted enantiomers at 36.4 and 40.9 min.).

1-Phenyl-7-oxabicyclo[4.1.0]heptane (24b)
Compound 24b (11.9 mg, 68 µmol, yield 68%) was obtained from compound 24a (15.8 mg, 0.10 mmol) with \((S,M,R)_2\)-Mn2 according to the general epoxidation procedure. \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.38 (m, 4H), 7.27 (d, \(J = 7.0\) Hz, 1H), 3.10 (dt, \(J = 3.6, 1.1\) Hz, 1H), 2.31 (ddd, \(J = 14.9, 8.5, 5.4\) Hz, 1H), 2.15 (m, 1H), 2.01 (m, 2H), 1.62 (m, 2H), 1.49 (m, 1H), 1.38 (m, 1H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) δ 142.53, 128.25, 127.16, 125.31, 61.92, 60.23, 28.86, 24.73, 20.13, 19.81. GC-MS (C\(_{15}\)H\(_{22}\)O\(_2\)): Calculated 174.1045, Found 174.1062. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 98:2, v/v, flow rate 0.5 mL/min, detection at \(\lambda = 215\) nm, 35 °C, eluted enantiomers at 8.9 and 9.9 min.).

6a-Methyl-1a,6a-dihydro-6H-indeno[1,2-b]oxirene (25b)

Compound 25b (5.1 mg, 35 µmol, yield 35%) was obtained from compound 25a (13.1 mg, 0.10 mmol) with \((S,M,R)_2\)-Mn2 according to the general epoxidation procedure. \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.48 (dt, \(J = 7.2, 1.0\) Hz, 1H), 7.21 (m, 3H), 4.07 (d, \(J = 1.3\) Hz, 1H), 3.19 (d, \(J = 17.7\) Hz, 1H), 2.94 (dd, \(J = 17.8, 1.1\) Hz, 1H), 1.73 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) δ 144.52, 141.77, 128.25, 126.07, 125.79, 124.88, 65.36, 65.05, 38.73, 18.57. GC-MS (C\(_{10}\)H\(_{10}\)O): Calculated 146.0732, Found 146.0711. The enantiomeric purity was determined by chiral HPLC (Lux 3u Cellulose II, eluent heptane/isopropanol, 99:2:0.8, v/v, flow rate 0.5 mL/min, detection at \(\lambda = 215\) nm, 35 °C, eluted enantiomers at 22.5 and 23.5 min.).
2. Resolution of enantiomers of phosphoric acid Rac-1

2.1 Analytical chiral HPLC separation data for compound *Rac-1*

The sample was dissolved in dichloromethane, injected onto the chiral column, and detected with an UV detector at 254 nm and with a circular dichroism detector at 254 nm. The flow-rate was 1 mL/min.

Column	Mobile Phase	t1	k1	t2	k2	α	Rs
Chiralpak IE	Ethanol with 0.1% of trifluoroacetic acid / dichloromethane (50/50, v/v)	3.54 (+)	0.20	4.43 (-)	0.50	2.52	3.72

Supplementary Figure 1. Chiral HPLC chromatogram of Rac-1.

RT [min]	Area	Area %	Capacity Factor	Enantioselectivity	Resolution (USP)
3.54	3896	50.72	0.20		
4.43	3786	49.28	0.50	2.52	3.72
Sum	7682	100.00			
2.2 Preparative separation data for compound *Rac-1*

- **Sample preparation:** circa 1.5 g of *Rac-1* was dissolved in 60 mL of dichloromethane / ethanol (50/50, v/v).

- **Chromatographic conditions:** Chiralpak IE (250 x 10 mm), eluent ethanol with 0.1% of trifluoroacetic / dichloromethane (50/50 v/v) as mobile phase, flow-rate 5 mL/min, UV detection at 290 nm.

- **Injections (stacked):** 430 times 140 µL, every 2.9 min.

- **First fraction:** 720 mg of the first eluted enantiomer with ee > 99 %.

 ![Supplementary Figure 2. Chiral HPLC chromatogram of the first eluted enantiomer of compound 1.](image)

RT [min]	Area	Area%
3.53	4718	99.60
4.46	19	0.40
Sum	4737	100.00

- **Second fraction:** 680 mg of the second eluted enantiomer with e.e. > 99 %.

 ![Supplementary Figure 3. Chiral HPLC chromatogram of the second eluted enantiomer of compound 1.](image)

RT [min]	Area	Area%
3.54	51	0.40
4.42	12588	99.60
Sum	12639	100.00
2.3 Optical rotations
Optical rotations were measured on a Jasco P-2000 polarimeter with a halogen lamp (589, 578 and 546 nm), in a 10 cm cell, thermostated at 25°C with a Peltier controlled cell holder.

Supplementary Table S1. Optical rotations of the enantiomers of compound 1.

λ (nm)	Compound 1 First eluted enantiomer on Chiralpak IE \([\alpha]_{25}^{CH_2Cl_2, c = 0.22}\)	Compound 1 Second eluted enantiomer on Chiralpak IE \([\alpha]_{25}^{CH_2Cl_2, c = 0.19}\)
589	+ 570	- 570
578	+ 610	- 610
546	+ 760	- 760
2.4 Electronic Circular Dichroism

ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 ± 0.2°C. A CD quartz cell of 1 mm of optical pathlength was used. The CD spectrometer was purged with nitrogen before recording each spectrum, which was baseline subtracted. The baseline was always measured for the same solvent and in the same cell as the samples. The spectra are presented without smoothing and further data processing. Acquisition parameters: 0.1 nm as intervals, scanning speed 50 nm/min, band width 2 nm, and 3 accumulations per sample.

First eluted enantiomer: green solid line, concentration 0.21 mmol.L\(^{-1}\) in acetonitrile.

Second eluted enantiomer: red dotted line, concentration 0.21 mmol.L\(^{-1}\) in acetonitrile.

Supplementary Figure 4. ECD (top) and UV-vis (bottom) spectra of the two enantiomers of compound 1.
3. Optimized conditions for catalysis

![Catalysis reaction diagram]

Supplementary Table 2. Optimizing the conditions for catalysis. Effect of solvent

Entry	Solvent	Conversion/%	Catalyst concentration/%	Yield/% b
1	Benzene	99	5	85
2	Benzene	96	2.5	84
3	Dry benzene	99	2.5	89
4	Dry dichloromethane	20	2.5	11
5	Dry acetonitrile	82	2.5	70
6	Dry toluene	28	2.5	19
7	Dry chloroform	31	2.5	18
8	Dry methanol	39	2.5	28
9	Dry DMF	20	2.5	7

a Reaction time 6 h. b Isolated yield of epoxide. c The enantiomeric excess result data is shown in Supplementary Figure 59.
Supplementary Table 3. Optimizing the conditions for catalysis. Effect of water

Entry	Solvent	Catalyst	Conversion/ %	Yield/ %	e.r.	e.e.	Figure
1	Benzene (S,M,Ra)-Mn2	96	85	23:77	54		S60
2	Benzene (S,P,Sa)-Mn2	95	84	64:36	28		S61
3	Dry benzene (S,M,Ra)-Mn2	99	89	13:87	74		S62
4	Dry benzene (S,P,Sa)-Mn2	90	73	71:29	42		S63
5	Benzene with 5% water (S,M,Ra)-Mn2	96	75	36:64	28		S64
Supplementary Table 4. Optimizing the conditions for catalysis. Effect of solvent polarity

Entry	Solvent	Catalyst	Conversion/\%	Yield/\%	e.r.	e.e.	Figure
1	50% Benzene, 50% heptane	(S,M,R_a)-Mn2	92	76	16:84	68	S65
2	10% Benzene, 90% heptane	(S,M,R_a)-Mn2	68	54	18:82	64	S66
3	Dry acetonitrile	(S,M,R_a)-Mn2	85	70	40:60	20	S67
Supplementary Table 5. Optimizing the conditions for catalysis. Effect of temperature

Entry	Solvent	Catalyst	Conversion/\%	Yield/\%	e.r.	e.e.	Figure
1	Dry benzene 20 °C	(S,M,R_a)-Mn2	99	89	13:87	74	S62
2^a	Dry benzene 10 °C	(S,M,R_a)-Mn2	98	79	17:83	66	S68
3	Dry benzene 30 °C	(S,M,R_a)-Mn2	99	85	16:84	68	S69
4^a	Dry benzene (50%) dry heptane (50%) 0 °C	(S,M,R_a)-Mn2	59	50	22:78	56	S70

^aReaction time 8 h.
4. Crystal data

Supplementary Figure 5. Structures and corresponding schematic top-down views of the two enantiomers present in the X-ray crystal structure of Rac-Mn2. a Capped stick style view of the X-ray structure of the \((S,M,R_a)\)-Mn2 enantiomer. b Capped stick style view of the X-ray structure of the \((R,P,S_a)\)-Mn2 enantiomer. Color coding: blue: fluorenyl group; dark green: tBu-phenyl; light green: methyl group attached to the stereogenic center; orange: phosphorus atom; red: oxygen atoms of the phosphate moiety; purple: manganese center; hydrogen atoms have been omitted for clarity.

Deposition Number 2125340

Summary of Data - Deposition Number 2125340

Compound Name: \((S,M,R_a)\text{-Mn2}/(R,P,S_a)\text{-Mn2}\) racemate

Data Block Name: data_p2125b

Unit Cell Parameters: a 14.7197(9) b 25.5687(16) c 21.0556(13) P21/c

CheckCIF/PLATON report

Structure factors have been supplied for datablock(s) p2125b

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: p2125b

Bond precision:	C-C = 0.0043 Å	Wavelength=0.71073

Cell:	a=14.7197(9)	b=25.5687(16)	c=21.0556(13)
	alpha=90	beta=105.779(2)	gamma=90
Temperature:	150 K		

Volume	Calculated	Reported
	7626.0(8)	7625.9(8)

Space group	P 21/c	P 21/c
Hall group	-P 2ybc	-P 2ybc

Moiety formula	C82 H92 Mn N2 O6 P, C7 H8	C82 H92 Mn N2 O6 P, C7 H8
Sum formula	C89 H100 Mn N2 O6 P	C89 H100 Mn N2 O6 P
Mr	1379.63	1379.61
Dx, g cm⁻³	1.202	1.202
Z	4	4
Mu (mm⁻¹)	0.249	0.249
F000	2944.0	2944.0
F000'	2946.84	
h,k,lmax	19,34,28	19,34,28
Nref	19089	18937
Tmin,Tmax	0.950,0.993	0.624,0.746
Tmin’	0.931	

Correction method= # Reported T Limits: Tmin=0.624 Tmax=0.746AbsCorr = MULTI-SCAN

Data completeness= 0.992

\[R(\text{reflections}) = 0.0613(12949) \]

\[\text{wr}R^2(\text{reflections}) = 0.1626(18937) \]
$S = 1.039 \quad \text{Npar} = 965$
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Level B
PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta(Min). 12 Note

Author Response: OMIT due to beamstop or rejected as (Iobs-Icalc)/SigmaW > 10 Outlier

Level C
PLAT213_ALERT_2_C Atom C94 has ADP max/min Ratio 3.3 prolat
PLAT213_ALERT_2_C Atom C95 has ADP max/min Ratio 3.1 prolat
PLAT213_ALERT_2_C Atom C96 has ADP max/min Ratio 4.0 prolat
PLAT220_ALERT_2_C NonSolvent Resid 1 C Ueq(max)/Ueq(min) Range 5.9 Ratio
PLAT222_ALERT_3_C NonSolvent Resid 1 H Uiso(max)/Uiso(min) Range 6.2 Ratio
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C70 Check
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C74 Check
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C85 Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including C100 0.107 Check
PLAT331_ALERT_2_C Small Aver Phenyl C-C Dist C88 --C90 . 1.37 Ang.
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.904 Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thm & STh/L= 0.600 6 Report

Level G
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 14 Note
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 106 Report
PLAT083_ALERT_2_G SHELXL Second Parameter in WGT Unusually Large 8.49 Why ?
PLAT175_ALERT_4_G The CIF-Embedded .res File Contains SAME Records 1 Report
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 1 Report
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 1 Report
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 1 Report
PLAT231_ALERT_4_G Hirshfeld Test (Solvent) C88 --C89 . 5.4 s.u.
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 2) 100% Note
PLAT302_ALERT_4_G Anion/Solvent/Minor-Residue Disorder (Resd 3) 100% Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 2) 11.58 Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms in (Resd 3) 3.42 Check
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 8 Note
PLAT793_ALERT_4_G Model has Chirality at C59 (Centro SPGR) R Verify
PLAT860_ALERT_3_G Number of Least-Squares Restraints 1770 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 135 Note
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 1 Note
PLAT933_ALERT_2_G Number of HKL-Omit Records in Embedded .res File 4 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 4.4 Low
PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 5 Info
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by 2 Check

0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully

S33
12 ALERT level C = Check. Ensure it is not caused by an omission or oversight
22 ALERT level G = General information/check it is not something unexpected

0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
15 ALERT type 2 Indicator that the structure model may be wrong or deficient
 7 ALERT type 3 Indicator that the structure quality may be low
12 ALERT type 4 Improvement, methodology, query or suggestion
 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/05/2022; check.def file version of 17/05/2022
ORTEP-style illustration p2125b_ORTEP_50 (for Rac-Mn2)
Supplementary Figure 6. Structures of the stable and metastable (obtained after irradiation) isomers present in the X-ray crystal structure of Mn2. a Capped stick style view of the X-ray structure of the stable $\left(R,P,S_a\right)$-Mn2 isomer. b Capped stick style view of the X-ray structure of the metastable $\left(R,M,R_a\right)$-Mn2 isomer. Color coding: dark blue: phosphate ligand 1, red: salen ligand; magenta: ethylene bridge of salen. green: manganese center; hydrogen atoms have been omitted for clarity.

The crystal structures of $\left(S,M,R_a\right)$-Mn2 in Fig. 3a and $\left(R,P,S_a\right)$-Mn2 in the Supplementary Figure 6a were selected from the stable rac-Mn2 crystal. The crystal structures of $\left(S,P,S_a\right)$-Mn2 in Fig. 3b and $\left(R,M,R_a\right)$-Mn2 in the Supplementary Figure 6b were selected from the metastable rac-Mn2 crystal.

(S,M,Ra)-Mn2 (stable)

Supplementary Table 6: Crystal structure and structure refinement for (S,M,Ra)-Mn2

Crystal structure and structure refinement
General information
Identification code RU/paper
CCDC Deposition Number
Crystal colour
Crystal dimensions [mm] / shape
Crystallization solvent
Empirical formula
Formula weight [g/mol]

Crystal Data
Crystal system
Space group
Unit cell dimensions
a, b, c [Å]
α, β, γ [°]
Volume [Å3]
Z
Density (calculated) [g/cm3]
Absorption coefficient (MoKα) [mm$^{-1}$]
F(000)

Data Collection
Temperature during experiment [K]
Wavelength [Å]
Reflections were measured on a Bruker D8 Quest diffractometer with sealed tube and Triumph monochromator ($\lambda = 0.71073\AA$). The software package used for the intensity integration was Saint (v8.40a). Absorption correction was performed with SADABS. The structures were solved with direct methods using SHELXT-2014/5. Least-squares refinement was performed with SHELXL-2018/3 against $|F_o|^2$ of all reflections. Non-hydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen atoms were placed on calculated positions or located in difference Fourier maps. All calculated hydrogen atoms were refined with a riding model.

(R,P,S$_{a}$)-Mn2 (metastable) single crystal preparation procedure:

Irradiation of a solution of stable Rac-Mn2 (c = 1 mg/mL in CH$_2$Cl$_2$) for 30 minutes with $\lambda = 365$ nm light furnished a solution of metastable Rac-Mn2. Evaporation of the solvent followed by crystallization from toluene/n-heptane (1:8, v/v) furnished metastable Rac-Mn2 in the crystalline state. The crystal of metastable Rac-Mn2 was dark-brownish colored and had a needle shape. Unfortunately, due to the small size of the crystal, only a partial diffraction data set with low resolution could be obtained. With this limited dataset the non-hydrogen atoms could only be refined isotopically and no hydrogens could be placed via a difference map. The crystallographic information of the tentative metastable structure is given below in the form of a .res file.

```
TITL p2150a_a.res in P-1
CELL  0.71073  14.1195  22.8027  26.3963  91.5433  97.9836  103.6320
ZERR  1.000  0.0029  0.0051  0.0058  0.0068  0.0122  0.0084
LATT  1
SFAC C H P O MN N
UNIT  1 1 1 1 1 1
L.S.  20
BOND $H
CONF
ACTA
rem ANIS
TEMP -150
```
NAME	NR	X	Y	Z	WT	FWT								
MN01	5	0.586623	0.198990	0.478301	11.00000	0.02611								
MN02	5	-0.145768	0.347334	0.888462	11.00000	0.03136								
P003	3	0.357978	0.116355	0.487731	11.00000	0.02562								
P004	3	0.097863	0.392911	0.932561	11.00000	0.03001								
O005	4	0.349715	0.051672	0.479114	11.00000	0.02621								
O006	4	0.119256	0.455780	0.956626	11.00000	0.03301								
O007	4	-0.160629	0.262734	0.877606	11.00000	0.02661								
O008	4	0.090730	0.342231	0.974122	11.00000	0.03066								
O009	4	0.368842	0.137414	0.548658	11.00000	0.02549								
O010	4	0.434188	0.161467	0.468587	11.00000	0.03114								
O011	4	0.250339	0.127130	0.466814	11.00000	0.02035								
O012	4	0.191781	0.388611	0.906940	11.00000	0.02955								
O013	4	-0.179510	0.363923	0.819236	11.00000	0.02944								
O014	4	0.583734	0.271366	0.514066	11.00000	0.02485								
O015	4	0.005181	0.369812	0.895229	11.00000	0.03962								
O016	4	0.600507	0.231150	0.414396	11.00000	0.02900								
N017	6	0.626901	0.167412	0.546548	11.00000	0.02776								
N018	6	0.627644	0.125704	0.454513	11.00000	0.02923								
O019	4	0.167507	-0.033232	0.448308	11.00000	0.08232								
C020	1	0.146219	0.092186	0.637479	11.00000	0.02096								
C021	1	0.209777	0.218582	0.438573	11.00000	0.02149								
C022	1	0.047223	0.414065	1.065832	11.00000	0.02916								
C023	1	-0.125776	0.227798	0.908552	11.00000	0.04843								
C024	1	0.398268	0.060111	0.632283	11.00000	0.01986								
C025	1	0.215477	0.146417	0.566570	11.00000	0.01711								
C026	1	0.444920	0.035154	0.597052	11.00000	0.02158								
Column	Row	X	Y	Z	E	Sigma								
--------	-----	-------	-------	-------	------	-------								
	27	0.67838	0.118092	0.545604	11.00000	0.02145								
	28	-0.173649	0.424851	0.907967	11.00000	0.03200								
	29	0.596215	0.182044	0.591021	11.00000	0.03307								
	30	0.228020	0.068497	0.648135	11.00000	0.02553								
	31	0.509770	0.032179	0.701760	11.00000	0.02465								
	32	0.138134	0.130967	0.597534	11.00000	0.01601								
	33	0.258893	0.440669	0.756002	11.00000	0.02063								
	34	-0.099140	0.240708	0.961936	11.00000	0.03291								
	35	-0.221422	0.455652	0.823623	11.00000	0.01800								
	36	0.084043	0.365395	1.083409	11.00000	0.03664								
	37	0.293146	0.120639	0.576904	11.00000	0.01978								
	38	0.157203	0.331472	0.960591	11.00000	0.02799								
	39	0.203658	0.199919	0.383751	11.00000	0.02815								
	40	0.508703	0.235288	0.640220	11.00000	0.01999								
	41	0.190115	0.416103	0.709627	11.00000	0.02273								
	42	-0.045083	0.144214	0.921111	11.00000	0.03173								
	43	0.654202	0.116360	0.412329	11.00000	0.02440								
	44	0.630752	0.081683	0.494603	11.00000	0.01261								
	45	-0.008690	0.131117	0.497281	11.00000	0.02629								
	46	0.522909	0.010507	0.614441	11.00000	0.02119								
	47	0.652291	0.155202	0.369250	11.00000	0.03143								
	48	0.255171	0.323454	0.992095	11.00000	0.02562								
	49	0.305016	0.081432	0.618276	11.00000	0.02885								
	50	-0.215549	0.441561	1.130250	11.00000	0.04624								
	51	-0.122319	0.429350	1.165525	11.00000	0.03742								
	52	0.461805	0.282359	0.649221	11.00000	0.04316								
	53	0.341514	0.323014	1.027912	11.00000	0.03923								
	54	0.639185	-0.022664	0.686145	11.00000	0.03405								
	55	-0.273370	0.446920	0.718485	11.00000	0.03300								
	56	0.456213	0.325533	0.610614	11.00000	0.03471								
	57	-0.236851	0.402760	0.742994	11.00000	0.03315								
	58	-0.289236	0.495906	0.747214	11.00000	0.03308								
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
C059	1	-0.262393	0.499933	0.800049	11.00000	0.03887								
C060	1	0.175514	0.341318	1.010267	11.00000	0.02299								
C061	1	0.677118	0.131769	0.323295	11.00000	0.03308								
C062	1	0.169475	0.350239	1.062748	11.00000	0.02742								
C063	1	0.624728	0.247244	0.329093	11.00000	0.03392								
C064	1	-0.016000	0.160501	0.974712	11.00000	0.03648								
C065	1	0.549559	0.234325	0.593282	11.00000	0.02318								
C066	1	0.464085	0.333935	0.971371	11.00000	0.03222								
C067	1	0.229193	0.179552	0.477702	11.00000	0.02956								
C068	1	0.024737	0.080920	0.488730	11.00000	0.02965								
C069	1	-0.061047	0.212269	0.538306	11.00000	0.03638								
C070	1	0.432750	0.057638	0.685894	11.00000	0.04956								
C071	1	0.418492	0.285143	0.694655	11.00000	0.02795								
C072	1	0.498138	0.373285	0.527903	11.00000	0.02970								
C073	1	-0.020812	0.435585	1.092276	11.00000	0.02239								
C074	1	-0.058370	0.210640	0.799142	11.00000	0.03523								
C075	1	-0.052875	0.209556	0.996359	11.00000	0.03959								
C076	1	0.192239	0.449459	0.662517	11.00000	0.03677								
C077	1	0.556127	0.007593	0.667981	11.00000	0.03576								
C078	1	0.073519	0.083657	0.674273	11.00000	0.04071								
C079	1	-0.090654	0.178094	0.889591	11.00000	0.01849								
C080	1	-0.008304	0.050458	0.437612	11.00000	0.03288								
C081	1	0.191493	0.273651	0.452213	11.00000	0.04362								
C082	1	-0.052032	0.404935	1.135296	11.00000	0.04152								
C083	1	0.154608	0.145701	0.364771	11.00000	0.02865								
C084	1	0.444510	0.343715	0.472642	11.00000	0.03022								
C085	1	0.213437	0.193294	0.527228	11.00000	0.02805								
C086	1	0.610011	0.409184	0.523856	11.00000	0.04821								
C087	1	0.190380	0.247287	0.545319	11.00000	0.03511								
C088	1	-0.085723	0.098860	0.816795	11.00000	0.04182								
C089	1	0.540959	0.351203	0.899664	11.00000	0.03274								
C090	1	-0.246439	0.355619	0.652126	11.00000	0.03027								
C091	0.039420	0.125325	1.010847	11.00000	0.05777									
C092	-0.096940	0.355233	0.715486	11.00000	0.03662									
C093	0.596507	0.307361	0.331529	11.00000	0.04985									
C094	-0.000531	0.168171	0.547436	11.00000	0.03836									
C095	0.241443	0.247697	0.353915	11.00000	0.03172									
C096	-0.211117	0.406273	0.798336	11.00000	0.02640									
C097	-0.268871	0.284508	0.724490	11.00000	0.04429									
C098	-0.075205	0.156367	0.462816	11.00000	0.03768									
C099	-0.337780	0.543847	0.719825	11.00000	0.04773									
C100	0.182668	0.290419	0.505016	11.00000	0.04228									
C101	0.669797	0.169533	0.281740	11.00000	0.04181									
C102	-0.208055	0.461923	0.879424	11.00000	0.03987									
C103	-0.209393	0.349719	0.707250	11.00000	0.03095									
C104	0.230450	0.256754	0.834539	11.00000	0.04066									
C105	0.020682	0.176551	0.644244	11.00000	0.05492									
C106	-0.158985	0.388319	1.206793	11.00000	0.06462									
C107	0.477794	0.266686	1.045424	11.00000	0.04203									
C108	0.734740	0.008295	0.662947	11.00000	0.04806									
C109	0.251059	0.341531	1.098487	11.00000	0.03116									
C110	0.250866	0.221645	0.876872	11.00000	0.04259									
C111	0.624741	0.211549	0.371761	11.00000	0.04349									
C112	0.298646	0.464826	0.645795	11.00000	0.05497									
C113	0.241423	0.299141	0.936626	11.00000	0.03442									
C114	0.211730	0.310313	0.845189	11.00000	0.04051									
C115	0.539245	0.274672	0.555510	11.00000	0.02278									
C116	0.501445	0.322861	0.563754	11.00000	0.03518									
C117	0.461011	0.350290	0.725213	11.00000	0.04560									
C118	0.406305	0.435877	0.966363	11.00000	0.04615									
C119	-0.063215	0.493475	1.190731	11.00000	0.04411									
C120	0.201511	0.352196	0.801322	11.00000	0.03768									
C121	-0.100684	0.126358	0.410020	11.00000	0.03904									
C122	0.302355	0.279324	0.679687	11.00000	0.03370									
-----	-----	-----	-----	-----	-----	-----								
C123	1	0.259924	0.410286	0.798366	11.00000	0.03577								
C124	1	0.650728	0.224855	0.283842	11.00000	0.03362								
C125	1	0.134112	0.358291	0.712229	11.00000	0.03671								
C126	1	0.138886	0.130533	0.309565	11.00000	0.03269								
C127	1	-0.067946	0.076289	0.402089	11.00000	0.04125								
C128	1	0.046622	0.156147	0.595154	11.00000	0.04064								
C129	1	0.667606	-0.024029	0.742368	11.00000	0.05156								
C130	1	-0.229199	0.150072	0.811571	11.00000	0.03772								
C131	1	0.426989	0.308047	1.010515	11.00000	0.03504								
C132	1	0.427871	0.236541	0.733330	11.00000	0.05060								
C133	1	-0.204264	0.376874	0.989478	11.00000	0.04465								
C134	1	-0.125648	0.288290	0.985121	11.00000	0.04105								
C135	1	0.168500	0.176903	0.279048	11.00000	0.04764								
C136	1	-0.114677	0.301865	0.546562	11.00000	0.04862								
C137	1	-0.152914	0.245664	0.462307	11.00000	0.04110								
C138	1	0.050148	0.333828	1.124062	11.00000	0.03935								
C139	1	0.159780	0.509791	0.669900	11.00000	0.05030								
C140	1	-0.063914	0.261996	0.567699	11.00000	0.03824								
C141	1	0.450351	0.391428	0.948215	11.00000	0.04827								
C142	1	0.116493	0.409384	0.613919	11.00000	0.05057								
C143	1	0.412588	0.314647	1.119184	11.00000	0.05488								
C144	1	0.135390	0.324490	0.755080	11.00000	0.03813								
C145	1	-0.020640	0.356569	1.149641	11.00000	0.05123								
C146	1	0.607973	-0.091345	0.664189	11.00000	0.03684								
C147	1	0.666841	0.352503	0.375299	11.00000	0.05148								
C148	1	-0.094066	0.159361	0.645692	11.00000	0.06178								
C149	1	0.127478	0.172630	1.045991	11.00000	0.04426								
C150	1	-0.094927	0.206610	0.483017	11.00000	0.04003								
C151	1	0.503344	0.455239	0.879363	11.00000	0.05484								
C152	1	0.527024	0.311125	0.937488	11.00000	0.04275								
C153	1	0.331194	0.330884	1.081492	11.00000	0.03837								
C154	1	0.216237	0.334890	0.896454	11.00000	0.04037								
---	---	---	---	---	---									
C155	1	0.438600	0.418557	0.542443	11.00000	0.05464								
C156	1	0.590245	0.297434	1.065670	11.00000	0.07500								
C157	1	0.595290	0.331493	0.857617	11.00000	0.06117								
C158	1	0.620454	0.281689	0.859319	11.00000	0.08068								
C159	1	-0.153156	0.437888	0.966587	11.00000	0.05748								
C160	1	0.609336	0.342167	0.279392	11.00000	0.05547								
C161	1	0.260833	0.243989	0.928275	11.00000	0.04288								
C162	1	0.861075	0.469474	0.510352	11.00000	0.07007								
C163	1	0.220249	0.236187	0.299121	11.00000	0.04869								
C164	1	-0.162473	0.294561	0.490071	11.00000	0.04763								
C165	1	0.066051	0.148655	0.696356	11.00000	0.06479								
C166	1	0.489543	0.296062	0.336877	11.00000	0.04445								
C167	1	0.149385	0.163397	0.219085	11.00000	0.09836								
C168	1	0.554527	0.259843	0.938672	11.00000	0.07777								
C169	1	-0.117065	0.156972	0.829026	11.00000	0.05705								
C170	1	0.504625	0.402145	0.904669	11.00000	0.04569								
C171	1	0.428864	0.253348	1.094341	11.00000	0.04836								
C172	1	0.079594	0.080627	0.981136	11.00000	0.07714								
C173	1	0.473669	0.494664	0.894745	11.00000	0.06615								
C174	1	0.412449	0.491953	0.936815	11.00000	0.05236								
C175	1	1.041640	0.743551	0.663328	11.00000	0.09542								
C176	1	0.942016	0.615999	0.607845	11.00000	0.07279								
C177	1	-0.328315	0.598772	0.750733	11.00000	0.09227								
C178	1	0.708825	0.146592	0.230756	11.00000	0.07923								
C179	1	0.767757	0.199049	0.204121	11.00000	0.08534								
C180	1	-0.031190	0.090141	1.048233	11.00000	0.06454								
C181	1	0.931155	0.550743	0.587380	11.00000	0.09221								
C182	1	0.995063	0.690651	0.685823	11.00000	0.09594								
C183	1	1.005804	0.630957	0.659736	11.00000	0.11131								
C184	1	0.861026	0.534705	0.536706	11.00000	0.07664								
C185	1	-0.267978	0.572476	0.679218	11.00000	0.13255								
C186	1	-0.429891	0.516283	0.690680	11.00000	0.09941								
C187 1 0.097550 0.097054 0.200408 11.00000 0.06567
C188 1 0.066045 0.201809 0.195052 11.00000 0.08632
C189 1 0.246505 0.179036 0.196653 11.00000 0.10690
C190 1 0.610613 0.122707 0.191934 11.00000 0.13158
C191 1 0.761500 0.096203 0.239044 11.00000 0.12207
O192 4 0.359008 0.074861 0.841907 11.00000 0.34588
C193 1 0.607297 0.240203 0.896940 11.00000 0.07765

HKLF 4

REM p2150a_a.res in P-1
REM wR2 = 0.3863, GooF = S = 1.311, Restrained GooF = 1.311 for all data
REM R1 = 0.1626 for 4074 Fo > 4sig(Fo) and 0.3004 for all 10515 data
REM 773 parameters refined using 0 restraints

END
5. UV-Vis and ECD spectra of catalysts

Supplementary Figure 7. UV-Vis spectra of the racemic and enantiopure Mn2 catalysts (c = 5×10^{-5} M, CH2Cl2, l = 2 mm). The solutions of the metastable isomers were obtained by irradiating the solutions of the stable isomers with λ = 365 nm for 2 minutes.

Supplementary Figure 8. ECD spectra of the racemic and enantiopure Mn2 catalysts (c = 5×10^{-5} M, CH2Cl2, l = 2 mm). The solutions of the metastable isomers were obtained by irradiating the solutions of the stable isomers with λ = 365 nm for 2 minutes.
6. Details of catalytic epoxidation reactions and assignment of absolute configurations of enantioenriched epoxides.

Supplementary Table 7. Enantio-divergent epoxidation of alkenes using Mn2 as the catalyst.

Entry	Substrate	Product	Catalyst	Conversion (%)	Yield (%)	e.e. (%)	Figure
1			(S,M,R)-Mn2	99	89	74 (1aR,7bR)	S62
2			(S,M,R)-Mn2	97	90	74 (1aR,7bR)	S73
3			(S,M,R)-Mn2	99	86	70 (1aR,7bR)	S74
4^a			(S,P,S)-Mn2	90	73	42 (1aS,7bS)	S63
5^a			(S,P,S)-Mn2	93	79	44 (1aS,7bS)	S75
6			(R,P,S)-Mn2	92	77	68 (1aS,7bS)	S71
7			(R,P,S)-Mn2	93	79	70 (1aS,7bS)	S76
8			(R,P,S)-Mn2	95	75	68 (1aS,7bS)	S77
9^b			(R,M,R)-Mn2	96	85	42 (1aR,7bR)	S72
10^b			(R,M,R)-Mn2	95	82	44 (1aR,7bR)	S78
11			(S,M,R)-Mn2	95	85	74 (1aR,7bR)	S79
12			(S,M,R)-Mn2	98	90	78 (1aR,7bR)	S79
13^a			(S,P,S)-Mn2	92	74	20 (1aS,7bS)	S79
14^a			(S,P,S)-Mn2	90	76	16 (1aS,7bS)	S79
15			(S,M,R)-Mn2	89	75	56 (1aR,7bR)	S80
16			(S,M,R)-Mn2	90	80	52 (1aR,7bR)	S80
17^a			(S,P,S)-Mn2	85	67	40 (1aS,7bS)	S80
18^a			(S,P,S)-Mn2	82	62	42 (1aS,7bS)	S80
19			(S,M,R)-Mn2	95	81	50 (1aR,7b'R)	S81
20^a			(S,M,R)-Mn2	96	85	52 (1aR,7b'R)	S81
21^a			(S,P,S)-Mn2	95	83	32 (1aS,7b'S)	S81
22^a			(S,P,S)-Mn2	98	85	30 (1aS,7b'S)	S81
23			(S,M,R)-Mn2	85	66	24 (R)	S82
24			(S,M,R)-Mn2	90	63	22 (R)	S82
25^a			(S,P,S)-Mn2	78	62	12 (S)	S82
26^a			(S,P,S)-Mn2	74	53	16 (S)	S82
27			(S,M,R)-Mn2	96	88	16 (R)	S83
28			(S,M,R)-Mn2	90	83	12 (R)	S83
29^a			(S,P,S)-Mn2	95	83	12 (S)	S83
30^a			(S,P,S)-Mn2	98	85	10 (S)	S83
31			(S,M,R)-Mn2	96	89	20 (R)	S84
32			(S,M,R)-Mn2	97	91	16 (R)	S84
33^a			(S,P,S)-Mn2	97	85	16 (S)	S84
34^a			(S,P,S)-Mn2	96	88	10 (S)	S84
35			(S,M,R)-Mn2	76	68	14 (1S,6S)	S85
36			(S,M,R)-Mn2	72	60	12 (1S,6S)	S85
37^a			(S,P,S)-Mn2	70	51	12 (1R,6R)	S85
38^a			(S,P,S)-Mn2	68	50	6 (1R,6R)	S85
39			(S,M,R)-Mn2	68	35	30 (1R,6aS)	S86
40			(S,M,R)-Mn2	59	27	22 (1R,6aS)	S86
41^a			(S,P,S)-Mn2	60	39	12 (1aS,6aR)	S86
42^a			(S,P,S)-Mn2	51	30	10 (1aS,6aR)	S86

^aConversion was calculated based on the recovered substrate. ^bIsolated yield. ^cEnantiomeric excess values (e.e.) were determined by chiral HPLC. See the next section for the assignment of the absolute configurations of the enantioenriched epoxides. ^dCatalyst (S,P,S)-Mn2 was obtained by irradiation of (S,M,R)-Mn2 (c = 1 mg/mL in CH2Cl2) for 30 min with λ =
365 nm light, followed by evaporation of the solvent. Catalyst (R,M,R_α)-Mn$_2$ was obtained by irradiation of (R,P,S_α)-Mn$_2$ (c = 1 mg/mL in CH$_2$Cl$_2$) for 30 min with $\lambda = 365$ nm light, followed by evaporation of the solvent.

The absolute configurations of the enantioenriched epoxides 17b–20b were assigned on the basis of the sign of the optical rotation as reported by Jacobsen et al.55 Epoxides 17b–20b generated with catalysts (S,M,R_α)-Mn$_2$ or (R,M,R_α)-Mn$_2$ displayed positive optical rotations corresponding to the $(1aR,7bR)$-configuration.55 Those produced by (R,P,S_α)-Mn$_2$ or (S,P,S_α)-Mn$_2$ displayed negative optical rotations corresponding to the $(1aS,7bS)$-configuration.55 The correlation between the (R_α) axial chirality of the phosphate ligand and the $(1aR,7bR)$ absolute configuration of the enantioenriched epoxide was also observed by List et al.82,86

For the styrene oxide series (epoxides 21b–23b), which displayed low enantioselectivities (e.e. $< 25\%$), optical rotation measurements did not prove reproducible: while a first measurement of a sample could give a positive optical rotation, a second or third measurement could suddenly give a negative optical rotation. We attribute this inaccuracy to the low level of enantioenrichment for these compounds. Nonetheless, the absolute configurations of the styrene oxides were determined by comparing the HPLC elution orders to authentic samples (i.e. (R)- and (S)-phenyloxirane/styrene oxide 21b) that were obtained from commercial suppliers (See Supplementary Figure 82). The chiral HPLC elution order for the enantiomers of the related epoxides on the same chiral column is assumed to be the same, i.e. (R)-22b and (R)-23b are the first eluted enantiomers, and (S)-22b and (S)-23b are the second eluted enantiomers.

Finally, the absolute configurations of the enantioenriched epoxides 24b and 25b were determined by comparison of the HPLC traces of these epoxides produced by Mn$_2$ to those produced by Jacobsen’s catalyst (R,R)-Mn$_{16}$. The latter catalyst has been reported to produce enantioenriched epoxides $(1S,6S)$-24b57 and $(1aR,6aS)$-25b,58 both of which were the second eluted enantiomers.
7. **Mn2** obtained via different route and the corresponding catalytic results

Supplementary Table 8. Catalytic results of **Mn2**, obtained via different synthesis routes, and enantioselective effects (See also Supplementary Figure 9 and 10).

Entry	Catalyst	Conversion (%)	Yield (%)	e.r. (%:%)	e.e. (%)	Figure
1a	(S,P,Sa)-Mn2	97	84	73:27	46 (1aS,7bS)	S87
2b	(S,M,Ra)-Mn2	95	89	16:84	68 (1aR,7bR)	S88
3c	(R,M,Ra)-Mn2	98	89	28:72	44 (1aR,7bR)	S89
4d	(R,P,Sa)-Mn2	93	81	82:18	64 (1aS,7bS)	S90

S,(S,P,Sa)-Mn2 prepared via route c-d) in Supplementary Figure 9. b,(S,M,Ra)-Mn2 prepared via route c-d-e) in Supplementary Figure 9. c,(R,M,Ra)-Mn2 prepared via route h-i) in Supplementary Figure 10. d,(R,P,Sa)-Mn2 prepared via route h-i-j) in Supplementary Figure 10.

Supplementary Figure 9. Preparation routes towards (S,M,Ra)-Mn2 and (S,P,Sa)-Mn2. Included are the catalytic performance of the isomeric catalysts prepared via different routes in the epoxidation of substrate 17a. Details of the catalytic results in blue are presented in Supplementary Table 7 and those in red are presented in Supplementary Table 8.
Supplementary Figure 10. Preparation routes towards \((R,P,S_a)-\text{Mn}_2\) and \((R,M,R_a)-\text{Mn}_2\). Included are the catalytic performance of the isomeric catalysts prepared via different routes in the epoxidation of substrate 17a. Details of the catalytic results in blue are presented in Supplementary Table 7 and those in red are presented in Supplementary Table 8.
8. Supporting references
S1. Shen, A. et al. Supporting ligand-assisted N-heterocyclic carbene palladium complexes: characterization, computation, and catalytic activity in Suzuki-Miyaura cross coupling between aryl and heteroaromatic chlorides and various boronic acids. *Tetrahedron Lett.* **57**, 2055–2058 (2016).

S2. Liao, S. & List, B. Asymmetric counteranion-directed transition-metal catalysis: enantioselective epoxidation of alkenes with manganese (III) salen phosphate complexes. *Angew. Chem. Int. Ed.* **49**, 628–631 (2010).

S3. Lu, B.-L. & Shi, M. Synthesis of functionalized polycyclic compounds: rhodium(I)-catalyzed intramolecular cycloaddition of yne and ene vinylidencyclopropanes. *Angew. Chem. Int. Ed.* **50**, 12027–12031 (2011).

S4. Dai, W. et al. Asymmetric epoxidation of alkenes catalyzed by a porphyrin-inspired manganese complex. *Org. Lett.* **15**, 4138-4141 (2013).

S5. Lee N. H., Muci, A. R. & Jacobsen E. N. Enantiomerically pure epoxychromans via asymmetric catalysis. *Tetrahedron Lett.* **32**, 5055–5058 (1991).

S6. Merten, C., Pollok, C. H., Liao, S. & List, B. Stereochemical communication within a chiral ion pair catalyst. *Angew. Chem. Int. Ed.* **54**, 8841–8845 (2015).

S7. Brandes, B. D. & Jacobsen, E. N. Highly enantioselective, catalytic epoxidation of trisubstituted olefins. *J. Org. Chem.* **59**, 4378–4380 (1994).

S8. Kürti, L., Blewett, M. M. & Corey, E. J. Origin of enantioselectivity in the Jacobsen epoxidation of olefins. *Org. Lett.* **11**, 4592–4595 (2009).
9. Copies of NMR spectra of new compounds and chiral HPLC results

Supplementary Figure 11. 1H NMR spectrum of compound 4 (500 MHz, CDCl$_3$, 298 K).

Supplementary Figure 12. 13C NMR spectrum of compound 4 (126 MHz, CDCl$_3$, 298 K).
Supplementary Figure 13. 1H NMR spectrum of compound 5 (500 MHz, CDCl$_3$, 298 K).

Supplementary Figure 14. 13C NMR spectrum of compound 5 (126 MHz, CDCl$_3$, 298 K).
Supplementary Figure 15. 1H NMR spectrum of compound 8 (500 MHz, CDCl$_3$, 298 K).

Supplementary Figure 16. 13C NMR spectrum of compound 8 (126 MHz, CDCl$_3$, 298 K).
Supplementary Figure 17. 1H NMR spectrum of compound 9 (500 MHz, CDCl$_3$, 298 K).

Supplementary Figure 18. 13C NMR spectrum of compound 9 (126 MHz, CDCl$_3$, 298 K).
Supplementary Figure 19. 1H NMR spectrum of compound 10 (500 MHz, CDCl$_3$, 298 K, >9:1 mixture of conformers).

Supplementary Figure 20. 13C NMR spectrum of compound 10 (126 MHz, CDCl$_3$, 298 K, >9:1 mixture of conformers).
Supplementary Figure 21. 1H NMR spectrum of compound 11 (500 MHz, CDCl$_3$, 298 K, 1:1 mixture of conformers).

Supplementary Figure 22. 13C NMR spectrum of compound 11 (126 MHz, CDCl$_3$, 298 K, 1:1 mixture of conformers).
Supplementary Figure 23. 1H NMR spectrum of compound 13 (500 MHz, CDCl$_3$, 298 K, >9:1 mixture of conformers).

Supplementary Figure 24. 13C NMR spectrum of compound 13 (126 MHz, CDCl$_3$, 298 K, >9:1 mixture of conformers).
Supplementary Figure 25. 1H NMR spectrum of compound 14 (500 MHz, CDCl$_3$, 298 K, 2:1 mixture of conformers).

Supplementary Figure 26. 13C NMR spectrum of compound 14 (126 MHz, CDCl$_3$, 298 K, 2:1 mixture of conformers).
Supplementary Figure 27. 1H NMR spectrum of compound 1 (500 MHz, 4×10^{-2} M in TFA/CDCl$_3$, 1:24, v/v, 298 K).

Supplementary Figure 28. 13C NMR spectrum of compound 1 (126 MHz, 4×10^{-2} M in TFA/CDCl$_3$, 1:24, v/v, 298 K).
Supplementary Figure 29. 31P NMR spectrum of compound 1 (202 MHz, 4 x 10$^{-2}$ M in TFA/CDCl$_3$, 1:24, v/v, 298 K).

Supplementary Figure 30. 1H-1H COSY NMR spectrum of compound 1 (500 MHz, 4 x 10$^{-2}$ M in TFA/CDCl$_3$, 1:24, v/v, 298 K).
Supplementary Figure 31. 1H-1H NOESY NMR spectrum of compound 1 (500 MHz, 4×10^{-2} M in TFA/CDCl$_3$, 1:24, v/v, 298 K).

Supplementary Figure 32. 1H-13C HSQC NMR spectrum of compound 1 (500/126 MHz, 4×10^{-2} M in TFA/CDCl$_3$, 1:24, v/v, 298 K).
Supplementary Figure 33. 1H-13C HMBC NMR spectrum of compound 1 (500/126 MHz, 4×10^{-2} M in TFA/CDCl$_3$, 1:24, v/v, 298 K).
Supplementary Figure 34. 1H NMR spectrum of compound 17a.

Supplementary Figure 35. 13C NMR spectrum of compound 17a.
Supplementary Figure 36. 1H NMR spectrum of compound 18a.

Supplementary Figure 37. 13C NMR spectrum of compound 18a.
Supplementary Figure 38. 1H NMR spectrum of compound 19a.

Supplementary Figure 39. 13C NMR spectrum of compound 19a.
Supplementary Figure 40. 1H NMR spectrum of compound 20a.

Supplementary Figure 41. 13C NMR spectrum of compound 20a.
Supplementary Figure 42. 1H NMR spectrum of compound 17b.

Supplementary Figure 43. 13C NMR spectrum of compound 17b.
Supplementary Figure 44. 1H NMR spectrum of compound 18b.

Supplementary Figure 45. 13C NMR spectrum of compound 18b.
Supplementary Figure 46. 1H NMR spectrum of compound 19b.

Supplementary Figure 47. 13C NMR spectrum of compound 19b.
Supplementary Figure 48. 1H NMR spectrum of compound 20b.

Supplementary Figure 49. 13C NMR spectrum of compound 20b.
Supplementary Figure 50. 1H NMR spectrum of compound 21b.

Supplementary Figure 51. 1H NMR spectrum of compound 22b.
Supplementary Figure 52. 13C NMR spectrum of compound 22b.

Supplementary Figure 53. 1H NMR spectrum of compound 23b.
Supplementary Figure 54. 13C NMR spectrum of compound 23b.

Supplementary Figure 55. 1H NMR spectrum of compound 24b.
Supplementary Figure 56. 13C NMR spectrum of compound 24b.

Supplementary Figure 57. 1H NMR spectrum of compound 25b.
Supplementary Figure 58. 13C NMR spectrum of compound 25b.

Supplementary Figure 59. Chiral HPLC result of Table S2 Entry 2.
Supplementary Figure 60. Chiral HPLC result of Table S3 Entry 1.

Supplementary Figure 61. Chiral HPLC result of Table S3 Entry 2.
Supplementary Figure 62. Chiral HPLC result of Table S3 Entry 3.

Supplementary Figure 63. Chiral HPLC result of Table S3 Entry 4.
Supplementary Figure 64. Chiral HPLC result of Table S3 Entry 5.

Supplementary Figure 65. Chiral HPLC result of Table S4 Entry 1.
Supplementary Figure 66. Chiral HPLC result of Table S4 Entry 2.

Supplementary Figure 67. Chiral HPLC result of Table S4 Entry 3.
Supplementary Figure 68. Chiral HPLC result of Table S5 Entry 2.

Supplementary Figure 69. Chiral HPLC result of Table S5 Entry 3.
Supplementary Figure 70. Chiral HPLC result of Table S5 Entry 4.

Supplementary Figure 71. Chiral HPLC result of Table S7 Entry 6.
Supplementary Figure 72. Chiral HPLC result of Table S7 Entry 9.

Supplementary Figure 73. Chiral HPLC duplicated experiment result of Table S7, entry 2.
Supplementary Figure 74. Chiral HPLC triplicated experiment result of Table S7, entry 3.

Supplementary Figure 75. Chiral HPLC duplicated experiment result of Table S7, entry 5.
Supplementary Figure 76. Chiral HPLC duplicated experiment result of Table S7, entry 7.

Supplementary Figure 77. Chiral HPLC triplicated experiment result of Table S7, entry 8.
Supplementary Figure 7. Chiral HPLC duplicated experiment result of Table S7, entry 10.

peak#	Ret. Time	Area	Height	Area%	Height%
1	26.769	5663294	162831	27.508	29.989
2	28.587	14924239	380136	72.492	70.011
Total		20587533	542967	100.000	100.000

Detector A Channel 2 215nm

![Graph of peak retention times and areas](image-url)
Supplementary Figure 79. Chiral HPLC catalytic result for 18a as substrate.
Supplementary Figure 80. Chiral HPLC catalytic result for 19a as substrate.
Supplementary Figure 81. Chiral HPLC catalytic result for 20a as substrate.
Supplementary Figure 82. Chiral HPLC catalytic result for 21a as substrate.
Supplementary Figure 83. Chiral HPLC catalytic result for 22a as substrate.
Supplementary Figure 84. Chiral HPLC catalytic result for 23a as substrate.
Supplementary Figure 85. Chiral HPLC catalytic result for 24a as substrate.
Supplementary Figure 86. Chiral HPLC catalytic result for 25a as substrate.
Supplementary Figure 87. Chiral HPLC catalytic result for Supplementary table 8 entry 1 with (S,P,S)-Mn2.

Supplementary Figure 88. Chiral HPLC catalytic result for Supplementary table 8 entry 2 with (S,M,R)-Mn2.

Supplementary Figure 89. Chiral HPLC catalytic result for Supplementary table 8 entry 3 with (R,M,R)-Mn2.
Supplementary Figure 90. Chiral HPLC catalytic result for Supplementary table 8 entry 4 with \((R,P,S)_2\)-Mn2.