Are the Mascarene frog (*Ptychadena mascareniensis*) and Brahminy blind snake (*Indotyphlops braminus*) really alien species in the Seychelles?

Rhiannon Williams¹,²,³, David J. Gower¹,⁴, Jim Labisko²,⁴,⁵, Charles Morel⁶, Rachel M. Bristol⁷, Mark Wilkinson¹,², Simon T. Maddock¹,²,⁴,⁸,*

¹ Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK.
² Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
³ NRA Environmental Consultants, Cairns, Queensland 4870, Australia.
⁴ Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles.
⁵ Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NR, UK.
⁶ Natural History Museum, Victoria, Mahé, Seychelles.
⁷ Independent Conservation Biologist, La Batie, Mahé, Seychelles
⁸ Faculty of Science and Engineering, School of Biology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
* Corresponding author, Email: s.t.maddock@gmail.com

INTRODUCTION

Through resource competition, predation and the introduction of diseases, invasive alien species (IAS) pose a major threat to native biota (Kraus, 2009; Rocamora & Henriette, 2015; Young et al., 2017), particularly on remote islands with small and naïve populations. Alien (introduced) species, are those introduced by man, accidentally or intentionally, outside of their natural geographic range into an area where they would not naturally occur. Where alien species cause economic or environmental harm they are referred to as IAS. It can be difficult to determine whether species are alien or native within given habitats. Molecular genetic methods offer one approach to testing hypotheses of alien status, and determining putative source and introduction pathways. Alien populations are predicted to vary little genetically from populations from their native range (Tsutsui et al., 2000), and relatively recently introduced populations are also predicted to have low within-population genetic variation if founded by a small number of founding individuals (*i.e.* the founder effect) (e.g. Sakai et al., 2014).
The biota of the granitic Seychelles islands have high levels of endemism, largely due to geographic isolation from other landmasses for approximately ca. 65 million years (MY) (Davies, 1968; Mart, 1988; Collier et al., 2008; Chatterjee et al., 2013; Ali, 2018). In addition, the Seychelles are considered to be home to alien (introduced) species and IAS (Rocamora & Henriette, 2015), including plants (Fleischmann, 1997), mammals (Merton et al., 2002), reptiles (Nussbaum, 1980, 1984; Vences et al., 2004b), amphibians (Vences et al., 2004a), birds (Canning, 2011) and insects (Gerlach, 2004).

We examined mitochondrial (mt) DNA sequence data to test the hypotheses that the Mascarene frog, *Ptychadena mascareniensis* (Duméril & Bibron, 1841), and Brahminy blind snake, *Indotyphlops braminus* (Daudin, 1803), are introduced species in the Seychelles (Nussbaum, 1980; Vences et al., 2004a). The Mascarene frog has been reported from nine of the Seychelles islands (Labisko et al., 2015) and, based on genetic data for the single Seychelles individual thus far sampled, is hypothesised to have been introduced by humans from Madagascar in the recent past (Vences et al., 2004a). The Brahminy blind snake, sometimes considered native to India (Hedges et al., 2014), has a global distribution including Asia, Europe, the Middle East, Africa, Australia and the Americas (Uetz et al., 2019). It is well equipped to invade new regions because of its small size, tolerance of dry and human-modified habitats, and because it reproduces by parthenogenesis (McDowell, 1974; Nussbaum, 1984; Wynn et al., 1987). It has been reported from seven Seychelles islands (Nussbaum, 1980; Rocha et al., 2009) where it is hypothesised to be non-native (Nussbaum, 1980). Genetic data for the single *I. braminus* from the Seychelles sampled in previously published studies are identical to those from localities in Europe, Africa, the Comoro islands, Asia and Central America (Rato et al., 2015).

To date no studies have assessed intraspecific molecular genetic variation within Seychelles *P. mascareniensis* or *I. braminus*. We address this data gap and provide further tests of the hypotheses that these taxa are alien species in the Seychelles.

METHODS

We generated DNA sequence data for a region of the mt 16s rRNA gene (16s), for multiple individuals of each species from the Seychelles and additional samples of *I. braminus* from Sri Lanka (Tables 1, 2). Tissue samples (frog liver or toe tips; snake liver or muscle) were obtained from 10 Seychelles (from the islands of Curieuse, La Digue, Mahé, Praslin and Felicité – the latter a new record for the species taking the known Seychelles range to eight islands) and five Sri Lankan *I. braminus*, and 19 Seychelles *P. mascareniensis*
Herpetological Bulletin – Short Communications

(La Digue, Mahé, North, Praslin, Silhouette). All available published 16s sequence data (16) for *I. braminus* and the single previously published sequence of *P. mascareniensis* from the Seychelles were obtained from Genbank and added to our datasets (Tables 1, 2). The mitochondrial marker 16s was targeted because this is the locus that most published sequence data exists for *I. braminus* and is what was targeted in previous Seychelles studies incorporating both *I. braminus* and *P. mascareniensis* (Vences et al., 2004a; Rato et al., 2015).

Genomic DNA was extracted from tissue using a Qiagen DNeasy™ Blood and Tissue Kit following manufacturer’s guidelines. Partial fragments of 16s were amplified using the polymerase chain reaction (PCR) and sequenced following protocols reported by Maddock et al. (2014, 2017). Sequences were manually trimmed using Geneious Prime (Biomatters) and aligned using default parameters in Muscle (Edgar 2004).

RESULTS

The *I. braminus* and *P. mascareniensis* 16s datasets comprised a total of 502 and 588 aligned base pairs (bp), respectively. For the *I. braminus* alignment all overlapping sequences from across the globe (Seychelles, Sri Lanka, Thailand, Mexico, Equatorial Guinea, Spain (+Tenerife), Comoro Islands and China) were identical, with the exception of one individual from southern India (JN172940), which differs by 9 bp, including one deletion. All *P. mascareniensis* sampled were identical. Newly generated sequences have been deposited in GenBank (Table 1 & 2).

DISCUSSION

Our multi-specimen mtDNA sequence data are consistent with (and provide additional support for) the hypotheses that both the Mascarene frog and the Brahminy blind snake are alien species in Seychelles. Our much expanded sampling found no intraspecific molecular variation for either taxa within the Seychelles and is in agreement with results from previous studies of both *P. mascareniensis* (Vences et al., 2004a) and *I. braminus* (Rato et al., 2015).

In the Seychelles, the Mascarene frog occurs in lowland, often human modified landscapes, including habitats much more degraded than those that support Seychelles native frogs (sooglossids and the Seychelles treefrog, *Tachynemis seychellensis*) (pers. obs.). For sooglossids and Seychelles treefrogs, 16s sequence data vary substantially among the four islands on which they occur (Maddock et al., 2014; Labisko et al., 2019), contrasting strongly
with the single 16s haplotype found within *P. mascareniensis* across the five sampled islands. Vences et al. (2004a) found this same 16s haplotype in *P. mascareniensis* from Mauritius, with this differing from a Reunion and Madagascar haplotype by only a single substitution, consistent with a recent introduction of one (or very few) individual lineages of this species in the Seychelles and Mascarenes. In addition, Zimkus et al, (2017) indicated intra-specific variation of *P. mascareniensis* within Madagascar, supporting a single introduction source to Seychelles.

Published studies of native Seychelles reptile species occurring on multiple islands display a substantial amount of intraspecific mtDNA variation among populations from at least some islands (e.g. Rocha et al., 2013; Valente et al., 2014; Harris et al., 2015), with the only exceptions discovered thus far being the Brahminy blind snake and the terrapins *Pelusios castanoides* and *P. subniger* (Silva et al., 2010). The two terrapin species are considered to be recent (likely human mediated) arrivals in the Seychelles based on haplotype sharing with conspecifics from Madagascar and Africa (Fritz et al., 2013). Interpretation of the biogeographic history of Seychelles Brahminy blind snakes is complicated by scant sampling across this species’ global range. Although our data are consistent with an introduction to the Seychelles, we cannot rule out that the islands occupy part of its natural range because of the apparent global universal genetic homogeneity of the sampled mtDNA marker. The genetic homogeneity may be, in part, due to a slowly evolving 16s mtDNA marker and due to the species’ ability to reproduce via parthenogenesis. Additionally, the high dispersal ability of the species may reduce genetic diversification. The discovery of *I. braminus* on the island of Felicité takes the known Seychelles range of the species to eight islands.

Acknowledgements

STM was funded by an NHM-UCL IMPACT studentship, and awards from the Systematics Research Fund of the Systematics Association and Linnean Society of London, and the Mohammed bin Zayed Conservation Fund. Additional funding was provided by a BBSRC SynTax grant to MW, Julia Day and DJG; Darwin Initiative grant 19-002; and Leverhulme Trust Grant F/00696/F to DJG. We thank the Seychelles Bureau of Standards for providing required field collection permits, and our Seychelles project partners: Seychelles National Park Authority, Seychelles Islands Foundation, Island Conservation Society, National
Museum of Seychelles, and the Ministry of Environment for logistical support. We also thank Steve Hill and Six Senses Zil Pasyon Hotel for providing access to Félicité; and Elliot Mokhobo and North Island Seychelles for guidance, logistics, hosting and accommodation on North Island. Sri Lankan fieldwork in 2001 was undertaken with the help of Dinarzarde Raheem, Rohana Jayasekara, K.G. Lalith K. Kariyawasam, S.R.M Swarnapali Samaradiwakara, K.A.S. Ravinda Wickramanaike, Hasantha Lokugamage, Indrajith Perera, Wasana Perera and Jon Gower, and supported by NHM funding to MW.

References
Adalsteinsson, S.A., Branch, W.R., Trape, S., Vitt L.J., Hedges, S.B. (2009). Molecular phylogeny, classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata). Zootaxa 50: 1–50.
Ali, J.R. (2018). Islands as biological substrates: Continental. Journal of Biogeography 45: 1003–1018.
Canning, G. (2011). Eradication of the invasive common myna, Acridotheres tristis, from Fregate Island, Seychelles. Phelsuma 19: 43–53.
Chatterjee, S., Goswami, A., Scotese, C.R. (2013). The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research 23: 238–267.
Collier, J.S., Sansom, V., Ishizuka, O. et al. (2008) Age of Seychelles – India break-up. Earth and Planetary Science Letters 272: 264–277.
Daudin, F.M. (1803). Histoire Naturelle, Générale et Particulière des Reptiles. Paris: Dufart.
Davies, D. (1968). When did the Seychelles leave India? Nature 220: 1225–1226.
Duméril, A.M.C. & Bibron, G. (1841). Erpétologie générale ou Histoire naturelle complète des reptiles. Paris: Roret.
Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.
Fleischmann, K. (1997). Invasion of alien woody plants on the islands of Mahé and Silhouette, Seychelles. Journal of Vegetation Science 8: 5–12.
Fritz, U., Branch, W.R., Gehring, P-S. et al. (2013). Weak divergence among African, Malagasy and Seychellois hinged terrapins (Pelusios castanoides, P. subniger) and
evidence for human-mediated oversea dispersal. *Organisms Diversity & Evolution* 13: 215–224.

Gerlach, J. (2004). Impact of the invasive crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. *Journal of Insect Conservation* 8: 15–25.

Harris, D.J., Perera, A., Valente, J., Rocha, S. (2015). Deep genetic differentiation within *Janetaescincus* spp. (Squamata: Scincidae) from the Seychelles Islands. *The Herpetological Journal* 25: 205–213.

Hedges, S.B., Marion, A.B., Lipp, K.M., Marin, J., Vidal, N. (2014). A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). *Caribbean Herpetology* 49: 1–61.

Kraus, F. (2009). *Alien Reptiles and Amphibians*. Springer Netherlands, Dordrecht.

Labisko, J., Griffiths, R.A., Chong-Seng, L. et al. (2019). Endemic, endangered and evolutionarily significant: cryptic lineages in Seychelles’ frogs (Anura: Sooglossidae). *Biological Journal of the Linnean Society* 126: 417–435.

Labisko, J., Maddock, S.T., Taylor, M.L. et al. (2015). Chytrid fungus (*Batrachochytrium dendrobatidis*) undetected in the two orders of Seychelles amphibians. *Herpetological Review* 46: 41–45.

Maddock, S.T., Childerstone, A., Fry, B.G. et al. (2017). Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (*Pseudechis* Wagler, 1830: Elapidae: Serpentes). *Molecular Phylogenetics and Evolution* 107: 48–55.

Maddock, S.T., Day, J.J., Nussbaum, R.A., Wilkinson, M., Gower, D.J. (2014). Evolutionary origins and genetic variation of the Seychelles treefrog, *Tachycnemis seychellensis* (Duméril and Bibron, 1841). *Molecular Phylogenetics and Evolution* 75: 194–201.

Mart, Y. (1988). The tectonic setting of the Seychelles, Mascarene and Amirante plateaus in the western equatorial Indian Ocean. *Marine Geology* 79: 261–274.

McDowell, S.B. (1974). A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum, Part 1. Scolecophidia. *Journal of Herpetology* 8: 1–57.

Merton, D., Climo, G., Laboudallon, V., Robert, S., Mander, C. (2002). Alien mammal eradication and quarantine on inhabited islands in the Seychelles. In *Turning the tide: the eradication of invasive species.* 182–198 pp. Veitch, C.R. & Clout, M.N. (Eds.). *IUCN SSC Invasive Species Specialist Group*. IUCN, Switzerland and Cambridge, UK.

Nussbaum, R. (1980). The Brahminy blind snake (*Ramphotyphlops braminus*) in the Seychelles Archipelago: Distribution, variation, and further evidence for
parthenogenesis. *Herpetologica* 36: 215–221.

Nussbaum, R. (1984). Snakes of the Seychelles. In *Biogeography and ecology of the Seychelles islands*. 361–377 pp. Stoddart, D. (Ed.). Dr. W. Junk Publishers, The Hague.

Rato, C., Silva-Rocha, I., Gonzalez-Miras, E. et al. (2015). A molecular assessment of European populations of *Indotyphlops braminus* (Daudin, 1803). *Herpetozoa* 27: 179–182.

Rocamora, G. & Henriette, E. (2015). *Invasive Alien Species in Seychelles: Why and how to eliminate them? Identification and management of priority species*. Biotope, Mèze; Muséum national d’Histoire naturelle, Paris.

Rocha, S., Harris, D., Perera, A. (2009). Recent data on the distribution of lizards and snakes of the Seychelles. *Herpetological Bulletin* 110: 20–32.

Rocha, S., Posada, D., Harris, D.J. (2013). Phylogeography and diversification history of the day-gecko genus *Phelsuma* in the Seychelles islands. *BMC Evolutionary Biology* 13: 3.

Sakai, A.K., Allendorf, F.W., Holt, J.S. et al. (2014). The Population biology of invasive species. *Annual Review of Ecology and Systematics* 32: 305–332.

Silva, A., Harris, D.J., Rocamora, G. et al. (2010) Assessment of mtDNA genetic diversity within the terrapins *Pelusios subniger* and *Pelusios castanoides* across the Seychelles islands. *Amphibia-Reptilia* 31: 583–588.

Tsutsui, N.D., Suarez, A.V., Holway, D.A., Case, T.J. (2000). Reduced genetic variation and the success of an invasive species. *Proceedings of the National Academy of Sciences* 97: 5948–5953.

Uetz, P., Freed, P., Hošek, J. (2020). The Reptile Database. http://www.reptile-database.org.

Valente, J., Rocha, S., Harris, D.J. (2014). Differentiation within the endemic burrowing skink *Pamelaescincus gardineri*, across the Seychelles islands, assessed by mitochondrial and nuclear markers. *African Journal of Herpetology* 63: 25–33.

Vences, M., Kosuch, J., Rödel, M. et al. (2004a). Phylogeography of *Ptychadena mascareniensis* suggests transoceanic dispersal in a widespread African Malagasy frog lineage. *Journal of Biogeography* 31: 593–601.

Vences, M., Wanke, S., Vieites, D.R. et al. (2004b). Natural colonization or introduction? Phylogeographical relationships and morphological differentiation of house geckos (Hemidactylus) from Madagascar. *Biological Journal of the Linnean Society* 83: 115–130.

Vidal, N. & Hedges, S.B. (2002). Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes. *Comptes Rendus Biologies* 325: 977–985.
Wynn, A.H., Cole, C.J., Gardner, A.L. (1987). Apparent triploidy in the unisexual Brahminy blind snake, *Ramphotyphlops braminus*. *American Museum Novitates* 2868: 1–7.

Yan, J., Li, H., Zhou, K. (2008). Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships. *BMC Genomics* 9: 569.

Young, H.S., Parker, I.M., Gilbert, G.S., Guerra, A.S., Nunn, C.L. (2017). Introduced species, disease ecology, and biodiversity – disease relationships. *Trends in Ecology & Evolution* 32: 41–54.

Zimkus, B.M., Lawson, L.P., Barej, M.F., Barratt, C.D., Channing, A., Dash, K.M., Dehling, J.M., du Preez, L., Gehring, P.S., Greenbaum, E., Gvoždík, V., Harvey, J., Keilgast, J., Kusamba, C., Nagy, Z.T., Pabijan, M., Penner, J., Rödel, M.O., Vences, M. and Lötters, S. (2017). Leapfrogging into new territory: How Mascarene ridged frogs diversified across Africa and Madagascar to maintain their ecological niche. *Molecular Phylogenetics and Evolution* 106: 254-269.
Table 1. Sample information for the Mascarene frog *Ptychadena mascareniensis*. Individuals with a “Sample ID” had 16s sequence data generated for them in this study. GenBank accession numbers are provided (https://www.ncbi.nlm.nih.gov/genbank/).

Species	Sample ID	Locality	Latitude (S)	Longitude (E)	GenBank #
P. mascareniensis	SM086	Mahé, Seychelles	04°36'21.4"	055°26'20.8"	MT509738
P. mascareniensis	SM124	Praslin, Seychelles	04°19'33.24"	055°45'29.10"	MT509739
P. mascareniensis	SM126	Praslin, Seychelles	04°19'33.24"	055°45'29.10"	MT509740
P. mascareniensis	SM127	Praslin, Seychelles	04°19'33.24"	055°45'29.10"	MT509737
P. mascareniensis	SM244	Silhouette, Seychelles	04°29'01.2"	055°14'56.9"	MT509741
P. mascareniensis	SM253	La Digue, Seychelles	04°20'57.4"	055°49'48.6"	MT509742
P. mascareniensis	SM255	La Digue, Seychelles	04°20'25.38"	055°50'11.88"	MT509743
P. mascareniensis	SM256	La Digue, Seychelles	04°20'25.38"	055°50'11.88"	MT509744
P. mascareniensis	SM258	La Digue, Seychelles	04°21'43.20"	055°49'57.84"	MT509745
P. mascareniensis	SM434	North, Seychelles	North, Seychelles	MT509755	
P. mascareniensis	SM435	North, Seychelles	North, Seychelles	MT509754	
P. mascareniensis	SM436	North, Seychelles	North, Seychelles	MT509753	
P. mascareniensis	SM437	North, Seychelles	North, Seychelles	MT509752	
P. mascareniensis	SM438	North, Seychelles	North, Seychelles	MT509751	
P. mascareniensis	SM439	North, Seychelles	North, Seychelles	MT509750	
P. mascareniensis	SM440	North, Seychelles	North, Seychelles	MT509749	
P. mascareniensis	SM441	North, Seychelles	North, Seychelles	MT509748	
P. mascareniensis	SM442	North, Seychelles	North, Seychelles	MT509746	
P. mascareniensis	SM443	North, Seychelles	North, Seychelles	MT509747	

1 Vences et al. (2004a)
Table 2. Sample information for the Brahminy blind snake *Indotyphlops braminus*.

Individuals with a “Sample ID” had *16s* sequence data generated for them in this study. MW numbers from Sri Lanka are field tags of uncatalogued National Museum of Sri Lanka, Colombo specimens. New island locality records are denoted with a *. GenBank accession numbers are provided (https://www.ncbi.nlm.nih.gov/genbank/).

Species	Sample ID	Locality	Latitude (S)	Longitude (E)	GenBank #
I. braminus	RAN25158	Curieuse, Seychelles			MT509731
I. braminus	SM313	La Digue, Seychelles	4°21’43.20"S	55°49’57.84"E	MT509730
I. braminus	MW10438	La Digue, Seychelles	4°21’43.20"S	55°49’57.84"E	MT509729
I. braminus	MW10439	La Digue, Seychelles	4°21’43.20"S	55°49’57.84"E	MT509728
I. braminus	MW10443	La Digue, Seychelles	4°21’43.20"S	55°49’57.84"E	MT509727
I. braminus	MW10240	Mahé, Seychelles	4°36’24.05"S	55°26’25.05"E	MT509725
I. braminus	SM455	Mahé, Seychelles	4°36’24.05"S	55°26’25.05"E	MT509725
I. braminus	SM481	Praslin, Seychelles	4°19’54.88"S	55°44’23.81"E	MT509724
I. braminus	SM482	Félicité, Seychelles	4°19’36.9"S	55°52’26.5"E	MT509723
I. braminus	SM483	Félicité, Seychelles	4°19’36.9"S	55°52’26.5"E	MT509722
I. braminus	MW1777	Sri Lanka	6°7’22.20"N	80°33’43.80"E	MT509736
I. braminus	MW1778	Sri Lanka	6°23’26.40"N	80°14’29.40"E	MT509735
I. braminus	MW1779	Sri Lanka	6°23’26.40"N	80°14’29.40"E	MT509734
I. braminus	MW1780	Sri Lanka	6°24’51.00"N	80°19’22.20"E	MT509733
I. braminus	MW1781	Sri Lanka	6°24’51.00"N	80°19’22.20"E	MT509732
I. braminus		Mahé, Seychelles			KJ783470
I. braminus		Thailand			AF544823
I. braminus		Unknown			DQ343649
I. braminus		Unknown			NC_010196
I. braminus		Mexico			GQ469240
I. braminus		Southern India			JN172940
I. braminus		Equatorial Guinea			KJ783466
I. braminus		Equatorial Guinea			KJ783467
I. braminus		Spain			KJ783468
I. braminus		Tenerife, Spain			KJ783469
I. braminus		Comoro Islands			KJ783471
I. braminus		Comoro Islands			KJ783472
I. braminus		Comoro Islands			KJ783473
I. braminus		Equatorial Guinea			KJ783474
I. braminus		China			KJ783475

1 Rato et al. (2015), 2 Vidal & Hedges (2002), 3 Yan et al. (2008), 4 Adalsteinsson et al. (2009)