A unified simulation of low-to-high cycle fatigue failure effects for metals with efficient algorithm

L Zhan¹, S Wang¹, Z H Xu¹, H F Xi¹,²,³, and H Xiao¹,³

¹School of Mechanics & Construction Engineering and MOE Lab for Disaster Forecast & Control in Engineering, Jinan University, West Huangpu Avenue 601, 510632 Guangzhou, China
²State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, 710049 Xi’an, China

Email: xihuifeng@jnu.edu.cn (H F Xi), hxiao@jnu.edu.cn (H Xiao)

Abstract. Within the framework of a recently established elastoplasticity model incorporating fatigue failure effects into inherent response features, a new and efficient algorithm is proposed to simultaneously treat fatigue failure effects from low to high cycle cases. From the new model it is possible to derive an explicit algorithm with which the accumulated plastic work is directly calculated by means of a recursive scheme, thus bypassing very time-consuming procedures in carrying out numerical integrations of the elastoplastic rate equations for a large number of loading-unloading cycles. Comparisons of simulation results with fatigue failure data from low to high cycle cases are presented to demonstrate the efficacy of the new algorithm.

1. Introduction

The reliability and safety issues of key engineering components made of metals under cyclic loading conditions is a research hotspot. The central objective is to establish realistic constitutive models and efficient algorithms for simulating complicated effects induced by fatigue failure. Numerous analytical and numerical results in this respect have been suggested from micro-structural, phenomenological, and experimental standpoints. Reference may be made to the survey articles [1-3] for certain representative samples. Toward a direct and unified approach for simulating fatigue failure effects from low to high cycle cases, innovative elastoplasticity models have been most recently established in the previous work [4-6] and developed later in [7] toward the automatic incorporation of fatigue failure effects into inherent response features.

At each loading-unloading cycle, the elastoplastic response should be calculated by carrying out numerical procedures of integrating the elastoplastic rate equations. It is expected that the computation effort would be very time-consuming as the loading-unloading cycle repeats itself at so many times. That may be the case particularly in large-scale FEM computations with a great number of elements. As such, it is of much value to design an efficient algorithm for substantially expediting time-consuming numerical computations.

The main objective of this contribution is to present an efficient algorithm for simultaneously simulating low-to-high cycle fatigue failure effects within the framework of the innovative elastoplastic models in [4-7]. Toward this goal, a recursive numerical scheme will be designed to directly calculate the accumulated plastic work, thus bypassing usual time-consuming procedures in the foregoing. Comparison of simulation results with fatigue failure data from low- to high-cycle cases will be presented to demonstrate the efficiency of the new algorithm.
2. **New elastoplastic equations incorporating fatigue effects**

A reduced form of the self-consistent elastoplasticity model established in [4-6] is used for our purpose. In what follows, the following notations will be used: D and τ are the stretching and the Kirchhoff stress; the deviatoric part of the latter is signified by $\bar{\tau}$; D^e and D^p are the elastic and the plastic part of D; $\dot{\tau}^{\log}$ is the logarithmic stress rate; ρ is the plastic index. Details may be found in [4-6]. Below is the innovative elastoplasticity model:

\[
D = D^e + D^p, \quad (1)
\]

\[
D^e = \frac{1}{2G} \bar{\tau}^{\log} + \frac{\nu}{E}(\text{tr} \bar{\tau}^{\log}) I, \quad (2)
\]

\[
D^p = \rho \left(\frac{\bar{f}}{2h} + \frac{\bar{f}}{2} \frac{\partial f}{\partial \tau} \right),
\]

with von Mises yield function specified by

\[
\begin{cases}
 f = g - r, \\
 g = \frac{1}{2} J_2 = \frac{1}{2} \text{tr} \bar{\tau}^{2}, \quad r = \frac{1}{3} q^2 (k),
\end{cases} \quad (3)
\]

where q is the stress limit dependent on the plastic work k:

\[
q = \frac{1}{2} \left(1 + \frac{\lambda}{k_c} \right) \left(1 - \tanh \beta \left(\frac{k}{k_c} - 1 \right) \right), \quad (4)
\]

\[
\kappa = \tau : D^p, \quad (5)
\]

and finally, \bar{f} and \bar{h} define the plastic modulus:

\[
\bar{f} = 2G \bar{\tau} : D, \quad \bar{h} = \frac{2}{3} J_2 \left(3G + qq' (\kappa) \right), \quad (6)
\]

As in classical Hooke's law, here the elastic constants G, ν and E are the shear modulus, Poisson's ratio and the Young modulus. However, unlike the usual flow rule, the plastic index ρ here is no longer limited to the two values 1 and 0 for the loading and the unloading case, respectively, but allowed to smoothly take values from 0 to 1, as given below

\[
\begin{cases}
 \rho = \frac{1}{e^m - 1} (e^{mg/m} - 1) \\
 m = m_0 e^{ak/k_c}
\end{cases} \quad (7)
\]

In the above, λ, ξ, m_0, a and β are dimensionless positive material parameters, and q_0 and k_c are positive material parameters with the dimension of stress.

3. **New elastoplastic equations incorporating fatigue effects**

The reduced forms of the elastoplastic equations in the foregoing are derived in the uniaxial loading-unloading cases and given as follows:
\[
\frac{dh}{d\tau} = \frac{1}{E} \frac{\rho}{3G(1-\rho) + s}\frac{s}{s'}
\]
\[
\frac{dh}{d\tau} = \rho \frac{\tau}{3G(1-\rho) + qq'}
\] (8)

Here, \(\tau\) and \(h\) are used to designate the axial stress and the axial logarithmic strain, respectively.

Let \(\bar{A}\) and \(A\) be the maximum and the minimum amplitude of the axial stress at each loading-unloading cycle. From the reduced forms above, it may be deduced by means of effective approximate evaluation of high accuracy that the plastic work produced in the \(i\)-th loading-unloading cycle from the minimum amplitude \(A\) to the maximum amplitude \(\bar{A}\), denoted as \(k_i\), may be calculated with the following direct recursive scheme:

\[
k_{i+1} = k_i + \phi \left(\frac{\phi - e^{m(k_i)}}{\phi - e^{m(k_n)}} + a \right) \psi, \quad n = 2, 3, \ldots, N,
\] (9)

with

\[
\phi = \frac{e^{m(k)}}{3G} \left(3G + q(k)q'(k) - q(k)q'(k_n) \right), \quad \psi = \frac{q^2(k)}{6G},
\]

\[
a = \frac{\bar{A}}{q^2(k)} \text{sgn} R - \left(1 + \frac{(-1)^n}{2} (R - 1) (1 - \text{sgn} R) \right) \frac{\bar{A}}{q^2(k)},
\] (10)

In the above, \(\text{sgn}\) denotes the sign function. It should be noted that the \(n\) above doubles the usual cycle number when \(R < 0\). When the total plastic work \(k\) approaches the critical plastic work \(k_c\), the stress limit \(q\) goes rapidly down to vanish and, as such, fatigue failure will emerge. Hence, a unified failure criterion for determining the cyclic number \(s\) to fatigue for loading-unloading procedures of varying amplitudes may be derived, as given below:

\[
\begin{cases}
k_n \leq k_c, \\
k_{n+1} \geq k_c,
\end{cases}
\] (11)

The new and direct criterion leads to a unified algorithm of high efficiency in simultaneously treating low-to-high cycle fatigue cases, as will be illustrated below.

| Table 1. Parameter values for CG301LN steel and Elbrodur-NIB copper alloy. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Material | \(E\) (GPa) | \(q_0\) (MPa) | \(\kappa\) (MPa) | \(\nu\) | \(\lambda\) | \(\xi\) | \(\beta\) | \(m_0\) | \(\alpha\) |
| CG 301LN steel | 103 | 820 | 640 | 0.3 | 1.41 | 1.2 | 8 | 20 | 2 |
| Elbrodur-NIB | 53 | 520 | 240 | 0.3 | 0.49 | 1 | 8.5 | 0.05 | |
4. Numerical examples for model validation

For the purpose of model validation, we consider the failure data presented in [8] for CG 301LN steel and in [9] for Elbrodur-NIB copper alloy. The parameter values are listed in table 1 and simulation results with these parameter values are calculated by means of both usual integral procedures and the explicit recursive algorithm proposed. Simulation results and comparisons are depicted through figures 1–4 and listed in tables 2 and 3.

Table 2. Comparison of new and usual algorithms for low-to-ultrahigh cycle fatigue failure for CG 301LN steel.

Amplitude (MPa)	1,000	900	800	700	600	500
Cycle (usual)	3,559	10,944	44,553	285,537	2,916,454	N/A
Cycle (new)	3,520	10,938	44,852	292,270	3,157,832	39,681,324
Error (%)	1.09	0.05	0.67	2.36	8.27	N/A
Time (usual, min)	2.409	6.989	26.147	158.593	1,730.83	>10000
Time (new, min)	0.009	0.027	0.113	0.736	7.954	99.947

Table 3. Comparison of new and usual algorithms for fatigue failure of Elbrodur-NIB copper alloy.

Amplitude (MPa)	550	500	450	400	350	300
Cycle (usual)	2,524	7,272	19,488	49,829	125,100	316,488
Cycle (new)	2,528	7,290	19,516	50,066	125,950	321,015
Error (%)	0.19	0.25	0.14	0.48	0.68	1.43
Time (usual, min)	1.211	3.329	8.276	22.809	56.554	141.322
Time (new, min)	0.0059	0.0167	0.0421	0.1151	0.2895	0.6551

Figure 1. Comparison of simulation results with monotonic uniaxial tensile data for CG 301LN steel in [8].

Figure 2. Comparison of simulation results with fatigue data for CG 301LN steel in [8].
5. Conclusions

It has been shown that the computation time is greatly minimized with the new proposed algorithm. Particularly, less than 100 minutes are needed in calculating the S-N curve for a number of stress amplitudes in the high cycle fatigue case for CG 301LN steel, while 10^7 cycles and more are involved. However, it is expected that more than 100 hours would be consumed with usual numerical integration procedures in this case.

The new direct algorithm of high efficiency is provided for the uniaxial case in the current study. It is of much significance to extend this algorithm to the broad case of multi-axial fatigue effects. Also, medium high and even low cycle fatigue effects need to be handled, in addition to high cycle fatigue cases treated here. That is particularly the case for multi-axial effects, which results will be reported in the follow-up studies.

References

[1] Ritchie R O, Gilbert C J and McNaney J N 2000 Mechanics and mechanisms of fatigue damage and crack growth in advanced materials Int. J. Solids Struct. 37 311
[2] Susmel L 2008 The theory of critical distances: a review of its applications in fatigue Eng. Fract. Mech. 75 1706
[3] Rozumek D and Macha E 2009 A survey of failure criteria and parameters in mixed-mode fatigue crack growth Mater. Sci. 45 190
[4] Xiao H 2014 Thermo-coupled elastoplasticity model with asymptotic loss of the material strength Int. J. Plasticity 63 211.
[5] Xiao H, Bruhns O T and Meyers A 2014 Free rate-independent elastoplastic equations ZAMM-J. Appl. Math. Mech. 94 461
[6] Wang Z L and Xiao H 2017 Direct modeling of multiaxial fatigue failure for metals Int. J. Solids Struct. 125 216
[7] Zhan L, Wang S Y, Xi H F and Xiao H 2019 Innovative elastoplastic J2-flow equations incorporating fatigue failure effects as inherent constitutive features ZAMM-J. Appl. Math. Mech. e201900023
[8] Hamada A S and Karjalainen L P 2010 High-cycle fatigue behavior of ultrafine-grained austenitic stainless and twip steels Materials Sci. Engng. A 527 5715
[9] Lim C B, Kim K S and Seong J B 2009 Ratcheting and fatigue behavior of a copper alloy under uniaxial cyclic loading with mean stress Int. J. Fatigue 31 501