Periodontitis is associated to increased systemic inflammation in post-myocardial infarction patients

Ronaldo Lira-Junior, Elisabeth A. Boström, Anders Gustafsson; PAROKRANK steering committee*

*Steering committee acknowledgement:
Ulf de Faire – Institute of Environmental Medicine, Karolinska Institutet;
Bertil Lindahl – Department Medical Sciences, Uppsala University;
Åke Nygren – Department of Clinical Sciences Danderyd, Karolinska Institutet;
Ulf Näslund – Institution of Public Health and Clinical Medicine, Umeå University;
Per Näsmann – Center for Safety Research, KTH Royal Institute of Technology;
Barbro Kjellström – Department of Medicine, Karolinska Institutet;
Kåre Buhlin – Department of Dental Medicine, Karolinska Institutet;
Elisabet Svenungsson – Department of Medicine, Karolinska Institutet;
Anna Norhammar – Department of Medicine, Karolinska Institutet;
Björn Klinge – Department of Dental Medicine, Karolinska Institutet;
Lars Rydén – Department of Medicine, Karolinska Institutet.

SUPPLEMENTAL MATERIAL
Suppl Figure 1. Influence of diabetes on the inflammatory protein profile in plasma.
A. Scores plot after principal component analysis based on 71 plasma proteins showing no evident separation between diabetes (blue) and non-diabetes participants (grey).
B. Volcano plot depicting log2 fold-change (FC) in normalized protein expression and -log10 p-values of plasma proteins in diabetes (n=35) versus non-diabetes participants (n=165) who had a myocardial infarction. Significantly increased proteins in diabetes are shown in blue (t-test, FDR<0.05).
C. String-based protein-protein interactions with proteins significantly altered in diabetes. Nodes are color-coded according to their biological processes shown in (D).
D. Top 5 most significant gene ontology (GO) biological processes overrepresented in proteins up-regulated in diabetes.
Suppl Figure 2. Plasma inflammatory profile according to sex and smoking.

A. Scores plot after principal component analysis based on 71 plasma proteins showing with samples color-coded according to sex, males (blue) and females (grey).

B. Scores plot after principal component analysis based on 71 plasma proteins showing with samples color-coded according to smoking status at follow-up visits, non-smokers (grey), former smokers (orange) and current smokers (blue).
Suppl Figure 3. Inflammatory protein profile in plasma from patients who had a myocardial infarction in relation to bone loss.

A. Volcano plot depicting log2 fold-change (FC) in normalized protein expression and -log10 p-values of plasma proteins in periodontitis (n=49) versus non-periodontitis patients (n=47) who had a myocardial infarction. Significantly increased proteins in periodontitis are shown in blue (t-test, FDR<0.05).

B. β-coefficients and 95% confidence intervals for the association between periodontitis and significant biomarkers identified in (A) after adjustment for age and smoking status.

C. Pearson correlation analysis of white blood cell count (WBC) with radiographic bone loss and pocket depth (PPD) ≥ 6mm in all participants.

D. Pearson correlations between plasma proteins and WBC. All proteins were assessed, but only significant correlations (FDR<0.05) are depicted.
Suppl Table 1. List of proteins included in the Olink® Inflammation panel.

Protein ID	Name	Uniprot ID
Q13541	Eukaryotic translation initiation factor 4E-	
P00813	Adenosine Deaminase	
Q5TF4W7	Artemin	
Q15169	Axin-1	
P23560	Brain-derived neurotrophic factor	
Q14790	Caspase-8	
P51671	C-C motif chemokine 11	
Q97371	C-C motif chemokine 19	
P78556	C-C motif chemokine 20	
P55773	C-C motif chemokine 23	
Q15444	C-C motif chemokine 25	
Q9NR3F	C-C motif chemokine 28	
P10147	C-C motif chemokine 3	
P13236	C-C motif chemokine 4	
Q9BZW8	Natural killer cell receptor 2B4	
P25942	CD40L receptor	
P06127	T-cell surface glycoprotein CD5	
Q9WW37	T cell surface glycoprotein CD6 isoform	
Q9HF5V8	CUB domain-containing protein 1	
P96603	Macrophage colony-stimulating factor 1	
P28325	Cystatin D	
P78423	Fractalkine	
P90341	C-X-C motif chemokine 1	
P02778	C-X-C motif chemokine 10	
Q14625	C-X-C motif chemokine 11	
P42830	C-X-C motif chemokine 5	
P80162	C-X-C motif chemokine 6	
Q70325	C-X-C motif chemokine 9	
Q8NFT8	Delta and Notch-like epidermal growth	
P80511	Protein S100A12	
Q95750	Fibroblast growth factor 19	
Q9NSA1	Fibroblast growth factor 21	
Q9GZV9	Fibroblast growth factor 23	
Q8NF90	Fibroblast growth factor 5	
P49771	Fms-related tyrosine kinase 3 ligand	
P97711	Gliarial cell line-derived neurotrophic	
P39905	Hepatocyte growth factor	
P14210	Interferon gamma	
P01579	Interleukin-10	
P22301	Interleukin-10 receptor subunit alpha	
Q13551	Interleukin-10 receptor subunit beta	
P29460	Interleukin-12 subunit beta	
P35225	Interleukin-13	
Q13261	Interleukin-15 receptor subunit alpha	
Q16552	Interleukin-17A	
Q9P0M4	Interleukin-17C	
Q14116	Interleukin-18	
Q13478	Interleukin-18 receptor 1	
P01583	Interleukin-1 alpha	
P60568	Interleukin-2	
Q9NYY1	Interleukin-20	
Q9UHF4	Interleukin-20 receptor subunit alpha	
Q8N0P7	Interleukin-22 receptor subunit alpha-1	
P13007	Interleukin-24	
P14784	Interleukin-2 receptor subunit beta	
Q95760	Interleukin-33	
P05112	Interleukin-4	
P05113	Interleukin-5	
P05231	Interleukin-6	
P13232	Interleukin-7	
P10145	Interleukin-8	
P01137	Latency-associated peptide transforming	
P15018	growth factor beta-1	
P42702	Leukemia inhibitory factor receptor	
P13500	Monocyte chemotactic protein 1	
P80075	Monocyte chemotactic protein 2	
P80098	Monocyte chemotactic protein 3	
Q96961	Monocyte chemotactic protein 4	
P03956	Matrix metalloproteinase-1	
P09238	Matrix metalloproteinase 10	
Q99748	Neurturin	
P20783	Neurophin-3	
O00300	Osteoprotegerin	
P13725	Oncostatin-M	
Q9NZQ7	Programmed cell death 1 ligand	
P21583	Stem cell factor	
Q8IXJ6	SIR2-like protein 2	
Q13291	Signaling lymphoblastic activation	
P50225	Sulforatanserase 1A	
Q95630	STAMP binding protein	
P01135	Transforming growth factor alpha	
P01375	Tumor necrosis factor	
P01374	TNF-beta	
Q70111	Tumor necrosis factor receptor superfamily	
O43557	Tumor necrosis factor ligand superfamily	
P50591	TNF-related apoptosis-inducing ligand	
Q14788	TNF-related activation-induced cytokine	
Q96969	Thymic stromal lymphopoietin	
P13374	Tumor necrosis factor (Ligand) superfamily	
O43508	Urokinase-type plasminogen activator	
P00749	Vascular endothelial growth factor A	
P01138	Beta-nerve growth factor	