First-Principles Calculation of Curie Temperature Tuning in L1₀-Type FePt by Element Substitution of Mn, Cu, Ru, and Rh

Y. Kota
National Institute of Technology, Fukushima College, Iwaki, Fukushima 970-8034, Japan

We studied the Curie temperature T_C variation in L1₀-type FePt ordered alloys that were partially substituted with other transition metal elements, such as Mn, Cu, Ru, and Rh, by first-principles calculations. For the theoretical evaluation of T_C, a disordered local moment approach based on the coherent potential approximation was employed. The calculated results reveal that the most significant reduction in T_C was observed for FePt where some Pt was substituted by Ru, while a large uniaxial magnetic anisotropy constant on the order of 10^7erg/cm^3 was maintained. An analysis of the electronic structure demonstrates that the stability of the ferromagnetic state is degraded by the substitution of Ru.

Key words: Curie temperature, L1₀-type FePt, element substitution, first-principles calculation, coherent potential approximation, disordered local moment

1 Introduction

L1₀-type FePt alloy is a key material for magnetic recording media because of its strong magnetocrystalline anisotropy.¹⁻⁴) Heat-assisted magnetic recording is a promising technology for achieving further increases in recording density in harddisk drives.⁵,⁶) However, the high Curie temperature T_C of FePt of approximately 750 K causes energy dissipation and also can lead to serious damage by heating in writing operations. Thus, reducing T_C while maintaining a large uniaxial magnetic anisotropy constant K_u in FePt is required.

Element substitution is one of practical ways for controlling T_C. Several studies have found that the reduction of T_C in FePt is achieved by the substitution of 3d elements such as Mn⁷,⁸) and Cu⁹⁻¹₂) and 4d elements such as Ru¹³) and Rh¹⁴,¹⁵) However, it is unclear which element is the most effective as the substitution element for reducing T_C in FePt. In this letter, we perform first-principles calculations of T_C for L1₀-type FePt alloys that are partially substituted with other transition metal elements, Mn, Cu, Ru, and Rh. The composition dependence of T_C is investigated systematically, and a possible mechanism of T_C variation is discussed through an analysis of the electronic structure.

2 Calculation Details

Electronic structure calculations were performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method in conjunction with the atomic sphere approximation.¹⁶,¹⁷) The exchange-correlation functional was described within the local spin-density approximation. We considered two substitution patterns in an L1₀-type ordered structure, as shown in Fig. 1. In Fig. 1(a), some Fe is substituted with other transition elements X, where X is Mn, Cu, Ru, and Rh, and in Fig. 1(b), some Pt is substituted with X. To treat the substitutional alloy disorder, the coherent potential approximation (CPA)¹⁹,²⁰) was employed. The range of the amount of substitution, σ, was set to $0 \leq \sigma \leq 0.2$ for (Fe₁₋σX₀)Pt and Fe(Pt₁₋σX₀). We set the lattice constants of L1₀-type FePt ($\sigma = 0$) to $a = 3.85 \text{Å}$ and $c = 3.71 \text{Å},²¹)$ and the variation of the lattice volume due to the element substitution was considered with reference to the experimental equilibrium radius of each atom in Ref. 16. The axial ratio was fixed to $c/a = 0.96$ for the whole composition range. In all calculations, 1.1×10^5 k-points were sampled in the full Brillouin zone for the primitive cell of the L1₀-type lattice.

We calculated the composition dependence of the magnetic properties, such as saturation magnetization M_s, K_u, and T_C. For the evaluation of M_s, the electron number difference in the majority- and minority-spin states, i.e., $M_s = N_+ - N_-$, was calculated. For the evaluation of K_u, we calculated the band energies E_\uparrow and E_\downarrow where the magnetization aligns along the a- and c-axis directions, respectively, including the spin–orbit interaction.²²,²³) Based on the magnetic force theorem,²⁴,²⁵) K_u was evaluated from

$$K_u = \frac{E_\uparrow - E_\downarrow}{V},$$

where V is the volume of the unit cell. For the evaluation of T_C, the disorder local moment (DLM) state in which the directions
We calculated the total energy in the ferromagnetic ground state E_{FM} and that in the DLM state E_{DLM} without the spin–orbit interaction, and evaluated T_C from

$$T_C = \frac{2}{3} \frac{E_{DLM} - E_{FM}}{\epsilon_B k_B}$$

within the mean field approximation.\(^{29,30}\) Note that k_B and ϵ_B denote the Boltzmann constant and the total concentration of magnetic atoms, respectively. We counted Fe and Mn as the magnetic atoms to which the DLM treatment was applied.

3 Results and Discussion

Let us first confirm the composition dependence of M_s and K_u. Figures 2 and 3 show M_s and K_u, respectively, as a function of the substitution amount σ of the magnetic moments are randomly distributed like paramagnetic states was considered.\(^{26,27}\) The CPA is also applicable to the magnetic disorder, in addition to the alloying disorder mentioned above. For example, the collinear DLM state of pure-Fe can be treated as an Fe_2Pt alloy, where half of the Fe moments point in the \parallel direction and the others point in the \perp direction.\(^{28}\) We calculated the total energy in the ferromagnetic ground state E_{FM} and that in the DLM state E_{DLM} without the spin–orbit interaction, and evaluated T_C from

$$T_C = \frac{2}{3} \frac{E_{DLM} - E_{FM}}{\epsilon_B k_B}$$

within the mean field approximation.\(^{29,30}\) Note that k_B and ϵ_B denote the Boltzmann constant and the total concentration of magnetic atoms, respectively. We counted Fe and Mn as the magnetic atoms to which the DLM treatment was applied.

Fig. 2 Magnetization M_s as a function of the substitution element X and its amount σ in (a) $(\text{Fe}_1-x\text{X})\text{Pt}$ and (b) Fe$(\text{Pt}_{1-x}\text{X})_x$.

Fig. 3 Uniaxial anisotropy constant K_u as a function of the substitution element X and its amount σ in (a) $(\text{Fe}_1-x\text{X})\text{Pt}$ and (b) Fe$(\text{Pt}_{1-x}\text{X})_x$.

For $X = \text{Mn}, \text{Cu}, \text{Ru}, \text{Rh}$, in FePtMn exhibits a ferromagnetic magnetic structure for $\sigma \leq 0.2$. Although the collinear magnetic structure is assumed in the present study, we consider that the obtained result is related to previous studies in which the canting ferromagnetic order was observed in $(\text{Fe}_1-x\text{Mn})\text{Pt}$ (0.1 $\leq \sigma \leq 0.2$) by neutron diffraction\(^7\) and first-principles calculations.\(^{33}\) If the substitution amount of Mn is increased further, an antiferromagnetic order appears due to complex magnetic interactions.

In Fig. 3, K_u tends to decrease, although it is almost constant in the case of the substitution of Rh for Pt. However, strong perpendicular magnetic anisotropy on the order of 10^7 erg/cm3 is maintained for $\sigma \leq 0.2$. The magnetocrystalline anisotropy in L_10-type FePt originates from the synergy between the strong spin–orbit interaction in Pt atoms and the large exchange splitting in Fe atoms. In particular, the 5d states of Pt located near the Fermi level have an important role in inducing the large K_u.\(^{32,33}\) Therefore, the substitution of X for Fe and Pt degrades this synergistic effect, because the spin–orbit interaction is relatively weak in 3d and 4d elements, and also because Cu, Ru, and Rh are non-magnetic in their simple substances. Figure 3 also indicates that enhancement of K_u in FePt is not expected by substitution with Mn, Cu, Ru, and Rh.

Next, we investigate the variation of T_C. Figure 4 shows T_C as a function of σ. For $\sigma = 0$, T_C is 982 K, which is quantitatively consistent with the previous result of 935 K calculated in a similar framework based on the Korringa–Kohn–Rostoker method by Staunton et al.\(^{34}\) However, the calculated T_C values are approximately 30% larger than the experimental value (750 K). One possible reason for the discrepancy between the theoretical and ex-
In consideration of applications, the substitution of Ru for Pt, Fe(Pt$_{1-x}$Ru$_x$), are also remarkable, since T_C can be reduced without lowering K_u. Comparing with experiments, 15% and 16% reductions of T_C were reported for (Fe$_{0.95}$Ru$_{0.05}$)(Pt$_{0.06}$Ru$_{0.04}$) and Fe(Pt$_{0.03}$Rh$_{0.01}$), respectively (corresponding to a 5–6 at.% substitution of Ru and Rh). The calculations for these compositions give 17% and 13% reductions of T_C [the data for (Fe$_{0.95}$Ru$_{0.05}$)(Pt$_{0.06}$Ru$_{0.04}$) is not shown in Fig. 4]. The calculated results are in good agreement with the experimental data, though they are different from each other by a few percent. This fact implies that T_C reduction is more efficient if site-specific substitution of Ru can be achieved.

We now discuss the behavior of the T_C variation in Fig. 4. In Fig. 4(a), the variation is not dependent on X in (Fe$_{1-x}$X$_x$)Pt. By substituting X for Fe, the number of Fe–Fe pairs in the system decreases, and the effective exchange field, which is the molecular field around one Fe atom induced by the exchange interaction with the other Fe atoms, is weakened. Therefore, T_C decreases with σ regardless of X. On the other hand, the T_C variation strongly depends on X in Fe(Pt$_{1-x}$X$_x$), i.e., T_C is significantly reduced for X = Ru, whereas T_C is not greatly changed for X = Cu, as shown in Fig. 4(b).

To clarify the behavior in Fig. 4(b) qualitatively, we analyze the electronic structure of each atom. Figure 5 shows the local density of states (LDOS) for FePt, Fe(Pt$_{0.3}$Cu$_{0.2}$), and Fe(Pt$_{0.3}$Ru$_{0.2}$). The overall shapes of each LDOS of Fe and Pt are similar. However, focusing on the region around the Fermi level, we observe the broadening of the upper edge of the LDOS in the majority-spin state of Fe through the hybridization with the Ru state located around the Fermi level E_F, as shown by the bold arrow in Fig. 5(c), compared to the edge of the LDOS in FePt and Fe(Pt$_{0.3}$Cu$_{0.2}$). This broadening results in the increase of the band energy in the system (the band energy is expressed as $E = \int_{-\infty}^{E_F} \rho(E) dE$, where $\rho(E)$ is the density of states). Because ferromagnetism is considered to emerge when the decrease of the Coulomb energy by exchange splitting is greater than the increase of the band energy, the additional band energy by the Ru substitution is expected to degrade the stability of the ferromagnetic state. Thus, the effective exchange field is weakened and T_C decreases by the substitution of Ru for Pt, although the amount of Fe is constant in Fe(Pt$_{1-x}$Ru$_x$). In contrast, since the LDOS of Fe in Fe(Pt$_{0.3}$Cu$_{0.2}$) is not influenced by the Cu state, the T_C of Fe(Pt$_{1-x}$Cu$_x$) in Fig. 4(b) is almost constant.

4 Summary

The tuning effect on T_C in L1$_0$-type FePt by the substitution of Mn, Cu, Ru, and Rh was studied by first-principles calculations based on the DLM-CPA approach using the TB-LMTO method. The obtained results revealed that the behavior of T_C
was strongly dependent on the substitution sites and elements. In particular, the most significant reduction in T_C was observed for the substitution of Ru for Pt. Specifically, about 32% lowering of T_C was achieved in Fe$(\text{Pt}_{0.79}\text{Ru}_{0.21})$, while maintaining a large κ_n of 10^3 erg/cm3 order. Through the analysis of the electronic structure, we found that the substitution of Ru possibly degrades the ferromagnetism in Fe$(\text{Pt}_{1-x}\text{Ru}_x)$, because of the increase of the band energy in the system.

Acknowledgments The author is grateful to A. Sakuma and D. Miura of Tohoku University for lending computational resources.

References

1) G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans: Phys. Rev. B, 44, 12054 (1991).
2) A. Sakuma: J. Phys. Soc. Jpn., 63, 3053 (1994).
3) R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada, and G. R. Harp: J. Appl. Phys., 79, 5967 (1996).
4) J.-U. Thiele, L. Folks, M. F. Toney, and D. K. Weller: J. Appl. Phys., 84, 5686 (1998).
5) M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y. T. Hsia, and M. F. Erdem: Proc. IEEE, 96, 1810 (2008).
6) N. J. Gokemeijer, W. A. Challener, E. Gage, Y. T. Hsia, G. Ju, D. Karns, D. Karns, L. Li, B. Lu, K. Pelhos, C. Peng, T. Rausch, R. E. Rottmayer, M. A. Seigler, X. Yang, and H. Zhou: J. Magn. Soc. Jpn., 32, 146 (2008).
7) A. Z. Menshikov, V. P. Antropov, G. P. Gasnikova, Y. A. Dorofeyev, and V. A. Kazantsev: J. Magn. Magn. Mater., 65, 159 (1987).
8) D. B. Xu, J. S. Chen, T. J. Zhou, and G. M. Chow: J. Appl. Phys., 109, 07B747 (2011).
9) J. Ikemoto, Y. Imai, and S. Nakagawa: IEEE Trans. Magn., 44, 3543 (2008).
10) Y. Ogata, Y. Imai, and S. Nakagawa: J. Magn. Soc. Jpn., 34, 209 (2010).
11) B. Wang and K. Barmaik: J. Appl. Phys., 109, 123916 (2011).
12) D. A. Gilbert, L.-W. Wang, T. J. Klemmer, J.-U. Thiele, C.-H. Lai, and K. Liu: Appl. Phys. Lett., 102, 132406 (2013).
13) T. Ono, H. Nakata, T. Moriya, N. Kikuchi, S. Okamoto, O. Kitakami, and T. Shimatsu: Appl. Phys. Express, 9, 123002 (2016).
14) T. Hasegawa, J. Miyahara, T. Narisawa, S. Ishio, H. Yamane, Y. Kondo, J. Ariake, S. Mitani, Y. Sakuraba, and K. Takanashi: J. Appl. Phys., 106, 103928 (2009).
15) D. Xu, C.-J. Sun, J.-S. Chen, T.-J. Zhou, S. M. Heald, A. Bergman, B. Sanjal, and G. M. Chow: J. Appl. Phys., 116, 143902 (2014).
16) H. L. Skriver: The LMTO Method (Springer, Berlin, 1984).
17) I. Turek, V. Darchal, J. Kudrnovský, M. Šov, and P. Weinberger: Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, Boston, 1997).
18) K. Momma and F. Izumi: J. Appl. Crystallogr., 44, 1272 (2011).
19) P. Soven, Phys. Rev., 156, 809 (1967).
20) D. W. Taylor, Phys. Rev., 156, 1017 (1967).
21) T. J. Klemmer, N. Shukla, C. Liu, X. W. Wu, E. B. Svedberg, O. Myyasov, R. W. Chantrell, and D. Weller: Appl. Phys. Lett., 81, 2220 (2002).
22) Y. Kota and A. Sakuma: J. Appl. Phys., 111, 07A310 (2012).
23) Y. Kota and A. Sakuma: J. Phys. Soc. Jpn., 81, 084705 (2012).
24) M. Weinert, R. E. Watson, and J. W. Davenport: Phys. Rev. B, 32, 2115 (1985).
25) G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans: Phys. Rev. B, 41, 11919 (1990).
26) T. Oguchi, K. Terakura, and N. Hamada: J. Phys.: F: Met. Phys., 13, 145 (1983).
27) B. L. Györffy, A. J. Pindor, J. Staunton, G. M. Stocks, and H. Winter: J. Phys. F: Met. Phys., 15, 1337 (1985).
28) Y. Kota and A. Sakuma: J. Magn. Soc. Jpn., 35, 374 (2011).
29) L. Bergqvist and P. H. Dederichs: J. Phys.: Condens. Matter, 19, 216220 (2007).
30) B. Wasilewski, W. Marciniak, and M. Werwiński: J. Phys. D: Appl. Phys., 51, 175001 (2018).
31) B. S. Pujari, P. Larson, V. P. Antropov, and K. D. Belashchenko: Phys. Rev. Lett., 115, 057203 (2015).
32) I. V. Solovyev, P. H. Dederichs, and I. Mertig: Phys. Rev. B, 52, 13419 (1995).
33) Y. Kota and A. Sakuma: J. Phys. Soc. Jpn., 83, 034715 (2014).
34) J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Györffy, L. Szunyogh, D. Mryasov, R. W. Chantrell, and D. Weller: Appl. Phys. Lett., 81, 2220 (2002).
35) A. Sakuma: Electron Theory of Magnetism (Kyoritsu Shuppan, Tokyo, 2010).

Received October 11, 2019; Accepted November 21, 2019