RESEARCH ARTICLE

Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus

Rosangela Naomi Inui Kishi1,2,* , Dagmar Stach-Machado2, Junya de Lacorte Singulani3, Claudia Tavares dos Santos3, Ana Marisa Fusco-Almeida3, Eduardo Maffud Cilli4, Juliana Freitas-Astúa5, Simone Cristina Picchi1, Marcos Antonio Machado1

1 Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil, 2 Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil, 3 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil, 4 Instituto de Química de Araraquara, Departamento de Bioquímica e Tecnologia Química, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil, 5 Embrapa Cassava and Fruits, Cruz das Almas, Bahia, Brazil

* Current address: FUNDECITRUS, Fundo de Defesa da Citricultura, Araraquara, São Paulo, Brazil
* rosalnela.inui@gmail.com

Abstract

Antimicrobial peptides (AMPs) can be found in various organisms, and could be considered an alternative for pesticides used to control plant pathogens, including those affecting citrus. Brazil is the largest producer and exporter of frozen concentrated orange juice in the world. However, the citrus industry has been affected by several diseases such as citrus canker and huanglongbing (HLB), caused by the bacteria Xanthomonas citri subsp. citri (X.citri) and Candidatus Liberibacter asiaticus (CaLas), respectively. In order to control these pathogens, putative AMPs were prospected in databases containing citrus sequences. Furthermore, AMPs already reported in the literature were also used for in vitro and in vivo assays against X.citri. Since CaLas cannot be cultivated in vitro, surrogates as Sinorhizobium melliloti and Agrobacterium tumefaciens were used. This study reports the evaluation of six AMPs obtained from different sources, two of them from Citrus spp. (citrus-amp1 and citrus-amp2), three from amphibians (Hylin-a1, K0-W0-Hy-a1 and Ocellatin 4-analogue) and one from porcine (Triptpticin). Peptides K0-W0-Hy-a1, Ocellatin 4-analogue, and citrus-amp1 showed bactericidal activity against X.citri and S. melliloti and bacteriostatic effect on A. tumefaciens. These results were confirmed for X.citri in planta. In addition cytotoxicity evaluations of these molecules were performed. The AMPs that showed the lowest hemolytic activities were Triptrpticin, citrus-amp1 and citrus-amp2. citrus-amp1 and citrus-amp2 not presented toxicity in experiments using in vivo model, G. mellonella and U87 MG cells. To verify the interaction of these AMPs with bacteria and erythrocyte cell membranes, vesicles mimicking these cells were built. Citrus-amp1 and Triptpticin exhibited higher affinity to bacterial membranes, while Ocellatin 4-analogue and Hylin-a1 showed higher affinity to erythrocyte membranes; exclude their use in citrus. This work demonstrates an essential alternative, trough AMPs obtained from Citrus spp., which can be feasibly used to control bacterial pathogens.
Introduction

Plant diseases have a great impact on the productivity of several crops, and their control is often accomplished only by excessive use of agrochemicals. The emergence of fungal and bacterial pathogens resistant to the active ingredients of pesticides has been reported. Moreover, environmental damage and problems of acute toxicity to animals and humans may occur [1]. Antimicrobial peptides (AMPs) have been used as a new strategy for the control of plant diseases, due to the need for alternatives with less or no toxicity effect and impact on the environment [2].

Antimicrobial peptides are a group of molecules conserved during evolution that can be found in a wide range of organisms [3,4]. Most of these peptides have similar characteristics: (a) they are cationic with two or more positive charges, (b) contain from ten to fifty amino acid residues, (c) have 50% hydrophobic residues, and (d) form \(\alpha \)-amphipathic helix [5,6].

The mode of action of AMPs are not completely elucidated, but most of them inhibit microbial growth by cell membrane permeabilization through the formation of pores or other lytic effects which permit the efflux of ions and essential nutrients to cells [7,8,9]. These AMPs, when reaching critical concentration, are introduced into the cell membrane, causing disintegration of the lipid bilayer by breaking it or forming pores [10].

Additionally, AMPs can act in cell division, macromolecules and cell wall synthesis [11], and interact with lipopolysaccharides (LPS) of the cell wall [12, 13]. A potential problem is that peptides acting on membranes are not completely selective to microbial cells and may present potential toxicity to eukaryotic cells as well [10,14,15]. Hence, detailed studies should be carried out in order to determine whether or not a given AMP is feasible for plant pathogen control. Biophysical studies showed two important factors in the selectivity of membranes by AMPs: (a) electrostatic interaction between the cationic peptide and the fatty acid membrane profile of the bacterium, which is more negatively charged than mammalian cells with about 25% of anionic lipids, and (b) the presence of a large amount of cholesterol in eukaryotic membranes, which stabilize the lipid bilayer and inhibits the disruption of cell membranes [16,17].

Cell membranes have been the subject of many studies due to their importance in cell biology, determining the composition of the membrane structure [18] interacting with membrane proteins [19] and acting in transmembrane translocation [20]. Thus, vesicles that mimic prokaryotic and eukaryotic cell membranes have been used to assess the peptide/membrane interaction, since their lipid bilayer structures are identical to the lipid portion of the cell membranes. Even though the vesicles are a simple system and do not harbor proteins or carbohydrates in their composition [21], they can be very useful in the screening of AMPs to determine affinity to eukaryotic or prokaryotic cells.

In agriculture, antimicrobial peptides have been used in the production of transgenic plants resistant to economically important diseases, such as citrus canker and huanglongbing (HLB) [22, 23]. An advantage of this approach is that AMPs can have a broad spectrum of action, in this way the use of a single peptide could confer resistance to multiple plant pathogens [24].

In this study we evaluated six peptides obtained from different sources, two of them from Citrus spp., three from amphibians and one from porcine, against bacterial pathogens responsible for severe losses in citrus production worldwide or their surrogates. To verify the toxicity of these peptides we evaluated the hemolytic effect and for citrus peptides we performed a detailed study on the cytoloxicity effects through toxicity to Galleria mellonella and U 87 MG cells. In addition to those parameters, phytotoxicity on citrus tissue was evaluated. Citrus-amp 1 can be considered the most interesting AMP tested, since it showed bactericidal effect on the prokaryotic cells tested, but very little or no effect on the eukaryotic cells. Additionally, it was obtained from the citrus genome, which certainly should reduce deregulation problems and avoid the addition of foreign sequence in citrus. Hence, we propose this AMP could be further investigated for potential use.
Materials and methods
Antimicrobial peptides and peptides syntheses
Twenty eight antimicrobial peptides were prospected, twenty two of which were from CitEST (citrus expressed genome) [25] Database, with 110,903 unigenes and six were selected from the complete genomes of C. sinensis (46,147 proteins) and C. clementina (35,976 proteins) (www.phytozome.org) through the Kamal software, designed by Brand et al. [26] and the Heli-cal Wheel projections program available at http://rzlab.ucr.edu/scripts/wheel/wheel.cgi. The parameters used for prospecting AMPs were the presence of cationic, positive charge, length of 10 to 50 amino acids; 50% of hydrophobic residues and ability to form amphipathic alpha helix. According to the criteria adopted in the prospection of AMPs, two novel peptides (citrus—amp1 and citrus–amp 2) obtained from citrus sequences from Phytozome were selected. In addition four AMPs already described in the literature (Table 1) were used. Physicochemical properties of the AMPs used in this work were evaluated (Table 2).

The peptides were manually synthesized by solid-phase peptide synthesis using standard 9-fluorenylmethyloxycarbonyl (Fmoc) protocol, according to Vicente et al. [30]. The syntheses were performed at the Department of Biochemistry and Chemical Technology of UNESP—Universidade Estadual Paulista, coordinated by Dr. Eduardo Maffud Cilli.

Microorganisms and growth conditions
Two important citrus pathogenic bacteria were addressed in our study: X. citri (isolate 306), the causal agent of citrus canker, and CaLas, causal agent of HLB. Since the latter cannot be cultivated in vitro, surrogates phylogenetically related to CaLas [31] were used in the assays. The

Table 1. Description of peptides evaluated in this work.

Peptide	Sequence	Source	Reference	
Hylin-a1	IFGAILPGLALGKNIK	Hypsiboas albopunctatus	[5, 27]	
K-W^6-Hy-a1	KIFGAIWPLALGKNIK	Analogue of Hylin-a1	[5]	
Tritrpticin	VRRFFWWWFLRR	Porcine cathelicidin	[28]	
Ocellatin4-analogue	KLLKFVTKGKAIKLK	Leptodactylus ocellatus	Analogue of Ocellatin 4	[29]
Citrus-amp1	IETFLKQLRSAANKIVGL	Citrus sinensis	This work	
Citrus-amp2	LESLASSAVRTANKARAKL	Citrus aurantium	This work	

https://doi.org/10.1371/journal.pone.0203451.t001

Table 2. Physico-chemical properties of AMPs evaluated.

Properties	Citrus-amp1	Citrus-amp2	K-W^6-Hy-a1	Ocellatin4-analogue	Hylin-a1	Tritrpticin
MW	2001.4	1986.3	2066.6	2330	1865.3	1902.2
pI	10.0	11.0	10.3	10.7	10.0	12.48
NR	18	19	19	21	18	13
NC	2	3	3	6	2	4
CR	K(2), R(1), E(1)	K(2), R(2), E(1)	K(3)	K(6)	K(2)	R(4)
H	0.450	0.146	0.754	0.560	0.820	0.819
HM	0.588	0.382	0.518	0.607	0.473	0.411

http://web.expasy.org/cgi-bin/protparam/protparam and http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParams.py
MW—Molecular weight (g/mol); pI—isolectric point; NR—number of residues; NC—net charge; CR—charged residue; H—Hydropobicity; HM—Hydrophobic moment.

https://doi.org/10.1371/journal.pone.0203451.t002
surrogates chosen were *S. meliloti* SEMIA 165 (= USDA 1002) and *A. tumefaciens* (GV3101/PMP90), provided by FEPAGRO (Fundação Estadual de Pesquisa Agropecuária) and by Dr. Janete Desidério, UNESP (Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil). The effect of the AMPs on *Methylobacterium* sp., an endophytic commonly found at citrus in Brazil [32] and kindly provided by Dr. Wellington Luiz Araújo, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil, was also assessed. *Methylobacterium* sp. and *X. citri* was cultured in NBY solid medium and then in NBY liquid medium according to Amaral et al. [33] for 48 hours at 28˚C and 180 rpm. *S. meliloti* and *A. tumefaciens* were grown in YM medium (Yeast Mannitol Medium) (0.5 g/L KH$_2$PO$_4$, 0.2 g/L MgSO$_4$·7H$_2$O, 0.1g/L NaCl, 10 g/L mannitol, 0.5 g/L yeast extract, 9g/L agar, pH 6.8) [34] and then in YM liquid medium for 48 hours at 28˚C and 180 rpm. In addition to the *in vitro* assays, *X. citri::GFP* [35], obtained from Dr. Adrián A. Vojnov (Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cas- sará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires / Argentina), was used for the *in vivo* assays.

Antimicrobial activity in vitro

Antimicrobial peptide activity was performed *in vitro* using a microliter plate assay (96 well cell culture cluster—Costar® 3599). Fifty microliters of inoculum at 104 CFU/mL prepared in PBS buffer (Phosphate buffered saline) was mixed with 50 μL of the peptide diluted in distilled water filter sterilized (dH$_2$O). The final concentration of peptide evaluated ranged from 1–64 μM, and hylin-a1 and PBS were used as positive and negative control for AMP, respectively. The minimal inhibitory concentration (MIC) was the concentration that did not allow any development of the bacteria, assessed by a microplate reader model 3550 Bio-Rad® at 595nm. Three replicates were prepared for each concentration evaluated.

At the end of the growth incubation, minimum bactericidal concentration (MBC) for each organism was determined by serial dilution using the microdrop technique, as described elsewhere [36]. The Petri dishes were maintained at 28˚C for three days to obtain CFU/mL.

Hemolysis assay

The methodology used for hemolytic assay was based on Onuma et al. [37]. Fresh human red blood cells (RBC) (O +) were washed three times with saline buffer (2.76 g/L de NaH$_2$PO$_4$ and 9 g/L NaCl, pH 7.4). A suspension of erythrocytes 1% v/v and peptides (at 25, 50, 75 and 100 mM) were prepared with the Tris-saline buffer. Aliquots of 100 μL blood suspension and 100 μL peptide solution were incubated at 37˚C for 1 hour. The samples were centrifuged at 3000 x g for 2 min. Aliquots of 100 μL were added to the wells of “96-well cell culture cluster—Costar® 3599” and the absorbance was determined at 405nm in a microplate reader model 3550 Bio-Rad®. As a positive control for hemolysis (100% lysis), 1% (v/v) Triton X-100 solution was used. PBS buffer was used as a negative control (0% lysis). The assay was performed in triplicate to determine the percentage of hemolysis at different concentrations of peptides. High concentrations of peptide were used for all cytotoxicity assays with the objective to verify the possible effect of these AMP against mammalian cells in extreme situation. Hemolysis percentage was calculated as follows:

\[
\text{% Hemolysis} = \frac{(\text{Abs 405 nm of AMP Solution} - \text{Abs 405 nm of PBS})}{(\text{Abs 405 nm TritonX 100} - \text{Abs 405 nm of PBS})} \times 100
\]
Evaluation of AMPs in plants

Plants of *Citrus sinensis* (L.) Osbeck grafted on *Citrus limonia* Osbeck were grown in pots of 5 liters with “Terra do sol Multplant” citrus substrate. After one year, these plants were pruned and leaves with approximately 45 days were used for the assay. The experiments with *X.citri* were conducted in an A2 quarantine greenhouse at Instituto Agronômico de Campinas (IAC). The plants were irrigated and fertilized accordingly, and the average temperature of the greenhouse was 30°C.

Two independent experiments with one plant were performed. One hundred microliters of a suspension composed of 50/50 (v/v) of AMP and *X.citri* (10^4 CFU/mL) as described for the *in vitro* evaluation, was inoculated in the abaxial leaf. The replicates were consisted of three branches per plant and in each branch three leaves of similar age were inoculated at three different points by leaf, being in total 27 inoculations by plant. PBS buffer and hylin-a1 were used as negative control and positive control, respectively. After fourteen and twenty-one days after inoculation, one leaf by each branch was collected for qualitative and quantitative evaluations. Qualitative evaluation was done visually through the fluorescence of *X.citri::GFP* (positive control). Isolation and serial dilutions were performed from the average of nine inoculations points of citrus tissues [36].

Phytotoxicity assessment

For phytotoxicity assays in plants, 10 μL of each peptide at 128 and 64 μg/mL were infiltrated in detached leaves of sweet orange by syringe infiltration according to Makovitzki et al. [38]. Hylin-a1 and PBS Buffer were used as positive and negative control. In this assay, two independent experiment was performed in which three leaves was inoculated in the abaxial leaf at three different points and qualitative evaluation was made to verify the possible toxicity of AMP. The leaves were put on agar-plates (1%) for 7 days and maintained on controlled conditions at 26°C and photoperiod of 16h:8h (16 hours of light: 8h of dark).

Toxicity in *Galleria mellonella* larvae

The peptides citrus–amp1 and citrus–amp2 were selected for toxicity assay in *G. mellonella* [39]. Larvae with 0.15 to 0.20 g were randomly selected for the experiments and were kept without food in Petri plates at 37°C in the dark for 24 h prior to use. Each larva was injected with 10 μL of peptides at 64 and 128 μM into the last proleg using a Hamilton micro-syringe. The concentration was selected according to the MIC (64 μM), and to confirm the low toxicity we used the double concentration (128 μM). The larvae were incubated at 37°C and survival was evaluated daily for 7 days. Group of 8–9 larvae was used to each concentration of peptides and 10 μL of PBS was injected in the control group. Two independent experiments were performed.

Cytotoxicity in U87 MG cells

U87 MG, a human Glioblastoma cell line frequently used as a model for cytotoxicity evaluation was adopted in our study for the peptides citrus–amp1 and citrus–amp2. Cells were plated in 96 wells plate (5x10^4 cells per well), incubated overnight and maintained in a humidified atmosphere at 37°C and 5% CO₂. After the incubation period, cells were treated with peptides varying from 1μM to 128 μM and then incubated for 24h. Untreated and cells treated with DMSO (dimethyl sulfoxide) were used as positive and negative control for the viability of U87 MG cells. Six replicates were done by each concentration.
Cytotoxicity was performed using alamarBlue® cell viability reagent [40], a cell health indicator, through the reduction of viability of living cells. Viable cells convert Resazurin (blue) to resorufin, a compound that emits red fluorescent light. Alamar Blue medium was prepared by mixing medium with alamarBlue solution (Thermo Fisher Scientific) in a ratio of 10:1. After treatment with the peptides for 24 h, the medium was discarded, and Alamar Blue medium (100 μL) was transferred to a 96-well microplate. The microplates were incubated with Alamar Blue at 37˚C for 4 h, and absorbance was measured using Epoch2 Microplate Reader (Biotek) in 570 nm. Cell viability was calculated using the ratio of the absorbance between treated and untreated cells and the data were expressed as percentages. Three independent experiments were performed.

Vesicle permeabilization assay

Two kinds of large unilamellar vesicles (LUVs) were made according to Lorenzo´n et al. (2012) [21]. One LUV has the main lipid of eukaryotic cells—100% 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (DPPC). The other contains 80% DPPC and 20% 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] Sodium Salt (POPG). This last had negative charge, and was used to mimic bacteria cell membrane (Avanti Polar lipids). Both LUVs were prepared by adding the appropriate amounts of lipids in 4:1 chloroform-methanol mixture in a round-bottom flask. The solvent was evaporated using nitrogen gas until obtaining a lipid biofilm that was placed under a vacuum chamber overnight and hydrated with 80 mmol/L of 5 (6)-carboxyfluorescein (CF) (Sigma® Life Science) in Tris (0.01 mol/L, pH 7.4) and NaCl (0.15 mol/L), at 60˚C to a final lipid concentration of 15 mmol/L. This suspension was extruded 40 times through Nucleopore polycarbonate filters (100 nm pore size) using an extruder system from Avanti Polar Lipids at approximately 40˚C. Vesicles were separated from non-encapsulated CF by gel filtration on a Sephadex G-50 (GE Healthcare Life Sciences) column using Tris-NaCl buffer for elution. The release of CF from vesicles was measured by the fluorescence intensity at a wavelength of 520 nm (492-nm excitation wavelength) after the addition of the peptides. Determination of the value for 100% of release was achieved using Triton X-100. Data were obtained using a fluorescence spectrophotometer (Cary Eclipse; Varian). The experiments were performed at 25˚C. The final values were calculated as the percentage of CF release after the addition of peptide into the system, obtained using the equation percent release: \([\frac{F_{\text{fin}} - F_{\text{in}}}{F_{\text{max}} - F_{\text{in}}}] \times 100\), where \(F_{\text{in}}\) and \(F_{\text{fin}}\) represent the initial and final fluorescence values before and after the addition of peptides, respectively. \(F_{\text{max}}\) represents the fluorescence after the addition of Triton-X. The concentration of peptides used was the one that could detect CF release and consequently pore formation. All experiments were performed in duplicate, and the mean was analyzed by Tukey Test \((P<0.05)\) through ASSISTAT [41].

Results and discussion

Selection of AMPs

Through the criteria used for prospecting putative AMPs in citrus sequences, peptides obtained from hypothetical protein of *Citrus sinensis* (citrus–amp1) and Pyruvate Kinase protein (citrus-amp2) from *Citrus aurantium* were chosen. The structures and sequence of these peptides were refined according the ability to form amphipathic α-helix. In Fig 1, the amphipathic structures for both peptides are illustrated.

Antimicrobial and hemolysis activities

The antimicrobial and hemolytic activities were determined to evaluate the effect of these AMPs against bacterial growth and eukaryotic cells. Table 3 presents the antimicrobial activity...
expressed in MIC (minimal inhibitory concentration) and MBC (minimal bactericidal concentration).

The two peptides isolated from citrus did not cause hemolysis in red blood cells (RBC) (Table 3). In fact, citrus-amp2 did not show any antimicrobial activity, probably due to the weak hydrophobicity face and consequently low amphipathic structure presented (Fig 1). On the other hand, citrus-amp1 can be considered a promising antimicrobial peptide, which may be able to control important citrus pathogens. The main features that favor the interaction

![Helical wheel projections of AMP](https://doi.org/10.1371/journal.pone.0203451.g001)

Table 3. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) against microorganisms and hemolysis activity percentage of peptides.

AMP	MIC (μM)	MBC (μM)	Hemolysis activity (%)									
	X.ciri	S. meliloti	Met sp.	A. t	X.ciri	S. meliloti	Met sp.	A. t	25 mM	50 mM	75 mM	100 mM
Citrus-amp1	32 64 64 64	32 64 64	ND	ND	1 0	0 0 0 1						
Citrus-amp2	ND 64 ND ND	ND 64 ND	ND	ND	1 0	0 0 0 0						
K⁵-W⁶-Hy-a1	2 4 4 ND	2 62 8 ND'	14 53 83 99									
Ocellatin4-Analogue²	3 3 3 3	3 14 7 7	55⁺	88 100 100 100								
Tritrpticin	8 4 ND ND	8 8 ND ND	ND	ND	1 3 10 28							
Oxytocin²	- - - -	- - - -	0	0	0	1						
PBS³	- - - -	- - - -	-	-	-	-						
Hylin-a1⁴	4 9 ND 17	9 ND 17	17	17	-	-	-					

X. citri–Xanthomonas citri subsp. citri; **S. meliloti**–Sinorhizobium meliloti; **Met sp.**–Methylobacterium sp.; **A. t**–Agrobacterium tumefaciens; ND: Not determined (higher than the concentrations evaluated).

¹Growth reduction
²Positive control for hemolysis
³Negative control for hemolysis activity
⁴Negative control for MIC/MBC
⁵Positive control for MIC/MBC.

https://doi.org/10.1371/journal.pone.0203451.t003
with bacteria membranes are at least 50% of hydrophobic residues and regular amphipathic structure. This AMP was effective to control X. citri (MIC = MBC of 32 μM) and S. meliloti (MIC = MBC of 64 μM) (Table 3), but not A. tumefaciens. This surrogate showed MIC of 64 μM (Table 3), which was the highest dosage tested. Even at such high dosage, citrus-amp1 was not able to kill the bacteria, only to exhibit a growth reduction of 10^5 CFU/mL.

The four non citrus AMPs was selected based on their effects previously observed by other works [5,28,29,42]. Moreover the peptide hylin-a1 was selected to be our positive control on antimicrobial activity and in hemolytic activity. The peptide K^0^-W^6^-Hy-a1 (anologue to hylin-a1) [5] was selected to verify if the difference with hylin-a1 can interfere in antimicrobial activity in our study. As described by Crusca et al. [5] hylin-a1 has strong antimicrobial and hemolytic activities, and was used as a positive control for MIC and MBC determination. However, this peptide did not suppress the growth of S. meliloti, even at the highest concentration tested of 64 μM (Table 3). On the other hand, this AMP was very efficient to control X. citri, but due to the high hemolytic activity (Table 3), it is considered inappropriate for use, due to the risk to the health of citrus consumers. As showed by Crusca et al. [5], the addition of Lysine residue in N-terminus and substitution of Leucine by tryptophan amino acid at position 6 (K^0^-W^6^-Hy-a1) improved the biological activity. The insertion of this residue at hydrophobic face of amphipathic α-helix may increase the cytotoxicity [42] and hemolysis. In our study, we used in hemolytic activity studies higher dosages of peptide (the IC_{50} found previously to this peptide was 4 μmol/L) with the purpose to assurance the effect in extreme situations. The maximum dosage tested of 100 mM caused more than 99% of cell lysis (Table 3). K^0^-W^6^-Hy-a1 was effective against X. citri (MIC = MBC = 2 μM) and Methylobacterium sp. (MIC = 4 μM and MBC = 8 μM). This AMP was less efficient in controlling the bacterial surrogates of CaLas, S. meliloti (MBC of 62 μM, but with detectable growth reduction at 31 μM of 10^4 CFU/mL and 10^2 CFU/mL for the concentrations ranging from 4 to 15 μM). For A. tumefaciens, it was not possible to determine MBC, but a growth reduction of 10^3 CFU/mL was observed from 4 to 62 μM.

Ocellatin4 (GLDFVTGVGKDIFAQLIKQI-NH (2)) is a cytolytic peptide obtained from skin secretion of the South American frog Leptodactylus ocellatus [29]. The analogue of this peptide named as, Ocellatin4-analogue (KLLKFVTKVGKAIFKALIKA) [43] has positive charge at its N-terminus (lysine residue), similarly to K^0^-W^6^-Hy-a1. This peptide showed the same MIC values for X. citri, S. meliloti, Methylobacterium sp. and A. tumefaciens, and high hemolytic activity. Nascimento et al. [29] reported activity of ocellatin 4 at 14.3 mmol/L on human erythrocytes and suggested that the interaction between membranes of mammals and ocellatin 4 is favored by neutral charge of peptides at pH 7.0. Ocellatin4-analogue has higher positive charge, which could promote higher hemolytic activity (88% with 25 mmol/L of peptide). On the other hand, only 3 μM of the peptide was enough to control the growth of the bacteria, which is a much lower concentration than that needed to cause hemolysis (Table 3). Hence, the use of this peptide to control X. citri might be feasible from the scientific perspective, although it would have serious difficulties for deregulation and most certainly its use in agriculture would not be allowed. Additionally, it should be avoided due to the presence of two phenylalanine residues that can improve the cytotoxicity activity of this peptide. In this case, the presence of the above mentioned residues and the strong hydrophobic face (Fig 1) may increase the hemolytic activity. The MBC observed for X. citri, S. meliloti and Methylobacterium sp. were 3 and 14 μM and 3 and 7 μM, respectively. For A. tumefaciens the MIC and MBC concentrations were 3 and 55 μM, respectively. At the MIC concentration, the reduction in A. tumefaciens growth was of only 10^2 CFU/mL when compared to the positive control (bacteria only).
The peptide Tritrpticin is a Trp-rich cationic antimicrobial peptide derived from a porcine cathelicidin and also has a broad spectrum of antibacterial, antifungal, and hemolytic activities. This peptide is composed of high percentages of arginine (30%), tryptophan (23%) and proline (15%), which make it unique. It has a good potential to control Gram-negative and Gram-positive bacteria, as well as some fungi [28]. In this work, this peptide was able to control X. citri and S. meliloti, and the hemolytic activity was effective only at concentrations much higher than those required for antimicrobial activity (Table 3), a feature also observed and described by Yang et al. [28]. These authors observed that the peptide showed more activity against Gram-positive than Gram-negative bacteria. In this work, this peptide did not show any effect on the endophyte *Methylobacterium* sp., nor on *A. tumefaciens*, often used for plant transformation. Thus, whether or not it could be used to control CaLas remains to be proven, but it seems interesting for the management of citrus canker and could be considered for the citrus breeding program using Agrobacterium-mediated transformation (Table 3).

Antimicrobial peptides have shown higher instability to proteolytic enzymes in human saliva and gastric fluids. Na et al. [44] verified by HPLC that Antimicrobial Decapeptide (KSL) was degraded by both. The degradation by saliva was dependent on the concentration of KSL, and in the absence of enzymes in the saliva, the degradation was not observed for over 24 h. Despite these results, it is possible that AMPs are not fully degraded by saliva or gastric fluid and should be toxic to mammals. Therefore, we estimated some toxicity parameters in this work with the purpose to detect the possible damages that could occur to eukaryotic cells. Additional evaluation should be performed before the release of any product to the consumers.

The hydrophobic moment (HM) (Table 2) is highly correlated with hemolysis. Higher HM can result in significant increase in membrane permeabilization and hemolytic activity [3]. In this work, we observed that the Ocellatin4 –analogue, which presents highest HM among the AMPs evaluated, showed high hemolytic activity and high permeabilization of mimic vesicles for mammal cells, as observed in vesicle permeabilization assay.

The *in vitro* assays are important to determine the potential of AMPs against plant pathogens, although experiments in plants should be conducted to verify the effect of these in natural conditions. Thus, additional experiments with transgenic plants should be performed to observe the real potential against CaLas and not only its surrogates. To evaluate the possible effects of these AMPs in plants for citrus canker, a suspension with AMPs and *X. citri*::GFP was used in plants of *C. sinensis*, as describe below.

Effect of AMPs in plants

Citrus canker evaluation was carried on at 7, 14 and 21 days post inoculation (dpi). At the first seven days, only the positive controls (*X. citri*::GFP) showed canker symptoms and supported bacterial growth by qualitative evaluation (Fig 2). During the following periods of evaluation, at 14 and 21 dpi, both the symptoms and the presence of *X. citri*::GFP were detected for citrus-amp1 and K⁰-W⁶-Hy-a1. The symptoms observed on the leaves treated with these AMPs were less severe than those observed in the positive control (Fig 2). However, after quantitative analysis through serial dilutions (S1 Table), it was possible to obtain around 10⁸ CFU/mL for *X. citri*::GFP, 10⁷ CFU/mL for K⁰-W⁶-Hy-a1 and for citrus-amp1 (Table 4). The bacterial concentration did not change between 14 and 21 dpi for all peptides evaluated (Table 4). The peptides citrus-amp1 and K⁰-W⁶-Hy-a1 showed good control under *in vitro* conditions; however, the metabolites present in the plants, stability of AMPs for protease and favorable conditions to *X. citri* in plants may have affected the activity of the AMPs. According to Bessale et al. [45], the stability of AMPs to protease degradation is an important feature to determine the half-life of
the peptide under natural or uncontrolled conditions, as in greenhouse and field experiments. To verify degradation by proteases, some enzymes such as trypsin, chymotrypsin and pronase can be added to the peptides and degradation can be monitored by HPLC. In order to increase the stability of the AMPs, peptide analogues can be developed by the incorporation of D-amino acids, since few enzymes recognize the amide bonds involving D-amino acids. This strategy may promote an increase in antimicrobial activity, and reduction in proteolytic and hemolytic activities [46].

For the peptides Ocellatin4-analogue, Hylin-a1 and tritpticin neither canker symptoms nor X.citri::GFP growth were observed (Fig 2). However, as previously shown, Ocellatin 4-analogue and Hylin-a1 exhibited the highest hemolytic activity among the peptides evaluated.

Fig 2. Qualitative evaluation of AMP activity against X.citri in C. sinensis. (A) 7dpi, (B) 14 dpi, (C) 21dpi, (1) Tritpticin, (2) PBS buffer, (3) X.citri::GFP, (4) Hylin-a1, (5) Ocellatin4-Analogue (6) Citrus–amp 1 and (7) K^d-W^d-Hy-a1.

https://doi.org/10.1371/journal.pone.0203451.g002
In this work we observed some activity of AMPs against X. citri in vitro and in planta. Moreover, these results demonstrate the potential use of these AMPs for transgenic plants. Hao et al. [22] described endogenous citrus thionins peptide with the purpose to obtain citrus resistant to HLB and X. citri. The transgenic plants developed by these authors were challenged by X. citri 3213 and they obtained a considerable reduction in canker symptoms and bacterial growth. They also evaluated the response of these plants to HLB and observed a reduction in CaLas titer. Stover et al. [24] also tested AMPs from several sources in vitro against X. citri and CaLas surrogates. Moreover, there are other studies which demonstrated that the expression of interesting genes as dermaseptin [47], sarcotaxin IA [48] and plant thionin peptide [23] in citrus plants can provide considerable canker resistance.

Evaluation of phytotoxicity of AMPs

The peptide Hylin-1 and PBS buffer were used as positive and negative controls of the phytotoxicity assay, respectively. At seven days post inoculation (7 dpi), visual evaluation was performed in detached leaves. No necrosis was observed for any of the peptides evaluated, even for Hylin-a1 used as a positive control at MIC and MBC determination. Makovitzki et al. [38] assessed the toxicity of peptide C14-KLLK in tobacco leaves. They used mellittin as positive control and observed that leaves started to dry out 12 hours post-inoculation (hpi) and exhibited necrosis 24 hpi at the inoculation point. The peptides evaluated did not show any symptoms at 7 dpi (Fig 3). Consequently, for this parameter, all peptides could be considered suitable for use.

Toxicity of Citrus peptides in G. mellonella

The toxicity of peptides was also evaluated in G. mellonella. This is an insect from the order Lepidoptera and is known as greater wax moth. Recently G. mellonella has been used as a useful in vivo model to evaluate toxicity of chemicals, including antimicrobial agents [49, 50, 51]. The simple and inexpensive maintenance of the larvae in laboratory and the fact that the experiments are not subject to ethical considerations make the model very attractive. Additionally, it is possible administer exact amounts of compounds into the larvae and the effect on survival and melanization on them are easily observed [52]. In our study, both citrus–amp1 and citrus–amp2 at 64 and 128 μM (Table 5) were not toxic for this model since the survival percentages of larvae were high (>87%) and similar to the control group (PBS) (S2 Table).
Toxicity of citrus peptides in U87 MG cell line

Cytotoxicity of peptides citrus–amp1 and citrus–amp2 was evaluated in U87 MG cell line [53], a human Glioblastoma (S3 Table). Alamar blue assay was employed to assess mitochondrial ability to reduce resazurin into the fluorescent product resorufin [40]. This method is largely used and well correlated with those obtained from an automatic cell counter when compounds do not induce cellular and nuclear hypertrophy [54, 55]. Fig 4 shows that peptides had low cytotoxicity effects in concentrations of 1–128 μM in this model since the viability percentages of cells were >70% and similar to the control group.

Table 5. Survival percentage of Galleria mellonella larvae treated with peptides.

AMP	% survival
Citrus-amp1 64μM	88.89 ± 0
Citrus-amp1 128μM	94.50 ± 7.85
Citrus-amp2 64μM	87.30 ± 17.68
Citrus-amp2 128μM	93.75 ± 8.84
PBS (Control group)	96.30 ± 6.41

Data expressed as mean±SD

Fig 3. Phytotoxicity of peptides K-W-Hy-a1, Hylin-a1 (positive control), C- negative control, Tritrpticin, Ocellatin 4-analogue, citrus-amp1 and citrus-amp2 at 128 and 64 μg/mL.

https://doi.org/10.1371/journal.pone.0203451.g003
Vesicles permeabilization

For a better understanding on the interaction between each peptide with bacterial and erythrocytes membranes, permeabilization studies with synthetic vesicles were performed by measuring the release of carboxyfluorescein (CF).

The interaction between peptides and bacteria was evaluated using the vesicles containing POPC (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocoline)/ POPG 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- [Phospho-rac-(1-glycerol)] Sodium Salt) (80%/20%) and POPC (100%). The lipids composition was chosen according to the composition of the outer face of the cell membranes of mammals (basically composed of dipolar phospholipids, like POPC), and bacteria (large quantity of negative phospholipids in two lipid monolayers, or around 80% POPC and 20% POPG).

Ocellatin4-analogue and Hylin-a1 showed increased permeabilization activity of POPC than POPC/POPG vesicles, which suggests that these peptides interact more efficiently with mammal cells than bacterial cells (Table 6). This preference of Ocellatin4-analogue and Hylin-a1 could be related to hydrophobicity, which is an essential characteristic for the interaction between peptide and membrane. Moreover the increase of hydrophobicity is highly correlated with toxicity to mammals cells and loss of antimicrobial specificity [3].

The AMP that would probably cause pores indistinctly in mammals and bacterial membranes is K0-W6-Hy-a1. This unspecific activity presented by K0-W6-Hy-a1 at vesicles assays, could be correlated with the higher hydrophobicity observed for this peptide in this work (H = 0.754) (Table 2). Higher H can improve hemolysis activity and loss of antimicrobial specificity [3].

For all of the other peptides, significant statistical differences were detected between their activities in the two types of vesicles by the Tukey Test at P<0.05 (Table 6). Crusca et al. [5] determined that K0-W6-Hy-a1 would cause damage to the erythrocyte membrane at 4 μmol/L with the vesicle composition containing 5% DPPA (1,2-dipalmitoyl-3-phosphatidic acid), 47.5% DPPC (1,2-dipalmitoyl-3-phosphocholine), and 47.5% SM (Sphingomyelin). In our study, the vesicle permeabilization occurred at 0.01 μM. The permeabilization caused by K0-W6-Hy-a1 did not show significant difference between the vesicles evaluated. Thus, it would likely never be deregulated or approved for field application.
The peptides citrus-amp1 and tritrpticin showed increased activity in the membranes mimicking the bacterial cells and did not cause pores in those that mimic the erythrocyte cells (Table 6).

Conclusions

Many research groups have evaluated the use of AMPs from various sources for the control of plant pathogens, including *X. citri*. Some peptides have been selected as putative bacterial control agents and have been used for citrus transformation with that purpose. However, very few—if any—of those studies have addressed possible side effects in using those AMPs, such as hemolysis activity, evaluation of toxicity of chemicals trough the *in vivo* model, *G. mellonella*, and using a U87 MG, a human Glioblastoma cell line.

While several of the peptides tested in this study were effective to control the citrus pathogen *Xanthomonas citri* subsp. *citri* (*X. citri*), most of them carried undesirable activities against mammal cells and, therefore, are not viable for actual use. Only two of the peptides tested, tritrpticin and citrus-amp1, seem promising due to their antimicrobial and hemolytic evaluations, however the origin of tritrpticin peptide is porcine and this should be considered because there are certain regions of the world where the consumption of products with porcine origin may be unacceptable. In addition, the peptide citrus-amp1, isolated from citrus, can be considered promising for further studies and may be feasible to use in disease management. Besides the antimicrobial activity and no hemolysis effects, this peptide presented low toxicity effects when evaluated in *G. mellonella* and in U87 MG cell line. Moreover, the use of this peptide could be interesting for the production of cisgenic citrus plants to citrus canker, which could result in greater acceptance by citrus consumers. Additionally, to our knowledge, this is the first report of an AMP obtained from citrus sequences that has an effect on pathogens of that crop.

Supporting information

S1 Table. Detailed information about the effect of AMPs against *X. citri* in citrus plants. (XLSX)

S2 Table. Toxicity of citrus peptides in *G. mellonella*. (XLSX)

S3 Table. Data from the cell viability U87 MG cells after the treatment with citrus—amp1 and citrus—amp2. (XLSX)
Acknowledgments

We are grateful to Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP) for financial support (proc. 2010/11072-4, 2012/15346-7 and 2008/52691-9); and to Drs. Carlos Bloch Jr. and Guilherme Dotto Brand, Embrapa Recursos Genéticos e Biotecnologia, for the assistance with the Kamal Software.

Author Contributions

Conceptualization: Rosangela Naomi Inui Kishi, Juliana Freitas-Astúa, Marcos Antonio Machado.

Formal analysis: Rosangela Naomi Inui Kishi, Dagmar Stach-Machado, Junya de Lacorte Singulani, Claudia Tavares dos Santos, Ana Marisa Fusco-Almeida, Eduardo Maffud Cilli, Juliana Freitas-Astúa, Simone Cristina Picchi.

Funding acquisition: Ana Marisa Fusco-Almeida, Eduardo Maffud Cilli, Juliana Freitas-Astúa, Marcos Antonio Machado.

Investigation: Rosangela Naomi Inui Kishi, Juliana Freitas-Astúa.

Methodology: Rosangela Naomi Inui Kishi, Dagmar Stach-Machado, Junya de Lacorte Singulani, Claudia Tavares dos Santos, Ana Marisa Fusco-Almeida, Eduardo Maffud Cilli, Juliana Freitas-Astúa, Simone Cristina Picchi.

Project administration: Rosangela Naomi Inui Kishi, Juliana Freitas-Astúa, Marcos Antonio Machado.

Resources: Dagmar Stach-Machado, Ana Marisa Fusco-Almeida, Eduardo Maffud Cilli, Juliana Freitas-Astúa.

Supervision: Juliana Freitas-Astúa, Marcos Antonio Machado.

Validation: Rosangela Naomi Inui Kishi, Dagmar Stach-Machado, Junya de Lacorte Singulani, Claudia Tavares dos Santos, Simone Cristina Picchi.

Writing – original draft: Rosangela Naomi Inui Kishi.

Writing – review & editing: Rosangela Naomi Inui Kishi, Junya de Lacorte Singulani, Claudia Tavares dos Santos, Ana Marisa Fusco-Almeida, Eduardo Maffud Cilli, Juliana Freitas-Astúa, Simone Cristina Picchi, Marcos Antonio Machado.

References

1. McManus PS, Stockwell VO, Sundin, GW, Jones AL. Antibiotic use in plant agriculture. Annu Rev Phytopathol. 2002, 40: 443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927 PMID: 12147767

2. Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006; 24:1551–1557. https://doi.org/10.1038/nbt1267 PMID: 17160061

3. Yeaman MR, Yount NY. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol Rev. 2003; 55: 27–55. https://doi.org/10.1124/pr.55.1.2 PMID: 12615953

4. Almeida RA, Gordo MA, Silva FMA, Araújo RC, Ramada MHS, Abrão FY, et al. Cinerasertins, New Peptides from Hypsiboas cinerascens: MALDI LIFT-TOF-MS/MS de novo Sequence and Imaging Analysis. J Braz Chem Soc. 2015; 11, 2280–2297. https://doi.org/10.5935/0103-5053.20150219

5. Crusca E, Rezende AA, Marchetto R, Mendes-Giannini MJS, Fontes W, Castro MS, et al. Influence of N-terminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers.2011; 96: 41–48. https://doi.org/10.1002/bip.21454 PMID: 20560142
6. Le CF, Yusof MYM, Hassan H, Sekaran SD. In vitro properties of designed antimicrobial peptides that exhibit potent antipneumococcal activity and produces synergism in combination with penicillin. Sci Rep. 2015; 5: 9761. https://doi.org/10.1038/srep09761 PMID: 25985150

7. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell nonselective membrane-lytic peptides. Biochim Biophys Acta. 1999; 1462: 55–70. PMID: 10590302

8. Paulsen VS, Blenczer H, Benincasa M, Haug T, Eksteen JJ, Styrvold OB, et al. Structure-Activity Relationships of the Antimicrobial Peptide Arasin 1—And Mode of Action Studies of the N-Terminal, Proline-Rich Region. PLoS ONE 8(1): e53326. https://doi.org/10.1371/journal.pone.0053326 PMID: 23326415

9. Castro MS, Cilli EM, Fontes W. Combinatorial synthesis and directed evolution applied to the production of alpha-helix forming antimicrobial peptides analogues. Curr Protein Pept Sci. 2006; 7:473–478. https://doi.org/10.2174/138920306779025648 PMID: 17168780

10. Guell I, Cabrefiga J, Badosa E, Ferre R, Talleda M, Bardaji E, et al. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Appl Environ Microbiol. 2011; 77: 2667–2675. https://doi.org/10.1128/AEM.02759-10 PMID: 21335383

11. Hancock REW. Mechanisms of action of newer antibiotics for Gram-positive pathogens major targets. Lancet Infect Dis. 2005; 5: 209–218. https://doi.org/10.1016/S1473-3099(05)70051-7 PMID: 15792738

12. Lorenzon EN, Sanches PRS, Nogueira LG, Bauad TM, Cilli EM. Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Candida albicans cells. Amino Acids. 2013; 44:1521–1528. https://doi.org/10.1007/s00726-013-1475-3 PMID: 23519707

13. Lorenzon EN, Piccoli JP, Cilli EM. Interaction between the antimicrobial peptide Aurein 1.2 dimer and mannans. Amino Acids. 2014; 46:2627–2631 . https://doi.org/10.1007/s00726-014-1832-x PMID: 25209238

14. Bradshaw J. Cationic antimicrobial peptides: issues for potential clinical use. BioDrugs. 2003; 17: 233–240. PMID: 12899640

15. Cespedes GF, Lorenzon EN, Vicente EF, Mendes-Giannini MJ, Fontes W, Castro MS, et al. Mechanism of action and relationship between structure and biological activity of Ctx-Ha: a new ceratotoxin-like peptide from Hypsibos albopunctatus. Protein Pept Lett. 2012; 19:596–603. PMID: 22519531

16. Brenner JR, McHenry AJ, Ramamoorthy A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol. 2012; 3: 195. https://doi.org/10.3389/fimmu.2012.00195 PMID: 22822405

17. Glukhov E, Stark M, Burrow LS, Deber CM. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem. 2005; 280: 33960–33967. https://doi.org/10.1074/jbc.M507042200 PMID: 16043484

18. Nagle JF, Tristram-Nagle S. Lipid bilayer structure. Biochim Biophys Acta. 2000 1469: 159–195. PMID: 11063882

19. Lee A. How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim Biophys Acta. 1998; 1376:381–90. https://doi.org/10.1016/S0304-4157(98)00010-0 PMID: 9804995

20. Agarraberes FA, Dice JF. Protein translocation across membranes. Biochem Biochim Biophys Acta.2001 ; 1513: 1–24.

21. Lorenzon EN, Cespedes GF, Vicente EF, Nogueira LG, Bauab TM, et al. Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob Agents, 2012; 56: 3004–3010. https://doi.org/10.1128/AAC.06262-11

22. Hao G, Stover E and Gupta G. Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB). Front Plant Sci. 2016; 7:1078. https://doi.org/10.3389/fpls.2016.01078 PMID: 27499757

23. Hao G, Zhang S, Stover E. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibract asiaticus. PLoS ONE. 2017; e0186810. https://doi.org/10.1371/journal.pone.0186810.

24. Stover E, Stange RR Jr, McCollum TG. Screening Antimicrobial Peptides In Vitro for Use in Developing Transgenic Citrus Resistant to Huanglongbing and Citrus Canker. J Amer Soc Hort Sci. 2013; 138: 142–148.

25. Reis MS, Takita MA, Palmieri DA, Machado MA. Bioinformaticas for the Citrus EST Project (CiEST). Genet Mol Biol. 2007; 30:1024–1029. https://doi.org/10.1590/S1415-47572007000500031

26. Brand GD, Magalhães MTO, Tinoco MLP, Aragão FJL, Nicolli J, Kelly SM, et al. Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides. PLoS ONE. 2012; 7(9): e45848. https://doi.org/10.1371/journal.pone.0045848. PMID: 23029273
27. Castro MS, Ferreira TCG, Cilli EM, Crusca E, Mendes-Giannini MJS, et al. Hylin a1, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus ("spotted treefrog"). Peptides. 2009; 30: 291–296. https://doi.org/10.1016/j.peptides.2008.11.003 PMID: 19056441

28. Yang ST, Yub Shin SY, Kim YC, Hahm KS, Kim J II. Conformation dependent antibiotic activity of tritrptin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Commun. 2002; 296: 1044–1050. PMID: 12207877

29. Nascimento A, Chapeaurouge A, Perales J, Sebben A, Sousa MV, Fontes W, et al. Purification, characterization and homology analysis of ocellatin 4, a cytolytic peptide from the skin secretion of the frog Leptodactylus ocellatus. Toxicon. 2007; 50: 1095–1104. https://doi.org/10.1016/j.toxicon.2007.07.014 PMID: 17884127

30. Vicente EF, Basso LGM, Cespedes GF, Lorenzo EN, Castro MS, Mendes-Giannini MJS, et al. (2013) Dynamics and Conformational Studies of TOAC Spin Labeled Analogues of Ctx(Ile\(^{21}\))-Ha Peptide from Hypsiboas albopunctatus. PLoS ONE 8(4): e60818. https://doi.org/10.1371/journal.pone.0060818. PMID: 23585852

31. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, et al. Complete genome sequence of citrus huanglongbing bacterium, "Candidatus Liberibacter asiaticus" obtained through metagenomics. Mol Plant Microbe. 2009; 22: 1011–1020. https://doi.org/10.1094/MPMI-22-8-1011

32. Araujo WL, Marcon J, Macheroni Junior W, van Elsas JD, van Vuurde JWL, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol. 2002; 68:4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002 PMID: 12324338

33. Amaral AM, Toledo CP, Baptista JC, Machado MA. Transformation of Peptides . 2009; 30: 291–296. https://doi.org/10.1016/j.peptides.2008.11.003 PMID: 19056441

34. Vincent JM. A Manual for the practical study of root-nodule bacteria, Oxford: Blackwell Scientific Publications, 1970.

35. Rigano LA, Siciliano F, Enrique R, Sendin L, Filippone P, Torres PS, et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant-Microbe Interact. 2007; 20:1222–1230. https://doi.org/10.1094/MPMI-20-10-1222 PMID: 17918624

36. Romeiro R. Métodos em bacteriologia de Plantas. 1st ed. Viçosa: University of Viçosa Press. 2001.

37. Onuma Y, Satake M, Ukena T, Ratsimambo M, Naoki H, Rasolofirinana N, et al. Identification of putative cathelicidin-derived antimicrobial peptides with lysine peptoid residue (Nlys): therapeutc index and plausible mode of action. J Pept Sci. 2007; 13: 529–535. https://doi.org/10.1016/j.jpcs.2006.05.012 PMID: 17604338

38. Guimarães AB. Síntese química e avaliação das propriedades antibacterianas e antiparasitárias de análogos de peptídeos antimicrobianos de anuros Doctoral Dissertation, Brasilia University. 2015. Available from: http://repositorio.unb.br/handle/10482/20415.

39. Na DH, Faraj J, Capan Y, Leung KP, DeLuca PP. Stability of Antimicrobial Decapeptide (KSL) and Its Analogues for Delivery in the Oral Cavity. Pharm Res. 2007; 24:1544–1550. https://doi.org/10.1007/s11095-007-0974-8 PMID: 17380259

40. Bessalé R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M. All-D-ma gainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett. 1990; 274: 151–155. PMID: 2253768

41. Zhu W, Hahm KS, Shin SY. Cathelicidin-derived Trp/Pro-rich antimicrobial peptides with lysine peptoid residue (Nlys): therapeutic index and plausible mode of action. J Pept Sci. 2007; 13: 529–535. https://doi.org/10.1002/jpsc.882 PMID: 17604338
47. Furman N, Kobayashi K, Zanek MC, Calcagno J, Garcia ML, Mentaberry A. Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. J Biotechnol. 2013; 167:412–419. https://doi.org/10.1016/j.jbiotec.2013.07.019 PMID: 23896218
48. Kobayashi AK, Vieira LGE, Bespalhok Filho JC, Leite RP, Pereira LLP, Molinari HBC, Marques, VV. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur J Plant Pathol. 2017; 149:865–873. https://doi.org/10.1007/s10658-017-1234-5
49. Megaw J, Thompson TP, Lafferty RA, Gilmore BF. *Galleria mellonella* as a novel *in vivo* model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere. 2015; 139, 197–201. https://doi.org/10.1016/j.chemosphere.2015.06.026 PMID: 26121605
50. Dolan N, Gavin DP, Eshwika A, Kavanagh K, Stephens JC. Synthesis, antibacterial and anti-MRSA activity, *in vivo* toxicity and a structure activity relationship study of a quinoline thiourea. Bioorg Med Chem Letts. 2016; 26, 630–635. https://doi.org/10.1016/j.bmcl.2015.11.058
51. Maguire R, Duggan O, Kavanagh K. Evaluation of *Galleria mellonella* larvae as an *in vivo* model for assessing the relative toxicity of food preservative agents. Cell Biol. Toxicol. 2016; 32, 209–216. https://doi.org/10.1007/s10565-016-9329-x PMID: 27122324
52. Desbois AP, Coote PJ. Utility of greater wax moth larva (*Galleria mellonella*) for evaluating the toxicity and efficacy of new antimicrobial agents. Adv Appl Microbiol. 2012; 78:25–53. https://doi.org/10.1016/B978-0-12-394805-2.00002-6 PMID: 22305092
53. Valente V, Serafim RB, de Oliveira LC, Adorni FS, Torrieri R, Tirapelli DPC, et al. Modulation of HJURP (Holliday Junction-Recognizing Protein) Levels Is Correlated with Glioblastoma Cells Survival. PLoS ONE. 2013; 8(4): e62200. https://doi.org/10.1371/journal.pone.0062200 PMID: 23638004
54. Tahara H., Matsuda S., Yamamoto Y., Yoshizawa H., Fujita M., Katsuoka Y., Kasahara T. High-content image analysis (HCIA) assay has the highest correlation with direct counting cell suspension compared to the ATP, WST-8 and Alamar blue assays for measurement of cytotoxicity. J Pharmacol Toxicol Methods, 2016; 88, 92–99. https://doi.org/10.1016/j.vascn.2017.08.003
55. Hamid R., Rotshteyn Y., Rabadi L., Panik R., Bullock P. Comparison of alamar blue and MTT assays for high throughput screening. Toxicol In Vitro 18, 2004; 703–710. https://doi.org/10.1016/j.tiv.2004.03.012 PMID: 15251189