Tailoring high temperature quasi-two-dimensional superconductivity.

Dmitrii P. Pavlov,¹ Rustem R. Zagidullin,¹ Vladimir M. Mukhortov,² Viktor V. Kabanov,¹,³
Tadashi Adachi,⁴ Takayuki Kawamata,⁵ Yoji Koike,⁵ and Rinat F. Mamin¹

¹Zavoisky Physical-Technical Institute, FRC KazanSC of RAS, 420029 Kazan, Russia
²Southern Scientific Center of RAS, 344006 Rostov-on-Don, Russia
³Department for Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
⁴Department of Engineering and Applied Sciences, Sophia University, Tokyo, Japan
⁵Department of Applied Physics, Tohoku University, Sendai, Japan

(Dated: December 13, 2018)

We report the first observation of superconductivity in heterostructure consisting of an insulating ferroelectric film (Ba₈Sr₅₂TiO₃) on an insulator single crystal in [001] orientation (La₂CuO₄), created by magnetron sputtering on a non-atomically-flat surface with inhomogeneities of the order of 1-2 nm. In this heterostructure the superconducting phase transition temperature Tc gets as high as 30K. It has been shown experimentally that it is possible to create a high-Tc quasi-two-dimensional superconductivity (HTq2DSC) by a relatively simple method at the boundary of the ferroelectric and parent compound of the high temperature superconductor (PCHTSC). In this case it becomes possible to create HTq2DSC on a non-atomically-flat surface. This highly robust phenomenon is confined within the interface area. If a weak magnetic field is applied perpendicularly to the interface of the heterostructure, a resistance appears. That confirms a quasi-two-dimensional nature of the superconducting state. The proposed concept promises ferroelectrically controlled interface superconductivity which offers the possibility of novel design of electronic devices.

PACS numbers: 74.20.-z, 73.20.-r, 71.30.+h, 74.20.Pq, 77.55.Px

Up to now the creation of HTq2DSC as well as a quasi-two-dimensional electron gas (q2DEG) at the interface were impossible without tailoring the atomically perfect interfaces. The realization of HTq2DSC area is a long-term goal because of potential applications and the possibility to study quantum phenomena in two dimensions. Typical approaches to the realization of quasi-two-dimensional superconducting layer rely on creation of an “ultrathin” film of a known superconductor. However it is important not only to get HTq2DSC, but also to have the ability to control superconducting states by magnetic and electric fields. In this Letter we present the experimental realization of HTq2DSC due to increasing of a current concentration in thin layer of PCHTSC on the interface with ferroelectric. By simple consideration the additional current carriers at the interface occur due to electrostatic potential arising from polar discontinuity. It allows to change the conduction properties of the heterostructures by switching the polarization in the ferroelectric. This approach allows to get heterostructures with relatively simple technology because the requirements for boundary condition are less stringent.

Tailoring q2DEG and HTq2DSC at the interface is impossible without the deep understanding of the nature of quasi-two-dimensional states. First, the q2DEG has been created at the heterointerfaces between two insulating oxides, LaAlO₃/SrTiO₃, and unique transport properties were observed owing to strong electronic correlations. In this case the system becomes superconducting below 300 mK. Then the superconductivity at 30 K in bilayers of an insulator (La₂CuO₄) and a metal (La₁.₅₅Sr₀.₄₅CuO₄), neither of which is superconducting in isolation, was reported. The price for result in the both cases was that the interface should be atomically perfect. In the second case it was considered, that the interface must be atomically perfect to obtain the superconductivity at the interface in copper oxides, because the coherence length is very short (ξ=1-3 nm). In the case of a ferroelectric oxide deposited on the copper oxide, the conditions are not so stringent for the appearance of the effect: inhomogeneities of the order of ξ are possible if their envelope is much greater than ξ. Thus in this Letter we report the first observation of superconductivity in heterostructure consisting of an insulating ferroelectric film (Ba₈Sr₅₂TiO₃) on an insulator single crystal (La₂CuO₄). In this investigation the “simple” result had been obtained on the heterostructure, created by relatively simple method of magnetron sputtering and using more simple condition for the interface. We show experimentally that it is possible to get q2DEG on a non-atomically-flat interface. And we obtain superconductivity with Tc≈30 K at the heterointerfaces between two insulating oxides, which is 100 time larger than Tc in LaAlO₃/SrTiO₃. We would like to underline that using a ferroelectric oxide in the heterostructures allows us to fabricate the interface of two insulating oxides with different structure of elementary cells and to have more simple RF-sputtering method for tailoring the heterostructure. Moreover, using a ferroelectric material as an upper layer of the heterostructure brings interesting new physics, which opens possibility to change the properties of the heterostructures by switching the polarization in the ferroelectric layer.
FIG. 1: The schematic structures of Ba$_{0.8}$Sr$_{0.2}$TiO$_3$/La$_2$CuO$_4$ (a) with q2DEG (shown by transparent red); AFM image of the La$_2$CuO$_4$ single crystal surface without the film (b) illustrates the inhomogeneity of the interface. The temperature dependence of the magnetic susceptibility (c), and the temperature dependence of the resistivity (d) of La$_2$CuO$_4$ single crystal (without ferroelectric film).

In our investigation, a La$_2$CuO$_4$ (LCO) single crystal was grown using a travelling-solvent-floating-zone technique and was characterized by magnetic susceptibility and resistivity measurements. And then a Ba$_{0.8}$Sr$_{0.2}$TiO$_3$ (BSTO) ferroelectric oxide was deposited on ab surface of the single crystal (see Fig. 1a) by reactive sputtering of stoichiometric targets using RF plasma (RF-sputtering) method at 650°C. Therefore, we tried to combine the advantages of both approaches described above in order to get the maximum effect in the easy way.

We have used a LCO single crystal as a substrate in order to obtain a high T_c. We use a relatively simple method of creating the interface, and typical surface roughness of LCO single crystal determined from atomic force microscopy data before deposition is about 1-2 nm (with the size in the plane of approximately 200-300 nm, see Fig. 1b), which is slightly more than one unit cell in c direction (1.3 nm in LCO). Heteroepitaxial BSTO ferroelectric thin film (thickness of 200 nm from atomic force microscopy data) was deposited on LCO single crystal (001) substrate. BSTO belongs to ferroelectric perovskites. In the ferroelectric phase below the Curie temperature of ferroelectric phase transition ($T_c = 353$ K) \[19\] it has a tetragonal unit cell. The as-grown film shows built-in polarization in the [001] crystallographic direction. The temperature dependences of magnetic susceptibility $\chi(T)$ and resistivity $\rho(T)$ of the LCO single crystal are shown in Fig. 1c and 1d. The peak in $\chi(T)$ clearly observed around 306 K corresponds to the Neel temperature below which a long-range antiferromagnetic order is formed. The temperature dependence of resistivity $\rho(T)$ (Fig. 1d) is usual for LCO [20, 21]. Both of these results are typical for this system [20, 21] and indicate a good quality of the crystal.

Resistance measurement on the interface of the heterostructure was performed by four contacts method. The electrodes were applied by using silver paste on the LCO surface at the boundary with film as schematically shown on Fig. 1a. The electrodes were in contact with the interface. The distance between potential electrodes was different in the different experiments. The distribution of the current, flowing by different routes at different temperatures, depends on relation between a substrate conductance and an interface conductance. At high temperature the main current flows through substrate. Below 50 K the main current flows on interface area. The temperature dependence of the resistance of Ba$_{0.8}$Sr$_{0.2}$TiO$_3$/La$_2$CuO$_4$ heterostructure in the wide

FIG. 2: The temperature dependence of the resistance of Ba$_{0.8}$Sr$_{0.2}$TiO$_3$/La$_2$CuO$_4$ heterostructure in the wide temperature range (c) and at the low temperatures (d) (the results of the same measurements).
temperature range (see Fig. 2a) shows that above 40 K the resistance has usual semiconducting behavior. At low temperatures (Fig. 2a and Fig. 2b) the resistance drops very rapidly and superconducting behavior is observed. Thus the interface between the ferroelectric and insulating oxides shows superconducting behavior with high Tc about 30 K (Fig. 2). The beginning of a transition to superconducting state occurs around 40 K, similar to what is observed in bulk La2−xSrxCuO4 (LSCO) single crystals at optimal doping [20, 21]. When a weak magnetic field is applied to the heterostructure in the direction perpendicular to the surface of the interface, the finite resistance of the interface appears and it increases with the increasing of the field (see Fig. 3) as it was predicted [22]. The magnetic field was applied perpendicular to the surface and parallel to c axis of the LCO substrate at T = 22.3 K. The magnetic field dependence of the heterostructure resistance shows that non-zero resistance appears at a very low field. The Hc1 for the thin layer of superconductor is very small and magnetic field penetrates in the superconducting layer. That confirms a quasi-two-dimensional nature of the superconductive state. We did not perform the measurements in higher magnetic fields intentionally, since we know from the previous experience [23] that the effects of magnetostriction in relatively small magnetic fields can lead to partial peeling of the film from the substrate resulting in partial or complete disappearance of the observed effect. On the other hand, we believe that in our case, by analogy with LSCO, Hc1 is of the order of 29-81 T, which is inaccessible for us.

The most common mechanism for q2DEG is the polarization catastrophe (PC) model [10, 15], which was also discussed for the case of ferroelectric/dielectric interface [23, 24]. The polar discontinuity at the interface leads to the divergence of the electrostatic potential. In order to minimize the total energy, it is necessary to shield the electric field arising from this. As a consequence, both the lattice system and the energy spectrum of the current carriers are restructured [22], and the increase of the current carriers density occurs in a narrow interface area. This occurs in a self-consistent manner, so that rearranging the energy spectrum of the carriers and increasing their concentration in the interface region leads to the formation of a narrow metal region near the interface on the part of the LCO as shown at right down insert in Fig. 2b. Our estimates show that if we assume that the polarization of the ferroelectric is P = 30 μK/cm² (it gives σS = 1.875 10¹⁴ 1/cm²) and the screening length in LCO is dSc = 0.45 nm, then the concentration corresponding to the doping level, at which the superconducting state is observed in La2−xSrxCuO4 (x = 0.05-0.26), will be achieved in a narrow region of LCO in the second-third interface layers of the CuO2 planes.

In addition to this possibility, the occurrence of HTq2DSC is possible due to the impact of cation inter-diffusion (primarily Ba or Sr from BSTO to LCO) and oxygen non-stoichiometry. Barium or strontium diffusion is unlikely due to low diffusion coefficient at 650 C [27]. Reduction of oxygen during deposition of the film is also unlikely, since the process is carried out at elevated oxygen pressure. For that matter, an introduction of additional oxygen in this process would be more likely. But the following three experimental facts argue against this. The first is that q2DEG was created at the interface of the Ba0.8Sr0.2TiO3/LaMnO3 heterostructure [23]. It would be unlikely that a change in the oxygen concentration in LaMnO3 could lead to the appearance of q2DEG, because it was shown experimentally for this case that the occurrence of q2DEG is related to the direction of polarization in the ferroelectric, and arises only in the case of polarization directed perpendicular to the interface [23]. Our sample was obtained by the same technol-

![FIG. 3: The magnetic field dependence of the resistance of Ba0.8Sr0.2TiO3/La2CuO4 heterostructure.](image)

![FIG. 4: The temperature dependence of the resistance of Ba0.8Sr0.2TiO3/La2CuO4 heterostructure from the substrate side. The temperature dependence of the heterostructure resistance is measured by electrodes deposited on the La2CuO4 surface opposite to the surface with the film.](image)
ogy using the same equipment. The second is that the application of the magnetic field, which partially destroys the contact at the interface between $\text{Ba}_2\text{Sr}_2\text{TiO}_3$ and LaMnO_3, leads to q2DEG disappearance. From this fact it was concluded that the occurrence of q2DEG is related to the proximity effect, rather than to diffusion processes. And the third fact is illustrated in Fig. 4. Here we applied electrodes for resistance measurements on the back side of the heterostructure. The electrodes were from single crystal side and the electrodes were not in contact with the interface (see upper-left insert in Fig. 4). In this case superconducting state is not observed directly. The resistance decreases below a certain temperature but not below 4 Ohm. Here we obtain the results from all heterostructures and superconducting state gives the impact in these results. We believe that the current line distributions are strongly different at different temperatures (see lower-right insert in Fig. 4) and depend on the relation between conductance of the substrate and the interface. At high temperature the main currents flows through substrate. Below 50 K the main current flows at the interface area. And when the resistance is measured from the side of substrate the temperature dependence of the heterostructure is the same as that for the interface (Fig. 2b). But superconductivity is not observed directly because the surface of substrate is not superconducting. It means that the oxygen does not penetrate the surface layer during the film deposition. The possibility of the reduction of oxygen in the interface area during deposition had been also discussed for the case of bilayers $\text{La}_2\text{CuO}_4/\text{La}_{1.55}\text{Sr}_{0.45}\text{CuO}_4$ 1 2. It was concluded that “Interstitial oxygen in $\text{La}_2\text{CuO}_{4+\delta}$ is mobile and, in particular in very thin films, it diffuses out of the sample on the scale of hours or days” 1.

Thus the superconductivity in heterostructure consisting of an insulating ferroelectric film ($\text{Ba}_2\text{Sr}_2\text{TiO}_3$) on an insulator single crystal in [001] orientation (La_2CuO_4) was observed. This heterostructure was created by magnetron sputtering on a non-atomically-flat surface. Our results open a new page in creating interfaces with q2DEG and HTq2DSC, since it has been shown experimentally that it is possible to create HTq2DSC by a relatively simple method at the boundary of the ferroelectric and parent compound of the high temperature superconductor (PCHTSC). We believe that these results will have large impact in the field and will be interesting for a broad scientific community, because big number of new heterostructures may be fabricated by this technique, and big number of different groups may use this method. Note, that with this technique we obtain superconductivity with T_c=30 K, which 100 time larger than T_c in $\text{LaAlO}_3/\text{SrTiO}_3$ heterostructures.

In conclusion q2DEG is formed at the interface, which becomes HTq2DSC state when the temperature is lowered below 30 K. The HTq2DSC arises from strongly increasing carrier density localized in the interface area in copper oxide while the polar discontinuity at the interface leads to the divergence of the electrostatic potential due to the polarization catastrophe 2 3. This allows us to control the interface superconductivity by applying an electric field, as it was done in the case of the ionic liquid 28. It opens the possibilities to use these phenomena in a novel design of electronic devices.

We thank N.N. Garif’yanov, R. Khasanov (PSI), A.V. Leontyev, Yu.I. Talanov and R.V. Yusupov for help and advices. We acknowledge I.A. Garifullin and V.E. Kataev for discussions. R.F.M. is grateful to his wife Aigyl for stimulation of this research. V.V.K. acknowledges financial support from Slovenian Research Agency Program P1-0040. The work at ZPhTI FRC KazanSC RAS was funded by Russian Scientific Foundation, research project No. 18-12-00260.

[1] A. Gozar et al., Nature (London) 455, 782 (2008).
[2] A. Gozar and I. Bozovic, Physica C 521-522, 38 (2016).
[3] Jian-Feng Ge et al., Nature Mater. 14, 285 (2014).
[4] Qing Lin He et al., Nature Communications 5, 4247 (2014).
[5] A. Ohtomo and H.Y. Hwang, Nature (London) 427, 423 (2004).
[6] S. Thiel, G. Hammerl, A. Schmelz, C.W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
[7] N. Reynen et al., Science 317, 1196 (2007).
[8] A. Brinkman et al., Nature Mater. 6, 493 (2007).
[9] A. Kalabukhov, R. Gunnarsson, J. Borjesson, E. Olsson, T. Claeson, D. Winkler, Phys. Rev. B 75, 121404 (2007).
[10] J. Biscaras et al., Nature Communications 1, 89 (2010).
[11] P. Moetakef et al., Appl. Phys. Lett. 99, 232116 (2011).
[12] I. Bozovic, G. Logvenov, M.A.J. Verhoeven, P. Caputo, E. Goldobin, M.R. Beasley, Phys. Rev. Lett. 93, 157002 (2004).
[13] C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature (London) 424, 1015 (2003).
[14] C. H. Ahn et al., Science 284, 1152 (1999).
[15] V. L. Berezhinskii, Sov. Phys. JETP 34, 610 (1972).
[16] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[17] M. Mourachkine, Journal of Superconductivity 17, 711 (2004).
[18] V. M. Mukhортов, Y. I. Golovko, G. N. Tolmachev, and A. N. Klevtsov, Ferroelectrics 247, 75 (2000).
[19] A. S. Anokhin et al., Physics of the Solid State 58, 2027 (2016).
[20] M. A. Kastner and R. J. Birgeneau, Rev. Mod. Phys. 70, 897 (1998).
[21] H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, Y. Tokura, Phys. Rev. B 40, 2254 (1989).
[22] V. V. Kabanov, I. I. Piyanzina, D. A. Tayurskii, and R. F. Mamin, arXiv:1802.08569 (2018).
[23] D. P. Pavlov et al., JETP Lett. 106, 440 (2017).
[24] M.K. Nirajan, Y. Wang, S.S. Jaswal, and E.Y. Tsymbal, Phys. Rev. Lett. 103, 016804 (2009).
[25] Y. Wang, M.K. Nirajan, J.D. Burton, J.M. An, K.D. Belashchenko, E.Y. Tsymbal, Phys. Rev. B 79, 212408
[26] X. Liu, E. Y. Tsymbal, K. M. Rabe, Phys. Rev. B 97, 094107 (2018).

[27] R. A. De Souza, M. S. Islam, W. Ivers-Triffee, Journal of Materials Chemistry 9, 1621-1627 (1999).

[28] Xiang Leng et al., Phys. Rev. Lett. 107, 027001 (2011).