Both ipsilateral and contralateral localized vibratory stimulations modulated pain-related sensory thresholds on the foot in mice and humans

Atsushi Doi,1,2,* Junta Sakasai,3,8 Chikato Tokunaga,4,8 Fumiya Sugita,5,8 Syota Kasae,6 Keisuke Nishimura,7 Yushi Sato,8 Takako Kuratsu,9 Sariya Hashiguchi,10 Min-Chul Shin,1,2 Megumu Yoshimura11

1Department of Physical Therapy, Kumamoto Health Science University, Kumamoto, Japan; 2Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto, Japan; 3Department of Rehabilitation, Tokyo-Wangan Rehabilitation Hospital, Narashino, Japan; 4Department of Rehabilitation, Himeno Hospital, Yame, Japan; 5Department of Rehabilitation, Tamana Central Hospital, Tamana, Japan; 6Department of Rehabilitation, Shizu Hospital, Kyoto, Japan; 7Department of Rehabilitation, Shimo-Isen Hospital, Tokyo, Japan; 8Department of Physical Therapy, Konan Hospital, Kumamoto, Japan; 9Department of Rehabilitation, Ashino-Sogo Hospital, Kumamoto, Japan; 10Department of Physical Therapy, Wangan Rehabilitation hospital, Kumamoto, Japan; 11Department of Rehabilitation, Kumamoto Health science University, Kumamoto, Japan; 12Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto, Japan.

Purpose: This study was aimed to investigate the effect of localized vibration on sensory thresholds in mice and humans using a novel quantitative method.

Participants and methods: The sensory thresholds of 7-week-old male C57BL/6J mice were measured with four sine-wave electrostimulation frequencies (5, 50, 250, and 2,000 Hz) before and after applying 2-minute vibration to the plantar side of the foot in mice. In human participants (16 males and 16 females; mean age, 21.0±0.8 years), the sensory threshold was measured at 50 Hz before and after applying 2-minute and 5-minute vibrations to the dorsal side of the foot.

Results: Application of a 2-minute vibration at either the ipsilateral or contralateral side modulated the sensory thresholds elicited by a 5- or 50-Hz right electrostimulation in mice. In human participants, application of a 5-minute vibration at either the ipsilateral or contralateral side modulated the sensory threshold elicited by 50-Hz right electrostimulation, but had no effect on local skin temperature. These results suggest that the right side of pain-related Aδ fibers (50 Hz) or C fibers (5 Hz) was modulated by the localized ipsilateral or contralateral side of vibratory stimuli, respectively, in mice and humans.

Conclusion: The ability of contralateral vibration to modify the right sensory thresholds suggests possible involvement of the central nervous system in vibratory modulation.

Keywords: vibration, sensory threshold, electrostimulation, central modulation

Introduction

Sensation can be categorized as either superficial or deep. In superficial sensation, tactile input mediated by Aβ fibers is transmitted to deep-layer neurons in the spinal cord dorsal horn.1 In contrast, superficial or noxious sensation mediated by fast (Aδ fiber) and slow (C fibers) pain fibers synapse with neurons of the substantia gelatinosa in the superficial dorsal horn.1 Aδ or C fiber-mediated pain is involved in numerous chronic pain states that can limit activities of daily living and cause disuse syndrome.

Although many scales for assessing clinical pain, such as the Visual Analog Scale,2 Faces Pain Scale,3 Verbal Numerical Rating Scale,4 Verbal Descriptor Scale,5 and McGill Pain Index,6,7 are available, none of them provide an objective measurement of pain. In contrast, several quantitative scales are used to assess pain in rodents, including the Von Frey filament test,8 tail flick test,9 and hot plate test.10 The Neurometer is used for electrostimulation-induced quantitation of sensory thresholds in both human subjects and rodents.11,12 The benefits of the Neurometer include the ability to represent the sensory threshold as current and the ability to stimulate Aβ, Aδ, and C fibers.
fibers selectively. However, the Neurometer is potentially a stand-alone system and cannot alter the stimulation protocol. More recently, other specialized electrostimulation-based equipment was developed for quantifying pain, such as PainVision PS-2100 (Nipro Inc., Osaka, Japan) and the STG-4000 series (Multichannel Systems Inc., Reutlingen, Germany). PainVision has been used to quantitatively determine pain intensity as the “degree of pain” calculated from the current production of electrical threshold perception and the current production of a comparable pain sensation. The STG-4000 series generate stimuli for both current- and voltage-driven stimulations. Any arbitrary analog waveform can be designed as a stimulation signal for every single channel. The programmed stimulation is controlled by the PC-based software.

Numerous treatment strategies have been developed for chronic pain, including medications, acupuncture, stretching, physical medicine, cognitive-behavioral therapy, and alternative therapies. In these treatments, especially, the mechanical stimulation (eg, thermal stimulation, pinch, or electrostimulation), which is contained in either the physical medicine or the alternative therapies, has already been reported to have an inhibitory effect on pain.

For example, in 1982, Fitzgerald published a paper on “contralateral” pinch and heat stimulation inducing an inhibitory effect on neuronal activity in the spinal dorsal horn. Further, it has been reported that local vibratory stimulation also reduces pain in both animal and human subjects. In this study, we used a mouse as a model to investigate the localized, vibration-induced, bilateral temporal and spatial inhibition of the sensory threshold. The second purpose was to investigate the differences of the response between mouse and human subjects.

Participants and methods

Animals

Male C57BL/6J mice (7 weeks old, 20–23 g, n=26) were purchased from Kyudo, Inc. (Kumamoto, Japan) and housed in an environment with controlled temperature (24°C±1°C) and humidity (55%±10%) on a 12-hour light–dark cycle with ad libitum access to food and water. All animal protocols were approved by the Animal Care Committees of Kuma-moto Health Science University (approval no. 14-015) and were conducted in accordance with the National Institute of Health guide for the care and use of laboratory animals (NIH publications No. 80-23, revised 1996).

Vibratory stimuli and sensory threshold measurement in mice

Briefly, a mouse was immobilized in a plastic tube while awake, which was further clamped with an adjusting magnetic base and stand (A-2, Shinwa Rules Co, Sanjyo, Niigata, Japan) and lab clamp (NC-3, Kenis, Osaka, Japan). A vibration device (HB-M01-A, Electric Inc., Tokyo, Japan), which is commercially available at low cost and used for humans, was clamped to the examiner’s hand. The device was then attached to the distal and plantar sides of the right hind paw. The vibration was delivered at the foot sole of either the right (ipsilateral) or left (contralateral) side for 2 minutes (at a frequency of 4,900 times/min; Figure 1).

Sensory thresholds were measured with 5, 50, 250, and 2,000 Hz sine electrostimulation (STG-4002, Multichannel Systems Inc.; Figure 1). The four different electrostimulation frequencies that we used in this study can stimulate A6 fibers (2,000 Hz), Aδ fibers (50 and 250 Hz), and C fibers (5 Hz). Therefore, by using these four electrostimulation frequencies, we were able to evaluate the threshold of each of A6, Aδ, and C fibers. Under the immobilized condition...
of the mice, ball-type bipolar electrodes were placed on the plantar side of the right hind paw, and electrostimulation was applied to the plantar side because the knee joint was flexed maximally and the ankle joint was also flexed dorsally under the supine position. Therefore, since the dorsal side of the foot was hidden, we could not stimulate the dorsal side of the hind paw (Figure 1). The electrostimulation-induced withdrawal reflex of the mouse’s hind limb resulted in loss of contact with the electrode. The time from the onset of electrostimulation to the appearance of the withdrawal reflex was measured, and the intensity at which the withdrawal reflex occurred was calculated (μA). Before the vibration was delivered, as control, we measured the sensory thresholds 15 times (five times/set and three sets) for each of the four electrostimulation frequencies (5, 50, 250, and 2,000 Hz). After the vibration was delivered at the foot sole of either the right (ipsilateral) or left (contralateral) side for 2 minutes (at a frequency of 4,900 times/min; Figure 1), the sensory thresholds were remeasured at the point of X-min (X=0, 2, 4, 6, 8, 10, 12, 15) after exposure to the vibration stimulus (Figure 2). We remeasured the sensory thresholds three times for each point, and the averaged threshold was adopted for the value.

Vibratory stimuli and sensory threshold measurement in human participants

A total of 32 healthy participants (16 males, 16 females; mean age, 21.0±0.8 years) were recruited for study participation. First, we investigated the effect of a 2-minute vibration applied to either the ipsilateral or contralateral

![Figure 1 Measurement of the sensory threshold. Notes: (A) Four types of sine wave electrical stimulation were used for sensory threshold measurement: 5, 50, 250, and 2,000 Hz. (B) Illustration of sensory threshold measurement in the mouse. (C) Photographs of the ipsilateral (right) vibratory stimulus (a) and contralateral (left) vibratory stimulus (b).](https://www.dovepress.com/10.2147/JPR.S214233)
dorsal foot for the sensory threshold. Then, we examined the effect of a 5-minute vibration applied to either the ipsilateral or contralateral dorsal foot for the sensory threshold. The sensory thresholds of human participants were measured only with 50-Hz electrostimulation based on a program for clinical evaluation (Pain vision, Nipro Inc.) because the equipment producing 5, 50, 250, and 2,000 Hz electrostimulation (STG-4002, Multichannel Systems Inc.), which was used with the mice, was not entirely suitable for use with human participants in this study; therefore, we evaluated the threshold of only Aδ fibers in human participants. Further, although we initially attempted to measure the sensory threshold using the plantar side of the foot, the sensory threshold in each participant fluctuated to a great extent under the control condition before the vibratory stimuli were applied. Therefore, the dorsal side of the foot was selected in human participants. After the dorsal side of the foot was exposed, bipolar electrodes were placed proximal to the metacarpophalangeal joint and on the dorsal side of the right first finger. Then, human participants held the push button, which could release the electrostimulation, in their right hand. After the electrostimulation was administered to the participants, when they experienced maximum pain, they could push the button. Then, the intensity (mA) was automatically measured, and the value was stored in a personal computer.

After we measured the sensory thresholds 15 times (five times/set and three sets) as control condition, a vibration device (YCM-721, Daito Electric Co, Osaka, Japan) was attached to the dorsal side of the foot at either the ipsilateral or contralateral side to provide a vibratory stimulus for 2 minutes or 5 minutes (at a frequency of 5,230 times/min). Thereafter, the sensory thresholds were remeasured at the point of X min (X=0, 2, 4, 6, 8, 10, 12, 15) after exposure to
the vibratory stimulus. We remeasured the sensory thresholds three times for each point, and the averaged threshold was adopted for the value (Figures 1 and 2).

Measurement of skin temperature in human participants

Before and after applying the vibratory stimulus on the dorsal foot of either the ipsilateral (five male and four female participants; mean age, 21.0±0.0 years) or contralateral side (seven male and six female participants; mean age, 21.0±1.3 years), we simultaneously measured the skin temperature using a digital thermometer (CT-450WR, CUSTOM, Tokyo, Japan) where the sensory threshold on the dorsal foot was measured. The time of the vibratory stimulus was 5 minutes, and the measurement of the skin temperature was performed before vibration, and at 0 and 15 minutes after the vibration. Then, the skin temperature was normalized.

All the participants provided written informed consent according to the Declaration of Helsinki before the start of the experiments, and all human experiments were approved by the Life Science Committees of Kumamoto Health Science University (approval no. 25-29 and 2016-02).

Statistical analysis

Experimental data are expressed as the mean ± SD. Within-group comparisons (before vibration: control vs 0 minute, after vibration: “0”; before vibration: control vs 15 minutes, after vibration: “15”; Figures 3–8) were performed using Wilcoxon signed rank tests. \(P < 0.05 \) was the threshold for statistical significance. The average values of all three baseline tests were used for the statistical analysis. Furthermore, in human experiments, the averaged line graphs of either the sensory threshold or the skin temperature are shown. Further, the histograms of the sensory threshold are shown. The histograms present an increase in sensory threshold value (above 100% of the normalized sensory threshold) and a decrease in the sensory threshold value (below 100% of the normalized sensory threshold). Moreover, 100% of the normalized sensory threshold indicates no change in the sensory threshold value. All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria). More precisely, EZR is a modified version of R commander designed to add statistical functions frequently used in biostatistics.51

Results

Sensory thresholds of four electrostimulation frequencies

The mean sensory thresholds of the right four electrostimulation frequencies were 56.7±11.6, 48.9±14.3, 69.0±19.0, and 345.1±48.7 μA, respectively (Figure 4). The threshold was significantly higher in response to a 2,000-Hz electrostimulation than in response to the other electrostimulation frequencies \((P<0.001) \).

Right sensory thresholds and ipsilateral vibration in mice

Two-minute vibration applied to the ipsilateral plantar sole produced significant increases in the sensory threshold
Elicited by the right 5-Hz electrostimulation at both 0 minutes (fast response) and 15 minutes (slow response) (Figure 5A, $P<0.05$). Although ipsilateral 2-minute vibration gradually elevated the averaged value of the sensory threshold at 50-Hz electrostimulation (Figure 5B, 140% as an average value at 15 minutes after stimulation), the sensory threshold did not significantly change (Figure 5B, not significant). Further, ipsilateral 2-minute vibration did not change the sensory threshold by the 250- and 2000-Hz electrostimulation (Figure 5C and 5D, not significant).

Right sensory thresholds and contralateral vibration in mice
Contralateral 2-minute vibration produced significant increases in the sensory threshold of the right hind limb by the 50-Hz electrostimulation, whose modulation was at 15 minutes after vibratory stimulation (slow response; Figure 6B, $P<0.05$). However, contralateral 2-minute vibration did not change the sensory threshold by the 5-, 250- and 2000-Hz electrostimulation (Figure 6A, C and D, not significant).

Right sensory thresholds and either side vibration in humans
Neither ipsilateral nor contralateral 2-minute vibration had any effect on the right sensory thresholds in human participants (Figure 7, not significant).

Right sensory thresholds and persistent either side vibration in humans
Both ipsilateral and contralateral vibrations for 5 minutes produced significant increase in right sensory thresholds, whose modulation involved a slow response (Figure 8A and C, $P<0.05$). Furthermore, the right sensory threshold of all
localized contralateral vibration modulated pain-related threshold

In both ipsilateral and contralateral vibratory stimuli, vibration-induced fluctuation of skin temperature was seen in a few instances. However, there were no significant differences in skin temperature between before and after vibratory stimulation (99.44%±3.76% at 0 minute after the ipsilateral vibration, 100.00%±4.78% at 15 minutes after the ipsilateral vibration, 100.93%±3.49% at 0 minute after the contralateral vibration, 100.70%±5.63% at 15 minutes after the ipsilateral vibration; Figure 9).

Discussion
The present study found that in mice, ipsilateral 2-minute vibration modulated the sensory threshold in response to right 5-Hz electrostimulation, and contralateral 2-minute vibration modulated in response to right 50-Hz electrostimulation. Further, persistent 5-minute vibration, but not 2-minute vibration, of both the ipsilateral and the contralateral sides modulated the sensory threshold in response to right 50-Hz electrostimulation in human subjects, whose modulation was independent of skin temperature. Moreover, except for the modulation of the right sensory threshold caused by the ipsilateral vibratory stimulus in mice, other sensory modulation was observed for 50-Hz electrostimulation in both mice and humans.

In accordance with previous studies, the four different electrostimulation frequencies that we used in this study could stimulate Aβ fibers (2,000 Hz), Aδ fibers (50 and
250 Hz), and C fibers (5 Hz).13–15 However, Koga et al, reported that a 2,000-Hz sine wave mainly activates Aβ fibers (and partially activates Aδ fibers), while a 250-Hz sine wave activates both Aβ and Aδ fibers, and a 5-Hz sine wave stimulates all Aβ fibers, Aδ fibers, and C fibers.52 In experiments on mice, therefore, the ipsilateral vibratory modulation of the sensory threshold in response to right 5-Hz electrostimulation potentially results from C fibers, as the results were not significant at 50 and 250 Hz (Aβ and Aδ fibers), and 2,000 Hz (Aβ fibers; Figure 5). The contralateral vibratory modulation of the sensory threshold in response to right 50-Hz electrostimulation potentially results from Aδ fibers as the results were not significant at 2,000 Hz (Figure 6). In human experiments, both the ipsilateral and contralateral vibratory threshold modulations in response to right 50-Hz electrostimulation derives from Aβ and Aδ fibers, presumably the Aδ fibers.

Cross-species differences in both spatial and temporal summation

For mice, 2-minute vibration may be sufficient to modulate the sensory threshold. However, 2-minute vibration in humans did not affect the threshold (Figure 7). These results suggest that the 2-minute vibration itself did not reach “the threshold” to modulate the sensory threshold in human experiments. Except for the ipsilateral vibratory C fiber modulation and fast response in mice, other sensory modulation was observed for Aδ fibers and slow response in both mice and humans. In mouse experiments, we utilized the vibration device that is used for humans. According to a previous report, the sensory threshold for the vibration decreased with increase of the vibration area,48 suggesting that the intensity of the vibration as a stimulator positively correlates with the area factor. Therefore, the ipsilateral vibratory modulation in mice may have involved both slow and fast responses because the vibratory stimulus for...
humans had a strong intensity for mice. Although ipsilateral 50-Hz vibration-induced threshold modulation of the sensory threshold did not change significantly, the averaged value of the sensory threshold was gradually elevated (Figure 5B, 140% as slow response), suggesting that ipsilateral vibratory modulation in mice may affect both C and Aδ fibers because of the ipsilateral strong vibration. Either ipsilateral or contralateral persistent (5-minute) vibration in humans modulated the sensory thresholds (Figure 8), suggesting that temporal summation may have compensated for the limited spatial (area) summation, and the persistent vibratory stimulus finally reached “the threshold” to modulate the sensory threshold.

We cannot fully explain the relationship among the foot location of the sensory threshold, the vibratory modulation, and the inter-species differences because there is no research on the comparison of the sensory threshold between the dorsal and plantar sides of the foot. However, the dorsal side of the hand appears to be more sensitive to two-point discrimination than the volar side of the hand, suggesting that the dorsal side of the foot is also more sensitive to sensation than the plantar side of the foot. If this is true, the 2-minute experiments in humans should have a more drastic effect than that in mice. However, the results were the opposite (Figures 5–7). A few studies have examined age-dependent changes in sensation, such as in warm, cold, and vibration. In this study, although the age of the mice was less than that of the humans, we do not believe that age is the main factor for the difference in the response, since the age itself cannot be simply compared between these two species.

Cutaneous mechanoreceptors and stimulus frequency in mice

The peak sensitivity of the Pacinian corpuscle-mediated system is at approximately a 250-Hz vibration. The non-Pacinian, Meissner’s corpuscles-mediated, rapid-adapting system appears to be activated at up to a 50-Hz vibration.
Although we cannot be certain, either 50- or 250-Hz sine waves may also activate different types of cutaneous mechanoreceptors. Therefore, a persistent (5-minute) 50-Hz electrostimulation may strongly activate the specific cutaneous mechanoreceptor system to modulate the sensory threshold resulting from the Aδ fibers.

Vibratory stimulus and skin temperature in humans

A previous study reported that local vibratory stimulation increases skin temperature. In that study, Oliveri et al used 100-Hz vibration and a 15-minute stimulus to measure skin temperature at the vibrated small spot, directly. We believe that there are two reasons why the 5-minute vibration in our study did not increase skin temperature. One involves the timing of the stimulation. The other involves the location at which the skin temperature was measured. If we had measured the skin temperature at the vibrated small spot, the increase of temperature would have perhaps been detectable. Another study reported that increase in skin temperature reduced the vibration threshold on the forearm. Therefore, if the vibration increased the skin temperature of the surrounding area, the sensory threshold may have been reduced. The opposite may be true for the elevation of the sensory threshold.

Contralateral vibratory modulation and central mechanisms

Two alternative regions were potentially responsible for contralateral vibration-induced changes in the right sensory threshold. First is the brainstem descending inhibitory system, and the second is the cortical region. Descending serotonergic projections originate in the raphe nuclei, while the noradrenergic system constitutes A5, A6, and A7 cell groups. These descending inhibitory systems project to spinal cord dorsal horn neurons via the dorsolateral funiculus.

Figure 9 Changes in skin temperature after ipsilateral or contralateral 5-minute vibration.

Notes:

- **(A)** Changes in temperature after the ipsilateral 5-minute vibration (real values).
- **(B)** Normalized temperature values for the ipsilateral vibration.
- **(C)** Changes in temperature after the contralateral 5-minute vibration (real values).
- **(D)** Normalized temperature values for the contralateral vibration.
The vibratcile stimulation-induced medial lemniscus (ML) ascending pathway terminates in the nucleus gracilis, nucleus cuneatus, posterior lateral nucleus of the thalamus, and parabrachial nuclei (PV). Further, some Aβ fibers, which are activated by vibratcile stimulation, terminate in a deep layer of the dorsal horn to relay ascending information via the anterior spinothalamic (ST) pathway. A previous study reported that the ST ascending pathway targets not only the thalamus but also the caudal ventrolateral medulla (VLM), lateral PV, and periaqueductal gray matter (PAG). For example, PAG neurons project to the A5, A6, and A7 cells to modulate nociception. The PAG and VLM form synapses with the raphe nuclei, and the ST ascending pathways and indirectly affected the raphe nuclei and A5, A6, and A7 cells, which are components of the serotonergic and noradrenergic descending inhibitory systems. As for the second alternative region, we propose cortical modulation. Pain stimuli activate the contralateral thalamus, primary somatosensory cortex (SI), contralateral anterior cingulate cortex, and bilateral secondary somatosensory cortex (SII). In one study, focal pain sensation changed regional cerebral blood flow (rCBF) in the contralateral SI, contralateral SII, contralateral insula, and others. The ST ascending pathway sends more fibers to the primary motor cortex (M1) and SI than to the pre-motor cortex or somatosensory association cortex. Torquati et al reported that activation of the bilateral posterior SII was associated with pain stimulation. In contrast, vibratcile stimulation activated the bilateral thalamus, contralateral SI, bilateral SII, and others. Vibratcile stimulation also changed rCBF in the contralateral SI and SII. The ML ascending pathway sends more fibers to the premotor cortex and M1 than to the SI or SII. Moreover, the bilateral anterior SII has been associated with somatosensory stimulation. Thus, both pain sensation and vibratcile stimulation overlap in the activation of the contralateral thalamus, contralateral SI, and the bilateral SII.

Our study has the following limitations. The “central mechanisms” in response to the contralateral vibratory stimulation which we proposed in this study remain a hypothesis. Therefore, in animal experiments, using whole animal live imaging or electrophysiological techniques, such as in vivo cortical, spinal imaging, or in vivo intracellular recording under an anesthetized condition, and in human experiments using electroencephalography or functional magnetic resonance imaging, it is necessary to demonstrate the involvement of the central nervous system in the contralateral vibratory stimulation-induced sensory modulation.

Clinical implication
DNIC represents inhibitory modulation, usually performed by a “pain inhibits pain” test paradigm. Additionally, DNIC is a technique for reducing pain, which is inhibited by the noxious stimuli applied to various parts of the body. In fact, the DNIC technique has been used in clinical medicine. In this study, we used vibration as a conditioning stimulus instead of using noxious stimuli. Our vibratory conditioning stimulus, which is applied to the contralateral side of body, potentially shares commonalities with the DNIC. Further, the mechanisms of DNIC are thought of as “central mechanisms,” which may be in line with our “central hypothesis” for the contralateral vibratory modulation. Therefore, our animal and human study, which used precise and quantitative evaluation may be useful for the elucidation of the “DNIC and central mechanisms”.

Conclusion
In conclusion, we used a novel quantitative method to show that local bilateral vibration elevates the right sensory thresholds in mice and in human subjects. The contralateral vibratory modulation of the right sensory threshold suggests the involvement of the central nervous system.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79(4):618–639.
2. Stauffer ME, Taylor SD, Watson DJ, Pelosi PM, Morrison A. Definition of nonresponse to analgesic treatment of arthritic pain: an analytical literature review of the smallest detectable difference, the minimal detectable change, and the minimal clinically important difference on the pain visual analog scale. Int J Inflamm. 2011;2011:231926.
3. Lee JY. Measurement of Trigeminal Neuralgia Pain: Penn Facial Pain Scale. Neurosurg Clin N Am. 2016;27(3):327–336.
4. Farrar JT, Pritchett YL, Robinson M, Prakash A, Chappell A. The clinical importance of changes in the 0 to 10 numeric rating scale for worst, least, and average pain intensity: analyses of data from clinical trials of duloxetine in pain disorders. J Pain. 2010;11(2):109–118.
5. Wysham NG, Mirvovsky BJ, Currow DC, et al. Practical Dyspnea Assessment: Relationship Between the 0-10 Numerical Rating Scale and the Four-Level Categorical Verbal Descriptor Scale of Dyspnea Intensity. J Pain Symptom Manage. 2015;50(4):480–487.
6. Main CJ. Pain assessment in context: a state of the science review of the McGill pain questionnaire 40 years on. Pain. 2016;157(7):1387–1399.
7. Dworkin RH, Turk DC, Revicki DA, et al. Development and initial validation of an expanded and revised version of the Short-Form McGill Pain Questionnaire (SF-MPQ-2. Pain. 2009;144(1-2):35–42.
8. Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: Towards a rational method. J Neurosci Methods. 2015;255:92–103.
9. Hole K, Tjølsen A. The tail-flick and formalin tests in rodents: changes in skin temperature as a confounding factor. Pain. 1993;53(3):247–254.
19. Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain.

18. Wang D, Zhang K, Han S, Yu L. PainVision® Apparatus for Assessment

17. Ohtori S, Kawaguchi H, Takebayashi T, et al. PainVision Apparatus Is Effective for Assessing Low Back Pain.

16. Oh D, Yun T, Kim J, et al. The Measurement of the Sensory Recovery

15. Liu S, Kopacz DJ, Carpenter RL. Quantitative assessment of differential

14. Tay B, Wallace MS, Irving G. Quantitative assessment of different

13. Masson EA, Veves A, Fernando D, Boulton AJ. Current perception

12. Kiso T, Nagakura Y, Toya T, et al. Neurometer measurement of current

11. Vilela FC, Vieira JS, Giusti-Paiva A, Silva MLD. Experiencing early

10. Viilela FC, Vieira JS, Giusti-Paiva A, Silva MLDo. Experiencing early

9. Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain.

8. Wang D, Zang D, Han S, Yu L. PainVision® Apparatus for Assessment of

7. Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain.

6. Gore Metin Z, ArikanDonmez A, Izgu N, Ozdemir L, Arslan IE. Aromatherapy

5. Oh D, Yun T, Kim J, et al. The Measurement of the Sensory Recovery

4. Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain.

3. Gore Metin Z, ArikanDonmez A, Izgu N, Ozdemir L, Arslan IE. Aromatherapy

2. Gore Metin Z, ArikanDonmez A, Izgu N, Ozdemir L, Arslan IE. Aromatherapy

1. Gore Metin Z, ArikanDonmez A, Izgu N, Ozdemir L, Arslan IE. Aromatherapy

Dovepress
57. Makous JC, Friedman RM, Vierck CJ. A critical band filter in touch. J Neurosci. 1995;15(4):2808–2818.
58. Verrillo RT, Balonowski SJ. The effects of skin temperature on the psychophysical responses to vibration on glabrous and hairy skin. J Acoust Soc Am. 1986;80(2):528–532.
59. Bowker RM, Westlund KN, Sullivan MC, Coulter JD. Organization of descending serotonergic projections to the spinal cord. Prog Brain Res. 1982;57:239–265.
60. Westlund KN, Bowker RM, Ziegler MG, Coulter JD. Noradrenergic projections to the spinal cord of the rat. Brain Res. 1983;263(1):15–31.
61. Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH. Multiple representations of pain in human cerebral cortex. Science. 1991;251(4999):1355–1358.
62. Simões C, Hari R. Relationship between responses to contra- and ipsilateral stimuli in the human second somatosensory cortex SII. Neuroimage. 1999;10(4):408–416.
63. Westlund KN, Coulter JD. Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-beta-hydroxylase immunocytochemistry. Brain Res. 1980;202(3):235–264.
64. Westlund KN, Carlton SM, Zhang D, Willis WD. Direct catecholaminergic innervation of primate spinothalamic tract neurons. J Comp Neurol. 1990;299(2):178–186.
65. Massopust LC, Hauge DH, Fernding JC, Doubek WG, Taylor JJ. Projection systems and terminal localization of dorsal column afferents: an autoradiographic and horseradish peroxidase study in the rat. J Comp Neurol. 1985;237(4):533–544.
66. Wild JM. Avian somatosensory system: II. Ascending projections of the dorsal column and efferent cuneate nuclei in the pigeon. J Comp Neurol. 1989;287(1):1–18.
67. Abraira VE, Kuenh ED, Chirila AM, et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell. 2017;168(1-2):295–310.
68. Todd AJ, Meigl MM, Shehab SA. Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci. 2000;12(2):689–700.
69. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11(12):823–836.
70. Bajic D, Proudfoot HK. Projections of neurons in the peri-aqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol. 1999;405(3):359–379.
71. Snowball RK, Dampney RA, Lumb BM. Responses of neurons in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral-periaqueductal grey in the rat. Exp Physiol. 1997;82(3):485–500.
72. Zagon A. Innervation of serotonergic medullary raphe neurons from cells of the rostral ventrolateral medulla in rats. Neuroscience. 1993;55(3):849–867.
73. Clark FM, Proudfoot HK. The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res. 1991;547(2):279–288.
74. Clark FM, Proudfoot HK. The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res. 1991;538(2):231–245.
75. Craig AD, Bushnell MC, Zhang ET, Blomqvist A. A thalamic nucleus specific for pain and temperature sensation. Nature. 1994;372(6508):770–773.
76. Apkarian AV, Shi T. Squirrel monkey lateral thalamus. I. Somatic nociceptive neurons and their relation to spinothalamic terminals. J Neurosci. 1994;14(11 Pt 2):6779–6795.
77. Gingold SI, Greenspan JD, Apkarian AV. Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol. 1991;308(3):467–490.
78. Coghill RC, Talbot JD, Evans AC, et al. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994;14(7):4095–4108.
79. Jang SH, Seo JP. Differences of the medial lemniscus and spinothalamic tract according to the cortical termination areas: A diffusion tensor tractography study. Somatosens Mot Res. 2015;32(2):67–71.
80. Jang SH, Kwon YH, Lee MY, Lee DY, Hong JH. Termination differences in the primary somatosensory cortex between the medial lemniscus and spinothalamic pathways in the human brain. Neurosci Lett. 2012;516(1):50–53.
81. Torquati K, Pizzella V, Babiloni C, et al. Nociceptive and non-nociceptive sub-regions in the human secondary somatosensory cortex: an MEG study using fMRI constraints. Neuroimage. 2005;26(1):48–56.
82. Golaszewski SM, Siedentopf CM, Koppelstaetter F, et al. Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study. Neuroimage. 2006;29(3):923–929.
83. Yarnitsky D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol. 2010;23(5):611–615.
84. Staud R, Robinson ME, Vierck CJ, Price DD. Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain. 2003;101(1-2):167–174.