Supporting Information for:

Tuning Ligand Field Strength with Pendent Lewis Acids: Access to High Spin Iron Hydrides

John J. Kiernicki,a James P. Shanahan,a Matthias Zeller,b and Nathaniel K. Szymczak*a

aDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
bH.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
Table of Contents:

Experimental Procedures ... S5‐S12

Figure S1 1H NMR spectrum of (BBNPDPBu)FeH$_2$.. S13
Figure S2 Infrared spectrum of (BBNPDPBu)FeH$_2$... S14
Figure S3 MALDI‐TOF spectrum of (BBNPDPBu)FeH$_2$... S14
Figure S4 1H NMR spectrum of (BBNPDPBu)ZnI$_2$.. S14
Figure S5 1H‐1H COSY spectrum of (BBNPDPBu)ZnI$_2$.. S15
Figure S6 13C NMR spectrum of (BBNPDPBu)ZnI$_2$.. S15
Figure S7 11B NMR spectrum of (BBNPDPBu)ZnI$_2$.. S15
Figure S8 Infrared spectrum of (BBNPDPBu)ZnI$_2$.. S16
Figure S9 MALDI‐TOF spectrum of (BBNPDPBu)ZnI$_2$.. S17
Figure S10 1H NMR spectrum of (BBNPDPBu)ZnH$_2$... S17
Figure S11 1H‐1H COSY spectrum of (BBNPDPBu)ZnH$_2$.. S18
Figure S12 1H NMR spectrum of (BBNPDPBu)ZnD$_2$.. S18
Figure S13 13C NMR spectrum of (BBNPDPBu)ZnH$_2$.. S19
Figure S14 11B NMR spectrum of (BBNPDPBu)ZnH$_2$.. S19
Figure S15 MALDI‐TOF spectrum of (BBNPDPBu)ZnH$_2$.. S20
Figure S16 Infrared spectrum of (BBNPDPBu)ZnH$_2$... S20
Figure S17 Difference IR spectrum of (BBNPDPBu)ZnH$_2$ and (BBNPDPBu)ZnD$_2$.. S21
Figure S18 1H NMR spectrum of reaction between (BBPDPBu)FeBr$_2$ and KBHEt$_3$.............................. S21
Figure S19 1H NMR spectrum of [K(2,2‐cryptand)][(BBNPDPBu)FeH$_2$]... S22
Figure S20 Infrared spectrum of [K(2,2‐cryptand)][(BBNPDPBu)FeH$_2$]... S22
Figure S21 X‐band EPR spectrum of [K(2,2‐cryptand)][(BBNPDPBu)FeH$_2$].. S23
Figure S22 1H NMR spectrum of [(BBNPDPBu)Fe(NHMe)$_2$].. S23
Figure S23 Infrared spectrum of [(BBNPDPBu)Fe(NHMe)$_2$].. S24
Figure S24 MALDI‐TOF spectrum of [(BBNPDPBu)Fe(NHMe)$_2$].. S24
Figure S25 1H NMR spectrum of [(BBNPDPBu)Fe(NHPh)$_2$].. S25
Figure S26 Infrared spectrum of [(BBNPDPBu)Fe(NHPh)$_2$].. S25
Figure S27 1H NMR spectrum of [(BBNPDPBu)Fe(OH)$_2$]... S26
Figure S28 Infrared spectrum of [(BBNPDPBu)Fe(OH)$_2$]... S26
Figure S29 MALDI‐TOF spectrum of [(BBNPDPBu)Fe(OH)$_2$].. S27
Figure S30 1H NMR spectrum of [(BBNPDPBu)Fe(PHPh)$_2$].. S27
Figure S31 Infrared spectrum of [(BBNPDPBu)Fe(PHPh)$_2$].. S27
Figure S32 1H NMR spectrum of [(BBNPDPBu)Fe(SPh)$_2$].. S28
Figure S33 Infrared spectrum of [(BBNPDPBu)Fe(SPh)$_2$].. S28
Figure S34 MALDI‐TOF spectrum of [(BBNPDPBu)Fe(SPh)$_2$].. S29
Figure S35 Crude 1H NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S30
Figure S36 Variable temperature 1H NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S31
Figure S37 1H NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S31
Figure S38 1H‐1H COSY spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S32
Figure S39 13C NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S33
Figure S40 Infrared spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S33
Figure S41 MALDI‐TOF spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S34
Figure S42 Crude 1H NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S34
Figure S43 Variable temperature 1H NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S34
Figure S44 1H NMR spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S35
Figure S45 Infrared spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S35
Figure S46 MALDI‐TOF spectrum of reaction between (BBNPDPBu)FeH$_2$ and PhSSPh showing H$_2$ production... S36
Figure S47 1H NMR spectrum of [(BBNPDPBu)Fe(NC)$_2$].. S37
Figure S48 Infrared spectrum of [(BBNPDPBu)Fe(NC)$_2$].. S38
Figure S49 MALDI‐TOF spectrum of [(BBNPDPBu)Fe(NC)$_2$]... S38
Figure S50 1H NMR spectrum of reaction between $^{(bN)PDP}(^tBu)FeH_2$ and ArNC................................. S39
Figure S51 Infrared spectrum of reaction between $^{(bN)PDP}(^tBu)FeH_2$ and ArNC................................. S39
Figure S52 MALDI-TOF spectrum of reaction between $^{(bN)PDP}(^tBu)FeH_2$ and ArNC................................. S40
Figure S53 1H NMR spectrum of $^{(bN)PDP}(^tBu)Fe(SPh)_2$... S40
Figure S54 Infrared spectrum of $^{(bN)PDP}(^tBu)Fe(SPh)_2$... S41
Figure S55 MALDI-TOF spectrum of $^{(bN)PDP}(^tBu)Fe(SPh)_2$... S41
Figure S56 Electronic absorption spectrum of $^{(bN)PDP}(^tBu)Fe(SPh)_2$.. S42
Quantification of H_2 produced.. S42-S46
Table S1 Quantification of H_2 from reaction between $^{(bN)PDP}(^tBu)FeH_2$ and ArNC................................. S43
Table S2 Quantification of H_2 from reaction between $^{(bN)PDP}(^tBu)ZnH_2$ and ArNC................................. S43
Figure S57 Sample 1H NMR spectra for H_2 quantification for $^{(bN)PDP}(^tBu)FeH_2$ and ArNC................................. S44
Figure S58 Sample 1H NMR spectra for H_2 quantification for $^{(bN)PDP}(^tBu)ZnH_2$ and ArNC................................. S45
Figure S59 Sample 1H NMR spectra for H_2 quantification for $^{(bN)PDP}(^tBu)ZnH_2$ and ArNC................................. S46
Figure S60 Electrochemical analysis of $^{(bN)PDP}(^tBu)FeH_2$... S47
Figure S61 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(NHMe)_2$... S48
Figure S62 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(SPh)_2$... S49
Figure S63 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(SPh)_2(NHMe)_2$... S49
Figure S64 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(PhPh)_2$... S50
Figure S65 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(OH)_2$... S51
Figure S66 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(NHPh)_2$... S52
Figure S67 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(NHMe)_2$... S53
Figure S68 Electrochemical analysis of $^{(bN)PDP}(^tBu)Fe(SPh)_2$... S54
Table S3 Reduction potentials determined by square wave voltammetry ... S54
Figure S69 Electronic absorption spectra of $^{(bN)PDP}(^tBu)FeH_2$ and $^{(bN)PDP}(^tBu)FeH_2$ S55
Figure S70 Electronic absorption spectra of $^{(bN)PDP}(^tBu)FeX_2$... S55
Crystalllographic Details .. S56-S88
Table S4 Crystallographic parameters for $^{(bN)PDP}(^tBu)FeH_2$... S56
Figure S71 Molecular structure of $^{(bN)PDP}(^tBu)FeH_2$... S57
Table S5 Crystallographic parameters for $[K(2,2,2$-cryptand)$][^{(bN)PDP}(^tBu)FeH_2]$.. S58
Figure S72 Molecular structure of $[K(2,2,2$-cryptand)$][^{(bN)PDP}(^tBu)FeH_2]$... S59
Table S6 Crystallographic parameters for $[K(DME)]_2[^{(bN)PDP}(^tBu)FeH_2]$... S61
Figure S73 Molecular structure of $[K(DME)]_2[^{(bN)PDP}(^tBu)FeH_2]$.. S62
Figure S74 Molecular structure of $^{(bN)PDP}(^tBu)ZnH_2$... S63
Table S8 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(NHMe)_2$... S66
Figure S75 Molecular structure of $^{(bN)PDP}(^tBu)Fe(NHMe)_2$.. S67
Table S9 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(OH)_2$... S68
Figure S76 Molecular structure of $^{(bN)PDP}(^tBu)Fe(OH)_2$.. S69
Table S10 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(NHPh)_2$... S70
Figure S77 Molecular structure of $^{(bN)PDP}(^tBu)Fe(NHPh)_2$... S71
Table S11 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(PhPh)_2$... S72
Figure S78 Molecular structure of $^{(bN)PDP}(^tBu)Fe(PhPh)_2$... S73
Table S12 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(SPh)_2$.. S74
Figure S79 Molecular structure of $^{(bN)PDP}(^tBu)Fe(SPh)_2$... S75
Table S13 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(SPh)_2(NHMe)_2$... S76
Figure S80 Molecular structure of $^{(bN)PDP}(^tBu)Fe(SPh)_2(NHMe)_2$... S77
Table S14 Crystallographic parameters for $^{(bN)PDP}(^tBu)Fe(NC)]=_2$... S79
Figure S81 Molecular structure of $^{(bN)PDP}(^tBu)Fe(NC)]=_2$... S80
Table S15 Crystallographic parameters for $^{(bN)PDP}(^tBu)Zn(SPh)_2$.. S81
Figure S82 Molecular structure of $^{(bN)PDP}(^tBu)Zn(SPh)_2$... S82
Table S16 Crystallographic parameters for $[K(18$-crown-$6)(THF)]_2[^{(bN)PDP}(^tBu)Fe(OPh)_4]$ S83
Figure S83 Molecular structure of $[K(18$-crown-$6)(THF)]_2[^{(bN)PDP}(^tBu)Fe(OPh)_4]$ S84
Table S17 Crystallographic parameters for $^{(tBu)PDP}(^tBu)Fe(SPh)_2$.. S85
General Considerations. All air- and moisture-sensitive manipulations were performed using standard Schlenk techniques or in an inert atmosphere drybox with an atmosphere of purified nitrogen. The drybox was equipped with a cold well designed for freezing samples in liquid nitrogen as well as a −35 °C freezer for cooling samples and crystallizations. Solvents were purified using a Glass Contour solvent purification system through percolation through a Cu catalyst, molecular sieves, and alumina. Solvents were then stored over sodium and/or sieves. Benzene-d_6 was purchased from Cambridge Isotope Laboratories, dried with molecular sieves and sodium, and degassed by three freeze–pump–thaw cycles.

Ammonia (0.4 M in THF), methylamine (2.0 M in THF), potassium triethylborohydride, zinc(II) iodide, NaN(SiMe$_3$)$_2$, and phenylphosphine were purchased from commercial vendors and used as received. Thiophenol, phenol, and aniline were distilled from calcium hydride prior to use. Crown ethers were recrystallized from dry THF prior to use. (1BNPDPtBu)$_2$FeBr$_2$, (1BNPDPtBu)$_2$FeBr$_2$, LiBDEt$_3$, and potassium graphite3 were synthesized according to literature procedures.

NMR spectra were recorded on Varian Vnmrs 700 or Varian MR400 spectrometers.1H, 13C, and 11B chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane and referenced internally to the residual solvent peak. 11B spectra were referenced on a unified scale, where the single primary reference is the frequency of the residual solvent peak in the 1H NMR spectrum. 11B is referenced vs. BF$_3$(OEt)$_2$. Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q). Infrared spectra were recorded using a Nicolet iS10 FT-IR spectrometer. Samples were diluted into dry KBr and recorded as pellets. Electronic absorption spectra were recorded in THF at ambient temperature in sealed 1 cm quartz cuvettes with a Varian Cary-50 spectrophotometer. Elemental analyses were performed by Midwest Microlab, Indianapolis, IN (USA). Many of the samples proved to be too air/moisture sensitive for satisfactory combustion analysis.

Single crystals of (1BNPDPtBu)$_2$FeH$_2$, [K(18-crown-6)$_2$][(1BNPDPtBu)$_2$Fe(OPh)$_2$], (1BNPDPtBu)$_2$Fe(SPh)$_2$(NH$_3$)$_2$, (1BuPDPtBu)$_2$Fe(SPh)$_2$, and (1BNPDPtBu)$_2$Fe(OH)$_2$ suitable for X-ray diffraction were coated with poly(isobutylene) oil and quickly transferred to the goniometer head of a Bruker AXS D8 Quest diffractometer with kappa geometry, an I-μ-S microsource X-ray tube, laterally graded multilayer (Goebel) mirror for monochromatization, a Photon2 CMOS area detector and an Oxford Cryosystems low temperature device. Examination and data collection were performed with Cu Kα radiation (λ = 1.54184 Å). Single crystals of [K(2,2,2-cryptand)][(1BNPDPtBu)$_2$FeH$_2$], (1BNPDPtBu)$_2$Fe(SPh)$_2$, [(1BNPDPtBu)$_2$Fe(NC)$_2$)$_2$, (1BNPDPtBu)$_2$Fe(PhPh)$_2$, (BBNPDPtBu)$_2$Fe(NHMe)$_2$, (BBNPDPtBu)$_2$Fe(NHPh)$_2$, and (BBNPDPtBu)ZnH$_2$, suitable for X-ray diffraction, were coated with poly(isobutylene) oil and quickly transferred to the goniometer head of a Bruker AXS D8 Quest diffractometer with a fixed chi angle, a sealed tube fine focus X-ray tube, single crystal curved graphite incident beam monochromator and a Photon100 CMOS area detector. Examination and data collection were performed with Mo Kα radiation (λ = 0.71073 Å). For both Quest instruments, data were collected, reflections were indexed and processed, and the data scaled and corrected for absorption using APEX3.4 For all samples, the space groups were assigned and the structures were solved by direct methods or by isomorphous replacement using XPREP5 and XS6 within the SHELXTL suite of programs5 and refined by full matrix least squares against F^2 with all reflections using Shelxl2016 or Shelxl20177 using the graphical interface Shelxle.6 If not specified otherwise, H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon hydrogen bond distances of 0.95 Å for and aromatic C-H.
1.00, 0.99 and 0.98 Å for aliphatic C-H, CH2, and CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Ueq(H) values were set to a multiple of Ueq(C) with 1.5 for CH3, and 1.2 for CH2, and C-H units, respectively. Additional data collection and refinement details, including description of disorder (where present) can be found with the individual structure descriptions, below.

Synthesis of \((^{BBN}PDP^{Bu})\)FeH2. A 20 mL scintillation vial was charged with \((^{BBN}PDP^{Bu})\)FeBr2 (0.200 g, 0.232 mmol), 6 mL THF, and stir bar and frozen. On thawing, KBHEt3 (1.0 M in THF, 0.505 mL, 0.505 mmol) was added. On warming, the orange solution gradually darkened to brown-orange. After 15 min, the solution was filtered over Celite and volatiles were removed in vacuo. The solid was washed with 2 x 10 mL pentane, 2 x 10 mL benzene:pentane (4:1), and again with 2 x 10 mL pentane to afford olive-tan powder (0.164 g, 0.229 mmol, 89%) assigned as \((^{BBN}PDP^{Bu})\)FeH2. Single, X-ray quality crystals were obtained by layering a concentrated toluene solution of \((^{BBN}PDP^{Bu})\)FeH2 with n-pentane at -35 °C. 1H NMR (THF, 25 °C) δ = -16.9 (155, 2H), -11.6 (228, 2H), -8.5 (688, 2H), -7.2 (190, 2H), 8.7 (11, 18H, C(CH3)3), 20.5 (59, 2H), 26.0 (410, 2H), 32.9 (1030, 2H), 41.5 (660, 2H), 48.7 (470, 2H), 58.3 (456, 2H), 58.7 (86, 2H), 63.6 (272, 2H). μeff = 4.6 +/- 0.2 μB (THF, 25 °C). MALDI-TOF of C41H63N5B2Fe1: Calc. 705.48; Found 705.81. UV-Vis (THF, ambient temperature): λmax = 327 nm (7,900 M⁻¹cm⁻¹). IR (KBr, ambient temperature): 1839 cm⁻¹ (Fe-H-B, broad).

Synthesis of \((^{BBN}PDP^{Bu})\)ZnI2. A 20 mL scintillation vial was charged with zinc(II) iodide (0.282 g, 0.883 mmol), \((^{BBN}PDP^{Bu})\) (0.571 g, 0.882 mmol), 15 mL dichloromethane and stirred for 16 hr. The solution was filtered, dried, and washed with 3 x 10 mL n-pentane to afford white powder (0.782 g, 0.809 mmol, 92%) assigned as \((^{BBN}PDP^{Bu})\)ZnI2. This sample was subjected to elemental analysis: Calc. for C41H65N5B2Zn1 C, 50.94; H, 6.57; N, 7.24. Found C, 49.97; H, 6.32; N, 7.01. 1H NMR (CDCl3, 25 °C) δ = 1.20-1.28 (m, 4H, 9-BBN-CH), 1.46 (s, 18H, C(CH3)3), 1.54 (t, J = 8.0, 4H, B-CH2), 1.72-1.87 (m, 24H, 9-BBN-CH), 4.63 (t, J = 8.4, 4H, N-CH2), 6.50 (s, 2H, pyrazole-CH), 7.61 (d, J = 8.0, 2H, m-pyridine-CH), 7.95 (t, J = 8.0, 1H, p-pyridine-CH). 13C NMR (CDCl3, 25 °C) δ = 23.41 (9-BBN-CH2), 24.71 (9-BBN-CH), 27.04 (CH2CH2CH2), 30.39 (C(CH3)3), 31.32 (B-CH3), 32.10 (C(CH3)3), 33.34 (9-BBN-CH2), 54.52 (N-CH2), 101.58 (pyrazole-CH), 119.06 (m-pyridine-CH), 141.00 (p-pyridine-CH), 143.29 (Ar-C), 148.53 (Ar-C), 155.06 (Ar-C). 11B NMR (CDCl3, 25 °C) δ = 86.63 (9-BBN). MALDI-TOF of C41H65N5B2Zn1 - I: Calc. 838.360; Found 838.090.

Synthesis of \((^{BBN}PDP^{Bu})\)ZnH2. A 20 mL scintillation vial was charged with \((^{BBN}PDP^{Bu})\)ZnI (0.250 g, 0.259 mmol), 10 mL THF, a stir bar and frozen. On thawing, KBHEt3 (1.0 M in THF, 0.505 mL, 0.505 mmol) was added. On warming, a white precipitate gradually formed. After 20 min, the solution was filtered and volatiles were removed in vacuo. The powder was washed with 2 x 10 mL pentane and dried to afford white powder (0.164 g, 0.229 mmol, 89%) assigned as \((^{BBN}PDP^{Bu})\)ZnH2. Single, X-ray quality crystals were obtained by slow diffusion of n-pentane into a toluene solution of \((^{BBN}PDP^{Bu})\)ZnH2 at room temperature. 1H NMR (THF-d8, 25 °C) δ = 0.05-0.22 (m, 4H), 0.56 (t, J = 7.2, 2H), 0.65 (s, 2H, Zn-H), 0.69-0.79 (m, 4H), 0.87-1.02 (m, 4H), 1.27-1.42 (m, 8H), 1.48 (s, 18H, CH3), 1.75-2.05 (m, 14H), 4.55-4.71 (m, 4H, N-CH2 x 2), 6.78 (s, 2H, pyrazole-CH), 7.76 (d, J = 7.6, 2H, m-pyr-CH), 8.07 (t, J = 7.6, 1H, p-pyr-CH). 13C NMR (THF-d8, 25 °C) δ = 18.62 (broad), 25.80, 26.24 (broad), 26.37, 26.94 (broad), 28.93, 30.37 (C(CH3)3), 30.86, 32.91, 34.00-36.00 (broad, 3 resonances), 54.03 (N-CH2), 102.74 (pyrazole-CH), 119.80 (m-pyr-CH), 143.07 (Ar-C), 143.81 (Ar-C), 148.40 (Ar-C), 157.21 (Ar-C). 11B NMR (THF-d8, 25 °C) δ = 5.43 (B-H). MALDI-TOF of C41H65N5B2Zn1: Calc. 713.472; Found 713.855. IR (KBr, ambient temperature): 1775 cm⁻¹ (Zn-H-B, broad).
Synthesis of [K(2,2,2-cryptand)][(BBPDPBu)FeH2]. A 20 mL scintillation vial was charged with (BBPDPBu)FeH2 (0.053 g, 0.075 mmol), 2,2,2-cryptand (0.028 g, 0.074 mmol), and 5 mL THF and frozen. On thawing, potassium graphite (0.010 g, 0.074 mmol) was added resulting in an immediate color change to dark green. Upon reaching room temperature, the solution was filtered and volatiles were removed in vacuo. The material was washed with 10 mL n-pentane and 10 mL diethyl ether to afford dark green powder (0.068 g, 0.061 mmol, 81%) assigned as [K(2,2,2-cryptand)][(BBPDPBu)FeH2]. Single, X-ray quality crystals were obtained by layering a THF solution of [K(2,2,2-cryptand)][(BBPDPBu)FeH2] with n-pentane at -35 °C. 1H NMR (THF, 24 °C) δ = -70.6 (409, 2H), -61.6 (349, 2H), -26.9 (40, 2H), 20.1 (57, 2H), -8.0 (39, 2H), -6.7 (39, 2H), -1.3 (51, 2H), -1.0 (53, 2H), 7.1 (14, 2H), 10.7 (12, 18H, C(CH3)3), 13.7 (265), 18.2 (23, 2H), 18.6 (127), 28.1 (44, 2H), 30.1 (680), 36.4 (400), 39.2 (35, 2H), 60.4 (71, 2H), 95.0 (25, 2H). UV-Vis (THF, ambient temperature): λmax = 344 nm (7,200 M⁻¹cm⁻¹), 475 nm (3,500 M⁻¹cm⁻¹), 646 nm (1700 M⁻¹cm⁻¹). IR (KBr, ambient temperature): 1866 cm⁻¹ (Fe‐H‐B, broad). This reduction protocol can be performed without crown ethers or with crown ethers other than 2,2,2-cryptand.

Synthesis of (BBPDPBu)Fe(NH2). A 20 mL scintillation vial was charged with (BBPDPBu)FeH2 (0.076 g, 0.108 mmol) and 6 mL THF and frozen. On thawing, ammonia (0.4 M in THF, 0.324 mmol) was added and the reaction stirred for 30 min. Volatiles were removed in vacuo and the resulting solid washed with 10 mL n-pentane to afford salmon powder (0.060 g, 0.082 mmol, 76%) identified as (BBPDPBu)Fe(NH2) by 1H NMR spectroscopy.¹

Synthesis of (BBPDPBu)Fe(NHMe). A 20 mL scintillation vial was charged with (BBPDPBu)FeH2 (0.085 g, 0.120 mmol) and 6 mL THF and frozen. On thawing, methylamine (2.0 M in THF, 0.300 mmol) was added and the reaction stirred for 25 min. Volatiles were removed in vacuo and the resulting solid washed with 10 mL n-pentane to afford tan powder (0.040 g, 0.052 mmol, 43%) assigned as (BBPDPBu)Fe(NHMe)2. Single, X-ray quality crystals were obtained by layering a DCM solution of (BBPDPBu)Fe(NHMe)2 with hexamethyldisiloxane at room temperature. 1H NMR (THF, 25 °C) δ = -23.1 (35, 1H, p-pyridine-C), -21.2 (390, 2H), -2.3 (55, 2H), -0.8 (29, 2H), -0.5 (23, 2H), -0.3 (50, 2H), 0.4 (54, 2H × 2), 4.2 (38, 2H), 4.5 (11, 18H, C(CH3)3), 5.9 (25, 2H), 11.0 (164, 2H), 12.3 (65, 2H), 12.4 (29, 2H), 13.8 (163, 2H), 30.5 (86, 2H), 31.8 (67, 2H), 33.7 (40, 2H), 46.9 (55, 2H). μeff = 5.2+/−0.1 μB (THF, 25 °C). MALDI-TOF of C43H71N7B2Fe1: Calc. 763.53; Found 763.36. UV-Vis (THF, ambient temperature): λmax = 339 nm (10,000 M⁻¹cm⁻¹). IR (KBr, ambient temperature): 3321, 3288, 3220, 3144 cm⁻¹ (NH).

Synthesis of (BBPDPBu)Fe(NHPh). A 20 mL scintillation vial was charged with (BBPDPBu)FeH2 (0.050 g, 0.071 mmol) and 4 mL THF and frozen. A separate vial was charged with aniline (0.0133 mL, 0.146 mmol) and 1 mL THF. Upon thawing the vial containing (BBPDPBu)FeH2, the solution of aniline was added and stirred for 30 min. Volatiles were removed in vacuo and the solid was washed with 10 mL n-pentane to afford light yellow powder (0.045 g, 0.051 mmol, 73%) assigned as (BBPDPBu)Fe(NHPh)2. Single, X-ray quality crystals were obtained by layering a THF solution of (BBPDPBu)Fe(NHPh)2 with 2,2,4-trimethylpentane at room temperature. 1H NMR (THF, 25 °C) δ = -48.1 (23, 2H), -43.8 (288, 2H), -22.6 (207, 2H), -19.7 (240, 2H), -17.3 (23, 1H, p-pyridine-CH), -7.7 (43, 2H), -3.5 (45, 2H), -1.7 (27, 2H), -1.5 (40, 2H), -1.0 (47, 2H), 0.5 (31, 2H), 0.6 (49, 2H), 1.1 (35, 2H), 8.2 (14, 18H, C(CH3)3), 17.2 (31, 2H), 19.0 (127, 2H), 23.8 (31, 2H), 26.5 (158, 2H), 28.6 (58, 2H), 41.6 (39, 2H), 48.0 (77, 2H), 50.8 (35, 2H). μeff = 4.5+/−0.1 μB (THF, 25 °C). UV-Vis (THF, ambient temperature): λmax = 330 nm (8,600 M⁻¹cm⁻¹). IR (KBr, ambient temperature): 3372, 3293, 3135, 3067 cm⁻¹ (NH).
Synthesis of (BBNPDPBu)Fe(OH)2. A 20 mL scintillation vial was charged with (BBNPDPBu)FeH2 (0.083 g, 0.118 mmol) and 6 mL THF and frozen. On thawing, a stock solution of water in THF (0.111 M, 2.100 mL, 0.233 mmol) was added and the reaction stirred for 20 min. Volatiles were removed in vacuo and the solid was washed with 10 mL n-pentane and dried to afford yellow powder (0.076 g, 0.103 mmol, 88%) assigned as (BBNPDPBu)Fe(OH)2. This sample was subjected to elemental analysis: Calc. for C41H65N5O2B2Fe1 C, 66.78; H, 8.88; N, 9.50. Found C, 65.98; H, 8.73; N, 9.08. Single, X-ray quality crystals were obtained by diffusion n-pentane into a dichloromethane solution of (BBNPDPBu)Fe(OH)2 at room temperature. 1H NMR (CDCl3, 24 °C) δ = -28.9 (29, 1H, p-pyridine-C6H4), -23.0 (316, 2H), -6.3 (201, 2H), -3.9 (179, 2H), 7.4 (53, 2H), 9.6 (117, 2H), 13.0 (38, 2H), 15.7 (310, 2H), 16.3 (24, 2H), 18.7 (334, 2H), 35.8 (71, 2H), 48.7 (70, 2H). μeff = 5.3 +/− 0.1 μB (THF, 25 °C). MALDI-TOF of C41H65N5O2B2Fe1: Calc. 737.47; Found 737.53. UV-Vis (THF, ambient temperature): λmax = 333 nm (10,200 M−1cm−1). IR (KBr, ambient temperature): 3630 cm−1 (OH).

Synthesis of (BBNPDPBu)Fe(PHPh)2. Caution! This compound is extremely malodorous even in trace quantities! A 20 mL scintillation vial was charged with (BBNPDPBu)FeH2 (0.044 g, 0.062 mmol) and 4 mL THF and frozen. On thawing, a stock solution of phenylphosphine (0.433 M in THF, 0.128 mmol) was added and the mixture was stirred for 30 min. Volatiles were removed in vacuo and the resulting solid was washed with 10 mL n-pentane and 10 mL diethyl ether to afford orange powder (0.041 g, 0.044 mmol, 72%) assigned as (BBNPDPBu)Fe(PHPh)2. Single, X-ray quality crystals were obtained by slow diffusion of n-pentane into a THF solution of (BBNPDPBu)Fe(PHPh)2 at -35 °C. 1H NMR (CDCl3, 24 °C) δ = -29.5 (45, 1H, p-pyridine-C6H4), -29.2 (36, 2H), -23.1 (226, 2H), -18.1 (493, 2H), -15.6 (296, 2H), -14.5 (286, 2H), -6.1 (308, 2H), -3.6 (392, 2H), -0.7 (318, 2H), 3.0 (18, 2H), 4.4 (21, 2H), 8.6 (15, 18H, C(CH3)3), 15.1 (227, 2H), 17.3 (24, 2H), 36.2 (212, 2H), 45.7 (41, 2H), 62.0 (117, 2H), 71.7 (36, 2H), 73.5 (86, 2H), 139.8 (130, 2H, P-H). μeff = 5.2 +/− 0.1 μB (THF, 25 °C). UV-Vis (THF, ambient temperature): λmax = 336 nm (11,500 M−1cm−1), 405 nm (3,800 M−1cm−1). IR (KBr, ambient temperature): 2340 cm−1 (PH).

Synthesis of (BBNPDPBu)Fe(SPh)2. A 20 mL scintillation vial was charged with (BBNPDPBu)FeH2 (0.094 g, 0.133 mmol) and 6 mL THF and frozen. On thawing, thiophenol (0.027 mL, 0.264 mmol) was added and stirred for 45 min resulting in a slight color change to brown. Volatiles were removed in vacuo and 20 mL n-pentane were added to the solid resulting in a rapid color change to orange. The solution was decanted and the solid dried to afford orange powder (0.088 g, 0.095 mmol, 72%) assigned as (BBNPDPBu)Fe(SPh)2. This sample was subjected to elemental analysis: Calc. for C53H73N5S2B2Fe1 C, 69.09; H, 7.98; N, 7.60. Found C, 68.88; H, 8.08; N, 7.49. Single, X-ray quality crystals were obtained by slow diffusion of n-pentane into a benzene solution of (BBNPDPBu)Fe(SPh)2 at room temperature. 1H NMR (CD6D6, 24 °C) δ = -32.6 (214, 4H), -28.7 (21, 2H, p-phenyl-CH), -18.8 (39, 1H, p-pyridine-CH), -0.3 (44, 4H), 1.8 (58, 16H (3 overlapping resonances: 4H, 4H, 8H), BBN-CH2 (for 8H)), 4.0 (18, 8H, BBN-CH2), 7.0 (12, 18H, C(CH3)3), 18.2 (26, 4H), 25.2 (172, 4H), 29.4 (760, 4H), 31.9 (285, 4H), 45.5 (43, 2H, IM-CH or m-pyridine-CH), 57.5 (46, 2H, IM-CH or m-pyridine-CH). μeff = 5.5 +/− 0.1 μB (THF, 25 °C). MALDI-TOF of C53H73N5S2B2Fe1 - SPh: Calc. 812.47; Found 812.55. UV-Vis (THF, ambient temperature): λmax = 330 nm (5,200 M−1cm−1).
Alternative synthesis of \((\text{BBNPDP}^{\text{Bu}})\text{Fe(SPh)}_2\). A 20 mL scintillation vial was charged with \((\text{BBNPDP}^{\text{Bu}})\text{FeH}_2\) (0.055 g, 0.078 mmol) and 6 mL THF and frozen. On thawing, diphenyldisulfide (0.017 g, 0.078 mmol) was added resulting in an immediate color change to bright green which gradually dissipates to brown-orange. After 30 min, volatiles were removed in vacuo and the solid washed with 10 mL n-pentane to afford light orange powder (0.064 g, 0.069 mmol, 90%) identified as \((\text{BBNPDP}^{\text{Bu}})\text{Fe(SPh)}_2\). Repeating the reaction in a sealed J-Young NMR tube revealed the formation of H$_2$ by 1H NMR spectroscopy.

Synthesis of \((\text{BBNPDP}^{\text{Bu}})\text{Zn(SPh)}_2\). A 20 mL scintillation vial was charged with \((\text{BBNPDP}^{\text{Bu}})\text{ZnH}_2\) (0.080 g, 0.112 mmol) and 4 mL THF and frozen. A separate vial was charged with diphenyldisulfide (0.025 g, 0.114 mmol) and 2 mL THF and frozen. On thawing, the solution of diphenyldisulfide was added to the solution of \((\text{BBNPDP}^{\text{Bu}})\text{ZnH}_2\) and stirred for 30 min. Volatiles were removed in vacuo and the solid washed with 20 mL n-pentane to afford white powder (0.079 g, 0.085 mmol, 76%) assigned as \((\text{BBNPDP}^{\text{Bu}})\text{Zn(SPh)}_2\). Single, X-ray quality crystals were obtained by diffusing n-pentane into a C$_6$H$_6$ solution of \((\text{BBNPDP}^{\text{Bu}})\text{Zn(SPh)}_2\) at room temperature. Repeating the reaction in a sealed J-Young NMR tube revealed the formation of H$_2$. 1H NMR (C$_6$D$_6$, 23 °C) $\delta = 1.13$ (s, 18H, C(C$_3$H$_3$)$_3$), 1.40 (t, $J = 8.4$, 4H, B-C$_2$H$_2$), 1.58-1.66 (m, 4H, BBN-C$_3$H), 1.76 (s, 4H, BBN-C$_3$H), 2.07-2.23 (m, 12H (4H and 8H), BBN-CH and phenyl-CH), 2.74 (p, $J = 7.6$, 4H, CH$_2$C$_2$CH$_2$), 4.27 (t, $J = 7.2$, 4H, N-C$_2$H), 6.08 (s, 2H, IM-C$_3$H), 6.60-6.66 (m, 8H, m-pyridine-C$_3$H and phenyl-C$_3$H), 6.85 (t, $J = 8.0$, 1H, p-pyridine-CH), 7.22-7.27 (m, 4H, phenyl-CH). 13C NMR (C$_6$D$_6$, 23 °C) $\delta = 22.38$ (B-C$_2$H$_2$), 24.79 (9-BBN-C$_3$H), 26.40 (CH$_2$C$_2$CH$_2$), 29.01 (9-BBN-C$_3$H), 31.63 (C(C$_3$H$_3$)$_3$), 33.54 (9-BBN-C$_3$H), 33.84 (9-BBN-C$_3$H), 54.51 (N-C$_2$H), 100.84 (pyrazole-C$_3$H), 118.35 (m-pyridine-CH), 123.23, 127.27 (SPh-CH), 134.17 (SPh-CH), 139.49, 141.72 (p-pyridine-CH), 143.99, 148.63, 155.03. The 11B resonance was not observed. MALDI-TOF of C$_{53}$H$_{73}$N$_5$B$_2$S$_2$Zn$_1$-SPh: Calc. 820.467; Found 820.454.

Synthesis of \((\text{BBNPDP}^{\text{Bu}})\text{Fe(SPh)}_2(NH}_3)_2\). A 20 mL scintillation vial was charged with \((\text{BBNPDP}^{\text{Bu}})\text{Fe(SPh)}_2\) (0.079 g, 0.086 mmol) and 2 mL THF. While stirring, a stock solution of ammonia (0.4 M in THF, 0.43 mmol) was added. After 15 min, volatiles were removed in vacuo and the solid washed with 10 mL n-pentane to afford dark orange powder (0.071 g, 0.074 mmol, 87%) assigned as \((\text{BBNPDP}^{\text{Bu}})\text{Fe(SPh)}_2(NH}_3)_2\). This sample was subjected to elemental analysis: Calc. for C$_{53}$H$_{79}$N$_7$S$_2$B$_2$Fe$_1$ C, 66.60; H, 8.33; N, 10.26. Found C, 65.11; H, 8.41; N, 9.17. Single, X-ray quality crystals were obtained by diffusing n-pentane into a toluene solution of \((\text{BBNPDP}^{\text{Bu}})\text{Fe(SPh)}_2(NH}_3)_2\) at room temperature. 1H NMR (CD$_2$Cl$_2$, 23 °C) $\delta = -30.8$ (317, 4H), -28.6 (72, 1H, p-pyr-CH), -26.8 (57, 2H), -8.2 (96, 6H, NH$_3$), -0.9 (56, 4H, BBN-CH), -0.7 (58, 4H, BBN-CH), 0.3 (56, 2H, BBN-CH), 0.6 (55, 2H, BBN-CH), 1.2 (65, 2H, BBN-CH), 1.6 (53, 4H, BBN-CH), 1.9 (55, 2H, BBN-CH), 2.4 (55, 4H, BBN-CH), 3.2 (78, 4H, BBN-CH), 7.7 (34, 18H, C(C$_3$H$_3$)$_3$), 7.8 (31, 4H), 9.8 (326, 4H, CH$_3$CH$_2$CH$_2$), 22.1 (58, 4H), 27.2 (424, 4H, N-CH$_2$), 44.8 (72, 2H, IM-CH or m-pyridine-CH), 57.1 (72, 2H, IM-CH or m-pyridine-CH). $\mu_{\text{eff}} = 5.16 \pm 0.05 \mu_B$ (THF, 25 °C). MALDI-TOF of C$_{53}$H$_{73}$N$_5$B$_2$S$_2$Fe$_1$-(SPh + 2(NH$_3$)): Calc. 812.473; Found 812.667. UV-Vis (THF, ambient temperature): $\lambda_{\text{max}} = 336$ nm (10,500 M$^{-1}$cm$^{-1}$). IR (KBr, ambient temperature): 3353, 3306, 3135, 3062 cm$^{-1}$ (N-H).
Synthesis of \((BBNPDP)Fe(NC)2\). A 20 mL scintillation vial was charged with \((BBNPDP)Fe(H)2\) (0.058 g, 0.082 mmol) and 6 mL THF and frozen. A separate 20 mL scintillation vial was charged with trimethylsilyl cyanide (0.020 mL, 0.160 mmol) and 2 mL THF and frozen. On thawing, the solution of Me3SiCN was added to the solution containing \((BBNPDP)Fe(H)2\) and stirred for 30 min. Volatiles were removed in vacuo and the resulting solid washed with 10 mL n-pentane to afford light yellow powder (0.052 g, 0.034 mmol, 84%) assigned as \((BBNPDP)Fe(NC)2\). Single, X-ray quality crystals were obtained by diffusing n-pentane into a dichloromethane solution of \((BBNPDP)Fe(NC)2\) at room temperature (note: crystals rapidly desolvate when removed from mother liquor). 1H NMR (CDCl3, 23 °C) δ = -35.0 (25, 1H, p-pyridine-CH), -8.8 (69, 4H), -6.7 (265, 4H), -3.8 (40, 2H), -0.6 (52, 4H, BBN-CH), -0.4 (28, 2H, BBN-CH), 0.3 (36, 4H, BBN-CH), 1.4 (22, 4H, BBN-CH), 2.8 (33, 4H), 7.8 (264, 2H), 10.0 (13, 18H, C(CH3)3), 13.1 (67, 4H, CH2CH2), 13.3 (280, 2H), 25.4 (339, 4H, N-CH2), 44.7 (53, 2H, IM-C or m-pyridine-CH), 53.1 (39, 2H, IM-CH or m-pyridine-CH). MALDI-TOF of C86H126N14B4Fe2: Calc. 1510.94; Found 1511.59. UV-Vis (THF, ambient temperature): λmax = 330 nm (7,600 M⁻¹cm⁻¹). IR (KBr, ambient temperature): 2170 cm⁻¹ (CN).

Synthesis of \([K(2,2,2-cryptand)]2(BBNPDP)Fe(OPh)4\). A 20 mL scintillation vial was charged with \([K(2,2,2-crypt)](BBNPDP)Fe(H)2\) (0.051 g, 0.045 mmol) and 6 mL THF and frozen. Upon thawing, phenol (0.217 M stock solution in THF, 0.044 mmol) was added and the solution stirred for 16 hr resulting in a color change from deep green to dark brown. The reaction was filtered and volatiles were removed in vacuo. The resulting solid was washed with 10 mL diethyl ether to afford light brown powder (0.040 g) assigned as \([K(2,2,2-cryptand)]2(BBNPDP)Fe(OPh)4\). This species is unstable and attempts at purification resulted in further degradation of the compound. A representative 1H NMR spectrum of the species obtained from the above synthetic procedure is given below. Single, X-ray quality crystals were obtained by diffusing n-pentane into a THF solution of the 18-crown-6 analogue at room temperature.

Reaction between \((BBNPDP)Fe(H)2\) and 2,4,6-tri-tert-butylphenylisocyanide. A 20 mL scintillation vial was charged with \((BBNPDP)Fe(H)2\) (0.054 g, 0.077 mmol) and 2 mL THF. While stirring, a solution of 2,4,6-tri-tert-butylphenylisocyanide (0.041 g, 0.151 mmol) in 1 mL THF was added resulting in an immediate color change to deep brown. After 5 min, volatiles were removed in vacuo. The resulting material was triturated with pentane and dried to afford brown/black powder assigned as \((BBNPDP)Fe(CNAr)2\). The complex is highly soluble and readily dissolves in non-polar solvents such as n-pentane, isooctane, and hexamethyldisiloxane and was unable to be purified further. Impurities are evident by infrared spectroscopy (see below). The assignment as \((BBNPDP)Fe(CNAr)2\) is made on the basis of 1H NMR and infrared spectroscopies, MALDI-TOF mass spectrometry, and the production of H2 (see details below). Characterization associated with complex: 1H NMR (tol-d8, 25 °C) δ = 1.09 (s, broad, C(CH3)3), 1.13 (s, broad), 1.22 (s, broad, C(CH3)3), further broad resonances spanning 1.25-1.80, 4.77 (broad, N-CH2), 6.65 (s, 2H, pyrazole-CH), 7.26 (t, J = 7.5, 1H, p-pyridine-CH), 7.30 (s, 4H, ArNC-CH), 7.73 (d, J = 7.0, 2H, m-pyr-CH). MALDI-TOF of C79H126N14B2Fe2 – (CNAr): Calc. 974.692; Found 974.715. IR (KBr, ambient temperature): 2002, 1895 cm⁻¹ (CNAr), other CNAr impurities at 2191 and 2071 cm⁻¹.
Attempts to synthesize analogues to 2-E with *butyl*PDP*Bu* ligand, (*butyl*PDP*Bu*)Fe(E)₂ (E = H, NH₂, OH, PHPh, NHPh, SPh).

A) Reaction between (*butyl*PDP*Bu*)FeBr₂ and KBHEt₃. A 20 mL scintillation vial was charged with (*butyl*PDP*Bu*)FeBr₂ (0.020 g, 0.031 mmol) and 2 mL THF and the yellow slurry frozen. On thawing, KBHEt₃ (1.0 M in THF, 0.061 mmol) was added resulting in an immediate color change to deep green which slowly dissipated over 2 min, becoming brown/green. In situ NMR (THF) was attempted, however, the sample could not be shimmed. In both THF and C₆D₆, insoluble black material gradually precipitates. After 20 min of reaction time, volatiles were removed in vacuo. Addition of C₆D₆ (0.8 mL) resulted in a rapid color change to deep red/brown. The solution was filtered into a J. Young NMR tube and a poorly resolved ¹H NMR spectrum was obtained (see below).

B) Reaction between (*butyl*PDP*Bu*)FeBr₂ and NaOH/NaNH₂. These reactions provided analogous results. A 20 mL scintillation vial was charged with (*butyl*PDP*Bu*)FeBr₂ (0.020 g, 0.031 mmol) and 6 mL THF. While stirring, NaOH or NaNH₂ (0.310 mmol) was added. No immediate color change was noted. After 45 min, the solution color began to change from yellow to dark brown/green. An aliquot of each reaction was filtered into a J‐Young NMR tube and a ¹H NMR (the precipitate was black and the filtrate was faint yellow). ¹H NMR spectroscopy revealed only starting material (*butyl*PDP*Bu*)FeBr₂ and uncoordinated (*butyl*PDP*Bu*). No other paramagnetic resonances were observed. The reaction was allowed to stir an additional 14 hr at room temperature. Filtration of the black precipitate afforded a colorless solution which was identified to only contain uncoordinated (*butyl*PDP*Bu*) by ¹H NMR spectroscopy.

C) Reaction between (*butyl*PDP*Bu*)FeBr₂ and LiPHPh/LiNHPh. These reactions provided analogous results. A 20 mL scintillation vial was charged with (*butyl*PDP*Bu*)FeBr₂ (0.030 g, 0.046 mmol), 8 mL THF, and either aniline or phenylphosphine (0.092 mmol). The vial was frozen. A separate 20 mL scintillation vial was charged lithium bis(trimethylsilyl)amide (0.015 g, 0.090 mmol) and 2 mL THF and frozen. Upon thawing, the solution of lithium bis(trimethylsilyl)amide was added to the iron containing vial resulting in a rapid color change from yellow to dark orange and gradually to dark brown. After stirring to room temperature for 20 min, volatiles were removed in vacuo. ¹H NMR spectroscopy of each (THF) revealed primarily uncoordinated (*butyl*PDP*Bu*) ligand as well a trace paramagnetic species that is identical between the two reactions.

D) Synthesis of (*butyl*PDP*Bu*)Fe(SPh)₂. A 20 mL scintillation vial was charged with (*butyl*PDP*Bu*)FeBr₂ (0.156 g, 0.240 mmol), 10 mL THF, and thiophenol (0.049 mL, 0.479 mmol). The vial was frozen. A separate 20 mL scintillation vial was charged sodium bis(trimethylsilyl)amide (0.087 g, 0.474 mmol) and 3 mL THF and frozen. Upon thawing, the solution of sodium bis(trimethylsilyl)amide was added to the iron containing vial resulting in a rapid color change from yellow to dark black, to dark yellow, and finally to olive green over 20 min. Volatiles were removed in vacuo to afford a light orange solid. The material was extracted into 10 mL dichloromethane, filtered, and dried. The resulting solid was washed with 10 mL n-pentane to afford light orange powder (0.161 g, 0.227 mmol, 95%) assigned as (*butyl*PDP*Bu*)Fe(SPh)₂. Single, X-ray quality crystals were obtained by slow diffusion on n-pentane into a DCM solution at room temperature. MALDI-TOF of C₃₉H₅₁N₅S₂Fe₂ – SPh: Calc. 600.282; Found 600.511. ¹H NMR (THF, 23 °C) δ = -33.7 (236, 4H, SPh‐C₆H₄), -31.3 (20, 2H, p-SPh‐CH), -24.3 (27, 1H, p-pyr‐CH), 0.5 (24, 6H, C₆H₁₃), 3.3 (55, 4H, C₆H₂), 6.1 (10, 18H, C(CH₃)₃), 7.6 (214, 4H, CH₂), 22.1 (19, 4H, SPh‐CH), 22.7 (284, 4H, N‐C₆H₂), 44.0 (42, 2H, pyridine or pyrazole‐CH), 57.0 (45, 2H, pyridine or pyrazole‐CH). μeff = 5.30 +/- 0.09 μB (THF, 25 °C). UV-Vis (THF, ambient temperature): λmax = 330 nm (13,600 M⁻¹cm⁻¹).
E) Validation of salt metathesis route for attempts to form \((\text{butylPDP}^{\text{Bu}})\text{Fe(E)}^2 \) variants

The compounds \((\text{butylPDP}^{\text{Bu}})\text{Fe(PHPh)}_2 \) and \((\text{butylPDP}^{\text{Bu}})\text{Fe(OH)}_2 \) were inaccessible through salt metathesis. The boron containing variants, 2-PHPh and 2-OH, were confirmed to be accessible through this method. Below are the synthetic protocol.

1) Alternate synthesis of \((\text{BBLN}^{\text{Bu}})\text{Fe(PHPh)}_2 \). A 20 mL scintillation vial was charged with \((\text{BBLN}^{\text{Bu}})\text{FeBr}_2 \) (0.196 g, 0.227 mmol), 8 mL THF, and phenylphosphine (0.455 mmol from THF stock solution) and the solution frozen. A separate vial was charged with potassium bis(trimethylsilyl)amide (0.091 g, 0.456 mmol) and 4 mL THF and frozen. Upon thawing, the solution containing KN(SiMe3)2 was added to the vial containing \((\text{BBLN}^{\text{Bu}})\text{FeBr}_2 \). The solution was stirred to room temperature for 20 min then filtered over Celite. Volatiles were removed in vacuo. The resulting orange solid was washed with 3 x 10 mL n-pentane and dried to afford light orange powder (0.171 g, 0.185 mmol, 82%) identified as \((\text{BBLN}^{\text{Bu}})\text{Fe(PHPh)}_2 \). The spectroscopic data and purity by this method were analogous to the protonation method.

2) Alternate synthesis of \((\text{BBLN}^{\text{Bu}})\text{Fe(OH)}_2 \). A 20 mL scintillation vial was charged with \((\text{BBLN}^{\text{Bu}})\text{FeBr}_2 \) (0.057 g, 0.066 mmol), 4 mL THF, and water (0.132 mmol from THF stock solution) and the solution frozen. A separate vial was charged with potassium bis(trimethylsilyl)amide (0.026 g, 0.130 mmol) and 4 mL THF and frozen. Upon thawing, the solution containing KN(SiMe3)2 was added to the vial containing \((\text{BBLN}^{\text{Bu}})\text{FeBr}_2 \) and stirred to room temperature for 20 min. Volatiles were then removed in vacuo. The resulting orange solid was extracted into 8 mL dichloromethane, filtered, dried, and washed with 3 x 6 mL n-pentane to afford light orange powder (0.021 g, 0.028 mmol, 43%) identified as \((\text{BBLN}^{\text{Bu}})\text{Fe(OH)}_2 \). The spectroscopic data and purity by this method were analogous to the protonation method.
Figure S1. 1H NMR spectrum (THF, 24 °C) of (BNPDPBu)FeH$_2$.

Figure S2. Infrared spectrum (KBr) of (BNPDPBu)FeH$_2$.
Figure S3. MALDI-TOF spectrum of \((\text{BBN}^{\text{PDP}^{\text{Bu}}})\text{FeH}_2\) (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for \(\text{C}_{43}\text{H}_{65}\text{N}_{5}\text{B}_{2}\text{Fe}_1\).

Figure S4. \(^1\text{H}\) NMR spectrum (CDCl\(_3\), 25 °C) of \((\text{BBN}^{\text{PDP}^{\text{Bu}}})\text{ZnI}_2\).
Figure S5. 1H–1H COSY spectrum (CDCl$_3$, 25 °C) of (BBNPDP$_{tBu}$)ZnI$_2$.

Figure S6. 13C NMR spectrum (CDCl$_3$, 25 °C) of (BBNPDP$_{tBu}$)ZnI$_2$.
Figure S7. 11B NMR spectrum (CDCl$_3$, 25 °C) of (BBNPD$_4$Bu)ZnI$_2$.

Figure S8. Infrared spectrum (KBr) of (BBNPD$_4$Bu)ZnI$_2$.
Figure S9. MALDI-TOF spectrum of (BBN-PDPBu)ZnI₂ (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C₄₁H₆₃N₅B₂I₂Zn₁ – I.

Figure S10. ¹H NMR spectrum (THF, 25 °C) of (BBN-PDPBu)ZnH₂.
Figure S11. 1H-1H COSY spectrum (THF-\textit{d}_8, 25 °C) of (BBNpDP\textit{tBu})ZnH\textsubscript{2}.

Figure S12. 2H NMR spectrum (THF, 25 °C) of (BBNpDP\textit{tBu})ZnD\textsubscript{2}.
Figure S13. 13C NMR spectrum (THF, 25 °C) of $^{(\text{BBN})}$PDP$^{(\text{tBu})}$ZnH$_2$.

Figure S14. 11B NMR spectrum (THF, 25 °C) of $^{(\text{BBN})}$PDP$^{(\text{tBu})}$ZnH$_2$.
Figure S15. MALDI-TOF spectrum of \(\text{^{(BNNPDP}^{tBu})ZnH}_2 \) (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for \(\text{C}_{41}\text{H}_{65}\text{N}_5\text{B}_2\text{Zn}_3 \).

Figure S16. Infrared spectrum (KBr) of \(\text{^{(BNNPDP}^{tBu})ZnH}_2 \).
Figure S17. Difference infrared spectrum (KBr) of \(^{BBN}pDP^{iBu}\)ZnH\(_2\) minus \(^{BBN}pDP^{iBu}\)ZnD\(_2\).

Figure S18. \(^1\)H NMR spectrum (C\(_6\)D\(_6\), 25 °C) of reaction between \(^{Bu}pDP^{Bu}\)FeBr\(_2\) and two equiv. KBHEt\(_3\).
Figure S19. 1H NMR spectrum (THF, 25 °C) of [K(2,2,2-cryptand)][(BBNPDPBu)FeH$_2$].

Figure S20. Infrared spectrum (KBr) of [K(18-crown-6)][(BBNPDPBu)FeH$_2$].
Figure S21. X-band EPR spectrum (black) of [K(2,2,2-cryptand)][(88NpDPamb)FeH₂] (0.92 mM) recorded in frozen THF/toluene (1:1) at 10 K. Power: 0.502 mW. Modulation: 0.20 mT/100 kHz. Simulated spectrum (red, dotted) for $g_x = 5.628$, $g_y = 3.979$, $g_z = 1.825$, linewidth = 43 G.

Figure S22. 1H NMR spectrum (THF, 25 °C) of (88NpDPamb)Fe(NHMe)₂.
Figure S23. Infrared spectrum (KBr) of \((^{11}B^{11}N)PDP^{11}Bu\)Fe(NHMe)₂. Inset highlights N-H region.

Figure S24. MALDI-TOF spectrum of \((^{11}B^{11}N)PDP^{11}Bu\)Fe(NHMe)₂ (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for \(C_{43}H_{71}N_{7}B_{2}Fe\).
Figure S25. 1H NMR spectrum (THF, 25 °C) of (BBNPDPtBu)Fe(NHPh)$_2$.

Figure S26. Infrared spectrum (KBr) of (BBNPDPtBu)Fe(NHPh)$_2$. Inset highlights N-H region.
Figure S27. 1H NMR spectrum (CDCl$_3$, 25 °C) of (BBNPD$^\text{Bu}$)Fe(OH)$_2$.

Figure S28. Infrared spectrum (KBr) of (BBNPD$^\text{Bu}$)Fe(OH)$_2$.
Figure S29. MALDI-TOF spectrum of (BBNPDBu)Fe(OH)₂ (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C₄₁H₆₅N₅O₂B₂Fe₁.

Figure S30. ¹H NMR spectrum (CDCl₃, 25 °C) of (BBNPDBu)Fe(PPh)₂.
Figure S31. Infrared spectrum (KBr) of \(\left(^{8}B\text{NPDP}^{tBu}\right) \text{Fe(PHPh)}_{2} \).

Figure S32. \(^{1}\text{H} \) NMR spectrum (C\(_{6}\)D\(_{6}\), 25 °C) of \(\left(^{8}B\text{NPDP}^{tBu}\right) \text{Fe(SPh)}_{2} \).
Figure S33. Infrared spectrum (KBr) of (BBNPDlpBu)Fe(SPh)₂.

Figure S34. MALDI-TOF spectrum of (BBNPDlpBu)Fe(SPh)₂ (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C₅₃H₇₃N₅B₂S₂Fe₁ - SPh.
Figure S35. Crude 1H NMR spectrum (THF, 25 °C) of the reaction between (BBN-PDPBu)FeH$_2$ and PhSSPh to produce (BBN-PDPBu)Fe(SPh)$_2$ and H$_2$ in a sealed J-Young NMR tube.
Figure S36. Variable temperature 1H NMR spectra (CH$_2$Cl$_2$) of (BBNPDPhBu)Fe(SPh)$_2$. The residual CH$_2$Cl$_2$ resonance is omitted to increase clarity.
Figure S37. 1H NMR spectrum (C_6D_6, 25 °C) of (BBNPDP$^\text{Bu}$)Zn(SPh)$_2$.

Figure S38. 1H-1H COSY spectrum (C_6D_6, 25 °C) of (BBNPDP$^\text{Bu}$)Zn(SPh)$_2$.
Figure S39. 13C NMR spectrum (C$_6$D$_6$, 25 °C) of (BBNPDPtBu)Zn(SPh)$_2$.

Figure S40. Infrared spectrum (KBr) of (BBNPDPtBu)Zn(SPh)$_2$.
Figure S41. MALDI-TOF spectrum of (BNPDPBu)Zn(SPh)₂ (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C₅₃H₇₃N₅B₂S₂Zn₁ - SPh.

Figure S42. Crude ¹H NMR spectrum (THF, 25 °C) of the reaction between (BNPDPBu)ZnH₂ and PhSSPh to produce (BNPDPBu)Zn(SPh)₂ and H₂ in a sealed J-Young NMR tube.
Figure S43. Variable temperature 1H NMR spectra (CDCl$_3$) of (BBNPD)$_2$BuZn(SPh)$_2$.
Figure S44. 1H NMR spectrum (CH$_2$Cl$_2$, 25 °C) of (BBNPDP$_{tBu}$)Fe(SPh)$_2$(NH$_3$)$_2$.

Figure S45. Infrared spectrum (KBr) of (BBNPDP$_{tBu}$)Fe(SPh)$_2$(NH$_3$)$_2$.
Figure S46. MALDI-TOF spectrum of [(BBNPDpBu)Fe(SPh)2(NH3)] (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C53H73N5B2S2Fe1 – (SPh + 2(NH3)).

Figure S47. 1H NMR spectrum (CDCl3, 25 °C) of [(BBNPDpBu)Fe(NC)]2.
Figure S48. Infrared spectrum (KBr) of [(BBNPDPBu)Fe(NC)2]2.

Figure S49. MALDI-TOF spectrum of [(BBNPDPBu)Fe(NC)2]2 (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C86H126N14B4Fe2.
Figure S50. 1H NMR spectrum (tol-d_8, 25 °C) of the reaction between ($^{BBN}_{PDP}^{tBu}$)FeH$_2$ and two equivalents of ArNC (Ar = 2,4,6-tri-tert-butylphenyl).

Figure S51. Infrared spectrum (KBr) of the reaction between ($^{BBN}_{PDP}^{tBu}$)FeH$_2$ and two equivalents of ArNC (Ar = 2,4,6-tri-tert-butylphenyl).
Figure S52. MALDI-TOF spectrum of reaction between (BBN-PDP^Bu)FeH_2 and 2 equiv. ArNC (Ar = 2,4,6-tri-tert-butylphenyl) (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). The calculated isotopic pattern corresponds to loss of CNAr from (BBN-PDP^Bu)Fe(CNAr)_2. Monoisotopic mass calculated for C_{60}H_{92}N_{6}B_{2}Fe_{1}.

Figure S53. ^1H NMR spectrum (THF, 25 °C) of (butyl-PDP^Bu)Fe(SPh)_2.
Figure S54. Infrared spectrum (KBr) of \((\text{butylPDP}^\text{Bu})\text{Fe(SPh)}_2\).

Figure S55. MALDI-TOF spectrum of \((\text{butylPDP}^\text{Bu})\text{Fe(SPh)}_2\) (bottom, black) obtained in an anthracene matrix and the predicted isotopic pattern (top, red). Monoisotopic mass calculated for C$_{35}$H$_{51}$N$_5$S$_2$Fe$_1$ - SPh.
Quantification of H₂ produced by addition of 2,4,6-tri-tert-butylphenylisocyanide

Four samples for each (BBNpDP₁Bu)FeH₂ and (BBNpDP₁Bu)ZnH₂ were set up under analogous conditions:

A C₆H₆ slurry (approx. 1.0 mL) of a known quantity of (BBNpDP₁Bu)MH₂ was transferred to a J-Young NMR tube. Additional C₆H₆ (approx. 1.0 mL) was used to ensure all (BBNpDP₁Bu)MH₂ was transferred. The tube was then carefully layered with additional C₆H₆ until completely full. Approx. 1.0 mL benzene from the top of the tube was removed and used to dissolve 2,4,6-tri-tert-butylphenylisocyanide (2 equiv.) in a separate vial. To this, one equiv. of (trimethyl)phenylsilane was added and the solution was subsequently layered back on top of the NMR tube. The tube was sealed so that no headspace remained. The tube was subjected to sonication for 5 min to aid in dissolution of (BBNpDP₁Bu)MH₂. The tube was then slowly inverted repeatedly for 30 min and an ¹H NMR spectrum was obtained. The Fe complexes gradually become dark brown in color while the Zn species gradually become light pink. The tables and figures below illustrate the H₂ production.
Table S1. Quantification of H₂ from reaction between (BBNPDPtrBu)FeH₂ and 2,4,6-tri-tert-butylphenylisocyanide.

	(BBNPDPtrBu)FeH₂ (mass, mg)	ArNC (mass, mg)	Percent H₂
Sample A	9.6	7.4	89.9
Sample B	9.7	7.5	91.5
Sample C	9.8	7.6	87.3
Sample D	11.0	8.5	92.2

Average: 90.2 +/- 2.2 %

Table S2. Quantification of H₂ from reaction between (BBNPDPtrBu)ZnH₂ and 2,4,6-tri-tert-butylphenylisocyanide.

	(BBNPDPtrBu)ZnH₂ (mass, mg)	ArNC (mass, mg)	Percent H₂
Sample A	8.7	6.6	10.6
Sample B	8.9	6.8	6.1
Sample C	9.4	7.2	6.1
Sample D	10.9	8.3	4.9

Average: 6.9 +/- 2.5 %
Figure S57. 1H NMR spectra (C$_6$H$_6$, 25 °C) of reaction between (18BNPDP8Bu)FeH$_2$ and two equivalents 2,4,6-tri-tert-butylphenylisocyanide in a sealed J-Young NMR tube. Details for sample preparation are described above.
Figure S58. 1H NMR spectra (C$_6$H$_6$, 25 °C) of reaction between (BBNPD$_3$Bu)ZnH$_2$ and two equivalents 2,4,6-tri-tert-butylphenylisocyanide in a sealed J-Young NMR tube. Details for sample preparation are described above.
Figure S59. 1H NMR spectra (C$_6$H$_6$, 25 °C) of reaction between (BBN$_2$PDP$_2$Bu)ZnH$_2$ and two equivalents 2,4,6-tri-tert-butylphenylisocyanide in a sealed J-Young NMR tube. Spectra are the same as the above figure and are zoomed in on the hydrogen region.
Figure S60. Electrochemical analysis of (BBNPD^Bu)FeH_2 (0.47 mM) recorded in THF with 0.2 M [Bu4N][PF_6] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.06 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 75, and 100 mv/s. Bottom right: Plot of (scan rate)^(1/2) vs. current.
Figure S61. Electrochemical analysis of \((^{11}\text{BNPDP}^{11}\text{Bu})\text{Fe(NH}_2)_2\) (0.91 mM) recorded in THF with 0.2 M [Bu4N][PF6] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.06 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 75, 100, 150, 250, and 500 mv/s. Bottom right: Plot of (scan rate)\(^{1/2}\) vs. current.
Figure S62. Electrochemical analysis of \textit{[^{11}BuPDP}^{3} \text{Bu})Fe(SPh)\textsubscript{2} (0.72 mM) recorded in THF with 0.2 M [Bu\textsubscript{4}N][PF\textsubscript{6}] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 100, 200, 400, and 600 mv/s. Bottom right: Plot of (scan rate)1/2 vs. current.

Figure S63. Electrochemical analysis of \textit{[^{11}BNPDP}^{3} \text{Bu})Fe(SPh)\textsubscript{2}(NH\textsubscript{3})\textsubscript{2} (0.70 mM) recorded in THF with 0.2 M [Bu\textsubscript{4}N][PF\textsubscript{6}] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave. Bottom right: Plot of (scan rate)1/2 vs. current.
Figure S64. Electrochemical analysis of \(\text{BBNPDp}^{\text{Bu}} \text{Fe(PHPh)}_2 \) (0.72 mM) recorded in THF with 0.2 M \([\text{Bu}_4\text{N}]\text{[PF}_6\]) electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 100, 200, 400, and 600 mv/s. Bottom right: Plot of (scan rate)^{1/2} vs. current.
Figure S65. Electrochemical analysis of (BBNPDpBu)Fe(OH)$_2$ (0.90 mM) recorded in THF with 0.2 M [Bu$_4$N][PF$_6$] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 100, 200, 400, and 600 mv/s. Bottom right: Plot of $(\text{scan rate})^{1/2}$ vs. current.
Figure S66. Electrochemical analysis of (BBNPDPBu)Fe(NHPh)_2 (0.75 mM) recorded in THF with 0.2 M [Bu4N][PF6] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 100, 200, 400, and 600 mv/s. Bottom right: Plot of (scan rate)^1/2 vs. current.
Figure S67. Electrochemical analysis of \((\text{BBNPD}^{\text{Bu}})\text{Fe(NHMe)}_2\) \((0.87 \text{ mM})\) recorded in THF with 0.2 M \([\text{Bu}_4\text{N}]\text{[PF}_6\text{]}\) electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave collected at 25, 50, 100, 200, 400, and 600 mv/s. Bottom right: Plot of \((\text{scan rate})^{1/2}\) vs. current.
Figure S68. Electrochemical analysis of (butylPDPBu)Fe(SPh)2 (0.94 mM) recorded in THF with 0.2 M [Bu4N][PF6] electrolyte. Top: full scan. Bottom left: square wave voltammogram (parameters: amplitude = 160 mV; period = 0.02 seconds; increment = 2 mV; sampling width = 0.001 seconds). Bottom middle: scan rate dependence of reductive wave. Bottom right: Plot of (scan rate)1/2 vs. current. E_{red} determined by square wave voltammetry = -2.14 V (vs. Fc/Fc').

Table S3. Reduction potentials determined by square wave voltammetry.

Compound	E_{1/2}, V (vs. Fc/Fc')
(BBnPDPBu)FeBr2	-2.14^a
(BBnPDPBu)FeCl2	-2.07^a
(BBnPDPBu)FeH2	-2.06
(BBnPDPBu)Fe(NH2)2	-2.12
(BBnPDPBu)Fe(NHMe)2	-2.30
(BBnPDPBu)Fe(NPh)2	-2.18
(BBnPDPBu)Fe(OH)2	-2.12
(BBnPDPBu)Fe(PPh)2	-1.96
(BBnPDPBu)Fe(SPh)2	-2.13
(BBnPDPBu)Fe(SPh)2(NH3)2	-2.21

^aValues for (BBnPDPBu)FeX2 (X = Cl, Br) taken from ref. 1
Figure S69. Electronic absorption spectra of $\left(\text{BBN} \text{PDP}^{6\text{Bu}}\right)\text{FeH}_2$ (red) and $[\text{K}(18\text{-crown-6})][\left(\text{BBN} \text{PDP}^{6\text{Bu}}\right)\text{FeH}_2]$ (green) recorded in THF at ambient temperature.

Figure S70. Electronic absorption spectra of iron complexes recorded in THF at ambient temperature.
Compound: \((\text{BBNPDP}^\text{Bu})\text{FeH}_2\)

Local Name: jk3155

CCDC 1884221

Table S4. Crystallographic parameters for \((\text{BBNPDP}^\text{Bu})\text{FeH}_2\)

Crystal data	
Chemical formula	\(\text{C}_{41}\text{H}_{65}\text{B}_2\text{FeN}_5\cdot0.892(\text{C}_7\text{H}_8)\)
\(M_r\)	787.61
Crystal system, space group	Tetragonal, \(P\text{4}3\text{2}1\text{2}\)
Temperature (K)	150
\(a, c (\text{Å})\)	16.0995 (5), 16.3816 (5)
\(V (\text{Å}^3)\)	4246.0 (3)
\(Z\)	4
Radiation type	\(\text{Cu K}\alpha\)
\(\mu (\text{mm}^{-1})\)	3.13
Crystal size (mm)	0.12 \(\times\) 0.11 \(\times\) 0.10

Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADAB5 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
\(T_{\text{min}}, T_{\text{max}}\)	0.427, 0.526
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	30458, 4559, 3416
\(R_{\text{int}}\)	0.070
\((\sin \theta/\lambda)_{\text{max}} (\text{Å}^{-1})\)	0.639

Refinement	
\(R[F^2 > 2\sigma(F^2)], wR(F^2), S\)	0.056, 0.165, 1.00
No. of reflections	4559
No. of parameters	508
No. of restraints	668
H-atom treatment	H-atom parameters constrained
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}} (\text{e Å}^{-3})\)	0.33, -0.49
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	0.390 (10)

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXL Rev882 (Hübschle et al., 2011).
Refinement details:

The structure is isotypic to its zinc counterpart and was solved by isomorphous replacement, followed by inversion to the enantiomorph space group.

Refined as a 2-component inversion twin.

The ligand side arm and the immediately adjacent part of the chelating ligand (including the tert-butyl group) are disordered over two alternative positions, wrapping around the iron center clockwise or anticlockwise. The two disordered moieties were restrained to have similar geometries. U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.554(6) to 0.446(6).

A toluene solvate molecule is partially occupied and disordered around a two-fold axis over four orientations (each two related by the two fold axis). Each benzene ring was constrained to resemble an ideal hexagon (AFIX 66). The methyl C-C bond distance was restrained to 1.53(2) Å. The lesser occupied moiety was restrained to be close to planar, and U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy rates refined to two times 0.333(12) and two times 0.113(12), for a total occupancy for the site of 0.892. No indication for additional electron density at this site was found.

Figure S71. Molecular structure of $^{(BBN)PDP^{(Bu)}}$FeH$_2$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to iron are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \([\text{K} (2,2,2\text{-cryptand})]\)\([(\text{BBNPDP}^{\text{Bu}})\text{FeH}_2]\)

Local Name: jk2200

CCDC 1884231

Table S5. Crystallographic parameters for \([\text{K} (2,2,2\text{-cryptand})]\)\([(\text{BBNPDP}^{\text{Bu}})\text{FeH}_2]\)

Crystal data	
Chemical formula	\(\text{C}_{18}\text{H}_{36}\text{KN}_2\text{O}_6 \cdot \text{C}_{41}\text{H}_{65}\text{B}_2\text{FeN}_5 \)
\(M_r \)	1121.03
Crystal system, space group	Triclinic, \(P\bar{1} \)
Temperature (K)	150
\(a, b, c \) (Å)	19.503 (3), 21.623 (3), 22.147 (4)
\(\alpha, \beta, \gamma \) (°)	67.321 (5), 71.202 (5), 89.815 (4)
\(V \) (Å³)	8079 (2)
\(Z \)	4
Radiation type	Mo Kα
\(\mu \) (mm⁻¹)	0.28
Crystal size (mm)	0.39 × 0.22 × 0.06

Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D. (2015). J. Appl. Cryst. 48 3-10.
\(T_{\text{min}}, T_{\text{max}} \)	0.446, 0.563
No. of measured, independent and observed \(I > 2\sigma(I) \) reflections	70366, 70366, 41234
\(R_{\text{int}} \)	0.053
\(\langle \sin \theta/\lambda \rangle_{\text{max}} \) (Å⁻¹)	0.679

Refinement	
\(R[F^2 > 2\sigma(F^2)], wR(F^2), S \)	0.132, 0.410, 1.07
No. of reflections	70366
No. of parameters	2089
No. of restraints	3477
H-atom treatment	H-atom parameters constrained
\(w = 1/[\sigma^2(F_o^2) + (0.2025P)^2 + 20.270P] \) where \(P = (F_o^2 + 2F_c^2)/3 \)	
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \) (e Å⁻³)	1.12, -0.52

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015, 2017), SHELXL Rev859 (Hübschle et al., 2011).
Refinement details:

The crystal under investigation was found to be slightly non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell Now, with the two components being related by a 180 degree rotation around the real a-axis.

Integration proved problematic due to excessive multiple overlap of reflections, resulting in large numbers of rejected reflections. Attempts were made to adjust integration parameters to avoid excessive rejections (through adjustments to integration queue size, blending of profiles, integration box slicing and twin overlap parameters), which led to less but still substantial numbers of rejected reflections. With no complete data set obtainable through simultaneous integration of both twin domains, the data were instead handled as if not twinned, with only the major domain integrated, and converted into an hklf 5 type format hkl file after integration using the "Make HKLF5 File" routine as implemented in WinGX. The twin law matrix was used as obtained from WinGX and was as follows:

180.0 degree rotation about 1. 0. 0. direct lattice direction:

\[
\begin{bmatrix}
1.000 & 0.000 & 0.000 \\
0.007 & -1.000 & 0.000 \\
0.732 & 0.000 & -1.000 \\
\end{bmatrix}
\]

The Overlap R1 and R2 values used were 0.55, i.e. reflections with a discriminator function less or equal to an overlap radius of 0.55 were counted overlapped, all others as single. The discriminator function used was the "delta function on index non-integrality". No reflections were omitted.

The structure was solved using direct methods with the original hklf 4 type file and was refined using the hklf 5 type file, resulting in a final BASF value, after finalizing of structural model and other treatments (see below) of 0.098(2). This is thought to be underestimated due to the use of an after integration created hklf 5 type file.

No Rint value is obtainable for the hklf 5 type file using the WinGX routine. The value from the refinement under omission of twinning is given instead.

The cryptand ligands surrounding the potassium cations were found to be disordered. That around K1A was refined as disordered over two orientations; that around K1B as disordered over three orientations. All disordered moieties were restrained to have similar geometries. The bond distances of C52C to C53C and of C56B to C57B were restrained to a target value of 1.500(1) Angstrom. Ui components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.839(5) to 0.161(5) for the first cryptand, and the rates of the second to 0.194(4), 0.551(4) and 0.256(3).

A mild anti bumping restraint was applied to avoid close H...H contacts for disordered atoms.

In addition to disorder and twinning, the structure also exhibits large volume sections consisting of highly disordered solvate molecules. No satisfactory model for the solvate molecules could be developed, and the contribution of the solvate molecules was instead taken into account by reverse Fourier transform methods. The data were first detwinned (using the LIST 8 function of Shelx2017) and then the cif and hkl files were subjected to the SQUEEZE routine as implemented in the program Platon. The resultant files were used in the further refinement. (Both the hklf 5 type HKL file and the detwinned FAB file are appended to the cif file). A volume of 2821 cubic Å per unit cell (ca 35% of the cell volume) containing 388 electrons was corrected for.
Figure S72. Molecular structure of [K(2,2,2-cryptand)][(BNPDPBu)FeH2] displayed with 50% probability ellipsoids. Hydrogen atoms not attached to iron are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: [K(DME)$_4$][(18BPDP$_{tBu}$)FeH$_2$]

Local Name: jk2177

CCDC 1884224

Table S6. Crystallographic parameters for [K(DME)$_4$][(18BPDP$_{tBu}$)FeH$_2$]

Crystal data	
Chemical formula	4(C$_{41}$H$_{65}$B$_2$FeN$_5$)$_2$.2.808(C$_4$H$_9$O$_2$)$_3$.2(C$_4$H$_{10}$O$_2$)$_4$(K)
M_r	3498.78
Crystal system, space group	Tetragonal, $I4_2d$
Temperature (K)	150
a, c (Å)	26.450 (2), 20.9410 (19)
V (Å3)	14650 (3)
Z	2
Radiation type	Mo Kα
μ (mm$^{-1}$)	0.29
Crystal size (mm)	0.42 x 0.28 x 0.13

Data collection

Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T_{min}, T_{max}	0.486, 0.564
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	102117, 9087, 6150
R_{int}	0.080
$(\sin \theta/\lambda)_{max}$ (Å$^{-1}$)	0.667

Refinement

$R(F^2 > 2\sigma(F^2))$, $wR(F^2)$, S	0.094, 0.301, 1.09
No. of reflections	9087
No. of parameters	557
No. of restraints	652
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å$^{-3}$)	1.20, -0.58
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	0.48 (4)

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2017), SHELXLE Rev859 (Hübschle et al., 2011).
Substantial disorder is observed for this structure, for both the iron complex as well as solvate molecules and counter-cations. Due to the overall low data quality and the extensive disorder a global similarity restraint was applied to all atom's ADPs: \(U_{ij}^{ji}\) components of ADPs for atoms closer to each other than 2.0 Å were restrained to be similar within an esd of 0.01 Å².

For the iron complex, the ligand arms are alternatively wrapped around the iron center clockwise or counterclockwise. The disorder extends to the main segment of the ligand, including the tert-butyl groups, and the pyrazole fragments were restrained to be coplanar with immediately bonded adjacent atoms. Chemically equivalent bond lengths and angles of tert-butyl groups and of some other segments were restrained to be similar. The iron atom was included in the disorder. The two disordered moieties were restrained to have similar geometries. Subject to these conditions the occupancy ratio refined to 0.652(6) to 0.348(6).

Channels around the four-fold inversion axis are occupied by highly disordered potassium ions chelated by DME solvate molecules. One major moiety is relatively well resolved and the K ion and coordinated DME molecules were refined. Occupancies refined to less than half. For the potassium ions, alternative ill-defined positions located on the four-fold inversion axis were included, and the sum of all K ions was constrained based on charge balance considerations. For DME molecules, only the major moiety was taken into consideration. Other remaining DME sites were not resolved and were ignored. Heavily disordered solvate pockets along the channel showed no resolved atoms at all and their electron density was instead included via reverse Fourier transform methods (Squeeze, see below). All refined DME moieties were restrained to have similar geometries and given a common occupancy rate. \(U_{ij}^{ji}\) components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy rate refined to 0.351(11).

The structure contains a solvent accessible voids of 2354 Å³. No substantial electron density peaks were found in the solvent accessible voids (2.9 electrons for the largest peak and less than 1.7 electron/Å³ for all others) and the residual electron density peaks were not arranged in an interpretable pattern. The cif and hkl files were subjected to reverse Fourier transform methods using the SQUEEZE routine (van der Sluis, P.; Spek, A. L. Acta Cryst. 1990 A46, 194-201) as implemented in the program Platon. The resultant files were used in the further refinement. (The FAB file with details of the Squeeze results is appended to the cif file). The Squeeze procedure corrected for 516 electrons within the solvent accessible voids.
Figure S73. Molecular structure of \([\text{K}(\text{DME})_2][\text{BBN}(\text{PDPBu})\text{FeH}_2]\) displayed with 30% probability ellipsoids. Disordered fragments and hydrogen atoms not attached to iron are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Table S7. Crystallographic parameters for (BBNPDPBu)ZnH₂

Crystal data	
Chemical formula	C₄₁H₆₅B₂N₅Zn·0.718(C₇H₈)
Molecular weight (M_r)	781.14
Crystal system, space group	Tetragonal, P₄₁2₁₂
Temperature (K)	150
a, c (Å)	16.1630 (5), 16.4362 (6)
V (Å³)	4293.8 (3)
Z	4
Radiation type	Mo Kα
μ (mm⁻¹)	0.61
Crystal size (mm)	0.26 × 0.24 × 0.14

Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T_{min}, T_{max}	0.648, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections	62259, 6563, 4926
R_{int}	0.088
(sin θ/λ)_{max} (Å⁻¹)	0.716

Refinement	
R(F² > 2σ(F²)), wR(F²), S	0.051, 0.140, 1.03
No. of reflections	6563
No. of parameters	507
No. of restraints	668
H-atom treatment	H-atom parameters constrained
Δρ_{max}, Δρ_{min} (e Å⁻³)	0.36, -0.66
Absolute structure	Flack x determined using 1628 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	-0.010 (4)

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXL Rev882 (Hübschle et al., 2011).
Refinement details:

The ligand side arm and the immediately adjacent part of the chelating ligand (including the tert-butyl group) are disordered over two alternative positions, wrapping around the zinc center clockwise or anticlockwise. The two disordered moieties were restrained to have similar geometries. \(U^{ij} \) components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.600(5) to 0.400(5).

A toluene solvate molecule is partially occupied and disordered around a two-fold axis over four orientations (each two related by the two fold axis). Each benzene ring was constrained to resemble an ideal hexagon (AFIX 66). The methyl C-C bond distance was restrained to 1.53(2) Å. The lesser occupied moiety was restrained to be close to planar, and \(U^{ij} \) components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy rates refined to two times 0.216(10) and two times 0.143(9), for a total occupancy for the site of 0.718. No indication for additional electron density at this site was found.

Figure S74. Molecular structure of \(\text{(BBN-PDP}^{\text{tBu}})\text{ZnH}_2 \) displayed with 50% probability ellipsoids. Hydrogen atoms not attached to zinc are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((^\text{BBNPdP}^\text{Bu})\text{Fe(NHMe)}_2\)

Local Name: jk2150

CCDC 1884223

Table S8. Crystallographic parameters for \((^\text{BBNPdP}^\text{Bu})\text{Fe(NHMe)}_2\)

Crystal data	
Chemical formula	C\(_{43}\)H\(_{71}\)B\(_2\)FeN\(_7\)\(\cdot\)CH\(_2\)Cl\(_2\)
\(M_r\)	848.46
Crystal system, space group	Tetragonal, \(P\4\3212\)
Temperature (K)	150
\(a, c\) (Å)	16.4289 (8), 16.7181 (10)
\(V\) (Å\(^3\))	4512.4 (5)
\(Z\)	4
Radiation type	Mo \(K\alpha\)
\(\mu\) (mm\(^{-1}\))	0.49
Crystal size (mm)	0.23 × 0.21 × 0.16

Data collection

Diffractometer
Absorption correction
\(T_{\text{min}}, T_{\text{max}}\)
No. of measured, independent and observed \(
\(R_{\text{int}}\)
(\(\sin \theta/\lambda\))\(_{\text{max}}\) (Å\(^{-1}\))

Refinement

\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)
No. of reflections
No. of parameters
No. of restraints
H-atom treatment
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e Å\(^{-3}\))
Absolute structure
Absolute structure parameter

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2017), SHELXL Rev859 (Hübschle et al., 2011).
Refinement details:

The structure was solved by isomorphous replacement based on the Fe-complex without the N-methyl CH$_3$ group.

The ligand side arm is disordered. The two disordered moieties were restrained to have similar geometries. U_{ij} components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. The nitrogen atoms N4 and N4B as well as the methyl atoms C22 and C22B were constrained to have each identical ADPs. Subject to these conditions the occupancy ratio refined to 0.852(5) to 0.148(5).

The methylene chloride solvate molecule was refined as disordered over three positions located around a two-fold axis. The three disordered moieties were restrained to have similar geometries. U_{ij} components of ADPs for disordered atoms closer to each other than 1.7 Å were restrained to be similar. Subject to these conditions the occupancy rates refined to 0.072(4), 0.770(4) and two times 0.0791(19) (related by two-fold rotation).

Figure S75. Molecular structure of (BBN-PDP$_{12b}$)Fe(NHMe)$_2$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to nitrogen atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((\text{BBNPDP}^\text{tBu})\text{Fe(OH)}_2\)

Local Name: jk238

CCDC 1884227

Table S9. Crystallographic parameters for \((\text{BBNPDP}^\text{tBu})\text{Fe(OH)}_2\)

Crystal data	
Chemical formula	\(\text{C}_{41}\text{H}_{65}\text{B}_{2}\text{FeN}_{5}\text{O}_{2}\cdot\text{C}_{5}\text{H}_{12}\)
\(M_r\)	809.59
Crystal system, space group	Monoclinic, \(P2_1/n\)
Temperature (K)	150
\(a, b, c\) (\(\text{Å}\))	13.8891 (4), 17.2913 (6), 19.1228 (7)
\(\beta\) (°)	94.835 (2)
\(V\) (\(\text{Å}^3\))	4576.2 (3)
\(Z\)	4
Radiation type	\(\text{Cu } K\alpha\)
\(\mu\) (\(\text{mm}^{-1}\))	2.95
Crystal size (mm)	0.25 × 0.23 × 0.17
Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
\(T_{\text{min}}, T_{\text{max}}\)	0.524, 0.754
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	32363, 9656, 7951
\(R_{\text{int}}\)	0.060
\((\sin \theta/\lambda)_{\text{max}}\) (\(\text{Å}^{-1}\))	0.639
Refinement	
\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)	0.048, 0.132, 1.06
No. of reflections	9656
No. of parameters	772
No. of restraints	929
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}\) (e \(\text{Å}^{-3}\))	0.35, -0.43

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015, 2016), SHELXLX Rev714 (Hübschle et al., 2011).
Refinement details:

Disorder is observed for the ligand side arms and for one solvate pentane molecule. For both the pentane and ligand side arms, geometries of major and minor moieties were restrained to be similar, and U_{ij}^{ij} components of ADPs were restrained to be similar for atoms closer to each other than 2.0 Å. The hydroxyl O atoms are shared between disordered moieties, but hydroxyl H atoms were included in the disorder and their positions atoms were refined, with O-H distances restrained to 0.84 Å. The H...B and H...Fe distances of the minor moiety hydroxyl H atoms were restrained to be similar to those of the major moiety. The ligand side arm disorder was extended to the H atoms of the methyl group of C11. Subject to these conditions the pentane occupancy ratio refined to 0.700(5) to 0.300(5), the ligand side arm occupancy ratio to 0.9492(12) to 0.0508(12).

Figure S76. Molecular structure of (BBNPD$^\text{Bu}$)Fe(OH)$_2$ displayed with 50% probability ellipsoids. Hydrogen atoms not attached to oxygen atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((^\text{BBNPDP}^\text{Bu})\Fe(N\text{HPh})_2\)

Local Name: jk318

CCDC 1884228

Table S10. Crystallographic parameters for \((^\text{BBNPDP}^\text{Bu})\Fe(N\text{HPh})_2\)

Crystal data	
Chemical formula	\(\text{C}_{53}\text{H}_{75}\text{B}_{2}\text{FeN}_{7} \cdot 3(\text{C}_4\text{H}_8\text{O})\)
\(M_r\)	1103.98
Crystal system, space group	Monoclinic, \(P2_1/c\)
Temperature (K)	150
\(a, b, c\) (Å)	12.0303 (5), 11.0429 (4), 22.8724 (9)
\(\beta\) (°)	94.3767 (15)
\(V\) (Å\(^3\))	3029.7 (2)
\(Z\)	2
Radiation type	Mo \(K\alpha\)
\(\mu\) (mm\(^{-1}\))	0.30
Crystal size (mm)	0.28 × 0.17 × 0.13

Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
\(T_{\text{min}}, T_{\text{max}}\)	0.652, 0.746
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	22161, 8157, 6386
\(R_{\text{int}}\)	0.031
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))	0.715

Refinement	
\(R[F^2 > 2\sigma(F^2)], wR(F^2), S\)	0.052, 0.137, 1.07
No. of reflections	8157
No. of parameters	641
No. of restraints	968
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e Å\(^{-3}\))	0.59, -0.51

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015, 2017), SHELXL Rev859 (Hübschle et al., 2011).
Refinement details:

The main molecule shows minor disorder of the ligand side arm. The two disordered moieties were restrained to have similar geometries. C11 and C11B were constrained to have positions exactly related by the two fold axis bisecting the molecule. The methyl H atoms around C9 were included in the disorder by a 60 degree rotation between major and minor moiety (AFIX 127). The position of the N-bound H atoms H4 and H4B were refined, and the B...H and Fe...H distances in the two moieties were restrained to be similar. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.9055(19) to 0.0945(19).

Two THF molecules are disordered. One in a general position, and one around a two-fold axis with additional disorder by pseudo-inversion. The disordered moieties of each site were restrained to have similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. A mild anti-bumping restraint was applied to keep minor atoms from approaching main molecule H atoms too closely. Subject to these conditions the occupancy ratios refined to 0.728(10) to 0.272(10) for the THF molecule in the general position, and to two times 0.384(4) and two times 0.116(4) for the THF molecule around the two fold axis.

Figure S77. Molecular structure of (BBNPDPBu)Fe(NHPh\textsubscript{2}) displayed with 50\% probability ellipsoids. Hydrogen atoms not attached to nitrogen atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((\text{BBNPDP}^\text{tBu})\text{Fe(PHPh)}_2\)

Local Name: jk319

CCDC 1884232

Table S11. Crystallographic parameters for \((\text{BBNPDP}^\text{tBu})\text{Fe(PHPh)}_2\)

Crystal data	
Chemical formula	\(\text{C}_{53}\text{H}_{74}\text{B}_{2}\text{FeN}_{5}\text{P}_{2}\cdot3(\text{C}_4\text{H}_8\text{O})\)
\(M_r\)	1137.90
Crystal system, space group	Triclinic, \(P\bar{1}\)
Temperature (K)	150
\(a, b, c\) (Å)	10.989 (6), 12.928 (6), 24.431 (11)
\(\alpha, \beta, \gamma\) (°)	92.678 (16), 91.124 (18), 114.185 (16)
\(V\) (Å\(^3\))	3160 (3)
\(Z\)	2
Radiation type	Mo Kα
\(\mu\) (mm\(^{-1}\))	0.34
Crystal size (mm)	0.20 × 0.18 × 0.15

Data collection

Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan \textit{SADABS} 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
\(T_{\text{min}}, T_{\text{max}}\)	0.509, 0.745
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	33481, 11734, 4754
\(R_{\text{int}}\)	0.142
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))	0.610

Refinement

\(R[F^2 > 2\sigma(F^2)], wR(F^2), S\)	0.130, 0.447, 1.06
No. of reflections	11734
No. of parameters	806
No. of restraints	401
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e Å\(^{-3}\))	0.73, -0.87

Computer programs: \textit{Apex3} v2017.3-0 (Bruker, 2016), \textit{SAINT} V8.38A (Bruker, 2016), \textit{SHELXS97} (Sheldrick, 2008), \textit{SHELXL2018}3 (Sheldrick, 2015, 2018), \textit{SHELXL} Rev915 (Hübschle \textit{et al.}, 2011).
Refinement details:

The structure exhibits pseudo-symmetry, nearly emulating a double the volume C-centered monoclinic cell in C2/c. The data can be refined in this setting, but R values are about 1/3 larger than in the primitive setting under inclusion of twinning by the monoclinic pseudosymmetry. The structure was refined as twinned by a two-fold rotation around (2 -1 0), with a twin matrix of 1 0 0, -1 -1 0, 0 0 -1. The final twin ratio refined to 0.810(4) to 0.190(4).

The structure exhibits large thermal libration for all atoms and disorder for several of the THF solvate molecules, leading to an intrinsic low resolution and absence of high angle data, and rather high data R values. Refined model R values are in line with the data quality.

P bound H atoms were located in difference density maps and their positions were refined with a P-H bond distance restraint of 1.00(2) Å.

No attempts were made to refine disorder for the main molecule. ADPs indicate a "swinging motion" around the Fe ion in the plane of the coordinated ligand fragment.

Of the four THF molecule sites two are located on inversion centers and two in general positions. The two molecules on inversion points were refined as 1:1 disordered. The two molecules in the general position are related by pseudo-monoclinic symmetry and disorder is highly correlated. One of the two molecules was refined as disordered, the other as not disordered. All THF moieties were restrained to have similar geometries. U^ij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. The atoms of the molecules around inversion centers were also restrained to be close to isotropic. A mild anti-bumping restraint was applied to keep disordered H atoms from approaching other atoms too closely. Subject to these conditions the occupancy ratio for the disordered THF molecule in the general position refined to 0.217(19) to 0.783(19).

Figure S78. Molecular structure of (BBNPDPtBu)Fe(PHPh)_2 displayed with 50% probability ellipsoids. Hydrogen atoms not attached to phosphorus atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((\text{BBNPD}^\text{tBu})\text{Fe(SPh)}_2\)

Local Name: jk3188
CCDC 1884229

Table S12. Crystallographic parameters for \((\text{BBNPD}^\text{tBu})\text{Fe(SPh)}_2\)

Crystal data	
Chemical formula	\(\text{C}_{53}\text{H}_{73}\text{B}_{2}\text{FeN}_{5}\text{S}_{2}\)
\(M_r\)	921.75
Crystal system, space group	Monoclinic, \(C2/c\)
Temperature (K)	150
\(a\), \(b\), \(c\) (Å)	23.8853 (10), 11.6376 (5), 19.0401 (8)
\(\beta\) (°)	110.8255 (16)
\(V\) (Å\(^3\))	4946.8 (4)
\(Z\)	4
Radiation type	\(\text{Mo K}\alpha\)
\(\mu\) (mm\(^{-1}\))	0.43
Crystal size (mm)	0.53 × 0.35 × 0.27

Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
\(T_{\text{min}}, T_{\text{max}}\)	0.674, 0.747
No. of measured, independent and observed \([I > 2s(I)]\) reflections	35885, 9150, 6037
\(R_{\text{int}}\)	0.061
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))	0.771

Refinement	
\(R(F^2 > 2\sigma(F^2))\), \(wR(F^2)\), \(S\)	0.050, 0.141, 1.06
No. of reflections	9150
No. of parameters	289
H-atom treatment	H-atom parameters constrained
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e Å\(^{-3}\))	0.76, -0.62

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXL Rev900 (Hübschle et al., 2011).
Figure S79. Molecular structure of \((^{\text{BBN}}\text{PDP})_{\text{Bu}}\text{Fe(SPh)}\text{)}_2\) displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((^{BBNPDP}t_{Bu})Fe(SPh)_{2}(NH_{3})_{2}\)

Local Name: jk4207

CCDC 1884230

Table S13. Crystallographic parameters for \((^{BBNPDP}t_{Bu})Fe(SPh)_{2}(NH_{3})_{2}\)

Crystal data	
Chemical formula	C\textsubscript{53}H\textsubscript{79}B\textsubscript{2}FeN\textsubscript{7}S\textsubscript{2}
\(M_r\)	955.82
Crystal system, space group	Triclinic, \(P\bar{1}\)
Temperature (K)	150
\(a, b, c\) (Å)	8.8548 (4), 17.4697 (7), 17.4739 (8)
\(\alpha, \beta, \gamma\) (°)	92.316 (3), 99.766 (2), 99.769 (2)
\(V\) (Å3)	2618.6 (2)
\(Z\)	2
Radiation type	Cu K\(\alpha\)
\(\mu\) (mm\(^{-1}\))	3.36
Crystal size (mm)	0.41 × 0.08 × 0.07

Data collection			
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer		
Absorption correction	Multi-scan TWINABS 2012/1: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D. (2015). J. Appl. Cryst. 48 3-10.		
\(T_{\text{min}}, T_{\text{max}}\)	0.131, 0.330		
No. of measured, independent and observed \(I > 2\sigma(I)	\) reflections	34295, 10649, 8780
\(R_{\text{int}}\)	0.077		
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))	0.641		

Refinement	
\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)	0.119, 0.323, 1.10
No. of reflections	10649
No. of parameters	595
H-atom treatment	H-atom parameters constrained
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}\) (e Å\(^{-3}\))	3.95, -0.73

Computer programs: Apex3 v2017.3-0 (Bruker, 2017), SAINT V8.38A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev937 (Hübschle et al., 2011).
Refinement details:

The crystal under investigation was found to be twinned by both non-merohedry as well as pseudo-merohedry. The orientation matrices for the components related by non-merohedry were identified using the program Cell_Now, with the two components being related by a 180 degree rotation around the real a-axis. The structure was also found to be twinned by perfect pseudo-merohedry, emulating a double volume C-centered lattice. When solved in monoclinic symmetry molecules were systematically disordered in an intricate way with the two moieties related by a two-fold rotation axis. Reduction of symmetry to triclinic (space group P\textbar 1) and application of the twin transformation matrix \(-1 \ 0 \ 0, \ 0 \ 0 \ -1, \ 0 \ -1 \ 0\) (180 degree rotation around (0 1\textbar 1)) resulted in nearly complete disappearance of one of the two disordered moieties ("ghost" electron densities are apparent for the "alternative" positions of the iron and sulfur atoms, but refinement was possible without application of restraints for either geometry or thermal parameters). The triclinic solution, not requiring refinement of disorder, was chosen as the more likely true structure and was used.

Several data processing procedures were tested. In the first procedure, the two components related by non-merohedry were integrated using Saint and corrected for absorption using twinabs, resulting in the following statistics:

- 14214 data (6765 unique) involve domain 1 only, mean I/sigma 23.0
- 14181 data (6769 unique) involve domain 2 only, mean I/sigma 16.8
- 5943 data (3270 unique) involve 2 domains, mean I/sigma 32.7

The exact twin matrix identified by the integration program was found to be:

\[
\begin{pmatrix}
1.00000 & -0.00008 & 0.00008 \\
-0.67226 & -1.00047 & -0.00735 \\
-0.66839 & 0.00736 & -0.99948
\end{pmatrix}
\]

The structure was solved using direct methods with all non-overlapping reflections of both components. The structure was refined against the same data, under application of the twin matrix \(-1 \ 0 \ 0, \ 0 \ 0 \ -1, \ 0 \ -1 \ 0\) to account for pseudo-merohedric twinning, resulting in a BASF value of 0.512(3), indicating a close to ideally twinned crystal.

Using the non-overlapping reflections of only the first (major) component gave similar results, but R values and overall quality indicators were slightly worse.

In an alternative approach, the data were integrated as a four component twin, with each of the two moieties related by non-merohedry additionally split by application of the twin matrix for pseudo-merohedric twinning. Results were, however, of substantially lower quality (R1 values were between 18 and 19%, ADPs less well defined and residuals more pronounced), and this approach was abandoned.

The R\textsubscript{int} value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2012)).
Figure S80. Molecular structure of \((\text{BNPDP}^{\text{Bu}})\text{Fe(SPh)}_2(\text{NH}_3)_2\) displayed with 50% probability ellipsoids. Hydrogen atoms not attached to nitrogen atoms are omitted for clarity. The 9-BBN and phenyl moieties are displayed in wireframe for clarity.
Compound: \([\text{BNNPDP}^\text{tBu}]\text{Fe(NC)}\text{2}]_2\)

Local Name: jk217

CCDC 1884225

Table S14. Crystallographic parameters for \([\text{BNNPDP}^\text{tBu}]\text{Fe(NC)}\text{2}]_2\)

Crystal data	
Chemical formula	\(\text{C}_{86}\text{H}_{126}\text{B}_{4}\text{Fe}_{2}\text{N}_{14}\cdot3.272\text{(CH}_2\text{Cl}_2)\)
\(M_r\)	1807.60
Crystal system, space group	Monoclinic, \(Cc\)
Temperature (K)	100
\(a\), \(b\), \(c\) (Å)	14.7395(8), 31.7053(18), 22.0966(13)
\(\beta\) (°)	90.451(2)
\(V\) (Å\(^3\))	10325.9(10)
\(Z\)	4
Radiation type	Mo \(K\alpha\)
\(\mu\) (mm\(^{-1}\))	0.51
Crystal size (mm)	0.54 × 0.52 × 0.39

Data collection	
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
\(T_{\text{min}}, T_{\text{max}}\)	0.630, 0.747
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	123502, 24774, 23021
\(R_{\text{int}}\)	0.043
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))	0.667

Refinement	
\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)	0.063, 0.140, 1.13
No. of reflections	24774
No. of parameters	1314
H-atom treatment	H-atom parameters constrained
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e Å\(^{-3}\))	0.63, -0.52

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2018), SHELXLE Rev900 (Hübschle et al., 2011).
Refinement details:
The structure exhibits pseudo-inversion and pseudo-twofold symmetry emulating space group C2/c. The higher symmetry is broken by ordering of the borabicyclononane of B1 and B3.
Refined as an inversion twin.

Dichloromethane solvate molecules are extensively disordered. All methylene chloride moieties were restrained to have similar geometries. \(U^i\) components of ADPs were restrained to be similar for atoms closer to each other than 2.0 Å. A weak anti-bumping restraint was applied to keep solvate H atoms from approaching main moiety H atoms too closely. Atoms Cl8 and C92 and atoms Cl16 and C97 were constrained to share a site and ADP. Due to the extensive and sequential disorder no attempts were made to match occupancy rates and occupancies for all solvate molecules were independently refined. Occupancies refined to values between 0.800(6) and 0.059(5).

Figure S81. Molecular structure of \([{(BBNPD\textsubscript{Bu})_2Fe(NC)}_2]_2\) displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: \((BBNPDP^\text{tBu})\text{Zn(SPh)}_2\)

Local Name: jk3257

CCDC 1884226

Table S15. Crystallographic parameters for \((BBNPDP^\text{tBu})\text{Zn(SPh)}_2\)

Crystal data
Chemical formula
\(M_r\)
Crystal system, space group
Temperature (K)
\(a\), \(b\), \(c\) (Å)
\(\beta\) (°)
\(V\) (Å\(^3\))
\(Z\)
Radiation type
\(\mu\) (mm\(^{-1}\))
Crystal size (mm)

Data collection
Diffractometer
Absorption correction
\(T_{\text{min}}, T_{\text{max}}\)
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections
\(R_{\text{int}}\)
\((\sin \theta/\lambda)_{\text{max}}\) (Å\(^{-1}\))

Refinement
\(R(F^2 > 2\sigma(F^2)), wR(F^2), S\)
No. of reflections
No. of parameters
H-atom treatment
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}\) (e Å\(^{-3}\))

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015, 2017), SHELXL Rev882 (Hübschle et al., 2011).
Figure S82. Molecular structure of (BBNPDPBu)Zn(SPh)₂ displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The 9-BBN moieties are displayed in wireframe for clarity.
Compound: [K(18-crown-6)(THF)]₂[(BNPDpBu)₂Fe(OPh)₄]
Local Name: jk337
CCDC 1884222

Table S16. Crystallographic parameters for [K(18-crown-6)(THF)]₂[(BNPDpBu)₂Fe(OPh)₄]

Crystal data	
Chemical formula	$\text{C}_{106}\text{H}_{146}\text{B}_4\text{FeN}_{10}\text{O}_4\cdot 2\text{C}_{16}\text{H}_{32}\text{KO}_7\cdot 2\text{C}_4\text{H}_8\text{O}$
M_r	2618.64
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	150
a, b, c (Å)	33.6410 (7), 16.3704 (3), 27.3584 (6)
β (°)	100.166 (1)
V (Å³)	14830.2 (5)
Z	4
Radiation type	Cu Kα
μ (mm⁻¹)	1.84
Crystal size (mm)	$0.35 \times 0.28 \times 0.13$

Data collection					
Diffractometer	Bruker AXS D8 Quest CMOS diffractometer				
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10				
T_{min}, T_{max}	0.442, 0.754				
No. of measured, independent and observed $	I	> 2\sigma(I)$ reflections	39390, 14541, 13474
R_{int}	0.040				
$(\sin \theta/\lambda)_{\text{max}}$ (Å⁻¹)	0.626				

Refinement	
$R(F^2 > 2\sigma(F^2))$, $wR(F^2)$, S	0.073, 0.218, 1.05
No. of reflections	14541
No. of parameters	1109
No. of restraints	1008
H-atom treatment	H-atom parameters constrained
$w = 1/[s^2(F_h^2) + (0.1402P)^2 + 15.7177P]$ where $P = (F_h^2 + 2F_g^2)/3$	
$\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ (e Å⁻³)	1.50, -0.86

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015, 2017), SHELXL Rev859 (Hübschle et al., 2011).
Refinement details:

Two phenoxy groups, one tert-butyl group and the two next neighboring carbon atoms, and two THF molecules were refined as disordered. For all disordered moieties, major and minor moieties were restrained to have similar geometries. U^eq components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.687(14) to 0.313(14) and 0.790(6) to 0.210(6) for the two phenoxy groups, to 0.596(18) to 0.404(18) for the tert-butyl group, and to 0.703(7) to 0.297(7) and 0.605(10) to 0.395(10) for the two THF molecules.

Figure S83. Anionic portion of the molecular structure of $[K(18\text{-crown-6})(\text{THF})]_2[[\text{9-BBN}][\text{DPBu}]_2\text{Fe(OPh)}_4]$ displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The 9-BBN and phenoxide moieties are displayed in wireframe for clarity.
Compound: \((\text{butylPDP}_\text{Bu})\text{Fe(SPh)}_2\)

Local Name: jk566

CCDC 1903500

Table S17. Crystallographic parameters for \((\text{butylPDP}_\text{Bu})\text{Fe(SPh)}_2\)

Crystal data
Chemical formula
\(M_r\)
Crystal system, space group
Temperature (K)
\(a, b, c (\text{Å})\)
\(\beta (\degree)\)
\(V (\text{Å}^3)\)
\(Z\)
Radiation type
\(\mu (\text{mm}^{-1})\)
Crystal size (mm)

Data collection

Diffractometer	Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD)		
Absorption correction	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10		
\(T_{\text{min}}, T_{\text{max}}\)	0.496, 0.754		
No. of measured, independent and observed \(I > 2\sigma(I)	\) reflections	20041, 7782, 5293
\(R_{\text{int}}\)	0.058		
\(\langle \sin \theta/\lambda \rangle_{\text{max}} (\text{Å}^{-1})\)	0.640		

Refinement

\(R(R^2 > 2\sigma(R^2)), wR(F^2), S\)	0.061, 0.181, 1.03
No. of reflections	7782
No. of parameters	763
No. of restraints	1218
H-atom treatment	H-atom parameters constrained
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (\text{e Å}^{-3})\)	0.94, -0.43

Computer programs: Apex3 v2017.3-0 (Bruker, 2017), SAINT V8.38A (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015, 2018), SHELXLE Rev946 (Hübschle et al., 2011).
Refinement details:

The alkyl chains on both sides of the molecule are disordered, inducing disorder in large sections of the remainder of the molecule. The two moieties are mutually exclusive with their counterparts in neighbouring molecules, thus making exact 1:1 disorder necessary. The various equivalent fragments of the two disordered moieties were restrained to have each similar geometries. Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar.

Figure S84. Molecular structure of \((\text{butylPDPBu})\text{Fe(SPh})\)\(_2\) displayed with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. The phenyl moieties are displayed in wireframe for clarity.
Figure S85. Comparison of intraligand bond distances in (BuPDP Bu)FeBr₂, (BBNPDP Bu)FeH₂, and [K(2,2,2-crypt)][(BBNPDP Bu)FeH₂]. The data for (BuPDP Bu)FeBr₂ is taken from reference 1.

Table S18. Metrical parameters for hydride containing compounds.

	(BBNPDP Bu)FeH₂	[K(2,2,2-crypt)][(BBNPDP Bu)FeH₂]	(BBNPDP Bu)ZnH₂
M-Npyrazole (Å)	2.174(17)	2.155(6)	2.176(13)
M-Npyrazole (Å)	--	2.153(6)	--
M-Npyridine (Å)	2.178(5)	2.021(6)	2.153(4)
M-B (°)	2.970	2.977	2.977
M-B (°)	--	3.060	--
τ₅	0.314	0.363	0.374
IR ν(M-H-B) (cm⁻¹)	1839	1866	1775
Table S19. Metrical parameters for complexes 2.

	2-NH₂	2-NHMe	2-NHPhe	2-OH	2-PHPhe	2-SPh
Fe-Npyrazole (Å)	2.2950(18)	2.327(4)	2.2460(14)	2.2604(16)	2.248(11)	2.2148(13)
Fe-Npyrazole (Å)	--	--	--	2.2812(16)	2.304(12)	--
Fe-Npyridine (Å)	2.124(2)	2.168(5)	2.1123(19)	2.1164(15)	2.082(10)	2.1139(18)
Fe-X	2.075(2)	2.111(9)	2.179(3)	1.9812(13)	2.401(3)	2.4134(5)
Fe-B	--	--	--	1.9964(13)	2.414(4)	--
B-X	1.633(3)	1.641(11)	1.666(4)	1.592(2)	2.020(14)	2.0504(19)
Fe-B (Å)	3.349	3.329	3.418	3.343	3.907	3.848
ΣB₁α °	325.6(2)	326.4(6)	326.54(18)	321.69(16)	323.9(9)	319.57(12)
ΣB₂α °	--	--	--	322.34(16)	320.9(9)	--
τ₅	0.02	0.04	0.14	0.35	0.26	0.27

Table S20. Metrical parameters for (BBNPDPBu)M(SPh)₂ species.

	2-SPh	(BBNPDPBu)Fe(SPh)₂(NH₃)₂	(BBNPDPBu)Zn(SPh)₂	(butylPDPBu)Fe(SPh)₂
M-Npyrazole (Å)	2.2148(13)	2.321(5)	2.2508(9)	2.162(5)
M-Npyrazole (Å)	--	2.346(6)	--	2.407(9)
M-Npyridine (Å)	2.1139(18)	2.114(5)	2.0998(13)	1.897(10)
M-S	2.4134(5)	2.365(2)	2.3510(3)	2.356(4)
M-S	--	2.385(2)	--	2.332(6)
B-X	2.0504(19)	1.670(10)	2.0657(13)	--
B-X	--	1.631(9)	--	--
M-S-Ph (°)	90.06(6)	110.0(3)	91.94(4)	113.8(3)
M-S-Ph (°)	--	111.0(3)	--	114.0(4)
ΣB₁α (°)	319.57(12)	322.8(6)	319.14(8)	--
ΣB₂α (°)	--	319.4(6)	--	--
τ₅	0.27	0.30	0.26	0.61
Table S21. Comparison of literature values for Fe-B distances and υ(Fe-H-B) stretching frequencies.

Compound	Fe-B (Å)	υ(Fe-H-B) (cm⁻¹)	Reference
(BBNPDPBu)FeH₂	2.970	1839	This work
[(BBNPDPBu)FeH₂]²⁻	2.977 / 3.060	1866	This work
(BBNPDPBu)ZnH₂	2.977	1775	This work
(P₂B-H)FeH(CO)₂	2.743	2080	J. Am. Chem. Soc. 2013, 135, 12580.
(PNP)FeH(CO)(BH₄)	2.702	2339	Adv. Synth. Catal. 2016, 358, 820.
(PNP)FeH(CO)(BH₄)	2.744	2051	Angew. Chem. Int. Ed. 2013, 52, 14162.
(P₂B-H)FeH(CO)(BH₄)	2.746	2030	Inorg. Chim. Acta 1986, 114, C27.
(P₂B-H)FeH(CO)(BH₄)	2.826	1866	This work
(PNP)FeH(CO)(BH₄)	2.721	Not reported	Organometallics 2014, 33, 6905.
(PNP)FeH(CO)(BH₄)	2.721	2130 / 2000	Organometallics 2015, 34, 4560.
(PNP)FeH(CO)(BH₄)	2.708 / 2.700	2360	Catal. Sci. Technol. 2016, 6, 4768.
(PNP)FeH(CO)(BH₄)	2.745	1896	Inorg. Chem. 2014, 53, 2133.
(PNP)FeH(CO)(BH₄)	2.749	2038	J. Am. Chem. Soc. 2014, 136, 7869.
(P₂)FeH(H₂)	2.760	2090	Chem. Sci. 2018, 9, 6264.
(P₂)FeH(H₂)	2.763 / 2.769	2483	Chem. Sci. 2018, 9, 6264.
(P₂)FeH(H₂)	2.763 / 2.769	2483	Chem. Sci. 2018, 9, 6264.
(P₂)FeH(H₂)	2.436	Not reported	Organometallics 2017, 37, 729.
(P₂)FeH(H₂)	2.649	2360 / 2340	Chem. Eur. J. 2018, 24, 12346.
DFT Calculations

Calculations were performed using Gaussian 09 revision D.01. Calculations of all compounds were performed using the B3LYP functional and an ultrafine integration grid for all atoms. Optimizations were performed in the gas phase with the 6-31g(d) basis set for all atoms followed by vibrational frequency analysis to confirm that local minima were obtained through the absence of imaginary vibrational frequency modes. Natural bonding orbital analysis and Wiberg bond index analysis were performed using NBO version 3.1. Becke orbital composition analysis was performed using Multiwfn version 3.5. Solvation corrections were determined for thermodynamic profiles by the integral-equation-formalism polarizable continuum model (IEFPCM) using a SMD solvation model of THF.

Table S22. Spin state configurations

Complex	H(gas)	G(gas)
1 S=0	-3187.480914	-3187.602773
1 S=1	-3187.501231	-3187.627250
1 S=2	-3187.523920	-3187.654000
1 S=3	-3187.462148	-3187.590482
1' S=1/2	-3187.563635	-3187.687652
1' S=3/2	-3187.707423	-3187.707423
1' S=5/2	-3187.698959	-3187.568936
Zn' S= 1/2	-3703.098298	-3703.226102

Figure S86. Summary of key bond parameters for the optimized geometries of 1, 1-K(crypt), (BBNPDpBu)ZnH₂, and (BBNPDpBu)ZnH₂
Figure S87. Spin density plots for 1 and 1⁻.

Figure S88. β LUMO at 0.03 au for 1, and β SOMO for 1⁻.
Figure S89. Overlay of XRD (yellow) and optimized geometries (blue) for a) 1, b) 1-K(crypt), c) 2-NH₂ d) 2-NHMe, e) 2-NHPh, f) 2-PPhPh g) 2-OH h) 2-SPh
Table S23. Summary of thermodynamics for E-BBN binding

Compound				
	1	2.3	2-OH	10.3
	2-SPh	-8.6	-18.4	

Table S24. Summary of NBO charge analysis

Compound	M	E	B	N(Py)
1	1.327	-0.254	0.421	-0.565
1'	1.256	-0.212	0.361	-0.687
2-NH₂	1.342	-1.196	0.684	-0.560
2-NHMe	1.372	-1.013	0.684	-0.568
2-NHPh	1.384	-0.966	0.694	-0.573
2-PHPh	1.135	0.264	0.318	-0.565
2-OH	1.359	-0.989	0.800	-0.563
2-Sph	1.160	-0.146	0.650	-0.567
1'	1.045	-0.217	0.389	-0.541
		-0.458	1.031	
2-OH'	1.295	-0.978	0.798	-0.544
		-1.117	1.030	
2-Sph'	1.120	-0.127	0.608	-0.561
		-0.404	1.032	
Table S25. Summary of Wiberg bond index analysis

Compound	M-E	E-B	M-N(Py)	Total Valence E	Total Valence B	% B-H	% M-H
1	0.18	0.70	0.17	0.91	3.48	74%	19%
1'	0.14	0.77	0.30	0.95	3.53	81%	14%
(BBNpDPBu)ZnH2	0.22	0.65	0.18	0.92	3.48	71%	24%
(MePDPBu)FeH2	0.65	0.23	0.73	3.53	81%	14%	89%
H-BBN(CH3)	0.95		0.99	3.59			
BBN(CH3)				2.83			
2-NH2	0.24	0.66	0.16	2.61	3.28		
2-NHMe	0.18	0.64	0.12	2.72	3.28		
2-NHPh	0.16	0.60	0.13	2.80	3.27		
2-PHPh	0.43	0.85	0.17	3.38	3.57		
2-OH	0.24	0.55	0.16	1.60	3.15		
2-SPh	0.38	0.60	0.16	2.25	3.31		
1'	0.18	0.73	0.19	0.76	3.51		
2-OH'	0.66	0.00		1.31	2.82		
2-SPh'	0.36	0.64	0.17	1.34	2.81		
(MePDPBu)Fe(NH2)2	0.55	0.35		2.34			
(MePDPBu)Fe(NHMe)2	0.54	0.41		2.62			
(MePDPBu)Fe(NHPh)2	0.40	0.18		2.66			
(MePDPBu)Fe(PHPh)2	0.55	0.18		2.73			
(MePDPBu)Fe(OH)2	0.40,0.21		1.34				
(MePDPBu)Fe(SPh)2	0.50,0.18		1.86				
(MePDPBu)Fe(SPh)3	0.57						
Table S26. Frontier orbital energies (eV) and Becke orbital composition for 1 and 2-E and analogous (MePDPtBu)Fe(E)₂ complexes.

E	α/HOMO	α/LUMO	β/HOMO	β/LUMO	Orbital Composition β LUMO
(BBNPDptBu)Fe(E)₂					
H	-5.303	-2.231	-5.204	-2.485	17.1
NH₂	-4.918	-2.184	-4.917	-2.346	9.6
NHMe	-4.865	-2.163	-4.879	-2.327	10.4
NHPh	-5.048	-2.041	-5.067	-2.294	15.9
PHPh	-5.067	-2.171	-5.222	-2.506	9.5
OH	-4.925	-2.171	-4.893	-2.332	20.4
SFh	-4.346	-1.766	-4.193	-1.976	15.3
SPh (2-SPh")	-4.535	-1.795	-4.415	-1.997	13.6
(MePDPtBu)Fe(E)₂					
H	-3.930	-1.196	-3.320	-1.492	20.5
NH₂	-4.437	-0.766	-2.736	-0.877	59.7
NHMe	-4.264	-0.754	-2.784	-0.653	21.5
NHPh	-3.630	-1.668	-3.589	-1.859	7.9
PHPh	-3.831	-0.490	-3.812	-1.929	12.0
OH	-5.423	-1.018	-3.078	-0.890	14.7
SFh	-5.532	-1.725	-5.031	-2.376	10.6
Computational analysis of reduction potentials:

To avoid the reliance on a computational investigation of the reduced forms of synthetically intractable compounds, an analysis of LUMO energies was used as a surrogate for computationally obtained E^0 values.\(^{14}\) A single case of each heteroatom (excluding the functional 2-SPh) was analyzed by a computationally determined E^0.\(^{15}\) A correction of -0.56 V was used to correct from potentials vs SCE to Fc.\(^{16}\)

The trend in DFT calculated E^0 values for the investigated subset shows β LUMO as a fair surrogate for the calculated E^0 (Figure S90). High level dispersion corrected DFT calculations for the compounds were cost prohibitive and the relative position of E^0 (DFT) is higher than anticipated by experiment. This is a common problem for anions without modeled dispersion.\(^{15}\) The relative differences in E^0 (DFT) are more illustrative of the analysis and provide similar output to the β LUMO (Figures S91 and S92). The experimental $E_{1/2}$ of 2-OH is quasireversible and presents a second source of uncertainty and could be a potential source of disagreement in the relative ordering of 2-NH$_2$ and 2-OH.

Table S27. Energies for the calculation of E^0 vs Fc for 1 and 2-E.

Molecule	Charg.	H(SCF) (eV)	G(Solv) (kcal/mol)	H(SCF) + G(Solv) (eV)	Δ (eV)	ZPE-Entropy correction (eV)	E^0 (calc) V (vs. Fc/Fc$^+$)	$E_{1/2}$, V (vs. Fc/Fc$^+$)
(BBNPDPtBu)Fe(H)$_2$	0	-86736.988	25.50	-86735.892	-2.308	-0.088	-2.594	-2.06
	-1	-86738.493	6.83	-86738.200	-2.308	-0.088	-2.594	-2.06
(BBNPDPtBu)Fe(NH$_2$)$_2$	0	-89750.909	29.07	-89749.659	-1.913	-0.130	-2.947	-2.12
	-1	-89752.085	11.91	-89751.573	-1.913	-0.130	-2.947	-2.12
(BBNPDPtBu)Fe(OH)$_2$	0	-90833.656	30.76	-90832.333	-2.077	-0.116	-2.797	-2.12
	-1	-90834.880	10.91	-90834.410	-2.077	-0.116	-2.797	-2.12
(BBNPDPtBu)Fe(PHPh)$_2$	0	-117916.663	41.65	-117915.872	-2.351	-0.112	-2.527	-1.96
	-1	-117918.282	24.62	-117917.224	-2.351	-0.112	-2.527	-1.96

Figure S90. LUMO β energy (eV) vs E^0 (calc) V (vs. Fc/Fc$^+$) for 1 and 2-E.
Figure S91. LUMO β energy (eV) vs $E_{1/2}$ (expt.) V (vs. Fc/Fc$^+$) for 1 and 2-E.

Figure S92. E^0 (calc) V (vs. Fc/Fc$^+$) vs $E_{1/2}$ (expt.) V (vs. Fc/Fc$^+$) for 1 and 2-E.
E	\((\text{BBNPDP}^{\text{tBu}})\text{Fe}(E)_{2}\)	\((\text{MePDP}^{\text{tBu}})\text{Fe}(E)_{2}\)
H	![Image](image1.png)	![Image](image2.png)
NH₂	![Image](image3.png)	![Image](image4.png)
NHMe	![Image](image5.png)	![Image](image6.png)
PHPH	![Image](image7.png)	![Image](image8.png)
OH	![Image](image9.png)	![Image](image10.png)

Figure S93. Figure of β LUMO at 0.03 au for 1, 2-E and analogous \((\text{MePDP}^{\text{tBu}})\text{M}(E)_{2}\) complexes.

S98
Optimized Geometries

1 S=2

Atom	X	Y	Z
Fe	8.59011200	10.67669000	-0.71950800
N	10.11120900	12.19601200	-0.71848500
C	10.14848600	13.09116300	0.28581700
C	11.11999900	14.09672700	0.31534000
H	11.14679800	14.81470100	1.12757500
C	12.05747000	14.13987200	-0.71711400
H	12.82597400	14.90743100	-0.71657400
C	9.12648500	12.86075300	1.30933600
C	8.75630600	13.55234100	2.47141800
H	8.94715200	14.49151200	2.82942500
C	7.74651900	12.79412000	3.06397400
H	7.37697400	15.29793600	4.16023000
H	8.48028000	13.39758000	5.20680300
C	5.43631700	13.37994900	3.86083800
H	4.84340900	13.68947000	4.72935800
H	4.97566900	12.47735100	3.44881500
H	5.38592000	14.16519800	3.10080500
C	6.97986300	12.07924700	5.39818500
H	6.44983800	12.44184700	6.28637700
H	8.01710900	11.87317200	5.68386100
H	6.51576700	11.13571300	5.10323100
N	8.38680300	11.74675000	1.18422000
N	7.57061400	11.70116700	2.25193800
C	6.84548100	10.43255800	2.44719800
H	6.54416500	10.11027900	1.44930600
H	5.93782500	10.64798000	3.01257700
C	7.69333000	9.35223800	3.14098900
H	7.04501900	8.46698800	3.19486000
H	7.86394300	9.66700700	4.17969600
C	9.03032800	8.97596100	2.47052700
H	9.52760100	8.30420000	3.18646900
H	9.68189300	9.86389700	2.44753600
B	9.01923800	8.21196800	1.0228200
H	8.71823000	9.10986100	0.06712400
C	7.92691000	7.01763900	0.83298300
H	6.90079900	7.33889900	1.08080700
C	8.28409500	5.88935300	1.83914900
H	8.12705700	6.27774000	2.85629100
H	7.58726700	5.04154200	1.73503700
C	9.72985000	5.34962900	1.74019000
H	9.79079500	4.63365200	0.91386000
H	9.95466100	4.76290900	2.64297000
Element	X	Y	Z
---------	---------	---------	---------
C	10.81931900	6.43323400	1.56107900
H	11.75562900	5.93949400	1.25233100
H	11.03370000	6.87897800	2.54251600
C	10.45904700	7.58078600	0.57877400
H	11.27805400	8.31846700	0.65396100
C	10.41377000	7.11784200	-0.89664900
H	11.36185500	6.63507600	-1.18875600
H	10.33241200	8.01804500	-1.52277500
C	9.25065000	6.16378400	-1.25429600
H	9.14867900	6.11496500	-2.34992100
H	9.51473700	5.14485600	-0.95309300
C	7.88378800	6.53969000	-0.63689900
H	7.43744800	7.35324600	-1.22912800
H	7.20117100	6.63507600	-1.18875600
C	11.00712200	12.23288300	-1.72212100
C	12.01390000	13.20317700	-1.75025400
H	12.73248500	13.22965700	-2.56196000
C	10.77620200	11.21186100	-2.74650400
C	11.46822600	10.84159300	-3.90829600
C	12.40815100	11.23152100	-4.26532400
C	10.70921800	9.83313300	-4.50210000
C	11.06782600	8.99504700	-5.72609400
C	12.39134000	9.52815900	-6.31745400
H	12.66663600	8.92842200	-7.19121500
H	13.21391100	9.46129800	-5.59675200
H	12.29744900	10.57020500	-6.64323600
C	11.29281500	7.52277100	-5.30017600
H	11.60232100	6.93011700	-6.16883300
H	10.38934000	7.06291400	-4.88919300
H	12.07738500	7.45084800	-4.53958200
C	9.99513800	9.06900600	-6.83738000
H	10.35774500	8.53921300	-7.72568100
H	9.79055000	10.10670800	-7.12247000
H	9.05081600	8.60589000	-6.54345500
N	9.66119400	10.47346700	-2.62272300
N	9.61542600	9.65804100	-3.69101900
C	8.34611000	8.93453500	-3.88771700
H	8.02276200	8.63282000	-2.89029100
H	8.56088000	8.02707500	-4.45365300
C	7.26729300	9.78419400	-4.58162200
H	6.38143800	9.13683300	-4.63698600
H	7.58319600	9.95557200	-5.61985900
C	6.89174400	11.12085400	-3.91008200
H	6.22095200	11.61946600	-4.62600100
H	7.78025500	11.77158700	-3.88580400
B	6.12674500	11.10899100	-2.46237500
H	7.02380500	10.80653000	-1.50686800
C	4.93154500	10.01732100	-2.27483400
---	-------	-------	-------
H	5.25225600	8.99121000	-2.52337200
C	3.80415600	10.37618600	-3.28141500
H	4.19308600	10.21978400	-4.29844800
H	2.95579900	9.67985000	-3.17846900
C	3.26536300	11.82222700	-3.18152700
H	2.54887800	11.88293100	-2.35561900
H	2.67940200	12.04824800	-4.08449700
C	4.34960700	12.91078300	-3.00072300
H	3.85631300	13.84715800	-2.69145800
H	4.79613900	13.12540800	-3.98167700
C	5.49626500	12.54883800	-2.01799400
H	6.23456200	13.36740100	-2.09196700
C	5.03232900	12.50255900	-0.54291700
H	4.55003600	13.45071700	-0.25027000
H	5.93207200	12.42001400	0.08371500
C	4.07723000	11.33978200	-0.18694200
H	4.02761000	11.23686700	0.90855900
H	3.05868700	11.60484400	-0.48858200
C	4.45260600	9.97321100	-0.80530400
H	5.26546400	9.52578100	-0.21293800
H	3.59447000	9.29108100	-0.68826800
1 S=0

Atoms	x	y	z
Fe	8.32216900	10.40822400	-0.71927500
N	9.64600400	11.73345200	-0.71993100
C	9.68449200	12.63497900	0.31491600
C	10.65650100	13.63583400	1.27052300
H	10.68100600	12.88996800	2.98173000
C	11.59273200	13.68123700	4.16336700
H	12.36023100	14.44914100	5.80689800
N	7.91142800	11.26147500	0.97598800
C	6.39302400	9.75552100	1.99305000
H	6.20754500	9.53005400	0.93876600
H	5.41609700	9.84774600	2.47126300
C	7.25635100	8.86108800	2.65383700
H	6.87590500	7.70003600	2.28179400
H	11.01127600	5.89519500	1.99767400
H	11.58201400	7.32807600	2.15315500
H	12.68239500	7.26327100	2.15923000
Atom	X	Y	Z
------	-----------	-----------	-----------
H	11.307751	7.710092	3.145432
C	11.109127	8.359514	1.089217
H	11.475500	9.343481	1.428737
C	11.732370	8.103760	-0.301229
H	12.833579	8.096524	-0.242808
H	11.470907	8.949887	-0.951124
C	11.271221	6.800139	-0.986963
H	11.567460	6.826989	-2.046414
H	11.816926	5.951944	-0.561616
C	9.751394	6.535127	-0.899306
H	9.258126	7.168413	-1.646932
H	9.557484	5.495336	-1.211805
C	10.547203	11.772148	-1.733820
C	11.547547	12.744671	-1.755610
H	12.266518	12.769322	-2.567251
C	10.263165	10.730540	-2.710288
C	10.802142	10.294718	-3.932766
H	11.690138	10.661347	-4.422269
C	9.974933	9.268177	-4.377940
C	10.162359	8.379484	-5.603074
C	11.411656	8.860183	-6.372810
H	11.568912	8.220364	-7.247465
H	12.313549	8.805833	-5.753878
H	11.294796	9.890104	-6.727986
C	10.403126	6.915876	-5.159654
H	10.574289	6.285080	-6.039898
H	9.550107	6.500913	-4.614068
H	11.280909	6.842168	-4.509312
C	8.958858	8.441897	-6.571995
H	9.203131	7.896467	-7.490798
H	8.719212	9.475534	-6.843375
H	8.060859	7.993731	-6.251112
N	9.174620	9.997966	-2.415182
N	8.989586	9.126873	-3.422068
C	7.669108	8.478500	-3.431442
H	7.444278	8.293046	-2.377034
H	7.761870	7.501549	-3.909501
C	6.573604	9.340790	-4.091862
H	5.613071	8.960065	-3.718770
H	6.581678	9.128972	-5.168244
C	6.675476	10.864646	-3.867443
H	6.020767	11.300520	-4.634740
H	7.680273	11.199166	-4.168040
B	6.221798	11.565514	-2.463404
H	7.089489	11.244911	-1.465907
C	4.736408	11.181048	-1.912093
H	4.591530	10.094010	-1.775873
C	3.721825	11.614950	-3.007772
---	---	---	---
H	3.87678400	10.98005000	-3.89094900
H	2.69073500	11.41184300	-2.67533900
C	3.81014300	13.09992000	-3.43765100
H	3.25611600	13.71086100	-2.71778300
H	3.27321700	13.22610100	-4.38902700
C	5.24400500	13.66842000	-3.59219900
H	5.18092000	14.76890200	-3.59823600
H	5.62626600	13.39360400	-4.58423000
C	6.27393400	13.19383100	-2.52754900
H	7.25864000	13.55912800	-2.86611000
C	6.01772600	13.81700900	-1.13713900
H	6.01147400	14.91823800	-1.19538400
H	6.86320100	13.55474800	-0.48676000
C	4.71331200	13.35687300	-0.45219100
H	4.74000500	13.65264800	0.60738700
H	3.86583600	13.90359000	-0.87767400
C	4.44674600	11.83737300	-0.54062700
H	5.07932900	11.34294500	0.20687300
H	3.40667300	11.64441700	-0.22847900
Atom	X	Y	Z
------	----	----	------
Fe	8.62326100	10.71963300	-0.75006800
N	10.08144900	12.06207500	-0.70746500
C	10.11242600	12.96589400	0.29114000
C	11.12310100	13.93360700	0.33339500
H	11.15110100	14.66946700	1.12925800
C	12.09409500	13.91337400	-0.66741800
H	12.89462800	14.64715400	-0.65228100
C	9.03486100	12.72915800	1.23620700
C	8.60067500	13.34127100	2.41864300
H	8.98299000	14.24641100	2.86216400
C	7.55244400	12.55990600	2.89415900
C	6.64124800	12.86263900	4.08244800
C	7.15878200	14.13991100	4.78075000
H	6.50703200	14.37903700	5.62737200
H	7.15431800	15.00198900	4.10525400
H	8.17487600	14.00551900	5.16854600
C	5.20440000	13.14234500	3.57739000
H	4.56444800	13.42136000	4.42269400
H	4.75576600	12.26951500	3.09453600
H	5.19456000	13.96314800	2.85295800
C	6.61434300	11.73357000	5.13807200
H	6.05034600	12.07414300	6.01395900
H	7.62520100	11.47067600	5.46766100
H	6.12863200	10.82733000	4.77060100
N	8.28476200	11.63318200	0.98022400
N	7.40866900	11.52362500	1.99816700
C	6.69986100	10.23808400	2.10527300
H	6.52573800	9.92315500	1.07652400
H	5.72858500	10.42154600	2.56779400
C	7.51382700	9.18243000	2.87045700
H	6.94628600	8.24637500	2.78035800
H	7.50749800	9.44067900	3.93677400
C	8.95704000	8.97321800	2.37632000
H	9.43016000	8.32529900	3.12756300
H	9.50791200	9.92342700	2.46494000
B	9.18050300	8.27625500	0.91417000
H	8.69894600	9.11211300	-0.03925100
C	8.37987500	6.86722100	0.70219500
H	7.29461100	6.96740200	0.87359700
C	8.89742300	5.87103600	1.77774900
H	8.56513500	6.22886700	2.76224500
H	8.42293200	4.88433700	1.64795300
C	10.43254700	5.67035400	1.81784300
H	10.71770600	4.93897600	1.05441900
H	10.70521500	5.20157000	2.77477500
C	11.27760700	6.95483900	1.63034100
H	12.31241100	6.65629600	1.39340400
---	----------	----------	----------
H	4.18237000	10.69225600	-4.25819800
H	2.81445700	10.37158000	-3.21115700
C	3.46357300	12.43609600	-3.19650400
H	2.69928900	12.61242400	-2.43259400
H	2.99718000	12.74891100	-4.1422100
C	4.68459500	13.34497900	-2.91369100
H	4.31445500	14.33852100	-2.61108000
H	5.22718700	13.51015300	-3.85417100
C	5.68820100	12.79960700	-1.86005900
H	6.54367700	13.49919300	-1.86219500
C	5.10370100	12.82097500	-0.42810500
H	4.74991200	13.83292800	-0.16617500
H	5.92202000	12.60156800	0.26748300
C	3.95404200	11.82180900	-0.16430500
H	3.79938600	11.72841200	0.92197400
H	3.01612400	12.24033300	-0.54329300
C	4.16414000	10.41457300	-0.76641800
H	4.84216700	9.84598900	-0.11534400
H	3.20320700	9.87479800	-0.73230300
Element	X	Y	Z
---------	-----------	-----------	-----------
Fe	8.69898900	10.78525800	-0.71820800
N	10.13489400	12.21804300	-0.71435000
C	10.17812800	13.16638000	0.29822000
C	11.14344800	14.15682400	0.30904500
H	11.15389100	14.88785900	1.11205300
C	12.11633100	14.19545000	-0.70891200
H	12.88383600	14.96138200	-0.70681500
C	9.16091300	12.92802100	1.28893800
C	8.73120900	13.58502900	2.45405000
H	9.09435400	14.52965000	2.83506000
C	7.71626800	12.80668500	2.99955900
C	6.83988700	13.14114000	4.20466200
C	7.30739000	14.48944100	4.79593100
C	7.22931500	15.30051300	4.06441400
C	8.34344700	14.43805400	5.14841400
C	5.36840500	13.30494900	3.74980500
H	6.67546000	14.74961000	5.65160000
H	7.97225600	11.92157900	5.63590000
H	6.50923500	11.11917000	5.04063000
N	8.42591000	11.80047300	1.11603900
N	7.55754600	11.72295600	2.16907400
C	7.91794600	10.42209400	2.39578600
H	6.62131800	10.04985700	1.41280200
H	6.00099000	10.59581500	2.96084000
C	7.19736400	8.50572200	3.25206000
H	8.03139000	9.78181600	4.12089100
C	9.12975800	9.01892000	2.40261800
H	9.66446200	8.35899900	3.10367700
H	9.77741200	9.03999400	2.32687900
B	9.05887100	8.21202700	0.99284200
H	8.75618900	9.20868800	0.00139000
C	7.89767400	7.10065700	0.80001900
H	6.89763000	7.46556600	1.08491600
C	8.24248700	5.95527700	1.79997800
H	8.13256300	6.34894900	2.82058700
H	7.50338500	5.14313400	1.71247800
C	9.65923000	5.35448200	1.65438400
H	9.66474100	4.63963300	0.82564700
H	9.88487100	4.75712900	2.54941000
C	10.78715100	6.39156200	1.44670500
H	11.69200000	5.86518900	1.10360700
Element	X	Y	Z
---------	------	------	------
H	11.05015100	6.82677700	2.42033700
C	10.44642400	7.55679200	0.46987600
H	11.29216400	8.26200200	-0.52331000
C	10.33485600	7.09219800	-1.00106500
H	11.25251300	6.56689700	-1.31233800
H	10.28024900	7.99103700	-1.62884000
C	9.12173400	6.18911900	-1.32215400
H	8.98485600	6.14646700	-2.41339200
H	9.34796000	5.15924200	-1.02860900
C	7.79174400	6.62484400	-0.66373000
H	7.36157800	7.45499200	-1.24661200
H	7.06839100	5.79898500	-0.75802300
C	11.08609700	12.26109000	-1.72415200
C	12.07851800	13.22541200	-2.12964700
H	12.81177300	13.23655800	-2.53061600
C	10.84845400	11.24801100	-2.71826100
C	11.50802800	10.81980100	-3.88249900
H	12.45088800	11.18135000	-4.25973600
C	10.72904400	9.80799500	-4.43288800
C	11.06513300	8.93400400	-5.63927300
C	12.41595300	9.40040200	-6.22563000
H	12.67724400	8.77017100	-7.08222500
H	13.22487000	9.31870000	-5.92121000
C	12.36753100	10.43747500	-6.57557900
C	11.22489400	7.46106700	-5.18769000
H	11.52498100	6.84304900	-6.04202900
H	10.29792800	7.04266400	-4.78469900
H	11.99388000	7.37122800	-4.41329000
C	10.01083400	9.03182900	-6.76711600
H	10.36502700	8.47540400	-7.64254800
H	9.85171100	10.07233900	-7.07048500
H	9.04484800	8.60936400	-6.48172800
N	9.71871600	10.51516100	-2.55065800
N	9.64244900	9.64969000	-3.60611500
C	8.34115000	9.01276400	-3.83791700
H	7.96579800	8.71438700	-2.85667000
H	8.51498200	8.09691900	-4.40473700
C	7.32425600	9.91632500	-4.55600200
H	6.42756100	9.29746400	-4.69855200
H	7.70736500	10.13136000	-5.56217300
C	6.94183700	11.22694300	-3.84317600
H	6.28473000	11.76453600	-4.54466900
H	7.82784900	11.87283800	-3.76346600
B	6.13110500	11.15394300	-2.43573600
H	7.12477200	10.84615200	-1.44261100
C	5.01704600	9.99438400	-2.24876900
H	5.38078000	8.99439600	-2.53536500
C	3.87485000	10.34398100	-3.25070500
	X	Y	Z
-----	-----------	-----------	-----------
Fe	16.75353600	11.33465700	0.61330200
N	18.02429900	12.73454900	-0.08490600
N	17.07838000	10.77536700	-1.45951100
N	16.69462500	9.79941800	-2.32243200
N	17.06921600	12.66049000	2.30333200
N	16.67165600	12.77169700	3.59730400
C	18.55635200	12.63852400	-1.35659900
C	19.44633200	13.57871600	-1.85307600
C	19.81831600	14.67505800	-1.05421600
C	19.27596800	14.78122400	0.23966600
C	18.27941500	10.94460000	-3.35760600
C	17.41654600	9.86402400	-3.49168000
C	17.36910500	8.84272300	-4.62444400
C	18.37741400	9.26157400	-5.71608100
C	17.79512200	7.45192200	-4.09263200
C	15.97630000	8.74609700	-5.29055900
C	15.46976200	9.07966300	-1.95815300
C	14.17423000	9.81855400	-2.33724500
C	13.96399900	11.21921500	-1.72367400
C	12.78377800	10.23526600	0.58841300
C	11.36255100	10.38805800	-0.01467300
C	10.74109000	11.79949700	0.10466700
C	11.71187200	12.96494100	-0.20193200
C	13.14352200	12.80375200	0.37119800
C	13.19068900	12.92862000	1.91179000
C	12.52616800	11.76896900	2.68998500
C	12.81317500	10.35649100	2.12881100
C	17.81384800	13.74849500	2.02468100
C	17.86605900	14.58295100	3.16199800
C	17.13450900	13.94219400	4.15413100
C	16.76404800	14.48209400	5.53231200
C	17.20968500	13.55435900	6.68564100
C	15.23446300	14.71141300	5.60656800
C	17.46074600	15.84469100	5.73712500
C	16.10361000	11.55036800	4.18008400
C	17.15230800	10.55324700	4.70714600
C	18.24732700	10.10290100	3.71658400
C	19.15269400	8.55057000	1.64415900
C	19.95932800	7.62173200	2.58809200
C	19.14234200	6.49372100	3.26311500
C	17.74269600	6.91726400	3.76843000
C	16.93685500	7.82726100	2.80450500
C	16.49093600	7.10916700	1.50967500
C	17.62697500	6.75059000	0.52335400
C	18.70389500	7.84556600	0.34305100
---	---	---	---
B	13.76478400	11.35650300	-0.09690500
H	14.92459600	11.24064000	0.49836800
B	17.84884000	9.14053200	2.44652600
H	17.14787500	9.83229600	1.57917900
H	19.01491500	11.7351700	-4.07529000
H	19.84028200	13.46881700	-2.86057100
H	20.50902200	15.42534000	-1.42847800
H	19.54679900	15.61546000	0.88715600
H	18.35269300	15.54232000	3.24007500
H	18.55141800	15.74641000	5.69713200
H	20.54647900	15.61154600	0.88715600
H	18.35269300	15.54232000	3.24007500
H	18.55141800	15.74641000	5.69713200
H	19.54679900	15.61546000	0.88715600
H	18.35269300	15.54232000	3.24007500
H	18.55141800	15.74641000	5.69713200
H	19.39930600	9.30211100	-5.32441000
H	18.35898500	8.53219400	-6.53440700
H	18.13017300	10.24099000	-6.13357000
H	18.79495300	7.49744200	-3.64807700
H	17.11180900	7.07339300	-3.32693500
H	17.81483000	6.72441800	-4.91445300
H	16.02484800	8.06189400	-6.14726000
H	15.21240000	8.36857300	-4.60825500
H	15.64735700	9.72544100	-5.65036000
H	15.51959400	11.09681600	3.37731700
H	15.40694000	11.83697400	4.97190000
H	17.61315800	10.98528700	5.60758900
H	16.57891800	9.68066800	5.05275300
H	18.79311600	10.99323000	3.36786900
H	18.98271600	9.55978800	4.33177900
H	19.84359200	9.35684000	1.34126500
H	18.30666600	8.61814800	-0.32801700
H	19.56483100	7.39919800	-0.18692600
H	18.10618200	5.81919100	0.84733100
H	17.18681100	6.51412800	-0.45896000
H	15.92479600	6.18808800	1.73609700
H	15.78028200	7.77588100	0.99990200
H	16.00882000	8.09571300	3.33857600
H	17.17437000	6.00382400	4.01850200
H	17.86737100	7.45757200	4.71869600
H	19.03319800	5.65797500	2.56269100
H	19.72089900	6.08562000	4.10711800
H	20.81004100	7.16125600	2.05507700
H	20.40733500	8.24345200	3.37599000
H	15.50409000	8.09098900	-2.42230800
---	------------	------------	------------
H	15.52186100	8.93596000	-0.87705600
H	14.12088900	9.87087300	-3.43520900
H	13.35571000	9.15272400	-2.02710400
H	14.77021700	11.88185600	-2.07353300
H	13.05922000	11.61049700	-2.21769700
H	13.73241100	13.64776700	-0.02903100
H	13.10458500	9.20394100	0.35916600
H	11.41682900	10.12551700	-1.08167500
H	10.66124700	9.66250400	0.43470200
H	9.87233000	11.86744800	-0.56955800
H	10.32857800	11.92664900	1.11205800
H	11.79082300	13.07170200	-1.29311600
H	11.24910700	13.90319200	0.15268900
H	14.24760100	12.98664100	2.20247300
H	12.73250200	13.87637600	2.24932500
H	12.85004300	11.80921000	3.74254300
H	11.44256900	11.93004600	2.72412200
H	12.11011600	9.64740600	2.60136100
H	13.81457200	10.04273000	2.45750100
1S=1/2			
Fe 16.84706500 11.41971600 0.57291100			
N 17.98932000 12.77559900 -0.09260600			
N 17.11147100 10.80236700 -1.28164700			
N 16.69730700 9.76393500 -2.06159800			
N 17.03066500 12.56515200 2.16973700			
N 16.57808300 12.57464200 3.45555500			
C 18.52024800 12.68267100 -1.36697800			
C 19.36893700 13.65811100 -1.86730000			
C 19.68110100 14.77801900 -1.07536300			
C 19.13364000 14.87967100 -0.21635800			
C 18.30702600 13.87191500 0.68930600			
C 18.01528200 11.49967400 -2.01420100			
C 17.27939900 9.77411800 -3.27702500			
C 17.21988000 8.68422800 -4.34390900			
C 18.22249000 9.05949200 -5.50191100			
C 17.75239900 7.33535900 -3.75491400			
C 15.85769200 8.51369200 -4.94536100			
C 15.48766500 9.06580100 -1.61962200			
C 14.18809200 9.75538500 -2.06130100			
C 14.02262800 11.21463400 -1.59656600			
C 12.72636000 10.53993400 0.73661900			
C 11.35710700 10.80699100 0.05642100			
C 10.90774100 12.28818700 0.02699700			
C 12.02495000 13.31161900 -0.29549700			
C 13.40079800 13.02591700 -0.36207700			
C 13.83482000 13.25727100 1.89095000			
C 12.53766800 12.24854100 2.70167500			
C 12.69202100 10.77469200 2.26289400			
C 17.69728700 13.73203600 1.98628000			
C 17.63856700 14.49995900 3.16489500			
C 16.92558500 13.75017400 4.08835300			
C 16.46209800 14.19209300 5.47470800			
C 16.95309600 13.26524700 6.61089700			
C 14.91677800 14.28391100 5.50931900			
C 17.02584700 15.60218200 5.75610900			
C 16.11394500 11.29106100 3.98723600			
C 17.24809100 10.40545100 4.52442600			
C 18.35545400 10.05905200 3.51187600			
C 19.25828900 8.58629300 1.38601500			
C 20.15656900 7.73376100 2.32053800			
C 19.43726800 6.57813500 3.05852100			
C 18.02612400 6.91877800 3.59514800			
C 17.13366100 7.75082300 2.63629600			
C 16.69995500 6.95090200 1.38298900			
C 17.82680100 6.65011900 0.37071400			
C 18.81761300 7.81121100 0.12307600			
B 13.85791000 11.48792300 0.01110000			
H 15.00799000 11.24836300 0.61953700			
B 17.95210900 9.11752100 2.22845800			
H 17.17828000 9.80201900 1.40338500			
H 18.88128400 9.11752100 -4.03905100			
H 19.77662500 9.11752100 -2.86947100			
H 20.33713600 9.11752100 -1.45650500			
H 19.35946900 9.11752100 0.85074500			
H 18.03976400 9.11752100 3.30769600			
H 18.12165400 9.11752100 5.74749000			
H 16.67407100 9.11752100 -5.15904100			
H 18.18545400 9.11752100 -6.27375300			
H 17.93422500 9.11752100 -5.96525700			
H 18.76420900 9.11752100 -3.34689800			
H 17.10489200 9.11752100 -2.94758200			
H 17.76217300 9.11752100 -4.53821800			
H 15.86089900 9.11752100 -5.77368700			
H 15.13667300 9.11752100 -4.21671200			
H 15.47809900 9.11752100 -5.33653800			
H 15.60956000 9.11752100 -3.15463000			
H 15.36302200 9.11752100 -4.75189900			
H 17.67649700 9.11752100 -5.41856600			
H 16.76601700 9.11752100 -4.88224800			
H 18.83774100 9.11752100 -3.18157000			
H 19.13393800 9.11752100 -4.09584800			
H 19.88968200 9.11752100 1.03579500			
H 18.34886800 9.11752100 -0.55749100			
H 19.69161700 9.11752100 -0.41909400			
H 18.39061000 9.11752100 -0.70483400			
H 17.37434600 9.11752100 -0.58865200			
H 16.21418800 9.11752100 -1.66103000			
H 15.92355300 9.11752100 -0.87720200			
H 16.20572700 9.11752100 3.19347700			
H 17.52728300 9.11752100 3.87619700			
H 18.13872600 9.11752100 4.53165800			
H 19.36597600 9.11752100 2.39077500			
H 20.06724900 9.11752100 3.89647300			
H 21.00864800 9.11752100 1.76168600			
H 20.60267200 9.11752100 3.07044500			
H 15.53625300 9.11752100 -1.97984600			
-----	-------	-------	-------
H	15.55030700	9.03825800	-0.53080400
H	14.10798900	9.68310000	-3.15537800
H	13.37013200	9.14274500	-1.65541500
H	14.84128500	11.81671300	-2.02272100
H	13.12209900	11.58383800	-2.11400900
H	14.10229600	13.76730500	-0.05891600
H	12.93076200	9.46351200	0.59928400
H	11.41152300	10.44020700	-0.97867700
H	10.55814000	10.21510000	0.53781700
H	10.09374100	12.40149400	-0.70665500
H	10.45565900	12.54246100	0.99218000
H	12.16501200	13.34285900	-1.38471400
H	11.66008000	14.31648500	-0.01727100
H	14.41960600	13.20559100	2.24359200
H	13.02957000	14.27628200	2.13343000
H	12.79679500	12.33456500	3.76950100
H	11.48045900	12.53280600	2.64656700
H	11.88747900	10.18564200	2.73917900
H	13.63002200	10.38051500	2.67592100
$^{1^\text{st}} S=5/2$

Symbol	x-coordinate	y-coordinate	z-coordinate	
Fe	16.80276100	11.36124400	0.60196900	
N	18.04333500	12.83982600	-0.11155500	
N	17.14094000	10.84686900	-1.48583600	
N	16.79021300	9.85423300	-2.35036200	
N	17.14731600	12.67733600	2.30612100	
N	16.75129100	12.77134800	3.60594000	
C	18.54745200	12.77359700	-1.39792600	
C	19.38727100	13.75384700	-1.89830800	
C	19.72995100	14.85770400	-1.08848500	
C	19.20870500	14.92793000	0.22170200	
C	18.30489500	11.08065500	-3.40063800	
C	17.49043800	9.96326800	-3.52978600	
C	17.47454500	8.94858800	-4.66948100	
C	18.45899200	9.41275000	-5.76465500	
C	17.95771100	7.57140300	-4.14968700	
C	16.08281200	8.80340200	-5.32827800	
C	15.58565300	9.09925000	-1.99103600	
C	14.26688300	9.80173800	-2.36238100	
C	14.01083900	11.18724600	-1.73308500	
C	12.86244900	10.15962500	0.58259900	
C	11.43142200	10.29632800	-0.00129000	
C	10.79120400	11.69765300	0.13802100	
C	11.40809000	12.88004800	-0.17064400	
C	13.18175200	12.73592000	0.38436900	
C	13.24766500	12.84742100	1.92544500	
C	12.61014300	11.67131600	2.70132400	
C	12.91361300	10.26930000	2.12370000	
C	17.82032900	13.81264300	2.01654700	
C	17.82922300	14.65086500	3.15218500	
C	17.14577500	13.97105300	4.15190400	
C	16.75852100	14.49078700	5.53361400	
C	17.30808700	13.61422400	6.68300800	
C	15.21735700	14.59468000	5.64255400	
C	17.34221200	15.90897200	5.71338000	
C	16.28468500	11.52286000	4.21709800	
C	17.41655900	10.59609400	4.69705500	
C	18.40640900	10.09312700	3.62563500	
C	19.02381100	8.33775200	1.59282100	
C	19.76993200	7.36327100	2.54037300	
C	18.86516200	6.37000700	3.30775000	
C	17.55623500	6.97947800	3.86301900	
C	16.80755700	7.93806700	2.89961200	
C	16.20375300	7.22956900	1.66635500	
C	17.23053900	6.68479100	0.64698400	
C	18.42145400	7.62899200	0.35633000	
-----	-----	-----	-----	-----
B	13.81126100	11.30220400	-0.10743500	
H	14.98593200	11.19660100	0.47218200	
B	17.84652600	9.11523000	2.43098700	
H	17.19420700	9.84880500	1.55855900	
H	19.01566300	11.44587500	-4.12553900	
H	19.76592100	13.67541000	-2.91456600	
H	20.38256500	15.63864400	-1.46383000	
H	18.25063600	15.64178800	3.22061500	
H	18.43599800	15.90291300	5.64851600	
H	16.95717200	16.60016900	4.95629000	
H	17.06391500	16.29916900	6.69936800	
H	18.39554000	13.50451600	6.60663000	
H	17.07982900	14.08551400	7.64757200	
H	16.87054400	12.61355900	6.69281400	
H	14.81543200	15.23565700	4.85076000	
H	14.72863600	13.61998800	5.55643800	
H	14.93685800	15.02670000	6.61212200	
H	19.48074200	9.49185000	-5.37854500	
H	18.46450100	8.68774600	-6.58709000	
H	18.17042500	10.38689000	-6.17515700	
H	18.95737700	7.65078000	-3.71400200	
H	17.29349600	7.16465300	-3.38004800	
H	17.99453900	6.84974900	-4.97594100	
H	16.15264600	8.13061800	-6.19249400	
H	15.33852500	8.38836900	-4.64547500	
H	15.71255400	9.77263000	-5.68041500	
H	15.68420000	11.02374300	3.45352400	
H	15.61554500	11.77776700	5.04282500	
H	17.95683100	11.10798600	5.50744300	
H	16.91415000	9.73658200	5.16482600	
H	18.93712600	10.95933500	3.20189200	
H	19.18272300	9.54789300	4.18666500	
H	19.78552500	9.04004500	1.21063300	
H	18.08528800	8.41112200	-0.33677900	
H	19.19249600	7.05526000	-0.18886000	
H	17.60979300	5.71747000	0.99671900	
H	16.71170900	6.45920400	-0.29852300	
H	15.53791300	6.40025500	1.96436700	
H	15.55768400	7.95992500	1.15775300	
H	15.95105400	8.33755100	3.47015900	
H	16.90015200	6.15245300	4.18785000	
H	17.79928700	7.54131300	4.77743100	
H	18.61899900	5.52619800	2.65346400	
H	19.43767000	5.92976000	4.13981500	
H	20.53132500	6.78341100	1.98907000	
H	20.32962300	7.96092200	3.27398100	
H	15.64625800	8.11589000	-2.46389800	
H	15.64207600	8.94537000	-0.91152800	
-------	-------------	------------	-------------	
H	14.21190300	9.86571000	-3.45945900	
H	13.46954000	9.10627700	-2.06082900	
H	14.79395500	11.88044000	-2.07600900	
H	13.09273500	11.55525300	-2.21887600	
H	13.75288600	13.59166700	-0.01649900	
H	13.19611400	9.13597500	0.33952400	
H	11.47657700	10.04296400	-1.07104100	
H	10.74710300	9.55669700	0.45083900	
H	9.91350100	11.75857500	-0.52495700	
H	10.38957200	11.81016300	1.15144500	
H	11.80591000	12.99638900	-1.26175000	
H	11.26880900	13.80848200	0.19685300	
H	14.30742700	12.91661900	2.20446600	
H	12.78194500	13.78567900	2.27716900	
H	12.94702100	11.70733700	3.74978000	
H	11.52476300	11.81529800	2.75018500	
H	12.23127300	9.54314300	2.60000000	
H	13.92564500	9.97233900	2.43520100	
(BBNPDpBu)ZnH₂

Zn 6.76348900 8.29746300 19.60320700
N 5.22352100 6.75910100 19.60343400
C 5.18957800 5.85415300 18.61007400
C 4.22087300 4.84551500 18.58218200
H 4.20485900 4.12119900 17.77538600
C 3.27269100 4.12119900 17.77538600
H 2.50425300 4.04273300 19.60388400
C 6.20562500 6.07500200 17.58157000
C 6.57543600 5.37666000 16.42132400
H 6.19209200 4.43085000 16.07279100
C 7.57025500 6.14255400 15.81700300
C 8.39890700 5.79445100 14.58400900
C 7.88849200 4.54013000 14.01105800
H 8.48237900 4.18471000 13.13138500
H 6.84023500 4.52126400 13.69898800
H 6.19209200 4.43085000 16.07279100
C 9.88302400 5.60737700 14.98604000
H 10.46772900 5.30334400 14.1100200
H 9.98576500 4.83172600 15.75221500
H 10.32962800 5.62516000 15.38097800
C 8.27945000 6.85664800 13.46623900
H 8.80807900 6.50392100 12.57321800
H 8.71748700 7.81682500 13.74746500
H 7.23234100 7.02805800 13.19378100
N 6.92989700 7.19349300 17.69322400
H 7.73925100 7.24269000 16.6245100
C 8.43557000 8.52285000 16.40730100
H 9.32572600 8.32314200 15.80964500
H 8.76870400 8.85316800 17.39231100
C 7.54582300 9.58669000 15.74231400
H 7.33241700 9.25882200 14.71539700
H 8.18112600 10.47803800 15.64968500
C 6.23419900 9.95691300 16.46582700
H 5.58666800 9.06804500 16.51270700
H 5.70772000 10.62816100 15.77038900
B 6.29199200 10.72390300 17.90926300
H 6.53595400 9.80038400 18.88197500
C 7.44354500 11.85750500 18.09831900
H 8.45083400 11.49063600 17.83763700
C 7.12955900 13.00609300 17.09904600
H 7.86947800 13.81693100 17.19828800
H 7.25484400 12.61456700 16.07881900
C 5.71397900 13.61662600 17.21615600
H 5.50980700 14.21858900 16.31861200
H 5.69682500 14.32998000 18.04661100
C 4.57541900 12.58617200 17.40046400
H 4.32984400 12.15736700 16.41886700
	X	Y	Z
H	3.66713000	13.12164400	17.72243900
C	4.89028700	11.41731000	18.83691100
H	4.03842900	10.71859500	18.30347200
C	4.97216600	11.87103500	19.85024000
H	4.05141600	12.39874000	20.15127500
H	4.01389000	10.96576400	20.47191500
C	6.18327600	12.76633200	20.20076200
H	6.29812000	12.80459300	21.29542100
H	5.96636500	13.79845500	19.90709800
C	7.52437300	12.32836400	19.56824400
H	8.24839400	13.15183900	19.68070800
H	7.93902700	11.49249400	20.15189700
C	4.31869800	6.72629100	20.59694600
C	3.30903300	5.75866700	20.62516800
H	2.58483000	5.74356500	21.43208400
C	4.54079400	7.74228500	21.62523400
C	3.84305700	8.11302400	22.78554800
H	2.89691400	7.73072400	23.13432500
C	4.61009100	9.10716200	23.38953900
C	4.26308000	9.93643600	24.62241500
C	2.92224900	9.42749500	25.19575800
H	2.65373600	10.02183500	26.07536600
H	2.98850700	8.37923400	25.50802600
H	2.10864300	9.52335700	24.46878200
C	4.07741600	11.42065100	24.22010100
H	3.77417800	12.00585500	25.09608000
H	3.30169000	11.52400200	23.45084000
H	4.99491100	11.86624100	23.82484400
C	5.32538800	9.81613800	25.73999300
H	4.97337400	10.34530400	26.63297700
H	6.28595100	10.25314700	25.45848700
H	5.49579600	8.76891100	26.01262800
N	5.66001200	8.46538500	21.51323900
N	5.71024100	9.27488700	22.58176200
C	6.99117700	9.96987000	22.79871900
H	6.79249700	10.86034100	23.39624500
H	7.32174200	10.30248300	21.81361000
C	8.05412900	9.07907800	23.46372200
H	7.72608000	8.86604600	24.49065800
H	8.94612100	9.71349000	23.55629000
C	8.42304000	7.76706600	22.74024200
H	7.53356100	7.12035500	22.69353100
H	9.09389500	7.24000600	23.43561700
B	9.18983400	7.82406600	21.29666700
H	8.26631500	8.06848000	20.32409600
C	10.32425100	8.97474900	21.10720200
H	9.95818400	9.98235300	21.36779700
C	11.47281100	8.66007400	22.10628900
Atom	X (Å)	Y (Å)	Z (Å)
-------	-------	-------	-------
Zn	16.77942800	11.33623000	0.61242200
N	18.00050200	12.79257000	-0.10064000
N	17.12642300	10.79586300	-1.49228300
N	16.78188000	9.80729900	-2.35677300
N	17.11357200	12.67698000	2.32665400
N	16.72432200	12.78564800	3.62295000
B	13.84123200	11.30173500	-0.11090800
H	17.23287300	9.90458900	1.52349100
C	18.51894400	12.71994900	-1.38076800
C	19.36004300	13.69730400	-1.88631100
C	19.69318600	14.81329100	-1.09011200
C	19.15856700	14.89261700	0.21213000
C	18.33584700	13.88285400	0.68111100
C	18.04364000	11.56107000	-2.10887100
C	18.30562900	11.03223100	-3.39372500
C	17.49006800	9.91849000	-3.53385900
C	17.47197300	8.91020500	-4.67853800
C	18.47493900	9.36610800	-5.76023500
C	17.92697900	7.52250100	-4.16343800
C	16.08491800	8.79123100	-5.35274000
C	15.56422800	9.06603000	-2.01453800
C	14.25959200	7.97832000	-2.37639900
C	14.03146400	11.18437600	-1.73629300
C	12.92322500	10.14658100	0.59538700
C	11.48377600	10.26084400	0.02489600
C	10.82261200	11.65195400	0.16651900
C	11.75010700	12.84757500	-0.15652700
C	13.19838500	12.72624300	0.38508100
C	13.27518000	12.84365000	1.92506800
C	12.66455700	11.65994800	2.71098800
C	12.98692500	10.26165800	2.13510600
C	17.77398000	13.80406800	2.01562700
C	17.79412800	14.66152700	3.13950400
C	17.12234600	13.99378000	4.15331300
C	16.75033000	14.52372500	5.53476600
C	17.33092100	13.66595100	6.68335500
C	15.21025000	14.61044500	5.66921400
C	17.31928200	15.95082300	5.68963500
C	16.28296100	11.53893200	4.25551600
C	17.43436800	10.62197200	4.70651400
C	18.41059200	10.13474700	3.61490900
C	19.02854100	8.36187200	1.59816800
C	19.74784500	7.37740600	2.55686100
C	18.81883000	6.39887500	3.31324200
C	17.51231400	7.02941900	3.84960500
-----	------	------	------
C	16.78974500	7.99763600	2.87430800
C	16.19309900	7.29341400	1.63564900
C	17.22603700	6.73188900	0.63189200
C	18.43278400	7.65976700	0.35496500
H	19.02295500	11.39961400	-4.11106000
H	19.74520900	13.60373300	-2.89701600
H	20.34546200	15.59258800	-1.47167000
H	16.91501000	16.62796300	4.92987000
H	17.05059900	16.34937000	6.67501400
H	18.41840300	10.34572000	-6.16952800
H	18.92482000	7.58435800	-3.71629300
H	17.25065700	7.11978900	-3.40399300
H	17.96451800	6.80594200	-4.99424400
H	16.15148600	8.12016400	-6.21861200
H	15.32583300	8.38768600	-4.67921600
H	15.73586400	9.76820500	-5.70514300
H	15.65945500	11.03095300	3.51706000
H	15.64020900	11.79567600	5.10134600
H	17.98593000	11.13730600	5.50729000
H	16.95146000	9.75579900	5.18225900
H	18.92602900	11.00768400	3.18830300
H	19.20058500	9.59374000	4.16078200
H	19.80377100	9.05377700	1.22619900
H	18.11657700	8.44480300	-0.34355300
H	19.20348900	7.07454800	-0.17811100
H	17.58689800	5.76044800	0.98939200
H	16.71707800	6.51058100	-0.31984500
H	15.51218200	6.47468500	1.92820400
H	15.56338000	8.03115200	1.11788300
H	15.93177200	8.40871800	3.43405000
H	16.83835100	6.21389200	4.16610900
H	17.75178800	7.58854900	4.76649200
H	18.56923400	5.55736500	2.65753000
H	19.37289500	5.95215700	4.15407400
H	20.50724100	6.78621800	2.01517400
H	20.30743100	7.96711700	3.29694500
H	15.60881500	8.09180700	-2.50750900
H	15.61292700	8.88741100	-0.93864800
H	14.20473700	9.87379500	-3.47292300
H	13.44840200	9.11635900	-2.08077800
H	14.82164100	11.86727700	-2.08131600
H	13.11503400	11.56870300	-2.21263600
H	13.75424900	13.58761500	-0.02348500
H	13.26787700	9.12698500	0.35137300
H	11.52268600	10.00540300	-1.04445800
H	10.81654000	9.51136200	0.48590200
H	9.93715900	11.69581100	-0.48741600
H	10.42983400	11.76163700	1.18361400
H	11.80167900	12.96142200	-1.24857300
H	11.26882800	13.77014900	0.21334200
H	14.33519900	12.93243600	2.19496100
H	12.79566700	13.77494500	2.27645500
H	13.01070700	11.70546300	3.75596800
H	11.57740300	11.78482200	2.77012600
H	12.32215500	9.52473300	2.61930800
H	14.00682100	9.98252900	2.43667700
\[(\text{MePDP}^\text{Bu})\text{FeH}_2 \text{S} = 3/2 \]

Atom	X (Å)	Y (Å)	Z (Å)
Fe	8.52906400	10.61564600	-0.71900400
N	10.04694600	12.13257700	-0.71936700
C	10.10692900	13.03904700	0.28664300
C	11.07843800	14.04296500	0.31274500
H	11.10239000	14.75812200	1.12843900
C	11.01422100	13.54446500	2.50210400
H	12.78228000	14.86718000	0.72038200
C	9.08596200	12.85360200	1.31399600
C	8.77115300	13.54446500	2.50210400
H	9.26582100	14.41236700	2.90942000
C	7.68221000	12.88014100	3.05440900
C	6.92707100	13.19618900	4.33886300
C	7.66452200	14.32993900	5.08327000
H	7.13819000	14.56032100	6.01598500
C	7.00431100	15.24743700	4.85983000
C	5.49348500	13.69004900	4.02419200
H	4.98120100	13.96408000	4.95416100
C	4.88471400	12.93002600	3.52552400
C	5.52076200	14.57274300	3.37633000
C	6.87840100	11.96657700	5.27678500
H	6.39484200	12.24120800	6.22159000
C	7.88866900	11.60892100	5.50443900
C	6.31412300	11.13296600	4.85027400
N	8.24075600	11.82903000	1.14443500
N	7.39397500	11.85088400	2.18000000
C	6.39025400	10.79340000	2.21821300
H	6.19905100	10.51517000	1.17880700
H	5.47170500	11.15266100	2.68031100
H	8.84610000	9.05454800	-0.15160000
C	10.95305500	12.19205300	-1.72572600
C	11.95710200	13.16339600	-1.75265600
H	12.67196000	13.18694000	-2.56853300
C	10.76709700	11.17071900	-2.75263400
C	11.45759800	10.85530800	-3.94079000
H	12.32551400	11.34962200	-4.34850800
C	10.79288600	9.76630700	-4.49251500
C	11.10836500	9.01063900	-5.77681900
C	12.24191400	9.74767000	-6.52192500
H	12.47185200	9.22097100	-7.45452400
H	13.15965900	9.78367300	-5.92502200
H	11.95426500	10.77370900	-6.77574200
C	11.60219100	7.57712100	-5.46175700
H	11.87576300	7.06442700	-6.39163600
H	10.84232100	6.96863400	-4.96250800
H	12.48516700	7.60456200	-4.81429100
C	9.87837500	8.96176400	-6.71421100
	X	Y	Z
---	-------------------	-------------------	-------------------
H	10.15252900	8.47768800	-7.65888900
H	9.52085000	9.97200000	-6.94221800
H	9.04480700	8.39788700	-6.28709000
N	9.74233400	10.32583000	-2.58250000
N	9.76378400	9.47864200	-3.62574700
C	8.70609000	8.47512000	-3.65539900
H	8.42787100	8.28454100	-2.61587300
H	9.06515200	7.55626400	-4.11704400
H	6.96843900	10.93486400	-1.28643200
H	7.83197900	8.84852400	-4.19793500
H	6.76377600	9.91923800	2.76056700
	X	Y	Z
----	----------------	----------------	----------------
H	9.78864700	8.58785500	-7.42362700
H	9.52885900	10.22401700	-6.78571000
H	8.69400400	8.84388900	-6.06109900
N	9.84730000	10.60291200	-2.35928300
N	9.72507300	9.67121000	-3.33777600
C	8.70640100	8.65018700	-3.15441900
H	7.94982600	9.08917900	-2.49630600
H	9.12481200	7.75968800	-2.67317300
H	7.46892600	10.57505300	-1.14029500
H	8.26145400	8.37620900	-4.11107800
H	7.04493400	9.83601400	2.36691600
H-BBN(CH₃)^−

	X	Y	Z
C	8.41526900	7.78697000	22.72002700
H	7.61810900	7.02353900	22.76244300
H	9.08560500	7.56645600	23.57048800
B	9.14063200	7.83219900	21.23829500
H	8.26387100	8.08758400	20.39056400
C	10.34600800	8.96242400	21.11495900
H	9.97621700	9.96850700	21.38958100
C	11.49648000	8.64538100	22.09956600
H	12.33062800	9.36971000	22.01138100
H	11.10261900	8.77029500	23.11938100
C	12.08980500	7.22086600	21.98606300
H	12.69433200	7.00775200	22.88442400
H	12.80344100	7.19235700	21.15318000
C	11.04424700	6.09572100	21.79924800
H	10.59087300	5.88540200	22.77955300
H	11.58582800	5.17097800	21.51676500
C	9.89476300	6.41847700	20.81532500
H	9.19484600	5.56323300	20.87047100
C	10.34698300	6.50930200	19.33978400
H	10.87363400	5.59287300	19.00481800
H	9.43453500	6.57743300	18.72893600
C	11.24279500	7.72335100	18.99739500
H	11.28224900	7.84548300	17.90129600
H	12.27697200	7.50505300	19.29272000
C	10.79944100	9.05893100	19.64019800
H	11.61905400	9.79241800	19.49998000
H	9.94348700	9.44442700	19.06657400
H	7.92711100	8.74686400	22.96586500
	X	Y	Z
---	-----------	-----------	-----------
C	7.78218300	7.82034800	21.80863900
H	7.12795500	8.00232100	20.93756600
H	7.40306400	6.90647900	22.28253100
B	9.24825200	7.69856900	21.25221300
C	10.25064100	8.91010800	21.09821500
H	9.80145100	9.87524000	21.37354800
C	11.40301100	8.63819400	22.11647500
H	12.16900400	9.42306700	22.02963600
H	10.98623500	8.74035800	23.12987200
C	12.07244900	7.25190800	21.99841600
H	12.67433800	7.07110900	22.89937000
H	12.78595500	7.25627400	21.16953400
C	11.07686000	6.08522100	21.82190700
H	10.61809200	5.86571300	22.79794000
H	11.62610700	5.17470600	21.54014200
C	9.92366600	6.34337900	20.80098500
H	9.24168600	5.48316200	20.86430900
C	10.38674300	6.46290100	19.32128900
H	10.93701100	5.55753500	19.02417100
H	9.48429300	6.48121000	18.69177800
C	11.23870300	7.70703100	18.99250200
H	11.28485300	7.82722300	17.90157700
H	12.27274900	7.53967600	19.30799200
C	10.71030100	9.01589100	19.61638500
H	11.47430900	9.80106800	19.51372500
H	9.84864300	9.36166500	19.02557500
H	7.62557500	8.67030000	22.48426400

BBN(CH₃)
Atom	X coordinate	Y coordinate	Z coordinate	Standard deviation
Fe	4.63141900	4.63142800	0.00001400	
N	3.09609700	3.09611100	0.00002000	
N	4.96423100	3.34470900	1.93704200	
N	5.82586000	3.19141500	2.95998000	
N	6.21760100	3.79343500	-1.03601100	
H	6.06158500	2.78218300	-0.97085100	
H	6.05267600	3.99496700	-2.02334200	
B	7.84238800	3.94738000	-0.75665900	
C	1.13967300	1.13970000	0.00002500	
H	0.37161600	0.37164900	0.00002600	
C	2.07306000	1.19220700	1.03254500	
H	2.04640800	0.47655200	1.84645400	
C	3.05218100	2.19254400	1.00125200	
H	3.88674000	0.62774500	3.45843200	
C	5.52011300	2.09107800	3.72311100	
C	6.27590500	1.60709300	4.95713200	
C	5.50250300	0.42031600	5.57387600	
H	4.48713000	0.70994600	5.87156600	
H	6.02754600	0.06940400	6.46848500	
H	5.43335800	-0.42332400	4.87858800	
C	6.36679400	2.71365600	6.03568500	
H	6.95632500	3.57552400	5.71457700	
H	6.84184000	2.30789700	6.93615100	
H	5.36882000	3.07142700	6.31302000	
C	7.68719700	1.09575600	4.57417000	
H	7.61915500	0.28480100	3.84113600	
H	8.19205300	0.70731900	5.46629900	
H	8.32450000	1.87414000	4.14638900	
C	6.90158100	4.19426200	3.12362400	
H	7.70305800	3.70955100	3.67919900	
H	6.50671700	5.01275400	3.73799700	
C	7.42746000	4.70888900	1.78202000	
H	8.18073100	5.47099200	2.01794200	
H	6.61762700	5.26295600	1.29500800	
C	8.01093900	3.63177100	0.85023100	
H	7.52021800	2.66494300	1.05874200	
H	9.06189900	3.47558700	1.12772200	
C	8.65213700	2.86707500	-1.70141100	
H	8.35451600	1.82667700	-1.46711300	
C	10.17041500	2.96031500	-1.40266900	
H	10.34064600	2.57454700	-0.38831600	
H	10.74262000	2.29391100	-2.06986100	
C	10.77749800	4.38126500	-1.49631300	
H	11.74951300	4.38874600	-0.98132000	
H	11.01137100	4.60668900	-2.54231500	
Element	X	Y	Z	
---------	---------	---------	---------	
C	9.89466100	5.51305500	-0.91890300	
H	10.30620000	6.47895400	-1.25558900	
H	9.99994800	5.51369200	0.17561000	
C	8.38356800	5.41261600	-1.25117300	
H	7.89470000	6.24426100	-0.71325200	
C	8.08148800	5.63892900	-2.75521900	
H	8.49831500	6.59969000	-3.09988600	
H	6.99073700	5.74629200	-2.87131500	
C	8.56284600	4.52459500	-3.71388700	
H	8.06713500	4.64767500	-4.68900900	
H	6.99073700	5.74629200	-2.87131500	
C	8.32752000	3.08563500	-3.20040400	
H	7.27148300	2.81894700	-3.37379000	
H	8.90205400	2.39041900	-3.83453800	
N	3.34472600	4.96422000	-1.93701100	
N	3.19145400	5.82583800	-2.95996200	
N	3.79343400	6.21762200	1.03603000	
H	2.78218200	6.06160600	0.97087600	
H	3.99497100	6.05270700	2.02336200	
C	3.46235800	3.84204900	0.75665900	
C	1.19218500	2.07308300	-1.03250000	
H	0.47653000	2.04643100	-1.84640900	
C	2.19252900	3.05219600	-1.00121100	
C	2.32721300	4.09316300	-2.02403800	
C	1.51862500	4.39884500	-3.13160000	
H	0.62775700	3.88668600	-3.45841200	
C	2.09111900	5.52009700	-3.72309900	
C	1.60715700	6.27588100	-4.95713400	
C	0.42036700	5.50249500	-5.57387400	
H	0.70997700	4.48869400	-5.87154700	
H	0.06947200	6.02753200	-6.46849200	
H	-0.42327900	5.43337800	-4.87859900	
C	2.71372700	6.36673000	-6.03568400	
H	3.57560600	6.95624900	-5.71458000	
H	2.30798300	6.84177100	-6.93615800	
H	3.07147900	5.36880800	-6.31301000	
C	1.09584800	7.68719000	-4.57419600	
H	0.28488800	7.61917500	-3.84116600	
H	0.70742700	8.19204100	-5.46633400	
H	1.87424400	8.32448200	-4.14642000	
C	4.19431700	6.90154300	-3.12360700	
H	3.70962600	7.70301700	-3.67920100	
H	5.01281500	6.50666000	-3.73796100	
C	4.70892800	7.42743400	-1.78200200	
H	5.47104100	8.18069600	-2.01792100	
H	5.26297900	6.61760200	-1.29497000	
C	3.63179700	8.01093400	-0.85023900	
H	2.66497100	7.52021400	-1.05876000	
	X	Y	Z	
---	------	------	------	
H	3.47562300	9.06188900	-1.12774900	
C	2.86705100	8.65216600	1.70137700	
H	1.82665800	8.35453500	1.46706700	
C	2.96028900	10.17043900	1.40261000	
H	2.57453700	10.34064900	0.38824700	
H	2.29387000	10.74265200	2.06977900	
C	4.38123300	10.77753100	1.49626800	
H	4.38871800	11.74953700	0.98125700	
H	4.60663800	11.01142500	2.54226900	
C	5.51303800	9.89468900	0.91889300	
H	6.47893000	10.30624000	1.25558900	
H	5.51369400	9.99995600	-0.17562100	
C	5.41260100	8.38360200	1.25119000	
H	6.24425900	7.89472800	0.71329400	
C	5.63889000	8.08155200	2.75524700	
H	6.59964200	8.49839100	3.09992300	
H	5.74625400	6.99080500	2.87136500	
C	4.52453500	8.56292300	3.71388500	
H	4.64760100	8.06723300	4.68901900	
H	4.66216100	9.62909200	3.91877300	
C	3.08558600	8.32757800	3.20038000	
H	2.81890100	7.27154300	3.37375100	
H	2.39035500	8.90212000	3.83449100	
2-NHMe

Fe 3.64652600 3.64864700 -0.00162200
N 5.19660900 5.20342100 -0.00548700
N 3.30520500 4.98788400 1.91680800
N 2.43120600 5.16317000 2.92605200
C 5.22636500 6.12439100 0.97866900
C 6.20311700 7.12716200 1.00839800
C 7.15169100 7.16528200 -0.01029000
C 4.17482400 6.00766600 1.99158600
C 3.85684500 6.84138200 3.07660000
C 2.72834700 6.28334200 3.66738800
C 1.95704300 6.00766600 1.99158600
C 3.85684500 6.84138200 3.07660000
C 2.72834700 6.28334200 3.66738800
C 0.55212900 7.30134500 4.46595500
C 1.84883000 7.15740000 5.98254000
C 3.05665000 4.16697000 3.10575500
C 0.86448300 3.59769700 1.77516300
C 1.35665400 4.16697000 3.10575500
B 0.43833900 4.21664900 -0.79770600
N 2.05496400 4.44810200 -1.15648800
H 2.18266500 3.99907900 -2.06465800
C 2.38748400 5.87919900 -1.38040700
C 0.01617500 2.66401600 -1.14717900
C -1.45422200 2.43839000 -0.70828100
C -2.48487600 3.41603700 -1.31814800
C -2.02012800 4.88963600 -1.39717200
C -0.53543700 5.11271000 -1.79224000
C -0.72337300 4.78411200 -3.28454100
C -0.41124100 3.29319000 -3.65691800
C 0.24103500 2.32610600 -2.64417200
N 4.98270400 3.30676800 -1.92272900
N 5.16168500 2.40391700 -2.93026700
C 6.11504500 5.23394800 -0.99196200
C 7.11435600 6.21409500 -1.02655100
C 5.99945300 4.17953900 -2.02000000
C 6.83178400 3.86159300 -3.08815800
C 6.27610400 2.72981900 -3.67481400
C 7.89239000 1.95712700 -4.88643200
C 7.98458400 2.72726000 -5.49067300
C 7.29961500 0.55508000 -4.47002600
C 5.70622500 1.84234600 -5.98639100
C 4.16524600 1.35259000 -3.10505000
C 3.60082300 0.86191300 -1.77196900
C 4.63200600 0.27923900 -0.79051300
B 4.22634200 0.44361000 0.80044500
N 4.45277100 2.06185900 1.15514000
C 5.88309800 2.39985300 1.37587000
C 2.67584200 0.01668700 1.15362000
	X	Y	Z
C	2.45472300	-1.45547100	0.71835700
C	3.43710400	-2.48129300	1.32874800
C	4.90916000	-2.01112800	1.40408700
C	5.12718100	-0.52478700	1.79553800
C	4.80067000	-0.26069200	3.28785700
C	3.31023300	-0.40301600	3.66316200
H	0.61381400	1.92952500	-0.58091700
H	1.32565500	2.31062900	-2.83934100
H	-0.09688300	1.30059400	-2.86684500
H	-1.47080200	3.04317600	-3.76707200
H	0.02710800	3.12398500	-4.65246900
H	-0.94033500	5.37066900	-3.93785000
H	0.74553100	5.11127000	-3.54898700
H	-0.36969600	6.19770400	-1.67768100
H	-2.68659400	5.42615700	-2.09319900
H	-2.18394400	5.35995500	-0.41837700
H	-2.76188500	3.06806600	-2.31885400
H	-3.41573900	3.36549300	-0.73410900
H	-1.77392500	1.40851900	-0.93753900
H	-1.50007100	2.30229000	0.38650200
H	-0.77631300	4.78234200	1.06375800
H	0.75361700	5.60370500	0.96143600
H	1.69144900	3.01420000	1.32205700
H	0.12402300	2.82820100	2.02524000
H	1.74068500	3.37791000	3.76096400
H	0.54040000	4.66807800	3.62405300
H	2.84184700	5.35070900	6.28025400
H	1.36471100	6.14426000	6.86748000
H	1.25936200	4.84911500	5.67451800
H	0.63170500	8.09514100	3.71549500
H	-0.08078900	6.51418600	4.04776400
H	0.03588800	7.71101100	5.34191400
H	3.73379800	7.71158400	5.79700500
H	2.80456700	8.82334700	4.76601000
H	2.18844500	8.36812200	6.35869400
H	4.36527100	7.73979600	3.38817700
H	6.21604900	7.85572900	1.81107000
H	7.91840100	7.93466700	-0.01218000
H	7.84088200	6.22758900	-1.83106200
H	7.72786500	4.37213400	-3.40293000
H	8.35661200	2.19015700	-6.36945400
H	7.69597500	3.73464900	-5.81015200
H	8.81326000	2.81187600	-4.77931990
H	8.09501600	0.63924600	-3.72178400
H	6.51560200	-0.07934300	-4.04810800
H	7.70879100	0.03773800	-5.34560800
H	6.13439200	1.35740100	-6.87104800
H	4.84235000	1.25067700	-5.67487500
--------------------	------------	------------	-------------
H	5.34708100	2.83334800	-6.28587900
H	4.66822800	0.53668500	-3.62360000
H	3.37063700	1.73230300	-3.75949200
H	3.04291300	1.68820600	-1.31965300
H	2.83318700	0.11831200	-2.01842100
H	4.79283800	-0.77308200	-1.05948800
H	5.60885900	0.76006300	-0.96208500
H	1.93823500	0.61045500	0.58734000
H	2.32077100	1.32860900	2.84352500
H	1.31582800	-0.09741800	2.87591200
H	3.06482500	-1.46320400	3.77607800
H	3.14190500	0.03691600	4.65805200
H	5.39072100	-0.92418200	3.94155400
H	5.12469000	0.75991800	3.54957100
H	6.21181600	-0.35542400	1.67873800
H	5.44932000	-2.67415600	2.10058100
H	5.37829700	-2.17537400	0.42479500
H	3.09191000	-2.75732600	2.33068300
H	3.38881800	-3.41361800	0.74685400
H	1.42640300	-1.77834300	0.95012100
H	2.53681500	-1.50343500	-0.37646400
H	6.42744300	2.32192500	0.43082800
H	6.00266800	3.42082300	1.75672400
H	6.36053200	1.72046600	2.08748600
H	3.40714600	6.00163800	-1.76384000
H	1.70477500	6.35305100	-2.09123700
H	2.30988400	6.42488900	-0.43611500
H	4.00484800	2.19004600	2.06378800
2-NHPh			
---------	---	---	---
Fe	5.57854700	7.73066400	5.70169500
N	5.57761200	9.87407300	5.70254100
N	3.65985200	8.36233400	6.81865000
N	2.55413600	7.84269300	7.39106200
C	4.55665100	10.53981600	6.27297000
C	4.52536900	11.93773400	6.29391300
C	5.57642000	12.63546100	5.70366400
C	3.50837400	9.69552400	6.85134800
C	2.28931600	10.03134800	7.46012600
C	1.68769200	8.82463100	7.80324500
C	0.33836400	8.61214600	8.48335500
C	-0.24147000	9.99162100	8.86770100
C	0.48277200	7.78914500	9.78655000
C	-0.66558000	7.93661400	7.51622800
C	2.47621300	6.37624100	7.55795500
C	3.12880000	5.62234000	6.39989900
C	2.50318000	5.88922000	5.02103100
B	3.53830600	5.74572400	3.74895500
C	2.77948000	5.72630000	2.28826600
C	1.76693200	4.55051200	2.27076700
C	2.35095700	3.16356000	2.63617600
C	3.39480700	3.16411100	3.77937300
C	4.40256300	4.34590700	3.76804400
C	5.39928000	4.24830400	2.58483500
C	4.79220200	4.47288900	1.18333200
C	3.78196300	5.63850400	1.10851200
C	4.33127500	8.25645000	3.14676900
N	4.65186100	7.04868100	3.85684300
C	3.14171200	8.96353600	3.39322700
C	2.86084500	10.15020000	2.71538100
C	3.75253500	10.66802800	1.77419100
C	4.93393600	9.97151800	1.51368800
C	5.21650400	8.78399800	2.18770600
N	7.49671800	8.36490300	4.58522400
N	8.60287600	7.84662700	4.01241200
C	6.59799700	10.54115800	5.13265200
C	6.62807000	11.93912100	5.11284800
C	7.64700500	9.69825200	4.55357800
C	8.86572900	10.03627000	3.94498400
C	9.46841200	8.82970700	3.60003700
C	10.81785000	8.61900400	2.92051100
C	11.39642900	9.99941900	2.53753500
C	10.67399800	7.79719700	1.61656000
C	11.82248200	7.94333500	3.88676000
C	8.03000400	5.62502000	5.00170500
C	8.65551200	5.89122400	6.38078900
B	7.62052400	5.74590100	7.65277200
C 8.37895200 5.72724800 9.11342000			
C 9.39291700 4.55093000 9.12993800			
C 8.80998300 3.16379800 8.76345700			
C 7.76609400 3.16442400 7.62029500			
C 6.75739200 4.34540100 7.63260000			
C 5.76079600 4.24606400 8.81576700			
C 6.36774700 4.47001700 10.21742700			
C 7.37706200 5.63637600 10.29314200			
C 6.82557000 8.25550000 8.25695100			
N 6.50591600 7.04801400 7.54596900			
C 8.01455800 8.96372100 8.01098500			
C 8.29451000 10.15008900 8.68972700			
C 7.40245000 10.66648400 9.63135300			
C 6.22161700 9.96883200 9.89137500			
C 5.93996500 8.78160500 9.21645700			
C 8.68202000 6.38043400 3.84427200			
H 5.68250200 6.72181000 8.01577900			
H 5.47561400 6.67882000 3.38680300			
H 6.13521600 8.24714400 1.96293400			
H 5.63861500 10.34593100 0.77507600			
H 3.52618900 11.59004300 1.24595300			
H 1.92792500 10.66915600 2.92257700			
H 2.43123600 8.57638100 4.11166300			
H 8.72530900 8.57680000 7.29222300			
H 9.22700600 10.66994700 8.48288700			
H 7.62808400 11.58827400 10.16028900			
H 5.1667200 10.34211600 10.63030400			
H 5.02169000 8.24388400 9.44085600			
H 5.00671300 4.23378800 4.68511300			
H 6.20327100 4.98966600 2.73303700			
H 5.94960900 3.27622100 2.59616600			
H 5.60428300 4.64916700 0.46159300			
H 4.31128900 3.54884000 0.84849300			
H 3.24058600 5.56675200 0.15090400			
H 4.34049200 6.58231300 1.05143500			
H 2.18503400 6.63999400 2.11796900			
H 0.95115400 4.78518000 2.96729600			
H 1.29026900 4.47334900 1.27964100			
H 1.52700700 2.48735000 2.90772800			
H 2.79923800 2.71571600 1.74318200			
H 2.86172400 3.18044000 4.73984900			
H 3.93165300 2.20172900 3.75951300			
H 1.65485800 5.20267400 4.90562300			
H 2.04463000 6.88816800 5.02328900			
H 4.19986600 5.85024100 6.40246400			
H 3.07728900 4.55693700 6.65475700			
H 2.94393600 6.12103300 8.51744800			
H 1.42000700 6.11781100 7.62062900			
H	1.19042800	8.26671800	10.47352900
H	-0.48843300	7.73010600	10.29088700
H	0.82212500	6.76572000	9.61031000
H	-0.35339800	6.93688400	7.20668000
H	-1.64097000	7.84010000	8.06977000
H	-0.79804000	8.54048200	6.61209400
H	0.41750900	10.52841800	9.55888600
H	-0.40753100	10.62073800	7.98637000
H	-1.20800400	9.85462700	9.36383500
H	1.88674700	11.01804500	7.62437000
H	3.69979500	12.46183100	6.76202600
H	5.57595300	13.72159700	5.70410800
H	7.45319400	12.46312000	4.64516800
H	9.26745500	11.02279200	3.78147700
H	12.36266500	9.86379500	2.04046000
H	10.73652400	10.53658800	1.84749200
H	11.56270000	10.62753600	3.41935800
H	11.64534000	7.73906300	1.11236500
H	10.33509500	6.77345300	1.79182000
H	9.96624900	8.27511800	0.92991700
H	12.79795000	7.84840900	3.39581900
H	11.95433700	8.54620800	4.79163900
H	11.51138700	6.94285600	4.19903300
H	8.21448800	6.12566400	2.88457000
H	9.73844100	6.12292800	3.78135400
H	6.95883400	5.85205400	4.99935500
H	8.08245000	4.55987400	4.74595000
H	9.50433700	5.20520600	6.49562400
H	9.11351200	6.89050500	6.37934800
H	6.15329600	4.23352800	6.71546600
H	8.29913000	3.18194900	6.65981400
H	7.23002400	2.20159400	7.63905000
H	9.63445800	2.48845700	8.49134900
H	8.36208100	2.71490600	9.65611400
H	10.20847500	4.78680600	8.43356000
H	9.86968600	4.47336300	10.12098200
H	8.97313900	6.63995500	9.28441700
H	7.91853600	5.56428600	11.25066800
H	6.81778400	5.67969400	10.35100100
H	5.55555400	4.64506900	10.93939000
H	6.84941200	3.54608500	10.55150500
H	4.95620600	4.98690000	8.66818300
H	5.24224500	3.27357500	8.80368300
2-PHPb

C -5.82495900 5.00001100 6.89121700
C -7.22328000 4.99411500 6.86956000
C -7.88062500 5.75382200 5.90587300
C -7.14207200 6.49830000 4.99035600
C -5.74603000 6.46175700 5.06493600
C -5.03604100 4.24768900 7.86475600
C -5.42670300 3.36447500 8.88456300
C -4.25120000 2.94727000 9.49699400
C -4.10311400 1.97725800 10.66636500
C -3.41063800 2.65043200 11.87706400
C -3.34325900 0.69799000 10.23531000
C -5.51343600 1.54405700 11.12590000
C -1.78360300 3.60383200 9.12322600
C -0.90544400 3.56432500 7.87194900
C -1.09140300 2.33809500 6.96564200
C -0.56212700 1.18446600 4.50171600
C 1.84537800 0.70735400 5.15336200
C 1.90934900 2.15483800 5.96458800
C 0.94594200 3.16390300 5.27909400
C 1.33597500 3.45062200 3.80755200
C 1.10389000 2.28769300 2.81431000
C -0.20670300 1.49600300 3.02735200
C -3.43894600 3.11382000 3.94869000
C -4.20452800 2.19331500 4.69128400
C -5.33169500 1.58343400 4.13808000
C -5.72522100 1.87741400 2.83108500
C -4.97721600 2.78303000 2.08138500
C -3.84912700 3.39608800 2.63384000
C -4.87593400 7.19643200 4.14878900
C -5.17679000 8.08909700 3.10701200
C -3.95351300 8.48043900 2.57663100
C -3.70524400 9.44886200 1.42307000
C -5.07135900 9.91437700 0.87083000
C -2.94792200 10.70999600 1.90860500
C -2.94784700 8.76258500 0.25951700
C -1.53231200 7.76741100 3.11412200
C -0.73965300 7.78346100 4.42168400
C -0.95435000 9.01318000 5.31685400
C 0.94378000 8.12780000 7.13034200
C 1.22796700 7.82624200 8.62300600
C 0.96354700 8.99260000 9.60408100
C -0.30637000 9.82335400 9.30820200
C -0.55337000 10.14787500 7.81481900
C 0.49492500 11.13375900 7.23502300
C 1.92029000 10.55775900 7.05694800
C 1.97865800 9.11067700 6.51449800
C -3.51749100 8.30057200 8.16722300
C -4.02097100 8.02749800 9.45225200
C -5.16707500 8.66544300 7.85459300
C -5.84028400 9.59364700 9.13238200
C -5.35371100 9.87649800 7.37659000
B -0.56540100 2.54136400 5.41336000
B -0.53740000 8.79336200 6.89985800
Fe -2.96239000 5.69870000 6.07426600
N -5.11353900 5.72343500 6.00114000
N -3.70172100 4.37320000 7.84084900
N -3.23102400 3.58342900 8.82799400
N -3.54943800 7.04092700 4.26273600
N -2.99545300 7.82090200 3.31160600
P -1.95885900 3.92366500 4.68900400
P -2.01290300 7.44977200 7.52630200
H -1.49598300 4.54794000 3.50658200
H -1.64739900 6.81537000 8.73607000
H 1.06784000 4.11699700 5.82145800
H 0.76140600 4.32294700 3.46459700
H 2.39266900 3.75747400 7.34469700
H 1.12026900 2.68516900 1.78856300
H 1.95238200 1.59731500 2.86366000
H 0.14792400 0.56506400 2.43912000
H -0.13909100 2.06514900 2.58964400
H -1.54805400 0.69154900 4.48831600
H -0.01646200 -0.16336500 6.10517100
H 0.49961300 -0.73584100 4.53230000
H 2.43597100 0.64309900 4.50401500
H 2.35107300 0.03772000 6.13478700
H 1.68303800 2.13781500 7.04053000
H 2.94969000 2.51038000 5.88838300
H -0.56440000 1.49134400 7.42963200
H -2.15157100 2.03991700 6.97376400
H -1.06576000 4.49504600 7.31377400
H 0.13238700 3.62700000 8.22276100
H -1.58157000 4.50429100 9.71642300
H -1.57967600 2.73682400 9.74782900
H -2.31974800 0.89319700 9.90518800
H -3.29219200 0.00029600 11.07867800
H -3.86465800 0.19839900 9.41173800
H -2.37766500 2.94253500 11.67358700
H -3.95865900 3.54645000 12.18928800
H -3.93997900 1.95335800 12.72262400
H -5.42374600 0.84724300 11.96580600
H -6.10951000 2.39921000 11.46292300
H -6.05989600 1.03206700 10.32649400
H -6.42802900 3.05884500 9.14197000
H	-7.77726800	4.41011600	7.59548700
H	-8.96597900	5.76565200	5.86843800
H	-7.63188300	7.09366600	4.22842000
H	-6.15130400	8.41752800	2.78332800
H	-4.90969800	10.61068200	0.04139000
H	-5.66211500	9.07344000	0.49140200
H	-5.65911600	10.43681000	1.63337200
H	-1.93739800	8.44781900	0.53083100
H	-3.49291900	7.87914500	-0.09130500
H	-2.85947000	9.46036500	-0.58098900
H	-1.95320400	10.49135000	2.30535400
H	-2.82543900	11.40891300	1.07315000
H	-3.51194700	11.21917600	2.69748400
H	-3.27224700	4.09355300	2.03153300
H	-5.26714400	3.02017500	1.05951000
H	-6.60030800	1.39853100	2.39976900
H	-5.89973100	0.86950100	4.72983100
H	-3.91208400	1.94440600	5.70681400
H	-3.84322900	9.47828100	6.38287900
H	-5.86286500	10.60433000	7.22725400
H	-6.72945000	10.09509600	9.50530100
H	-5.52983600	8.44081000	10.92927000
H	-3.50327900	7.31590200	10.09028400
H	-1.26651100	8.63083000	2.50800100
H	-1.31169500	6.86378700	2.53243700
H	-0.96110100	6.85669300	4.96534200
H	0.31750200	7.69364600	4.14145500
H	-0.37619900	9.84696900	4.89134600
H	-2.00369800	9.33850000	5.23903300
H	1.07396200	7.17303800	6.59290100
H	0.60846900	6.96915500	8.92350000
H	2.26937500	7.48993000	8.75370300
H	1.83313900	9.65787600	9.61520700
H	0.89975600	8.59190400	10.62674700
H	-1.18212600	9.27865700	9.68853300
H	-0.25865400	10.75119200	9.90151300
H	-1.52575100	10.66862100	7.76554500
H	0.13353700	11.48162800	6.25525500
H	0.55935200	12.03756600	7.86079300
H	2.49176600	11.21449600	6.38460600
H	2.44909100	10.60214100	8.01454600
H	3.00117000	8.72533500	6.65746400
H	1.82454900	9.13735200	5.42608900
2-OH

Fe 2.16008200 11.25459600 7.72756400
O 3.72658200 12.19139700 8.47910300
H 3.75130300 12.13687700 9.44472100
O 3.72658200 12.19139700 8.47910300
H 0.46753800 11.86406200 6.91485100
N 2.33418900 9.12955200 7.81263300
N 2.94696300 10.61788200 5.66451400
N 3.43892000 11.14070300 4.52385500
N 1.47341000 10.66337100 9.84042600
N 0.89563600 11.18740700 10.93953300
C 2.77945900 8.45571300 6.73422900
C 2.89821800 7.06158400 6.75365600
C 2.56105300 6.38182200 7.92262100
C 2.10961600 7.08786000 9.03613900
C 1.99845200 8.47971100 8.94409500
C 3.14105700 9.29112500 5.58491000
C 3.74764500 8.96202900 4.36316900
C 3.93548600 10.16744200 3.69327900
C 4.56652100 10.38379100 2.32078400
C 5.93104000 11.10657400 2.44706300
C 3.61658600 11.16190200 1.37838500
C 4.82990200 9.00375500 1.67769600
C 1.49821000 9.33325300 10.02611700
C 0.94638500 9.00725900 11.2743600
C 0.56011400 10.21498800 11.84816100
C -0.10604600 10.43332000 13.20365400
C 0.69752200 11.42926100 14.07447100
C -1.56984700 10.91001800 13.0293600
C -0.14298700 9.08431600 13.95615000
C 3.39984500 12.60975500 4.35254800
C 3.64885700 13.36029900 5.66556300
C 4.95796300 12.99373700 6.39141100
B 4.91418300 13.18681600 8.01353000
C 6.28631000 12.73466300 8.78123200
C 6.08137300 12.72554400 10.31765700
C 5.52669900 14.03955800 10.91517900
C 4.38727700 14.68894800 10.09526500
C 4.59079100 14.69481400 8.55863600
C 5.73419100 15.63543900 8.09761300
C 7.16165800 15.18546600 8.49087400
C 7.43762200 13.67087700 8.33156300
C 0.33642300 13.24683200 9.62799600
C -0.89094300 12.61810900 8.94005100
B -0.86596800 12.69228700 7.30778700
C -2.14313400 11.97309600 6.58113400
C -1.92635800 11.88137800 5.04897800
C -1.57992200 13.21771900 4.35213000
C -0.56427100 14.09830300 5.11706400
C -0.77946400 14.18726100 6.64941800
C -2.06053100 14.96779300 7.04203600
C -3.39584300 14.27002100 6.68887900
C -3.43120400 12.74157000 6.96293900
C 0.69397500 12.65209600 10.99456700
H 4.06635900 11.22976100 0.38130300
H 2.65510900 10.64560400 1.28014100
H 3.41802500 12.18117900 1.71798000
H 5.53407000 8.40873500 2.26924700
H 3.90399400 8.43045500 1.55851500
H 5.26864600 9.14350500 0.68417800
H 6.38979200 11.20038000 1.45592200
H 5.84812600 12.11169700 2.86882200
H 6.61341600 10.53590400 3.08592700
H 4.03128500 7.98272200 4.01225100
H 3.24786700 6.52721800 5.87746000
H 2.65032900 5.30020900 7.96592300
H 1.84666000 6.57475500 9.95433700
H 0.82453600 8.02566400 11.70363800
H 0.86379100 8.68211300 14.11368900
H -0.60451400 9.22857000 14.93863800
H -0.73636500 8.33666100 13.41879000
H 1.73063000 11.08821000 14.20495900
H 0.72643900 12.43747100 13.65454700
H 0.23781400 11.49997200 15.06680900
H -1.65024500 11.87780400 12.52800300
H -2.14560200 10.18562400 12.44408600
H -2.04361600 11.00688700 14.01369900
H 1.60758700 13.10607200 11.39850600
H -0.11226200 12.82888400 11.70437600
H 0.18224500 14.32083500 9.79310500
H 1.22673100 13.18793300 8.99529300
H -0.96832400 11.55649300 9.22836000
H -1.79577100 13.08957000 9.34718900
H 0.07391500 14.76323500 7.04733700
H -2.03196300 15.13484000 8.12865100
H -2.06290400 15.97301700 6.58895100
H -4.21019400 14.75232800 7.24931600
H -3.63138600 14.45401400 5.63513400
H -4.31076400 12.32171000 6.45137900
H -3.61066100 12.59035100 8.03586300
H -2.27813000 10.93796300 6.94164200
H -1.11334000 11.15872100 4.85332200
H -2.80634300 11.44313600 4.55058700
H -1.19340700 13.01104800 3.34240300
H -2.50067500 13.78688000 4.19236500
H 0.44830900 13.69693600 4.94274000
H	-0.55517900	15.10040700	4.65842400
H	4.17037100	12.85881400	3.62503000
H	2.42673900	12.87602600	3.92115900
H	3.62838900	14.42870100	5.41533300
H	2.77631300	13.20842600	6.30743000
H	5.77659500	13.57298100	5.94304500
H	5.20806500	11.94025600	6.18992400
H	6.58391500	11.70950600	8.49805600
H	5.39135300	11.90103300	10.57357600
H	7.01758100	12.46985400	10.84013100
H	5.17455800	13.85175700	11.94103600
H	6.34575800	14.75692900	11.02313500
H	3.44996800	14.14757100	10.30832000
H	4.21878100	15.70884300	10.47745300
H	3.65869900	15.09781800	8.12601000
H	5.68338600	15.71325900	7.00180700
H	5.57642600	16.65979800	8.47384700
H	7.89167400	15.74635100	7.88891400
H	7.36152800	15.48319500	9.52579700
H	8.37147100	13.42901800	8.86613100
H	7.64335700	13.46385300	7.27194700
2-SPh

C 6.87062500 1.64428200 13.35966000
C 6.11801200 2.33681200 12.41322200
C 6.13964000 3.73499600 12.43709600
C 5.41214000 4.58462400 11.49100200
C 4.55952800 4.26492600 10.42276800
C 4.18227200 5.47983800 9.85890000
C 3.25981700 5.70694000 8.66453500
C 3.99560300 6.43823100 7.51463900
C 2.80880000 4.33207600 8.12278300
C 1.98565100 6.48076400 9.08500000
C 4.88000000 7.91257400 10.39221100
C 4.79504100 8.71092400 11.69085000
C 3.52707400 8.49245400 12.53072000
C 2.33896100 8.80631300 15.01401600
C 1.31494000 9.84044400 14.45475500
C 1.83791800 11.29245000 14.33579000
C 3.28386100 11.42485900 13.80189200
C 4.30288100 10.40061100 14.38743500
C 4.59660100 10.63182900 15.88979000
C 3.43280200 10.30934000 16.85421700
C 2.64792800 9.02149200 16.51578400
C 4.41361200 5.98840400 15.47440600
C 3.43542800 5.30372000 14.73497200
C 2.83557700 4.15224000 15.24920100
C 3.20382900 3.66063700 16.50317600
C 4.17614700 4.33513800 17.24451500
C 4.77333000 5.49068400 16.73788700
B 3.65202300 8.95001400 14.08617000
N 6.86806300 4.40136800 13.35347800
N 5.55257700 5.91592100 11.58962400
N 4.80876900 6.45112000 10.60219300
S 5.20635400 7.48089000 14.86356000
Fe 6.86625300 6.51919200 13.34853700
C 7.62192400 2.34244400 14.30299800
C 7.59736600 3.74046200 14.27286200
C 8.32347500 4.59567800 15.21522700
C 9.17613500 4.28237900 16.28531900
C 9.55106700 5.50052900 16.84373200
C 10.47246900 5.73473700 18.03753300
C 9.73483200 6.47026700 19.18353500
C 10.92540100 4.36316100 18.58600600
C 11.74565500 6.50864100 17.61421900
C 8.84965300 7.92960400 16.29860400
C 8.93385600 8.72177800 14.99290700
C 10.20232500 8.50090400 14.15769400
C 11.39093200 8.80442900 11.67338200
C 12.41382000 9.84203200 12.22828100
	11.88946800	11.29408800	12.34043100	
C	10.44316100	11.42766000	12.87308300	
C	9.42529100	10.39975600	12.29193200	
C	9.13185300	10.62369100	10.78842600	
C	10.29636300	10.29769900	9.82594500	
C	11.08234700	9.01247800	10.17053700	
C	9.31888600	5.98270000	11.22427400	
C	10.29807100	5.30229700	11.96633300	
C	10.89922000	4.14942200	11.45677100	
C	10.53130300	3.65216300	10.20492800	
C	9.55801500	4.32239600	9.46099400	
C	8.95952500	5.47930500	9.96294300	
B	10.07747100	8.95125100	12.60014300	
N	8.18084200	5.92626300	15.11037000	
N	8.92327100	6.46728300	16.09565300	
S	8.52449600	7.47671400	11.82435600	
H	8.21541400	6.00898300	9.37571600	
H	9.26874400	3.95068500	8.48094000	
H	11.00281600	2.75596300	9.81045800	
H	11.66175100	3.64091900	12.04195000	
H	10.59222700	5.68190700	12.93843000	
H	11.87108300	7.81790500	11.76985100	
H	12.01700600	9.00701900	9.58652700	
H	10.50810100	8.14549600	9.81951700	
H	9.89872200	10.20812900	8.80440600	
H	10.98697300	11.14681600	9.78782300	
H	8.27383800	9.99431200	10.51905500	
H	8.81169700	11.66362900	10.61352800	
H	8.47764900	10.57013800	12.82842100	
H	10.45896600	11.31675300	13.96700000	
H	10.09199900	12.45429600	12.68428200	
H	12.56414600	11.86780000	12.99233700	
H	11.95700400	11.77895500	11.36174100	
H	12.73764900	9.50615500	13.22326900	
H	13.32270700	9.84391400	11.60580800	
H	11.02732900	9.05709000	14.63090200	
H	10.50406900	7.44565500	14.21656500	
H	8.04126000	8.48710700	14.40553900	
H	8.82816200	9.77941900	15.26523000	
H	9.67144600	8.19874800	16.95898900	
H	7.90465400	8.13919200	16.81321200	
H	12.28851400	5.96274700	16.83503500	
H	11.53385200	7.50897600	17.22806300	
H	12.41157300	6.62046600	18.47769800	
H	11.58871700	4.51562000	19.44386200	
H	10.07441500	3.76181600	18.92417700	
H	11.47957500	3.79018200	17.83469700	
H	10.39878000	6.55504500	20.05147300	
---	---	---	---	---
H	9.41959600	7.48048600	18.91175200	
H	8.84412700	5.91222400	19.49310100	
H	9.48678600	3.30344900	16.61368600	
H	8.21084800	1.81891800	15.04766500	
H	6.87164200	0.55810600	13.36208700	
H	5.53005600	1.80886000	11.67092000	
H	4.25031100	3.28396700	10.09913500	
H	3.66059300	3.73048900	7.78708500	
H	2.25586700	3.76179900	8.87705900	
H	2.14487200	4.47942700	7.26450700	
H	2.1961500	7.48318600	9.46645000	
H	1.31907600	6.58759000	8.22139100	
H	1.44408700	5.93760200	9.86698700	
H	4.88687800	5.88001700	7.20702500	
H	3.33092900	6.18063000	6.64678800	
H	4.30961100	7.45013400	7.78153800	
H	5.82447100	8.12118000	9.87623500	
H	4.05754900	8.17723500	9.73083800	
H	5.68809100	8.48027600	12.28234000	
H	4.89928900	9.76737600	11.41663100	
H	2.70129400	9.04556200	12.05524800	
H	3.22646800	7.43662000	12.47674800	
H	5.25019800	10.56941200	13.84986000	
H	5.45541400	10.00466800	16.16178400	
H	4.91567800	11.67291900	16.05974500	
H	3.83094800	10.22448500	17.87598700	
H	2.74136000	11.15762700	16.88878500	
H	1.71351500	9.01778200	17.10019900	
H	3.22318100	8.15668400	16.87050900	
H	1.85965300	7.81892900	14.92224900	
H	0.99109400	9.49974500	13.46141200	
H	0.40625600	9.84433300	15.07751600	
H	1.16243600	11.86258800	13.68158600	
H	1.77040100	11.78170400	15.31230200	
H	3.26769300	11.30882000	12.70851200	
H	3.63416800	12.45268600	13.98574200	
H	5.51669300	6.02368500	17.32305400	
H	4.46567700	3.96784900	18.22615900	
H	2.73332600	2.76550800	16.90126900	
H	2.07380300	3.64037100	14.66597400	
H	3.14103900	5.67887400	13.76122000	
Atom	X	Y	Z	
------	-------	-------	-------	
C	-1.65893100	-4.17543000	4.47284700	
C	-0.91091700	-3.47384000	5.41369000	
C	-0.93509600	-2.07559200	5.38474800	
C	-0.20153400	-1.24665400	6.34043900	
C	0.65153400	-1.59372200	7.40185500	
C	1.03963400	-0.39241400	7.98333600	
C	1.96697000	-0.19189300	9.17881500	
C	2.43088000	0.53147500	10.34116800	
C	2.03105500	-1.57933900	9.70052200	
C	3.24974600	0.57220200	8.76661900	
C	0.36382100	2.05250400	5.32830500	
C	1.03963400	-0.39241400	7.98333600	
C	1.86425100	5.62358300	4.13326900	
C	3.29308800	5.50590400	3.55174400	
C	3.81038400	4.05764600	3.37525000	
C	2.76827300	3.03982800	2.81928000	
C	2.41420500	3.29830600	1.33406000	
C	1.62174600	4.59555600	1.05644200	
C	0.48812000	4.89154600	2.06450900	
C	0.71082200	0.23589000	2.35324100	
C	1.66374900	-0.48896400	3.08637000	
C	2.27262900	-1.61823100	2.53510100	
C	1.93935200	-2.04595200	1.24834700	
C	0.99263000	-1.33061100	0.51266700	
C	0.38571700	-0.19777800	1.05798200	
B	1.48602200	3.15975300	3.79259000	
N	-1.66076600	-1.47057700	4.46616000	
N	-0.33135100	0.08220500	6.26294900	
N	0.41813900	0.59583500	7.25496000	
S	-0.08878400	1.70913600	3.00169100	
Zn	-1.66212800	0.70221600	4.46195400	
C	-2.40783300	-3.47907500	3.52886700	
C	-2.38557000	-2.08067600	3.55151100	
C	-3.12033500	-1.25702900	2.59217600	
C	-3.97310900	-1.61002500	1.53247600	
C	-4.36298900	-0.41186900	0.94571300	
C	-5.29084600	-0.21794800	-0.25045500	
C	-4.56829900	0.50143500	-1.41610500	
C	-5.72498600	-1.60832300	-0.76608000	
C	-6.57465800	0.54601900	0.15870800	
C	-3.69054400	2.03614400	1.42156800	
C	-3.75326700	2.87492600	2.69850500	
C	-4.98457300	2.64967600	3.58720100	
C	-4.15600100	4.61722000	5.35690300	
C	-5.19517800	5.62007000	4.76939000	
C -6.62381200 5.50298500 5.35153300
C -7.13913800 4.05480300 7.57841100
C -6.09563800 3.04077900 6.39854200
C -5.74185200 3.30603800 6.39854200
C -4.95122400 4.60557900 7.85068700
C -3.81806800 4.89890800 6.84129800
C -4.03471500 0.24185700 6.57249500
C -4.98649000 -0.48755900 5.84239600
C -5.59387600 -1.61524100 6.39854200
C -5.26023200 -2.03681300 7.68723000
C -4.31465500 -1.31690200 8.41991700
C -3.70924100 -0.18563200 7.86971400
H -4.81353700 3.15822400 5.12073500
N -2.99234300 0.07234200 2.66370000
N -3.74273300 0.58048800 1.66955000
S -3.23697300 1.71332700 5.91773600
H -3.22558200 4.76919400 4.78617500
H -4.84194300 6.65383600 4.90879300
H -5.24450800 5.46825400 3.68143700
H -6.66274800 6.02438400 6.31263000
H -7.32053200 6.04991400 4.69980700
H -8.02760100 4.07755800 6.18517500
H -7.49328300 3.68152100 4.56339200
H -6.57457000 2.05001400 6.04942100
H -6.65799400 3.31887200 8.19090600
H -5.15345500 2.45477100 7.94417500
H -5.64404900 5.45322500 7.87822100
H -4.52233600 4.55563400 8.86226700
H -2.94862400 4.28443700 7.10829500
H -3.49778900 5.94583900 6.96664700
H -5.84226200 3.16604600 3.12747000
H -5.25931100 1.58597300 3.57749200
H -2.83009200 2.70623600 3.25873800
H -3.70042200 3.92282900 2.37595500
H -2.76220000 2.24163700 0.87569700
H -4.53119500 2.27340000 0.77275900
H -3.67013800 -0.05027100 -1.71539800
H -5.23611600 0.55533500 -2.28357000
H -4.26792500 1.52254300 -1.16948400
H -4.86590900 -2.20492700 -1.09186200
H -6.26933200 -2.17163300 -0.00035300
H -6.39212220 -1.48552300 -1.62569400
H -6.37730900 1.55824000 0.52089500
H -7.24475400 0.62782000 -0.70494900
H -7.10674000 0.00994300 0.95201300
H -4.27325900 -2.60040700 1.22993100
H -2.99616200 -4.00243600 2.78394800
H -1.65821100 -5.26155500 4.47529200

S151
H	-0.321968	-3.993058	6.160976		
H	0.952999	-2.582324	7.708879		
H	3.069905	-1.451746	10.559774		
H	1.544872	-2.175798	10.028857		
H	2.948433	-2.145185	8.937444		
H	1.910640	0.590234	11.208522		
H	0.941172	1.551016	10.089910		
H	0.345722	-0.020301	10.642703		
H	3.782698	0.033598	7.975614		
H	3.051031	1.582642	8.400230		
H	3.919608	0.658524	9.630017		
H	1.203940	2.293852	8.144417		
H	-0.564987	2.259139	8.041090		
H	-0.497119	2.713233	5.656102		
H	0.371427	3.934908	6.533595		
H	2.514441	3.177486	5.785923		
H	1.933554	1.594719	5.342724		
H	-0.101466	4.769936	4.120179		
H	-0.380391	4.274615	1.800161		
H	0.166278	5.937446	1.934636		
H	2.313352	5.444073	1.025345		
H	1.192998	4.540681	0.045059		
H	3.330378	3.309836	0.721833		
H	1.827048	2.444665	0.972115		
H	3.248527	2.049907	2.868673		
H	4.698843	4.078797	2.724317		
H	4.164992	3.689016	4.347768		
H	3.331434	6.023213	2.588186		
H	3.989013	6.056566	4.201173		
H	1.509621	6.656250	3.989341		
H	1.913728	5.476583	5.221876		
H	1.931178	-0.163444	4.085343		
H	3.014227	-2.162537	3.114904		
H	2.417196	-2.923619	0.821156		
H	0.729620	-1.648563	-0.493300		
H	-0.339901	0.365244	0.478735		
H	-5.254215	-0.166849	4.841943		
H	-6.334602	-2.163146	5.821018		
H	-5.736917	-2.913260	8.118202		
H	-4.051383	-1.630040	9.427324		
H	-2.984520	0.380967	8.446596		
Z'	Fe	8.64158900	10.84114500	-0.79699200	
------------	---------------	------------	-------------	-------------	
	N	10.33638600	12.19412800	-0.68763500	
	C	10.42011300	13.03030900	0.36856800	
	C	11.46495400	13.95315600	0.48151400	
	H	11.52202300	14.61065500	1.33805700	
	C	12.43126000	13.98692000	-0.52298800	
	H	13.25739100	14.68922500	-0.45780200	
	C	9.34249500	12.85838700	1.34290500	
	C	8.94420200	13.56714900	2.48873300	
	H	9.38953700	14.46012300	2.89817900	
	C	7.81901700	12.90392000	2.97659000	
	C	6.92269400	13.31529100	4.14014600	
	C	5.52701200	13.72612700	3.60884300	
	H	4.89892800	14.06843200	4.43977700	
	H	5.00659900	12.89765500	3.11921900	
	H	5.61058100	14.54347900	2.88440100	
	C	6.77920500	12.19835500	5.19968900	
	H	6.21119300	12.57956600	6.05632300	
	H	7.75939300	11.86985900	5.56189700	
	H	6.25006600	11.32231400	4.81831300	
	N	8.51812700	11.82205400	1.14011000	
	N	7.60839500	11.84562800	2.12441600	
	C	6.70149800	10.68497800	2.16504200	
	H	6.47124100	10.46687200	1.11899100	
	H	5.77709900	10.99507200	2.65661800	
	C	7.31950900	9.45978000	2.85820600	
	H	6.55389000	8.67408900	2.79573000	
	H	7.43007500	9.69337000	3.92687300	
	C	8.65070900	9.83356200	2.28317900	
	H	8.98540600	8.17217900	3.00375400	
	H	9.41194100	9.72529500	2.36483600	
	B	8.67252600	8.24282600	0.79404600	
	H	8.63032900	9.17407400	-0.14400500	
	C	7.43884500	7.22083800	0.46843600	
	H	6.45086500	7.69017800	0.61996000	
	C	7.51331800	6.03610300	1.46854600	
	H	7.31074400	6.42839200	2.47595100	
	H	6.71198200	5.30462000	1.26960300	
	C	8.86327000	5.28154100	1.50253500	
	H	8.89324000	4.57058400	0.67005400	
	H	8.90147700	4.65919600	2.40901100	
	C	10.11923400	6.18472500	1.45881500	
	H	10.99294600	5.55354500	1.22413300	
Element	X	Y	Z		
---------	---------	---------	---------		
H	10.30378600	6.57353900	2.46987600		
C	10.03770800	7.39123100	0.48604700		
H	10.94668300	7.99317400	2.46987600		
C	10.07676700	6.96550300	-1.00013600		
H	10.96736700	6.35023800	-1.21528000		
C	10.19296600	7.87987100	-1.60032800		
C	8.82821500	6.19985400	-1.49608700		
H	8.83436000	6.16991500	-2.59752700		
H	8.90341500	5.15131000	-1.19051500		
C	7.47674200	6.77455400	-1.01116500		
H	7.22681200	7.65842000	-1.61909300		
C	6.68794300	6.03346300	-1.22614700		
C	11.26237500	12.22722900	-1.66348000		
H	11.01858700	11.29261400	-2.76422400		
H	11.04564900	11.49668500	-4.26364400		
C	11.73212800	11.04564900	-3.94949800		
C	11.26237500	12.22722900	-1.66348000		
C	12.33959800	13.11944300	-1.61052300		
H	13.08088100	13.13483500	-2.40185600		
C	11.01858700	11.29261400	-2.76422400		
C	11.73212800	11.04564900	-3.94949800		
H	12.65994700	11.49668500	-4.26364400		
C	11.00258600	10.08491300	-4.64172200		
C	11.35383600	9.41668200	-5.96747500		
C	12.65319600	10.05175800	-6.50989500		
H	12.92082600	9.57919400	-7.46090700		
H	13.49142700	9.90851000	-5.81967500		
H	12.53222700	11.12544400	-6.69146800		
C	11.62032000	7.90557700	-5.75613300		
H	11.92618900	7.44780200	-6.70417000		
H	10.73978700	7.36543000	-5.39703400		
H	12.42356400	7.75127100	-5.02787400		
C	10.25236800	9.62783000	-7.03371300		
H	10.58601200	9.21157000	-7.99127000		
H	10.04940500	10.69436800	-7.18127700		
H	9.31065500	9.13777300	-6.77505500		
N	9.91819900	10.52658800	-2.71455800		
N	9.91197400	9.80500000	-3.85357800		
C	8.71214300	8.99657000	-4.11169400		
H	8.48726800	8.47592400	-3.17907200		
H	8.96466300	8.24215000	-4.85680100		
C	7.50825700	9.84164900	-4.54924300		
H	7.75515300	10.38411000	-5.47116700		
H	7.32268400	10.59326500	-3.77408000		
C	6.25236800	8.98192300	-4.75241200		
H	6.06137800	8.38246600	-3.84487100		
H	6.42248300	8.21806300	-5.53280200		
B	4.89950000	9.71995100	-5.09656100		
H	7.20294500	11.35310500	-1.48628600		
C	4.68454400	11.27512000	-5.25448500		
H	5.61550200	11.85416900	-5.18769600		
C	3.79861300	11.70726800	-4.04201400		
Element	X	Y	Z		
---------	------------	------------	------------		
H	4.40539800	11.60017600	-3.13136300		
H	3.56517700	12.77954100	-4.12137900		
C	2.48825000	10.90955000	-3.86629000		
H	1.73288600	11.27943000	-4.56609600		
H	2.08270100	11.11270400	-2.86585200		
C	2.65124900	9.38329700	-4.03502500		
H	1.65857100	8.91438900	-4.10773700		
H	3.10690100	8.97689100	-3.11995900		
C	3.53501500	8.93711900	-5.24222800		
H	3.65667800	7.84661000	-5.16465000		
C	2.92134600	9.23788900	-6.63930200		
H	1.93146900	8.76520400	-6.72559300		
H	3.55231400	8.74451300	-7.39456100		
C	2.80496800	10.73400600	-6.99916800		
H	2.60618200	10.82654800	-8.07578300		
H	1.92894200	11.16411700	-6.50510800		
C	4.05820000	11.56422300	-6.64954900		
H	4.82989500	11.36759100	-7.40971500		
H	3.82070500	12.63498900	-6.73839700		
2-OH'					
--------	--------	--------	--------		
Fe	2.22530800	11.29223400	7.69641200		
O	3.73591700	12.26872700	8.22866400		
H	3.90128000	12.38661900	9.17380000		
O	0.51612500	11.90277100	6.83732700		
H	0.46516700	11.68582700	5.89665800		
N	2.33432000	9.13569700	7.87334000		
N	3.02722600	10.53669600	5.69896400		
N	3.49641000	10.14171000	4.52931400		
N	1.43454900	10.72940400	9.84532500		
N	0.85065000	11.28398700	10.92240500		
C	2.81411500	8.41962500	6.83704500		
C	2.94514700	7.02854600	6.91307900		
C	2.58165000	6.39045400	8.09741700		
C	2.09687400	7.13722700	9.16874000		
C	1.97902800	8.52478100	9.02024200		
C	3.19820400	9.20752700	5.66122700		
C	3.77914000	8.82905800	4.43742200		
C	3.96723400	10.00717400	3.72160400		
C	4.52070700	10.16805800	2.30932500		
C	5.75704700	11.09764600	2.75643000		
C	3.42091700	10.69749700	1.35584200		
C	4.96482700	8.78209400	1.79232300		
C	1.45460400	9.40772800	10.06656000		
C	0.88609200	9.11519700	11.31885700		
C	0.49968800	10.33831000	11.85591900		
C	-0.18606000	10.59902900	13.19351400		
C	0.61187700	11.60949500	14.05246700		
C	-1.64011500	11.08931000	12.98117200		
C	-0.25238700	9.27149600	13.98085100		
C	3.53839800	12.47943900	4.39591400		
C	4.67778800	13.12314300	5.19715300		
C	4.60497800	14.65670000	5.14466000		
B	5.60598400	15.46362100	6.05815600		
C	5.44892100	17.01534300	6.30449800		
C	6.79218600	17.74967600	6.04608500		
C	8.01857200	17.15104600	6.76582000		
C	8.10014800	15.61164200	6.93930000		
C	6.76482300	14.85881100	6.94397300		
C	6.21194700	14.96664100	8.40511200		
C	5.76194400	16.38097100	8.83307600		
C	4.91913400	17.12342200	7.77223100		
C	0.42887700	13.33329200	9.55159700		
C	-0.80942200	12.76131300	8.83571700		
C	-0.74004100	12.82531400	7.20194200		
C	-2.06866700	12.21779400	6.45760800		
C	-1.84672500	12.12048200	4.92684700		
C	-1.39964800	13.43360000	4.24433900		
---	------	------	------	------	------
C	-0.32642200	14.22890500	5.02336600		
C	-0.53902100	14.31823800	6.95069000		
C	-1.75516400	15.19366600	5.52382600		
C	-3.13860000	14.60690500	6.58048600		
C	-3.29631400	13.08737000	6.83211200		
C	0.69322300	12.75417000	10.94536300		
H	3.81401600	10.75812300	0.33430800		
H	2.55628700	10.02501900	1.34825700		
H	3.06545900	11.69439300	1.63206900		
H	5.75137400	8.35062900	2.42113900		
H	4.12685000	8.07784500	1.75243900		
H	5.36395700	8.81793000	0.77736900		
H	6.17362000	11.11552900	1.26190600		
H	5.52069100	12.12825300	2.55079600		
H	6.53658200	10.73699700	2.95565800		
H	4.02851600	7.83296100	4.10885600		
H	3.32475900	6.46489000	6.06802300		
H	2.67712000	5.31195800	8.18539600		
H	1.81275200	6.65905100	10.09959400		
H	0.75425200	8.14550900	11.77208100		
H	0.74687800	8.86305100	14.16780300		
H	-0.73146200	9.44577600	14.95022400		
H	-0.84248600	8.51613600	13.45082900		
H	1.63934600	11.26209200	14.20927400		
H	0.65720900	12.60544400	13.60540700		
H	0.13648700	11.71150000	15.03487200		
H	-1.69706300	12.04227200	12.44876000		
H	-2.21476900	10.35539500	12.40599100		
H	-2.13067300	11.22169900	13.95270600		
H	1.60066000	13.18350100	11.39023800		
H	-0.14229000	12.97241300	11.60969400		
H	0.33417300	14.41938700	9.68285700		
H	1.33499600	13.19334100	8.95545500		
H	-0.93704900	11.70417600	9.11627800		
H	-1.70058300	13.27322000	9.22482900		
H	0.35748300	14.82001100	6.96065000		
H	-1.72124300	15.34457600	8.03948900		
H	-1.67746600	16.20193600	6.50981200		
H	-3.91723100	15.14416200	7.14219000		
H	-3.35081200	14.82355500	5.52782600		
H	-4.20015300	12.74040900	6.30310500		
H	-3.50326600	12.93128200	7.89997200		
H	-2.28925200	11.19382900	6.80799400		
H	-1.08585400	11.34300600	4.72960700		
H	-2.75160100	11.75001000	4.41744900		
H	-1.02311300	13.20880300	3.23458800		
H	-2.27585000	14.06976900	4.08541500		
H	0.65131100	13.75124000	4.84877200		
	15.23165300	4.57267500			
---	-------------	---------------			
H	12.72340000	3.33464700			
H	12.84404500	4.76587300			
H	12.78830100	6.23767900			
H	12.77056200	4.81044500			
H	14.99019000	5.40888300			
H	15.02451000	4.10993900			
H	17.47661000	5.65816500			
H	17.73038100	4.96137000			
H	18.81358900	6.31192500			
H	17.57704400	6.32755600			
H	17.47152400	7.81185100			
H	15.32872400	5.69259800			
H	15.25730900	7.39631500			
H	13.79145600	6.75882000			
H	14.27559600	8.48336600			
H	14.59767200	9.10959900			
H	16.29987400	9.75637000			
H	16.98438500	9.09894000			
H	18.18285700	8.05357400			
H	16.71526800	7.78918500			
Atoms	x	y	z		
-------	-----	-----	-----		
C	6.82461900	1.65706800	13.61271200		
C	6.10614700	2.26638600	12.58644600		
C	6.11064600	3.66258400	12.50537000		
C	5.43230000	4.41759400	11.44915200		
C	4.76902600	3.98525000	10.28760600		
C	4.40621800	5.14461000	9.60487500		
C	3.71894600	5.24643600	8.24574000		
C	4.70276400	5.79688300	7.18305700		
C	3.29446700	3.82876400	7.02047000		
C	2.44227400	6.11817500	8.29971200		
C	4.75190800	7.64798300	10.18664700		
C	3.62853300	8.30034000	11.00171700		
C	3.61815100	9.82598300	10.82864800		
C	2.54907400	12.23578300	11.64690200		
C	2.88145800	12.64823900	13.11533900		
C	1.97725400	12.01743200	14.19619400		
C	1.70842100	10.51046200	13.99277600		
C	1.37492200	10.08347700	12.52711800		
C	0.01463800	10.61910700	11.99130500		
C	-0.06317300	12.14790900	11.79604500		
C	1.18229100	12.76009900	11.12078200		
C	4.11201400	6.20612900	15.14694200		
C	3.04930500	5.65556000	14.40954500		
C	2.33376400	4.55806200	14.89621200		
C	2.65938000	3.99026800	16.13009400		
C	3.70901300	4.53361200	16.87421100		
C	4.42659900	5.62889900	16.39036100		
B	2.53813500	10.65630800	11.62901900		
N	6.78339700	4.41121700	13.40152000		
N	5.46927400	5.75682700	11.49460600		
N	4.85337400	6.19136000	10.37634000		
S	5.00805500	7.64292800	14.55631600		
Fe	6.67107700	6.53693300	13.28325900		
C	7.52792900	2.43662800	14.52791500		
C	7.48457800	3.82856500	14.39369800		
C	8.17156000	4.75426700	15.29621600		
C	8.98696800	4.52075500	16.41599800		
C	9.34011500	5.77664000	16.89723000		
C	10.22086700	6.10156100	18.10033000		
C	9.44855100	6.92174100	19.16280300		
C	10.65343800	4.77607600	18.76599700		
C	11.50833100	6.84218800	17.66094200		
C	8.64010300	8.15483000	16.16961200		
C	8.68846600	8.86419900	14.81694200		
C	9.95775800	8.64114700	13.98437500		
C	11.11446800	8.89765800	11.47863300		
C	12.12256200	9.96041400	12.00857800		
---	---	---	---	---	---
C	11.57523300	11.40567200	12.09807200		
C	10.12809800	11.52637000	12.63215200		
C	9.12628500	10.47004600	11.34430200		
C	8.81958500	10.66043100	10.57301400		
C	9.98536200	10.33989300	9.61053500		
C	10.79597200	9.07521800	9.97378900		
C	9.11684800	6.07142800	11.10214000		
C	10.97610000	5.40073700	11.85132600		
C	10.71884600	4.25760400	10.08760800		
C	10.36916500	3.75917100	9.33599000		
B	9.97221100	9.02877700	12.40967400		
N	8.03198100	6.07192300	15.08883200		
N	8.77553200	5.56617000	9.83679000		
S	8.29417000	7.54648400	11.70897200		
H	8.02947300	6.08709500	9.24414800		
H	9.11788400	4.04546800	8.35359900		
H	10.85569900	2.87008100	9.69514900		
H	11.48196200	3.75699100	11.93554500		
H	10.37544900	5.78077800	12.82824600		
H	11.61274500	7.92122400	11.58700700		
H	11.72804300	9.07721100	9.38522200		
H	10.23621600	8.19259400	9.63908000		
H	9.58528200	10.22622100	8.59213200		
H	10.65982000	11.20107700	9.55557500		
H	7.97341200	10.00831800	10.31988700		
H	8.47752100	11.69048200	10.37954000		
H	8.17798200	10.63588100	12.61603100		
H	10.14947600	11.43919400	13.72803300		
H	9.76095000	12.54389900	12.42282800		
H	12.24249600	12.00148300	12.73796500		
H	11.63278200	11.87479300	11.11094500		
H	12.45752200	9.64770700	13.00725500		
H	13.02832300	9.96768900	11.38115000		
H	10.77275700	9.23201400	14.43209400		
H	10.28184800	7.59480200	14.08041100		
H	7.80330600	8.55492200	14.25522400		
H	8.54482600	9.93230200	15.02378000		
H	9.46534600	8.48074200	16.80019000		
H	7.69728200	8.37760400	16.68328700		
H	12.07593100	6.23809500	16.94488400		
H	11.30958600	7.80886300	17.19100200		
H	12.14567400	7.02248400	18.53448600		
H	11.28842800	4.99343500	19.63138600		
H	9.79062300	4.20128700	19.12006500		
H	11.23095200	4.14826000	18.07881600		
H	10.08368500	7.07044700	20.04374300		
---	----------	----------	----------		
H	9.14663800	7.90891300	18.80513300		
H	8.54577500	6.38973900	19.48312600		
H	9.28688500	3.56902900	16.82467700		
H	8.09680400	1.98062000	15.33037000		
H	6.83821600	0.57427300	13.69774000		
H	5.55488000	1.67664600	11.86278500		
H	4.59373000	2.97350000	9.96890000		
H	4.15750300	3.16385900	7.68989400		
H	2.59737500	3.37543000	8.51528800		
H	2.79199900	3.88595200	6.83067800		
H	2.65361900	7.16842900	8.51314600		
H	1.93165900	6.07754100	7.33071000		
H	1.74771500	5.75030300	9.06296400		
H	5.59325600	5.16275000	7.11379800		
H	4.21724700	5.81047400	6.20023400		
H	5.03497100	6.81614900	7.40042800		
H	5.72623400	8.05426000	10.47410900		
H	4.62263500	7.83463600	9.12000600		
H	2.66200400	7.87458700	10.70277800		
H	3.77625700	8.05242600	12.05833500		
H	4.60915100	10.23892000	11.08458800		
H	3.49553300	10.09572400	9.76277400		
H	1.31776200	8.98630300	12.52353200		
H	-0.18028800	10.13293300	11.02274100		
H	-0.80136700	10.29601500	12.65499600		
H	-0.94874500	12.38464900	11.19019400		
H	-0.23433500	12.63307400	12.76124100		
H	1.14095800	13.85618000	11.20721500		
H	1.13573200	12.54576800	10.04189300		
H	3.33374500	12.66574000	11.00695200		
H	3.92286400	12.35664400	13.31661600		
H	2.85507400	13.74429700	13.20810300		
H	2.44843500	12.16105900	15.17784800		
H	1.02916600	12.56150000	14.24653400		
H	2.59577500	9.94513400	14.31032800		
H	0.89485700	10.19169200	14.66133000		
H	5.23280400	6.05616500	16.97928100		
H	3.96862900	4.10753700	17.84082100		
H	2.09804300	3.14052800	16.50983700		
H	1.51298900	4.15127900	14.30960500		
H	2.78182900	6.09679100	13.45514400		
2-SPh''					
---------	----------	----------	----------		
C	6.89800700	1.48672100	13.36066300		
C	6.27371200	2.09387100	12.27226900		
C	6.22460300	3.49119100	12.22065000		
C	5.60148300	4.25438600	11.14170500		
C	5.05817200	3.85583800	9.90932900		
C	4.66249000	5.02623200	9.26979000		
C	4.08159600	5.17002600	7.86590600		
C	5.09380000	5.88660200	6.93847600		
C	3.83225800	3.75817400	7.29071500		
C	2.72824300	5.91882600	7.86401100		
C	4.72355500	7.49636200	10.05950000		
C	3.45854000	7.93217300	10.81101200		
C	3.30561500	9.45977800	10.82914000		
C	0.93020700	9.28704600	12.34380900		
C	-0.43301200	9.71966200	11.72784100		
C	-0.67810100	11.24227700	11.66728000		
C	0.53827000	12.05628500	11.17746700		
C	1.90729200	11.63653300	11.78615000		
C	2.05765000	11.92969400	13.31104600		
C	1.14593700	11.09343800	14.23459900		
C	1.08236400	9.59513100	13.86718200		
C	4.77356000	7.19455700	15.89239300		
C	4.60360300	5.87398800	16.34779700		
C	4.41063700	5.60061500	17.70269500		
C	4.37186800	6.63789300	18.63834000		
C	4.53382200	7.95465500	18.19903700		
C	4.73549000	8.22990600	16.84592300		
B	2.08408900	10.07552000	11.61138800		
N	6.76977900	4.24459600	13.20086300		
N	5.53983500	5.58867300	11.26566900		
N	4.97311200	6.04856900	10.13393600		
S	4.94788400	7.59144900	14.16385800		
Fe	6.66678900	6.37367800	13.07902500		
C	7.45751500	2.27032100	14.36847300		
C	7.37687000	3.66261200	14.25611100		
C	7.92089500	4.59972600	15.23882000		
C	8.49763800	4.39757800	16.50353600		
C	8.77827000	5.66542000	17.00272500		
C	9.34247600	6.02226900	18.37511000		
C	8.26720900	6.74130200	19.22642300		
C	9.72448900	4.71478200	19.10396000		
C	10.61865500	6.89065700	18.27765200		
C	8.48258300	8.01244800	15.93741900		
C	9.70195200	8.47615700	15.12969500		
C	9.70099300	9.99770300	14.92501400		
C	10.87497800	12.15965700	13.67193000		
C	10.72049400	12.21852700	12.12047000		
H	7.96451300	7.70212300	18.80117400		
H	7.36452400	6.12899300	19.31512300		
H	8.66737200	3.45834200	17.00535900		
H	6.94833000	0.40346900	13.42343600		
H	8.66737200	3.45834200	17.00535900		
H	6.94833000	0.40346900	13.42343600		
H	5.82685500	1.50187200	11.48116300		
H	4.98426600	2.85396200	9.51742100		
H	4.76150100	3.18378500	7.21307400		
H	3.12317700	3.19139600	7.90441900		
H	3.41064900	3.84445500	6.28362300		
H	2.82419100	6.96551500	8.16157600		
H	2.30538600	5.90389100	6.85278700		
H	2.00983000	5.43856100	8.53781200		
H	6.05068100	5.35582400	6.91950200		
H	4.69563800	5.92357700	5.91731300		
H	5.30089500	6.91335800	7.25237800		
H	5.60845000	7.97278700	10.49203100		
H	4.67929400	7.76194000	9.00674500		
H	2.57756100	7.46213900	10.35631500		
H	3.51914600	7.56317700	11.84014800		
H	4.21881100	9.92010700	11.23740000		
H	3.25890500	9.85623700	9.79146600		
H	2.68657400	12.21552500	11.26841400		
H	3.10470000	11.73485500	13.58582600		
H	1.89096000	13.00054700	13.50253300		
H	1.50896500	11.18698600	15.26708000		
H	0.13783300	11.51910600	14.24175400		
H	0.26102700	9.11829800	14.42289000		
H	2.00414600	9.10716200	14.21291100		
H	1.00735400	8.19704500	12.23201700		
H	-0.48259000	9.31708500	10.70415300		
H	-1.25891100	9.24084400	12.27513100		
H	-1.52965200	11.43965800	11.00139700		
H	-0.99005600	11.60332400	12.65149900		
H	0.61228000	11.95014800	10.08410400		
H	0.35705100	13.12633300	11.35974100		
H	4.85485000	9.25613600	16.50994700		
H	4.49892200	8.77473800	18.91298100		
H	4.20659600	6.42464400	19.69135400		
H	4.27457200	4.57083800	18.02627100		
H	4.60235200	5.06151000	15.62669800		
(MePDP$_{18}$)Fe(NH$_2$)$_2$

Element	X	Y	Z
Fe	4.40235100	4.40215800	-0.00004300
N	2.92701700	2.92703000	0.00001400
N	4.80776700	3.10262300	1.75329000
N	5.71472200	3.05436900	2.75540800
N	6.20351000	4.15934400	-0.65187100
H	6.67458000	3.26632000	-0.77450700
C	0.93351200	0.93373400	0.00008800
C	1.92206800	0.95678600	0.99098300
C	2.89301400	1.95168100	1.94996800
C	3.95421800	2.08723700	1.94996800
C	4.32041900	1.37857300	3.11478600
C	5.44474900	2.01846800	3.61965000
C	6.25534000	1.67060400	4.86170800
C	5.53670000	0.53724200	5.62488700
H	4.52837700	0.83668400	5.93029500
H	6.10305900	0.28507400	6.52823800
C	5.45731300	-0.37020400	5.01673500
H	6.36903100	2.88399200	5.81505400
H	6.92438900	3.71608200	5.37405700
C	6.37620300	3.25249200	6.09613900
C	7.66410400	1.15855400	4.47267400
H	7.59040000	0.28633200	3.81418800
H	8.21569300	0.86140600	5.37274600
C	8.26141800	1.91610400	3.95651400
C	6.73681700	4.09248000	2.75408900
H	7.66536500	3.71277000	3.17938500
H	6.40557700	4.96750600	3.32552000
N	3.10268500	4.80775800	-1.75324200
N	3.05443300	5.71472400	-2.75540000
N	4.16021200	6.20348500	0.65158500
H	3.26735000	6.67476900	0.77458600
H	4.82968500	6.64314800	1.27942800
C	0.95662600	1.92226700	-0.99084000
H	0.20886300	1.93841400	-1.77823800
C	1.95161800	2.89310400	-0.96988200
C	2.08723400	3.95428100	-1.94991700
C	1.37859100	4.32047000	-3.11474900
H	0.51432400	3.83103500	-3.53659900
C	2.01849500	5.44479800	-3.61961100
C	1.67061700	6.25540100	-4.86165700
C	0.53728800	5.53673200	-5.62485400
H	0.83677000	4.52842400	-5.93027500
Element	X	Y	Z
---------	---------	---------	---------
H	0.28510400	6.10309500	-6.52819800
H	-0.37015900	5.45730000	-5.01670900
C	2.88400500	6.36915200	-5.81499500
H	3.71606200	6.92455600	-5.37399500
H	2.58771300	6.89299200	-6.73154700
H	3.25249600	5.37634300	-6.09607800
C	1.15850900	7.66414100	-4.47260600
H	0.28629100	7.59039300	-3.81412000
H	0.86133500	8.21572800	-5.37267100
H	1.91603600	8.26147900	-3.95644200
C	4.09258300	6.73678400	-2.75411000
H	3.71284500	7.66541000	-3.17921500
H	4.96750400	6.40559300	-3.32572900
H	6.89326100	4.37259200	1.70608300
H	4.37286600	6.89306100	-1.70612200
\[(\text{MePDP}^{\text{Su}})\text{Fe(NHMe)}_2\]

Element	X	Y	Z
Fe	4.30792000	4.31141700	-0.00283200
N	5.58742200	5.60060100	-0.00989400
N	3.73747600	5.31774400	1.56221800
N	2.73451700	5.26414200	2.47441000
C	5.60530800	6.58051500	0.96851900
C	6.57843500	7.57211200	0.97656700
C	7.56136900	7.58927800	-0.02063300
C	4.50542800	6.38101800	1.87997500
C	3.98045600	7.01127500	3.02892500
C	2.85789200	6.28493500	3.39630700
C	1.90468400	6.53880600	4.55684000
C	2.46576000	7.69053200	5.41821800
C	0.51162900	6.97200200	4.03709100
C	1.77287300	5.29207400	5.46386700
C	1.80251500	4.14966300	2.36943300
N	2.78020300	4.67769400	-1.01315000
H	2.90013200	4.49978100	-2.01500200
C	1.80820800	5.75150700	-0.88846000
N	5.30997700	3.73992600	-1.57029500
N	5.25905200	2.73157300	-2.47667800
C	6.56189600	5.62039700	-0.99366300
C	7.54616500	6.60080200	-1.01236000
C	6.36576700	4.51403400	-1.89796700
C	6.99386300	3.98740300	-3.04734200
C	6.27401400	2.85744700	-3.40469900
C	6.52897000	1.89967000	-4.56112000
C	7.67218300	2.46431100	-5.43153600
C	6.97499100	0.51274500	-4.03593000
C	5.27866300	1.75372400	-5.46110400
C	4.15182400	1.79222700	-2.36101500
N	4.69030200	2.79181200	1.01886200
C	5.76967800	1.82606100	0.88862300
H	2.09910700	3.31951300	3.01941000
H	0.79362700	4.47088800	2.62844800
H	2.75406900	4.97146700	5.83144600
H	1.14730700	5.53020700	6.33226300
H	1.31043700	4.44443300	4.95106900
H	0.59326000	7.86708400	3.41118600
H	0.02192300	6.19382100	3.44390300
H	-0.14739100	7.20452900	4.88227600
H	3.45474500	7.44525700	5.82002800
H	2.54770600	8.61948800	4.84396400
H	1.79430900	7.87861700	6.26319900
H	4.36796900	7.88815800	3.52313800
H	6.56516200	8.32686200	1.75759700
H	8.32580700	8.35943200	-0.02480100
H	8.29679400	6.58885500	-1.79737200
	X-coordinates	Y-coordinates	Z-coordinates
---	---------------	---------------	---------------
H	7.86522100	4.37867400	-3.54832100
H	7.86090900	1.78953200	-6.27371800
H	7.41763100	3.44921200	-5.83758500
H	8.60340400	2.55625600	-4.86248800
H	7.87256700	0.60443300	-3.41500800
H	6.20342000	0.02065600	-3.43611700
H	7.20813600	-0.14925500	-4.87861400
H	5.51690300	1.12490100	-6.32711300
H	4.43696300	1.28820400	-4.94136400
H	4.94917300	2.73047800	-5.83264100
H	4.47893800	0.78424700	-2.61617500
H	3.31633300	2.07934100	-3.00840800
H	5.96273100	1.59636900	-0.16507500
H	6.73132500	2.16751500	1.31687300
H	5.52334600	0.87000600	1.38322800
H	2.14106200	6.71305900	-1.32365300
H	0.85105600	5.49639400	-1.37645200
H	1.58310700	5.94868300	0.16546500
H	4.51710400	2.91609200	2.01584300
H	3.81995300	1.81767400	-1.32119000
H	1.82469400	3.81273100	1.33116500
Atom	x	y	z
------	------	------	------
Fe	5.63977700	8.63906300	5.91898400
N	5.50007800	10.83564100	5.84500200
N	3.47704300	9.30674500	6.43046000
N	2.30756200	8.75299100	7.00513000
C	4.42769000	11.49045400	6.33294100
C	4.40340200	12.88746900	6.41451500
C	5.51661900	13.60117700	5.97280800
C	3.31161800	10.63038900	6.73744700
C	2.00824700	10.92764200	7.18282800
C	1.73756600	9.70230300	7.34971700
C	-0.05921500	9.42588900	7.87082000
C	-0.70496200	10.75425600	8.23683000
C	-0.10573600	8.44724500	8.98433400
C	-0.89027100	8.86850400	6.60523300
C	2.24604300	7.29396500	6.98571600
C	4.20641900	7.27453600	3.55186400
N	4.99964700	7.22785800	4.67738200
C	3.67295500	8.50626000	3.09102800
C	2.86845600	8.57034300	1.95820700
C	2.55043800	7.41886600	1.22936000
C	3.06278200	6.19445500	1.66896200
C	3.86975000	6.11870900	2.80077900
N	7.47695400	9.35684500	4.93230300
N	8.57114900	8.80464100	4.37926000
C	6.57529400	11.52327100	5.40745500
C	6.61841800	12.92145100	5.45850300
C	7.63504000	10.68511900	4.88206000
C	8.89719600	10.98367200	4.29508400
C	9.47611800	9.75862600	3.97991300
C	10.81976400	9.48711700	3.31550900
C	11.55502000	10.83031100	3.11748800
C	10.62250500	8.84604400	1.91975800
C	11.71068800	8.58741800	4.20584800
C	7.34236300	7.67214900	8.36958900
N	6.17847900	7.95072800	7.68997100
C	8.59161900	8.22253500	7.97617400
C	9.76839200	7.91825600	8.65554200
C	9.76954400	7.06297700	9.76204400
C	8.54761900	6.52439900	10.17918000
C	7.36688900	6.81843300	9.50573000
C	8.63044300	7.34512400	4.39488000
H	5.39228400	7.57145900	8.21599900
H	5.26876600	6.26884700	4.88995800
H	4.25911200	5.15356600	3.12376200
H	2.83165900	5.28194600	1.12216800
H	1.92264000	7.47489900	0.34452700
H	2.48159300	9.53664300	1.63900000
H	3.89777600	9.41221300	3.64999800
--------------------	-------------	-------------	-------------
H	8.61166000	8.92393200	7.14826200
H	10.70155700	8.37080400	8.32241600
H	10.69089000	6.83195000	10.28926800
H	8.51351900	5.86175800	11.04232800
H	6.42895900	6.38035000	9.84648800
H	2.41109500	6.88516500	7.98779900
H	1.28051000	6.95785100	6.60880900
H	0.49261800	8.82263000	9.82198600
H	-1.14016700	8.33777800	9.32982700
H	0.25879900	7.44921300	8.72730900
H	-0.51920200	7.90437100	6.24539000
H	-1.93114500	8.72468800	6.91872700
H	-0.88053900	9.56497000	5.76019100
H	-0.15780800	11.20446300	9.07231800
H	-0.74575300	11.48068700	7.41805700
H	-1.73264800	10.56887700	8.56725300
H	1.57440900	11.90122300	7.34892700
H	3.53531200	13.39838500	6.81647200
H	5.52408000	14.68600500	6.02849800
H	7.49336600	13.45700000	5.10639500
H	9.32050400	11.95831600	4.11018500
H	12.52826000	10.64898800	2.64900100
H	10.99208100	11.50641700	2.46479100
H	11.73105200	11.33684000	4.07267400
H	11.59607500	8.70656500	1.43550700
H	10.13602600	7.86741000	1.96609300
H	10.01199100	9.49095300	1.27859800
H	12.69516300	8.46689500	3.73905100
H	11.85632700	9.03802500	5.19366500
H	11.29243700	7.58838100	4.35295300
H	7.61121100	6.98369000	4.24059000
H	9.27356600	6.98453900	3.59523100
H	8.99814700	6.99967600	5.36673200
H	3.03759200	6.95794200	6.31170300
\((\text{MePDP}^{\text{Bu}})\text{Fe(PPH)}_2\)

Atom	X	Y	Z
Fe	-3.22893900	5.71963100	6.05932000
N	-5.35775900	5.74618500	5.97696000
N	-3.92238300	4.29407000	7.66040300
N	-3.40853700	3.48878000	8.61107100
N	-3.77733500	7.17691900	4.40672700
N	-3.18220300	7.96616000	3.49098600
P	-1.95920100	3.98470800	4.83442000
P	-1.98584100	7.43500000	7.34831400
C	-6.06837900	4.98468800	6.83508000
C	-7.46603000	4.97119400	6.80900100
C	-8.12324400	5.77186800	5.87637200
C	-7.38502900	6.55977500	4.99466100
C	-5.98971900	6.52057000	5.07042200
C	-5.25564000	4.20402600	7.76920500
C	-5.59791200	3.30045700	8.81734300
C	-4.39506600	2.88471000	9.35354000
C	-4.17665400	1.92301400	10.51553600
C	-3.31898300	2.57445800	11.62719700
C	-3.52536600	0.60569300	10.02643100
C	-5.54890500	1.56811500	11.12843500
C	-1.95324300	3.45721500	8.72935500
C	-3.28158100	2.94331800	4.08528500
C	-3.92106800	1.95866200	4.86828800
C	-4.90946000	1.13090100	4.33676100
C	-5.28770600	1.24785200	2.99672800
C	-4.66072500	2.20950700	2.20078700
C	-3.67955200	3.04460100	2.73606000
C	-5.09709200	7.28469200	4.19726500
C	-5.34719400	8.15447900	3.12018700
C	-4.10101500	8.57860700	2.67250400
C	-3.78167900	9.52851300	1.52420600
C	-5.09864100	9.89865600	0.80766000
C	-3.14952000	10.83980800	2.05289900
C	-2.85273800	8.85689900	0.48412400
C	-1.72171600	7.97556900	3.48170100
C	-3.34488400	8.43962000	8.08260000
C	-3.77859700	8.30481900	9.41773700
C	-4.78756200	9.11366400	9.94164300
C	-5.40738300	10.08147400	9.14762200
C	-4.99375700	10.23160800	7.82139100
C	-3.97777600	9.43023100	7.30156900
H	-1.59355200	4.67183500	3.63806200
H	-1.64514900	6.72332500	8.53767400
H	-1.60219500	4.30583500	9.32457800
H	-1.63629500	2.52479700	9.19057200
H	-2.52524500	0.75279900	9.60863500
H	-3.43088100	-0.09406400	10.86496400
H -4.14163600 0.13137900 9.25510900
H -2.30348600 2.80960500 11.98242600
H -3.78111500 3.50032000 12.47862100
H -3.23755700 1.88962000 11.50110100
H -5.40670600 0.88427600 11.97204500
H -6.06551500 2.45920800 11.50110100
H -6.19875500 1.06909800 10.40144800
H -6.58724700 3.05540000 9.14696900
H -8.02180900 4.35003200 7.50285500
H -9.20855500 5.78186400 5.83670100
H -7.87294000 7.19053700 4.26253500
H -6.30485900 8.44006300 2.71465200
H -4.88350700 10.57496400 0.02651500
H -5.59863700 9.01253400 0.40189500
H -5.79408600 10.41143500 1.48090300
H -1.86833400 8.60971900 0.89003300
H -3.30053600 7.93336200 0.10094800
H -2.69774700 9.53497100 -0.36303200
H -2.18657800 10.68107800 2.54681000
H -2.98073700 11.53161800 1.21944100
H -3.81541900 11.32908700 2.77185800
H -3.20723800 3.78664100 2.09663800
H -4.93791300 2.31284100 1.15354800
H -6.05198500 0.59751100 2.57919300
H -5.37969000 0.38182000 4.97080800
H -3.62598400 1.83169600 5.90779300
H -3.65545000 9.58302700 6.27368300
H -5.45797300 10.98613600 7.18940100
H -6.19333100 10.71128500 9.55629600
H -5.09201200 8.98496800 10.97845300
H -3.31217200 7.55771700 10.05560700
H -1.35717700 8.89855800 3.03699500
H -1.34079600 7.11606200 2.92142400
H -1.53395400 3.52288000 7.72307400
H -1.37989400 7.91385900 4.51715600

S172
\[(Me\text{PDP}^{\text{Bu}})\text{Fe(OH)2}\]

Atom	X	Y	Z
Fe	1.88528500	10.95376400	7.61283300
O	2.69136100	12.62839100	7.95361900
H	3.58139800	12.61148300	8.33647600
O	0.18789500	11.15091200	6.88353200
H	-0.35828900	10.38772100	6.65072800
N	2.26139200	8.90948300	7.78040500
N	3.16149700	10.41854100	5.91399000
N	3.56626000	11.05880000	4.79362900
N	1.53306000	10.43018700	9.71121800
N	1.00159200	11.07709600	10.77344300
C	2.89147900	8.22916800	6.77008400
C	3.13050700	6.86054600	6.84623200
C	2.75127200	6.16190000	7.99877600
C	2.17974900	6.86736100	9.06459900
C	1.96270900	8.23581200	8.93693400
C	3.29305200	9.10056900	5.68031400
C	3.80818700	8.89923800	4.38340300
C	3.96938300	10.16351400	3.83018100
C	4.51336800	10.53134800	2.45530400
C	5.87993100	11.24721100	2.58705100
C	3.52003700	11.42072000	1.67078500
C	4.73190200	9.23662500	1.64351000
C	1.45193800	9.11371600	9.97455600
C	0.86678500	8.92022700	11.24264400
C	0.57931500	10.18767300	11.73395400
C	0.99821600	11.28189200	13.96914900
C	-1.29206100	11.45526400	12.89041500
C	-0.48163500	9.27394000	13.79834500
C	3.42791000	12.51258600	4.78248100
C	0.89882800	12.53035400	10.67188200
H	3.89833100	11.58878300	0.65556100
H	2.53981900	10.93776800	1.59171600
H	3.37816700	12.40079400	2.13314900
H	5.45975600	8.57577900	2.12646200
H	3.79608400	6.82526600	1.51291300
H	5.11743600	9.48721700	0.64918900
H	6.28731900	11.46021000	1.59148000
H	5.80433900	12.19885000	3.12164400
H	6.59882100	10.61733700	3.12219400
H	4.02404900	7.95666600	3.90526700
H	3.62096900	6.35143800	6.02203400
H	2.92821600	5.09389400	8.07789700
H	1.92005800	6.36360100	9.99078800
H	0.66739400	7.98064900	11.73366200
H	0.36832200	8.61194100	13.99599100
H	-0.93542900	9.53066400	14.76181500
H	-1.22280500	8.71871200	13.21334600
H	1.87951100	10.65026900	14.12500200
H	1.33641200	12.22995900	13.54030700
H	0.55817700	11.50204700	14.94914700
H	-1.05263400	12.43317600	12.46523200
H	-2.02567600	10.97126600	12.23633000
H	-1.76700300	11.62827900	13.86334500
H	1.20642700	13.00401500	11.60587100
H	-0.12545500	12.82852900	10.42725300
H	4.31981000	12.98087800	4.36223400
H	2.54769100	12.81195800	4.20505100
H	3.28916200	12.82532800	5.82280200
H	1.55928900	12.83814700	9.85433300
Atom	X	Y	Z
------	-------	-------	-------
Fe	7.0092300	5.92557200	13.66261500
N	7.35287100	3.78784900	13.54571300
N	5.67908500	5.16003500	12.04149400
N	4.75846700	5.64590800	11.19181100
S	5.51483200	6.73304000	15.27499000
S	8.21029400	7.59436200	12.46421800
C	7.79317100	1.06912800	13.37160900
C	6.86113900	1.67783100	12.53293600
C	6.66403300	3.05875000	12.64956600
C	5.72022800	3.83460600	11.83979100
C	4.79528600	3.46848200	10.84674200
C	4.18088700	4.65033000	10.44373300
C	3.09509700	4.84134900	9.39162700
C	3.65192300	5.59807200	8.16053100
C	2.62040200	3.45120100	8.91516500
C	1.87024000	5.58435800	9.97729800
C	4.51021500	7.06829000	11.23996600
C	3.80706100	6.60932000	14.78425800
C	3.01274800	7.76817300	14.68459000
C	1.66449500	7.68937600	14.33116500
C	1.07101200	6.45169500	14.06684000
C	1.84567200	5.29269700	14.16829700
C	3.19321400	5.36895400	14.52482600
C	8.50181300	1.83084400	14.30021000
C	8.25226900	3.20567300	14.36224600
C	8.89993600	4.12958600	15.29704600
C	9.82527400	3.94027500	16.33872300
C	10.04137200	5.19984400	16.89055900
C	10.94796000	5.58016400	18.05483300
C	10.14177100	6.25848100	19.18906000
C	11.57878300	4.29400600	18.63145000
C	12.10179700	6.49754200	17.58023200
C	9.00694500	7.49990400	16.29129300
C	9.28571400	6.52375200	15.12653000
C	10.54436600	6.13488700	12.00791900
C	11.39549700	5.32634400	11.25287500
C	11.01411300	4.88729800	9.98290000
C	9.76984000	5.27006000	9.47656600
C	8.91677200	6.07829300	10.22968500
N	8.56820700	5.42416100	15.20729900
N	9.25928900	6.06428100	16.16381200
H	7.95618600	6.38210800	9.82391400
H	9.46151900	4.94249200	8.48600700
H	11.67929000	4.26106600	9.39396800
H	12.36468700	5.04331900	11.65805100
H	10.85352800	6.48390300	12.98891300
H	9.81489700	7.97302200	16.84328900
Atom	X	Y	Z
------	---------	---------	---------
Fe	-2.29031000	4.87538400	5.31056600
N	-0.51064300	3.86114600	5.30437700
N	-2.08356500	4.01100200	3.18251600
N	-2.78500700	3.86530800	2.02494000
C	1.95432400	2.45667300	5.29541100
C	1.13770400	2.49475100	4.15136900
C	0.01974700	3.69085500	3.79712800
H	1.07429200	8.60087300	14.2642800
H	3.46788200	8.73268800	14.8911700
H	8.95340000	7.91672000	15.2823260
H	3.75911600	7.31486500	12.0006160

(‌BNPDPBu)Fe(NH₂)₂²⁻
Element	X	Y	Z	
C	-2.835172	3.902001	-1.147050	
C	-3.887821	1.795096	-0.180537	
C	-4.025805	4.633624	1.860649	
C	-4.843434	4.733151	3.152439	
C	-5.254210	3.392510	3.783277	
B	-5.435998	3.454714	5.421032	
N	-3.927929	3.691671	5.990079	
H	-3.478167	2.774233	5.909734	
C	-6.466035	4.617666	5.964678	
C	-7.860142	4.388056	5.331721	
C	-8.471608	2.986820	5.571603	
C	-7.478118	1.806816	5.436590	
C	-6.068770	2.051429	6.031626	
C	-6.069381	2.079477	7.579562	
C	-6.793518	3.292740	8.207461	
C	-6.510258	4.646847	7.513845	
N	-1.429851	5.131412	7.435808	
N	-1.650612	5.814917	8.592067	
C	1.511695	3.136904	6.443780	
C	0.305800	3.820061	6.428319	
C	-0.216109	4.560291	7.559195	
C	0.331533	4.867840	8.825379	
C	-0.599089	5.668323	9.468062	
C	-0.492131	6.294796	10.854579	
C	0.805817	5.794833	11.526380	
C	-1.671895	5.874242	11.764810	
C	-0.399179	7.838210	10.761595	
C	-2.940977	6.494978	8.762384	
C	-3.440980	7.158744	7.475059	
C	-2.488715	8.189251	6.846973	
B	-2.635236	8.318087	5.209837	
N	-2.098762	6.889082	4.637589	
H	-1.078706	6.955594	4.712245	
H	-2.253306	6.860119	3.629381	
C	-4.154467	8.647315	4.666379	
C	-4.632245	9.979386	5.296548	
C	-3.708887	11.195892	5.050914	
C	-2.194373	10.905877	5.187557	
C	-1.721020	9.554761	4.595624	
C	-1.747249	9.539778	3.047817	
C	-3.160256	9.574933	2.420966	
C	-4.201743	8.665912	3.117099	
H	2.897510	1.919251	5.292165	
H	-1.523262	6.273715	12.776050	
H	-2.636554	6.239200	11.404298	
H	-1.732972	4.782361	11.836675	
H	0.464224	8.132206	10.154956	
---	-------	-------	-------	
H	-1.28485400	8.29205100	10.30949100	
H	-0.27677300	8.26820000	11.76417000	
H	1.69204300	6.08753700	10.95332400	
H	0.89441700	6.23146900	12.52818900	
H	0.80863800	4.70428600	11.62979900	
H	1.29288300	4.56277500	9.20815700	
H	2.10806100	3.13248800	7.35260700	
H	1.44120100	1.98755300	3.23905700	
H	-0.20340600	1.98430300	1.38394000	
H	-1.31806200	0.88090400	-0.37770500	
H	-1.84136400	1.52066100	-1.94443600	
H	-0.57091300	2.35366800	-1.02871100	
H	-3.70660300	0.89092400	0.41064300	
H	-4.72844400	2.32200300	0.27825100	
H	-4.19389100	1.49016800	-1.18965000	
H	-1.92269600	4.50570400	-1.21118900	
H	-3.10632100	3.58529000	-2.16293900	
H	-3.63563700	4.54676200	-0.77616300	
H	-3.77125300	5.63578100	1.48501500	
H	-4.61505200	4.13312400	1.09176800	
H	-4.28278200	5.34766600	3.86436900	
H	-5.73078800	5.33412100	2.91011500	
H	-4.47814900	2.64049200	3.56347500	
H	-6.15547100	3.03167600	3.26564600	
H	-5.45137000	1.17886600	5.73726100	
H	-7.94692100	0.90938100	5.87953600	
H	-7.35736900	1.57733300	4.36892000	
H	-8.93102100	2.96115600	6.56655500	
H	-9.30695800	2.83385300	4.87003200	
H	-8.58468400	5.14383100	5.68312900	
H	-7.77013000	4.54662200	4.24742500	
H	-6.14720800	5.62681900	5.65071700	
H	-5.54090600	5.02329400	7.87464000	
H	-7.25071400	5.38201100	7.87490600	
H	-7.87296000	3.10554000	8.20658200	
H	-6.51879500	3.36817800	9.27168200	
H	-6.51058300	1.15731400	7.99773600	
H	-5.02329800	2.08032400	7.92396900	
H	-3.67582900	5.76551100	9.13383100	
H	-2.80733200	7.25131900	9.53624200	
H	-3.69094100	6.36939400	6.75877990	
H	-4.40573600	7.62259700	7.72243300	
H	-1.44825600	7.89355800	7.06198500	
H	-2.62533400	9.14357700	7.36864000	
H	-4.88132800	7.87905800	4.98242000	
H	-5.64678700	10.24198900	4.94815500	
H	-4.72271900	9.82571400	6.38156500	
H	-3.91097600	11.60385800	4.05385400	
---	---	---	---	
H	2.17120000	11.11730000	7.73660000	
O	3.58620000	12.38650000	8.48700000	
H	2.94960000	10.52600000	5.68400000	
O	3.45510000	10.06990000	4.54350000	
N	1.49030000	10.57770000	9.84150000	
N	0.87700000	11.11730000	10.93270000	
C	2.81440000	8.37520000	6.74160000	
C	2.94380000	6.99580000	6.78260000	
C	2.61230000	6.29170000	7.95410000	
C	2.14800000	7.02470000	9.06090000	
C	2.02190000	8.40250000	8.97750000	
C	3.16310000	9.19660000	5.60020000	
C	3.78150000	8.89100000	4.36820000	
C	2.81440000	10.09730000	3.71090000	
C	4.59780000	10.32630000	2.34390000	
C	5.94710000	11.07590000	2.47400000	
C	3.64250000	11.08330000	1.38950000	
C	4.89530000	8.95390000	1.69940000	
C	1.51790000	9.24400000	10.04380000	
C	0.94580000	8.93890000	11.29810000	
C	0.54160000	10.14490000	11.84730000	
C	-0.15700000	10.37120000	13.18550000	
C	0.62820000	11.36510000	14.07730000	
C	-1.61300000	10.85400000	12.98120000	
C	-0.21850000	9.02750000	13.94510000	
C	3.38140000	12.52630000	4.36180000	
C	3.61570000	13.31490000	5.65800000	
C	4.91480000	12.98190000	6.41550000	
B	4.82910000	13.24810000	8.03110000	
C	6.16820000	12.75350000	8.84860000	
C	5.93750000	12.83730000	10.37820000	
C	5.45600000	14.21220000	10.89940000	
Element	Carbon	Carbon life	Hydrogen	
---------	--------	-------------	----------	
	4.38310000	14.89830000	10.02040000	
	4.62060000	14.81360000	8.49190000	
	5.83620000	15.64770000	8.01620000	
	7.21940000	15.11800000	8.46500000	
	7.38700000	15.82100000	8.37580000	
	0.34800000	13.19880000	9.63320000	
	-0.85960000	12.58340000	8.90160000	
	-0.79440000	12.75630000	7.27310000	
	-2.02950000	12.01920000	6.47530000	
	-1.78970000	12.05100000	4.94450000	
	-1.50950000	13.45000000	4.34650000	
	-0.56650000	14.33750000	5.19300000	
	-0.81540000	14.30570000	6.72110000	
	-2.14990000	14.97240000	7.13880000	
	-3.43030000	14.21490000	6.71210000	
	-3.36810000	12.67870000	6.89000000	
	0.69250000	12.57380000	10.99150000	
	4.09870000	11.16700000	0.39490000	
	2.69510000	10.54250000	1.28400000	
	3.41220000	12.09440000	1.73340000	
	5.60320000	8.37320000	2.30020000	
	3.98150000	8.36210000	1.57820000	
	5.33900000	9.10110000	0.70770000	
	6.41360000	11.18210000	1.48620000	
	5.84030000	12.07650000	2.90100000	
	6.63320000	10.51680000	3.11930000	
	4.07850000	7.91520000	4.01720000	
	3.30510000	6.46750000	5.90400000	
	2.71250000	5.21190000	8.00280000	
	1.88320000	6.51980000	9.98640000	
	0.82160000	7.95900000	11.73170000	
	0.78300000	8.62280000	14.12690000	
	-0.70680000	9.17570000	14.91550000	
	-0.79540000	8.28000000	13.39030000	
	1.65360000	11.01320000	14.23810000	
	0.68340000	12.36830000	13.64830000	
	0.14050000	11.45000000	15.05670000	
	-1.67590000	11.81440000	12.46300000	
	-2.17650000	10.12550000	12.38830000	
	-2.11080000	10.96550000	13.95310000	
	1.60520000	13.03040000	11.40340000	
	-0.11520000	12.76170000	11.69890000	
	0.17840000	14.26770000	9.82560000	
	1.24560000	13.16970000	9.01000000	
	-0.89770000	11.50430000	9.11400000	
	-1.78230000	12.99960000	9.33310000	
	-0.00800000	14.90520000	7.17560000	
	-2.15130000	15.06150000	8.23500000	
Atom	X	Y	Z	
------	-----	-----	-----	
H	-2.21710000	16.00670000	6.75660000	
H	-4.28740000	14.60780000	7.28160000	
H	-3.65560000	14.44850000	5.66510000	
H	-4.21850000	12.23280000	6.34350000	
H	-3.54240000	12.44700000	7.94970000	
H	-2.10100000	10.95420000	6.75850000	
H	-0.93390000	11.39300000	4.71500000	
H	-2.63680000	11.60070000	4.39800000	
H	-1.08710000	13.33320000	3.33570000	
H	-2.46020000	13.97320000	4.19710000	
H	0.47060000	14.01040000	5.01930000	
H	-0.61400000	15.36760000	4.79870000	
H	4.14060000	12.79150000	3.62600000	
H	2.40100000	12.78030000	3.93170000	
H	3.59400000	14.37680000	5.37480000	
H	2.73900000	13.18130000	6.29650000	
H	5.74610000	13.52930000	5.94620000	
H	5.14990000	11.91620000	6.27350000	
H	6.39810000	11.69700000	8.62450000	
H	5.19170000	12.07360000	10.65750000	
H	6.84650000	12.55210000	10.93620000	
H	5.06510000	14.09490000	11.92280000	
H	6.31950000	14.87850000	11.00660000	
H	3.40740000	14.43330000	10.23290000	
H	4.28060000	15.94590000	10.35350000	
H	3.72910000	15.25880000	8.01760000	
H	5.81560000	15.67310000	6.91700000	
H	5.74860000	16.70060000	8.33900000	
H	8.00320000	15.60160000	7.86070000	
H	7.41340000	15.44380000	9.49330000	
H	8.30070000	13.30190000	8.93310000	
H	7.58850000	13.31550000	7.32830000	

$({^2\text{BBNPDPtBu}})\text{Fe(PhPh)}_2^-$

Atom	X	Y	Z
C	-5.92820000	5.00840000	6.90090000
C	-7.31610000	5.02540000	6.87490000
C	-7.99190000	5.82200000	5.94030000
C	-7.22490000	6.58140000	5.04570000
C	-5.83860000	6.53180000	5.10030000
C	-4.16200000	4.22590000	7.85130000
C	-5.56350000	3.32260000	8.86140000
C	-4.40130000	2.86520000	9.45920000
C	-4.27350000	1.86260000	10.60210000
C	-3.59120000	2.49100000	11.84250000
C	-3.51330000	0.59280000	10.14500000
C	-5.68870000	1.42150000	11.03590000
C	-1.93290000	3.53170000	9.14430000
C	-1.00850000	3.56760000	7.92590000
C	-1.08790000	2.34750000	6.99390000
C	-0.39170000	1.28750000	4.52680000
C	0.65000000	0.34950000	5.19350000
C	2.01780000	1.00000000	5.51180000
C	1.93860000	2.43650000	6.07940000
C	0.91290000	3.37130000	5.38210000
C	1.32190000	3.72170000	3.93090000
C	1.22300000	2.56450000	2.90910000
C	-0.01540000	1.65120000	3.06980000
C	-3.39650000	2.90640000	3.97340000
C	-4.19920000	2.06470000	4.76640000
C	-5.22800000	1.30810000	4.20450000
C	-5.49120000	1.37620000	2.83460000
C	-4.71140000	2.21300000	2.03420000
C	-3.67890000	2.96520000	2.59610000
C	-4.98170000	7.26490000	4.18880000
C	-5.27710000	8.19530000	3.16680000
C	-4.06170000	8.56430000	2.61400000
C	-3.81530000	9.55020000	1.47620000
C	-5.17780000	10.07600000	0.97210000
C	-2.99970000	10.77420000	1.96180000
C	-3.11550000	8.86930000	0.27420000
C	-1.65310000	7.75490000	3.06630000
C	-0.82780000	7.72760000	4.35520000
C	-0.95080000	8.96930000	5.25340000
C	0.91190000	7.94890000	7.02540000
C	1.21610000	7.62470000	8.50830000
C	1.06260000	8.80500000	4.95900000
C	-0.15280000	9.72490000	9.23320000
C	-0.42280000	10.06520000	7.74700000
C	0.67550000	10.97900000	7.13930000
C	2.05310000	10.30560000	6.92350000
C	1.99520000	8.85380000	6.38270000
C	-3.47030000	8.46070000	8.17580000
C	-3.83480000	8.38090000	9.53220000
C	-4.89050000	9.13710000	10.04380000
C	-5.60940000	9.99790000	9.21260000
C	-5.26270000	10.08740000	7.86270000
C	-4.21100000	9.32730000	7.35040000
B	-0.55460000	2.63070000	5.45570000
B	-0.53410000	8.70930000	6.83090000
Fe	-3.15590000	5.66260000	6.07230000
N	-5.16090000	5.75470000	6.02320000
N	-3.81960000	4.31520000	7.82450000
N	-3.35980000	3.47830000	8.79730000
N	-3.65250000	7.07010000	4.26110000
N	-3.09750000	7.86640000	3.30690000
P	-2.04070000	3.90460000	4.72710000
P -2.08640000 7.46340000 7.47960000
H -1.58810000 4.48330000 3.51530000
H -1.69390000 6.85020000 8.69460000
H 0.93660000 4.32030000 5.94290000
H 0.68170000 4.54590000 3.58820000
H 2.35030000 4.12100000 3.90450000
H 1.22900000 2.98420000 1.89100000
H 0.15020000 0.73860000 2.47100000
H -0.88100000 0.71290000 4.47090000
H 0.21820000 -0.03020000 6.12990000
H 0.82710000 -0.54220000 4.56690000
H 2.63510000 1.00570000 4.60670000
H 2.56280000 0.36170000 6.22500000
H 1.67860000 2.37540000 7.14580000
H 2.94890000 2.87920000 6.04570000
H -0.51510000 1.52950000 7.45890000
H -2.12530000 1.97880000 6.97460000
H -1.21540000 4.49040000 7.37460000
H 0.01220000 3.68600000 8.31300000
H -1.76830000 4.41640000 9.77600000
H -1.71500000 2.64880000 9.74480000
H -2.49110000 0.80600000 9.81850000
H -3.46190000 -0.12990000 10.96940000
H -4.03320000 0.11720000 9.30620000
H -2.55630000 2.78710000 11.65530000
H -4.13930000 3.38040000 12.17320000
H -3.58480000 1.76880000 12.66870000
H -5.61270000 0.69470000 11.85320000
H -6.28130000 2.27090000 11.39290000
H -6.23120000 0.94590000 10.21200000
H -6.57250000 3.03330000 9.10970000
H -7.86890000 4.42070000 7.58850000
H -9.07670000 5.84710000 5.90770000
H -7.70550000 7.20510000 4.29710000
H -6.25130000 8.56080000 2.88250000
H -5.01820000 10.78580000 0.15200000
H -5.80740000 9.26200000 0.59650000
H -5.72540000 10.59600000 1.76530000
H -2.11350000 8.50590000 0.51470000
H -3.70440000 8.01580000 -0.08030000
H -3.01900000 9.58350000 -0.55320000
H -2.00720000 10.50720000 2.33370000
H -2.86830000 11.48710000 1.13780000
H -3.52560000 11.28590000 2.77530000
H -3.08050000 3.60910000 1.95650000
H -4.90510000 2.28130000 0.96550000
H -6.29590000 0.78920000 2.39820000
H -5.83080000 0.66640000 4.84350000
H -4.02420000 2.00890000 5.83630000
H -3.96880000 9.39930000 6.29440000
H -5.81750000 10.74850000 7.20040000
H -6.43210000 10.58770000 9.61020000
H -5.14980000 9.05290000 11.09730000
H -3.28420000 7.71810000 10.19500000
H -1.36050000 8.60910000 2.45660000
H -1.47360000 9.05290000 11.09730000
H -3.28420000 7.71810000 10.19500000
H -1.36050000 8.60910000 2.45660000
H -1.47360000 9.05290000 11.09730000
1 Kiernicki, J. J.; Zeller, M.; Szymczak, N. K. Hydrazine Capture and N-N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids. *J. Am. Chem. Soc.* 2017, 139, 18194-18197.

2 Brown, H. C.; Krishnamurthy, S.; Hubbard, J. L. Addition Compounds of Alkali Metal Hydrides. 15. Steric Effects in the Reaction of Representative Trialkylboranes with Lithium and Sodium Hydrides to Form the Corresponding Trialkylborohydrides. *J. Am. Chem. Soc.* 1978, 100, 3343-3349.

3 Chakraborty, S.; Chattopadhyay, J.; Guo, W.; Billups, W. E. Functionalization of Potassium Graphite. *Angew. Chem. Int. Ed.* 2007, 46, 4484-4488.

4 Bruker Advanced X-ray Solution, Apex3 v2016.9-0, (2016).

5 Bruker Advanced X-ray Solution, Shelxtl suite of programs, Version 6.14 (2003)

6 Sheldrick G. M. A Short History of SHELX. Acta Crystallogr., Sect. A. 2008, 64(1), 112–122.

7 Bruker Advanced X-ray Solutions, Saint v8.34A, (2014).

8 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ransinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

9 Polezhaev, A. V.; Chen, C-H.; Kinne, A. S.; Cabelof, A. C.; Lord, R. L.; Caulton, K. G. Ligand Design Toward Multifunctional Substrate Reductive Transformations. *Inorg. Chem.* 2017, 56, 9505-9514.

10 NBO Version 3.1, E. D. Glendening, A. E. Reed, and F. Weinhold.

11 Lu, T. Chen, F. Calculation of Molecular Orbital Composition. *Acta Chim. Sinica*, 2011, 69, 2393-2406.

12 Lu, T. Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. *J. Comput. Chem.* 2012, 33, 580-592.

13 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, *J. Phys. Chem. B* 2009, 113, 6378-6396.

14 Levin, J. R.; Dorfner, W. L.; Dai, A. X.; Carroll, P. J.; Schelter, E. J. Density Functional Theory as a Predictive Tool for Cerium Redox Properties in Nonaqueous Solvents. *Inorg. Chem.* 2016, 55, 12651–12659.

15 Baik, M.-H.; Friesner, R. A. Computing Redox Potentials in Solution: Density Functional Theory as a Tool for Rational Design of Redox Agents. *J. Phys. Chem. A* 2002, 106, 7407–7412.

16 Connelly, N. G.; Geiger, W. E. *Chem. Rev.* 1996, 96, 877-90.