RESEARCH ARTICLE

Surveys of knowledge and awareness of antibiotic use and antimicrobial resistance in general population: A systematic review

Hathairat Kosiyaporn1, Sunicha Chanvatik1, Tibet Issaramalai1, Wanwisa Kaewkhankhaeng1, Anond Kulthanmunosorn1, Nithiwat Saengruang1, Woranan Witthayapipopsakul1, Shaheda Viriyathorn1, Supapat Kirivan1, Watinee Kunpeuk1, Rapeepong Suphanachaimat1,2, Angkana Lekagul1, Viroj Tangcharoensathien1

1 International Health Policy Program, Ministry of Public Health, Nonthaburi, Thailand, 2 Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand

*hathairat@ihpp.thaigov.net

Abstract

Background

Currently, various tools exist to evaluate knowledge and awareness of antibiotic use and antimicrobial resistance (AMR) and are applied by various organizations. Previous systematic reviews have focused mainly on study findings such as levels of knowledge and AMR awareness. However, the survey procedures and data instruments used ought to be scrutinized as well, since they are important contributors to credible results. This review aims to assess the study methods and procedures of existing population-based surveys and explore key components which determine the general population’s levels of knowledge and awareness of antibiotic use and AMR.

Methods

We searched existing literature for population-based surveys which sought knowledge and awareness of antibiotic use or AMR in the general population. Databases searched included Ovid, MEDLINE and EMBASE, PsycINFO and Scopus, domestic journals and gray literature sources. Population-based cross-sectional studies published in English or Thai from January 2000 to December 2018 were included in the review. Quality assessment was conducted using the ‘Appraisal Tool for Cross-Sectional Studies’ (AXIS).

Results

All 22 studies included in the analysis had clear objectives focusing on assessing people’s levels of knowledge, awareness, attitudes and behavior relating to antibiotic use and awareness of AMR. These studies had employed appropriate methodologies for population-based cross-sectional surveys relative to research questions. More than half of studies (14 out of 22) had scientifically soundly designed methodologies which captured the representativeness of the population; whereas the remaining studies had unclear sample size estimations,
inappropriate sample frames and selection biases. Half of the studies had tested the validity and reliability of the questionnaire. The common questions used by these surveys were categorized into four themes: behavior related to antibiotic use, knowledge and awareness of antibiotic use, knowledge and awareness of AMR and others such as receiving information about antibiotic use and AMR or cross-cutting issues like self-medication.

Conclusion
This review identified four key features of good practices in antibiotic use and awareness surveys: a) clear survey objective; b) scientifically sound sampling techniques ensuring representativeness; c) strategies for recruitment of samples and survey administration methods; and d) credible measurement to prevent non-sampling biases. During questionnaire design, the health systems context in terms of access to health services and antibiotics should be taken into account. In conclusion, to maximize the use of surveys, the application of findings in surveys and associated factors related to antibiotic use and AMR should primarily generate public health interventions and target specific groups to make progress in solving AMR problems.

Introduction
Global efforts to assess public knowledge and awareness of antibiotic use and antimicrobial resistance (AMR) are underway. In 2015, the World Health Organization (WHO) developed a questionnaire survey to assess current public knowledge and awareness and behaviors related to antibiotic use in six WHO regions [1]. Similarly, multi-country surveys exist in Europe which use a common protocol, questionnaire and interview methodology [2,3,4]. These population-based surveys are part of the monitoring and evaluation framework proposed by the WHO Global Action Plan on Antimicrobial Resistance (AMR).

In recent years the quest to halt AMR has been materialized in many countries. Thailand is amongst the exemplary countries that made substantial effort to counter AMR. One of the five goals of Thailand’s National Strategic Plan on Antimicrobial Resistance (2017–2021) is to increase public knowledge and awareness of antibiotic use and AMR by 20% before 2021 [5]. The Thai working group on Health Systems and Policy Research on AMR has developed an AMR module and embedded it into the existing biennial Health Welfare Survey (HWS) conducted by National Statistical Office. The aims are to assess among Thai adults the volume of antibiotic use, levels of knowledge on antibiotic use and AMR, exposure to information related to antibiotic use and AMR, and awareness of the use of antibiotics in farm animals. The HWS in 2017 has provided a baseline level of knowledge and AMR awareness in adult populations as required by the National Strategic Plan for monitoring progress against the target [6].

Embedding an AMR module in national surveys has various advantages, such as the possibility for long-term monitoring and opportunities to assess factors associated with knowledge and awareness; it also saves costs compared with conducting independent surveys. Moreover, the merit of survey provides better understanding on behavioral pattern on antibiotic use (either misuse or overuse) in the population, which is one of the key contributing factors to the emergence of AMR. Survey information can serve as a basis to demonstrate an association between knowledge/awareness/practices on antibiotic use and AMR. Thus, it is necessary to
establish suitable antibiotic use surveys with associated factors such as knowledge and awareness, in order to tackle with the rising of AMR trends.

However, the national survey on AMR almost always face some difficulties and limitations such as difficulties in the analysis to claim causal relationships, the presence of limited number of independent parameters and information bias when respondents do not understand the questions. This module was adapted from international survey tools such as the Eurobarometer survey in 2009, 2013 and 2016 [2,3,4] and the WHO tool [1], which also present challenges around generalizability and measurement bias, especially in different country contexts. Also, recently published systematic reviews relating to knowledge and awareness of antibiotic use and AMR focused on the results of the surveys [7,8] rather than presenting a review and recommendation of the survey methods and tools, which ultimately influenced the credibility of results.

In attempts to fill existing knowledge gaps pertaining to survey instruments, this review aims to assess the procedures of population-based surveys that ensures representativeness and minimizes biases. It also explores common contents in the questions used by these population-based surveys and categorizes them into thematic areas. The review findings are useful for countries seeking to develop methods and tools to monitor population knowledge and awareness of antibiotic use and AMR in response to the Global Action Plan on AMR.

Material and methods

This review was registered with PROSPERO database (CRD42019123385) to review protocol: search strategy, inclusion and exclusion criteria, quality assessment and data extraction.

Search strategy

Search terms were developed along three domains: a) antibiotics or antimicrobial resistance; b) knowledge or awareness; and c) survey or questionnaire. Four international databases (Ovid MEDLINE, Ovid EMBASE, PsycINFO and Scopus) were searched using the search terms as detailed in Table 1. The search terms for international publications were applied to title, abstract, keyword, and full text. Three domestic journals (Health System Research Institute Journal, Thai Journal Citation Index Center, and Thai Journal Online) and gray literatures were manually searched.

Eligible criteria

The inclusion criteria comprised publications on population-based cross-sectional surveys in the general population which had investigated either knowledge or awareness of antibiotic use or AMR. Publications in English or Thai from international and domestic peer reviewed journals, and gray literature sources which were published between January 2000 and December 2018 were included. Studies on specific population groups, clinical research or studies which could not be electronically retrieved were excluded from the review.

Study selection

Four researchers (HK, SC, TI and WK) were responsible for abstract screening and full paper review for eligibility. Two researchers screened titles and abstracts to see if they met eligible criteria. The abstracts were included by a consensus between the two researchers and a third opinion was sought if they disagreed. The same process was conducted for the full paper review to select the papers related to research question in term of household-based surveys.
Table 1. Search terms.

| Database          | Search term                                                                 | Knowledge/awareness                                                                 | Survey/questionnaire                                                                 |
|-------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Ovid MEDLINE/     | "antibiotic" OR "anti-bacterial" OR "antimicrobial resistance" OR "antibiotics" OR "antimicrobial resistance" OR "knowledge" OR "aware" OR "understand" OR "attitude" OR "view" OR "perception" OR "belief" OR "concern" OR "fear" OR "accept" OR "perspective" OR "worry" OR "concept" OR "KNOWLEDGE/ or HEALTH KNOWLEDGE, ATTITUDES, PRACTICE/ or PATIENT MEDICATION KNOWLEDGE/ OR PERCEPTION/ or SOCIAL PERCEPTION/ OR ATTITUDE to Health/ OR Attitude/ or PUBLIC OPINION/ or "Surveys and Questionnaires"/ OR FEAR/ | "assess" OR "study" OR "evaluat" OR "determin" OR "explor" OR "apprais" OR "estimat" OR "analy" OR "examin" OR "measure" OR "survey" OR "questionnaire" OR "Surveys and Questionnaires"/ |
| Ovid Embase/      | "antibiotic" OR "anti-bacterial" OR "antimicrobial resistance" OR "antibiotics" OR "antimicrobial resistance" OR "knowledge" OR "aware" OR "understand" OR "attitude" OR "view" OR "perception" OR "belief" OR "concern" OR "fear" OR "accept" OR "perspective" OR "worry" OR "concept" OR "KNOWLEDGE/ or HEALTH KNOWLEDGE, ATTITUDES, PRACTICE/ or PATIENT MEDICATION KNOWLEDGE/ OR PERCEPTION/ or SOCIAL PERCEPTION/ OR ATTITUDE to Health/ OR Attitude/ or PUBLIC OPINION/ or "Surveys and Questionnaires"/ OR FEAR/ | "assess" OR "study" OR "evaluat" OR "determin" OR "explor" OR "apprais" OR "estimat" OR "analy" OR "examin" OR "measure" OR "survey" OR "questionnaire" OR "Surveys and Questionnaires"/ |
| PsycINFO          | "antibiotic" OR "anti-bacterial" OR "antimicrobial resistance" OR "antibiotics" OR "antimicrobial resistance" OR "knowledge" OR "aware" OR "understand" OR "attitude" OR "view" OR "perception" OR "belief" OR "concern" OR "fear" OR "accept" OR "perspective" OR "worry" OR "concept" OR "KNOWLEDGE/ or HEALTH KNOWLEDGE, ATTITUDES, PRACTICE/ or PATIENT MEDICATION KNOWLEDGE/ OR PERCEPTION/ or SOCIAL PERCEPTION/ OR ATTITUDE to Health/ OR Attitude/ or PUBLIC OPINION/ or "Surveys and Questionnaires"/ OR FEAR/ | "assess" OR "study" OR "evaluat" OR "determin" OR "explor" OR "apprais" OR "estimat" OR "analy" OR "examin" OR "measure" OR "survey" OR "questionnaire" OR "Surveys and Questionnaires"/ |
| Scopus            | "TITLE-ABS (antibiotic OR anti-bacterial OR antimicrobial OR antibacterial drug OR antimicrobial drug OR antibacterial agent OR antimicrobial agent OR anti-bacterial W3 OR antibacterial W3 OR antimicrobial W3 OR bacterial drug OR microbial drug OR antibiotic W3 OR usage OR antibiotic W3 OR misuse OR antibiotic W3 OR overuse OR self-medication)" | "TITLE-ABS (knowledge OR aware OR understand OR attitude OR view OR perception OR opinion OR belief OR concern OR fear OR accept OR perspective OR worry OR concept)" | "TITLE-ABS (evaluat OR determin OR explor OR apprais OR estimat OR analy OR examin OR measure OR survey OR questionnaire OR inspect)"

https://doi.org/10.1371/journal.pone.0227973.t001

Quality assessment

The quality of the eligible publications was assessed using the “Appraisal Tool for Cross-Sectional Studies (AXIS)”. AXIS is a descriptive quality assessment tool designed for critical assessment of cross-sectional surveys [9,10]. Using AXIS, the studies were appraised based on five main components: objective, methods, results, discussion and ethics and funding. At this stage, nine researchers (five new—AK, NS, WW, SV, SK—and the four who worked in the study selection process) were grouped into three teams of two or three members to assess the
full texts. If there was a disagreement among members of each team, the principal investigator (HK) was responsible for making a final decision.

**Data extraction**

Data extraction was conducted into three sets: a) characteristics of studies: author, year of publication, objective, country, study design, sample size, eligible criteria, administration and tool development; b) themes emerging from common questions asked in the surveys to determine level of knowledge and awareness of antibiotic use and AMR or any relevant issues; and c) key findings in the studies.

**Results**

An electronic search comprising the four international databases and hand search of three domestic databases and international and domestic gray literature sources yielded a total of 2,761 records (2,740 from the databases and 21 from other sources). After duplicate removal, there were 2,663 papers for abstract screening. 2,537 papers were excluded as they were not relevant leaving 120 records to be searched for full texts. Thirteen full papers that were not electronically available and thirteen duplicates were excluded. 94 full papers were reviewed for eligibility and 72 publications were excluded for not being relevant or pertinent to the review objectives. Finally, 22 studies met the eligible criteria and were included for analysis.

A PRISMA flow describing the study recruitment process of this systematic review is shown in Fig 1.

**Characteristic of 22 studies**

Almost all (19 studies) were published articles in peer-reviewed journals while 3 were reports [1,5,11]. Of 22 studies, 20 were published in international peer-reviewed journals while 2 published in domestic journals [6,11].

Table 2 summarizes characteristics of the 22 studies. There were 19 out of 22 papers published from 2010 to 2018.

The majority of the studies (20 studies) were conducted as single-country studies while 2 studies were multi-country studies at global and regional levels [1,4]. Among the 20 single-country studies, 8 studies were conducted at national level [6,12,13,14,15,16,17,18] while the remaining 12 studies were conducted at sub-national level [11,19,20,21,22,23,24,25,26,27,28,29]. It should be noted that no study was conducted in the African region.

Regarding study design, 3 out of 22 studies were interventional studies which assessed the outcomes of campaign and educational interventions on the proper use of antibiotics [13,17,28]. The remaining 19 publications were observational studies. Only one study [15] was conducted by using mixed methods while the other 21 studies applied quantitative methods.

Sample size varied depending on the sampling frame and approaches employed by each study. More than half of the studies [1,4,6,11,12,13,15,17,18,21,24,27,29] mentioned that sample size was calculated based on statistical method and population data. Sample size varied from less than 400 [11] to more than 27,000 individuals [4,6].

For sampling criteria, nearly half of studies (10 out of 22) recruited only adults over 15, 18 or 21 years old [1,4,6,13,14,17,18,21,22,25]. Some studies [11,12,15,16,24,26,27,28,29] had additional criteria such as respondents’ understanding of local languages, familiarity with the term “antibiotics” or whether they had lived in households or the geographical area for a certain period. Almost all studies (21 studies) described specific administration methods [1,4,6,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29]. Nine out of twenty-one applied
only randomized sampling techniques with face-to-face interviews using a structured interview questionnaire \[4,6,11,13,18,20,21,28,29\]. Other administration methods were less common, such as telephone interview surveys, and self-administered questionnaire surveys using mail and online channels \[1,12,14,15,16,17,19,22,23,24,25,26\].

### Quality assessment of 22 studies

The results of the quality assessment of 22 eligible studies by using the AXIS tool are shown in Tables 3 and 4. Our analysis found that all publications had clear study objectives which focused on assessing the levels of knowledge and awareness or attitudes and behavior related to antibiotic use and AMR and associated factors. All studies employed the appropriate methodology of cross-sectional survey related to objectives. There were 14 studies \[1,4,6,11,12,13,14,15,17,18,21,24,28,29\] that reported an estimation of sample size using justified statistical methods. All studies clearly defined the reference population but two studies \[20,26\] had inappropriate sample frame and five studies \[12,13,14,26,29\] had selection process that tended to be non-representative. Half of the studies \[11,12,15,16,18,21,22,24,26,27,29\] tested both the validity and reliability of the questionnaire and provided the statistical significance of key variables. Only one study \[23\] insufficiently described the method which was difficult to repeat. Regarding the reporting of survey results, almost all studies presented adequate basic data and all results for the described methods, except three studies \[1,4,23\] which did not show basic data. The results in two studies \[25,28\] were not internally consistent and one study \[1\] could not be identified due to showing only percentage data. Vallin M. et al (2016) was the only study which addressed and categorized non-responders and which reported profiles of non-respondents to the survey. Widayati A. et al (2012) did not categorize data of non-
### Table 2. Characteristics of 22 included studies.

| No | Author Year of publication | Objective of study | Study design | Country | Inclusion criteria | Exclusion criteria | Number of respondents/Sample size | Sampling technique | Administration | Reference of tool development | Key findings |
|----|-----------------------------|--------------------|--------------|---------|-------------------|-------------------|-------------------------------|-------------------|---------------|-------------------------------|-------------|
| 1  | Parimi N. et al. 2002       | To determine the general public\'s perceptions and use of antibiotics in Trinidad and Tobago, a two-island republic in the Caribbean | Observational study | Trinidad and Tobago | Household members who were at least 18 years old and take care of family members when they were ill |  | 753/800 | Random sampling | Telephone surveys |  | NA | • 93% of the respondents knew the term "antibiotic".  
• Penicillin was correctly identified as common antibiotic but 36% of the respondents incorrectly identified Benadryl (diphenhydramine), a common over-the-counter drug for cough and cold formulation, was antibiotic.  
• Beta-lactams were the most frequently used antibiotics in the previous year, and 20% of antibiotics users used multiple antibiotics.  
• A quarter of the respondents had asked a doctor for antibiotic prescriptions.  
• 29% of the respondents said that antibiotics are drugs for treating bacterial infections.  
• Respondents who have completed tertiary education (university) was significantly associated with correct knowledge of the safety of antibiotics.  
• Respondents, who had private health insurance, were more likely to say that antibiotics are safe and do not have side effects, and incorrectly classified aspirin and Benadryl as antibiotics compared to those without private health insurance. |
| 2  | Eng JV. et al. 2003          | To provide a glimpse of the current knowledge, attitudes, and practices regarding antibiotic use among patients | Observational study | Connecticut, Minnesota, Oregon, and selected counties in California, Georgia, Maryland and New York, USA | Household members | 12,755/NA | Single-stage random sampling | Telephone surveys |  |  | NA | • 12% of the respondents had recently taken antibiotics in the past 4 weeks.  
• 27% of the respondents believed that taking antibiotics when they suffered from a common cold made them feel better more quickly.  
• 32% of the respondents believed that taking antibiotics helped preventing more serious illnesses.  
• 48% of the respondents expected a prescription for antibiotics when they were ill.  
• 58% of respondents were not aware of health dangers associated with taking antibiotics. |
| No | Author           | Year of publication | Objective of study                                                                 | Study design      | Country                        | Inclusion criteria                                         | Exclusion criteria | Number of respondents/ Sample size | Sampling technique       | Administration       | Reference of tool development | Key Findings                                                                                          |
|----|-----------------|---------------------|-----------------------------------------------------------------------------------|-------------------|--------------------------------|------------------------------------------------------------|-------------------|----------------------------------|-------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 3  | McNulty CAM et al. | 2007                | To assess the respondents’ knowledge and attitudes to antibiotics, their reported antibiotic use and the relationship with household and respondent characteristics, and investigate what sort of person was more likely to be aware of the Antibiotic campaign | Interventional study | Great Britain (England, Wales and Scotland) | Household members who aged over 16 years old | NA | 7,120/10,981 | Stratified random sampling with proportional to size | Face-to-face interviews | NA | NA | About 48% of the respondents neither knew that antibiotics do not work against most coughs or colds nor knew that antibiotics can kill normal flora on skin and in the gut. 79% of the respondents were aware of antibiotic resistance in British hospitals. Respondents with lower level of education were less knowledgeable about antibiotics. Knowledge was positively associated self-seeking of antibiotics. Better knowledge of antibiotics did not always lead to lower antibiotic prescription, but was associated with the completion of a course of antibiotic prescribed. |
| 4  | Andre´ M. et al. | 2010                | To examine the level of knowledge about antibiotic treatment and awareness of antibiotic resistance among the general public in Sweden | Observational study | Sweden | Aged 21–80 years old | NA | 747/1,000 | Random sampling | Telephone surveys | NA | NA | 19% of the respondents agreed that antibiotics cure common colds more quickly but most respondents believed that bacteria can become resistant to antibiotics. The respondents showed some confusion over the terms 'bacteria' and 'viruses', and this confusion partly influences the decision to take antibiotics. |
| 5  | Barah F. and Goncalves V. | 2010               | To provide an insight of the current knowledge and practices regarding antibiotic use among individuals living in the Syrian Arab Republic | Observational study | Kalamoon, Syrian Arab republic | Household members aged under 18 years old and unable to understand Arabic language | 445/556 | Random sampling | Face-to-face interviews | Eng JV. et al. (2003) | NA | NA | 85% of the respondents had taken antibiotics in the past 4 weeks mostly from physician (43%). 57% of the respondents used leftover antibiotics or took someone else’s advice. 34% of the respondents were not aware of the dangers of antibiotics. Males, younger age, and those with low and medium income and lower level of education showed poorer practice and lower level of knowledge of antibiotics and awareness of the health dangers associated with antibiotics. |
| No | Author          | Year of publication | Objective of study                                                                 | Study design       | Country                                                                 | Inclusion criteria                                                                 | Exclusion criteria                                                                 | Number of respondents/Sample size | Sampling technique | Administration | Reference of tool development | Key Findings                                                                 |
|----|-----------------|---------------------|-----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|-------------------|----------------|-----------------------------|--------------------------------------------------------------------------------|
| 6  | Kim SS. et al.  | 2011                | To examine public level of knowledge and attitudes regarding antibiotic use and potential drug resistance in South Korea | Observational study | Gangwon-do, Seoul, Busan, Daejeon, Gwangju, South Korea                  | Aged over 18 years old                                                        | NA                                                                              | 1,177/1,500                     | Random sampling with proportional to size | Face-to-face interviews       | USCDC (2010)                          | • 70% of the respondents did not know that antibiotics are not effective in treating cough and cold.  
  • Two thirds of the respondents were unaware of the conditions under which antibiotic resistance could occur.  
  • Lower level of education and older age were significantly associated with inadequate knowledge of antibiotics.  
  • Lower level of education, older age, inadequate knowledge and absence of exposure to antibiotic safety campaigns were significantly associated with poor attitude towards antibiotics. |
| 7  | Sirijoti K.     | 2012                | To describe the socio-demographic characteristics and assess the level of knowledge, attitude and practice regarding antibiotic use among adults in Kaanthani Subdistrict, Kantang district, Trang, Thailand | Observational study | Kuantan Subdistrict, Kantang District, Trang, Thailand                   | 1. Aged 18 years old and above  
  2. People who were living in Kuantan Subdistrict, Kantang District, Trang, Thailand for more than 6 months  
  3. People who could listen, speak, read and write in Thai language  
  4. People who were willing to participate in the study | 1. People who were working as health professionals  
  2. People who were incapable of responding to survey questions because of psychiatric or neurological disorder  
  3. People who were not available at the time of survey  
  4. People who were temporary in the city for vacation | 396/396                                         | Systematic random sampling with proportional to size | Face-to-face interviews | Eng JV. et al. (2003), Bule et al. (2003), Hvico et al. (2006), Darmanin Ellul et al. (2009), Yon et al. (2008), Panagiaou et al. (2008, 2011), Loucifco et al. (2010), Oh et al. (2011), Reuswoudt et al. (2011), Shehadeh et al. (2011), Kham (1998), Wittamatsu (1997), Na Nakorn (2002), Suwan (2004), Sahom (2001), Ketz and Kewatung (2010), Kaly rippingu (2004) and WHO (2009) | • Mean score of knowledge was 10.48±2.84 (min = 3, max = 16).  
  • Mean attitude score was 2.49±0.38 (min = 1.27, max = 3).  
  • Mean practice score was 2.68±0.22 (min = 1.81, max = 3).  
  • Female, younger age, being single, high education levels and high income were significantly associated with better knowledge and attitudes.  
  • There was significant association between knowledge and attitudes, and practices regarding antibiotic use.  

(Continued)
| No | Author | Year of publication | Objective of study | Study design | Country | Inclusion criteria | Exclusion criteria | Number of respondents/Sample size | Sampling technique | Administration | Reference of tool development | Key findings |
|----|--------|---------------------|------------------|--------------|---------|-------------------|-----------------|-----------------------------|------------------|-------------|-----------------------------|--------------|
| 8  | Widayati A. et al. | 2012 | To describe knowledge and beliefs about antibiotic use among people in an urban area of Indonesia | Observational study | Yogyakarta, Indonesia | Aged over 18 years old | NA | 559/640 | Cluster random sampling | Self-administration | Sawair FA. et al. (2009), Chetley A. et al. (2007), Panagakou SG. et al. (2009), Sahoo KC. (2008) and Hadi U. et al. (2008) | • 85% of the respondents had appropriate knowledge regarding antibiotic resistance; 79% had appropriate knowledge about allergic reactions and 76% had appropriate knowledge about antibiotics’ effectiveness for bacterial infections.  
• 50% of the respondents knew that antibiotics ought not to be used immediately when catching fever.  
• 71% of the respondents had incorrect knowledge regarding antibiotic benefit for viral infections.  
• 24% of the respondents believed that antibiotics had no side effects.  
• There was a positive association between knowledge and beliefs especially in those who are male, younger age, have higher level of education, and higher income. |
| 9  | Wun YT. et al. | 2012 | To examine the public’s perspectives on antibiotic resistance in our study of the public’s knowledge, attitude and practice with antibiotics in Hong Kong | Observational study (mixed method) | Hong Kong | Household members aged 18 years old or above who are Hong Kong residents speaking local dialects | Persons with communication difficulties | 2,471/2,401 | Random sampling | Telephone surveys | NA | • 9% of the respondents had never heard the term ‘antibiotic resistance’.  
• About 98% of the respondents had ever acquired non-prescribed antibiotics.  
• About 7% of the respondents had ever kept the leftover antibiotics while around 70% of the respondents had always finished the full course of antibiotics.  
• About 75–77% of the respondents agreed that the purchase of antibiotics without prescription and incomplete courses of antibiotics will lead to undesirable consequences.  
• About 80% of the respondents agreed that they could help the prevention of resistance. |
| No | Author | Year of publication | Objective of study | Study design | Country | Inclusion criteria | Exclusion criteria | Number of respondents/ Sample size | Sampling technique | Administration | Reference of tool development | Key Findings |
|----|--------|---------------------|-------------------|-------------|---------|-------------------|-------------------|-------------------------------|------------------|--------------|-----------------------------|-------------|
| 10 | Ahmad H. et al. | 2013 | To address the attitude, knowledge and perception of Peshawar and Mardan inhabitants towards self-medication | Observational study | Peshawar and Mardan, Pakistan | NA | NA | 500/NA | Random sampling | Self-administration | NA | • 78% of the respondents had used antibiotics without prescriptions.  
• About 30% of the respondents never checked the expiry date on antibiotics they used for self-medication.  
• About 64% of the respondents believed that they knew the indication of antibiotics taken; however, only 34% of the respondents reported that antibiotics can be used to treat dengue fever. |
| 11 | Jose J. et al. | 2013 | To assess public knowledge, belief and behavior of antibiotic use in two representative governorates out of the ten governorates in Oman | Observational study | Al Batnah and Al Dakhliyah governorates, Oman | Members of the public aged between 18–60 years old who understand the term antibiotic and had used an antibiotic at least three times in their lifetime | Healthcare professionals or students from any medical/health related field | 718/600 | Quota random and convenience sampling | Self-administration and face-to-face interviews | McNulty CAM et al. (2007), Pechere JC et al. (2007), Kandakai TL et al. (1996) and Crury M et al. (2006) | • Moderate knowledge and behavior score were observed, while the belief score of the respondents was low.  
• A significant difference was observed in the median total score in respondents from different age groups, education levels and employment status. |
| 12 | Gu J. et al. | 2015 | To explore the differences in the knowledge, attitude towards and use of antibiotics between urban and rural populations in the Heilongjiang Province of China and review the factors that were associated with the knowledge of, attitude towards and use of antibiotics in this population | Observational study | Suihua, Yichun (Tiel City County area) and Harbin regions of Heilongjiang Province, China | Aged over 18 years old | NA | 3,631/NA | Random sampling | Self-administration or with assistance of investigators | NA | • More than 60% of the respondents were aware that antibiotics can be used to treat bacterial infections and that bacteria can be resistant to antibiotics.  
• About 40–60% of the respondents were aware that antibiotic resistance had become a major problem in China.  
• Urban participants reported greater level of knowledge of and attitude towards use of antibiotics than rural participants.  
• Logistic regression indicated that urban residency, female and education levels were associated with knowledge of, attitudes towards and use of antibiotics. |
| No | Author | Year of publication | Objective of study | Country          | Inclusion criteria                                                                 | Exclusion criteria                                                                 | Number of respondents/ Sample size | Sampling technique | Administration | Reference of tool development | Key Findings                                                                 |
|----|--------|---------------------|--------------------|------------------|-----------------------------------|----------------------------------------------------------------------------------|-------------------------------------|--------------------|----------------|-------------------------------|--------------------------------------------------------------------------------|
| 13 | Mouhieddine TH, et al. | 2015 | To assess the current knowledge, attitudes and practices, regarding antibiotic usage in a Lebanese sample and identify demographic characteristics associated with the highest risk of attaining resistance | Beirut, Lebanon | 1. Aged at least 18 years old 2. Lived in Lebanon for at least the past 5 years to ensure that they have adapted to Lebanese habits that affect the knowledge, attitude and practice of antibiotic consumption 3. Aware of the term 'antibiotics' or any of its marketed equivalents | Respondents who did not meet all criteria | 495/500 | Random and convenience sampling | Self-administration | Andre´ M. et al. (2010) , Kim SS. et al. (2011) and Linh OA. et al. (2011) | • 68% of the respondents used antibiotics 1–3 times per year.  • About 80% of the respondents considered antibiotics as anti-bacterial agents while 74% of the respondents did not know that antibiotics are not anti-viral agents.  • Approximately 67% of the respondents realized that abusing antibiotics can lead to resistance.  • Income, education levels, place of residence, having health insurance, history of working in the health sector and spending a year outside Lebanon were significantly associated with better knowledge and attitude towards antibiotics. |
| 14 | WHO    | 2015 | To provide a snapshot of current public awareness and common behaviors related to antibiotics in a range of countries | 12 countries from all six WHO regions | Aged over 16 years old | NA | 9,772/9,772 | Quota random sampling | Face-to-face interviews or online surveys | NA | • 35% of the respondents reported having taken antibiotics within the past month; mostly from drug stores (91%), and physicians or nurses (84%).  • 64% of the respondents incorrectly believed that viruses such as colds and flu can be treated with antibiotics.  • 87% agreeing that people should use antibiotics only when prescribed.  • 32% of the respondents think that they should stop taking antibiotics when they feel better.  • 72% of the respondents correctly believed that many infections are becoming increasingly resistant to treatment by antibiotics. | (Continued) |
| No | Author | Year of publication | Objective of study | Study design | Country | Inclusion criteria | Exclusion criteria | Number of respondents/ Sample size | Sampling technique | Administration | Reference of tool development | Key Findings |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 15 | Al-Naggar RA et al. | 2016 | To examine the level of knowledge, attitude and the associated factors of antibiotic use among urban community in Malaysia | Observational study | Subang Bestari, Shah Alam, Selangor, Malaysia | 1. Residents of Subang Bestari 2. aged over 18 years old 3. able to read and understand Malay language | NA | 450/450 | Random sampling | NA | Based on literatures (no references) | • About 79% of the respondents reported that antibiotics used to treat bacterial infection while about 53% of those reported that antibiotics used to treat viral infections. • About 62% of the respondents were aware of antibiotic resistance in relation to the overuse of antibiotics. • About 35% of the respondents reported that when they get cold, they would take antibiotics to help them get better more quickly. • Education levels, healthcare-related occupation and family’s occupation related to health were significantly associated with knowledge of antibiotics. • Healthcare-related occupation, marital status and income were significantly associated with better attitude. • Knowledge score was positively associated with attitude score. |
| 16 | European Commission | 2016 | 1. To identify the use of antibiotics among the EU public 2. To measure the levels of public knowledge about the nature and effectiveness of antibiotics and the risks associated with their unnecessary use 3. To determine the impact of the information Europeans have received 4. To obtain perceptions of the most appropriate policy response to antibiotic resistance; 5. To assess knowledge of and attitudes towards the use of antibiotics in agriculture and the environment | Observational study | 28 EU member states | Aged over 15 years old | NA | 27,969/28,000 | Multi-stage random sampling with proportional to size | Face-to-face interviews | NA | (Continued) | • 34% of the respondents said that they took antibiotics within the previous year; mostly from health care providers (90%) and for conditions such as bronchitis (18%), flu (16%) and sore throat (14%). • 43% of the respondents knew that antibiotics are ineffective against viruses and 56% of those knew that antibiotics are also ineffective against colds and flu. • 84% of the respondents knew that unnecessary use of antibiotics makes them become ineffective. • 82% of the respondents think they should stop taking a antibiotics once they began a course of treatment. • 33% of the respondents remembered that they received information about the unnecessary use of antibiotics in the last 12 months; mostly from health professionals.
| No | Author                     | Year of publication | Objective of study                                                                 | Study design       | Country     | Inclusion criteria                                                                 | Exclusion criteria | Number of respondents/ Sample size | Sampling technique | Administration | Reference of tool development | Key Findings                                                                                                                                                                                                 |
|----|----------------------------|---------------------|-----------------------------------------------------------------------------------|--------------------|-------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------|-------------------|----------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | Vallin M. et al.           | 2016                | To provide an update on the knowledge and attitudes to antibiotic use and resistance of the Swedish population and identify which groups within the population have in particular need of improved knowledge or attitudes | Observational study | Sweden      | Aged between 18 and 74 years old who lived in Sweden including Swedish and foreign citizens | NA                 | 1,426/2,500                      | Random sampling     | Mail            | Andre´ M. et al. (2010)          | • 94% of the respondents knew that bacteria could become resistant to antibiotics.  
• Male, younger age and educated people were more likely to be knowledgeable but male had a less restrictive attitude  
• The respondents with high level of knowledge on antibiotics were more likely to have appropriate restrictive attitudes towards antibiotics.                                                                 |
| 18 | Maziń ska B. et al.        | 2017                | To assess knowledge by the general public in Poland regarding antibiotics, AMR, and the impact of the European Antibiotic Awareness Day campaigns | Interventional study | Poland      | Aged over 18 years                                                                  | NA                 | 5,004/5,000                      | Multi-stage and stratified random sampling | Telephone surveys | Eurobarometer Survey 338 (2014) | • 38% of the respondents had used antibiotics within the past 12 months, mostly from physicians (90%).  
• About 40% of the respondents expected a prescription for an antibiotic against flu.  
• 80% of the respondents knew that antibiotics kill bacteria while 60% of those believed antibiotics kill viruses.  
• 20% of the respondents declined to have come across information on the prudent use of antibiotics in the preceding 12 months and 48% of those declared that the information resulted in the change of attitude towards antibiotic use. |
| 19 | Zajmi D. et al.            | 2017                | To assess the level of knowledge, attitudes and practices about antibiotic use among the general public in Kosovo | Observational study | Kosovo      | Aged over 15 years                                                                  | NA                 | 811/770                          | Stratified random sampling with proportional to size | Face-to-face interviews | Special Eurobarometer 407 (2013) | • About 59% of the respondents used antibiotics within the previous year, mostly for conditions such as flu (29%), sore throat (29%), cold (13%) and a common cold (9%).  
• About 48% of the respondents opined that antibiotics are effective against viral infections.  
• 47% of the respondents received information about the unnecessary use of antibiotics and 33% of those reported that it changed their views and behaviors after receiving the information.                                                                 |
| No | Author                  | Year of publication | Objective of study                                                                 | Study design | Country                  | Inclusion criteria                                                                 | Exclusion criteria          | Number of respondents/Sample size | Sampling technique | Administration | Reference of tool development | Key Findings                                                                                   |
|----|-------------------------|---------------------|------------------------------------------------------------------------------------|--------------|-------------------------|------------------------------------------------------------------------------------|----------------------------|-------------------------------|---------------------|----------------|-----------------------------|---------------------------------------------------------------------------------------------|
| 20 | Chanvatik S. et al.     | 2018                | To better understand the appropriate use of antibiotics and monitor as well as evaluate of implementing the National Strategic Plan on Antimicrobial Resistance 2017–2021 | Observational study | Thailand                | Aged over 15 years old who responded to questionnaires by themselves                  | NA                         | 27,762/27,960                | Stratified two-stage random sampling          | Face-to-face interviews | Special Eurobarometer 445 (2016)"" | • About 8% of the respondents received antimicrobial drugs in the last month mostly for respiratory symptoms (6.3%) and health facilities (7.9%).  
  • About 3% of the respondents showed correct answers to all statements and most incorrect answers were “antimicrobials can kill viruses” and “antimicrobials are effective against colds and flu”.  
  • About 18% of the respondents received information about proper use of antimicrobials in the last 12 months mostly from health professionals. |
| 21 | Haenssgen MJ et al.     | 2018                | To inform the awareness agenda from a social sciences perspective by assessing the outputs, outcomes, and behavioral impacts of an antibiotic resistance-themed educational activity in the low-income setting of Southern Laos | Interventional study | Salavan, Laos PDR       | Aged over 18 year who were Laos villagers and lived in this area more than six months or children, people who unable to participate in the study after two attempts to arrange interview | NA                         | 2,480 (1,264 in round I and 1,216 in round II) | Consensus face-to-face interviews | Face-to-face interviews | Haenssgen,MJ et al. (2018)"" | • Activity-related educational activities could positively influence the awareness and understanding of “drug resistance”, whereas its effects on attitudes were minor.  
  • The evidence on the behavioral impacts was sparse and mixed. One of the possible influences included a disproportionate uptake of antibiotics from formal healthcare providers. |
| 22 | Salm F. et al.          | 2018                | To investigate the history of antibiotic use in the general population and to characterize consumers in terms of health literacy and knowledge | Observational study | Berlin, Germany         | 1. Aged over 35 years old  
  2. Sufficient German language skills  
  3. Resident of Germany | No                         | 977/2000                | Stratified random sampling | Face-to-face interviews | WHO (2015)"" and Gualano et al. (2015) | • About 33% of the respondents indicated having had an antimicrobial prescription during the previous 12 months.  
  • Individuals with sufficient health literacy were only 0.57 times less likely to have had a recent history of antibiotic use than individuals with insufficient health literacy."" |

Note:

• Barbados, China, Egypt, India, Indonesia, Mexico, Nigeria, Russian Federation, Serbia, South Africa, Sudan, Vietnam

• Meet inclusion criteria of this paper

• Multivariate analysis, all data about association was significant at p-value < 0.05

https://doi.org/10.1371/journal.pone.0227973.t002
Table 3. Quality assessment of 22 included studies using Appraisal Tool for Cross-Sectional Studies (AXIS).

| Author (Year of publication) | Introduction | Methods |
|-----------------------------|-------------|---------|
|               | Were the aims/objectives of the study clear? | Was the study design appropriate for the stated aim(s)? | Was the sample size justified? | Was the target/reference population clearly defined? (Is it clear who the research was about?) | Was the sample frame taken from an appropriate population base so that it closely represented the target/reference population under investigation? | Was the selection process likely to select subjects/participants that were representative of the target/reference population under investigation? | Were measures undertaken to address and categorize non-responders? | Were the risk factors and outcome variables measured correctly using instruments/measurements that had been trialed, piloted or published previously? | Is it clear what was used to determined statistical significance and/or precision estimates? (e.g., p values, CIs) | Were the methods (including statistical methods) sufficiently described to enable them to be repeated? |
| Parimi N. et al (2002)       | Y           | Y       | Y       | Y       | Y       | N       | N       | Y       | Y       | Y       |
| Eng JV. et al. (2003)        | Y           | Y       | N       | Y       | Y       | Y       | N       | N       | N       | Y       | Y       |
| McNulty CAM. et al. (2007)   | Y           | Y       | Y       | Y       | Y       | Y       | N       | N       | N       | Y       | Y       |
| Andre´ M. et al (2010)       | Y           | Y       | N       | Y       | Y       | Y       | N       | N       | Y       | Y       | Y       |
| Banh F. and Goncalves V. (2010) | Y       | Y       | N       | Y       | N       | Y       | N       | CT      | Y       | Y       | Y       |
| Kim SS. et al (2011)         | Y           | Y       | Y       | Y       | Y       | Y       | N       | Y       | Y       | Y       | Y       |
| Sirijoti K. (2012)           | Y           | Y       | Y       | Y       | Y       | Y       | N       | Y       | Y       | Y       | Y       |
| Widayati A. et al (2012)     | Y           | Y       | N       | Y       | Y       | Y       | CT***   | Y       | Y       | Y       | Y       |
| Wun YT. et al. (2012)        | Y           | Y       | Y       | Y       | Y       | Y       | N       | Y       | Y       | Y       | Y       |
| Ahmad H. et al (2013)        | Y           | Y       | N       | Y       | Y       | N       | N       | N       | N       | N       | N       |
| Jose J. et al (2013)         | Y           | Y       | Y       | Y       | Y       | Y       | N       | N       | Y       | Y       | Y       |
| Gu J. et al (2015)           | Y           | Y       | N       | Y       | Y       | Y       | N       | N       | N       | Y       | Y       |
| Mouhieddine HT. et al (2015) | Y           | Y       | N       | Y       | N       | N       | N       | Y       | Y       | Y       | Y       |
| WHO (2015)                   | Y           | Y       | Y       | Y       | Y       | Y       | N       | N       | N       | N       | N       |
| Al-Naggar AR. et al (2016)   | Y           | Y       | Y       | Y       | Y       | Y       | N       | Y       | Y       | Y       | Y       |

(Continued)
| Author (Year of publication) | Were the aims/objectives of the study clear? | Was the study design appropriate for the stated aim(s)? | Was the sample size justified? | Was the target/reference population clearly defined? (Is it clear who the research was about?) | Was the sample frame taken from an appropriate population base so that it closely represented the target/reference population under investigation? | Was the selection process likely to select subjects/participants that were representative of the target/reference population under investigation? | Were measures undertaken to address and categorize non-responders? | Were the risk factors and outcome variables measured appropriate to the aims of the study? | Were the risk factors and outcome variables measured correctly using instruments/measurements that had been trialed, piloted or published previously? | Is it clear what was used to determined statistical significance and/or precision estimates? (e.g., p values, CIs) | Were the methods (including statistical methods) sufficiently described to enable them to be repeated? |
|-----------------------------|-------------------------------------|---------------------------------|-------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| European Commission (2016) | Y                                   | Y                               | Y                             | Y                                                                               | N                                                                                | N                                                                            | N                               | N                                                               | Y                                                                            | Y                                                                            | Y                                                                            |
| Vallin M. et al (2016)     | Y                                   | Y                               | N                             | Y                                                                               | Y                                                                                | Y                                                                            | Y                               | Y                                                               | Y                                                                            | Y                                                                            | Y                                                                            |
| Mazińska B. et al (2017)   | Y                                   | Y                               | Y                             | Y                                                                               | Y                                                                                | N                                                                            | Y                               | N                                                               | Y                                                                            | Y                                                                            | Y                                                                            |
| Zajmi D. et al (2017)      | Y                                   | Y                               | Y                             | Y                                                                               | Y                                                                                | N                                                                            | Y                               | Y                                                               | Y                                                                            | Y                                                                            | Y                                                                            |
| Chanvatik S. et al (2018)  | Y                                   | Y                               | Y                             | Y                                                                               | Y                                                                                | N                                                                            | N                               | N                                                               | Y                                                                            | Y                                                                            | Y                                                                            |
| Haenssgen JM. et al (2018) | Y                                   | Y                               | Y                             | Y                                                                               | Y                                                                                | N                                                                            | N                               | N                                                               | Y                                                                            | Y                                                                            | Y                                                                            |
| Salm F. et al (2018)       | Y                                   | Y                               | Y                             | Y                                                                               | Y                                                                                | N                                                                            | N                               | Y                                                               | Y                                                                            | Y                                                                            | Y                                                                            |

Note: Y = Yes, N = No, CT = Cannot Tell

https://doi.org/10.1371/journal.pone.0227973.t003
Table 4. Quality assessment of 22 included studies using Appraisal Tool for Cross-Sectional Studies (AXIS).

| Author (Year of publication) | Results | Discussion | Others |
|------------------------------|---------|------------|--------|
| Parimi N. et al (2002)       | Y       | Y          | CT     |
| Eng JV. et al (2003)         | Y       | CT         | CT     |
| McNulty CAM. et al. (2007)   | Y       | N          | N      |
| Andre’ M. et al (2010)       | Y       | N          | N      |
| Barah F. and Goncalves V. (2010) | Y       | N          | N      |
| Kim SS. et al (2011)         | Y       | N          | N      |
| Sirijoti K. (2012)           | Y       | N          | N      |
| Widayati A. et al (2012)     | Y       | CT**       | CT**   |
| Wun YT. et al (2012)         | Y       | N          | N      |
| Ahmad H. et al (2013)        | N       | CT         | CT     |
| Jose J. et al (2013)         | Y       | N          | N      |
| Gu J. et al (2015)           | Y       | CT         | CT     |
| Mouhieddine HT. et al (2015) | Y       | N          | N      |
| WHO (2015)                   | Y       | N          | N      |
| Al-Naggar AR. et al (2016)   | Y       | N          | CT     |
| European Commission (2016)   | N       | N          | CT     |
| Vallin M. et al (2016)       | Y       | Y          | Y      |
| Mazitsa B. et al (2017)      | N       | N          | Y      |
| Zajmi D. et al (2017)        | Y       | N          | N      |
| Chanvatik S. et al (2018)    | Y       | N          | N      |
| Haensggen JM. et al (2018)   | Y       | N          | N      |

(Continued)
responders, but they compared the characteristics of respondents who were familiar and not non-familiar with antibiotics and found no difference between these two groups.

Seventeen studies discussed limitations including selection biases \cite{1,12,14,15,21,22,24,25,26,28}, information biases such as recall biases \cite{1,12,13,14,16,18,19,20,21,24,26,28}, measurement bias \cite{1,29}, study design limitations \cite{11,13,16,20,21,25} and other possible confounders \cite{18,19,29}.

Regarding conflict of interests and ethical reviews, five studies did not clearly declare funding sources which might influence authors’ interpretation of the results \cite{1,4,12,23,27}. Seventeen studies indicated they had ethical approval or consent of the participants. Another five studies \cite{1,4,6,12,13} did not provide information on ethical clearance or whether they attained consent of the survey participants. Three studies \cite{6,13,21} declared that their studies were exempted from ethical review.

According to AXIS quality assessment, the tool does not provide a numeric scale for assessment, but it is flexible enough for users to judge the quality of the paper overall. However, authors in this systematic review classified all papers into three types based on methodology, results and discussions: 1) fully qualified; 2) partly qualified; and 3) unqualified. Fully qualified means the studies are qualified in all parts; there are no studies which reach this qualification. Partly qualified considers the studies that have qualifications in some parts; there are six studies in this group \cite{11,15,16,18,21,27}. Four studies \cite{15,16,21,28} are not fully qualified in methodology while the other two studies \cite{11,27} are not fully qualified in discussion. Kim SS. et al (2011), Wun YT. et al. (2012) and Zajmi D. et al (2017) did not mention about non-response biases whereas Vallin M. et al (2016) did not reported calculation method for sample size. Sixteen studies are unqualified because they are missing important parts of quality assessment; for example, some studies had inappropriate selection processes influencing representativeness and some studies did not have validity and reliability tests of measurements.

**Thematic concerns of questions in the questionnaire survey**

Of the 22 studies, 13 \cite{6,11,16,17,18,20,21,22,24,26,27,28,29} adapted a questionnaire from prior studies, and the questionnaire for household-based cross-sectional surveys in general population from the Eurobarometer survey (2013,2014,2016), Andre´ M. et al. (2010) and Eng JV. et al. (2003) was commonly referred to.
Four themes emerged from the analysis of the contents of the questionnaire: a) behavior related to antibiotic use; b) knowledge and awareness of antibiotic use; c) knowledge and awareness of AMR and d) other issues such as receiving information and advice about proper use of antibiotics, or AMR campaign message and cross-cutting issues such as self-medication. See Table 5.

With regard to behavior-related antibiotic use, we identified four sub-themes covering: 1) frequency of using antibiotics in the recall period such as one month, six months or a year; 2) source of antibiotics; 3) clinical indications or conditions for which antibiotics are used; and 4) instruction and advice from drug sellers or pharmacists on the proper use of antibiotics.

| Themes                                      | Subthemes                        | Common questions/statements                                                                 |
|---------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------|
| Behavior related to antibiotic use          | Frequency of using antibiotics   | Have you taken any antibiotics in the last one month or 12 months?                        |
|                                             | Source of antibiotics            | How do you obtain the antibiotics?                                                        |
|                                             | Indication/reason of antibiotic use | What was the reason for last taking the antibiotics that you used?                       |
|                                             | Instruction of antibiotic use    | Do you read the label information medicine name and indication of antibiotics before taking it?, Do you drink alcohol while taking antibiotics?, etc. (Yes/No) |
| Knowledge and awareness of antibiotic use   | Name of antibiotics              | Please identify the name of antibiotics e.g. penicillin, tetracycline, etc.                |
|                                             | General knowledge                | Antibiotics can kill bacteria. (Yes/No)                                                   |
|                                             |                                  | Antibiotics can kill viruses. (Yes/No)                                                     |
|                                             |                                  | Antibiotics can treat colds and flu (Yes/No)                                               |
|                                             |                                  | Antibiotics can treat symptoms such as fever, cough, pain and inflammation, etc. (Yes/No) |
|                                             |                                  | Antibiotics have side-effects such as diarrhea, nausea and vomiting (Yes/No)               |
|                                             |                                  | People can be allergic to antibiotics (Yes/No)                                             |
|                                             |                                  | Unnecessary use of antibiotics makes them become ineffective (Yes/No)                       |
| Knowledge and awareness of AMR              | Definition                       | Antibiotic resistance means that bacteria would not be killed by antibiotics (Yes/No)     |
|                                             | General knowledge                | When antibiotics are taken for the wrong indication such as incomplete course or lower doses, it can lead to antibiotic resistance (Yes/No) |
|                                             |                                  | Overuse of antibiotics can cause antibiotic resistance (Yes/No)                            |
|                                             |                                  | Bacteria which are resistant to antibiotics can be spread from person to person (Yes/No)  |
|                                             | Awareness                        | Antibiotic resistance is a problem in your country and worldwide (Agree/Disagree)          |
|                                             |                                  | Antibiotic resistance is an issue that could affect me or my family (Agree/Disagree)       |
| Others                                      | Information about antibiotic use and AMR | In the last 12 months, do you remember getting any information about antibiotic use or AMR, for example, messages about not taking antibiotics in case of cold or flu? (Yes/No) |
|                                             |                                  | What are the sources of information on antibiotic use or AMR?                              |
|                                             |                                  | Did information that you received change your views/behaviors on using antibiotics? (Yes/No) |
|                                             | Self-medication with antibiotics  | You can stop taking a full course of antibiotic if your symptoms are improving (Yes/No)  |
|                                             |                                  | You can share antibiotics from and to person who have experienced the same symptoms as you (Yes/No) |
|                                             |                                  | You can keep leftover antibiotics and use later in the future (Yes/No)                     |
|                                             | Patient-doctor relationship      | I trust the doctor’s decision when s/he prescribes antibiotics. (Agree/Disagree and Yes/No) |
|                                             |                                  | Doctors and pharmacists often take time to inform the patient during the consultation about how antibiotics should be used. (Agree/Disagree and Yes/No) |

Table 5. Common questions used to determine level of knowledge and awareness of antibiotic use and AMR.

https://doi.org/10.1371/journal.pone.0227973.t005
For knowledge and awareness of antibiotic use, three sub-themes emerged: 1) antibiotic names; 2) general knowledge; and 3) awareness of using antibiotics in common cold and flu symptoms. Questions were asked about respondents’ recognition of antibiotics, for example whether penicillin or tetracycline were antibiotics or not. In terms of general knowledge, questions were asked about the mechanism of action of antibiotics, such as its action towards bacteria or viruses, its side-effects and allergies, and inappropriate antibiotic use. Finally, concerning awareness of antibiotic use, questions were designed to explore opinions about antibiotic use for common cold and flu symptoms.

On knowledge and awareness of AMR, various questions in the survey tools were categorized into three subthemes: 1) definition of AMR; 2) general knowledge about AMR; and 3) awareness of AMR. The general knowledge questions focused on misuse, overuse, sub-optimal use and inappropriate use of antibiotics, which could lead to AMR and the spread of resistant bacteria. Concerning awareness of AMR, various questions explored people’s concerns about AMR, which had the potential to affect themselves, their families and countries.

Self-medication with antibiotics is a cross-cutting issue in all the three thematic areas. Questions explored the necessity of completing the full course of antibiotics and proper management of the leftover antibiotics.

Additional questions explored exposure to public information relating to proper use of antibiotics and AMR. These included media channels and sources of information such as health professionals, and the impact of this information on people’s behavior in relation to antibiotic use. For doctor-patient relationships, the questions related to trust and communication between people and healthcare providers.

Discussion

The systematic review observed several important features in design and methodology of included studies that would be useful for developing a tool to determine levels of knowledge and awareness of antibiotic use and AMR.

Setting objectives is vital to guide study design and all included studies had clear objectives focusing on assessing levels of knowledge, awareness or attitudes and behavior related to antibiotic use and awareness of AMR and associated factors. A cross-sectional survey is appropriate for the assessment of population knowledge about and awareness of proper use of antibiotics under the resource constraints. It measures exposure and outcomes at the same time and can find possible associations between exposure and outcomes [30]. Cross-sectional surveys are less costly and less time-consuming than longitudinal studies [30]. However, the casual relationships are better identified through longitudinal studies where temporal relationship can be addressed [31]. A recent systematic review on public knowledge and beliefs about AMR has shown that synthesis of qualitative and quantitative studies provided more in-depth understanding of people’s knowledge and beliefs about AMR than using quantitative data alone [8]. In this review, the number of quantitative studies was three times higher than qualitative studies and mixed methods. Due to the strengths and limitations of each method, quantitative studies, especially cross-sectional surveys, are more appropriate for population-based surveys while qualitative methods are useful for in-depth explanation in small-scale research-based assessments.

Although various methods can be used for sampling and recruitment, the key strengths of household-based cross-sectional surveys is the representativeness of the population. Although the sizes of samples are usually limited by the budget available for very large surveys, a representative sampling frame is essential for generalization of the survey findings to the population [32]. Inappropriate sampling frames were seen in the studies conducted in Lebanon and Syria.
In the Lebanon study, which aimed to assess knowledge, attitudes and practice of antibiotic use in the Lebanese population, the sampling frame was the population in the capital city which did not therefore represent the whole population. In the Syrian study, which aimed to provide an insight of the current knowledge and practices regarding antibiotic use among individuals living in the Kalamoon, Syrian Arab Republic, the sampling frame was of households in main streets of two cities which therefore missed some samples for representing the whole population.

We acknowledge that while random sampling is ideal as it properly represents the population, it is time- and resource-consuming. Stratified random sampling and cluster random sampling can be applied to household-surveys as these methods can also achieve representativeness and reduce selection bias. Cluster random sampling is also less costly and feasible; it is a common method used by many studies [33]. Recruiting samples such as adult members or those who have clear understanding of the language used in surveys is critical for ensuring high-quality responses in many surveys. However, specific sampling methods may introduce selection biases, which should be considered before setting inclusion and exclusion criteria.

The high level of non-response rate such as refusals, unreachable households or incomplete data compromises the validity of survey results and conclusions [10]. Although two studies had low response rates, only Vallin M. et al (2016) mentioned this consideration in the discussion section. Various measures can be applied to minimize non-response errors such as making appointments for follow-up interviews for those who were absent on the interview days or using combined user-friendly survey instruments such as face-to-face interviews, telephone, mail or online self-administered surveys [32]. Even where there is high response rate, the non-responders profiles such as those are very high or very lower users of antibiotics; this non-respondent bias can affect the validity of findings about the prevalence of antibiotic use in the population. Almost all studies did not address and describe the profiles of non-responders in their studies which therefore affected the credibility of results. Parameters about non-responders should be recorded during the field survey and analyzed to verify if the non-responders are similar or dis-similar to the responders.

Two broad methods of questionnaire administration are identified in this review: a) interview survey, either face-to-face or the use of telephone by trained interviewers; and b) self-administration either through postal or internet methods. Using multiple survey methods, when no single method is adequate to address research objective, can minimize the low response rate, prevent coverage, measurement and non-response errors [32]. Each method may have its advantages and disadvantages. For example, self-administered surveys present challenges of interpreting questions as it is “one-way communication” which can introduce measurement error. Face-to-face interviews can prevent measurement bias.

Many studies addressed limitations about coverage errors and measurement errors.

In term of coverage errors, Andre´ M. et al (2010) addressed the fact that 6% of the Swedish population aged 16–75 years did not have a fixed telephone line in 2006. Parimi N. et al (2002) also mentioned that 10% of the households in Trinidad and Tobago did not have telephone service and that 15% of the Telecommunication Services customers have unlisted telephone numbers. However, the limitations of questionnaire administration depend on the context specific to each country.

In relation to measurement errors, Parimi N. et al (2002), Eng JV. et al. (2003) and Barah F. and Goncalves V. (2010) raised concerns about the level of understanding as regard to the questionnaire such as the term ‘antibiotics’ or explanation about illness and treatments. Therefore, some studies reduced these errors by setting criteria to recruit respondents who understood the term ‘antibiotics’ or to those who had used it before. Nevertheless, selection bias
should be taken into consideration when studies select based on these specific groups. Interestingly, findings from Widayati A. et al (2012) showed that the characteristics data from groups of responders who were and were not familiar with antibiotics, were not significantly different. It means using this inclusion criterion was useful for ensuring the validity of the questionnaire.

Tailor-made design in line with country contexts is important. For example, in countries with a high prevalence of “polypharmacy” which means using multiple drugs to treat a single ailment or condition at the same time, a careful design is needed to ensure correct interpretation of respondents’ understanding and their ability to distinguish antibiotics from vitamins and analgesic they use. Antibiotics are one of the most common items in polypharmacy, which can cause serious adverse drug events or drug interactions [34]. Additionally, to assess the effectiveness of antibiotic awareness campaigns, the surveys should align with the campaign’s contents as seen in these two studies: Mazińska B. et al (2017) and Haenssgen JM. et al (2018).

With regard to the validity and reliability of measurement, half of these 22 studies did not report testing validity and reliability before finalizing the questionnaire. Although some questionnaires were developed by other studies, the validity and reliability test are still essential because of the difference in population, health systems, culture and terminology for which adaptation to local contexts would be required.

Key findings from these studies showed the differences in prevalence regarding antibiotic use, levels of knowledge of antibiotics and awareness of AMR, frequency and sources of receiving information about antibiotic and its use and AMR. However, there is no study expounding on the outcomes of surveys, including further implications such as impacts on AMR trends. All studies tried to identify the gaps in low levels of knowledge and awareness in terms of contents and characteristics of population in these groups. Furthermore, almost all studies assessed the association between demographics, for example, sex, age, education levels, wealth status with levels of knowledge and awareness, practices, regarding to antibiotic use and AMR except Ahmad H. et al (2013). According to findings, education levels were proven as consensual factors associated with knowledge and awareness while other factors differed depended on each study. Some studies found the significant association between key variables such as exposure to information or campaigns with levels of knowledge and awareness [21], and level of knowledge with level of awareness [16,22,27]. Nevertheless, the relation between levels of knowledge and awareness and antibiotic use remained unclear [11,13] and there were no studies linking the findings with AMR trends. In discussion section, all studies recommended the enhancing of knowledge and awareness from key findings. Most common sources of information are from health workers so they should be key actors in promoting appropriate antibiotic use [14].

Aligned with global action plan on AMR, surveillance on levels of knowledge and awareness can contribute to the design of interventions which can change the population’s behavior on antibiotic use which could potentially lead to a reduction in AMR [35]. Nonetheless, the majority of the reviewed studies encountered limitations in demonstrating an association between knowledge/awareness/practices and the emergence of AMR in the community. Only two studies described the association between knowledge and attitudes, and practices of antibiotic use—showing the association between these factors [11,13]. If a novel antibiotic survey is to be implemented in order to reduce inappropriate antibiotic use, standardized questions on knowledge, awareness and practices on antibiotic use should be focused.

To change pattern of inappropriate uses in the population, it is necessary to have strategies or policies developed based on survey evidences. Experts and academics in the field should discuss and reach consensus on the required questions in the AMR survey module. The critical point is the linkage between levels of knowledge and awareness to behaviors which are influenced by various factors such as access to healthcare or social and cultural aspects [36]. The
surveys can be a surrogate measure used to probe into possible causes of the problem. Survey evidence can be used for public advocacy. However, among these studies, only five studies linked their surveys with communication campaigns and evaluate policies [4,6,13,17,28].

The strength of this study is the focus on evaluation of questionnaire tools in household-based cross-sectional surveys. The systematic review contributes to new knowledge about the monitoring of knowledge and awareness of antibiotic use and AMR in two key areas. Firstly, it provides quality assessment of these cross-sectional surveys, which is important for tool development and data collection. We find that AXIS is a useful tool which provides qualitative assessment for the review of survey methodologies [9,10]. Secondly, the previous reviews focused on results of studies; this study fills review gaps by looking at the main contents of the questions that were asked by these 22 survey instruments and associated factors related to knowledge, awareness and practice of antibiotic use and AMR.

However, there remain some limitations. For instance, firstly, despite the authors widened the search strategy as large as possible; it is very likely that some studies had been left out, particularly the gray literature in the archives of domestic universities or research institutes. Secondly, this review was unable to capture the linkage between AMR tools and the actual knowledge and behavior of antibiotic use in the wider population. This issue cannot be addressed by the review; primary data collection through either quantitative survey or qualitative interview is needed. In addition, a more complex review design (for example, realist review) [37] are likely to be beneficial to answering this question. Future systematic reviews that explore the tools in specific subpopulations, such as health professionals, patients, and general populations, are of huge value in the AMR field.

**Conclusion**

In response to AMR threats, countries need to assess their population’s knowledge and awareness of antibiotic use and AMR. Valid household-based assessments require clear survey objectives, valid and reliable tools for measurement, representativeness for generalizing the survey findings to the population and minimize sampling and non-sampling biases.

The survey design needs to take into account local contexts and terminologies related to medicines, antibiotics and disease conditions used by the communities, and recruit qualified respondents who can provide accurate responses representing the population. Common questions in existing household-based surveys cover four thematic areas: behavior related to antibiotic use, knowledge and awareness of antibiotic use, knowledge and awareness of AMR and others such as receiving information about antibiotic use and AMR or cross-cutting issues like self-medication.

Countries can learn from previous survey instruments applied by other and avoid mistakes. Accurate survey tools contribute to valid evidence which can be used to inform policies for specific interventions to improve population knowledge and awareness on antibiotics and AMR. The country-specific health system context of access to health services and antibiotics should be taken into account in the design of the survey questionnaire. Identifying levels of knowledge and awareness of antibiotic use and AMR is crucial. Eventually the utmost goals of such surveys would be to enhance the application of this knowledge to target specific target groups as well as to generate public health interventions related to antibiotic use and mitigating AMR.

**Acknowledgments**

We acknowledge the contribution on methodological consultation from Scientific Advisory Group, International Health Policy Program, Ministry of Public Health, Thailand.
Author Contributions

Conceptualization: Hathairat Kosiyaporn, Rapeepong Suphanchaimat, Angkana Lekagul, Viroj Tangcharoensathien.

Data curation: Hathairat Kosiyaporn.

Formal analysis: Hathairat Kosiyaporn.

Funding acquisition: Sunicha Chanvatik.

Investigation: Hathairat Kosiyaporn, Sunicha Chanvatik, Tibet Issaramalai, Wanwisa Kaewkhankhaeng, Anond Kultthanmanusorn, Nithiwat Saengruang, Woranan Witthayapipopsakul, Shaheda Viriyathorn, Supapat Kirivan.

Methodology: Hathairat Kosiyaporn, Watinee Kunpeuk, Rapeepong Suphanchaimat, Angkana Lekagul.

Project administration: Sunicha Chanvatik, Wanwisa Kaewkhankhaeng.

Supervision: Watinee Kunpeuk, Rapeepong Suphanchaimat, Angkana Lekagul, Viroj Tangcharoensathien.

Validation: Hathairat Kosiyaporn.

Writing – original draft: Hathairat Kosiyaporn.

Writing – review & editing: Hathairat Kosiyaporn, Woranan Witthayapipopsakul, Supapat Kirivan, Watinee Kunpeuk, Rapeepong Suphanchaimat, Angkana Lekagul, Viroj Tangcharoensathien.

References

1. World Health Organization. Antibiotic Resistance: Multi-Country Public Awareness Survey. Geneva; 2015.

2. European Commission. Special Eurobarometer 338; Antimicrobial resistance [Internet]. Brussels and Luxembourg; 2010. http://www.who.int/mediacentre/factsheets/fs194/en/

3. Commission European. Special Eurobarometer 407; Antimicrobial resistance [Internet]. Brussels and Luxembourg; 2013. http://ec.europa.eu/COMMFrontOffice/PublicOpinion

4. European Commission. Special Eurobarometer 445; Antimicrobial resistance. Brussels and Luxembourg; 2016.

5. Ministry of Public Health, Ministry of Agriculture. National Strategic Plan on Antimicrobial Resistance 2017–2021, Thailand [Internet]. Nonthaburi; 2016. http://www.fda.moph.go.th/sites/drug/Shared%20Documents/AMR%20,การจัดการต้านจุลชีพ/NSP-AMR_at%20,a%20,glan

6. Chanvatik S, Lekagul A, Vongmongkol V, Patcharanarumol W, Thunyahan A, Tangcharoensathien V. Situation on Antimicrobial Use and Knowledge on Antimicrobials: A National Health and Welfare Survey in Thailand 2017. Heal Syst Res Inst. 2017; 12(3):420–36.

7. Gualano MR, Gili R, Scaioli G, Bert F, Siliquini R. General population’s knowledge and attitudes about antibiotics: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf [Internet]. 2015; 24 (1):2–10. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=22521203 https://doi.org/10.1002/pds.3716 PMID: 22521203

8. McCullough AR, Parekh S, Rathbone J, Del Mar CB, Hoffmann TC. A systematic review of the public’s knowledge and beliefs about antibiotic resistance. J Antimicrob Chemother [Internet]. 2016; 71(1):27–33. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=26459555 https://doi.org/10.1093/jac/dkv010 PMID: 26459555

9. Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ. 2016; 6(e011458):1–7.

10. Downes MJ, Brennan ML, Williams HC, Dean RS. Appraisal tool for Cross-Sectional Studies (AXIS). 2016.
11. Sirijoti K. Assessment of knowledge, attitudes and practices regarding antibiotics use in Kuanthani sub-district, Kantang district, Trang province, Thailand. Chulalongkorn University; 2012.

12. Parimi N, Pinto Pereira LM, Prabhakar P. The general public’s perceptions and use of antimicrobials in Trinidad and Tobago. Rev Panam Salud Publica/Pan Am J Public Heal [Internet]. 2002; 12(1):11–8. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036321966&doi=10.1590%2FS1020-49892002000700003&partnerId=40&md5=adf129ebe5a28bbe8c4f76968a33715

13. McNulty CAM, Boyle P, Nichols T, Clappison P, Davey P. Don’t wear me out—the public’s knowledge of and attitudes to antibiotic use. J Antimicrob Chemother [Internet]. 2007; 59(4):727–38. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=17307770 https://doi.org/10.1093/jac/dk568 PMID: 17307770

14. Andre M, Vernby A, Berg J, Lundborg CS. A survey of public knowledge and awareness related to antibiotic use and resistance in Sweden. J Antimicrob Chemother [Internet]. 2010; 65(6):1292–6. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=med6&NEWS=N&AN=20360063 https://doi.org/10.1093/jac/dkq104 PMID: 20360063

15. Wun YT, Lam TP, Lam KF, Ho PL. The public’s perspectives on antibiotic resistance and abuse among Chinese in Hong Kong. Pharmacoepidemiol Drug Saf. 2013; 22(3):223–33.

16. Vallin M, Polzoyi M, Marrone G, Rosales-Klintz S, Tegmark Wisell K, Stalsby Lundborg C. Knowledge and attitudes towards antibiotic use and resistance—a Latent Class Analysis of a Swedish Population-Based Sample. PLoS One [Internet]. 2016; 11(4):e0152160. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=27096751 https://doi.org/10.1371/journal.pone.0152160 PMID: 27096751

17. Maziniska B, Struzyczka I, Hryniewicz W. Surveys of public knowledge and attitudes with regard to antibiotics in Poland: Did the European Antibiotic Awareness Day campaigns change attitudes? PLoS One. 2017; 12(2):1–18.

18. Zajmi D, Berisha M, Begolli I, Hoxha R, Mehmeti R, Mulliqi-Osmani G, et al. Public knowledge, attitudes and practices regarding antibiotic use in Kosovo. Pharm Pract (Granada). 2017; 15(1):827.

19. Eng JV, Marcus R, Hadler JL, Imhoff B, Vugia DJ, Cieslak PR, et al. Consumer attitudes and use of antibiotics. Emerg Infect Dis. 2003 Sep; 9(9):1128–35. https://doi.org/10.3201/eid0909.020591 PMID: 14519251

20. Barah F, Goncalves V. Antibiotic use and knowledge in the community in Kalamoon, Syrian Arab Republic: a cross-sectional study. East Mediterr Health J [Internet]. 2010; 16(5):516–21. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=20799551 PMID: 20799551

21. Kim SS, Moon S, Kim EJ. Public knowledge and attitudes regarding antibiotic use in South Korea. J Korean Acad Nurs [Internet]. 2011; 41(6):742–9. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med6&NEWS=N&AN=22310859 https://doi.org/10.1040/jkan.2011.41.6.742 PMID: 22310858

22. Widayati A, Suryawati S, de Crespiigny C, Hiller JE. Knowledge and beliefs about antibiotics among people in Yogyakarta City Indonesia: A cross sectional population-based survey. Antimicrob Resist Infect Control. 2012; 1(1):1.

23. Ahmad H, Sherwani SK, Nisar W, Ahmad T, Shah S, Ahmad W, et al. Self-Medication With Antibiotics: General Perspective Among People in Peshawar and Mardan (Two Most Populated Cities of Khyber Pukhtoonkhwa-Pakistan). Int J Pharm Sci Res IJPSR. 2013; 4(5):1809–14.

24. Jose J, Jimmy B, Alsaabahi AGMS, Al Sabei GA. A study assessing public knowledge, belief and behavior of antibiotic use in an omani population. Oman Med J. 2013 Sep; 28(5):324–30. https://doi.org/10.5001/omj.2013.95 PMID: 24044058

25. Gu J, Zhao J, Huang Y, Yang W, Ren Z, Li W, et al. Use of antibiotics by urban and rural residents in Hainingjiang Province, China: cross-sectional study. Trop Med Int Health [Internet]. 2015; 20(12):1815–22. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med8&NEWS=N&AN=26376187 https://doi.org/10.1111/tmi.12602 PMID: 26376187

26. Mouhiedine CH. Al-Naggar RA, Ismail N, Zaliha I, Aini NMN, Nadira AMR, Shamsiah NIH, et al. Knowledge and Attitudes Regarding Antibiotic Use among Urban Community in Malaysia. Res J Pharm Biol Chem Sci. 2016; 7(1):1145–55.

27. Haenssgen MJ, Xiaoyang T, Charoenboon N, Warapikritanun P, Kline Zaw Y. The Consequences of AMR Education and Awareness Raising: Outputs, Outcomes, and Behavioural Impacts of an Antibiotic-Related Educational Activity in Lao PDR. Antibiot (Basel, Switzerland) [Internet]. 2018; 7(4). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=30388824
29. Salm F, Ernsting C, Kuhlmeier A, Kanzler M, Gastmeier P, Gellert P. Antibiotic use, knowledge and health literacy among the general population in Berlin, Germany and its surrounding rural areas. PLoS One. 2018 Feb; 13(2).

30. Pearce N. Classification of epidemiological study designs. Int J Epidemiol. 2012; 41: 393–397. https://doi.org/10.1093/ije/dys049 PMID: 22493323

31. Bonita R, Beaglehole R, Kjellstrom T. Basic Epidemiology. 2nd ed. Geneva: WHO press; 2006:39–60.

32. Ponto J. Understanding and Evaluating Survey Research. J Adv Pract Oncol. 2015; 6(2):168–71. PMID: 26649250

33. Sharma G. Pros and cons of different sampling techniques. 2017; 3(7):749–52.

34. Parulekar MS, Rogers CK. Polypharmacy and Mobility. In: Geriatric Rehabilitation. Elsevier; 2018. p. 121–9.

35. World Health Organization. Global action plan on antimicrobial resistance [Internet]. Geneva; 2015. https://www.who.int/antimicrobial-resistance/global-action-plan/en/

36. Alhomoud F, Aljamea Z, Basalelah L. “antibiotics kill things very quickly”—Consumers’ perspectives on non-prescribed antibiotic use in Saudi Arabia 11 Medical and Health Sciences 1117 Public Health and Health Services. BMC Public Health. 2018; 18(1).

37. Pollitt C. Ray Pawson (2013) The Science of Evaluation: A Realist Manifesto. Int Rev Adm Sci [Internet]. 2013 Sep 1; 79(3):580–2. https://doi.org/10.1177/0020852313497455