AN INTEGRAL FUNCTIONAL DRIVEN BY FRACTIONAL BROWNIAN MOTION

XICHAO SUN1, LITAN YAN2,§ AND XIANYE YU2

1Department of Mathematics and Physics, Bengbu University
1866 Caoshan Rd., Bengbu 233030, P.R. China
2Department of Mathematics, College of Science, Donghua University
2999 North Renmin Rd., Songjiang, Shanghai 201620, P.R. China

ABSTRACT. Let B^H be a fractional Brownian motion with Hurst index $0 < H < 1$ and the weighted local time $L^H(\cdot, t)$. In this paper, we consider the integral functional

$$C^H_t(a) := \lim_{\varepsilon \to 0} \int_0^t 1_{\{|B^H_s - a| > \varepsilon\}} \frac{1}{B^H_s - a} ds^{2H} \equiv \frac{1}{\pi} \mathcal{H} \mathcal{L}^H(\cdot, t)(a)$$

in $L^2(\Omega)$ with $a \in \mathbb{R}$, $t \geq 0$ and \mathcal{H} denoting the Hilbert transform. We show that

$$C^H_t(a) = 2 \left((B^H_t - a) \log |B^H_t - a| - B^H_t + a \log |a| - \int_0^t \log |B^H_s - a| \delta B^H_s \right)$$

for all $a \in \mathbb{R}$, $t \geq 0$ which is the fractional version of Yamada’s formula, where the integral is the Skorohod integral. Moreover, we introduce the following occupation type formula:

$$\int_{\mathbb{R}} C^H_t(a) g(a) da = 2H\pi \int_0^t (\mathcal{H} g)(B^H_s) s^{2H-1} ds$$

for all continuous functions g with compact support.

1. Introduction

Given $H \in (0, 1)$, a fractional Brownian motion (fBm) $B^H = \{B^H_t, 0 \leq t \leq T\}$ with Hurst index H is a mean zero Gaussian process such that

$$E \left[B^H_t B^H_s \right] = \frac{1}{2} \left[t^{2H} + s^{2H} - |t - s|^{2H} \right]$$

for all $t, s \geq 0$. For $H = 1/2$, B^H coincides with the standard Brownian motion B. B^H is neither a semimartingale nor a Markov process unless $H = 1/2$, so many of the powerful techniques from stochastic analysis are not available when dealing with B^H. As a Gaussian process, one can construct the stochastic calculus of variations with respect to B^H. Some surveys and complete literatures for fBm could be found in Biagini et al [5], Decreusefond-Üstünel [12], Hu [19], Mishura [24], Nourdin [25], Nualart [26] and the references therein.

Let now F be an absolutely continuous function such that the Skorohod integral

$$\int_0^t F'(B^H_s - a) \delta B^H_s$$

is well-defined and the second derivative $F'' = f$ exists in the sense of Schwartz’s distribution. Then the process

$$K^H_t(a) := 2 \left(F(B^H_t - a) - F(-a) - \int_0^t F'(B^H_s - a) \delta B^H_s \right),$$

∗The Project-sponsored by NSFC (11571071, 11426036) and Innovation Program of Shanghai Municipal Education Commission (12ZZ063).
§litan-yan@hotmail.com (Corresponding author)
2000 Mathematics Subject Classification. Primary 60G15, 60H05; Secondary 60H07.
Key words and phrases. fractional Brownian motion, Malliavin calculus, local time, fractional Itô formula and Cauchy’s principal value.
exists for all \(a \in \mathbb{R}\). Denote

\[
\chi_t^H(a) := \int_0^t f(B_s^H - a)ds^{2H}
\]

for all \(t \geq 0, a \in \mathbb{R}\). By Itô’s formula one can find the following questions:

- if the Lebesgue integral (1.2) converges,
 \[K_t^H(a) = \chi_t^H(a)\]?
- how to characterize the process \(K_t^H(a)\) if the Lebesgue integral (1.2) diverges?

Clearly, the first question is positive by approximating. However, the second question is not obvious even if \(H = \frac{1}{2}\) and \(f\) is a special function. Thus, the question arises again:

- for which functions does the Lebesgue integral (1.2) diverge?

When \(H = \frac{1}{2}\), \(B_t^H\) coincides with the standard Brownian motion \(B\) and by the Engelbert-Schmidt zero-one law, the Lebesgue integral (1.2) diverges if \(F'' = f\) is not locally integrable, i.e.

\[
\int_{-M}^{M} |f(x - a)|dx = \infty
\]

for some \(M > 0\). Thus, when

\[
|f(x)| \geq C|x|^{-\alpha}
\]

for \(x \in \mathbb{R}\), the Lebesgue integral (1.2) diverges, where \(C > 0, \alpha \geq 1\). For some special functions \(F\), for examples,

\[
F''(x) = |x|^{-\gamma}\text{sign}(x)
\]

with \(1 \leq \gamma < \frac{3}{2}\), one studied the characterization and properties of the process \(K_t^\frac{1}{2}(a)\). Itô–McKean \cite{21} first considered the process \(K_t^\frac{1}{2}(a)\) and the Lebesgue integral (1.2) for \(F\) satisfying (1.3) with \(\gamma = 1\). For the process \(K_t^\frac{1}{2}(a)\) and the Lebesgue integral (1.2) driven by the function \(F\) satisfying (1.3), some systematic studies are due to Biane-Yor \cite{3}, Yamada \cite{29, 30, 31} and Yor \cite{35}, and some extensions and limit theorems are established by Bertoin \cite{3, 4}, Cherny \cite{7}, Csaki et al. \cite{9, 10}, Csaki-Hu \cite{20}, Hu \cite{20}, Fitzsimmons-Getoor \cite{14, 15}, Mansuy-Yor \cite{23}, Yor \cite{37} and the references therein. However, those researches apply only to Markov process, and for non-Markov processes there has only been little investigation on the integral functional. See Eddahbi-Vives \cite{13}, Gradinaru et al. \cite{17}, Yan \cite{32} and Yan-Zhang \cite{35}.

When \(H \neq \frac{1}{2}\) the second and third questions above are not trivial. The main difficulty consists in the fact that the stochastic integral

\[
\int_0^t F'(B_s^H - a)\delta B_s^H
\]

is a Skorohod integral with respect to the fBm and the integrand is not smooth. Therefore, its control is not obvious and one needs sharp estimates. The \(L_2\) norm of this stochastic Skorohod integral involves the Malliavin derivatives of the integrand and tedious estimation on the joint density of the fBm. Moreover, for a nonsmooth function \(f\) it is not easy to give an exact calculus of the moment of order 2 for the Skorohod integral (1.4) even if the simple functions \(F'(x) = \log |x|\) and \(F''(x) = |x|^{-\alpha}\text{sign}(x)\) with \(\alpha > 0\). But, when \(H = \frac{1}{2}\), the integral (1.4) is Itô’s integral and its existence is obvious. On the other hand, it is unclear whether the Engelbert-Schmidt zero-one law actually holds for fBm \(B_t^H\). Thus, it seems interesting to study the process \(K_t^H(a)\) and the Skorohod integral (1.4) with the singular integrand for \(H \neq \frac{1}{2}\). In this paper, as a start reviewing the object and continued to Yan \cite{32}, we consider the integrals

\[
\int_0^t \frac{ds^{2H}}{B_s^H - a}, \quad a \in \mathbb{R}
\]
and the processes

\[C_t^H(a) := 2 \left(F(B_t^H-a) - F(-a) - \int_0^t F'(B_s^H-a) \delta B_s^H \right), \quad a \in \mathbb{R} \]

with \(t \geq 0 \), where the integral in \(\text{1.6} \) is the Skorohod integral and \(F(x) = x \log|x| - x \). In the present paper we will consider the functional and discuss some related questions. We will divide the discussion as two parts since the research methods of the case \(\frac{1}{2} < H < 1 \) is essentially different with the case \(0 < H < \frac{1}{2} \). In Section 6 we study the case \(0 < H < \frac{1}{2} \) and the case \(\frac{1}{2} < H < 1 \) is considered in Section 3. Section 4 and Section 5.

This paper is organized as follows. In Section 2 we present some preliminaries for fBm. In Section 3 we consider the existence of \(C_t^H(a) \) for \(\frac{1}{2} < H < 1 \). In fact, by smoothness approximating one can prove the existence of the Skorohod integral

\[\int_0^t \log |B_s^H-a| \delta B_s^H, \]

however, it is not easy to give the exact estimates of the moments. To give the existence and exact estimates of the moments, we define the function

\[\Psi_{s,r,a,b}(x,y) := \varphi_{s,r}(x,y) - \varphi_{s,r}(x,b) \theta(1+b-y) \]

\[- \varphi_{s,r}(y,a) \theta(1+a-x) + \varphi_{s,r}(a,b) \theta(1+a-x) \theta(1+b-y) \]

with \(x, y, a, b \in \mathbb{R}, s, r > 0 \), where \(\theta(x) = 1_{\{x>0\}} \) and \(\varphi_{s,r}(x,y) \) is the density function of \((B_s^H, B_t^H))\), and show that the identity

\[\text{1.7} \]

\[E \left[G_1'(B_t^H-a) G_2'(B_t^H-b) \right] = \int_{\mathbb{R}^2} G_1'(x-a) G_2'(y-b) \Psi_{s,r,a,b}(x,y) dxdy \]

holds for all \(G_1, G_2 \in C^\infty(\mathbb{R}) \) with compact supports and \(G_1(1) = G_2(1) = 0 \). By using \(\text{1.7} \) we show that the integral \(\int_0^t F_t^+(B_s^H-a) \delta B_s^H \) exists and

\[E \left[\int_0^t F_t^+(B_s^H-a) \delta B_s^H \right]^2 = \int_0^t \int_0^t E \left[F_t^+(B_s^H-a) F_t^+(B_r^H-a) \right] \phi(s,r) dsdr \]

\[+ \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \phi(s,\xi) \phi(r,\eta) \int_0^\infty \Psi_{s,\xi,\eta}(x,y) \frac{dy}{(y-x)} \]

with \(\phi(s,r) = H(2H-1)|s-r|^{2H-2} \), where the integral \(\int_0^t F_t^+(B_s^H-a) \delta B_s^H \) is the Skorohod integral and

\[F_t^+(x) = \begin{cases} 0, & \text{if } x \leq 0, \\ x \log x - x, & \text{if } x > 0. \end{cases} \]

In Section 4 for \(\frac{1}{2} < H < 1 \) we show that the representation

\[\text{1.8} \]

\[C_t^H(a) = \lim_{\epsilon \downarrow 0} \int_0^t 1_{\{|B_s^H-a| \geq \epsilon\}} \frac{2H s^{2H-1} B_s^H - a}{B_s^H - a} ds, \quad a \in \mathbb{R}, t \geq 0 \]

holds in \(L^2(\Omega) \), which points out that \(a \mapsto \frac{1}{\pi} C_t^H(a) \) coincides with the Hilbert transform of the weighted local time

\[a \mapsto \mathcal{L}^H(a,t) = 2H \int_0^t \delta(B_s^H-a) s^{2H-1} ds \]

and the fractional version of Yamada’s formula

\[(B_t^H-a) \log |B_t^H-a| - (B_t^H-a) = -a \log |a| + a + \int_0^t \log |B_s^H-a| \delta B_s^H + \frac{1}{2} C_t^H(a) \]

holds. In section 5 we introduce the so-called occupation type formula

\[\text{1.9} \]

\[\int_{\mathbb{R}} C_t^H(a) g(a) da = 2H \pi \int_0^t (\mathcal{H} g)(B_s^H) s^{2H-1} ds \]
for all continuous function \(g \) with compact support and \(\frac{1}{2} < H < 1 \), where \(\mathcal{H} \) denotes Hilbert transform. In Section 6 we study the case \(0 < H < \frac{1}{2} \) by using the generalized quadratic covariation introduced in Yan et al [33].

2. Preliminaries

2.1. Cauchy principal value. It is known that the Cauchy principal value, named after Augustin Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. Depending on the type of singularity in the integrand \(f \), the Cauchy principal value is defined as one of the following:

\[
\lim_{\epsilon \downarrow 0} \left(\int_{a}^{c-\epsilon} f(x)dx + \int_{c+\epsilon}^{b} f(x)dx \right) = \lim_{\epsilon \downarrow 0} \int_{a}^{b} 1_{\{|c-x| \geq \epsilon\}} f(x),
\]

where \(c \in (a,b) \) is a unique point such that \(\int_{a}^{b} f(x)dx = \infty \).

The limiting operation given in (2.1) is called the (Cauchy) principal value of the divergent integral \(\int_{a}^{b} f(x)dx \) and the limiting process displayed in (2.1) is denoted as

\[\text{v.p.} \int f(x)dx.\]

The notation v.p. (valeur principale) is seen in European writings. We have, as an example,

\[\text{v.p.} \int_{a}^{b} \frac{dx}{c-x} = \log \frac{c-a}{b-c}\]

for all \(a < c < b \). Moreover, for a Borel function \(\varphi : \mathbb{R}_+ \rightarrow \mathbb{R} \) with

\[
\int_{a}^{a+1} \frac{\varphi(x) - \varphi(a)}{x-a} dx + \int_{a+1}^{\infty} \frac{\varphi(x)}{x-a} dx < \infty,
\]

we can define the Cauchy’s principal value

\[\text{v.p.} \int_{a}^{\infty} \frac{\varphi(x)}{x-a} dx : = \int_{a}^{a+1} \frac{\varphi(x) - \varphi(a)}{x-a} dx + \int_{a+1}^{\infty} \frac{\varphi(x)}{x-a} dx\]

\[= \lim_{\epsilon \downarrow 0} \left(\int_{a+\epsilon}^{\infty} \frac{\varphi(x)}{x-a} dx + \varphi(a) \log \epsilon \right).\]

Recall that the Hilbert transform \(\mathcal{H} f \) of \(f \in L^2(\mathbb{R}) \) is defined as follows

\[
\mathcal{H} f(a) := \frac{1}{\pi} \lim_{\epsilon \downarrow 0} \int_{\mathbb{R}} 1_{\{|x-a| \geq \epsilon\}} \frac{f(x)dx}{x-a} = \frac{1}{\pi} \text{v.p.} \int_{\mathbb{R}} \frac{f(x)dx}{x-a} \equiv \frac{1}{\pi} \text{v.p.} \frac{1}{\pi} * f(x),
\]

where \(* \) denotes the convolution in the theory of distributions, which plays an important role in real and complex analysis. It is also important to note that \(\mathcal{H} f \) belongs to \(L^2 \) and

\[
\int_{\mathbb{R}} (\mathcal{H} f(x))^2 dx = \int_{\mathbb{R}} f^2(x)dx
\]

holds, and moreover, if \(f \) is a Hölder continuous function with compact support, then the limit in (2.2) exists for every \(x \in \mathbb{R} \). For more aspects on these material we refer to King [22].
2.2. Fractional Brownian motion. In this subsection, we briefly recall some basic definitions and results of fBm. For more aspects on these material we refer to Alós et al. [1], Biagini et al [3], Decreusefond-Üstünel [1], Hu [13], Mishura [21], Nourdin [23], Nualart [26] and the references therein. Throughout this paper we assume that $0 < H < 1$ is arbitrary but fixed and we let $B^H = \{B_t^H, 0 \leq t \leq T\}$ be a one-dimensional fBm with Hurst index H defined on $(\Omega, \mathcal{F}^H, \mathbb{P})$.

Let \mathcal{H} be the completion of the linear space \mathcal{E} generated by the indicator functions $1_{[0,t]}$, $t \in [0,T]$ with respect to the inner product

$$\langle 1_{[0,t]}, 1_{[0,t]} \rangle_{\mathcal{H}} = \frac{1}{2} \left[t^{2H} + s^{2H} - |t - s|^{2H} \right].$$

The application $\varphi \in \mathcal{E} \to B^H(\varphi)$ is an isometry from \mathcal{E} to the Gaussian space generated by B^H and it can be extended to \mathcal{H}. When $\frac{1}{2} < H < 1$ the Hilbert space \mathcal{H} can be written as

$$\mathcal{H} = \{ \varphi : [0,T] \to \mathbb{R} \mid \|\varphi\|_{\mathcal{H}} < \infty \},$$

where

$$\|\varphi\|_{\mathcal{H}}^2 := \int_0^T \int_0^T \varphi(s)\varphi(r)\phi(s,r)dsdr$$

with $\phi(s,r) = H(2H - 1)|s - r|^{2H - 2}$. Notice that the elements of the Hilbert space \mathcal{H} may not be functions but distributions of negative order (see, for instance, Pipiras-Taqqu [27]). Denote by \mathcal{S} the set of smooth functionals of the form

$$F = f(B^H(\varphi_1), B^H(\varphi_2), \ldots, B^H(\varphi_n)),$$

where $f \in C^\infty_b(\mathbb{R}^n)$ (f and all its derivatives are bounded) and $\varphi_i \in \mathcal{H}$. The derivative operator D^H (the Malliavin derivative) of a functional F of the form (2.3) is defined as

$$D^H F = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(B^H(\varphi_1), B^H(\varphi_2), \ldots, B^H(\varphi_n)) \varphi_j.$$

The derivative operator D^H is then a closable operator from $L^2(\Omega)$ into $L^2(\Omega; \mathcal{H})$. We denote by $\mathbb{D}^{1,2}$ the closure of \mathcal{S} with respect to the norm

$$\|F\|_{1,2} := \sqrt{E|F|^2 + E\|D^H F\|_{\mathcal{H}}^2}.$$}

The divergence integral δ^H is the adjoint of derivative operator D^H. That is, we say that a random variable u in $L^2(\Omega; \mathcal{H})$ belongs to the domain of the divergence operator δ^H, denoted by Dom(δ^H), if

$$E \left| (D^H F, u)_{\mathcal{H}} \right| \leq c\|F\|_{L^2(\Omega)}$$

for every $F \in \mathcal{S}$. In this case $\delta^H(u)$ is defined by the duality relationship

$$E \left[F \delta^H(u) \right] = E\langle D^H F, u \rangle_{\mathcal{H}}$$

for any $u \in \mathbb{D}^{1,2}$. We have $\mathbb{D}^{1,2} \subset$ Dom(δ^H), and when $\frac{1}{2} < H < 1$ we have

$$\left| \delta^H(u) \right|^2 = E\|u\|_{\mathcal{H}}^2 + E \int_{[0,T]^4} D^H_{\xi} u_r D^H_{\eta} u_s \phi(\eta, r, s)dsdrd\xi d\eta$$

for any $u \in \mathbb{D}^{1,2}$. By the duality between D^H and δ^H one have that the following result for the convergence of divergence integrals which is given in Nualart [26].

Proposition 2.1. Let $\{u_n, n = 1, 2, \ldots\} \subset$ Dom(δ^H) such that $u_n \to u$ in $L^2(\Omega; \mathbb{H})$ for some $u \in L^2(\Omega; \mathbb{H})$. If that there exists $U \in L^2(\Omega)$ such that

$$\delta^H(u_n) \to U$$

in $L^2(\Omega; \mathbb{H})$, as $n \to \infty$. Then, u belongs to Dom(δ^H) and $\delta^H(u) = U$.

We will use the notation
\[\delta^H(u) = \int_0^T u_s \delta B_s^H \]
to express the Skorohod integral of a process \(u \), and the indefinite Skorohod integral is defined as \(\int_0^t u_s \delta B_s^H = \delta^H(u_{1[0,t]}) \). Recall the Itô type formula for fBm \(B^H \),
\[f(B_t^H) = f(0) + \int_0^t f'(B^H_s) \delta B^H_s + H \int_0^t f''(B^H_s) s^{2H-1} ds \]
for any \(f \in C^2(\mathbb{R}) \). Also recall that \(B^H \) has a local time \(\mathcal{L}^H(x,t) \) continuous in \((x,t) \in \mathbb{R} \times [0,\infty) \) which satisfies the occupation formula (see Geman-Horowitz \(\cite{16} \))
\begin{equation}
\int_0^t \Phi(B^H_s) ds = \int_\mathbb{R} \Phi(x) \mathcal{L}^H(x,t) dx
\end{equation}
for every nonnegative bounded function \(\Phi \) on \(\mathbb{R} \), and such that
\[\mathcal{L}^H(x,t) = \int_0^t \delta(B^H_s - x) ds = \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \lambda(s \in [0,t], |B^H_s - x| < \epsilon), \]
where \(\lambda \) denotes Lebesgue measure and \(\delta(x) \) is the Dirac delta function. It is well-known that the local time \(\mathcal{L}^H(x,t) \) has Hölder continuous paths of order \(\gamma \in (0,1-H) \) in time, and of order \(\kappa \in (0, \frac{1-H}{2}) \) in the space variable, provided \(H \geq \frac{1}{3} \). Define the so-called weighted local time \(\mathcal{L}_c^H(x,t) \) of \(B^H \) at \(x \) as follows
\[\mathcal{L}_c^H(x,t) = 2H \int_0^t s^{2H-1} \mathcal{L}^H(x,s) ds \equiv 2H \int_0^t \delta(B^H_s - x)s^{2H-1} ds. \]
The Hölder continuity properties of \(\mathcal{L}^H(x,t) \) can be transferred to the weighted local time \(\mathcal{L}_c^H(x,t) \), and then \(\mathcal{L}_c^H \) has a compact support in \(x \), and the following Tanaka formula holds (see Coutin et al \(\cite{8} \) and Hu et al \(\cite{18} \)):
\begin{equation}
(B^H_t - x)^- = (-x)^- - \int_0^t 1_{\{B^H_s < x\}} \delta B^H_s + \frac{1}{2} \mathcal{L}^H(x,t).
\end{equation}
At the end of this section we will establish some technical estimates associated with fractional Brownian motion. For simplicity we let \(C \) stand for a positive constant depending only on the subscripts and its value may be different in different appearance, and this assumption is also adaptable to \(c \).

Lemma 2.1. For all \(r,s \in [0,T], \ s \geq r \) and \(0 < H < 1 \) we have
\begin{equation}
\frac{1}{2}(2 - 2^H)r^{2H}(s-r)^{2H} \leq s^{2H}r^{2H} - \mu_{s,r}^2 \leq 2r^{2H}(s-r)^{2H},
\end{equation}
where \(\mu_{s,r} = E(B^H_s B^H_r) \).

By the local nondeterminacy of fBm we can prove the lemma (Yan et al \(\cite{34} \)), and Yan et al \(\cite{33} \) gave an elementary proof by using the inequality
\begin{equation}
(1 + x)^\alpha \leq 1 + (2^\alpha - 1)x^\alpha
\end{equation}
with \(0 \leq x, \alpha \leq 1 \). It is important to note that inequality \(\eqref{2.9} \) is stronger than the well known (Bernoulli) inequality
\[(1 + x)^\alpha \leq 1 + \alpha x^\alpha \leq 1 + x^\alpha, \]
because \(2^\alpha - 1 \leq \alpha \) for all \(0 \leq \alpha \leq 1 \).

Lemma 2.2. For all \(s > r > 0 \) and \(\frac{1}{2} < H < 1 \) we have
\begin{equation}
c_H(s-r)^{rs^{2H-2}} \leq \mu - r^{2H} \leq C_H(s-r)^{rs^{2H-2}}
\end{equation}
and
\begin{equation}
c_H(s-r)^{rs^{2H-1}} \leq s^{2H} - \mu \leq C_H(s-r)^{rs^{2H-1}}
\end{equation}
where \(\mu_{s,r} = E(B^H_t B^H_r) \).

Proof. For the inequalities (2.11) we have

\[
\mu - r^{2H} = \frac{1}{2} (s^{2H} - r^{2H} - (s - r)^{2H}) = \frac{1}{2} s^{2H} (1 - x^{2H} - (1 - x)^{2H})
\]

with \(x = \frac{r}{s} \). By the continuity of the functions

\[
f_1(x) = \frac{1 - x^{2H} - (1 - x)^{2H}}{x(1 - x)}, \quad f_2(x) = \frac{x(1 - x)}{1 - x^{2H} - (1 - x)^{2H}}
\]

for \(x \in (0, 1) \) and \(\lim_{x \to 0} f_i(x) = \lim_{x \to 1} f_i(x) = 2H \) for \(i = 1, 2 \), we see that there exists a constant \(C > 0 \) such that

\[
\frac{1}{C} x(1 - x) \leq 1 - x^{2H} - (1 - x)^{2H} \leq C x(1 - x)
\]

for all \(x \in [0, 1] \), which gives the inequalities (2.11). The inequalities (2.11) is clear. \(\square \)

3. The existence of \(C^H(a) \)

Beside on the smooth approximation one can prove the existence of \(C^H \). In order to use the smooth approximation, we define the function \((x, y) \mapsto \Psi_{s,r,a,b}(x, y) \) on \(\mathbb{R}^2 \) by

\[
\Psi_{s,r,a,b}(x, y) := \varphi_{s,r}(x, y) - \varphi_{s,r}(x, b) \theta(1 + b - y) - \varphi_{s,r}(a, y) \theta(1 + a - x) + \varphi_{s,r}(a, b) \theta(1 + a - x) \theta(1 + b - y)
\]

with \(s, r > 0 \) and \(a, b \in \mathbb{R} \), where \(\theta(x) = \mathbbm{1}_{\{x > 0\}} \) and \(\varphi_{s,r}(x, y) \) denotes the density function of \((B^H_t, B^H_r) \). That is,

\[
\varphi_{s,r}(x, y) = \frac{1}{2 \pi \rho_{s,r}} \exp \left\{ -\frac{1}{2 \rho_{s,r}^2} \left(r^{2H} x^2 - 2 \mu_{s,r} x y + s^{2H} y^2 \right) \right\},
\]

where \(\mu_{s,r} = E(B^H_t B^H_r) \) and \(\rho_{s,r}^2 = (rs)^{2H} - \mu_{s,r}^2 \). Denote the density function of \(B^H_t \) by \(\varphi_s(x) \). The following Lemmas give some properties and estimates of \(\Psi_{s,r,a,b}(x, y) \). The first lemma is a simple calculus exercise.

Lemma 3.1. Let \(G_i \in C^\infty(\mathbb{R}) \) have compact supports for \(i = 1, 2 \). Then we have

\[
\int_{\mathbb{R}^2} G'_1(x - a)G_2(y - b)\varphi_{s,r}(x, y)dxdy
\]

\[
= \int_{\mathbb{R}^2} G'_1(x - a)G_2(y - b)\Psi_{s,r,a,b}(x, y)dxdy
\]

\[
- G_2(1) \int_{\mathbb{R}} G_1(x - a) \frac{\partial}{\partial x} \varphi_{s,r}(x, b)dx
\]

\[
- G_1(1) \int_{\mathbb{R}} G_2(y - b) \frac{\partial}{\partial y} \varphi_{s,r}(a, y)dy - \varphi_{s,r}(a, b)G_1(1)G_2(1)
\]

for all \(r, s > 0 \) and \(a, b \in \mathbb{R} \), and moreover, if \(G_i(1) = 0 \) for \(i = 1, 2 \), we then have

\[
\int_{\mathbb{R}^2} G'_1(x - a)G_2(y - b)\varphi_{s,r}(x, y)dxdy = \int_{\mathbb{R}^2} G'_1(x - a)G_2(y - b)\Psi_{s,r,a,b}(x, y)dxdy
\]

for all \(r, s > 0 \) and \(a, b \in \mathbb{R} \).

Lemma 3.2. For any \(x, y, z \in \mathbb{R} \) and \(\beta \in [0, 1] \) we have

\[
|\varphi_{s,r}(x, y) - \varphi_{s,r}(z, y)| \leq \frac{r^{\beta H}}{\rho_{s,r}^{1+\beta}} |x - z|^\beta e^{-\frac{y^2}{2 \pi \rho_{s,r}^2}}
\]
and
\[
\varphi_{s,r}(x,y) - \varphi_{s,r}(x,z) \leq \frac{s^2H}{\rho_{s,r}} |y-z|^\beta e^{-\frac{s}{2\pi r^2} y^2}.
\]

Proof. We have
\[
\|\varphi_{s,r}(x,y) - \varphi_{s,r}(x,z)\| \leq \frac{1}{2\pi \rho_{s,r}} \left| e^{-\frac{1}{2\rho_{s,r}} (r^2H x^2 - 2\mu_{s,r} xy + s^2H y^2)} - e^{-\frac{1}{2\rho_{s,r}} (r^2H z^2 - 2\mu_{s,r} zy + s^2H y^2)} \right| \beta
\]
for all \(\beta \in [0,1] \). It follows from Mean Value Theorem that
\[
|\varphi_{s,r}(x,y) - \varphi_{s,r}(z,y)|
\leq \frac{1}{2\pi \rho_{s,r}} \left| e^{-\frac{1}{2\rho_{s,r}} (r^2H x^2 - 2\mu_{s,r} xy + s^2H y^2)} - e^{-\frac{1}{2\rho_{s,r}} (r^2H z^2 - 2\mu_{s,r} zy + s^2H y^2)} \right| \beta
\]
for some \(\xi \) between \(z \) and \(x \). Combining this with the fact \(|x|e^{-x^2} \leq 1\), we get
\[
|\varphi_{s,r}(x,y) - \varphi_{s,r}(z,y)| \leq \frac{1}{2\pi \rho_{s,r}} |x-z|^\beta e^{-\frac{s}{2\pi r^2} y^2}
\]
for all \(\beta \in [0,1] \). Similarly, one can obtain the estimate (3.5). \(\square \)

Lemma 3.3. The estimate
\[
\Lambda_1(s,r,a,b) := \int_a^\infty \int_b^\infty |\Psi_{s,r,a,b}(x,y)| dx dy \leq \frac{C_{H,T,\beta}s^\beta H/2}{r(1+\beta)(s-r)(1+\beta)H}
\]
holds for all \(\beta \in (0,1), 0 < r < s \leq T \) and \(a, b \in \mathbb{R} \).

Proof. We have
\[
\Lambda_1(s,r,a,b) = \int_a^{\frac{a+1}{1+\beta}} \int_b^{\frac{b+1}{1+\beta}} \frac{1}{(x-a)(y-b)} |\Psi_{s,r,a,b}(x,y)| dx dy
\]
and
\[
\leq \int_a^{\frac{a+1}{1+\beta}} dx \int_b^{\frac{b+1}{1+\beta}} \frac{1}{(x-a)(y-b)} \Big| \varphi_{s,r}(x,y) - \varphi_{s,r}(x,b) - \varphi_{s,r}(x,a) + \varphi_{s,r}(a,b) \Big| dy
\]
\[
+ \int_a^{\frac{a+1}{1+\beta}} dx \int_b^\infty \frac{1}{(x-a)(y-b)} \Big| \varphi_{s,r}(x,y) - \varphi_{s,r}(x,b) \Big| dy
\]
\[
+ \int_a^\infty dx \int_b^{\frac{b+1}{1+\beta}} \frac{1}{(x-a)(y-b)} \Big| \varphi_{s,r}(x,y) - \varphi_{s,r}(a,y) \Big| dy
\]
\[
+ \int_a^\infty dx \int_b^\infty \frac{1}{(x-a)(y-b)} \varphi_{s,r}(x,y) dy = \Lambda_{11}(s,r,a,b) + \Lambda_{12}(s,r,a,b) + \Lambda_{13}(s,r,a,b) + \Lambda_{14}(s,r,a,b).
\]
Clearly, $\Lambda_{14}(s, r, a, b) \leq 1$ and we have

$$
\Lambda_{12}(s, r, a, b) + \Lambda_{13}(s, r, a, b) \leq \frac{2^{\beta H}}{\rho_{s, r}} \int_a^{a+1} dx \int_b^{b+1} dy \frac{1}{(x-a)(y-b)^{1-\beta}} e^{-\frac{\beta}{2\pi} y^2} dy \\
+ \frac{2^{\beta H}}{\rho_{s, r}} \int_a^{a+1} dx \int_b^{b+1} dy \frac{1}{(x-a)^{1-\beta}(y-b)} e^{-\frac{\beta}{2\pi} y^2} dy \\
\leq C_{H, \beta} \frac{8(1+\beta)H}{r(1+\beta)(s-r)(1+\beta)H}
$$

and $a, b \in \mathbb{R}$ by Lemma 3.2 with $\beta \in (0, 1)$ and Lemma 2.1. In order to estimate $\Lambda_{11}(s, r, a, b)$, by Lemma 3.2 we have

$$(3.7) \quad |\varphi_{s, r}(x, y) - \varphi_{s, r}(x, b) - \varphi_{s, r}(a, y) + \varphi_{s, r}(a, b)| \leq 2 \frac{s^H}{\rho_{s, r}} |y - b|^\beta$$

and

$$(3.8) \quad |\varphi_{s, r}(x, y) - \varphi_{s, r}(x, b) - \varphi_{s, r}(a, y) + \varphi_{s, r}(a, b)| \leq 2 \frac{r^H}{\rho_{s, r}} |x - a|^\beta$$

for all $a, b, x, y \in \mathbb{R}$, which give

$$(3.9) \quad |\varphi_{s, r}(x, y) - \varphi_{s, r}(x, b) - \varphi_{s, r}(a, y) + \varphi_{s, r}(a, b)| \leq 2 \frac{(s r)^{\beta H/2}}{\rho_{s, r}} |(x-a)(y-b)|^{\beta/2}.$$

It follows from Lemma 2.1 that

$$\Lambda_{11}(s, r, a, b) = \int_a^{a+1} dx \int_b^{b+1} dy |\varphi_{s, r}(x, y) - \varphi_{s, r}(x, b) - \varphi_{s, r}(a, y) + \varphi_{s, r}(a, b)|$$

$$\leq 2 \frac{sr^{\beta H/2}}{\rho_{s, r}} \int_a^{a+1} dx \int_b^{b+1} dy \frac{1}{(x-a)^{1-\beta}(y-b)^{1-\beta}} dy$$

$$\leq C_{H, \beta} \frac{8\beta H/2}{r(2+\beta)H/2(s-r)(1+\beta)H}$$

for all $\beta \in (0, 1)$ and $a, b \in \mathbb{R}$. This completes the proof.

The next proposition shows the process

$$(3.10) \quad C_{t+}^H(a) := 2 \left(F_+(B_t^H - a) - F_+(-a) - \int_0^t F_+^r(B_s^H - a) \delta B_s^H \right)$$

exists in $L^2(\Omega)$, where

$$(3.11) \quad F_+(x) = \begin{cases} 0, & \text{if } x \leq 0, \\ x \log x - x, & \text{if } x > 0. \end{cases}$$

Proposition 3.1. Let the function F_+ be given as above. Then the random variable

$$(3.12) \quad \int_0^t F_+^r(B_s^H - a) \delta B_s^H$$

exists and

$$E \left| \int_0^t F_+^r(B_s^H - a) \delta B_s^H \right|^2 = \int_0^t \int_0^t E[F_+^r(B_s^H - a)F_+^r(B_r^H - a)] \phi(s, r) ds dr$$

$$+ \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \phi(s, \eta) \phi(r, \xi) \int_a^{\infty} \int_a^{\infty} \Psi_{s, r, \alpha, \beta}(x, y) dx dy$$

for all $t \geq 0$ and $a \in \mathbb{R}$.
By smooth approximation we can obtain the statement. Define the function \(\zeta \) on \(\mathbb{R} \) by

\[
\zeta(x) := \begin{cases}
 ce^{-(x-1)^2/2}, & x \in (0, 2), \\
 0, & \text{otherwise},
\end{cases}
\]

where \(c \) is a normalizing constant such that \(\int_{\mathbb{R}} \zeta(x) \, dx = 1 \). Define the mollifiers

\[
\zeta_n(x) := n \zeta(nx), \quad n = 2, \ldots
\]

and the sequence of smooth functions

\[
G_n(x) := \int_{\mathbb{R}} F'_+(y) \zeta_n(x-y) \, dy = n \int_{x-\frac{2}{n}}^{x} F'_+(y) \zeta(n(x-y)) \, dy
\]

\[
= \int_{0}^{2} F'_+(x - \frac{y}{n}) \zeta(y) \, dy, \quad n = 2, \ldots.
\]

Then \(G_n \in C^\infty(\mathbb{R}) \) with compact support for all \(n \geq 2 \).

Lemma 3.4. Let the functions \(G_n, n \geq 2 \) be defined as above. Then we have

\[
|G_n(x)| \leq \psi_1(x) := \begin{cases}
 0, & \text{if } x \leq 0, \\
 C(1 + |\log x|), & \text{if } x > 0
\end{cases}
\]

for all \(x \in \mathbb{R} \), and

\[
G_n(x) \to F'_+(x)
\]

for all \(x \neq 0 \), as \(n \) tends to infinity.

Proof. Clearly, \(G_n(x) = 0 \) for \(x \leq 0 \) and

\[
G_n(x) = n \int_{(x-\frac{2}{n}) \vee 0}^{x} \zeta(n(x-y)) \log y \, dy
\]

for \(x > 0 \).

When \(0 < x \leq \frac{2}{n} \), we have

\[
|G_n(x)| \leq n \int_{0}^{x} \zeta(n(x-y)) |\log y| \, dy \leq -n \int_{0}^{x} \log y \, dy = nx(1 - \log x) \leq 2(1 - \log x).
\]

On the other hand, by (3.17) we get

\[
G_n(x) = n \int_{0}^{2} \zeta(z) \log(x - \frac{z}{n}) \, dz = \int_{0}^{2} \zeta(z) \log[1 - \frac{z}{nx}] \, dz
\]

\[
= \log x \int_{0}^{2} \zeta(z) \, dz + \int_{0}^{2} \zeta(z) \log(1 - \frac{z}{nx}) \, dz
\]

\[
= \log x + \int_{0}^{2} \zeta(z) \log(1 - \frac{z}{nx}) \, dz
\]

for \(x > \frac{2}{n} \), which gives

\[
|G_n(x)| \leq C \left(1 + |\log x| \right)
\]

for \(x > \frac{2}{n} \) since

\[
\int_{0}^{2} |\log(1 - \frac{z}{u})|e^{-\frac{1}{1-(1-z)^2}} \, dz < \infty
\]

with \(u > 2 \).
Finally, the convergence (3.18) follows from \(G_n(x) = F'_n(x) = 0 \) for \(x < 0 \) and the next estimate:

\[
|G_n(x) - F'_n(x)| \leq \alpha^{-1} \int_0^2 \zeta(y) \left| F'_n(x - \frac{y}{n}) - F'_n(x) \right| dy
\]

\[
= \alpha^{-1} \int_0^2 \left| \log(x - \frac{y}{n}) - \log x \right| \zeta(y) dy
\]

\[
\leq \alpha^{-1} \int_0^2 \log \left(1 + \frac{y}{nx - y} \right) \zeta(y) dy
\]

\[
\leq \alpha \log \left(1 + \frac{2}{nx - 2} \right) \int_0^2 \zeta(y) dy = \frac{1}{\alpha} \log \left(1 + \frac{2}{nx - 2} \right)
\]

for all \(x > \frac{2}{n} \). This completes the proof. \(\square \)

Lemma 3.5. Let the functions \(G_n, n \geq 2 \) be defined as above. Then we have

\[
|G'_n(x)| \leq \psi_2(x) := \begin{cases} 0, & \text{if } x \leq 0, \\ C x^{-1} (1 + |\log x|), & \text{if } x > 0 \end{cases}
\]

for any \(x \in \mathbb{R} \), and

\[
(3.20) \quad G'_n(x) \to F''_n(x)
\]

for all \(x \neq 0 \), as \(n \) tends to infinity.

Proof. Clearly, \(G'_n(x) = 0 \) for \(x \leq 0 \), and we have for \(x > \frac{2}{n} \),

\[
G'_n(x) = \int_0^2 F''_n(x - \frac{y}{n}) \zeta(y) dy = \int_0^2 \zeta(y) \frac{1}{x - \frac{2}{n}} dy
\]

\[
= \int_0^2 \zeta(y) \frac{n}{nx - y} dy = \frac{1}{x} \int_0^2 \zeta(y) \left(1 + \frac{y}{nx - y} \right) dy
\]

by (3.16). It follows that

\[
|G'_n(x)| \leq \frac{1}{x} \int_0^2 \zeta(y) \left(1 + \frac{y}{2 - y} \right) dy \leq \frac{C}{x}
\]

for \(x > \frac{2}{n} \). On the other hand, for \(0 < x \leq \frac{2}{n} \) we have

\[
G'_n(x) = n \int_{\mathbb{R}} F'_n(y) \frac{\partial}{\partial x} \zeta(n(x - y)) dy
\]

\[
= -2n^2 \int_{x - \frac{2}{n}}^{x} \frac{1 - n(x - y)}{(1 - (1 - n(x - y))^2) x^2} \zeta(n(x - y)) F'_n(y) dy.
\]

Combining this with the fact

\[
x^2 e^{-x} \leq 2 \quad (x \geq 0)
\]

lead to

\[
|G'_n(x)| \leq 4n^2 \int_0^x |F'_n(y)||1 - n(x - y)| dy \leq 8n^2 \int_0^x |F'_n(y)| dy
\]

\[
= -8n^2 \int_0^x \log y dy = 8n^2 x (1 - \log x) \leq \frac{32}{x} (1 - \log x)
\]

for \(0 < x \leq \frac{2}{n} \), which gives the estimates of \(G'_n(x) \) with \(0 < x \leq \frac{2}{n} \).

Finally, by the estimate

\[
\int_0^2 \zeta(y) \left(1 + \frac{y}{nx - y} \right) dy \leq \int_0^2 \zeta(y) \left(1 + \frac{y}{2 - y} \right) dy < \infty
\]
for all $x > \frac{2}{n}$ and Lebesgue’s dominated convergence theorem we have

$$\lim_{u \to \infty} \int_0^2 \zeta(y) \left(1 + \frac{y}{u - y}\right) dy = 1.$$

Combining this with (3.21), we get the convergence (3.20) since $G'_n(x) = F'_r(x) = 0$ for all $x < 0$. This completes the proof. \qed

Lemma 3.6. Let ψ_2 be defined in Lemma 3.4. Then the estimate

$$\int_a^\infty \int_b^\infty \psi_2(x - a)\psi_2(y - b)|\Psi_{s,r,a,b}(x,y)|dx dy \leq \frac{C_{H, t, s} \gamma^{H/2}}{r(1+\gamma)(s-r)(1+\gamma)H}$$

holds for all $\gamma \in (0, 1), 0 < r < s \leq t$ and $a, b \in \mathbb{R}$.

Proof. Similar to Lemma 3.3 one can obtain the estimate since

$$|\log x| \leq C(x^{-\beta} + x^{\beta})$$

for all $x > 0$ and all $0 < \beta < 1$. \qed

Lemma 3.7. Let ψ_1 be defined in Lemma 3.4. Then we have

$$\int_{\mathbb{R}} \psi_1(x - a) \left|\frac{\partial}{\partial x} \varphi_{s,r}(x, a)\right| dx \leq C_{H, t, \alpha}(s-r)^{-(1+\alpha)H}r^{-(1+\alpha)H}$$

and

$$\int_{\mathbb{R}} \psi_1(y - a) \left|\frac{\partial}{\partial y} \varphi_{s,r}(a, y)\right| dy \leq C_{H, t, \alpha}(s-r)^{-(1+\alpha)H}r^{-(1+2\alpha)H}$$

for all $a \in \mathbb{R}, 0 < r < s \leq t$ and $1 - H < \alpha < 1$.

Proof. Given $a \in \mathbb{R}$ and $0 < r < s \leq t$. Make the substitution $\frac{rH}{\rho}(x - \frac{rH}{\rho}a) = y$. Then

$$\int_a^\infty \left|\log(x - a)\right| \left|\frac{\partial}{\partial x} \varphi_{s,r}(x, a)\right| dx$$

$$= \frac{rH}{\rho} \int_a^\infty \left|\log(x - a)\right| \left|\frac{rH}{\rho} \left(x - \frac{rH}{\rho}a\right)\right| \varphi_{s,r}(x, a) dx$$

$$\leq \frac{1}{2\pi \rho} \left(\int_{\frac{rH}{\rho}a}^{\infty} \left|\log \left(y + \frac{\mu - r^{2H}}{rH - a}\right)\right| |y| e^{-\frac{y^2}{2}} dy + \frac{\mu - r^{2H}}{rH - a} \int_{-\frac{rH}{\rho}a}^{\infty} \left|\log \left(y + \frac{\mu - r^{2H}}{rH - a}\right)\right| |y| e^{-\frac{y^2}{2}} dy\right)$$

$$\equiv \frac{1}{\rho} \left(\Delta_1(s, r, a) + \Delta_2(s, r, a)\right).$$

By Lemma 2.21 and the fact $|\log x| \leq x + x^{-\alpha}$ for all $x > 0$ and $\alpha \in (0, 1)$ we see that

$$\Delta_1(s, r, a) \leq \left(\frac{\rho}{rH}\right)^{-\alpha} + \frac{\rho}{rH} \int_{\frac{rH}{\rho}a}^{\infty} |y| e^{-\frac{y^2}{2}} dy \leq \frac{r^{H\alpha}}{\rho^\alpha} + \frac{\rho}{rH} \leq \frac{C_{H, t, \alpha}}{(s-r)^{H\alpha}}$$

and

$$\Delta_2(s, r, a) \leq \left(\frac{\rho}{rH}\right)^{-\alpha} + \frac{\rho}{rH} \int_{-\frac{rH}{\rho}a}^{\infty} |y| e^{-\frac{y^2}{2}} dy \leq \frac{r^{H\alpha}}{\rho^\alpha} + \frac{\rho}{rH} \leq \frac{C_{H, t, \alpha}}{(s-r)^{H\alpha}}.$$
\[\Delta_2(s, r, a) \leq e^{-\frac{a^2}{2\pi}} \int_{-\infty}^{\infty} \left(y + \frac{\mu - r2H}{\rho r} a \right) |y| e^{-\frac{1}{2}y^2} dy + e^{-\frac{a^2}{2\pi}} \int_{-\infty}^{\infty} \left(y + \frac{\mu - r2H}{\rho r} a \right) \alpha^{-1} |y| e^{-\frac{1}{2}y^2} dy \\
\equiv \Delta_{21}(s, r, a) + \Delta_{22}(s, r, a). \]

Now, let us estimate \(\Delta_{21}(s, r, a) \) and \(\Delta_{22}(s, r, a) \). We have

\[\Delta_{21}(s, r, a) \leq \int_{-\infty}^{\infty} |y| e^{-\frac{1}{2}y^2} dy + \left| \frac{a}{r} \right| e^{-\frac{1}{2}y^2} \int_{-\infty}^{\infty} \left(\frac{\mu - r2H}{\rho r} \right) \int_{-\infty}^{\infty} |y| e^{-\frac{1}{2}y^2} dy \]

by the fact \(|y| e^{-\frac{1}{2}y^2} \leq 1 \). On the other hand, we have also

\[\Delta_{22}(s, r, a) 1_{\{a \geq 0\}} \leq e^{-\frac{a^2}{2\pi}} \left(\int_{-\infty}^{0} \left(y + \frac{\mu - r2H}{\rho r} a \right)^{\alpha} |y| e^{-\frac{1}{2}y^2} dy + \int_{0}^{\infty} y^{\alpha+1} |e^{-\frac{1}{2}y^2} dy \right) 1_{\{a \geq 0\}} \]

\[\leq \frac{1}{\alpha} e^{-\frac{a^2}{2\pi}} \left(\frac{\mu - r2H}{\rho r} \alpha \right) 1_{\{a \geq 0\}} + C_\alpha 1_{\{a \geq 0\}} \]

and

\[\Delta_{22}(s, r, a) 1_{\{a < 0\}} \leq 1_{\{a < 0\}} \int_{-\infty}^{\infty} \left(y + \frac{\mu - r2H}{\rho r} a \right)^{\alpha-1} |y| e^{-\frac{1}{2}y^2} dy dy + 1_{\{a < 0\}} \int_{-\infty}^{\infty} \left(\frac{\mu - r2H}{\rho r} \right)^{\alpha-1} |y| e^{-\frac{1}{2}y^2} dy dy \]

\[\leq \alpha^{-1} \left(\frac{\mu - r2H}{\rho r} \right)^{\alpha} 1_{\{a < 0\}} + \frac{(\mu - r2H)^{\alpha-1}}{(\rho r)^{\alpha-1}} 1_{\{a < 0\}} \]

by the fact \(|y|^{\alpha} e^{-\frac{1}{2}y^2} \leq 1 \) with \(0 \leq \alpha \leq 1 \). It follows from Lemma 2.1 and Lemma 2.2 that

\[\Delta_2(s, r, a) = \Delta_{21}(s, r, a) + \Delta_{22}(s, r, a) \]

\[\leq C_\alpha \left(1 + \frac{\mu - r2H}{\rho} + \frac{(\mu - r2H)^{\alpha}}{\rho^\alpha} + \frac{(\mu - r2H)^{\alpha-1}}{(\rho r)^{\alpha-1}} \right) \]

\[\leq C_{H, a, t}(s - r)^{-(1-H)(1-\alpha)} r^{-\alpha H} \]
for all $0 < r < s \leq t$. Combining this with Lemma 2.1 we have

\[
\int_{\mathbb{R}} \psi_1(x-a) \left| \frac{\partial}{\partial x} \varphi_{s,r}(x,a) \right| dx = \int_{\mathbb{R}} \left| \frac{\partial}{\partial x} \varphi_{s,r}(x,a) \right| dx + \int_{a}^{\infty} \left| \log(x-a) \right| \left| \frac{\partial}{\partial x} \varphi_{s,r}(x,a) \right| dx \\
\leq \frac{CH_{a,t}}{\rho} (1 + \Delta_1(s,r,a) + \Delta_2(s,r,a)) \\
\leq \frac{CH_{a,t}}{\rho} \left(1 + (s-r)^{-(1-H)(1-a)} \right) \\
\leq C_{H,a,t} (s-r)^{-(1+a)H}
\]

for all $0 < r < s \leq t$ and $1 - H < a \leq 1$. Similarly, we can obtain the estimate (3.23). \qed}

Now, we can prove Proposition 3.1.

\textbf{Proof of Proposition 3.1.} Let $G_n, n \geq 2$ be defined in (3.16). Then

\[E \left| G_n(B^H_s - a) - F'_n(B^H_s - a) \right|^2 \longrightarrow 0 \quad (n \to \infty) \]

for all $s \geq 0$ and $a \in \mathbb{R}$ by Lemma 3.4, Lebesgue’s dominated convergence theorem and the next estimate:

(3.24) \[E[\psi_1(B^H_s - a)^2] = \int_{a}^{\infty} (1 + |\log(x-a)|)^2 \varphi_s(x) \, dx < \infty \]

for all $s \geq 0$ and $a \in \mathbb{R}$. Thus, it is sufficient to show that the sequence

\[Y^H_t(n) := \int_{0}^{t} G_n(B^H_s - a) \delta B^H_s, \quad n \geq 2 \]

is a Cauchy sequence in $L^2(\Omega)$. Denote $\tilde{G}_{n,m} = G_n - G_m$ for all $n, m \geq 2$. Then $Y^H_t(n)$ is a Cauchy sequence in $L^2(\Omega)$ if and only if

\[E \left| Y^H_t(n) - Y^H_t(m) \right|^2 = E \left| \int_{0}^{t} \tilde{G}_{n,m}(B^H_s - a) \delta B^H_s \right|^2 \\
= \int_{0}^{t} \int_{0}^{t} E\tilde{G}_{n,m}(B^H_s - a)\tilde{G}_{n,m}(B^H_r - a)\phi(s,r)drds \\
+ \int_{0}^{t} ds \int_{0}^{s} d\xi \int_{0}^{t} dr \int_{0}^{r} d\eta \phi(s,\eta)\phi(r,\xi) \\
\cdot E \left[\tilde{G}_{n,m}(B^H_s - a)\tilde{G}_{n,m}(B^H_r - a) \right] \\
\equiv \Lambda_{n,m}(1) + \Lambda_{n,m}(2) \longrightarrow 0 \]

as $n, m \to \infty$.

On the one hand, we have

\[|\tilde{G}_{n,m}(x)| \leq C\psi_1(x) \quad (x \in \mathbb{R}) \]

and $\tilde{G}_{n,m}(x) \to 0$ for all $x \in \mathbb{R}$, as n, m tends to infinity, by Lemma 3.4. Accrediting with the estimate

\[\Lambda_2(s,r,a,a) := \int_{0}^{t} \int_{0}^{t} E[\psi_1(B^H_s - a)\psi_1(B^H_r - a)]\phi(s,r)drds \\
= \int_{0}^{t} \int_{0}^{t} \phi(s,r)drds \int_{a}^{\infty} \int_{a}^{\infty} (1 + |\log(x-a)|) \\
\cdot (1 + |\log(y-a)|)\varphi_{s,r}(x,y) \, dxdy < \infty \]
and Lebesgue’s dominated convergence theorem, we give the convergence

\[(3.26) \quad \Lambda_{n,m}(1) = \int_0^t \int_0^t \phi(s,r) dr ds \int_{\mathbb{R}^2} \tilde{G}_{n,m}(x-a) \tilde{G}_{n,m}(y-a) \varphi_s,r(x,y) dx dy \rightarrow 0\]

for \(a \in \mathbb{R}\), as \(n, m\) tend to infinity.

On the other hand, by Lemma 3.1 we have

\[(3.27) \quad \Lambda_{n,m}(2) = \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \phi(s,\eta) \phi(r,\xi) \]

\[\cdot \int_{\mathbb{R}^2} \tilde{G}_{n,m}'(x-a) \tilde{G}_{n,m}'(y-a) \Psi_{s,r,a,a}(x,y) dx dy + \int_0^t ds \int_0^t dr \int_0^s d\xi \int_0^r d\eta \phi(s,\eta) \phi(r,\xi) \Theta_{n,m}(s,r,a,a)\]

for all \(n, m, t \geq 0 \) and \(a \in \mathbb{R}\), where

\[\Theta_{n,m}(s,r,a,b) = -\tilde{G}_{n,m}(1) \int_{\mathbb{R}} \tilde{G}_{n,m}(x-a) \frac{\partial}{\partial x} \varphi_{s,r}(x,b) dx \]

\[-\tilde{G}_{n,m}(1) \int_{\mathbb{R}} \tilde{G}_{n,m}(y-b) \frac{\partial}{\partial y} \varphi_{s,r}(a,y) dy - \varphi_{s,r}(a,b) \left(\tilde{G}_{n,m}(1)\right)^2.\]

Noting that

\[\int_0^r |s - \xi|^{2H - 2} d\xi = \frac{1}{2H - 1} \left(s^{2H - 1} + |s - r|^{2H - 1} \text{sign}(r - s)\right),\]

we get

\[(3.28) \quad \int_0^s d\xi \int_0^r |r - \xi|^{2H - 2} |s - \eta|^{2H - 2} d\eta \leq \frac{2}{(2H - 1)^2} r^{2H - 1} s^{2H - 1}.\]

It follows from Lemma 3.4 and Lemma 3.7 with \(1 - H < \alpha < \frac{1-H}{H} \) that

\[\int_0^t ds \int_0^t dr \int_0^s d\xi \int_0^r d\eta \phi(s,\eta) \phi(r,\xi) |\Theta_{n,m}(s,r,a,a)|\]

\[\leq C_{H,t} \tilde{G}_{n,m}(1) \int_0^t ds \int_0^t dr \int_0^s d\xi \int_0^r d\eta \frac{\phi(s,\eta) \phi(r,\xi)}{|s - r|^{H(1+\alpha)(1+\alpha)}|s \wedge r|^{(1+\alpha)H}}\]

\[+ C_{H,t} \tilde{G}_{n,m}(1) \int_0^t ds \int_0^t dr \int_0^s d\xi \int_0^r d\eta \frac{\phi(s,\eta) \phi(r,\xi)}{|s - r|^{H(1+\alpha)}|s \wedge r|^{(1+2\alpha)H}}\]

\[+ \left(\tilde{G}_{n,m}(1)\right)^2 \int_0^t ds \int_0^t dr \int_0^s d\xi \int_0^r d\eta \phi(s,\eta) \phi(r,\xi) \frac{1}{\rho} \rightarrow 0 \quad (n, m \rightarrow \infty)\]

for all \(t \geq 0\) and \(a \in \mathbb{R}\). Moreover, (3.28) and Lemma 3.6 imply that

\[(3.30) \quad \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \phi(s,\eta) \phi(r,\xi) \]

\[\cdot \int_{\mathbb{R}^2} \psi_2(x-a) \psi_2(y-a) \Psi_{s,r,a,a}(x,y) dx dy < \infty\]

for all \(t \geq 0\) and \(a \in \mathbb{R}\). Combining this with (3.27), (3.29), Lemma 3.5 and Lebesgue’s dominated convergence theorem that the convergence, we have

\[\Lambda_{n,m}(2) \rightarrow 0,\]
as \(n, m \) tend to infinity. Thus, we have showed that \(Y_t^H(n), n = 1, 2, \ldots \) is a Cauchy sequence in \(L^2(\Omega) \) and the process

\[
\lim_{n \to \infty} \int_0^t G_n(B_s^H - a) \delta B_s^H = \int_0^t F'_+(B_s^H - a) \delta B_s^H, \quad t \geq 0
\]

exists in \(L^2(\Omega) \).

Denote

\[
\tilde{\Theta}_n(s, r, a, b) := -G_n(1) \int_{\mathbb{R}} G_n(x - a) \frac{\partial}{\partial x} \varphi_{s,r}(x, b) \, dx
\]

\[
- G_n(1) \int_{\mathbb{R}} G_n(y - b) \frac{\partial}{\partial y} \varphi_{s,r}(a, y) \, dy - \varphi_{s,r}(a, b) G_n(1) G_n(1)
\]

for all \(a, b \in \mathbb{R} \) and \(0 < r < s \). Then, for all \(t \geq 0 \) and \(a \in \mathbb{R} \) we have

\[
E \left| \int_0^t G_n(B_s^H - a) \delta B_s^H \right|^2 = \int_0^t \int_0^t E G_n(B_s^H - a) G_n(B_r^H - a) \phi(s, r) \, dr \, ds
\]

\[
+ \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta(\phi(s, \eta) \phi(r, \xi) - \varphi_{s,r}(a, b) G_n(1) G_n(1)) \Omega_n(s, r, a, a)
\]

\[
= \int_0^t \int_0^t E G_n(B_s^H - a) G_n(B_r^H - a) \phi(s, r) \, dr \, ds
\]

\[
+ \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \varphi_{s,r}(a, b) G_n(1) G_n(1) \Omega_n(s, r, a, a)
\]

by Lemma 3.2. Notice that

\[
\int_0^t ds \int_0^s d\xi \int_0^r d\eta \varphi_{s,r}(a, b) G_n(1) G_n(1) \Omega_n(s, r, a, a) \to 0,
\]

as \(n \) tends to infinity, by Lemma 3.4, Lemma 3.7 and 3.28. We introduce the identity (3.13) by taking the limit in \(L^2(\Omega) \) and the proposition follows.

Finally, by considering the function on \(\mathbb{R}^2 \)

\[
\tilde{\Psi}_{s,r,a,b}(x, y) := \varphi_{s,r}(x, y) - \varphi_{s,r}(x, b) \theta(y - 1 - b)
\]

\[
- \varphi_{s,r}(a, y) \theta(x - 1 - a) + \varphi_{s,r}(a, b) \theta(x - 1 - a) \theta(y - 1 - b)
\]

with \(s, r > 0 \) and \(a, b \in \mathbb{R} \), and in a same way as proof of Proposition 3.1, we can show that the integral

\[
\int_0^t F'_-(B_s^H - a) \delta B_s^H, \quad t \geq 0
\]

and the process

\[
C_t^{-H}(a) := 2 \left(F_-(B^H_t - a) - F_-(a) - \int_0^t F'_-(B_s^H - a) \delta B_s^H \right), \quad t \geq 0
\]

exist in \(L^2(\Omega) \) for all \(a \in \mathbb{R} \), where

\[
F_-(x) = \begin{cases} 0, & \text{if } x \geq 0, \\ x \log(-x) - x, & \text{if } x < 0. \end{cases}
\]
Proposition 3.2. For all $a \in \mathbb{R}$ the integral

\begin{equation}
X_t^H(a) := \int_0^t \log |B^H_s - a| \delta B^H_s,
\end{equation}

and

\begin{equation}
E \left| \int_0^t \log |B^H_s - a| \delta B^H_s \right|^2 = \int_0^t \int_0^t E[\log |B^H_s - a| \log |B^H_t - a|] \phi(s, r) ds dr
\end{equation}

\begin{equation}
+ \int_0^t ds \int_0^s d\xi \int_0^r dr \int_0^\infty d\eta \phi(s, \eta) \phi(r, \xi) \int_{\mathbb{R}^2} \frac{\Psi_{s, r, a, a}(x, y) dxdy}{(x - a)(y - a)}
\end{equation}

for all $t \geq 0$ and $a \in \mathbb{R}$ and the process

\begin{equation}
C_t^H(a) := 2 \left(F(B_t^H - a) - F(-a) - \int_0^t \log |B^H_s - a| \delta B^H_s \right), \ t \geq 0
\end{equation}

are well defined, where $F(x) = x \log |x| - x$

Proof. Clearly, $F'(x) = \log |x|$, and the proposition follows from $F' = F'_+ + F'_-$.

\[\Box\]

4. A REPRESENTATION OF THE FUNCTIONAL $C^H(a)$

In this section we will consider the representation of the functionals $C^{+, H}(a), C^{-, H}(a)$ and $C^H(a)$, which point out that $\frac{1}{\pi} C^H_t(\cdot)$ is the Hilbert transform of weighted local time $\mathcal{L}^H(\cdot, t)$.

Lemma 4.1. For any $0 < \varepsilon < 1$, $0 < r < s \leq t$ and $\beta \in (0, 1)$ we have

\begin{equation}
A_3(s, r, a) := \int_a^{a+\varepsilon} \int_a^{a+\varepsilon} \left(\log (x - a) - \left(\frac{1}{\varepsilon} \log \varepsilon \right)(x - a) \right)
\end{equation}

\begin{equation}
\cdot \left(\log (y - a) - \left(\frac{1}{\varepsilon} \log \varepsilon \right)(y - a) \right) \varphi_{s, r}(x, y) dxdy
\end{equation}

\begin{equation}
\leq C_H(sr)^{-H/2} \varepsilon^H
\end{equation}

and

\begin{equation}
A_4(s, r, a) := \int_a^{a+\varepsilon} \int_a^{a+\varepsilon} \left(\frac{1}{x - a} - \frac{1}{\varepsilon} \log \varepsilon \right) \left(\frac{1}{y - a} - \frac{1}{\varepsilon} \log \varepsilon \right) |\Psi_{s, r, a, a}(x, y)| dxdy
\end{equation}

\begin{equation}
\leq C_{H, t, \beta} \frac{s^{\beta H/2}}{r^{(1+\frac{\beta}{2})H}(s-r)^{(1+\beta)H}} \varepsilon^\beta (1 + \log^2 \varepsilon).
\end{equation}

Proof. The estimate 4.1 is clear. In order to prove 4.2, we have

\begin{equation}
\int_a^{a+\varepsilon} \int_a^{a+\varepsilon} \left(\frac{1}{x - a} - \frac{1}{\varepsilon} \log \varepsilon \right) \left(\frac{1}{y - a} - \frac{1}{\varepsilon} \log \varepsilon \right)
\cdot [(x - a)(y - a)]^{\beta/2} dxdy \leq C_\beta \varepsilon^\beta (1 + \log^2 \varepsilon)
\end{equation}

for all $\beta \in (0, 1)$, which gives

\begin{equation}
\int_a^{a+\varepsilon} \int_a^{a+\varepsilon} \left(\frac{1}{x - a} - \frac{1}{\varepsilon} \log \varepsilon \right) \left(\frac{1}{y - a} - \frac{1}{\varepsilon} \log \varepsilon \right) |\Psi_{s, r, a, a}(x, y)| dxdy
\end{equation}

\begin{equation}
= \int_a^{a+\varepsilon} \int_a^{a+\varepsilon} \left(\frac{1}{x - a} - \frac{1}{\varepsilon} \log \varepsilon \right) \left(\frac{1}{y - a} - \frac{1}{\varepsilon} \log \varepsilon \right)
\cdot |\varphi_{s, r}(x, y) - \varphi_{s, r}(x, b) - \varphi_{s, r}(a, y) + \varphi_{s, r}(a, b)| dxdy
\end{equation}

\begin{equation}
\leq C_{H, t, \beta} \frac{s^{\beta H/2}}{r^{(1+\frac{\beta}{2})H}(s-r)^{(1+\beta)H}} \varepsilon^\beta (1 + \log^2 \varepsilon)
\end{equation}

by (3.3) and Lemma 2.1 This completes the proof.

\[\Box\]
Lemma 4.2. Let $\frac{1}{2} < H < 1$ and $M > 0$. We then have

\begin{equation}
E \left| \mathcal{L}^H(b,t) - \mathcal{L}^H(a,t) \right|^2 \leq C_{H,a,t,M} |b - a|^\alpha
\end{equation}

for all $0 < \alpha < \frac{1}{2H}$, $t \geq 0$ and $a,b \in [-M,M]$.

The lemma is a direct consequence of Hölder continuity of $x \mapsto \mathcal{L}^H(x,t)$. Here, we shall use other method to prove it.

Proof of Lemma 4.2. Without loss of generality we may assume that $0 < a < b$. Define the function $f_{a,b}(x) = 1_{(a,b]}(x)$ and denote

\[\tilde{B}_t^H(x) := \int_0^t \mathbf{1}_{\{B_s^H > x\}} \delta B_s^H \]

and

\[\psi_t(x) := (B_t^H - x)^+ - (-x)^+ \]

for all $x \in \mathbb{R}$. Then the function $x \mapsto \psi_t(x)$ is Lipschitz continuous with Lipschitz constant 2, and we have

\[|\psi_t(x) - \psi_t(y)| \leq 2|x - y| \]

for all $x,y \in \mathbb{R}$ and

\[\mathcal{L}^H(x,t) = 2 \left(\psi_t(x) - \tilde{B}_t^H(x) \right) \]

by Tanaka formula, which deduces

\[E \left| \mathcal{L}^H(b,t) - \mathcal{L}^H(a,t) \right|^2 \leq 8(b - a)^2 + 4E \left| \tilde{B}_t^H(b) - \tilde{B}_t^H(a) \right|^2 \]

for all $t \geq 0$.

On the other hand, similar to the proof of (3.13) by approximating the function $f(x) = 1_{(a,b]}(x)$ by smooth functions we can obtain

\begin{align}
E \left(\tilde{B}_t^H(b) - \tilde{B}_t^H(a) \right)^2 &= E \left(\int_0^t f_{a,b}(B_s^H) \delta B_s^H \right)^2 \\
&= \int_0^t \int_0^t E \left[f_{a,b}(B_s^H) f_{a,b}(B_r^H) \right] \phi(s,r) ds dr \\
&\quad + \int_0^t ds \int_0^s dx \int_0^t dr \int_0^r d\eta \Lambda_5(s,r,a,b) \phi(s,\eta) \phi(r,\xi) \\
&= G_1(a,b) + G_2(a,b)
\end{align}

for all $\frac{1}{2} < H < 1$, where

\[\Lambda_5(s,r,a,b) = \varphi_{s,r}(a,a) - \varphi_{s,r}(a,b) - \varphi_{s,r}(b,a) + \varphi_{s,r}(b,b). \]

For the first term, we have

\[E \left[f_{a,b}(B_s^H) f_{a,b}(B_t^H) \right] = \int_a^b \int_a^b \frac{1}{2\pi \rho_{s,r}} \exp \left(-\frac{1}{2\rho_{s,r}^2} (r^{2H} x^2 - 2\mu_{s,r} x y + s^{2H} y^2) \right) dx dy \]

\[= \frac{1}{2\pi} \int_0^b dx \int_0^b \frac{e^{-\frac{1}{2} x^2}}{\rho_{s,r}} \int_0^{\frac{r^{2H} - \mu_{s,r} x}{\rho_{s,r}}} e^{-\frac{1}{2} y^2} dy \]

\[\leq \frac{1}{\sqrt{2\pi}} \int_0^b dx \int_0^b \frac{e^{-\frac{1}{2} x^2}}{\rho_{s,r}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{\frac{r^{2H} - \mu_{s,r} x}{\rho_{s,r}}} e^{-\frac{1}{2} y^2} dy \right)^{\beta} \]

\[\leq \left(\frac{r^H (b - a)}{\rho_{s,r}} \right)^{\beta} \int_0^{\frac{1}{r^H}} dx \int_0^b e^{-\frac{1}{2} x^2} dx \leq \frac{r^{(\alpha-1)H}}{\rho_{s,r}} (b - a)^{1+\beta}, \]
for all $s,r > 0$ and $\beta \in (0,1)$. It follows from Lemma 2.1 that

\begin{equation}
G_1(a,b) = \int_0^t \int_0^t E \left[f_{a,b}(B^H_s) f_{a,b}(B^H_r) \right] \phi(s,r) ds dr \\
\leq C_{H,\beta} t^{H(1-\beta)} (b-a)^{1+\beta}
\end{equation}

for all $\frac{1}{2} < H < 1$ and $0 \leq \beta < \frac{2H-1}{H}$.

For the second term, we have also by (3.8) and Lemma 2.1

\begin{equation}
G_2(a,b) = \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \Lambda_5(a,b,s,r) \phi(s,\eta) \phi(r,\xi) \\
\leq C_H (b-a)^{\alpha} \int_0^t \int_0^t \frac{(sr)^{2H-1-\alpha H}}{\rho_{s,r}} dr ds \leq C_{H,\alpha} (b-a)^{\alpha t^{H(2-\alpha)}}
\end{equation}

for all $0 < \alpha < \frac{1-H}{H}$, and the lemma follows.

\hfill \Box

The main object of this section is to prove the following theorem.

Theorem 4.1. The convergence

\begin{equation}
C_{t,H}^\varepsilon(a) = \lim_{\varepsilon \to 0} \left\{ \frac{1}{(\log \varepsilon)_2} \mathcal{L}^H(a,t) + \int_0^t 1_{\{B^H_s - a \geq \varepsilon \}} \frac{2H s^{2H-1}}{B^H_s - a} ds \right\}
\end{equation}

holds in $L^2(\Omega)$ for all $t \geq 0$.

Proof. Let $t \geq 0$ and $a \in \mathbb{R}$. We split the proof in three steps.

Step I. Define the function F_{ε} as follows

\[F_{\varepsilon}(x) = \begin{cases} 0, & x \leq 0, \\
\frac{1}{2\varepsilon} (x^2 \log \varepsilon), & 0 < x \leq \varepsilon, \\
\varepsilon - \frac{1}{2} (\varepsilon \log \varepsilon) + x \log x - x, & x > \varepsilon. \end{cases} \]

Then $F_{\varepsilon} \in C^1(\mathbb{R})$, and

\[F_{\varepsilon}'(x) = \begin{cases} 0, & x \leq 0, \\
\frac{1}{\varepsilon} (x \log \varepsilon), & 0 < x \leq \varepsilon, \\
\log x, & x > \varepsilon, \end{cases} \quad F_{\varepsilon}''(x) = \begin{cases} 0, & x < 0, \\
\frac{1}{\varepsilon}, & 0 < x < \varepsilon, \\
\frac{1}{x}, & x > \varepsilon. \end{cases} \]

for all $\varepsilon \in (0,1)$. We shall show that the Itô formula

\begin{equation}
F_{\varepsilon}(B^H_t - a) - F_{\varepsilon}(-a) - \int_0^t F_{\varepsilon}'(B^H_s - a) \delta B^H_s \\
= \frac{\log \varepsilon}{\varepsilon} \int_0^t 1_{\{0 \leq B^H_s - a \leq \varepsilon \}} H s^{2H-1} ds + \int_0^t 1_{\{B^H_s - a \geq \varepsilon \}} \frac{H s^{2H-1}}{B^H_s - a} ds
\end{equation}

holds for $\varepsilon \in (0,1)$. Define the sequence of smooth functions

\begin{equation}
f_{n,\varepsilon}(x) := \int_{\mathbb{R}} F_{\varepsilon}(x-y) \zeta_n(y) dy = \int_0^2 F_{\varepsilon}(x-\frac{y}{n}) \zeta(y) dy, \quad n = 1,2,\ldots
\end{equation}

for all $\varepsilon \in (0,1)$, where ζ is defined by (3.14) and $\zeta_n(x) = n \zeta(nx)$. Then $f_{n,\varepsilon} \in C^\infty(\mathbb{R})$ and

\[f_{n,\varepsilon}(B^H_t - a) = f_{n,\varepsilon}(-a) + \int_0^t f_{n,\varepsilon}'(B^H_s - a) \delta B^H_s + H \int_0^t f_{n,\varepsilon}''(B^H_s - a) s^{2H-1} ds \]

for all $n = 1,2,\ldots$. Notice that

\[f_{n,\varepsilon}(x) \to F_{\varepsilon}(x), \quad f_{n,\varepsilon}'(x) \to F_{\varepsilon}'(x) \]

as $n \to \infty$, uniformly in \mathbb{R}, and

\[|f_{n,\varepsilon}''(x)| \leq \frac{1}{\varepsilon} |\log \varepsilon|, \quad \forall x \in \mathbb{R}, \]
and \(f''_{n,\varepsilon}(x) \rightarrow F''_{\varepsilon}(x) \) pointwise (besides 0 and \(\varepsilon \)), as \(n \rightarrow \infty \) by Lebesgue’s dominated convergence theorem. We get

\[
\int_0^t f'_{n,\varepsilon}(B^H_s - a)\delta B^H_s = f_{n,\varepsilon}(B^H_t - a) - f_{n,\varepsilon}(-a) - H \int_0^t f''_{n,\varepsilon}(B^H_s - a)s^{2H-1}ds
\]

\[
\rightarrow F_{\varepsilon}(B^H_t - a) - F_{\varepsilon}(-a) - H \int_0^t F''_{\varepsilon}(B^H_s - a)s^{2H-1}ds \quad \text{in } L^2(\Omega)
\]

\[
= F_{\varepsilon}(B^H_t - a) - F_{\varepsilon}(-a) - H\varepsilon^{-1} \int_0^t 1_{\{0 < B^H_t - a < \varepsilon\}}s^{2H-1}ds \quad \text{a.s.},
\]

as \(n \rightarrow \infty \), which implies that Itô’s formula

\[
(4.9) \quad F_{\varepsilon}(B^H_t - a) = F_{\varepsilon}(-a) + \int_0^t F'_{\varepsilon}(B^H_s - a)\delta B^H_s + H \int_0^t F''_{\varepsilon}(B^H_s - a)s^{2H-1}ds
\]

holds for all \(\varepsilon \in (0, 1) \). This gives \((1.7) \).

Step II. We show that the limit

\[
(4.10) \quad \lim_{\varepsilon \downarrow 0} \left\{ F_{\varepsilon}(B^H_t - a) - F_{\varepsilon}(-a) - \int_0^t F'_{\varepsilon}(B^H_s - a)\delta B^H_s \right\}
\]

exists in \(L^2(\Omega) \), and is equal to

\[
\frac{1}{2} C^{+,H}_t(a) = F_+(B^H_t - a) - F_+(a) - \int_0^t F'_{+}(B^H_s - a)\delta B^H_s,
\]

where \(F_+ \) is given by \((3.11) \). We have

\[
E \left| \frac{1}{2} C^{+,H}_t(a) + F_{\varepsilon}(-a) - F_{\varepsilon}(B^H_t - a) + \int_0^t F'_{\varepsilon}(B^H_s - a)\delta B^H_s \right|^2
\]

\[
\leq 3E |F(B^H_t - a) - F_{\varepsilon}(B^H_t - a)|^2 + 3|F_{\varepsilon}(-a) - F_+(a)|^2
\]

\[
+ 3E \left| \int_0^t [F'(B^H_s - a) - F'_{\varepsilon}(B^H_s - a)]\delta B^H_s \right|^2.
\]

The first and second term of the right-hand side in \((4.11) \) tends to 0 as \(\varepsilon \rightarrow 0 \) because

\[
|F_+(x) - F_{\varepsilon}(x)| \leq \varepsilon - \frac{1}{2} \varepsilon \log \varepsilon
\]

for all \(\varepsilon \in (0, 1) \). To estimate the third term, we consider the approximation of the function \(F_{\varepsilon}' \) as follows

\[
\widehat{G}_{n,\varepsilon}(x) = \int_\mathbb{R} F_{\varepsilon}'(y)\zeta_n(x - y)dy, \quad n \geq 2
\]

for all \(\varepsilon \in (0, 1) \), where \(\zeta_n, n \geq 2 \) is given by \((5.15) \). Then \(G_{n,\varepsilon}, n \geq 2 \) are smooth functions with compact supports. Denote

\[
G_{n,\varepsilon}(x) := G_n(x) - \widehat{G}_{n,\varepsilon}(x)
\]

for \(x \in \mathbb{R} \), where \(G_n \) is defined by \((3.16) \). Similar to proofs of Lemma \((3.4) \) and Lemma \((3.5) \), we can obtain the next statements:

\[
|G_{n,\varepsilon}(x)| \leq C\psi_1(x), \quad |G'_{n,\varepsilon}(x)| \leq C\psi_2(x)
\]

for all \(x \in \mathbb{R}, \varepsilon \in (0, 1) \) and

\[
G_{n,\varepsilon}(x) \rightarrow F'_{+}(x) - F'_{\varepsilon}(x), \quad G'_{n,\varepsilon}(x) \rightarrow F''_{+}(x) - F''_{\varepsilon}(x) \quad (n \rightarrow \infty)
\]
for all \(x \neq 0 \) and \(\varepsilon \in (0, 1) \). Thus, in a same way as the proof of Proposition 3.1, we can obtain

\[
E \left| \int_0^t \left[F_{\varepsilon}'(B^H_s - a) - F_{\varepsilon}'(B^H_s - a) \right] \delta B^H_s \right|^2 \\
= \int_0^t \int_0^t \Lambda_3(s, r, a) \phi(s, r) ds dr + \int_0^t \int_0^t \frac{d \Lambda_4(s, r, a) \phi(s, \eta) \phi(r, \xi)}{dr} \int_0^r d\eta \Lambda_4(s, r, a) \phi(s, \eta) \phi(r, \xi) \\
= \int_0^t \int_0^t \Lambda_3(s, r, a) \phi(s, r) ds dr + \int_0^t \int_0^t (sr)^{2H-1} dr ds \Lambda_4(s, r, a) \phi(s, \eta) \phi(r, \xi) \\
\leq C_H(t^H + t^{2-(2+\beta)H}) \varepsilon^{3+H}(1 + \log^2 \varepsilon) \longrightarrow 0
\]

with \(0 < \beta < \frac{1-H}{H} \) by Lemma 3.1. It follows from the Itô formula (4.7) that

\[
C_t^{+H}(a) = 2 \lim_{\varepsilon \downarrow 0} \left\{ F_{\varepsilon}'(B^H_t - a) - F_{\varepsilon}'(-a) - \int_0^t F_{\varepsilon}'(B^H_s - a) \delta B^H_s \right\} \\
= \lim_{\varepsilon \downarrow 0} J_t^H(\varepsilon, a)
\]

in \(L^2(\Omega) \), where

\[
J_t^H(\varepsilon, a) = \frac{\log \varepsilon}{\varepsilon} \int_0^t \mathbb{1}_{\{0 \leq B^H_s - a \leq \varepsilon\}} 2H s^{2H-1} ds + \int_0^t \mathbb{1}_{\{B^H_s - a \geq \varepsilon\}} 2H s^{2H-1} ds.
\]

Step III. To end the proof, we decompose \(J_t^H(\varepsilon, a) \) as

\[
J_t^H(\varepsilon, a) = I_t(\varepsilon, a) + \left\{ \int_0^t \mathbb{1}_{\{B^H_s - a \geq \varepsilon\}} \frac{2H s^{2H-1}}{B^H_s - a} ds + (\log \varepsilon) \mathcal{L}^H(a, t) \right\},
\]

where

\[
I_t(\varepsilon, a) := \frac{\log \varepsilon}{\varepsilon} \int_0^t \mathbb{1}_{\{0 \leq B^H_s - a \leq \varepsilon\}} 2H s^{2H-1} ds - (\log \varepsilon) \mathcal{L}^H(a, t).
\]

According to Lemma 4.2 we get

\[
E[I_t(\varepsilon, a)]^2 : = (\log \varepsilon)^2 E \left| \frac{1}{\varepsilon} \int_0^t \mathbb{1}_{\{0 \leq B^H_s - a \leq \varepsilon\}} 2H s^{2H-1} ds - \mathcal{L}^H(a, t) \right|^2 \\
= (\log \varepsilon)^2 E \left| \frac{1}{\varepsilon} \int_0^\varepsilon \mathcal{L}^H(x + a, t) dx - \mathcal{L}^H(a, t) \right|^2 \\
\leq (\log \varepsilon)^2 \frac{1}{\varepsilon} \int_0^\varepsilon E[\mathcal{L}^H(x + a, t) - \mathcal{L}^H(a, t)]^2 dx \\
\leq C_{H, t, a} \varepsilon^\alpha (\log \varepsilon)^2 \longrightarrow 0 \quad (\varepsilon \rightarrow 0)
\]

for all \(0 < \alpha < \frac{1-H}{H} \) and \(t \geq 0 \), which shows that

\[
C_t^{+H}(a) = \lim_{\varepsilon \downarrow 0} \left\{ \int_0^t \mathbb{1}_{\{B^H_s - a \geq \varepsilon\}} \frac{2H s^{2H-1}}{B^H_s - a} ds + (\log \varepsilon) \mathcal{L}^H(a, t) \right\} \quad \text{in } L^2(\Omega)
\]

for all \(t \geq 0 \), and the theorem follows.

Theorem 4.2. The convergence

\[
C_t^H(a) = \lim_{\varepsilon \downarrow 0} \frac{1}{\varepsilon} \int_0^t 1_{\{B^H_s - a \geq \varepsilon\}} \frac{2H s^{2H-1}}{B^H_s - a} ds \equiv \text{v.p.} \int_0^t \frac{2H s^{2H-1}}{B^H_s - a} ds
\]

holds in \(L^2(\Omega) \).
Proof. In the same way as the proof of (4.6), we can show that the convergence

\[C_{t}^{-H} (a) = \lim_{\varepsilon \downarrow 0} \left\{ -(\log \varepsilon) \mathcal{L}^{H} (a, t) + \int_{0}^{t} 1_{\{B_{s}^{H} - a \leq -\varepsilon\}} \frac{2H s^{2H-1}}{B_{s}^{H}} ds \right\} \]

holds in $L^{2}(\Omega)$. Thus, (4.13) follows from $F = F_{\pm} + F_{-}$, where $F(x) = x \log |x| - x$. □

According to the occupation formula we get

\[C_{t}^{H} (a) = \lim_{\varepsilon \downarrow 0} \int_{0}^{t} 1_{\{|B_{s}^{H} - a| \geq \varepsilon\}} \frac{\mathcal{L}^{H} (x, t)}{x - a} dx \quad \text{in} \ L^{2}(\Omega) \]

(4.15)

\[= v.p. \int_{\mathbb{R}} \frac{\mathcal{L}^{H} (x, t)}{x - a} dx = \pi \left(\mathcal{H} \mathcal{L}^{H} (\cdot, t) \right) (a) \]

for all $t \geq 0$ and $a \in \mathbb{R}$. As two natural results we get the fractional version of Yamada’s formula

\[(B_{t}^{H} - a) \log |B_{t}^{H} - a| - (B_{t}^{H} - a)\]

\[= -a \log |a| + a + \int_{0}^{t} \log |B_{s}^{H} - a| \delta B_{s}^{H} + \frac{1}{2} v.p. \int_{\mathbb{R}} \frac{\mathcal{L}^{H} (x, t)}{x - a} dx \]

for all $t \geq 0$ and $a \in \mathbb{R}$, and

\[C_{t}^{H} (b) - C_{s}^{H} (a) \]

\[= \int_{0}^{\infty} \left[\mathcal{L}^{H} (b + x, t) - \mathcal{L}^{H} (b - x, t) - \mathcal{L}^{H} (a + x, s) + \mathcal{L}^{H} (a - x, s) \right] \frac{dx}{x} \]

for all $a, b \in \mathbb{R}$ and $s, t \geq 0$. Recall that the local time $\mathcal{L}^{H} (x, t)$ admits a compact support and it is Hölder continuous of order $\gamma \in (0, 1 - H)$ in time, and of order $\kappa \in (0, \frac{1-H}{2H})$ in the space variable (see Geman-Horowitz [16]). We see that the process $(a, t) \mapsto C_{t}^{H} (a)$ admits Hölder continuous paths. In particular, we have

Proposition 4.1. Let $\frac{1}{2} < H < 1$. For all $t' \geq t \geq 0$, we have

\[E \left[\left| C_{t'}^{H} - C_{t}^{H} \right|^{2} \right] \leq C (t' - t)^{2H_{0}}, \]

where

\[H_{0} = \begin{cases} H, & \text{if } \frac{1}{2} < H \leq \frac{2}{3}, \\ 1 - \frac{1}{2} H, & \text{if } \frac{2}{3} < H < 1. \end{cases} \]

Proof. Given $\varepsilon > 0$ and denote

\[C_{t}^{H, \varepsilon} = \int_{0}^{t} 1_{\{|B_{s}^{H}| > \varepsilon\}} \frac{ds^{2H}}{B_{s}^{H}} \]
for $t \geq 0$. We have

$$E \left[\mathbf{1}_{|B^H_t| > \varepsilon} \frac{1}{B^H_s B^H_r} \right] = \int_{\mathbb{R}^2} 1_{\{|x| > \varepsilon\}} 1_{\{|y| > \varepsilon\}} \frac{1}{xy} \varphi_{s,r}(x,y) dxdy$$

$$= \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} \frac{1}{xy} \varphi_{s,r}(x,y) dxdy + \int_{-\infty}^{\varepsilon} \int_{\varepsilon}^{\infty} \frac{1}{xy} \varphi_{s,r}(x,y) dxdy$$

$$+ \int_{\varepsilon}^{\infty} \int_{-\infty}^{-\varepsilon} \frac{1}{xy} \varphi_{s,r}(x,y) dxdy + \int_{-\infty}^{\varepsilon} \int_{-\infty}^{-\varepsilon} \frac{1}{xy} \varphi_{s,r}(x,y) dxdy$$

$$= \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} \frac{1}{xy} [\varphi_{s,r}(x,y) - \varphi_{s,r}(-x,y) - \varphi_{s,r}(x,-y) + \varphi_{s,r}(-x,-y)] dxdy$$

$$= 2 \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} \frac{1}{xy} [\varphi_{s,r}(x,y) - \varphi_{s,r}(-x,y)] dxdy$$

$$= 2 \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} \frac{1}{xy} \left(1 - e^{-\frac{2H}{\rho_{s,r}} \mu_{s,r} \xi y} \right) \varphi_{s,r}(x,y) dxdy$$

$$= 2 \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} \left(\int_{0}^{\rho_{s,r}^2} e^{-xy \xi} d\xi \right) \varphi_{s,r}(x,y) dxdy$$

$$= 2 \int_{0}^{\rho_{s,r}^2} d\xi \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} e^{-xy \xi} \varphi_{s,r}(x,y) dxdy$$

for all $s, t \geq 0$. An elementary calculus can show that

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy \xi} \varphi_{s,r}(x,y) dxdy$$

$$= \frac{1}{2\pi \rho_{s,r}} \int_{0}^{\infty} e^{-\frac{1}{2\pi \rho_{s,r}} (1+2\mu_{s,r} \xi - \rho_{s,r}^2 \xi^2)} dy \int_{0}^{\infty} e^{-\frac{2H}{\rho_{s,r}^2} \xi} \left(1 - e^{-\frac{1}{2\pi \rho_{s,r}} \mu_{s,r} \xi y} \right) dy$$

$$= \frac{1}{4\sqrt{1 + 2\mu_{s,r} \xi - \rho_{s,r}^2 \xi^2}}$$

for all $\xi > 0$, which implies that

$$E \left[\mathbf{1}_{|B^H_t| > \varepsilon} \frac{1}{B^H_s B^H_r} \right] = \int_{\mathbb{R}^2} 1_{\{|x| > \varepsilon\}} 1_{\{|y| > \varepsilon\}} \frac{1}{xy} \varphi_{s,r}(x,y) dxdy$$

$$\leq \int_{0}^{\rho_{s,r}^2} d\xi = \frac{1}{4\rho_{s,r}} \arcsin \frac{\mu_{s,r}}{\sqrt{\rho_{s,r}^2 + \mu_{s,r}^2}}$$

$$= \frac{1}{\rho_{s,r}} \arcsin \frac{\mu_{s,r}}{(2H)^2} \leq \frac{1}{\rho_{s,r}}$$

It follows that

$$E \left[|C_{t'}^{H,\varepsilon} - C_{t}^{H,\varepsilon}|^2 \right] \leq \int_{t}^{t'} \int_{t}^{t'} \frac{1}{\rho_{s,r}} ds \frac{1}{\rho_{s,r}} dr \frac{1}{2H} \leq \frac{C(t' - t)^{2H}}{2H}$$

for all $0 < t < t' < T$ and $\varepsilon > 0$. This shows that

$$E \left[|C_{t'}^{H} - C_{t}^{H}|^2 \right] \leq C(t' - t)^{2H}$$

and the proposition follows. \(\square \)

Remark 4.1. The above continuity results for the process $(x,t) \mapsto C^H(x,t) := C^H_t(x)$ are some reminders to us that we may consider the following integrals:

$$\int_{0}^{t} u_s dC^H_s, \quad \int_{\mathbb{R}} f(x) C^H(dx,t), \quad \int_{0}^{t} \int_{\mathbb{R}} f(x,s) C^H(dx,ds),$$
where \(u \) is an adapted process, and \((x,t) \mapsto f(x,t)\) and \(x \mapsto f(x)\) Borel functions on \(\mathbb{R} \times [0,T]\) and \(\mathbb{R}\), respectively. These will be considered in the other paper.

5. The occupation formula associated with \(\mathcal{C}^H(a)\)

From the previous sections we know that the process \((a,t) \mapsto \mathcal{C}^H_t(a)\) is Hölder continuous and in this section our main object is to expound and prove the next theorem which is an analogue of the occupation formula.

Theorem 5.1. Let \(\frac{1}{2} < H < 1\) and let \(g\) be a continuous function with compact support. We then have, almost surely,

\[
\int_{\mathbb{R}} \mathcal{C}^H_t(x)g(x)dx = 2H\pi \int_{0}^{t} (\mathcal{H}g)(B_s^H) s^{2H-1}ds
\]

and

\[
2H\pi \int_{0}^{t} f(B_s^H) s^{2H-1}ds = \int_{\mathbb{R}} \mathcal{C}^H_t(x)(\mathcal{H}^{-1} f)(x)dx
\]

for all \(t \geq 0\), where the operator \(\mathcal{H}^{-1}\) means the inverse transform of Hilbert transform \(\mathcal{H}\).

In order to prove the theorem we need some preliminaries.

Lemma 5.1. Let \(F(x) = x \log |x| - x\) and let \(g\) be a continuous function with compact support. Then the integral

\[
\int_{0}^{t} (F' \ast g)(B_s^H) \delta B_s^H
\]

evaluates in \(L^2(\Omega)\) for all \(t \geq 0\) and the process

\[
\mathcal{X}^g_t := (F \ast g)(B_t^H) - (F \ast g)(0) - \int_{0}^{t} (F' \ast g)(B_s^H) \delta B_s^H, \quad t \geq 0
\]

is well-defined.

Proof. From Lemma 3.1 it follows that

\[
E \left| \int_{0}^{t} (G \ast g)(B_s^H) \delta B_s^H \right|^2 = \int_{0}^{t} \int_{0}^{t} E \left[(G \ast g)(B_s^H)(G \ast g)(B_r^H) \right] \phi(s,r)dsdr
\]

\[
+ \int_{0}^{t} ds \int_{0}^{t} dr \int_{0}^{s} d\xi \int_{r}^{\xi} d\eta \phi(s,\eta)\phi(r,\xi) E \left[(G' \ast g)(B_s^H)(G' \ast g)(B_r^H) \right]
\]

\[
= \int_{0}^{t} \int_{0}^{t} \phi(s,r)dsdr \int_{\mathbb{R}^2} g(u)g(v)dudv \int_{\mathbb{R}^2} G(x-u)G(y-v)\varphi_{s,r}(x,y)dxdy
\]

\[
+ \int_{0}^{t} ds \int_{0}^{t} dr \int_{0}^{s} d\xi \int_{r}^{\xi} d\eta \phi(s,\eta)\phi(r,\xi)
\]

\[
\cdot \int_{\mathbb{R}^2} g(u)g(v)dudv \int_{\mathbb{R}^2} G'(x-u)G'(y-v)\Psi_{s,r,u,v}(x,y)dxdy
\]

\[
+ \int_{0}^{t} ds \int_{0}^{t} dr \int_{0}^{s} d\xi \int_{r}^{\xi} d\eta \phi(s,\eta)\phi(r,\xi) \int_{\mathbb{R}^2} g(u)g(v)\Lambda_7(s,r,u,v)dudv
\]

for all \(t > 0, u, v \in \mathbb{R}\), and all \(G \in C^\infty(\mathbb{R})\) with compact support, where

\[
\Lambda_7(s,r,u,v) = -G(1) \int_{\mathbb{R}} G(x-u) \frac{\partial}{\partial x} \varphi_{s,r}(x,v)dx
\]

\[
- G(1) \int_{\mathbb{R}} G(y-v) \frac{\partial}{\partial y} \varphi_{s,r}(u,y)dy - \varphi_{s,r}(u,v) G(1) G(1).
\]

Decompose \(F\) as

\[
F(x) = F_+(x) + F_-(x),
\]
where F_+ and F_- are given in Section 3. Clearly, we have
\[
\int_{\mathbb{R}^2} |g(u)g(v)|dudv \int_{\mathbb{R}^2} |F'_+(x-u)F'_+(y-v)|\varphi_{s,r}(x,y)dx dy
\]
\[
\leq \int_{\mathbb{R}^2} |g(u)g(v)|dudv \left(\int_{u}^{\infty} \log^2(x-u)\varphi_{s}(x)dx + \int_{v}^{\infty} \log^2(y-v)\varphi_{r}(y)dy \right)^{1/2}
\]
\[
\leq \int_{\mathbb{R}^2} |g(u)g(v)|dudv \left(s^{-H} + s^H + |u| \right)^{1/2} \left(r^{-H} + r^H + |v| \right)^{1/2}
\]
\[
\leq C_H \left(r^{-H} + s^H + 1 \right) \left(\int_{\mathbb{R}} |g(u)| \left(\sqrt{|u|} + 1 \right)du \right)^2,
\]
and
\[
\int_{\mathbb{R}^2} |g(u)g(v)|dudv \int_{u}^{\infty} dx \int_{v}^{\infty} \frac{|\Psi_{s,r,u,v}(x,y)|dy}{(x-u)(y-v)}
\]
\[
\leq C_{H,T,\beta} \frac{t}{r^{(1+\beta)H}(s-r)^{(1+\beta)H}} \int_{\mathbb{R}^2} |g(u)g(v)|dudv
\]
by Lemma 3.3. Thus, similar to the proof of Proposition 3.1, by approximating the function $F'_+(x)$ by smooth functions with compact support, we can show that the integral $\int_0^t (F'_+ * g)(B^H_s)\delta B^H_s$ exists in $L^2(\Omega)$ for all $t \geq 0$ and
\[
E \left| \int_0^t (F'_+ * g)(B^H_s)\delta B^H_s \right|^2 = \int_0^t \int_0^t dsdr \phi(s,r) \int_{\mathbb{R}^2} dudv g(u)g(v)
\]
\[
\cdot \int_{\mathbb{R}^2} F'_+(x-u)F'_+(y-v)\varphi_{s,r}(x,y)dx dy
\]
\[
+ \int_0^t ds \int_0^s d\xi \int_0^t dr \int_0^r d\eta \phi(s,\eta)\phi(r,\xi)
\]
\[
\cdot \int_{\mathbb{R}^2} g(u)g(v)dudv \int_{u}^{\infty} dx \int_{v}^{\infty} \frac{\Psi_{s,r,u,v}(x,y)dy}{(x-u)(y-v)}.
\]
Similarly, we can also show that the integral $\int_0^t (F'_- * g)(B^H_s)\delta B^H_s$ exists in $L^2(\Omega)$ for all $t \geq 0$, and the lemma follows since $F = F_+ + F_-$. \hfill \square

Lemma 5.2. Let $F(x) = x \log |x| - x$ and let g be a continuous function with compact support. Then
\[
(5.2) \quad \int_0^t \left(\int_{\mathbb{R}} F'(B^H_s - x)g(x)dx \right) \delta B^H_s = \int_{\mathbb{R}} \left(\int_0^t F'(B^H_s - x)\delta B^H_s \right) g(x)dx
\]
for all $0 \leq t \leq T$.

By using the divergence operator δ^H we can rewrite (5.2) as
\[
\delta^H (F' * g)(B^H) = \int_{\mathbb{R}} g(a)da \int_0^t F'(B^H - a)\delta B^H_s.
\]

Proof of Lemma 5.2. Clearly, we have
\[
F' * g = (F * g)', \quad (F * g)' = v.p. \frac{1}{x} * g.
\]
Moreover, the functional
\[
x \mapsto \int_0^t F'(B^H_s - x)\delta B^H_s
\]
is Borel measurable for every $t \geq 0$ and the right-hand side in (5.2) exists also in $L^2(\Omega)$ by Proposition 3.1.
Denote by \(X \) the process concerning the right hand in (5.2) and let
\[
 u_t = \int_{\mathbb{R}} F'(B_t^H - x)g(x)dx
\]
for \(t \geq 0 \). Then, the process \(X \) and \(u \) are measurable. Thus, it is enough to show that the following duality relationship holds:
\[
 E[U X_T] = E[\langle D^H U, u \rangle_{\mathcal{F}}]
\]
for all \(U \in \mathbb{D}^{1,2} \) by Lemma 5.1. This is clear. In fact, noting that
\[
 \int_{\mathbb{R}} \left(\int_0^T (D_s^H U) F'(B_s^H - x) \phi(s, r) d^s r \right) g(x) dx
 = \int_0^T \int_0^T (D_s^H U) \left(\int_{\mathbb{R}} F'(B_s^H - x) g(x) dx \right) \phi(s, r) d^s r, \quad \text{a.s.}
\]
for all \(U \in \mathbb{D}^{1,2} \), we have
\[
 E[U X_T] = E \left[U \int_{\mathbb{R}} \left(\int_0^T F'(B_s^H - x) \delta B_s^H \right) g(x) dx \right]
 = \int_{\mathbb{R}} E \left[U \int_0^T F'(B_s^H - x) \delta B_s^H \right] g(x) dx
 = \int_{\mathbb{R}} \left(E \langle D^H U, F'(B_s^H - x) \rangle_{\mathcal{F}} \right) g(x) dx
 = E \int_{\mathbb{R}} \left(\int_0^T (D_s^H U) F'(B_s^H - x) \phi(s, r) d^s r \right) g(x) dx
 = E \int_0^T \int_0^T (D_s^H U) \left(\int_{\mathbb{R}} F'(B_s^H - x) g(x) dx \right) \phi(s, r) d^s r = E[\langle D^H U, u \rangle_{\mathcal{F}}]
\]
for all \(U \in \mathbb{D}^{1,2} \), and the lemma follows. \(\square \)

Proof of Theorem 5.1. Let \(F(x) = x \log |x| - x \). Then second derivative \((F * g)'' = F'' * g \) exists in the sense of Schwartz’s distribution, and similar to Theorem 4.1 we have
\[
 \mathcal{X}_t^g = H \int_0^t \text{v.p.} \frac{1}{x} * g(B_s^H) s^{2H-1} ds
\]
for all \(t \geq 0 \), where \(\mathcal{C}^g \) is defined in Lemma 5.1. It follows from Lemma 5.2 that
\[
 \frac{1}{2} \int_{\mathbb{R}} C_t^H(x) g(x) dx = \int_{\mathbb{R}} \left(F(B_t^H - x) - F(-x) - \int_0^t F'(B_s^H - x) \delta B_s^{H} \right) g(x) dx
 = F * g(B_t^H) - F * g(0) - \int_0^t F' * g(B_s^H) \delta B_s^H
 = F * g(B_t^H) - F * g(0) - \int_0^t (F * g)'(B_s^H) \delta B_s^H
 = H \int_0^t \text{v.p.} \frac{1}{x} * g(B_s^H) s^{2H-1} ds
 = H \pi \int_0^t \mathcal{H}^g(B_s^H) s^{2H-1} ds
\]
for all \(t \geq 0 \). This completes the proof. \(\square \)

Corollary 5.1. Let \(\frac{1}{4} < H < 1 \) and let \(g, g_n \in L^2(\mathbb{R}) \) be continuous with compact supports. If \(g_n \to g \) in \(L^2(\mathbb{R}) \), as \(n \) tends to infinity, we then have
\[
 \lim_{n \to \infty} \int_{\mathbb{R}} C_t^H(x) g_n(x) dx = \int_{\mathbb{R}} C_t^H(x) g(x) dx
\]
for all $t \geq 0$, in the $L^2(\Omega)$.

Proof. The convergence follows from the identity
\[
\int_{\mathbb{R}} (g_n(x) - g(x))^2 \, dx = \int_{\mathbb{R}} (\mathcal{H} g_n(x) - \mathcal{H} g(x))^2 \, dx.
\]
and Theorem 5.1. \hfill \square

6. The case $0 < H < \frac{1}{2}$

In the final section we consider the process C^H with $0 < H < \frac{1}{2}$. Recall that for $0 < H < \frac{1}{2}$, Yan et al \cite[p. 33]{} obtained the generalized quadratic covariation of $f(B^H)$ and B^H defined by
\[
[f(B^H), B^H]_t^{(H)} := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^t \{ f(B_{s+\varepsilon}^H) - f(B_s^H) \} (B_{s+\varepsilon}^H - B_s^H) \, ds^2 H
\]
in probability, where f is a Borel function. In Yan et al \cite[p. 33]{} one constructed the Banach space $\mathcal{H} = L^2(\mathbb{R}, \mu(dx))$ with
\[
\mu(dx) = \left(\int_0^T e^{-\frac{2}{2\varepsilon^2} \frac{2H ds}{\sqrt{2\pi s^{1-H}}} } \right) \, dx
\]
and
\[
|f|^2_{\mathcal{H}} = \int_0^T \int_{\mathbb{R}} |f(x)|^2 e^{-\frac{2}{2\varepsilon^2} \frac{2H dx ds}{\sqrt{2\pi s^{1-H}}} } = E \left(\int_0^T |f(B_s^H)|^2 \, ds^2 H \right),
\]
such that the generalized quadratic covariation $[f(B^H), B^H]^{(H)}$ exists in $L^2(\Omega)$ and
\[
E \left| [f(B^H), B^H]_t^{(H)} \right|^2 \leq C\|f\|^2_{\mathcal{H}},
\]
provided $f \in \mathcal{H}$. Moreover, the Bouleau-Yor identity takes the form
\[
[f(B^H), B^H]_t^{(H)} = - \int_0^t f(x) \mathcal{L}^H(dx,t)
\]
for all $f \in \mathcal{H}$. By using the generalized quadratic covariation Yan et al \cite[p. 33]{} obtained the next Itô formula:
\[
F(B^H_t) = F(0) + \int_0^t f(B^H_s) \delta B^H_s + \frac{1}{2} [f(B^H), B^H]_t^{(H)}
\]
for all $0 < H < \frac{1}{2}$, where F is an absolutely continuous function such that $F' = f \in \mathcal{H}$ is left (right) continuous. It is important to note that the method used in Yan et al \cite[p. 33]{} is inefficacy for $\frac{1}{2} < H < 1$ in general and the similar results for $\frac{1}{2} < H < 1$ is unknown so far.

Corollary 6.1. Let $0 < H < \frac{1}{2}$ and let $F(x) = x \log |x| - x$. Then $F' \in \mathcal{H}$ and the Itô type formula
\[
F(B^H_t - a) = F(-a) + \int_0^t \log |B^H_s - a| \delta B^H_s + \frac{1}{2} [\log(B^H - a), B^H]_t^{(H)}
\]
holds and
\[
C^H_t(a) = \left[\log |B^H - a|, B^H \right]_t^{(H)}
\]
for all $t \geq 0$ and $a \in \mathbb{R}$.

Proof. Let F_+ and F_- be defined in Section 3. Then $F' \in \mathcal{H}$ is left continuous, and
\[
F_+(B^H_t - a) = F_+(-a) + \int_0^t F'_+(B^H_s - a) \delta B^H_s + \frac{1}{2} [F'_+(B^H - a), B^H]_t^{(H)}
\]
by Itô’s formula \cite[p. 33]{}. Similarly, we have
\[
F_-(B^H_t - a) = F_-(a) + \int_0^t F'_-(B^H_s - a) \delta B^H_s + \frac{1}{2} [F'_-(B^H - a), B^H]_t^{(H)}
\]
By integration by parts we have
\[\Theta_{\varepsilon}(t, a) := \mathcal{L}^{H}(a - \varepsilon, t)F'(\varepsilon) - \mathcal{L}^{H}(a + \varepsilon, t)F'(-\varepsilon) = \left[\mathcal{L}^{H}(a - \varepsilon, t) - \mathcal{L}^{H}(a + \varepsilon, t) \right] \log \varepsilon. \]

Denote
\[\Theta_{\varepsilon}(t, a) := \mathcal{L}^{H}(a - \varepsilon, t)F'(\varepsilon) - \mathcal{L}^{H}(a + \varepsilon, t)F'(-\varepsilon) = \left[\mathcal{L}^{H}(a - \varepsilon, t) - \mathcal{L}^{H}(a + \varepsilon, t) \right] \log \varepsilon. \]

By integration by parts we have
\[
C_{t}^{H}(a) = \left[\log |B^{H} - a|, B^{H} \right]_{t}^{(H)} = - \int_{\mathbb{R}} \log |x - a| \mathcal{L}^{H}(dx, t)
= - \lim_{\varepsilon \downarrow 0} \left(\int_{a + \varepsilon}^{\infty} \log |x - a| \mathcal{L}^{H}(dx, t) + \int_{-\infty}^{a - \varepsilon} \log |x - a| \mathcal{L}^{H}(dx, t) \right)
= \lim_{\varepsilon \downarrow 0} \left(\int_{a + \varepsilon}^{\infty} \mathcal{L}^{H}(x, t) dx + \int_{-\infty}^{a - \varepsilon} \mathcal{L}^{H}(x, t) dx \right) + \lim_{\varepsilon \downarrow 0} \Theta_{\varepsilon}(t, a)
= \lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}} \frac{\mathcal{L}^{H}(x, t)}{x - a} dx + \lim_{\varepsilon \downarrow 0} \Theta_{\varepsilon}(t, a)
= \text{v.p.} \int_{\mathbb{R}} \frac{\mathcal{L}^{H}(x, t)}{x - a} dx = \pi \mathcal{H} \mathcal{L}^{H}(\cdot, t)(x)
\]
almost surely and in \(L^{2}(\Omega)\), for all \(t \geq 0\) and \(a \in \mathbb{R}\) since \(x \mapsto \mathcal{L}^{H}(x, \cdot)\) is Hölder continuous and has the compact support.

Corollary 6.2. Let \(F\) be given by Corollary 6.1 and let \(g\) be a continuous function with compact support. Then the integral \(F' \ast g \in \mathcal{H}\), and for all \(0 < H < \frac{1}{2}\), the process
\[
2 \left((F \ast g)(B_{t}^{H}) - (F \ast g)(0) - \int_{0}^{t} (F' \ast g)(B_{s}^{H}) \delta B_{s}^{H} \right)
\]
is well-defined in \(L^{2}(\Omega)\) and is equal to
\[
[(F' \ast g)(B^{H}), B^{H}]_{t}^{(H)}
\]
for all \(t \in [0, T]\).

Thus, similar to proof of Theorem 5.1 we can obtain the following occupation formula.

Theorem 6.1. Let \(0 < H < \frac{1}{2}\) and let \(g\) be a continuous function with compact support. Then we have, almost surely,
\[
\int_{\mathbb{R}} C_{t}^{H}(x) g(x) dx = 2H \pi \int_{0}^{t} \left(\mathcal{H} g \right)(B_{s}^{H}) s^{2H - 1} ds
\]
and
\[
2H \pi \int_{0}^{t} g(B_{s}^{H}) s^{2H - 1} ds = \int_{\mathbb{R}} C_{t}^{H}(x)(\mathcal{H}^{-1} g)(x) dx
\]
for all \(t \in [0, T]\).

Proof. Let \(F(x) = x \log |x| - x\). By Corollary 6.1 and 6.1 we have
\[
E \left\| \int_{\mathbb{R}} \left(\int_{0}^{t} F'(B_{s}^{H} - x) \delta B_{s}^{H} \right) g(x) dx \right\|^{2} < \infty,
\]
since \(g\) admits a compact support. Thus, similar to Lemma 5.2 we can show that the Fubini theorem
\[
\int_{0}^{t} \left(\int_{\mathbb{R}} F'(B_{s}^{H} - x) g(x) dx \right) \delta B_{s}^{H} = \int_{\mathbb{R}} \left(\int_{0}^{t} F'(B_{s}^{H} - x) \delta B_{s}^{H} \right) g(x) dx
\]
holds for all $0 \leq t \leq T$. It follows from Corollary 6.1 and Corollary 6.2 that
\[
\frac{1}{2} \int_{\mathbb{R}} C_t^H(x) g(x) \, dx = \int_{\mathbb{R}} \left(F(B_s^H - x) - F(-x) - \int_0^t F'(B_s^H - x) \, dB_s^H \right) g(x) \, dx \\
= F \ast g(B_t^H) - F \ast g(0) - \int_0^t F' \ast g(B_s^H) \, dB_s^H \\
= -\frac{1}{2} \int_{\mathbb{R}} (F' \ast g)(x) \mathcal{L}^H(dx, t)
\]
On the other hand, by the Hölder continuity of $(x,t) \mapsto \mathcal{L}^H(x,t)$ and Lebesgue’s dominated convergence theorem we have
\[
\int_{\mathbb{R}} g(a) \, da \int_{\mathbb{R}} F'(x-a) \mathcal{L}^H(dx, t) \\
= \int_{\mathbb{R}} g(a) \lim_{\varepsilon \downarrow 0} \left(\int_{a+\varepsilon}^{\infty} F'(x-a) \mathcal{L}^H(dx, t) + \int_{-\infty}^{a-\varepsilon} F'(x-a) \mathcal{L}^H(dx, t) \right) \, da \\
= \int_{\mathbb{R}} g(a) \lim_{\varepsilon \downarrow 0} \left(\Theta_\varepsilon(t,a) - \int_{-\infty}^{a-\varepsilon} 1_{\{|x-a|>\varepsilon\}} F''(x-a) \mathcal{L}^H(x,t) \, dx \right) \, da \\
= -2H \int_{\mathbb{R}} g(a) \lim_{\varepsilon \downarrow 0} \left(\int_0^t \int_{|B_s^H-a|>\varepsilon} g(a) \mathcal{L}^H(B_s^H-a) \, da \right) \, ds \\
= -2H \pi \int_0^t s^{2H-1} ds \int_{\mathbb{R}} 1_{\{|B_s^H-a|>\varepsilon\}} \frac{g(a)}{B_s^H-a} \, da \\
= -2H \pi \int_0^t H \mathcal{H} g(B_s^H) s^{2H-1} ds
\]
almost surely and in $L^2(\Omega)$, for all $t \in [0,T]$. This shows that
\[
\frac{1}{2} \int_{\mathbb{R}} C_t^H(x) g(x) \, dx = H \pi \int_0^t \mathcal{H} g(B_s^H) s^{2H-1} ds
\]
and the theorem follows. \hfill \Box

Remark 6.1. When $0 < H < \frac{1}{2}$, from the discussion in this section, we have fund that for all non-locally integrable Borel functions $f \in \mathcal{H}$, the identities
\[
K_t^H(f,a) := \lim_{\varepsilon \downarrow 0} \int_0^t 1_{\{|B_s^H-a|>\varepsilon\}} f(B_s^H) \, ds^{2H} = [f(B^H),B^H]^H_t
\]
in $L^2(\Omega)$ (almost surely) and
\[
\int_{\mathbb{R}} K_t^H(f,x) g(x) \, dx = 2H \int_0^t v.p.(f' \ast g)(B_s^H) s^{2H-1} ds
\]
hold for all continuous functions g with compact supports, provided
\[
\mathcal{L}^H(a-\varepsilon,t)f(-\varepsilon) - \mathcal{L}^H(a+\varepsilon,t)f(\varepsilon) \rightarrow 0,
\]
in $L^2(\Omega)$ (almost surely), as ε tends to zero.

References

[1] E. Alós, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, *Ann. Prob.* **29** (2001), 766-801.
[2] J. Bertoin, Sur une intégrale pour les processus à α-variation bornée, *Ann. Probab.* **17** (1989), 1521-1535.
[3] J. Bertoin, Complements on the Hilbert transform and the fractional derivative of Brownian local times, *J. Math. Kyoto Univ.* **30** (1990), 651-670.
[4] J. Bertoin, Regularity of the Cauchy principal value of the local times of some Lévy processes, *Bull. Sri. math. 123* (1999), 47-58.
[5] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, *Stochastic calculus for fractional Brownian motion and applications*, Probability and its application, Springer, Berlin (2008).

[6] P. Biane and M. Yor, Valeurs principales associées aux temps locaux Browniens, *Bull. Sci. Math.* 111 (1987), 23-101.

[7] A.S. Cherny, Principal values of the integral functionals of Brownian motion: existence, continuity and an extension of Itô’s formula, *Lect. Notes Math.* 1755 (2001), 348-370.

[8] L. Coutin, D. Nualart and C. A. Tudor, Tanaka formula for the fractional Brownian motion, *Stochastic Process. Appl.* 94 (2001), 301-315.

[9] E. Csáki, M. Csehögö, A. Földes and Z. Shi, Increment sizes of the principal value of Brownian local time, *Probab. Theory Relat. Fields.* 117 (2000), 515-531.

[10] E. Csáki, A. Földes and Z. Shi, A joint functional law for the Wiener process and principal value, *Studia Sci. Math. Hungar.* 40 (2003), 213-241.

[11] E. Csáki and Yueyun Hu, On the Increments of the principal value of Brownian local time, *Elect. J. Probab.* 10 (2005), 925-947.

[12] L. Decreusefond and A.S. Üstünel, Stochastic analysis of the fractional Brownian motion, *Potential Anal.* 10 (1999), 177-214.

[13] M. Eddahbi and J. Vives, Chaotic expansion and smoothness of some functionals of the fractional Brownian motion, *J. Math. Kyoto Univ.* 43 (2003), 349-368.

[14] P. J. Fitzsimmons and R. K. Getoor, On the Distribution of the Hilbert Transform of the Local Time of a Symmetric Levy Process, *Ann. Probab.* 20 (1992), 1484-1497.

[15] P. J. Fitzsimmons and R. K. Getoor, Limit theorems and variation properties for fractional derivatives of the local time of a stable process, *Ann. Inst. H. Poincaré Probab. Statist.* 28 (1992), 311-333.

[16] D. Geman and J. Horowitz, Occupation densities, *Ann. Probab.* 8 (1980), 1-67.

[17] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index $H \geq \frac{1}{2}$, *Ann. Probab.* 31 (2003), 1772-820.

[18] Yaozhong Hu, B. Øksendal and D. M. Salopek, Weighted local time for fractional Brownian motion and applications to finance, *Stoch. Anal. Appl.* 23 (2005), 15-30.

[19] Yaozhong Hu, Integral transformations and anticipative calculus for fractional Brownian motions, *Mém. Amer. Math. Soc.* Vol. 175 (2005), No. 825.

[20] Yueyun Hu, The laws of Chung and Hirsch for Cauchy’s principal values related to Brownian local times, *Elect. J. Probab.* 5 (2000), 1-16.

[21] K. Itô and H. P. McKean, *Diffusion processes and their sample paths*, Berlin, New York, Springer Verlag 1965.

[22] Frederick W. King, *Hilbert transforms*, Cambridge University Press 2012.

[23] R. Mansuy and M. Yor, *Aspects of Brownian motion*, Berlin, Heidelberg, Springer-Verlag 2008.

[24] Y. S. Mishura, *Stochastic calculus for fractional Brownian motion and related processes*, Lect. Notes in Math. 1929 (2008).

[25] I. Nourdin, *Selected aspects of fractional Brownian motion*, Springer Verlag 2012.

[26] D. Nualart, *Malliavin calculus and related topics*, 2nd edn. Springer-Verlag 2006.

[27] V. Pipiras and M. Taqqu, Integration questions related to the fractional Brownian motion, *Probab. Theory Related Fields.* 118 (2001), 251-281.

[28] Ciprian A. Tudor, *Analysis of Variations for Self-similar Processes*, Springer-Verlag 2013.

[29] T. Yamada, On some representations concerning the stochastic integrals, *Probab. Math. Statist.* 4 (1984), 153-166.

[30] T. Yamada, On the fractional derivative of Brownian local times, *J. Math. Kyoto Univ.* 25 (1985), 49-58.

[31] T. Yamada, Principal values of Brownian local times and their related topics, *Itô’s stochastic calculus and probability theory*, Springer, 413-422 (1996).

[32] L. Yan, The fractional derivative for fractional Brownian local time, to appear in *Mathematische Zeitschrift* 2015.

[33] L. Yan, J. Liu and C. Chen, The generalized quadratic covariation for fractional Brownian motion with Hurst index less than \(\frac{1}{2}\), *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* 17 No. 4, 2014 (32 pages).

[34] L. Yan, J. Liu and X. Yang, Integration with respect to fractional local time with Hurst index \(\frac{1}{2} < H < 1\), *Potential Anal.*, 30 (2009), 115-138.

[35] L. Yan and Q. Zhang, Hilbert transform of G-Brownian local time, *Stoch. Dyn.* 14 (2014), 1450006 (26 pages).

[36] M. Yor, Sur la transformé de Hilbert des temps locaux browniens et une extension de la formule d’Itô, *Lect. Notes Math.*, 920 (1982), 238-247.

[37] M. Yor (editor), *Exponential Functionals and Principal Values Related to Brownian Motion*, Biblioteca de la Revista Matemática Iberoamericana, Madrid 1997.