Primary Small Cell Undifferentiated (Neuroendocrine) Carcinoma of the Maxillary Sinus

Santosh Kumar Yadav¹ and Premalatha Shetty²

¹ Department of Oral and Maxillofacial Surgery, Chitwan Medical College (P) Ltd, P.O. Box 42, Bharatpur-10, Chitwan, Nepal
² Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal University, Lighthouse Hill Road, Mangalore 575001, India

Correspondence should be addressed to Santosh Kumar Yadav; nepalsantoshyadav@gmail.com

Received 29 November 2013; Accepted 24 December 2013; Published 3 February 2014

1. Introduction

Carcinoma developing in the paranasal sinuses accounts for approximately 0.3% of all cancers [1]. Squamous cell carcinoma is by far the most common malignancy, followed by adenocarcinoma. Extrapulmonary small cell neuroendocrine carcinoma (EPSNEC) of sinonasal tract is rare. The first case of SNEC of the paranasal sinuses was reported by Raychowdhuri [2] in 1965. SNECs originating in the head and neck region have been reported to be highly aggressive and to have a poor prognosis. This report describes a patient with a maxillary sinus SNEC who was successfully treated with neoadjuvant chemotherapy and concurrent chemoradiotherapy.

2. Case Report

A 70-year-old female presented to the oral and maxillofacial department with gradual onset of right cheek swelling around the right gingival and a painful mass for about 1 month. Physical examination showed hard cheek swelling (Figure 1) and epiphora of the right eye, but the patient’s eye movement was normal and she did not have any double vision. The skin around the right eyelids was regular and not reddish, whereas the right posterior alveolar gingival was ulceration (2 × 2) cm, irregular, and reddish in areas (Figure 2). No history of nasal bleed, nasal congestion, and pus from ears. Clinically the patient had an enlarged right submandibular lymph node measuring approximately 3 cm in diameter. The patient was admitted, and imaging studies were performed.

Computed tomography (CT) scan of head showed a large mass measuring approximately 6 cm in diameter in the right maxillary sinus invading the right orbit, ethmoid sinus, and the skin of the cheek (Figures 3(a) and 3(b)). Histologic examination of biopsy sample stained sections showed mucosal tissue bits with features suggestive of poorly differentiated squamous cell carcinoma/neuro-endocrine carcinoma and immunohistochemistry was advised for further evaluation. Immunohistochemical staining was performed on the formalin-fixed, paraffin-embedded tissue sections. The tumor cells were positive for synaptophysin and cytokeratin and negative for neuron specific enolase. These histologic (Figure 4) and immunophenotypic features were characteristic of SNEC, and clinical findings supported the diagnosis of small cell undifferentiated neuroendocrine carcinoma of right maxillary sinus. An extensive search for a primary lesion elsewhere was performed; however, findings from whole body CT imaging, urinary amine secretions, and sputum cytology were unremarkable.
This case was discussed with consulting medical and radiation oncologists and planned for combination of chemotherapy followed by radiotherapy. The patient was treated with 3 cycles of induction chemotherapy, consisting of cisplatin (40 mg/m²) and etoposide (100 mg/m²) on days 1 to 3 every 4 weeks. After induction chemotherapy, it was extremely effective, with remarkable reduction in facial swelling and complete loss of intraoral swelling (Figures 5 and 6). The patient was subsequently started on concurrent chemoradiation, consisting of 1 course of cisplatin and etoposide similar to the induction chemotherapy, and a total dose of 60 Gy of intensity modulated radiation therapy in 30 fractions, 5 days a week for a total of 6 weeks. The patient's posttherapeutic course was uneventful. Follow-up 2-year postradiotherapy showed no evidence of local recurrence or metastasis (Figures 7, 8, and 9).

3. Discussion

SNEC occurs mainly in lungs and accounts for approximately 20% of primary lung carcinomas [3]. EPSNEC represents 4% of all cases of SNEC [4], and a limited number of SNEC cases of the nasal and paranasal cavities have been previously reported. Among these tumors, primary SNEC arising in the maxillary sinus is extremely rare. The classification of neuroendocrine tumor is particularly difficult, as indicated by several investigators [5]. Carcinoid tumor is considered a well-differentiated neuroendocrine carcinoma, although atypical carcinoid tumor is regarded as moderately differentiated neuroendocrine carcinoma. SNEC is classified as
Figure 5: Chemotherapy after 4th cycle, remarkable reduction in facial swelling.

Figure 6: Chemotherapy after 4th cycle, complete loss of intraoral swelling.

Figure 7: Follow-up 2-year postradiotherapy.

Figure 8: Follow-up 2-year postradiotherapy.

poorly differentiated neuroendocrine carcinoma. Similar to SNEC of the lung, SNEC of the nasal and paranasal cavities has demonstrated aggressive clinical behavior and a poor prognosis, with fast tumor expansion, early local recurrence, and widespread dissemination.

As originally described by Koss et al. [6] and Georgiou et al. [7], SNEC of all anatomic sites shares similar histopathologic features. The tumor forms sheets or nests and is composed of medium-sized tumors cells with a high nuclear/cytoplasmic ratio and hyperchromatic nuclei with indistinct or occasional small basophilic nucleoli.

According to criteria of the World Health Organization [8], small cell carcinomas are defined as malignant epithelial tumors consisting of small cells with scant cytoplasm, ill-defined cell borders, finely granular nuclear chromatin, and absent or inconspicuous nucleoli. Specific cells are round, oval, and spindle shaped, and nuclear molding is prominent. Necrosis is usually extensive, and the mitotic count is high.

More than 90% of small cell carcinomas have neuroendocrine features [8].

The immunohistochemical tumor profile has been previously investigated [1, 9] and has demonstrated that the tumor is usually strongly positive for synaptophysin and CD56 and weakly positive for chromogranins and CAM5.2/AE1. The present patient showed positive staining for synaptophysin, indicating that the tumor was of neuroendocrine origin. Tumor cells also were positive for cytokeratin, indicating that the tumor originated from the epithelium.

Because of the rarity of SNEC of the nasal and paranasal cavity, no agreement for adequate management has been reached among oncologists; therefore, much information has been extrapolated from data on SNECs at other sites, especially pulmonary SNECs (PSNECs). Because SNEC is an aggressive malignancy with high rates of local recurrence and metastatic spread, multimodal therapy is increasingly used, including chemotherapy, radiotherapy, and possibly surgery,
The present management strategy, local failure remains an important problem. However, until what governed failure has been appreciated, the surgeon and the oncologist should try to optimize the treatment for each patient with improved local therapy. This may contribute to local control and survival so that cure will be achieved with minimal morbidity. More extensive studies are needed to assess the optimal management and develop standardized treatment protocols.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] S.-F. Huang, W.-Y. Chuang, S.-D. Cheng, L.-J. Hsin, L.-Y. Lee, and H.-K. Kao, “A colliding maxillary sinus cancer of adenosquamous carcinoma and small cell neuroendocrine carcinoma—a case report with EGFR copy number analysis,” *World Journal of Surgical Oncology*, vol. 8, article 92, 2010.

[2] R. N. Raychowdhuri, “Oat cell carcinoma and paranasal sinuses,” *The Journal of Laryngology and Otology*, vol. 79, pp. 255–255, 1979.

[3] D. Dearnaley, “Small-cell lung cancer: report of a meeting of physicians and scientists at the Royal Marsden Hospital,” *The Lancet*, vol. 345, pp. 1283–1289, 1995.

[4] N. B. N. Ibrahim, J. C. Briggs, and C. M. Corbishley, “Extrapulmonary oat cell carcinoma,” *Cancer*, vol. 54, no. 8, pp. 1645–1661, 1984.

[5] S. E. Mills, “Neuroectodermal neoplasms of the head and neck with emphasis on neuroendocrine carcinomas,” *Modern Pathology*, vol. 15, no. 3, pp. 264–278, 2002.

[6] L. G. Koss, R. H. Spiro, and S. Hajdu, “Small cell (oat cell) carcinoma of minor salivary gland origin,” *Cancer*, vol. 30, no. 3, pp. 737–741, 1972.

[7] A. F. Georgiou, D. M. Walker, A. P. Collins, G. J. Morgan, J. A. Shannon, and M. J. Veness, “Primary small cell undifferentiated (neuroendocrine) carcinoma of the maxillary sinus,” *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology*, vol. 98, no. 5, pp. 572–578, 2004.

[8] W. D. Travis, K. Garg, W. A. Franklin et al., “Bronchioloalveolar carcinoma and lung adenocarcinoma: the clinical importance and research relevance of the 2004 world health organization pathologic criteria,” *Journal of Thoracic Oncology*, vol. 1, no. 9, pp. S13–S19, 2006.

[9] A. T. W. Ma and K. I. K. Lei, “Small cell neuroendocrine carcinoma of the ethmoid sinuses presenting with generalized seizure and syndrome of inappropriate antidiuretic hormone secretion: a case report and review of literature,” *American Journal of Otologyngology*, vol. 30, no. 1, pp. 54–57, 2009.

[10] B. Perez-Ordonez, S. M. Caruana, A. G. Huvos, and J. P. Shah, “Small cell neuroendocrine carcinoma of the nasal cavity and paranasal sinuses,” *Human Pathology*, vol. 29, no. 8, pp. 826–832, 1998.

[11] E. Babin, V. Rouleau, P. O. Vedrine et al., “Small cell neuroendocrine carcinoma of the nasal cavity and paranasal sinuses,” *Journal of Laryngology and Otology*, vol. 120, no. 4, pp. 289–297, 2006.
[12] G. Lo Re, V. Canzonieri, A. Veronesi et al., “Extrapulmonary small cell carcinoma: a single-institution experience and review of the literature,” *Annals of Oncology*, vol. 5, no. 10, pp. 909–913, 1994.

[13] J. S. Sierocki, B. S. Hilaris, and S. Hopfan, “cis-Dichlorodi-ammineplatinum(II) and VP-16-213: an active induction regimen for small cell carcinoma of the lung,” *Cancer Treatment Reports*, vol. 63, no. 9-10, pp. 1593–1597, 1979.

[14] J. D. McCracken, L. M. Janaki, J. J. Crowley et al., “Concurrent chemotherapy/radiotherapy for limited small-cell lung carcinoma: a Southwest Oncology Group study,” *Journal of Clinical Oncology*, vol. 8, no. 5, pp. 892–898, 1990.

[15] C. A. Perez, L. Einhorn, and R. K. Oldham, “Randomized trial of radiotherapy to the thorax in limited small-cell carcinoma of the lung treated with multiagent chemotherapy and elective brain irradiation: a preliminary report,” *Journal of Clinical Oncology*, vol. 2, no. 11, pp. 1200–1208, 1984.

[16] P. A. Bunn Jr., A. S. Lichter, and R. W. Makuch, “Chemotherapy alone or chemotherapy with chest radiation therapy in limited stage small cell lung cancer. A prospective, randomized trial,” *Annals of Internal Medicine*, vol. 106, no. 5, pp. 655–662, 1987.

[17] D. I. Rosenthal, J. L. Barker Jr., A. K. El-Naggaret al., “Sinonasal malignancies with neuroendocrine differentiation: patterns of failure according to histologic phenotype,” *Cancer*, vol. 101, no. 11, pp. 2567–2573, 2004.

[18] E. G. Silva, J. J. Butler, B. Mackay, and H. Goepfert, “Neuroblastomas and neuroendocrine carcinomas of the nasal cavity. A proposed new classification,” *Cancer*, vol. 50, no. 11, pp. 2388–2405, 1982.

[19] G. Han, Z. Wang, X. Guo, M. Wang, H. Wu, and D. Liu, “Extrapulmonary small cell neuroendocrine carcinoma of the paranasal sinuses: a case report and review of the literature,” *Journal of Oral and Maxillofacial Surgery*, vol. 70, pp. 2347–2351, 2012.

[20] E. Galanis, S. Frytat, and R. V. Lloyd, “Extrapulmonary small cell carcinoma,” *Cancer*, vol. 79, pp. 1729–1736, 1997.