Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.

Cell Death and Disease (2022) 13:580; https://doi.org/10.1038/s41419-022-05034-x

FACTS

● MSC-derived EVs have low-immunogenicity and strong potential for therapeutic applications.
● MSC-derived EVs were used to treat tissue fibrosis and promote tissue regeneration.
● MSC-derived EVs are proposed as a novel therapeutic agent to mediate immunomodulation and promote regeneration.

OPEN QUESTIONS

● How can MSC-derived EVs mediate immunomodulation and regeneration?
● How can MSC-derived EVs be used to aid regeneration of fibrotic tissue?
● How can mass manufacturing of MSC-derived EVs be achieved and the problem of quality heterogeneity overcome?
● What are the challenges of MSC-derived EV-based immunomodulation and regeneration in clinical practice?

INTRODUCTION

Mesenchymal stem cells (MSCs) exist in various tissues such as bone marrow (BMSCs), umbilical cord blood (UC-MSCs) and umbilical cord tissue, placental tissue (hPMSCs), adipose tissue (ADSCs), and menstrual blood (MenSCs). These cells have multidirectional differentiation potential [1] to become osteoblasts, chondrocytes or adipocytes in vitro [2], and have a unique function of cytokine secretion [3]. Cell models have been applied in proliferation, transplantation, and differentiation studies, and in identification of immune responses in vitro [4]. Numerous studies have shown that MSCs have great potential in immune regulation and regeneration [5]. The U.S. FDA has approved nearly 60 clinical trials [6], mainly focused on Hematopoietic Stem Cell Transplantation (HSCT) [7], tissue healing, Autoimmune Disease (AID), and genetic therapy vectors [8]. Recently, MSCs have been widely used in clinical studies as a regenerative agent and to treat a variety of conditions including osteoarthritis [9], pulmonary fibrosis, spinal cord injury, myocardial damage, knee cartilage injury, dental pulp regeneration, and organ transplantation [10].
of studies has revealed that the powerful therapeutic effects of MSCs are due to paracrine-like secretion of cytokines (growth factors and chemokines) [11, 12] and extracellular vesicles (EVs) as well as their involvement in cellular communication [13–16].

Application of MSCs as cell therapy is based on regulating the inflammatory response and participating in tissue repair and regeneration [17]. The therapeutic effect of MSCs is mainly attributed to their immunomodulatory function regulated by the inflammatory environment [18]. When stimulated by inflammatory factors, MSCs produce a large number of immunomodulatory factors, cell chemokines, and growth factors, thereby regulating the tissue immune microenvironment and promoting tissue regeneration [19]. There is accumulating evidence that EVs derived from MSCs preserve the therapeutic action of the parent MSCs and their use avoids the safety concerns associated with live cell therapy [20, 21]. Therefore, use of MSC-EVs to replace MSCs as cell-free therapy may be the focus of future clinical treatments [20]. We review recent studies of the role of MSC-EVs in immunomodulation and regeneration, focusing on their molecular mechanisms in the treatment of osteoarthritis, spinal cord injury, skin injury, and liver, kidney, and lung fibrosis.

EXTRACELLULAR VESICLES COMPOSITION

Extracellular vesicles (EVs) exist in body fluids, are released by cells, and have a membrane structure [22]. They can be divided into four subgroups according to their diameter: exosomes (30–150 nm), microvesicles (100–1000 nm), apoptotic bodies (50–5000 nm), generated during cell apoptosis [23, 24], and oncosomes (1–10 μm), newly discovered and observed in cancer cells [25]. EVs encapsulate many bioactive molecules (proteins, lipids, nucleic acids, and organelles) [26–28] that can be delivered to target cells. Large amounts of data suggest that exosomes and microvesicles are vital mediators of EVs in numerous physiological (pathological) processes [29] (Fig. 1).

Exosomes

Exosomes are microscopic vesicles with a density of 1.11–1.19 g/mL. They have a typical “disk-like” structure and flat spherical shape when seen under an electron microscope [24]. Many kinds of cells in various body fluids and cell supernatants can secrete exosomes under normal and pathological conditions. Exosomes were first discovered in 1983 in sheep reticulocytes and were named “Exosomes” by Johnstone in 1987 [30]. These tiny vesicles contain specific proteins, lipids, and nucleic acids that can be transmitted and serve as signaling molecules to alter the function of other cells [31, 32].

During the formation of exosomes, the extracellular components and cell membrane proteins are wrapped by the invaginated plasma membrane to form early endosomes. These can exchange materials with intracellular organelles and develop into late endosomes, eventually forming intracellular multivesicular bodies (MVBs) [33, 34]. MVBs contain many intraluminal vesicles (ILVs) [35]. They may be degraded and released into the cytoplasm by fusion with autophagosomes or lysosomes, or released into extracellular vesicles by fusion with plasma membrane, including ILVs, resulting in exosome formation [34]. Exosome-mediated intercellular communication is achieved by direct membrane fusion, receptor-mediated endocytosis, phagocytosis, caveolae, and micropinocytosis [36–38].

Proteins involved in exosome biogenesis (such as transport and fusion) include Rab GTPases [39–41], ESCRT (endosomal sorting complex required for transport) [42], annexin, lipid raft proteins, and four transmembrane proteins (CD63, CD81, and CD9) [43, 44]. In addition, they also contain biosynthetic antibodies (Alix and TSG101) involved in MVBs [45, 46], cholesterol, ceramide, phosphoglyceride that provides structural stability, and immune-related molecule MHC-II that is involved in antigen binding and presentation. Exosomes also carry functional mRNAs and miRNAs that can be transferred between cells [47]. Exosomes released by tumors contain single-stranded DNA, genomic DNA, cDNA, and a transposable element [48, 49]. It is clear that exosomes have many functions as biomarkers of disease.

Microvesicles

Microvesicles are also known as microparticles. Biogenesis of MVs differs to that of exosomes since they are released from outward budding and fission of plasma membrane when the cell is stimulated or apoptotic [50]. Nonetheless, they share characteristics of high biocompatibility, and low immunogenicity and targeting and can be used as drug carriers [51]. Studies have shown that the use of tumor cell-derived MVs to deliver chemotherapy drugs produces in better cancer treatment results with few side effects or adverse reactions [52, 53].

MSC-DERIVED EXTRACELLULAR VESICLES

Although MSCs derive from a variety of sources, they can all be adherent in culture and differentiated into a variety of cell types with specific surface markers [54]. With the need for clinical treatment with MSCs, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) has proposed minimum criteria for identification of human MSCs: (1) Cultured under standard conditions they must adhere to plastic substrates; (2) On flow cytometry, the positive rate of CD105, CD73 and CD90 expression in MSC surface markers should reach 95%, and negative expression rate CD45, CD34, CD14 or CD11b, CD79a or CD19 or HLA-DR (human leukocyte antigen -DR) (≤2% positive); (3) After induction by standard methods in vitro, MSCs must be able to induce differentiation into osteoblasts, chondrocytes and adipocytes [55]. Nonetheless, further research has revealed that these standards do not fully define MSCs [56]. There is accumulating evidence that heterogeneous MSCs have multiple cell subpopulations with characteristic surface markers [57, 58], but the definition of surface markers and biological functions of these subpopulations requires ongoing exploration.

MSCs are easy to resuscitate and proliferate in vitro, enabling them to be mass-produced for clinical application [18]. In recent years, they have been the most studied stem cell type for clinical application, and have played an effective therapeutic role in graft-versus-host disease (GVHD) [7], kidney injury [59], tissue and organ transplantation, immune tolerance [60], nerve injury, rheumatoid disease, and liver disease. At present, MSCs have attracted much attention in the context of the COVID-19 pandemic [61]. Leng et al. demonstrated that in an MSC treatment group, patients with COVID-19 infection were cured or their condition significantly improved as a result of regulation of increased interleukin 10 (IL 10) expression, inhibition of overactivated immune T cells and NK cells, and a significantly reduced TNF-α level [62].

Despite their advantages, there are aspects of MSC therapy that warrant consideration. First, the proliferation ability of MSCs is gradually weakened and accompanied by a certain degree of differentiation and even aging with increasing passages during in vitro culture. This impacts their regulatory and therapeutic ability [56, 63]. Second, in the in vivo environment, heredity factors and the self-renewal ability of MSCs cannot be controlled with consequent potential for tumorigenicity [64]. In addition, although MSCs have a strong regenerative regulatory potential, it is uncertain whether they can target or remain at the damaged site following intravenous injection [65]. There is some evidence that only a small number of MSCs reach the target site due to the host body’s scavenging capacity [66, 67]. Although in-situ injection can partially solve these problems, there remain problems with cell differentiation and aging, and the clinical effects are not optimistic [68]. MSCs have also been found to cause and promote the growth of various types of cancer [69]. In addition, there are the usual associated risks of cell therapy such as viral infection and immune rejection as well as problems with storage and transportation [70].
The discovery that most therapeutic effects of MSCs depend on their paracrine action and that EVs can replace their parent cells offers exciting prospects for researchers [21]. EVs offer great advantages [71]: they are not self-replicating and largely avoid the risk of tumorigenicity [72]; compared with cell therapy, EVs are safer; as nanoparticles they have both biocompatibility and low immunogenicity, enabling them to cross-protective barriers such as the blood-brain barrier [73]; they can be continuously secreted by immortalized cells to obtain a sufficient number [74]; EVs protect their internal biomolecular activity via their lipid membrane structure, can be preserved for a prolonged period at -80°C, and are not subject to deactivation, even after repeated freezing and thawing [75, 76]; and they have an encapsulation capability, can load specific drugs and transport them to target cells [77].

Notably, MSC-EVs express EV surface markers CD63, CD9 and CD81, as well as mesenchymal stem cell surface markers CD44, CD73, and CD90 [78]. In addition, proteins contained in the extracellular vesicles secreted by MSCs are a specific protein subclass that determines their unique biological functions [36]. At the same time, the encapsulated mRNA and miRNA in MSC-EVs form the molecular basis for their function [79]. Accordingly, MSC-EVs transmit information and communicate with target cells through internal substances, thus changing the activity and function of target cells [80].

With their unique advantages, MSC-EVs play an important role in immune regulation and regeneration. Studies of the promotion of regeneration through immune regulation are described in detail below. Meanwhile, in the treatment of autoimmune diseases, Wu et al. found that BM-MSC-derived EVs targeted inhibition of the cyclin I-activated ATM/ATR/p53 signaling pathway by upregulation of miR-34a, thereby inhibiting RA fibroblast-like synoviocytes (RA-FLSs) and significantly ameliorating RA inflammation in vivo [81]. Another study on the regulation of type-I autoimmune diabetes mellitus (T1DM) showed that AD-MSC-derived exosomes ameliorated T1DM symptoms by upregulating the expression of regulatory T cells, interleukin 4 (IL 4), IL 10 and transforming growth factor-beta (TGF-β) and down-regulating IL 17 and interferon-gamma (IFN-γ) [82]. Additional studies of autoimmune disease regulation have been summarized elsewhere [83]. Recently MSC-EVs have also been applied in clinical practice. Nassar et al. are in the process of evaluating the effect of human UC-MSC-derived EVs on islet β cells in patients with T1DM (trial NCT02138331). Recent clinical trials have been conducted to evaluate the safety and efficacy of MSC-EVs in patients with a variety of diseases based on their potential for immune regulation and regeneration (Table 1).

APPLICATION OF MSC-EVS IN IMMUNE REGULATION AND REGENERATION

The therapeutic potential of MSC-EVs has been reported in immune regulation and tissue regeneration based on EV-mediated cellular communication between MSCs and several target cells, including macrophages, microglia, chondrocytes,
Register No.	Title	Phase	Condition	Intervention	URL
NCT05127122	Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles	I/II	ARDS	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
	Infusion Treatment for ARDS				NCT05127122
NCT04493242	Extracellular Vesicle Infusion Treatment for COVID-19 Associated ARDS	II	COVID-19 ARDS	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
					NCT04493242
NCT05078385	Safety of Mesenchymal Stem Cell Extracellular Vesicles (BMSC-EVs)	I	Burn wounds	BMSC-EVs; apply to wound	https://ClinicalTrials.gov/show/
	for the Treatment of Burn Wounds				NCT05078385
NCT05130983	A Phase I Study of ExoFlo, an ex Vivo Culture-expanded Adult Allogeneic Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicle Isolate Product, for the Treatment of Medically Refractory Crohn’s Disease	I	Crohn’s Disease	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
					NCT05130983
NCT04657458	Expanded Access Protocol on Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicle Infusion Treatment for Patients With COVID-19 Associated ARDS	open-label	Critically Ill COVID-19 ARDS	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
					NCT04657458
NCT05125562	Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles	II	Mild-to-Moderate COVID-19	BMSC- EVs; IV	https://ClinicalTrials.gov/show/
	Infusion Treatment for Mild-to-Moderate COVID-19: A Phase II Clinical Trial				NCT05125562
NCT04327635	Safety Evaluation of Intracoronary Infusion of Extracellular Vesicles in Patients With AMI	I	AMI	EVs; Intracoronary infusion	https://ClinicalTrials.gov/show/
					NCT04327635
NCT05116761	ExoFlo™ Infusion for Post-Acute COVID-19 and Chronic Post-COVID-19 Syndrome	I/II	COVID-19	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
					NCT05116761
NCT05176366	Study of ExoFlo for the Treatment of Medically Refractory Ulcerative Colitis	I	Ulcerative Colitis	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
					NCT05176366
NCT04173650	MSC EVs in Dystrophic Epidermolysis Bullosa	I/II	DEB	BMSC-EVs; apply to wound	https://ClinicalTrials.gov/show/
					NCT04173650
NCT05215288	Intermediate Size Expanded Access for the Use of ExoFlo in the Treatment of Abdominal Solid Organ Transplant Patients Who Are at Risk of Worsening Allograft Function With Conventional Immunosuppressive Therapy Alone	I	Solid Organ Transplant Rejection	BMSC-EVs; IV	https://ClinicalTrials.gov/show/
					NCT05215288
NCT04223622	Effects of ASC Secretome on Human Osteochondral Explants	open-label	OA	ASC secretome; IV	https://ClinicalTrials.gov/show/
					NCT04223622
NCT04270006	Evaluation of Adipose-Derived Stem Cells Exo. in Treatment of Periodontitis	I	Periodontitis	ASC-EVs	https://ClinicalTrials.gov/show/

*ASC secretome, either complete conditioned medium or EVs.

Table 1. Summary of registered clinical trials based on MSC-EVs with potential for immune regulation and regeneration.

AMI acute myocardial infarction, ARDS acute respiratory distress syndrome, ASC adipose-derived stem cell, BMSC bone mesenchymal stem cell, COVID-19 corona virus disease 2019, DEB dystrophic epidermolysis bullosa, EVs extracellular vesicles, IV intravenous administration, OA osteoarthritis.
articular chondrocytes, endothelial cells, fibroblasts, pericytes, neural stem cells (NSC), neurons, hepatic stellate cells, and podocytes. In this paper, we discuss the molecular mechanisms of MSC-EVs in tissue repair and anti-fibrosis, in which several clusters of miRNA and their downstream pathways have been revealed to play important roles in osteoarthritis, spinal cord injury, skin injury, liver fibrosis, kidney fibrosis, and lung fibrosis (Tables 2–7).

Support tissue repair

Osteoarthritis. Osteoarthritis (OA) is the principal form of joint disease with unclear pathogenesis, presenting with pain and stiffness, and in some cases, disability [84]. Recently, MSC-EVs have been proven to have both regenerative and immunoregulatory benefits in OA (Table 2).

Several studies have reported that hBMSC-EVs play a significant role in the treatment of OA by inhibiting some pro-inflammatory pathways and factors, and enhancing the proliferation and migration of chondrocytes. Vonk et al. determined that MSC-EVs blocked NFkB signaling by inhibiting phosphorylation of IkBα, thereby down-regulating TNF-α-induced COX2 expression, and interleukins and collagenase activity. Additionally, MSC-EVs up-regulated the expression of SOX9 and WNT7A, and promoted the production of proteoglycan and type II collagen in vitro studies [85]. Li et al. concluded that hBMSC-EVs promoted OA-chondrocyte (OA-CH) proliferation and migration and reduced apoptosis via downregulation of MMP13, ALPL, IL-1β-activated pro-inflammatory Erk1/2, PI3K/Akt, p38, TAK1, and NF-xB signaling pathways and increased gene expression of PRG4, BCL2, and ACAN (aggrecan) [86]. In addition, in OA-like chondrocytes, MSC-EVs induced the expression of type II collagen and aggrecan (chondrocyte markers), while inhibiting MMP-13 and ADAMTS5 (catabolic) and INOS (inflammatory markers). In a CIAO model, treated mice also exhibited reduced cartilage and bone degeneration [87]. In an OA model, Ruiz showed that the effect of MSC-EVs was due to the presence of TGFBI mRNA and protein [88]. Analogously, in the same model, BMSC-EVs promoted the conversion of RAW264.7 from M1 to M2, reduced the expression of proinflammatory cytokines IL-1β, TNF-α, and IL-6, and enhanced the expression of IL-10, chondrogenic genes, collagen II and SOX9 [89]. Interestingly, Woo et al. revealed in their monosodium iodoacetate (MIA) rat and in vivo experiment that the expression of MMP13, ALPL, IL-1β, and IL-6 were significantly reduced, while the expression of MMP-13 and ADAMTS-5 was increased in the presence of IL-1β [90].

Recent studies have also examined the effect of miRNAs in MSC-EVs. In synovial-derived MSC-EVs (SMSC-EVs), Tao et al. overexpressed miR-140-5p to block Wnt5a and Wnt5b to activate YAP through the activation of proliferating endogenous nerve stem/progenitor cells in vivo, while promoting MSC proliferation and upregulating MEK, ERK, and CREB phosphorylation levels in vitro, resulting in functional recovery [103].

Skin injury. Skin injury is quite common. Skin regeneration is typically accompanied by four overlapping processes: inflammation, angiogenesis, new tissue formation, and remodeling [111–113] (Table 4).

There is recent evidence that human-derived MSC-EVs effectively benefit skin damage and accelerate wound healing by modulating related signaling pathways. Intriguingly, Zhou et al. adopted a combination therapy, applying hADSC-Exos both locally and intravenously to accelerate skin wound healing.
EVs source	Target cells or tissues	Animal model	Molecular mechanism	Action effect	Ref
BMSC-EVs	Chondrocytes	–	Downregulate TNF-α-induced expression of COX2, IL-1β, IL-6, and collagenase activity	Promote the production of proteoglycan, type II collagen, and chondrocyte regeneration	[85]
hBMSC-EVs	Chondrocyte	–	Downregulate IL-1β-activated pro-inflammatory Erk1/2, PI3K/Akt, p38, TAK1, and NF-κB	Promote cell proliferation and migration and reduce apoptosis.	[86]
Murine BMSCs-EVs	OA-like chondrocytes	CIOA	Inhibit MMP-13, ADAMTS5, and iNOS	Reinduce the expression of type II collagen, aggrecan, and protected mice from joint damage	[87]
hBMSC-EVs	OA-like chondrocytes	OA	TGFB1 inhibit cartilage and bone degradation, and limit calcification and osteophyte formation	Increase chondrocyte proliferation	[88]
BMSC-Exos	Macrophages	OA	Promote the conversion of RAW264.7 from M1 to M2, reduce the expression of IL-1β, TNF-α and IL-6, and enhance IL-10, chondrogenic genes, collagen II and sox9	Inhibit OA progression	[89]
hASC-Exos	Chondrocytes	MIA, DMM	Increase type collagen synthesis and decrease MMP-1, MMP-3, MMP-13, and ADAMTS-5 expression in the presence of IL-1β	Promote the proliferation and migration of human OA chondrocytes, and protected cartilage from degeneration	[90]
SMSC-EVs	Articular chondrocytes	OA	Highly-express miR-140-5p blocked ECM secretion decrease via RalA	Enhance proliferation, migration of chondrocytes, and prevent OA	[91]
SMSC-Exos	Articular chondrocytes	OA	Highly-expressed miR-155-5p promoted ECM secretion via Runx2	Enhance proliferation, migration of chondrocytes, and prevent OA	[92]
SMSC-EVs	Knee OA patients	OA	Encapsulate miR-31 ameliorates knee OA via the KDM2A/E2F1/PTTG1 axis.	Alleviate cartilage damage and inflammation in knee joints	[93]
BMSC-EVs	Chondrocyte	OA	Hypoxia increased the expression of miR-216a-3p and promoted down-regulation of JAK2	Promote proliferation, migration and reduce apoptosis	[94]
infrapatellar fat pad MSCs-Exos	Chondrocyte	OA	MiR100-5p-regulate inhibition of mTOR-autophagy pathway	Protect articular cartilage from damage and ameliorate gait abnormality in OA mice by maintaining cartilage homeostasis	[95]
UMSC-Exos	Chondrocyte	OA	Exosomal H19 against miR-29b-3p to upregulate FoxO3	Promote chondrocyte migration, matrix secretion, apoptosis suppression, as well as senescence suppression	[96]

BMSC bone mesenchymal stem cell, CIOA collagenase-induced osteoarthritis, DMM destabilization of the medial meniscus, ECM extracellular matrix, EVs extracellular vesicles, Exos exosomes, hASC human adipose-derived stem cell, MIA monosodium iodoacetate (induced osteoarthritis), OA osteoarthritis, OA-CH osteoarthritis-chondrocyte, SMSC synovial mesenchymal stem cell, UMSC umbilical cord mesenchymal stem cell.
EVs source	Target cells or tissues	Animal model	Molecular mechanism	Action effect	Ref
hBMSC-Exos	Endothelial	SCI	Inhibit Bax and TNFα and IL 1β, and Bcl 2, IL 10 and angiogenesis	Attenuate the lesion size and improved functional recovery after SCI	[98]
BMSC-EVs	Pericyte	SCI	Inhibit NF-KB P65 signaling pathway	Ameliorate blood-spinal cord barrier	[99]
BMSC-Exos	Pericyte	SCI	Suppress the expression of caspase 1 and IL 1β by reducing pyroptosis	Ameliorate the motor ability of spinal cord injury rats	[100]
BMSC-EVs	NSCs	SCI	TGF-β enhanced the expression of Smad6	Promote the regeneration of neurons	[101]
BMSC-EVs	M2 macrophage	SCI	Up-regulate TGF-β, TGF-β receptor and relative proteins of tight junction	Improve locomotor recovery	[102]
hPMSC-Exos	Endogenous neural stem/ progenitor cells	SCI	Promote NSCs proliferation and upregulate MEK, ERK, and CREB phosphorylation levels	Promote spinal cord functional recovery	[103]
MSC-EVs	DRG cells	SCI	Overexpress miR-381 up-regulates RhoA/ RHO kinase activity and down-regulate BRD4 expression and DRG cell apoptosis by inhibiting the BRD4/WNT5A axis	Promote SCI repair	[104]
MSC-Exos	Neurons	SCI	MIR-133b target down-regulates the expression of RhoA, and promotes ERK1/2 STAT3 and CREB signaling pathway	Improve the recovery of hindlimb locomotor function following SCI	[105]
BMSC-Exos	Neurons	MCAO	MIR-17-92 induces activation of mTOR/PI3K/Akt signaling pathway cascade	Enhance neuro-functional recovery of stroke	[106]
BMSC-Exos	Neurons	SCI	MIR-26a induces activation of PTEN/ Akt /mTOR signaling pathway cascade	Promote axonal regeneration and neurogenesis and attenuate glia scarring in SCI	[107]
BMSC-Exos	Microglia	SCI	Hypoxic exosomal miR-216a-5p modulate microglial polarization by TLR4/NF-κB/PI3K/AKT signaling cascades	Promote functional behavioral recovery after SCI	[108]
BMSC-EVs	Microglia	SCI	MiRNA-22 downregulates the expression of inflammatory cytokines and GSDMD	Nerve function repair after SCI	[109]
hUC-MSC-Exos	Neurons	SCI	MIR-199a-3p /145-5p affected TrkA ubiquitination and promoted the NGF/TrkA signaling pathway	Promote locomotor function in SCI rats	[110]

BMSC bone mesenchymal stem cell, DRG dorsal root ganglia EVs extracellular vesicles, Exos exosomes, hPMSC human placental mesenchymal stem cell, MCAO middle cerebral artery occlusion, MSC mesenchymal stem cell, NSCs neural stem cells, SCI spinal cord injury, UC-MSC umbilical cord mesenchymal stem cell.
Mechanistically, hADSC-Exos achieved this effect by downregulating TNF-α, IL-6, CD14, CD19, CD68, and C-caspase 3, and upregulating VEGF, CD31, Ki67, PCNA, filaggrin, loricrin and AQP3 [114]. Jiang et al. demonstrated that hBMMSC-Exos suppressed TGF-β1, Smad2, Smad3, and Smad4 by targeting the TGF-β/Smad signaling pathway, but increased the expression of TGF-β3 and Smad7, thus improving scar formation and promoting wound healing [115]. Remarkably, fetal dermal mesenchymal stem cell-derived exosomes (FDMSC-Exos) have been shown to activate adult dermal fibroblast (ADFs) to promote cell proliferation, migration and secretion by targeting Jagged 1 ligand in the Notch signaling pathway, and ultimately accelerate wound healing [116].

Similar effects have also been observed for human-derived MSC-Exos carrying miRNAs. Of interest, He et al. showed that hBMMSCs and jaw bone marrow MSCs (UMMSCs) could induce macrophages toward M2 polarization and promote wound healing. The mechanism suggested that exosomes secreted by donors may regulate the polarization of macrophages by carrying miR-223 targeting Pknx1. Nonetheless, researchers cannot confirm whether other miRNAs or factors carried by these exosomes are involved in the induction of M2 polarization, and further studies are needed [117]. Likewise, Wu et al. utilized BMMSC-Exos treated with 50 μg/mL Fe3O4 nanoparticles and 100 nM TGF-M to form a functional exosome (mag-BMMSC-Exos). Notably, miR-21-5p was overexpressed in mag-BMMSC-Exos and promoted angiogenesis in vivo and in vitro to accelerate wound healing by targeting TLR2 to activate the PI3K/AKT and ERK1/2 signaling pathways [118]. Additionally, Cheng et al. found that hUCMSC-Exos are highly enriched with miR-27b and promote the expression of JUNB and IRE1α by targeting the Itchy E3 ubiquitin-protein ligase (ITCH), thereby accelerating cutaneous wound healing [119]. In addition, hUMMSC-Exos can be enriched with a set of microRNAs (miR-21, -23A, -125b, and -145) to attenuate excess myofibroblast formation and scarring via repression of the TGF-β2 /SMAD2 pathways [120]. Another study showed that hADSC-Exos derived miR-19b regulate the TGF-β pathway by targeting CCL1 [121]. Li et al. verified that hADSC-Exos down-regulated the expression of Col1, Col3, α-SMA, IL-17RA, and P-Smad2/P-Smad3, and upregulated the level of SIP1 by suppressing multiplication and migration of hypertrophic scar-derived fibroblasts (HSFs). In addition, miR-192-5p was highly enriched in ADSC-Exo and reduced the level of pro-fibrosis protein, improved hypertrophic scar fibrosis, and accelerated wound healing via targeted inhibition of IL-17RA expression [122]. Alongside this, overexpression of miR-486-5p in hADSC-Exos enhanced the migration of human skin fibroblasts (HSFs) and the angiogenic activity of human microvascular endothelial cells (HMECs) by targeting Sp5 and activating CCND2 expression, thereby promoting wound healing [123]. Interestingly, Gao et al. found that overexpression of Mir-135a in hAMSC-Exos significantly down-regulated LAT52, thereby decreasing cell migration and promoting wound healing [124].

Anti-fibrosis

Liver fibrosis. Liver fibrosis is a pathophysiological process and refers to the abnormal proliferation of intrahepatic connective tissue due to various pathogenic factors [125]. Recently, use of MSC-EVs has been considered a new therapeutic approach to repair liver fibrosis (Table 5). Rong et al. showed that human bone MSC-EVs inhibited expression of Wnt/β-catenin pathway components, α-SMA, and type I collagen, thereby preventing stellate cell activation and increasing hepatocyte regeneration. In vivo injection of hBMMSC-Exos has been shown to effectively alleviate CCL4-induced liver fibrosis in rats and restore liver function [126]. Likewise, using a CCL4-induced liver fibrosis animal model, Ohara et al. proved that EVs from amnion-derived MSCs (AMSC-EVs) could significantly reduce the number of Kupffer cells (KCs), mRNA expression of inflammatory factors, activation of hepatic stellate cells (HSC), and the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) signaling pathway, thereby reducing inflammation and fibrosis [127].

The anti-fibrotic effect of miRNAs in MSC-EVs has become a focus of research into CCL4-induced liver fibrosis in rats. miRNA-181-5p overexpression in ADSC-EVs has been shown to downregulate transcription 3 (STAT3) and Bcl-2 and activated autophagy in HST-T6 cells, alongside a significant decrease in collagen I, vimentin, α-SMA, and fibronectin in liver [128]. Similarly, high expression of miR-122 in ADSC-EVs modulated the expression of target genes such as insulin-like growth factor receptor 1 (IGF1R) cyclin G2 (CCNG1), and proline-4-hydroxylase A1 (P4HA1), thereby more effectively blocking the proliferation of HSCs and collagen maturation [129]. Interestingly, Kim et al. reported that miR-486-5p was highly expressed in T-MSC-EVs that could target the hedgehog receptor, smoothened (Smo), and inhibit hedgehog signaling, thereby attenuate the activation of HSCs and liver fibrosis [130].

Kidney fibrosis. Renal fibrosis is a gradual pathophysiological process during which kidney function progresses from healthy to injured, then to damage with an ultimate loss of function [131]. Increasingly, MSC-EVs have been studied in the treatment of renal fibrosis using various models (Table 6).

Ji et al. determined that hUC-MSC-Exos repressed Yes-associated protein (YAP) through casein kinase 18 (CK18) and E3 ubiquitin ligase β-TRCP in a rat model of unilateral ureteral obstruction (UUO), thus ameliorating renal fibrosis [132]. Similar effects in a UUO model were confirmed in Liu’s study. They revealed that hUC-MSC-Exos attenuated renal fibrosis by inhibiting the ROS-mediated p38MAPK/ERK signaling pathway [133]. Likewise, Shi et al. showed that milk fat globule–epidermal growth factor–factor 8 (MFG-E8) was included in BMSC-EVs, and ameliorated renal fibrosis by blocking the RhoA/ROCK pathway in a UUO model [134]. Of interest, in a UUO mouse model, BMSC-Exos loaded miR-34c-5p inhibited core fucosylation (CF) by cd81-EGFR complex, thereby improving renal interstitial fibrosis (RIF) [135]. Correspondingly, recent studies also suggest that exosomes from ADSCs ameliorate the development of DN via miRNAs. Jin et al. used miRNA-215-5p to inhibit ZEB2 and improved diabetic nephropathy (DN) symptoms. They also revealed that upregulated expression of miR-486 could suppress the Smad1/mTOR signaling pathway in podocytes [136, 137]. MV-miR-451a from hUMSCs repressed cell cycle inhibitor P15 and P19 expression by targeting their 3’-UTR sites, thereby decreasing α-SMA and increasing e-cadherin expression. This resulted in epithelial-mesenchymal transformation (EMT) reversal and improved DN symptoms [138]. In another study of amelioration of DN, BMSC-Exos significantly enhanced the expression of LC3 and Beclin-1, and decreased the level of mTOR and fibrotic markers in a streptozotocin-induced rat model of diabetes mellitus [139]. Interestingly, Grange et al. reported that renal fibrosis and the expression of collagen I were significantly ameliorated via multiple injections of HLSCs (human liver stem-like cells) and MSC-EVs in NOD/SCID/L2Ry KO (NSG) mice. Additionally, related genes (SerpinA1a, FAS ligand, CCL3, TIMP1, MMP3, collagen I, and SNAI1) were significantly downregulated, thereby attenuating DN symptoms [140].

Lung fibrosis. Pulmonary fibrosis is a terminal change in lung disease characterized by fibroblast proliferation and accumulation of a large amount of extracellular matrix accompanied by inflammatory injury and destruction of tissue. Normal alveolar tissue is damaged and abnormal repair leads to structural abnormalities [141, 142]. The etiology in the vast majority of patients with pulmonary fibrosis is unknown [143]. Idiopathic pulmonary fibrosis (IPF) manifests mainly with pulmonary fibrotic lesions and is a serious interstitial lung disease that can lead to progressive loss of lung function. IPF has a higher mortality than...
EVs source	Target cells or tissues	Animal model	Molecular mechanism	Action effect	Ref
hADSC-Exos	–	Full-thickness skin defect model	Down-regulate TNF-α, IL-6, CD14, CD19, CD68, and C-caspase 3, up-regulate VEGF, CD31, Ki67, PCNA, filaggrin, loricrin and AQP3	Accelerate skin wound healing	[114]
hBMSC-Exos	HaCaT cells and HSFs	Full-thickness skin wounds injury model in rats	Target on TGF-β/Smad signaling pathway, but increased the expression of TGF-β3 and Smad7	Improve scar formation and promote wound healing	[115]
FDMSC-Exos	ADFs	Full-thickness dermal wound injury model	Inhibit MMP-13, ADAMTS5 and iNOS	Reinduce the expression of type II collagen, aggregan, and protected mice from joint damage	[116]
hBMSC-Exos and JMMSC-Exos	Macrophages	Skin Wound-Healing	By carrying miR-223 targeting Pknox1	Induced macrophages toward M2 polarization and promote wound healing	[117]
mag-BMSC-Exos	HUVECs and HSFs	Rat Skin Wound Model	Highly-express miR-21-5p and target SPRY2 to activating PI3K/AKT and ERK1/2 signaling pathways	Accelerate skin wound healing	[118]
hUCMSCs-EVs	HaCaT cells and HSFs	Cutaneous wound mouse model	Highly-express miR-27b p and promote the expression of JUNB and IRE1α by targeting the Itch E3 ubiquitin-protein ligase (ITCH)	Accelerate cutaneous wound healing	[119]
hUCMSC-Exos	Myofibroblast	Full-thickness skin defect mouse model	Highly-express microRNAs (miR-21, -23A, -125b and -145) repressed the TGF-β2 /SMAD2 pathway	Attenuate excess myofibroblast formation and anti-scarring	[120]
hADSC-Exos	HaCaT cells and HSFs	Wound healing of skin-injured mice	Highly-express miR-19b regulated TGF-β pathway by targeting CCL1	Promote the healing of skin wounds	[121]
hADSC-Exos	HSFs	Full-thickness skin defects in the backs of rats	Down-regulate the expression of Col1, Col3, α-SMA, IL-17RA, and P-SMaβ / P-SMaβ3, and up-regulate the level of SIP1, while overexpression miR-192-5p target inhibition of IL-17RA expression	Reduce the level of pro-fibrosis protein, improve hypertrophic scar fibrosis and accelerate wound healing	[122]
hADSC-EVs	HSFs and HMECs	–	Overexpression miR-486-5p inhibit Sp5 and elevate the CCND2 expression	Promote proliferation, migration and reduce apoptosis	[123]
hAMSC-Exos	Fibroblasts	Full-thickness skin defects in the backs of rats	Downregulation of LATS2 after overexpression of miR-135a	Increase cell migration and promote wound healing	[124]

EVs extracellular vesicles, Exos exosomes, FDMSC fetal dermal mesenchymal stem cell, hADSC human adipose-derived stem cell, hAMSC human amnion mesenchymal stem cell, hBMSC human bone mesenchymal stem cell, HMEC human microvascular endothelial cell, HSF Human skin fibroblast, hUCMSC human umbilical cord mesenchymal stem cell, JMMSC jaw bone marrow MSC.
Table 5. Summary of studies on the role of extracellular vesicles in liver fibrosis

EVs source	Target cells or tissues	Animal model	Molecular mechanism	Action effect	Ref
BMSC-Exos	Hepatic stellate cells	CCl4-induced liver fibrosis	Inhibited the expression of Wnt/β-catenin pathway, Decrease the number of KCs and the mRNA expression levels of TNF-α, IL1-β, IL-6, TGF-β, LPS, TLR4	Attenuate HSC activation and liver fibrosis	[127]
ADSC-Exos	HST-T6 cells*	NASH, liver fibrosis	Decrease the number of KCs and the mRNA expression levels of TGF-β1, Decrease the number of α-SMA, and Collagen I	Improve liver inflammation and fibrosis	[128]
hBMSC-Exos	Hepatic stellate cells	CCl4-induced liver fibrosis	Inhibited the expression of Wnt/β-catenin pathway, Decrease the number of KCs and the mRNA expression levels of TNF-α, IL1-β, IL-6, TGF-β, LPS, TLR4	Effectively alleviate liver fibrosis, Enhance the therapeutic efficacy of AMSCs in the treatment of liver fibrosis	[129]
hTMSC-EVs	Human primary hepatic stellate cells	MCT-induced rat model of pulmonary hypertension (PH), Significant amelioration of pulmonary fibrosis	MiR-486 inactivates hedgehog signaling, Attenuate HSC activation and liver fibrosis	Overexpress miR-486 inactivates hedgehog signaling in the MCT-induced rat model of pulmonary hypertension (PH), Attenuate HSC activation and liver fibrosis	[130]

*HST-T6, mouse hepatic stellate cell line.

Most tumors and is considered a tumor-like disease [142]. Recently, MSC-EVs have become an effective treatment for pulmonary fibrosis (Table 7).

BMSC-Exos exert their therapeutic effect through immunomodulation. In a mouse model, BMSC-Exos have been shown to significantly ameliorate hypoxia (HYRX)-induced bronchopulmonary dysplasia (BPD), alveolar fibrosis, and pulmonary vascular remodeling by suppressing M1 macrophage production and enhancing M2 macrophage generation [144]. Likewise, BMSC-Exos have been shown to significantly reverse fibrosis in a bleomycin-induced pulmonary fibrosis model by regulating total lung imbalance of Mφ phenotype [145]. In addition, the Wnt5a/BMP signaling pathway regulated by UC-MSC-Exos can enhance Wnt5a, Wnt1, BMPR2, BMP4, and BMP9 expression, and down-regulate that of β-catenin, Cyclin D1 and TGF-β1. In a monocrotaline (MCT)-induced rat model of pulmonary hypertension (PH), MSC-Exos were shown to significantly ameliorate pulmonary vascular remodeling and pulmonary fibrosis [146]. Of interest, Chaubey et al. showed that UC-MSC-Exos played a therapeutic role in improving pulmonary inflammation, pulmonary simplification, pulmonary hypertension, and right ventricular hypertrophy through immunomodulatory glycoprotein TSG-6 in a neonatal BPD mouse model [147].

Additionally, MSC-EVs can reverse lung injury and pulmonary fibrosis by expressing influential miRNAs. Wan et al. determined that high expression of miR-29b-3p by BMSC-EVs ameliorated IPF by FZD6 [148]. Zhou et al. found that miR-186 enriched by BMSC-EVs repressed the expression of SOX4 and Dickkopf-1 (Dkk1), thereby effectively inhibiting fibroblast development and attenuating IPF [149]. In addition, Le’s study revealed that hPMSC-EVs could carry miR-214-3p and downregulate ATM/P53/P21 signaling, thus relieving radiation-induced lung inflammation and fibrosis [150]. In BLM-induced lung fibrosis and a mouse model of alveolar epithelial cell damage, exosomes secreted from MenSCs (MenSCs-Exos) have been shown to ameliorate pulmonary fibrosis by transferring miRNA Let-7 to suppress reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, and activation of NLRP3 inammasome [151]. Similarly, Xiao et al. used another LP5-induced Acute Lung Injury (ALI) mouse model and demonstrated that MSC-Exos repressed NF-κB and hedgehog pathways by transporting miR-23a-3p and miR-182-5p, thereby improving lung injury and fibrosis [152].

CHALLENGES AND APPLICATION OF MSC-EVS AS AN ADVANCED THERAPY

Although MSC-EV-based therapy holds great promise as a novel “cell-free” therapeutic product, there remain many challenges to overcome prior to their clinical application. At present, several limitations restrict the clinical translation of MSC-EVs including the discrepancies in the components of EVs from various sources and the lack of standard operation processes for largescale production, both of which largely depend on quality control of the sources of EVs. It is plausible to overcome these hurdles by introducing a strategy to control the quality of MSCs from the original source of EVs.

The quality of MSC-derived EVs from different groups and batches is heterogeneous

MSCs are most commonly derived from bone marrow, fat, umbilical cord and other tissues, but maintaining consistent quality of MSCs and their EVs from different sources and across batches is difficult. This severely restricts the quality control and management of MSCs and their EVs as drugs, and increases the problem of drug resistance [153]. This results in limited reproducibility of functional measurements in vitro and in vivo [154].
Table 6. Summary of studies on the role of extracellular vesicles in kidney fibrosis.

EVs source	Target cells or tissues	Animal model	Molecular mechanism	Action effect	Ref.
δhUC-MSC-Exos	Kidney tissue	UUO	Through CK1/βfi-TRCP inhibited YAP activity	Ameliorate renal fibrosis	[132]
hUC-MSC-Exos	Renal tubular epithelial cells		Inhibit RhoA/ROCK pathway	Ameliorate renal fibrosis	[133]
BMSC-EVs	HK-2 cells	UUO	Inhibit RhoA/ROCK pathway	Ameliorate renal fibrosis	[134]
ADSCs-Exos	Podocyte, Spontaneous diabetes mice		Enhance the expression of miR-486, inhibit of Smad1/mTOR signaling pathway	Ameliorate DN symptoms	[137]
BMSC-EVs	Renal tissue	Streptozotocin-induced diabetes mellitus rat	Enhance the expression of LC3, Beclin-1 and decrease the level of mTOR and fibrotic marker	Ameliorate renal fibrosis and the expression of collagen I, attenuate DN symptom	[140]
hBMSC-EVs	Glomerulus	NOD/SCID/IL2RγKO (NSG) mice	Downregulate Serpina1a, FAS ligand, CCL3, TIMP1, MMP3, collagen I and SNAI1	Ameliorate renal fibrosis and the expression of collagen I, attenuate DN symptom	[140]

*HK-2, human proximal tubular epithelial cell line.

In the angiogenesis study, BMSC-, ADSC-, and UCBMSC-derived EVs were compared and found to reduce myocardial apoptosis, facilitate angiogenesis, and improve cardiovascular function. Notably, EVs from ADSCs stimulated cardioprotection factors VEGF, bFGF, and HGF [155]. In addition, BMSC-derived EVs appeared to have a greater angiogenic potential than ADSC-derived EVs when compared in two independent ischemic model studies, with an approximately 4-fold increase in endothelial cell numbers compared with controls, and a 1.5-fold change in the latter [156, 157]. Nonetheless, another study showed that EVs from endometrial mesenchymal stem cells resulted in a greater level of angiogenesis than EVs from BMSCs or ADMSCs [158].

In studies of osteogenesis studies, in two separate rat skull defect studies, BMSC-EV treatment increased bone volume four-fold relative to the control group [159], while ADSC-EV increased bone volume by about 1.33 times [160]. In other studies, BMSC- and ADSC-derived EVs accelerated chondrocyte proliferation, migration, and osteogenic differentiation [161, 162].

Comparison of the immunomodulatory differences of MSC-derived EVs from different sources revealed that BMSC-EVs and ADSC-EVs could induce M2 polarization of macrophages in vivo and in vitro [163, 164]. Interestingly, in a separate experiment, Wang et al. showed that BMSC-EVs prompted a significant (3.2-fold) increase in the expression of CD206 of M2-polarization marker in an acute lung injury mouse model [163]. Nonetheless Liu et al. reported that the M2 polarization ability of ADSC-EVs increased only by a factor of 1.5 in a mouse model [165].

The proliferation capacity of MSCs extracted from adult tissues was limited, and affected the largescale production of EVs

To develop MSC-EVs into commercially advanced therapeutic products (ATPs), quality assurance (QA) is required of the original material, including parental groups or cells used in the manufacture of MSCs. There remain many difficulties in mass production of EVs from adult tissues for clinical trials since proprietary MSCs have a limited number of passage times, age easily, and come at a high financial cost. In addition, their heterogenicity makes traditional cell culture inefficient in terms of time and cost.

MSCs derived from pluripotent stem cells overcome the problems of mass production of MSC-EVs and quality heterogeneity

The original source MSCs requires good, consistent, and controllable quality, with a strong ability to proliferate and to secrete large numbers of EVs. To achieve this, we established an induction system of MSCs using pluripotent stem cells to overcome the problems of mass production of MSC-EVs and variation in quality. We successfully induced MSCs from pluripotent stem cells (PSC) [166–170]. Compared with MSCs extracted from traditional sources, our MSCs were derived from the same parent PSCs, consequently overcoming the problem of EV heterogeneity when MSCs from a variety of sources are used. Recently, GMP-grade MSCs derived from human PSCs (hPSC) have been used in clinical trials for refractory graft-versus-host disease (GVHD) [171]. The therapeutic potential of MSC-EVs has been shown in preclinical studies of both acute GVHD (aGVHD) [172–174] and chronic GVHD (cGVHD) [175] models. The preliminary benefits of hPSC-MSC-EVs have been reported in a patient with cutaneous cGVHD. The stiffening and dryness of skin were improved significantly after intravenous injection of hPSC-MSC-EVs [176]. Based on the preliminary efficacy and safety profiles, a phase 1 study has been launched to evaluate the safety and efficacy of BM-MSC-derived EVs in patients with acute or chronic rejection following abdominal solid organ transplantation (NCT05215288, Table 1). It is plausible that hPSC-MSC-derived EVs will promote the clinical translation of MSC-EVs owing to the
quality control and largescale productive advantages of hPSC-MSCs compared with traditional MSC. hPSC-MSCs have more passages (more than 30 generations), strong amplification ability, can withstand senescence [166, 167, 170], and have strong secretion ability (including cytokines and exosomes) [168] compared with the traditional MSCs. Nonetheless, the passage times of traditional MSCs are generally less than 10 generations, and the proliferation and differentiation abilities of MSCs are reduced after numerous passages in culture, and affects the secretion of extracellular vesicles. Therefore, our hPSC-MSCs have great advantages for large-scale production and cost control of EVs. Mass production of MSCs and their EVs is now possible using bioreactors and microcarriers to maximize MSC growth and EV release per unit surface area. We evaluated mesenchymal stem cells from different sources and found that PSC-MSCs had the highest EV production. To optimize EV production, we acquired hPSC-MSCs in a scalable cell factory-based culture and were able to overcome the major obstacles during transformation of MSC-EVs into ATPs.

CONCLUSIONS AND FUTURE PERSPECTIVE
Extracellular vesicles derived from mesenchymal stem cells play a critical role in the development of immune regulation and regeneration. These EVs mimic the effects of stem cells and perform powerful functions by modulating immune pathways, promoting effector cell migration and proliferation, and reducing apoptosis. To date, 15 clinical trials have been registered in ClinicalTrials.gov, but none of them has been completed. Although EVs compared with MSC cell therapy incite a lower immune response and have a higher safety profile, there remain challenges to their clinical application [56]. In addition, the successful application of EVs depends on low cost for mass production, as well as improved separation efficiency and more accurate characterization methods. This review has discussed the therapeutic effects of EVs based on the function of MSCs or the introduction of specific molecules (such as miRNAs and lncRNAs). As work continues, researchers are actively developing engineered EVs that are more effective and capable of targeting, through loading of bioactive molecules and surface modification. Of interest, Feng et al. developed e-polylysine-polyethylene-diesteryl phosphatidylethanolamine (PPD) to modify MSC-EVs and invert their surface charge. As a result, the steric and electrostatic hindrance of cartilage matrix were alleviated, and the efficiency of MSC-EVs in the treatment of OA was improved [177]. These treatment strategies have achieved promising results at the initial stage and provide exciting new avenues for regenerative medicine therapy.

DATA AVAILABILITY
All relevant data are included in this manuscript.

REFERENCES
1. Maphood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci. 2020;256:118002.
2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7.
3. Santamaria G, Brandi E, Vitola P, Grandi F, Ferrara G, Pischiutta F, et al. Intrasinal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death Differ. 2021;28:203–18.
4. Reagan MR, Kaplan DL. Concise review: Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells. 2011;29:920–7.
5. Uccelli A, Moretta L, Pistola V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.
6. Wiest EF, Zubaik AC. Challenges of manufacturing mesenchymal stromal cell-derived extracellular vesicles in regenerative medicine. Cytotherapy. 2020;22:606–12.
59. Yun CW, Lee SH. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease. Int J Mol Sci. 2019;20:1619.

60. Ankum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60.

61. Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells against multidrug-resistant cancer in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther. 2020;11:437.

62. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 Pneumonia. Aging Dis. 2020;11:216–28.

63. Neuhuber B, Swanger SA, Howard L, Mackay A, Fischer I. Effects of plating density and culture time on bone marrow stromal cell characteristics. Exp Hematol. 2008;36:1176–85.

64. Jeong JO, Han JW, Kim JM, Cho HJ, Park C, Lee N, et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neoplasia. Circ Res. 2011;108:1340–7.

65. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Trends Mol Med. 2010;16:203

66. van Hennik PB, de Koning AE, Ploemacher RE. Seedling efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood. 1999;94:3055–61.

67. Cui J, Wahl RL, Shen T, Fisher SJ, Recker E, Ginsburg D, et al. Bone marrow cell trafficking following intravenous administration. Br J Haematol. 1999;107:895–902.

68. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippitt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (Bone marrow transf) to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.

69. Adamo A, Dal Colla G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871:192–8.

70. Ankum J, Karp JM. Mesenchymal stem cell therapy: Two steps forward, one step back. Trends Mol Med. 2010;16:203–9.

71. Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Nat Nanotechnol. 2021;16:748

72. Adamo A, Dal Colla G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871:192–8.

73. Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell-based therapy: mechanism, systemic safety and biodistribution for immunologically active exosomes. Stem Cells Dev. 2014;23:1233

74. Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Nat Nanotechnol. 2021;16:748

75. Zhuang WZ, Lin YH, Su LJ, Wu MS, Jeng HY, Chang HC, et al. Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for immunologically active exosomes. Stem Cells Dev. 2014;23:1233

76. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Trends Mol Med. 2010;16:203

77. Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Nat Nanotechnol. 2021;16:748

78. Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell-based therapy: mechanism, systemic safety and biodistribution for immunologically active exosomes. Stem Cells Dev. 2014;23:1233

79. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Trends Mol Med. 2010;16:203

80. Adamo A, Dal Colla G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871:192–8.

81. Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell-based therapy: mechanism, systemic safety and biodistribution for immunologically active exosomes. Stem Cells Dev. 2014;23:1233

82. Adamo A, Dal Colla G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871:192–8.

83. Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell-based therapy: mechanism, systemic safety and biodistribution for immunologically active exosomes. Stem Cells Dev. 2014;23:1233

84. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2020;16:152

85. Adamo A, Dal Colla G, Bazzoni R, Krampera M. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1871:192–8.

86. Li S, Stöckl S, Lukas C, Götz J, Herrmann M, Federlin M, et al. hBMSC-derived extracellular vesicles attenuate IL-1β-induced catabolic effects on OA-chondrocytes by regulating pro-inflammatory signaling pathways. Front Bioeng Biotechnol. 2020;8:603598.

87. Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noel D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degrada-
tion in osteoarthritis. Osteoarthr Cartil. 2017;25:1621–4.

88. Ruiz M, Toupet K, Maumus R, Pajors J, Noel D. TGFβ1 secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extra-
cellular vesicles. Biomaterials. 2020;226:119544.

89. Zhang J, Rong Y, Luo C, Cui W. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polariza-
tion. Aging. 2020;12:2253–45.

90. Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells against multidrug-resistant cancer in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther. 2020;11:437.

91. Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell-based therapy: mechanism, systemic safety and biodistribution for immunologically active exosomes. Stem Cells Dev. 2014;23:1233

92. Herrmann IK, Wood MIA, Fuhrmann G. Extracellular vesicles as a next-
generation drug delivery platform. Nat Nanotechnol. 2021;16:748–59.

93. Racchetti G, Meldolesi J. Extracellular vesicles of mesenchymal stem cells: therapeutic properties discovered with extraordinary success. Biomedicines. 2019;7:567.

94. Qu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Mesenchymal stem cell-derived exosomes affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9:320.

95. Gardner-Minassian S, Lorenzoni MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics. 2020;10:5979–97.

96. Wu H, Zhou X, Wang X, Cheng W, Hu X, Wang Y, et al. mir-34a in extracellular vesicles of bone marrow mesenchymal stem cells reduces rheumatoid arthritis inflammation via the cyclin I/ATM/ATR/p53 axis. J Cell Mol Med. 2021;25:1896–910.

97. Nojedehi S, Soudi U, Hesampour A, Rasouli S, Soleimani M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell-derived exosomes on experimental type-1 autoimmune diabetes. J Cell Biochem. 2018;119:9433–43.

98. Shen Z, Huang W, Li T, Tian J, Wang S, Rui K. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol. 2021;12:74912.

99. Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8:665–73.

100. Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 2018;8:906–20.
cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation. 2020;17:47.

109. Sheng Y, Zhou X, Wang J, Shen H, Wu S, Guo W, et al. MSC-derived EV loaded with miRNA-22 inhibits the inflammatory response and nerve function recovery after spinal cord injury in rats. J Cell Mol Med. 2021;25:10268–78.

110. Wang Y, Lai X, Wu D, Liu B, Wang N, Long L. Umbilical mesenchymal stem cell-derived exosomes ameliorate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NFG/TrkA signaling pathway in rats. Stem Cell Res Ther. 2021;12:117.

111. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charlebois L, et al. Distinct fucosylation of multiple proteins. Mol Ther. 2021;30:763–81.

112. van Zanten MC, Mistry RM, Suami H, Campbell-Lloyd A, Finkemeyer JP, Piller NB, et al. The lysosomal response to injury with soft-tissue reconstruction in high-energy open tibial fractures of the lower extremity. Plast Reconstr Surg. 2017;139:4839–91.

113. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1336–43.

114. Zhou Y, Zhao B, Zhang XL, Lu YJ, Cheng J, et al. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther. 2021;12:257.

115. Jiang T, Wang Z, Sun J. Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediated by TGF-β/Smad signaling pathway. Stem Cell Res Ther. 2020;11:198.

116. Wang X, Jiao Y, Pan Y, Zhang L, Gong H, Qi Y, et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019;2019:420916.

117. He X, Dong Z, Cao Y, Wang H, Liu S, Liao L, et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019;2019:132708.

118. Wu D, Kang L, Tian J, Wu Y, Liu J, Li Z, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe₃O₄ nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomed. 2020;15:7979–93.

119. Cheng S, Xi Z, Chen G, Liu K, Ma R, Zhou C. Extracellular vesicle-carried microRNA-27b derived from mesenchymal stem cells accelerates cutaneous wound healing via E3 ubiquitin ligase ITCH. J Cell Mol Med. 2020;24:11254–66.

120. Lu Y, Wen H, Huang J, Liao P, Liao H, Tu J, et al. Extracellular vesicle-enclosed miR-34c-5p ameliorates RIF by inhibiting the core transcription factor of multiple proteins. Mol Ther. 2020;28:73–81.

121. Jin J, Yang X, Zhao L, Zou W, Tan M, He Q. Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial-mesenchymal transition of podocytes by inhibiting ZEB2. Biomed Res Int. 2020;2020:2685305.

122. Li Y, Zhang J, Shi J, Liu K, Wang X, Jia Y, et al. Exosomes derived from human adipose-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver kidney disease. Natl Rev Dis Prim. 2017;3:17088.

123. Lu Y, Wen H, Huang J, Liao P, Liao H, Tu J, et al. Extracellular vesicle-enclosed miR-34c-5p ameliorates RIF by inhibiting the core transcription factor of multiple proteins. Mol Ther. 2020;28:73–81.

124. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F, et al. Human bone marrow mesenchymal stem cells-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019;9:14468.

125. Spagnoli P, Distler O, Ryerson CJ, Tzouvelekis A, Lee JS, Bonella F, et al. Mechanisms of progressive fibrosis in connective tissue disease (CTD)-associated interstitial lung diseases (ILDs). Ann Rheum Dis. 2021;80:143–50.

126. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389:1941–52.

127. Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 2021;131:e143226.

128. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell-derived exosomes ameliorate diabetic nephropathy by augmentation induction of the miR-122 signaling pathway. Cells. 2018;7:2726.

129. Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived extracellular vesicles stimulate cutaneous wound healing mediates through TGF-β/Smad2/3 pathway during wound healing. Stem Cells Transl Med. 2016;5:1425–39.

130. Cao G, Chen B, Zhang X, Chen H. Human adipose-derived mesenchymal stem cell-derived extrosomal microRNA-19b promotes the healing of skin wounds through modulation of the CCL1/TGF-β signaling axis. Clin Cosmet Investig Dermatol. 2020;13:957–71.

131. Li Y, Zhang J, Shi J, Liu K, Wang X, Ya J, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad5 axis. Stem Cell Res Ther. 2021;12:221.

132. Lu Y, Wen H, Huang J, Liao P, Liao H, Tu J, et al. Extracellular vesicle-enclosed miR-34c-5p alleviates cutaneous wound healing in with adipose-derived stem cells by promoting angiogenesis. J Cell Mol Med. 2020;24:9490–604.

133. Gao S, Chen T, Hao Y, Zhang F, Tang X, Wang D, et al. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibrotic migration by directly inhibiting LAT52 expression. Stem Cell Res Ther. 2020;11:56.

134. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:452–65.

135. Rong X, Liu J, Yao X, Jiang T, Wang Y, Xie F. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10:98.

136. Ohara M, Ohnishi S, Hosono H, Yamamoto K, Yajima K, Nakamura H, et al. Exosomal miR-708 in adipose-derived mesenchymal stem cells ameliorate hepatic inflammation and fibrosis in rats. Stem Cells Int. 2018;2018:321643.

137. Ou Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21:2491–502.

138. Lou G, Yang Y, Liu F, Ye B, Chen Z, Zheng M, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J Cell Mol Med. 2017;21:2963–73.

139. Kim J, Lee C, Shin Y, Wang S, Han J, Kim M, et al. sEVs from tonsil-derived mesenchymal stem cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Mol Ther. 2021;29:1471–86.

140. Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, et al. Chronic kidney disease. Nat Rev Dis Prim. 2017;3:17088.
156. Doeppner TR, Herz J, Görgens A, Schlechter J, Ludwig AK, Radtke S, et al. Extracellular Vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4:1131–43.
157. Chen KH, Chen CH, Wallace CG, Yuen CM, Kao GS, Chen YL, et al. Intravenous administration of xenogenic adipose derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduced brain infarct volume and preserved neurological function in rat after acute ischemic stroke. Oncotarget. 2016;7:4537–56.
158. Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med. 2017;6:209–22.
159. Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6:21961.
160. Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52:e12669.
161. Narayanani R, Huang CC, Ravindran S. Hijacking the cellular mail: exosome mediated differentiation of mesenchymal. Stem Cells Stem Cells Int. 2016;2016:3808674.
162. Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One. 2019;14:e0225472.
163. Wang J, Huang R, Xu Q, Zheng G, Qiu G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Crit Care Med. 2020;48:e599–e610.
164. Li R, Zhao K, Ruan Q, Meng C, Yin F. Bone marrow mesenchymal stem cell-derived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Em1 and promoting M2 macrophage polarization. Arthritis Res Ther. 2020;22:75.
165. Liu W, Yu M, Xie D, Wang L, Ye C, Zhu Q, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:2599.
166. Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, et al. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells. 2007;25:425–36.
167. Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121:1113–23.
168. Zhang Y, Liang X, Liao S, Wang W, Wang J, Li X, et al. Potent paracrine effects of human induced pluripotent stem cell-derived mesenchymal stem cells attenuate doxorubicin-induced cardiomyopathy. Sci Rep. 2015;5:11235.
169. Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014;51:455–65.
170. Sze SK, de Klein DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteom. 2007;6:1680–9.
171. Mendt M, Daher M, Basar R, Shanley M, Kumar B, Wei Inng FL, et al. Metabolic reprogramming of GMP grade cord tissue derived mesenchymal stem cells enhances their suppressive potential in GVHD. Front Immunol. 2021;12:631353.
172. Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, et al. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. 2016;25:1874–83.
173. Dal Collo G, Adamo A, Gatti A, Tanelli E, Bazzoni R, Takam Kamga P, et al. Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host disease. Stem Cells. 2020;38:698–711.
174. Fuji S, Miura Y, Fujishiro A, Shindo T, Shimagi Y, Hirai H, et al. Graft-versus-host disease amelioration by human bone marrow mesenchymal stromal/stem cell-derived extracellular vesicles is associated with peripheral preservation of naive T cell populations. Stem Cells. 2018;36:434–45.
175. Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, et al. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol. 2018;11:135.

ACKNOWLEDGEMENTS

For the collaboration and general support, we would like to thank our colleagues from the cord blood bank centre, as well as all collaboration partners. Graphs were assembled using dynamic BioRender assets (icons, lines, shapes, and/or text).

AUTHOR CONTRIBUTIONS

KM collected the literature and wrote the manuscript. HL contributed to the revisions of the manuscript and tables for important intellectual content. YJ, CZ, CS, LJ, GL, ZX, and ZX contributed to the literature summary. XX, YX, WY, ZJ, TH, and XA contributed to reviewing and language editing. LQ conceptualized the manuscript and contributed to funding acquisition. All authors read and gave final approval for publication.

FUNDING

This study is in part supported by Start-up Grant for Stem Cell Regenerative Medicine (Guangzhou Women and Children’s Medical Centre, Grant No: 5001-4001010), and Shenzhen Science and Technology Program (JCYJ20210324114606019).

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41419-022-05034-x.

Correspondence and requests for materials should be addressed to Qizhou Lian.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.