SEMICROSSED PRODUCTS OF THE DISK ALGEBRA

KENNETH R. DAVIDSON AND ELIAS G. KATSOUlis

Abstract. If α is the endomorphism of the disk algebra, $A(D)$, induced by composition with a finite Blaschke product b, then the semicrossed product $A(D) \times_\alpha \mathbb{Z}^+$ imbeds canonically, completely isometrically into $C(T) \times_\alpha \mathbb{Z}^+$. Hence in the case of a non-constant Blaschke product b, the C^*-envelope has the form $C(S_b) \times_s \mathbb{Z}$, where (S_b, s) is the solenoid system for (T, b). In the case where b is a constant, then the C^*-envelope of $A(D) \times_\alpha \mathbb{Z}^+$ is strongly Morita equivalent to a crossed product of the form $C(S_e) \times_s \mathbb{Z}$, where $e: T \times \mathbb{N} \rightarrow T \times \mathbb{N}$ is a suitable map and (S_e, s) is the solenoid system for $(T \times \mathbb{N}, e)$.

1. Introduction

If \mathcal{A} is a unital operator algebra and α is a completely contractive endomorphism, the semicrossed product is an operator algebra $\mathcal{A} \times_\alpha \mathbb{Z}^+$ which encodes the covariant representations of (\mathcal{A}, α): namely completely contractive unital representations $\rho: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ and contractions T satisfying

$$\rho(a)T = T\rho(\alpha(a)) \text{ for all } a \in \mathcal{A}.$$

Such algebras were defined by Peters [9] when \mathcal{A} is a C^*-algebra.

One can readily extend Peter’s definition [9] of the semicrossed product of a C^*-algebra by a $*$-endomorphism to unital operator algebras and unital completely contractive endomorphisms. One forms the polynomial algebra $\mathcal{P}(\mathcal{A}, t)$ of formal polynomials of the form $p = \sum_{i=0}^{n} t^i a_i$, where $a_i \in \mathcal{A}$, with multiplication determined by the covariance relation $at = \alpha(a)t$ and the norm

$$\|p\| = \sup_{(\rho, T) \text{ covariant}} \left\| \sum_{i=0}^{n} T^i \rho(a_i) \right\|.$$

2000 Mathematics Subject Classification. 47L55.
Key words and phrases. semicrossed product, crossed product, disk algebra, C^*-envelope.

First author partially supported by an NSERC grant.
Second author was partially supported by a grant from ECU.
This supremum is clearly dominated by $\sum_{i=0}^n \|a_i\|$; so this norm is well defined. The completion is the semicrossed product $A \times_\alpha \mathbb{Z}_+$. Since this is the supremum of operator algebra norms, it is also an operator algebra norm. By construction, for each covariant representation (ρ, T), there is a unique completely contractive representation $\rho \times T$ of $A \times_\alpha \mathbb{Z}_+$ into $\mathcal{B}(\mathcal{H})$ given by

$$\rho \times T(p) = \sum_{i=0}^n T^i \rho(a_i).$$

This is the defining property of the semicrossed product.

In this note, we examine semicrossed products of the disk algebra by an endomorphism which extends to a $*$-endomorphism of $C(T)$. In the case where the endomorphism is injective, these have the form $\alpha(f) = f \circ b$ where b is a non-constant Blaschke product. We show that every covariant representation of $(A(D), \alpha)$ dilates to a covariant representation of $(C(T), \alpha)$. This is readily dilated to a covariant representation (σ, V), where σ is a $*$-representation of $C(T)$ (so $\sigma(z)$ is unitary) and V is an isometry. To go further, we use the recent work of Kakariadis and Katsoulis [6] to show that $C(T) \times_\alpha \mathbb{Z}^+$ imbeds completely isometrically into a C*-crossed product $C(S_b) \times_\alpha \mathbb{Z}$. In fact, $C_e^*(C(T) \times_\alpha \mathbb{Z}^+) = C(S_b) \times_\alpha \mathbb{Z}$ and as a consequence, we obtain that (ρ, T) dilates to a covariant representation (τ, W), where τ is a $*$-representation of $C(T)$ (so $\tau(z)$ is unitary) and W is a unitary.

In contrast, if α is induced by a constant Blaschke product, we can no longer identify $C_e^*(C(T) \times_\alpha \mathbb{Z}^+)$ up to isomorphism. In that case, α is evaluation at a boundary point. Even though every covariant representation of $(A(D), \alpha)$ dilates to a covariant representation of $(C(T), \alpha)$, the theory of [6] is not directly applicable since α is not injective. Instead, we use the process of “adding tails to C*-correspondences” [8], as modified in [3, 7] and we identify $C_e^*(C(T) \times_\alpha \mathbb{Z}^+)$ up to strong Morita equivalence as a crossed product. In Theorem 2.6 we show that $C_e^*(C(T) \times_\alpha \mathbb{Z}^+)$ is strongly Morita equivalent to a C*-algebra of the form $C(S_e) \times_s \mathbb{Z}$, where $e: T \times \mathbb{N} \to T \times \mathbb{N}$ is a suitable map and (S_e, s) is the solenoid system for $(T \times \mathbb{N}, e)$.

Semi-crossed products of the the disc algebra were introduced and first studied by Buske and Peters in [1], following relevant work of Hoover, Peters and Wogen [5]. The algebras $A(D) \times_\alpha \mathbb{Z}^+$, where α is an arbitrary endomorphism, where classified up to algebraic endomorphism in [2]. Results associated with their C*-envelope can be found in [1, Proposition III.13] and [10, Theorem 2]. The results of the present paper subsume and extend these earlier results.
2. The Disk Algebra

The C*-envelope of the disk algebra $A(D)$ is $C(T)$, the space of continuous functions on the unit circle. Suppose that α is an endomorphism of $C(T)$ which leaves $A(D)$ invariant. We refer to the restriction of α to $A(D)$ as α as well. Then $b = \alpha(z) \in A(D)$; and has spectrum $\sigma_{A(D)}(b) \subset \overline{D}$ and $\sigma_{C(T)}(b) \subset \sigma_{C(T)}(z) = T$.

Thus $\|b\| = 1$ and $b(T) \subset T$. It follows that b is a finite Blaschke product. Therefore $\alpha(f) = f \circ b$ for all $f \in C(T)$. When b is not constant, α is completely isometric.

A (completely) contractive representation ρ of $A(D)$ is determined by $\rho(z) = A$, which must be a contraction. The converse follows from the matrix von Neumann inequality; and shows that $\rho(f) = f(A)$ is a complete contraction. A covariant representation of $(A(D), \alpha)$ is thus determined by a pair of contractions (A, T) such that $AT = Tb(A)$. The representation of $A(D) \times_\alpha \mathbb{Z}^+$ is given by

$$\rho \times T \left(\sum_{i=0}^{n} t^i f_i \right) = \sum_{i=0}^{n} T^i f_i(A),$$

which extends to a completely contractive representation of the semicrossed product by the universal property.

A contractive representation σ of $C(T)$ is a $*$-representation, and is likewise determined by $U = \sigma(z)$, which must be unitary; and all unitary operators yield such a representation by the functional calculus. A covariant representation of $(C(T), \alpha)$ is given by a pair (U, T) where U is unitary and T is a contraction satisfying $UT = Tb(U)$. To see this, multiply on the left by U^* and on the right by $b(U)^*$ to obtain the identity

$$U^*T = Tb(U)^* = T\overline{b}(U) = T\alpha(\bar{z})(U).$$

The set of functions $\{ f \in C(T) : f(U)T = T\alpha(f)(U) \}$ is easily seen to be a norm closed algebra. Since it contains z and \bar{z}, it is all of $C(T)$. So the covariance relation holds.

Theorem 2.1. Let b be a finite Blaschke product, and let $\alpha(f) = f \circ b$. Then $A(D) \times_\alpha \mathbb{Z}^+$ is (canonically completely isometrically isomorphic to) a subalgebra of $C(T) \times_\alpha \mathbb{Z}^+$.

Proof. To establish that $A(D) \times_\alpha \mathbb{Z}^+$ is completely isometric to a subalgebra of $C(T) \times_\alpha \mathbb{Z}^+$, it suffices to show that each (A, T) with $AT = Tb(A)$ has a dilation to a pair (U, S) with U unitary and S a contraction such that $US = Sb(U)$ and $P_H S^n U^m |_H = T^n A^m$ for all $n, m \in \mathbb{Z}$.

$m, n \geq 0$. This latter condition is equivalent to \mathcal{H} being semi-invariant for the algebra generated by U and S.

The covariance relation can be restated as

$$\begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix} \begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix}$$

Dilate A to a unitary U which leaves \mathcal{H} semi-invariant. Then $\begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix}$ dilates to $\begin{bmatrix} U & 0 \\ 0 & b(U) \end{bmatrix}$. By the Sz.Nagy-Foiaş Commutant Lifting Theorem, we may dilate $\begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix}$ to a contraction of the form $\begin{bmatrix} \ast & S \\ \ast & \ast \end{bmatrix}$ which commutes with $\begin{bmatrix} U & 0 \\ 0 & \alpha(U) \end{bmatrix}$ and has $\mathcal{H} \oplus \mathcal{H}$ as a common semi-invariant subspace. Clearly, we may take the \ast entries to all equal 0 without changing things. So (U, S) satisfies the same covariance relations $US = Sb(U)$.

Therefore we have obtained a dilation to the covariance relations for $(C(\mathcal{T}), \alpha)$.

Once we have a covariance relation for $(C(\mathcal{T}), \alpha)$, we can try to dilate further. Extending S to an isometry V follows a well-known path. Observe that

$$b(U)S^*S = S^*US = S^*Sb(U).$$

Thus $D = (I - S^*S)^{1/2}$ commutes with $b(U)$. Write $b^{(n)}$ for the composition of b with itself n times, Hence we can now use the standard Schaeffer dilation of S to an isometry V and simultaneously dilate U to U_1 as follows:

$$V = \begin{bmatrix} S & 0 & 0 & 0 & \ldots \\ D & 0 & 0 & 0 & \ldots \\ 0 & I & 0 & 0 & \ldots \\ 0 & 0 & I & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix} \quad \text{and} \quad U_1 = \begin{bmatrix} U & 0 & 0 & 0 & \ldots \\ 0 & b(U_1) & 0 & 0 & \ldots \\ 0 & 0 & b^{(2)}(U_1) & 0 & \ldots \\ 0 & 0 & 0 & b^{(3)}(U_1) & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

A simple calculation shows that $U_1V = Vb(U_1)$. So as above, (U, V) satisfies the covariance relations for $(C(\mathcal{T}), \alpha)$.

We would like to make V a unitary as well. This is possible in the case where b is non-constant, but the explicit construction is not obvious. Instead, we use the theory of C^*-envelopes and maximal dilations. First we need the following.

Lemma 2.2. Let b be a finite Blaschke product, and let $\alpha(f) = f \circ b$. Then

$$\text{C}^*_e(A(\mathcal{D}) \times_{\alpha} \mathbb{Z}^+) \simeq \text{C}^*_e(C(\mathcal{T}) \times_{\alpha} \mathbb{Z}^+).$$
Proof. The previous Theorem identifies $A(D) \times_\alpha \mathbb{Z}^+$ completely isometrically as a subalgebra of $C(T) \times_\alpha \mathbb{Z}^+$. The C*-envelope C of $C(T) \times_\alpha \mathbb{Z}^+$ is a Cuntz-Pimsner algebra containing a copy of $C(T)$ which is invariant under gauge actions. Now C is a C*-cover of $C(T) \times_\alpha \mathbb{Z}^+$, so it is easy to see that it is also a C*-cover of $A(D) \times_\alpha \mathbb{Z}^+$. Since $A(D) \times_\alpha \mathbb{Z}^+$ is invariant under the same gauge actions, its Shilov ideal $J \subseteq C$ will be invariant by these actions as well. If $J \neq 0$ then by gauge invariance $J \cap C(T) \neq 0$. Since the quotient map $A(D) \rightarrow C(T)/J \cap C(T)$ is completely isometric, we obtain a contradiction. Hence $J = 0$ and the conclusion follows.

We now recall some of the theory of semicrossed products of C*-algebras. When A is a C*-algebra, the completely isometric endomorphisms are the faithful \ast-endomorphisms. In this case, Peters shows [9, Prop.I.8] that there is a unique C*-algebra B, a \ast-automorphism β of B and an injection j of A into B so that $\beta \circ j = j \alpha$ and B is the closure of $\bigcup_{n \geq 0} \beta^{-n}(j(A))$. It follows [9, Prop.II.4] that $A \times_\alpha \mathbb{Z}^+$ is completely isometrically isomorphic to the subalgebra of the crossed product algebra $B \times_\beta \mathbb{Z}$ generated as a non-self-adjoint algebra by an isomorphic copy $j(A)$ of A and the unitary u implementing β in the crossed product. Actually, Kakariadis and the second author [6, Thm.2.5] show that $B \times_\beta \mathbb{Z}$ is the C*-envelope of $A \times_\alpha \mathbb{Z}^+$.

In the case where $A = C(X)$ is commutative and α is induced by an injective self-map of X, the pair (B, β) has an alternative description.

Definition 2.3. Let X be a Hausdorff space and φ a surjective self-map of X. We define the solenoid system of (X, φ) to be the pair (S_φ, s), where

$$S_\varphi = \{(x_n)_{n \geq 1} : x_n = \varphi(x_{n+1}), x_n \in X, n \geq 1\}$$

equipped with the relative topology inherited from the product topology on $\prod_{i=1}^{\infty} X_i$, $X_i = X$, $i = 1, 2, \ldots$, and s is the backward shift on S_φ.

It is easy to see that in the case where $A = C(X)$ and α is induced by an injective self-map φ of X, the pair (B, β) for (A, α) described above, is conjugate to the solenoid system (S_φ, s). Therefore, we obtain

Corollary 2.4. Let b be a non-constant finite Blaschke product, and let $\alpha(f) = f \circ b$ on $C(T)$. Then

$$C^*_e(A(D) \times_\alpha \mathbb{Z}^+) = C^*_e(C(S_b) \times_s \mathbb{Z})$$

where (S_b, s) is the solenoid system of (T, b).
It is worth restating this theorem as a dilation result.

Corollary 2.5. Let \(\alpha \) be an endomorphism of \(A(D) \) induced by a non-constant finite Blaschke product and let \(A, T \in \mathcal{B}(H) \) be contractions satisfying \(AT = T\alpha(A) \). Then there exist unitary operators \(U \) and \(W \) on a Hilbert space \(K \supset H \) which simultaneously dilate \(A \) and \(T \), in the sense that \(P_H W^m U^n |_H = T^m A^n \) for all \(m, n \geq 0 \), so that \(UW = W\alpha(U) \).

Proof. Every covariant representation \((A, T) \) of \((A(D), \alpha) \) dilates to a covariant representation \((U_1, V) \) of \((C(T), \alpha) \). This in turn dilates to a maximal dilation \(\tau \) of \(C(T) \times \alpha \mathbb{Z}^+ \), in the sense of Dritschel and McCullough [4]. The maximal dilations extend to \(* \)-representations of the \(C^* \)-envelope. Then \(A \) is dilated to \(\tau(j(z)) = U \) is unitary and \(T \) dilates to the unitary \(W \) which implements the automorphism \(\beta \) on \(\mathfrak{B} \), and restricts to the action of \(\alpha \) on \(C(T) \).

The situation changes when we move to non-injective endomorphisms \(\alpha \) of \(A(D) \). Indeed, let \(\lambda \in T \) and consider the endomorphism \(\alpha_\lambda \) of \(A(D) \) induced by evaluation on \(\lambda \), i.e., \(\alpha_\lambda(f)(z) = f(\lambda) \), \(\forall z \in D \). (Thus \(\alpha_\lambda \) is the endomorphism of \(A(D) \) corresponding to a constant Blaschke product.) If two contractions \(A, T \) satisfy \(AT = T\alpha_\lambda(A) = \lambda T \), then the existence of unitary operators \(U, W \), dilating \(A \) and \(T \) respectively, implies that \(A = \lambda I \). It is easy to construct a pair \(A, T \) satisfying \(AT = \lambda T \) and yet \(A \neq \lambda I \). This shows that the analogue Corollary 2.5 fails for \(\alpha = \alpha_\lambda \) and therefore one does not expect \(C^*_e(A(D) \times \alpha \mathbb{Z}^+) \) to be isomorphic to the crossed product of a commutative \(C^* \)-algebra, at least under canonical identifications. However as we have seen, a weakening of Corollary 2.5 is valid for \(\alpha = \alpha_\lambda \) if one allows \(W \) to be an isometry instead of a unitary operator. In addition, we can identify \(C^*_e(A(D) \times \alpha \mathbb{Z}^+) \) as being strongly Morita equivalent to a crossed product \(C^* \)-algebra. Indeed, if

\[
e: T \times \mathbb{N} \to T \times \mathbb{N}
\]

is defined as

\[
e(z, n) = \begin{cases} (1, 1) & \text{if } n = 1 \\ (z, n - 1) & \text{otherwise,} \end{cases}
\]

then

Theorem 2.6. Let \(\alpha = \alpha_\lambda \) be an endomorphism of \(A(D) \) induced by evaluation at a point \(\lambda \in T \). Then \(C^*_e(A(D) \times \alpha \mathbb{Z}^+) \) is strongly Morita equivalent to \(C(S_e) \times_s \mathbb{Z} \), where \(e: T \times \mathbb{N} \to T \times \mathbb{N} \) is defined above and \((S_e, s) \) is the solenoid system of \((T \times \mathbb{N}, e) \).
Proof. In light of Lemma 2.2 it suffices to identify the C*-envelope of \(C(T) \times_\alpha Z^+ \). As \(\alpha \) is no longer an injective endomorphism of \(C(T) \), we invoke the process of adding tails to C*-correspondences [8], as modified in [3, 7].

Indeed, [7, Example 4.3] implies that the C*-envelope of the tensor algebra associated with the dynamical system \((C(T), \alpha) \) is strongly Morita equivalent to the Cuntz-Pimsner algebra associated with the injective dynamical system \((T \times \mathbb{N}, e) \) defined above. Therefore by invoking the solenoid system of \((T \times \mathbb{N}, e) \), the conclusion follows from the discussion following Lemma 2.2.

References

[1] D. Buske and J. Peters, Semicrossed products of the disk algebra: contractive representations and maximal ideals, Pacific J. Math. 185 (1998), 97–113.
[2] K. Davidson, E. Katsoulis, Isomorphisms between topological conjugacy algebras, J. reine angew. Math. 621 (2008), 29–51.
[3] K. Davidson and J. Roydor, C*-envelopes of tensor algebras for multivariable dynamics, Proc. Edinb. Math. J. 53 (2010), 333-351.
[4] M. Dritschel and S. McCullough, Boundary representations for families of representations of operator algebras and spaces, J. Operator Theory 53 (2005), 159–167.
[5] T. Hoover, J. Peters and W. Wogen, Spectral properties of semicrossed products, Houston J. Math. 19 (1993), 649–660.
[6] E. Kakariadis and E. Katsoulis, Semicrossed products of operator algebras and their C*-envelopes, manuscript.
[7] E. Kakariadis and E. Katsoulis, Contributions to the theory of C*-correspondences with applications to multivariable dynamics, manuscript.
[8] P. S. Muhly, M. Tomforde, Adding tails to C*-correspondences, Doc. Math. 9 (2004), 79–106.
[9] J. Peters, Semicrossed products of C*-algebras, J. Funct. Anal. 59 (1984), 498–534.
[10] S. Power, Completely contractive representations for some doubly generated antisymmetric operator algebras, Proc. Amer. Math. Soc. 126 (1998), 2355–2359.

Pure Mathematics Department, University of Waterloo, Waterloo, ON N2L–3G1, CANADA
E-mail address: krdavids@uwaterloo.ca

Department of Mathematics, University of Athens, 15784 Athens, GREECE
Alternate address: Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
E-mail address: katsoulise@ecu.edu