BOUNDS FOR THE SECOND HANKEL DETERMINANT OF CERTAIN BI-UNIVALENT FUNCTIONS

H. ORHAN, N. MAGESH AND J. YAMINI

ABSTRACT. In the present work, we propose to investigate the second Hankel determinant inequalities for certain class of analytic and bi-univalent functions. Some interesting applications of the results presented here are also discussed.

2010 Mathematics Subject Classification: 30C45.

Keywords and Phrases: Bi-univalent functions, bi-starlike, bi-Bazilevič, second Hankel determinant.

1. Introduction

Let \(A\) denote the class of functions of the form

\[
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the open unit disc \(U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}\). Further, by \(S\) we will show the family of all functions in \(A\) which are univalent in \(U\).

Some of the important and well-investigated subclasses of the univalent function class \(S\) include (for example) the class \(S^*(\beta)\) of starlike functions of order \(\beta\) in \(U\) and the class \(K(\beta)\) of convex functions of order \(\beta\) in \(U\). By definition, we have

\[
 S^*(\beta) := \left\{ f : f \in A \text{ and } \Re \left(\frac{zf'(z)}{f(z)} \right) > \beta; \; z \in U; \; 0 \leq \beta < 1 \right\}
\]

and

\[
 K(\beta) := \left\{ f : f \in A \text{ and } \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \beta; \; z \in U; \; 0 \leq \beta < 1 \right\}.
\]

The arithmetic means of some functions and expressions is very frequently used in mathematics, specially in geometric function theory. Making use of the arithmetic means Mocanu \[22\] introduced the class of \(\alpha\)-convex (\(0 \leq \alpha \leq 1\)) functions (later called as Mocanu-convex functions) as follows:

\[
 \mathcal{M}(\alpha) := \left\{ f : f \in S \text{ and } \Re \left((1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right) > 0; \; z \in U \right\}.
\]

In \[21\], it was shown that if the above analytical criteria holds for \(z \in U\), then \(f\) is in the class of starlike functions \(S^*(0)\) for \(\alpha\) real and is in the class of convex functions \(K(0)\) for \(\alpha \geq 1\). In general, the class of \(\alpha\)-convex functions determines the arithmetic bridge between starlikeness and convexity.

It is well known that every function \(f \in S\) has an inverse \(f^{-1}\), defined by

\[
 f^{-1}(f(z)) = z \quad (z \in U)
\]

The present investigation of the second-named author was supported by UGC under the grant F.MRP-3977/11 (MRP/UGC-SERO).
where
\[f(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \ldots. \]

A function \(f \in A \) is said to be bi-univalent in \(U \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(U \). Let \(\sigma \) denote the class of bi-univalent functions in \(U \) given by (1.1).

For \(0 \leq \beta < 1 \), a function \(f \in \sigma \) is in the class \(S^*_\sigma(\beta) \) of bi-starlike function of order \(\beta \), or \(K_{\sigma,\beta} \) of bi-convex function of order \(\beta \) if both \(f \) and \(f^{-1} \) are respectively starlike or convex functions of order \(\beta \). Also, a function \(f \) is in the class \(M^*_\alpha(\beta) \) of bi-Mocanu convex function of order \(\beta \) if both \(f \) and \(f^{-1} \) are respectively Mocanu convex function of order \(\beta \).

For a brief history and interesting examples of functions which are in (or which are not in) the class \(\sigma \), together with various other properties of the bi-univalent function class \(\sigma \) one can refer the work of Srivastava et al. [26] and references therein. Various subclasses of the bi-univalent function class \(\sigma \) were introduced and non-sharp estimates on the first two coefficients \(|a_2| \) and \(|a_3| \) in the Taylor-Maclaurin series expansion (1.1) were found in several recent investigations (see, for example, [2, 7, 10, 16, 19, 23]). However, the problem to find the coefficient bounds on \(|a_n| \) \((n = 3, 4, \ldots)\) for functions \(f \in \sigma \) is still an open problem.

For integers \(n \geq 1 \) and \(q \geq 1 \), the \(q \)-th Hankel determinant, defined as
\[
H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q-1} \\
 a_{n+1} & a_{n+2} & \cdots & a_{n+q-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+q-1} & a_{n+q-2} & \cdots & a_{n+2q-2}
\end{vmatrix} \quad (a_1 = 1).
\]

The Hankel determinant plays an important role in the study of singularities (see [8]). This is also an important in the study of power series with integral coefficients [4, 8]. The properties of the Hankel determinants can be found in [27]. The Hankel determinants \(H_2(1) = a_3 - a_2^2 \) and \(H_2(2) = a_2a_4 - a_3^2 \) are well-known as Fekete-Szegő and second Fekete-Szegő functional respectively. Further Fekete and Szegő [9] introduced the generalized functional \(a_3 - \delta a_2^2 \), where \(\delta \) is some real number. In 1969, Keogh and Merkes [14] discussed the Fekete-Szegő problem for the classes \(S^* \) and \(K \). Recently, several authors have investigated upper bounds for the Hankel determinant of functions belonging to various subclasses of univalent functions [1, 6, 13, 15, 17, 18] and the references therein. On the other hand, Zaprawa [28, 29] extended the study on Fekete-Szegő problem for certain subclasses of bi-univalent function class \(\sigma \). Following Zaprawa [28, 29], the Fekete-Szegő problem for functions belonging to various other subclasses of bi-univalent functions were considered in [3, 12, 20]. Very recently, the upper bounds of \(H_2(2) \) for the classes \(S^*_\sigma(\beta) \) and \(K_{\sigma,\beta} \) were discussed by Deniz et al. [7].

Next we state the following lemmas we shall use to establish the desired bounds in our study.

Lemma 1.1. [24] If the function \(p \in \mathcal{P} \) is given by the series
\[
p(z) = 1 + c_1z + c_2z^2 + c_3z^3 + \cdots,
\]
then the following sharp estimate holds:

\[|c_k| \leq 2, \quad k = 1, 2, \ldots. \]

Lemma 1.2. [11] If the function \(p \in \mathcal{P} \) is given by the series (1.3), then

\[
\begin{align*}
2c_2 &= c_1^2 + x(4 - c_1^2) \\
4c_3 &= c_3^2 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z
\end{align*}
\]

for some \(x, z \) with \(|x| \leq 1 \) and \(|z| \leq 1 \).

Inspired by the works of [7, 28] we consider the following subclass of the function class \(\sigma \).

For \(0 \leq \alpha \leq 1 \) and \(0 \leq \beta < 1 \), a function \(f \in \sigma \) given by (1.1) is said to be in the class \(\mathcal{M}_\sigma^\alpha(\beta) \) if the following conditions are satisfied:

\[
\Re \left((1 - \alpha) \frac{zf''(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right) \geq \beta \quad (z \in \mathbb{U})
\]

and for \(g = f^{-1} \)

\[
\Re \left((1 - \alpha) \frac{wg''(w)}{g(w)} + \alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) \right) \geq \beta \quad (w \in \mathbb{U}).
\]

The class was introduced and studied by Li and Wang [16], further the study was extended by Ali et al. [2]. In this paper we shall obtain the functional \(H_2(2) \) for functions \(f \) belongs to the class \(\mathcal{M}_\sigma^\alpha(\beta) \) and its special classes.

2. Bounds for the second Hankel determinant

We begin this section with the following theorem:

Theorem 2.1. Let \(f \) of the form (1.1) be in \(\mathcal{M}_\sigma^\alpha(\beta) \). Then

\[
|a_2a_4 - a_3^2| \leq \begin{cases}
\frac{4(1-\beta)^2}{3(1+\alpha)^3(1+3\alpha)} \left[4(1 - \beta)^2 + (1 + \alpha)^2 \right] ; & \\
\beta \in \left[0, 1 - \frac{(1+\alpha)[3(1+3\alpha)+\sqrt{9(1+3\alpha)^2-48(1+\alpha)(1+3\alpha)+128(1+2\alpha)^2}]}{16(1+2\alpha)} \right] ; & \\
\frac{(1-\beta)^2}{(1+\alpha)(1+3\alpha)} \left[(1-\beta)^2(13+7\alpha)-12(1-\beta)(1+\alpha)(1+2\alpha)(1+3\alpha)-4(1+\alpha)^2(9\alpha^2+8\alpha+2) \right] ; & \\
\beta \in \left[1 - \frac{(1+\alpha)[3(1+3\alpha)+\sqrt{9(1+3\alpha)^2+128(1+2\alpha)^2}]}{32(1+2\alpha)} \right] ; &
\end{cases}
\]

Proof. Let \(f \in \mathcal{M}_\sigma^\alpha(\beta) \). Then

\[
(1 - \alpha) \frac{zf''(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) = \beta + (1 - \beta)p(z)
\]

and

\[
(1 - \alpha) \frac{wg''(w)}{g(w)} + \alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) = \beta + (1 - \beta)q(w),
\]

where \(p, q \in \mathcal{P} \) and defined by

\[
p(z) = 1 + c_1z + c_2z^2 + c_3z^3 + \ldots
\]

and

\[
q(z) = 1 + d_1w + d_2w^2 + d_3w^3 + \ldots
\]
It follows from (2.1), (2.2), (2.3) and (2.4) that

\[(1 + \alpha)a_2 = (1 - \beta)c_1 \]
\[2(1 + 2\alpha)a_3 - (1 + 3\alpha)a_2^2 = (1 - \beta)c_2 \]
\[3(1 + 3\alpha)a_4 - 3(1 + 5\alpha)a_2a_3 + (1 + 7\alpha)a_2^3 = (1 - \beta)c_3 \]

and

\[-(1 + \alpha)a_2 = (1 - \beta)d_1 \]
\[(3 + 5\alpha)a_2^2 - (2 + 4\alpha)a_3 = (1 - \beta)d_2 \]
\[(12 + 30\alpha)a_2a_3 - (10 + 22\alpha)a_2^3 - (3 + 9\alpha)a_4 = (1 - \beta)d_3. \]

From (2.5) and (2.8), we find that

\[c_1 = -d_1 \]

and

\[a_2 = \frac{1 - \beta}{1 + \alpha}c_1. \]

Now, from (2.6), (2.9) and (2.12), we have

\[a_3 = \frac{(1 - \beta)^2}{(1 + \alpha)^2}c_1^2 + \frac{1 - \beta}{4 + 8\alpha}(c_2 - d_2). \]

Also, from (2.7) and (2.10), we find that

\[a_4 = \frac{(2 + 8\alpha)(1 - \beta)^3}{(3 + 9\alpha)(1 + \alpha)^3}c_1^3 + \frac{5(1 - \beta)^2}{8(1 + \alpha)(1 + 2\alpha)}c_1(c_2 - d_2) + \frac{1 - \beta}{6(1 + 3\alpha)}(c_3 - d_3). \]

Then, we can establish that

\[|a_2a_4 - a_3^2| = \frac{-1}{3}(1 + \alpha)^3(1 + 3\alpha)(1 + 3\alpha)\ c_1^4 + \frac{(1 - \beta)^3}{8(1 + \alpha)^2(1 + 2\alpha)}c_1^2(c_2 - d_2) \]
\[+ \frac{(1 - \beta)^2}{6(1 + \alpha)(1 + 3\alpha)}c_1(c_3 - d_3) - \frac{(1 - \beta)^2}{16(1 + 2\alpha)^2}(c_2 - d_2)^2. \]

According to Lemma 1.2 and (2.11), we write

\[c_2 - d_2 = \frac{(4 - c_1^2)}{2}(x - y) \]

and

\[c_3 - d_3 = \frac{c_1^2}{2} + \frac{c_1(4 - c_1^2)(x + y)}{2} - \frac{c_1(4 - c_1^2)(x^2 + y^2)}{4} + \frac{(4 - c_1^2)(1 - |x|^2)z - (1 - |y|^2)w}{2} \]

for some \(x, y, z \) and \(w \) with \(|x| \leq 1, |y| \leq 1, |z| \leq 1 \) and \(|w| \leq 1 \). Using (2.16) and (2.17) in (2.15) we have
\[|a_2a_4 - a_3^2| = \left| \frac{-(1 - \beta)^4c_4^4}{3(1 + \alpha)^3(1 + 3\alpha)} + \frac{(1 - \beta)^3c_3^2(4 - c_1^2)(x - y)}{16(1 + \alpha)^2(1 + 2\alpha)} + \frac{(1 - \beta)^2c_1^2}{6(1 + \alpha)(1 + 3\alpha)} \times \left[\frac{c_1^2}{2} + c_1(4 - c_1^2)(x + y) - c_1(4 - c_1^2)(x^2 + y^2) \right] \right| \]

\[\leq \frac{(1 - \beta)^4}{3(1 + \alpha)^3(1 + 3\alpha)} + \frac{(1 - \beta)^2c_1^2}{12(1 + \alpha)(1 + 3\alpha)} + \frac{(1 - \beta)^2c_1(4 - c_1^2)}{6(1 + \alpha)(1 + 3\alpha)} \]

Since \(p \in \mathcal{P} \), so \(|c_1| \leq 2 \). Letting \(c_1 = c \), we may assume without restriction that \(c \in [0, 2] \). Thus, for \(\gamma_1 = |x| \leq 1 \) and \(\gamma_2 = |y| \leq 1 \), we obtain

\[|a_2a_4 - a_3^2| \leq T_1 + T_2(\gamma_1 + \gamma_2) + T_3(\gamma_2^2 + \gamma_2^2) + T_4(\gamma_1 + \gamma_2)^2 = F(\gamma_1, \gamma_2), \]

\[T_1 = T_1(c) = \frac{(1 - \beta)^4}{3(1 + \alpha)^3(1 + 3\alpha)}c^4 + \frac{(1 - \beta)^2c_1^2}{12(1 + \alpha)(1 + 3\alpha)} + \frac{(1 - \beta)^2c(4 - c^2)}{6(1 + \alpha)(1 + 3\alpha)} \geq 0 \]

\[T_2 = T_2(c) = \frac{(1 - \beta)^3c_3^2(4 - c_1^2)}{16(1 + \alpha)^2(1 + 2\alpha)} + \frac{(1 - \beta)^2c_1^2(4 - c_1^2)}{12(1 + \alpha)(1 + 3\alpha)} \geq 0 \]

\[T_3 = T_3(c) = \frac{(1 - \beta)^2c_1^2(4 - c_1^2)}{24(1 + \alpha)(1 + 3\alpha)} + \frac{(1 - \beta)^2c(4 - c^2)}{12(1 + \alpha)(1 + 3\alpha)} \leq 0 \]

\[T_4 = T_4(c) = \frac{(1 - \beta)^2(4 - c^2)^2}{64(1 + 2\alpha)^2} \geq 0 \]

Now we need to maximize \(F(\gamma_1, \gamma_2) \) in the closed square \(S := \{(\gamma_1, \gamma_2) : 0 \leq \gamma_1 \leq 1, 0 \leq \gamma_2 \leq 1\} \) for \(c \in [0, 2] \). We must investigate the maximum of \(F(\gamma_1, \gamma_2) \) according to \(c \in (0, 2) \), \(c = 0 \) and \(c = 2 \) taking into account the sign of \(F_{\gamma_1\gamma_1}, F_{\gamma_2\gamma_2} - (F_{\gamma_1\gamma_2})^2 \).

Firstly, let \(c \in (0, 2) \). Since \(T_3 < 0 \) and \(T_3 + 2T_4 > 0 \) for \(c \in (0, 2) \), we conclude that

\[F_{\gamma_1\gamma_1}, F_{\gamma_2\gamma_2} - (F_{\gamma_1\gamma_2})^2 < 0. \]

Thus, the function \(F \) cannot have a local maximum in the interior of the square \(S \).

Now, we investigate the maximum of \(F \) on the boundary of the square \(S \).

For \(\gamma_1 = 0 \) and \(0 \leq \gamma_2 \leq 1 \) (similarly \(\gamma_2 = 0 \) and \(0 \leq \gamma_1 \leq 1 \)) we obtain

\[F(0, \gamma_2) = G(\gamma_2) = T_1 + T_2\gamma_2 + (T_3 + T_4)\gamma_2^2 \]

(i) The case \(T_3 + T_4 \geq 0 \) : In this case for \(0 < \gamma_2 < 1 \) and any fixed \(c \) with \(0 < c < 2 \), it is clear that \(G'(\gamma_2) = 2(T_3 + T_4)\gamma_2 + T_2 > 0 \), that is, \(G(\gamma_2) \) is an increasing function. Hence, for fixed \(c \in (0, 2) \), the maximum of \(G(\gamma_2) \) occurs at \(\gamma_2 = 1 \) and

\[\max G(\gamma_2) = G(1) = T_1 + T_2 + T_3 + T_4. \]
(ii) The case \(T_3 + T_4 < 0 \): Since \(T_2 + 2(T_3 + T_4) \geq 0 \) for \(0 < \gamma_2 < 1 \) and any fixed \(c \) with \(0 < c < 2 \), it is clear that \(T_2 + 2(T_3 + T_4) < 2(T_3 + T_4)\gamma_2 + T_2 < T_2 \) and so \(G'(\gamma_2) > 0 \). Hence for fixed \(c \in (0, 2) \), the maximum of \(G(\gamma_2) \) occurs at \(\gamma_2 = 1 \) and

Also for \(c = 2 \) we obtain

\[
F(\gamma_1, \gamma_2) = \frac{4(1 - \beta)^2}{3(1 + \alpha)^3(1 + 3\alpha)} \left[4(1 - \beta)^2 + (1 + \alpha)^2 \right].
\]

Taking into account the value (2.18) and the cases \(i \) and \(ii \), for \(0 \leq \gamma_2 < 1 \) and any fixed \(c \) with \(0 \leq c \leq 2 \),

\[
\max G(\gamma_2) = G(1) = T_1 + T_2 + T_3 + T_4.
\]

For \(\gamma_1 = 1 \) and \(0 \leq \gamma_2 \leq 1 \) (similarly \(\gamma_2 = 1 \) and \(0 \leq \gamma_1 \leq 1 \)), we obtain

\[
F(1, \gamma_2) = H(\gamma_2) = (T_3 + T_4)\gamma_2^2 + (T_2 + 2T_4)\gamma_2 + T_1 + T_2 + T_3 + T_4.
\]

Similarly, to the above cases of \(T_3 + T_4 \), we get that

\[
\max H(\gamma_2) = H(1) = T_1 + 2T_2 + 2T_3 + 4T_4.
\]

Since \(G(1) \leq H(1) \) for \(c \in (0, 2) \), max \(F(\gamma_1, \gamma_2) = F(1, 1) \) on the boundary of the square \(S \). Thus the maximum of \(F \) occurs at \(\gamma_1 = 1 \) and \(\gamma_2 = 1 \) in the closed square \(S \).

Let \(K : (0, 2) \to \mathbb{R} \)

\[
K(c) = \max F(\gamma_1, \gamma_2) = F(1, 1) = T_1 + 2T_2 + 2T_3 + 4T_4.
\]

Substituting the values of \(T_1, T_2, T_3 \) and \(T_4 \) in the function \(K \) defined by (2.19), yields

\[
K(c) = \frac{-6(1 - \beta)(1 + \alpha)(1 + 2\alpha)(1 + 3\alpha) + (16(1 - \beta)^2(1 + 2\alpha)^2 + 8(1 + \alpha)^2(1 + 2\alpha)^2 + 3(1 + \alpha)^3(1 + 3\alpha))c^4 + 24(1 + \alpha)[(1 - \beta)(1 + 2\alpha)(1 + 3\alpha) + 2(1 + \alpha)(1 + 2\alpha)^2 - (1 + \alpha)^2(1 + 3\alpha)]c^2 + 48(1 + \alpha)^3(1 + 3\alpha)}{48(1 + \alpha)^3(1 + 2\alpha)^2(1 + 3\alpha)}.
\]

Assume that \(K(c) \) has a maximum value in an interior of \(c \in (0, 2) \), by elementary calculation, we find

\[
K'(c) = \frac{-6(1 - \beta)(1 + \alpha)(1 + 2\alpha)(1 + 3\alpha) + (16(1 - \beta)^2(1 + 2\alpha)^2 + 8(1 + \alpha)^2(1 + 2\alpha)^2 + 3(1 + \alpha)^3(1 + 3\alpha))c^3 + 24(1 + \alpha)[(1 - \beta)(1 + 2\alpha)(1 + 3\alpha) + 2(1 + \alpha)(1 + 2\alpha)^2 - (1 + \alpha)^2(1 + 3\alpha)]c}{12(1 + \alpha)^3(1 + 2\alpha)^2(1 + 3\alpha)}.
\]

After some calculations we concluded following cases:

Case 1. Let

\[
[16(1-\beta)^2(1+2\alpha)-6(1-\beta)(1+\alpha)(1+3\alpha)](1+2\alpha)+(1+\alpha)^2[3(1+\alpha)(1+3\alpha)-8(1+2\alpha)^2] \geq 0,
\]

that is,

\[
\beta \in \left[0, 1 - \frac{(1 + \alpha)[3(1 + 3\alpha) + \sqrt{9(1 + 3\alpha)^2 - 48(1 + \alpha)(1 + 3\alpha) + 128(1 + 2\alpha)^2}]}{16(1 + 2\alpha)}\right].
\]
Therefore $K'(c) > 0$ for $c \in (0, 2)$. Since K is an increasing function in the interval $(0, 2)$, maximum point of K must be on the boundary of $c \in (0, 2)$, that is, $c = 2$. Thus, we have

$$\max_{0 < c < 2} K(c) = K(2) = \frac{4(1 - \beta)^2}{3(1 + \alpha)^3(1 + 3\alpha)} \left[4(1 - \beta)^2 + (1 + \alpha)^2 \right].$$

Case 2. Let

$$[16(1 - \beta)^2(1 + 2\alpha) - 6(1 - \beta)(1 + \alpha)(1 + 3\alpha)](1 + 2\alpha) + (1 + \alpha)^2[3(1 + \alpha)(1 + 3\alpha) - 8(1 + 2\alpha)^2] < 0,$$

that is,

$$\beta \in \left[1 - \frac{(1 + \alpha)[3(1 + 3\alpha) + \sqrt{9(1 + 3\alpha)^2 - 48(1 + \alpha)(1 + 3\alpha) + 128(1 + 2\alpha)^2}]}{16(1 + 2\alpha)}, 1 \right].$$

Then $K'(c) = 0$ implies the real critical point $c_0_1 = 0$ or

$$c_0_2 = \sqrt{\frac{-12(1 + \alpha)[(1 - \beta)(1 + 2\alpha)(1 + 3\alpha) + 2(1 + \alpha)[1 + 2\alpha]^2 - (1 + \alpha)^2(1 + 3\alpha)]}{16(1 - \beta)^2(1 + 2\alpha) - 6(1 - \beta)(1 + \alpha)(1 + 3\alpha)(1 + 2\alpha) + (1 + \alpha)^2[3(1 + \alpha)(1 + 3\alpha) - 8(1 + 2\alpha)^2]}}.$$

When

$$\beta \in \left(1 - \frac{(1 + \alpha)[3(1 + 3\alpha) + \sqrt{9(1 + 3\alpha)^2 - 48(1 + \alpha)(1 + 3\alpha) + 128(1 + 2\alpha)^2}]}{16(1 + 2\alpha)}, 1 \right)$$

we observe that $c_0_2 \geq 2$, that is, c_0_2 is out of the interval $(0, 2)$. Therefore, the maximum value of $K(c)$ occurs at $c_0_1 = 0$ or $c = c_0_2$ which contradicts our assumption of having the maximum value at the interior point of $c \in (0, 2)$.

When

$$\beta \in \left(1 - \frac{(1 + \alpha)[3(1 + 3\alpha) + \sqrt{9(1 + 3\alpha)^2 + 128(1 + 2\alpha)^2}]}{32(1 + 2\alpha)}, 1 \right)$$

we observe that $c_0_2 < 2$, that is, c_0_2 is an interior of the interval $[0, 2]$. Since $K''(c_0_2) < 0$, the maximum value of $K(c)$ occurs at $c = c_0_2$. Thus, we have

$$\max_{0 < c < 2} K(c) = K(c_0_2) = \frac{(1 - \beta)^2}{(1 + \alpha)(1 + 3\alpha)} \left[(1 - \beta)^2(1 + 3\alpha) - 12(1 - \beta)(1 + \alpha)(1 + 2\alpha)(1 + 3\alpha) - 4(1 + \alpha)^2(9\alpha^2 + 8\alpha + 2) \right].$$

This completes the proof. \qed

Remark 2.2. For $\alpha = 0$ and $\alpha = 1$, Theorem 2.1 would reduce to a known results in [7, Theorem 2.1, Theorem 2.3].

REFERENCES

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, The Fekete-Szegő coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35 (2009), no. 2, 119–142, 276.

[2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344–351.

[3] A. Altinkaya and S. Yalçın, Fekete-Szegő inequalities for classes of bi-univalent functions defined by subordination, Adv. Math. Sci. J. 3 (2014), no.2, 63–71.

[4] D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963), 362–366.

[5] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27 (2013), no. 7, 1165–1171.

[6] V. K. Deekonda and R. Thoutreedy, An upper bound to the second Hankel determinant for functions in Mocanu class, Vietnam J. Math., April-2014 (On line version).
Second Hankel Determinant for Bi-Mocanu-Convex Functions

[7] E. Deniz, M. Çağlar and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order β, arXiv:1501.01682v1.

[8] P. Dienes, The Taylor series: an introduction to the theory of functions of a complex variable, Dover, New York, 1957.

[9] M. Fekete and G. Szegö, Eine Bemerkung Über Ungardere Schlichte Funktionen, J. London Math. Soc. S1-8 (1933), no. 2, 85–89.

[10] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569–1573.

[11] U. Grenander and G. Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, 1958.

[12] J. M. Jahangiri, N. Magesh and J. Yamini, Fekete-Szegö inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl. 3 (2015), no. 1, 133–140.

[13] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 13-16, 619–625.

[14] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.

[15] K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 281 (2013), 1–17.

[16] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (2012), no. 29-32, 1495–1504.

[17] G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hinkel determinant, Bull. Math. Anal. Appl. 1 (2009), no. 3, 85–89.

[18] H. Orhan, E. Deniz and D. Raducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 59 (2010), no. 1, 283–295.

[19] H. Orhan, N. Magesh and V. K. Balaji, Initial coefficient bounds for a general class of bi-univalent functions, arXiv:1303.2527v1.

[20] H. Orhan, N. Magesh and V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, arXiv:1404.0895v1.

[21] S. S. Miller, P. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554.

[22] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (24) (1969), 127–133.

[23] Z. Peng, Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Mathematica Scientia, 34B (2014), no. 1, 228–240.

[24] C. Pommerenke, Univalent functions, Vandenhoek & Ruprecht, Göttingen, 1975.

[25] S. Sivaprasad Kumar and V. Kumar, Fekete-Szegö problem for a class of analytic functions, Stud. Univ. Babeş-Bolyai Math. 58 (2013), no. 2, 181–188.

[26] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188–1192.

[27] R. Vein and P. Dale, Determinants and their applications in mathematical physics, Applied Mathematical Sciences, 134, Springer, New York, 1999.

[28] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169–178.

[29] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal. 2014, Art. ID 357480, 1–6.