SELECTION RULES FOR ^{48}Cr

Arun Kingan1, Michael Quinonez2, Xiaofei Yu1 and Larry Zamick1

1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

July 1, 2018

Abstract

In the single j shell ($f_7/2$) ^{48}Cr is the first even-even nucleus for which there are $T=0$ (isoscalar) $J=1^+$ states and $J=0^+$ $T=1$ states. These states are studied here. This nucleus, in the same model space, is midshell for both protons and neutrons. We can assign a new quantum number to all these states which involves the seniority of the protons and of the neutrons despite the fact that the seniority itself is not a good quantum number. This then leads to selection rules for electromagnetic transitions, e.g. $B(M1)$, $B(E2)$ and to vanishings of static electric moments.

1 Introduction.

In this work, we examine a nucleus which, in the single j shell model space is at midshell. The nucleus is ^{48}Cr, which can be viewed as having 4 protons and 4 neutrons in the $f_7/2$ shell or as 4 proton holes and 4 neutron holes in that same shell. We will show that there is a quantum number associated with all the states in this model space, one which involves the seniority of the protons and of the neutrons - this despite the fact that seniority itself is not conserved. The good quantum number leads to selection rules for electromagnetic transitions and static moments rules. In particular, we focus on $B(M1)$’s, $B(E2)$’s and quadrupole moments of excited states. A second point of interest is the fact that ^{48}Cr is the first even-even nucleus for which new states appear in a single j shell calculation - these are $J=1^+ T=0$ and $J=0^+ T=1$. We also perform large space calculations to see how things evolve.

Some of the points have been briefly presented in ref [1] but we here add some additional observations e.g. of new $J=0^+ T=1$ states, vanishing quadruple moments, fluctuating quantum numbers along the yrast band etc. Most important we now consider many large space calculations to be compared with the simpler ones.

2 New States in ^{48}Cr in the single j shell model space.

The nucleus ^{48}Cr is of interest for a variety of reasons. Note that in the single j shell ($f_7/2$) there are no $J=1^+ T=0$ in ^{44}Ti. There are such states in the odd-odd nucleus ^{46}V. However, the first even-even nucleus for which there are isoscalar $J=1^+$ states in the single j shell configuration is ^{48}Cr. Likewise this is the first even-even nucleus for which there are $J=0^+ T=1$ states in the single j shell. We wish to study such states in this section both in single j and the complete f-p space.

Another point of interest is that in the single j shell we are at midshell and this leads to selection rules which will be discussed in the next section.
3 Selection Rules for any N=Z Nucleus.

Before discussing selection rules specific to the midshell nucleus \(^{48}\text{Cr}\) let us consider such rules common to any N=Z nucleus. Note that in this single j model space all \(B(M1)\)'s from \(J = 1^+\) \(T = 0\) states to \(T = 0\) states vanish for all \(J_f\) (0, 1, 2). This can be explained by the fact that in the limited model space (\(\tau_{7/2}\)) the isoscalar M1 operator is proportional to \((J_p + J_n)\), total angular momentum operator. This operator, acting on a state \(|\alpha Jm\rangle\) will create a state in the same \(|\alpha J\rangle\) multiplet and thus will not induce M1 transitions to different multiplets. Also in this model space all transitions from \(1^+\) \(T = 1\) states to other \(T = 1\) states \((J_f = 0, 1, 2)\) also vanish. This is a known result which can be related to the vanishing, in an \(N = Z\) nucleus, of the Clebsch-Gordan coefficient \((1\ 1\ 0\ 0\ |10)\).

4 Selection Rules in for Midshell Nuclei: Calculations of \(B(M1)'s\) and \(B(E2)'s\) in \(^{48}\text{Cr}\).

Some of the zeros, however, are specific to \(^{48}\text{Cr}\). In the single j shell we are at midshell. The 4 protons and 4 neutrons can also be regarded as 4 proton holes and 4 neutron holes. As first noted by Escuderos, Zamick [1] and Bayman [2] and shown analytically by Neergaard [3], the quantity \(S = (-1)^{v_p + v_n}/2\) is a good quantum number, where \(v_p\) and \(v_n\) are the seniorities of the protons and neutrons respectively. With the MBZE interaction [2] the \(J = 0^+\) ground state has \(S = +1\). With the same interaction the yrast states of even \(J\) have \(S = (-1)^{J/2}\) i.e. \(S = +1\) for \(J = 0_1\), \(S = -1\) for \(J = 2_1\), and \(S = +1\) for \(J = 4_1\) etc. Along the yrast chain the \(B(E2)'s\) are large and for these we have \(S_f = -S_i\). In the single j model space the \(B(E2)'s\) for transitions in which \(S_f = S_i\) will vanish.

Since for a static electric moment, e.g. \(Q(2^+)\), the "transition" matrix element is from a state to itself there is no change of \(S\) and so this moment vanishes. However, with configuration mixing one gets a static quadrupole moment which is close to the rotational value. In ref [4] the calculated values are \(Q = -35.42\ \text{e fm}^4\) and \(B(E2,2\rightarrow0) = 312.37\ \text{e}^2\text{fm}^4\) This is consistent with the formulae of the a simple rotor model [5]:

\[
Q = |(3K^2-J(J+1))/((J+1)((2J+3))|Q_0|| B(E2,K J_1\rightarrow K J_2) = 5/(16\pi)e^2Q_0^2 <J_12K 0|J_2K|^2
\]

The respective values of \(Q_0\) are 123.97 and 125.30.

We show a brief example of the selection rules in Table I. We consider \(B(E2)'S\) from the \(J = 0_1^+\) \(S = +1\) state first two \(J = 2^+\) states. The \(2^+_1\) state has \(S = -1\) whilst the \(2^+_2\) state has, just like the \(J = 0_1^+\) ground state. We use the Shell model Code NUSHELLX of B. A. Brown and W.D.M. Rae [6].

\(J\)	Large \(Q\)	Single \(j\) \(Q\)
\(2_1\)	1225.5	452.6
\(2_2\)	2.367	0

With regards to magnetic dipole transitions it is easy to show that for \(B(M1)\) not to vanish a necessary condition is that \(S_f = S_i\) i.e. \(\Delta S = 0\). This can be easily shown by examining the wave functions of MBZE. [2]. When the M1 operator acts on a basis state \([J_p,J_n]\) it creates a state with the same \([J_p,J_n]\) (including any internal quantum numbers). We then overlap with the final state. In the latter only the component with the same \([J_p,J_n]\) will contribute. If \(D(J_p,J_n)|\) for the initial state is non-zero then the corresponding coefficient for the final state will be non zero only if \(S_f = S_i\).

We next take a casual look at magnetic dipole transitions and look for selection rules for \(B(M1)\) values. With the MBZE [2] interaction, the \(S\) values for the first 3 \(J = 0^+\) \(T = 0\) states are +1,-1 and +1 respectively whilst the only 2 \(J = 0^+\) \(T = 1\) states both have \(S = -1\). For \(J = 0^+\) \(T = 2\) all 3 states have \(S = +1\). Hence the first and third \(J = 1^+\) \(T = 1\) states will connect with all three but the second will not connect with any \(J = 0^+\) \(T = 2\) states. For the first 3 \(J = 1^+\) \(T = 0\) states the \(S\) values are -1,+1 and -1; for \(J = 1^+\) \(T = 1\) they are +1,-1, and +1; for \(J = 2^+\) \(T = 0\) they are -1,+1,+1 and finally , for \(J = 2^+\) they are -1, +1, -1.
For the lowest "special" $J = 1^+ T = 0$ state which has $S = -1$ there will be no transitions in the single j shell model space to any $T = 0$ states, and there will be non-zero $B(M1)'s$ only to the $2 J = 0^+ T = 1$ states, to the second $J = 1^+ T = 1$ state and to the first and third $J = 2^+ T = 1$ states.

The above selection rules can be obtained as easy generalizations of results for particles of one kind, as described e.g. in R.D. Lawson’s book [7] and based on early work by G. Racah [8]. See especially eq. 3.59 and the discussions that follow. It is there shown that the matrix element of the O^λ operator for particles is related to that for holes by a phase factor $(-1)^{1+\lambda+(v-v')/2}$. In that work v refers to the seniority of particles of one kind. We simply replace v by $(v_p + v_n)$ and v' by $(v'_p + v'_n)$. In order to get a non-vanishing matrix element, the phase factor must be positive. For $B(M1) \lambda = 1$ and for $B(E2) \lambda = 2$. This explains the selection rules in a more formal way.

We next consider what happens in the complete f-p shell model space. In Table II we show the large space results from various $J = 1 T = 0$ states to lowest and second $J = 0^+$ and $J = 2^+$ states and likewise from various $J = 1^+ T = 1$ states. All $B(M1)'s$ in the upper half are $T = 0$ to $T = 0$ transitions and indeed they would have vanished in the single j-shell calculations. In the lower half of Table II we have $T = 1$ to $T = 0$ transitions and indeed the $B(M1)'s$ are on the whole much larger. Let is focus on the lowest $J=1 T=1$ to the lowest $J=0 T=0$ transition. The value of $B(M1)$ is 1.101. The orbital value is 0.3046 and the spin value is 0.2475. The amplitudes add constructively to give the total $B(M1)$. When considered in reverse i.e. from 0 to 1 the $B(M1)$ is 3 times as large and is often compared to the idealized purely orbital scissors mode.

Table II: $B(M1)'s$ in a Large Space (μ_λ^2)

$J = 1^+ T = 0$	Lowest $J = 0^+$	Second $J = 0^+$	Lowest $J = 2^+$	Second $J = 2^+$
$n = 1$	0.2003 E-3	0.2124 E-4	0.1095 E-4	0.6845E-4
2	0.1343 E-1	0.1334 E-3	0.5432 E-2	0.1288 E-3
3	0.5903 E-3	0.9063 E-5	0.5268 E-4	0.7698 E-4
4	0.5461 E-4	0.2338 E-2	0.4631 E-4	0.3361 E-2
5	0.7451E-5	0.1677 E-5	0.2297 E-3	0.1098 E-2

$J = 1^+ T = 1$	Lowest $J = 0^+$	Second $J = 0^+$	Lowest $J = 2^+$	Second $J = 2^+$
$n = 1$	0.1101 E+1	0.1221 E-1	0.4665 E0	0.5316 E-1
2	0.6551 E0	0.1813 E0	0.3838 E0	0.4569 E-1
3	0.1570 E0	0.2142 E0	0.9775E-1	0.6353 E0
4	0.2353 E0	0.1709 E0	0.1768 E-2	0.4243 E0
5	0.5526 E-1	0.2574 E0	0.4835 E-2	0.2511 E0

In Table III we show $B(E2)'s$ from various $J = 1^+ T = 0$ states to the 2 lowest $J = 2^+$ and likewise from various $J = 1^+ T = 1$ states. The largest $B(E2)$ in Table III is 25.32 e2fm4. This is considerably smaller than value 1225.5 e2fm4 for the collective $J = 0^+ \rightarrow J = 2^+$ transition shown in Table I.
Table III: B(E2)'s in a Large Space (e²fm⁴).

J = 1⁺, T = 0 →	Lowest J = 2⁺ State	Second J = 2⁺ State
n = 1	0.1897 E2	0.4232 E-2
2	0.5243 E1	0.5807 E0
3	0.8518 E-1	0.2532 E2
4	0.2944 E0	0.1551 E-1
5	0.8348 E-3	0.4874 E-1

J = 1⁺, T = 1 →	Lowest J = 2⁺ State	Second J = 2⁺ State
n = 1	0.6694 E1	0.1909 E-1
2	0.4376 E1	0.2359 E-1
3	0.3735 E0	0.2125 E1
4	0.1676 E-2	0.7543 E0
5	0.1546 E0	0.5553 E-1

5 B(M1) Transitions Involving New States

In Table IV we show M1 transitions between new states - that is states which do not appear in the single j shell of even-even nuclei lighter than 48Cr. We first note that the lowest J=0 T=1 state is at a rather high excitation energy 8.89 MeV. The lowest J=1 T=0 state is 4.81 MeV. There are a few significant B(M1)'s e.g. from J=1T=0 at 4.184 MeV to three J=0 T=1 states at 10.20, 10.53 and 10.78 with B(M1) values 0.235, 0.495 and 0.379.

Table IV: 48Cr B(M1)'s from J=1, T=0 States to J=0, T=1 States (transitions from columns to rows)

Excitation Energy	4.8143	6.5689	7.3052	7.975
8.8901	0.106	0.1914	0.000748	0.01852
9.044	0.003637	0.09062	0.000575	0.1085
9.4744	0.0168	0.02171	0.004442	0.1682
10.2023	0.2356	0.004279	0.1618	1.74E-06
10.5339	0.4952	0.03943	0.01063	0.005871
10.7829	0.3787	0.0461	0.04746	1.4242
11.1399	0.01044	0.1266	0.02773	0.06704
11.2304	0.142	0.04477	2.45E-07	0.01947
11.7178	0.0617	0.1182	0.01249	0.1123
11.89	0.1114	0.3067	0.01444	0.003353

6 Closing Remarks: Relations to Other Nuclei

Before closing we wish to make some comparisons other special nuclei in the single j shell model space. In general the wave functions [2] can be written as ΣD(J_p,J_n)(J_p,J_n) where D(J_p,J_n) is the probability amplitude that in a state of total angular momentum I and isospin T the protons couple to J_p and the neutrons to J_n. We first consider other N=Z nuclei such as 44 Ti. We note that the wave functions have the property D(J_n,J_p) = (-1)^(I+T)D(J_p,J_n). Thus, for example we can see visually what states have isospin one.

We next consider states with the same number of neutron holes as protons e.g. 48Ti with 2 protons and 2 neutron holes. It was noted by McCullen, Bayman and Zamick [9] and can be seen visually [2] that D(J_p,J_n) = (-1)^s D(J_n,J_p) where the authors called "s" the signature quantum number. Unlike the case of the N=Z nuclei states of different signature ca have the same isospin.
Finally we come to midshell 48Cr. We here emphasize the visual aspects. As shown in the appendix one can see a lot of zeros in the wave functions that one does not see in other nuclei. Further analysis leads us to the fact that $(-1)^{(v_n+v_p)/2}$ is a good quantum number. This is all the more remarkable since neither v_p or v_n or v are good quantum numbers.

For future experiments, we mention in ref [10] calculations of the scissors mode excitations in 48Cr. There should be large M1 excitations of a 1^+ $T=1$ state in 48Cr. Since 48Cr is unstable one cannot directly excite this state with electrons. However, recent experiments involving deexcitations, albeit from a different nucleus from the scissors mode [10] to several branches could be promising as applied to this nucleus.

7 Acknowledgments

M.I.Q. was supported by the REU program via an NSF grant PHY-1560077. He is currently a student at Michigan State University. A.K thanks the Rutgers Aresty Research Center for Undergraduates for support during the 2016 summer session and the Richard J. Plano Summer Research Internship for support during the 2017 summer session.

References

[1] A. Escuderos and L. Zamick, Romanian Journal of Physics, Vol. 58, Nos. 9-10, pp 1064-1075, (2013)
[2] A. Escuderos, L. Zamick and B.F. Bayman, arXiv:nucl-th/0506050 (2006)
[3] K. Neergaard, Phys. Rev. C 91, 044313 (2015)
[4] L. Zamick, Y.Y. Sharon, J.S.Q. Robinson and M. Harper, Phys. Rev. C91,004321 (2015)
[5] A. Bohr and B.R. Mottelson, NUCLEAR STRUCTURE Vol. II, W.A. Benjamin Inc, Reading Massachusetts,(1975)
[6] The Shell Model Code NUSHELLX@MSU, B.A. Brown and W.D.M. Rae, http://www.sciencedirect.com/science/article/pii/S0090375214004748
[7] R.D. Lawson, Theory Of The Nuclear Shell Model, Clarendon Press, Oxford (1980)
[8] G. Racah, Phys. Rev. 63, 367 (1943).
[9] J.D. McCullen, B.F. Bayman and L. Zamick, Phys. Rev., B515, 134 (1964)
[10] S. J. Q. Robinson, L. Zamick, A. Escuderos, R. W. Fearick, P. von Neumann-Cosel, A. Richter, Phys. Rev. C73 (2006) 037306
Appendix

As an example we show the wave functions of the first 2 $J=0^+ T=0$ states in 48Cr from Ref [2].

Table V: Selected single j-shell wave functions with the MBZE interaction [2] in 48Cr.

Energy (MeV)	$J=0^+$	$J=0^+$
J_pJ_n		
00	0.7494	0
22	0.5445	0
22*	0	0.6738
2*2	0	0.6738
2*2*	0.1243	0
44	0.1951	0
44*	0	0.2144
4*4	0	0.2144
4*4*	0.2521	0
5*5	0.0932	0
66	0.1231	0
8*8*	0.0393	0

In Table V the * designates a seniority 4 basis state. The wave functions of MBZE are written as follows:

$$\Psi = \sum D^{\alpha J}(J_p, J_n)[J_p, J_n]^J$$ (1)

The value e.g. 0.5445 is the probability amplitude that in the lowest $J=0^+$ state the 2 protons couple to angular momentum 2 and likewise the 2 neutrons. The lowest $J=0^+$ state has $S=+1$ and the next one has $S=-1$. From ref [2] we see that there are 4 $J=0^+ T=0 S=+1$ states and 2 $J=0^+ T=0 S=-1$ states. This is true for any charge independant interaction. For $J=1^+ T=0$ all states have $S=-1$.

6