Maize response to free air CO₂ enrichment under ample and restricted water supply: field experimental data and output of a process-based hydrological plant growth model

Remy Manderscheid1*, Martin Erbs2, Juliane Kellner3,4, Liane Hüther5, Philipp Kraft4, Herbert Wieser6, Hans-Joachim Weigel1

1 Thünen Institute of Biodiversity, Braunschweig, Germany
2 Deutsche Agrarforschungsallianz (DAFA), German Agricultural Research Alliance, c/o Thünen Institute, Braunschweig, Germany
3 Senckenberg Biodiversity and Climate Research Centre BiK-F, Frankfurt/Main, Germany
4 Research Centre for BioSystems, Land Use and Nutrition (iFZ), Institute for Landscape Ecology and Resources Management, Justus Liebig University Giessen, Giessen, Germany
5 Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Braunschweig, Germany
6 Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany

* email: r.manderscheid@vodafone.de

Abstract: This paper is about data from a two year FACE experiment with maize (Zea mays L., cv. ‘Romario’) investigating the interaction of two CO₂ concentrations (378, 550 ppm) and two levels of water supply (sufficient: wet, limited: dry) on crop growth and plant composition. In the second year soil cover was also varied to test whether mitigation of evaporation by straw mulch increases the CO₂ effect on water use efficiency. In this year also a high impact of elevated CO₂ in the dry treatment was observed, due to a particular correspondence between flowering stage and soil water deficit that was postponed under elevated CO₂. The datasets assembled herein contain data on weather, management, soil condition, soil moisture, phenology, dry weights and N concentrations of the plant (leaves, stems, cobs), green leaf area index, stem reserves, final yield and quality-related traits in the total plant and grains. Most of the experimental findings have already been published in scientific journals. Moreover, the data have been used in two crop modeling studies, and simulation results (on soil moisture, transpiration, evaporation and biomass) of one of these studies are also shown here.

Keywords: maize, free air CO₂ enrichment, drought, mulching, biomass, growth, yield, plant quality, soil moisture, modeling.

1 BACKGROUND: Climate change due to rising atmospheric CO₂ concentration and associated increase in temperature and drought periods will have important implications for global food production (IPCC, 2013). Maize is one of the most important crop species exhibiting the C₄ photosynthetic pathway. Rising concentrations of CO₂ (eCO₂) have little or no effect on carbon fixation of C₄ plants but decrease stomatal conductance (Kimball, 2016). Thus, the decrease in transpiration under eCO₂ can mitigate the negative effects of drought on plant growth. We have conducted a two-year field experiment with maize and investigated the interaction of free air CO₂ enrichment and water supply on growth, yield and plant composition. Corresponding results have already been published in scientific journals (Erbs et al., 2012, 2015; Manderscheid et al., 2014, 2016; Meibaum et al., 2012; Wroblewitz et al., 2014). The experimental data have also been used in two crop modeling studies (Durand et al., 2018; Kellner et al., 2019). The present paper contains most of the measurement results of this experiment as well as results of model simulations of Kellner et al. (2019).

2 METHODS

2.1 EXPERIMENTAL FIELD SITE: The experiments were conducted on the experimental field at the Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, South-East Lower Saxony, Germany (52°18’ N, 10°26’ E, 79 m a.s.l.). The soil is a Luvisol of a loamy sand texture (69% sand, 24% silt, 7% clay) in the plough horizon (0-30 cm). The plough layer has a pH of 6.5 and a mean organic carbon content of 1.4% and a total N content of approx. 0.1%. The drained upper (0.01 MPa soil water tension) and lower limits (1.5 MPa water tension) in soil water content were 23% and 5%, respectively. The lower layers, in particular >70 cm, are characterized by a coarser soil texture (almost pure sand) and are structured by the succession of
thin silt/clay layers. The soil has a plant available water content of ca. 18% in the plough layer, which decreases slightly with increasing soil depth. Maize roots went down up to ca. 100 cm soil depth, however, the largest share (> 95%) was concentrated in the 0-60 cm depth (Paeßens et al., 2019).

2.2 CO₂ TREATMENTS: Three circular plots (each with a diameter of 20 m) were equipped each with a free air CO₂ enrichment apparatus including vertical vent pipes and CO₂ injection driven by a blower (Erbs et al., 2012; Manderscheid et al., 2014). These rings comprised what is termed eCO₂ treatment or FACE rings. Three further circular plots without the CO₂ enrichment apparatus were used as control treatment (=aCO₂, 378 ppm, ambient rings). The target CO₂ concentration in the FACE rings was set to 550 ppm during daylight hours (i.e. daylight solar altitude \(\theta \) >0.833°). CO₂ enrichment was interrupted at wind speeds > 5.5 m s\(^{-1}\). The FACE and ambient rings were set up after crop emergence and removed after final harvest. The CO₂ enrichment started at a leaf area index of about 0.5 (11\(^{\text{th}}\) June in 2007, 9\(^{\text{th}}\) June in 2008) and lasted until final harvest (2\(^{\text{nd}}\) October in 2007, 30\(^{\text{th}}\) September in 2008).

2.3 VARIATION OF WATER SUPPLY: Based on past experience maize suffers frequently from drought at this field site. Each of the six circular plots was split into a well-watered (WET) and a dry (DRY) semicircular subplot separated by a 1 m wide track. In the WET subplots, water content in the main rooted soil profile (0.6 m) was kept above 50% maximum plant available water. In the DRY treatment, it was intended to reduce soil water content to below 50% during midsummer. Soil water content was regularly controlled by TDR sensors (Manderscheid et al. 2014). A separated drip irrigation system in WET and DRY allowed for controlled water supply. Two different rain exclusion methods were applied in the DRY semicircles. In 2007, wooden racks equipped with PVC shelves (0.6 m width) were positioned in every second inter row area and the rain intercepted was drained to the outside of the rings. The racks were operated from 24\(^{\text{th}}\) August until 30\(^{\text{th}}\) September and 11% of the daily precipitation could be excluded which corresponded to 9 mm over this period. However, the DRY treatment could not be achieved in 2007 because of exceptional rainfall. In 2008, the DRY subplots were equipped with aluminum frames of tents with a ground area of 20 m x 12 m each (Erbs et al., 2012). The frames were covered with transparent PVC tarpaulins during periods of forecasted rainfall >10 mm day\(^{-1}\). The frames reduced incident photosynthetic active radiation (PAR) by 6.6% without tarpaulins based on the exposed horizontal area and by 24.1% with tarpaulins. The tarpaulins were installed during three periods (3\(^{\text{rd}}\) to 4\(^{\text{th}}\) July, 17\(^{\text{th}}\) to 22\(^{\text{nd}}\) July, and 22\(^{\text{nd}}\) to 25\(^{\text{th}}\) August) resulting in total rain exclusion of 55 mm based on the weather data included in this paper. According to PAR sensors operated in a DRY and WET semicircle incident radiation was reduced by 7% in the DRY area as compared to the WET area over the season (Erbs et al., 2012).

2.4 VARIATION OF SOIL COVER: Water saving through reduced transpiration under eCO₂ may be lost by enhanced evaporation. Therefore soil cover was varied in 2008. Each semicircle of the WET and DRY treatments was divided in a quarter without soil cover (BARE) and a quarter in which the soil surface was covered at the 1\(^{\text{st}}\) July by hand with 7 t ha\(^{-1}\) barley straw (MULCH). Such an amount of residue on the soil surface reduced the rate of evaporative water loss by ca. 80% as compared to the bare soil.

2.5 CROP CULTIVATION: Agricultural management measures of the 10 ha field and the experimental plots were performed according to local farm practice and included plough tillage, mineral fertilization and pesticide treatment. Maize (Zea mays L., cv. ‘Romario’) was sown (in 5 cm soil depth) with a row distance of 0.75 m and a seeding density of 10 plants m\(^{-2}\).

2.6 MEASUREMENTS

2.6.1 WEATHER: Weather data including rainfall were provided by the German Weather Service from a weather station (Stations_ID 662), which was 400 meters away from the experimental field site. Rainfall data shown herein are slightly different from those used by Manderscheid et al. (2014) and Kellner et al. (2019) and thus rain excluded by rain-out shelter in 2008 amounts to 55 mm in the provided file and not to 57 mm. Weather data of the German Weather Service is freely available on OpenData. The data presented here were downloaded January 2020. (https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/)

2.6.2 SOIL MOISTURE: Volumetric soil water content (SWC) was recorded with TDR-sensors (from IMKO, Ettlingen, Germany), which had measuring rods of 16 cm length. Two measurements were taken every week from 12\(^{\text{th}}\) of June until final harvest. To account for different spatial variation in SWC
in the various treatments due to the discharge of precipitation to the plant row area and the variation
due to the different water supply, soil moisture measurements were done at different positions
depending on the treatment. In the top soil layer (0–0.2 m) water content was measured by a
handheld TDR probe vertically put into the ground at three positions from the plant row up to the
centre between two rows. In each of the six WET plots two TDR probes were positioned horizontally
at 0.3 m soil depth with a horizontal distance of 0.2 m from the plant rows with one probe in the BARE
and in the MULCH quarter, respectively, in 2008. A similar positioning was used for the DRY treatment
in 2007, while in 2008 an additional probe was installed in the BARE quarter. The records were used
for the quantification of SWC in the 0.2–0.4 m soil layer. Values in the 0.4–0.6 m layer were obtained
by one (2007) or two probes (2008, in BARE and MULCH) installed in the DRY plots at 50 cm depth.
Irrigation of the experimental plots was controlled by manual application based on records of SWC.

2.6.3 TIME SERIES DATA ON CROP GROWTH, CONCENTRATION OF N AND WATER SOLUBLE
CARBOHYDRATES: Plant samples were taken at four (2007) or five dates (2008) from June until end
of September, separated into different fractions (stems, leaves, cobs, grains) and used for measuring
their dry weights and areas where appropriate. Plant material was also used for measuring
concentration of N (Erbs et al., 2015) and water soluble carbohydrates in stems (Manderscheid et al.,
2009).

2.6.5 DATA ON ELEMENTAL COMPOSITION AND QUALITY CHARACTERISTICS OF
ABOVEGROUND BIOMASS AND GRAINS: Samples of total above ground biomass and grains
taken at the final harvest were used for analysis of plant composition (Erbs et al., 2015). Measurements
included i) elemental composition, i.e. concentration of macro- (Ca, K, Mg, N, P, S)
and microelements (Fe, Mn, Zn), and ii) quality characteristics of the total plant, i.e. concentration of
crude fiber, acid detergent fiber, neutral detergent fiber, lignin, fat, sucrose and starch, and of the
grains, i.e. fat, sucrose, starch and proteins (glutelins, prolams; analysed only for the 2008 plant
material).

2.7 MODEL SIMULATIONS: The results of our modeling study with maize FACE data (Kellner et al.,
2019) and the results of a previous FACE study with winter wheat (Manderscheid et al., 2018) indicate
that evaporation plays a key role in the water balance of crops under eCO2. Therefore, the simulated
water fluxes (evaporation, transpiration and evapotranspiration), plant biomass and soil water content
are provided herein. The coupled hydrological-plant growth model CMF-PMF (Kraft et al., 2011, 2018,
Multsch et al., 2011, 2018) was used to investigate the non-mulched treatments of the maize FACE
study. Kellner et al. (2019) identified 46 parameter sets for accurate model runs. Hence, the individual
results of each of the 46 parameter sets are provided herein. Data of the year 2007 had been taken for
model calibration and 2008 for model validation. Note: The simulated water fluxes could not be tested
against field data.

3 DATA FORMAT AND STRUCTURE: The field data are available in „maize_data.xlsx“, an Excel file
with 12 worksheets (Table 1).

Worksheet name	Content
data files & abbreviations	Name of the data files, abbreviations and units
TRNO definition	Code and definition of the different treatments
soil properties	Drained upper and lower limit of water content in 0-60 cm depth
meteo	1 hour average weather data for 2007 and 2008
management	Management measures (ploughing, sowing, fertilization, pesticide
 application, operation of rain shelter) |
irrigation	Irrigation water per treatment
rain shelter	Excluded precipitation water by use of rain shelter in 2008 only
soil moisture	Soil water content measured with TDR sensors in 2007 and 2008
phenology	Phenological data of both experimental years
growth	Time series data on growth and on plant concentrations of N and water
 soluble carbohydrates |
| whole plant quality | Elemental composition and quality characteristics of the whole plant |
| grain quality | Elemental composition and quality characteristics of the grains |
The simulated data are available in “maize_modeloutput.xlsx”. The file includes 8 worksheets. In line with “maize_data.xlsx” the file contains the worksheets “data files & abbreviations” and “TRNO definition”. Furthermore, the parameter values for each of the 46 parameter sets are listed, followed by the model outputs for the individual parameter sets: simulated daily biomass and volumetric soil moisture in the three soil depths. In addition, the simulated water fluxes transpiration, evaporation and evapotranspiration are provided as sums over the growing periods 2007 and 2008.

ACKNOWLEDGEMENTS

The FACE apparatus was engineered by Brookhaven National Laboratory and we are grateful to George Hendrey, Keith Lewin and John Nagy for their support. Technical assistance by the staff of the Thünen-Institute of Biodiversity, of the Institute of Animal Nutrition and the experimental station of the Friedrich-Löffler Institute and by the Agrometeorological Research Station of the German Weather Service at Braunschweig is gratefully acknowledged. The study was financially supported by the German Federal Ministry of Food and Agriculture (BMLF) and the German Federal Ministry of Education and Research (BMBF).

REFERENCES

Durand, J. L., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H.-J., Zhao, Z., 2018. How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy 100, 67–75. doi: 10.1016/j.eja.2017.01.002

Erbs, M., Manderscheid, R., Weigel, H.-J., 2012. A combined rain shelter and free air CO2 enrichment system to study climate change impacts on plants in the field. Methods in Ecology and Evolution 3, 81–88. doi: 10.1111/j.2041-210X.2011.00143.x

Erbs, M., Manderscheid, R., Hühler, L., Schenderlein, A., Wieser, H., Dänicke, S., Weigel, H.-J., 2015. Free-air CO2 enrichment modifies maize quality only under drought stress. Agronomy for Sustainable Development 35, 203–212. doi: 10.1007/s13593-014-0226-5

IPCC, 2013. Climate Change 2013. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. url: https://www.ipcc.ch/report/ar5/wg1/

Kellner, J., Houska, T., Manderscheid, R., Weigel, H.-J., Breuer, L., Kraft, P., 2019. Response of maize biomass and soil water fluxes on elevated CO2 and drought – From field experiments to process-based simulations. Global Change Biology 25, 2947–2957. doi: 10.1111/gcb.14723

Kimball, B.A. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology 31, 36–43. doi: 10.1016/j.pbi.2016.03.006

Kraft, P., Vache, K. B., Frede, H.-G., Breuer, L., 2011. A hydrological programming language extension for integrated catchment models. Environmental Modelling & Software 26, 828–830. doi: 10.1016/j.envsoft.2010.12.009

Kraft, P., Jehn, F., Breuer, L., 2018. Catchment modelling framework. Open-Source-Software. doi: 10.5281/zenodo.1125290

Manderscheid, R., Dier, M., Erbs, M., Sickora, J., Weigel, H.-J., 2018. Nitrogen supply – A determinant in water use efficiency of winter wheat grown under free air CO2 enrichment. Agricultural Water Management 210, 70-77. doi: 10.1016/j.agwat.2018.07.034

Manderscheid, R., Erbs, M., Weigel, H.-J., 2014. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. European Journal of Agronomy 52, 11-21. doi: 10.1016/j.eja.2011.12.007

Manderscheid, R., Erbs, M., Burkart, S., Wittich, K.-P., Löpmeier, F.-J., Weigel, H.-J., 2016. Effects of free-air carbon dioxide enrichment on sap flow and canopy microclimate of maize grown under different water supply. Journal of Agronomy and Crop Science 202, 255-268. doi: 10.1111/jac.12150

Manderscheid, R., Pacholski, A., Frühauf, C., Weigel, H.J.,2009. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Research 110, 185–196. doi: 10.1016/j.fcr.2008.08.002

Meibaum, B., Riede, S., Schröder, B., Manderscheid, R., Weigel, H.-J., Breves, G., 2012. Elevated CO2 and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro. Archives of Animal Nutrition 66, 473-489. doi: 10.1080/1745039X.2012.735080

Multsch, S., Kraft, P., Frede, H.-G., Breuer, L., 2011. Development and application of the generic Plant growth Modeling Framework (PMF). In MODSIM2011 International Congress on Modelling..
Multsch, S., Houska, T., Kellner, J., Kraft, P., 2018. jlu-ilr-hydro/pmf: v0.5 (Version v0.5). Zenodo. doi: 10.5281/zenodo.3795444

Paeßens, B., Manderscheid, R., Pacholski, A., Balazs, V., Erbs, M., Kage, H., Sieling, K., Weigel, H.-J., 2019. Effects of free air CO₂ enrichment and drought on root growth of field grown maize and sorghum. Journal of Agronomy and Crop Science 205, 477-489. doi: 10.1111/jac.12339

Wroblewitz, S., Hüther, L., Manderscheid, R., Weigel, H.-J., Wätzig, H., Dänicke, S., 2014. Effect of Rising Atmospheric Carbon Dioxide Concentration on the Protein Composition of Cereal Grain. Journal of Agricultural and Food Chemistry 62, 6616–6625. doi: 10.1021/jf501958a.