Effects of Exercise Intervention on Physical and Cognitive Functions in Elderly Individuals with Locomotive Syndrome

YOSHIHIKO ISIHARA*1)2), HAYAO OZAKI*2)3), TAKASHI NAKAGATA*4), TOSHINORI YOSHIHARA*5), TOSHIHARU NATSUME*6), TOMOHARU KITADA*2)7), MASAYOSHI ISHIBASHI*5), NOBUHIRO SATO*8), ERI ARIKAWA-HIRASAWA*8), NORIKO IKUTA*9), SHUICHI MACHIDA*2)3)5)6), HISASHI NAITO*2)3)4)5)6)

*1)School of Science and Technology for Future Life, Tokyo Denki University, Tokyo, Japan, *2)Faculty of Health and Sports Science, Juntendo University, Chiba, Japan, *3)Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan, *4)Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan, *5)COI Project Center, Juntendo University, Tokyo, Japan, *6)Institute of Health and Sports Science & Medicine, Juntendo University Graduate School of Health and Sports Science, Chiba, Japan, *7)Institute of Innovation for Future Society, Nagoya University, Aichi, Japan, *8)Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan, *9)TOKYU E-LIFE DESIGN Inc., Tokyo, Japan

In humans, aging is associated with declines in physical and cognitive functions. Physical activity and exercise have received attention as a potential preventive measure against these age-related functional declines. Locomotive syndrome (LS) is a condition manifested by high-risk patients with musculoskeletal disease who are high likely to require nursing care. Physical activity and exercise can enhance motor, cognitive, and social functioning in old age. Nursing home residents are characteristically older and have high prevalence rates of multiple morbidities, frailty, impaired mobility, severe cognitive deficits, and depression. However, little is known about the effects of exercise interventions on the physical and cognitive functions of elderly residents diagnosed with LS. In this paper, we discuss the necessity of exercise interventions for elderly residents with LS.

Key words: aging, locomotive syndrome (LS), exercise intervention, resistance training, cognition

Introduction

Japan is a rapidly aging society and a world leader in longevity. According to the Cabinet Office, as of October 1, 2016, the total population of Japan was 126.93 million; of these, 34.59 million were aged 65 years or older. As the ratio of people aged 65 years or older (i.e., the elderly) is 27.3%1), Japan now faces the advent of a “super-aged” society earlier. By 2025 and 2050, the elderly are expected to account for 30.0% and 37.7%, respectively, of the total population of Japan. An aging population inevitably has considerable impacts on social systems, including public health. To cope with the rapid changes in age demographics in Japan, a nursing-care insurance system was introduced in 2000. The number of elderly requiring nursing care is continually increasing; 5.91 million individuals received such services in 2014, compared to 3.70 million in 20032). The reasons underlying the
provision of these services included stroke (17.2%), dementia (16.4%), frailty (13.9%), falls/fractures (12.2%), joint disorders (11.0%), and others. In approximately of 50% cases, services were provided because of cognitive and physical impairments.

Locomotive syndrome

The term locomotive syndrome (LS) was proposed by the Japanese Orthopedic Association (JOA) to indicate a condition experienced by people with musculoskeletal disease in high-risk groups who are highly likely to require nursing care. Individuals with LS face difficulties with standing, walking, running, climbing stairs, and performing other physical functions essential to daily life. LS is caused by the weakening and loss of musculoskeletal tissues, such as bone, joint, and muscle. In particular, sarcopenia is an age-related, degenerative weakening and loss of the skeletal muscle mass and strength, which drastically reduces the quality of life and leads to an increased risk of insulin resistance and various diseases; therefore, maintenance of the skeletal muscle mass is essential to preventing LS in elderly individuals. The concepts of LS, sarcopenia, and frailty share several similarities, and the distinctions among them are ambiguous.

Methods for evaluating LS have recently been established. In 2013, the Japanese Orthopedic Association (JOA) proposed the two-step test, stand-up test, and 25-question geriatric locomotive function scale (GLFS-25) for assessing the risk of LS. The two-step test is a screening tool used to evaluate horizontal mobility (i.e., walking ability), whereas the stand-up test reflects vertical mobility and assesses leg strength as the participant stands up from a specified height, using one or both legs. The GLFS-25 assesses a participant’s physical condition and lifestyle over the previous month. This self-reported questionnaire includes domains addressing pain, physical functioning, basic activities of daily living (ADL), instrumental ADL, and anxiety. These 25 items are scored from 0 (no impairment) to 4 (severe impairment), with total scores ranging from 0 to 100 points. Higher scores indicate worse locomotive function. Per the Japan Orthopedic Surgery Society, a GLFS-25 score of ≥7 points identifies an initial decline in motor function, while a score of >16 points indicates a progressive decline in motor function. According to the JOA, clinical decision limits were established in two stages as follows: Stage 1 (LS-1): (1) two-step test score of <1.3, (2) difficulty in standing from a seat at a height of 40 cm using one leg in the stand-up test (either leg), and (3) GLFS score of ≥7. When a participant meets any of these criteria, the start of mobility decline is diagnosed. Stage 2 (LS-2): (1) two-step test score of <1.1, (2) difficulty in standing from a seat at a height of 20 cm using both legs in the stand-up test, and (3) GLFS score of ≥16. When a participant meets any of these criteria, progressive mobility decline is diagnosed.

Many reports have suggested that the GLFS-25 score correlates strongly with several measures of physical performance, including the walking speed test, handgrip strength test, unipedal stance test, and the timed up and go test. More recently, two studies reported that a comparative analysis of LS and non-LS subjects revealed significant differences in the degree of depression with age. Moreover, the same study group reported that LS subjects had a higher risk of cognitive impairment, compared to subjects without LS, which suggests a close relationship between these factors. Nakamura et al. (2017) also suggested that data from a cross-sectional study were insufficient to determine the existence of a causal relationship between the physical or cognitive status and LS, and emphasized the need to conduct longitudinal studies to clarify the causal relationships among these factors. Further study is needed to examine the effects of exercise interventions on the differences between LS-1 and LS-2.

Effects of exercise interventions on physical and cognitive function in elderly

The American College of Sports Medicine (ACSM) states that participation in regular physical activity elicits several favorable responses that contribute to healthy aging. Accumulated evidence indicates that either aerobic or strength-based physical exercise should be recommended strongly for both healthy older adults and elderly people with chronic diseases and disabilities. In other words, exercise interventions have improved mobility and physical functioning. de Labra et al. suggested that...
Aging is simultaneously associated with declining cognition and an increasing risk of dementia\(^{22}\). A decline in cognitive function is a major factor contributing to disabilities in elderly individuals\(^{23}\). The effects of physical exercise as a preventive measure against age-related declines in cognitive function have received attention\(^{22, 24}\). Recent studies have suggested that both aerobic training and resistance training could effectively promote cognitive functions in elderly populations\(^{25-28}\). These main intervention studies summarized on the table. Perrig-Chiello et al. (1998)\(^{28}\) reported that an 8-week, machine-based resistance training program improved self-attentiveness and memory functioning in 73-year-old men. Cassilhas et al. (2007)\(^{25}\) also reported that moderate- and high-intensity machine-based resistance exercise programs had equally beneficial effects on cognitive performance as assessed by standard neuropsychological tests of short- and long-term memory and verbal reasoning in men aged 65–75 years. Dorner et al. (2007)\(^{27}\) examined the combined effects of a 10-week strength and balance exercise program on cognitive function in frail, cognitively impaired elderly subjects (75 years or older) and observed improvements in muscle strength and Mini-Mental State Examination (MMSE) scores. Although Nakamoto et al. (2012)\(^{29}\) demonstrated that the MMSE scores of healthy elderly subjects (aged 68.7 years) were not significantly improved by a 3-month body mass-based exercise program, the absolute changes in scores significantly correlated with changes in the knee extensor torque. Therefore, an exercise intervention involving resistance training is important step to the delay or prevention of cognitive function declines in the elderly. However, this intervention effect may vary depending on the age of the participants and length of the intervention period (>3 months is required).
A meta-analysis found that programs combining aerobic–based training exercises and resistance training exercises had a greater positive effect on cognition, compared to programs involving only aerobic–based exercise training. Therefore, Liu–Ambrose and Donaldson (2009) suggested that clinicians should consider encouraging patients to undertake both aerobic–exercise and resistance training not only for “physical health”, but also because of the almost certain benefits for “brain health”.

In conclusion, muscle weakness might increase the risk of cognitive decline in the future. Therefore, the maintenance and improvement of muscular strength through the implementation of long–term resistance training is essential not only from the perspective of physical care prevention, but also from the perspective of cognitive function. As suggested by Nakamura et al. (2017), longitudinal studies of the effects of exercise intervention on physical and cognitive functions in elderly residents diagnosed with LS are needed. Further studies are also needed to examine the effects of exercise interventions on the improvements or preventions in physical and cognitive functions between LS–1 and LS–2.

Acknowledgement

This research is supported by the Center of Innovation Program from Japan Science and Technology Agency, JST.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

References

1) Cabinet Office, Government Of Japan. 2017. http://www8.cao.go.jp/kourei/whitepaper/w-2017/zenbun/29pdf_ index.html, Annual Report on the Aging Society (in Japanese).
2) Hirano K, Imagama S, Hasegawa Y, Wakao N, Muramoto A, Ishiguro N: Impact of spinal imbalance and back muscle strength on locomotive syndrome in community–living elderly people. J Orthop Sci, 2012; 17: 532–537.
3) Yoshimura N, Muraki S, Oka H, et al: Association between new indices in the locomotive syndrome risk test and decline in mobility: third survey of the ROAD study. J Orthop Sci, 2015; 20: 896–905.
4) Kalyani RR, Corriere M, Ferrucci L: Age–related and disease–related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol, 2014; 2: 819–829.
5) Keller K, Engelhardt M: Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J, 2013; 3: 346–380.
6) Nakamura M, Tazaki F, Nomura K, et al: Cognitive impairment associated with locomotive syndrome in community–dwelling elderly women in Japan. Clin Interv Aging. 2017; 12: 1451–1457.
7) Ogata T, Muranaga S, Ishibashi H, et al: Development of a screening program to assess motor function in the adult population: a cross–sectional observational study. J Orthop Sci, 2015; 20: 888–895.
8) Muranaga S: Evaluation of the muscular strength of the lower extremities using the standing movement and clinical application. Journal Of The Showa Medical Association, 2001; 61: 362–367 (in Japanese).
9) Seichi A, Hoshino Y, Doi T, Akai M, Tobimatsu Y, Iwaya T: Development of a screening tool for risk of locomotive syndrome in the elderly: the 25–question Geriatric Locomotive Function Scale. J Orthop Sci, 2012; 17: 163–172.
10) The Japanese Orthopaedic Association. Locomo degree determination method. Available from: https://locomo-joa.jp/check/judge/pdf/locomo-testjudge.pdf.
11) Nakamura M, Hashizume H, Oka H, et al: Physical performance measures associated with locomotive syndrome in middle–aged and older Japanese women. J Geriatr Phys Ther, 2015; 38: 202–207.
12) Muramoto A, Imagama S, Ito Z, Hirano K, Ishiguro N, Hasegawa Y: Physical performance tests are useful for evaluating and monitoring the severity of locomotive syndrome. J Orthop Sci, 2012; 17: 782–788.
13) Seichi A, Hoshino Y, Doi T, et al: Determination of the optimal cutoff time to use when screening elderly people for locomotive syndrome using the one–leg standing test (with eyes open). J Orthop Sci, 2014; 19: 620–626.
14) Fukumori N, Yamamoto Y, Takegami M, et al: Association between hand–grip strength and depressive symptoms: Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS). Age Ageing, 2015; 44: 592–598.
15) Yoshimura N, Oka H, Muraki S, et al: Reference values for hand grip strength, muscle mass, walking time, and one–leg standing time as indices for locomotive syndrome and associated disability; the second survey of the ROAD study. J Orthop Sci, 2011; 16: 768–777.
16) Ikemoto T, Inoue M, Nakata M, et al: Locomotive syndrome is associated not only with physical capacity but also degree of depression. J Orthop Sci, 2016; 21: 361–365.
17) Nakamura M, Hashizume H, Nomura S, Kono R, Utsunomiya H: The relationship between locomotive syndrome and depression in community–dwelling elderly people. Curr Gerontol Geriatr Res, 2017; 2017: 4104802.
18) American College of Sports Medicine, Chodzko-Zajko WJ, Proctor DN, et al: American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc, 2009; 41:
19) Cadore EL, Rodríguez-Mañas L, Sinclair A, Izquierdo M: Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review. Rejuvenation Res, 2013; 16: 105-114.

20) Chou CH, Hwang CL, Wu YT: Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: a meta-analysis. Arch Phys Med Rehabil, 2012; 93: 237-244.

21) de Labra C, Guimaraes-Pinheiro C, Maseda A, Lorenzo T, Millán-Calenti JC: Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatr, 2015; 15: 154.

22) Liu–Ambrose T, Donaldson MG: Exercise and cognition in older adults: is there a role for resistance training programmes? Br J Sports Med, 2009; 43: 25-27.

23) Nourhashemi F, Andrieu S, Gillette-Guyonnet S, et al: Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc, 2002; 50: 1796-1801.

24) Kramer AF, Erickson KI, Colcombe SJ: Exercise, cognition, and the aging brain. J Appl Physiol, 2006; 101: 1237-1242.

25) Cassilhas RC, Viana VA, Grassmann V, et al: The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc, 2007; 39: 1401-1407.

26) Colcombe S, Kramer AF: Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci, 2003; 14: 125-130.

27) Dorner T, Kranz A, Zettl-Wiedner K, Ludwig C, Rieder A, Gisinger C: The effect of structured strength and balance training on cognitive function in frail, cognitive impaired elderly long-term care residents. Aging Clin Exp Res, 2007; 19: 400–405.

28) Perrig-Chiello P, Perrig WJ, Ehram R, Staehelin HB, Krings F: The effects of resistance training on well-being and memory in elderly volunteers. Age Ageing, 1998; 27: 469-475.

29) Nakamoto H, Yoshitake Y, Takai Y, et al: Knee extensor strength is associated with Mini-Mental State Examination scores in elderly men. Eur J Appl Physiol, 2012; 112: 1945-1953.

30) Colcombe S, Kramer AF: Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci, 2003; 14: 125-130.