Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity

Howard A. Foster · Iram B. Ditta · Sajnu Varghese · Alex Steele

Received: 11 February 2011 / Accepted: 12 February 2011 / Published online: 27 April 2011
© Springer-Verlag 2011

Abstract The photocatalytic properties of titanium dioxide are well known and have many applications including the removal of organic contaminants and production of self-cleaning glass. There is an increasing interest in the application of the photocatalytic properties of TiO₂ for disinfection of surfaces, air and water. Reviews of the applications of photocatalysis in disinfection (Gamage and Zhang 2010; Chong et al., Wat Res 44 (10):2997–3027, 2010) and of modelling of TiO₂ action have recently been published (Dalrymple et al., Appl Catal B 98(1–2):27–38, 2010). In this review, we give an overview of the effects of photoactivated TiO₂ on microorganisms. The activity has been shown to be capable of killing a wide range of Gram-negative and Gram-positive bacteria, filamentous and unicellular fungi, algae, protozoa, mammalian viruses and bacteriophage. Resting stages, particularly bacterial endospores, fungal spores and protozoan cysts, are generally more resistant than the vegetative forms, possibly due to the increased cell wall thickness. The killing mechanism involves degradation of the cell wall and cytoplasmic membrane due to the production of reactive oxygen species such as hydroxyl radicals and hydrogen peroxide. This initially leads to leakage of cellular contents then cell lysis and may be followed by complete mineralisation of the organism. Killing is most efficient when there is close contact between the organisms and the TiO₂ catalyst. The killing activity is enhanced by the presence of other antimicrobial agents such as Cu and Ag.

Keywords Antimicrobial · Disinfection · Mechanism · Photocatalysis · ROS · TiO₂ · Titania

Introduction

The ability of titanium dioxide (titania, TiO₂) to act as a photocatalyst has been known for 90 years (Renz 1921), and its role in the “chalking” of paint (formation of powder on the surface) is well known (Jacobsen 1949). Interest in the application of the photocatalytic properties of TiO₂ was revived when the photoelectrolysis of water was reported by Fujishima and Honda (1972), and this activity was soon exploited both for the ability to catalyse the oxidation of pollutants (Carey et al. 1976; Frank and Bard 1977) and the ability to kill microorganisms (Matusunga 1985; Matsumaga et al. 1985). Photocatalytic surfaces can be superhydrophilic, which means that water spreads on the surface, allowing dirt to be washed off, and commercial uses include self-cleaning windows (e.g. San Gobain Bioclean™, Pilkington Active™ and SunClean™; Chen and Poon 2009) and self-cleaning glass covers for highway tunnel lamps (Honda et al. 1998). There are currently over 11,000 publications on photocatalysis. Although an early study showed no improved antimicrobial activity of TiO₂ for disinfection of primary wastewater effluent (Carey and Oliver 1980), many subsequent studies have shown the usefulness of photocatalysis on TiO₂ for disinfection of water (Chong et al. 2010). These include killing of bacteria (Rincón and Pulgarin 2004a) and viruses from water supplies (Sjogren and Sierka 1994),
tertiary treatment of wastewater (Araña et al. 2002), purifying drinking water (Wei et al. 1994; Makowski and Wardas 2001), treatment of wash waters from vegetable preparation (Selma et al. 2008) and in bioreactor design to prevent biofilm formation (Shiraishi et al. 1999). TiO₂-coated filters have been used for the disinfection of air (Jacoby et al. 1998; Goswami et al. 1997, 1999; Lin and Li 2003a, b; Chan et al. 2005). The advantage of using photocatalysis along with conventional air filtration is that the filters are also self-cleaning. TiO₂ has also been used on a variety of other materials and applications (Table 1). The potential for killing cancer cells has also been evaluated (reviewed by Blake et al. 1999; Fujishima et al. 2000).

In recent years, there has been an almost exponential increase in the number of publications referring to photocatalytic disinfection (PCD), and the total number of publications now exceeds 800 (Fig. 1). Some of the early work was reviewed by Blake et al. (1999) and sections on photocatalytic disinfection have been included in several reviews (Mills and Le Hunte 1997; Fujishima et al. 2000, 2008; Carp et al. 2004); reviews of the use in disinfection of water (McCullagh et al. 2007; Chong et al. 2010) and modelling of TiO₂ action have been published (Dalrymple et al. 2010). In this review, we explore the effects of photoactivated TiO₂ on microorganisms.

Photocatalytic mechanism

For a more detailed discussion of the photochemistry, the reader is directed to the excellent reviews by Mills and Le Hunte (1997) and Hashimoto et al. (2005). TiO₂ is a semiconductor. The adsorption of a photon with sufficient energy by TiO₂ promotes electrons from the valence band (e_{vb}^-) to the conduction band (e_{cb}^-), leaving a positively charged hole in the valence band (h_{vb}^+; Eq. 1). The band gap energy (energy required to promote an electron) of anatase is approx. 3.2 eV, which effectively means that photocatalysis can be activated by photons with a wavelength of below approximately 385 nm (i.e. UVA). The electrons are then free to migrate within the conduction band. The holes may be filled by migration of an electron from an adjacent molecule, leaving that with a hole, and the process may be repeated. The electrons are then free to migrate within the conduction band and the holes may be filled by an electron from an adjacent molecule. This process can be repeated. Thus, holes are also mobile. Electrons and holes may recombine (bulk recombination) a

Uses and applications	Publication
Building materials, e.g. concrete	Guo et al. (2009)
	Chen and Poon (2009)
Catheters to prevent urinary tract infections	Ohko et al. (2001)
	Yao et al. (2008c)
Coatings for bioactive surfaces	Ueda et al. (2010)
Dental implants	Suketa et al. (2005)
	Mo et al. (2007)
Fabrics	Gupta et al. (2008), Kangwansupamonkon et al. (2009), Wu et al. (2009a, b), Yuranova et al. (2006)
Food packaging films	Chawengkijwanich and Hayata (2008)
Lancets	Nakamura et al. (2007)
Metal pins used for skeletal traction	Tsuang et al. (2008)
Orthodontic wires	Chun et al. (2007)
Paint	Allen et al. (2008)
Photocatalytic tiles for operating theatres	Fujishima et al. (1997)
Plastics	Paschoalino and Jardim (2008)
	Cerrada et al. (2008)
Protection of marble from microbial corrosion	Fujishima et al. (1997)
Surgical face masks	Poulos et al. (1999)
Tent materials	Li et al. (2006)
TiO₂-coated wood	Nimithtrakoolchai and Supothina (2008)
TiO₂-containing paper	Chen et al. (2009)
	Geng et al. (2008)
non-productive reaction, or, when they reach the surface, react to give reactive oxygen species (ROS) such as O_2^- (2) and $\cdot OH$ (3). These in solution can react to give H_2O_2 (4), further hydroxyl (5) and hydroperoxyl (6) radicals. Reaction of the radicals with organic compounds results in mineralisation (7). Bulk recombination reduces the efficiency of the process, and indeed some workers have applied an electric field to enhance charge separation, properly termed photoelectrocatalysis (Harper et al. 2000).

\[
\text{TiO}_2 + h_v \rightarrow e_{cb}^- + h_{vb}^+
\]

(1)

\[
O_2 + e_{cb}^- \rightarrow O_2^-.
\]

(2)

\[
h_{cb}^+ + H_2O \rightarrow \cdot OH + H^+_\text{aq}
\]

(3)

\[
\cdot OH + \cdot OH \rightarrow H_2O_2
\]

(4)

\[
O_2^- \cdot + H_2O_2 \rightarrow \cdot OH + OH^- + O_2
\]

(5)

\[
O_2^- \cdot + H^+ \rightarrow \cdot OOH
\]

(6)

\[
\cdot OH + \text{Organic} + O_2 \rightarrow CO_2, H_2O
\]

(7)

There are three main polymorphs of TiO$_2$: anatase, rutile and brookite. The majority of studies show that anatase was the most effective photocatalyst and that rutile was less active; the differences are probably due to differences in the extent of recombination of electron and hole between the two forms (Miyagi et al. 2004). However, studies have shown that mixtures of anatase and rutile were more effective photocatalysts than 100% anatase (Miyagi et al. 2004) and were more efficient for killing coliphage MS2 (Sato and Taya 2006a). One active commercially available preparations of TiO$_2$ is Degussa P25 (Degussa Ltd., Germany) which contains approx. 80% anatase and 20% rutile. The increased activity is generally ascribed to interactions between the two forms, reducing bulk recombination. Brookite has been relatively little studied, but a recent paper showed that a brookite-anatase mixture was more active than anatase alone (Shah et al. 2008). A silver-doped multiphase catalyst was shown to have increased photocatalytic activity, but its antimicrobial activity was not reported (Yu et al. 2005a). Indoor use of photocatalytic disinfection is limited by the requirement for UVA irradiation. Modified catalysts can reduce the band gap so that visible light activates the photocatalysis. This has been shown for TiO$_2$ combined with C, N and S, metals such as Sn, Pd, and Cu, and dyes (Fujishima and Zhang 2006), but activity is generally lower than when activated with UVA. This area is currently the subject of much research.

The antimicrobial activity of UVA-activated TiO$_2$ was first demonstrated by Matsunaga and coworkers (Matsunaga 1985; Matsunaga et al. 1985). Since then, there have been reports on the use of photocatalysis for the destruction of bacteria, fungi, algae, protozoa and viruses as well as microbial toxins. TiO$_2$ can be used in suspension in liquids or immobilised on surfaces (Kikuchi et al. 1997; Sunada et al. 1998; Kühn et al. 2003; Yu et al. 2003a; Brook et al. 2007; Yates et al. 2008a, b; Ditta et al. 2008). The ability to eliminate microorganisms on photocatalytic self-cleaning/self-disinfecting surfaces may provide a useful additional mechanism in the control of transmission of diseases along with conventional disinfection methods. Copper and silver ions are well characterised for their antimicrobial activities and can also enhance the photocatalytic activity. Combinations of Cu$^{2+}$ and Ag$^+$ with TiO$_2$ therefore provide dual function surfaces (see below).

Photocatalytic action on microorganisms

Photocatalysis has been shown to be capable of killing a wide range of organisms including Gram-negative and Gram-positive bacteria, including endospores, fungi, algae, protozoa and viruses, and has also been shown to be capable of inactivating prions (Paspaltsis et al. 2006). Photocatalysis has also been shown to destroy microbial toxins. As far as the authors are aware, only Acanthamoeba cysts and Trichoderma asperellum conidiospores have been reported to be resistant (see below), but these have not been extensively studied. The ability to kill all other groups of microorganisms suggests that the surfaces have the potential to be self-sterilising, particularly when combined

Fig. 1 Number of publications on photocatalytic disinfection
with Cu or Ag. However, for the present, it is correct to refer to photocatalytic surfaces or suspensions as being self-disinfecting rather than self-sterilising. Many studies have used pure cultures, although there are reports of photocatalytic activity against mixed cultures (van Grieken et al. 2010) and of natural communities (Armon et al. 1998; Araña et al. 2002; Cho et al. 2007a).

Gram-negative bacteria
The great majority of studies have been performed with *Escherichia coli*, and there are far too many to give a complete list in this review. Some examples of different strains used and applications are shown in Table 2. Examples of other Gram-negative bacteria that are susceptible to PCD are shown in Table 3. They include cocci, straight and curved rods, and filamentous forms from 19 different genera.

Gram-positive bacteria
Most studies showed that Gram-positive bacteria were more resistant to photocatalytic disinfection than Gram-negative bacteria (Kim et al. 2003; Liu and Yang 2003; Erkan et al. 2006; Pal et al. 2005, 2007; Muszkat et al. 2005; Hu et al. 2007; Sheel et al. 2008; Skorb et al. 2008). The difference is usually ascribed to the difference in cell wall structure between Gram-positive and Gram-negative bacteria. Gram-negative bacteria have a triple-layer cell wall with an inner membrane (IM), a thin peptidoglycan layer (PG) and an outer membrane (OM), whereas Gram-positive bacteria have a thicker PG and no OM. However, a few studies show that Gram-positive bacteria were more sensitive. *Lactobacillus* was more sensitive than *E. coli* on a Pt-doped TiO$_2$ catalyst (Matsunaga et al. 1985). methicillin-resistant *Staphylococcus aureus* (MRSA) and *E. coli* were more resistant than *Microoccus luteus* (Kangwansupamonkon et al. 2009). Dunlop et al. (2010) showed that MRSA were more sensitive than an extended spectrum β-lactamase (ESBL)-producing *E. coli* strain, but less sensitive than *E. coli* K12. *Enterococcus faecalis* was more resistant than *E. coli*, but more sensitive than *Pseudomonas aeruginosa* (Luo et al. 2008). Conversely, Kubacka et al. (2008a) showed no difference in sensitivity between clinical isolates of *P. aeruginosa* and *E. faecalis*. Van Grieken et al. (2010) saw no difference in disinfection time for *E. coli* and *E. faecalis* in natural waters, but *E. faecalis* was more resistant in distilled water. These differences may relate to different affinities for TiO$_2$ (close contact between the cells and the TiO$_2$ is required for optimal activity—see below) as well as cell wall structure.

Gram-positive bacteria that have been shown to be killed by PCD are shown in Table 4 and include species of 17 different genera, including aerobic and anaerobic endospore formers. The endospores were uniformly more resistant than the vegetative cells to PCD.

Fungi, algae and protozoa
Fungi, algae and protozoa that have been shown to be susceptible to PCD are shown in Tables 5 and 6. These include 11 genera of filamentous fungi, 3 yeasts, 2 amoebae, 1 Apicomplexan, 1 diplomonad, 1 ciliate and 7 algae, including 1 diatom. Fungal spores were generally more resistant than vegetative forms, and *Trichoderma harzianum* spores in particular were resistant to killing under the conditions tested (Giannantonio et al. 2009). Cysts of *Acanthamoeba* showed only a 50% reduction during the treatment time and may have been killed if the treatment time had been extended (Sökmen et al. 2008).

Viruses
Viruses that have been shown to be killed by PCD are shown in Table 7.
Most studies were on *E. coli* bacteriophages in suspension, which have been demonstrated for icosahedral ssRNA viruses (MS2 and Qβ), filamentous ssRNA virus (fr), ssDNA (phi-X174) and dsDNA viruses (λ and T4). Other bacteriophages include *Salmonella typhimurium* phage PRD-1, *Lactobacillus* phage PL1 and an unspecified *Bacteroides fragilis* phage. Mammalian viruses include poliovirus 1, avian and human influenza viruses, and SARS coronavirus (Table 7).

Bacterial toxins
Photocatalytic activity has been shown to be capable of inactivating bacterial toxins including Gram-negative endotoxin and algal and cyanobacterial toxins (Table 8).

Mechanism of killing of bacteria
The mode of action of photoactivated TiO$_2$ against bacteria has been studied with both Gram-positive and Gram-negative bacteria. The killing action was originally proposed to be via depletion of coenzyme A by dimerization and subsequent inhibition of respiration (Matsunaga et al. 1985, 1988). However, there is overwhelming evidence that the lethal action is due to membrane and cell wall damage. These studies include microscopy, detection of lipid peroxidation products, leakage of intercellular components, e.g. cations, RNA and protein, permeability to low-molecular-weight labels, e.g. o-nitrophenyl-galactoside (ONPG), and spectroscopic studies.
Table 2 Examples of *E. coli* strains shown to be killed by photocatalytic disinfection on TiO$_2$

Organism	Notes	Reference
Escherichia coli	WO$_3$ nanoparticle doped TiO$_2$	Tatsuma et al. (2003)
Escherichia coli	Degussa P25 impregnated cloth filter	Vohra et al. (2006)
Escherichia coli	Degussa P25 suspension	Cho et al. (2005)
Escherichia coli	Degussa P25 coated plexiglass	Kühn et al. (2003)
Escherichia coli	Degussa P25 immobilised on glass substrate	Rodríguez et al. (2007)
Escherichia coli	Ag and CuO – TiO$_2$ hybrid catalysts	Brook et al. (2007), Ditta et al. (2008)
Escherichia coli	Degussa P25 suspension	Ibáñez et al. (2003)
Escherichia coli	Rfc sputter was used to deposit films of 120 nm thickness on glass and steel substrates	Shieh et al. (2006)
Escherichia coli	Degussa P25 applied to a plastic support	Sichel et al. (2007a)
Escherichia coli	Aldrich TiO$_2$ 99.9% pure anatase	Sökmen et al. (2001)
Escherichia coli	Aerosol deposited nanocrystalline film	Ryu et al. (2008)
Escherichia coli	Degussa P25, suspension	Huang et al. (2000)
Escherichia coli	Aerosil P25 suspension	Maness et al. (1999)
Escherichia coli	Thin film TiO$_2$	Dunlop et al. (2010)
Escherichia coli	TiO$_2$ and ZnO suspension	Liu and Yang (2003)
Escherichia coli	Sol–gel microemulsion with an Ag overlayer	Kubacka et al. (2008b)
Escherichia coli	Degussa P25 suspension	Lan et al. (2007)
Escherichia coli	Flow through reactor	Belláková et al. (1999)
Escherichia coli	Anatase thin film on glass	Yu et al. (2002, 2003b)
Escherichia coli	Degussa P25 suspension	Bekböl et al. (1996), Bekböl et al. (1997)
Escherichia coli	Degussa P25 and Ag/P25 mixed suspension	Coleman et al. (2005)
Escherichia coli	Silica coated lime glass plates dip coated with TiO$_2$	Kikuchi et al. (1997)
Escherichia coli	Degussa P25 suspension	Sunada et al. (2003b)
Escherichia coli	TiO$_2$ coated air filter	Sato et al. (2003)
Escherichia coli	Anatase thin film on glass	Yu et al. (2002)
Escherichia coli	Degussa P25 suspension	Duffy et al. (2004)
Escherichia coli	Degussa P25 coated glass fibre air filter	McLoughlin et al. (2004a, b)
Escherichia coli	Degussa P25	Pal et al. (2007)
Escherichia coli	Degussa P25 coated glass fibre air filter	Pal et al. (2008)
Escherichia coli	Silica coated lime glass plates dip coated with TiO$_2$	Rincon and Pulgarin (2003, 2004a)
Escherichia coli	Degussa P25 suspension	Marugan et al. (2008)
Escherichia coli	Degussa P25 suspension	Fernandez et al. (2005)
Escherichia coli	Degussa P25 suspension	Gumy et al. (2006a, b)
Escherichia coli	Degussa P25 suspension	Quisenberry et al. (2009)
Escherichia coli	Thin film TiO$_2$	Dunlop et al. (2002)
Escherichia coli	Degussa P25 suspension	Gogniat and Dukan (2007)
Escherichia coli	Degussa P25 suspension	Kim et al. (2004)
Escherichia coli	Immobilised TiO$_2$	Butterfield et al. (1997)
Escherichia coli	Degussa P25 suspension	Benabou et al. (2007)
Escherichia coli	Degussa P25 and millennium PC500	Guillard et al. (2008)
Escherichia coli	Degussa P25 suspension	Robertson et al. (2005)
Escherichia coli	Thin films on glass substrate	Choi et al. (2004)
Escherichia coli	Anatase thin film on glass	Yu et al. (2002)
Changes in cell permeability

Indirect evidence for membrane damage comes from studies of leakage of cellular components. Saito et al. (1992) showed that there was a rapid leakage of K^+ from treated cells of *Streptococcus sobrinus* AHT which occurred within 1 min of exposure and paralleled the loss of viability. This was followed by a slower release of RNA...
Organism	Notes	Reference
Actinobacillus actinomycetemcomitans	TiO$_2$ coating on titanium	Suketa et al. (2005)
Actinomyces viscosus	Kobe Steel TiO$_2$ 99.98% anatase	Nagame et al. (1989)
Bacillus cereus	TiO$_2$ suspension	Cho et al. (2007a)
Bacillus cereus spores	Colloidal suspension of TiO$_2$	Armon et al. (2004)
Bacillus megaterium QM B1551		
Bacillus pumilis spores ATCC 27142	TiO$_2$ anatase 99.9% slurry in Petri dish	Pham et al. (1995, 1997)
Bacillus sp.	Degussa P-25 immobilised on Pyrex glass	Rincón and Pulgarin (2005)
Bacillus subtilis vegetative cells and	Degussa P25-coated quartz discs	Wolfrum et al. (2002)
endospores		
Bacillus subtilis endospores	Aluminium foil coated with TiO$_2$	Greist et al. (2002)
Bacillus thuringiensis	100% anatase thin film ± Pt doping	Kozlova et al. (2010)
Clavibacter michiganensis	Solar + H$_2$O$_2$	Muszkat et al. (2005)
Clostridium difficile	Evonik Aeroxide P25 thin film	Dunlop et al. (2010)
Clostridium perfringens spores NCIMB 6125	Degussa P-25 + UVC	Guimarães and Barretto (2003)
Deinococcus radiophilius	TiO$_2$ suspension	Laot et al. (1999)
Enterococcus (Streptococcus) faecalis	Degussa P25 suspension	Herrera Melián et al. (2000)
Enterococcus (Streptococcus) faecalis	Immobilised TiO$_2$	Singh et al. (2005)
Enterococcus faecalis CECT 481	Degussa P25 suspension	Vidal et al. (1999)
Enterococcus faecium	Degussa P25-coated Plexiglass	Kühn et al. (2003)
Enterococcus hirae	TiO$_2$ on orthopaedic implants	Tsuang et al. (2008)
Enterococcus sp.	Degussa P-25 suspension	Rincón and Pulgarin (2005)
Lactobacillus acidophilus	Degussa P25 suspension	Matsunaga et al. (1985), Choi et al. (2007a)
Lactobacillus helveticus CCRC 13936	TiO$_2$ suspension	Liu and Yang (2003)
Lactococcus lactis 411	Sigma-Aldrich TiO$_2$ thin films	Skorb et al. (2008)
Listeria monocytogenes	TiO$_2$ (Yakuri Pure Chemical Company, Japan) suspension	Kim et al. (2003)
Microbacterium sp. Microbacteriaceae str. W7	Degussa P25 immobilised on membrane	Pal et al. (2007)
Micrococcus luteus	Degussa P25 thick film	Wolfrum et al. (2002)
Micrococcus lylae	TiO$_2$ suspension	Yu et al. (2005b)
MRSA		
MRSA		
Mycobacterium smegmatis		
Mycobacterium smegmatis		
Porphyrmonas gingivalis		
Paenibacillus sp SAFN-007	Degussa P25 immobilised on membrane	Pal et al. (2007)
Staphylococcus aureus	Degussa P25 suspension	Block et al. (1997)
Staphylococcus aureus	TiO$_2$ thin film on steel and titanium	Shiraiishi et al. (1999)
Staphylococcus epidermidis NCTC11047	Ag-TiO$_2$ catalyst	Sheel et al. (2008)
Staphylococcus saprophyticus		
Streptococcus citricus		
Streptococcus iniae		
Streptococcus mutans		
Streptococcus mutans GS5, LM7, OMZ175		
Streptococcus pyogenes ery\' cam\'		
Streptococcus rattus FA-1		
Streptococcus sobrinus AHT		
and protein. Leakage of K⁺ was also shown to parallel cell death of *E. coli* (Hu et al. 2007; Kambala and Naidu 2009). Huang et al. (2000) showed an initial increase in permeability to small molecules such as ONPG which was followed by leakage of large molecules such as β-D-galactosidase from treated cells of *E. coli*, suggesting a progressive increase in membrane permeability. Membrane damage has been shown with cells labelled with the LIVE-DEAD® BacLight™ Bacterial Viability Kit which uses the fluorescent dyes Cyto 9, which stains all cells green, and propidium iodide, which only penetrates cells with damaged membranes and stains cells red. Gogniat et al. (2006) showed that permeability changes occurred in the membrane soon after attachment of *E. coli* to the TiO₂, and we have seen similar changes (Ditta and Foster, unpublished). However, no damage was detected on a visible light active PdO/TiON catalyst until the catalyst had been irradiated (Wu et al. 2008, 2009a, b; see Fig. 2).

Table 5 Fungi shown to be killed by photocatalytic disinfection

Organism	Notes	Reference
Aspergillus niger AS3315	Wood coated with TiO₂	Chen et al. (2009)
A. niger spores	Degussa P25 film on quartz discs	Wolfrum et al. (2002)
Aspergillus niger	Thin films of TiO₂ on glass plates	Erkan et al. (2006)
Candida albicans ATCC 10231	Degussa P25 suspension	Lonnen et al. (2005)
Candida albicans	TiO₂-coated surfaces	Kühn et al. (2003)
Candida famata	TiO₂ coated catheters	Yao et al. (2008c)
Candida vini	TiO₂ thin film	Veselá et al. (2008)
Cladobotryum variabilis	TiO₂ suspension	Sawada et al. (2005)
Cladosporium cladosporioides	TiO₂-coated concrete	Giannantonio et al. (2009)
Diaporthe actinidae	TiO₂ immobilised on alumina spheres	Hur et al. (2005)
Erysiphe cichoracearum	Degussa P25 and Ce³⁺ doped catalysts	Lu et al. (2006)
Epicoccum nigrum	TiO₂ coated concrete	Giannantonio et al. (2009)
Fungi from spinach	Plastic fruit containers with TiO₂ coating	Koide and Nonami (2007)
Fusarium mucedo	TiO₂-coated concrete	Giannantonio et al. (2009)
Fusarium solani ATCC 36031	Degussa P25 suspension	Lonnen et al. (2005)
Fusarium spp. (equisetii, oxyptan, anthropilum, verticilloides, solani)	TiO₂ suspension, solar irradiation	Sichel et al. (2007b, c)
Hanseula anomala CCY-138-30	TiO₂- and Ag-doped	Veselá et al. (2008)
Peronophythora litchii	Degussa P25- and Ce³⁺-doped catalysts	Lu et al. (2006)
Penicillium citrinum	TiO₂-coated air filter	Lin and Li (2003a, b)
Penicillium expansum	TiO₂ spray coated on polypropylene film	Maneerat and Hayata (2006)
Penicillium oxalicum	TiO₂-coated concrete	Giannantonio et al. (2009)
Pestalotiopsis maculans	TiO₂-coated concrete	Giannantonio et al. (2009)
Saccharomyces cerevisiae	Aerosil P25 suspension	Matsunaga et al. (1985)
Sacchararomyces cerevisiae	Pd-doped TiO₂	Erkan et al. (2006)
Spicellum roseum	TiO₂ suspension	Sawada et al. (2005)
Trichoderma asperellum	TiO₂-coated concrete	Giannantonio et al. (2009)
Trichoderma harzianum	TiO₂ suspension	Sawada et al. (2005)

Microscopic changes during PCD

TEM images of treated cells of *S. sobrinus* showed clearly that the cell wall was partially broken after cells had undergone TiO₂ photocatalytic treatment for 60 min, with further disruption after 120 min (Saito et al. 1992). The authors suggested that cell death was caused by alterations in cell permeability and the decomposition of the cell wall. SEM images of *S. aureus*, MRSA, *E. coli* and *M. luteus* showed morphological changes suggestive of cell wall disruption after UVA irradiation on apatite-coated TiO₂ on cotton fabrics (Kangwansupamonkon et al. 2009).

Damage to the cell wall of *P. aeruginosa* was shown by SEM and TEM, which showed changes in membrane structure such as “bubble-like protuberances which expelled cellular material” (Fig. 3; Amezaga-Madrid et al. 2002, 2003). They suggested that leakage of cellular material, and possibly abnormal cell division, was occurring, although the bubbles may have been due to localised
damage to the peptidoglycan layer allowing the inner membrane to bulge through the peptidoglycan layer. Sunada et al. (2003b) studied killing of E. coli on thin films of TiO₂ and showed that the outer membrane was damaged first and then the cytoplasmic membrane followed by complete degradation. Photocatalytic killing occurred without substantial visible degradation of peptidoglycan. Atomic force microscopy measurements of cells on

Table 6 Protozoa and algae shown to be killed by photocatalytic disinfection

Organism	Notes	Reference
Protozoa		
Acanthamoeba castellanii	Degussa P25 suspension Only 50% kill for cysts, trophozoites were sensitive	Sökmen et al. (2008)
Acanthamoeba polyphaga	Degussa P25 suspension	Lonnen et al. (2005)
Cryptosporidium parvum	UV irradiation	Ryu et al. (2008)
Giardia sp.	Fibrous ceramic TiO₂ filter	Curtis et al. (2002)
Giardia intestinalis	TiO₂ (anatase 99.9%) + Ag⁺	Sökmen et al. (2008)
Giardia lamblia	TiO₂ thin film catalyst	Lee et al. (2004)
Tetrahymena pyriformis	TiO₂ suspension	Peng et al. (2010)
Algae		
Amphidinium corterae	Ag–TiO₂ catalyst	Rodriguez-Gonzalez et al. (2010)
Chlorella vulgaris	TiO₂–Pt catalyst	Matsunaga et al. (1985)
Cladophora sp.	TiO₂-covered glass beads	Peller et al. (2007)
Chroococcus sp. 27269	Anatase, fluorescent light	Hong et al. (2005)
Melosira sp.	TiO₂-coated glass beads	Kim and Lee (2005)
Oedogonium sp.	TiO₂-coated concrete	Linkous et al. (2000)
Tetraselmis suecica	Ag–TiO₂ catalyst	Rodriguez-Gonzalez et al. (2010)

Table 7 Viruses shown to be killed by photocatalytic disinfection

Host	Virus	Reference
Bacteroides fragilis	Not specified	Armon et al. (1998)
Birds	Influenza (avian) A/H5N2	Guillard et al. (2008)
E. coli	Coliphage	Guimarães and Barretto (2003)
E. coli	λvir	Gerrity et al. (2008)
E. coli	T4	Ditta et al. (2008), Sheel et al. (2008)
E. coli	λNM1149	Yu et al. (2008)
E. coli	φX174	Belhácová et al. (1999)
E. coli	MS2	Gerrity et al. (2008)
E. coli	Qβ	Sjogren and Sierka (1994), Greist et al. (2002), Cho et al. (2004, 2005), Sato and Taya (2006a, b), Vohra et al. (2006), Gerrity et al. (2008)
Human	Hepatitis B virus surface antigen HBsAg	Zan et al. (2007)
Human	Influenza A/H1N1	Lin et al. (2006)
Human	Influenza A/H3N2	Kozlova et al. (2010)
Human	Norovirus	Kato et al. (2005)
Human	*Poliovirus* type 1 (ATCC VFR-192)	Watts et al. (1995)
Human	SARS coronavirus	Han et al. (2004)
Human	Vaccinia	Kozlova et al. (2010)
Lactobacillus casei	PL-1	Kakita et al. (1997, 20000), Kashige et al. (2001)
Salmonella typhimurium	PRD1	Gerrity et al. (2008)
illuminated TiO$_2$ film showed that the outer membrane decomposed first (Sunada et al. 2003b).

TEM images showed progressive destruction of E. coli cells on Ag/AgBr/TiO$_2$ in suspension (Hu et al. 2006). Cell membrane was degraded first followed by penetration of TiO$_2$ particles into the cell and further damage. TEM of E. coli showed that there were changes to the nucleoid which became condensed, possibly due to leakage of ions out of the cell (Chung et al. 2009).

TEM of thin sections of treated cells of E. coli on a visible light-activated TiO$_2$ showed various degrees of cell disruption including plasmolysis, intracellular vacuoles ghost and cell debris (Vacaroiu et al. 2009). SEM and TEM studies showed initial swelling and rough appearance of the cells followed by scars and holes in the OM.

TEM of thin sections of treated cells of E. coli on a visible light-activated TiO$_2$ showed various degrees of cell disruption including plasmolysis, intracellular vacuoles ghost and cell debris (Vacaroiu et al. 2009).

Atomic force microscopy was used to show membrane damage to E. coli, S. aureus and Diplococcus (Streptococcus) pneumoniae on thin films of TiO$_2$ (Miron et al. 2005). Changes to treated cells of S. aureus seen by TEM included separation of cytoplasmic membrane from the peptidoglycan layer (Chung et al. 2009). Distortion of treated cells of both MRSA and methicillin-sensitive S. aureus was seen by SEM on anatase–brookite (Shah et al. 2008), again suggesting cell wall damage.

Lipid peroxidation by ROS was demonstrated by the release of MDA as a breakdown product, and there was a concurrent loss of membrane respiratory activity measured by reduction of 2,3,5-triphenyltetrazolium chloride (Maness et al. 1999). The demonstration of degradation of E. coli endotoxin without substantial degradation of peptidoglycan (Sunada et al. 1998) suggested that in the case of Gram-negative bacteria, cell disruption occurred in the order of OM→PG→IM. However, alterations to the peptidoglycan layer may not be obvious in electron micrographs as peptidoglycan is a highly cross-linked structure and

Table 8 Microbial toxins inactivated by photocatalysis

Toxin	Publication
Brevetoxins	Khan et al. (2010)
Cylindrospermopsin	Senogles et al. (2000, 2001)
Lipopolysaccharide endotoxin	Sunada et al. (1998)
Microcystin-LR	Feitz and Waite (2003)
	Lawton et al. (1999, 2003)
	Cornish et al. (2000)
Microcystins LR, YA and YR	Shephard et al. (1998)
Nodularin	Liu et al. (2005)

especially where the TiO$_2$ particles were in contact with the cells. Erdem et al. (2006) showed damage by SEM on E. coli and production of membrane breakdown products. SEM has shown changes to the outer membrane of E. coli (Li et al. 2008; Shah et al. 2008; Gartner et al. 2009). TEM of thin sections of treated cells of E. coli on a visible light-activated TiO$_2$ showed various degrees of cell disruption including plasmolysis, intracellular vacuoles ghost and cell debris (Vacaroiu et al. 2009).

Atomic force microscopy was used to show membrane damage to E. coli, S. aureus and Diplococcus (Streptococcus) pneumoniae on thin films of TiO$_2$ (Miron et al. 2005). Changes to treated cells of S. aureus seen by TEM included separation of cytoplasmic membrane from the peptidoglycan layer (Chung et al. 2009). Distortion of treated cells of both MRSA and methicillin-sensitive S. aureus was seen by SEM on anatase–brookite (Shah et al. 2008), again suggesting cell wall damage.

Lipid peroxidation by ROS was demonstrated by the release of MDA as a breakdown product, and there was a concurrent loss of membrane respiratory activity measured by reduction of 2,3,5-triphenyltetrazolium chloride (Maness et al. 1999). The demonstration of degradation of E. coli endotoxin without substantial degradation of peptidoglycan (Sunada et al. 1998) suggested that in the case of Gram-negative bacteria, cell disruption occurred in the order of OM→PG→IM. However, alterations to the peptidoglycan layer may not be obvious in electron micrographs as peptidoglycan is a highly cross-linked structure and

Fig. 2 Scanning electron micrographs of photocatalytically treated E. coli: a Untreated cells. b, c Cells after 240 min. d Cells after 30 min. Catalyst TiON thin film. From Wu et al. (2010a, b)
appreciable damage may occur without destruction of its overall appearance. Localised destruction may occur where TiO$_2$ particles are in contact with the cell. This may allow protrusion of inner membrane through the cell wall as seen by Amezaga-Madrid et al. (2003), followed by total rupture of the cell wall.

Yao et al. (2007c) showed damage to cells of *Erwinia carotovora* and DNA damage, which suggested that damage to DNA was responsible for cell death. However, our own data showed that there was no DNA damage seen by COMET assay on plain TiO$_2$ surfaces even when 97% of the cells were non-viable (Varghese and Foster, unpublished data; Fig. 4). Damage to DNA does occur on TiO$_2$ (Wamer et al. 1997; Hirakawa et al. 2004; Wang and Yang 2005; Wang et al. 2005; Gogniat and Dukan 2007; Shen et al. 2008; Yao et al. 2007c; Yang and Wang 2008), but is probably a late event after rupture of the membrane and cell death.

Killing of other microorganisms

There have been fewer studies on the mechanism of killing of eukaryotes. Linkous et al. (2000) suggested that death of the alga *Oedogonium* sp. was due to nonspecific breakdown of cellular structures. Microscopy has shown membrane damage to the alga *Chroococcus* sp. (Hong et al. 2005). Light microscopy and SEM showed damage to cell walls of *Candida albicans* suspended over a thin film of TiO$_2$ (Kühn et al. 2003) and on TiO$_2$-coated tissue conditioner (Akiba et al. 2005). Cell wall and membrane damage to cysts were seen with light microscopy of photocatalytically treated *Giardia lamblia* (Sökmen et al. 2008). Membrane damage was also shown to occur on
treatment of the ciliate protozoan *Tetrahymena pyriformis* (Peng et al. 2010).

Killing of *Lactobacillus* phage PL1 by thin films of TiO$_2$ suspended in liquid was reported to be via initial damage to protein of the capsid by -OH, followed by damage to the phage DNA inside the particles (Kashige et al. 2001). SEM showed ghost particles and empty heads. Damage to the H and N projections of influenza virus A/H1N1 occurred on PCD and was followed by total mineralisation (Lin et al. 2006).

Spectroscopic studies

The activity of titanium dioxide on isolated phospholipid bilayers has been shown to result in disruption of the bilayer structure using X-ray diffraction (Suwalsky et al. 2005), laser kinetic spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (FTIR). Disruption was shown to be due to lipid peroxidation (Kiwi and Nadtochenko 2004; Nadtochenko et al. 2006) measured by production of malondialdehyde (MDA). Lipid peroxidation occurs when polyunsaturated fatty acids such as linoleic acid are attacked by ROS (Kiwi and Nadtochenko 2005).

FTIR spectra of treated *E. coli* confirmed the production of carboxylic acids such as MDA as products of membrane degradation. MDA was further degraded by longer irradiation times (Hu et al. 2007).

The electron decay on TiO$_2$ was studied using laser kinetic spectroscopy in the presence of phosphatidyl ethanolamine, lipopolysaccharide and *E. coli* (Nadtochenko et al. 2006). Spectroscopic studies using FTIR spectroscopy suggested that organic components bound to the TiO$_2$ were directly oxidised by reduction of the electron holes (Nadtochenko et al. 2006, 2008). This work suggested that direct oxidation of cellular components could occur without the production of ROS, but only if cells were in direct contact with the surface of the TiO$_2$. This is wholly consistent with the greater effectiveness of PCD when the cells are in contact with the TiO$_2$ rather than in suspension. Overall, the spectroscopic studies support the light microscopic studies and confirm the order of destruction being OM \rightarrow IM \rightarrow PG. Details of kinetic models of the killing mechanism are presented by Dalrymple et al. (2010).

The role of ROS in killing of bacteria is summarised in Fig. 5.

Role of ROS in the killing mechanism

Most studies show that ROS are responsible for the killing, and various authors propose that -OH are responsible (Ireland et al. 1993; Kikuchi et al. 1997; Maness et al. 1999; Salih 2002; Cho et al. 2004, 2005; Cho and Yoon 2008). Lipid peroxidation by ROS was demonstrated by the release of MDA as a breakdown product, and there was a concurrent loss of membrane respiratory activity measured by reduction of 2,3,5-triphenyltetrazolium chloride (Maness et al. 1999). The -OH scavengers, dimethylsulphoxide and cysteamine, eliminated the PCD activity of suspensions of TiO$_2$ in water (Salih 2002). However, -OH are short-lived and will probably not diffuse further than 1 μm from the surface of the TiO$_2$, especially in the presence of organic matter (Pryor 1986; Kikuchi et al. 1997). Kikuchi et al. (1997) showed that killing of *E. coli* still occurred even when the bacteria were separated from the surface by a 50-μm-thick porous membrane. However, the free radical scavenger mannitol only inhibited killing without the membrane, whereas catalase, which would degrade H$_2$O$_2$, decreased killing both with and without the membrane. This suggested that -OH and H$_2$O$_2$ were responsible for killing close to the TiO$_2$, with H$_2$O$_2$ acting at a distance. The role of other ROS, e.g. O$_2^-$, was not considered. However, no killing was seen when cells were separated from the TiO$_2$ by a dialysis membrane in a separate study (Guillard et al. 2008). Hydrogen peroxide may act at a distance if ferrous ions are present by producing -OH via the Fenton reaction (8 and 9).

$$\text{Fe}^{3+} + \text{O}_2^- \rightarrow \text{Fe}^{2+} + \text{O}_2 \quad (8)$$

$$\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \cdot\text{OH} \quad (9)$$
A study of the roles of H$_2$O$_2$ and ·OH in an immobilised TiO$_2$ thin film reactor activated by UVC using electron spin resonance suggested that ·OH were produced by direct photolysis of H$_2$O$_2$ as well as by Eqs. 3 and 4 (Yan et al. 2009).

A role for ·OH in sonocatalysis on TiO$_2$ (where the energy to bridge the band gap is provided by sound waves) was suggested by the work of Ogino et al. 2006 who showed that the killing was inhibited by the ·OH scavenger glutathione. Hydroxyl radicals produced by microwave irradiation of TiO$_2$ were shown to enhance the killing of E. coli (Takashima et al. 2007).

Hydroxyl radicals were shown to be the major ROS involved in killing of C. parvum cysts, although other ROS were also involved (Cho and Yoon 2008).

Studies with hydroxyl radical scavengers suggested that inactivation of phage in suspensions of TiO$_2$ also occurred due to bulk phase ·OH, whereas inactivation of bacteria occurred with both bulk phase and surface ·OH (Cho et al. 2004, 2005). The rate of inactivation of E. coli correlated with the concentration of ·OH. A role for other ROS such as H$_2$O$_2$ and O$_2^-$ was also suggested.

Studies on superoxide dismutase (SOD)-defective E. coli have shown that oxidative damage to the membrane combined with the turgor pressure inside the cell initially permeabilizes the cell envelope, allowing critical metabolites to escape (Imlay and Fridovich 1992). Studies on oxidative damage caused by TiO$_2$ in SOD mutants of E. coli showed that the inactivation rate was inversely proportional to SOD activity (Koizumi et al. 2002; Kim et al. 2004).

Kinetic models and further details of the chemistry of the killing mechanism are presented by Dalrymple et al. (2010). The role of hvb$^+$ and ROS in killing of bacteria is summarised in Fig. 5.

Importance of contact between bacteria and TiO$_2$

Many studies have shown that close contact between the bacteria and the TiO$_2$ increases the extent of oxidative damage. Studies on the disinfection of water have shown that suspended TiO$_2$ is more active than TiO$_2$ immobilised on surfaces, e.g. on thin films (Lee et al. 1997; Otaki et al. 2000; Sun et al. 2003; Gumy et al. 2006b; Marugan et al. 2006, 2008; Cohen-Yaniv et al. 2008). This is probably due to increased contact between the TiO$_2$ particles and the bacterial cells in suspension as well as an increased surface area for ROS production. A number of studies confirm the importance of such contact (Horie et al. 1996a, b, 1998; Gumy et al. 2006a; Pratap Reddy et al. 2008; Caballero et al. 2009; Cheng et al. 2009). Co-precipitation of cells and TiO$_2$ particles from suspension by alum enhanced killing of E. coli (Salih 2004). Certain ionic species have been shown to inhibit PCD, e.g. PO$_4^{3-}$ (Araña et al. 2002; Koizumi and Taya 2002a, b; Christensen et al. 2003; Rincón and Pulgarín 2004b; Egerton et al. 2006; Xiong et al. 2006; Marugan et al. 2008) and HCO$_3^-$ (Rincón and Pulgarín 2004b; Coleman et al. 2005; Gogniat et al. 2006), and the rate of adsorption onto the TiO$_2$ in the presence of different ions correlated with the rate of inactivation, suggesting that the inhibition was due to the prevention of binding of the bacteria to the TiO$_2$ particles. Light micrographs (Nadtochenko et al. 2005; Gumy et al. 2006b; Gogniat et al. 2006) and electron micrographs clearly show binding of the titania particles to bacterial cells (Gumy et al. 2006a, b; Saió et al. 1992; Cheng et al. 2007; Shah et al. 2008). A micrograph showing particles of TiO$_2$ attached to an E. coli cell is shown in Fig. 6. Contact with highly crystalline TiO$_2$ may also cause physical damage to the cells (Liu et al. 2007c; Caballero et al. 2009).

Although differences in binding of isolated O antigens to TiO$_2$ have been shown (E. coli O8 and Citrobacter freundii O antigens bound strongly to TiO$_2$, whereas that from Stenotrophomonas maltophilia had a low affinity for TiO$_2$; Jucker et al. 1997), differences in the susceptibility of bacteria with different O antigens have not been studied. Differences in the susceptibility of different strains of Legionella pneumophila correlated with the amount of saturated 16C branched chain fatty acids in the membrane (Cheng et al. 2007). The more hydrophobic cells of

![Fig. 6](https://example.com/fig6.png)
Flavobacterium sp. were more easily killed by PCD than E. coli (Cohen-Yaniv et al. 2008), which may also have been due to altered interactions with the TiO₂.

In an attempt to increase contact between the cells, Benabbou et al. (2007) studied the PCD of a strain of E. coli overexpressing curli, pili, which enhance adhesion to abiotic surfaces. However, the strain was more resistant than the non-piliated control, and evidence of protein degradation suggested that the pili were being degraded before the membrane was damaged and therefore protected the membrane from damage. The presence of extracellular polysaccharides interfered with PCD of biofilms of P. aeruginosa (Gage et al. 2005) and a natural biofilm (Liu et al. 2007a), but killing was seen throughout a biofilm of Staphylococcus epidermidis on a TiO₂ catalyst (Dunlop et al. 2010). The different biofilms and catalysts may explain these anomalies.

The inhibition of close contact between coliphage MS2 and TiO₂ by certain cations was shown by Koizumi and Taya (2002a, b), and the rate of inactivation was proportional to adsorption of the phage onto the TiO₂. Sato and Taya (2006a, b) showed that the presence of organic materials protected the phage by adsorbing to the surface of the TiO₂, preventing phage binding.

Cell mineralisation

Following initial cell damage and cell death, photocatalysis has been shown to be capable of complete mineralisation of bacteria on air filters using ¹⁴C-labelled cells (Jacoby et al. 1998; Wolfrum et al. 2002) and for cells suspended in water (Cooper et al. 1997; Sökmen et al. 2001). The total oxidation of Legionella by PCO was measured by total organic carbon analysis (Cheng et al. 2007). An almost complete degradation of E. coli was demonstrated on prolonged treatment on a TiO₂-activated charcoal catalyst (Li et al. 2008). Nadtochenko et al. (2008) showed total oxidation of cell organic matter by total internal reflection/FTIR. Removal of microorganisms during regeneration of photocatalytic TiO₂-coated air filters by complete removal of contaminants has also been shown by SEM (Goswami et al. 1999; Ortiz López and Jacoby 2002). Penetration of TiO₂ particles into the cells was shown using an Ag/AgBr/TiO₂ catalyst (Hu et al. 2006).

A scheme for the killing mechanism of TiO₂ on bacteria is shown in Fig. 7. We suggest that there may be initial damage on contact between the cells and TiO₂, which affects membrane permeability, but is reversible. This is followed by increased damage to all cell wall layers, allowing leakage of small molecules such as ions. Damage at this stage may be irreversible, and this accompanies cell death. As the peptidoglycan is a highly cross-linked molecule, damage may not be visibly evident at this stage or may be localised if the TiO₂ is in contact with the cells. Further membrane damage allows leakage of higher molecular weight components such as proteins, which may be followed by protrusion of the cytoplasmic membrane into the surrounding medium through degraded areas of the peptidoglycan and lysis of the cell. Degradation of the internal components of the cell then occurs, followed by complete mineralisation. The degradation process may occur progressively from the side of the cell in contact with the catalyst.

Dual function materials

Copper-deposited films show enhanced PCD activity (Sunada et al. 2003a; Foster et al. 2010; Wu et al. 2010a; Yates et al. 2008a, b). A clear synergy in photokilling of E. coli on Cu-containing TiO₂ films was shown by Sato and Taya (2006c) who showed that H₂O₂ was produced from the photocatalyst and Cu²⁺ leached from the surface, but neither reached high enough concentrations to kill the E. coli directly. They suggested that the Cu²⁺ was reduced to Cu⁺ (10) which reacted with the H₂O₂ to produce "OH via a Fenton-type reaction (11), which was responsible for killing cells in suspension and explaining why catalase reduced this activity. Inclusion of Cu also gave higher PC activity, hence the enhanced killing of cells bound to the TiO₂. In our own work, we have seen DNA damage when TiO₂/
CuO surfaces were used (Fig. 4). Thus, Cu may also kill cells by DNA damage as well as membrane damage. This is consistent with the observed enhancement of damage to DNA and protein caused by ROS (Cervantes-Cervantes et al. 2005).

\[\text{Cu}^{2+} + \text{e}^{-}_{cb} \rightarrow \text{Cu}^+ \]

\[\text{H}_2\text{O}_2 + \text{Cu}^+ \rightarrow \text{HO}^- + \text{OH}^- + \text{Cu}^{2+} \]

Similar synergy has been shown between Ag and TiO2. Ag enhances photocatalysis by enhancing charge separation at the surface of the TiO2 (Sökmens et al. 2001; He et al. 2002; Hirakawa and Kamat 2005; Kubačka et al. 2008b; Liu et al. 2007b; Musil et al. 2009). Ag+ is antimicrobial and can also enhance generation of ROS (Eqs. 12, 13 and 14).

\[\text{Ag}^+ + \text{O}_2^- \rightarrow \text{Ag}^0 + \text{O}_2 \]

\[\text{Ag}^0 + \text{O}_2^- \rightarrow \text{Ag}^+ + \text{O}_2^{2-} \]

\[\text{H}_2\text{O}_2 + \text{Ag}^0 \rightarrow \text{HO}^- + \text{OH}^- + \text{Ag}^+ \]

Conclusions

Generation of ROS by photocatalysis on TiO2 is capable of killing a wide range of organisms including bacteria endospores in water, in air and on surfaces, including various materials. The technology has the potential to provide a powerful weapon in the fight against transmission of infectious diseases, particularly in view of the development of visible light-activated catalysts.

One of the problems is that until relatively recently, there has not been an accepted standard method for the testing of the antimicrobial efficiency of photocatalytic processes. For example, many different strains of E. coli have been used (Table 2) with different growth media and test conditions. This makes it very difficult to compare results from different research groups. In the second part of this review, we will investigate the evaluation of photocatalytic killing activity.

Acknowledgements The authors are grateful to Professor David Sheel and Dr. Heather Yates of the Centre for Physics and Materials Research, University of Salford and to CVD Technologies Ltd. for production of titania films and for their comments on the manuscript. We would also like to thank Mr. Roger Bickley for his advice on the early literature on TiO2. This work was partly supported by EEC Framework 7 grant CP-IP 214134-2 N2P "Nano-to Production".

References

Akiba N, Hayakawa I, Keh ES, Watanabe A (2005) Antifungal effects of a tissue conditioner coating agent with TiO2 photocatalyst. J Med Dent Sci 52(4):223–227

Allen NS, Edge M, Verran J, Stratton J, Maltby J, Bygott C (2008) Photocatalytic titania based surfaces: environmental benefits. Polym Degrad Stab 93(9):1632–1646

Amezaga-Madrid P, Nevarez-Moorillon GV, Otrantia-Borunda E, Miki-Yoshida M (2002) Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS Microbiol Lett 211(2):183–188

Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV, Miki-Yoshida M, Otrantia-Borunda E, Solis FJ (2003) TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photochem Photobiol B 70(1):45–50. doi:10.1016/S1010-7505(03)00054-x

Araña J, Herrera Melián JA, Doña Rodriguez JM, González Díaz O, Viera A, Pérez Peña J, Marrero Sosa PM, Espino Jiménez V (2002) TiO2-photocatalysis as a tertiary treatment of naturally treated wastewater. Catal Today 76(2–4):279–289

Armon R, Laton N, Narkis N, Neeman I (1998) Photocatalytic inactivation of different bacteria and bacteriophages in drinking water at different TiO2 concentrations with or without exposure to O2. J Adv Oxid Technol 3:145–150

Armon R, Weltch-Cohen G, Bertane P (2004) Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis. Waterborne Pathog 4(2):7–14

Bai S, Mo A, Xian S, Zuo Y, Li Y, Xu W (2007) Characterization and antibacterial effect of a novel nanocomposite membrane. Bio- ceramics 19 published in Key Eng Mater 330–332(I):325–328

Bekbölet M (1997) Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of E-coli. Water Sci Technol 32(5):959–965

Belhácová L, Krýsa J, Geryk J, Jirkovský J (1999) Inactivation of microorganisms in a flow-through photoreactor with an immobilized TiO2 layer. J Chem Technol Biotechnol 74(2):149–154

Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Inactivation of Pseudomonas-stutzeri during irradiation with near-ultraviolet light. Lett Appl Microbiol 19(6):458–460

Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 28(1):1–50

Block SS, Seng VP, Goswami DW (1997) Chemically enhanced sunlight for killing bacteria. J Sol Energy Eng Trans ASME 119(1):85–91

Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol A 187(1):53–63

Butterfield IM, Christensen PA, Curtis TP, Gunlazuardi J (1997) Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res 31(3):675–677

Caballero L, Whitehead KA, Allen NS, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photocem Photobiol A 202(2–3):92–98. doi:10.1016/j.photobiology.2008.11.005
Cerrada ML, Serrano C, Sanchez-Chaves M, Fernandez-Garcia M, Fernandez-Martín F, de Andres A, Rioboo RJJ, Kubacka A, Ferrer M (2008) Self-sterilized evoh-TiO₂ nanocomposites: interface effects on biocidal properties. Adv Funct Mater 18(13):1949–1960. doi:10.1002/adfm.200701068

Cervantes-Cervantes MP, Calderón-Salinas JV, Albores A, Munoz-Sanchez JL (2005) Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol Trace Elem Res 103(3):229–248

Chang DWT, Law KC, Kwan CHS, Chiu WY (2005) Application of an air purification system to control air-borne bacterial contamination in a university clinic. Trans Hong Kong Inst Eng 12(1):17–21

Chawengkijwanich C, Hayata Y (2008) Development of TiO₂ powder-coated packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292. doi:10.1016/j.ijfoodmicro.2007.12.017

Chen J, Poon C-s (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44(9):1899–1906

Chen WJ, Tsai PJ, Chen YC (2008) Functional Fe₃O₄/TiO₂ core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4(4):485–491

Chen FY, Yang XD, Wu Q (2009) Antifungal capability of TiO₂ coated film on moist wood. Build Environ 44(5):1088–1093. doi:10.1016/j.buildenv.2008.07.018

Cheng YW, Chan RCY, Wong PK (2007) Disinfection of Legionella pneumophila by photocatalytic oxidation. Wat Res 41(4):842–852. doi:10.1016/j.watres.2006.11.033

Cheng TC, Chang CY, Chang CI, Hwang CJ, Hsu HC, Wang DY, Yao KS (2008) Photocatalytic bactericidal effect of TiO₂ film on fish pathogens. Surf Coat Technol 203(5–7):925–927. doi:10.1016/j.surfcoat.2008.08.022

Cheng CL, Sun DS, Chu WC, Tseng YH, Ho HC, Wang JB, Chung PH, Chen JH, Tsai PJ, Lin NT, Yu MS, Chang HH (2009) The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J Biomed Sci 16(7):10

Cho M, Yoon J (2008) Measurement of OH radical ct for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO₂ systems. J Appl Microbiol 104(3):759–766. doi:10.1111/j.1365-2672.2007.03682.x

Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO₂ photocatalytic disinfection. Wat Res 38(4):1069–1077

Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of ms-2 phage and Escherichia coli in TiO₂ photocatalytic disinfection. Appl Environ Microbiol 71(1):270–275

Cho M, Choi Y, Park H, Kim K, Woo GJ, Park J (2007a) Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J Food Prot 70(1):97–101

Cho DL, Min H, Kim JH, Cha GS, Kim GS, Kim BH, Ohk SH (2007b) Photocatalytic characteristics of TiO₂ thin films deposited by PECVD. J Ind Eng Chem 13(3):434–437

Choi YL, Kim SH, Song YS, Lee DY (2004) Photodecomposition and bactericidal effects of TiO₂ thin films prepared by a magnetron sputtering. J Mater Sci 39(18):5695–5699

Choi JY, Kim KH, Cho YC, Oh KT, Kim KN (2007a) Photocatalytic antibacterial effect of TiO₂ film formed on Ti and TiAg exposed to Lactobacillus acidophilus. J Biomed Mater Res B 80(2):353–359

Choi H, Statheos E, Dionysiou DD (2007b) Photocatalytic TiO₂ films and membranes for the development of efficient wastewater treatment and reuse systems. Desalin 202(1–3):199–206. doi:10.1016/j.desal.2005.12.055

Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Wat Res 44(10):2997–3027

Christensen PA, Curtis TP, Egerton TA, Kosa SAM, Tinlin JR (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl Catal B 41(4):371–386

Chun MJ, Shin E, Kho EH, Park KJ, Jung J, Kim JM, Kim B, Lee KH, Cho DL, Bai DH, Lee SI, Hwang HS, Ohk SH (2007) Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Ang Orthodont 77(3):483–488

Chung CJ, Lin HI, Chou CM, Hsieh PY, Hsiao CH, Shi ZY, He JL (2009) Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film. Surf Coat Technol 203(8):1081–1085

Cohen-Yaniv V, Narkis N, Armon R (2008) Photocatalytic inactivation of Flavobacterium and E. coli in water by a continuous stirred tank reactor (CSTR) fed with suspended/imobilised TiO₂ medium. Wat Sci Technol 58(1):247–252. doi:10.2166/wst.2008.664

Coleman HM, Marquis CP, Scott JA, Chin SS, Aimal R (2005) Bactericidal effects of titanium dioxide-based photocatalysts. Chem Eng J 113(1):55–63. doi:10.1016/j.cej.2005.07.015

Cooper AT, Goswami DY, Block SS (1997) Simultaneous detoxification and disinfection of water by solar photocatalytic treatment. Int Sol Energy Conf 1997:277–282

Cornish BJPA, Lawton LA, Robertson PJ (2000) Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl Catal B 25(1):59–67

Curts TP, Alker GW, Dowling BM, Christensen PA (2002) Fate of Cryptosporidium oocysts in an immobilised titanium dioxide reactor with electric field enhancement. Wat Res 36(9):2410–2413

Cushnie TPT, Robertson PJ, Officer S, Pollard PM, McCullagh C, Robertson JMC (2009) Variables to be considered when assessing the photocatalytic destruction of bacterial pathogens. Chemosphere 74(10):1374–1378. doi:10.1016/j.chemosphere.2008.11.012

Dadjour MF, Ogino C, Matsumura S, Shimizu N (2005) Kinetics of disinfection of Escherichia coli by catalytic ultrasonic irradiation with TiO₂. Biochem Eng J 3:243–248. doi:10.1016/j.bej.2005.04.028

Dadjour MF, Ogino C, Matsumura S, Nakamura S, Shimizu N (2006) Disinfection of Legionella pneumophila by ultrasonic treatment with TiO₂. Wat Res 40(6):1137–1142. doi:10.1016/j.watres.2005.12.047

Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B 98(1–2):27–38

Ditta IB, Steele A, Liprot C, Tobin J, Tyler H, Yates HM, Sheel DW, Dunlop PSM, Byrne JA, Manga N, Eggins BR (2004) A novel TiO₂-assisted solar photocatalytic wastewater and reuse systems. Desalin 202(1–3):199–206. doi:10.1016/j.desal.2005.12.055

Unpublished. PSM, Byrne JA, Manga N, Eggins BR (2002) The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol A 148(1–3):355–363
Dunlop PSM, Sheeran CP, Byrne JA, McMahon MAS, Boyle MA, McGuigan KG (2010) Inactivation of clinically relevant pathogens by photocatalytic coatings. J Photochem Photobiol A 216:303–310

Egerton TA, Christensen PA, Kosa SAM, Onoka B, Harper JC, Tinlin JR (2006) Photoelectrocatalysis by titanium dioxide for water treatment. Int J Environ Pollut 27(1-3):2–19

Erdem A, Metzler D, Chou HW, Lin HY, Huang CP (2006) Growth and some enzymatic responses of E. coli to photocatalytic TiO₂. 2006 NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech 2006 Technical Proceedings, 2006, pp 588–591

Erkan A, Bakır U, Karaköş G (2006) Photocatalytic microbial inactivation over Pd doped SnO₂ and TiO₂ thin films. J Photochem Photobiol A 184(3):313–321. doi:10.1016/j.jphotochem.2006.05.001

Feitz AJ, Waite TD (2003) Kinetic modeling of TiO₂-catalyzed photodegradation of trace levels of microcystin-LR. Environ Sci Technol 37(1):561–568

Fernandez P, Blanco J, Sichel C, Malato S (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 101(3–4):345–352. doi:10.1016/j.cattod.2005.03.062

Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol A 216:283–289. doi:10.1016/j.jphotochem.2010.09.017

Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at TiO₂ powders. J Am Chem Soc 99(1):303–304

Fu GF, Yari PS, Lin CT (2005) Anatase TiO₂ nanocomposites for photocatalytic disinfection of water and air, Catal Today 101(3):345–352. doi:10.1016/j.cattod.2005.03.062

Gurumi D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hadju R, Kiwi J (2006a) Catalytic activity of commercial of TiO₂ powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B 63:76–84. doi:10.1016/j.apcatb.2005.09.013

Gumy D, Rincon AG, Hajdu R, Pulgarin C (2006b) Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO₂ catalysts study. Sol Energy 80 (10):1376–1381. doi:10.1016/j.solener.2005.04.026

Guo S, Wu Z, Zhao W (2009) TiO₂-based building materials: above and beyond traditional applications. Chin Sci Bull 54(7):1137–1142

Gupta KK, Jassal M, Agrawal AK (2008) Sol–gel derived titanium dioxide finishing of cotton fabric for self cleaning. Ind J Fibre Text Res 33(4):443–450

Han W, Zhang PH, Cao WC, Yang DL, Taira S, Okamoto Y, Arai JI, Yan XY (2004) The inactivation effect of photocatalytic titanium anatase filter on SARS virus. Proc Biochem Biophys 31(11):982–985

Haru-Kudo Y, Segawa Y, Kimura K (2006) Sanitation of seawater effluent from seaweed processing plants using a photo-catalytic TiO₂ oxidation. Chemosphere 62(1):149–154

Harper JC, Christensen PA, Egerton TA (2000) Effect of catalyst type on the kinetics of photocatalytic disinfection of water inoculated with E. coli. J Appl Electrochem 30:623–628

Hashimoto K, Irie H, Fujishima A (2005) TiO₂ photocatalysis: a historical overview and future prospects. Jap J Appl Phys Pt 1 44(12):8269–8285

He C, Yu Y, Hu X, Larbot A (2002) Influence of silver doping on the photocatalytic activity of titania films. Appl Surf Sci 200:239–247

Herrera Melián JA, Doña Rodríguez JM, Viera Suárez A, Tello Rendón E, Valdés Do Campo C, Arana J, Pérez Peña J (2000) The photocatalytic disinfection of urban waste waters. Chemosphere 41(3):323–327

Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag–TiO₂ core–shell composite clusters under UV irradiation. J Phys Chem C 109(1):1261–1270

Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38 (5):439–447. doi:10.1080/1071576042000206487

Honda H, Ishitaki A, Soma R, Hashimoto K, Fujishima A (1998) Application of photocatalytic reactions caused by TiO₂ film to...
various conditions: sunlight, intermittent and variable irradiation intensity, CdS augmentation and entrapment of TiO₂ into sol–gel. J Adv Oxid Technol 4:97–102

Lawton LA, Robertson PKJ, Cornish BJPA, Jaspars M (1999) Detoxification of microcysts (cyanobacterial hepatotoxins) using TiO₂ photocatalytic oxidation. Environ Sci Technol 33(5):771–775

Lawton LA, Robertson PKJ, Cornish BJPA, Marr IL, Jaspars M (2003) Processes influencing surface interaction and photocatalytic destruction of microcysts on titanium dioxide photocatalysts. J Catal 213(1):109–113

Lee S, Nishida K, Otaki M, Ohgaki S (1997) Photocatalytic inactivation of phage Qb By immobilized titanium dioxide mediated photocatalyst. Wat Sci Technol 35:101–106

Lee JH, Kang M, Cheong S-I, Ogin K, Kim MS, MS-PK-Y, Kim J-B (2004) The preparation of TiO₂ nanometer photocatalyst film by a hydrothermal methods and its sterilization performance for Giardia lamblia. Wat Res 38:713–719

Li C-CT, Lai H-H, Chan C-W (2003) Ultraviolet germicidal irradiation and titanium dioxide photocatalyst for controlling Legionella pneumophila. Aerosol Sci Technol 37:961–966

Li, Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62(1):58–63

Li Y, Ma M, Wang X (2008) Inactivated properties of activated carbon-supported TiO₂ nanoparticle powders for bacteria and kinetic study. J Environ Sci 20(12):1527–1533

Lin CY, Li CS (2003a) Effectiveness of titanium dioxide photocatalyst filters for controlling bioaerosols. Aerosol Sci Technol 37(2):162–170. doi:10.1080/02786820390112623

Lin CY, Li CS (2003b) Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Sci Technol 37(12):939–946. doi:10.1080/02786820390233052

Lin ZX, Li ZH, Wang XX, Fu XZ, Yang GQ, Lin HX, Meng C (2006) Inactivation efficiency of TiO₂ on H1N1 influenza virus. Gaodeng Xuexiao Huaxue Xuebao Chem Jin Univ 24(7):721–725

Linkous CA, Carter GJ, Locuson DV, Ouellette AJ, Slatterey DK, Smith LA (2000) Photocatalytic inhibition of algae growth using TiO₂, WO₃, and cocatalyst modifications. Environ Sci Technol 34(22):4754–4758

Liu HL, Yang TCK (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO₂ activated with ultraviolet light. Proc Biochem 39(9):475–481. doi:10.1016/s0031-9355(03)00084-0

Liu I, Lawton LA, Bahnemann DW, Robertson PKJ (2005) The photocatalytic destruction of the cyanotoxin, nodularin using TiO₂. Appl Catal B 60(3–4):245–252

Liu Y, Li J, Qiu X, Burda C (2007a) Bactericidal activity of nitrogen-doped metal oxide photocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A 190(1):94–100

Liu HR, Lin Y, Ye RF, Song L, Chen Q (2007b) Structure and antibacterial properties of Ag-doped TiO₂ porous materials. Bioceramics 19 published in Key Eng Mater 330–332(II):995–998

Liu L-F, John B, Yeung KL, Si G (2007c) Non-UV based germicidal photocatalytic disinfection of water contaminated with pathogenic micro-organisms: a review. Res Chem Intermed 33(3–5):359–375

Mccullagh C, Robertson JMC, Bahnemann DW, Robertson PKJ (2007) The application of TiO₂ photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. J Photochem Photobiol A 186:1–13

McLoughlin OA, Fernández Ibáñez P, Gernjak W, Malato Rodríguez S, Gill LW (2004a) Photocatalytic disinfection of water using low cost compound parabolic collectors. Sol Energy 77(5):625–633

McLoughlin OA, Kehoe SC, McGuigan KG, Duffy EF, Al Touati F, Gernjak W, Oller Alberola I, Malato Rodriguez S, Gill LW (2004b) Solar disinfection of contaminated water: a comparison of three small-scale reactors. Sol Energy 77(5):657–664

Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108(1):1–35

Miron C, Roca A, Hoisie S, Cozorici P, Sirghi L (2005) Photoinduced bactericidal activity of TiO₂ thin films obtained by radio-frequency magnetron sputtering deposition. J Opt Electron Adv Mater 7(2):915–919

Miyagi T, Kamei M, Mitsushlohi T, Ishigaki T, Yamazaki A (2004) Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity. Chem Phys Lett 390(4–6):399–402

Mo AC, Xu W, Xian S, Li Y, Bai S (2007) Antibacterial activity of silver–hydroxyapatite/titania nanocomposite coating on titanium against oral bacteria. Bioceramics 19 published in Key Eng Mater 330–332:455–458

Muraleedharan P, Gopal J, George RP, Khatak HS (2003) Photo-catalytic bactericial property of an anodized Ti6Al4V alloy. Curr Sci 84(2):197–199

Müslük J, Loura M, Cersky R, Baroch P, Dittr IB, Steel A, Foster HA (2009) Two-functional direct current sputtered silver-containing titanium dioxide thin films. Nanoscale Res Lett 4(4):313–320. doi:10.1007/s11671-008-9244-z

Muszkat L, Feigelson L, Bir L, Muszkat KA, Teitel M, Dormay I, Kirchner B, Kritzman G (2005) Solar photo-inactivation of phytopathogens by trace level hydrogen peroxide and titanium dioxide photocatalysis. Photoparasitica 33(3):267–274
Nadtochenko VA, Rincon AG, Stanca SE, Kiwi J (2005) Dynamics of Escherichia coli bactericidal action. Photochem Photobiol A 168(2):335–341. doi:10.1016/j.ijphoton.2006.09.002

Peng L, Wenli D, Qisui W, Xi L (2010) Photocatalytic inactivation of Tetrahymena pyriformis in the presence of TiO₂ combined with UV light. Photochem Photobiol 86(3):633–638

Pham HN, McDowell T, Wilkins E (1995) Photocatalytically-mediated disinfection of water using TiO₂ as a catalyst and spore-forming Bacillus pumilus as a model. J Environ Sci Health A 30(3):627–636

Pham HN, Wilkins E, Heger KS, Kauffman D (1997) Quantitative analysis of variations in initial Bacillus pumilus spore densities in aqueous TiO₂ suspension and design of a photocatalytic reactor. J Environ Sci Health A 32(1):153–163

Poulios I, Spathis P, Grigoraidou A, Delidou K, Tsoumparis P (1999) Protection of marbles against corrosion and microbial corrosion with TiO₂ coatings. J Environ Sci Health A 34(7):1455–1471

Pratap Reddy M, Phl HH, Subrahmanyan M (2008) Photocatalytic disinfection of Escherichia coli over titanium(IV) oxide supported on Zeolite. Catal Lett 123(1–2):56–64

Pyyro WA (1986) Oxy-radicals and related species: their formation, lifetimes and reactions. Ann Rev Physiol 48:657–663

Quisenberry LR, Loetscher LH, Boyd JE (2009) Cytotoxicity of bacteria using Pd-modified titania. J Cat Commun 10(10):1417–1422

Renz C (1921) Lichtreaktionen der Oxide des Titans, Cers und der Erdsauren. Helv Chim Acta 4:961–968. doi:10.1002/hlca.1921004011

Rincón AG, Pulgarín C (2003) Photocatalytical inactivation of Escherichia coli: effect of (continuous-interruiment) light intensity and of (suspended-fixed) TiO₂ concentration. Appl Cat B 44(3):263–284. doi:10.1016/s0926-3373(03)00076-6

Rincón AG, Pulgarín C (2004a) Bactericidal action of illuminated TiO₂ on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Cat B 49(2):99–112

Rincón AG, Pulgarín C (2004b) Effect of pH, inorganic ions, organic matter and H₂O₂ on Escherichia coli K12 photocatalytic inactivation by TiO₂: implications in solar water disinfection. Appl Cat B 51(4):283–302

Rincón AG, Pulgarín C (2005) Use of coaxial photocatalytic reactor (caphore) in the TiO₂ photo-assisted treatment of mixed Escherichia coli and Bacillus sp. and bacterial community present in wastewater. Catal Today 101(3–4 SPEC. ISS):331–344

Rincón AG, Pulgarín C (2007) Solar photolytic and photocatalytic disinfection of water at laboratory and field scale. Effect of the chemical composition of water and study of the postirradiation events. J Sol Energy Eng Trans ASME 129(1):100–110

Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO₂ photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A 175(1):51–56. doi:10.1016/j.jphotochem.2005.04.033

Rodriguez J, Jorge C, Ziola P, Palomino J, Zarabia P, Ponce S, Solas JL, Estrada W (2007) Solar water disinfection studies with supported TiO₂ and polymer-supported R(II) sensitizer in a compound parabolic collector. J Sol Energy Eng Trans ASME 132(1):0110011–0110015

Rodriguez-Gonzalez V, Alfaro SO, Torres-Martinez LM, Cho SH, Lee SW (2010) Silver–TiO₂ nanocomposites: synthesis and harmful algae bloom UV-photolimination. Appl Cat B 98(3–4):229–234

Ryu H, Gerrity D, Crittenden JC, Abbaszadehgan M (2008) Photocatalytic inactivation of Cryptosporidium parvum with TiO₂ and low-pressure ultraviolet irradiation. Wat Res 42(6–7):1523–1530. doi:10.1016/j.watres.2007.10.037

Saito T, Iwase T, Horie J, Morikota T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO₂ on mutants streptococci. J Photochem Photobiol B 14(4):369–379
Salih FM (2002) Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. J Appl Microbiol 92(5):920–926

Salih FM (2004) Water purification by a combination of sunlight, titanium dioxide and alum. Proceedings of the 2004 World Water and Environmental Resources Congress: Critical Transitions in Water and Environment Resources Management, pp 2918–2926

Sato T, Taya M (2006a) Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochimie 88(3):303–308

Sato T, Taya M (2006b) Kinetic consideration of the effect of organic impurities on photocatalytic phage inactivation with TiO2. Kagaku Kagaku Ronbunshu 32(3):288–292

Sato T, Taya M (2006c) Copper-aided photo sterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp. Biochimie 88(3):199–204. doi:10.1016/j.biochi.2006.04.002

Sato T, Koizumi Y, Taya M (2003) Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate. Biochimie 85(2):149–152

Sawada D, Ohmura M, Fukuuda M, Masuno K, Koide H, Tsubo S, Nakamura K (2005) Disinfection of some pathogens of mushroom cultivation by photocatalytic treatment. Mycoscience 46(1):54–60

Selma MV, Allende A, Lopez-Galvez F, Conesa MA, Gil MI (2008) Heterogeneous photocatalytic disinfection of wash waters from the fresh-cut vegetable industry. J Food Prot 71(2):236–292

Senogles P-J, Scott JA, Shaw G (2000) Efficiency of UV treatment with and without the photocatalyst titanium dioxide for the degradation of the cyanotoxin cylindrospermopsin. Res Environ Biotechnol 3(2–3):111–125

Senogles P-J, Scott JA, Shaw G, Stratton H (2001) Photocatalytic degradation of the cyanotoxin cylindrospermopsin, using titanium dioxide and UV irradiation. Wat Res 35(5):1245–1255

Shah RR, Kaewgun S, Lee BI, Tzeng TR-J (2008) The antibacterial effects of biphasic brookite–anatase titanium dioxide nanoparticles on multiple-drug-resistant Staphylococcus aureus. J Biomed Nanotechnol 4(3):339–348. doi:10.1166/jbn.2008.324

Sheel DW, Brook LA, Ditta IB, Evans P, Foster HA, Steele A, Yates HM (2008) Biocidal silver and silver/titania composite films grown by chemical vapour deposition. Int J Photoenergy. Article ID 16815, 11 pages. doi:10.1155/2008/16815

Shen XC, Zhang ZL, Zhou B, Peng J, Xie M, Zhang M, Pang DW (2008) Visible light-induced plasmid DNA damage catalyzed by a CdSe/ZnS-photosensitized nano-TiO2 film. Environ Sci Technol 42(14):5049–5054. doi:10.1021/es080668g

Shephard GS, Stockenström S, De Viliers D, Engelbrecht WJ, Sydenham EW, Wessels GFS (1998) Photocatalytic degradation of cyanobacterial microcystins toxins in water. Toxicol 36 (12):1895–1901

Shieh KJ, Li M, Lee YH, Sheu SD, Liu YT, Wang YC (2006) Antibacterial performance of photocatalyst thin film fabricated by defect evolution in visible light. Nanomed Nanotechnol Biol Med 2(2):121–126

Shiraishi F, Toyoda K, Fukinbara S, Obuchi E, Nakano K (1999) Photolytic and photocatalytic treatment of an aqueous solution containing microbial cells and organic compounds in an annular-flow reactor. Chem Eng Sci 54(10):1547–1552

Sichel C, Blanco J, Malato S, Fernandez-Ibanez P (2007a) Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. J Photochem Photobiol A 189(2–3):239–246. doi:10.1016/j.jphotochem.2007.02.004

Sichel C, de Cara M, Tello J, Blanco J, Fernandez-Ibanez P (2007b) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B 74(1–2):152–160. doi:10.1016/j.apcatb.2007.02.005

Sichel C, Tello J, de Cara M, Fernandez-Ibanez P (2007c) Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal Today 129:152–160. doi:10.1016/j.cattod.2007.06.061

Singh A, Singh R, Purohit S, Malodia P, Kumar R (2005) Photocatalytic disinfection of water using immobilized titanium dioxide. Poll Res 24(1):29–33

Sjogren JC, Sierka RA (1994) Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl Environ Microbiol 60(1):344–347

Skorb EV, Atonouskaya LI, Belyasova NA, Shchukin DG, Möhwald H, Sviridov DV (2008) Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2-In2O3 nanocomposite. Appl Cat B 7(1–2):94–99

Sökmén M, Candan F, Sümür Z (2001) Disinfection of E. coli by the Ag–TiO2/UV system: lipidperoxidation. J Photochem Photobiol A 143(2–3):241–244

Sökmén M, Degeri S, Aslan A (2008) Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellanii cysts in water. Exp Parasitol 119(1):44–48

Song SJ, Kim KS, Kim KH, Li HJ, Cho DL, Kim JB, Park HJ, Shon H, Kim JH (2008) Fabrication of TiO2 impregnated stainless steel fiber photocatalysts and evaluation of photocatalytic activity. J Korean Ind Eng Chem 19(6):674–679

Suketa N, Sawase T, Kitaura H, Naito M, Baba K, Nakayama K, Wenerberger A, Atsuma M (2005) An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin Implant Dent Relat Res 7(2):105–111

Sun DD, Tay JH, Tan KMH (2003) Photocatalytic degradation of E. coliiform in water. Wat Res 37(14):3452–3462. doi:10.1016/s0043-1354(03)00228-8

Sunada K, Kikuchi Y, Hashimoto K, Fukushima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32(5):726–728

Sunada K, Watanabe T, Hashimoto K (2003a) Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol 37(20):4785–4789. doi:10.1021/es034106g

Sunada K, Watanabe T, Hashimoto K (2003b) Studies on photokilling of bacteria on TiO2 thin film photocatalysts. J Photochem Photobiol A 143(2–3):241–244

Sunada K, Watanabe T, Hashimoto K (2003b) Studies on photokilling of bacteria on TiO2 thin film photocatalysts. J Photochem Photobiol A 150(1–3):227–233. doi:10.1016/j.jphotoch.2002.12.043

Suwa TM, Schneider G, Monsilla HD, Kimi J (2005) Evidence for the hydration effect at the semiconductor phospholipid-bilayer interface by TiO2 photocatalysis. J Photochem Photobiol B 78 (3):253–258

Takashima H, Iida Y, Nakamura K, Kanno Y (2007) Microwave sterilization by TiO2 filter coated with Ag thin film. Conf Proc IEEE Int Conf Syst Man Cybernet 2007:1413–1418

Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A (2003) Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark. Electrochem Commun 5(9):793–796. doi:10.1016/j.elecom.2003.07.003

Tsang YH, Sun JS, Huang YC, Lu CH, Chang WHS, Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artific Organs 32(2):167–174. doi:10.1111/j.1525-1594.2007.00530.x

Ueda M, Sai H, Ikeda M, Ogawa M (2010) Formation of hydroxyapatite on titanium oxides in simulated body fluid under UV irradiation. Mate Sci Forum 654:1552–1557

Vaccaro C, Enache M, Gartner M, Popescu G, Anastasecu M, Brezeanu A, Todorova N, Giannakopoulou T, Trapani C, Dumitru L (2009) The effect of thermal treatment on antibacterial properties of nanostructured TiO2 (N) films illuminated with visible light. World J Microbiol Biotechnol 25(1):27–31

Van Grieken R, Marugan J, Pablos C, Lopez A (2010) Comparison between the photocatalytic inactivation of Gram-positive E.
faecalis and Gram-negative E. coli faecal contamination indicator microorganisms. Appl Cat B 100:212–220
Veselá M, Veselý M, Chomoucká J, Lipenská M (2008) Photocatalytic disinfection of water using Ag/TiO2. Chem Listy 102(15 SPEC. ISSN):s507–s508
Vidal A, Diaz AI, El Hraiki A, Romero M, Muguruza I, Senhaji F, González J (1999) Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal Today 54(2–3):283–290
Vohra A, Goswami DY, Deshpande DA, Block SS (2006) Enhanced photocatalytic disinfection of indoor air. Appl Cat B 64(1–2):57–65. doi:10.1016/j.apcata.2005.10.025
Warner WG, Yin JJ, Wei RR (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biol Med 23(6):851–858
Wang Y, Yang X (2005) Photocatalytic effect on plasmid DNA damage under different UV irradiation time. Indoor Air 2005. Proc 10th Int Conf Indoor Air Qual Clin 1–5:2962–2965
Wang Y, Yang X, Han Z (2005) Disinfection and bactericidal effect using photocatalytic oxidation. Trans Hong Kong Inst Eng 12(19):39–43
Watts RJ, Kong S, Orr MP, Miller GC, Henry BE (1995) Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29(1):95–100
Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938
Wolfrum EJ, Huang J, Blake DM, Maness PC, Huang Z, Fiest J, Wang Y, Yang X (2005) Disinfection and bactericidal effect using photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res 29(1):95–100
Wu P, Imlay JA, Shang JK (2010b) Mechanism of light-induced photocatalytic disinfection on sulfur-doped nanocomposite thin film. J Biomed Mater Res B 85B(2):453–460. doi:10.1002/jbm.b.30965
Yates HM, Brook LA, Ditta IB, Evans P, Foster HA, Sheel DW, Steele A (2008a) Photo-induced self-cleaning and biocidal behaviour of titania and copper oxide multilayers. J Photochem Photobiol A 195(2–3):197–205
Yates HM, Brook LA, Sheel DW, Ditta IB, Steele A, Foster HA (2008b) The growth of copper oxides on glass by flame assisted chemical vapour deposition. Thin Solid Films 517(2):517–521
Yu JC, Tang HY, Yu JG, Chan HC, Zhang LZ, Xie YD, Wang H, Wong SP (2002) Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol–gel and reverse micelle methods. J Photochem Photobiol A 153(1–3):211–219
Yu JC, Ho WK, Lin J, Yip KY, Wong PK (2003a) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37(10):2296–2301. doi:10.1021/es0259483
Yu JC, Xie Y, Tang HY, Zhang L, Chan HC, Zhao J (2003b) Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. J Photochem Photobiol A 156 (1–3):235–241
Yu J, Xiong J, Cheng B, Liu S (2005a) Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Cat B 60(3–4):211–221
Yu JC, Ho W, Yu J, Yip H, Po KW, Zhao J (2005b) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39(4):1175–1179
Yu KP, Lee GWM, Lin ZY, Huang CP (2008) Removal of bioaerosols by the combination of a photocatalytic filter and negative air ions. J Aerosol Sci 39(5):377–392. doi:10.1016/j.jaerosci.2007.12.005
Yuranova T, Rincon AG, Pulgarin C, Laub D, Xantopoulos N, Mathieu HJ, Kiwi J (2006) Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. J Photochem Photobiol A 181(2–3):363–369. doi:10.1016/j.jphotoch.2005.12.020
Zan L, Fa W, Peng T, Gong ZK (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on hepatitis B virus. J Photochem Photobiol B 86(2):165–169. doi:10.1016/j.jphotobiol.2006.09.002