Coupling between cerebral blood flow and cerebral blood volume: Contributions of different vascular compartments

Roman Wesolowski1,2* | Nicholas P. Blockley1,3* | Ian D. Driver1,4 | Susan T. Francis1 | Penny A. Gowland1

1 Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
2 Medical Physics and Imaging, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
3 Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
4 Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK

Correspondence
Penny A. Gowland, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK.
Email: penny.gowland@nottingham.ac.uk

Funding information
Engineering and Physical Sciences Research Council, Grant/Award Number: EP/K025716/1; Marie Curie Early Stage Researcher Fellowship; Medical Research Council, Grant/Award Number: G0901321; EPSRC, Grant/Award Number: EP/K025716/1

A better understanding of the coupling between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is vital for furthering our understanding of the BOLD response. The aim of this study was to measure CBF-CBV coupling in different vascular compartments during neural activation. Three haemodynamic parameters were measured during a visual stimulus. Look-Locker flow-sensitive alternating inversion recovery was used to measure changes in CBF and arterial CBV (CBVa) using sequence parameters optimized for each contrast. Changes in total CBV (CBVtot) were measured using a gadolinium-based contrast agent technique. Haemodynamic changes were extracted from a region of interest based on voxels that were activated in the CBF experiments. The CBF-CBVtot coupling constant αtot was measured as 0.16 ± 0.14 and the CBF-CBVa coupling constant αa was measured as 0.65 ± 0.24.

Using a two-compartment model of the vasculature (arterial and venous), the change in venous CBV (CBVv) was predicted for an assumed value of baseline arterial and venous blood volume. These results will enhance the accuracy and reliability of applications that rely on models of the BOLD response, such as calibrated BOLD.

KEYWORDS
arterial spin labelling, BOLD, CBF-CBV coupling, cerebral blood volume, fMRI

1 | INTRODUCTION

The relationship between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is critical for an accurate understanding of the haemodynamics that underlie blood oxygenation level dependent (BOLD) fMRI, and a greater understanding of cerebral haemodynamics will lead to more precise quantification of the BOLD response. Early studies suggested that the majority of CBV change in response to neuronal activation occurs in venous vessels. This led to the adoption of a CBF-CBV coupling model based on a power law relationship that was characterized using PET measurements of CBF and total CBV (CBVtot). However, it is now well known that arterial CBV (CBVa) also increases on activation, and that this occurs to a much greater degree than total CBV, despite the lower baseline CBV of the arterial compartment. Therefore, the use of a CBF-CBVtot model...
c coupling constant will overestimate changes in venous CBV (CBVv). This led to measurements of a CBF-CBVa coupling constant using the CBVv sensitive venous refocusing for volume estimation (VERVE) technique.9,10 Despite this, the coupling between CBF and CBVa is still poorly understood in humans, with the majority of research having been performed in rats.6,7 Whilst changes in CBVa are typically invisible in the context of standard BOLD fMRI, they become significant in studies utilizing intravascular contrast agents11 or hypoxic hypoxia,12 where an arterial signal change occurs due to the presence of paramagnetic contrast agent or deoxyhaemoglobin, respectively, in the arterial blood volume, the latter having implications for the application of these methods in cerebrovascular disease, where patients may have a reduced arterial oxygen saturation.

One reason why there is only a small number of published studies examining the relationship between these parameters is the limited number of techniques for measuring CBVtot, CBVv, and CBVa in humans. Fractional changes in CBVtot (ΔCBVtot) during a stimulus have been measured via an infusion of a gadolinium-based contrast agent (GBCA).13-15 Such experiments rely on measuring changes in the stimulus evoked BOLD response as a function of intravascular contrast agent concentration, which can either be increased using an extended infusion, or decreased by clearance of a bolus of contrast agent via the kidneys.16 This is in contrast to dynamic susceptibility contrast based techniques that are not generally temporally resolved and are more commonly used to measure absolute resting CBVtot. Vascular space occupancy (VASO) has also been shown to provide a method for the assessment of total CBV.17 However, it is not possible to measure ΔCBVtot using VASO without prior knowledge of the baseline CBVtot, thus making this technique unsuitable for the study of CBF-CBVtot coupling. Arterial spin labelling (ASL)-based approaches have emerged for the measurement of CBVv,18 these include inflow-based VASO (iVASO)18 and Look-Locker flow-sensitive alternating inversion recovery (LL-FAIR).8 LL-FAIR combines the FAIR ASL technique with Look-Locker echo planar imaging (LL-EPI) sampling19 to sensitize the signal to either CBF using vascular crushing20 or CBVv,6 depending on the sequence parameters. This technique is also presented in the literature as ITS-FAIR (inflow turbo-sampling EPI flow-sensitive alternating inversion recovery)21 and QUASAR (quantitative signal targeting with alternating radio frequency labelling of arterial regions),22 the latter requiring the subtraction of scans with and without vascular crushing to estimate CBVv. Since the LL-FAIR technique is also capable of measuring transit time of labelled blood, it is also able to account for changes in transit time that may occur during neuronal activation. LL-FAIR also has a higher signal to noise ratio (SNR) per unit time for measurement of perfusion than conventional FAIR.21 CBVa measurements have been made using the VERVE technique23 or hyperoxia BOLD contrast24 methods. However, VERVE is hampered by assumptions regarding oxygenation changes during activation and hyperoxia BOLD contrast by relatively low SNR.

In this study, LL-FAIR-based measurements of CBF and CBVv are acquired alongside estimates of ΔCBVtot using a GBCA technique. The relationship between the resultant haemodynamic parameters is assessed using a power law relationship, building upon early studies of CBF-CBV coupling,5 the calibrated BOLD method12 and BOLD modelling studies.3,4 This analysis yields CBF-CBVv and CBF-CBVtot coupling constants. These measurements are also used to predict the change in CBVv for an assumed arterial and venous volume fraction.

2 | THEORY

2.1 | LL-FAIR for measurement of CBF

LL-FAIR combines a FAIR ASL labelling scheme with LL-EPI sampling. The sequence can be sensitized to CBF by using an initial inversion delay (TI) to allow inflowing blood to arrive at the imaging plane (TI = 600 ms) followed by low flip angle pulses (θ = 35°) for the EPI readouts with a time interval (TA = 350 ms) such that the perfusion signal is not fully suppressed and can be sampled multiple times (Figure 1B). Vascular crushing is added to minimize any CBVv signal contribution from the macrovasculature.

CBF is then quantified by iteratively modelling the signal due to multiple readout pulses using a kinetic model that takes into account the duration of the labelled blood arriving in the tissue, the effect of the readout pulse on both arterial blood magnetization and tissue magnetization, and incomplete blood magnetization recovery at short repetition times. This is performed by solving a three-compartment model, where Compartment 1 contains arterial blood located outside of the imaging volume. Compartment 2 contains arterial blood inside the imaging volume and Compartment 3 contains blood in the capillary bed, which is in exchange with the tissue. For a complete description see Reference 20.

2.2 | LL-FAIR for measurement of CBVv

Alternatively, the LL-FAIR scheme can be sensitized to CBVv. This is performed by using an LL-FAIR scheme with a short initial delay (TI = 150 ms) and closely spaced (TA = 100 ms) high flip angle pulses (θ = 50°) for the EPI readout, which are acquired at the shortest achievable echo time (Figure 1C). This has the advantage of providing a large number of EPI readout time points of high SNR to well sample the arterial blood volume inflow curve for quantification of CBVv,8 whilst suppressing any CBF contribution.20 CBVv is quantified by iteratively modelling the signal across the readout pulses in the arterial blood compartment (Compartment 2 described above) using a kinetic model.8

2.3 | Gadolinium infusion for measurement of CBVtot

By infusing a contrast agent during an fMRI paradigm whilst acquiring dual-echo BOLD weighted images for estimation of the transverse relaxation rate (R2*), the signal can be sensitized to changes in CBVtot. Quantification of this signal is achieved by comparing measurements of R2* at rest and
during activation. Under the assumption that stimulus evoked changes in R^* are constant across multiple trials, additional contributions to R^* across trials are expected to be solely due to the contrast agent in the blood. In addition, it is assumed that the effect of the contrast agent on the measured signal is predominantly extravascular in origin. Therefore, during rest the measured change in R^* due to contrast agent can be modelled as

$$\Delta R^*_\text{rest} = \kappa V_{\text{tot}} [\text{CA}] \chi_{\text{CA}};$$

where κ is a constant representing physical properties of the experiment, V_{tot} is the resting CBV$_{\text{tot}}$, [CA] is the contrast agent concentration in the blood and χ_{CA} is the molar magnetic susceptibility of the contrast agent. During the active condition, the measured change in R^* due to contrast agent is

$$\Delta R^*_\text{act} = \kappa V_{\text{tot}} + \Delta V_{\text{tot}} [\text{CA}] \chi_{\text{CA}};$$

where ΔV_{tot} is the resultant change in CBV$_{\text{tot}}$. Therefore, the fractional change in CBV$_{\text{tot}}$ (δCBV$_{\text{tot}}$) can be estimated by taking the ratio of Equation 1 and Equation 2.

$$\frac{\Delta R^*_\text{act}}{\Delta R^*_\text{rest}} = \frac{\Delta V_{\text{tot}}}{V_{\text{tot}}} + 1 = \delta\text{CBV}_{\text{tot}} + 1.$$

In an idealized experiment the fMRI stimulus paradigm would be repeated twice, first in the absence of contrast agent and second during a steady state concentration of contrast. However, in practice this is not feasible in human subjects due to dosage limits of GBCAs and their rapid elimination. Therefore, here R^* measurements are made in the presence of a slowly changing contrast agent concentration provided by an infusion of a GBCA, with ΔR^*_rest being extrapolated from periods of rest during activated time points.

3 | METHODS

3.1 | Imaging

This study was approved by the University of Nottingham Medical School Ethics Committee. Eight healthy volunteers aged 20 to 31 years (24 ± 3 years, mean ± standard deviation) gave written consent and were scanned as part of this study. A schematic diagram of the experimental protocol is given in Figure 1a. Subjects were cannulated prior to entering the scanner to provide access for the injection of contrast agent and ensure that any motion during the Gd injection in the CBV$_{\text{tot}}$ experiment was minimal.
Data were acquired on a Philips Achieva 3 T system (Philips Healthcare, Best, The Netherlands), using a body transmit coil and eight-channel SENSE (sensitivity encoding) head receive coil. All three haemodynamic parameter measurements were acquired with a common spatial resolution of $3 \times 3 \times 5 \text{ mm}^3$, matrix size of 64×64 and SENSE factor 2 and matched bandwidth. Measurements of CBF and CBV$_A$ were limited to a single slice acquisition at the time these experiments were performed. Therefore, an initial functional localizer scan was performed in order to select a single axial slice through the visual cortex with the largest region of BOLD activation. This slice prescription was then used throughout the rest of the experiment.

Visual stimulation was provided by red LED goggles flashing at 8 Hz. Lights were on for 19.2 s and off for the remainder of the 60 s cycle. The number of stimulus cycles varied reflecting the differing SNR of each method: eight cycles were collected for CBV$_A$ measurements, 12 cycles for CBF (which has a lower contrast to noise ratio) and 14 cycles for CBV$_{tot}$.

An LL-FAIR acquisition was used to allow the assessment of both CBF and CBV$_A$ measurements accounting for transit time effects. The combination of a Look-Locker acquisition with a FAIR preparation enables the tagged bolus to be tracked through the macrovascular system and into the tissue sensitizing the signal to CBV$_A$ or CBF by using the appropriate combination of sequence parameters. In both cases the thickness of the inversion slab was alternated between 30 mm and 200 mm for label and control conditions, respectively. The sequence parameters for the CBF measurement comprised an initial inversion delay $T_I = 600 \text{ ms}$, time interval between EPI readouts $T_R = 350 \text{ ms}$ (resulting in an inversion time range of 600 ms to 2000 ms), flip angle $\theta = 35^\circ$ and five readout pulses with vascular crushing (bipolar lobe of 5 ms duration per lobe and amplitude of 15 mT, velocity encoding (VENC) = 7.8 mm/s). For the CBV$_A$ measurement, the sequence comprised $T_I = 150 \text{ ms}$, $T_R = 100 \text{ ms}$ (resulting in an inversion time range of 150 ms to 1950 ms), $\theta = 50^\circ$, with 19 readout pulses. In both CBF and CBV$_A$ measurements the shortest achievable echo time of 16 ms was used and the final LL-FAIR pulse had a flip angle of 90° to maximize SNR. The LL-FAIR scheme was performed with in-plane pre- and post-saturation pulses to provide signal suppression of the imaging slice, thus reducing any offset signals due to imperfections between the selective and non-selective RF inversion pulses. The application of a 90° pulse at the end of each T_R simplified the modelling, as it ensured that each tag/control acquisition is independent, removing the need for an iterative fit of the data to be performed. The T_R between inversion pulses was 2.4 s, resulting in a label/control pair being collected every 4.8 s.

For the measurement of CBV$_{tot}$, dual-echo GE-EPI images were acquired with $T_E = 13/35 \text{ ms}$, $T_R = 1.2 \text{ s}$ and three slices. Two single doses (0.2 mL kg$^{-1}$) of Gadoteridol (ProHance, Bracco Imaging, Milan, Italy) were injected, the first bolus at the beginning of the fifth stimulus cycle and the second at the beginning of the sixth cycle. For Cycles 5 and 6, the visual stimulus was not presented and data from these cycles were not used in the estimation of ΔCBV$_{tot}$. The final 10 cycles of the visual stimulus, after contrast agent injection, were acquired at different contrast agent concentration levels during clearance of the contrast by the kidneys.

3.2 Analysis

For each subject, CBF, CBV$_A$ and CBV$_{tot}$ data sets were first realigned within each data set and then across all data sets using SPM5 (5 mm FWHM Gaussian smoothing kernel and second degree B-spline interpolation). Since the CBF and CBV$_A$ data were acquired for a single slice, motion correction was restricted to in-plane motion and rotation. In the case of the CBV$_{tot}$ measurement, the acquisition of three slices provided for the correction of small amounts of through-slice motion. For the CBF and CBV$_A$ data, the images from the final LL-FAIR readout pulse (90° flip angle and thus highest SNR) of each volume acquisition (T_I period) were realigned, and this transformation matrix then applied to the images acquired from the other LL readout pulses within the corresponding T_R period. The CBV$_{tot}$ datasets were realigned using the images acquired at the first echo, and this transformation matrix was then applied to the second echo data. Data for each echo time was then down-sampled to produce a complete time series with a 2.4 s temporal resolution (matching the CBF and CBV$_A$ datasets), and only a single slice co-registered to the CBF and CBV$_A$ datasets was retained.

For the CBF and CBV$_A$ data, difference images were first computed from the subtraction of consecutive label and control pairs to provide a time series of CBF- and CBV$_A$-weighted images for each LL-readout pulse. Average CBF- and CBV$_A$-weighted time series during the visual stimulus cycle were then formed by averaging across cycles, accounting for jittering in the data relative to the stimulus paradigm (thus generating a CBF-weighted and CBV$_A$-weighted time series of LL readouts for each time point per stimulus cycle). CBV$_A$-weighted difference images were quantified to estimate arterial transit time and CBV$_A$ voxelwise using a two-parameter fit, as described in Reference 8, over an averaged stimulus cycle. CBF-weighted difference images were initially analysed using a two-parameter fit for capillary transit time and CBF. However, since the data had lower SNR than the CBV$_A$ data, a two-parameter fit for each time point within the stimulus cycle was found to increase the noise in the measurement of CBF. Therefore, a mean estimate of the transit time at baseline and on activation was computed and used in a one-parameter model fit to produce a voxelwise estimates of CBF at each time point over an averaged stimulus cycle.

For the CBV$_{tot}$ data, time series of R_2^* values were calculated for each voxel using the realigned, down-sampled, dual echo data. The fractional change in CBV$_{tot}$ (δCBV$_{tot}$) was calculated by considering the effect of the contrast agent on the R_2^* (transverse relaxation rate) changes that occur during the BOLD response, as shown previously by using an infusion to gradually increase the contrast agent concentration. However, in this study two bolus injections of contrast agent were used to raise the initial blood contrast agent concentration, which gradually decreased due to washout through the kidneys. In the analysis, four stimulus cycles prior to the contrast agent injections provided a baseline. Stimulus cycles following immediately after the injections were discarded to allow for recirculation of the contrast agent, leaving the final nine
cycles for analysis. In all other aspects, this method is the same as in previous reports, and resulted in an estimate of $\Delta \text{CBV}_{\text{tot}}$ over an averaged stimulus cycle.11,15

Activated regions were generated for each subject using a correlation analysis of the stimulus delivery applied to the quantified CBF maps in order to be maximally sensitive to the site of activation. Each CBF region of interest (ROI\textsubscript{CBF}) was defined based on the CBF statistical map threshold at $p < 0.01$ (uncorrected). In addition, a supplementary analysis was performed to examine the impact of a different ROI definition based on common activated voxels across the three measures of CBV, CBF and $\Delta \text{CBV}_{\text{tot}}$. Statistical maps from each measure were thresholded at $p < 0.01$ (uncorrected) and voxels at the intersection retained to form a common ROI (ROI\textsubscript{COMMON}).

3.3 Estimation of CBF-CBV coupling

The coupling between CBF and CBV during neuronal activation was calculated assuming a power law relationship between CBF and CBV\textsubscript{tot}.

\[
\text{CBV}_{\text{tot}} = \zeta \text{CBF}^\alpha, \quad \text{(4)}
\]

Example LL-FAIR difference images

(A) CBF-weighted LL-FAIR data

(B) CBV\textsubscript{a}-weighted LL-FAIR data

FIGURE 2 Example LL-FAIR difference images from a single subject as a function of post-label delay time averaged over all experimental time points. A, CBF-weighted images were acquired using five EPI readouts with the first four flip angles of $\theta = 35^\circ$ and a final excitation pulse of $\theta = 90^\circ$. B, CBV\textsubscript{a}-weighted images were acquired using 19 EPI readouts with flip angles of $\theta = 50^\circ$ and a final excitation pulse of $\theta = 90^\circ$.

WESOLOWSKI ET AL. 5 of 11
where values of ζ and α_{tot} have previously been measured in rhesus monkeys using a hyper/hypocapnia challenge as 0.80 and 0.38, respectively.5

Given measurements of the fractional change (i.e. the absolute change in CBV divided by absolute baseline CBV) in $\Delta\text{CBV}_{\text{tot}}$ and CBF (ΔCBF) in response to the visual stimulus, which is dimensionless, the CBF-CBV\textsubscript{tot} coupling constant α_{tot} (Grubb’s constant) can be estimated by rearranging Equation 4:

$$\alpha_{\text{tot}} = \frac{\ln(\Delta\text{CBV}_{\text{tot}} + 1)}{\ln(\Delta\text{CBF} + 1)}.$$ \hspace{1cm} (5)

Under the assumption that the relationship between CBF and CBV\textsubscript{a} can be described by the power law relationship given in Equation 4, a CBF-CBV\textsubscript{a} coupling constant α_{a} can be defined. In this case $\Delta\text{CBV}_{\text{a}}$ is the fractional change in CBV\textsubscript{a}, which is also dimensionless.

$$\alpha_{\text{a}} = \frac{\ln(\Delta\text{CBV}_{\text{a}} + 1)}{\ln(\Delta\text{CBF} + 1)}.$$ \hspace{1cm} (6)

Using these equations, Grubb’s constant, α_{tot}, and the CBF-CBV\textsubscript{a} coupling constant, α_{a}, were estimated on a per subject basis. Values for ΔCBF, $\Delta\text{CBV}_{\text{tot}}$, and $\Delta\text{CBV}_{\text{a}}$ were extracted from the quantified maps of each parameter and averaged over each of the ROIs. The time window for the active on condition was defined as between 9.6 s and 19.2 s from the start of the stimulus cycle, whilst the baseline off condition was defined to be between 40.8 s and 60 s. Estimates of α_{tot} and α_{a} were then computed using Equations 5 and 6, respectively.

In the absence of direct measurements of CBV\textsubscript{v}, we estimated the fractional change in venous CBV ($\Delta\text{CBV}_{\text{v}}$) using a simple model of the vascular compartments. Changes in total blood volume were approximated as a volume-weighted sum of two compartments: arterial and venous,

$$\Delta\text{CBV}_{\text{tot}} = f_{\text{a}} \Delta\text{CBV}_{\text{a}} + f_{\text{v}} \Delta\text{CBV}_{\text{v}}.$$ \hspace{1cm} (7)

Example timecourses extracted from ROI\textsubscript{CBF}

(A) CBV\textsubscript{a}-weighted LL-FAIR data

(B) CBF-weighted LL-FAIR data

(C) CBV\textsubscript{tot}-weighted GE-EPI data

FIGURE 3 Example time courses of the raw signal for each modality from a single subject averaged over the CBF-based region of interest. A. CBV\textsubscript{a}-weighted LL-FAIR difference data were acquired over eight stimulus cycles. B. CBF-weighted LL-FAIR difference data were acquired over 12 stimulus cycles. C. CBV\textsubscript{tot}-weighted gradient echo (GE) EPI data were acquired over a period of 16 min. Two single-dose boluses of a GBCA were injected at the beginning of minutes 4 and 5. The visual stimulus was presented for the remaining cycles.
where f_a and f_v are the volume fractions assigned to arterial and venous blood volume compartments ($f_a = CBV_a/CBV_{tot}$, $f_v = CBV_v/CBV_{tot}$), respectively, and here it is assumed that $f_a + f_v = 1$. The capillary volume is assumed to be distributed between the arterial and venous compartments. By rearranging Equation 7, δCBV_v can be predicted as a function of arterial and venous volume fractions f_a and f_v:

$$\delta CBV_v = \frac{\delta CBV_{tot} - f_a \delta CBV_a}{f_v} \quad (8)$$

4 | RESULTS

Figures 2 and 3 show examples of the raw data acquired in this study from a single subject. The former shows CBF-weighted (Figure 2A) and CBV$_a$-weighted (Figure 2B) LL-FAIR difference images as a function of post-label delay time averaged over all experimental timepoints; note the larger CNR of the CBV$_a$-weighted data. The latter presents time courses of CBV$_a$, CBF- and CBV$_{tot}$-weighted data averaged over the voxels in the ROI$_{CBF}$ (Figure 3). For this, CBF weighting was achieved by averaging across three LL readouts with post-label delay times of 950, 1300 and 1650 ms. Similarly, CBV$_a$ weighting was obtained by averaging across eight LL readouts with post-label delay times of 350, 450, 550, 650, 750, 850, 950 and 1050 ms. Finally, the CBV$_{tot}$-weighted time course was generated using the second echo of the GE-EPI dataset ($T_E = 35$ ms).

Estimates of the mean transit time for CBF-weighted (perfusion transit time) and CBV$_a$-weighted (arterial transit time) data are presented in Table 1. These data were extracted from the CBF-based ROI of each subject. During activation the perfusion transit time was found to be significantly reduced ($p < 0.05$, paired two-tailed t-test), but the change in the arterial transit time was not significant ($p = 0.11$).

Table 2 provides the fractional change measured for each haemodynamic parameter for ROI$_{CBF}$, along with the predicted value of δCBV_v estimated assuming a value of arterial volume fraction of $f_a = 0.3$ ($f_v = 0.7$) (this choice of value is discussed below). The uncertainty in each parameter was estimated as the standard deviation of the voxels in the ROI for the measured parameters (baseline and changes in CBV$_a$, CBF and CBV$_{tot}$) and propagated from these values for the calculated parameters (δCBV_v, δCBF and δCBV_{tot}). Measurements of δCBV_{tot} and δCBV_v were found to be statistically significantly different from zero across the group (one-sample t-test, $p < 0.05$), with estimates of α_{tot} and α_v provided in Table 2 for each subject and group means of 0.16 ± 0.14 and 0.65 ± 0.24, respectively. In contrast, the estimated value of δCBV_v was not statistically significantly different from zero ($p = 0.33$), which would suggest a CBF-CBV$_v$ coupling constant, α_v, close to zero. Quantified baseline estimates of CBF and CBV$_a$ from the baseline time window are also presented in Table 2. Baseline CBV$_v$ was found to be inversely correlated with δCBV_v (correlation coefficient, $R = -0.68$). Group means and standard deviations in Table 2 are weighted by the number of voxels in each subject's ROI. The number of voxels included in the ROI varied across subjects, probably due to the use of single-slice techniques, and in some subjects sub-optimal placement of the slice. It should be noted that, whilst measurements of δCBV_{tot} have the lowest group standard deviation, when coupled with a low mean value of δCBV_v, this technique has the highest relative standard deviation. This propagates through to greater uncertainty in the value of α_{tot} compared with α_v.

The results of the supplementary analysis using a common ROI are presented in the Supporting Information. Figure S1 parallels Figure 4, displaying the fractional changes in each haemodynamic measure (δCBV_v, δCBF and δCBV_{tot}) per subject (grey lines), and the group mean weighted by the number of voxels in each subject's CBF derived ROI (solid black line) (see Table 1). Table 2 provides the fractional change measured for each haemodynamic parameter for ROI$_{CBF}$, along with the predicted value of δCBV_v estimated assuming a value of arterial volume fraction of $f_a = 0.3$ ($f_v = 0.7$) (this choice of value is discussed below). The uncertainty in each parameter was estimated as the standard deviation of the voxels in the ROI for the measured parameters (baseline and changes in CBV$_a$, CBF and CBV$_{tot}$) and propagated from these values for the calculated parameters (δCBV_v, δCBF and δCBV_{tot}). Measurements of δCBV_{tot} and δCBV_v were found to be statistically significantly different from zero across the group (one-sample t-test, $p < 0.05$), with estimates of α_{tot} and α_v provided in Table 2 for each subject and group means of 0.16 ± 0.14 and 0.65 ± 0.24, respectively. In contrast, the estimated value of δCBV_v was not statistically significantly different from zero ($p = 0.33$), which would suggest a CBF-CBV$_v$ coupling constant, α_v, close to zero. Quantified baseline estimates of CBF and CBV$_a$ from the baseline time window are also presented in Table 2. Baseline CBV$_v$ was found to be inversely correlated with δCBV_v (correlation coefficient, $R = -0.68$). Group means and standard deviations in Table 2 are weighted by the number of voxels in each subject's ROI. The number of voxels included in the ROI varied across subjects, probably due to the use of single-slice techniques, and in some subjects sub-optimal placement of the slice. It should be noted that, whilst measurements of δCBV_{tot} have the lowest group standard deviation, when coupled with a low mean value of δCBV_v, this technique has the highest relative standard deviation. This propagates through to greater uncertainty in the value of α_{tot} compared with α_v.

The results of the supplementary analysis using a common ROI are presented in the Supporting Information. Figure S1 parallels Figure 4, displaying the fractional changes in each haemodynamic measure for the common ROI. However, it should be noted that by producing the ROI$_{COMMON}$ as the intersection of changes in CBV$_a$, CBF and CBV$_{tot}$ the number of included voxels is low across all subjects and zero for one subject (Table S1). Despite this, larger changes in all haemodynamic parameters were observed compared with the results from ROI$_{CBF}$, and a significant increase in CBV$_v$ was detected (one-sample t-test, $p < 0.05$). This enabled α_v to be estimated as 0.29 ± 0.15 across the group, alongside values of 0.45 ± 0.14 for α_{tot} and 0.70 ± 0.29 for α_a. These results can be found in Table S2.

TABLE 1

Subject no	No of voxels	Perf. transit time		Arterial transit time	
		On	Off	On	Off
1	22	0.73 ± 0.04	0.72 ± 0.10	0.23 ± 0.08	0.24 ± 0.09
2	41	0.56 ± 0.05	0.66 ± 0.08	0.18 ± 0.01	0.21 ± 0.01
3	80	0.44 ± 0.03	0.61 ± 0.05	0.38 ± 0.01	0.54 ± 0.06
4	5	0.55 ± 0.13	0.46 ± 0.13	0.12 ± 0.02	0.16 ± 0.12
5	70	0.58 ± 0.04	0.80 ± 0.17	0.16 ± 0.01	0.13 ± 0.02
6	107	0.64 ± 0.02	0.67 ± 0.04	0.29 ± 0.02	0.24 ± 0.02
7	77	0.46 ± 0.04	0.66 ± 0.04	0.26 ± 0.01	0.38 ± 0.03
8	13	0.78 ± 0.06	0.93 ± 0.08	0.51 ± 0.06	0.63 ± 0.06
Weighted mean & st. dev.		0.56 ± 0.10	0.68 ± 0.08	0.27 ± 0.08	0.31 ± 0.15
Details of how to access the data underpinning the results presented in this study can be found in the appendix.

5 | DISCUSSION

A good understanding of the relationship between changes in CBF and CBV is important for interpreting the physiological changes that underlie functional hyperaemia. However, how these changes translate to a measured BOLD response depends on how such changes are distributed across the different vascular compartments. The results of this study will help to improve models of the BOLD response. In turn this will enhance the accuracy and reliability of applications that rely on a correct understanding of the BOLD response. For example, it has been shown that the accuracy of the calibrated BOLD method for quantifying stimulus evoked oxygen metabolism changes is critically dependent on accurate knowledge of CBF-CBV coupling.

In this study, measurements of CBF, CBVa and CBVtot were combined to assess the coupling of CBF changes with changes in arterial, venous and total CBV, within two functionally defined ROIs. For the CBF derived ROI, the CBF-CBVtot coupling constant α_{tot} was estimated to be 0.16 ± 0.14 and the CBF-CBVa coupling constant α_{a} was estimated to be 0.65 ± 0.24 (mean ± standard deviation). The estimated change in CBVv within this ROI was not statistically significant. Supplementary analysis using a common ROI (ROI\text{COMMON}) provided contrasting results, which are discussed later in this section.

5.1 | Comparison with the literature

The coupling between CBF and CBV has been the target of numerous studies. The power law relationship (Equation 1) was first introduced by Grubb et al, who measured α_{tot} to be 0.38 in anaesthetized rhesus monkeys during steady state hyper/hypocapnic challenges. Further PET measurements in humans, using a combination of radiolabelled water (15O) and carbon monoxide (15O or 15CO), measured α_{tot} to be 0.3 in response to a visual stimulus and 0.29 and 0.64 ± 0.26 during a hyper/hypocapnic challenge, respectively (errors reported where available). MRI-based...
In this work, ROIs were selected using the activated region defined by the CBF data. However, the use of such functionally defined ROIs can lead to statistical coupling to CBF and may therefore contribute to an under/overestimation of CBV change in the arterial and venous compartments. Important, it is this deoxygenated blood volume that underlies the BOLD response and best reflects the BOLD specific CBF.

The inconsistency between the two ROIs considered in this study results from the different voxel selection methods. In the case of ROI_CBF, the use of a CBF localizer provides sensitivity to perfusion and hence to exchange at the capillary bed. CBF ROIs have previously been shown to be more robust than a BOLD-based localizer. In contrast the CBV localizers used in combination with the CBF localizer to define the ROI_COMMON are not specific to any particular vessel scale. Therefore, large vessels in the ROI are likely to be accompanied by small changes in CBV, whilst small vessels might see larger changes. Whilst the correlation between baseline CBV_a and \(\Delta \)CBV_a is not statistically significant, this effect likely explains the intersubject variation in the \(\Delta \)CBV_a time courses (Figures 4 and S1). In addition, it has been observed that changes in CBV_a during activation are spatially heterogenous with both increases and decreases. Therefore, selecting for only positive changes in CBV_a has the potential to overestimate the fractional change during activation and may explain why a significant change in CBV_a was observed for ROI_COMMON.

5.2 Limitations of the current study

In this work, ROIs were selected using the activated region defined by the CBF data. However, the use of such functionally defined ROIs can lead to statistical bias, resulting in an overestimation of changes in CBF. Due to the importance of maintaining comfort in human volunteer studies, time within the scanner was limited. Therefore, it was not possible to acquire an additional CBF dataset to provide an independent definition of the ROI.

A pulsed ASL (PASL) preparation was employed in this study so that the same methodologies could be used for the quantification of both CBF and CBV_a and the effects of transit time could be measured and accounted for. The use of a pseudocontinuous ASL (PCASL) approach to measure changes in CBF would likely improve the fidelity of such measurements. However, a PCASL preparation cannot be used for CBV_a measurements due to SAR limitations. Therefore, in practice using a PASL preparation for both CBF and CBV_a measurements is preferable to maintain the same labelling efficiency in both experiments.

Absolute quantification of CBV\textsubscript{tot} was not possible in this study, so we could not measure \(\Delta \)CBV_a. This might be measured by tracking the first bolus of contrast agent. However, the resolution of the data acquired in this study was too coarse to yield an adequate arterial input function. Absolute CBV\textsubscript{tot} is reported to be in the range of 3–5 mL/100 g, therefore the results of this study would predict an absolute change in CBV\textsubscript{tot} (\(\Delta \)CBV\textsubscript{tot}) between 0.18 and 0.3 mL/100 g.

Predictions of \(\alpha \)_a were based on a two-compartment model of the vasculature: arterial and venous. It was therefore assumed that the capillary compartment was distributed between these two compartments. However, it is likely that changes in capillary CBV will have their own characteristic coupling to CBF and may therefore contribute to an under/overestimation of CBV change in the arterial and venous compartments.
Finally, only steady state changes in haemodynamics were studied since the SNR was not sufficient to study dynamic changes. However, it has been shown that a post-stimulus undershoot in CBF may contribute to the BOLD post-stimulus undershoot and that changes in CBV are delayed with respect to changes in CBV. These dynamic variations are expected to add to the complexity of the temporal characteristics of the BOLD response. Repeating this work at higher field might allow the study of these dynamic characteristics, greater knowledge of which may enable the dynamics of changes in oxygen metabolism to be investigated using extensions to methods such as calibrated BOLD.

6 | CONCLUSION

In this study, measurements of CBF, CBV, and CBVtot were performed in individual subjects in a single experimental session to assess the coupling of haemodynamic responses. This information is valuable for furthering our understanding of the BOLD response and for enhancing the accuracy and reliability of applications that rely on models of the BOLD response, such as calibrated BOLD.

ACKNOWLEDGEMENTS

This work was supported by the Medical Research Council [grant number G0901321]. In addition, RW was supported by a Marie Curie Early Stage Researcher Fellowship and NPB was supported by a Sir Peter Mansfield Postdoctoral Fellowship and by funding from the Engineering and Physical Sciences Research Council [grant number EP/K025716/1].

ORCID

Roman Wesołowski https://orcid.org/0000-0002-3904-8701
Nicholas P. Blockley https://orcid.org/0000-0003-2595-8285
Ian D. Driver https://orcid.org/0000-0001-6815-0134
Susan T. Francis https://orcid.org/0000-0003-0903-7507
Penny A. Gowland https://orcid.org/0000-0002-4900-4817

REFERENCES

1. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998;95:1834-1839.
2. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med. 1999;42:849-863.
3. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med. 1998;39:855-864.
4. Mandeville JB, Marota JI, Ayata C, et al. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab. 1999;19:679-689. https://doi.org/10.1097/00004447-199906000-00012
5. Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO₂ on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974;5:630-639.
6. Lee SP, Duong TQ, Yang G, Iadecola C, Kim S-G. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med. 2001;45:791-800.
7. Kim T, Hendrich KS, Masamoto K, Kim S-G. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab. 2007;27:1235-1247. https://doi.org/10.1038/sj.jcbfm.9600429
8. Brookes MJ, Morris PG, Gowland PA, Francis ST. Noninvasive measurement of arterial cerebral blood volume using Look-Locker EPI and arterial spin labeling. Magn Reson Med. 2007;58:41-54. https://doi.org/10.1002/mrm.21199
9. Chen JJ, Pike GB. BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR Biomed. 2009;22:1054-1062. https://doi.org/10.1002/nbm.1411
10. Chen JJ, Pike GB. MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans. Neuroimage. 2010;53:383-391. https://doi.org/10.1016/j.neuroimage.2010.07.003
11. Blockley NP, Francis ST, Gowland PA. Perturbation of the BOLD response by a contrast agent and interpretation through a modified balloon model. Neuroimage. 2009;48:84-93. https://doi.org/10.1016/j.neuroimage.2009.06.038
12. Tuunanen PI, Vidyasagar R, Kauppinen RA. Effects of mild hypoxic hypoxia on poststimulus undershoot of blood-oxygenation-level-dependent fMRI signal in the human visual cortex. Magn Reson Imaging. 2006;24:993-999. https://doi.org/10.1016/j.mri.2006.04.017
13. Kennan RP, Scanley BE, Gore JC. Physiologic basis for BOLD MR signal changes due to hypoxia/hyperoxia: separation of blood volume and oxygenation effects. Magn Reson Med. 1997;37:953-956.
14. Scheffler K, Seifritz E, Haselhorst R, Bilecen D. Titration of the BOLD effect: separation and quantitation of blood volume and oxygenation changes in the human cerebral cortex during neuronal activation and ferumoxide infusion. Magn Reson Med. 1999;42:829-836.
15. Pears JA, Francis ST, Butterworth SE, Bowtell RW, Gowland PA. Investigating the BOLD effect during infusion of Gd-DTPA using rapid T' mapping. Magn Reson Med. 2003;49:61-70. https://doi.org/10.1002/mrm.10340
16. Blockley NP, Wesołowski R, Francis ST, Gowland PA. Quantification of cerebral blood volume changes in response to a visual stimulus in humans. Proceedings of the 16th Annual Meeting of the International Society for Magnetic Resonance in Medicine 2008. p. 1908.
APPENDIX

The data that underpin the results presented in this work can also be accessed via the Zenodo repository (https://doi.org/10.5281/zenodo.1464828).