Pressure dependence of the superconducting transition and electron correlations in Na\textsubscript{x}CoO\textsubscript{2}·1.3H\textsubscript{2}O

E. Kusano1, S. Kawasaki1, K. Matano1, Guo-qing Zheng1,
R.L. Meng 2, J. Cmaidalka 2, and C.W. Chu 2,3,4

1 Department of Physics, Okayama University, Okayama 700-8530, Japan
2 Department of Physics and TCSAM, University of Houston, TX 77204-5932, USA.
3 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
4 Hong Kong University of Science and Technology, Hong Kong, China

(Dated: 21 June, 2007)

Abstract

We report T_c and 59Co nuclear quadrupole resonance (NQR) measurements on the cobalt oxide superconductor Na\textsubscript{x}CoO\textsubscript{2}·1.3H\textsubscript{2}O (T_c=4.8 K) under hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure at an average rate of -0.49±0.09 K/GPa. At low pressures $P \leq$0.49 GPa, the decrease of T_c is accompanied by a weakening of the spin correlations at a finite wave vector and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly due to a reduction of the DOS. These results indicate that the electronic/magnetic state of Co is primarily responsible for the superconductivity. The spin-lattice relaxation rate $1/T_1$ at P=0.49 GPa shows a T^3 variation below T_c down to $T \sim 0.12T_c$, which provides compelling evidence for the presence of line nodes in the superconducting gap function.

PACS numbers: 74.25.Nf, 74.62.Fj, 74.70.-b
The recently discovered superconductivity in cobalt oxide Na\textsubscript{x}CoO\textsubscript{2}·1.3H\textsubscript{2}O has attracted considerable attention1. This compound bears some similarities to the high-T_c copper oxide superconductors, although Co forms triangular lattice instead of square lattice in the cuprates. In an early study on a sample with large Na-content, $x=0.31$ and $T_c=3.7$ K, it has been found that the spin-lattice relaxation rate $1/T_1$ shows a T^n decrease with no coherence peak just below T_c, which suggests non-s wave superconducting state2. However, the crossover from $n=3$ to $n=1$ at low temperatures, which was subsequently confirmed by other groups, has generated debates on whether there are nodes in the gap function3,4. Later measurements on a low-x sample with high T_c ($x=0.26$, $T_c=4.6$ K) reveal that $1/T_1$ follows a T^3 variation all way down to $T = T_c/6$, indicating unambiguously that there exist line nodes in the gap function5. It is also worth noting that the spin fluctuations at finite wave vector, most likely of antiferromagnetic (AF) origin, increase with decreasing Na-content, and become strongest at $x \sim 0.26$ where T_c is the highest5.

To investigate the spin-pairing symmetry, the Knight shift has been measured both in a powder sample6 and in a single crystal7. It has been found that the shift decreases below T_c along both the a-axis and c-axis directions7. This indicates that the Cooper pairs are in the singlet form. Therefore, the experimental results strongly suggest that the superconductivity is of d-wave symmetry.

In this paper, we report NQR (nuclear quadrupole resonance) studies on Na\textsubscript{x}CoO\textsubscript{2}·1.3H\textsubscript{2}O with the highest $T_c=4.8$ K under pressure (P), in order to get a hint as to the mechanism of the superconductivity. We investigate the correlation between T_c and the electronic states. We have measured T_c, NQR frequency ν_Q, and the spin-lattice relaxation rate $1/T_1$ under pressures up to 2.36 GPa. We find that T_c decreases with increasing pressure at an average rate of -0.49 ± 0.09 K/GPa. At low pressures $P \leq 0.49$ GPa, the decrease of T_c is due to a weakening of the spin correlations and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, in contrast, the decrease of T_c is due mainly to a reduction of the DOS. Our results indicate that the magnetic/electronic state of Co is primarily responsible for the superconductivity. Also, the spin-lattice relaxation rate $1/T_1$ at $P=0.49$ GPa shows a T^3 variation below T_c down to $T \sim 0.12T_c$, as at ambient pressure5, which adds additional evidence for the presence of line nodes in the superconducting gap function.

The Na\textsubscript{x}CoO\textsubscript{2}·yH\textsubscript{2}O powder8 was synthesized following Ref.1. The Na content of this
sample was not determined independently. Comparison of the c-axis length, ν_Q and $1/T_1$ data with the previous group of samples shows that this sample has a $x=0.26\sim0.28$. T_c was determined from the ac susceptibility and $1/T_1$. 59Co NQR measurements were carried out by using a phase-coherent spectrometer. The nuclear magnetization decay curve is excellently fitted to the theoretical formula

$$M_0 - M(t) \over M_0 = 0.095 \exp(-3t/T_1) + 0.095 \exp(-9.5t/T_1) + 0.819 \exp(-19t/T_1),$$

with a unique T_1 component. The hydrostatic pressure was applied by utilizing a NiCrAl/BeCu piston-cylinder type cell, filled with Daphne 7373 oil as a pressure-transmitting medium. The value of pressure at low temperatures was determined from the T_c value of Sn metal measured by a conventional four terminal method. For P other than 0.49 GPa, all measurements were done during the same experimental run at each pressure. For $P=0.49$ GPa, measurements above 1.4 K were carried out during one experimental run, then the pressure cell was warmed up and attached to a 3He refrigerator for data acquisition below 1.4 K.

Figure 1 shows the ac susceptibility measured using the in situ NQR coil. T_c was determined as the onset temperature of the diamagnetism, which is in agreement, within ±0.1 K, with the temperature at which $1/T_1$ decreases (see below).

Figure 2 shows the $\pm\frac{5}{2}\leftrightarrow\pm\frac{7}{2}$ NQR transition line at three typical pressures. For convenience, we call this resonance frequency $3\nu_Q$, which increases with increasing pressure.
FIG. 2: (Color online) 59Co NQR spectra at the $\pm 5/2 \leftrightarrow \pm 7/2$ transition under three different pressures.

It is noted that the width of the transition does not depend on pressure, indicating that the quality of the sample is unaffected by applying pressure.

Figure 3 shows the temperature dependence of the quantity $1/T_1T$ at ambient and high pressures. The data for pressures of 1.27 and 1.93 GPa are very similar to those at 0.49 GPa and are not shown for the sake of clarity. Overall, the absolute value of $1/T_1T$ decreases with increasing P. Also, the extent that $1/T_1T$ increases progressively upon lowering T changes as well (see later discussion). It has been noted that the non-Korringa behavior, namely, the increase of $1/T_1T$ upon lowering T, is a signature of spin correlations25. Since the Knight shift along both a- and c-axis decreases with decreasing T and becomes a constant at $T_c \leq T \leq 100$ K, the spin correlations are not ferromagnetic in origin12, but rather point to antiferromagnetic spin fluctuations.

In order to quantify the discussion, we analyze our data in the same way as for the ambient pressure data. In a general form, $1/T_1T$ is written as

$$1/T_1T = \sum_q A_q^2 \chi''(q, \omega)/\omega$$

in the $\omega \to 0$ limit, where A_q is the hyperfine coupling constant, and $\chi''(q, \omega)$ is the imaginary part of the q-dependent, dynamical susceptibility. If one assumes that there is a peak around
FIG. 3: (Color online) The quantity $1/T_1T$ as a function of temperature at ambient and high pressures. The curves are fits to $1/T_1T = (1/T_1T)_0 + 80 \text{[s}^{-1}] / (T + \theta)$. The resulting $(1/T_1T)_0$ and θ are plotted in Fig. 4.

the AF wave vector Q, then one may have the following approximation:

$$1/T_1T = (1/T_1T)_{AF} + (1/T_1T)_0$$

where $(1/T_1T)_0$ denotes the contribution from wave vectors other than Q, which usually is dominated by the uniform susceptibility χ_0. For the AF contribution, we use the formula for a two-dimensional antiferromagnetically-correlated metal, namely, $(1/T_1T)_{AF} = C T + \theta$ (Ref. 13). We find that such model fits the data quite well, as depicted by the curves in Fig. 3. The resulting fitting parameters are shown in Fig. 4. Note that a small value of θ means that a system is close to the AF instability ($\theta=0$). Therefore, the increase of θ to a larger positive value indicates a weakening of the antiferromagnetic correlations. On the other hand, the decrease of $(1/T_1T)_0$ can be attributed to the decrease of density of state (DOS) at the Fermi level, $N(E_F)$, since $(1/T_1T)_0 \propto N(E_F)^2$.

As seen in Fig. 4, overall, T_c decreases with increasing pressure, but non-monotonically. The average rate of $\frac{dT_c}{dP}$ in the whole P range is -0.49 ± 0.09 K/GPa. The average rate below 1.6 GPa is -0.28 ± 0.05 K GPa, which is in good agreement with the rate -0.27 ± 0.03 K/GPa reported by Lorenz et al. who measured the ac susceptibility in this pressure range. However, in the measurements of Lorenz et al., T_c is P-insensitive in the range of $P \leq 0.5$ GPa, while in
FIG. 4: (Color online) Various parameters obtained in this study plotted as a function of pressure. The dotted curves are guides to the eyes. The error in estimating the peak frequency $3\nu_Q$ and $(1/T_1T)_0$ is within the size of the symbols. Note that the density of states is proportional to $\sqrt{(1/T_1T)_0}$.

The present study, T_c is P-insensitive in the range of $0.49 \, \text{GPa} \leq P \leq 1.93 \, \text{GPa}$. The reason for the discrepancy is unknown at this point. It is noted that ν_Q increases smoothly in the whole pressure range, which assures that the pressure is indeed transmitted to the sample.

Below 0.49 GPa, θ increases and $(1/T_1T)_0$ decreases, which indicates that the decrease of T_c is accompanied by both the weakening of the spin correlations and the reduction of DOS. The pressure effects on T_c, θ, DOS and ν_Q are equivalent to increasing the Na content. This suggests that the pressure effect in this range is to induce a charge re-distribution between Co and oxygen. On the other hand, at pressures above 1.93 GPa, the DOS decreases with increasing P while θ is less P-dependent, suggesting that the reduction of T_c at high pressures is primarily due to the reduction of the DOS. Although several mechanisms for the
superconductivity14,15,16,17,18,19, including electron-lattice interaction14, charge order-driven mechanism15, have been proposed, our result indicates that the Co electronic state (namely, the DOS) and the magnetic fluctuations of likely antiferromagnetic origin are primarily responsible for the superconductivity.

Finally, we turn to the superconducting state. Figure 5 shows the temperature dependence of $1/T_1$ at $P=0$ and 0.49 GPa. It can be seen that $1/T_1$ follows a T^3 variation down to the lowest temperature measured ($\sim 0.12T_c$). This result establishes that the sample is free of impurity scattering, and indicates unambiguously that there exists line-nodes in the gap function. As we noted in previous publications2,5, the gap function with line nodes generates an energy (E)-linear DOS at low E which results in a T^n ($n=3$) dependence of $1/T_1$. Low-E excitations arising from impurity scattering or other competing orders usually modify the DOS near the Fermi level, leading to an exponent n less than 3. Also, an anisotropic s-wave gap would give rise to a coherence peak just below T_c, which is incompatible with the experimental result. It is noted that the existence of nodes is consistent with superconductivity being induced by electron correlations.

In conclusion, we have presented systematic 59Co-NQR measurements on the cobalt oxide...
superconductor Na$_x$CoO$_2$·1.3H$_2$O under high pressures up to 2.36 GPa. We find that T_c decreases with increasing pressure at an average rate of -0.49±0.09 K/GPa. At low pressures $P \leq 0.49$ GPa, the decrease of T_c is accompanied by both a weakening of the spin correlations at a finite wave vector and a reduction of the density of states at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is due mainly to a reduction of the density of states. These results indicate that the electronic/magnetic state of Co is primary responsible for the superconductivity. Namely, both a large DOS and spin correlations are indispensable for a high T_c of this class of materials. The spin-lattice relaxation rate $1/T_1$ at $P=0.49$ GPa shows a T^3 variation below T_c down to $T \sim 0.12T_c$, which provides compelling evidence for the presence of line nodes in the superconducting gap function.

We thank M. Nishiyama and K. Katayama for assistance in some of the measurements. This work was supported in part by research grants from MEXT, NSF, the T. L. L. Temple Foundation, the John and Rebecca Moores Endowment, and DoE.

1. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
2. T. Fujimoto, G. - q. Zheng, Y. Kitaoka, R.L. Meng, J.Cmaidalka and C.W. Chu, Phys. Rev. Lett. 92, 047004 (2004).
3. Y. Bang, M.J. Graf and A. V. Balatsky, Phys. Rev. B 68, 212504 (2004).
4. Q. Han and Z. D. Wang, Phys. Rev. B 70, 18450 (2004).
5. G. - q. Zheng, K. Matano, R.L. Meng, J. Cmaidalka, and C.W. Chu, J. Phys.: Condens. Matter 18, L63 (2006).
6. Y. Kobayashi, M. Yokoi and M. Sato, J. Phys. Soc. Jpn. 72, 2453 (2003).
7. G. - q. Zheng, K. Matano, D. P. Chen, and C. T. Lin, Phys. Rev. B 73,180503 (R) (2006).
8. B. Lorenz, J. Cmaidalka, R. L. Meng, and C. W. Chu, Phys. Rev. B 68, 132504 (2003).
9. J. Chepin and J. H. Ross, J. Phys. Condens. Matt. 3, 8103 (1991).
10. K. Murata, H. Yoshino, H. O. Yadav, Y. Honda, and N. Shirakawa, Rev. Sci. Instrum. 68, 2490 (1997).
11. T.F. Smith, C.W. Chu, and M.B. Maple, Cryogenics 9, 53 (1969).
12. D. J. Singh, Phys. Rev. B 61, 13397 (2000).
13 T. Moriya, K. Ueda, Y. Takahashi, J. Phys. Soc. Jpn. 59, 2905 (1990).
14 K. Yada and H. Kontani, J. Phys. Soc. Jpn. 75, 033705 (2006).
15 O. I. Motrunich and P.A. Lee, Phys. Rev. B 70, 024514 (2004)
16 M. D. Johannes, I. I. Mazin, D. J. Singh, and D. A. Papaconstantopoulos, Phys. Rev. Lett. 93, 097005 (2004).
17 B. Liu, Y. Liang and S. Feng, Commun. Theor. Phys. 43, 1127 (2005).
18 K. Kuroki, S. Ohkubo, T. Nojima, R. Arita, S. Onari, and Y. Tanaka, Phys. Rev. Lett. 98, 136401 (2007).
19 M. Ogata, J. Phys. Soc. Jpn 72, 1839 (2003).