Prevalence and Multilocus Genotyping of *Giardia lamblia* in Cattle in Jiangxi Province, China: Novel Assemblage E Subtypes Identified

Sen Li1,2, Yang Zou2, Xue-Liang Zhang2, Ping Wang1,4, Xiao-Qing Chen1,4, Xing-Quan Zhu1,4

1Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, China; 2State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; 3Nanchang Bureau of Agriculture and Rural Affairs, Nanchang, Jiangxi Province 330009, China; 4College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, China

**Abstract:** *Giardia lamblia* is a common enteric pathogen associated with diarrheal diseases. There are some reports of *G. lamblia* infection among different breeds of cattle in recent years worldwide. However, it is yet to know whether cattle in Jiangxi province, southeastern China is infected with *G. lamblia*. The objectives of the present study were to investigate the prevalence and examine the multilocus genotypes of *G. lamblia* in cattle in Jiangxi province. A total of 556 fecal samples were collected from 3 cattle breeds (dairy cattle, beef cattle, and buffalo) in Jiangxi province, and the prevalence and genotypes of *G. lamblia* were determined by the nested PCR amplification of the beta-giardin (*bg*) gene. A total of 52 samples (9.2%) were positive for *G. lamblia*. The highest prevalence of *G. lamblia* was detected in dairy cattle (20.0%), followed by that in beef cattle (6.4%), and meat buffalo (0.9%). Multilocus sequence typing of *G. lamblia* was performed based on sequences of the *bg*, triose phosphate isomerase and glutamate dehydrogenase loci, and 22, 42, and 52 samples were amplifiable, respectively, forming 15 MLGs. Moreover, one mixed *G. lamblia* infection (assemblages A and E) was found in the present study. Altogether, 6 novel assemblage E subtypes (E41*-E46*) were identified for the first time. These results not only provided baseline data for the control of *G. lamblia* infection in cattle in this southeastern province of China, but also enriched the molecular epidemiological data and genetic diversity of *G. lamblia* in cattle.

**Key words:** Giardia lamblia, cattle, prevalence, multilocus genotyping, Jiangxi Province

*Giardia lamblia* is a common zoonotic parasite, causing intestinal diseases such as diarrhea in humans and animals. In the life cycle of this parasite, cysts are spread directly through feces by infected humans or animals [1]. The transmission route is via fecal-oral or by ingesting food and water contaminated with cysts [1]. *G. lamblia* can cause giardiasis, which may lead to asymptomatic infection or abdominal pain, chronic diarrhea, and vomiting seriously impacting on health condition, resulting in low productivity in ruminants [2]. Cattle is one of the main hosts of *G. lamblia* that can excrete cysts, which is the potential threat to humans [3].

Molecular techniques have been applied for *G. lamblia* detection [4]. To date, 8 assemblages (A to H) of *G. lamblia* have been identified from different hosts. Among these assemblages, assemblages A and B are considered to be zoonotic, while other assemblages are mostly host specific [1]. In addition, assemblage E is the dominant genotype of *G. lamblia* occurring in cattle [5-8], and zoonotic assemblages A and B have also been identified in cattle and humans in some studies [9-13]. However, there are some studies that have found assemblage E existing in human cases [5,14,15].

Despite the widespread presence of *G. lamblia* in cattle, the clinical significance of this organism in cattle is not fully understood. *G. lamblia* infection is associated with the occurrence of diarrhea in the cattle [8,16]. Recently, a study showed that diarrhea cattle is more likely to be infected with pathogens than non-diarrhea animals [17]. Furthermore, healthy cattle are also infected with *G. lamblia* [7,8]. Therefore, the prevention is more important than treatment. Multilocus sequence typing has been used to identify multilocus genotypes (MLGs)
of *G. lamblia* in dairy cattle based on sequences of the beta-giardin (*bg*), glutamate dehydrogenase (*gdh*) and triose phosphate isomerase (*tpi*) [18]. But most of previous studies have identified *G. lamblia* in cattle by a single gene locus only [19].

Jiangxi province is located on the south bank of the middle and lower reaches of the Yangtze River, with a population of more than 40 million people. It is one of the main beef producing provinces in southern China, with a large number of cattle being sold to southeast coastal cities. To date, there was no report of *G. lamblia* infection in cattle in Jiangxi province. Thus, the objectives of the present study were to investigate the prevalence and examine the MLGs of *G. lamblia* in cattle in Jiangxi province, southeastern China.

A total of 556 fecal samples were randomly collected from cattle in 8 farms of Jiangxi province, southeastern China, including Nanchang city (2 dairy cattle farms and 1 beef cattle farm), Gao’an city (2 beef cattle farms), Xinyu city (1 meat buffalo farm) and Ji’an city (1 beef cattle farm and 1 free-range farm for beef cattle). This study was approved by the Animal Ethics Committee of Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences. All cattle were handled in strict accordance with good animal practice according to the Animal Ethics Procedures and Guidelines of the People’s Republic of China. All samples were obtained immediately after defection by PE gloves and were stored in separate 50 ml centrifuge tubes containing 2.5% potassium dichromate, then packed into the box with ice and sent to the laboratory. Feces were stored at 4˚C until extraction of genomic DNA. The information of each fecal sample was recorded, including geographical location, age, breed and collection date.

The stool samples were washed with double distilled water to wash off potassium dichromate, then 200 mg of each stool sample was packed into a 2 ml centrifuge tube for genomic DNA extraction using a commercial E.Z.N.A® Stool DNA kit (Omega Bio-Tek Inc., Norcross, Georgia, USA) according to the manufacturer’s protocols. The obtained genomic DNA samples were stored in –20˚C until PCR amplification.

*Giardia lamblia* in fecal samples were identified by PCR-based sequencing of the *bg* locus [20]. All the *bg*-positive samples were then amplified to further identify MLGs of *G. lamblia* in cattle using primers for the *gdh* and *tpi* gene loci [20,21] (Supplementary Table S1). The primary PCR reaction mixture contained genomic DNA (2 µl), 10× *Ex Taq* Buffer (Mg²⁺-free) (2.5 µl), MgCl₂ (2 mM), dNTP Mixture (0.2 mM), *TaKaRa Ex Taq* (0.625 U) (*TaKaRa Shuzo Co., Ltd*) and each primer (0.4 µM) in a total volume of 25 µl. The 2 µl of primary PCR product as template was amplified by the secondary PCR with the same reaction conditions. The positive (*G. lamblia* DNA) and negative (deionized water) control were added in each PCR amplification. The secondary PCR products were subsequently detected by electrophoresis in 1.5% (w/v) agarose gels with ethidium bromide.

All positive second-PCR products were sent to Xi’an Qingke Biotechnology Company for 2-directional sequencing. The Chromas v.2.6. was used to check the sequencing chromatograms. The obtained sequences were aligned with relevant sequences available in GenBank database (http://www.ncbi.nlm.nih.gov/GenBank) and were analyzed by the Clustal X 1.81 [22] to identify the genotypes of *G. lamblia*. The nucleotide sequences of novel subtypes in assemblages were deposited to the National Center for Biotechnology Information GenBank database under accession numbers: MT123524 for the *bg* locus, MT123525–MT123526 for the *gdh* locus, and MT123527–MT123529 for the *tpi* locus. The phylogenetic relationships among *G. lamblia* isolates were re-constructed based on *gdh* and *tpi* sequences using a Neighbor-Joining algorithm [23] in DNASTar 5.0 [24], and the Kimura 2-parameter analysis (1,000 replicates) was selected.

The difference in *G. lamblia* prevalence among 4 cities of Jiangxi province was assessed by the Chi-square (χ²) analysis by IBM SPSS Statistics for Windows, Version 22.0 (IBM Armonk Corp., Armonk, New York, USA), and *P*-value of 0.05 was considered as the threshold for significant difference.

In this study, *G. lamblia* was detected in 9.2% (95% CI 6.81-11.57) of 556 cattle fecal samples from 4 cities of Jiangxi province, with the prevalence ranging from 0.9% to 16.2% (Table 1). The highest *G. lamblia* prevalence (16.2%, 95% CI 11.37-21.06) was detected in cattle in Nanchang city, which was significantly higher than that in Xinyu city (0.9%, 95% CI 0.2-7.3) (*P*<0.01). The different prevalence could be due to different feeding methods. Moreover, dairy cattle (20%) and beef cattle (6.4%) were more susceptible to *G. lamblia* than buffalos (0.9%), for which the ORs were 26.75 (95% CI 3.60-198.79) and 7.27 (95% CI 0.96-55.13), respectively (Table 1). This result may be related to different management and sanitation status of different farms, which suggests that we should pay more attention to control *G. lamblia* transmission in dairy cattle and beef cattle in investigated areas. Furthermore, the highest *G. lamblia* prevalence was detected in cattle aged 1-3...
months (19.6%, 95% CI 8.10-31.03), which is consistent with that of previous studies [25-27]. Cattle aged 1-3 months (19.6%) had a significantly higher *G. lamblia* prevalence compared with cattle aged more than 24 months (7.5%) ($P < 0.05$) (Table 1). This finding illustrates that calves are more susceptible to *G. lamblia* infection.

The overall *G. lamblia* prevalence (9.2%) in cattle in this study was higher than that in cattle in Zhaoqing city, Guangdong Province (2.2%) [28], and Qinghai Province, China (5.2%) [29], and an arid area of central Iran (4.2%) [30], Thailand (6.0%) [31], and Urmia, northwest Iran (9.34%) [32]; but lower than that in Guangdong Province (74.2%) [6], Hubei Province (22.6%) [33] and Sichuan Province, China (9.4%) [34]; Egypt (13.3%) [35], South Korea (10.0%) [36], Ethiopia (9.6%) [37] and Vietnam (13.8%) [38]. The difference in *G. lamblia* prevalence may be related to difference in study design, breed and age of cattle studied and sampling size.

In the present study, 52 positive samples represented 2 assemblages (assemblage E and assemblage A) (Tables 2, 3), containing one novel subtype of assemblage E (named as E41*, n = 5) based on sequence analyses of the bg locus (Table 1). This finding illustrates that calves are more susceptible to *G. lamblia* infection.

The overall *G. lamblia* prevalence (9.2%) in cattle in this study was higher than that in cattle in Zhaoqing city, Guangdong Province (2.2%) [28], and Qinghai Province, China (5.2%) [29], an arid area of central Iran (4.2%) [30], Thailand (6.0%) [31], and Urmia, northwest Iran (9.34%) [32]; but lower than that in Guangdong Province (74.2%) [6], Hubei Province (22.6%) [33] and Sichuan Province, China (9.4%) [34]; Egypt (13.3%) [35], South Korea (10.0%) [36], Ethiopia (9.6%) [37] and Vietnam (13.8%) [38]. The difference in *G. lamblia* prevalence may be related to difference in study design, breed and age of cattle studied and sampling size.

In the present study, 52 positive samples represented 2 assemblages (assemblage E and assemblage A) (Tables 2, 3), containing one novel subtype of assemblage E (named as E41*, n = 5) based on sequence analyses of the bg locus (Table 1). This finding illustrates that calves are more susceptible to *G. lamblia* infection.

The overall *G. lamblia* prevalence (9.2%) in cattle in this study was higher than that in cattle in Zhaoqing city, Guangdong Province (2.2%) [28], and Qinghai Province, China (5.2%) [29], an arid area of central Iran (4.2%) [30], Thailand (6.0%) [31], and Urmia, northwest Iran (9.34%) [32]; but lower than that in Guangdong Province (74.2%) [6], Hubei Province (22.6%) [33] and Sichuan Province, China (9.4%) [34]; Egypt (13.3%) [35], South Korea (10.0%) [36], Ethiopia (9.6%) [37] and Vietnam (13.8%) [38]. The difference in *G. lamblia* prevalence may be related to difference in study design, breed and age of cattle studied and sampling size.

In the present study, 52 positive samples represented 2 assemblages (assemblage E and assemblage A) (Tables 2, 3), containing one novel subtype of assemblage E (named as E41*, n = 5) based on sequence analyses of the bg locus (Table 1). This finding illustrates that calves are more susceptible to *G. lamblia* infection.

The overall *G. lamblia* prevalence (9.2%) in cattle in this study was higher than that in cattle in Zhaoqing city, Guangdong Province (2.2%) [28], and Qinghai Province, China (5.2%) [29], an arid area of central Iran (4.2%) [30], Thailand (6.0%) [31], and Urmia, northwest Iran (9.34%) [32]; but lower than that in Guangdong Province (74.2%) [6], Hubei Province (22.6%) [33] and Sichuan Province, China (9.4%) [34]; Egypt (13.3%) [35], South Korea (10.0%) [36], Ethiopia (9.6%) [37] and Vietnam (13.8%) [38]. The difference in *G. lamblia* prevalence may be related to difference in study design, breed and age of cattle studied and sampling size.

In the present study, 52 positive samples represented 2 assemblages (assemblage E and assemblage A) (Tables 2, 3), containing one novel subtype of assemblage E (named as E41*, n = 5) based on sequence analyses of the bg locus (Table 1). This finding illustrates that calves are more susceptible to *G. lamblia* infection.

The overall *G. lamblia* prevalence (9.2%) in cattle in this study was higher than that in cattle in Zhaoqing city, Guangdong Province (2.2%) [28], and Qinghai Province, China (5.2%) [29], an arid area of central Iran (4.2%) [30], Thailand (6.0%) [31], and Urmia, northwest Iran (9.34%) [32]; but lower than that in Guangdong Province (74.2%) [6], Hubei Province (22.6%) [33] and Sichuan Province, China (9.4%) [34]; Egypt (13.3%) [35], South Korea (10.0%) [36], Ethiopia (9.6%) [37] and Vietnam (13.8%) [38]. The difference in *G. lamblia* prevalence may be related to difference in study design, breed and age of cattle studied and sampling size.

In the present study, 52 positive samples represented 2 assemblages (assemblage E and assemblage A) (Tables 2, 3), containing one novel subtype of assemblage E (named as E41*, n = 5) based on sequence analyses of the bg locus (Table 1). This finding illustrates that calves are more susceptible to *G. lamblia* infection.
Moreover, 42 of the 52 bg-positive samples were tested positive at the gdh locus, and 22 samples were tested tpi-positive. Two novel subtypes (named as E45*, n = 4 and E46*, n = 1) and 3 novel subtypes (named as E42*, n = 5; E43*, n = 2 and E44*, n = 1) of assemblage E were identified at the gdh and tpi loci, respectively (Table 2). Previous studies have shown that the assemblage E is the primary genotype in different animals [1,39-45]. Both assemblage A and assemblage E were also found in humans [1,5]. These findings suggested that cattle could be reservoir host of *G. lamblia* and transport this zoonotic pathogen to humans and other animals. MLG analysis can assess the genetic diversity of *G. lamblia* [46]. Among these 52 samples, 16 samples were successfully amplified and sequenced at all the 3 genetic loci (bg, gdh, and tpi) (Table 4), forming 15 novel MLGs (named as MLGE1-E14, MLGA1) and one mixed infection (Table 4), which revealed a high genetic diversity of *G. lamblia* assemblages.

The phylogenetic tree based on *G. lamblia* tpi-sequences and gdh-sequences were constructed in order to evaluate the genetic relationships of the *G. lamblia* isolates. The results showed that *G. lamblia* isolates from cattle (novel subtypes E41*-46*) were clustered within the assemblage E (Figs. 1, 2), which contained *G. lamblia* isolates from animals and humans with a higher confidence value, revealing closer genetic relationship (Fig. 1).

In conclusion, this study revealed a 9.2% *G. lamblia* prevalence in cattle in Jiangxi province, southeastern China, and

| Isolate | Subtype | No. sequence | MLG type |
|---------|---------|--------------|----------|
| HX1-24, SBN4-9 | E5 | E17 | E2 | 2 | MLGE1 |
| HX1-29 | E8 | E17 | E2 | 1 | MLGE2 |
| XH1-11 | E5 | E42 | E1 | 2 | MLGE3 |
| XH1-12 | E8 | E42* | E45* | 1 | MLGE4 |
| XH1-20, SBN5-27 | E41* | E17 | E2 | 2 | MLGE5 |
| SBN1-3 | E18 | E13 | E2 | 1 | MLGE6 |
| SBN2-1 | E11 | E1 | E2 | 1 | MLGE7 |
| SBN3-1, YFX-9 | E5 | E43* | E2 | 2 | MLGE8 |
| SBN3-3 | E11 | E44* | E2 | 1 | MLGE9 |
| SBN5-20 | E11 | E17 | E1 | 1 | MLGE10 |
| SBN5-28 | E9 | E38 | E2 | 1 | MLGE11 |
| SBN6-28 | E2 | E17 | E1 | 1 | MLGE12 |
| YFJ-8 | E1 | E23 | E45* | 1 | MLGE13 |
| YFJ-9 | E1 | E42* | E2 | 1 | MLGE14 |
| HX1-21 | E1 | A1 | E2 | 1 | Mixed |
| HX1-8 | A | A1 | A1 | 1 | MLGA1 |

*Novel subtypes of assemblage E.

Table 4. Multilocus characters of *Giardia lamblia* isolates based on sequences of bg, tpi, and gdh genes

![Fig. 1. A phylogenetic tree of *Giardia lamblia* tpi gene sequences. Novel subtypes of assemblage E isolates identified from cattle in this study are marked with a black square (■).](image-url)
Li et al.: *Giardia lamblia* assemblage E subtypes in cattle, China

identified 6 novel assemblage E subtypes (designated as E41*-46*) for the first time. Fourteen novel MLGs within assemblage E and one novel MLG within assemblage A were identified. These findings revealed the prevalence and MLGs of *G. lamblia* in cattle in Jiangxi province, which not only enriched the genetic diversity of *G. lamblia*, but also provided baseline data for controlling *G. lamblia* infection in animals and humans in this southeastern province of China.
ACKNOWLEDGMENT

Project support was provided by the Agricultural Science and Technology Innovation Program (ASTIP) (Grant No. CAAS-ASTIP-2016-LVRI-03) and the Elite Program of Chinese Academy of Agricultural Sciences.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

1. Feng YY, Xiao LH. Zoonotic potential and molecular epidemiology of *Giardia* species and Giardiasis. Clin Microbiol Rev 2011; 24: 110-140. https://doi.org/10.1128/CMR.00033-10

2. Bartelt LA, Sartor RB. Advances in understanding *Giardia*: determinants and mechanisms of chronic sequelae. F1000Prime Rep 2015; 7: 62. https://doi.org/10.12703/P7-62

3. Ryan U, Cacciò SM. Zoonotic potential of *Giardia*. Int J Parasitol 2013; 43: 110-140. https://doi.org/10.1016/j.ijpara.2013.06.001

4. Hogan JN, Miller WA, Cranfield MR, Ramer J, Hassell J, Noheri JB, Conrad PA, Gilardi KV. *Giardia* in mountain gorillas (*Gorilla beringei beringei*), forest buffalo (*Syncerus caffer*), and domestic cattle in Volcanoes National Park, Rwanda. J Wildl Dis 2014; 50: 21-30. https://doi.org/10.7589/2012-09-229

5. Feng Y, Gong X, Zhu K, Li N, Yu Z, Guo Y, Wang X, Feng Y, Xiao L. Prevalence and genotypic identification of *Cryptosporidium spp.*, *Giardia duodenalis* and *Enterocytozoon bieneusi* in pre-weaned dairy calves in Guangdong, China. Parasitol Vectors 2019; 12: 411. https://doi.org/10.1186/s13071-018-3430-5

6. Wang R, Li D, Chang Y, Wu Y, Guo Z, Jia L, Xu J, Li J, Qi M, Wang R, Zhang L. Molecular characterization of three intestinal protozoans in hospitalized children with different disease backgrounds in Zhengzhou, central China. Parasitol Vectors 2019; 12: 543. https://doi.org/10.1186/s13071-019-3800-5

7. Feng Y, Gong X, Zhu K, Li N, Yu Z, Guo Y, Weng Y, Kváč M, Feng Y, Xiao L. Prevalence and genotypic identification of *Cryptosporidium* spp., *Giardia duodenalis* and *Enterocytozoon bieneusi* in pre-weaned dairy calves in Guangdong, China. Parasitol Vectors 2019; 12: 41. https://doi.org/10.1186/s13071-019-3310-5

8. Wang R, Li N, Jiang W, Guo Y, Wang X, Jin Y, Feng Y, Xiao L. Infection patterns, clinical significance, and genetic characteristics of *Enterocytozoon bieneusi* and *Giardia duodenalis* in dairy cattle in Jiangsu, China. Parasitol Res 2019; 118: 3053-3060. https://doi.org/10.1007/s00436-019-06426-3

9. Hogan JN, Miller WA, Cranfield MR, Ramer J, Hassell J, Noheri JB, Conrad PA, Gilardi KV. *Giardia* in mountain gorillas (*Gorilla beringei beringei*), forest buffalo (*Syncerus caffer*), and domestic cattle in Volcanoes National Park, Rwanda. J Wildl Dis 2014; 50: 21-30. https://doi.org/10.7589/2012-09-229

10. Lee YJ, Han DG, Ryu JH, Chae JB, Chae JS, Yu DH, Park J, Park BK, Kim HC, Choi KS. Identification of zoonotic *Giardia duodenalis* in Korean native calves with normal feces. Parasitol Res 2018; 117: 1969-1973. https://doi.org/10.1007/s00436-018-5863-1

11. Wang X, Cai M, Jiang W, Wang Y, Jin Y, Li N, Guo Y, Feng Y, Xiao L. High genetic diversity of *Giardia duodenalis* assemblage E in pre-weaned dairy calves in Shanghai, China, revealed by multilocus genotyping. Parasitol Res 2017; 116: 201-210. https://doi.org/10.1007/s00436-017-5509-8

12. Yu E, Li D, Chang Y, Wu Y, Guo Z, Jia L, Xu J, Li J, Qi M, Wang R, Zhang L. Molecular characterization of three intestinal protozoans in hospitalized children with different disease backgrounds in Zhengzhou, central China. Parasitol Vectors 2019; 12: 543. https://doi.org/10.1186/s13071-019-3800-5

13. Wang T, Fan YY, Koehler AV, Ma GX, Li T, Hu M, Gasser RB. First survey of *Cryptosporidium*, *Giardia* and *Enterocytozoon* in diarrheic children from Wuhan, China. Infect Genet Evol 2017; 51: 127-131. https://doi.org/10.1016/j.meegid.2017.03.006

14. Fantinatti M, Bello AR, Fernandes O, Da-Cruz AM. Identification of *Giardia lambia* assemblage E in human points to a new anthropozoonotic cycle. J Infect Dis 2016; 214: 1256-1259. https://doi.org/10.1093/infdis/jiw361

15. Zahedi A, Field D, Ryan U. Molecular typing of *Giardia duodenalis* in humans in Queensland-first report of assemblage E. Parasitology 2017; 144: 1154-1161. https://doi.org/10.1017/S0031182017000439

16. Di Piazza F, Di Benedetto MA, Maida CM, Glorioso S, Adamo G, Mazzola F, Firenze A. A study on occupational exposure of Sicilian farmers to *Giardia* and *Cryptosporidium*. J Prev Med Hyg 2013; 54: 212-217.

17. Mahato MK, Singh DK, Rana HB, Acharya KP. Prevalence and risk factors associated with *Giardia duodenalis* infection in dairy cattle of Chitwan, Nepal. J Parasitol Dis 2018; 42: 122-126. https://doi.org/10.1080/12633797.2018.1428776

18. Wang H, Zhao G, Chen G, Jiao E, Zhang S, Feng C, Wang R, Zhu J, Dong H, Hua J, Wang M, Zhang L. Multilocus genotyping of *Giardia duodenalis* in dairy cattle in Henan, China. PLoS One 2014; 9: e100453. https://doi.org/10.1371/journal.pone.0100453

19. Li J, Wang H, Wang R, Zhang L. *Giardia duodenalis* Infections in Humans and other animals in China. Front Microbiol 2017; 8: 2004. https://doi.org/10.3389/fmicb.2017.02004

20. Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, Cacciò SM. Genetic heterogeneity at the beta-giardin locus among human and animal isolates of *Giardia duodenalis* and identification of potentially zoonotic subgenotypes. Int J Parasitol 2005; 35: 207-213. https://doi.org/10.1016/j.ijpara.2004.10.022

21. Azcona-Gutiérrez JM, de Lucio A, Hernández-de-Mingo M, García-García C, Soria-Blanco LM, Morales L, Aguilera M, Fuentes I, Carmena D. Molecular diversity and frequency of the diarrhea-genic enteric protozoan *Giardia duodenalis* and *Cryptosporidium* spp. in a hospital setting in northern Spain. PLoS One 2017; 12: e0178575. https://doi.org/10.1371/journal.pone.0178575

22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876

23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Biol 1987; 165: 1-20. https://doi.org/10.1016/0022-2836(82)90580-7
for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

24. Burland TG. DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 2000; 132: 71-91. https://doi.org/10.1385/1-59259-192-7:271

25. Zhang X, Tan QD, Zhao GH, Ma JG, Zheng WB, Ni XT, Zhao Q, Zhou DH, Zhu XQ. Prevalence, risk factors and multilocus genotyping of Giardia intestinalis in dairy cattle, Northwest China. J Eukaryot Microbiol 2016; 63: 498-504. https://doi.org/10.1111/jem.12293

26. Mahato MK, Singh DK, Rana HB, Acharya KP. Prevalence and risk factors associated with Giardia duodenalis infection in dairy cattle of Chitwan, Nepal. J Parasitol Dis 2018; 42: 122-126. https://doi.org/10.1007/s12639-017-0975-6

27. Maddox-Hyttel C, Langkjær RB, Enemark HL, Vigre H. Cryptosporidium and Giardia in different age groups of Danish cattle and pigs—occurrence and management associated risk factors. Vet Parasitol 2006; 141: 48-59. https://doi.org/10.1016/j.vetpar.2006.04.032

28. Cui Z, Wang L, Cao L, Sun M, Liang N, Wang H, Chang Y, Lin X, Yu I, Wang R, Zhang S, Ning C, Zhang L. Genetic characteristics and geographic segregation of Giardia duodenalis in dairy cattle from Guangdong Province, southern China. Infect Genet Evol 2018; 66: 95-100. https://doi.org/10.1016/j.meegid.2018.09.019

29. Wang G, Wang G, Li X, Zhang X, Karanis G, Jian Y, Ma L, Karanis P. Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in 1-2-month-old highland yaks in Qinghai Province, China. Parasitol Res 2018; 117: 1793-1800. https://doi.org/10.1007/s00436-018-5861-3

30. Kiani-Salmi N, Fattahi-Bafghi A, Astani A, Saizmand A, Zahedi A, Firooz Z, Ebrahimi B, Dehghani-Tafti A, Ryan U, Akrami-Mohajeri F. Molecular typing of Giardia duodenalis in cattle, sheep and goats in an arid area of central Iran. Infect Genet Evol 2019; 75: 490. https://doi.org/10.1016/j.meegid.2018.104021

31. Inpankaew T, Jiyipong T, Thadatpong N, Kengradomki J, Pin-yopawanvat N, Chinnom W, Jitapalapong S. Prevalence and genotype of Giardia duodenalis in dairy cattle from northern and northeastern part of Thailand. Acta Parasitol 2015; 60: 459-461. https://doi.org/10.1515/ap-2015-0063

32. Malekdifard F, Ahmadvand M. Molecular detection and identification of Giardia duodenalis in cattle of Urmia, northwest of Iran. Vet Res Forum 2018; 9: 81-85.

33. Fan Y, Wang T, Koehler AV, Hu M, Gasser RB. Molecular investigation of Cryptosporidium and Giardia in pre- and post-weaned calves in Hubei Province, China. Parasit Vectors 2017; 10: 519. https://doi.org/10.1186/s13071-017-2463-3

34. Zhong Z, Dan J, Yan G, Tu R, Tian Y, Cao S, Shen L, Deng J, Yu S, Geng Y, Gu X, Wang Y, Liu H, Peng G. Occurrence and genotyping of Giardia duodenalis and Cryptosporidium in pre-weaned dairy calves in central Sichuan province, China. Parasite 2018; 25: 45. https://doi.org/10.1051/parasite/2018046

35. Naguib D, El-Gohary AH, Mohamed AA, Roellig DM, Arafat N, Xiao L. Age patterns of Cryptosporidium species and Giardia duodenalis in dairy calves in Egypt. Parasitol Int 2018; 67: 736-741. https://doi.org/10.1016/j.parint.2018.07.012

36. Lee YJ, Han DG, Ryu JH, Chae JB, Chae JS, Yu DH, Park J, Park BK, Kim HC, Choi KS. Identification of zoonotic Giardia duodenalis in Korean native calves with normal feces. Parasitol Res 2018; 117: 1969-1973. https://doi.org/10.1007/s00436-018-5863-1

37. Wegayehu T, Karim MR, Erko B, Zhang L, Tilahun G. Multilocus genotyping of Giardia duodenalis isolates from calves in Oromia Special Zone, Central Ethiopia. Infect Genet Evol 2016; 43: 281-288. https://doi.org/10.1016/j.meegid.2016.06.005

38. Nguyen ST, Fukuda Y, Nguyen DT, Tada C, Nakai Y. Prevalence and first genotyping of Giardia duodenalis in beef calves in Vietnam. Trop Anim Health Prod 2016; 48: 837-841. https://doi.org/10.1007/s11250-016-1013-x

39. Zhang HJ, Song JK, Wu XM, Li YH, Wang Y, Lin Q, Zhao GH. First report of Giardia duodenalis genotypes in Zangxiang pigs from China. Parasitol Res 2019; 118: 2305-2310. https://doi.org/10.1007/s00436-019-06340-8

40. Chen D, Zou Y, Li Z, Wang SS, Xie SC, Shi LJQ, Zou FC, Yang JJ, Zhao GH, Zhu XQ. Occurrence and multilocus genotyping of Giardia duodenalis in black-boned sheep and goats in southwestern China. Parasit Vectors 2019; 12: 102. https://doi.org/10.1186/s13071-019-3367-1

41. Minetti C, Taweenan W, Hogg R, Featherstone C, Randle N, Latham SM, Westling JM. Occurrence and diversity of Giardia duodenalis assemblages in livestock in the UK. Transbound Emerg Dis 2014; 61: 60-67. https://doi.org/10.1111/tbed.12075

42. Xie SC, Zou Y, Chen D, Jiang MM, Yuan XD, Li Z, Zou FC, Yang JJ, Sheng JL, Zhu XQ. Occurrence and Multilocus Genotyping of Giardia duodenalis in Yunnan Black Goats in China. Biomed Res Int 2018; 2018: 4601737. https://doi.org/10.1155/2018/4601737

43. Wang SS, Yuan YJ, Yin YL, Hu RS, Song JK, Zhao GH. Prevalence and multilocus genotyping of Giardia duodenalis in pigs of Shaansi Province, northwestern China. Parasit Vectors 2017; 10: 490. https://doi.org/10.1186/s13071-017-2418-8

44. Roeprger AF, Daniels ME, Smith WA, Gottdenker N, Schwartz LM, Liu J, Campbell A, Fiorello CV. Giardia infection and Trypanosoma cruzi exposure in dogs in the Bosawás biosphere reserve, Nicaragua. EcoHealth 2019; 16: S12-522. https://doi.org/10.1007/s10393-019-01434-2

45. Huang J, Zhang Z, Zhang Y, Yang Y, Zhao J, Wang R, Jian E, Ning C, Zhang W, Zhang L. Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in deer in Henan and Jilin, China. Parasit Vectors 2018; 11: 239. https://doi.org/10.1186/s13071-018-2815-7

46. Cacciò SM, Beck R, Lalle M, Marinculic A, Pozio E. Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. Int J Parasitol 2008; 38: 1523-1531. https://doi.org/10.1016/j.ijpara.2008.04.008
