Environmental exposure to common pollutants including polychlorinated biphenyls (PCBs), dichlorophenyldichloroethane (DDT) and its most stable metabolite 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), and polybrominated diphenyl ethers (PBDEs), has been hypothesized as a risk factor for female breast cancer (Falck et al. 1992; Wenning 2002; Wolff et al. 1996). These chemicals are ubiquitous, persistent, estrogenic, and lipophilic (Adami et al. 1995; de Boer et al. 1998; Geyer et al. 1986; Jakobsson et al. 2002; Meerts et al. 2001; Sjödin et al. 2001). Diet is a major route of human exposure, especially through consumption of sport-caught fish from contaminated waters such as the Great Lakes (Anderson et al. 1998; Darnerud et al. 2001; Geyer et al. 1986). Although the Food and Drug Administration confiscates market fish containing > 2 ppm PCBs and 5 ppm DDT/DDE (there is no regulation on PBDE levels), sport fishers’ own catches are unregulated (Ahmed 1991). Consequently, consumers of Great Lakes sport-caught fish are at a higher risk of exposure to these chemicals.

Numerous epidemiologic studies have explored the relationship between body burden of PCBs, DDT, and/or DDE and risk of breast cancer with inconclusive results (Adami et al. 1995). The mean level of PCBs and DDT/DDE in adipose tissue or blood serum has declined since the banning of these chemicals in 1977 and 1972, respectively, whereas PBDE levels have dramatically increased (Noren and Meironyte 2000). Studies have consistently found a positive correlation between sport-caught fish consumption patterns and body burden of PCBs and/or DDE (e.g., Hanrahan et al. 1999). In addition, studies have shown that Great Lakes fish consumers have higher mean levels of PCB and DDE compared with nonfish consumers (He 1999; Humphrey 1983). We present data on the relationship between self-reported sport-caught fish consumption and breast cancer risk as part of an ongoing population-based case–control study.

Subjects and Methods

Identification of breast cancer cases. All participants were female Wisconsin residents 20–69 years of age with a new diagnosis of breast cancer in 1996–2000 identified by Wisconsin Cancer Reporting System. According to a population-based case–control study. The authors declare they have no competing financial interests.

Received 9 June 2003; accepted 4 November 2003.

Address correspondence to J.A. McElroy, University of Wisconsin Comprehensive Cancer Center, Room 307 WARF, 610 Walnut Street, Madison, WI 53726 USA. Telephone: (608) 265-8780. Fax: (608) 265-5330. E-mail: jamcelroy@wisc.edu

We thank L. Hanrahan, C. Jefcoate, and W. Sonzogni for advice; L. Stephenson of the Wisconsin Cancer Reporting System for assistance with data; and the Women’s Health Study staff for data collection and study management.

This study was supported by National Cancer Institute grants R01CA47147 and U01CA82004.
beginning in 1999, questions about fish-consumption behaviors were added to the ongoing case–control study. Subjects were asked about sport-caught fish in the following way: “How often did you eat sport-caught fish in [reference year minus 5] when you were [reference age minus 5].” This does not include purchased fish. “Was any of this sport-caught fish you ate in [reference year minus 5] when you were [reference age minus 5] from the Great Lakes? (Included are Lakes Michigan, Huron, Erie, Superior, and Ontario plus mouths of rivers feeding in the lakes. Also included are Green Bay and other parts of the lakes that have separate names.)” Participants who reported consumption of Great Lakes sport-caught fish were further asked, “How often did you eat lake trout and salmon (chinook or coho) that was sport-caught from the Great Lakes in [reference year minus 5] when you were [reference age minus 5].”

Population for analysis. Information on sport-caught fish consumption was potentially available for 1,499 cases and 3,138 controls interviewed after November 1999, when the interview was expanded to include questions regarding environmental exposures. We excluded 18 cases and 17 controls who were uncertain as to whether they ate sport-caught fish. Hence, 1,481 cases and 1,301 controls included in the analysis. The proportion of women who refused the telephone interview in this phase of the ongoing case–control study was similar to the overall study.

Analysis. We used odds ratios (ORs) and 95% confidence intervals (CIs) from logistic regression models to estimate relative risks (RR) of breast cancer (Breslow and Day 1980). A dichotomous variable described recent sport-caught fish consumption (none, any) and recent Great Lakes sport-caught fish consumption (none, any). Among recent sport-caught fish consumers and Great Lakes sport-caught fish consumers, we categorized the frequency (meals per year) of sport-caught fish consumption in approximate tertiles based on the distribution among controls and in separate models as a continuous linear term. For all sport-caught fish regression models, the reference category was defined as subjects who did not recently eat any sport-caught fish. Covariates in the models included known or suspected risk factors for breast cancer. Age was defined as age at the reference date (continuous). Family history of breast cancer was defined as having a mother, sister, or daughter who had breast cancer (absent, present, unknown). Recent alcohol consumption was the total number of drinks of beer, wine, and hard liquor consumed per week 5 years before the reference date (three categories). Parity was defined as the number of full-term pregnancies (defined as pregnancies of > 6 months gestation resulting in a live birth or stillbirth) (three categories). Postmenopausal status was assigned to women who reported having undergone natural menopause or a bilateral oophorectomy before the reference date. Women were also categorized as postmenopausal if they had a hysterectomy alone and were ≥ 55 years of age (equal to the 90th percentile of age at natural menopause among the controls). In cases of hysterectomy without

Characteristic	Cases No. (%)	Controls No. (%)	RR*	95% CI*
Age at reference date (years)				
< 40	105 (7.1)	103 (7.9)	1.00	
40–49	398 (26.9)	350 (26.9)	1.11	0.82–1.52
50–54	267 (18.0)	200 (15.4)	1.31	0.94–1.82
55–59	258 (17.4)	217 (16.7)	1.17	0.84–1.62
60–64	245 (16.5)	208 (16.0)	1.16	0.83–1.61
65–69	208 (14.0)	223 (17.1)	0.92	0.66–1.27
Family history of breast cancer				
Absent	1,161 (78.4)	1,121 (86.2)	1.00	
Present	310 (20.9)	171 (13.1)	1.76	1.43–2.15
Unknown	10 (0.7)	9 (0.7)	1.07	0.43–2.66
Recent alcohol consumption				
None	249 (16.8)	221 (17.0)	1.00	
1–6 drinks/week	1,041 (70.3)	945 (73.0)	0.97	0.80–1.19
≥ 7 drinks/week	189 (12.8)	131 (10.1)	1.28	0.96–1.71
Parity				
0	180 (12.2)	151 (11.6)	1.00	
1–2	642 (43.4)	511 (39.3)	1.06	0.83–1.35
≥ 3	658 (44.4)	638 (49.0)	0.85	0.66–1.09
Age at first full-term pregnancy (years)				
< 20	240 (16.2)	249 (19.1)	1.00	
20–24	622 (42.0)	592 (45.0)	1.09	0.88–1.34
25–29	304 (20.5)	211 (16.2)	1.50	1.17–1.93
≥ 30	132 (8.9)	97 (7.5)	1.43	1.04–1.97
Nulliparous	180 (12.2)	151 (11.6)	1.26	0.95–1.67
Lactation				
Nover	712 (54.8)	613 (53.4)	1.00	
1–23 months	259 (18.9)	238 (20.7)	0.93	0.76–1.15
> 24 months	329 (23.5)	298 (25.9)	0.94	0.78–1.14
Menopausal status				
Postmenopausal	838 (56.6)	757 (58.2)	1.00	
Premenopausal	577 (39.0)	490 (37.7)	1.16	0.91–1.47
Unknown	66 (4.5)	54 (4.2)	1.17	0.79–1.73
Age at menopause (years)*				
< 45	195 (23.3)	208 (27.5)	1.00	
45–49	190 (22.7)	170 (22.5)	1.19	0.89–1.58
50–54	236 (28.0)	225 (29.7)	1.13	0.86–1.47
≥ 55	97 (11.6)	88 (9.3)	1.55	1.07–2.25
Unknown	121 (14.3)	86 (11.4)	1.46	1.04–2.05
Age at menarche (years)				
< 12	325 (21.9)	250 (19.2)	1.00	
12	374 (25.3)	301 (23.1)	0.96	0.76–1.20
13	410 (27.7)	355 (27.3)	0.89	0.72–1.10
≥ 14	350 (23.6)	383 (29.4)	0.70	0.56–0.88
Unknown	22 (1.5)	12 (0.9)	1.41	0.68–2.90
Weight gain since age 18 (kg) in quintiles*				
< 5.0	121 (14.4)	147 (19.4)	1.00	
5.0–12.4	173 (20.6)	154 (20.3)	1.36	0.98–1.88
12.5–18.4	187 (22.3)	161 (21.3)	1.42	1.03–1.95
18.5–26.9	156 (19.6)	137 (18.1)	1.39	1.00–1.94
≥ 27.0	196 (22.9)	146 (19.4)	1.54	1.12–2.13
Unknown	15 (1.8)	12 (1.6)	1.53	0.70–3.39
Education				
< High school diploma	77 (5.2)	84 (6.5)	0.79	0.57–1.10
High school diploma	631 (42.6)	545 (41.9)	1.00	
Some college	395 (26.7)	366 (28.1)	0.93	0.78–1.12
College degree	372 (25.1)	302 (23.2)	1.07	0.88–1.29
Unknown	6 (0.4)	4 (0.3)	1.29	0.36–4.61

*Adjusted for age only. *Among parous women only. *Among postmenopausal women only.
bilateral oophorectomy, menopausal status was considered unknown if the woman’s reference age was < 55 years (three categories: premenopausal, postmenopausal, unknown). Age at first full-term pregnancy (five categories), lactation (three categories), age at menarche (five categories), weight gain in kilograms from age 18 to reference age (approximate quintiles based on the distribution among controls), age at menopause (five categories), weight in kilograms at age 18 (quartiles), and education (five categories) were also covariates in the model.

Because the majority of women in this study were white (96%), we did not adjust for race/ethnicity in the models. Tests for heterogeneity in the relative risk for recent consumption of sport-caught fish (none, any) according to other covariates were conducted by comparing the change in log likelihoods in models with and without cross-product terms.

Results

Women with breast cancer were more likely to have a later age at first full-term pregnancy, have a later age at menopause (postmenopausal women), have a family history of breast cancer, gain more weight in adult years (postmenopausal women), and have a younger age of menarche compared to similarly aged controls (Table 1).

A similar proportion of women with breast cancer reported recent sport-caught fish consumption (47%) compared to age-matched controls (48%) (Table 2). The multivariate relative risk of breast cancer for women who had recently eaten any sport-caught Great Lakes trout or salmon consumption was 1.06 (95% CI, 0.84–1.33) compared to women who had not eaten any sport-caught Great Lakes trout or salmon (RR = 1.00). No overall association between frequency of recent Great Lakes trout or salmon consumption and risk of breast cancer was observed (p-value for trend = 0.92).

We evaluated whether any of the covariates listed in Table 1 modified the association between fish consumption and breast cancer risk by menopausal status. Regression models for any recent sport-caught fish consumption showed that a positive association with breast cancer risk was perhaps limited to younger premenopausal women (< 40 years of age), although only 98 breast cancer cases were in this category (Table 3). The interaction between menopausal status and recent Great Lake sport-caught fish consumption was significant (p-value = 0.003). A positive association was also seen for premenopausal women who recently consumed Great Lakes sport-caught fish (RR = 1.70; 95% CI, 1.16–2.50). However, for postmenopausal women, the relative risk for recent Great Lake sport-caught fish consumption was 0.78 (95% CI, 0.57–1.07). Interactions between recent consumption of sport-caught fish and other covariates listed in Table 1 were not significant (data not shown).

Discussion

In our study we investigated the risk of breast cancer associated with self-reported consumption of sport-caught fish. For our population-based study, consumption of sport-caught or Great Lakes sport-caught fish was not significantly associated with breast cancer risk overall. There was a suggestion that the risk may be increased in younger or premenopausal women. Our confidence in the results is strengthened by the large sample size, high proportion of women participating in our study, validated method of assessment of sport-caught fish consumption, and information on individual-level risk factors.

To our knowledge, no study has specifically evaluated breast cancer risk in consumers of diets potentially high in PCBs, DDT/DDD, and PBDEs such as consumers of high amounts of sport-caught fish, anglers, families who operate charter fishing boats, or native populations, although several other health parameters, including fecundability (Buck et al. 2000; McGuinnes et al. 2001), birth size (Fein et al. 1984), puberty growth (Gladen et al. 2000), and cognitive functioning (Jacobson et al. 1990; Schantz et al. 2001), have been investigated in these adult subpopulations as well as in children.

Our study suggested an increased breast cancer risk for young (< 40 years of age) or premenopausal women who had recently consumed sport-caught fish. Although this observed association may be due to chance, one possible explanation for this interaction is the influence of PBDE exposure at time of puberty or during early reproductive life. Because the recorded level of PBDE has dramatically increased since the 1970s (Noren and Meironyte 2000), this age cohort would be the most likely group exposed to these higher levels at puberty—a potentially vulnerable time of changing hormones and breast tissue growth (Swerdlow et al. 2002) or during early reproductive life. She et al. (2002) reported a statistically significant inverse association with age and PBDE levels in adipose tissue of women diagnosed with breast cancer. Specifically, compared with women > 48 years of age (the median age), women < 48 years of age had significantly higher PBDE levels (41.1 ng/g fat and 138.8 ng/g fat, respectively).

Table 2. Multivariate relative risks of breast cancer according to recent consumption of sport-caught fish.

Cases No. (%)	Controls No. (%)	RR^a	95% CI^a	RR adjusted^b	95% CI adjusted^b	
Recent sport-caught fish consumption						
None	780 (52.7)	674 (52.1)	1.00	0.84–1.13	1.00	0.86–1.17
Any	701 (47.3)	624 (47.9)	0.98	0.80–1.22	1.05	0.83–1.35
Recent consumption (meals per year)						
1–3	255 (17.2)	214 (16.5)	1.03	0.84–1.26	1.05	0.85–1.30
4–23	244 (16.5)	215 (16.5)	0.98	0.80–1.22	1.01	0.82–1.26
≥ 24	202 (13.6)	195 (15.0)	0.90	0.72–1.12	0.94	0.75–1.18
			p = 0.21	p = 0.38		
Recent Great Lakes fish consumption						
Any	210 (14.2)	177 (13.6)	1.03	0.82–1.29	1.06	0.84–1.33
Recent consumption of Great Lakes trout or salmon						
Any	173 (11.5)	150 (11.6)	1.00	0.79–1.27	1.00	0.78–1.28
Recent consumption of Great Lakes trout or salmon (meals per year)						
1–2	97 (6.4)	70 (5.4)	1.18	0.85–1.63	1.19	0.85–1.66
3–6	34 (2.3)	41 (3.2)	0.72	0.45–1.15	0.71	0.44–1.15
≥ 7	44 (2.8)	39 (3.0)	0.98	0.63–1.52	0.98	0.62–1.54
			p = 0.87	p = 0.32		

^aAdjusted for age only. ^bAdjusted for age, family history of breast cancer, recent alcohol consumption, parity, age at first full-term pregnancy, lactation, menopausal status, age at menopause, weight at age 18, weight gain since age 18, age at menarche, and education. ^cReference category.
Another possible explanation lies in the findings that young women who are diagnosed with breast cancer have a more aggressive type of breast cancer than those diagnosed at a later age (Jmor et al. 2002; Lu et al. 2002). Demers et al. (2000) suggested that exposure to organochlorines was related to breast cancer aggressiveness and prognosis as indicated by axillary lymph node involvement and tumor size. Exposure to chemicals such as PBDE might play an important role in breast cancer progression for these younger women (Lai et al. 2002; Mintzer et al. 2002).

Although we were not able to evaluate genetic characteristics of the study population, an association between breast cancer and contaminated fish consumption may be limited to women with a specific genotype. Two studies reported an association between breast cancer risk and fish consumption as indicated by body burden of PCBs when women were stratified by cytochrome P450 A1 polymorphism (CYP1A1—MspI, the T-to-C transition at nucleotide 6235 (Laden et al. 2002) and CYP1A1—exon-7, the A-to-G transition at nucleotide 4889 (Moysich et al. 1999)). In Moysich et al.’s study, the odds ratio for participants with a high PCB body burden and breast cancer risk was 1.27 (95% CI, 0.76–2.14). However, for women with high PCB body burden and the CYP1A1 polymorphism, the odds ratio was 2.9 (95% CI, 1.18–7.45) (Moysich et al. 1999). Laden et al. (2002) reported similar results for an equivalent comparison to Moysich et al.’s subpopulation with the relative risk of 2.28 (95% CI, 1.03–5.04). In contrast to these two studies, results of evaluations of breast cancer risk and CYP1A1 polymorphism without additional information on PCB serum levels have been positive (Fontana et al. 1998; Goth-Goldstein et al. 2000; Huang et al. 1999a, 1999b; Krajnovic et al. 2001; Ishibe et al. 1998; Taioli et al. 1999) and negative (Bailey et al. 1998; Basham et al. 2001; Dialyna et al. 2001; Rebbeck et al. 1996).

Other studies of breast cancer have imputed the DDT/DDE and PCB levels directly from serum or adipose tissue, rather than indirectly from sport-caught fish consumption patterns, with positive (Aronson et al. 2000; Demers et al. 2002; Falk et al. 1992; Guttes et al. 1998; Hoyer et al. 2000; Liljegren et al. 1998; Millikan et al. 2000; Romieu et al. 2000; Wolff et al. 1993) and negative or null associations (Bagga et al. 2000; Demers et al. 2000; Dorgan et al. 1999; Helzlsouer et al. 1999; Holford et al. 2000; Hoyer et al. 1998; Krieger et al. 1994; Lopez-Carrillo et al. 1997; Mendonca et al. 1999; Schecter et al. 1997; Unger et al. 1984; Van’t Vear et al. 1997; Ward et al. 2000; Wolff et al. 2000; Zheng et al. 1999, 2000). Although individual results from these studies have not been consistent, accumulating evidence suggests that PCBs and DDT/DDE levels measured in serum or adipose tissue are not informative predictors of breast cancer in the general population. However, with regard to the subpopulation of sport-caught fish consumers, a lack of reported association does not necessarily signify that PCB, DDT, and PBDE exposure does not affect breast cancer risk because exposure to these chemicals can come from sources other than fish consumption. Further, fish contain potentially protective substances such as omega-3 fatty acids that may mask an adverse effect of halogenated organic compounds (Connor 2000).

Even though the epidemiologic studies mentioned above have reported inconsistent results, several lines of evidence support an investigation of a woman’s body burden of DDT/DDE, PCB, and PBDE congeners as it influences breast cancer risk. Of the possible 209 PBDE congeners, limited testing has occurred due to the unavailability of congener-specific standards (de Wit 2002). For those PBDE congeners tested, a few have shown estrogenic mimicking behavior (Meerts 2001). In addition, 36 of the 206 PCB congeners, technical DDT, and o,p’-DDE are considered environmental estrogens (Hansen 1998; Kimbrough 1995; Longnecker et al. 1997). In addition, exposure to PCBs and DDT has been linked with disrupting endocrine function, interfering with intracellular communication, carcinogenesis, and perturbing immune function (Brower et al. 1999; Longnecker et al. 1997; Thomas 1995; Tryphonas 1995). Limited studies have evaluated the toxicity of a few brominated flame retardants, including PBDE congeners. In toxicologic studies using animals, hepatotoxicity, embryotoxicity, and endocrine disruption effects have been described (Dannerud et al. 2001; McDonald 2002). In human breast cancer cells, Meerts et al. (2001) reported estrogenic potencies of PBDE congeners similar in potency to bisphenol A, a well-known environmental estrogen.

PCBs and DDT were banned from use in the United States in the 1970s. The level of PCBs in serum sampled from a general population of men and women in Michigan significantly declined from 1979 to 1989 (Humphrey et al. 2000); however, levels remained virtually unchanged in sport-caught fish consumers. In contrast, findings from a cohort of older participants (≥ 50 years of age in 1992) recently demonstrated that a reduction in current fish consumption was associated with a monotonic decline in PCB levels in blood serum (Tee 2003). Although self-reported fish consumption has substantially declined over time, sport-caught fish intake continues to be one of the key predictors of serum PCB levels (He et al. 2001; Humphrey et al. 2000; Tee 2003). Other studies have shown a decline in organochlorinated hydrocarbons in serum,
breast milk, or adipose tissue in various populations (Dallaire et al. 2002; Fitzgerald et al. 1999; Hovinga et al. 1992; Konishi et al. 2001; Noren and Meironyte 2000; Robinson et al. 1990; Smith 1999). According to Noren and Meironyte (2000), the level of organochlorine compounds in 1997 was approximately one-tenth of the 1972 level in breast milk from Swedish mothers living in the Stockholm region.

In contrast to the PCB and DDT use and contamination trends, use of brominated flame retardant (e.g., PBDE) has increased substantially (Thomsen et al. 2002). For example, in lake sediment core samples, PBDE was detected in the 1970s and has since increased exponentially (Dannerud et al. 2001). In comparing the mean concentration of three common congeners of PBDE, Lake Michigan had 5-fold more PBDE detected in fish tissue than any other North American freshwater fish tested (Luoss et al. 2002). Furthermore, Manchester-Nessvig et al. (2001) reported concentrations of PBDEs in salmon in open water of Lake Michigan as the highest in the world. In Sweden, the level of PBDEs in breast milk increased 60-fold from 1972 to 1997 (Noren and Meironyte 2000). In North America, preliminary data showed that levels of PBDE in women’s breast milk appeared to be doubling every 2–5 years (Bets 2002), and the general population of California had the highest reported levels of PBDE to date (She et al. 2002).

Several studies have reported continued angling and consumption of contaminated fish from local fishing spots in spite of advisories about contamination. In other studies, respondents reported incomplete or inaccurate information about the contamination of the fish and/or lack of trust in the organization issuing the advisory (Burger 1998; May and Burger 1996; Steenport et al. 2000; Tilden et al. 1997). Furthermore, risk perceptions are usually optimistically biased; individuals believe their own risk from a voluntary activity is less than someone else’s risk (Weinstein 1984). Consequently, fish-consumption behavior occurred regardless of the warnings about level of toxics bioaccumulating in the sport-caught fish.

The design of our study had potential limitations in determining exposure from consumption of PCBs, DDT+, and PBDE-contaminated sport-caught fish. In particular, recall of past fish-consumption patterns might not have been a valid method to assess body burden of PCBs, DDT, and PBDE. However, the reported fish-consumption levels in healthy populations as well as in case–control studies have consistently correlated with body burden of PCBs, DDT/DDD, and PBDEs as determined from serum, adipose tissue, or breast milk analysis (Anderson et al. 1998; Falk et al. 1999; Fein et al. 1984; Fiore et al. 1989; Fitzgerald et al. 1999; Gerstenberger et al. 2000; Hanrahan et al. 1999; Hovinga et al. 1993; Kiviranta et al. 2002; Kosatsky et al. 1999; Kostyniak et al. 1999; Kreiss et al. 1981; Ohta et al. 2002; Schantz et al. 2001; Schwartz et al. 1983; Stewart et al. 1999; Tee et al. 2003). In addition, selective recall for cases versus controls was perhaps limited because there is little social suspicion of fish consumption in relation to breast cancer risk. Our study questions did not collect comprehensive lifetime intake of potentially contaminated fish. Although we did obtain exposure information 5 years before diagnosis, we were not able to adjust for intake in earlier life periods. In addition, problems with recall past 5 years would probably limit collection of data from earlier time periods. This limitation would bias toward the null hypothesis. It is possible that other unmeasured risk factors may play a role in breast carcinoma.

In conclusion, this study does not provide evidence for a positive association between consumption of sport-caught or Great Lake sport-caught fish and breast cancer. However, there was a suggestion of an increased breast cancer risk for young or premenopausal women who were recent consumers of sport-caught fish. Attention to the health effects of PBDEs is warranted because of the apparent increase of this emerging contaminant in the environment and some food sources, in addition to indications that consumption patterns remain high despite warnings. Further, additional studies to evaluate environment–gene interactions will contribute to our understanding of breast cancer risk factors, especially those associated with vulnerable populations.

REFERENCES

Adami HO, Lipworth L, Titus-Ernstoff L, Hsieh CC, Hanberg A, Ahlborg U, et al. 1995. Organochlorine compounds and estrogen-related cancers in women. Cancer Causes Control 6:551–566.

Ahmed FE, ed. 1981. Seafood Safety. Washington, DC: National Academy Press.

Anderson HA, Falk C, Hanrahan L, Olson J, Burse VW, Hanrahan L, et al. 1998. Profiles of Great Lakes critical pollutants: a sentinel analysis of human blood and urine. The Great Lakes consortium. Environ Health Perspect 106:279–289.

Aronson JK, Pharoah PD, Healey CS, Luben RN, Day NE, McGarrigle K, et al. 1991. Seafood Safety. Washington, DC: National Academy Press.

Bailey LR, Roodi N, Verrier CS, Yee CJ, Dupont WD, Parl FF, Basham VM, Pharoah PD, Healey CS, Luben RN, Day NE, Easton DF, et al. 2001. Polymorphisms in CYPIA1 and smoking, with no association between breast cancer risk. Carcinogenesis 22:1797–1800.

Bets KS 2003. Rapidly rising PBDE levels in North America. Environ Sci Technol 36:50A–52A.

Breslow NE, Day NE. 1980. Statistical Methods in Cancer Research: The Analysis of Case-Control Studies. Lyon: International Agency for Research on Cancer.

Brouwer A, Longnecker MP, Birnbaum LS, Cogliano V, Moore J, et al. 1999. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 107(suppl 1):639–649.

Burke GM, Vena JE, Schisterman EF, Demchowki J, Mendola P, Sever LE, et al. 2000. Parental consumption of contaminated sport fish from Lake Ontario and predicted fecundibility. Epidemiology 11:388–393.

Burger J. 1998. Gender differences in attitudes about fish safety in a coastal population. J Toxicol Environ Health A 52:181–192.

Connor WE. 2000. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71 (Suppl):1715–17SS.

Dallaire F, Dewailly E, Laliberte C, Muckle G, Ayotte P. 2002. Temporal trends of organochlorine concentrations in umbilical cord blood of newborns from the northern shore of the St. Lawrence River (Quebec, Canada). Environ Health Perspect 110:835–838.

Darnerud PO, Eriksson GS, Johannesson T, Larsen PB, Vilalesa M. 2002. Polychlorinated diphenyl ethers: occurrence, dietary exposure, and toxicity. Environ Health Perspect 109(suppl 1):49–68.

de Boer J, Wester PG, Klamer NJ, Lewis WE, Boon JP. 1998. Do flame retardants threaten our health? J Occup Med 40:29–37.

de Wit CA. 2002. An overview of brominated flame retardants in the environment. Chemosphere 46:583–624.

Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E. 2002. Plasma concentrations of polychlorinated biphenyls and the risk of breast cancer: a congener-specific analysis. Am J Epidemiol 156:629–635.

Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E. 2000. Risk and aggressiveness of breast cancer in relation to plasma organochlorine concentrations. Cancer Epidemiol Biomarkers Prev 9:161–166.

Dialyn A, Arvanitis DA, Spandinos DA. 2001. Genetic polymorphisms and transcriptional pattern analysis of CYPIA1, AhR, GSTM1, GSTT1 and GSTP1 genes in breast cancer. Int J Mol Med 6:87–97.

Dorgan JF, Brock JW, Rothman N, Needham LL, Miller R, Stephenson HE Jr., et al. 1999. Serum organochlorine pesticides and PCBs and breast cancer risk: results from a prospective analysis. (USA). Cancer Causes Control 10:1–10.

Falk C Jr., Ricci A Jr, Wolff MG, Godbold J, Decker's P. 1992. Pesticides and polychlorinated biphenyl residues in human breast lipids and their relation to breast cancer. Arch Environ Health 47:143–146.

Falk C, Hanrahan L, Anderson HA, Kasbek MS, Draheim L, Needham LL, et al. 1999. Body burden levels of dioxin, furans, and PCBs among frequent consumers of Great Lakes sport fish. The Great Lakes Consortium. Environ Res 80:519–525.

Fein GS, Jacobson JR, Jacobson SW, Schwartz PM, Dowler JK. 1984. Prenatal exposure to polychlorinated biphenyls: effect on birth size and gestational age. J Pediatr 105:315–320.

Fiore BJ, Anderson HA, Hanrahan LP, Olsen LJ, Sonzogni WC. 1989. Sport fish consumption and body burden of chlorinated hydrocarbons: a study of Wisconsin anglers. Arch Environ Health 44:82–88.

Fitzgerald EF, Deres DA, Hwang SA, Bush B, Yang BZ, Tarbell A, et al. 1999. Local fish consumption and serum PCB concentrations among Mohawk men at Aleevassa. Environ Res 80:597–5103.

Fontana X, Peyrottes I, Rossi C, Leblanc-Talent P, Etotte F, Namer M, et al. 1998. Study of the frequencies of CYPIA1 gene polymorphisms and GSTM1 and GSTP1 null gene in primary breast cancers: an update with an additional 114 cases. Mutat Res 403:45–53.

Gerstenberger SL, Dellingar J, Hansen LG. 2000. Concentrations and frequencies of polychlorinated biphenyl congeners in a Native American population that consumes Great Lakes fish. J Toxicol Clin Toxicol 38:729–746.

Goldberg SE, Schuemer L, Korte F, et al. 2000. Bioconcentration potential of organic environmental chemicals in humans. Regul Toxicol Pharmacol 31:337–347.

Gladen BC, Roag NB, Roag WJ. 2000. Prenatal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J Pediatr 138:490–496.
Ishibe N, Hankinson SE, Colditz GA, Spiegelman D, Willett WC, Humphrey HEB, Gardiner JC, Pandya JR, Sweeney AM, Hoyer AP, Jorgensen T, Grandjean P, Hartvig HB. 2000. Repeated exposure to polycyclic aromatic hydrocarbons and the subsequent development of breast cancer. Cancer Epidemiol Biomarkers Prev 9:532–537.

Holford TR, Zheng T, Mayne ST, Ziesack M, Tsai BE, Boyle P. 2000. Joint effects of non-persistent polychlorinated biphenyl congeners on breast cancer risk. Int J Cancer 87:57–62.

Hovig E, Schipper BM, Aaberge F, Håggeby H, Helgerud J, Lindseth G, Mæhlum S. 2002. Historical changes in serum PCB and DDT levels in an environmentally exposed cohort. Arch Environ Contam Toxicol 43:381–388.

Humphrey HEB. 2002. Exposure to polybrominated diphenyl ethers and polybrominated biphenyls in serum of women consuming Great Lakes fish. Arch Environ Health 57:382–388.

Humphrey HE, Humphrey SJ, Eastman CM, French P, Maguire J, Collin J, Gorecki M, McLaughlin J, Ederer F, Wild C, Kato I. 2004. Serum (PFOS) levels and breast cancer risk in a case-control study from 1998–2000. Cancer Epidemiol Biomarkers Prev 13:1468–1473.

Humphrey HE, Ziegler RG, Hartge P, et al. 1994. Biochemical markers of exposure to polychlorinated biphenyls and polychlorinated dibenzofurans in human serum: a follow-up study. Cancer Causes Control 5:593–603.

Humphrey HE, Ziegler RG, Hartge P, et al. 1997. Organohalogen compounds in human breast milk from the 1970s to 1998 in Osaka, Japan. Arch Environ Contam Toxicol 34:571–577.

Husain A, Kothari S,引起性。Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.

Gottesfeld M, Stemberg MR, Ermda MN, Russell M. 2000. Interindividual variation in CYP1A1 expression in breast cancer tissue and the role of genetic polymorphism. Carcinogenesis 21:2119–2122.
breast cancer: a nested case-control study of Norwegian women. Cancer Epidemiol Biomarkers Prev 9:1357–1367.
Wenning RJ. 2002. Uncertainties and data needs in risk assessment of three commercial polybrominated diphenyl ethers: probabilistic exposure analysis and comparison with European Commission results. Chemosphere 46(5):779–796.
Weinstein ND. 1989. Optimistic biases about personal risks. Science 246:1232–1233.

Wolff MS, Collman GW, Barrett JC, Huff J. 1996. Breast cancer and environmental risk factors: epidemiological and experimental findings. Annu Rev Pharmacol Toxicol 36:573–596.
Wolff MS, Toniolo PG, Lee EW, Rivera M, Dubin N. 1993. Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst 85:648–652.
Wolff MS, Zeleniuch-Jacquotte A, Dubin N, Toniolo P. 2000. Risk of breast cancer and organochlorine exposure. Cancer Epidemiol Biomarkers Prev 9:271–277.
Zheng T, Holford TR, Mayne ST, Ward B, Carter D, Owens PH, et al. 1999. DDE and DDT in breast adipose tissue and risk of female breast cancer. Am J Epidemiol 150:453–458.
Zheng T, Holford TR, Tessari J, Mayne ST, Owens PH, Ward B, et al. 2000. Breast cancer risk associated with congeners of polychlorinated biphenyls. Am J Epidemiol 152:50–58.