The vector meson mass in the large \(N \) limit of QCD

A. Hietanen, R. Narayanan, R. Patel and C. Prays

Department of Physics, Florida International University, Miami, FL 33199.

Abstract

The vector meson mass is computed as a function of quark mass in the large \(N \) limit of QCD. We use continuum reduction and directly compute the vector meson propagator in momentum space. Quark momentum is inserted using the quenched momentum prescription.

Key words:
Large \(N \) QCD, Vector meson masses, Low energy constants

Meson masses remain finite in the ’t Hooft limit of large \(N \) QCD in four dimensions \cite{1}. Chiral symmetry is broken and the value of the chiral condensate has been measured on the lattice for overlap fermions using random matrix theory techniques \cite{2}. The result can be summarized as \cite{3}

\[
\frac{\Sigma(b)}{T_c^3(b)} = 0.828 \left[\ln \frac{0.268}{T_c(b)} \right]^{\frac{1}{11}}.
\]

(1)

where \(b = \frac{1}{g^2 N} \) is the bare ’t Hooft coupling on the lattice. The deconfining temperature, \(T_c(b) \), is also known from a lattice calculation \cite{4} and is given by

\[
b_I = b_c(b); \quad e(b) = \frac{1}{N} \langle \text{Tr} U_p(x) \rangle; \quad T_c(b) = 3.85 \left(\frac{48\pi^2 b_I}{11} \right)^{\frac{1}{11}} e^{-\frac{24\pi^2 b_I}{11}}.
\]

(2)

Continuum reduction holds if \(L > \frac{1}{T_c(b)} \) \cite{4} and meson propagators can be directly computed in Euclidean momentum space without any finite volume effects. The pion mass as a function of quark mass, \(m_o \), was computed on the lattice using overlap fermions and the pion decay constant is given by \cite{3}

\[
\frac{f_\pi}{\sqrt{NT_c(b)}} = 0.269.
\]

(3)

In this letter, we present results for the mass of the vector meson, \(m_\rho \), as a function of the quark mass, \(m_o \), using the same technique as the one used for the computation of the pion mass in \cite{3}. The \(\rho \) propagator is computed using

\[
M_{\mu\nu}(p, m_o) = \text{Tr} \left[S_{\gamma\mu} G(U_\mu e^{\frac{i p\cdot x}{m_o}}, m_o) S_{\gamma\nu} G(U_\mu e^{\frac{-i p\cdot x}{m_o}}, m_o) \right].
\]

(4)
• $G(U_\mu, m_\circ)$ is the lattice quark propagator computed using overlap fermions in a gauge field background given by U_μ.

• The phase factors, $e^{\pm ip_\mu \frac{2}{N_L}}$, multiplying the gauge fields correspond to the force-fed momentum of the two quarks in the quenched momentum prescription.

• The meson momentum was chosen to be

$$p_\mu = \begin{cases} 0 & \text{if } \mu = 1, 2, 3 \\ \frac{2\pi k}{N_L} & \text{if } \mu = 4. \end{cases}$$

(5)

• S smears the operator in the zero momentum directions using the inverse of the gauged Laplacian.

The ρ meson is made up of two different quarks (say u and d) with degenerate quark masses. Since the associated vector currents are conserved, the propagator, after averaging over gauge fields, will be of the form

$$M_{\mu\nu}(p, m_\circ) = A \left(\frac{p_\mu p_\nu - p^2 \delta_{\mu\nu}}{p^2 + m_\circ^2} \right),$$

(6)

assuming the propagator is dominated by the lowest vector meson state. Our numerical result is consistent with the above form. We found all off-diagonal ($\mu \neq \nu$) terms and the $\mu = \nu = 4$ term to be zero within errors for the specific choice of momentum in (5) and we also found the $\mu = \nu = 1, 2, 3$ terms to be the same within errors in our small test runs. Since the evaluation of the quark propagators is the computationally intensive part, we set $\mu = \nu = 1$ and obtained a value for the ρ meson mass at six different quark masses by fitting it to the form in (6).

Four different couplings were used in [3] for the computation of the meson masses. We found two of those couplings to be too strong for the computation of the ρ mass. We report here, the results for the ρ mass at two couplings, namely, $b = 0.355$ and $b = 0.360$. Chiral perturbation theory for vector mesons [5] suggests that we fit the data to the form

$$M_\rho = \tilde{M}_8 + \Lambda_2 M + \delta M_\rho,$$

(7)

where

$$M_\rho = \frac{m_\rho}{T_c(b)}; \quad M = \frac{2m_0\Sigma}{T_c^4(b)};$$

(8)

are the mass of the ρ meson and the renormalization group invariant quark mass measured in units of the deconfining temperature. The two coefficients

\footnote{\textit{M} denoted the sum of the two quark masses comprising the ρ meson and hence the factor of 2 in the formula for \textit{M}.}
Table 1: Simulation parameters, critical box size, bare chiral condensate along with the estimates for the two coefficients \bar{M}_8 and Λ_2 in the mass term of the chiral lagrangian.

L	N	b	$T_c(b)$	$\Sigma^{1/3}(b)$	\bar{M}_8	Λ_2
10	19	0.355	0.144	0.1265	5.39(54)	1.51(32)
11	17	0.360	0.125	0.1130	5.87(37)	1.76(20)

in (7) are two of the coefficients in the mass term in the chiral lagrangian, namely,

$$\bar{M}_8 = \frac{\bar{\mu}_8}{T_c(b)}; \quad \Lambda_2 = \frac{\lambda_2 T_c^3(b)}{\Sigma}.$$ \hfill (9)

The data is plotted in Fig. 1. The result for the chiral condensate in (11) was obtained such that the pion mass as a function of the quark mass scaled properly in the range of coupling from $b = 0.345$ to $b = 0.360$. It is not necessary that this eliminates finite lattice spacing effects on all quantities and we do see effects of finite lattice spacing effects in Fig. 1. A linear fit performs quite well at both the couplings to yield consistent estimates for \bar{M}_8 and Λ_2. The results are shown both in Fig. 1 and Table 1.

Chiral perturbation theory suggests that δM_ρ in (7) should lead off as $M^{3/2}$ and the coefficient of this leading term should be negative. A fit with a $M^{3/2}$ term is shown in Fig. 1 and we see that the coefficient at $b = 0.360$ is consistent
with it being negative. The error in this coefficient is rather large.

Using the result for \mathcal{M}_8 in Table 4 for $b = 0.360$ and the result for f_π in (3), we have

$$\bar{\mu}_8 = \frac{21.8 \pm 1.4}{\sqrt{N}} f_\pi. \quad (10)$$

If we use $f_\pi = 86$ MeV and $N = 3$, then we get $\bar{\mu}_8 = 1082 \pm 70$ MeV.

The vector meson masses have been computed in the quenched approximation for $N = 2, 3, 4, 6$ in [6, 7]. The couplings used in [6] and in [7] are roughly the same. The strongest and weakest coupling correspond to $b = 0.296$ and $b = 0.353$ respectively in the notation of this paper. There is a bulk transition on the lattice in the large N limit that becomes a cross-over at finite N. The region between $b = 0.34$ and $b = 0.36$ is in the meta-stable region of this transition [4] and we need to be above $b = 0.34$ to be in the continuum phase of the large N theory. Since the vector meson is heavy compared to the pion for small quark masses, finite lattice spacing effects are larger in the case of the vector meson. Our study at $b = 0.350$, not reported in this paper, does yield a value for \mathcal{M}_8 that is about 25% smaller than the one quoted here at $b = 0.360$ and consistent with the value obtained in [7].

Acknowledgments

A.H. and R.N. acknowledge partial support by the NSF under grant number PHY-055375. A.H. also acknowledges partial support by US Department of Energy grant under contract DE-FG02-01ER41172. R.N. would like to thank Joe Kiskis for some useful discussions.

References

[1] A. V. Manohar, in Les Houches 1997, Probing the standard model of particle interactions, Pt. 2 1091-1169, arXiv:hep-ph/9802419.
[2] R. Narayanan and H. Neuberger, Nucl. Phys. B 696, 107 (2004) arXiv:hep-lat/0405025.
[3] R. Narayanan and H. Neuberger, Phys. Lett. B 616, 76 (2005) arXiv:hep-lat/0503033.
[4] J. Kiskis, R. Narayanan and H. Neuberger, Phys. Lett. B 574, 65 (2003) arXiv:hep-lat/0308033.
[5] E. E. Jenkins, A. V. Manohar and M. B. Wise, Phys. Rev. Lett. 75, 2272 (1995) arXiv:hep-ph/9506356.
[6] L. Del Debbio, B. Lucini, A. Patella and C. Pica, JHEP 0803, 062 (2008) arXiv:0712.3036 [hep-th].
[7] G. S. Bali and F. Bursa, JHEP 0809, 110 (2008) arXiv:0806.2278 [hep-lat].