Hydrogen-Bonded Dimeric Capsules with Appended Spiropyran Units: Towards Controlled Cargo Release

Pedro Ferreira, Giulia Moncelsi, Gemma Aragay, and Pablo Ballester*
Contents

1. General information and instruments ... S2
2. Synthesis and characterization data ... S3
 2.1. Tetra-spiropyran tetra-urea calix[4]arene SP-C[4]A S3
 2.2. Tetra-spiropyran tetra-urea calix[4]pyrrole SP-C[4]P S5
 2.3. Tetramethylphosphonium tetakis(3,5-bis(trifluoromethyl)phenyl)borate S7
3. Spectral characterization of the photo- and acid-induced isomerization of all-SP-
 C[4]A and all-SP-C[4]P in DMSO ... S9
 3.1. Photoisomerization studies in DMSO .. S9
 3.2. Acid-induced isomerization studies in DMSO .. S11
4. Spectral characterization of the self-assembly of homo- and hetero-dimeric
 capsules in DCM ... S13
 4.1. Homo-dimeric assembly 4⊂(SP-C[4]A)2 ... S13
 4.2. Homo-dimeric assembly 5⊂(SP-C[4]P)2 ... S16
 4.3. Homo-dimeric assembly 6⊂(SP-C[4]P)2 ... S19
 4.4. Hetero-dimeric assembly 6⊂(SP-C[4]A·7) ... S21
 4.5. Hetero-dimeric assembly 6⊂(SP-C[4]P·8) ... S24
5. Spectral characterization of the photo- and acid-induced isomerization of the
 homo-dimeric assemblies in DCM ... S26
 5.1. Photoisomerization studies in DCM ... S26
 5.2. Acid-induced isomerization studies in DCM .. S29
1. General information and instruments

Solvents and reagents were of reagent grade quality and were obtained from commercial suppliers and used without further purification unless otherwise stated. Dry solvents were either obtained from commercial suppliers or taken from a solvent system MB SPS 800 and freshly distilled. Thin-layer chromatography (TLC) was performed with DC-Alufolen Kieselgel 60 F\textsubscript{254} (Merck) or neutral Al\textsubscript{2}O\textsubscript{3} F\textsubscript{254} (Sigma-Aldrich). Column chromatography was performed with silica gel 60 Å for chromatography (Sigma-Aldrich). Routine 1H and 13C NMR spectra were recorded on Bruker Avance 300 (300 MHz for 1H NMR), Avance 400 (400 MHz for 1H NMR) or Avance 500 (500 MHz for 1H NMR) ultra-shield spectrometers. Deuterated solvents from Eurisotop are indicated in the characterization and chemical shifts are reported in ppm. 1H NMR splitting patterns are designated as singlet (s), doublet (d), or triplet (t). Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). All NMR \textit{J} values are given in Hz. UV-Vis measurements were carried out on a Shimadzu UV-2401PC spectrophotometer equipped with a photomultiplier detector, double beam optics and D\textsubscript{2} and W light sources. The spectra were recorded in a quartz cuvette (10 mm path length). UV-Vis spectroscopy purity solvents from Merck were used.

HRMS measurements for SP-C4A were performed in an AutoFlex (Bruker Daltonics) MALDI-TOF-MS. HRMS measurements for SP-C4P were completed with a Water’s Synapt G2-S ion mobility time of flight mass spectrometer (Manchester, UK) equipped with a Z-spray electrospray ionisation source. A capillary voltage of 4.00 kV was used with the sample cone and source offset both set to 25 eV and 25 eV. A source temperature of 40°C and desolvation temperature of 30°C were used during measurements. Final sample concentration was 50µM in dichloromethane with 5% formic acid and was injected with a flow rate of 5µL/min.

Experimental details of the photo-induced isomerization experiments.

We prepared SP-C[4]A or SP-C[4]P solutions in the corresponding solvent (DMSO or DCM) and thermo-equilibrated them overnight in the dark at 30°C or 60°C, respectively, before starting the photo-isomerization experiments. Irradiation of the samples was performed using a high-power light source purchased from Sahllmann Photochemical Solutions and consisting of 3 LED-diodes from Nichia (365 nm, 241.5 mW·cm-2). Samples were irradiated inside the NMR tube or the UV-Vis cuvettes using a custom-made sample holder which located the sample at 1.5 cm distance from the power source (LED). Finally, the solutions were thermally equilibrated at 30°C or 60°C overnight in the dark to recover the starting spectra.

Experimental details of the acid/base-induced isomerization experiments.

Standard 150 mM solutions of triflic acid (TfOH) and freshly distilled triethylamine (Et\textsubscript{3}N) in the corresponding solvent of the experiment ((CH\textsubscript{3})\textsubscript{2}SO or CH\textsubscript{2}Cl\textsubscript{2} or their deuterated analogues) were used for the acid/base induced isomerization studies of the monomers and homo-dimers.
2. Synthesis and characterization data

2.1. Tetra-spiropyran tetra-urea calix[4]arene SP-C[4]A

![Chemdraw structure of the tetra-spiropyran tetra-urea calix[4]arene SP-C[4]A with the corresponding proton assignment.](image)

Figure S1. Chemdraw structure of the tetra-spiropyran tetra-urea calix[4]arene SP-C[4]A with the corresponding proton assignment.

Tetra-spiropyran tetra-urea calix[4]arene SP-C[4]A. 67% yield. \(R_t = 0.37 \) (CH\(_2\)Cl\(_2\):CH\(_3\)OH 99:1). m.p. = >230 °C (decompose). \(^1\)H NMR ((CD\(_3\))\(_2\)SO, 500 MHz) \(\delta \) (ppm): 8.11 (s, 4H); 8.09 (s, 4H); 7.22 (s, 4H); 7.08 (m, 4H); 7.06 (d, \(J = 7.8 \) Hz, 4H); 6.95 (d, \(J = 8.6 \) Hz, 4H); 6.93 (d, \(J = 10.2 \) Hz, 4H); 6.78 (s, 8H); 6.75 (m, 4H); 6.55 (d, \(J = 8.6 \) Hz, 4H); 6.52 (d, \(J = 7.8 \) Hz, 4H); 5.73 (d, \(J = 10.2 \) Hz, 4H); 4.32 (d, \(J = 12.0 \) Hz, 4H); 3.80 (s, 8H); 3.08 (d, \(J = 12.0 \) Hz, 4H); 2.61 (s, 12H); 1.90 (s, 8H); 1.38 (s, 16H); 1.18 (s, 8H); 1.06 (s, 8H); 0.93 (s, 12H). \(^1^C\) \(^1\)H NMR (CDCl\(_3\), 126 MHz) \(\delta \) (ppm): 152.6; 151.0; 148.9; 147.8; 136.3; 134.3; 133.5; 132.4; 129.4; 127.3; 121.3; 120.2; 119.7; 118.8; 118.4; 118.0; 117.0; 114.2; 106.7; 103.4; 74.8; 51.2; 30.7; 29.4; 28.5; 27.9; 25.6; 22.3; 19.8; 14.0. FT-IR \(\nu \) (cm\(^{-1}\)) = 3368 (urea N-H stretching); 2955 (C-H stretching); 1666, 1606, 1539, 1483 (aromatic C=C stretching). HRMS (MALDI/) \(m/z \): [M+H]\(^+\) Calcd. for C\(_{128}\)H\(_{141}\)N\(_{12}\)O\(_{12}\): 2038.0786; found: 2038.0759.

![\(^1\)H NMR ((CD\(_3\))\(_2\)SO, 500 MHz) spectrum of compound 2 mM solution of SP-C[4]A. * Residual solvent peaks. See Figure S1 for proton assignment.](image)

Figure S2. \(^1\)H NMR ((CD\(_3\))\(_2\)SO, 500 MHz) spectrum of compound 2 mM solution of SP-C[4]A. * Residual solvent peaks. See Figure S1 for proton assignment.
Figure S3. 13C NMR ((CD)$_3$SO, 126 MHz) spectrum of 2 mM solution of SP-C[4]A. * Residual solvent peaks.

Figure S4. Selected aromatic region of the 1H COSY NMR ((CD)$_3$SO, 500 MHz) spectrum of a 2 mM solution of SP-C[4]A. Relevant cross-peaks are highlighted.

Figure S5. Selected aromatic region of the 1H NOESY NMR ((CD)$_3$SO, 500 MHz) spectrum of a 2 mM solution of SP-C[4]A. Relevant cross peaks for proton assignment are highlighted.
Figure S6. a) Experimental and b) theoretical isotopic distributions for [M+H]^+ peak of SP-C[4]A. The exact mass for the monoisotopic peak in a) and b) is indicated.

2.2. Tetra-spiropyran tetra-urea calix[4]pyrrole SP-C[4]P

Figure S7. Molecular structure of tetra-spiropyran tetra-urea calix[4]pyrrole SP-C[4]P with the corresponding proton assignment.

Tetra-spiropyran tetra-urea calix[4]pyrrole SP-C[4]P: (47% yield), m.p. > 230 °C (decompose). ^1H NMR (400 MHz, (CD$_3$)$_2$SO, 298K): δ (ppm) = 9.56 (s, 4H); 8.50 (s, 4H); 8.347 (s, 4H); 7.30 (s, 12H); 7.05 (m, 8H); 6.99 (s, 4H); 6.84 (d, J=10.2 Hz, 4H); 6.73 (m, 4H); 6.54 (d, J=8.9 Hz, 4H); 6.50 (d, J=9.9 Hz, 4H); 5.94 (s, 8H); 5.67 (d, J=10.2 Hz, 4H); 2.58 (s, 12H); 1.77 (s, 12H); 1.61 (s, 12H); 1.03 (s, 12H). ^13C (^1H) NMR (CD$_3$)$_2$SO, 126 MHz) δ (ppm): 152.7; 149.1; 147.8; 143.4; 138.3; 136.3; 132.3; 129.0; 127.4; 127.2; 121.4; 120.5; 119.8; 118.5; 118.8; 117.9; 117.2; 114.3; 106.7; 104.7; 103.5; 51.2; 43.7; 31.3; 28.5; 25.7; 19.9. FT-IR ν (cm$^{-1}$) = 3370 (urea N-H stretching); 2975, 2868 (C-H stretching); 1682, 1539, 1485 (aromatic C=C stretching). HRMS (ESI+/+) m/z: [M+2H]^2+ Calc for (C$_{128}$H$_{122}$N$_{16}$O$_8$): 1005.4810; found: 1005.4821. [M+3H]^3+ Calc for (C$_{128}$H$_{123}$N$_{16}$O$_8$): 670.6565; found: 670.6587.
Figure S8. 1H-NMR ((CD$_3$)$_2$SO, 400 MHz) spectrum of SP-C[4]P. *Residual solvent peak. See Figure S7 for proton assignment.

Figure S9. 13C NMR ((CD$_3$)$_2$SO, 126 MHz) spectrum of SP-C[4]P.* Residual solvent peaks.

Figure S10. Selected aromatic region of the 1H COSY NMR ((CD$_3$)$_2$SO, 400 MHz) spectrum of SP-C[4]P. Relevant cross-peaks for proton assignment are highlighted.
2.3. Tetramethylphosphonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate

Tetramethylphosphonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate 4 BArF⁻ (Me₄P⁺BARF⁻): a solution of sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (Na⁺BARF⁻, 260 mg, 0.29 mmol, 1.2 equiv.) in 4 mL of anhydrous methanol was added dropwise to a 3 mL solution of tetramethylphosphonium chloride (31 mg, 0.24 mmol, 1 equiv.) in the same solvent under Ar atmosphere. The reaction was stirred at r.t. under Ar atmosphere. After 12 h the reaction was stopped. The solvent was evaporated under reduced pressure and the resulting solid was resuspended in 5 mL of water. The mixture was sonicated to generate a white suspension. The product was filtered off and washed several times with water, then dried under high vacuum to afford a white solid (156 mg, 67% yield). ¹H NMR (CD₂Cl₂, 400 MHz) δ (ppm): 7.72 (br, 8H); 7.57 (s, 4H); 1.86 (d, J_H-P = 14 Hz, 12H). ¹³C(¹H) NMR (CD₂Cl₂, 101 MHz) δ (ppm): 162.14 (q, J_B-C = 50 Hz); 135.21; 129.26 (q, J_C-F = 32 Hz); 126.36; 123.65; 117.91; 10.97 (d, J_C-P = 56 Hz). ³¹P(¹H, ¹³C) NMR (CD₂Cl₂, 162 MHz) δ (ppm): 25.76. ¹⁹F (¹³C) NMR (CD₂Cl₂, 376 MHz) δ (ppm): -62.89. ¹¹B(¹³C) NMR (CD₂Cl₂, 128 MHz) δ (ppm): -6.61.

Figure S12. ¹H NMR (CD₂Cl₂, 400 MHz) spectrum of Me₄P⁺BARF⁻ (4 BArF⁻). * Residual solvent peaks.
Figure S13. 13C(1H) NMR (CD$_2$Cl$_2$, 101 MHz) spectrum of Me$_4$P$^+$BARF$^-$ (4 BARF$^-$). * Residual solvent peaks.

Figure S14. 11B(13C) NMR (CD$_2$Cl$_2$, 128 MHz) spectrum of Me$_4$P$^+$BARF$^-$ (4 BARF$^-$).

Figure S15. 19F(13C) NMR (CD$_2$Cl$_2$, 376 MHz) spectrum of Me$_4$P$^+$BARF$^-$ (4 BARF$^-$).

Figure S16. 31P(1H, 13C) NMR (CD$_2$Cl$_2$, 162 MHz) spectrum of Me$_4$P$^+$BARF$^-$ (4 BARF$^-$).
3. Spectral characterization of the photo- and acid-induced isomerization of all-SP-C[4]A and all-SP-C[4]P in DMSO

3.1. Photoisomerization studies in DMSO

Figure S17. UV-Vis absorption spectra of a 20 µM (CH$_3$)$_2$SO solution of SP-C[4]A before (green line); after irradiation at 365 nm for 12 min (yellow line) and after 24h at 60ºC (red line).

Figure S18. 1H NMR ((CD$_3$)$_2$SO, 400MHz) spectra of a 2 mM thermo-equilibrated solution of SP-C[4]A before (a) and after irradiation at 365nm for b) 5, c) 10 min and d) after thermal equilibration. See Figure S1 for proton assignment.
Figure S19. UV-Vis absorption spectra of a 50 µM (CH₃)₂SO solution of SP-C[4]P before (green line); after irradiation at 365 nm for 14 min (orange line) and after 24h at 60°C (red line).

Figure S20. ¹H NMR ((CD₃)₂SO, 400MHz) spectra of a 1mM solution of SP-C[4]P light-irradiated at 365nm at a) 0 min; b) 10 min and c) thermal equilibration in the dark for 24h.
3.2. Acid-induced isomerization studies in DMSO

Figure S21. 1H NMR ((CD$_3$)$_2$SO, 400 MHz) spectra at 298 K of a 2 mM solution of SP-C[4]A before (a) and immediately after (b) the addition of 4 equiv. of TfOH (8 mM); c) 12h after the addition of TfOH; d) 72h after the addition of TfOH and e) after further addition of 4 equiv. of Et$_3$N (8 mM) to solution of spectrum (d).
Figure S22. UV-Vis absorption spectra of a 50 µM (CH₃)₂SO solution of SP-C[4]P. Black line – thermally equilibrated sample; grey line – upon addition of 4 equiv. of TfOH; green line – 24h after the addition of acid; blue line – light irradiation of the previous sample (green line species) at 365 nm for 30s; orange line – previous equilibrated sample in the dark for 24h and dotted grey line – upon addition of 4 equiv. of Et₃N.

Figure S23. ¹H NMR ((CD₃)₂SO, 400 MHz) spectra at 298 K of a 2 mM solution of SP-C[4]P before (a) and immediately after (b) the addition of 4 equiv. of TfOH (8 mM), c) 72h after the addition of TfOH and d) after further addition of 4 equiv. of Et₃N (4 mM) to solution of spectrum (c). See Figure S7 for proton assignment. * Residual solvent peaks.
4. Spectral characterization of the self-assembly of homo- and hetero-dimeric capsules in DCM

Figure S24. 1H NMR (CD$_2$Cl$_2$, 400 MHz) spectrum of a 2 mM solution of SP-C[4]A. * Residual solvent peaks.

Figure S25. 1H NMR (CD$_2$Cl$_2$, 400 MHz) spectrum of a 2 mM solution of SP-C[4]P. * Residual solvent peaks.

4.1. Homo-dimeric assembly 4⊂(SP-C[4]A)$_2$

Figure S26. Selected regions of 1H and 31P(1H, 13C) NMR (CD$_2$Cl$_2$, 400 MHz) spectra of a 2 mM solution of 4⊂(SP-C[4]A)$_2$. Primed letters correspond to proton signals assigned to the complex 4⊂(SP-C[4]A)$_2$. See Figure S1 for proton assignment. * Residual solvent peaks.
Figure S27. Selected downfield region of the 1H COSY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of 4c(SP-C[4]A)$_2$. Primed letters correspond to proton signals assigned to the homo-dimeric assembly 4c(SP-C[4]A)$_2$. See Figure S7 for proton assignment.

Figure S28. Selected upfield region of the 1H COSY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of 4c(SP-C[4]A)$_2$. Primed letters correspond to proton signals assigned to the homo-dimeric assembly 4c(SP-C[4]A)$_2$. See Figure S7 for proton assignment.
Figure S29. Selected downfield region of the 1H ROESY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of 2 mM solution of 4⊂(SP-C[4]A)$_2$. Primed letters correspond to proton signals assigned to the complex 4⊂(SP-C[4]A)$_2$. See Figure S1 for proton assignment.

Figure S30. (left) 1H pseudo 2D-plot DOSY (400 MHz, (CD$_2$Cl$_2$, 298 K, d20 = 0.10 s; p30 = 2.0 ms) of a 2 mM solution of 4⊂(SP-C[4]A)$_2$; (right) fit of the decay of proton Hb' to a mono-exponential function using Dynamics Center software from Bruker. Errors are indicated as standard deviation. Primed letters correspond to proton signals assigned to the 4⊂(SP-C[4]A)$_2$.
Figure S31. MM3 energy minimized structure of \(4c(SP-C[4]A)_{2}\). The host is depicted in stick representation and the encapsulated guest Me\(_4\)P\(^+\) as CPK model. Non-polar hydrogen atoms were removed for clarity. The green sphere defines the volume of a sphere having the hydrodynamic radius \(r_H\) calculated from the experimental diffusion coefficient \(D\) (Stokes-Einstein equation) (see previous figure), 10.34 ± 0.80 Å.

4.2. Homo-dimeric assembly \(5c(SP-C[4]P)_{2}\)

Figure S32. \(^1\)H NMR (CD\(_2\)Cl\(_2\), 400 MHz) spectra of a 4 mM solution of SP-C[4]P and 0.7 equiv. of 4,4’-bipyridine-N,N’-dioxide 5. Primed letters correspond to proton signals assigned to complex \(5c(SP-C[4]P)_{2}\). Non-primed letters correspond to proton signals of the free guest 5 in solution. See Figure S7 for proton assignment. * Residual solvent peaks.
Figure S33. Selected downfield region of the 1H COSY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) a 4 mM solution of SP-C[4]P and 0.7 equiv. of 4,4’-bipyridine-N,N'-dioxide 5. Primed letters correspond to proton signals assigned to complex $5c$(SP-C[4]P)$_2$. Non-primed letters correspond to proton signals of the free guest 5 in solution See Figure S7 for proton assignment. * Residual solvent peaks.

Figure S34. 1H ROESY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) a 4 mM solution of SP-C[4]P and 0.7 equiv. of 4,4’-bipyridine-N,N'-dioxide 5. Primed letters correspond to proton signals assigned to complex $5c$(SP-C[4]P)$_2$. Non-primed letters correspond to proton signals of the free guest 5 in solution See Figure S7 for proton assignment. * Residual solvent peaks.
Figure S35. (left) 1H pseudo 2D-plot DOSY (500 MHz, (CD$_2$Cl$_2$, 298 K, d$_{20}$ = 0.10 s; p$_{30}$ = 2.0 ms) 4 mM solution of SP-C[4]P and 0.7 equiv. of 4,4'-bipyridine-N,N'-dioxide 5. Primed letters correspond to proton signals assigned to complex 5⊂(SP-C[4]P)$_2$. (right) fit of the decay of signal Hr$'$ to a mono-exponential function using Dynamics Center software from Bruker. Errors are indicated as standard deviations. See Figure S7 for proton assignment. * Solvent residual peaks.

Figure S36. MM3 energy minimized structure of 5⊂(SP-C[4]P)$_2$. The host is depicted in stick representation and the encapsulated guest 5 as CPK model. Non-polar hydrogen atoms were removed for clarity. The green sphere defines the volume of a sphere having the hydrodynamic radius r$_H$ calculated from the experimental diffusion coefficient D (Stokes-Einstein equation) (see previous figure), 11.79 ± 0.10 Å.
4.3. Homo-dimeric assembly $6_2\subset(\text{SP-C[4]P})_2$

Figure S37. ^1H NMR (CD$_2$Cl$_2$, 400 MHz) spectra of a 4 mM solution of SP-C[4]P + 1 equiv. of trimethyl ammonium N-oxide 6 ($6_2\subset(\text{SP-C[4]P})_2$). Primed letters correspond to proton signals assigned to the encapsulation complex $6_2\subset(\text{SP-C[4]P})_2$. See Figure S7 for proton assignment. * Residual solvent peaks.

Figure S38. Selected downfield region of the ^1H COSY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of $6_2\subset(\text{SP-C[4]P})_2$. Primed letters correspond to proton signals assigned to the homo-dimeric assembly $6_2\subset(\text{SP-C[4]P})_2$. See Figure S7 for proton assignment. * Residual solvent peaks.
Figure S39. 1H ROESY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of 6$_2$(SP−C[4]P)$_2$. Primed letters correspond to proton signals assigned to the homo-dimeric assembly 6$_2$(SP−C[4]P)$_2$. See Figure S7 for proton assignment. * Residual solvent peaks.

Figure S40. (left) 1H pseudo 2D-plot DOSY (400 MHz, (CD$_2$Cl$_2$, 298 K, D20 = 0.10 s; P30 = 2.0 ms) a 2 mM solution of 6$_2$(SP−C[4]P)$_2$. Primed letters correspond to proton signals assigned to complex 6$_2$(SP−C[4]P)$_2$. (right) fit of the decay of signal Hh' to a mono-exponential function using Dynamics Center software from Bruker. Errors are indicated as standard deviations. See Figure S7 for proton assignment. * Solvent residual peaks.
Figure S41. MM3 energy minimized structure of $6\subset$(SP-C[4]P)$_2$. The host is depicted in stick representation and the encapsulated guest Me$_3$NO 6 as CPK model. Non-polar hydrogen atoms were removed for clarity. The green sphere defines the volume of a sphere having the hydrodynamic radius r_H calculated from the experimental diffusion coefficient D (Stokes-Einstein equation) (see previous figure), 14.44 ± 1.20 Å.

4.4. Hetero-dimeric assembly $6\subset$(SP-C[4]A·7)

![Diagram of hetero-dimeric assembly](image)

Figure S42. Molecular structure of tetra-urea calix[4]pyrrole 7 with the corresponding proton assignment.

Figure S43. 1H NMR (CD$_2$Cl$_2$, 400 MHz) spectra of 2 mM solution of SP-C[4]A, C[4]P 7 and guest 6 (1:1:1 molar ratio). Double primed letters and numbers correspond to proton signals assigned to the hetero-dimeric complex $6\subset$(SP-C[4]A·7). See Figure S1 and Figure S42 for proton assignments.
Figure S44. Selected downfield region of the 1H COSY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of 6c(SP-C[4]A·7). Double primed letters and numbers correspond to proton signals assigned to the hetero-dimeric complex 6c(SP-C[4]A·7). See Figure S1 and Figure S42 for proton assignment.

Figure S45. Selected downfield region of the 1H NOESY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of 6c(SP-C[4]A·7). Double primed letters and numbers correspond to proton signals assigned to the hetero-dimeric complex 6c(SP-C[4]A·7). See Figure S1 and Figure S42 for proton assignment.
Figure S46. (left) 1H pseudo 2D-plot DOSY (500 MHz, CD$_2$Cl$_2$, 298 K, d20 = 0.10 s; p30 = 2.0 ms) of a 2 mM solution of complex 6⊂(SP-C[4]A∙7). Doubled primed letters and numbers correspond to proton signals assigned to complex 6⊂(SP-C[4]A∙7). (right) fit of the decay of signal H2" to a mono-exponential function using Dynamics Center software from Bruker. Errors are indicated as standard deviations. See Figure S1 and Figure S42 for proton assignments. * Solvent residual peaks.

Figure S47. MM3 energy minimized structure of 6⊂(SP-C[4]A∙7). One molecule of CH$_2$Cl$_2$ was co-included in the cavity with guest 6. The hosts are depicted in stick representation and the encapsulated guests Me$_3$NO 6 and DCM as CPK model. The alkyl chains of 7 were pruned to methoxy groups and non-polar hydrogen atoms were removed for clarity. The green sphere defines the volume of a sphere having the hydrodynamic radius r_H calculated from the experimental diffusion coefficient D (Stokes-Einstein equation) (see previous figure), 11.01 ± 1.28 Å.
4.5. Hetero-dimeric assembly $6c(\text{SP-C}[4]\text{P}\cdot 8)$

![Chemical structure image](image)

Figure S48. Line drawing structure of tetra-urea calix[4]arene 8 with the corresponding proton assignment.

![NMR spectrum image](image)

Figure S49. Selected downfield region of the 1H COSY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of $6c(\text{SP-C}[4]\text{P}\cdot 8)$. Double primed letters and numbers correspond to proton signals assigned to the hetero-capsular assembly $6c(\text{SP-C}[4]\text{P}\cdot 8)$. See **Figure S7** and **Figure S48** for proton assignment. * Residual solvent peaks.
Figure S50. Selected downfield region of the 1H ROESY NMR spectrum (CD$_2$Cl$_2$, 400 MHz) of a 2 mM solution of 6c(SP-C[4]P·8). Double primed letters and numbers correspond to proton signals assigned to complex 6c(SP-C[4]P·8). See Figure S7 and Figure S48 for proton assignment. * Residual solvent peaks.

Figure S51. (left) 1H pseudo 2D-plot DOSY (400 MHz, (CD$_2$Cl$_2$, 298 K, D20 = 0.10 s; P30 = 2.0 ms) of a 2 mM solution of 6c(SP-C[4]P·8). Double primed letters and numbers correspond to proton signals assigned to complex 6c(SP-C[4]P·8). (right) fit of the decay of the signal r'' to a mono-exponential function using Dynamics Center software from Bruker. Errors are indicated as standard deviations. See Figure S7 and Figure S48 for proton assignment. * Residual solvent peaks.
Figure S52. MM3 energy minimized structure of $6 \subset (\text{SP-C}[4]\text{P})_8$. One molecule of CH$_2Cl_2$ was co-included in the cavity with guest 6. The hosts are depicted in stick representation and the encapsulated guests Me$_3$NO and CH$_2$Cl$_2$ as CPK models. Non-polar hydrogen atoms were removed for clarity. The green sphere defines the volume of a sphere having the hydrodynamic radius r_H calculated from the experimental diffusion coefficient D (Stokes-Einstein equation) (see previous figure), 12.54 ± 0.05 Å.

5. Spectral characterization of the photo- and acid-induced isomerization of the homo-dimeric assemblies in DCM.

5.1. Photoisomerization studies in DCM

Figure S53. Set of UV-Vis spectra of a 50 μM solution of homo-dimeric assembly $6_2 \subset (\text{SP-C}[4]\text{P})_2$ in CH$_2$Cl$_2$ at different times of irradiation at 365 nm.
Figure S54. Set of UV-Vis spectra of a 50 µM solution of homo-dimeric assembly \(4c(\text{SP-C}[4]P)_{2}\) in CH$_2$Cl$_2$ at different times of irradiation at 365 nm.

Figure S55. 1H NMR (CD$_2$Cl$_2$, 400 MHz) spectra of a 2 mM solution of homo-dimeric assembly $4c(\text{SP-C}[4]A)_{2}$ thermally-equilibrated (a) and after irradiation at 365 nm for b) 1 and c) 5 min. Primed letters correspond to proton signals assigned to the homo-dimeric assembly $4c(\text{SP-C}[4]A)_{2}$. See Figure S1 for proton assignment. * Residual solvent peaks.
Figure S56. 1H NMR (CD$_2$Cl$_2$, 400 MHz) spectra of a 2 mM solution of homo-dimeric assembly 5c-(SP-C[4]P)$_2$ thermally-equilibrated (a) and after irradiation at 365 nm for b) 1 and c) 5 min. Primed letters correspond to proton signals assigned to the homo-dimeric assembly 5c-(SP-C[4]P)$_2$. See Figure S1 for proton assignment. * Residual solvent peaks.
5.2. Acid-induced isomerization studies in DCM

Figure S 57. 1H NMR spectra (400 MHz, CD$_2$Cl$_2$, 298 K) of a 2 mM solution of 4c-(SP-C[4]A)$_2$ thermally-equilibrated (a) and b) immediately after the addition of 8 equiv. of TfOH (16 mM); c) 24h after the addition of 8 equiv. of TfOH (16 mM); d) immediately after the addition of 8 equiv. of Et$_3$N (16 mM) to solution of spectrum (c). Primed letters and numbers correspond to proton signals of 4c-(SP-C[4]A)$_2$. See Figure S1 for proton assignment.

Figure S58. 1H NMR spectra (400 MHz, CD$_2$Cl$_2$, 298 K) of a 2 mM solution of 4c-(SP-C[4]A)$_2$ thermally-equilibrated (a) and b) 24h after the addition of 8 equiv. of TfOH (16 mM); c) solution of spectrum (b) + 50 µL of (CD$_3$)$_2$SO and d) solution of spectrum (c) after the addition of 8 equiv. of Et$_3$N (16 mM). Non-primed letters corresponding to all-SP-C[4]A monomeric species. Primed letters and numbers correspond to proton signals of 4c-(SP-C[4]A)$_2$. *Signals attributed to the monomeric E-MCH$^+$-C[4]A species. See Figure S1 for proton assignment. * Residual solvent peaks.
Figure S59. Selected region of the 1H NMR (400 MHz, CD$_2$Cl$_2$, 298 K) spectra of a 2 mM solution of a) 5c-(SP-[C4]P)$_2$; b) 5c-(SP-[C4]P)$_2$ 24 h after the addition of 8 equiv. of TfOH (16 mM) and c) after the addition of 8 equiv. of Et$_3$N (16 mM). Primed letters correspond to proton signals of 5c-(SP-[C4]P)$_2$. Double primed letters correspond to proton signals of the putative 1:1 complex 5c-(SP-[C4]P). See Figure S1 for proton assignment.