L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum

Gregory Porras1,2,3, Philippe De Deurwaerdere1,2, Qin Li3,4, Matteo Marti5, Rudolf Morgenstern6, Reinhard Sohr6, Erwan Bezard1,2,3,4,7, Michele Morari8 & Wassilios G. Meissner1,2,7,9

1Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France, 2CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France, 3Motac neuroscience, Manchester, UK, 4Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, China, 5Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy, 6Institute of Pharmacology and Toxicology, Charité Campus Mitte, Humboldt University, 10117 Berlin, Germany, 7Service de Neurologie, Centre Expert Parkinson, CHU de Bordeaux, 33076 Bordeaux, France, 8Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy, 9Centre de référence AMS, CHU de Bordeaux, 33076 Bordeaux, France.

L-dopa remains the mainstay treatment for Parkinson’s disease (PD), although in later stages, treatment is complicated by L-dopa-induced dyskinesias (LID). Current evidence links LID to excessive striatal L-dopa-derived dopamine (DA) release, while the possibility of a direct involvement of L-dopa itself in LID has been largely ignored. Here we show that L-dopa can alter basal ganglia activity and produce LID without enhancing striatal DA release in parkinsonian non-human primates. These data may have therapeutic implications for the management of advanced PD since they suggest that LID could result from diverse mechanisms of action of L-dopa.

Results

Systemic administration of L-dopa + benzerazide (BZD) in 8 MPTP-treated macaque, monkeys previously made dyskinetic, significantly increased plasma (t = 20 min: P = 0.002; t = 60 min: P = 0.003; t = 100 min: P = 0.005; t = 140 min: P = 0.05; t = 180 min: P = 0.11, n = 4, Fig. 1A) and striatal L-dopa levels (chi² = 24.2, df = 9, P = 0.004, n = 8, Fig. 1B). Since area under curves (AUCs) of striatal L-dopa levels were not different after oral (n = 4) or intravenous (n = 4) administration (P = 0.42, Fig. 1B, inset), data from the two groups were pooled for further analysis.

Administration of L-dopa did not alter extracellular levels of DA (chi² = 11.9, df = 9, P = 0.22). This surprising result was first obtained in four monkeys receiving L-dopa + BZD orally (chi² = 8.3, df = 9, P = 0.50) and confirmed in four more animals after intravenous L-dopa + BZD (chi² = 14.3, df = 9, P = 0.11) for excluding anesthesia-related reduced drug absorption. In the same animals, L-dopa + BZD administration significantly decreased extracellular levels of thalamic GABA from 112 ± 36 nM at baseline to 37 ± 14 nM at three hours after
disease patients with advanced disease and motor fluctuations. Data are shown as mean concentration (in nM) ± s.e.m. *P < 0.05 vs. baseline. (B) Time course of dialysate concentrations of DA and L-dopa in the striatum and GABA in the thalamus after L-dopa + BZD administration (time 0). Data correspond to the mean concentration ± s.e.m. of the dialysate content expressed in nM and result from the combination of data from two modalities of L-dopa + BZD administration (2.5 mg/kg i.v., n = 4 or 20 mg/kg p.o., n = 4). The inset reports the overall increase in extracellular L-dopa levels of each administration modality over the observation period of three hours. *P < 0.05 vs. baseline. (C) Time course of the striatal application of benserazide (BZD, 100 µM), L-dopa + BZD (100 µM each) or DA (10 µM) on DA and DOPAC extracellular levels. Drugs were applied using reverse microdialysis. The period of infusion, initially scheduled to last 40 minutes, was stopped after the first signs of dyskinesia, in order to avoid persistent and long term dyskinesia (dyskinesia duration corresponds to black bars). DA was subsequently applied after a recovery period using the same criteria. The inset provides a magnification of extracellular DA concentrations. Dialysate contents are expressed as mean concentration (in nM) ± s.e.m (n = 2). *P = 0.09 and 0.06 vs t = 20 min. *P = 0.09 and 0.06 vs t = 100 min. *P < 0.05 vs. t = 100 min. aCSF = artificial cerebrospinal fluid.

In two awake parkinsonian macaques in which motor behavior was concomitantly blindly rated by trained observers, reverse dialysis of BZD alone (100 µM) in striatum did not induce LID and did not modify striatal levels of DA (P = 0.23, Fig. 1C) or DOPAC (P = 0.19). In contrast, equimolar concentrations of L-dopa + BZD (100 µM each) induced LID in the two awake MPTP-treated monkeys (Fig. 1C). The effect on behavior was paralleled by a trend for a decrease in extracellular levels of the direct DA metabolite DOPAC (t = 60 min: P = 0.087; t = 80 min: P = 0.061). A trend for increased extracellular levels of DA was observed but without reaching significance (t = 60 min: P = 0.20; t = 80 min: P = 0.18, Fig. 1C, inset). According to observed effect size and standard deviation, the assessment of thirteen hemispheres would have been needed for reaching the threshold of significance with a power of 80%. No significant changes were observed for 3-methoxytyramine (3-MT) (t = 60 min: P = 1.0; t = 80 min: P = 0.37), the second direct metabolite of DA. Striatal infusion of DA (10 µM) also induced LID (Fig. 1C). The effect was paralleled by a trend for increased extracellular levels of DOPAC that became significant at the last sample (t = 120 min: P = 0.087; t = 140 min: P = 0.055; t = 160 min: P = 0.022; Fig. 1C) as expected from the literature. Simultaneously, an increase of 3-MT levels was observed (t = 120 min: P = 0.19; t = 140 min: P = 0.042; t = 160 min: P = 0.030). This experiment demonstrates that both L-dopa (without production of DA) and DA infusions lead to dyskinesia in awake monkeys suggesting different mechanisms of action for the same outcome.

Discussion

The present data demonstrate that L-dopa can elicit LID independently of a significant raise in striatal DA release, suggesting that LID could result from hitherto unexplored mechanisms of action of L-dopa. Since the two awake animals presented peak-dose dyskinesia, i.e. the condition where parkinsonian motor signs are best attenuated, the data support the concept that L-dopa may have antiparkinsonian effects independent of DA, at least in very advanced disease where DA levels are extremely low if existent. Puzzlingly, L-dopa did not enhance extracellular DA levels in the striatum of MPTP-treated monkeys bearing an almost complete lesion of nigro-striatal DA neurons. It is unlikely that anesthesia had suppressed the ability of L-dopa to enhance DA release as L-dopa...
dose-dependently enhances striatal DA release in rats, whatever the dose or the nature of the anesthetic. The use of two different routes of administration for L-dopa excludes pharmacokinetic concerns that may apply when using a single modality of administration. This is substantiated by increased extracellular L-dopa levels in the striatum whatever the modality of administration (inset Fig. 1B). Finally, peak L-dopa plasma concentrations measured here correspond to morning L-dopa dosages in PD patients with advanced disease and motor fluctuations.

L-dopa had functional effects within the motor loop. Indeed, L-dopa administration decreased extracellular levels of GABA in the thalamus, an in vivo index of the activity of the pallido-thalamic GABAeric pathway. A strong decrease in the activity of GABAergic neurons in the internal pallidum is considered as a marker of hyperkinetic movements, and this is compatible with severe LID presented by all animals before the experiment.

The conversion of L-dopa to DA in catecholamine neurons requires AADC. Striatal AADC protein levels are decreased by 70% in 6-hydroxypdopamine (6-OHDA)-lesioned rats. In MPTP-treated squirrel monkeys, the number of AADC immunoreactive fibers and terminals in the putamen is reduced by 36% and AADC activity by 64%. Chronic administration of L-dopa increases striatal AADC levels in 6-OHDA-lesioned rats to 100–120% of naive animals, irrespective of their dyskinetic profile, while tyrosine hydroxylase (TH) levels are unchanged. By contrast, putaminal expression of AADC and TH are not modified by chronic L-dopa treatment in MPTP-treated squirrel monkeys. These observations may explain in part the discrepancy between the excessive L-dopa-induced increase of extracellular striatal DA in 6-OHDA rats and the lack of a significant effect in MPTP-treated non-human primates in the present study. In PD patients, putaminal AADC activity is decreased to 10% of control values, while L-dopa treatment seems not to have a significant effect on AADC activity as suggested by the results of a post-mortem study.

Although we did not evaluate the integrity of serotonergic (5-HT) neurons in the present study, the main neurochemical system involved in L-dopa-induced DA release in advanced PD, the lack of a DA response following L-dopa administration is consistent with low 5-HT activity imposed by our experimental conditions. Indeed, MPTP treatment in non-human primates reduces 5-HT levels in various brain regions, while chronic L-dopa administration in rodents and monkeys alters 5-HT neuron function and reduces L-dopa-induced DA release. The remaining dyskinesia after removing the serotonergic innervation in L-dopa-treated parkinsonian rats, a situation in which no L-dopa-induced DA release is observed, is also in line with our study while the primate model might be more sensitive to this intriguing mechanism.

Our data in primates suggest the existence of another mechanism of LID. Indeed, in awake MPTP-treated non-human primates, dyskinetic movements were elicited by striatal administration of both DA and L-dopa with BZD, the latter in the absence of any changes in DA release (Fig. 1C). It remains to be determined whether the effect of L-dopa involves a specific action on one striatal target or intracerebral effects affecting the transmission of a neurotransmitter system. Earlier reports have shown in rat models of PD that L-dopa itself can mediate an antiparkinsonian action. Interestingly such L-dopa-mediated antiparkinsonian effects were significantly reduced by the alpha(2C) antagonist rauwolscine and the 5-HT(2C) agonist MK212 but not by the D2 dopamine receptor antagonist remoxipride or the D1 dopamine receptor antagonist SCH23390, suggesting that non-DA binding sites might be responsible for the generation of at least some L-dopa actions in this reserpine-treated rat model. The pro-dyskinetic action of L-dopa was however not found in the 6-OHDA rat model as it was soley attributed to its conversion into DA. The opposite finding is however undisputedly shown in the present experimental setting in the MPTP-lesioned macaque. This discrepancy may account for the differential sensitivity of rodents versus primates to DA depletion, the more complex behavior of primates as well as the shared brain anatomy between macaques and humans which renders the present analysis more clinically relevant.

Our data may have important implications for the management of advanced PD. Strategies aimed at lowering striatal DA tone such as 5-HT(1A) receptor agonists that are currently being developed for the treatment of LID may be successful in PD as long as a sufficient number of 5-HT neurons is preserved. These strategies may not be pertinent in very advanced disease due to progressive loss of these neurons and where LID may thus more relate to direct effects of L-dopa than of DA. Other targets should therefore be studied including glutamatergic and adrenergic pathways to better understand the mechanisms of LID that occur independently from excessive DA release.

Methods

Animals. Nine *Macaca mulatta* (5 males and 4 females, Xierxin, China) were housed under controlled conditions of humidity, temperature, and light (12 h light/12 h dark cycles, 22 ± 2 °C, at 800 am); food and water were available ad libitum. Animals were carried out in accordance with European Communities Council Directive of 3 June 2010 (2010/61/EU) for care of laboratory animals in an AAALAC-accredited facility following acceptance of study design by the Institute of Lab Animal Science Institutional Animal Care and Use Committee (Chinese Academy of Science, Beijing, China). Parkinsonian animals were induced and assessed as previously described in accordance with the latest guidelines. Briefly, macaques received daily i.v. injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride (0.2 mg/kg) until they displayed parkinsonian symptoms. Once symptoms had stabilized, macaques were treated p.o. with Modopar (L-dopa/benserazide, ratio 4:1) for 6 months at doses (15–20 mg/kg b.i.d.) individually adjusted to fully reverse parkinsonian symptoms. Both parkinsonian symptoms and dyskinesia severity were rated when animals were awake as previously described. Median parkinsonian scores were 6.0 ± 1.3 in OFF condition and 0.0 ± 0.3 after L-dopa administration (the maximum disability score is 10 points indicating moderate to severe parkinsonism of the animals in the OFF condition). Median dyskinesia scores in ON condition were 3.0 ± 0.5 indicating marked dyskinesia interfering with normal activity. Our MPTP protocol leads to a reproducible near complete nigrostriatal lesion (>95%)30–31.

Stereotactic surgery. Customized guide cannulae (CMA 12, Kista, Sweden) were placed above the rostro-caudal motor striatum and the ventro-lateral motor thalamus under stereotactic guidance using ventriculography and postoperative x-ray while isolurane anesthetized (unilaterally in animals for microdialysis under isolurane anesthesia and bilaterally in animals where reverse microdialysis was performed while awake). Guide cannulae were permanently fixed to the skull with screws and dental acrylic resin.

Microdialysis procedure. Immediately for anesthetized animals (n = 8) or one week after surgery for awake animals (n = 2), concentric dialysis probes (CMA 12, 4 mm length, 240 μm outer diameter) were lowered through the guide cannula to reach the targets. Probes were perfused with artificial cerebrospinal fluid (2 μl/min, CMA, Kista, Sweden). After 120 minutes of stabilization, dialysates (40 μl) were collected every 20 min in 10 μl of 0.1 M perchloric acid. Twenty microliters served for dosing 20 microliters stored at −80 °C until their use in biochemical assays. Before analysis by reverse-phase high performance liquid chromatography coupled with electrochemical detection, plasma samples were diluted (1/8) with perchloric acid (0.1 N) and centrifuged, supernatants were injected into the HPLC system. Microdialysis samples for the assessment of L-dopa DA and its metabolites DOPAC and 3-MT were also stored at −80 °C until their use in biochemical assays. For monoamine measurements, a volume of 20 μl was injected with a autosampler SIL-10AD vp (Shimadzu, Duisburg, Germany). Samples were separated on a HPLC column (LiChrospher C 18, 4.6 mm inner diameter) at a flow rate of 0.3 ml/min. The mobile phase consisted of 80 mM sodium dihydrogen phosphate, 4 mM phosphoric acid, 0.5 mM ethylenediaminetetraacetic acid (disodium salt), 0.85 mM 1-octanethiolic acid (sodium salt), 2 mM sodium chloride and 2.8% 2-propanol, and was delivered with a LC10-AD vp pump (Shimadzu, Duisburg, Germany). Monoamines were quantified electrochemically by a glassy carbon electrode at a potential of 0.8 V (Ag/AgCl electrode). Sensitivity was set at 2 nA/V with an electrochemical detector (Antec Decade, Antec, Leyden, The Netherlands). The chromatograms were recorded with a chromatographic data system and quantified by determination of peak areas in relation to standard (Class vp, Shimadzu, Duisburg, Germany).

Microdialysis procedure. Immediately for anesthetized animals (n = 8) or one week after surgery for awake animals (n = 2), concentric dialysis probes (CMA 12, 4 mm length, 240 μm outer diameter) were lowered through the guide cannula to reach the targets. Probes were perfused with artificial cerebrospinal fluid (2 μl/min, CMA, Kista, Sweden). After 120 minutes of stabilization, dialysates (40 μl) were collected every 20 min in 10 μl of 0.1 M perchloric acid. Twenty microliters served for dosing catecholamines and 20 μl (after neutralization with borate buffer) for gamma-aminobutyric acid (GABA). Probe *in vitro* recoveries were around 10%.

High-performance liquid chromatography (HPLC). Blood samples were centrifuged at 13,000 rpm for 30 min at 4 °C. Aliquots (50 μl) of the supernatants were stored at −80 °C until their use in biochemical assays. Before analysis by reverse-phase high performance liquid chromatography coupled with electrochemical detection, plasma samples were diluted (1/8) with perchloric acid (0.1 N) and centrifuged, supernatants were injected into the HPLC system. Microdialysis samples for the assessment of L-dopa DA and its metabolites DOPAC and 3-MT were also stored at −80 °C until their use in biochemical assays. For monoamine measurements, a volume of 20 μl was injected with an autosampler SIL-10AD vp (Shimadzu, Duisburg, Germany). Samples were separated on a HPLC column (LiChrospher C 18, 4.6 mm inner diameter) at a flow rate of 0.3 ml/min. The mobile phase consisted of 80 mM sodium dihydrogen phosphate, 4 mM phosphoric acid, 0.5 mM ethylenediaminetetraacetic acid (disodium salt), 0.85 mM 1-octanethiolic acid (sodium salt), 2 mM sodium chloride and 2.8% 2-propanol, and was delivered with a LC10-AD vp pump (Shimadzu, Duisburg, Germany). Monoamines were quantified electrochemically by a glassy carbon electrode at a potential of 0.8 V (Ag/AgCl electrode). Sensitivity was set at 2 nA/V with an electrochemical detector (Antec Decade, Antec, Leyden, The Netherlands). The chromatograms were recorded with a chromatographic data system and quantified by determination of peak areas in relation to standard (Class vp, Shimadzu, Duisburg, Germany).
GABA was determined by HPLC and fluorescence detection. Samples were pre-column derivatized with o-phthalaldehyde-2-mercaptoethanol using an autoclave and subsequently separated on a 5-C18 Chrompex analytical column (Chrompack, Middelburg, Netherlands) perfused at 0.48 ml/min with a mobile phase containing 0.1 M sodium acetate, 10% methanol and 2.2% triehydroxyfluoran (pH 6.5). GABA was detected by a FP-2020 Plus spectrophotometer (Jasco, Tokyo, Japan) with the excitation and the emission wavelengths set at 370 and 450 nm, respectively.

Pharmacological treatment. Treatments were applied after baseline sampling. Four animals received 20 mg/kg Modopop (L-dopa/benserazide, BZD: 4: 1 ratio), i.e. a dose that turned them ON when awake. To exclude reduced drug absorption because of anesthesia, four more animals received an i.v. injection with an equivalent dose (i.e. 2.5 mg/kg L-dopa and 0.625 mg/kg BZD i.v.). The equivalence dose of L-dopa dose for intravenous administration was determined in one non-human primate receiving over three consecutive days either 20 mg/kg Modopop (L-dopa/benserazide, ratio 4:1), 2.5 mg/kg or 5 mg/kg levodopa methylester i.v. together with benserazide. Blood samples were centrifuged at 13,000 rpm for 30 min at 4°C. Before analysis with HPLC-ECD, plasma samples were diluted (1/8) with perchloric acid (0.1 N) and centrifuged, supernatants were further extracted into the HPLC system. L-dopa plasma levels were assessed at baseline and after 15, 30, 60 and 90 minutes after L-dopa administration. Areas under the curve were calculated for each plasma sample.

The authors reported no biomedical financial interests or potential conflicts of interest.

Acknowledgments
The CNRS and the University Bordeaux 2 (France) provided the infrastructural support.

Author contributions
M. Morari, B.B. and W.M. designed research; G.P., P.D.D., M. Marti, Q.L., R.M. and R.S. performed research; G.P., M. Morari, R.S., E.B. and W.M. analyzed data; G.P., P.D.D., E.B. and W.M. wrote the main manuscript text and W.M. prepared figure 1. All authors reviewed the manuscript.

Additional information
Financial disclosure E.B. is Chief Scientific Officer of Motac neuroscience Ltd. All other authors reported no biomedical financial interests or potential conflicts of interest. Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Porras, G. et al. L-dopa-induced dyskinesia: beyond an excessive dopamine tone in the striatum. *Sci. Rep.* 4, 3730; DOI:10.1038/srep03730 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0