Combined Experimental and Computational Study of Al$_2$O$_3$ Catalyzed Transamidation of Secondary Amides with Amines.
Md. Ayub Ali, a Ashutosh Nath, b Md. Midul Islam, a Sharmin Binte Shaheed, a and Ifat Nur Dibbo a

AUTHOR INFORMATION

Corresponding Author
Md. Ayub Alia - Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh; e-mail: shuvro070@chem.buet.ac.bd; ORCID: https://orcid.org/0000-0002-0915-7771

Authors
Ashutosh Nathb - Department of Chemistry, University of Massachusetts Boston, MA 02125-3393, USA; e-mail: ashutosh.nath001@umb.edu; ORCID: https://orcid.org/0000-0001-8302-0493

Md. Midul Islama - Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh; e-mail: midulislamchembuet@gmail.com

Sharmin Binte Shaheeda - Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.

Ifat Nur Dibboa - Catalysis and Organic Synthesis Laboratory, Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh.

Supporting information

Table of Contents:

1. Synthesis of N-Phenyl Benzamide	S2
2. Synthesis of N-(o-methyl) Phenyl Benzamide	S3
3. Synthesis of N-n-Octyl Benzamide	S4
4. Synthesis of N-(m-methyl) Phenyl Benzamide	S5
5. Synthesis of N-Benzyl Benzamide	S6
6. Catalyst Screening	S7
7. Solvent Screening	S8
8. Reusability of Al$_2$O$_3$	S9
9. Optimize structure of Compounds 1-5	S10
10. DFT Calculation Data	S11
11. Spectrum of Compound 1	S13
12. Spectrum of Compound 2	S19
13. Spectrum of Compound 3	S25
14. Spectrum of Compound 4	S32
15. Spectrum of Compound 5	S38
1. Synthesis of N-Phenyl Benzamide

For synthesis of N-Phenyl Benzamide, N- Methyl Benzamide (1 mmol) and aniline (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 h in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 h. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

![Scheme S1: Synthesis of N-Phenyl Benzamide.](image)

- Molecular weight : 197 g/mol
- Molecular formula : C₁₃NOH₁₁
- Solubility : Soluble in Chloroform.
- FT-IR (υ KBr) : 3347, 3055, 1659, 1536, 1439, 1659, 1075 cm⁻¹
- 1H-NMR (400 MHz, CDCl₃) : δ 8.02 (br s, 1H, -NH), 7.088(m, 2H), 7.67 (m, 2H), 7.48 (t, 1H), 7.38 (t, 2H), 7.27(m, 2H), 7.17 (t, 1H)
- 13C-NMR (100 MHz, CDCl₃) : δ 165.895 (1C, C=O), 137.969 (1C), 135.010 (1C), 131.844 (1C), 129.100-129.438 (2C), 128.783-129.074 (2C), 127.080 (2C), 124.550 (1C), 120.30 (2C)
2. Synthesis of N-(o-methyl) Phenyl Benzamide

For synthesis of N-(o-methyl) Phenyl Benzamide, N- Methyl Benzamide (1 mmol) and o-Toluedine (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

![Scheme S2: Synthesis of N-(o-methyl) Phenyl Benzamide.]

- Molecular weight : 212 g/mol
- Molecular formula : C₁₄NOH₁₄
- Solubility : Soluble in Chloroform.
- FT-IR (υ KBr) : 3227, 3060, 1645, 1592, 1434, 1294, 1074cm⁻¹
- 1H-NMR (400 MHz, CDCl₃) : δ 8.067 (br s, 1H, -NH), 7.86-7.88 (m, 2H), 7.53-7.56 (t, 2H), 7.44-7.47 (t, 3H), 7.23-7.28 (m, 2H), 6.69-6.99 (m, 1H), 2.36 (s, 3H)
- 13C-NMR (100 MHz, CDCl₃) : δ 165.924 (1C, C=O), 138.989 (1C), 137.913 (1C), 131.764 (1C), 129.391 (1C), 128.86 (1C), 128.729 (2C), 125.401 (1C), 127.092 (2C), 121.031 (1C), 117.462 (1C), 21.51 (1C).
3. Synthesis of N-n-Octyl Benzamide

For synthesis of N-n-Octyl Benzamide, N- Methyl Benzamide (1 mmol) and n-Octyl amine (1 mmol) were taken in a RB flask containing 5 mol% Al$_2$O$_3$ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al$_2$O$_3$ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al$_2$O$_3$ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

![Scheme S3: Synthesis of N-Octyl Benzamide.](image)

- Molecular weight : 233 g/mol
- Molecular formula : C$_{15}$NOH$_2$$_3$
- Solubility : Soluble in Chloroform.
- FT-IR (υ KBr) : 3360, 3058, 1653, 1549, 1493, 1447, 1076cm$^{-1}$
- 1H-NMR (400 MHz, CDCl3) : δ 6.368 (br s, 1H, -NH), 7.77-7.78 (m, 2H), 7.47-7.51 (t, 1H), 7.40-7.44 (t, 2H), 3.42-3.47 (m, 2H), 2.362-2.398 (m, 2H), 1.58-1.65 (m, 2H), 1.28-1.34 (m, 8H), 0.87-.91 (t, 3H)
- 13C-NMR (100 MHz, CDCl3) : δ 167.626 (1C, C=O), 134.811 (1C), 131.313 (1C), 128.525 (1C), 126.889 (1C), 40.181 (1C), 31.806 (1C), 29.675 (1C), 29.225 (1C), 29.308 (1C), 27.029 (1C), 14.097 (1C).
4. Synthesis of N-(m-methyl) Phenyl Benzamide

For synthesis of N-(m-methyl)Phenyl Benzamide, N- Methyl Benzamide (1 mmol) and m-Toluedine (1 mmol) were taken in a RB flask containing 5 mol% Al$_2$O$_3$ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al$_2$O$_3$ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al$_2$O$_3$ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S4: Synthesis of N-(o-methyl)Phenyl Benzamide.

- Molecular weight : 212 g/mol
- Molecular formula : C$_{14}$NOH$_{14}$
- Solubility : Soluble in Chloroform.
- FT-IR (υ KBr) : 3240, 3030, 2829, 1651, 1603, 1526, 1440cm$^{-1}$
- 1H-NMR (400 MHz, CDCl3) : δ 7.722 (br s, 1H, -NH), 7.962-7.982 (m, 1H), 7.907-7.925 (m, 1H), 7.576-7.612 (t, 1H), 7.50-7.54 (m, 3H), 7.24-7.27 (m, 1H), 7.13 (m, 1H), 2.36 (s, 3H)
- 13C-NMR (100 MHz, CDCl3) : δ 165.683 (1C, C=O), 135.789 (1C), 135.039 (1C), 131.885 (1C), 130.591 (1C), 129.244 (1C), 128.873-128.918 (2C), 127.074 (1C), 126.947 (1C), 125.399 (1C), 123.139 (1C), 17.860 (1C).
5. Synthesis of N-Benzyl Benzamide

For synthesis of N-Benzyl Benzamide, N- Methyl Benzamide (1 mmol) and Benzylamine (1 mmol) were taken in a RB flask containing 5 mol% Al₂O₃ and then added 5 mL Triethyl amine in the mixture. This reaction mixture was heated on hot plate around at 100 °C for 30 hrs in a sand bath with continuous stirring of magnetic bar at 300 rpm. The progress of the reaction was monitored by TLC with n-hexane and chloroform. Completion of the reaction was confirmed by TLC. After the completion of the reaction, 4 ml 2-propanol was added to dissolve amides mixture. Then, Al₂O₃ was separated from the mixture by centrifugation followed by washing with acetone and dried at 100°C for 3 hrs. The recovered Al₂O₃ was reused for three cycles without a marked decrease in the yield of the product. The solvent was removed from mixture by rotatory evaporator. Finally, the amide was purified by column chromatography with chloroform and n-hexane and recrystallization separation technique with ethanol and water. For catalyst screening, solvent screening and temperature screening same reaction procedure were performed.

Scheme S5: Synthesis of N-Benzyl Benzamide.

- Molecular weight : 212 g/mol
- Molecular formula : C₁₄NOH₁₃
- Solubility : Soluble in Chloroform.
- FT-IR (υ KBr) : 3329, 3056, 2940, 1639, 1578, 1555, 1492 cm⁻¹
- ¹H-NMR (400 MHz, CDCl₃) : δ 9.270 (br s, 1H, -NH), 5.150 (s, 1H), 4.460 (s, 1H), 6.825-6.834 (m, 2H), 7.396-7.404 (m, 2H), 7.185-7.283 (m, 1H), 8.001-8.183 (m, 2H), 7.597-7.641 (m, 2H), 7.826-7.844 (m, 1H)
6. Catalyst Screening

Model reaction:

\[
\begin{align*}
\text{Catalyst Screenin} & \text{g for model reaction} \\
\text{Table S1: Catalyst screening for model reaction} \\
\begin{array}{|c|c|c|}
\hline
\text{Entry} & \text{Catalyst} & \text{% of Yields} \\
\hline
01 & - & 0 \\
02 & \text{SnO}_2 & 5 \\
03 & \text{Cu}_2\text{O} & 3 \\
04 & \text{Al}_2\text{O}_3 & 76 \\
05 & \text{Nb}_2\text{O}_5 & 8 \\
06 & \text{CeO}_2 & 10 \\
07 & \text{TiO}_2 & 6 \\
\hline
\end{array}
\end{align*}
\]

Figure S1: Catalyst screening for model reaction.
7. Solvent Screening

Model reaction.

![Chemical reaction diagram]

Table S2: Solvent screening for model reaction

Entry	Solvent	% of Yields
01	No solvent	0
02	O-Xylene	9
03	Benzene	5
04	Triethylamine	76
05	Toluene	7

Figure S2: Solvent screening for model reaction.
8. Reusability of Al$_2$O$_3$

Model Reaction:

$$\begin{align*}
\text{NH}_{\text{CH}_3} & + \text{H}_3\text{C}\begin{array}{c}
\text{NH}_2
\end{array} \\
\xrightarrow{\text{Al}_2\text{O}_3, \ 5 \ \text{mol} \ % \ \text{Solvent \ Reflux}} & \xrightarrow{\text{Al}_2\text{O}_3} \\
\text{O} & + \text{H}_2\text{N}_\text{CH}_3
\end{align*}$$

Table S3: Reusability of Al$_2$O$_3$ for model reaction.

Cycle Number	Catalyst	% of Yields
01		76
02	Al$_2$O$_3$	70
03		63
04		41

Figure S3: Reusability of Al$_2$O$_3$ for model reaction.
9. Optimize structure of Compounds 1-5

Table S4: Optimize Structure of Compounds 1-5

Compnd	Optimize ball and bond type Structure	Optimize tube Structure	Optimize Energy (Hartee)
1	![Image](image1.png)	![Image](image2.png)	-624.166
2	![Image](image3.png)	![Image](image4.png)	-663.353
3	![Image](image5.png)	![Image](image6.png)	-706.818
4	![Image](image7.png)	![Image](image8.png)	-663.355
5	![Image](image9.png)	![Image](image10.png)	-663.351
10. DFT Calculation Data

Table S5: Using Catalyst Al$_2$O$_3$

Calculation Method	Basis Set	Compounds	Energy (Hartee)	Relative Energy
RB3LYP	6-311+G (D, P)	Amides	-440.380	0.000
RB3LYP	6-311+G (D, P)	Amines-1	-287.631	152.749
RB3LYP	6-311+G (D, P)	Catalyst Al$_2$O$_3$	-710.733	-270.353
RB3LYP	6-311+G (D, P)	Solvent N(C$_2$H$_5$)$_3$	-174.528	265.853
RB3LYP	6-311+G (D, P)	TS1	-1438.224	-997.844
RB3LYP	6-311+G (D, P)	TS2	-1603.740	-1163.359
RB3LYP	6-311+G (D, P)	Product 1	-624.166	-191.786

Table S6: Using Catalyst Nb$_2$O$_5$

Calculation Method	Basis Set	Compounds	Energy (Hartee)	Relative Energy
RB3LYP	6-311+G (D, P)	Amides	-440.380	0.000
RB3LYP	6-311+G (D, P)	Amines-1	-287.631	152.749
RB3LYP	6-311+G (D, P)	Catalyst Nb$_2$O$_5$	-7843.992	-7403.612
RB3LYP	6-311+G (D, P)	Solvent N(C$_2$H$_5$)$_3$	-174.528	265.853
RB3LYP	6-311+G (D, P)	TS1	-0.430672	439.950
RB3LYP	6-311+G (D, P)	TS2	-8852.090	-8411.710
RB3LYP	6-311+G (D, P)	Product 1	-624.166	-191.786

Total energy plot for compounds 1-5

![Total Energy Plot for Compounds 1 and 2](image)
11. Spectra of compound 1

Figure S4: FT-IR spectrum of Compound 1
Figure S5: 1H-NMR spectrum of compound 1
Figure S6: Extended 1H-NMR spectrum of compound 1.
Figure S7: 13C-NMR spectrum of compound 1.
Figure S8: Extended 13C-NMR spectrum of compound 1.
Figure S9: GC-MS spectrum of compound 1.
Figure S10: FT-IR spectrum of compound 2
Figure S11: 1H-NMR spectrum of compound 2
Figure S12: Extended 1H-NMR spectrum of compound 2
Figure S13: 13C-NMR spectrum of compound 2.
Figure S14: Extended 13C-NMR spectrum of compound 2.
Figure S15: GC-MS spectrum of compound 2.
Figure S16: FT-IR spectrum of compound 3.
Figure S17: 1H-NMR spectrum of compound 3
Figure S18: Extended 1H-NMR spectrum of compound 3
Figure S19: Extended 1H-NMR spectrum of compound 3.
Figure S20: 13C-NMR spectrum of compound 3
Figure S21: Extended 13C-NMR spectrum of compound 3
Figure S22: GC-MS spectrum of compound 3
14. Spectra of compound 4

Figure S23: FT-IR spectrum of compound 4.
Figure S24: 1H-NMR spectrum of compound 4
Figure S25: Extended 1H-NMR spectrum of compound 4
Figure S26: 13C-NMR spectrum of compound 4
Figure S27: Extended ^{13}C-NMR spectrum of compound 4
Figure S28: GC-MS spectrum of compound 4
15. Spectra of compound 5

![Figure S29: FT-IT spectrum of compound 5](image_url)
