Phytochemicals characterization of nutraceutical enriched fruits and nuts spread

C. Rohini*
Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai - 625104 (Tamil Nadu), India

P. S. Geetha
Department of Differently Abled Studies, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai - 625104 (Tamil Nadu), India

R. Vijayalakshmi
Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai - 625104 (Tamil Nadu), India

M. L. Mini
Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai - 625104 (Tamil Nadu), India

*Corresponding author. Email: rohinichelliah96@gmail.com

Article Info
https://doi.org/10.31018/jans.v13iSI.2810
Received: March 22, 2021
Revised: May 14, 2021
Accepted: June 3, 2021

How to Cite
Rohini, C. et al. (2021). Phytochemicals characterization of nutraceutical enriched fruits and nuts spread. Journal of Applied and Natural Science, 13 (SI), 124 - 129. https://doi.org/10.31018/jans.v13iSI.2810

Abstract
The present study aimed to formulate a nutraceutical enriched fruits and nuts spreads and analyze the presence of phytochemicals in the formulated spread. The pumpkin seeds and cucumber seeds were roasted at 150°C for 15 mins and made into powder. The seed powder was mixed to the pulp of β-carotene rich fruits like mango, papaya and muskmelon in order to make fruits and nuts spread. Treatments like Mango with pumpkin seed powder (T₁), Papaya with pumpkin seed powder (T₂), Muskmelon with pumpkin seed powder (T₃), Mango with cucumber seed powder (T₄), Papaya with cucumber seed powder (T₅) and Muskmelon with cucumber seed powder (T₆). The fruits and nuts spreads were analyzed for the presence of phytochemicals β-carotene, polyphenols, tannins, flavonoids and antioxidant activity. The formulated fruits and nuts spreads were packed in polypropylene boxes, glass bottles and stored under refrigerated condition at 4°C. β-carotene content was found to be high (634.21 μg/g) in Mango with Pumpkin seed powder spread (T₁), tannin content was higher (52.61 mg/g) in Papaya with Pumpkin seed powder spread (T₂), flavonoid components were higher (3.25 mg/g) in Mango with Pumpkin seed powder spread (T₃) and Muskmelon with cucumber seed powder spread (T₆). The antioxidant property was high in the Mango with Pumpkin seed powder spread (T₁) when compared to all other treatments. Pumpkin seeds comprised of excellent amount of bioactive compounds. The pumpkin seed incorporated spread showed a high level of phytochemicals when compared to other spreads. This was ready to eat spread which had 3 months of shelf life under refrigerated condition is preferred for people of all age groups.

Keywords: Cucumber seeds, Nutraceutical compounds, Phytochemicals, Pumpkin seeds

INTRODUCTION
Spread is an edible paste that is added to other foods, which are generally consumed with bread, toasts and similar pastries such as pancakes and pistas. The fat content is more in the spread and it imparts shortening, richness, tenderness, improves mouthfeel, flavour and perception (Pareyt et al. 2009). The spread can be made with fruit pulp and enhanced with edible seed powders. The pumpkin, cucumber seeds are generally considered waste but are found to have many medical values and health benefits. The pumpkin belongs to the family of Cucurbitaceae. It is utilized as uncooked, cooked and roasted for domestic purpose. Pumpkin seeds are a rich source of protein, fibers, minerals such as iron, zinc, calcium, magnesium, manganese, copper and sodium, polyunsaturated fatty acid, phytosterol and vitamins. Health benefits of pumpkin seeds like reduc-
The fruit pulp or puree was extracted from the fruits like mango, papaya and muskmelon. Pumpkin seeds and cucumber seeds were machine dehulled and roasted at 150°C for 30 mins to remove the hard coating and to mask the raw odour of the seed. The roasted seeds were made into powder form. The fruit pulp was mixed with seed powder to get a thick consistency of spreads. The various treatments, i.e., a combination of fruits and nuts, are given in Table 1. The standardized composition of seed powders (25%) and sugar were incorporated with fruit pulp (75%) to get a desirable consistency of fruits and Nuts spread based on the previous experiments. The fruits and nuts spreads were pasteurized at 60°C for 30 mins to increase the quality of the product and the prepared products were organoleptically evaluated and kept under the refrigerated condition at 4°C for further analysis.

β-carotene

About 2-5g of food sample was taken and pulped well into smooth consistency using acetone and blended until the residue was colourless. The acetone extracts were pooled and transferred to a separating funnel containing about 20ml of distilled water and mixed. Carotenoid pigments get transferred from the lower aqueous layer to the upper petroleum ether layer. The upper layer was collected by using a separating funnel and then added petroleum ether (20ml) and mixed well to extract the β – Carotene. The procedure was repeated three to four times until the colour of the extract became colourless. The petroleum ether extract was pooled and washed once with 20 ml distilled water in order to remove alkalinity. Filtered it into a conical flask.

MATERIALS AND METHODS

The fruit pulp or puree was extracted from the fruits like mango, papaya and muskmelon. Pumpkin seeds and cucumber seeds were machine dehulled and roasted at 150°C for 30 mins to remove the hard coating and to mask the raw odour of the seed. The roasted seeds were made into powder form. The fruit pulp was mixed with seed powder to get a thick consistency of spreads. The various treatments, i.e., a combination of fruits and nuts, are given in Table 1. The standardized composition of seed powders (25%) and sugar were incorporated with fruit pulp (75%) to get a desirable consistency of fruits and Nuts spread based on the previous experiments. The fruits and nuts spreads were pasteurized at 60°C for 30 mins to increase the quality of the product and the prepared products were organoleptically evaluated and kept under the refrigerated condition at 4°C for further analysis.

β-carotene

About 2-5g of food sample was taken and pulped well into smooth consistency using acetone and blended until the residue was colourless. The acetone extracts were pooled and transferred to a separating funnel containing about 20ml of distilled water and mixed. Carotenoid pigments get transferred from the lower aqueous layer to the upper petroleum ether layer. The upper layer was collected by using a separating funnel and then added petroleum ether (20ml) and mixed well to extract the β – Carotene. The procedure was repeated three to four times until the colour of the extract became colourless. The petroleum ether extract was pooled and washed once with 20 ml distilled water in order to remove alkalinity. Filtered it into a conical flask.
through cotton wool over which anhydrous sodium sulphate was sprinkled to get water free solution. The final volume was made up to 50ml with petroleum ether and determined the solution's absorbance at 450nm in a UV - visual spectrophotometer using petroleum ether as blank.

Calculation

\[
\text{µg carotenoids / 100 gm} = \text{OD value} \times \text{Total volume of extract} \times 100 / 0.2592 \times \text{weight of the sample} \quad \text{..... Eq.1}
\]

Phenol

About 0.5 - 1 g of sample was weighed and grinded with a pestle and mortar to a 10 time volumes of 80% ethanol, centrifuged at 10,000 rpm for 20 mins. The saved the supernatant was evaporated it to dryness. Dissolved the residue in a known volume of distilled water (5 ml).different aliquots (0.2-2ml) was pipette out into test tubes. Make up the volume in each tube to 3ml with distilled water. 0.5 ml of Folin-ciocateau reagent was added. After 3mins 2ml of 20% Na2 CO3 solution was added to each tube. Mixed thoroughly. Placed the tubes in boiling water for 1 min, cooled and measured at 650nm.prepared a standard curve using different concentrations of catechol. The standard curve finds out the concentration of phenols in the test sample and expresses as mg phenols/100 g material.

Tannins

About 0.5 g of the powder sample was weighed and transferred to a 250ml conical flask.75ml of water was added. Heated the flask gently and boil for 30mins. Centrifuged at 2000 rpm for 20 min and collected the supernatant in 100ml volumetric flask and made up the volume. 1ml of the sample extract was transferred to a 100ml volumetric flask containing 75 ml water. 5ml of Folin Cioclateau reagent was added, then 10ml of sodium carbonate solution and dilute to 100ml with water. Shaked well. Read the absorbance at 700nm after 30min. Prepared a standard graph by using 0- 100µg tannic acid. Calculate the tannin content of the samples as tannic acid equivalents from the standard graph.

Total flavonoids

Total flavonoids content of fruits and nuts spreads were determined using the Colorimetric method described by Willet (2002), with some modifications. Aqueous ethanol extracts (0.5 ml), 10% aluminium chloride (0.1 ml), 1 M potassium acetate (0.1 ml), and distilled water (4.3 ml) were mixed. After incubation at room temperature for 30 min, the absorbance was measured at 415 nm using a spectrophotometer. Quercetin was used to make the calibration curve. The calculation of total flavonoids content in the extracts was carried out in triplicate and the results were averaged.

Determination of total antioxidant activity

DPPH assay

The radical scavenging activity of samples was determined by the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. DPPH is a purple colored stable free radical that reacts with compounds that can donate a hydrogen atom. This method is based on the scavenging of DPPH through the addition of a radical species or an antioxidant that decolorizes the DPPH solution. The degree of discoloration indicates the scavenging potential of the antioxidant compounds. Different aliquots (0.2 - 1 ml) of methanol extracts of each sample were pipetted out into test tubes and made up the volume in each test tube to 1ml with methanol. Then 2 ml of freshly prepared DPPH solution (0.1 mM) in methanol was added. The tubes mixed thoroughly and allowed to stand in the dark at room temperature. The absorbance decrease was determined after 30 min at 517 nm using a spectrophotometer. Methanol (1 ml) replacing the plant extract serve as a negative control and methanol (2 ml) replacing the DPPH reagent serve as sample blanks. The percentage of radical scavenging activity (% RSA) or percentage inhibitions of DPPH of the methanolic extract of the samples were calculated by the following formula.

\[
\% \text{RSA} = \frac{A_{(C)} - A_{(S)}}{A_{(C)}} \times 100 \quad \text{.....Eq . 2}
\]

Where \(A_{(C)} \) - absorbance of negative control, \(A_{(S)} \) - absorbance of sample.

Then graphs were plotted between the percentages of radical scavenging activity and the different concentrations of methanolic extracts of samples. Ascorbic acid was used as a standard (positive control) and the percentage radical scavenging activity of the different concentration of the ascorbic acid standard was estimated by the same method and formula used for the samples. Then graphs were plotted between the percentage of radical scavenging activity and the different concentrations of standards, then the slopes of the standard graph were calculated and the radical scavenging activity of the samples was expressed as mg of ascorbic acid equivalent 100 g⁻¹ of sample in fresh and dry weight basis. (Muruganantham et al/2016)

Statistical analysis

The statistical analysis was performed by AGRES-AGDATA for one way analysis of variance. The results are the average of the four replicates and their Standard deviation.

RESULTS AND DISCUSSION

Phytochemical analysis

Table 2 shows phytochemicals for the presence of β – Carotene, tannin, flavonoids, polyphenols and antioxi-

Rohini, C. et al. / J. Appl. & Nat. Sci. 13 (SI), 124 - 129 (2021)
dant activity were analyzed in the fruits and nuts spreads. Pumpkin seed and cucumber seeds contained more nutritional compounds and fruits like mango, papaya and muskmelon contained more phytochemicals.

β – Carotene
The carotenoid content ranged from 301.93 μg/g to 623.21 μg/g in all treatments. The mango with pumpkin seed powder spread β-carotene content (623.21 μg/g) and the lowest was found in muskmelon with cucumber seed powder spread (301.93 μg/g) with respect to the content of these substances in the pulp (Table 2). Silva et al. (2014) reported that the carotene retention of mango fruit powder was 196.15 μg/g. Renna et al. (2013) reported that the boiling step before the final cooking during carrot jam processing probably improved β-carotene retention in a jam. Rozan (2017) also stated that the addition of turmeric as an ingredient of jam formulation significantly improved carotenoid retention.

Tannin
Tannin content tends to decrease in fruits and nuts spreads after processing. Among the treatments, the tannin content was more in the papaya with pumpkin seed powder spread about 52.61mg/g and the lowest value was 31.20mg/g noticed in muskmelon with cucumber seed powder spread. (Table 2). Sinha et al. (2012) was observed that upon cooking, the formation of condensed tannins decreased the antioxidant activity of the phenolic fraction. During ambient storage, white-fleshed cloudy guava nectar deteriorates in quality due to nonenzymatic browning reactions through the involvement of ascorbic acid and tannins (Chen et al. 1994). In this study, tannin content decreased during processing and did not affect the storage characteristics of processed spread.

Flavonoids
Flavonoids content of the fruits and nuts spreads ranged between 1.05 mg/g to 3.25 mg/g. Noticeable amount of rise in flavonoids was seen in all the treatment. A higher amount of flavonoid was noticed in mango with pumpkin seed powder spread combination of fruits and nuts spreads. It was about 3.25mg/g and muskmelon with cucumber seed powder spread shows the least amount of flavonoids found was around

Treatment	Fruits (75%) + seed powder (25%)
T1	Mango + Pumpkin seed powder
T2	Papaya + Pumpkin seed powder
T3	Muskmelon + Pumpkin seed powder
T4	Mango + Cucumber seed powder
T5	Papaya + Cucumber seed powder
T6	Muskmelon + Cucumber seed powder

Table 2. Phytochemicals of fruits and nuts spreads.

Treatment	β-Carotene(μg/g)	Tannin (mg/g)	Flavonoids (mg/g)	Poly phenols (mg/g)
T1	623.21±0.87d	48.93±0.46d	3.25±0.03i	56.21±1.58b
T2	501.75±0.80d	52.61±0.96e	2.71±0.01d	58.03±0.71c
T3	324.54±0.66b	34.62±0.65b	1.65±0.06b	44.98±1.31a
T4	604.75±0.34c	44.73±0.79c	3.04±0.03a	57.85±1.88c
T5	487.53±0.61c	50.17±1.05d	2.15±0.06c	59.33±1.08d
T6	301.93±0.03a	31.20±0.34a	1.05±0.01a	45.86±0.65a

*Values are means of 4 replicates; *Means in the same column followed by different superscripts are significantly different at P<0.05
REFERENCES

1. Abbasi, A. M., Liu, F., Guo, X., Fu, X., Li, T., & Liu, R. H. (2017). Phytochemical composition, cellular antioxidant capacity and antiproliferative activity in mango (Mangifera indica L.) pulp and peel. *International Journal of Food Science & Technology*, 52(3), 817-826.

2. Aranceta, J., (2004). Fruits and vegetables. *Archivos Latinoamericanos de Nutrición*, 54(2 Suppl 1), 65-71.

3. Chen N. L., Lee, C. Y. & Wu, J. S. B. (1994). An evaluation of possible mecanhs inns fr or norl enzymatic browning ir: guava nectar during storage . *Forsd. Science, (ShihP’ in K’oI.Jusuah) (Taiwan)*, 21, 293.

4. Ezeodili, V.K., Ihim, A.C., Ogboro, E.C., Ezeugwunwe, I.P., Analike, R.A., Onah, C.E., Amah, U.K., Okwara, J.E., Ezeg, A.I., Ugwu, M.C., Oguaka, V.N., Asebiyo, S.J. and Meludu, S.C. (2017). Effect of cucumber consumption on serum lipid profile and liver aspartate transaminase and alanine transaminase in apparently healthy undergraduate students. *International Journal of Basic, Applied and Innovative Research*, 6(2), 38-45

5. G. Nahak, M. Suar, and R. K. Sahu (2014). Antioxidant potential and nutritional values of vegetables: A review, *Res. J. of Medicinal Plant*, 8(2), 50-81

6. Ibarra-Garza, Ingrid P., Perla A Ramos-Parra, Carmen Hernández-Brenes, and Daniel A Jacobo-Velázquez (2015). Effects of postharvest ripening on the nutraceutical and physicochemical properties of mango (Mangifera indica L. cv Keitt). *Postharvest Biology and Technology* 103, 45-54.

7. Lobo F.A., Nascimento M.A., Domingues J.R., Falcão D.Q., Hernanz D., Heredia F. & de Lima Araujo, K. G. (2017). Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. *Food Chem.*, 221, 258-266.

8. Saxena, M., Saxena, J., Nema, R., Singh, D. & A. Gupta, (2013). Phytochemistry of medicinal plants. *J. of Pharmacog. and Phytochem.,* 1(6), 168-180.

9. Mahmoud A. Rozan (2017). Egypt carotenoids, phenolics, antioxidant activity and sensory attributes of carrot jam: Effect of turmeric aditio. *J. Food Sci.,* 45, 113 -123

10. Milind, P. & Kulwant, S. (2011). Musk melon is eat-must melon. *International Research Journal of Pharmacy*, 2(8), 52-57.

11. Montesano, D., Blasi, F., Simonetti, M.S., Santini, A. & Cossignani, I. (2018). Chemical and nutritional characterization of seed oil from *Cucurbita maxima* L. (var. Berrettina) pumpkin. *Foods*, 7(3), 30-33.

12. Muruganantham, N., Solomon, S., & Senthamiliselv, M. M. (2016). Anti-oxidant and anti-inflammatory activity of *Cucumis sativus* (cucumber) flowers. *Int. J. Pharm. Sci. Res.,* 7(4), 1740-1745.

13. Gill, N. S. & Bahl, M. (2012). Evaluation of antioxidant, antulcer activity of 9-beta-methyl-19-norlanosta-5-ene-type glycosides from Cucumis sativus seeds, *Res. J. of Medicinal Plant*, 6 (4), 309-317

14. Nirmal K. Sinha Jiwan S. Sidhu Jozef Barta & James S. B. & Wu M. (2012). *Pilar Cano Handbook of Fruits and Fruit Processing*. Second Edition Edited by This edition first published 2012 C 2012 by John Wiley & Sons, Ltd.
15. Nkosi C.Z. & Opaku A.R. (2006). Antioxidant effects of pumpkin seeds (Cucurbita pepo) protein isolate in ccl4 induced liver injury in low protein fed rats. *Phytother Res.*, 20(11), 935-940. doi: 10.1002/ptr.1977
16. Pareyt, B., Talhaoui, F., Kerckhofs, G., Brijs, K., Goesaert, H., Wevers, M. & Delcour, J.A. (2009). The role of sugar and fat in sugar-snap cookies: Structural and textural properties. *Journal of Food Engineering*, 90, 400–408
17. Parveen, S., M. A. Ali, M. Asghar, A. R. Khan and A. Salam (2012). Physico-chemical changes in muskmelon (cucumis melo l.) as affected by harvest maturity stage. *Journal of Agricultural Research*, 50(2), 249-260.
18. Patras, A., Brunton, N.P., O’Donnell, C. & Tiwari B.K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. *Trends in Food Science & Technology*, 21, 3-11
19. Priyanka, D., S. Sindhoora, P. Vijayanand, S. Kulkarni & S. Nagarajan (2015). Influence of thermal processing on the volatile constituents of muskmelon puree. *Journal of Food Science and Technology*, 52(5), 3111-3116.
20. Renna, M., Bernardo, P., Maria, C.P.S., Francesco S. & Maria G. (2013). Comparison of two jam making methods to preserve the quality of colored carrots. *LWT - Food Science and Technology*, 53, 547-554.
21. Shah, B.N., and Seth, A.K. (2011). Screening of Lagenaria siceraria fruits for their analgesic activity. *Romanian Journal of Biology – Plant Biology*, 55(1), 23–26
22. Shahidi, F. (2004). Functional foods: Their role in health promotion and disease prevention. *J. Food Sci.*, 69, 146–149.
23. Silva L., Figueiredo E, Ricardo N, Vieira I, Figueiredo R, Brasil I. & Gomes C. (2014). Quantification of bioactive compounds in pulps and byproducts of tropical fruits from Brazil. *Food Chem.*, 143, 398-404.
24. Swaroop, A., Bagchi, M., Moriyama, H. & Bagchi, D. (2018). Health benefits of mango (Mangifera indica L.) and mangiferin, *Jpn. J. Med.*, 1(2), 149-154.
25. Tharanathan, R., Yashoda, H. & Prabha, T.N. (2006). Mango (Mangifera indica L.), “The king of fruits”- An overview. *Food Reviews International*, 22(2), 95e123.
26. Wall-Medrano, A., Olivas-Aguirre, F. J., Ayala-Zavala, J. F., Domínguez-Avila, J. A., Gonzalez-Aguilar, G. A., Herrera-Cazares, L. A. & Gaytan-Martinez, M. (2020). Health benefits of mango by-products. *Food Wastes and Byproducts: Nutraceutical and Health Potential*, 159-191
27. Yogiraj, V., Goyal, P. K., Chauhan, C. S., Goyal, A. & Vyas, B. (2014). Carica papaya Linn: an overview. *International Journal of Herbal Medicine*, 2(5), 01-08.