Study of the additional strengthening treatment impact on structural parameters and mechanical properties of coatings based on nitrides of niobium, titanium, zirconium and aluminum

S V Sizov¹,², V P Tabakov², A V Chikhranov²,³, I N Bobrovskij⁴ and V A Adakin³
¹ Ulyanovsk mechanical plant, 432000, Ulyanovsk, Russia
² Federal State Budgetary Educational Institution of Higher Education Ulyanovsk Technical State University, Ulyanovsk, 432027, Ulyanovsk, Russia
³ Federal State Budgetary Educational Institution of Higher Education Ulyanovsk Institute of Civil Aviation named after Chief Marshal of Aviation B. P. Bugaev, 432071, Ulyanovsk, Russia
⁴ Federal State Budgetary Educational Institution of Higher Education Tolyatti State University, 445020, Tolyatti, Russia

E-mail: chikhranov@mail.ru

Abstract. In this paper results of the impulse laser processing impact on structural parameters and mechanical properties of coatings based on nitrides of niobium, titanium, zirconium and aluminum are set out. Structures of multilayer coatings are suggested and the utilization efficiency of carbide-tipped tools with engineered coatings is shown.

1. Introduction
Application of abrasion-resistant coatings is an efficient method for material improving the operating capacity of cutting tools [1, 2]. Notwithstanding significant advances in this sphere, in some cases the operating capacity of cutting tools with coatings is not high. This fact urges to search for new coating compositions or to engineer technological methods for improving the efficiency of the known coatings. One of such lines is the additional strengthening treatment, for example, the impulse laser processing [3–6].

The objective of this paper is to study the additional strengthening treatment impact on the operating capacity of carbide-tipped tools with the multilayer coating.

2. Research results and discussion
We studied coatings NbTiAlN and NbTiZrAlN which were applied using the apparatus «Bulat-6» on carbide-tipped blades MK8. We used cathodes made of niobium, titanium, zirconium and aluminum. Chemical composition of coatings is presented in table 1.

To determine the value of the laser radiation energy we modelled the impact process of the impulse laser processing (ILP) on the composition «coating–tool base» using the program Ansys Mechanical APDL. The value of the laser radiation energy was calculated taking into consideration stresses...
generated under the impact of ILP. Exceeding of these stress values led to the crack formation in the composition «coating-tool base» and the further destruction of the coating. Subject to the aforesaid, we modelled the impact of ILP power density on stresses generated at the surface of the carbide-tipped base without coating and on the boundary of the abrasion-resistant coating with the carbide-tipped base. Modelling of ILP impact process on the composition «coating–tool base» gave an opportunity to calculate the power density value of ILP for the carbide-tipped base MK8 which amounted 5100 W/cm². Study results of ILP impact on structural parameters and mechanical properties of coatings are presented in table 2.

Table 1. Chemical composition of coatings.

Coating	Content of elements (% at)
NbTiZrAlN	10.4 48.6 40.6 0.4
NbTiAlN	14.5 83.4 – 2.1

It has been established that ILP impact causes the half-width escalation of the X-ray line β_{111} by 11…32 %, the reduction of compressive residual stresses σ_0 by 28.8…31.1 % depending on the coating composition. Reduction of stresses is explained by their relaxation on the boundary of the coating with the carbide-tipped base as the result of the high-speed laser heating and cooling.

Table 2. Structural parameters and mechanical properties of coatings.

Coating	β_{111} (grade)	σ_0 (MPa)	H_p (GPa)	E (GPa)	K_{IC} (MPa·m$^{1/2}$)	K_a
NbTiAlN	0.53	-1438±158	30.6	416	12.34	0.17
	0.70	-1023±84	32.8	442	12.04	0.07
NbTiZrAlN	0.75	-1376±19	32.2	438	13.16	0.34
	0.86	-948±193	36.7	487	13.73	0.21

*Data in the numerator and the nominator are before and after ILP as relevant

Impact of ILP causes the increase of the coating micro-hardness H_p by 7.2…13.9 %, the elasticity modulus E by 6.2…11.2 % which is due to the half-width escalation of the X-ray line β_{111} which certifies the crystalline lattice micro-deformation of the coating material. ILP leads to the reduction of the delamination coefficient K_a by 38…40 % which certifies the improvement of the coating adhesion strength with the carbide-tipped base. Impact of ILP almost does not change the critical stress intensity coefficient K_{IC}.

Multilayer coating architecture working under uninterrupted cutting conditions were selected taking into consideration recommendations from works [1, 7]. Authors [7] demonstrate that the upper layer of the multilayer coating designed and suitable for the turning processing simultaneously implements two requirements: provides favorable conditions for the contact interaction at the front surface of the cutting tool and suppresses crack formation processes in the coating during cutting. As can be seen from the above, the structure of multilayer coatings designed and suitable for the turning processing and providing the high resistivity to crack formation processes, can have two layers minimum. Having regard to the above, bilayer coatings were engineered. Studied coatings: TiN–NbTiAlN and TiZrN–NbTiZrAlN were used as upper layers. Mechanical properties of bilayer coatings after ILP are presented in table 3.

Study results show that ILP of bilayer coatings causes similar changes of mechanical properties which were true for one-layer coatings. The greatest impact ILP has on the adhesion strength which is certified with the reduction of the delamination coefficient by 2.7…3.5 times depending on the coating construction.
Table 3. Mechanical properties of bilayer coatings after the impulse laser processing.a.

Coating	H_p (GPa)	E (GPa)	K_{IC} (MPa m$^{1/2}$)	K_o
TiN–NbTiAlN	31.8/33.2	421/445	12.45/12.84	0.42/0.12
TiZrN–NbTiZrAlN	33.4/35.9	432/483	13.00/13.21	0.58/0.21

*a data in the numerator are for coatings without ILP and data in the nominator are after ILP

Operating capacity of carbide-tipped cutting tools with coatings was studied when turning processing of workpieces made of steel 38XTH. The following modes were used: cutting speed $V = 180$ m/min and $V = 140$ m/min, supply $S = 0.15$ mm/turn and $S = 0.3$ mm/turn, cutting depth $t = 0.5$ mm.

Table 4. Operating capacity of carbide-tipped blades with multilayer coatings.a.

Coating	Durability T (min)	
	$V = 180$ m/min, $S = 0.15$ mm/turn	$V = 140$ m/min, $S = 0.3$ mm/turn
TiN–NbTiAlN	45/63	46.5/75
TiZrN–NbTiZrAlN	49/74	59/98.5

*a data in the numerator are for coatings without ILP and data in the nominator are after ILP

Study results show that the application of ILP leads to the prolongation of the durability of carbide-tipped blades with bilayer coatings by 1.4…1.7 times depending on the coating construction and the processing mode. As can be seen from data in the table 4 the greater effect in the prolongation of the durability of carbide-tipped blades is achieved when reducing the cutting speed and increasing the supply by the turn. In addition to the above, the greater efficiency has the coating TiZrN–NbTiZrAlN functional layers of which have the superior mechanical properties.

3. Conclusions

Study results showed the opportunity to apply ILP for improving the operating capacity of cutting tools with multilayer coatings.

Acknowledgment

This paper is drawn up with the aid of the grant from the Russian foundation for basic research (RFBR) – the project № 18-48-730011.

References

[1] Tabakov V P 2008 *Forming of abrasion-resistant ion-plasma coatings of cutting tools* (Moscow: Machine building) 311
[2] Vereshchaka A S 1993 *Operating capacity of cutting tools with abrasion-resistant coatings* (Moscow: Machine building) 336
[3] Neves D, Diniz A E and Lima M S F 2013 *Appl. Surf. Sci.* 282 680–8
[4] Neves D, Diniz A E and Lima M S F 2011 *Journal of Materials Processing Technology* 179 139–45
[5] Arroyo J M, Diniz A E and Lima M S F 2010 *Wear* 268 1329–36
[6] Tabakov V P and Vlasov S N 2001 *STIN* 12 5–9
[7] Tabakov V P and Khudobin L V 2018 *Hardening technologies and coatings* 9 414–6