COUNTING TWISTED HIGGS BUNDLES

SERGEY MOZGOVOY AND RONAN O’GORMAN

Abstract. We count invariants of the moduli spaces of twisted Higgs bundles on a smooth projective curve.

1. Introduction

Let X be a smooth projective curve of genus g defined over a finite field \mathbb{F}_q. Let L be a line bundle of degree ℓ over X and let $\mathcal{M}_L(r,d)$ be the moduli space of semistable L-twisted Higgs bundles over X. It parametrizes pairs (E, ϕ), where E is a vector bundle of rank r and degree d over X and $\phi : E \rightarrow E \otimes L$ is a homomorphism. A formula for the computation of the number of points of $\mathcal{M}_L(r,d)$ for coprime r,d was conjectured in [18] and is proved in this note.

The above conjecture was obtained as a solution of a recursive formula, called an ADHM recursion, conjectured by Chuang, Diaconescu, and Pan [3]. The ADHM recursion was itself based on a conjectural wall-crossing formula for the refined Donaldson-Thomas invariants on a noncompact 3CY variety $Y = L \oplus (\omega_X \otimes L^{-1})$, where ω_X is the canonical bundle of X, as well as a conjectural formula for the asymptotic ADHM invariants. The latter invariants can be interpreted as Pandharipande-Thomas invariants of Y [21]. The formula counting them was derived in [3] by string theoretic methods, hence remains conjectural from the mathematical point of view.

On the other hand, the formula for $\mathcal{M}_L(r,d)$ conjectured in [18] can be considered as a generalization of the conjecture by Hausel and Rodriguez-Villegas [11] in the case of usual Higgs bundles, where the twisting line bundle L is equal to ω_X. A breakthrough for the counting of usual Higgs bundles was made by Schiffmann [23] who proved an explicit, albeit rather complicated formula for these invariants, quite different from the conjecture of [11]. An equivalence between these formulas was proved recently by purely combinatorial methods in a brilliant series of papers by Mellit [14, 16, 15].

Results on the invariants of moduli spaces of Higgs bundles for small rank and degree were obtained in [10, 11, 12, 9, 7, 22, 3]. The conjecture of Hausel and Rodriguez-Villegas was proved for the y-genus in [6]. An alternative general formula for twisted Higgs bundles on \mathbb{P}^1 – in terms of quiver representations – was obtained in [19]. Other interesting results related to counting of Higgs bundles can be found in [1, 2, 4, 5].

In this paper we will apply Mellit’s methods in order to prove a formula for general L-twisted Higgs bundles. This task will be rather straightforward as Schiffmann’s computation was generalized earlier for twisted Higgs bundles in [20]. More precisely, let $\mathcal{M}_L(r,d)$ be the moduli stack of semistable L-twisted Higgs bundles over X. Given a finite type algebraic stack \mathcal{X} over \mathbb{F}_q, define its volume (see §2.4 for more details on volumes)

$$[\mathcal{X}] = (\#\mathcal{X}(\mathbb{F}_{q^n}))_{n \geq 1}, \quad \#\mathcal{X}(\mathbb{F}_{q^n}) = \sum_{x \in \mathcal{X}(\mathbb{F}_{q^n})/\sim} \frac{1}{\# \text{Aut}(x)}.$$ (1)
Define (integral) Donaldson-Thomas invariants $\Omega_{r,d}$ using the plethystic logarithm (see §2.2)

$$\sum_{d/r=\tau} \Omega_{r,d} T^r z^d = (q-1) \log \left(\sum_{d/r=\tau} (-q^{\frac{1}{r}})^{-\ell r^2} [\mathcal{M}_L(r,d)] T^r z^d \right), \quad \tau \in \mathbb{Q}. \quad (2)$$

Note that if r, d are coprime, then every $E \in \mathcal{M}_L(r,d)$ is stable and $\text{End}(E) = \mathbb{F}_q$ (see Remark 3.1). Therefore

$$\frac{[\mathcal{M}_L(r,d)]}{q-1} = [\mathcal{M}_L(r,d)] = (-q^{\frac{1}{r}})^{-\ell r^2} \Omega_{r,d} q^{(1)}$$

hence we can recover $[\mathcal{M}_L(r,d)]$ from $\Omega_{r,d}$. Consider the zeta function of the curve X

$$Z_X(t) = \exp \left(\sum_{n \geq 1} \frac{\#X(\mathbb{F}_q^n)}{n} t^n \right) = \frac{\prod_{i=1}^{g} (1 - \alpha_i t)(1 - \alpha_i^{-1} qt)}{(1-t)(1/qt)},$$

where α_i are the Weil numbers of X (see §2.4). The following result was conjectured in [18] (cf. §4.3). We formulate it in the case $\deg L > 2g - 2$ (see Remark 4.5 for the case $L = \omega_X$).

Theorem 1.1 (cf. Theorem 4.4). Assume that $p = \ell - (2g - 2) > 0$. Given a partition λ and a box $s \in \lambda$, let $a(s)$ and $l(s)$ denote its arm and leg lengths respectively (see §2). Define

$$\hat{\Omega}_p(T, z) = \sum_{\lambda} T^{\ell \lambda} \prod_{s \in \lambda} (-q^{a(s)} z^{l(s)})^p \prod_{i=1}^{q} \frac{(q^{a(s)} - \alpha_i^{-1} z^{l(s)+1})(q^{a(s)} z^{l(s)+1} - \alpha_i z^{l(s)})}{(q^{a(s)} - z^{l(s)+1})(q^{a(s)+1} - z^{l(s)})}, \quad (4)$$

$$\sum_{r \geq 1} \Omega_r(z) T^r = (q-1)(1-z) \log \hat{\Omega}_p(T, z). \quad (5)$$

Then $\Omega_r(z) \in \mathbb{Z}[q, z, \alpha_1^{\pm 1}, \ldots, \alpha_g^{\pm 1}]$ and $\Omega_{r,d} = q^{pr/2} \Omega_r(1)$ for all $d \in \mathbb{Z}$. In particular, if r, d are coprime, then

$$[\mathcal{M}_L(r,d)] = (-1)^p q^{(g-1)r^2 + p} \Omega_r(1). \quad (6)$$

2. Preliminaries

2.1. Partitions. A partition is a sequence of integers $\lambda = (\lambda_1 \geq \lambda_2 \geq \ldots)$ such that $\lambda_n = 0$ for $n \gg 0$. We define its length $l(\lambda) = \# \{ i \mid \lambda_i \neq 0 \}$ and its weight $|\lambda| = \sum \lambda_i$. Define its Young diagram (also denoted by λ)

$$d(\lambda) = \{ (i, j) \in \mathbb{Z}^2 \mid i \geq 1, 1 \leq j \leq \lambda_i \}. \quad (7)$$

An element $s = (i, j) \in \lambda$ is called a box of the Young diagram located at the i-th row and j-th column. Define the conjugate partition λ' with λ'_j equal the number of boxes in the j-th column of λ. Given a box $s = (i, j) \in \lambda$, define its arm and leg lengths respectively

$$a(s) = \lambda_i - j, \quad l(s) = \lambda'_j - i. \quad (8)$$

Define the hook length $h(s) = a(s) + l(s) + 1$.

Figure 1. Young diagram for $\lambda = (4, 4, 2)$. Here $\lambda' = (3, 3, 2, 2)$, $s = (2, 1)$, $a(s) = 3$, $l(s) = 1$, $h(s) = 5$.

\[\begin{array}{ccc}
\, & & \, \\
\, & s & \, \\
\, & & \, \\
\end{array} \]
Define
\[n(\lambda) = \sum_{s \in \lambda} l(s) = \sum_{i \geq 1} \binom{\lambda_i}{2} = \sum_{i \geq 1} (i-1)\lambda_i, \] (9)

\[\langle \lambda, \lambda \rangle = \sum_{i \geq 1} (\lambda'_i)^2 = 2n(\lambda) + |\lambda|. \] (10)

Define
\[N_{\lambda}(u, q, t) = \prod_{s \in \lambda} (q^{a(s)} - ut^{l(s)+1})(q^{a(s)+1} - ut^{l(s)}). \] (11)

One can show that
\[N_{\lambda}(u, q, t) = N_{\lambda'}(u, t, q). \] (12)

2.2. \(\lambda \)-rings and symmetric functions. For simplicity we will introduce only \(\lambda \)-rings without \(\mathbb{Z} \)-torsion. To make things even simpler we can assume that our rings are algebras over \(\mathbb{Q} \). The reason is that in this case the axioms of a \(\lambda \)-ring can be formulated in terms of Adams operations.

Define the graded ring of symmetric polynomials
\[\Lambda_n = \mathbb{Z}[x_1, \ldots, x_n]^{S_n}, \]
where \(\deg x_i = 1 \). Define the ring of symmetric functions \(\Lambda = \lim \Lambda_n \), where the limit is taken in the category of graded rings. For any commutative ring \(R \), define \(\Lambda_R = \Lambda \otimes \mathbb{Z} R \). As in [13], define generators of \(\Lambda \) (complete symmetric and elementary symmetric functions)
\[h_n = \sum_{i_1 \leq \cdots \leq i_n} x_{i_1} \cdots x_{i_n}, \quad e_n = \sum_{i_1 < \cdots < i_n} x_{i_1} \cdots x_{i_n}, \]
and generators of \(\Lambda_{\mathbb{Q}} \) (power sums)
\[p_n = \sum_i x_i^n. \]

The elements \(h_n, e_n, p_n \) have degree \(n \). We also define \(h_0 = e_0 = p_0 = 1 \) for convenience. For any partition \(\lambda \) of length \(\leq n \), define monomial symmetric polynomials \(m_\lambda = \sum x^\alpha \in \Lambda_n \), where the sum runs over all distinct permutations \(\alpha = (\alpha_1, \ldots, \alpha_n) \) of \((\lambda_1, \ldots, \lambda_n) \). They induce monomial symmetric functions \(m_\lambda \in \Lambda \) which form a \(\mathbb{Z} \)-basis of \(\Lambda \).

A \(\lambda \)-ring \(R \) is a commutative ring equipped with a pairing, called plethysm,
\[\Lambda \times R \to R, \quad (f, a) \mapsto f \circ a = f[a], \]
such that with \(\psi_n = p_n[-] : R \to R \), called Adams operations, we have
\begin{enumerate}
 \item The map \(\Lambda \to R, \ f \mapsto f[a], \) is a ring homomorphism, for all \(a \in R \).
 \item \(\psi_1 : R \to R \) is an identity map.
 \item The map \(\psi_n : R \to R \) is a ring homomorphism, for all \(n \geq 1 \).
 \item \(\psi_m \psi_n = \psi_{mn} \), for all \(m, n \geq 1 \).
\end{enumerate}

Remark 2.1.
\begin{enumerate}
 \item The first axiom implies that it is enough to specify just Adams operations \(\psi_n \) or \(\sigma \)-operations \(\sigma_n = h_n[-] \) or \(\lambda \)-operations \(\lambda_n = e_n[-] \). It also implies that \(1[a] = 1 \), for all \(a \in R \).
 \item Usually we equip algebras of the form \(\mathbb{Q}[x_1, \ldots, x_k], \mathbb{Q}(x_1, \ldots, x_k), \mathbb{Q}[x_1, \ldots, x_k] \) with a \(\lambda \)-ring structure by the formula
 \[p_n[f(x_1, \ldots, x_k)] = f(x_1^n, \ldots, x_k^n). \]
\end{enumerate}
The ring Λ can be itself equipped with a λ-ring structure using the same formula

$$p_m[f] = f(x_1^m, x_2^m, \ldots), \quad f \in \Lambda.$$

In particular $p_m[p_n] = p_{mn}$.

(4) If R is a λ-ring, then $f \circ (g \circ a) = (f \circ g) \circ a$ for all $f, g \in \Lambda$ and $a \in R$.

The ring Λ can be considered as a free λ-ring with one generator in the following sense. Consider the category Ring_λ of λ-rings (with morphisms that respect plethystic operations). The forgetful functor $F: \text{Ring}_\lambda \to \text{Set}$ has a left adjoint

$$\text{Sym}: \text{Set} \to \text{Ring}_\lambda.$$

Given a finite set $\{X_1, \ldots, X_n\}$, we denote $\text{Sym} \{X_1, \ldots, X_n\}$ by $\text{Sym}[X_1, \ldots, X_n]$. Then, for a one-point set $\{X\}$, there is an isomorphism of λ-rings

$$\text{Sym}[X] \cong \Lambda, \quad X \mapsto p_1.$$

We will usually identify Λ and $\text{Sym}[X]$ using this isomorphism.

Define a filtered λ-ring R to be a λ-ring equipped with a filtration $R = F^0 \supset F^1 \supset \ldots$ such that $F^i F^j \subset F^{i+j}$ and $\psi_n(F^i) \subset F^{ni}$. It is called complete if the natural homomorphism $R \to \lim_{\leftarrow} R/F^i$ is an isomorphism. For example, the ring Λ is graded, where $\deg h_n = n$. Hence we have a decomposition $\Lambda = \bigoplus_{k \geq 0} \Lambda^k$ into graded components. We equip Λ with the filtration $F^k \Lambda = \bigoplus_{i \geq k} \Lambda^i$ and define the completion

$$\hat{\Lambda} = \lim_{\leftarrow} \Lambda/F^k \Lambda \simeq \mathbb{Z}[h_1, h_2, \ldots].$$

(13)

This ring can be considered as a free complete λ-ring with one generator. One can see that if R is a complete λ-ring then the plethystic pairing extends to

$$\hat{\Lambda} \times F^1 R \to R.$$

In particular, the element

$$\text{Exp}[X] = \sum_{n \geq 0} h_n[X] = \exp \left(\sum_{n \geq 1} \frac{p_n[X]}{n} \right) = \prod_{i \geq 1} \frac{1}{1 - x_i} \in \hat{\Lambda},$$

(14)

called a plethystic exponential, induces a map $\text{Exp}: F^1 R \to 1 + F^1 R$ which satisfies

$$\text{Exp}[a + b] = \text{Exp}[a] \text{Exp}[b].$$

(15)

This map has an inverse, called a plethystic logarithm,

$$\text{Log}: 1 + F^1 R \to F^1 R, \quad \text{Log}[1 + a] = \sum_{n \geq 1} \frac{\mu(n)}{n} p_n[\text{log}(1 + a)].$$

(16)

2.3. Modified Macdonald polynomials. For an introduction to modified Macdonald polynomials see [8] or [15]. Let P_n denote the set of partitions λ with $|\lambda| = n$. Define the natural partial order on P_n by

$$\lambda \preceq \mu \iff \sum_{i=1}^k \lambda_i \leq \sum_{i=1}^k \mu_i \quad \forall k \geq 1.$$

One can show that $\lambda \preceq \mu \iff \mu' \preceq \lambda'$ [13, 1.1.11]. Let $\Lambda^\lambda \subset \Lambda$ be the subspace spanned by monomial symmetric functions $m_\mu \in \Lambda$ with $\mu \preceq \lambda$.

Let \(F = \mathbb{Q}(q,t) \) and \(\Lambda_F = \Lambda \otimes_{\mathbb{Z}} F \). For any symmetric function \(f \in \Lambda_F \), we will sometimes denote \(f[X] \) by \(f[X; q,t] \) to indicate dependence on \(q,t \). Let \(P_{\lambda}[X; q,t] \in \Lambda_F \) be Macdonald polynomials \([13, \S 6]\). Define modified Macdonald polynomials \(\widetilde{H}_\lambda[X; q,t] \in \Lambda_F \) \([8, I.8-I.11]\)

\[
\widetilde{H}_\lambda[X; q,t] = H_\lambda \left[X; q, t^{-1} \right] \cdot t^n(\lambda), \quad H_\lambda[X] = P_\lambda \left[\frac{X}{1-t} \right] \cdot \prod_{s \in \lambda} (1-q^s t^{l+1}).
\] (17)

Alternatively, one can uniquely determine \(\widetilde{H}_\lambda[X; q,t] \in \Lambda_F \) by the properties

(1) \(\widetilde{H}_\lambda[(1-t)X] \in \Lambda_F^\wedge\lambda \).

(2) **Cauchy identity:**

\[
\sum_{\lambda} \frac{\widetilde{H}_\lambda[X] \widetilde{H}_\lambda[Y]}{\prod_{s \in \lambda} (q^a - t^{l+1})(q^{a'} - t^l)} = \text{Exp} \left[\frac{XY}{(q-1)(1-t)} \right].
\]

We have by \([8, \text{Cor. 2.1}]\) (see also \([13, 6.6.17]\))

\[
\widetilde{H}_\lambda[1-u; q,t] = \prod_{s \in \lambda} (1-q^{u}(s) t^{u(s)}),
\] (18)

where \(a'(s) = j - 1, t'(s) = i - 1 \) for \(s = (i,j) \in \lambda \). This implies \(\widetilde{H}_\lambda[1; q,t] = 1 \). The symmetric function \(\widetilde{H}_\lambda \) has degree \(|\lambda| \), hence, applying it to \(z \in F[z] \), we obtain

\[
\widetilde{H}_\lambda[z; q,t] = z^{|\lambda|}.
\] (19)

Finally, we have by \([8, \text{Cor. 2.2}]\)

\[
\widetilde{H}_\lambda[X; q,t] = \widetilde{H}_\lambda[X; t,q].
\] (20)

2.4 Volume ring.

Following \([17]\), we will introduce in this section a \(\lambda \)-ring which is an analogue of the Grothendieck ring of algebraic varieties or the ring of motives. We define it to be the ring \(\mathcal{V} = \prod_{n \geq 1} \mathbb{Q} \) with Adams operations

\[
\psi_m(a) = (a_{mn})_{n \geq 1}, \quad a = (a_n)_{n \geq 1} \in \mathcal{V},
\] (21)

and call it the volume ring or the ring of counting sequences \([17]\).

Given an algebraic variety \(X \) over a finite field \(\mathbb{F}_q \), define its volume

\[
[X] = (\#X(\mathbb{F}_{q^n}))_{n \geq 1} \in \mathcal{V}.
\] (22)

More generally, given a finite type algebraic stack \(\mathcal{X} \) over \(\mathbb{F}_q \), we define its volume

\[
[\mathcal{X}] = (\#\mathcal{X}(\mathbb{F}_{q^n}))_{n \geq 1} \in \mathcal{V},
\] (23)

where we define, for a finite groupoid \(\mathcal{G} = \mathcal{X}(\mathbb{F}_{q^n}) \),

\[
\# \mathcal{G} = \sum_{x \in \mathcal{G}/\sim} \frac{1}{\# \text{Aut}(x)}.
\] (24)

Next, let us fix a projective curve \(X \) over the field \(\mathbb{F}_q \) and consider its zeta function

\[
Z_X(t) = \exp \left(\sum_{n \geq 1} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n \right) = \prod_{i=1}^g (1-\alpha_i t)(1-\alpha_i^{-1} q t)/(1-t)(1-qt),
\] (25)

\[
\#X(\mathbb{F}_{q^n}) = 1 + q^n - \sum_{i=1}^g \alpha_i^n - q^n \sum_{i=1}^g \alpha_i^{-n} \quad \forall n \geq 1.
\] (26)
Consider the algebra
\[R_g = \mathbb{Q}[q^{\pm 1}, \alpha_1^{\pm 1}, \ldots, \alpha_g^{\pm 1}, (q^n - 1)^{-1} : n \geq 1], \tag{27} \]
equipped with the usual \(\lambda \)-ring structure
\[\psi_n(f) = f(q^n, \alpha_1^n, \ldots, \alpha_g^n) \quad \forall f \in R_g. \]
Consider an algebra homomorphism
\[\sigma: R_g \to \mathbb{C}, \quad q \mapsto q, \ \alpha_i \mapsto \alpha_i, \]
and a \(\lambda \)-ring homomorphism
\[\bar{\sigma}: R_g \to \mathcal{V}_\mathbb{C} = \prod_{n \geq 1} \mathbb{C}, \quad f \mapsto (\sigma(\psi_n(f)))_{n \geq 1}. \tag{28} \]
It restricts to an (injective) \(\lambda \)-ring homomorphism
\[\bar{\sigma}: R_g^{S_g \times S_2} \to \mathcal{V}, \tag{29} \]
where \(S_g \) permutes variables \(\alpha_i \) and the \(i \)-th copy of \(S_2 \) permutes \(\alpha_i \) and \(q \alpha_i^{-1} \). Given elements \(a \in \mathcal{V} \) and \(f \in R_g \), we will write \(a = f \) if \(a = \bar{\sigma}(f) \). All equalities in this paper should be understood in this sense. For example \([K^1] = (q^n)_{n \geq 1} = q \) and (26) implies
\[[X] = 1 + q - \sum_{i=1}^g \alpha_i - q \sum_{i=1}^g \alpha_i^{-1}. \]
In what follows we will write \(q \) and \(\alpha_i \) instead of \(q \) and \(\alpha_i \) respectively, hoping it will not lead to confusion.

3. Positive Higgs bundles

In this section we will review the formula from [20] counting positive Higgs bundles. Then we will simplify it using an approach from [16]. Let \(X \) be a smooth projective curve of genus \(g \) over a field \(k \) and let \(L \) be a line bundle of degree \(\ell \) over \(X \). Given a coherent sheaf \(E \in \text{Coh} \ X \), we define its slope \(\mu(E) = \deg E / \text{rk} E \) and we call \(E \) semistable if \(\mu(F) \leq \mu(E) \) for all \(F \subset E \).

Remark 3.1. We call \(E \) stable if \(\mu(F) < \mu(E) \) for all proper \(F \subset E \). In this case \(K = \text{End}(E) \) is a finite-dimensional division algebra over \(k \) by Schur’s lemma. In particular, \(K = k \) if \(k \) is algebraically closed. If \(\text{rk} E, \deg E \) are coprime and \(E \) is semistable, then \(E \) is automatically stable. If, moreover, \(k \) is a finite field, then \(K = k \). Indeed, \(K \) is a finite (Galois) field extension of \(k \) by Wedderburn’s little theorem. We can decompose \(E_K = E \otimes_k K \) over \(X_K = X \times_{\text{Spec} k} \text{Spec} K \) as a direct sum \(\bigoplus_{\sigma \in \text{Gal}(K/k)} F^\sigma \), where \(F^\sigma \) have the same rank and degree [17]. But this would imply that \(\text{rk} E, \deg E \) are not coprime if \([K:k] > 1 \).

Every coherent sheaf \(E \in \text{Coh} \ X \) has a unique filtration, called a Harder-Narasimhan filtration,
\[0 = E_0 \subset E_1 \subset \ldots \subset E_n = E \]
such that \(E_i/E_{i-1} \) are semistable and \(\mu(E_i/E_0) > \cdots > \mu(E_n/E_{n-1}) \). We will say that \(E \) is positive if \(\mu(E_n/E_{n-1}) \geq 0 \). Equivalently, for any semistable sheaf \(F \) with \(\mu(F) < 0 \), we have \(\text{Hom}(E, F) = 0 \).

Recall that an \(L \)-twisted Higgs sheaf is a pair \((E, \phi)\), where \(E \) is a coherent sheaf over \(X \) and \(\phi: E \to E \otimes L \) is a homomorphism. We will say that \((E, \phi)\) is positive if \(E \) is positive.
Let $\text{Higgs}_L(X)$ be the category of L-twisted Higgs sheaves and $\text{Higgs}_+^L(X)$ be the category of positive L-twisted Higgs sheaves. We will say that $(E, \phi) \in \text{Higgs}_L^+(X)$ is semistable if

$$
\mu(F) \leq \mu(E) \quad \text{for every} \quad (F, \phi') \subset (E, \phi).
$$

Let $\mathcal{M}_L^+(r, d)$ denote the stack of semistable Higgs bundles and $\mathcal{M}_L^0(r, d)$ denote the stack of positive Higgs bundles (not necessarily semistable) having rank r and degree d. Assuming that k is a finite field \mathbb{F}_q, we define (exponential) DT invariants

$$
\hat{\Omega}_{r,d} = (-q^{\frac{1}{2}})^{-\ell r^2 |\mathcal{M}_L^+(r, d)|}
$$

and define (integral) DT invariants by the formula

$$
\sum_{d/r} \Omega_{r,d} T^r z^d = (q - 1) \log \left(\sum_{d/r} \hat{\Omega}_{r,d} T^r z^d \right), \quad \tau \in \mathbb{Q};
$$

On the other hand, consider the series

$$
\hat{\Omega}^+(T, z) = \sum_{r,d} (-q^{\frac{1}{2}})^{-\ell r^2 |\mathcal{M}_L^+(r, d)|} T^r z^d
$$

and define positive (integral) DT invariants by the formula

$$
\sum_{r,d} \Omega^+_{r,d} T^r z^d = (q - 1) \log \hat{\Omega}^+(T, z).
$$

The following result was proved in [20]:

Theorem 3.2. For every $r \geq 1$, we have

1. $\hat{\Omega}_{r,d+r} = \hat{\Omega}_{r,d}$.
2. $\Omega_{r,d+r} = \Omega_{r,d}$.
3. $\Omega_{r,d} = \Omega^+_{r,d}$ for $d \gg 0$.

The last result implies that it is enough to find the positive DT invariants $\Omega^+_{r,d}$ in order to determine the usual DT invariants $\Omega_{r,d}$. The following explicit formula for the series $\hat{\Omega}^+(T, z)$ was proved in [20] (although the power of z was missing there).

Theorem 3.3. Assuming that $p = \ell - (2g - 2) > 0$, we have

$$
\hat{\Omega}^+(T, z) = \sum_{\lambda} (-q^{\frac{1}{2}})^{\ell(\lambda, \lambda)} z^{m(\lambda)} J_\lambda(z) H_\lambda(z) T^{|\lambda|},
$$

where the sum runs over all partitions λ and $J_\lambda(z), H_\lambda(z)$ are certain complicated expressions defined in [20].

The following simplification of the above expression was obtained in [16, Prop. 3.1].

Proposition 3.4. For every partition λ of length n define

$$
f(z_1, \ldots, z_n; q, \alpha) = \prod_{i=1}^{n} \prod_{k=1}^{g} \frac{1 - \alpha_k^{-1}}{1 - \alpha_k^{-1} z_i} \prod_{i>j} \left(\frac{1}{1 - z_i/z_j} \prod_{k=1}^{g} \frac{1 - \alpha_k^{-1} z_i/z_j}{1 - q \alpha_k^{-1} z_i/z_j} \right) \prod_{i \geq 2} (1 - z_i), \quad \sigma \in S_n
$$

$$
f_\lambda = f(z_1, \ldots, z_n; q, \alpha), \quad z_i = q^{i-n} z^{\lambda_i}, \quad i = 1, \ldots, n.
$$
where $\bar{\alpha} = (\alpha_1, \ldots, \alpha_g)$. Then (see (11) for the definition of N_λ)
\begin{equation}
q^{(s-1)(\lambda, \lambda)} J_\lambda(z) H_\lambda(z) = \frac{\prod_{i=1}^{g} N_\lambda(\alpha_i^{-1}, z, q)}{N_\lambda(1, z, q)} f_\lambda.
\end{equation}

The last two results imply

Corollary 3.5. Assuming that $p = \ell - (2g - 2) > 0$, we have
\begin{equation}
\hat{\Omega}^+(q^{-p/2}T, z) = \sum_{\lambda} \left((1)^{\lambda} q^{n(\lambda)} z^{n(\lambda)}\right)^p \frac{\prod_{i=1}^{g} N_\lambda(\alpha_i^{-1}, z, q)}{N_\lambda(1, z, q)} f_\lambda \cdot (q^{p/2}T)^{|\lambda|}.
\end{equation}

Proof. Using the fact that $\langle \lambda, \lambda \rangle = 2n(\lambda) + |\lambda|$ (see (10)), we obtain

\begin{equation}
\hat{\Omega}^+(T, z) = \sum_{\lambda} \left((1)^{\lambda} q^{n(\lambda)} z^{n(\lambda)}\right)^p \frac{\prod_{i=1}^{g} N_\lambda(\alpha_i^{-1}, z, q)}{N_\lambda(1, z, q)} f_\lambda \cdot (q^{p/2}T)^{|\lambda|}.
\end{equation}

Now we sum over conjugate partitions and apply (12). \qed

Lemma 3.6. We have
\[
f \in \mathbb{Q}[z_1^{\pm 1}, \ldots, z_n^{\pm 1}; q^{\pm 1}][\alpha_1^{-1}, \ldots, \alpha_g^{-1}].
\]

Proof. The factors $(1 - z_i/z_j)$ disappear from the denominator of f when we sum over S_n, so looking at the remaining factors we see that
\[
f(z_1, \ldots, z_n) \cdot \prod_{k=1}^{g} \left(\prod_{i=1}^{n} (1 - \alpha_k^{-1} z_i) \prod_{i \neq j} (1 - q\alpha_k^{-1} z_i/z_j) \right)
\]
is a Laurent polynomial. The result follows on observing that every factor in the brackets is invertible in $\mathbb{Q}[z_1^{\pm 1}, \ldots, z_n^{\pm 1}; q^{\pm 1}][\alpha_1^{-1}, \ldots, \alpha_g^{-1}]$. \qed

Proposition 3.7 (see [16, §4.2]). We have
\[
f(1, z_1, \ldots, z_n) = f(qz_1, \ldots, qz_n).
\]

4. MAIN RESULT

4.1. Admissibility. Let R be a λ-ring flat over $\mathbb{Q}(q)[t^{\pm 1}]$ and let $R^* = R \otimes_{\mathbb{Q}(q)[t^{\pm 1}]} \mathbb{Q}(q, t)$. We will say that $F \in R^*$ is admissible if $(1 - t) \log F$ is contained in R (usually R will be clear from the context). In view of Proposition 3.7, we introduce the following concept.

Definition 4.1. Let $q \in R$ be an invertible element. For every $n \geq 0$, consider rings $\bar{\Lambda}_n = R[z_1^{\pm 1}, \ldots, z_n^{\pm 1}]^{S_n}$ and ring homomorphisms
\[
\pi_n: \bar{\Lambda}_{n+1} \to \bar{\Lambda}_n, \quad (\pi_n f)(z_1, \ldots, z_n) = f(1, q^{-1}z_1, \ldots, q^{-1}z_n).
\]

Define a q-twisted symmetric function $f = (f_n)_{n \geq 0}$ to be an element of $\bar{\Lambda} = \varprojlim \bar{\Lambda}_n$.

Given a q-twisted symmetric function f, define for any partition λ (cf. (35))
\begin{equation}
f_\lambda = f_n(z_1, \ldots, z_n), \quad z_i = q^{-n} t^\lambda_i, \quad n \geq l(\lambda).
\end{equation}

Note that this expression is independent of the choice of $n \geq l(\lambda)$.

Remark 4.2. The following result is a reformulation of [16, Lemma 5.1]. Here we exchange the roles of q, t and use conjugate partitions. We also add an invertible factor $(q - 1)$.
Theorem 4.3. Let \(f(u) = \sum_{i \geq 0} f^{(i)} u^i \in \mathbb{A}[u] \) be a power series with \(f^{(0)} = 1 \) and let
\[
\hat{\Omega}[X; u] = \sum_{\lambda} c_{\lambda} \tilde{H}_\lambda[X; q, t] f_{\lambda'}(u), \quad \Omega[X; u] = (q - 1)(1 - t) \log \hat{\Omega}[X; u],
\]
where \(c_{\lambda} \in \mathbb{R}^* \) and \(c_\phi = 1 \). If \(\hat{\Omega}[X; 0] \) is admissible, then \(\Omega[X; u] - \Omega[X; 0] \) has coefficients in \((t - 1)R\). In particular, \(\Omega[X; u] \) is independent of \(u \) at \(t = 1 \).

4.2. Proof of the main theorem. Now we are ready to prove Theorem 1.1 from the introduction. For this section we will use the variable \(t \) in place of \(z \) as it is customary in the theory of orthogonal symmetric polynomials.

Theorem 4.4 (cf. Theorem 1.1). Assume that \(p = \ell - (2g - 2) > 0 \). Define (see (11) for the definition of \(N_\lambda \))
\[
\hat{\Omega}^p(T, q, t) = \sum_{\lambda} \left((-1)^{|\lambda|} q^{n(\lambda)} t^{n(\lambda)} \right)^p \frac{\prod_{i=1}^g N_\lambda(\alpha_i^{-1}, q, t)}{N_\lambda(1, q, t)} T^{|\lambda|}, \tag{39}
\]
\[
\Omega^p(T, q, t) = \sum_{r \geq 1} \Omega_r^+(q, t) T^r = (q - 1)(1 - t) \log \hat{\Omega}^p(T, q, t). \tag{40}
\]
Then \(\Omega_r^+(q, t) \in \mathbb{Z}[q, t, \alpha_1^\pm, \ldots, \alpha_g^\pm] \) and
\[
\Omega_{r,d} = q^{pr/2} \Omega_r^+(q, 1) \quad \forall d \in \mathbb{Z}.
\]

Proof. According to Theorem 3.2 it is enough to show that \(\Omega_{r,d}^+ = q^{pr/2} \Omega_r^+(q, 1) \) for \(d \gg 0 \), where \(\Omega_{r,d}^+ \) are determined by (33) and Corollary 3.5:
\[
\hat{\Omega}^+(q^{-p/2} T, q, t) = \sum_{\lambda} \left((-1)^{|\lambda|} q^{n(\lambda)} t^{n(\lambda)} \right)^p \frac{\prod_{i=1}^g N_\lambda(\alpha_i^{-1}, q, t)}{N_\lambda(1, q, t)} f_{\lambda'} T^{|\lambda|}, \tag{41}
\]
\[
\Omega^+(T, q, t) = \sum_r \Omega_r^+(q, t) T^r = \sum_{r, d} \Omega_{r,d}^+ T^r t^d = (q - 1)(1 - t) \log \hat{\Omega}^+(T, q, t). \tag{42}
\]

We will compare the series \(\hat{\Omega}^+(q^{-p/2} T, q, t) \) to the series \(\hat{\Omega}^p(T, q, t) \) using Theorem 4.3 with the ring of Laurent series
\[
R = \mathbb{Q}(q)[t^{\pm 1}](\alpha_1^{-1}, \ldots, \alpha_g^{-1})
\]
and the series \(\hat{f}(u) = \sum_{i \geq 0} \hat{f}^{(i)} u^i \) which is a deformation of \(f \) (34) defined by
\[
\hat{f}^{(i)} = (\hat{f}_n^{(i)})_{n \geq 0}, \quad \hat{f}_n(z_1, \ldots, z_n; u) = \sum_{i \geq 0} \hat{f}_n^{(i)} u^i = f(z_1, \ldots, z_n; q, u^{-1} a),
\]
where every \(\alpha_i \) is substituted by \(u^{-1} \alpha_i \). It follows from Lemma 3.6 that
\[
\hat{f}_n \in \mathbb{Q}[q^{\pm 1}, \alpha_1^{\pm 1}, \ldots, \alpha_g^{\pm 1}][z_1^{\pm 1}, \ldots, z_n^{\pm 1}] S_n[u],
\]
and hence by Proposition 3.7 the coefficients \(\hat{f}^{(i)} \) are \(q \)-twisted symmetric functions over \(R \). It follows from [16, Theorem 5.2] that \(\hat{f}_n|_{u=0} = 1 \), hence \(\hat{f}(0) = 1 \).

As before, define
\[
\tilde{f}_{\lambda}(u) = \tilde{f}_n(z_1, \ldots, z_n; u), \quad z_i = q^{-n} t^{\lambda_i}, \quad n \geq l(\lambda),
\]
and consider the series of symmetric functions
\[
\hat{\Omega}[X; u, q, t] = \sum_{\lambda} \left((-1)^{|\lambda|} q^{n(\lambda)} t^{n(\lambda)} \right)^p \frac{\prod_{i=1}^g N_\lambda(\alpha_i^{-1}, q, t)}{N_\lambda(1, q, t)} \tilde{H}_\lambda[X; q, t] \tilde{f}_{\lambda'}(u), \tag{44}
\]
\[
\Omega[X; u, q, t] = (q - 1)(1 - t) \log \hat{\Omega}[X; u, q, t]. \tag{45}
\]
Then (39) and (41) translate to

\[
\hat{\Omega}[T; 0, q, t] = \hat{\Omega}^\circ(T, q, t), \quad \Omega[T; 0, q, t] = \Omega^\circ(T, q, t), \\
\hat{\Omega}[T; 1, q, t] = \hat{\Omega}^+(q^{-p/2}T, q, t), \quad \Omega[T; 1, q, t] = (1 - t)\Omega^+(q^{-p/2}T, q, t).
\]

In order to apply Theorem 4.3 we need to show that

\[
\hat{\Omega}[X; 0, q, t] = \sum_\lambda \left((-1)^{|\lambda|}q^{n(X)} t^{n(\lambda)}\right) \frac{\prod_{i=1}^p N_\lambda(\alpha_i^{-1}, q, t)}{N_\lambda(1, q, t)} \tilde{H}_\lambda[X; q, t]
\]
is admissible. The series

\[
\sum_\lambda \frac{\prod_{i=1}^p N_\lambda(\alpha_i^{-1}, q, t)}{N_\lambda(1, q, t)} \tilde{H}_\lambda[X; q, t]
\]
is admissible according to [14]. The operator \(\nabla\) defined by

\[
\tilde{H}_\lambda \mapsto (-1)^{|\lambda|}q^{n(X)} t^{n(\lambda)} \tilde{H}_\lambda
\]
preserves admissibility by [14, Cor. 6.3]. Therefore the series \(\hat{\Omega}[X; 0, q, t]\) is also admissible (one actually obtains from [14] that the coefficients of \(\Omega[X; 0, q, t]\) are in \(\mathbb{Z}[q, t, \alpha_1^{\pm 1}, \ldots, \alpha_g^{\pm 1}]\), hence the same is true for \(\Omega^\circ(T, q, t)\)).

We conclude from Theorem 4.3 that

\[
\Omega[T; u, q, t] - \Omega[T; 0, q, t] \in (1 - t)R[T, u]. \quad (46)
\]

By Lemma 3.6 we can consider \(\hat{\Omega}[T; u, q, t]\) (44) as a series with polynomial coefficients in \(u\)

\[
\hat{\Omega}[T; u, q, t] \in \mathbb{Q}(q, t)[u][\langle \alpha_1^{-1}, \ldots, \alpha_g^{-1} \rangle][T].
\]
The same then applies to \(\Omega[T; u, q, t]\) and we can set \(u = 1\) in (46). We obtain

\[
(1 - t)\Omega^+(q^{-p/2}T, q, t) - \Omega^\circ(T, q, t) \in (1 - t)R[T].
\]
This implies that \((1 - t)q^{-pr/2}\Omega^+_r(q, t) - \Omega^\circ_r(q, t) = (1 - t)g\) for some \(g \in R\). Therefore

\[
q^{-pr/2} \sum_{d \geq 0} \Omega^+_r d^d = \frac{\Omega^\circ_r(q, t)}{1 - t} + g.
\]
Comparing the coefficients of the monomials in \(\alpha_1, \ldots, \alpha_g\) and using the fact that \(\Omega^+_r(q, 1) = \Omega^+_r(q, 1)\) for \(d \gg 0\), we conclude that \(q^{-pr/2}\Omega^+_r \rightarrow \Omega^+_r(q, 1)\) for \(d \gg 0\). \(\Box\)

Remark 4.5. Let us also formulate the result in the case \(L = \omega_X\) (the canonical bundle) for completeness [16]. In this case we have \(\ell = 2g - 2\) and \(p = \ell - (2g - 2) = 0\). Define as before

\[
\hat{\Omega}^\circ(T, q, t) = \sum_\lambda \prod_{i=1}^p N_\lambda(\alpha_i^{-1}, q, t) T^{\lambda} \quad (47)
\]

\[
\Omega^\circ(T, q, t) = \sum_{r \geq 1} \Omega^\circ_r(q, t) T^r = (q - 1)(1 - t) \log \hat{\Omega}^\circ(T, q, t). \quad (48)
\]

Using results of [20] and the same proof as before, we obtain the formula for integral Donaldson-Thomas invariants \(\Omega_{r,d} = q\Omega^\circ_r(q, 1)\) (note the additional factor \(q\)). These invariants are related to the invariants \(A_{r,d}\) counting absolutely indecomposable vector bundles of rank \(r\) and degree \(d\) over \(X\): \(\Omega_{r,d} = qA_{r,d}\) [20]. This implies \(A_{r,d} = \Omega^\circ_r(q, 1)\), as was proved by Mellit [16].
4.3. Alternative formulation. The following result was conjectured in [18, Conj. 3].

Theorem 4.6. Assume that \(p = \ell - (2g - 2) > 0 \). Consider the series

\[
\mathcal{H}(T, q, t) = \sum_{\lambda} T^{[\lambda]} \prod_{s \in \lambda} (-t^{-a(s)}q^{a(s)})^{p_g(1-g)(2l+1)} Z_X(t^{h(s)}q^{a(s)}),
\]

\[
\mathcal{H}^p(T, q, t) = \sum_{r \geq 1} \mathcal{H}_r^p(q, t) T^r = (1 - t)(1 - qt) \log \mathcal{H}(T, q, t).
\]

Then \(\mathcal{H}_r^p(q, t) \in \mathbb{Z}[q, t, \alpha_1, \ldots, \alpha_g] \) and \(\Omega_{r,d} = q^{pr/2} \mathcal{H}_r^p(q, t) \).

Proof. Using the substitution \(t \mapsto t^{-1} \), we obtain

\[
\mathcal{H}(T, q, t^{-1}) = \sum_{\lambda} T^{[\lambda]} \prod_{s \in \lambda} (-t^{-a}q^a)^p l^{(g-1)(2l+1)} Z_X(t^{-h}q^a)
\]

\[
= \sum_{\lambda} T^{[\lambda]} \prod_{s \in \lambda} (-t^{-a}q^a)^p \prod_{i=1}^{g} \frac{(t^{l+1} - \alpha_i^{-1} pq^a)(t^l - \alpha_i^{-1} t^{-a-1}q^a)}{(t^{l+1} - t^{-a}q^a)(t^l - t^{-a}q^a)},
\]

while

\[
t \mathcal{H}^p(T, q, t^{-1}) = (1 - t)(t^{-1}q - 1) \log \mathcal{H}(T, q, t^{-1}).
\]

Using the substitution \(q \mapsto qt \), we obtain

\[
\mathcal{H}(T, qt, t^{-1}) = \sum_{\lambda} T^{[\lambda]} \prod_{s \in \lambda} (-t^aq^a)^p \prod_{i=1}^{g} \frac{(t^{l+1} - \alpha_i^{-1} q^a)(t^l - \alpha_i^{-1} t^{-1}q^a)}{(t^{l+1} - q^a)(t^l - q^a)}
\]

\[
= \sum_{\lambda} T^{[\lambda]} \left((-1)^{|\lambda|} q^{n(\lambda)} t^{n(\lambda)} \right)^p \prod_{i=1}^{g} N_{\lambda}(\alpha_i^{-1}, q, t) \frac{N_{\lambda}(1, q, t)}{N_{\lambda}(1, q, t)}.
\]

Now the result follows from Theorem 4.4. \(\square \)

References

[1] Pierre-Henri Chaudouard, *Sur le comptage des fibrés de Hitchin*, Astérisque (2015), no. 369, 223–284.

[2] Pierre-Henri Chaudouard and Gérard Laumon, *Sur le comptage des fibrés de Hitchin nilpotents*, J. Inst. Math. Jussieu 15 (2016), no. 1, 91–164, arXiv:1307.7273.

[3] Wu-yen Chuang, Duiliu-Emanuel Diaconescu, and Guang Pan, *Wallcrossing and cohomology of the moduli space of Hitchin pairs*, Commun. Number Theory Phys. 5 (2011), no. 1, 1–56, arXiv:1004.4195.

[4] Galyna Dobrovolska, Victor Ginzburg, and Roman Travkin, *Moduli spaces, indecomposable objects and potentials over a finite field*, 2016, arXiv:1612.01733.

[5] Roman Fedorov, Alexander Soibelman, and Yan Soibelman, *Motivic classes of moduli of Higgs bundles and moduli of connections*, 2017, arXiv:1705.04890.

[6] Oscar García-Prada and Jochen Heinloth, *The y-genus of the moduli space of PGL_n-Higgs bundles on a curve (for degree coprime to n)*, Duke Math. J. 162 (2013), no. 14, 2731–2749, arXiv:1207.5614.

[7] Oscar García-Prada, Jochen Heinloth, and Alexander Schmitt, *On the motives of moduli of chains and Higgs bundles*, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 12, 2617–2668, arXiv:1104.5558.

[8] A. M. Garsia and M. Haiman, *A remarkable q,t-Catalan sequence and q-Lagrange inversion*, J. Algebraic Combin. 5 (1996), no. 3, 191–244.

[9] Peter B. Gothen, *The Betti numbers of the moduli space of stable rank 3 Higgs bundles on a Riemann surface*, Internat. J. Math. 5 (1994), no. 6, 861–875.

[10] Tamás Hausel, *Mirror symmetry and Langlands duality in the non-abelian Hodge theory of a curve*, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, arXiv:math.AG/0406380, pp. 193–217.

[11] Tamás Hausel and Fernando Rodriguez-Villegas, *Mixed Hodge polynomials of character varieties*, Invent. Math. 174 (2008), no. 3, 555–624, arXiv:math/0612668, With an appendix by Nicholas M. Katz.
[12] N. J. Hitchin, *The self-duality equations on a Riemann surface*, Proc. London Math. Soc. (3) **55** (1987), no. 1, 59–126.

[13] I. G. Macdonald, *Symmetric functions and Hall polynomials*, second ed., Oxford Mathematical Monographs, Oxford University Press, 1995, With contributions by A. Zelevinsky.

[14] Anton Mellit, *Integrality of HLV kernels*, 2016, arXiv:1605.01299.

[15] ______, *Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers*, 2017, arXiv:1710.04513.

[16] ______, *Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures)*, 2017, arXiv:1707.04214.

[17] Sergey Mozgovoy, *Poincaré polynomials of moduli spaces of stable bundles over curves*, Manuscripta Math. **131** (2010), no. 1-2, 63–86, arXiv:0711.0634.

[18] ______, *Solutions of the motivic ADHM recursion formula*, Int. Math. Res. Not. (2012), no. 18, 4218–4244, arXiv:1104.5698.

[19] ______, *Higgs bundles over \(\mathbb{P}^1 \) and quiver representations*, 2016, arXiv:1611.08515.

[20] Sergey Mozgovoy and Olivier Schiffmann, *Counting Higgs bundles and type A quiver bundles*, 2017, arXiv:1705.04849.

[21] R. Pandharipande and R. P. Thomas, *Curve counting via stable pairs in the derived category*, Invent. Math. **178** (2009), no. 2, 407–447, arXiv:0707.2348.

[22] Steven Rayan, *Co-Higgs bundles on \(\mathbb{P}^1 \)*, New York J. Math. **19** (2013), 925–945, arXiv:1010.2526.

[23] Olivier Schiffmann, *Indecomposable vector bundles and stable Higgs bundles over smooth projective curves*, Ann. of Math. (2) **183** (2016), no. 1, 297–362, arXiv:1406.3839.

E-mail address: mozgovoy@maths.tcd.ie

School of Mathematics, Trinity College Dublin, Ireland

Hamilton Mathematics Institute, Ireland