Combination of Angiotensin (1-7) Agonists and Convalescent Plasma as a New Strategy to Overcome Angiotensin Converting Enzyme 2 (ACE2) Inhibition for the Treatment of COVID-19

Hawraa Issa 1,2, Ali H. Eid 3,4, Bassam Berry 5, Vahideh Takhviji 6, Abbas Khosravi 6, Sarah Mantash 1, Rawan Nehme 1, Rawan Hallal 1, Hussein Karaki 7, Kawthar Dhayni 1,8, Wissam H. Faour 8, Firas Kobeissy 9, Ali Nehme 10 and Kazem Zibara * 1

Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Down regulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovascular system, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and...
INTRODUCTION

Starting November 2019, several cases of pneumonia of unknown etiology were reported in Wuhan, China (1). The causal agent was identified as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The newly identified betacoronavirus differs from severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV); however, it causes similar symptoms associated with pneumonia (2–4). In contrast to SARS-CoV-1, which caused the 2002 outbreak, SARS-CoV-2 exhibits a higher risk of transmission as evident from the rapid global rise in the number of Coronavirus disease 2019 (COVID-19) cases (2–4). As of mid-February 2021, more than 110 million cases have been confirmed, and nearly 2,400,000 deaths were reported globally, with the rapid increase of numbers in many countries.

SARS-CoV-2 is mainly transmitted from person to person through respiratory droplets, contact, aerosol, or oral-fecal transmission (5, 6). While most reported COVID-19 cases present mild to moderate pathology, 20% of infected patients may develop severe disease and need intensive care (7–12). Severe cases progress to acute respiratory distress syndrome (ARDS) after 8–9 days of symptoms onset (1). ARDS seen in severe COVID-19 cases is characterized by difficulty in breathing and low blood oxygen level, leading to respiratory failure, which is the main cause of death in 70% of fatal COVID-19 cases (8–10). Plasma analysis of severe cases showed a massive release of cytokines by the immune system (cytokine storm) in response to the viral infection and/or potential secondary bacterial and fungal infections (8, 9). This uncontrolled inflammation induced by SARS-CoV-2 infection results in multi-organ damage, leading to organ failure (10).

Keywords: ACE2, SARS-CoV-2, COVID-19, lung pathology, cardiovascular pathology, convalescent plasma (CP), Angiotensin 1-7 (Ang1-7), combination therapy

ACE2 IS PART OF A COMPLEX SYSTEM

ACE2 is a membrane-bound glycoprotein of 805 amino acids that exhibits 40% identity and 61% similarity to human angiotensin converting enzyme (ACE). Full-length ACE2 consists of a heavily glycosylated N-terminal signal sequence containing the active site, a hydrophobic transmembrane sequence, and a short C-terminal cytoplasmic tail. A soluble and catalytically active form of ACE2 can be also produced by several mechanisms, including the action of ADAMs family members of zinc metalloproteases.

Certain groups of the population are more susceptible to SARS-CoV-2 infection (11–14). The case fatality rate (CFR) seems to be age-dependent, with a higher percentage in the elderly, especially men. SARS-CoV-2 may have a higher transmissibility than SARS-CoV-1 and MERS-CoV (1, 8, 15, 16). Patients with pre-existing comorbidities such as chronic obstructive pulmonary disease (COPD), cardiovascular diseases, hypertension and type 2 diabetes mellitus, are more likely to display a severe course and to have higher mortality rates (13–18).

Initial research on SARS-CoV-2 demonstrated that it binds to host cells using the angiotensin-converting enzyme 2 (ACE2), similar to SARS-CoV-1. SARS-CoV-2 binds to ACE2 proteins as a receptor in bats, civet cats, swine, cats, ferrets, non-human primates, and humans (16–18).

The binding affinity of SARS-CoV-2 RBD to ACE2 seems stronger than that of SARS-CoV-1. Besides, SARS-CoV-2 has evolved to use a wide array of host proteases (transmembrane protease serine 2 (TMPRSS2), cathepsin L/B, furin, trypsin, etc.) for S-protein priming, thus facilitating cell entry following receptor binding. This may explain the considerably larger global influence of COVID-19 than the initial SARS epidemic of 2003 (19–21). It is worth noting that new SARS-CoV-2 strains, namely the British (B.1.1.7) and South African variants (B.1.351), that emerged toward the end of 2020 show increased transmissibility, associated with increased interaction force between Spike and ACE2 proteins due to viral mutations (22, 23). In addition, the RBD/ACE2 mediated SARS-CoV-2 entry into cells is followed by subsequent downregulation of surface ACE2 expression (24). Several reports indicate that the reduction in ACE2 function influences blood pressure, perturbs fluid/electrolyte balance, enhances inflammation, and vascular permeability in the airways, and facilitates the development ofmultiorgan damage from SARS-CoV-2 infections (25–29). Consequently, ACE2 appears as a critical factor in understanding COVID-19 pathology and a potential target for COVID-19 treatment.

Abbreviations: α7-nAChR, α7 subtype of the nicotinic acetylcholine receptor; ARDS, Acute respiratory distress syndrome; Ang I, angiotensin I; Ang (1–7), angiotensin (1–7); Ang (1–9), angiotensin (1–9); Ang II, angiotensin II; ACE, angiotensin converting enzyme; ACE2, angiotensin converting enzyme 2; ACEIs, angiotensin converting enzyme inhibitors; AT1R, angiotensin type 1 receptor; AT2R, angiotensin type 2 receptor; ARBs, angiotensin type 1 receptor blockers; Abs, antibodies; CV, cardiovascular; CVD, cardiovascular disease; CFR, case fatality rate; CCI, charlson comorbidity index; COPD, chronic obstructive pulmonary disease; CP, convalescent plasma; COVID-19, coronavirus disease-2019; CRP, C-reactive protein; DPP4, dipeptidylpeptidase 4; FP, fusion peptide; MasR, G-coupled receptor Mas; GPCR, G protein-coupled receptors; HR1, heptad repeat region 1; HR2, heptad repeat region 2; HT, hypertension; MERS-CoV, Middle East respiratory syndrome coronavirus; NS, non-specified; PCT, procalcitonin; RBD, receptor-binding domain; rhACE2, recombinant human ACE2; RAS, renin angiotensin system; RASls, renin angiotensin system inhibitors; SARS-CoV-1, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; S protein, spike protein; S1, S protein subunit 1; S2, S protein subunit 2; TMPRSS2, transmembrane protease serine 2.
ACE2 is the main enzyme involved in the production of the Ang (1-7) peptide of the renin-angiotensin system (RAS) (Figure 1). The latter comprises successive enzymatic reactions that regulate multiple biological processes, including cellular growth, proliferation, migration, extracellular matrix remodeling, and inflammation. While RAS includes multiple enzymatic axes leading to the production of different bioactive peptides, local tissue effects of RAS are driven mostly by the balance between the pro-inflammatory/pro-fibrotic and anti-inflammatory/anti-fibrotic actions of Ang-II and Ang (1–7), respectively (34, 35) (Figure 1).

Ang II is produced by the cleavage of Ang I by the angiotensin-converting enzyme (ACE), and it exerts its pro-inflammatory/pro-fibrotic effects by binding to its angiotensin type 1 receptor (AT1R) (Figure 1). On the other hand, ACE2 is the most potent Ang (1-7) generating enzyme. By its single catalytic domain, ACE2 can produce Ang (1-7) directly by cleaving one amino acid from the C-terminal domain of Ang II or indirectly through two successive cleavage reactions from Ang I (36) (Figure 1). Of note, Ang II is the preferred substrate for ACE2, with an affinity of 400-fold higher than that of Ang I (37). Hence, Ang-(1–7) production is based on both ACE2 levels and the ACE/ACE2 ratio.

Ang (1-7) exerts its effects by binding to and activating the G-coupled receptor Mas (MasR), which opposes the pro-inflammatory and pro-fibrotic actions of Ang II through AT1R activation (38, 39). Moreover, MasR can inhibit Ang II-mediated actions by hetero-oligomerization and inhibition of AT1R. Ang (1-7) can also exert its protective effects by binding directly to the angiotensin type 2 receptor (AT2R) (40, 41). Interestingly, the AT2R can exert similar protective effects when bound by Ang II (34, 35). Thus, the crucial role of ACE2 in RAS stems from the fact that it cleaves and opposes the action of Ang II (Figure 1). Consequently, it has a beneficial role in many diseases such as diabetes and cardiovascular diseases (CVD) (33), as well as in COVID-19 (42).

ROLE OF THE ACE2/ANG (1–7)/MASR AXIS IN PULMONARY PHYSIOLOGY AND PATHOLOGY

RAS gained an increased complexity and appreciation with the identification of local RAS in different tissues, including the brain, kidneys, heart, ovary, pancreas, and the vascular wall, independent of the well-known traditional circulatory RAS. Also, the discovery of additional RAS components (alternative enzymes, receptors, and bioactive angiotensin peptides) has extended the system’s role far beyond blood pressure regulation and body electrolyte balance. Indeed, novel actions for each member of the RAS are continuously discovered in physiology and diseases (43).

ACE2 is expressed in human airway epithelia and lung parenchyma, suggesting a role in the regulation of pulmonary physiology (44, 45). A large body of evidence has shown the protective role of the ACE2/Ang (1-7)/MasR axis in several models of lung injury, including SARS-CoV-1 mediated injury (25, 46). In fact, to protect from severe lung failure, ACE2 is known to inhibit Ang II production, ACE activity, and AT1R activation. Of note, the anti-inflammatory and anti-fibrotic responses of ACE2 are mediated by the production of Ang (1-7) bioactive peptide, which protects against acute lung failure via activation of MasR and AT2R. More specifically, Ang (1-7)/MasR exerts its beneficial effects by inhibiting ERK1/2 and NF-κB signaling pathways in a rat model of ARDS (47) and a mouse model of chronic allergic lung inflammation (48, 49). Magalhaes et al. also showed that MasR knockout mice failed to attenuate inflammation and pathological lung remodeling and presented aggravated asthma due to disruption of the protective arm of the RAS (49). The same research group confirmed that Ang (1-7) infusion resolved inflammation through correction of eosinophile defective apoptosis leading to lung damage (48). Ang (1-7) drug was also demonstrated to prevent bronchial responsiveness, a hallmark sign of chronic asthma (44).

Dysregulation of ACE/ACE2 balance leads to impaired lung function due to inflammation, fibrosis, and lung edema. The latter phenomenon is most probably induced via increasing pulmonary blood vessels’ permeability (25, 46, 47). Elevated ACE concentrations have been detected in many potentially fibrotic lung diseases, including idiopathic pulmonary fibrosis (50) and ARDS (51, 52). Similar pro-fibrotic effects were also observed in a mouse model of ARDS using the MasR antagonist A779 (53). Moreover, Ang II has been shown to stimulate lung fibroblast proliferation and procollagen production by stimulating AT1R and the autocrine action of TGFβ. Of interest, losartan (AT1R blocker) and ramipril (ACE inhibitor), and Ang (1-7) were shown to reduce lung collagen deposition in the same study (53, 54). Thus, the protective effects of ACE2 on the lungs can be attributed to the inactivation of the ACE/Ang II/AT1R axis in favor of the ACE2/Ang (1-7)/MasR-AT2R axis (25).

ROLE OF ACE2 IN THE PATHOLOGY OF COVID-19

The expression of ACE2 in human airways and lung tissues highlights its role in respiratory infections, including SARS-CoV-1 and the related human respiratory coronavirus NL63 (55). Although ACE2 is the main door for virus entry, the total ACE2 activity seems to be protective. In fact, several reports mentioned that ACE2 could be downregulated after virus entry and/or host cell lysis, as in SARS-CoV-1. The latter is reported to reduce ACE2 expression at the cell surface as well as the release of active ACE2 ectodomains (56, 57). This fact may further accentuate the pathogenesis of COVID-19, as ACE2 is shown to be protective in several models of lung injury, including SARS-CoV-1 mediated injury (25, 46).

Both SARS-CoV-1 and SARS-CoV-2 use the same receptor, ACE2, to infect cells. Interestingly, SARS-CoV-2 was shown to have a higher affinity for ACE2 than SARS-CoV-1 (58–60). Higher affinity values could be related to the dynamic of infection and the rapid spread that characterize this virus (61). For instance, mutations that increase the infectivity on
FIGURE 1 | Simplified view of the extended RAS. In the classically described RAS, the inactive zymogen angiotensinogen secreted mainly by the liver, is converted into Ang I by the action of the renal aspartyl protease, renin. Ang I is then cleaved by ACE to generate the Ang II octapeptide. Ang II is a multifunctional hormone that regulates blood pressure and fluid homeostasis. This peptide exerts its actions through binding to two main receptors, AT1R and AT2R, which are typical seven transmembrane GPCRs. More specifically, Ang II mediates its vasoconstrictor effects by stimulating AT1Rs while AT2Rs are known to balance the actions of AT1Rs via activation of vasodilatory pathways. Dysregulation of the RAS in favor of the ACE/Ang II/AT1R axis leads to the pathogenesis of hypertension as well as tissue injury and multi-organ damage through activation of oxidative stress, proliferation, inflammation, fibrosis, edema, and apoptosis. Ang II can either bind to its receptors or is further cleaved to yield degradation products such as Ang (1-7). This bioactive peptide is produced mainly by means of ACE2. Ang (1-7) is obtained directly by the action of ACE2 on Ang II or indirectly by generating Ang (1-9) as an intermediate product. Ang (1-7) exerts its protective effects through activation of the AT2R and MasR and opposes the described detrimental effects of the ACE/Ang II/AT1R axis.

RBD could explain why SARS-CoV-2 is more infectious than SARS-CoV-1 (62). Notably, mutations affecting SARS-CoV-2 have also been reported. In fact, by the end of August 2020, the C.1 lineage of SARS-CoV-2 presenting one amino acid substitution, D614G, on the spike protein, among 16 other nucleotide mutations, became the predominant lineage in South Africa (63). Analyses of over 28,000 SARS-CoV-2 spike protein gene sequences revealed that the D614G amino acid substitution facilitates the binding to ACE2 receptor and thus enhances viral replication in human lung epithelial cells and primary human airway tissues. This might account for its increased virulence to the respiratory system (64, 65). In addition, the 501Y.V2 variant that appeared in South Africa in December 2020 showed three important mutations in RBD (K417N, E484K, and N501Y) that are most probably correlated with functional significance (66). Another study on the B.1.1.7 British lineage revealed that the N501Y mutation of the SARS-CoV-2 spike protein is linked with increased interaction with ACE2 receptor, which explains its high infectivity rate (23).

The SARS-CoV-2 entry into target cells is initiated by the binding of the surface unit, S1, of the spike (S) protein to the ACE2 cellular receptor (Figure 2). The entry then requires S protein priming by TMPRSS2 serine proteases, which entails S protein cleavage and allows the fusion of viral and cellular membranes (67). Of note, several studies highlighted TMPRSS2 implication as a critical factor for the spread of clinically relevant viruses, including influenza A and other coronaviruses (68–70). One study conducted on a cohort of Italian patients announced that COVID-19 susceptibility is determined by genetic variability of TMPRSS2 known to be involved in SARS-CoV-2 entry into target cells. In this context, the data showed that in comparison to other European populations, Italians might have a higher level of TMPRSS2 or activity since they show a significant decrease in the deleterious variants of this protein. This can be considered as a risk factor for a more severe illness course (71). TMPRSS2 mediated activation of S protein priming enables viral infection of ACE2 positive cells. This initial phase is associated with viral replication and leads to pyroptosis, an inflammatory form of
apoptosis, inducing lung injury. Of note, the formation of new viruses is also correlated with the induction of a cytokine storm via activation of various immune cells (56, 72).

DIFFERENTIAL RESPONSE TO COVID-19 COULD BE RELATED TO ACE2 EXPRESSION

Severe COVID-19 cases are mostly observed among elderly patients, with males suffering from chronic comorbidities such as cardiovascular and cerebrovascular diseases, diabetes, and others. Recently, it was established that risk factors including age, male sex, and hypertension provide a convenient tool to identify high-risk individuals. Hypertension elucidates the involvement of RAS in the pathogenesis of COVID-19 due to the interplay between SARS-CoV-2 and ACE2 (73–75). It is believed that ACE2 expression pattern in different organs, tissues, and cell types is permissive for the susceptibility of SARS-CoV-2 infection since ACE2 receptor permits coronavirus entry, replication, spread, and pathogenesis (76).

In order to identify the initial reservoirs of SARS-CoV-2, ACE2 expression levels were assessed within the lung and the upper/lower airway epithelium. ACE2 was expressed at low levels in the respiratory tract, and it was expressed in multiple epithelial cell types across the lower airway, with the highest expression being observed in club epithelial cells in comparison with basal and ciliated epithelial cells (77). ACE2 expression was also detected in alveolar type II cells in the lung parenchyma (77). In fact, alveolar type II cells, which account for only 5% of the alveoli, are essential to maintain lung elasticity and act as progenitors for alveolar type I cells responsible for gas exchange. Thus, SARS-CoV-2 might be responsible for depletion of the alveolar stem cells leading to the development of irreversible lung injury (56, 76). Remarkably, in the upper airway, nasal epithelial cells, including goblet and ciliated cells, showed the highest expression of ACE2 among all investigated cells in the respiratory tree; thus, highlighting their role in facilitating initial viral entry, transmission, and clearance (45, 77). Moreover, ACE2 expression is dynamic and depends on the differentiation status of epithelial cells. For instance, it is worth noting that differentiated epithelial cells expressing a higher level of ACE2 are readily infected in comparison to undifferentiated cells with low ACE2 expression (55). These findings may raise the theoretical assumption that the differential response to COVID-19 in patients could be in some aspects attributed to changes in ACE2 expression.
In this context, it has been reported that long term smokers express high levels of ACE2 receptor (78), namely in type-2 pneumocytes and alveolar macrophages (79), making them at high risk of infection by SARS-CoV-2 (78). This elevated expression occurs through activation of the α7 subtype of the nicotine acetylcholine receptor (α7-nAChR) (80). This is further highlighted in a recent meta-analysis revealing that patients with a history of smoking, as well as active smokers, recorded a significant severity of COVID-19 (81). In fact, cigarette smoking promotes alterations in the respiratory tract that might increase the risk of viral infections through multiple mechanisms such as impairment of mucociliary clearance, mucus hypersecretion, fibrosis, and dysfunction of the epithelial barrier. These mechanisms are accompanied by alterations in the immune response, eventually harming the function of the lungs, including gas exchange (82–86).

Although different studies have reported the upregulation of ACE2 expression in the lungs of cigarette smokers (78, 87), surprisingly, a very recent study revealed a decrease in the levels of ACE2 receptor in both alveolar and bronchial epithelial cells of mice exposed to cigarette smoking. Additionally, an in vitro study on Calu3 human lung cancer cell line treated with cigarette smoke showed no effect on ACE2 levels but effectively inhibited SARS-CoV-2 replication (88). These conflicting results urge for more work to clarify the role of cigarette smoking on ACE2 expression, SARS-CoV-2 infection and its severe respiratory complications.

DIFFERENTIAL RESPONSE TO COVID-19 AND ACE2 EXPRESSION IN CARDIOVASCULAR PATIENTS

RAS dysregulation, highlighted by Ang II upregulation, is associated with the pathogenesis of CVD. RAS inhibitors, such as ACE inhibitors (ACEI) and AT1R blockers (ARBs), are commonly used for the treatment of CVD patients. ACEI are known to downregulate the expression of Ang II, whereas ARBs are known to block Ang II-mediated detrimental effects (41). Due to the beneficial effects for the activation of the ACE2/Ang (1-7) axis, there has been substantial interest in considering the effect of RAS inhibitors on ACE2 expression in patients with CVD. Previous evidence in several animal models indicated that certain ARBs and ACEIs exhibit the ability to increase ACE2 mRNA and protein expression levels in the heart (89, 90). More importantly, ARBs were shown to alter the expression of ACE2 more consistently than ACEI (91). Although some animal studies displayed an elevation in ACE2 expression under the effect of RAS inhibitors (92), other studies did not. In this context, it has been reported that ACEI did not alter the activity of ACE2 in vitro (93). In another study, the use of the ACEI ramipril or of the ARB valsartan did not increase cardiac ACE2 expression in a rat model of myocardial infarction (94).

In contrast to animal models, limited investigation has been conducted in humans to consider the influence of RAS inhibition on the expression of ACE2 (95). In fact, a human study involving patients with hypertension showed higher urinary ACE2 levels in patients treated with the ARB olmesartan, but not with other ARBs or the ACEI enalapril (96). Importantly, ACE2 upregulation has been mostly noticed in renal vasculature and in cardiac tissue. However, the outcomes differed depending on the RAS inhibitors used (97). Furthermore, most human studies relied on measuring the soluble ACE2 levels in the blood. It's worth noting that measuring the membrane-bound ACE2 expression in vivo is technically challenging. In this regard, an increase in soluble ACE2 levels may refer to a decrease in the membrane-bound form of ACE2. Therefore, the distinction between soluble and membrane-bound ACE2 must be clear (97).

Overall, upregulation of ACE2 expression in CVD patients under ARBs or ACEIs raised several theoretical assumptions that these treatment regimens might put them at a greater risk of infection by SARS-CoV-2 (60, 95).

POSSIBLE SCENARIOS ON USING ACE2-BASED TREATMENTS FOR COVID-19

ACE2 appears as a potential target for COVID-19 treatment based on the fact that it is an entry receptor critically involved in mediating SARS-CoV-2 infection and on its central role in cardiac pathology as well as in lung damage (98). Some reports suggested introducing ACE2 blockers, such as the MLN-4760 chemical inhibitor, or targeted antibodies to disrupt the viral entry into cells (99, 100). This approach could be detrimental to the risk of reducing ACE2 protective and anti-inflammatory activity, which further increases the susceptibility of lungs for more damage. Instead, viral entry could be impaired by protease inhibitors targeting TMPRSS2 protease implicated in SARS-CoV-2 cell entry, without risking the endogenous ACE2 activity (98) (Figure 3).

A better alternative to attenuate the viral load and infection, in comparison with ACE2 antibodies and pharmacological inhibitors, would be to deliver excessive soluble viral receptor analogs in order to intercept the viral binding to the membrane-bound ACE2. The conceptual principle is that soluble ACE2 may act as a trap, competitively binding and neutralizing the virus while rescuing cellular ACE2 activity and protecting the lungs from injury (99). In fact, a fusion protein of recombinant human ACE2 (rhACE2) was reported to show high affinity to SARS-CoV-2 binding domain and to neutralize the virus in vitro (101). Furthermore, Monteil et al. recently demonstrated that a clinical-grade rhACE2 is capable of reducing the viral load of SARS-CoV-2 infection in Vero-E6 cells and of blocking its entry into the cells. This study revealed that rhACE2 could inhibit SARS-CoV-2 infections in human organoids, such as the kidneys, during early stages of viral infection (102). Moreover, a clinical pilot study was planned (NCT number: NCT04287686) to deliver soluble rhACE2 infusions in a small COVID-19 patient cohort in China. Nevertheless, this study was withdrawn for non-stated reasons. Regardless, a large phase II clinical trial has been initiated at the beginning of April by the Austrian pharmaceutical company APEIRON to treat COVID-19 patients with APN01-rhACE2, in Austria.
Germany, and Denmark (98). On the other hand, soluble ACE2 appears to have a short half-life and may lack the capacity to overcome massive virus infection. This agent could form a reservoir of circulating viruses, thus increasing its propagation ($10^3 – 10^5$) (Figure 3).

Altogether, clinical trials using ACE2-based treatments are eagerly awaited to exclude possible adverse effects and to prove their promising potential to enhance the positive outcomes in patients infected with COVID-19.

ARBs TO REDUCE THE SIDE EFFECTS OF ACE2 INHIBITION BY COVID-19

It is believed that SARS-CoV-2 infection may cause an increase in lung injury and severe acute respiratory failure due to ACE2/Ang (1-7) downregulation. In addition, since Ang II is the major substrate of ACE2, inhibition of ACE2 following viral entry is generally associated with Ang II upregulation as well as activation of the AT1R. In fact, elevated levels of Ang II were reported in the plasma of SARS-CoV-2 infected patients, which were positively correlated with viral load and lung injury. Thus, the harmful effects of COVID-19 could be achieved by inhibiting Ang II-mediated harmful effects (25, 26, 47, 56, 106). Due to its anti-fibrotic and anti-inflammatory properties, ARBs effectively block Ang II-mediated AT1R activation and reduce acute lung injury in patients diagnosed with pneumonia, sepsis, and influenza (107–109). Therefore, ARBs blocking Ang II/AT1R pathway could overcome the adverse effects of ACE2 downregulation by SARS-CoV-2. On the other hand, several studies reported that ARBs beneficial effects could be correlated to the increase of ACE2 expression and activity in patients. Despite the beneficial properties of ACE2/Ang (1-7) axis (96, 110, 111), ACE2 upregulation after ARB treatment may open the door for viral entry, thus increasing the susceptibility of patients to SARS-CoV-2 infection.
Since the treatment of CVD patients is based on ARBs, their discontinuation in COVID-19 patients has been proposed to reduce ACE2 expression and, thus, the risk of a more severe infection associated with the increased viral entry. In fact, interruption of treatment may be more harmful than protective. For instance, discontinuing RAS inhibitors, including ARBs, in patients with an unstable clinical state (hypertension, heart failure, myocardial infarction), may result in a decline in clinical status and higher risks of mortality (60, 95). In fact, ARBs are reported to block Ang II/AT1R axis and to reduce acute lung injury pathogenesis. Interruption of ARBs might increase lung injury since Ang II-mediated AT1R activation is associated with vasoconstriction, oxidative stress, increased fibroproliferative, and inflammatory responses as well as lung oedema (54, 60, 112, 113). Importantly, studies have shown that these drugs can be protective against lung injury in SARS-CoV-1 patients by enhancing the protective arm of RAS (114). Also, retrospective studies showed that patients using ACEIs and ARBs present a lower risk of mortality and develop less severe cases as compared with those using other hypertensive drugs. On the other hand, these treatment regimens do not increase the risk of SARS-CoV-2 infection nor disease severity, as summarized in Table 1.

Taken together, more evidence is needed to support the proper use of ARBs for the treatment of COVID-19 and to exclude the risk of an increased viral entry. ARBs play a protective role in CVD patients by reducing the harmful effects of Ang II/AT1R axis while enhancing ACE2/Ang (1-7) protective axis. Therefore, ARB withdrawal can be potentially harmful rather than protective.

COMBINED THERAPY OF ANTI-COVID-19 ANTIBODIES AND ANG (1–7) AGONIST FOR THE TREATMENT OF COVID-19 PATIENTS

Several therapies are being investigated for the treatment of COVID-19 (124). Passive immunotherapy has also been reported as a treatment option to reduce mortality in many infectious viral diseases, including SARS-CoV-1 and severe influenza-related pathologies (125). Transfusion of anti-COVID-19 antibodies from recovered patients appears to be promising in severe patients. Recent studies showed that transfusion of convalescent plasma (CP) containing anti-COVID-19 neutralizing antibodies to COVID-19 critically ill patients, along with the conventional antiviral treatment, is associated with improvement in fever, inflammatory markers, lymphocyte count, viral clearance, and CT findings (126–128). In fact, Shen et al. conducted the first study describing the use of CP in COVID-19 patients. Indeed, 5 ARDS critically ill patients received CP from recovered healthy donors along with antiviral agents and methylprednisolone. All patients showed improvement of inflammatory markers, and the viral load became negative 12 days post transfusion (126). In another trial performed by Ye et al., 5 of 6 COVID-19 patients treated with CP demonstrated decreased pulmonary lesions based on their CT scan (129). Similar findings were reported by two other studies, revealing an overall improvement in clinical outcomes with no single death recorded during the treatment procedure (128, 130). Noteworthy, all the preliminary studies mentioned in Table 2 did not have control groups receiving CP alone, and the sample size of patients was generally limited in number. However, these studies established the safety and efficacy of anti-COVID-19 antibodies transfusion in critically ill patients. Therefore, CP was finally approved last August by the FDA as an investigational new drug for patients with life-threatening SARS-CoV-2 infection (144). On this basis, an FDA-initiated study on a cohort of 20,000 COVID-19 patients confirmed the safety of CP with low incidence of adverse events associated with transfusion (142). Recently, CP infusion was recommended during early stages of infection by Zeng et al. In this trial, 6 COVID-19 patients with respiratory failure received CP and CP treatment at a median of 21.5 days post-infection. Eventually, all patients tested negative for SARS-CoV-2 at 3 days post-infusion; however, 5 out of these 6 patients died, suggesting that CP is ineffective in reducing mortality in end-stage COVID-19 patients and should be initiated earlier (140). These findings were confirmed by Salazar et al., who reported a higher reduction in mortality rate in patients receiving CP transfusion within 44 hours of their hospitalization (143). These observations might be due to the late clinical deterioration observed in COVID-19 patients, related to hyper-immune attacks and inflammatory reactions, rather than a direct viral-effect since the peak of viral load is observed during the first week of infection (131). All clinical trials using CP for patients infected with SARS-CoV-1 or SARS-CoV-2 are presented in Table 2.

On the other hand, it is tempting to propose the use of Ang (1-7) agonists to overcome the harmful effects of SARS-CoV-2 infection in patients. Ang (1-7) has been reported to oppose the harmful effects of Ang II/AT1R by binding to MasR or to AT2R. In addition, it was shown to be cardiopulmonary protective through its anti-hypertensive, anti-thrombotic, anti-arrhythmic, and vasodilatory effects (145–147). Moreover, animal studies demonstrated that ARDS is associated with low Ang (1-7) levels and that Ang (1-7) upregulation reduces reactive oxygen species production and inhibits pulmonary fibrosis to control tissue damage. Besides, data showed that Ang (1-7)/MasR axis exhibits anti-inflammatory effects by inhibiting the NF-kB pathway and by reducing the production of pro-inflammatory cytokines such as TNF-α and IL-6 (53, 113, 148–151). In this context, Ang (1-7) oral formulation was also proved to attenuate the rupture of alveolar walls and behavioral changes in a mice model of elastase-induced emphysema (152).

The pathogenesis of SARS-CoV-2 infection is mediated through over-activation of the inflammatory response and an increased cytokine production (113, 148, 149). This could be related to the inhibition of the anti-inflammatory ACE2/Ang (1-7)/MasR axis by binding of the virus. Therefore, the severity of COVID-19 could be attenuated by Ang (1-7) administration, which may restore the anti-inflammatory response via MasR activation (153). Several Ang (1-7) agonists are available such as AVE-0991 (154), hydroxypropyl β-cyclodextrin (HPβCD)/Ang (1-7) (155, 156), cyclic angiotensin (1-7) (157), CGEN-856, and CGEN-857 (158). In animal models, these agonists exert their
This table summarizes different retrospective studies evaluating the effect of ACEIs and ARBs on the risk of SARS-CoV-2 infection and disease severity in patients with preexisting HT. Altogether, the results showed that ACEIs and ARBs do not appear to be associated with a higher risk of SARS-CoV-2 infection, neither with disease severity and mortality. This evidence supports the current guidelines that discourage the discontinuation of ACEIs and ARBs in CVD patients infected with SARS-CoV-2. Of note, patients using ACEIs and ARBs are more likely to develop less severe symptoms and show improved clinical outcomes, reduced concentration of inflammatory markers as well as a lower risk of mortality compared to those using other antihypertensive drugs. In this context, recommendations are addressed toward the preferential use of RASIs for the management of hypertension in COVID-19 patients, all along with standard anti-viral medication. ACEI: angiotensin converting enzyme inhibitors, ARB, angiotensin receptor type 1 blockers; CCI, Charlson comorbidity index; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease-2019; CRP, C-reactive protein; CV, cardiovascular; CVD, cardiovascular disease; HT, hypertension; PCT, procalcitonin; RASi, renin-angiotensin system inhibitors; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

TABLE 1 | The effect of ACEIs and ARBs on COVID-19 patients with CVD.

Study design	Patient population	Outcomes	Institutes	References
Multicenter, retrospective study	$N = 476$ COVID-19 patients with moderate ($n = 352$), severe ($n = 54$), or critical cases ($n = 70$)	Higher incidence of comorbidities in the severe and critical groups as compared to the moderate group. Patients receiving ACEIs or ARBs were more likely assigned to the moderate group than to the severe and critical groups.	Three hospitals in Wuhan, Shanghai, and Anhui, China	(115)
Multicenter, retrospective study	$N = 1128$ COVID-19 patients with HT	The use of ACEIs and ARBs in COVID-19 patients with HT is associated with a lower risk of all-cause mortality.	Nine hospitals in Hubei, China	(116)
Multicenter, retrospective study	$N = 609$ COVID-19 patients	Overall in-hospital mortality was 29% in the moderate group, 42% among HT patients died in hospital, after a median of 6 days from admission. Patients receiving anti-HT drugs other than RASIs had a higher CCI, with a higher prevalence of COPD and CV comorbidities.	Ten Italian hospitals	(117)
Single-center, retrospective study	$N = 417$ COVID-19 patients	RASIs improve the clinical outcomes of COVID-19 patients with HT. HT patients could benefit from the persistent or preferential usage of ACEIs and ARBs.	Shenzhen Third People’s Hospital, Shenzhen, China	(118)
Single-center, retrospective study	$N = 251$ COVID-19 patients	ARB/ACEI group had significantly lower concentrations of CRP and PCT.	Hubei Provincial Hospital of Traditional Chinese Medicine (HPHTCM) in Wuhan, China	(119)
Single-center, retrospective study	$N = 1,847$ patients	This study supports various guidelines to continue current ACEIs or ARBs treatments during the COVID-19 pandemic. This study found no association between ACEIs or ARBs use and COVID-19 test positivity.	Cleveland Clinic Health System in Ohio and Florida, USA	(120)
Single-center, retrospective study	$N = 1,178$ COVID-19 patients	ACEIs/ARBs are not associated with COVID-19 severity or increased mortality rates. This study supports current guidelines and societal recommendations for treating HT during the COVID-19 pandemic.	The Central Hospital of Wuhan, China	(121)
Population based case-control study	$N = 3,7031$ patients	The use of ACEIs and ARBs was more frequent among patients with COVID-19 than among controls. No evidence that ACEIs or ARBs affected the risk of COVID-19.	Lombardy region, Italy	(122)
Single-center, retrospective study	$N = 12,594$ patients	No substantial increase in the likelihood of a positive test for COVID-19 or in the risk of severe COVID-19 among patients who tested positive in association with five common classes of anti-HT medications including ACEIs and ARBs.	New York University (NYU) Langone Health system, New York, USA	(123)
TABLE 2 | The effect of convalescent plasma-based therapy on SARS and COVID-19 patients.

Infectious agent	Study design	Patient population	Outcomes	Institutes	References
SARS-CoV-1	Case series	\(N = 80 \) SARS patients with radiographic progression and hypoxemia Group 1: patients given CP before day 14 of illness \((n = 48) \) Group 2: patients given CP after 14 days of illness \((n = 32) \) No control group	A higher day 22 discharge rate was observed among patients who were given CP before day 14 of illness \((58.3 \text{ vs. } 15.6\%) \) Overall mortality rate among 80 patients was 12.5%	Prince of Wales Hospital, Hong Kong, China	(131)
SARS-CoV-1	Single-center, non-randomized study	\(N = 40 \) SARS patients having clinical and radiographic deterioration despite methylprednisolone treatment Intervention group: patients given 3 doses of methylprednisolone steroids with CP \((n = 19) \) Control group: patients given 4 or more doses of methylprednisolone \((n = 21) \)	Discharge rate in intervention group was 73.4 vs. 19% in control group Mortality rate in intervention group was 0 vs. 23.8% in control group	Prince of Wales Hospital, Hong Kong, China	(132)
SARS-CoV-1	Case series	\(N = 40 \) SARS patients with pneumonia or ARDS Intervention group: patients receiving CP \((n = NS) \) Control group: patients receiving other types of therapy \((n = NS) \)	No mortality cases are reported in the intervention group Three mortality cases are reported in the control group	Medical College of Hong Kong Chinese University, China	(133)
SARS-CoV-1	Case series	\(N = 8 \) SARS patients Intervention group: patients receiving CP with antivirals and steroids \((n = 3) \) Control group: patients receiving only antivirals and steroids treatments \((n = 5) \)	Intervention group presents improved serial chest radiographs and decreased body temperature Viral load was no longer detectable after 24h of CP treatment	Taipei Municipal Hopeing Hospital (TMHH), Taiwan	(134)
SARS-CoV-1	Cases report	\(N = 29 \) SARS patients Intervention group: 74 years old patient receiving CP after antivirals and steroids treatments \((n = 1) \) Control group: younger SARS patients receiving antivirals and steroids treatments only \((n = 28) \)	The patient receiving CP recovered from SARS within 21 days and have a shorter disease course than the control group	Beijing hospital, China	(135)
SARS-CoV-1	Case report	\(N = 1 \) SARS patient Intervention group: 57 years old patient receiving CP, antivirals and steroids treatments \((n = 1) \) No control group	Patient showed improved Chest X-ray and decreased body temperature following CP treatment The patient made uneventful recovery	Prince of Wales Hospital, China	(136)
SARS-CoV-2	Cases report	\(N = 5 \) COVID-19 patients with ARDS, severe rapid progression pneumonia and continuously high viral load despite antiviral treatment Intervention group: patients receiving CP \((n = 5) \) No control group	Body temperature normalized within 3 days, viral load became negative after 12 days and ARDS resolved in 4 patients out of 5	Shenzhen Third People’s Hospital in Shenzhen, China	(126)
SARS-CoV-2	Multicenter, randomized clinical trial	\(N = 103 \) COVID-19 patients with severe ARDS, hypoxemia or life-threatening organ failure Intervention group: patients receiving CP in addition to standard treatment \((n = 52) \) Control group: patients receiving standard treatment alone \((n = 51) \) No control group	51.9% of the intervention group showed clinical improvement (defined as patients discharged alive, or reduction in disease severity) vs. 43.1% in the control group Two patients from the intervention group experienced adverse events within hours after transfusion	Seven medical centers in Wuhan, China	(137)
SARS-CoV-2	Cases report	\(N = 2 \) COVID-19 patients with severe pneumonia and ARDS Intervention group: patients receiving antivirals and steroids treatments with CP \((n = 2) \) No control group	The patients showed improved oxygenation and chest X-rays with decreased inflammatory markers and viral loads after CP infusion	Yonsei University College of Medicine, Seoul, Korea	(127)

(Continued)
TABLE 2 | Continued

Infectious agent	Study design	Patient population	Outcomes	Institutes	References
SARS-CoV-2	Cases report	N = 10 COVID-19 patients with severe symptoms, respiratory distress, or hypoxemia	All patients achieved negative viral load, accompanied with an increase of oxygen saturation, improvement of liver function and alleviation of the overreaction of the immune system after plasma transfusion	Three participating hospitals in Wuhan, China	(128)
SARS-CoV-2	Cases report	N = 6 Critically ill COVID-19 patients with deteriorated symptoms after standard treatment	No adverse reactions were observed after plasma infusion	Wuhan Huoshenshan Hospital, Wuhan, China	(129)
SARS-CoV-2	Cases report	N = 4 COVID-19 patients with severe symptoms including ARDS	All 4 patients achieved negative RT-PCR test results after 3-22 days of transfusion	Dongguan Ninth People’s Hospital and Xiangtan Central Hospital, China	(130)
SARS-CoV-2	Single-arm, multicenter trial	N = 46 COVID-19 patients with severe symptoms, including ARDS, low oxygen saturation levels and markedly elevated laboratory bio-markers	Improvement in respiratory status achieved in 77.5% of intervention group vs 65% of control group	Two university hospitals and one general hospital in northern Italy	(135)
SARS-CoV-2	Retrospective cohort study	N = 80 Critically ill Covid-19 patients with severe symptoms	Improvement in respiratory status achieved in 77.5% of intervention group vs 65% of control group	Hamad Medical Corporation (HMC), Qatar	(139)
SARS-CoV-2	Cases report	N = 21 COVID-19 patients with respiratory failure and required intensive care unit admission	All the patients in the intervention group tested negative for SARS-CoV-2 RNA by 3 days after infusion	First Affiliated Hospital of Zhengzhou University, China	(140)
SARS-CoV-2	Cases report	N = 25 COVID-19 patients with severe and/or life-threatening disease	36% of patients had improvement in the clinical markers after 7 days of transfusion	Houston Methodist hospitals, USA	(141)

(Continued)
TABLE 2 | Continued

Infectious agent	Study design	Patient population	Outcomes	Institutes	References
SARS-CoV-2	Multicenter, single-arm trial	N = 20,000 COVID-19 patients with severe life-threatening disease. Intervention group: patients receiving CP in addition to standard care (n = 20,000). No control group.	Overall 7 days' mortality rate was 12.96%. The incidence of all serious adverse events related to plasma transfusion are low.	FDA-initiated trial including multicenter/national hospitals	(142)
	Multicenter, retrospective, non-randomized, propensity score-matched study	N = 5297 COVID-19 patients. Intervention group 1: patients receiving CP with an anti-RBD IgG titer ≥1:1350 (n = 321). Intervention group 2: patients receiving CP with an anti-RBD IgG titer > 1:150 but <1/1350 (n = 24). Intervention group 3: patients receiving CP with an anti-RBD IgG titer <1:150 (n = 8). Control group: propensity score-matched controls receiving standard treatment (n = 594).	Mortality was significantly decreased in patients who received plasma with an anti-RBD IgG titer of ≥1:1350 within 72 hours of admission. 44 hours after hospitalization is optimal for transfusing COVID-19 patients with high-titer CP in order to prevent mortality. 0.6% of patients developed significant adverse events related to plasma transfusion, including allergic reactions.	Eight Houston Methodist hospitals, USA	(143)

This table summarizes the majority of clinical trials using CP from recovered patients to treat critically ill patients infected with SARS-CoV-1 or SARS-CoV-2. As reported by several research groups, it seems that CP based therapy is generally associated with a higher discharge rate and a lower mortality risk. Also, this treatment plan is showed to be linked to improved clinical outcomes (body temperature, chest X-ray, oxygen saturation), decreased viral load, and a faster recovery. Growing evidence supports early administration of a high titer anti-COVID-19 antibodies within 72 h post-hospitalization. Analyses regarding the efficacy of CP as a standalone treatment strategy might be limited by the lack of control groups in some human trials and by the co-administration of standard care drugs (anti-inflammatory and anti-viral formulations) together with CP. Even though attention was directed toward the incidence of serious adverse events that can be related to plasma transfusion, it was FDA approved that the risk is low. ARDS, acute respiratory distress syndrome; COVID-19, coronavirus disease-2019; CP, convalescent plasma; NS, non-specified; RBD, receptor binding domain; SARS, severe acute respiratory syndrome; SARS-CoV-1, severe acute respiratory syndrome coronavirus 1; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

protective effects, such as vasodilation and improved cardiac remodeling, by binding to MasR, thus mimicking Ang (1–7) effects with high in vivo stability (158, 159). Unfortunately, not all Ang (1–7) agonists have been evaluated in human subjects; thus, the safety data is lacking for some of these drugs. Importantly, FDA has granted a pharmaceutical formulation of Ang (1–7), called TXA127, an orphan drug for the treatment of several conditions, including Duchenne muscular dystrophy and pulmonary arterial hypertension (160). Several clinical trials on TXA127 were announced since 2008, some of which were terminated or withdrawn for unknown reasons. For instance, phase II clinical trials conducted on cancer patients showed that Ang (1–7) drug is safe, well-tolerated, with no mortality rate and low-grade adverse events such as fatigue, injection site reaction, and flu-like symptoms (161, 162). Interestingly, two double-blind, placebo-control, randomized clinical trials are currently being conducted in Brazil (NCT04633772), Israel (NCT04605887), and New York (NCT04401423) on patients with severe COVID-19 cases. The purpose of these studies is to test the safety and efficacy of TXA127 and to determine whether Ang (1–7) infusions prevent respiratory failure, acute kidney injury, and multi-organ damage due to the management of inflammation. Considering the increasing spread and number of deaths due to COVID-19, it is extremely urgent to evaluate TXA127 and other Ang (1–7) agonists as possible treatments for seriously ill patients.

In the light of the vital role of Ang (1–7) in lung protection and the promising results of anti-COVID-19 antibodies based therapy, combination treatment of Ang (1–7) agonists along with anti-COVID-19 antibodies may be the ideal therapeutic intervention to alleviate COVID-19 severity (Figure 3).

CONCLUSION AND LIMITATIONS

This review summarizes the treatment strategies targeting ACE2 viral receptor, either directly or indirectly, in the context of COVID-19. Combination therapy using Ang (1–7) and CP in patients infected with SARS-CoV-2 appear to be the most promising alternative. Although the clinical potential of Ang (1–7) agonists has been evidenced in numerous human trials (161, 162); however, its use is limited due to the absence of studies validating its safety and efficacy in COVID-19 patients. In addition, a stable oral Ang (1–7) compound covering a broad range of patients is still lacking (163). Importantly, prolonged exposure to other immuno-suppressor drugs such as corticosteroids might increase the occurrence of secondary infections; thus, evaluating the risk of opportunistic infections in patients treated with Ang (1–7) appear to be of great value (164, 165). Furthermore, steroids possess salt retention activities that might increase the stress over the cardiovascular system.

On the other hand, CP therapy may encounter several challenges that should be taken into consideration despite its proven benefits. One such limitation is its availability; in fact, a shortage in the number of plasma donors could be seen in situations of rapid disease spread resulting in an increased number of infected patients compared to those that have recovered. This would be especially significant and serious for the rare blood group patients. In addition, potential risks can be
directly associated with CP regimen. These risks include, among others, the transmission of harmful pathogens such as HIV, hepatitis B/C, and syphilis. Moreover, other transfusion-related events may occur following CP treatment, including allergic, anaphylactic, or hemolytic reactions, fever, and transfusion circulatory overload (166). Furthermore, transfusion can be associated with transfusion-related acute lung injury (167). Although this complication is not common; however, this possibility should not be ignored since COVID-19 patients are at high risk of developing pulmonary disease (168). Importantly, all studies on CP transfusion as a COVID-19 treatment showed that these severe adverse reactions are infrequent.

The presence of a confounding variable in most CP studies makes it difficult to prove the efficacy of CP transfusion as a stand-alone treatment because patients are mostly receiving a standard care treatment such as anti-viral and anti-inflammatory drugs along with anti-COVID-19 antibodies (128, 141). In addition, the safety and efficiency of CP in pregnant women and pediatric patients have not been evaluated yet. Noteworthy, several ongoing studies are covering both population groups (169). Finally, since the immune–competent population contributed to the generation of new viral strains in South Africa and the United Kingdom, new adaptations of the virus raise the concern about the possibility of escaping viral neutralization by convalescent antibodies. In this context, a very recent study reported that SARS-CoV-2 has the ability to generate new mutations in its viral spike, which is typically recognized by antibodies, thus facilitating the escape from neutralization (170).

Taken together, more clinical trials are warranted to prove the safety and efficacy as well as the synergistic therapeutic effects of this combination treatment procedure.

AUTHOR CONTRIBUTIONS

AN and KZ proposed the hypothesis and originated this work. All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl. (2020) 395:497–506. doi: 10.1016/S0140-6736(20)30183-5
2. Coronavirus Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome–related coronavirus: classifying 2019–nCoV and naming it SARS-CoV-2. Nat Microbiol. (2020) 5:536–44. doi: 10.1038/s41562-020-0699-z
3. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. (2020) 579:265–9. doi: 10.1038/s41586-020-2008-3
4. Zha N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. (2020) 382:727–33. doi: 10.1056/NEJMoa2001017
5. Zhang W, Du R-H, Li B, Zheng X-S, Yang X-L, Zheng X-S, et al. Molecular and serological investigation of 2019–nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. (2020) 9:386–9. doi: 10.1080/22221751.2020.1729071
6. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2, a novel coronavirus, resulting from human cells. J Virol. (2020) 94:e00127-20. doi: 10.1128/JVI.00127-20
7. Kolifarhood G, Aghaali M, Mozafar Saadati H, Taherpour N, Rahimi S, Izadi N, et al. Epidemiological and clinical aspects of COVID-19; a narrative review. Arch Acad Emerg Med. (2020) 8:44.
8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet Lond Engl. (2020) 395:507–13. doi: 10.1016/S0140-6736(20)30211-7
9. Wong CK, Lam CWK, Wu AKL, Ip WK, Lee NLS, Chan JHS, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. (2004) 136:95–103. doi: 10.1111/j.1365-2249.2004.02415.x
10. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. (2005) 67:698–705. doi: 10.1111/j.1523-1755.2005.07130.x
11. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. (2020) 382:1199–207. doi: 10.1056/NEJMoa2001316
12. Porcheddu R, Serra C, Kelvin D, Kelvin N, Rubino S. Similarity in Case Fatality Rates (CFR) of COVID-19/SARS-CoV-2 in Italy and China. J Infect Dev Ctries. (2020) 14:125–8. doi: 10.3855/jidc.12600
13. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet Lond Engl. (2020) 395:1225–8. doi: 10.1016/S0140-6736(20)30627-9
14. Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, et al. SARS-CoV-2 infection in children. N Engl J Med. (2020) 382:1663–5. doi: 10.1056/NEJM2005073
15. Guan W-J, Zhong N-S. Clinical characteristics of Covid-19 in China. Reply. N Engl J Med. (2020) 382:1861–2. doi: 10.1056/NEJM2005203
16. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. doi: 10.1038/s41586-020-2012-7
17. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. (2020) 5:562–9. doi: 10.1038/s41564-020-0688-y
18. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J Virol. (2020) 94:e00127-20. doi: 10.1128/JVI.00127-20
19. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. (2020) 367:1444–8. doi: 10.1126/science.abb2762
20. Matsuyma S, Nao N, Shirato K, Kawasaki M, Saito S, Takayama I, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci USA. (2020) 117:7001–3. doi: 10.1073/pnas.2002589117
21. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. (2015) 202:120–34. doi: 10.1016/j.virusres.2014.11.021
22. Wang P, Liu L, Ikетani S, Luo Y, Guo Y, Wang M, et al. Increased resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to antibody neutralization. BioRxiv Prepr Serv Biol [Preprint]. (2021) doi: 10.1101/2021.01.25.428137
23. Santos JC, Passos GA. The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between Spike-ACE2 caused by the viral S501Y mutation. Bioinformatics. [Preprint]. (2021) doi: 10.1091/2021.12.29.424708
24. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. (2020) 181:281–92.e6. doi: 10.1016/j.cell.2020.02.058
25. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. (2005) 436:112–6. doi: 10.1038/nature03712
26. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. (2005) 11:875–9. doi: 10.1038/nm1267
27. Wang K, Ghebrawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. *Circulation*. (2020) 142:426–8. doi: 10.1161/CIRCULATIONAHA.120.047049

28. Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. *Exp Physiol*. (2008) 93:43–9. doi: 10.1113/jphysiol.2007.120630

29. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. *Curr Opin Pharmacol*. (2006) 6:271–6. doi: 10.1016/j.coph.2006.03.001

30. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A role of RAAS and MAPK signaling. *Front Pharmacol*. (2015) 6:1180–13. doi: 10.3389/fphar.2015.00634

31. Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, et al. Toward necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). *J Biol Chem*. (2005) 280:30113–9. doi: 10.1074/jbc.M50111200

32. Turner AJ, Hooper NM. Angiotensin-converting enzyme 2. In: Barrett AJ, Rawlings ND, Woessner JF, editors. *Handbook of Proteolytic Enzymes*. Elsevier (2004). p. 349–51. doi: 10.1016/B978-0-12-079611-3.50092-6

33. Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. *Int J Pept*. (2012) 2012:256294. doi: 10.1155/2012/256294

34. Unger T, Stecklings EM, Santos RS dos. The Protective Arm of the Renin Angiotensin: Functional Aspects and Therapeutic Implications. *Academic Press* (2015). p. 316.

35. Simões e Silva AC, Pinheiro S, Pereira R, Ferreira A, Santos R. The therapeutic potential of Angiotensin-(1-7) as a novel renin-angiotensin system modulator. *Mini-Rev Med Chem*. (2006) 6:603–609. doi: 10.2174/138955706776876203

36. Turner AJ, Tipnis SR, Guy JL, Rice G, Hooper NM. ACEH/ACE2 is a mammalian metallo-carboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. *Can J Physiol Pharmacol*. (2002) 80:346–53. doi: 10.1139/y02-021

37. Rice GL, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and nephrilysin in angiotensin peptide metabolism. *Biochem J*. (2004) 383:45–51. doi: 10.1042/BJ20040634

38. Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, et al. An evolving story of angiotensin-II-forming pathways in rodents and humans. *Clin Sci.* (2014) 126:461–9. doi: 10.1042/CS20130400

39. Santos RAS, Simoes e Silva AC, Marcic C, Silva DMR, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. *Proc Natl Acad Sci USA*. (2003) 100:8258–63. doi: 10.1073/pnas.1432869100

40. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heriniger-Salminen J, et al. G-Protein-coupled receptor Mas is a physiological antagonist of the Angiotensin II Type 1 receptor. *Br J Pharmacol*. (2019) 179:102536. doi: 10.1111/bph.15236

41. Wu Y. Compensation of ACE2 function for possible clinical management of SARS-CoV-2 infection. *J Virol*. (2020) 94:36. doi: 10.1128/JVI.79.e14614-14621.2005

42. Rivelles F, Prediletto E, ACE2 at the centre of COVID-19 from pauci-inflammatory infections to severe pneumonia. *Autoimmun Rev*. (2020) 19:102536. doi: 10.1016/j.autrev.2020.102536

43. Wu Y. Compensation of ACE2 function for possible clinical management of 2019-nCoV-Induced acute lung injury. *Virol Sin*. (2020) 35:256–8. doi: 10.1016/s1225-020-00205-6

44. Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. *Immunity*. (2020) 52:731–3. doi: 10.1016/j.immuni.2020.04.003

45. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. The Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science*. (2020) 367:1260–3. doi: 10.1126/science.abg2507

46. Rossi GP, Sanga V, Barton M. Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients. *eLife*. (2020) 9:e57278. doi: 10.7554/eLife.57278

47. Ortega JF, Perrone ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. *EXCLI J*. (2020) 19:418–9. doi: 10.17179/excli2020-1165

48. Chen J, Wang R, Wang M, Wei G-W. Mutations strengthened SARS-CoV-2 infectivity. *J Mol Biol*. (2020) 432:5212–26. doi: 10.1016/j.jmb.2020.07.009

49. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. *Cell*. (2020) 182:812–27.e19. doi: 10.1016/j.cell.2020.06.043

50. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility. *BioRxiv Prepr Serv Biol [Preprint]*. (2020). doi: 10.1101/2020.09.01.276889

51. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. *BioRxiv Prepr Serv Biol [Preprint]*. (2020). doi: 10.1101/2020.06.12.148726
66. Tegally H, Wilkinson E, Giovanetti M, Irzanezhad A, Fonseca V, Giandhari J, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. *Epidemiology MedRxiv* [Preprint]. (2020). doi: 10.1101/2020.12.21.2048640

67. Hoffmann M, Kleine-Weber H, Schroder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell.* (2020) 181:271–80.e8. doi: 10.1016/j.cell.2020.02.052

68. Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. *J Virol.* (2013) 87:5902–11. doi: 10.1128/JVI.01028-13

69. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. *J Virol.* (2011) 85:4122–34. doi: 10.1128/JVI.02232-10

70. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells of healthy never smokers following acute inhalation of E-cigarettes. *Respir. Res.* (2018) 19:78. doi: 10.1186/s12931-018-0777-z

71. Shastri MD, Shukla SD, Chong WC, Kc R, Dua K, Patel RP, et al. Smoking and COVID-19: what we know so far. *Respir. Med.* (2020) 176:106237. doi: 10.1016/j.rmed.2020.106237

72. Leung JM, Yang CX, Tam A, Shaipanich T, Hackett T-L, Singhera GK, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. *Eur Respir J.* (2020) 55:2000688. doi: 10.1183/13993003.01116-2020

73. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and smoking: is nicotine the hidden link? *Eur Respir J.* (2020) 55:2001116. doi: 10.1183/13993003.102463-2020

74. Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and smoking: is nicotine the hidden link? *Eur Respir J.* (2020) 55:2001116. doi: 10.1183/13993003.01116-2020

75. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. *Pol Arch Intern Med.* (2020) 130:304–9. doi: 10.20452/pami.15272

76. Zhou Z, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. *Front. Med.* (2020) 14:185–92. doi: 10.1007/s11680-020-0754-0

77. Sugnuk W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. *Nat. Med.* (2020) 26:681–7. doi: 10.1038/s41591-020-08686-8

78. Cai G, Bossy X, Xiao F, Kheradmand F, Amos CI. Tobacco smoking increases the lung gene expression of ACE2, the Receptor of SARS-CoV-2. *Am J Respir Crit Care Med.* (2020) 201:1557–9. doi: 10.1164/rcrm.202003-0693LE

79. Kashyap VK, Dhasmana A, Massey A, Kotnala S, Zafar N, Jaggi M, et al. Smoking and COVID-19: adding fuel to the flame. *Int J Mol Sci.* (2020) 21:6581. doi: 10.3390/ijms21065811

80. Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and smoking: is nicotine the hidden link? *Eur Respir J.* (2020) 55:2001116. doi: 10.1183/13993003.01116-2020

81. Gülsen A, Yigitbas BA, Uslu B, Drommann D, Käline O. The effect of smoking on COVID-19 symptom severity: systematic review and meta-analysis. *Pulm Med.* (2020) 2020:7950207. doi: 10.1155/2020.2012699

82. Lawrence H, Hunter A, Murray R, Lim WS, McKeever T. Cigarette smoking and the occurrence of influenza - systematic review. *J Infect.* (2019) 79:401–6. doi: 10.1016/j.jinf.2018.08.014

83. Duffney PF, Embong AK, McGuire CC, Thatcher TH, Phipps RP, Sime PJ. Cigarette smoke increases susceptibility to infection in lung epithelial cells by upregulating caveolin-dependent endocytosis. *PLoS ONE.* (2020) 15:e0232102. doi: 10.1371/journal.pone.0232102

84. Duffney PF, McCarthy CE, Nogales A, Thatcher TH, Martinez-Sobrido L, Phipps RP, et al. Cigarette smoke dampens antiviral signaling in small airway epithelial cells by disrupting TRLR3 cleavage. *Am J Physiol Lung Cell Mol Physiol.* (2018) 314:L503–13. doi: 10.1152/ajplung.00406.2017

85. Staudt MR, Salit J, Kaner RJ, Hollmann C, Crystal RG. Altered lung biology of healthy never smokers following acute inhalation of E-cigarettes. *Respir. Res.* (2018) 19:78. doi: 10.1186/s12931-018-0777-z

86. Shastri MD, Shukla SD, Chong WC, Kc R, Dua K, Patel RP, et al. Smoking and COVID-19: what we know so far. *Respir. Med.* (2020) 176:106237. doi: 10.1016/j.rmed.2020.106237

87. Rusch S, Skorecki K, Heymann SN, Kanameh S, Armanz L. Coronavirus (SARS-CoV-2) infection and mortality: a physiologist’s perspective enlightening clinical features and plausible interventional strategies. *Am J Physiol Lung Cell Mol Physiol.* (2020) 318:L1020–22. doi: 10.1152/ajplung.00097.2020
101. Lei C, Qian K, Li T, Zhang S, Fu W, Ding M, et al. Neutralization of SARS-CoV-2 spike protyped virus by recombinant ACE2-Ig. *Nat Commun.* (2020) 11:2070. doi: 10.1038/s41467-020-16048-4

102. Monteil V, Kwon H, Prado F, Hagelkruys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble Human ACE2. *Cell.* (2020) 181:905–13.e7. doi: 10.1016/j.cell.2020.04.004

103. Dimitrov DS. The secret life of ACE2 as a receptor for the SARS Virus. *Cell.* (2003) 115:652–3. doi: 10.1016/S0092-8674(03)00397-0

104. Alhenc-Gelas F, Druke TB. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. *Kidney Int.* (2020) 97:1091–3. doi: 10.1016/j.kint.2020.08.206

105. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. *Sci China Life Sci.* (2020) 63:364–74. doi: 10.1007/s11427-020-1643-8

106. Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, et al. Renin-Angiotensin–aldosterone system inhibitors and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. *Sci China Life Sci.* (2020) 63:364–74. doi: 10.1007/s11427-020-1643-8

107. Mentz RJ, Bakris GL, Waeber B, McMurray JJV, Gheorghiade M, Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 and Angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID-19). *JAMA Cardiol.* (2020) 5:1020–6. doi: 10.1001/jamacardio.2020.1855

108. Li J, Wang X, Chen J, Zhang H, Deng A. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. *JAMA Cardiol.* (2020) 5:825–30. doi: 10.1001/jamacardio.2020.1624

109. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin–Angiotensin–aldosterone system blockers and the risk of Covid-19. *N Engl J Med.* (2020) 382:2431–40. doi: 10.1056/nejmoa2006923

110. Reynolds HR, Adhikari S, Pulsarini C, Troxel AB, Utrerrate E, Johnson SB, et al. Renin–Angiotensin–aldosterone system inhibitors and risk of Covid-19. *N Engl J Med.* (2020) 382:2441–8. doi: 10.1056/nejmoa2008975

111. Kaddoura M, Allibrahim M, Hizaji G, Soudani N, Audi A, Alkalamouni H, et al. COVID-19 therapeutic options under investigation. *Front Pharmacol.* (2020) 11:1196. doi: 10.3389/fphar.2020.01196

112. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw F-M, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. *J Infect Dis.* (2015) 211:80–90. doi: 10.1093/infdis/jiu396

113. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 Critically Ill patients with COVID-19 with convalescent plasma. *JAMA.* (2020) 323:1582–9. doi: 10.1001/jama.2020.4783

114. Ahn JY, Sohn Y, Lee SH, Cho Y, Hyan JH, Baek YJ, et al. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. *J Korean Med. Sci.* (2020) 35:e149. doi: 10.3346/jkms.2020.35.e149

115. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. *Proc Natl Acad Sci USA.* (2020) 117:9490–6. doi: 10.1073/pnas.2004168117

116. Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. *J Med Virol.* (2020) 92:1890–901. doi: 10.1002/jmv.25882

117. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, et al. Treatment with convalescent plasma for Critically Ill patients with severe acute respiratory syndrome Coronavirus 2 infection. *Chest.* (2020) 158:e9–e13. doi: 10.1016/j.chest.2020.03.039

118. Cheng Y, Wong R, Soo JOY, Wong WS, Lee CK, Ng MHL, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. *Eur J Clin Microbiol Infect Dis.* (2005) 24:44–6. doi: 10.1007/s10096-004-1271-9

119. Soo JOY, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK, Ng MH, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. *Clin Microbiol Infect.* (2004) 10:767–8. doi: 10.1111/j.1469-0691.2004.09956.x

120. Nie QH, Luo XD, Hui WL. Advances in clinical diagnosis and treatment of severe acute respiratory syndrome. *World J Gastroenterol.* (2003) 9:1139–43. doi: 10.3748/wjg.v9.i6.1139

121. Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PK, Peng MY, et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwanese hospital. *J Antimicrob Chemother.* (2005) 56:919–22. doi: 10.1093/jac/dki346

122. Zhou X, Zhao M, Wang FS, Jiang T, Li YG, Nie WM, et al. Epidemicologic features, clinical diagnosis and therapy of first cluster of patients with severe acute respiratory syndrome in Beijing area. *Zhonghua yi xue za zhi.* (2003) 9:199–201. doi: 10.3346/jkms.2020.35.e149

123. Zheng B, Liu S, Tan T, Huang W, Dong Y, Chen L, et al. Treatment with convalescent plasma for Critically Ill patients with severe acute respiratory syndrome Coronavirus 2 infection. *J Infect Dis.* (2020) 21:1020–6. doi: 10.1093/cid/ciaa492
156. Marques FD, Ferreira AJ, Sinisterra RDM, Jacoby BA, Sousa FB, Callari MV, Carvalho MBL, Duarte FV, Faria-Silva R, Fauler B, da Mata Magalhães GS, Rodrigues-Machado M da G, Motta-Santos D, Campagnole-Bastos AC, Magalhães GS, Gregório JF, Matos NA, Motta-Santos D, Bezerra Gwathmey TM, Pendergrass KD, Reid SD, Rose JC, Diz DI, Santos RA. Angiotensin-(1-7). Hypertension. (2014) 63:1138–47. doi: 10.1161/HYPERTENSIONAHA.113.01274

157. Duruk M, van Veghel R, Kuipers A, Rink R, Haas Jmoh Akanbi M, Moll M, et al. Effect of the thioether-bridged, stabilized Angiotensin-(1-7) analogue cyclic ang-(1-7) on cardiac remodeling and endothelial function in rats with myocardial infarction. Int J Hypertens. (2012) 2012:536426. doi: 10.1155/2012/536426.

158. Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahadaki K, Pessoa DC, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. (2010) 56:112–20. doi: 10.1161/HYPERTENSIONAHA.110.152942

159. Povlsen AL, Grimm D, Wehland M, Infanger M, Krüger M. The vasosatmic receptor in essential hypertension. J Clin Med. (2020) 9:267. doi: 10.3390/jcm9010267

160. National Center for Advancing Translational Sciences. ANGIOTENSIN I-7. Available online at: https://drugs.nclats.io/substance/IJ3FUK8MOF (accessed March 04, 2021).

161. Rodgers KE, Oliver J, diZerega GS. Phase II dose escalation study of Angiotensin I-7 [AI-1-7] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol. (2006) 57:559–68. doi: 10.1007/s00280-005-0078-4

162. Machado-Silva A, Passos-Silva D, Santos RA, Sinisterra RD. Therapeutic uses for Angiotensin-(1-7). Expert Opin Ther Pat. (2016) 26:669–78. doi: 10.1080/13543776.2016.1172983

163. van Paassen J, Vos JS, Hoekstra EM, Neumann KMI, Boot PC, Arbour SM. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care Lond Engl. (2020) 24:696. doi: 10.1186/s13054-020-03400-9

164. Use of Angiotensin-(1-7) (NCT04633772). Available online at: https://clinicaltrials.gov/ct2/show/NCT04633772 (accessed March 04, 2021).

165. Pitrus R, Rajashri K, Khan R, Ray S. Convalescent plasma therapy: a promising coronavirus disease 2019 treatment strategy. Open Biol. (2020) 20010174. doi: 10.1098/rsobl.20010174

166. Mora-Rillo M, Arsuaga M, Ramirez-Olivencia G, de la Calle F, Borobia AM, Sánchez-Seco P, et al. Acute respiratory distress syndrome after convalescent plasma use: treatment of a patient with Ebola virus disease contracted in Madrid, Spain. Lancet Respir Med. (2015) 3:535–62. doi: 10.1016/S2213-2600(15)00180-0

167. Gajic O, Rana R, Winters JL, Yilmaz M, Mendez JL, Rickman OB, et al. Transfusion-related acute lung injury in the critically ill: prospective nested case-control study. Am J Respir Crit Care Med. (2007) 176:886–91. doi: 10.1164/rccm.200702-271OC

168. COVID-19 Treatment Guidelines. Available online at: https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/blood-derived-products/convalescent-plasma/ (accessed March 04, 2021).

169. Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. BioXiv Prepr Serv Biol [Preprint]. (2020) doi: 10.1101/2020.12.28.44451

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Issa, Eid, Berry, Takhviji, Khosravi, Mantash, Nehme, Hallal, Karaki, Dhayni, Faour, Kobeissy, Nehme and Zibara. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.