Calculation of Gluon Contribution to the Proton Spin by Using the Non-Perturbative Quantization à la Heisenberg

V. Dzhunushaliev

1 Department of Theoretical and Nuclear Physics, Kazakh National University, Almaty, 050040 Kazakhstan
2 IETP, Al-Farabi KazNU, Almaty, 050040 Kazakhstan
3 Institute of Systems Science, Durban University of Technology, Durban, 4000 South Africa
e-mail: v.dzhunushaliev@gmail.com
Received June 14, 2017

Abstract—The contribution of crossed gluon fields in flux tubes connecting quarks to the proton spin is calculated. The calculations are performed following non-perturbative Heisenberg’s quantization technique. In our approach a proton is considered as consisting of three quarks connected by three flux tubes. The flux tubes contain colour longitudinal electric and transversal electric and magnetic fields. The transversal fields causes the appearance of the angular momentum density. The dimensionless relation between the angular momentum and the mass of the gluon fields is obtained. The contribution to proton spin from rotating quarks and flux tubes connecting quarks is estimated. Simple numerical relation between the proton mass, the speed of light and the proton radius, which is of the same order as the Planck constant, is discussed.

Keywords: proton spin, non-perturbative quantization, two-equation approximation, flux tube, quantum superposition
DOI: 10.1134/S1547477117060152

1. INTRODUCTION

The spin structure of the proton is one of the most challenging problems in modern physics. The experimental results of the European Muon Collaboration showed that only a small fraction of the proton spin is carried by the quark spin [1, 2]. The proton spin can be split as

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_G$$

where $\Delta\Sigma$ is a quark spin contribution, ΔG is a gluonic contribution, L_q and L_G are quark and gluon angular momentum contributions. Measurements of the quarks contribution to the proton spin [3–8] show that it is $\approx 30\%$. Further studies showed that up to 30% the proton spin can arise due to the spin of gluons [9, 10]. Some portion of the proton spin can come from the orbital angular momentum of quarks and anti-quarks [11], see also the reviews [12–15]. Theoretical investigations of the proton spin structure are also performed on the lattice, see for example [16]. In Ref. [17] the general procedure for calculating the quark and gluon helicity contributions $\Delta\Sigma$, ΔG, and the quark and gluon orbital angular momentum contributions L_q, L_G to the proton spin is presented. It is possible that L_G is a purely nonperturbative effect and its calculation is closely related to the resolution of the confinement problem. In this note we are guided by this idea and show that the contribution of L_G to the proton spin is connected with the presence of flux tubes between quarks in the proton.

In this letter we use the non-perturbative methods à la Heisenberg [18] to investigate the gluon field contribution to the proton spin. The main idea of our approach is that flux tubes between quarks in a proton have the angular momentum density coming from colour electric and magnetic fields. The flux tube has longitudinal electric field and transversal electric and magnetic fields. The transversal fields have different colour indices and, at first glance, cannot give us the angular momentum density. But if the proton quantum state has a quantum interplay between states with different transversal fields in the flux tube we will have transversal electric and magnetic fields with the same colour index. In this case we can calculate the angular momentum coming from the gluon fields which are in the flux tube. In this connection we have to note that in Ref. [19] the authors have shown that some properties of a glueball may explain the gluonic contribution to the proton spin.

2. MAIN IDEA

In this section we would like to present the main idea of calculation of the gluonic contribution to the proton spin. Before proceeding with the numerical
calculations, we want to understand qualitatively how the gluon field makes the contribution to the proton spin. Let us consider the following numerical relation between the fundamental constants and the proton parameters

\[m_p c r_p = 5 \times 10^{27} \text{ g cm}^{-2} \text{ s}^{-1} \approx 4.75 \hbar. \] \tag{2}

Here \(m_p \) is the proton mass and \(r_p \) is the proton radius. The left-hand side of (2) is the angular momentum of something rotating with the speed of light around the proton centre. We know that: (a) the proton mass has a significant contribution from gluon fields, (b) a gluon has zero rest mass and moves with the speed of light. This leads us to a thought that the angular moment of the gluon field has to make a significant contribution to the proton spin. This can happen only if the gluon fields form a kind of ordered structure. For example, it can be flux tubes between quarks. This is the main idea suggested in the letter.

We use the following model of a proton: three quarks are connected by flux tubes, see Fig. 1. In Ref. [20] it is shown that the flux tube stretched between two infinitely separated quarks has the longitudinal colour electric field \(E_z^1 \) and two transversal fields: the radial colour electric field \(E_z^b \) and the azimuthal colour magnetic field \(H^2_{\phi} \). It is well known from electrodynamics that electric and magnetic fields may have the angular momentum density. The generalization for non-Abelian gauge fields is obvious: \(\mathbf{\hat{M}} = \frac{1}{4\pi c} \left[\mathbf{\hat{r}} \times \left[\mathbf{\hat{E}}^a \times \mathbf{\hat{H}}^a \right] \right] \), where \(a \) is the colour index. A direct application of these formulae gives us a zero angular momentum density since the colour indices of \(E_z^a \) and \(H^b \) for every flux tube are different, \(b \neq a \). But following to Section 3 (Ansatz (10)–(13)) it is easy to see that having the solution with \(A_z^2, A_z^5 \) gauge potentials we can exchange either 2 \(\leftrightarrow \) 5 or 1 \(\leftrightarrow \) \(\phi \) indexes and obtain the solution with \(A_z^2, A_z^5 \) gauge potentials. It allows us to say that in quantum reality we will have a quantum state \(|p\rangle \) where both solutions are realized. In that case \(\mathbf{p} = \left[\mathbf{\hat{r}} \times \left[\mathbf{\hat{E}}^a \times \mathbf{\hat{H}}^a \right] \right] \not\equiv 0 \) and then the total angular momentum of a proton has a contribution from the gluon fields (here \(|p\rangle \) is the quantum state of a proton).

3. INFINITE FLUX TUBE

In this section we want to obtain an infinite flux tube solution using the non-perturbative quantisation approach à la Heisenberg presented in Ref. [20]. We start with the two-equation approximation obtained in Ref. [20] and applied for the flux tube. The set of equations describing such a situation is

\[\begin{align*}
\tilde{\Delta}_\xi E^a_{\mu \nu} - \left(m_z^2 \delta^{ab} - \mathbf{\mu}^2\delta^{ab} \right) A^a_\nu &= 0, \tag{3} \\
\mathbf{\phi} - \left(m_b^2 \delta^{ab} - \mathbf{\mu}^2\delta^{ab} \right) A^a_\nu - \lambda \mathbf{\phi} \left(m_z^2 - \phi^2 \right) &= 0, \tag{4}
\end{align*} \]

where

\[\begin{align*}
\left(m_z^2 \delta^{ab} \right) &= -g^2 \left[f_{abc} f_{cd} \mathcal{E}_{\rho \mu \nu} G^{\rho \mu \nu} - f_{abc} f_{d}^{\rho \mu \nu \alpha} \left(\eta^{\nu \alpha} \mathcal{G}_{\rho \mu \alpha} - \mathcal{G}_{\rho \mu \alpha} \right) \right], \tag{5} \\
\left(\mathbf{\mu}^2 \delta^{ab} \right) &= -g^2 \left[f_{abc} f_{d}^{\rho \mu \nu \alpha} \mathcal{G}_{\rho \mu \alpha} + \eta^{\nu \alpha} f_{abc} f_{d}^{\rho \mu \nu \alpha} \mathcal{G}_{\rho \mu \alpha} + f_{abc} f_{d}^{\rho \mu \nu \alpha} \mathcal{G}_{\rho \mu \alpha} \right], \tag{6} \\
\left(m_b^2 \delta^{ab} \right) &= g^2 f_{abc} f_{d}^{\rho \mu \nu \alpha} \mathcal{G}_{\rho \mu \alpha} - \eta^{\nu \alpha} \mathcal{G}_{\rho \mu \alpha}. \tag{7}
\end{align*} \]

2-point Green functions for the gauge fields \(\delta A_\mu^\nu \in SU(2) \times U(1) \) and for the coset \(\tilde{A}_\mu^\nu \in SU(3) / SU(2) \times U(1) \) are defined as

\[\begin{align*}
G^{\mu \nu \rho \sigma} (y, x) &= \left\langle \delta A_\mu^\nu (y) \delta A_\rho^\sigma (x) \right\rangle, \\
\tilde{A}_\mu^\nu &= \left\langle \tilde{A}_\mu^\nu \right\rangle + i \delta \tilde{A}_\mu^\nu, \tag{9}
\end{align*} \]

where \(F_{\mu \nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g f_{abc} A_\mu^b A_\nu^c \) is the field strength; \(b, c, d = 2, 5, 7 \) are the SU(2) colour indices; \(g \) is the coupling constant; \(f^{bcd} \) are the structure constants for the SU(3) gauge group and \(g \) is the coupling constant.
constant. The set of equations (3) and (4) describes decomposition of SU(3) degrees of freedom into two groups: the first one describes SU(2) elements of SU(3) degrees of freedom and \(\varphi \) is a gluon condensate describing an average dispersion of quantum fluctuations in the coset space SU(3)/SU(2).

We seek a cylindrically symmetric solution of the set of equations (3) and (4) in the subgroup SU(2) \(\in \) SU(3) spanned on \(\lambda^2, \lambda^7 \) (in Ref. [20] we found the solution in the SU(2) subgroup spanned on \(\lambda^2, \lambda^3 \)):

\[
A^2(\rho) = f(\rho), \quad A^7(\rho) = \frac{\nu(\rho)}{g}, \quad \phi(\rho) = \frac{\Phi(\rho)}{g}.
\]

(10)

Here we use the cylindrical coordinate system \(z, \rho, \varphi \). The corresponding colour electric and magnetic fields are then

\[
E^z(\rho) = E^z_\varphi(\rho) = \frac{f(\rho)\nu(\rho)}{g},
\]

(11)

\[
H^\varphi(z) = \varepsilon_{\varphi\rho z} E^\rho(z) = -\frac{\nu'(\rho)}{g}.
\]

(12)

We assume that 2-point Green functions can be approximately expressed as follows:

\[
G^{ablv}(y, x) = \Delta^{ab} \mathcal{A}^b \mathcal{B}^v, \quad a, b = 2, 5, 7;
\]

(14)

\[
C^{mnlv} = \delta^{mn} \mathcal{A}^m \mathcal{A}^n \mathcal{B}^v, \quad m, n = 1, 3, 4, 6, 8,
\]

(15)

where \(\mathcal{B}_\mu \mathcal{B}^\mu \) is a constant and

\[
\Delta^{ab} = \begin{pmatrix}
\delta_1 & 0 & 0 & 0 \\
0 & \delta_2 & 0 & 0 \\
0 & 0 & \delta_3 & 0
\end{pmatrix},
\]

(16)

We choose the vectors \(\mathcal{A}^\mu \) and \(\mathcal{B}^\mu \) in the form

\[
\mathcal{A}^\mu = \left(0, 0, A_\rho, \frac{A_\varphi}{\rho}\right),
\]

(18)

\[
\mathcal{B}^\mu = \left(0, 0, B_\rho, \frac{B_\varphi}{\rho}\right).
\]

(19)

With such a choice of the vectors \(\mathcal{A}^\mu, \mathcal{B}^\mu \), and \(\mathcal{A}^\mu \), we have

\[
(\mu^2)^{a_blv} A^b_v = \frac{g^2}{4} \left(B^2_\rho + B^2_\varphi \right) \delta_5 + \delta_7) A^2_v = \mu^2 A^2_v,
\]

(20)

\[
(\mu^2)^{a_blv} A^b_v = -\frac{g^2}{4} \left(B^2_\rho + B^2_\varphi \right) \delta_2 + \delta_7) A^2_v = -\mu_2 A^2_v,
\]

(21)

\[
(\mu^2)^{a_blv} A^b_v = \frac{3}{4} g^2 \left(A^2_\rho + A^2_\varphi \right)
\]

(22)

\[
(\mu^2)^{a_blv} A^b_v = -\frac{3}{4} g^2 \left(A^2_\rho + A^2_\varphi \right)
\]

(23)

\[
\times \left(A_1 + A_3 + A_4 + A_6 + \Delta_5 \right) A^5_v = -\frac{m_5^2}{4} \varphi^2 A^5_v.
\]

(24)

Let us consider the simplest case with

\[
\Delta_1 + \Delta_3 = A_4 + \Delta_8.
\]

(25)

Then

\[
m_2^2 = m_0^2.
\]

(26)

\[
m_1^2 = m_2^2 = m^2
\]

(27)

In order to have equations that are the Euler–Lagrange equations, from some Lagrangian we choose

\[
m_2^2 = m^2,
\]

(28)

\[
3g^2 \left(A^2_\rho + A^2_\varphi \right) = \frac{1}{2A_4 + A_8 + 2A_8}.
\]

Substituting (10) and (20)–(24) into (3) and (4) and taking into account (28), we have

\[
f' + \frac{f}{\rho} = f \left(-\frac{\nu^2}{4} + \frac{m^2}{4} \Phi^2 - \mu_1^2 \right),
\]

(29)
After introducing the dimensionless parameters \(\mu, \), the following set of equations to the dimensionless radius .

where the prime denotes differentiation with respect to the dimensionless radius \(x \).

\[f''(x) + \frac{f'(x)}{x} = f(x)(-2 - \frac{2}{x} - \frac{2}{x^2} - \frac{2}{x^3}) \]

\[\phi''(x) + \frac{\phi'(x)}{x} = \phi(x)(-2 - \frac{2}{x} - \frac{2}{x^2} - \frac{2}{x^3}) \]

\[\tilde{\phi}''(x) + \frac{\tilde{\phi}'(x)}{x} = m^2 \phi(x)(-2 - \frac{2}{x} - \frac{2}{x^2} - \frac{2}{x^3}) \]

where the prime denotes differentiation with respect to the dimensionless radius \(x \).

\[f(0) = 0.2, f'(0) = 0; \]
\[\phi(0) = 1.0, \phi'(0) = 0. \]

The results of calculations are presented in Figs. 2 and 3. From Eqs. (33)–(35) we can obtain an asymptotic behavior of the functions \(f(x), \phi(x) \), and \(\phi(x) \) in the form

\[f(x) = f_\infty \frac{e^{-x}}{\sqrt{x}} \]
\[\phi(x) = \phi_\infty \frac{e^{-x}}{\sqrt{x}} \]

where \(f_\infty, \phi_\infty \) are some constants.

Now we want to discuss to which quarks from Fig.1 the flux tube with the fields \(E_z \) from (11) is attached. Analyzing the interaction term \(\bar{q}A_\mu \lambda B q \) from Lagrangian we see that: the flux tube with \(E_z \) is attached to green, \(q_g \), and blue, \(q_b \), quarks.

\[A_\mu = \mu, A_\lambda = \lambda, A_\gamma = \gamma \]

4. CALCULATION OF THE ANGULAR MOMENTUM OF GLUON FIELD

In this section we consider \(A_\mu, A_\lambda, A_\gamma \) possible mechanism for the emergence of angular momentum of gluon field in proton spin. In section 3 we have obtained the flux tube solution for \(A_\mu, A_\lambda, A_\gamma \) SU(2) gauge potential. As it is easy to see the solution with potentials \(A_\mu, A_\lambda, A_\gamma \) exists also. Both solutions are identical
with the accuracy of exchange either $t \leftrightarrow z$ or $2 \leftrightarrow 5$. That means that in quantum theory should be a quantum state $|p\rangle$ describing both solutions. The properties of this quantum state are

$$
\langle p| \hat{E}_p^2 \hat{H}_q^1 |p\rangle \neq 0, \\
\langle p| \hat{E}_p^5 \hat{H}_q^2 |p\rangle \neq 0, \\
\langle p| \hat{E}_p^2 \hat{H}_q^3 |p\rangle \neq 0, \\
\langle p| \hat{E}_p^5 \hat{H}_q^4 |p\rangle \neq 0,
$$

The relations (42) and (43) means that there is a complicated quantum interplay between A_2^3, A_5^5 and A_3^3, A_5^5 solutions. The expectation value of the angular momentum of the gluon field for one flux tube is

$$
\hat{M} = \frac{1}{4\pi} \langle p| \int dV \left[\hat{r} \times \left[\hat{E}_p^2 \times \hat{H}_q^1 \right] \right] |p\rangle
= \frac{1}{4\pi} \int dV \left[\hat{r} \times \left\langle \langle p| \hat{E}_p^2 \times \hat{H}_q^1 |p\rangle \right\rangle \right]
= \frac{1}{4\pi} \int dV \left[\hat{r} \times \left\langle \langle p| \hat{E}_p^5 \times \hat{H}_q^4 |p\rangle \right\rangle \right].
$$

(44)

For the calculation of (44) we approximate the flux tube as a finite piece of the infinite flux tube found in Section 3A. Then the M_{\perp} component of the angular momentum of the gluon fields in the flux tube, which is perpendicular to the triangle created by three quarks, will be

$$
L_G = M_{\perp} = \frac{24\pi}{g^2} \int_0^\infty \frac{dx}{g^2} \frac{d\tilde{r}}{dx} \frac{h}{2} = \frac{24\pi}{g^2} r_0 \phi_0^2 \frac{h}{2},
$$

(45)

where $\tilde{r} = \tilde{r}_0 + \tilde{r} + \tilde{r}$, see Fig. 5; \tilde{r}_0 is the distance from the proton center to the flux tube center; \tilde{r} is the distance from the flux tube center to the cross section of the tube; \tilde{r} is the distance from the flux tube axis to the point where $\hat{r} \times \left[\hat{E}_p^5 \times \hat{H}_q^4 \right]$ is calculated; the transversal color electric and magnetic fields $E_p^{2,5} = -\frac{\mathcal{F}(\Omega)}{g}$, $H_q^{2,5} = -\frac{\mathcal{V}(\Omega)}{g}$ are calculated in Eqs. (12) and (13); $g^2 = 4\pi\alpha g^2$ is the dimensionless coupling constant; $\mathcal{F} = \mathcal{V} = 2\pi l_0 \phi_0$ is the dimensionless lengths of the tube; $r_0 = r_p$ is the proton radius; $M_{\perp} = 0.043$ can be calculated by using the numerical solution obtained in Section 3.1; we take into account that we have two equal terms in (44), and three flux tubes in the proton; $dV = 2\pi l_0 dp$. One way to calculate ϕ_0 is to calculate the mass of the gluon fields in the proton. One can note that similar calculations for meson, consisting from quark and antiquark with one flux tube between them, gives us $L_G = 0$ because $r_p = 0$. For the rough estimation of L_G we have: $\mathcal{F}, \mathcal{V}/\mathcal{V} = 1$ and $M_{\perp,\perp}/(h/2) = 4\%$.

5. CALCULATION OF THE MASS OF GLUON FIELDS IN A PROTON

Calculation of the proton mass of gluon fields in this approach faces the following problem: The energy density for the non-Abelian fields is

$$
\varepsilon = \frac{1}{8\pi} \left(\langle \hat{E}_i^B \hat{E}_i^{B^*} \rangle + \langle \hat{H}_i^B \hat{H}_i^{B^*} \rangle \right),
$$

(46)

where E_i^B and H_i^B are non-Abelian electric and magnetic fields. The point is that in our approach (for details see Ref. [20])

$$
\hat{A}_\mu^B = A_\mu^B + i\delta A_\mu^B.
$$

(47)
Here \(a = 2, 5, 7; \) \(A_{\mu}^a \in SU(2) \subset SU(3); \) \(\delta \hat{A}_{\mu}^a \) are quantum fluctuations. In such a case the linear energy density will be

\[
8\pi g^2 \varepsilon(\rho) = \frac{f^2}{2} + \frac{\nu^2}{2} + \frac{\phi^2}{2} + \frac{f^2 \phi^2}{8} + m^2 \left(\frac{f^2 \phi^2}{8} + \frac{\nu^2 \phi^2}{8} + \frac{\mu^2}{4} f^2 \right) (48)
\]

As one sees from this expression, there is negative term \(-\frac{\mu^2}{2} \nu^2\) coming from (47). Evidently, this is a consequence of the presence of the imaginary factor \(i \) in front of \(\delta \hat{A}_{\mu}^a \) in (47). To avoid this problem, we suggest the following approach: let us write the energy density as

\[
\varepsilon = \frac{1}{8\pi} \left(\left(\hat{E}_r^a \right)^\dagger \hat{E}_r^a + \frac{1}{2} \left(\hat{H}_r^a \right)^\dagger \hat{H}_r^a \right),
\]

where \(\hat{E}_r^a \) is the Hermitian conjugate operator. In this case the linear energy density will be

\[
8\pi \varepsilon(\rho) = \frac{f^2}{2} + \frac{\nu^2}{2} + \frac{\phi^2}{2} + \frac{f^2 \phi^2}{8} + m^2 \left(\frac{f^2 \phi^2}{8} + \frac{\nu^2 \phi^2}{8} + \frac{\mu^2}{4} f^2 \right) (50)
\]

Then the mass of the gluon fields in a proton is

\[
m_g = \frac{3}{4 c^2 g^2} \int_0^\infty \rho \varepsilon(\rho) d\rho
\]

\[
= \frac{3 f \phi_0}{c^2 g^2} \int_0^\infty x dx \left(\frac{f^2}{2} + \frac{\nu^2}{2} + \frac{\phi^2}{2} + \frac{f^2 \phi^2}{8} + m^2 \left(\frac{f^2 \phi^2}{8} + \frac{\nu^2 \phi^2}{8} + \frac{\mu^2}{4} f^2 + \frac{\lambda}{4} (\phi^2 - M^2)^2 \right) \right) (51)
\]

Here \(\tilde{m}_g = 0.85 \) can be calculated by using the numerical solution obtained in Section 3A. Using (51), we can exclude \(\phi_0 \) from (45) and obtain a dimensionless relation between \(M_{\perp} \) and \(m_g \):

\[
\frac{M_{\perp}}{2 c r_0 m_g} = \frac{\tilde{M}_g}{m_g}. (52)
\]

The left-hand side contains quantities which can be in principle measured, and the right-hand side is predicted theoretically. This value depends on the parameters \(f(0), \nu(0), \lambda, m_{1,2} \) and, varying these parameters, more realistic values of the gluon field angular momentum can be obtained.

6. THE CONTRIBUTION TO PROTON SPIN FROM ROTATING QUARKS AND TUBES

Besides the angular momentum of crossed colour electric and magnetic fields, the proton spin may have a contribution from the rotating quarks and flux tubes connecting quarks. We can estimate such contribution in the following way

\[
M_{\perp, a} = (m_g + m_r) r_0 (53)
\]

here \(r_0 \) is the velocity of quarks and flux tubes connecting quarks. The total angular momentum should be

\[
S_g + M_{\perp, g} + M_{\perp, r} = \hbar/2
\]

where \(S_g \) is the contribution from quarks spin. After some algebraic manipulations we have

\[
\frac{S_g}{m_g c r_0} + \frac{m_g}{m_c} \frac{\nu}{c} + \frac{m_g}{m_p} \left(2 \tilde{M}_g + \frac{\nu}{c} \right) \approx 10^{-1} (54)
\]

Here \(m_q \) is the quark masses and we took into account (2).

7. DISCUSSION AND CONCLUSIONS

Thus, we have approximately calculated the contribution of crossed gluon fields to the proton spin. The calculations are based on Heisenberg’s quantization technique. We have considered a proton as an object constructed from three quarks connected by three flux tubes. Using Heisenberg’s quantization approach, we have shown that the flux tubes contain color longitudinal and transversal electric and magnetic fields with different color indexes. This does not allow us to have a nonzero angular momentum density created by these transversal fields. But if we consider a quantum state where some interplay between these possibilities is possible then we will have transversal electric and magnetic fields with the same color index. It allows us to have the nonzero angular momentum density.

We have calculated the component of the angular momentum of crossed colour fields perpendicular to the flux tubes. In order to estimate this value, we have calculated the mass of the gluon fields. Having this mass, we could determine one unknown parameter \(\phi_0 \), which is the value of the dispersion of quantum fluctuations of the coset fields at the proton centre. Then we have estimated the contribution to proton spin coming from rotating quarks and flux tubes connecting quarks.

The calculations presented here depend on the flux tube solution found in Section 3A. The solution depends on the parameters \(m_g, \tilde{M}_g, \nu(0), \phi(0) \). These parameters cannot be determined in the two-equations
approximation but only in the next approximation: three-, four-, and so on equations approximation.

ACKNOWLEDGMENTS

This work was supported by Grant Ф.0755 in fundamental research in natural sciences by the MES of RK. I am very grateful to V. Folomeev for fruitful discussions and comments.

REFERENCES

1. J. Ashman et al., “A measurement of the spin asymmetry and determination of the structure function $g(1)$ in deep inelastic muon-proton scattering,” Phys. Lett. B 206, 364–370 (1988).
2. J. Ashman et al., “An investigation of the spin structure of the proton in deep inelastic scattering of polarized muons on polarized protons,” Nucl. Phys. B 328, 1–35 (1989).
3. E. S. Ageev et al., “Measurement of the spin structure of the deuteron in the DIS region,” Phys. Lett. B 612, 154–164 (2005).
4. V. Yu. Alexakhin et al., “The deuteron spin-dependent structure function $g_1(d)$ and its first moment,” Phys. Lett. B 647, 8 (2007).
5. A. Airapetian, et al., “Precise determination of the spin structure function g_1 of the proton, deuteron and neutron,” Phys. Rev. D: Part. Fields 75, 012007 (2007).
6. B. Abe et al., “A next-to-leading order QCD analysis of the spin structure function $g(1)$,” Phys. Rev. D: Part. Fields 58, 112002 (1998).
7. K. Abe et al., “Measurements of the proton and deuteron spin structure functions g_1 and g_2,” Phys. Rev. D: Part. Fields 58, 112003 (1998); arXiv:hep-ph/9802357.
8. M. G. Alekseev, et al., “Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering,” Phys. Lett. B 693, 227–235 (2010); arXiv:1007.4061 [hep-ex].
9. A. Adare et al., “Inclusive double-helicity asymmetries in neutral-pion and eta-meson production in $\bar{p} + \bar{p}$ collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. D: Part. Fields 90, 012007 (2014); arXiv:1402.6296 [hep-ex].
10. L. Adamczyk et al., “Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at $\sqrt{s} = 200$ GeV,” Phys. Rev. Lett. 115, 092002 (2015); arXiv:1405.5134 [hep-ex].
11. F. Myhrer and A. W. Thomas, “A possible resolution of the proton spin problem,” Phys. Lett. B 663, 302–305 (2008).
12. S. E. Kuhn, J. -P. Chen, and E. Leader, “Spin structure of the nucleon - status and recent results,” Prog. Part. Nucl. Phys. 63, 1–50 (2009).
13. M. Burkardt, C. A. Miller, and W. D. Nowak, “Spin-polarized high-energy scattering of charged leptons on nucleons,” Rep. Prog. Phys. 73, 016201–016250 (2010).
14. H. Y. Cheng, “Status of the proton spin problem,” Int. J. Mod. Phys. A 11, 5109–5182 (1996).
15. S. D. Bass, “The spin structure of the proton,” Rev. Mod. Phys. 77, 1257–1302 (2005); arXiv:hep-ph/0411005.
16. G. S. Bali, S. Collins, M. Gockeler, R. Horsley, Y. Nakamura, A. Nobile, D. Pleiter, P. E. L. Rakow, A. Schafer, G. Schierholz, and J. M. Zanotti, “Strangeness contribution to the proton spin from lattice QCD,” Phys. Rev. Lett. 108, 222001 (2012).
17. X. D. Ji, J. Tang, and P. Hoodbhoy, “The spin structure of the nucleon in the asymptotic limit,” Phys. Rev. Lett. 76, 740–743 (1996); arXiv:hep-ph/9510304.
18. W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Interscience, London, New York, Sydney, 1966), p. 145.
19. N. Kochelev and D. P. Min, “X(1835) as the lowest mass pseudoscalar glueball and proton spin problem,” Phys. Lett. B 633, 283–288 (2006).
20. V. Dzhunushaliev, “Nonperturbative quantization à la Heisenberg for non-abelian gauge theories: two-equation approximation,” EPJ Web Conf. 138, 02003–02008 (2017); arXiv:1608.05662[hep-ph].