The same only different? How a pandemic shapes consumer organic food purchasing

Stefanie Sohn | Barbara Seegebarth | David M. Woisetschläger

1Department of Sociology, Environmental and Business Economics, Syddansk Universitet, Esbjerg, Denmark
2Chair of Services Management, Technische Universität Braunschweig, Braunschweig, Germany

Correspondence
Barbara Seegebarth and Stefanie Sohn, Chair of Services Management, Technische Universität Braunschweig, Mühlenpfoststraße 23, 38106 Braunschweig, Germany. Email: b.seegebarth@tu-braunschweig.de and sohn@sam.sdu.dk

Abstract
Organic food consumption is seen as a key strategy to alleviate both environmental and health problems. Although consumer purchasing of organic food has regularly been studied, major gaps exist in the literature. Knowledge is missing on how contextual factors, such as pandemics (e.g., COVID-19 pandemic), affect individuals’ purchasing of organic food. Therefore, the aim of this research is to examine the effect of a pandemic on organic food purchasing. To provide evidence on this effect, data collected at two points in time (before the COVID-19 pandemic and during the first wave of the COVID-19 pandemic) from 429 German consumers was analyzed with structural equation modeling. The results showed that pandemics positively influence both consumer quality consciousness ($\beta = 0.116$) and health consciousness ($\beta = 0.106$) and thereby enhance organic food purchasing. However, pandemics were not found to shape a consumers’ environmental consciousness ($\beta = -0.005$). Additional analyses showed that the effects of a pandemic are not equal for all consumer segments and that consumers’ income occupies—a decisive role. For instance, pandemics promote consumers' health consciousness only for consumers of lower than of higher income. These findings yield the diverse implications for practitioners and public policy.

1 | INTRODUCTION

Organic food (i.e., food which is free from artificial chemicals and pesticides; Hughner et al., 2007; Rana & Paul, 2017) is one of the most important product categories in the food market (Juhl et al., 2017; Olsen et al., 2014) as it offers key benefits to society. On the one hand, organic food, and its production aim to preserve natural resources while being more local and seasonal than the production of conventional food putting less pressure on the environment (Yadav & Pathak, 2016). In addition, the production of organic food supports animal health and welfare. On the other hand, organic food contains fewer synthetic fertilizers, and pesticides, and is free from hormones and antibiotics supporting peoples’ health (Health Harvard, 2015).

Hence, organic food consumption is seen as a key strategy to alleviate both environmental and health problems (Thøgersen, 2017). Given the relevance of organic food, an in-depth understanding of the determinants of consumer organic food consumption and organic food purchasing, respectively, is needed.

Although consumer purchasing of organic food has regularly been studied (Hughner et al., 2007; Juhl et al., 2017; Kushwah et al., 2019; Rana & Paul, 2017), major gaps exist in the literature. Knowledge is missing on how contextual factors, such as pandemics (e.g., COVID-19 pandemic), affect individuals’ purchasing of organic food. Scholars emphasize the need to study the effects of pandemics because “pandemics have been an unfortunate but consistent facet of human existence over centuries, threatening lives as well as livelihoods globally.
Disconcertingly, their frequency persists, with four ‘major’ pandemics disrupting the planet in the last 65 years and more expected in the future.” (Das et al., 2021). In other words, pandemics have a global and profound impact and are, in turn, likely to exert a lasting effect on consumer behavior (Laato et al., 2020; Sheth, 2020). As such, pandemics are assumed to shape organic food purchasing in the one or the other way because (1) pandemics could augment organic food consumption because they pose major threats to individuals’ health, which consumers might want to compensate through organic food consumption (Accenture, 2020; White et al., 2019), and (2) pandemics could reduce organic food consumption because they shift consumers’ attention away from environmental factors which have also been found to motivate organic food consumption (Hüttel & Balderjahn, 2021). Current insights on the effects of a pandemic on consumer behaviors related to organic food purchasing are conflicting. On the one hand, research points on an increase in healthier food choices with the current COVID-19 pandemic (Boyle et al., 2022). On the other hand, Hüttel and Balderjahn (2021) provide evidence that the current pandemic has decreased consumers’ likelihood to engage in pro-environmental behaviors. Current insights from non-academic sources imply effects of the COVID-19 pandemic on organic food purchasing. Accordingly, the pandemic has led to an increase in organic food purchasing (AMI 2021; Bund Ökologische Lebensmittelwirtschaft e.V., 2021). Against this background, it is imperative to understand how pandemics, such as the COVID-19 pandemic, affect consumer organic food purchasing. Overall, the psychological effects of pandemics are not well understood yet. Therefore, the aim of this research is to understand how pandemics shape organic food purchasing. In doing so, this research contributes to research on organic food purchasing and more broadly to consumer research and the role of pandemics.

2 | LITERATURE REVIEW

2.1 | Organic food purchasing

Organic food purchasing is a private sphere pro-environmental behavior. Like other pro-environmental behaviors, organic food purchasing involves doing something for the greater good (Hughner et al., 2007; Larson et al., 2015) and thus also offers benefits other than self-benefits (White et al., 2019). Given the importance of organic food purchasing, researchers have tried to understand which factors underlie individuals’ decision to purchase this food category. Research on the determinants of organic food purchasing has accumulated during the last decade. To structure the available knowledge, this research develops a conceptual model—inspired by research on consumer decision-making (Belk, 1975; Gifford & Nilsson, 2014; van Doorn & Verhoef, 2015; White et al., 2019; Yüksel, 2012)—explaining organic food purchasing with four groups of factors, namely the contextual, situational, supply-side, and consumer or psychological factors (Figure 1).

FIGURE 1 Conceptual model
Consumer research has focused on understanding organic food purchasing through the lens of consumer factors (Table 1). Among these, individuals’ perceptions (i.e., anticipated, or experienced) of the context, the situation, the supply-side factors, or the organic food purchasing itself have been found to represent key determinants of organic food purchasing. In specific, existing research reveals that different motives become relevant to explain individuals’ purchasing of organic food. Consensus exists that the decision to purchase organic food can be seen as a social dilemma (van Doorn & Verhoef, 2011). In other words, people weigh their interests like self-preservation (i.e., egoistic motives) against collective or other words, people weigh their interests like self-preservation and the protection of others (i.e., altruistic motives) when they decide to purchase organic food. Empirical works reveal that both motives influence individuals’ decision purchase decision regarding organic food (Kareklas et al., 2014; van Doorn & Verhoef, 2011).

Less knowledge exists on how objective factors (i.e., supply-side, situational, and contextual factors) affect organic food purchasing. Findings are particularly rare regarding the contextual factors. Contextual means in this regard an individuals’ actual environment (i.e., life space) and thus the boundary conditions which define individuals’ daily life. Hence, these factors go beyond the situational factors which relate to a specific situation (i.e., “a discrete time and place occupied by one or more persons” Belk, 1975, p. 157). To specify the idea of contextual factors in this work, we refer to the PESTLE (i.e., political, economic, societal, and cultural, technological, legal, environment factors) framework. While the political context can be defined, for instance, by the political stability or the governmental policy, the legal context refers to the available laws and regulations. The economic context defines individuals’ life space and means the economic performance (e.g., economic growth, unemployment rates) of, for instance, the country of residence. The technological context means the technologies (e.g., the degree of digitalization, access to high-speed internet) surrounding individuals in all day life. The societal and cultural context refers to the cultural and ethnic variations as well as, for

| TABLE 1 Review of literature on the determinants of consumer organic food purchasing |
|-----------------------------------|---------------------------------|
| **Contextual factors** | |
| Environmental | This study |
| Political | — |
| Economic | — |
| Societal and cultural | Boobalan and Nachimuthu (2020); Molinillo et al. (2020); Olson et al. (2016) |
| Technological | — |
| Legal | — |
| **Supply-side factors** | |
| Product | Rana and Paul (2017); van Doorn and Verhoef (2015); Bezawada and Pauwels (2013); van Doorn and Verhoef (2011) |
| Price | Ma et al. (2020); Olson et al. (2016); van Doorn and Verhoef (2015); Vlontzos and Duquenne (2014); Bezawada and Pauwels (2013); Ngobo (2011) |
| Communication | Septianto and Kemper (2021); Ma et al. (2020); Meyerding et al. (2019); Ryan and Casidy (2018); Scholl-Grissemann (2018); Guyader et al. (2017); Daunfeldt and Rudholm (2014); Melnyk et al. (2013); Ngobo (2011) |
| Place | van Doorn and Verhoef (2015); van Herpen et al. (2012); Ngobo (2011) |
| **Situational factors** | |
| Physical | — |
| Social | Puska et al. (2016) |
| Temporal | Gidlöf et al. (2021); Guyader et al. (2017) |
| Task | Thøgersen and Alfínito (2020); Frank and Brock (2018) |
| **Consumer psychological factors** | |
| Intrapersonal | Mai et al. (2021); Ladwein and Romero (2021); Nagaraj (2021); Sadiq et al. (2021); Sahelices-Pinto et al. (2021); Septianto and Kemper (2021); Taghikah et al. (2021); Talwar et al. (2021); Yu et al. (2021); Boobalan and Nachimuthu (2020); Hansmann et al. (2020); Molinillo et al. (2020); Tandon et al. (2020); Chiu et al. (2019); Hwang and Chung (2019); Prentice et al. (2019); Balderjahn et al. (2018); Chiu et al. (2019); Konuk (2018a); Konuk (2018b); Ryan and Casidy (2018); Juhl et al. (2017); Nuttavuthisit and Thøgersen (2017); Rana and Paul (2017); Hwang (2016); Yadav and Pavlou (2014); van Doorn and Verhoef (2015); Hauser et al. (2013); Thøgersen et al. (2012); van Doorn and Verhoef (2011); Tarkiainen and Sundqvist (2009); Krystallis et al. (2008); Honkanen et al. (2006) |
| Interpersonal | Taghikah et al. (2021); Sadiq et al. (2021); Hansmann et al. (2020); Ma et al. (2020); Nuttavuthisit and Thøgersen (2017); Olson et al. (2016); Puska et al. (2016); Melnyk et al. (2013); Thøgersen et al. (2012); Ngobo (2011); Krystallis et al. (2008) |
instance, to the age and income distribution characterizing the life space of an individual. Finally, the environmental context is defined by the availability of resources but also by aspects, such as weather and climate. In addition, the changes of climate as well as events, such as pandemics, define the environmental context.

2.2 | Pandemics

Pandemics are “large-scale outbreaks of infectious disease that can greatly increase morbidity and mortality over a wide geographic area and cause significant economic, social, and political disruption” (Madhav et al., 2017). Thus, like other natural disasters, a pandemic, such as the COVID-19 pandemic, is a life-threatening event (Zwanka & Buff, 2021). Before the COVID-19 pandemic, people had to deal with various pandemics or epidemics (e.g., SARS, Spanish flu). Different than other natural disasters, such as tsunamis and hurricanes, pandemics are global and their effects last for a longer period. For instance, memories about the SARS virus still induce fear among those who got in touch with the virus (Wu et al., 2009).

Pandemics have changed lives, have disrupted economic activities, and have fostered uncertainty and scarcity (Das et al., 2021). These changes have not only impacted organizations, but have also challenged individuals and have not seldom led them to waive their habits and adapt their behaviors (Sheth, 2020; Zwanka & Buff, 2021). Both the nature of pandemics and the regulations (e.g., social distancing, shutdowns) that are taken to mitigate the risks of pandemics raise individuals’ health, societal and economic concerns which, in turn, induce behavioral changes at the individual level (Laato et al., 2020).

As such, the ongoing pandemic has been found to have affected consumer behavior significantly (Urban & Braun, 2022). For instance, consumers have intensified their online shopping behavior (Kirk & Rifkin, 2020), embraced novel services (e.g., store pick-up, cashless payment), and have overall increased their in-home consumption (Pantano et al., 2020). With its profound impact on the food system (e.g., low stocks, price hikes) (Carolan, 2021; Ranjbari et al., 2021) and consumers’ lifestyle (e.g., in-home consumption) (Laato et al., 2020; Sheth, 2020), the COVID-19 pandemic has been found to affect food wastage behavior (Eger et al., 2021; Jribi et al., 2020), food choices (Marty et al., 2021), and eating behavior (Molina-Montes et al., 2021).

The COVID-19 pandemic with all its governmental measures has also had an observable, yet inconsistent effect on individuals’ pro-environmental behaviors. On the one hand, people have reduced the use of carbon-intensive transportation like air travel. On the other hand, studies reported an increase in waste disposal (Cheval et al., 2020). In a similar vein, research has been conflicting regarding the effect of the COVID-19 pandemic on environmental attitudes (Hüttel & Balderjahn, 2021; Rousseau & Deschacht, 2020; Schiller et al., 2022). Overall, assumptions exist that the current pandemic can impact consumer pro-environmental behavior in the long run (Urban & Braun, 2022) because the COVID-19 pandemic is expected to have promoted collective processes that “can lead to new appraisals of and responses to the climate crisis and related policy measures” (Reese et al., 2020). Sheth (2020) claims that pandemics range among the very few contexts which disrupt consumer habits and thereby can change consumer behavior sustainability. Thus, they require much more attention in consumer research.

3 | HYPOTHESES

The terror management theory (TMT) (Greenberg et al., 1986) posits that humans dispose of an inherent awareness for death. When this awareness of death is triggered, for instance, by specific events, such as a pandemic, people activate self-preservation mechanisms that buffer their anxiety of death (e.g., focus on the self, close relationships). In this way, pandemics are likely to shape human motivation and ultimately human behavior. Evidence exists that peoples’ self-transcendence values (i.e., caring for others, nature etc.) have decreased with the advancing COVID-19 pandemic (Daniel et al., 2022). Moreover, scholars found that the COVID-19 pandemic has weakened consumers’ consciousness of sustainable consumption (Hüttel & Balderjahn, 2021).

Taking this together, we expect that the presence of a pandemic positively influences self-oriented factors, such as quality consciousness and health consciousness, and negatively influences other-oriented factors, such as environmental consciousness. Further, we assume that pandemics impact organic food purchasing by directing consumers’ health, quality, and environmental consciousness which, in turn, have been found to shape organic food purchasing (Kriwy & Mecking, 2012; van Doorn & Verhoef, 2015).

Quality consciousness means “the extent to which a consumer prefers high quality products rather than compromising on quality and buying at a low price” (van Doorn & Verhoef, 2015, p. 440). The fear of an infection and related governmental recommendations or restrictions led people to stay at home. Hence, in-home consumption including the own preparation of meals had increased significantly (Janssen et al., 2021). To compensate for the missing out-of-home consumption experiences, consumers are likely to develop a higher consciousness of the quality of products they are using. What is more, the consumption of food with higher (perceived) quality might reflect a type of reward in times where restaurants with similar experiences have been less accessible (Marty et al., 2021). To sum up:

H1. The presence of a pandemic positively influences consumers’ quality consciousness.

Health consciousness means a “consumers’ readiness to identify with and to undertake health actions” (Hansen et al., 2018). According to the terror management health model, a pandemic and the thereby activated thoughts of death can increase ones’ health consciousness (Goldenberg & Arndt, 2008). During the current pandemic, improvements in healthy lifestyles (e.g., physical exercise) have been observed (Saah et al., 2021). People have also been found to prioritize their most basic needs, namely their personal health and the health of family and friends (Accenture, 2020). To overcome the pandemic-induced
health threats, consumers are likely to develop a higher health consciousness. Hence:

H2. The presence of a pandemic positively influences consumers’ health consciousness.

Environmental consciousness refers to one’s concerns for the environment (Hansen et al., 2018). An increasing environmental consciousness has been found to be closely related to behaviors that go beyond self-interest (Jain et al., 2020). However, evidence exists that a pandemic drives peoples’ self-interest (He & Harris, 2020), leading to behaviors, such as panic buying and hoarding. In general, humans dispose of a limited ability to develop concerns about different problems, such as the urgency of environmental problems and the existential threat induced by a pandemic, simultaneously (Rousseau & Deschacht, 2020). Hence, the pandemic might have shifted peoples’ attention away from environmental harm. In other words:

H3. The presence of a pandemic negatively influences consumers’ environmental consciousness.

As previous research has shown that consumers’ quality, health and environmental consciousness impact sustainable behavior, including organic food purchasing (Kriwy & Mecking, 2012; van Doorn & Verhoef, 2011), we further hypothesize:

H4. The presence of a pandemic positively influences organic food purchasing through an enhanced quality consciousness.

H5. The presence of a pandemic positively influences organic food purchasing through an enhanced health consciousness.

H6. The presence of a pandemic negatively influences organic food purchasing through an enhanced environmental consciousness.

4 | **EMPIRICAL STUDY**

4.1 | **Methods**

For data analysis, we used a sample of 429 German consumers collected by a professional panel provider. Participants received a nominal compensation for taking part in the self-administered online survey. To test the effects of a pandemic on organic food purchasing, we used the COVID-19 pandemic as an example and thus collected data before (n = 249) and during the COVID-19 pandemic (n = 180). In this way, we were able to operationalize the exogenous variable in the research model, namely the presence of a pandemic (1 = presence, 0 = absence).

In 2020, we used the same questionnaire as in 2018: In this questionnaire, participants indicated their sociodemographic background (i.e., gender, age, education, income). The sociodemographic variables were integrated as controls in the model because prior research on organic food purchasing emphasized their relevance for organic food purchasing (Kriwy & Mecking, 2012; van Doorn & Verhoef, 2011; van Doorn & Verhoef, 2015). The data from before and during the COVID-19 pandemic had a similar sociodemographic background (e.g., age, gender, education). For instance, there were no statistically significant differences in the composition of the income groups (e.g., income: $\chi^2(4) = 1.092, p = .895$). Although the sample reflected different age, education, and income groups, it did not represent the German population. For instance, the participants tended to be older than in the German population (Table 2).

Based on established multi-item scales (Table 3), study participants rated in this study’s questionnaire their quality consciousness, health consciousness, and environmental consciousness. Participants indicated their organic food purchasing during the last 4 weeks for different organic food categories (Apaolaza et al., 2018; van Doorn & Verhoef, 2011; Vermeir & Verbeke, 2006). The questionnaire also

TABLE 2 Sociodemographic background
Overall
Gender
Male
Female
Age
18-24
25-34
35-44
45-54
55-65
Education
Secondary school certificate
High school diploma
No school leaving certificate (yet)
Income
€ ≤1001
€1001–€2000
€2001–€3000
€3001–€4000
>€4000
captured participants’ tendency for vivid imagination. The variable that is theoretically unrelated to the variables in the research model was then used to test for a potential common method bias (Malhotra et al., 2006). Except for measuring the organic food purchasing (1 = never; 6 = nearly always), all remaining constructs were measured using 5-point Likert scales (1 = strongly disagree, 5 = strongly agree).

TABLE 3 Measures

Factor Loadings
Organic food purchasing (Apaolaza et al., 2018; van Doorn & Verhoef, 2011)
Fruits and/or vegetables
Meat
Fish
Milk and/or milk products
Cereals
Eggs
Bread products
Coffee
Non-alcoholic beverages
Dry goods (e.g., pasta, rice)
Alcoholic beverages
Sweets
Health consciousness (Gould, 1988)
I reflect about health a lot.
I am aware of the state of my health as I go through the day.
I am very self-conscious about my health
Quality consciousness (van Doorn & Verhoef, 2015)
When shopping, I always strive for the best quality.
Quality is decisive for me while buying a product.
Sometimes I save money on groceries by buying products of lower quality. (reversed)
Environmental consciousness (Dunlap et al., 2000)
When humans interfere with nature, it often produces disastrous consequences.
Humans are severely abusing the environment.
The balance of nature is very delicate and easily upset.
If things continue their present course, we will soon experience a major ecological catastrophe.

TABLE 4 Convergent and discriminant validity

#	Construct	Mean	SD	α	CR	1	2	3	4
1	Health consciousness	3.30	0.93	.856	.869	.690			
2	Environmental consciousness	4.36	0.60	.819	.823	.142	.540		
3	Quality consciousness	3.73	0.75	.755	.802	.184	.142	.580	
4	Organic food purchasing	2.36	1.05	.928	.928	.332	.123	.325	.521

Note: Average variance explained (AVE) is shown on diagonal in bold type, correlations are shown below the diagonal. Abbreviations: AVE, average variance explained; CR, composite reliability; SD, standard deviation.

4.2 Results

We followed recommendations (Johns, 2006; Venkatesh, 2020) and examples (Hütte & Balderjahn, 2021) in available literature on how to analyze the effects of contextual factors. Accordingly, we used structural equation modeling (SEM) implemented in the software Mplus version 7.4 (Muthén & Muthén, 2012) to test the hypothesized model of organic food purchasing integrating responses from before and during the COVID-19 pandemic.

Confirmatory factor analysis demonstrated that the employed measurement models fitted well with the data (χ^2/$df = 2.32$, root mean square error of approximation (RMSEA) = 0.055, comparative fit index (CFI) = 0.933, Tucker-Lewis index (TLI) = 0.923, standardized root mean square residual (SRMR) = 0.045). Even though some of the standardized factor loadings were below the recommended threshold of 0.700, the considered measures showed overall good psychometric properties (Cronbach’s alpha (α) ≥ .755, average variance extracted (AVE) ≥ .521, composite reliability (CR) ≥ .802; Table 4). In addition, the employed latent variables discriminate from one another. Accordingly, the lowest AVE exceeds the highest squared inter-construct-correlation (Table 4). With correlations ranging from .070 to .229 between the tendency for vivid imagination and the key variables of the research model, all correlations were smaller than the recommended threshold of 0.300 (Lindell & Whitney, 2001). Thus, common method variance does not seem to exert an important effect on the results in this research.

The structural model showed an overall acceptable fit (χ^2/$df = 2.12$, RMSEA = 0.051, CFI = 0.920, TLI = 0.911, SRMR = 0.052). In specific, the analysis revealed that the presence of a pandemic positively influenced consumers’ quality consciousness ($\beta = .116$, $p = 0.023$), supporting H1. In support of H2, the results showed that the presence of a pandemic positively impacted consumers’ health consciousness ($\beta = 0.106$, $p = 0.030$). However, the pandemic did not affect consumers’ environmental consciousness ($\beta = -0.005$, $p = 0.924$). Hence, H3 cannot be supported (Table 5).

A bootstrapping algorithm ($n = 10,000$) was used to test the indirect effects of the pandemic on organic food purchasing. The results
TABLE 5 Results of the effects of a pandemic on organic food purchasing

H1: Pandemic → quality consciousness	Estimate	SE	p-value	Estimate	SE	p-value
H2: Pandemic → health consciousness	0.116	0.051	0.023	0.117	0.051	0.023
H3: Pandemic → environmental consciousness	0.106	0.049	0.030	0.106	0.049	0.030
Pandemic → organic food purchasing	-0.005	0.054	0.924	-0.005	0.054	0.923
Quality consciousness → organic food purchasing	0.211	0.052	0.000	0.271	0.052	0.000
Health consciousness → organic food purchasing	0.272	0.047	0.000	0.278	0.051	0.000
Environmental consciousness → organic food purchasing	0.095	0.049	0.054	0.045	0.050	0.374
Age → organic food purchasing	-0.114	0.045	0.100			
Gender* → organic food purchasing	0.179	0.046	0.000			
Income** → organic food purchasing	0.075	0.044	0.090			
Education***	0.166	0.048	0.001			
R² organic food purchasing	.244		0.185			

Abbreviation: SE, standard error.
*0 = male, 1 = female.
**Five categories (1 = lowest, 5 = highest).
***0 = no school leaving certificate, 1 = secondary school certificate, 3 = high school diploma.

TABLE 6 Future research

Contextual factors
- When does a crisis affect consumer's organic food purchasing? Which role does the type of a crisis (e.g., economic vs. health-related) play?
- Why and when do major political orientations in a country affect individual's organic food purchasing?
- Why and when does the degree of digitalization in a country influence individual's organic food purchasing?
- Why and when does the degree of well-being in a country affect individual's organic food purchasing?

Contextual factors and consumer factors
- How does a natural disaster affect consumer beliefs about the environment and thus organic food purchasing? Which lay beliefs about the sources of environmental harm or climate change emerge during compared to before and after a natural disaster?
- When does a natural disaster strengthen the effects of nature relatedness on organic food purchasing?
- When does a health-related crisis strengthen or weaken the effects of health consciousness on consumer's organic food purchasing?

Contextual factors and situational factors
- How does the presence of others affect organic food purchasing before compared to after a health-related crisis (or before compared to after a major life event)?
- When does social crowding promote organic food purchasing during a pandemic?

Contextual factors and supply-side factors
- Which type of communication framing (e.g., promotion- versus prevention-focus) is most beneficial to promote organic food purchasing in a crisis compared to before or after? Which boundary conditions determine its effectiveness?
- How should the pricing of organic food be adapted to political measures in a crisis to promote organic food purchasing? When can price promotions help to overcome social disparities in a way to promote organic food purchasing?

4.3 Additional results

As the effects of a pandemic might vary for different consumer segments, we further analyzed the moderating role of the sociodemographic variables (i.e., gender, age, income, and education) on the hypothesized effects of a pandemic in this study. To do so, in a first step, we created interaction terms reflecting the interaction between the pandemic and the individual sociodemographic variables. Then, we included these interaction terms into our structural model (see Appendix A for results 1) and estimated the model in the same way as before. The model showed an overall good fit ($\chi^2/df = 1.88$, RMSEA = 0.045, CFI = 0.928, TLI = 0.915, SRMR = 0.039). Age, gender, and education did not moderate the effect of a pandemic. However, the results revealed that consumers' monthly net household income moderated the effects of the pandemic on health consciousness. In specific, an increasing income dampens the effect of the pandemic on health consciousness.

Based on these results, we conducted an in-depth analysis and computed the hypothesized structural model for a group with lower income (less than €3000) and for a group with higher income (more than 3000 Euros). To test for the statistical significance of differences at the path level, we employed multi-group analysis. Before testing for

1To check the robustness of these results, we also analyzed the role of the moderators with PROCESS (Model 1) which yielded similar results.
potential statistical differences in the path coefficients, we examined whether the measurement models were invariant across the two groups. The χ^2 difference test was not statistically significant ($\Delta\chi^2_{[16]} = 24.11, p = .151$), indicating full metric invariance. Further analysis revealed that the effect of a pandemic on health consciousness was stronger for consumers with lower ($\beta = 0.355, p = .006$) as compared with higher ($\beta = 0.019, p = .781$) income ($\Delta\chi^2_{[1]} = 4.396, p = .036$). By contrast, the effect of a pandemic on quality consciousness was marginally weaker for consumers with lower ($\beta = 0.043, p = 0.648$) as compared to higher ($\beta = 0.187, p = 0.013$) income ($\Delta\chi^2_{[1]} = 2.805, p = 0.094$) (Appendix B).

5 | CONCLUSION

5.1 | Summary and discussion

Overall, our results showed that a pandemic shapes both consumers’ quality and health consciousness and thereby indirectly enhances consumers’ organic food purchasing. This finding supports recent research demonstrating that the COVID-19 pandemic shifted consumers to purchase healthier food options (Boyle et al., 2022).

Further, our study demonstrated that the presence of a pandemic did not direct consumers’ environmental consciousness. While Hüttel and Balderjahn (2021) found that the presence of a pandemic decreases a consumers’ consciousness of ecological sustainable consumption, our study examined the response of environmental consciousness from a broader and product-unrelated perspective which might explain the differences in the results. Moreover, a pandemic with all its drastic public and private measures is likely to foster a self-focus in some areas (He & Harris, 2020). Even though people have shown different types of helping behaviors during the pandemic, topics around the environment might have been viewed as less urgent or even as distractive in a health-related crisis (Reese et al., 2020; Rousseau & Deschacht, 2020), explaining in a first step the missing impact of a pandemic on environmental consciousness.

Similar to the findings of Hüttel and Balderjahn (2021), we found no direct effect of the presence of a pandemic on green purchasing but an indirect effect through the consumers’ quality and health consciousness. The difference to previous work is that our work provided evidence for a positive effect of pandemics on pro-environmental behavior, such as organic food purchasing. As previous research has not examined organic food purchasing, these contradicting findings might be explained by the type of pro-environmental behavior considered in the respective research.

Most interestingly, our results showed that the examined effects of a pandemic are not equal for all consumer segments and that consumers’ income occupies—different than consumers’ age, gender, and education—a decisive role. In specific, a pandemic promotes consumers’ health consciousness only for consumers of lower than of higher income classes. This might be explained by the fact that consumers of higher than lower income might have had a higher health consciousness before the pandemic. Moreover, consumers with lower income might have been more impacted by a pandemic-caused part-time employment or reduction of weekly working hours than consumers of higher income. This, in turn, might have led to consumers of lower income classes to perceive a higher impact of the pandemic which, in turn, might have triggered their health consciousness.

The consumers’ income was found to marginally direct the effect of a pandemic on consumers’ quality consciousness. For consumers of higher income this effect was slightly stronger than for consumers of lower income. One explanation might relate to the fact that before the pandemic consumers of higher income might have visited restaurants etc. more often than consumers of lower income. Hence, consumers of higher income might have been more challenged to organize themselves in this regard and to compensate for previous higher quality experiences. Further, they might have had more the possibility to satisfy their need for quality because of freed household budgets.

5.2 | Implications

This study’s implications are threefold. First, this research has implications for consumer research as it provides evidence for the effect of the presence of a pandemic on consumer behavior through changes in consumer consciousness. Hence, although a direct change in consumer behavior might not be observable during the pandemic, it is likely that important differences at the unobservable level, namely regarding the psychological origins of consumer behavior, occur. To be more specific, this study’s findings demonstrate the disruptive potential of a pandemic in humans’ motivation system directing human behavior. These results, in turn, challenge existing knowledge on organic food purchasing as they emphasize the need to consider contextual variables to fully understanding organic food purchasing. In specific, the current study reveals that the motives for making organic purchase decisions are shaped by the context, namely by pandemics. In this way, the current study underlines the importance to account for the so far overlooked contextual factors when it comes to understand consumer organic food purchasing. In summary, this research contributes to both consumer research in general and research on organic food purchasing in specific.

Second and most importantly, this research has implications for both retailers and producers of organic food. In harmony with this study’s findings, they should consider the contextual circumstances (e.g., presence of a pandemic) when predicting consumer organic food purchasing. Overall, the pandemic has had a positive impact on organic food purchasing. Hence, assuming that there will be a moving back to the situation before the pandemic, marketers should conduct further research including the in-depth understanding of the consumers’ updated purchasing motives to avoid a drop in organic food sales. For the situation of a health crisis, marketers should know that such a crisis impacts consumer segments differently. For consumers of lower income, it is important to consider their heightened health consciousness during the promotion of organic food. By contrast, for consumers of higher income, it is important to consider their enhanced quality consciousness for the sales of organic food.
Third, public policy can also learn from this study’s findings. Public policy might be particularly interested in raising individuals’ pro-environmental behavior, such as organic food purchasing. Among others, promoting pro-environmental behavior at the individual level represents one way in addressing the “European Green Deal,” of which the significance has been outlined during the pandemic (Simon, 2020). However, shaping individuals’ pro-environmental depends—as this study illustrates—on contextual factors, such as a pandemic, and is thus much more complex to manage than previously expected. Public policy is therefore well-advised to initiate context-related research initiatives to gain a better understanding of the consumers’ context as a complexity-enhancing determinant of consumer behavior.

5.3 Limitations and future research directions

The current research has several limitations that future research should address. First, this research is focused on the study of organic food purchasing. Future research should investigate other pro-environmental behaviors because the available knowledge is inconclusive about the effects of a pandemic on consumer pro-environmental behavior (Hüttel & Balderjahn, 2021). Second, although we controlled for several factors that might provide an explanation for the effects of a pandemic, an additional qualitative study could provide further understanding. Third, this research collected data for measuring the presence of a pandemic in June 2020 which was directly after the first lockdown. To provide answers to the question how the stages of a pandemic (Das et al., 2021) affect consumer behavior or organic food purchasing, additional research is required. In addition to that, our samples are convenience samples. Therefore, we suggest that future research uses data presenting a more representative sociodemographic background. Finally, future research avenues can also be derived from our review of the literature on consumers’ organic food purchasing. As research on the role of contextual factors is still in its infancy in this realm, Table 5 provides several ideas for potential research questions. These are not limited to the direct effect of contextual factors on organic food purchasing, but also account for both the indirect effects of contextual factors through the consumer factors and the interaction between contextual and supply-side or situational factors (Table 6).

ACKNOWLEDGMENT

We thank the anonymous reviewer for evaluating this research and their valuable feedback.

FUNDING INFORMATION

This project was not funded by a third party.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The authors confirm that the data supporting the findings of this study are available within the article.

REFERENCES

Accenture. 2020. How COVID-19 will permanently change consumer behavior: Fast-changing consumer behaviors influence the future of the CPG industry. Available at https://www.accenture.com/_acnmedia/PDF-123/Accenture-COVID19-Pulse-Survey-Research-Pov.pdf.

AMI. 2021. The organic market in Germany — highlights 2020. https://www.organic-world.net/fileadmin/images/organicworld/yearbook/2021/Presentations/schaackBIOFACH_2021_Biomarkt_DE_2020-eng.pdf.

Apoaloza, V., Hartmann, P., D’Souza, C., & López, C. M. (2018). Eat organic – Feel good? The relationship between organic food consumption, health concern and subjective wellbeing. Food Quality and Preference, 63, 51–62. https://doi.org/10.1016/j.foodqual.2017.07.011

Balderjahn, I., Peyer, M., Seegebarth, B., Wiedmann, K.-P., & Weber, A. (2018). The many faces of sustainability-conscious consumers: A category-independent typology. Journal of Business Research, 91, 83–93. https://doi.org/10.1016/j.jbusres.2018.05.022

Belt, R. W. (1975). Situational variables and consumer behavior. Journal of Consumer Research, 2(3), 157. https://doi.org/10.1086/208627

Bezawada, R., & Pauwels, K. (2013). What is special about marketing organic products? How organic assortment, Price, and promotions drive retailer performance. Journal of Marketing, 77(1), 51–51. https://doi.org/10.1509/jm.10.0229

Boobalan, K., & Nachimuthu, G. S. (2020). Organic consumerism: A comparison between India and the USA. Journal of Retailing and Consumer Services, 53, 101988. https://doi.org/10.1016/j.jretconser.2019.101988

Boyle, P., Bond, R., Martinez Carracedo, J., Simmons, G., Mulvanna, M., & Hollywood, L. (2022). The impact of the COVID-19 pandemic on grocery shopper behaviour: Analysis of shopper behaviour change using store transaction data. Journal of Consumer Behaviour, 21, 259–271. https://doi.org/10.1002/cb.1999

Bund Ökologische Lebensmittelwirtschaft e.V. 2021. Deutsche pushen Lebensmittel in den Kooperations-Coup – Von der digitalen Marketing-Strategie zum Blockchain-Protokoll: Der Weg zu einer nachhaltigen Zukunft. Freiburg: Bund Ökologische Lebensmittelwirtschaft e.V.

CBI. 2021. Organic Valley comes together with BGF and Nestlé to transform supply chains and drive retailer performance. https://www.accenture.com/_acnmedia/PDF-123/Accenture-COVID19-Pulse-Survey-Research-Pov.pdf.

Carolan, M. (2021). Practicing social change during COVID-19: Ethical food consumption and activism pre- and post-outbreak. Appetite, 163, 105206. https://doi.org/10.1016/j.appet.2021.105206

Cheval, S., Mihai Adamescu, C., Georgiadis, T., Hermmegger, M., Piticar, A., & Legates, D.R. (2020). Observed and potential impacts of the COVID-19 pandemic on the environment. International journal of environmental research and public health, 17(11), 4140–4164. https://doi.org/10.3390/ijerph17114140

Chiu, T.-S., Ortiz, J., Chih, W.-H., Pang, L.-C., & Huang, J.-J. (2019). Antecedents of consumers’ citizenship behaviour towards organic foods. Journal of Consumer Behaviour, 18(4), 332–349. https://doi.org/10.1002/cb.1774

Daniel, E., Bardi, A., Fischer, R., Benish-Weisman, M., & Lee, J. A. (2022). Changes in personal values in pandemic times. Social Psychological and Personality Science, 13(2), 572–582. https://doi.org/10.1177/19485506211024026

Das, G., Jain, S. P., Maheswaran, D., SLOTegraaf, R. J., & Srinivasan, R. (2021). Pandemics and marketing: Insights, impacts, and research opportunities. Journal of the Academy of Marketing Science, 1–20, 835–854. https://doi.org/10.1007/s11747-021-00786-y

Daunfeldt, S.-O., & Rudolph, N. (2014). Does shelf-labeling of organic foods increase sales? Results from a natural experiment. Journal of Retailing and Consumer Services, 21(5), 804–811. https://doi.org/10.1016/j.jretconser.2014.06.009

Dunlap, R. E., Van Liere, K. D., Mertig, A. G., & Jones, R. E. (2000). New trends in measuring environmental attitudes: Measuring endorsement of the new ecological paradigm: A revised NEP scale. Journal of Social Issues, 56(3), 425–442. https://doi.org/10.1111/0022-4537.00176
Eger, L., Komářková, L., Egerová, D., & Mičík, M. (2021). The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. Journal of Retailing and Consumer Services, 61, 102542. https://doi.org/10.1016/j.jretconser.2021.102542

Frank, P., & Brock, C. (2018). Bridging the intention-behavior gap among organic grocery customers: The crucial role of point-of-sale information. Psychology & Marketing, 35(8), 586–602. https://doi.org/10.1002/mar.21108

Gidilov, K., Lahm, E. S., Wallin, A., & Otterbring, T. (2021). Eco depletion: The impact of hunger on prosociality by means of environmentally friendly attitudes and behavior. Journal of Retailing and Consumer Services, 62, 102654. https://doi.org/10.1016/j.jretconser.2021.102654

Gifford, R., & Nilsson, A. (2014). Personal and social factors that influence pro-environmental concern and behaviour: A review. International Journal of Psychology, 49(3), 141–157. https://doi.org/10.1002/ijop.12034

Goldenberg, J. L., & Arndt, J. (2008). The implications of death for health: A terror management health model for behavioral health promotion. Psychological Review, 115(4), 1032–1053. https://doi.org/10.1037/a0013326

Gould, S. J. (1988). Consumer attitudes toward health and health care: A differential perspective. Journal of Consumer Affairs, 22(1), 96–118. https://doi.org/10.1111/j.1745-6606.1988.tb00215.x

Greenberg, J., Pyszczynski, T., & Solomon, S. (1986). The causes and consequences of a need for self-esteem: A terror management theory. In R. F. Baumeister (Ed.), Public self and private self (pp. 189–212). Springer New York.

Guyader, H., Ottosson, M., & Witell, L. (2017). You can’t buy what you can’t see: Retailer practices to increase the green premium. Journal of Retailing and Consumer Services, 34, 319–325. https://doi.org/10.1016/j.jretconser.2016.07.008

Hansen, T., Sørensen, M. I., & Erikson, M.-L. R. (2018). How the interplay between consumer motivations and values influences organic food identity and behavior. Food Policy, 74, 39–52. https://doi.org/10.1016/j.foodpol.2017.11.003

Hansmann, R., Baur, I., & Binder, C. R. (2020). Increasing organic food consumption: An integrating model of drivers and barriers. Journal of Cleaner Production, 275(10), 123058. https://doi.org/10.1016/j.jclepro.2020.123058

Health Harvard. 2015. Should you go organic? Available at https://www.health.harvard.edu/staying-healthy/should-you-go-organic.

Hauser, M., Nussbeck, F. W., & Jonas, K. (2013). The impact of food-related values on food purchase behavior and the mediating role of attitudes: A Swiss study. Psychology & Marketing, 30(9), 765–778. https://doi.org/10.1002/mar.20644

He, H., & Harris, L. (2020). The impact of Covid-19 pandemic on corporate social responsibility and marketing philosophy. Journal of Business Research, 116, 176–182. https://doi.org/10.1016/j.jbusres.2020.05.030

Honkanen, P., Verplanken, B., & Olsen, S. O. (2006). Ethical values and motives driving organic food choice. Journal of Consumer Behaviour, 5(5), 420–430. https://doi.org/10.1016/ch.190

Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J., & Stanton, J. (2007). Who are organic food consumers? A compilation and review of why people purchase organic food. Journal of Consumer Behaviour, 6(2–3), 94–110. https://doi.org/10.1002/cb.210

Hüttel, A., & Balderjahn, I. (2021). The coronavirus pandemic: A window of opportunity for sustainable consumption or a time of turning away? Journal of Consumer Affairs, 56, 68–96. https://doi.org/10.1111/joca.12419

Hwang, J. (2016). Organic food as self-presentation: The role of psychological motivation in older consumers’ purchase intention of organic food. Journal of Retailing and Consumer Services, 28, 281–287. https://doi.org/10.1016/j.jretconser.2015.01.007

Hwang, J., & Chung, J.-E. (2019). What drives consumers to certain retailers for organic food purchase: The role of fit for consumers’ retail store preference. Journal of Retailing and Consumer Services, 47, 293–306. https://doi.org/10.1016/j.jretconser.2018.12.005

Jain, S., Singhal, S., Jain, N. K., & Bhaskar, K. (2020). Construction and demolition waste recycling: Investigating the role of theory of planned behavior, institutional pressures and environmental consciousness. Journal of Cleaner Production, 263, 121405. https://doi.org/10.1016/j.jclepro.2020.121405

Janssen, M., Chang, B. P. L., Hristov, H., Pravst, I., Profeta, A., & Millard, J. (2021). Changes in food consumption during the COVID-19 pandemic: Analysis of consumer survey data from the first lockdown period in Denmark, Germany, and Slovenia. Frontiers in Nutrition, 8, 635859. https://doi.org/10.3389/fnut.2021.635859

Johns, G. (2006). The essential impact of context on organizational behavior. Academy of Management Review, 31(2), 386–408. https://doi.org/10.5465/amr.2006.20208687

Jribi, S., Ben Ismail, H., Doggul, D., & Debbabi, H. (2020). COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environment, Development and Sustainability, 1–17, 3939–3955. https://doi.org/10.1007/s10668-020-00740-y

Juhl, H. J., Fenger, M. H. J., & Thøgersen, J. (2017). Will the consistent organic food consumer step forward? An empirical analysis. Journal of Consumer Research, 44(3), 519–535. https://doi.org/10.1093/jcr/ucx052

Karekla, I., Carlson, J. R., & Muelaing, D. D. (2014). “I eat organic for my benefit and yours”: Egoistic and altruistic considerations for purchasing organic food and their implications for advertising strategists. Journal of Advertising, 43(1), 18–32. https://doi.org/10.1080/00913367.2013.799450

Kirk, C. P., & Rilkin, L. S. (2020). I’ll trade you diamonds for toilet paper: Consumer reacting, coping and adapting behaviors in the COVID-19 pandemic. Journal of Business Research, 117, 124–131. https://doi.org/10.1016/j.jbusres.2020.05.028

Konuk, F. A. (2018a). Price fairness, satisfaction, and trust as antecedents of purchase intentions towards organic food. Journal of Consumer Behaviour, 17(2), 141–148. https://doi.org/10.1002/cb.1697

Konuk, F. A. (2018b). The role of store image, perceived quality, trust and perceived value in predicting consumers’ purchase intentions towards organic private label food. Journal of Retailing and Consumer Services, 43, 304–310. https://doi.org/10.1016/j.jretconser.2018.04.011

Kriwy, P., & Mecking, R.-A. (2012). Health and environmental consciousness, costs of behaviour and the purchase of organic food. International Journal of Consumer Studies, 36(1), 30–37. https://doi.org/10.1111/j.1470-6431.2011.01004.x

Krystallis, A., Vassallo, M., Chryssohoidis, G., & Perrea, T. (2008). Societal and individualistic drivers as predictors of organic purchasing revealed through a portrait value questionnaire (PVO)-based inventory. Journal of Consumer Behaviour, 7(2), 164–187. https://doi.org/10.1002/cb.244

Kushwah, S., Dhir, A., Sagar, M., & Gupta, B. (2019). Determinants of organic food consumption. A systematic literature review on motives and barriers. Appetite, 143, 104402. https://doi.org/10.1016/j.appet.2019.104402

Laatto, S., Islam, A. N., Farooq, A., & Dhir, A. (2020). Unusual purchasing behavior during the early stages of the COVID-19 pandemic: The stimulus-organism-response approach. Journal of Retailing and Consumer Services, 57, 102224. https://doi.org/10.1016/j.jretconser.2020.102224

Ladwein, R., & Romero, A. M. S. (2021). The role of trust in the relationship between consumers, producers and retailers of organic food: A sector-based approach. Journal of Retailing and Consumer Services, 60, 102508. https://doi.org/10.1016/j.jretconser.2021.102508

Larson, L. R., Stedman, R. C., Cooper, C. B., & Decker, D. J. (2015). Underestimating the multi-dimensional structure of pro-environmental behavior during the early stages of the COVID-19 pandemic. Journal of Consumer Affairs, 59(2), 420–430. https://doi.org/10.1111/joca.12419

Lindell, M. K., & Whitney, D. J. (2001). Accounting for common method variance in cross-sectional research designs. The Journal of Applied Psychology.
Taghikhah, F., Voinov, A., Shukla, N., & Filatova, T. (2021). Shifts in consumer behavior towards organic products: Theory-driven data analytics. *Journal of Retailing and Consumer Services*, 61, 102516. https://doi.org/10.1016/j.jretconser.2021.102516

Talwar, S., Jabeen, F., Tandon, A., Sakashita, M., & Dhir, A. (2021). What drives willingness to purchase and stated buying behavior toward organic food? A stimulus–organism–behavior–consequence (SOBC) perspective. *Journal of Cleaner Production*, 293(1), 125882. https://doi.org/10.1016/j.jclepro.2021.125882

Tandon, A., Dhir, A., Kaur, P., Kushwah, S., & Salo, J. (2020). Why do people buy organic food? The moderating role of environmental concerns and trust. *Journal of Retailing and Consumer Services*, 57, 102247. https://doi.org/10.1016/j.jretconser.2020.102247

Tarkkainen, A., & Sundqvist, S. (2009). Product involvement in organic food consumption: Does ideology meet practice? *Psychology & Marketing*, 26(9), 844–863. https://doi.org/10.1002/mar.20302

Thøgersen, J. (2017). Sustainable food consumption in the nexus between national context and private lifestyle: A multi-level study. *Food Quality and Preference*, 55, 16–25. https://doi.org/10.1016/j.foodqual.2016.08.006

Thøgersen, J., & Affinito, S. (2020). Goal activation for sustainable consumer choices: A comparative study of Denmark and Brazil. *Journal of Consumer Behaviour*, 19(6), 556–569. https://doi.org/10.1002/cjeb.1824

Thøgersen, J., Jørgensen, A.-K., & Sandager, S. (2012). Consumer decision making regarding a “green” everyday product. *Psychology & Marketing*, 29(4), 187–197. https://doi.org/10.1002/mar.20514

Urban, J., & Braun, K. M. (2022). The COVID-19 crisis does not diminish environmental motivation: Evidence from two panel studies of decision making and self-reported pro-environmental behavior. *Journal of Environmental Psychology*, 80, 101761. https://doi.org/10.1016/j.jenvp.2022.101761

van Doorn, J., & Verhoef, P. C. (2011). Willingness to pay for organic products: Differences between virtue and vice foods. *Journal of Retailing and Consumer Services*, 20(3), 167–180. https://doi.org/10.1016/j.jretconser.2011.02.005

van Doorn, J., & Verhoef, P. C. (2015). Drivers of and barriers to organic purchase behavior. *Journal of Retailing*, 91(3), 436–450. https://doi.org/10.1016/j.jretai.2015.02.003

van Herpen, E., van Nierop, E., & Sloot, L. (2012). The relationship between in-store marketing and observed sales for organic versus fair trade products. *Marketing Letters*, 23(1), 293–308. https://doi.org/10.1007/s11002-011-9154-1

Venkatesh, V. (2020). Impacts of COVID-19: A research agenda to support people in their fight. *International Journal of Information Management*, 55, 102197. https://doi.org/10.1016/j.ijinfomgt.2020.102197

Vermeir, I., & Verbeke, W. (2006). Sustainable food consumption: Exploring the consumer “attitude – Behavioral intention” gap. *Journal of Agricultural and Environmental Ethics*, 19(2), 169–194. https://doi.org/10.1007/s10806-005-4485-3

Vlontzos, G., & Duquenne, M. N. (2014). Assess the impact of subjective norms of consumers’ behaviour in the Greek olive oil market. *Journal of Retailing and Consumer Services*, 21(2), 148–157. https://doi.org/10.1016/j.jretconser.2013.09.003

White, K., Habib, R., & Hardisty, D. J. (2019). How to SHIFT consumer behaviors to be more sustainable: A literature review and guiding framework. *Journal of Marketing*, 83(3), 22–49. https://doi.org/10.1177/002224919825649

Wu, P., Fang, Y., Guan, Z., Fan, B., Kong, J., Yao, Z., Liu, X., Fuller, C. J., Susser, E., Lu, J., & Hoven, C. W. (2009). The psychological impact of the SARS epidemic on hospital employees in China: Exposure, risk perception, and altruistic acceptance of risk. *Canadian Journal of Psychiatry*. Revue Canadienne de Psychiatrie, 54(5), 302–311. https://doi.org/10.1177/0706743709050400504

Yadav, M. S., & Pavlou, P. A. (2014). Marketing in Computer-Mediated Environments: Research synthesis and new directions. *Journal of Marketing*, 78(1), 20–40. https://doi.org/10.1509/jm.12.0020

Yadav, R., & Pathak, G. S. (2016). Intention to purchase organic food among young consumers: Evidences from a developing nation. *Appetite*, 96, 122–128. https://doi.org/10.1016/j.appet.2015.09.017

Yu, W., Han, X., Ding, L., & He, M. (2021). Organic food corporate image and customer co-developing behavior: The mediating role of consumer trust and purchase intention. *Journal of Retailing and Consumer Services*, 59, 102377. https://doi.org/10.1016/j.jretconser.2020.102377

YükSEL, I. (2012). Developing a multi-criteria decision making model for PESTEL analysis. *International Journal of Business and Management*, 7, 24. https://doi.org/10.5539/ijbm.v7n24p52

Zwanka, R. J., & Buff, C. (2021). COVID-19 generation: A conceptual framework of the consumer behavioral shifts to be caused by the COVID-19 pandemic. *Journal of International Consumer Marketing*, 33(1), 58–67. https://doi.org/10.1080/08961530.2020.1771646

AUTHOR BIOGRAPHIES

Stefanie Sohn is an assistant professor at the University of Southern Denmark, Department of Sociology, Environmental and Business Economics. She received her PhD from Technische Universität Braunschweig (Germany). Her research is focused on retailing, electronic commerce, and consumer behavior. Her works have appeared in international journals, such as Psychology & Marketing and Journal of Retailing and Consumer Services.

Barbara Seegebarth is an associate professor of Marketing at the Chair of Services Management, Technische Universität Braunschweig (Germany). She received her venia legend for Business Administration from TU Braunschweig and her PhD in Marketing from the Leibniz University of Hanover. Her research focuses on Sustainability, Consumer Behavior, and Marketing Management. Her work in these domains has been published in international marketing journals such as the Journal of Business Research, Psychology & Marketing, Academy of Marketing Science Review, Journal of Cleaner Production, and Ecological Economics.

David Woisetschläger joined Technische Universität Braunschweig as a Professor and Chair in Services Management and Director of the Institute for Automotive Management and Industrial Production in 2011. Before, he worked as assistant professor at TU Dortmund University. He earned his doctorate degree from the University of Münster. His research interests lie primarily in the fields of service innovation, branding, and customer relationship management. His work in these domains has been published in international marketing journals such as the Journal of the Academy of Marketing Science, Journal of Business Research, Journal of Marketing, Journal of Retailing, and Psychology & Marketing.

How to cite this article: Sohn, S., Seegebarth, B., & Woisetschläger, D. M. (2022). The same only different? How a pandemic shapes consumer organic food purchasing. *Journal of Consumer Behaviour*, 21(5), 1121–1134. https://doi.org/10.1002/jcm.2060
APPENDIX A

A.1 MODERATING EFFECTS OF SOCIODEMOGRAPHIC VARIABLES

Effect	Estimate	SE	p-value
Pandemic → quality consciousness	-0.002	0.265	.993
Pandemic → health consciousness	0.294	0.261	.260
Pandemic → environmental consciousness	0.248	0.295	.401
Pandemic → organic food purchasing	-0.230	0.248	.353
Quality consciousness → organic food purchasing	0.208	0.051	.000
Health consciousness → organic food purchasing	0.275	0.048	.000
Environmental consciousness → organic food purchasing	0.102	0.049	.039
Age → quality consciousness	0.126	0.066	.057
Gender^a → quality consciousness	0.031	0.068	.643
Income^b → quality consciousness	0.240	0.081	.003
Education^c → quality consciousness	0.046	0.070	.510
Age × pandemic → quality consciousness	0.054	0.176	.760
Gender^a × pandemic → quality consciousness	0.036	0.082	.665
Income^b × pandemic → quality consciousness	0.104	0.181	.565
Education^c × pandemic → quality consciousness	-0.062	0.174	.723
Age → health consciousness	-0.039	0.069	.575
Gender^a → health consciousness	0.059	0.070	.398
Income^b → health consciousness	0.108	0.080	.177
Education^c → health consciousness	0.000	0.080	.996
Age × pandemic → health consciousness	0.086	0.184	.642
Gender^a × pandemic → health consciousness	-0.045	0.081	.577
Income^b × pandemic → health consciousness	-0.346	0.175	.048
Education^c × pandemic → health consciousness	0.081	0.181	.655
Age → environmental consciousness	0.087	0.066	.187
Gender^a → environmental consciousness	-0.018	0.064	.776
Income^b → environmental consciousness	-0.015	0.064	.817
Education^c → environmental consciousness	-0.119	0.066	.073
Age × pandemic → environmental consciousness	-0.219	0.202	.279
Gender^a × pandemic → environmental consciousness	-0.001	0.086	.995
Income^b × pandemic → environmental consciousness	-0.171	0.189	.364
Education^c × pandemic → environmental consciousness	0.114	0.192	.553
Age → organic food purchasing	-0.162	0.055	.003
Gender^a → organic food purchasing	0.053	0.055	.335
Income^b → organic food purchasing	0.108	0.060	.069
Education^c → organic food purchasing	0.229	0.056	.000
Age × pandemic → organic food purchasing	0.227	0.179	.206
Gender^a × pandemic → organic food purchasing	0.041	0.071	.566
Income^b × pandemic → organic food purchasing	0.197	0.145	.174
Education^c × pandemic → organic food purchasing	-0.212	0.147	.150

| R² organic food purchasing | .282 |

^a 0 = male, 1 = female.
^b 5 categories (1 = lowest, 5 = highest),
^c 0 = no school leaving certificate, 1 = secondary school certificate, 3 = high school diploma.
APPENDIX B

B.1 | MODERATING ROLE OF CONSUMER INCOME

	Lower income (n = 205)	Higher income (n = 224)	$\Delta \chi^2_{(1)}$
Pandemic \rightarrow quality consciousness	0.043 0.093 .648	0.187 0.076 .013	2.805*
Pandemic \rightarrow health consciousness	0.355 0.130 .006	0.019 0.069 .781	4.396**
Pandemic \rightarrow environmental consciousness	0.034 0.092 .715	-0.035 0.074 .635	0.387
Pandemic \rightarrow organic food purchasing	-0.194 0.181 .284	0.051 0.065 .429	1.547
Quality consciousness \rightarrow organic food purchasing	0.462 0.148 .002	0.239 0.069 .001	0.247
Health consciousness \rightarrow organic food purchasing	0.443 0.105 .000	0.233 0.070 .001	0.055
Environmental consciousness \rightarrow organic food purchasing	0.052 0.179 .770	0.145 0.071 .041	0.842
Age \rightarrow organic food purchasing	-0.057 0.070 .414	-0.187 0.069 .007	1.909
Gendera \rightarrow organic food purchasing	0.077 0.174 .659	0.111 0.060 .063	1.266
Educationb \rightarrow organic food purchasing	0.389 0.172 .024	0.237 0.056 .000	0.684

Abbreviation: SE, standard error.

a 0 = male, 1 = female.

b 0 = no school leaving certificate, 1 = secondary school certificate, 3 = high school diploma.

*p < .100, **p < .050.