A Joint Neural Model for Information Extraction with Global Features

Ying Lin, Heng Ji, Fei Huang, Lingfei Wu

ACL2020
Tasks

• This work jointly performs three tasks of Information Extraction at sentence-level:
 + Entity Extraction.
 + Relation Extraction.
 + Event Extraction.
Model

- Their model performs all the tasks in four stages:
 + Encoding tokens.
 + Identifying nodes (i.e., triggers or entity mentions).
 + Scoring nodes and edges (i.e., relations or argument roles).
 + Searching for best graph.
Model

Decoding
- Beam search

Classification
- Score vectors

Identification

Encoding
- The earthquake killed 19 people and injured 300 in Kashmir region, India
Model: Encoding Tokens

- Input: a sentence of L words.
- Uses BERT as the encoder.
- Word representations are the averaged vector of their wordpiece representations.
Model: Identifying Nodes

• BERT outputs are fed into a Feed-Forward Net to obtain score vectors.
 \[\hat{y}_i = \text{FFN}(x_i) \]

• Node identification is formalized as a sequence labeling task (e.g., B-Life:Marry, B-GPE) with a CRF layer.
 \[s(X, \hat{z}) = \sum_{i=1}^{L} \hat{y}_{i, \hat{z}_i} + \sum_{i=1}^{L+1} A_{\hat{z}_{i-1}, \hat{z}_i}, \quad \hat{z} = \{\hat{z}_1, \ldots, \hat{z}_L\} \]
Model: Scoring Nodes and edges

• At this layer, the model computes node and edge representations.
 + Node: average sum over its component words.
 + Edge: concatenation of node representations.

• Then, score vectors for nodes \(\hat{y}_i^t = \text{FFN}^t(v_i) \) & edges \(\hat{y}_k^t = \text{FFN}^t(v_i, v_j) \) are computed via softmax layers.

• Node that, the model does not make predictions here.
Model: Searching for Best Graph

- With the score vectors obtained from the previous step. They use Beam search to efficiently find the configuration with the highest score.

- Score of a graph is computed by:

\[
\begin{align*}
 s(G) &= s'(G) + uf_G \\
 s'(G) &= \sum_{t \in T} \sum_{i=1}^{N_t} \max \hat{y}_i
\end{align*}
\]

Where:

- \(s'(G) \) is local score: \(s'(G) = \sum_{t \in T} \sum_{i=1}^{N_t} \max \hat{y}_i \)

- \(uf_G \) is global score where \(f_G = \{f_1(G), ..., f_M(G)\} \) global feature vector
Model: Global Features

- Global features are introduced to capture cross-subtask and cross-instance dependencies.

Category	Description
Role	1. The number of entities that act as \(<role_i>\) and \(<role_j>\) arguments at the same time.
 2. The number of \(<event_type_i>\) events with \(<number>\) \(<role_j>\) arguments.
 3. The number of occurrences of \(<event_type_i>, <role_j>, \) and \(<entity_type_k>\) combination.
 4. The number of events that have multiple \(<role_i>\) arguments.
 5. The number of entities that act as a \(<role_i>\) argument of an \(<event_type_j>\) event and a \(<role_k>\) argument of an \(<event_type_1>\) event at the same time. |
| Relation | 6. The number of occurrences of \(<entity_type_i>, <entity_type_j>, \) and \(<relation_type_k>\) combination.
 7. The number of occurrences of \(<entity_type_i>\) and \(<relation_type_j>\) combination.
 8. The number of occurrences of a \(<relation_type_i>\) relation between a \(<role_j>\) argument and a \(<role_k>\) argument of the same event.
 9. The number of entities that have a \(<relation_type_i>\) relation with multiple entities.
 10. The number of entities involving in \(<relation_type_i>\) and \(<relation_type_j>\) relations simultaneously. |
| Trigger | 11. Whether a graph contains more than one \(<event_type_i>\) event. |
Training

- Identification loss: negative log-likelihood
 \[L^I = - \log p(z | X) = -s(X, z) + \log \sum_{\hat{z} \in Z} e^{s(X, \hat{z})} \]

- Classification loss: cross-entropy
 \[L^t = - \frac{1}{N^t} \sum_{i=1}^{N^t} y_i^t \log \hat{y}_i^t \]

- Global feature constraint: the ground-truth graph \(G \) should be the one with the highest score. Minimize this:
 \[L^G = s(\hat{G}) - s(G) \]

- Overall loss: \(L = L^I + \sum_{t \in T} L^t + L^G \)
Experiments

• Datasets: ACE, ERE

Dataset	Split	#Sents	#Entities	#Rel	#Events
ACE05-R	Train	10,051	26,473	4,788	-
	Dev	2,424	6,362	1,131	-
	Test	2,050	5,476	1,151	-
ACE05-E	Train	17,172	29,006	4,664	4,202
	Dev	923	2,451	560	450
	Test	832	3,017	636	403
ACE05-CN	Train	6,841	29,657	7,934	2,926
	Dev	526	2,250	596	217
	Test	547	2,388	672	190
ACE05-E+	Train	19,240	47,525	7,152	4,419
	Dev	902	3,422	728	468
	Test	676	3,673	802	424
ERE-EN	Train	14,219	38,864	5,045	6,419
	Dev	1,162	3,320	424	552
	Test	1,129	3,291	477	559
ERE-ES	Train	7,067	11,839	1,698	3,272
	Dev	556	886	120	210
	Test	546	811	108	269
Experiments

- Monolingual performance on English language:

Dataset	Task	DYGIE++	Baseline	OneIE
ACE05-R	Entity	88.6	-	88.8
	Relation	63.4	-	67.5
ACE05-E	Entity	89.7	90.2	90.2
	Trig-I	-	76.6	78.2
	Trig-C	69.7	73.5	74.7
	Arg-I	53.0	56.4	59.2
	Arg-C	48.8	53.9	56.8
Experiments

- Multilingual performance (with additional English data) on Chinese and Spanish.

Dataset	Training	Entity	Relation	Trig-C	Arg-C
ACE05-CN	CN	88.5	62.4	65.6	52.0
	CN+EN	89.8	62.9	67.7	53.2
ERE-ES	ES	81.3	48.1	56.8	40.3
	ES+EN	81.8	52.9	59.1	42.3