ETA-PRODUCT $\eta(7\tau)^7/\eta(\tau)$

KYOJI SAITO

ABSTRACT. Let $L_{\Phi_7}(s)$ be the Dirichlet series associated to the eta-product $\eta(7\tau)^7/\eta(\tau) \in M_3(\Gamma_0(7), \varepsilon)$ (here $\varepsilon(n) := (\frac{n}{7}) = (\frac{-7}{n})$ is the Dirichlet character defined by the residue symbol). We show that $L_{\Phi_7}(s)$ decomposes into the difference of two L-functions:

$$L_{\Phi_7}(s) = \frac{1}{8}(L(s, \varepsilon)L(s-2, 1) - L(s-1, \xi)),$$

where i) $L(s, \varepsilon)$ and $L(s, 1)$ are Dirichlet L-functions for the characters ε and 1 modulo 7, respectively, and ii) $L(s, \xi)$ is the L-function for a Hecke character ξ of the imaginary quadratic field $\mathbb{Q}(\sqrt{-7})$.

This expression of $L_{\Phi_7}(s)$ gives a new proof of the non-negativity of the Fourier coefficients of the product $\eta(7\tau)^7/\eta(\tau)$, conjectured in [S3] and proven by Ibukiyama [I]. We also prove the uniqueness of the above decomposition of $L_{\Phi_7}(s)$ in a suitable sense.

1. INTRODUCTION

Let $\eta(\tau) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n)$, $q = \exp(2\pi \sqrt{-1}\tau)$ be the Dedekind eta-function (e.g. [R]). A product $\prod_{i \in I} \eta(i\tau)^{e(i)}$, where I is a finite set of positive integers and $e : I \rightarrow \mathbb{Z}$ is any map, is called an eta-product. The eta-product can be developed in a Laurent series in powers of q, whose coefficients are called the Fourier coefficients.

Ibukiyama [I] has shown the following result, which answers to a part of a conjecture given by the author [S3] (see the next paragraph).

Theorem 1.1. Let p be a rational prime number. Then the Fourier coefficients of the eta product $\eta_{\Phi_p} := \eta(p\tau)^p/\eta(\tau)$ are non-negative.

The proof in [I] is given by expressing the eta-product as a difference of two generating functions of two arithmetically constructed lattices.

More in general than the theorem, for any positive integer h which may not be prime, we have the following non-negativity conjecture.

Conjecture ([S3]). Define a sequence $\Phi_h(\lambda) (h \in \mathbb{Z}_{>0})$ of cyclotomic polynomials by the recursive relation: $
abla^{\lambda} = \prod_{d|h} \Phi_d(\lambda^{h/d}).$. Explicitly, $\Phi_h(\lambda) = \frac{\phi(h)\mu(h)}{\prod_{d|h}(1-\lambda^d)^{\mu(d)}}$ where ϕ and μ are the Euler function and the Möbius function. Then the Fourier coefficients of the eta-product $\eta_{\Phi_h}(\tau) := \frac{\eta(h\tau)^{\phi(h)}}{\prod_{d|h}(1-\lambda^{d\mu(d)})}$ are non-negative integers.

This was proven for $h = 2, 3, 4, 5, 6$ [S1,2,3] by a use of the Dirichlet series $L_{\Phi_h}(s)$ associated to the eta-products η_{Φ_h}. Precisely, we show that
$L_{\Phi_h}(s)$ admits either an Euler product for $h = 2, 3, 5$ or a decomposition into a difference of two Euler products for $h = 4, 6$, and that these expressions lead to a direct proof of the positivity of the coefficients.

In the present note, we prove in section 2 that the Dirichlet series $L_{\Phi_h}(s)$ decomposes into a difference of two L-functions, which admit Euler products, as stated in Abstract. In section 3, we show that this expression implies the non-negativity of the Dirichlet coefficients of $L_{\Phi_h}(s)$. In section 4, we prove a general lemma on the uniqueness of the decomposition of Dirichlet series into a difference of two Euler products, and apply it to $L_{\Phi_7}(s)$ (and also to $L_{\Phi_4}(s)$ and $L_{\Phi_6}(s)$). Finally, we remark in section 5 that such difference decomposition of $L_{\Phi_p}(s)$ for the prime $p \geq 11$ does not exist. If h is a composite number, we do not know when $L_{\Phi_h}(s)$ admits such a difference decomposition.

In [S2, Conjecture 13.5], we give a wide class of eta-products whose Fourier coefficients are conjecturally non-negative and are of interest.

2. Hecke L-function $L(s, \xi)$ for a character ξ on $\mathbb{Q}(\sqrt{-7})$

We recall Hecke’s L-function for a character ξ on the imaginary quadratic field $\mathbb{Q}(\sqrt{-7})$, and, then, decompose $L_{\Phi_{7}}(s)$ by a use of it. For a background on analytic number theory, one is referred to [M] and [R].

Since the class number of $\mathbb{Q}(\sqrt{-7})$ is equal to 1, we can introduce the Hecke character ξ for the non-zero ideals of $K := \mathbb{Q}(\sqrt{-7})$ by

$$\xi((a)) := \left(\frac{a}{|a|} \right)^2 \quad (a \in K \setminus \{0\}).$$

Then, the L-function for ξ is defined by the following Dirichlet series, which, as a result of definition, has the Euler product:

$$L(s, \xi) := \sum_{a \in \mathcal{O}_K} \xi(a)N_K(a)^{-s} = \prod_{p \text{ prime}} \left(1 - \xi(p)N_K(p)^{-s} \right)^{-1}.$$

Here, a (resp. p) runs over all non-zero integral (resp. prime) ideals of \mathcal{O}_K, and $N_K(a)$ is the absolute norm of a (i.e. $N_K(a) = |\mathcal{O}_K/a|$).

The first main result of the present note is the following.

Lemma 2.1. The Dirichlet series $L_{\Phi_{7}}(s)$ associated to the eta-product $\eta(7\tau)^7/\eta(\tau)$ decomposes into a difference of two L-functions as follows:

$$L_{\Phi_{7}}(s) = \frac{1}{8} \left(L(s, \varepsilon)L(s - 2, 1) - L(s - 1, \xi)\right),$$

where we recall that $\varepsilon = \left(\frac{7}{\tau} \right) = \left(\frac{\tau}{7} \right)$ is the residue symbol modulo 7.
Proof. The L-function $L(s-1, \xi)$ is associated to a Fourier series

$$f(\tau) := \sum_a \xi(a) N_K(a) e^{2\pi \sqrt{-N(a)} \tau}.$$ \hspace{1cm} (4)

According to Hecke [H1][H2], $f(\tau)$ is an automorphic form belonging in $S_3(\Gamma_0(7), \varepsilon)$ (see [M, Th.4.8.2]). Similarly, $L(s, \varepsilon)L(s-2, 1)$ and $L(s-2, \varepsilon)L(s, 1)$ are associated to Eisenstein series, say $E(\tau)$ and $E'(\tau)$, in $M_q(\Gamma_0(7), \varepsilon)$. Since $\Gamma_0(7) \setminus \mathcal{H}$ has two cusps and $\dim_{\mathbb{C}} S_3(\Gamma_0(7), \varepsilon) = 1$, $M_q(\Gamma_0(7), \varepsilon)$ is spanned by E, E' and f. To show the equality: $\eta_{\Phi, l}(\tau) = \frac{1}{8}(E(\tau) - f(\tau))$, it suffices to show that nth Fourier coefficients $c(n)$ of $\eta_{\Phi, l}(\tau)$ coincide with nth Dirichlet coefficients of $\frac{1}{8}(L(s, \varepsilon)L(s-2, 1) - L(s-1, \xi))$ for $1 \leq n \leq 3$. We give an explicit integral description (which we shall use in the next section) of the coefficients of $L(s-1, \xi)$. For the end, we factorize $L(s-1, \xi)$ w.r.t. rational primes p, q in $\mathbb{Z}_{>0}$:

$$L(s-1, \xi) := \frac{1}{1 + 7^{-s+1}} \prod_{\varepsilon(q) = -1} \frac{1}{1 - q^{-2s+2}} \prod_{\varepsilon(p) = 1} \frac{1}{P_p(p^{-s})},$$ \hspace{1cm} (5)

where $P_p(\lambda) \in \mathbb{Z}[\lambda]$ for a prime p with $\varepsilon(p) = 1$ is defined in next (6).

Proof. Recall a well-known fact (e.g. [T]) on the prime ideals in $\mathbb{Q}(\sqrt{7})$:

i) (q) is a prime ideal for any rational prime q with $\varepsilon(q) = -1$,

ii) $p = x_p^2 + 7 \cdot y_p = (x_p + y_p \sqrt{7})(x_p - y_p \sqrt{7})$ for any odd rational prime number p with $\varepsilon(p) = 1$,

iii) $2 = \frac{7 + \sqrt{7}}{4} \cdot \frac{1 - \sqrt{7}}{2}$ and $7 = - (\sqrt{7})^2$.

Put $\pi_2 := \frac{1 + \sqrt{7}}{2}$ and $\pi_p := x_p + y_p \sqrt{7}$ for an odd rational prime number p with $\varepsilon(p) = 1$ and, define the quadratic polynomials

$$P_2(X) := (1 - \pi_2^2 X)(1 - \pi_2^2 X) = 1 + 3X + 2X^2 \text{ and }$$

$$P_p(X) := (1 - \pi_p^2 X)(1 - \pi_p^2 X) = 1 - 2(x_p^2 - 7y_p^2)X + p^2X^2.$$ \hspace{1cm} (6)

Then (5) follows from the Euler product in (2) and

i) $\xi((\pi_p)) = \pi_p^2/p$ and $N_K((\pi_p)) = p$ for $\varepsilon(p) = 1$,

ii) $\xi((q)) = 1$ and $N_K((q)) = q^2$ for $\varepsilon(q) = -1$,

iii) $\xi((\sqrt{7})) = -1$ and $N_K((\sqrt{7})) = 7$. \hspace{1cm} \Box

Put $L(s, \varepsilon)L(s-2, 1) = \sum_{n=1}^{\infty} a(n)n^{-s}$ and $L(s-1, \xi) = \sum_{n=1}^{\infty} b(n)n^{-s}$, and we give expicite expressions of the coefficients $a(n)$ and $b(n)$. Let

$$n = 7^k \prod_{i \in I} p_i^{k_i} \prod_{j \in J} q_j^{m_j}$$

be the prime decomposition of $n \in \mathbb{Z}_{>0}$ where $\{p_i \mid i \in I\}$ and $\{q_j \mid j \in J\}$ are finite set of distinct prime numbers with $\varepsilon(p_i) = 1$ and $\varepsilon(q_j) = -1$. \hspace{1cm} (7)
Then, by a use of (5) together with (6), one obtains the formulae:

\[(7) \quad a(n) = 7^{2k} \prod_{i \in I} p_i^{2(l_i+1)} - 1 \prod_{j \in J} q_j^{2(m_j+1)} - (-1)^{m_j+1} \]

\[(8) \quad b(n) = (-7)^k \prod_{i \in I} \left(\sum_{t=0}^{l_i} \pi_{p_i}^{2t} \pi_{i-1}^{2(l_i-t)} \right) \prod_{j \in J} \frac{1 - (-1)^{m_j+1}}{2} q_j^{m_j} \]

Finally, we give the Fourier expansion of \(\eta_{7\tau}\) up to degree 50.

\[\eta_{7\tau} = q + q^7 + 2q^8 + 3q^9 + 5q^{10} + 7q^{11} + 11q^{12} + 8q^{13} + 15q^{14} + 16q^{15} + 21q^{16} + 21q^{17} + 28q^{18} + 24q^{19} + 44q^{20} + 36q^{21} + 49q^{22} + 45q^{23} + 63q^{24} + 49q^{25} + 74q^{26} + 64q^{27} + 85q^{28} + 72q^{29} + 105q^{30} + 82q^{31} + 133q^{32} + 112q^{33} + 120q^{34} + 120q^{35} + 165q^{36} + 122q^{37} + 180q^{38} + 147q^{39} + 186q^{40} + 176q^{41} + 225q^{42} + 255q^{43} + 255q^{44} + 21q^{45} + 245q^{46} + 224q^{47} + 324q^{48} + 219q^{49} + 338q^{50} + 276q^{51} + 341q^{52} + 294q^{53} + 385q^{54} + \cdots \]

By inspection, we check the equality \(c(n) = \frac{1}{8}(a(n) - b(n))\) for \(n\) with \(1 \leq n \leq 3\). This completes a proof of Lemma 2.1.

Remark 1. As we see in the above proof, once one guess a correct formula (3), then its proof is straightforward. However, we do not know yet what is a “correct formula” for \(L_{\Phi_h}(s)\) for \(h > 7\) (see §5).

3. Positivity of Fourier coefficients of \(\eta(7\tau)^7/\eta(\tau)\)

As an immediate consequence of Lemma 2.1. together with the explicit formulae (6) and (7), we obtain the following positivity.

Corollary. All Fourier coefficients of \(\eta(7\tau)^7/\eta(\tau)\) are positive.

Proof. Lemma 2.1. says \(c(n) = \frac{1}{8}(a(n) - b(n))\) for all \(n \in \mathbb{Z}_{\geq 1}\). To show \(a(n) > b(n)\) for all \(n \in \mathbb{Z}_{\geq 1}\), it is sufficient to show \(a(p^k) > |b(p^k)|\) for any primary number \(p^k\) (i.e. \(p\) is a prime number and \(k \in \mathbb{Z}_{>0}\)) because of the multiplicativity of \(a(n)\) and \(b(n)\). We separate cases:

Case \(p = 7\). \(a(7^k) = 7^{2k} > 7^k = |b(7^k)|\).

Case \(\varepsilon(p) = 1\). \(a(p^k) > p^{2k} \geq (k+1)p^k = \sum_{i=0}^{k} \pi_p^{2i} \pi_p^{2(k-i)} \geq |b(p^k)|\).

Case \(\varepsilon(q) = -1\). \(a(q^k) - |b(q^k)| \geq \frac{q^{2(k+1)-1}}{q^2+1} - q^k = \frac{q^{k+2}-1}{q^2+1} > 0\). □

4. Uniqueness of decomposition of Dirichlet series

We show the second main result of the present note: Under a mild assumption on a Dirichlet series \(L(s) = \sum_{n \in \mathbb{Z}_{\geq 1}} c(n)n^{-s}\), we show the uniqueness of the decomposition of \(L(s)\) into the form:

\[(9) \quad L(s) = aM(s) + bN(s)\]

where \(M(s)\) and \(N(s)\) are Dirichlet series which admit Euler product and \(a, b\) are constants. For our applications, we assume that \(c(1) = 0\) so
that one automatically has $a+b = 0$ (since the first Dirichlet coefficients of $M(s)$ and $N(s)$ are automatically equal to 1).

Lemma 4.1. Let $L(s) = \sum_{n \in \mathbb{Z}_{\geq 1}} c(n)n^{-s}$ be a Dirichlet series such that i) $c(1) = 0$ and ii) there are five relatively prime integers $l, m, n, u, v \in \mathbb{Z}_{\geq 1}$ such that $c(l)c(m)c(n)c(u)c(v) \neq 0$. If there exists a decomposition (9), where $M(s)$ and $N(s)$ are Dirichlet series having Euler products, then it is unique up to the transposition of $M(s)$ and $N(s)$.

Proof. Put $M(s) = \sum_{n \in \mathbb{Z}_{\geq 1}} a(n)n^{-s}$, $N(s) = \sum_{n \in \mathbb{Z}_{\geq 1}} b(n)n^{-s}$ and $c := a = -b$ so that one has the relation among the Dirichlet coefficients:

$$c(n) = c(a(n) - b(n)) \quad (n \in \mathbb{Z}_{\geq 1}).$$

Clearly $c \neq 0$, else $L(s) = 0$ contradicting to the assumption on $L(s)$.

We first remark that one sees from (10) that if $c(n) = c(m) = 0$ for relatively prime positive integers n and m then $c(nm) = 0$. Consequently, if $c(n) \neq 0$, then there exists a primary factor p^k of n (i.e. p is a prime number and k is a positive integer s.t. $p^k|n$) such that $c(p^k) \neq 0$.

Suppose there exist another decomposition $L(s) = c'(M'(s) - N'(s))$. Using Dirichlet coefficients $a'(n), b'(n)$ of $M'(s), N'(s)$, this means

$$c(n) = c'(a'(n) - b'(n)) \quad (n \in \mathbb{Z}_{\geq 1}).$$

Let $n, m \in \mathbb{Z}_{\geq 1}$ be relatively prime to each other, then the multiplicativities of the Dirichlet coefficients a, b, a' and b' implies

$$c(mn) = c(a(n)a(m) - b(n)b(m)) = c'(a'(n)a'(m) - b'(n)b'(m))$$

Substituting $b(n) = a(n) - c(n)/c$, $b'(n) = a'(n) - c(n)/c'$ and $b(m) = a(m) - c(m)/c$, $b'(m) = a'(m) - c(m)/c'$ in *

$$E(m, n) : c(n)(a(m) - a'(m)) + c(m)(a(n) - a'(n)) = (\frac{1}{c} - \frac{1}{c'})c(n)c(m).$$

Let $k, m, n \in \mathbb{Z}_{\geq 1}$ be relatively prime to each other and $c(m)c(n) \neq 0$, then

$$(c(k)E(m, n) - c(m)E(n, k) - c(n)E(k, m))/c(m)c(n)$$

is the equality

$$a(k) - a'(k) = \frac{1}{2}(\frac{1}{c} - \frac{1}{c'})c(k).$$

This, together with (10) and (11), can be rewritten as the linear relations among $a(k), b(k)$ and $a'(k), b'(k)$ for all k prime to mn:

$$a'(k) = (1 - \lambda)a(k) + \lambda b(k) \quad \text{and} \quad b'(k) = \lambda a(k) + (1 - \lambda)b(k),$$

where $\lambda := \frac{1}{2}(\frac{1}{c} - \frac{1}{c'})$ so that $\lambda = 0$ or 1 if and only if $c = c'$ or $c = -c'$, respectively. Summing two relations, we also obtain the relation:

$$a(k) + b(k) = a'(k) + b'(k).$$
If \(c = c' \) (i.e. \(\lambda = 0 \)), then the proof of Lemma 4.1. is already achieved as follows: by substituting \(c = c' \) in * and using **, one has

\[
\ast \ast \ast \quad a(k) = a'(k) \quad \text{and} \quad b(k) = b'(k)
\]

for any \(k \in \mathbb{Z}_{\geq 1} \) prime to \(m, n \). By replacing the role of \(m, n \) by \(u, v \), the equalities \(\ast \ast \ast \) hold for any primary numbers \(k \). The \(\ast \ast \ast \) extends, further, for any positive integers \(k \) due to the multiplicativity of \(a, a', b \) and \(b' \). This means \(M(s) = M'(s) \) and \(N(s) = N'(s) \).

Suppose \(c \neq c' \) (i.e. \(\lambda \neq 0 \)). Then, * means another decomposition:

\[
(11)' \quad c(k) = \frac{c}{\lambda}(a(k) - a'(k))
\]

for any \(k \in \mathbb{Z}_{\geq 1} \) prime to \(m, n \). Replacing (11) by (11)', we can repeat the previous discussions to induce * and **, where we replace the role of \(m, n \) by \(u, v \), and consider integers \(k \) which is prime to \(m, n \) and also to \(u, v \). Then, in addition to * and **, we obtain: \(\ast ': \quad 0 = a(k) - a(k) = \frac{1}{2}\lambda c(k) \) and \(\ast \ast ': \quad a(k) + b(k) = a(k) + a'(k) \) for all \(k \) prime to \(m, n, u, v \). Taking \(k = l \) with \(c(l) \neq 0 \), which exists by the assumption of Lemma, we obtain \(c = -c' \). By the similar argument for the case \(c = c' \), we obtain: \(\ast \ast \ast ': \quad a(k) = b'(k) \), \(b(k) = a'(k) \) for all \(k \in \mathbb{Z}_{\geq 1} \) and, therefore, \(M(s) = N'(s) \) and \(N(s) = M'(s) \).

Corollary. The Dirichlet series \(L_{\Phi_4}(s) \) satisfies the assumptions i) and ii) so that the decomposition (3) is unique in the sense of Lemma 4.1.

Remark 2. Lemma 4.1. can be formulated more precisely according to the # of relatively prime \(n \)'s with \(c(n) \neq 0 \). The case \# = 5 of Lemma 4.1. is the strongest case. Since the other cases for \# < 5 are involved but not used in the present note, they are omitted.

Remark 3. There are a few more known Dirichlet series associated to eta-products, which decompose as (9) and satisfy the assumption of Lemma 4.1, namely, \(\eta(48\tau)^3/\eta(24\tau) \), \(\eta_{\Phi_4}(8\tau) = \eta(32\tau)^2/\eta(16\tau)/\eta(8\tau) \) and \(\eta_{\Phi_6}(12\tau) = \eta(72\tau)/\eta(36\tau)/\eta(24\tau)/\eta(12\tau) \). They have an origin in a study of elliptic root systems (see [S1]).

5. **Non-decomposability of \(L_{\Phi_4}(s) \) for \(p \geq 11 \)**

We finally give the following remark, which can be shown trivially.

Fact. The Dirichlet series \(L_{\Phi_4}(s) \) associated to a eta-product \(\eta(p\tau)^p/\eta(\tau) \) for a prime number \(p \) with \(p \geq 11 \) does not admit a decomposition (9).

Proof. Suppose a decomposition (9) exists, i.e. there is a Dirichlet series \(M(s) \) and a constant \(c \neq 0 \) such that \(M(s) - \frac{L_{\Phi_4}(s)}{c} \) is a Dirichlet series admitting an Euler product. Let \(c(n), a(n) \) and \(b(n) \) be the Dirichlet
coefficients of $L_{\Phi_p}(s)$, $M(s)$ and $M(s) - \frac{1}{c} L_{\Phi_p}(s)$. The following fact follows from the explicit expression of the eta product $\eta(p\tau)^p/\eta(\tau)$:

1. $c(n) = 0$ for $1 \leq n < (p^2 - 1)/24$ (≥ 5),
2. $c(n) \neq 0$ for $(p^2 - 1)/24 \leq n < (p^2 - 1)/24 + p$.

Thus, we can find an odd integer m such that $1 < m < (p^2 - 1)/24$ and $(p^2 - 1)/24 \leq 2m < (p^2 - 1)/24 + p$. Then, $a(2)a(m) = b(2)b(m) = b(2m) = a(2m) - \frac{1}{c}(2m) = a(2)a(m) - \frac{1}{c}(2m)$ should imply $\frac{1}{c}(2m) = 0$. Since $c(2m) \neq 0$ (due to ii)), one has $\frac{1}{c} = 0$ which is impossible. □

Acknowledgement: The author is grateful to Professor Hiroshi Saito for his help to identify $L(s, \xi)$ with Hecke L-function.

REFERENCES

[H1] Hecke, Erich, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112, (1936) §7.

[H2] Hecke, Erich, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktenwicklung II, Math. Ann. 114 (1937) §13.

[I2] Ibukiyama, Tomoyosi, Positivity of Eta Products - a Certain Case of K. Saito’s Conjecture, Publ. RIMS, Kyoto Univ. 41 (2005), 683-693.

[M] Miyake, Toshitsune, Modular Forms, Springer Verlag Berlin Heidelberg New York 1989, 2006.

[R] Rademacher, Hans, Topics in analytic Number Theory, Springer-Verlag Berlin Heidelberg New York 1973, 3-540-o5447-2.

[S1] Saito, Kyoji, Extended Affine Root Systems, V. (Elliptic Eta-products and Their Dirichlet Series), Centre de Recherches Mathématiques CRM Proceedings and Lectures Notes Vol. 30,2001,pp185-222.

[S2] Saito, Kyoji, Duality for Regular Systems of Weights, Asian J. Math. Vol.2, No.4, pp.983-1048, 1998.

[S3] Saito, Kyoji, Non-negativity of fourier Coefficients of Eta-product (in Japanese), Proceedings of the second Spring conference on automorphic forms and related subjects, Careac Hamamatsu, Feb. 2003.

[T] Takagi, Teiji, Algebraic Number Thoery (in japanese), Iwanami.