Entropy fluctuation theorems in driven open systems: application to electron counting statistics

Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel
Department of Chemistry, University of California, Irvine, California 92697, USA.
(Dated: February 1, 2008)

The total entropy production generated by the dynamics of an externally driven systems exchanging energy and matter with multiple reservoirs and described by a master equation is expressed as the sum of three contributions, each corresponding to a distinct mechanism for bringing the system out of equilibrium: nonequilibrium initial conditions, external driving, and breaking of detailed balance. We derive three integral fluctuation theorems (FTs) for these contributions and show that they lead to the following universal inequality: an arbitrary nonequilibrium transformation always produces a change in the total entropy production greater or equal than the one produced if the transformation is done very slowly (adiabatically). Previously derived fluctuation theorems can be recovered as special cases. We show how these FTs can be experimentally tested by performing the counting statistics of the electrons crossing a single level quantum dot coupled to two reservoirs with externally varying chemical potentials. The entropy probability distributions are simulated for driving protocols ranging from the adiabatic to the sudden switching limit.

PACS numbers:

I. INTRODUCTION

In statistical mechanics, thermodynamic laws are recovered at the level of ensemble averages. The past decade has brought new insights into nonequilibrium statistical mechanics due to the discovery of various types of fluctuation relations valid arbitrarily far from equilibrium [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. These relations identify, at the level of the single realization of a statistical ensemble, the “trajectory entropy” which upon ensemble averaging reproduce the thermodynamic entropy. They therefore quantify the statistical significance of nonthermodynamic behaviors which can become significant in small systems [18, 19]. Various experimental verifications of these FTs have been reported [20, 21, 22, 23, 24, 25, 26].

In this paper, we consider an open system, described by a master equation (ME), exchanging matter and energy with multiple reservoirs. The system can be externally driven by varying its energies or the different temperature or chemical potentials of the reservoirs. There are three mechanisms for bringing such a system out of equilibrium: preparing it in a nonequilibrium state, externally driving it, or putting it in contact with multiple reservoirs at different temperatures or chemical potentials thus breaking the detailed balance condition (DBC). We show that each of these mechanism makes a distinct contribution to the total entropy production (EP) generated by the nonequilibrium dynamics of the system. The two first contributions are nonzero only if the system is not in its steady state and are therefore called nonadiabatic. The third contribution is equal to the EP for slow transformation during which the system remains in a steady-state and is therefore called adiabatic. We derive three FTs, for the total EP and its nonadiabatic and adiabatic contribution and show that they lead to exact inequalities valid arbitrary far from equilibrium. Previously derived FTs are recovered by considering specific types of nonequilibrium transformations. Steady state FTs [6, 12] are obtained for systems maintained in a nonequilibrium steady state (NESS) between reservoirs with different thermodynamic properties. TheJarzynski or Crooks type FTs [4, 8, 9] are derived for systems initially at equilibrium with a single reservoir which are externally driven out of equilibrium by an external force. The Hatano-Sasa FT [10, 11] is recovered for externally driven systems initially in a NESS with multiple reservoirs.

To calculate the statistical properties of the various contributions to the total EP and to demonstrate the FTs, we extend the generating function (GF) method [6] to driven open systems. Apart from providing clear proofs of the various FTs, this method is useful for simulations because it does not require to explicitly generate the stochastic trajectories. Some additional insight is provided by using an alternative derivation of the FTs similar to the Crooks derivation [8, 9], where the total EP and its nonadiabatic part can be identified in terms of forward-backward trajectory probabilities. By doing so, we connect the trajectory approach previously used for driven closed systems [8, 9, 14] with the GF approach used for steady state systems [6, 12].

We propose to experimentally test these new FTs in a driven single orbital quantum dot where the various entropy probability distributions can be measured by the full electron counting statistics which keeps track of the four possible types of electron transfer (in and out of the dot through either lead). Such measurements of
the bidirectional counting statistics have become feasible recently [27]. We calculate the entropy probability distributions, analyze their behavior as the driving is varied between the sudden and the adiabatic limits, and verify the validity of the FTs.

In section II, we present our stochastic model and in section III, we describe the various contributions to the total EP generated during a nonequilibrium transformation and the inequalities that these contributions satisfy. In section V, we define the various trajectory entropies which upon ensemble averaging give the various contributions to the EP. We then present the GF formalism used to calculate the statistical properties of these trajectory entropies. In section VI, we derive the various FTs. Finally, in section VI, we apply our results to the full counting statistics of electrons in a driven quantum dot. Conclusions are drawn in section VII.

II. THE MASTER EQUATION

We consider an externally driven open system exchanging particles and energy with multiple reservoirs. Each state m of the system has a given energy ϵ_m and N_m particles. The total number of states m is finite and equal to M. The probability to find the system in a state m at time t is denoted by $p_m(t)$. The evolution of this probability is described by the ME

$$\dot{p}_m(t) = \sum_{m'} W_{m,m'}(\lambda_t) p_{m'}(t),$$

where the rate matrix satisfies

$$\sum_m W_{m,m'}(\lambda_t) = 0.$$ \hfill (1)

We assume that if a transition from m to m' can occur, the reversed transition from m' to m can also occur. Various parameters, such as the energies ϵ_m of the system or the chemical potential μ and the temperature β^{-1} of the ν reservoir can be varied in time externally according to a known protocol. This is described by the dependence of the rate matrix on several time-dependent parameters λ_t. If the transition rates are kept constant, the system will eventually reach the unique steady state solution $p^\text{eq}_m(\lambda)$ which satisfies $\dot{p}^\text{eq}_m(\lambda) = 0$ [28].

The transition rates will be expressed as sums of contributions from different reservoirs ν

$$W_{m,m'}(\lambda) = \sum_{\nu} W^{(\nu)}_{m,m'}(\lambda),$$

each satisfying

$$\frac{W^{(\nu)}_{m,m'}(\lambda)}{W^{(\nu)}_{m',m}(\lambda)} = \exp \left\{ \beta_{\nu}(\lambda) \left[(\epsilon_m(\lambda) - \epsilon_{m'}(\lambda)) - \mu_{\nu}(\lambda)(N_m - N_{m'}) \right] \right\}. $$ \hfill (4)

If all reservoirs have the same thermodynamic properties (temperature β^{-1} and chemical potential μ), the steady state distribution coincides with the equilibrium distribution $p^\text{eq}_m(\lambda) = p^\text{eq}_m(\lambda)$ which satisfies the detailed balanced condition (DBC)

$$W^{(\nu)}_{m,m'}(\lambda) p^\text{eq}_{m'}(\lambda) = W^{(\nu)}_{m',m}(\lambda) p^\text{eq}_m(\lambda).$$ \hfill (5)

As a consequence of (1) and (2), the equilibrium distribution then assumes the grand canonical form

$$p^\text{eq}_m(\lambda) = \exp \left\{ -\beta(\lambda) (\epsilon_m(\lambda) - \mu(\lambda)N_m) \right\} / \Xi(\lambda),$$ \hfill (6)

where $\Xi(\lambda)$ is the grand canonical partition function. However, in the general case where the reservoirs have different $\beta^{(\nu)}$ and $\mu^{(\nu)}$, the DBC does not hold and $p^\text{eq}_m(\lambda)$ is a NESS.

III. THE ENTROPIES

The Gibbs entropy of the system is a state function defined as

$$S(t) \equiv - \sum_m p_m(t) \ln p_m(t).$$ \hfill (7)

Using (1) and (2), the system EP reads

$$\dot{S}(t) = - \sum_m \dot{p}_m(t) \ln p_m(t)$$

$$= - \sum_{m,m'} W_{m,m'}(\lambda_t) p_{m'}(t) \ln \frac{p_m(t)}{p_{m'}(t)},$$ \hfill (8)

This can be partitioned as [12, 14, 32, 33, 34]

$$\dot{S}(t) = \dot{S}_{\text{tot}}(t) - \dot{S}_r(t),$$ \hfill (9)

with the total EP

$$\dot{S}_{\text{tot}}(t) \equiv - \sum_{m,m',\nu} W^{(\nu)}_{m,m'}(\lambda_t) p_{m'}(t)$$

$$\ln \frac{W^{(\nu)}_{m,m'}(\lambda_t) p_m(t)}{W^{(\nu)}_{m',m}(\lambda_t) p_{m'}(t)} \geq 0$$

and the reservoir EP (also called medium entropy or entropy flow)

$$\dot{S}_r(t) \equiv - \sum_{m,m',\nu} W^{(\nu)}_{m,m'}(\lambda_t) p_{m'}(t) \ln \frac{W^{(\nu)}_{m,m'}(\lambda_t)}{W^{(\nu)}_{m',m}(\lambda_t)}. $$ \hfill (11)
We note that $\dot{S}_{tot}(t) \geq 0$ follows from $W^{(n')}_{m,m'}(\lambda_t)p_{m'}(t) > 0$ if $m' \neq m$ and $\ln x \leq x - 1$ for $x > 0$ (if $m' = m$ the log in zero), by using the fact that $\sum_{\nu} W^{(\nu)}_{m,m}(\lambda_t)p_{m'}(\lambda_t) = 0$ and $\sum_{\nu} W^{(\nu)}_{m,m'}(\lambda_t) = 0$. $\dot{S}(t)$ is the contribution to $\dot{S}_{tot}(t)$ coming from the changes in the system probability distribution and $\dot{S}_r(t)$ is the contribution coming from matter and energy exchange processes between the system and its reservoirs.

We further separate the reservoir EP into two components \[11, 15\]

$$\dot{S}_r(t) = \dot{S}_{ex}(t) + \dot{S}_{a}(t), \quad (12)$$

with the excess EP

$$\dot{S}_{ex}(t) = -\sum_{m,m'} W^{(\nu)}_{m,m'}(\lambda_t)p_{m'}(t) \ln \frac{p_{m}(\lambda_t)}{p_{m'}^{st}(\lambda_t)} \quad \text{and} \quad \sum_{m,\nu} W^{(\nu)}_{m,m}(\lambda_t) = 0 \quad \text{and} \quad \sum_{m,\nu} W^{(\nu)}_{m,m'}(\lambda_t) = 0.$$ \[
\]

and the adiabatic EP (also called housekeeping entropy \[11, 15\])

$$\dot{S}_{a}(t) = -\sum_{m,m',\nu} W^{(\nu)}_{m,m'}(\lambda_t)p_{m'}(t) \ln \frac{W^{(\nu)}_{m',m}(\lambda_t)p_{m'}^{st}(\lambda_t)}{W^{(\nu)}_{m,m'}(\lambda_t)p_{m'}^{st}(\lambda_t)} \geq 0.$$ \[
\]

The positivity of (14) follows from the same reason as for \[10\]. If a transformation is done very slowly, the system remains at all times in the steady state distribution $p_m(t) = p_m^{st}(\lambda_t)$. Such a transformation is called adiabatic. We then have $\dot{S}_{tot}(t) = \dot{S}_r(t)$ and $\dot{S}_{ex}(t) = -\dot{S}(t)$. We also notice that $\dot{S}_a(t) = 0$ when the DBC is satisfied.

We next define the state function quantity

$$S_b(t) = -\sum_{m} p_m(t) \ln \frac{p_m(t)}{p_m^{st}(\lambda_t)} \quad \text{(15)}$$

which is obviously zero when the system is at steady state. When considering a transformation between steady states, $\Delta S_b(T, 0) = \int_0^T d\tau S_b(\tau) = S_b(T) - S_b(0) = 0$. We call $S_b(t)$ the boundary EP (the terminology will be explain shortly) and separate it in two parts

$$\dot{S}_b(t) = \dot{S}_{na}(t) - \dot{S}_d(t), \quad (16)$$

where the nonadiabatic EP is

$$\dot{S}_{na}(t) = -\sum_{m} p_m(t) \ln \frac{p_m(t)}{p_m^{st}(\lambda_t)} \quad \text{and} \quad \phi_m(\lambda_t) \equiv -\ln p_m^{st}(\lambda_t). \quad \text{(19)}$$

The positivity of (17) is again shown in the same way as for (10) and (14). If no external driving acts on the system, λ is time independent and from \[18\], $\dot{S}_d(t) = 0$. For an adiabatic transformations, since $p_m(t) = p_m^{st}(\lambda_t)$, from \[15\] and \[17\], we see that $\dot{S}_{na}(t) = 0$ as well as $\dot{S}_b(t) = 0$. From \[19\], this also means that $\dot{S}_d(t) = 0$. Therefore, $\dot{S}_d(t) \neq 0$ only for nonadiabatic driving. Using \[17\] with \[8\] and \[13\], we find

$$\dot{S}_{na}(t) = \dot{S}_{ex}(t) + \dot{S}(t) = \dot{S}_{tot}(t) - \dot{S}_a(t). \quad \text{(20)}$$

It is clear from the last equality why we call $\dot{S}_{na}(t)$ the nonadiabatic EP. The inequality $\dot{S}_{ex}(t) \geq -\dot{S}(t)$ which follows from the first line is a generalization of the "second law of steady state thermodynamics" \[11, 15, 38\] derived for transitions between steady states.

We next summarize our results

\[\begin{align*}
\dot{S}_{tot}(t) & = \dot{S}_{na}(t) + \dot{S}_a(t) \geq 0 \\
\dot{S}_{na}(t) & = \dot{S}_d(t) + \dot{S}_b(t) \geq 0 \\
\dot{S}_a(t) & \geq 0.
\end{align*} \]

The total EP is always positive and can be separated into two positive contributions, adiabatic (which are nonzero only when the DBC is violated) and nonadiabatic effects. The latter can be due to a nonadiabatic external driving acting on the system or to the fact that one considers transformation during which the system is initially or finally not in a steady state. We therefore have a minimum EP principle stating that the total EP for arbitrary nonequilibrium transformations takes its minimal value if the transformation is done adiabatically (very slowly).

The equality sign in \[21\] is satisfied for adiabatic transformations which occur at equilibrium. The equality sign in \[22\] holds for adiabatic transformations. The equality sign in \[23\] only occurs when the DBC is satisfied.

IV. TRAJECTORY ENTROPIES

The evolution described by the ME can be represented by an ensemble of stochastic trajectories involving instantaneous jumps between states. This will allow us to define fluctuating (trajectory) entropies.

A. Definitions

We denote a trajectory taken by the system between $t = 0$ and $t = T$ by $m_{(t)} = \{0 \rightarrow m_0 \rightarrow m_1 \rightarrow \ldots \rightarrow m_j \rightarrow \ldots \rightarrow m_j \rightarrow \ldots \rightarrow m_{j-1} \rightarrow m_T \}$
production’ (TEP). We will see at the end of this section that when ensemble averaged, these correspond to the various EP defined in section [III].

The trajectory Gibbs entropy is defined as

\[s[m_{(r)}, t] = - \ln p_{m_{(r)}}(t), \]

where \(p_{m_{(r)}}(t) \) represents the value of \(p_m(t) \) along the trajectory \(m_{(r)} \). The system TEP is given by

\[\dot{s}[m_{(r)}, t] = \left. \frac{\dot{p}_m(t)}{p_m(t)} \right|_{m_{(r)}} + \sum_{j=1}^{N} \delta(t - \tau_j) \ln \frac{p_{m_{j-1} - 1}(\tau_j)}{p_{m_{j-1}}(\tau_j)} \]

The first term represents the smooth changes of \(s[m_{(r)}, t] \) along the horizontal segments of the trajectory on Fig. [II] during which the system is in a well defined state. These changes are only due to the time dependence of the probability to be on a given state. The notation \(|m_{(r)} \rangle \) means that the \(m \) in the expression changes depending on which horizontal segment along the trajectory one considers. The second term represents the discrete changes of \(s[m_{(r)}, t] \) along the vertical segments of the trajectory. These changes are singular and only due to the change in the system state.

Separating the trajectory system TEP similarly as the system EP in section [III] we get

\[\dot{s}_{\text{tot}}[m_{(r)}, t] = \dot{s}[m_{(r)}, t] + \dot{s}_r[m_{(r)}, t], \]

where the total TEP is

\[\dot{s}_{\text{tot}}[m_{(r)}, t] = - \left. \frac{\dot{p}_m(t)}{p_m(t)} \right|_{m_{(r)}} + \sum_{j=1}^{N} \delta(t - \tau_j) \ln \frac{W_{m_{j-1},m_{j-1} - 1}(\tau_j)}{W_{m_{j-1},m_{j-1} - 1}(\lambda_{m_{j-1}})p_{m_{j-1}}(\tau_j)}, \]

and the reservoir TEP

\[\dot{s}_r[m_{(r)}, t] = \sum_{j=1}^{N} \delta(t - \tau_j) \ln \frac{W_{m_{j-1},m_{j-1} - 1}(\lambda_{m_{j-1}})}{W_{m_{j-1},m_{j-1} - 1}(\lambda_{m_{j-1}})}, \]

We further separate the reservoir TEP into

\[\dot{s}_r[m_{(r)}, t] = \dot{s}_a[m_{(r)}, t] + \dot{s}_{ex}[m_{(r)}, t], \]

with the adiabatic TEP

\[\dot{s}_a[m_{(r)}, t] = \sum_{j=1}^{N} \delta(t - \tau_j) \ln \frac{W_{m_{j-1},m_{j-1} - 1}(\lambda_{m_{j-1}})p_{m_{j-1}}^{st}(\lambda_{m_{j-1}})}{p_{m_{j-1}}^{st}(\lambda_{m_{j-1}})}, \]

and the excess TEP

\[\dot{s}_{ex}[m_{(r)}, t] = \sum_{j=1}^{N} \delta(t - \tau_j) \ln \frac{p_{m_{j-1}}^{st}(\lambda_{m_{j-1}})}{p_{m_{j-1}}^{st}(\lambda_{m_{j-1}})p_{m_{j-1}}(\tau_j)}. \]

The nonadiabatic TEP

\[\dot{s}_{na}[m_{(r)}, t] = - \frac{\dot{p}_m(t)}{p_m(t)}|_{m_{(r)}} + \sum_{j=1}^{N} \delta(t - \tau_j) \ln \frac{W_{m_{j-1} - 1,m_{j-1} - 1}(\lambda_{m_{j-1}})p_{m_{j-1}}^{st}(\lambda_{m_{j-1}})}{p_{m_{j-1}}^{st}(\lambda_{m_{j-1}})p_{m_{j-1}}(\tau_j)}, \]

is made of the sum of two terms

\[\dot{s}_{na}[m_{(r)}, t] = \dot{s}_d[m_{(r)}, t] + \dot{s}_b[m_{(r)}, t], \]

the boundary TEP

\[\dot{s}_b[m_{(r)}, t] = - \frac{\dot{p}_m(t)}{p_m(t)}|_{m_{(r)}} - \lambda_t \frac{\partial \phi_{m_{(r)}}(\lambda_t)}{\partial \lambda_t}, \]

and the driving TEP

\[\dot{s}_d[m_{(r)}, t] = \lambda_t \frac{\partial \phi_{m_{(r)}}(\lambda_t)}{\partial \lambda_t}. \]

As in section [III] since

\[\dot{s}_{na}[m_{(r)}, t] = \dot{s}[m_{(r)}, t] + \dot{s}_{ex}[m_{(r)}, t], \]

we get

\[\dot{s}_{\text{tot}}[m_{(r)}, t] = \dot{s}_{na}[m_{(r)}, t] + \dot{s}_a[m_{(r)}, t]. \]

We generically denote these TEP by \(a[m_{(r)}, t] \). The change of \(a[m_{(r)}, t] \) along a trajectory \(m_{(r)} \) of length \(T \) is given by

\[\Delta a[m_{(r)}, T] = \int_0^T dt \dot{a}[m_{(r)}, t]. \]

Notice that \(\Delta s[m_{(r)}, T] \) and \(\Delta s_b[m_{(r)}, T] \) are state function TEP

\[\Delta s[m_{(r)}, T] = \ln \frac{p_{m_0}(0)}{p_{m_N}(T)} = s_{m_N}(T) - s_{m_0}(0), \]

where \(s_m(t) \equiv -\ln p_m(t) \), and

\[\Delta s_b[m_{(r)}, T] = (s_{m_N}(T) - \phi_{m_N}(\lambda_T)) - (s_{m_0}(0) - \phi_{m_0}(\lambda_0)). \]

The other TEP are path functions.
B. Deriving trajectory entropies from measured currents

Using (41), the reservoir TEP can be expressed as

\[s_r(m_{(\tau)}, t) = -\sum_\nu \beta_\nu(\lambda_\nu) \left(f_{\text{heat}}^{(\nu)}[m_{(\tau)}, t] - \mu_\nu(\lambda_\nu) I_{\text{mat}}^{(\nu)}[m_{(\tau)}, t] \right) , \]

where the heat current between the \(\nu \) reservoir and the system is

\[f_{\text{heat}}^{(\nu)}[m_{(\tau)}, t] = \sum_{j=1}^N \delta_{\nu,\nu_j}(t - \tau_j)(\epsilon_{m_j}(\lambda_{\tau_j}) - \epsilon_{m_{j-1}}(\lambda_{\tau_j})) \]

and the matter current between the \(\nu \) reservoir and the system

\[I_{\text{mat}}^{(\nu)}[m_{(\tau)}, t] = \sum_{j=1}^N \delta_{\nu,\nu_j}(t - \tau_j)(N_{m_{j}} - N_{m_{j-1}}) . \]

The currents are positive if the system energy (matter) increases. \(\delta_{\nu,\nu_j}(t - \tau_j) \) is a Dirac distribution centered at time \(\tau_j \) only if the transition is due to the reservoir \(\nu = \nu_j \). Otherwise it is zero. We thus confirm that the reservoir EP is the entropy associated to system-reservoir exchange processes.

We assume that the parametric time dependence of the energies, temperatures and chemical potentials is known. Except in degenerate cases for which two different transitions between states have the same energy difference and number of particle difference, the trajectory of the system can be uniquely determined by measuring the heat and matter currents between the system and the reservoirs. The system steady state probability distribution can be calculated by recording the steady state currents for sufficiently long times for different values of the energies, temperatures or chemical potentials. The driven system probability distribution can in principle be calculated by reproducing the measurement of the currents multiple times. All trajectory entropies containing the logarithm of the transition rates can be expressed in term of a combination of the reservoir EP (directly measurable via current) and other trajectory entropies which can be expressed in term of the system probability distribution (actual or steady state). Therefore, provided the current measurements can be repeated often enough to get a good statistics, all the trajectory entropies are in principle measurable.

C. Statistical properties using generating functions

The GF formalism allows to compute the probability distributions and all statistical properties of the TEP without having to generate the trajectories themselves. It further provides a direct means for proving the FTs. The GF associated with the changes of \(a(m_{(\tau)}, t) \) along a trajectory is given by

\[G(\gamma, t) = \langle \exp \{ \gamma \Delta a(m_{(\tau)}, t) \} \rangle , \]

where \(\langle \cdot \rangle \) denotes an average over all possible trajectories.

The probability that the system follows a trajectory with the constraint \(\Delta A = \Delta a(m_{(\tau)}, t) \) at time \(t \), can be obtained from the GF using

\[P(\Delta A, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\gamma e^{-\gamma \Delta A} G(\gamma, t) . \]

By inverting (41), we get

\[G(\gamma, t) = \int_{-\infty}^{\infty} d\Delta A e^{\gamma \Delta A} P(\Delta A, t) . \]

The moments of the distribution are given by derivatives of the GF

\[\langle \Delta a^k[m_{(\tau)}, t] \rangle = \left. \frac{\partial^k G(\gamma, t)}{\partial \gamma^k} \right|_{\gamma = 0} , \]

In order to compute the GF, we recast it in the form

\[G(\gamma, t) = \sum_m g_m(\gamma, t) , \]

where

\[g_m(\gamma, t) = p_m(t)\langle \exp \{ \gamma \Delta a[m_{(\tau)}, t] \} \rangle_m \]

is the product of the probability to find the system in state \(m \) at time \(t \) multiplied by the expectation value of \(\exp \{ \gamma \Delta a[m_{(\tau)}, t] \} \) conditional on the system being in state \(m \) at time \(t \). Since \(\Delta a(m_{(\tau)}, t) = 0 \) for a trajectory of length \(t = 0 \), we have \(g_m(\gamma, 0) = p_m(0) \). We also have \(G(0, t) = 1 \) and \(g_m(0, t) = p_m(t) \).

The time derivative of (47) gives

\[\dot{G}(\gamma, t) = \sum_m \dot{g}_m(\gamma, t) , \]

where \(\dot{g}_m(\gamma, t) \) depends on the TEP of interest. Below, we will derive equations of motion for the \(g_m(\gamma, t) \)'s associated to the various TEP.

1. State function trajectory entropy production

The generating function associated with a state function TEP \(\Delta a(m_{(\tau)}, t) = a_m(t) - a_n(0) \) like \(\Delta s[m_{(\tau)}, t] \) or \(\Delta s_n[m_{(\tau)}, t] \) may be straightforwardly obtained using (47) with (41). We get

\[G(\gamma, t) = \sum_{m,n} \exp \{ \gamma (a_m(t) - a_n(0)) \} p_m(t)p_n(0) . \]
2. Excess trajectory entropy production

$s_{ex}[m(\tau), t]$ acquires an amount $s_{ex}(m, m') = \ln \left(\frac{p_{m'}^{st}(\lambda_t)}{p_{m}^{st}(\lambda_t)} \right)$ each time a transition from a state m' to m occurs and it remains constant along a given state m of the system. This means that

$$ g_{m}^{(ex)}(\gamma, t) = \sum_{m'} W_{m,m'}(\lambda_t) p_{m'}^{st}(t) $$

$$ + \exp \left\{ \gamma s_{ex}(m, m') \right\} \exp \left\{ \gamma \Delta s_{ex}[m(\tau), t] \right\} $$. (51)

which using [43] can be rewritten

$$ g_{m}^{(ex)}(\gamma, t) = \sum_{m'} \left(\frac{W_{m,m'}^{(0)}(\lambda_t)}{p_{m'}^{st}(\lambda_t)} \right)^{\gamma} W_{m,m'}(\lambda_t) g_{m'}^{(ex)}(\gamma, t) $$. (52)

3. Reservoir trajectory entropy production and currents

Each time a transition along the system trajectory occurs, $s_{r}[m(\tau), t]$ acquires an amount $s_{r}(m, m') = \ln \left(\frac{W_{m,m'}^{(\nu)}(\lambda_t)}{W_{m',m}^{(\nu)}(\lambda_t)} \right)$. Similarly to the excess entropy, we get

$$ g_{m}^{(r)}(\gamma, t) = \sum_{\nu,m'} \left(\frac{W_{m,m'}^{(\nu)}(\lambda_t)}{W_{m,m'}^{(\nu)}(\lambda_t)} \right)^{\gamma} W_{m,m'}(\lambda_t) g_{m'}^{(r)}(\gamma, t) $$. (53)

This equation has been used in the study of steady state FTs [12, 37].

In [40], we expressed the reservoir TEP in terms of currents. The time integrated individual currents give the heat and matter transfer between the ν reservoir and the system $\dot{q}_{\text{heat}}[m(\tau), t] = \int_{0}^{t} dt' I_{\text{heat}}^{(\nu)}[m(\tau), t']$ and $\dot{q}_{\text{mat}}[m(\tau), t] = \int_{0}^{t} dt' I_{\text{mat}}^{(\nu)}[m(\tau), t']$. Their statistics can be calculated using

$$ g_{m}^{(r)}(\gamma, t) = \sum_{\nu,m'} \exp \left\{ \gamma s_{\text{heat}}(m, m') \right\} $$

$$ \exp \left\{ \gamma s_{\text{mat}}(m, m') \right\} W_{m,m'}^{(\nu)}(\lambda_t) g_{m'}^{(r)}(\gamma, t) $$. (54)

where γ is a vector who’s elements are the different s_{heat}s and s_{mat}s. The GF calculated from [40] is therefore associated with the joint probability distribution for having a certain heat and matter transfer with each reservoir.

4. Adiabatic trajectory entropy production

Each time a transition along the system trajectory occurs, $s_{a}[m(\tau), t]$ acquires an amount $s_{a}(m, m') = \ln \left(\frac{W_{m,m'}^{(\nu)}(\lambda_t)p_{m'}^{st}(\lambda_t)}{W_{m',m}^{(\nu)}(\lambda_t)p_{m}^{st}(\lambda_t)} \right)$. We therefore get

$$ g_{m}^{(a)}(\gamma, t) = \sum_{\nu,m'} \left(\frac{W_{m,m'}^{(\nu)}(\lambda_t)p_{m'}^{st}(\lambda_t)}{W_{m',m}^{(\nu)}(\lambda_t)p_{m}^{st}(\lambda_t)} \right)^{\gamma} W_{m,m'}(\lambda_t) g_{m'}^{(a)}(\gamma, t) $$. (55)

5. Total trajectory entropy production

Each time a transition along the system trajectory occurs, $s_{tot}[m(\tau), t]$ acquires an amount $\ln \left(\frac{W_{m,m'}^{(\nu)}(\lambda_t)p_{m'}^{st}(t)}{W_{m',m}^{(\nu)}(\lambda_t)p_{m}^{st}(t)} \right)$. In addition it also changes by an amount $-d(\ln p_{m}(t))/dt$ during an infinitesimally small time on a given state m. Combining the two, we have

$$ g_{m}^{(tot)}(\gamma, t) = -\gamma \left(\frac{p_{m}(t)}{p_{m}^{st}(t)} \right) g_{m}^{(tot)}(\gamma, t) $$

$$ + \sum_{\nu,m'} \left(\frac{W_{m,m'}^{(\nu)}(\lambda_t)p_{m'}^{st}(t)}{W_{m',m}^{(\nu)}(\lambda_t)p_{m}^{st}(t)} \right)^{\gamma} W_{m,m'}(\lambda_t) g_{m'}^{(tot)}(\gamma, t) $$. (56)

6. Non-adiabatic trajectory entropy production

Like the total TEP, $s_{na}[m(\tau), t]$ acquires an amount $\ln \left(\frac{p_{m}^{na}(\lambda_t)p_{m'}^{st}(t)}{p_{m'}^{na}(\lambda_t)p_{m}^{st}(t)} \right)$ each time a transition from a states m' to m occurs, and also changes by an amount $-d(\ln p_{m}(t))/dt$ during an infinitesimally small time on a given state m. This gives

$$ g_{m}^{(na)}(\gamma, t) = -\gamma \left(\frac{p_{m}(t)}{p_{m}^{na}(t)} \right) g_{m}^{(na)}(\gamma, t) $$

$$ + \sum_{\nu,m'} \left(\frac{p_{m'}^{na}(\lambda_t)p_{m'}^{st}(t)}{p_{m'}^{na}(\lambda_t)p_{m}^{st}(t)} \right)^{\gamma} W_{m,m'}(\lambda_t) g_{m'}^{(na)}(\gamma, t) $$. (57)

7. Driving trajectory entropy production

Since $\Delta s_{d}[m(\tau), t]$ exclusively accumulates along the segments of the system trajectory, we get

$$ g_{m}^{(d)}(\gamma, t) = \gamma \phi_{m}(\lambda_t) g_{m}^{(d)}(\gamma, t) $$

$$ + \sum_{m'} W_{m,m'}(\lambda_t) g_{m'}^{(d)}(\gamma, t) $$. (58)

It follows from [40] that the average change of a TEP is obtained from its GF by differentiation with respect to γ at $\gamma = 0$. By differentiating the GF evolution equations of this section one recover the evolution equation for the EPs of section [13]. The EPs are therefore the ensemble average of the TEPs introduced in this section $\langle A(t) = \langle a[m(\tau), t] \rangle$ and $\Delta A(T, 0) = \langle \Delta a[m(\tau), T] \rangle$.

V. FLUCTUATION THEOREMS

A. General integral fluctuation theorems

We can easily verify that $g_{m}(\gamma = -1, t) = p_{m}(t)$ is the solution of the evolution equations [56] and [57]. It immediately follows from probability conservation and [49] that $G_{tot}(-1, t) = G_{na}(-1, t) = 0$. Summing both
side of (53) over \(m \), we also verify that \(\dot{G}_a(-1, t) = 0 \). Because \(g_m^{(z)}(-1, 0) = p_m(0) \), \(G_z(-1, 0) = 1 \) where \(z = t_{di}, na, a \). Therefore, we find that \(G_z(-1, t) = 1 \). Using (53), this results in the three FTs
\[
\langle \exp \{-\Delta s_{tot}[m_{(\tau) t}]\} \rangle = 1 , \quad (59)
\langle \exp \{-\Delta s_{na}[m_{(\tau) t}]\} \rangle = 1 , \quad (60)
\langle \exp \{-\Delta s_{na}[m_{(\tau) t}]\} \rangle = 1 . \quad (61)
\]
These FTs hold irrespective of the initial condition and the type of driving. Using Jensen’s inequality \(\langle e^{x} \rangle \geq e^{\langle x \rangle} \), they imply the inequalities (21)–(23).

Eq. (59) is the generalization to open systems of the integral FT for the TEP obtained earlier for closed systems [14]. The TEP (27) needs to specify which reservoir is responsible for the transitions occurring along the trajectory (by labeling the rates with reservoir index). This point, made earlier for open system at steady state [12], is generalized here for driven systems with an arbitrary initial condition. Eq. (60) will be shown in next section to reduce to the integral Hatano-Sasa FT 11 for systems initially in a steady state. Eq. (61) generalizes the integral FT for the adiabatic entropy [12] previously derived for closed system initially in a steady state.

Some additional insights can be gained by an alternative proof of the FTs (59) and (60) which use a forward-backward trajectory picture of the dynamics. This is given for completeness in appendix A.

B. Transitions between steady states

We consider a system initially \(t=0 \) at steady state and subjected to an external driving force between \(t = t_{di} \) and \(t = t_{df} \). For \(t_{di} > t > 0 \), the system remains in the steady state corresponding to \(\lambda = \lambda_{t_{di}} \). The time protocol \(\lambda \) during the driving \(t_{df} > t > t_{di} \) is arbitrary. If \(t_{tr} \) is the characteristic transient time needed for the system to reach a steady state from an arbitrary distribution, for \(t > t_{df} + t_{tr} \), the system is in the new steady state corresponding to \(\lambda_{t_{df}} \). The system is measured between \(t = 0 \) and \(t = T \).

1. Fluctuation theorem for the reservoir entropy production

We restrict our analysis to cases where the system is at steady state at \(t = 0 \) and the driving starts at least a time \(t_{tr} \) after the measurement started: \(t_{di} > t_{tr} \). We use the bracket notation where \(|p(t)\rangle \) is the probability vector with components \(p_m(t) \) and \(\hat{W}_t \) denotes the rate matrix. \(|I\rangle \) denotes a vector with all components equal to one. The ME (11) now reads
\[
|\dot{p}(t)\rangle = \hat{W}_t |p(t)\rangle . \quad (62)
\]
The generating function for the reservoir EP (53) for \(\gamma = -1 \) evolves according to the adjoint equation of (62)
\[
|\dot{g}(\tau)\rangle(-1, t) = \hat{W}_t^† |g(\tau)\rangle(-1, t) . \quad (63)
\]
The initial condition of (22) and (63) is \(|p(0)\rangle = |g(-1, 0)\rangle = |p_{st}(\lambda_{t_{di}})\rangle \). The formal solution of (63) for \(t < t_{di} \) before the driving starts reads
\[
G_r(-1, t) = \langle I | \exp \{ \hat{W}_t^† \} |p_{st} \rangle \quad (64)
\]
We now insert a closure relation in term of right and left eigenvectors of the adjoint rate matrix between the evolution operator and the initial condition. Because the rate matrix and its adjoint have the same eigenvalues (all negative and one zero), for \(t_{tr} < t < t_{di} \), only the right and left eigenvector associated with the zero eigenvalue survive. Since the right [left] eigenvector of \(\hat{W}_t^† \) is \(|I\rangle \) \(|p_{st}(\lambda_{t_{di}})\rangle \), we get for \(t_{tr} < t < t_{di} \)
\[
G_r(-1, t) = \langle I | \exp \{ \hat{W}_t^† \} |p_{st} \rangle \quad (65)
\]
For longer times, even when the system starts to be driven, \(|I\rangle \) remains invariant under the time evolution operator as can be seen using 11 in (63). We get
\[
G_r(-1, T) = M \langle p_{st} | p_{st} \rangle \quad \text{for} \quad T \geq t_{tr} , \quad (66)
\]
where \(M = \langle I | I \rangle \) is the total number of states. This implies the following integral FT for the reservoir TEP
\[
M \geq \langle \exp \{-\Delta s_r[m_{(\tau) t}]\} \rangle = M \sum_{m=1}^{M} \left(p_{st}^m(\lambda_{t_{di}}) \right)^2 \geq 1 . \quad (67)
\]
The equality on the l.h.s (r.h.s) is satisfied if \(p_{st}^m(\lambda_{t_{di}}) = \delta_{n,m} \) \(p_{st}^m(\lambda_{t_{di}}) = 1/M \). Jensen’s inequality implies \(\Delta S_r(T, 0) \geq 0 \). Note that since \(\Delta s[m_{(\tau) t}] \) is a state function, it is easily verified that
\[
M \sum_{m=1}^{M} p_{st}^2(0) = \langle \exp \{ \Delta s[m_{(\tau) t}] \} \rangle . \quad (68)
\]

2. The Hatano-Sasa fluctuation theorem

We assume that the driving starts at the same time or later as the measurement \(t_{di} \geq 0 \). We define \(T' > t_{df} + t_{tr} \).

We have pointed out at the end of section III that for transitions between steady states \(\Delta S_b(T', 0) = 0 \), so that
\[
\Delta S_{na}(T', 0) = \Delta S_d(T', 0) = \Delta S_d(t_{df}, t_{di}) \geq 0 . \quad (69)
\]
We used the fact that \(\Delta S_d(T', 0) \) starts (stops) evolving at \(t_{di} \) \(t_{df} \). The same is true at the trajectory level, since from (60) we have \(\Delta s_{na}[m_{(\tau) T'}] = 0 \) and therefore
\[
\Delta s_{na}[m_{(\tau) T'}] = \Delta s_d[m_{(\tau) T'}] , \quad (70)
\]
where
\[\Delta_s[m(\tau), T'] = \sum_{j=0}^{N} \ln \frac{p^d_{m_j}(\lambda_{\tau_j})}{p^d_{m_j}(\lambda_{\tau_{j+1}})} \tag{71} \]
\[= \sum_{j=0}^{N} (\phi_m(\lambda_{\tau_{j+1}}) - \phi_m(\lambda_{\tau_j})) \]
\[= \int_{0}^{t} \frac{dt \Delta \phi_m(\lambda_t)}{\partial \lambda_t} \]
\[= \int_{t_{\text{int}}}^{t_{\text{int}+\lambda}} \frac{dt \Delta \phi_m(\lambda_t)}{\partial \lambda_t} . \]

The integrand in the third line contributes only during the time intervals between jumps provided the driving is changing. Therefore if without loss of generality we choose the measurement time such that \(T \geq t_{\text{int}} \) (if \(T < t_{\text{int}} \) one can redefine \(t_{\text{int}} \) as equal to \(T \)), \(\Delta s_d[m(\tau), T'] = \Delta s_d[m(\tau), T'] \). This means that for a transition between steady states, the FT (60) reduces to the Hatano-Sasa FT (11)
\[\langle \exp \{ -s_d[m(\tau), T'] \} \rangle = 1 . \tag{72} \]

Alternatively, (72) can be proved from (68) by showing that when \(\gamma = -1, g^\alpha_{m,-1}(t) = \exp \{ -\phi_m(\lambda_t) \} = p^\alpha_{m}(\lambda_t) \) is solution of (35).

The FT (72) holds for an arbitrary driving protocol. Let us consider the two extremes. For an adiabatic (infinitely slow) driving, the inequality in (69) becomes an equality. In the other extreme of a sudden driving, where \(\lambda_t = \lambda_{t_{\text{int}}} + \Theta(t - t_{\text{int}})(\lambda_{t_{\text{int}}} - \lambda_{t_{\text{int}}}) \) and \(\lambda_t = \delta(t_{\text{int}}) (\lambda_{t_{\text{int}}} - \lambda_{t_{\text{int}}}) \),
\[\Delta s_d[m(\tau), T] = \phi_m(\lambda_{t_{\text{int}}}) - \phi_m(\lambda_{t_{\text{int}}}) \tag{73} \]
becomes a state function and its average takes the simple form
\[\Delta S_{d}(T, 0) = \sum_{m} p_{m}(\lambda_{t_{\text{int}}}) \{ \phi_m(\lambda_{t_{\text{int}}}) - \phi_m(\lambda_{t_{\text{int}}}) \} . \tag{74} \]

Using (35) with (70), and since
\[\Delta_s[m(\tau), T] = \phi_m(T) - \phi_m(T) \tag{75} \]
we find that
\[\Delta s_{ex}[m(\tau), T] = \phi_m(\lambda_{t_{\text{int}}}) - \phi_m(\lambda_{t_{\text{int}}}) \tag{76} \]
also becomes a state function and its average becomes
\[\Delta S_{ex}(T, 0) = \sum_{m, m} p_{m}(\lambda_{t_{\text{int}}}) p_{m}(\lambda_{t_{\text{int}}}) \{ \phi_m(\lambda_{t_{\text{int}}}) - \phi_m(\lambda_{t_{\text{int}}}) \} . \tag{77} \]

C. Transitions between equilibrium states

For a system coupled to a single reservoir (or multiple reservoirs with identical thermodynamical properties), the DBC (10) is satisfied. A non-driven system in an arbitrary state will reach after some transient time \(t_{\text{tr}} \) the equilibrium grand canonical distribution (30). We again choose \(T' > t_{\text{fr}} + t_{\text{tr}} \) and \(T \geq t_{\text{fr}} \). From the TEP of section IV we find in this case
\[\Delta s_d[m(\tau), T'] = 0 \tag{78} \]
\[\Delta s_{ex}[m(\tau), T'] = \Delta s_{ex}[m(\tau), T'] \]
\[\Delta s_{tot}[m(\tau), T'] = \Delta s_{tot}[m(\tau), T'] . \]

The two FT (59) and (60) become identical and the FT (61) becomes trivial. Using (30), we also find that Eq. (10) becomes
\[\phi_m(\lambda) = \beta(\lambda) \{ \epsilon_m(\lambda) - \mu(\lambda)N_m - \Omega(\lambda) \} . \tag{79} \]
where \(\Omega(\lambda) = -\ln \Xi(\lambda) \) is the thermodynamic grand canonical potential.

We next consider transitions between equilibrium states, so that the procedure is the same as in V B 2 but with the DBC (5) now satisfied. We therefore have \(\Delta s_{na}[m(\tau), T'] = \Delta s_d[m(\tau), T'] \). The driving implies externally modulating the system energies, the chemical potential or the temperature of the reservoir.

When driving the system energy, using (71) and (79), we find
\[\Delta s_d[m(\tau), T] = \Delta s_d[m(\tau), T'] = \beta w[m(\tau)] - \beta \Delta \Omega \tag{80} \]
where the work is given by \(w[m(\tau)] = \int_{t_{\text{int}}}^{t_{\text{fr}}} dt \epsilon_m(\lambda_t) \) and \(\Delta \Omega = \Omega[\epsilon(t_{\text{int}})] - \Omega[\epsilon(t_{\text{fr}})] \). Both FT, (59) and (60), lead to the same Jarzynski relation (4)
\[\{ \exp \{ -\beta w[m(\tau)] \} \} = \exp \{ -\beta \Delta \Omega \} . \tag{81} \]

When driving the reservoir chemical potential, Eq. (71) and (79) give
\[\Delta s_d[m(\tau), T] = \Delta s_d[m(\tau), T'] = \beta \dot{\epsilon}[m(\tau)] - \beta \Delta \Omega \tag{82} \]
where \(\dot{\epsilon}[m(\tau)] = -\int_{t_{\text{int}}}^{t_{\text{fr}}} dt \dot{\mu} \) and \(\Delta \Omega = \Omega[\mu(t_{\text{int}})] - \Omega[\mu(t_{\text{fr}})] \). Both FT, (59) and (60), now lead to
\[\{ \exp \{ -\beta \dot{\epsilon}[m(\tau)] \} \} = \exp \{ -\beta \Delta \Omega \} . \tag{83} \]

The case where reservoir temperature is driven can be calculated similarly.

D. No driving: steady state fluctuation theorem

In a NESS, the relations of section IV give
\[\Delta s_{na}[m(\tau), t] = \Delta s_d[m(\tau), t] = 0 \tag{84} \]
\[\Delta s[m(\tau), t] = -\Delta s_{ex}[m(\tau), t] \]
\[\Delta s_{tot}[m(\tau), t] = \Delta s_d[m(\tau), t] . \]
Furthermore, since $\Delta S(t, 0) = 0$, we get
\begin{equation}
\Delta S_{tot}(t, 0) = \Delta S_r(t, 0) \geq 0 .
\end{equation}

We shall rewrite the GF evolution equation for the reservoir TEP \(53\) in the bracket notation
\begin{equation}
|g^{(r)}(\gamma, t)| = \hat{\gamma}(\gamma)|g^{(r)}(\gamma, t)| ,
\end{equation}
so that
\begin{equation}
G_r(\gamma, t) = \langle I | \exp \{ \hat{\gamma}(\gamma)t \} | p^{st} \rangle ,
\end{equation}
where \(|I\) is a vector with all elements equal to one. Since from \(53\) the generator has the property \(\hat{\gamma}(\gamma) = \hat{\gamma}^\dagger(-\gamma-1)\), its eigenvalues have the symmetry \(s_\xi(\gamma) = s_\xi(-\gamma-1)\). Furthermore, since \(\exp \{ \hat{\gamma}(\gamma)t \} \) is a positive matrix, the Frobenious-Perron theorem \(29\) \(30\) \(31\) ensures that all eigenvalues are negative or zero and that the left and the right eigenvectors, \(\xi_0(\gamma)\) and \(\xi_0(\gamma)\), associated with the largest eigenvalue \(s_{\xi_0}(\gamma)\) exist. Adopting the normalization \(\langle \xi_0(\gamma)|\xi_0(\gamma)\rangle = 1\), we find for long times
\begin{equation}
G_r(\gamma, t) \overset{t \rightarrow \infty}{=} \exp \{ s_{\xi_0}(\gamma)t \} \langle I | \tilde{\xi_0}(\gamma) \rangle \langle \xi_0(\gamma)|p^{st} \rangle .
\end{equation}

This means that the cumulant generating function
\begin{equation}
F_r(\gamma) \equiv \lim_{t \rightarrow \infty} \frac{1}{t} \ln G_r(\gamma, t)
\end{equation}
satisfies the symmetry
\begin{equation}
F_r(\gamma) = F_r(-\gamma-1) .
\end{equation}
Using the theory of large fluctuations this symmetry implies the detailed steady state FT \(6\) \(12\)
\begin{equation}
P(\Delta S_r) \overset{t \rightarrow \infty}{=} e^{\Delta S_r} ,
\end{equation}
where \(P(\Delta S_r)\) is the probability for a trajectory of the system to produce a reservoir TEP equal to \(\Delta S_r\).
\(\Delta S_r[m_r(\gamma), t]\) grows in average with time because it depends on the number of jumps along the trajectory. However, \(\Delta S[m_r(\gamma), t]\) is bounded. The FT \(92\) can therefore be viewed as a consequence of the detailed FT for \(\Delta S_{tot}\) derived in \(A13\). The long time limit is needed in order to neglect the contribution from \(\Delta S[m_r(\gamma), t]\) to \(\Delta S_{tot}[m_r(\gamma), t]\). The FT \(67\) remains valid at steady state. FTs for currents can also be derived \(19\) \(57\) \(42\).

VI. ENTROPY FLUCTUATIONS FOR ELECTRON TRANSPORT THROUGH A SINGLE LEVEL QUANTUM DOT

We have seen in section \(IVB\) that the various entropies can be calculated by measuring the different currents between the system and the reservoirs. The counting statistics of electrons through quantum dots has recently raised considerable theoretical \(38\) \(39\) \(40\) \(41\) \(42\) as well as experimental \(27\) \(43\) \(44\) \(45\) \(46\) interest. The single electrons entering and exiting a quantum dot connected to two leads can be measured. One can therefore calculate all currents, deduce the system trajectories and calculate the various trajectory entropies presented earlier.

We will analyze the probability distribution for the various trajectory entropies in a single level quantum dot of energy \(\epsilon\) connected to two leads with different chemical potentials \(\mu_\nu(t)\), where \(\nu = l, r\). We neglect spin so that the dot can either be empty or filled \(1\). The ME is of the form \(11\) \(41\) \(47\) \(48\) \(49\) \(50\) \(51\) \(52\)
\begin{equation}
\left(\begin{array}{c}
\dot{p}_{l}(t) \\
\dot{p}_{r}(t)
\end{array} \right) = \left(\begin{array}{cc}
-v_t & w_t \\
w_t & -v_t
\end{array} \right) \left(\begin{array}{c}
p_{l}(t) \\
p_{r}(t)
\end{array} \right) ,
\end{equation}

where
\begin{equation}
\begin{align}
v_t &= \sum_\nu v_t^{(\nu)} = \sum_\nu a_\nu (1 - f_\nu(t)) \\
w_t &= \sum_\nu w_t^{(\nu)} = \sum_\nu a_\nu f_\nu(t) .
\end{align}
\end{equation}
The coefficients \(a_\nu\) characterize the coupling between the dot and the lead \(\nu\) with Fermi distribution \(f_\nu(t) \equiv 1/(\exp\{\beta\epsilon - \mu_\nu(t)\} + 1)\). If \(h = 1\), \([a] = [\text{energy}] = [\text{time}^{-1}]\). By renormalizing energies by \(c\), all parameters of our model become dimensionless. The steady state distribution of the system is
\begin{equation}
p_{l}(st) = \frac{w_t}{v_t + w_t} , \quad p_{r}(st) = \frac{v_t}{v_t + w_t} ,
\end{equation}
and the steady state currents are given by
\begin{equation}
\langle I \rangle_{1,3}^{(st)} = p_{l}(st) w_t = \frac{v_t w_t}{v_t + w_t} , \quad \langle I \rangle_{2,4}^{(st)} = p_{r}(st) w_t = \frac{v_t w_t}{v_t + w_t} .
\end{equation}
We switch the chemical potential of the left lead \(\mu_l(t) = \mu_0 + V(t)\) using the protocol
\begin{equation}
V(t) = \frac{V_f - V_i}{2} \tanh \left(c(t - t_m) + 1 \right) ,
\end{equation}
while holding the right lead chemical potential fixed \(\mu_r(t) = \mu_0\). We can therefore calculate all the trajectory entropies’ probability distributions using the GF method described in section \(IVC\). We solve numerically the evolution equations for the \(g_m(\gamma, t)\)'s associated with the different entropies for different values of \(\gamma\) with the
Different measurement times are represented by a, b, c, d. After calculating the $G(t, \gamma)$'s using (14), the probability distribution is obtained by a numerical inverse Fourier transform (14). In all calculations we used $\beta = 5$, $\epsilon = 1$, $a_l = 0.2$ and $a_r = 0.1$.

We start by analyzing the different contributions to the EP as defined in section 11 for the $\mu_l(t)$ protocol shown in Fig. 2a. The system is initially in a nonequilibrium distribution different from the steady state. The solution of the ME is obtained using the GF method presented in section IV C. The five driving protocols used to change these quantities are always positive [see (21)-(23)]. We also demonstrate that \dot{S} becomes a state function which only depends on the initial state of the system [see (73)]. Δs_d can therefore take two possible values corresponding to the empty 0 or filled 1 orbital with a respective probability 0.96 or 0.04. When the driving speed slows down in (ii) the peaks are broadened. In the adiabatic limit (V), $P(\Delta S_d)$ becomes a broad distribution with zero average. In the right column of Fig. 5 we depict $P(\Delta S_r)$. For sudden switch (i), Δs_{ex} turn to a state function which only depends on the final steady state distribution [see (76)]. It is clear from (76) that the transitions 0 to 0 and 1 to 1 leads to $\Delta s_{ex} = 0$ and 1 to 0 and 0 to 1 to the same Δs_{ex} with opposite sign. The probabilities to observe these transitions follow from the fact that the system is initially more likely to be in 0 (prob 0.96) than in 1. The probability for the final state 0 (1) is 0.64 (0.36). Therefore the most likely transition is 0 to 0 followed from 0 to 1. As the driving speed slows down like in (ii), the peaks get broadened. Since $\Delta s_{ex} = \Delta s_d - \Delta s$ and since in the adiabatic switch limit (v) $P(\Delta S_d)$ is centered around zero, $P(\Delta S_{ex})$ (v) has the same peak structure as $P(-\Delta S)$ [see Fig. 4], but broadened by Δs_d.

In Fig. 6 we display $P(\Delta S_r)$ for different measurement times and protocols. Plots with same driving but different measurement times [(i) and (ii)d or (ii)a and (ii)c] or (ii)b and (iii)d show the evolution of $P(\Delta S_r)$ in the final steady state. The plots (ii)-(v) satisfy the FT (67) which for our parameters imply $\exp (-\Delta s_r) = 1.846$. The FT is not satisfied for (i) because the driving starts at the same time as the measurement [see section V B I]. To understand the structure of $P(\Delta S_r)$, we integrate (14) and use the fact that in our model the heat current is proportional to the matter current between the ν reservoir and the system $I^{(\nu)} = I^{max} = I^{(\nu)}_{heat}/\epsilon$ where

$$I^{(\nu)}(t) = \sum_{j=1}^{N} \delta_{\nu,\nu_j}(t - \tau_j)(N_{m_j} - N_{m_{j-1}}).$$

We get

$$\Delta s_r(t) = -\beta \sum_{\nu} \int_0^t d\tau \left(\epsilon - \mu_{\nu}(\tau) \right) I^{(\nu)}(\tau).$$
In the sudden switch limit (i), we get
\[
\Delta s_r(t) = -\beta \sum_\nu \left(\epsilon - \mu_\nu(T) \right) N^{(\nu)}(t) .
\]
(100)

where \(N^{(\nu)} = \int_0^t d\tau I^{(\nu)}(\tau) \) is the net number of electron transferred from the reservoir \(\nu \) to the system between 0 and \(t \). This explains why \(\Delta s_r \) in (i) only take discrete value which are multiples of each other. The distance between the peaks of 2.5 observed in (i) is due to the right lead only \(\beta(\epsilon - \mu_r) = 2.5 \) because our parameters are such that \(\beta(\epsilon - \mu_l(T)) = 0 \). The new peaks which appear in (ii) with a spacing 0.125 are due to the fact that the driving starts some time after the measurement so that \(\beta(\epsilon - \mu_l(0)) = 3.75 \) also contributes. As the driving speed slows down (iii)-(v), the discrete structure broadens and \(\Delta s_r \) can take continuous values.

In Fig. 7 we display \(P(\Delta S_a) \). All curves satisfy the FT (61). The verification (not shown) is best done on the GF (\(G_a(-1,t) = 1 \)) because the numerical accuracy of the tail of the distribution is not sufficient. The peak structure of \(P(\Delta S_a) \) can be understood from \(P(\Delta S_r) \) and \(P(\Delta S_{ex}) \) because \(\Delta s_r = \Delta s_a + \Delta s_{ex} \). This is particularly clear for the sudden switch (i) where the possible values of the entropies are strongly restricted. Indeed, in (i) each peak of \(P(\Delta S_r) \) is split in three smaller peaks which have the same structure as \(P(\Delta S_{ex}) \). As the speed of the driving decreases (ii)-(v), the peak structure disappears.

In Fig. 8 we show \(P(\Delta S_{tot}) \). All curves satisfy the FT (59) (verification was done on the GF (not shown)). The structure of \(P(\Delta S_{tot}) \) can be understood using \(P(\Delta S_r) \) and \(P(\Delta S) \) because \(\Delta s_{tot} = \Delta s_r + \Delta s \). This is clear for the sudden switch (i) where the peaks of \(P(\Delta S_r) \) are split in smaller peaks which have the structure of \(P(\Delta S) \).

VII. CONCLUSIONS

For a driven open system in contact with multiple reservoirs and described by a master equation, we have proposed a partitioning of the trajectory entropy production into two parts. One contributes when the system is in its steady state and contains two contributions due to the external driving and the deviation from steady state in the initial and final probability distribution of the system. The second part comes from breaking of the detailed balance condition by the multiple reservoirs and becomes equal to the total entropy production when the system remains in its steady state all throughout the nonequilibrium process. Both parts as well as the total entropy production satisfy an general integral fluctuation theorem which imposes positivity on their ensemble average. This partitioning also provides a simple way to identify which part of the entropy production contributes during a specific type of nonequilibrium process [see Fig. 9]. Previously derived integral fluctuation theorems can be recovered from our three general fluctuation theorems and in addition we derived a new integral fluctuation theorem for the part of the entropy production due to exchange processes between the system and its reservoirs (reservoir entropy production). Our results strictly apply to systems described by a master equation (11). However, as has often been the case for previous fluctuation relations, one could expect similar results to hold for other types of dynamics. For electron transport through a single level quantum dot between two reservoirs with time dependent chemical potentials, we have simulated and analyzed in detail the probability distributions of the various trajectory entropies and showed how they can be measured in electron counting statistics experiments.

Acknowledgments

The support of the National Science Foundation (Grant No. CHE-0446555) and NIRT (Grant No. EEC 0303389) is gratefully acknowledged. M. E. is partially supported by the FNRS Belgium (collaborateur scientifique).

APPENDIX A: FLUCTUATION THEOREMS IN TERMS OF FORWARD BACKWARD TRAJECTORY PROBABILITIES

We show that the FT (59) and (60) have an interesting interpretation in term of the ratio of the probability of a forward dynamics generating a given trajectory and the probability of the time-reversed trajectory during some backward dynamics. This is an alternative to the GF approach which connects the detailed form to the integral form of the FTs.

The forward dynamics is described by the ME (11). We introduce the probability (in trajectory space) \(P[\mathcal{m}(\tau)] \) that the system follows a trajectory \(\mathcal{m}(\tau) \)

\[
P[\mathcal{m}(\tau)] = p_{m_0}^{(0)} \prod_{j=1}^{N} W_{m_{j-1},m_j}(\lambda_\tau) \exp \left(\int_{\tau_{j-1}}^{\tau_j} d\tau' W_{m_{j-1},m_j}(\lambda_\tau) \right) \]

\[
\exp \left(\int_{\tau_N}^{\tau} d\tau' W_{m_{N-1},m_N}(\lambda_{\tau'}) \right) .
\]

The \(W_{m_{j-1},m_j}(\lambda_\tau) \) factors in this expression represent the probability that the system undergoes a given transition whereas the exponentials describe the probability for the system to remain in a given state between two successive jumps. Summation over all possible
trajectories will be denoted by \sum_{m_r}. It consists of time-ordered integrations over the N time variables τ_j from 0 to T (this gives the probability of having a path with N transitions) and then summing over all possible N from 0 to ∞. Normalization in trajectory-space implies that $\sum_{m_r} P[m_r] = 1$.

The backward dynamics is described on the time interval $t = [0, T]$ by the ME

$$\dot{\tilde{p}}_{m}(t) = \sum_{m'} \tilde{W}_{m,m'}(\lambda_{t-T})\tilde{p}_{m'}(t) \quad (A2)$$

where the new rate matrix $\tilde{W}_{m,m'}(\lambda_t)$ satisfies $\sum_{m} \tilde{W}_{m,m'}(\lambda_t) = 0$. We require that the parametric time dependence (via the driving protocol λ_t) of the rate matrix in Eq. (A2) is time-reversed compared that of Eq. (A1) and that the diagonal part of the rate matrix in Eq. (A1) and (A2) is the same

$$\tilde{W}_{m,m}(\lambda_t) = W_{m,m}(\lambda_t) \quad (A3)$$

This still leaves room for different choices of $\tilde{W}_{m,m'}(\lambda_t)$. We will later specify two choice of $\tilde{W}_{m,m'}(\lambda_{t-T})$ (A11) and (A12) that will result in two FTs.

We define the time-reversed trajectory of $m(\tau)$ by $\tilde{m}(\tau) = \{0, m_N, T-\tau_N, m_{N-1}, \ldots, m_j, T-\tau_j, m_{j-1}, \ldots, m_1, T-\tau_1, m_0 - T\}$. The probability $\tilde{P}[\tilde{m}(\tau)]$ that the system described by (A2) follows the time-reversed trajectory $\tilde{m}(\tau)$ is given by

$$\tilde{P}[\tilde{m}(\tau)] = \tilde{p}_{m_0}(0) \prod_{j=1}^{N} \tilde{W}_{m_{N-j+1},m_{N-j+1}}(\lambda_{T-\tau_j}) \exp \left(\int_{T-\tau_{N-j+1}}^{T-\tau_{N-j+2}} d\tau' \tilde{W}_{m_{N-j+1},m_{N-j+1}}(\lambda_{T-\tau_j}) \right) \exp \left(\int_{T-\tau_1}^{T} d\tau' \tilde{W}_{m_0,m_0}(\lambda_{T-\tau_1}) \right) \quad (A4)$$

where $\tau_{N+1} = T$. Normalization in the reverse path ensemble implies $\sum_{\tilde{m}(\tau)} \tilde{P}[\tilde{m}(\tau)] = 1$.

We consider the ratio of the two probabilities (A1) and (A4),

$$r[m(\tau)] = \ln \frac{P[m(\tau)]}{\tilde{P}[\tilde{m}(\tau)]} \quad (A5)$$

Due to (A3), the contributions from the exponentials (which represent the probabilities to remain on a given state) in (A4) cancel, so that

$$r[m(\tau)] = \ln \frac{p_{m_0}(0)}{p_{m_0}(0)} + \sum_{j=1}^{N} \ln \frac{W_{m_1,m_1}(\lambda_j)}{W_{m_{j-1},m_{j-1}}(\lambda_j)} \quad (A6)$$

We can partition (A6) in the form

$$r[m(\tau)] = \ln \frac{p_{m_0}(0)}{p_{m_0}(0)} + \sum_{j=1}^{N} \ln \frac{p_{m_j}(\lambda_j)}{p_{m_{j-1}}(\lambda_j)} + \left(\sum_{j=1}^{N} \ln \frac{p_{m_{j+1}}(\lambda_j)W_{m_j,m_{j+1}}(\lambda_j)}{p_{m_j}(\lambda_j)W_{m_j,m_{j+1}}(\lambda_j)} \right) \quad (A7)$$

We assume for the moment that $r[m(\tau)]$ can be expressed exclusively in terms of quantities of the dynamics (A) i.e. a recipe has to be provided to express the tilde quantities in (A6) $[\tilde{p}_{m_0}(0)$ and $\tilde{W}_{m_{j-1},m_j}(\lambda_j)]$ in terms of non-tilde quantities. In analogy with (A5), we define

$$\tilde{r}[\tilde{m}(\tau)] = \ln \frac{\tilde{P}[\tilde{m}(\tau)]}{P[m(\tau)]} \quad (A8)$$

for the tilde dynamics. The previous recipe also implies that $\tilde{r}[\tilde{m}(\tau)]$ can be exclusively expressed in terms of quantities of the tilde dynamics (A2). Eq. (A5) together with (A8) implies that $r[m(\tau)] = -\tilde{r}[\tilde{m}(\tau)]$.

The probability $P(R)$ to observe a trajectory such that $r[m(\tau)] = R$ during the forward dynamics is related to the probability $\tilde{P}(-R)$ to observe a trajectory such that $\tilde{r}[\tilde{m}(\tau)] = -R$ during the backward dynamics

$$P(R) = \sum_{m(\tau)} P[m(\tau)] \delta(R - r[m(\tau)]) \quad (A9)$$

$$= \sum_{m(\tau)} \tilde{P}[\tilde{m}(\tau)] \delta(R - \tilde{r}[\tilde{m}(\tau)])$$

$$= e^R \sum_{m(\tau)} \tilde{P}[\tilde{m}(\tau)] \delta(R - \tilde{r}[\tilde{m}(\tau)])$$

$$= e^R \sum_{\tilde{m}(\tau)} \tilde{P}[\tilde{m}(\tau)] \delta(R + \tilde{r}[\tilde{m}(\tau)])$$

$$= e^R \tilde{P}(-R) \quad (A10)$$

By integrating $e^{-R} P(R) = \tilde{P}(-R)$ over R, we get

$$\langle e^{-r[m(\tau)]} \rangle = 1 \quad (A10)$$

It follows from Jensen’s inequality $\langle e^x \rangle \geq e^{\langle x \rangle}$, that $\langle r[m(\tau)] \rangle \geq 0$.

We now make a first choice of $\tilde{W}_{m,m'}(\lambda_t)$ in the backward dynamics (A2)

$$\tilde{W}_{m,m'}(\lambda_t) = W_{m,m'}(\lambda_t) \quad (A11)$$

In this case the backward dynamics is identical to the original one, except that the driving protocol is time reversed. If we also choose the initial conditions of the backward dynamics to be the final conditions of the forward dynamics $\tilde{p}_m(0) = p_m(T)$, using (A6) and (27) we find

$$r[m(\tau)] = \Delta s_{\text{tot}}[m(\tau),T] \quad (A12)$$
The FT \((59)\) previously derived using GFs now follows from Eq. \((A10)\). Using \((A9)\), we also get the detailed form of the FT

\[
P(\Delta S_{tot}) = e^{\Delta S_{tot}}.
\]

We now make a second choices of \(\hat{W}_{m,m'}(\lambda_t)\) in \((A2)\)

\[
\hat{W}^{(v)}_{m,m'}(\lambda_t) = \hat{W}^{(v)}_{m',m}(\lambda_t) \frac{\hat{p}_m(\lambda_t)}{\hat{p}_{m'}(\lambda_t)}.
\]

In the theory of MEs, \((A2)\) with \((A14)\) is called the time reversal ME of \((1)\) \([29, 30]\). We again choose the initial condition of the tild dynamics to be the final conditions of the original dynamics \(\hat{p}_m(0) = p_m(T)\). Using \((A7)\) with \((A14)\) and \((32)\), we get

\[
\hat{r}[m_{(\tau)}] = \Delta s_{na}[m_{(\tau)}, T].
\]

The previously derived FT \((60)\) follows now from \((A10)\). From Eq. \((A9)\) we find the detailed form of the FT

\[
P(\Delta S_{na}) = e^{\Delta S_{na}}.
\]
[37] D. Andrieux and P. Gaspard, J. Stat. Phys. 127, 107 (2007).
[38] L. S. Levitov and M. Reznikov, Phys. Rev. B 70, 115305 (2004).
[39] A. L. Shelankov and J. Rammer, Europhys. Lett. 63, 485 (2003).
[40] D. A. Bagrets and Yu. V. Nazarov, Phys. Rev. B 67, 085316 (2003).
[41] Y. Utsumi, D. S. Golubev, and G. Schön, Phys. Rev. Lett. 96, 086803 (2006).
[42] M. Esposito, U. Harbola and S. Mukamel, Phys. Rev. B 75, 155316 (2007).
[43] W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature 423, 422 (2003).
[44] T. Fujisawa, T. Hayashi, Y. Hirayama, H. D. Cheong, Appl. Phys. Lett. 84, 2343 (2004).
[45] J. Bylander, T. Duty, and P. Delsing, Nature 434, 361 (2005).
[46] S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P. Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 96, 076605 (2006).
[47] C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).
[48] E. Bonet, M. M. Deshmukh, and D. C. Ralph, Phys. Rev. B 65, 045317 (2002).
[49] F. Elste and C. Timm, Phys. Rev. B 71, 155403 (2005).
[50] S. Datta, Quantum transport: from quantum dot to transistor (Cambridge, New York, 2005).
[51] B. Muralidharan, A. W. Ghosh, and S. Datta, Phys. Rev. B 73, 155410 (2006).
[52] U. Harbola, M. Esposito and S. Mukamel, Phys. Rev. B 74, 235309 (2006).
FIG. 2: (Color online) (a) Driving protocol of the left lead chemical potential \(\mu_l(t) = \mu_0 + V(t) \) where \(V(t) \) follows (97) with \(V_i = -0.25, V_f = 0.5, c = 0.2, t_m = 0.2 \) and \(\mu_0 = 0.5 \). The right lead chemical potential remains constant at \(\mu_r = \mu_0 \). (b) Solid: The probability distribution of the dot obtained by solving the ME (93) with initial condition \(p_0(0) = 0.4 \) and \(p_1(0) = 0.6 \). Dotted: The adiabatic probability distribution. (c) Decomposition of \(\dot{S}_{\text{tot}}(t) \) according to (21). (d) Decomposition of \(\dot{S}_{\text{na}}(t) \) according to (22). (e) Decomposition of \(\dot{S}_{\text{na}}(t) \) according to (20). (f) Decomposition of \(\dot{S}_{\text{tot}}(t) \) according to (4).
FIG. 3: (Color online) Five driving protocols for the left lead chemical potential \(\mu_l(t) = \mu_0 + V(t) \) where \(V(t) \) follows (97) with \(V_i = -0.25, V_f = 0.5 \) and (ii) \(c = 0.2, t_m = 75 \), (iii) \(c = 0.05, t_m = 200 \), (iv) \(c = 0.02, t_m = 300 \) (v) \(c = 0.01, t_m = 500 \). (i) is the sudden switch limit \(\mu_l(t) = \mu_0 + \Theta(t)V_f \) [limit \(c \to \infty \) with \(t_m = 0 \) in (97)]. The system is initially at steady state where \(p_{st}^0 = 0.96 \) and \(p_{st}^1 = 0.04 \). In the final steady state \(p_{st}^0 = 0.64 \) and \(p_{st}^1 = 0.36 \). a, b, c, d correspond to different measurement times. In all calculations \(\beta = 5, \epsilon = 1, a_t = 0.2 \) and \(a_c = 0.1 \).

FIG. 4: Probability distribution of the change in the system TEP for the protocols shown in Fig. 3.
FIG. 5: (Color online) Probability distributions of the change in the excess and driving TEP for the protocols in Fig. 3. All curves on the left column satisfy the FT (60).
FIG. 6: (Color online) Probability distributions of the change in the reservoir TEP for the driving protocols and measurement times shown in Fig. 3. All curves (except (i)a and (id) where the driving starts at the same time as the measurement) satisfy the FT (67).
FIG. 7: (Color online) Probability distributions of the change in the adiabatic TEP for the driving protocols and measurement times shown in Fig. 3. All curves satisfy the FT \cite{61}.
FIG. 8: (Color online) Probability distributions of the change in the total TEP for the driving protocols and measurement times shown in Fig. 3. All curves satisfy the FT [50].
\[\Delta s_{\text{tot}} = \Delta s_r + \Delta s \]

\[\Delta s_{\text{ex}} + \Delta s_a \]

\[\Delta s_{\text{tot}} = \Delta s_a + \Delta s_{\text{na}} \]

\[\Delta s_b + \Delta s_d \]

	\(\Delta s_a \)	\(\Delta s_b \)	\(\Delta s_d \)
SS-SS	0	0	
Eq-Eq	0	0	
AdTrf	0	0	\(\langle > = 0 \)
TRSS	0	0	
TREq	0	0	
SS	0	0	0
Eq	0	0	0

FIG. 9: Summary of the two splittings of the total TEP in different parts and of the type of transformations during which these parts are zero. SS-SS: transition between steady states. Eq-Eq: transition between equilibrium states. AdTrf: adiabatic transformation. TRSS: transient relaxation to steady state. TREq: transient relaxation to equilibrium. SS: steady state. Eq: equilibrium. \(\langle > = 0 \) means that the ensemble average vanishes.