Ethnomedicinal study of medicinal plants used by Mizo tribes in Champhai district of Mizoram, India

T. B. C. Laldingliani, Nurpen Meitei Thangjam, R. Zomuanawma, Laldingngheti Bawitlung, Anirban Pal and Awadhesh Kumar

Abstract

Background: Medicinal plants have been used countless times for curing diseases mainly in developing countries. They are easily available with little to no side effects when compared to modern medicine. This manuscript encompasses information on ethnomedicinal plants in Champhai district, located in the North East Region (NER) of India. The region lies within Indo-Burma biodiversity hotspot. This study will be the first quantitative report on the ethnomedicinal plants used by the local tribes of this region. Knowledge of medicinal plants is mostly acquired by word of mouth, and the knowledge is dying among the local youths with the prevalence of modern medicine. Hence, there is urgency in deciphering and recording such information.

Methods: Information was gathered through interviews with 200 informants across 15 villages of the Champhai district. From the data obtained, we evaluate indices such as used report (UR), frequency of citation (FC), informant consensus factor (Fic), cultural values (CVs) and relative importance (RI) for all the plant species. Secondary data were obtained from scientific databases such as Pubmed, Sci Finder and Science Direct. The scientific name of the plants was matched and arranged in consultation with the working list of all plant species (http://www.theplantlist.org).

Results: Totally, 93 plant species from 53 families and 85 genera were recorded. The most common families are Euphorbiaceae and Asteraceae with six and five species representatives, respectively. Leaves were the most frequently used part of a plant and were usually used in the form of decoction. Curcuma longa has the most cultural value (27.28 CVs) with the highest used report (136 FC), and the highest RI value was Phyllanthus emblica. The main illness categories as per Frequency of citation were muscle/bone problem (0.962 Fic), gastro-intestinal disease (0.956 Fic) and skin care (0.953 Fic).

Conclusion: The people of Mizoram living in the Champhai district have an immense knowledge of ethnomedicinal plants. There were no side effects recorded for consuming ethnomedicinal plants. We observed that there is a scope of scientific validation of 10 plant species for their pharmacological activity and 13 species for the phytochemical characterisation or isolation of the phytochemicals. This might pave the path for developing a scientifically validated botanical or lead to semisynthetic derivatives intended for modern medicine.

Keywords: Ayurveda, Champhai, Ethnomedicinal, Indo-Burma hotspot, Tribal
reports on medicinal plants as a source for drug discovery. However, new diseases will likely continue to emerge along with drug-resistant pathogens. This dynamic nature of pathogens has constantly challenged researchers to look for alternatives. The past few decades have witnessed the surge in ethnomedicinal plant research [1], one of the reasons being that the natural products have played an important role in the development of drugs, contributing more than 50% of clinical drugs in the pharmaceutical industry [2]. Further, the rapid growth in human population has raised the demand which in turn has increased the quest for novel plant resources, triggering a threat to natural resources [3].

Traditional knowledge and practices of herbal remedies have been passed on to new generations over the centuries and will continue to do so, with some variations taking place every generation. Plants have been the essential source for therapeutic regimes since ages, and traditional practices are proved to have little known side effects besides their low cost and easy availability. India has been well known worldwide for its indigenous traditional pieces of knowledge and practices from ancient times, through different systems of medicine such as Ayurveda, Siddha and Unani [4]. Although more than 427 tribal communities are having vast diversity of ancient traditions, still there has been criticism of ethnomedicines due to regional variation, political and socio-economic challenges [5]. Reports are stating that several plants have been increasingly utilised by the indigenous people of India [1]. Generally, in India, it was estimated that 6,000 species are used in traditional and herbal medicine which represent about 75% of the needs of the third world, and meanwhile, 3,000 plants were officially acknowledged due to their medicinal values [6].

The healthcare system of India witnesses a wide variation encompassing urban and rural populations which rely on both modern and traditional systems of medicine. The recently implemented Ayushman Bharat Pradhan Mantri Jan Arogya Yojana from the Commonwealth Fund enables cashless secondary and tertiary care at private facilities [7]. Besides, health insurance schemes also exist for institutions and factories. Catering to the huge population has its limitations, and thus, many of the ailments are treated either by traditional healers or through traditional knowledge and practices, especially in remote areas. One such state in the North-Eastern part of India is Mizoram.

Although some researchers [8–13] have documented and identified several ethnomedicinal plants of Mizoram mentioning their mode of preparation, usage, distribution and habitat, they mostly reported from the core areas of the cities. Their studies highlighted the qualitative data. However, there are no in-depth ethnobotanical studies recorded in Champhai district. Therefore, the present study aims to carry out a quantitative study using different cultural importance indices to assess the most valued plants and document the ethnomedicinal practices involving medicinal plants of the Champhai district of Mizoram, India. Their practical knowledge has been established based on more than a century of credence and observation.

Methods
Description of the study area
Mizoram lies within the Indo-Burma biodiversity hotspot region and shares two international borders with Bangladesh in the west and Myanmar in the east. According to Champion and Seth (1968), Mizoram forests are classified into Tropical semi-evergreen forests, tropical wet evergreen forests and mountain sub-tropical pine forests [14]. The study area, i.e. the Champhai district, is classified as a rural area where healthcare facilities are relatively poor which drives the people to rely on traditional medicines. The traditional healers using medicinal plant-based formulations for various ailments indicate that traditional medicines are still one of the mainstays in their contemporary health care. It is felt that prospection and research on the medicinal plants that play such an important role in the health care of Mizo tribes need a more intensified effort.

Champhai is one of the 8 districts in Mizoram, amidst the North-East Region of India. It is located in the eastern part of Mizoram, internationally bordered by Myanmar and therefore becoming the main gate of trading for India and Myanmar. It lies between 23.456°N latitude and 93.328°E longitude. The average annual rainfall is approximately 1814 mm, and the temperature remains around 18.6 °C which is slightly colder than the rest of the state during winter. The total land area is 3185.83 sq kilometres at an elevation around 1678 m above sea level, population density is 10 per sq kilometres (32,734). According to an official Census (2011), Champhai reported a population of 1,26,000, of which male and female were 62,357 and 63,388, respectively [15]. The study area was divided into 15 village council areas (Vengthlang, Vengthlang North, Venglai, Vensang, Electric veng, Kanan, Kahrawt, Bethel, New Champhai, Zotlang, Hmunhmeltha, Tuacheng, Ngopa, Khawzawl and East Lungdar) for extensive data collection (Fig. 1). The majority of people living in this area are Mizo tribe and use the Mizo dialect in common.

Investigative method
In the field study, formal questionnaires were distributed to each participant while having face to face interviews at their residence. At least 16 people were interviewed...
in each village council area. Only those people who have knowledge in the art of preparing medicines either for their families or their neighbourhood were considered for the interaction. The interactions primarily focussed on their experience, type of dosage form, duration of usage, any adverse effects observed and the source of their knowledge about the plant and their parts used. This information was then correlated with the scientific data curated from related databases (Pubmed, SciFinder and Science Direct). In most of the cases, the voucher specimens were deposited (Herbarium, Mizoram University, Aizawl, Mizoram, India) for their authentication and archiving.

Characteristics of demographic data
This demonstrated the socio-economic information of the informant including qualities like age, sex, education level and occupation. Using random sampling method, 200 people (12–14 individuals from each village) in the ages group of 18–71 years were interviewed, of which 112 and 82 were males and females, respectively. Respondents belonged to various professions while some were students. Most of the informants do not engage in full-time ethnomedicinal practice or as a profession. The feature of demographical characteristics obtained in the study is tabulated below (Table 1).

Quantitative analysis
Frequency of citation
Frequency of citation was used to further examine the primary data by finding the sum of total citations/usage reports for a particular species. The usage report is the quotation of one plant by an informant [16].

Use value
Use value or UV is used to express the correlative importance of each particular plant species locally known and was calculated by the following equation [17].
where ‘U_i’ represents the number of citations of each species by the informants and ‘n’ represents the total number of informants in the study area. The larger the number of citations, the greater is the use-value.

Informant consensus factor

F_{ic} or ICF is used to represent the consistency of the information among the informants, indicating whether there were shared knowledge and concurrence in the use of plants for treating the ailment category among the plant’s users in the study area. It was calculated by the following equation [18].

$$F_{ic} = \frac{N_{ur} - N_i}{N_{ur} - 1}$$

where ‘N_{ur}’ refers to the number of users reports in each illness category and ‘N_i’ refers to the number of plant species used for a particular illness category by all the informants.

Further, F_{ic} value with 1 or either close to 1 indicates that a large number of informants had agreed on using few plants for curing an illness category while low F_{ic} value signified that there was an argument on using medicinal plants to treat illness amidst the category.

Relative importance

When calculating RI, both the informants who mentioned the useful plant species and their various kinds of uses are considered. So, it was calculated by the following equation [19].

$$RI = NUC + NT$$

where ‘NUC’ refers to the number of illnesses use category of each species divided by the total number of most use categories among the species and ‘NT’ refers to the number of illness types of uses of each species divided by the total number of most types of uses among the species.

Cultural values

In this index, the use category is taken into account and it was calculated by using the following equation [20].

$$CVs = UCs \times ICs \times \sum IUCs$$

where ‘UCs’ is the number of the used reports for each species divided by the total number of use categories of that species. ‘ICs’ is the number of informants who mention each plant as effective divided by the total number of informants, and $\sum IUCs$ is the number of informants who report the use of each species divided by the total number of informants.

Results

Demographic characteristics

All the 200 respondents were randomly selected from 15 village council areas interviewing at least 16 persons in each area with no equal separation of male–female ratio. Amongst them, the elderly in their seventies and above occupied 6.5% only, while people between 31 and 50 years old occupied 34.5%. The average age among the informants was 54 years. Mizoram is the second most literate state in the country (2011 census), and all the informants were literate having at least primary school level education. Out of the total informants, 32.5% were engaged in government jobs like teachers, officers, while 35% were self-employed like farmers, carpenters, skilled workers, small businesses and the rest 32.5% of the informants were unemployed including students and housewives (Table 1).

Table 1	Demographic characteristics of informants ($n=200$)	
Age	Number	In percent (%)
18–30	42	21
31–50	69	34.5
51–70	76	38
71 above	13	6.5
Sex		
Male	112	56
Female	88	44
Educational level		
Primary	30	15
Middle	44	22
High School	56	28
Higher Secondary	32	16
University	38	19
Occupation		
Self Employed (farmer, carpenter, bussiness)	70	35
Govt. Employed (teacher, bank, officer)	65	32.5
Unemployed Student, housewives)	65	32.5

Taxonomy identification

In the present study, 93 medicinal plant species belonging to 53 families and 85 genera have been reported for
treating various kinds of ailments. The most prominent families were Euphorbiaceae with 6 plant species followed by Asteraceae with 5 plant species and 4 species each among Cucurbitaceae and Zingiberaceae. Liliaceae, Fabaceae, Verbenaceae, Solanaceae, Rutaceae, Anacardiaceae are with 3 species each while Orchidaceae, Combretaceae Theaceae, Arecaceae, Apocynaceae, Musaceae, Rubiaceae, Scrophulariaceae, Lamiaceae, Mimosaceae, Smilacaceae are with 2 species each and other 34 families with one species each as shown in Table 2. The high usage report of this large family like Euphorbiaceae (6 species), Asteraceae (5 species) and Zingiberaceae (4 species) occupied 10.8%, 9.2% and 8.35% of the total used report, respectively, indicating that most people in the study area are inclined to use plants that are easily available and abundant around them (Table 2).

Table 2 Name of plant families with number of species and used report

Family	No of species	No of used report	%
Euphorbiaceae	6	294	10.8
Asteraceae	5	250	9.2
Cucurbitaceae	4	82	3.02
Zingiberaceae	4	227	8.35
Liliaceae	3	76	2.8
Fabaceae	3	56	2.06
Verbenaceae	3	78	2.87
Solanaceae	3	83	3.05
Rutaceae	3	120	4.42
Musaceae	3	80	2.94
Anacardiaceae	3	79	2.91
Apocynaceae	2	53	1.95
Orchidaceae	2	14	0.52
Combretaceae	2	55	1.66
Meliaceae	2	54	1.99
Theaceae	2	28	1.03
Arecaceae	2	86	3.17
Rubiaceae	2	38	1.4
Scrophulariaceae	2	48	1.77
Lamiaceae	2	40	1.47
Mimosaceae	2	53	1.95
Smilacaceae	2	26	0.96
Bromeliaceae	1	49	1.8
Begoniaeae	1	37	1.36
Amaranthaceae	1	15	0.55
Betulaceae	1	7	0.26
Cannabinaceae	1	36	1.32
Apiaceae	1	29	1.07
Caricaceae	1	53	1.95
Fagaceae	1	17	0.63
Araceae	1	2	0.07
Dilleniaceae	1	22	0.81
Discocereaceae	1	27	0.99
Caryophyllaceae	1	28	1.03
Eleagnaceae	1	31	1.14
Proteaceae	1	15	0.55
Malvaceae	1	4	0.15
Saururaceae	1	16	0.59
Convolvulaceae	1	37	1.36
Rosaceae	1	14	0.52
Campanulaceae	1	25	0.92
Myrsinaceae	1	4	0.15
Magnoliaceae	1	18	0.66
Clusiaceae	1	18	0.66
Moraceae	1	2	0.07
Bignoniaceae	1	37	1.36
Pandanaceae	1	24	0.88
Phyllanthaceae	1	48	1.77

Frequency of usage of parts of plants

The most commonly used medicinal plants fell under herbs (35.5%) followed by trees (33.3%), shrubs (18.3%) and creepers (12.9%) as shown in (Fig. 2). Among the parts, leaves, fruits and barks were mainly utilised by the informants (Fig. 3). A detailed analysis concluded that leaves (47%) followed by fruits (14%), barks (11%), seeds (10%), rhizomes (6%), stems (4%), young shoot (2%), oil (1%) and in some cases the whole plant (3%) were used for ethnomedicinal purposes.

Mode of preparation and administration

The mode of formulation preparation or administration was observed to be in the form of decoction (44.2%) followed by paste (23%), raw (19.5%), juice (9.73%), powder (1.77%) and others like maceration and oil (1.77%) (Fig. 4.).

Usage analysis based on the treatment of ailments

The total number of user reports documented in this study was 2717, in which all different illnesses were categorised into 16 groups using International Classification of Primary Care (ICPC) with a slight modification. Among the illness category, the gastro-intestinal disease has the highest usage report (940) followed by skincare (259) cardiovascular (222), kidney disease (196), hyperglycaemia (175), ENT (159), genito-urinary disease (139) and so on as shown in Table 3.
micrantha Kunth. (82 FC), Citrus limon (L.) Osbeck (68 FC), Carica papaya L. (53 FC), Ananas comosus (L.) Merr. (49 FC), Sarcococca prunifloris Lindl. (68 FC), Phyllanthus emblica L. (48 FC), Clerodendrum glandulosum Lindl. (45 FC), Senecio scandens Buch- Ham. ex D. Don (43 FC) were those species having the highest FC (Table 4).

Plant use value
From the UV value evaluation, Curcuma longa L. (0.68), Flueggea virosa (Roxb. ex Willd.) Royle (0.63), Psidium guajava L. (0.49), Chromolaena odorata (L.) R.M. King & H. Rob. (0.43), Mikania micrantha Kunth. (0.41), Citrus limon (L.) Osbeck (0.34), Carica papaya L. (0.26), Ananas comosus (L.) Merr. (0.24), Sarcococca prunifloris Lindl. (0.24), Phyllanthus emblica L. (0.24), Clerodendrum glandulosum Lindl. (0.22), Rhus chinensis Mill. (0.22), Senecio scandens Buch- Ham. ex D. Don (0.21) were reported to have the highest use value (UV).

Informant consensus factor
We calculated the informant consensus factor by categorising the reported illness into 16 ailment groups along with the number of users report and taxa (Table 5). In our study, Fic values ranged from 0.866 to 0.962 which were all close to 1.

Relative importance and cultural value
Results of top-ranking species in terms of both indices of relative importance and cultural value are given in Table 6. This study elucidates the highest cultural valued species and relative importance species utilised by the inhabitants of the study area. In general, the evaluated values were quite high in case of CVs and an average value of RI (0.607 ± 0.38) clarified that the versatile species, i.e. Phyllanthus emblica (RI = 2) was 3.3 times more relevant than the rest of the listed species.

Correlation and validation studies
An attempt was made to compare the use of all the medicinal plants reported by the informants with the previous papers published for their biological activity or ethnomedicines (Table 4). According to the studies conducted by Cakilcioglu et al., 2011, it was stated that if a medicinal plant has been reported for similar use in other parts of the world, its pharmacological effect could be more easily known [209].

The use of crude juice of Allium cepa L. showed a significantly higher hair growth rate than tap water when applied twice a day for two months which corroborated
the present report of hair regrowth [22]. Metallothionein, an antioxidant protein present in Aloe vera (L.) gel, has been reported to have a protective effect against UV and gamma radiation damage to the skin. It scavenges free radicals by preventing the suppression of glutathione peroxidase and superoxide dismutase in the skin [30]. So, this validated the use of A. vera for skin care and burning by the Mizo tribes. In the present study, Betula alnoides Buch- Ham. ex D. Don has been used as toothpaste for whitening teeth while it was proved that 80% methanolic bark extract had the potential α-glucosidase inhibitory effect that prevented (98.4%) at 40 µg/mL concentration [2].

Cajanus cajan (L.) Millsp is used effectively in Champhai district to treat jaundice and intestinal worms. To certify this, the methanolic extracts showed hepatoprotective activity in Swiss albino mice by inducing carbon tetrachloride (CCl4) that cause liver damage. It lowers the serum levels of glutamate pyruvate transaminase (SGPT), or alanine aminotransferase (ALT) aspartate aminotransferase (AST) or serum glutamate oxaloacetate transaminase (SGOT) significantly [58].

When the aqueous extracts of Carica papaya L. and Ananas comosus L. were given to Spraque Dawley rats orally at doses of 5 and 10 mg/kg, both possessed mild to strong diuretic activity. Careful measure should be taken when using these plants as increase in the level of urinary K+, serum BUN and creatinine were mentioned [71]. This validated the used of C. papaya and A. comosus in kidney disease and urinary infection. The contemporary reports showed that Drymaria cordata (L.) was used as an instant pain killer for rheumatism; meanwhile, the scientific study also demonstrated that the aqueous whole plant extract exhibited analgesic and antipyretic properties at doses of 100, 200, and 400 mg/kg poisoned through peripheral and central mechanisms [210]. The latex water-soluble fraction of Euphorbia royleana Boiss. showed dose-dependent anti-arthritic and anti-inflammatory effects in rats and mice administered through gavage at doses of 50–200 mg/kg having more than 1500 mg/kg oral LD50 in both [135]. Dose-dependent and significant decline in the number of abdominal constrictions induced by intraperitoneal administration of acetic acid was observed in methanol extract of Lablab purpureus (L.) Sweet. at a dose of 200 mg and 400 mg exhibited far better analgesic activity than 200 mg aspirin per kg of body weight [211].

Colocasia esculenta (L.) Schott and Elaeagnus caudata Schltdl. ex Momiy. were declared to use to discharge placenta after birth and to treat vaginal discharge (Lochia) for women in present study. Besides this record, in

| Table 3 Usage analysis with illness category and their term |
|-----------------|-----------------|-----------------|-----------------|
| Illness categories | Medical term | Local term | Frequency of usage |
| Dental Care (DC) | Tooth decay | Hamuat/Hanget | 57 |
| Skin Care (SC) | Pimple, burn, Face pack, boil, chickenpox, Measles, Herpes | Bawl, Kang, Sentut, Khawhili, Awmvel, Tangseh | 259 |
| Hair Care (HC) | Growth enhances, shining, hair fall | Sam thatna, Sam tletna, Sam tla | 16 |
| Eyes/Nose/Ears/Mouth (ENT) | Ottrhoina, eye itching, Sinusitis, Tonsilitis | Beng kherh, Mit thak, Sinus, Tonsil | 159 |
| Genito-urinary Disease (GUD) | Delivery pain, placenta discharge, urine retention | Nau neih zawh hlam tlakna / na, Zun in | 139 |
| Kidney Disease (KD) | Nephrolithiasis, kidney failure | Kal a lungte awm, Kalna, Kal a hnae awm | 196 |
| High glucose level (HGL) | Diabetes type I & II | Zunthlum | 175 |
| Cancer Disease (CD) | Breast cancer, Leukaemia, lung cancer, etc. | Hnute Cancer, These cancer, Chuap cancer leh dangte | 75 |
| Liver Problem (LP) | Jaundice, Hepatitis B & C, cholelithiaisis, Malaria | Thini, Hepatitis, Malaria, Mit a lungte awm | 100 |
| Cardiovascular Problem (CP) | Hypertension, Heart problem | Bp sang leh hniarm, lung thalo | 222 |
| Muscular/Bone Problem (MBP) | Rheumatoid, Arthritis, Sciatica | Ruh seh/Sehpui, thana, Scatica | 81 |
| Respiratory System illness (RSI) | Cold, Cough, Asthma, lung disease | Hritlang, Awminna, Khuh, Thawhah | 42 |
| Gastro-intestinal Disease (GID) | Ulcer, stomach pain, Dysentry, Diarrhoea, Digestion, Hemorrhoid, Constipation, Intestinal worms, internal bleeding | Ulcer, Pumna, Ek khal, Pile na, Puar nuamlo, Khaw-thalo, Santer, Rul hlut, Internal bleeding | 940 |
| Wound healing (WH) | Inflammation | Pem thar /Pilh damdawi, Pan, vung | 126 |
| Poisonous Bites (PB) | Snake bite, Scorpion bite, dog bite, Wasp sting | Rul chuk, Ui seh, Khuiz zuk, Khawmual kaikuang seh | 45 |
| General Health (GH) | Fever, Headache, cold, Immuno-booster, Energy booster, etc | Luma, Khawisk, Taksa chakna, Hriselna | 81 |
| Total | | | 2717 |
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
1	Allium cepa L. (HAMP20046)	Liliaceae	Purun sen	H	Rt (Bulb)	Raw	Hair care (12), headache (1)	13	0.065	(S-alk(en)yl-substituted cysteine sulfoxides, quercetin, kaempferol [21])	Antioxidant, appetiser, Antimicrobial, Hyper-tension, hair regrowth [22, 23]	
2	Allium sativum L. (HAMP20046)	Liliaceae	Purun var	H	Rt (Bulb)	Raw	Tension (10), tooth-ache (2), cold (12), pimple (7)	31	0.155	(S-allyl-cysteine, Allyl thiosulfinate (Allicin), S-allyl-mercaptop-cysteine [24, 25])	Fever, hypertension, anti-tumor, antioxidant, antimicrobial, tooth disease, immune boost, etc. [26–28]	
3	Aloe vera (L.) Burm.f. (HAMP20047)	Liliaceae	Rul lei	H	Lf	Raw	Burn (21), Stomachache (2), skin care (9)	32	0.16	(Vitamin E, Sulfuric acid, butyl heptadecylic ester, 1-Tetrادecy-cyne [29])	Antimicrobial, anti-inflammatory, laxative, anti-diarrhoea, wound healing, antiaging, anti-oxidant, etc. [30, 31]	
4	Alstonia scholaris (L.) R. Br. (HAMP20046)	Apocynaceae	Thuamriat	T	Br	Decoction	Ulcer (15)	15	0.075	(Alstonine, picrinine, akuammicine, echitamine [32])	Antimicrobial, anti-asthmatic, antioxidant, anti-ulcers, anticancer, rheumatic, inflammatory, wound healing, etc. [33, 34]	
5	Ananas comosus (L.) Merr (HAMP20046)	Bromeliaceae	Lakhuihthei	Sh	Lf, Fr	Raw, paste	Ulcer (12), seizure (1), Hypertension (10), urinary infection (18), lung disease (10)	49	0.245	(1-O-feruloylglycerol, tricin, 2, 4-dichlorobenzoic acid, etc. [35])	Anti-inflammatory, anti-thrombotic, anti-oxidant, antiedematous, anthelmintic, diuretic, rheumatoid, anticancer, antimicrobial, etc. [36, 37]	
6	Anoectochilus brevilabris Lindl. (HAMP20046)	Orchidaceae	Hnah mawi	H	Lf	Paste	Pile problem (12)	12	0.06	Not reported	Not reported	
7	Anogeissus acuminata (Wall. ex Guillerm. & Perr. (HAMP20023)	Combretaceae	Zairum	T	Br	Decoction,	Ulcer (26)	26	0.13	(Castanollin, Grandinin, (-)-Secoisolariciresinol, 2,3-bis-(4-Hydroxybenzyl butadiene [38])	Hypoglycemic, wound healing, cytotoxicity, anti-bacterial, etc. [39, 40]	
8	Aporosa octandra (Buch-Ham. ex D. Don) Vickery (HAMP20035)	Euphorbiaceae	Chhawntual	T	Lf, Br	Decoction	Ulcer (5), uterus problem (11)	16	0.08	(2-Methyl-3-en-butylcyclohexyl Phthalate, (R)-Goclaurine (AO-5) [41])	Antioxidant, anthelmintic, oxidative stress, D-galactose induce protectivity, etc. [42, 43]	
Sl. no	Species name; voucher no	Family name	Local name	Habit	Part Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
-------	-------------------------	-------------	------------	-------	----------	-----------------------	---------------	----	----	----------------------------	------------	
9	Azadirachta indica A. Juss (HAMP200052)	Meliaceae	Neem	T	Lf	Decoction	Malaria (16), jaundice (8)	24	0.12	Diepoxazadirol, flowerine, flowerone, O-methylazadirone	Immunostimulant, antiviral, analgesic, anti-inflammatory, anti-ulcer, antioxidant, antimicrobial, hepatoprotective, antimalarial, antipyretic, hypoglycemic, etc.	
10	Begonia inflata C.B. Clark. (HAMP200016)	Begoniaceae	Sekhupthur	H, Cr	Lf	Paste, juice	Pile problem (12), diarrhoea (11), dysentery (14)	37	0.185	Not reported	Not reported	
11	Benincasa hispida (Thunb.) Cogn. (HAMP20028)	Cucurbitaceae	Maipawl	H, Cr	Fr	Decoction	Stomach problem (4), digestion (10), diarrhoea (15)	29	0.145	Pentanoic acid, 5-hydroxy-2,4-dibutyl phenyl esters, Palmitic acid, 9,12-Octadeca-dienylchloride	Anti-obesity; anti-ulcer; anti-inflammatory, anti-oxidant, anti-diarrhoeal; anxiolytic, anti-diabetic, antinociceptive, etc.	
12	Beta vulgaris L. (HAMP200001)	Amaranthaceae	Beet root	H	Rh	Raw, juice	Anemia (3), immuno-booster (8), cancer (4)	15	0.075	Apigenin, Luteolin, Isoscutellarein 7-O-glucosyl, 8-O-xylidosid, Caffeoyl-6-(3,4-dihydroxy benzoyl) β-D-glucoside	Antioxidant, anticancer, hepatoprotective, anti-inflammatory, antimicrobial, anti-hypertension, hypoglycemic	
13	Betula alnoides Buch-Ham. ex D. Don (HAMP20017)	Betulaceae	Hriang	T	Lf	Paste	Tooth paste (7)	7	0.035	α-pinene; a-terpineol; limonene; camphor; β-pinene	Cytotoxicity, anti-inflammatorv, antioxidant, antimicrobial, etc.	
14	Bischofia javanica Blume (HAMP20036)	Euphorbiaceae	Khuang thli	T	Lf	Paste	Toothache (13)	13	0.065	3,4-dihydroxyphenylethyl alcohol, isothiocyanate, catechin, epicatechin, gallolocatechin	Antimicrobial, anti-ulcer, cytotoxic, antisyndrory, anthelmintic, etc.	
15	Cajanus cajan (L.) Millsp. (HAMP200041)	Fabaceae	Behliang	Sh	Lf	Decoction	Jaundice (25), intestinal worms (3)	28	0.14	3,5-bis-1,1-dimethylhexadecanoic acid, ailyl hexadecyl ester, n-Hexadecanoic acid	Antimicrobial, anti-diabetic, antioxidant, glycemc, anthelmintic, hepatoprotective, etc.	
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
-------	--------------------------	-------------	------------	--------	-----------	------------------------	--------------	----	----	----------------------------	-------------	
16	*Callicarpa arborea* Roxb. (HAMP20087)	Verbenaceae	Hnah kiah	T	Lt, Br	Decoction	Stomach ache (9), diabetes (16), convulsion (7)	32	0.16	Martynoside, Isomartynoside, Ursolic acid, Antiarol rutinoside [59]	Antioxidant, antimicrobial, analgesic, anti-inflammatory, neuroprotective, anti-diabetic, etc. [59]	
17	*Camellia sinensis* (L.) Kuntze (HAMP20082)	Theaceae	Thingpuife	Sh	Lf	Raw, Decoction	Toothache (7), itchy eye (7)	14	0.07	Caffeine, Theobromine, Gallic acid, Ampelopsin, epicatechin-3-O-gallate, catechin-3-O-gallate [60]	Antimicrobial, tooth decay, antioxidant, anticancer, anti-obesity, anti-diabetic, anti-inflammatory, etc. [61, 62]	
18	*Cannabis sativa* L. (HAMP20021)	Cannabinaceae	Trip/ Kanza	H	Lf	Raw,	Stomach ache (12), diarrhoea (24)	36	0.18	Cannabigerol, cannabichromene, cannabidiol, cannabinativia, delta 9-Tetrahydrocannabinol [63]	Antioxidant, anti-allergic, anti-inflammatory, analgesic, anti-tumour, anti-diabetic, antibiotic [64]	
19	*Centella asiatica* (L.) Urb. (HAMP20005)	Apiaceae	Darbengbur / lambak	H	WP	Decoction	Stomach ache (8), urinary infection (17), kidney disease (2), eye pain (2)	29	0.145	Centellin, asaticin, centelicin [65]	Anti-ulcer, neuroprotective, antidepressant, anticonvulsion, immunostimulating, antioxidant, antibacterial, kidney injury protectivity, etc. [66, 67]	
20	*Capsicum annuum* L. (HAMP 20084)	Solanaceae	Hmarhcha	H	Fr	Paste	Wasp sting (9), burn (3), toothache (4), boil (2)	18	0.09	Ascorbic acids, quercetin, luteolin, chrysoeriol, hydroxycinnamic acids [68]	Anti-inflammatory, antimicrobial, antiviral, anticancer, analgesic, etc. [69]	
21	*Carica papaya* L (HAMP20026)	Caricaceae	Thinfanghama	T	Lt, Fr sap	Paste, raw	Tonsil (1), face pack (3), cancer (16), diabetes (11), dog bite (17), milk booster in mother (5)	53	0.265	Benzyl-β-d-glucoside, β-sitosterol, β-sitosterol, oleic acids [70]	Antimalaria, antiduretic, antimicrobial, antihelminthic, hepatoprotective, immunomodulatory, etc. [71, 72]	
22	*Castanopsis tribuloides* (Sm) A. DC. (HAMP20044)	Fagaceae	Thingsia	T	Br	Paste	Toothache (17)	17	0.085	Not reported	Antioxidant [73]	
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart	Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity
-------	--------------------------	-------------	------------	--------	-------	-----	------------------------	---------------	----	----	----------------------------	------------
23	*Catharanthus roseus* (L.) G. Don (HAMP20007)	Apocynaceae	Kumtluang	T	Lf	Decoction	Hypertension (18), diabetes (20)	38	0.19	4-O-cafeoylquinic acid, quercetin-3-O-β-D-rhamnosyl-glucoside, kaempferol-3-O-(6-O-rhamnosyl-glucoside) [74]	Antihypercholesterolemic, antideuretic, antibacterial, antimalarial, antiviral, cytotoxic, anti diabetic, antihyperglycemic, antidiarrhoeal, antioxidant, anthelmintic, etc. [75, 76]	
24	*Cheilocostus speciosus* (J. Koenig) C.D. Specht (HAMP20090)	Zingiberaceae	Sumbul	Sh	Rh	Decoction	Kidney disease (5), urinary problem (16), stomach ache (18)	39	0.195	24-hydroxytriacontane-26-one, sitosterol, cycloartanol, methyl triacontanoate [77]	Antifungal, insecticidal, antioxidant [78, 79]	
25	*Chromolaena odorata* (L.) R.M. King & H. Rob. (HAMP20011)	Asteraceae	Tlangsam	H	Lf	Decoction, raw	Kidney disease (18), diarrhoea (13), stomach, ache (8), jaundice (14), wound (34)	87	0.435	α & β-pinenes, 1,8-Cineole, β-Copaene-4α-ol [80]	Antipyretic, analgesic, anti-inflammatory, anti-spasmodic, antimalaria, antioxidant, antimicrobial, etc. [81, 82]	
26	*Citrus aurantiifolia* (Christm.) Swingle (HAMP20074)	Rutaceae	Champara	T	Fr	Juice	Stomach problem (7), digestion (9)	16	0.08	Pinene, Sabinene limonene, Myrcene, Telinene [83]	Antimicrobial, antiobesity, anti inflammatory, anthelmintic [84, 85]	
27	*Citrus maxima* (Burm.) Merr. (HAMP20075)	Rutaceae	Sertawk	Sh	S	Raw	Hypertension (36)	36	0.18	Narigenin, 5,7-dihydroxyxoumarin, 1, 3,5-trihydroxybenzene, xanthotoxin [86]	Antimicrobial, analgesic, antioxidant, anti-obesity, anti-inflammatory, etc. [87, 88]	
28	*Citrus limon* (L.) Osbeck (HAMP20076)	Rutaceae	Nimbu	T	Fr	Juice	Stomach problem (24), digestion (44)	68	0.34	Ascorbic acid, y-Aminobutyric acid, alanine, aspartic acid, arginine [89]	Anticancer, antiparasitic anti-inflammatory, antimicrobial [90]	
29	*Clerodendrum glandulosum* Lindl. (HAMP20088)	Verbenaceae	Phuhiham	Sh	Lf	Decoction	Hypertension (44)	44	0.22	Strongly, luteol, n-hentriacontane, palmitic acid, 2-pentadecyn-1-ol, hexacosane, vitamin E [91]	2-pentadecyn-1-ol, hexacosane, vitamin E [91]	
30	*Colocasia esculenta* (L.) Schott (HAMP20008)	Araceae	Dawl	H	St sap	Juice	Vaginal discharge/Lochia (2)	2	0.01	14α-methyl-5α-cholesta-9, 24-diene-3β, 7α-diol, 9, 12, cyandin 3-glucoside, 9, 12, 13-trihydroxy-(E)-10-octadecenonic acid [92]	Antitussive, antihypotensive, antihyperglycemic, anti-inflammatory, etc. [92–95]	
Table 4 (continued)

Sl. no	Species name; voucher no	Family name	Local name	aHabit bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
31	Combretum wallichii DC (HAMP20024)	Combretaceae	Leihruisen	Sh Sh	Raw	Tonsil (19)	19	0.095	Not reported	Anthelminthic [96]	
32	Crassocephalum crepidioides (Benth.) S. Moore (HAMP20012)	Asteraceae	Buar thau	H Lf	Paste	Wound bleeding (14)	14	0.07	(E)-β-farnesene, α-humulene, cis-β-guaiene, α-bulnesene [97]	Anti-tumour, cytotoxicity, antidiabetic [98, 99]	
33	Cucurbita maxima Duchesne (HAMP20029)	Cucurbitaceae	Mai	H, Cr S	Raw	Intestinal worm (15)	15	0.075	Oleic acid, linoleic acid, palmitic acid, caffeic, syringic, vanillic, p-coumaric [100]	Antidiabetic, anticancer, antiobesity, antihelminthic, cytototoxic, antibacterial, anti-inflammatory, anti-parasitic [101]	
34	Curcuma caesia Roxb. (HAMP20091)	Zingiberaceae	Ailaidum	H Rh	Raw, juice	Stomach ache (4), diarrhoea (18)	22	0.11	α, β-pineneeucalyptol, camphor, camphene, gallic acid, quercetin [102]	Antimicrobial, analgesic, antioxidant, antitumor, antimutagenic, antiasthmatic, antihelminthic, etc. [103]	
35	Curcuma longa L. (HAMP20092)	Zingiberaceae	Aieng	H Rh	Powder, juice	Ulcer (67), diarrhoea (4), derma care (30), stomach ache (35)	136	0.68	Curcumin, ar-turmerone, β-sesquiphellandrene, curcumol [104]	Antimicrobial, anticancer gastrointestinal and respiratory disorder, anti-inflammatory, anti-diabetic, anti-allergic, hepatoprotective, anti-dermatophytic, neuroprotective, etc. [105]	
36	Cucumis sativus Lh (HAMP20030)	Cucurbitaceae	Fanghma	H, Cr Lf	Decoction, raw	Malaria (8), derma care (17)	25	0.125	Myristic acid, karounidiol, avenasterol, palmitoleic acid, alpha-linolenic acid [106]	Antimicrobial, antitumor, wound healing, hypoglycemic, hyperlipidemic, anti-inflammatory, antioxidant, etc. [107]	
37	Dichrocephala integrifolia (L.) Kuntze (HAMP200013)	Asteraceae	Vawikek tumtual	H Lf	Decoction	Kidney disease (24)	24	0.12	Stearic acid, stigmasta-7,22-di-en-3-ol, epifriedelanol, Methyl stearate, tritretacon-tane [108]	Antimicrobial, cytotoxicity, antidiabesal, antioxidant, anti-inflammatory, neuroprotectivity [109–111]	
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity
--------	--------------------------	-------------	------------	--------	-----------	------------------------	---------------	----	----	----------------------------	------------
38	Dillenia pentagyna Roxb. (HAMP20032)	Dilleniaceae	Kaihawl	T	Lt Br	Decoction	Diarrhoea (21), kidney disease (1)	22	0.11	Dillenetin, betunialdehyde, betulinic acid, quercetin, kaempferol glucoside, lupeol [112]	Antimicrobial, antiviral, antioxidant, anticancer, anti-diabetic anti-inflammatory [112]
39	Dioscorea alata L. (HAMP20033)	Dioscoreaceae	Bachhim	H, Cr	Fr	Decoction	Cancer (27)	27	0.135	Hydro-Q9 chromene, y-tocopherol-9, 1-feruloylglycerol [113]	Antimicrobial, antioxidant, anti-inflammatory, anti-diabetic, etc. [114, 115]
40	Drymaria cordata (L.) Willd. ex Schult. (HAMP20027)	Caryophyllaceae	Changkal rit	H, Cr	Lf	Decoction, paste	Rheumatism (24), dysentery (4)	28	0.14	Stigmasterol, cerebrosides [116]	Analgesic, anxiolytic, antipyretic, anti-tussive, antibacterial, anti-inflammatory [116]
41	Dysoxylum excelsum Blume. (HAMP20051)	Meliaceae	Thingthupui	T	YS	Decoction	Diarrhoea (18), hyper tension (12)	30	0.15	Isodauc-6-ene-10β,14-diol; 4-epi-isodauc-6-ene-10β,14-diol; 4-epi-6α,10β-dihydroxy-altabotrol [117]	Not reported
42	Elaeagnus caudata Schidl. ex Momy. (HAMP20034)	Elaeagnaceae	Sarzuk	T	Lf	Decoction	Vaginal discharge/Lochia (31)	31	0.155	Not reported	Expelling placenta, miscarriage, jaundice [118, 119]
43	Elaeis guineensis Jacq. (HAMP20009)	Arecaceae	Oil palm	T	Oil	Oil	Wound (1), burn (1), hair care (3)	5	0.025	3-isobutyl-2-methoxypyrazine; aceton; 2-acetyl-1-pyrrole; ethyl hexanoate; 3-methylbutyl acetate [120]	Antioxidant, wound healing, antimicrobial, anti-inflammatory, cardiovascular effect, anti-diabetic, anticancer, etc. [121, 122]
44	Embelia vestita Roxb. (HAMP20010)	Arecaceae	Tling	Sh	Lf	Decoction	Measles (16), chickenpox (65)	81	0.405	Not reported	Not reported
45	Ensete glaucum (Roxb.) Cheesman (HAMP20057)	Musaceae	Saisu	H	St	Decoction	Nephrolithiasis (34)	34	0.17	Not reported	Not reported
46	Ensete superbum (Roxb.) Cheesman (HAMP20058)	Musaceae	Changel/ Tumbu	H	St sap, Fr	Juice	Snake bite (6), kidney disease (1), diabetes (4), WBC deficiency (2.3)	34	0.17	Pentadecanoic acid; 4H-Pyrano-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl; 2-Furancarboxaldehyde, 5-(hydroxymethyl) [123]	Kidney stone prevention, antioxidant, etc. [124]
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity
-------	--------------------------	-------------	------------	--------	-----------	------------------------	---------------	----	----	----------------------------	-------------
47	Erythrina stricta Roxb. (HAMP20042)	Fabaceae	Fartuah	T	Br	Decoction	Ulcer (8), kidney disease (2)	10	0.05	β-caryophyllene; δ-cadene, alpinum isoflavone, obovatin, isovanillin [125]	Antimicrobial, epilepsy, antioxidant, leprosy, anti-inflammatory, etc. [126, 127]
48	Eulophia nuda Lindl. (HAMP20062)	Orchidaceae	Nauban	H	WP	Decoction	Diarrhoea (2)	2	0.01	Eulophiol; 3,4-dihydroxy-3,5,5-trimethoxy-bibenzyl; nudol; lupeol [128]	Antimicrobial, anti-inflammatory, cytotoxic, antioxidant, anticancer, antithymic/antibronchitis [128, 129]
49	Euphorbia milli Des Moul. (HAMP20037)	Euphorbiaceae	Hlinglukhum	H	Lf	Raw	Diarrhoea (52)	52	0.26	Abruquinone B; eremopetasitenin A; ellagic acid; isopetasoside; 7,8-Dihydroxy-coumarin [130]	Antimicrobial, antiinflammatory, cytotoxic, anti-asthmatic/ antibronchitis [130, 131]
50	Euphorbia royleana Boiss. (HAMP20038)	Euphorbiaceae	Chawng	Sh	Lf sap	Juice	Otorrhoea (38)	38	0.19	Antiquorine A; Eurifoloid D; sandaracopimaradienol; 15-isopimaradien-18-a [133]	Antitumour, anti-arthritis, antimicrobial, antioxidant, cytotoxicity, anti-inflammatory, etc. [133, 134]
51	Flueggea virosa (Roxb. ex Willd.) Royle (HAMP20039)	Euphorbiaceae	Saiak	Sh	Lf	Decoction	Diabetes (59), stomach ache (17), chicken pox (50)	126	0.63	11-O-acetyl bergenin; gallic acid; virosecurinine, kaempferol; β-sitosterol; quercetin [136]	Ant-inflammatory, anti-pyretic, anti-hepatitis C, etc. [137, 138]
52	Gomphogyne cissiformis Griff. (HAMP20031)	Cucurbitaceae	Laruanga dawi bur	H, Cr	Fr	Juice	Hypertension (6), diabetes (7)	13	0.065	Not reported	Not reported
53	Hedyotis scandens Roxb. (HAMP20072)	Rubiaceae	Kelhnam tur	H	Lf	Decoction	Kidney disease (4), pain relief (7), diabetes (10)	21	0.105	Hedyotoside A; hedyotoside B; hedyotoside C, D & E [139]	Antimicrobial, abdominal pain [140, 141]
54	Helicia robusta (Roxb.) R.Br. ex Blume (HAMP20069)	Proteaceae	Pasa-taka-za	T	Lf	Decoction	Placenta discharge (6), stomach pain (8), kidney disorder (1)	15	0.075	Not reported	Not reported
55	Hibiscus sinensis Mill. (HAMP20052)	Malvaceae	Midum par	Sh	Lf	Paste	Boil (4)	4	0.02	Quercetin-3,5-di-gluco side, unde decanic acid, cyanidin chlorides, rachidic acid, cyanin [142]	Antioxidant, antipyretic, antimicrobial, antifertility, anticonvulsive, etc. [142, 143]
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity
-------	--------------------------	-------------	------------	--------	-----------	------------------------	---------------	----	----	-----------------------------	-------------
56	Houttuynia cordata Thunb. (HAMP20077)	Saururaceae	Ui thinthang H	Lf	Juice	Sainus problem (16)	16	0.08	Quercetin-3-O-β-D-galactoside-7-O-β-D-glucoside, aristolactam A & B, β-Sitosterol, N-phenethylbenzamidine	Antiviral, antitumour, antioxidant, anti-inflammatory, antimicrobial, anti-SARS, immunomodulator, etc.	
57	Ipomoea batatas (L.) Lam. (HAMP20025)	Convolvulaceae	Kawl-ba-hra H, Cr	YS	Raw	Digestion (37)	37	0.185	3-mono-O-caffeoylquinic acid; caffeic acid; vitamin C; kaempferol	Antidiabetic, anticancer, antioxidant, antiulcer, cardiovascular effect	
58	Lablab purpureus (L.) Sweet (HAMP20043)	Fabaceae	Bepui Sh	Lf	Paste	Vaccine pain relief (18)	18	0.09	Phytic acid, linoleic acid, linolenic acid	Antidiabetic, anti-inflammatory, analgesic, cytotoxicity, antimicrobial, antioxidant, hypolipidemic	
59	Laureoceras undulata (Buch-Ham. ex D. Don) M. Roem. (HAMP20071)	Rosaceae	Thei-ar-lung H	Lf	Decoction	Heart disease (14)	14	0.07	Not reported	Not reported	
60	Lindernia ruellioides (Colsm.) Pennell (HAMP20078)	Scrophulariaceae	Thasuih H	WP	Paste	Sciatica (24)	24	0.12	Linderruelliosides A & B; plantainoside A; acteoside, desrhamnosylverbascoside	Anti-inflammatory, antitumour, antiulcer, analgesic	
61	Lobelia angulata G. Forst. (HAMP20020)	Campanulaceae	Choak-a-thi H	WP	Decoction	Tonsil (9), gallstone (16)	25	0.125	Not reported	Not reported	
62	Maesa indica (Roxb.) A. DC. (HAMP20060)	Myrsinaceae	Angeng Sh	Lf	Paste	Toothache (4)	4	0.02	2,5 dihydroxy-6-methyl 3 (hemeos 16-aryl)-1 4benzoquinone	Hypoglycemic,	
63	Magnolia champaca (L.) Baill. ex Pierre (HAMP20050)	Magnoliaceae	Ngiau T	Lf	Micereation	Itchy eyes (18)	18	0.09	Butanoic acid, 2-methyl-3-oxo-ethyl ester; Camphorsulfonic acid	Anti-inflammatory, anti-pyretic, antimicrobial, anticancer	
64	Mangifera indica L. (HAMP20002)	Anacardiaceae	Theihai T	YS	Decoction	Diarrhoea (5), diabetes (10), hypertension (10), asthma (6)	31	0.155	Quercetin-3-O-β-L-rhamnopyranoside; aucubin-3-C-β-glucoside; amentoflavone; mangiferin	Anti-diabetic, antiviral, antiulcer, antimalarial, hepatoprotective, anti-inflammatory, antibacterial	
Sl. no	Species name; voucher no	Family name	Local name	**a** Habit	**b** Part Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity
-------	--------------------------	-------------	------------	------------	---------------	------------------------	----------------	----	----	------------------------------	-------------
65	Mentha arvensis L. (HAMP20048)	Lamiaceae	Pudina	H	Lf	Decoction	Stomach problem (38)	38	0.19	Menthol, p-menthone, neo-menthone, iso-menthone	Antioxidant, analgesic, antibacterial, cytotoxic, antifertility, anti-inflammatory, anti-allergic
66	Mesua ferrea L. (HAMP20022)	Clusiaceae	Herhse	T	Lf	Paste, decoction	Wound (8), stomachache (7), diarrhoea (3)	18	0.09	1,5-dihydroxyxanthone; euxanthone, 7-methyl ether; β-sitosterol	Antimicrobial, anti-inflammatory, anti-ulcer, anti-arthritis, analgesic, analgesic, hepatoprotective, antioxidant
67	Mikania micrantha Kunth. (HAMP20014)	Asteraceae	Japan Hlo	H, Cr	Lf	Paste, decoction	Wound (52), diarrhoea (8), dysentery (6), stomach ache (16)	82	0.41	β-cubebene, 1H-inden-1-one, 5-(1, 1-dimethylethyl) -2, 3; αlo- aromadendrene; β-caryophyllene	Antimicrobial, antioxidant, anthelmintic
68	Mimosa pudica L. (HAMP20054)	Mimosaceae	Hlonuar	H	Lf	Decoction	Kidney disease (37)	37	0.185	7, 8, 3; 4'-tetrahydroxyl-6-C [alpha-L-rhamnopranosyl-{1 -> 2}]-beta-D-glucopyranosyl flavone; catcher; 5, 7,3; 4'-tetrahydroxyl-6-C [alpha-L-rhamnopranosyl-{1 -> 2}]-beta-D-glucopyranosyl flavone	Wound healing, antimicrobial, analgesic, antimalarial, anti-inflammatory, hepatotoxicity, antidiarrhoeal, anthelmintes
69	Morus macroura Miq. (HAMP20056)	Moraceae	Lung-li	T	Lf	Raw	Cut / wound (22)	2	0.01	Gallic acid, catechin, p-hydroxy benzoic, ellagic acid, 3, 4, 5- methoxy cinnamic	Anti-inflammatory, antioxidative, anti-ulcer
70	Musa acuminata Colla (HAMP20059)	Musaceae	Balhia	H	Ft, sap	Paste, Decoction	Diabetic wound (6), lung disease (2), snake bite (4)	12	0.06	Pantotenic acid (B5), ferulic acid-hexoside, Vitamin C, provitamin A, lycopene	Antioxidant, antidiarrhoea, immunomodulatory, anti-HIV, anti-diabetic, hypolipidemic, anticancer, antimicrobial

Table 4 (continued)
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
71	Mussaenda macrophylla Wall. (HAMP20072)	Rubiaceae	Va-kep	Sh	Lf	Decoction	Internal bleeding (17)	17	0.085	3-O-β-D-glucopyranosyl-28-O-a-L-rhamnopyranosyl-16α-hydroxy-23-deoxyprotobassic acid; 16α-hydroxyprotobassic acid; 3-O-acetyl(daturadiol); rotondic acid [169]	Antimicrobial [170]	
72	Ocimum americanum L. (HAMP20049)	Lamiaceae	Runhmui	H	Lf, St	Paste	Pile problem (2)	2	0.01	á-pinene; farnesene; terpinol; farnesol; limonen [171]	Antioxidant, antimicrobial, [172, 173]	
73	Oroxylum indicum (L.) Kurz (HAMP20018)	Bignoniaceae	Ar-chang-kawm	T	Bt, Lf	Paste, decoction	Ulcer (6), arthritis (13), diarrhoea (3), dysentery (6), hepatitis C (9)	37	0.185	Ellagic acid; oroxylin-A; 7-O-methyl chrysin; palmitoleic; linoleic acids [174]	Anticancer, antimicrobial, hepatoprotective, antiulcer, antiarthritic, anti-inflammatory, antioxidant, immuno-stimulant, cardioprotective [175]	
74	Pandanus odorifer (Forssk.) Kuntze (HAMP20064)	Pandanaceae	Ram-la-kuih	Sh	Lf	Decoction	Kidney disease	24	0.12	Not reported	Anticancer, antimicrobial [176]	
75	Parkia timori-ana (DC.) Merr. (HAMP20035)	Mimosaceae	Zawngtah	T	Fr, peel, Br	Paste, raw	Diabetes (10), baby umbilical care (2), hypertension (4)	16	0.08	β-sitosterol; javanicoside A; epigallocatechin gallate; usorl acid; hyperin [177]	Antioxidant, antidiabetic, antiproliferative, antibacterial, anti-inflammatory, anti-insecticidal [177]	
76	Phyllanthus emblica L. (HAMP20065)	Phyllanthaceae	Sunhlu	T	Fr	Raw, juice	Diarrhoea (2), skin-care (12), stomach problem (8), energy-booster (7), diabetes (9), hypertension (6), jaundice (4)	48	0.24	Ascorbic acids, gallic acids, quercetin, punigluconin, embilcanin A&B, citric acids [178]	Antimicrobial, analgesic, antioxidant, antipyretic, hepatoprotective, antitumour, anti-inflammatory, immunostimulant [178]	
77	Picria fel-terrae Lour. (HAMP20079)	Scrophulariaceae	Khatual	H	Lf	Decoction	Hypertension (24)	24	0.12	Rosmarinic acid, apigenin-7-O-β-D-glucuronicid, picfelteranegenin IV, acteoside, apigenin [179]	Antioxidant, anthelmintic, anti proliferative [180, 181]	
Sl. no	Species name; voucher no	Family name	Local name	a Habit	b Part Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
-------	---------------------------	-------------	------------	---------	------------	-------------------------	--------------	----	----	----------------------------	------------	
78	*Plantago major* L. (HAMP20066)	Plantaginaceae	Kelba-an	H	Lf	Decoction	Kidney disease (2), urinary problem (34)	36	0.18	Plantagin; plantagonin; usnic acid; aucubin; palmitic acid, ascorbic acid [182]	Immunomodulator, antioxidant, analgesic, antiviral, antibiotic, anti-urinary, hepatoprotective [182]	
79	*Psidium guajava* L. (HAMP20061)	Myrtaceae	Kawl-thei	T	Lf	Decoction	Diarrhoea (97), hair fall (1)	98	0.49	β-sitosterol; guajanoic acid; oleanolic acid; uvaol; usnic acid [183]	Anti-allergy, antioxidant, antimicrobial, anticoagulant, antinociceptive, analgesic, cytotoxicity, antidiabetic, anti-inflammatory [184]	
80	*Pseudodrynaria coronans* (Wall. ex Mett.) Ching (HAMP20067)	Polypodiaceae	Awmvel	H	Lf	Paste	Herpes (12)	12	0.06	Kaempferol-3-O-6''-O-acetyl-β-D-glucopyranoside; astragalin; isoquercitrin; kaempferol3-O-(6''-O-feruloyl-4''-O-acetyl)-β-D-glucopyranoside [185]	Antioxidant [185]	
81	*Punica granatum* L. (HAMP20068)	Punicaceae	Thei-buh-fai	T	Fr	Raw, juice	Anemia (5), immuno-booster (21), cancer (5)	31	0.155	Ellagic acid; kaempferol; anthocyanins; punicalagin; quercetin, luteolin, ellagitanins [186]	Antiepileptic, antimicrobial, antiviral, antidiabetic, antioxidant, antitumor, anti-inflammatory, hepatoprotective [186]	
82	*Rhus chinensis* Mill. (HAMP20003)	Anacardiaceae	Khawmhma	T	Fr	Raw, powder	Diarrhoea (27), stomach ache (18)	45	0.225	Moronic acid; gallicin; 3-oxo-6β-hydroxyolean-12-en-28-oic; acidimethyl caffeic acid; phytol [187]	Antidiarrhoeal, anticancer, anti-HIV, antidiabetic, hepatoprotective [187]	
83	*Sarcococca prunifolia* Lindl. (HAMP20040)	Euphorbiaceae	Pawhruai	H	Lf	Raw, decoction	Tonsil (49)	49	0.245	Not reported	Not reported	
84	*Schima wallichii* Choisy (HAMP20083)	Theaceae	Khiang	T	Br/St	Paste	Insect bite (9), wound (5)	14	0.07	Phenylpropanolamine; rotenone; glycidol, 2, 3-benzo-furanone [188]	Anti-inflammatory, antioxidant, antimicrobial, analgesic, anti-pyretic [189, 190]	
Sl. no	Species name; voucher no	Family name	Local name	aHabit	bPart Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
---	---	---	---	---	---	---	---	---	---	---	---	---
85	Senecio scandens Buch- Ham. ex D. Don (HAMP20015)	Asteraceae	Sai-ek-hlo	H, Cr	Lf	Decoction, paste	Ulcer (17), diabetes (13), Hypertension (8), toothache (3), wound (2)	43	0.215	Quercetin, kaempferol, luteolin, rutin, phytol, palmitic acid, β-Amyrin, β-Sitosterol	Anti-inflammatory, analgesic, mutagenic, antimicrobial, antiviral, anti-tumour, anti-leptospirosis, antioxidant	
86	Smilax glabra Roxb. (HAMP20081)	Smilacaceae	Kai-tluang	H, Cr	Lf	Paste	Arthritis (20)	20	0.1	Palmitic acid, β-sitosterol, quercetin, apigenin, 3-methoxygallic acid, lignoceric acid	Antimicrobial, antioxidant, cytotoxicity, anti-inflammatory, hepatoprotective, antiviral	
87	Smilax perfoliata Lour (HAMP20080)	Smilacaceae	Kai-ha	Sh, Cr	Lf	Decoction	Dysentry (6)	(6)	0.03	Rutin, 1, 6-O-diferuloyl-(3-O-p-coumaroyl)-b-D-fructofuranosyl-(2→1)-2-O-acetyl-a-D-glucopyranoside, cassiain A & B, narcissin	Antioxidant, antimicrobial	
88	Solanum americanum Mill. (HAMP20085)	Solanaceae	Anhling	Sh	Lf	Decoction	Nephrolithiasis (15), urinary retention (6), Kidney disease (11)	32	0.16	Pinosinol, tetracosanolic acid, syringaresinol, β-sitosterol, scopoletin, medioresinol	Antimicrobial, hepatoprotective, anti-inflammatory, anti-seizure, antioxidant, antipyretic, anthelmintic, cytotoxicity, anti-cancer, anti-inflammatory, antitumour	
89	Solanum violaceum Ortega (HAMP20086)	Solanaceae	Tawkte	Sh	Fr	Decoction, paste	Hypertension (20), diabetes (6), burn (4), boil (1), herpes (2)	33	0.165	7-oxositosterol, yamogenin, 7-oxostigmasterol-diosgenin	Antioxidant, antidiabetes, anthelmintic, cytotoxicity, anti-inflammatory, analgesic, anti-inflammatory activity, antibacterial, antifungal, antiparasitic, antimalarial	
90	Spondias pinnata (L. f.) Kurz (HAMP20004)	Anacardiaceae	Taw-i-taw	T	Br	Decoction	Diarrhoea (3)	3	0.015	Elagitanin, galloylgeranin, lignoseric acid, β-carotene, oleanolic acid	Antimicrobial, cytotoxicity, anti-cancer, antidepressant, antimicrobial, anti-inflammation activity, antidiarrhoeal	
91	Tectona grandis L.f. (HAMP20089)	Verbenaceae	Teak	T	Bt Lf	Paste	Wound bleeding (2)	2	0.01	Gallic acid, β-sitosterol, betulinic acid, tectochinone, squalene, lauric acid	Antibacterial, anti-diabetic, antioxidant, anti-inflammatory, analgesic, antiviral, cytotoxic activity	
Sl. no	Species name; voucher no	Family name	Local name	Habit	Part Use	Mode of administration	Ailments & UR	FC	UV	Isolated chemical compounds	Bioactivity	
-------	--------------------------	---------------	------------	-------	----------	-------------------------	---------------	-----	-----	----------------------------	--	
92	Zea mays L. (HAMP20070)	Poaceae	Vaimim	H	Lf	Decoction	Kidney disease (15)	15	0.075	Eugenol; cis-a-terpineol;	Antimicrobial, antioxidant, antimutagen [205, 206]	
										citronellol; 6,11-oxido- 4-ene [204]		
93	Zingiber officinale Roscoe (HAMP20093)	Zingiberaceae	Sawhthing	H	Rh	Raw, decoction	Cold / cough (12), digestion (18)	30	0.15	Zingiberene; gingerol;	Appetiser, antimicrobial, immunostimulant, analgesic, anticancer antioxidant, anti-diabetic, anti-inflammatory, antiarthritic, etc. [208]	
										farnesene; curcumene; zingerone; vitamins [207]		

*a Habit: H, herbs; Sh, shrubs; Cr, creeper; T, tree; UR, used reports; FC, frequency of citation; UV, use value
*b Part used, Lf, leaf; Br, bark; Fr, fruit, Rh, rhizome; St, stem; S, seed; WP, whole plants; YS, Young shoot
Cachar hills district of Assam, India, 5 ml of *Elaeagnus caudata* fresh root extract diluted in 10 ml of fresh water was also administered orally once a week to prevent miscarriage during pregnancy although there is no scientific study to backup this claim [118]. Apart from present report in Jamaica, *Mikania micrantha* Kunth. was most popularly used too for wound healing and its extract showed anti-inflammatory and antimicrobial activity against common pathogens, namely *Escherichia coli*, *Staphylococcus aureus* and *Streptococcus* sp. [212]. The decoction of *Psidium guajava* leaf was effectively used for diarrhoea which already proved to have antidiarrhoeal and protein conservative effects in diarrhoeal rats at a dose of 50 and 100 mg/kg of body weight. It increased the kidney weight and concentration of sodium, potassium and chloride significantly [213]. In the animal study of anti-urolithial activity of *Solanum nigrum*, the fruit hydroalcoholic extract elicited potent activity against calcium oxalate urolithiasis effected by ethylene glycol through tumour necrosis factor adiponectin stimulation and alpha inhibition, also maintained the balance between stone promoter and inhibitor such as calcium and magnesium, respectively [214]. Thus, this authenticated the used of *S. nigrum* for removing kidney stone by the Mizo tribes in India.

Anoectochilus brevilabris Lindl., *Begonia inflata* C.B. Clark., *Dysoxylum excelsum* Blume, *Embelia vestita* Roxb., *Ensete glaucum* (Roxb.) Cheesman, *Gomphogyne cissiformis* Griff., *Helicia robusta* (Roxb.) R. Br. ex Blume, *Laurocerasus undulata* (Buch-Ham. ex D. Don) M. Roem. and * Lobelia angulata* G. Forst., *Sarcococca prunifomis* Lindl. were the plants that did not have biological activity reported previously which means that there is no scientific validation to support their application. Therefore, these plants were especially recommended in carrying out further investigation.

In addition, we compiled the secondary metabolite isolated chemical constituents done by several researchers for all the documented plants in the present study. Further investigation revealed that secondary metabolites from 13 plant species that have neither less nor none chemical compound isolated or identified—*Anoectochilus brevilabris* Lindl., *Begonia inflata* C. B. Clark., *Castanopsis tribuloides* (Sm.) A. DC., *Combretum wallichii* DC, *Elaeagnus caudata* Schltdl. ex Momiy., *Embelia vestita* Roxb., *Ensete glaucum* (Roxb.) Cheesman, *Gomphogyne cissiformis* Griff., *Helicia robusta* (Roxb.) R. Br. ex Blume, *Laurocerasus undulata* (Buch- Ham. ex D. Don) M. Roem., *Lobelia angulata* G. Forst., *Pandanus odorifer* (Forssk.) Kuntze, *Sarcococca prunifomis* Lindl. (Table 4) which will surely have great potent on ethnopharmacological study.

Discussion

According to our findings, women practitioners (44%) were less than men (56%) which may be explained partly by the low sex ratio of the district; however, it can be assumed that women play lesser role in ethnomedical practices [215, 216]. Among self-employed, farmers account for 58.5%, business persons 34.2% and carpenters were 21.4%. Farmers represented the highest percentage as they often lack access to modern healthcare.

Table 5 Informant consensus factor with their used report in each of an ailment category

Illness categories	No. of used report	No of taxa	F_{IC}
Dental Care (DC)	57	8	0.875
Skin Care (SC)	259	13	0.953
Hair Care (HC)	16	3	0.866
Eyes/Nose/ Ears/Mouth (ENT)	159	9	0.949
Genito-urinary Disease (GUd)	139	9	0.942
Kidney Disease (KD)	196	15	0.928
Endocircinal Disorder (ED)	175	12	0.936
Cancer Disease (CD)	75	5	0.945
Liver Problem (LP)	100	7	0.939
Cardiovascular Problem (CP)	222	14	0.941
Muscle/Bone Problem (MBP)	81	4	0.962
Respiratory System illness (RSI)	42	5	0.902
Gastro-intestinal Disease (GID)	940	42	0.956
Wound healing (WH)	126	10	0.928
Poisonous Bites (PB)	45	5	0.909
General Health (GH)	81	10	0.887

Table 6 Species with high cultural values and relative importance

CVs	RI
Curcuma longa (27.28)	Phyllanthus emblica (2)
Flueggea virosa (16.0)	Canica papaya (1.85)
Embelia vestita (13.12)	Senecio scandens (1.54)
Psidium guajava (11.64)	Ananas comosus (1.54)
Citrus limon (7.16)	Oroxyllum indicum (1.38)
Mikania micrantha (6.72)	Chromolaena odorata (1.37)
Chromolaena odorata (3.40)	Allium sativum (1.23)
Euphorbia mili (3.17)	Ensete superbum (1.23)
Sarcococca prunifomis (2.82)	Centella asiatica (1.23)
Clerodendrum glandulosum (1.93)	Measia indica (1.23)
Rhus chinensis (1.82)	Solanum violaceum (1.21)
Mimosa pudica (1.129)	Capsicum annuum (1.07)

CVs, cultural value; RI, relative importance
facilities due to various issues ranging from financial, transportation and higher education. These issues forced them to rely on traditional medicines, cultivating and utilising them more regularly than others and somehow playing a big role in conservation too. Through this study, we observed that young informants like students around 18 to 25 years old have little expertise in practicing ethnomedicine and utilised them rarely as compared to elder informants. This may be due to change in mentality brought by education to rely only on prescribed medicines. Further, the results of the usage of plants dominated by the families were followed and confirmed the work done by some researchers stating that greater the plants grew in the study area the more it will be favourably and commonly used [217]. This supports the non-random plant selection hypothesis by Moerman 1979 [218]. Large families such as Asteraceae and Euphorbiaceae were most utilised while Orchidaceae and Poaceae were underutilised (low used report). However, due to non-random selection, small families like Cucurbitaceae and Zingiberaceae became over-represented (high used report). Thus, this implies that medicinal plants are not selected randomly by the inhabitants of Champhai district but are utilised based on their cultural and traditional knowledge [219]. In the present study, we laid out the only accepted botanical names by 'The Plant List' and their family, local name, habit, mode of preparation and ailments as illustrated in Table 4.

Out of 93 species, 40 were cultivated species, whereas 53 were found in the wild. There were also 6 invasive alien species most notably Chromolaena odorata and Mikania micrantha which were commonly used to treat wounds topically. This is because wounds are the most common form of injury and these two species can be found almost everywhere [219]. The frequent use of herbaceous plants as medicines among the informants was due to their richness, abundance as well as their ability to grow easily in nature. Meanwhile, many parts of the world have been commonly using herbs as their medicinal ingredients due to their wide range of medicinal properties [220]. Leaves are the most utilised part of the plants due to their ease off collection as compared to their underground part. It is also the active site of photosynthesis accompanied by the production of metabolites [1, 221]. In addition, leaves can be easily prepared and stored. It can be dried quickly under the sun in lesser amount of time than other parts like stem, bark and rhizome.

Similarly, it is also reported that decoction was the most common preparation method for herbal medicine while in some other tribal community [3], preparation of paste was the most common method applied [1, 216, 222]. For decoction the plant part was washed thoroughly and boiled with water administering the juice orally, whereas for paste the materials were crushed or rubbed within palms and applied topically. To make fine powder plant parts were shade dried and ground. Intake of oral administration and external topical formulation were the main mode of administration used in traditional herbal medicines which has also been previously reported [215, 223]. Regarding the duration of consumption of herbal medicine, it depends on the illness whether it was short term or long term. For instance, short-term illness like cold, flu, stomach upset and skin problem, the consumption period did not last more than 1 week. On the contrary, the long-term illness like diabetes, kidney failure and heart diseases, the consumption period of plants (e.g., Flueggea virosa) was much longer and last more than a month and so on.

The inhabitants of the study area extensively exploited medicinal plants to treat various illnesses and other needs which have not been previously reported. For instance, Anoethochilus brevilabris was used for pile treatments, Betula alnoides as toothpaste, Capsicum annuum to soothe and prevent scars from skin burns. Colocasia esculenta to expel lochia, Euphorbia milii as antidiarrhoea, Lablab purpureus as a pain reliever, Mussaenda macrophylla to stop internal bleeding and Parkia timoriana for treating baby umbilical cord. From this study it was clear that among the informants, stomach problems like ulcer, indigestion, diabetes, hypertension and kidney problems were common illness resulting in high user rate of consuming herbal medicines and similar record was reported by Mahwasane et al., [224]. Further, skin problem like dermatitis which was the second highest usage report was the highest ailment in most other tribal communities like Malda district in West Bengal reported by Saha et al. [225].

Generally, majority of the informants did not consume the medicines prescribed by the Doctor’s prescribed medicines along with their herbal medicine and claimed that many plants like Sarcococca pruiniformis (tonsil), Psidium guajava (diarrhoea), Mikania micrantha (cut/wound), Flueggea virosa (chicken pox), Elaeagnus caudata (vaginal discharge) were really effective and most importantly, none of them reported any adverse effect such as vomiting, headache, nausea, allergic reactions and/or skin rashes. Moreover, regarding the expenditure on buying medicines, 38% of the informants usually purchased their herbal medicines either in raw form (Allium sativum, Allium cepa, Beta vulgaris) or in processed form like juice (Citrus limon, Phyllanthus emblica, Citrus aurantiifolia), fruits (Punica granatum, Phyllanthus emblica, Cucumis sativus), and powder (Curcuma longa). Concerned about the source of their knowledge, all the informants reported that they have heard and learned some of their information from their elders, family and/
or acquaintances. Besides these, 30% of the informants have also gathered additional information through social media and 10% through books, magazines and newspapers. This documentation clearly showed that knowledge and cultural practices of herbal medicines had been shared through the indigenous community through word of mouth.

Frequency of citation showed the sociocultural importance of medicinal plants to identify their therapeutic value [16]. The FC value is directly proportional to the use value (UV), the more FC value will increase the used value significantly.

Curcuma longa L. is one of the main commercially grown as seasoning plants in India. In Southeast Asia including India and China, turmeric powder has been used extensively for spice and colouring food material. It had a wide range of medicinal value that curcumin was the main bioactive chemical constituents [226]. _C. longa_ was a mandatory spice that each and every household kept it that’s why the reason used report (UR) for medicinal plants among the informants [216]. Among the plants part, _Euphorbiaceae_ family were the most widely used in the study area.

Higher in the UV value indicates the more rate of agreeing and sharing their knowledges and practices of the medicinal plants among the informants [216]. Among the Terai forest of western Nepal _Curcuma longa_ L. was also reported as the highest used value [227] similar to this result.

The plants with low UV value were _Colocasia esculenta_ (L.) Schott, _Euphoria nuda_ Lindl. and Ocimum americanum L., _Maea indica_ (Roxb.) A. DC, _Morus macroura_ Miq, _Tectona grandis_ L.f., _Hibiscus sinensis_ Mill, _Elaeis guineensis_ Jacq, _Smilax perfoliata_ Lour with less than 0.05 UV as shown in Table 4. _Tectona grandis_ L.f. was also described with very low UV value by Ayyanar and Ignacimuthu as relevant to this result [1]. According to Chaudhary et al. 2006, the plants with low used value were in at risk of misrecolling and passing on to the young generation which might be gradually disappearing [228]. On the other hand, the relevance of knowing the plant used value was for the convenience of pharmacological study and their used reliability [229].

However, Rajakumar and Shivanna had mentioned that the value of _F_{ic}_, for the treatment of various diseases in the study area.

Muscle/Bone problem with 81 UR have the highest _F_{ic}_ value of 0.962 followed by gastro-intestinal disease (GID) with 940 UR and skin care (SC) with 259 UR (Table 4). The lowest _F_{ic}_ value in the present study was the General Health (GH) category (Cold, fever, immunity boost) with 0.887 which was still more than the previous maximum _F_{ic}_ value report in Shimoga district, Karnataka, India i.e. 0.77 in Liver complaints [230]. Most _RI_ value (Phyllanthus emblica) is considered to be versatile on its uses which would also increase the importance of the plant when it is used to treat more illnesses. The high _RI_ values of some species may be attributed to their abundance and availability in the study area [19].

Overall, the quantitative analysis revealed that _Curcuma longa_ was the most relevant species with the highest used value, frequency of citation and cultural value except in relative importance. This is due to the fact that the RI value is independent of the number of informants used report. On the conflict of these report, our study indicated that there was high consistency of the indigenous informant knowledge in the practices of ethnomedicines and utilised the same plants to treat it.

Conclusions

The present study concluded that the native people in the study area have their unique way of utilising medicinal plants to treat different kinds of ailments. We documented 93 valuable medicinal plants belonging to 55 families and 85 genera in which _Euphorbiaceae_ and _Asteraceae_ family were the most widely used in the area. This study supported the non-random selection of medicinal plants hypothesis. Among the plants part, leaves were the most commonly used. No new medicinal taxa were reported, but this study is a first quantitative report of ethnomedicine in this region and no informant had reported an adverse effect of herbal medicines. Their traditional pieces of knowledge had been passed on from their elders mostly through word of mouth. This study also revealed that younger generations between the ages of 18 and 30 have little to no knowledge of preparation of herbal medicines and their use as compared to the older age groups. This is mostly due to the availability of modern clinical drugs in the villages. Therefore, the traditional knowledge and practices of medicinal plants in the study area are somehow at risk of dying. This is why it is important to document the valuable knowledge as well as for conservation of the taxa.

The use of quantitative indices was essential in the field of ethnobotany to determine the most valuable plants along with their role played in a particular culture and to develop conservation initiatives. The plants which have high usage report and frequency of citation were known
to possess numerous phytochemical compounds. The calculated informant consensus factor was extremely high, which means that the acquired data can be used as reference and reliable for ethnopharmacological study in the future. Even though the remedial value of many high cited plants has already been verified, there are still some plants that need to be validated. Hence, they are strongly recommended for further studies to develop alternative drugs.

Abbreviations
H: Herbs; Sh: Shurbs; Cr: Creeper; T: Tree; UR: Used reports; FC: Frequency of citation; UV: Use value; Lf: Leaf; Br: Bark; Fr: Fruit; Rh: Rhizome; St: Stem; S: Seed; WP: Whole plants; YS: Young shoot.

Acknowledgements
The authors were thankful to the department of Horticulture, Aromatic and Medicinal Plant, Mizoram University, for providing the necessary facilities to complete our work. We also offer our heartfelt gratitude to all the local people of Champhai district, Mizoram, who shared their valuable knowledge and precious time for this research.

Authors’ contributions
TBCL and AK carry out ethnobotanical survey, write the manuscript and analyse the data; TBCL, NMT, RZ, LB and AK were study proposer, design the questionnaire and revise the manuscript; NMT and AP design the graphical abstract; RZ and AP were proof reader. All authors read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Horticulture, Aromatic and Medicinal Plants, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl 796004, India. 2 Department of Botany, School of Life Science, Mizoram University, Aizawl 796004, India. 3 Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, CIMP, Lucknow 226015, India.

Received: 26 October 2021 Accepted: 14 March 2022
Published online: 24 March 2022

References
1. Ayyanara M, Ignacimuthub S. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, India. J Ethnopharmacol. 2011;134:851–64. https://doi.org/10.1016/j.jep.2011.01.029.
2. Ghimire BK, Tamang JP, Yu CY, Jung SJ, Chung IM. Antioxidant, antimicrobial activity and inhibition of α-glucosidase activity by Betula alnoides Buch. bark extract and their relationship with polyphenolic compounds concentration. Immunopharmacol Immunotoxicol. 2012;34:824–31. https://doi.org/10.3109/08923973.2012.661739.
3. Simbo DJ. An ethnobotanical survey of medicinal plants in Babungo, Northwest Region, Cameroon. J Ethnobiol Ethnomed. 2010;6:8. https://doi.org/10.1186/1746-4269-6-8.
4. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109:69–75. https://doi.org/10.1289/ehp.01109x169.
5. Kadhirvel K, Ramya S, Sudha TS, Ravi AV, Rajasekaran C, Selvi RV, Jayakumararaj R. Ethnobotanical survey on plants used by tribals in Chitterri Hills. Environ We Int J Sci Tech. 2010;5:35–46.
6. Rai PK, Lalamringhingloha H. Ethnomedicinal plant resources of Mizoram, India. Implication of traditional knowledge in health care system. Ethnobot Leafl. 2010;3:6.
7. Tikkanen R, Osborn R, Mossialos E, Djordjevic A, Wharton GA. Interna
tional Health Care System Profiles, India. The Commonwealth Fund. 2020 https://www.commonwealthfund.org/international-health-policy-enter/countries/india. Accessed 21 June 2021.
8. Lalamringhingloha H, Jha UK. Ethnomedicine from Mizoram—North East India. Ethnobotany. 1997;9:105–11.
9. Linaundanga, Sahoo UK, Jha UK. Ethnobotanical flora in the humid sub-tropical semi-evergreen forest of Mizoram. In: Proceedings national conference on healthcare and developments of herbal medicines, Raipur. 1997.
10. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia. 2001;72(2):146–61. https://doi.org/10.1016/ S0367-326X(00)00278-1.
11. Lalamringhingloha H. Ethno-medicinal plants of mizoram. Bishen Singh Mahendra, Pal Singh, Dehradun, India, 2003.
12. Singh NP, Singh KP, Singh DK. Flora of Mizoram. Botanical Survey of India. Ministry of Environment and Forest. Government of India, Kolkata; 2002.
13. Sawamiana M. The Book of mizoram plants. Zakhuma P, Aizawl, Mizo-ram; 2003.
14. Champion GH, Seth SK. A revised survey of the forest types of India. Dehradun: Natraj Publishers; 1968.
15. Champhai district. Government of Mizoram, India. 2021. https://champ hai.nic.in/about-district/. Accessed 03 Jan 2021.
16. Khajuria AK, Manhas RK, Kumar H, Bisht NS. Ethnobotanical study of traditionally used medicinal plants of Pauri District of Uttarakhand, India. J Ethnopharmacol. 2021;276:114204. https://doi.org/10.1016/j.jep.2021.114204.
17. Gazzaneo LRS, Lucena RFP, Albuquerque UP. Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco. J Ethnobiol Ethnomed. 2005;1:9. https://doi.org/10.1186/1746-4269-1-9.
18. Heinrich M, Ankli A, Frei R, Weimann C, Sticher O. Medicinal plants in Mexico: healers' consensus and cultural importance. Soc Sci Med. 1998;47:1859–71. https://doi.org/10.1016/S0277-9536(98)00181-6.
19. Albuquerque UP, Lucena RF, Monteiro JM, Florentino AT, Cecilia de Fátima CB. Evaluating two quantitative ethnobotanical techniques. Ethnobot. Res. Appl. 2006;6:51–60. https://ethnobotanynjournal.org/index.php/era/article/view/101.
20. Sujarwo V, Careva G. Using quantitative indices to evaluate the cultural importance of food and nutraceutical plants: comparative data from the Island of Bali (Indonesia). J Cult Herit. 2016;18:342–8. https://doi.org/10.1016/j.jculher.2015.06.006.
21. Kundan SB, Anupam S. Phytoconstituents and therapeutic potential of Allium cepa Linn—a review. Phcog Rev. 2009;3(5):170–80.
22. Sharquey KE, Al-Obaidi HK. Onion juice (Allium cepa L.), a new topical treatment for alopecia areata. J Dermatol. 2002;29:343–6. https://doi. org/10.1111/j.1346-8138.2002.tb00277.x.
23. Teshika JD, Zakanyah AM, Zaynab T, Zengin G, Rengasamy KR, Pandian SK, Fawaz MM. Traditional and modern uses of onion bulb (Allium cepa L.), a systematic review. Crit Rev Food Sci Nutr. 2019;59(1):39–70. https://doi.org/10.1080/10408398.2018.1499074.
24. Batisha GES, Beshbishy AM, Elewa Y, Taha A. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients. 2020;12:872. https://doi.org/10.3390/nu12080872.

25. Miron T, Rabinov A, Mirelman D, Wilchek M, Weiner L. The mode of action of albicidin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta. 2000;1463:20–30. https://doi.org/10.1016/S0005-2736(99)00174-1.

26. Harris JC, Cottrell SL, Plumber S, Lloyd D. Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol. 2001;57:282–6. https://doi.org/10.1007/s0025300100722.

27. Ishitaq M, Harif W, Khan MA, Ashraf M, Butt AM. An ethnomedical survey and documentation of important medicinal folklore food phytonyms of Flora of Samainhi Valley, (Azad Kashmir) Pakistan. Pak J Biol Sci. 2007;10:2241–56. https://doi.org/10.3923/pjbs.2007.2241.2256.

28. Singh VK, Singh DK. Pharmacological effects of garlic (Allium sativum L.). Annu Rev Biomed Sci. 2008;10:65–76.

29. Anurrumkumar S, Muthuselvam M. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agric Sci. 2009;5:572–6.

30. Christaki E, Florou-Paneri PC. Evaluation of some chemical constituents, cytotoxicity and antioxidant activities of Beta vulgaris var. altissima cultivated in Egypt. Rasayan J Chem. 2017;10:391–401. https://doi.org/10.7324/RJC.2017.1041936.

31. El-Beltagi HS, Mohamed HI, Megahed BHM, Gamal M, Safwat G. Evaluation of some chemical constituents, antioxidant, antibacterial and anticaner activities of Beta vulgaris L. root. Fresenius Environ Bull. 2018;27:6369–76.

32. Ninfal P, Angelino D. Nutritional and functional potential of Beta vulgaris cicula and rubra. Fitoterapia. 2013;89:188–99. https://doi.org/10.1016/j.fitote.2013.06.004.

33. Arulmozhi S, Mazumder PM, Ashok P, Narayanan LS. Pharmacological properties of Aloe vera Linn. R. Br (Saptaparna). Chin J Physiol Sci. 2007;10:2241–56. https://doi.org/10.3923/pjbs.2007.2241.2256.

34. Baliga MS. Review of the phytochemical, pharmacological and toxicological properties of Aloe vera Linn. World J Agric Sci. 2009;5:572–6.

35. Huang XJ, Chen WH, Ji MH, Guo FY, Shu HM, Zheng CJ. Chemical constituents and pharmacological importance of Benincasa hispida. Nat Prod Res. 2014;28:1749–59. https://doi.org/10.1080/10412905.2013.84086.

36. Kalaria P, Ghewala R, Chakraborty M, Kamath J. A phytopharmacological review of Alstonia scholaris: a panaromic herbal medicine. Int J Res Ayurveda Pharm. 2012;3:367–71.

37. Arulmozhi S, Mazumder PM, Ashok P, Narayanan LS. Pharmacological activities of Alstonia scholaris Linn. (Apocynaceae)—a review. Pharmacogn Rev. 2011;7:163–70.

38. Baliga MS. Review of the phytochemical, pharmacological and toxico- logical properties of Alstonia scholaris Linn. R. Br (Saptaparna). Chin J Integr Med. 2012. https://doi.org/10.1007/s11655-011-0947-0.

39. Huang XJ, Chen WH, Ji MH, Guo FY, Shu HM, Zheng CJ. Chemical con- stituents from leaves of Ananas comosus and their biological activities. Zhong Cao Yao. 2015;46:949–54. https://doi.org/10.7501/j.issn.0253-1080/102860201607002.

40. Pavan R, Jain S, Kumar A. Properties and therapeutic application of bромеlan: a review. Biotechnol Res Int. 2012;26:972603. https://doi.org/10.1155/2012/972603.

41. Rathnaveelu V, Alitheen NB, Sohila S, Narayanan LS. Pharmacological activities of Alstonia scholaris Linn. R. Br (Saptaparna). Chin J integr Med. 2012. https://doi.org/10.1007/s11655-011-0947-0.

42. Lin TC, Tanaka T, Nonaka G, Nishioka I, Young TJ. Isolation and characteri- zation of novel complex tannins (Flavano-ellagitannins). Anogeissinin from Aporosa octandra—galactose induced cognitive impairment and oxidative stress in mice. Front Pharmacol. 2017;8:658. https://doi.org/10.3389/fphar.2017.00658.

43. Pandita SK, Laxmi Priy B, Rieter L, Maowxian L, Joho N, Walter L. Antiinflammatory and antiarticular alkaloids in plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front Pharmacol. 2017;8:658. https://doi.org/10.3389/fphar.2017.00658.

44. Pandita SK, Girgis AS, Prakash A, Khanna L, Khanna P, Shalaby EM, Fawzy NG, Jain SC. Protective effects of Aporosa octandra bark extract against α-galactosidase induced cognitive impairment and oxidative stress in mice. Hellyon. 2018. https://doi.org/10.1016/j.hellyon.2018.e00951.

45. Sahu BP, Gouda P, Pataiik C. Aporosa octandra, a Less studied plant species with potential drug activities—identification of a new compound from aqueous ethanolic extract of its stem bark. Int J Adv Res Sci Eng Tech. 2016;3(2):20–9.

46. Vabereyurrei M, Lalrinzuali K, Rosangkima G, Jagetta GC. Qualitative phytochemical analysis and antioxidant activity of Aporosa octandra (Buch-Ham. ex D. Don) extracts. Int J Pharm Res. 2014;6:68–73.
67. Punturee K, Wild CP, Kasinrerk W, Vinitketkumnuen U. Immunomodulatory activities of Centella asiatica and Rhinacanthus nasutus extracts. Asian Pac J Cancer Prev. 2005;6:396–400.

68. Marin A, Ferreiras F, Tomás-Barberán FA, Gil MI. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annum L.). J Agric Food Chem. 2004;52:3861–9. https://doi.org/10.1021/jf049791s

69. Khan FA, Mahmood T, Ali M, Saeed A, Maalik A. Pharmacological importance of an ethnobotanical plant: Capsicum annum L. Nat Prod Res. 2012;28:1267–74. https://doi.org/10.1080/14786419.2014.895723.

70. Yopiraj V, Goyal PK, Chauhan CS, Goyal A, Vyas B. Carica papaya Linn: an overview. Int J Herbal Med. 2014;2:1–8.

71. Adam Y, Nasaruddin AA, Zuraini A, Arifah AK, Zakaria MOFZ, Somchit S. Antimicrobial activity of various extracts of Carica papaya L. Int J Pharm Sci Res. 2013;4:431–9.

72. Krishna KL, Paridhavi M, Patel KL. Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.). Nat Prod Radiance. 2008;7:364–73. http://nopr.niscrs.in/handle/123456789/5695

73. Prakash D, Upadhyay G, Gupta C, Pushpangadan P, Singh KK. Antioxidant and anti-inflammatory activities of Anethum graveolens. Phytother Res. 2013;27:843–6.

74. Aslam J, Khan SH, Siddiqui ZH, Fatima Z, Maqsood M, Bhat MA, Nasim N. A new phenolic compound and antioxidant potential of Catharanthus roseus. J Agric Food Chem. 2008;56:9967–74.

75. Hassan HM, Eldesoky AM, Al-Rashdi A, Ahmed HM. Green corrosion electrochemistry: electro-analytically as a potential green corrosion inhibitor for copper. Int J Emerg Trends Eng Develop. 2016;7:72–98.

76. Taiwo OB, Olajide OA, Soyannwo OO, Makinde JM. Anti-inflammatory, antimicrobial and anti-parasitic activity of Solanum xanthum KE. Xie QJ, Lin JX, Huan KK, Liao Y. Chemical constituents from young fruits of Citrus maxima cv. Shatian. Zhong Yao Cai. 2015;38:1879–81.

77. Abdurahim A, Nagarani G, Siddhuraju P. Antimicrobial activity of crude extract of Citrus hystrix and Citrus maxima. Int J Pharm Sci. 2013;4:1–5.

78. Shivananda A, Rao DM, Jayaveera KN. Analgesic and anti-inflammatory activities of Citrus maxima (L. Burm) Mann in animal models. Res J Pharm Biol Chem Sci. 2013;4:1800–10. http://rjpbs.com/pdf/2013_4/22.pdf

79. Kefford JE. The chemical constituents of citrus fruits. Adv Food Res. 1960;1960(9):285–372. https://doi.org/10.1006/fods.2008(60278-5).

80. Szczypiotewicz MK, Szopa A, Ektier H. Citrus limon (Lemon) phenomenon—review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants. 2020;9:119. https://doi.org/10.3390/plants9011019.

81. Jadie RN, Thouaouamj MC, Singh TB, Devkarr VR, Ramachandan AV. Traditional uses, phytochemistry and pharmacology of Clerodendron glandulosum Celeb—a review. Asian Pac J Trop Dis. 2012;2:51–6. https://doi.org/10.1016/S2222-6908(11)60236-8.

82. Prapajati R, Kalaraiya M, Umbarkar R, Parmar S, Sheth Nat Pharmacol Neurol Dis. 2011;190–6. http://www.jpnpnd.com/text.aspx?1/2/90/84188

83. Agyare C, Boakye YD, Apenteng JA, Dapaah AS, Appiah T, Adow A. Antimicrobial and anti-inflammatory properties of Anchomaphes dafarnes (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochem Pharmacol. 2016;51. https://doi.org/10.1016/j.bcp.2016.05.001

84. K. Subbe MS, Khadiabadi SM, Firooz JI, Deore SL. In-vitro anti-microbial activity of Colocasia esculenta. Der Pharma Lett. 2010;2:82–5.

85. Patil BR, Ageely HM. Antiproteinotoxic activity of Colocasia esculenta leaf juice. Int J Adv Biotech Res. 2011;2:296–304.

86. Koné WM, Vargas M, Keiser J. Anthelmintic activity of medicinal plants used in Côte d'Ivoire for treating parasitic diseases. Parasitol Res. 2012;110:2351–62. https://doi.org/10.1007/s00436-011-2771-z

87. Joshi RK. Study on essential oil composition of the roots of Cassapa-chum propedion (Benth) S. Moore. J Chin Chem Soc. 2014;59:2363–5. https://doi.org/10.4067/PJ717-9707201400100025.

88. Tomimori N, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N. Antitumor activity and macrophage nitric oxide producing action of medicinal herb Cassapaphe chumpropedion. BMC Complement Altern Med. 2012;1:11–11. https://doi.org/10.1186/1472-6882(2012)1:11.

89. Bahar E, Akter KM, Lee GH, Lee HY, Rashid HO, Choi MK, Bhattarai KR, Hossain MWM, Ara J, Mazumder K, Rahain O. β-Cell protection and anti-diabetic activities of Cassapa-chum propedion (Asteracea). Benth. S. Moore extract against alloxaan-induced oxidative stress via regulation of apoptosis and reactive oxygen species (ROS). BMC Complement Altern Med. 2017;17:105. https://doi.org/10.1186/s12906-016-1277-z

90. Reizig L, Chouabli M, Misaada K, Hamdi. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind Crops Prod. 2012;32:87–7. https://doi.org/10.1016/j.indcrop.2011.12.004.

91. Md PM, Md TK. Overview on Cucurbita maxima seed. J Dent Med Sci. 2017;16:29–33. https://doi.org/10.9790/8553-1603132933.

92. Bosah A. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: an endangered medicinal plant of North East India. Ind Crops Prod. 2019;129:448–54. https://doi.org/10.1016/j.indcrop.2018.12.035.

93. Baghel SS, Baghel RS, Sharma K, Srikarwar I. Pharmacological activities of Curcuma caesia. Int J Green Pharm. 2013;7:1–5. https://doi.org/10.22377/ijgps.71i1.287.

94. Lateef EA. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharm. 2016;66:387–98. https://doi.org/10.1007/s12832-016-0028-9.

95. Kruk V, Prakash LH, Hansen A. Pharmacological activities of turmeric (Curcuma longa Linn): a review. J Homeop Ayurv Med. 2013;2:133. https://doi.org/10.1186/2017-12061000133.

96. Wu YY, Zhao WM, Wang C, Tan ZG, Sun W. Chemical constituents contained in fatty oil from seeds of Cucumis sativus: Zhongguo Zhong Yao. 2012;37:3525–2.

97. Saeed S, Sultan A, Rahman K. Ethnomedicinal uses and pharmacological activities of different parts of Cucumis sativus Linn: an update. Int J Pharm Sci Res. 2020;11:1549–56. https://doi.org/10.13040/IJPSR.0975- 8232.11.15.1549-56.
147. Al-Snafi AE. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)—a review. IOSR J Pharm. 2017;7:22–30.

148. Wei IC, Wang PC, Zhou Xi. The coffeeyll phenylethanoid glycosides from Lindenia riuelli and their anti-HBV effects. J Asian Nat Prod Res. 2018;20:757–62. https://doi.org/10.1080/10286020.2017.1357549.

149. Das AK, Nongmaithem R. Phytochemical study of selected medicinal plants used by the maring tribe of Chandel district, Manipur. India J Pharmacogn Phytochem. 2019;8:2155–60.

150. Kuruvilla GR, Neeraja M, Srikrishna A, Rao SGRS. A new quinone from Maesa indica (Roxb) A DC, (Mysinaceae). Indian J Chem Sect B. 2010;49:1637–41.

151. Patil A, Jadhav V, Arvindekar A, More T. Antidiabetc activity of Maesa indica (Roxb). stem bark in Streptozotocin induced diabetic rats. American J Phytomed Clin Ther. 2014;2:957–62.

152. Wei L, Wei W, Siong J, Samsurin D. Characterization of antimicrobial, antioxidant, anticaner property and chemical composition of Michelia champaca seed and flower extracts. Stamford J Pharm. 2011;4:19–24. https://doi.org/10.3329/spj.v4i1.8862.

153. Vimala R, Nagarajan S, Alam M, Susan T, Joy S. Anti-inflammatory and antipyretic activity of Michelia champaca Linn. (White variety), Ixora Brachia Roxb. and Rhynchosia Cana (Willid) D.C. flower extract. Indian J Exp Biol. 1997;35:1310–4.

154. Dan GD, Yi Z, Wei LE, Tao W, Min HL. Chemical constituents of Parvez GMM. Pharmacological activities of mango (Mangifera indica). Journal of Ethnobiology and Ethnomedicine (2022) 18:22.

155. Parvez GMM. Pharmacological activities of mango (Mangifera indica): a review. J Pharmacogn Phytochem. 2019;8:2155–60.

156. Thawkar BS, Jawarkar AG, Kalamkar PV, Pawar KP, Kale MK. Phytochemical investigation, antioxidant, anticancer property and chemical composition of Parkia timoriana (DC.) Merr., an underutilized multipurpose tree bean: a review. Genet Resour Crop Evol. 2018;65:679–92. https://doi.org/10.1007/s10722-017-0595-0.

157. Chowdhury SR, Akter S, Sharmin T, Islam F, Quadery TM. Antimicrobial activity of five medicinal plants of Bangladesh. J Pharmacogn Phytochem. 2013;2:164–70.

158. Shadha E, Al-Azz A, Omer EA, Sakra AS. Chemical composition of Ocu-mum americanum essential oil and its biological effects against, agrotis ipsilon, (Lepidoptera: Noctuidae). Res J Agric Sci. 2007;3:740–7.

159. Hakkim FL, Arvazhagan G, Boopathy R. Antioxidant property of selected Ocimum species and their secondary metabolite content. J Med Plant Res. 2008;2:250–7.

160. Thaweboon S, Thaweboon B. In vitro antimicrobial activity of Ocimum americanum L. essential oil against oral microorganisms. Southeast Asian J Trop Med Public Health. 2009;40:1025–33.

161. Ahad A, Ganai AA, Sarer Q, Najm MZ, Kausar MA, Muejedd M, Siddiqui WA. Therapeutic potential of oraxylum indicum: a review. J Pharma Res. 2012;6:163–72.

162. Singh HV, Chaudhary AK. A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum Vent. Indian J Pharm Sci. 2011;73:485–90.

163. Hussain A, Oves M, Alajmi MF, Hussain I, Amir S, Ahmed J, Rehman MT, El-Seedi HR, Ali I. Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv. 2019;9:15357–69. https://doi.org/10.1039/C9RA01659G.

164. Angami T, Bhagavati R, Touthang L, Makdoh B, Bharati KA, Silambarasan R, Ayyanan M. Traditional uses, phytochemistry and biological activities of Parkia timoriana (DC.) Merr., an underutilized multipurpose tree bean: a review. Genet Resour Crop Evol. 2018;65:679–92. https://doi.org/10.1016/j. grec.2016.08.002.

165. Gaire BP, Subedi L. Phytochemistry, pharmacology and medicinal properties of Phyllanthus embicz Linn. Chin J Integr Med. 2014. https://doi.org/10.1007/s11655-014-1984-2.

166. Lin HY, Yuan CY, Xin WY, Peng LD, Juan CW, Lei LL, Lai LF. Chemical constituents of Picra fel-torae. Guangzhou Zhou Guhaia. 2010;30:887–90.

167. Kumarasingha R, Karpe AV, Preston S, Yeo TC, Lim DS, Tu CL, Loo J, Simpson KJ, Shaw JM, Gasser RB, Beale DJ. Metabolic profiling and in vitro assessment of anthelmintic fractions of Picra fel-torae leaves. Int J Parasitol Drugs Drug Resist. 2016;6:171–8. https://doi.org/10.1016/j. ijppdr. 2016.08.002.

168. Satitra D, Silalahi J, Haro G, Ilasa S, Hsb PAZ. Antioxidant and anti proliferative activities of an ethylacetate fraction of Picra fel-torae leaves. Herbs. Asian Pac J Cancer Prev. 2017;18:399–403.

169. Samuelsen AB. The traditional uses, chemical constituents and biological activities of Plantago major L. a review. J Ethnopharmacol. 2000;71:1–21. https://doi.org/10.1016/S0378-8741(00)00100-7.

170. Shao H, Pan P, Peng S, Zhang C. Study of chemical constituents of essential oil from flowers of Mikania micrantha. Zhong Yao Cai. 2001;24:341–2.

171. Dev UK, Md Hossain T, Md IZ. Phytochemical investigation, antioxidant activity and antihelmintic activity of Mikania micrantha leaves. World J Pharma Res. 2015;4:121–33.

172. Lentz DL, Clark AM, Hufford CD, Meurer-Grimes B, Passeiter CM, Cor-dero J, Ibrahim Q, Okunade AL. Antimicrobial properties of Honduran medicinal plants. J Ethnopharmacol. 1998;63:223–63. https://doi.org/10.1016/S0378-8741(98)00100-7.

173. Yuan K, Lu JL, Yin MW. Chemical constituents of C-glycosylflavonones from Mimosa pudica. Yao Xue Xue Bao. 2006;41:435–8.

174. Joseph B, George J, Mohan J. Pharmacology and traditional uses of Mimosa pudica. Int J Pharma Sci Drug Res. 2013;5:41–4.

175. Farrag EK, Kassim MES, Bayoum D, Shaker SE, Afl M. Phytochemical study, phenolic profile and antiagastic ulcer activity of Morus macraura Maq. fruits extract. J Appl Pharm Sci. 2017;7:152–60. https://doi.org/10.7324/JAPS.2017.70527.

176. Sidhu JS, Zafar TA. Bioactive compounds in banana fruits and their health benefits. Food Qual Saf. 2018;2:183–8. https://doi.org/10.1093/fqafe/fya019.

177. Jyothimayi N, Rao NM. Banana medicinal uses. J Med Sci Tech. 2015;4:152–60.

178. Mathew NS, Negi PS. Traditional uses, phytochemistry and pharmacol-ogy of wild banana (Musa acuminate Colla): a review. J Ethnopharma-co. 2017;196:124–40. https://doi.org/10.1016/j.jep.2016.12.009.

179. Kim NC, Desjardins AE, Wu CD, Kinogi AO. Activity of tetrahydrogi-cosides from the root bark of Mussaenda macrophylla against two oral pathogens. J Nat Prod. 1999;62:1379–84. https://doi.org/10.1021/np990 1579.

180. Chowdhury SR, Akter S, Sharmin T, Islam F, Quader TM. Antimicrobial activity of five medicinal plants of Bangladesh. J Pharmacogn Phyto-chem. 2013;2:164–70.

181. Shadha E, Al-Azz A, Omer EA, Sakra AS. Chemical composition of Ocu-mum americanum essential oil and its biological effects against, agrotis ipsilon, (Lepidoptera: Noctuidae). Res J Agric Sci. 2007;3:740–7.

182. Hakkim FL, Arvazhagan G, Boopathy R. Antioxidant property of selected Ocimum species and their secondary metabolite content. J Med Plant Res. 2008;2:250–7.

183. Ahad A, Ganai AA, Sarer Q, Najm MZ, Kausar MA, Muejedd M, Siddiqui WA. Therapeutic potential of oraxylum indicum: a review. J Pharma Res. 2012;6:163–72.

184. Singh HV, Chaudhary AK. A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum Vent. Indian J Pharm Sci. 2011;73:485–90.
