Polymer coating for higher pesticide use efficiency, seed yield and quality in onion (Allium cepa)

V R YALAMALLE1, B S TOMAR2, ATUL KUMAR3 and SHABEER T P AHAMMED4

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 13 January 2019; Accepted: 25 January 2019

ABSTRACT

Onion (Allium cepa) seed crop is infected with several pest and diseases which reduce the seed yield and quality. The present study explores the feasibility of using polymer as an efficient delivery system for seed-protectant chemicals during onion seed production. Polymer coating prolonged the release of pesticides. After 30 DAP, 557% and 1087% higher retention of fungicide and insecticide was observed in polymer coated bulbs over traditional method of bulb treatment. Onion bulb coating with polymer and 0.15 % fipronil + 0.25 % (carbendazim + mancozeb) showed significantly higher values for seed yield attributes, viz. productive scapes/plant (5.56), lower percent lodged scapes (21.16), seed yield/ plant (21.15 g) and seed quality attributes in comparison to control and traditional method of bulb treatment. Lowest percent disease index (36.39) was recorded in treatment- polymer coating + 0.15 % fipronil + 0.25 % (carbendazim + mancozeb) and lowest number of thrips/plant (5.14) was recorded in bulbs coated with polymer + 0.15 % fipronil + 500 ppm streptocyclin. Treating of onion bulbs with polymer is beneficial in increasing the efficacy of the applied pesticides, reducing the incidence of pest and diseases and enhancing seed yield and quality.

Key words: Allium cepa, Disease, Pesticides, Polymer, Seed yield, Thrips

Onion (Allium cepa L.) seed production is a biennial process wherein the bulb produced during first year forms the planting material for seed production during second year. The quality of seed bulb plays an important role in realizing quality seed (Yalamalle 2016). Onion seed crop is infected with various fungal diseases like purple blotch (Stemphylium vesicarium Wallr and Alternaria porri Ellis), fusarium basal rot (Fusarium oxysporum f. sp. cepae), pink root disease (Phoma terrestris) and white rot (Phoma terrestris Berk). Bacterial rot (Erwinia carotovora subsp. carotovora). These are either soil borne or carried over to the field by infected bulbs. Apart from fungal and bacterial diseases, many viruses are known to infect onion which reduces seed yield and quality. Some of these being Irish yellow spot virus (IYSV) and Onion yellow dwarf virus (OYDV) (Hillman and Lawrence 1995). In severe viral infection the yield reduction can be up to 100 % (Papu 2010). Mayer et al. (1987) reported that thrips (Thrips tabaci L.) survive in bulbs and can be primary source of inoculum. Thrips, a major insect pest apart from feeding injury, it damages the seed crop by transmitting the viruses. It also predisposes the plants to fungal diseases by injury (Cartwright et al. 1995). Conventional method of pesticide application involves application of large quantity of pesticides in the soil/plant, which possess various ecological concerns (Jacob et al. 2009). Film coating of seeds with active ingredients by use of polymers is an efficient way to deliver seed treatment chemicals (Taylor 1998). Polymers are reported to prolong the release of pesticides (Choudhary et al. 2006, Rahim et al. 2016). Application of plant protectant along with polymers has been reported previously (Jacob et al. 2009) to reduce the incidence of pest and diseases, enhance seed yield, improve seed viability and vigour. Although there are several reports on the application of polymers as seed treatment agent, there is limited reports on the suitability of polymers as a bulb treatment agent. The present study explores the suitability of polymer as a bulb treatment agent for delivery of seed treatment chemicals in onion seed crop.

MATERIALS AND METHODS

The present study was conducted at ICAR-Indian Agricultural Research Institute, New Delhi during rabi 2015-16 and 2016-17. The experiment was laid out in randomized complete block design with three replications. Onion bulbs weighing 50±5 g were used as planting material. The bulbs were coated with polymers along with different combination of pesticides: insecticide- 0.15% fipronil, Regent ® 5 SC w/w, Bayer Crop Science; fungicide – 0.25% (carbendazim 12% WP + mancozeb 63% WP) Companion®, Indofil.

1Scientist (vishwanath_yal@yahoo.com), ICAR-Directorate of Onion and Garlic Research, Pune. 2Head (bst_spu_iari@rediffmail.com), Division of Vegetable Science; 3Principal Scientist (atulsingh2003@yahoo.co.in), Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi. 4Scientist (shabsnreg@gmail.com), ICAR-National Research Centre for Grapes, Pune.
Table 1 Treatment details

Treatment	Details
T₁	Polymer coating
T₂	Polymer coating + 0.15 % fipronil
T₃	Polymer coating + 0.25 % (carbendazim + mancozeb)
T₄	Polymer coating + 0.15 % fipronil + 0.25 % (carbendazim + mancozeb)
T₅	Polymer coating + 500 ppm streptocyclin
T₆	Polymer coating + 500 ppm streptocyclin + 0.15 % fipronil
T₇	Polymer coating + 500 ppm streptocyclin + (carbendazim + mancozeb)
T₈	Polymer coating + 0.15 % fipronil + 0.25 % (carbendazim + mancozeb) + 500 ppm streptocycline
T₉	Traditional practice - fungicide + insecticide + streptocyclin (in water)
T₁₀	No treatment

Industries Ltd, India and bactericide-500 ppm (streptomycin sulphate 90 % w/w + tetracyclin hydrochloride 10%), Streptocyclin®, Hindustan Antibiotics, Pune, India (Table 1). The polymer coating was done using commercial vinyl based polymer, L-200 (Incotec International B V Ltd, The Netherlands) @ 50 ml/liter. The bulbs were soaked in pesticide solutions as per treatments for 30 min and dried for 24 h before planting. The bulbs were planted at a spacing of 45 cm × 20 cm. The experiment plots were fertilized with 100 kg N, 50 kg P and 50 kg K. Half dose of nitrogen and full dose of phosphorous and potassium were given at the time of sowing. Remaining nitrogen was split in two equal dose and applied at 30 and 45 days after planting. The plants were not sprayed with any insecticide and fungicides for 30 DAP and 90 DAP respectively. The data on number of bulb sprouted was recorded at 60 DAP. Productive scapes was calculated by measuring the total number of un-lodged scapes left per plant after seed filling stage and the average of 10 plants was recorded. Percent lodged scapes were calculated by counting the total number of un-lodged scapes after seed filling stage and percentage was calculated based on the initial scapes number. Seed yield/plant was recorded on randomly selected 10 plants after maturity. No of thrips/plant was calculated as average of 10 plants at 30 days after planting. Both the adults as well as nymphs were counted on the whole plant. Disease severity on foliage and scape was recorded at 90 DAP on 0-5 scales as per Islam *et al.* (1999). The percent disease index (PDI) was calculated by the following formula given by Wheeler (1969):

\[
PDI = \left(\frac{\text{Total sum of numerical ratings}}{\text{Number of observation} \times \text{maximum disease rating in the scale}} \right) \times 100.
\]

Table 2 Effect of polymer coating and plant protectants on bulb sprouting, productive scapes and percent lodged scapes in onion cv. Pusa Ridhi

Treatment	Bulb sprout % 60 DAP	Productive scapes/plant	Percent lodged scape						
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T₁	78.89 (62.65) ab^	87.22 (69.09) a	83.06 (65.87) a	4.07 cd$	4.57 cd^	4.32 de	37.63 (37.84) ab	24.71 (29.76) ab	31.17 (33.80) ab
T₂	77.78 (61.94) ab	84.44 (66.78) ab	81.11 (64.36) abc	5.44 ab	4.84 bcd	5.14 abc	31.10 (33.82) bc	23.96 (29.28) abc	27.53 (31.55) abc
T₃	80.56 (64.28) a	85.56 (68.58) a	83.06 (66.43) a	4.70 abcd	5.50 a	5.10 ab	31.76 (34.29) bc	15.40 (22.99) d	23.58 (28.64) cd
T₄	74.44 (59.98) ab	84.44 (68.58) ab	79.44 (64.28) ab	5.65 a	5.48 ab	5.56 a	24.69 (29.31) c	17.64 (24.80) cd	21.16 (27.05) d
T₅	75.00 (60.21) ab	81.11 (64.24) bc	78.06 (62.23) cd	4.26 bcd	4.35 d	4.31 e	37.00 (37.33) ab	18.39 (25.39) bcd	27.70 (31.36) abc
T₆	74.44 (59.68) ab	80.56 (61.97) cd	77.50 (60.83) de	4.95 abcd	4.87 abcd	4.91 bcd	31.70 (34.19) bc	20.62 (28.89) bcd	26.16 (30.54) bcd
T₇	62.78 (52.41) c	80.56 (62.29) c	71.67 (57.35) e	3.77 d	5.47 ab	4.62 bcd	45.91 (42.64) a	19.86 (26.43) bcd	32.89 (34.54) a
T₈	70.56 (57.17) bc	81.11 (66.78) ab	75.83 (61.98) bc	5.44 ab	5.30 ab	5.37 ab	31.13 (33.87) bc	20.45 (26.80) bcd	25.79 (30.33) bcd
T₉	71.67 (57.86) bc	80.00 (65.07) b	75.83 (61.47) cd	5.23 abc	5.06 abc	5.15 abc	29.92 (32.99) bc	19.68 (26.11) bcd	24.80 (29.55) cd
T₁₀	75.00 (60.00) ab	75.56 (59.64) d	75.28 (59.82) e	4.49 abcd	4.61 cd	4.55 cde	37.41 (37.68) ab	28.35 (32.15) a	32.88 (34.92) a

General mean

| CD (P=0.05) | 5.86* | 2.60** | 1.17** | 1.20* | 0.64** | 0.91* | 6.38* | 4.95* | 3.89** |

* Means with at least one common letter are not statistically significant using Fishers least significant difference. ^ Value in the parenthesis are arcsine transformed values.
Seed germination was assessed as per ISTA (2015) guidelines. Seedling vigour was calculated as per Abdul-Baki and Anderson (1973). The release kinetics of pesticides was studied after two years of field study; the best performing treatment was used to assess the release kinetics of pesticides. Onion bulbs were coated with insecticide-0.15 % fipronil and fungicide – 0.25 % (carbendazim 12 % WP + mancozeb 63 % WP) with 5 % polymer slurry or in water for 30 minutes and dried for 24 h in shade. The treated bulbs were planted in pots containing potting mixture (vermiculite and peat moss 1:1 w/w). The releases of pesticide was estimated periodically at different durations- 0, 15 and 30 DAP. The sample preparation was done by modified buffered ethyl acetate method (Jadhav et al. 2015). In brief, 10 ± 0.1 g of samples was extracted with 10ml ethyl acetate, 100 µl acetic acid and 10 g anhydrous sodium sulphate followed by cleanup with 25 mg PSA. The cleaned extract was reconstituted in acidified methanol + water followed by analysis through LC-MS/MS. The analysis was performed through multiple reaction monitoring (MRM) at a dwell time of 0.02s using Atlantis® T3 (100 × 3.0 mm, 5 µm) column.

Statistical analysis: The statistical analysis of was performed by using statistical analysis system (SAS) software. The data collected were subjected to analysis of variance and means were separated by least significant difference test (at P=0.05 or 0.01). The percent data were arcsine transformed prior to analysis. Grouping letters on treatments means were assigned using Fishers least significant difference.

RESULTS AND DISCUSSION

Onion seed crop suffers from losses caused by fungal, viral and bacterial diseases. Thrips being the major insect pest causes direct as well as indirect damage by transmitting onion viruses. For successful seed production programme management of biotic stress is essential. Highest bulb sprouting at 60 DAP was noticed in bulbs treated with polymer and 0.25 % (carbendazim and mancozeb) was 10.33 % higher than control (Table 2). Pre-sowing seed treatments have both the protective as well as curative functions. Uddin et al. (2006) reported that mother bulb treatment with mancozeb and foliar spray reduced the disease severity and disease intensity.

Onion bulb coated with polymer along with 0.15% fipronil + 0.25 % (carbendazim + mancozeb) showed significantly higher values for seed yield attributes, viz. productive scapes/plant (5.56), lower percent lodged scapes (21.16), seed yield/plant (21.15 g) than untreated (control) and traditional method of bulb treatment (Table 2 and 4). The major onion diseases- stemphylium blight and purple

Treatment	Germination %	Seedling vigour index-I	Seedling vigour index-II						
	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled	2015-16	2016-17	Pooled
T1	93.33	80.67	87.00	876.75	624.17	750.46	1589.87	1265.53	1427.70
	(77.77) ab^	(64.09) ab	(70.93) bc						
T2	83.33	77.33	80.33	815.43	684.16	749.80	1616.87	1442.40	1529.63
	(66.38) bc	(61.75) bc	(64.06) cd						
T3	98.00	88.67	93.33	1053.65	833.05	943.35	1953.67	1713.67	1833.67
	(85.27) a	(71.82) a	(78.55) a						
T4	97.33	83.33	90.33	1055.75	791.09	923.42	1990.93	1513.27	1752.10
	(84.52) a	(69.51) ab	(75.22) ab						
T5	94.67	76.00	85.33	990.57	599.90	795.23	1805.40	1297.27	1551.33
	(76.70) ab	(60.78) bc	(68.74) bc						
T6	87.33	81.33	84.33	888.26	723.07	805.67	1681.53	1394.40	1537.97
	(70.58) bc	(64.60) ab	(67.59) c						
T7	92.67	81.33	87.00	893.92	723.91	808.92	1785.67	1381.60	1583.63
	(75.24) abc	(64.45) ab	(69.84) bc						
T8	92.00	87.00	87.33	899.88	736.57	818.22	1727.20	1279.40	1503.30
	(74.45) abc	(65.49) ab	(69.97) bc						
T9	84.67	82.00	83.33	862.34	674.55	768.44	1639.00	1549.87	1594.43
	(66.98) bc	(65.27) ab	(66.13) c						
T10	80.00	79.93	85.33	728.12	452.33	590.22	1343.73	1046.13	1194.93
	(63.51) c	(54.35) c	(58.93) d						
General mean	90.33	79.93	85.33	906.47	684.28	795.37	1713.39	1388.35	1550.87
CD (P=0.05)	11.98**	8.18*	7.00**	165.69**	111.81**	96.47**	216.88**	244.15**	157.62**

S- Means with at least one common letter are not statistically significant using Fishers least significant difference. ^ Value in the parenthesis are arcsine transformed values.
Thrips is a major insect pest of onion. It not only causes injury due to feeding but it also predisposes the plants to fungal diseases (Cartwright et al. 1995). Lowest percent disease index (34.96) was recorded in treatment polymer coating + 0.25% (carbendazim + mancozeb) and lowest number of thrips/plant (4.95) was recorded in treatment polymer coating + 0.25% (carbendazim + mancozeb) + 500 ppm streptomycin (Table 4). Higer disease as well as thrips incidence was reported in control. The analysis of onion bulbs and plants at different interval revealed significant differences in pesticide and fungicide retention due to polymer coating (Table 5).

Similar results were reported by Jacob et al. (2009), wherein polymer coating increased the retention of pesticides in tomato seeds during storage as well as resulted in higher translocation of pesticides in seedling. Choudhary et al. (2006) reported polymer coating increases the half release time of carbofuron to 25.11 days and enhance the effective availability of carbofuron to 43.97 days. Higher mortality of root knot nematode (Meloidogyne incognita) was noticed even at half dose as compared to direct soil application. Rahim et al. (2016) reported that polymer coating prolonged the release of pesticides over of period of 35 days. Thus polymer coating not only help in higher pesticide retention but also prolonged the release of pesticides, thus providing the protection against pest and diseases for longer duration.

Polymer coating increased the pesticide use efficiency by increasing the retention and prolonging the release of pesticides. Onion bulbs coated with polymer along with 0.15% fipronil and 0.25% (carbendazim + mancozeb) resulted in lower incidence of disease and thrips, higher yield and quality. Thus onion bulb treatment with polymers can be an integral part of integrated pest and disease management for onion seed production.

ACKNOWLEDGEMENTS

The first author thanks the Indian Council of Agricultural Research, New Delhi for providing the financial assistance during the present study. We would like to thank the Dr. DK Yadav, Head Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi for providing the necessary facilities.

REFERENCES

Abdul-baki A A and Anderson J D. 1973. Vigour determination in soybean by multiple criteria. Crop Science 13: 630–7.
Table 5 Effect of polymer coating on the release of carbendazim and fipronil in onion cv. Pusa Ridhi

Days	Carbendazim (ppm)	Fipronil (ppm)		
	Polymer coating	Water	Polymer coating	Water
0 days	5.594 a	6.026 a	0.823 a	0.529 d
15 days	3.717 b	1.047 d	0.729 b	0.195 e
30 days	2.042 c	0.366 d	0.609 c	0.056 f
General means	3.784	2.479	0.720	0.260
CD (P=0.01)	0.064	0.034		

S- Means with at least one common letter are not statistically significant using Fishers least significant difference.

References:

Cartwright B, McKenzie C L, Miller M E, Perkins-Veazie P and Edelson J V. 1995. Enhancement of purple blotch disease of onion by thrips injury, *Thrips Biology and Management*, pp 203–8. Parker B L, Skinner M and Lewis T (Eds). Plenum Press, New York.

Choudhary G, Kumar J, Walia S, Parsad R and Parmar B S. 2006. Development of controlled release formulations of carbofuran and evaluation of their efficacy against *Meloidogyne incognita*. *Journal of Agriculture and Food Chemistry* **54**: 4727–33.

Hillman B I and Lawrence D M. 1995. Carlaviruses: Pathogenesis and host specificity in plant disease, histopathological, biochemical, genetic and molecular bases. *Viruses and Viroids*, Vol. III, pp 35–50. Singh R P, Singh U S and Kohmoto K (Eds). Pergamon Press, Oxford, GB.

Hoffman D D, Hartman G L, Mueller D S, Leitz R A, Nickell C D and Pedersen W L. 1998. Yield and seed quality of soybean cultivars infected with *Sclerotinia sclerotiorum*. *Plant Disease* **82**: 826–9.

Islam M R, Ashrafuzzaman M H, Adhikari S K, Rahman M H and Rashid M H. 1999. Effect of fungicidal treatments in controlling *Alternaria porri* causing purple blotch of onion. *Progressive Agriculture* **10**(1&2): 43–6.

ISTA. 2015. Seed testing rules. *The International Seed Testing Association*. 8303 Barsenssorf, CH-Switzerland.

Jacob S R, Arunkumar M, Gopal M, Srivastava C and Sinha S. 2009. An analysis of the persistence and potency of film-coated seed protectant as influenced by various storage parameters. *Pest Management Science* **65**: 817–22.

Jadhav M R, Oulkar D P, Ahammed Shabeer T P and Banerjee K. 2015. Quantitative screening of agrochemical residues in fruits and vegetables by buffered ethyl acetate extraction and LC-MS/MS analysis. *Journal of Agricultural and Food Chemistry* **63**(18): 4449–56.

Mayer D F, Lunden J D and Rathbone L. 1987. Evaluation of insecticides for *Thrips tabaci* (Thysanoptera: Thripidae) and effects of thrips on bulb onions. *Journal of Economic Entomology* **80**(4): 930–32.

Papu H R. 2010. http://pnva.org/files/files/EpidemiologyandManagementof.pdf.

Rahim M, Hakim M R and Haris H M. 2016. Application of advanced polymeric materials for controlled release pesticides. *IOP Conference Series: Materials Science and Engineering* **146** 012020.

Taylor A G, Allen P S, Bennett M A, Bradford K J, Burris J S and Misra M K. 1998. Seed enhancements. *Seed Science Research* **8**: 245–56.

Uddin M N, Islam M R, Akhtar N and Faru A N. 1999. Effect of fungicidal treatments in controlling *Alternaria porri* causing purple blotch of onion. *Journal of Agricultural Education and Technology* **9**(1and2): 83–6.

Wheeler, B E J. 1969. Disease assessment and losses. *An Introduction to Plant Diseases*, pp 301–9. Wheeler B E J (Ed). John Wiley and Sons Limited, London.

Yalamalle V R. 2016. Effect of bulb size and number of growing axis on seed yield and quality in onion (*Allium cepa* L.). *International Journal of Bio-resource and Stress Management* **7**(6): 1409–12.