Abstract. Comfort is one among several aspects in building design. Comfort of the occupant can be measured from the dynamic performance of the building during earthquake. This performance can be increased by installing vibration control to reduce dynamic responses of the building.
Considering the space-use efficiency, the building is utilizing certain floors to act as mass dampers. The floors are able to move back and forth independently to counter building vibration. Utilizing an existing floor slab as a mass damper is known as passive vibration control or in particularly named self mass damper (SMD).
A 14-story reinforced concrete building is modeled as a case study. The movable floor placement is varied in 3 configurations. The modeled building is excited by El Centro 1940 and Denpasar 1979 ground accelerations, independently. The study compares the dynamic responses of building without SMD and with SMD in three different placements.
Placing SMD in 4 top floors (13th,12th, 11th, 10th) gives the best result in reducing building’s dynamic response compared to SMD in 4 mid-height floors (11th,10th, 8th, 7th) or separate group (13th, 12th, 6th, 5th). It is shown that the building has a tendency to response conforming 1st mode of the building.
From the analysis, it can be concluded that applied SMD system gives greater reduction on building’s displacement, velocity, and acceleration in response to Denpasar ground acceleration rather than El Centro 1940.

1 Introduction

Structural vibration damping can be produced from damping element or damping system that consists of spring-mass system (tuned mass damper) or pendulum system. Tuned mass damper (TMD) is passive system that works effectively in the existence of resonance. TMD has been widely applied in several fields not only in structural engineering such as highrise buildings and bridges, but also in automobiles and spacecrafts.

Application of TMD in highrise building is intended to reduce vibration due to dynamic load such as earthquake or wind. TMD in the form of an instrument consists of mass and spring that is attached to main structure. The attachment of TMD will shift the natural frequency of structure.

Applying TMD in the building takes spaces, depends on the dimension of mass and its displacement range. One extreme example is Tapei 101 building that has 55m diameter of hanging mass spans in 5 floors [1].

As the price of land in commercial areas keep rising, every square-inch is important. The building has to effectively utilize spaces whilst keeping the comfort of the tenant. The use of TMD will take valuable spaces, on the other hand the vibration of building should be limited.

Inspired by Nicolas G. Hayek Center [2], this paper simulated the placement of movable slab floor in 14 stories concrete building. The functional floor able in moving was treated as mass damper instrument. The system allowing its functional floor to vibrate independently to the main structure is named self mass damper (SMD).

2 Design of SMD

Optimum design of tuned mass damper (TMD) was discussed comprehensively in some references like book [3] or article [4].

Brief scheme of tuned mass design is written below

1. Choose the ratio of mass, \(\mu \),
 \[0.01 \leq \mu \leq 0.05 \rightarrow m_T = \mu \cdot m, \] (1)

 where \(m \) is total mass of main structure and \(m_T \) is mass of TMD.

2. Calculate the optimal \(\alpha \)-value
 \[\alpha = \frac{\omega_T}{\omega_0} = \sqrt{\frac{k_T \cdot m}{m_T \cdot k}} \] (3)

 where \(\omega_0 \) is natural frequency of main structure and \(\omega_T \) is natural frequency of TMD. \(k \) and \(k_T \) denote stiffness of main structure and spring constant of TMD, respectively.

3. Accordingly put the optimal spring, \(k_T \),
 \[k_T = \frac{\alpha^2 \mu k}{(1 + \mu)^2} \] (4)
4. Calculate the optimal damping grade, D_{opt},

$$D_{opt}^2 = \frac{3\mu}{8(1 + \mu)^3}$$ \hspace{1cm} (5)

and the corresponding damping constant, d_{opt},

$$d_{opt} = 2D_{opt}m_y\omega_0 = \frac{\mu}{1 + \mu} \sqrt{\frac{3\mu}{2(1 + \mu)}} \text{km}.$$ \hspace{1cm} (6)

3 Case study and discussion

A 14-story concrete building taken as a case study is modelled as three dimensional open frame structure (Figure 2). The building has uniform plan of 12m × 30m. With floor-to-floor heights is 4m each, then the total height is 56m.

The study works on two sequential main objectives, there are:

1. Effective placement of SMD.

 To study the placement of SMD, 4 structure model are done. The first structural model is normal building without SMD as shown in Figure 1(a), and the other three are buildings with SMD in different variation. There are 3 variation of SMD placement:

 (a) SMD 1: Slab of 13th, 12th, 11th, 10th floor is designed as movable slab as shown in Figure 1(b);
 (b) SMD 2: 11th, 10th, 8th, 7th floor is designed as movable slab as shown in Figure 1(c);
 (c) SMD 3: 13th, 12th, 6th, 5th floor is designed as movable slab as shown in Figure 1(d).

 Effective placement of SMD is determined by the most reduced response due to harmonic loading. Harmonic loading imposed to structure is sinusoidal which tunned to the first natural frequency of building.

2. Dynamic response simulation of building with SMD due to El Centro 1940 and Denpasar ground motion acceleration

 The considered effective configuration of SMD placement due to sinusoidal acceleration then imposed by El Centro and Denpasar ground motion acceleration. Both El Centro and Denpasar ground acceleration is scaled to Indonesian earthquake spectra.

 Considering the needs of slab thickness that should meet stiffness, strength and stability condition, the SMD design scheme is modified. Instead of taken mass ratio as prescribed value (as per first step of scheme above), the mass ratio is determined from the designed slab. As a result, total mass ratio is 26%.

 Movable slab layout dan structural model is shown in Figure 3. SMD consists of 5 (five) movable slab in one floor.

 Figure 1. Moveable slab placement type on building.

 Figure 2. Concrete frame model.

3.1 Due to sinusoidal ground acceleration

 By applying the SMD, the natural frequencies of main structure is shifting to avoid resonance. In order to evaluate structure responses due to SMD, sinusoidal acceleration that resonance with the first natural frequency is generated. The structure responses due to this harmonic signal are considered to determine the effectiveness of the SMD.

 Due to sinusoidal acceleration that resonance with the first natural frequency, building story displacement reduces in average 56% for SMD 1, 53% for SMD 2 and 47% for SMD 3 (Table 1). Story horizontal velocity re-
duces (in average) the largest for SMD 1 by 55% and less reduced is SMD 3 by 46% as shown in Table 2. Acceleration of each story reduces (in average) 59%, 57% and 52% by configuration SMD 1, SMD 2 and SMD 3, respectively (Table 3).

Figures 4 to 6 show the displacement, velocity and acceleration of topfloor due to harmonic ground motion. It is shown all variation of SMD placement gives satisfying reduction of responses.

Considering the comfort of inhabitant, acceleration of floor that act as rigid floor and as moveable slab is compared in Figure 7. The amplitude of acceleration reduce insignificantly but it shows frequency shifting.

Stories responses that are displacement, velocity and acceleration, show that optimum configuration is SMD 1.

3.2 Due to Denpasar ground acceleration

The building with self mass damper in 13th, 12th, 10th and 9th floors (SMD 1) imposed by Denpasar ground acceleration. Figure 8 compares the velocity at top floor of building with self damper and without SMD. In some early 15 seconds the amplitude is quite the same, but afterward velocity reduced significantly with maximum 50mm/s.

Comparison of 13th floor as movable slab and as rigid floor is shown in Figures 9, 10 and 11. As movable slab, 13th floor displaces rather stable than as rigid slab. Even though the amplitude of displacement larger at some point (Figure 9), but velocity and acceleration reduced significantly (Figures 10 and 11).

3.3 Due to El Centro ground acceleration

Due to El Centro ground acceleration, in some early minutes building with SMD 1 configuration has slightly
smaller velocity at top floor (Figure 12). Significant velocity reduction happen after 5 seconds, with maximum velocity from 90mm/s reduces to 50mm/s.

Vibration of 13th floor as movable slab and as rigid slab is compared in Figures 13, 14 and 15. As movable slab, the displacement of 13th floor is larger at some point compared to its displacement as rigid slab. After 6 seconds, the displacement shows significant reduction. Similar behaviour has been observed with velocity response of 13th floor. Meanwhile, acceleration reduced significantly from the beginning.

Figures 16 and 17 plot the displacement of moving slab in 13th story along side the displacement of corresponding structural member. The plot described the minimum gap needed to allow the movable slab travel without pounding structural member. Simulation with Denpasar ground motion gives minimum gap of 13 mm (Figure 16), and with El Centro ground motion gives minimum gap of 30 mm (Figure 17).
Outside range of 4.2-5.8s simulation by El Centro signal (Figure 14), top floor velocity is not more than 40mm/s as required by DIN 4150 [5].

Acceleration of movable 13th floor due to both Denpasar and El Centro ground acceleration decrease from 750mm/s² to 350mm/s².

To avoid pounding between movable slab and structural member of building, small gap should be provided when applying movable slab floor.

4 Summary

1. Application of SMD for three placement variation reduced dynamic responses more than 50% in resonance frequency.
2. The optimal placement of self mass damper conforms to the first translational mode of the building.
3. Although maximum displacement of movable 13th floor slab is larger compared to rigid 13th floor slab, the vibration of movable slab is more stable.
4. Applied SMD gives larger reduction on the building’s displacement, velocity, and acceleration in response to the Denpasar ground acceleration rather than the El Centro 1940.
5. The movable slab works good as self mass damper to reduce velocity and acceleration of floor. It leads to increased comfort level of tenant.
6. Using the functional floor as damping instrument is a smart idea. The building can keep its valuable space whilst also maintaining the comfort level.

Acknowledgements

The authors would like to thank the Structural Laboratory, Civil Engineering Department Unpar for support on SAP2000.

References

[1] A.Y. Tuan, G.Q. Shang, Journal of Applied Science and Engineering 17, 141 (2014)
[2] R. Kidokoro, Self Mass Damper (SMD): Seismic Control System Inspired by the Pendulum Movement of an Antique Clock, in The 14th World Conference on Earthquake Engineering (2008)
[3] C. Petersen, Schwingungsdämpfer im Ingenieurbau (Maurer Söhne, München, 2001)
[4] D.R. Widarda, E. Zulkifli, F.A.T. Prabowo, T.D. Akbar, Application Of Tuned Mass Damper On Suspension Footbridge, in Proceeding the 6th Civil Engineering Conference in Asia Region: Embracing the Future through Sustainability, edited by I. Imran, Rildova, E. Zulkifli, D.R. Widarda (2013), pp. TS1 113–120
[5] DIN, DIN 4150-3. Erschütterungen im Bauwesen. Teil 3: Einwirkungen auf bauliche Anlagen (1999)
Table 1. Maximum story displacement (m)

Story	Horizontal displacement (m)	without SMD	SMD 1	Reduction	SMD 2	Reduction	SMD 3	Reduction
14th story	2.119	1.006	52.52%	1.048	50.54%	1.166	44.97%	
13th story	2.077	0.982	52.72%	1.03	50.41%	1.139	45.16%	
12th story	2.011	0.943	53.11%	0.999	50.32%	1.094	46.60%	
11th story	1.917	0.89	53.57%	0.95	50.44%	1.035	46.01%	
10th story	1.795	0.82	54.32%	0.88	50.97%	0.966	46.18%	
9th story	1.648	0.733	55.52%	0.799	51.52%	0.887	46.18%	
8th story	1.481	0.644	56.52%	0.706	52.33%	0.799	46.05%	
7th story	1.296	0.554	57.25%	0.599	53.78%	0.7	45.99%	
6th story	1.093	0.461	57.82%	0.491	55.08%	0.583	46.66%	
5th story	0.877	0.366	58.27%	0.387	55.87%	0.451	48.57%	
4th story	0.652	0.27	58.59%	0.285	56.29%	0.324	50.31%	
3rd story	0.433	0.178	58.89%	0.187	56.81%	0.211	51.27%	
2nd story	0.229	0.093	59.39%	0.098	57.21%	0.11	51.97%	
1st story	0.068	0.027	60.29%	0.029	57.35%	0.032	52.94%	
Average			56.34%			53.50%		47.70%

Table 2. Maximum story velocity (m/s).

Story	Horizontal velocity (m/s)	without SMD	SMD 1	Reduction	SMD 2	Reduction	SMD 3	Reduction
14th story	3.018	1.46	51.62%	1.517	49.73%	1.685	44.17%	
13th story	2.957	1.425	51.81%	1.489	49.64%	1.645	44.37%	
12th story	2.859	1.368	52.15%	1.444	49.49%	1.58	44.74%	
11th story	2.721	1.288	52.66%	1.371	49.61%	1.495	45.06%	
10th story	2.543	1.185	53.40%	1.267	50.18%	1.396	45.10%	
9th story	2.329	1.057	54.62%	1.147	50.75%	1.283	44.91%	
8th story	2.089	0.926	55.67%	1.012	51.56%	1.156	44.66%	
7th story	1.824	0.795	56.41%	0.856	53.07%	1.013	44.46%	
6th story	1.535	0.661	56.94%	0.7	54.40%	0.843	45.08%	
5th story	1.229	0.523	57.45%	0.551	55.17%	0.653	46.87%	
4th story	0.913	0.384	57.94%	0.404	55.75%	0.469	48.63%	
3rd story	0.605	0.253	58.18%	0.266	56.03%	0.305	49.59%	
2nd story	0.32	0.132	58.75%	0.14	56.25%	0.16	50.00%	
1st story	0.095	0.039	58.95%	0.041	56.84%	0.047	50.53%	
Average			55.47%			52.75%		46.30%
	Horizontal acceleration (m/s²)							
----------	--------------------------------	----------	----------	----------	----------	----------		
	without SMD	SMD 1 Reduction	SMD 2 Reduction	SMD 3 Reduction				
14th story	4.775	2.09	56.23%	2.168	54.60%	2.45	48.69%	
13th story	4.688	2.038	56.53%	2.136	54.44%	2.392	48.98%	
12th story	4.554	1.96	56.96%	2.081	54.30%	2.291	49.69%	
11th story	4.365	1.852	57.57%	1.987	54.48%	2.157	50.58%	
10th story	4.11	1.717	58.22%	1.849	55.01%	2.006	51.19%	
9th story	3.783	1.548	59.08%	1.688	55.38%	1.84	51.36%	
8th story	3.407	1.367	59.88%	1.495	56.12%	1.661	51.25%	
7th story	2.986	1.178	60.55%	1.272	57.40%	1.457	51.21%	
6th story	2.527	0.982	61.14%	1.044	58.69%	1.216	51.88%	
5th story	2.035	0.778	61.77%	0.824	59.51%	0.941	53.76%	
4th story	1.52	0.573	62.30%	0.609	59.93%	0.674	55.66%	
3rd story	1.015	0.381	62.46%	0.404	60.20%	0.439	56.75%	
2nd story	0.543	0.204	62.43%	0.212	60.96%	0.232	57.27%	
1st story	0.164	0.061	62.80%	0.063	61.59%	0.069	57.93%	
Average			59.85%		57.33%		52.59%	