Interregional neural synchrony has similar dynamics during spontaneous and stimulus-driven states

Avniel Singh Ghuman, Rebecca N. van den Honert & Alex Martin

Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.

Assessing the correspondence between spontaneous and stimulus-driven neural activity can reveal intrinsic properties of the brain. Recent studies have demonstrated that many large-scale functional networks have a similar spatial structure during spontaneous and stimulus-driven states. However, it is unknown whether the temporal dynamics of network activity are also similar across these states. Here we demonstrate that, in the human brain, interhemispheric coupling of somatosensory regions is preferentially synchronized in the high beta frequency band (20–30 Hz) in response to somatosensory stimulation and interhemispheric coupling of auditory cortices is preferentially synchronized in the alpha frequency band (7–12 Hz) in response to auditory stimulation. Critically, these stimulus-driven synchronization frequencies were also selective to these interregional interactions during spontaneous activity. This similarity between stimulus-driven and spontaneous states suggests that frequency-specific oscillatory dynamics are intrinsic to the interactions between the nodes of these brain networks.

Neurons, in vivo, are active in the absence of external input. Increasing evidence suggests that this spontaneous activity has a coherent structure and may play a role in a host of cognitive and neural processes, such as motor performance, learning and memory, and neural development. In support of this possibility, recent neurophysiological studies have shown that the activity of individual neurons is similar across spontaneous and stimulus-driven brain states and a recent transcranial magnetic stimulation study suggested the same. This similar activity has motivated a number of hypotheses about the mechanism by which spontaneous neural activity contributes to cognition.

The neurophysiological evidence from single neurons has been complemented by findings from neuroimaging studies that have revealed a correspondence between spontaneous and stimulus-driven states regarding the spatial structure of large-scale functional networks, consistent with the idea that the brain has an intrinsic functional architecture. This spatial correspondence has been based on interregional correlations of spontaneous, slow fluctuations in the brain’s hemodynamic activity (< 0.1 Hz) with some evidence that these fluctuations may be associated with gamma band electrophysiological activity (30 Hz) or that the precise frequency associated with these slow fluctuations differ across the brain. However, it is unknown whether the frequency bands associated with interregional synchrony during stimulus-driven and spontaneous states of these large-scale interactions are related.

Current evidence suggests that stimulus-driven interregional synchrony is associated with temporal dynamics in a broad range of frequency bands (here termed “oscillatory synchronization”) that may vary as a function of task and brain network. For example, spatial navigation tasks modulate hippocampal neuronal synchrony in the theta frequency band (4–8 Hz), and median nerve stimulation modulates neural synchrony in the somatosensory cortex in the beta frequency band (13–30 Hz). Here we test the hypothesis that the frequency bands associated with stimulus-driven oscillatory synchronization between specific neural regions are also characteristic of their spontaneous synchrony.

Results

We used magnetoencephalography (MEG) to compare stimulus-driven and spontaneous oscillatory phase locking, a measure of the precise temporal synchronization of neural signals, in somatosensory and auditory regions. The regions chosen for phase locking analysis were in different hemispheres of the brain and further than 6 cm apart to avoid potential artifactual crosstalk that occurs between relatively proximal locations in MEG. Data for evaluating stimulus-driven oscillatory synchrony in the somatosensory regions were obtained by having...
subjects (N = 10) perform a cued bimanual button press task (see figure 1A for an example event related response to button press). Phase locking was calculated between a region in the right hemisphere primary somatosensory cortex (RS1) and the left hemisphere secondary somatosensory cortex (LS2) identified via analysis of the data from 0–150 ms after the onset of the button press (figure 1A; synchrony between RS1 and LS1 could not be reliably evaluated because they are less than 6 cm apart). Data for evaluating stimulus-driven oscillatory synchrony in the auditory cortices were obtained while subjects passively listened to clicks (15, 20, 30, or 40 Hz, 500 ms duration, interstimulus interval = 1.5 sec) delivered binaurally (see figure 1B for an example event related response to auditory clicks). Phase locking was calculated between left and right hemisphere primary auditory cortices (LAud and RAud), identified via analysis of the passive listening data averaged across all frequency conditions (figure 1B). Data for evaluating spontaneous oscillatory synchrony were obtained by having subjects fixate a centrally located cross for 12 minutes prior to their participation in the button press or passive listening task. Spontaneous phase locking was evaluated between the aforementioned interhemispheric somatosensory and auditory sites during the passive fixation period. All statistical values between the aforementioned interhemispheric somatosensory and passive listening task. Spontaneous phase locking was evaluated cross for 12 minutes prior to their participation in the button press or the right index finger (left hemisphere image). Noise normalized, dynamical statistical parametric mapping images are plotted. The regions chosen for LM1, S1, and S2 are labeled.

Figure 1 | (A) Single subject example of the event related fields following a button press with the left index finger (right hemisphere image) or the right index finger (left hemisphere image). Noise normalized, dynamical statistical parametric mapping images are plotted. The regions chosen for LM1, S1, and S2 are labeled. (B) Single subject example of the event related fields during passive listening to auditory clicks. The regions chosen for LAud and RAud are labeled.

Figure 2 | Stimulus-driven and spontaneous synchronization between left and right hemisphere somatosensory cortices. (A) Phase locking between RS1 and LS2 with respect to frequency during a cued button-press task. The phase locking during the button-press and during the period prior to presentation of the button-press cue (pre-stimulus baseline) is shown. Significantly greater phase locking was seen during the button-press compared to the pre-stimulus baseline period only in the high beta frequency range (20–28 Hz indicated by the grey bar above the data). (B) Stimulus-driven phase locking between RS1 and LS2 and between RM1 and LS2 (control pair) with respect to frequency. RM1-LS2 were chosen as the control pair because their Euclidean distance is the same as between the RS1-LS2 pair of interest. Significantly greater phase locking was seen for RS1-LS2 versus noise and RM1-LS2 control pair regions only in the high beta frequency range (22–30 Hz indicated by the grey bar above the data).
Slow fluctuations of spontaneous synchrony. These findings establish that the frequencies associated with enhanced, interhemispheric neural synchrony between somatosensory regions due to proprioception during a motor task, and between auditory cortices when listening to clicks, are also critical to spontaneous synchrony within these systems. To address whether our findings might be related to the slow fluctuations (< .1 Hz) of correlated activity seen in neuroimaging studies of spontaneous functional connectivity, we examined the rate at which these relatively high frequency inter-regional synchronization varied over time. Specifically, we used a Fourier analysis to examine the rate of change over time of the phase locking at the target frequency of both interhemispheric interactions (figures 4A and 4C). For the two pairs of regions, RS1-LS2 and RAud-LAud, a greater amount of the change over time of the high beta and alpha phase locking, respectively, was accounted for by lower frequencies than higher frequencies, with the lowest frequencies (e.g., .1 Hz) accounting for the most variability (RS1-LS2: mean R = .52, t = 5.62, p < .001; figure 4B; RAud-LAud: mean R = .60, t = 13.44, p < .001; figure 4D). Thus, spontaneous interregional synchronization between these brain areas is characterized by very slow fluctuations of higher frequency oscillations. Critically, these higher frequency oscillations are the same for stimulus-driven and spontaneous synchrony.

One question is whether these slow fluctuations of higher frequency phase locking are primarily driven by the regions slowly coupling and decoupling or whether they are governed by increases and decreases in local activity. While increases and decreases in local activity do not directly affect phase locking, they modulate the magnitude of phase locking.
signal-to-noise ratio, which does affect measures of phase locking35,36. To address this question we examined the correlation over time between local power and phase locking. A significant correlation was seen between RS1 power and RS1-RS2 phase locking at 24 Hz (mean R = .17, t = 8.32, p < .001), RS2 power and RS1-RS2 phase locking at 24 Hz (mean R = .13, t = 3.23, p < .05), RAud power and RAud-LAud phase locking at 10 Hz (mean R = .12, t = 3.14, p < .05), and LAud power and RAud-LAud phase locking at 10 Hz (mean R = .20, t = 16.4, p < .001). Additionally, the RS1 and RS2 power-phase locking correlations were significantly greater at 24 Hz than at 18 Hz (p < .01 in both cases) and the RAud and LAud power-phase locking correlations were significantly greater at 10 Hz than at 20 Hz (p < .005 in both cases). Finally, it should be noted that the power correlation between RS1 and LS2 at 24 Hz was not significantly larger than at 18 Hz (t = 1.91, p = .09) nor was the power correlation between RAud and LAud at 10 Hz significantly larger than at 20 Hz (t = 2.03, p = .07), though both showed a trend towards significance. These results demonstrate that some of the fluctuations over time of the interregional phase locking can be explained by increases and decreases in the local power in the respective areas. However, the correlation coefficients do not exceed .20, indicating that these local changes do not explain a substantial proportion of the variance (< 5%) of the phase locking over time. Thus, our results suggest that RS1-RS2 and RAud-LAud slowly go in and out of synchrony during the spontaneous state at 24 Hz and 10 Hz respectively, at least partially independent of local activity changes.

Discussion

Our results suggest that activity in the same frequency bands underlies interregional synchrony for both stimulus-driven and spontaneous brain states. Specifically, increased interhemispheric phase locking in the beta frequency band between RS1 and LS2 and in the alpha frequency band between RAud and LAud was associated with somatosensory and auditory response respectively. Furthermore, interhemispheric phase locking in these same frequency bands was characteristic of spontaneous communication between these regions. This correspondence between stimulus-driven and spontaneous oscillatory synchronization suggests that the dynamics are not purely state dependent, appearing and disappearing as needed. Rather, our results suggest that the dynamics at these frequencies are intrinsic to these interregional interactions.

In support of the hypothesis that frequency specific synchrony is intrinsic to interregional interactions, physiology and neural modeling suggests that relatively stable properties of neural regions, such as different conduction delays between brain regions and other network properties can guide oscillatory dynamics35,40. One putative role for these intrinsic dynamics is to allow for dynamic control over how and where information is gated36,41. Further studies will be required to determine whether frequency specific oscillatory dynamics extend beyond interhemispheric coupling of early sensory cortices. The present results suggest that interacting brain regions spontaneously synchronize in particular frequency bands and that stimulus-driven activity increases the interregional synchrony at that frequency. These intrinsic oscillatory dynamics are generally consistent with the hypothesis that stimulus-driven activity can be described as a perturbation of the ongoing, spontaneous electrophysiological brain activity41,42. Most previous studies have examined these perturbations relative to the prestimulus period (i.e. in the context of the task or stimulus). The similarity between the prestimulus baseline and the spontaneous activity seen in the present results extend this framework beyond a task or stimulus context to the resting-state. Furthermore, most previous studies have examined these perturbations in local neural activity13,43. Our results suggest that a similar mechanism may underlie interregional synchrony at the intrinsic oscillatory frequencies described here.

This is not meant to imply that all types of oscillatory synchrony are intrinsic to particular brain interactions. For example, gamma frequency dynamics are seen ubiquitously throughout the brain. Gamma synchrony is associated with distinct cognitive states such as attention44, learning45, and working memory46, processes that inherently involve many brain networks. Thus, networks may be partly characterized by intrinsic oscillatory mechanisms while also being subject to transient or global oscillatory states. Indeed, dynamics in multiple oscillatory frequencies can exist within networks and often interact with one another, leading to frequency nesting and cross-frequency interactions47,48.

It is unclear how the present results relate to previous reports emphasizing the role of gamma band oscillations in slow spontaneous activity49,50 because these previous studies did not directly compare stimulus-driven and spontaneous synchrony as was done here. The present results demonstrate that the spontaneous state is characterized by slow changes in higher frequency synchrony, and that these higher frequency dynamics are similar in stimulus-driven and spontaneous states. At long time-scales, this result is consistent with neuroimaging studies showing that spontaneous activity is characterized by slow fluctuations of correlated activity13,33,35,42. At relatively brief timescales (on the order of hundreds of milliseconds), this result is also consistent with neurophysiological evidence in animals that show a marked similarity between the temporal structure of spontaneous and stimulus-driven activity at the spatial scale of individual neurons and at the temporal scale of milliseconds49,50. Accordingly, the present work bridges the gap between these previously disparate human neuroimaging and animal neurophysiology studies.

Although our data do not address the function of ongoing neural synchrony, one intriguing possibility is that it provides stability to the interregional interactions that underlie brain networks41. Consistent with this idea, recent modeling work demonstrates that interregional synchronization can improve a network’s resilience against the potentially destabilizing effects of noise49. Therefore, sustained oscillatory synchrony may be a way for nodes of a neural network to resist noise in order to maintain coherence and stabilize the information represented in that network.

The present data demonstrate that spontaneous interregional synchrony slowly varies over time (i.e. non-stationarity). These results are generally consistent with previous MRI51,52, MEG19,20, and intercranial EEG16–18 studies showing similar effects. These previous results have looked primarily at whether interregional correlations between the overall level of activity fluctuated over time (though53 examined slow changes in phase coupling using fMRI as well). Our results demonstrate that the relative phase of the regions also fluctuates slowly over time, with the phase of RS1-RS2 and RAud-LAud slowly coupling and decoupling over the spontaneous period. Furthermore, these changes in phase locking were at least partially independent of local changes in the power of the activity within these regions.

One potential limitation of these data is that the RS1-LS2 stimulus-related synchrony relies on somatosensory proprioception during a motor task. This task may confound motor and somatosensory activity and is not well matched to the passive auditory task used to examine RAud-LAud synchrony. However, previous studies using passive median nerve stimulation have reported increased synchrony specific to the beta-band in these tasks22,23, which is consistent with the present results despite the very different tasks. Additionally, it is not clear if the stimulus-related increases in synchrony between RS1-LS2 and RAud-LAud were due primarily to increased coupling between these regions or due to local changes in activity that result from the stimulus35,44. Neither of these two possibilities would obviate the importance of the relevant frequencies to interregional communication, but they would affect the interpretation of how changes in the phase locking at these frequencies result from stimulus processing. In order to definitively resolve this ambiguity between interregional...
coupling and local power, new methods will need to be developed and tested to assess phase locking independent of local power changes. Finally, we only compared stimulus-driven and spontaneous synchrony in two, relatively low-level sensory systems. Further studies will be required to determine whether the frequency correspondence between spontaneous and stimulus driven activity is a general property of the brain, particularly for higher-level networks.

Our findings provide evidence that, at the level of large-scale neural interactions, spontaneous neural synchrony has a coherent temporal structure, with the nodes of different networks showing preferential biases for interacting within limited frequency bands. They further suggest that frequency-specific oscillatory dynamics are intrinsic to the interactions between the nodes of these brain networks. These dynamics can potentially be tied to specific biological and functional properties of neurons and networks. Therefore, a better understanding of intrinsic dynamics and how they are altered in pathological conditions may yield critical insights into the mechanisms behind spontaneous oscillatory synchrony and abnormalities of functional connectivity.

Methods

Subjects. A total of 15 individuals participated in the experiments. One subject was excluded due to unusually large cardiac and respiratory artifacts and another subject was excluded due to head movement in excess of 0.5 cm, thus 13 subjects were included in the analysis (8 males, mean age = 27.3, SD = 8.1). Of these 13 subjects, seven individuals participated in both of the stimulus-driven experiments and six individuals participated in just one of the two stimulus-driven experiments (a total of 10 subjects in each experiment). Spontaneous activity was recorded from all subjects. All subjects were naive to the goals of the study. The Institutional Review Board of the National Institutes of Health approved all procedures and written informed consent was obtained for each subject.

Recording. Neuramagnetic responses were recorded at 600 Hz using a 275 channel whole head MEG system in a shielded room (VSM MedTech, Ltd., Canada). The magnetometer is equipped with 275 radial gradiometers (273 were functional) and 275 axial gradiometers. Each radial gradiometer measures the time difference between the two orthogonally oriented perpendiculars to the cortical surface, we used a loose orientation constraint. This transforms power values into dynamic statistical parametric maps (dSPM) and makes the point spread function of the estimated signal relatively uniform across cortical dipole locations. For ROI localization these dSPM values are used to describe the neural activity.

ROI localization. To localize LH primary motor cortex (LM1) and LH secondary somatosensory cortex (LS2), the locus of peak activity about the central sulcus occurring for activity averaged from 0 to 150 ms after subjects pressed the button with their left hand was calculated. This time period was chosen because the neural activity at this time includes somatosensory activity in response to proprioception of the button press. To localize LM1 and LS2, the peak of activity about the central sulcus occurring for activity averaged from 0 to 150 ms after subjects pressed the button with their right hand was calculated. The portion of this activity anterior to the central sulcus, but posterior to the superior frontal gyrus and middle frontal gyrus, was used as the location of LM1 and the portion of the activity just ventral to the central sulcus extending into the dorsal insula, was used as the location of LS2 for each subject. This time period was chosen to correspond approximately to the proprioception in response to the button press. The portion of this activity anterior to the central sulcus was used as the location of the RM1 and the portion of this activity posterior to the central sulcus was used as the location of RS1 for each subject. Synchrony between RS1 and LS1 or between RS1 and RS2 could not be reliably evaluated due to the potential for artificial cross-talk between locations less than 6 cm apart in MEG.

To localize LH and RH auditory cortex (LAud and RAud), the activity between 500 and 550 ms after the onset of the auditory clicks was averaged. The peak of the activity within a 2 cm radius circle on the surface around Heschl’s gyri (determined based on anatomical landmarks provided by Freesurfer) was used as the location of the LAud and RAud ROI for each subject.

Stimulus-driven phase locking analysis. To determine the trial-by-trial phase locking between neural regions, we employed the dynamic spectral statistical

Cardiac artifacts were removed using an independent component analysis-based procedure following Liu et al. Briefly, the MEG sensor data were decomposed into 273 independent components (ICs) using EEGLAB. ICs were identified as being a cardiac artifact if the IC had a peak in its autocorrelation spectrum between 6.6-1.5 Hz (by observing whether there were regular peaks in the autocorrelation every 667-1667 ms), the IC had a timecourse that contained periodic features that were similar to those seen on an electrocardiogram, and had power in the MEG sensors that typically contain cardiac features. Across our subjects, between 1 and 3 cardiac ICs were rejected and the remaining ICs were reassembled for further processing.

To monitor ocular muscle activity we measured EOG along with the MEG measurements. The EOG timecourses were pseudo-Z transformed into standard deviation (SD) units (by subtracting the mean across the epoch and dividing by the SD). These data were visually inspected and the minimum size of each subject’s eye blinks in these units was determined (mean = 1.67 [in SD units], min 1.5, max 2.0). Centered around each peak that exceeded these thresholds, the data 300 ms before and 500 ms after these points were excluded from further analysis (on average this removed 1200 ms per eye blink). These additional windows of data were excluded so that sufficient pre- and post-artifact data were removed to ensure no artifacts remained in the analyzed timecourses. These conservative thresholds and windows removed on average 38% of the time points across subjects, leaving 7.4 minutes of artifact-free data on average. Note that simulations demonstrate that the discontinuities in the data created by this artifact removal procedure do not substantially affect the calculated phase locking above 3 Hz.

Inverse solution. The exact location of the cortical current sources cannot be precisely determined using the measured magnetic fields from outside the head, and therefore it is estimated using cortically constrained minimum norm estimate (MNE), which minimizes deviations between the measured magnetic field and the model predicted magnetic field, subject to constraints on the current density in the cortex. The MNE is a weighting factor that is used to avoid the magnification of errors in the data and \(\lambda = (1/SNR) \). We used a value of 3 for this, as it was done in MEG analysis (Hamalainen, MNE software user’s guide version 2.7, 2009). Furthermore, because cortical neurons are known to be preferentially oriented perpendicular to the cortical surface, we used a loose orientation constraint. Specifically, the component of R normal to the surface was multiplied by 1 and the components transverse to the surface was multiplied by 4. To compensate for the bias towards superficial currents of the MNE a scaling factor (i.e. depth weighting) of 8 is applied to R. The noise covariance matrix was calculated from 12 minutes of continuous empty room MEG measurements collected immediately prior to putting the subject in the scanner.

To estimate the time course and statistical significance of the cortical MEG activity, noise normalized values were calculated at each time point and each dipole location.

This transforms power values into dynamic statistical parametric maps (dSPM) and makes the point spread function of the estimated signal relatively uniform across cortical dipole locations. For ROI localization these dSPM values are used to describe the neural activity.

ROI localization. To localize LH primary motor cortex (LM1) and LH secondary somatosensory cortex (LS2), the locus of peak activity about the central sulcus occurring for activity averaged from 0 to 150 ms after subjects pressed the button with their left hand was calculated. This time period was chosen because the neural activity at this time includes somatosensory activity in response to proprioception of the button press. To localize LM1 and LS2, the peak of activity about the central sulcus occurring for activity averaged from 0 to 150 ms after subjects pressed the button with their right hand was calculated. The portion of this activity anterior to the central sulcus, but posterior to the superior frontal gyrus and middle frontal gyrus, was used as the location of LM1 and the portion of the activity just ventral to the central sulcus extending into the dorsal insula, was used as the location of LS2 for each subject. This time period was chosen to correspond approximately to the proprioception in response to the button press. The portion of this activity anterior to the central sulcus was used as the location of the RM1 and the portion of this activity posterior to the central sulcus was used as the location of RS1 for each subject. Synchrony between RS1 and LS1 or between RS1 and RS2 could not be reliably evaluated due to the potential for artificial cross-talk between locations less than 6 cm apart in MEG.

To localize LH and RH auditory cortex (LAud and RAud), the activity between 500 and 550 ms after the onset of the auditory clicks was averaged. The peak of the activity within a 2 cm radius circle on the surface around Heschl’s gyri (determined based on anatomical landmarks provided by Freesurfer) was used as the location of the LAud and RAud ROI for each subject.

Stimulus-driven phase locking analysis. To determine the trial-by-trial phase locking between neural regions, we employed the dynamic spectral statistical

\[W = RA^\dagger(AR^\dagger + Z^2C)^{-1} \]

where C and R are the noise and source covariance matrices respectively. A defines the transformation from orthogonal unit current dipoles to measured magnetic fields and uses the boundary element method. \(\lambda \) is a weighting factor that is used to avoid the magnification of errors in the data and \(\lambda = (1/SNR) \). We used a value of 3 for this, as it was done in MEG analysis (Hamalainen, MNE software user’s guide version 2.7, 2009). Furthermore, because cortical neurons are known to be preferentially oriented perpendicular to the cortical surface, we used a loose orientation constraint. Specifically, the component of R normal to the surface was multiplied by 1 and the components transverse to the surface was multiplied by 4. To compensate for the bias towards superficial currents of the MNE a scaling factor (i.e. depth weighting) of 8 is applied to R. The noise covariance matrix was calculated from 12 minutes of continuous empty room MEG measurements collected immediately prior to putting the subject in the scanner.

To estimate the time course and statistical significance of the cortical MEG activity, noise normalized values were calculated at each time point and each dipole location. This transforms the power values into dynamic statistical parametric maps (dSPM) and makes the point spread function of the estimated signal relatively uniform across cortical dipole locations. For ROI localization these dSPM values are used to describe the neural activity.
parametric mapping method, a method to measure phase synchrony between signals projected onto the cortical surface. This method employs the anatomically constrained MNE inverse solution to determine phase locking values (PLVs) between regions on the cortical surface.

To calculate PLVs, the MEG sensor data were filtered using a continuous Morlet wavelet transform at each frequency of interest described by the equation:

$$G(f_t) = \frac{1}{\sqrt{2nf}} e^{-\frac{n^2 t^2}{2f^2}}$$

where n is the SD of the Gaussian envelope of the wavelet in the time domain. To ensure stability of the wavelet transform here we set $n = \frac{7}{2f}$. The wavelet representation of each trial was then mapped from the sensors onto the cortex using the MNE inverse solution. The phase was then extracted from the wavelet data averaged across all dipoles in each region of interest for each trial about each time point and at each frequency of interest. Prior to averaging, the phases were rectified to correct for the sign inversion that occurs within large ROIs for due to crossing a sulcus or gyrus. Specifically, we iteratively flipped the sign of the dipoles in an ROI until no pair of dipoles showed negative correlations ($r < -3$). The PLV was then determined using the following formula:

$$PLV(t) = \frac{1}{N} \sum_{i=1}^{N} \exp \left(i \phi_i(t-n) - i \phi_i(n) \right)$$

where N is the number of time points in the sample and $\phi_i(n)$ and $\phi_i(t-n)$ are the phase of the wavelet convolved data in the seed ROI and the cortical locations “I” respectively. Spontaneous PLVs were scaled by the PLV found in empty room noise as described in Ghuman et al. 2011.

The Fourier spectrum of spontaneous phase locking. To assess the rate of change of the spontaneous phase locking, we first calculated the phase locking in 1 second, half-overlapping windows (i.e., the N in the equation above was 1 second for each window) to across the artifact free portion of the 12 minute spontaneous activity scan (e.g., figures 4a and 4c). This yielded a timecourse of the PLVs over the spontaneous activity scan. We then calculated the Fourier spectrum of this PLV timecourse in MatLab. 24 Hz was chosen for the RS1-LS2 interaction (18 Hz was chosen as a control frequency) and 10 Hz was chosen for the RAud-LAud interaction (20 Hz was chosen as a control frequency) because these were the frequencies that showed the greatest spontaneous phase locking relative to baseline (see figures 2b and 3b). The procedure above was then performed on 1000 simulations of Gaussian distributed random data to estimate the time-windowed PLVs and Fourier spectra in noise. The fit of the Fourier spectrum of the resting-state and noise PLV timecourses to a line and a 1/f curve using a least squares fit was determined.

In addition to calculating the phase locking in these windows, we calculated the local power in RS1 and LS2 at 24 and 18 Hz, and RAud and LAud at 10 and 20 Hz by taking the absolute value of the wavelet transformed response in each region. We then calculated the correlation between these local power time courses and the phase locking time courses described in the previous paragraph. This allowed us to examine the potential effect of local power changes over time on the interregional phase locking.

Statistics. Nonparametric statistics were then used to compare conditions and control for multiple comparisons. All the frequency points that were $p < .05$ for the prestimulus vs. the poststimulus periods were determined and clustered on the basis of frequency adjacency. Cluster level statistics were calculated by determining the sum of the t-values within each cluster (cluster mass) and the maximum cluster mass across the data was determined. Permutations were then created by collecting the data from the prestimulus and task conditions across the 10 subjects in a single set. Half of these collected trials were placed into subset one and the remaining were placed into subset two. The maximum cluster mass was then determined for all possible permutations of the data (2^20 partitions for 10 subjects). The proportion of these permutations that had a smaller maximum cluster mass than the non-permuted data was the p-value calculated using a complete permutation test. Because of the global null hypothesis used for the cluster mass test, this method inherently controls for multiple comparisons.

For the spontaneous phase locking analysis, two partitions were based on the ROI pair of interest and the control ROI pair comparison (i.e. for the first experiment, RS1-LS2 were the ROI pair of interest and RM1-LS2 was the control ROI pair, for the second experiment LAud-RAud were the ROI pair of interest and LM1-RAud were the control ROI pair). All the frequency points that were $p < .05$ for two separate criteria were determined: 1. the ROI pair of interest vs. the control 2. the ROI pair of interest vs. the PLV for the ROI pair of interest in noise. These frequency points were then clustered on the basis of frequency adjacency and the rest of the statistics followed the procedure laid out above.

1. Fox, M. D., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56, (2007).
2. Carr, M. F., Jadav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nature Neuroscience 14, 147–151 (2011).
3. Blankenship, A. G. & Feller, M. B. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Rev Neurosci 11, 18–29 (2010).
4. Bokes, P., Orban, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal intermediate model of the environment. Science 331, 83–87 (2011).
5. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).
6. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003).
7. Luczak, A., Bartho, P. & Harris, K. D. Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations. Neuron 62, 413–425 (2009).
8. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286, 1943–1944 (1999).
9. Rosanova, M. et al. Natural frequencies of human corticothalamic circuits. Neuroimage 29, 7679–7685 (2009).
10. Fiser, J., Berkes, P., Orban, G. & Lengyel, M. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci 14, 119–130 (2010).
11. Lakatos, P. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophys 94, 1904–1911 (2005).
12. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, S. J. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34, 537–541 (1995).
13. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev Neurosci 8, 700–711 (2007).
14. Simmons, W. K. & Martin, A. Spontaneous resting-state BOLD fluctuations reveal persistent domain-specific neural networks. Soc Cogn Affect Neurosci 7, 467–475 (2012).
15. Vincent, J. L. et al. Intrinsic functional architecture in the anesthetized monkey brain. Nature 447, 83–86 (2007).
16. He, B. J., Snyder, A. Z., Zemel, J. M., Smyth, M. D. & Raichle, M. E. Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A 105, 16039–16044 (2008).
17. Leopold, D. A., Murayama, Y. & Logothetis, N. K. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13, 422–433 (2003).
18. Nir, Y. et al. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11, 1100–1108 (2008).
19. de Pasquale, F. et al. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74, 753–764 (2012).
20. Hipp, J. F., Hawelde, D. J., Corbetta, M., Siegel, M. & Engel, A. K. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nature Neuroscience (2012).
21. Montgomery, S. M., Betancur, M. J. & Buusaki, G. Behavior-dependent coordination of multiple theta dipoles in the hippocampus. J Neurosci 29, 1391–1394 (2009).
22. Lin, F. H. et al. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain. Neuroimage 23, 582–595 (2004).
23. Simoes, C., Jensen, O., Parkkonen, L. & Hari, R. Phase locking between human primary and secondary somatosensory cortices. Proc Natl Acad Sci U S A 100, 2691–2694 (2003).
24. Ghuman, A. S., McDaniel, J. R. & Martin, A. A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in MEG. Neuroimage (2011).
25. Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum Brain Mapp 8, 194–208 (1999).
26. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG and MEG data. J Neurosci Methods 164, 177–190 (2007).
27. Faken, S. N., Kilner, J. M., Linen, R. N. The role of synchrony and oscillations in the motor output. Exp Brain Res. 128, 109–117 (1999).
28. Baker, S. N., Olivier, E. & Lemon, R. N. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501 (Pt 1), 225–241 (1997).
29. Roopun, A. K. et al. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U. S. A. 103, 15646–15650 (2006).

30. Salmelin, R. & Hari, R. Spatiotemporal characteristics of sensorimotor neuronal magnetic rhythms related to thumb movement. Neuroscience 60, 537–550 (1994).

31. Lehtela, L., Salmelin, R. & Hari, R. Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex. Neurosci Lett 222, 111–114 (1997).

32. Schurmann, M., Basar-Eroglu, C. & Basar, E. A possible role of evoked alpha in primary sensory processing: Common properties of cat intracranial recordings and human EEG and MEG. Int J Psychophysiol 26, 149–170 (1997).

33. van Dijk, H., Nieuwenhuis, I. L. C. & Jensen, O. Left temporal alpha band activity increases during working memory retention of pitches. European J Neurosci 31, 1701–1707 (2010).

34. Brookes, M. J. et al. Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad. Sci U. S. A. 108, 16783–16788 (2011).

35. Ghuman, A. S., McDaniel, J. R. & Martin, A. Differences in connectivity or differences in signal-to-noise ratio? In Organization for Human Brain Mapping (San Francisco, 2009).

36. Muthukumaraswamy, S. D. & Singh, K. D. A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power. Clin Neurophysiol 122, 2324–2325 (2011).

37. Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A 97, 1867–1872 (2000).

38. Kopell, N., Kramer, M. A., Malerba, P. & Whittington, M. A. Are different rhythms good for different functions? Front Hum Neurosci 4, 187 (2010).

39. Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23, 216–222 (2000).

40. Ilmoniemi, R. J. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988).

41. Roopun, A. K. et al. Cholinergic neuromodulation controls directed temporal communication in neocortex in vitro. Front Neural Circuits 4, 8 (2010).

42. Sauseng, P. et al. Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion. Neuroscience 146, 1435–1444 (2007).

43. Makeig, S. et al. Dynamic brain sources of visual evoked responses. Science 295, 690–694 (2002).

44. Friess, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).

45. Jutras, M. J., Friess, P. & Buffalo, E. A. Gamma-band synchronization in the macaque hippocampus and memory formation. J Neurosci 29, 12521–12531 (2009).

46. Tallon-Baudry, C., Bertrand, O. & Fischer, C. Oscillatory synchrony between macaque hippocampus and memory formation. J Neurosci 29, RC177 (2001).

47. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).