C$_{60}$ as fine fillers to improve poly(phenylene sulfide) electrical conductivity and mechanical property

Maliang Zhang, Xiaotian Wang, Yali Bai, Zhenhuan Li & Bowen Cheng

Electrical conductive poly(phenylene sulfide) (PPS)/fullerene (C$_{60}$) composites were prepared by 1-chloronaphthalene blending method, and the interface effects of C$_{60}$ and PPS on PPS/C$_{60}$ properties were characterized. C$_{60}$ is an excellent nanofiller for PPS, and 2 wt% PPS/C$_{60}$ composite displayed the optimal conductivity which achieved 1.67×10^{-2} S/cm. However, when C$_{60}$ concentration reached 2 wt%, the breaking strength and tensile modulus of PPS/C$_{60}$ fiber achieved maximum 290 MPa and 605 MPa, and those values were 7.72 and 11.2 times as that of pure PPS. The excellent conductive and mechanical properties of PPS/C$_{60}$ were attributed to the heterogeneous nucleation of C$_{60}$ during PPS crystallization, formation of a large number of covalent bond by main C$_{60}$-thiol adducts and minor C$_{60}$-ArCl alkylation between C$_{60}$ outer surface and PPS matrix. At the same time, PPS/C$_{60}$ thermal properties were also investigated.

Fullerene/polymer composites have recently attracted considerable attention from the materials research community. It has been shown that the incorporating fullerene or its derivatives into a polymer matrix could significantly improve its photovoltaic, electromechanical and thermomechanical properties. The literature already identified several techniques to blend fullerene with polymers, and the properties of fullerene/polymer composites are closely related to the morphologies of the polymers formed during melt or solution processing. Chemical functionalization of fullerenes is often performed to increase the miscibility of fullerenes with host polymers, but the chemical functionalization method makes fullerenes lose certain original precious properties, which resulted in chemical attachment of fullerenes to a polymer is not always the most effective method for getting high performance composite materials, despite a number of fullerene-attached polymers have been successfully synthesized in the past.

PPS is widely used in practice due to its excellent properties, such as chemical resistance, low coefficient of friction, mechanical behaviors, dimensional stability and electrical property. To improve the performance of PPS, the nanofiller-reinforced composites require homogenous filler dispersion and good interfacial adhesion with the host matrix. Attaching functional groups onto the filler surface has been proven to be an effective approach to prepare polymer composites, and another effective method is wrapping fillers by organic molecules to provide the π-π stacking interactions between PPS matrix and nanofiller sidewalls. The conventional fillers included single-walled carbon nanotubes (SWCNTs), inorganic fullerene-like tungsten disulfide (IF-WS$_2$), SWCNT-IF-WS$_2$, functionalized SWCNTs and MWCNTs, nano particles of TiO$_2$, ZnO, CuO and SiC, nanoscale alumina particles, graphite, glass fiber, metal inorganic salt, nano-SiO$_2$, carbon and fiber, etc. However, it has been recently shown that the properties of PPS based composites hardly increase at low nanofiller loadings (up to 1 wt%) because of van der Waals attraction between C$_{60}$ and their large surface area, C$_{60}$ tend to form agglomerates during mixing with PPS by melt blending. Therefore, it is difficult to use the conventional method to disperse C$_{60}$ in the PPS matrix.

Herein, C$_{60}$ was selected as fillers to improve PPS electrical conductivity and mechanical property, and the influence of the 1-chloronaphthalene solution mixing method and subsequent melt process on filler dispersion, C$_{60}$ interfacial adhesion with PPS matrix and composite properties were investigated to correlate the microscopic structure with macroscopic properties.
Experimental

Materials and reagents. C60 powder (>99.9 wt/wt purity) was purchased from Puyang Yongxin Fullerene Co., Ltd, and used as received. PPS (Mw~3.3 × 10⁴, Mw/Mn~1.4 × 10⁴, d25°C~1.35 g/cm³, Tg~90°C, Tm~280°C) was synthesized from Na2S and 1,4-dichlorobenzene in N-methylpyrrole, and the end groups of synthesized PPS contained –SH and -PhCl. 1-chloronaphthalene (95%, Fluka) was purchased from J&K Chemical Co., Ltd and purified by distillation under reduced pressure before use.

Sample preparation. PPS (5 g) was dissolved in 100 ml of 1-chloronaphthalene at 205°C under nitrogen atmosphere. After that, a certain amount of C60 ranging from 0.5 to 10 wt% were loaded into PPS/1-chloronaphthalene solution at 205°C under mechanical agitation. PPS/C60 composites with 0.5 to 10 wt% nanofiller were obtained after removing 1-chloronaphthalene under vacuum condition. And then PPS and PPS/C60 composite fibers with diameters of 45~85 μm were prepared by melt spinning technology at 315°C.

Characterization and Measurement. Fourier transform infrared spectroscopy (FT-IR) spectra were obtained using Bruker IFS66 at room temperature. Thermo gravimetric analyzer (TGA) analysis was carried out on a NETZSCH STA 409 TG analyzer, and the rate of temperature increase was at 10°C/min. X-ray diffraction (XRD) data were obtained using an Elmer PHI-5600 instrument using a Mg Kα line as a radiation source and a D8 discover. The morphology of composites was characterized by a field emission scanning electron microscopy (FESEM, Hitachi 4800S, and Japan) and transmission electron micrographs (TEM, Hitachi H-7650 microscope). Differential scanning calorimetry (DSC) analysis was performed on a Perkin Elemer DSC-7 under nitrogen condition, and samples placed in aluminium pans were melted at 320°C and kept at this temperature for 5 min to erase their thermal history. Subsequently, they were cooled from the melt to room temperature and then heated again up to 320°C at a scan rate of 10°C/min. From the DSC heating and cooling traces, peak melting temperature (T_m), heat of melting (∆H_m), peak crystallization temperature (T_c) and heat of crystallize (∆H_c) were obtained. The degree of crystallinity (X_c) was calculated from the following equation:

\[X_c(\%) = \frac{\Delta H_c}{\Delta H_f(1 - W_f)} \times 100\% \] (1)

Where \(\Delta H_c \) is the cold crystallization enthalpy from the DSC scan, \(W_f \) is the weight fraction of C60 in composites, and \(\Delta H_f \) is the melting enthalpy of 100% crystallized PPS which was taken as 105 J/g²₃.

Fiber diameter data were obtained using a KEYENCE VHX-1000 microscope at room temperature. The breaking strength (\(\delta_b \)), breaking elongation (\(\epsilon \)) and tensile modulus (MPa) were measured on single fiber strength tester (China LLY-06). Each sample was tested ten times to evaluate the average value. The breaking strength was calculated from the following equation:

\[\delta_b (\text{MPa}) = 4 \times \frac{F_b}{\pi d^2} \times 10^{-6} \] (2)

Where \(F_b \) is the maximum tension value, \(d \) is the fiber diameter. The breaking elongation was determined by the following equation:

\[\epsilon (\%) = \frac{L - L_0}{L_0} \] (3)

Where \(\epsilon \) is the breaking elongation, \(L \) is the length of fiber elongation, \(L_0 \) is the initial length of the fiber before test. The fiber tensile modulus (\(E \) MPa) was determined by the following equation:

\[E = \frac{\delta_b}{\epsilon} = \frac{4 F_b L_0}{\pi d^2 (L - L_0)} \times 10^{-4} \] (4)

Electrical conductivity of samples was measured by the four-point probe method using a Scientific Equipment device with a spacing probe \(S = 0.2 \text{ cm} \) equipped with a DC precision power source (Model LCS-02) and a digital microvoltmeter (Model DMV-001). The powder sample was filled into a test slot, then applying a pressure about 18 MPa. The electrical resistivity was calculated from the following equation:

\[\text{Electrical resistivity} = 2 \times \frac{\pi S \times (W/S) \times D \times (V/I)}{V} \] (5)

Where \(S \) is the distance of adjacent probe, \(W \) is the sample thickness, \(D \) is the position correction factor, \(V \) is the test voltage, I is the test current. Each sample has been tested ten times, and the electrical resistivity is the average value of 10 measurement. The electrical conductivity of samples was calculated through the following equations:

\[\text{Electrical conductivity} = \frac{1}{\text{Electrical resistivity}} \] (6)

Results

After C60 and PPS were dissolved in 1-chloronaphthalene, 1-chloronaphthalene evaporated under vacuum condition to obtain PPS/C60 composites, and the dispersion and alignment of C60 within the PPS matrix were characterized by TEM (Fig. 1). The dark and light areas correspond to nanofillers and PPS matrix, respectively. The image of C60 showed a homogeneous size distribution with average diameter around 300 nm, which revealed C60 was easily
agglomerated due to the strong van der Waals forces and intensive π-π stacking interactions among C60. However, the micrograph of 0.5–2 wt% C60/PPS composites indicated the aggregate C60 diameter decrease, and no voids or discontinuities are detected between the C60 outer surface and PPS matrix. The TEM micrograph of 0.5–2 wt% PPS/C60 fibers indicated that C60 was well dispersed into PPS matrix, however, when much more C60 was incorporated into PPS (such as 10 wt% PPS/C60), C60 formed agglomerates inside the PPS matrix. TEM observation showed that C60 were wrapped in PPS or covered by PPS layer and the heterogeneous dispersed bright dots with dimensions from 150–350 nm in 5 wt% and 10 wt% PPS/C60 composites were detected, indicating good adhesion between C60 and PPS.

Figure 2A shows the SEM micrograph of PPS as a blank example, and the SEM images of Fig. 2B,C,D indicated that almost no apparent C60 agglomerates were detected in 0.5 wt%, 1 wt% and 2 wt% PPS/C60 composites, due to C60 nanofillers further disaggregation within the polymer matrix during PPS/C60 melt-process. C60 nanofillers were randomly dispersed in the PPS matrix, occurring irregular crystal with dimensions from 20–50 nm when the content of C60 is less than 2 wt%. C60 nanofillers are difficult to disperse uniformly in PPS melt, therefore PPS can not well reinforced by C60 nanofillers in melt blending technology. However, C60 aggregates can be well dispersed in PPS matrix by solution blending method, in which the solvent plays a dual role in dispersing C60 and preventing C60 agglomeration. The heterogeneous dispersed bright dots with dimensions from 80–350 nm in 5 wt% and 10 wt% PPS/C60 composites were detected, which was attributed to C60 aggregates. Similar results can also be found through the cross-sectional SEM images of the composites in Fig. 3. For PPS/C60, 2 wt% C60 particles can be uniformly dispersed in PPS matrix, but further addition of 5 wt% C60 would cause the agglomeration of C60, as can be seen in Fig. 3e and f.

X-ray diffraction patterns of PPS/C60 composites were displayed in Fig. 4. The two diffraction peaks at 19.2° and 20.8° are corresponding to the (110) and (200) crystalline planes of the orthorhombic structure of PPS. And C60 shows characteristic peaks at 2θ = 10.9°, 17.2°, 20.8°, 21.8°, 28.2°, 30.8° and 32.7° arising from the (110), (220), (310), (220), (330), (420) and (330) crystalline planes of the orthorhombic unit cell, respectively. The C60 agglomerate peaks were hardly visible in the diffractograms of 0.5–2wt% composites, which suggested that C60 was well dispersed in PPS matrix. After 5 wt% C60 was introduced into PPS, the serious C60 agglomerate was clearly observed, and the crystal characteristic peaks of C60 shifted to lower 2θ values because C60 aggregates result in PPS lattice distortion. Moreover, composite peaks become broader with reduced intensity, indicating the structural order decline which induced by the incorporation of C60. These observations are consistent with the behaviors of SWCNTs and MWCNTs, where the local order of the polymer decreased after the grafting reaction.

As shown in Fig. 5, the main bands at 565, 615, 1218, 1470 and 1680 cm⁻¹ are characteristic absorption peak of C60. The phenyl groups of PPS exhibited the absorption peaks at 1628 and 1405 cm⁻¹, and the two bands at 1100 and 623 cm⁻¹ were attributed to aromatic C-S stretching vibrations. After PPS was reinforced by C60, C60 characteristic absorption peaks at 565 and 1475 cm⁻¹ band were still observed, which demonstrated the C60 successful incorporation into PPS matrix. However, C60 band at 1218 cm⁻¹ disappeared and a new peak at 1010 cm⁻¹ appeared, which implied the well C60 dispersion and C60-S formation (Fig. 6). Solvent could help the tangled
PPS molecular chain creeping and stretching in 1-chloronaphthalene, which effectively contributes to the well dispersion of C₆₀ in PPS matrix. Although the alkylation or acylation was an effective functionalization method for fullerene, herein a C₆₀-thiol adducts by reacting C₆₀ with the end group SH of PPS was easier to take place, and the covalent bond formation improved the C₆₀-matrix interfacial adhesion. It is general known that the formation of π-π stacking interactions can be characterized through the shift of –CH bond. It is clear that the C-H bond absorption peaks of PPS located at 808.7 and 818.8 cm⁻¹. In PPS/C₆₀ material, C-H vibration peak of PPS/C₆₀ remain unchanged, which indicated that there only existed a weak π-π stacking interactions between C₆₀ and PPS matrix.

In order to testify the existence of chain-extension reaction through the end-group reaction between PPS and C₆₀, PPS and PPS/C₆₀ molecular weight were characterized by HTGCP (Table 1). As C₆₀ content increased from 0.5 wt% to 2 wt%, PPS/C₆₀ composite molecular weight propagated from 3.30 × 10⁴ g·mol⁻¹ to 4.19 × 10⁴ g·mol⁻¹.

![Figure 2](image) SEM micrographs of cryogenically fractured melt-processed PPS/C₆₀ with different weight fractions of C₆₀ (a) PPS; (b) 0.5 wt%; (c) 1 wt%; (d) 2 wt%; (e) 5 wt%; (f) 10 wt%.

![Figure 3](image) Cross-sectional SEM micrographs of cryogenically fractured melt-processed PPS/C₆₀ with different weight fractions of C₆₀ (a) PPS; (b) 0.5 wt%; (c) 1 wt%; (d) 2 wt%; (e) 5 wt%; (f) 10 wt%.
g·mol⁻¹, and polydispersity index (PDI) increased from 2.22 to 2.56. Only some PPS chains could interact with C₆₀ to lead to the longer polymer chains. However, when C₆₀ content reached 5 wt%, 5 wt% PPS/C₆₀ composite molecular weight declined to 3.71 × 10⁴ g·mol⁻¹. The deviation could be attributed to much more the low molecular weight C₆₀ loading. A similar result was previously reported by Peng, K. J. & Liu, Y. L. 41. HTGPC characterized results suggested some covalent bond formation between PPS and C₆₀ through the C₆₀-thiol adducts and C₆₀-ArCl alkylation.

The crystallization and melting behavior of composites were investigated (Fig. 7), and the calorimetric parameters derived from non-isothermal DSC scans were listed in Table 2. As it can be observed, 0.5 wt% C₆₀ had less influence on PPS crystallization temperature (Tc) increase (Fig. 7a), and 0.5 wt% PPS/C₆₀ exhibited T_c of 217.2 °C with ΔH_c being 42.98 J/g. However, for 2 wt% PPS/C₆₀, T_c shifted to 227.6 °C with maximum ΔH_c being 48.23 J/g. AS for 5 wt% PPS/C₆₀, T_c increases to 223.8 °C with ΔH_c decline to 42.42 J/g. The further increase of C₆₀ concentration in composites slowed the mobility and diffusion of PPS chains, which led to a significant decline of PPS crystallization temperature. Those behaviors observed are in agreement with that reported by Jeon et al. 42. It was worthy of noting that 0.5 wt% PPS/C₆₀ could not well act as heterogeneous nucleating agent to accelerate PPS nucleation, which suggested that the intense restrictions on chain mobility are imposed by the C₆₀–polymer chemical interactions.

T_m shifted gradually to higher temperature with increasing C₆₀ content (See Fig. 7b and Table 2). 0.5 wt% PPS/C₆₀ exhibited T_m of 275.1 °C with ΔH_m being 41.50 J/g. As for 2 wt% PPS/C₆₀, T_m shifted to 277.3 °C with maximum ΔH_m being 44.10 J/g. While for 5 wt% PPS/C₆₀, T_m increased to 282.4 °C with ΔH_m decline to 40.14 J/g. In the case of 2 wt% PPS/C₆₀, both ΔH_m and ΔH_c achieve the maximum, and X_c reaches the maximum value 46.87%.
The TG curves for the pure PPS matrix and composites under inert atmospheres were shown in Fig. 8, and their characteristic degradation parameters were summarized in Table 3. PPS displayed a single degradation stage that starts (T_i) at 502 °C and exhibited the maximum weight loss (T_max) rate at 541.3 °C. At 800 °C, the residual mass was about 52.2% of the initial weight. Clearly, the addition of 0.5–2 wt% C_60 filler led to an improvement in the thermal stability of PPS matrix, and a maximum T_i increase (about 7 °C) was obtained at 2.0 wt% filler loading, and Tmax increment for 2.0 wt% PPS/C_60 was 5.5 °C. However, the significantly decline of T_i and Tmax was detected at 10 wt% C_60 loading, but the residual mass at 800 °C increased to 60.39% of the initial weight. Such results should be attributed to different factors. Firstly, C_60 fillers are better dispersed within PPS matrix, which restricts chain mobility or diffusion to slow down the decomposition process. Secondly, the covalent anchoring of PPS to C_60 leads to a strong enhancement in the thermal conductivity that facilitates heat dissipation within the composite. The reason for the thermal stability decline at 5 and 10 wt% C_60 loading might be attributed to the appearance of C_60 agglomerates.

Figure 9 shows single fiber morphology of each sample respectively. The characterized results suggested the diameter of fibers were 45.2 ± 0.8 μm, 40.5 ± 0.5 μm, 42.5 ± 1.0 μm, 64.3 ± 1.0 μm, 47.6 ± 1.0 μm and 87.2 ± 0.8 μm, respectively, changing with the content of C_60. The mechanical behavior of PPS/C_60 fibers was investigated by single fiber strength tester technique which provides additional information about filler-matrix and filler-filler interactions. Figure 10 showed the breaking strength, breaking elongation and tensile modulus of PPS/C_60 fiber. The results of mechanical property study indicated that the concentration of C_60 had a greater influence on the mechanical performance of composites. As C_60 nanofiller content increase, the breaking strength and tensile modulus of composites firstly increased and then decreased. When C_60 concentration reached 2 wt%, the breaking

Composites (wt%)	Mw (10^4 g·mol⁻¹)	Mn (10^4 g·mol⁻¹)	PDH
PPS	3.30	1.49	2.22
0.5	3.42	1.45	2.36
1	3.70	1.53	2.42
2	4.19	1.63	2.56
5	3.71	1.37	2.69
10	2.80	0.88	3.19

Table 1. Molecular weight and polydispersity index of different PPS.
strength and tensile modulus of composites achieved maximum 290 MPa and 605 MPa, and those value were 7.72 and 11.2 times as that of pure PPS, respectively. The breaking elongation of PPS/C60 composites always decreased with increasing C60 content (Fig. 10b). The excellent mechanical properties of PPS/C60 were attributed to the

Table 2. DSC traces for PPS and PPS/C60.

C60 content (wt%)	Tc (°C)	ΔHc (J/g)	Tm (°C)	ΔHm (J/g)	Xc (%)	ΔT (°C)
0	215.6	−49.11	272.5	43.43	46.77	38.7
0.5	217.2	−42.98	273.6	41.50	41.14	57.9
1	220.5	−44.22	275.6	42.10	42.54	55.6
2	227.6	−48.23	276.2	44.10	46.87	49.7
5	223.8	−42.42	282.4	40.14	44.89	61.7
10	221.7	−41.72	285.5	41.45	41.83	60.7

Figure 7. DSC thermograms obtained at a rate of 10°C/min: (a) DSC cooling curves of PPS/C60; (b) DSC heating curves of PPS/C60.

Figure 8. TG curves of PPS and PPS/C60.
heterogeneous nucleation of C$_{60}$ during PPS crystallization, the formation of a large number of covalent bond by C$_{60}$-thiol adducts and π-π stacking interactions between C$_{60}$ surface and PPS matrix. However, the excessive addition of C$_{60}$ caused a significant reduction of breaking strength, e.g., the breaking strength of 10 wt% C$_{60}$ composite declined to 148 MPa. The excessive addition of C$_{60}$ reduced PPS crystallization degree and decreased the combination between PPS and C$_{60}$, which were attributed to the phenomenon of C$_{60}$ aggregation. These results can also confirm by the SEM and TEM images of PPS/C$_{60}$ composites presented in Figs 1–2.

PPS is an insulating material (σ 10^{-16} S/cm), which limits its use in self-health monitoring, electro-actuation, etc32. Herein, C$_{60}$ was used as conductive fillers to improve PPS electrical conductivity and the electrical performance of PPS/C$_{60}$ composites were compared (Fig. 11). As C$_{60}$ nanofiller content increase, the electrical conductivity of

Figure 9. Micrographs of PPS/C$_{60}$ with different weight fractions of C$_{60}$ (a) PPS; (b) 0.5 wt%; (c) 1 wt%; (d) 2 wt%; (e) 5 wt%; (f) 10 wt%.

Figure 10. Mechanical properties of PPS/C$_{60}$ fiber with different addition amount of C$_{60}$: (a) breaking strength; (b) breaking elongation; (c) tensile modulus.
PPS/C₆₀ composites firstly increased and then decreased. When C₆₀ concentration reached 2 wt%, the electrical conductivity of composites achieved maximum 1.67 × 10⁻² S/cm, much higher than the value of pure PPS. The excellent electrical conductivity of 2 wt% PPS/C₆₀ composites was attributed to the well dispersed C₆₀ fillers, and the maximum conductive networks might be formed in the composite at appropriate C₆₀ content because of the conductive network formation. C₆₀ fillers are well dispersed in the PPS matrix owing to the covalent bond formation by main C₆₀-thiol adducts and minor C₆₀-ArCl alkylation between C₆₀ surface and PPS. However, the excessive addition of C₆₀ nanofillers caused a significant reduction of electrical conductivity, e.g., the electrical conductivity of 10 wt% C₆₀ composite declined to 3.79 × 10⁻³ S/cm, due to the phenomenon of C₆₀ aggregation.

Conclusions

PPS composites with well-dispersed C₆₀ had been prepared by solution co-blending method because solvent promotes the tangled PPS molecular chains creeping and stretching. The electrical conductivity value of 2 wt% achieved the maximum, and the excellent electrical conductivity of 2 wt% PPS/C₆₀ composites was mainly attributed to the covalent bond formation by main C₆₀-thiol adducts and minor C₆₀-ArCl alkylation between C₆₀ surface and PPS, but C₆₀ aggregation reduced composite electrical conductivity. Furthermore, 2 wt% C₆₀ could effectively increase PPS crystallization temperature, thermal stability and mechanical performance. However, the excessive C₆₀ loading reduced the PPS crystallization degree and caused C₆₀ re-aggregation, which led to poorer mechanical performance of PPS/C₆₀ composite.

References

1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C₆₀: Buckminsterfullerene. Nature 318, 162–163 (1985).
2. Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C₆₀: a new form of carbon. Nature 347, 354–358 (1990).
3. Giacalone, F. & Martín, N. Fullerene polymers: Synthesis and properties. Chem. Rev. 106, 5136–5190 (2006).
4. Lu, G., Li, L. & Yang, X. Creating a uniform distribution of fullerene C₆₀ nanorods in a polymer matrix and its photovoltaic applications. Small 5, 601–606 (2008).
5. Rajagopalan, M. & Oh, I. K. Fullerene-Based Electroactive Artificial Muscles Utilizing Biocompatible Polyetherimide. ACS Nano 5, 2248–2256 (2011).
6. Huang, X. D. & Goh, S. H. Interpolymer complexes through hydrophobic interactions: C-60-end-capped poly(ethylene oxide)/poly(methacrylic acid) complexes. Macromolecules 33, 8894–8897 (2000).
7. Coro, J., Suárez, M., Silva, L. S. R., Eguiluz, K. I. B. & Salazar-Banda, G. R. Fullerene applications in fuel cells: A review. Int. J. Hydrogen Energ. 41, 17944–17959 (2016).
8. Tannus, D. G. Poly (Phenylenesulfide)− How, when, why, where and where now. Appl. Poly. Symp. 36, 231–239 (1981).
9. Frommer, J. E. Conducting polymer solutions. Acc. Chem. Res. 19, 2–9 (1986).
10. Bo, Y., Long, C., Meifang, Z. & Yanmo, C. Reactive blends of poly(phenylene sulfide)/hyperbranched poly(phenylene sulfide). Macromol. Symp. 254, 167–172 (2007).

11. Diez-Pascual, A. M. & Naffakh, M. Enhancing the thermomechanical behaviour of poly(phenylene sulfide) based composites via incorporation of covalently grafted carbon nanotubes. Compos. A 54, 10–19 (2013).

12. Spitaksys, Z., Tasisb, D., Papagelis, K. & Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010).

13. Diez-Pascual, A. M. & Naffakh, M. Taming the properties of carbon fiber-reinforced poly(phenylene sulfide) laminates via incorporation of inorganic nanoparticles. Polym 53, 2369–2378 (2012).

14. Diez-Pascual, A. M., Naffakh, M., Marco, C. & Ellis, G. Mechanical and electrical properties of carbon nanotube/poly(phenylene sulfide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos. A 43, 603–612 (2012).

15. Naffakh, M., Diez-Pascual, A. M., Marco, C. & Ellis, G. Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2 nanoparticles. Mater. Chem. 22, 1418–1425 (2012).

16. Diez-Pascual, A. M., Naffakh, M., Marco, C. & Ellis, G. Rheological and Tribological Properties of Carbon Nanotube-Thermoplastic Nanocomposites Incorporating Inorganic Fullerene-Like WS2 Nanoparticles. J. Phys. Chem. B 116, 7959–7969 (2012).

17. Diez-Pascual, A. M. & Naffakh, M. Grafting of an aminated poly(phenylene sulfide) derivative to functionalized single-walled carbon nanotubes. Carbon 50, 857–868 (2012).

18. Diez-Pascual, A. M. & Naffakh, M. Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Mater. Chem. Phys. 135, 348–357 (2012).

19. Gonzalez-Dominguez, J. M. et al. Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J. Mater. Chem. 22, 21285–21297 (2012).

20. In-Yup, J., Hwa-Jeong, L., Yeong, S. C., Loon-Seng, T. & Jong-Beom, B. Semimetallic Transport in Nanocomposites Derived from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized Multi-Walled Carbon Nanotubes. Macromolecules 41, 7423–7432 (2008).

21. Bahadur, S. & Sundara, C. Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear 258, 1411–1421 (2005).

22. Schwartz, C. J. & Bahadur, S. Studies on the tribological behavior and transfer film–counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear 237, 261–273 (2000).

23. Zhao, Y. F., Xiao, M., Wang, S. J., Ge, X. C. & Meng, Y. Z. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos. Sci. Technol. 67, 2528–2534 (2007).

24. Shingankuli, V. L., Jog, J. P. & Nadkarni, V. M. Thermal and crystallization behavior of engineering polyblends I Glass reinforced poly(phenylene sulphide)/PEEK matrix composite. J. Appl. Polym. Sci. 26, 92378–92386 (2016).

25. Zamani, Z., Khorasanizadeh, M., Mohammadi, A. & Bahadur, S. Studies on the tribological behavior of polyphenylene sulfide filled with nanoscale alumina particles. Tribol. Lett. 40, 391–397 (2011).

26. Lu, D. & Pan, S. W. Effects of ball milling dispersion of nano-SiOx particles on impact strength and crystallization behavior of nano-SiOx-poly (polyphenylene sulfide) nanocomposites. Polym. Eng. Sci. 46, 820–825 (2006).

27. Cho, M. H. & Bahadur, S. A. Study of the thermal, dynamic mechanical and tribological properties of polyphenylene sulfide composites reinforced with carbon nanofibers. Tribol. Lett. 25, 237–245 (2007).

28. Yu, S., Wong, W. M., Hu, S. & Juay, Y. K. The characteristics of carbon nanotube reinforced poly (polyphenylene sulfide) nanocomposites. J. Appl. Polym. Sci. 113, 3477–3483 (2009).

29. Yang, J. et al. Preparation and properties of poly(phenylene sulphide)/multiwall carbon nanotube composites obtained by melt compounding. Compos. Sci. Technol. 69, 147–159 (2009).

30. Tabor, B., Magre, E. P. & Boon, J. Crystal structure of poly (p-phenylene sulfide). Eur. Poly. J. 7, 1127–1133 (1971).

31. Li, B., Tao, X. T., Kasai, H., Oikawa, H. & Nakaniishi, H. Size control for fullerene C-60 nanocrystals during the high temperature and high pressure fluid crystallization process. Mater. Lett. 61, 1738–1741 (2007).

32. Zhang, Y. et al. Synthesis, properties of fullerene-containing polystyrene-urea and its optical limiting absorption. Polym 44, 2647–2654 (2003).

33. Diez-Pascual, A. M. et al. Grafting of a hydroxylated poly(ether ether ketone) to the surface of single-walled carbon nanotubes. J. Mater. Chem. 38, 8285–8296 (2010).

34. Jeon, I. J., Tan, L. S. & Baek, J. B. Nanocomposites derived from in situ grafting of linear and hyperbranched poly(ether-ether ketone)s containing flexible oxoyethene spacers onto the surface of multiwalled carbon nanotubes. J. Polym. Sci. A. Polym. Chem. 46, 3471–3481 (2008).

35. Zimmerman, D. A., Koenig, I. L. & Ishida, H. Infrared and Raman spectroscopy of cyclohexa(p-phenylene sulfide) and the polymer obtained therefrom. Polym. 40, 4723–4731 (1999).

36. Zhang, M. L., Wang, H. X., Li, Z. H. & Cheng, B. W. Exfoliated graphite as a filler to improve poly(phenylene sulfide) electrical conductivity and mechanical properties. RSC Adv. 5, 13840–13849 (2015).

37. Zimmerman, D. A., Koenig, J. L. & Ishida, H. Polymerization of polystyrene from a cyclic precursor. Polymer 40, 4723–4731 (1999).

38. Hayashi, S., Yorimitsu, H. & Oshima, K. Synthesis of Epoxyides by Palladium-Catalyzed Reactions of Tertiary Allyl Alcohols with Aryl or Alkenyl Halides. J. Am. Chem. Soc. 131, 2052–2053 (2009).

39. Lu, S., Si, W. L., Bao, M., Yamamoto, Y. & Jin, T. Co-Catalyzed Radical Cycloaddition of [60] Fullerene with Active Dibromides: Enhancement of Polymerization and Synthesis of Carboxyline-Fused Fullerene Monoadducts. Org. Lett. 15, 4030–4033 (2013).

40. Zhang, M. L. et al. Effects of hydrogen bonding between MWCNT and PPS on the properties of PPS/MWCNT composites. RSC Adv. 6, 92378–92386 (2016).

41. Peng, K. J. & Liu, Y. L. Preparation and toroid formation of multiblock poly(styrene)/C60 nanohybrids. Macromolecules 44, 5006–5012 (2011).

42. Jeon, I. J., Lee, H. J., Choi, J. S., Tan, L. S. & Baek, J. B. Semimetallic Transport In Nanocomposites Derived From Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s on the Surface of Functionalized Multi-Walled Carbon Nanotubes. Macromolecules 41, 7423–7432 (2008).

43. Sheng, J., Bado, A., Xia, L., Ozisik, R. & Keblinski, P. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl. Phys. Lett. 85, 2229–2231 (2004).

44. Li, C. Y., Li, Z. H., Cao, L. & Cheng, B. W. Graphene preparation by phenylmagnesium bromide and its excellent electrical conductivity performance in Graphene/Poly(p-phenylene sulfide) composites. Ind. Eng. Chem. Res. 55, 10860–10867 (2016).

Acknowledgements

The authors are grateful for the financial support from National Natural Science Foundation of China (Nos 51603145 and 21376177) and Tianjin Natural Science Foundation of China (nos. 15JCZDJC7000). This work is also supported by China National Textile and Apparel Council (201406) and China Petroleum Chemical Co Technology Development Project (208068, 201100, 215038 and 216090).
Author Contributions
M.Z., X.W., B.C. and Z.L. have contributed to the design of the study and the critical revision of the article. M.Z. Y.B. and Z.L. did the experiments, analyzed the data, prepared Figures and drafted the article.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017