Aquatic Macrophytes and Local Factors Drive Bacterial Community Distribution and Interactions in a Riparian Zone of Lake Taihu

Yuanjiao LYU 1,2, Rui Huang 3, Jin Zeng 3,* Qinglong L. Wu 1,2

1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, East Beijing Road 73, Nanjing 210008, China; yjlv_dr_em@outlook.com (Y.L); qlwu@niglas.ac.cn (Q.W.)
2 Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China; hwangrui@hhu.edu.cn
* Correspondence author: jzeng@niglas.ac.cn; Tel.: +86-25-868-82240

Received: 20 December 2019; Accepted: 29 January 2020; Published: date

Number of pages: 6

Number of Figures: 1

Number of Tables: 7
Figure S1. The relative abundance of different phyla and subphyla in the four zones. Abbreviation: supralittoral zone with *P. australis* (RZa), eulittoral zone with *P. australis* (RZb), eulittoral zone without *P. australis* (NZc), infralittoral zone without *P. australis* (NZd).

Table S1. The properties of local factors in lake riparian. Abbreviation: supralittoral zone with *P. australis* (RZa), eulittoral zone with *P. australis* (RZb), eulittoral zone without *P. australis* (NZc), infralittoral zone without *P. australis* (NZd), ammonium nitrogen (NH$_4^+$), nitrate nitrogen (NO$_3^-$), sample water content (SWC), organic matter content (OM), total carbon (TC), total nitrogen (TN), dissolved organic carbon (DOC).

Soil property	RZa (SD)	RZb (SD)	NZc (SD)	NZd (SD)
NH$_4^+$ (mg·kg$^{-1}$)	5.85 (0.89)c	5.89 (0.46)c	63.36 (7.27)a	21.87 (2.37)b
NO$_3^-$ (mg·kg$^{-1}$)	1.89 (0.31)a	1.71 (0.29)a	1.31 (0.12)b	1.17 (0.15)b
pH	6.28 (0.46)b	5.28 (0.30)c	6.82 (0.18)a	6.83 (0.16)a
TN (%)	0.12 (0.02)b	0.16 (0.06)ab	0.21 (0.06)a	0.13 (0.02)b
TC (%)	1.22 (0.35)a	1.58 (0.62)a	1.83 (0.52)a	1.17 (0.22)a
TC/TN	10.08 (1.11)a	9.99 (0.92)ab	8.78 (0.40)b	8.77 (0.17)c
OM (%)	3.97 (0.56)b	4.79 (1.35)ab	5.47 (1.01)a	4.41 (0.79)ab
SWC (%)	32.51 (1.32)d	38.52 (2.03)c	60.05 (8.50)a	51.36 (6.22)b
DOC (mg·kg$^{-1}$)	189.58 (53.97)b	198.01 (54.82)b	318.17 (22.98)a	283.75 (22.74)a
Clay (%)	17.83 (0.75)c	16.67 (0.75)d	33.33 (1.03)a	29.33 (1.03)b
Silt (%)	72.00 (1.26)b	65.50 (1.05)b	57.00 (1.41)c	54.67 (1.21)d
Sand (%)	10.17 (1.47)c	17.83 (1.17)a	9.67 (1.51)c	16.00 (0.89)b

SD, standard deviation. Statistical significance was assessed by one-way ANOVA followed by Tukey’s HSD test, and significant differences were accepted when *p* < 0.05 between the two groups. Letters denote significant differences in pairwise comparisons (*p* < 0.05).

Table S2. Estimated OUT richness and alpha diversity indices of the four zones (no significant difference was found for each variable). Abbreviation: supralittoral zone with *P. australis* (RZa),
eulittoral zone with *P. australis* (RZb), eulittoral zone without *P. australis* (NZc), infralittoral zone without *P. australis* (NZd).

	RZa (SD)	RZb (SD)	NZc (SD)	NZd (SD)
Goods Coverage	0.87 (0.01)	0.87 (0.02)	0.87 (0.01)	0.88 (0.01)
Shannon	11.18 (0.38)	11.34 (0.31)	11.45 (0.05)	10.87 (0.44)
PD	221.00 (19.60)	228.55 (22.61)	240.63 (4.29)	226.00 (8.09)
Chao1	12025.98 (1180.62)	12081.23 (1267.12)	12094.39 (457.77)	11169.66 (390.52)
Ace	12611.46 (1224.68)	12965.79 (1617.77)	12900.68 (513.29)	11931.26 (579.43)

SD, standard deviation.

Table S3. Permutational multivariate analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (ADONIS) based on Bray-Curtis dissimilarity matrix (BC) and Weighted-Unifrac dissimilarity matrix (WU) in bacterial community composition among four sampling sites. Abbreviation: *P. australis* zone (RZ), non-*P. australis* zone (NZ), supralittoral zone with *P. australis* (RZa), eulittoral zone with *P. australis* (RZb), eulittoral zone without *P. australis* (NZc), infralittoral zone without *P. australis* (NZd).

Group	Anosim	Adonis		
	R	P	F	P
	BC	WU	BC	WU
RZ&NZ	0.7724	0.001	0.7209	0.001
RZa & NZb	0.4444	0.003	**0.07407**	**0.22**
RZa & NZc	1.004	0.9963	1.000	1.100
RZa & NZd	0.8611	0.004	0.8074	0.002
RZb & NZc	0.8389	0.003	0.7611	0.005
RZb & NZd	0.9037	0.002	0.6796	0.006
NZc &NZd	0.8093	0.005	0.5019	1.001

Non-significant differences at *p* > 0.05 are indicated in **bold**.

Table S4. Significance analysis of RDA by Monte Carlo permutation (permutation=999). Abbreviation: ammonium nitrogen (NH₄⁺), nitrate nitrogen (NO₃⁻), sample water content (SWC), organic matter content (OM), total carbon (TC), total nitrogen (TN), dissolved organic carbon (DOC).

Group	r²	p
NH₄⁺	0.72	0.0001
NO₃⁻	0.58	0.0002
pH	0.49	0.001
OM	0.35	0.0102
SWC	0.82	0.0001
DOC	0.54	0.0003
Silt	0.73	0.0002

Significant differences were accepted when *p* < 0.05.

Table S5. Module hubs and connectors in *P. australis* zone and non-*P. australis* zone networks. Abbreviation: *P. australis* zone (RZ), non-*P. australis* zone (NZ). c, o, f, g represent class, order, family and genus, respectively.

OUT ID	Ra (%)	No. of module	Zi	Pi	Phylum	Lowest taxonomic rank
Table S6. The mantel and partial mantel tests on connectivity of networks and local factors. Abbreviation: *P. australi* zone (RZ), non-*P. australis* zone (NZ), ammonium nitrogen (NH$_4^+$), nitrate nitrogen (NO$_3^-$), sample water content (SWC), organic matter content (OM), total carbon (TC), total nitrogen (TN), dissolved organic carbon (DOC).

Factors	RZ r	RZ p	NZ r	NZ p
All factors	0.003	0.447	**0.152**	**0.001**
NH$_4^+$	−0.017	0.69	**0.16**	0.001
NO$_3^-$	−0.061	0.995	−0.03	0.828
pH	**0.086**	**0.01**	−0.049	0.95
TN	−0.054	0.957	−0.2	1
TC	−0.033	0.872	−0.2	1
C:N	−0.041	0.892	−0.059	0.979
OM	−0.059	0.981	−0.11	1
SWC	0.025	0.216	−0.011	0.636
DOC	−0.075	0.998	**0.17**	**0.001**
Clay	0.016	0.27	−0.067	1
Silt	**0.11**	**0.002**	**0.26**	**0.001**
Sand	**0.11**	**0.001**	**0.18**	**0.001**

Significant differences at *p* < 0.05 are indicated in bold.
Table S7. Correlations between module eigengenes and local factors. Abbreviation: *P. australi* zone (RZ), non-*P. australis* zone (NZ), ammonium nitrogen (NH$_4^+$), nitrate nitrogen (NO$_3^-$), sample water content (SWC), organic matter content (OM), total carbon (TC), total nitrogen (TN), dissolved organic carbon (DOC).

network	Module code	No of nodes	ϕ	NH$_4^+$	NO$_3^-$	pH	TN	TC	C:N	OM	SWC	DOC	Clay	Silt	Sand
RZ	1	43	55%	0.0098	-0.39	-0.14	0.089	-0.07	0.096	0.0071	0.62*	0.086	-0.13	-0.35	0.33
	2	36	61%	0.14	0.34	-0.38	0.039	0.071	0.065	-0.037	0.38	-0.18	0.085	-0.5	0.4
	3	33	60%	0.16	0.56	-0.22	0.1	0.057	0.067	0.041	0.12	-0.2	0.28	-0.31	0.2
	4	43	54%	0.066	-0.34	-0.39	0.27	0.21	-0.26	0.16	0.22	0.047	-0.59	-0.3	0.39
	5	14	70%	0.21	0.0027	0.1	-0.12	0.061	0.12	-0.19	-0.1	-0.26	-0.11	0.18	-0.13
	6	36	61%	0.14	0.34	-0.38	0.039	0.071	0.065	-0.037	0.38	-0.18	0.085	-0.5	0.4
	7	33	60%	0.16	0.56	-0.22	0.1	0.057	0.067	0.041	0.12	-0.2	0.28	-0.31	0.2
	8	43	54%	0.066	-0.34	-0.39	0.27	0.21	-0.26	0.16	0.22	0.047	-0.59	-0.3	0.39
	9	14	70%	0.21	0.0027	0.1	-0.12	0.061	0.12	-0.19	-0.1	-0.26	-0.11	0.18	-0.13
	10	61	63%	0.72**	0.72**	0.22	0.73**	0.73**	0.17	0.83***	-0.76**	-0.6*	-0.78**	-0.12	0.57
NZ	2	64	63%	-0.11	0.25	-0.22	0.024	0.019	-0.079	-0.022	-0.26	0.46	-0.17	-0.22	0.22
	3	21	70%	-0.65*	-0.12	-0.28	-0.47	-0.48	-0.063	-0.41	-0.59	-0.15	-0.7*	-0.51	0.71**
	4	56	69%	0.79**	0.5	0.14	0.79**	0.77**	-0.36	0.85**	0.92***	0.45	0.87***	0.27	-0.71*
	5	40	81%	0.79**	-0.5	0.018	-0.54	-0.56	-0.04	-0.27	-0.2	0.73**	-0.68*	0.72*	0.81**
	6	7	69%	-0.68*	-0.23	0.15	-0.25	-0.29	-0.33	0.011	0.068	-0.49	-0.53	-0.7*	0.7*
	7	9	80%	-0.077	0.073	0.069	0.18	0.17	-0.12	0.47	0.5	-0.37	0.1	-0.28	0.072
	8	7	83%	-0.063	0.14	0.065	0.29	0.26	-0.36	0.58	0.64*	-0.17	0.12	-0.49	0.17

The ϕ value was the percentage of the total variance explained by the eigengene of respective module. * 0.01 < P < 0.05; ** 0.001 < P < 0.01; *** P < 0.001.
