Natural Products Research

SUPPLEMENTARY MATERIAL

Two new diacetylene glycosides: bhutkesoside A and B from the roots of *Ligusticopsis wallichiana*

Adhikari Bibeka,b, Hari Prasad Devkotaa,b,*, Khem Raj Joshia, Takashi Watanabea and Shoji Yaharaa,*

aGraduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto 862-0973, Japan

bProgram for Leading Graduate Schools “HIGO Program”, Kumamoto University, Kumamoto, Japan

Email: devkotah@kumamoto-u.ac.jp (H.P. Devkota)

yaharas1@gpo.kumamoto-u.ac.jp (S. Yahara)

Abstract:

Two new diacetylene glycosides, bhutkesoside A (1) and B (2), along with 10 known compounds, i.e., falcarindiol (3), chlorogenic acid (4), 5-\textit{O}-\textit{p}-coumaroyl-quinic acid (5), 3,5-di-\textit{O}-caffeoyl-quinic acid (6), 4-hydroxy-7-methoxy-phenylethanol (7), ferulic acid (8), dehydrodiconiferyl alcohol-4-\textit{O}-\textit{β}-d-glucopyranoside (9), 5,7-dihydroxy-2-methylchromone-7-\textit{O}-rutinoside (10), schumanniofioside B (11) and marmesinin (12) were isolated from the roots of *Ligusticopsis wallichiana* (DC) Pimenov \& Kljuykov (Apiaceae), commonly known as “Bhutkesh” in Nepal. The structures were determined on the basis of spectroscopic data. Compounds 4 and 6 showed potent antioxidant activity on DPPH free radical scavenging assay.

Keywords: *Ligusticopsis wallichiana;* Apiaceae; Bhutkesh; bhutkesoside A; bhutkesoside B
List of supplementary materials

Figure S1. 1H NMR spectrum of compound 1, 2 and 3.
Figure S2. 13C NMR spectrum of compound 1, 2 and 3.
Figure S3. COSY spectrum of compound 1.
Figure S4. HMBC spectrum of compound 1.
Figure S5. COSY spectrum of compound 2.
Figure S6. HMBC spectrum of compound 2.
Figure S7. 1H-1H COSY and HMBC correlations of 1 and 2

Table S1. 1H and 13C NMR spectroscopic data of compound 3.
Table S2. 1H spectroscopic data of compound 4, 5 and 6.
Table S3. 1H and 13C NMR spectroscopic data of compound 7 and 8.
Table S4. 1H and 13C NMR spectroscopic data of compound 9.
Table S5. 1H and 13C NMR spectroscopic data of compound 10 and 11.
Table S6. 1H and 13C NMR spectroscopic data of compound 12.
Figure S1. 1H NMR spectrum of compound 1, 2 and 3.

1. 1H NMR, 500 MHz, CD$_3$OD

2. 1H NMR, 500 MHz, CD$_3$OD

3. 1H NMR, 500 MHz, CDCl$_3$
Figure S2. 13C NMR spectrum of compound 1, 2 and 3.
Figure S3. COSY spectrum of compound 1.
Figure S4. HMBC spectrum of compound 1.
Figure S5. COSY spectrum of compound 2.
Figure S6. HMBC spectrum of compound 2.
Figure S7. 1H-1H COSY and HMBC correlations of 1 and 2.
Table S1. 1H and 13C NMR spectroscopic data of compound 3.

Pos	Compound 3*	1H (J in Hz)	13C
1a,b	5.47, dt (17.2, 1.5)	117.3, CH$_2$	
	5.25, dt (10.4, 1.5)		
2	5.94, ddd (5.2, 10.4, 17.2)	135.7, CH	
3	4.93, brd (5.2)	63.4, CH	
4		78.2, C	
5		70.3, C	
6		68.7, C	
7	5.20, brd (8.5)	58.5, CH	
9	5.51, brdd (8.5, 10.6)	127.6, CH	
10	5.61, ddd (1.2, 7.3, 10.6)	134.6, CH	
11	2.1, dq (1.2, 7.3)	31.7, CH$_2$	
12	1.38, t like (7.3)	29.2, CH$_2$	
13	1.27-1.29, m	29.2, CH$_2$	
14	1.27-1.29, m	29.2, CH$_2$	
15	1.27-1.29, m	27.2, CH$_2$	
16	1.27-1.29, m	22.1, CH$_2$	
17	0.88, t (7.0)	14.0, CH$_3$	

1H NMR 500 MHz, 13C NMR 125 MHz, CDCl$_3$
Table S2. 1H spectroscopic data of compound 4, 5 and 6.

Pos	Compound 4	Compound 5	Compound 6
	δ^1H (J in Hz)	δ^1H (J in Hz)	δ^{13}C
1	2.01-2.03, ma	1.88-2.08, m	78.3, C
2	4.22, m	4.10, m	36.6, CH$_2$a
3	3.81, dd (3.4, 9.8)	3.58 (overlapped,	70.7, CH$_b$
4	5.30, dt (9.8, 3.4)	5.20, dt (10.2, 5.2)	71.6, CH$_b$
5	2.11-2.19, ma	1.88-2.08, m	7.11, d (1.5)a
6	7.05, brs	7.50, brd (8.5)	130.2, CH
7	6.78, brd (8.5)	6.78, brd (8.5)	114.7, CH
1$'$	175.7, C	6.82, brd (8.5)	159.8, C
2$'$	7.50, brd (8.5)	7.50, brd (8.5)	114.7, CH
3$'$	6.78, brd (8.5)	6.78, brd (8.5)	130.2, CH
4$'$	7.53, d (15.9)	7.53, d (15.9)	144.3, CH
5$'$	6.25, d (15.9)	6.35, d (15.9)	115.9, CH
6$'$	166.4, C	7.10, d (1.5)a	
7$'$	6.82, brd (8.5)	6.82, brd (8.5)	6.99, brd (8.5)b
8$'$	6.99, brd (8.5)	7.50, brd (8.5)	6.99, brd (8.5)b
9$'$	7.60, d (15.9)d	7.60, d (15.9)d	6.31, d (15.9)c

a,b,c,d assignments with same superscripts may be interchanged in the same column

1H NMR, 500 MHz, CD$_3$OD+D$_2$O 13H NMR 500 MHz, 13C NMR 125 MHz, DMSO-d_6
Table S3. 1H and 13C NMR spectroscopic data of compound 7 and 8.

Pos	Compound 7 *		Compound 8 **	
	δ^1H (J in Hz)	δ^{13}C	δ^1H (J in Hz)	δ^{13}C
1	7.12, d (8.5)	130.9, C	7.27, d (2.1)	125.8, C
2	6.76, d (8.5)	129.3, CH	7.27, d (2.1)	111.2, CH
3	158.4, C	116.2, CH	7.27, d (2.1)	149.1, C
4	6.76, d (8.5)	116.2, CH	6.80, d (8.5)	115.6, CHa
5	7.12, d (8.5)	129.3, CH	7.08, dd (2.1, 8.2)	122.8, CH
6	4.16, dd (3.9, 8.2)	85.9, CH	7.51, d (15.9)	144.6, CH
7	3.61, dd (8.2, 11.9)	67.7, CH$_2$	6.36, d (15.9)	115.5, CHa
8	3.48, dd (3.9, 11.9)			
9	OCH	3.22, s	56.8, OCH$_3$	3.82, s
OCH				55.7, OCH$_3$

* Assignments with same superscripts may be interchanged in the same column.

1H, NMR, 500 MHz, 13C NMR 125 MHz, CD$_3$OD, *H, NMR 500 MHz, 13C NMR 125 MHz, DMSO-d_6.
Table S4. 1H and 13C NMR spectroscopic data of compound 9.

Pos	$\delta ^1$H (J in Hz)	$\delta ^{13}$C
1	138.1, C	
2	7.02, brs	112.2, CHa
3		150.9, C
4		147.1, C
5	7.13, d (8.2)	118.0, CHb
6	6.91, dd, (8.2, 1.8)	119.4, CHb
7	5.57, d (5.8)	88.8, CH
8	3.45-3.48, m	55.3, CH
9	3.85, dd (7.0, 12.8)	64.9, CH$_2$e
1'	132.7, Cc	
2'	6.94, brs	111.2, CHa
3'		145.5, C
4'		149.2, C
5'		130.0, Cc
6'	6.94, brs	116.5, CHb
7'	6.53, d (15.9)	131.9, CH
8'	6.21, dd (5.8,15.9)	127.6, CH
9'	4.19, dd (1.2, 5.8)	63.8, CH$_2$e
Glc		
1''	4.87, d (7.3)	102.7, CH
2''	3.45-3.48, m	74.9, CH
3''	3.45-3.48, m	77.8, CHd
4''	3.36-3.38, m	71.3, CH
5''	3.45-3.48, m	78.2, CHd
6''	3.76, dd (7.0, 11.2)	62.5, CH$_2$e
	3.68, d (3.6, 11.2)	
OCH$_3$	3.82, s	56.8, OCH$_3$
OCH$_3$	3.87, s	56.7, OCH$_3$

a,b,c,d,e assignments with same superscripts may be may be interchanged in the same column

1H NMR 500 MHz, 13C NMR 125 MHz, CD$_3$OD+D$_2$O
Table S5. 1H and 13C NMR spectroscopic data of compound 10 and 11.

Pos.	Compound 10*	Compound 11*		
	δ^1H (J in Hz)	δ^{13}C	δ^1H (J in Hz)	δ^{13}C
2	170.2, C		170.9, C	
3	6.09, s	109.3, CH	109.3, CHb	
4	184.1, C		184.2, C	
5	162.8, Cc		161.7, Cc	
6	6.64, br s	102.3, CHa	6.67, d (2.1)	100.6, CHa
7		164.5, Cc		163.7, Cc
8	6.46, 1H, (d, 1.8)	95.9, CH	6.49, d (2.1)	96.1, CH
9		159.4, Cc		159.1, Cc
10		106.8, C		106.6, C
2-CH3	2.42, s	20.5, CH$_3$	2.43, s	20.6, CH$_3$
Glc				
1`	4.97, d (7.3)	101.6, CHa	5.19, d (7.3)	99.6, CHa
2`	3.58 , dd (7.3, 10.7)	72.1, CH	3.50-3.55, m	78.8, CHd
3`	3.65-3.71, m	77.2, CHd	3.69-3.73, m	78.2, CHd
4`	3.62-3.63, m	71.5, CHb	3.50-3.55, m	71.3, CH
5`	3.65-3.71, m	74.1, CH	3.69-3.73, m	78.3, CHd
6`	3.77-3.79, m	67.7, CH$_2$	3.95, d (2.1, 12.6)	62.3, CH$_2$
	4.03-4.05, m		3.76, d (5.5, 12.6)	
Rha/Api				
1``	4.69, d (1.5)	101.2, CHa	5.42, d (2.1)	108.9, CHb
2``	3.90 , dd (1.5, 3.4)	72.3, CH	4.01 , dd (2.1, 5.8)	78.1, CHd
3``	3.64 , dd (3.4, 9.5)	77.9, CH		80.5, C
4``	3.65-3.71, m	69.8, CHb	3.99, d (10.0)	75.3, CH$_2$
5``	3.46-3.48, m	74.7, CH	3.60-3.63, m	65.8, CH$_2$
6``	1.21, d (7.0)	17.9, CH$_3$	3.70, brd (9.1)	

*a,b,c,d assignments with same superscripts may be may be interchanged in the same column

*1H NMR 500 MHz, 13C NMR 125 MHz CD$_3$OD
Table S6. 1H and 13C NMR spectroscopic data of compound 12.

Compound 12*	Pos	δ^1H (J in Hz)	δ^{13}C
2	6.29, d (9.5)	111.7, CH	
3	7.98, d (9.5)	147.3, CH	
4	7.50, s	125.2, CH	
5	127.6, C		
6	165.4, C		
7	6.81, s	98.3, CHa	
8	156.2, C		
9	91.8, CH		
10	3.45, dd (9.1, 18)	30.3, CH$_2$	
	3.36, dd (9.5, 18)	79.9, C	
4	1.40, s	22.7, CH$_3$	
5	1.33, s	22.7, CH$_3$	
Glc	4.71, d (7.9)	98.0, CHa	
1$^\`$	3.18, dd (7.9, 9.5)	74.5, CH	
2$^\`$	3.38, dd (9.1, 9.5)	77.1, CHb	
3$^\`$	3.38, dd (9.1, 9.5)	70.6, CH	
4$^\`$	3.24, ddd (2.4, 4.8, 9.5)	76.8, CHb	
5$^\`$	3.55, dd (4.8,12.2)	61.4, CH$_2$	
6$^\`$	3.36, m		

a,b assignments with same superscripts may be may be interchanged in the same column

1H NMR 500 MHz, 13C NMR 125 MHz CD$_3$OD