The bone marrow microenvironment, also known as the bone marrow niche, is a complex network of cell types and acellular factors that supports normal hematopoiesis. For many years, leukemia was believed to be caused by a series of genetic hits to hematopoietic stem and progenitor cells, which transform them to preleukemic, and eventually to leukemic, cells. Recent discoveries suggest that genetic alterations in bone marrow niche cells, particularly in osteogenic cells, may also cause myeloid leukemia in mouse models. The osteogenic niche, which consists of osteoprogenitors, preosteoblasts, mature osteoblasts, osteocytes and osteoclasts, has been shown to play a critical role in the maintenance and expansion of hematopoietic stem and progenitor cells as well as in their oncogenic transformation into leukemia stem/initiating cells. We have recently shown that acute myeloid leukemia cells induce osteogenic differentiation in mesenchymal stromal cells to gain a growth advantage. In this review, we discuss the role of the osteogenic niche in the maintenance of hematopoietic stem and progenitor cells, as well as in their transformation into leukemia cells. We also discuss the signaling pathways that regulate osteogenic niche-hematopoietic stem and progenitor cells or osteogenic niche-leukemia stem/initiating cell interactions in the bone marrow, together with novel approaches for therapeutically targeting these interactions.

Introduction

Hematopoietic stem cells (HSCs) home to specific microenvironments in the bone marrow (BM) and receive signals that drive their fate under both normal and pathological conditions. So far, two predominant niches that differentially regulate HSCs through their non-hematopoietic compartments and levels of hypoxia have been identified. The endosteal niche near the inner bone surface is populated by osteoblastic lineage cells, including osteoprogenitor cells, pre-osteoblasts, mature osteoblasts, and osteocytes, as well as mesenchymal stromal cells (MSCs) and osteoclasts, whereas the non-endosteal niche consists mainly of sinusoidal endothelial cells, pericytes, and non-myelinating Schwann cells. Both niches are highly vascularized yet associated with distinct subtypes of blood vessels that support either the bone-forming or sinusoidal domain. Recent work from the Adams group also revealed a strong association between the osteogenic niche and a third vessel type that made up the transition zone in the developing bone. This subset seems to function upstream of both endosteal and sinusoidal endothelium, though more functionally related to the former, and connect the two vasculatures during the early stages of specialization. Stromal cells in both niches share overlapping signatures; however, it has been suggested that endosteal MSCs support HSC quiescence whereas non-endosteal MSCs promote HSC proliferation.

Acute myeloid leukemia (AML) is one of the most aggressive hematologic malignancies, characterized by increased numbers of myeloid precursors in the BM that fail to differentiate into more mature myeloid cells. Recent studies have
highlighted complex tumor-host interactions within the BM during AML progression. Malignant cells compete with their normal counterparts for niche resources and occupancy, and disrupt normal hematopoiesis by triggering a differentiation block, which often manifests itself as BM failure and pancytopenia. In these conditions, leukemic cells seem to lose sensitivity to antiproliferative cues from the niche. Under the expansion of leukemia, MSCs have shown signs of “reprogramming”. In particular, the role of the osteoblast-rich region of the BM has been implicated in both AML chemoresistance and relapse. Unraveling the mechanisms underlying osteogenic niche-mediated support to AML cells is key to identifying molecular targets in order to develop effective drug therapies. In this review, we focus on advances in our understanding of the osteogenic niche in the leukemic BM microenvironment and discuss the key components of this niche as therapeutic candidates in AML.

Osteolineage cells regulate normal hematopoiesis

Non-random distribution of HSCs in the BM highlights the role of osteolineage cells in HSC maintenance. The physical association of HSCs with the endosteum correlates strongly with the colony formation and proliferative capacity of HSCs, and is primarily evident after BM transplantation. Anatomical evidence has provided the basis on which the functional relationships between osteolineage cells and HSCs have continued to be unraveled. Osteoblasts secrete cytokines and growth factors including granulocyte-colony stimulating factor (G-CSF), hepatocyte growth factor, and osteopontin (OPN), which have been shown to maintain the pool size of the CD34+ progenitor population in the BM. Osteoblasts mediate HSC migration in and out of the BM, primarily through the CXCL12/CXCR4 and VCAM-1/VLA-4 axes, and under the influence of the sympathetic nervous system. In a knockout mouse model lacking bone morphogenetic protein (BMP) receptor I, Zhang et al. reported that an increase in HSC number was associated exclusively with a cell population that lined the long bone and had an osteoblastic phenotype. Similarly, Calvi et al. demonstrated that increasing osteoprogenitor or pre-osteoblast activation by augmenting parathyroid hormone (PTH) signaling enriched Lin- Sca-1+ c-Kit+, or HSC-like, cells in vivo. Interestingly, this HSC expansion occurred without substantially affecting the overall number of hematopoietic cells. These observations suggest that PTH-induced signaling in osteoprogenitor cells or pre-osteoblasts might play a selective role in maintaining HSC self-renewal but not in the proliferation of their committed progenitors. How osteoblasts regulate HSC quiescence has been rigorously investigated. Loss of ligand-receptor interactions, such as angiopoietin-1 receptor tyrosine kinase 2 (Ang-1/Tie2) and thrombospondin-MPL (TPO/MPL), deregulates not only cell-cycle checkpoints but also coping mechanisms against extrinsic stressors, resulting in a reduction in slow-cycling hematopoietic cells. Stem-cell exhaustion and reduced self-renewal capacity after inhibition of Wingless (Wnt) signaling in osteoblasts further suggest that the mechanism underlying osteoblast-mediated regulation of HSCs does not follow a single axis.

Surprisingly, osteoblast ablation, although associated with poorer HSC engraftment in vivo, does not lead to a massive loss of quiescent HSCs. It has also been shown that osteoblast deficiency in chronic inflammatory conditions, such as rheumatoid arthritis, does not affect the frequency of Lin- Sca-1+ c-Kit+ cells or their long-term repopulating potential. Mice with conditional deletion of CXCL12 or stem cell factor (SCF) in osteoblasts do not exhibit HSC defects. It is possible that osteoblastic regulation of HSCs overlaps with other regulatory pathways and hence is easily compensated. Different osteolineage members may also share common signals while differing in the degree of impact. Together, these data suggest that osteolineage cells or more primitive cells such as MSCs orchestrate a diverse, though possibly non-essential, network of signals to maintain the stemness of HSCs and prompt hematopoietic activities, such as mobilization and expansion, in response to physiological needs.

Altered osteogenic niche leads to myeloid leukemia in BM

It has been firmly demonstrated that mutations affecting the ability of HSCs to differentiate into mature hematopoietic cells transform HSCs into pre-leukemic cells, and ultimately to leukemic cells when additional mutations are acquired (Figure 1). However, very little is known about the influence of other cellular components in the BM microenvironment on leukemic transformation of hematopoietic cells. The Scadden group was the first to show that genetic alterations in osteolineage cells could lead to myelodysplastic syndromes (MDS) and leukemia. Deletion of Dicer, a critical RNA processor and microRNA synthesizer, in Osterix (Osx)-expressing osteoprogenitor cells in a conditional knockout mouse model caused MDS and, on occasions, secondary AML. These mice first developed severe cytopenia and myelodysplasia, which transformed into monoblastic AML in 4 out of 200 cases, presenting as invasive myeloid sarcomas, anemia, and monocyte-like blast expansion in the peripheral blood, spleen, and BM. Of interest, Dicer was intact in the myeloblastic tumors, suggesting that dysfunctional osteoblast precursors could mediate clonal evolution in neoplastic formation. Similarly, constitutive activation of β-catenin in mouse osteoblasts resulted in a broad spectrum of dysfunctional hematopoiesis, including monocytosis, lymphocytopenia, and somatic mutations that resembled those of human AML in myeloid progenitors. Kode et al. noted that both wild-type mice engrafted with long-term (LT) HSCs from β-catenin-mutant mice and β-catenin-mutant mice engrafted with healthy BM cells developed AML and died shortly after transplantation. These observations suggest that an altered osteogenic niche could induce permanent damage to LT-HSCs and transform them to pre-leukemic and/or leukemic cells. Kousteni et al. attributed this niche-induced carcinogenesis to the oncogenic role of FoxO members involved in bone formation, which, surprisingly, are known tumor suppressors. This discovery sparks a debate about whether osteoblasts differentially regulate normal and malignant hematopoiesis. Recently, Dong et al. also reported that mice with a mutant allele of protein tyrosine phosphatase SHP2 (Pypt1) in osteoprogenitors or Nestin+ MSCs could develop juvenile myelomonocytic leukemia-like myelo proliferative neoplasms (MPN). With concomitant mutations in HSCs, mice with mutated MSCs were twice as likely to progress from MPN to acute leukemia as were mice with altered endothelial cells. This study under-
scores cell-type-specific leukemogenic effects of various niche components. While these findings in mice offer direct evidence for osteoblast-induced leukemogenesis, emerging reports of donor cell leukemia in humans (1-5% of all post-transplant leukemia relapses), also suggest the role of an oncogenic microenvironment driving secondary malignancy. Collectively, it has been increasingly recognized that genetic aberrations in the endosteal compartment could be a key event in AML initiation and progression (Figure 1).

AML induces osteogenic and osteolytic activity

Numerous AML studies have emphasized the toxicity of leukemic expansion to BM niches. AML cells have been shown to alter BM niches by competing with HSCs for niche support, thereby affecting normal hematopoiesis. Whether the genomic landscape of non-hematopoietic components of BM niches changes has remained largely unexplored, and whether these alterations may drive AML initiation, progression, and resistance to chemotherapy is questionable. Due to inconsistencies in methodology, cytogenetic analyses from different labs have led to a debate about the existence of chromosomal aberrations in leukemia patient BM-derived MSCs. To explore global changes induced by AML in stromal cells, our group performed a large-scale comparison of proteomic, microRNA, and gene expression profiles between AML patient-derived (AML-MSCs) and healthy donor-derived BM MSCs. We found upregulation of multiple pro-proliferative and anti-

Figure 1. Osteogenic niche in hematopoietic stem cell (HSC) maintenance and leukemogenesis. Interactions between HSCs and osteogenic niche cells could happen in two ways. First, HSCs stay quiescent and self-renew when they are in osteogenic niche. When they acquire mutations under physiological stress, HSCs become pre-leukemic and eventually transform into leukemia blast cells. Alternatively, genetic abnormalities in osteogenic cells in the bone marrow could induce myeloid leukemia in non-mutated or in pre-leukemic HSCs. Second, leukemic cells could induce osteogenic differentiation in mesenchymal stromal cells (MSCs), which normally go through a series of differentiation steps to become fully mature osteoblasts or osteocytes. This feedback loop, involving bone remodeling, probably fuels leukemia progression. However, the extent to which acute myeloid leukemia (AML) cells induce osteogenic differentiation is not clear. BMP: bone morphogenetic protein; CHIP: clonal hematopoiesis of indeterminate potential; CTGF: connective tissue growth factor; HSC: hematopoietic stem cell; LC: AML cell; OPN: osteopontin.
apoptotic pathways and downregulation of RNA regulators previously implicated in survival and differentiation of leukemic cells. Of particular interest, marked underexpression was observed for IGFBP5, an insulin-like growth factor binding protein that primarily inhibits osteoblast differentiation of MSCs. Moreover, TP53 was increased in AML-derived MSCs, resulting in senescence. We also found that the leukemia genotype, in particular the presence of FLT3-ITD mutations and lack of p53, induce both shared and leukemia genome-specific alterations in MSCs. These reports suggest that AML cells alter stromal development, and potentially their functionality.

Previously, Hanoun et al. had reported that AML primed MSCs to commit to osteoblastic lineage. The endosteal surface of mice transplanted with MLL-AF9 leukemic cells was packed with Ossx-expressing osteoprogenitor cells yet lacking Osteocalcin-positive (Osc) mature osteoblasts. It is important to note that despite this osteogenic potential, these mice showed deficient bone mineralization and a lack of terminally differentiated osteoblasts compared with healthy controls. These observations were confirmed independently both in vitro and in vivo by our group. AML-MSCs displayed significantly higher alkaline phosphatase (ALP) expression and activity than did healthy donor-derived MSCs. In addition, when cultured in osteogenic differentiation medium, AML-MSCs differentiated to mature osteoblasts (alizarin red-positive) within two weeks compared with the three weeks needed for normal MSCs. Remarkably, gene expression analysis of normal MSCs co-cultured with different leukemic cell lines for five days revealed 2- to 10-fold upregulation of osteogenic markers, such as Runx-related transcriptional factor (Runx2), Ossx, Opm, and tissue non-specific ALP (Tnap), suggesting that this osteoprogenitor-priming pattern in MSCs resulted from AML exposure. To validate AML-induced osteoblast differentiation in vivo, we created a human BM implant mouse model and assessed osteogenic potential of BM MSCs after four weeks of leukemia engraftment. Human MSCs obtained from these transplanted mice showed a 5- to 7-fold increase in Ossx and Runx2 expression compared with control mice. These experimental data were consistent with Ossx and Runx2 upregulation in BM biopsies of AML patients.

We also found that AML-MSCs became less multipotent since they differentiated poorly into adipocytes and chondrocytes, two mesodermal lineages that usually arise from MSCs; the Bhatia group confirmed this adipocyte suppression in the setting of AML by immunostaining within human BM and global transcriptome analysis of AML-MSCs. Note that in the same study, gene sets poised towards osteoblast, but not adipocyte lineage were enriched in AML-MSCs, under-scoring the need to understand the role of distinct mesenchymal fractions in AML progression.

As previously discussed, Raaijmakers et al. were the first to show that hematopoiesis could go awry as a result of a genetic alteration in osteoprogenitors. The Scadden group emphasized the differential leukemogenic capacity of immature and mature osteoblasts by comparing AML phenotype in Dicer1 mice with Ossx- versus Osc-driven Cre recombinase. Mice with a Dicer1 defect in mature osteoblasts did not exhibit any hematologic problem besides bone-related deformities. Similarly, Dong et al. confirmed the distinct role of stage-specific osteoblasts in leukemic development by generating mice with Ppap1 mutations at various stages of MSCs: mesenchymal progenitor/stem cells, differentiated MSCs, Ossx osteoprogenitors, and Osc mature osteoblasts. Of interest, the leukemogenic effect of this abnormality was observed in mice bearing the mutated form of either primitive MSCs

omp on HSC proliferation. Whether this functional stratification applies to the context of malignancy is poorly understood. Accumulating evidence has demonstrated that defective osteolineage cells are potent initiators of leukemia in the BM. These findings led to the question: which osteolineage cells, osteoprogenitors or mature osteoblasts, play a major role in promoting leukemogenesis?

Osteoprogenitors or mature osteoblasts: true ‘partners-in-crime’ in AML progression?

The osteogenic niche comprises a variety of cell types which differ in their maturation status, ranging from very immature multipotent MSCs to mature osteoblasts and osteocytes (Figure 1). However, the differentiation status of osteogenic cells supporting normal hematopoiesis or leukemogenesis is an emerging question that remains to be resolved. Several studies have shown that, compared with less mature osteoblasts, terminally differentiated osteoblasts regulate HSC lineage commitment, such as B lymphopoiesis and erythropoiesis, while having less effect on HSC proliferation. Whether this functional stratification applies to the context of malignancy is poorly understood. Accumulating evidence has demonstrated that defective osteolineage cells are potent initiators of leukemia in the BM. These findings led to the question: which osteolineage cells, osteoprogenitors or mature osteoblasts, play a major role in promoting leukemogenesis?
or bone progenitor cells, but not more differentiated osteoblasts. These data are consistent with our observations that AML-MSCs show characteristics of osteoprogenitors but not of mature osteoblasts. AML-MSCs express early-stage osteoblast markers, including *osterix*, *RUNX2*, and *Col1a1*, but not mature osteoblast markers such as osteocalcin. In addition, functional assays revealed that AML-MSCs stained positive for ALP enzyme activity but were negative for alizarin red S staining. These observations suggest that AML-MSCs can differentiate into committed osteoprogenitors, but not mature osteoblasts. These data were also validated by coculture of AML cell lines with normal BM-MSCs in vitro and by different AML mouse models. These findings also do not contradict the observations of Frisch et al., Geyh et al., and Krevvata et al. since the osteoblasts inhibited in these studies were marked by osteocalcin. Using intravital microscopy, Duarte et al. also showed a significant depletion of *Col2.3* promoter-expressing mature osteoblasts in areas with a high level of AML filtration. Collectively, stalling the maturation of osteoblast precursors appears to be a key step in AML initiation and progression (Figure 2).

This differentiation blockade could be mediated by different AML-derived factors. Kumar et al. reported upregulation of DKK1, a negative regulator of osteogenesis, when co-culturing AML-derived exosomes with BM MSCs. Of particular interest, a short-term dose of DKK1...
inhibitor promoted terminal differentiation of these osteolineage-primed MSCs in vitro and improved survival of mice engrafted with AML. This suggests a tight coupling of AML development with impaired maturation of osteoprogenitors. The fact that disruption of miRNA processing in immature, but not mature, osteoblasts could trigger AML development implies that deregulation of the maturation process at the post-transcriptional level might play a role in its failure. It would be interesting to further investigate the function of the miR-29 family, whose members are commonly down-regulated in AML blasts while engaging Wnt signaling antagonists, such as DKK1, in a feedback loop to promote osteolineage development.

Another potential mediator is IL-1β, a pleiotropic cytokine produced abundantly by AML blasts that has been shown to suppress osteogenesis of MSCs in periodontal tissue at a high physiological level. Whether one or more pathways are involved in causing this lack of osteoblast maturation remains to be elucidated.

Intriguingly, the effect of maturing osteoblasts on leukemia progression may be context-dependent and disease-specific. Schepers et al. showed that development of CML-like MPN induced by the BCR/ABL oncogene led to the expansion of a mixture of immature and mature osteoblasts that formed BM fibrosis and had decreased capacity to support HSCs. Krevvata et al. reported a strong correlation between the decrease in mature osteoblasts in mice and aggravated engraftment of different acute leukemia cell lines. In this study, over-stimulating Osc osteoblast production by inhibiting gut-derived...
serotonin synthesis in mice bearing MLL-AF9-induced AML attenuated disease burden.66 Conversely, using the same inducible model, Krause \textit{et al.}6 showed that increasing osteoblastic activity through PTH activation augments leukemic expansion in AML while inhibiting CML-like MPN.8 These contrasting data are, at least in part, due to the heterogeneity of osteolineage cells that are characterized differently across studies. However, these results may also reflect the intrinsic differences in osteoblast-leukemia interaction between acute and chronic myeloid malignancies.

Deregulated signaling network in the osteogenic niche offers promising therapeutic targets

In the past decade, huge strides forward have been made in AML induction therapy by combining chemo- and targeted therapies, yet this approach has offered limited success in preventing disease recurrence. It is assumed that the osteogenic niche shields slow-cycling AML cells from cell cycle-dependent treatment just as it maintains HSC quiescence (Figure 3); however, that is just the tip of the iceberg. The larger implication is that AML induces osteogenic dysfunction and disrupts the signaling network associated with the osteogenic niche (Table 1). This transformation of the niche could in turn fuel leukemia persistence and resistance to therapy. It is, therefore, critical to identify and target less visible threats underlying AML-osteogenic niche interactions to achieve more profound treatment efficacy.

Current approaches revolve mainly around disrupting BM homing axes, notably CXCL12/CXCR4. CXCR4 overexpression is common both at diagnosis74,75 and after chemotherapy,73 and correlates with poor prognosis in AML patients.74,75 CXCR4 inhibition prevents AML anchorage and promotes mobilization of leukemic stem/initiating cells (LSCs) out of the endothelial niche, thereby increasing their vulnerability to chemotherapy. Pre-clinical and clinical studies of CXCR4 antagonists have shown encouraging results, demonstrating that these agents not only sensitize AML cells to chemotherapy, but also reverse stroma-mediated antiapoptotic effects.76,77 Although the first generation of CXCR4

Table 1. Dysregulation of signaling network and potential therapeutic targets associated with osteogenic niche in acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN) progression.

Role in normal hematopoiesis	Pathway	Deregulated feature	Prognostic marker?	Contribution to leukemogenesis	Ref		
HSC homing and retention in BM osteogenic niche	CXCL12/CXCR4		CXCR4	Yes	▶ BM homing of AML LSCs	73-77	81-84
	VCAM-1/ VLA-4		VLA-4	Yes/ No	▶ BM homing of AML LSCs	89-92	
	OPN/CD44		OPN	Yes	▶ BM homing of AML LSCs	88,112	
HSC maintenance	Jagged-1/Notch		Jagged-1 and Notch receptor with limited autonomous Notch activation	TBI	Activation effect is context-dependent:	38,99,100,113	
	TGF-β		Activation via fusion gene	TBI	Loss of TGF-β signaling is favorable though not required for AML initiation. Activation effect is context-dependent:	8,11,50,114	
	BMP		Activation via fusion gene	TBI	▶ AML progression via PTH activation in osteoblasts	50,53	
	SNS		Neupathy	TBI	▶ AML progression via osteogenic priming by AML	49,101	
	TBI		Proinflammatory cytokines	TBI	▶ MPN progression via HSC displacement	39	

In AML cells; In osteolineage cells; ▶ Increase; ▼ Decrease; ▲ Mediate; TBI: to be investigated; HSC: hematopoietic stem cells; CXCL12: stromal derived factor-1; CXCR4: CXC chemokine receptor 4; VCAM-1: vascular cell adhesion protein-1; VLA-4: very late antigen-4; OPN: osteopontin; TGF-β: transforming growth factor β; BMP: bone morphogenetic protein; SNS: sympathetic nervous system; CCL3: chemokine ligand 3; BM: bone marrow; LSC: leukemic stem/initiating cells; NF-κB: nuclear factor kappa-light-chain enhancer of activated B cells; PTH: parathyroid hormone; CTGF: connective tissue growth factor.
inhibitors, such as AMD3100 (plerixafor) and AMD3465, show anti-leukemic effects only synergistically with chemotherapy and their action is rather transient, a second generation that has potential as monotherapy is emerging.76-78 Of note, the clinical benefit of CXC4R blockade could be further optimized given the role of differentiating osteoblasts in shielding AML cells from CXCL12-mediated apoptosis in hypoxia.12 Though such induction of apoptosis93 is controversial,79,81 it cannot be excluded that the interplay between hypoxia-mediated protection of leukemic cells typically found in AML BM14,25 and niche components may tip the balance between CXCL12-mediated pro-survival and apoptosis. This possibility is noteworthy given CXCR4 is a well-established target of HIF-1α, and therefore hypoxia.82 The role of HIF-1α in survival and maintenance of CML has also been described.9 The Bonnet group found that HIF-2α, another factor that is regulated by hypoxia, plays a crucial role in regulation of the long-term re-populating ability of CD34+ umbilical cord blood cells. In addition, their data demonstrate that inhibition of HIF-2α in primary AML cells inhibits their proliferation and sensitizes them to endoplasmic reticulum stress-induced apoptosis by upregulation of reactive oxygen species.83

Similarly, chemosensitization and reduced AML engraftment could be achieved in mouse models with the use of CD44 specific antibody86 and VLA-4 blocking agents, such as natalizumab87 and AS101.90 Eastern medullary BM models by Chen et al. demonstrated that AML and stromal cells interact via VLA-4 and VCAM1 to activate downstream NFκB signaling in both cell types. Blockade of these interactions resulted in inhibition of stroma-induced chemoresistance in AML cells.91,92 Besides, antagonizing these adhesion molecules has been found to relieve differentiation block in blasts,89 a clinical benefit also seen when epigenetic modifiers97 or FLT3 and IDH1/2 inhibitors94,95 were used to treat AML. This mobilizing approach, while preferentially mobilizing AML cells, carries the risk of moving HSCs out of their protective BM niche, among other adverse effects.90-92 Further randomized trials are needed to determine whether targeting AML homing axes is safe and how to optimize this chemosensitizing approach without impairing normal hematopoiesis.

There has been growing evidence to indicate another promising strategy to target osteoblast function. Leukemia-stroma contact potentiates osteoblast differentiation in MSCs, which counteracts apoptotic cues and promotes proliferative signals from the microenvironment to leukemic cells.72,26,28 It has also been shown that abnormal signaling pathways and crosstalks that take place specifically in osteoblasts could induce or aggravate AML phenotype.5,26 Manipulating signals from osteolineage cells would, therefore, render the osteogenic niche hostile to AML cells and abrogate the feedback loop fueling their perpetual life cycle. Indeed, modulation of mature osteoblast numbers by inhibiting gut-derived serotonin synthesis results in leukemia regression, providing a ‘proof of concept’ for this approach.85

The fact that stage-specific osteolineage cells have distinct functions and may differentially regulate normal and malignant hematopoiesis makes them an even more attractive target, especially with regard to their involvement in pleiotropic signaling pathways that support HSCs, such as Notch or TGF-β. For example, despite already being known for its tumor-suppressor role in AML,100 Notch activation has been reported to be leukemogenic when synergizing with activating β-catenin/FoxO signaling in Col1α1 pre-osteoblasts.36 This observation suggests targeting FoxO signaling in pre-osteoblasts may be beneficial to patients with constitutive activating β-catenin mutation. As the effects of myeloid leukemia on cell differentiation along the osteolineage unfold, more leukemia modulators might be identified, and these will facilitate patient stratification and prevent treatment failure.

Restricting osteogenic capacity of MSCs could also be a therapeutic option. This strategy potentially limits the OPN reservoir of the BM, further preventing AML cells from hiding in the osteogenic niche and evading chemotherapy. Maintaining the primitive MSC pool via β2- and β3-adrenergic agonists has shown multiple advantages in managing AML and MPN: rescuing healthy HSCs in the osteogenic niche with HSC maintenance factors and preventing LSCs from crowding out these normal residents.93,94 Studies have further shown that the bone surface and periarteriolar region are prone to inflammation during the early stage of osteogenic niche remodeling.39,26 This can be ameliorated by blocking receptors of pro-inflammatory cytokines, e.g. via CCL3 receptor antagonists.

Alternatively, promoting adipocyte differentiation of MSCs has been demonstrated to be a viable strategy to improve disease management by rescuing at least the generation of myeloid-erythroid lineages.95 However, the long-term efficacy of this pro-adipogenesis therapy remains to be tested given the debatable evidence about the role of adipocytes in AML seen so far. Different groups reported on adipocyte re-programming in which AML blasts exploit these energy reservoirs through lipolysis to fuel uncontrolled expansion.100-104 On the other hand, Lu et al.105 only found a statistically significant correlation between AML patients’ poor prognosis and an increase in small adipocytes, but not the decrease in large- or medium-sized ones. This finding suggests that lipid transfer may not be the only mechanism through which adipocytes aggravate leukemia burden. It cannot be excluded that, as previously shown in acute lymphoblastic leukemia,106,107 adipocytes may acquire a chemoprotective role in the setting of AML.

Recent discoveries provide evidence that mitochondria are transferred from BM stromal cells to leukemia cells which influence leukemia progression.108 These studies demonstrate that mitochondria are transferred via tunneling nanotubes (TNTs) or extracellular vesicles resulting in enhanced ATP production through increased oxidative phosphorylation (OXPHOS) which translates into higher drug resistance in AML cells and relapse after chemotherapy.109,110 Therefore, inhibition of mitochondrial transfer by targeting TNT formation or inhibiting OXPHOS is currently being considered as novel therapeutic strategies in AML therapy.

Conclusions and emerging questions

Findings on BM stroma-mediated chemoprotection in AML since the early 2000s have paved the way for a wave of new insights into leukemia-BM niche interactions, hence re-defining the paradigm of leukemic devel-
development and response to therapy. Although its fundamental role in HSC maintenance is still debatable, the osteogenic niche stands out as a pivotal sanctuary for LSCs and the cradle of blast production. Putting this into perspective, we foresee that AML-induced genetic changes and osteogenic priming in MSCs illustrate not only the long-standing multiple-hit hypothesis of carcinogenesis but also the newly-coined microenvironment-induced oncogenesis. Importantly, the role of the BM niches in the development of MDS and AML from clonal hematopoiesis of indeterminate potential is still completely unknown.11 Many questions emerge, for instance, regarding the differential role of stage-specific osteolineage cells in AML progression, the uncoupling between osteogenesis and osteoclastogenesis, or the net therapeutic benefits of LSC dislodgement at the expense of HSC homelessness. Recent advances in our understanding of this osteoblast-rich region in AML progression provide a convincing premise with which to build the next generation of AML therapy to target the osteogenic niche. However, further studies are needed to clarify the self-reinforcing loop between AML and the osteogenic niche, with the goal of inducing deep remissions and controlling long-term disease.

Acknowledgements
This work is supported by the Leukemia SPORE career development award (CA100632), Rolanette and Berdon Lawrence Research Award from Bone Disease Program of Texas, Institutional Research Grant (IRC) from MD Anderson Cancer Center, Cure Sonia Foundation and Golfers Against Cancer Foundation to VLB. In addition, this work was supported by grants from the National Institutes of Health (CA055164) and the MD Anderson Cancer Center Support Grant (CA016672), Cancer Prevention Research Institute of Texas (CPRIT, RP121010), and the Paul and Mary Haas Chair in Genetics to MA. We thank Dr. Marina Konopleva for her valuable suggestions in the preparation of this review article.

References
1. Morrison SJ, Scadden DT. The bone marrow niche for hematopoietic stem cells. Nature. 2014;507(7483):327-334.
2. Itkin T, Gur-Cohen S, Spencer JA, et al. Distinct bone marrow blood vessels differentially regulate hematopoiesis. Nature. 2016;532(7599):523-528.
3. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7483):523-528.
4. Langen UH, Pitulescu ME, Kim JM, et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat Cell Biol. 2017;19(3):159-201.
5. Asada N, Takeishi S, Frenette PS. Complexity of bone marrow hematopoietic stem cell niche. Int J Hematol. 2017;106(1):45-54.
6. Miraki-Moud F, Anjos-Afonso F, Hodby KA, et al. Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. Proc Natl Acad Sci USA. 2015;110(33):13576-13581.
7. Glatt-Santar C, Desmond R, Feng X, et al. Functional Niche Competition Between Normal Hematopoietic Stem and Progenitor Cells and Myeloid Leukemia Cells: Stem Cells. 2015;13(12):3655-3662.
8. Krause DS, Fulzele K, Catic A, et al. Distinction of myeloid leukemias by a specific vessel subtype in the bone marrow microenvironment. Nat Med. 2013;19(11):1513-1517.
9. Zhou HS, Carter BZ, Andreff M. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biol Med. 2016;13(6):248-259.
10. Blau O, Hofmann W-K, Baldus CD, et al. Chromosomal abnormalities in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol. 2007;35(5):231-239.
11. Tabe Y, Shi YX, Zeng Z, et al. TGF-beta Neutralizing Antibody 1D11 Enhances Cytarabine-Induced Apoptosis in AML Cells in the Bone Marrow Microenvironment. PLoS One. 2015;10(6):e012783.
12. Kremer KM, Dudasova A, McGee-Lawrence ME, et al. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis. J Cell Biochem. 2014;115(6):1128-1137.
13. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone marrow endosteal region. Nat Biotechnol. 2007;25(11):1315-1321.
14. Lord BJ, Testa NG, Hendry JH. The relative spatial distributions of CFUs and CFUs in the normal mouse femur. Blood. 1975;46(1):65-72.
15. Lo Celso C, Fleming HE, Wu JW, et al. Live-animal tracking of individual hematopoietic stem/progenitor cells in their niche. Nature. 2009;457(7235):92-96.
16. Taichman RS, Emerson SG. Human osteoblasts protect hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677-1682.
17. Taichman RS, Reilly MJ, Verma RS, Ehrenman K, Emerson SG. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of hematopoietic progenitors. Br J Haematol. 2001;112(2):438-440.
18. Ster S, Ko Y, Forbret R, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005;201(11):1781-1791.
19. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the Hematopoietic Stem Cell Pool by CXCL12-CXC4 Chemokine Signaling in Bone Marrow Stromal Cell Niches. Immunity. 2006;25(6):977-988.
20. Uyanova T, Scott LM, Priestley GV, et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood. 2005;106(1):86-94.
21. Katayama Y, Battista M, Kao WA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407-421.
Leukemia. N Engl J Med. 2012;366(12):1090-1098.

33. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N Engl J Med. 2015;368(22):2059-2074.

34. Shahidi S, Mitchell A, et al. Identification of pre-leukemic hematopoietic stem cells in acute leukemia. Nature. 2014;506(7488):328-333.

35. Raujmakers MH, Mukherjee S, Guo S, et al. Bcl-xL progenitor dysfunction induces myelodysplasia and secondary leukemia. Nature. 2010;464(7290):852-857.

36. Kode A, Manavalan JS, Mosialou I, et al. Leukemia ensues induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506(7487):240-244.

37. Tothova Z, Gilliland DG. FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System. Cell Stem Cell. 2007;1(2):140-152.

38. Kode A, Mosialou I, Manavalan SJ, et al. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia. 2016;30(1):1-13.

39. Dong L, Yu WM, Zheng H, et al. Leukemia ensues induced by effects of Pten/P110c activating mutations in the stem cell microenvironment. Nature. 2016;539(7628):304-308.

40. Wiseman DH. Donor Cell Leukemia: A Fully Human Biologics and Marrow Transplantation. 2011;17(6):771-789.

41. Wang Y, Krittovs AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650-1653.

42. Lane SW. Bad to the bone. Blood. 2007;109(6):1152-1156.

43. Baba T, Mukaida N. Role of macrophage inflammatory protein (MIP)-1/CCL3 in leukemogenesis. Mol Cell Oncol. 2014;1(1):e2959.

44. Lane SW. Bad to the bone. Blood. 2012;119(2):323-325.

45. Shi C, Famer EG. Monocyte recruitment is mediated by G(s)-dependent signaling pathways. Proc Natl Acad Sci U S A. 2008;105(40):16976-16981.

46. Rankin EB, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the promotion of erythropoietin receptor mRNA. Proc Natl Acad Sci U S A. 2010;107(29):12495-12500.

47. Duarte D, Hawkins ED, Akinduro O, et al. Identification of pre-leukemic hematopoietic progenitor cells by the novel peptidic CXCR4 antagonist BL-8040. Cancer Cell. 2012;22(5):567-568.

48. Raymond A, Liu B, Liang H, et al. A role for BM-induced homeobox gene MLLX in acute myelogenous leukemia and identification of type I GM-CFC receptor as a potential target for therapy. Oncotarget. 2015;6(5):12675-12693.

49. Strem K, Kremers KN, Dudakov A, et al. Tissue-Nonspecific Alkaline Phosphatase is Required for M2T3 osteoblast-mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis. J Immunol. 2018;100(5):1066-1074.

50. Frisch BJ, Ashton JM, Xing L, et al. Functional inhibition of osteoblastic cells in an in vivo model of murine myeloid leukemia. Blood. 2004;103(12):4580-4585.

51. Baba T, Mukaida N. Role of macrophage inflammatory protein (MIP)-1/CCL3 in leukemogenesis. Mol Cell Oncol. 2014;1(1):e2959.

52. Sala-Torra O, Gundacker HM, Stirewalt DL, Delany AM. miR-29 Modulates Wnt Homeostasis: Insights from the Wnt/beta-catenin pathway is required for leukemia stem cells in acute myeloid leukemia bone marrow-derived stromal cells. Blood. 2007;109(2):635-661.

53. Schepers K, Pietras EM, Reynolds D, et al. Myeloproliferative Neoplasms Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell. 2013;13(3):285-299.

54. Voermans C, van Heese WP, de Jong I, Gerritsen WR, van der Schoot CE. MicroRNA-126 regulates IL-1beta expression in acute myeloid leukemia patients. Leukemia. 2002;16(4):650-657.

55. Sison EAR, McIntyre E, Magano D, Brown F. Dynamic chemotheraphy-induced upregulation of surface CXCR4 expression is a mechanism of chemoresistance in pediatric acute myeloid leukemia. Mol Cancer Res. 2015;13(9):1004-1016.

56. Konoplev S, Rashid M, Deeney J, et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer. 2007;109(6):1152-1156.

57. Spoo AC, Luberth M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2):788-791.

58. Zeng Z, Shi YX, Samudii II, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215-6224.

59. Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24):6204-6216.

60. Cao B-S, Zeng Z, Mu H, et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2157244 as monotherapy and in combination with chemotherapy. Blood. 2015;126(2):222-232.

61. Kremer KN, Peterson KL, Schneider PA, et al. CXCR4 Chemokine Receptor Signaling Induces Apoptosis in Acute Myeloid Leukemia Cells via Regulation of the Bcl-2 Family Members Bcl-XL, Noxa, and Bak. J Biol Chem. 2013;288(32):22899-22914.

62. Zhang Y, Patel S, Abdeloahab H, et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis. 2012;3(10):e369.

63. Borthakur G, Melnyk D, Farrar C, et al. The Farnesyltransferase Inhibitor BAY 11-7082 Significantly Reduces Bone Marrow Immature Leukemia Malignancies. JCI Insight. 2017;2(13).

64. Chen Y, Jacamo R, Konopleva M, et al. CXCR4-expressing human acute myeloid leukemia cells from patients with myelodysplastic syndromes and support short and long-term hematopoiesis in vitro. Oncogene. 2005;24(15):2441-2448.

65. Schepers K, Pietras EM, Reynolds D, et al. Myeloproliferative Neoplasms Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell. 2013(3):285-299.

66. Bochtis D, Zoubir M, Kavouras SG, et al. CXCR4 antagonism using the small molecule antagonist AMD3100 improves the therapeutic index of cytarabine. Cancer Biol Ther. 2006;5(10):1029-1035.

67. Reiter A, Arrieta MDM, Villatoro A. Interleukin-1β blockade, as emerging therapeutic strategy in hematological malignancies and potentially in their complications. Blood Rev. 2017;31(5):506-517.

68. Cho B-S, Zeng Z, Mu H, et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2157244 as monotherapy and in combination with chemotherapy. Blood. 2015;126(2):222-232.

69. Kremer KN, Peterson KL, Schneider PA, et al. CXCR4 Chemokine Receptor Signaling Induces Apoptosis in Acute Myeloid Leukemia Cells via Regulation of the Bcl-2 Family Members Bcl-XL, Noxa, and Bak. J Biol Chem. 2013;288(32):22899-22914.

70. Zhang Y, Patel S, Abdeloahab H, et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis. 2012;3(10):e369.
Role of osteogenic niche in AML progression

84. Benito J, Ramirez M, Millward NZ, et al. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in pre-clinical leukemia models. Clin Cancer Res. 2016;22(7):1687-1698.

85. Rouault-Pierre K, Lopez-Onieva L, Foster K, et al. HIF-α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell. 2015;15(5):549-565.

86. Fiegl M, Samudro I, Clise-Dwyer K, et al. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood. 2009;115(7):1504-1512.

87. Zhang H, Li H, Xi HS, Li S. HIF-1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119(11):2955-2967.

88. Jin L, Hope KJ, Zhai Q, Smadja-Jeffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemia stem cells. Nat Med. 2006;12(10):1167-1174.

89. Jiang E, Pham J, Kim H-N, et al. Targeting the CXCR4 Pathway: Safety, Tolerability and Clinical Activity of Ulocuplumab (BMS-936564), an Anti-CXCR4 Antibody, in Relapsed/Refractory Acute Myeloid Leukemia. Blood. 2014;124(21):386.

90. Ully GL, Rettig MP, Stone RM, et al. A phase I/2 study of chemosensitization with plerixafor plus G-CSF in relapsed or refractory acute myeloid leukemia. Cancer J. 2017;23(5):e542.

91. Lobry C, Ntziachristos P, Ndiaye-Lobry D, et al. A novel tumor suppressor function for the Notch pathway in myeloid leukemia. Cancer Res J. 2017;7(3):e542.

92. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med. 2015;210(2):301-319.

93. Klinkakis A, Lobry C, Abdel-Wahab Q, et al. Novel tumor suppressor function for the Notch pathway in myeloid leukemia. Nature. 2011;478(7364):250-253.

94. Seux-A, Perl A, Yang X, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205-4214.

95. Boddu P, Borthakur G. Therapeutic targeting of isocitrate dehydrogenase mutant AML. Expert Opin Investig Drugs. 2017;26(5):525-530.

96. Bonig H, Wundes A, Chang K-H, Lucas S, Papayannopoulou T. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood. 2008;111(7):3489-3491.

97. Becker PS, Foran JM, Altman JK, et al. Targeting the CXCR4 Pathway: Safety, Tolerability and Clinical Activity of Ulocuplumab (BMS-936564), an Anti-CXCR4 Antibody, in Relapsed/Refractory Acute Myeloid Leukemia. Blood. 2014;124(21):386.

98. Jiang E, Pham J, Kim H-N, et al. Targeting the CXCR4 Pathway: Safety, Tolerability and Clinical Activity of Ulocuplumab (BMS-936564), an Anti-CXCR4 Antibody, in Relapsed/Refractory Acute Myeloid Leukemia. Blood. 2014;124(21):386.

99. Lobry C, Ntziachristos P, Ndiaye-Lobry D, et al. Targeting of CD44 eradicates human acute myeloid leukemia stem cells. Nat Med. 2006;12(10):1167-1174.

100. Klinakis A, Lobry C, Abdel-Wahab Q, et al. A novel tumor suppressor function for the Notch pathway in myeloid leukemia. Cancer Res J. 2017;23(5):e542.

101. Razum L, Sánchez-Aguilera A, Martín-Pérez D, et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med. 2015;210(2):301-319.

102. Klinkakis A, Lobry C, Abdel-Wahab Q, et al. A novel tumor suppressor function for the Notch pathway in myeloid leukemia. Nature. 2011;478(7364):250-253.

103. Seux-A, Perl A, Yang X, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205-4214.

104. Battula VL, Chen Y, da Graca Cabreira M, et al. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood. 2013;122(5):357-366.

105. Lu W, Weng W, Zhu Q, et al. Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia. Haematologica. 2018;103(1):e2-1.e4.

106. Behan JW, Yun JR, Proektor MP, et al. Adipocytes Impair Leukemia Treatment in Mice. Cancer Res J. 2009;69(19):7967-7974.

107. Sheng X, Tucci J, Parmantier J-H, et al. Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget. 2016;7(45):73147-73159.

108. Griessinger E, Moschoi R, Biondani G, Peyron JF. Mitochondrial Transfer in the Leukemia Microenvironment. Trends Cancer. 2017;3(12):828-839.

109. Moschoi R, Imbert V, Nebout M, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 2016;128(2):259-264.

110. Marlein CR, Zaitseva L, Piddock DE, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017;130(14):1649-1660.

111. Steensma DP, Ebert BL. Clonal Hematopoiesis after Induction Chemotherapy for Acute Myeloid Leukemia. N Engl J Med. 2018;378(13):1244-1245.

112. Liersch R, Gess J, Schliemann C, et al. Osteopontin is a prognostic factor for survival of acute myeloid leukemia patients. Blood. 2012;119(22):5245-5250.

113. Tohda S, Nara N. Expression of Notch1 and Jagged1 Proteins in Acute Myeloid Leukemia Cells. Leuk Lymphoma. 2001;42(3):467-472.

114. Dong M, Blobe GC. Role of transforming growth factor- in hematologic malignancies. Blood. 2006;107(12):4589-4596.