Effects of sarcopenia on short- and long-term outcomes in patients with gastric neuroendocrine neoplasms after radical gastrectomy: Results from a large, two-institution series.

Jia-bin Wang
Xiehe Affiliated Hospital of Fujian Medical University

Zhen Xue
Xiehe Affiliated Hospital of Fujian Medical University

Jun Lu
Xiehe Affiliated Hospital of Fujian Medical University

Qing-liang He
First Affiliated Hospital of Fujian Medical University

Zhi-fang Zheng
Xiehe Affiliated Hospital of Fujian Medical University

Bin-bin Xu
Xiehe Affiliated Hospital of Fujian Medical University

Jian-wei Xie
Xiehe Affiliated Hospital of Fujian Medical University

Ping Li
Xiehe Affiliated Hospital of Fujian Medical University

Yu Xu
Fujian Medical University

Jian-xian Lin
Xiehe Affiliated Hospital of Fujian Medical University

Qi-yue Chen
Xiehe Affiliated Hospital of Fujian Medical University

Long-long Cao
Xiehe Affiliated Hospital of Fujian Medical University

Mi Lin
Xiehe Affiliated Hospital of Fujian Medical University

Ru-hong Tu
Xiehe Affiliated Hospital of Fujian Medical University

Ze-ning Huang
Xiehe Affiliated Hospital of Fujian Medical University

Ju-li Lin
Xiehe Affiliated Hospital of Fujian Medical University

Chang-ming Huang
Xiehe Affiliated Hospital of Fujian Medical University
Keywords: gastric neuroendocrine neoplasms, sarcopenia, overall survival, risk factors

DOI: https://doi.org/10.21203/rs.3.rs-31570/v2

License: Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The relationship between sarcopenia and the prognoses of patients with gastric neuroendocrine neoplasms (g-NENs) is unclear. This study was designed to explore the effects of sarcopenia on short-term and long-term outcomes of patients with g-NENs after radical gastrectomy.

Methods: This study retrospectively collected data from 138 patients with g-NENs after radical gastrectomy. The skeletal muscle index (SMI) diagnostic threshold for sarcopenia was determined using X-tile software. Cox regression analyses were performed to determine the independent risk factors for 3-year overall survival (OS) and 3-year recurrence-free survival (RFS).

Results: In this study, 59 patients (42.8%) were diagnosed with sarcopenia. Among patients in the sarcopenia group and nonsarcopenia group, the incidences of total postoperative complications were 33.9% and 30.4%, incidences of serious postoperative complications were 0% and 3.7%, incidences of postoperative surgical complications were 13.6% and 15.2%, and incidences of postoperative systemic complications were 20.3% and 15.2%, respectively (all p>0.05). The 3-year OS and RFS rates were significantly worse in the sarcopenia group than in the nonsarcopenia group (OS: 42.37% vs 65.82%, p=0.004; RFS: 52.54% vs 68.35%, p=0.036). The multivariate analysis revealed a relation between sarcopenia and the long-term prognoses of patients with g-NENs. A stratified analysis based on the pathological type revealed that the Kaplan-Meier curve was only significantly different in patients with gastric mixed adenoneuroendocrine carcinoma (gMANEC) (OS: 40.00% vs 71.79%, p=0.007; RFS: 51.43% vs 74.36%, p=0.026); furthermore, the multivariate analysis identified sarcopenia as an independent risk factor for patients with gMANEC (p<0.05).

Conclusions: Sarcopenia is not related to the short-term prognoses of patients with g-NENs. Sarcopenia is an independent risk factor for patients with gMANEC after radical surgery.

Background

Gastric neuroendocrine neoplasms (g-NENs) is a class of tumors with significant heterogeneity, accounting for approximately 4% of all neuroendocrine tumors[1], and its incidence is gradually increasing[2, 3]. G-NENs including three categories: gastric neuroendocrine tumor (gNET), gastric neuroendocrine carcinoma (gNEC) and gastric mixed adenoneuroendocrine carcinoma (gMANEC)[4]. Surgery is the main treatment for all types of g-NENs[5]. Because of its different clinicopathological features, the understanding and the prognostic factors of g-NENs are still rarely studied[6–9]. Therefore, to improve the prognosis of g-NENs patients, it is important to explore the factors influencing short-term and long-term outcomes of g-NENs patients after radical surgery.

In recent years, studies have shown that sarcopenia is closely related to the prognosis in cases of gastric cancer, liver cancer, colorectal cancer, and other malignant tumors[10–16]. However, no studies have reported the effect of sarcopenia on the short-term and long-term postoperative outcomes of g-NENs.

This study retrospectively analyzed the clinicopathological data of 138 patients with g-NENs in two institutions, aiming to explore the effect of sarcopenia on the short-term and long-term outcomes of g-NENs patients after radical gastrectomy.

Methods

Patient Selection
The clinicopathological data of patients diagnosed with g-NENs in the Fujian Medical University Union Hospital (FMUUH) and the First Affiliated Hospital of Fujian Medical University (FMUFAH) from December 2009 to December 2015 were retrospectively analyzed. The inclusion criteria were as follows: (1) patients diagnosed with g-NENs by pathology; (2) without distant metastasis, as assessed by preoperative examination; and (3) R0 excision was performed. The following were the exclusion criteria: (1) distant metastasis was found preoperatively and intraoperatively; (2) patients received neoadjuvant chemotherapy or radiotherapy before surgery; and (3) basic clinical data and computed Tomography (CT) images were incomplete. A total of 138 patients with g-NENs were finally included in this study (111 patients in FMUUH and 27 patients in FMUFAH, Supplementary Table 1). The tumor size, location, T stage and N stage were comprehensively determined by two attending physicians according to the findings of gastroscopy, abdominal CT and other auxiliary examinations performed preoperatively. The type of surgical resection were performed according to the location of the tumor. Lymph node dissection was performed according to the Japanese gastric cancer treatment guidelines (13th Edition)[17]. For patients at stage II or above, fluorine-based postoperative adjuvant chemotherapy was recommended[18]. The study was approved by the Ethics Committee of FMUUH and FMUFAH.

Diagnosis and Classification of g-NENs

According to the 2010 WHO classification of tumors of the digestive system, g-NENs were classified as gNET, including NET1 and NET2 grades; gNEC, including large-cell carcinomas and small-cell carcinomas; and gMANEC. Neuroendocrine cells were confirmed, diagnosed and classified by microscopic histomorphological features and immunohistochemical staining to detect neuroendocrine tumor-related biomarkers (such as CgA, CD56 and Syn). The pathological findings were confirmed by two experienced pathologists.

CT Image Analysis

A preoperative abdominal CT scan within one month was considered to accurately reflect the patient's muscle status. The researcher who was blinded to the outcome measured the skeletal muscle cross-sectional area (cm2) at the level of the third lumbar vertebra (L3) by using Osirix 3.3 software (32-bit; http://www.osirix-viewer.com)[19]. The researcher was trained to accurately identify lumbar vertebrae and muscles (Supplementary Fig. 1). The average surface (cm2) of two consecutive slices was used for analysis. If necessary, the area of the selected area could be manually adjusted to accurately calculate the area value. The tissue discrimination threshold of skeletal muscle is -29 to + 150 Hounsfield units (HU)[20]. Muscle area (cm2) was standardized by height (m2) to obtain the L3 skeletal muscle index (SMI) (cm2/m2)[21].

Optimal SMI Cutoff Value and Definition of Sarcopenia

Separate X-tile plots were constructed for men and women. For the men, when the SMI value was 44.3 cm2/m2, the maximum Chi-square log-rank value of 4.2611 was achieved, therefore a SMI ≤ 44.3 cm2/m2 was defined as sarcopenia, and a SMI > 44.3 cm2/m2 was defined as nonsarcopenia (p = 0.038) (Supplementary Fig. 2).

For the women, a SMI ≤ 32.4 cm2/m2 was defined as sarcopenia in the same way ($\chi^2 = 1.0039, p = 0.214$) (Supplementary Fig. 2).

Variables and Definitions

Overall survival (OS) was defined as the time from surgery to the last follow-up, death, or the deadline from the follow-up database (such as loss of follow-up or death from other diseases). Recurrence-free survival (RFS) was defined as the time from surgery to the initial recurrence. Postoperative complications were classified according to the Clavien-Dindo classification[22]. Total postoperative complications were defined as Clavien-Dindo grade 2 and above. Severe
complications were defined as Clavien-Dindo 3 and above[11]. Postoperative surgical complications were defined as complications related to the surgical procedure. Systemic complications were defined as complications not directly related to the surgical field or the incision.

Follow-Up

The median follow-up time was 36 months (range: 1-102 months). Physical and laboratory examinations were performed regularly after surgery, once every 3 months for 2 years, every 6 months for the next 3 years, and once a year after 5 years. In addition, imaging examinations, including chest radiographs, abdominal and pelvic CTs, and endoscopy, were performed at least once a year. If necessary, additional MRI or PET studies were obtained to determine whether there was a recurrence.

Statistical Analysis

All the data were statistically analyzed by SPSS 22.0 software. Continuous variables are reported as the means ± SD or median (interquartile range). X-tile plots were used as a new bioinformatics tool for biomarker assessment and outcome-based cut-point optimization[10, 23]. Categorical and continuous variables were compared using a χ^2 test or Fisher's exact test and a t-test, respectively. The OS and RFS rates were calculated by the Kaplan-Meier method, and the differences were assessed with log-rank tests. The Cox proportional hazards regression model was used to analyze the independent prognostic factors of 3-year OS and RFS rates. Values of p less than 0.05 were considered statistically significant.

Results

1. Clinicopathologic Characteristics

In 138 patients, there were 59 patients (42.8%) in the sarcopenia group and 79 patients (57.2%) in the nonsarcopenia group. The comparison of clinical data between the two groups showed that the incidence of sarcopenia was higher in the subgroup of male patients, aged 65 years, with a BMI of < 25 and a tumor larger than 50 mm (all p < 0.05). However, there was no significant difference in other variables between the two groups (all p > 0.05) (Table 1).
Variable	All (n = 138)	Low (n = 59)	High (n = 79)	P
Gender				
Male	105	51	54	
Female	33	8	25	
Age (years)				
< 65	80	26	54	
≥ 65	58	33	25	
BMI (kg/m²)				
< 25	115	55	60	
≥ 25	23	4	19	
ASA				
1	69	28	41	
2	54	23	31	
3	15	8	7	
Comorbidities				
No	40	19	21	
Yes	98	40	58	
Tumor diameter (mm)				
< 50	68	23	45	
≥ 50	70	36	34	
Tumor location				
Upper	63	26	37	
Middle	27	12	15	
Lower	33	16	17	
Mix	15	5	10	
T stage				
T1 + T2	77	35	42	
T3 + T4	61	24	37	
N stage				
N0	46	16	30	

Table 1
Clinicopathological characteristics
Table 1

SMI	82	56	72
N1	92	43	49
Surgical method			0.103
Open	43	14	29
Laparoscopic	95	45	50
Gastrectomy extent			0.67
Total	101	45	56
Distal	33	13	20
Proximal	4	1	3
Pathological type			0.318
NET	12	3	9
NEC	52	21	31
MANEC	74	35	39
Ki-67 positive index (%)			0.439
< 60	59	23	36
≥ 60	79	36	43
Complications			0.984
No	82	35	47
Yes	56	24	32
Adjuvant chemotherapy			0.193
No	66	32	34
Yes	72	27	45

SMI, skeletal muscle index; BMI, body mass index; ASA, American Society of Anesthesiologists; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma; MANEC, mixed adenoneuroendocrine carcinoma.

2. Effects of Sarcopenia on Postoperative Complications

In this study, postoperative complications occurred in 44 patients (31.9%), and serious complications occurred in 3 patients (2.2%). In the sarcopenia group and the nonsarcopenia group, the incidence of total postoperative complications was 33.9% and 30.4% respectively, and the incidence of serious complications was 0% and 3.7% (all p > 0.05). Postoperative surgical and systemic complications occurred in 20 patients (14.5%) and 24 patients (17.4%) in the whole group. In the sarcopenia group and the nonsarcopenia group, the incidence of postoperative surgical complications was 13.6% and 15.2% respectively, and the incidence of postoperative systemic complications was 20.3% and 15.2% (all p > 0.05). In addition, according to the physical location of the complication, the analysis showed that there were no significant differences in the incidence of specific types of complications between the two groups (all p > 0.05) (Table 2).
Table 2
Postoperative complications in 138 patients[Case(%)]

	Sarcopenia	Nonsarcopenia	P
Total complications	20 (33.9)	24 (30.4)	0.661
Serious complications	0 (0)	3 (3.7)	0.26
Surgical complications	8 (13.6)	12 (15.2)	0.788
Systemic complications	12 (20.3)	12 (15.2)	0.43
Physical location			
Pulmonary infection	12 (20.3)	12 (15.2)	0.43
Abdominal infection	4 (6.8)	3 (3.8)	0.461
Incision infection	1 (1.7)	0 (0)	0.428
Chylous fistula	0 (0)	3 (3.8)	0.26
Intestinal obstruction	0 (0)	2 (2.5)	0.507
Anastomotic fistula	1 (1.7)	2 (2.5)	1
Abdominal bleeding	1 (1.7)	2 (2.5)	1
Anastomotic stenosis	1 (1.7)	0 (0)	0.428

3. Effects of Sarcopenia on the Prognosis of g-NENs Patients

The 3-year OS rates were 42.37% and 65.82%, and the 3-year RFS rates were 52.54% and 68.35% in the sarcopenia and nonsarcopenia groups (all p < 0.05, Fig. 1A B). Univariate analysis showed that the Anesthesiology Society of America (ASA) score, pT, pN, Ki-67-positive index and sarcopenia were related to the 3-year OS rates, whereas the ASA score, pN, Ki-67-positive index, and sarcopenia were related to the 3-year RFS rates (all p < 0.05, Table 3). Multivariate analysis showed that only the ASA score, pN, Ki-67-positive index and sarcopenia were related to the 3-year OS and RFS rates (all p < 0.05, Table 3).
Table 3
Uni- and multivariate analyses of factors associated with 3-year overall survival (OS) and recurrence-free survival (RFS) rates in g-NENs patients.

Variable	3-year OS	3-year RFS	3-year OS	3-year RFS
	HR (95% CI)	P	HR (95% CI)	P
Gender				
Male	1		1	
Female	0.650 (0.338–1.248)	0.195	0.813 (0.419–1.580)	0.542
Age (years)				
< 65	1		1	
≥ 65	1.112 (0.669–1.847)	0.683	0.851 (0.488–1.483)	0.569
BMI (kg/m²)				
< 25	1		1	
≥ 25	0.694 (0.330–1.460)	0.336	0.709 (0.320–1.570)	0.396
ASA				
1	1		1	
2	1.934 (1.118–3.347)	0.018	1.869 (1.069–3.269)	0.028
3	2.54 (1.172–5.504)	0.018	2.029 (0.917–4.486)	0.081
Comorbidity				
No	1		1	
Yes	1.346 (0.751–2.411)	0.318	0.993 (0.552–1.785)	0.981
Tumor (mm)				
< 50	1		1	

g-NENs, gastric neuroendocrine neoplasms; HR, hazard ratio; CI, confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma; MANEC, mixed adenoneuroendocrine carcinoma; SMI, skeletal muscle index.
Variable	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis
	3-year OS	3-year OS	3-year RFS	3-year RFS
	HR (95% CI)	P	HR (95% CI)	P
≥ 50	1.596 (0.957–2.659)	0.073	1.449 (0.841–2.496)	0.181
Tumor location				
Upper	1		1	
Middle	0.664 (0.314–1.403)	0.283	0.778 (0.349–1.734)	0.540
Lower	0.917 (0.484–1.735)	0.789	1.104 (0.571–2.135)	0.769
Mix	1.253 (0.593–2.649)	0.555	1.147 (0.494–2.664)	0.749
T stage				
T1 + T2	1	1	1	
T3 + T4	1.748 (1.054–2.898)	0.031	1.445 (0.843–2.476)	0.181
N stage				
N0	1	1	1	1
N1	5.032 (2.385–10.616)	<.001	3.554 (1.624–7.778)	0.002
Surgical method				
Open	1		1	
Laparoscopic	0.797 (0.472–1.344)	0.395	0.875 (0.496–1.546)	0.647
Gastrectomy extent				
Total	1	1	1	
Distal	0.74 (0.400–1.368)	0.337	1.080 (0.584–1.994)	0.807

g-NENs, gastric neuroendocrine neoplasms; HR, hazard ratio; CI confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma; MANEC, mixed adenoneuroendocrine carcinoma; SMI, skeletal muscle index.
Variable	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis
	3-year OS	3-year OS	3-year RFS	3-year RFS
	HR (95% CI)	P	HR (95% CI)	P
Proximal	0.418 (0.058–3.029)	0.388	0.528 (0.072–3.850)	0.529
Pathological type				
NET	1		1	
NEC	2.352 (0.712–7.773)	0.161	1.521 (0.524–4.414)	0.441
MANEC	1.839 (0.563–6.008)	0.313	1.172 (0.410–3.350)	0.767
Ki-67 positive index (%)				
< 60	1	1	1	1
≥ 60	4.753 (2.469–9.152)	<.001	3.492 (1.772–6.879)	<.001
	5.978 (2.810–12.718)	<.001	4.304 (1.981–9.350)	<.001
Complication				
No	1		1	
Yes	1.645 (0.994–2.723)	0.053	1.245 (0.699–2.220)	0.457
Adjuvant chemotherapy				
No	1		1	
Yes	1.409 (0.843–2.355)	0.191	1.559 (0.894–2.719)	0.117
Martin et al. [29]				
High	1		1	
Low	1.181 (0.709–1.968)	0.523	1.377 (0.790–2.400)	0.260

g-NENs, gastric neuroendocrine neoplasms; HR, hazard ratio; CI, confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma; MANEC, mixed adenoneuroendocrine carcinoma; SMI, skeletal muscle index.
4. Effects of Sarcopenia on the Prognosis of Patients with Different Types of g-NENs

According to the stratified analysis of postoperative pathological types, in gNET patients, the 3-year OS rates of the sarcopenia group and nonsarcopenia group were 66.67% and 77.78%, respectively, and the 3-year RFS rates were 66.67% and 66.67%, respectively (all p > 0.05, Fig. 1C D). In gNEC patients, the 3-year OS rates of the sarcopenia group and nonsarcopenia group were 42.86% and 54.84%, respectively, and the 3-year RFS rates were 52.38% and 61.29%, respectively (all p > 0.05, Fig. 1E F). In patients with gMANEC, the 3-year OS rates of the sarcopenia group and nonsarcopenia group were 40.00% and 71.79%, respectively, and the 3-year RFS rates were 51.43% and 74.36%, respectively (all p < 0.05, Fig. 1G H). To more accurately evaluate the impact of sarcopenia on the prognosis of different types of g-NENs patients, we further carried out a multivariate analysis for each subgroup of the population. However, because there were few patients in the gNET subgroup, and the Kaplan-Meier analysis showed that there was no significant difference between the two groups in the gNET subgroup. Therefore, the gNET subgroup was not included in further multivariate analyses. Multivariate analysis showed that the 3-year OS rates were associated with comorbidities, pN and the Ki-67-positive index (all p < 0.05), and the 3-year RFS rates were associated with pN and the Ki-67-positive index (all p < 0.05), both OS rates and RFS rates were not associated with sarcopenia, in patients with gNEC (Supplemental Table 2). However, in gMANEC patients, the pN, Ki-67-positive index and sarcopenia were related to the 3-year OS rates and the 3-year RFS rates (all p < 0.05, Table 4).
Table 4
Uni- and multivariate analyses of factors associated with 3-year overall survival (OS) and recurrence-free survival (RFS) rates in gMANEC patients.

Variable	Univariate analysis	Multivariate analysis	Univariate analysis	Multivariate analysis
	3-year OS	3-year OS	3-year RFS	3-year RFS
	HR (95% CI)	P	HR (95% CI)	P
Gender				
Male	1	1	1	1
Female	0.788 (0.341–1.823)	0.578	1.020 (0.431–2.412)	0.964
Age (years)				
< 65	1	1	1	1
≥ 65	1.234 (0.616–2.472)	0.554	0.929 (0.431–2.002)	0.851
BMI (kg/m²)				
< 25	1	1	1	1
≥ 25	0.856 (0.300–2.442)	0.772	0.809 (0.243–2.687)	0.729
ASA				
1	1	1	1	1
2	2.261 (1.038–4.929)	0.04	1.548 (0.701–3.422)	0.280
3	3.732 (1.371–10.156)	0.01	1.898 (0.628–5.730)	0.256
Comorbidity				
No	1	1	1	1
Yes	0.846 (0.401–1.789)	0.662	0.528 (0.245–1.139)	0.104

gMANEC, gastric mixed adenoneuroendocrine carcinoma; HR, hazard ratio; CI, confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; SMI, skeletal muscle index.

29. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(12):1539-47. doi: 10.1200/jco.2012.45.2722. PubMed PMID: 23530101.
| Variable | Univariate analysis | Multivariate analysis | Univariate analysis | Multivariate analysis |
|-------------------|---------------------|-----------------------|---------------------|-----------------------|
| | 3-year OS | 3-year OS | 3-year RFS | 3-year RFS |
| | HR (95% CI) | P | HR (95% CI) | P |
| Tumor (mm) | | | | |
| < 50 | 1 | | 1 | |
| ≥ 50 | 1.528 (0.754–3.098) | 0.239 | 1.264 (0.591–2.701) | 0.546 |
| Tumor location | | | | |
| Upper | 1 | | 1 | |
| Middle | 0.573 (0.188–1.741) | 0.326 | 0.802 (0.255–2.521) | 0.706 |
| Lower | 0.852 (0.369–1.970) | 0.708 | 1.100 (0.456–2.656) | 0.832 |
| Mix | 1.625 (0.583–4.531) | 0.353 | 1.140 (0.317–4.094) | 0.841 |
| T stage | | | | |
| T1 + T2 | 1 | | 1 | |
| T3 + T4 | 2.197 (1.082–4.464) | 0.029 | 2.145 (0.985–4.668) | 0.055 |
| N stage | | | | |
| N0 | 1 | | 1 | |
| N1 | 4.586 (1.756–11.979) | 0.002 | 3.134 (1.148–8.551) | 0.026 |
| | | | | |
| Surgical method | | | | |
| Open | 1 | | 1 | |

gMANEC, gastric mixed adenoneuroendocrine carcinoma; HR, hazard ratio; CI confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; SMI, skeletal muscle index.

29. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(12):1539-47. doi: 10.1200/jco.2012.45.2722. PubMed PMID: 23530101.
| Variable | Univariate analysis | Multivariate analysis | Univariate analysis | Multivariate analysis |
|--------------------------------|---------------------|-----------------------|---------------------|-----------------------|
| | 3-year OS | 3-year OS | 3-year RFS | 3-year RFS |
| | HR (95% CI) | P | HR (95% CI) | P |
| Laparoscopic | 0.698 (0.330–1.474) | 0.346 | 0.778 (0.340–1.779) | 0.552 |
| Gastrectomy extent | | | | |
| Total | 1 | 1 | | |
| Distal | 0.691 (0.310–1.540) | 0.366 | 1.201 (0.539–2.673) | 0.654 |
| Proximal | 0 (0) | 0.982 | 0 (0) | 0.984 |
| Ki-67 positive index (%) | | | | |
| < 60 | 1 | 1 | 1 | 1 |
| ≥ 60 | 4.874 (1.872–12.689)| 0.001 | 3.710 (1.372–10.033)| 0.010 |
| Complication | | | | |
| No | 1 | 1 | | |
| Yes | 1.645 (0.820–3.298) | 0.161 | 1.200 (0.525–2.742) | 0.666 |
| Adjuvant chemotherapy | | | | |
| No | 1 | 1 | | |
| Yes | 1.428 (0.697–2.925) | 0.33 | 1.248 (0.579–2.691) | 0.572 |
| Martin et al. [29] | | | | |
| High | 1 | 1 | | |

gMANEC, gastric mixed adenoneuroendocrine carcinoma; HR, hazard ratio; CI, confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; SMI, skeletal muscle index.

29. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2013;31(12):1539-47. doi: 10.1200/jco.2012.45.2722. PubMed PMID: 23530101.
| Variable | Univariate analysis | Multivariate analysis | Univariate analysis | Multivariate analysis |
|----------|---------------------|-----------------------|---------------------|-----------------------|
| | 3-year OS | 3-year OS | 3-year RFS | 3-year RFS |
| | HR (95% CI) | P | HR (95% CI) | P |
| Low | 1.667 (0.789–3.523) | 0.181 | 1.868 (0.817–4.272) | 0.138 |
| SMI | | | | |
| High | 1 | 1 | 1 | 1 |
| Low | 2.639 (1.270–5.483) | 0.009 | 2.735 (1.246–6.001) | 0.012 |
| | | | 2.356 (1.077–5.153) | 0.032 |
| | | | 2.825 (1.250–6.386) | 0.013 |

gMANEC, gastric mixed adenoneuroendocrine carcinoma; HR, hazard ratio; CI, confidence interval; BMI, body mass index; ASA, American Society of Anesthesiologists; SMI, skeletal muscle index.

29. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2013;31(12):1539-47. doi: 10.1200/jco.2012.45.2722. PubMed PMID: 23530101.

Discussion

NENs is a type of digestive system tumor with different clinical symptoms and biological characteristics[24]. It is important to identify patients with different prognoses according to their clinical and pathological conditions to provide individualized treatment to improve the efficacy of g-NENs treatments. However, there are still few studies evaluating the prognostic factors in g-NENs patients[8, 9]. Recently, the influence of preoperative body composition parameters (such as skeletal muscle mass) on postoperative short-term and long-term outcomes has attracted the attention of scholars in the east and the west. Sarcopenia is characterized by a progressive decline in systemic muscle mass, muscle strength, or muscle physiological function associated with aging[25]. At present, several studies have shown that sarcopenia is closely related to the prognosis of various malignant tumors[10–16]. However, the effect of sarcopenia on the prognosis of g-NENs patients undergoing radical gastrectomy has not been reported. Therefore, this study combined the clinicopathological data of 138 patients from two institutions to explore the effect of sarcopenia on the short-term and long-term postoperative outcomes of g-NENs patients.

Based on the definition of sarcopenia of the European Working Group on Sarcopenia (EWGSOP)[26] and the Asian Working Group for Sarcopenia (AWGS)[27], sarcopenia is diagnosed with low skeletal muscle mass, low muscle strength and poor low physical performance. However, in the current research, low skeletal muscle mass is mostly used as the definition of sarcopenia. A meta-analysis to explore the relationship between sarcopenia and the risk of postoperative complications of gastrointestinal tumors included a total of 29 studies related to sarcopenia, of which 26 used low skeletal muscle mass as the definition of sarcopenia[28]. In both eastern[10, 11] and western[15, 21, 29] studies, researchers tend to use low skeletal muscle mass as the definition of sarcopenia. And the data of the patient's muscle mass can be obtained by analyzing the abdominal CT scan[10]. Abdominal CT scan is also a routine follow-up item for patients with g-NENs after radical gastrectomy[30]. Using low skeletal muscle mass as the definition of sarcopenia can help clinicians to make treatment decisions more conveniently and quickly.
At present, the value of the cutoff point of sarcopenia is still controversial. The most commonly used definitions were defined by Prado et al.\cite{21} and Martin et al.\cite{29}. In the past, our center used x-tile software to analyze the 3-year OS rates of 924 patients with gastric adenocarcinoma after R0 resection and defined sarcopenia as a SMI < 32.5 cm2/m2 for males and a SMI < 28.6 cm2/m2 for females\cite{10}. However, when previous definitions were applied, we found that only those of Martin et al. could obtain the prevalence of sarcopenia similar to those in the previous studies (Supplementary Table 3). Therefore, we included the cutoff point defined by Martin et al. in the analysis. The Kaplan-Meier analysis, Cox regression analysis indicated that the cutoff points defined by Martin et al. could not serve as prognostic factors for g-NENs patients in our study (Tables 3, 4, Supplemental Table 2, Supplementary Fig. 3). Therefore, this study used x-tile software to analyze the 3-year OS rates of 138 g-NENs patients from the two institutions and defined a SMI < 44.3 cm2/m2 for males and a SMI < 32.4 cm2/m2 for females as sarcopenia, and the incidence of sarcopenia in our study was 42.8% (59/138). There's no significance survival difference in female group (Supplementary Fig. 2), maybe it's because the proportion of female patients in this study is relatively small (33/138 cases, 23.9%). But in the previous studies of sarcopenia, different values of the cutoff point of sarcopenia are usually used in male and female groups\cite{14, 15, 29, 31}. This is mainly because there are great differences in the strength and quality of skeletal muscle between male and female groups. And in this study, compared the average SMI in male and female g-NENs cohort, there was a significant difference in the average value of SMI between male and female groups (45.2 cm2/m2 in male, 37.5 cm2/m2 in female, p < 0.05). Therefore, in order to better evaluate the effect of sarcopenia on the prognosis of g-NENs patients, we used different diagnostic criteria for men and women in this study.

The effect of sarcopenia on short-term postoperative outcomes in patients with malignant tumors is still controversial. Previous studies have confirmed that sarcopenia is associated postoperative short-term prognosis in patients with multiple malignant tumors\cite{11, 13, 15, 32}. In a Chinese study, analysis of 937 patients with gastric cancer after radical gastrectomy showed that sarcopenia was related to severe postoperative complications\cite{11}. An American study showed that sarcopenia was associated with the short-term outcomes in patients with pancreatic cancer after pancreatectomy\cite{32}. However, some studies have indicated opposite opinions\cite{31, 33}. Tegels’ study showed that although the incidence of sarcopenia was high in patients with gastric cancer, it was not associated with a poor postoperative prognosis\cite{31}. Ouchi’s study showed that sarcopenia did not increase the incidence of total and severe postoperative complications in patients with colorectal cancer\cite{33}. In this study, there was no significant difference in the incidence of total postoperative complications, surgical complications and systemic complications between the g-NENs patients with and without sarcopenia. According to the physical location of the complications, the results showed that there was no significant correlation between sarcopenia and specific types of complications in patients with g-NENs.

In recent years, studies have confirmed that sarcopenia is closely related to the long-term prognosis of patients with multiple malignant tumors\cite{10, 12, 14, 16}. Studies by Voron have shown that sarcopenia is an independent prognostic factor for long-term outcomes in patients with hepatocellular carcinoma after hepatectomy\cite{12}. Tan’s study suggested that sarcopenia was associated with poor prognosis of pancreatic cancer patients\cite{16}. Similar to previous studies, our study showed that preoperative sarcopenia was an independent risk factor for the long-term prognosis of g-NENs patients. For this result, we have examined the interaction between sarcopenia and the gastrectomy status and tumor aggressiveness. There was no significant difference in surgical methods, laparoscopic gastrectomy extent and pathological stage between the sarcopenia group and the nonsarcopenia group (Table 1). Multivariate analysis showed that pN stage and sarcopenia were independent prognostic factors of 3-year OS and RFS rates in g-NENs patients, while surgical methods, laparoscopic gastrectomy extent and pT stage were not (Table 3). And The HR value of sarcopenia changed little between univariate and multivariate analysis in our study (Table 3). This shows that the prognostic effect of preoperative sarcopenia is less affected by the gastrectomy status and tumor aggressiveness in
g-NENs patients. However, g-NENs can be divided into three different pathological types, namely, gNET, gNEC, and gMANEC. The degree of tumor differentiation, grade level, and cell components of three pathological types are not the same[4], and the treatment strategy and prognosis also show significant differences with different pathological types[34, 35]. In this study, a further stratified analysis showed that sarcopenia was related to the 3-year OS and RFS rates in patients with gMANEC. In view of this result, we think it may be related to the following reasons. First, for the subgroup of the gNET population, gNET is a highly differentiated neuroendocrine tumor, of mostly low or moderate malignancy, presenting as G1 and G2[3]. The lower tumor invasiveness and the lower effect on skeletal muscle mass may be the reason why sarcopenia cannot be used as a prognostic factor for gNET patients. Second, compared with gNEC and gMANEC, gNEC is a poorly differentiated neuroendocrine carcinoma, which is mostly highly malignant and manifests as G3. GMANEC is defined as a malignant tumor with morphological components of glandular epithelial cells and neuroendocrine cells, both of which account for at least more than 30%. Previous studies have shown that the clinical characteristics of gMANEC largely depend on the proportion of neuroendocrine carcinoma components[36, 37]. Fernandes et al. believe that the prognosis of gMANEC might be related to whether certain tumor components are more invasive[38]. Furthermore, previous studies have confirmed that sarcopenia is associated with the long-term prognosis of gastric adenocarcinoma patients[10, 11]. Therefore, we think that the mechanism may be influenced by the presence of more adenocarcinoma components in gMANEC, then sarcopenia is only related to the long-term prognosis of gMANEC patients and has nothing to do with the prognosis of gNET and gNEC patients in this study. The underlying molecular mechanism needs to be further elucidated.

This study had some limitations. First, because most gNET patients received endoscopic treatment, the number of gNET patients in this study was limited, which may cause bias. Second, this study is a retrospective case-control study conducted in an Asian population, the results of which need to be confirmed by prospective studies and data from western regions. Third, the proportion of female patients in this study is relatively small (33/138 cases, 23.9%), so the prognostic effect of sarcopenia on female g-NENs patients needs to be further tested by a larger population study, and we will conduct related studies in the future. Fourth, this study did not analyze the effect of postoperative adjuvant chemotherapy and the effect postoperative sarcopenia caused by the gastrectomy status and tumor aggressiveness on long-term outcome, which may also bias the results. Nevertheless, as far as we know, this study is the first to explore the effect of sarcopenia on the short-term and long-term outcomes in patients with g-NENs by using data from two independent large-volume institutions, thus providing a reference for future clinical trials.

Conclusion

In this study, a SMI < 44.3 cm²/m² for males and a SMI < 32.4 cm²/m² for females were found to be the optimal cutoff points for sarcopenia in g-NENs. Sarcopenia was not significantly associated with postoperative complications in patients with g-NENs. Sarcopenia is an independent risk factor for the long-term prognosis of gMANEC patients undergoing radical gastrectomy. Further prospective multicenter studies are needed to confirm the prognostic value of sarcopenia in patients with g-NENs.

Abbreviations

- g-NENs, gastric neuroendocrine neoplasms
- OS, overall survival
- RFS, recurrence-free survival
- SMI, skeletal muscle index
- BMI, body mass index
- ASA, American Society of Anesthesiologists
- gNET, gastric neuroendocrine tumor
- gNEC, gastric neuroendocrine carcinoma
- gMANEC, gastric mixed adenoneuroendocrine carcinoma

Declarations
Ethics approval and consent to participate

The study protocol conformed to the Ethics Committee of Fujian Medical University Union Hospital. Written informed consent was obtained before resection.

Consent for Publication

Not applicable.

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing Interest

There are no conflicts of interest or financial ties to disclose from any of author.

Funding

Supported by Construction Project of Fujian Province Minimally Invasive Medical Center (No. [2017]171). The second batch of special support funds for Fujian Province innovation and entrepreneurship talents (2016B013). Fujian science and technology innovation joint fund project (2017Y9004). Fujian science and technology innovation joint fund project (2017Y9011). Fujian science and technology innovation joint fund project (2018Y9041). Natural Science Foundation of Fujian Province (2019J01155). Fujian provincial science and technology innovation joint fund project plan (2018Y9005). These funding bodies were independent of the study design, data collection, interpretation and manuscript writing.

Author contributions:

JBW, ZX, JL and QLH, CMH and CHZ conceived the study, analyzed the data, and drafted the manuscript; CMH, CHZ helped critically revise the manuscript for important intellectual content; ZFZ, BBX, PL, JWX, YX, JXL, QYC, LLC, ML, RHT, ZNH and JLL helped collect data and design the study. All authors have read and approved the manuscript.

Acknowledgements

We thank Bin-bin Xu, Zhen Xue, Jun Lu for their assistance provided in patient screening and data input.

References

1. Modlin IM, Lye KD, Kidd M. Carcinoid tumors of the stomach. Surgical oncology. 2003;12(2):153-72. PubMed PMID: 12946486.

2. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008;26(18):3063-72. doi: 10.1200/jco.2007.15.4377. PubMed PMID: 18565894.
3. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA oncology. 2017;3(10):1335-42. doi: 10.1001/jamaoncol.2017.0589. PubMed PMID: 28448665.

4. Bosman FT CF, Hruban RH, Theise ND, eds. WHO classification of tumors of the digestive system: Lyon: IARC Press; 2010:13–14.

5. Shah MH, Goldner WS, Halfdanarson TR, Bergsland E, Berlin JD, Halperin D, et al. NCCN Guidelines Insights: Neuroendocrine and Adrenal Tumors, Version 2.2018. Journal of the National Comprehensive Cancer Network : JNCCN. 2018;16(6):693-702. doi: 10.6004/jnccn.2018.0056. PubMed PMID: 29891520.

6. Tsikitis VL, Wertheim BC, Guerrero MA. Trends of incidence and survival of gastrointestinal neuroendocrine tumors in the United States: a seer analysis. Journal of Cancer. 2012;3:292-302. doi: 10.7150/jca.4502. PubMed PMID: 22773933.

7. Klöppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Annals of the New York Academy of Sciences. 2004;1014:13-27. PubMed PMID: 15153416.

8. Faggiano A, Ferolla P, Grimaldi F, Campana D, Manzoni M, Davì MV, et al. Natural history of gastro-enteropancreatic and thoracic neuroendocrine tumors. Data from a large prospective and retrospective Italian epidemiological study: the NET management study. Journal of endocrinological investigation. 2012;35(9):817-23. doi: 10.3275/8102. PubMed PMID: 22080849.

9. Lewkowicz E, Trofimiuk-Müldner M, Wysocka K, Pach D, Kielska A, Stefańska A, et al. Gastroenteropancreatic neuroendocrine neoplasms: a 10-year experience of a single center. Polskie Archiwum Medycyny Wewnetrznej. 2015;125(5):337-46. PubMed PMID: 25924181.

10. Zheng ZF, Lu J, Zheng CH, Li P, Xie JW, Wang JB, et al. A Novel Prognostic Scoring System Based on Preoperative Sarcopenia Predicts the Long-Term Outcome for Patients After R0 Resection for Gastric Cancer: Experiences of a High-Volume Center. Annals of surgical oncology. 2017;24(7):1795-803. doi: 10.1245/s10434-017-5813-7. PubMed PMID: 28213789.

11. Zhuang CL, Huang DD, Pang WY, Zhou CJ, Wang SL, Lou N, et al. Sarcopenia is an Independent Predictor of Severe Postoperative Complications and Long-Term Survival After Radical Gastrectomy for Gastric Cancer: Analysis from a Large-Scale Cohort. Medicine. 2016;95(13):e3164. doi: 10.1097/md.0000000000003164. PubMed PMID: 27043677.

12. Voron T, Tselikas L, Pietrasz D, Pigneur F, Laurent A, Compagnon P, et al. Sarcopenia Impacts on Short- and Long-term Results of Hepatectomy for Hepatocellular Carcinoma. Annals of surgery. 2015;261(6):1173-83. doi: 10.1097/sla.0000000000000743. PubMed PMID: 24950264.

13. Malietzis G, Currie AC, Athanasiou T, Johns N, Anyamene N, Glynne-Jones R, et al. Influence of body composition profile on outcomes following colorectal cancer surgery. The British journal of surgery. 2016;103(5):572-80. doi: 10.1002/bjs.10075. PubMed PMID: 26994716.

14. Miyamoto Y, Baba Y, Sakamoto Y, Ohuchi M, Tokunaga R, Kurashige J, et al. Sarcopenia is a Negative Prognostic Factor After Curative Resection of Colorectal Cancer. Annals of surgical oncology. 2015;22(8):2663-8. doi: 10.1245/s10434-014-4281-6. PubMed PMID: 25564158.

15. Amini N, Spolverato G, Gupta R, Margonis GA, Kim Y, Wagner D, et al. Impact Total Psoas Volume on Short- and Long-Term Outcomes in Patients Undergoing Curative Resection for Pancreatic Adenocarcinoma: a New Tool to Assess Sarcopenia. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract. 2015;19(9):1593-602. doi: 10.1007/s11665-015-2835-y. PubMed PMID: 25925237.

16. Tan BH, Birdsell LA, Martin L, Baracos VE, Fearon KC. Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(18):4299-306.
17. Japanese Gastric Cancer A. Japanese Classification of Gastric Carcinoma - 2nd English Edition. Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 1998;1(1):10-24. PubMed PMID: 11957040.

18. Xie JW, Lu J, Wang JB, Lin JX, Chen QY, Cao LL, et al. Prognostic factors for survival after curative resection of gastric mixed adenoneuroendocrine carcinoma: a series of 80 patients. BMC cancer. 2018;18(1):1021. doi: 10.1186/s12885-018-4943-z. PubMed PMID: 30348122.

19. Dello SA, Lodewick TM, van Dam RM, Reisinger KW, van den Broek MA, von Meyenfeldt MF, et al. Sarcopenia negatively affects preoperative total functional liver volume in patients undergoing liver resection. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2013;15(3):165-9. doi: 10.1111/j.1477-2574.2012.00517.x. PubMed PMID: 23020663.

20. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. Journal of applied physiology (Bethesda, Md : 1985). 1998;85(1):115-22. PubMed PMID: 9655763.

21. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. The Lancet Oncology. 2008;9(7):629-35. doi: 10.1016/s1470-2045(08)70153-0. PubMed PMID: 18539529.

22. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Annals of surgery. 2004;240(2):205-13. PubMed PMID: 15273542.

23. Welin S, Sorbye H, Sebjornsen S, Knappskog S, Busch C, Oberg K. Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy. Cancer. 2011;117(20):4617-22. doi: 10.1002/cncr.26124. PubMed PMID: 21456005.

24. Keats AS. The ASA classification of physical status–a recapitulation. Anesthesiology. 1978;49(4):233-6. PubMed PMID: 697075.

25. Owens WD, Felts JA, Spitznagel EL. ASA physical status classifications: a study of consistency of ratings. Anesthesiology. 1978;49(4):239-43. PubMed PMID: 697077.

26. Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10(21):7252-9. PubMed PMID: 15534099.

27. Cives M, Strosberg JR. Gastroenteropancreatic Neuroendocrine Tumors. CA: a cancer journal for clinicians. 2018;68(6):471-87. doi: 10.3322/caac.21493. PubMed PMID: 30295930.

28. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. Journal of the American Medical Directors Association. 2011;12(4):249-56. doi: 10.1016/j.jamda.2011.01.003. PubMed PMID: 21527165.

29. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and ageing. 2010;39(4):412-23. doi: 10.1093/ageing/afq034. PubMed PMID: 20392703.

30. Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung T-W, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2). doi: 10.1016/j.jamda.2013.11.025. PubMed PMID: 24461239.
31. Simonsen C, de Heer P, Bjerre ED, Suetta C, Hojman P, Pedersen BK, et al. Sarcopenia and Postoperative Complication Risk in Gastrointestinal Surgical Oncology: A Meta-analysis. Ann Surg. 2018;268(1):58-69. Epub 2018/01/27. doi: 10.1097/SLA.0000000000002679. PubMed PMID: 29373365.

32. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(12):1539-47. doi: 10.1200/jco.2012.45.2722. PubMed PMID: 23530101.

33. Öberg K, Knigge U, Kwekkeboom D, Perren A. Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology. 2012;23 Suppl 7:vii124-vii30. PubMed PMID: 22997445.

34. Tegels JJ, van Vugt JL, Reisinger KW, Hulsewé KW, Hoofwijk AG, Derikx JP, et al. Sarcopenia is highly prevalent in patients undergoing surgery for gastric cancer but not associated with worse outcomes. Journal of surgical oncology. 2015;112(4):403-7. doi: 10.1002/jso.24015. PubMed PMID: 26331988.

35. Pecorelli N, Carrara G, De Cobelli F, Cristel G, Damascelli A, Balzano G, et al. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. The British journal of surgery. 2016;103(4):434-42. doi: 10.1002/bjs.10063. PubMed PMID: 26780231.

36. Ouchi A, Asano M, Aono K, Watanabe T, Oya S. Laparoscopic Colorectal Resection in Patients with Sarcopenia: A Retrospective Case-Control Study. Journal of laparoendoscopic & advanced surgical techniques Part A. 2016;26(5):366-70. doi: 10.1089/lap.2015.0494. PubMed PMID: 26982506.

37. Modlin IM, Oberk K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. The Lancet Oncology. 2008;9(1):61-72. doi: 10.1016/s1470-2045(07)70410-2. PubMed PMID: 18177818.

38. Pericleous M, Toumpanakis C, Lumgair H, Caplin ME, Morgan-Rowe L, Clark I, et al. Gastric mixed adenoneuroendocrine carcinoma with a trilineage cell differentiation: case report and review of the literature. Case reports in oncology. 2012;5(2):313-9. doi: 10.1159/000339611. PubMed PMID: 22740822.

39. Kim TY, Chae HD. Composite neuroendocrine carcinoma with adenocarcinoma of the stomach misdiagnosed as a giant submucosal tumor. Journal of gastric cancer. 2011;11(2):126-30. doi: 10.5230/jgc.2011.11.2.126. PubMed PMID: 22076214.

40. Fernandes D, Soares JB, Rolanda C. Gastric Mixed Adenoneuroendocrine Carcinoma. GE Portuguese journal of gastroenterology. 2015;22(1):34-6. doi: 10.1016/j.jpge.2014.07.003. PubMed PMID: 28868368.

Figures
Figure 1

Kaplan-Meier analysis for 3-year overall survival (OS) and recurrence-free survival (RFS) rates of patients with gastric neuroendocrine neoplasms (g-NENs) according to sarcopenia (A)(B); and stratification analysis based on pathological types: (C)(D) gastric neuroendocrine tumor (gNET), (E)(F) gastric neuroendocrine carcinoma (gNEC), (G)(H) gastric mixed adenoneuroendocrine carcinoma (gMANEC).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SUPPLEMENTARY.docx