Immune checkpoint inhibitor-induced diarrhea/colitis: Endoscopic and pathologic findings

Tsutomu Nishida, Hideki Iijima, Shiro Adachi

Abstract
The indications of immune checkpoint inhibitors (ICPIs) for cancer treatment have rapidly expanded, and their use is increasing in clinical settings worldwide. Despite the considerable clinical benefits of ICPIs, frequent immune-related adverse events (irAEs) have become nonnegligible concerns. Among irAEs, ICPI-induced colitis/diarrhea is frequent and recognized not only by oncologists but also by gastroenterologists or endoscopists. The endoscopic findings show similarity to those of inflammatory bowel disease to a certain extent, particularly ulcerative colitis, but do not seem to be identical. The pathological findings of ICPI-induced colitis may vary among drug classes. The findings show acute or chronic inflammation, but it may depend on the time of colitis suggested by colonoscopy, including biopsy or treatment intervention. In the case of chronic inflammation determined by biopsy, the endoscopy findings may overlap with those of inflammatory bowel disease. Here, we provide a comprehensive review of ICPI-induced colitis based on clinical, endoscopic and pathologic findings.

Key words: Immune checkpoint inhibitor; Colitis; Diarrhea; Endoscopic; Pathologic
but may depend on the diagnostic timing or treatment intervention. Colonoscopy with biopsy is necessary to confirm ICPI-induced colitis, and early evaluation may avoid exacerbating or prolonging colitis due to treatment resistance.

INTRODUCTION

In 1992, Ishida et al.\(^1\) identified a protein on activated T lymphocytes called programmed cell death protein 1 (PD-1), a key player in tumor immunology. In 1996, Leach et al.\(^2\) identified a protein called cytotoxic T-lymphocyte antigen-4 (CTLA-4), another major blocking pathway for the human immune system that was similar to PD-1. Since then, their discoveries have led to the development of immune checkpoint inhibitors (ICPIs) as anticancer drugs and have brought about a major revolution in cancer treatment strategy. Both CTLA-4 and PD-1 deliver negative signals to T-cell-mediated excessive immune activation, known as checkpoints, and ICPIs disrupt the signals mediated by CTLA-4 and PD-1 to prevent T cells from blocking pathways. By inhibiting immune checkpoints, activation of T cells is maintained, thereby helping cancer cells to induce cytotoxic T cell-mediated death. In 2018, Professor Honjo and Professor Allison won the Nobel prize in Physiology or Medicine for their work.

Presently, there are six ICPIs available and approved by the United States Food and Drug Administration for different cancers. Despite the significant clinical benefits of ICPIs, frequent immune-related adverse events (irAEs) in the skin, endocrine organs, gastrointestinal (GI) tract, liver, and lungs and in the musculoskeletal, renal, nervous, hematologic, cardiovascular, and ocular systems have become nonnegligible concerns. Most irAEs have a delayed onset and prolonged duration compared with those from chemotherapy\(^3\). The incidence of irAEs appears to be similar across tumor types\(^4\).

Among irAEs, ICPI-induced colitis/diarrhea is frequent and recognized not only by oncologists but also by gastroenterologists or endoscopists. In this review, we provide a comprehensive review of ICPI-induced colitis based on clinical, endoscopic and pathologic findings.

ONSET TIMING OF ICPI-INDUCED DIARRHEA/COLITIS

ICPI-induced diarrhea occurs after an average of three infusions\(^5\), although it can occur immediately after the first infusion. Recent reports suggest that the onset timing of ICPI-induced diarrhea/colitis may differ by ICPI type. ICPI-induced diarrhea/colitis induced by ipilimumab (anti-CTLA-4) usually occurs 6 to 7 wk after the initiation of ipilimumab\(^6\). The median time from last the ipilimumab treatment to diarrhea onset is 11-14 d (range 0-59 d)\(^7,8\). On the other hand, Wang et al.\(^9\) reported that 3.2% of patients (30/973) receiving anti-PD-1 developed ICPI-induced colitis at a median of 25.4 wk (range 0.6-120 wk). ICPI-induced diarrhea/colitis induced by anti-PD-1 seems to occur later than that induced by anti-CTLA-4. After the combined use of ipilimumab and nivolumab or pembrolizumab, 24.4% of patients (79/324) developed ICPI-induced diarrhea/colitis significantly earlier, at a median of 7.2 wk (range 0.7-51 wk)\(^9\). Because the ranges of its onset timing are widely distributed, it is difficult to predict the development of ICPI-induced diarrhea/colitis. In addition, it may be influenced by other drugs, including NSAIDs, antibiotics, or previous anticancer drugs. Moreover, it seems difficult to predict the development of colitis before patients have symptoms\(^9\). We should keep in mind that ICPI-related colitis can occur at any point, even after discontinuation of ICPIs.

LOCATION

Geukes Foppen et al.\(^11\) reported total colonoscopy in 62 of 92 patients (67%) suspected of ICPI-induced colitis. Of these patients, 68% showed pancolitis (> 3 affected
 segments), and the ascending colon had more severe colitis than the descending colon. In cases where a total colonoscopy was not performed, patients with colitis in the ascending colon can be underestimated by sigmoidoscopy alone. Abdominal computed tomography (CT) findings may be useful not only to evaluate perforation, obstruction, and toxic megacolon but also to evaluate inflamed lesions due to ICPIs. The common CT findings of 16 patients treated with ipilimumab showed that 75% of patients had diffuse colitis patterns, and 25% had segmental colitis[13]. CT was not sufficient to diagnose colitis when using endoscopic evaluation as the gold standard because it has a high false-negative rate and low sensitivity[13]. In contrast, Garcia-Neuer et al[14] reported that CT was useful for predicting ICPI-induced colitis with a positive predictive value of 96% and a negative likelihood ratio of 0.2 in 34 diarrhea patients who underwent both CT and colonoscopy with biopsy. Early sigmoidoscopy without bowel preparation has merit to assess ICPI-induced colitis because it can be performed more easily and earlier than total colonoscopy. Therefore, the combined use of sigmoidoscopy and CT may be useful to evaluate ICPI-induced colitis at an earlier stage.

ENDOSCOPIC EVALUATION AND FINDINGS

There are several reports about the endoscopic findings of ICPI-induced colitis. Wang et al[15] observed that endoscopic inflammatory findings were found in more than 80% of patients with ICPI-induced diarrhea/colitis. Common endoscopic inflammation findings are reported as exudates, loss of vascular pattern, granular or edematous mucosa, patch or diffuse erythema, aphtha and ulcerations (Figure 1)[13,15]. Most of the inflammatory changes, including pathological changes, are dominantly more diffuse than patchy[15], but patchy distribution was endoscopically observed in half of the patients with diarrhea[15]. These endoscopic findings resemble those of inflammatory bowel disease (IBD) to a certain extent, particularly with ulcerative colitis (UC)[16,18], but sometimes look different from a UC-like pattern (Table 1).

Wang et al[13] reported in 53 patients with diarrhea, clinical symptoms did not always correlate with other endoscopic findings except for the presence of ulceration, which had a strong relationship with higher colitis. Similarly, another retrospective study showed that there was no significant correlation between diarrhea/colitis symptoms and endoscopic findings in 92 patients who developed diarrhea. They also reported that pancolitis and the presence of ulceration are indicators for steroid-refractory colitis[13]. Geukes Foppen et al[19] reported that the Mayo score was associated with the presence of ulceration. Abu-Sbeih et al[19] categorized endoscopic findings as low-risk and high-risk for steroid-responsiveness. High-risk findings included either ulcers deeper than 2 mm and/or larger than 1 cm in surface area or endoscopically extensive colitis from the proximal colon to the splenic flexure. These patients require frequent use of infliximab or vedolizumab and more frequent and longer hospital stays than non-high-risk patients[19]. They also reported that timely early colonoscopy decreased the duration of steroid treatment[19]. If the colonoscopy shows normal mucosal findings, we are not always able to exclude the presence of ICPI-induced colitis, as cases of isolated ileitis[20] or enteritis without colitis[21] can also occur. We can also rule out microscopic colitis or other infectious diseases such as Clostridoides difficile or cytomegalovirus[3]. Therefore, early colonoscopy with mucosal biopsy from colorectal and ileum-end mucosa is necessary not only to evaluate the severity and distribution of colitis[11] but also to ensure shorter and less intense treatment[19].

PATHOLOGY

The histologic features of ICPI-associated colitis may vary among drug classes, i.e., CTLA-4 inhibitors and PD-1/PDL1 inhibitors. Although they are nonspecific, some findings can be helpful clues to diagnose and speculate about the class of inhibitors. On the other hand, there is significant overlap between ICPI-associated colitis and other types of colitis, making the differential diagnosis difficult.

The histologic findings of CTLA-4-associated colitis are relatively consistent across most studies. The previously reported histologic features of CTLA-4 associated colitis are similar to those of autoimmune colitis[24]. They include lamina propria expansion due to dense lymphoplasmacytic infiltrate, increased intraepithelial lymphocytosis, and apoptosis in the crypts. Neutrophilic cryptitis and crypt abscess are also found. At times, there is prominent eosinophilia in the lamina propria. Although dense lymphoplasmacytic lamina propria expansion is reminiscent of other mimics, the lack
Table 1 Summary of endoscopic and pathological findings of immune-related diarrhea and colitis

Endoscopic findings	Pathological findings
Endoscopic features	Like autoimmune colitis: (1) lamina propria expansion due to dense lymphoplasmacytic infiltrate; (2) increased intraepithelial lymphocytosis; (3) apoptosis in the crypts; (4) neutrophilic cryptitis and crypt abscess; (5) occasional prominent eosinophilia in the lamina propria; (6) the lack of findings of basal plasmacytosis, crypt distortion, or granulomas.
(1) Exudates; (2) loss of vascular pattern; (3) granular or edematous mucosa; (4) patch or diffuse erythema; (5) aphtha; (6) ulceration	
Inflammatory distribution	Anti-CTLA-4 associated colitis
(1) Diffuse; (2) patchy (dominantly more diffuse than patchy)	(1) Expansion of lamina propria by lymphoplasmacytic infiltrate; (2) the increase in intraepithelial neutrophils and neutrophilic crypt abscess; (3) crypt distortion; (4) increased crypt cell apoptosis
Risk factors for steroid-refractory colitis	Anti-PD1/anti-PDL1-associated colitis
(1) Extensively inflamed area (e.g., pancolitis); (2) deeper ulceration	(1) Expansion of lamina propria by lymphoplasmacytic infiltrate; (2) the increase in intraepithelial neutrophils and neutrophilic crypt abscess; (3) crypt distortion; (4) increased crypt cell apoptosis

CTLA-4: Cytotoxic T-lymphocyte antigen-4; PD1: Programmed cell death protein 1; PDL1: Programmed cell death receptor ligand 1.

of findings of basal plasmacytosis, crypt distortion, or granulomas can help the differentiation.

The most common findings of anti-PD1/anti-PDL1-associated colitis are the expansion of the lamina propria by lymphoplasmacytic infiltrate and features of active colitis[23,27]. The latter are characterized by an increase in intraepithelial neutrophils and neutrophilic crypt abscess (Figure 2A). Other findings include crypt distortion, increased crypt cell apoptosis, features of ischemic colitis, and collagenous colitis (Figure 2B). Although, in the study by Gonzalez et al[26], there were no cases with increased intraepithelial lymphocytosis commonly observed in CTLA-4-associated colitis, Chen et al[23] and Bavi et al[27] described features of lymphocytic colitis in a minority of their cases with anti-PD1/anti-PDL1. In the latter studies, a PD-1 inhibitor and CLTA-4 inhibitor were prescribed for their patient population either in combination or sequentially. Therefore, it is unlikely that this finding is related to PD-1 inhibition alone.

As mentioned, the histologic features of ICPI-associated colitis are nonspecific and can mimic other type of colitis, including infectious colitis, IBD, graft versus host disease (GVHD), and other drug-induced colitis. Although infectious colitis typically shows features of active colitis, increased apoptosis and crypt atrophy/dropout are not typical features[25]. ICPI-associated colitis lacks the features of chronicity that characterize IBD[29]. The lamina propria expansion by lymphoplasmacytic infiltrate can discriminate from GVHD although increased crypt apoptosis is the sine qua non of the diagnosis of GVHD[30]. Despite the histopathological differential diagnostic points, clinical correlation and medical history are indispensable for discrimination between ICPI-associated colitis and mimics (Table 1).

MORBIDITY ASSOCIATED WITH ICPI-INDUCED DIARRHEA/COLITIS AND TREATMENT

IrAEs involving the GI tract range from mild to severe events[8] and are well reported for anti-CTLA4 but less well reported for anti-PD-1 and anti-PD-L1 and for combined anti-CTLA4 plus anti-PD-1. Most clinical trials distinguish diarrhea from colitis even though they overlap in most practical cases. Diarrhea is evaluated based on an increase in stool per day or ostomy output. Colitis is evaluated based on clinical symptoms (abdominal pain, mucus or blood in stool) or diagnostic observations based on radiographic and/or colonoscopy findings. The severity is usually classified based on the Common Terminology Criteria for Adverse Events (Table 2).

Morbidity associated with ICPI-induced diarrhea/colitis and treatment
colitis[36]. Anti-CTLA4-related colitis is reportedly associated with mouth ulcers, anal lesions and extraintestinal irAEs[17]. A recent meta-analysis of 34 studies that included 8863 patients in clinical trials revealed that, for anti-CTLA4 alone (ipilimumab), all grades of colitis occurred in 9.1% (95% confidence interval (CI), 6.6%-12.5%) of participants, grade 3/4 colitis occurred in 6.8% (95%CI: 5.3%-8.6%) of participants, and grade 3/4 diarrhea occurred in 7.9% (95%CI: 5.5%-11.4%) of participants. Similarly, for anti-PD-1 alone (nivolumab or pembrolizumab), the rates were 1.4% (95%CI: 1.1%-1.8%), 0.9% (95%CI: 0.7%-1.3%), and 1.3% (95%CI: 1.0%-1.7%), respectively. For anti-PD-L1 alone (atezolizumab), the rates were 1.0% (95%CI: 0.4%-2.2%), 0.6% (95%CI: 0.2%-1.6%), and 0.3% (95%CI: 0.1%-1.1%), respectively[36]. For anti-CTLA4 (ipilimumab) plus anti-PD-1 (nivolumab), the rates were 13.6% (95%CI: 7.7%-22.9%), 9.4% (95%CI: 4.8%-117.4%), and 9.2% (95%CI: 6.8%-12.3%), respectively. ICPI-induced diarrhea/colitis induced by anti-CTLA-4 can develop more often and more severely than ICPI-induced diarrhea/colitis induced by anti-PD-1. Combined anti-CTLA4 plus anti-PD-1 treatment is also more strongly associated with diarrhea/colitis than single-drug treatment[36]. Ipilimumab is commonly used at either 10 mg/kg or 3 mg/kg. There were similar rates of severe colitis at these doses, but severe diarrhea was more frequent at a dose of 10 mg/kg than at 3 mg/kg[36]. Recently, Marthey et al[17] showed that the use of nonsteroidal anti-inflammatory drugs (NSAIDs) was associated with an increased risk of ICPI-induced colitis induced by CTLA-4 (2/38, 5% vs 11/35, 31%, P = 0.003). Therefore, the use of NSAIDs may affect the incidence of ICPI-induced diarrhea/colitis. Table 3 shows a summary of the incidence of immune-related diarrhea or colitis based on representative clinical trials.

In the case of grade 1 diarrhea/colitis, antidiarrheal drugs and/or oral hydration with electrolyte substitution can be initiated. In cases of persistent or grade 2 or higher diarrhea or rectal bleeding, it is necessary to confirm colitis or to rule out GI infection by testing for stool leukocytes, stool cultures, IBD, or tumor-related GI symptoms. In particular, Clostridioides difficile toxin and/or antigen test, cytomegalovirus DNA polymerase chain reaction, and tests for stool ova and parasites should be carried out in every patient with diarrhea treated with ICPIs. Sigmoidoscopy or colonoscopy combined with mucosal biopsy needs to be performed to confirm the presence of colitis and to rule out GI metastasis because it is not uncommon in lung cancer or melanoma. If ICPI-induced colitis is diagnosed, an oral steroid is recommended. In the case of grade 3/4 diarrhea/colitis or persistent symptoms after oral steroids for several days, changing the treatment to intravenous steroids should be considered, and an infusion solution with electrolytes should be given. If patients respond to intravenous steroids within several days, they should be switched to oral steroids and tapered. However, if they fail to respond to steroid infusion, treatment with anti-TNF-α should be considered[37]. Recently, a case series reported that vedolizumab was a safer and more theoretic alternative than anti-TNF in patients with steroid-dependent or partially refractory ICPI-induced enterocolitis[38]. In the near future, vedolizumab may be effective and safe because it inhibits the migration of mucosal-associated T lymphocytes without inducing immune suppression and does not show an increased risk of serious infections in patients with UC or Crohn’s disease[39,40].
CONCLUSION

The combination of endoscopic and pathological findings may help diagnose ICPI-induced colitis as well as exclude infectious colitis, including *Clostridioides difficile* or cytomegalovirus, ischemic colitis, other drug-induced colitis, or segmental diverticular colitis. However, there are no specific findings because the endoscopic and pathological findings can depend on the time of colitis proven by biopsy or treatment intervention. In cases of persistent or grade 2 or higher diarrhea or rectal bleeding, colonoscopy evaluation is necessary to confirm ICPI-induced colitis and to rule out other diseases. Early evaluation and intervention may avoid exacerbating or prolonging colitis.
Table 2 Definition of diarrhea and colitis based on Common Terminology Criteria for Adverse Events v5.0

CTCAE Term	Definition	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	CTCAE v5.0 Change
Diarrhea	A disorder characterized by an increase in frequency and/or loose or watery bowel movements	Increase of < 4 stools per day over baseline; mild increase in ostomy output compared to baseline	Increase of 4-6 stools per day over baseline; moderate increase in ostomy output compared to baseline; limiting instrumental ADL	Increase of ≥ 7 stools per day over baseline; hospitalization indicated; severe increase in ostomy output compared to baseline; limiting self-care ADL	Life-threatening consequences; urgent intervention indicated	Death	
Colitis	A disorder characterized by inflammation of the colon	Asymptomatic; clinical or diagnostic observations only; intervention not indicated	Abdominal pain; mucus or blood in stool	Severe abdominal pain; peritoneal signs	Life-threatening consequences; urgent intervention indicated	Death	

ADL: Activities of daily living; CTCAE: Common Terminology Criteria for Adverse Events.

Table 3 Summary of incidence of immune-related diarrhea and colitis

ICPI	Target	Author	Year	Plus other drugs	n	Cancer type	Any grade diarrhea/colitis, n (%)	Grade 3 diarrhea/colitis, n (%)
Nivolumab PD-1	Topalian et al	2012	None	296	Solid cancer	33 (11)/ND	3 (1)/ND	
	Weber et al	2013	None	34	Melanoma	13 (38.2)/0 (0)	Not observed	
Pembrolizumab PD-1	Weber et al	2015	None	268	Melanoma	30 (11.2)/ND	1 (0.4)/ND	
	Larkin et al	2015	None	315	Melanoma	60 (19.2)/4 (1.3)	7 (2.2)/2 (0.6)	
	Ferris et al	2016	None	236	SCCHN	16 (6.8)/0 (0)	0 (0)/0 (0)	
	Kang et al	2017	None	330	GC/GEJC	23 (7)/2 (1)	2 (1)/1 (< 1)	
	Hamid et al	2013	None	135	Melanoma	27 (20)	1 (1)	
	Garon et al	2015	None	495	NSCLC	40 (8.1)/ND	3 (0.6)/ND	
	Ribas et al	2015	None	361	Melanoma	32 (8.9)/5 (1.4)	2 (0.6)/2 (0.6)	
	Herbst et al	2016	None	690	NSCLC	46 (6.7)/6 (0.9)	2 (0.3)/4 (0.6)	
	Ribas et al	2016	None	655	Melanoma	115 (18)/112 (1)	6 (1)/7 (1.1)	
	Mok et al	2019	None	636	NSCLC	34 (5)/7 (1)	5 (< 1)/4 (< 1)	
	Weber et al	2008	None	88	Melanoma	5 (5.6)/4 (4.5)	5 (5.6)/4 (4.5)	
	Weber et al	2009	None	57	Melanoma	20 (35)/ND	10 (18)/ND	
	Weber et al	2009	Budesonide	58	Melanoma	19 (33)/ND	8 (14)/ND	
	Wolchok et al	2010	None	214	Melanoma	58 (27)/ND	11 (5.1)/ND	
	Hodi et al	2010	None	131	Melanoma	43 (32.8)/10 (7.6)	7 (5.3)/7 (5.3)	
		gp100	380			146 (38.4)/20 (5.3)	17 (4.5)/12 (3.2)	
		Dacarbazine	247			81 (32.8)/11 (4.5)	10 (4.0)/5 (2.0)	
		Margolin et al	2012	None	72	Melanoma	30 (42)/ND	6 (8.5)/ND
		Kwon et al	2014	None	399	Prostate cancer	199 (51)/27 (7)	64 (16)/18 (5)
		Larkin et al	2015	None	311	Melanoma	103 (33.1)/36 (11.6)	19 (6.1)/27 (8.7)
		Eggemann et al	2016	None	471	Melanoma	194 (41.2)/73 (15.5)	46 (9.8)/39 (8.2)

WJGP | https://www.wjgnet.com | September 10, 2019 | Volume 10 | Issue 2 | 23
Immunotherapeutics	CTLA4 and PD1	Wolchok et al.	2013	None	53	Melanoma	18 (34.0)/5 (9)	3 (6)/2 (4)
	Larkin et al.	2015	None	315	Melanoma	138 (44.1)/37 (11.8)	29 (9.3)/24 (7.7)	
	Schadendorf et al.	2017	None	407	Melanoma	30 (7.4)/40 (9.8)	25 (6.1)/32 (7.9)	
	Wolchok et al.	2017	None	313	Melanoma	142 (45)/40 (13)	29 (9.6)/28 (6)	
	Hellmann et al.	2017	None	77	NSCLC	16 (21)/4 (5.2)	1 (1.3)/3 (3.9)	
	Motzer et al.	2018	None	547	Renal cell carcinoma	145 (27)/ND	21 (4)/ND	
Durvalumab PD-L1	Antonia et al.	2017	None	473	NSCLC	87 (18.3)/ND	3 (0.6)/ND	
	Motzer et al.	2018	None	475	NSCLC	88 (18.5)/ND	3 (0.6)/ND	
	Loibl et al.	2019	None	92	Breast cancer	26 (28.3)/ND	3 (3.3)/ND	
Atezolizumab PD-L1	Herbst et al.	2014	None	277	Solid tumors or hematological malignancies	29 (10.5)/ND	0 (0)/ND	
	Rosenberg et al.	2016	None	311	Urothelial carcinoma	24 (8)/3 (1)	1 (0.3)/2 (1)	
	Fehrenbacher et al.	2016	None	142	NSCLC	ND	ND/2 (1)	
Avelumab PD-L1	Socinski et al.	2018	None	393	ABCP	70 (17.8)	11 (2.8)	
	Chung et al.	2019	None	150	GC/GECJ	ND/2 (1.3)	ND/1 (0.7)	
	Barlesi et al.	2019	None	396	NSCLC	24 (6)/ND	0 (0)/ND	

1 Dose-limiting colitis was not observed in this trial;
2 progressed after ipilimumab;
3 Immune-related event;
4 No atezolizumab-related grade 4 but adverse events were reported, but only one patient showed Grade 5 cardiac failure.

REFERENCES

1 Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. *EMBO J* 1992; 11: 3887-3885 [PMID: 13965852 DOI: 10.1002/j.1460-2075.1992.tb05481.x]

2 Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. *Science* 1996; 271:1374-1376 [PMID: 8596936 DOI: 10.1126/science.271.5256.1734]

3 Matsubara T, Nishida T, Higaki Y, Tomita R, Shimakoshi H, Shinoda A, Osugi N, Sugimoto A, Takahashi K, Nakamuta D, Mukai K, Yamanotomoto D, Fukui K, Adachi S, Inada M. Nivolumab-Induces Sustained Liver Injury in a Patient with Malignant Melanoma. *Intern Med* 2018; 57: 1789-1792 [PMID: 29434164 DOI: 10.2169/internalmedicine.9851-17]

4 Maughan BL, Bailey E, Gill DM, Agarwal N. Incidence of Immune-Related Adverse Events with Program Death Receptor-1- and Program Death Receptor-1 Ligand-Directed Therapies in Genitourinary Cancers. *Front Oncol* 2017; 7: 56 [PMID: 28421161 DOI: 10.3389/fonc.2017.00055]

5 Bertrand A, Kostine M, Barretche T, Truchetet M. Schaeferbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: Systematic review and meta-analysis. *BMC Med* 2015; 13: 211 [PMID: 26337719 DOI: 10.1186/s12916-015-0455-8]

6 Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. *J Clin Oncol* 2012; 30: 2691-2697 [PMID: 22614985 DOI: 10.1200/JCO.2012.41.6750]

7 Beck KE, Blansfield JA, Tran QK, Feldman AL, Hughes MS, Royal RE, Kammla US, Topalian SL, Sherry RM, Kleiner D, Quezado M, Lowy I, Yellin M, Rosenberg SA, Yang JC. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. *J Clin Oncol* 2006; 24: 2283-2289 [PMID: 16710025 DOI: 10.1200/JCO.2005.04.5716]

8 Lord JD, Hackman RC, Moklebust A, Thompson JA, Higano CS, Steinbach G, McDonald Lord JD. Clinical characterization of colitis arising from anti-CTLA-4 antibodies: Systematic review and meta-analysis. *BMC Med* 2016; 13: 211 [PMID: 26337719 DOI: 10.1186/s12916-015-0455-8]

9 Wang XY, Moordian MJ, Kan D, Shah NJ, Fenton SE, Conry RM, Mehta R, Silk AW, Zhou A, Compton ML, Al-Rohil RN, Lee S, Voorhees AL, Ha L, McKee S, Norrell JT, Mehner J, Puzanov I, Wang DY. Blockade of cytotoxic T-lymphocyte antigen-4 by ipilimumab results in dysregulation of gastrointestinal immunity in patients with advanced melanoma. *Cancer Immun* 2010; 10: 11 [PMID: 21090563]

10 Geukes Poppen MH, Rozeman EA, van Wilpe S, Postma C, Snaebjornsson P, van Thielen JV, van Leerdom ME, van den Heuvel M, Blank CU, van Dieren J, Haanen JBAG. Immune checkpoint inhibition-related colitis: Symptoms, endoscopic features, histology and response to management. *ESMO Open* 2018; 3: e000278 [PMID: 29387476 DOI: 10.1136/esmoopen-2017-000278]
Kim KW, Ramaiya NH, Kraijevski KM, Shinagare AB, Howard SA, Jagannath JP, Ibrahim N. Ipilimumab-associated colitis: CT findings. AJR Am J Roentgenol 2013; 200: W468-W474 [PMID: 23781569 DOI: 10.2214/AJR.12.9751]

Wang Y, Abu-Sheih H, Mao E, Ali N, Qiao W, Trinh VA, Zoubi N, Johnson DH, Samdani R, Lunn P, Shuttleworth G, Blechacz B, Bresalier R, Miller E, Thirumurthi S, Richards D, Raju G, Stroehlein J, Diab A. Endoscopic and Histologic Features of Immune Checkpoint Inhibitor-Related Colitis. Inflamm Bowel Dis 2018; 24: 1695-1705 [PMID: 29713808 DOI: 10.1093/ibd/iyz104]

Garcia-Neuer M, Marmarelis ME, Jangi SR, Luke JF, Ibraham N, Davis M, Weinberg J, Donahue H, Bailey N, Hodi FS, Bucbinder EL, Ott PA. Diagnostic Comparison of CT Scans and Colonoscopy for Immune-Related Colitis in Ipilimumab-Treated Advanced Melanoma Patients. Cancer Immunol Res 2017; 5: 286-291 [PMID: 28373217 DOI: 10.1159/0006606.CIR-16-0302]

Gupta A, De Felice KM, Loftus EV, Khanna S. Systematic review: Colitis associated with anti-CTLA-4 therapy. Aliment Pharmacol Ther 2015; 42: 406-414 [PMID: 26007906 DOI: 10.1111/apt.13111]

Kubos K, Kato M, Mahe K. Nivolumab-Associated Colitis Mimicking Ulcerative Colitis. Clin Gastroenterol Hepatol 2017; 15: A35-A36 [PMID: 28351793 DOI: 10.1016/j.cgh.2017.03.026]

Marthey L, Mateus C, Mussini C, Nachury M, Nancey S, Grange F, Zalloit C, Peyrin-Biroulet L, Rahier JF, Bourdier de Beuregard M, Mortier L, Coutzac C, Soulaure E, Lanoy E, Kapel N, Planchar D, Chaput N, Robert C, Carboneel F. Cancer Immunotherapy with Anti-CTLA-4 Monoclonal Antibodies Induces an Inflammatory Bowel Disease. J Crohns Colitis 2016; 10: 395-401 [PMID: 26783344 DOI: 10.1093/ecco-jcc/jjw227]

Yamauchi R, Araki T, Mitsuayama K, Tokito T, Ishii H, Yoshioha S, Kuwaki K, Mori A, Yoshiuma T, Tsuruta O, Torimura T. The characteristics of nivolumab-induced colitis: An evaluation of three cases and a literature review. BMC Gastroenterol 2018; 18: 135 [PMID: 30175660 DOI: 10.1186/s12876-018-0864-1]

Abu-Sheih H, Ali FS, Luo W, Qiao W, Raju GS, Wang Y. Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis. J Immunother Cancer 2018; 6: 95 [PMID: 30233810 DOI: 10.1002/jc.21411]

Venditti D, De Luis D, Cucicato M, Caputo D, Capuolo GT, Taffoni C, Pagliai E, Battisi S, Frezza AM, Onetti M, Tonini G, Santini D. Ipilimumab and immune-mediated adverse events: A case report of anti-CTLA4 induced ileitis. BMC Cancer 2015; 15: 87 [PMID: 25885696 DOI: 10.1186/s12885-015-1074-7]

Messmer M, Uperei S, Tarabuzhil Y, Mazumder N, Chowdhury R, Yarchoon M, Holdhoff M. Ipilimumab-Induced Enteritis without Colitis: A New Challenge. Case Rep Oncol 2016; 9: 705-713 [PMID: 27920706 DOI: 10.1159/000452403]

Ole DA, Mino-Kenudson M, Goldsmith M, Hodi FS, Seliem MR, Dranoff G, Mihm M, Hassrijan R, Lauwers GY. Alpha-CTLA-4 mAb-associated panenteritis: A histologic and immunohistochemical analysis. Am J Surg Pathol 2008; 32: 1130-1137 [PMID: 18545145 DOI: 10.1097/PAS.0b013e31817150e3]

Chen JH, Pezhouh MK, Lauwers GY, Masia R. Histopathologic Features of Colitis Due to Immunotherapy With Anti-PD-1 Antibodies. Am J Surg Pathol 2017; 41: 643-654 [PMID: 28296676 DOI: 10.1097/PAS.0000000000000829]

Baroudjian B, Leutrence N, Pagues C, Channi I, Maillet M, Bertheau P, Bagot M, Gornet JM, Lebbé C, Allez M. Anti-PD-1-induced collagenous colitis in a melanoma patient. Melanoma Res 2016; 26: 308-311 [PMID: 26990271 DOI: 10.1097/CMR.0000000000000252]

Marginean EC. The Ever-Changing Landscape of Drug-Induced Injury of the Lower Gastrointestinal Tract. Arch Path Lab Med 2016; 140: 748-758 [PMID: 27472233 DOI: 10.5888/apra.2015.0451-RA]

Gonzalez BS, Salaria SN, Bohannon ED, Huber AR, Feely MM, Shi C. PD-1 inhibitor gastrointestinal toxicity: Case series and appraisal of ‘immunomodulatory gastroenterocolitis’. Histopathology 2017; 70: 558-567 [PMID: 28000302 DOI: 10.1111/his.13118]

Bavi P, Butler M, Serra S, Chetty R. Immune modulator-induced changes in the gastrointestinal tract. Histopathology 2017; 71: 494-496 [PMID: 28342322 DOI: 10.1111/his.13224]

Turner K. Fenoglio-Preiser’s Gastrointestinal Pathology. Infectious Colitis. 4th. ed. Philadelphia: Wolters Kluwer 2017; 754-796

Gordon I. Fenoglio-Preiser’s Gastrointestinal Pathology. Philadelphia: Wolters Kluwer 2017; 814-816

Turner K. Fenoglio-Preiser’s Gastrointestinal Pathology. 4th. ed. Philadelphia: Wolters Kluwer 2017; 814-816

Michot JM, Bigenwald C, Champiat S, Collins M, Carboneel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, Mussard C, Fureea A, Ribrag V, Gazazh A, Armand JP, Amellal N, Angeven E, Noel N, Boutsos C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur J Cancer 2016; 54: 139-148 [PMID: 26765102 DOI: 10.1016/j.ejca.2015.11.016]

NCI Common Terminology Criteria for Adverse Events (CTCAE) data files [cited 3 April 2019]. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/About.html

Wang DY, Salem JH, Cohen JV, Chandra S, Menzer C, Ye F, Zhao S, Das S, Beckermeier KE, Ha L, Rathmell WK, Ancell KK, Baloji JM, Bowman C, Davis EJ, Chisid DD, Horn L, Long GV, Carlino MS, Lebrun-Vignes B, Eroglu Z, Hassel JC, Menzies AM, Sosman JA, Sullivan RJ, Moslehi JJ, Johnson DB. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol 2018; 4: 1721-1728 [PMID: 30242316 DOI: 10.1001/jamaoncol.2018.3923]

Yervoy: Highlights of Presecibing Information [cited 27 March 2019]. 2015. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125377lbl.pdf

Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmid H, Hamid O, Robert C, Ascierto PA, Richards JM, Lebbé C, Ferrarazzi V, Smylie M, Weber JS, Hauschild A, Del Vecchio M, Mino-Kenudson M, Goldsmith J, Hodi FS, Seliem RM, Dranoff G, Mihm M, Hasserjian R, Egorulz Z, Hassel JC, Menzies AM, Sosman JA, Sullivan RJ, Moslehi JJ, Johnson DB. Nivolumab-Associated Colitis Mimicking Ulcerative Colitis. Inflamm Bowel Dis 2018; 24: 1695-1705 [PMID: 29713808 DOI: 10.1093/ibd/iyz104]

Wang DY, Ye F, Zhao S, Johnson DB. Incidence of immune checkpoint inhibitor-related colitis in solid tumor patients: A systematic review and meta-analysis. Oncology Immunol 2017; 6: e1344805 DOI: 10.1080/2162402X.2017.1344805

Haenen JB, Carboneel F, Robert C, Kerr KM, Peters S, Larkin J, Jordan K; ESMO Guidelines Committee. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28: iv119-iv142 [PMID: 2888192] DOI: 10.1093/annonc/mdx225
Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, Kroeger J, Eysmans C, Sarma AA, Chen YA. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naïve melanoma. J Clin Oncol 2013; 31: 4311-4318 [PMID: 24145345 DOI: 10.1200/JCO.2013.51.4802]

Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutierrez R, Neyns B, Hoeller C, Khushalani NI, Miller WH, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chioumioy B, Bryce A, Svane IM, Grob JJ, Krakhardt AM, Horak C, Lambert A, Yang AS, Larkin J. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16: 373-384 [PMID: 25795410 DOI: 10.1016/S1470-2045(15)70058-5]

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff I, Carlini MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD. Combined Nivolumab and Ipiilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 2015; 373: 23-34 [PMID: 26027431 DOI: 10.1056/NEJMoa1504030]

Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, LICitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kyioti N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med 2016; 375: 1856-1867 [PMID: 27718784 DOI: 10.1056/NEJMoa1602252]

Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yeh KH, Yoshikawa T, Oh SC, Bai LY, Tamura T, Lee KW, Hamamoto Y, Kim JG, Chin K, Oh DY, Minashi K, Cho YJ, Tsuda M, Chen LT. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4536-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390: 2461-2471 [PMID: 28993052 DOI: 10.1016/S0140-6736(17)31827-5]

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Josham AM, Gerlich K, Elassaiss-Schaap J, Algazi A, Mateus C, Bentzberg P, Turchin PC, Chioumioy B, Ebbinghaus SW, Li XN, Kang SP, Ribas A. Safety, and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369: 134-144 [PMID: 23724846 DOI: 10.1056/NEJMoa1305133]

Garon EB, Rizvi NA, Hui R, Leigh N, Malanoukanik NA, Eder JP, Patnaik A, Aggarwala C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dillman-Filhart M, Rutledge RZ, Zhang J, Linceford RC, Kang YK, Hellmann MD. Pembrolizumab in the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372: 2018-2028 [PMID: 25891174 DOI: 10.1056/NEJMoa1510024]

Ribas A, Puzanov I, Dummer R, Schandorff D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD, Cramer LD, Blank CU, O'Day SJ, Leor A, Ascencio PA, Salama AK, Lococo R, Eigentler TK, Gangadhar TC, Carlini MS, Agarwala SS, Moschos SJ, Josham JA, Golding SM, Shapira-Frommer R, Gonzalez R, Kirkwood JM, Wolchok JD, Eggermont A, Li XN, Zhou W, Zernhelt LM, Ali JS, Ebbinghaus SW, Kang SP, Daud A. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet 2016; 387: 1504-1510 [PMID: 27510093 DOI: 10.1016/S0140-6736(16)31281-7]

Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han YJ, Molina J, Kim JH, Ardis CN, Ahn MJ, Majem M, Filidjer MJ, de Castro G, Garrido M, Lubiniecki GM, Shenty U, Im E, Dillman-Filhart M, Garon EB. Pembrolizumab versus docetaxel for previously untreated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016; 387: 1504-1510 [PMID: 27510093 DOI: 10.1016/S0140-6736(16)31281-7]

Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Hwu WJ, Weber JS, Gangadhar TC, Hersey P, Dronca R, Joseph RW, Zarour H, Chioumioy B, Lawrence DP, Algazi A, Rizvi NA, Hoffner B, Mateus C, Gerlich K, Linda JA, Giannotti M, Li XN, Hwu WJ, Weber JS, Ribas A. Safety, and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369: 134-144 [PMID: 23724846 DOI: 10.1056/NEJMoa1305133]

Garon EB, Rizvi NA, Hui R, Leigh N, Malanoukanik NA, Eder JP, Patnaik A, Aggarwala C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dillman-Filhart M, Rutledge RZ, Zhang J, Linceford RC, Kang YK, Hellmann MD. Pembrolizumab in the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372: 2018-2028 [PMID: 25891174 DOI: 10.1056/NEJMoa1510024]

Ribas A, Puzanov I, Dummer R, Schandorff D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD, Cramer LD, Blank CU, O'Day SJ, Leor A, Ascencio PA, Salama AK, Lococo R, Eigentler TK, Gangadhar TC, Carlini MS, Agarwala SS, Moschos SJ, Josham JA, Golding SM, Shapira-Frommer R, Gonzalez R, Kirkwood JM, Wolchok JD, Eggermont A, Li XN, Zhou W, Zernhelt LM, Ali JS, Ebbinghaus SW, Kang SP, Daud A. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet 2016; 387: 1504-1510 [PMID: 27510093 DOI: 10.1016/S0140-6736(16)31281-7]

Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han YJ, Molina J, Kim JH, Ardis CN, Ahn MJ, Majem M, Filidjer MJ, de Castro G, Garrido M, Lubiniecki GM, Shenty U, Im E, Dillman-Filhart M, Garon EB. Pembrolizumab versus docetaxel for previously untreated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016; 387: 1504-1510 [PMID: 27510093 DOI: 10.1016/S0140-6736(16)31281-7]

Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Hwu WJ, Weber JS, Gangadhar TC, Hersey P, Dronca R, Joseph RW, Zarour H, Chioumioy B, Lawrence DP, Algazi A, Rizvi NA, Hoffner B, Mateus C, Gerlich K, Linda JA, Giannotti M, Li XN, Hwu WJ, Weber JS, Ribas A. Safety, and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2013; 369: 134-144 [PMID: 23724846 DOI: 10.1056/NEJMoa1305133]
tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. *Clin Cancer Res* 2009; 15: 5591-5598 [PMID: 19671877 DOI: 10.1158/1078-0432.CCR-09-1024]

55 Wolchok JD, Neuny B, Linette G, Negrier S, Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie T, Grob JJ, Chesney J, Chin K, Chen K, Hoos A, O'Day SJ, Lebbé C. Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. *Lancet Oncol* 2010; 11: 154-160 [PMID: 20904617 DOI: 10.1016/S1470-2045(09)70334-1]

56 Hodi FS, O'Day SJ, McDermott DF, Weiber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerle P, van der Eerdt AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottenhoefer CH, Lebbé C, Peschel C, Quirt I, Clark JJ, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. *N Engl J Med* 2010; 363: 711-723 [PMID: 20525992 DOI: 10.1056/NEJMoai1003466]

57 Robert C, Thomas L, Bondarenko I, O'Day SJ, Weber JG, Garbe C, Lebbé C, Baurain JJ, Testori A, Grob JJ, Davison N, Richards J, Maio M, Hausmann K, Miller WH, Gavrieli I, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. *N Engl J Med* 2011; 364: 2517-2526 [PMID: 21639810 DOI: 10.1056/NEJMoai104621]

58 Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, Wolchok JD, Clark DJ, Renz S, Logan TF, Richards J, Michener T, Bologh A, Heller KN, Hoos FS. Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. *Lancet Oncol* 2012; 13: 459-465 [PMID: 22456429 DOI: 10.1016/S1470-2045(12)70090-6]

59 Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van der Eerdt AJ, Krainer M, Houede N, Santos R, Mahammedi H, Ng S, Maio M, Franke FA, Sundar S, Agarwal N, Bergman AM, Ciurana TE, Korbenfeld E, Sengül L, Hansen S, Logothetis C, Beer TM, McHenry MB, Gagnier P, Liu D, Gerritsen WR. CA184-043 Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. *Lancet Oncol* 2014; 15: 700-712 [PMID: 24831977 DOI: 10.1016/S1470-2045(14)70189-5]

60 Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wrigginton JM, Gupta A, Szolay M. Nivolumab plus ipilimumab in advanced melanoma. *N Engl J Med* 2013; 369: 122-133 [PMID: 23732467 DOI: 10.1056/NEJMoai1302369]

61 Schadendorf D, Wolchok JD, Hodi FS, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Chesney J, Robert C, Grossmann K, McDermott D, Walker D, Bhore R, Larkin J, Postow MA. Efficacy and Safety Outcomes in Patients With Advanced Melanoma Who Discontinued Treatment With Nivolumab and Ipilimumab Because of Adverse Events: A Pooled Analysis of Randomized Phase II and III Trials. *J Clin Oncol* 2017; 35: 3807-3814 [PMID: 28841387 DOI: 10.1200/JCO.2017.73.2289]

62 Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hilí A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. *N Engl J Med* 2017; 377: 1345-1356 [PMID: 28889792 DOI: 10.1056/NEJMoai1709684]

63 Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borgherzi H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, Shepherd FA, Laurie SA, Geese WJ, Agrawal S, Young TC, Li X, Antonia SJ. Nivolumab plus ipilimumab as first-line treatment for advanced non-small cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. *Lancet Oncol* 2018; 19: 31-41 [PMID: 27932067 DOI: 10.1016/S1470-2045(16)30624-6]

64 Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Chudnovsky A, Fowst C, Hariharan S, Huang B, Ishikawa M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Antonia SJ. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. *N Engl J Med* 2018; 378: 1277-1290 [PMID: 29526145 DOI: 10.1056/NEJMoa1712126]

65 Antonia SA, Villegas A, Daniel D, Vicente M, Chen K, Hwu WJ, Chua MC, de Wa M, Cho BC, Burbahua M, Quantin X, Tokito T, Mukhiel T, Planchard D, Kim YC, Karapetis C, Hise S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpoño J, Wadowski C, Melillo G, Jiang H, Huang Y, Dennis PA, Ozgüroğlu M. PACIFIC Investigators. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. *N Engl J Med* 2017; 377: 1919-1929 [PMID: 28885881 DOI: 10.1056/NEJMoai1709317]

66 Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, Venugopal B, Kollmannsberger C, Negrier S, Uemura M, Lee JL, Vasiliev A, Miller WH, Groen H, Schmidinger M, Larkin J, Atkins MB, Miller WH, Gurney H, Schmidinger M, Larkin J, Postow MA. Efficacy and Safety of Nivolumab and Ipilimumab in Pretreatment Stable Melanoma: A Randomized Phase II and III Study. *J Clin Oncol* 2017; 35: 3807-3814 [PMID: 28841387 DOI: 10.1200/JCO.2017.73.2289]

67 Lobit S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmmer JU, Grischi EM, Furlanetto J, Tesch H, Hanusch C, Engels C, Rezai M, Jackisch C, Schmitt WD, von Minckwitz G, Thomalla J, Kümmel S, Rautenberg B, Fasching PA, Weber K, Rhiem K, Denkert C, Schichor A. A randomised phase II study investigating durability of durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple negative breast cancer - clinical results and biomarker analysis of GeparNuevo study. *Ann Oncol* 2019; pii: mdz158 [PMID: 31095287 DOI: 10.1093/annonc/mdz158]

68 Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon JS, Sosman JA, McDermott DF, Powderly JJ, Gettinger SN, Kohoi HE, Horn L, Lawrence DP, Rost S, Lebman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature* 2014; 515: 563-567 [PMID: 25425050 DOI: 10.1038/nature14011]

69 Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O'Donnell PH, Balmanoukian A, Loriot Y, Strinivas S, Rez SM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Baurain JF, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Freamton GM, Cui N, Mariathasan S, Aldooye O, Fine GD, Dreicer R.
Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. *Lancet* 2016; 387: 1909-1920 [PMID: 26952346 DOI: 10.1016/S0140-6736(16)00831-4]

70 Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braith F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A; POPLAR Study Group. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. *Lancet* 2016; 387: 1837-1846 [PMID: 26970723 DOI: 10.1016/S0140-6736(16)00587-0]

71 Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodriguez-Abreu D, Moros-Sibilot D, Thomas CA, Barlesi F, Finley G, Kelsch C, Lee A, Coleman S, Deng Y, Shen Y, Kowanetz M, Lopez-Chavez A, Sandler A, Reck M; IMpower150 Study Group. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. *N Engl J Med* 2018; 378: 2288-2301 [PMID: 29863955 DOI: 10.1056/NEJMoa1716948]

72 Chung HC, Arkenau HT, Lee J, Rha SY, Oh DY, Wyrwicz L, Kang YK, Lee KW, Infante JR, Lee SS, Kemeny N, Keilholz U, Melichar B, Mita A, Plummer R, Smith D, Gelb AB, Xiong H, Hong J, Chand V, Safran H. Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: Phase 1b results from the JAVELIN Solid Tumor trial. *J Immunother Cancer* 2019; 7: 30 [PMID: 30717797 DOI: 10.1186/s40425-019-0508-1]

73 Barlesi F, Vansteenkiste J, Spigel D, Ishii H, Garassino M, de Marinis F, Öğüroğlu M, Szczesna A, Polychronis A, Uslu R, Krzakowski M, Lee JS, Calabrò L, Arén Frontera O, Ellers-Lenz B, Bajars M, Ruisi M, Park K. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. *Lancet Oncol* 2018; 19: 1468-1479 [PMID: 30262187 DOI: 10.1016/S1470-2045(18)30673-9]
