Examination of Retinal and Choroidal Structural Changes in Children With Attention Deficit/Hyperactivity Disorder

Zeynep Sena Tosun (mailto:samet.tosun@gop.edu.tr)
Tokat Devlet Hastanesi

Ayse Vural Ozec
Cumhuriyet Universitesi Tip Fakultesi

Haydar Erdogan
Cumhuriyet Universitesi Tip Fakultesi

Erman Bozali
Cumhuriyet Universitesi Tip Fakultesi

Duygu Yalinbas Yeter
Cumhuriyet Universitesi Tip Fakultesi

Ayla Uzun Cicek
Cumhuriyet Universitesi Tip Fakultesi

Seda Aybuke San
Cumhuriyet Universitesi Tip Fakultesi

Research Article

**Keywords:** Attention Deficit Hyperactivity Disorder, retinal nerve fiber layer thickness, choroid, optical coherence tomography

**DOI:** https://doi.org/10.21203/rs.3.rs-341702/v1

**License:** This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective

Examination of retinal nerve, ganglion cell layer thickness and choroidal thickness in patients with Attention Deficit Hyperactivity Disorder by optical coherence tomography (OCT).

Method

30 individuals with Attention Deficit Hyperactivity Disorder and 30 healthy individuals compatible in terms of age and gender who applied to the Ophthalmology outpatient clinic for control were included in the study. The right and left eye data of the participants were used in statistical analysis. In addition to full ophthalmological examination (best corrected visual acuity, biomicroscopy, fundus examination), retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) and macular choroidal thickness (MCT) were measured by OCT. RNFL, GCL and MCT measurements were compared between the groups.

Conclusion

There was no significant difference between the RNFL and GCL thickness values of the individuals in both groups (p > 0.05). When compared in terms of choroidal thickness, left eye subfoveal choroidal thickness (p = 0.036, p < 0.05) and 2 mm temporal choroidal thickness were significantly higher in the ADHD group than in the control group (p = 0.034, p < 0.05).

Discussion

The aim of this study was to determine the clinical features of the eyes of children with ADHD. Cross-sectional studies with larger participation are needed to determine RNFL, GCL and choroidal changes.

Introduction

Attention deficit hyperactivity disorder (ADHD) is the most common neurobehavioral disorder in childhood, and its prevalence has been reported to be between 2% and 18% in children aged 6–17 years in developed countries (1–3). The incidence of ADHD in a multicenter study conducted in Turkey has been reported to be 12.4% (4). ADHD is associated with difficulties experienced in social, academic, cognitive and emotional performance areas (5). Basic symptoms are attention deficit, hyperactivity and impulsivity (6). The combined type, which includes all three symptom groups, is the most common ADHD type (7). In brain imaging studies, it has been reported that there are neuroanatomical and functional differences in ADHD patients compared to the normal population. Although the time of its formation, the specific region, and the characteristics of these morphological changes have not yet been determined, ADHD is today referred to as a neurodevelopmental disorder (8). The optic nerve and retina, which differ
from the diencephalon in the embryonic development process, have been accepted as a part of the central nervous system (9). Therefore, the retinal layer has an important place in studies on neurodevelopmental disorders.

Studies investigating visual functions and ocular features of children with ADHD are related to visual activity, strabismus, refractive errors, optic disc and neural rim structure, and cognitive visual problems (10). Retinal involvement in the cognitive functions of patients with ADHD are retinal ganglion cell loss in histopathological studies and reduction in retinal nerve fiber layer thickness detected in in vivo studies (11).

Undoubtedly, the diagnosis and treatment of ocular pathologies in children with ADHD will contribute to the quality of life. Therefore, we aimed to compare retinal and choroidal changes in children with ADHD with the control group. In addition, we determined other possible pathologies, especially refractive error, with a detailed eye examination and aimed early diagnosis and treatment.

**Method**

**Participants**

The study consisted of two groups of participants from Ophthalmology and Child & Adolescent Mental Health and Diseases Department, Faculty of Medicine Hospital, Cumhuriyet University in Sivas, Turkey. The ADHD group was composed of patients diagnosed with ADHD. The control group was selected from the children, compatible in terms of age and gender, who applied to the ophthalmology department for eye examination, had no history of ocular disease other than refractive errors, and had no psychiatric disorder. Patients with refractive error for each eye > ± 3.0 dioptery, axial length of the eyeball > 26 mm, cup / disc ratio > 0.3, cup / disc ratio asymmetry ratio between the two eyes > 0.2, previous eye surgery, glaucoma, uveitis, amblyopia in any eye, children with the treatment for retinopathy of prematurity were excluded from the study.

Ethical committee approval for the study was obtained from Cumhuriyet University Medical Faculty Hospital.

In addition, written informed consent in accordance with the World Medical Association Helsinki Declaration was obtained from at least 1 parent of all children included in the study.

**Procedure**

In the study, detailed eye examinations and OCT (OCT RS-3000 Advance, NIDEK CO. LTD., JAPAN) imaging of participants were performed.

Retinal nerve fiber layer (RNFL) thickness, ganglion cell layer (GCL) thickness and macular choroidal thickness (MCT) were measured on OCT. Average RNFL thickness and RNFL thickness in 4 quadrants
(nasal, temporal, superior, inferior) were recorded. RNFL thickness was measured in an area of $6 \times 6 \text{ mm}^2$ so that the center was optic disc, and the GCL thickness was measured in an area of $12 \times 8 \text{ mm}^2$ so that the center was fovea. MCT was measured from 5 different points in the area between the outer hyperreflective border of the retinal pigment epithelium and the inner scleral surface, from 5 different points, 1 and 2 mm nasal and temporal of the subfoveal and fovea.

**Statistical Analysis**

The data obtained from the study were loaded into the SPSS 22.0 program. When the parametric test assumptions were fulfilled in the evaluation of the data (Kolmogorov-Smirnov), Student's t test was used to compare the measurements obtained from two independent groups in terms of an obtained variable and the Chi-square test was used to evaluate the data obtained by counting, and the level of error was taken as 0.05.

**Results**

Of the individuals in the patient group, 9 (30%) were female, 21 (70%) were male, 10 (33.3%) of the individuals in the control group were female, and 20 (66.7%) were male. The difference between groups in terms of gender was not statistically significant. ($p > 0.05$)

The mean age was 9.90 ± 2.15 years in ADHD and 9.10 ± 2.80 years in the control group. When the individuals in both groups were compared in terms of age, the difference between the groups was not statistically significant. ($p > 0.05$)

OCT measurements of 60 eyes of 30 children with ADHD and 60 eyes of 30 individuals in the control group were compared. When the individuals in both groups were compared in terms of RNFL four quadrants and in terms of right-left eye, the difference was not statistically significant. ($p > 0.05$) (Table 1)
Table 1
RNFL Thickness Values of Individuals

| RNFL Thickness (Mean ± SD) (µm) | ADHD Group (n = 60) | Control Group (n = 60) | p value |
|---------------------------------|---------------------|------------------------|---------|
| Right Upper Quadrant            | 130.4 ± 16.1        | 127.7 ± 15.6           | 0.519   |
| Left Upper Quadrant             | 134.7 ± 15.4        | 131.7 ± 11.6           | 0.405   |
| Right Nasal Quadrant            | 76.6 ± 11.4         | 76.5 ± 11.4            | 0.265   |
| Left Nasal Quadrant             | 73.7 ± 9.5          | 72.7 ± 8.2             | 0.955   |
| Right Lower Quadrant            | 137.8 ± 17.1        | 137.9 ± 16.3           | 0.221   |
| Left Lower Quadrant             | 143.0 ± 19.0        | 140.6 ± 14.7           | 0.988   |
| Right Temporal Quadrant         | 70.5 ± 9.8          | 71.7 ± 10.9            | 0.587   |
| Left Temporal Quadrant          | 67.6 ± 9.4          | 70.5 ± 10.4            | 0.658   |

When the GCL thickness of individuals in both groups were compared in terms of upper, lower, mean and right-left eye, the difference was not statistically significant (p > 0.05). (Table 2)

Table 2
GCL Thickness Values of Individuals

| GCL thickness (Mean ± SD) (µm) | ADHD Group (n = 60) | Control Group (n = 60) | p değeri |
|---------------------------------|---------------------|------------------------|----------|
| Right Upper Quadrant            | 99.8 ± 9.8          | 127.9 ± 16.7           | 0.363    |
| Left Upper Quadrant             | 99.0 ± 10.3         | 96.8 ± 7.9             | 0.345    |
| Right Lower Quadrant            | 100.5 ± 10.1        | 97.9 ± 9.8             | 0.324    |
| Left Lower Quadrant             | 100.4 ± 9.3         | 99.2 ± 8.5             | 0.616    |
| Right Mean                      | 100.2 ± 9.6         | 97.7 ± 8.2             | 0.302    |
| Left Mean                       | 99.8 ± 9.5          | 98.0 ± 7.9             | 0.426    |

When the individuals in both groups were compared in terms of choroidal thickness, a significant difference was found in terms of left central choroidal thickness and left temporal 2 mm choroidal thickness (p < 0.05), while the difference between the groups in terms of other measurements was not statistically significant (p > 0.05).
Table 3
Choroid Thickness Values Of Individuals

| MCT                        | ADHD Group (n = 60) | Control Group (n = 60) | p value |
|---------------------------|--------------------|------------------------|---------|
| Right subfoveal choroidal thickness (µm) | 390.6 ± 66.8       | 379.6 ± 61.3           | 0.510   |
| Left subfoveal choroidal thickness (µm)   | 391.1 ± 75.6       | 353.9 ± 57.1           | 0.036*  |
| Right nasal 1 mm choroidal thickness (µm) | 327.5 ± 65.6       | 322.2 ± 60.8           | 0.748   |
| Left nasal 1 mm choroidal thickness (µm)  | 325.5 ± 74.1       | 292.7 ± 59.8           | 0.064   |
| Right nasal 2 mm choroidal thickness (µm) | 293.3 ± 66.8       | 290.5 ± 59.0           | 0.861   |
| Left nasal 2 mm choroidal thickness (µm)  | 291.5 ± 71.8       | 264.6 ± 54.7           | 0.107   |
| Right temporal 1 mm choroidal thickness (µm) | 340.9 ± 54.5       | 330.0 ± 57.9           | 0.456   |
| Left temporal 1 mm choroidal thickness (µm) | 354.7 ± 72.2       | 326.3 ± 47.1           | 0.176   |
| Right temporal 2 mm choroidal thickness (µm) | 321.0 ± 51.1       | 311.0 ± 58.2           | 0.483   |
| Left temporal 2 mm choroidal thickness (µm) | 331.7 ± 73.8       | 297.3 ± 45.3           | 0.034*  |

Mean ± SD: Mean ± Standard deviation, µm = micrometer, *p < 0.05 significant

Discussion

The aim of this study was to determine the clinical features of the eyes of children with ADHD. Cross-sectional studies with larger participation are needed to determine RNFL, GCL and choroidal changes.

References

1. Olfson M, Diagnosing mental disorders in office-based pediatric practice. J Developmental and Behavioral Pediatrics, 13:363-5, 1992.
2. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA, The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry, 164:942-8, 2007.
3. Berger I, Diagnosis of attention deficit hyperactivity disorder: much ado about something, Isr Med Assoc J, 13:571-4, 2011.
4. Ercan ES, Polanczyk G, Akyol Ardic U, Yuce D, Karacetin G, Tufan AE ve ark., The prevalence of childhood psychopathology in Turkey: a cross-sectional multicenter nationwide study (EPICPAT-T). Nord J Psychiatry, 73:132-40, 2019.
5. Hoza B, Mrug S, Gerdes AC, Hinshaw SP, Bukowski WM, Gold JA ve ark., What aspects of peer relationships are impaired in children with attention-deficit/hyperactivity disorder?. J Consult Clin Psychol, 73:411, 2005.
6. Barbaresi WJ, Colligan RC, Weaver AL, Voigt RG, Killian JM, Katusic SK. Mortality, ADHD, and psychosocial adversity in adults with childhood ADHD: a prospective study. Pediatrics, 131:637-44, 2013.

7. Uekermann J, Kraemer M, Abdel-Hamid M, Schimmelmann BG, Hebebrand J, Daum I, et al. Social cognition in attention-decit hyperactivity disorder (ADHD). Neurosci Biobehav Rev., 34:734-43, 2010.

8. Cortese S, Castellanos FX. Neuroimaging of attention-deficit/hyperactivity disorder: current neuroscience-informed perspectives for clinicians. Current psychiatry reports, 14:568-78, 2012.

9. London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nature Reviews Neurology, 9:44, 2013.

10. Mezer E, Wygnanski-Jaffe T. Do children and adolescents with attention deficit hyperactivity disorder have ocular abnormalities?. Eur J Ophthamol, 22:931-5, 2012.

11. Iseri PK, Altinas Ö, Tokay T, Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol, 26:18-24, 2006.

12. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, ve ark. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry, 63:540-549, 2006.

13. Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease, Eur Neurol, 47:165-168, 2002.

14. Blanks JC, Torigoe Y, Hinton DR, Blanks RH. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging, 17:377-384, 1996.

15. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucco MG, Pierelli F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol, 112:1860-1867, 2001.

16. Lu Y, Li Z. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: Evidence in optical coherence tomography. Neuroscience Letters , 480:69-72, 2010.

17. Bodur Ş,Kara H,Açıkel B,Yaşar E. Evaluation of the ganglion cell layer thickness in children with attention deficit hyperactivity disorder and comorbid oppositional defiant disorder.Turkish J Clinical Psychiatry , 21:222-230, 2018.

18. Hergüner A, Alpfidan Y, Yar A, Erdoğan E, Metin Ö, Sakarya Y ve ark. Retinal Nerve Fiber Layer Thickness in Children With ADHD. J Atten Disord, 22:619-626, 2018.

19. Isık U, Kaygisiz M. Assessment of intraocular pressure, macular thickness, retinal nerve fiber layer, and ganglion cell layer thicknesses: ocular parameters and optical coherence tomography findings in attention-deficit/hyperactivity disorder. J. Psychiatry, 1516-4446, 2020.

20. Ascaso FJ, Rodriguez-Jimenez R, Cabezón L, López-Anton R, Santabárbara J, De la Cámara C ve ark. Retinal nerve fiber layer and macular thickness in patients with schizophrenia: Influence of recent illness episodes. Psychiatry Res, 229:230-6, 2015.
21. Mehraban A, Samimi SM, Entezari M, Seifi MH, Nazari M, Yaseri M. Peripapillary retinal nerve fiber layer thickness in bipolar disorder. Graefe's Archive for Clinical and Experimental Ophthalmology, 254:365-71, 2016.

22. Gialloreti LE, Pardini M, Benassi F, Marciano S, Amore M, Mutolo MG ve ark. Reduction in retinal nerve fiber layer thickness in young adults with autism spectrum disorders. J Autism Dev Disord, 44:873-82, 2014.

23. Schwitzer T, Schwan R, Bubl E, Lalanne L, Angioi-Duprez K, Laprevote V. Looking into the brain through the retinal ganglion cells in psychiatric disorders: A review of evidences. Prog Neuropsychopharmacol Biol Psychiatry, 76:155-62, 2017.

24. González-López JJ, Rebolleda G, Leal M, Oblanca N, Muñoz-Negrete FJ, Costa-Fossard L ve ark. Comparative diagnostic accuracy of ganglion cell-inner plexiform and retinal nerve fiber layer thickness measures by Cirrus and Spectralis optical coherence tomography in relapsing-remitting multiple sclerosis. BioMed Res Int, 2014:128517, 2014.

25. Chorostecki J, Seraji-Bozorgzad N, Shah A, Bao F, Bao G, George E ve ark. Characterization of retinal architecture in Parkinson's disease. J Neurol Sci, 355:44-8, 2015.

26. Celik M, Kalenderoglu A, Karadag AS, Egilmez OB, Han Almis B, Şimşek A. Decreases in ganglion cell layer and inner plexiform layer volumes correlate better with disease severity in schizophrenia patients than retinal nerve fiber layer thickness: Findings from spectral optic coherence tomography. Eur Psychiatry, 32:9-15, 2016.

27. Mostofsky SH, Lasker AG, Cutting LE, Denckla MB, Zee DS. Oculomotor abnormalities in attention deficit hyperactivity disorder. Neurology, 57:423-430, 2001.

28. Gould TD, Bastain TM, Israel ME, Hommer DW, Castellanos FX. Altered performance on an ocular fixation task in attention-deficit/hyperactivity disorder. Biol Psychiatry, 50:633-635, 2001.

29. Granet DB, Gomi CF, Ventura R, Miller-Scholte A. The Relationship between Convergence Insufficiency and ADHD. Strabismus, 13(4):163–168, 2005.

30. Grönlund M, Aring E, Landgren M, Hellström A. Visual function and ocular features in children and adolescents with attention deficit hyperactivity disorder, with and without treatment with stimulants. Eye, 21:494, 2007.

31. Chhablani JK, Deshpande R, Sachdeva V, Vidya S, Rao PS, Panigati A ve ark. Choroidal thickness profile in healthy Indian children. Indian J Ophthalmol, 63:474-7, 2015.

32. Zhang JM, Wu JF, Chen JH, Wang L, Lu TL, Sun W ve ark. Macular Choroidal Thickness in Children: The Shandong Children Eye Study. Invest Ophthalmol Vis Sci, 56:7646-52, 2015.

33. Bidaut-Garnier M, Schwartz C, Puyraveau M, Montard M, Delbos E, Saleh M. Choroidal thickness measurement in children using optical coherence tomography. Retina, 34:768-774, 2014.

34. Kurt A, Kılıç R. Choroidal Thickness in Turkish Population. Ret Vit, 26: 307-311, 2017.
35. Zengin MO, Karahan E, Yilmaz S, Cinar E, Tuncer I, Kucukerdonmez C. Association of choroidal thickness with eye growth: a cross-sectional study of individuals between 4 and 23 years. Eye (Lond), 28:1482-7, 2014.

36. Nickla DL, Wallman J. The multifunctional choroid. Progress in retinal and eye research, 29:144-168, 2010.

37. Fujiwara A, Shiragami C, Shirakata Y, Manabe S, Izumibata S, Shiraga F. Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes. Jpn J Ophthalmol, 56:230-5, 2012.

38. Barteselli G, Chablani J, El-Emam S, Wang H, Chuang J, Kozak I ve ark. Choroidal volume variations with age, axial length, and sex in healthy subjects: a threedimensional analysis. Ophthalmology, 119:2572-8, 2012.

39. Li XQ, Larsen M, Munch IC. Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci 52:8438-41, 2011.

40. Skounti M, Philalithis A, Galanakis E. Variations in prevalence of attention deficit hyperactivity disorder worldwide. Eur J Pediatr, 166(2):117-23, 2007.

41. Polanczyk G, Jensen P. Epidemiologic considerations in attention deficit hyperactivity disorder: a review and update. Child Adolesc Psychiatr Clin N Am, 17(2):245-60, 2008.

42. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry, 164(6):942-8, 2007.

43. El Matri L, Bouladi M, Chebil A, Kort F, Largueche L, Mghaieth F. Macular choroidal thickness assessment with SD-OCT in high myopia with or without choroidal neovascularization. J Fr Ophtalmol, 36(8):687-692, 2013.

44. Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol, 155(2):314319, 2013.

45. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci, 51:2173-6, 2010.

46. Wei WB, Xu L, Jonas JB, Shao L, Du KF, Wang S ve ark. Subfoveal Choroidal Thickness: The Beijing Eye Study. Ophthalmology, 120(1):175–180, 2013.

47. Erol MK, Coban DT, Ozdemir O, Dogan B, Tunay ZO, Bulut M. Choroidal Thickness In Infants With Retinopathy Of Prematurity. Retina, 36(6):1191–1198, 2016.

48. Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci, 53:261-6, 2012.

49. Toyokawa N, Kimura H, Fukomoto A, Kuroda S. Difference in morning and evening choroidal thickness in Japanese subjects with no chorioretinal disease. Ophthalmic Surg Lasers Imaging, 43:109-14, 2012.
50. Usui S, Ikuno Y, Akiba M, Maruko I, Sekiryu T, Nishida K ve ark. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci, 53:2300-7, 2012.

51. Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC. Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab, 60:1210-5, 1985.