ABSTRACT

Our increasing reliance on the cloud has led to the emergence of scale-out workloads. These scale-out workloads are latency-sensitive as they are user driven. In order to meet strict latency constraints, they require massive computing infrastructure, which consume significant amount of energy and contribute to operational costs. This cost is further aggravated by the lack of energy proportionality in servers.

As Internet services become even more ubiquitous, scale-out workloads will need increasingly larger cluster installations. As such, we desire an investigation into the energy proportionality and the mechanisms to improve the power consumption of scale-out workloads.

Therefore, in this paper, we study the energy proportionality and power consumption of clusters in the context of scale-out workloads. Towards this end, we evaluate the potential of power and resource provisioning to improve the energy proportionality for this class of workloads. Using data serving, web searching and data caching as our representative workloads, we first analyze the component-level power distribution on a cluster. Second, we characterize how these workloads utilize the cluster. Third, we analyze the potential of power provisioning techniques (i.e., active low-power, turbo and idle low-power modes) to improve the energy proportionality of scale-out workloads. We then describe the ability of active low-power modes to provide trade-offs in power and latency. Finally, we compare and contrast power provisioning and resource provisioning techniques. Our study reveals various insights which will help improve the energy proportionality and power consumption of scale-out workloads.

1. INTRODUCTION

The proliferation of cloud computing has led to the emergence of scale-out workloads \[19, 4\]. These scale-out workloads are a part of several popular Internet services. For example, Netflix uses data serving mechanisms to access vast amount of media \[1\]. Google uses web search engines to index the public Internet in order to respond to search queries \[13\] and Facebook uses data caching mechanisms to access and update very popular shared content \[26\].

Such scale-out workloads are user driven. As a result, they are required to meet strict service-level objectives (SLOs), usually in terms of sub-second responsiveness. In order to meet the SLO, these scale-out workloads can span several hundred to thousands of servers to provide efficient access to massive computational resources and huge volumes of data \[12\]. Such installations consume a significant amount of energy, and in turn, contribute to the operational costs. Moreover, the operational cost is exacerbated by the lack of energy proportionality. Figure 1 shows the normalized power consumption of a four-node cluster running scale-out workloads and the hypothetical energy-proportional power curve under different load-levels. It clearly illustrates the lack of energy proportionality in these workloads.

![Figure 1: Energy Proportionality of Scale-Out Workloads With No Power Management](image-url)

To address these issues, power provisioning techniques \[30, 23, 29, 16, 17\] have been shown to improve the energy proportionality. These techniques take advantage of low utilization periods or short idle periods to assign (either active or idle) low-power states to subsystems such as the CPU and memory. Other researchers have used resource provisioning techniques to improve the energy proportionality. These techniques use workload consolidation to minimize the number of servers required to sustain a desired throughput and reduce energy consumption by turning off the servers not in use \[33\].

As Internet services such as Netflix, Google and Facebook become even more ubiquitous, scale-out workloads will need...
increasingly larger cluster installations. Improvements in the energy proportionality of such installations will need to come from dynamic power management systems. Thus, our aim in this paper is to study the energy proportionality of clusters in the context of scale-out workloads. Specifically, we analyze the effectiveness of different software-controlled (hardware-enforced) power management techniques, such as power and resource provisioning, to improve the energy proportionality of scale-out workloads. Using a data serving, web search and data caching workload, we make the following contributions:

- A study of the power consumption including power measurements of individual components within the cluster. We find that power consumption is still dominated by the processor. For the scale-out workloads under consideration, our results show that the processor consumes 45-70% of the system power depending upon the load-level.

- An analysis of the CPU utilization of a cluster executing scale-out workloads. We show that the potential to save power decreases with increase in time resolution and load-level and there is ample opportunity to save power even at sub-millisecond granularity.

- An investigation into the energy proportionality improvements, the associated performance costs (in terms of response time/latency) and power savings achieved using different power provisioning techniques. Our results show that energy-proportional operation is not possible under all load-levels. However, improvements in energy proportionality is possible. We also show that idle and active low-power together provides the best energy proportionality. We save up to 47 and 77 percent of power at the system- and processor-level, respectively.

- An analysis of the power-performance trade-off space exposed by the use of active low-power modes for scale-out workloads. We show that by creating a power-performance trade-off space, active low-power modes gives us an opportunity to operate a given workload in a power saving configuration while meeting strict SLOs.

- A comparison between power and resource provisioning techniques including the analysis of the associated performance achieved. We expose the trade-off in power and resource provisioning. We show that using resource provisioning at low load-levels provides the best energy proportionality as idle power becomes a large portion of the cluster power consumption. However, the best power saving gradually shifts from resources provisioning (at low load-levels) to power provisioning (at high load-levels).

The rest of the paper is organized as follows. A brief overview of the scale-out workloads, experimental setup, workload configuration, the power measurement interfaces and the power management techniques is described in Section 2. We describe the component-level power distribution of the scale-out workloads in Section 3. Section 4 presents our characterization of the CPU utilization by the scale-out workloads. We show the effects of power provisioning techniques on energy proportionality, latency and power savings in Section 5. In Section 6 we give an overview of the power-performance trade-off space exposed by power provisioning techniques. We compare and contrast power and resource provisioning in Section 7. A discussion of the related work is presented in Section 8. Section 9 concludes the paper.

2. BACKGROUND

In this section, we present the following background information to provide context for our work: (1) a description of the scale-out workloads under investigation, (2) the experimental setup including the cluster and workload configuration, (3) the power management interface and (4) a brief overview of the power management techniques used in this paper.

2.1 Scale-Out Workloads

Here we describe the scale-out workloads under investigation.

2.1.1 Data Serving

NoSQL data stores are popularly used as a data-serving application, particularly to handle the vast amount of data produced in large-scale web applications. These data stores provide fast and scalable storage with unconventional storage schemas. The entire set of data is partitioned and stored in many different servers. A key-value store is used to respond to queries from clients. A middleware layer handles the aggregation of the data required for a single client query and the servers respond to the middleware independently.

2.1.2 Web Search

A typical search engine maintains search indexes that are distributed among several compute nodes (or index-serving nodes) with each node containing a part of the index from the Internet. The index-serving nodes are responsible for processing requests on its own part of the search index. A master node receives requests from a client, sends requests to all the index-serving nodes, collects all the responses from them, and sends a appropriate response back to the client.

2.1.3 Data Caching

Data caching seeks to alleviate the load on databases that are used by large-scale web applications. Performance is a key concern when thousands of client requests must be supported simultaneously. A data cache can improve the performance by decreasing the look-up time for frequently accessed information. Spare memory in servers is aggregated to store frequently accessed results of database queries.

2.2 Experimental Setup

A four-node cluster is used as the evaluation testbed. Each node consists of an Intel Xeon E5-2620 processor, 16 GB of memory and a 256-GB hard disk. For all the workloads, a separate server runs the workload generator or the client. We used the workloads from CloudSuite – a benchmark suite for emerging scale-out workloads. Also, we used the latest versions of the software when possible. In rest of this section, we describe the software and configurations used for each of the scale-out workload under investigation.

2.2.1 Data Serving Workload
We use Cassandra (version 2.0.7)\footnote{We use exponential or negative exponential distribution for arrival rate of requests for all the scale-out workloads. These are the recommended distributions for the arrival rate of requests when real user trace is not available.\cite{25}.} as our distributed NoSQL data store. Cassandra aims to manage large amounts of data distributed across many commodity servers. It provides a reliable, high-availability service using a peer-to-peer architecture. The data is split across each node in the cluster.

To generate the workload for our experiments, we use the Yahoo! Cloud Serving Benchmark (YCSB) (version 0.1.4)\footnote{Internally RAPL uses DVFS.\cite{15}}. YCSB is a benchmarking framework to evaluate the performance of cloud data-serving systems. The framework consists of a load-generating client and a set of standard workloads, such as read-heavy or write-heavy workloads, which helps in stressing important performance aspects of a data serving system.

Configuration: We load 25 million records into the data store with a replication factor of three to simulate a realistic setup. The total data stored was approximately 80 GB in size (20 GB per server). We evaluate this setup using a predefined read-modify-write workload from YCSB. The data access pattern follows a Zipfian distribution. The arrival rate of requests follows an exponential distribution\footnote{This frequency is above the rated frequency.}. The YCSB client reports the performance achieved in terms of throughput and latency, specifically average latency and latencies at the 95th and 99th percentile.

2.2.2 Web Search Workload

We use Apache Nutch (version 1.2)\footnote{\cite{2}} as our web search workload. Nutch is an open source web crawler and searcher. It provides a framework for distributed indexing and search. For the front-end, Apache Tomcat (version 7.0.23)\footnote{\cite{3}} is used.

We use Faban toolkit (version 1.0.1)\footnote{\cite{5}} as our workload generator. The Faban toolkit is a Java-based driver framework which allows for easy definition and load generation for new benchmarks. This framework allows the user to specify load parameters such as the ramp-up time, steady state time, ramp-down time, number of search users and number of client threads.

Configuration: We crawl the public Internet and use an index and segment size of approximately 1 GB and 14 GB, respectively, per server. The Faban driver uses a negative exponential distribution for the arrival rate of requests\footnote{\cite{6}}. The Faban driver uses latency and throughput as the performance metric. It reports 90th and 99th percentile latencies.

2.2.3 Data Caching Workload

We use Memcached\footnote{\cite{8}} as our data caching workload. Memcached is a distributed in-memory key-value store for generic data. It is used to store popularly used data from database queries or page accesses.

The Memcached client provided with the CloudSuite is used as our workload generator. This client allows the user to specify various parameters such as ratio of get and set operations.

Configuration: We store approximately 15GB of data per node. A scaled version of the Twitter dataset provided with the CloudSuite is used. We use an exponential arrival rate distribution. The Memcached client reports performance in terms of throughput and latency (90th, 95th and 99th percentile latencies are reported).

2.3 Power Measurement Interface

To study energy proportionality in the context of scale-out workloads, we measure the power consumption while executing these workloads at different load-levels. We use a Watts Up power meter to measure the cluster power consumption. Intel’s Running Average Power Limit (RAPL)\footnote{\cite{7}} interfaces is used to measure power of components within a system.

2.4 Power Management

We study four types of power management techniques in this paper. These techniques can be classified into two broad categories: power provisioning and resource provisioning. A brief overview of these categories is given below.

2.4.1 Power Provisioning

Power provisioning can be further divided into three power management techniques. We describe these mechanisms here.

Active Low-Power Modes: These low-power modes are the most popularly used form of dynamic voltage frequency scaling (DVFS). It is also referred as P-state (or performance state). They are voltage-frequency pairs which allow the processor to be operated at lower than the rated frequency. When the frequency along with voltage is reduced, the operational speed and the power consumption of the processor reduces. In this paper, we use Intel RAPL to manipulate active low-power modes. RAPL interfaces provides mechanisms to limit the power consumption of the processor\footnote{\cite{7}}. RAPL interfaces can be programmed using model specific registers (MSRs). We refer the reader to the Intel software developer’s manual\footnote{\cite{27,29}} and existing literature\footnote{\cite{27,29}} for more information on RAPL interfaces. The rated and minimum frequency of the processors in our experimental setup is 2GHz and 1.2GHz, respectively. The rated and the minimum frequency are referred as P1 and Pn states (\(n = 9\) in our experimental setup). In other words, there are nine voltage-frequency pairs at which the processor can operate.

Turbo Mode: This is another form of DVFS. This mode overclocks the processor above the rated frequency over short duration to improve performance. This mode is hardware-controlled and the frequency\footnote{\cite{9}} at which the processor operates depends upon the thermal and power headroom available to the processor. In our cluster, the processor can operate at a maximum frequency of 2.5GHz when in turbo mode. This maximum turbo frequency is referred as P0 state\footnote{\cite{9}}.

We disable and enable turbo mode by setting and clearing bit 32 of IA32_PERF_CTL MSR. We also ensure that the appropriate P-states are used by writing the corresponding frequencies to the /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq and /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq.

Idle Low-Power Modes: These modes are applied when the processor is idling (i.e., no instruction is being executed). It is also referred as C-state. Each C-state selectively shuts down supporting circuitry in the processor in order to save more power. CO state is the active state and C1 to Cn (where, \(n \in \{1,1E,3,6,7\}\)) are idle low-power modes. C7
state saves the most power. Each mode has an exit latency (i.e., the time taken to bring back the processor to C0 state from any Cn state) associated with it. Entering a deeper idle low-power mode incurs more cost in terms of exit latency as shown in Table 1.

Table 1: C-State Exit Latencies on Our Experimental Setup

C-State	Exit Latency (us)
C1	2
C1E	10
C3	80
C6	104
C7	109

To dynamically control C-states, we have to write the maximum allowable exit latency to the file /dev/cpu_dma_latency. As long as the file /dev/cpu_dma_latency is kept open, C-states with transition latencies higher than the specified exit latency value will not be used. For example, writing a maximum allowable latency of 12us will keep the processors only in C0, C1 or C1E state.

2.4.2 Resource Provisioning

Resource provisioning techniques aim to match the number of active servers to the load-level on the cluster. Idle servers can be simply turned off or provisioned to another application. However, there is an associated cost with bringing the servers back to active state as the load on the cluster increases. The evaluation of resource provisioning is done by manually hibernating nodes in the cluster. In other words, we manually match the number of nodes to the load-level of the scale-out workload.

In the rest of the paper, we study the effect of these techniques on the energy proportionality and performance (in terms of response time/latency) of scale-out workloads.

3. COMPONENT-LEVEL POWER DISTRIBUTION

In this section, we measure the component-level power consumption of the scale-out workloads under investigation. The main goal is to understand the contribution of each component to the energy proportionality of these workloads.

Figure 2 shows the power distribution for the data serving, web search and data caching workloads for the entire cluster. The power consumption reported here corresponds to the processor P1 state with turbo and idle low-power modes disabled. In rest of the paper, this configuration is referred as no management (NM). The values reported in Figure 2 are based on the sum of the power consumption from each node in the cluster and averaged over multiple runs. System components other than the processor and memory are represented as Other in these figures.

In the NM configuration, the power consumption of each component does not vary across load-levels. Such constant power consumption, irrespective of the load-level, is the main reason for poor energy proportionality of scale-out workloads. In general, the processor power consumption contributes most to the system power. The processor consumes 45-50%, 65-70% and 50-65% for the data serving, web search and data caching workloads respectively. DRAM consumes lower power when compared to the processor across all the workloads. The power consumption of other component varies depending upon the workload. However, their power consumption is always either similar (e.g., data serving) or less than the power consumption of the processor (e.g., web search).

Since the processor consumes a large portion of the system power, this paper focuses on understanding the energy proportionality from the perspective of the processor. In rest of the paper, we study the utilization of the CPU and the effects of active low-power, turbo and idle low-power modes of the processor on the energy proportionality of the system for scale-out workloads. We also investigate the trade-offs involved in using resource provisioning and power provisioning.

4. ANALYSIS OF CPU UTILIZATION

Here we present the CPU utilization traces of the scale-out workloads for three load-levels at different time granularities. Using these results, we seek to understand whether power management techniques will have any effect on these workloads. Moreover, these experiments provide a view into the time granularity at which any power management technique should be applied. From the perspective of processor usage, these results also show the similarity and diversity of the workloads used in this paper. In this section, we will show the following: the potential to save power decreases with increase in time resolution and load-level and there is ample opportunity to save power at sub-second and sub-millisecond granularity at each load-level.

4.1 Methodology

The analysis of the CPU utilization is presented as cumulative distribution functions (CDFs). These CDFs provide

\[\text{CDF}(x) = \frac{1}{N} \sum_{i=1}^{N} (1 \text{ if } x_i \leq x, 0 \text{ otherwise}) \]

where \(N \) is the number of observations and \(x_i \) is the i-th observation. The CDFs are computed over different time resolutions (e.g., 1ms, 10ms, 100ms) and load-levels (e.g., 25%, 50%, 75%).

The analysis is performed for both the NM and the pseudo-C-state configurations. The pseudo-C-state configuration involves writing the exit latency to the file /dev/cpu_dma_latency and then using the C-states to control the power consumption of the processor. The analysis shows that the pseudo-C-state configuration results in lower power consumption compared to the NM configuration, especially at lower load-levels.

The results also indicate that the power consumption is more sensitive to the time resolution at lower load-levels. For example, at a load-level of 25%, the power consumption is significantly lower at a 1ms time resolution compared to a 10ms time resolution. This is because the power consumption is more affected by short-lived workloads at lower load-levels.

The analysis also shows that the pseudo-C-state configuration results in lower power consumption compared to the NM configuration, especially at lower load-levels. This is because the pseudo-C-state configuration allows for more aggressive power control by the C-states.

In conclusion, the analysis of CPU utilization provides insights into the energy proportionality of scale-out workloads and the effectiveness of power management techniques. The results show that the time resolution and load-level play important roles in determining the power consumption and the potential for power savings.
a succinct view of the fraction of time for which a workload at a particular load-level spent its execution at or below a CPU utilization. We also show CDFs at time granularities of 100us, 500us, 1ms, 5ms and 10 ms. This allows us to visualize the change in CPU utilization as we change time resolution at which we monitor it. These fine-grained CPU utilization traces are collected using SystemTap [10].

4.2 Discussion

Figures [2][3] and [4] show the CPU utilization profile of data serving, web search and data caching workloads, respectively, for three load-levels. Consider the 100us and 1ms CDFs for data serving workload (see Figure [6]). The time spent at 0% CPU utilization (i.e., idling) for both CDFs decrease when moving from 30% load-level to 70% load-level. It also decreases when you move from 100us to 1ms within a load-level. In general, the CDFs show that opportunity to save power and the amount of time spent idling decreases with increase in load-level and time resolution within a load-level.

The fraction of time spent idling (i.e., 0% utilization) at a time resolution (especially at sub-millisecond resolution) provides insights into the effectiveness of idle low-power modes on these workloads. At 5 and 10ms resolution, the data serving workload spends less time idling. Whereas, the other two workloads spend more time idling than the data serving workloads even at this resolution. It is expected that more time spent idling allows the processor to enter low power modes frequently and thus save power. These plots also provide insights into the time resolution at which to apply dynamic power management mechanisms. For examples, in all cases the best time resolution to apply power management mechanism is 100us as it provides best opportunity for power savings due to high fraction of idle time. Moreover, if the CDFs of two time resolution follow the similar curve it is better to apply the power management mechanism at the higher time resolution in order to avoid unnecessary overhead. For example, the 5 and 10ms CDFs for 70% load-level.
level of the data serving and data caching workload follow a similar curve. As a result, we can infer that there is no more opportunity to save processor power in 5ms than 10ms time resolution due to similar CPU utilization profile.

5. EFFECT OF POWER PROVISIONING

In this section, we describe the effects of the power provisioning techniques (i.e., active low-power, turbo and idle low-power modes) on the energy proportionality, corresponding response times (latency) and power saving potential for the scale-out workloads.

We describe these effects using Figures 2, 3, and 4. The No Management (denoted as NM) line in each figure corresponds to the power consumed by each workload when the system is restricted to P1 state (i.e., 2.0GHz) and C0 state with turbo mode disabled. For studying the effects of idle low-power modes, we restrict the deepest possible C-state that can be entered by writing appropriate latency values to the /dev/cpu_dma_latency device file as described in Section 2.4.1. The effects of turbo mode on these workloads are studied using the procedure described in Section 2.4.1. To understand the potential of active low-power modes, we run through all possible RAPL processor power limits possible on each load-level such that the throughput is maintained. In this section, we present only the results from the best possible RAPL configuration (i.e., the configuration which achieves the best power savings while meeting throughput constraints). We also show the effects of RAPL in conjunction C7 state (denoted as RAPL+C7). We do not show results which restrict the deepest possible C-state to C1 and C6 because C1E and C7 had identical effects to C1 and C6, respectively, for all the workloads. In all cases, using only turbo mode resulted in power consumption that exceeded the power consumption of each workload at 100% load-level. Hence, we do not show results corresponding to only turbo mode. The results corresponding to turbo mode in conjunction with C7 state (denoted as Turbo+C7) is shown instead.

5.1 Effects on Energy Proportionality

The left plots in Figures 6, 7, and 8 show the effect of power provisioning on the energy proportionality of scale-out workloads. The Y-axis represents the normalized power (normalized to the power consumed at 100% load-level) by the system and X-axis represents the load-level. As a result, the energy-proportional curve (denoted by EP) consumes 40% of power at 40% load-level, 60% of power at 60% load-level and so on.

As observed, better than energy-proportional operation is not possible under all load-levels for these workloads. However, energy-proportional operation can be achieved for certain load-levels depending upon the workload. For example, better than energy-proportional operation can be achieved for load-levels greater than 70%, 60% and 80% load-level for data serving, web search and data caching workloads, respectively, using RAPL+C7. But energy proportionality is improved in every case.

Overall, RAPL+C7 achieves the best energy proportionality. But only in certain cases, C7 state improves energy proportionality as much as RAPL+C7. However, in Section 4, we showed that the there is ample idle time available for the idle low-power modes to save power even at sub-millisecond time granularity. To understand the reasons behind C7 state not performing as expected, we looked at the C-state residency (i.e., time spent in each C-state) shown in Figure 9. As observed, the processor does not spend a amount of time proportional to idle time in deep idle low-power states such as C3, C6 or C7 even though there is ample opportunity to do so in the 100us and 500us time granularities. A huge fraction of time is spent in C0 state even though the CPU is idling. From these results, we infer that there is a need for better system software to enter deep low-power states more aggressively in order to save power.

![Figure 9: C-State Residency of Scale-Out Workloads](image)

However, the best idle low-power mode power savings come from allowing the processor to use the C7 state as expected. Using, turbo+C7 does not improve energy proportionality for high load-levels. But some improvement is seen when turbo+C7 is used at low load-levels. However, it does not do better than using only C7. While these plots only describe the improvements in energy proportionality, the scale-out workloads are latency-sensitive. The latency of these workloads might be affected due to power management techniques even though the throughput (i.e., load-level) can be maintained. We discuss the effects of using these power management techniques on the latency of scale-out workloads in the next section.

5.2 Effects on Latency (Response Time)

The plots in the right of Figures 6, 7, and 8 show the effect of power provisioning on the 99th-percentile latency (i.e., response times) of scale-out workloads. These curves represent a typical response time curve for a scale-out workload. Each curve has an inflection point after which the response times rapidly rises. This inflection point for NM curve lies at 50, 60 and 90 percent load-level for the data serving, web search and data caching workloads, respectively. It is clear from the plots that each power management technique has its own unique effect on the response times of the workload. For example, the inflection point is shifted when a more aggressive power management technique is used. We also observe that for certain load-levels all the latency curves are overlapping. In case of web search, all the latency curves overlap after 60% load-level suggesting that a more aggressive power management technique can be used without having any effect on the response times of this workload at or below 60% load-level. Similar inferences can be made for other workloads and power management techniques.

In practice, these workloads operate under strict service-level objectives (SLOs). This SLO is placed on the 99th-percentile latency and fixed for a particular workload. Any
violation of SLO will be unacceptable. As such, a mechanism to trade-off some power savings for improvements in response times is desirable. In Section 6, we describe the potential of RAPL to provide a trade-off between power and latency. This makes dynamic power management using active low-power modes an attractive option for improving the
energy proportionality of scale-out workloads while meeting strict SLOs.

5.3 Power Savings

Figure 10 shows the power saving achieved for different load-levels of the scale-out workloads. We show the power savings at the cluster- and processor-level. The processor-level power savings include the combined power consumption of all the processors in the cluster. This processor power consumption is measured using RAPL interface. We only show the processor-level power consumption as the turbo, active low-power and idle low-power modes affect only the processor power consumption. The power saving is calculated as (power_{NM} − power_{node])/power_{NM}. At the cluster-level, we save the highest power using RAPL+C7 in all cases. The difference in power savings achieved due to RAPL+C7 when compared to only C7 is substantial for each workload. We save up to 40, 47 and 26 percent for the three different workloads at the cluster-level when compared to the power consumption with no management. While comparing the power saving at the processor-level, the difference between the power savings achieved with RAPL+C7 and C7 is even more pronounced. The maximum power savings achieved for the scale-out workloads at the processor-level are 77, 76 and 67 percent.

6. TRADE-OFFS IN POWER AND LATENCY

As mentioned earlier, active low-power modes not only provide the best power saving but also gives us an opportunity to operate a given workload in a configuration to meet strict SLOs by creating a power-performance trade-off space. In this section, we describe this space with respect to scale-out workloads. Our methodology involves the projection of power consumed for a particular latency while running the scale-out workload on our experimental testbed. We run through different possible RAPL processor power limits and present the impact of each configuration on the power and performance (latency) of these workloads.

Figures 11 and 12 show the power-performance trade-off space for the 30, 50 and 70 percent load-level of the data serving and web search workload, respectively. In these figures, turbo mode was disabled and the processor was restricted to C0 state. Essentially, it is power-performance exhibited by only using RAPL. The X-axis represents normalized 99th-percentile latency. The Y-axes represent normalized power and power savings, respectively. The latency and power saving are normalized w.r.t. no management (NM) mode at same load-level. However, power is normalized to the power consumed at 100% load-level in order to illustrate energy proportionality. For 70 and 50 percent load-levels of the data serving workload, the power vs. latency curve follows a similar trend at cluster-level. They provide best power savings on the left side of the graph where the latency penalty is less. However, as more aggressive power limiting is applied, the power savings achieved stagnates. In case of the 30% load-level at the cluster-level, in the initial run through of the power limits, the latency increase more that the power savings it provides, in the center part of the plot, there is an inflection point which provides best power savings for little increase in latency and finally, the power savings achieved stagnates. For all load-levels at the processor-level, the power vs. latency curve follows a similar trend. Similar observations can be made for the power-performance trade-offs of the web search workload as shown in Figure 12. Moreover, the trade-off space exhibited by each workload depends upon the load-level. For example, the web search workload gives an opportunity to operate it anywhere in the 1−1.15× latency cost range depending upon the load-level. Such inferences on the relationships between power and latency are useful to design a dynamic power management runtime for scale-out workloads.

7. POWER VS. RESOURCE PROVISIONING

In this section, we evaluate the impact of resource and power provisioning techniques on the energy proportionality and power savings achieved. Our main goal is to compare and contrast the above two in the context of scale-out workloads.

7.1 Experimental Setup and Workload Configuration

For the experiments in this section, we use a different cluster. 32 nodes from the Shadowfex cluster housed in Virginia Tech is used as the evaluation testbed. Each node consists of two Intel Xeon E5-2670 processors, 64 GB of memory and a 1 TB hard disk. A separate server runs the workload generator or the client.

We evaluate only the data serving workload for the experiments in this section. Cassandra (version 2.6.7) is used as the NoSQL data store. To generate the workload for our experiments, YCSB (version 0.1.4) is used. We load 300 million records into the data store with a replication factor of nine. The total data stored was approximately 2.85 TB in
size (90 GB per node). We evaluate this setup using a pre-defined read-modify-write workload from YCSB. The data access pattern follows a Zipfian distribution. The arrival rate of requests follows an exponential distribution.

7.2 Methodology

To understand the effects of resource provisioning, we change the number of servers involved in our experiments at each load-level from 25 to 32 nodes and report the effects of each configuration on the power and performance (in terms of latency). We first start the client with all the 32 nodes on the Cassandra cluster operational. After the client starts receiving responses, we remove the required number of nodes from Cassandra cluster. This methodology ensures that we use a realistic setup as we take the effects of removing a node from the Cassandra cluster on power and performance into account. To analyze the effects of power provisioning, we perform the same experiment used earlier in this paper. We run through different possible RAPL processor power limits and present the impact of each configuration on the power and performance of the data serving workload.

7.3 Discussion

In this section, we run the data serving workload (Cassandra) at 30, 40 and 50 percent load-levels. Figure 12 shows the power vs latency trade-off for the load-levels using power and resource provisioning. The left Y-axis shows the power normalized to the power consumed at 100% load-level using all the 32 servers. We also show the power saving using the right Y-axis.

We are not able to achieve energy proportionality for the three load-levels presented in the figure. However, there is a good power saving potential depending upon how much performance (latency) we are willing to sacrifice. These plots can be used to make other interesting observations. For example, the plots show that the best power saving tech-
nique for a given latency depends on the load-level. The best power saving technique for 50% load-level is power provisioning. But for 30% load-level it is resource provisioning. In fact, the best power saving technique gradually shifts from power provisioning to resource provisioning, moving from 50% to 30% load-level. The reason for such a trend is that at low load-levels the idle power becomes a large portion of the cluster power consumption and active low-power modes are not capable of improving the power savings further. At low load-levels, the only way to improve energy-proportionality is to use resource provisioning to offset the idle power with an associated latency cost.

8. RELATED WORK

We give an overview of the related work in this section.

8.1 Energy Proportionality and Energy Efficiency

In our previous work \cite{30, 29}, we studied the effects of RAPL power limiting on the performance, energy proportionality and energy efficiency of enterprise applications at the server-level. We also designed a runtime system to decrease the energy proportionality gap. To design this runtime system, we used a load-detection model and optimization framework that uses statistical models for capturing the performance of an application under power limit. This paper improves upon our previous work by investigating the energy proportionality of clusters executing scale-out workloads.

Lo et al. \cite{23} analyze the energy proportionality of web search and in-memory key-value data store on a large-scale cluster. They propose a runtime system which uses RAPL to improve the energy proportionality of these workloads. Our work complements their paper by providing more analysis w.r.t. CPU utilization, turbo and active low-power modes, trade-offs in power and latency and the comparison of power and resource provisioning.

Meisner et al. \cite{25} characterize online data-intensive services (OLDI) to identify opportunities for power management, design a framework that predicts the performance of OLDI workloads and investigate the power and performance trade-offs using their power models and simulation framework. Our work provides empirical evidence for the existence of power-performance trade-offs in scale-out workloads on a real system.

Wong et al. \cite{33, 32} provide an infrastructure for improving the energy proportionality using server-level heterogeneity. They combine a high-power compute node with a low-power processor essentially creating two different power-performance operation regions. They save power by redirecting requests to the low-power processor at low request rates thereby improving energy proportionality. In addition, they compare cluster-level packing techniques (resource provisioning) and server-level low power modes to identify if one of these techniques is better with current generation of processors using simulation and power modeling. The results in this paper are applicable to commodity servers, one that does not require any additional hardware setup. We also provide empirical results for the trade-offs involved in power and resource provisioning on a real system.

Fan et al. \cite{18} study the improvements to peak power consumption of a group of servers due to the improvements in non-peak power efficiency using their power model. They provide analytical evidence that shows energy-proportional systems will enable improved power capping at the data-center level. This paper complements their work by providing more insights into the characteristics of scale-out workloads and the effects of power and resource provisioning on their energy proportionality.

Dimitris et al. \cite{31} provide a comprehensive study of power consumption of relational databases on a single node. They analyze the energy efficiency of database servers using different hardware and software knobs such as CPU frequency, scheduling policy and inter-query parallelism. They conclude that the most energy-efficient operating point is also the highest performing configuration. Willis et al. \cite{21} study the trade-offs between performance scalability and energy efficiency for relational databases. They identify hardware and software bottlenecks that affect performance scalability and energy efficiency. In addition, they provide guidelines for energy-efficient cluster design in the context of parallel database software. Our research complements theirs by addressing the energy proportionality of non-relational (a.k.a. NoSQL) databases.

8.2 Subsystem-Level Power Management

Deng et al. \cite{16, 17} propose the CoScale framework, which dynamically adapts the frequency of the CPU and memory while respecting a certain application performance degradation target. They also take per-core frequency settings into account. Li et al. \cite{22} study the CPU microarchitectural adaptation and memory low-power states to reduce energy consumption of applications bounding the performance loss by using a slack allocation algorithm. Sarood et al. \cite{28} present an interpolation scheme to optimally allocate power for CPU and memory subsystems in an over-provisioned high-performance computing cluster for scientific workloads. This paper deals with improving energy efficiency of the compute nodes across different levels of utilization (and not just at the peak utilization levels) as data centers running even well-tuned applications spend a significant fraction of their time below peak utilization levels \cite{14, 24, 18}.

9. CONCLUSION

We evaluate the potential of power and resource provisioning to improve the energy proportionality for scale-out workloads. Using data serving, web searching and data caching as our representative workloads, we show that processor is still the dominant power consuming component. We illustrate that there is ample opportunity to save power by characterizing the CPU utilization of scale-out workloads. We then present the potential of power provisioning techniques to improve the energy proportionality of scale-out workloads. The ability of active low-power modes to provide a power-performance trade-off space for scale-out workloads is described. We also compare and contrast power and resource provisioning techniques. Our study shows that effective power provisioning improves the energy proportionality of scale-out workloads and exposes the trade-off involved in power and resource provisioning.

10. REFERENCES

\cite{1} Apache Cassandra. Available at http://cassandra.apache.org/
[2] Apache Nutch. http://nutch.apache.org
[3] Apache Tomcat. http://tomcat.apache.org
[4] CloudSuite. http://parsa.epfl.ch/cloudsuite/cloudsuite.html
[5] Faban Toolkit. http://faban.org
[6] Faban Workload Design. http://faban.org/docs/WorkloadDesign.pdf
[7] Intel 64 and IA-32 Software Developer Manuals - Volume 3. www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
[8] Memcached. http://memcached.org
[9] Power Management Architecture of the 2nd Generation Intel Core Microarchitecture, Formerly Codenamed Sandy Bridge. http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf
[10] SystemTap. https://sourceware.org/systemtap/wiki
[11] Yahoo Cloud Serving Benchmark (YCSB). https://github.com/brianfrankcooper/YCSB/wiki
[12] L. A. Barroso, J. Clidaras, and U. Hölzle. The Case for Energy-Proportional Computing. IEEE Computer, 40(12), 2007.
[13] D. Wong and M. Annavaram. Implications of High Energy Proportional Server Workloads. In Proceedings of the International Conference on Performance Engineering, ICPE, 2013.
[14] B. Subramaniam and W. Feng, Towards Energy-Proportional Computing for Enterprise-Class Server Workloads. In Proceedings of the International Conference on Performance Engineering, ICPE, 2013.
[15] B. Subramaniam and W. Feng. Enabling Efficient Power Provisioning for Enterprise Applications. In Proceedings of the International Symposium on Cloud, Cluster and Grid Computing, CCGRID, 2014.
[16] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the Energy Efficiency of a Database Server. In Proceedings of the International Conference on Management of Data, SIGMOD ’10, 2010.
[17] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Cross-Component Energy Management: Joint Adaptation of Processor and Memory. ACM Transactions on Architecture and Code Optimization, 2007.
[18] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis. Towards Energy Proportionality for Large-scale Latency-critical Workloads. In International Symposium on Computer Architecture, ISCA, 2014.
[19] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers via Sensible Co-Locations. In International Symposium on Microarchitecture, MICRO, 2011.
[20] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber, and T. F. Wenisch. Power Management of Online Data-Intensive Services. In International Symposium on Computer Architecture, ISCA, 2011.
[21] R. Nishitala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Poek, P. Saab, D. Stafford, T. Tung, and V. Venkataraman. Scaling Memcache at Facebook. In USENIX Symposium on Networked Systems Design and Implementation, USENIX NSDI, 2013.
[22] B. Subramaniam and W. Feng. Enabling Efficient Power Provisioning for Enterprise Applications. In Proceedings of the International Symposium on Cloud, Cluster and Grid Computing, CCGRID, 2014.