Complete Genome Sequence of *Methylobacterium populi* P-1M, Isolated from Pink-Pigmented Household Biofilm

Tomohiro Morohoshi,a,b Tsukasa Ikeda,a,b

Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi, Japan; JST, CREST, Kawaguchi, Saitama, Japan

Methylobacterium populi P-1M is isolated from the pink-pigmented household biofilm. Here, we present the complete genome sequence of P-1M, consisting of one chromosome of 5,705,640 bp and five plasmids of 64,864 bp, 59,879 bp, 42,569 bp, 41,417 bp, and 29,506 bp.

Received 5 May 2016 Accepted 10 May 2016 Published 16 June 2016

Citation Morohoshi T, Ikeda T. 2016. Complete genome sequence of *Methylobacterium populi* P-1M, isolated from pink-pigmented household biofilm. Genome Announc 4(3): e00458-16. doi:10.1128/genomeA.00458-16.

© 2016 Morohoshi and Ikeda. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Tsukasa Ikeda, tikeda@cc.utsunomiya-u.ac.jp.

The genus *Methylobacterium* is one of the dominant bacteria found in pink-pigmented household biofilms (1–3). Since many *Methylobacterium* strains exhibit higher tolerance to stress or chlorine, it would be quite laborious to remove already-established pink-pigmented biofilms (2). The bacterial interactions among the *Methylobacterium* species in household biofilms have not been clearly elucidated. In a previous study, we isolated 16 *Methylobacterium* strains from pink-pigmented household biofilms (3). Although all isolates formed low-level biofilms, the amount of the biofilms formed by strain P-1M was significantly increased by coculturing with the other *Methylobacterium* strains (3). A BLAST search revealed that the 16S rRNA sequences of P-1M showed identity to those of *Methylobacterium populi* type strain BJ001 (98.9%). *M. populi* BJ001 has been isolated from internal poplar tissues (4). The complete genome sequences of *M. populi* BJ001, which contained one chromosome and two endogenous plasmids, have been deposited in the DDBJ/ENA/GenBank databases under accession numbers AP014809 (chromosome), AP014810 (plasmid pMPPM03), AP014811 (pMPPM02), AP014812 (pMPPM03), AP014813 (pMPPM04), and AP014814 (pMPPM05).

ACKNOWLEDGMENT

This work was supported by Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST).

FUNDING INFORMATION

This work, including the efforts of Tomohiro Morohoshi and Tsukasa Ikeda, was funded by JST | Core Research for Evolutional Science and Technology (CREST).

REFERENCES

1. Kelley ST, Theisen U, Angenent LT, St Amand A, Pace NR. 2004. Molecular analysis of shower curtain biofilm microbes. Appl Environ Microbiol 70:4187–4192. http://dx.doi.org/10.1128/AEM.70.7.4187-4192.2004.
2. Yano T, Kubota H, Hanai J, Hitomi J, Tokuda H. 2013. Stress tolerance of *Methylobacterium* biofilms in bathrooms. Microbes Environ 28:87–95. http://dx.doi.org/10.1264/mse.2.ME12146.
3. Xu FF, Morohoshi T, Wang WZ, Yamaguchi Y, Liang Y, Ikeda T. 2014. Evaluation of intraspecies interactions in biofilm formation by *Methylobac-
terium species isolated from pink-pigmented household biofilms. Microbes Environ 29:388–392. http://dx.doi.org/10.1264/jsme2.ME14038.

4. Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL. 2004. Methylo-
bacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively
methylosrophic, methane-utilizing bacterium isolated from poplar trees
(Populus deltoidea x nigra DN34). Int J Syst Evol Microbiol 54:1191–1196.
http://dx.doi.org/10.1099/ijs.0.02796-0.

5. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C,
Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J.
2013. Nonhybrid, finished microbial genome assemblies from long-read
SMRT sequencing data. Nat Methods 10:563–569. http://dx.doi.org/
10.1038/nmeth.2474.

6. Noguchi H, Taniguchi T, Itoh T. 2008. MetaGeneAnnotator: detecting
species-specific patterns of ribosomal binding site for precise gene predic-
tion in anonymous prokaryotic and phage genomes. DNA Res 15:387–396.
http://dx.doi.org/10.1093/dnares/dsm027.

7. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW.
2007. RNAmmer: consistent and rapid annotation of ribosomal RNA
genesis. Nucleic Acids Res 35:3100–3108. http://dx.doi.org/10.1093/nar/
gkm160.

8. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detec-
tion of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:
955–964. http://dx.doi.org/10.1093/nar/25.5.0955.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic Local
Alignment Search Tool. J Mol Biol 215:403–410. http://dx.doi.org/
10.1016/S0022-2836(05)80360-2.