Exploring Transformer and Multilabel Classification for Remote Sensing Image Captioning

Hitesh Kandalaa, Sudipan Sahab, Member, IEEE, Biplab Banerjeec, Member, IEEE, and Xiao Xiang Zhud, Fellow, IEEE

Abstract—High-resolution remote sensing images are now available with the progress of remote sensing technology. With respect to popular remote sensing tasks, such as scene classification, image captioning provides comprehensible information about such images by summarizing the image content in human-readable text. Most existing remote sensing image captioning methods are based on deep learning-based encoder-decoder frameworks, using convolutional neural network or recurrent neural network as the backbone of such frameworks. Such frameworks show a limited capability to analyze sequential data and cope with the lack of captioned remote sensing training images. Recently introduced Transformer architecture exploits self-attention to obtain superior performance for sequence-analysis tasks. Inspired by this, in this work, we employ a Transformer as an encoder-decoder for remote sensing image captioning. Moreover, to deal with the limited training data, an auxiliary decoder is used that further helps the encoder in the training process. The auxiliary decoder is trained for multilabel scene classification due to its conceptual similarity to image captioning and capability of highlighting semantic classes. To the best of our knowledge, this is the first work exploiting multilabel classification to improve remote sensing image captioning. Experimental results on the University of California (UC)-Merced caption dataset show the efficacy of the proposed method. The implementation details can be found in https://gitlab.lrz.de/ai4eo/captioningMultilabel.

Index Terms—Auxiliary task, image captioning, multitask learning, remote sensing, Transformer.

I. INTRODUCTION

REMOTE sensing technology has made significant progress in the last decade, thus making high-quality remote sensing images available from a plethora of sensors. Despite this, the commonly studied remote sensing tasks, e.g., image segmentation and change detection, usually focus on object-level or pixel-level understanding without comprehensive semantic knowledge. Toward capturing more comprehensive global semantic information, image captioning is introduced in remote sensing that can generate intuitive textual descriptions summarizing the high-level semantic information [1], [2].

Image captioning is a challenging task, as it involves both understanding the content of the image and translating it to natural language. Early remote sensing image caption methods used template-based and retrieval-based models [3], [4]. Subsequently, they have been replaced by encoder-decoder-based methods. More recently, the visual attention mechanism has also been explored [5]. The Transformer further exploits the attention mechanism to model the sequence dependency and excludes the usage of recurrent units [6], [7]. In addition to traditional computer vision tasks, such as segmentation [8], Transformer-based architectures have also been adopted for computer vision image captioning [9]. Their works show the superior capability of Transformers to utilize long-range dependencies among the sequenced patches via the self-attention mechanism.

While Transformer can potentially improve image captioning [10], their performance may fall when sufficient training data are not available, as observed in [11]. Notably, the remote sensing image captioning datasets (RSICDs) are much smaller than those available in computer vision. Auxiliary/supplemental tasks and multitask learning are used to alleviate the lack of large training data by providing additional supervision, i.e., simultaneously using the same data for a different supplemental learning task during the training procedure [12]. The intuition behind their success is that the network learns to generalize better by adapting to multiple tasks. Such supplemental tasks are usually collected from related tasks; e.g., [13] uses image classification as an auxiliary task while generating synthetic images, and [14] explores multitask learning for human settlement extent regression.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
and local climate zone classification. Supplemen
tal tasks can be both supervised [13] and unsupervised [15]. They have
been used in several works related to image captioning in computer vision [16], [17]. Zhao et al. [16] used three related
tasks of image captioning, multilabel classification, and syntax
generation using the CNN-long short-term memory (LSTM)
model, where all the three tasks share the CNN encoder,
and the first and the last tasks share the LSTM decoder.
Zhou et al. [17] jointly tackles two related visual-text tasks of
image captioning and visual question answering. While syntax
or visual question answers are not abundantly available in
remote sensing, image labels are easily available. Furthermore,
multilabel classification and image captions are conceptually
similar [18], as both highlight the semantic classes, evident in
the example shown in Fig. 1. Motivated by this, we propose
to use multilabel image classification as a supplemental task
along with Transformer-based remote sensing caption gen-
eration. Any other task, e.g., rotation prediction, could be used
in practice. However, those tasks are focused on getting better
discriminative visual features and do not highlight the semantic
meaning, unlike multilabel classification, which makes the
appropriate choice as a supplemental task to regulate the cap-
tion generation. Our proposed model benefits from the superior
capability of the Transformer to exploit sequence information
and the capability of multitask learning to perform training
with limited data. The contributions of our work are as follows.
1) We propose a novel remote sensing image caption gen-
eration model that exploits recently popular Transformer
architecture along with multilabel classification as a
supplemental task. To the best of our knowledge, this
is the first work jointly tackling multilabel classification
and remote sensing image captioning.
2) We compare our method not only to the existing meth-
ods but also to other auxiliary tasks, showing that the
chosen auxiliary task is most suitable for regulating the
Transformer-based model.

II. PROPOSED APPROACH
A. Methodology

Given a remote sensing image \(I \), remote sensing captioning
generates its textual description—\(S : S_1, S_2, \ldots, S_N \), where \(N \)
is the total number of words in the sentence \(S \). In practice,
the training process is accomplished by training a model with
model parameters \(\theta_1 \) that maximizes the probability of the
generated caption \(S \) given the input image \(I \).

The proposed model is trained with the abovementioned objective function using a Transformer-based encoder.
(Section II-B) and Transformer-based decoder (Section II-C).
In addition, we use an auxiliary LSTM-based decoder
(Section II-D) that ingests the bottleneck features directly
from encoder and performs multilabel classification. The aux-
iliary decoder is trained to optimize the parameters \(\theta_2 \) given
input image \(I \) and its ground-truth (GT) corresponding
labels \(y_1, y_2, \ldots, y_M \). Note that parameters \(\theta_1 \) and \(\theta_2 \) share
the encoder weights. The two tasks—caption generation
and classification—are regulated by different loss functions,
as described in Section II-E. The proposed framework is shown
in Fig. 2.

B. Encoder

Encoders, mainly as an encoder–decoder pair, have seen
their usage in different tasks, including autoencoder-based
reconstruction and sequence-to-sequence learning tasks [19].
In general, the encoder part is composed of a sequence of
convolution, pooling, and batch normalization layers to learn
a concise feature representation of the whole image. Simi-
larly, in sequence-to-sequence learning tasks, CNN layers
are substituted by LSTM layers [19]. In this regard, Transformer
encoders have been shown to learn better sequence feature
representation than the LSTM. Also, recent advances have
shown it to learn a rich feature space for images by exploiting
its self-attention layers and highlighting the relevant parts of
the image [6].

We use the combination of a CNN-based feature extractor
that gives us a higher-level semantic feature and a Transformer
coder to get a good feature representation of the image.
Since we have limited data, this combinatorial approach is
suitable. As shown in Fig. 2, we split the image into \(8 \times 8 \) grid
tiles and extract features for each tile using Inception v3 [20],
extracting features after the mixed-seven layer. Since CNN
gives us higher-level semantic features for the image, extracted
features can be seen as a sequence representation. Instead
of positional encoding, we do a spatial encoding based on
the tile’s position. In this way, we have the original image,
except that it is replaced by a much higher representation.
This is then passed through the multihead attention layers
of Transformer for the extracted features to learn dependency
on each other and give importance to relevant parts in the
image. The multihead attention allows the model to attend to
information from different representation subspaces at differ-
et positions. Thus, by the combination of Inception v3-based
feature extraction and Transformer, we obtain a high-level
semantic representation of the image while taking care of
its spatial information and simultaneously building deeper
relationships between the two using the self-attention heads
of the Transformer.

The encoding component of the Transformer [6] is com-
posed of a stack of encoders. While all the encoders are
identical, they can be broken down into positional encoding,
self-attention, and feedforward network layers. In the case
of image input, the position of a tile in the image plays a
determining role in understanding the sequence of the image
that is imposed through a positional encoding layer. Output
from the positional encoding layer goes to the self-attention
layer. The self-attention mechanism computes the score by
taking the dot product of the query vector with the key
vector. This score is appropriately scaled and passed through
the softmax layer to get the scores as probabilities. This
attention mechanism can also be described as scaled dot-
product attention [6]. The output from multihead atention
is fed to the feedforward network. Since the feedforward
layer expects only a single matrix (a vector for each word),
the output obtained from multiple heads of self-attention
is combined by additional weights. The output of the last
encoder is transformed into key and value vectors, which are used by
the decoder in its encoder–decoder attention layer.

For text encoding, we do not use any pre-trained model.
We use byte pair encoding—subword-neural machine trans-
lation (NMT)—to build the vocabulary (dictionary) and use
Moses tokenizer for captions.

C. Decoder

As mentioned previously, encoder–decoder pairs work
hand-in-hand in sequence analysis tasks. Traditional LSTM
decoders learn the feature representation by taking input
in a sequential manner, limiting the efficiency of learning
the long dependencies. Therefore, for the task of image
captioning, we use a Transformer decoder that ingests the
whole sentence at a time and uses its stacked self-attention
layers to solve the abovementioned problem of learning long
dependencies.

The Transformer decoder has similar architecture to the
encoder. The output from the encoder is fed to the decoder
using an encoder–decoder attention layer that works just like
the multiheaded self-attention layer. Decoder layers use a
masked self-attention sublayer to allow the model to attend to
only earlier positions in the output sequence by masking the
future positions. The decoder stack outputs are finally passed
through a linear layer to produce a vocabulary size vector.
This vector represents the probability of each word in the
vocabulary being the following word in the sentence. In short,
the decoder tries to find the probability of the next word, given
the previous words and the spatial and semantic information.

D. Auxiliary Decoder

While our primary task is to generate captions for the input
remote sensing images, we use multilabel classification as a
supplemental task that helps us in improving the primary task
by regularizing the features learned by the Transformer-based
encoder. The output from the Transformer-based encoder is
directly fed to the auxiliary decoder, bypassing the Trans-
former decoder. The encoder generates a high-level repre-
sentation of the image packed in an embedded vector. For
multilabel classification, we essentially need to decode this
vector, as mentioned earlier, into labels to classify. So, for
this task, we use a simple LSTM decoder to generate a feature
vector, which is then passed through a sigmoid layer to obtain
probabilities of labels.

To describe the setting of multitask learning, we reiterate the
frameworks mentioned earlier and their combined flow. First,
the image is fed into the encoder, which generates a rich and
compact feature representation. At the same time, the sentence
is passed through a masked self-attention layer to generate
words sequentially. The output from the encoder goes to both
the decoders. The transformer decoder uses the encoder output
to learn codependencies between the text and the semantic
information. While in the auxiliary decoder, it decodes the
vector at every time step, which is then concatenated with
the input at the next time step and then decoded again to
generate a rich feature vector, which when passed through
sigmoid generates a multilabel prediction $\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_M$ for
the image.

The model architecture is tabulated in Table I.

E. Loss Functions

For training the image captioning decoder, we use label-
smoothed cross-entropy loss \mathcal{L}_1

$$\mathcal{L}_1 = (1 - \epsilon) \left(- \sum_{i=1}^{N} \log(p(S_i | S_1, \ldots, S_{i-1})) + \frac{\epsilon}{K} \beta \right)$$

where ϵ is a weight factor, β is the smooth loss, and K is
the vocab size. β/K is the label smoothing loss [21], which
tries to make one-hot label vector into a uniformly distributed
vector to prevent model from overfitting and overconfidence.

For training the multilabel classification decoder, we use
binary cross-entropy loss \mathcal{L}_2

$$\mathcal{L}_2 = -\frac{1}{M} \sum_{i=1}^{M} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i).$$

We alternate between both the losses randomly at every
mini-batch, which after some epochs generalizes to tak-
ing backpropagation through both the losses simultaneously.
Alternatively, a combined weighted loss can be used.
TABLE I

Component	Nature of layer	Layer	Input
Inception v3	CNN-feature extraction	all mixed-7	Image
Encoder	Transformer-encoder	3	Inception v3 output
Decoder-1	Transformer-decoder	6	Encoder output
Decoder-2	LSTM-decoder	3	Encoder output

F. Overheads Over Traditional Captioning

Compared with the existing image captioning methods, the proposed method requires multilabel scene labels for the training images. However, compared with the target task, i.e., captioning, it is much less challenging to obtain scene labels, and both can be annotated simultaneously in any practical setting. Moreover, such labels are only required for training. For test/deployment, we do not require any prior knowledge about image labels. The overhead for computation time is negligible, as both decoders can be trained simultaneously.

III. EXPERIMENTAL VALIDATION

A. Test Dataset

We used the University of California (UC)-Merced captions dataset for experimental validation, extending the popular UC-Merced dataset. The UC-Merced dataset is a 21-class land use remote sensing image dataset, with 100 images per class. The images were manually extracted from large images from the United States Geological Survey (USGS) National Map Urban Area Imagery collection for various urban areas around the country [22]. The pixel resolution of this dataset is 0.3 m/pixel. Most images in the dataset are 256 × 256 pixels. The dataset was extended for multilabel classification in [23], with up to seven labels per image.

The UC-Merced captions dataset, introduced in [3], extended the UC-Merced dataset with five reference sentences per image. In the experiments, we have used 80% image captions as training data and 10% as validation data, and the rest 10% is used as test data.

Please note that other datasets, such as RSICD [1], are not suitable for our evaluation, as they do not have multiclass labels.

B. Compared Methods

To verify whether both Transformer-based architecture and auxiliary task-based training provide benefits, we compare the proposed method to both single-task networks and multitask learning with different auxiliary tasks.

Single-task networks compared are as follows: 1) LSTM (C) network, a CNN encoder and LSTM decoder model for image captioning and 2) Transformer (C) network, an encoder–decoder transformer model for image captioning. We also compare a variant of the proposed method with an LSTM-based decoder, LSTM (C + L) network, a model, consisting of a common CNN encoder and two LSTM decoders for image captioning and multilabel classification.

C. Result

The proposed method can obtain meaningful textual descriptions of the remote sensing images, as shown in Fig. 3. A quantitative analysis of the results is tabulated in Table II. Results are shown using different popular indices, Bleu-1, Bleu-2, Bleu-3, Bleu-4, metric for evaluation of translation with explicit ordering (METEOR), recall-oriented under-study for gisting evaluation - longest common subsequence (ROUGE-L), and consensus-based image description evaluation (CIDEr) [25].

LSTM (C + L) outperforms LSTM (C), showing that multilabel classification as an auxiliary task is indeed helpful in improving the captioning, even for simpler LSTM-based architecture. Transformer (C) (i.e., transformer without an auxiliary task) performs similar to LSTM (C + L). Performance drops when using trivial auxiliary tasks, i.e., image reconstruction or angle prediction. This shows that such auxiliary tasks are not consistent with our primary task, i.e., image captioning. However, the proposed method (i.e., using multilabel classification as an auxiliary task) significantly improves the result over LSTM (C), LSTM (C + L), Transformer (C), and scene attention-based method.
Overall, we observe the following.

1) The Transformer-based model is beneficial compared with the LSTM-based model, as evident from the improved result of Transformer (C) in comparison with LSTM (C).

2) Multilabel classification as an auxiliary task is useful, as evident from the improved result of LSTM (C + L) in comparison with LSTM (C) and improved performance of the proposed model in comparison with Transformer (C).

3) Unsupervised auxiliary tasks, such as rotation, are not suitable for image captioning, as such tasks are semantically different from the primary task of captioning.

4) The proposed method does not need an additional step of reinforcement learning; however, it still obtains similar performance to Transformer + reinforcement learning.

IV. CONCLUSION

We presented a multitask model for remote sensing image captioning. Specifically, we chose multilabel classification as an auxiliary task to improve image captioning. The chosen auxiliary task is semantically similar to our primary task of image captioning. Our experiments show that it helps improve image captioning by outperforming single-task models. Though this is true for any choice of architecture that we may have, we provide evidence to show the superiority of Transformer-based architecture. Our future work will be toward a comprehensive summarizing of remote sensing time series by designing datasets and extending the proposed method for such time series.

REFERENCES

[1] X. Lu, B. Wang, X. Zheng, and X. Li, “Exploring models and data for remote sensing image caption generation,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 2183–2195, Apr. 2018.

[2] G. Hoxha, F. Melgani, and B. Demir, “Toward remote sensing image retrieval under a deep image captioning perspective,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 4462–4475, 2020.

[3] B. Qu, X. Li, D. Tao, and X. Lu, “Deep semantic understanding of high resolution remote sensing image,” in Proc. Int. Conf. Comput. Inf. Telecommun. Syst. (CITS), Jul. 2016, pp. 1–5.

[4] Z. Shi and Z. Zou, “Can a machine generate humanlike language descriptions for a remote sensing image?” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, pp. 3623–3634, Jun. 2017.

[5] Z. Yuan, X. Li, and Q. Wang, “Exploring multi-level attention and semantic relationship for remote sensing image captioning,” IEEE Access, vol. 8, pp. 2608–2620, 2020.

[6] A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.

[7] A. Dosovitskiy et al., “An image is worth 16 x 16 words: Transformers for image recognition at scale,” 2020, arXiv:2010.11929.

[8] X. Zheng et al., “Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers,” 2021, arXiv:2012.15840.

[9] W. Liu, S. Chen, L. Guo, X. Zhu, and J. Liu, “CPTF: Full transformer network for image captioning,” 2021, arXiv:2101.10804.

[10] M. Cornia, M. Stefanini, L. Baraldi, and R. Cucchiara, “Meshed-memory transformer for image captioning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 10578–10587.

[11] X. Shen, B. Liu, Y. Zhou, and J. Zhao, “Remote sensing image caption generation via transformer and reinforcement learning,” Multimedia Tools Appl., vol. 79, nos. 35–36, pp. 26661–26682, Sep. 2020.

[12] B. Shi, J. Hoffmann, K. Saenko, T. Darrell, and H. Xu, “Auxiliary task reweighting for minimum-data learning,” 2020, arXiv:2010.08244.

[13] S. Saha, Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “Unsupervised deep transfer learning-based change detection for HR multispectral images,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 5, pp. 856–860, May 2021.

[14] C. Qiu, L. Liebel, L. H. Hughes, M. Schmitt, M. Kormer, and X. X. Zhu, “Multitask learning for human settlement extent regression and local climate zone classification,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[15] P. Mazumder, P. Singh, and V. P. Namboodiri, “Improving few-shot learning using composite rotation based auxiliary task,” in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 2654–2663.

[16] W. Zhao et al., “A multi-task learning approach for image captioning,” in Proc. 27th Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 1205–1211.

[17] J. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao, “Unified vision-language pre-training for image captioning and VQA,” in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7, pp. 13041–13049.

[18] J. Xu et al., “Concept detection based on multi-label classification and image captioning approach—DAMO at ImageCLEF 2019,” in Proc. CLEF, 2019, pp. 1–10.

[19] S. Saha, F. Bovolo, and L. Bruzzone, “Change detection in image time-series using unsupervised LSTM,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[20] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[22] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions for land-use classification,” in Proc. 18th SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst. (GIS), 2010, pp. 270–279.

[23] B. Chaudhuri, B. Demir, S. Chaudhuri, and L. Bruzzone, “Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 1144–1158, Feb. 2018.

[24] S. Wu, X. Zhang, X. Wang, C. Li, and L. Jiao, “Scene attention mechanism for remote sensing image caption generation,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–7.

[25] M. Artetxe, G. Labaka, E. Agirre, and K. Cho, “Unsupervised neural machine translation,” 2017, arXiv:1710.11041.