Pooled prevalence and determinants of modern contraceptive utilization in East Africa: A Multi-country Analysis of recent Demographic and Health Surveys

Zemenu Tadesse Tessema1, Achamyeleh Birhanu Teshale1, Getayneh Antehunegn Tesema1, Yigizie Yeshaw1,2, Misganaw Gebrie Worku3

1 Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, 2 Department of Human Physiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, 3 Department of Human Anatomy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia

* zemenut1979@gmail.com

Abstract

Background

According to the 2017 estimate, around 214 million reproductive-age women in developing regions who want to avoid pregnancy do not use a modern contraceptive method. Although there are studies done on factors associated with modern contraceptive utilization in individual East African countries, as to our search of the literature, there is limited evidence on the pooled prevalence and determinants of modern contraceptive utilization in the East African region. Therefore, this study aimed to estimate the pooled prevalence and determinants of modern contraceptive utilization in the East African region.

Methods

The pooled prevalence of modern contraceptive utilization and the strength of determinants were estimated using STATA version 14. Intra-class Correlation Coefficient (ICC), Median Odds Ratio (MOR), Proportional Change in Variance (PCV), and deviance were used for model fitness and comparison. The multilevel logistic regression model was fitted to identify determinants of modern contraceptive use in the region. Adjusted Odds Ratio with its 95% Confidence Interval was presented, and variables with a p-value ≤0.05 were declared significant determinants of modern contraceptive utilization.

Results

Overall, about 20.68% (95%CI:-20.46,20.91) of women used modern contraceptive, ranging from 9.08% in Mozambique to 61.49% in Comoros. In the multilevel logistic regression model; maternal age group 25–34 (AOR: 0.79, 95%CI:0.76,0.82) and 35–49 (AOR:0.49, 95%CI:0.46,0.51). Being married (AOR:0.85, 95%CI:0.82,0.88), mothers with primary education (AOR:1.48, 95%CI:1.43,1.54) and secondary and above education level (AOR:1.60, 95%CI:1.52,1.69), husbands with primary education (AOR:2.43, 95%CI:2.35,2.51) and
secondary and above education level (AOR:2.92, 95%CI:2.76,3.05). The mothers who had occupation (AOR:2.11, 95%CI:1.23,1.33), mothers from households with middle wealth index (AOR:1.23, 95%CI:1.19,1.28) and rich wealth index (AOR:1.28, 95%CI:1.23,1.33) were found to be significant determinants of modern contraceptive use.

Conclusion

We found that modern contraceptive utilization in the 12 East Africa countries was low compared to SDG target 2030(75%). The governmental and non-governmental organizations should scale up their public health programs to the poor and marginalized communities to scale up modern contraceptive utilization uptake in the region. In addition, reforming the health system and reproductive health education through mass media to create awareness of modern contraceptive use benefits are effective strategies to improve modern contraceptive use among East Africa women.

Introduction

According to the 2017 estimate, around 214 million reproductive-age women in developing regions who want to avoid pregnancy do not use a modern contraceptive method. Uses of modern contraceptives in 2017 prevented an estimated 308 million unintended pregnancies [1]. Modern contraceptive use has increased in many parts of the world, especially in Asia and Latin America, but continues to be low in sub-Saharan Africa. As a region, sub-Saharan Africa has the highest fertility level in the world [2]. Globally, the use of modern contraceptives has risen slightly from 54% in 1990 to 57.4% in 2015 [3]. By 2030 the Sustainable Development Goal 3 (SDG 3) target 3.7 intends to increase universal access to sexual and reproductive health-care services such as family planning services by increasing the proportion of women who need family planning satisfied by modern methods [4]. Family planning, especially modern family planning utilization, is one strategy for preventing more than 20% of maternal mortality and 17% of neonatal mortality [5]. In addition, family planning allows people to attain their desired number of children and determine the spacing of pregnancies or birth intervals [1]. In addition, modern contraceptive utilization helps to facilitate gender equality, as well as social and economic empowerment for reproductive-aged women [6]. The use of modern contraceptives among women of reproductive age could also have significant implications for poverty reduction and socio-economic development of a county [7]. Furthermore, modern contraceptive utilization helps women to take full control of their ability to reproduce and free themselves from the fear of being accidentally pregnant, thereby allowing them to embrace their sexuality more fully [8].

The East African countries include Burundi, Ethiopia, Comoros, Uganda, Rwanda, Tanzania, Mozambique, Madagascar, Zimbabwe, Kenya, Zambia, and Malawi are among the world’s developing countries regarding accessibility and affordability of maternal health care services, including family planning services [9].

Several studies indicated that modern contraceptive utilization is significantly associated with age [10–13], residence [10, 14, 15], parity [10, 16], marital status [10], educational status [2, 11, 13, 17, 18], number of live children [2, 10, 13], access to health facility [17], family size [12], occupation [11], wealth index [15, 19], couple discussion towards family planning [20], husband approval of family planning utilization [17], and experience of a terminated pregnancy [19].
Even though different individual studies are there is no any single study that incorporates all countries in the East African region about the prevalence and association between the modern contraceptive utilization and the explanatory variables (country, residence, maternal age, residence, occupational status, marital status, women’s educational status, husband’s educational status, wealth status, parity, ANC visit during pregnancy, health facility deliver, postnatal care utilization after delivery and accessing health care). Therefore, this study aimed at investigating the pooled prevalence and determinants of modern contraceptive utilization in East African countries. Hence, this study will try to fill this gap, which may help planners and policymakers design effective strategies to decrease the devastating complications of unintended pregnancy and increase the country and region’s socio-economic status.

Methods

Data source

The data were obtained from the measure of the DHS in East African countries that were a secondary dataset from the most recent Demographic and Health Surveys (DHS). Eleven East African countries (Burundi, Ethiopia, Comoros, Uganda, Rwanda, Tanzania, Mozambique, Zimbabwe, Kenya, Zambia, and Malawi) were included in this study. These datasets were appended together to find large datasets representing East Africa countries and generalizing modern contraceptive utilization among reproductive-age women in the region. The DHS is a nationally representative survey that collects data on basic health indicators like mortality, morbidity, family planning service utilization, fertility, maternal and child health. Each country’s survey consists of different datasets, including men, women, children, birth, and household datasets; for this study, we used the women’s datasets (IR file).

Sampling technique

The data were weighted using sampling weight, primary sampling unit, and strata before any statistical analysis to restore the survey’s representativeness and tell the STATA to consider the sampling design when calculating standard errors to get reliable statistical estimates. The DHS used two stages of stratified sampling technique to select the study participants. To get statistics that are representative of East African countries, the distribution of reproductive age women in the sample need to be weighted (mathematically adjusted) such that it resembles the true distribution in the region by using sampling weight (v005), primary sampling unit (v021) and strata (v022). We pooled 11 East African countries DHS from 2011 to 2018. A total weighted sample of 129,367 reproductive-age women was included in the study. The detail of the DHS sampling procedure is found elsewhere [21]. The random variable for this study was a cluster (Enumeration Area (EAs)). Cluster (EAs) is a geographic area covering on average 181 households.

Variables of the study

Modern methods of contraception: These include female and male sterilization, the intra-uterine device (IUD), the implant, injectable, oral contraceptive pills, male and female condoms, vaginal barrier methods (including the diaphragm, cervical cap, and spermicidal foam, jelly, cream, and sponge), the lactational amenorrhea method (LAM), emergency contraception and other modern methods (e.g., the contraceptive patch or vaginal ring) [22].

The dependent variable used for the study was Current modern contraceptive use, categorized dichotomously as “yes/no.” Respondents who were currently using a modern contraceptive were categorized as “Yes” otherwise as “No.” Therefore, the ith mother Yi’s response
variable was measured as a dichotomous variable with possible values Yi = 1, if the ith mother uses a modern contraceptive method, and Yi = 0 if a mother does not use a modern contraceptive method.

The independent variable retrieved from DHS were two types. Level one and level two variables. Level two (community-level variables) include residence and country. Level one (individual variables) include maternal age, occupational status, marital status, women’s educational status, husband’s educational status, wealth status, parity, antenatal care (ANC) visit, during pregnancy, health facility delivery, postnatal care utilization after delivery, and accessing health care were included in the study (Table 1).

Data management and analysis

We pooled the data from the 12 East African countries together after extracting the variables based on literature. Before any statistical analysis, the data were weighted using sampling weight, primary sampling unit, and strata to restore the survey’s representativeness and take sampling design when calculating standard errors and reliable estimates. The pooled prevalence of modern contraceptive utilization with the 95% Confidence Interval (CI) was reported using a chart/forest plot. For the determinants factors, the DHS data had a hierarchical structure; this violates the independence of observations and equal variance assumption of the ordinary logistic regression model. Hence, women are nested within a cluster, and we expect that women within the same cluster may be more similar to each other than women in the rest of the country. This implies that there is a need to take into account the between cluster variability by using advanced models. Therefore, multilevel multivariable logistic regression (both fixed and random effect) was fitted. Multi-collinearity was checked and was less than 10% indicated that no multi-collinearity among independent variables.

The following equation fitted the multilevel logistic regression model.

\[
\log \left(\frac{\pi_{ij}}{1 - \pi_{ij}} \right) = \beta_0 + \beta_1 x_{ij} + \beta_2 x_{ij} + \ldots + u_{0j} + e_{0ij}
\]

Where:

- \(\pi_{ij} \): the probability of modern contraceptive use
- \(1 - \pi_{ij} \): the probability of no modern contraceptive use
- \(\beta_0 \): the intercept
- \(\beta_1 \ldots \beta_n \): regression coefficient of individual and community level factors
- \(U_{0j} \): random errors at cluster levels
- \(E_{0ij} \): random error at the individual level

Model building

We fit four models, the null model without explanatory variables, model I with only individual-level variables, model II with only community-level variables, and model III with both individual-level and community-level variables. These models were fitted using a STATA command `melogit`. Model comparison and fitness were made based on the Intra-class Correlation Coefficient (ICC), Likelihood Ratio (LR) test, Median Odds Ratio (MOR), and deviance (-2LLR), Akaki Information Criteria (AIC), and Bayesian Information Criteria (BIC) values since the models were nested. Accordingly, model III (individual + community) were the best fit model for this study (Table 3).

Parameter estimation methods

In the multilevel multivariable logistic regression model, fixed effect estimates measure the association between the modern contraceptive utilization and the individual and community level factors. Bi variable analysis was carried out to select eligible variables for multivariable
Variables	Code at DHS dataset	Categories in DHS	Recoded variables
Community-level variable (level two-variable)			
Residence	v025	Urban	(1 = urban 2 = rural)
		Rural	
Country	A new code generated for 11 East Africa country	Burundi, Ethiopia, Comoros, Uganda, Rwanda, Tanzania, Mozambique, Zimbabwe, Kenya, Zambia, and Malawi	1 = Burundi, 2 = Ethiopia, 3 = Kenya 4 = Comoros, 5 = Malawi, 6 = Mozambique, 7 = Rwanda, 8 = Tanzania, 9 = Uganda, 10 = Zambia, and 11 = Zimbabwe
Individual level variable (Level one variable)			
Maternal age (years)	v012	Age (15, 16...49)	Recoded (15-24——1, 25-34——2, 35-49———3)
Marital status	v701	never in union	Recoded (1 = married, 2 = single)
		currently in union/living with a man	
		formerly in union/living with a man	
Maternal education	v106	No education	Recoded (1 = no education, 2 = primary education 3 = secondary and above)
		Primary education	
		Secondary education	
		Higher education	
Husband education	v701	No education	Recoded (1 = no education, 2 = primary education 3 = secondary and above)
		Primary education	
		Secondary education	
		Higher education	
Maternal occupation	v717	Not working	Recoded (1 = had work, 0 = had no work)
		Working	
Wealth index	v190	Poorest	Recoded (1 = poor(poor+poorer), 2 = middle, 3 = rich (richer +richest))
		Poor	
		Middle	
		Richer	
		Richest	
Parity	v212	0,1,2,3,...16	Recoded (1 = 1, 2 = 2–4, 3 = 5+)
ANC visit	m14	No ANC,1,2,3,...,20	Recoded(1 = had ANC 0 = had no ANC)
Health facility delivery	m17	Respondents home	Recoded(1 = home delivery 0 = otherwise)
		Other home	
		Government hospitals	
		Government health centers	
		Government health posts	
		Other clinics	
		Private hospital/clinic	
		Other private medical clinic	
		Others	
Postnatal care utilization	m70	No	Recoded (1 = yes 0 = no)
		Yes	
Accessing Health Care	v467b,v467c,v467d, v467f	Getting permission to go for treatment (v467b = 1)	Recoded (1 = if a women face At least one problem of accessing health care 0 = otherwise)
		Getting money for treatment (v467c = 1)	
		Distance to the health facility (v467d = 1)	
		Not wanting to go alone (v467f = 1)	
Outcome variable (modern contraceptive use)			
Modern contraceptive use	v364	Use modern method	Recoded (1 = modern contraceptive use 0 = otherwise)
		Use traditional method	
		Non-use intend to use later	
		Do not intend to use	

(Continued)
analysis, and variables with P-value less than or equal to 0.2 were eligible and selected for the multivariable analysis [23]. In the multivariable analysis, Adjusted Odds Ratio (AOR) with 95% CI were reported, and variables with a p-value \(\leq 0.05 \) were considered as a significant factor affecting modern contraceptive utilization.

The random effect measures variation of contraceptive utilization across clusters expressed by Intraclass Correlation Coefficient (ICC) which quantifies the degree of heterogeneity of modern contraceptive utilization between clusters, Percentage Change in Variance (PCV) indicating the proportion of the total observed individual variation of modern contraceptive utilization that is attributable to between cluster variations, and Median Odds Ratio (MOR) which revealed the median value of the odds ratio between the cluster at high modern contraceptive utilization and cluster at low modern contraceptive utilization, when randomly picking out two clusters.

Ethics consideration

The study was based on secondary analysis of existing survey data with all identifying information removed. Permission for data access was obtained from Measure Demographic and Health Survey through an online request from http://www.measuredhsprogram.com.

Results

A total of 129,376 reproductive age women in the five years preceding each country’s DHS survey were included in this study. The median age of women was 28 years (IQR = 5 to 10), with the majority of women underlie in the age group of 25–34. The highest number, 19,563 (15.12%), of women were included from Kenya, and the smallest number of women were included from Comoros, 2,880 (2.23%). The majority, 97,913 (79.02%), of women were from rural residents. The majority, 100,261 (70.86%) of women, were married. Two out of three women, 83,740 (68.07%) had an ANC visit. The majority, 69,873 (54.01%) of study participants, responded that they were facing serious problems in accessing health care services (Table 2).

The pooled prevalence of modern contraceptive utilization in East African Countries

The pooled prevalence of modern contraceptive utilization in East African countries was 20.68 [95% CI: 20.46, 20.91], with the highest modern contraceptive utilization in Comoros (61.49%) and the lowest modern contraceptive utilization in Mozambique (9.08%) (Fig 1).

Multilevel logistic regression analysis

The Random effect results. AIC, BIC, Log-likelihood, and deviance were checked, and the multilevel logistic regression model III was chosen because of the smallest value of AIC.
BIC, largest LR, and smallest deviance since the models were nested. Furthermore, the ICC value was 18.15% [15.3%, 23.3%], indicates that about 18.15% of the total variability of modern contraceptive utilization in East Africa were attributed to the between cluster variability, whereas the individual variation explained the remaining 81.85% of the total variability.

Besides, MOR was 2.36; it showed that if we randomly select two women from different clusters, a woman from a cluster with high utilization of modern contraceptives was 2.36 times more likely to utilize modern contraceptives than women from the cluster with low utilization of modern contraceptive. This showed that the existence of significant heterogeneity in modern contraceptives across different communities. In the full model (model adjusted for both individual and community-level factors) community variance (community variance = 0.34; SE 0.011; P-value, <0.001), remained significant but reduced. About 3.4% of the total variance of modern contraceptive utilization that can be attributed to the contextual-level factors remained significant even after considering some contextual risk factors. The proportional change in variance (PCV) in this model was 60%, which showed that both community and individual level variables (Table 3) explained 60% of community variance observed in the null model.

The fixed effects analysis result. The model with larger deviance and smallest LR test (model III) was the best-fitted model. Hence, the fixed effects’ interpretation was based on model III that was adjusted for both individual and community-level factors. Consequently, in the multilevel multivariable analysis, maternal age, marital status, maternal education, husband education, maternal occupation, wealth index, parity, health facility delivery, postnatal care utilization, living countries were significant determinants of modern contraceptive utilization in East African Countries.
Table 2. Socio-economic, demographic, maternal, and obstetric characteristic of respondents in the 11 East Africa Countries from 2011 to 2018.

Variables	Weighted Frequency (N = 129,376)	Percentage (%)
Country		
Burundi	13,610	10.52
Ethiopia	11,022	8.52
Kenya	19,563	15.12
Comoros	2,880	2.23
Malawi	17,395	13.45
Mozambique	11,477	8.87
Rwanda	8002	6.19
Tanzania	10,051	7.71
Uganda	15,270	10.80
Zambia	13,683	10.58
Zimbabwe	6,418	4.96
Residence		
Urban	31,463	24.32
Rural	97,913	75.68
Maternal age (years)		
15–24	39,623	30.63
25–34	60,130	46.48
35–49	29,622	22.90
Marital status		
Single	40,470	31.28
Married	88,905	68.72
Maternal education		
No education	30,045	23.22
Primary	67,635	52.28
Secondary and above	31,695	24.50
Husband education		
No education	43,300	35.11
Primary	50,882	41.25
Secondary and above	29,158	23.64
Maternal occupation		
Had no Occupation	47,245	36.52
Had Occupation	82,119	63.48
Wealth index		
Poor	56,916	43.99
Middle	24,828	19.19
Rich	47,630	36.82
Parity		
1	24,095	18.62
2–4	64,956	50.21
5+	40,325	31.17
ANC visit		
No ANC visit	39,278	20.98
Had ANC visit	97,209	79.02
Health facility delivery		
No	25,808	74.78

(Continued)
After controlling for other individual and community level factors, the odds of modern contraceptive utilization among women in the age groups 25–34 and 35–49 were lower by 21\% (AOR = 0.79, 95%CI:0.76,0.82) and 51\% (AOR = 0.49, 95%CI:0.46,0.51) respectively as compared to women aged 15–24 years. The odds of modern contraceptive utilization among married women were lower by 15\% (AOR = 0.85, 95%CI: 0.82, 0.88) compared to women with a single marital status. The odds of modern contraceptive utilization among women with primary and secondary and above education level were higher by 48\% (AOR = 1.48, 95%CI: 0.1.43, 1.54) and 60\% (AOR = 1.60, 95%CI: 1.52, 1.69) as compared to women with no formal education respectively. The odds of modern contraceptive utilization among women whose husband’s education level was primary and secondary and above were 2.43(AOR = 2.43, 95% CI: 2.35,2.51) and 2.92 (AOR = 2.92, 95%CI:2.76,3.05) times higher as compared to women whose husband’s had no formal education, respectively. The odds of modern contraceptive utilization among women who had occupations were 2.11(AOR = 2.43, 95%CI: 2.35, 2.51) times higher than their counterparts. The odds of modern contraceptive utilization among women from households with middle and rich wealth status were higher by 23\% (AOR = 1.23, 95%CI: 1.19, 1.28) and 28\% (AOR = 1.28, 95%CI: 1.23, 1.33) respectively as compared to those from households with poor wealth status. The odds of modern contraceptive utilization among women para 2–4 and 5+ were higher by 13\% (AOR = 1.13, 95%CI: 1.08, 1.18) and (AOR = 1.13, 95%CI: 1.07,1.20) as compared to primiparous women, respectively. The odds of modern contraceptive utilization among women delivered at the health facility were high by 36\% (AOR = 1.36, 95%CI:1.31,1.41) as compared to women deliver at home. The odds of Modern contraceptive utilization among women who had postnatal care utilization were higher by 93\% (AOR = 1.93, 95%CI:1.86,2.01) as compared to their counterparts. The odds of modern contraceptive utilization among women living in Ethiopia, Malawi, Rwanda, Tanzania, Uganda, Zambia, and Zimbabwe were 1.11 (AOR = 1.11, 95%CI:1.04, 1.19), 3.58 (AOR = 3.58, 95%CI:3.34, 3.85), 2.62 (AOR = 2.62, 95%CI:2.41, 2.85), 1.10 (AOR = 1.10, 95%CI:1.03, 1.18), 1.42 (AOR = 1.42, 95%CI:1.33, 1.51), 2.71 (AOR = 2.71, 95%CI:2.52, 2.92), and 3.55 (AOR = 3.55 95%CI:3.16, 3.99) times higher as compared to women living in Burundi, respectively. The odds of modern contraceptive utilization among women living in Kenya, Comoros, and Mozambique were lower by 63\% (AOR = 0.37 95%CI:0.35, 0.40), 77\% (AOR = 0.26, 95% CI:0.24, 0.29) and 47\% (AOR = 0.53, 95%CI:0.50, 0.57) as compared to women living in Burundi respectively (Table 3).

Discussion

In the multilevel logistic regression analysis, maternal age, marital status, maternal education, husband education, maternal occupation, wealth index, parity, health facility delivery, postnatal care utilization, and country residence were significant determinants of modern contraception utilization.
Table 3. Multilevel logistic regression analysis of both individual and community-level factors associated with contraceptive utilization in East Africa countries from 2008 to 2017.

Individual and community-level variables	Null model	Model I	Model II	Model III
	AOR (95%CI)	AOR (95%CI)	AOR (95%CI)	AOR (95%CI)
Maternal age (years)				
15–24	1	1		1
25–34	0.77(0.74,0.80)	0.79(0.76,0.82)		
35–49	0.49(0.47,0.52)	0.49(0.46,0.51)		
Marital status				
Single	1	1		1
Married	0.80(0.77,0.82)	0.85(0.82,0.88)		
Maternal education				
No education	1	1		1
Primary	1.72(1.67,1.78)	1.48(1.43,1.54)		
Secondary and above	1.93(1.84,2.02)	1.60(1.52,1.69)		
Husband education				
No education	1	1		1
Primary	2.81(2.72,2.90)	2.43(2.35,2.51)		
Secondary and above	3.77(3.62,3.93)	2.92(2.76,3.05)		
Maternal occupation				
Had no occupation	1	1		1
Had occupation	2.62(2.54,2.69)	2.11(1.23,1.33)		
Wealth Index				
Poor	1	1		1
Middle	1.19(1.14,1.23)	1.23(1.19,1.28)		
Rich	1.20(1.15,1.24)	1.28(1.23,1.33)		
Parity				
1	1	1		1
2–4	1.10(1.05,1.15)	1.13(1.08,1.18)		
5+	1.13(1.07,1.20)	1.13(1.07,1.20)		
ANC visit				
No ANC visit	1	1		1
Had ANC visit	1.00(0.97,1.04)	0.96(0.93,1.01)		
Health facility delivery				
No	1	1		1
Yes	1.48(1.44,1.53)	1.36(1.31,1.41)		
Postnatal care utilization				
No	1	1		1
Yes	1.89(1.82,1.95)	1.93(1.86,2.01)		
Accessing health Care				
Big problem	1	1		1
Not big problem	0.63(0.61,0.65)	0.94(0.92,1.02)		
Residence				
Urban	1	1		1
Rural	0.65(0.63,0.68)	0.93(0.89,1.03)		
Country				
Burundi	1	1		1
Ethiopia	0.54(0.51,0.57)	1.11(1.04,1.19)		

(Continued)
contraceptive utilization in East African Countries. This finding will help implementers and policymakers in taking effective strategies to increase maternal health services like modern contraceptive utilization.

This study investigated the pooled prevalence of modern contraceptive utilization in the East African countries, ascertain the inter-country distribution of modern contraceptive utilization, and assist in prioritizing interventions for countries with low contraceptive utilization. The pooled prevalence of modern contraceptive utilization in East African countries was 20.68%. It was smaller than a study conducted using a meta and systematic analysis [24], a study conducted in 73 low and middle-income countries [16]. Our findings were higher in the Western regions of Africa (16.9%), Central region of Africa (14.90) [25]. The possible justification for the East Africa region better modern contraceptive use, supporting individuals and couples to take charge of their fertility, and promoting family and community health [26]. The uptake of modern contraceptives in the East Africa Countries was below an acceptable level. The possible reason might be cultural and behavioral factors are main barriers to modern contraceptive uptake among young women are myths and misconceptions [27].

Women’s age had a significant effect on modern contraceptive utilization. This finding was different from the study conducted in Malawi, which evidenced that as women’s age increases, the odds of modern contraceptive utilization also increase [13]. This study’s finding was supported by studies conducted in China [28] and Ethiopia [19, 29]. The discordant result could

Individual and community-level variables	Null model	Model I	Model II	Model III
	AOR (95% CI)	AOR (95% CI)	AOR (95% CI)	AOR (95% CI)
Kenya	0.22(0.21,0.23)	0.37(0.35,0.40)*	0.26(0.24,0.29)*	
Comoros	0.22(0.20,0.24)	4.82(4.50,5.15)	3.58(3.34,3.85)*	
Mozambique	0.63(0.59,0.66)	0.53(0.50,0.57)*	2.62(2.41,2.85)*	
Rwanda	3.56(3.29,3.87)	1.34(1.26,1.42)	1.10(1.03,1.18)*	
Malawi	1.00(0.97,1.03)	3.24(3.03,3.46)	2.71(2.52,2.92)*	
Tanzania	5.62(5.05,6.26)	3.55(3.16,3.99)*		

Random effects				
Community variance(SE)	0.82(0.02)	0.46(0.015)	0.44(0.014)	0.34(0.011)
ICC%	18.15%	6.20%	5.6%	3.4%
PCV%	1	43.54%	48.23%	60%
MOR	2.36(2.35,2.45)	1.90(1.86,1.94)	1.87(1.83,1.91)	1.74(1.69,1.76)

Model comparison				
Multilevel multivariable logistic regression analysis model				
AIC	165,103	139,458	143,906	129,870
BIC	165,122	139,635	144,044	130,166
Log-likelihood ratio	-82549	-69711	-71939	-64905
Deviance	165,098	139,422	143,878	129,810

NB: * = significant at P-value < 0.05. ** = significant at P-value < 0.01. *** = significant at P-value <0.001.
be due to differences in sample size, study design, setting, and study population. This might be due to the fact that younger women might be preoccupied with many routine activities such as attending their school and making businesses make their future life better by extending their childbearing age through contraceptives. In addition, younger women had not married, and they mostly used contraceptives during sexual enjoyment to prevent unintended pregnancy, and this study supports this.

There a strong relationship between marital status and modern contraceptive utilization. Married women modern contraceptive utilization lower as compared to single. This finding contradicted studies conducted in West African adolescents [30] and Ethiopia [10]. This finding was supported by studies conducted in Ghana [31] and Nigeria [32]. The possible explanation could be that married women might have a more or less stable lifestyle and are fit to give birth, which makes them less likely to utilize modern contraceptives. Moreover, married women might have good socio-economic status as compared to unmarried women since the source of income is both themselves and their husbands. Single women usually have the highest contraceptive prevalence, and currently, married women have the lowest [33].

Our study also revealed that the educational status of a woman and her husband positively influences modern contraceptive utilization. This finding was supported by studies conducted in China [28], Ethiopia [19, 29, 34], Ghana [35], Malawi [13], and Sub-Saharan Africa [36]. The possible explanation could be that educated women and husbands would know the benefit of modern contraceptives through reading newspapers, mass media, and from different social media. In addition, educated women and husbands might have good health-seeking behavior and health services, including family planning services. Moreover, educated individuals might be busy by the nature of their work and have no time to take care of their child, and they plan to use contraceptive methods to decrease the burden of being pregnant and child care.

In this study, occupational women significantly influenced modern contraceptive utilization. This finding was supported by studies conducted in Ethiopia [19, 30] and Ghana [37]. The possible justification may be due to women who had occupations spent their time on their professional carriers, which will decrease the desire to give birth by using modern contraceptive methods.

There is a strong relationship between household wealth status and modern contraceptive utilization. This finding was supported by studies conducted in Ethiopia, Rwanda, Burkinafaso, and Nigeria [11, 12, 15, 19, 29]. This might be due to the fact that mothers from rich households might be more educated and have occupations (tremendous responsibilities might be there), as supported by this study, to extend their business issues/agendas further. Moreover, as we see from our community, most rich women had one or two children throughout their lifetime, and this indicates that they are more likely to utilize modern contraceptive methods.

In this study, multiparous women had higher modern contraceptive utilization than nulliparous women. This finding was supported by studies conducted in Sub-Saharan Africa from 1990 to 2014 [38], 73 low- and middle- income countries [16], Ethiopia [19]. The possible justification might be that nulliparous women had no desired number of children and the intention to bear a child is high, making them less likely to use contraceptives.

There is a relationship between modern contraceptive utilization and health facility delivery. This finding was supported by studies conducted in Burkinafaso, Ethiopia, and Nigeria [15]. The possible justification might be due to women who delivered at the health facility might get guidance and counseling about the benefit of modern contraceptive utilization by health professionals.

Our finding revealed that women who had postnatal care visits had more likely to use modern contraceptives as compared to women who had no postnatal care service utilization. This
finding was supported by studies conducted in Ethiopia, which revealed that women who had ANC and PNC visits had approximately six times higher odds of using modern contraceptives in the extended postpartum period than their counterparts [39]. The possible justification might be due to women who had postnatal care visits might have information regarding the accessible maternal health services, including family planning services, by health professionals.

Strength and limitation of the study

Among the strengths, the dataset used in this study was obtained from nationally representative surveys. In addition, this study was based on an appropriate model (multilevel analysis) that considers the DHS data’s hierarchical nature to make appropriate parameter estimation. Moreover, this study was a multi-country study that will have implications for policymakers and program planners for better medical decision-making. However, this study was not without limitations since this study’s findings do not establish a cause and effect relationship between the outcome variable and independent variables due to the cross-sectional nature of the data/surveys. Important variables like health workers’ role in family planning were included in the dataset, which may significantly affect modern contraceptive utilization. The cultural difference towards contraceptive use across East Africa countries may affect this result. Social desirability bias and recall bias may affect the quality of this study. Besides, the DHS study period difference may not show a true picture of modern contraceptive utilization in the region.

Conclusion

The modern contraceptive utilization in the 12 East Africa countries is low as compared to SDG target 2030(75%). Country residence, maternal age, marital status, women and her husband’s education level, maternal occupation, wealth index, parity, health facility delivery, and postnatal care utilization were determinants of modern contraceptive utilization. The governmental and non-governmental organizations should scale up their public health programs to the poor and marginalized communities to scale up modern contraceptive utilization uptake in the region. In addition, reforming the health system and reproductive health education through mass media to create awareness of modern contraceptive use benefits are effective strategies to improve modern contraceptive use among East Africa women.

Supporting information

S1 Checklist.
(DOCX)

Acknowledgments

We greatly acknowledge MEASURE DHS for granting access to the East African DHS data sets.

Author Contributions

Conceptualization: Zemenu Tadesse Tessema, Achamyeleh Birhanu Teshale, Yigizie Yeshaw, Misganaw Gebrie Worku.

Data curation: Zemenu Tadesse Tessema, Achamyeleh Birhanu Teshale, Getayeneh Antehunegn Tesema, Yigizie Yeshaw.

Formal analysis: Zemenu Tadesse Tessema, Getayeneh Antehunegn Tesema, Yigizie Yeshaw.
Funding acquisition: Yigizie Yeshaw.

Investigation: Getayeneh Antehunegn Tesema, Yigizie Yeshaw.

Methodology: Zemenu Tadesse Tessema, Achamyeleh Birhanu Teshale, Getayeneh Antehunegn Tesema, Yigizie Yeshaw, Misganaw Gebrie Worku.

Resources: Yigizie Yeshaw.

Software: Zemenu Tadesse Tessema, Getayeneh Antehunegn Tesema, Yigizie Yeshaw.

Supervision: Zemenu Tadesse Tessema, Yigizie Yeshaw.

Validation: Yigizie Yeshaw.

Visualization: Zemenu Tadesse Tessema, Yigizie Yeshaw.

Writing – original draft: Getayeneh Antehunegn Tesema, Yigizie Yeshaw, Misganaw Gebrie Worku.

Writing – review & editing: Getayeneh Antehunegn Tesema, Yigizie Yeshaw, Misganaw Gebrie Worku.

References

1. WHO. Maternal morbidity and mortality. Br Med J. 1935; 2(3892):265–7. PMID: 20779279
2. Wang WJ, Wang SX, Pullum T, Armetapi P. How family planning supply and the service environment affect contraceptive use: findings from four East African countries. DHS Anal Stud. 2012;(28):xiii-pp.
3. WHO. Family planning/Contraception [Internet]. 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/family-planning-contraception
4. UNDESA. World Family Planning. United Nations [Internet]. 2017;43. Available from: https://www.un.org/en/development/desa/population/publications/pdf/family/WFP2017_Highlights.pdf https://doi.org/10.1186/s12875-017-0618-0 PMID: 28327096
5. Fauveau V, Wojtyniak B, Chakraborty J, Sarder AM, Briend A. The effect of maternal and child health and family planning services on mortality: Is prevention enough? Br Med J. 1990; 301(6743):103–7.
6. Apanga PA, Adam MA. Factors influencing the uptake of family planning services in the Talensi district, Ghana. Pan Afr Med J. 2015; 20:1–9. https://doi.org/10.11604/pamj.2015.20.1.5568 PMID: 25995798
7. Ellason S, Baiden F, Yankey BA, Awusabo-Asare K. Determinants of unintended pregnancies in rural Ghana. BMC Pregnancy Childbirth. 2014; 14(1):1–9. https://doi.org/10.1186/1471-2393-14-261 PMID: 25104039
8. Hayat H, Khan PS, Imamzay B, Hayat R. Knowledge, attitude and practice of contraception in rural Kashmir. J Obstet Gynecol India. 2013; 63(6):410–4. https://doi.org/10.1007/s13224-013-0447-6 PMID: 24431689
9. WHO. Organization WH. World health statistics 2010: World Health Organization; 2010. [Internet]. 2010. Available from: https://books.google.ca/books?hl=en&lr=&id=Z69xRFlFaC&oi=fnd&pg=PA1&dq=Organization+WH.+World+health+statistics+2010:+World+Health+Organization%3B+2010.+&ots=cHERfFHaz&sig=ccs76XEW9XZMxLzJaFrwgELs&redir_esc=y#v=onepage&q=Organization WH. World health
10. Endriyas M, Esthe M, Akele E, Misganaw T, Shiferaw M, Ayele S. Contraceptive utilization and associated factors among women of reproductive age group in Southern Nations Nationalities and Peoples’ Region, Ethiopia: cross-sectional survey, mixed-methods. Contracept Reprod Med [Internet]. 2017; 2(1):1–9. Available from: https://doi.org/10.1186/s40834-016-0036-z PMID: 29201415
11. Tuyishime E, Kâlelstâl C, Sellin G. Factors Associated with the Prevalence of Contraceptive Use among Women of Reproductive Age in Rwanda: A Cross-Sectional Study using Demographic and Health Survey Rwanda 2010. 2016;23–44.
12. Gebeeyehu A. Trends and Determinants of Contraceptive Use among Young Married Women (Age 15–24). 2014; (August).
13. Palamuleni ME. Socio-economic and demographic factors affecting contraceptive use in Malawi. Afr J Reprod Health. 2013; 17(3):91–104. PMID: 24069771
14. Wenjuan Wang, Alva Soumya., Rebecca Winterand CB. Contextual Influences of modern Contraceptive use among rural women in Rwanda and Nepal. DHS Analytical Studies No. 41. 2013;(September).

15. Hounton S, Barros AJD, Amouzou A, Shiferaw S, Maiga A, Akinyemi A, et al. Patterns and trends of contraceptive use among sexually active adolescents in Burkina Faso, Ethiopia, and Nigeria: Evidence from cross-sectional studies. Glob Health Action. 2015; 8(1):1–11.

16. De Vargas Nunes Coll C, Everling F, Hellwig F, De Barros AJD. Contraception in adolescence: The influence of parity and marital status on contraceptive use in 73 low- and middle-income countries. Reprod Health. 2019; 16(1):1–12. https://doi.org/10.1186/s12978-018-0662-9 PMID: 30621726

17. Ejembi CL, Dahuru T, Aliyu A. Contextual Factors Influencing Modern Contraceptive Use in Nigeria. DHS Work Pap. 2015; 120(September):44.

18. Bongaarts J, Hardee K. Trends in contraceptive prevalence in Sub-Saharan Africa: The roles of family planning programs and education. Afr J Reprod Health. 2019; 23(3):96–105. https://doi.org/10.29063/ajrh2019/v23i3.9 PMID: 31782635

19. Abate MG, Tareke AA. Individual and community level associates of contraceptive use in Ethiopia: A multilevel mixed effects analysis. Arch Public Heal. 2019; 77(1):1–12. https://doi.org/10.1186/s13690-019-0371-z PMID: 31687139

20. Mohammed A, Woldeyohannes D, Feleke A, Megabiaw B. Determinants of modern contraceptive utilization among married women of reproductive age group in North Shoa Zone, Amhara Region, Ethiopia. Reprod Health. 2014; 1–7. https://doi.org/10.1186/1742-4755-11-1 PMID: 24383405

21. Demographic T, Program HS. Guide to DHS Statistics. Department of Economic and Social Affairs PDUN. Family Planning and the 2030 Agenda for Sustainable Development: Data Booklet. (ST/ESA/ SER.A/429). 2019;(ST/ESA/SER.A/429).

22. Katz MH. Multivariable analysis: a practical guide for clinicians and public health researchers. Cambridge university press; 2011.

23. Cahill N, Sonneveldt E, Stover J, Weinberger M, Williamson J, Wei C, et al. Modern contraceptive use, unmet need, and demand satisfied among women of reproductive age who are married or in a union in the focus countries of the Family Planning 2020 initiative: a systematic analysis using the Family Planning Estimation Tool. Lancet [Internet]. 2018; 391(10123):870–82. Available from: https://doi.org/10.1016/S0140-6736(17)33104-5 PMID: 29217374

24. Jacobs J, Marino M, Edelman A, Jensen J, Darney B. Mass media exposure and modern contraceptive use among sexually active adolescents in Burkina Faso, Ethiopia, and Nigeria: Evidence from cross-sectional studies. Glob Health Action. 2015; 8(1):1–11.

25. FP2020. FP2020 Data Dashboard. 2020.

26. Izuogbara CO, Wekesah FM, Tilahun T, Amo-Adjei J, Tsala Dimbuene ZT. Family Planning in East Africa: Trends and Dynamics. African Popul Heal Res Cent. 2018;(January).

27. Ochako R, Mbondo M, Aloo S, Kaimenyi S, Thompson R, Temmerman M, et al. Barriers to modern contraceptive methods uptake among young women in Kenya: A qualitative study Global Health. BMC Public Health. 2015; 15(1):1–9.

28. Wang C. Trends in contraceptive use and determinants of choice in China: 1980–2010. Contraception [Internet]. 2012; 85(6):570–8. Available from: https://doi.org/10.1016/j.contraception.2011.10.014 PMID: 22176789

29. Beyene GA, Munea AM, Fekadu GA. Modern Contraceptive Use and Associated Factors among Women with Disabilities in Gondar City, Amhara Region, North West Ethiopia: A Cross Sectional Study. Afr J Reprod Health. 2019/03/07. 2017; 22(6):439–49. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156857/pdf/12905_2018__Article_649.pdf

30. Jacobs J, Marino M, Edelman A, Jensen J, Darney B. Mass media exposure and modern contraceptive use among married West African adolescents. PLoS One [Internet]. 2019/03/07. 2019; 23(2):101–9. https://doi.org/10.1080/21666024.2018.976545 PMID: 31433598

31. Beson P, Appiah R, Adomah-Afari A. Modern contraceptive use among reproductive-aged women in Ghana: prevalence, predictors, and policy implications. BMC Womens Heal [Internet]. 2018/09/27. 2018; 18(1):157. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156857/pdf/12905_2018__Article_649.pdf

32. Okigbo CC, Speizer IS, Domino ME, Curtis SL, Halpern CT, Fotso JC. Gender norms and modern contraceptive use in urban Nigeria: a multilevel longitudinal study. BMC Womens Heal [Internet]. 2018/09/27. 2018; 18(1):178. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156857/pdf/12905_2018__Article_664.pdf

33. Wang W, Staveteig S, Winter R, Allen C. Women's marital status, contraceptive use, and unmet need in Sub-Saharan Africa, Latin America, and the Caribbean. DHS Comp Rep No 44 [Internet]. 2017; (July). Available from: http://dhsprogram.com/pubs/pdf/CR44/CR44.pdf

34. Alemayehu GA, Fekadu A, Yitayal M, Kebede Y, Abebe SM, Ayele TA, et al. prevalence and determinants of contraceptive utilization among married women at Dabat Health and Demographic Surveillance Area.
35. Tawiah EO. Factors affecting contraceptive use in Ghana. J Biosoc Sci. 1997; 29(2):141–9. https://doi.org/10.1017/s0021932097001417 PMID: 9881126

36. Yaya S, Uthman OA, Ekholuenetale M, Bishwajit G. Women empowerment as an enabling factor of contraceptive use in sub-Saharan Africa: A multilevel analysis of cross-sectional surveys of 32 countries. Reprod Health. 2018; 15(1):1–12. https://doi.org/10.1186/s12978-018-0439-6 PMID: 29304829

37. Avisah PA, Dery S, Atsu BK, Yawson A, Alotaibi RM, Rezk HR, et al. Modern contraceptive use among women of reproductive age in Ghana: analysis of the 2003–2014 Ghana Demographic and Health Surveys. 2018; 18(1):141. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102847/pdf/12905_2018_Article_634.pdf https://doi.org/10.1186/s12905-018-0634-9 PMID: 30126389

38. Behrman JA, Wright KQ, Grant MJ, Soler-Hampejsek E. Trends in Modern Contraceptive Use among Young Adult Women in sub-Saharan Africa 1990 to 2014. Stud Fam Plann. 2018; 49(4):319–44. https://doi.org/10.1111/sifp.12075 PMID: 30431643

39. Abraha TH. Postpartum modern contraceptive use in northern Ethiopia: prevalence and associated factors. BMC Womens Heal [Internet]. 2018/08/22. 2017; 39:e2017012. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434225/pdf/epih-39-e2017012.pdf