No Efficient Disjunction or Conjunction of
Switch-Lists

Stefan Mengel

Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens
(CRIL)

March 10, 2022

Abstract

It is shown that disjunction of two switch-lists can blow up the represent-
ation size exponentially. Since switch-lists can be negated without
any increase in size, this shows that conjunction of switch-lists also leads
to an exponential blow-up in general.

1 Introduction

Switch-lists are a representation language for Boolean functions introduced
in [7], strongly related to interval representations [6]. The idea is to write
the values of a Boolean function \(f \) on all lexicographically ordered inputs in
a value table. Then, to encode \(f \), it suffices to remember the value of \(f \) on
the first input and the inputs at which the value of \(f \) changes from that of its
predecessor. The resulting data structure is called a switch-list representation
of \(f \). Clearly switch list representations can be far more succinct than truth
tables, e.g. for constant functions.

To systematically understand the properties of switch-lists beyond this, Chromý
and Čepek [1] analyzed them in the context of the so-called knowledge compila-
tion map. This framework, introduced in the ground-breaking work of Darwiche
and Marquis [2] gives a list of standard properties which should be analyzed for
languages used in the area of knowledge compilation along different axes: suc-
cinctness, queries and transformations. The idea of the knowledge compilation
map has had a huge influence and the approach of [2] is widely applied in knowl-
dge compilation, see e.g. [5] [3] [4] for a very small sample.

Chromý and Čepek [1] analyzed switch-lists along the properties of the
knowledge compilation map and got a nearly complete picture. It turns out
that switch-lists, while being generally much more succinct than truth tables,
have many of their good properties. In particular, all of the queries in [2]
(e.g. consistency, entailment and counting) can be answered in polynomial
time on switch-lists and nearly all of the transformation can be performed ef-
ciently. The only exception is that [1] leaves open if switch-lists are closed
under bounded disjunction and bounded conjunction, i.e., given two Boolean
functions \(f_1 \) and \(f_2 \) represented by switch-lists, can one compute a switch-list
representation of \(f_1 \lor f_2 \), resp. \(f_1 \land f_2 \), in polynomial time. It is shown here that this is not the case: there are Boolean functions \(f_1, f_2 \) such that any switch list representation of \(f_1 \lor f_2 \) is exponentially larger than those of \(f_1 \) and \(f_2 \). This completes the analysis of switch-lists along the criteria of the knowledge compilation map and shows that (bounded) disjunction and conjunction are the only "bad" transformations of switch-lists, as there is no hope for a polynomial-time procedure in this case.

2 Preliminaries

Let \(f \) be a Boolean function in the \(n \) variables \(\{x_1, \ldots, x_n\} \). Fix an order \(\pi \) of \(\{1, \ldots, n\} \). Then, the assignment \(a : \{x_1, \ldots, x_n\} \to \{0, 1\} \) can be identified with the number \(b(a) \in \{0, \ldots, 2^n - 1\} \) by identifying \(a \) with \(b(a) := \sum_{i=1}^{n} a(x_{\pi(i)})2^{i-1} \). This allows to write \(a \prec a' \) if and only if \(b(a) < b(a') \). The intuition behind all this is that the assignments are written in lexicographical order with respect to \(\pi \) and then \(a \prec a' \) if and only if \(a \) appears before \(a' \).

A switch of the function \(f \) with respect to \(\pi \) is a number \(b \in \{1, \ldots, 2^n - 1\} \) such that \(f(b) \neq f(b - 1) \) (note that here the identification of numbers and assignments to \(\{x_1, \ldots, x_n\} \) depending on the order \(\pi \) is used). The switch-list representation of \(f \) with respect to \(\pi \) consist of the value \(f(0) \) and an ordered list of all switches of \(f \) with respect to \(\pi \). Note that, for fixed \(\pi \) the switch-list representation uniquely determines \(f \) and \(f \) uniquely determines the switch-list representation.

The size of a switch-list representation is defined as \(n \) times the number of switches which corresponds roughly to the natural encoding size\(^1\). Note that the size depends strongly on the order \(\pi \).

Following Darwiche and Marquis,\(^2\) switch-lists are said to satisfy bounded disjunction (resp. bounded conjunction) if there is a polynomial-time algorithm that, given two switch-list representations of functions \(f_1, f_2 \), computes a switch-list representation of \(f_1 \lor f_2 \) (resp. \(f_1 \land f_2 \)). Chromý and Čepek\(^3\) also considered the restricted version of bounded disjunction (resp. conjunction) in which one assumes that the involved functions \(f_1, f_2 \) depend on the same set of variables.

3 The Proof

Let \(n \in \mathbb{N} \) be even. Consider the functions \(f_1(x_1, \ldots, x_n) := \big(\bigwedge_{i=1}^{n/2} x_i \big) \lor \big(\bigwedge_{i=1}^{n/2} \neg x_i \big) \) and \(f_2(x_1, \ldots, x_n) := \big(\bigwedge_{i=n/2+1}^{n} x_i \big) \lor \big(\bigwedge_{i=1}^{n/2} \neg x_i \big) \).

Observation 1. There are switch-list representations for \(f_1 \) and \(f_2 \) with at most two switches.

Proof. Only give the argument for \(f_1 \) is given as that for \(f_2 \) is completely analogous. Fix any order \(\pi \) in which the variables \(x_1, \ldots, x_{n/2} \) come before those in \(x_{n/2+1}, \ldots, x_n \). An assignment is a model of \(f_1 \) if and only if it maps all variables to 0 or it maps \(x_1, \ldots, x_{n/2} \) to 1. So all models different from 0 lie in

\(^1\)We do not take into account the size of an encoding of \(\pi \) in this since it is the same for all switchlists in \(n \) variables and thus would only complicate the notion without giving any insights.
the interval \([\sum_{j=1}^{n/2+1} 2^{j-1}, \sum_{j=1}^{n} 2^{j-1}] \). Note that this interval lies at the end of the order of all assignments. So for these models, \(f_1 \) only has one switch at the beginning of the interval. To represent \(f_1 \) with a switch-list one only needs one additional switch directly after 0.

Proposition 1. The function \(f_1 \lor f_2 \) needs at least \(2^{n/2+1} - 3 \) switches in any switch-list representation.

Proof. Let \(X_1 := \{x_1, \ldots, x_{n/2}\} \) and \(X_2 := \{x_{n/2+1}, \ldots, x_n\} \). Fix any variable order \(\pi \) of \(X_1 \cup X_2 \) and let \(\preceq \) denote the lexicographical order with respect to \(\pi \). The last variable of \(\pi \) is either in \(X_1 \) or in \(X_2 \). Without loss of generality, assume that it is in \(X_2 \) and that the last variable in \(\pi \) is \(x_n \).

For every assignment \(a \) to \(X_1 \), two extensions \(e_0(a) \) and \(e_1(a) \) to \(X_1 \cup X_2 \) are constructed as follows: on \(X_1 \), the assignments \(e_0(a) \) and \(e_1(a) \) are both identical to \(a \); all variables in \(X_2 \setminus \{x_n\} \) are assigned 1 and \(x_n \) is assigned 0 in \(e_0(a) \) and 1 in \(e_1(a) \). Let \(\pi_1 \) be the order \(\pi \) restricted to \(X_1 \) and let \(\preceq_1 \) be the order of the assignments to \(X_1 \) with respect to \(\pi_1 \). Then for two assignments \(e_i(a_1) \) and \(e_j(a_2) \) it holds that \(e_i(a_1) \prec e_j(a_2) \) if and only if \(a_1 \preceq_1 a_2 \) or \(a_1 = a_2 \) and \(i < j \). Note that none of the assignments of the form \(e_i(a) \) is the constant 0-assignment, so \(e_i(a) \) satisfies \(f_1 \lor f_2 \) if and only if it satisfies \(\bigwedge_{i=1}^{n/2} x_i \lor \bigwedge_{i=n/2+1}^{n} x_i \).

Now let \(a_1, \ldots, a_{n/2-1} \) be the assignments to \(X_1 \) different from constant 1-assignment given in the order \(\preceq_1 \). Then the resulting sequence

\[
e_0(a_1), e_1(a_1), \ldots, e_0(a_{2n/2-1}), e_1(a_{2n/2-1})
\]

(1)

is in lexicographical order as well. Note that because none of the \(a_i \) is the constant 1-assignment, it holds that for every \(i \in [2^{n/2} - 1] \) that \(e_1(a_i) \) is a model of \(f_1 \lor f_2 \) while \(e_0(a_i) \) is not. Thus there must be switches between each pair of consecutive elements of the sequence (1). So there must be at least \(2 \times (2^{n/2} - 1) - 1 = 2^{n/2+1} - 3 \) switches in the switch-list representation of \(f_1 \lor f_2 \) with respect to the order \(\pi \). \(\square \)

The main result of this paper follows directly.

Theorem 1. Switch-lists satisfy neither bounded disjunction nor bounded conjunction. This remains true when the functions to be disjoined (resp. conjoined) are on the same set of variables.

Proof. For disjunction, this follows directly from Observation 1 and Proposition 1. Since the outcome of any polynomial-time algorithm would in particular be of polynomial size.

For conjunction, let us define \(f'_1 = \neg f_1 \) and \(f'_2 = \neg f_2 \). Observe that a switch-list of \(f \) can be negated in constant time by simply flipping the value \(f(0) \) (keeping the same permutation of variables). Clearly \(f'_1 \land f'_2 = \neg f_1 \land \neg f_2 = \neg (f_1 \lor f_2) \) and the lower bound for \(f_1 \lor f_2 \) from Proposition 1 is of course valid also for \(\neg (f_1 \lor f_2) \). This gives us an identical lower bound for the size of any switch list representing \(f'_1 \land f'_2 \). \(\square \)
4 Conclusion

I was shown that switch-lists neither satisfy bounded disjunction nor bounded conjunction. This even remains true if both inputs depend on the same set of variables. This completes the analysis of switch-lists in the framework of the knowledge compilation map.

Let us remark that for practical applicability of switch-lists, this is rather bad news. Many classical approaches to practical knowledge compilation use so-called bottom-up compilation: given a conjunction of clauses, or more generally constraints, \(F = \bigwedge_{i=1}^{m} C_i \), one first computes representations \(R(C_i) \) of individual constraints \(C_i \). Then one uses efficient conjunction to iteratively conjoin the \(R(C_i) \) to get a representation of \(F \). Since conjunction of even two switch-lists is hard in general, this approach is ruled out by our results.

To better understand when switch-lists are useful, it would be interesting to find classes of functions for which small switch-list representations can be computed efficiently, either theoretically or with heuristic approaches.

Acknowledgement. The author would like to thank Ondřej Čepek for helpful comments on an earlier version of this paper.

References

[1] Milos Chromý and Ondřej Čepek. Properties of switch-list representations of boolean functions. J. Artif. Intell. Res., 69:501–529, 2020.

[2] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res., 17:229–264, 2002.

[3] Hélène Fargier and Pierre Marquis. Disjunctive closures for knowledge compilation. Artif. Intell., 216:129–162, 2014.

[4] Hélène Fargier, Pierre Marquis, and Alexandre Niveau. Towards a knowledge compilation map for heterogeneous representation languages. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 877–883. IJCAI/AAAI, 2013.

[5] Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 517–522. AAAI Press, 2008.

[6] Baruch Schieber, Daniel Geist, and Ayal Zaks. Computing the minimum DNF representation of boolean functions defined by intervals. Discret. Appl. Math., 149(1-3):154–173, 2005.

[7] Ondřej Čepek and Radek Hušek. Recognition of tractable dnf s representable by a constant number of intervals. Discret. Optim., 23:1–19, 2017.