Bloodstream infections in critically ill patients: an expert statement

Jean-François Timsit1,2*, Etienne Ruppé2,3, François Barbier4, Alexis Tabah5 and Matteo Bassetti6

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Bloodstream infection (BSI) is defined by positive blood cultures in a patient with systemic signs of infection and may be either secondary to a documented source or primary—that is, without identified origin. Community-acquired BSIs in immunocompetent adults usually involve drug-susceptible bacteria, while healthcare-associated BSIs are frequently due to multidrug-resistant (MDR) strains. Early adequate antimicrobial therapy is a key to improve patient outcomes, especially in those with criteria for sepsis or septic shock, and should be based on guidelines and direct examination of available samples. Local epidemiology, suspected source, immune status, previous antimicrobial exposure, and documented colonization with MDR bacteria must be considered for the choice of first-line antimicrobials in healthcare-associated and hospital-acquired BSIs. Early genotypic or phenotypic tests are now available for bacterial identification and early detection of resistance mechanisms and may help, though their clinical impact warrants further investigations. Initial antimicrobial dosing should take into account the pharmacokinetic alterations commonly observed in ICU patients, with a loading dose in case of sepsis or septic shock. Initial antimicrobial combination attempting to increase the antimicrobial spectrum should be discussed when MDR bacteria are suspected and/or in the most severely ill patients. Source identification and control should be performed as soon as the hemodynamic status is stabilized. De-escalation from a broad-spectrum to a narrow-spectrum antimicrobial may reduce antibiotic selection pressure without negative impact on mortality. The duration of therapy is usually 5–8 days though longer durations may be discussed depending on the underlying illness and the source of infection. This narrative review covers the epidemiology, diagnostic workflow and therapeutic aspects of BSI in ICU patients and proposed up-to-date expert statements.

Keywords: Sepsis, Bloodstream infections, Critically ill, Antibiotic, Antibiotic stewardship, Source control, Duration of therapy, Epidemiology, Multidrug-resistant pathogens, Rapid diagnosis

Introduction

Bloodstream infection (BSI) is defined by positive blood cultures in a patient with systemic signs of infection and may be either secondary to a documented source or primary—that is, without identified origin (https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf accessed December 22th 2019). Bloodstream infections (BSI) represent 40% of cases of community-acquired (CA) and hospital-acquired (HA) sepsis and septic shock and approximately 20% of the ICU-acquired cases (Table 1). It is invariably associated with poor outcomes especially when adequate antimicrobial therapy and source control are delayed [1–3]. This expert statement proposes key elements for early diagnosis and adequate therapy of both primary and secondary BSI (Table 2).
Epidemiological features of bloodstream infection in ICU patients

BSI may complicate the course of a myriad of severe CA infectious diseases (Fig. 1). *Escherichia coli*, *Staphylococcus aureus*, *Klebsiella pneumoniae* and *Streptococcus pneumoniae* account for more than 70% of all CA-BSI though pathogen distribution varies substantially depending on infection foci and patient characteristics [4, 5]. Of note, *Pseudomonas aeruginosa* causes up to 5% of community-onset BSI, essentially in patients with severe underlying conditions (e.g., immunosuppression) or recent healthcare exposure and suffering from urinary tract infection (UTI) or pneumonia—but causative strains remain usually susceptible to first-line antipseudomonal agents, with a restricted prevalence of multidrug-resistant (MDR) isolates [5, 6]. After a spectacular rise in the early 2000’s, the incidence of CA-BSI due to community-associated methicillin-resistant *S. aureus* (MRSA) now trends to plateau in the United States and most of other endemic regions [7]. Meanwhile, the global burden of CA-BSI due to extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) is amplifying steadily due to massive spread of these pathogens in the community [4, 8]. Nowadays, the prevalence of ESBL-producing isolates commonly exceeds 5% in *E. coli* and *K. pneumoniae* CA-BSI secondary to UTI or intra-abdominal infection and may reach 20% in certain geographical areas, thereby equaling the proportion reported in HA-BSI [9, 10].

HA-BSI in critically ill patients are imported (i.e., documented at ICU admission) and acquired in the ICU in roughly 25% and 75% of cases, respectively [2, 5]. Overall, ICU-acquired BSI occurs during 5–7% of admissions, corresponding to an average of 6–10 episodes per 1000 patient-days [1, 3, 11–14]. Main risk factors for ICU-acquired BSI include high severity indexes at admission, prolonged stay, immunosuppression, liver disease, surgical admission, and the requirement for invasive devices or procedures [11]. In the EUROBACT-1 international study (n = 1156), ICU-acquired BSI mostly ensued from catheter-related infections (21%), nosocomial pneumonia (21%), and intra-abdominal infections (12%)—strikingly, no definite source was identified for 24% of episodes [2].

In ICUs applying current prevention bundles for the insertion and maintenance of central venous catheter (CVC), CVC-related BSI occurs in 0.5–1.5% of exposed patients, with a median incidence density ranging from 0.5 to 2.5 episodes per 1000 catheter-days [15–17]. Defective asepsis, a jugular or femoral insertion (versus the subclavian site) and the duration of catheterisation remain the leading risk factors for CVC-related BSI [18–20]. The hazard of arterial catheter-related BSI appears similar to what is observed with CVCs (that is, around 1 episode per 1000 catheter-days), with a nearly two-fold risk increase with femoral accesses when compared to the radial site [21]. Lastly, patients under extra-corporeal membrane oxygenation (ECMO) are at major risk for ICU-acquired BSI with an incidence density reaching 20 episodes per 1000 ECMO-days [22]. Most of BSIs in this particular population with extended mechanical ventilation and ICU stay are related to ventilator-associated

Table 1 Prevalence of bloodstream infections in selected recent randomized trials including adult patients with sepsis or septic shock

RCT	Patients population, N	Patients with BSI, n (%)	Registration no./reference
SMART (saline versus balanced crystalloids in ICU patients—secondary analysis focused on patients with sepsis)	1641	653 (39.8)	NCT02444988 Brown et al. [124]
EUHPRATES (targeted polymyxin B hemoperfusion for patients with septic shock and elevated endotoxin level)	450	134 (29.8)	NCT01046669 Dellinger et al. [125]
APROCCHSS (hydrocortisone plus fludrocortisone versus placebo for patients with septic shock)	1240	454 (36.6)	NCT00625209 Annane et al. [126]
ARISE (EGDT vs usual care for patients with septic shock)	1591	601 (37.8)	NCT00975793 ANZICS. [127]
ProCESS (protocol-based vs usual care for patients with septic shock)	1341	396 (29.5)	NCT00510835 ProCESS investigators. [128]

RCT randomized controlled trial, **BSI** bloodstream infection, **ICU** intensive care unit, **EGDT** early goal-directed therapy

Take-home messages

This expert statement covers the available evidence on the epidemiology, diagnosis and treatment of bloodstream infections in the ICU. Key elements are: knowledge of the local epidemiology and of the risk factors due to bacterial resistance and inadequate therapy, optimization of the antimicrobial dose and infection source control. The potential benefit of new rapid diagnostic tests, antibiotic de-escalation and short duration of antimicrobial is also discussed.
Table 2 Twenty key points for the management of bloodstream infection in critically ill patients

Statements	Evidence/Recommendation
1. The rising incidence of ESBL is the most prominent matter of concern in community-acquired BSI	*
2. The rising incidence of CPE and XDR Acinetobacter baumannii in HA-BSI is a matter of serious concern	*
3. ICU-acquired BSI frequently occurs in critically ill patients, especially those with high severity indexes, immunosuppression, a surgical reason for admission, and the need for ECMO or other invasive procedures	*
4. Most of ICU-acquired BSI are related to catheter infection, intra-abdominal infections, and ventilator-associated pneumonia though no definite source is identified for a substantial proportion of cases	*
5. Direct identification using MALDI-TOF or genotypic methods are accurate for bacterial identification especially for Gram-negative pathogens	*
6. Genotypic methods of bacterial detection and resistance mechanisms identification are accurate. These methods may positively impact the timing and adequacy of antimicrobial therapy in ICU patients with BSI though real-life clinical studies are still needed to appraise their input precisely	*
7. Choices about antimicrobials for treating critically ill patients with BSI should take into account several overlapped factors: (i) the empirical or targeted nature of the treatment; (ii) the presumed or proven origin site of the infection; (iii) the suspected or proven presence of antimicrobial resistance; (iv) immune status; and (v) the suspected or proven presence of candidemia	*
8. A reasoned choice of empirical agents should be based on the suspected pathogen/s and on the estimated individual and environmental risks of MDR infection	*
9. Recently approved, novel agents active against MDR organisms might be used, only if clearly, appropriate according to local epidemiology, for empirical treatment in critically ill patients	*
10. In critically ill patients with BSI and increased distribution volume, loading dosages of hydrophilic antibiotics should be increased compared to dosages usually prescribed in non-critically ill patients	*
11. Maintenance dosages should be adjusted according to fluctuations in the estimated renal function	*
12. TDM should be routinely performed for vancomycin and aminoglycosides, and whenever feasible for polymyxins. TDM of beta-lactams may be used, especially for preventing neurotoxicity, but further research and standardization are needed for clearly delineating advantages and impact on patients' outcomes	*
13. Continuing combination therapy in BSI due to XDR Gram-negative bacteria may have an outcome benefit in the most severely ill patients with septic shock	*
14. Source control including immediate removal of suspected intravascular catheters is always urgent in patients with septic shock	*
15. In life-threatening surgical site infections, a “damage control” approach is the safest way to gain time and achieve stability	*
16. ADE describes the initial re-evaluation of antimicrobial therapy when it targets decreasing the exposure to broad-spectrum antimicrobials. For treatment of BSI, it consists in stopping companion antibiotics or narrowing the spectrum of a pivotal antibiotic	*
17. The antimicrobial regimen should be re-evaluated for its spectrum and effectiveness every day after the blood culture becomes positive and new information becomes available	*
18. In ICU patients with uncomplicated BSI, duration of treatment can be matched to that of the source and the causative pathogen. In the absence of specific risk factors, a duration of when clinical stability is reached, shorter (≤ 7 days) should be proposed. In the absence of specific risk factors, septic shock and if the source control is appropriate, preferred to longer antibiotic courses	*
19. Specific pathogens at risk of septic metastasis or treatment failure require duration of 14 days in cases of uncomplicated infections and up to 4–8 weeks for Specific sources such as bone and joint infections, empyema, septic metastasis or sources not amenable to adequate source control	*
20. Ongoing instability should not be a reason to blindly increase the duration of antimicrobial, but rather lead to investigate for insufficient source control, superinfection, drug-resistant pathogens or non-infectious causes of fever and shock. Continuing, escalating or stopping the antimicrobials accordingly should always be preceded by new microbiological specimens including blood cultures	*

Notes:

- **ESBL**: extended-spectrum beta-lactamase-producing Enterobacteriales, **BSI**: bloodstream infection, **CPE**: carbapenemase-producing Enterobacteriales, **XDR**: extensively drug-resistant, **ICU**: intensive care unit, **ECMO**: extra-corporeal membrane oxygenation, **MDR**: multidrug-resistant, **TDM**: therapeutic drug monitoring, **ADE**: antibiotic de-escalation

Pneumonia or other infectious foci rather than cannula infection [23].

The main pathogens responsible for HA-BSI in critically ill patients are listed in Table 3. The epidemiology of MDR pathogens widely differs from one ICU to another according to case-mix, local policies for infection control and antimicrobial stewardship, and geographical location—BSI due to non-fermenting Gram-negative bacilli such as *P. aeruginosa* and *Acinetobacter baumanii* are notably more prevalent in warm countries or during warm periods in temperate areas [24]. However, and as for other ICU-acquired infections, the incidence of BSI due to ESBL-PE, carbapenemase-producing Enterobacteriales, MDR *P. aeruginosa*, MDR *Acinetobacter baumanii*, MRSA and methicillin-resistant coagulase-negative staphylococci is high and even continues to increase in most parts of the world [25]. Table 4 indicates the current resistance rates in major pathogens responsible for hospital-acquired infections—including HA-BSI—in large surveillance networks.
Early microbiological diagnosis in BSI

Culture-based methods remain the gold standard to identify the causative microorganism in sepsis, with a recommended sampling of at least two sets of aerobic and anaerobic blood cultures (10–20 mL per bottle) following rigorous skin disinfection [26]; yet the rhythm imposed by the growth time requirements of the latter is barely compatible with the ‘need for speed’ in the context of sepsis (Fig. 2). It should be kept in mind that the initiation of empirical antimicrobial therapy significantly reduces the sensitivity of blood cultures drawn shortly after treatment initiation [27].

Molecular assays are increasingly deployed in bacteriology laboratories as rapid alternatives to culture-based methods. Attempts have been made to directly detect pathogens and resistance markers by PCR on blood samples without prior incubation (Roche LightCycler® SeptiFast, SeeGene MagicPlex® Sepsis Test, Abbott Iridica); however, these tests have not met a broad success because of their medium sensitivity and specificity (Table 5) and the lack of full automation. Furthermore, these tests only seek for a limited number of antibiotic resistance genes so that the probabilistic regimen can only be adapted according to the bacterial species. More recently, a magnetic resonance-based test (T2Bacteria Panel, T2Biosystems) was made available and showed a higher sensitivity (90%) than previous methods together with a shorter turn-around time (3.5 h vs. 5–8 h) [28].

Since then, PCR-based tests have re-focused on positive blood cultures (BC) (such as the BioFire FilmArray Blood Culture Identification and the Luminex Verigene), meaning that the test comes after a first culture-based test. The multiplex PCR (mPCR) tests applied on positive blood culture have excellent performances and have been showed to decrease the time to an optimized antibiotic regimen (spectrum narrowing or broadening or even cessation when a contaminant was identified) but not the mortality or the length of stay [29]. One major limitation of these genotypic methods is the limitation of the number of PCR probes. A negative PCR should be interpreted in view of the overall findings, possible source of infection and other available bacteriological results. Consequently, a solid expertise and strong collaboration between microbiologists and clinicians are needed [30]. Besides
Table 3 Hospital-acquired bloodstream infection in ICU patients: pathogen distribution in selected multicentre studies published after 2010

Study [ref]	Inclusion period	Geographical area	Population	Type and number of BSI events
Corona et al. []	2002–2003	Worldwide	General ICU population	HA-BSI (n = 351) (%)
Prowle et al. []	1998–2009	Australia	General ICU population	ICU-BSI (n = 330) (%)
Climo et al. []	2007–2009	USA	General ICU population	ICU-BSI (n = 131) (%)
Adrie et al. []	1998–2013	Worldwide	Outcomerea network, France (General ICU population)	ICU-BSI (n = 571) (%)
Tabah et al.	2009	USA	General ICU population	ICU-BSI (n = 279) (%)
Noto et al. []	2011–2014	USA	General ICU population	ICU-BSI (n = 113) (%)
NHSN []	2012–2013	Europe	Hospitalized patients	ICU-BSI (n = 85,994) (%)
Wittekamp et al. []	2013–2017	Worldwide	Mechanically ventilated patients	ICU-BSI (n = 305) (%)
SENTRY Network []	1997–2016	Worldwide	Hospitalized patients	HA-BSI (n = 103,945) (%)

Pathogen							
Escherichia coli	10	6	GNB (pooled), 28	5	10	19	5
Klebsiella spp.	9	8	4	4	4	8	15
Enterobacter spp.	5	6	6	6	7	8	1
Pseudomonas aeruginosa	10	10	2	10	10	12	2
Acinetobacter baumannii	5	6	2	3	7	16	0
Staphylococcus aureus	26	24	27	6	15	16	8
CoNS	20	30	24	26	19	10	13
Enterococcus spp.	9	11	17	19	8	10	13
Candida spp.	10	6	15	12	9	7	8
Others	5	3	7	19	16	< 5	< 5
Pseudomonas aeruginosa	10	6	15	12	9	7	8
Enterococcus spp.	9	11	17	19	8	10	13
Candida spp.	10	6	15	12	9	7	8
Others	5	3	7	19	16	< 5	< 5

Note that the sum for each column may exceed 100% due to polymicrobial BSI.

NHSN National Healthcare Safety Network, HA-BSI hospital-acquired bloodstream infection, ICU-BSI ICU-acquired BSI, CLABSI central line-associated BSI, CoNS coagulase-negative staphylococci, NA non-available

a RCTs for the evaluation of preventive measures for ICU-BSI: only data from the control groups are exposed in the table
b Reported for Enterobacter dosaee only
c Reported for Staphylococcus epidermidis only
PCR, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) can also be used to identify bacteria directly from positive BC after a purification protocol (not automatized yet), with good performances for Gram-negative bacteria (> 90% concordance with subsequent culture) but not for Gram-positive bacteria (~ 80% concordance) [31]. MALDI-TOF can also be used for antibiotic susceptibility testing, with
the possibility to compare spectrum after a short incubation (1–4 h) with or without antibiotics, or to directly detect peaks matching the resistance mechanisms [31]. While the proof of concept has been established, direct AST from BC using MALDI-TOF still needs standardization to enter the routine workflow.

Recently, next-generation sequencing (NGS) methods and application of machine-learning methods have showed promising results in the diagnostic of BSI. Clinical metagenomics (CMg) refers to the sequencing of the nucleic acids present in a clinical sample to identify pathogens and to infer their susceptibility to antimicrobials [32]. A variant of CMg is cell-free DNA (cfDNA) sequencing, i.e. the sequencing of extracellular cell-free DNA in clinical samples. It has been showed that the absolute concentrations of plasmatic cfDNA in patients with sepsis were elevated when compared to healthy volunteers and that the cfDNA sequences could identify potential bacterial pathogens missed by conventional, culture-based methods [33]. A recent work including 348 patients reported a 93% sensitivity but only a 63% specificity for cfDNA sequencing [34]. Indeed, metagenomic sequencing identified much more bacteria than culture, with 62/166 samples negative with conventional methods but with microorganisms found in cfDNA sequencing. Of note, cfDNA sequencing results were delivered the day after the sample arrival. Another work based on metagenomic sequencing of plasma from immunosuppressed patients found similar results, with a 95% negative predictive value [35].

Finally, while molecular tests are interesting, the performance of old-fashioned culture methods may be improved to provide more timely results. AST performed from the morning positive BC can be read at the end of the working day [36], but this would not apply to BC found positive later. In this perspective, the continuous processing of samples through lab automation could break the barriers intrinsic to the lab workflow. Similarly, the Accelerate Pheno provides an automated solution to deliver identification and a phenotypic AST within 6–8 h [37].

Choice of antimicrobial therapy

Decisions on which antimicrobials should be employed for treating bloodstream infections (BSI) in critically ill patients depend on several, overlapped factors: (1) the empirical or targeted nature of the treatment; (2) the presumed or proven origin site of the infection; (3) the suspected or proven presence of antimicrobial resistance (notably in healthcare settings with endemic MDR pathogens and/or in patients with recent exposure to antimicrobial drugs); (4) the suspected or proven presence of candidemia [25, 38–41]. Immunosuppression (e.g., neutropenia, HIV infection, or current or recent

Name	Manufacturer	Method	Input	TAT	Sensitivity	Specificity	References
MagicplexTM Sepsis Test	Seegene	RT-PCR	Blood sample	5 h	0.65	0.92	Carrara et al. [135]
					0.29	0.95	Zboromyrska et al. [136]
					0.47	0.66	Ziegler et al. [137]
T2Bacteria[®] Panel	T2Biosystems	Magnetic resonance	Blood sample	3.5	0.9% (95% CI, 0.76–0.96)	0.9% (95% CI, 0.88–0.91)	Nguyen et al. [138]
FilmArray[®] Blood Culture	bioFire	PCR	Positive BC	1 h	0.92±1^a	0.76±1^a	Altun et al. [139]
Verigene[®] Blood culture tests	Luminex	PCR	Positive BC	2.5 h	0.99	ND	Bhatti et al. [139]
Accelerate Pheno[™]	Accelerate Diagnostics	FISH and microcopy	Positive BC	1.5 h (identification) 7 h (AST)	0.95	0.99	Lutgring et al. [141]
VitekMS Biotyper	bioMerieux Bruker	MALDI-TOF	Positive BC	<1 h (identification), <1 h-4 h (AST)	Concordance for Gram-negative^b: 0.83–1	Concordance for Gram-positive^b: 0.32–0.89	Faron [31]

^a According to the target

^b Identification at the species level

RT-PCR real-time polymerase chain reaction, **ESI–MS** electrospray ionization mass spectrometry, **BC** blood culture, **FISH** fluorescence in situ hybridization, **AST** antibiotic susceptibility testing, **MALDI-TOF** matrix-assisted laser desorption ionization–time of flight mass spectrometry

Table 5 Rapid diagnostic tools for early optimization of antimicrobial therapy in patients with bloodstream infections: methods, turn-around time and diagnostic performances

The table lists various rapid diagnostic tools in order of their effectiveness and turn-around time, including RT-PCR, ESI–MS, BC, FISH, and AST. The table also provides sensitivity and specificity data for each method, along with references for further reading.
immunosuppressive therapy) should also been taken into account since immunocompromised hosts are at increasing risk of both infection with MDR bacteria—due to more frequent antimicrobial and healthcare exposure—and non-bacterial sepsis, notably resulting from invasive fungal infection [26, 42, 43].

Considering that antimicrobials are mainly used empirically in critically ill patients [44], both a reasoned administration of empirical agents on the basis of the suspected pathogen/s and efforts to pursue a rapid etiological diagnosis for allowing de-escalation are essential measures for treatment optimization [25, 45–47]. In this scenario, there is certainly a need for a balanced use of recently approved agents active against MDR organisms, in order not to delay the administration of an effective therapy and, on the other hand, not to accelerate the selection of further resistance using them indiscriminately [48, 49]. In addition, the availability of novel beta-lactams/beta-lactamases inhibitor (BL-BLI) combinations, which express selected activity against MDR Gram-negative bacteria expressing different determinants of resistance, has already started to change clinical reasoning at the bedside of septic patients. For example, the type of locally prevalent carbapenemases should now be taken into account when prompting empirical therapies [50]. Trying to balance all the above-reported factors, possible choices for treating BSI in critically ill patients, together with their activity against MDR pathogens and dosage recommendations, are detailed in Table 6.

Role of therapeutic drug monitoring (TDM)
Useful pharmacokinetic (PK) parameters for deciding antimicrobial dosages are not routinely measurable in critically ill patients. However, albeit imperfect, some practical and immediately available proxies exist that may help optimizing dosages. First, higher loading dosages of hydrophilic antimicrobials are required in critically ill patients with a positive fluid balance indicating a high volume of distribution (\(V_d\)) [51–53]. Second, the facts that most antimicrobials used in ICUs are excreted by the kidneys, that either augmented renal clearance (ARC) or acute kidney injury (AKI) can be present in critically ill patients with BSI, and that renal replacement therapies (RRT) are not infrequently used in these patients imply that careful attention should be devoted to the adjustment of maintenance dosages according to the fluctuations in renal function during the course of treatment [25, 52, 54–56]. With regard to pharmacodynamics (PD), knowledge of the different PD index of choice (\(T\) > minimum inhibitory concentration (MIC), \(C_{max}/\text{MIC}\), or area under the curve (AUC)/MIC) pertaining to the different antimicrobial classes is crucial both for selecting the most appropriate type of infusion (e.g., continuous vs. intermittent) and for measuring the impact of suspected/measured pathogens MIC on the probability of target attainment, taking into account possible variability in MIC measurements [25, 52, 57].

However, TDM remains desirable for antimicrobial treatments in critically ill patients, owing to the imperfect prediction of PK and PD in this population without measurement, even when carefully taking into account both patients chronic and acute characteristics and the expected drug behavior [52, 58, 59]. Practically, TDM appears beneficial for minimizing toxicity and/or improving clinical responses in patients treated with vancomycin or aminoglycosides [60, 61], while further evidence and standardization are needed to clearly delineate and maximize any possible clinical impact of TDM on the use of beta-lactams [25, 62, 63]. For some antimicrobial classes with inherent variable serum concentrations, technical difficulties and its frequent unavailability outside research laboratories prevent a widespread use of TDM (e.g., polymyxins, for which nonetheless TDM remains desirable whenever feasible) [58]. Detailed discussion on possible PK/PD targets (either for improving bacterial killing/clinical outcome or reducing toxicity) and sampling times for different antibiotic classes in critically ill patients undergoing TDM are available elsewhere [64, 65].

Single-drug or combination therapy for bloodstream infection in ICU patients
In an era of increasing resistance prevalence, the primary objective of an empirical combination regimen (usually a beta-lactam plus an aminoglycoside or a fluoroquinolone) is to maximize the likelihood of administering at least one drug with activity against the causative pathogen. Yet, once antimicrobial susceptibility results become available, the benefit of continuing with a dual regimen rather than a single active agent remains equivocal owing to fragmentary or conflicting evidence.

First, experimental models suggest that antimicrobial associations may synergistically prevent or postpone the selection of resistant mutants, especially in \(P.\) \(\text{aeruginosa}\) and other non-fermenting Gram-negative pathogens [66]. However, clinical data are lacking to appraise the relevance of these findings and whether combination therapy effectively protects from the emergence of resistance at the infection site is still unsettled. Interestingly, in a randomized controlled trial (RCT) including 551 patients with sepsis, receiving a meropenem–moxifloxacin combination was associated with a lower risk of persistent or subsequent infection with meropenem-resistant pathogens than meropenem alone (1.3% versus 9.1%, respectively, \(P = 0.04\)) [67]. This endpoint was
Table 6 Characteristics of antibacterial drugs indicated (or used off-label in selected cases) for treating bloodstream infections (BSI) in critically ill patients

Antibacterials	Activity against MDR pathogens	Class, PD index of choice	Suggested dosage in critically–ill patients	Status
Amikacin	Possibly active against MDR-GNB, although increased resistance to classical aminoglycosides has been reported [79, 143]	Aminoglycosides, AUC/MIC 25–30 mg/kg q24h (modified according to TDM)	Approved	
Aztreonam	Active against MBL producers not expressing mechanisms of aztreonam resistance (e.g., other beta-lactamases, AmpC hyperexpression, efflux pumps)	Monobactams, T > MIC 1–2 g q8h	Approved	
Aztreonam/Avibactam	ESBL-PE CPE (all classes of carbapenemases, including MBL)	Monobactams plus BLI, T > MIC 6500 mg aztreonam/2167 mg avibactam q24h on day 1 followed by 6000 mg aztreonam/2000 mg avibactam q24h	In clinical development; potential indications according to phase-3 RCT are cIAI, HAP/VAP (NCT03329092) and serious infections due to MBL-producing bacteria (NCT03580044)	
Cefepime	Active against AmpC hyperproducer enterobacterales	Cephalosporins, T > MIC 2 g q8h or continuous infusion	Approved	
Cefiderocol	ESBL-PE CPE (all classes of carbapenemases, including MBL)	Siderophore cephalosporins, T > MIC 2 g q8h	FDA Approved for cUTI caused by susceptible Gram-negative microorganisms, who have limited or no alternative treatment options according to phase-3 RCT are infections due to carbapenem-resistant organisms in different sites (NCT02714595). Pivotal study on HAP/VAP finished (NCT03032380)	
Cefotaxime/Tazobactam	ESBL-PE MDR-PA	Siderophore cephalosporins plus BLI, T > MIC 1.5 g q8h (3 g q8h for pneumonia)	Approved for cUTI in vitro and/or limited clinical data reporting a possible use as salvage therapy in combination with vancomycin or daptomycin for MRSA bacteremia	
Ceftaroline	MRSA VISA hVISA VRSA	Cephalosporins, T > MIC 600 mg q12 h	Approved for ABSSSI and CAP in vitro and/or limited clinical data reporting a possible use as salvage therapy in combination with vancomycin or daptomycin for MRSA bacteremia	
Cefazidime	Cephalosporins, T > MIC 6 g q24h continuous infusion	Approved		
Cefazidime/Avibactam	ESBL-PE CPE (class A and class D carbapenemases) MDR-PA	Cephalosporins plus BLI, T > MIC 2.5 g q8h	Approved for cIAI (in combination with metronidazole) and cUTI. Approved by FDA for VAP/HAP, with the CHMP of EMA also recently adopting a positive opinion recommending a change to the terms of the marketing authorization, including also VAP/HAP among approved indications	
Ceftriaxone	Cephalosporins, T > MIC 1–2 g q24h	Approved		
Colistin	ESBL-PE CPE (all classes of carbapenemases, including MBL) MDR-PA CRAB	Polymyxins, AUC/MIC 9 MU loading dose, 4.5 MU every 8–12 h (modified according to TDM where available; higher dosages to be possibly considered in patients with ARC [58])	Approved Recommended for serious infections due to susceptible bacteria when other treatment options are limited	
Daptomycin	MRSA VRE	Lipopeptides, AUC/MIC 8–10 mg/kg q24h	Approved for cSSSTI and right-sided endocarditis	
Antibacterials	Activity against MDR pathogens	Class, PD index of choice	Suggested dosage in critically-ill patients	Status
------------------------	---	--	--	---
Eravacycline MRSA	MRSA	Fluocyclines, AUC/MIC 1 mg/kg q12h	Approved for cIAI	To be possibly used for BSI due to MDR organisms in absence of dependable alternative options, in combination with other agents (expert opinion)
Eravacycline VRE	VRE			
Eravacycline ESBL-PE	ESBL-PE			
Eravacycline CPE	CPE			
Eravacycline CRAB	CRAB			
Ertapenem ESBL-PE	ESBL-PE	Carbapenems, T > MIC 1 g q12h	Approved for IAI, CAP, acute gynecological infections, and diabetic foot infections	
Fosfomycin ESBL-PE	ESBL-PE	PEP analogues, unclear [144] 4–6 g q6h continuous infusion	Approved for BSI in combination with other agents for the treatment of MDR infections with limited treatment options (also for CRAB), although in lack of high-level evidence	
Fosfomycin CPE	CPE (all classes of carbapenemases, including MBL)			
Fosfomycin MDR-PA	MDR-PA			
Fosfomycin MRSA	MRSA			
Fosfomycin VRE	VRE			
Gentamicin	Possibly active against MDR-GNB, although increased resistance to classical aminoglycosides has been reported [79, 143]	Aminoglycosides, AUC/MIC 5–7 mg/kg q24h (modified according to TDM)	Approved	
Imipenem/ Cilastatin ESBL-PE	Carbapenems, T > MIC 0.5–1 g q6h		FDA approved for the treatment of cUTI and cIAI. The phase-3 RCT are HAP/VAP (NCT02493764) is ongoing.	
Imipenem/ Relebactam ESBL-PE	Carbapenems plus BLI T > MIC 500 mg/250–125 mg q6h		Approved for cUTI, cIAI, HAP, VAP, and infections due to aerobic Gram-negative organisms in patients with limited treatment options	
Imipenem/ Relebactam CPE	(class A carbapenemases) Some MDR-PA			
Meropenem ESBL-PE	Carbapenems, T > MIC 1–2 g q8h or extended infusion (over 4 h)		Approved	
Meropenem/ Vaborbactam ESBL-PE	Carbapenems plus BLI T > MIC 4 g q8h		Approved for cUTI, cIAI, HAP, VAP, and infections due to aerobic Gram-negative organisms in patients with limited treatment options	
Meropenem/ Vaborbactam CPE	(class A carbapenemases)			
Piperacillin/ Tazobactam	Possibly active against ESBL-PE, although the results of the MERINO trial discourage the use of piperacillin/tazobactam for severe ESBL-PE infections [145]	Penicillins plus BLI T > MIC 4.5 g q6h continuous infusion	Approved	
Plazomicin ESBL-PE	ESBL-PE	Aminoglycosides, AUC/MIC 15 mg/kg q24h	Approved for cUTI (excluding diabetic foot infections) and cIAI	For BSI used only in combination with other agents for infections due to MDR organisms in presence of limited alternative therapeutic options
Plazomicin CPE	CPE (all classes of carbapenemases, including MBL, although resistance has been described in NDM-1 producing strains, owing to co-expression of plazomicin-inactivating methyltransferases [146])		An application has been recently submitted to EMA for approval of plazomicin for cUTI and other severe infections (plazomicin is approved by FDA for cUTI)	
Plazomicin MDR-PA	MDR-PA			
Plazomicin CRAB	CRAB			
Tigecycline MRSA	MRSA	Glycylcyclines, AUC/MIC 100–200 mg loading those, then 50–100 mg q12h	Approved for cSSTI (excluding diabetic foot infections) and cIAI	For BSI used only in combination with other agents for infections due to MDR organisms in presence of limited alternative therapeutic options
Tigecycline VRE	VRE			
Tigecycline ESBL-PE	ESBL-PE			
Tigecycline CPE	CPE (all classes of carbapenemases, including MBL)			
Tigecycline CRAB	CRAB			
Vancomycin MRSA	MRSA	Glycopeptides, AUC/MIC 15–30 mg/kg loading dose, 30–60 mg/kg q12h, or continuous infusion (modified according to TDM)	Approved	

ABSSSI acute bacterial skin and skin-structure infections, ARC augmented renal clearance, AUC area under the concentration curve, BLI beta-lactamases inhibitors, BSI bloodstream infections, CAP community-acquired pneumonia, CHMP Committee for Medicinal Products for Human Use, cIAI complicated intra-abdominal infections, CPE carbapenemase-producing Enterobacterales, CRAB carbapenem-resistant Acinetobacter baumannii, cSSTI complicated skin and soft-tissue infections, cUTI complicated urinary tract infections, EMA European Medicines Agency, ESBL-PE extended-spectrum beta-lactamase-producing Enterobacterales, FDA Food and Drug Administration, HAP hospital-acquired pneumonia, MBL metallo-beta-lactamases, NDM New Delhi metallo-beta-lactamase, L-AmB liposomal amphotericin B, MDR multidrug-resistant, MIC minimum inhibitory concentration, MRSA methicillin-resistant Staphylococcus aureus, MU million units, PA Pseudomonas aerugiosa, PD pharmacodynamics, PEP phosphoenolpyruvate, RCT randomized controlled trials, TDM therapeutic drug monitoring, VAP ventilator-associated pneumonia, VRE vancomycin-resistant enterococci
unfortunately not addressed in the gut microbiota—that is, the main reservoir of MDR Gram-negative bacteria in ICU patients. Intuitively, adding a second drug to a broad-spectrum beta-lactam may amplify the ecological side-effects on commensal ecosystems and the routine use of combination therapy can probably not be justified on the sole basis of preventing resistance at the infection site.

Next, several meta-analyses failed to demonstrate that the use of a beta-lactam/aminoglycoside association reduces fatality rates in patients with BSI—including those with neutropenia or sepsis—when compared to a monotherapy with the same beta-lactam [68–70]. Besides, adding an aminoglycoside to a beta-lactam-based regimen has been consistently linked with an increased hazard of acute renal failure at the acute phase of infection [68, 69, 71]. On a pathogen-specific approach, there is currently no evidence that a double-active regimen impacts the outcome of patients with BSI due to methicillin-susceptible S. aureus (except in those with implanted devices) or Enterobacteriales, including AmpC-hyperproducers and ESBL-PE [72–75]. Along this line, the benefit of a polymyxin-based combination has not been convincingly proven in patients infected with carbapenem-resistant A. baumannii though this strategy may perform better than polymyxin alone in patients with BSI and/or when high-dose colistin regimen are administered (i.e., ≥6 MUI per day) [76–79]. Controversies equally persist about the prognostic effect of combination therapy in P. aeruginosa BSI [73, 80, 81]; yet, no survival improvement was demonstrated in a meta-analysis of RCTs comparing beta-lactam plus aminoglycoside or fluoroquinolone versus beta-lactam alone in patients with this condition [82]. It should be emphasized, however, that most of available studies are relatively ancient, include a limited number of ICU patients, and display substantial heterogeneity in terms of antimicrobial administration schemes, sepsis definition, and severity indexes at BSI onset.

The benefit of combination therapy could actually be restricted to the most severely ill patients. Indeed, in a meta-regression analysis of observational studies and RCTs, combination therapy was associated with improved survival in patients with a baseline risk of death > 25% (odds ratio (OR) for death 0.51, 95% CI 0.41–0.64), while a harmful effect was strikingly observed in less severe patients (OR 1.53, 95% CI 1.16–2.03) [83], putatively due to toxic and/or ecological adverse events. Similar results were reported in a cohort of 437 patients with BSI due to carbapenemase-producing Enterobacteriales (mostly KPC-producing K. pneumoniae), with a survival benefit of combination therapy in those with a high probability of death (OR 0.56, 95% CI 0.34–0.91) but not in the lower mortality stratum [84]. Pending for confirmatory studies to definitely solve this essential issue [85], combination therapy remains recommended in patients with septic shock but should not be routinely prescribed for the definite treatment of those with other severe infections, including sepsis without circulatory failure [26].

Early appropriate source control

The search for the source of BSI (that is, secondary BSI) should be guided by the patient clinical presentation. The most common conditions that may require a specific approach for source control are obstructive UTI, skin and soft-tissue infections and intra-abdominal infections for secondary CA-BSI, and vascular device and surgical site infection for secondary HA-BSI. Source control to eliminate infectious foci follows principles of damage control and should be limited to drainage, debridement, device removal and compartment decompression in case of hemodynamic instability and organ failures [86].

An important body of the literature argues for a systematic catheter removal in case of catheter-related BSI in critically ill patients [87–89]. However, the device is actually the source of sepsis in less than half of those with a suspected catheter-related infection [90]. The systematic removal should thus be balanced with a more conservative attitude in the absence of septic shock but remains the rule in case of septic shock, immune suppression, or persistent bacteremia under appropriate antimicrobial therapy.

For BSIs related to surgical site infection, source control is a major determinant of outcome [91]. However, the optimal delay for source control is debated—from less than 6 to less than 12 h [91–94]. Indeed, the cost–benefit ratio of an immediate drainage in unstabilized patients or a hemodynamic and physiological stabilization-first and secondary source control is a matter of debate. Immediate damage control using less risky, minimally invasive surgical debridement and/or percutaneous drainage (delaying the need for definitive surgery until the patient is stabilized) is probably the best option [95]. It should be discussed with anesthetists and surgeons on an individual basis.

Key elements of surgical source control include drainage, debridement, cleansing, irrigation, and control of the source of contamination [95]. Yet, the quality of source control is difficult to evaluate [96], somewhat subjective and depends on the surgeon’s perception. A standardized reporting file of the operative procedure may help. A closed collaboration between surgeons and intensivists during the patients’ follow-up is, therefore, fundamental.
De-escalation strategy
Antimicrobial de-escalation (ADE) is a component of antimicrobial stewardship strategies (AMS) aiming at both reducing the spectrum of antibiotic therapy and decreasing the emergence of antimicrobial resistance [97].

ADE is variably defined, and usually includes narrowing the spectrum of a pivotal antibiotic, often a β-lactam, and/or decreasing the number of agents [98, 99]. Those components should be scrutinized separately but in general ADE is part of the re-evaluation of the antimicrobial regimen that happens 2–3 days after the infection was diagnosed when results of microbiological specimens become available. BSI is very particular as it is the only kind of infection where the pathogen is always known (by definition), and as such a perfect candidate for this re-evaluation.

Where the source and the pathogen of the BSI are known, it can be safely recommended, even in immunocompromised patients [99, 100], to stop companion antibiotics intended to broaden the spectrum of therapy. Indeed, for a Gram-negative BSI, anti-MRSA or anti-fungal agents should not be continued longer than it is needed to know those are not in cause.

The case of the pivotal antibiotic is more complex because of multiple factors:

- While resistance to carbapenems may increase after extended courses, a lot of the harm has already been done after 1–3 days of therapy [101].
- Ranking the spectrum of antibiotics is complex and yields variable results depending on the method, the region of the world and the priorities that are considered [98, 102, 103].
- Whether narrowing the clinical antimicrobial spectrum decreases the emergence of resistance has not been adequately studied, and while it has some rationale, in some cases, the opposite may be true [104].
- Some ADE regimens such as switching a beta-lactam for a fluoroquinolone may be useful in the ward to allow for oral treatment and discharge from hospital. This potential benefit does not exist for ICU patients, and those regimens are likely to cause additional emergence of resistance.
- Caution is important for sources that are frequently polymicrobial such as intra-abdominal infections. A positive BC may yield a single pathogen, while specimens from the source may identify multiple pathogens. Furthermore, there may be other important pathogens that were not cultured and require the broad-spectrum antimicrobial that was initially started.
- In silico PK/PD modeling has warned that with conventional dosing strategies narrower spectrum beta-lactams may have higher risks of non-target attainment than their broad-spectrum alternatives [105].
- Some narrower spectrum alternatives are more effective than broad-spectrum regimens. For instance, oxacillin or cephalozin are superior to piperacillin/tazobactam in S. aureus BSI [106].
- Risk exists that ADE may cause an increase in the total duration of antimicrobial therapy [107]. Multiple studies on different sources of infection lead to recommend shorter rather than longer duration of antimicrobial therapy and this may be a more important target than changing molecules within a treatment [108, 109].
- In ADE, it is particularly important to not increase the duration of treatment because of days where treatments overlap. We recommend that a stop date and time is calculated from the time of effective treatment and that this is maintained for the treatment after ADE.

We recommend consideration is given to all or a combination of those reasons before deciding if narrowing the pivotal antimicrobial is the appropriate course of action in critically ill patients with a BSI. ADE should be an integral part of the global AMS strategy, targeting the optimization of the treatment of patients with an infection. ADE is part of the clinical and microbiological re-evaluation that should happen for every patient with a BSI every time the laboratory provides new information. Those time points include the alert for positivity and Gram stain, the speciation and sensitivities of the pathogen.

Duration of therapy
Sufficient duration of antimicrobial therapy is required to prevent clinical failure and relapse. It should, however, not exceed what is required to achieve that target as longer courses may cause adverse events, toxicity, emergence of antimicrobial resistance, increase costs and resource use.

Duration of therapy should be defined as starting on the first day after an adequate antimicrobial is administered, and the source has been treated, and the blood cultures have become negative. To define clearance of the bacteremia, we require at least one set of negative blood cultures obtained 2–4 days after the infection [110]. Sampling more than one follow-up sets of blood cultures is preferable to avoid the skip phenomenon. This was described for S. aureus as when persisting bacteremia may be missed if insufficient follow-up cultures are performed [111].
From a recently published cohort study of 1202 ICU patients with BSI, we learn that current practice consists in extended duration of treatment for those patients with a median of 14 days (IQR, 9–17.5 days) [112]. After proper adjustment and excluding early deaths, duration of treatment showed no association with either survival or bacteremia relapse [15]. Most importantly, data extrapolated from observational studies on duration of treatment should be analyzed with extreme caution in populations with an inherently high risk of death. In survivor bias, the patients who have died early have had less days alive where the treatment could be given, hence received a shorter course of treatment. This artificially increases the risk of death associated with shorter courses and may have led clinicians to favor unnecessarily longer treatments.

A multicenter RCT involving 3598 ICU patients with BSI to 7 vs 14 days of antibiotics is ongoing (planned enrollment of 3598 patients). Results will not be available until 2022 (Balance trial-NCT03005145) and, until then, we will need to rely on a lower quality of evidence from uncontrolled or underpowered randomized trials that are described below.

The safety of a shorter antibiotic therapy for Gram-negative uncomplicated BSI was recently shown in a RCT including 604 patients across 3 centers. The authors enrolled hemodynamically stable patients without fever for at least 48 h at day 7 after the BSI onset. They established non-inferiority of 7 against 14 days of treatment for a primary composite outcome of mortality, clinical failure, readmissions and extended hospitalization at day 90 [113]. The validity of these results in *Pseudomonas aeruginosa* BSI and in population with higher severity or prevalence of immunosuppression was suggested in a multicenter cohort of 249 patients included from 5 hospitals [114]. They used a causal inference model with adjustment on the inverse probability of treatment weighting. The composite outcome of recurrent *P. aeruginosa* infection at any site or mortality at 30 days was similar in both groups (OR 1.06; 95% CI 0.42–2.68; p = 0.91). Recurrent infections occurred in 7% of the short course and 11% of the prolonged course groups, thereby invalidating the reasoning to continue antibiotics beyond the recommended duration to prevent relapse [114].

This is in line with the findings of a meta-analysis of short versus long antibiotic treatments in patients with bacteremia caused by the most common infectious syndromes [108]. Only one trial conducted in children with acute nephronia—that is an intermediate stage between acute pyelonephritis and renal abscess—favored longer compared to shorter antibiotic courses [115]. For other trials and in pooled results, there was no difference in survival, clinical or microbiological cure with owing to treatment duration.

Trials investigating the infectious syndromes causing BSI in the ICU are important as in most cases, it may be the source that should guide our treatment rather than its consequence (the bacteremia). Short treatment should safely be used for ventilator-associated pneumonia (VAP) [116], or post-operative intra-abdominal infections provided source control was optimal [109].

When judging of duration of antibiotics, there is this second time point at 5–7 days. The decision of escalation/de-escalation/no change or dose adjustments should be taken after 2–3 days when microbiological specimens became available [98]. The effectiveness of therapy should be judged after 1 week of treatment on clinical and microbiological resolution of the infection. This will include defervescence and resolution of organ failures and shock, negative follow-up cultures, the absence of endocarditis or metastatic sites of infection and no implanted prosthesis which are all required to define an uncomplicated infection [110]. Problems with source control and/or superinfections at the source will also uncover around that time point. If those are resolved and the pathogen or the source is not specifically requiring extended treatments antibiotic regimen can be safely stopped.

For some pathogens, such as *S. aureus* or in cases of uncomplicated candidemia, treatment should be continued for 14 days after the first negative blood culture [110, 117]. Some particular source of infections where the pathogen is quiescent or living in biofilms, the presence of an untreated source, septic metastasis or micro-abscesses also require prolonged therapy. Thoracic/transoesophageal echocardiograph and funduscopic should be performed before deciding the duration of therapy. Indeed, short-term therapy (15 days) was shown to be effective only in selected cases of uncomplicated *S. aureus* right-sided infectious endocarditis or left-sided native valve infectious endocarditis due to highly susceptible streptococci. Most current recommendations emphasize prolonged antibiotic administration (4–6 weeks or even 8 weeks) for *S. aureus* prosthetic valve endocarditis. Valve cultures should be taken into account to decide how long to continue antimicrobial therapy after valve replacement [118]. Longer therapies are also needed for bone and joint infections (4–8 weeks), brain abscesses (8 weeks), empyema (4–6 weeks) or, in general, when the source control is impossible or incomplete. It is especially the case when infected devices or prosthesis are left in place.

The major limitation of systematically shortening the duration of therapy in uncomplicated infection is the lack of controlled trials confirming its safety. Importantly,
the stabilization of the infection process may be difficult to define and often subjective. The use of individualized follow-up of procalcitonin (PCT) levels might be helpful in certain CA infections [119]—indeed, available data suggest that a PCT-driven reduction of treatment duration in patients with otherwise improving clinical status does not result in increased mortality, including in those with BSI [120, 121]. In case of incomplete source control, the duration of therapy might be guided by repeated morphological exams such as leucocyte scintigraphy, and PET scans.

The case of ongoing instability or clinical worsening is complex and may be due to multiple different causes. Often combined, interconnected and leading to diagnostic dilemma with a very high risk of death. Failure of treatment at the source, superinfection with a different or the same pathogen that has become resistant to the ongoing antimicrobial therapy, residual infected tissues or material at the source or at other sites via hematogenous dissemination will all require new specimens, possibly new percutaneous or surgical control, optimization and sometimes escalation of antibiotics. The duration will need to be recalculated from that point in time. Furthermore, it is always important to suspect infections related to the high intensity of care, such as VAP, CLABSI, or a CAUTI. Peripheral blood cultures, specimens of each clinically suspected source and changing the CVC, arterial line and any indwelling material with sending catheter tips for microbiology are most often necessary as part of the treatment and diagnostic workup. While in patients without shock, there are hints to a benefit for waiting for results of such investigations [122]. In cases with high severity, worsening shock and the risk of an untreated infection, it is often required to escalate the antimicrobial regimen in the meantime. The new regimen should take into account colonization and the most frequent pathogens and resistance patterns according to the source and patient category and always be preceded by new blood cultures and specimens of any potential source.

It is, however, important to always remember that non-infectious causes of fever may complicate the clinical picture, most prevalently drug reactions or antibiotic related fever and venous thromboembolism [123]. It is only with meticulous review of the history, available microbiology, clinical examination and targeted investigations that the decision can be taken to escalate the spectrum, extend the duration or sometimes stopping the antimicrobials altogether to allow for an effective microbiological workup.

Concluding remarks

Community-acquired and healthcare-associated BSIs are common situations to manage in ICU patients and are associated with impaired outcomes, especially in case of sepsis/septic shock, immune deficiency, and delayed adequate antimicrobial therapy and/or source control. The prevalence of MDR pathogens is high or even increasing in healthcare-associated BSI, thereby strengthening the need for prospective clinical evaluation of novel diagnostic tools that enable earlier identification of resistance markers. Pending for such data, the choice of empirical regimen depends on a variety of clinical parameters, with the patient’s individual risk of MDR pathogen being the leading one. Double-active regimen might improve survival in the most severely ill patients yet further studies should be focused on this essential issue. Antimicrobial de-escalation should be considered once culture results become available and the source of BSI is identified and controlled. Treatment duration longer than 5–8 days may be indicated only in certain clinical scenarios and/or in BSI due to particular pathogens such as S. aureus.

Author details

1 AP-HP, Hôpital Bichat, Medical and Infectious Diseases ICU, 75018 Paris, France. 2 Université de Paris, IAME, INSERM, 75018 Paris, France. 3 AP-HP, Hôpital Bichat, Bacteriology Laboratory, 75018 Paris, France. 4 Medical ICU, La Source Hospital, CHR Orléans, Orléans, France. 5 ICU, Redcliffe Hospital, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia. 6 Infectious Diseases Clinic, Department of Health Sciences, University of Genoa, Genoa and Hospital Policlinico San Martino-IRCCS, Genoa, Italy.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest linked to the submitted work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 October 2019 Accepted: 23 January 2020
Published online: 11 February 2020

References

1. Adrie C, Garrouste-Orgeas M, Ibn Essaied W, Schwebel C, Darmon M, Mourvillier B, Ruckly S, Dumenil AS, Kallel H, Argaud L, Marcotte G, Barbier F, Laurent V, Goldgran-Toledano D, Clec’h C, Azoulay E, Souweine
B, Timsit JF (2017) Attributable mortality of ICU-acquired bloodstream infections: impact of the source, causative microorganism, resistance profile and antimicrobial therapy. J Infect 74:131–141.

2. Tabah A, Koulenti D, Laupland K, Misset B, Valles J, Bruzzì de Carvalho F, Paiva JA, Cákar N, Ma X, Eggimann P, Antonelli M, Bonten MJ, Csomos A, Krueger WA, Mikstacky A, Lipman J, Depuydt P, Vesin A, Garrouste-Orges M, Zahr JR, Blot S, Carlet J, Brun-Buisson C, Martin C, Rello J, Dimopoulos G, Timsit JF (2012) Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROCAB International Cohort Study. Intensive Care Med 38:1930–1945.

3. Zahr JR, Timsit JF, Garrouste-Orges M, Francais A, Vesin A, Descors-Declere A, Dubois Y, Souweine B, Haouache H, Goldgran-Toledano O, Allaouchiche B, Azoulay E, Adrie C (2011) Outcomes in severe sepsis and patients with septic shock: pathogen species and infection sites are not associated with mortality. Crit Care Med 39:1886–1895.

4. Laupland KB, Church DL (2014) Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev 27:647–664.

5. Corona A, Bertolini G, Lipman J, Wilson AP, Singer M (2010) Antibiotic use and impact on outcome from bacteraemic critical illness: the BActeraemia Study in Intensive Care (BASIC). J Antimicrob Chemother 65:1276–1285.

6. McCarthy KL, Paterson DL (2017) Community-acquired Pseudomonas aeruginosa bloodstream infection: a classification that should not falsely reassure the clinician. Eur J Clin Microbiol Infect Dis 36:703–711.

7. See I, Mu Y, Albrecht V, Karlsson M, Dumyati G, Hardy DJ, Koeck M, Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E (2016) Fecal colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: a systematic review and meta-analysis. Clin Infect Dis 63:310–318.

8. Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, Jones RN (2019) The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 63:e003355.

9. De Angelis G, Fiori B, Menchinelli G, D’Inzeo T, Liotti FM, Morandotti GA, Ista E, van der Hoven B, Kornelisse RF, van der Starre C, Vos MC, Boersma GR, E, Ruiz Ramos J, Aragao I, Santos C, Sperning RHM, Coppadoro P, Nardi M, Mancebo J, Wise MP, Morgan MPG, Depuydt P, Boelens J, Dugernier CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377.

10. Richet H (2012) Seasonality in Gram-negative and healthcare-associated infections. Clin Microbiol Infect 18:934–940.

11. Timsit JF, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, Kipnis M, Parienti JJ, du Cheyron D, Timsit JF, Traore O, Kalfon P, Mimoz O, Merrel LA (2012) Meta-analysis of subcutaneous insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med 40:1707–1714.

12. Timsit JF, Bouadma L, Ruckly S, Schwebel C, Garrouste-Orges M, Bronchard R, Calvino-Gunther S, Laupland K, Adrie C, Thuang M, Heralauc M, Pease S, Arnaud X, Lucet JC (2012) Dressing disruption is a major risk factor for catheter-related infections. Crit Care Med 40:1707–1714.

13. Ista E, van der Hoven B, Kornelisse RF, van der Starre C, Vos MC, Boersma GR, E, Ruiz Ramos J, Aragao I, Santos C, Sperning RHM, Coppadoro P, Nardi M, Mancebo J, Wise MP, Morgan MPG, Depuydt P, Boelens J, Dugernier CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377.

14. Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, Gavric M, Lawandi A, Jinah R, Saeed Z, Demir K, Huang K, Mahpour A, Shamatutu C, Gaya C, Troquet JM, Clark G, Yansouni CP, Sweet PM, Minkowitz H, Pappas PG, Alangaden GJ, Clark GB, Gerlach H, Hidalgo JL, Holmberg SM, Jones AE, Karndar DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marin J, Marshall JC, Maysaki JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navales P, Nishida O, Osborn TM, Fournier A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377.

15. Banerjee R, Teng CB, Cunningham SA, Ihde SM, Steckelberg JM, Pappas PG, Alangaden G, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karndar DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marin J, Marshall JC, Maysaki JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navales P, Nishida O, Osborn TM, Fournier A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377.

16. Lynfield R, Nadle J, Ray SM, Schaffner W, Kallen AJ (2019) Trends in healthcare-associated infections: impact of the source, causative micro-organism, resistance trends in bloodstream infections caused by ESKAPE and ESKAPE pathogens: a clinical and epidemiological perspective. Clin Microbiol Infect 25:647–664.

17. Richet H (2012) Seasonality in Gram-negative and healthcare-associated infections. Clin Microbiol Infect 18:934–940.
on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 64:15–23

31. Faron ML, Buchan BW, Ledeboer NA (2017) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for use with positive blood cultures: methodology, performance, and optimization. J Clin Microbiol 55:3328–3338

32. Chiu CY, Miller SA (2019) Clinical metagenomics. Nat Rev Genet 20:341–355

33. Grumaz S, Stevens P, Grumaz C, Decker SO, Weigand MA, Hofer S, Parize P, Muth E, Richaud C, Gratigny M, Pilmis B, Lamamy A, Mainardi Hogan CA, Watz N, Budvytiene I, Banaei N (2019) Rapid antimicrobial susceptibility testing by VITEK2 directly from blood cultures in patients with Gram-negative rod bacteremia. Diagn Microbiol Infect Dis 94:116–121

34. Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann Bassetti M, Peghin M, Vena A, Giacobbe DR (2017) Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J Clin Microbiol 55:2116–2126

35. Calandra T, Roberts JA, Antonelli M, Bassetti M, Vincent JL (2016) Diagnostic and therapeutic drug monitoring of the beta-lactam antibiotics: what is the optimal clinical application of prolonged infusion of beta-lactam antibiotics. Int J Antimicrob Agents 45:743–745

36. Schwab G, Anderl M, Schmidbauer W, Pichler M, Wimmer E, Gross A, Blau J, Krönlein T, Ruschitzka FT, Joffre P, Peter S (2017) Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing in patients with bloodstream infections. J Antimicrob Chemother 70:3178–3183

37. Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, Giacobbe DR, McWhinney BC, Ungereger JP, Lipman J, Roberts JA (2017) Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39

38. Mouton JW, Muller AE, Canton R, Giamarellou H, Karaiskos I, Kaye D, Mouton JW, Tam VH, Thamlikitkul V, Wunderink RG, Li J, Nation RL, Kaye KS (2019) International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 39:10–39

39. Duszynska W, Taccone FS, Huttner A, Harbarth S, Hope WW, Lipman J, Roberts JA (2015) Therapeutic drug monitoring of the beta-lactam antibiotics: what is the evidence and which patients should we be using it for? J Antimicrob Chemother 70:3178–3183

40. Roberts JA, Taccorne FS, Lipman J (2016) Understanding PK/PD. Intensive Care Med 42:1797–1800

41. Roberts JA, Paul SK, Akova M, Bassetti M, De Waeye JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montaurens P, Rello J, Rhodes A, Starr T, Wallics PC, Lipman J, Study D (2014) DALLI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic dosing sufficient for critically ill patients? Clin Infect Dis 58:1072–1083

42. Hogan CA, Watz N, Budvytiene I, Banaei N (2019) Rapid antimicrobial susceptibility testing by VITEK2 directly from blood cultures in patients with Gram-negative rod bacteremia. Diagn Microbiol Infect Dis 94:116–121

43. Schnell D, Montalhac C, Bruneel F, Resche-Rigon M, Kouatchet A, Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, Join-Lambert O, Leruez-Ville M, Nassif X, Lecuit M, Eloit M (2017) Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study. Clin Microbiol Infect 23(574):e571–e574

44. Blauwinkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vifian ID, Kawli T, Christians FC, Venkatasubrahmanyam S, Wall GD, Cheung A, Rogers M, Zelnik AM, Ghiuse L, Balakrishnan S, Quint J, Hollemon D, Hong DK, Vaughn ML, Kertesz M, Bercovici S, Wilber JC, Yang S (2019) Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol 4:665–674

45. Panzari F, Muth E, Richaud C, Gratigny M, Pilmis B, Lamamy A, Mainardi JL, Cheval A, de Visser L, Jagorel F, Ben Yahia L, Bamba G, Doubois M, Join-Lambert O, Loretz-Ville M, Nassif X, Lefort A, Lanterniere F, Suarez F, Lortholary O, Lecuit M, Eloit M (2017) Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study. Clin Microbiol Infect 23(574):e571–e574

46. Hogan CA, Watz N, Budvytiene I, Banaei N (2019) Rapid antimicrobial susceptibility testing by VITEK2 directly from blood cultures in patients with Gram-negative rod bacteremia. Diagn Microbiol Infect Dis 94:116–121

47. Marschal M, Bachmaier J, Autenrieth I, Oberhettinger P, Willmann M, Peter S (2017) Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by Gram-negative pathogens. J Clin Microbiol 55:2116–2126

48. Bassetti M, Poulakou G, Ruppe E, Bouza E, Van Hal SJ, Brink A (2017) Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med 43:1464–1475

49. Taccorne FS, Lipman J, Carlier M, Roberts JA (2015) Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39

50. Mouton JW, Muller AE, Canton R, Giamarellou H, Karaiskos I, Kaye D, Mouton JW, Tam VH, Thamlikitkul V, Wunderink RG, Li J, Nation RL, Kaye KS (2019) International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 39:10–39

51. De Waeye JJ, Lipman J, Carlier M, Roberts JA (2015) Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39

52. Mouton JW, Muller AE, Canton R, Giamarellou H, Karaiskos I, Kaye D, Mouton JW, Tam VH, Thamlikitkul V, Wunderink RG, Li J, Nation RL, Kaye KS (2019) International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 39:10–39

53. Duszynska W, Taccone FS, Huttner A, Harbarth S, Hope WW, Lipman J, Roberts JA (2015) Therapeutic drug monitoring of the beta-lactam antibiotics: what is the evidence and which patients should we be using it for? J Antimicrob Chemother 70:3178–3183

54. Wang W, Giacobbe D, McWhinney BC, Ally M, Ungereger JP, Lipman J, Roberts JA (2018) Therapeutic drug monitoring of beta-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations
to achieve appropriate drug exposures. J Antimicrob Chemother 73:3087–3094

64. Wong G, Sime FB, Lipman J, Roberts JA (2014) How do we use thera‑

67. Brunkhorst FM, Oppert M, Marx G, Bloos F, Schadler D, Weyland A, Ragaller M, Schwarzkopf K, Eiche J, Kuhnle G, Schadler D, Weyland A, Ragaller M, Schwarzkopf K, Eiche J, Kuhnle G, Timsit JF, Rupp M, Bouza E, Chopra V, Karpanen T, Laupland K, Lisboa M, Rodriguez‑Gomez J, Souli M, Bonomo RA, Carmeli Y, Perez F, Schwaber MJ, Bermejo J, Oliver A, Martinez‑Martinez L (2013) Effect of adequate single‑drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post hoc analysis of a prospective cohort. Clin Infect Dis 57:208–216

80. Tschudin‑Sutter S, Fosse N, Frei R, Widmer AF (2018) Combination therapy for treatment of Pseudomonas aeruginosa bloodstream infec‑

85. Andes DR, Safdar N, Keshiredy S, Chateau D (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta‑analytic/meta‑regression study. Crit Care Med 38:1651–1664

97. Lebetkin I, Babich T, Friberg LE, Mouton JW, Hellman J, Log S, Kexoe‑

130. multizone, and manage complications associated with intravascular devices in the critically ill. Intensive Care Med 44:726–759

149. van Dijk J, Pappas PG, Kullberg BJ (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient‑level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122

168. Lecronier M, Valade S, Bigeon N, Al‑prost N, Roux D, Lebeaux D, Maury E, Azoulay E, Demoulle A, Perez F, Almirante B, Bonomo RA, Carmeli Y, Parente JJ, Poulliaux G, Souvaine B, Zingg WV (2018) A state of the art review on optimal practices to prevent, recognize, and manage complications associated with intravascular devices in the critically ill. Intensive Care Med 44:742–759

187. Burnham JP, Rojek RP, Kellerman (2018) Catheter removal and outcomes of multidrug‑resistant central‑line‑associated bloodstream infec‑

196. A (2017) Impact of source control in patients with severe sepsis and septic shock. Crit Care Med 45:11–19

205. Bloos F, Thomas‑Ruddel D, Ruddel H, Engel C, Schwarzkopf D, Marshall JC, Harbarth S, Simon R, Riess R, Keh D, Dey K, Weiss M, Toussaint S, Schadler D, Weyland A, Ragaller M, Schwarzkopf K, Eiche J, Kuhnle G,
Meier MA, Branche A, Neeser OL, Wirz Y, Haubitz S, Bouadma L, Wolff M, Lyut CE, Chastre J, Tubach F, Christ-Crain M, Corti C, Jensen JS, Delerato RO, Kristoffersen KB, Dams P, Nobre V, Oliveira CF, Shehabi Y, Stolz D, Tanm M, Mueller B, Schuetz P (2018) Procalcitonin-guided antibiotic treatment in patients with positive blood cultures: a patient-level meta-analysis of randomized trials. Clin Infect Dis 69:388–396

Hranjec T, Rosenberger LH, Svensson B, Metzger R, Flohr TR, Polotano AD, Riccio LM, Popovsky KA, Sawyer RG (2012) Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis 12:774–780

Minet C, Potton L, Bonadona A, Hamidfar-Roy R, Somohano CA, Lugosi A, Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami TW, Semler MW (2019) Balanced crystalloids versus saline in sepsis. A randomized clinical trial. JAMA 320:1455–1463

Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, Palevsky PM, Weissberg LS, Schorr CA, Trzcinski S, Walker PM (2018) Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin levels: the EU-PHREATES randomized clinical trial. JAMA 320:1455–1463

Annane D, Renauld A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, Carion A, Forcille X, Schwabel C, Martin C, Cimtis T, Missert B, Ali Benali M, Collin G, Soueine B, Ahsenoune K, Mercier E, Chlimot L, Carpentier C, Francois B, Boulaic T, Petitpas F, Constantin JM, Dhonneur G, Baudin F, Combes A, Bohe J, Lorfier NE, Amathieu R, Cook F, Slama M, Leroy O, Capelle D, Gargett A, Hissem T, Maxime V, Bellissant E (2018) Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med 378:809–818

Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–1506

Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Ternord T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693

Weiner LM, Webb AK, Limbagho D, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014. Infect Control Hosp Epidemiol 37:1288–1301

Weiner-Langstinger LM, Abner S, Edwards JR, Kallen AJ, Karlsson M, Magill SS, Pollock D, See I, Soe MM, Walters MS, Dudeck MA (2019) Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect Control Hosp Epidemiol 41:1–18

Rosenthal VL, Al-Abdely HM, El-Kholy AA, AlKhawaja SAA, Leblebicio glu H, Mehta Y, Rai V, Hassan NV, Kanji SS, Salama MF, Salgado-Yepez E, Elahi N, Morfin Otero R, Apsarsthanarak A, De Carvalho BM, Ider BE, Fisher D, Buenafuerte M, Petrov MM, Quesada-Mora MA, Zand F, Gurskis V, Anguseva T, Ikram A, Aguilar de Moros D, Duszynska W, Mejia N, Horhat FG, Belsky V, Mittocky V, Di Silvestre G, Gurova K, Ramos-Ortiz GY, Gamar Elantery MO, Sakati H, Gupta U, Dendane T, Takai L, Goucke-Garcell H, Hu B, Padgett D, Jayatilleke K, Ben Iballah N, Apostolopoulou E, Prudenico Leon VE, Sepulveda-Chavez A, Telechea HM, Trotter A, Alvarez-Moreno C, Kucherov-Davalos L (2016) International Nosocomial Infection Control Consortium report, data summary of 50 countries of 2010–2015. device-associated module. Am J Infect Control 44:1495–1504

Hsu LY, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Nie Y, Kang M, Wang CQ, Wang AM, Xu YH, Shen JL, Sun ZY, Chen ZJ, Ni YX, Sun JY, Chu YZ, Tian SF, Hu ZD, Li J, Yu YS, Lin J, Shan B, Du Y, Han Y, Guo S, Wei LH, Wu L, Zhang H, Kong J, Hu Y, Ai XM, Zhuo C, Su DH, Yang Q, Jia B, Huang W (2016) Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect 22(Suppl 1):S90–14

Hsu LY, Apsarsthanarak A, Khan E, Suwantrant N, Ghafor A, Tambahy PA (2017) Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 30:1–22

Bonnell A, Azarafi R, Huang VTL, Viet VL, Phu VD, Dat VQ, Wertheim H, van Doom HR, Lewycka S, Nadjm B (2019) A systematic review and meta-analysis of ventilator-associated pneumonia in adults in Asia: an analysis of national income level on incidence and etiology. Clin Infect Dis 68:S11–S18

Carrara L, Navarro F, Turbani M, Mes S, Moran I, Quintana I, Martino R, Gonzalez Y, Brel A, Cordón O, Dietzka K, Mata C, Mirellis B, Coll P (2013) Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J Med Microbiol 62:1673–1679

Zboromsycka Y, Collinzon C, Cobos-Trigueros N, Almela M, Hurtado JC, Vergara A, Mata C, Soriano A, Mensa J, Marco F, Vila J (2019) Evaluation of the magicplex sepsis real-time test for the rapid diagnosis of bloodstream infections in adults. Front Cell Infect Microbiol 956

Ziegler I, Fagerstrom A, Stralin K, Molling P (2016) Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis. PLoS One 11:e0167883

Altun O, Almuhayawi M, Ullberg M, Ozcan V (2013) Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol 51:4130–4136

Bhatti MM, Boonlayangoor S, Beavis KG, Tesci V (2014) Evaluation of FilmArray and Verigene systems for rapid identification of positive blood cultures. J Clin Microbiol 52:3433–3436

Kim JS, Kang GE, Kim HS, Song W, Lee KM (2016) Evaluation of sepsis blood culture test systems for rapid identification of positive blood cultures. Biomed Res Int 2016:1081536

Lutgring JD, Bittencourt CY, McElvainia T, Eppepe E, Cavuoti D, Holloway R, Bu LD (2018) Evaluation of the accelerate pheno system: results from two academic medical centers. J Clin Microbiol 56:e01672

Charnot-Katsikas A, Tesci V, Love N, Hill B, Bethel C, Boonlayangoor S, Beavis KG (2018) Use of the accelerate pheno system for identification of antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol 56:e01166

Kadri SS, Adjemian J, Lae YL, Spaulding AB, Ricotta E, Prevots DR, Palmare RN, Clee K, Klomps M, Dekker JP, Powers JH 3rd, Sudduffin AF, Hooper DC, Fridkin S, Danner RL, National Institutes of Health Antimicrobial Resistance Outcomes Research I (2018) Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 67:1803–1814

Dijkmans AC, Zacarias NVO, Burggraaf J, Mouton JW, Wilms EB, van Nieuwkoop C, Touw DJ, Stevens J, Kamerling IMC (2017) Fosfoycin: pharmacological, clinical and future perspectives. Antibiotics (Basel) 6:24

Harris PHA, Tambahy PA, Lye DC, Mo Y, Lee TH, Yilmaz M, Alenazi TH, Araby Y, Falcone M, Bascetti M, Righi E, Rogers BA, Kanji S, Bally H, Iredell J, Mendelson D, Boys TH, Looke D, Miyakis S, Waltu G, Al Khamsi M, Zikri A, Crowe A, Ingram N, Daneman N, Griffin P, Athan E, Lorenc P, Baker P, Roberts L, Beattson SA, Peleg AY, Harris-Brown T, Paterson DL, Investigators MT, The Australasian Society for Infectious Disease Clinical Research Network R (2018) Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA 320:984–994

Levermore DM, Murtha S, Warner M, Zhang JC, Maharan S, Doumith M, Woodford N (2011) Activity of aminoglycosides, including ACNH-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 66:48–53