A REMARK ON THE GENERIC VANISHING OF KOSZUL COHOMOLOGY

JIE WANG

Abstract. We give a sufficient condition to study the vanishing of certain Koszul cohomology groups for general pairs \((X, L) \in W_{g,d}^r\) by induction. As an application, we show that to prove the Maximal Rank Conjecture (for quadrics), it suffices to check all cases with the Brill-Noether number \(\rho = 0\).

Contents

Introduction 1
1. Koszul cohomology on a singular curve 3
2. The case \(p = 1\) 5
3. Applications to the Maximal Rank Conjecture 6
References 7

Introduction

Let \(L\) be a base point free \(g^r_d\) on a smooth curve \(X\), the Koszul cohomology group \(K_{p,q}(X, L)\) is the cohomology of the Koszul complex at \((p, q)\)-spot

\[
\begin{array}{c}
\wedge^{p+1}H^0(L) \otimes H^0(L^{q-1}) \\
\xrightarrow{d_{p+1,q-1}} \wedge^p H^0(L) \otimes H^0(L^q) \\
\xrightarrow{d_{p,q}} \wedge^{p-1}H^0(L) \otimes H^0(L^{q+1})
\end{array}
\]

where

\[
d_{p,q}(v_1 \wedge \ldots \wedge v_p \otimes \sigma) = \sum_i (-1)^i v_1 \wedge \ldots \wedge \widehat{v_i} \wedge \ldots \wedge v_p \otimes v_i \sigma.
\]

Koszul cohomology groups \(K_{p,q}(X, L)\) completely determine the shape of a minimal free resolution of the section ring

\[
R = R(X, L) = \bigoplus_{k \geq 0} H^0(X, L^k).
\]

and therefore carry enormous amount of information of the extrinsic geometry of \(X\).

In this paper, we are interested in Green’s question [10].

Question 0.1. What do the \(K_{p,q}(X, L)\) look like for \((X, L)\) general in \(W_{g,d}^r\) (i.e. \(X\) is a general curve of genus \(g\) and \(L\) is a general \(g^r_d\) on \(X\))?

The following facts are well known (c.f. [10], [12]) for general \((X, L) \in W_{g,d}^r\).

1. We have the following picture of \(k_{p,q} = \dim_K K_{p,q}(X, L)\) (The numbers \(k_{p,q}\) in the table are undetermined.):
Table 1.

0	$h^1(L)$	0	0
0	ρ	$k_{r-2,2}$	$k_{2,2}$
0	$k_{r-1,1}$	$k_{r-2,1}$	$k_{2,1}$
0	0	0	0

(2)

$$k_{p,1} - k_{p-1,2} = \chi(\text{Koszul complex})$$

$$= \binom{r+1}{p}(g-d+r) - \binom{r+1}{p+1}g + \binom{r-1}{p}d + \binom{r}{p+1}(g-1).$$

Question 0.1 seems to be too difficult to answer in its full generality. For the case $p = 1$, the Maximal Rank Conjecture (MRC) \cite{8} predicts that the multiplication map

$$\text{Sym}^2 H^0(X, L) \xrightarrow{\mu} H^0(X, L^2)$$

is either injective or surjective, or equivalently

$$\min\{k_{1,1}, k_{0,2}\} = 0.$$

Geometrically, this means that the number of quadrics in $\mathbb{P}^r := \mathbb{P}(H^0(L))$ containing X is as simple as the Hilbert function of $X \subset \mathbb{P}^r$ allows.

There are many partial results about the MRC using the so-called “méthode d’Horace” originally proposed by Hirschowitz. We refer to, for instance, \cite{5}, \cite{6} for some recent results in this direction.

For higher syzygies, again there are many results (c.f. \cite{1}, \cite{2}, \cite{4}, \cite{7}, and \cite{9}). One breakthrough result is Voisin’s solution to the generic Green’s conjecture \cite{13} \cite{14}, which answers Question 0.1 for the case $L = K_X$.

Definition 0.2. For $1 \leq p \leq r - 1$, we say property $\text{GV}(p)^r_{g,d}$ holds if for general $(X, L) \in \mathbb{W}^r_{g,d}$,

$$\min\{k_{p,1}(X, L), k_{p-1,2}(X, L)\} = 0.$$

Remark 0.3. The MRC implies that property $\text{GV}(1)^r_{g,d}$ always holds provided the Brill-Noether number $\rho := g - (r+1)(g-d+r) \geq 0$. However, property $\text{GV}(p)^r_{g,d}$ does not always hold for $p \geq 2$ (c.f Green \cite{10} (4.a.2) for more details).

In this note, we give a sufficient condition (Theorem 1.5) for $\text{GV}(p)^r_{g,d}$ to imply $\text{GV}(p)^r_{g+1,d+1}$. One could use this to set up an inductive argument for the generic vanishing of Koszul cohomology groups. In each step of the induction, r is fixed and g, d go up by 1.

In the case $p = 1$, this sufficient condition turns out to be an surprisingly simple geometric condition on the quadrics containing the first secant variety $\Sigma_1(X)$ of X (Lemma 2.1). We manage to verify this geometric condition and prove

\footnote{In this paper, we will restrict ourselves to only consider quadrics containing X.}
Theorem 0.4. The property $\Gamma V(1)^r_{g,d}$ implies $\Gamma V(1)^r_{g+1,d+1}$.

Based on our knowledge about the base cases of the induction, we have

Theorem 0.5. The Maximal Rank Conjecture holds for a general pair $(X, L) \in W_{g,d}$, if $h^1(L) \leq 2$.

An interesting question remaining is that for $p \geq 2$, whether the sufficient condition in Theorem 0.5 has anything to do with higher syzygies of $\Sigma_1(X)$.

1. Koszul cohomology on a singular curve

Throughout this section, let $X = Y \cup Z$ be the union of a smooth curve Y of genus g and $Z = \mathbb{P}^1$ meeting at two general points u and v. Consider a line bundle L (up to \mathbb{C}^*-action) on X such that $A := L|_Y$ is a g^r_d and $L|_Z = O_{\mathbb{P}^1}(1)$. Note that by construction, every section in $H^0(Y, A)$ extends uniquely to a section in $H^0(X, L)$. Thus we have an isomorphism induced by restriction to Y:

\[(1.1) \quad H^0(X, L) \cong H^0(Y, A).\]

Proposition 1.1. Notation as above, if $K_{p,1}(Y, A) = 0$, then $K_{p,1}(X, L) = 0$.

Proof. Consider the following commutative diagram

\[
\begin{array}{cccccc}
\wedge^{p+1} H^0(L) & \longrightarrow & \wedge^p H^0(L) \otimes H^0(L) & \longrightarrow & \wedge^{p-1} H^0(L) \otimes H^0(L^2) \\
\wedge^{p+1} H^0(A) & \longrightarrow & \wedge^p H^0(A) \otimes H^0(A) & \longrightarrow & \wedge^{p-1} H^0(A) \otimes H^0(A^2)
\end{array}
\]

where the vertical arrows are restriction maps to Y. The hypothesis says that the second row is exact in the middle, a simple diagram chasing gives the conclusion. \qed

Remark 1.2. The argument in Proposition 1.1 does not generalize to the case $q = 2$ because $H^0(Y, A^2)$ is not isomorphic to $H^0(X, L^2)$.

To study the relation between $K_{p-1,2}(X, L)$ and $K_{p-1,2}(Y, A)$, we use the duality relation [3 p. 21]

\[K_{p-1,2}(Y, A)^{\vee} \cong K_{r-p,0}(Y, A; K_Y)\]

and compare $K_{r-p,0}(Y, A; K_Y)$ with $K_{r-p,0}(X, L; \omega_X)$. Here ω_X is the dualizing sheaf of X. Its restriction $\omega_X|_Y \cong K_Y(p+q)$ and $\omega_X|_Z \cong O_{\mathbb{P}^1}$. One checks easily that restriction to Y induces the following isomorphisms:

\[H^0(X, \omega_X) \cong H^0(Y, K_Y(u + v)),\]
\[H^0(X, \omega_X \otimes L^{-1}) \cong H^0(Y, K_Y \otimes A^{-1}),\]
\[H^0(X, \omega_X \otimes L) \cong H^0(Y, K_Y \otimes A(u + v)).\]

Denote M_A the kernel bundle associated to a globally generated line bundle A, defined by the exact sequence

\[0 \to M_A \to H^0(Y, A) \otimes O_Y \overset{ev}{\longrightarrow} A \to 0.\]
Taking \((r - p)\)-th wedge product, we obtain
\[
0 \to \bigwedge^{r-p}M_A \to \bigwedge^{r-p}H^0(M) \otimes \mathcal{O}_Y \to \bigwedge^{r-p-1}M_A \otimes A \to 0.
\]
Tensoring the above sequence with \(K_Y\), we obtain an isomorphism \cite[Section 2.1]{[3]}
\[
H^0(\bigwedge^{r-p}M_A \otimes K_Y) \cong \text{Ker}(\delta_0 : \bigwedge^{r-p}H^0(A) \otimes H^0(K_Y) \to \bigwedge^{r-p-1}H^0(A) \otimes H^0(K_Y \otimes A)),
\]
and therefore,
\[
(1.5) \quad K_{r-p,0}(Y, A; K_Y) \cong \frac{H^0(\bigwedge^{r-p}M_A \otimes K_Y)}{\bigwedge^{r-p+1}H^0(A) \otimes H^0(K_Y \otimes A^{-1})}.
\]

Proposition 1.3. We have an isomorphism
\[
K_{r-p,0}(X, L; \omega_X) \cong \frac{H^0(\bigwedge^{r-p}M_A \otimes K_Y(u + v))}{\bigwedge^{r-p+1}H^0(A) \otimes H^0(K_Y \otimes A^{-1})}.
\]

Proof. Consider the following diagram
\[
\begin{array}{c}
\bigwedge^{r-p+1}H^0(L) \otimes H^0(\omega_X \otimes L^{-1}) \\
\xrightarrow{d_-} \bigwedge^{r-p}H^0(L) \otimes H^0(\omega_X) \\
\xrightarrow{d_0} \bigwedge^{r-p-1}H^0(L) \otimes H^0(\omega_X \otimes L) \\
\end{array}
\]
\[
\xrightarrow{\cong} \\
\xrightarrow{\cong}
\begin{array}{c}
\bigwedge^{r-p+1}H^0(A) \otimes H^0(K_Y \otimes A^{-1}) \\
\xrightarrow{\delta_0} \bigwedge^{r-p}H^0(A) \otimes H^0(K_Y(u + v)) \\
\xrightarrow{\delta_0} \bigwedge^{r-p-1}H^0(A) \otimes H^0(K_Y \otimes A(u + v)),
\end{array}
\]
where the vertical arrows are induced by restriction to \(Y\). By definition, \(K_{r-p,0}(X, L; \omega_X)\) is the cohomology in the middle of the first row. By Equations (1.4) to (1.3), all three vertical arrows are isomorphisms, thus
\[
\text{Ker}(\delta_0) \cong \text{Ker}(\delta_0) \cong H^0(\bigwedge^{r-p}M_A \otimes K_Y(u + v)).
\]
and the statement follows immediately.

Corollary 1.4. Notation as above, if
\[
h^0(\bigwedge^{r-p}M_A \otimes K_Y) = h^0(\bigwedge^{r-p}M_A \otimes K_Y(u + v)),
\]
or equivalently,
\[
h^0((\bigwedge^pM_A \otimes A)(-u - v)) = h^0(\bigwedge^pM_A \otimes A) - 2 \binom{r}{p},
\]
then
\[
K_{r-p,0}(X, L; \omega_X) \cong K_{r-p,0}(Y, A; K_Y).
\]

Proof. Immediate. The equivalence of the two assumptions followed from Riemann-Roch and the fact that \(\bigwedge^{r-p}M_A' \cong \bigwedge^pM_A \otimes A\).

By degenerating to the pair \((X, L)\), we obtain

Theorem 1.5. Suppose a general pair \((Y, A)\) in \(\mathcal{W}_{g,d}^r\) satisfies one of the two conditions:
\[
(1) \quad K_{p,1}(Y, A) = 0;
(2) \quad K_{p-1,2}(Y, A) = 0 \text{ and the vector bundle } \bigwedge^pM_A \otimes A \text{ satisfies } (1.6) \text{ for some } u, v \in Y.
\]
Then the property \(\text{GV}(p)_{g+1, d+1}^r\) holds.
2. The case $p = 1$

In the case $p = 1$, Equation (1.6) has a very geometric interpretation.

Lemma 2.1. For a pair $Y \xrightarrow{\phi} \mathbb{P}$ in $\mathcal{W}^r_{g,d}$, the vector bundle $M_A \otimes A$ satisfies equation (1.6) for some $u, v \in Y$ if and only if there exists a quadric hypersurface $Q \subset \mathbb{P}^r$ containing Y but not containing its first secant variety $\Sigma_1(Y)$.

Proof. (\Leftarrow) The "$\geq"$ direction of (1.6) is automatically satisfied. For the other direction, consider the following diagram with exact rows

\[
\begin{array}{ccccccc}
0 & \to & H^0(M_A \otimes A(-u - v)) & \to & H^0(A) \otimes H^0(A(-u - v)) & \to & H^0(A^2(-u - v)) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & H^0(M_A \otimes A) & \to & H^0(A) \otimes H^0(A) & \to & H^0(A^2).
\end{array}
\]

We need to show

$$\dim_\mathbb{C} \operatorname{Ker}(\mu') \leq \dim_\mathbb{C} \operatorname{Ker}(\mu) - 2r.$$

Denote $H_{u,v} := H^0(A) \otimes H^0(A(-u - v))$ and $\overline{H}_{u,v}$ be its image in \[\frac{H^0(A) \otimes H^0(A)}{\wedge^2 H^0(A)} \cong S^2 H^0(A).\]

Note that

$$\overline{H}_{u,v} \cong \frac{H_{u,v}}{H_{u,v} \cap \wedge^2 H^0(A)},$$

is the space of quadrics which contain the secant line \overline{uv}. Thus

$$\dim_\mathbb{C} \overline{H}_{u,v} = \binom{r + 2}{2} - 3.$$

We claim that

$$H_{u,v} \cap \wedge^2 H^0(A) = \wedge^2 H^0(A(-u - v)).$$

This is because

\[
\begin{align*}
\dim_\mathbb{C} H_{u,v} \cap \wedge^2 H^0(A) &= \dim_\mathbb{C} H_{u,v} - \dim_\mathbb{C} \overline{H}_{u,v} \\
&= (r + 1)(r - 1) - \left[\binom{r + 2}{2} - 3 \right] = \binom{r - 1}{2} \\
&= \dim_\mathbb{C} \wedge^2 H^0(A(-u - v)).
\end{align*}
\]

The claim is proved.

By hypothesis, $\overline{\operatorname{Ker}(\mu)} \notin \overline{H}_{u,v}$ for some $u, v \in Y$ (since $Q \notin \overline{H}_{u,v}$), then it follows that

$$\dim_\mathbb{C} (\operatorname{Ker}(\mu')) = \dim_\mathbb{C} (\operatorname{Ker}(\mu) \cap \overline{H}_{u,v}) \leq \dim_\mathbb{C} (\operatorname{Ker}(\mu) \cap \overline{H}_{u,v}) \leq \dim_\mathbb{C} (\operatorname{Ker}(\mu)) - 1 =: m - 1.$$
Thus
\[\dim_{\mathbb{C}}(\text{Ker}(\mu')) \leq m - 1 + \dim_{\mathbb{C}}(\wedge^2 H^0(A) \cap H_{u,v})\]
\[= m - 1 + \dim_{\mathbb{C}}(\wedge^2 H^0(A(-u-v)))\]
\[= m - 1 + \binom{r-1}{2} = m + \binom{r+1}{2} - 2r\]
\[= \dim_{\mathbb{C}}(\text{Ker}(\mu)) - 2r.\]
(\(\Rightarrow\)) Reverse the above argument we get the “only if” part.

\(\Box\)

Lemma 2.2. Suppose \(Y \hookrightarrow \mathbb{P}^r\) is a nondegenerate curve in \(\mathbb{P}^r\), then there does not exist any quadric hypersurface \(Q\) containing \(\Sigma_1(Y)\).

Proof. Suppose \(Y \subset \Sigma_1(Y) \subset Q\) for some quadric \(Q\). Fix a point \(u \in Y\), since \(Q\) contains \(\Sigma_1(Y)\), \(Q\) must contain the variety \(J(u,Y)\) of lines joining \(u\) and \(Y\). Thus the quadric \(Q\) is singular at \(u\). (If \(Q\) is smooth at \(u\), a secant line \(uw\) \(\subset Q\) if and only if \(uw\) \(\subset T_u Q\). Choose \(w \in Y \setminus T_u Q\), we have \(uw \subset J(u,Y) \subset \Sigma_1(Y)\) but \(uw \notin Q\).) Since \(u\) is chosen arbitrarily, we conclude that \(Q\) is singular along \(Y\). This is absurd since the singular locus of a quadric is a linear subspace in \(\mathbb{P}^r\) which cannot contain the nondegenerate curve \(Y\). \(\Box\)

Proof. of Theorem 0.4 Follows immediately from Theorem 1.5 and Lemmas 2.1, 2.2

3. Applications to the Maximal Rank Conjecture

As an application of Theorem 0.4 we obtain a proof of Theorem 0.5.

We say a triple \((g, r, d)\), or equivalently \((g, r, h^1 = g - d + r)\) is a base case for the MRC if the Brill-Noether number \(\rho := g - (r + 1)h^1 = 0\).

Theorem 3.1. If the MRC holds for all \(\rho = 0\) cases, then it holds for arbitrary \(\rho \geq 0\) case.

Proof. Apply Theorem 0.4 and induction. Start with any base case, for which we assume property \(\Gamma V(1)_{g,d}^r\) holds. In each step of the induction, \(r\) and \(h^1\) is fixed and \(g\) (equivalently \(\rho\) or \(d\)) goes up by 1. \(\Box\)

The MRC for the base cases are known to be true when \(h^1 \leq 2\). According to the value of \(h^1\), we have the following.

1. \(h^1 = 0\). We have \(g = 0\) and \(d = r \geq 1\), i.e. \((Y, A) = (\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(d))\). The rational normal curves are projectively normal.
2. \(h^1 = 1\). In this case, \(g = r + 1, d = 2r\), i.e \((Y, A) = (Y, K_Y)\). By Nother’s theorem, canonical curves are projectively normal \((r \geq 2)\).
3. \(h^1 = 2\). Then \(g = 2r + 2, d = 3r\). Such pairs \((Y, A)\) are projectively normal for \(r \geq 4\) is the main result of [11] (The MRC is easy to check when \(r = 2\) or 3).

Farkas [9] also proved that \(\Gamma V(1)_{s(2s+1),2s(s+1)}^{2s}\) holds for any \(s \geq 1\). This covers the base cases when \(h^1 = s\) and \(r = 2s\).
Proof. of Theorem 0.5 Follows immediately from the base cases with $h^1 \leq 2$ and Theorem 3.1

References

[1] M. Aprodu, Green-Lazarsfeld tonality conjecture for a generic curve of odd genus. Int. Math. Res. Notices, 63, 3409-3414, 2004.
[2] M. Aprodu, Remarks on syzygies of d-gonal curves. Math. Res. Lett., 12, 387-400, 2005.
[3] M. Aprodu, J. Nagel, Koszul Cohomology and Algebraic Geometry, University Lecture Series, Volume 52, American Mathematical Society, 2010.
[4] E. Ballico, On the minimal free resolution of general embedding of curves, Pacific J. Math. 172, 315-319, 1996.
[5] E. Ballico and C. Fontanari, Normally generated line bundles on general curves, J. Pure and Applied Algebra. 214, 837-840, 2010.
[6] E. Ballico and C. Fontanari, Normally generated line bundles on general curves II, J. Pure and Applied Algebra. 214, 1450-1455, 2010.
[7] L. Ein, A remark about the syzygies of generic canonical curve, J. Diff. Geom. 26, 361-367, 1987.
[8] D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves. Invent. Math. 74, 371-418, 1983.
[9] G. Farkas, Koszul divisors on moduli space of curves, Amer. J. Math. 131, 819-867, 2009.
[10] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19, 125-171, 1984.
[11] J. Wang, On the projective normality of line bundles of extremal degree, Math. Ann 355(3), 1007-1024, 2013.
[12] J. Wang, Some results on the generic vanishing of certain Koszul cohomology groups, to appear in Pacific J. Math.
[13] C. Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface. J. Eur. Math.Soc., 4, 363-404, 2002.
[14] C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus. Compositio Math., 141 (5), 1163-1190, 2005.

E-mail address: jiewang884@gmail.com