THE CONNECTING MOLECULAR RIDGE IN THE GALACTIC CENTER

PEI-YING HSIEH1,2, PAUL T. P. HO1,3,4, AND CHORNG-YUAN HWANG2

1 Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan, R.O.C.; phsieh@asiaa.sinica.edu.tw
2 Institute of Astrophysics, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan, R.O.C.
3 East Asian Observatory, 660 N. Aohoku Place, University Park, Hilo, HI 96720, USA
4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2014 December 19; accepted 2015 August 19; published 2015 September 30

ABSTRACT

We report new observations of multiple transitions of the CS molecular lines in the SgrA region of the Galactic center, at an angular resolution of 40′′ (=1.5 pc). The objective of this paper is to study the polar arc (PA), which is a molecular ridge near the SgrA region with apparent non-coplanar motions and a velocity gradient perpendicular to the Galactic plane. With our high resolution dense-gas maps, we search for the base and the origin of the PA, which is expected to be embedded in the Galactic disk. We find that the PA is connected to a continuous structure from one of the disk rings/arms in both the spatial and velocity domains. This structure near SgrA has high CS ($J=4-3)/CS(J=2-1)$ ratios ≥ 1. The fact that this structure has eluded detection in previous observations is likely due to the combination of high excitation and low surface brightness temperature. We call this new structure the connecting ridge. We discuss the possible mechanism for forming this structure and for lifting the gas above the Galactic plane.

Key words: galaxies: starburst – Galaxy: center – ISM: clouds

1. INTRODUCTION

Since our Galactic center (GC) is the nearest nucleus of a galaxy ($d = 8.5$ kpc; Reid 1993; Ghez et al. 2008; Reid et al. 2014), it offers an excellent opportunity to study the detailed structures and dynamics in the circumnuclear environment. Our focus is on how the complex activities in the nuclear region might be related to the large-scale structures. Both inflow into and outflow out of material from the nuclear regions can be related to the large-scale structures.

On the possibility of inflows, we first examine the dynamical models. Previous observations show that the GC exhibits two prominent molecular rings: the 200 pc twisted ring (TR) in the central molecular zone (CMZ; e.g., Scoville 1972; Bania 1977; Bally et al. 1988; Morris & Serabyn 1996; Dahmen et al. 1998; Tsuboi et al. 1999; Martin et al. 2004; Oka et al. 2005, 2012; Molinari et al. 2011; Jones et al. 2012, 2013; Martin et al. 2012; Longmore et al. 2013) and the 2 pc circumnuclear disk (CND; e.g., Harris et al. 1985; Guesten et al. 1987; Mezger et al. 1989; Serabyn et al. 1989; Jackson et al. 1993; Wright et al. 2001; Christopher et al. 2005; Herrnstein & Ho 2005; Montero-Castaño et al. 2009; Amo-Baladrón et al. 2011; Etxaluze et al. 2011; Requena-Torres et al. 2012; Lau et al. 2013; Mills & Morris 2013). These two molecular rings are important because of the possibility that they are the gas reservoirs for fueling the central supermassive black hole SgrA* (Reid & Brunthaler 2004; Ghez et al. 2008; Gillessen et al. 2009), as well as the episodes of massive star formation within the CMZ (e.g., the HII regions in the 50 km s$^{-1}$ cloud, the three young star clusters, as well as the SgrB complex at 120 pc from SgrA*; Figure 1(a)). The 200 pc TR could be a nuclear spiral produced by the non-axisymmetric potential (Binney et al. 1991; Sofue 1995; Sawada et al. 2004). This is supported by the recent work of Kruisjes et al. (2015), who have constructed an orbital model for the gas streamers observed within the CMZ (Molinari et al. 2011) by integrating orbits in the empirically constrained gravitational potential. Within the TR, Sofue (1995) had further proposed the existence of the inner nuclear spirals (arm III, arm VI) with an extent of 70 pc, and which are headed toward SgrA. Arm III is also called the polar arc (PA) by Bally et al. (1988). We show the CS($J=1-0$) line emission (Tsuboi et al. 1999) of the PA in Figure 1(b). The PA extends north of the SgrA complex at a 40′′ angle away from the Galactic plane and shows a large velocity gradient from ($l, b, V_{sys} = 0\degree, 0:05, 70$ km s$^{-1}$) to ($l, b, V_{sys} = 0\degree:2, 0:25, 140$ km s$^{-1}$). Below V_{sys} of 70 km s$^{-1}$, the PA lies close to the Galactic plane and becomes confused with the molecular clouds in the SgrA region. The SgrA region consists of the radio continuum emission of SgrA east, SgrA west, and the radio halo (bipolar lobe). Concentrations of the molecular clouds are located on the boundaries of the continuum sources. The clouds are known as the 20 km s$^{-1}$ cloud (M-0.02-0.07) and the 50 km s$^{-1}$ cloud (M-0.13-0.08). Thus, from the dynamical models, gas could be brought from the 200 pc scale into the nuclear region via the PA structure.

Then, there is the possibility of outflows. As shown in Figure 1(a) (Yusef-Zadeh et al. 2004), the 20 cm radio continuum emission shows several features that are related to the life cycle of massive star formation: (1) the radio arc and the nonthermal radio filaments (e.g., Yusef-Zadeh et al. 1984; Serabyn & Guesten 1987; Lang et al. 1999), the arches cluster and the quintuplet cluster ($\sim 10^{5}M_{\odot}$) (Figer et al. 1999a, 1999b, 2002); these features are related through the collective winds of massive WR and OB stars, as well as the interactions between shocked charged particles and the Galactic magnetic field (Rosner & Bodo 1996) which can generate and illuminate the magnetized filaments; (2) the supernova remnants (SNRs) of SgrA east (Ekers et al. 1983; Yusef-Zadeh & Morris 1987; Maeda et al. 2002; Sjouwerman & Pihlström 2008; Zhao et al. 2013), the radio halo (Pedlar et al. 1989), and the south east lobe (Zhao et al. 2014); these various lobe-like features could be due to the expansion, flow, and compression of the ISM by the supernova SgrA east; and (3) the north west lobe; this structure could be produced by activities within 0.5 pc of the GC (Zhao et al. 2014).
The observational kinematical data that support both the inflow and outflow scenarios are already collected. Many studies have already been made with low-excitation molecular lines and with low angular resolutions (e.g., Burton & Liszt 1983; Bally et al. 1987, 1988; Burton & Liszt 1992; Tsuboi et al. 1999). High angular resolution studies also exist. For the CND and the central 10 pc, early studies have focused on the interactions between the nearby SNR (SgrA east, G359.02-0.09) with NH3 (3, 3) and CS(J = 7–6) lines (Ho et al. 1985, Serabyn et al. 1992, Coil & Ho 2000) for the ambient molecular clouds (the 20 km s$^{-1}$ cloud or M-0.13-0.08, and the 50 km s$^{-1}$ cloud or M-0.02-0.07). Ho et al. (1985, 1991), Serabyn et al. (1992), Tsuboi et al. (2009), Serabyn et al. (1992), and Ho et al. (1985) showed that the inner edges of the ambient clouds have high density and curves around the SNRs. This implies that the local SNRs are impacting and compressing the circumnuclear environment. More recent studies of CS(J = 1–0), NH3(6, 6), HCN (J = 4–3) lines have focused on the possibility of inflows that impact upon the CND (Liu et al. 2012; Minh et al. 2013). Streamers of molecular material appear to flow into the central parsec of the nucleus.

However, connecting the inner region and the outer regions remains difficult. Previous studies could not resolve the central 70 pc (30$''$) of the Milky Way, principally because of contamination by the emission and absorption of the
foreground cold gas. Hence, the relation and the physical connection between the CMZ, the incoming streamers, the PA, and CND remains uncertain (Wardle & Yusef-Zadeh 2008; Liu et al. 2012).

In this paper, we would like to focus on the inner 10 pc and seek the connection between the PA and the CND. An SMA HCN($J = 4$–3) line map of the CND (Montero-Castaño et al. 2009) demonstrated that the high excitation transitions are less affected by the foreground cold gas along the line of sight. These previous SMA studies were limited to the CND, and the extended emission was filtered out because of the lack of short spacing information. Here, we use the Caltech Submillimeter Observatory (CSO) 10 m single dish telescope to study the nuclear structure and its dynamics with the CS($J = 5$–4) and the CS($J = 4$–3) lines. This allows us to sample the large-scale structures with adequate spatial resolution, while utilizing the higher excitation lines to suppress foreground confusion. In order to study the gas excitation we compare this data with the archival CS($J = 1$–0) line data (Tsuboi et al. 1999) and the CS($J = 2$–1) line data (P. Y. Hsieh et al. 2015, in preparation, (Paper II)) taken with the Nobeyama 45 m telescope.

2. OBSERVATIONS

We observed the GC with the CSO 10 m telescope using the CS($J = 4$–3) (195.9542 GHz) and CS($J = 5$–4) (244.9356 GHz) lines during 2013 June. The 230 GHz sidecab receiver was used with a backend of the Fast Fourier Transform Spectrometer (FFTS1) for all of the observations. We used the wide bandwidth mode with the bandwidth of 1000 MHz, where the default resolution was 122 kHz. This yielded an intrinsic

![Figure 2. Integrated intensity maps of the CS($J = 1$–0) (Tsuboi et al. 1999), CS($J = 2$–1) (Paper II), CS($J = 4$–3), and CS($J = 5$–4) lines from −160 to 160 km s$^{-1}$ (color map). The color bar denotes the intensity in units of K m s$^{-1}$. The beam sizes were smoothed to 40″ (blue circle in the bottom right corner). The cross and ellipse mark the positions of SgA* and the CND, respectively. The contours of the 20 cm continuum emission are overlaid on the color maps. The connecting ridge (CR) found in the CS($J = 4$–3) line map was labeled.](image)
velocity resolution of 0.19 and 0.14 km s$^{-1}$ for the CS($J = 4–3$) and CS($J = 5–4$) lines, respectively.

The average system temperatures ranged from 190 to 700 K during the observing runs. Pointing was checked every hour using Saturn and IRAS 16293. The pointing accuracy was $\sim 6''$. The standard chopper calibration method was used to measure the T_A^*.

We used the on-the-fly mapping technique with 20'' and 10'' grids for CS($J = 4–3$) and CS($J = 5–4$) lines, respectively. We used CLASS to remove the spectral baseline with polynomial functions of orders from 1 to 3. The spectra are gridded onto each pixel and are convolved with a Gaussian function. The final angular resolution and rms noise per channel are 38'' and 0.07 K for the CS($J = 4–3$) line, and 30'' and 0.2 K for the CS($J = 5–4$) line. The temperature scale presented in this paper is T_A^*, which is the calibrated and atmosphere-corrected antenna temperature. Therefore, the main beam brightness temperature T_{mb} is T_A^*/η_{mb}, where the η_{mb} is the main beam efficiency. We determined the main beam efficiency (η_{mb}) by observing the continuum flux of Saturn (Mangum 1993). We adopted the value $\eta_{mb} = 0.4$ and 0.3 for the CS($J = 5–4$) and CS($J = 4–3$) lines, respectively.

3. RESULTS

3.1. Integrated Intensity Maps

Figure 2 shows the integrated intensity (moment 0) maps of the CS($J = 1–0$) (Tsui et al. 1999), CS($J = 2–1$) (Paper II), CS($J = 4–3$), and CS($J = 5–4$) lines integrated within ± 160 km s$^{-1}$. These maps were smoothed to the same resolution of 40'' for comparisons. Overall, the higher-J CS ($J = 4–3$) and CS($J = 5–4$) lines are less sensitive to the diffuse emission as shown in the lower-J CS($J = 1–0$), HCN($J = 1–0$), HCO*($J = 1–0$) (Tsui et al. 1999, 2011), and CS($J = 2–1$) line (Paper II). The CS($J = 4–3$) and CS($J = 5–4$) lines are dominated instead by the more compact ridges and dense clouds. The major features of the CND, the 20 km s$^{-1}$ cloud, the 50 km s$^{-1}$ cloud, and the high velocity compact cloud (HVCC, CO 0.02-0.02) (Oka et al. 1999) are generally consistent in all of the lines.

In contrast to these well-known structures, we found that there is a ridge-like structure shown in the CS($J = 4–3$) line map. At the position of this ridge-like structure, compact clouds can be seen in the CS($J = 1–0$) and CS($J = 2–1$) lines, immersed in the background diffuse emission. In Figure 3, we show the larger scale map of the PA, as measured in the CS($J = 1–0$) line, and the central region as measured in the CS($J = 4–3$) line. We also overlay the 20 cm continuum emission on these maps. We find that the CO 0.02-0.02 cloud and the ridge-like structure may form a complete “northern molecular loop,” which we have highlighted with the yellow dashed ellipse. The northern molecular loop structure may enclose the northern radio halo. A similar structure can also be seen in the low-J CS($J = 2–1$) and CS($J = 1–0$) lines, but the CS($J = 4–3$) line exhibits clearer features.

3.2. Channel Maps

In Figure 4, we show the CS($J = 4–3$) line channel maps at the velocity resolution of 10 km s$^{-1}$. The purpose of showing the channel maps is to demonstrate the kinematics of the individual cloud structures. The coherent kinematics often help to define distinct structures. The CND appears as a high velocity (-110 to 110 km s$^{-1}$) feature (the green ellipse) centered on SgrA*. The well-studied 20 and 50 km s$^{-1}$ clouds show a velocity gradient from -30 to 80 km s$^{-1}$, which is rotating with respect to SgrA* (e.g., Liu et al. 2012; Martín et al. 2012). The CO 0.02-0.02 cloud (Oka et al. 1999, 2008) is seen from 80 to 110 km s$^{-1}$. The ridge-like structure is detected roughly from 30 to 90 km s$^{-1}$ (labeled as green stars). Consistent with Figure 1, this structure was only detected with individual clumps in the CS($J = 1–0$), the CS($J = 2–1$), and the CS($J = 5–4$) images. Here we call this ridge-like structure the “connecting ridge” (CR). The width of the CR is $\sim 2''$ (4.6 pc). The CR seems not to have been detected before. We searched through the literature. The large-scale survey of 13CO (Bally et al. 1988), 12CO (Oka et al. 1998, 2001), and NH$_3$ (Purcell et al. 2012) do not show the CR in their maps. The NH$_3$ line map of the entire 200 pc TR made with ATCA (Ott et al. 2014) suffers from the missing flux, and there is no detection for the CR. The CR is also absent in the Mopra molecular line maps of the CMZ (Jones et al. 2012, 2013). This is probably because of the lower sensitivity and resolution for the past observations. It is also possible that it is the excitation effect. We will discuss this in Section 4. In the CS($J = 4–3$) channel map, the CR seems to extend to the north.
of the Galactic plane and coincides with the base of the PA (labeled as the green solid squares). Our CS\((J = 4–3)\) line observations did not cover the PA. Hence we show in Figure 5 the channel maps of the CS\((J = 1–0)\) line in the same velocity range of 30–110 km \(\text{s}^{-1}\). At the velocity of 30 km \(\text{s}^{-1}\), the CR seems to be near the CND and appears to connect to the Galactic plane. We have called this part of the structure in the Galactic plane the “disk ridge” (DR; labeled by the green solid-triangles).

In Figure 6 we show the channel maps of the CS\((J = 5–4)\) line smoothed to the same angular resolution of 38″ for the CS\((J = 4–3)\) line. The CS\((J = 5–4)\) line is generally consistent with the CS\((J = 4–3)\) line, but traces more compact structures. However, this is likely due to a sensitivity that is a factor of 2 in the CS\((J = 5–4)\) line. For the CR, we only detect some faint clumps from 40 to 80 km \(\text{s}^{-1}\). We also detected the base of the PA similar to Figure 5.

3.3. The Position–Velocity Diagram

In Figures 7–9 we show the position–velocity diagrams (pv-diagrams) of the DR, the CR, and the PA. We show these diagrams in order to demonstrate the coherent kinematics.
within each of the structures, and with respect to each other. In Figure 8 we merge the pv-diagrams of the DR, the CR, and the PA in order to see the continuity of the ridges. Our CS \((J = 4 \rightarrow 3) \) line data does not cover the PA region, so we also show the pv-diagrams of the CS \((J = 1 \rightarrow 0) \) data along the PA for comparison. As indicated in the CS \((J = 4 \rightarrow 3) \) line channel maps (Figure 4), the CR appears from \(\sim 50 \) km s\(^{-1}\) and smoothly connects to the PA at velocity \(\geq 80 \) km s\(^{-1}\). Although the CR becomes fainter in the CS \((J = 1 \rightarrow 0) \) line, Figure 8 suggests that the DR, the CR, and the base of the PA have smooth velocity transitions along the structure. We emphasize that this continuous nature of the kinematics is the principal argument in favor of a coherent structure.

In Figure 9 we found that the PA seems to show expanding features. In Paper II, we measured the whole PA with expanding velocity of \(\sim 74 \) km s\(^{-1}\). The detailed discussion and results are in Paper II. In the DR, there are several clumps that show broadened FWZI line widths of \(\sim 90 \) km s\(^{-1}\), which might indicate that they are physically near the CND. There are also some clumps in the CR that have broad line widths (FWZI \(\sim 50 \) km s\(^{-1}\)). The line widths are about a factor of two larger than the values in the rest of the region, and can be seen in the other CS lines. This is best seen in the velocity dispersion maps presented below.

3.4. The Ridge from 30 to 90 km s\(^{-1}\)

From the channel maps and the pv-diagrams, we found that the velocity of the CR is roughly from 30 to 90 km s\(^{-1}\). We made the integrated intensity map and the intensity-weighted mean velocity map of the CS \((J = 4 \rightarrow 3) \) line from 30 to 90 km s\(^{-1}\) (Figure 10). The spectra of the DR, CR, and the base of the PA are shown from Figures 11 to 12. The spectra of the CR also suggest that the FWZI velocity range is from 30 to 90 km s\(^{-1}\). The velocity map (Figure 10(b)) shows two kinematic systems: (1) along the 20 km s\(^{-1}\) cloud to the 50 km s\(^{-1}\) cloud, and (2) from the DR to the CR. The velocity patterns are different and this kinematical behavior supports the argument that the DR is a distinct feature within the Galactic plane.
In Figure 14, we show the intensity-weighted velocity dispersion map of the CS($J = 4–3$) line. The velocity dispersions of the DR, the CND, the CR, the CO 0.02-0.02 cloud, and near the PA, are larger than the surrounding material by about a factor of two or higher. The gas with high velocity dispersions also surrounds the 20 cm radio halo, which is similar to the northern molecular loop structure seen in Figure 2. We note that the gases of the 20 km s$^{-1}$ cloud and the 50 km s$^{-1}$ cloud also have higher velocity dispersions near the radio halo. By inspecting the spectra and the channel maps of the data, we find that the line widths of the 20 and 50 km s$^{-1}$ clouds are mainly intrinsically broad, and the northern molecular loop consists of multiple distinct components at the velocities of ~ 12.5 and 47.5 km s$^{-1}$. We emphasize that it is the enhanced velocity dispersions, together with the continuous kinematics, which indicate that the CR, DR, and PA could be a single coherent feature.

3.5. The CS Line Ratios

In Figure 15 we show the CS($J = 4–3$)/CS($J = 2–1$), CS ($J = 4–3$)/CS($J = 1–0$), CS($J = 5–4$)/CS($J = 4–3$), and CS ($J = 5–4$)/CS($J = 1–0$) intensity ratio maps. We integrated the
maps from -160 to $+160\ km\ s^{-1}$ with a convolved beam of $40''$. We utilized data with significance $\geq 3\sigma$. Figure 15 represents the average intensity ratios because multiple components have been integrated along the line of light. The distributions of the CS($J = 4–3$)/CS($J = 2–1$) and CS ($J = 4–3$)/CS($J = 1–0$) ratios are similar. The CR and the base of the PA have higher ratios than the ambient gas by a factor of ~ 2 in the CS($J = 4–3$)/CS($J = 2–1$) ratio map, and the CS ($J = 4–3$)/CS($J = 1–0$) ratio map shows higher contrasts than the CS($J = 4–3$)/CS($J = 2–1$) ratio map. The CND has higher ratios than the 50 and $20\ km\ s^{-1}$ clouds, and is comparable to the CR in the CS($J = 4–3$)/CS($J = 1–0$), CS($J = 4–3$)/CS ($J = 2–1$), and CS($J = 5–4$)/CS($J = 1–0$) ratio maps. We emphasize that the enhanced line ratios are further evidence in support of the CR, DR, and PA as a coherent structure. The high-J line ratios of CS($J = 5–4$)/CS($J = 4–3$) are higher in the 50 and $20\ km\ s^{-1}$ clouds ≥ 1.5 than in the CND ~ 1.2. We will discuss the difference of the ratio maps in Section 4.

3.6. Derived Parameters

3.6.1. Rotational Diagrams

In Figure 16, we show the rotational diagrams of the major components mentioned above for the CS($J = 5–4$), CS ($J = 4–3$), CS($J = 2–1$), and CS($J = 1–0$) lines. The usefulness of such a diagram depends on the assumption of thermal equilibrium. We convolved all of the CS line maps to the same angular resolution of $40''$ and a velocity resolution of $5\ km\ s^{-1}$. For the CR, we measured the rotational temperature of the broad line clump shown in Figure 12. We also present the rotational diagrams of the DR and the base of the PA. For these three regions, the fluxes used for the rotational diagrams are averaged from the spectra shown in Figures 11–13. For the CR, we measured the flux from 30 to $90\ km\ s^{-1}$. The fluxes used in the rotational diagrams are presented from Tables 1 to 3. We could estimate the rotational temperature (T_{rot}) and column densities (N_{mol}) of the CS lines by assuming optically thin and local thermodynamic equilibrium (LTE). The column density in the upper level (N_u) is expressed as

$$N_u = \frac{8\pi k_B \nu^2 \int T_B dv}{hc^3 A_u},$$

where k_B is the Boltzmann constant, ν is the frequency of the transition, T_B is the brightness temperature, h is Planck's constant, c is the speed of light, and A_u is the Einstein A coefficient of the transition in question.
where k_B and h are the Boltzmann and Planck constants, respectively. A_{ul} is an Einstein A coefficient from upper (u) to lower state (l), ν is the frequency of the line, c is the speed of light, and T_b is the brightness temperature of the line. In the LTE condition, N_u is written as

$$N_u = \frac{N_{\text{total}}}{Q(T_{ex})} g_u \exp \left(-\frac{E_u \text{ (erg)}}{k_B T_b} \right), \tag{2}$$

Figure 9. PV-diagrams of the PA. Top: the CS($J = 1\rightarrow 0$) line data sliced with P1, P2, and P3. Bottom: the CS($J = 4\rightarrow 3$) line data sliced with P1, P2, and P3. The red ellipse marks the expanding motions of the PA.
where \(N_{\text{total}} \) is the total column density of a given molecule, \(Q(T) \) is a partition function, \(E_u \) is an energy at level \(u \) above the ground state, and \(g_u \) is the statistical weight. Hence we could rewrite the equation as

\[
\ln \left(\frac{N_u}{N_{\text{total}}} \right) = -\frac{1}{T_{\text{rot}}} E_u(K) + \ln \left(\frac{g_u}{Q(T_{\text{rot}})} \right).
\]

Therefore, we could determine the total column density and the excitation temperature by fitting a straight line for the data, plotted in logarithmic form, with Equation (3). The \(E_u(K) \) is \(E_u \) (erg)/\(k_B \) for multiple lines with different \(E_u \). This excitation temperature is called the “rotational temperature” \(T_{\text{rot}} \) because we measured the rotational transitions of CS molecules. The derived \(T_{\text{rot}} \) is also a lower limit to the kinetic temperature \(T_{\text{kin}} \), since the gas may not be thermalized. The detailed methods of the rotational diagram were described in Goldsmith & Langer (1999). In Figure 16, we found that the rotational diagrams of all the features could not be described by a single component. The CS(\(J = 5–4 \)) and CS(\(J = 4–3 \)) lines define a flatter slope than the CS(\(J = 1–0 \)) and CS(\(J = 2–1 \)) lines. This suggests that the molecular gas is a mixture of “high-temperature” and “low-temperature” components along the line of sight. If we assume that the high-\(J \) lines (\(J \geq 4 \)) represent warmer components, then it indicates that the \(T_{\text{rot}} \) of the warm gas components are higher than the cold components by a factor of more than three. Our results on the presence of multiple-temperature components are consistent with the NH3 line observations (Herrnstein & Ho 2005). The fitted results are presented from Tables 1 to 3. The \(T_{\text{rot}} \) are similar for the DR, the CR, and the base of the PA. However, the base of the PA is very close to the CR and the \(T_{\text{rot}} \) differences might not be discernible. Also the \(T_{\text{rot}} \) (High) of the DR is almost twice higher than the CR and the PA. This indicates that the DR is closer to the CND. We note that the fitted rotational temperatures for the CS lines are low relative to the expectations from the NH3 observations. This is an immediate hint that the assumption of LTE is probably not correct for the CS lines. This means that the density may not be high enough and will have to be taken into account. We discuss this further below. However, regardless of the actual density and temperatures of the gas, we emphasize that the different CS line ratios help us to isolate different cloud components.

3.6.2. Statistical Equilibrium

In order to derive the physical properties of molecular gas instead of the optically thin assumption, we used the one-dimensional (1D) radiative transfer code Radex (van der Tak et al. 2007) to perform the statistical equilibrium calculations. Radex uses the escape probability formalism (Goldreich & Kwan 1974) to solve the statistical equilibrium equations to model the observed line intensities for given physical conditions. The statistical equilibrium calculations account for the opacity effects as well as subthermal excitation, while the rotation diagram analysis relies on optically thin approximation and LTE conditions.

The Rayleigh–Jeans approximated brightness temperature \(T_b \) or \(\int T_b \, dv \) (K km s\(^{-1} \)) are calculated for each molecule with varying molecular column density, \(H_2 \) density of the main collision partner, and kinetic temperature. The observed main beam brightness temperature \(T_{\text{mb}} \) is diluted by the beam filling factor \(f \),

\[
f = \frac{\theta_s}{\theta_b} = \frac{T_b}{T_{\text{mb}}},
\]

where \(\theta_s \) is the source size and \(\theta_b \) is the beam size. The brightness temperature of the source will be diluted if the source size is smaller than the beam size. We adopted line ratios to constrain the statistical equilibrium while canceling beam filling factors. Comparison of the models and the observations was performed with the \(\chi^2 \)-statistics for each set of parameters. We find the best-fit models by minimizing the \(\chi^2 \) value. In this paper, we use the uniform sphere geometry, single collision partner \((H_2) \), and background temperature of 2.73 K. The collisional rate and spectroscopic data of the CS molecule were taken from the Leiden Atomic and Molecular Database (LAMDA; Schöier et al. 2005; Lique et al. 2006).
We construct a $50 \times 50 \times 50$ grid of parameter space for kinetic temperature (T_{K}), molecular hydrogen density (n_{H_2}), and column density of a CS molecule (N_{CS}).

1. T_{K} is from 10 to 650 K.
2. n_{H_2} is from 10^4 cm$^{-3}$ to 5×10^7 cm$^{-3}$.
3. N_{CS} is from 10^{12} to 10^{16} cm$^{-2}$.

We then estimate the best-fitted T_{K}, n_{H_2}, and N_{CS} by comparing the ratios and intensities.

The input CS line fluxes are the same as the values used for the rotational diagrams method. From Figures 17 to 19 we show the χ^2 contours versus T_{K} and n_{H_2}. From Tables 1 to 3 we show the derived parameters with the best-fitted χ^2. The T_{rot} and the N_{CS} derived in the rotational diagram method are lower than the values derived in the statistical equilibrium method. We also present the excitation temperature and the opacity calculated from the Radex code. The excitation temperature of the four CS lines are different. The opacity is optically thin in the CS($J = 1$–0) line, and ≥ 1 for the CS($J = 2$–1), CS($J = 4$–3), and CS($J = 5$–4) lines. These might suggest that the CS lines are likely to be subthermal since the excitation temperature is lower than the kinetic temperature. From Figures 17 to 19 we show the CS J-ladder diagram of the data and the model. Our results show that the beam filling factors of this region are from 0.14 to 0.2, which suggest that sources are much smaller than the beam size. This might also explain the lower N_{CS} derived in the rotational diagrams, since the brightness temperatures used for the rotational diagrams are diluted by the beam.

4. DISCUSSIONS

4.1. Why is the CR Bright in the CS($J = 4$–3) Line?

We detected the CR in the new CS($J = 4$–3) line map. This component also exists in the CS($J = 1$–0), CS($J = 2$–1), and CS($J = 5$–4) lines, but is much more visible in the CS($J = 4$–3).
The CS line map. The CS($J = 1$–0), CS($J = 2$–1), and CS($J = 5$–4) lines only detected several compact clouds of the CR. The extended emission was only marginally detected in the CS($J = 1$–0) and CS($J = 2$–1), but not detected in the CS($J = 5$–4) lines. For the CS($J = 5$–4) line, insufficient sensitivity is likely the reason that the extended emission of the CR was not detected. The CS($J = 4$–3) line intensity of the extended emission of the CR is \sim0.4 K, and the noise level of the CS($J = 5$–4) line is 0.17 K (T_{mb}). Hence the noise will dominate in the CS($J = 5$–4) line map if the CS($J = 5$–4) and CS($J = 4$–3) intensities are comparable. Indeed for the compact clouds detected in both of these lines, the intensities are comparable.

As in previous discussions, it is distinctly possible that the various transitions are sampling different regions with different excitations. We can then set some limits on the possible ranges of conditions by considering the available transitions. We check the excitation conditions under which the CS($J = 4$–3) line is most prominent. If the gas is thermalized, i.e., if the density is sufficiently high so that all of the energy levels are in thermal equilibrium, the relative intensity of the different transitions is just a function of temperature. This is the basis of the analysis of Equation (3), and the utility of the rotational diagrams. If the gas is not thermalized, then the relative intensity ratios of the various transitions will be a function of excitation temperature, filling factor, frequency, and opacity. The excitation temperature is of course driven by the density (see van der Tak et al. 2007). The CS line ratios are sensitive to the density of the molecular gas because of its large dipole moment, and small frequency spacing between the transitions. Hence the CS molecule is a useful density tracer (van der Tak et al. 2007). Our statistical equilibrium calculations show that the physical conditions (n_{H_2}, N_{CS}, T_K) of the DR, CR, and the base of
the PA are similar. The CS($J = 1–0$) line is optically thin, and the other lines are optically thick. The CS($J = 4–3$) line has the highest opacity compared to the other lines. For the Rayleigh–Jeans approximation, the brightness temperature is proportional to $f(T_{\text{ex}} - T_{\text{bg}})(1 - e^{-\tau})$, where T_{ex}, T_{bg}, τ, and f are the excitation temperature, background temperature, opacity, frequency, and filling factor of a transition. Considering the modeled parameters and the Rayleigh–Jeans approximation, the CS($J = 4–3$) line is intrinsically brighter than the CS($J = 1–0$) and CS($J = 5–4$) lines. The brightness temperature of the CS ($J = 2–1$) line is comparable to the CS($J = 4–3$) line. Our statistical equilibrium results suggest that for $n_H = 10^{5.7–5.9}$ cm$^{-2}$, $T_K = 18$ K, and $N_{\text{CS}} = (2 – 4) \times 10^{15}$ cm$^{-2}$, the CS ($J = 4–3$) will be the brightest line of the CR.

Our resolved ratio maps (Figure 15) might suggest a variation of excitation conditions. As shown in the CS ($J = 4–3$)/CS($J = 2–1$) ratio map (and similarly with CS ($J = 4–3$)/CS($J = 1–0$)), the connecting ridge has higher line ratios for lines with larger energy differences. This indicates higher temperatures, and this is expected, as large energy gaps will be sensitive to higher temperatures. These higher ratios also suggest a higher opacity in the connecting ridge than in the ambient gas.

It is interesting to ask why the CS($J = 4–3$)/CS($J = 2–1$) and CS($J = 4–3$)/CS($J = 1–0$) ratios of the 20 and 50 km s$^{-1}$ clouds are not as significant as in the CS($J = 5–4$) ratios. The CS($J = 4–3$)/CS($J = 2–1$) and CS($J = 4–3$)/CS($J = 1–0$) ratios show different distributions from the CS($J = 5–4$)/CS ($J = 1–0$), and CS($J = 5–4$)/CS($J = 4–3$) ratio maps, where the 20 and 50 km s$^{-1}$ clouds show high ratios. We note that in Figure 16, the dense gas in the GC has structures of multiple-temperature components, where the CS($J = 1–0$) and CS ($J = 4–3$)/CS($J = 2–1$) ratio...
the expanding velocity of 74 km s$^{-1}$.

Figure 14. (a): Velocity dispersion map (color) of the CS($J = 4–3$) line made with ±133 km s$^{-1}$. The contours of the 20 cm continuum emission are overlaid. The unit of the color bar is m s$^{-1}$. (b): The color map is the same with (a) and the contours of the CS($J = 4–3$) integrated intensity map (±133 km s$^{-1}$) are overlaid. The contour levels are 50, 60, 70, 90, 100, 130, 150, 170, and 190 K km s$^{-1}$.

$J = 2–1$) lines represent cooler components, and the CS($J = 4–3$) and CS($J = 5–4$) lines represent warmer components. If this implies that the gas is a mixture of different excitation conditions (temperature, density), then in the CS($J = 4–3$)/CS ($J = 2–1$) ratios map, we are sampling the cooler part of the 20 and 50 km s$^{-1}$ clouds, and the CS($J = 5–4$) line traces better the warmer components in these clouds. Therefore, the variations of the ratios from high-J to low-J lines indicate the mixture of multiple phases of the molecular gas, and its sensitivity to different tracers. Our results are consistent with the previous results (e.g., Guesten & Henkel 1983; Guesten et al. 1985; Serabyn et al. 1989, 1992; Huettemeister et al. 1993; Herrnstein & Ho 2005).

4.2. The Possible Origins of the CR

In Figure 10 we found that there are two kinematic systems: (1) the disk rotation of the 20 and 50 km s$^{-1}$ clouds, and (2) the velocity gradient along the DR, CR, and the base of the PA (Figure 8). The velocity gradient along the DR, CR, and the base of the PA seems to suggest a coherent extraplanar structure, and the gradient is not aligned with the Galactic plane. Sofue (1996) studied the 13CO ($J = 1–0$) line data from the Bell Laboratory Survey (Bally et al. 1987) (beam = 100'). They pointed out that a pair of molecular spurs are associated with the Galactic center lobe (GCL; Sofue & Handa 1984; Bland-Hawthorn & Cohen 2003). The eastern and western spurs are receding and approaching at V_{lsr} of ~ 100 km s$^{-1}$ and ~ -150 km s$^{-1}$, respectively. The size scale of the molecular spurs is ~ 30 pc. In this paper we confirm that the location of the eastern molecular spur is coincident with the PA with consistent velocity.

In Figure 9, we found that the PA shows expanding motion. We estimate the energy of this feature. The kinetic energy (E_k) of the PA is,

$$E_k = \frac{1}{2} M_{ridge} \Delta V^2,$$

where the M_{ridge} is the molecular hydrogen mass of the ridge, and the ΔV is the expanding velocity of 74 km s$^{-1}$ (paper II). We derive the gas mass (M_{HI}) of the entire PA from the CS($J = 1–0$) map. We adopted the same equation from Tsuboi et al. (1999), with T_{ex} of 20 K, and the CS abundance of $10^{-5.8}$ (Irvine et al. 1987). The corresponding M_{HI} is $1.5 \times 10^5 M_\odot$ and the kinetic energy of the PA is from 8×10^{51} erg (Paper II). One of the possible origins of the energy input is from multiple supernova explosions, which are able to release the energy into the ISM with an efficiency up to 20% (Weaver et al. 1977; McCray & Kafatos 1987). Hence we need around 40 supernova explosions to push the gas (PA) away, or 8 supernova explosions for 100% efficiency.

In Figure 20, the 10 GHz continuum emission of the GCL (Handa et al. 1987) is shown as a dome-shaped, limb-brightened bipolar structure in the GC. It has a vertical extension of more than 200 pc. The GCL was detected in the radio continuum emission (Sofue & Handa 1984; Law et al. 2008a, 2008b), the dust emission at 8.3 μm (Bland-Hawthorn & Cohen 2003), and the radio recombination lines (Law et al. 2009). The GCL was proposed to be the entrainment of dust by the large-scale bipolar wind powered by the central starburst, which had taken place within the last 7 Myr with an energy ejection zone of 100 pc (Bland-Hawthorn & Cohen 2003). In Figure 20, the dust emission of the GCL shows the molecular counterparts of the eastern (positive velocity) and western spurs (negative velocity) detected by Sofue (1996). The eastern spur is the PA shown in the CS ($J = 1–0$) line (Tsuboi et al. 1999) (Figure 20). The PA shows a vertical extension of ~ 43 pc from the central disk. The preliminary idea for this paper is that the molecular gas that was originally in the disk was pushed out by the supernova explosions. Here is some of the indirect evidence for this idea: (1) the continuity of the velocities of the DR, CR, and PA. The CR, DR has a velocity gradient that is orthogonal to the Galactic disk; (2) the expanding motion of the PA; (3) similar physical conditions of the DR, CR, and PA, (4) the high dispersions surrounding the 20 cm radio halo. However, since we only have a morphological association of the GCL and the CR/PA, it is unclear whether the kinetic energy within the CR/PA was converted from the
kinetic energy of stellar feedback. A large molecular line map of the entire GCL will provide better constraints. Detailed study of the expanding features in the GC is presented in Paper II. The other possibility is that the DR, CR, ad PA are formed by the magnetic buoyancy caused by the Parker instability (field strength of $\sim 150 \mu$G; Fukui et al. 2006; Machida et al. 2009; Takahashi et al. 2009). We will discuss this the next paper (Paper II).

4.3. From Small Scale (pc) to Large Scale (kpc)

The ubiquitous presence of nuclear winds and outflows has recently been discovered in multiple areas, from nearby star-forming galaxies to the high-z galaxies (Veilleux et al. 2005; Chen et al. 2010; Murray et al. 2011; Ho et al. 2014; Rubin et al. 2014). In the case of the IC 342, it is one of the nearest galaxies at a distance of 3.5 Mpc (Wu et al. 2014). Schinnerer et al. (2008) suggested that the giant molecular associations (GMAs; gas mass: 10^7 to $10^8 M_\odot$) in its nuclear region are pushed out by the violent nuclear starburst. The mechanical energy of the stellar wind is able to push out the GMAs from 12 to 50 pc relative to the GC. On the large scale of kiloparsecs, the intensive studies of NGC 253 (Bolatto et al. 2013) and M82 (Ohyama et al. 2002) also showed that the central starburst activity is able to push large amounts of molecular gas away from disk. This disruption may prevent the gas from forming stars in the immediate future. The Galactic wind can play the role of suppressing star formation in galaxies.

5. SUMMARY

Our high resolution CS line maps provide an alternative way to study the physical conditions and the dynamics of the extraplanar structures, which cannot be done with the continuum observation. We detected a new component (CR) in the CS($J = 4-3$) line. Our statistical equilibrium results suggest that for $n_H = 10^{5.7-5.9}$ cm$^{-2}$, $T_k = 18$ K, and $N_{CS} = (2 - 4) \times 10^{15}$ cm$^{-2}$, the CS($J = 4-3$) will be the brightest line of the CR. The CR is spatially and dynamically associated with the extraplanar PA. The kinetic and the spatial continuation of the DR, the CR, and the PA suggest that the
molecular gas that was originally in the disk might be lifted, possibly by the energy of 8×10^{40} supernova explosions. The PA is spatially and kinematically associated with the eastern Figure 16. We made the rotational diagrams with the CS ($J = 1-0$) (Tsuboi et al. 1999), CS ($J = 2-1$) (P. Y. Hsieh et al. 2015, in preparation), CS ($J = 4-3$), and CS ($J = 5-4$) lines. We show the rotation diagrams of the DR, CR, and the base of the PA. The fluxes are taken from the average spectra presented in Figures 11–13. The derived rotational temperatures, T_{rot}, T_{rot}(High), and T_{rot}(Low), are labeled on the plots.

Table 1

Line	CS ($J = 1-0$)	CS ($J = 2-1$)	CS ($J = 4-3$)	CS ($J = 5-4$)
$\int T_d dv^a$	69.9 ± 14.1	85.3 ± 11.8	66.1 ± 11.0	52.3 ± 15.4
FWHM dv (km s$^{-1}$)	17	15	18	13

Rotational Diagrams Method

N_{CS} (cm$^{-2}$) | $(4.2 \pm 0.6) \times 10^{14}$
T_{rot} (K) | 10.0 ± 0.8
T_{rot}(Low) (K) | 4.0 ± 0.8
T_{rot}(High) (K) | 17.0 ± 8.6

Table 2

Line	CS ($J = 1-0$)	CS ($J = 2-1$)	CS ($J = 4-3$)	CS ($J = 5-4$)
$\int T_d dv^a$	32.4 ± 15.6	49.6 ± 19.3	41.9 ± 7.7	20.6 ± 10.9
FWHM dv (km s$^{-1}$)	17	15	18	13

Rotational Diagrams Method

N_{CS} (cm$^{-2}$) | $(2.4 \pm 0.9) \times 10^{14}$
T_{rot} (K) | 9.0 ± 1.5
T_{rot}(Low) (K) | 5.0 ± 3.2
T_{rot}(High) (K) | 10.0 ± 4.9

Statistical Equilibrium Modeling Results

Minimum χ^2 | 0.6
N_{CS} (cm$^{-2}$) | 4.0×10^{15}
T_k (K) | 18.2
log(n_{HI}) density (cm$^{-2}$) | 5.9
Opacity | 0.7
Excitation temperature (K) | 20.3

Notes.

a The integrated flux is an average over the nine points shown in Figure 11, where one point is $\sim 40''$.

b The degree of freedom of our parameters is 3 and the derived χ^2 corresponds to a probability of 0.9.
Figure 17. CS molecule J-ladder plot of the DR. The x-axis denotes the upper J level. The y-axis denotes the integrated main beam brightness temperature. The fluxes measured from our data are shown as a black line with a diamond symbol. The error bar is the rms of the fluxes, and is used for the χ^2 fitting. The contours are the corresponding probabilities of 90% (minimum $0.62 \leq c = 0.39$), 80%, and 70%. The best-fitted model (constrained by the intensity ratios) is shown as a red asterisk. The model was multiplied by the average beam filling factor of 0.16. See Table 1 for the derived parameters.

Table 3
The Base of the Polar Arc

Line	CS ($J = 1-0$)	CS ($J = 2-1$)	CS ($J = 4-3$)	CS ($J = 5-4$)
$\int T_e dV$ (K km/s)	52.4 \pm 11.9	63.8 \pm 12.4	54.2 \pm 9.7	25.6 \pm 10.5

Rotational Diagrams Method

- N_{CS} (cm$^{-2}$) | $(3.4 \pm 0.6) \times 10^{14}$
- T_e (K) | 9.0 \pm 0.8
- T_e(Low) (K) | 4.0 \pm 1.0
- T_e(High) (K) | 10.0 \pm 3.7

Statistical Equilibrium Modeling Results

Notes.
- The integrated flux is average over the nine points shown in Figure 13, where one point is $\sim 40^\circ$.
- The degree of freedom of our parameters is 3 and the derived χ^2 corresponds to a probability of 0.7.

Figure 18. CS molecule J-ladder plot of the CR. The x-axis denotes the upper J level. The y-axis denotes the integrated main beam brightness temperature. The fluxes measured from our data are shown as a black line with a diamond symbol. The error bar is the rms of the fluxes, and is used for the χ^2 fitting. The contours are the corresponding probabilities of 90% (minimum $0.39 \leq c = 0.14$) to 50%, to 10%, in step. The best-fitted model (constrained by the intensity ratios) is shown as a red asterisk. The model was multiplied by the average beam filling factor of 0.14. See Table 2 for the derived parameters.
molecular spur of the GCL. A large and sensitive molecular line map is awaited before studying the kinematics of the entire GCL.

We would like to thank the referee for a constructive report that improved the paper. We thank Simon Radford for the assistance of the CSO observations. We thank Dr. Yusef-Zadeh, F. for providing us the VLA 20 cm continuum map. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology. These observations are part of the East Asia Core Observatories Association (EACOA) project on CSO. P.Y.H. is supported by the National Science Council (NSC) and the Ministry of Science and Technology (MoST) of Taiwan, NSC 100-2112-M-001-006-MY3, NSC 97-2112-M-001-021-MY3, and MoST 103-2112-M-001-032-MY3, MoST 99-2119-M-001-002-MY4, MoST 103-2119-M-001-010-MY2, MoST 103-2119-M-008-017-MY3, and MoST 104-2811-M-001-171.

REFERENCES

Amo-Baladrón, M. A., Martín-Pintado, J., & Martín, S. 2011, A&A, 526, A54
Bally, J., Stark, A. A., Wilson, R. W., & Henkel, C. 1987, ApJS, 65, 13
Bally, J., Stark, A. A., Wilson, R. W., & Henkel, C. 1988, ApJ, 324, 223
Bania, T. M. 1977, ApJ, 216, 381
Binney, J., Gerhard, O. E., Bally, J., Stark, A. A., & Uchida, K. I. 1991, MNRAS, 252, 210
Bland-Hawthorn, J., & Cohen, M. 2003, ApJ, 582, 246
Bolatto, A. D., Warren, S. R., Leroy, A. K., et al. 2013, Natur, 499, 450
Burton, W. B., & Liszt, H. S. 1992, A&AS, 95, 9
Chen, Y.-M., Tremonti, C. A., Beckman, J. E., et al. 2010, AJ, 140, 445
Christopher, M. H., Scoville, N. Z., Stolovy, S. R., & Yun, M. S. 2005, ApJ, 622, 346
Coil, A. L., & Ho, P. T. P. 2000, ApJ, 533, 245
Dahmen, G., Huttemeister, S., Wilson, T. L., & Mauersberger, R. 1998, A&A, 331, 959
Ekers, R. D., van Gorkom, J. H., Schwarz, U. J., & Goss, W. M. 1983, A&A, 122, 143
Etxaluze, M., Smith, H. A., Tolls, V., Stark, A. A., & González-Alfonso, E. 2011, AJ, 142, 134
Figer, D. F., Kim, S. S., Morris, M., et al. 1999a, ApJ, 525, 750
Figer, D. F., McLean, I., S., & Morris, M. 1999b, ApJ, 514, 202
Figer, D. F., Najarro, F., Gilmore, D., et al. 2002, ApJ, 581, 258
Fukui, Y., Yamamoto, H., Fujishita, M., et al. 2006, Sci, 314, 106
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1075
Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009, ApJ, 692, 1075
Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441
Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 514, 202
Guesten, R., Genzel, R., Wright, M. C. H., et al. 1987, ApJ, 318, 124
Guesten, R., & Henkel, C. 1983, A&A, 125, 136
Guesten, R., Walmsley, C. M., Ungerechts, H., & Churchwell, E. 1985, A&A, 142, 381
Handa, T., Sofue, Y., Nakai, N., Hirabayashi, H., & Inoue, M. 1987, PASJ, 39, 709
Harris, A. I., Jaffe, D. T., Silber, M., & Genzel, R. 1985, ApJL, 294, L93
Hermstein, R. M., & Ho, P. T. P. 2005, ApJ, 620, 287
Ho, I.-T., Kewley, L. J., Dopita, M. A., et al. 2014, MNRAS, 444, 3894
Ho, P. T. P., Ho, L. C., Szczepanski, J. C., Jackson, J. M., & Armstrong, J. T. 1991, Natur, 350, 309
Ho, P. T. P., Jackson, J. M., Barrett, A. H., & Armstrong, J. T. 1985, ApJ, 288, 575
Huttemeister, S., Wilson, T. L., Bania, T. M., & Martin-Pintado, J. 1993, A&A, 280, 255

Figure 19. CS molecule J-ladder plot of the base of the PA. The x-axis denotes the upper J level. The y-axis denotes the integrated main beam brightness temperature. The fluxes measured from our data are shown as a black line with a diamond symbol. The error bar is the rms of the fluxes, and is used for the χ^2 fitting. The contours are the corresponding probabilities of 70% (minimum χ^2 = 1.5), 60%, and 50%. The best-fitted model (constrained by the intensity ratios) is shown as a red asterisk. The model was multiplied by the average beam filling factor of 0.2. See Table 3 for the derived parameters.

Figure 20. 10 GHz continuum (Handa et al. 1987; color image) overlaid on the contours of the CS(J = 1–0) line (Tsuboi et al. 1999; 60″ beam) integrated over ±217.5 km s^{-1}. The contours are 15, 30, 50, 70, and 90 K km s^{-1}. The map area of the CS(J = 1–0) line is denoted by the black dashed polygon. The yellow dashed line box denotes the PA.
Irvine, W. M., Goldsmith, P. F., & Hjalmarson, Å. 1987, Interstellar Processes, ed. D. J. Hollenbach & H. A. Thronson, Jr. (Dordrecht: D. Reidel), 561

Jackson, J. M., Geis, N., Genzel, R., et al. 1993, ApJ, 402, 173

Jones, P. A., Burton, M. G., Cunningham, M. R., Tothill, N. F. H., & Walsh, A. J. 2013, MNRAS, 433, 221

Jones, P. A., Burton, M. G., Cunningham, M. R., et al. 2012, MNRAS, 419, 2961

Kruijssen, J. M. D., Dale, J. E., & Longmore, S. N. 2015, MNRAS, 447, 1059

Lang, C. C., Anantharamaiah, K. R., Kassim, N. E., & Lazio, T. J. W. 1999, ApJL, 521, L41

Lau, R. M., Herter, T. L., Morris, M. R., Becklin, E. E., & Adams, J. D. 2013, ApJ, 775, 37

Law, C. J., Backer, D., Yusef-Zadeh, F., & Maddalena, R. 2009, ApJ, 695, 1070

Law, C. J., Yusef-Zadeh, F., & Cotton, W. D. 2008a, ApJS, 177, 515

Law, C. J., Yusef-Zadeh, F., Cotton, W. D., & Maddalena, R. J. 2008b, ApJS, 177, 255

Lique, F., Spielfiedel, A., & Cornicharo, J. 2006, A&A, 451, 1125

Liu, H. B., Hsieh, P.-Y., Ho, P. T. P., et al. 2012, ApJ, 756, 195

Longmore, S. N., Bally, J., Testi, L., et al. 2013, MNRAS, 429, 987

Machida, M., Matsumoto, R., Nozawa, S., et al. 2009, PASJ, 61, 411

Maeda, Y., Baganoff, F. K., Feigelson, E. D., et al. 2002, ApJ, 570, 671

Mangum, J. G. 1993, PASJ, 45, 1125

Martin, C. L., Walsh, W. D., Xiao, K., et al. 2004, ApJ, 583, 811

Martín, S., Martín-Pintado, J., Montero-Castaño, M., Ho, P. T. P., & Blundell, R. 2012, A&A, 539, A29

McCray, R., & Kafatos, M. 1987, ApJ, 317, 190

Merger, P. G., Zylka, R., Salter, C. J., et al. 1989, A&A, 209, 337

Mills, E. A. C., & Morris, M. R. 2013, ApJ, 772, 105

Minh, Y. C., Liu, H. B., Ho, P. T. P., et al. 2013, ApJ, 773, 31

Molinari, A., Bally, J., Noriega-Crespo, A., et al. 2011, ApJL, 735, L33

Monte-Castaño, M., Herrnstein, R. M., & Ho, P. T. P. 2009, ApJ, 695, 1477

Morris, M., & Serabyn, E. 1996, ARA&A, 34, 645

Murray, N., Ménard, B., & Thompson, T. A. 2011, ApJ, 735, 66

Ohya, Y., Taniguchi, Y., Iye, M., et al. 2002, PASJ, 54, 891

Oka, T., Geballe, T. R., Goto, M., Usuda, T., & McCall, B. J. 2005, ApJ, 632, 882

Oka, T., Hasegawa, T., Sato, F., Tsuboi, M., & Miyazaki, A. 1998, ApJS, 118, 455

Oka, T., Hasegawa, T., Sato, F., Tsuboi, M., & Miyazaki, A. 2001, PASJ, 53, 779

Oka, T., Hasegawa, T., White, G. J., et al. 2008, PASJ, 60, 429

Oka, T., Onodera, Y., Nagai, M., et al. 2012, ApJS, 201, 14

Oka, T., White, G. J., Hasegawa, T., et al. 1999, ApJ, 515, 249

Ott, J., Weiß, A., Staveley-Smith, L., Henkel, C., & Meier, D. S. 2014, ApJ, 785, 55

Pedlar, A., Anantharamaiah, K. R., Ekers, R. D., et al. 1989, ApJ, 342, 769

Perault, C. R., Longmore, S. N., Walsh, A. J., et al. 2012, MNRAS, 426, 1972

Reid, M. J. 1993, ARA&A, 31, 345

Reid, M. J., & Brunthaler, A. 2004, ApJ, 616, 872

Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2014, ApJ, 783, 130

Requena-Torres, M. A., Güsten, R., Weiß, A., et al. 2012, A&A, 542, L21

Rosner, R., & Bodz, G. 1996, ApJL, 470, L49

Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, ApJ, 794, 156

Sawada, T., Hasegawa, T., Handa, T., & Cohen, R. J. 2004, MNRAS, 349, 1167

Schinnerer, E., Böker, T., Meier, D. S., & Calzetti, D. 2008, ApJL, 684, L21

Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A, 432, 369

Schoen, N. Z. 1972, ApJL, 175, L127

Serabyn, E., & Guesten, R. 1987, A&A, 184, 133

Serabyn, E., Güsten, R., & Evans, N. J., II. 1989, IAU Symp. 136, The Center of the Galaxy, ed. M. Morris (Dordrecht: Kluwer), 417

Serabyn, E., Lacy, J. H., & Achtermann, J. M. 1992, ApJ, 395, 166

Sjouwerman, L. O., & Piitström, Y. M. 2008, ApJ, 681, 1287

Soeuf, Y. 1995, PASJ, 47, 527

Soeuf, Y. 1996, ApJL, 459, L69

Soeuf, Y., & Handa, T. 1984, Natur, 310, 568

Takahashi, K., Nozawa, S., Matsumoto, R., et al. 2009, PASJ, 61, 957

Tsuboi, M., Handa, T., & Ukiti, N. 1999, ApJ, 120, 1

Tsuboi, M., Miyazaki, A., & Okumura, S. K. 2009, PASJ, 61, 29

Tsuboi, M., Tadaki, K.-i., Miyazaki, A., & Handa, T. 2011, PASJ, 63, 763

van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., & van Dishoeck, E. F. 2007, A&A, 468, 627

Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769

Wardle, M., & Yusef-Zadeh, F. 2008, ApJL, 683, L37

Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ, 218, 377

Wright, M. C. H., Coil, A. L., McGary, R. S., Ho, P. T. P., & Harris, A. I. 2001, ApJL, 551, 254

Wu, P.-F., Tully, R. B., Rizzi, L., et al. 2014, AJ, 148, 7

Yusef-Zadeh, F., Hewitt, J. W., & Cotton, W. 2004, ApJS, 155, 421

Yusef-Zadeh, F., & Morris, M. 1987, ApJ, 320, 545

Yusef-Zadeh, F., Morris, M., & Chance, D. 1984, Natur, 310, 557

Zhao, J.-H., Morris, M. R., & Goss, W. M. 2014, in IAU Symp. 303, ed. L. O. Sjouwerman, C. C. Lang & J. Ott (Cambridge: Cambridge Univ. Press), 364