RESEARCH ARTICLE

Significant changes in synovial fluid microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: Identification of potential prognostic biomarkers

Yoon Hae Kwak1*, Dae-Kyung Kwak2*, Nan Young Kim3, Yun Joong Kim3,4,5, Jeong Seop Lim2, Je-Hyun Yoo2*

1 Department of Orthopaedic Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea, 2 Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea, 3 Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, Republic of Korea, 4 Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea, 5 Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea

* These authors contributed equally to this work.

Abstract

High tibial osteotomy (HTO) is a well-established treatment for medial compartmental knee osteoarthritis. Several microRNAs (miRNAs) are involved in osteoarthritis progression and are useful as osteoarthritis-related biomarkers. In this prospective study, we investigated differentially expressed microRNAs in the synovial fluid (SF) before and after HTO in patients with medial compartmental knee osteoarthritis to identify microRNAs that can be used as prognostic biomarkers. We used miRNA-PCR arrays to screen for miRNAs in SF samples obtained preoperatively and 6 months postoperatively from 6 patients with medial compartmental knee osteoarthritis who were treated with medial open wedge HTO. Differentially expressed miRNAs identified in the profiling stage were validated in the SF from 22 patients. Clinical and radiological outcomes improved after HTO in all patients, and only 2 miRNAs (miR-30c-5p and miR-23a-3p) were significantly differentially expressed between preoperative and postoperative 6-month SF samples (p = 0.006 and 0.007, respectively). Of these two miRNAs, miR-30c-5p...
correlated with postoperative pain relief. This study provides potential prognostic miRNAs after HTO and further investigations should be considered to determine clinical implications of these miRNAs.

Introduction

High tibial osteotomy (HTO) is a well-known treatment modality for active patients with medial compartmental osteoarthritis (OA) of the knee [1,2]. Several studies have shown a correlation between HTO and regeneration of the degenerated cartilage, which is thought to occur through the realignment of the mechanical axis in medial compartmental knee OA. As a result, HTO offers excellent intermediate and long-term survival rates [3,4]. Moreover, a correlation has been reported between visible improvement of the articular surface and the degree of correction with HTO [5].

The pathogenesis of OA is thought to be a complex and multifactorial process caused by genetic, mechanical, and environmental factors. Recently, the effect of dysregulation, which occurs at the molecular level during the pathogenic process of OA, has gained increased attention [6]. Environmental factors induce epigenetic mechanisms that independently regulate genomic activity in the DNA sequence and alter the expression of genes involved in disease development [7]. MicroRNAs (miRNAs), which are small non-coding RNAs composed of 19–25 nucleotides, regulate gene expression post-transcriptionally through mRNA degradation or translational suppression by binding to the 3'-UTR of target genes [8]. The role of miRNAs in cartilage degeneration has been previously reported [9,10]. Most published studies that quantified miRNA expression in OA have focused on tissues or cell lines. However, miRNAs have also been identified in the circulatory body fluids of patients with other pathologies [11,12] such that the levels of some circulating miRNAs have been associated with the diagnosis and prognosis of several diseases [13].

Most studies on HTO in medial compartmental knee OA have focused on the change in the mechanical load on the knee joint resulting from the realignment of the mechanical axis (MA) [14,15]. Regeneration of the degenerated articular cartilage in the medial compartment in medial compartmental knee OA can be expected following HTO without the need for any additional procedures, although the detailed mechanism is still unclear. Although there are many studies related to HTO in medial compartmental knee OA or miRNA expression in OA, only a small amount of information is available on the changes that occur in miRNA expression after HTO in medial compartmental knee OA and their clinical implication. Nonetheless, any changes in miRNA expression in the synovial fluid (SF) could be related to the change in the MA following HTO and subsequent cartilage regeneration. Thus, these miRNAs could be used as biomarkers to predict the prognosis after HTO.

This prospective study was conducted to determine which miRNAs in the SF are significantly differentially expressed after HTO for medial compartment knee OA and to identify the miRNAs that can serve as biomarkers related to overall prognosis.

Materials and methods

Study subjects

Patients with medial compartment knee OA who underwent HTO between November 2015 and February 2017 were prospectively enrolled in this study. First, 6 patients were recruited for the profiling stage; these patients were all females with a mean age of 57.7 years (52–65
years). Medial compartmental knee OA was confirmed by plain radiographs and scored according to the Kellgren-Lawrence grade (K-L grade) (Table 1). All patients were K-L grade II or III OA only in the medial compartment of the affected knee. For miRNA validation, 22 patients were recruited, including 19 female and 3 male patients with a mean age of 56.8 years (46–65 years). All patients were K-L grade II or III OA only in the medial compartment (Table 2). SF specimens were collected from each patient in the operating room immediately prior to undergoing the HTO procedure. Six-month SF specimens were collected in an outpatient clinic at the 6-month follow-up postoperatively.

Clinical evaluations to determine factors such as pain and functional improvement of the patients were performed using a visual analogue scale (VAS) score and the Western Ontario McMaster Universities (WOMAC) score, both preoperatively and 6 months postoperatively. Radiological assessment was performed using standing full-length anteroposterior radiographs of the lower limbs, which were taken preoperatively and 6 months postoperatively in all cases. These radiographs were taken to ensure that the patella was directly facing the front. Radiographic changes after HTO were evaluated by measuring the MA and weight bearing line (WBL) ratio. The WBL was defined as the perpendicular distance from the WBL to the medial edge of the tibial plateau divided by the width of the tibial plateau. The MA was defined as the angle subtended by a line drawn from the center of the femoral head to the center of the knee and a line drawn from the center of the knee to the center of the talus. The WBL was drawn from the center of the femoral head to the center of the superior articular surface of the talus [16].

Sampling strategy and miRNA analysis

RNA extraction from SF. First, 5 ml of SF was collected in EDTA tubes from all patients, and the plasma was separated by centrifugation within 4 h of collection to ensure consistent

Table 1. Data of 6 patients at the profiling stage.

Serial number	Gender	Age (years)	Body mass index (kg/m²)	Kellgren-Lawrence grade	Visual Analogue Scale (VAS)	WOMAC Score
1	F	57	28.4	II	6	54 13 4 37
2	F	55	23.9	II	5	10 1 0 9
3	F	61	22.8	III	7	56 8 6 42
4	F	56	27.9	III	7	42 9 3 30
5	F	65	30.2	III	3	14 0 0 14
6	F	52	26.0	III	4	33 9 3 21

Table 2. Demographic data of 22 patients at the validation stage.

Serial number	Gender	Age (years)	Body mass index (kg/m²)	Kellgren-Lawrence grade	Visual Analogue Scale (VAS)	WOMAC Score
1	F	50	30.5	III	3	21 2 2 17
2	F	46	33.3	III	7	22 3 2 17
3	F	51	25.5	II	9	59 14 3 42
4	F	56	21.8	III	8	28 5 5 18
5	F	57	28.4	II	6	54 13 4 37
6	F	55	23.9	II	5	10 1 0 9
7	F	61	22.8	III	7	56 8 6 42
8	F	56	27.9	III	7	42 9 3 30

https://doi.org/10.1371/journal.pone.0227596.t001

https://doi.org/10.1371/journal.pone.0227596.t002
pre-analytical conditions for all samples. All samples were stored at -80˚C and were not subjected to any freeze–thaw cycles before use. Total RNA was isolated from each specimen using the miRNeasy Serum/Plasma Kit (Qiagen, Germany), according to the manufacturer’s instructions. The samples were immediately stored at -80˚C until further analysis.

Profiling by miRNAs array analysis. Reverse transcription was conducted with 2 μl RNA in 10 μl reactions using the miScript II RT Kit (Qiagen, Germany), according to the manufacturer’s instructions. cDNA from miRNA was amplified using the miScript miRNA PCR Array (MIHS-105Z, Qiagen, Germany). Real-time PCR was performed on the StepOnePlus™ Real Time PCR System (Applied Biosystems, USA) using the miScript SYBR Green PCR Kit (Qiagen, Germany). Thermal cycling conditions were 95˚C for 15 min followed by 40 cycles of 95˚C for 15 s, 55˚C for 30 s, and 70˚C for 30 s, respectively. The data were analyzed using the PCR array data analysis tools (Qiagen, Germany). These panels contained primers for detection of the 84 most highly expressed miRNAs in the human body fluid (Fig 1). Real-time PCR was performed according to the manufacturer’s instructions. In each 96-well plate, cDNAs from preoperative and postoperative 6-month SF specimens from each patient were amplified in parallel. Expression values were calculated using the 2^\(-\Delta\Delta C_t\) method, and the mean and standard deviation (SD) of the three technical replicates are shown in Table 3. Additionally, the fold changes indicating the value of the change in the expression of miRNAs between the preoperative and postoperative 6-month time points were also calculated.

Validation RT-qPCR. To analyze the expression of these miRNAs, real-time PCRs were performed using the specific miScript Primer Assay (Qiagen, Germany). To normalize the expression of the miRNAs being validated, the GeNorm algorithm (GenEx, Qiagen, Germany) was used. SNORD61 was used as an endogenous reference gene [17].

Ethics statement

This study protocol was approved by the local Institutional Review Board/ Ethics Committee of Hallym University Sacred Heart Hospital (2015-1101), and it was conducted in compliance with the Declaration of Helsinki. Written informed consent was obtained from each patient,

Fig 1. Study design. Three candidate miRNAs were identified in synovial fluid samples collected from 6 patients preoperatively and postoperatively after high tibial osteotomy. After adding 4 miRNAs from published literature, a total of 7 miRNAs in 22 patients were validated.

https://doi.org/10.1371/journal.pone.0227596.g001
Table 3. miRNA expression levels in synovial fluid.

miRNA	Preop. ΔCt	Postop. 6 months ΔCt	Fold Regulation	p-value
hsa-miR-30a-5p	0.48 ± 0.71	0.72	2.20	0.028*
hsa-miR-29a-3p	0.33 ± 1.36	0.80	2.09	0.037"
hsa-miR-30c-5p	0.84 ±0.80	0.56	2.23	0.047"
hsa-miR-144-3p	1.72 ± 1.33	0.30	2.53	0.052
hsa-miR-195-5p	-1.58 ± 0.89	3.00	-2.49	0.058
hsa-miR-7c-5p	-0.44 ± 1.64	1.35	5.36	0.058
hsa-miR-7e-5p	0.90 ± 1.51	0.54	1.39	0.061
hsa-miR-16-5p	-2.19 ± 1.36	4.57	-3.14	0.062
hsa-miR-543	3.08 ± 2.40	0.12	5.00	0.066
hsa-miR-98-5p	3.08 ± 2.40	0.12	4.65	0.071
hsa-miR-1324	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-211-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-300	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-301a-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-301b-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-302a-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-302b-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-302c-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-340-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-34c-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-372-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-373-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-381-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-410-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-449b-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-511-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-513b-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-519c-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-519d-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-520d-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-520e-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-524-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-545-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-548c-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-548d-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-548e-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-590-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-607	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-655-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-875-3p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-9-5p	3.08 ± 2.40	0.12	4.56	0.072
hsa-miR-454-3p	3.01 ± 2.31	0.12	4.34	0.072
hsa-miR-128-3p	2.84 ± 2.15	0.14	3.88	0.074
hsa-miR-497-5p	2.98 ± 2.40	0.13	4.26	0.075
hsa-miR-449a	3.07 ± 2.40	0.12	5.20	0.076
hsa-miR-101-3p	2.53 ± 1.93	0.17	3.26	0.077

(Continued)
Table 3. (Continued)

miRNA	Preop.	Postop. 6 months	Fold Regulation	p-value		
	ΔCt	2^ΔCt	ΔCt	2^ΔCt		
hsa-miR-374a-5p	2.69 ± 2.18	0.16	2.18 ± 1.83	0.54	3.48	0.080
hsa-miR-17-5p	1.26 ± 0.79	0.42	0.79 ± 0.76	0.74	1.77	0.082
hsa-miR-34a-5p	2.15 ± 1.97	0.23	1.97 ± 1.69	0.61	2.73	0.084
hsa-miR-20b-5p	1.91 ± 1.30	0.27	1.30 ± 1.80	0.57	2.15	0.085
hsa-miR-181d-5p	2.21 ± 1.62	0.22	1.62 ± 1.83	0.54	2.50	0.091
hsa-miR-424-5p	1.92 ± 1.29	0.26	1.29 ± 1.69	0.56	2.13	0.093
hsa-miR-130a-3p	2.03 ± 1.45	0.24	1.45 ± 1.83	0.54	2.21	0.094
hsa-miR-202-3p	2.44 ± 2.04	0.18	2.04 ± 1.89	0.60	3.26	0.098
hsa-miR-106b-5p	1.99 ± 1.50	0.25	1.50 ± 1.83	0.54	2.15	0.099
hsa-miR-125b-5p	-0.71 ± 1.90	1.63	1.90 ± 0.88	5.40	3.31	0.101
hsa-miR-145-5p	2.64 ± 2.16	0.16	2.16 ± 1.88	0.57	3.57	0.104
hsa-miR-30b-5p	2.25 ± 2.18	0.21	2.18 ± 1.41	0.61	2.90	0.108
hsa-miR-181c-5p	1.94 ± 1.69	0.26	1.69 ± 1.83	0.54	2.07	0.135
hsa-miR-130b-3p	1.60 ± 1.25	0.33	1.25 ± 1.59	0.58	1.75	0.138
hsa-let-7g-5p	1.52 ± 1.42	0.35	1.42 ± 1.30	0.74	2.13	0.140
hsa-miR-656-3p	0.90 ± 2.50	0.53	2.50 ± 1.94	2.35	4.39	0.147
hsa-miR-186-5p	0.96 ± 0.60	0.51	0.60 ± 0.98	0.73	1.42	0.150
hsa-miR-125a-5p	-0.55 ± 1.19	1.46	1.19 ± 1.34	3.24	2.22	0.169
hsa-miR-181b-5p	-0.25 ± 0.91	1.19	0.91 ± 0.62	0.77	-1.55	0.173
hsa-miR-19a-3p	1.04 ± 0.99	0.49	0.99 ± 1.24	0.68	1.40	0.231
hsa-miR-181a-5p	0.99 ± 0.74	0.51	0.74 ± 1.17	0.65	1.29	0.235
hsa-let-7a-5p	-0.28 ± 1.40	1.22	1.40 ± 1.30	2.17	1.78	0.237
hsa-miR-29c-3p	0.79 ± 1.49	0.58	1.49 ± 2.10	0.74	1.28	0.276
hsa-miR-23a-3p	-3.45 ± 1.92	10.95	1.92 ± 2.19	18.13	1.65	0.310
hsa-miR-93-5p	1.09 ± 1.21	0.47	1.21 ± 1.02	0.68	1.45	0.343
hsa-miR-29b-3p	2.03 ± 1.81	0.24	1.81 ± 1.53	0.59	2.41	0.351
hsa-let-7f-5p	0.26 ± 0.94	0.84	0.94 ± 1.02	1.16	1.38	0.355
hsa-let-7i-5p	0.95 ± 0.88	0.52	0.88 ± 1.83	0.54	1.04	0.361
hsa-miR-23b-3p	0.18 ± 1.91	0.88	1.91 ± 1.30	1.67	1.89	0.434
hsa-miR-15a-5p	1.55 ± 1.62	0.34	1.62 ± 1.83	0.54	1.58	0.446
hsa-miR-30e-5p	0.22 ± 1.13	0.86	1.13 ± 1.49	1.01	1.18	0.481
hsa-miR-19b-3p	1.34 ± 1.49	0.39	1.49 ± 1.59	0.58	1.47	0.594
hsa-let-7b-5p	-2.92 ± 2.01	7.58	2.01 ± 0.99	11.19	1.14	0.782
hsa-miR-15b-5p	0.27 ± 0.85	0.83	0.85 ± 0.76	0.82	-1.01	0.841
hsa-miR-20a-5p	0.96 ± 1.71	0.51	1.71 ± 0.66	0.76	1.48	0.845
hsa-miR-21-5p	-4.44 ± 1.01	21.75	1.01 ± 0.80	22.94	1.05	0.952
hsa-let-7d-5p	0.51 ± 1.54	0.70	1.54 ± 1.07	0.87	1.24	0.992
hsa-miR-30d-5p	-0.30 ± 1.11	1.23	1.11 ± 0.92	1.34	1.08	0.999

Values are given as the mean ± standard deviation.

* p-value < 0.05

https://doi.org/10.1371/journal.pone.0227596.t003

and this study was supported by a grant from the National Research Foundation of Korea (NRF-2015R1D1A1A01060157). Personally identifiable information of patients was encrypted and all the analyzed data were anonymized.
Statistical analysis

Statistical analyses were performed using SPSS® software version 23 (IBM Corporation, Armonk, NY, USA). Paired t-tests for the levels of miRNAs (ΔCt) and a nominal p-value < 0.05 were used in the profiling stage, and Bonferroni corrected p-values (0.05/7) were used in the validation stage. To compare the changes in postoperative miRNAs levels with clinical and radiologic outcomes, correlation analysis using the Spearman rank test was performed considering covariates, including age, gender, BMI, preoperative K-L grade, and preoperative lower leg alignment. Wilcoxon signed-rank test was used for the comparison of clinical outcomes between preoperative and postoperative values.

Results

Identification of differentially expressed miRNAs in the profiling stage

A panel of 84 miRNAs and controls were profiled in SF specimens from 6 patients with medial compartment OA. The expression results for the 84 miRNAs based on biological groups are shown in a heat map (Fig 2), and the PCR array analysis revealed 14 of the 84 target miRNAs in all SF specimens. Only 3 miRNAs, miR-30a-5p, miR-29a-3p, and miR-30c-5p, were upregulated with a significant fold change, and these were included in the validation testing (Table 3).

Validation stage: Expression of 7 miRNAs in SF samples acquired preoperatively and 6 months postoperatively in 22 patients who underwent HTO

To further validate our profiling results, the expression of a total of 7 miRNAs, the 3 identified in the profiling stage and 4 other miRNAs, miR-378a-5p, miR-140-3p, miR-23a-3p, and miR-27b-3p, which are reported to be related to the progression of OA, were measured in the SF that was acquired preoperatively and at 6 months postoperatively in 22 patients using RT-qPCR analysis. Of the 7 miRNAs, 4 miRNAs, miR-30c-5p, miR-378a-5p, miR-23a-3p and miR-27b-3p, were differentially expressed preoperatively and 6 months postoperatively when normalized to the expression of SNORD61 (Fig 3). When the p-values were corrected by the Bonferroni method, only 2 miRNAs, miR-30c-5p and miR-23a-3p, showed a significantly positive fold change (Table 4).

Comparison of clinical and radiological outcomes preoperatively and 6 months postoperatively in 22 patients

Clinical outcomes assessed using a VAS and WOMAC questionnaire were significantly improved 6 months postoperatively compared to the preoperative values (Table 5). Preoperative pain, functional disability, and lower leg varus knee alignment were significantly improved 6 months after index surgery in 22 patients.

Correlation between demographic and clinical data and the expression of miRNAs

There was no significant correlation between demographic data, including age, gender, and body mass index, and the expression of the 7 miRNAs. Moreover, there was no significant correlation between the extent of radiologic correction and expression of the 7 miRNAs investigated. Only the extent of pain on the VAS scale at 6 months postoperatively was significantly lower along with the increased expression of 4 miRNAs [miR-30c-5p (correlation coefficient -0.453, p = 0.034), 27b-3p (correlation coefficient -0.449, p = 0.036), 140-3p (correlation coefficient -0.439, p = 0.037), 23a-3p (correlation coefficient -0.437, p = 0.038)].
miR-30a-5p (correlation coefficient -0.480, p = 0.024)] (S1 Table). miR-30a-5p was the only biomarker that correlated with significant fold changes after Bonferroni correction and clinical symptoms such as postoperative pain.

Discussion

Even with pre-existing arthritis in the medial compartment of the knee, many studies have shown improvement of articular cartilage after HTO [5,18]. Second-look arthroscopic assessment after HTO has been used to provide evidence of cartilage regeneration and mechanical improvement, which proves the effectiveness of the operation on cartilage regeneration, although the underlying mechanism is unknown. Advanced techniques using novel circulating miRNA signatures have led to the use of miRNAs as promising biomarkers. These miRNAs were previously shown to be either diagnostic factors or underlying causative factors [19, 20].

Our study was designed to identify SF miRNAs in patients with improved medial compartment OA using a comprehensive array approach. A systemic, array-based miRNA analysis was performed on SF samples from 6 patients preoperatively and postoperatively. Consistently detectable miRNAs that were significantly different after HTO were chosen for further validation of the preoperative and postoperative SF samples obtained from 22 patients. Among the 84 analyzed miRNAs, 14 miRNAs were detected in the SF of 6 patients, with 3 of these miRNAs, miR-30a-5p, miR-29a-3p and miR-30c-5p, showing significant fold changes after HTO.

miR-30a-5p has been previously implicated in the progression of lung [21], colorectal [22], and other types of cancers. Previously, the miR-30a-5p family has been found to be involved in the cardiovascular pathophysiology that leads to myocardial infarction [23, 24]. miR-30a-5p is also associated with rheumatoid arthritis and inflammation in septic conditions [25, 26]. Shen et al. reported that miR-30a-5p is highly expressed in the cartilage of patients with

[Fig 3. Box plot showing the interquartile range and median of expression levels of miR-30a-5p, miR-29a-3p, miR-30c-5p, miR-378a-5p, miR-23a-3p, miR-27b-3p, and miR-140-3p at the validation stage. The values represent the relative levels normalized to the levels of the reference gene SNORD61.](https://doi.org/10.1371/journal.pone.0227596.g003)
osteoarthritis, and its high expression can block chondrocytes, which induces the apoptosis of chondrocytes by targeting protein kinase B [27]. However, Caserta et al. noted that circular miR-30a-5p is inversely related to pro-inflammatory mediators, such as interleukin-1β and interleukin-6 [26]. In our study, miR-30a-5p was highly expressed in the preoperative SF samples of patients with OA and showed significant changes at the 6-month follow-up appointment, but no significant change was found in the validation.

Studies have shown the association between miR-29a-3p and ankylosing spondylitis (AS) [28, 29]. Although data on miR-29a-3p levels in AS are inconsistent, Prajzlerova et al. reported that patients with advanced-stage AS with extensive bone formation have higher levels of TGF-β, as well as miR-29a suppression and increased bone formation [30]. In addition, Sox9 represses the expression of miR-29a-3p in chondrocytes [31]. In our study, miR-29a-3p was highly expressed in the preoperative SF samples of patients with OA and showed significant changes at the 6-month follow-up appointment, but no significant change was found in the validation.

Has-miR-30c-5p has mainly been reported in relation to cancers [32, 33]; however, studies on chronic inflammatory disease have shown its involvement in endothelial dysfunction [34] and macrophage-mediated inflammation [35]. miR-30c-5p suppresses inflammatory pathways and is involved in related organs. Members of the miR-30 family are associated with the pathology of human OA, as highlighted in a previous study [36]. Moreover, Kung et al. showed that miR-30c-5p is an important potential therapeutic target in OA owing to its role in the disease progression and it can be targeted throughout a wide therapeutic window to reduce the pathogenic development of OA. In their study, miR-30c-5p was significantly down-regulated in the

| Table 4. Fold changes of the expression of miRNAs at the profiling and validation stages. |
|---|---|---|
| miR Name | Fold change | p-value | Fold change | p-value |
| has-miR-30a-5p | 2.20 | 0.028 | 2.65 | 0.101 |
| has-miR-29a-3p | 3.09 | 0.037 | 3.59 | 0.062 |
| has-miR-30c-5p | 2.23 | 0.047 | 3.59 | 0.007* |
| has-miR-378a-5p | - | - | 4.92 | 0.023 |
| has-miR-23a-3p | - | - | 4.90 | 0.006* |
| has-miR-27b-3p | - | - | 6.16 | 0.012 |
| has-miR-140-3p | - | - | 2.65 | 0.101 |

*Paired t-test. A Bonferroni corrected p-value < 0.0071 (0.05/7), which is marked with an asterisk, was considered statistically significant.

https://doi.org/10.1371/journal.pone.0227596.t004

Table 5. Improvement of radiological and functional outcomes in 22 patients.

Outcome	Preoperative	Postoperative 6-month	p-value*
Mechanical axis	-5.4 ± 2.3	+2.6 ± 1.7	<0.001
(−: varus, +: valgus)			
Weight-bearing line ratio (%)	18.6 ± 7.2	59.5 ± 9.2	<0.001
VAS	6.0 ± 2.0	2.6 ± 1.2	<0.001
WOMAC Total	38.9 ± 15.1	24.3 ± 12.0	0.001
Pain	8.0 ± 4.2	4.5 ± 2.6	0.003
Stiffness	3.4 ± 1.8	2.0 ± 1.5	0.008
Function	27.4 ± 10.3	17.8 ± 9.2	0.001

*p-value < 0.05

https://doi.org/10.1371/journal.pone.0227596.t005
mouse OA model, and Npr3, an experimentally validated therapeutic target, was confirmed by bioinformatics analysis [37]. In our study, since miR-30c-5p was found to regulate OA, our findings are consistent with the results of previous studies. The correlations of the 3 miRNAs evaluated in our study were inconsistent with those reported in previous studies. Nonetheless, these miRNAs can be considered common factors in the inflammatory response related to OA of the knee; however, in this study, we focused on SF samples. Thus, it is possible that the pathogenesis of regulation could be different from the processes examined in previous studies.

Along with the 3 identified miRNAs, 4 additional previously reported miRNAs were validated in 22 patients. The changes in clinical symptoms and radiological measurements were used to identify specific miRNAs related to improved outcomes. The 4 miRNAs added in the validation phase were identified in circulating miRNA signatures in OA knee SF samples [38, 39]. These are known to be circulating miRNAs that are differentially expressed in OA. Among the 7 miRNAs, 1 from the profiling stage, miR-30c-5p, and 3 added at the validation stage, miR-378a-5p, miR-23a-3p and miR-27b-3p, showed significant changes. Therefore, our results were consistent with those of previous OA studies that used SF samples, except for miR-140-3p, which showed a difference after HTO, albeit statistical significance was not observed. Furthermore, Yang et al. also reported that the expression of miR-140 in SF was significantly reduced in patients with OA [40]. After Bonferroni correction, however, only 2 miRNAs showed significant differences: miR-30c-5p from the profiling phase and miR-23a-3p from the validation phase. A previous study showed that IL-1β contributes to the release of miR-23a-3p in the SF [38]; however, our patients had a K-L grade of II or III. Hence, this finding is different from that of our present study on the progression of OA. miR-378a-5p is highly expressed in late OA, and miR-27b-3p also shows a high fold change in late OA/early OA. Therefore, these two miRNAs may not have shown any significant difference in our study for patients with early and late medial compartment knee OA [38]. miR-30c-5p has not been evaluated in OA, but it might be an important SF miRNA in medial compartment knee OA, as previously noted in this study.

For clinical relevance, possible correlations between improvements in radiological and functional outcomes and the levels of 7 miRNAs were analyzed. None of the 7 miRNAs was correlated with age, gender, or body mass index data. Four miRNAs correlated with the postoperative VAS score; however, only miR-30c-5p showed significant fold changes that correlated with the postoperative VAS score. The subjective nature of pain and inconsistencies observed during the follow-up may explain this result. Nevertheless, the importance of pain as an outcome of clinical evaluation cannot be disregarded [41]. Moreover, these clinical correlations were only measured with 22 patients, so an evaluation with a larger cohort should also be considered. These results do not definitively prove an association between SF miRNAs and HTO in patients with medial compartment knee OA; however, based on the data presented in this study, we hypothesize that differences in miRNA expression in SF reflect miRNA changes at medial compartment knee OA sites and are related to the inflammatory process.

There are some limitations to our study. In the profiling phase, we can use only 84 miRNAs panel, so 84 miRNAs were screened. To compensate for this, several important miRNAs reported to be related to the progression of osteoarthritis on literature were added in the validation phase. Further studies involving larger patient cohorts are needed to confirm the findings presented in this study, as only a small proportion of the SF miRNAs has been analyzed. Additionally, there was no positive control in our study. A positive control may be needed as the change of each miRNA in the SF would be a result of surgical intervention and not entirely specific to HTO. To account for this, we not only compared preoperative and postoperative expression of miRNAs but also compared clinical and radiologic improvements specific to HTO. Finally, this study focused on miRNAs related to the improvement of OA after HTO.
intervention; however, the underlying mechanisms between miRNAs and post-HTO prognosis were not evaluated. This study provides fundamental basic research outputs to identify potential prognostic miRNAs based on the change of miRNA’s expressions after HTO in medial compartmental knee OA. Further investigations are required to determine clinical implications of the change of these miRNAs’ expressions after HTO.

Biomarkers are used to evaluate OA improvement in patients in addition to clinical symptoms and radiologic assessments. To the best of our knowledge, this study is the first to screen miRNAs in the SF from patients with medial compartment knee OA and to identify a panel of SF circulating miRNAs that can help evaluate the improvement of OA between the preoperative and postoperative periods. Previous studies have focused on the regeneration of cartilage after HTO with mechanical loading changes. In this study, the screening identified 2 miRNAs, miR-30c-5p and miR-23a-3p, that were significantly altered after HTO. Moreover, miR-30c-5p showed a significant correlation with the postoperative pain score. A direct relationship between miRNA expression and clinical improvement in patients was not definitively demonstrated by our results. Nonetheless, our results do suggest the potential of these miRNAs as biomarkers to indicate clinical improvement after HTO.

Supporting information

S1 Table. Spearman’s rank correlation coefficients between the expression of 7 miRNAs normalized at the validation stage and outcome factors.

(DOCX)

Author Contributions

Conceptualization: Yoon Hae Kwak, Je-Hyun Yoo.

Data curation: Nan Young Kim, Jeong Seop Lim.

Formal analysis: Je-Hyun Yoo.

Funding acquisition: Je-Hyun Yoo.

Investigation: Yoon Hae Kwak, Dae-Kyung Kwak.

Methodology: Yoon Hae Kwak, Je-Hyun Yoo.

Project administration: Yoon Hae Kwak, Jeong Seop Lim.

Resources: Je-Hyun Yoo.

Software: Nan Young Kim, Je-Hyun Yoo.

Supervision: Yun Joong Kim.

Validation: Dae-Kyung Kwak, Nan Young Kim.

Visualization: Yoon Hae Kwak, Je-Hyun Yoo.

Writing – original draft: Yoon Hae Kwak, Dae-Kyung Kwak, Je-Hyun Yoo.

Writing – review & editing: Je-Hyun Yoo.

References

1. Niemeyer P, Schmal H, Hauschild O, Von Heyden J, Sudkamp NP, Kostler W. Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthrosis and varus malalignment: 3-year results with regard to preoperative arthroscopic and radiographic findings. Arthroscopy. 2010; 26: 1607–1616. https://doi.org/10.1016/j.arthro.2010.05.006 PMID: 20926232
1. Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer. 2017; 16: 34. https://doi.org/10.1186/s12943-017-0591-1 PMID: 28158983

2. Liang Y, Park YR, Kim SL, Lee ST, Kim SW. MicroRNA-30a inhibits colorectal cancer metastasis through down-regulation of type I insulin-like growth factor receptor. Dig Dis Sci. 2017; 62: 3040–3049. https://doi.org/10.1007/s10620-017-4763-z PMID: 28932920

3. Prodromos CC, Amendola A, Jakob RP. High tibial osteotomy: indications, techniques, and postoperative management. Instr Course Lect. 2015; 64: 555–565. PMID: 25749398

4. Cong L, Zhu Y, Tu G. A bioinformatic analysis of microRNAs role in osteoarthritis. Osteoarthritis Cartilage. 2017; 25: 1999–2006. https://doi.org/10.1016/j. oarthcart.2017.08.017 PMID: 28889094

5. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

6. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

7. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

8. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

9. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

10. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

11. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

12. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

13. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

14. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

15. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

16. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

17. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

18. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

19. Spahn G, Hofmann GO, Klinger HM. The effects of arthroscopic joint debridement in the knee osteoarthritis: results of a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1553–1561. https://doi.org/10.1007/s00167-012-2169-1 PMID: 22893268

20. Murata K, Furu M, Yoshitomi H, Ishikawa M, Shibuya H, Hashimoto M, et al. Comprehensive microRNAs analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One. 2013; 8: e69118. https://doi.org/10.1371/journal.pone.0069118 PMID: 23874885

21. Zhu J, Zeng Y, Li W, Qin H, Lei Z, Shen D, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer. 2017; 16: 34. https://doi.org/10.1186/s12943-017-0591-1 PMID: 28158983
23. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016; 18: 457–468. https://doi.org/10.1002/ejhf.495 PMID: 26869172

24. Maciejak A, Kostarska-Srokosz E, Gierlak W, Dluzniewski M, Kuch M, Marchel M, et al. Circulating miR-30a-5p as a prognostic biomarker of left ventricular dysfunction after acute myocardial infarction. Sci Rep. 2018; 8: 9883.24.

25. Caserta S, Kern F, Cohen J, Drage S, Newbury SF, Llewelyn MJ. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Sci Rep. 2016; 6: 28006. https://doi.org/10.1038/srep28006 PMID: 27320175

26. Caserta S, Mengozzi M, Kern F, Newbury SF, Ghezzi P, Llewelyn MJ. Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant microRNAs. Front Immunol. 2018; 8: 1977. https://doi.org/10.3389/fimmu.2017.01977 PMID: 29081152

27. Shen PF, Qu YX, Wang B, Xu JD, Wei K, Xie ZK, et al. miR-30a-5p promotes the apoptosis of chondrocytes in patients with osteoarthritis by targeting protein kinase B. Zhonghua Yi Xue Za Zhi. 2017; 97: 3079–3084. https://doi.org/10.3760/cma.j.issn.0376-2491.2017.39.008 PMID: 29081152

28. Lv Q, Li Q, Zhang P, Jiang Y, Wang X, Wei Q, et al. Disorders of microRNAs in peripheral blood mononuclear cells: As novel biomarkers of ankylosing spondylitis and provocative therapeutic targets. Biomed Res Int. 2015; 2015: 504208. https://doi.org/10.1155/2015/504208 PMID: 26273623

29. Huang J, Song G, Yin Z, Luo X, Ye Z. Elevated miR-29a expression is not correlated with disease activity index in PBMCs of patients with ankylosing spondylitis. Mod Rheumatol. 2014; 24: 331–334. https://doi.org/10.3109/14397595.2013.854077 PMID: 24593209

30. Prazijlerova K, Grobelna K, Husakova M, Forejtova S, Jungel A, Gay S, et al. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PLoS One. 2017; 12: e0185323. https://doi.org/10.1371/journal.pone.0185323 PMID: 28938006

31. Le LT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donnell ST, et al. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mol Med (Berl). 2016; 94: 583–596.

32. Cao JM, Li GZ, Han M, Xu HL, Huang KM. MiR-30c-5p suppresses migration, invasion and epithelial to mesenchymal transition of gastric cancer via targeting MTA1. Biomed Pharmacother. 2017; 93: 554–560. https://doi.org/10.1016/j.biopha.2017.06.084 PMID: 28686969

33. Song J, Kim D, Lee CH, Lee MS, Chun CH, Jin EJ. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. J Biomed Sci. 2013; 20: 31. https://doi.org/10.1186/1423-0127-20-31 PMID: 23688035

34. Kung LHW, Ravi V, Rowley L, Angelucci C, Fosang AJ, Bell KM, et al. Cartilage microRNA dysregulation during the onset and progression of mouse osteoarthritis is independent of aggrecanolysis and overlaps with candidates from end-stage human disease. Arthritis Rheumatol. 2018; 70: 383–395. https://doi.org/10.1002/art.40378 PMID: 29145712

35. Li YH, Tavallaee G, Tokar T, Nakamura A, Sundararajan K, Weston A, et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis. Osteoarthritis Cartilage. 2016; 24: 1577–1586.

36. Yin CM, Suen WC, Lin S, Wu XM, Li G, Pan XH. Dysregulation of both miR-140-39 and miR-140-5p in synovial fluid correlates with osteoarthritis severity. Bone Joint Res. 2017; 6: 612–618. https://doi.org/10.1302/2046-3758.11.BJR-2017-0090.R1 PMID: 29092816

37. Yang R, Zhang D, Yu K, Sun L, Yang J, Zhao C, et al. Detection of miR-22, miR-140 and bone morphogenetic proteins (BMP)-2 expression levels in synovial fluid of osteoarthritis patients before and after arthroscopic debridement. Med Sci Mont. 2018; 24: 863–868.

38. Kersten P, White PJ, Tennant A. Is the pain visual analogue scale linear and responsive to change? An exploration using Rasch analysis. PLoS One. 2014; 9: e99485. https://doi.org/10.1371/journal.pone.0099485 PMID: 24921952