A flexible network of Vimentin intermediate filaments promotes the migration of amoeboid cancer cells through confined environments

Sandrine B. Lavenus*, Sara M. Tudor*, Maria F. Ullo, Karl W. Vosatka, and Jeremy S. Logue

From the Department of Regenerative & Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA

Running title: Inhibiting fast amoeboid migration with Vimentin bundles

*Equal contribution

To whom correspondence should be addressed: Jeremy S. Logue: Department of Regenerative & Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Bldg. Medical Sciences (MS), Rm. MS420, Albany, NY 12208, USA; E-mail: loguej@mail.amc.edu

Keywords: Cancer, metastasis, epithelial-to-mesenchymal transition, cell migration, amoeboid, bleb, cytoskeleton, Vimentin, Simvastatin, bundling

Abstract

Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of Vimentin in amoeboid migration has not been determined. Since amoeboid, Leader Bleb-Based Migration (LBBM) occurs in confined spaces and Vimentin is known to strongly influence cell mechanical properties, we hypothesized that a flexible Vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the Vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed PDMS slab-based approach to confine cells, RNAi-based Vimentin silencing, Vimentin over-expression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of Vimentin increases LBBM by ~50% compared with control cells and that Vimentin over-expression and Simvastatin-induced Vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible Vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that Vimentin bundling perturbs cell mechanical properties and thereby inhibits the invasive properties of cancer cells.

Introduction

Cell migration is required for embryonic development, immune surveillance, and wound healing in healthy individuals. However, the uncontrolled migration of tumor cells to distant sites is a hallmark of metastasis and is associated with poor prognosis. In recent years, it has been demonstrated that cells can adopt multiple modes of migration, including mesenchymal, collective, lobopodial, osmotic engine, and amoeboid (1,2). This is important because blocking metastasis will require that each mode of migration be targeted. To this aim, here we determine the role of a well-established regulator of mesenchymal migration, the Vimentin Intermediate Filament (VIF) cytoskeleton, in regulating the amoeboid migration of cancer cells.

The switch from a predominantly Keratin to Vimentin expression pattern is a classic marker of Epithelial-to-mesenchymal Transition (EMT). Accordingly, Vimentin is known to increase the size and strength of focal adhesions, template microtubules, and during lobopodial migration is a critical component of the nuclear piston mechanism (3-6). In contrast, the role of Vimentin
Inhibiting fast amoeboid migration with Vimentin bundles

in amoeboid (blebbing) cells has not been determined. Using in vivo and in vitro approaches, it has been shown that highly contractile (metastatic) cancer cells will switch from a mesenchymal to “fast amoeboid” mode of migration in response to physically confining environments, such as those found in microlymphatics/capillaries and perivascular spaces (7-11). Additionally, certain drug treatments including, Matrix Metalloproteinase (MMP) and tyrosine kinase inhibitors (e.g., Dasatinib), will induce a switch to bleb-based migration (12-14). Fast amoeboid migration relies on the formation of what we termed a leader bleb (7). In confined environments, leader blebs are typically very large and stable blebs containing a rapid cortical actomyosin flow (7-10). Whereas mesenchymal cells utilize integrin-Extracellular Matrix (ECM) interactions for migration, fast amoeboid or Leader Bleb-Based Migration (LBBM) only requires friction between the cortical actomyosin flow and the extracellular environment (10). This property likely promotes the invasive properties of cancer cells in vivo.

Because metastasis requires that cells migrate within the confines of tissues, we hypothesized that confined cancer cell migration (i.e., LBBM) requires a flexible intermediate filament network. In support of this theory, epithelial cells treated with TGF-β, which promotes a switch from a predominantly Keratin to Vimentin expression pattern, will undergo fast amoeboid migration (8). Unlike Keratin, which stiffens by bundling in response to force (i.e., strain stiffens), Vimentin remains unbundled and flexible (15). Moreover, photobleaching experiments have shown that Vimentin undergoes subunit exchange an order of magnitude faster than Keratin and are therefore, considered to be more dynamic (16). Recently, a statin used for lowering blood cholesterol, Simvastatin, was identified in a screen for Vimentin binding molecules (17). In contrast to other statins, such as Pravastatin, Simvastatin was found to directly bind Vimentin filaments and induce bundling. In cell-based assays, Simvastatin was shown to block the proliferation of adrenal carcinoma cells, possibly because Vimentin bundling inhibits its degradation required for cell division (18). Importantly, Simvastatin binds Vimentin with high specificity, as opposed to other molecules (e.g., Witheraerin A) that effect other components of the cytoskeleton (19,20). Here, by combining Simvastatin with our recently described approach for the confinement of cells, we describe the precise role of a flexible (unbundled) Vimentin network in amoeboid human cancer cells (21).

Our data show that the concentration of Vimentin and its bundling are potent regulators of mesenchymal and amoeboid migration, mechanics, and the survival of human cancer cells in confinement. Collectively, this work sheds new light on the potential of Vimentin as a therapeutic target.

Results

Because a high level of Vimentin expression is correlated with hematogenous metastasis within a wide array of melanoma samples, we set out to determine the localization of Vimentin in melanoma A375-M2 cells (22). Moreover, this highly metastatic sub-line has been observed by intravital imaging to undergo amoeboid migration in tumors (23). Using a combination of immunofluorescence and FusionRed tagged Vimentin (Vimentin-FusionRed), we determined the localization of Vimentin in A375-M2 cells using high-resolution imaging. In cells adhered to fibronectin coated glass, an isotropic network of Vimentin was concentrated near the cell center (Fig. 1A, left). Similarly, in non-adherent (blebbing) cells on uncoated glass, Vimentin surrounded the nucleus and was excluded from blebs (Fig. 1A, middle). In order to evaluate the localization of Vimentin in cells with leader blebs, we promoted the conversion of A375-M2 cells to this morphology by confinement using our Polydimethylsiloxane (PDMS) slab-based approach (21). This involves placing cells under a Bovine Serum Albumin (BSA; 1%) coated slab of PDMS, which is held at a defined height above cover glass by ~3 µm beads. This confinement height was previously shown to be optimal for stimulating the transition to fast amoeboid migration (8). Using this approach, we found that Vimentin was kept entirely within the cell body as opposed to leader blebs (Fig. 1A-B, right & Movie S1). This is significant because the cell body resists the motile force generated by the cortical actomyosin flow in leader blebs, thus Vimentin...
may play an important role in regulating LBBM speed (8).

To directly test the notion that Vimentin concentration in the cell body limits LBBM speed, we depleted A375-M2 cells of Vimentin using a Locked Nucleic Acid (LNA), which offer enhanced specificity and stability over traditional small interfering RNAs (siRNAs) (24). Because of the long half-life of Vimentin, cells were incubated with LNAs for 5 days to achieve a ~75% reduction in protein levels (Fig. 2B). Moreover, these cells predominantly express Vimentin, they are an ideal (simplified) model for defining the role of intermediate filaments in LBBM (Fig. 1C). Using our PDMS slab-based approach, LBBM was quantitatively evaluated for LNA treated cells by live imaging over 5 hr. Strikingly, in cells depleted of Vimentin, the speed of LBBM was increased over control by ~50%, whereas over-expressing an RNAi resistant form of Vimentin-FusionRed (i.e., rescue) had the opposite effect (Fig. 2E-F & Movie S2). Directionality over time was unchanged in Vimentin RNAi cells (Fig. S1B). Quantitation proved that leader bleb area, which is defined as the single largest bleb within a given frame, is close to double the size of control (Fig. 2C). Interestingly, quantitation of cell body area found that in Vimentin RNAi cells, the cell body area was decreased by over 25% (Fig. 2D). We speculate that this result is consistent with the location of Vimentin in these cells, which may limit the degree that cortical actomyosin is able to contract the cell body. Consequently, more cytoplasm from the cell body can enter leader blebs, increasing their size. Strikingly, the nucleus in Vimentin RNAi cells was observed to undergo large shape changes, which may reflect an increase in the degree of force transmitted to the nucleus from cortical actomyosin (Fig. 2A). A more than 25% increase in the number of Vimentin RNAi cells undergoing apoptosis is consistent with reports of nuclear rupture and DNA damage in confined cells (Fig. S2C) (25,26). To test the hypothesis that Vimentin regulates the stiffness of A375-M2 cells, we used an approach described by the Piel Lab (Institut Curie) that involves compressing cells between two Polyacrylamide (PA; 1 kPa) gels (Fig. 2G & S1A) (8). Using this approach, cell height divided by the diameter (h/d), which is a function of the opposing force, is used to define the “cell stiffness.” After Vimentin RNAi, cells were found to be ~25% softer than control (Fig. 2H). In contrast, over-expressing an RNAi resistant form of Vimentin-FusionRed (i.e., rescue) led to an increase in cell stiffness (Fig. 2H). Because cortical actomyosin is also expected to regulate stiffness, we confirmed that the level of active (phosphorylated) Regulatory Light Chain (p-RLC) is not affected by Vimentin RNAi (Fig. 2I). Thus, we propose Vimentin limits cell migration in confinement through increasing cell stiffness.

Because depleting A375-M2 cells of Vimentin had a striking effect on confined migration, we set out to quantitatively evaluate the effect of Vimentin Over-Expression (OE) on LBBM. To this end, we transiently transfected cells with Vimentin-FusionRed and performed live imaging (Fig. 3A). Although leader bleb and cell body area were unaffected, we found a ~35% decrease in LBBM speed after Vimentin OE when compared to cells expressing EGFP alone (Fig. 3B-D). Directionality over time was unchanged in Vimentin OE cells (Fig S2D). The survival of confined cells was only slightly affected by Vimentin OE (Fig. S1E). Using immunofluorescence, transfected cells were found to have a ~2-fold increase in Vimentin (Fig. S1F). Consistent with this result, cell stiffness was found to be increased by ~50% after Vimentin OE (Fig. 3E). Supported by our finding that Vimentin is entirely localized to the cell body, we speculate that increasing the level of Vimentin decreases LBBM speed through stiffening the cell body.

Next, we set out to determine if modulating the architecture of Vimentin can impact LBBM. Recently, a potent and selective inducer of Vimentin bundling was identified by an image-based screen (17). In this screen, the cholesterol lowering statin, Simvastatin, was shown to directly bind Vimentin and likely through limiting electrostatic repulsion between filaments, is able to induce filament bundling (17). This result is significant because in large cohort studies, patients taking statins for cholesterol have decreased cancer associated morbidity (27). Therefore, we treated A375-M2 cells with Simvastatin (10 µM) and performed live imaging.
of Vimentin-FusionRed. Compared to Vehicle treated (DMSO), the Vimentin network was observed to progressively collapse in cells treated with Simvastatin (Fig. 4A-B & Movies 3-4). To quantitatively evaluate this effect we measured the total area of the Vimentin network in Vehicle, Simvastatin, and Pravastatin treated cells. The related statin, Pravastatin, is used here for comparison with Simvastatin. Using this approach, the average area of the Vimentin network was decreased by ~35% in Simvastatin treated cells, whereas treating cells with Pravastatin did not have a significant effect (Fig. 4C). Next, we quantified the speed of LBBM for Vehicle, Simvastatin, and Pravastatin treated cells. This analysis showed that cells treated with Simvastatin were ~60% slower than those treated with Vehicle and Pravastatin (Fig. 4D). To evaluate the effect of Simvastatin on cell stiffness, we again used the gel sandwich approach. For cells treated with Simvastatin, we observed a small decrease (~10%) in cell stiffness, whereas treating cells with Pravastatin had no effect when compared to Vehicle (Fig. 4E). Because the bundling of Vimentin causes the network to collapse into a small area of the cytoplasm, this result might be expected since the gel sandwich assay measures the stiffness of the entire cell. Although we are unable to directly measure their stiffness, based on previous studies of bundled intermediate filaments we predict a local (large) increase in mechanical properties (15). In agreement with this idea, leader blebs appear to be resisted by the cell body after Simvastatin treatment (Fig. 4B & Movie 4). Because the actomyosin cytoskeleton is also expected to effect cell stiffness, we also measured the level of active myosin (p-RLC) in drug treated cells. By Western blotting, we confirmed that treatment with Vehicle, Simvastatin, and Pravastatin did not affect the level of p-RLC (Fig. 4F). Moreover, the concentration of Vimentin was unchanged in these cells (Fig. 4F). Therefore, by inducing Vimentin bundling with Simvastatin, migration in confined environments is inhibited. As tissue culture cells obtain cholesterol from serum, statin treatment is not expected to alter the level of intracellular cholesterol, which is a critical component of the plasma membrane (28). Therefore, our data supports a model whereby local stiffening of the cell body by Vimentin bundling inhibits LBBM.

In order to evaluate if Simvastatin has a general effect on cancer cell motility, we subjected drug treated A375-M2 and lung cancer A549 cells, which also express Keratin (Fig. 1B), to transmigration assays. Using filters with 8 µm pores, we found that Simvastatin decreases transmigration for A375-M2 (~80%) and to a lesser extent A549 cells (~15%), whereas Pravastatin did not have a significant effect (Fig. 4A-B). Interestingly, when using filters with larger pores (12 µm) we did not observe a statistically significant difference in the transmigration of A375-M2 cells after Simvastatin treatment (Fig. 5A, right). Because we observed a ~50% increase in the number of apoptotic cells after Simvastatin treatment (Fig. 4G), we next determined if Simvastatin had a general effect on cell proliferation. To accomplish this, we counted cells over 5 consecutive days in order to generate growth curves for A375-M2 and A549 cells. Strikingly, we found that Simvastatin but not Pravastatin treatment inhibited the proliferation of both cell types (Fig. 5C-D). However, this effect was significantly more pronounced for A375-M2 cells, which express high levels of Vimentin (Fig. 1B). Consistent with Vimentin increasing the size and strength of focal adhesions, A375-M2 and A549 cells were frequently less spread one day after Simvastatin treatment (Fig. 5E) (3). Again, this effect was much more pronounced for A375-M2 cells. In contrast, cells treated with Pravastatin were not significantly different from Vehicle (Fig. 5E). Similarly, we found Simvastatin but not Pravastatin inhibits the transmigration and proliferation of WM983-B and MDA-MB-231 cells, which both express high levels of Vimentin (Fig. S2). Altogether, these results suggest that confined migration and the proliferation of cancer cells is inhibited by Vimentin bundling.

Discussion
Here, we describe for the first time the contribution of the Vimentin intermediate filament network to LBBM. In contrast to mesenchymal migration, we demonstrate that depleting cells of Vimentin increases the speed of LBBM. A result that may be explained by our observation that Vimentin is entirely localized to the cell body, which is thought to resist the motile force produced by leader blebs. In agreement with this
concept, leader blebs that have spontaneously separated from the cell body are extremely fast (8). Our measurements found leader bleb area to be increased after Vimentin RNAi, whereas the cell body area was reduced. These results suggest that Vimentin limits the compressibility of the cell body by cortical actomyosin, therefore more cytoplasm can flow into leader blebs to increase their size. Consistent with previous reports, our measurements of stiffness found that Vimentin protects the cell against compression (29). Vimentin may be particularly important for protecting the nucleus from compressive force, as several adaptor proteins have been reported to connect it to the nuclear envelope (30-32). Accordingly, Vimentin has been recently reported to protect the nucleus from rupture and DNA damage in confinement (33,34). In line with these results, we find the nucleus in Vimentin RNAi cells to undergo dramatic shape changes during LBBM. Moreover, cells depleted of Vimentin were found to more frequently undergo apoptosis. In mesenchymal cells, the density of the Vimentin network has been reported to inversely correlate with the actin retrograde flow rate in lamellipodia (35,36). Similarly, we speculate that the localization of Vimentin in the cell body may be important to not restrict the cortical actomyosin flow in leader blebs. Therefore, our work identifies Vimentin to be a fundamental regulator of LBBM.

Our results suggest that Vimentin increases the stiffness of the cell body to negatively regulate LBBM. To test this model, we used the cholesterol lowering statin, Simvastatin, which was identified after a screen of 1,120 biochemically active molecules to specifically bind and induce the bundling of Vimentin filaments (17). Indeed, using high-resolution live imaging of melanoma cells, we observed the Vimentin network to progressively collapse after Simvastatin treatment and not with another statin, Pravastatin. Because tissue culture cells obtain cholesterol from serum, this effect is not likely due to the lowering of cholesterol. In line with our model, Vimentin bundles led to the cell body being cemented in place, inhibiting LBBM. Using transmigration assays, which involves the migration of cells through fibronectin coated filters, we determined that Vimentin bundling could inhibit migration through 8 but not 12 μm pores. However, this effect appears to be more pronounced in cells that express high levels of Vimentin. Additionally, the proliferation of cells expressing high levels of Vimentin was dramatically inhibited by Simvastatin. This result may be due to the loss of adhesion we observed after Simvastatin but not Pravastatin treatment. Alternatively, these results may be due to defects in the microtubule network, as microtubules and Vimentin reciprocally template their growth (4,5). Moreover, Vimentin expression has been reported to reinforce EMT through the regulation of intracellular signaling (37,38). Thus, future work will need to resolve these alternative explanations.

Our results are significant because in large cohort studies, patients taking statins for cholesterol have decreased cancer associated mortality (27). However, statins are selectively localized to the liver, which is the major site of cholesterol production; therefore, this effect is more likely to be due to a decrease in blood cholesterol. Accordingly, rapidly growing cancer cells require high uptake of extracellular cholesterol (39,40). Therefore, patients are not likely to benefit much from the effect of Simvastatin on Vimentin. Together with the work of others, our studies support the derivatization of Simvastatin for generating an entirely Vimentin selective molecule. Notably, mice lacking Vimentin exhibit few defects, therefore the systemic administration of a Vimentin selective molecule may be well tolerated (41-43). Thus, the perturbation of Vimentin function in cancer cells represents an attractive strategy for the prevention of metastasis.

SUPPLEMENTAL INFORMATION

Supplemental information includes 2 figures and 4 movies and can be found with this article online.

EXPERIMENTAL PROCEDURES

Cell culture
A375-M2 (CRL-3223), A549 (CCL-185), and MDA-MB-231 cells were obtained from the American Type Culture Collection (ATCC; Manassas, VA). WM983-B cells were purchased from Rockland Immunochemicals (Pottstown, PA). All cells were maintained for up to 30 passages in DMEM supplemented with 10% FBS
Inhibiting fast amoeboid migration with Vimentin bundles

Non-targeting (cat. no. 4390844) and Vimentin (cat. no. 4390824; s14798) LNAs were purchased from Thermo Fisher Scientific. 50 nM (final concentration) LNA was transfected into cells using RNAiMAX (Thermo Fisher Scientific) diluted in OptiMEM (Thermo Fisher Scientific).

Microscopy
Live high-resolution imaging was performed using a General Electric (Boston, MA) DeltaVision Elite imaging system mounted on an Olympus (Japan) IX71 stand with a computerized stage, environment chamber (heat, CO2, and humidifier), ultrafast solid-state illumination with excitation/emission filter sets for DAPI, CFP, GFP, YFP, and Cy5, critical illumination, Olympus PlanApo N 60X/1.42 NA DIC (oil) objective, Photometrics (Tucson, AZ) CoolSNAP HQ2 camera, proprietary constrained iterative deconvolution, and vibration isolation table.

Confinement
This protocol has been described in detail elsewhere (21). Briefly, PDMS (Dow Corning 184 SYLGARD) was purchased from Krayden (Westminster, CO). 2 mL was cured overnight at 37 °C in each well of a 6-well glass bottom plate (Cellvis). Using a biopsy punch (cat. no. 504535; World Precision Instruments, Sarasota, FL), an 8 mm hole was cut and 3 mL of serum free media containing 1% BSA was added to each well and incubated overnight at 37 °C. After removing the serum free media containing 1% BSA, 200 µL of complete media containing trypsinized cells (250,000 to 1 million) and 2 µL of beads (3.11 µm; Bangs Laboratories, Fishers, IN) were then pipetted into the round opening. The vacuum created by briefly lifting one side of the hole with a 1 mL pipette tip was used to move cells and beads underneath the PDMS. Finally, 3 mL of complete media was added to each well and cells were recovered for ~60 min before imaging.

Leader bleb, cell body, and Vimentin area measurements
For leader bleb, cell body, and Vimentin areas, freshly confined cells were traced from high-resolution images with the free-hand circle tool in Fiji (https://fiji.sc/). From every other frame, the percent of cell body area for leader blebs, percent of total for cell body areas, and percent of cell

Pharmacological treatments
Simvastatin (cat no.1965) and Pravastatin (cat no. 2318) were purchased from Tocris Bioscience (Bristol, UK). DMSO (Sigma Aldrich) was used to make 1000X stock solutions for a working concentration of 10 µM. Prior to imaging under confinement, plates with PDMS slabs were incubated overnight in media with DMSO, Simvastatin, or Pravastatin. The following day, this media was replaced with fresh complete media containing DMSO, Simvastatin, or Pravastatin.

Plasmids
Vimentin-FusionRed and H2B-FusionRed were purchased from Evrogen (Russia). mEmerald-Vimentin-7 and mEmerald-F-tractin-N13 were gifts from Michael Davidson (Florida State University). F-tractin-FusionRed has been previously described (7). 1 µg of plasmid was transfected using a Nucleofector 2b device (Kit V; Lonza, Basel, Switzerland).

Mutagenesis
The QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies; Santa Clara, CA) was used according to the manufacture’s protocol for generating an RNAi resistant form of Vimentin-FusionRed. The following primers were used for PCR:

F: CTGGCACGTCTTGATCTGTAACGCAAAG
R: CTTTGCAGGATCAAAGACGTGCAAG

This yields a single (silent; C->T) mutation centrally located within the LNA target sequence (GTCTTGACCTGGAACGCAA). Clones were verified by sequencing using a commercially available resource (Thermo Fisher Scientific).

LNAs

(cat no. 12106C; Sigma Aldrich, St. Louis, MO), GlutaMAX (Thermo Fisher Scientific, Carlsbad, CA), antibiotic-antimycotic (Thermo Fisher Scientific) and 20 mM Hepes pH 7.4. Cells were plated on 6-well glass bottom plates (Cellvis, Mountain View, CA) either directly or after coating with 10 µg/ml human plasma fibronectin (cat no. FC010; Millipore, Billerica, MA), as noted in the figure legend.
body area for Vimentin was calculated in Microsoft Excel (Redmond, WA). Frame-by-frame measurements were then used to generate an average for each cell. All statistical analyses were performed in GraphPad Prism (La Jolla, CA).

Cell migration
To perform cell speed and directionality analyses, we used a Microsoft Excel plugin, DiPer, developed by Gorelik and colleagues and the Fiji plugin, MTrackJ, developed by Erik Meijering for manual tracking (44,45). For minimizing positional error, cells were tracked every other frame. Brightfield imaging was used to confirm that beads were not obstructing the path of a cell. All statistical analyses were performed in GraphPad Prism.

Cell stiffness measurements
The gel sandwich assay described in detail elsewhere was used with minor modifications (8). Briefly, 6-well glass bottom plates (Cellvis) and 18 mm coverslips were activated using 3-aminopropyltrimethoxysilane (Sigma Aldrich) for 5 min and then for 30 min with 0.5% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA) in PBS. 1 kPa Polyacrylamide (PA) gels were made using 2 µL of blue fluorescent beads (200 nm; ThermoFisher), 18.8 µL of 40% acrylamide solution (cat no. 161-0140; Bio-Rad, Hercules, CA), and 12.5 µL of bis-acrylamide (cat no. 161-0142; Bio-Rad) in 250 µL of PBS. Finally, 2.5 µL of Ammonium Persulfate (APS; 10% in water) and 0.5 µL of Tetramethylmethylenediamine (TMED) was added before spreading 9 µL drops onto treated glass under coverslips. After polymerizing for 40 min, the coverslip was lifted in PBS, extensively rinsed and incubated overnight in PBS. Before each experiment, the gel attached to the coverslip was placed on a 14 mm diameter, 2 cm high PDMS column for applying a slight pressure to the coverslip with its own weight. Then, both gels were incubated for 30 min in medium before seeding cells in plates. After the bottom gels in plates was placed on the microscope stage, the PDMS column with the top gel was placed on top of the cells seeded on the bottom gels, confining cells between the two gels (Figure 2G). After 1 hr of adaptation, the height of cells was measured with beads by measuring the distance between gels, whereas the cell diameter was measured using a far-red plasma membrane dye (cat no. C10046; ThermoFisher). Stiffness was defined as the height (h) divided by the diameter (d). If drugs were used, gels were first incubated with drug in media for 30 min before an experiment.

Transmigration
Prior to transmigration assays, polycarbonate filters with 8 or 12 µm pores (Corning; Corning, NY) were coated with 10 µg/mL fibronectin (Millipore) by air drying for 1 hr. After permitting ~100,000 cells in serum free media to attach (1 hr), DMSO, Simvastatin, or Pravastatin were added to each well. Bottom chambers contained 20% FBS in media to attract cells. After 24 hr, cells from the bottom of the filter were trypsinized and counted using an automated cell counter (TC20; Bio-Rad, Hercules, CA). Transmigration was then calculated as the ratio of cells on the bottom of the filter vs. the total. All statistical analyses were performed in GraphPad Prism.

Growth curves
On day zero, ~125,000 cells were plated in 6-well tissue culture plates in complete media with DMSO, Simvastatin, or Pravastatin. For 5 consecutive days, cells were trypsinized and counted using an automated cell counter (TC20; Bio-Rad). Each day, wells were supplemented with fresh media and drug till their day to be counted. All plots were generated using GraphPad Prism.

Immunofluorescence
After washing with Hepes Buffered Saline (HBS), cells in 6-well glass bottom plates (Cellvis) were fixed on ice with methanol containing 1% Paraformaldehyde (PFA; Electron Microscopy Sciences) for 20 min. Blocking, permeabilization, antibody incubations, and washing were done in HBS with 1% BSA, 1% fish gelatin, 0.1% Triton X-100, and 5 mM EDTA. A 1:100 dilution of Vimentin antibody (cat no. 5741; Cell Signaling Technology, Danvers, MA) was incubated with cells overnight at 4°C. After extensive washing, a 1:400 dilution of Alexa Fluor 488 conjugated anti-rabbit secondary antibody (cat no. A-21206; Thermo Fisher Scientific) was then incubated with cells for 2 hr at room temperature. Cells were again extensively washed and then imaged in...
HBS. For calculating the level of Vimentin-FusionRed OE, we used a custom macro in Fiji (https://fiji.sc/) for automatically quantifying Vimentin in transfected vs. untransfected cells. Transfected cells were identified using FusionRed.

Western blotting
Whole-cell lysates were prepared by scraping cells into ice cold RIPA buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.1% SDS, 0.5% deoxycholate, and 1% Triton X-100) containing protease and phosphatase inhibitors (Roche, Switzerland). Before loading onto 4–12% NuPAGE Bis-Tris gradient gels (Thermo Fisher Scientific), lysates were cleared by centrifugation. Following SDS-PAGE, proteins in gels were transferred to nitrocellulose membranes and subsequently immobilized by air drying overnight. After blocking in Tris-Buffered Saline containing 0.1% Tween 20 (TBS-T) and 1% BSA, primary antibodies against Vimentin, (cat no. 5741; Cell Signaling Technology), pan-Keratin (cat no. 4545; Cell Signaling Technology), IQGAP1 (cat no. 20648; Cell Signaling Technology), p-RLC (cat no. 3671; Cell Signaling Technology), or RLC (cat no. 8505; Cell Signaling Technology) were incubated with membranes overnight at 4 °C. Bands were then resolved with Horse Radish Peroxidase (HRP) conjugated secondary antibodies and a C-Digit imager (LI-COR Biosciences, Lincoln, NE).

Statistics
All sample sizes were empirically determined based on saturation. As noted in each figure legend, statistical significance was determined by either a two-tailed (unpaired) Student’s t-test, F test, or ordinary one-way ANOVA followed by a post-hoc multiple comparisons test. Normality was determined by a D’Agostino & Pearson test in GraphPad Prism. * - p ≤ 0.05, ** - p ≤ 0.01, and *** - p ≤ 0.001

Data availability
The data that support the findings of this study are available from the corresponding author, J.S.L., upon reasonable request.
ACKNOWLEDGEMENTS

We would like to thank Justin Kusiel for helping initiate the Simvastatin studies and all members of the Logue Lab for insightful discussions and critical reading of this manuscript. We would also like to thank the administrative staff within the Department of Regenerative and Cancer Cell Biology at the Albany Medical College. This work was supported by start-up funds provided by the Albany Medical College.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

AUTHOR CONTRIBUTIONS

J.S.L. conceived and designed the study. S.B.L. and S.M.T. contributed equally to all experiments. M.F.U. performed the transmigration, growth curves, and Western blot assays for WM983-B and MDA-MB-231 cells. K.W.V. contributed to the quantitative image analysis of rescue (RNAi + Vimentin-FusionRed) cells. J.S.L. wrote the manuscript with comments from all lab members.
REFERENCES

1. Yamada, K. M., and Sixt, M. (2019) Mechanisms of 3D cell migration. Nature Reviews Molecular Cell Biology 20, 738-752
2. Stroka, K. M., Jiang, H., Chen, S.-H., Tong, Z., Wirtz, D., Sun, S. X., and Konstantopoulos, K. (2014) Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611-623
3. Mendez, M. G., Kojima, S.-I., and Goldman, R. D. (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. The FASEB Journal 24, 1838-1851
4. Gan, Z., Ding, L., Burckhardt, C. J., Lowery, J., Zaritsky, A., Sitterley, K., Mota, A., Costigliola, N., Starker, C. G., and Voytas, D. F. (2016) Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell systems 3, 252-263. e258
5. Leduc, C., and Etienne-Manneville, S. (2017) Regulation of microtubule-associated motors drives intermediate filament network polarization. J Cell Biol 216, 1689-1703
6. Petrie, R. J., Koo, H., and Yamada, K. M. (2014) Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345, 1062-1065
7. Logue, J. S., Cartagena-Rivera, A. X., Baird, M. A., Davidson, M. W., Chadwick, R. S., and Waterman, C. M. (2015) Erk regulation of actin capping and bundling by Eps8 promotes cortex tension and leader bleb-based migration. Elife 4
8. Liu, Y. J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., Heuze, M., Takaki, T., Voituriez, R., and Piel, M. (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659-672
9. Ruprecht, V., Wieser, S., Callan-Jones, A., Smutny, M., Morita, H., Sako, K., Barone, V., Rittsch-Mart, M., Sixt, M., Voituriez, R., and Heisenberg, C. P. (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160, 673-685
10. Bergert, M., Erzberger, A., Desai, R. A., Aspalter, I. M., Oates, A. C., Charras, G., Salbreux, G., and Paluch, E. K. (2015) Force transmission during adhesion-independent migration. Nat Cell Biol 17, 524-529
11. Paul, C. D., Mistriotis, P., and Konstantopoulos, K. (2017) Cancer cell motility: lessons from migration in confined spaces. Nature Reviews Cancer 17, 131
12. Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392
13. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., Strongin, A. Y., Brocker, E. B., and Friedl, P. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160, 267-277
14. Logue, J. S., Cartagena-Rivera, A. X., and Chadwick, R. S. (2018) c-Src activity is differentially required by cancer cell motility modes. Oncogene
15. Ma, L., Xu, J., Coulombe, P. A., and Wirtz, D. (1999) Keratin filament suspensions show unique micromechanical properties. Journal of Biological Chemistry 274, 19145-19151
16. Liao, G., and Gundersen, G. G. (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments selective binding of Kinesin to detyrosinated tubulin and vimentin. Journal of Biological Chemistry 273, 9797-9803
17. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., Strongin, A. Y., Brocker, E. B., and Friedl, P. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160, 267-277
18. Chou, Y. H., Ngai, K. L., and Goldman, R. (1991) The regulation of intermediate filament reorganization in mitosis. p34cdc2 phosphorylates vimentin at a unique N-terminal site. J Biol Chem 266, 7325-7328
Inhibiting fast amoeboid migration with Vimentin bundles

19. Berghe, W. V., Sabbe, L., Kaileh, M., Haegeman, G., and Heyninck, K. (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochemical pharmacology 84, 1282-1291

20. Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H., and Goldman, R. D. (2012) Withaferin a alters intermediate filament organization, cell shape and behavior. PloS one 7, e39065

21. Logue, J., Chadwick, R., and Waterman, C. (2018) A simple method for precisely controlling the confinement of cells in culture.

22. Li, M., Zhang, B., Sun, B., Wang, X., Ban, X., Sun, T., Liu, Z., and Zhao, X. (2010) A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. Journal of Experimental & Clinical Cancer Research 29, 109

23. Tozluoglu, M., Tournier, A. L., Jenkins, R. P., Hooper, S., Bates, P. A., and Sahai, E. (2013) Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 15, 751-762

24. Denais, C. M., Gilbert, R. M., Isermann, P., McGregor, A. L., te Lindert, M., Weigelin, B., Davidson, P. M., Friedl, P., Wolf, K., and Lammerding, J. (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353-358

25. Nielsens, S. F., Nordestgaard, B. G., and Bojesen, S. E. (2012) Statin Use and Reduced Cancer-Related Mortality. New England Journal of Medicine 367, 1792-1802

26. DeGrella, R. F., and Simoni, R. D. (1982) Intracellular transport of cholesterol to the plasma membrane. J Biol Chem 257, 14256-14262

27. Mendez, M. G., Restle, D., and Janmey, P. A. (2014) Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J 107, 314-323

28. Wilhelmsen, K., Litjens, S. H., Kuikman, I., Tshimbalanga, N., Janssen, H., van den Bout, I., Raymond, K., and Sonnenberg, A. (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. The Journal of cell biology 171, 799-810

29. Makise, M., Nakamura, H., and Kuniyasu, A. (2018) The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype. BMC Cancer 18, 519

30. Geogatos, S. D., and Blobel, G. (1987) Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J Cell Biol 105, 117-125

31. Stankevicins, L. D. C., Urbanska, M., Flormann, D. A., Terriac, E., Mostajeran, Z., Gad, A. K. B., Cheng, F., Eriksson, J. E., and Lautenschläger, F. (2019) Vimentin provides the mechanical resilience required for amoeboid migration and protection of the nucleus. bioRxiv

32. Patterns, A. E., Vahabikashi, A., Pogoda, K., Adam, S. A., Goldman, A., Goldman, R., and Janmey, P. (2019) Vimentin protects the structural integrity of the nucleus and suppresses nuclear damage caused by large deformations. bioRxiv

33. Costigliola, N., Ding, L., Burckhardt, C. J., Han, S. J., Gutierrez, E., Mota, A., Groisman, A., Mitchison, T. J., and Danuser, G. (2017) Vimentin fibers orient traction stress. Proc Natl Acad Sci U S A 114, 5195-5200

34. Jiu, Y., Lehtimaki, J., Tojkander, S., Cheng, F., Jaalinoja, H., Liu, X., Varjosaalo, M., Eriksson, J. E., and Lappalainen, P. (2015) Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers. Cell Rep 11, 1511-1518

35. Vuoriluoto, K., Haugen, H., Kiviluoto, S., Mpindi, J., Nevo, J., Gjerdrum, C., Tiron, C., Lorenz, J., and Ivaska, J. (2011) Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 30, 1436-1448
38. Phua, D. C., Humbert, P. O., and Hunziker, W. (2009) Vimentin regulates scribble activity by protecting it from proteasomal degradation. *Molecular biology of the cell* **20**, 2841-2855
39. Fiorenza, A. M., Branchi, A., and Sommariva, D. (2000) Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. *International Journal of Clinical and Laboratory Research* **30**, 141-145
40. Benn, M., Tybjærg-Hansen, A., Stender, S., Frikke-Schmidt, R., and Nordestgaard, B. G. (2011) Low-Density Lipoprotein Cholesterol and the Risk of Cancer: A Mendelian Randomization Study. *JNCI: Journal of the National Cancer Institute* **103**, 508-519
41. Galou, M., Colucci-Guyon, E., Ensergueix, D., Ridet, J. L., Gimenez y Ribotta, M., Privat, A., Babinet, C., and Dupouey, P. (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. *J Cell Biol* **133**, 853-863
42. Henrion, D., Terzi, F., Matrougui, K., Duriez, M., Boulanger, C. M., Colucci-Guyon, E., Babinet, C., Briand, P., Friedlander, G., Poitevin, P., and Levy, B. I. (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. *J Clin Invest* **100**, 2909-2914
43. Eckes, B., Colucci-Guyon, E., Smola, H., Nodder, S., Babinet, C., Krieg, T., and Martin, P. (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. *J Cell Sci* **113** (Pt 13), 2455-2462
44. Gorelik, R., and Gautreau, A. (2014) Quantitative and unbiased analysis of directional persistence in cell migration. *Nat Protoc* **9**, 1931-1943
45. Mei\`jer\`ing, E., Dzyubachyk, O., and Smal, I. (2012) Methods for cell and particle tracking. *Methods Enzymol* **504**, 183-200
Figure 1. Vimentin localizes to the cell body of leader bleb forming cells. A. Localization in adhered to fibronectin (left), uncoated glass (blebbing; middle), and confined under PDMS (forming a leader bleb; right) of either endogenous (A; adhered) or transiently expressed Vimentin (A’; Vimentin-FusionRed). B. Percent of confined cells with Vimentin being localized in either the cell body or leader bleb. C. Lysates from A375-M2 and A549 cells probed for endogenous Vimentin and pan-Keratin. Densitometry (C’; n=3) was used to determine the ratio of Vimentin in A375-M2 vs. A549 cells. Statistical significance was determined by a one-sample (hypothetical value=1) Student’s t-test. Error is SEM. All data are representative of at least three independent experiments. * - p ≤ 0.05, ** - p ≤ 0.01, *** - p ≤ 0.001, and **** - p ≤ 0.0001.
Inhibiting fast amoeboid migration with Vimentin bundles

Figure 2. RNAi of Vimentin promotes rapid leader bleb-based migration. A. Montage of an A375-M2 cell under PDMS depleted of Vimentin by RNAi expressing F-tractin-mEmerald and H2B-FusionRed. B. Western blot confirming the depletion of Vimentin by RNAi in A375-M2 cells. Densitometry (B'; n=3) was used to determine the fold change in Vimentin after RNAi. Error is SEM. C-D. Quantitative evaluation of leader bleb (C) and cell body (D) area in control (non-targeting), Vimentin RNAi, and rescue (RNAi + Vimentin-FusionRed) cells. Statistical significance was determined by an ordinary one-way ANOVA followed by a post-hoc multiple comparisons test. E. Migration tracks for non-targeting (left; n=40) and Vimentin RNAi (right; n=43) cells under PDMS. F. Amalgamated instantaneous speeds for non-targeting, Vimentin RNAi, and rescue (RNAi + Vimentin-FusionRed) cells.
Data were normalized around the average for non-targeting collected at the time of Vimentin RNAi or rescue. Statistical significance was determined by an F test. Error is SEM. G. Cartoon of the gel sandwich approach for measuring cell stiffness. H. Cell stiffness for non-targeting (n=77), Vimentin RNAi (n=30), and rescue (RNAi + Vimentin-FusionRed; n=23) cells. Statistical significance was determined by an ordinary one-way ANOVA followed by a post-hoc multiple comparisons test. I. Western blots of endogenous phosphorylated Regulatory Light Chain (p-RLC; S19) and RLC in non-targeting and Vimentin RNAi cells. Densitometry (I'; n=3) was used to determine the fold change in p-RLC after RNAi. Statistical significance was determined by a one-sample (hypothetical value=1) Student’s t-test. Error is SEM. Tukey box plots in which “+” and line denote the mean and median, respectively. All data are representative of at least three independent experiments. * - p ≤ 0.05, ** - p ≤ 0.01, *** - p ≤ 0.001, and **** - p ≤ 0.0001
Figure 3. Over-expressing Vimentin in confined cells. A. Montage of an A375-M2 cell over-expressing Vimentin and the marker of Filamentous actin (F-actin), F-tractin, under PDMS. B-C. Quantitative evaluation of leader bleb (B) and cell body (C) area for cells over-expressing EGFP alone and Vimentin-FusionRed. Statistical significance was determined by two-tailed (unpaired) Student’s t-tests. D. Instantaneous speeds for cells over-expressing EGFP alone (n=41) and Vimentin-FusionRed (n=41). Statistical significance was determined by an F test. Error is SEM. E. Cell stiffness for EGFP alone (n=34) and Vimentin-FusionRed (n=31) over-expressing cells. Statistical significance was determined by a two-tailed (unpaired) Student’s t-test. Tukey box plots in which “+” and line denote the mean and median, respectively. All data are representative of at least three independent experiments. * - p ≤ 0.05, ** - p ≤ 0.01, *** - p ≤ 0.001, and **** - p ≤ 0.0001
Inhibiting fast amoeboid migration with Vimentin bundles

Figure 4. Vimentin bundling inhibits leader bleb-based migration. A-B. Montage of an A375-M2 cell treated with Vehicle (A; DMSO) or Simvastatin (B; 10 µM) expressing F-tractin-mEmerald and Vimentin-FusionRed under PDMS. Arrows point to areas of collapsed Vimentin in the cell body. C. Quantitative evaluation of Vimentin network collapse for Vehicle (n=39), Simvastatin (n=26), and Pravastatin (n=27) treated cells. Statistical significance was determined by an ordinary one-way ANOVA followed by a post-hoc multiple comparisons test. D. Quantitative evaluation of instantaneous speeds for Vehicle (n=28), Simvastatin (n=19), and Pravastatin (n=20) treated cells. Statistical significance was determined by F tests. Error is SEM. E. Cell stiffness measurements for Vehicle (n=77), Simvastatin (n=63), and Pravastatin (n=62). Statistical significance was determined by a Kruskal-Wallis test followed by a post-hoc multiple comparisons. F. Western blots of endogenous p-RLC, RLC, and Vimentin in drug treated cells. G. Percent of live (drug treated) cells after 5 hr under PDMS. Tukey box plots in which “+” and line denote the mean and median, respectively. All data are representative of at least three independent experiments. * - p ≤ 0.05, ** - p ≤ 0.01, *** - p ≤ 0.001, and **** - p ≤ 0.0001
Figure 5. Simvastatin impairs the migration and proliferation of cells expressing high levels of Vimentin. A-B. Quantitative evaluation of transmigration for drug treated A375-M2 (A) and A549 (B) cells through fibronectin coated (10 µg/mL) polycarbonate filters with 8 or 12 µm pores. Statistical significance was determined by a two-tailed (unpaired) Student’s t-test. Error is SEM. C-D. Growth curves for drug treated A375-M2 (C) and A549 (D) cells on tissue culture plastic. Error is SEM. E. Brightfield images of A375-M2 (top) and A549 (bottom) cells one day after treatment with Vehicle,
Simvastatin, or Pravastatin. All experiments were performed at least three times. * - \(p \leq 0.05 \), ** - \(p \leq 0.01 \), *** - \(p \leq 0.001 \), and **** - \(p \leq 0.0001 \).
A flexible network of Vimentin intermediate filaments promotes the migration of amoeboid cancer cells through confined environments
Sandrine B Lavenus, Sara M Tudor, Maria F Ullo, Karl W Vosatka and Jeremy S Logue

J. Biol. Chem. published online March 31, 2020

Access the most updated version of this article at doi: 10.1074/jbc.RA119.011537

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts