Construction and Application of Risk Ontology in Logistics Finance from the Perspective of Risk Correlation

Yang Bo and Wang Xinfei

School of Information Management, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, China.
Email: 1761575539@qq.com.

Abstract. Previous research on logistics financial risk pre-warning and pre-control focuses on the linear causal relationship between risk and risk events. In fact, risk events in logistics financial field are often caused by multiple risk factors, which are directly or indirectly related to these risk factors. Therefore, it is helpful for the healthy development of logistics finance to find out the related risks of each logistics financial risk event and screen and control them one by one. This paper proposes OntoLFR (Logistics Financial Risk Ontology), and constructs the logistics financial risk ontology model to adapt to the variability, complexity and relevance of risk in early warning and pre-control. Taking the risk event (RW_risk) of the financing enterprise to escape, the feasibility of using the logistics financial risk ontology model for risk-related reasoning and analysis is verified.

1. Introduction
As an emerging financial innovation business, logistics finance is a cooperative innovation between banks and other financial institutions through logistics companies, relying on guarantees such as inventory, accounts receivable and even trade relations in the supply chain, and in the process of supply chain operation, it provides financing, supporting settlement and insurance services to customers, especially small and medium-sized enterprises [1]. Compared with western developed countries, China's logistics finance started late, and there are still various problems. The risk division of each participating entity is inconsistent, and the supporting laws and regulations are not perfect. Therefore, in order to promote the healthy development of logistics finance, it is necessary to discriminate and control the risks that exist, and take certain preventive measures. At present, scholars at home and abroad have already produced a large number of research results in the field of logistics financial risk. These results mainly focus on the identification, assessment and prevention of logistics financial risks. Siskin [2] analyzed the risks that may occur in the retail finance business for retailers, and considered that it is necessary to implement strict supervision. At the same time, it also introduced some necessary monitoring measures, but basically limited the risk sources to the business itself. Yin Ziyuan [3] established a multi-person multi-criteria logistics financial project risk fuzzy evaluation method based onuzzy mathematics theory. In fact, logistics finance has various forms and links, and it is constantly changing, and the process and operation is complex. Therefore, in this dynamic process, the logistics financial risks generated are diverse and constantly changing, which also determines the logistics financial risks and the relationship between risks is also very complicated. However, there are few literatures on the research of logistics financial risk from the perspective of risk correlation.

On the basis of previous studies, this paper introduces the concept of logistics financial risk ontology, which facilitates the formal representation of logistics financial risk. At the same time, it uses ontology knowledge reasoning technology to find out the correlation between each risk ontology,
so as to excavate the potential risks in logistics financial risk events, and provide comprehensive risk prevention and control decision-making for management in logistics financial field. With the deepening of ontology theory and technology research, ontology has been applied in many fields. In these professional fields, most of them realize the integration of domain knowledge and knowledge information sharing by building domain ontology [4]. Taher[5] proposed a general-purpose, semantically rich ontology model for SLA to improve its definition and evaluation in cloud computing. Therefore, based on the ontology, this paper proposes a logistics financial risk ontology framework, and builds a logistics financial risk ontology model based on the framework. Taking the financing enterprise runaway with money risk event as an example, validating the feasibility of applying logistics financial risk ontology model to analyze risk association semantics.

2. Theoretical Basis

2.1. Logistics Financial Risk And Related Characteristics

Although the development of logistics finance business can bring "win-win" effect to third-party logistics enterprises, supply chain node enterprises and financial institutions, in the actual logistics financial business operations, the three major entities will also face various risks. Nanan Shan [6] proposed a relatively complete risk evaluation index system for the risk of logistics financial business for the first time by using the SEM model. The first-level risk factors in the system include warehouse inventory control measures, company management level, and pledge goods, credit risk factors and technical factors.

After literature review and expert survey, this study summarizes the relevant information collected, removes the repeated risk factors, and screens the effective risk factors, and finally obtains the following six kinds of logistics financial risks: management risk, assessment risk, supervise risk, pledge risk, customer credit risk and environmental risk.

The logistics financial risk events that occur in the logistics finance business may be caused by a single risk factor or by multiple risk factors. Selecting a number of typical financial risk events with complex financial risks and high risk levels to complete the collection and analysis of contextual information in the field of logistics and financial risk, through the determination of core concepts and relationships, the construction of ontology architecture, the addition of instances and ontology model evolution process, Constructing ontology meta-model of risk event causation. Logistics financial risk event cause ontology meta-model, as shown in Figure 1.

![Figure 1. Ontological Metamodel of Risk Event Cause.](image)

2.2. Ontology Theory

The concept of ontology originated from the branch of philosophy. Ontology is an explanation of objective existence, which focuses on the abstract nature of the objective world. In the field of artificial intelligence, Neches et al. defined ontology as: giving the basic terms and relations that
constitute the vocabulary of related fields, and defining the rules that govern the extension of these terms by using these terms and relations [7]. Stanford scholar Gruber et al. defined ontology as a normative explanation that can be accepted by most people and clearly and formally explained the concept system [8]. Later, scholars such as Studer extended the definition and considered ontology as a clear formal specification of shared conceptual model [9].

Based on the formal description of ontology, the computer can understand the semantic relationship between concepts and concepts in the field [10], and the description of the ontology clearly and accurately is the premise of ontology application. This article chooses to apply the OWL language. OWL defines the properties of objects and objects, and implements formal representations of fields through relationships between classes. Knowledge can be reasoned based on certain logic [11].

Commonly used ontology editing tools are Protégé, OntoEdit, WebOnto, etc., which can build and improve ontology. In this paper, Protégé is used to build the overloaded logistics financial risk ontology. Protégé allows the embedding of Fact++ and Jena and other inference engines, which makes it easier to test the consistency of the ontology model and the derivation of implicit knowledge [12] theory as the guidance of ontology modeling methods, since ontology engineering is still in the development stage. At present, representative ontology modeling methods are: seven-step method [13], skeleton method, METHONLOGY method, IDEF5 method, TOVE method, KACTUS method, SENSUS method [14]. A comprehensive comparison of the above ontology modeling methods shows that the seven-step method is more mature than other ontology modeling methods and is more suitable for building domain ontology. Therefore, in this paper, the seven-step method is applied to construct the logistics financial risk ontology.

3. Logistics Financial Risk Ontology Framework Construction

3.1. Extraction and Analysis of the Core Concepts of Logistics Financial Risk

According to the core concept terminology of the construction field, extracting and analyzing the core concept of logistics financial risk, such as risk and related properties of risk, based on the in-depth understanding of the logistics financial risk field. Then selecting these cores to create the core concept terminology of logistics financial risk according to certain classification criteria, and dividing the term set into two parts: the risk core concept term set and the risk attribute core concept term set. Logistics financial risks mainly include: management risk, assessment risk, supervise risk, pledge risk, customer credit risk and environmental risk. The specific risk core concept term set is shown in Figure 2. The properties of risk mainly include the terms of the core concepts of properties, static properties and dynamic properties. The specific risk properties core concept term set is shown in Figure 3.

![Figure 2. logistics financial risk](image1)

![Figure 3. logistics financial risk property](image2)

3.2. Constructing the Ontological Framework of Logistics Financial Risk (OntoLRF)

Constructing the OntoLRF framework of logistics financial risk, on the basis of constructing the core concept terminology of logistics financial risk. The main framework is shown in Figure 4. The
logistics financial risk ontology framework mainly consists of three parts: Class, Property and Individual.

4. Logistic Financial Risk Ontology Model Construction

4.1. Class Layer Construction
Based on the OntoLFR framework, constructing the ontology model of logistics financial risk from top to bottom, according to the core terminology of logistics financial risk. The logistics financial risk category is divided into six categories: management risk, supervisory risk, assessment risk, pledge risk, customer credit, and environment risk. Then, further subdividing the six risk categories in the logistics financial risk ontology model. The logistics financial risk description class has a direct relationship with the logistics financial risk property. According to the above classification principle, the visual hierarchy of logistics financial risk and the visual hierarchy of logistics financial risk description in the logistics financial risk ontology model is shown in Figure 5 and Figure 6.

4.2. Property Layer Construction
According to the core concepts of logistics financial risk terminology set and ontology meta-model of risk event causation, Building associated properties. so the associated properties are as shown in table 1.

Object Property	Domain	Range	Description
hasEvolution	risk	riskAssociation	further evolution of risk
hasCorrelationMember(s)	risk	riskAssociation	associated risk member
hasCorrelationDegree	risk	riskAssociation	relevance to other risks
4.3. Individual Layer Construction
An individual of the logistics financial risk ontology model is the concrete realization of the logistics financial risk category. It is known from the causal mechanism of logistics financial risk that the occurrence of logistics financial risks is often not caused by a single risk factor, but the result of multiple associated risks. So, build a risk individual based on the risk event of the financing enterprise runaway with money, as shown in Figure 7.

![Figure 7. Configure of risk events individuals](image)

5. Simulation Example
Taking the risk event of the financing enterprise runaway with money as an example, using jena inference rules for carrying on the inference simulation of the logistics financial risk ontology model in Protégé software.

Jena uses the ModelFacory class method to implement reasoning. The associated risk reasoning in the logistics financial risk ontology model is mainly based on the associated attributes of each risk ontology, as shown in Figure 8. In combination with jena's ontology inference grammar, the recursive algorithm is used to find all the risks associated with the RW_risk risk event in eclipse.

RW_risk's associated risk reasoning simulation, firstly, import the OWL file OntoLFR.owl of the logistics financial risk ontology already built in Protégé in the eclipse project, and use the Ontology/Model API to find the associated risk ontology of the RW_risk risk individual by associated properties of imported model objects. Use the same method again to find the associated risk ontology of the next layer until the value of the hasCorrelationCount attribute of the associated risk ontology is 0.

According to the above seven risk association rules, the associated risks of RW_risk risk events are Operating_conditions and Compliance_rate, and the associated risks of Operating_conditions are Evaluation_method and quality_of_appraiser, the associated risk of Compliance_rate is Supervisory_system and Supervisory_quality, and the associated risk of Evaluation_method and quality_of_appraiser is Legality and Liquidity, Supervisory_system and Supervisory_quality is Stability. Use the resulting association rules to map the risk association of the RW_risk risk event, as shown in Figure 8.
Through the above risk reasoning simulation, the semantic analysis and risk reasoning ability of the logistics financial risk ontology model are verified, and the feasibility of the logistics financial risk ontology model to provide decision-making services for logistics financial risk early warning is verified.

6. Conclusion
Risk events in the field of logistics finance are often caused by multiple risk factors, and there are direct or indirect links among these risk factors. Therefore, to find out the associated risks of each logistics financial risk event, and to identify and control one by one, will help the healthy development of logistics finance.

The risk ontology and risk properties in the logistics financial risk ontology model constructed in this paper are all from the relevant literature analysis and interviews with experts in the field of logistics finance. The representative logistics financial risk factors are selected for the ontology construction, and the ontology reasoning technology is applied to the logistics financial risk-related knowledge discovery, which attempts to make warning of logistics financial risks. The future work of this paper is that more comprehensive and detailed understanding of the contents of logistics financial risk, in order to increase and refine the corresponding risk and risk attributes in the ontology model of logistics financial risk, thus enriching logistics finance Risk ontology model.

7. Acknowledgments
This work was financially supported by Jiangxi natural science fund management science key project (2018ACB29004), Key project of science and technology research of jiangxi education department (GJJ180249), Jiangxi university humanities and social science research project (GL18103), National Natural Science Foundation project (71640022).

8. References
[1] Li Yixue, Xu Wei and Feng Gengzhong 2007 Comparative Analysis And Case Study Of Logistic Financing Inside And Outside China J. Management Review vol 10 pp 55-62+64.
[2] Siskin E 1998 Risks and rewards of asset-based lending to retailers J. Commercial Lending Review vol 13 pp 10-15.
[3] Yin Ziyuan 2008 Research on Risk Evaluation Method of Logistics Finance Business Huabei Finance vol 10 pp 45-48.
[4] Wang Xiangqian, Zhang Baolong and Li Huizong 2016 Overview of Ontology Research J. Journal of Intelligence vol 35 pp 163-170.
[5] Taher Labidi, Achraf Mitbba and Hayet Brabra 2016 CSLAOn to: A Comprehensive Ontological SLA Model in Cloud Computing J. Journal on Data Semantics p 133.
[6] Shan Nannan 2007 Research on Logistics Finance Business Risk D. Dalian Maritime University.
[7] Neches R, Fikes R E and Gruber T 1991 Enabling Technology for Knowledge Sharing J. AI Magazine vol 12 pp 36-56.
[8] Gruber T. A 1993 Translation Approach to Portable Ontology Specifications *J. Knowledge Acquisition* vol 5 pp 199-220.

[9] Rudi Studer, V.Richard Benjamins and Dieter Fensel 1998 Knowledge engineering: Principles and methods *J. Data & Knowledge Engineering* vol 25.

[10] Liu Yiru 2012 Research and Implementation of Ontology Reasoning Mechanism in Relational Storage *D. Chongqing University*.

[11] Sun Yifei, Ma Liangwei, Guo Xiaoming and Su Kai 2015 Research of Elements Name Similarity Metrics for Ontology Mapping *J. Journal of Chinese Computer Systems* vol 36 pp 2009-2014.

[12] Sun Yaofei, Ma Liangzhi and Guo Xiaoming 2015 Research of Elements Name Similarity Metrics for Ontology Mapping *J. Journal of Chinese Computer Systems* vol 36 pp 2009-2014.

[13] A Guide to Creating Your First Ontology[EB /OL][2016-01-20]. http://www. Protégé.Stanford. edu/publications/ontology_development/ontology101. Pdf.

[14] Shang Xinli 2012 Comparative Analysis of Foreign Ontology Construction Methods *J. Library and Information Service* vol 56 pp 116-119.