Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

Cristian Pattaro et al.

Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

Correspondence and requests for materials should be addressed to C.P. (email: cristian.pattaro@eurac.edu) or to A.K. (email: anna.koettgen@uniklinik-freiburg.de) or to C.S.F. (email: foxca@nhlbi.nih.gov).

#A full list of authors and their affiliations appears at the end of the paper.
Chronic kidney disease (CKD) is a global public health problem, and is associated with an increased risk for cardiovascular disease, all-cause mortality and end-stage renal disease. New therapies have been developed to prevent or treat CKD over the past two decades, underscoring the need to identify and understand the underlying mechanisms of CKD.

Prior genome-wide association studies (GWAS) have identified multiple genetic loci associated with CKD and estimated glomerular filtration rate (eGFR), a measure of the kidney’s filtration ability that is used to diagnose and stage CKD. Subsequent functional investigations point towards clinically relevant novel mechanisms in CKD that were derived from initial GWAS findings, providing proof of principle that locus discovery through large-scale GWAS efforts can translate to new insights into CKD pathogenesis.

To identify additional genetic variants associated with eGFR and guide future experimental studies of CKD-related mechanisms, we have now performed GWAS meta-analyses in up to 133,413 individuals, more than double the sample size of previous studies. Here we describe multiple novel genetic loci associated with kidney function traits and provide extensive locus characterization and bioinformatics analyses, further delineating the physiologic basis of kidney function.

Results

Stage 1 discovery analysis. We analysed associations of eGFR based on serum creatinine (eGFRcrea), cystatin C (eGFRCys), an additional, complementary biomarker of renal function and CKD (defined as eGFRcrea < 60 ml min\(^{-1}\) per 1.73 m\(^2\)) with ~2.5 million autosomal single-nucleotide polymorphisms (SNPs) in up to 133,413 individuals of European ancestry from 49 predominantly population-based studies (Supplementary Table 1).

Results from discovery GWAS meta-analysis are publicly available at http://fox.nhlbi.nih.gov/CKDGen/. We performed analyses in each study sample in the overall population and stratified by diabetes status, since genetic susceptibility to CKD may differ by diabetes status, since genetic susceptibility to CKD may differ in the presence of this strong clinical CKD risk factor. Population stratification did not impact our results as evidenced by low genotypic inflation factors in our meta-analyses, which ranged from 1.00 to 1.04 across all our analyses (Supplementary Fig. 1).

In addition to confirming 29 previously identified loci (Fig. 1a; Supplementary Table 2), we identified 48 independent novel loci (Supplementary Table 3) where the index SNP, defined as the variant with the lowest P value in the region, had an association P value < 1.0 × 10\(^{-8}\). Of these 48 novel SNPs, 21 were genome-wide significant with P values < 5.0 × 10\(^{-8}\). Overall, 43 SNPs were identified in association with eGFRcrea (nine in the non-diabetes sample), one with eGFRCys and four with CKD, as reported in Supplementary Table 3. Manhattan plots for CKD, eGFRCys and eGFRcrea in diabetes are shown in Fig. 1b,c and Supplementary Fig. 2, respectively.

Stage-2 replication. Novel loci were tested for replication in up to 42,166 additional European ancestry individuals from 15 studies (Supplementary Table 1). Of the 48 novel candidate SNPs submitted to replication, 24 SNPs demonstrated a genome-wide significant combined stage 1 and 2 P value < 5.0 × 10\(^{-8}\) (Table 1). Of these, 23 fulfilled additional replication criteria (q-value < 0.05 in stage 2). Only rs6795744 at the WNT7A locus demonstrated suggestive replication (P value < 5.0 × 10\(^{-8}\), q-value > 0.05). Because serum creatinine is used to estimate eGFRcrea, associated genetic loci may be relevant to creatinine production or metabolism rather than kidney function per se. For this reason, we contrasted associations of eGFRcrea versus eGFRCys, the latter estimated from an alternative and creatinine-independent biomarker of GFR (Supplementary Fig. 3; Supplementary Table 4). The majority of loci (22/24) demonstrated consistent effect directions of their association with both eGFRcrea and eGFRCys.

Association plots of the 24 newly identified genomic regions that contain a replicated or suggestive index SNP appear in Supplementary Fig. 4. The odds ratio for CKD for each of the novel loci ranged from 0.93 to 1.06 (Supplementary Table 4). As evidenced by the relatively small effect sizes, the proportion of phenotypic variance of GFRcrea explained by all new and known loci was 3.22%: 0.81% for the newly uncovered loci and 2.41% for the already known loci.

Associations stratified by diabetes and hypertension status. The effects of the 53 known and novel loci in individuals with (stage 1 + stage 2 N = 16,477) and without (stage 1 + stage 2 N = 154,881) diabetes were highly correlated (correlation coefficient: 0.80; 95% confidence interval: 0.67, 0.88; Supplementary Fig. 5) and of similar magnitude (Fig. 2; Supplementary Table 5), suggesting that identification of genetic loci in the overall population may also provide insights into loci with potential importance among individuals with diabetes. The previously identified UMOD locus showed genome-wide significant association with eGFRcrea among those with diabetes (Supplementary Fig. 2; rs12917707, P value = 2.5 × 10\(^{-8}\), and six loci (NFkB1, UNCX, TSPAN9, AP5B1, SIPA1L3 and PTPRO) had nominally significant associations with eGFRCys among those with diabetes. Of the previously identified loci, 13 demonstrated nominal associations among those with diabetes, for a total of 19 loci associated with eGFRcrea in diabetes.

Exploratory comparison of the association effect sizes in subjects with and without hypertension based on our previous work showed that novel and known loci are also similarly associated with eGFRcrea among individuals with and without hypertension (Supplementary Fig. 6).

Tests for SNP associations with related phenotypes. We tested for overlap with traits that are known to be associated with kidney function in the epidemiologic literature by investigating SNP associations with systolic and diastolic blood pressure, myocardial infarction, left ventricular mass, heart failure, fasting glucose and urinary albumin excretion (CKDGen Consortium, personal communication). We observed little association of the 24 novel SNPs with other kidney function-related traits, with only 2 out of 165 tests reaching the Bonferroni significance level of 0.0003 (see Methods and Supplementary Table 6).

To investigate whether additional traits are associated with the 24 new eGFR loci, we queried the NHGRI GWAS catalog (www.genome.gov). Overall, nine loci were previously identified in association with other traits at a P value of 5.0 × 10\(^{-8}\) or lower (Supplementary Table 7), including body mass index (ETV5) and serum urate (INHBC, A1CF and AP5B1).

Trans-ethnic analyses. To assess the generalizability of our findings across ethnicities, we evaluated the association of the 24 newly identified loci with eGFRcrea in 16,840 participants of 12 African ancestry population studies (Supplementary Table 8) and in up to 42,296 Asians from the AGEN consortium (Supplementary Table 9). Seven SNPs achieved nominal direction-consistent significance (P < 0.05) in AGEN, and one SNP was significant in the African ancestry meta-analysis (Supplementary Table 9). Random-effect meta-analysis showed that 12 loci (SDCCAG8, LRP2, IGFBP5, SKIL, UNCX, KBTBD2, A1CF, KCNQ1, AP5B1, PTPRO, TP53INP2 and BCAS1) had fully consistent effect direction across the three ethnic groups.
Figure 1 | Discovery stage genome-wide association analysis. Manhattan plots for eGFRcrea, CKD and eGFRcys. Previously reported loci are highlighted in light blue (grey labels). (a) Novel loci uncovered for eGFRcrea in the overall and in the non-diabetes groups are highlighted in blue and green, respectively. (b) Results from CKD analysis with highlighted known and novel loci for eGFRcrea. (c) Results from eGFRcys with highlighted known and novel loci for eGFRcrea and known eGFRcys loci.
(Supplementary Fig. 7), suggesting that our findings can likely be generalized beyond the European ancestry group.

To identify additional potentially associated variants and more formally evaluate trans-ethnic heterogeneity of the loci identified through meta-analysis in European ancestry populations, we performed a trans-ethnic meta-analysis22, combining the 12 African ancestry studies with the 48 European Ancestry studies used in the discovery analysis of eGFRcrea. Of the 24 new loci uncovered for eGFRcrea, 15 were also genome-wide significant in the trans-ethnic meta-analysis (defined as log_{10} Bayes Factor > 6, Supplementary Table 10), indicating that for most of these loci, there is little to no allelic effect heterogeneity across the two ethnic groups. No additional loci were significantly associated with log_{10} Bayes Factor > 6.

Bioinformatic and functional characterization of new loci.

We used several techniques to prioritize and characterize genes underlying the identified associations, uncover connections between associated regions, detect relevant tissues and assign functional annotations to associated variants. These included expression quantitative trait loci (eQTL) analyses, pathway analyses, DNAse I hypersensitivity site (DHS) mapping, chromatin mapping, manual curation of each region and zebrafish knockdown.

eQTL analysis. We performed eQTL analysis using publically available eQTL databases (see Methods). These analyses connected novel SNPs to transcript abundance of SYPL2, SDCCAG8, MANBA, KBTBD2, PTPRO and SPATA33 (C16orf55), thereby supporting these as potential candidate genes in the respective associated regions (Supplementary Table 11).

Pathway analyses. We used a novel method, Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)23, to prioritize genes at associated loci, to test whether genes at associated loci are highly expressed in specific tissues or cell types and to test whether specific biological pathways and gene sets are enriched for genes in associated loci. On the basis of all SNPs with eGFRcrea association P values <10^{-5} in the discovery meta-analysis, representing 124 independent regions, we identified at least one significantly prioritized gene in 49 regions, including in 9 of the 24 novel genome-wide significant regions (Supplementary Table 12). Five tissue and cell type annotations were enriched for genes in associated loci. On the basis of all SNPs with associated loci are highly expressed in specific tissues or cell types to prioritize genes at associated loci, to test whether genes at associated loci are expressed in the kidney and urinary tract, as well as hepatocytes and adrenal glands and cortex (Fig. 3a; Supplementary Table 13). Nineteen reconstituted gene sets showed enrichment of genes mapping into the associated regions at a permutation P value <10^{-5} (Supplementary Table 14; Fig. 4), highlighting processes related to renal development, kidney membrane transporter activity, kidney and urogenital system morphology, regulation of glucose metabolism, as well as specific protein complexes important in renal development.
DNase I hypersensitivity and H3K4m3 chromatin mark analyses.

To evaluate whether eGFRcrea-associated SNPs map into gene regulatory regions and to thereby gain insight into their potential function, we evaluated the overlap of independent eGFRcrea-associated SNPs with P values $<10^{-4}$ (or their proxies) with DHSs using publicly available data from the Epigenomics Roadmap Project and ENCODE for 123 cell types (see Methods). DHSs mark accessible chromatin regions where transcription may occur. Compared with a set of control SNPs (see Methods), eGFRcrea-associated SNPs were significantly more likely to map to DHS in six specific tissues or cell types (Fig. 3b), including adult human renal cortical epithelial cells, adult renal proximal tubule epithelial cells, H7 embryonic stem cells (differentiated 2 days), adult human renal epithelial cells, adult small airway epithelial cells and amniotic epithelial cells. No significant enrichment was observed for adult renal glomerular endothelial cells, the only other kidney tissue evaluated.

Next, we analysed the overlap of the same set of SNPs with H3K4m3 chromatin marks, promoter-specific histone modifications associated with active transcription24, in order to gather more information about cell-type specific regulatory potential of eGFRcrea-associated SNPs. Comparing 33 available adult-derived cell types, we found that eGFRcrea-associated SNPs showed the most significant overlap with H3K4m3 peaks in adult kidney (P value $= 0.0029$, followed by liver (P value $= 0.0117$), and rectal mucosa (P value $= 0.0445$). Taken together, these findings are suggestive of cell-type-specific regulatory roles for eGFR loci, with greatest specificity for the kidney.

Chromatin annotation maps. In addition to assessing individual regulatory marks separately, we annotated the known and replicated novel SNPs, as well as their perfect proxies in a complementary approach. Chromatin annotation maps were generated integrating >10 epigenetic marks from cells derived from adult human kidney tissue and a variety of non-renal tissues from the ENCODE project (see Methods). The proportion of variants to which a function could be assigned was significantly higher when using chromatin annotation maps from renal tissue compared with using maps that investigated the same epigenetic variants to which a function could be assigned was significantly higher when using chromatin annotation maps from renal tissue compared with using maps that investigated the same epigenetic marks in other non-renal tissues (Fig. 3c), again indicating that eGFRcrea associated SNPs are, or tag, kidney-specific regulatory variants. The difference between kidney and non-renal tissues was particularly evident for marks that define enhancers: the proportion of SNPs mapping to weak and strong enhancer regions in the kidney tissue was higher than in all non-renal tissues (Fig. 3c). Functional studies, we applied gene prioritization algorithms including GRAIL25, DEPICT and manual curation of selected genes in each region (Supplementary Table 12). For each region, gene selection criteria were as follows: (1) either GRAIL P value < 0.05 or DEPICT false discovery rate (FDR) < 0.05; (2) the effect of a given allele on eGFRcrea and on eGFRcys was direction-consistent and their ratio was between 0.2 and 5.

Figure 2 | Association eGFRcrea loci in subjects with and without diabetes. Novel (a) and known (b) loci were considered. Displayed are effects and their 95% confidence intervals on ln(eGFRcrea). Results are sorted by increasing effects in the diabetes group. The majority of loci demonstrated similar effect sizes in the diabetes as compared with non-diabetes strata. SNP-specific information and detailed sample sizes are reported in Supplementary Table 5.
(to ensure relative homogeneity of the beta coefficients); (3) nearest gene if the signal was located in a region containing a single gene. Using this approach, NFKB1, DPEPI, TSPAN9, NFATC1, WNT7A, PTPRO, SYPL2, UNCX, KBTBD2, SKIL and AICF were prioritized as likely genes underlying effects at the new loci (Supplementary Table 12).

We investigated the role of these genes during vertebrate kidney development by examining the functional consequences of gene knockdown in zebrafish embryos utilizing antisense morpholino oligonucleotide (MO) technology. After knockdown, we assessed the expression of established renal markers pax2a (global kidney), nephrin (podocytes) and slc20a1a (proximal tubule) at 48 hours post fertilization by in situ hybridization. In all cases, morphant embryos did not display significant gene expression defects compared with controls (Supplementary Table 15).

Discussion

We identified 24 new loci in association with eGFR and confirmed 29 previously identified loci. A variety of complementary analytic, bioinformatic and functional approaches indicate enrichment of implicated gene products in kidney and urinary tract tissues. A greater proportion of the lead SNPs or their perfect proxies map into gene regulatory regions, specifically enhancers, in adult renal tissues compared with non-renal tissues. In addition to the importance in the adult kidney, our results indicate a role for kidney function variants during development.

We extend our previous findings, as well as those from other groups7–13 by identifying >50 genomic loci for kidney function, many of which were not previously known to be connected to kidney function and disease. Using a discovery data set that is nearly double in size to our prior effort, we are now able to robustly link associated SNPs to kidney-specific gene regulatory function. Our work further exemplifies the continued value of increasing the sample size of GWAS meta-analyses to uncover additional loci and gain novel insights into the mechanisms underlying common phenotypes26.

There are several messages from our work. First, many of the genetic variants associated with eGFR appear to affect processes specifically within the kidney. The kidney is a highly vascular and
part related to early programming (Barker hypothesis)27, low disease has been long thought to have developmental origins, in our pathway enrichment analyses highlight developmental pathways such as placental morphology, kidney development, and early growth and early-life nutrition28. Our pathway enrichment analyses suggest that kidney-specific pathways are important for the development of target organ-specific regulatory mechanisms and contribute to kidney injury. However, many of the eGFR-associated SNPs in our GWAS could be assigned gene regulatory function specifically in the kidney and its epithelial cells, but not in human glomerular endothelial cells or the general vasculature. In addition, variants associated with eGFR were not associated with vascular traits, such as blood pressure or myocardial infarction. Taken together, these findings suggest that genetic determinants of eGFR may be mediated largely through direct effects within the kidney.

Second, despite the specificity related to renal processes, we also identified several SNPs that are associated with eGFR in diabetes, and our pathway analyses uncovered gene sets associated with glucose transporter activity and abnormal glucose homeostasis. Uncovering bona fide genetic loci for diabetic CKD has been difficult. We have now identified a total of 19 SNPs that demonstrate at least nominal association with eGFR in diabetes. The diabetes population is at particularly high risk of CKD, and identifying kidney injury pathways may help develop new treatments for diabetic CKD.

Finally, even though CKD is primarily a disease of the elderly, our pathway enrichment analyses highlight developmental processes relevant to the kidney and the urogenital tract. Kidney disease has been long thought to have developmental origins, in part related to early programming (Barker hypothesis)27, low birth weight, nephron endowment and early growth and early-life nutrition28. Our pathway enrichment analyses suggest that developmental pathways such as placental morphology, kidney weight and embryo size, as well as protein complexes of importance in renal development may in part contribute to the developmental origins of CKD.

A limitation of our work is that causal variants and precise molecular mechanisms underlying the observed associations were not identified and will require additional experimental follow-up projects. Our attempt to gain insights into potentially causal genes through knockdown in zebrafish did not yield any clear CKD candidate gene, although the absence of a zebrafish phenotype upon gene knockdown does not mean that the gene cannot be the one underlying the observed association signal in humans. Finally, our conclusions that eGFRcrea-associated SNPs regulate the expression of nearby genes specifically in kidney epithelial cells are based on DHSs, H3K4me3 chromatin marks and chromatin annotation maps. Since these analyses rely mostly on variant positions, additional functional investigation such as luciferase assay that assess transcriptional activity more directly are likely to gain additional insights into the variants’ mechanism of action.

The kidney specificity for loci we identified may have important translational implications, particularly since our DHS and chromatin annotation analyses suggest that at least a set of gene regulatory mechanisms is important in the adult kidney. Kidney-specific pathways are important for the development of novel therapies to prevent and treat CKD and its progression with minimal risk of toxicity to other organs. Finally, the biologic insights provided by these new loci may help elucidate novel mechanisms and pathways implicated not only in CKD but also of kidney function in the physiological range.

In conclusion, we have confirmed 29 genomic loci and identified 24 new loci in association with kidney function that together highlight target organ-specific regulatory mechanisms related to kidney function.

Methods

Overview. This was a collaborative meta-analysis with a distributive data model. Briefly, an analysis plan was created and circulated to all participating studies. Studies then uploaded study-specific data centrally; files were cleaned, and a specific meta-analysis for each trait was performed. Details regarding each step are provided below. All participants in all discovery and replication studies provided informed consent. Each study had its research protocol approved by the local ethics committee.

Phenotype definitions. Serum creatinine was measured in each discovery and replication study as described in Supplementary Tables 16 and 17, and statistically calibrated to the US nationally representative National Health and Nutrition Examination Study data in all studies to account for between-laboratory variation30,31. eGFRcrea was estimated using the four-variable Modification of Diet in Renal Disease Study Equation. Cystatin C, an alternative biomarker for kidney function, was measured in a sub-set of participating studies. eGFRcys was estimated as $76.7 \times (\text{serum cystatin C})^{-1.19}$ (ref. 31). eGFRcrea and eGFRcys values
Genotypes. Genotyping was conducted in each study as specified in Supplementary Tables 18 and 19. After applying appropriate quality filters, 45 studies contributed GWAS data for the non-diabetes data (N = 118,448) and 39 for the diabetes group (N = 13,522). GWAS of CKD were comprised by 43 studies, for a total sample size of 117,165, including 12,385 CKD cases. GWAS of eGFRcys were comprised by 16 studies for a total sample size of 32,834. All GWAS files underwent quality control using the GWAttoolbox package32 in R, before including them into the meta-analysis. Genomic-control (GC) correction was applied to associations of the beta coefficients in stage 1 and stage 2 (one-sided statistics) was estimated for each study as the ratio between the median of all observed test statistics (b/s.e.) and the expected median of a normal distribution. With the sample size achieved in the combined analysis of stage 1 and stage 2 data, the power to assess replication at the canonical genome-wide significance level of 5.0 × 10^{-8} was estimated with the software QVALUE38 version 1.2.4, assuming the same MAF and effect size observed in the discovery sample. Power to replicate associations ranged from 87% to 100% for eGFRcys associated SNPs (median > 98%), from 72 to 96% for the CKD-associated SNPs, and was equal to 59% for the eGFRcys-associated SNP (Supplementary Table 3).

Associations stratified by diabetes and hypertension status. For all the 24 novel and 29 known SNPs, the difference between the SNP effect on eGFRcys in the diabetes versus the non-diabetes groups was assessed by means of a two-sample t-test for correlated data at a significance level of 0.05. We used the following two-sample t-test for correlated data:

\[
t = \frac{(b_{DM} - b_{nonDM})}{\sqrt{\frac{(s.e.(b_{DM})^2 + s.e.(b_{nonDM})^2)}{N_{DM} + N_{nonDM} - 2}}}
\]

where \(b_{DM}\) and \(b_{nonDM}\) represent the SNP effects on log(eGFRcys) in the two groups, i.e. the standard error of the estimate and \(t_c\) indicates the correlation between effects in the two groups, which was estimated as 0.044 by sampling 100,000 independent SNPs from our DM and nonDM GWAS, after removing known and novel loci associated with eGFRcys. For a large sample size, as in our case, \(t_c\) approaches a standard normal distribution.

A similar analysis was performed to compare results in subjects with and without hypertension, based on results from our previous work. The correlation between the two strata was of 0.01.

Proportion of phenotypic variance explained. The percent of phenotypic variance explained by novel and known loci was estimated as \(\sum r_i^2\), where \(r_i^2 = E(var(SNP)/var(y))\) is the coefficient of determination for each of the 53 individual SNPs associated with eGFRcys uncovered to date (24 novel and 29 known ones), b is the estimated effect of the ith SNP on y, y corresponds to the sex- and age-adjusted residuals of the logarithm of eGFRcys and var(SNP) = 2 × MAFFSNN × (1 - MAFFSNN)^29. Var(y) was estimated in the ARIC study and all loci were assumed to have independent effects on the phenotype.

Test for SNP associations with related traits. We performed evaluations of SNPs association with results generated from consortia investigating other traits. Specifically, we evaluated systolic and diastolic blood pressure in ICBP17, myocardial infarction in CARDIogram18, left ventricular mass19, heart failure20, the urinary albumin to creatinine ratio (CKDGen consortium, personal communication) and fasting plasma glucose in MAGIC21. In total, we performed 165 tests, corresponding to 7 traits tested for association against each of the 24 novel SNP, with the exception of myocardial infarction for which results from 3 SNPs were not available (Supplementary Table 6). Significance was evaluated at the Bonferroni corrected level of 0.05/165 = 0.0003.

Lookup of replicated loci in the NHGRI GWAS catalog. All replicated SNPs, as well as SNPs in LD (r^2 > 0.2) within ± 1 MB distance were checked for their association with other traits according to the NHGRI GWAS catalog (accessed April 14, 2014).

SNP assessments in other ethnic groups. We performed cross-ethnicity SNP evaluations in participants of African ancestry from a meta-analysis of African ancestry individuals and from participants of Asian descent from the AGEN consortium31.
of Trans-ethnic Association studies) software22. We combined the 48 European ancestry studies that contributed eGFRcra, which were included in stage 1 discovery meta-analysis, and the 12 African ancestry studies mentioned above for a total sample size of 150,253 samples. We limited our analysis to biallelic SNPs with MAF ≥0.01 and imputation quality r² ≥0.3. Relatedness between the 60 studies was estimated using default settings from up to 5.9 million SNPs. Only SNPs that were present in more than 25 European ancestry studies and 6 African ancestry studies (total sample size ≥120,000) were considered after meta-analysis. genome-wide significance was defined as a log₁₀ Bayes' Factor (log₁₀BF) ≥6 (ref. 41).

Gene Relationships Across Implicated Loci (GRLAI). To prioritize the gene(s) most likely to give rise to association signals in a given region, the software GRAIL was used23. The index SNP of all previously known kidney function associated regions, as well as the novel SNPs identified here was used as input, using the CEU HapMap (hg18 assembly) and the functional datasource text_2009_03, established regions, as well as the novel SNPs identified here was used as input, using the CEU HapMap release 27 CEU data43; LD proxies and alleles were searched for primary SNPs and LD proxies against a collected database of expression SNP (eSNP) results. The collected eSNP results met criteria for statistical thresholds for association with gene transcript levels in their respective original analyses (for references see Supplementary Table 11). Correlation of selected eSNPs to the best eSNPs per transcript per expression quantitative trait loci (eQTL) data set were assessed by pairwise LD. All results are reported in Supplementary Table 11.

Expression quantitative trait loci analysis. We identified alias rsDIs and proxies (r² > 0.8) for our index SNPs using SNAP software across 4 HapMap builds. SNP rsDIs and aliases were searched for primary SNPs and LD proxies against a collected database of expression SNP (eSNP) results. The collected eSNP results met criteria for statistical thresholds for association with gene transcript levels in their respective original analyses (for references see Supplementary Table 11).

DEPICT analysis. In this work, we first used PLINK42 to identify independently associated SNPs using all SNPs with eGFRcrea association P values < 10⁻⁵ (HapMap release 27 CEU data43; LD r² threshold = 0.01; physical kb threshold = 1,000). We then used the DEPICT method23 to construct associated regions by mapping to independently associated SNPs if they overlapped or resided within the boundaries of a given associated region. After mapping to overlapping regions and discarding regions that mapped within the major histocompatibility complex locus (chromosome 6, base pairs 20,000,000–40,000,000), 124 non-overlapping regions remained that covered a total of 320 genes. Finally, we ran the DEPICT software program on the 124 regions to prioritize genes that may represent promising candidates for experimental follow up studies, identify reconstituted gene sets that are enriched in genes from associated regions and therefore may provide insight into general kidney function biology, and identify tissue and cell-type annotations in which genes from associated regions are highly expressed. Specifically, for each tissue, the DEPICT method performs a t-test comparing the tissue-specific expression of eGFRcrea-associated genes and all other genes. Next, for each tissue, empirical enrichment P values are computed by repeatedly sampling random sets of loci (matched to the actual eGFRcrea loci by gene density) from the entire genome to estimate the empirical mean and S.D. of the enrichment statistic's null distribution. To visualize the nineteen reconstituted gene sets and overlapping regions, we used a variety of resources, including chromatin maps generated from human kidney tissue cells (HKC-E cells). Chromatin immune-precipitation sequencing (ChIP-seq) data from human kidney samples were generated by NIH Roadmap Epigenomics Mapping Consortium46. Briefly, proximal tubule cells were collected from adult human kidney tissue were collected and added with 1% formaldehyde. Subsequently, ChIP-seq was conducted using whole-cell extract from adult human tissue as the input (GSM621638) and assessing the following chromatin marks: H3K36me3 (GSM621634), H3K4me1 (GSM670025), H3K4me3 (GSM621648), H3K9ac (GSM772811) and H3K9me3 (GSM621651). The MACS version 1.41 (model-based analysis of ChIP-Seq) peak finding algorithm was used to identify regions of ChIP-Seq enrichment17. A FDR threshold of enrichment of 0.01 was used for all data sets. The resulting genome coordinates in bed format were further used in ChromHMM v1.06 for chromatin annotation47. For comparison, the same genome coordinates were investigated in chromatin annotation maps of renal tissue, as well as across nine different cell lines from the ENCODE Project: umbilical vein endothelial cells (HUVEC), mammary epithelial cells (HMEC), normal epidermal keratinocytes (NHK), B-lymphoblastoid cells (GM12878), erythrocytic leukemia cells (K562), normal lung fibroblasts (NHLF), skeletal muscle myoblasts (HSMM), embryonic stem cells (H1 ES) and hepatocellular carcinoma cells (HepG2). We tested whether the proportion of SNPs position to either stronger or weaker enhancers in the human kidney was different from that of the other nine tissues by means of a Fisher's exact test for 2 × 2 tables, contrasting each of the nine cell lines listed above against the reference kidney cell line, at a Bonferroni-corrected significance level of 0.05/9 = 5.6 × 10⁻⁴.

Functional characterization of new loci. Reconstituted gene regions were prioritized for functional studies using the following criteria: (1) GRAIL identification of a gene in each region of P value < 0.05 or DEPICT, FDR < 0.05; (2) an eGFRcrea to eGFRcra ratio between 0.2 and 5 with direction consistency between the beta coefficients; (3) nearest gene if the signal was located in a gene-poor region. The list of genes selected for functional work can be found in Supplementary Table 12. This same prioritization scheme was also used to assign locus names. Morpholino knockdowns were performed in zebrafish.

Zebrafish (strain Tubingen strain) were maintained according to Harvard Medical School Institutional Animal Care and Use Committee protocols (protocol # 04626). Male and female fish were mated (age 6–12 months) for embryo production. Embryos were injected at the one-cell stage with MOs (GeneTools) designed to block either the ATG start site or an exon–intron splice site of the target gene (Supplementary Table 21). In cases where human loci are duplicated in zebrafish, both orthologues were knocked down simultaneously by combination MO injection. MOs were injected in escalating doses at concentrations up to 250 μM. Embryos were fixed in 4% paraformaldehyde at 48 hours post fertilization for in situ hybridization using conditions described at https://www.zfin.org/ ZFIN/Methods/ThioseProtocol.html. Gene expression was visualized using established renal markers pa2a (global kidney), nephrin (podocytes) and slc20a1a (proximal tubule). The number of morphant embryos displaying abnormal gene expression was compared with control embryos by means of a Fisher's exact test.

References

1. Eckardt, K. U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet 382, 158–169 (2013).
2. El Nahas, M. The global challenge of chronic kidney disease. Kidney Int. 68, 2918–2929 (2005).
3. Baumber, S. E. et al. Effect of chronic kidney disease and comorbid conditions on health care costs: a 10-year observational study in a general population. Am. J. Nephrol. 31, 222–229 (2010).
4. Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).
5. Mahmoodi, B. K. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 380, 1649–1661 (2012).
6. Alberti, K. G. M. et al. New therapies for diabetic kidney disease. N. Engl. J. Med. 369, 2549–2550 (2013).
7. Pataro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012).
8. Kottgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).
9. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).
10. Chambers, J. C. et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 42, 373–375 (2010).
Okada, Y. et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. *Nat. Genet.* **44**, 904–909 (2012).

Liu, C. T. et al. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. *PLoS Genet.* **7**, e1002264 (2011).

Boger, C. A. et al. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. *PLoS Genet.* **7**, e1002922 (2011).

Chasman, D. I. et al. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. *Hum. Mol. Genet.* **21**, 5329–5343 (2012).

Pattaro, C. et al. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level. *BMJ Med. Genet.* **11**, 41 (2010).

Trudg, M. et al. Common noncoding UMOG gene variants induce salt-sensitive hypertension and kidney damage by increasing urmodulin expression. *Nat. Med.* **19**, 1655–1660 (2013).

International Consortium for Blood Pressure Genome-Wide Association Studies et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. *Nature** **478**, 103–109 (2011).

Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. *Nat. Genet.* **43**, 333–338 (2011).

Vasan, R. S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. *JAMA* **302**, 168–178 (2009).

Smith, N. L. et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. *Cardiovasc. Res.* **85**, 256–260 (2010).

Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. *Nat. Genet.* **42**, 105–116 (2010).

Morris, A. P. Transethnic meta-analysis of genomewide association studies. *Genet. Epidemiol.* **35**, 809–822 (2011).

Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. *Nat. Commun.* **6**, 5890 (2015).

Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. *Nat. Genet.* **45**, 124–130 (2013).

Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. *PLoS Genet.* **5**, e1000534 (2009).
Giovanni Gambaro1, Giovanni Malerba2, Grant W. Montgomery3,5, Gunnar Jacobs3, Guo Li4, H-Erich Wichmann4,5,8, Harry Campbell4,7, Helena Schmidt8,8, Henri Wallaschofski8,8,9,90, Henry Völzke3,9,90, Hermann Brenner7,8,28, Heyo K. Kroemer91, Holly Kramer91, Honghuang Lin92, I. Mateo Leach93, Ian Ford94, Idris Guessous95,96,97, Igor Rudan87, Inga Prokopenko98, Ingrid Borecki21, Iris M. Heid4,6,6, Ivana Kolcic99, Ivana Persico74, J. Wouter Jukema100,101,102,103, James F. Wilson87, Janine F. Felix24, Jasmin Divers104, Jean-Charles Lambert105, Jeannette M. Stafford104, Jean-Michel Gaspoz95, Jennifer A. Smith106, Jessica D. Faul107, Jie Jin Wang108, Jingzhong Ding109, Joel N. Hirschhorn15,16,110, John Attia71,72, John B. Whitfield82, John Chalmers111, Jorma Viikari112, Josef Coresh7,113, Joshua C. Denny114, Juha Karjalainen115, Jyotika K. Fernandez116, Karlhans Endlich117, Katja Butterbach27, Keith L. Keene118, Kurt Lohman46, Laura Portas74, Lenore J. Lauener119, Leo-Pekka Lyytikäinen120, Loic Yengo121,122,123, Lude Franke115, Luigi Ferrucci124, Lynda M. Rose6, Lyudmyla Kedenko49, Madhumathi Rao12, Maksim Struchalin125,126, Marcus E. Kleber127, Margherita Cavaliere128, Margot Haun45, Marilyn C. Cornelis75, Marina Ciuffo10, Mario Pirastu74, Mariza de Andrade71, Mark A. McEvoy129, Mark Woodward7,111,112,130, Martin Adam79,80, Massimiliano Cocca58, Matthias Nauck89,90, Medea Imboden79,80, Melanie Waldenberger67, Menno Pruij131, Marie Metzger132, Michael Stumvoll42, Michele K. Evans133, Michele M. Sale134, Mika Kähönen135, Mladen Boban99, Murielle Bochud136, Myriam Rheinberger5, Niek Verweij93, Nabila Bouatia-Naji137,138, Nicholas G. Martin82,139, Nick Hartie31, Nicole Probst-Hensch40, Nicole Soranno140, Olivier Devuyst141, Olli Raitakari142, Omri Gottesman61, Oscar H. Franco24, Ozren Polasek99, Paolo Gasparini25, Patricia B. Munroe143,144, Paul M. Ridker145, Paul Mitchell108, Paul Muntner146,147, Christa Meisinger68, Johannes H. Smit148, ICBP Consortium†, AGEN Consortium†, CARDIOGRAM†, CHARGE-Heart Failure Group†, ECHOGen Consortium†, Peter Kovacs149, Philipp S. Wild150, Philippe Frogue121,122,123, Rainer Rettig151, Reddik Mägi40, Reiner Biffa152, Reinhold Schmidt128, Rita P.S. Middelberg82, Robert J. Carroll114, Brenda W. Penninx148, Rodney J. Scott153, Ronit Katz154, Sanaz Sedaghat24, Sarah H. Wild87, Sharon L.R. Kardia106, Sheila Ulivi155, Shih-Jen Hwang17, Stefan Enroth44, Stefan Kloiber63, Stella Trompet100, Benedicte Stengel132, Stephen J. Hancock27,24, Stephen T. Turner156, Sylvia E. Rosas18, Sylvia Stracke105,157, Tamara B. Harris119, Tanja Zeller56,57, Tatijana Zemunik99, Terho Lehtimäki120, Thomas Illig68, Thor Aspelund35,36, Tiit Nikopensius40,41, Tonu Esko15,40,41, Toshiko Tanaka124, Ulf Gyllensten44, Uwe Völker2,90, Valur Emilsson35,158, Veronique Vitar131, Ville Aalto159, Vilmundur Gudnason35,36, Vincent Chouraki105, Wei-Min Chen134, Wilmar Ig144, Winfried März160, Wolfgang Koenig161, Wolfgang Lieb83, Ruth J.F. Loos61,162, Yongmei Liu46, Harold Snieder30, Peter P. Pramstaller1,163,164, Afshin Parsa165, Jeffrey R. O’Connell32, Katalin Suszta18, Pavel Hamel166, Johanne Tremblay166, Ian H. de Boer154, Carsten A. Böger5,5**, Wolfram Goessling9,9**, Daniel I. Chasman6,145,145**, Anna Köttgen7,11,11, W.H. Linda Kao7,113,11,† & Caroline S. Fox17,167,167**.

1 Center for Biomedicine, European Academy of Bozen/Bozola (EURAC), affiliated to the University of Lübeck, Via Galvani 31, Bolzano 39100, Italy. 2 Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Loeffler-Straße 15a, Greifswald 17487, Germany. 3 Institute for Community Medicine, University of Greifswald, Walther-Rathenau-Strasse 48, Greifswald 17487, Germany. 4 Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany. 5 Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany. 6 Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Avenue East Boston, Massachusetts 02215, USA. 7 Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, USA. 8 Department of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy. 9 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, New Research Building77 Avenue Louis Pasteur, Room 458, Boston, Massachusetts 02215, USA. 10 Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”—CNR, Via P. Castellino 111, Napoli 80131, Italy. 11 Department of Internal Medicine IV, University Hospital Freiburg, Berlinger Allee 29, Freiburg 79110, Germany. 12 Division of Epidemiology/Tufts Evidence Practice Center, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts 02111, USA. 13 Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Boston, Massachusetts 02118, USA. 14 Department of Neurology, Boston University School of Medicine, 72 East Concord ST 8603, Boston, Massachusetts 02118, USA. 15 Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA. 16 Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 2142, USA. 17 NHLBI’s Framingham Heart Study and the Center for Population
ICBP Consortium

Goncalo R. Abecasis168, Linda S. Adair169, Myriam Alexander170, David Altshuler171,172, Najaf Amin24, Dan E. Arking173, Pankaj Arora174, Yuriu Aulchenko24, Stephan J.L. Bakker76, Stefania Bandinelli175, Ines Barroso140, Jacques S. Beckmann176, John P. Beilby177, Richard N. Bergman178, Sven Bergmann179, Joshua C. Bis179, Michael Boehnke168, Lori L. Bonnycastle180, Stefan R. Bornstein181, Michiel L. Bots182, Jennifer L. Bragg-Gresham168, Stefan-Martin Brand183, Eva Brand184, Peter S. Braund185, Morris J. Brown186, Paul R. Burton187, Juan P. Casas188, Mark J. Caulfield189, Aravinda Chakravarti173, John C. Chambers190, Giriraj R. Chandak191, Yen-Pei C. Chang192, Fadi J. Charchar193, Nish Chaturvedi194, Yoon Shin Cho195, Robert Clarke196, Francis S. Collins180, Rory Collins196, John M. Connell197, Jackie A. Cooper198, Matthew N. Cooper199, Richard S. Cooper200, Anna Maria Corsi201, Marcus Dörr202, Santosh Dahgam203, John Danesh170, George Davey Smith204, Ian N.M. Day204, Panos Deloukas140, Matthew Denniff185, Anna F. Dominiczak205, Yanbin Dong206, Ayo Dounaevska26, Paul Elliott190, Roberto Elosova207, Jeanette Erdmann208, Susana Eyheramendy209, Martin Farrall210, Cristiano Fava211, Terrence Forrester212, F. Gerald R. Fowkes87, Ervin R. Fox213, Timothy M. Frayling214, Pilar Galan215, Santhi K. Ganesh216, Melissa Garcia217, Tom R. Gaunt204, Nicole L. Glazer179, Min Jin Go195, Anuj Goel210, Jürgen Graßler181, Diederick E. Grobbee182, Leif Groop218, Simonetta Guarerra219, Xiuling Guo220, David Hadley221, Anders Hamsten222, Bok-Ghee Han195, Rebecca Hardy223, Anna-Liisa Hartikainen224, Simon Heath225, Susan R. Heckbert226, Bo Hedblad221, Serge Hercberg215, Dena Hernandez20, Andrew A. Hicks1, Gina Hilton173, Aroon D. Hingorani227, Judith A. Hoffman Bolt07, Jemma C. Hope196, Philip Howard228, Steve E. Humphries198, Steven C. Hunt229, Kristian Hveem230, M. Arfan Ikram24, Muhammad Islam231,232, Naoharu Iwai233,234, Marjo-Ritta Jarvelin190, Anne U. Jackson168, Tazeen H. Jafar231,232, Charles S. Janipalli91, Toby Johnson189, Sekar Kathiresan235, Kay-Tee Khaw170, Hyung-Lae Kim195, Sanjay Kinra236, Yoshikuni Kita237, Mika Kivimaki227, Jaspal S. Kooner238, M.J. Kranthi Kumar191, Diana Kuhl195, Smita R. Kulkarni239, Meena Kurian240, Johanna Kuusisto241, Tatiana Kuznetsova242, Markku Laaks243, Maris Laan244, Jaana Laitinen244, Edward G. Lakatta245, Carl D. Langefeld246, Martin G. Larson247, Mark Lathrop225, Debbie A. Lawlor204, Robert W. Lawrence199, Yong-Joung Lee195, Nanette R. Lee248, Daniel Levy247, Yali Li249, Will T. Longstreth250, Jian’an Luan251, Gavin Lucas207, Barbara Ludwig181, Massimo Mangino252, K. Radha Mani191, Michael G. Marmot227, Francesco U.S. Mattace-Raso24, Giuseppe Matullo253, Wendy L. McArdle254, Colin A. McKenzie212, Thomas Meitinger255, Olle Melander211, Pierre Menetton256, James F. Meschia257, Tetsuro Miki258,259, Yuri Milaneschi124, Karen L. Mohlke260, Vincent Mooser261, Mario A. Morken180, Richard W. Morris262, Thomas H. Mosley263, Samer Najjar264, Narisu Narisu180, Christopher Newton-Cheh174, Khanh-Dung Hoang Nguyen173, Peter Nilsson211, Fredrik Nyberg203, Christopher J. O’Donnell247, Toshio Ogihara265, Takayoshi Ohkubo266, Tomonori Okamura233,234, Rick Twee-Hee Ong267, Halit Ongen210, Charlotte Ollendorf-Moret182, Paul F. O’Reilly190, Elin Org243, Marco Orru268, Walter Palmas269, Jutta Palmen198, Lyle J. Palmer199, Nicolette D. Palmer246, Alex N. Parker270, John F. Peden210, Leena Peltonen140, Markus Perola271, Vasyl Pihur173, Carl G.P. Platou230, Andrew Plump272, Dorairajan Prabhakaran273, Bruce M. Psaty179, Leslie J. Raffel220, Dabeeru C. Rao274, Asif Rasheed275, Fulvio Ricceri253, Kenneth M. Rice276, Annika Rosengren277, Jerome I. Rotter220, Megan E. Rudock278, Siim Sõber243, Tunde Salako279, Danish Saleheen275, Veikko Salomaa271, Niles J. Samani185, Steven M. Schwartz222, Peter E.H. Schwarz280, Laura J. Scott168, James Scott238, Angelo Scuteri245, Joban S. Sehmi238, Mark Seielstad281, Sudha Seshadri14, Pankaj Sharma282, Sue Shaw-Hawkins189, Gang Shi274, Nick R.G. Shrive187, Eric J.G. Sijbrands24, Xueling Sim283, Andrew Singleton20, Marketa SJögren211,
Nicholas L. Smith, Maria Soler Artigas, Tim D. Spector, Jan A. Staessen, Alena Stancakova, Nanette I. Steinle, David P. Strachan, Heather M. Stringham, Yan V. Sun, Amy J. Swift, Yasuharu Tabara, E-Shyong Tai, Philippa J. Talmud, Andrew Taylor, Janos Terzic, Dag S. Thelle, Martin D. Tobin, Maciej Tomaszewski, Vikal Tripathy, Jaakko Tuomilehto, Ioanna Tzoulaki, Manuela Udă, Hirotugu Ueshima, Cuno S.P.M. Uiterwaal, Satoshi Umemura, Pim van der Harst, Yvonne T. van der Schouw, Wiek H. van Gilst, Erkki Vartiainen, Ramachandran S. Vasan, Gudrun Veldre, Germaine C. Verwoert, Margus Viigimaa, D.G. Vinay, Paolo Vineis, Benjamin F. Voight, Peter Vollenweider, Lynne E. Wagenknecht, Louise V. Wain, Xiaoling Wang, Thomas J. Wang, Nicholas J. Wareham, Hugh Watkins, Alan B. Weder, Peter H. Whincup, Kerri L. Wiggins, Jacqueline C.M. Witteman, Andrew Wong, Ying Wu, Chittaranjan S. Yajnik, Jie Yao, J.H. Young, Diana Zelenika, Guangui Zhai, Weihua Zhang, Feng Zhang, Jing Hua Zhao, Haidong Zhu, Xiaofeng Zhu, Paavo Zitting, Ewa Zukowska-Szczesniewska.

168Center for Statistical Genetics, Department of Biostatistics, University of North Carolina, School of Public Health, Ann Arbor, Michigan 48103, USA. 169Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 170Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK. 171Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. 172Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. 173Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. 174Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. 175Geriatric Rehabilitation Unit, Azienda Sanitaria Firenze (ASF), S.P. 1015, Florence, Italy. 176Département de Génétique Médicale, Université de Lausanne, Lausanne 1015, Switzerland. 177Pathology and Laboratory Medicine, University of Western Australia, 6009 Crawley, Western Australia, Australia. 178Division of Epidemiology and Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA. 179Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle 98195, Washington, USA. 180National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. 181Department of Medicine III, Medical Faculty Carl Gustav Carus at the Technical University of Dresden, Dresden 01307, Germany. 182Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA, The Netherlands. 183Leibniz-Institute for Arteriosclerosis Research, Department of Molecular Genetics of Cardiovascular Disease, University of Münster, Münster, Germany. 184University Hospital Münster, Internal Medicine D, Münster, Germany. 185Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK. 186Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK. 187Department of Health Sciences, University of Leicester, University Rd, Leicester LE1 7RH, UK. 188Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. 189Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. 190Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK. 191Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad 500 007, India. 192University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA. 193School of Science and Engineering, University of Ballarat, Ballarat 3353, Australia. 194International Centre for Circulatory Health, National Heart & Lung Institute, Imperial College, London, UK. 195Center for Genome Science, National Institute of Health, Seoul, Korea. 196Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford OX3 7LF, UK. 197University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK. 198Centre for Cardiovascular Genetics, University College London, London WC1E 6JF, UK. 199Department of Preventive Medicine and Biostatistics, Loyola University Medical School, Maywood, Illinois, USA. 200Tuscany Regional Health Agency, Florence, Italy. 201Department of Internal Medicine B, Ernst-Moritz-Arndt-University Greifswald, Greifswald 17487, Germany. 202Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden. 203MRC Centre for Causal Analyses in Translational Epidemiology, School of Social & Community Medicine, University of Bristol, Bristol BS8 2BN, UK. 204BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK. 205Georgia Prevention Institute, Department of Pediatrics, Medical College of Georgia, 30912 Augusta, Georgia, USA. 206Cardiovascular Epidemiology and Genetics, Institut Municipal d’Investigacio Medica, Barcelona Biomedical Research Park, 88 Doctor Aiguader, Barcelona 08030, Spain. 207Medizinische Klinik II, Universität zu Lübeck, 23562 Lübeck, Germany. 208Department of Statistics, Pontificia Universidad Catolica de Chile, Via卡努麦卡纳, Santiago 8460, Chile. 209Department of Cardiovascular Medicine, The Welcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. 210Department of Clinical Sciences, Lund University, SE-205 02 Malmö, Sweden. 211Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica. 212Department of Medicine, University of Mississippi Medical Center, 2500 North State St, Jackson, Mississippi 39216, USA. 213Genetics of Complex Traits, Peninsula Medical School, University of Exeter, EX1 2LU Exeter, UK. 214Laboratory of Epidemiology, Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA. 215University of Washington, Seattle, Washington 98195, USA. 216Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital, SE-205 02 Malmö, Sweden. 217Human Genetics Foundation (HUGEF), Via of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. 218William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1CM 6BQ, UK. 219Cardiovascular Genetics, University of Utah, School of Medicine, Salt Lake City, 84132 Utah, USA. 220Division of Community Health Sciences, St George’s University of London, London SW17 0RE, UK. 221Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden. 222MRC Unit for Lifelong Health & Ageing, London WC1B 5JU, UK. 223Institute of Medical Medicine/Obstetrics and Gynecology, University of Oulu, 90014 Oulu, Finland. 224Centre National de Génotypage, Commissariat de L’Energie Atomique, Institut de Génomique, 91000 Evry, France. 225Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA. 226Epidemiology Public Health, UCL, London WC1E 6BT, UK. 227Centro Nacional de Génocentico, Companhia de L’Energie Atomique, Instituto de Génomique, 91000 Evry, France. 228William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1CM 6BQ, UK. 229Cardiovascular Genetics, University of Utah, School of Medicine, Salt Lake City, 84132 Utah, USA. 230HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway. 231Department of Community
Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, 02114 Massachusetts, USA.
Division for Human Genetics, Massachusetts General Hospital, Boston, 02114 Massachusetts, USA.
Institute for Human Genetics, University of California, San Francisco, San Francisco, 94143 California, USA.
Department of Cardiovascular Medicine, Cleveland Clinic, 7255 Old Oak Blvd, Cleveland, Ohio 44103, USA.
Medizinische Klinik und Poliklinik, Johannes-Gutenberg Universität Mainz, Universitätsmedizin, 55122 Mainz, Germany.
Institut für Klinische Chemie und Laboratoriumsmesizin, Johannes-Gutenberg Universität Mainz, Universitätsmedizin, 55122 Mainz, Germany.
INSERM UMR 937, Pierre and Marie Curie University (UPMC, Paris 6) and Medical School, 75005 Paris, France.
Boston University, School of Public Health, Boston, 02118 Massachusetts, USA.
University of Minnesota School of Public Health, Division of Epidemiology and Community Health, School of Public Health (A.R.F.), Minneapolis, 55455 Minnesota, USA.
University of Washington, Department of Internal Medicine, Seattle, 98195-6420 Washington, USA.
University of Texas, School of Public Health, Houston, 77030 Texas, USA.
Department of Medicine, Landskaps- University Hospital, Reykjavik 101, Iceland.
Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
Division of Endocrinology and Diabetes, Graduate School of Molecular Endocrinology and Diabetes, University of Ulm, 89069 Ulm, Germany.
Division of Endocrinology, Department of Medicine, Medical University of Graz, 8010 Graz, Austria.
Synlab Center of Laboratory Diagnostics Heidelberg, 69037 Heidelberg, Germany.
Division of Clinical Chemistry, Department of Medicine, Albert Ludwigs University, 79085 Freiburg, Germany.
Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, 8010 Graz, Austria.
Cardiologie Group Frankfurt-Sachsenhausen, 60594 Frankfurt, Germany.
The Center for Applied Genomics, Children’s Hospital of Philadelphia, 19104 Philadelphia, Pennsylvania, USA.
Cardiovascular Research Institute, Medstar Health Research Institute, Washington Hospital Center, Washington, DC 20010, USA.
Genetics Division and Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA.
The Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, 19104-5158 Pennsylvania, USA.
Department of Cardiovascular Surgery, University of Leicester, Leicester LE1 7RH, UK.
Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK.
LIGHT Research Institute, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK.

CHARGE-Heart Failure Group

Laura R. Loehr, Wayne D. Rosamond, Emelia Benjamin, Talin Haritunians, David Couper, Joanne Murabito, Ying A. Wang, Bruno H. Stricker, Patricia P. Chang, James T. Willerson

ECHOGen Consortium

Stephan B. Felix, Norbert Watzinger, Jayashri Aragam, Robert Zweiker, Lars Lind, Richard J. Rodeheffer, Karin Halina Greiser, Jaap W. Deckers, Jan Stritzke, Erik Ingelsson, Iftikhar Kullo, Johannes Haerting, Thorsten Reffelmann, Margaret M. Redfield, Karl Werdan, Gary F. Mitchell, Donna K. Arnett, John S. Gottdiener, Maria Blettner, Nele Friedrich