Research Article

The Survey of Knee Osteoarthritis in the Population over Age 50 Visited in the Health Bus in Kermanshah, Iran

Mohammad Bagher Shamsi 1, Ameneh Safari 2, Ali Soroush 3, and Yahya Safari 1

1School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
3Department of Physical Therapy, Kermanshah University of Medical Sciences, Kermanshah, Iran

Correspondence should be addressed to Yahya Safari; y.safary@kums.ac.ir

Received 22 May 2020; Revised 7 October 2020; Accepted 23 October 2021; Published 12 November 2021

Academic Editor: Carmela R. Balistreri

Copyright © 2021 Mohammad Bagher Shamsi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Along with an aging population worldwide, knee osteoarthritis (KOA), which is the main cause of musculoskeletal pain and disability in the elderly and decreases the quality of life, is prevalent, and their impact is widespread. This study aimed to evaluate the knee osteoarthritis status among the population over age 50 in Kermanshah, Iran. The research community consisted of the population who has been visited in the health bus in Kermanshah in 2016-2017, of which 589 were chosen by an available sampling method. A WOMAC questionnaire was used to determine the prevalence of knee osteoarthritis. The prevalence of knee stiffness rate after sitting, lying down, or resting during the day among women and men were 40.7% and 20.5%, respectively. According to the findings, the highest prevalence rate of knee pain was in subjects with a BMI higher than 30 (31.6%) and BMI 25–30 (24.5%). 39.2% of the subjects never experienced knee pain, 16.6% monthly, 13.4% once a week, 20.4% daily, and 10.4% of them had prolonged knee pain experience. The prevalence of gender-based knee pain was 60.5% among women and 38.6% among men. 30.5% of women and 61.4% of men never experienced knee pain.

1. Introduction

Along with an aging population worldwide, the pattern of disease prevalence has changed from acute infectious diseases to chronic noncommunicable diseases such as chronic musculoskeletal disorders. Musculoskeletal disorders are prevalent, and their impact is widespread [1]. They are the most prevalent cause of severe and prolonged pain and physical disabilities, and they have affected hundreds of millions of people worldwide and are considered a global health concern [2, 3].

One of the common musculoskeletal disorders is knee osteoarthritis (KOA), which is the main cause of musculoskeletal pain and disability in the elderly. It decreases the quality of life [4]. This problem often results in severe side effects, and in the second half of the life, it costs the heavy burden of treatment. Knee osteoarthritis includes the degeneration of cartilage with pain inside and around the knee joint, as well as joint stiffness, and decreased range of motion, which ultimately leads to muscle weakness and is the biggest cause of functional disability [4].

Generally, the first symptom of KOA is joint pain, and in patients aged over 55 years, knee pain is often associated with osteoarthritis. Nearly 25% of adults aged over 55 have experienced knee pain at least once a year, which probably is a sign of underlying KOA [4–7].

KOA affects 80% of the elderly and 27 million people in the United States each year, and their treatment costs are $185.5 billion annually [6]. The prevalence of this disease is expected to rise the given ever-aging population and the fact that obesity is becoming increasingly common, for example, the prevalence of KOA in Sweden is projected to increase from 13.8% in 2012 to 15.7% in 2032 [5, 8, 9].

The prevalence of KOA in the Asia-Pacific region is 7.50%. This is 5.78% in China, 12.4% in South Korea, 22.0% in rural India, 25.00% in rural population of North Pakistan,
and 10.2% in Bangladesh [8, 10–14]. Besides aging and obesity, gender, physical activity level, genetic predisposition, and injury are also risk factors of KOA [4]. Considering that the age-related burden of disease such as osteoarthritis will be significantly accelerated among developing countries, osteoarthritis prevalence will rise, particularly in Asian countries in the future [15].

Mobility and having a painless limb are crucial to perform daily regular activities. The health of the musculoskeletal system is an important part of health. With aging, many issues occur in this motor system. Therefore, particular attention to the physical health and the motor system in a macrolevel society is important as an infrastructure for development. Hence, this study aimed to evaluate the prevalence of KOA as one of the most common problems in the musculoskeletal system among the population over age 50 as an indicator of physical health status in Kermanshah (a city in the west of Iran).

2. Materials and Methods

This cross-sectional descriptive study was conducted in 2016-2017. The research community consisted of the population over the age of 50, voluntarily visiting the health bus (a bus that was traveling throughout the city to collect health information) in Kermanshah.

The sample size of the present study calculated 588 subjects based on the WHO-ILAR COPCORD study in Sanandaj [16], with a 95% confidence interval, the accuracy of 4%, and prevalence of 42.8% complaints of musculoskeletal pain in the past 7 days. The inclusion criteria for entering this study were aged over 50 years and the individual’s desire to be involved in the study.

The sampling of the present study was carried out in a gradual method until the samples were accomplished. According to the division of urban areas, the residential areas in the city were divided into eight municipal districts, and according to the schedule, each week, the evaluation bus traveled to one of the neighborhoods and was located in each neighborhood for one week.

The bus designed for this purpose had the facilities for collecting data and was located at the centre of the neighborhood, with posters, fliers, and placards announcing that the bus welcomed volunteered participants to be evaluated.

Regardless of having knee pain, those who volunteered to be assessed on the bus, in addition to overall health assessment, their condition of the musculoskeletal system was also assessed, and Western Ontario and McMaster Universities Osteoarthritis Index questionnaire (WOMAC) was completed for them.

Western Ontario and McMaster Universities Osteoarthritis Index questionnaire (WOMAC) was used to assess the status of people in terms of the KOA. The questionnaire includes 17 questions about functional activities, 5 questions about painful activities, and 2 questions about joint stiffness. In the study conducted by Ebrahimzadeh and colleagues in 2014, this questionnaire was translated into Persian, and psychometric evaluation has been performed. In this study, Cronbach's alpha was 0.917, which showed high internal consistency of the questionnaire as a reliable tool. Inter-correlation matrix between different scales of the WOMAC Persian questionnaire version showed a high correlation between the subscales of stiffness, pain, and physical function. In addition, this study showed that the WOMAC Persian index is a valid and reliable clinical tool for reporting KOA [17]. Finally, after completing the questionnaire by a questioner (researcher), the data were analyzed by the SPSS software version 18 and expressed using descriptive statistics.

3. Results and Discussion

3.1. Results.

The results of the recent study showed that about 72% of the participants were women. 67% of the samples were housewives. Furthermore, 35% of them had a BMI over 30 (Table 1).

According to the results of the WOMAC, the prevalence of knee pain among the studied samples was 60.8%. Meanwhile, 39.2% of the subjects never experienced knee pain, 16.6% had monthly, 13.4% once a week, 20.4% on daily basis, and 10.4% of them had prolonged knee pain experience. The results of Section 1 of the knee questionnaire are given in Table 2.

The prevalence of knee pain when doing activities such as going up and downstairs, sitting, and lying down is given in Table 3.

The prevalence of knee stiffness immediately after morning wake-up was 33.3% among participants. Furthermore, the prevalence of knee stiffness after sitting, lying down, or resting during the day was 35% (Table 4).

According to the data, the prevalence of gender-based knee pain was 60.5% among women and 38.6% among men. 30.5% of women and 61.4% of men never experienced knee pain. 19.1% of women and 10.2% of men once a month, 13.0% of women and 14.5% of men once a week, 23.6% of women and 12.0% of men daily, and 13.7% of women and 1.8% of men had prolonged knee pain experience (Table 5).

Table 6 is hyperlinked and could be accessed to address the prevalence of gender-based knee pain through the various activities between men and women.

The findings indicated that the prevalence of knee stiffness immediately after morning wake-up based on gender was 38.3% among women participants and 19.3% among men.

The knee stiffness prevalence rate after sitting, lying down, or resting during the day was 40.7% among women and 20.5% among men.

According to the findings of the present study, the high prevalence of daily and prolonged knee pain was recognized among housewives (Figure 1).

The results presented in Table 7, hyperlinked and could be read, indicated that according to the findings, the highest prevalence of knee pain was in subjects with BMI higher than 30 (31.6%) and BMI 25–30 (24.5%). The lowest prevalence of knee pain was seen in subjects with lower BMI than 18.5 (1%) (Table 7). The prevalence of knee stiffness associated with the BMI of the studied participants is given in Table 7.
3.2. Discussion. Considering the importance of prevention and early treatment of KOA and providing appropriate guidelines in order to prevent it, this study aimed to evaluate the KOA status among the population over age 50 in Kermanshah. The results of the study showed that the prevalence of knee pain in the samples was 60.8%.

Table 1: Demographic characteristics of the participants in the study.

Gender		
Female	423	71.8%
Male	166	28.2%

Education		
Uneducated	226	38.4%
High school	211	35.8%
Diploma	105	17.8%
Associate	23	3.9%
Bachelor	21	3.6%
Master	3	0.5%
Total	589	100%

Height (%)		
137–147	25	4.2%
147–157	193	32.8%
157–167	230	39.0%
167–177	100	17.0%
177–188	32	5.4%

BMI (%)		
<18.5	9	1.6%
18.5–25	126	21.7%
25–30	242	41.7%
>30	203	35.0%

Table 2: Results of Section 1 of the knee questionnaire.

The amount of pain	Ability to bend the knee completely	Ability to extend the knee completely	Feeling of knee lock when moving	Crepitation when moving	Swelling of the knee
Never	1	4	354	347	413
0.2%	19	18	81	50	55
Rarely	3.2%	3.1%	13.8%	8.3%	9.3%
Some of the time	5.4%	5.9%	12.9%	12.7%	8.3%
Most of the time	14.3%	14.1%	10.8%	16.6%	8.8%
All of the time	76.9%	76.2%	2.4%	3.2%	3.4%
Total	100%	100%	100%	100%	100%

Table 3: The prevalence rate of knee pain when doing various activities.

The amount of pain	Standing upright	Sitting or lying	At night in bed	Up and down the stairs	Walking on a flat surface	Bending the knee	Knee extension	Rotate on the knee
None	371	383	366	260	375	430	421	48
Mild	63.0%	65.0%	62.1%	44.1%	63.2%	73.0%	71.5%	71.0%
Moderate	18.3%	17.1%	13.2%	20.4%	16.5%	14.1%	16.0%	15.4%
Severe	9.8%	10.5%	10.7%	16.5%	12.7%	7.8%	7.1%	6.8%
Extreme	7.8%	6.3%	12.9%	17.7%	6.6%	4.4%	4.6%	6.1%

3.2.3. Considering the importance of prevention and early treatment of KOA and providing appropriate guidelines in order to prevent it, this study aimed to evaluate the KOA status among the population over age 50 in Kermanshah. The results of the study showed that the prevalence of knee pain in the samples was 60.8%.
Table 4: Determination of prevalence of joint stiffness at different times.

Level of stiffness	How severe is your stiffness first after awakening in the morning?	How severe is your stiffness after sitting, lying, or resting later in the day?
None	393	383
	66.7%	65.0%
Mild	241	96
	13.8%	16.3%
Moderate	161	66
	10.4%	11.2
Severe	86	49
	8.3%	6.6%
Extreme	5	5
	0.8%	0.8%

Table 5: The prevalence of knee exhaustion side effects based on the gender.

Gender	Swelling on the knee	Crepitation when moving	The problem of knee when moving	Ability to extend the knee completely	Ability to bend the knee completely
Female	265	214	222	148	148
	62.6%	11.1%	9.2%	89.2%	89.2%
	46	61	63	14	14
	47	92	59	6	6
	18	17	11	120	120
	423	423	423	166	166
Male	148	133	132	5	5
	8	11	14	3	3
	3	14	13	16	16
	5	6	7	165	165
	166	166	166	166	166

Table 6: The prevalence of gender-based knee pain in the studied participants.

Gender	No pain	Mild	Moderate	Severe	Extreme	Total
Male	129	81	55	100	100	423
	30.5%	19.1%	13.0%	23.6%	23.6%	100%
	275	78	35	31	31	423
	65.0%	18.4%	8.3%	7.3%	7.3%	100%
	278	81	37	23	23	423
	65.7%	19.1%	8.7%	5.4%	5.4%	100%
Female	284	71	42	22	22	423
	67.1%	16.8%	9.9%	5.2%	5.2%	100%
	239	82	62	35	35	423
	56.5%	19.4%	14.7%	8.3%	8.3%	100%
	148	95	83	89	89	423
	35.0%	22.5%	19.6%	21.0%	21.0%	100%
	232	66	54	65	65	423
	54.8%	15.6%	12.8%	15.4%	15.4%	100%
The data of the present study indicated that the KOA symptoms increase with age. In a demographic study in urban and rural areas of Bangladesh, the similar findings with age were seen [13]. The results presented in Table 7 provide that the highest prevalence rate of knee pain was in subjects with BMI higher than 30 (31.6%) and BMI 25–30 (24.5%). The lowest prevalence of knee pain was seen in subjects with lower BMIs than 18.5 (1%). The results of Qing Yu and colleagues indicated a strong association between high BMI and the risk of KOA. In the study of Qing Yu and colleagues, BMIs were higher in the group with KOA than in the group without KOA, which is aligned with the current research [6]. Some studies consider female gender as one of the risk factors for knee pain and KOA [18–20]. It was seen in the present study that the prevalence of musculoskeletal disorders is higher in women than men. Of course, it is noteworthy that the number of women participating in the study was more than men, which may be due to men’s employment and business when the bus was accepting patients and their lack of opportunity to visit the bus.

The study results of the Haq and colleagues also indicated a high prevalence of osteoarthritis among women [13]. The study by Zeng and colleagues in China showed that the prevalence of KOA was higher among women than men [6]. Research results in Australia also indicated that the prevalence of osteoarthritis among women is higher than men [21]. Studies have revealed that some occupational physical activities can increase the risk of osteoarthritis [22–24]. In the present study, knee pain was higher among housewives than other participants in the study. The findings of Dahaghin and colleagues study also indicated that housewives are more prone to KOA than women working outside [25].

Of course, less muscle mass in women than men can also have more impact on their functional limitations along with

The prevalence of knee pain associated with type of occupation.

Figure 1: The prevalence of knee pain associated with type of occupation.

Table 6: Continued.

Gender	No pain	Mild	Moderate	Severe	Extreme	Total
Rotate on the knee	102	17	24	20	20	166
Knee extension	143	13	5	5	5	166
Walking on a flat surface	143	13	5	4	4	166
Going up or down stairs	146	12	4	4	4	166
At night while in bed	133	15	13	4	4	166
Sitting or lying	112	25	14	15	15	166
Standing upright	134	12	9	11	11	166

Gender	Never	once a month	daily	once a week	always										
Worker	0.00	5.00	10.00	15.00	20.00										
Self employed	0.00	5.00	10.00	15.00	20.00										
Military	0.00	5.00	10.00	15.00	20.00										
Teacher	0.00	5.00	10.00	15.00	20.00										
Housekeeper	0.00	5.00	10.00	15.00	20.00										
Driver	0.00	5.00	10.00	15.00	20.00										
Employee	0.00	5.00	10.00	15.00	20.00										
Question	BMI < 18.5	18.5–25	25–30	BMI > 30											
--------------------------	------------	---------	-------	----------											
	No pain	Mild	Moderate	Severe	Extreme	No pain	Mild	Moderate	Severe	Extreme	No pain	Mild	Moderate	Severe	Extreme
Rotate on the knee	1.2%	0.2%	0.2%	0%		101	11	6	7	1	18	33	19	9	1
Knee extension	1.2%	0.2%	0.2%	0%		101	12	7	5	1	179	35	20	6	2
Bending the knee	1.2%	0.2%	0.2%	0%		101	12	7	5	1	184	28	22	7	1
Walking on a flat surface	1.2%	0%	0.3%	0%		147	31	2	1.7%	0.2%	28.6%	5.7%	5.2%	1.7%	0.3%
Up and down the stairs	0.7%	0.3%	0.3%	0.2%		117	3.3%	2.6%	3.8%	0.3%	20.5%	7.2%	7.6%	6.0%	0.3%
At night when in bed	0.9%	0.5%	0%	0.2%		145	1.4%	2.4%	3.3%	0.2%	28.8%	4.5%	4.0%	4.3%	0.2%
Sitting or lying	1.0%	0.3%	0%	0.2%		15.9%	2.6%	1.9%	1.2%	0.2%	28.3%	6.4%	5.0%	1.9%	0.2%
Standing upright	1.4%	0.2%	0%	0%		15.5%	2.6%	1.7%	1.7%	0.2%	27.4%	7.4%	4.7%	2.1%	0.2%

Table 7: The prevalence of knee pain associated with the BMI of the studied participants.
aging [26] that can lead to a high prevalence of knee pain among housewives, which needs more investigations.

The study conducted by Ricci and colleagues showed that arthritis is prevalent in workers aged 40–65. The findings of our study also showed that after housekeeping, workers had the most experience with knee pain among other studied occupations. However, knee pain experience was for less than half of the workers. Of course, this may be due to the small number of workers participating in the study [24].

4. Conclusions

The prevalence of knee pain in the population over the age of 50 who participated in the study was high. Knee pain and stiffness were more prevalent in women than men. The high prevalence of this problem was recognized among housewives and subjects with BMI higher than 30.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Mohammad Bagher Shamsi contributed to original idea and protocol, the conception of the work, conducting the study, revising the draft, approval of the final version of the manuscript, and agreed for all aspects of the work. Ameneh Safari contributed to the design of the work and revising the draft and approval of the final version of the manuscript. Ali Sorosh contributed in conception of the work, editing of this manuscript, and approval of the final version of the manuscript. Yahya Safari involved in data analysis, drafting of the manuscript, and approval of the final version of the manuscript. All authors provided their consent for this publication.

Acknowledgments

The authors would like to express their appreciation towards the financial support of the Research and Technology Department of Kermanshah University of Medical Sciences (95371).

References

[1] M. S. G. Dellaroza, C. A. d. M. Pimenta, and T. Matsuo, “Prevalência e caracterização da dor crônica em idosos não institucionalizados,” Cadernos de Saúde Pública, vol. 23, no. 5, pp. 1151–1160, 2007.
[2] C. E. Hiller, E. J. Nightingale, J. Raymond et al., “Prevalence and impact of chronic musculoskeletal ankle disorders in the community,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 10, pp. 1801–1807, 2012.
[3] A. D. Woolf and K. Åkesson, “Understanding the burden of musculoskeletal conditions,” BMJ, vol. 322, no. 7294, pp. 1079–1080, 2001.
[4] G. Gürer, G. T. Bozbas, T. Tuncer, A. I. Unubol, U. G. Ucar, and O. I. Memetoglu, “Frequency of joint hypermobility in Turkish patients with knee osteoarthritis: a cross sectional multicenter study,” International Journal of Rheumatology, 2016.
[5] A. Turkiewicz, M. Gerhardsson de Verdier, G. Engstrom et al., “Prevalence of knee pain and knee OA in southern Sweden and the proportion that seeks medical care,” Rheumatology, vol. 54, no. 5, pp. 827–835, 2014.
[6] Q.-Y. Zeng, C.-H. Zang, X.-F. Li, H.-Y. Dong, A.-L. Zhang, and L. Lin, “Associated risk factors of knee osteoarthritis: a population survey in Taiyuan, China,” Chinese Medical Journal, vol. 119, no. 18, pp. 1522–1527, 2006.
[7] T. Field, “Knee osteoarthritis pain in the elderly can be reduced by massage therapy, yoga and tai chi: a review,” Complementary Therapies in Clinical Practice, vol. 22, pp. 87–92, 2016.
[8] T. Field, M. Diego, G. Gonzalez, and C. G. Funk, “Knee arthritis pain is reduced and range of motion is increased following moderate pressure massage therapy,” Complementary Therapies in Clinical Practice, vol. 21, no. 4, pp. 233–237, 2015.
[9] A. Turkiewicz, I. F. Petersson, J. Björk et al., “Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032,” Osteoarthritis and Cartilage, vol. 22, no. 11, pp. 1826–1832, 2014.
[10] R. D. Wigley, N. Z. Zhang, Q. Y. Zeng et al., “Rheumatic diseases in China: ILAR-China study comparing the prevalence of rheumatic symptoms in northern and southern rural populations,” Journal of Rheumatology, vol. 21, no. 8, pp. 1484–1490, 1994.
[11] A. Chopra, J. Patil, V. Billampelly, J. Relwani, and H. Tandale, “The Bhigwan (India) COPCORD: methodology and first information report,” APLAR Journal of Rheumatology, vol. 1, pp. 145–154, 1997.
[12] A. Farooqi and T. Gibson, “Prevalence of the major rheumatic disorders in the adult population of north Pakistan,” Rheumatology, vol. 37, no. 5, pp. 491–495, 1998.
[13] S. A. Haq, J. Darmawan, M. N. Islam et al., “Prevalence of rheumatic diseases and associated outcomes in rural and urban communities in Bangladesh: a COPCORD study,” Journal of Rheumatology, vol. 32, no. 2, pp. 348–353, 2005.
[14] S. Lee and S.-J. Kim, “Prevalence of knee osteoarthritis, risk factors, and quality of life: the fifth Korean national health and nutrition examination survey,” International Journal of Rheumatic Diseases, vol. 20, no. 7, pp. 809–817, 2017.
[15] P. Bhandarkar, P. Priti, S. Chander, and K. Nandan, “Prevalence of osteoarthritis knee: four year study based on digital records of comprehensive healthcare setup at Mumbai,” India International Journal of Community Medicine Public Health, vol. 3, no. 5, pp. 1049–1053, 2017.
[16] F. Davatchi, A. R. Jamshidi, A. T. Banishademi et al., “WHO-ILAR COPCORD study (stage 1, urban study) in Iran,” Journal of Rheumatology, vol. 35, no. 7, pp. 1384–1390, 2008.
[17] M. H. Ebrahimzadeh, H. Makhmalbaf, A. Birjandinejad, F. G. Keshtan, H. A. Hoseini, and S. M. Mazloumi, “The western Ontario and McMaster Universities osteoarthritis index (WOMAC) in Persian speaking patients with knee osteoarthritis,” The Archives of Bone and Joint Surgery, vol. 2, no. 1, pp. 57–62, 2014.
[18] S. L. Ingham, W. Zhang, S. A. Doherty, D. F. McWilliams, K. R. Muir, and M. Doherty, “Incident knee pain in the Nottingham community: a 12-year retrospective cohort study,” Osteoarthritis and Cartilage, vol. 19, no. 7, pp. 847–852, 2011.

[19] B. Järvelin, S. Lewold, H. Malchau, and E. Vingård, “Age, body weight, smoking habits and the risk of severe osteoarthritis in the hip and knee in men,” European Journal of Epidemiology, vol. 20, no. 6, pp. 537–542, 2005.

[20] W. G. Seavey, J. H. Kurata, and R. D. Cohen, “Risk factors for incident self-reported arthritis in a 20 year followup of the Alameda County Study Cohort,” Journal of Rheumatology, vol. 30, no. 10, pp. 2103–2111, 2003.

[21] C. D. Mathers, E. T. Vos, C. E. Stevenson, and S. J. Begg, “The burden of disease and injury in Australia,” Bulletin of the World Health Organization, vol. 79, pp. 1076–1084, 2001.

[22] J. J. Anderson and D. T. Felson, “Factors associated with osteoarthritis of the knee in the first national health and nutrition examination survey (hanes I),” American Journal of Epidemiology, vol. 128, no. 1, pp. 179–189, 1988.

[23] M. Blagojevic, C. Jinks, A. Jeffery, and K. P. Jordan, “Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis,” Osteoarthritis and Cartilage, vol. 18, no. 1, pp. 24–33, 2010.

[24] J. A. Ricci, W. F. Stewart, E. Chee, C. Leotta, K. Foley, and M. C. Hochberg, “Pain exacerbation as a major source of lost productive time in US workers with arthritis,” Arthritis & Rheumatism, vol. 53, no. 5, pp. 673–681, 2005.

[25] S. Dahaghin, S. A. Tehrani-Banihashemi, S. T. Faezi, A. R. Jamshidi, and F. Davatchi, “Squatting, sitting on the floor, or cycling: are life-long daily activities risk factors for clinical knee osteoarthritis? Stage III results of a community-based study,” Arthritis & Rheumatism, vol. 61, no. 10, pp. 1337–1342, 2009.

[26] J. Woo, J. Leung, and E. Lau, “Prevalence and correlates of musculoskeletal pain in Chinese elderly and the impact on 4-year physical function and quality of life,” Public health, vol. 123, no. 8, pp. 549–556, 2009.