X-ray Structure of Human Acid-β-Glucosidase Covalently Bound to Conduritol-B-Epoxide

IMPLICATIONS FOR GAUCHER DISEASE*‡‡

Lakshmanane Premkumar‡‡, Anu R. Sawkar‡, Swetlana Boldin-Adamsky§, Lilly Toker∥, Israel Silman, Jeffery W. Kelly‡, Anthony H. Futerman§§, and Joel L. Sussman$$$$

From the ‡Departments of Structural Biology, †Neurobiology, and §Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel, and the ¶Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037

Gaucher disease is an inherited metabolic disorder caused by mutations in the lysosomal enzyme acid-β-glucosidase (GlcCerase). We recently determined the x-ray structure of GlcCerase to 2.0 Å resolution (Dvir, H., Harel, M., McCarthy, A. A., Toker, L., Silman, I., Futerman, A. H., and Sussman, J. L. (2003) EMBO Rep. 4, 704–709) and have now solved the structure of GlcCerase conjugated with an irreversible inhibitor, conduritol-B-epoxide (CBE). The crystal structure reveals that binding of CBE to the active site does not induce a global conformational change in GlcCerase and confirms that Glu140 is the catalytic nucleophile. However, only one of two alternative conformations of a pair of flexible loops (residues 345–349 and 394–399) located at the entrance to the active site in native GlcCerase is observed in the GlcCerase-CBE structure, a conformation in which the active site is accessible to CBE. Analysis of the dynamics of these two alternative conformations suggests that the two loops act as a lid at the entrance to the active site. This possibility is supported by a cluster of mutations in loop 394–399 that cause Gaucher disease by reducing catalytic activity. Moreover, in silico mutational analysis demonstrates that all these mutations stabilize the conformation that limits access to the active site, thus providing a mechanistic explanation of how mutations in this loop result in Gaucher disease.

Gaucher disease, the most common lysosomal storage disorder (1), is caused by mutations in the gene encoding acid-β-glucosidase (GlcCerase),† which result in intracellular accumulation of the lipid substrate, glucosylceramide (2, 3). These mutations diminish GlcCerase activity either by reducing enzyme activity or by reducing the lysosomal enzyme concentration. Enzyme activity is reduced in mutations that affect the turnover number, substrate affinity, or activator binding (4). Lysosomal enzyme concentration is reduced by mutations that compromise folding in the endoplasmic reticulum, resulting in proteasomal degradation of the protein (5).

We recently solved the three-dimensional structure of recombinant GlcCerase (Cerezyme®), the enzyme used in enzyme replacement therapy in Gaucher disease (6). The structure comprises three non-contiguous domains, with the catalytic site located in domain III (residues 76–381 and 416–430), a β/α (TIM) barrel. The function of the two non-catalytic domains is not known, but mutations that cause Gaucher disease are found in all three domains.

To determine whether substrate or inhibitor binding can induce conformational change(s) in GlcCerase, and to try to gain insight into possible roles of the non-catalytic domains, we have now determined the crystal structure of a conjugate of GlcCerase with an irreversible inhibitor, conduritol-B-epoxide (1,2-anhydro-myo-inositol; CBE) (7). Binding of CBE did not induce a global conformational change in the structure of GlcCerase but permitted us to assign a role to two surface loops found at the entrance to the active site and to suggest how mutations in one of these loops might reduce catalytic activity, thus leading to Gaucher disease.

EXPERIMENTAL PROCEDURES

Materials—Cerezyme® was obtained from patient leftovers. CBE was from Biomol (Plymouth, PA), and N-glycosidase F was from Roche Applied Science (Mannheim, Germany). N-6-(7-nitrobenz-2-oxa-1,3-diazol-4-ylaminobenzyl)hexanoyl-b-erythro-glucosylsphingosine (C6-NBD-GlcCer) was prepared as described (8).

Crystalization and Data Collection—Cerezyme® was crystallized after partial deglycosylation using N-glycosidase F (6), which is capable of cleaving all types of asparagine bound N-glycans (9, 10), but did not produce complete deglycosylation of native Cerezyme® under the experimental conditions employed (6). GlcCerase-CBE crystals were obtained by soaking native GlcCerase crystals overnight at 19 °C in mother liquor (1 M (NH₄)₂SO₄, 170 mM guanidinium HCl, 20 mM KCl, 100 mM acetate, pH 4.6) containing 1 mM CBE. The crystals were cryoprotected with a gradient of 5–25% glycerol. Data were collected

* This work was supported by the National Gaucher Foundation, European Community 5th Framework Contract QLG2-CT-2002-00988 (SPINE), an Israel Ministry of Science and Technology grant to the Israel Structural Proteomics Center, the Kimmel Center for Biomolecular Structure and Assembly, the Benoziyo Center for Neurosciences, the Skaggs Institute for Chemical Biology, and a National Science Foundation Predoctoral Fellowship (to A. R. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. 1 and 2 (both figures contain movies).

The atomic coordinates and structure factors (code 1Y7V) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).

¶† Is the Lita Annenberg Hazen Professor of Chemistry at the Scripps Research Institute.

‡‡ Is the Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science.

§§ Is the Morton and Gladys Fickman Professor of Structural Biology in the Weizmann Institute of Science.

¶¶‡‡ Is the Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science. To whom correspondence should be addressed: Dept. of Biological Chemistry, Weizmann Inst. of Science, Rehovot 76100, Israel. Tel.: 972-8-9342704; Fax: 972-8-9344112; E-mail: tony.futerman@weizmann.ac.il.

†‡‡ Is the Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science. To whom correspondence should be addressed: Dept. of Biological Chemistry, Weizmann Inst. of Science, Rehovot 76100, Israel. Tel.: 972-8-9342704; Fax: 972-8-9344112; E-mail: tony.futerman@weizmann.ac.il.

The abbreviations used are: GlcCerase, acid-β-glucosidase; CBE, conduritol-B-epoxide; C6-NBD-GlcCer, N-6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino(hexanoyl)-b-erythro-glucosylsphingosine; MES, 4-morpholineethanesulfonic acid.
X-ray Structure of Acid-β-Glucosidase/Cyclohexitol

RESULTS

Structure of the GlcCerase-CBE Complex—Initial experiments were performed to determine whether CBE was able to bind to GlcCerase crystals. Upon redissolving in the GlcCerase reaction buffer, GlcCerase crystals were fully active, but crystals into which CBE had been soaked were devoid of catalytic activity (Fig. 1).

X-ray data for the GlcCerase-CBE complex were collected (Table I) and refined to 2.4 Å resolution (Table II). From the initial \(F_o - F_c \) and the 2\(F_o - F_c \) maps, it is apparent that CBE binds only to Glu340 (Fig. 2) and not to any other residues, including Asp443 and Asp445 (17). The proposed reaction mechanism (7) involves protonation of the epoxide oxygen of CBE by the catalytic acid/base, followed by nucleophilic attack at C1 of the cyclohexitol ring, and formation of a nucleophile-cyclohexitol ester bond (Fig. 3).

The crystal structure supports this mechanism, since the distance between C1 of the cyclohexitol and Glu340 in the active site of GlcCerase is 1.43 Å, confirming Glu340 as the active-site nucleophile (Fig. 2). Moreover, the distance between the epoxide oxygen of CBE, oriented similarly to the cyclohexitol ring, and Glu235Oe, is within hy-
hydrogen-bonding distance, consistent with the role of Glu235 as the acid/base catalyst (18) (Fig. 2b).

Additional residues in proximity to the cyclohexitol in GlcCerase (Fig. 4a) were compared with those found in a plant \(\beta\)-\(\alpha\)-glucan glucohydrolase (19) (Fig. 4b), a member of the same glycohydrolase family. In contrast to the chair conformation adopted by the cyclohexitol upon binding to a plant \(\beta\)-\(\alpha\)-glucan glucohydrolase (19), the cyclohexitol is found in a boat conformation in GlcCerase, with hydrogen bonds to Asn234O, N22, Glu340Oe1, Trp179Ne1, and Asp127Oe1 and Oe2 (Fig. 4a). The boat conformation is stabilized by tight hydrogen-bonding interactions between C4-OH of the cyclohexitol and Asp127 and between C3-OH and Asp127 and Trp179.

Characterization of a Lid at the Entrance to the Active Site—Superimposition of the native GlcCerase structure on that of GlcCerase-CBE revealed a root mean square deviation of only ~0.32 Å, demonstrating that GlcCerase does not undergo a global structural change upon binding CBE. However, examination of the root mean square deviations of individual residues revealed a significant difference between native GlcCerase and GlcCerase-CBE with respect to the conformation of two loops, Ser345–Glu349 (loop 1) and Val394–Asp399 (loop 2).

In native GlcCerase, the two molecules in the asymmetric unit display two alternative conformations (6) for both of these loops (Fig. 5a). In loop 2, a major conformational difference is seen in the positions of Asn396 and Phe397 in the two asymmetric units (Fig. 5c), and in loop 1 a more modest difference is seen in the conformations of Lys346 and Glu349 (Fig. 5b). In contrast, the two molecules in the asymmetric unit of the GlcCerase-CBE crystals adopt only one of these two conformations.

Interestingly, the two loops are located on the surface of GlcCerase at the entrance to the active site. In the conformation adopted in the GlcCerase-CBE structure, Asn396 and Phe397 are positioned such that access to the active site is not restricted (Fig. 6a). However, in the other alternative conformation, which is displayed only in the native GlcCerase structure, the side chains of Asn396 and Phe397 swing over and block the entrance to the active site (Fig. 6b), suggesting that this
loop serves as a lid regulating access to the active site in GlcCerase. Thus, these two loops allow GlcCerase to exist in either an open (Fig. 6a) or closed (Fig. 6b) conformation, depending on the orientation of the loops. The movies in supplemental Figs. 1 and 2 illustrate the dynamics of the movement of these two loops (29).

Analysis of the distribution of mutant forms of GlcCerase that cause Gaucher disease reveals a cluster of mutations in loop 2, including V394L (2), R395P (20), N396T (21), V398L/F (22, 23), and D399N (24). In silico analysis of these mutants is consistent with either destabilization of the open conformation or stabilization of the closed conformation (Table III), thus limiting substrate access to the active site. For instance, V394L, one of the six most common mutations in Gaucher disease (2), results in enhanced hydrophobic interactions of Leu394 with Trp393 and Phe446 in the closed conformation; conversely, this same mutation destabilizes the open conformation, since the larger side chain cannot interact with the aromatic side chains of Trp393 and Phe446. Likewise, R395P destabilizes the open conformation due to the loss of a stabilizing salt bridge with Glu388. N396T results in additional hydrogen bonding between Thr396 and the carbonyl oxygens of residues Glu388 and Gly389 in the closed conformation but in reduced H-bonding with Asp127 in the open conformation. Thus, the structure of GlcCerase complexed to CBE gives insight into the mechanism by which catalytic activity is reduced by mutations in this newly identified lid that controls access to the active site.

DISCUSSION

In the current study we have solved the x-ray structure of GlcCerase covalently bound to CBE. Using this structure, we confirmed earlier assignments, based on electrospray tandem mass spectrometry, that Glu340 is the nucleophile and Glu235 is the acid/base catalyst (25). Since catalytic activity was completely inhibited by binding of the cyclohexitol to Glu340, and since we saw no binding to any other residues, we can also exclude the possibility that the inhibitory effect of CBE on GlcCerase activity is due to binding to Asp443 and Asp445, as proposed earlier (17).

There are no global structural changes between the GlcCerase-CBE structure and that of native GlcCerase, suggesting that binding of inhibitors to the active site, and presumably also binding of the lipid substrate, does not induce a major conformational change. This also serves as proof of concept that the GlcCerase structure can be used as a starting point for designing structure-based drugs aimed at restoring the activity of defective GlcCerase (3). Important among these are the small molecular weight chaperones that, upon binding to the active site, restore trafficking of improperly folded GlcCerase out of the endoplasmic reticulum and through the secretory pathway to lysosomes, thereby restoring normal, or near-normal, lysosomal GlcCerase levels (5, 26).

Although there are no global structural changes, we did detect a significant structural change in two surface loops at the entrance to the active site that appear to act as a lid controlling access to the active site. Interestingly, a lid has also been detected in a number of glycosyltransferases (27). In the glycosyltransferases, one or two flexible loops near the sub-

![Fig. 6. Surface of GlcCerase illustrating the open and closed conformations.](image)

Table III

In silico mutational analysis of loop Val394–Asp399

Non-bonded contacts, salt bridges, and hydrogen bonds are listed for the closed and open conformations for wild-type GlcCerase and for the mutants.

Mutation	Closed conformation	Open conformation
V394L	Contacts with Phe246 and Trp393	Contacts with Phe246 and Trp393
	Val394	Contact with Pro245
R395P	Contacts with Phe246, Arg396, and Trp393	Contact with Asp127
	Arg395	No interaction
N396T	No H-bond	H-bond to Asp127
	Asn396	Salt bridge to Glu388
V398L	H-bonds to Glu386(O) and Gly389(O)	No interaction
	Thr398	H-bond to Asp127
V398F	Contacts with Phe128 and Phe397	Contact with Asp127
	Val398	No interaction
	Phe398	Contact with Phe128
D399N	Salt bridge to Arg359 and H-bonds to Gln414(N), Arg356(O), and Ser400(N)	Salt bridge to Arg359
	Asp399	H-bond to Gln414(N)
	Asn399	H-bonds to Ser400(N) and Gln414

23818 X-ray Structure of Acid-β-Glucosidase/Cyclohexitol
strate binding site undergo a marked conformational change from an open to a closed conformation upon binding the donor substrate. The flexibility of these loops is crucial for the catalytic activity of the glycosyltransferases (27).

In GlcCerase, the role of one of the two surface loops in governing access to the active site is supported by the reduced affinity of GlcCerase for CBE in various GlcCerase mutations, such as V394L (4), R395P, and N396T (20), although V394L also displays reduced thermostability and reduced stability at low pH (4), implying a disruption of structural integrity that may result in rapid lysosomal degradation. Thus, loop mutations may both decrease the catalytic activity of GlcCerase and reduce its lysosomal enzyme concentration. Unfortunately, sufficient amounts of GlcCerase mutated in residues in these loops are not available for crystallization studies, but in silico mutational analysis is entirely consistent with the lid being in the closed conformation in the mutated proteins, which would prevent access of GlcCer to the active site. The discovery of a lid regulating access to the GlcCerase active site provides the first mechanistic insight into how GlcCerase mutations result in reduced catalytic activity and as a consequence cause Gaucher disease.

REFERENCES
1. Futerman, A. H., and van Meer, G. (2004) Nat. Rev. Mol. Cell. Biol. 5, 554–565
2. Beutler, E., and Grabowski, G. A. (2001) in The Metabolic and Molecular Bases of Inherited Disease (Scriver, C. R., Sly, W. S., Childs, B., Beaudet, A. L., Valle, D., McKusick, A. L., and Valle, D., Kinzler, K. W., and Vogelstein, B., eds) 8th Ed., pp. 3635–3668, McGraw-Hill Inc., New York
3. Futerman, A. H., Sussman, J. L., Horowitz, M., Silman, I., and Zminar, A. (2004) Trends Pharmacol. Sci. 25, 147–151
4. Grace, M. E., Newman, K. M., Scheinker, V., Berg-Fussman, A., and Grabowski, G. A. (1994) J. Biol. Chem. 269, 2283–2291
5. Sawkar, A. R., Cheng, W. C., Beutler, E., Wong, C. H., Bialch, W. E., and Kelly, J. W. (2002) Proc. Natl. Acad. Sci. (U. S. A.) 99, 15428–15433
6. Dvir, H., Harel, M., McCarthy, A. A., Toker, L., Silman, I., Futerman, A. H., and Sussman, J. L. (2003) EMBO Rep. 4, 704–709
7. Legler, G. (1990) Adv. Carbohydr. Chem. Biochem. 48, 319–384
8. Meivar-Levy, I., Horowitz, M., and Futerman, A. H. (1994) Biochem. J. 303, 377–382
9. Tarrentino, A. L., Gomez, C. M., and Plummer, T. H., Jr. (1985) Biochemistry 24, 4665–4671
10. Chu, F. K. (1986) J. Biol. Chem. 261, 127–177
11. Kabsch, W. (1993) J. Appl. Crystallogr. 26, 795–800
12. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 905–921
13. McRee, D. E. (1999) J. Struct. Biol. 125, 156–165
14. Schutteknopf, A. W., and van Aalst, D. M. (2004) Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363
15. Jones, T. A. (1978) J. Appl. Crystallogr. 11, 268–272
16. Guex, N., and Peitsch, M. C. (1997) Electrophoresis 18, 2714–2723
17. Dinur, T., Osiecki, K. M., Legler, G., Gatt, S., Desnick, R. J., and Grabowski, G. A. (1986) Proc. Natl. Acad. Sci. (U. S. A.) 83, 1660–1664
18. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P., and Davies, G. (1995) Proc. Natl. Acad. Sci. (U. S. A.) 92, 7090–7094
19. Hrmova, M., Varphee, J. N., De Gori, R., Smith, B. J., Driguez, H., and Fincher, G. B. (2001) Structure (Camb.) 9, 1055–1066
20. Amaral, O., Marcao, A., Sa Miranda, M., Desnick, R. J., and Grace, M. E. (2000) Eur. J. Hum. Genet. 8, 95–102
21. Amaral, O., Pinto, E., Fortuna, M., Lacerda, L., and Sa Miranda, M. C. (1996) Hum. Mutat. 8, 280–281
22. Seeman, P. J., Finckh, U., Hoppner, J., Lakner, V., Liebsch, L., Grau, G., and Rolfs, A. (1996) Neurology 46, 1102–1107
23. Stone, D. L., van Diggelen, O. P., de Klerk, J. B., Gaillard, J. L., Niermeijer, M. F., Willemsen, R., Tayebi, N., and Sidransky, E. (1999) Eur. J. Hum. Genet. 7, 505–509
24. Beutler, E., and Gelbart, T. (1994) Hum. Genet. 93, 209–210
25. Miao, S., McCarter, J. D., Grace, M. E., Grabowski, G. A., Aebersold, R., and Laskowski, R. A., Simonson, T., and Warren, G. L. (1998) J. Biol. Chem. 269, 10975–10978
26. Fan, J. Q. (2003) Trends Pharmacol. Sci. 24, 355–360
27. Qasba, P. K., Ramakrishnan, B., and Boegger, E. (2005) Trends Biochem. Sci. 30, 53–62
28. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) Protein Eng. 8, 127–134
29. Zeev-Ben-Mordehai, T., Silman, I., and Sussman, J. L. (2003) Biopolymers 68, 395–406