REVIEW

The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling

Adrienn Sipos1, Gyula Ujlaki1, Edit Mikó1, Eszter Maka2, Judit Szabó3, Karen Uray1, Zoárd Krasznai2 and Péter Bai1,4,5*

Abstract

Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.

Keywords: Ovarian cancer, Microbiome, EMT, Microbial metabolite, Indole derivative, Lipopolysaccharide, Lysophosphatid, Antibiotic, Probiotic

Background

Ovarian cancer is leading oncological cause of death among women. Ovarian cancer is characterized by changes to different microbiome compartments that is termed oncobiosis. The aim of the current work is to provide a comprehensive review of changes to microbiome and to give mechanistic insights to the role of the microbiome in the pathogenesis of ovarian cancer. These mechanistic steps involve, but are not limited to the induction of sustained inflammation and the production of procarcinogenic bacterial metabolites. The interference between the oncobiome and the chemotherapeutic agents will be discussed, as well as, the possible application of antibiotics, probiotics and nutrients in the management of ovarian cancer.

Etiology and treatment of ovarian cancer

Ovarian cancer is the second most common gynecological malignancy in developed countries and has one of the worst prognosis and mortality (Torre et al. 2015). Most ovarian tumors, approximately 90%, are of epithelial
and carboplatin is initiated and an interval debulking surgery, intravenous chemotherapy with paclitaxel (et al. 2011). If optimal tumor reduction is not feasible, to the Vancouver Consensus Conference 2010 (Stuart 2013; Carlson et al. 2008; Kindelberger et al. 2007). The goal is to achieve “optimal” cytoreduction, which is defined as “no residual macroscopic disease”, according to the Vancouver Consensus Conference 2010 (Kurman 2013; Kurman and Shih 2011). Approximately 90% of type II tumors are high-grade serous cancers (HGSC) and are derived from serous tubal interstitial carcinoma (STIC) of the fallopian tube (Kurman 2013; Carlson et al. 2008; Kindelberger et al. 2007). Hereditary factors are responsible for about 20% of all ovarian cancers, stemming from mostly BRCA1 and BRCA2 mutations (Lynch et al. 1993; Risch et al. 2006; Medeiros et al. 2006). Somatic alterations of genes in the homologous repair pathways are more frequent than those of germ-line origin. More than 2/3 of patients present with advanced-stage (FIGO III–IV) disease.

A complete tumor reduction, called primary debulking surgery, is the cornerstone of initial treatment for ovarian cancer. Tumor reduction may necessitate multiple organ resections (bowel resection, peritoneectomy, and splenectomy) (Chang et al. 2012; Querleu et al. 2017). The goal is to achieve “optimal” cytoreduction, which is defined as “no residual macroscopic disease”; according to the Vancouver Consensus Conference 2010 (Stuart et al. 2011). If optimal tumor reduction is not feasible, neo-adjuvant intravenous chemotherapy with paclitaxel and carboplatin is initiated and an interval debulking surgery (IDS) is performed, if a partial or complete response is observed after 3 cycles (Querleu et al. 2017; Vergote et al. 2010; Zeng et al. 2016; Fagotti et al. 2016). Since neo-adjuvant chemotherapy increases the rate of complete tumor reduction, but does not improve survival, it is only non-inferior to upfront surgery, which is preferred if possible (Morrison et al. 2012; Medina-Franco et al. 2017). In cases of HGSC, surgery is followed by adjuvant chemotherapy.

The standard of care for the past 20 years is a combination of paclitaxel and platinum, which is routinely administered intravenously (Jayson et al. 2014). This therapy is superior, as the first-line treatment of ovarian cancer, over any other drug combination (Krygiou et al. 2006). The modified dose-dense treatment with weekly paclitaxel regimen further improves survival, although side effects are more severe (Katsumata et al. 2009). Although intraperitoneal chemotherapy seems to have survival benefits over intravenous administration according to some trials, intraperitoneal treatment has a higher complication rate (e.g. catheter-related problems) and is not routinely used, although the option is open for select cases (Jaaback and Johnson 2006).

Angiogenesis plays a very important role in the peritoneal spread and metastasis forming potential of ovarian cancer (Yoneda et al. 1998). Therefore, targeted therapies against vascular endothelial growth factor (VEGF) have important therapeutic effects (Burger et al. 2011). If tumor reduction is not complete during surgery, patients receive bevacizumab, an anti-VEGF monoclonal antibody (NCCN Guidelines). Bevacizumab prolongs progression-free survival and quality of life. However, bevacizumab is beneficial for overall survival only in poor prognosis groups (Stark et al. 2013; Tewari et al. 2019).

Poly[ADP-ribose] polymerase (PARP) plays an essential role in DNA repair (Curtin and Szabo 2013). Patients with germline or somatic BRCA1/2 mutations who show partial or complete response to platinum chemotherapy receive PARP inhibitors (olaparib or niraparib) as a maintenance therapy (NCCN Guidelines) [for an overview on the current studies see (Curtin et al. 2020; Mateo et al. 2019; Curtin and Szabo 2020)]. Even patients without known BRCA 1/2 mutations may benefit from maintenance niraparib therapy after first-line treatment, because other homologous repair defects may be present in the tumor (NCCN Guidelines). If bevacizumab is part of the primary therapy, the addition of olaparib in combination with maintenance therapy gives a significant progression-free survival benefit to patients regardless of BRCA1/2 mutation status (Ray-Coquard et al. 2019).

Despite initial therapy, the disease recurs in about 70–80% of advanced-stage patients, and the 10 year disease-free survival rate is below 15% in these patients (Coleman et al. 2019; Dood et al. 2018). If the disease recurs 12 months or later after the end of platinum therapy, the tumor is “platinum sensitive”, in a range between 6 and 12 months the tumor is “partially platinum sensitive”, and recurrence within 6 months means “platinum resistant” disease. Patients with platinum sensitive recurrence receive platinum reinduction therapy with paclitaxel and carboplatin, while the management of platinum-resistant disease is a much greater challenge. In the latter cases, single agent paclitaxel, topotecan, and pegylated liposomal doxorubicin (PLD) remain an option (Bergamini et al. 2019). These drugs can also be given in combination with bevacizumab as second-line therapy (Poveda et al. 2015). In addition, PARP inhibitors have an important role in the management of recurrent disease (NCCN Guidelines; Ledermann et al. 2012; Mirza et al. 2016). There is strong evidence that secondary...
 cytoreductive surgery does not improve survival of recurrent ovarian cancer patients (Coleman et al. 2019).

Interactions between the oncobiome and cancer

A large set of neoplastic diseases are characterized by changes to microbiome compartment(s) that is termed oncobiosis, the opposite of which is eubiosis. Oncobiosis has a role in the pathogenesis of neoplastic diseases. Microbiome-neoplastic cell interactions are multi-pronged (Miko et al. 2016; Miko et al. 2019; Zitvogel et al. 2017; Kovacs et al. 2020; Finlay et al. 2020) and can impact on multiple cancer hallmarks (for cancer hallmarks, see the seminal papers of Hanahan and Weinberg (Hanahan and Weinberg 2011, 2000)). Microbiome-related effects stem from basic cellular functions, such as changes to redox homeostasis (Kovács et al. 2019; Smolková et al. 2020; Sári et al. 2020a, b) or changes to cellular metabolism (Sári et al. 2020a, b; Miko et al. 2018; Kovács et al. 2019), via altered gene expression patterns. These primary changes then modulate larger scale events, namely, epithelial-to-mesenchymal transition (Sári et al. 2020b; Miko et al. 2018; Kovács et al. 2019; Buchta Rosean et al. 2019; Ingman 2019; Vergara et al. 2019), cancer cellular movement, invasion, diapedesis and metastasis formation (Kovács et al. 2019; Sári et al. 2020a, b, 2020; Miko et al. 2018; Kovács et al. 2019), angiogenesis (Miko et al. 2018), the modulation of antitumor immunity (Sári et al. 2020a; Miko et al. 2018; Vergara et al. 2019; Sipe et al. 2020; Osman and Luke 2019; Zitvogel et al. 2016; Routy et al. 2018a, 2018b; Gopalakrishnan et al. 2018; Elkrief et al. 2019; Derosa et al. 2020; Hall and Versalovic 2018; Viaud et al. 2014), and tumor-promoting inflammation (Kiss et al. 2020; Yu 2018).

The elementary events act together and the result of their action is dependent on the circumstances. A good example is oxidative stress or the modulation of the immune system. Sustained oxidative stress induces DNA damage and the accumulation of mutations increases the risk for carcinogenic transformation (Smolková et al. 2020; Lau et al. 2008; Jezierska-Drutel et al. 2013). In this case, the dysbiotic microbiome drives local inflammation upon pathological colonization, such as in ovarian carcinoma (Wang et al. 2020) or pancreas adenocarcinoma (Kiss et al. 2020). On the contrary, low oxidative stress, induced by bacterial metabolites, can exert cytostatic (but not cytotoxic) properties, as in the downregulation of NRF2 in breast cancer (Kovács et al. 2019; Sári et al. 2020a, b).

Similar to the aforementioned oxidative stress, the immune system is a double-edged sword. The oncobiome has different effects on the immune system than the eubiome. Bacteria themselves can act as baits for the immune system. Furthermore, immunomodulatory bacterial metabolites were identified in multiple carcinomas (Sári et al. 2020a; Miko et al. 2018) that can fine tune the behavior of the immune system. Hence, the oncobiotic transformation may tune the immune system differently (Zitvogel et al. 2016). The tolerogenic state of the immune system jeopardizes the early elimination of cancer cells, reduces the efficiency of immunotherapy, and reduces oxidative stress (Zitvogel et al. 2016). In contrast, a more immunogenic microbiome supports immunotherapy (Routy et al. 2018a; Gopalakrishnan 2018), but in turn induce higher oxidative stress and increase the risk for mutations and may sustain tumorigenic inflammation (Buchta Rosean et al. 2019; Pagliari et al. 2018; Ochi et al. 2012; Pushalkar et al. 2018; Sethi et al. 2018; Ren et al. 2017).

What can drive oncobiotic transformation? Lifestyle choices are major contributing factors, including smoking (Biedermann 2013), feeding, obesity (Schulz et al. 2014), changes to the diurnal rhythm (Zarrinpar et al. 2016, 2014; Paschos and FitzGerald 2017), aging (Zhang et al. 2019; Saffrey et al. 2014; Singh et al. 2019), underlying diseases such as diabetes (Devaraj et al. 2013), and exercise (Ticinesi et al. 2019). In addition, antibiotic (Friedman et al. 2006) or probiotic use (Mendoza 2019; Ranjar et al. 2019) are associated with carcinogenesis. Recently, interbacterial signaling was identified, which depends on the release of components of bacterial cells that trigger resistance of the remaining live cells to the noxa that causes bacterial cell death (Bhattacharyya et al. 2020). The involvement of “dead cell signaling” has not been evaluated in controlling the composition of the microbiome. Sensing the numbers of bacteria in the environment (quorum sensing) is also a major player in fine tuning the microbiome (Li et al. 2019; Juhász et al. 2017). The microbiome also interferes with all therapeutic modalities, including chemotherapy, radiotherapy, and targeted therapeutic approaches (Bashiarde et al. 2017; Alam et al. 2020; Roy and Trinchieri 2017). Interestingly, while bacteria can interfere with the metabolism or distribution of the elements of therapy (Perales-et al. Puchalt 2018), therapy can modulate the composition of the microbiome.

Oncobiotic transformation in ovarian cancer

Oncobiosis was identified in several compartments, including vaginal, cervicovaginal (Ness et al. 2003; Néne et al. 2019), upper genital tract (Zhou et al. 2019a; Brewster et al. 2016), ovarian, intratumoral (Wang et al. 2020; Banerjee et al. 2017; Shanmugapriya et al. 2012; Poore et al. 2020), peritoneal (Miao et al. 2020), serum (Kim et al. 2020), and fecal (Mori et al. 2019) compartments (Table 1, Fig. 1). Oncobiosis can lead to lower diversity,
Changes to the vaginal and cervicovaginal microbiomes	Sample type and size	Method	Changes to the microbiome and other observations	Ref.
176 women with epithelial ovarian cancer, 115 healthy controls, and 69 controls with benign gynecological conditions (aged 18–87 years)	16S RNA sequencing	Cervicovaginal bacterial communities' poor in *Lactobacillus* spp. (Type O) were more prevalent in ovarian cancer patients compared to controls. The type O community was more prevalent in BRCA (1/2) mutation carriers. Associations were stronger in younger patients (< 40 yrs. of age)	Nené et al. 2019	
117 women with ovarian cancer and 171 age- and ethnicity-matched population-based control subjects	Serovar D of chlamydia elementary bodies (EB) and IgG antibodies to CHSP60-1 ELISA assay	The probability of having ovarian cancer was 90% greater in women with the highest, compared with the lowest levels of Chlamydia-EB antibodies. There was also a monotonic trend in ovarian cancer risk associated with CHSP60-1	Ness et al. 2003	
Changes to the upper genital tract of women microbiome	Sequencing the V1-V2 region of the 16S gene on the Ion Torrent platform	The composition of the microbiome from healthy individuals and the ovarian cancer patients in the upper genital tract were different	Brewster et al. 2016	
25 samples from the proximal fallopian tube, fimbriae, and ovary	Illumina sequencing of the V3-V4 hypervariable regions of the 16S rDNA genes	Decreased diversity and species richness in ovarian cancer	Zhou et al. 2019a	
25 ovarian cancer tissues and 25 normal distal fallopian tube tissues		Clads or species upregulated in ovarian cancer: *Proteobacteria, Acinetobacter, Sphingomonas, Methylobacterium* spp.		
Changes to the ovarian microbiome	IHC for LPS, Deep sequencing of the V3-V4 16S rDNA region	Decreasing trends in species number, Shannon Index, Simpson Index, and Evenness Index in the ovarian cancer group	Wang et al. 2020	
Six women with ovarian cancer and ten women with a noncancerous ovarian condition (three patients with uterine myoma and seven patients with uterine adenomyosis)	PathoChip, a microarray followed by probe capture and Illumina sequencing	Clads or species upregulated in ovarian cancer: *Aquificae, Planctomycetes, Gemmata obscuriglobus, Halobacteroides halobius*, and *Methyloprofundus sedimenti*	Banerjee et al. 2017	
99 ovarian cancer samples (primary and recurrent), 20 matched (tissue adjacent to the tumor deemed noncancerous by pathological analysis) samples, and 20 unmatched control samples		Differential expression of viruses (Nodaviridae, Parvoviridae), *Proteobacteria* (*Azorhizobium, Escherichia, Firmicutes, Clostridium*), fungi (*Alternaria, Malassezia, Mucor, Trichosporon*), and parasites (*Acanthamoeba, Naegleria, Toenia, Trichinella*) between the cancer and matched control groups		
Sample type and size	Method	Changes to the microbiome and other observations	Ref.	
----------------------	--------	---	------	
39 tissue samples from cancerous or healthy ovaries (mean age, 55 ± 15 years; range 40 to 70 years)	Chlamydia and human papillomavirus DNA was assessed in PCR reactions in silico approach	Ovarian cancer patients had a higher prevalence of Chlamydia or HPV Fusobacteria (Bacteroides, Gram-negative) count in tumors was higher compared to healthy, untransformed tissues (Poore et al. 2020)	Shanmughapriya et al. 2012 Poore et al. 2020	
18,116 samples across 10,481 patients and 33 types of cancer (including ovarian cancer) from the TCGA compendium of whole-genome sequencing (WGS; n = 4,831) and whole-transcriptome sequencing (RNA-seq; n = 13,285) studies				
Changes to the peritoneal microbiome				
Peritoneal fluid from 10 ovarian cancer patients and 20 patients with benign ovarian masses (age ≥ 30)	16S RNA sequencing of the V4 region of the 16S rDNA gene	Decreased bacterial diversity in ovarian cancer	Miao et al. 2020	
Changes to the serum microbiome				
166 ovarian cancer vs. 76 patients with benign ovarian tumors	Sequencing V3-V4 hypervariable regions 16S rDNA	The genus *Acinetobacter* showed high relative abundances in ovarian cancer No difference in α and β diversity Genus-level microbiome biomarkers in combination with clinical biomarkers (CA-125) can be used for diagnostic purposes	Kim et al. 2020	
Changes to the gut microbiome				
A subset of 10 Lynch syndrome patients with confirmed DNA mismatch repair pathogenic mutations developing ovarian cancer (Shih le and Kurman 2004) vs. 8 healthy females without a family history of cancer	V4 region of the 16S rDNA was sequenced by Illumina sequencing	In the gynecological cancer group, *Bacteroides* abundance decreased and *Firmicutes*, *Actinobacteria*, and *Proteobacteria* increased. At the family level, *Lachnospiraceae*, *Bacteroidaceae*, and *Rikenellaceae* decreased and *Bifidobacteriaceae* and *Ruminococcaceae* increased	Mori et al. 2019	

IHC immunohistochemistry
as in the cases of the intratumoral microbiome [Shannon index, Simpson index, and evenness index decrease (Wang et al. 2020)], the upper genital tract microbiome [Shannon index decrease, while in the Simpson index there is a borderline increase (Zhou et al. 2019a)], and the peritoneal microbiome (Miao et al. 2020). In other compartments, such as the serum, oncobiosis does not interfere with either α and β diversity. (Kim et al. 2020). [For the explanation of the diversity indices we refer the reader to (Alpha and beta diversity [http://www.metagenomics.wiki/pdf/definition/alpha-beta-diversity]; Vida et al. 2020)].

In the vaginal and cervicovaginal parts of the genital tract, Lactobacilli act as gatekeepers against bacterial and certain viral vaginal infections by maintaining low pH and epithelial tight junctions, as well as, producing antimicrobial substances (Łaniewski et al. 2020). Importantly, Lactobacilli are protective species against ovarian cancer (Xu et al. 2020). Vaginal communities that are poor in Lactobacillus are more prevalent in ovarian cancer patients compared to controls. Lactobacillus spp. poor communities are more prevalent in BRCA (1/2) mutation carriers, suggesting a role for oncobiosis in enhancing the effects of genetic mutations. Associations are stronger in younger patients (< 40 yrs. of age) (Nené et al. 2019).

In the tumor tissue, the Proteobacteria/Firmicutes ratio increases, since the abundance of Proteobacteria increase (Wang et al. 2020; Zhou et al. 2019a). Fusobacteria (Bacteroides) count in tumors is higher compared to healthy, untransformed tissues (Poore et al. 2020). Both Proteobacteria and Fusobacteria are Gram-negative; hence, the microbiome gains more immunogenic character. The oncobic peritoneal microbiome is also rich in Gram-negative bacteria (Miao et al. 2020). In contrast, the gut oncobiome is enriched in Gram positive bacteria, as Bacteroides abundance decreased and Firmicutes, Actinobacteria, and Proteobacteria increased in the gut microbiome. At the family level, Lachinospiraceae,
Bacteroidaceae, and Rikenelaceae decreased and Bifidobacteriaceae, Ruminococcaceae increased (Mori et al.
2019).

In addition to oncobiotic transformation, genital pathogens (e.g. Chlamydia trachomatis or Nesseria
gonorrhoea) increase the risk for ovarian cancer (Ness et al. 2003; Shanmughapriya et al. 2012; Xu et al. 2020;
Idahl et al. 2011; Trabert et al. 2019; Xie et al. 2017; Rasmussen et al. 2017; Carvalho and Carvalho 2008).
A case report (Vyas 2007) showed the synchronous occurrence of Brucellosis and ovarian cancer, under-
lining the association between infection of the female genital tract and ovarian cancer. Of note, although Mycobacteria were detected in ovarian cancer speci-
mens and were linked to pathogenesis, recent studies provided strong evidence that Mycobacteria stemmed
from external contaminations to samples (Poore et al. 2020; Robinson et al. 2017; Chan et al. 1996). Lacto-
bacilli are key species to protect against vaginal infections and Lactobacillus spp. poor communities
increase the risk of ovarian cancer (René et al. 2019). Furthermore, viral infections (HPVs, CMV, EBV, or
HIV) were shown to interfere with carcinogenesis in ovarian cancer (reviewed in (Laniewski et al. 2020; Pathak et al. 2020; Levinson et al. 2018)). Besides bac-
teria and viruses, fungal and parasitic signatures were shown to be associated with ovarian cancer (Banerjee et al. 2017).

An ample set of data suggests that the microbiome drives inflammation and regulates immune responses
to support carcinogenesis in ovarian cancer. This is highlighted by the observation that pelvic inflam-
matory disease is a risk factor for ovarian cancer (Laniewski et al. 2020; Rasmussen et al. 2017, 2013;
Mert et al. 2018). Infections of the genital tract are excellent drivers of local inflammation. Inflammation
can drive oncogenesis through multiple pathways, involving increased oxidative stress, the resulting DNA
damage, and the accumulation of mutations. Pattern recognition receptors TLR2, 4, and 5 respond to bacte-
rial flagellin (Rutkowski et al. 2015) or LPS (Wang et al. 2020, 2014; Kashani et al. 2020; Kelly et al. 2006; Glez-
erman et al. 1998; Huleihel et al. 1997; Park et al. 2017; Muccioli and Benencia 2014) and have pivotal roles in
driving inflammation in ovarian cancer. Allegra and colleagues alluded to an interaction between miRNAs
and the microbiome (Allegra et al. 2020). Treatment of ovarian cancer cells with Lactobacillus lactis, a vagn-
ial symbiont, modulates the expression of miR-21 and miR-200b, and, subsequently, TLR4 responsiveness
of CAOV-4 cells (Rahbar Saadat 2019). The activation of TLR2, 4, and 5 culminate in the activation of inflammation-associated cytokine signaling pathways
in ovarian cancer and the adjacent tissues, leading to the activation of NF-kappa B signaling (Zhou 2019a).
Other pattern recognition receptors may be involved in ovarian cancer development (Cheng et al. 2020), but
the evidence for their involvement is weak. Tumor-associated macrophages have a pivotal role in driv-
ing ovarian cancer development (Xu et al. 2019). The colonization of the peritoneum can drive metastasis
formation and likely define the site of metastasis for
ination in the peritoneum. Furthermore, metastasis to the bowels may involve an interplay between the
microbiome of the peritoneal and gastrointestinal (fecal) compartments.

The role of bacterial metabolites in ovarian cancer
The gut microbiome has a diverse and enormous meta-
bolic capacity due to the large number of bacterial species and the large variability in their proportions (Magnusdottir and Thiele 2017). Bacterial metabolites or components
of bacteria can act locally or enter the systemic circula-
tion of the host and exert hormone-like effects at distant sites. Such hormone-like effects were described in the
pathology of breast cancer, pancreatic adenocarcinoma,
colorectal cancer, gastric cancer, hepatocellular carcino-
Sat (Miko et al. 2016; Miko et al. 2019; Kiss et al. 2020;
Kuo et al. 2016; Chen et al. 2016; Shellman et al. 2017;
Yoshimoto 2013; Ravnik et al. 2020; Rossi et al. 2020;
Sittipo et al. 2019). In this chapter we will review those
tential involvement of these metabolites in the pathogenesis
of ovarian cancer.

It is of note that certain metabolites may have bacte-
rial, human, or sometimes nutritional origin, these cases
were identified in the respective chapters discussing
the metabolite in question. When metabolomic studies
are discussed it should be noted that the source of the
metabolites cannot be determined (i.e. bacterial, host or
nutritional).

Lipopolysaccharides (LPS)
Lipopolysaccharides, lipoglycans, and endotoxins are
components of the bacterial outer membrane in Gram-
negative bacteria (Bertani and Ruiz 2018). LPS molecules
have a lipid core, which facilitates membrane attachment,
to which polysaccharide chains are joined. LPS essen-
tially protects bacterial cells against external toxins, anti-
biotics, and bile acids. LPS is highly immunogenic and is a
pathogen-associated molecular pattern (PAMP). LPS
stimulates TLR4 and TLR2 receptors (Bertani and Ruiz 2018; Lu et al. 2008).

In oncobiosis accompanying ovarian cancer, the proportions of Gram-negative bacteria and, therefore, LPS quantity increase in the cancer tissue (Wang et al. 2020). LPS plays a pivotal role in driving inflammation in ovarian cancer (Wang et al. 2020, 2014; Kashani et al. 2020; Kelly et al. 2006; Glezerman et al. 1998; Huleihel et al. 1997; Park et al. 2017; Muccioli and Benencia 2014). LPS can activate cancer cells and tumor-associated macrophages (TAM). The reactivity of cancerous tissue to LPS is higher compared to normal tissues (Glezerman et al. 1998; Huleihel et al. 1997). LPS stimulation of ovarian cancer cells induces phosphatidyl-inositol-3 kinase activation, EMT, and migration marked by the overexpression of N-cadherin, Slug, Vimentin, Snail, α-SMA, TCF, MMP2, and MMP9 (Park et al. 2017). The functionality of LPS-induced inflammation is highlighted by the fact that the blockade of TLR4 reduces ovarian cancer proliferation (Kashani et al. 2020) and TLR4 activation promotes proliferation and induces drug resistance (Kelly et al. 2006). The physical presence of certain vaginal microbes, as Lactobacillus lactis, can modulate the responsiveness of TLR4 though modulating the expression of miR-21 and miR-200b and, hence, decrease responsiveness of CAOV-4 ovarian cancer cells to LPS (Rahbar Saadat et al. 2019).

LPS stimulation of TAMs pushes the macrophages towards the M1 profile (Trenti et al. 2018; Wanderley et al. 2018), which is cytotoxic and cytostatic for ovarian cancer cells (Han et al. 1999). The applicability of LPS stimulation to induce and immunogenic destruction of ovarian cancer cells was questioned by recent results showing that, in an experimental model of ovarian cancer, LPS administration did not prolong survival, and, based on the timing of administration, may have even shortened survival (Vindevogel et al. 2016). Taken together, LPS appears to be a procarcinogenic bacterial metabolite.

Lysosphospholipids
Lysosphospholipids are by-products of metabolic reactions involved in bacterial membrane homeostasis (Zhang and Rock 2008; Zheng et al. 2017), as well as are synthesized in the cells of the host. Gram-negative bacteria have high lysosphospholipid content (Zhang and Rock 2008; Zheng et al. 2017) and, as stated earlier, the proportions of Gram-negative bacteria increase in ovarian cancer patients (Wang et al. 2020). Their chemical structure differs from general phospholipids. The cone-shaped structure of lysosphospholipids confers detergent-like properties to these molecules (Zheng et al. 2017). Lysosphospholipids are generated under stress conditions, either by phospholipase A2, which removes a fatty acid moiety from position 2 of glycerol, as by-products of phospholipid biosynthesis, or by the release of exogenous lipases (Zheng et al. 2017). Lysosphosphatids bind to lysosphosphatid acid receptors (LPAR1-6) (Lin et al. 2010). Lysosphosphatids are present in the serum, plasma, and ascites (Ye et al. 2008).

Lysosphosphatids impact the behavior of ovarian cancer cells by influencing multiple cancer hallmarks. Lysosphosphatic acid (LPA) and lysosphosphatidylserine induce Akt, MAPK, and calcium signaling and LPA induces cell proliferation, migration, and invasion of ovarian cancer cells (Xu et al. 1995; Estrella et al. 2007; Jeong et al. 2012, 2013; Pustilnik 1999; Sengupta et al. 2003; Hurst and Hooks 2009). LPA can upregulate the expression of elements of angiogenesis in ovarian cancer (Lee et al. 2006). Lysosphosphatids are upregulated in the plasma of ovarian cancer patients (Fan et al. 2012; Zhang et al. 2013). TLR5 activation enhances the formation of distal metastases in ovarian cancer by reprogramming the immune system (Rutkowski et al. 2015). Lysosphosphatids are carcinogenic metabolites similar to LPS.

Tryptophan metabolites
The metabolism of tryptophan, an amino acid, is very complex and intricate. Approximately 4–6% of tryptophan undergoes bacterial metabolism and yields indole-derivatives (Wikoff et al. 2009; Yokoyama and Carlson 1979; Browne et al. 2012; Aidy et al. 2012; Mardinoglu et al. 2015; Gao 2018). Bacterial tryptophan metabolism has multiple arms, as reviewed in (Wikoff et al. 2009; Yokoyama and Carlson 1979; Browne et al. 2012; Aidy et al. 2012; Mardinoglu et al. 2015; Gao et al. 2018). The main receptors for tryptophan-derivatives are aryl hydrocarbon receptor (AHR) and pregnane X receptor (PXR) (Zelante et al. 2013; Venkatesh et al. 2014; Lamas et al. 2016).

AHR has pivotal roles in immune regulation (Gao et al. 2018; Kim et al. 2018) and low dietary tryptophan leads to immunosuppression (Sonner et al. 2019). Mucosal immunity can be regulated by AHR activation. Therefore, indole-derivatives can impact on the composition of microbiome compartments. As an example, indol-derivatives support the growth of Lactobacillus reuteri that, in turn, inhibit the expansion of pathogenic bacteria (Zelante et al. 2013; Shi et al. 2007; Qiu et al. 2012; Zhang et al. 2017) and protect against ovarian cancer (Nené et al. 2019). In addition, certain Lactobacilli can utilize tryptophan as an energy source. Therefore, a tryptophan-rich diet can improve Lactobacillus viability and induce proliferation (Zelante et al. 2013).

Tryptophan levels and indolepropionic acid (a bacterial tryptophan metabolite) decrease in the serum of ovarian
cancer patients (Plewa et al. 2017; Hilvo et al. 2016; Zhou et al. 2010; Zhang et al. 2012; Ke et al. 2015), a trend that is aggravated by increased stage of the disease (Ke et al. 2015). In good agreement with that, urinary indolepro-
is aggravated by increased stage of the disease (Ke et al. 2015). In good agreement with that, urinary indolepro-

cyst fluid of patients. The bacterial pathways generat-

tures and inhibited invasiveness (Krupitza et al. 1996)
exerted cytostatic pro-apoptotic (Terao et al. 2001;
n-100 µM (Claussen et al. 1991; Jakobsdottir et al.

production probably plays role in quorum sensing, as

cancers, nevertheless, based on the currently available
data, their involvement in ovarian cancer was ambigu-

Short chain fatty acids (SCFAs), encompassing acetate, propionate, butyrate, and lactate were cyto-

Other bacterial metabolites with potential involvement
in ovarian cancer

Other bacterial metabolites were shown to affect other cancers, nevertheless, based on the currently available
data, their involvement in ovarian cancer was ambigu-

Polyamines (e.g. spermine, spermidine) are organic
molecules with more than two amine groups. Polyam-

Secondary bile acids (lithocholic acid (LCA), deoxy-

contrasting these beneficial effects, metabolomic

Other bacterial metabolites with potential involvement
in ovarian cancer

Other bacterial metabolites were shown to affect other cancers, nevertheless, based on the currently available
data, their involvement in ovarian cancer was ambigu-

Bile acids can facilitate bacterial translocation into tissues (Slocum et al. 1992). Bile acid signaling in humans is very complex, with multiple receptors. Receptors for bile acids include farnesyl-X-receptor (FXR), liver-X receptor (LXR), Takeda G Protein-Coupled Receptor 5 (TGR5), constitutive androstane receptor (CAR), vitamin D receptor (VDR), pregnane X receptor (PXR), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic M2,3 receptors. Apart from TGR5, S1PR2, M2, and M3, all receptors are nuclear receptors.

Most in vitro cellular studies assessed bile acids at superphysiological concentrations (0.05–400 mM) (Horowitz et al. 2007; Schuldes et al. 2001; Jin et al. 2018). At these superphysiological concentrations, bile acids are cytotoxic, antineoplastic in cell models (Horowitz et al. 2007; Schuldes et al. 2001), mostly due to changing the biophysical properties of the cell membrane and damage to DNA (Schuldes et al. 2001), although, whether these changes would occur at physiological concentrations require further studies. The concentrations of most bile acids as 3b-hydroxy-5-cholenoic acid, glycocholic acid, deoxycholic acid (Ke 2015), taurocholic acid (Fan et al. 2016) decrease in ovarian cancer patients. Bile acid receptors have variable effects on ovarian cancer cells. The activation of a bile acid receptor LXR reduces the proliferation of ovarian carcinoma cells (Scoles et al. 2010; Rough et al. 2010) and improves the efficacy of anti-VEGF therapy (Curtarello et al. 2019). In contrast to that, the inhibition of the PXR pathway induces ovarian cancer cell proliferation (Masuyama et al. 2016). Furthermore, PXR or CAR activation contributes to chemoresistance and proliferation (Wang et al. 2014; Gupta et al. 2008; Chen et al. 2012). Taken together, these results suggest that bile acids may have cytostatic properties on ovarian cancer cells, and this effect is lost or reduced in ovarian cancer patients. However, the role of the bile acid receptors calls for further detailed investigations.

Modulating the oncobiome in ovarian cancer

Antibiotics

Topical or systemic antibiotic treatment has a strong impact on the composition of the microbiome. Antibiotic treatment impacts the frequency and recurrence of breast cancer (Friedman et al. 2006; Kirkup et al. 2019, 2020; Wirtz et al. 2013). In the case of pancreatic adenocarcinoma where bacterial colonization of the pancreas is a major driver of carcinogenesis (Kiss et al. 2020) similar to ovarian cancer, antibiotic treatment was beneficial in animal models (Thomas et al. 2018). Pathogen colonization influences ovarian carcinogenesis, indicating that antibiotic use in ovarian cancer may inhibit cancer cell movement and metastasis formation. However, we are not aware of any dedicated in vivo study to assess this possibility, nevertheless, the literature suggests that antibiotic treatment may impact on the gut microbiome and, hence modulate the polarization of the immune system, and through that inflammation promoting ovarian cancer (Cheng et al. 2020).

Available studies used antibiotics and antimycotics as single agents or in drug combinations to directly act on cancer cells in in vitro models to improve chemotherapy. Lamb and colleagues (Lamb et al. 2015) showed that a set of antibiotics (erythromycins, tetracyclines, glycolcyclines, and chloramphenicol) can block cell proliferation and reduce the proportions of ovarian cancer stem cells. Minocycline, as a single agent, can also reduce the proliferation of ovarian cancer cells by interfering with energy-sensing pathways and proliferative signaling (Ataie-Kachoie et al. 2013a, b; Pourgholami et al. 2013). Ciprofloxacin can also act as a single agent to reduce cancer cell proliferation (Kloskowski et al. 2010). In addition, ciprofloxacin prophylaxis in taxol-based chemotherapy regimens prevents febrile neutropenia and sepsis during chemotherapy (Carlson et al. 1994). Finally, salinomycin can impair cancer cell proliferation by inhibiting proliferation, inducing apoptosis, blocking EMT, and reducing stem-ness (Zhang et al. 2012; Parajuli et al. 2013a, b; Chung et al. 2016; Kaplan and Teksen 2016; Li et al. 2017). Several of these antibiotics can bind to mitochondrial complex I and interfere with cellular energetics (Lamb et al. 2015) to interfere with the behavior of cancer cells.

Antibiotics can be used as a component of drug combinations also. Tigecycline (Tan et al. 2017), clarithromycin (Zhou et al. 2019b), amphotericin B (Kojima et al. 1994), vanilomycin (Daoud and Forde 1991), and salinomycin (Michalak et al. 2020) can be used in combination with cisplatin. Moreover, antibiotics can be used to counteract cisplatin resistance, a major issue in ovarian cancer chemotherapy, as evidenced in murine models (Chambers et al. 2020). Minocycline can potentiate topoisomerase inhibition (Huang et al. 2018).

Interestingly, a study by Wang et al. (Wang et al. 2020) showed that the resident bacteria in ovarian cancer tissue produced antibiotics. In particular, the biosynthesis of butirosin, neomycin, vancomycin, streptomycin, and ansamycins were different in cancerous tissues compared with healthy control tissues. The biological impact of this finding has not been assessed to date.

Although many studies suggest the potential applicability of antibiotics in cancer therapy, Xu and colleagues (Xu et al. 2019) showed that combination treatment of Balb/c mice grafted with SKOV4 ovarian cancer cells with ampicillin, vancomycin, neomycin, and metronidazole promoted the growth and invasiveness of grafts. Thus, the
The applicability of antibiotics should be carefully assessed and considered in a clinical setting. In addition, the applicability of oral or vaginal probiotics should be considered (Brewster et al. 2016; Chase et al. 2015; Champer et al. 2018), although experimental data is missing.

Nutrients and diet

Nutrition modulates the composition of the microbiome along with other lifestyle elements. Obesity is a risk factor for ovarian cancer (Leitzmann et al. 2009) and the ketogenic diet was shown to reduce central obesity and reduce insulin levels in ovarian cancer patients (Cohen et al. 2018). Animal fat (Shu et al. 1989) and retinol (Zhang et al. 2004) consumption increases the risk for ovarian cancer (Shu et al. 1989; Zhang et al. 2004), while vegetable (Shu et al. 1989), fiber (Zhang et al. 2004), carotene (Zhang et al. 2004), vitamin C (Zhang et al. 2004), and vitamin E (Zhang et al. 2004) consumption is protective in a dose-dependent fashion. Nutrients (e.g. polyamines (Ramos-Molina et al. 2019; Tofalo et al. 2019) or tryptophan (Gao et al. 2018; Lin et al. 2017)) can directly impact inflammation, a driver of carcinogenesis in ovarian cancer (Madeo et al. 2020). Polyunsaturated fatty acids reduce the expression of key chemokines (e.g. IL-6) in ovarian cancer-associated. *Lactobacilli* seem to be unique in the human vaginal flora (Miller et al. 2016) and are protective against ovarian cancer (Nené et al. 2019). In good agreement with this, animal-derived nutrients increase the risk of cervical cancer by reducing *Lactobacilli* in the vaginal flora (Seo et al. 2016) and tryptophan supplementation that support the growth of certain *Lactobacilli* by serving as an energy source can improve *Lactobacillus* viability and induce proliferation (Zelante et al. 2013).

Interference with chemotherapy

The microbiome can interfere with cancer chemotherapy and management strategies. In fact, the interactions form a circuit, where (1) the microbiome or oncobiome interferes with the metabolism of chemotherapeutic drugs, modulates the immune system, and interferes with the side effects of drugs, and, conversely, (2) therapy modulates the composition and behavior of the microbiome. We will review the interference between the microbiome and the individual elements of the chemotherapy regimen used in ovarian cancer. Bacterial metabolites themselves can modulate the effectiveness of chemotherapeutic agents that is summarized in Table 2.

To date, there is no data on the microbial metabolism of medically used *taxols*. Paclitaxel can bind to and activate TLR4 receptors to reprogram the immune system (Byrd et al. 1999). This may be the reason why the colonization of the tumor with *Salmonella typhimurium* or *Porphyromonas gingivalis* (Miyake et al. 2019; Woo et al. 2017) can interfere with paclitaxel efficiency in cancers other than ovarian cancer. In the same manner, bacterial LPS may confer resistance to Taxol in macrophages (Sweet and Hume 1996), hence, colonization of ovarian cancer tissue by LPS-rich, Gram-negative bacteria can impact on local Taxol effectiveness. Taxanes can interfere with the invasiveness and infectivity of *Klebsiella pneumoniae* (Oelschlaeger and Tall 1997) and *Campylobacter jejuni* (Biswas et al. 2000).

Platinum drugs can crosslink (Dedduwa-Mudalige and Chow 2015) and do oxidative damage to nucleic acids in bacterial, or in human cells (Beaufay et al. 2020). Cisplatin and carboplatin, therefore, exert bacteriostatic properties on *Acinetobacter, Mycobacteria, and Pseudomonas aeruginosa* (Yuan et al. 2018; Gajdács and Spengler 2019; McCarron et al. 2012; Zhang et al. 2011) and other pathogens (Hummell and Kirienko 2020).

Table 2 Interactions between bacterial metabolites and drugs relevant in ovarian cancer chemotherapy

Drug	Metabolite	Effect	Ref.
Cisplatin	Spermine, spermidine	induce cisplatin resistance	Marverti et al. 2005; Marverti et al. 2004; Marverti et al. 2001; Marverti et al. 1997; Hector et al. 2004; Desiderio et al. 1997
Butyrate and valproic acid			Mrkvicova et al. 2019; Wasserman et al. 1989; Sajadpoor et al. 2018
Paclitaxel	LPS	TLR4 activation induces paclitaxel	Kelly et al. 2006; Edwardson et al. 2017; Huang et al. 2014; Szajnik et al. 2009
Doxorubicin/Adriamycin	Taurochenodeoxycholate	sensitizes resistant cells	Schuldes et al. 2001
Butyrate and valproic acid			Wasserman et al. 1989
Spermine		induces Doxorubicin resistance	Schuldes et al. 2001
Nirmarunib	Butyrate and valproic acid	sensitizes resistant cells	Booth et al. 2018
Topoisomerase II inhibitors	Spermine, spermidine	sensitizes cells to Topolli	Desiderio et al. 1997
Topoisomerase II inhibitor	Taurochenodeoxycholate	sensitizes	Schuldes et al. 2001

Topolli -Topoisomerase II inhibitor
toxicity can be prevented via limiting uremic toxins production by probiotics, such as *Lactobacillus salivarius* BP121 (Lee et al. 2020), a mixture of *Lactobacillus plantarum*, *Lactobacillus paracasei paracasei*, and *Streptococcus salivarius*, or *Streptococcus thermophilus* (Lee et al. 2020). Cisplatin administration compromises epithelial barriers, leading to bacterial translocation (Perales-Puchalt et al. 2018). Cisplatin resistance can be alleviated by co-treatment with antibiotics (Tan et al. 2017; Zhou et al. 2019b; Kojima et al. 1994; Daoud and Forde 1991; Michalak et al. 2020; Chambers et al. 2020).

Bacteria can metabolize TopoII inhibitors through β-glucuronidase enzymes (Roberts et al. 2013; Wallace et al. 2015; Bhatt et al. 2020), a key factor influencing TopoII inhibitor availability (Bhatt et al. 2020) and toxicity (Roberts et al. 2013). In fact, β-glucuronidase enzymes can deconjugate and reactive estrogens and, hence, increase estrogen recirculation (Flores et al. 2012; Baker et al. 2017; Ervin et al. 2019) suggesting a link between bacterial estrogen recycling and TopoII inhibitor availability. TopoII inhibitors have bacteriostatic properties (Patel et al. 1998) and, not surprisingly, TopoII inhibitors modulate the gut microbiome. Irinotecan treatment in rats increased the abundance of clostridial clusters I and XI and *Enterobacteriaceae*, while total bacteria, *Clostridium* cluster VI, and the *Bacteroides*-group decreased. These effects were prevented by oral glutamine administration (Lin et al. 2012). TopoII inhibitors interfere with TLR4 (Wardill et al. 2016) and SCFA (Irinotecan 2006; Encarnação et al. 2018; Lin 2014) signaling. The microbiome plays a key role in mediating the severity of TopoII inhibitor-induced mucositis (Ribeiro et al. 2016; Pedroso et al. 2015; Wang et al. 2019), which can be ameliorated by *Escherichia coli* Nissle 1917 (a probiotic) (Wang et al. 2019) or butyrate (Encarnação et al. 2018) and its prebiotics (Lin et al. 2014). The involvement of butyrate demonstrates the contribution of SCFA signaling.

Anthracyclines (e.g. Doxorubicin) are biosynthesized by *Streptomyces* strains and are used as intercalating agents in cytostatic therapy. Anthracyclines can act as antibiotics too (Cox et al. 2014), for example, anthracyclines can inhibit the growth of *Acinetobacter* species (McCarron et al. 2012). Multiple bacterial species can metabolize and inactivate anthracyclines (Parajuli et al. 2018; Dhakal et al. 2018; Zabala et al. 2013). Furthermore, anthracycline treatment can facilitate the loss of the intestinal barrier, bacterial translocation and bacterial entry to secondary lymphoid organs (Alexander 2017).

The silencing of PARP1 increases the diversity of the gut microbiome (Vida et al. 2018; Larmonier et al. 2016), indicating that PARP inhibitors may also increase microbiome diversity. PARP enzymes play a role in TLR4 and 5 (Liaudet et al. 2002; Zerfaoui et al. 2010), AHR (Dianio Moore et al. 2010; Macpherson et al. 2013), and SCFAs signaling through AHR (Jin et al. 2017).

Bevacizumab is a monoclonal antibody targeting VEGF to inhibit vascularization. Bevacizumab is the only tool in targeted therapy to be applied in ovarian cancer. Nevertheless, there are novel, experimental immunological approaches in the treatment of ovarian cancer adoptive cell transfer (ACT) (Rosenberg et al. 2008; Kershaw et al. 2006), Chimeric antigen receptor (CAR) T-cell therapy (CAR-T) (Schepisi 2021), dendritic cell vaccines (Zhang et al. 2020), immune-checkpoint blockade that aim to enhance T cell responses (Schepisi 2021). The effectiveness of therapies involving the activation of the immune system depend on the composition and immunogenic properties of the microbiome (Routy et al. 2018a; Vetizou et al. 2015; Sivan et al. 2015; Matson et al. 2018; Innao et al. 2020; Brandi and Frega 2019; Sun et al. 2020). It should be noted that ovarian cancer-specific microbiome data is missing.

Conclusions

Current data support the oncobiosis of multiple microbiome compartments in ovarian cancer. Vaginal infections and the colonization of the upper genital tract seem to play important roles in the development of ovarian cancer (Fig. 2) primarily by supporting tumor-promoting inflammation. We provided evidence that signaling through bacterial metabolites play a role in the pathogenesis of ovarian cancer, a set of proinflammatory metabolites (LPS, lysophosphatides) are...
upregulated, while tryptophan metabolites were downregulated that have antineoplastic features. It should be noted that further studies are needed to define the involvement of metabolite signaling in ovarian cancer. The association of oncobiosis with ovarian cancer implies the possible use antibiotics or probiotics to mitigate the side effects of chemotherapy (Wang et al. 2019) or eradicate the colonizing bacterial species. Along the same lines, supplementing chemotherapy in hyperthermic intraperitoneal chemotherapy should be considered. To our surprise, such studies are largely missing, despite the fact that the literature discusses numerous hypotheses (Brewster et al. 2016). Probiotics are frequently used to treat banal vaginal infections. Therefore, conducting studies of these agents in relation to ovarian cancer would be straightforward, similar to assessing the use of antibiotics in ovarian cancer.

Another field, where bacterial dysbiosis and metabolite signaling can be exploited, is therapy and diagnostics. There are numerous studies in the literature indicating that microbiome profiles in the intratumoral area (Wang et al. 2020; Poore et al. 2020), genital tract (Wang et al. 2020; Zhou et al. 2019a), the serum (Kim et al. 2020), or the peritoneum (Miao 2020) can be exploited as biomarkers to diagnose ovarian cancer. Metabolomics studies also revealed exploitable biomarkers (Turkoglu et al. 2016). Beyond early diagnostics, these biomarkers can be used for screening, prognosis, patient stratification (e.g. for drug effectiveness), and prognosis. The practical applicability of bacterial metabolite signaling in view of our current understanding of bacterial metabolite signaling warrant future studies.

Search strategy and selection criteria
References to this review were identified through the prior knowledge of the authors that was complemented by systematic search of Pubmed by using the combinations “microbiome—ovarian cancer”, “ovarian cancer—metabolomics”. Species information, bacterial metabolism was described based on the prior knowledge of the authors and were updated through Pubmed search. Pubmed search was performed with the name of bacterial metabolites + ovarian cancer, name of the metabolite receptor + ovarian cancer. Articles published in English were included with no restriction on publication date.

Acknowledgments
The authors are grateful to Ms. Judit Fazekas-Paragh (University of Debrecen, University and National Library, Department of Education and Research Support) for helping the authors in acquiring full text literature.

Authors’ contributions
All authors participated in writing and revising the manuscript. The figures were by AS and PB. All authors read and approved the final manuscript.

Funding
Our work was supported by grants from the NKFIH (K123975 and GINOP-2.3.2-15-2016-00006 to PB, PD124110 and FK128387 to EM, K120669 to KU). EM is supported by the Bolyai Fellowship from the Hungarian Academy of Sciences and by the UNKP-20-5-DE-96 New National Excellence Program of the Ministry of Human Capacities. The research was supported by the Thematic Excellence Programme (TRK2020-IKA-04) of the Ministry for Innovation and Technology in Hungary. KU was supported by National Research, Development and Innovation Office EFOP-3.6.2-16-2017-00006.

Availability of data and materials
Not applicable.

Declarations
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary. 2 Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary. 3 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary. 4 MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen 4032, Hungary. 5 Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.

Received: 17 January 2021 Accepted: 22 March 2021 Published online: 01 April 2021

References
Alexander R, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14:356–65.
Allegra A, Musolino C, Tonacci A, Piozza G, Gangemi S. Interactions between the MicroRNAs and Microbiota in cancer development: roles and therapeutic opportunities. Cancers (Basel). 2020;12;8:50.
Alp and beta diversity (Internet). http://www.metagenomics.wiki/pdf/definition/alpha-beta-diversity.
Ataie-Kachoie P, Badar S, Morris DL, Pourgholami MH. Minocycline targets the NF-κB Nexus through suppression of TGF-β1-TAK1-κB signaling in ovarian cancer. Mol Cancer Res. 2013a;11:1279–91.
Ataie-Kachoie P, Morris DL, Pourgholami MH. Minocycline suppresses interleukine-6, its receptor system and signaling pathways and impairs migration, invasion and adhesion capacity of ovarian cancer cells: in vitro and in vivo studies. PLoS ONE. 2013b;8:66817.
Ataie-Kachoie P, Pourgholami MH, Bahrami BF, Badar S, Morris DL. Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res. 2015;5:575–88.
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53.
Banerjee S, et al. The ovarian cancer oncobiome. Oncotarget. 2017;8:36225–45.
Banks E. The epidemiology of ovarian cancer. Methods Mol Biol. 2001;393:11–.
Bashard S, Tugarinav T, Federci S, Elinav E. The microbiome in anti-cancer therapy. Semin Immunol. 2017;32:74–81.
Beaufay F, et al. Polyphosphate functions in vivo as an iron chelator and fenton reaction inhibitor. MBio. 2020. https://doi.org/10.1128/mBio.01017-20.
Bergamin A, Bocciolone L, Fodor A, Candiani M, Mangili G. Management of recurrent ovarian cancer: when platinum-based regimens are not a therapeutic option. Int J Gynecol Cancer. 2019;29:1431–6.

Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018. https://doi.org/10.1128/ecosalplus.EPS-00013-2018.

Bhatt AP, et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A. 2020;117:7374–81.

Bhattacharyya S, Walker DM, Harshay RM. Dead cells release a necroseminal that activates antibiotic survival pathways in bacterial swarms. Nat Commun. 2020;11:4157.

Biedermann L, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE. 2013;8:e59260.

Biswas D, Itoh K, Sasakawa C. Uptake pathways of clinical and healthy animal isolates of Campylobacter jejuni into INT-407 cells. FEMS Immunol Med Microbiol. 2000;29:203–11.

Booth L, Roberts JL, Rais R, Plokpeovitch A, Dent P. Valproate augments Niparapid killing of tumor cells. Cancer Biol Ther. 2018;19:797–808.

Boss EA, et al. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. NMR Biomed. 2000;13:297–305.

Brandi G, Frega G. Microbiota: overview and implication in immunotherapy-based cancer treatments. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20112669.

Brevis WR, Ko EM, Kemu TO. An evaluation of the microbiota of the upper genital tract of women with benign changes and epithelial ovarian cancer. J Clin Oncol. 2016;34:5568–5568.

Browne CA, Clarke G, Dinan TG, Cryan JF. An effective dietary method for chronic tryptophan depletion in C3H/HeN mice. IRON: brain and gut. Neuropharmacology. 2012;62:1903–15.

Buchta Rosean C, et al. Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res. 2019;79:3662–75.

Burger RA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365:2473–83.

Byrd CA, et al. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A. 1999;96:5645–50.

Carlson JW, et al. Chemoprophylaxis with oral ciprofloxacin in ovarian cancer patients receiving taxol. Gynecol Oncol. 1994;55:415–20.

Carlson JW, et al. Serous tubal intraepithelial carcinoma: its potential role in primary peritoneal serous carcinoma and serous cancer prevention. J Clin Oncol. 2008;26:1460–5.

Carvalho JP, Carvalho FM. Is Chlamydia-infected tubal fimbria the origin of ovarian cancer? Med Hypotheses. 2008;71:690–3.

Chambers LM, et al. Disruption of the gut microbiota attenuates epithelial ovarian cancer sensitivity to cisplatin therapy. bioRxiv. 2020. https://doi.org/10.1016/j.eururo.2020.04.044.

Champer M, et al. The role of the vaginal microbiome in gynaecological cancer. BJOG. 2018;125:309–15.

Chang SJ, Brustow RE, Ryu HS. Impact of complete cytoreduction leaving no gross residual disease associated with radical cytoreductive surgical procedures on survival in advanced ovarian cancer. Ann Surg Oncol. 2012;19:4059–67.

Chase D, Goulder A, Zenhausmen F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138:190–200.

Chen Y, et al. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol. 2012;83:1112–26.

Chen MC, Chen YL, Wang TW, Hsu HP, Lai MD. Membrane bile acid receptor TGR5 predicts good prognosis in ampullary adenocarcinoma patients with hyperbilirubinemia. Oncol Rep. 2016;36:1997–2008.

Cheng H, et al. Opportunities and challenges of the human microbiome in ovarian cancer. Front Oncol. 2020;10:163.

Chung H, et al. The effect of salinomycin on ovarian cancer stem-like cells. Obstet Gynecol Sci. 2016;59:261–8.

Clausen MR, Mortensen PB, Bendtsen F. Serum levels of short-chain fatty acids in cirrhosis and hepatic coma. Hepatology. 1991;14:1040–5.

Cohen CW, et al. A ketogenic diet reduces central obesity and serum insulin in women with ovarian or endometrial cancer. J Nutr. 2018;148:1253–60.

Coleman RL, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med. 2019;381:11929–39.

Cox G, Kotea S, Wright GD. An unusual class of anthracycline potentiates Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69:1844–55.

Curatello M, et al. Rewiring of lipid metabolism and storage in ovarian cancer cells after Anti-VEGF therapy. Cells. 2019;8:E1601.

Curtin N, Szabo C. Therapeutic applications of parp inhibitors: anticancer therapy and beyond. Mol Aspects Med. 2013;36:1043–58.

Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19:711–36.

Curtin N, et al. Repositioning PARP inhibitors for SARS-CoV-2 infection (COVID-19), a new multi-pronged therapy for acute respiratory distress syndrome? Br J Pharmacol. 2020;177:3635–45.

Daoud SS, Fordie NH. Synergistic cytotoxic actions of cisplatin and liposomal valinomycin on human ovarian carcinoma cells. Cancer Chemother Pharmacol. 1991;28:370–6.

Dedduva-Mudalige GN, Chow CS. Cisplatin targeting of bacterial ribosomal RNA hairpins. Int J Mol Sci. 2015;16:21392–409.

Derosa L, et al. Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. Eur Urol. 2020. https://doi.org/10.1016/j.eururo.2020.09.044.

Desidero MA, et al. Treatment with inhibitors of polyamine biosynthesis, which selectively lower intracellular spermine, does not affect the activity of alkylating agents but antagonizes the cytotoxicity of DNA topoisomerase II inhibitors. Br J Cancer. 1997;75:1028–34.

Devaraj S, Hemarajata P, Varslovsk J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013;59:617–28.

Dhakal D, et al. Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticanter anthracyclines and diverse second- ary metabolites. J Biotechnol. 2018;267:50–4.

Diani-Moore S, et al. Identification of the aryl hydrocarbon receptor target gene TiPARP as a mediator of suppression of hepatic glucoseogenesis by 2,3,7,8-tetrachlorodibenzo-p-dioxin and of nicotinamide as a corrective agent for this effect. J Biol Chem. 2010;285:38801–10.

Dood RL, et al. Defining survivorship trajectories across patients with solid tumors: an evidence-based approach. JAMA Oncol. 2018;4:1519–26.

Edwardson DW, et al. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PLoS ONE. 2017;12:e0183665.

El Aidy S, Kunze W, Bienenstock J, Kleerebezem M. The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Benef Microbes. 2012;3:251–9.

El Alam MB, et al. Adaptive changes in the gut microbiome during standard-of-care chemoradiotherapy for gynecologic cancers. bioRxiv. 2020. https://doi.org/10.1101/2020.04.10.064226.

Ekriif A, Derosa L, Kroemer G, Zitvogl L, Routy B. The negative impact of antibodies on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol. 2019;30:1572–9.

Encamación JC, et al. Butyrate, a dietary fiber derivative that improves irinotecan efficacy in colon cancer cells. J Nutr Biochem. 2018;56:183–92.

Ervin SM, et al. Gut microbial beta-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem. 2013;288:27952–6.

Faggioni A, et al. Phase II randomised clinical trial comparing primary surgery versus neoadjuvant chemotherapy in advanced epithelial ovarian
cancer with high tumour load (SCORPION trial): Final analysis of perioperative outcome. Eur J Cancer. 2016;59:22–33.

Fan L, et al. Identification of metabolic biomarkers to diagnose epithelial ovarian cancer using a UPLC/QTOF/MS platform. Acta Oncol. 2012;51:1473–9.

Fan L, et al. Use of plasma metabolomics to identify diagnostic biomarkers for early stage epithelial ovarian cancer. J Cancer. 2016;7:1265–72.

Fellows R, Varga-Weisz P. Chromatin dynamics and histone modifications in intestinal microbiota-host crossstalk. Mol Metab. 2020;38:100925.

Finlay BB, et al. Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat Rev Immunol. 2020. https://doi.org/10.1038/s41577-020-0374-6.

Flores R, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.

Fong MY, McDunn J, Kakar SS. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS ONE. 2011;6:e19963.

Friedman GD, et al. Antibiotics and risk of breast cancer: up to 9 years of follow-up of 2.1 million women. Cancer Epidemiol Biomarkers Prev. 2006;15:2102–6.

Gajdács M, Spengler G. The role of drug repurposing in the development of novel antimicrobial drugs: non-antibiotic pharmacological agents as quorum sensing-inhibitors. Antibiotics. 2019. https://doi.org/10.3390/antibiotics8040270.

Gao J, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018. https://doi.org/10.3389/fcimb.2018.00013.

Garcia-Quintanilla M, Prieto AI, Barnes L, Ramos-Morales F, Casadeus J. Bile-induced curing of the virulence plasmid in Salmonella enterica serovar Typhimurium. J Bacteriol. 2006;188:7963–5.

Ge J, Kang J, Ping W. Effect of acetic acid on bacteriocin production by gram-positive bacteria. J Microbiol Biotechnol. 2019;29:1341–8.

Gerard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013;1:14–24.

Glezerman M, et al. Tumor necrosis factor-alpha and interleukin-6 are differently expressed by fresh human cancerous ovarian tissue and primary cell lines. Eur J Cytokine Netw. 1998;9:171–9.

Gopalakrishnan V, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in patients with metastatic melanoma. Science. 2018;359:997–1003.

Gupta D, et al. Expanding the roles for pregnane X receptor in cancer: proliferation and drug resistance in ovarian cancer. Clin Cancer Res. 2008;14:5332–40.

Hall A, Versalovic J. Microbial metabolism in the mammalian gut: molecular mechanisms and clinical implications. J Pediatr Gastroenterol Nutr. 2018;66:572–9.

Han X, Wilbanks GD, Devaja O, Rupereilla V, Raju KS. IL-2 enhances standard chemotherapy for ovarian carcinoma in vitro: a potential for adoptive cellular immunotherapy. Gynecol Oncol. 1999;75:198–210.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

Hayase R, Eguchi K, Sekiba K. Polymune levels in gynecologic malignancies. Acta Med Okayama. 1985;39:35–45.

Hector S, et al. Polyamine catabolism in platinum drug resistance: interactions between oxaloalan and the polyamine-analogue N1, N1-diethyllyspermine at the level of spermidine/spermine N1-acetyltransferase. Mol Cancer Ther. 2004;3:813–22.

Hedenborg G, Jonsson G, Norman A, Wisén O. Bile constituents in ascitic fluid. Horizont Biokemi. 1978;179–87.

Hummell NA, Krienko NV. Repurposing bioactive compounds for treating multidrug-resistant pathogens. J Med Microbiol. 2020;69:881–94.

Hurst JH, Hooks SB. Lysophosphatidic acid stimulates cell growth by different mechanisms in SKOV-3 and Caov-3 ovarian cancer cells: distinct roles for Gi- and Rho-dependent pathways. Pharmacology. 2009;83:333–47.

Idahl A, et al. Chlamydia trachomatis and Mycoplasma genitalium plasma antibodies in relation to epithelial ovarian tumors. Infect Dis Obstet Gynecol. 2011;2010:426.

Inaba T, Obana N, Habe H, Nomura N. Biofilm formation by streptococcus mutans is enhanced by indole via the quorum sensing pathway. Microb Environ. 2020;35:Me19164.

Ingman WW. The gut microbiome: a new player in breast cancer metastasis. Cancer Res. 2019;79:3539–41.

Innao V, Allegra AG, Musolino C, Allegra A. New frontiers about the role of human microbiota in immunotherapy: the immune checkpoint inhibitors and TCR-cell therapy era. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21239802.

Irwin G. Drugs and lactation database. (LactMed). Bethesda: National Library of Medicine (US), 2006.

Jaaback J, Johnson N. Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev. 2006. https://doi.org/10.1002/14651858.CD005340.pub2.

Jakobsdottir G, Bjørgaard JH, Skovbjerg H, Nyman M. Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease: no difference compared with controls, but between genders. Scand J Gastroenterol. 2013;48:696–701.

Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.

Jeong KJ, et al. The Rho/ROCK pathway for lysophosphatidic acid-induced proteolytic enzyme expression and ovarian cancer cell invasion. Oncogene. 2012;31:4279–89.

Jeong GO, et al. TAZ mediates lysophosphatic acid-induced migration and proliferation of epithelial ovarian cancer cells. Cell Physiol Biochem. 2013;32:253–63.

Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res. 2013;119:107–25.

Jin UH, et al. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and caco-2 human colon cancer cells. Sci Rep. 2017;7:10163.

Jin Q, Noel O, Nguyen M, Sam L, Gerhard GS. Bile acids upregulate BRCA1 and downregulate estrogen receptor 1 gene expression in ovarian cancer cells. J Biol Chem. 2018;293:2753–6.

Juhász J, Bilhary D, Jady A, Pongor S, Ligeti B. Differential signal sensitivities can contribute to the stability of multispecies bacterial communities. Biol Direct. 2017;12:122.

Kandell RL, Bernstein C. Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer. 1991;16:227–38.

Kaplan F, Teksen F. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCA-3). Tumour Biol. 2016;37:3897–903.

Kashani B, et al. Small molecule inhibitor of TLR4 inhibits ovarian cancer cell proliferation: new insight into the antineoplastic effect of TAK-242 (Resator). Cancer Chemother Pharmacol. 2020;85:47–59.

Katsumata N, et al. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial. Lancet. 2009;374:1331–8.

Ke C, et al. Large-scale profiling of metabolic dysregulation in ovarian cancer. Nat Cancer. 2015;16:359–66.

Kelley JE, et al. Phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res . 2006;12:6106–15.

Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154:220–9.
Kim SJ, et al. Metagenomic analysis of serum microbe-derived extracellular vesicles and diagnostic models to differentiate ovarian cancer and benign ovarian tumors. Cancers (Basel). 2020;12:1310.

Kindelberger DW, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31:161–9.

Kirkup B, et al. Perturbation of the gut microbiota by antibiotics results in accelerated breast tumour growth and metabolic dysregulation. BioRxiv. 2019. https://doi.org/10.1101/553602.

Kirkup BM, et al. Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumour growth via a mast cell-dependent pathway. bioRxiv. 2020. https://doi.org/10.1101/2020.11.07.982108.

Kiss B, et al. Oncobiosis and microbial metabolite signaling in pancreatic adenocarcinoma. Cancers (Basel). 2020;12:E1068.

Klosowski T, Olkowska J, Nazlica A, Drewa T. The influence of ciproflaxacin on hamster ovarian cancer cell line CHO AAB. Acta Pol Pharm. 2010;67:345–9.

Kojima M, et al. Sensitisation of human ovarian carcinoma cells to cis-diaminedichloroplatinum(II) by amphotericin B in vitro and in vivo. Eur J Cancer. 1994;30a:773–8.

Kovács P, et al. Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11091235.

Kovács T, et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep. 2019;9:1300.

Kovacs T, Mikos E, Ujllaki G, Sari Z, Bai P. The microbiome as a component of the tumor microenvironment. Adv Exp Med Biol. 2020;1225:137–33.

Krupitza G, et al. Genes related to growth and invasiveness are repressed by sodium butyrate in ovarian carcinoma cells. Carcinogenesis. 1995;16:1199–205.

Krupitza G, et al. Genes related to growth and invasiveness are repressed by sodium butyrate in ovarian carcinoma cells. Br J Cancer. 1996;73:433–8.

Ktsiony ZA, et al. Systemic concentrations of short chain fatty acids are elevated in salmonellosis and exacerbation of familial mediterranean fever. Front Microbiol. 2016;7:776.

Kuo WT, Lee TC, Yu LC. Entorcan suppresses colon cancer by altering a functional balance in toll-like receptors that bind lipopolysaccharide. Nat Med. 1995;16:1199–205.

Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013;24(Suppl 10):x16-21.

Lawton F, Griffin M, Slack J, Blackledge G. Urinary polymyxine excretion patterns in patients with epithelial ovarian cancer. Gynecol Obstet Invest. 1989;28:212–4.

Ledermann J, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer N Engl J Med. 2012;366:1382–92.

Lee Z, et al. Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res. 2006;66:2740–8.

Lee HG, et al. Saliminosphingolipid reduces stemness and induces apoptosis on human ovarian cancer stem cell. J Gynecol Oncol. 2017;28:e14.

Lee YJ, Li KY, Wang PJ, Huang HW, Chen MU. Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model. J Food Drug Anal. 2020;28:103–14.

Lee TH, et al. Lactobacillus salivarius BP121 prevents cisplatin-induced acute kidney injury by inhibition of uricemic toxins such as indoxyl sulfate and p-cresol sulfate via alleviating dysbiosis. Int J Mol Med. 2020;45:1130–40.

Leitzmann MF, et al. Body mass index and risk of ovarian cancer. Cancer. 2009;115:812–22.

Levinson KL, et al. Gynecologic cancer in HIV-infected women: treatment and outcomes in a multi-institutional cohort. AIDS (London, England). 2018;32:171–7.

Li R, et al. Saliminosphingolipid repressed the epithelial-mesenchymal transition of epithelial ovarian cancer cells via downregulating Wntβ-catenin pathway. Onco Targets Ther. 2017;10:1317–25.

Li Q, Ren Y, Fu X. Inter-kingdom signalling between gut microbiota and their host. Cell Mol Life Sci. 2019;76:2383–9.

Li S, Fei X, Chi Y, Cao L. Impact of the acetyl/oleic acid ratio on the performance, quorum sensing, and microbial community of sequencing batch reactor system. Biorec Technol. 2020;296:122279.

Liaudet L, et al. The flagellin-TLR5 axis: therapeutic opportunities. Drug News Perspect. 2002;15:397–409.

Lin ME, Herr DR, Chun J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat. 2010;91:130–8.

Lin XB, et al. Iritocetic (CPT-11) chemotherapy alters intestinal microbiota in tumour bearing rats. PLoS ONE. 2012;7:e39764.

Lin XB, et al. The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PLoS ONE. 2014;9:e83644.

Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and ovarian cancer. Cancer. 2017;49:2083–90.

Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.

Lynch HT, Watson P, Lynch JF, Conway TA, Fili M. Hereditary ovarian cancer. Oncologist. 2008;13:776–81.

Liu RJ, et al. Clinical Chemistry. 8th ed. Amsterdam: Elsevier; 2008.

Lyu YC, Yeh W-C, Ohashi PS. UPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.

Lynch HT, Watson P, Lynch JF, Conway TA, Fili M. Hereditary ovarian cancer heterogeneity in age at onset. Cancer. 1993;71:573–81.

Macpherson L, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res. 2013;41:1604–21.

Madec F, et al. Nutritional aspects of spermide. Annu Rev Nutr. 2020;40:135–59.

Magneudottir S, Thiele I. Modeling metabolism of the human gut microbiome. Curr Opin Biotechnol. 2017;51:90–6.

MahmoudianDehkordi S, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—an emerging role for gut microbiome. Alzheimer’s Dement. 2019;15:76–72.

Mardingolou A, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2013;9:1834.

Marshall WJ, Lapsley M, Day A. Clinical Chemistry. 8th ed. Amsterdam: Elsevier; 2016.

Marverti G, et al. Modulation of cis-diaminedichloroplatinum (II) accumulation and cytotoxicity by spermine in sensitive and resistant human ovarian carcinoma cells. Eur J Cancer. 1997;33:696–703.

Marverti G, et al. Cisplatin-resistance modulates the effect of protein synthesis inhibitors on spermine/spermine N(1)-acytansferase expression. Int J Biochem Cell Biol. 2004;36:123–37.
Tan J, Song M, Zhou M, Hu Y. Antibiotic tigecycline enhances cisplatin activity against human hepatocellular carcinoma through inducing mitochondrial dysfunction and oxidative damage. Biochem Biophys Res Commun. 2017;483:17–23.

Tang Y, et al. Liver- and microbiome-derived bile acids accumulate in human breast tumors and inhibit growth and improve patient survival. Clin Cancer Res. 2019;11:1078–432.

Tearo Y, et al. Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells. Int J Cancer. 2001;94:257–67.

Tewari KS, et al. Final overall survival of a randomized trial of bevacizumab for primary treatment of ovarian cancer. J Clin Oncol. 2019;37:2317–28.

Thomas RM, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018;39:1068–78.

Ticinesi A, et al. Exercise and immune system as modulators of intestinal microbiome: implications for the gut muscle axis hypothesis. Exerc Immunol Rev. 2019;25:84–95.

Tofalo R, Cocchi S, Suzzi G. Polyamines and gut microbiota. Front Nutr. 2017;4:16.

Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

Trabert B, et al. Antibodies against chlamydia trachomatis and ovarian cancer risk in two independent populations. J Natl Cancer Inst. 2019;111:129–36.

Trenti A, et al. Effects of digoxin on cell migration in ovarian cancer inflammatory microenvironment. Biochem Pharmacol. 2018;154:414–23.

Tsuei J, Chau T, Mills D, Wan YJ. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood). 2014;239:1489–504.

Turkoglu O, et al. Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics. 2016. https://doi.org/10.1007/s11306-016-0990-z.

Venkatesh M, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296–310.

Vergara D, et al. The cancer microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression. J Oncol. 2019. https://dx.doi.org/10.1155/2019/1253727.

Vergote I, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2013;368:943–53.

Vezzou M, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.

Viaud S, et al. Harnessing the intestinal microbiota for optimal therapeutic immunomodulation. Cancer Res. 2014;74:4217–21.

Vida A, Kardos G, Kovacs T, Bodrogi BL, Bari P. Deletion of poly(ADP-ribose) polymerase-1 changes the composition of the microbiome in the gut. Mol Med Rep. 2018;18:4335–41.

Vida A, Bodrogi BL, Balogh B, Bari P. Taxamut: automated biodiversity data management tool—implications for microbiome studies. Physiol Int. 2020. https://doi.org/10.15206/2020.2020.00004.

Vindevogel E, et al. The use of toll-like receptor 4 agonist to reshape the immune signature in ovarian cancer. Anticancer Res. 2016;36:5781–92.

Vyas V, et al. Synchronous occurrence of brucellosis and ovarian cancer: a case report. AEC. 2007;6:257–9.

Wallace BD, et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015;22:1238–49.

Wanderley CW, et al. Paclitaxel reduces tumor growth by reprogramming the constitutive androstane receptor-mediated pathway enhances the effects of anticancer agents in ovarian cancer cells. Biochem Pharmacol. 2014;90:536–66.

Wang Y, et al. Paclitaxel induces tumor growth and inhibits paclitaxel activity in MyD88-positive human ovarian carcinoma in vitro. Oncol Lett. 2014;7:187–7.

Wang Y, et al. The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbiota dysbiosis in mice. Life Sci. 2019;231:116529.

Wang Q, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res. 2020;13:8.

Wardill HR, et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol Cancer Ther. 2016;15:1376–86.

Wasserman L, et al. Sodium butyrate enhances the activities of membranous enzymes and increases drug sensitivity in a cell line from ascitic fluid of an ovarian carcinoma patient. Eur J Cancer Clin Oncol. 1989;25:1765–8.

Watanabe M, et al. Bile acids induce energy expenditure by promoting intra-cellular thyroid hormone activation. Nature. 2006;439:484–9.

Weigand KC, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

Wilkoff WR, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.

Wirtz HS, et al. Frequent antibiotic use and second breast cancer events. Cancer Epidemiol Biomarkers Prev. 2013;22:1588–99.

Woo BH, et al. Oral cancer cells stessfully infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potential. Oncotarget. 2017;8:46981–92.

Wortham BW, Patel CN, Oliveira MA. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol. 2007;603:106–15.

Xie X, Yang M, Ding Y, Chen J. Microbial infection, inflammation and epithelial ovarian cancer. Oncol Lett. 2017;14:1911–9.

Xu Y, Fang XJ, Casey G, Mills GB. Lysosphospholipids activate ovarian and breast cancer cells. Biochem J. 1995;309(Pt 3):393–40.

Xu S, Liu Z, Lv M, Chen Y, Liu Y. Intestinal dysbiosis promotes epithelial-to-mesenchymal transition by activating tumor-associated macrophages in ovarian cancer. Pathog Dis. 2019;77(2):5420822.

Xu J, Peng JJ, Yang W, Fu K, Zhang Y. Vaginal microbiomes and ovarian cancer: a review. Am J Cancer Res. 2020;10:743–56.

Yabushita H, Santorelli AC. Effects of sodium butyrate, dimethylsulfoxide and dibutyryl cAMP on the poorly differentiated ovarian adenocarcinoma cell line AOC-2. Oncol Res. 1993;5:173–82.

Ye X. Lysosphospholipid signaling in the function and pathology of the reproductive system: Hum Reprod Update. 2008;14:519–36.

Yokoyama MT, Carlson JR. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am J Clin Nutr. 1979;32:173–8.

Yoneda J, et al. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90:447–54.

Yoshimoto S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.

Yu LC. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci. 2018;25.79.

Yuan M, et al. Repurposing the anticancer drug cisplatin with the aim of developing novel Pseudomonas aeruginosa infection control agents. Beilstein J Org Chem. 2018;14:3059–69.

Zabala D, Biana AF, Florez AB, Salas JA, Mendez C. Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argilaceae. Metab Eng. 2013;20:187–97.

Zarrinpars A, Chia X, Yousef S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20:1006–17.

Zarrinpars A, Chia X, Panda S. Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab. 2016;27:69–83.

Zelante T, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunology. 2013;139:372–85.

Zeng LJ, et al. Neoadjuvant chemotherapy for patients with advanced epithelial ovarian cancer: a meta-analysis. Sci Rep. 2016;6:35914.

Zerfaoui M, et al. Poly(ADP-ribose) polymerase-1 is a determining factor in cell lineages in gynecologic cancer cells. Biochem Pharmacol. 2018;154:414–23.

Zhang Y-M, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6:222–33.

Zhang M, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res. 2020;13:8.
Zhang B, et al. Effects of salinomycin on human ovarian cancer cell line OV2008 are associated with modulating p38 MAPK. Tumour Biol. 2012;33:1855–62.

Zhang T, et al. Discrimination between malignant and benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid chromatography/mass spectrometry. Clin Chim Acta. 2012;413:861–8.

Zhang T, et al. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J Proteome Res. 2013;12:505–12.

Zhang L, Nichols RG, Patterson AD. The aryl hydrocarbon receptor as a modulator of host-microbiota communication. Curr Opin Toxicol. 2017;2:30–5.

Zhang H, Cherian R, Jin K. Systemic milieu and age-related deterioration. Geroscience. 2019;41:275–84.

Zhang X, et al. Dendritic cell vaccines in ovarian cancer. Front Immunol. 2020;11:613773.

Zheng L, Lin Y, Lu S, Zhang J, Bogdanov M. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1404–13.

Zhou M, et al. Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol Biomarkers Prev. 2010;19:2262–71.

Zhou B, et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci Rep. 2019a;9:1691.

Zhou B, et al. Clarithromycin synergizes with cisplatin to inhibit ovarian cancer growth in vitro and in vivo. J Ovarian Res. 2019b;12:107.

Zitvogel L, Ayyoub M, Routh B, Kroemer G. Microbiome and anticancer immnosurveillance. Cell. 2016;165:276–87.

Zitvogel L, Daillère R, Roberti MP, Routh B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15:465–78.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.