Finite-element modeling of ferroelectric material behavior at morphotropic phase boundaries between tetragonal, rhombohedric and orthorhombic phases

S M Lobanov and A S Semenov
Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya, St. Petersburg, 195251, Russia
E-mail: slobanov92@yandex.ru

Abstract. The nonlinear response of ferroelectric/ferroelastic material below the Curie temperature is analyzed at morphotropic phase boundaries with account of tetragonal, rhombohedral and orthorhombic phases. The results are obtained by means of finite-element homogenization with using the micromechanical model taking into account the dissipative nature of the domain wall motion. The results of simulation have revealed the extremal values of spontaneous polarization and remanent strain at morphotropic phase boundaries for the tetragonal/rhombohedral and tetragonal/orthorhombic compositions.

1. Introduction

Lead-free ferroelectric/ferroelastic materials are among the most actively studied classes of materials up to date due to several reasons. Firstly, because of a wide range of applications of these materials in industries from automotive to microelectronics. Secondly, it is the environmental friendliness of lead-free ferroics compared to the more common ceramics based on lead titanate-zirconate (PZT) [1]. Thirdly, there is no overall acclaimed theory of the nonlinear behavior of ferroelectroelastic materials as well as there is no software product that allows computations of nonlinear ferroelectroelastic boundary value problems [2]. However, it was found that ceramics based on barium titanate and other lead-free perovskites taken close to the morphotropic phase boundary (MPB) depict piezoelectric and dielectric response at the levels compared to PZT ceramics.

The main objective of the study is to evaluate the ability of computational micromechanical models to predict the properties of multiphase polydomain ferroelectric materials with aim to be used in domain engineering and microstructural design of lead-free ferroelectric/ferroelastic materials.

2. Hysteresis behavior modeling

An algorithm for simulation of the ferroelectroelastic nonlinear behavior of materials close to the MPB that utilize the proposed earlier micromechanical model [3-8] based on the dissipative nature of the motion of domain walls is implemented into CES program (Constitutive Equation Studio) [9]. Even though, this model doesn’t take into account interphase transitions due to their complex physical mechanism, it allows the calculations for tetragonal, rhombohedral and orthorhombic phases, two- and three-phase mixtures with constant phase composition [10]. The possibilities for two-phase calculations are presented further.
In the general case in three-phase material, there are 26 domains: 6 tetragonal, 8 rhombohedral and 12 orthorhombic (see figure 1). The model assumes that all crystal cells of the same phase oriented in the same direction are combined into one domain. Each domain I is described by a volume fraction c_I. There are possible 218 different switching processes in the considered model without the phase transitions.

![Figure 1. Possible polarization orientations in unit cell: (a) tetragonal system with 6 crystal variants; (b) orthorhombic system with 12 variants; (c) rhombohedral system with 8 variants.](image)

Constitutive equations for the crystal were obtained by averaging the strain fields (tensor ε) and dielectric displacements (vector D) under the condition of homogeneous fields of mechanical stresses (tensor σ) and electric field (vector E) (Reuss homogenization) [4]:

$$
\left\{ \begin{array}{l}
\varepsilon' \\
D'
\end{array} \right\} = \sum_{I=1}^{M} c_I \left(\begin{array}{c}
\frac{4}{3} S^E_i \cdot d_i^j \cdot \kappa_i^\sigma \\
E
\end{array} \right) \cdot \left\{ \begin{array}{l}
\varepsilon'_I \\
P'_I
\end{array} \right\} = \sum_{I=1}^{M} c_I \left(\begin{array}{c}
\frac{4}{3} S^E_i \cdot d_i^j \cdot \kappa_i^\sigma \\
E
\end{array} \right) \cdot \left\{ \begin{array}{l}
\varepsilon' \\
P'
\end{array} \right\},
$$

where $\frac{4}{3} S^E_i \cdot d_i^j \cdot \kappa_i^\sigma$ are tensors of compliance, piezoelectric coefficients and dielectric constants, corresponding to the I-th domain.

The evolution equations for the volume-averaged crystallite tensor of residual deformation ε' and the polarization vector P' are [4]:

$$
\left\{ \begin{array}{l}
\varepsilon' \\
P'
\end{array} \right\} = \sum_{I=1}^{M} \dot{c}_I \left\{ \begin{array}{l}
\varepsilon'_I \\
P'_I
\end{array} \right\} = \sum_{a=1}^{N} \dot{f}_a \left\{ \begin{array}{l}
\mu_{\alpha} \gamma_{a} \\
S_{a} P_{a}
\end{array} \right\},
$$

where N is the number of possible transitions α from the I-th system to the J-th; μ_{α} and S_{a} are Schmidt tensor and vector, γ_{a}, P_{a} are the shift and increment of polarization corresponding to the α transition; \dot{f}_a is a function that determines the transition rate, depending on the driving force G_{a} and volume fraction c_I, that is introduced by analogy with visco-plasticity [4]:

$$
\dot{f}_a = \dot{f}_0 \frac{G_{a}}{G_{c}} \left(\frac{c_I}{c_0} \right)^m,
$$
where $G_c = \mathbf{\sigma} \cdot \mathbf{\mu}_a \gamma_a + \mathbf{E} \cdot \mathbf{s}_a P_a + \mathbf{\sigma} \cdot \Delta \mathbf{d} \cdot \mathbf{E}$ is the driving force, \dot{f}_0, G_c, n, m, c_0 are material constants, P_a and γ_a are elementary cell unit spontaneous polarization and strain in ferroelectric state.

3. Model parameters

The parameters of the material model (1)-(3) such as n, m, c_0, P_a and γ_a for each phase separately and 9 G_c parameters for all the possible types of ferroelectric switching (90° and 180° for tetragonal phase; 71°, 109° and 180° for rhombohedral; 60°, 90°, 120° and 180° for orthorhombic) are to be defined. In the present studies for the reasons of simplicity n, m, c_0, P_a and γ_a for all three phases were taken the equal.

Table 1. Model parameters.

P_a, C/m2	0.5
γ_a	0.002
n	10
m	1
c_0	0.01
G_c, MPa	0.5
f_0	1

Table 2. Material parameters.

d_{33}, m/V	1.57e-10
d_{31}, m/V	8e-011
d_{15}, m/V	1.94e-010
k_{33}, F/m	2.51e-008
E_1, N/m2	9.26e+010
v_{12}	0.304
d_{33}, m/V	1.57e-10

Due to geometrical reasons the driving force constants for tetragonal, rhombohedral and orthorhombic phases switching directions might be connected with further equations:

$$
\begin{align*}
2G_c^{90,Tet} = G_c^{180,Tet} \\
\frac{1}{\sqrt{2}}G_c^{109,Rh} = G_c^{71,Rh} = G_c^{180,Rh} \\
\frac{2\sqrt{2}}{\sqrt{3}}G_c^{120,Orth} = G_c^{60,Orth} = G_c^{90,Orth} = G_c^{180,Orth}
\end{align*}
$$

(4)

To reduce the number of model parameters the assumption can be made that not only the parameters for one each phase are connected but those of different phases are connected as well. Such is the equality of the lower angle switching G_c for three phases:

$$
G_c^{90,Tet} = G_c^{71,Rh} = G_c^{60,Orth} = G_c^{90,Orth} = G_c^{180,Orth}
$$

(5)

By assuming so all 9 G_c parameters can be calculated through \overline{G}_c. Thus, the number of model parameters that describe nonlinear ferroelectric behavior is reduced to 6 mentioned in table 1. The material parameters that describe elastic behavior are collected in table 2.

4. Finite-element modeling

The results are obtained by means of finite-element homogenization method [11] with using the micromechanical model (1)-(3). The finite-element formulation of the ferroelectroelastic problem for the representative volume element of polycrystalline material allows taking into account the interaction between crystals that increases the accuracy of predictions of the model. The finite element program PANTOCRATOR v.7.19 [12] is applied for the solution of fully coupled nonlinear electromechanical problem with help of the vector potential formulation [13-15]. Three ferroelectric phases are simulated independently with no interphase transitions allowed.
A number of finite-element model boundary problems for two-phase compounds with varying phase fractions was solved. Each compound is described by V_f parameter, which is the volume fraction of one phase in the two-phase compound: tetragonal (V_T) if tetragonal/rhombohedral or tetragonal/orthorhombic composition is studied, and orthorhombic (V_R) for rhombohedral/orthorhombic.

The cubic representative volume element of the polycrystalline material was modeled, divided onto 27 finite elements (216 crystals with random generated orientations) and loaded with the alternating electric field in the direction [001] with the triangular form of wave and the magnitude of $E = 2$ MV/m and the frequency $f = 0.025$ Hz. Figure 2 illustrates the axial remanent polarization and strain field distributions in a representative volume element under unloading.

![Figure 2](image.png)

Figure 2. Remanent polarization (a) and strain (b) in the 3x3x3 representative volume element under unloading after loading until $E = 2$ MV/m.

5. Results and discussion

Three series of hysteresis curves obtained for two-phases compositions are shown in figure 3 from which the general parameters such as remanent polarization P_r and coercive electric field E_c can be taken, which are shown in figure 4 and 5.

Thus, figure 4 and 5 depict that the maximum of P_r is obtained in the tetragonal/rhombohedral system with the volume fraction of tetragonal phase being equal to $V_T = 0.2$; in the tetragonal/orthorhombic system it is obtained at $V_T = 0.4$; though, the rhombohedral/orthorhombic system shows the monotonic dependence of P_r from V_O. It can be assumed that these obtained maximums correspond to the state of material close to MPB.

The coercive field changes monotonically with the change of phase fractions in compound from rhombohedral phase to orthorhombic and then to tetragonal.

The obtained numerically effect of extremal values of spontaneous polarization and remanent strain in the nearness of morphotropic phase boundaries is consistent with results observed in experiments [16, 17]. That points out the abilities of considered approach based on combination of finite-element homogenization with multiphase micromechanical models to predict the effect of phase combination on the properties of ferroelectric materials.

The absence of maximum in the rhombohedral/orthorhombic system might be explained by the inconsistency of model parameters or model assumptions, such as driving force constants connectivity (4)-(5). However, this leads to the problem of the parameters identification for the juxtaposition of the model predictions with physical experiments. This problem gets much more complicated when assumptions (4)-(5) are rejected and the number of parameters increase dramatically, even though it arise the prediction possibilities of the model.
The prospect for future work includes several main directions which are the model parameters identification, studying of three-phase MPBs and technical applications simulation.

Figure 3. Hysteresises for tetragonal/rhombohedral (a), tetragonal/orthorhombic (b) and orthorhombic/rhombohedral (c) phase compositions.

Figure 4. Dependence of remanent polarization P_r on volume fractions for different phase compositions.

Figure 5. Dependence of coercive electric field E_c on volume fractions for different phase compositions.

Acknowledgements
This work was supported by the Russian Science Foundation, grant 18-19-00413.
References

[1] Rödel J, Jo W, Seifert K, Anton E and Granzow T 2009 Perspective on the development of lead-free piezoceramics J. Am. Ceram. Soc. 92(6) 1153

[2] Ivashov I V, Lobanov S M and Semenov A S 2016 Simulation of nonlinear behavior of polycrystalline electroelastic materials based on finite element homogenization Proc. Vth Int. interdisciplinary youth symposium "Physics of lead-free piezoactive and related materials" 5(1) 234 (In Russian)

[3] Huber J E, Fleck N A, Landis C M and McMeeking R M 1999 A constitutive model for ferroelectric polycrystals J. Mech. Phys. Solids 47 1663

[4] Huber J E and Fleck N A 2001 Multi-axial electrical switching of a ferroelectric: theory versus experiment J. Mech. Phys. Solids 49 785

[5] Liskowsky A C, Semenov A S, Balke H and McMeeking R M 2005 Finite element modeling of the ferroelectroelastic material behavior in consideration of domain wall motions Coupled Nonlinear Phenomena – Modeling and Simulation for Smart, Ferroic and Multiferroic Materials Proc. 2005 MRS Spring Meeting. 881E ed. R M McMeeking, M Kamlah, S Seelecke, D Viehland

[6] Semenov A S, Balke H and Melnikov B E 2011 Modelirovanie polikristallicheskoy piezokeramiki metodom konechno-elementnoy homogenizacii Marine Intellectual Technologies 3 109

[7] Neumeister P and Balke H 2011 Micromechanical modelling of the remanent properties of morphotropic PZT J. of the Mech. and Physics of Solids 59 1794

[8] Semenov A S and Lobanov S M 2018 The Simulation of Rate-Dependent Behavior of Ferroelectroelastic Materials under Cyclic Loading Technical Physics 63(10) 1479

[9] Semenov A S 2008 Computational methods in plasticity theory (Saint-Petersburg: SPBSPU) (In Russian)

[10] Lobanov S M and Semenov A S 2017 Modeling of nonlinear behavior of polycrystalline lead-free piezoceramics with a content of tetragonal, rhombohedral and orthorhombic phases under cyclic loading Procedia Structural Integrity 6 90

[11] Pathak A and McMeeking R M 2008 Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading J. Mech. Phys. Solids 56 663

[12] Semenov A S 2003 PANTOCRATOR – finite element program for solving nonlinear mechanical problems Proc. Vth Int. Conf. "Scientific and technical problems of prediction of reliability and durability of structures and methods for their solution” 466 (In Russian)

[13] Landis C M 2002 A new finite-element formulation for electromechanical boundary value problems Int. J. for Numerical Methods in Engineering 55 613

[14] Semenov A S, Kessler H, Liskowsky A and Balke H 2006 On a vector potential formulation for 3D electromechanical finite element analysis Com. Numerical Methods in Engineering 22 357

[15] Semenov A S, Liskowsky A C and Balke H 2010 Return mapping algorithms and consistent tangent operators in ferroelectroelasticity Int. J. for Numerical Methods in Engineering 81 1298

[16] Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric Ceramics (New York: Academic Press, London)

[17] Schäufele A B and Härdtl K H 1996 Ferroelastic properties of lead zirconate titanate ceramics J. American Ceramics Society 79 2637