Defining relations of creep theory for a polymer composite material

Farid Shakirzyanov

1 Kazan State University of Architecture and Engineering, 420043 Kazan, Russia Federation
2 Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia Federation
E-mail: faritbox@mail.ru

Abstract. Simplified defining relationships are being developed that will make it easier to determine the mechanical characteristics of PCM. The creep strain of a PCM in a plane-stress state is considered. The constitutive relations for PCM are obtained using the asymptotic analysis method.

For the case of a complex stress state, the defining relations contain a large number of arguments (SSS invariants) of a different order of smallness, then they will be simplified by asymptotic analysis methods. To determine the parameters included in the constructed relationships, new approaches (parametric identification methods) to solving inverse problems will be adapted or developed.

Keywords: creep, asymptotic analysis, polymer composite material.

1 Introduction

Due to the constant tightening of the operating conditions of load-bearing structural elements (increasing loads, expanding the range of permissible temperatures, increasing the duration of operation), there is an increase in requirements for the characteristics of materials.

Polymer composite materials (PCM) are highly efficient materials, their specific strength is several times higher compared to traditional materials. PCMs have pronounced inelastic properties, wherein the most significant contribution to the total strain is given by creep, moreover, the creep in PCM appears at normal temperatures. Therefore, it is necessary to determine the rheological characteristics of the material and their consideration when deforming the construction.

The defining relations in the general case, written for strain even for a plane-stress state will contain three stress state invariants as arguments. Their determination requires a large number of different experiments and special methods for their processing.

There are works [1-4], in which various hypotheses are used to reduce them or they are simplified based on analysis using features of material properties. The analysis of the work [5] on the experimental study of the fibrous composites deformation processes shows that, when loaded along the fibers, they behave almost like linearly elastic materials. During the course of shear, creep begins to manifest even at times calculated in minutes and even seconds.

In this paper, we will use an approach based on a decreasing number of arguments by asymptotic analysis of the creep defining relations [6]. It is based on using a small parameter of the ratio of the creep strain rate along with the reinforcement of the shear strain rate. This allows, in a first approximation, to leave only one-dimensional functions found from experiments. The constitutive relations for the PCM will be obtained using the asymptotic analysis method [7-11], in which the
defining relations were studied for the nonlinear theory of elasticity, the theory of plasticity and viscoelasticity.

Below we will consider PCMs, which are orthotropic bodies in a plane-stressed state.

1.1 The main relationships

To describe the creep strains of fibrous composites, the model of a viscoelastic (hereditarily elastic) material, which agrees well with experiments and is considered the most adequate for experiments. A peculiarity of the hereditarily elastic model is that after removal of the load, the creep strain disappears in the limit. However, literature analysis and performed experiments [5] show that, nevertheless, part of the creep strain cannot be restored. This suggests that this part of the creep strain should not be described by the relations of the hereditary theory of elasticity, but by the relations of the creep theory, according to which, after unloading, the accumulated creep deformations are irreversible.

Let’s write the creep law for PCM according to the theory of hardening in the form:

\[\varepsilon_{ij}^{cr} = f(\sigma_{ij}, q). \]

(1)

where \(\varepsilon_{ij}^{cr} \) is the creep strain rate, \(\sigma_{ij} \) is stress, \(q = q(e_i^{cr}) \) is the hardening parameter.

First, we consider a variant of the flow theory that is, the case when

\[f(\sigma_{ij}) = \text{const}. \]

(2)

Let’s write the power of energy dissipation during creep in the form:

\[L = \sigma_{ij} \varepsilon_{ij} = L(\sigma_{ij}). \]

(3)

Assuming \(L(\sigma_{ij}) = \text{const} \), we obtain in the stress space the surface of constant dissipation. The surfaces of constant dissipation do not intersect and they are embedded in each other [12]. We consider a certain loading path from point \(M \) to point \(M_1 \), moreover, this path intersects each of the surfaces of constant dissipation once (Figure 1). Then, during loading, the dissipation power does not decrease and let the power of the additional impacts be non-negative [12]:

\[(\sigma_{ij} - \sigma_{ij}^{0}) \dot{\varepsilon}_{ij} \geq 0. \]

(4)

Figure 1. Surfaces of constant dissipation.

From figure 1 it can be seen that the strain rate vector is directed normal to the surface, therefore

\[\dot{\varepsilon}_{ij} = h(\sigma_{ij}) \frac{\partial L}{\partial \sigma_{ij}}. \]

(5)

Relation (5) is an analog of the Drucker postulate in the case of a steady creep [12].

If there exists a function \(\Phi(\sigma_{ij}) \) such that

\[\frac{\partial \Phi}{\partial \sigma_{ij}} = h(\sigma_{ij}) \frac{\partial L}{\partial \sigma_{ij}}, \]

(6)

then the function \(\Phi \) is called the creep rate potential.
If condition (4) is satisfied, then it follows from it that the surface $L = \text{const}$ is convex, then

$$\Phi(\sigma_0) = \text{const}$$

is also convex.

To simplify the analysis of defining relations, we introduce a redesignation (single indexing):

$$\zeta_1 = \zeta_{11}, \quad \zeta_2 = \zeta_{22}, \quad \zeta_3 = 2\zeta_{12}, \quad \tau_1 = \sigma_{11}, \quad \tau_2 = \sigma_{22}, \quad \tau_3 = \sigma_{12}.$$

(7)

We write the expression for the increments of creep strain rates

$$d\zeta_i = \frac{\partial^2 \Phi}{\partial \tau_i \partial \tau_j} d\tau_j = B^i_j d\tau_j,$$

(8)

where B^i_j is the creep strain compliance matrix.

Given the convexity of the surface $\Phi(\sigma_0) = \text{const}$, it follows that the matrix B^i_j will be positive definite, i.e.

$$B^i_j d\tau_j d\tau_j > 0.$$

(9)

In the case of hardening theory (1), we also accept relation (8). Then, similarly, we can obtain relation (9) for the case of flow theory with hardening.

2 Materials and methods

2.1 Analysis and simplification of relations

Let the orthotropy axes coincide with the coordinate axes. PCM is characterized by a high yield to shear creep deformations and strains across the fibers in comparison with strain compliance along the fibers. This means that $B_{21} = B_{22} \leq B_{13}$. Let be $\eta^2 = \max(B_{11} / B_{22}) \leq 1$, $\theta^2 = \max(B_{22} / B_{11}) \leq 1$.

Since η, θ is small, the elements of the matrix B_{ij} / B_{33} have a different order of smallness. From the condition that the B_{ij} matrix is positive definite, for example, from the condition

$$B_{21} > 0,$$

(10)

it follows that $B_{21} < B_{11} B_{22} \leq B_{33}^2 \eta^2 \theta^4$. Similarly, $B_{13}^2 < B_{33}^2 \eta^2 \theta^2$, $B_{23}^2 < B_{33}^2 \theta^2$.

We introduce the notation for estimating the order B_{ij}:

$$B_{12} \sim B_{33} \eta^{3+},$$

$$B_{33} \sim B_{33} \eta^{\theta^{2}},$$

$$B_{23} \sim B_{33} \theta^{2},$$

$$...$$

Express η, θ through one small parameter a:

$$\eta = a^n, \quad \zeta = a^s.$$

(12)

Then we can write the following relation for the elements of the matrix B:

$$B \sim B_{33} \begin{bmatrix} a^{2n+2n} & a^{n+r+sm} & a^{mq+np} \\ a^{n+rs+sm} & a^{2n} & a^{kn} \\ a^{mq+np} & a^{kn} & 1 \end{bmatrix}.$$

(13)

Here $k, p, q, r, s \geq 1$. From relation (13) it follows that the velocities ξ_j depend strongly on some τ_i, and are insignificant on some. To simplify the creep model, we discard terms with small factors and restrict ourselves to the first terms of the series. Then it follows that the creep strain rates can be represented in the form of the following asymptotic series:

$$\zeta_1 = a^{2n+2n} \varphi_{11}(\tau_1, \tau_2, \tau_3) + a^{n+r+sm} \varphi_{12}(\tau_2, \tau_3) + a^{mq+np} \varphi_{13}(\tau_3) + o(a^\delta) B_{33},$$

$$\zeta_2 = a^{n+rs+sm} \varphi_{21}(\tau_1, \tau_2, \tau_3) + a^{2n} \varphi_{22}(\tau_2, \tau_3) + a^{kn} \varphi_{23}(\tau_3) + o(a^\delta) B_{33},$$

$$\zeta_3 = a^{mq+np} \varphi_{31}(\tau_1, \tau_2, \tau_3) + a^{kn} \varphi_{32}(\tau_2, \tau_3) + o(a^\delta) B_{33},$$

(14)

Since the creep strain compliance matrix B^i_j is positive definite, for example, from the condition

$$B_{21} > 0,$$

(10)

it follows that $B_{21} < B_{11} B_{22} \leq B_{33}^2 \eta^2 \theta^4$. Similarly, $B_{13}^2 < B_{33}^2 \eta^2 \theta^2$, $B_{23}^2 < B_{33}^2 \theta^2$.

In the case of hardening theory (1), we also accept relation (8). Then, similarly, we can obtain relation (9) for the case of flow theory with hardening.
where \(\beta = \min(2n + 2m, n + mn + sm, m + np) \), \(\gamma = \min(2n, kn, n + mn + sm) \), \(\delta = \min(kn, m + np) \). Here \(\varphi_{ij} \) are related by the relation (8):

\[
\frac{\partial \zeta_i}{\partial \tau_j} = \frac{\partial \zeta_j}{\partial \tau_i} = \frac{\partial^2 \Phi}{\partial \tau_i \partial \tau_j}.
\]

(15)

Then, taking into account (15), relation (14) takes the form:

\[
\begin{align*}
\zeta_1 &= \alpha^{2n+2m}\varphi_{11}(\tau_1), \\
\zeta_2 &= \alpha^{2n}\varphi_{22}(\tau_2), \\
\zeta_3 &= \varphi_{33}(\tau_3^2). \\
\end{align*}
\]

(16)

3 Results

3.1 Special cases of plane stress

Case 1. Let PCM in the direction \(Ox^1 \) have no creep strain, i.e. \(\zeta_1 = 0 \). This means that \(m \to \infty \). Then, for \(s \neq n \), relations (16) take the form

\[
\begin{align*}
\zeta_1 &= 0, \\
\zeta_2 &= \alpha^{2n}\varphi_{22}(\tau_2), \\
\zeta_3 &= \varphi_{33}(\tau_3^2) \cdot \tau_3. \\
\end{align*}
\]

(17)

If the shear and strain compliance of the transverse fibers are of the same order, then \(\zeta_1 \approx 1 \). Therefore, a strong simplification (16) cannot be achieved.

\[
\zeta_2 = \varphi_{22}(\tau_2, \tau_3^2), \\
\zeta_3 = \varphi_{33}(\tau_2, \tau_3^2)
\]

(18)

To such PCMs related to unidirectionally reinforced materials.

Case 2. If the fibers in PCM can have creep strain, and the shear compliance is much greater than the compliance in the direction of the axis \(Ox^2 \), then we obtain

\[
\begin{align*}
\zeta_1 &= \varphi_{11}(\tau_1), \\
\zeta_2 &= \varphi_{22}(\tau_2), \\
\zeta_3 &= \varphi_{33}(\tau_3^2) \cdot \tau_3.
\end{align*}
\]

(19)

An example of such materials is PCM fabric.

Case 3. If the compliance in two orthogonal directions \(Ox^1, Ox^2 \) is equal greater than the compliance by shear, then

\[
\begin{align*}
\zeta_1 &= \varphi_{11}(\tau_1, \tau_2), \\
\zeta_2 &= \varphi_{22}(\tau_1, \tau_2), \\
\zeta_3 &= \varphi_{33}(\tau_3^2) \cdot \tau_3.
\end{align*}
\]

(20)

4 Conclusion

Thus, an asymptotic analysis of PCM creeps ratios allows us to write simplified models of PCM creep strain. Defining relations contain functions that have a smaller dimension than the original ones. This is important in their experimental determination.

Acknowledgments. This work was supported by the Russian Foundation for Basic Research (project № 19-08-00349), the Russian Science Foundation (project № 19-19-00059, project № 19-79-10018).

References

[1] Dumansky A M, Ruslantsev A N, Tairova L P 2013 Model of nonlinear deformation of carbon plastics. Designs from composite materials 4(132), pp 6-12. doi: 10.2514/3.50844.

[2] Buryachenko V A, Lipanov A M 1990 Effective characteristics of elastic physically nonlinear composites. Applied Mechanics vol. 26, pp 12-16. doi: 10.1007/BF00887374.

[3] Obraztsov I F, Vasiliev V V 1982 Nonlinear phenomenological models of deformation of fibrous composite materials. Mechanics composite. Materials No 3, pp 390-393. doi: 10.1007/BF00604300.

[4] Polilov A N 2015 Studies on the mechanics of composites. Fizmatlit, Moscow. doi: 10.1134/S1019331607030161.
[5] Paimushin V N, Kayumov R A, Kholmogorov S A 2017 Experimental studies of the mechanisms of formation of residual deformations of fibrous composites of a layered structure under cyclic loading. *Uchenye Zapiski Kazan University. Series: Physics and Mathematics* 4(159), pp 473-492.

[6] Kalamkarov A L, Kudryavtsev B A, Parton V Z 1987 Asymptotic averaging method in the mechanics of composites of regular structure. *Itogi Nauki i Tekhniki. Ed. VINITI. Ser. MDTT*, vol. 19, pp 78-147.

[7] Teregulov I G 1989 Defining relations for anisotropic and fiber composite shells at finite strains. *Izv. USSR Academy of Sciences, Solids mechanics*, No. 3, pp 167-173.

[8] Teregulov I G 1988 Asymptotic analysis and classification of defining relations for fiber composite and anisotropic shells with finite and inelastic deformations. *Doklady AN SSSR*, vol. 302, No. 6, pp 1333-1336.

[9] Teregulov I G 1989 Defining relations and mathematical models of the medium for non-thin anisotropic and fiber composite shells with finite strains. *Izv. AN SSSR, Mechanics of the solid body*, No. 6, pp 163-168.

[10] Kayumov R A 1999 The structure of nonlinear elastic relations for a strongly anisotropic layer of a non-thin shell. *Mechanics of composite materials*, Vol. 35, No. 5, pp 615-628.

[11] Kayumov R A, Teregulov I G 2005 The structure of defining relations for hereditarily elastic materials reinforced with rigid fibers. *Journal of PMTF*, No. 3, pp 120-128. doi: 10.1007/s10808-005-0090-9.

[12] Rabotnov Yu N 1966 *Creep of structural elements*. Nauka, Moscow.

[13] Kayumov R A, Sharafutdinova A A 2017 About an estimation of operational durability of building designs from fiberglass. *Izvestiya KGASU*. № 2 (40), pp 114-123.

[14] Suleimanov A M, Tuisina E B, Bikmahametov R R 2019 Modeling of polymer composite materials in the stress-strain state under the influence of aggressive media. Part 1. Development of methods and test bench. *Izvestiya KGASU*. № 2 (48), pp 239-246.

[15] Gavrikov A A, Shamaev A S 2018 On the Modeling of Creep Layered Structures with Nonlinear Constitutive Relations. *IFAC-PapersOnLine*. Vol. 51, Issue 2, pp 150-155. doi: 10.1016/j.ifacol.2018.03.026.

[16] Rafiee R, Ghorbanhosseini A 2020 Developing a micro-macromechanical approach for evaluating long-term creep in composite cylinders thin-walled structures. Vol. 151. doi: 10.1016/j.tws.2020.106714.

[17] Teregulov I G 1969 *Bending and stability of thin plates and shells during creep flow*. Nauka, Moscow. P. 206.

[18] Paimushin V N, Kayumov R A, Kholmogorov S A 2019 Deformation features and models of [-45] 2s cross-ply fiber-reinforced plastics in tension. *Mechanics of composite materials*, Vol. 55, No. 2, pp 205-224. doi: 10.1007/s11029-019-09800-5.

[19] Jiaxin Lv, Yi Xiao, Yun Zhou, Yuanhong Xie 2020 Characterization and modeling of the creep behavior of fiber composites with tension and compression asymmetry. *International Journal of Mechanical Sciences*. Vol. 170. doi: 10.1016/j.ijmecsci.2019.105340.

[20] Mostafa Jafaripour, Fathollah Taheri-Behrooz 2020 Creep behavior modeling of polymeric composites using Schapery model based on micro-macro mechanical approaches. *European journal of mechanics - A/ Solids*, Vol. 81.

[21] Vahid Monfared 2017 Predicting the viscosity of solids using steady-state creep behavior of the fibrous composites semi-theoreticall. *Results in Physics*. Vol. 7, pp 1433-1436. doi: 10.1016/j.rinp.2017.03.031.