Utjecaj kliničkog iskustva na točnost u procjeni boje različitih stomatoloških profesionalnih skupina

Effect of Clinical Experience on the Shade Matching Accuracy in Different Dental Occupational Groups

Sažetak
Svrha: Istraživanjem se nastojalo procijeniti utjecaj razine kliničkog iskustva na točnost u procjeni boje u različitim stomatološkim profesionalnim skupinama. Materijali i postupci: U istraživanju je ukupno sudjelovalo 80 ispitanika te su, ovisno o razini njihova kliničkog iskustva u određivanju boje, raspoređeni u četiri skupine: dentalni tehničari (DT), specijalizanti stomatološke protetike (RP), specijalizanti stomatološke protetike (SP) i studenti dentalne medicine – dentalni studenti (DS). Ispitanici su se koristili Toothguide Training Boxom (TTB) i odredili 15 standardnih boja iz ključa VITA 3D Master. U završnom testu zabilježen je broj pogrešaka svakog ispitanika te je izračunata njegova/njezina iskustva, točnost i točna točnost. Rezultati: Statistički značajna razlika u točnosti i srednjim ΔE vrijednostima unutar četiri skupine nije pronađena (p > 0.05). Točnost u njima iznosila je 0,51 ± 0,20 (DT), 0,54 ± 0,18 (RP), 0,49 ± 0,16 (SP) i 0,55 ± 0,14 (DS). S obzirom na srednje vrijednosti pogreške ΔE-a, pronađena je statistički značajna razlika s DT skupinom koja je imala znatno manja odstupanja u usporedbi s ostalima (p < 0,05). Zaključci: Rezultati ovog istraživanja dokazali su da kliničko iskustvo nije značajan čimbenik točnosti u određivanju boje. No ispitujući srednje vrijednosti pogreške ΔE-a učinili je da su DT-i uspješniji u određivanju od ostalih ispitanika.

Uvod
Jedna od najvažnijih komponenti estetskoga stomatološkog zahvata svakako je postupak određivanja boje zuba.

Različiti su subjektivni i objektivni načini određivanja boje koji uključuju uporabu ključeva boja i spektrofotometra. Iako se instrumentalno određivanje pokazalo pouzdanim, boje koji uključuju uporabu ključeva boja i spektrofotometara jugoistočno je postupak određivanja boje zuba.

Na vizualno određivanje boja utječu raznoliki čimbenici, poput dobi promatrača, njegova/njezina iskustva, asa boja i asa svjetlosti (2 – 4).

Znanje o fizikalnoj pojavi boje također je jedan od važnih čimbenika pri njezinoj određivanju. Dobro poznata Munselova teorija opisuje boju kao trodimenzionalni fenomen koji se sastoji od nijanse, svjetline i zasićenosti, obilježja važnih za procjenu boje zuba (5, 6).

Zato je u novom ključu boja Vita 3D Master korištena gore navedena Munselova terminologija (Vita Zahnfabrik, Bad Sackingen, Njemačka), a temelji se na konceptu percep-

Introduction
Correct tooth shade assessment is one of the most important components of esthetic dental treatment.

There are a number of different subjective and objective ways for choosing shades, including various shade guides as well as spectrophotometers. Although the instrumental color matching has already been proved more reliable, the selection of matching shade tabs from commercially available shade guides is still the most common method of tooth color assessment (1).

Visual color matching is affected by many variables, such as age of the observer, his/her experience, possible color deficiency, condition of the teeth observed and light source (2-4).

Knowledge about the physical appearance of color is also one of the important factors for visual shade selection. The well-known Munsell’s theory is describing color as a three-dimensional phenomenon consisting of hue, value and chroma, color characteristics necessary to observe while assessing tooth shade (5, 6).

Therefore, a new shade guide Vita 3D Master has been developed, using the above mentioned Munsell’s terminology.
cije boje s pet različitih svjetilina i trima razinama zasićenosti i nijanse, što se pokazalo mnogo točnijim (7–9). Kako bi se boja zuba mogla uvjezbiti i što preciznije procijeniti možda uporabom ključa boja 3D Master, 2007. godine razvijen je sustav poznat kao Toothguide Training Box Mark II (TTB) (Vita Zahnfabrik, Bad Sackingen, Njemačka), oblikovan tako da stomatoložima približi novi postupak (10–13). Taj sustav omogućuje korisniku sustavno određivanje svih triju karakteristika boje zuba prema percepciji ljudskogaoka pod standardiziranim umjetnim dnevnim svjetlom temperature svjetlosti od 5500 K (14,15). Svraža ovog istraživanja bila je procijeniti utjecaj razine kliničkog iskustva na točnost procjene boje u četrima različitim stomatološkim profesionalnim skupinama – dentalnih tehničara (DT), specijalizata stomatološke proteetike (RP), specijalista stomatološke proteetike (SP) i dentalnih studenata (DS). Prva nulta hipoteza bila je da će postojati razlika u točnosti određivanja boje TTB sustavom između različitih skupina, ovisno o razini njihova kliničkog iskustva (u procjeni boje zuba). Druga nulta hipoteza glasila je da će postojati razlike u ΔE vrijednostima izračunatima kao odstupanja od točnih odgovora između različitih skupina. Treća nulta hipoteza bila je da će postojati razlike u pogreškama ΔE vrijednosti onih koji su odabrali pogrešnu boju između različitih skupina i unutar njih, ovisno o razini njihova kliničkog iskustva u procjeni boje zuba.

Materijali i postupci

Ovo istraživanje odobrilo je Etičko povjerenstvo Stomatološkog fakulteta Sveučilišta u Zagrebu. Veličina uzorka: Ukupno su odabrana 84 ispitanika koji su, ovisno o razini kliničkog iskustva u procjeni boje zuba, podijeljeni u četiri skupine: - 20 dentalnih tehničara (DT): 5 muškaraca, 15 žena; prosječna dob 30,4 ± 1,5, - 21 specijalizant stomatološke proteetike (RP): 8 muškaraca, 13 žena; prosječna dob 31,1 ± 2,1, - 23 specijalista stomatološke proteetike (SP): 10 muškaraca, 13 žena; prosječna dob 43,2 ± 3,4 i najmanje 10 godina specijalističkog iskustva - 20 dentalnih studenata (DS): 7 muškaraca, 13 žena; prosječna dob 22,1 ± 1,5. Svi su se ispitanici do trenutka istraživanja koristili Chromascopovim ključem boja (Ivoclar Vivadent, Schaan, Liechtenstajn) za procjenu boje zuba i prije testiranja nisu bili na predavanju o korištenju sustava 3D Master ili o njemu nisu dobili detaljne upute. Kriteriji za isključivanje iz istraživanja: Ispitanici koji su već sudjelovali u sličnom istraživanju, prakticirali su određivanje boje, koji su imali nešto iskustvo ili su uvježbavali korištenje ključa boja 3D Master, isključeni su iz istraživanja. To su bili jedna specijalizantica i tri specijalista. (Vita Zahnfabrik, Bad Sackingen, Germany). It utilizes the color perception concept with five levels of values and three levels of chroma and hue and has been proved to be more accurate than other theories (7–9). In 2007, in order to assess tooth color using 3D Master shade guide as precise as possible and practice the procedure, a system known as the Toothguide Training Box Mark II (TTB)(Vita Zahnfabrik, Bad Sackingen, Germany) was introduced, designed to familiarize the dentists with tooth shade selection (10–13). It enables the user to systematically select tooth shades by determining all three color characteristics in accordance with human color perception under the standardized artificial daylight with color temperature of 5500 K (14,15).

The aim of this study was to evaluate the effect of clinical experience level on the shade matching accuracy in four different dental occupational groups - dental technicians (DTs), residents in prosthodontics (RPs), specialists in prosthodontics (SPs) and dental students (DSs).

The first null hypothesis was that there will be differences in accuracy of the shade tabs selection using TTB between different groups depending on their level of clinical experience in tooth shade assessment. The second null hypothesis was that there will be differences in ΔE values, calculated as a deviation from the correct answers, between four different groups. The third null hypothesis was that there will be differences in error ΔE values in those who selected wrong shades between different groups depending on their level of clinical experience in tooth shade assessment.

Materials and methods

The design of the study was approved by the Ethics Committee of the School of Dental Medicine, University of Zagreb, Croatia.

Sample size

A total of 84 participants, assigned to one of four groups depending on the level of their clinical experience in shade matching:

- 20 dental technicians (DTs): 5 men, 15 women; average age 30.4±1.5,
- 21 residents in prosthodontics (RPs): 8 men, 13 women; average age 31.1±2.1,
- 23 specialists in prosthodontics (SPs) and 10 men, 13 women; average age 43.2±3.4, minimum 10 years of service as the specialist, and
- 20 dental students (DSs): 7 men, 13 women; average age 22.1±1.5, took part in the study. All of the participants used the Chromascop shade guide (Ivoclar Vivadent, Schaan, Liechtenstein) for the tooth color assessment and did not receive any type of lecture or training about the 3D Master system.

Exclusion criteria

The respondents who have previously participated in similar research or have been practicing color determination had some previous shade selection experience or training using 3D Master shade guide were excluded from this study. One
S obzirom na to da TTB protokol uključuje i testiranje raspoznatljivosti boja, svi su ispitanici testirani Ishiharinim testom s 24 slike i oni s više od dvije pogreške trebali su biti isključeni (16). No tim testom nisu ustanovljena odstupanja ni kod jednog ispitanika.
Zato se uzorak ovog istraživanja sastojao od 80 ispitanika – po 20 u svakoj od četirijsu ispitivanih skupina.

TTB
U ovom istraživanju primijenjen je TTB. Svaki ispitanik uspravno je sjedio ispred uređaja i dobio upute kako aparati radi te o fazama uvježbanja određivanja boje.
Elektro-mehanički uređaj bio je spojen s programskim sustavom koji se sastojao od 52 radijalno složena zuba iz ključa boja 3D Master. Vizualizacija testiranog i odabranog uzorka boje zuba obavljala se kroz otvor u sredini uređaja. Biralo se uporabom gumba označenih strjelicama (slika 1.).
TTB je osigurao uvjete dnevnog svjetla (Dialite Color System) s difuznim svjetlom dviju svjetiljaka od 5 W postavljenih pod kutom te s karakteristikama od 5500 K i 1000 luksa. Prosječna udaljenost ispitanikova oka tijekom promatraanja iznosila je 25 cm.
TTB protokol sastojao se od triju vježbi i završnog testa kojim se mjerilo znanje i kapacitet u procjeni boje. U trima vježbama ispitanik je morao točno odrediti svjetlinu, svjetlinu i zasićenost te svjetlinu, zasićenost i nijansu testiranih zuba. Nakon završenog uvježbanja ispitanik je morao pristupiti i završnom testu u kojemu je istodobno određivao sva tri parametra na 15 testiranih zuba.

Obesrved parameters
Accuracy
The number of correct answers from the final test of each participant was collected and accuracy calculated as the ratio of correct and total number of attempts ($x:15$).

Slika 1. TTB sustav
Figure 1 TTB system
Shade Matching Accuracy

The distance in the color space (ΔE) was determined for each shade tab and color difference between the task tab and selected tab was calculated using equation $\Delta E = ((\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2)^{1/2}$ (17). On the basis of $L^*a^*b^*$ values provided by the manufacturer it was possible to calculate the differences in ΔL^*, Δa^* and Δb^*. In calculation, the correct answers were recorded as $\Delta E = 0$.

Srednja vrijednost ΔE-a

Udaljenost u prostoru boja (ΔE) između zadane i odabrane boje izračunata je formulom $\Delta E = ((\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2)^{1/2}$ (17). Na temelju $L^*a^*b^*$ vrijednosti proizvođača mogle su se izračunati razlike u ΔL^*, Δa^* i Δb^*. U izračunu su točni odgovori označeni kao $\Delta E = 0$.

Srednja vrijednost pogreške ΔE-a

Kako bi se dobila informacija o rasponu ΔE vrijednosti kod netočno određenih boja, izračunata je srednja vrijednost pogreške ΔE-a.

Svi su parametri izračunati za sve četiri ispitivane skupine.

Statistička analiza

Prikupljeni podatci uneseni su u Excelovu bazu podataka i statistički su analizirani programom SPSS 19.0 (SPSS, Chicago, IL, SAD).

Razlike u točnosti, srednjim vrijednostima i pogreškama ΔE-a unutar četiri skupine analizirane su jednosmjernim testom ANOVA, uz Bonferonijevu korekciju.

Rezultati

Od ukupno 84 ispitanika, u istraživanju je sudjelovalo njih 80 (96%). Četiri su isključena jer su prije toga uvježbava-li određivanje boje ključem 3D Master i imali su iskustva s njegovim korištenjem (1 RP i 3 SP).

Testiranje Ishiharinim testom pokazalo je da ni jedan ispitanik nema problema s raspoznavanjem boja.

Srednje vrijednosti točnosti, ΔE vrijednosti i pogreške izračunate iz rezultata završnog testa na TTB sustavu nalaze se na slikama 2. – 4.

Srednja vrijednost točnosti iznosila je od 0,49 do 0,55 – u skupini dentalnih tehničara bila je najviša, a u onoj specijalista najniža (slika 2.). Statistički značajna razlika u točnosti unutar četiri skupine nije zabilježena ($p > 0,05$; tablica 1.).

Srednje ΔE vrijednosti iznosile su od 2,08 do 2,51 – u skupini dentalnih tehničara bile su naivše, a u onoj specijalista najniže (slika 3.). Statistički značajna razlika u srednjim ΔE vrijednostima u četiri ispitivanih skupinama nije zabilježena ($p > 0,05$; tablica 1.).

Srednje vrijednosti pogreške ΔE-a iznosile su od 4,05 do 4,84 – u skupini dentalnih tehničara bile su najviše, a u onoj specijalisti najniže (slika 4.). Srednje vrijednosti pogreške ΔE-a kod dentalnih tehničara statistički su se razlikovale od onih u ostalim trima ispitivanim skupinama ($p < 0,05$; tablica 1.).

Mean ΔE

The evaluation in the color space (ΔE) was determined for each shade tab and color difference between the task tab and selected tab was calculated using equation $\Delta E = ((\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2)^{1/2}$ (17). On the basis of $L^*a^*b^*$ values provided by the manufacturer it was possible to calculate the differences in ΔL^*, Δa^* and Δb^*. In calculation, the correct answers were recorded as $\Delta E = 0$.

Mean error ΔE

In order to get information about the range of ΔE values when wrong shade tab was selected, mean error ΔE only for wrong answers was calculated as mentioned above.

All the observed parameters were calculated in the four aforementioned study groups.

Statistical analysis

The collected data were entered into Excel database and statically analyzed, imported into statistical program SPSS 19.0 (SPSS, Chicago, IL, USA).

The differences in accuracy, ΔE and error ΔE values between the four study groups were analyzed using the one-way ANOVA and Bonferoni corrections.

Results

Out of a total of 84 participants, 80 participated in the study (96%). Four participants were excluded because they had previous training and shade selection experience with the 3D Master shade guide (1 RP and 3 SPs).

The evaluation of the Ishihara test did not reveal any color perception deficiencies in participants.

Mean accuracy, ΔE and error ΔE values from the results of the final test with the TTB system were calculated in all groups (Figures 2-4).

Mean accuracy ranged from 0.49 to 0.55, of which DSs have reached the highest, and SPs the lowest values (Figure 2). A statistically significant difference in accuracy between four groups was not recorded ($p > 0.05$; Table 1).

Mean ΔE ranged from 2.08 to 2.51, with DSs who reached the lowest, and SPs the highest values (Figure 3). A statistically significant difference in ΔE values between four groups was not recorded ($p > 0.05$; Table 1).

Mean error ΔE ranged from 4.05 to 4.84, with DTs reaching the lowest, and SPs the highest values (Figure 4). DTs' mean error ΔE statistically differed from the other three groups ($p < 0.05$; Table 1).

Table 1 Difference in accuracy, mean ΔE and mean error ΔE among four dental occupational groups
Točnost • Accuracy

Srednja ΔE vrijednost • Mean ΔE
Srednja vrijednost pogreške ΔE-a • Mean errof ΔE

Tablica 1. Razlike u točnosti, srednjim ΔE vrijednostima i srednjim vrijednostima pogreške ΔE-a unutar četiri stomatoloških profesionalnih skupina

Table 1. Differences in accuracy, mean ΔE and mean error ΔE among four dental occupational groups
Slika 2. Srednje vrijednosti (x), minimalna (min.) i maksimalna (maks.) točnost unutar četiri stomatoloških profesionalnih skupina
Figure 2 Mean (x), minimum (min) and maximum (max) accuracy among four dental occupational groups

Slika 3. Srednje vrijednosti (x), minimalna (min.) i maksimalna (maks.) ΔE vrijednosti unutar četiri stomatoloških profesionalnih skupina
Figure 3 Mean (x), minimum (min) and maximum (max) ΔE values among four dental occupational groups

Rasprava
Svrha ovog istraživanja bila je procijeniti utjecaj razine kliničkog iskustva na točnost u procjeni boje u različitim stomatološkim profesionalnim skupinama s pomoću TTB sustava i primjene protokola 3D Master.

Ovaj sustav primarno je oblikovan za studente koji uče određivati boju zuba, ali je se kasnije proširio i na ostale skupine – od stomatologa, tehničara, dentalnog osoblja do laika (18 – 20). U ovom istraživanju željala se procijeniti sposobnost točne procjene boje prema ključu 3D Master u stomatološkim profesionalnim skupinama koje taj postupak provode gotovo svakodnevno, ali prema drukčijem protokolu i uz uporabu drukčijih ključeva boja, pa su zato bili isključeni laici. Copa i suradnici već su dokazali da stomatološki profesionalci koji rutinski izrađuju restaurativne nadomjесте odlično određuju boju, mnogo bolje od ostalih profesionalnih skupina i laika (21). To su dokazali i De la Bona i suradnici u čijim su istraživanjem klinički iskustvom stomatolog postigli značajno bolju usklađenost od uspoređivanih promatrača koji nisu bili stomatološke struke (23). No u literaturi još nema odgovora na pitanje utjecaja već stečenoga znanja i iskustva na točnost u

Discussion
The purpose of this study was to evaluate the effect of clinical experience level on the shade matching accuracy in different dental occupational groups using the TTB and applying the 3D Master protocol.

This system was primarily designed to introduce university students to tooth shade selection and several studies investigated the effect of the TTB on training dental students in color identification (10, 12, 13). Later on its use was extended to other groups - from dentists, technicians, dental staff members and laypeople (18-20). In this study, we have decided to assess the ability to accurately assess shade tabs according to the 3D Master shade guide in dental occupational groups, who assess the color mostly on their everyday basis but in different protocols using different shade guides, therefore, we decided to exclude laypeople. Copa et al. have already shown that dental care professionals who routinely performed restorative procedures matched the shades better than other dental occupational groups together with laypeople (21). Similar results were obtained by Della Bona et al. who also shown significantly higher visual-instrumental shade agreement where both the VITA Classical and 3D Master shade guides were used.
određivanju boje. Neki ističu potrebu za uvježbavanjem, uče-
jenjem i iskustvom jer to utječe na sposobnost određivanja bo-
je (13, 18, 21, 22). Drugi, pak, tvrde da stečeno iskustvo ne
poboljšava sposobnost određivanja boje ili samo minimalno
utječe na postupak (19, 23, 24).

S obzirom na to da je svrha rada bila istražiti utjecaj proto-
kola 3D Master temeljenog na određivanju svjetline na spo-
sobnost točnog određivanja boje ispitanika koji su se do ta-
da koristili ključevima boja temeljenih na nijansi, isključeni
su svi ispitanici s prijašnjim iskustvom u radu s ključem boja
3D Master i oni koji su već uvježbavali TTB. To je bio razlog
zbog kojeg ispitanici prije testiranja nisu bili ni na kakvom
uvježbavanju i nisu slušali predavanja o protokolu 3D Master,
čak nisu dobili ni osnovne informacije o operacije boja ili
metodom korištenja ključeva. Prvi kontakt s novim proto-
kolom temeljenim na određivanju svjetline bile su tri vježbe
prije završnog testa na TTB-u.

Također je bilo bitno isključiti one ispitanike koji su ima-
li bilo kakve probleme s prepoznavanjem boja jer je već doka-
zano da oni mogu rezultirati znatno lošijim kvalitetom odre-
divanja boje od ispitanika s normalnim prepoznavanjem boja
(25). Ni jedan ispitanik u ovom istraživanju nije imao proble-
me s prepoznavanjem boje.

Rezultati ovog istraživanja pokazali su da su dentalni teh-
ničari dosegnuli najvišu razinu točnosti, a specijalisti najnižu
– 0,55 i 0,49 (p > 0,05; slika 22.). Ti rezultati vrlo su zanimljiv-
i jer se očekivalo da će specijalisti stomatološke protektice, oni
koji boju zuba u ustima određuju svakodnevno, biti najtočni-
ja skupina, a dentalni tehničari s najmanje iskustva u tom po-
tupku najmanje točni. No moramo uzeti u obzir da su se ispi-
tanici u istraživanju u svojoj praksi koristili Chromascopovim
ključem boja (temeljen na nijansi) i da nitko nije znao protokol
ključa boja 3D Master. Zato su rezultati ovog istraživanja
dokazali da oni koji su se dulje koristili ključem temeljenim
na nijansi (specijalisti u ovom istraživanju koristili su se njime
dulje od 10 godina) imaju poteškoća s uporabom ključeva bo-
ja složenijim prema svjetlini. Istodobno, dentalni su studenti tek
početnici u usvajanju procesa određivanja boje zuba i vrlo je
jednostavno procjenjuju prema svjetlini.

Sinmazisik ša suradnicima koristio se omjerom pogrešaka
i bodova u završnom testu za procjenu sposobnosti određi-
nja boje zuba učenika budućih dentalnih tehničara i stoma-
tologa i rezultati su pokazali da su učenici bili uspješniji, što
se slaže s našim rezultatima.

(18). Učenici budući dentalni tehničari i njihovu istraži-
vangu još su uvijek učili kako se procjenjuje boja i imali su vi-
še pogrešaka s parametrom nijanse, a stomatolozi više su grij-
ješili s parametrom svjetline (18).

Isto je bilo i s ∆E vrijednostima u našem istraživanju. Dentalni studenti imali su najniže, a specijalisti najviše vi-
jednosti – 1,20 i 2,51, (p > 0,05; slika 3.). Ovi se rezultati na-
laže unutar granice vidljivosti razlike (PT) i granice prihvatljiv-
osti razlike u boji (AT), iako nema konsenzusa o korištenju
određenih vrijednosti. Khashayar i suradnici u svojem istraži-
vaniu istaknuli su da je u više od pola ispitivanih studija defi-
nirana granica vidljivosti razlike od ∆E = 1, a u jednoj trećini
njih ∆E od 3,7 granica je na kojoj 50 % promatrača prihva-
ča razliku u boji (26).

by clinically experienced dentists compared to non-dental ob-
servers (23).

There is still no agreement in the literature about the role
of previous knowledge and experience in dental shade
matching. Some experts have emphasized the need for train-
ing, color teaching and experience proving their impact on
color matching ability (13, 18, 21, 22). The others claim that
previous experience does not improve ability in color selec-
tion or has a minimal impact on tooth-shade matching (19,
23, 24).

Since the main purpose of this study was to explore the
impact of value-based protocol of the 3D Master shade guide
on the ability to match shade tabs using the TTB on partic-
ipants assessing the color previously using hue-based shade
guides, we have excluded four participants who reported ear-
lier training and shade selection experience with the 3D Mas-
ter shade guide. Therefore, the participants in this study did
not receive any type of lecture or training, not even basic
information about dental color parameters or determination
methods using color keys before they started. The first touch
with the new value-based protocol was three exercises they
had to pass before the final test on the TTB.

It was also important to exclude the participants with any
types of color vision impairments because it had already been
proved that color vision deficiency may result in significantly
worse color matching quality compared to normal color vi-
sion (25). None of our participants discovered any color vi-
sion deficiencies.

The results of this study revealed that the DSs achieved
the highest level of accuracy and the SPs the lowest one, 0.55
and 0.49 respectively (p>0.05; Figure 2). These results are
very interesting because the SPs, who determine the tooth
color on their daily basis were expected to be the most ac-
curate group and the DSs with the least experience the least
accurate. However, we have to take into account that all the
participants in the study used Chromascop shade guide (hue-
based) in their everyday practice and no one was familiar
with the protocol of 3D Master shade guide. Therefore, the
results of this study showed that those who used shade guides
arranged according to hue over a longer period of time (SPs
in this study had been using it for more than 10 years) found
it more difficult to assess the color according to value. At
the same time, DSs who were still novices in the process of learn-
ing how to accurately evaluate the color of the tooth found it
easy to assess it according to value.

Sinmazisik et al. used the mistake ratio and scores from
the final test to evaluate the ability to match tooth color be-
 tween dental technician students and graduate dentists and
they found students to be more successful in shade matching
than dentists, which is in accordance with our results (18).
In another study, dental technician students, those who still
learn how to assess the color, made more mistakes in the h pa-
rameter, and dentists made more mistakes in the L param-
eter (18).

The same was with ∆E values in our study. The DSs re-
vealed the lowest shade difference values in the assessment
and SPs the highest one, 2.08 and 2.51, respectively (p>0.05;
Figure 3). These results are within the accepted perceptibil-
U istraživanju Sinmazisika i suradnika učenici budući
dentalni tehnikari, imali su niže ΔE vrijednosti (1.72) i doka-
zali su da su bili bliži prihvaćenoj granici vidljivosti boje od
naših dentalnih studenata, ali u njihovoj grupini stomatolo-
gi vrijednosti su bile čak i više od naših (2.92), no još uvijek
u granicama prihvatljivosti (18).

Također je vrlo važno istaknuti da su u našem istraživa-
nju dentalni tehnikari bili drugi najtočniji, a jedan od ispita-
nika iz te skupine imao je 100 % točne rezultate testa (ΔE =
0; slika 3.). S obzirom na srednje vrijednosti pgreške ΔE-a,
izačunate kao razlike u boji samo u slučaju da je pogrešno
određena, dentalni tehnikari imali su statistički čak značajno
niže vrijednosti u usporedbi s ostalim trima ispitivanim sku-
pinama. To znači da su u slučaju njihove pogreške odstupu-
pa u boji bila značajno manja od ostalih (p < 0.05; slika 4.;
tablica 1.).

To što su dentalni tehnikari bili točniji u procjeni i u slu-
čaju pogreške imali su manja odstupanja, može se objasniti
činjenicom da je riječ o skupini koja svakodnevno proizvo-
di boju u dentalnom laboratoriju te, iako ne poznaju proto-
kol određivanja boje prema svjetlini, zapravo rade manje pogre-
ske od ostalih. Haddad i suradnici također su objavili da su žene u nji-
houv istraživanju postigle značajno bolje rezultate u određi-
vanju boje od muškaraca, dokazujući da je u tom postupku
važan i spol (19). U našem istraživanju pokušali smo složiti
homogene podskupine muškaraca i žena u svakoj ispitivanoj
skupini, ali nismo uspjeli pa je u svima bilo više žena (55 %
– 75 %), što je moglo utjecati na rezultate. U daljnjim istra-
živanjima, u svrhu poboljšanja rezultata, moramo postići po-
djednak broj muškaraca i žena, povećati uzorak ispitanika te
uključiti vrijeme koje su ispitanici potrošili na uvježbavanje
i bodove TT sustava.

Zaključci
U ovom istraživanju studenti su bili najtočniji u procjeni
i imali su najniže ΔE vrijednosti.

Uzimajući u obzir srednje vrijednosti pgreške ΔE vrijed-
nosti, dentalni tehnikari bili su uspješniji u procjeni boje od
ostalih ispitanika.

Ovo istraživanje dokazuje da kliničko iskustvo nije jedan
od značajnih čimbenika u točnosti pri određivanju boje zuba.

Sukob interesa
Nije bilo sukoba interesa.

Conclusions

The students achieved the highest accuracy and the lowest
ΔE values in the study. With regard to the mean error ΔE val-
ues, DTs were more successful in shade matching than oth-
er participants.

This study shows clinical experience is not found to be a
significant factor to the shade matching accuracy.

Conflict of interest
None declared
Abstract

Objectives: The aim of this study was to evaluate the effect of clinical experience level on the shade matching accuracy in different dental occupational groups. Materials and methods: A total of 80 participants, assigned to one of four groups depending on the level of their clinical experience in shade matching: dental technicians (DTs), residents in prosthodontics (RPs), specialists in prosthodontics (SPs) and dental students (DSs) took part in the study. They were asked to use Tooth guide Training Box (TTB) and determine 15 standardized shade tabs using VITA 3D-Master shade guide. The number of mistakes in final test for each participant was recorded and accuracy was calculated. Color difference (ΔE) values were calculated from L*, a* and b* values. Differences in accuracy, mean ΔE values and mean error ΔE values between four different groups were examined. Results: No statistically significant differences were found between the groups regarding accuracy and mean ΔE values (p>0.05). The accuracy rate in four groups was 0.51±0.20 (DTs), 0.54±0.18 (RPs), 0.49±0.16 (SPs) and 0.55±0.16 (DSs), respectively. Mean ΔE values were 2.10±0.98 (DTs), 2.18±0.97 (RPs), 2.51±0.97 (SPs) and 2.08±0.86 (DSs), respectively. Regarding mean error ΔE values, DTs made errors with significantly less deviations compared to other groups (p<0.05). Conclusions: This study has shown that clinical experience is not found to be a significant factor to the shade matching accuracy. With regard to the mean error ΔE values, DTs were more successful in shade matching than other participants.

References

1. Igiel C, Lehmann KM, Ghinea R, Weyhrauch M, Hangx Y, Scheller H, Paravina RD. Reliability of visual and instrumental color matching. J Esthet Restor Dent. 2017 Sep;29(5):303-308.
2. Clary JA, Ontiveros JC, Cron SG, Paravina RD. Influence of light source, polarization, education, and training on shade matching quality. J Prosthodont. 2016;15(1):91-7.
3. Gaspárik C, Tofan A, Culic B, Badea M, Dudea D. Influence of light source and clinical experience on shade matching. Culuij Med. 2014;87(1):30-3.
4. Chu SJ, Trushkowsky RD, Paravina RD. Dental color matching instruments and systems. Review of clinical and research aspects. J Dent. 2010;38 Suppl 2:e2-16.
5. Joiner A, Luo W. Tooth colour and whiteness: A review. J Dent. 2017 Dec;67S:S3-S10.
6. Brewer JD, Wee A, Seghi R. Advances in color matching. Dent Clin North Am. 2004 Apr;48(2):341-58.
7. Nakhaii M, Ghanbarzadeh J, Amirinejad S, Alavi S, Rajathaghri H. The Influence of Dental Shade Guides and Experience on the Accuracy of Shade Matching. J Contemp Dent Pract. 2016 Jan;17(1):22-6.
8. Yuan JC, Brewer JD, Monaco EA Jr Davis EL. Defining a natural tooth color space based on a 3-dimensional shade system. J Prosthodont. 2007 Aug;98(2):110-9.
9. Hammad IA. Intrarater repeatability of shade selections with two shade guides. J Prosthodont. 2003 Jan;12(1):50-3.
10. Draghici R, Preoteasa CT, Tâncu A, Preoteasa E. Dental color assessment through TTB exercises. J Med Life. 2016 Jan-Mar;9(1):61-65.
11. Corcodel N, Karatzogiannis E, Rammelsberg P, Hassel AJ. Evaluation of two different approaches to learning shade matching in dentistry. Acta Odontol Scand. 2012 Jan;70(1):83-8.
12. Olims C, Klinke T, Pirek P, Hannak WB. Randomized multi-centre study on the effect of training on tooth shade matching. J Dent. 2013 Dec;41(12):1259-63.
13. Llena C, Forner L, Ferrari M, Amengual J, Llames G, Lozano E. Toothguide Training Box for dental color choice training. J Dent Educ. 2011 Mar;75(3):360-4.
14. Corcodel N, Rammelsberg P, Jakstak H, Moldovan O, Schwarz S, Hassel AJ. The linear shade guide design of Vita 3D-master per-forms as well as the original design of the Vita 3D-master. J Oral Rehabil. 2010 Nov;37(11):860-5.
15. Borbély J, Varsányi B, Fejérady P, Herrmann P, Jakstak HA. Toothguide Trainer tests with color vision deficiency simulation monitor. J Dent. 2010;38 Suppl 2:e41-9.
16. Ishihara S. Ishihara’s test for color-blindness. Tokyo: Kanahera and Co; 1994.
17. O’Brien WL, Groh CL, Boenke KM. A new, small-color-difference equation for dental shades. J Dent Res. 1990 Nov;69(11):1762-4.
18. Sinnaasik G, Trakyalı G, Tārcin B. Evaluating the ability of dental technician students and graduate dentists to match tooth color. J Prosthet Dent. 2014 Dec;112(6):1559-66.
19. Haddad HJ, Jakstak HA, Arnetzl G, Borbely J, Vichi A, Dumfahrt H, Reu-nt P, Corcodel N, Pohlen B, Marada G, de Parga JA, Reshad M, Klinkie TU, Hannak WB, Paravina RD. Does gender and experience influence shade matching quality? J Dent. 2009;37 Suppl 1:e40-4.
20. Geng F, Yin J. Evaluation on the application of mechanical toothguide training box to chromatics teaching of prosthodontics. Hua Xi Kou Qiang Yi Xue Za Zhi. 2011 Dec;29(6):629-31.
21. Papa N, Malonkodu O, Kazazoglu E, Calikkoaglu S. Evaluating factors that affect the shade-matching ability of dentists, dental staff members and laypeople. J Am Dent Assoc. 2010 Jan;141(1):71-6.
22. Xu MM, Xu TK, Liu F, Shi XR, Feng HL. The influence of toothguide training box on shade matching veracity. Shanghai Kou Qiang Yi Xue. 2009 Aug;18(4):432-5.
23. Della Bona A, Barrett AA, Rosa V, Pinzetta C. Visual and instrumental agreement in dental shade selection: three distinct ob-server populations and shade matching protocols. Dent Mater. 2009 Feb;25(2):276-81.
24. Pohlen B, Hawlina M, Šober K, Kopat I. Tooth Shade-Matching Ability Between Groups of Students with Different Color Knowl-edge. Int J Prosthodont. 2016 Sep-Oct;29(5):487-92.
25. Borbély J, Varsányi B, Fejérady P, Herrmann P, Jakstak HA. Toothguide Trainer tests with color vision deficiency simulation moni-tor. J Dent. 2010;38 Suppl 2:e41-9.
26. Khashayar G, Bain PA, Salar S, Dozic A, Kleverlaan CJ, Feilzer AJ. Perceptibility and acceptability thresholds for colour differences in dentistry. J Dent. 2014 Jun;42(6):637-44.