Mining Social Media for Newsgathering

ARKAITZ ZUBIAGA, University of Warwick

Social media is becoming an increasingly important data source for learning about and tracking breaking news. This is possible thanks to mobile devices connected to the Internet, which allow anyone to post updates from anywhere, leading in turn to a growing presence of citizen journalism. Consequently, social media has become a go-to resource for journalists during newsgathering. Use of social media for newsgathering is however challenging, and suitable tools are needed in order to facilitate access to useful information for reporting. In this paper, we provide an overview of research in data mining and natural language processing for mining social media for newsgathering. We discuss seven different tasks that researchers have worked on to mitigate the challenges inherent to social media newsgathering: event detection, summarisation, news recommenders, content verification, finding information sources, development of newsgathering dashboards and other tasks. We outline the progress made so far in the field, summarise the current challenges as well as discuss future directions in the use of computational journalism to assist with social media newsgathering. This survey paper is relevant to computer scientists researching news in social media as well as for interdisciplinary researchers interested in the intersection of computer science and journalism.

1 INTRODUCTION

The popularity of social media platforms has increased exponentially in recent years, gathering millions of updates on a daily basis [27, 31]. The use of ubiquitous digital devices to post on social media has in turn led to an increased presence of citizen journalism, where citizens, such as eyewitnesses on the ground, can share first-hand reports about an ongoing incident or event without having to be a professional who has access to journalistic media [5, 18]. The quintessential social media platform for citizen journalism, Twitter, has become a gold mine for journalists to learn about breaking news and to gather valuable information to broaden the coverage of their news reports [1, 9, 39, 40]. News agencies and journalists are increasingly turning to social media to gather the latest developments on news stories [3, 15, 33, 34]. It is well known, however, that social media is a hodgepodge where users post all kinds of contents, ranging from irrelevant chatter to first-hand, eyewitness reports. While information such as the latter can be of great value, journalists need to sift through the vast amounts of updates posted in the stream of user-generated content to pick out the pieces of information of their interest, which tends to be costly, cumbersome, and often unfeasible for a human if done manually [9]. To make the most of the stream of tweets for news reporting, journalists need bespoke tools that facilitate access to the relevant bits of information in a timely fashion. This has led to an increased interest in the scientific community to study techniques to facilitate newsgathering from social media.

In this survey paper, we review existing approaches to automation of and assistance with newsgathering from social media for journalism practitioners. Having explored the literature in the field, we have identified seven categories of tasks to social media newsgathering: (1) event detection, (2) summarisation, (3) recommender systems, (4) content verification, (5) finding information sources, (6) development of newsgathering dashboards and (7) other tasks. We delve into existing work tackling each of these seven approaches. Our paper provides an overview of natural language processing and social media mining techniques to social media newsgathering, as well as it discusses the current limitations and avenues for future work.
2 SOCIAL MEDIA FOR JOURNALISM

Social media, while noisy, present numerous assets to the community of journalists and media professionals. More specifically, Twitter, as a tool that enables its users to share real-time updates about what they are experiencing at the moment, has shown a great potential for discovering and tracking breaking news [13, 32, 35, 60]. Early examples that boosted Twitter’s popularity as a tool for real-time news monitoring include the plane that landed in New York City’s Hudson River back in 2009 [43], or the Arab Spring in 2011, which was largely discussed on Twitter [38]. This has in turn attracted the interest of journalists in the social media platform, increasing their presence and becoming a ubiquitous tool to stay abreast of what is going on in the real, offline world.

With this increase in terms of popularity [61], Twitter has become a powerful tool for journalists and news organisations ranging from health journalism [69] to sports journalism [45], including emergency journalism [12] and political journalism [57]. Social media in the context of journalism is being mainly used in the following three ways: (i) as a venue to freely post news stories to reach out to potential new readers and increase the number of visitors on their websites, cf. [42], (ii) as an analytical platform to explore the preferences of news consumers, analysing the news stories that users read and share most, cf. [22], and (iii) as a gold mine to catch the scoop on breaking news, to retrieve additional context to broaden the coverage of their news reports (Muthukumaraswamy, 2010), and to reach out potential eyewitnesses who they might want to interview [21]. In this survey paper, we focus on the latter, studying the different directions in which social media mining techniques are being developed and researched to facilitate newsgathering from social media.

3 SOCIAL MEDIA MINING FOR NEWSGATHERING

The stream of updates from social media flows much faster than a human can follow, with hundreds or even thousands of posts per minute, which makes it impossible for a human to keep track of everything that is being said. There is indeed the need to curate all these contents in such a way that the end user can follow [36, 76, 93]. Journalists are in great need of applications that facilitate newsgathering work [75]. The user, be it a journalist or another news practitioner, can be interested in certain types of information, such as eyewitness reports, new reports that add to a developing story, contradicting reports that clarify previous claims, etc., while getting rid of redundant information. In this section, we review existing approaches to mine newsworthy updates from social media, with the ultimate goal of enabling newsgathering. This section is organised in seven subsections, discussing seven different types of approaches.

3.1 Event Detection

An important task for supporting newsgathering from social media is event detection, i.e. tracking the stream of updates from social media to identify newly emerging, newsworthy events. The objective of an event detection system in the context of journalism is to generate early alerts of candidate stories to be reported. [24] provide an overview of the event detection task. They use the term “new event detection” instead for the case in which events that are not known a priori are to be identified, as opposed to detection of scheduled or predictable events. They define the new event detection task as that consisting in “identifying the first story on topics of interest through constantly monitoring news streams.” Further, they distinguish two different ways of tackling the new event detection (NED) task: (1) retrospective NED, where incoming social media posts are compared with past data to determine if new data is likely to be associated with a new event, and (2) online NED, where incoming social media posts are clustered online, where each new post is either included in an existing cluster (event) or, when it is different to existing clusters, it makes its own cluster, i.e. a new event. Once an event is identified, they propose to develop additional components to track and summarise those events.
While most work on event detection uses social media as the main data source, some have proposed to leverage other data sources to then propagate to social media. This is the case of Twitcident, proposed by [2], which uses emergency broadcasting services to identify incidents, extract a set of related keywords, and then collect associated updates from social media. This approach is however dependent on those broadcasting services, and does not allow for early detection of events where broadcasting services or government officials may delay. Indeed, for this reason, most of the recent work in real-time event detection has instead used social media as the main data source. An early approach to breaking news detection from social media introduced by [60] proposed to group tweets by similarity; in a subsequent step, these groups could be ranked by their probability to be linked to a newsworthy event. Given that a simple grouping approach based on similarity as overlap of all tokens in tweets would lead to noisy groups, they proposed instead to identify named entities, which are used to compute similarity scores and create clusters from a stream of tweets. They built a dataset combining tweets from a generic stream as well as tweets including the hashtag "#breakingnews". This is a clever, simple approach to the problem, which proved to be effective in identifying news reports. However, later work has focused on identifying small scale incidents and news, which is more challenging owing to the small volume of data associated with the events.

Work on small scale or local incidents and news stories attracted a substantial interest in the following years. [63] developed an approach consisting of two steps: (1) automatic classification of user-generated content related to small scale incidents, and (2) filtering of irrelevant content, using Stanford NER for named entity recognition which enabled them to identify spatial, temporal, and thematic aspects. [86] followed a similar approach to analyse location and temporal aspects of social media posts. They proposed to use a metric calculated by combining the log-likelihood ratio for geographic and temporal dimensions, which they used for identifying events in the content of tweets located in predefined local areas. Use of location-based features has indeed proven useful for breaking news detection through social media. A study by [85] focused on this aspect. They proposed an approach to estimate the location of Twitter users based on the locations of their friends. Using social media data enriched with this location information, they showed significant improvements in detection of local news as opposed to a baseline system that used Twitter’s existing geolocation features.

A state-of-the-art approach to breaking news detection from social media is TopicSketch, introduced by [88]. TopicSketch is intended to detect bursty topics in a real-time fashion from a large-scale data source like Twitter. It performs two steps: (1) a topic modelling step, where it looks for the acceleration of words and pairs of words over time, and (2) a hashing-based dimensionality reduction step, where only tweets observed in the stream in the last 15 minutes are stored; as this is still too large, it hashes all those words into buckets, to then identify frequent buckets.

While event detection applied to the specific context of news and journalism has been rather limited, there has been a substantial body of work looking at detection of other kinds of events, not necessarily newsworthy or of interest to news practitioners. For a broader perspective on event detection from social media, see the detailed review by [7].

3.2 Summarisation

Another task that can assist with social media newsgathering is summarisation, i.e. automatically producing summaries for streams or timelines associated with a particular news story. Summarisation from social media is generally considered as a multi-document summarisation task, i.e. where multiple social media posts are given as input, and the system needs to produce a concise summary by getting rid of redundant information across posts. There are two main factors that vary across existing social media news summarisation approaches: (1) the type of summary can be extractive, where the summary is made of excerpts of the original text, or abstractive, where the summary is a new, rewritten text, and (2) summarisers have been proposed for scheduled events, such as sporting events where the vocabulary that will be used and the expected volume of posts can be predicted,
3.3 News Recommenders

News recommenders are intended for journalists to identify top stories discussed in social media. This enables journalists to choose a story to cover based on people’s interests. These recommendations can however be personalised, especially for journalists who cover specific subjects or types of journalism. Work in this direction is scarce. The first, preliminary approach to recommending news stories from social media in real-time was described by [59]. They compared three different ranking algorithms, which showed promising results through preliminary experimentation. The same authors documented more advanced work in [58]. They combined two data sources, tweets and RSS feeds from news outlets, to look for overlapping content. The system will then rank Twitter content overlapping with RSS feeds based on the friends of the user in question, recommending the top ranked news items from Twitter. The resulting ranking of news is personalised for the user of the system, as it incorporates information from their network.

With a slightly different objective, [41] described a system that, given a news story as input, recommends relevant tweets for gathering furthering evidence about the story from Twitter. They use language models and topic models to identify tweets that are similar to the news story given as input.

Another recommended system intended for newsgathering is called “What to Write and Why (W3)”, introduced by [19]. The intuition of W3 is to find stories that are being discussed by users in social media, which

and for unexpected events, such as breaking news where there is no prior information and the summariser needs to deal with new, unseen events.

Most existing work has focused on extractive summarisation. For scheduled events such as football matches, both [95] and [55] showed that it is relatively easy to achieve highly accurate summaries including all major happenings, such as goals and red cards, by simply looking at word frequencies. Indeed the vocabulary is largely predictable for football matches, and the volume of posts associated with keywords such as ‘goal’ increases drastically when a team scores. [37] proposed an alternative, graph-based approach. First, they used LDA to identify topics of discussion within a stream. Then, they built a graph with the tweets in each topic, based on word co-occurrences. Finally, they used PageRank to identify salient tweets in each topic. Using a dataset of tweets associated with a presidential debate, they showed that their approach outperformed a word frequency based approach that used TF-IDF for weighting. [50] proposed another graph-based approach, in this case analysing rapid changes in the graphs as a proxy to identify important events to be included in the summary. Using a graph representation of incoming tweets, their system uses a convex optimisation method to detect rapid changes in the edge weights. Representative tweets for those detected events are then extracted for the summary. Again, their experiments focused on sporting events.

Another approach introduced by [84] focused on efficient and effective clustering of incoming tweets. They proposed Sumblr, a streaming clustering approach that assigns a cluster to incoming tweets. Incrementally, candidate tweets that will be part of the summary are selected for each of the clusters. As the number of clusters can grow indefinitely, the algorithm stores the timestamp of the last update of each cluster, which is used to delete outdated clusters that have not been updated for a while. The algorithm, intended to run in real-time while tweets are coming, showed to be highly efficient compared to other stream clustering techniques.

Work on both abstractive summarisation systems and for unexpected events such as breaking news is still in its infancy. To date, the only documented system with these characteristics is that by [66]. They first perform syntactic parsing of the tweets to create graphs connecting the predicates and arguments in the sentences. These graphs are further enhanced mention links, argument links and entailment links. They then produce scores for each mention in the texts, which enable them to select the mentions (entities and predicates) that will form the final, abstractive summary. While the quality of the summaries was not evaluated quantitatively, they did usability tests where participants rated different aspects of the summarisation system, showing promising results.

3.3 News Recommenders

News recommenders are intended for journalists to identify top stories discussed in social media. This enables journalists to choose a story to cover based on people’s interests. These recommendations can however be personalised, especially for journalists who cover specific subjects or types of journalism. Work in this direction is scarce. The first, preliminary approach to recommending news stories from social media in real-time was described by [59]. They compared three different ranking algorithms, which showed promising results through preliminary experimentation. The same authors documented more advanced work in [58]. They combined two data sources, tweets and RSS feeds from news outlets, to look for overlapping content. The system will then rank Twitter content overlapping with RSS feeds based on the friends of the user in question, recommending the top ranked news items from Twitter. The resulting ranking of news is personalised for the user of the system, as it incorporates information from their network.

With a slightly different objective, [41] described a system that, given a news story as input, recommends relevant tweets for gathering furthering evidence about the story from Twitter. They use language models and topic models to identify tweets that are similar to the news story given as input.

Another recommended system intended for newsgathering is called “What to Write and Why (W3)”, introduced by [19]. The intuition of W3 is to find stories that are being discussed by users in social media, which
are still however not covered by news outlets. To achieve that, they combine three different data sources: a stream of tweets, a stream of Wikipedia page views and a stream of news articles. A trending topic on Twitter and Wikipedia which is however uncovered in news articles will reflect a story of potential interest to be covered. They follow four steps: (1) event detection, where the SAX* algorithm is used for detecting events in each data source, (2) intra-source clustering, where events detected in each data source are clustered, (3) inter-source alignment, where clusters across different data sources are aligned, and (4) recommendation, where clusters are ranked to then recommend the top stories to the user. A similar approach to recommending uncovered news is presented by [73].

3.4 Content Verification

As well as being a useful source of unique information in the early stages of emergencies and breaking news reports, one problem with social media is that it is easy for anyone to post fake reports, which leads to the streams of information associated with breaking news being rife with inaccurate information [71]. It is of paramount importance for journalists to make sure that the reports they collect from social media are accurate [14, 28, 62], given the bad consequences that reporting inaccurate news may have [44], not only for the reputation of the news outlet but also for citizens. Aiming to analyse the impact of the spread of misinformation in social media, researchers have looked into the ability of ordinary social media users to discern misinformation from accurate reports. Using a crowdsourcing platform to run user studies where users were asked to determine if a piece of information was correct, [92] showed that the tendency is for users to assume that most of the information is accurate. This raises concern about the inability of ordinary users to detect misinformation. Research in recent years has focused on developing automated verification systems.

[47] extended previous work by [89] and [16] by incorporating what they called "verification features". These features were determined based on insights from journalists and included source credibility, source identification, source diversity, source and witness location, event propagation and belief identification. The authors showed that the proposed approach outperformed the two baselines. [80] tackled the verification task using three types of features: linguistic, user oriented and temporal propagation features. They compared two classifiers: Dynamic Time Wrapping (DTW) and Hidden Markov Models (HMMs). The results showed that HMMs outperformed DTWs. Temporal features proved to be the most helpful features in their experiments. [11] performed a comparison of three verification techniques: (1) use of textual patterns to extract claims about whether a tweet is fake or real and attribution statements about the source of the content; (2) exploiting information that same-topic tweets should also be similar in terms of credibility; and (3) use of a semi-supervised learning scheme that leverages the decisions of two independent credibility classifiers. Experiments on a wide range of datasets, they found the third approach performed best.

Verification has also been tackled as a task associated with rumours that spread in social media. This is the case of the RumourEval shared task at SemEval 2017 [20]. Subtask B consisted in determining if each of the rumours in the dataset were true, false or remained unverified. The best approach, by [25], used a stance classification system to determine the stance of each post associated with a rumour, which are aggregated to determine the likely veracity of the rumour. The verification task has sometimes been also framed as a fact-checking task, in which fact-checkable claims are checked against a database for accuracy. Most work on fact-checking claims has built knowledge graphs out of knowledge bases, such as Wikidata, to check the validity of claims [17, 67, 68, 87]. Use of fact-checking techniques can be of limited help in the context of breaking news events, where much of the information is new and may not be available in knowledge bases. Others, such as [65] with Hoaxy, implemented dashboard for tracking the spread of misinformation, which could be used to better understanding this phenomenon and to get new insights for improving verification systems.
While this survey mainly focuses on verification of textual content associated with news, there has been work on multimedia verification, including images and video. For more details on this line of research, the reader is referred to [10, 51, 52, 90] (image) and [6, 56] (video).

Research in verification has increased substantially in recent years with the advent of “fake news” as a major phenomenon in society, and given that the focus of this survey paper is much broader and focuses widely in newsgathering from social media, a comprehensive review of verification approaches is not within the scope of this paper. For further discussion on verification it is recommended to read detailed survey papers on rumour detection and resolution [91] and fake news detection [70], both in the context of social media.

3.5 Finding Information Sources

It is not only the content that is important in the newsgathering process. Journalists need to identify quality information sources they can follow during an event [21, 54, 72]. This information sources can be eyewitnesses on the ground, local people who know the area where the news is developing, experts in the topic, etc. They may want to follow them to get the latest updates, but they may also want to contact them for an interview or for further information.

[21] introduced Seriously Rapid Source Review (SRSR), a system that classifies social media users into one of the following categories: organisations, journalists/bloggers and ordinary people. They used a kNN classifier with five types of features to classify users during the 2011 England riots: network features, activity features, interaction features, named entities and topic distribution. The classifier achieved high precision (0.89) whereas the recall was relatively low (0.32). The authors argue that this is acceptable as journalists want to identify some users with high certainty (precision) while it is not necessary to identify them all (recall). [72] developed a similar classifier, in this a binary classifier distinguishing users on the ground and not on the ground. A difficult challenge they had to deal with was the fact that less than 5% of the users are actually on the ground, while the rest are tweeting from elsewhere, which makes the classification challenging. They implemented an SVM classifier that used several activity features, such as follower growth throughout the event as well as the number of retweets they got. With experiments on a dataset collected during the Occupy Wall Street protests, their classifier was able to detect, on average, 68% of users on the ground.

Others have formulated the source-finding task as a geolocation problem. In this case, the objective is to identify whether users are located within the region affected by the crisis event in question. A binary classifier would then determine if a user is within a distance of the event or not. [54] described a classifier that determined if a user was IR (inside the region) or OR (outside the region). They proposed to look only at the linguistic features of the content posted by the users. By using linguistic features like unigrams, bigrams and part-of-speech tags, and a Naive Bayes classifier, they achieved F1 scores of 0.831 for the 2013 Boston Bombing and 0.882 for the 2012 Hurricane Sandy.

Others have specifically addressed the task of identifying witnesses, i.e. users who report to be on the ground and sharing first hand information of the event. This is indeed a very important task, and of great interest to journalists and newsrooms. However, the main challenge lies in the very small number of users who can be classified as witnesses. Indeed, for major events discussed worldwide, the ratio of witnesses tends to be very low. Exploring a range of crisis events, [26] found 401 witness tweets and 118,700 tweets, which leads to a ratio of 0.3% witness tweets. For the classification of witness vs non-witness tweets, a range of features have been used, especially focusing on linguistic features, such as use of first-personal pronouns, temporal markers, locative markers or exclamative punctuation [23]. Both [26] and [23] reported high performance scores of above 80% in terms of F1 score. While their experiments were preliminary, more work is still needed to achieve generalisation of these results to new, unseen events.

[78] provided a taxonomy of types of accounts on what they called the “Witness Model”. They define four types of accounts: (1) witness accounts, or accounts reporting a direct observation of the event or its effects, (2)
impact accounts, or those being directly impacted or taking direct action because of the event and/or its effects, (3) relay accounts, in which a micro-blogger relays a witness or impact account, and (4) other accounts, which are users relevant to the event, but do not fall in any of the other three categories. Besides textual content, [77, 79] used geotags and image features to perform supervised classification of users as witnesses or non-witnesses. They used unigrams, bigrams and part-of-speech tags as textual features. They showed that the image-based features performed substantially better (precision = 0.803, recall = 0.588) than textual features (precision = 0.978, recall = 0.943) in detecting witness accounts. In line with previous research, they also emphasise the difficulty of the task provided the small ratio of witness accounts with respect to non-witness accounts. One limitation of the work by [77] is that they only analyse geolocated tweets, which is a small fraction of the entire Twitter stream, and could therefore be missing out important updates from non-geolocated, witness users.

Given the small ratio of witness users reported in the work above, research into finding eyewitnesses from unfiltered streams has not yet been conducted. A good approximation is that by [72], who looked into social signals as potentially indicative of a user being a witness. Instead, others have looked into the content of posts. Research comparing these two approaches would also help determine future directions in the detection of eyewitnesses.

3.6 Newsgathering Dashboards

Newsgathering from social media is also a topic of interest in the HCI research community. There have been numerous attempts at putting together dashboards specifically designed for newsgathering from social media. The first such application was TwitInfo [49]. TwitInfo was intended to allow journalists to track the latest developments associated with events in a real-time fashion, as opposed to post-hoc analysis, which is crucial for journalists looking for early reports. They treat the tweet stream as a signal processing problem, binning the frequencies (e.g. per minute) to identify peaks that are indicative of subevents. As frequencies evolve over time depending on the popularity of a event, TwitInfo continually updates mean frequency values observed so far. This in turn modifies the threshold for a new bin to be considered a peak and hence a subevent. While this step is designed as an event detection system, they then implemented a dashboard that visualised, in real-time, the subevents associated with an event. The dashboard was tested with 12 participants, proving it a useful application for data analysis for journalists. Similar approaches have been followed by others. [21] developed a dashboard for exploration of users to identify different types of users reporting about an event. [93] developed a dashboard for detailed exploration of news reports extracted from Twitter’s trending topics. [46] developed a similar application, whose visualisations largely focus on the social network and interactions between users during breaking news events, rather than the content of the tweets, which the focus of [93]. All these works showed the potential of Twitter as a newsgathering platform with the assistance of bespoke tools. Another dashboard, called MARSA, was introduced by [4]. Their dashboard also enables visualisation of the temporal evolution of events, showing the most important news articles and tweets, mapped information, and the main entities being mentioned.

[64] focused instead on geolocated social media posts when they developed CityBeat, a dashboard for exploration of local news reports. Having deployed their application in several newsrooms, an important limitation they found is the popularity bias. Algorithms gathering news from social media tend to favour popular news stories that were discussed by a significant number of people, missing out on the less popular, long tail of news stories of interest to fewer people.

[76] performed a comprehensive study into the use of dashboards for newsgathering from social media, particularly focusing on the problem of verifying content by using dashboards. Through user studies in a newsroom, the authors concluded with reflections on the design of tools to support journalistic work with social media. Among others, the authors highlight the importance of time pressure, temporal cycles, and deadlines, hence suggesting that algorithms for newsgathering need to be both accurate and efficient. Other important findings
included considering aspects specific to newsrooms, as the audiences, national and legal frameworks, and the type of editorial control, vary across newsrooms, and require journalistic tools to take those into consideration.

3.7 Other Tasks

There have been numerous other attempts at mitigating the challenges of newsgathering from social media. We list and briefly discuss these other tasks in this section.

Event monitoring. Event tracking through social media is usually performed by predefining a set of keywords or hashtags to collect the data. The list of keywords may however vary over time, and may need to be expanded in order to ensure collection of relevant data. There has been research looking into keyword expansion for these purposes. Improved collection of event-related tweets for increased coverage was pioneered by [53]. They used Latent Dirichlet Allocation (LDA) to enable discovery of relevant keywords associated with a known event, which was designed for and tested with leisure events, which in their case included music and sporting events. Its application to other kinds of emergent, unpredictable events was not studied. [81–83] proposed an adaptive microblog crawling approach to detect new hashtags linked to the event of interest. Their approach looks at correlations between hashtag co-occurrences to identify those that exceed a threshold. The limitation of this approach is that it is only applicable to hashtags, and largely dependent on a manually predefined threshold. [30] proposed to use features derived from user metadata, geolocation and time to overcome the limited availability of textual content. Their approach led to improved results, however showing difficulty to generalise to new events.

Extracting information nuggets during crises. [36] define information nuggets as brief, self-contained information items relevant to disaster response. They first classify tweets as personal, informative or other. Then, they define a typology of five types of informative tweets: (1) caution and advice, (2) casualties and damage, (3) donations of money, goods or services, (4) people missing, found or seen, and (5) information source. They implemented a Naive Bayes classifier with a set of linguistic and social features, achieving a precision of 0.57 and a recall of 0.57.

Identifying news from tweets. [29] aimed to identify newsworthy tweets, i.e. tweets that are worthy of news reporting. Using two Twitter datasets, they introduced an active training approach to rank tweets by newsworthiness, achieving an F1 score of 0.778.

Classification of tweets. There has been work classifying disaster-related tweets. [74] introduced an annotation schema with seven types of tweets: (1) sentiment, tweets expressing emotions towards the event, (2) action, describing actions for event preparedness, (3) preparation, describing preparation plans, (4) reporting, which includes first-hand information, (5) information, sharing or seeking information from others, (6) movement, which refer to sheltering or evacuation, and (7) others. They used an SVM classifiers with a range of features including word embeddings, part-of-speech tags and social features, achieving an F1 score of 0.551.

Stance detection. Recent work has proposed to look into the stance expressed by different users in social media towards a particular piece of information that is circulating. The intuition behind this is that the aggregated stance expressed by users could be indicative of the veracity of the information, which could be leveraged for verification purposes. [48] proposed to use a Hawkes Process classifier to leverage the temporal evolution of stances. Research has shown that leveraging the temporal component and the evolving discourse around news stories is important to determine the stance of individual posts. [94] conducted a comprehensive study comparing different sequential classifier to mine the discursive structure of social media information, finding that a Long-Short Term Memory network (LSTM) performed best, outperforming Conditional Random Fields (CRF) and Hawkes Processes.

Identifying high-consensus news. [8] build on the idea that, for many news stories, there are two groups of users with different opinions, which they label red and blue. Looking at stances from social media users, who
may agree or disagree with a news article’s content, they aim to identify news stories where there is a consensus across different user groups.

4 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

In this survey paper we have outlined the efforts in the scientific community to tackle the increasingly important task of newsgathering from social media, which has become commonplace for journalists. Given the difficulty of newsgathering from a large data source like social media, there has been a body of research in the use of data mining and natural language processing for facilitating the task, which we have organised in seven subsections: event detection, summarisation, news recommenders, content verification, finding information sources, development of newsgathering dashboards and other tasks. Despite substantial progress in the field, it has proven a difficult task which is still being investigated. The main shortcomings we have identified in present work, which we outline here as important avenues for future research, include:

- **Development of real-time newsgathering approaches**: much of the work on newsgathering from social media is conducted post-hoc, i.e. assuming that the entire event has been observed. However, an online or real-time scenario is crucial when newsgathering is being performed for journalists and/or newsrooms. The earliness with which newsworthy reports are identified needs to be an important factor to be measured in future work, making sure that presented approaches are efficiently and effectively applicable in a real-time scenario during breaking news.

- **Collection and release of datasets**: while many of the works discussed in this survey have collected and annotated their own datasets, few of these are publicly available. Release of datasets is in this case very important to make sure that future research is comparable. Provided the dearth of publicly available datasets, there is a need to generate benchmark datasets for comparison purposes. This can be achieved either by releasing datasets associated with papers, or by running shared tasks where datasets are published for researchers to participate in an open competition.

- **Generalisation to new events**: ideally one wants to test a newsgathering approach in multiple datasets associated with different events, however this is again hindered by the scarcity of publicly available datasets. Release of more datasets should also help generalisation of approach to new events, by training on some events, and testing on other, held-out events. Some of the works above may have a risk of overfitting to a specific dataset, which would improve immensely by experimenting on more datasets.

- **Detection of local news**: many newsgathering approach rely on outstanding frequencies of vocabulary terms, social activity, etc. While this has proven to be very useful for newsgathering, it also has the limitation that it detects major news events, lacking the ability to detect less popular news that are in the long tail. This is the example of local news, which can be very important in a particular region, but they do not generally sufficient volume on Twitter in order to be detected by the above means. Future research should look into identification of these lesser popular news.

- **Detection of users in the long tail**: a similar issue occurs when using approaches for detecting high quality information sources. Depending on the approach, users with many followers, users who tweet more often, etc. may be detected more often. There are, however, witnesses and other high quality users, who do not attract as many retweets, followers,... who are providing useful, unique information. More research is needed in avoiding algorithmic biases that favour popular users in order to be able to find users in the long tail.

- **Research into fully-fledged newsgathering systems**: most works above have focused on specific sub-tasks of the entire pipeline involved in the newsgathering process. Here we have discussed work on event detection, summarisation, news recommenders, content verification, finding information sources
and development of dashboards, among others. Integration of these different subtasks into a single, fully-fledged pipeline has not yet been studied.

Summarising, substantial progress has been made on developing computational approaches to newsgathering from social media by leveraging data mining and natural language processing techniques. While these works have shown encouraging results towards semi-automation of the newsgathering process to assist journalists and news practitioners, there is still more research to be done to deal with the numerous challenges posed by social media.

REFERENCES

[1] Abdenour, J. [2017], ‘Digital gumshoes: Investigative journalistsÂ‘ use of social media in television news reporting’, Digital Journalism 5(4), 472–492.
[2] Abel, F., Hauff, C., Houben, G.-J., Stronkman, R. and Tao, K. [2012], ‘TwiCident: fighting fire with information from social web streams’, in Proceedings of the 21st International Conference on World Wide Web’, ACM, pp. 305–308.
[3] Alejandro, J. [2010], ‘Journalism in the age of social media’, Reuters Institute Fellowship Paper, University of Oxford pp. 2009–2010.
[4] Amer-Yahia, S., Anjum, S., Ghemawat, A., Siddique, A., Abbar, S., Madden, S., Marcus, A. and El-Haddad, M. [2012], Maqsa: a system for social analytics on news, in Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data’, ACM, pp. 653–656.
[5] Anderson, C. W. [2013], ‘Towards a sociology of computational and algorithmic journalism’, new media & society 15(7), 1005–1021.
[6] Brandtzaeg, P. B., Lüders, M., Spangenberg, J., Rath-Wiggins, L. and Følstad, A. [2016], ‘Emerging journalistic verification practices concerning social media’, Journalism Practice 10(3), 323–342.
[7] Boididou, C., Andreadou, K., Papadopoulos, S., Apostolidis, L., Kritsara, A. and Komatsiaris, Y. [2015], Media revealr: A social multimedia monitoring and intelligence system for web multimedia verification, in Pacific-Asia Workshop on Intelligence and Security Informatics’, Springer, pp. 1–20.
[8] Bowdon, M. A. [2014], ‘Tweeting an ethos: Emergency messaging, social media, and teaching technical communication’, Technical Communication Quarterly 23(1), 35–54.
[9] Brands, B. J., Graham, T. and Broersma, M. [2018], Social media sourcing practices: How dutch newspapers use tweets in political news coverage, in Managing Democracy in the Digital Age’, Springer, pp. 159–178.
[10] Brandsma, G., Lüders, M., Spangenberg, J., Bath-Wiggins, L. and Følstad, A. [2016], ‘Emerging journalistic verification practices concerning social media’, Journalism Practice 10(3), 323–342.
[11] Brandsma, G. and Graham, T. [2013], ‘Twitter as a news source: How dutch and british newspapers used tweets in their news coverage, 2007–2011’, Journalism Practice 7(4), 446–464.
[12] Castillo, C., Mendoza, M. and Poblete, B. [2011], ‘Verifying information with multimedia content on twitter’, Multimedia Tools and Applications pp. 1–27.
[13] Ciampaglia, G. L., Shiralkar, P., Rocha, L. M., Bollen, J., Menczer, F. and Flammini, A. [2015], ‘Computational fact checking from knowledge networks’, PloS one 10(6), e0128193.
4 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

[24] Dou, W., Wang, K., Ribarsky, W. and Zhou, M. [2012], Event detection in social media data, in ‘IEEE VisWeek Workshop on Interactive Visual Text Analytics-Task Driven Analytics of Social Media Content’, pp. 971–980.

[25] Enayet, O. and El-Beltagy, S. R. [2017], NileTMRG at SemEval-2017 Task 8: Determining Rumour and Veracity Support for Rumours on Twitter, in ‘Proceedings of SemEval’, ACL.

[26] Fang, R., Nourbakhsh, A., Liu, X., Shah, S. and Li, Q. [2016], Witness identification in twitter, in ‘Proceedings of the Fourth International Workshop on Natural Language Processing for Social Media’, pp. 65–73.

[27] Fink, K. [2014], Data-Driven Sourcing: How Journalists Use Digital Search Tools to Decide What’s News, Columbia University.

[28] Fletcher, R., Schifferes, S. and Thurman, N. [2017], ‘Building the å¥truthmeterå¥ training algorithms to help journalists assess the credibility of social media sources’, Convergence p. 1354856517714955.

[29] Freitas, J. and Ji, H. [2016], Identifying news from tweets, in ‘Proceedings of 2016 EMNLP Workshop on Natural Language Processing and Computational Social Science’, pp. 11–16.

[30] Fresno, V., Zubiaga, A., Ji, H. and Martínez, R. [2015], ‘Exploiting geolocation, user and temporal information for natural hazards monitoring in twitter’, Procesamiento del Lenguaje Natural 54, 85–92.

[31] Fuchs, C. [2017], Social media: A critical introduction, Sage.

[32] Gross, B. [2017], Harvesting social media for journalistic purposes in the uk, in ‘Privacy, Data Protection and Cybersecurity in Europe’, Springer, pp. 31–42.

[33] Hermida, A. [2012], ‘Social journalism: Exploring how social media is shaping journalism’, The handbook of global online journalism pp. 309–328.

[34] Hermida, A. [2013], ‘# journalism: Reconfiguring journalism research about twitter, one tweet at a time’, Digital Journalism 1(3), 295–313.

[35] Hu, M., Liu, S., Wei, F., Wu, Y., Stasko, J. and Ma, K.-L. [2012], Breaking news on twitter, in ‘Proceedings of the SIGCHI Conference on Human Factors in Computing Systems’, ACM, pp. 2751–2754.

[36] Imran, M., Elbassuoni, S., Castillo, C., Diaz, F. and Meier, P. [2013], Extracting information nuggets from disaster-related messages in social media, in ‘Proceedings of ISCRAM’, pp. 791–800.

[37] Khan, M. A. H., Bollegala, D., Liu, G. and Sezaki, K. [2013], Multi-tweet summarization of real-time events, in ‘Social Computing (SocialCom), 2013 International Conference on’, IEEE, pp. 128–133.

[38] Khondker, H. H. [2011], ‘Role of the new media in the arab spring’, Globalizations 8(5), 675–679.

[39] Knight, M. [2012], ‘Journalism as usual: The use of social media as a newsgathering tool in the coverage of the iranian elections in 2009’, Journal of Media Practice 13(1), 61–74.

[40] Knight, M. and Cook, C. [2013], Social media for journalists: Principles and practice, SAGE Publications Limited.

[41] Krestel, R., Werkmeister, T., Wiradarma, T. P. and Kasneci, G. [2015], Tweet-recommender: Finding relevant tweets for news articles, in ‘Proceedings of the 24th International Conference on World Wide Web’, ACM, pp. 53–54.

[42] Kwak, H., Lee, C., Park, H. and Moon, S. [2010], What is twitter, a social network or a news media?, in ‘Proceedings of the 19th international conference on World Wide web’, ACM, pp. 591–600.

[43] Lenhart, A. and Fox, S. [2009], Twitter and status updating, Pew Internet & American Life Project Washington, DC.

[44] Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N. and Cook, J. [2012], ‘Misinformation and its correction: Continued influence and successful debiasing’, Psychological Science in the Public Interest 13(3), 106–131.

[45] Li, B., Stokowski, S., Dittmore, S. W. and Scott, O. K. [2017], ‘For better or for worse: The impact of social media on chinese sports journalists’, Communication & Sport 5(3), 311–330.

[46] Lin, C.-Y., Li, T.-Y. and Chen, P. [2016], An information visualization system to assist news topics exploration with social media, in ‘Proceedings of the 7th 2016 International Conference on Social Media & Society’, ACM, pp. 23:1–23:9.

[47] Liu, X., Nourbakhsh, A., Li, Q., Fang, R. and Shah, S. [2015], Real-time rumor debunking on twitter, in ‘Proceedings of the 24th ACM International Conference on Information and Knowledge Management’, ACM, pp. 1867–1870.

[48] Lukasik, M., Srijith, P., Vu, D., Bontcheva, K., Zubiaga, A. and Cohn, T. [2016], Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter, in ‘Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)’, Vol. 2, pp. 393–398.

[49] Marcus, A., Bernstein, M. S., Badar, O., Karger, D. R., Madden, S. and Miller, R. C. [2011], Twitinfo: aggregating and visualizing microblogs for event exploration, in ‘Proceedings of the SIGCHI conference on Human factors in computing systems’, ACM, pp. 227–236.

[50] Medalliano, P., Xypolopoulos, C., Nikolentzos, G. and Vazirgiannis, M. [2018], An optimization approach for sub-event detection and summarization in twitter, in ‘European Conference on Information Retrieval’, Springer, pp. 481–493.

[51] Middleton, S. E. and Krivcoev, V. [2016], ‘Geoparsing and geosemantics for social media: spatiotemporal grounding of content propagating rumors to support trust and veracity analysis during breaking news’, ACM Transactions on Information Systems (TOIS) 34(3), 16.

[52] Middleton, S., Papadopoulos, S. and Kompatsiaris, Y. [2018], ‘Social computing for verifying social media content in breaking news’, IEEE Internet Computing.
4 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

[53] Milajevs, D. and Bouma, G. [2013], Real time discussion retrieval from twitter, in ‘Proceedings of the 22nd International Conference on World Wide Web’, ACM, pp. 795–800.

[54] Morstatter, F., Lubold, N., Pon-Barry, H., Pfeffer, J. and Liu, H. [2014], Finding eyewitness tweets during crises, in ‘Proceedings of the ACL 2014 Workshop on Language Technologies and Computational Social Science’, pp. 23–27.

[55] Nichols, J., Mahmud, J. and Drews, C. [2012], Summarizing sporting events using twitter, in ‘Proceedings of the 2012 ACM international conference on Intelligent User Interfaces’, ACM, pp. 189–198.

[56] Papadopoulos, O., Zampoglou, M., Papadopoulos, S. and Kompatsiaris, Y. [2017]. Web video verification using contextual cues, in ‘Proceedings of the 2nd International Workshop on Multimedia Forensics and Security’, ACM, pp. 6–10.

[57] Parmelee, J. H. [2013], ‘Political journalists and twitter: Influences on norms and practices’, Journal of Media Practice 14(4), 291–305.

[58] Phelan, O., McCarthy, K., Bennett, M. and Smyth, B. [2011], ‘Terms of a feather: Content-based news recommendation and discovery using twitter’, Advances in Information Retrieval pp. 448–459.

[59] Phelan, O., McCarthy, K. and Smyth, B. [2009], Using twitter to recommend real-time topical news, in ‘Proceedings of the third ACM conference on Recommender systems’, ACM, pp. 385–388.

[60] Phuvipadawat, S. and Murata, T. [2010], Breaking news detection and tracking in twitter, in ‘Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)’, IEEE, pp. 120–123.

[61] Saldana, M., Higgins Joyce, V. d. M., Schmitz Weiss, A. and Alves, R. C. [2017]. ‘Sharing the stage: Analysis of social media adoption by latin american journalists’, Journalism Practice 11(4), 396–416.

[62] Schifferes, S., Newman, N., Thurman, N., Corney, D., Göker, A. and Martin, C. [2014], ‘Identifying and verifying news through social media: Developing a user-centred tool for professional journalists’, Digital Journalism 2(3), 406–418.

[63] Schulz, A., Ristoski, P. and Paulheim, H. [2013], I see a car crash: Real-time detection of small scale incidents in microblogs, in ‘Proceedings of the Extended Semantic Web Conference’, Springer, pp. 22–33.

[64] Schwartz, R., Naaman, M. and Teodor, R. [2015], Editorial algorithms: Using social media to discover and report local news., in ‘Proceedings of the International Conference on Web and Social Media’, pp. 407–415.

[65] Shao, C., Ciampaglia, G. L., Flammioni, A. and Menczer, F. [2016], Hoaxy: A platform for tracking online misinformation, in ‘Proceedings of the 25th International Conference Companion on World Wide Web’, International World Wide Web Conferences Steering Committee, pp. 745–750.

[66] Shapira, O., Ronen, H., Adler, M., Amstader, Y., Bar-Ilan, J. and Dagan, I. [2017], Interactive abstractive summarization for event news tweets, in ‘Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations’, pp. 109–114.

[67] Shi, B. and Weninger, T. [2016], ‘Discriminative predicate path mining for fact checking in knowledge graphs’, Knowledge-Based Systems 104, 123–133.

[68] Shiralkar, P. [2017], Computational Fact Checking by Mining Knowledge Graphs, PhD thesis, Indiana University.

[69] Shapira, O., Khoshelham, K., McLean, S., Winter, S. and Vasardani, M. [2017], ‘Identifying witness accounts from social media using twitter’, ISPRS International Journal of Geo-Information 6(4), 120:1–120:24.

[70] Shao, C., Ciampaglia, G. L., Flammini, A. and Menczer, F. [2016], Hoaxy: A platform for tracking online misinformation, in ‘Proceedings of the 22nd International Conference on World Wide Web’, ACM, pp. 3632–3644.

[71] Stowe, K., Paul, M., Palmer, M., Palen, L. and Anderson, K. [2016], Identifying and categorizing disaster-related tweets, in ‘Proceedings of The Fourth International Workshop on Natural Language Processing for Social Media’, pp. 1–6.

[72] Thurman, N. [2018], ‘Social media, surveillance, and news work: On the apps promising journalists a â€œcrystal ballâ€œ’, Digital Journalism 6(1), 76–97.

[73] Tolmie, P., Procter, R., Randall, D. W., Rouncefield, M., Burger, C., Wong Sak Hoi, G., Zubiaga, A. and Liakata, M. [2017], Supporting the use of user generated content in journalistic practice, in ‘Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems’, ACM, pp. 3632–3644.
4 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

[79] Truelove, M., Vasardani, M. and Winter, S. [2017], 'Testing the event witnessing status of micro-bloggers from evidence in their micro-blogs', *PloS one* 12(12), e0189378.

[80] Vosoughi, S. [2015], Automatic detection and verification of rumors on Twitter, PhD thesis.

[81] Wang, X., Tokarchuk, L., Cuadrado, F. and Poslad, S. [2013], Exploiting hashtags for adaptive microblog crawling, in 'Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining', ACM, pp. 311–315.

[82] Wang, X., Tokarchuk, L., Cuadrado, F. and Poslad, S. [2015], Adaptive identification of hashtags for real-time event data collection, in 'Recommendation and Search in Social Networks', Springer, pp. 1–22.

[83] Wang, X., Tokarchuk, L. and Poslad, S. [2014], 'On summarization and timeline generation for evolutionary tweet streams', *IEEE Transactions on Knowledge and Data Engineering* 27(5), 1301–1315.

[84] Weiler, A., Scholl, M. H., Wanner, F. and Rohrdantz, C. [2013], Event identification for local areas using social media streaming data, in 'Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems'.

[85] Xie, W., Zhu, F., Jiang, J., Lim, E.-P. and Wang, K. [2016], 'Topicsketch: Real-time bursty topic detection from twitter', *IEEE Transactions on Knowledge and Data Engineering* 28(8), 2216–2229.

[86] Yang, F., Liu, Y., Yu, X. and Yang, M. [2012], Automatic detection of rumor on sina weibo, in 'Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics’, ACM, p. 13.

[87] Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y., Bouwmeester, R. and Spangenberg, J. [2016], Web and social media image forensics for news professionals, in 'Proceedings of the Workshop on Social Media in the Newsroom', pp. 159–166.

[88] Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M. and Procter, R. [2018], 'Detection and resolution of rumours in social media: A survey', *ACM Computing Surveys (CSUR)* 51(2), 32:1–32:36.

[89] Zubiaga, A. and Ji, H. [2014], 'Tweet, but verify: epistemic study of information verification on twitter', *Social Network Analysis and Mining* 4(1), 1–12.

[90] Zubiaga, A., Ji, H. and Knight, K. [2013], Curating and contextualizing twitter stories to assist with social newsgathering, in 'Proceedings of the 2013 international conference on Intelligent user interfaces', ACM, pp. 213–224.

[91] Zubiaga, A., Kochkina, E., Liakata, M., Procter, R., Lukasik, M., Bontcheva, K., Cohn, T. and Augenstein, I. [2018], 'Discourse-aware rumour stance classification in social media using sequential classifiers', *Information Processing & Management* 54(2), 273–290.

[92] Zubiaga, A., Spina, D., Amigó, E. and Gonzalo, J. [2012], Towards real-time summarization of scheduled events from twitter streams, in 'Proceedings of the 23rd ACM conference on Hypertext and social media’, ACM, pp. 319–320.