Obesity and the risk of developing chronic diseases in middle-aged and older adults: Findings from an Australian longitudinal population survey, 2009–2017

Syed Afroz Keramat1,2,3*, Khorshed Alam2,3, Rezwanul Hasan Rana2,4, Rupok Chowdhury2, Fariha Farjana1, Rubayyat Hashmi2,3, Jeff Gow2,5, Stuart J. H. Biddle3

1 Economics Discipline, Social Science School, Khulna University, Khulna, Bangladesh, 2 School of Business, University of Southern Queensland, Toowoomba, QLD, Australia, 3 Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, Australia, 4 The Centre for the Health Economy, Macquarie University, Sydney, NSW, Australia, 5 School of Accounting, Economics, and Finance, University of KwaZulu-Natal, Durban, South Africa

* syed.afroz@econ.ku.ac.bd

Abstract

Background
Overweight and obesity impose a significant health burden in Australia, predominantly the middle-aged and older adults. Studies of the association between obesity and chronic diseases are primarily based on cross-sectional data, which is insufficient to deduce a temporal relationship. Using nationally representative panel data, this study aims to investigate whether obesity is a significant risk factor for type 2 diabetes, heart diseases, asthma, arthritis, and depression in Australian middle-aged and older adults.

Methods
Longitudinal data comprising three waves (waves 9, 13 and 17) of the Household, Income and Labour Dynamics in Australia (HILDA) survey were used in this study. This study fitted longitudinal random-effect logistic regression models to estimate the between-person differences in the association between obesity and chronic diseases.

Results
The findings indicated that obesity was associated with a higher prevalence of chronic diseases among Australian middle-aged and older adults. Obese adults (Body Mass Index [BMI] ≥ 30) were at 12.76, 2.05, 1.97, 2.25, and 1.96, times of higher risks of having type 2 diabetes (OR: 12.76, CI 95%: 8.88–18.36), heart disease (OR: 2.05, CI 95%: 1.54–2.74), asthma (OR: 1.97, CI 95%: 1.49–2.62), arthritis (OR: 2.25, 95% CI: 1.90–2.68) and depression (OR: 1.96, CI 95%: 1.56–2.48), respectively, compared with healthy weight counterparts. However, the study did not find any evidence of a statistically significant association between obesity and cancer. Besides, gender stratified regression results showed that
Introduction

According to the World Health Organisation (WHO), 1.9 billion adults in the world were either overweight or obese in 2016, and the prevalence of obesity has increased threefold since 1975 [1]. It is also estimated that at least 7% of deaths from all causes globally in 2015 were related to overweight or obesity [2]. In 2017–2018, 67% (12.5 million) of Australian adults were overweight or obese, increasing from 63.4% in 2014–2015. In Australia, the prevalence of severe obesity (BMI ≥ 35 kg/m²) has almost doubled between 1995 and 2014–15 [3]. A recent study also confirmed that over one in four Australian adults (26%) were obese in 2019 [4].

Overweight and obesity impose a considerable burden (both direct and indirect) in Australia. Overweight and obesity contributed 8.4% of the risk factor of the burden of diseases in Australia in 2015 [5]. Besides, there is evidence that obesity is strongly associated with a higher acquisition of disability [6]. Further, obese Australians are more likely to report poor general health and mental health [7]. Moreover, obesity has a substantial negative impact on diverse labour market outcomes, such as high absenteeism [8], increased presenteeism [9], job dissatisfaction [10], and a higher rate of job discrimination [11].

There is increasing empirical evidence that obesity triggers the likelihood of different non-communicable diseases (NCDs), such as type 2 diabetes, high blood pressure, cardiovascular disease (CVD), cancer, asthma, sleep apnea, and poor mental health [12]. An excessive gain of body weight from early childhood to adulthood is consistently associated with the risk of heart disease [13]. Obesity is also significantly related to the risk of heart disease-related morbidity and mortality [14]. Further, it is strongly associated with the incidence of type 2 diabetes [15] and depression [16]. Furthermore, the likelihood of different patterns of arthritis, such as osteoarthritis, rheumatoid arthritis, and psoriatic arthritis, is often associated with increased body weight [17]. The burden of these chronic diseases includes low quality of life, productivity loss, and increased healthcare costs [18, 19].

While the prevalence of obesity and chronic diseases is high across Australia, people from lower socioeconomic backgrounds are often disproportionately affected [20]. Although there is a clear link between obesity and chronic health conditions, the severity of the burden of risk might vary based on an individual’s socioeconomic and demographic conditions as well as lifestyle characteristics. For policy-making purposes, it is crucial to understand whether obesity causes an increase in specific types of chronic disease among the poor, the elderly, and physically inactive compared to the affluent, younger and/or physically active population. Previous studies estimating the obesity and chronic disease nexus in Australia often focused on a single disease using cross-sectional survey data, which is insufficient to deduce a temporal relationship. Besides, there is a lack of emphasis on the critical confounding factors (e.g. socioeconomic and demographic) that might explain the severity of the risks of obesity for a specific
cohort of people, but not others. There is also a lack of literature that has employed nationally representative longitudinal survey data to examine the association between obesity and chronic disease burden. Longitudinal designs are essential for the understanding of the dynamics of the relationship and interdependence (e.g., the link between obesity and chronic diseases) and to better identify the influence of one factor (e.g., obesity) over the other (e.g., chronic diseases). Therefore, this study aims to fill these gaps in the literature by employing the longitudinal study design. The main objective of this study is to estimate the between-person differences in the relationship between obesity and chronic diseases in Australian adults. To the best of the authors’ knowledge, no previous research has focused on the obesity and chronic disease nexus from the Australian perspective, especially for middle-aged and older adults using longitudinal data.

Materials and methods

Data source and sample selection

The study utilised nationally representative data from the Household, Income and Labor Dynamics in Australia (HILDA) survey. The HILDA survey was initiated in 2001 by collecting detailed information on 13,000 individuals within 7,000 households using a multistage sampling approach. Since then, the survey has gathered information on a wide range of topics: wealth, retirement, fertility, health, education, skills and abilities from members of households aged 15 years or over through a self-completed questionnaire (SCQ) and face-to-face interviews by trained interviewers. The description of the HILDA survey design is shown elsewhere [21].

Participants of this longitudinal study were selected from three waves (waves 9, 13 and 17) of the HILDA survey, and data were collected during the years 2009, 2013 and 2017, respectively. The reason behind considering these waves was that these three waves substantially capture the respondents’ health and lifestyle-related characteristics. Fig 1 demonstrates the procedure of obtaining the final analytic sample. The analytical sample is restricted to adults aged 45 years and over. The inclusion criteria for the subsample analyses were no missing information on participants’ Body Mass Index (BMI) and chronic diseases. This study also excludes pregnant women’s data to avoid potential biases. The final analytic sample consisting of 20,538 person-year observations from 9,822 unique participants was achieved by applying inclusion and exclusion criteria.

Outcome variable

The outcome variable of the study is self-reported chronic disease. The HILDA survey collects information on an individual’s chronic disease status by asking questions, “are you diagnosed with a serious illness?” This study considered six types of chronic diseases, including type 2 diabetes, heart disease, asthma, cancer, arthritis and depression, as the outcome variables of interest. Responses on the outcome variables were taken in binary form (0 = no, 1 = yes).

Exposure variable

This study checks if obesity is a significant risk factor for chronic diseases among Australian middle-aged and older adults. The current study measures obesity through BMI. HILDA survey collects data on BMI using self-reported weight and height following the formula of weight (in kilograms) divided by height (in metres) square. The authors categorised BMI as underweight (<18.50), normal/healthy weight (18.50–24.99), overweight (25.00–29.99), and obese (≥ 30.00) following WHO guidelines [1]. This classification allows an assessment of how and
in what context underweight, overweight and obese participants are susceptible to different chronic diseases compared with their healthy weight counterparts.

Other covariates

This study considered potential confounders following previous studies [22, 23]. One significant advantage of the HILDA survey is that it provides a considerable amount of data on the demographic characteristics of respondents, such as age, gender, income level, education, area of residence and other behavioural factors. Table 1 shows the set of the confounders with their nature and categories considered for the present study. For instance, age is categorised as middle-aged (45 to 59 years) and older adults (≥ 60 years). Other socio-demographic confounders include gender (male and female), civil status (partnered, unpartnered), education (year 12 or below, professional qualifications, and university qualifications), household yearly disposable income (expressed in quintiles), labour force status (employed, unemployed, and not in the labour force), Indigenous status (non-Indigenous, and Aboriginal/Torres Strait Islander [ATSI]), location (major city, regional city and remote areas).

Besides, three behavioural factors: smoking status, alcohol consumption and physical activity, served as the confounders. Smoking status was categorised as never smoked, ex-smoker,
and current smoker. The variable alcohol consumption was classified as never drank, ex-drinker, only rarely to four days and more than four days per week. Physical activity-related information was collected by questioning how often the respondent participates in physical activity each week for at least 30 minutes. This study categorised physical activity as: not at all to less than one, 1 to 3 times, and more than three times per week.

Estimation strategy

The authors prepared an unbalanced longitudinal data set consisting of 20,538 person-year observations by linking de-identified records of 9,822 unique adults. This study considered three distinct waves (waves 9, 13, and 17) of the HILDA survey covering the period from 2009 to 2017. Due to the longitudinal nature of the data, repeated observations on the same individual were used for subsample analyses. This study reports baseline, final wave, and pooled prevalence of obesity, six chronic diseases, socio-demographic and behavioural characteristics in the form of frequency (n) and percentages (%) with 95% confidence intervals (CI). The relationships between the exposure and other covariates with chronic diseases were first identified through bivariate analysis (test results not reported here). Statistically significant (P-value <0.05) variables in the bivariate analyses were then considered for the final regression model.

This study employed the longitudinal random-effects logistic regression model to capture between-person variation as the study data were derived from a longitudinal dataset (repeated measures). The outcome variables (type 2 diabetes, heart disease, asthma, cancer, arthritis and depression) are binary (whether they have a particular chronic condition or not). Therefore, this study utilised the logistic link. To ease the interpretation, this study reports regression results in the form of adjusted Odds Ratios (AOR) along with the 95% confidence interval. This study sets p-value <0.05 for the statistical significance of a variable. A variable will be considered statistically significant if the p-value for the variable is less than the significance level in the regression models. All statistical analyses were performed using Stata, version 16 (StataCorp LLC).
Ethics approval

This study did not require ethical approval as the analysis used only de-identified existing unit record data from the HILDA survey. However, the authors completed and signed the Confidentiality Deed Poll and sent it to NCLD (ncldresearch@dss.gov.au) and ADA (ada@anu.edu.au) before the data applications’ approval. Therefore, datasets analysed and/or generated during the current study are subject to the signed confidentiality deed.

Results

Table 2 displays the characteristics of the study participants in terms of their chronic diseases, socio-demographic, and behavioural characteristics at the baseline, final, and pooled in all waves. Among the study participants, 47% were male, and 53% were female, a higher proportion (53.26%) were middle-aged, nearly two-thirds (65.53%) were unpartnered, over one-fifth (21.86%) had university qualifications, over half were employed (53.22%), primarily non-Indigenous and lived in major cities (61.96%) at the baseline. The results also show that nearly 48% of participants never smoke, 59% consume alcohol from rarely to four days per week, and 35% performed physical activities that last at least 30 minutes over three times per week (baseline wave).

Of 9,822 participants (20,538 observations), approximately 38.48% were overweight, and 28.11% were obese. The pooled prevalence of chronic conditions, such as type 2 diabetes, heart diseases, asthma, cancer, arthritis, and depression in study participants was approximately 9.01%, 8.35%, 9.96%, 5.68%, 30.64%, and 13.0%, respectively (pooled in all waves).

Fig 2 displays the overall prevalence of various chronic diseases among Australia’s middle-aged and older adults at three different periods: 2009, 2013 and 2017. Fig 2 manifests that the prevalence of chronic conditions and obesity among the study population had increased from 2009 to 2017. Among all of them, depression increased sharply from 10% to 15% approximately. Incidence of type 2 diabetes, asthma, and arthritis marginally increased over the period, and the prevalence of heart diseases and cancer also increased over time. The prevalence of obesity was almost 25% in 2009, which increased to nearly 30% in less than ten years.

Fig 3 illustrates the percentage of chronic diseases among middle-aged and older adults based on their weight status. Prevalence of chronic conditions, such as type 2 diabetes (16.18%), asthma (12.99%) and arthritis (37.52%), was highest in obese people. However, underweight middle-aged and older adults are more vulnerable to heart diseases (11.76%), cancer (7.96%) and depression (19.72%). For obese people, the percentage is also noticeable, i.e. 10.27%, 5.68% and 17.11% for heart diseases, cancer and depression, respectively.

Fig 4 shows the prevalence of co-morbid conditions in middle-aged and older adults stratified by gender (pooled in all waves). It is observed that the prevalence of asthma (16.77% vs 8.44%), arthritis (44.55% vs 29.06%), and depression (19.53% vs 14.20%) are substantially higher among females than males. However, cancer (6.64% vs 4.88%), heart diseases (13.13% vs 7.89%) and type 2 diabetes (17.72% vs 14.90%) were more prevalent among males than females.

Table 3 exhibits the results obtained from the adjusted random-effect logistic regression model to investigate between-person differences in the relationship between obesity and six types of chronic diseases. The results show that the risk of having a chronic disease was more pronounced among obese adults compared with their healthy-weight counterparts. Obese people were at higher risks of suffering from type 2 diabetes (OR: 12.76, 95% CI: 8.88–18.36), heart diseases (OR: 2.05, 95% CI: 1.54–2.74), asthma (OR: 1.97, 95% CI: 1.49–2.62), and arthritis (OR: 2.25, 95% CI: 1.90–2.68) compared with their healthy-weight counterparts. It is also
Table 2. Distribution of the analytic sample: Baseline, final and pooled across all waves (persons = 9,822; observations = 20,538).

Characteristics	Baseline wave (2009)	Final wave (2017)	Pooled in all waves (2009, 2013 & 2017)			
	n	%	n	%	n	%
Outcome variables						
Type 2 diabetes						
No	4,946	91.56	7,082	90.82	18,688	90.99
Yes	456	8.44	716	9.18	1,850	9.01
Heart disease						
No	4,981	92.21	7,120	91.31	18,824	91.65
Yes	421	7.79	678	8.69	1,714	8.35
Asthma						
No	4,876	90.26	6,986	89.59	18,492	90.04
Yes	526	9.74	812	10.41	2,046	9.96
Cancer						
No	5,096	94.34	7,339	94.11	19,372	94.32
Yes	306	5.66	459	5.89	1,166	5.68
Arthritis						
No	3,747	69.36	5,406	69.33	14,246	69.36
Yes	1,655	30.64	2,392	30.67	6,292	30.64
Depression						
No	4,835	89.5	6,633	85.06	17,869	87.00
Yes	567	10.5	1,165	14.94	2,669	13.00
Exposure and covariates						
BMI						
Underweight	83	1.54	95	1.22	289	1.41
Healthy weight	1,815	33.6	2,428	31.14	6,574	32.01
Overweight	2,133	39.49	2,942	37.73	7,902	38.48
Obesity	1,371	25.38	2,333	29.92	5,773	28.11
Age						
Middle-aged (45–59 years)	2,877	53.26	3,713	47.61	10,304	50.17
Older adults (> 60 years)	2,525	46.74	4,085	52.39	10,234	49.83
Gender						
Male	2,546	47.13	3,676	47.14	9,684	47.15
Female	2,856	52.87	4,122	52.86	10,854	52.85
Civil Status						
Partnered	1,862	34.47	2,770	35.52	7,140	34.76
Unpartnered	3,540	65.53	5,028	64.48	13,398	65.24
Education						
Year 12 and below	2,511	46.48	2,999	38.46	8,624	41.99
Professional qualifications	1,710	31.65	2,780	35.65	6,974	33.96
University qualifications	1,181	21.86	2,019	25.89	4,940	24.05
Household yearly disposable income quintile						
Quintile 1 (lowest)	1,081	20.01	1,561	20.02	4,109	20.01
Quintile 2	1,081	20.01	1,559	19.99	4,107	20.00
Quintile 3	1,081	20.01	1,559	19.99	4,107	20.00
Quintile 4	1,079	19.97	1,561	20.02	4,109	20.01
Quintile 5 (highest)	1,080	19.99	1,558	19.98	4,106	19.99

(Continued)
Table 2. (Continued)

Characteristics	Baseline wave (2009)	Final wave (2017)	Pooled in all waves (2009, 2013 & 2017)			
	n	%	n	%	n	%
Employed	2,875	53.22	4,006	51.37	10,665	51.93
Unemployed	75	1.39	122	1.56	326	1.59
Not in the labour force	2,452	45.39	3,670	47.06	9,547	46.48
Indigenous status						
Non-Indigenous	5,317	98.43	7,653	98.14	20,181	98.26
Aboriginal or Torres Strait Islander	85	1.57	145	1.86	357	1.74
Location						
Major city	3,347	61.96	4,885	62.64	12,865	62.64
Regional	1,968	36.43	2,792	35.8	7,352	35.80
Remote	87	1.61	121	1.55	321	1.56
Smoking status						
Never smoked	2,597	48.07	3,878	49.73	10,034	48.86
Former smoker	2,004	37.10	2,855	36.61	7,609	37.04
Current smoker	801	14.83	1,065	13.66	2,895	14.10
Alcohol consumption						
Never drank	562	10.4	785	10.07	2,101	10.23
Ex-drinker	379	7.02	759	9.73	1,788	8.71
Only rarely to 4 days/week	3,203	59.29	4,650	59.63	12,210	59.45
4+ days/week	1,258	23.29	1,604	20.57	4,439	21.61
Physical activity (≥ 30 minutes)						
Not at all to <1/week	1,502	27.80	2,473	31.71	6,121	29.80
1–3 times/week	2,009	37.19	2,832	36.32	7,493	36.49
≥4 times/week	1,891	35.01	2,493	31.97	6,924	33.71

https://doi.org/10.1371/journal.pone.0260158.t002

Fig 2. Prevalence of chronic conditions among middle-aged and older adults.

https://doi.org/10.1371/journal.pone.0260158.g002
observed that obese people were at 1.96 times higher risk of suffering from depression (OR: 1.96, 95% CI: 1.56–2.48) than peers with a healthy weight.

Gender differences in the relationship between obesity and six types of chronic conditions among middle-aged and older Australian adults were reported in Table 4. The results showed that the odds of having chronic conditions, such as type 2 diabetes, heart diseases, arthritis and depression, were higher among obese adults compared to healthy weight counterparts irrespective of gender. However, the magnitudes vary with gender. For example, the risk of having

![Prevalence of chronic conditions among middle-aged and older adults by weight status.](https://doi.org/10.1371/journal.pone.0260158.g003)

![Gender differences in the prevalence of the chronic conditions among obese middle-aged and older adults.](https://doi.org/10.1371/journal.pone.0260158.g004)
Table 3. Adjusted random-effect regression results for the between-person differences in chronic conditions due to obesity; 9,822 persons, 20,538 observations.

Variables	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
Type 2 diabetes	aOR (95% CI)	aOR (95% CI)				
Heart disease	0.33 (0.07–1.67), 0.18	2.98 (1.44–6.17), 0.01	0.49 (0.19–1.23), 0.13	1.36 (0.70–2.67), 0.37	1.07 (0.66–1.74), 0.80	1.46 (0.78–2.71), 0.24
Asthma						
Cancer						
Arthritis						
Depression						
BMI						
Underweight						
Healthy weight (ref)						
Overweight	3.81 (2.71–5.36), <0.001	1.41 (1.09–1.82), 0.01	1.21 (0.94–1.56), 0.14	0.82 (0.66–1.01), 0.07	1.42 (1.22–1.64), <0.001	1.25 (1.01–1.54), 0.04
Obesity	12.76 (8.88–18.36), <0.001	2.05 (1.54–2.74), <0.001	1.97 (1.49–2.62), <0.001	0.89 (0.69–1.13), 0.33	2.25 (1.90–2.68), <0.001	1.96 (1.56–2.48), <0.001
Socio-demographic						
characteristics						
Age						
Middle-aged (45–59 years)	4.36 (3.23–5.89), <0.001	4.83 (3.60–6.48), <0.001	0.92 (0.72–1.19), 0.54	2.35 (1.87–2.96), <0.001	3.63 (3.12–4.21), <0.001	0.39 (0.31–0.48), <0.001
Gender						
Male (ref)	0.29 (0.22–0.04), <0.001	0.28 (0.21–0.36), <0.001	2.45 (1.89–3.19), <0.001	0.53 (0.43–0.65), <0.001	2.91 (2.49–3.41), <0.001	2.10 (1.7–2.6), <0.001
Education						
Year 12 or below (ref)	0.89 (0.65–1.23), 0.47	0.88 (0.66–1.17), 0.39	1.07 (0.81–1.42), 0.62	1.25 (0.99–1.57), 0.06	0.80 (0.68–0.95), 0.01	1.19 (0.95–1.50), 0.13
Professional qualifications	0.62 (0.42–0.94), 0.02	0.92 (0.65–1.30), 0.63	1.08 (0.77–1.51), 0.69	1.05 (0.79–1.39), 0.72	0.61 (0.50–0.75), <0.001	1.02 (0.77–1.35), 0.89
University qualifications						
Civil Status						
Partnered (ref)	0.68 (0.51–0.89), 0.01	0.69 (0.54–0.88), 0.01	0.82 (0.64–1.04), 0.10	0.92 (0.75–1.13), 0.45	0.80 (0.69–0.93), 0.01	0.46 (0.38–0.56), <0.001
Unpartnered						
Household yearly disposable income quintile						
Quintile 1	1.57 (1.04–2.38), 0.03	1.23 (0.86–1.75), 0.26	1.59 (1.12–2.27), 0.01	1.11 (0.81–1.51), 0.53	1.43 (1.16–1.77), 0.01	1.70 (1.27–2.29), <0.001
Quintile 2	1.18 (0.79–1.76), 0.42	1.17 (0.83–1.66), 0.36	1.31 (0.94–1.83), 0.12	1.24 (0.92–1.67), 0.15	1.25 (1.03–1.52), 0.03	1.63 (1.23–2.15), 0.01
Quintile 3	1.28 (0.87–1.89), 0.21	0.95 (0.67–1.35), 0.77	1.08 (0.78–1.49), 0.65	0.92 (0.68–1.25), 0.60	1.07 (0.89–1.29), 0.48	1.42 (1.09–1.86), 0.01
Quintile 4	1.11 (0.76–1.64), 0.59	1.04 (0.74–1.47), 0.80	1.16 (0.85–1.58), 0.34	1.13 (0.85–1.51), 0.40	1.08 (0.90–1.29), 0.42	1.18 (0.91–1.53), 0.22
Quintile 5 (ref)						
Labour force status						
Employed (ref)	2.13 (0.88–5.13), 0.09	1.52 (0.65–3.57), 0.34	0.85 (0.40–1.80), 0.67	0.66 (0.26–1.66), 0.37	1.16 (0.74–1.83), 0.52	4.03 (2.41–6.74), <0.001
Unemployed	3.40 (2.48–4.66), <0.001	5.72 (4.18–7.85), <0.001	1.90 (1.45–2.49), <0.001	2.44 (1.91–3.11), <0.001	3.14 (2.68–3.68), <0.001	4.28 (3.41–5.37), <0.001
Not in the labor force						
Indigenous status						
Non-indigenous (ref)	8.27 (3.37–20.34), <0.001	2.44 (1.08–5.52), 0.03	1.87 (0.82–4.30), 0.14	1.01 (0.47–2.12), 0.99	0.94 (0.55–1.60), 0.81	1.95 (1.00–3.81), 0.05

(Continued)
type 2 diabetes were 17.61 (OR: 17.61, 95% CI: 10.49–29.54), and 9.55 (OR: 9.55, 95% CI: 5.69–16.03) times higher among obese female and male adults, respectively, compared to their healthy-weight counterparts. Besides, the results showed that obesity is associated with a higher incidence of asthma (OR: 2.64, 95% CI: 1.84–3.80) among female adults, but not statistically significant in the case of male adults (Table 4).

Discussion

The current study is one of the first pieces of evidence that examined the between-person differences in the association between obesity and common chronic diseases among middle-aged and older Australian adults by utilising three waves spanning nine years of a nationally representative longitudinal survey. After controlling for socio-demographic and behavioural covariates, the longitudinal random-effect logistic regression results reveal that obesity is a major risk factor for chronic diseases (type 2 diabetes, heart disease, asthma, arthritis, and depression).

Table 3. (Continued)

Variables	Type 2 diabetes	Heart disease	Asthma	Cancer	Arthritis	Depression	
	aOR (95% CI)	aOR (95% CI)	aOR (95% CI)	aOR (95% CI)	aOR (95% CI)	aOR (95% CI)	
Location							
Major city (ref)	0.81	1.02 (0.80–1.30), 0.90	1.20 (0.94–1.54), 0.14	1.03 (0.84–1.26), 0.80	1.23 (1.07–1.43), 0.01	1.07 (0.88–1.31), 0.48	
Regional	1.04 (0.78–1.37), 0.81	0.45 (0.14–1.45), 0.18	1.31 (0.54–3.16), 0.55	0.72 (0.26–2.03), 0.54	1.28 (0.62–2.63), 0.51	0.48 (0.27–0.85), 0.01	0.44 (0.19–1.01), 0.05
Remote	0.45 (0.14–1.45), 0.18	1.31 (0.54–3.16), 0.55	0.72 (0.26–2.03), 0.54	1.28 (0.62–2.63), 0.51	0.48 (0.27–0.85), 0.01	0.44 (0.19–1.01), 0.05	

Behavioural Characteristics

Smoking status

| Ex-smoker | 1.50 (1.12–2.01), 0.01 | 1.56 (1.21–2.02), 0.01 | 1.57 (1.21–2.04), 0.01 | 1.09 (0.88–1.35), 0.41 | 1.21 (1.04–1.41), 0.01 | 1.42 (1.14–1.76), 0.01 |
| Current smoker | 0.98 (0.64–1.49), 0.92 | 1.05 (0.72–1.52), 0.80 | 0.78 (0.58–1.05), 0.07 | 0.62 (0.44–0.85), 0.02 | 0.70 (0.55–0.90), 0.01 | 0.74 (0.57–0.98), 0.01 | 0.75 (0.58–0.97), 0.01 | 0.78 (0.61–1.00), 0.08 | 0.83 (0.68–1.01), 0.08 | 0.83 (0.69–1.00), 0.08 | 0.83 (0.69–1.00), 0.08 |

Alcohol consumption

Ex-drinker	0.65 (0.40–1.05), 0.08	0.84 (0.54–1.31), 0.44	1.37 (0.92–2.03), 0.12	1.20 (0.91–1.58), 0.19	2.04 (1.41–2.94), 0.01	
Only rarely to 3 days/week	0.44 (0.29–0.65), 0.001	0.72 (0.50–1.04), 0.08	1.18 (0.85–1.64), 0.32	1.17 (0.94–1.46), 0.17	1.12 (0.83–1.52), 0.47	
3+ days/week	0.16 (0.10–0.27), 0.001	0.51 (0.33–0.77), 0.01	0.74 (0.48–1.13), 0.17	1.12 (0.78–1.62), 0.54	1.19 (0.92–1.54), 0.18	1.14 (0.8–1.63), 0.46

Physical activity

| Not at all to <1/week (ref) | 0.73 (0.56–0.94), 0.02 | 0.59 (0.47–0.74), <0.001 | 0.93 (0.74–1.16), 0.52 | 0.72 (0.59–0.89), 0.01 | 0.78 (0.68–0.89), <0.001 | 0.52 (0.43–0.62), <0.001 |
| 1–3 times/week | 0.60 (0.46–0.80), 0.01 | 0.55 (0.43–0.70), <0.001 | 0.67 (0.52–0.86), <0.001 | 0.71 (0.57–0.88), <0.001 | 0.58 (0.50–0.68), <0.001 | 0.34 (0.27–0.41), <0.001 |

Abbreviations: aOR, Adjusted Odds Ratio; ref, reference. Values in bold are statistically significant. All models (Models 1 to 6) were adjusted for age, gender, civil status, education, household yearly disposable income, labour force status, indigenous status, location, smoking status, alcohol consumption, and physical activity. Values in bold are statistically significant.
This study identified obesity as a significant risk factor for type 2 diabetes. This notion fits well with previous findings [15, 24], wherein the authors concluded that overeating and obesity were strongly associated with type 2 diabetes. The present analysis has also revealed a significant positive relationship between obesity and the risk of heart disease. Identical results are available in numerous past studies showing that increasing BMI increases the risk of heart failure in both men and women [25]. Excess weight is a high-risk factor for ischemic stroke and hemorrhagic stroke [26]. A recent study demonstrated that the increased risk of heart disease might be due to a higher incidence of hypertension, adverse hemodynamic effects, maladaptive modifications in cardiovascular structure and function and increased atrial fibrillation among obese people [27].

The finding of a positive association between obesity and asthma is consistent with the existing literature [28]. The possible reason could be that obesity affects lung function by superfluous tissues constricting the thoracic cage, increasing the chest wall’s insinuation with fat tissue and pulmonary blood volume [29]. Besides, obesity also causes changes in lung volume and respiratory muscle function [30], leading to asthmatic problems.

Another novel finding of the present study is that obesity is a statistically significant risk factor for arthritis in Australian adults. Other studies estimating the association indicated that obesity is a major risk factor of osteoarthritis for Australian adults [31], and there is evidence that a 5-unit in BMI increases the risk of osteoarthritis (knee) by 35% [32]. The possible reason might be obesity causes increased pressure on the knee joints during daily activities, which causes proliferation of periarticular bone, leading to decreased joint space [33].

The present study findings reveal that obese adults are more likely to develop depression irrespective of socioeconomic and demographic status. Many studies have come to identical

Table 4. Adjusted random-effect regression results for the between-person differences in chronic conditions due to obesity stratified by gender.

Variables	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
	aOR (95% CI)	aOR (95% CI)				
Type 2 diabetes						
Gender: Male						
BMI Categories						
Underweight	0.46 (0.03–2.61), 0.27	2.11 (0.57–7.78), 0.26	0.19 (0.02–1.57), 0.12	0.53 (0.13–2.18), 0.38	1.22 (0.49–3.09), 0.66	2.15 (0.64–7.19), 0.21
Healthy weight (ref)						
Overweight	3.01 (1.88–4.81), < 0.001	1.22 (0.85–1.75), 0.27	0.79 (0.53–1.16), 0.23	0.89 (0.66–1.20), 0.45	1.34 (1.07–1.69), 0.01	1.05 (0.75–1.47), 0.78
Obesity (≥30)	9.55 (5.69–16.03), < 0.001	2.19 (1.44–3.33), < 0.001	1.17 (0.75–1.84), 0.45	0.92 (0.64–1.31), 0.63	2.24 (1.71–2.93), < 0.001	1.96 (1.34–2.87), 0.01
Gender: Female						
BMI Categories						
Underweight	0.29 (0.04–4.75), 0.51	3.43 (1.42–8.25), 0.01	0.70 (0.24–2.01), 0.50	1.92 (0.90–4.09), 0.09	0.99 (0.56–1.77), 0.99	1.33 (0.64–2.76), 0.44
Healthy weight (ref)						
Overweight	5.02 (3.04–8.28), < 0.001	1.60 (1.11–2.31), 0.01	1.58 (1.14–2.20), 0.01	0.76 (0.56–1.04), 0.09	1.46 (1.20–1.78), < 0.001	1.43 (1.10–1.87), 0.01
Obesity (≥30)	17.61 (10.49–29.54), < 0.001	1.83 (1.22–2.73), 0.01	2.64 (1.84–3.80), < 0.001	0.89 (0.64–1.24), 0.50	2.25 (1.80–2.81), < 0.001	1.96 (1.46–2.62), < 0.001

Abbreviations: aOR, Adjusted Odds Ratio; ref, reference. All models (Models 1 to 6) were adjusted for age, gender, civil status, education, household yearly disposable income, labour force status, indigenous status, location, smoking status, alcohol consumption, and physical activity. Values in bold are statistically significant.

https://doi.org/10.1371/journal.pone.0260158.t004

This study identified obesity as a significant risk factor for type 2 diabetes. This notion fits well with previous findings [15, 24], wherein the authors concluded that overeating and obesity were strongly associated with type 2 diabetes. The present analysis has also revealed a significant positive relationship between obesity and the risk of heart disease. Identical results are available in numerous past studies showing that increasing BMI increases the risk of heart failure in both men and women [25]. Excess weight is a high-risk factor for ischemic stroke and hemorrhagic stroke [26]. A recent study demonstrated that the increased risk of heart disease might be due to a higher incidence of hypertension, adverse hemodynamic effects, maladaptive modifications in cardiovascular structure and function and increased atrial fibrillation among obese people [27].

The finding of a positive association between obesity and asthma is consistent with the existing literature [28]. The possible reason could be that obesity affects lung function by superfluous tissues constricting the thoracic cage, increasing the chest wall’s insinuation with fat tissue and pulmonary blood volume [29]. Besides, obesity also causes changes in lung volume and respiratory muscle function [30], leading to asthmatic problems.

Another novel finding of the present study is that obesity is a statistically significant risk factor for arthritis in Australian adults. Other studies estimating the association indicated that obesity is a major risk factor of osteoarthritis for Australian adults [31], and there is evidence that a 5-unit in BMI increases the risk of osteoarthritis (knee) by 35% [32]. The possible reason might be obesity causes increased pressure on the knee joints during daily activities, which causes proliferation of periarticular bone, leading to decreased joint space [33].

The present study findings reveal that obese adults are more likely to develop depression irrespective of socioeconomic and demographic status. Many studies have come to identical
There are several reasons for this association. Obese and overweight people generally have low health status and higher co-morbidities (severe chronic diseases) which might cause depression [34]. Apart from this, a model developed by Markowitz et al. illustrated that lack of mobility, lower quality of life and physical functionalities, social stigma and dissatisfaction with body size caused by overweight and obesity, contributes to a higher level of depression [36]. The systematic literature review of Preiss et al. [16] identified eating disorders, interpersonal effectiveness and experience of stigma as other key factors influencing the relationship between co-morbid obesity and depression.

Interestingly, this study observed no significant association between obesity and cancer among adults in Australia. The findings are contradictory to some of the existing literature. In an earlier review, Calle et al. commented that obesity increases the risk of selected types of cancer [37]. Renehan et al. conducted a meta-analysis on BMI and cancer incidence, and they found that obesity is a significant risk factor for developing cancer, and the association was consistent in several continents of the world [38]. Besides, several other studies concluded that obesity-related biological mechanisms (e.g. hormones, calorie constraints, growth factors, inflammatory progressions) influence the development of malignant cells in the body [39, 40]. Therefore, the findings of the lack of association in our study should be interpreted with caution. It should be noted that the HILDA survey does not specify which type of cancer the respondents have developed. Hence, one possibility is that the most common type of cancers (e.g. skin, prostate, colorectal, melanoma and lung) associated with Australian adults are insignificantly impacted by obesity and overweight. Future research should focus on addressing this issue.

Finally, similar to the common knowledge in the public health literature, the results indicate that increased physical activities reduce the risk of chronic diseases irrespective of obesity and socio-demographic status. Noticeably, the most considerable positive impact of physical activities was on the level of depression. Participants engaged in physical activities more than three times a week had a 40% less probability of suffering from chronic depression than those that did not undertake physical activities. An extensive literature related to Australian adults validates this study finding [41, 42]. Therefore, the present study suggests the promotion of physical activities to prevent chronic diseases in Australian adults. The study’s findings suggest that physical activities, community-level gym facilities, and the availability of nutritionists to curb excessive weight are necessary. This study calls for future research that will explore the potential of lifestyle interventions and dietary modification to curb excessive weight gain.

Managing obesity has the potential to reduce the prevalence of and mortality from these chronic diseases [43], and improve health-related quality of life [44]. A previous study has claimed that the prevalence of diabetes, high cholesterol, high blood pressure, and CVD among Australian adults could be reduced significantly by reducing body weight [12]. Policymakers and health practitioners might use these findings to devise appropriate strategies and targeted health programs for overweight and obese Australians to reduce their probable burden of chronic diseases.

Conclusion

This study explores the longitudinal association between obesity and chronic diseases in Australian adults. The longitudinal random-effect logistic regression results showed significant associations between excess body fat (obesity) and chronic diseases. Association between obesity and chronic diseases using longitudinal data is relatively uncommon. This study is one of the few studies that considered six different types of chronic conditions covering nine years of data. The study found that the prevalence and incidence of chronic conditions, such as type 2
diabetes, heart diseases, asthma, arthritis and depression, are higher among obese adults than their healthy-weight counterparts. More specifically, people with obesity are at higher risk of having type 2 diabetes (compared to their healthy counterparts) than any other chronic disease in Australia. The present study has several strengths. Firstly, this study identified which chronic diseases have the strongest association with obesity in Australian adults. Secondly, this study considered a wide range of chronic diseases while checking their relationship with obesity. Thirdly, unlike previous studies, this study employed longitudinal data from the HILDA survey, which is broadly representative of the national population. Fourthly, this study has identified that obesity increase the incidence of chronic diseases differently among men and women.

This study has some drawbacks in estimating the relationships between obesity and chronic diseases. Firstly, this study used self-reported data on BMI, chronic diseases, and lifestyle characteristics. Secondly, this study formed an unbalanced panel data for the subsample analyses. Therefore, causality cannot be drawn from the present study findings. Thirdly, this study did not consider genetic or familial aggregation factors, which are common causes of some chronic diseases, such as type 2 diabetes. Fourthly, the HILDA survey questionnaire does not specify the exact type of cancer or arthritis the participants have developed.

Acknowledgments

The authors would like to thank the Melbourne Institute of Applied Economic and Social Research for providing the HILDA data set. This paper uses unit record data from the Household, Income and Labour Dynamics in Australia Survey (HILDA) conducted by the Australian Government Department of Social Services (DSS). The findings and views reported in this paper, however, are those of the authors and should not be attributed to the Australian Government, DSS, or any of DSS contractors or partners. DOI: 10.26193/OFRKRH, ADA Dataverse, V2”.

Author Contributions

Conceptualization: Syed Afroz Keramat, Rezwanul Hasan Rana.

Data curation: Fariha Farjana.

Methodology: Rupok Chowdhury, Rubayyat Hashmi.

Software: Syed Afroz Keramat, Rubayyat Hashmi.

Supervision: Khorshed Alam, Jeff Gow, Stuart J. H. Biddle.

Writing – original draft: Syed Afroz Keramat, Rezwanul Hasan Rana, Rupok Chowdhury, Fariha Farjana.

Writing – review & editing: Khorshed Alam, Rubayyat Hashmi, Jeff Gow, Stuart J. H. Biddle.

References

1. World Health Organization. Obesity and overweight. 2020 [cited 18 Apr 2021]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

2. GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017; 377: 13–27. https://doi.org/10.1056/NEJMoa1614362 PMID: 28604169

3. Australian Institute of Health and Welfare. Impact of overweight and obesity as a risk factor for chronic conditions: Australian burden of disease Study. Australian Burden of Disease Study series no. 11. Cat. no. BOD 12. Canberra: AIHW; 2017.
4. Keramat SA, Alam K, Al-Hanawi MK, Gow J, Biddle SJH, Hashmi R. Trends in the prevalence of adult overweight and obesity in Australia, and its association with geographic remoteness. Sci Rep. 2021; 11: 11320. https://doi.org/10.1038/s41598-021-90750-1 PMID: 34059752

5. Australian Institute of Health and Welfare. Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Australian Burden of Disease series no. 19. Cat. no. BOD 22. Canberra: AIHW; 2019.

6. Keramat SA, Alam K, Sathi NJ, Gow J, Biddle SJH, Al-Hanawi MK. Self-reported disability and its association with obesity and physical activity in Australian adults: Results from a longitudinal study. SSM—Popul Heal. 2021; 14: 777–788. https://doi.org/10.1016/j.ssmp.2021.100765 PMID: 33842682

7. Keramat SA, Alam K, Ahinkorah BO, Islam MS, Islam MI, Hossain MZ, et al. Obesity, Disability and Self-Perceived Health Outcomes in Australian Adults: A Longitudinal Analysis Using 14 Annual Waves of the HILDA Cohort. Clin Outcomes Res. 2021; Volume 13: 777–788. https://doi.org/10.2147/CEOR.S318094 PMID: 34522108

8. Keramat SA, Alam K, Gow J, Biddle SJH. Gender differences in the longitudinal association between obesity, and disability with workplace absenteeism in the Australian working population. PLoS ONE 15(5) e0233512., 2020; 1–14. Available: https://doi.org/10.1371/journal.pone.0233512 PMID: 32459804

9. Keramat SA, Alam K, Gow J, Biddle SJH. A longitudinal exploration of the relationship between obesity, and long term health condition with presenteeism in Australian workplaces, 2006–2018. PLoS ONE 15(8) e0238260., 2020; 1–17. Available: https://doi.org/10.1371/journal.pone.0238260 PMID: 32845941

10. Keramat SA, Alam K, Gow J, Biddle SJH. Obesity, Long-Term Health Problems, and Workplace Satisfaction: A Longitudinal Study of Australian Workers. J Community Health. 2020; 45: 288–300. https://doi.org/10.1007/s10900-019-00735-5 PMID: 31520187

11. Keramat SA, Alam K, Rana RH, Shuvo S Das, Gow J, Biddle SJH, et al. Age and gender differences in the relationship between obesity and disability with self-perceived employment discrimination: Results from a retrospective study of an Australian national sample. SSM—Popul Heal. 2021; 16: 1009523. https://doi.org/10.1016/j.ssmph.2021.100923 PMID: 34621975

12. Atlantis E, Lange K, Wittert GA. Chronic disease trends due to excess body weight in Australia. Obes Rev. 2009; 10: 543–553. https://doi.org/10.1111/j.1467-789X.2009.00590.x PMID: 19413699

13. Bjerregaard LG, Adelborg K, Baker JL. Change in body mass index from childhood onwards and risk of adult cardiovascular disease,. Trends Cardiovasc Med. 2020; 30: 39–45. https://doi.org/10.1016/j.tcm.2019.01.011 PMID: 30772134

14. Akil L, Ahmad HA. Relationships between Obesity and Cardiovascular Diseases in Four Southern States and Colorado. J Health Care Poor Underserved. 2011; 22: 61–72. https://doi.org/10.1353/hpu.2011.0166 PMID: 22102306

15. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health. 2009; 9: 1–20. https://doi.org/10.1186/1471-2458-9-1 PMID: 19121216

16. Preiss K, Brennan L, Clarke D. A systematic review of variables associated with the relationship between obesity and depression. Obes Rev. 2013; 14: 906–918. https://doi.org/10.1111/obr.12052 PMID: 23809142

17. Biagojovic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil. 2010; 18: 24–33. https://doi.org/10.1016/j.joca.2009.08.010 PMID: 19751691

18. Jia H, Lubetkin EI. The impact of obesity on health-related quality-of-life in the general adult US population. J Public Health (Bangkok). 2005; 27: 156–164. https://doi.org/10.1093/pubmed/fdi025 PMID: 15820993

19. Choi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019; 92: 6–10. https://doi.org/10.1016/j.metabol.2018.09.005 PMID: 30253139

20. Hardy LL, Mhrshahi S, Gale J, Drayton BA, Bauman A, Mitchell J. 30-year trends in overweight, obesity and waist-to-height ratio by socioeconomic status in Australian children, 1985 to 2015. Int J Obes. 2017; 41: 76–82. https://doi.org/10.1038/ijo.2016.204 PMID: 27847388

21. Wooden M, Freiden S, Watson N. The Household, Income and Labour Dynamics in Australia (HILDA) Survey: Wave 1. Aust Econ Rev. 2002; 35: 339–348. https://doi.org/10.1111/1467-8462.00252

22. Kearns K, Dee A, Fitzgerald AP, Doherty E, Perry IJ. Chronic disease burden associated with overweight and obesity in Ireland: the effects of a small BMI reduction at population level. BMC Public Health. 2014; 14: 143. https://doi.org/10.1186/1471-2458-14-143 PMID: 24512151

23. Must A. The Disease Burden Associated With Overweight and Obesity. JAMA. 1999; 282: 1523. https://doi.org/10.1001/jama.282.16.1523 PMID: 10546691
24. Grantham NM, Magliano DJ, Hodge A, Jowett J, Meikle P, Shaw JE. The association between dairy food intake and the incidence of diabetes in Australia: the Australian Diabetes Obesity and Lifestyle Study (AusDiab). Public Health Nutr. 2013; 16: 339–345. https://doi.org/10.1017/S1368980012001310 PMID: 22672923

25. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the Risk of Heart Failure. N Engl J Med. 2002; 347: 305–313. https://doi.org/10.1056/NEJMoa020245 PMID: 12151467

26. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Circulation. 2006; 113: 898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016 PMID: 16380542

27. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019; 92: 98–107. https://doi.org/10.1016/j.metabol.2018.10.011 PMID: 30399375

28. Ford ES. The epidemiology of obesity and asthma. J Allergy Clin Immunol. 2005; 115: 897–909. https://doi.org/10.1016/j.jaci.2004.11.050 PMID: 15867841

29. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest. 1993; 103: 1470–1476. https://doi.org/10.1378/chest.103.5.1470 PMID: 8486029

30. March LM, Bagga H. Epidemiology of osteoarthritis in Australia. Med J Aust. 2004; 180. https://doi.org/10.5694/j.mJA.2004.tb06230.x PMID: 15310248

31. March LM, Bagga H. Obesity and osteoarthritis. Am J Orthop (Belle Mead NJ). 2008; 37: 148–151. PMID: 18438470

32. King LK, March L, Anandacoomarasamy A. Obesity & osteoarthritis. Indian J Med Res. 2013; 138: 185–93. Available: http://www.ncbi.nlm.nih.gov/pubmed/24056594 PMID: 24056594

33. Markowitz S, Friedman MA, Arent SM. Understanding the relation between obesity and depression: Causal mechanisms and implications for treatment. Clin Psychol Sci Pract. 2008; 15: 1–20. https://doi.org/10.1111/j.1468-2850.2008.00106.x

34. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. N Engl J Med. 2003; 348: 1625–1638. https://doi.org/10.1056/NEJMoa021423 PMID: 12711737

35. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008; 371: 569–578. https://doi.org/10.1016/S0140-6736(08)60269-X PMID: 18280327

36. Drew JE. Molecular mechanisms linking adipokines to obesity-related colon cancer: Focus on leptin. Proc Nutr Soc. 2012; 71; 175–180. https://doi.org/10.1017/S0029665111003259 PMID: 22014041

37. McKercher C, Patton GC, Schmidt MD, Venn AJ, Dwyer T, Sanderson K. Physical activity and depression symptom profiles in young men and women with major depression. Psychosom Med. 2013; 75: 366–374. https://doi.org/10.1097/PSY.0b013e31828c4d53 PMID: 23576769

38. Lemstra ME, Rogers MR. Improving health-related quality of life through an evidence-based obesity reduction program: The Healthy Weights Initiative. J Multidiscip Healthc. 2016; 9: 103–109. https://doi.org/10.2147/JMDH.S100693 PMID: 27022273