Aspirin or Ticagrelor in Staphylococcus aureus Infective Endocarditis: Where Do We Stand?

Kirsten Leeten¹, Nicolas Jacques¹, Patrizio Lancellotti¹,² and Cécile Oury¹*

¹ Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, Liège, Belgium; ² Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Barì, Italy

Infective endocarditis is a challenging disease with a high mortality and morbidity rate. Antibiotic prophylaxis is currently recommended in high-risk infective endocarditis patients. However, the use of antibiotics faces the challenge of a low efficacy and contributes further to the emerging infection rate by antibiotic-resistant strains, emphasizing the need for new therapeutic strategies. Platelets are essential in the initial phase of infective endocarditis, acting as first-line immune responders. During the first phase of disease, bacteria can interact with platelets and counteract platelet antimicrobial activities. Mechanistic in vitro and animal studies on the effect of aspirin on bacteria-platelet interactions and the prevention of vegetation development showed promising results. However, data from clinical studies on the outcome of infective endocarditis patients who were receiving medically indicated aspirin therapy remain controversial. Therefore, the benefit of antiplatelet agents in infective endocarditis prevention has been questioned. Besides aspirin, it has been discovered that the platelet P2Y12 receptor antagonist ticagrelor has antibacterial properties in addition to its potent antiplatelet activity. Furthermore, a recent study in mice and a case report remarkably indicated the ability of this drug to eradicate Staphylococcus aureus bacteremia. This review will focus on current knowledge on antibacterial activity of ticagrelor, compared to aspirin, pointing out main unanswered questions. The goal is to provide food for thought as to whether a prior ticagrelor therapy might be beneficial for the prevention of infective endocarditis.

Keywords: infective endocarditis, antiplatelet drugs, ticagrelor, aspirin, biofilm, Staphylococcus aureus

INTRODUCTION

Infective endocarditis (IE) is a life-threatening infectious disease, affecting the heart valves, or (bio-)prosthetic valve implants (Holland et al., 2016). The disease has been associated with a one-year mortality rate of around 30–40% (Liesenborghs et al., 2020). Gram-positive bacteria are the main instigators of IE, with Staphylococcus aureus (S. aureus) being the most prominent and virulent one (Werdan et al., 2014; Tong et al., 2015; Cahill and Prendergast, 2016; Holland et al., 2016; Liesenborghs et al., 2018; Habib et al., 2019). IE is characterized by the formation of a vegetation on the heart valve surface, consisting of bacteria, platelets, fibrin, and leukocytes (Moreillon and Que, 2004; Que and Moreillon, 2011; Liesenborghs et al., 2019). Disease initiation depends on the
overall ability of bacteria to be cleared from the blood stream, to adhere to damaged or inflamed endothelium, and to bypass the host defense (Bayer et al., 1997).

Antibiotic prophylaxis is currently recommended in patients at high risk to develop IE (Wilson et al., 2007; Que and Moreillon, 2011). However, this further contributes to a new pandemic of antibiotic-resistant bacterial strains, emphasizing the need for additional strategies to prevent IE development (Que and Moreillon, 2011).

Data from in vitro and in vivo preclinical studies indicated reduced vegetation growth when the antiplatelet agent aspirin was used as prophylactic or adjunct therapy (Nicolau et al., 1995, 1999; Kupferwasser et al., 1999a,b, 2003; Veloso et al., 2015a,b). Several prospective and retrospective clinical studies have evaluated the ability of aspirin to prevent embolic events in IE patients and improve outcome. However, the results of these studies are controversial (Chan et al., 2003, 2008; Anavekar et al., 2007; Eisen et al., 2009; Pepin et al., 2009; Snygg-Martin et al., 2011; Habib et al., 2013) and the clinical usefulness of antiplatelet approaches in IE has been questioned.

We will describe hereafter recent advances on the potential benefits of the platelet P2Y12 receptor inhibitor ticagrelor in IE in regard to data that have previously been obtained with aspirin.

WHY COULD TARGETING PLATELETS BE BENEFICIAL AGAINST STAPHYLOCOCCUS AUREUS INFECTIVE ENDOCARDITIS?

Besides their primary role in thrombosis and hemostasis, it is now well established that platelets also act as first-line immune responders following pathogen invasion (Holinstat, 2017). Platelets express Toll-like receptors (TLRs), enabling them to recognize pathogen-associated molecular patterns (PAMPs). They can target and fight pathogens via the release of antimicrobial peptides from platelet α-granules, including defensins, thrombocidins, and kinocidins (Yeaman, 2010; Wong et al., 2013). Furthermore, they can communicate with, and modulate the function of other immune cells through the release of immunomodulating mediators (Wong et al., 2013; Gaertner et al., 2017; Surewaard et al., 2018). Platelets have been reported to be essential in transporting bacteria to the hepatic Kupffer cells via a “touch-and-go” mechanism, mediating macrophage-induced clearance of bacteria from the blood stream (Wong et al., 2013).

Because inhibiting platelets may prevent them to exert their antimicrobial activity, we need to better understand why and how targeting platelets could be beneficial in bacterial infectious diseases such as IE. The initial phase of IE development involves the interplay between platelets and bacteria (Figure 1; Hamzeh-Cognasse et al., 2015; Liesenborghs et al., 2018, 2019), which strongly suggests an essential role for platelets in early stages of IE. Vegetations could form either via indirect or direct interaction of bacteria with platelets (Hamzeh-Cognasse et al., 2015; Hannachi et al., 2020; Figure 1).
by Bhakdi et al. (1988) and Bayer et al. (1997) indicate that α-toxin can promote the formation of IE thrombi. α-toxin also enables bacteria to evade platelet antimicrobial activity and cause activation of pro-inflammatory pathways (Powers et al., 2015; Surewaard et al., 2018). Recently, Sun et al. (2021) reported α-toxin to induce the release of endogenous platelet sialidase, resulting in desialylation of platelet glycoproteins and β-galactose exposure. This process accelerates platelet clearance by the hepatic Ashwell-Morell receptor (AMR), which is responsible for S. aureus bacteremia-associated thrombocytopenia (Sørensen et al., 2009; Surewaard et al., 2018; Sun et al., 2021).

Thus, preventing α-toxin from inhibiting platelet antimicrobial activity could also be considered as part of the antiplatelet approach against IE.

ASPIRIN OR TICAGRELOR?

In vitro studies focusing on the effect of aspirin on platelet–S. aureus interactions found that its main metabolite salicylic acid (SAL) regulates the expression of S. aureus genes encoding for virulence factors (Kupferwasser et al., 1999a). SAL has been linked to an overexpression of the sigma factor B operon, resulting in the repression of staphylococcal accessory regulator A (Sar A) and accessory gene regulator (Agr). By repressing Sar A and Agr, SAL can diminish the expression of MSCRAMM’s and α-toxin secretion (Kupferwasser et al., 2003; Gordon et al., 2013). The reduced expression of virulence factors could result in slowing down vegetation growth by decreasing platelet–bacteria interactions, thereby enhancing the antimicrobial activity of platelets. More particularly, the inhibition of α-toxin secretion could delay α-toxin enhanced platelet clearance via the hepatic AMR pathway, preserving platelet function (Surewaard et al., 2018; Sun et al., 2021).

Several studies have been performed in different animal models of IE in order to analyze the effect of aspirin on vegetation growth (*Table 1*). Kupferwasser et al. (1999b) described a significant reduction in bacterial density and vegetation weight using a prophylactic therapy of 8 mg/kg aspirin in a rabbit model of S. aureus IE (SAIE). Furthermore, this study indicated that pre-treatment of S. aureus with SAL reduced the ability of bacteria to adhere to vegetations (fibrin-platelet surface) (Kupferwasser et al., 1999b). Another study in rabbits showed a key role for both Sar A and the stress response gene sigB in mediating the antistaphylococcal effects of SAL *in vivo* (Kupferwasser et al., 1999b). A reduction in bacterial density and vegetation weight using a prophylactic therapy of 8 mg/kg aspirin in a rabbit model of S. aureus IE (SAIE) and reducing the expression of virulence factors could result in slowing down vegetation growth by decreasing platelet–bacteria interactions, thereby enhancing the antimicrobial activity of platelets. More particularly, the inhibition of α-toxin secretion could delay α-toxin enhanced platelet clearance via the hepatic AMR pathway, preserving platelet function (Surewaard et al., 2018; Sun et al., 2021).

Several studies have been performed in different animal models of IE in order to analyze the effect of aspirin on vegetation growth (*Table 1*). Kupferwasser et al. (1999b) described a significant reduction in bacterial density and vegetation weight using a prophylactic therapy of 8 mg/kg aspirin in a rabbit model of S. aureus IE (SAIE). Furthermore, this study indicated that pre-treatment of S. aureus with SAL reduced the ability of bacteria to adhere to vegetations (fibrin-platelet surface) (Kupferwasser et al., 1999b). Another study in rabbits showed a key role for both Sar A and the stress response gene sigB in mediating the antistaphylococcal effects of SAL *in vivo* (Kupferwasser et al., 2003). In contrast, studies by Nicolau et al. (1999) and Veloso et al. (2015b) described no reduction of vegetation weight when preventively using 10 and 8 mg/kg of aspirin as a monotherapy in a rabbit and rat model of IE, respectively. While Nicolau et al. (1999) reported this effect to be related to the low sample size of the study, Veloso et al. (2015b) stated a possible effect of

FIGURE 1 | Hypothetical model of aspirin and ticagrelor action on S. aureus IE vegetation. (A) The antiplatelet drugs may exert direct effects on bacteria. (B) Ticagrelor and/or aspirin may inhibit bacteria–platelet interactions by acting on either platelet activation or bacteria toxins, which could also alter the adhesion of these hetero-aggregates on damaged or inflamed endothelia. The exact mechanisms of action of aspirin and ticagrelor on vegetation formation remain to be determined, as well as potential added value of ticagrelor compared to aspirin. FnbpA, fibronectin binding protein A; ClfA, clumping factor A; IsdB, iron regulated surface determinant B; Fn, fibronectin; Fg, fibrinogen; IgG, immunoglobulins; VWF, von Willebrand factor; VWbp, von Willebrand factor binding protein (Claes et al., 2017, 2018; Liesenborghs et al., 2018).
Pre-clinical studies

Author, year	Type of study	Study model	Outcomes
Nicolau et al., 1995	In vivo	SAIIE Rabbit	- Reduced vegetation weight and bacterial density using 8 mg/kg aspirin
Kupperwasser et al.,	In vivo	SAIIE Rabbit	- Reduced vegetation weight and rate of sterilization using early adjuvant treatment with 10 mg/kg aspirin + 50 mg/kg vancomycin
1999b			- Reduced vegetation weight, vegetation/renal bacterial densities, and renal embolic lesions using a prophylactic dose of 8 mg/kg aspirin
Nicolau et al., 1999	In vivo	SAIIE Rabbit	- Reduced vegetation weight and infected vegetations using a prophylactic dose of 10 mg/kg aspirin
Veloso et al., 2015b	In vivo	SAIIE Rat	- Reduced vegetation weight and infected vegetations using a prophylactic dose of 8 mg/kg aspirin + 10 mg/kg ticlopidine

Clinical studies

Author, year	Type of study	Study model	Outcomes	
Chan et al., 2003	Prospective, randomized,	IE patients	- No reduced rate of embolic events	
	double-blinded,	receiving		Increased bleeding
	placebo-controlled trial	prior aspirin		
		therapy		
Anavekar et al., 2007	Retrospective cohort	IE patients	- Reduced rate of embolic events	
	trial	receiving		
		prior antiplatelet		
		therapy		
Chan et al., 2008	Prospective, multi-center,	IE patients	- No reduced rate of embolic events	
	randomized trial	receiving		Increased bleeding risk
		prior aspirin		
		therapy		
Eisen et al., 2009	Prospective cohort trial	SAIIE patients	- Reduced valve replacement surgery	
		receiving		
		prior aspirin		
		therapy		
Pepin et al., 2009	Retrospective observational	IE patients	- No reduced rate of embolic events	
	trial	receiving		
		prior antiplatelet		
		therapy		
Snygg-Martin et al.,	Prospective cohort trial	IE patients	- No reduced rate of cerebrovascular complications	
2011		receiving		
		prior antiplatelet		
		therapy		
Habib et al., 2013	Retrospective trial	Cardiovascular	- Reduced rate of embolic events	
		implantable electronic device		
		IE patients		
		receiving		
		prior aspirin		
		therapy		

SAIE, S. aureus infective endocarditis; IE, infective endocarditis.

bolus injection of bacteria in previous models, which induced transient bacteremia, thus negating the effect of preventive antiplatelet therapy. However, Veloso et al. (2015b) could observe a significant decrease in vegetation weight when using aspirin in combination with ticlopidine, another antiplatelet drug belonging to the thienopyridine class of platelet P2Y12 receptor inhibitors. Finally, a combination of aspirin with vancomycin was described to significantly decrease vegetation weight and bacterial density, emphasizing its potential as an adjuvant therapeutic agent (Nicolau et al., 1995; Veloso et al., 2015b).

Clinical studies focusing on prior aspirin therapy in patients at high risk of IE described variable outcomes in relation to the prevention of embolic events (Table 1). Chan et al. (2003, 2008) reported no benefit of aspirin in reducing the risk of embolic events in IE patients, however increased bleeding was observed. This was further confirmed by Snygg-Martin et al. (2011), Eisen et al. (2009), and Pepin et al. (2009), showing no reduction of cerebrovascular complications or embolic events in patients on previously established antiplatelet therapy (mostly aspirin) (Trauer et al., 2017). In contrast, Anavekar et al. (2007) and Habib et al. (2013) described prior aspirin therapy, to reduce vegetation formation and embolic events. Despite promising mechanistic in vitro and animal studies, clinical studies showed controversial results. Thus, there is currently no evidence for any benefits of antiplatelet drugs such as aspirin in improving IE patient outcome. Nevertheless, many of these clinical studies had a low sample size which made it difficult to obtain sufficient statistical power. Furthermore, there is a large heterogeneity in patient age, comorbidities, the duration and dose of antiplatelet therapy prior to IE development or after, and bacterial strains involved in disease development.

In contrast, the relatively more recent antiplatelet drug ticagrelor, a reversible platelet P2Y12 receptor inhibitor, has become subject of discussion. In a sub-study of the large, randomized PLATO clinical trial, ticagrelor therapy was associated with a lower risk of death related to infection as compared to the thienopyridine clopidogrel. In addition, the small XANTHIPPE clinical study showed improved
The use of antiplatelet drugs as an adjunct therapy to prevent vegetation growth, embolic events, or to improve the outcome in high-risk cardiovascular patients with IE has been and should still be a matter of great interest. While the mode of action and possible benefits of aspirin in the prevention of IE progression have been widely investigated, the more recent antiplatelet drug ticagrelor deserves attention. Several hypotheses have been proposed regarding its antibacterial properties. Lancellotti et al. (2019b) reported a possible role of platelets for ticagrelor transport to the site of infection, allowing a local antibacterial effect. This hypothesis is based on the reversible binding properties of ticagrelor to the P2Y12 receptor, and on studies indicating that platelets are recruited to the site of infection, similar to immune cells (Lancellotti et al., 2019b). Heying et al. (2019) proposed that the bactericidal properties of ticagrelor could resemble the aspirin effect, modulating the expression of S. aureus virulence factors with a decrease in the expression of MSCRAMMs and toxins. The potential inhibitory effect of ticagrelor on bacteria-platelet interactions was further supported by an in vitro study reporting the highest inhibitory effect of bacteria-induced platelet aggregation by ticagrelor as compared to aspirin, aspirin plus ticagrelor, or tirosiban (Hannachi et al., 2020). Very recently, two studies described an inhibitory effect of ticagrelor on α-toxin mediated platelet clearance by the hepatic AMR pathways, thereby preserving the antibacterial activity of platelets (Sun et al., 2021; Ulloa et al., 2021). In addition, antiplatelet drugs could also inhibit the immune and inflammatory role of platelets (Tiwari et al., 2020). While aspirin inhibits the release of inflammatory mediators by platelets such as leukotrienes, ticagrelor blocks the formation of platelet-leukocyte aggregates (Tiwari et al., 2020), which could also play a role during the process of infection, as proposed by Sexton et al. (2018).

CONCLUSION
Antibiotic prophylaxis is currently recommended to prevent IE development in high-risk patients. However, the use of antibiotics faces the challenge of a low efficacy due to the steadily increasing infection rate by resistant bacteria strains, which is further enhanced by using antibiotics. This review suggests that the antiplatelet drug ticagrelor combined with antibiotics may play a role in the prevention of SAIE. Indeed, this drug was recently described to have antibacterial properties in addition to its potent antiplatelet activity. Moreover, a recent study in mice and a case report remarkably indicated the ability of ticagrelor to eradicate S. aureus bacteremia. Therefore, further investigations should be performed in order to evaluate whether prior ticagrelor therapy could be beneficial for the prevention of IE or other endovascular infectious diseases. This new strategy could contribute to a decrease in antibiotic resistance and a significant reduction in disease-associated mortality.
REFERENCES

Anavekar, N. S., Tleyjeh, I. M., Anavekar, N. S., Marzoyev, Z., Steckelberg, J. M., Haddad, C., et al. (2007). Impact of prior antiplatelet therapy on risk of embolism in infective endocarditis. Clin. Infect. Dis. 44, 1180–1186. doi: 10.1086/513197

Bayer, A. S., Ramos, M. D., Menzies, B. E., Yeaman, M. R., Shen, A. J., and Leeten et al. Antiplatelet Therapy and Infective Endocarditis Lancet 387, 882–893. doi: 10.1016/S0140-6736(15)00067-7

Bhati, S., Muhly, M., Mannhardt, U., Hugo, F., Klappetek, K., Mueller-Eckhardt, C., et al. (1988). Staphylococcal α toxin promotes blood coagulation via attack on human platelets. J. Exp. Med. 168, 527–542. doi: 10.1084/jem.168.2.527

Cahill, T. J., and Prendergast, B. D. (2016). Infective endocarditis. Lancet 387, 1186/513197 October 1, 2021 Time: 15:37 # 6

Chan, K. L., Dumesnil, J. G., Cuiec, B., Sanfilippo, A. J., Jue, J., Turek, M. A., et al. (2003). A randomized trial of aspirin on the risk of embolic events in patients with infective endocarditis. J. Am. Coll. Cardiol. 42, 775–780. doi: 10.1016/S0735-1097(03)00829-5

Chan, K. L., Tam, J., Dumesnil, J. G., Cuiec, B., Sanfilippo, A. J., Jue, J., et al. (2008). Effect of long-term aspirin use on embolic events in infective endocarditis. Clin. Infect. Dis. 46, 37–41. doi: 10.1086/524021

Claes, J., Dikowski, B., Liesenborghs, L., Veloso, T. R., Entenza, J. M., Morellon, P., et al. (2018). Assessment of the dual role of clumping factor A in S. Aureus adherence to endothelium in absence and presence of plasma. Thromb. Haemost. 118, 1230–1241. doi: 10.1055/s-0038-1660435

Claes, J., Liesenborghs, L., Peertmans, M., Veloso, T. R., Missiakas, D., Schneewind, O., et al. (2017). Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall. J. Thromb. Haemost. 15, 1009–1019. doi: 10.1111/jth.13653

Cox, D., Kerrigan, S. W., and Watson, S. P. (2011). Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. J. Thromb. Haemost. 9, 1097–1107. doi: 10.1111/j.1538-7836.2011.04264.x

Eisen, D. P., Corey, G. R., McBryde, E. S., Fowler, V. G., Miro, J. M., Cabell, C. H., et al. (2009). Reduced valve replacement surgery and complication rate in infective endocarditis. J. Am. Coll. Cardiol. 53, 1368.e–1382.e. doi: 10.1016/j.cell.2017.11.001

Kerrigan, S. W., Clarke, N., Loughman, A., Meade, G., Foster, T. J., and Cox, D. (2008). Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler. Thromb. Vasc. Biol. 28, 335–340. doi: 10.1161/ATVBAHA.107.152058

Kupferwasser, I. L., Skurray, R. A., Brown, M. H., Firth, N., Yeaman, M. R., and Bayer, A. S. (1999a). Plasmin-mediated resistance to thrombin-induced platelet microbicidal protein in Staphylococcus role of the qacA locus. Antimicrob. Agents Chemother. 43, 2395–2399. doi: 10.1128/ AAC.43.10.2395

Kupferwasser, I. L., Yeaman, M. R., Nast, C. C., Kupferwasser, D., Xiong, Y.-Q., Palma, M., et al. (2003). Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Invest. 112, 222–233. doi: 10.1122/jci16876

Lancellotti, P., Musumeci, L., Jacques, N., Servais, L., Goffin, E., Pirotte, B., et al. (2019a). Antibacterial activity of ticagrelor in conventional antiplatelet dosages against antibiotic-resistant gram-positive bacteria. JAMA Cardiol. 4, 596–599. doi: 10.1001/jamacardio.2019.1189

Lancellotti, P., Musumeci, L., and Oury, C. (2019b). Are antiplatelet agents beneficial in prevention of infective endocarditis? Reply. JAMA Cardiol. 4, 1177–1178

Liesenborghs, L., Meyers, S., Lox, M., Criew, M., Claes, J., Peertmans, M., et al. (2019). Staphylococcus aureus endocarditis: distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. Eur. Heart J. 40, 3248–3259. doi: 10.1093/europheart/ehz175

Liesenborghs, L., Meyers, S., Vanasse, T., and Verhamme, P. (2020). Coagulation at the heart of infective endocarditis. J. Thromb. Haemost. 18, 995–1008. doi: 10.1111/jth.14736

Liesenborghs, L., Verhamme, P., and Vanasse, T. (2018). Staphylococcus aureus, master manipulator of the human hemostatic system. J. Thromb. Haemost. 16, 441–454. doi: 10.1111/jth.13928

Lupu, L., Shepshelovich, D., Bani, S., Hershkoviz, R., and Isakov, O. (2020). Effect of ticagrelor on reducing the risk of gram-positive infections in patients with acute coronary syndrome. Am. J. Cardiol. 130, 56–63. doi: 10.1016/j.amjcard.2020.06.016

Moreillon, P., and Que, Y. A. (2004). Infective endocarditis. Lancet 363, 139–149. doi: 10.1016/S0140-6736(03)15266-X

Nicolaou, D. P., Marangos, M. N., Nightingale, C. H., and Quintiliani, R. (1995). Influence of aspirin on development and treatment of experimental Staphylococcus aureus endocarditis. Antimicrob. Agents Chemother. 39, 1748–1751. doi: 10.1128/AAC.39.8.1748

Nicolaou, D. P., Tessier, P. R., and Nightingale, C. H. (1999). Beneficial effect of combination antiplatelet therapy on the development of experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 11, 159–161. doi: 10.1016/S0924-8579(98)00092-2

Pawar, P., Shin, P. K., Mousa, S. A., Ross, J. M., and Konstantopoulou, K. (2004). Fluid shear regulates the kinetics and receptor specificity of Staphylococcus aureus binding to activated platelets. J. Immunol. 173, 1258–1265. doi: 10.4049/jimmunol.173.2.1258

Pepin, J., Tremblay, V., Bechard, D., Rodier, F., Walker, C., Dufresne, D., et al. (2009). Chronic antiplatelet therapy and mortality among patients with infective endocarditis. Clin. Microbiol. Infect. 15, 193–199. doi: 10.1111/j.1469-0691.2008.02665.x

Powars, M. E., Becker, R. E. N., Salier, A., Turner, J. R., and Bubeck Wardenburg, J. (2015). Synergistic action of Staphylococcus aureus α-toxin on platelets and myeloid lineage cells contributes to lethal sepsis. Cell Host Microbe 17, 775–787. doi: 10.1016/j.chom.2015.05.011

Powars, M. E., Kim, H. K., Wang, Y., and Wardenburg, J. B. (2012). ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. Infect. Dis. Set. 206, 352–356. doi: 10.1093/infdis/jir92

Que, Y. A., and Moreillon, P. (2011). Infective endocarditis. Nat. Rev. Cardio. 8, 322–336. doi: 10.1038/nrcardio.2011.43

Seuton, T. R., Zhang, G., Macaulay, T. E., Callahan, L. A., Charnigo, R., Vsevolozhskaya, O. A., et al. (2018). Ticagrelor reduces thromboinflammatory
markers in patients with pneumonia. JACC Basic Transl. Sci. 3, 435–449. doi: 10.1016/j.jbts.2018.05.005

Snygg-Martin, U., Rasmussen, R. V., Hassager, C., Bruun, N. E., Andersson, R., and Olaison, L. (2011). The relationship between cerebrovascular complications and previously established use of antiplatelet therapy in left-sided infective endocarditis. Scand. J. Infect. Dis. 43, 899–904. doi: 10.3109/00365548.2011.603742

Sørensen, A. L., Rasmussen, R. V., Hassager, C., Bruun, N. E., Andersson, R., Sørensen, A. L., Rumjantseva, V., Nayeb-Hashemi, S., Clausen, H., Hartwig, J. H., Wandall, H. H., et al. (2009). Role of sialic acid for platelet life span: exposure of β-galactosidase results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 114, 1645–1654. doi: 10.1182/blood-2009-01-199414

Sun, J., Uchiyama, S., Olson, J., Morodomi, Y., Cornax, I., Ando, N., et al. (2021). Repurposed drugs block toxin-driven platelet clearance by the hepatic Ashwell-Morell receptor to clear Staphylococcus aureus bacteremia. Sci. Transl. Med. 13:eabd6737. doi: 10.1126/scitranslmed.abd6737

Surewaard, B. G. J., Thanabalasuriar, A., Zeng, Z., Tkaczyk, C., Cohen, T. S., Bardoeel, B. W., et al. (2018). α-Toxin Induces Platelet Aggregation and Liver Injury during Staphylococcus aureus Sepsis. Cell Host Microbe 24, 271.e–284.e. doi: 10.1016/j.chom.2018.06.017

Tiwar, N. R., Chaudhari, K. S., Sharma, R., Haas, K. P., and Sharma, V. R. (2020). Antiplatelet agents in sepsis-putting it all together: a call to action. Indian J. Crit. Care Med. 24, 483–484. doi: 10.5005/jp-journals-10071-23450

Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., and Fowler, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661. doi: 10.1128/CMR.00134-14

Trauer, J., Muhi, S., McByde, E. S., Al Harbi, S. A., Arabi, Y. M., Boyle, A. J., et al. (2017). Quantifying the effects of prior acetylsalicylic acid on sepsis-related deaths: an individual patient data meta-analysis using propensity matching. Crit. Care Med. 45, 1871–1879. doi: 10.1097/CCM.0000000000002654

Ulloa, E. R., Uchiyama, S., Gillespie, R., Nizet, V., and Sakoulas, G. (2021). Ticagrelor increases platelet-mediated Staphylococcus aureus killing resulting in clearance of bacteremia. J. Infect. Dis. 146:jia146. doi: 10.1093/infdis/jia146

Veloso, T. R., Oechslin, F., Que, Y. A., Morellon, P., Entenza, J. M., and Mancini, S. (2015a). Aspirin plus ticlopidine prevented experimental endocarditis due to Enterococcus faecalis and Streptococcus galalyloticus. Pathog. Dis. 73:ftv060.

Veloso, T. R., Que, Y.-A., Chaouch, A., Giddley, M., Vuullamoz, J., Rousson, V., et al. (2015b). Prophylaxis of experimental endocarditis with antiplatelet and antithrombin agents: a role for long-term prevention of infective endocarditis in humans? J. Infect. Dis. 211, 72–79. doi: 10.1093/infdis/jiu426

Wallentin, L., Becker, R. C., Budaj, A., Cannon, C. P., Emanuelsson, H., Held, C., et al. (2009). Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057. doi: 10.1056/nejmoa0904327

Wann, E. R., Gurusiddappa, S., and Hook, M. (2000). The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J. Biol. Chem. 275, 13863–13871. doi: 10.1074/jbc.275.18.13863

Werdan, K., Dietz, S., Löfler, B., Niemann, S., Bushnaq, H., Silber, R. E., et al. (2014). Mechanisms of infective endocarditis: pathogen-host interaction and risk states. Nat. Rev. Cardiol. 11, 35–50. doi: 10.1038/nrcardio.2013.174

Wilson, W., Taubert, K. A., Gewitz, M., Lockhart, P. B., Baddour, L. M., Levison, M., et al. (2007). Prevention of infective endocarditis: guidelines from the American Heart Association. Circulation 116, 1736–1754. doi: 10.1161/CIRCULATIONAHA.106.183095

Wong, C. H. Y., Jenne, C. N., Petri, B., Chrobok, N. L., and Kubes, P. (2013). Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol. 14, 785–792. doi: 10.1038/ni.2631

Yeaman, M. R. (2010). Platelets in defense against bacterial pathogens. Cell. Mol. Life Sci. 67, 525–544. doi: 10.1007/s00018-009-0210-4

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Leeten, Jacques, Lancellotti and Oury. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.