Risk of Ophthalmic Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis

Yan-Li Hou, MD, Di-Ya Wang, PhD; Jie-Xuan Hu, MS; Ru-Yue Tian, MS; Wei Wang, PhD; Qiang Su, PhD; Hongyang Li, PhD; and Yan-Ling Wang, PhD

*Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; †Department of Radiation Oncology, University of California, San Francisco, California, USA; ‡Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; §Multidisciplinary Clinic Center of Ocular Vascular Disease, College of Optometry, Capital Medical University, Beijing, China

ABSTRACT

Background: Immune checkpoint inhibitors (ICls) induced adverse events (AEs) have been reported affecting almost all human organs. However, studies about ocular AEs are few. A meta-analysis was performed to evaluate the risks of ICI-related ophthalmic AEs compared to chemotherapy.

Methods: Eligible studies were selected from phase II/III randomized controlled trials investigating ICls. The data were analyzed by R software and Stata.

Results: Odds ratio of treatment-related AEs (trAEs) and nonspecific ophthalmic trAEs (NS-trAEs) were lower for PD-1/PD-L1 inhibitors than chemotherapy (OR 0.44, p < .05; OR 0.28, p < .001; OR 0.18, p < .01 respectively). Compared with monotherapy, PD-1 plus CTLA-4 inhibitors increased the risks of immune-related AEs (irAEs) (OR 4.52, p < .01); ICls plus chemotherapy increased the risks of trAEs and irAEs (OR 2.82, p < .001; OR 3.63, p < .05 respectively).

Conclusions: PD-L1/PD-1 inhibitors had lower risks of trAEs and NS-trAEs than chemotherapy; Compared with monotherapy, combination therapy had higher risks of ophthalmic trAEs and irAEs.

Abbreviation: PD-1: programmed cell death protein 1; PD-L1: programmed cell death protein ligand 1; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; ICI: immune checkpoint inhibitor; AE: adverse event; trAE: treatment-related adverse event; irAE: immune-related adverse events; NS-trAE: nonspecific ophthalmic treatment-related adverse event; RCT: randomized controlled trials; PFS: progression-free survival; OS: overall survival; ORR: objective response rate; MM: melanoma; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; HNSCC: head-neck squamous cell carcinoma; PICOL: patient, intervention, comparison, and outcome; Versus: VS; Chem: chemotherapy; 95%CI: 95% confidence interval; FEM: fixed-effects model; REM: random-effects model; NA: not applicable; MeSH: medical subject heading

The field of immune-oncology has evolved significantly over the past decade. Immune checkpoints are essentially receptors on cytotoxic T cells that work as inhibitory responses to prevent T cells from immune overactivation. However, this physiological process may be nefariously imitated by tumor cells. Tumor cells may be recognized as 'self' by the immune system and then escape from immune attack. A new kind of immunologic agents, called immune checkpoint inhibitors (ICls), alleviate the tumor-induced T cells inhibition and thereby evoke anti-tumor immunity after binding to their specific ligands: cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed death-ligand 1 (PD-L1).

Several ICls have already been approved and have been in use for years. Ipilimumab (CTLA-4 inhibitor) was the first inhibitor to be approved for melanoma management in 2011, then Nivolumab (PD-1 inhibitors), pembrolizumab (PD-1 inhibitors), and atezolizumab (PD-L1 inhibitors) were approved by Food and Drug Administration (FDA) for treatment in patients with advanced NSCLC. ICls have remarkable improvement and benefits in overall survival (OS) in patients with malignant melanoma (MM), non-small-cell lung cancer (NSCLC), urethral carcinoma, head-neck squamous cell carcinoma (HNSCC), and malignant mesothelioma. Unfortunately, ICls have been associated with several treatment-related adverse events (trAEs), such as immune-related adverse events (irAEs) most notably. IrAEs are considered to be the result of cross-reactive tissue damage, through the activation and the infiltration of T-cells into noncancerous tissues, preexisting auto-antibodies and inflammatory cytokines levels increase, and complement-mediated inflammation enhance.

Ophthalmic irAEs are rare, having been reported in less than 1% of patients treated with Ipilimumab. Ophthalmic toxicities however shouldn’t be ignored as they can be visually threatening without timely recognition or appropriate treatments, ultimately affect the quality of life. Here, we have performed a meta-analysis of phase II/III RCTs focused on all types of ophthalmic AEs in patients treated with ICls. To the best of our knowledge, this is the most detailed meta-analysis...
to synthesize information concerning risks and incidences of ophthalmic AEs with PD-1/PD-L1, CTLA-4 inhibitors monotherapy, or combination therapy. It will assist ophthalmologists and oncologists in recognizing potential ophthalmic toxicities in patients treated with ICIs.

Materials and methods

Our meta-analysis was conducted according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions and reported based on the PRISMA Statement. We followed the same method of our study.

Search strategy

We searched all the RCTs related to solid tumors, PD-1, PD-L1, and CTLA-4 inhibitors from the following databases: PubMed, Embase, and https://clinicaltrials.gov. The time range of the intended RCTs was until September 2020. The medical subject heading (MeSH) terms included for searching the relevant studies contained one term to indicate cancer: (neoplasm, carcinoma, cancer, or tumor, etc); one term to indicate ICIs (anti-CTLA-4, anti-PD-1, anti-PD-L1, ipilimumab, tremelimumab, pembrolizumab, nivolumab, durvalumab, atezolizumab, or avelumab), and one term to indicate RCTs. We used “and” to connect them. (Supplementary Table S1)

Inclusion and exclusion criteria

Our meta-analysis included the following information in English literature studies: (1) Phase II/III RCTs with primary endpoints such as overall survival, progression-free survival (PFS), or objective response rate (ORR); (2) histologically-confirmed solid tumors such as lung cancer, melanoma (MM), and others; (3) containing the information of ICIs (PD-1/PD-L1 inhibitors or CTLA4 inhibitor alone or PD-1 inhibitor combined with CTLA4 inhibitor), controlled therapies, and ophthalmic AEs were concerned.

However, the studies were excluded if they were: (1) reviews, duplicate reports, letters, unfinished studies, or conference reports; (2) studies conducted with animal models or cell lines or on non-solid tumors; (3) studies whose ophthalmic AEs could not be confirmed due to insufficient data; (4) studies whose experimental method was substantially different from other selected RCTs.

Data extraction

Two reviewers (Y.L.H. and D.Y.W.) independently searched all the relevant studies and read the titles, abstracts, and full texts of the identified studies. A study was deemed acceptable for inclusion in the study if PICO (Patient, Intervention, Comparison, and Outcome) criteria were met. We extracted the following information from the selected studies: year of publication, author’s family name, methods of trials, number of ICIs treatment type, number of control treatment, number of ophthalmic AEs, all-grade (grade 1–4), and high-grade (grade 3–4) respectively, number of ophthalmic treat-related AEs(trAEs), immune-related AEs(irAEs) and nonspecific treat-related AEs (NS-trAEs) respectively.

Grade of the ophthalmic AEs has been reported according to common terminology criteria for adverse events (CTCAE Version 5.0), where no grade 5(death) ophthalmic AEs had been mentioned (Supplementary Table S3). IRAEs were usually defined as any AE associated with drug exposure and consistent with an immune-mediated mechanism of action, such as uveitis, dry eye, iritis, retinopathy, etc. NS-trAEs were defined as adverse events unrelated to immune responses, such as ocular infectious diseases, or those that lack detailed clinical description (eye disorders, blurred vision, etc.). TrAEs: all ophthalmic adverse events that were associated with drugs during treatment, including irAEs and NS-trAEs. Cases of disagreement were resolved with a third reviewer (Q.S.).

Data analysis

In our study, the risk of bias analysis was performed by Review Manager 5.3 software (Cochrane Collaboration 2014, Nordic Cochrane Center, and Copenhagen, Denmark) and stata (version 15.1). Two reviewers (Y.L. H. and Q.S) independently assess the quality of the included RCTs according to the Cochrane risk of bias tool, which assesses the following seven domains: selection bias (including both random sequence generation and allocation concealment), performance bias, detection bias, attrition bias, reporting bias, and other bias. R3.4.3 (R Project) and the metafor package were used for the data analysis. Odds ratio (OR) was used to estimate ophthalmic AEs of grade 1–4 and grade 3–4. OR >1.0 indicated a higher risk of ophthalmic AEs in patients treated with ICIs. Besides, the I² statistics were applied to assess the heterogeneity among the RCTs. I² values of <30%, 30%–59%, 60%–75%, and >75% were classified as low, moderate, substantial, and considerable heterogeneity respectively. We used the random-effects model (REM) described by DerSimonian and Laird to calculate pooled OR and 95% confidence interval (CI). Sources of heterogeneity were explored using subgroup analyses mainly according to different ICI regimens. The Begg’s and Egger’s tests were used to analyze the publication bias across RCTs. All P values were 2-tailed, and a probability level <0.05 was considered statistically significant.

Quality assessment

First, our meta-analysis was strictly performed by the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. Second, two independent reviewers searched all the relevant studies and read the titles, abstracts, and full texts of the identified studies. Any question was resolved by discussion with other reviewers until the agreement was reached. Third, we paid much attention to the heterogeneity among the RCTs by using subgroup analysis. On the other hand, the REM was also employed for our meta-analysis to verify the statistical results.
Results

Selection of studies and characteristics

Using the search terminology, we initially identified 3,445 studies from our databases search results. Among those studies, 25 RCTs met our strict inclusion criteria (Supplementary Figure S1). All the 25 included trials were evaluated and compared side effects of ICIs therapies with other controlled treatments (chemotherapy, placebo, or ICI) in solid tumors representing data from a total of 13,599 patients.

Among the studies (Table 1), four involved PD-L1 (Atezolizumab: 2 studies8,7 751 patients; Avelumab: 2 studies25,26 580 patients); seven involved PD-1 (Nivolumab: 4 studies6,11,27,28, 997 patients; Pembrolizumab: 3 studies9,10,29, 1,309 patients); four involved CTLA-4 (Tremelimunab: 2 studies12,32 705 patients; Ipilimumab: 2 studies30,31 864 patients); and three studies compared combination therapy of PD-1 plus CTLA-4 inhibitors with ICI monotherapy (1,290 patients, Nivolumab + Ipilimumab or Pembrolizumab + Ipilimumab).33–35 Six studies compared combination therapy of chemotherapy plus ICIs with chemotherapy.4,36–40 Additionally, one study compared Pembrolizumab with Ipilimumab.41 Nine studies had data from malignant melanoma(MM) patients4,27–30,32,33,35,41; Seven from non-small cell lung cancer (NSCLC) patients6,9,26,36,40; Other 9 studies from other cancers including small cell lung cancer (SCLC),13,37 mesothelioma12, urothelial cancer10, prostate cancer,31, and head-neck squamous cell carcinoma11, ovarian cancer25, Multiple Myeloma.38,39

The quality of the included studies was measured by the Cochrane risk of bias tool, and the results are in Figure 1, Supplementary Table S2, and Supplementary Figure S2. All the included studies had described the details regarding binding of outcome assessment and random sequence generation. However, some of them had described incomplete outcome data and allocation concealment. Some studies failed to mention the binding of participants, personnel, and selective reporting. Other indices of bias lacked specific description in all the included clinical studies.

Risk of overall ophthalmic treatment-related adverse events

Across 19 eligible studies, 228 cases of overall ophthalmic trAEs and 37 cases of grade 3–4 ophthalmic trAEs were observed among 11,357 involved patients (Table 1). The predicted incidences of overall all-grade ophthalmic trAEs were 2.70% for chemotherapy, 4.98% for combination therapy of PD-1 plus CTLA-4, 0.87% for the PD-L1 inhibitor, 1.28% for the PD-1 inhibitor, and 1.43% for the CTLA-4 inhibitor (Table 2).

The OR of all-grade ophthalmic trAEs in patients with PD-1/PD-L1 inhibitors was 0.44 (95% CI: 0.23–0.83 p < .050) and 0.28 (95% CI: 0.10–0.77 p < .0001) respectively, and it was statistically lower than chemotherapy (p < .05). There was no significant difference between CTLA-4 inhibitor and control (chemotherapy or placebo) (OR, 1.28; 95%CI, 0.21–7.84; p > .05). Patients with combination therapy (PD-1 plus CTLA-4 inhibitors or ICIs plus chemotherapy) have a higher risk of all-grade trAEs than CTLA-4/PD-1 inhibitor alone (OR 4.52, 95% CI: 1.67–12.24, p < .01) or chemotherapy (OR, 2.82; 95%CI, 1.45–5.46; p < .001). The risks of high-grade ophthalmic trAEs in PD-1/PD-L1/CTLA-4 inhibitors monotherapy or combination therapy had no significant difference than controls. (Figure 2)

Risk of immune-related ophthalmic adverse events

Across enrolled 14 studies, 82 cases of irAEs (grade 1–4) and 25 cases of irAEs (grade 3–4) were observed among the 8,810 involved patients (Table 1). The predicted incidences of all-grade ophthalmic irAEs were 0.86% for chemotherapy, 4.98% for combination therapy of PD-1 plus CTLA-4, 0.30% for the PD-L1 inhibitor, 1.25% for the PD-1 inhibitor, and 0.92% for the CTLA-4 inhibitor. (Table 2)

Compared with PD-1 or CTLA-4 inhibitor monotherapy, patients with ICIs combination therapy (PD-1 plus CTLA-4 inhibitors) were significantly more likely to experience all-grade ophthalmic irAEs (OR, 4.52; 95%CI: 1.67–12.24; p < .05), as well as patients with combination therapy (ICI plus chemotherapy) compared with chemotherapy (OR, 3.63; 95%CI: 1.36–9.66; p < .05), but not concern high-grade ophthalmic irAEs. Compared with chemotherapy or control, the risk of all-grade and high-grade ophthalmic irAEs in PD-1/PD-L1/CTLA-4 inhibitors had no significant difference (p > .05). (Figure 3)

Risk of nonspecific treatment-related ophthalmic adverse events

Across enrolled 10 studies, 146 cases of NS-trAEs (grade 1–4) and 12 cases of NS-trAEs (grade 3–4) were observed among the 6,480 involved patients (Table 1). The predicted incidences of ophthalmic NS-trAEs were shown in Table 2.

The risks of all-grade ophthalmic NS-trAEs in PD-1/PD-L1inhibitors were significantly lower than chemotherapy (OR: 0.18; 95%CI: 0.04–0.72; p < .05) and OR: 0.18; 95%CI: 0.08–0.40; p < .001), but no concern high-grade. (Figure 4)

Risk of ophthalmic adverse events between PD-1 and CTLA-4 inhibitors

The risks of ophthalmic trAEs/irAEs/NS- trAEs between PD-1 and CTLA-4 inhibitors were similar (p > .05). (Figure 2–4)

Discussions

A previous meta-analysis showed that, generally, irAEs (particularly uveitis and dry eyes) occur with a higher frequency in cancer patients treated ICIs compared with control.42 To the best of our knowledge, our study is the first meta-analysis to compare the incidences and risks of ophthalmic trAEs and irAEs associated with different ICI regimens and the first to include trials with PD-L1 inhibitors and combination therapy.

Although ICI-related ophthalmic AEs are not fatal and are generally manageable, they may interrupt treatment due to blindness or pain, affecting quality of life significantly. Compared with standard chemotherapy, patients with PD-1/PD-L1 inhibitors had a substantially lower risk of all-grade ophthalmic trAEs and NS-
Study Type	Primary	Treatment	Patients	trAEs	irAEs	NS-trAEs
RCT III	OS	Nivolumab	236	2	1	2
III		Avelumab	187	1	1	1
		Chemotherapy	177	0	0	0
iii	OS	Avelumab	393	1	1	1
iii		Chemotherapy	365	1	0	0
iii	NSCLC	Atezolizumab	609	7	1	1
		Chemotherapy	578	33	0	0
ii	NSCLC	Atezolizumab	142	1	0	1
		Chemotherapy	135	7	0	7
ii	Carcinoma of head & neck	Nivolumab	111	7	1	
ii	Melanoma	Nivolumab	268	1	1	1
ii	NSCLC	Nivolumab	206	0	0	0
ii	NSCLC	Nivolumab	287	2	1	1
ii	Urothelial carcinoma	Pembrolizumab	266	20	2	
ii	PFS	Pembrolizumab	255	17	0	
ii	OS	Pembrolizumab	339	4	0	0
ii	NSCLC	Pembrolizumab	343	7	0	0
ii	Melanoma	Pembrolizumab	178	1	1	1
ii	PFS, OS	Pembrolizumab	179	2	1	2
ii	Nivolumab	Chemotherapy	171	3	0	0
ii	Ipilimumab	Placebo	380	0	0	0
iii	RFS	Ipilimumab	471	4	4	4
iii	ORR	Ipilimumab	474	0	0	0
iii	OS	Ipilimumab	393	4	3	1
iii	Placebo	Ipilimumab	396	11	7	5
iii	Melanoma	Tremelimumab	325	13	0	0
iii	Chemotherapy	Ipilimumab	319	3	0	0
ii	Malherba	Placebo	189	1	1	1
ii	Ipilimumab	Placebo	46	2	0	0
ii	Melanoma	Nivolumab	94	17	0	17
iii	SCLC	Nivolumab	46	2	0	0
iii	IPB	Nivolumab	61	2	1	2
iii	BMS	Nivolumab	54	5	0	5
iii	RS	Nivolumab	98	0	0	0
iii	SCLC	Nivolumab	313	2	2	2
iii	OS	Nivolumab	313	1	1	1
iii	Ipilimumab	Placebo	311	1	1	1
iii	Ipilimumab	Placebo	46	2	0	0
iii	Ipilimumab	Placebo	61	2	1	2
iii	Ipilimumab	Placebo	54	5	0	5
iii	Ipilimumab	Placebo	98	0	0	0
iii	Ipilimumab	Placebo	313	2	2	2
iii	Ipilimumab	Placebo	313	1	1	1
iii	Ipilimumab	Placebo	311	1	1	1
iii	Ipilimumab	Placebo	46	2	0	0
iii	Ipilimumab	Placebo	61	2	1	2
iii	Ipilimumab	Placebo	54	5	0	5
iii	Ipilimumab	Placebo	98	0	0	0
iii	Ipilimumab	Placebo	313	2	2	2
iii	Ipilimumab	Placebo	313	1	1	1
iii	Ipilimumab	Placebo	311	1	1	1
iii	Ipilimumab	Placebo	46	2	0	0
iii	Ipilimumab	Placebo	61	2	1	2
iii	Ipilimumab	Placebo	54	5	0	5
iii	Ipilimumab	Placebo	98	0	0	0
iii	Ipilimumab	Placebo	313	2	2	2
iii	Ipilimumab	Placebo	313	1	1	1
iii	Ipilimumab	Placebo	311	1	1	1
trAEs in our paper. Three issues may have contributed to the lower risk: First, traditional chemotherapy drugs generally work as cytotoxic reagents that favor killing rapid-dividing cells, whether they are tumor cells or healthy ones, thus lacking targetability and precision. PD-1/PD-L1 inhibitors activate the anti-tumor immune system specifically by releasing the already existing T cell inhibition. ICI represents one type of target therapy. Our previous analysis indicated that anti-PD-1 therapy is associated with fewer adverse events than chemotherapy, such as nausea, febrile neutropenia, diarrhea, anemia, neutropenia, fatigue, and alopecia. Second, in the ocular system, chemotherapy drugs may break the retinal blood-ocular barrier, which is crucial for protecting the eye from toxins. The ocular is an immune-privileged organ, and the blood-retinal lacks efficient lymphatics make the ocular system less affected by PD-1/PD-L1 inhibitors. Third, most chemotherapy-induced AEs were dose-dependent. TrAEs appear to be associated with their cumulative dose and cumulative cell toxicity. But there is a lesser or inconsistent dose-dependent relationship between AEs and PD-1/PD-L1 inhibitors.55

ICIs may prompt a T-lymphocyte-mediated immune attack on other parts of the body not limited to cancer tissues, such as cutaneous, endocrine, eye, etc. cause immune-related AEs. Although patients with ICIs had a 10–15% higher rate of irAE than traditional chemotherapy,16 and patients who developed colitis and diarrhea were also likely to developed uveitis or episcleara.16 However, the risk of ophthalmic irAEs was not higher than chemotherapy in patients with PD-1/PD-L1 and CTLA-4 inhibitors. Ophthalmic irAEs most frequently manifest as uveitis (1%) and dry eye (1–24%).47 Uveitis is also the most common ophthalmic irAEs of melanoma and PD-1 plus CTLA-4 inhibitors combination therapy.48,49 Thyroid eye disease or Graves’ ophthalmopathy occurs in patients with ICI’s thyroid toxicity, which is the most common endocrine irAEs of ICIs.50 The scientific rationale for the causative mechanism of immune-related ophthalmic AEs is unclear. Excessive inflammatory factors such as interferon-a (IFN-a), tumor necrosis factor (TNF), interleukin-23 (IL-23) released by T cells may lead to autoimmune uveitis,51 dacyrooadenitis (dry eye syndrome), scleritis, myositis of extraocular muscles, etc. IrAEs were not frequently observed in chemotherapy.52

Traditional chemotherapy agents involved mostly in our study include taxane (Docetaxel, Paclitaxel) and platinum (Cisplatin). Taxanes are mitotic inhibitors that restrict microtubule mobility and inhibit mitosis during cell division. Cisplatin is a heavy metal compound and has cytotoxicity. Chemotherapy agents breakdown the retinal blood-ocular barrier that affected the optic nerve or ganglion cell axonal transport, result in optic neurotoxicity.53 They lead to vascular dysregulation and potentially vasospasm in retinal and optic nerve vasculature. Fluid retention, such as intracellular fluid accumulation and subclinical extracellular fluid leakage in the retina, results in Müller cell toxicity.54 Stromal fibrosis results in canalicular and nasolacrimal duct obstruction in chemotherapy.

Combination therapy provided additional anti-tumor therapeutic benefits in patients. PD-1 plus CTLA-4 inhibitors or ICI plus chemotherapy would act synergistically. CTLA-4 inhibitors regulate T-cell activation in lymph nodes/tissues and suppress DC activity via Treg cells. PD-1 inhibitors inhibit the effector T-cell and NK cell activation in peripheral tissues and indut Treg cell

Table 1 (Continued).	Study type	Primary	Treatment	Histology	Response rate	TrAE treatment-related adverse event
Mateos18	RCT III	Multiple Myeloma	Pembrolizumab + chemotherapy	myeloma	7/278	0
Usmani19	RCT II	Multiple Myeloma	Pembrolizumab + chemotherapy	Myeloma	1/278	0
Langer10	RCT III	Multiple-Myeloma	Pembrolizumab + chemotherapy	myeloma	1/278	0
Anti-PD-1 vs Anti-CTLA-4	RCT III	NSCLC	Pembrolizumab + chemotherapy	NSCLC	1/278	0
Robert28	RCT III	Advanced melanoma	Pembrolizumab + chemotherapy	melanoma	1/278	0

RCT, randomized controlled trial; MM, multiple myeloma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; ORR, overall response rate; TrAE, treatment-related adverse event; irAE, immune-related adverse event; T-cell, T-lymphocyte; PD-1/PD-L1, programmed-death receptor-1 programmed-death receptor ligand-1; ICI, immune-checkpoint inhibitor.
differentiation. But, because of the combination of anti-tumor drugs, it is difficult to identify a specific agent accounting for the following ophthalmic AEs. Multiple and simultaneous factors that can lead to changes in ocular function and structure are coexisting. Unfortunately, Combination therapy had a higher risk of all-grade ophthalmic trAEs/irAEs compared with PD-1 or CTLA-4 inhibitors or chemotherapy alone. Those are inevitable results that multiagent treatments may lead to unpredictable AEs or overlapping toxicities.

Furthermore, in several RCTs of combination therapy, the majority of ICI-related ophthalmic irAEs were grade 3–4. ‘Multi-hit’ mechanism may offer some explanation to the high-grade irAEs in combination therapy. Clinically, checkpoint inhibitors result in the exacerbation of preexisting autoimmune disease. Patients with server ophthalmic irAEs (grade 3–4) may need treatment with systemic corticosteroids and interruptions or discontinuation of ICIs. Mild ophthalmic irAEs (grade 1–2) were generally manageable, can be treated

Table 2. Incidence of ophthalmic adverse events in different Icl.

Drugs	trAEs(G1-4)	trAEs(G3-4)	irAEs(G1-4)	irAEs(G3-4)	NS-trAEs(G1-4)	NS-trAEs(G3-4)
Chemotherapy	2.70[1.78;4.07]	0.55 [0.29;1.01]	0.86 [0.54;1.36]	0.54[0.30;1.00]	3.20[2.05;4.96]	0.47[0.25;0.88]
PD-L1	0.87[0.47;1.61]	0.29[0.10;0.82]	0.30[0.07;1.18]	0.30[0.07;1.18]	0.80[0.40;1.59]	0.21[0.05;0.83]
PD-1	1.29[0.68;2.39]	0.40[0.22;0.71]	1.25[0.81;1.94]	0.33[0.18;0.60]	0.65[0.32;1.35]	0.37[0.15;0.89]
CTLA4	1.43[0.68;3.02]	0.59[0.32;1.08]	0.92[0.37;2.25]	0.53[0.26;1.06]	1.89[0.37;9.13]	0.40[0.12;1.37]
PD-1+ CTLA4	4.98[1.25;17.86]	0.82[0.31;2.18]	4.98[1.25;17.86]	0.82[0.31;2.18]	NA	NA
Atezolizumab	1.08[0.54;2.15]	0.21[0.04;1.04]	0.16[0.02;1.16]	0.16[0.02;1.16]	0.94[0.45;1.96]	0.17[0.02;1.19]
Avelumab	0.37[0.09;1.46]	0.37[0.09;1.46]	0.53[0.08;3.70]	0.53[0.08;3.70]	0.25[0.04;1.78]	0.25[0.04;1.78]
Nivolumab	0.53[0.26;1.14]	0.35[0.14;0.87]	0.35[0.13;0.92]	0.35[0.12;0.93]	0.55[0.19;1.55]	0.29[0.07;1.17]
Pembrolizumab	2.14[1.08;4.19]	0.52[0.22;1.19]	1.76[1.20;5.58]	0.33[0.13;0.83]	0.86[0.05;13.34]	0.44[0.14;1.34]
Ipilimumab	1.31[0.68;2.52]	0.69[0.37;1.30]	1.10[0.45;2.67]	0.58[0.28;1.18]	0.76[0.25;2.34]	0.76[0.25;2.34]

PD-1: programmed cell death protein 1; PD-L1: programmed cell death protein ligand 1; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; trAE: treatment-related adverse event irAE: immune-related adverse events NS-trAE: nonspecific ophthalmic treatment-related adverse event; I: incidence; 95%CI: 95% confidence interval; NA: not applicable.
with topical steroid. Dow ER et al. found 83.6% of ICI-related uveitis were diagnosed within six months. With the appropriate treatments, the majority of patients recovered within one line of baseline vision. Given the ophthalmic tRAEs in ICIs therapy, a baseline ophthalmologic examination was recommended before treatment.
Limitations

As such type of meta-analysis, our study had several limitations. First, owing to a rare incidence, we could only acquire limited data on some ophthalmic toxicity associated with ICIs. Second, we could not verify each case accurately because some ophthalmic AEs were subjective for patients and clinicians to judge. Third, our study was based on available RCTs and had no detailed data of the individual patient.
Conclusions

Our meta-analysis demonstrated that compared with chemotherapy, PD-L1/PD-1 inhibitors had lower risks of all-grade ophthalmic trAEs and NS-trAEs; None of the ICIs had a higher risk of ophthalmic irAEs. Compared with monotherapy, combination therapy (PD-1 plus CTLA-4 inhibitors vs. ICI or ICIs plus chemotherapy vs. chemotherapy) had higher risks of all-grade ophthalmic trAEs and irAEs. In the treatment of ICIs, there is a need for close monitoring of the safety profile by both oncologists and ophthalmologists.

Authors’ contributions

Y.L.H. and D.Y.W. have access to all the data included in the study. They are responsible for the completeness of the data and the accuracy of our analysis. Q.S. and H.Y.L. helped to design the study. Q.S., W.W., R.Y.T., and Y.L.H. contributed to the statistical analysis and the revision of this manuscript. Q.S. and H.Y.L. approved the final manuscript.

Acknowledgments

The working group wishes to thank Yang-Tian, LU (College Jean-de-Brebeuf, Montreal, Quebec, Canada) for their assistance in the preparation and review of this manuscript.
Funding
This research is supported by the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education [Grant No. KZ202010025047] and the National Natural Science Foundation of China [Grant No. 92046015].

Availability of data and material
Firstly, all of the datasets used in our manuscript are available in the [Pubmed or Embase] repository, [https://www.ncbi.nlm.nih.gov/ Pubmed] and [http://www.embase.com/search] (See Supplementary Table S1: search performed in Pubmed and Embase).

Secondly, the datasets analyzed in our manuscript are available according to our methods part or from the corresponding author on reasonable request.

Declaration of interest
The authors declare no competing interests in preparing this article.

ORCID
Yan-Li Hou ,MD [http://orcid.org/0000-0002-6371-6933]
Hongyang Li ,PhD [http://orcid.org/0000-0001-6786-2105]

References
1. Pandoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi:10.1038/nrc3239.
2. Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer. 2011;11(11):805–812. doi:10.1038/ nrc3153.
3. Hodis FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. doi:10.1056/NEJMoa1003466.
4. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine before untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–2526. doi:10.1056/NEJMoa1104621.
5. Chapman PB, Hauschild A, Robert C, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639. doi:10.1056/NEJMoa1507643.
6. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–1846. doi:10.1016/S0140-6736(16)30587-0.
7. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–265. doi:10.1016/ S0140-6736(16)32517-X.
8. Herbst RS, Baas P, Kim D-W, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–1550. doi:10.1016/S0140-6736(15) 01281-7.
9. Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015–1026. doi:10.1056/NEJMoa1613683.
10. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–1867. doi:10.1056/NEJMoa1602252.
11. Maio M, Scherperel A, Calabrò L, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18(9):1261–1273. doi:10.1016/S1470-2245(17)30446-1.
12. Bosch X, Saiz A, Ramos-Casals M, Group BS. Monoclonal antibody therapy-associated neurological disorders. Nat Rev Neurol. 2011;7(3):165–172. doi:10.1038/nrneurol.2011.1.
13. Min L, Vaidya A, Becker C. Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. Eur J Endocrinol. 2011;164(2):303–307. doi:10.1530/EJE-10-0833.
14. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–168. doi:10.1056/NEJMra1703481.
15. Della Vittoria Scarpati G, Fusciello C, Francesco Perri F, et al. Ipilimumab in the treatment of metastatic melanoma: management of adverse events. Onco Targets Ther. 2014;203. doi:10.2147/OTT.S57335.
16. Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011. www.cochrane-handbook.org.
17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal. pmed.1000097.
18. Su Q, Zhang XC, Wang DY, et al. The risk of immune-related endocrine disorders associated with anti-PD-1 inhibitors therapy for solid tumors: a systematic review and meta-analysis. Int Immunopharmacol. 2018;59:328–338. doi:10.1016/j.intimp.2018.04.021.
19. Su Q, Zhang XC, Zhang CG, Hou YL, Yao YX, Cao BW. Risk of immune-related pancreatitis in patients with solid tumors treated with immune checkpoint inhibitors: systematic assessment with meta-analysis. J Immunol Res. 2018;2018:1027323. doi:10.1155/ 2018/1027323.
20. Huang X, Lin J, Demmer-Fushman D. Evaluation of PICO as a knowledge representation for clinical questions. AMIA Annu Symp Proc AMIA Symp. 2006;2006:359–363.
21. Viechtmüller W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2016;36(3). doi:10.18637/jss.v036.i03.
22. Higgins JP, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Research Ed). 2003;327(7414):557–560. doi:10.1136/bmj.327.7414.557.
23. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45(3 Pt A):139–149. doi:10.1016/j. cct.2015.09.002.
24. Pujade-Lauraine E, Fujiwara K, Dychter SS, Devgan G, Monk BJ. Avelumab (anti-PD-L1) in platinum-resistant/refractory ovarian cancer: JAVELIN ovarian 200 phase III study design. Future Oncol. 2018;14(21):2103–2113. doi:10.2217/fon-2018-0070.
25. Barlesi F, Vansteenkiste J, Spigel D, et al. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): an open-label, randomised, phase 3 study. Lancet Oncol. 2018;19(11):1468–1479. doi:10.1016/ S1470-2045(18)30673-9.
26. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–384. doi:10.1016/S1470-2045(15)00766-8.
27. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330. doi:10.1056/NEJMoa1412082.
28. Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–918. doi:10.1016/S1470-2045(15) 00083-2.
29. Figuerasmont AMM, Chiarion-Sileni V, Grob J-J, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind,
phase 3 trial. Lancet Oncol. 2015;16(5):522–530. doi:10.1016/S1470-2045(15)70122-1.

31. Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–712. doi:10.1016/S1470-2045(14)70189-5.

32. Ribas A, Keeford R, Marshall MA, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–622. doi:10.1200/JCO.2012.44.6112.

33. Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–1568. doi:10.1016/S1470-2045(16)30366-7.

34. Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–895. doi:10.1016/S1470-2045(16)30098-5.

35. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–1356. doi:10.1056/NEJMoa1709684.

36. Govindan R, Szczesna A, Ahn M-J, et al. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non–small-cell lung cancer. J Clin Oncol. 2017;35(30):3449–3457. doi:10.1200/JCO.2016.71.7629.

37. Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83. doi:10.1093/annonc/mds213.

38. Mateos MV, Blacklock H, Schjesvold F, et al. Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e459–e469. doi:10.1016/S2352-3026(19)30110-3.

39. Usmani SZ, Schjesvold F, Oriol A, et al. Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): a randomised, open-label, phase 3 trial. Lancet Haematol. 2019;6(9):e448–e458. doi:10.1016/S2352-3026(19)30109-7.

40. Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–1508. doi:10.1016/S1470-2045(16)30498-3.

41. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–2532. doi:10.1056/NEJMoa1503093.

42. Abdel-Rahman O, Oweira H, Petrausch U, et al. Immune-related ocular toxicities in solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Anticancer Ther. 2017;17(4):387–394. doi:10.1080/14772560.2017.1296765.

43. Su Q, Sun Z, Zhang C, Hou Y, Cao B. PD-1/PD-L1 antibodies efficacy and safety versus docetaxel monotherapy in advanced NSCLC patients after first-line treatment option: systems assessment. Oncotarget. 2017;8(35):59677–59689. doi:10.18632/oncotarget.19641.

44. Georgakopoulos CD, Makri OE, Vasilakis P, Exarchou A. Angiographically silent cystoid macular oedema secondary to paclitaxel therapy. Clin Exp Optom. 2012;95(2):233–236. doi:10.1111/j.1444-0938.2011.00672.x.

45. Day D, Hansen AR. Immune-related adverse events associated with immune checkpoint inhibitors. BioDrugs. 2016;30(6):571–584. doi:10.1007/s40259-016-0204-3.

46. Robinson MR, Chan CC, Yang JC, et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J Immunother (Hagerstown, Md). 1997;2004;27(6):478–479. doi:10.1097/00002371-200411000-00008.

47. Dalvin LA, Shields CL, Orloff M, Sato T, Shields JA. CHECKPOINT INHIBITOR IMMUNE THERAPY: systemic indications and ophthalmic side effects. Retina (Philadelphia, Pa). 2018;38(6):1063–1078. doi:10.1097/IAE.0000000000002181.

48. Sun MMP, Levinson RM, Filipowicz AD, et al. Uveitis in patients treated with CTLA-4 and PD-1 checkpoint blockade inhibition. Ocul Immunol Inflamm. 2020;28(2):217–227. doi:10.1080/10787229.2019.1577978.

49. Bonme D, Meirson T, Hasan Ali O, Goldman A, Flatz L, Habot-Wilner Z. Ocular adverse events induced by immune checkpoint inhibitors: a comprehensive pharmacovigilance analysis. Ocul Immunol Inflamm. 2020;1–7. doi:10.1080/10787229.2020.1773867.

50. Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer. 2014;21(2):371–381. doi:10.1530/ERC-13-0499.

51. Weinstein JE, Peppe KL. Cytokines in uveitis. Curr Opin Ophthalmol. 2018;29(3):267–274. doi:10.1097/IOP.0000000000000466.

52. Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–2697. doi:10.1200/JCO.2012.41.6750.

53. Capri G, Munzone E, Tarenzi E, et al. Optic nerve disturbances: a new form of papillitis ataxiotoxicity. J Natl Cancer Inst. 1994;86 (14):1099–1101. doi:10.1093/jnci/86.14.1099.

54. Joshi MM, Garretson BR. Paclitaxel maculopathy. Arch Ophthalmol. 2007;125(5):709–710. doi:10.1001/archopht.125.5.709.

55. Esmaeii B, Hidaji L, Adinin RB, et al. Blockage of the lacrimal drainage apparatus as a side effect of docetaxel therapy. Cancer. 2003;98(3):504–507. doi:10.1002/cncr.11527.

56. Rote A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019;38(1):255. doi:10.1186/s13046-019-1259-z.

57. Brahmer JR, Laczetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of clinical oncology clinical practice guideline summary. J Oncol Pract. 2018;14(4):247–249. doi:10.1200/JOP.18.00005.

58. Dow ER, Yung M, Tsui E. Immune checkpoint inhibitor-associated uveitis: review of treatments and outcomes. Ocul Immunol Inflamm. 2020;1–9. doi:10.1080/09273948.2020.1781902.

59. Agustoni F, Platania M, Vitali M, et al. Emerging toxicities in the treatment of non-small cell lung cancer: ocular disorders. Cancer Treat Rev. 2014;40(1):197–203. doi:10.1016/j.ctrv.2013.05.005.