Abstract—Designing cyber-physical systems is a complex task which requires insights at multiple abstraction levels. The choices of single components are deeply interconnected and need to be jointly studied. In this work, we consider the problem of co-designing the control algorithm as well as the platform around it. In particular, we leverage a monotone theory of co-design to formalize variations of the LQG control problem as monotone feasibility relations. We then show how this enables the embedding of control co-design problems in the higher level co-design problem of a robotic platform. We illustrate the properties of our formalization by analyzing the co-design of an autonomous drone performing search-and-rescue tasks and show how, given a set of desired robot behaviors, we can compute Pareto efficient design solutions.

I. INTRODUCTION

Cyber-physical systems are composed of material parts, such as sensors, actuators and computing units, and software components, such as perception, planning, and control modules. Traditionally, the design optimization of such components is treated in a compartmentalized manner, assuming specific, fixed configurations for the parts of the system which are not object of the design exercise. However, the designs of both physical and software components are deeply interconnected and need to be jointly considered. Examples of the importance of a joint design of components range from power-constrained robot design [1], [2] to the design of fleets of autonomous vehicles which need to provide mobility services jointly with the existing urban transportation system [3], [4]. Open questions are: What is the simplest sensor which a robot can use to guarantee a specific performance in a given task? How will this choice affect computation? Which platform design minimizes the overall monetary cost?

In this work, we propose an approach for the co-design of the platform and its control system (Fig. 1d), with particular reference to robotics. While a broad theory to optimize the control of specific systems has been developed, there exists no formalism which allows to jointly design control strategies and the platforms on which they will be executed. This is an issue, since robotic platforms are typically not fixed, and components such as actuators, sensors and batteries are subject to continuous changes.

Related literature: Traditionally, researchers have been working on specific instances of the co-design of control, sensing and actuation [5]–[22]. The author of [5] formalizes the optimal design of the robotic platform for serial manipulators, and a precise analysis of trade-offs in robot sensing and actuation for worst-case scenarios is provided in [6].

The authors of [7] and [8] propose approaches for the co-design of control algorithms and platforms, applied to lane keeping and HVAC systems, respectively, and [9], [10] focus on performance and security of cyber-physical systems. The problem of sensor selection typically cannot be solved in a closed form, but [11], [12] show that in particular cases, there is enough structure for efficient optimization. Specifically, the authors of [13] study the problem of sensing-constrained LQG control, providing examples of robotic tasks, and au-
We consider the case study of a drone which needs to perform search-and-rescue tasks, and control its alignment with a given goal. Authors of [14] optimally select sensors to solve path planning problems. In [15], the authors propose an approach for optimal control with communication constraints and [16] provides a framework to jointly optimize sensor selection and control, by minimizing the information acquired by the sensor. An analysis of performance limits for robotic tasks parameterized by the complexity of the environment is given in [17]. Selection of sensors and actuators is studied in [18], where the authors optimize the design of the system with the goal of providing robust control for aeroservoelastic systems. Furthermore, [19] proposes an approach to optimize actuators placement in large-scale networks control, [20] studies computation-communication trade-offs and sensor selection for processing networks, and [22] gives a broad view of compositional cyber-physical system theories. In conclusion, to the best of our knowledge, existing design techniques for autonomous platforms are characterized by a fixed, problem-specific structure and do not allow to formalize and solve system co-design problems involving control synthesis.

Statement of contributions: In this work we show how to use a monotone theory of co-design to frame the design of LQG control strategies in the co-design problem of an entire robotic platform. First, we formulate (variations of) LQG control as a [MDPI] characterized by feasibility relations between the control performance, accuracy, measurements’ and system’s noises. Second, we show how nuisances such as delays, digitalization and intermittent observations can be integrated in our formalism. The proofs for our results are available in Appendices B and C. Finally, we showcase the advantages of our approach, considering the co-design problem of a mobile robot which needs to execute an idealized search-and-rescue task (Fig. 1d). We illustrate how, given the robot model and desired behaviors, we can formulate and answer several questions regarding the design of the robot.

II. MONOTONE CO-DESIGN THEORY

We assume the reader is familiar with basic concepts from order theory (listed in Appendix A). A possible reference is [23]. In this section, we report the main concepts related to the mathematical theory of co-design [24], [25].

Definition 1. Given the partially ordered sets \([\mathcal{F}, \mathcal{R}]\), representing functionalities and resources, respectively, we define a [MDPI] \(d\) as a tuple \((\mathcal{I}_d, \text{prov}, \text{req})\), where \(\mathcal{I}_d\) is the set of implementations, and \(\text{prov}, \text{req}\) are functions mapping \(\mathcal{I}_d\) to \(\mathcal{F}\) and \(\mathcal{R}\), respectively:

\[
\mathcal{F} \xleftarrow{\text{prov}} \mathcal{I}_d \xrightarrow{\text{req}} \mathcal{R}.
\]

To each [MDPI] we associate a monotone map \(\bar{d}\) given by

\[
\{f^*, r\} \mapsto \{i \in \mathcal{I}_d: (\text{prov}(i) \trianglerighteq f) \land (\text{req}(i) \trianglerighteq r)\},
\]

where \((\cdot)^{\text{op}}\) reverses the order of a [poset]. A [MDPI] is represented in diagrammatic form as in Fig. 1a. The expression \(\bar{d}(f^*, r)\) returns the set of implementations \(S \subseteq \mathcal{I}_d\) for which functionalities \(f\) are feasible with resources \(r\).

Example 1 (Monotonicity). Consider the [MDPI] of a battery (block \(\mathcal{F}\) in Fig. 1d) by means of the provided energy and the required cost and mass. If a set \(S = \{f^*, r\}\) of batteries require \(r = (\text{mass, cost})\) to provide \(f = \text{energy}\), then they can also provide less energy \(f' \preceq f\), i.e. \(S' \supseteq S\). On the other hand, if one has more resources \(r'' \succeq r\), the new set of batteries will at least still provide \(f\), i.e. \(S'' \supseteq S\).

Definition 2. Given a [MDPI] \(d\), we define monotone maps \(h_d: \mathcal{F} \to \mathcal{A}\mathcal{R}\), mapping a functionality to the minimum antichain of resources providing it, and \(h_d': \mathcal{R} \to \mathcal{A}\mathcal{F}\), mapping a resource to the maximum antichain of functionalities provided by it. To solve [MDPI] we find these maps, relying on Kleene’s fixed point theorem [24].

Individual [MDPIs] can be composed in several ways to form a co-design problem (Fig. 3). Series composition corresponds to processes happening together. Finally, loop composition describes feedback.

III. CONTINUOUS-TIME LQG CONTROL AS A [MDPI]

Background on LQG control: First, we recall the definition of infinite-horizon LQG control.

Definition 3. (Continuous-time LQG control). Given the continuous-time stochastic dynamics

\[
\begin{align*}
\dot{x}_t &= A x_t dt + B u_t dt + E w_t
\end{align*}
\]

where \(w_t\) and \(u_t\) are two standard Brownian processes, let \(A, B, C, E, G\) be matrices of compatible dimensions and \(W = E E^*, V = GG^*\) be the effective noise covariances. The continuous-time infinite-horizon LQG problem consists of finding a control law \(u^*\) minimizing the quadratic cost

\[
J = \lim_{T \to +\infty} \frac{1}{2} \mathbb{E}\left\{ \int_0^T ((x^T_t Q x_t) + (u^T_t R u_t)) dt \right\},
\]

where \(Q \in \mathcal{P}, R \in \mathcal{P}^+\), where \(\mathcal{P}^+ (\mathcal{P})\) is the set of positive definite (positive semi-definite) matrices.

\(\text{It can be proved that the formalization of feedback makes the category of [MDPI] a traced monoidal category [26].} \)
Lemma 2. The metrics P_{track} and P_{effort} can be written as
\[\lim_{t \to \infty} E\{x_t^T Q_0 x_t\} = \text{Tr}(Q_0 (\Sigma + F)) \]
\[\lim_{t \to \infty} E\{u_t^T R_0 u_t\} = \text{Tr}(SB^* R_0 R^{-1} BSF) \]
where Σ solves (2). F solves the Lyapunov equation
\[(A - BK) F + F (A - BK)^* + LVL^* = 0, \]
where x solves (1) and $L = \Sigma C^* V^{-1}$ is the Kalman gain.

Given explicit forms, we can now show that they are characterized by monotonic relations.

Lemma 3. Let $Q(\alpha) = \alpha Q_0$ and $R(\alpha) = \frac{1}{\alpha} R_0$, $\alpha \in \mathbb{R}^+$. Let $u^*(\alpha)$ be the solution of the LQG problem with $Q(\alpha)$ and $R(\alpha)$. Then, under optimal control one has:
- $P_{\text{track}}(\alpha)$ is decreasing with α increasing.
- $P_{\text{effort}}(\alpha)$ is increasing with α increasing.

Intuitively, by increasing α we increase the penalty for the tracking error of the control. For this reason, P_{track} decreases and P_{effort} increases. We now want to assess the effect of the system and observation noises on the optimal control.

Lemma 4. The solution of (2) is monotonic in V and W, i.e., \(\langle V, W \rangle \leq \langle V', W' \rangle \Rightarrow \Sigma(V, W) \geq \Sigma(V', W') \).

Lemma 5. Consider the situation of Lemma 3:
- Fix P_{track}. P_{effort} is monotonic in W and in V.
- Fix P_{effort}. P_{track} is monotonic in W and in V.

This shows that the more uncertain the observations and the system dynamics are, the larger the control effort and tracking error will be, and concludes the proof of Theorem 1.

The presented MDPI precisely assesses the feasibility relation between control effort, tracking error, system noise, and the observation noise. This MDPI can be manipulated by taking the “op” of a quantity (Def. 1), and moving it on the other side of the diagram. For instance, we can think of the observation noise as resource, by switching its meaning to information (i.e., from noise to information matrix).

Dealing with delays: We now show the ability of our formalism to capture the influence of delays on the system.

Theorem 2. A continuous-time LQG problem with observation and computation delays ($d_{\text{obs}}, d_{\text{comp}}$) can be formulated and solved as a MDPI with diagrammatic form as in Fig. 7c.

To establish the effect of a nuisance, we follow what we call the substitution principle. If in the case in which the nuisance was “lower” the controller could simulate a “higher” nuisance, then we have monotonicity. If we had a smaller delay, we could simulate a larger one by adding it artificially. Hence, control effort and tracking error of the optimal control strategy cannot decrease with larger delay.

Visualization via Pareto fronts: We want to give a visual interpretation of the presented results. For the scalar case of Def. 3, we can derive P_{track} and P_{effort} in closed-form:
\[P_{\text{track}}(q_0) = \frac{q_0 (\bar{\sigma} c^2)}{2v^2} \left(\frac{a + \sqrt{a^2 + 2^2 b^2 q_0 q_0 / r_0}}{\sqrt{a^2 + 2^2 b^2 q_0} / r_0} \right)^2 \]
\[P_{\text{effort}}(r_0) = \frac{q_0 \gamma c^2}{2b^2 v} \left(\frac{a + \sqrt{a^2 + 2^2 b^2 q_0 q_0 / r_0}}{\sqrt{a^2 + 2^2 b^2 q_0} / r_0} \right)^2 \]
where variables are in lower case since they represent scalar quantities. We can compute their limits, by fixing v and w:

$$\lim_{\alpha \to 0} P_{\text{track}}(q_0) = q_0\left(\bar{\sigma} + \frac{(\bar{c}c)^2}{2\bar{v}a}\right), \lim_{\alpha \to 0} P_{\text{track}}(q_0) = q_0\bar{\sigma},$$

$$\lim_{\alpha \to 0} P_{\text{effort}}(r_0) = \frac{2\alpha a(c\bar{c})^2}{b^2}, \lim_{\alpha \to 0} P_{\text{effort}}(r_0) = \infty.$$

We can plot instances of the Pareto front $\langle P_{\text{track}}, P_{\text{effort}} \rangle$ (Fig. 1c). This is the query in which we “fix functionalities and minimize resources”, where the Pareto fronts represent the best achievable control performances, given specific v and w. Alternatively, we could ask to “fix resources and maximize functionalities”. This is the query in which we fix P_{track} and P_{effort}, and observe a Pareto front of system and observation noises at which the given performance can be provided. Monotonicity is easy to see. By choosing $(v_1, w_1) \leq (v_2, w_2)$ (i.e., $v_1 \leq v_2$ and $w_1 \leq w_2$), we see that both P_{track} and P_{effort} increase, and hence that the Pareto fronts dominate each other.

IV. DIGITAL LQG CONTROL AS A MDPI

Digital LQG control: We define the infinite-horizon discrete-time LQG control problem.

Definition 4 (Discrete-time LQG control). Consider the discrete-time stochastic dynamics

$$x_k = A_dx_k + B_du_k + E_dw_k,$$

$$y_k = C_dx_k + G_dv_k,$$

where w_k and v_k are two standard Brownian processes and $W_d = EE^*$, $V_d = GG^*$ the noise covariances. The *discrete-time* infinite-horizon LQG problem consists of finding a control law u^* which minimizes the quadratic cost

$$J_d = \lim_{N \to \infty} \frac{1}{N}\mathbb{E}\{\sum_{i=0}^{N-1} (x_i^TQ_d x_i + u_i^TR_d u_i)\},$$

where $Q_d \in \mathcal{P}$, $R_d \in \mathcal{P}^+$.

We want to show that the relations found in Section III hold for the case of digital LQG control, where we want to control a continuous-time system using a digital controller.

Lemma 6. Consider a continuous-time LQG problem, where observations are sampled with period δ and processed by a digital controller to produce a control input (Fig. 4d). The input is reconstructed using ZOH with period δ. We can find:

$$A_d = e^{A\delta}, B_d = \int_0^\delta e^{A\tau} B d\tau, C_d = C, Q_d = \int_0^\delta e^{A\tau} Q e^{A^*\tau} d\tau,$$

$$R_d = \int_0^\delta ((e^{A\tau} B d\tau)^T + R) d\tau,$$

such that the optimal cost of this controller coincides with the optimal cost J_d in Def. 4.

Define the stationary digital tracking error and control effort:

$$P_{\text{track}}^d = \lim_{k \to \infty} \mathbb{E}\{x_k^TQ_d x_k\}, P_{\text{effort}}^d = \lim_{k \to \infty} \mathbb{E}\{u_k^T R u_k\}.$$

We can now formulate Theorem 1 for the discrete-time case.

Theorem 3. The digital LQG problem in Lemma 6 with fixed sampling period δ can be formulated and solved as a MDPI with diagrammatic form as in Fig. 4b.

The proof is analogous to the one of Theorem 1. Theorem 3 allows us to interconnect LQG control problems as MDPIs in the co-design diagram of a real robotic platform.

Effect of sampling period and intermittent observations:

We now assess the impact of sampling period and intermittent observations [29], [30] on digital LQG control.

Definition 5 (LQG with intermittent observations). The LQG problem with intermittent observations differs from the original problem by the observations $y'_k = \gamma_k y_k$, where $\gamma_k \in \{0,1\}$ is a random sequence.

Theorem 4. The digital LQG problem given in Fig. 4a with delay of the form $\delta = 2^\gamma \delta_0$ can be formulated and solved as a MDPI with diagrammatic form as in Fig. 4b.

To prove both cases, we can use the substitution principle. Assuming a sampling period $\delta = 2^\gamma \delta_0$, P_{track} and P_{effort} are monotonic with γ. On the other hand, if the controller is given a set of observations, it can simulate having less (i.e., an higher drop probability p), by artificially deleting selected observations. Therefore, the control effort and tracking error cannot decrease with increasing p.

Discussion: Theorems 1 to 4 show how to frame and solve variations of LQG control problems as MDPIs. In particular, the results provide an interface to include control synthesis in the robot co-design problem. Note that the theory and results generalize to the case of parameter uncertainty [33]. In the next section we show how this new perspective allows one to solve complex robot co-design problems, capturing heterogeneous abstraction levels within a unified framework.

V. CO-DESIGN OF AN AUTONOMOUS DRONE

In this section we show the ability of the proposed formalism to capture LQG control synthesis together with practical aspects related to robot design, such as sensor, actuation and computer selection. We consider a sensor-based navigation task for an autonomous drone (Fig. 2). The drone must reach a goal and it is guided by a vision sensor, used as a bearing sensor, needed to detect the relative direction of the goal.

A. System modeling

To understand the co-design approach, we need to distinguish logical dependencies and data-flow. While the diagram provided in Fig. 5 describes the system’s data-flow, the co-design diagram in Fig. 1d formalizes logical dependencies through functional decomposition. We now present the single

3Note that using δ of this form corresponds to the case where the information available is a subset decreasing with n. We are not stating this result in general. This would require a deeper discussion and several assumptions about the system (e.g., about oscillatory behavior). This is an open problem [31], [32] and we leave its extensive treatment to future work.
evaluates the performance of the system, measured by control effort, which provides lift, control effort and speed by requiring cost, mass and power. Obtaining the model: Models can be obtained from catalogues. For instance, power consumption can be modeled as a monotone function of lift and control effort, as in [24].

Block Battery: A battery provides energy to the system, requiring cost and mass. **Obtaining the model:** Different battery technologies can be extracted from catalogues [24].

Block Mission Planning: Finally, a mission planning block evaluates the performance of the system, measured by tracking error, the mission time, the number of missions and the detected drone speed. **Obtaining the model:** This is a simple list of requirements for specific scenarios.

Composing the full diagram: The single MDPIs presented in the previous paragraph are interconnected to form a co-design diagram (Fig. 1d) as follows. First, the total power required by the system arises from the sum of the power required by actuation, by the sensors and by the computing unit. Given the mission time, one can determine the energy which needs to be provided by the battery. This is the first feedback loop in the co-design diagram. Second, the computation required by both the control and feature extraction implementations needs to be provided by the computing unit (second loop). Third, the mass of the system is given by the masses of the sensors, battery, actuators and computing unit, and determines the lift needed from actuation (third loop). The number of loops provides an upper bound for the complexity of the solution algorithm [24, Proposition 5]. In particular, the solver will create a chain in the poset of antichains of \mathbb{R}_+^3, where the latter represents the poset containing the three resources which are fed back.

B. Co-Design results

We now show how the proposed framework is able to solve the co-design problem of an autonomous drone, co-designing the controller synthesis together with the rest of the platform. We consider the MDPI reported in Fig. 1d and provide design insights in terms of cost, power consumption, tracking error, missions duration and number of missions. We list the design variables in Table 1. Specifically, they include the selection of sensors, control parameters, battery technologies, computing units and actuators. In the following, we bound the system noise and fix $q_0 = r_1 = 1$, to propose a sample of design insights that the framework can produce.

Remark. The following results have to be understood qualitatively, not quantitatively: we contribute in the formalization of meta-models and interfaces, not in the numbers. We look forward to working with experts to get adequate data.

Cost and performance trade-off (Fig. 6a): We query the optimal design solutions which enable the drone to perform 5,000 missions lasting 40 minutes (Fig. 6a). The red dots represent the elements belonging to the antichain of optimal design solutions, expressed in terms of the platform cost and the tracking error. The solutions are not comparable, since no instance leads simultaneously to lower cost and tracking error. The upper set of resources (not necessarily optimal, but no instance leads simultaneously to lower cost and tracking error) is denoted by \mathbb{R}_+^3, where the latter represents the poset containing the three resources which are fed back.

The solver, based on a formal language, is available at codesign.science.
better sensors and more performing computers, batteries and lasting 10 minutes (Fig. 6b). When more power is available, the case in which the drone must complete 1,000 missions trade-offs between power consumption and tracking error for the co-design framework in a similar way, now looking at the optimization objectives can be quickly modified, without affecting the system. For example, reducing the investment from 1,100 CHF to 900 CHF only reduces the tracking error by 5%. On the other hand, a 27% investment from 900 CHF to 1,100 CHF reduces the tracking error by 90%. In particular, for each functionality (left plot), we compute the map h, which maps a functionality to the minimum antichain of resources which provide it (Def. 2). Monotonicity can be seen in the dominance of subsequent Pareto fronts (right plot), illustrated in increasing red tonality.

VI. CONCLUSIONS

We considered the co-design of robotic platforms and linear control systems steering them. We have shown how to frame LQG control problems in a monotone theory of co-design, framing them as monotone feasibility relations (MDPIs). The approach guarantees modularity and compositionality, allowing us to model complex, interconnected systems and to capture heterogeneous design abstraction levels, ranging from control synthesis to hardware selection.

Outlook: This work fits in our vision of compositional robotics, where we want to describe and co-design robots all the way from signals characterising a single component [38] to networks and fleet effects [39]. We want to leverage compositionality properties of our framework to interconnect the co-design problem of a robot in the co-design problem of an urban robot-enabled mobility system, to assess how local trade-offs influence fleet-level operations [40]. Furthermore, we want to extend the proposed studies to the synthesis of more complex control structures.

ACKNOWLEDGMENTS

We thank Dr. Fuller, Dr. Bonalli, Dr. Tanaka, Mr. Lanzetti, Mr. Zanardi, and Ms. Monti.

APPENDIX

A. Background on orders

Definition 6 (Poset). A poset is a tuple $\langle P, \leq_P \rangle$, where P is a set and \leq_P is a partial order, defined as a reflexive, transitive, and antisymmetric relation.

Definition 7 (Opposite of a poset). The opposite of a poset $\langle P, \leq_P \rangle$ is the poset $\langle P^{op}, \leq_{P^{op}} \rangle$, which has the same elements as P, and the reverse ordering.

Definition 8 (Product poset). Let $\langle P, \leq_P \rangle$ and $\langle Q, \leq_Q \rangle$ be posets. Then, $\langle P \times Q, \leq_{P \times Q} \rangle$ is a poset with

$$\langle p_1, q_1 \rangle \leq_{P \times Q} \langle p_2, q_2 \rangle \iff (p_1 \leq_P p_2) \land (q_1 \leq_Q q_2).$$

This is called the product poset of $\langle P, \leq_P \rangle$ and $\langle Q, \leq_Q \rangle$.

Definition 9 (Monotonicity). A map $f: P \to Q$ between two posets $\langle P, \leq_P \rangle, \langle Q, \leq_Q \rangle$ is monotone if $x \leq_P y$ implies $f(x) \leq_Q f(y)$. Monotonicity is compositional.
B. Proofs for Section III

Proof of Lemma 2

With $e_t = x_t - \hat{x}_t$, estimation error one has:

$$\lim_{t \to \infty} \mathbb{E}\{x_t^T Q_0 x_t\} = \lim_{t \to \infty} \text{Tr} (Q_0 \mathbb{E}\{x_t x_t^T\})$$
$$\quad = \lim_{t \to \infty} \text{Tr} (Q_0 \mathbb{E}\{(\hat{x}_t + e_t)(\hat{x}_t + e_t)^T\})$$
$$\quad = \lim_{t \to \infty} \text{Tr} (Q_0 \mathbb{E}\{\hat{x}_t \hat{x}_t^T + e_t e_t^T\})$$
$$\quad = \text{Tr} (Q_0 (F + \Sigma)),$$

where F can be computed using the closed-loop dynamics in (3). By applying the optimal control u^*_t, we have:

$$\lim_{t \to \infty} \mathbb{E}\{u^*_t R_0 u_t\} = \lim_{t \to \infty} \mathbb{E}\{\hat{x}_t^T K^T R_0 K \hat{x}_t\}$$
$$\quad = \text{Tr} (SB^T R^{-1} R_0^{-1} BSF). \square$$

Lemma 7 (Lemma 3, [41]). Let $A, B \in \mathbb{P}^+, B - A \in \mathbb{P}$. Then, $A^{-1}, B^{-1} \in \mathbb{P}^+ \text{ and } A^{-1} - B^{-1} \in \mathbb{P}.$

Proof of Lemma 3

First, we note that Σ satisfies (2):

$$\Sigma = A \Sigma + A^* - \Sigma C^T V^{-1} C \Sigma + W = M(V, W).$$

By letting $V_1, W_1 \succeq (V_2, W_2)$, and using the notation $M_i = M(V_i, W_i)$, we have from Theorem 3 in [41] that $M_2 - M_1 \succeq 0 \Rightarrow \Sigma (V_1, W_1) \succeq \Sigma (V_2, W_2).$

Therefore, Σ is monotone in V and W. \square

C. Proofs for Section IV

Proof of Lemma 5

We consider the continuous-time dynamics given in Def. 1 and sample this process with sampling period δ. The input u_k is constant over the sampling period. We can write the solution of the dynamics as

$$x_t = \Phi(t, k\delta)x_{k\delta} + \Gamma(t, k\delta)u_{k\delta}, \quad \text{(4)}$$

where $\Phi(t, k\delta)$ satisfies

$$\frac{d}{dt} \Phi(t, k\delta) = A \Phi(t, k\delta), \quad \Phi(k\delta, k\delta) = I,$$

and

$$\Gamma(t, k\delta) = \int_{k\delta}^{t} \Phi(t, s) B ds. \quad \text{(6)}$$

The sampled version of the dynamics is

$$x_{k\delta} = \Phi(t, k\delta)x_{k\delta} + \Gamma(t, k\delta)u_{k\delta} + w_{k\delta},$$

and

$$y_{k\delta} = C x_{k\delta} + v_{k\delta},$$

with covariances $W_d = \int_{0}^{\delta} e^{A^T \tau} W e^{A \tau} d\tau$, and V_d. We can now manipulate the continuous-time cost provided in Def. 1

$$J = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}\left\{\int_{0}^{T} ((x_t^T Q x_t) + (u_t^T R u_t)) dt\right\}$$

$$= \lim_{N \to \infty} \frac{1}{N} \mathbb{E}\left\{\sum_{k=0}^{N-1} (x_{k\delta}^T Q x_{k\delta} + (u_{k\delta}^T R u_{k\delta})) dt\right\}. \quad \text{(7)}$$

We can now use (4) to get:

$$\int_{k\delta}^{k\delta+\delta} (x_{k\delta}^T Q x_{k\delta} + (u_{k\delta}^T R u_{k\delta})) dt = x_{k\delta}^T Q x_{k\delta} + u_{k\delta}^T R u_{k\delta}, \quad \text{Q}_d = \int_{k\delta}^{k\delta+\delta} \Phi^T(s, k\delta) Q \Phi(s, k\delta) ds,$$

$$R_d = \int_{k\delta}^{k\delta+\delta} \Gamma^T(s, k\delta) \Gamma(s, k\delta) + R ds.$$

Hence, (7) is

$$\lim_{N \to \infty} \frac{1}{N} \mathbb{E}\left\{\sum_{k=0}^{N-1} x_{k\delta}^T Q x_{k\delta} + u_{k\delta}^T R u_{k\delta}\right\},$$

which indeed corresponds to the cost of a discrete-time LQG (Def. 1). Solving (7) one finds $A_d = \Phi(t, k\delta) e^{A \delta}$, and one can hence write (6) as $B_d = \Gamma(\delta, 0) = e^{A \delta} B_d.$ \square

Proof of Theorem 6

Lemma 8. The optimal control law for a digital LQG problem is $u_k^* = -K_d x_k^*$, where $P \in \mathbb{P}^+$ is the solution of the Riccati equation

$$P = A_d^T P A_d - (A_d^T P B_d + R_d)^{-1} B_d^T P A_d x_k^*,$$

with $P \in \mathbb{P}^+$. The minimum cost J_d^* achieved by the optimal control is

$$J_d^* = \text{Tr}\left((\hat{P} + Q_d) \text{L}_d (C_d^T C_d + V_d) \text{L}_d^T + Q_d \hat{\Gamma}\right)$$

$$= \text{Tr}\left((\hat{Q} + \hat{P}) W_d + \text{K}_d^T (R_d + B_d^T Q_d + \tilde{B}_d^T B_d) K_d\right),$$

where $\hat{P} \in \mathbb{P}^+$. This is the solution of the Riccati equation

$$\Gamma = A_d \Gamma A_d^T - A_d C_d^T (C_d C_d^T + V_d)^{-1} C_d \Gamma A_d + W_d. \quad \text{(9)}$$

Lemma 9. One can write

$$\lim_{k \to \infty} \mathbb{E}\{x_k^T Q x_k\} = \text{Tr} (Q (T + F)),$$

$$\lim_{k \to \infty} \mathbb{E}\{u_k^T R u_k\} = \text{Tr} (R^T K_d K_d F),$$

where G solves (9) and F solves the Lyapunov equation

$$F = L_d (C_d C_d^T + V_d) L_d^T + (A_d - B_d K_d) F (A_d - B_d K_d)^*, \quad \text{(10)}$$

with $L_d = \Gamma C_d (C_d C_d^T + V_d)^{-1}$. The discrete Kalman gain.

Lemma 10. Consider the LQG problem of Lemma 5. Let $Q(x) = \alpha Q_0$ and $R(x) = \frac{1}{2} R_0$, $\alpha \in \mathbb{R}_+$. Let $u^*(\alpha)$ be the solution of the LQG problem with $Q(\alpha)$ and $R(\alpha)$. Then, under optimal control one has:

- $P_{\text{track}}(\alpha)$ is decreasing with α increasing.
- $P_{\text{eff}}(\alpha)$ is increasing with α increasing.

\footnote{Note that also [42] contains a typo at p. 476 (instead of + in Eq. 7.199).}
Proof. The proof is analogous to the one of Lemma [5].

Lemma 11. Consider the situation of Lemma [7]. One has:

- Fix P_{track}^{d} is monotonic in W_d and in V_d.
- Fix P_{effort}^{d} is monotonic in W_d and in V_d.

Proof. Consider $(V_d, W_d) \preceq (V'_d, W'_d)$. From the Comparison Theorem in [43], we know that the solution Γ is monotonic in both V_d and W_d. Furthermore, the solution of \mathcal{E} does not depend on V_d, W_d. Finally, F_d solves the discrete Lyapunov equation (10) and analogously to Lemma [5] one can prove $F(V_d, W_d) \preceq F(V'_d, W'_d)$.

REFERENCES

[1] A. Censi, E. Mueller, E. Frazzoli, and S. Soatto, “A power-performance approach to comparing sensor families, with application to comparing neuromorphic to traditional vision sensors,” in 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 3319–3326.

[2] J. Ichnowski, J. Prins, and R. Alterovitz, “Cloud-based motion plan computation for power-constrained robots,” in Algorithmic Foundations of Robotics XII. Springer, 2020, pp. 96–111.

[3] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and M. Pavone, “Foward a systematic approach to the design and evaluation of automated mobility-on-demand systems: A case study in singapore,” in Road vehicle automation. Springer, 2014, pp. 229–245.

[4] G. Zardini, N. Lanzetti, M. Salazar, A. Censi, E. Frazzoli, and M. Pavone, “On the co-design of as-enabled mobility systems,” in Proc. IEEE Int. Conf. on Intelligent Transportation Systems, Rhodes, Greece, Sept. 2020.

[5] J.-P. Merlet, “Optimal design of robots,” 2005.

[6] J. M. O’Kane and S. M. LaValle, “Comparing the power of robots,” The International Journal of Robotics Research, vol. 27, no. 1, pp. 5–23, 2008.

[7] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. Sangiovanni-Vincentelli, “Co-design of control algorithm and embedded platform for building hvac,” in Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, 2013, pp. 61–70.

[8] D. Soudabakhsh, L. T. Phan, O. Sokolsky, I. Lee, and A. Annaswamy, “Co-design of control and platform with dropped signals,” in Proceedings of the ACM/IEEE 4th international conference on cyber-physical systems, 2013, pp. 129–140.

[9] Q. Zhu and A. Sangiovanni-Vincentelli, “Codesign methodologies and tools for cyber-physical systems,” Proceedings of the IEEE, vol. 106, no. 9, pp. 1484–1500, 2018.

[10] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti, “Cross-layer codesign for secure cyber-physical systems,” IEEE Transactions on Cybernetics, vol. 45, no. 5, pp. 699–711, 2016.

[11] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2009.

[12] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260, 2006.

[13] V. Tsoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Lag control and sensing co-design,” IEEE Transactions on Automatic Control, 2020.

[14] Y. Zhang and D. A. Shell, “Abstractions for computing all robotic sensors that suffice to solve a planning problem,” arXiv preprint arXiv:2005.10994, 2020.

[15] S. Bhatkonde and S. Mitter, “Control under communication constraints,” IEEE Transactions on automatic control, vol. 49, no. 7, pp. 1056–1068, 2004.

[16] T. Tanaka and H. Sandberg, “Sdp-based joint sensor and controller design for information-regularized optimal lag control,” in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp. 4486–4491.

[17] S. Karaman and E. Frazzoli, “High-speed motion with limited sensing range in a poisson forest,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). IEEE, 2012, pp. 3735–3740.

[18] G. P. Moreno, H. Balas, and G. J. Balas, “Actuator and sensor selection for robust control of aeroservoelastic systems,” in 2015 American Control Conference (ACC). IEEE, 2015, pp. 1899–1904.

[19] B. Guo, O. Karaca, T. Summers, and M. Kamgarpour, “Actuator placement for optimizing network performance under controllability constraints,” in 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019, pp. 7140–7147.

[20] L. Ballotta, L. Schenato, and L. Carlone, “Computation-communication trade-offs and sensor selection in real-time estimation for processing networks,” IEEE Transactions on Network Science and Engineering, 2020.

[21] G. Zardini, D. Milojević, A. Censi, and E. Frazzoli, “Co-design of embodied intelligence: A structured approach,” 2021.

[22] G. Brikirizzi, C. H. Fleming, and C. Vasilakopoulou, “Categorical semantics of cyber-physical systems theory,” arXiv preprint arXiv:2010.08023, 2020.

[23] B. A. Davey and H. A. Priestley, Introduction to lattices and order. Cambridge university press, 2002.

[24] C. P. Moreno, H. Pfifer, and G. J. Balas, “Actuator and sensor selection for robust control of aeroservoelastic systems,” in 2015 American Control Conference (ACC). IEEE, 2015, pp. 1899–1904.