Interaktives versus reproduktives Lernen. Absolventen medizinischer Berufsfachschulen im Vergleich zu Teilnehmern einer postgradualen Weiterbildung

Zusammenfassung

Zielsetzung: Für die Weiterbildung von Nichtmedizinern im Fach Anatomie entwickelten wir Lehrmaterial für E (elektronisches)-learning. Deshalb interessierte uns die Frage, ob interaktives (selbstständiges Erarbeiten der Lösungen) oder reproduktives („nur Lesen“) Lernen zu einem höheren Wissenszuwachs führen und welche weiteren Faktoren den Lernprozess beeinflussen.

Methodik: Wir verwendeten ein quasi-experimentelles zweistufiges Studiendesign mit Vortest (Zeitpunkt t₀), Intervention und Nachtest (Zeitpunkt t₁). Die Einteilung in leistungsmäßig etwa gleich starke Gruppen erfolgte anhand der Ergebnisse des Vortests. Die interaktive und reproduktive Gruppe nahmen an der Intervention teil, die Kontrollgruppe nicht. Alle drei Gruppen bestanden aus Absolventen medizinischer Berufsfachschulen (N=150) und bereits länger tätigen Physiotherapeuten in postgradualer Weiterbildung (N=66). Mit Hilfe des Nachtests wurde der Wissenszuwachsdokumentiert. Als wichtigstes statistisches Instrument wurde die Varianzanalyse eingesetzt.

Ergebnisse: Interaktives Lernen führt zu einem höheren Wissenszuwachs, braucht aber mehr Zeit. Beide Interventionsgruppen schnitten besser ab als die Kontrollgruppe. Der Ausbildungsstand (in Ausbildung/Ausbildung abgeschlossen) und das Vorwissen hatten einen zusätzlichen Einfluss auf die Ergebnisse im Nachtest.

Schlussfolgerung: Für die Gestaltung des E-learning-Moduls „Anatomie für Nichtmediziner“ empfehlen wir eine Kombination aus interaktivem und reproduktivem Lernen.

Schlüsselwörter: interaktives Lernen, reproduktives Lernen, Varianzanalyse, Anatomie

Einleitung

Lernen ist ein Prozess, der heute nicht mit dem Erreichen einer bestimmten Qualifikationsstufe abgeschlossen, sondern lebenslang fortgesetzt wird. Es bedarf dazu innovativer Lernformen, die räumlich und zeitlich unabhängig genutzt werden können (E-Learning, [1]) und Lehrmaterial, das inhaltlich auf die Bedürfnisse der Zielgruppe abgestimmt ist. Wir entwickelten Lehrmaterial für die Ausbildung von Nicht-Medizinern im Fach Anatomie für eine E-Learning-Plattform auf der Basis von „Moodle“ [2]. Deshalb interessierte uns die Frage, welche Form des Lernens den Wissenszuwachs am besten fördert. Nach Winteler [3] sollten Lernen interaktiv und konstruktiv sein und am besten in Lerngemeinschaften stattfinden. In Bezug auf E-Learning sehen Ellaway und Masters [4] die Notwendigkeit, nicht nur Dokumente im Internet zu hinterlegen, sondern auch einen didaktisch sinnvollen Zugang zu eröffnen und die Nutzer zu Interaktion, Zusammenarbeit und Kommunikation anzuregen. Stark et al. [5] verglichen „instruktions-orientiertes“ und „probembasiertes“ Lernen in der Lehrerbildung. Dabei erwies sich der instruktionsorientierte Ansatz besonders bei Vorwissensschwachen als besonders effektiv. Diese Überlegenheit galt jedoch nur für Aufgaben, die reproduzierbares Wissen erforderten. Harter et al. [6] verglichen in ihrer Studie bei einer größeren Kohorte (421 Studierenden des 4. Semesters der eigenen Universität) über 11 Biochemie-Seminare die Wirkung und Akzeptanz von Frontalunterricht und interaktiver Gruppenarbeit und stellten fest, dass die Studierenden den Frontalunterricht sowohl besser einschätzten als auch bei der Wiedergabe des Wissens signifikant besser abschnitten als diejenigen, die sich ihr Wissen in Gruppen erarbeitet hatten. In einem Wiederholungstest 4-6 Wochen nach dem Wissenstest war jedoch die ursprünglich festgestellte Überlegenheit des Frontalunterrichts nicht mehr nachweisbar. Herbert
Löffler et al.: Interaktives versus reproduktives Lernen. Absolventen ...
Untersuchungsmaterial (Tests und Intervention)

Der Vortest (10 min) bestand aus 20 Fragen im Multiple-Choice-Format zu den verschiedenen Gebieten der Anatomie (Bewegungssystem, Magen-Darm-Trakt, Nervensystem etc.) mit drei möglichen Antworten, von denen eine zutreffend war. Insgesamt konnten also 20 Punkte erreicht werden.

Beispielfrage: Das Zentralnervensystem besteht aus:
A Gehirn
B Gehirn und Rückenmark
C Spinalnerven
Antwort B ist richtig.

Das Arbeitsmaterial für die Intervention zu verschiedenen Themen aus dem Bereich der makroskopischen Anatomie war bei interaktiver und reproduktiver Gruppe inhaltlich identisch. Dabei entfielen 22 Aufgaben auf das Thema „Magen-Darm-Trakt“, 19 beschäftigten sich mit „Wirbelsäule-Rückenmark“ und 20 mit dem Gebiet „Herz-Kreislauf“. Der reproduktiven Gruppe waren die einzelnen Lerninhalte vorgegeben, die interaktive musste sie sich selbst erarbeiten. Im Wesentlichen gab es folgende Aufgabentypen: Beschreibung von Pfeilen, Ergänzen von Lückentexten, Ankreuzen der richtigen Antwort und das Beschriften von Abbildungen.

Abbildung 2 zeigt die gleiche Aufgabe, links konzipiert für das reproduktive Lernen (siehe Abbildung 2a), rechts für das interaktive (siehe Abbildung 2b-d).

Den Unterlagen war ein kurzer Evaluationsbogen beigefügt, um die Meinung der Teilnehmer hinsichtlich Themenauswahl, Bearbeitungszeit, Einprägsamkeit usw. mit Hilfe einer 5-stufigen Likert-Skala zu erfassen. Dabei bedeuten A=trifft gar nicht zu, B=trifft etwas zu, C=trifft ausreichend zu, D=trifft gut zu, E=trifft vollkommen zu und F=keine Antwort.

Der Nachtest bestand aus 27 offenen Fragen (Bsp. in Abbildung 3), bei denen die Antworten zu den Fragen notiert oder Abbildungen beschriftet werden sollten. Die Testinhalte orientierten sich an den Themen der Arbeitsmaterialien. Insgesamt bezogen sich 12 Fragen auf das Gebiet „Magen-Darm-Trakt“, 10 auf das Gebiet „Wirbelsäule-Rückenmark“ und 5 auf das Gebiet „Herz-Kreislauf“. Die Bearbeitungszeit betrug 30 min. Es konnten maximal 36 Punkte erreicht werden.

Itemanalyse

Cronbachs α zur Einschätzung der internen Konsistenz für den Vortest beträgt 0.476. Die Schwierigkeit der Items sollte zwischen 0.4 und 0.8 liegen. Sehr schwere Aufgaben (x<0.2) gab es nicht, aber sechs sehr leichte (x>0.8). Die Trennschärfe lag bei nur vier Items über 0.2. Bezüglich der Itemanalyse des Nachtests ergibt sich Cronbachs α=.780, die Werte für die Item-Schwierigkeit und -Trennschärfe liegen bei fast allen Items >0.2.

Statistische Auswertung

Die Auswertung der Daten erfolgte mit Hilfe von Microsoft Office Excel 2003 und SPSS 18 für Windows. Die Besetzung der Gruppen wurde mittels absoluter und relativer Häufigkeiten und bezüglich Ausbildungsrichtung und Testergebnissen unter dem Aspekt der Gruppenzugehörigkeit beschrieben. Für die Verteilungen (quasi-)kontinuierlicher Parameter wurden Mittelwert, Median, Standardabweichung, Standardfehler, Minimum und Maximum erfasst. Als Screening-Test diente der Kolmogorov-Smirnov-Test (KS). Bei p>0.1 wurde davon ausgegangen, dass keine Abweichung von der Normalverteilung vorlag. Bei Abweichung von der Normalverteilung wurden die Daten geeignet transformiert. Für Tests auf Verteilungsunter-
schiede wurden die transformierten Daten verwendet. Für deskriptive Statistik und grafische Darstellung wurden die Originalwerte beibehalten; als Erwartungswert der Verteilung wurde dann der Median angegeben.

Als wichtigstes Instrument wurde die Varianzanalyse (ANOVA) eingesetzt. Sie diente sowohl zum Vergleich mehrerer Gruppen als auch zur Ermittlung der Einflussfaktoren (Interventionsgruppe, Ausbildungsgruppe, Vor- und/oder Nachtestergebnis bzw. deren Kombination). Zunächst wurden die Modelle mit allen Interaktionen berechnet und dann schrittweise um die nicht-signifikanten Einflussfaktoren reduziert. Die Irrtumswahrscheinlichkeit wurde auf $p=0.05$ festgelegt, demzufolge wurde $p<0.05$ als signifikant beurteilt. Zusätzlich wurde $0.05<p<0.1$ als Tendenz beurteilt.

Für die graphische Darstellung der Nachtestergebnisse in Abhängigkeit von Interventionsgruppe, Ausbildungsstand und Vor- oder Nachtestergebnis wurden Box-Whisker-Plots verwendet. Die Blöcke bezeichnen die 25%-75%-Perzentile (Interquartilbereich). Die mittlere Markierung gibt den Median an. Die Balken werden durch Minimum und Maximum begrenzt. Die außerhalb gelegenen Kreise und Sterne geben Ausreißer und Extremfälle an.

Ergebnisse

Deskriptive Statistik

Von 301 Teilnehmern lagen für 216 Teilnehmer (71.8%) Ergebnisse für Vor- und Nachtest vor, auf die sich die Auswertung bezieht (siehe Tabelle 1).

Tabelle 1: Zahl der Teilnehmer bezüglich Intervention und Ausbildungsgruppe mit vorliegenden Ergebnissen für Vor- und Nachtest

Ausbildung	Intervention	Kontrollgruppe	Gesamt	
	interaktiv	reproduktiv		
Ausbildung	56	44	50	150
abgeschlossen	15	27	24	66
Gesamt	71	71	74	216

Das Alter spielte keine zentrale Rolle, sondern ging über den unterschiedlichen Ausbildungsstand der Teilnehmer als Faktor „Ausbildungsgruppe“ in die Auswertung ein. Das durchschnittliche Alter der Fachschulabsolventen betrug 20.8 Jahre (Min. 18, Max. 31 Jahre), das der Teilnehmer der Postgradualausbildung 35.1 Jahre (Min. 23, Max. 58 Jahre).

Das Geschlecht wurde ebenfalls nicht explizit berücksichtigt, da von den 216 Teilnehmern nur 40 männlich waren (30 Fachschulabsolventen und 10 zukünftige Osteopathen).

Folgende Tabelle gibt die deskriptive Statistik der Verteilungen für den Vortest an (siehe Tabelle 2):

Tabelle 2: Deskriptive Statistik der Verteilung der Ergebnisse des Vortests (Punkte/20)

Parameter	Intervention	N	Mittelwert	SD	Median	Min	Max	KS-Test
Vortest	interaktiv	71	14.4	2.3	15	8	19	
	reproduktiv	71	15.9	2.1	16	11	20	
Kontrolle		74	14.9	2.8	15	6	20	
Alle		216	15.0	2.5	15	6	20	

Die Teilnehmer wurden anhand der Ergebnisse des Vor- und Nachtests in zwei Gruppen (Grenze Median: <15 Punkte, >15 Punkte) eingeteilt.

Folgende Tabelle gibt die deskriptive Statistik der Verteilungen für den Nachtest (alle Fragen) an (siehe Tabelle 3).

Tabelle 3: Deskriptive Statistik der Verteilung der Ergebnisse des Nachtests (Punkte/36)

Parameter	Intervention	N	Mittelwert	SD	Median	Min	Max	KS-Test
Nachtest	interaktiv	71	23.5	4.1	24	13	32	0.166
	reproduktiv	71	23.1	5.2	23	7	33	0.545
Kontrolle		74	19.8	6.0	20	6	32	0.955
Alle		216	22.1	5.4	23	6	33	

Analyse der primären Fragestellung, bezogen auf alle Fragen des Nachtests

In diese Analyse gingen die Probanden ein, die den Interventionsgruppen interaktiv oder reproduktiv angehörten. Tabelle 4 zeigt die Ergebnisse der univariaten dreifaktoriellen Varianzanalyse, mit deren Hilfe der Einfluss der Intervention (interaktiv vs. reproduktiv), des Ausbildungsstandes (Fachschulabsolventen bzw. Postgradualausbildung) und des Vor- und Nachtestergebnisses (<15 oder >15 Punkte) mit allen Wechselwirkungen auf das Ergebnis im Nachtest betrachtet werden konnte.
Tabelle 4: Abschließendes Ergebnis der ANOVA nach schrittweisem Ausschluss der nicht-signifikanten Einflussfaktoren. Abhängige Variable: Nachtest

Quelle	df	F	Signifikanz
IntervGruppe	1	2.928	0.089
AusbGruppe	1	8.277	0.005
Vortestergebnis	1	17.595	<0.0005
IntervGruppe * Vortestergebnis	1	6.800	0.010

Die Ausbildungsgruppe (p = 0.005) und das Vortestergebnis (p < 0.0005) haben einen signifikanten Einfluss auf die Ergebnisse im Nachtest. Für die Interventionsgruppe wurde eine Tendenz gefunden (p = 0.089), wobei eine Interaktion mit dem Ergebnis des Vortests besteht. Faßt man die Ergebnisse des Vortests zusammen, so ergibt sich für ein Vortestergebnis \(\leq 15 \) Punkte ein signifikanter Unterschied (p = 0.003) zwischen den Interventionsgruppen: 22.8 (interaktiv) vs. 20 Punkte (reproduktiv). Für ein Vortestergebnis > 15 Punkte wird dagegen ein geringer, nicht-signifikanter Unterschied zwischen den Interventionsgruppen detektiert: 24.6 (interaktiv) vs. 25.6 Punkte (reproduktiv). Die Nullhypothese eines fehlenden Unterschiedes zwischen interaktiver und reproduktiver Intervention kann somit für Probanden mit schlechten Vortestergebnissen abgelehnt werden.

Vergleicht man die Fachschulabsolventen mit den Teilnehmern der Postgradualausbildung, so schneiden Probanden mit abgeschlossener Berufsausbildung und meist mehrjähriger Berufserfahrung in beiden Interventionsgruppen (interaktiv: 25.7; reproduktiv: 25.4) besser ab als die noch in Ausbildung befindlichen Probanden (interaktiv: 22.9; reproduktiv: 21.7). Abbildung 4 und 5 visualisieren das Ergebnis: Mit Hilfe von Box-Whisker-Plots wird die Verteilung der Nachtestergebnisse in Abhängigkeit von der Interventionsgruppe, dem Vortestergebnis und der Ausbildungsgruppe gezeigt.

Abbildung 4: Die interaktive Intervention führte bei Probanden mit schlechteren Vortestergebnissen (hellgraue Boxen) zu signifikant besseren Leistungen im Nachtest als die reproduktive. Probanden mit abgeschlossener Berufsausbildung und Berufserfahrung schneiden in beiden Interventionsgruppen besser ab als die noch in Ausbildung befindlichen Probanden.

Abbildung 5: Bezo gen auf das Teilgebiet Magen-Darm-Trakt (erster Abschnitt des Arbeitsmaterials, Fragen im Vortest anteilig) schneidet die Interventionsgruppe sogar signifikant besser ab. Besonders deutlich stellen sich die Unterschiede wieder bei den Vorwissensschwachen (hier \(\leq 4 \) Punkte) dar. Bei den Auszubildenden trifft diese Aussage generell zu. Für die ohnehin Leistungsstarken mit abgeschlossener Berufsausbildung hat die Art der Intervention offenbar keinen deutlichen Einfluss mehr.

Analyse der sekundären Fragestellung

Im Rahmen dieser Analyse wurden die Probanden der Interventionsgruppen mit denen der Kontrollgruppe verglichen. Es wurde ein signifikanter Einfluss für die Intervention (ja/nein) (p < 0.0005) gefunden. Im Mittel erreichten die Teilnehmer in den Interventionsgruppen 23.3 und in der Kontrollgruppe 19.8 Punkte im Nachtest, d.h. die Nullhypothese eines fehlenden Unterschiedes zwischen Interventions- und Kontrollgruppe kann abgelehnt werden.
Arbeitsfortschritt der interaktiven Gruppe
- Zeitfaktor

Abbildung 6 zeigt anhand von Balkendiagrammen, wie viele der 71 Teilnehmer die Aufgaben richtig (rot), teilweise richtig (blau), nicht richtig (schwarz) oder gar nicht (grau) gelöst haben.

Abbildung 6: Anteil der bearbeiteten Aufgaben aus den drei Teilgebieten des interaktiven Arbeitsmaterials
a: Magen-Darm-Trakt (1. Abschnitt),
b: Wirbelsäule-Rückenmark (2. Abschnitt),
c: Herz-Kreislauf (3. Abschnitt)

Der erste Abschnitt (MDT) wurde von den meisten Teilnehmern bearbeitet, zum überwiegenden Teil auch richtig. Die Zahl der nicht bearbeiteten Aufgaben wächst bereits im 2. Abschnitt (WR) sehr stark an, und die Aufgaben aus dem 3. Abschnitt (HK) bearbeiteten nur noch wenige Teilnehmer.

Während die Zeit zum Durchlesen (reproduktive Gruppe) ausreichte, benötigte die interaktive Gruppe mehr Zeit.

Der Unterschied zwischen den Mittelwerten (interaktiv: 1.27 und reproduktiv: 4.14) waren im T-Test für unabhängige Stichproben statistisch signifikant (p<0.0005; T=25.359 und df=155.823) (siehe Tabelle 5).

Das subjektive Empfinden der Teilnehmer auf die Frage im Evaluationsbogen, ob der Bearbeitungszeitraum von 45 min angemessen war, spiegelt dies wider (interaktiv: 17 Teilnehmer; reproduktiv: 3 Teilnehmer: „wenig Zeit“).

Analyse der primären Fragestellung, bezogen auf die Fragen aus dem 1. Abschnitt des Nachtests

Wendet man die univariate dreifaktorielle Varianzanalyse nur auf die Fragen zum Magen-Darm-Trakt an, verstärken sich die für die gesamten Daten gezeigten Effekte. Es wird ein signifikanter Einfluss für die Interventionsgruppe (p=0.006) sowie die Ausbildungsgruppe (p=0.042) gefunden. Die Interventionsgruppen unterscheiden sich, wie bereits für die gesamten Daten gezeigt, signifikant von der Kontrollgruppe (p<0.0005).

Die Nullhypothese eines fehlenden Unterschieds zwischen interaktiver und reproduktiver Gruppe kann damit unter Bezugnahme auf die Teilergebnisse (MDT) für die gesamte Stichprobe, nicht nur für Vorwissensschwache, abgelehnt werden (Fachschulabsolventen interaktiv: Median=15; Fachschulabsolventen reproduktiv: Median=14; Teilnehmer Postgradualausbildung interaktiv: Median=16; Teilnehmer Postgradualausbildung reproduktiv: Median=15).

Diskussion

Interaktives versus reproduktives Lernen

Die Ergebnisse zeigen, dass interaktives Lernen zu besseren Ergebnissen führt, zunächst aber mehr Zeit in Anspruch nimmt. Das gilt auch für ein „Auswendiglernenfach“ wie Anatomie. Bei der Durchführung der Intervention stellte sich heraus, dass die 45 min zeitlich sehr knapp für das interaktive Arbeiten bemessen waren, für das Lesen des reproduktiven Arbeitsmaterials aber ausreichend. Aus Gründen der Vergleichbarkeit wurde jedoch an der Bearbeitungszeit für beide Gruppen festgehalten. Die Möglichkeit, sich die Gebiete aufzuteilen, wurde von den Teilnehmern nicht genutzt. Es lag aber dafür auch keine entsprechende Instruktion vor. Die Bearbeitung der The mengebiete erfolgte entsprechend ihrer Reihenfolge und nicht nach dem Schwierigkeitsgrad. Angesichts der limitierten Zeit wird dies im Nachhinein als Versäumnis betrachtet. Es wird empfohlen, die Möglichkeiten der Gruppenarbeit (Zahl der Kooperationspartner in den Kleingruppen, Konzentration auf verschiedene Gebiete und Zusammenführung der Ergebnisse, effiziente Nutzung der Quellen etc.) vor Beginn der Intervention genau mit den Teilnehmern zu besprechen.
Kritisch ist auch anzumerken, dass im Nachtest eher Fähigkeiten geprüft wurden, die die Lernenden der interaktiven Gruppe übten. Dadurch hatten die interaktiv Lernenden einen Vorteil gegenüber den reproduktiven Lernenden. Bei einem Nachtest aus MC-Fragen (wie im Vor- test) wäre das Ergebnis möglicherweise anders ausgefallen. In Nachfolgestudien sollte das Lernverhalten in den Gruppen in Analogie zu Hopkins et al. [8] analysiert werden.

Hinzu kommt, dass es sich nur um eine (zeitlich beschränkte) Intervention handelte, die sich jedoch aus den vorgegebenen Rahmenbedingungen (z.B. Teilnehmer größtenteils nicht aus Leipzig) ergab. Ein Retentionstest war im Rahmen dieser Untersuchung nicht vorgesehen. Einzelne Teilnehmer hatten geäußert, dass sie ihren Lernerfolg höher einschätzten, wenn sie Gelegenheit zum Studium des Materials in Vorbereitung des Nachtests gehabt hätten. Betrachtet man jedoch die Tatsache, dass die interaktiv arbeitenden Teilnehmer meist nur das erste Drittel (Magen-Darm-Trakt) in den vorgesehenen 45 min geschafft haben, bleibt die Frage offen, wie der Wissenszuwachs ausgefallen wäre, wenn genügend Zeit zur Verfügung gestanden hätte oder wie die Ergebnisse im Nachtest ausgesehen hätten, wenn eine Instruktion zur getrennten Bearbeitung der drei Teilgebiete und zum anschließenden Zusammenführen der Antworten aufgefordert hätte.

Die Unterschiede in den Nachtestergebnissen zwischen beiden Interventionsgruppen wären möglicherweise noch deutlicher geworden, wenn die Möglichkeiten des „interaktiven“ Arbeiten, wie es im Bereich des E-Learning möglich ist, noch besser ausgeschöpft worden wären.

Die Teilnehmer füllten Lückentexte aus, beschrifteten Zeichnungen und beantworteten offene Fragen. Hilfsmittel und Gruppenarbeit wurden zugelassen. Für computergestütztes Lernen gingen Schworm und Renkl [9] sowie Atkinson und Renkl [10] jedoch noch viel weiter, indem sie mit Lösungsbeispielen, zusätzlichen Erklärungen und strukturierten Hilfen arbeiteten. Dabei sind Unterschiede in der Arbeitsweise der Fachschüler, die bereits mit dem Computer aufgewachsen sind, und den Teilnehmern der Postgradualexamenausbildung zu erwarten [8].

Der Wechsel im Fragenformat führte dazu, dass Vor- und Nachtest nicht direkt vergleichbar waren. Die ursprüngliche Idee war ein „Screening“ für den schnellen Überblick und zur Einteilung in vergleichbare Gruppen im Vorfeld, während der Nachtest bewusst auf das Arbeitsmaterial, das viel mit Bildern arbeitet, Bezug nahm. Leider lässt sich das im MC-Format nicht gut umsetzen. In weiterführenden Untersuchungen sollten daher bereits für den Vortest offene Fragen verwendet werden.

Weitere Einflussfaktoren auf die Ergebnisse im Nachtest

In verschiedenen Studien wird in Frage gestellt, ob die übliche Operationalisierung des Lernerfolgs über Klausuren, Schulnoten oder mündliche Prüfungen überhaupt geeignet ist, die Qualität von Wissen adäquat abzubilden [11]. Dochy [12] beschrieb in 91.5% der von ihm gesuchten Studien einen positiven Effekt des Vorwissens auf die Lernleistung. Besonders deutlich werden die Unterschiede beim Vergleich zwischen Novizen und Experten.
Wir nehmen an, dass bei Novizen, in vorliegender Untersuchung den Fachschulabsolventen, Lernprozesse größtenteils noch bewusst ablaufen, während sich bei Experten, hier den Teilnehmern der Postgradualausbildung, Schemata im Langzeitgedächtnis herausgebildet haben, die weitgehend automatisiert benutzt werden. In der Folge könnte sich die kognitive Belastung verringern und die Lernleistung verbessert haben [13]. Grund zu dieser Annahme gibt uns die Untersuchung der Lernstrategien der Teilnehmer mit Hilfe des etablierten LIST (Lernen im Studium)-Fragebogens [14]. In der Auswertung wurden explizit die Items einbezogen, die eine Zuordnung in Oberflächen- und Tiefenlernen [11] zulassen. Dabei stellte es sich heraus, dass die Fachschulabsolventen eher Oberflächenlerner und die Teilnehmer der Postgradualausbildung eher Tiefenlerner sind. Sie organisieren ihr Wissen besser, elaborieren und überprüfen kritisch. Die Berufsschüler lernen stärker durch Wiederholen. Beder und Darkenwald [15] beschrieben Erwachsene im Vergleich zu „Pre-adults“ als höher motiviert, pragmatischer, in einem höheren Ausmaß selbst gesteuert und aufgabenorientierter. Sie arbeiteten härter und übernahmen mehr Verantwortung für den Lernprozess. Hierbei spielten sicherlich auch die Rahmenbedingungen (berufsbegleitende Weiterbildung, Notwendigkeit, Familien und Beruf zu vereinbaren etc.) eine Rolle. In dem Evaluationsbogen, der den Arbeitsmaterialien beilag, wurde durch Items wie „Die Bearbeitung der Unterlagen hat mir Spaß gemacht.“ oder „Ich würde gern Lehrmaterial zu weiteren Themen erhalten, z.B. zu: ...“ nach der Motivation gefragt, sich mit den vorgestellten Themen zu beschäftigen. Es herrschte Übereinstimmung darüber, dass die Themen gut ausgewählt und verständlich dargestellt waren, und es wurde der Wunsch nach zusätzlichen Inhalten geäußert. Eine dezidierte Untersuchung wie bei Artelt [16] wurde jedoch nicht vorgenommen.

Gerade im Rahmen postgradualer Weiterbildungen müssen die Teilnehmer den Lernprozess aktiv selbst gestalten (Selbststeuerung, Friedrich und Mandl [17]). Dreer [18] schreibt E-Learning ein hohes Potential für die Förderung des selbstgesteuerten Lernens zu und setzt dabei besonders auf die Möglichkeit, individuelle Schwerpunkte zu setzen bzw. Themenbereiche weglassen zu können, die bereits bekannt sind. Zeitlich und örtlich unabhängiges Lernen wird dadurch möglich. Unter dem Gesichtspunkt der Verwendung der Materialien auf der E-Learning-Plattform (http://anatomie-sammlung.uni-leipzig.de/index.php?seite=virtueller-rundgang) war die Information, ob das Material eher interaktiv (zeitintensiver, aber effizienter) oder reproduktiv (schnelles Durchlesen, aber vermutlich auch schnelleres Vergessen) enorm wichtig.

Ausblick

Weitergehende Erkenntnisse sind durch die Implementierung des Lehrmaterials in die E-Learning-Plattform zu erwarten. Es wird die interaktive Form für das Arbeitsmaterial gewählt, d.h. die Nutzer können Bilder beschriften, Lückentexte ausfüllen etc., müssen sich also die Lösungen selbst erarbeiten. Für den Fall, dass die Teilnehmer allein nicht weiter kommen, wird jedoch ein schnelles Nachschlagen der Lösungen möglich sein, um den Zeitverlust klein zu halten. Auf diese Weise wird dem individuellen Lerntempo und den unterschiedlichen Vorkenntnissen Rechnung getragen. Kurze Selbsttests sollen den Lernerfolg steigern.

Durch die Erfassung von Zugriffszeiten und -häufigkeiten werden zusätzliche Erkenntnisse über die Nutzung der Inhalte erwartet.

Danksagung

Wir danken Herrn Dr. med. Ekkehard Geipel (DGMM/ÄMM Ärztseminar Berlin e.V.) für die engagierte Mitarbeit und Herrn Dipl. Ing. Sebastian Löffler (Medientechnik) und Herrn Björn Weiler (technische Redaktion) für die Erstellung der Fotografien für das Arbeitsmaterial im Rahmen des von Frau Adelgunde Graefe (Institut für Rechtsmedizin der Universität Leipzig) geleiteten, vom Europäischen Sozialfond geförderten Projekts.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenskonflikte in Zusammenhang mit diesem Artikel haben.

Literatur

1. Cook DA, Levinson AJ, Garside S, Dupras DM, Erwin PJ, Montori VM. Internet-based Learning in the health professions. A meta-analysis. JAMA. 2008;300(10):1181-1196. http://dx.doi.org/10.1001/jama.300.10.1181
2. Riemer M, Wollatz M, Peimann C-J, Handels H. Benutzerverhalten auf der eLearning-Plattform Moodle im Universitätssklinikum Hamburg-Eppendorf – Bestandsaufnahme und Analyse mit Hilfe kontinuierlicher Pflichtevaluierungen in 2006-2007. GMS Med Inform Biom Epidemiol. 2009;5(1):Doc05. DOI: 10.3205/mibe000084
3. Winteler A. Lehrstrategien, die das aktive Lernen fördern. Symposium Anreizsysteme. Workshop I: Aktives und kooperatives Lernen als Förderung des Lern-Engagements. Kiel: FH Kiel; 2009. Zugänglich unter/available from: http://www.fh-kiel.de/fileadmin/data/praeisium/Hochschule_mit_Zukunft/Symposium_Anreize_in_Lehre_und_Studio/Workshops/Winteler/Workshop_Aktives_Lernen_Handout_Winteler.pdf
4. Ellaway R, Masters K. e-learning in medical education Part 1: Learning, teaching and assessment. AMEE Guide no 32. Med Teach. 2009;30(5):455-473. http://dx.doi.org/10.1080/01421590802108331
5. Stark R, Herzmann P, Krause UM. Effekte integrierter Lernumgebungen – Vergleich problembasierter und instruktionsorientierter Seminarkonzeptionen in der Lehrerbildung. Z Paed. 2010;4:548-563.
6. Harter C, Schellberg D, Mötter A, Kadmon M. Frontalunterricht oder interaktive Gruppenarbeit? Ein Vergleich des Lernerfolgs und der studentischen Evaluation für das Fach Biochemie. GMS Z Med Ausbild. 2009;26(2):Doc23. DOI: 10.3205/zma000615

GMS Zeitschrift für Medizinische Ausbildung 2011, Vol. 28(4), ISSN 1860-3572
7. Herbert PC, Lohrmann DK. It’s all in delivery! An analysis of instructional strategies from effective health education curricula. J Sch Health. 2011;81(5):258-264. http://dx.doi.org/10.1111/j.1746-1561.2011.00586.x

8. Hopkins R, Regehr G, Wilson TD. Exploring the changing learning environment of the gross anatomy lab. Lab Acad Med. 2011;86(7):883-888. http://dx.doi.org/10.1097/ACM.0b013e31821de30f

9. Schworm S, Renkl A. Computer-supported example-based learning: When instructional explanations reduce self-explanations. Comp Biol. 2006;46:426-445.

10. Atkinson RK, Renkl A. Interactive example-based environments: Using interactive elements to encourage effective processing of worked examples. Educ Psychol Rev. 2007;19:375-386. http://dx.doi.org/10.1007/s10648-007-9055-2

11. Souvignier E, Gold A. Lernstrategien und Lernerfolg bei einfachen und komplexen Leistungsanforderungen. Psychol Erz Unterr. 2004;51:309-318.

12. Dochy FR. Assessment of domain-specific and domain-transcending prior knowledge: Entry assessment and the use of profile analysis. In: Birenbaum M (Hrsg). Alternatives in assessment of achievements, learning processes and prior knowledge. Boston: Kluwer; 1996. S.225-242. http://dx.doi.org/10.1007/978-94-011-0657-3_9

13. van Merrienboer JJ, Sweller J. Cognitive load theory and complex learning: recent developments and future directions. Educ Psychol Rev. 2005;17(2):147-177. http://dx.doi.org/10.1007/s10648-005-3951-0

14. Wild KP, Schiefele U. Lernstrategien im Studium. Ergebnisse zur Faktorenstruktur und Reliabilität eines neuen Fragebogens. Z Differ Diagn Psychol. 1994;15:185-200.

15. Beder HW, Darkenwald GG. Differences between teaching adults and pre-adults: Some propositions and findings. Adult Educ. 1982;32:142-155.

16. Artelt C. Strategisches Lernen. Münster: Waxmann; 2000.

17. Friedrich HF, Mandl H. Analyse und Förderung selbstgesteuerten Lernens. In: Weinert H (Hrsg). Psychologie der Erwachsenenbildung. Göttingen: Hogrefe; 1997.

18. Dreer S. E-Learning als Möglichkeit zur Unterstützung des selbstgesteuerten Lernens an Berufsschulen. MedienPäd. 2008:1-25. Zugänglich unter/available from: http://www.medienpaed.com/2008/dreer0806.pdf

Korrespondenzadresse:
Dr. med. Sabine Löffler
Universität Leipzig, Institut für Anatomie, Liebigstraße 13, 04103 Leipzig, Deutschland, Tel.: +49 (0)341/9722-083, Fax: +49 (0)341/9722-009 sabine.loeffler@medizin.uni-leipzig.de

Bitte zitieren als
Löffler S, Feja C, Widmann J, Claus I, von Lindeman K, Eisnach K. Interaktives versus reproduktives Lernen. Absolventen medizinischer Berufsfachschulen im Vergleich zu Teilnehmern einer postgradualen Weiterbildung. GMS Z Med Ausbild. 2011;28(4):Doc57. DOI: 10.3205/zma000769, URN: urn:nbn:de:0183-zma0007698

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2011-28/zma000769.shtml

Eingereicht: 31.01.2011
Überarbeitet: 05.07.2011
Angenommen: 18.08.2011
Veröffentlicht: 15.11.2011

Copyright
©2011 Löffler et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
Interactive versus Reproductive Learning, a Comparison of Medical School Graduates with Participants of a Postgraduate CPD Session

Abstract

Aims: In order to develop the e-learning teaching material for medical professionals who are not physicians, we compared solution-based interactive and reading-based reproductive learning with regard to the increase of knowledge. Furthermore we tried to identify additional factors influencing learning.

Methods: We used a quasi-experimental double-stage study design with pre-test (point of time t₁), intervention and post-test (point of time t₂). The classification into three comparable groups was carried out according to the pre-test results. The interactive and reproductive group participated in the intervention but not the control group. All three groups consisted of graduates of medical schools (N=150) and more experienced physiotherapists during continuing training (N=66). The increase of knowledge was assessed by the post-test. The analysis of variance was the most important statistical tool.

Results: Interactive learning generated a higher increase of knowledge than reproductive learning but was more time consuming. The two groups which participated in the intervention obtained better results than the control group. The level of education and the prior knowledge also influenced the post-test results.

Conclusion: We recommend combining interactive and reproductive approaches for designing the e-learning platform.

Keywords: interactive learning, reproductive learning, analysis of variance, continuing professional development (CPD), anatomy

Introduction

Learning is a lifelong process which today does not end with the achievement of a certain qualification. It requires innovative forms of learning which independent of time and location (E-Learning [1]) and teaching materials where the context is tailored to the needs of the target audience. We developed educational materials for the training of healthcare workers in anatomy for an e-learning platform on Moodle [2]. Therefore we were interested in the question of which type of learning ideally promotes growth of knowledge. According to Winteler [3], learning should be interactive and constructive and ideally take place in learning communities. In terms of e-learning, Ellaway and Masters [4] see a need for not only storing documents online but also to enable didactically meaningful access and for encouraging users to interact, collaborate and communicate.

Stark et al. [5] compared to instruction-oriented and problem-based learning in teacher education. Here, the instruction-oriented approach proved particularly effective for participants with little prior knowledge. This superiority was, however, applied to tasks which require reproducible knowledge. Harter et al. [6] compared a larger cohort in their study (421 students of the 4th semester at their own university) across 11 biochemistry seminars regarding the impact and acceptance of talk-and-chalk versus interactive group work. They found that students both judge talk-and-chalk more highly and performed significantly better in the reproduction of knowledge compared to those who had gained their knowledge in groups. But in a second test 4-6 weeks after the knowledge test, the initially found superiority of talk-and-chalk teaching is no longer detectable. Lohrmann and Herbert [7] analyzed 10 curricula for the training of healthcare workers. Those who used a large repertoire of active learning strategies and spent enough time on adequate instruction performed best, with discussion in small groups of 2-6 students playing an important role. Hopkins et al. [8] found...
no significant effect in terms of knowledge gain in three groups of students who acquired knowledge on the masticatory system via prospection in a dissection course, through a virtual model or such using both methods. Their learning was also observed. It was found that groups which used with the computer model split into subgroups which worked independently, regardless of the original group size (3-6 students). Beyond the learning success, it also seems to improve social interaction between participants. Hopkins et al. [8] highlight the differences between team and (small) group learning.

The focus of our work was not the analysis of group dynamics but the design of material which will allow newly graduated healthcare workers (novices) and even physiotherapists with long-term experience as part of CPD (experts), the highest possible knowledge gain. We therefore compared a learning offer containing the solutions (reproductive) was compared with material in which these solutions had to be worked out (interactive).

Research Questions and Hypotheses

The primary research question was whether interactive learning leads to better success than reproductive learning of comparable content. A second research question aims to establish whether both groups outperform the control group.

According to these research questions, the following null hypotheses were tested:

1. The results of the post-test do not differ between the interactive and reproductive intervention group.
2. The post-test results differ in the intervention groups on the one hand but not in relation to the control group.

Furthermore we examined what other factors influenced the results of the post-test.

Methods

Samples and Procedures

Graduates of medical vocational colleges (In training) in the fields of healthcare with comparable knowledge in anatomy participated in the study a few months before their final exam.

The second group consisted of graduates in physiotherapy with long-term experience (Training completed) who were participating in osteopathy CPD.

The written consent of the Ethics Commission is available. The study had a two-stage quasi-experimental study design (see Figure 1). The prior knowledge of the participants was determined through a test before the intervention. Since the results were very balanced amongst the various vocational classes and the participants of the osteopathy CPD course for organisational reasons (schedules, travel to Leipzig etc.) a decision was made not to mix them. The vocational college students remained as a group, the participants of the postgraduate CPD course were divided into three numerically comparable groups. The first worked interactively, i.e. they solved tasks in small groups of 4-6 with the help of various sources (textbooks and anatomy atlases, see Figure 2d) in 45 minutes. Interactions between participants was not required. In general, they sought the answers to each question individually in various books and formulated their answers. As far as they were observed, questions were dealt with in their predefined order. They were not observed regrouping them (e.g. by topic). The second group read the material which contained the solutions for the same period of time. Learning success was measured through a test about one week after the intervention, relating directly to the content of the working materials.

Test Materials (Tests and Intervention)

The pre-test (10 min) consisted of 20 questions in multiple choice format on different areas of the anatomy (locomotor system, gastrointestinal tract, nervous system, etc.) with three possible answers, one of which was true. A total of 20 points could be achieved.

Sample Question: The central nervous system consists of:
- A Brain
- B Brain and spinal cord
- C Spinal nerves

Answer B is correct.

The working materials for the intervention on various topics from the field of macroscopic anatomy was identical for the reproductive and the interactive group. 22 questions dealt with the gastrointestinal tract, 19 dealt with the spinal-cord and 20 with the cardiovascular system. The reproductive group was given the learning content while the interactive group had to work it out themselves. The following primary task types were given: Labelling of arrows, completing gaps in texts, checking correct answers and labelling of images.
Figure 2 shows the same task, the left designed for reproductive learning (see Figure 2a), the right for interactive learning (see Figure 2b-d).

The materials were accompanied by a short evaluation form to gather data on the views of the participants regarding topic selection, processing time, memorability, etc. using a 5-point Likert scale. On this scale, A = does not agree at all, B = agree somewhat, C = broadly agree, D = agree, E = agree fully and F = no response.

The post-test consisted of 27 open questions (example in Figure 3) in which they were required to give answers to the questions or label illustrations. The test content was based on the themes of the work materials. A total of 12 questions related to the gastrointestinal tract, 10 to the spinal-cord and 5 to the cardiovascular system. Processing time was 30min. A total of 36 points could be achieved.

Item Analysis

Cronbach’s α to assess the internal consistency for the pre-test is 0.476. The difficulty of the items should be between 0.4 and 0.8. There were no very difficult tasks (x<0.2) but six very easy tasks (x>0.8). The selectivity was over 0.2 for only four items.

Regarding the item analysis of the post-test results Cronbach’s α=0780, the values for the item difficulty and discriminatory power for almost all items are >0.2.

Statistical Analysis

The data was analysed using Microsoft Office Excel 2003 and SPSS 18 for Windows. The composition of the groups was described by absolute and relative frequencies and with respect training type and test results in terms of group affiliation. Mean, median, standard deviation, standard error, minimum and maximum were taken for the (quasi-)continuous parameter distributions. As a screening test the Kolmogorov-Smirnov test (KS) was used. With p>0.1 it was assumed that no deviation from normal distribution was present. When deviating from the normal distribution, the data was transformed in a suitable manner. For tests regarding distribution differences, the transformed data was used. For descriptive statistics and graphic representation the original values were retained; the median was then given as the expected value of the distribution.

The main instrument was variance analysis (ANOVA). It was used both for the comparison of multiple groups and to determine the influencing factors (intervention group, training group, pre-test result or a combination thereof). First, the models were calculated with all interactions and then gradually the non-significant factors were removed.

For the graphic representation of the post-test results as a function of the intervention group, training and pre-test result, Box-Whisker Plots were used. The blocks indicate the 25%-75% percentile (interquartile range). The average mark indicates the median. The beams are limited by minimum and maximum. The outlying circles and stars indicate outliers and extreme cases.
Results

Descriptive Statistics

Of the 301 participants, results for pre- and post-test were available for 216 participants (71.8%) to which the analysis refers (see Table 1).

| Table 1: Number of participants regarding intervention and educational group with the results for pre- and post-test |
|------------------|------------------|------------------|------------------|------------------|
| | Intervention | No. | 55 | 44 | 50 | 150 |
| Training | In training | | | | | |
| | | Training | No. | 15 | 27 | 24 | 66 |
| | | completed | | | | |
| | | Total | No. | 71 | 71 | 74 | 216 |

Age did not play a central role but accounted for, as the Training Group factor, in the analysis via the different levels of training of the participants. The average age was 20.8 years for graduates from the vocational college (min. 18, max. 31), the participants of the postgraduate course 35.1 years (min. 23, max. 58).

Gender was also not considered explicitly as only 40 of the 216 participants were male (30 graduates from the vocational college and 10 future osteopaths).

The following table shows the descriptive statistics of the distributions for the pre-test (see Table 2):

| Table 2: Descriptive statistics of the results’ distribution from the pre-test (Points/20) |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Parameter | Intervention | No. | Mean | SD | Median | Min | Max |
| Pre-test | interactive | 71 | 14.4 | 2.3 | 15 | 8 | 19 |
| | reproductive | 71 | 15.9 | 2.1 | 16 | 11 | 20 |
| | Control | 74 | 14.9 | 2.8 | 15 | 6 | 20 |
| | Total | 216 | 15.0 | 2.5 | 15 | 8 | 20 |

The participants were split into two groups based on the results of pre-tests (median border < = 15 points, > 15 points).

The following table shows the descriptive statistics of the distributions for the post-test (all questions) (see Table 3):

| Table 3: Descriptive statistics of the results’ distribution from the post-test (Points/36) |
Parameter	Intervention	No.	Mean	SD	Median	Min	Max	KS Test
Pre-test	interactive	71	23.5	4.1	24	13	32	0.166
	reproductive	71	23.1	5.2	23	7	33	0.545
	Control	74	19.8	6.0	20	6	32	0.665
	All	216	22.1	5.4	23	6	33	-

Analysis of the Primary Questions with Respect to All Post-Test Questions

This analysis looks at subjects which belonged to the interactive or reproductive intervention groups. Table 4 shows the results of the univariate trifactorial variance analysis with which the impact of the intervention (interactive vs. reproductive), the level of education (vocational college graduates or postgraduates) and the pre-test results (< = or > 15 points) with all interactions with the result of the post-test.

| Table 4: Final results of ANOVA after step by step exclusion of non-significant factors. Dependent variable: Post-test |
Source	df	F	Significance
Interv Group	1	2.926	0.089
Educ Group	1	8.277	0.005
Pre-test result	1	17.595	<0.0005
Interv Group * Pre-test result	1	6.800	0.010

The training group (p = 0.005) and the pre-test result (p < 0.0005) have a significant influence on the results of the post-test. For the intervention group, a trend was found (p = 0.089) and an interaction with the results of pre-test. When summarizing the results of the pre-test, a significant difference (p = 0.003) between the intervention groups (22.8 (interactive) vs 20 points (reproductive)) is found for one pre-test result < = 15 points. For one pre-test result > 15 points on the other hand, a small, non-significant difference between the intervention groups is
detected: 24.6 (interactive) vs 25.6 points (reproductive). The null hypothesis of no differences between the interactive and reproductive intervention can thus be rejected for subjects with bad pre-test results.

When comparing the vocational college graduates with the participants of the postgraduate course, test subjects who have completed vocational training and usually with several years of professional experience fare better in both intervention groups (interactive: 25.7; reproductive: 25.4) compared to those still in training (interactive: 22.9; reproductive: 21.7). Figure 4 and 5 illustrates the results: Using Box-Whisker Plots, the distribution of the post-test results in relation to the intervention group, the pre-test results and the training group is shown.

Analysis of the Secondary Question

This analysis compares subjects from the intervention group with those in the control group. There was a significant influence by the intervention (yes/no) (p<0.0005). On average, participants in the intervention group attained 23.3, the control group 19.8 points in the post-test, i.e. the null hypothesis of a lack of difference between intervention and control group can be rejected.

Interactive Group Work Progress - Time Factor

Figure 6 shows how many of the 71 participants solved the problems correctly (red), partially correct (blue) or incorrectly (black) or not at all (grey) using bar charts.
The first section (Gastro) was tackled by most participants, for the most part correctly. The number of unprocessed tasks begins to sharply increase in the second section (Spinal) already and the tasks from the third section (Cardio) were tackled by only a few participants. While there was sufficient time to read the questions (reproductive group), the interactive group needed more time.

The difference between the means (interactive: 1.27 and reproductive: 4.14) were statistically significant in the T-test for independent samples (p<0.0005, T=-25.359 and df=155.823) (see Table 5).

The participants’ views in answer to the questionnaire item asking if 45 min was sufficient processing time reflects this (interactive: 17 participants; reproductive: 3 students: “too little time”).

Analysis of the Primary Question with Regard to the Questions in the 1. Section of the Post-test

If the univariate trifactorial variance analysis is applied only to questions on the gastrointestinal tract, the effects shown for the entire dataset are enhanced.

A significant effect for the intervention group (p=0.006) and the training group (p=0.042) can be seen. The intervention groups differ significantly, as already shown for the entire dataset, from the control group (p<0.0005).

The null hypothesis of a lack of differences between interactive and reproductive group can thus be rejected with reference to the partial results (Gastro) for the entire sample, not only for subjects with weak prior knowledge (interactive vocational college graduates: median=15, reproductive vocational college graduates: median=14; participants of postgraduate course: median=16, reproductive postgraduate course participants: median=15).

Discussion

Interactive versus Reproductive Learning

The results show that interactive learning leads to better results but initially takes more time. This also applies to a “specialist rote learning subjects” such as anatomy. When carrying out the intervention, it was noted that 45 minutes was a very tight schedule for interactive work, but sufficient time for reading the reproductive material. For reasons of comparability, however, the same processing time was retained for both groups. The option of splitting the topics was not used by the participants. There was, however, no explicit mention of this option. The topics were processed in their given order and not by degree of difficulty. Given the limited amount of time available, this is viewed as a failing in retrospect. It is recommended that the option of group work (a number of people in the small groups focussing on different areas and combining the results, efficient use of resources, etc.) be discussed in detail with the participants before the intervention.

It should also be noted that the post-test tended to test skills which the students of the interactive group had practiced. Thus, the interactive learners had an advantage over the reproductive students. Had the post-test consisted of multiple-choice questions (as the pre-test), the results might have been different. Follow-up studies should analyse the learning behaviour in groups, in analogy to Hopkins et al. [8].

In addition, this was only a (time-limited) intervention, which arose mostly from the test conditions (e.g. participants mostly not from Leipzig). A retention test was planned for as part of this investigation. Some participants stated that they would have expected a higher knowledge gain had they had the opportunity to study the material in preparation for the post-test. However,
considering the fact that the interactive participants for the most part only managed to complete the first third (gastrointestinal tract) in the available 45 minutes, it remains an open question what the knowledge gain would have been if enough time had been available or how the results would have looked in the post-test had they been instructed to process the three sub-areas as a team effort and to subsequently collate the answers. The post-test differences between the two intervention groups might have been even more pronounced if the option of interactive work, as possible in e-learning, had been better used. The participants filled out cloze texts, labelled drawings and answered open questions. Tools and group work were permitted. In terms of computer-assisted learning, Schworm and Renkl [9] and Atkinson and Renkl [10] went much further by working with case studies, explanations and additional structured support. Here we would expect differences between the work patterns of vocational graduates who have grown up with computers and the participants of the postgraduate course [8].

The change in question format meant that the pre- and post-test were not directly comparable. The original idea was for a screening to give a quick overview and for splitting participants into similar groups beforehand with the post-test deliberately working a lot with visual material. Unfortunately, this is not easily compatible with the MC. Further investigations should therefore use open questions in the pre-test.

Further Factors Influencing the Post-test Results

Several studies question whether the customary evaluation of learning success using exams, grades or oral examinations is suitable at all to adequately reflect the quality of knowledge [11]. Dochy [12] reported that in 91.5% of the reviewed studies prior knowledge had a positive effect on learning performance. The differences are particularly evident when comparing novices and experts. We assume that in the minds of novices, such as those attending the vocational college in the present study, learning processes are still very much conscious, while among experts, in this case the participants of the postgraduate course, patterns have emerged in the long-term memory which largely automated. As a result, the cognitive load might have reduced and learning performance improved [13]. We have reason to believe this as studies of the learning strategies of the participants using the established LIST (Learning at University) questionnaire [14]. The analysis explicitly includes items which allow classification into surface and deep learners [11]. It turned out that the vocational college students tended to be surface learners versus the participants of the postgraduate course who tended to be deep learners. They organise their knowledge better, elaborate and critically review. Vocational students learn more through repetition.

Beder and Darkenwald [15] described adults as more motivated, more pragmatic, self-driven and task-oriented to a greater degree in comparison with “pre-adults”. They worked harder and took more responsibility for the learning process. The general conditions certainly also played a role (CPD, the need to reconcile work and family life, etc.). The evaluation sheet accompanying the work material questioned the motivation for dealing with the topics presented using items such as “I enjoyed working through the material” or “I would like to have more training materials on topics such as ...”. It was uniformly agreed that the topics were well chosen, clearly presented and that there was a desire for addition-
al content. A dedicated investigation as per Artelt [16] was not carried out. Especially in the context of postgraduate training, participants must actively form the learning process (self-control, Friedrich and Mandl [17]). Dreer [18] ascribes great potential to e-learning for encouraging self-directed learning and relies in particular on the ability to set individual priorities or omit themes with which one is already familiar. This enables learning which is independent of time and place. Regarding the use of materials on the e-learning platform (http://anatomie-sammlung.uni-leipzig.de/index.php?seite=virtueller-rundgang) information on whether the material was more interactive (time-consuming but more efficient) or reproductive (faster reading but probably also less retention) was extremely important.

Outlook

Further insights are expected from the implementation of the teaching material on the e-learning platform. The interactive format for this resource has been chosen, i.e. users can label photos, complete cloze texts, etc. and thus must work out solutions themselves. In case a participant gets stuck, however, there will be the option to quickly look up the solutions to minimise delays. In this way the individual pace of learning and the differences in background knowledge are duly reflected. Short self-tests should enhance learning.

By collecting data on access time and frequency additional findings are expected through the use of the content.

Acknowledgements

We would like to thank Dr Ekkehard Geipel (DGM/MAMM Doctors’ Seminar Berlin e.V.) for his dedicated collaboration and Sebastian Löffler (media technology) and Björn Weiler (technical editing) for the creation of the photographs for the work material as part of the project led by Adelgunde Graefe (Institute of Forensic Medicine, University of Leipzig), funded by the European Social Fund.

Competing interests

The authors declare that they have no competing interests.

References

1. Cook DA, Levinson AJ, Garside S, Dupras DM, Erwin PI, Montori VM. Internet-based Learning in the health professions. A meta-analysis. JAMA. 2008;300(10):1181-1196. http://dx.doi.org/10.1001/jama.300.10.1181

2. Riemer M, Wollatz M, Peimann C-J, Handels H. Benutzerverhalten auf der eLearning-Plattform Moodle im Universitätsklinikum Hamburg-Eppendorf – Bestandsaufnahme und Analyse mit Hilfe kontinuierlicher Plichtevaluations in 2006-2007. GMS Med Inform Biom Epidemiol. 2009;5(1):Doc05. DOI: 10.3205/mibes000984

3. Winteler A. Lehrstrategien, die das aktive Lernen fördern. Symposium Anreizsysteme. Workshop I: Aktives und kooperatives Lernen als Förderung des Lern-Engagements. Kiel: FH Kiel; 2009. Zugänglich unter/available from: http://www.fh-kiel.de/fileadmin/data/praeumium/Hochschule_mit_Zukunft/Symposium_Anreize_in_Lehre_und_Studium/Workshops/Winteler/Workshop_Aktives_Lernen_Handout_Winteler.pdf

4. Ellaway R, Masters K. e-learning in medical education Part 1: Learning, teaching and assessment. AMEE Guide no 32. Med Teach. 2009;30(5):455-473. http://dx.doi.org/10.1080/01421590802108331

5. Stark R, Herzmann P, Krause UM. Effekte integrierter Lernumgebungen – Vergleich problembasiert und instruktionsorientierter Seminarkonzeptionen in der Lehrerbildung. Z Päd. 2010;4:548-563

6. Harter C, Schellberg D, Möltner A, Kadmon M. Frontalunterricht oder interaktive Gruppenarbeit? Ein Vergleich des Lernerfolgs und der studentschen Evaluation für das Fach Biochemie. GMS Z Med Ausbild. 2009;29(2):Doc23. DOI: 10.3205/zma000615

7. Herbert PC, Lohrmann DK. It’s all in delivery! An analysis of instructional strategies from effective health education curricula. J Sch Health. 2011;81(5):298-304. http://dx.doi.org/10.1111/j.1746-1561.2011.00586.x

8. Hopkins R, Regehr G, Wilson TD. Exploring the changing learning environment of the gross anatomy lab. Lab Acad Med. 2011;86(7):883-888. http://dx.doi.org/10.1097/ACM.0b013e31821de30f

9. Schworm S, Renkl A. Computer-supported example-based learning: When instructional explanations reduce self-explanations. Comp Biol. 2006;46:426-445

10. Atkinson RK, Renkl A. Interactive example-based environments: Using interactive elements to encourage effective processing of worked examples. Educ Psychol Rev. 2007;19:375-386. http://dx.doi.org/10.1007/s10648-007-9055-2

11. Souvignier E, Gold A. Lernstrategien und Lernerfolg bei einfachen und komplexen Leistungsanforderungen. Psychol Erz Unterr. 2004;51:309-318.

12. Dochy FR. Assessment of domain-specific and domain-transcending prior knowledge: Entry assessment and the use of profile analysis. In: Birenbaum M (Hrsg). Alternatives in assessment of achievements, learning processes and prior knowledge. Boston: Kluwer; 1996. S.225-242. http://dx.doi.org/10.1007/978-94-011-0657-3_9

13. van Merrienboer JJ, Sweller J. Cognitiveloadtheory and complex learning: recent developments and future directions. Educ Psychol Rev. 2005;17(2):147-177. http://dx.doi.org/10.1007/s10648-005-3951-0

14. Wild KP, Schiefele U. Lernstrategien im Studium. Ergebnisse zur Faktorenstruktur und Reliabilität eines neuen Fragebogens. Z Differ Diagn Psychol. 1994;15:185-200.

15. Beder HW, Darkenwald GG. Differences between teaching adults and pre-adults: Some propositions and findings. Adult Educ. 1982;32:142-155.

16. Artelt C. Strategisches Lernen. Münster: Waxmann; 2000.

17. Friedrich HF, Mandl H. Analyse und Förderung selbstgesteuerten Lernens. In: Weinert H (Hrsg). Psychologie der Erwachsenenbildung. Göttingen: Hogrefe; 1997.
18. Dreer S. E-Learning als Möglichkeit zur Unterstützung des selbstgesteuerten Lernens an Berufsschulen. MedienPäd. 2008:1-25. Zugänglich unter/available from: http://www.medienpaed.com/2008/dreer0806.pdf

Corresponding author:
Dr. med. Sabine Löffler
University Leipzig, Institute for Anatomy, Liebigstraße 13, 04103 Leipzig, Germany, Tel.: +49 (0)341/9722-083, Fax: +49 (0)341/977-009
sabine.foeffler@medizin.uni-leipzig.de

Please cite as
Löffler S, Feja C, Widmann J, Claus I, von Lindeman K, Eisnach K. Interactive versus Reproductive Learning, a Comparison of Medical School Graduates with Participants of a Postgraduate CPD Session. GMS Z Med Ausbild. 2011;28(4):Doc57.
DOI: 10.3205/zma000769, URN: urn:nbn:de:0183-zma0007698

This article is freely available from
http://www.egms.de/en/journals/zma/2011-28/zma000769.shtml

Received: 2011-01-31
Revised: 2011-07-05
Accepted: 2011-08-18
Published: 2011-11-15

Copyright
©2011 Löffler et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.