Comparative statistical analysis of bacteria genomes in "word" context

Olga V. Kirillova

Department of Theoretical Physics, St.Petersburg State University
Ulyanovskaya str. 1, St.Petersburg, 198904 Russia
(e-mail:kirill@heps.phys.spbu.ru)

Abstract. Statistical analysis of bacteria genomes texts has been performed on the basis of 20 complete genomes origin from Genebank. It has been revealed that the word ranked distributions are quite well approximated by logarithmic law. Results obtained in the absent words investigation show the considerably nonrandom character of DNA texts. In character of autocorrelation function behavior in several genomes period 3 oscillations were found. Short range autocorrelations are present in short (n = 3) words and practically absent in longer words.

PACS number(s): 87.10+e
KEY WORDS: DNA structure analysis

1 Introduction

DNA molecules are main storage of information about any organism. They are long sequences (linear or closed to a loop) contained in each cell of an organism. Usually DNA sequences are represented by a string of just four letters (A, C, G, T), each of them corresponds a definite type of nucleotides: adenine, cytosine, guanine and thymine. These letters can form different combinations. Purposely, some combinations in DNA texts are nonrandom. They reflect structure and function of DNA and proteins. Where from the question arises, what are regularities of such letter sequences corresponded to known DNA properties?

Due to modern automatic techniques and new technologies of genome sequencing one can observe great increase of DNA texts data [1]. The crucial question of modern genomics is what kind of information can be extracted from these data? In this realm many statistical methods were applied or even elaborated for DNA sequences analysis. Great success was achieved in DNA sequences classification [2], autocorrelation analysis [3, 4, 5], Fourier spectrum analysis [6, 7, 8, 9], wavelet analysis [10, 11], enstrophies calculations [12, 13, 14, 15], methods of Hurst index estimation [16, 17, 18, 19], transition matrix analysis [20], random walk [21, 22], usage of the mutual information function [23, 24, 25], detrended fluctuation analysis [26, 27, 28], linguistics methods [29, 30, 31, 32, 33, etc. Large number of models, DNA emulated, have been constructed [34, 35, 36].

Although some of the studies are in contradiction with each other, the presence of long-range correlations and period-three oscillations in DNA sequences
one can believe statistically postulated. Now the 3 bp periodicity and the mutual information function are widely used to find exons in newly sequenced DNA \[2, 3, 4\]. Long range correlations are discussed in connection with chromosomal organization of genomes \[3\].

Let us notice that the main statistical investigations was performed in the letter (single nucleotide) sequences consideration. At the same time such elements of DNA structure as three nucleotides (codon) protein coding, the regulatory units such as promoters, splice sites, enhancers and silencer fairly difficult, or with too low accuracy, can be detected or predicted just letter analysis. So it seems to be needed to consider regularities no only in the letter sequences but among them groups \((\text{words})\) as well. As concrete example of the \(\text{words}\) importance one can take restrictase recognition sites as BglII: GCC - - - - - GGC where five nucleotides between sequences GCC GGC may be any, or classical Pribnow-Hilbert blocks: TTGACA- - -...- -T A T AA T, where moreover, the distance between the blocks can vary \[25\].

Some attempts of statistical analysis and classification of short (3-8 nucleotides) sequences have been made \[24, 27, 28, 29\]. Especially it concerns three letter sequences \((\text{codons})\), since these \(\text{codons}\) form so say amino acids (20 letters) language. But comparing the results, one can see that they strongly depend on an envisage object \[27, 22\]. Let us notice that triplets analysis is also insufficient for DNA structure explanation, for example, it tells us nothing about DNA conformational properties, interactions with proteins and proteins-RNA complexes, equilibrium between mutation and heredity. Though it is reasonable to suggest that this information presents in the DNA text as well.

If we would analyze any single genome, rather we obtain a result appropriate for the very narrow field of investigated objects. If we would study \(\text{words}\)’ statistical properties for drastically different organisms, we obtain strongly distinct results \[27, 23, 29\]. For this reason we decide to pay attention to bacteria genomes. From one hand there are different kinds of bacteria that, as one can suppose, is reflected in some distinctions of their genomes, from the other certainly one bacteria kind is closer to other one rather than to another species as, for example, plants or viruses, no concerning of higher organisms. So the goal of the present paper is comparative analysis of bacteria genomes in \(\text{words}\) context.

In second section we present distribution of the \(\text{word}\) frequency versus the rank in analogy to the Zipf analysis of natural languages \[30\], and compare the results with ones from linguistics DNA analysis \[21\]. In Sec. 3 we pay attention to the most frequently appeared \(\text{words}\) and almost never realized ones. Section 4 show the result of autocorrelation analysis. Finally conclusions on the basis performed comparative statistical analysis are given in Sec. 5.

2 Word frequency

In analogy to Zipf analysis of natural languages \[30\], we study distribution of \(\text{word’s}\) frequency versus rank. In order to obtain the distribution we first rank
order the total number of occurrences of each word, and than plot their relative values against rank. We have investigated words of length \(n \) from 1 to 7 nucleotides of 20 complete bacteria genomes origin from GenBank \([1]\). Whose size, short (using in this paper) and full names are presented in the Table 1.

The sequences length ranges from 580074 bp (\(mgen \)) to 4639221 bp (\(ecoli \)). We use the same method of sliding window as \([19, 21]\) for frequency of occurrences obtaining. According to this approach a window of length \(n \) nucleotides/letters is taken and the set of blocks/words of size \(n \) is obtained by shifting the window on one letter at a time. We look for all possible words from \(4^n \) for each \(n \in [1, 7] \). If \(n < 5 \) the number of all possible variants is less than 300 that, generally speaking, seems to be insufficient for the statement that the distribution obeys some law. For this reason, only for \(n \in [5, 7] \) we claim that the distributions quite well approximated by logarithmic law

\[
f(r) = -\alpha 10^4 \ln r
\]

where \(r \) – rank and \(f \) – frequency of occurrences of a word (approximation accuracy ranges from 95.6\% (\(hpyl \) genome) to 99.6\% (\(synecho \) genome)). Indexes \(\alpha \) for each genome and \(n \in [5, 7] \) are presented in the Table 2. The Figure 1 shows the distributions for \(tpal \) genome, which has the smallest index, \(mgen \) genome which has the largest index and \(aquae \) genome – an intermediate case.

Let us notice that the indexes do not depend on genome size.

Looking at the Figure 1 in \([21]\), it is easy to see that the powerlaw approximation no exceeds the value \(10^3 \) of the rank, what is only the third part of the pointed graph, for others two parts it is obviously not so. Other works \([19]\) also confirm that a power low is not the better approximation of the rank word distribution and DNA texts have not to believe to be written on a language in the linguistic sense.

3 Most and least frequently met words

DNA molecules consists of two strands letter sequences corresponded each other according to the rule: versus A letter on other strand the letter T is situated, versus C – G, G – C and T – A. It is the property of complementarity of DNA strands. Looking for what words are the most frequently met in the genomes’ texts, we obtained that for \(n \in [2, 6] \) it is polyA fragments (AAA...A \(\equiv (A)_n \)) (or taking into account sequences’ complementarity, it should be polyT fragments ((T)_n) as well. Let us sign this fact as \((A/T)_n \), where \(n \) is the length of the fragment. In the Table 3 the results of polyA/T sequences occurrence for \(n \in [2, 7] \) as well as the genomes, whose most frequently met words is no \((A/T)_n \), are presented.

Dominant polyA/T sequences were found in many DNA investigations \([31]\). There are some explanations of this phenomenon as, for instance, the fact that \((A,T)\) relation is weaker than \((C,G)\), or that \((A)_n,(T)_n \) sequences have a specific three-dimensional structure different from one of \((C)_n,(G)_n \) or other chains, that can be necessary for nucleosomes organization \([32]\). Just the question
remains why is it so only for the fragments’ length less than 7 (for the 20 complete bacteria genomes of different sizes)?

For marked by (*) genomes in the Table 3 fraction of ApT (A plus T) nucleotides is greater than fraction of CpG. Just 4 others genomes have fraction of CpG greater than one of ApT.

Below the most frequently met words for each envisaged genome in corresponding to given in the Table 1 order are presented:

\[
\begin{align*}
\text{CCTCCTC GAGGAGG AAAGAAT TTTTTAA TAAAAAA TTTTTAA TATAAAT GCCTGA GCCGCGC TCCTGGG TCTCCTT TATTTTT GGCGATC GAAGAA GCAA CGCCGCCG}
\end{align*}
\]

The most frequently met word on the level 7 (for word length equal to 7) among 20 genomes is TTTTTAA (2 genomes).

On the level 6: CCTCCTC GAGGAGG AAAGAA TTTTTAA TAAAAAA TTTTTAA TTTTAAA TTAAAAA CCCCTGA CCGGCCGCTTCTCT ATTTTT CGATCG GAAGAA GCGCGC

That, as it can be seen, differs from the results of [28].

For 9 from 20 investigated genomes (aero, aful, aquae, ecoli, hinj, mthe, mtub, rpzx, tpal) the dominant words (having maximal frequency of occurrences) of length 7 differ from one of length 6 just on a single nucleotide added at the beginning or end of the word. 8 genomes (aero, aful, ecoli, mthe, mtub, pabyszi, synecho, tpal) in the most frequent words have CpG fraction greater than ApT. Let us notice, mainly in the dominant words C and G letters appear in GC/CG compositions and never we met there the fragments (C /G)^k>3. This can be connected with that CG (or GC) repeats in DNA in greater degree than polyC/G fragments supply maximum contribution into free energy of the secondary structure [25].

Since we look for every of 4^n possible words, turn out to be that no all of them are realized in each genome. Namely, for n < 6 all possible 1024 words appear at least once in every genome. For n = 6 three genomes have no some words: hpym – TCGACA GTGACG, mgen – CTCGGA CCGGCCGCGACGC CGGC CC GCGCACGGCCTGC CGCGTC GTGACG CGGCG CGGCGG CCGCTGG GTGTGG, mjan – GTGACG GCGGCC CGATCG. For n = 7 there are only 4 genomes containing all words: aero, bsub, ctra, tpal. The number of absent words for others varies from 1 (ecoli, synecho) to 851 (mgen). In the Table 4 one can see the number of absent words for investigated genomes. Where from one can see that words’ absence is not follow to genome length, as it should be for random sequences.

The rarest word (which are absent in the envisaged genomes more often than others) for n = 6 is GTGACG (2 genomes), for n = 7 – GCGGCCG (6 genomes), CGGCGCGC GTGACGAC GGCCTCG (4 genomes).

All absent and rarest words contain greater fraction of CpG than ApT. At the same time neither polyC/G words nor even (C/G)^k>3 fragments of the words are not absent on the level 6 or rarest on the level 7 in any from investigated genomes. In the absent and rarest words quite often one can meet CG or (CG)^k fragments, which as it claimed in [25] are more energetically profitable for
secondary structure formation. The question remains why energetically more profitable \((CG)_k\) fragments are present in the row of the absent or rarest words but less energetically profitable polyG/C fragments have not been found there?

Moreover among the absent or rarest words of length 6 there are several (complemented) palindromes \((GTCGAC, CGCGCG, GTCGAC, GCGCGC, CGATCG)\). That can be understand in biological context as such palindromes are well known restriction enzyme cut sites, and hence are avoided by bacteria. Thus absent and rarest words investigation seems to be also important part of DNA studies, since it can give us a relevant information.

4 Autocorrelation analysis

We have performed analysis of autocorrelations for the most frequently met words. We considered length \(n = 3, 6, 7\). For the analysis we use standard procedure of translation of genomes’ letter sequences into number representation. Namely we divide a letter genome sequence into words of length \(n\) shifting the frame/window of length \(n\) on one nucleotide for getting a new word. If the word on \(i\)-th position is the most frequent for an envisaged genome it is replaced by 1 in the new representation, let us denote this fact as \(x_i = 1\) and \(x_i = 0\) otherwise. So we obtain the row of \(N - n + 1\) numerical values \(\{x_i\}_{i=1}^{N-n+1}\) where \(N\) is genome size.

The autocorrelation function \(R(l)\) of a numerical sequence can be written as

\[
R(l) = < x_i x_{i+l} > ,
\]

where the brackets denote average over the sites along the sequence. Since the number of units in the chain in our case is fairly small, we are interested in merely the quality results, in other words, in character of \(R(l)\) itself.

It has been obtained that for \(n = 3\) there are almost only correlations of order 1 or 2. However for several genomes: \(ecoli, mthe, mtub, tmarr\) in \(R(l)\) behavior oscillations of period 3 are observed.

In case \(n = 6\), \(R(l)\) behavior acquires greater distinctions. In the genomes \(synecho, pabyssi, mthe, mpneu, hinf\) correlations rather are absent, essential ones are in \(hpil, bsub\) genomes (almost on any up to \(l = 50\) scale). Period 3 oscillations are present in the genomes \(mtub, mjan, aquae, aful, aero\). Let us notice that for \(mtub\) genome correlations are quite strong even for scale \(l \approx 10^{3}\). Ones are weak in others genomes with period 3 oscillations.

As for \(n = 7\), in a whole in investigated genomes there is tendency of existence of greater correlations on \(l\) module 3. The most strong correlations are found as before in \(mtub\) genome, moreover there are existed on very large scale. In Fig. 2 one can see \(R(l)\) for this genome \((n = 6)\). Here also one can mention that \(tpal\) genome has correlations of order 2 and 4, \(mjan\) – 12 and 21, \(hpil\) – 10, 15, 21, 39, 45, \(aero\) and \(aful\) – 3.

More detailed analysis of the genome \(mtub\) structure reveals that period 3 oscillations are characteristic for the second and third word in ranked words distribution as well, for the forth word it is not so. More often met words have
on order higher frequencies of occurrences for 6 from 20 envisaged genomes (for
\(n = 7 \)). Three of them (hpyl, mjan, mtub) reveal correlations. Mtub genome
has the frequency of first three \emph{words} order 3 and oscillations of period 3 are
characteristic for first three \emph{words} as well. Synecho has sharpest drop in ranked
word distribution after forth \emph{word} (Fig. 3).

Such characteristic tendency of period 3 oscillations existence as in letters as
in \emph{words} of different length investigations of DNA texts can be connected with
scale invariance or self affinity of genomes organization, in other words, DNA
sequences to all appearances posses by fractal properties.

5 Conclusions

On the basis performed statistical analysis of the bacteria genomes the main
conclusions are followed.

The ranked \emph{word} distributions quite well approximated by logarithmic law.

Results obtained in absent \emph{words} investigation show the considerably nonran-
dom character of DNA texts sequences and allow to reveal biologically relevant
units as restriction enzyme cut sites. That points on importance of such kind study.

Characteristics do not depend on genome size as it has to be for random
texts.

In character of behavior of autocorrelation function in several genomes pe-
riod 3 oscillations were found. This result takes place for any \emph{word’s} length from
envisioned.

Short range autocorrelations are present in short \((n = 3)\) \emph{words} and practi-
cally absent in longer \emph{words}.

Concerning autocorrelations investigation, the results obtained for \emph{mtub}
genome seems to be the most interesting. Here we have strong correlations
with period 3 oscillations for any \emph{word} length from envisaged and on large scale,
that could not be detected for other genomes.

In a whole statistical analysis shows that bacteria genomes are considerably
varies from each other. Any essential similarities for genomes of a same class (e.g.
Pyrococcus: \emph{pabyssi, pyro}, Chlammydia: \emph{cpneu, ctra}, Mycoplasma: \emph{mpneu, mgen}) were not found.

If we want to elaborate any general scheme of genomes classification accord-
ing to statistical analysis, it will be a fairly difficult task. Since always there
are a lot of exceptions. As for example, the \emph{words} with CG repeats can form
as the most frequent \emph{words} as never met ones. GC fragments in the dominant
\emph{words} are more appropriate for the longer genomes (\emph{ecoli, mtub, synecho}) but
\emph{bsub} genome is longer than \emph{synecho} but does not contain such fragments in the
dominant \emph{word}. Reasonable conclusions one can make only on the basis of as
possibly greater set of factors. So one can suppose that absence of \emph{words} on 6
level in \emph{hpyl} and \emph{mjan} genomes (having a middle length among investigated)
is connected with the presence of autocorrelations of the most frequently met
\emph{words} more than on a single scale. Strong autocorrelations in \emph{mtub} genome can
point on a specific structure of this genome. Here also one has to mention the
nontypical characteristics of _tpal_ genome: the smallest index in ranked _word_
distribution, autocorrelations on 2 and 4 scales. Here the dominant _word_ con-
sists of CG repeats (that is the rarest _word_ for other genomes), presence of all
possible _words_ on level 7. All this factors allow us to claim that this genome is
the most structureless from the investigated.

Acknowledgments.

I would like to thank Vladimir Alenin for the useful discussion in biological
aspects of the work. This work is partially supported by State Committee of
Russian Federations for high education (grant No 97-14.3-58), St-Petersburg
Government Fellowship and Soros graduate program.
References

[1] URL: http://www.ncbi.nlm.nih.gov

[2] J.T.L. Wang, S. Rozen, B.A. Shapiro, D. Shasha, Z. Wang, M. Yin, J. Comput. Biol. 6 (1999) 209.
 W.R. Pearson, D.J. Lipman, Proc. Nat. Acad. Sci. USA 85 (1988) 2444.
 T.F. Smith, M.D. Waterman, J. Mol. Biol. 147 (1981) 195.

[3] H. Herzel, E.N. Trifonov, O. Weiss, I. Grosse, Physica A 249 (1998) 449.

[4] M. de Sousa Vieira, Phys. Rev. E 60 (1999) 5932.

[5] B. Borstnik, D. Pumpernik, D. Lukman, Europhys. Lett. 23 (1993) 389.

[6] R. Voss et. al., Phys. Rev. Lett. 68 (1992) 3805;
 A.A. Tsonis, J.B. Elsner, P.A. Tsonis, J. Theor. Biol. 151 (1991) 323;
 V.R. Chechetkin, A. Yu. Turygin, J. Phys. A 27 (1994) 4875.

[7] S.V. Buldyrev et. al., Phys. Rev. E 51 (1995) 5084.

[8] C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sclortino, M. Simonis, H.E. Stanley, Nature 356 (1992) 168.

[9] A.A. Tsonis, P. Kumar, J.B. Elsner, P.A. Tsonis, Phys. Rev. E 53 (1996) 1828;
 A. Areneodo, E. Bacry, P.V. Graves, J.F. Muzy, Phys. Rev. Lett. 74 (1995) 3293;
 A. Areneodo, Y. d’Aubenton-Cara, E. Bacry, P.V. Graves, J.F. Muzy, C. Thermes, Physica D 96 (1996) 291.

[10] H. Herzel, W. Ebeling, A. O. Schmitt, Phys. Rev. E 50 (1994) 5061.

[11] G.W. Rowe, J. Theor. Biol. 101 (1983) 151.

[12] L.L. Gatlin, J. Theor. Biol. 10 (1966) 281.

[13] X. Lu, Z. Sun, H. Chen, Y. Li, Phys. Rev. E 58 (1998) 3578.

[14] Z-G. Yu, G-Y. Chen, appear in Communication in theoretical physics (2000)

[15] S. Karlin, V. Brendel, Science 259 (1993) 677.

[16] H. Herzel, I. Grosse, Phys. Rev. E 55 (1997) 800.

[17] H. Herzel, A.O. Schmitt, W. Ebeling, Chaos, Solitons, Fractals 4 (1993) 97.

[18] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simonis, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49 (1994) 1685.
[19] A.A. Tsonis, J.B. Elsner, P.A. Tsonis, J. Theor. Biol. 184 (1997) 25.
[20] S. Pietrokovski, J. Biotechnol. 35 (1994) 257.
[21] R.N. Mantegna, S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simonis, C.-K. Peng, H.E. Stanley, Phys. Rev. Lett. 73 (1994) 3169.
[22] A.O. Schmitt, W. Ebeling, H. Herzel, BioSystems 37 (1996) 199
[23] W. Li, Europhys. Lett. 10 (1989) 395;
 W. Li, Phys. Rev. A 43 (1991) 5240;
 W. Li, Computers Chem. 21 (1997) 257;
 W. Li, T. G. Marr, K. Kaneko, Physica D 75 (1994) 392;
 G. A. Churchill, Bull. Math. Biol. 51 (1989) 79;
 G. A. Churchill, Computers and Chemistry 16 (1992) 107;
 D.G. Arques, C. J. Michel, K. Orieux, J. Theor. Biol. 161 (1993) 329;
 S. Karlin, V. Brendel, Science 259 (1993) 677.
[24] I. Grosse, H. Herzel, S.V. Buldyrev, H.E. Stanley, Phys. Rev. E 61 (2000)
[25] A.A. Alexandrov, N.N. Alexandrov, M. Yu. Borodovsky et al., Computer analysis of gene texts (Nauka, Moscow, 1990).
[26] G.J. Phillips, J. Arnold, R. Ivarie, Nucl. Acids Res. 15 (1987) 2611; ibid 15 (1987) 2627;
 R. Grantham, C. Gautier, M. Gouy, M. Jacobzone R. Mercier, Nucl. Acids Res. 9 (1981) 243;
 E. N. Trifonov V. Brendel, GNOMIC: a dictionary of the genetic code (Balaban Publishing, Philadelphia, 1986);
 T. Ikemura, J. Mol. Biol. 146 (1981) 1;
 S. Ohno, Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 4378.
[27] S. Tavere, B. Song, Bull. Math. Biol. 51 (1989) 95;
 T. Yomo, S. Ohno, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 8452.
[28] S. Karlin, G. Ghandour, Proc. Natl. Acad. Sci. U.S.A. 82 (1985) 6186; ibid 82 (1985) 5800;
[29] J-M. Claverie, L. Bougueleret, Nucl. Acids Res. 14 (1985) 179.
[30] G.K. Zipf, The psycho-biology of language (The M.I.T. Press, Massachusetts, 1965).
[31] R. Nussinov, Nucl. Acids Res. 8 (1980) 4545;
 R. Nussinov, J. Theor. Biol. 85 (1980) 285;
 J. Moreau, et al. Nature 295 (1982) 260.
[32] R.D. Wells et al., CRC Critical Reviews in Biochemistry 305 (1977).
FIGURES

Fig. 1 In this figure one can see the word ranked distributions for *tpal, mgen, aquae* genomes in semilogarithm scale. *Word length* $n = 7$.

Fig. 2 In this figure one can see autocorrelation function $R(l)$ for *mtub* genome in semilogarithm scale, *word length* $n = 6$.

Fig. 3 In this figure one can see first 20 points of the word ranked distributions for *hpyl, mgen, mjan, mtub, rpzx, synecho* genomes, whose are characterized by greater (on order) frequency of initial *words* and *aero* genome for comparison.
In this table size, short (using in the paper) and full names of 20 investigated bacteria genomes are presented.

Short Name	Full Name		
aero	Aeropyrum pernix K1		
aful	Archaeoglobus fulgidus		
aquae	Aquifex aeolicus		
bsub	Bacillus subtilis		
cpneu	Chlamydia pneumoniae		
ctra	Chlamydia trachomatis		
ecoli	Escherichia coli K-12 MG1655		
hiinf	Haemophilus influenzae Rd		
hpyl	Helicobacter pylori 26695		
mgen	Mycoplasma genitalium G37		
mjan	Methanococcus jannaschii		
mpneu	Mycoplasma pneumoniae M129		
mtthe	Methanobacterium thermoautotrophicum delta H		
mtub	Mycobacterium tuberculosis		
pabyssi	Pyrococcus abyssi		
pyro	Pyrococcus horikoshii OT3		
rpxx	Rickettsia prowazekii strain Madrid E		
synecho	Synechocystis PCC6803		
tmar	Thermotoga maritima		
tpal	Treponema pallidum		
name	n=5	n=6	n=7
-------	------	------	------
aero	6.12	1.71	0.49
aful	5.92	1.62	0.446
aquae	6.53	1.96	0.581
bsub	5.87	1.6	0.452
cpneu	6.27	1.67	0.47
ctra	6.08	1.62	0.454
ecoli	5.71	1.47	0.39
hinf	7.11	2.04	0.595
hpyl	7.73	2.26	0.717
mgen	9.73	2.79m	0.86
mjan	10.04m	2.78	0.857
mpneu	6.94	1.97	0.572
mthe	6.43	1.7	0.468
mtub	8.6	2.44	0.725
pabyssi	6.25	1.62	0.438
pyro	7.39	1.87	0.497
rpxx	9.21	2.65	0.84
synecho	6.14	1.62	0.448
tmar	6.52	1.84	0.536
tpai	4.49m	1.25m	0.356m

In this table indexes α for each envisaged genome and word’s length $n \in [5, 7]$ are presented.
Table 3

	14/20	12/20	11/20	10/20	5/20	0/20
2	aero, eco li, mthe(†), mtub, tmar(†), tpal	+ aful, pabyssi	+ pyro	+ aquae	+ hinf, mjan, mpneu, rpxx, synecho	all

In this table the results of polyA/T sequences occurrence for \(n \in [2, 7] \) as well as the genomes, whose most frequently met words is no \((A/T)_n\), are presented.

The first column of the table shows the level number (length of the word); the second column – ratio of the number of the genomes, whose have dominant polyA/T sequence, to total number of genomes; the third column – the names of the genomes, whose most frequently met words is no \((A/T)_n\).

(We present in this table the genomes whose most frequently met words are another than polyA/T because for \(n = 2 \) the number of such genomes is less, therefore, since if a genome has no polyA/T sequence as dominant on the second level \((n = 2)\) it has no one as dominant on any higher level. For \(n = 3 \) we only add to the genomes from previous level such ones, who has dominant polyA/T on the second level and has no it on the third and so on up to the level 7.)
In this table one can see the number of absent *words* for envisaged genomes.
Fig. 3