Association between Triglyceride Glucose Index and the Risk of Peripheral Artery Disease

Yihai Liu
Nanjing Medical University

Mingyue Wu
Nanjing University Medical School

Biao Xu (lyh1204913205@outlook.com)
Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Lina Kang
Nanjing Drum Tower Hospital: Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital

Original investigation

Keywords: Triglyceride glucose index, Peripheral artery disease, Insulin resistance

DOI: https://doi.org/10.21203/rs.3.rs-532419/v1

License: ☛ © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background The triglyceride glucose (TyG) index has been used as a simple surrogate marker of insulin resistance, an independent predictor of atherosclerotic vascular diseases. However, few studies have investigated the relationship between the TyG index and peripheral artery disease (PAD).

Methods A total of 3375 participants with completed TyG and ankle brachial pressure index (ABPI) records were enrolled from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. The TyG index was calculated as ln[triglycerides (mg/dL)×glucose (mg/dL)/2], and the presence of PAD was defined as ABPI ≤ 0.9.

Results The participants were 60.1±12.8 year old and 51.3% (1730) were male. The prevalence of PAD was 7.1% (238). Compared with the reference lowest quartile of TyG index, the highest quartile was associated with 1.66-fold (odds ratio [OR], 95% confidence interval [CI] 1.15-2.43; p=0.008) risk of PAD. After adjusted for sociodemographic, lifestyles, and cardiometabolic factors, the multivariate-adjusted OR and 95% CI were 1.55 (1.03-2.37; p=0.039) or participants within the highest quartile. TyG index was also independently and linearly associated with higher presence of PAD (OR 1.27 [1.02-1.56]; p=0.027). Subgroup analysis showed that the association between TyG index and the risk of PAD was still consistent across groups except for obesity.

Conclusions Higher TyG index was significantly associated with the higher risk of PAD, which could be a marker of PAD.

Background

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide[1]. Peripheral artery disease (PAD), defined as ankle-brachial pressure index (ABPI) ≤ 0.9, has been established as an independent marker for atherosclerotic vascular diseases [2] and a predictor for all-cause mortality and cardiovascular event [3]. Screening the risk factors of PAD was necessary to reduce the complications.

The triglyceride glucose (TyG) index has been regarded as a reliable surrogate marker of insulin resistance (IR)[4, 5], characterized by poor insulin sensitivity in the peripheral tissues[6]. There were growing evidences to show that IR contributed to vascular remodeling and increased vascular calcification [7, 8], contributing to the risk of cardiovascular diseases and mortality[9]. Many studies have identified TyG index was associated with cardiovascular diseases [10, 11]. However, few study has investigated the association between the TyG index and the risk of PAD in general population.

In the present study, we evaluated the association between the TyG index and the risk of PAD in general population.

Methods

Study population

The study used data from National Health and Nutrition Examination Survey (NHANES) between the periods of 1999 to 2004, a nationwide survey conducted by the National Center of Health Statistics (NCHS). After excluding participants with missing data on triglyceride (328) and glucose (3484) from 7187 participants with ABPI records, 3375 participants were enrolled in our analysis (Figure 1). The study was approved by the institutional review board of NCHS and all participants provided written informed consent.
Exposure variable and outcomes

The TyG index was determined as ln (triglycerides [mg/dL]×glucose [mg/dL]/2). Plasma triglyceride was measured enzymatically using Roche Modular P chemistry analyzer and fasting glucose was measured by an enzymatic method. The ABPI exam was performed by trained health technicians in the mobile examination center. Participants lie supine on the exam table during the exam. Systolic pressure is measured on the right arm (brachial artery) and both ankles (posterior tibial arteries). Systolic blood pressure is measured twice at each site for participants aged 40–59 years and once at each site for participants aged 60 years and older. The ABPI was automatically calculated by the computer system and verified by NCHS. The presence of PAD was defined as any of left or right ABPI ≤ 0.9.

Covariates collection

The baseline characteristics of participants were acquired by questionnaires and examinations, including sociodemographic (gender, age, race, and educational level), lifestyle information (physical activity and smoking status), and medications use (hypoglycemic drugs and lipid-lowering drugs). Systolic blood pressure and diastolic blood pressure were measured by physical examination. Body mass index (BMI) was calculated as body weight divided by height squared. Race was classified as non-Hispanic white, non-Hispanic black, Mexican American, other Hispanic or others. Education level was categorized as less than high school, high school, equivalent and college or above. Smoking status were defined as current, past and never. Physical activity status was classified as vigorous, moderate and inactive. Vigorous physical activity was defined as an activity that greatly increases the breathing or heart rate. Moderate physical activity was defined as an activity that causes small increases in breathing. Multiple imputation using predictive mean matching (PMM) was performed for covariates with missing values.

Statistical Analysis

Continuous variables were described as the mean ± standard deviation while categorical variables were presented as numbers and proportions (percentage). Differences between groups were explored by one-way analysis of variance (ANOVA) or chi-square tests. Multivariate logistic regression models were used to estimate odds ratios (ORs) and 95% confidence interval (CI) between TyG quartile and PAD. Multivariate linear regression models were used to explore the risk of PAD per one-unit increase of TyG index. Model 1 was not adjusted. Model 2 was adjusted for age, gender, and race. Model 3 was adjusted for age, gender, race, education level, BMI, smoking status, and physical activity. Model 4 was adjusted for age, gender, race, education level, BMI, smoking status, physical activity, systolic blood pressure, diastolic blood pressure, hypoglycemic drug, and lipid-lowering drug. Subgroup analyses was performed to explore the interactions modifying the relationship. All statistical analyses were performed using R version 3.6, and P<0.05 was considered as statistically significant.

Results

Participants were stratified into four groups according to their TyG quartiles. The baseline characteristics of the study population were shown in Table 1. The highest TyG quartile tended to have more percentage of male,
Mexican American, and hypoglycemic drugs users. In addition, the prevalence of PAD was significantly increased across TyG quartiles.
Variable	Overall (n = 3375)	Q1 (n = 844)	Q2 (n = 848)	Q3 (n = 837)	Q4 (n = 846)	\(P \) value
Male (%)	1730 (51.3)	379 (44.9)	443 (52.2)	411 (49.1)	497 (58.7)	< 0.001
Age, years	60.1 (12.8)	57.4 (13.3)	60.4 (13.4)	61.8 (12.4)	60.9 (11.8)	< 0.001
Race (%)						< 0.001
Non-Hispanic white	1879 (55.7)	457 (54.1)	483 (57.0)	482 (57.6)	457 (54.0)	
Non-Hispanic black	544 (16.1)	231 (27.4)	138 (16.3)	95 (11.4)	80 (9.5)	
Mexican American	728 (21.6)	113 (13.4)	176 (20.8)	186 (22.2)	253 (29.9)	
Others	224 (6.6)	43 (5.1)	51 (6.0)	74 (8.8)	56 (6.6)	
Education (%)						< 0.001
Less than high school	1117 (33.1)	239 (28.3)	279 (32.9)	275 (32.9)	324 (38.3)	
High school or	774 (22.9)	175 (20.7)	190 (22.4)	198 (23.7)	211 (24.9)	
equivalent						
College or above	1484 (44.0)	430 (50.9)	379 (44.7)	364 (43.5)	311 (36.8)	
BMI, kg/m2	28.37 (5.54)	26.77 (5.45)	27.83 (5.54)	29.23 (5.63)	29.67 (5.06)	< 0.001
Smoking (%)						< 0.001
Never	2337 (69.2)	622 (73.7)	568 (67.0)	619 (74.0)	528 (62.4)	
Past	142 (4.2)	25 (3.0)	30 (3.5)	36 (4.3)	51 (6.0)	
Current	896 (26.5)	197 (23.3)	250 (29.5)	182 (21.7)	267 (31.6)	
Activity (%)						< 0.001
Inactive	258 (7.6)	63 (7.5)	68 (8.0)	59 (7.0)	68 (8.0)	
Moderate	1883 (55.8)	430 (50.9)	449 (52.9)	480 (57.3)	524 (61.9)	
Vigorous	1234 (36.6)	351 (41.6)	331 (39.0)	298 (35.6)	254 (30.0)	
Hypoglycemic drugs	1953 (57.9)	454 (53.8)	421 (49.6)	526 (62.8)	552 (65.2)	< 0.001
Lipid-lowering drugs	2497 (74.0)	601 (71.2)	661 (77.9)	604 (72.2)	631 (74.6)	0.008

Data are presented as mean (SD) or n (%). Q1: TyG index < 8.34; Q2: 8.34 ~ 8.74; Q3: 8.74 ~ 9.17; Q4: > 9.17. BMI, body mass index; BP, blood pressure.
Variable	Overall (n = 3375)	Q1 (n = 844)	Q2 (n = 848)	Q3 (n = 837)	Q4 (n = 846)	P value
Systolic BP, mmHg	131.63 (21.04)	129.57 (21.38)	130.18 (21.11)	133.33 (21.50)	133.44 (19.89)	< 0.001
Diastolic BP, mmHg	71.95 (14.40)	72.27 (13.69)	71.63 (13.86)	71.77 (15.33)	72.14 (14.68)	0.772
Triglycerides, mg/dL	151.6 (154.3)	66.2 (14.9)	104.6 (17.0)	148.7 (27.0)	286.9 (256.8)	< 0.001
Glucose, mg/dL	109.5 (38.2)	94.3 (11.6)	100.3 (15.3)	106.5 (20.9)	136.9 (62.8)	< 0.001
TyG	8.79 (0.68)	8.01 (0.25)	8.54 (0.12)	8.94 (0.12)	9.68 (0.53)	< 0.001
PAD	254 (7.5)	48 (5.7)	59 (7.0)	70 (8.4)	77 (9.1)	0.039

Data are presented as mean (SD) or n (%). Q1: TyG index < 8.34; Q2: 8.34 ~ 8.74; Q3:8.74 ~ 9.17; Q4: >9.17. BMI, body mass index; BP, blood pressure.

The relationship between the TyG index and the presence of PAD was explored using multivariable linear regression. As shown in Table 2, per one-unit increase in the TyG index increased the risk of PAD (OR 1.27 [1.06–1.52]; p = 0.007). In a fully-adjusted model, the multivariate-adjusted OR and 95% CI was 1.27 (1.02–1.56; p = 0.027).
Table 2

Association of TyG index with the risk of PAD

Cases	N	Model 1	Model 2	Model 3	Model 4					
		OR (95%CI)	P							
Q1	47	844	Ref	-	Ref	-	Ref	-	Ref	
Q2	54	848	1.24 [0.84, 1.84]	0.284	1.12 [0.74, 1.70]	0.58	1.03 [0.67, 1.57]	0.905	1.07 [0.70, 1.65]	0.743
Q3	61	837	1.51 [1.04, 2.22]	0.033	1.40 [0.94, 2.10]	0.102	1.35 [0.89, 2.05]	0.157	1.40 [0.92, 2.13]	0.115
Q4	76	846	1.66 [1.15, 2.43]	0.008	1.69 [1.14, 2.53]	0.010	1.52 [1.01, 2.32]	0.047	1.55 [1.03, 2.37]	0.039
Continuous	238	3375	1.27 [1.06, 1.52]	0.007	1.33 [1.09, 1.62]	0.005	1.29 [1.04, 1.59]	0.018	1.27 [1.02, 1.56]	0.027

Model 1 was unadjusted.

Model 2 was adjusted for age, gender, race and education level.

Model 3 was adjusted for age, gender, race, education level, BMI, smoking status, and physical activity.

Model 4 was adjusted for age, gender, race, education level, BMI, smoking status, physical activity, hypoglycemic drugs, lipid-lowering drugs, systolic BP, and diastolic BP.

OR, odds ratio; CI, confidence interval.

Multivariable logistic regression was used to evaluate the relationship between the TyG quartile and PAD using the first quartile as the reference. In unadjusted model 1, the highest TyG quartile was associated with a higher presence of AAC (OR 1.66 [1.15–2.43]; p = 0.008). In the fully adjusted model, the association still existed (OR 1.55 (1.03–2.37); p = 0.039).

Subgroup analysis for the associations between TyG index and the presence of PAD was shown in Fig. 2. The association was consistent across gender, elderly and race except for BMI (P for interaction = 0.002). The positive correlation between TyG index and PAD disappeared among obesity population.

Discussion

In this study, we investigated the association between the TyG index and PAD in general U.S. adults. We found that a higher TyG index were significantly associated with the prevalence of PAD. And this relationship disappeared in obesity individuals.

The TyG index has been proposed as an alternative surrogate marker for insulin resistance [12, 13]. Several studies demonstrated that the TyG index was positively correlated with HOMA-IR [14], and even has a better predictive value that HOMA-IR[15]. The TyG index was reported to be related to a higher risk of cardiovascular diseases and...
mortality[16]. In addition, some studies showed that the TyG index was significantly associated with the severity of coronary artery stenosis[17], artery stiffness [18] and vascular calcification [19]. Previous study found that the TyG index was an independent predictor of peripheral artery disease complexity based on a small sample size[20]. Our results further confirmed an independent association between the TyG index and the presence of PAD, and a higher TyG index increased the risk of PAD. Besides, we found that obesity was a factor affecting the relationship between TyG and PAD. The underlying interaction [21] required further research.

The mechanism underlying the relationship could be linked to IR. IR could lead to vascular inflammation and stiffness, which contributing to atherosclerosis of periphery artery [22, 23].

Some limitations existed in our study. Firstly, this was a cross-sectional study which could not infer causality. Second, the PAD was defined based on ABPI, which was lack of angiography examination.

Conclusions
In our study, we demonstrated that the TyG index was independently associated with the prevalence of PAD in U.S adults, which may serve as a potential predictive marker.

Declarations

Acknowledgements
Not applicable.

Authors’ contributions
B X and LN K designed the study. YH L performed the statistical analysis. MY W wrote the manuscript. All authors read and approved the final manuscript.

Competing interests
There is no conflict of interests.

Availability of data and materials
The datasets were available from NHANES 2013-2014 (https://www.cdc.gov/nchs/nhanes/index.htm).

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study protocol was approved by NCHS Research Ethics Review Board (Protocol #2011-17).

Funding

None.

References

1. Evans MA, Sano S, Walsh K: Cardiovascular Disease, Aging, and Clonal Hematopoiesis. Annu Rev Pathol 2020, 15:419-438.

2. Force USPST, Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, Doubeni CA, Epling JW, Jr., Kemper AR et al: Screening for Peripheral Artery Disease and Cardiovascular Disease Risk Assessment With the Ankle-Brachial Index: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320(2):177-183.

3. Pande RL, Perlstein TS, Beckman JA, Creager MA: Secondary prevention and mortality in peripheral artery disease: National Health and Nutrition Examination Study, 1999 to 2004. Circulation 2011, 124(1):17-23.

4. Guerrero-Romero F, Villalobos-Molina R, Jimenez-Flores JR, Simental-Mendia LE, Mendez-Cruz R, Murguia-Romero M, Rodriguez-Moran M: Fasting Triglycerides and Glucose Index as a Diagnostic Test for Insulin Resistance in Young Adults. Arch Med Res 2016, 47(5):382-387.

5. Simental-Mendia LE, Rodriguez-Moran M, Guerrero-Romero F: The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord 2008, 6(4):299-304.

6. Kernan WN, Inzucchi SE, Viscoli CM, Brass LM, Bravata DM, Horwitz RI: Insulin resistance and risk for stroke. Neurology 2002, 59(6):809-815.

7. Ong KL, McClelland RL, Rye KA, Cheung BM, Post WS, Vaidya D, Criqui MH, Cushman M, Barter PJ, Allison MA: The relationship between insulin resistance and vascular calcification in coronary arteries, and the thoracic and abdominal aorta: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2014, 236(2):257-262.

8. Yamazoe M, Hisamatsu T, Miura K, Kadowaki S, Zaid M, Kadota A, Torii S, Miyazawa I, Fujiyoshi A, Arima H et al: Relationship of Insulin Resistance to Prevalence and Progression of Coronary Artery Calcification Beyond Metabolic Syndrome Components: Shiga Epidemiological Study of Subclinical Atherosclerosis. Arterioscler Thromb Vasc Biol 2016, 36(8):1703-1708.

9. Nam KW, Kwon HM, Jeong HY, Park JH, Kwon H, Jeong SM: High triglyceride-glucose index is associated with subclinical cerebral small vessel disease in a healthy population: a cross-sectional study. Cardiovasc Diabetol 2020, 19(1):53.

10. Zhao Q, Zhang TY, Cheng YJ, Ma Y, Xu YK, Yang JQ, Zhou YJ: Impacts of triglyceride-glucose index on prognosis of patients with type 2 diabetes mellitus and non-ST-segment elevation acute coronary syndrome: results from an observational cohort study in China. Cardiovasc Diabetol 2020, 19(1):108.

11. Wang L, Cong HL, Zhang JX, Hu YC, Wei A, Zhang YY, Yang H, Ren LB, Qi W, Li WY et al: Triglyceride-glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome. Cardiovasc Diabetol 2020, 19(1):80.
12. Mazidi M, Kengne AP, Katsiki N, Mikhailidis DP, Banach M: Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J Diabetes Complications 2018, 32(3):266-270.

13. Sanchez-Garcia A, Rodriguez-Gutierrez R, Mancillas-Adame L, Gonzalez-Nava V, Diaz Gonzalez-Colmenero A, Solis RC, Alvarez-Villalobos NA, Gonzalez-Gonzalez JG: Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. Int J Endocrinol 2020, 2020:4678526.

14. Locateli JC, Lopes WA, Simoes CF, de Oliveira GH, Oltramarie K, Bim RH, de Souza Mendes VH, Remor JM, Lopera CA, Nardo Junior N: Triglyceride/glucose index is a reliable alternative marker for insulin resistance in South American overweight and obese children and adolescents. J Pediatr Endocrinol Metab 2019, 32(10):1163-1170.

15. Lee SH, Kwon HS, Park YM, Ha HS, Jeong SH, Yang HK, Lee JH, Yim HW, Kang MI, Lee WC et al: Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study. PLoS One 2014, 9(2):e90430.

16. Irace C, Carallo C, Scavelli FB, De Franceschi MS, Esposito T, Tripolino C, Gnasso A: Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract 2013, 67(7):665-672.

17. Thai PV, Tien HA, Van Minh H, Valensi P: Triglyceride glucose index for the detection of asymptomatic coronary artery stenosis in patients with type 2 diabetes. Cardiovasc Diabetol 2020, 19(1):137.

18. Lee SB, Ahn CW, Lee BK, Kang S, Nam JS, You JH, Kim MJ, Kim MK, Park JS: Association between triglyceride glucose index and arterial stiffness in Korean adults. Cardiovasc Diabetol 2018, 17(1):41.

19. Won KB, Park EJ, Han D, Lee JH, Choi SY, Chun EJ, Park SH, Han HW, Sung J, Jung HO et al: Triglyceride glucose index is an independent predictor for the progression of coronary artery calcification in the absence of heavy coronary artery calcification at baseline. Cardiovasc Diabetol 2020, 19(1):34.

20. Duran Karaduman B, Ayhan H, Keles T, Bozkurt E: The triglyceride-glucose index predicts peripheral artery disease complexity. Turk J Med Sci 2020, 50(5):1217-1222.

21. Xie Y, Guo R, Li Z, Guo X, Sun G, Sun Z, Zheng J, Sun Y, Zheng L: Temporal relationship between body mass index and triglyceride-glucose index and its impact on the incidence of hypertension. Nutr Metab Cardiovasc Dis 2019, 29(11):1220-1229.

22. Kahn AM, Allen JC, Seidel CL, Zhang S: Insulin inhibits migration of vascular smooth muscle cells with inducible nitric oxide synthase. Hypertension 2000, 35(1 Pt 2):303-306.

23. Xu Z, Suo CJ, Ruan YS, Tan RY, Zhang W, Niu TL: [Effect and related mechanisms of RTA-408 on rat vascular smooth muscle cell calcification induced by advanced glycation end products]. Zhonghua Xin Xue Guan Bing Za Zhi 2018, 46(6):475-479.

Figures
Participants with ABPI from NHANES 1999-2004 (n=7,187)

Participants with missing triglycerides (n=328)
Participants with missing glucose (n=3,484)

Participants with TyG index (n=3375) for analysis

Figure 1
The flow chart of participant selection.
Subgroups	Cases	N	OR(95%CI)	P value
Gender				
Female	126	1645	1.40 [1.02, 1.90]	0.448
Male	128	1730	1.21 [0.89, 1.62]	
Age				0.835
≤60	46	1740	1.43 [0.90, 2.18]	
>60	208	1635	1.31 [1.02, 1.69]	
BMI				0.002
≤30	183	2294	1.59 [1.23, 2.06]	
>30	71	1081	0.81 [0.53, 1.20]	
Race				0.090
Non–Hispanic white	143	1879	1.23 [0.90, 1.65]	
Non–Hispanic black	54	544	1.75 [1.14, 2.65]	
Hispanic	57	952	0.90 [0.56, 1.42]	

Figure 2

Subgroup analysis of the association between the TyG index and the presence of PAD.