The multiple stellar population in ω Centauri: spatial distribution and structural properties

E. Pancino, A. Seleznev, F. R. Ferraro, M. Bellazzini, G. Piotto

ABSTRACT

We present a detailed analysis of the spatial distribution of the stellar populations in the Galactic globular cluster ω Centauri. Taking advantage of the large photometric catalog published by [Pancino et al. 2000], we confirm that metal-rich populations have a spatial distribution which is significantly different from the metal-poor dominant population. In particular: (i) the different sub-populations have different centroids and (ii) the metal-poor population is elongated along the E-W direction, while the metal-rich populations are oriented along the orthogonal direction, i.e., N-S. The evidence presented here can partially explain the weird spatial metallicity segregation found by [Jurcsik 1998], and further supports the hypothesis that different sub-populations in ω Centauri might have had different origins.

Key words: globular clusters: individual: NGC 5139

1 INTRODUCTION

The peculiar nature of the Galactic globular cluster ω Centauri has been known and studied for more than forty years. Besides being the most massive and luminous in the Milky Way, it is presently the only globular cluster that shows a spread in its heavy elements content. Recent findings have shown that (i) at least three primary enrichment peaks do exist in this cluster, including the recently discovered metal-rich component [Lee et al. 1999; Pancino et al. 2000]; (ii) an age spread of 3–5 Gyrs seems to be required to explain the turnoff region morphology [Hughes & Wallerstein 2000; Hilker & Richtler 2000]; (iii) the chemical enrichment of the metal-poor and intermediate stars is mainly due to the retention of SNe II and intermediate mass AGB stars ejecta [Smith et al. 2000; Norris & Da Costa 1997]; (iv) the metal-rich stars appear to have a lower α-enhancement, most probably due to SNe Ia pollution [Pancino et al. 2002].

All these pieces of evidence suggest that ω Centauri could be an intermediate object between normal globular clusters, which are unable to retain any of the supernovae ejecta, and the dwarf spheroidal galaxies (dSph), which are the smallest stellar systems capable of self-enrichment. ω Centauri could also be the remaining nucleus of a dwarf galaxy that was stripped during its interaction with the Milky Way, in possible analogy with the complex and still debated case of M 54 and the Sagittarius dSph. The possibility that ω Centauri comes from “outside” the Milky Way seems also required to explain its present orbit [Dinescu et al. 1999].

However, other clues complicate the picture. For example, the unusually high ellipticity of ω Cen, that has been demonstrated to be sustained by rotation [Merritt & Tremblay 1994], is compatible with the flattened shapes resulting from the merger of two globular clusters [Makino, Akiyama & Sugimoto 1991], and anyway the long relaxation time [Djorgovski 1993; Merritt & Tremblay 1994] grants that ω Centauri is not completely relaxed dynamically. Moreover, Norris et al. (1997) showed that only stars with [Fe/H] ≤ −1.2 in ω Cen do rotate, while the more metal-rich components show no evident sign of rotation. Pancino et al. (2000) showed that, while the metal-poor population exhibits the well known E-W elongation, the two metal-rich populations show a more pronounced ellipticity, but with an elongation in the N-S direction. Finally, Ferraro et al. (2002) have shown how the most metal-rich population shows a different bulk proper motion with respect to the whole cluster. These pieces of evidence point toward a different dynamical origin for the various sub-populations in ω Cen, possibly resulting from a major merger event in the cluster’s past history.
Given this framework, we have started a coordinated spectro-photometric study of ω Centauri (see Pancino et al. 2000, 2002; Bellazzini, Ferraro & Pancino 2001; Ferraro, Pancino & Bellazzini 2002a; Ferraro, Bellazzini & Pancino 2002b; Origlia et al. 2003), specifically devoted to the characterization of the sub-populations, and aimed at understanding the origin and evolution of this complex stellar system. In this paper, we exploit the large number of stars (more than 230,000 in total) and the wide area coverage (33′ × 33′) of the photometry published by Pancino et al. (2000), to study in deeper detail the structural properties of the red giants in ω Centauri.

The article is organized as follows. In Section 2 we define the photometric samples corresponding to the sub-populations of giants in ω Centauri; in Section 3 we study the surface density distributions and concentration of the three sub-samples; in Section 4 we measure the ellipticity, the centres positions and the orientation of the three sub-populations; in Section 5 we comment on the metallicity segregation found by Jurcsik (1998). Finally, in Section 6 we summarize our main results and discuss them in the framework of the present theories about the formation and evolution of ω Centauri.

2 SAMPLES DEFINITION

Using the metallicity information from the low resolution Ca triplet survey by Norris et al. (1996) and the morphology of the RGB from the colour-magnitude diagram, Pancino et al. (2000, see their Fig. 2) identified three sub-populations of RGB stars, with different average metallicity and photometric properties. To analyse in detail the structural properties of these sub-populations, we have extracted from the Pancino et al. (2000) catalogue the following photometric samples (with $B < 16$ mag):

(i) the RGB-MP sample, corresponding to the main, metal-poor peak of the metallicity distribution, around $[\text{Ca/H}] \sim -1.4$ or $[\text{Fe/H}] \sim -1.7$. This population comprises $\sim 70\%$ of the whole RGB population, and our photometric sample contains 2630 stars.

(ii) the RGB-MInt sample, comprising the secondary, intermediate metallicity peak around $[\text{Ca/H}] \sim -1.0$ or $[\text{Fe/H}] \sim -1.2$, together with the long, extended tail to higher metallicities. This sub-population accounts for $\sim 25\%$ of the whole RGB population, and our sample contains 816 stars.

(iii) the RGB-a sample, the newly discovered metal-rich population that comprises $\sim 5\%$ of the RGB stars and has a metallicity of $[\text{Ca/H}] \sim -0.5$ and $[\text{Fe/H}] \sim -0.6$. Our photometric sample contains 128 stars. Although this last sub-population has many fewer stars, it is the most numerous sample presently at our disposal, and its size could be significantly increased only when the RGB-a counterparts in other evolutionary phases (i.e., horizontal branch, subgiant brach and main sequence) will be identified.

3 SURFACE DENSITY DISTRIBUTIONS

We computed the surface density distributions of the three sub-populations defined in Section 2 using a fixed kernel...
estimator algorithm [Silverman 1986; Merritt & Tremblay 1992; Seleznev 1998], with a kernel half-width of 500 pixels and a grid of 100 pixel cells. The resulting surface density plots are shown in Figure 1 where the isodensity contour lines shown are normalized to the maximum density of each distribution, in steps of 10%. From now on, we will refer to each isodensity level using the fraction of the peak value, i.e., 0.3 for the isodensity level corresponding to 30% of the peak value. The peak density values are: 48.3 stars arcmin^{-2} for the RGB-MP, 14.6 stars arcmin^{-2} for the RGB-MInt and 2.3 stars arcmin^{-2} for the RGB-a.

A first, qualitative comparison of the three distributions shown in Figure 1 reveals the following general facts:

(i) The RGB-MP population is clearly elongated along the E-W direction, reflecting the well-known elliptical shape of the whole system. The main peak position is consistent with the cluster centroid estimated by Pancino et al. (2000).

(ii) Both the RGB-a and the RGB-MInt populations have perturbed isodensity contour lines, showing structures similar to bubbles, shells and/or tails. While in the case of the RGB-a the complexity increases in the outer parts, where it is almost certainly due to low number statistics, in the case of the RGB-MInt we find complex structures in the central parts, where data points are more numerous.

(iii) The RGB-MInt population is clearly elongated along the N-S direction in its inner parts, while in the external parts it seems to become elongated in the E-W direction. The main peak lies south of the RGB-MP peak, with a possible secondary peak north of it, that gives an evident asymmetric shape to the distribution.

(iv) The RGB-a population is also elongated along the N-S direction in its inner parts; its main peak lies north of the RGB-MP peak.

A simple monodimensional Kolmogorov-Smirnov test (K-S, see e.g., Press et al. 1997) as a function of a radial coordinate is not sufficient to properly assess the significance of these features. We thus used a two-dimensional generalization of the K-S statistical test, which was proposed and investigated with Monte-Carlo experiments by Pasano & Franceschini (1987), as a variant of an earlier idea by Peacock (1983). This test, similarly to the usual K-S test, quantifies the probability \(P \) that two (two-dimensional) distributions are extracted from the same parent distribution, using a more sophisticated definition of the maximum difference \(D \) in the cumulative distributions.

The results are summarized in Table 1. The very low probabilities obtained in the comparison of the RGB-MP population with both the RGB-MInt and the RGB-a ensures us that their spatial distributions are significantly different, i.e., they cannot be drawn from the same parent distribution. On the other hand, the probability obtained in the comparison between the RGB-MInt and the RGB-a populations confirms that they are not significantly different from each other.

We can also notice from Figure 1 that the RGB-a population appears more concentrated than the RGB-MP one, while we cannot say much about the RGB-MInt population, which has a complicated shape in its inner isodensity contour lines. A more quantitative evaluation confirms this impression: Table 2 reports the equivalent radii\(^2\) of the three sub-populations, calculated with the ellipse parameters derived in Section 4 for the 0.9 and 0.6 isodensity contour lines. The RGB-a equivalent radii are \(\sim 2-3 \) times smaller than the RGB-MP correspondent radii.

4 ELLIPTICITY

To describe in a more quantitative way the shape and structure of the sub-populations defined in Section 2 we fitted ellipses to the isodensity contours of each sample. The spatial distributions were derived as in Section 3 with the same kernel, but using higher resolution grids of 20 and 50 pixel cells. We used the finer grid (20 pix) for the internal regions that are more densely populated, i.e., within the 0.6 isodensity level, and the coarser grid (50 pix) for the outer regions.

As in Section 3 we defined densities in units of maximum (peak) density for each distribution, and we chose isodensity levels going from 90% to 10% of the peak density, in steps of 10%. Ellipses were fitted to each isodensity line, defined by those grid nodes that bracket the chosen density value (see Figure 2). The best-fit ellipses are hereafter designated with the same notation used for the isodensity contours in Figure 1, i.e., 0.9 for the 90% ellipse and so on.

Population	\(r_{e,90\%} \)	\(R_{90\%} \)	\(r_{e,60\%} \)	\(R_{60\%} \)
RGB-MP	213.8±6.5	1.00	578.9±13.5	1.00
RGB-MInt	169.3±15.9	0.79	601.7±7.6	1.04
RGB-a	66.2±5.5	0.31	323.1±5.0	0.56

\(^1\) In what follows, it is useful to bear in mind that the WFI scale is 0.238 arcseconds per pixel. Thus, 100 pixels correspond approximately to 24 arcseconds.

\(^2\) The equivalent radius for an ellipse of semi-axes \(a \) and \(b \) is defined as \(r_e = \sqrt{ab} \), i.e., the radius of a circle with the same area.
Figure 2. Example of the approximation of the 0.9 isodensity contour line with an ellipse, for the RGB-MP. Top Panel: The black dots represent the points in the 20 pixels grid that are closer to 90% of the peak value; the solid ellipse is the best fit. Bottom Panel: Same as above, but this time with the 50 pixel grid: the final ellipse fit is slightly different.

Figure 3. Ellipse parameters notation: O is the ellipse centre; X and Y are the axes of the usual cartesian reference frame, while ψ and r are the angular and radial coordinates in the polar coordinate system; a and b are the ellipse semi-major and semi-minor axes, respectively; φ is the major axis inclination with respect to the X axis.

As demonstrated by earlier studies (Geyer, Nelles & Hopp 1983), the “a priori” adoption of the cluster centre position can produce errors (i.e., an overestimation) on the ellipticity estimate. This point is even more important in our particular case, since we suspect that the centroids of the three sub-populations differ from each other. Therefore, we determined the coordinates of each ellipse centre as the mean coordinates of the input points on each isodensity line. The ellipse coefficients A, B and C were determined by least square approximation with singular value decomposition (Press et al. 1997). An example of the result of the fitting procedure is shown in Figure 2.

4.1 Ellipse centres

Following the procedure described above, we determined the ellipse centres for each of the three sub-populations defined in Section 2, and for each isodensity level. The same procedure has been applied, for ease of comparison, also to the total RGB sample, defined as the union of the three sub-samples. The results are listed in Table 3: the RGB-MInt and RGB-a centres are significantly different from the RGB-MP centre. We can also compare with the centre position found by Pancino et al. (2000), which is (700±20,1900±20) in the WFI pixel system. As we can see, the centre of the global RGB sample is perfectly compatible with that estimate.

A look at the centre position trend with the isodensity level (Figure 4) shows that the RGB-MP, dominating the cluster population, has a quite stable centre position and coincides reasonably well with the centre of ω Centauri measured by Pancino et al. (2000), except for its two inner isodensity levels. The RGB-MInt centre is slightly displaced to the east ($\sim 10''$) and significantly to the south ($\sim 1'$), at
Table 3. The density peaks of the whole RGB sample and of the three sub-samples (in pixels), represented by the centres of the 80% isodensity level fits. The distance of each population from the RGB total sample is calculated, both in pixels and in arcseconds. The last row reports the corresponding distance between the present RGB global sample and the cluster centroid determined by Pancino et al. (2000).

Population	X_C(pix)	Y_C(pix)	d(pix)	d''
RGB-tot	689±8	1906±12	−	−
RGB-MP	701±9	1954±17	49±24	12±6
RGB-MInt	651±10	1671±16	238±24	57±6
RGB-a	761±9	2194±8	297±19	71±5
ω Centauri	700±20	1900±20	12±32	3±8

least for the inner fits. This reflects the behaviour seen in Figure 1 in the central parts the main peak of the population is clearly S-E of the RGB-MP population, while the behaviour in the external parts becomes smoother. The RGB-a centre is instead slightly displaced to the west ($\sim 10''$), and significantly to the north ($\sim 1'$), at least for the few isodensity contour lines that we were able to fit with ellipses.

Again, this reflects what seen in Figure 1. We recall here that the literature estimates of ω Centauri’s core radius go from a maximum of $r_c = 2.89'$ (Trager et al. 1993) to a minimum of $r_c = 1.4'$ (van Leeuwen et al. 2000), so the observed displacements are comparable in size to the core radius of ω Centauri.

4.2 Flattening and orientation

As shown in Table 3, the three sub-populations axial ratios have similar behaviour, within the errorbars. They do not show dramatic trends moving away from the centre, with both the RGB-MP and the RGB-MInt becoming slowly rounder away from their density peaks. For the RGB-a, due to the low number of objects in the external parts, only the inner isodensity levels could be fitted. The weighted averages of the axial ratios shown in Table 3 are: $<b/a> = 0.81 \pm 0.01$ for the RGB-MP, $<b/a> = 0.81 \pm 0.06$ for the RGB-MInt and $<b/a> = 0.78 \pm 0.11$ for the RGB-a.

To compare our results with previous work, we performed the same measurements on the entire RGB sample, resulting from the union of the three sub-samples defined in Section 2. In particular, Figure 4 shows the comparison with Geyer et al. (1983 – see their Table 4): the overall agreement is reasonably good, with a marginal discrepancy in the region between 2.5 and 4.5 from the cluster centre. Moreover, our average axial ratio and ellipticity ($\varepsilon = 1 - b/a$) for the whole RGB sample, $<b/a> = 0.89 \pm 0.04$ and $<\varepsilon> = 0.11 \pm 0.04$, compare well with previous results like $<b/a> = 0.83 \pm 0.03$ (White & Shawl 1987), $<\varepsilon> = 0.12 \pm 0.04$ (Geyer et al. 1983), or $<\varepsilon> = 0.077$ (van Leeuwen et al. 2000).

Finally, while the flattenings of the three sub-populations appear rather similar, the orientations of the best-fit ellipses are instead quite different (see Table 3). The RGB-MP major axis is always close to the E-W direction, with $<\varphi> \sim 4^\circ \pm 10$, and its inclination seems to increase slowly with the distance from the cluster centre, although at these low flattenings the uncertainty on the inclination angle can be substantially higher than the formal errors quoted in

![Figure 4. Displacement of the ellipse centres for the three sub-populations. Ellipses are denominated along the abscissae in fractions of the peak value, as described in the text. The shaded area represents the cluster centre position determined by Pancino et al. (2000), ($X_C = 700 \pm 20$ pix, $Y_C = 1900 \pm 20$ pix). The three sub-populations are marked with different symbols: filled dots for the RGB-MP, filled squares for the RGB-MInt and filled triangles for the RGB-a. The top panel shows the displacements in the E-W direction, i.e., along the X CCD axis, while the bottom panel shows the displacements along the N-S direction, i.e., the Y CCD axis. The errorbars are smaller than the symbols.

Table 4 (Geyer et al. 1983). The RGB-MInt shows instead a complex structure in the central parts (Figure 4), with a possible double peak. But its 0.6–0.4 isodensity levels (the most reliable ones) are always inclined along the N-S direction, with $<\varphi> \sim 100^\circ$, while the outer parts suddenly drop to $<\varphi> \sim 25^\circ$, much closer to the E-W direction. Finally, the RGB-a is oriented along the N-S direction, although ellipses could be fit only to the inner parts, with $<\varphi> > 90^\circ–100^\circ$, except for the innermost fit. Again, these quantitative estimates closely reflect what seen in Figure 3

5 METALLICITY SEGREGATION

Recently Juresik (1998), using a compilation of good-quality spectroscopic data from the literature, has shown that the bright giants ($V \lesssim 12.75$) in ω Centauri, belonging to the two metallicity groups with $[\text{Fe/H}] \leq -1.75$ and $[\text{Fe/H}] \geq -1.25$, have a weird spatial distribution. Each of the two groups occupies one half of the cluster: no star of one group is found on the other side and the two centroids are separated by 6.2′ (see her Figure 1). The separation line runs approximately perpendicular to the apparent minor axis of the cluster, which is roughly oriented towards the Galactic centre: the most metal rich giants are on the southern half, that faces the Galaxy.

Ikuta & Arimoto (2004) questioned this effect. They used the same compilation of data and showed that no spatial segregation of stars with different metallicity is evident.
Table 4. Axial ratio and orientation for the best-fit ellipses for the whole RGB sample and for each sub-sample. Each best-fit ellipse is designated with the fraction of the peak density for each population, as described in the text. The axial ratio \((b/a)\) and the inclination angle \(\varphi\) (i.e., the angle in degrees, counted from west to north) are shown.

Population	grid	ellipse \((b/a) \pm \delta(b/a)\)	\(\varphi \pm \delta\varphi\)
RGB-tot	20	0.9 0.92 ± 0.01 0.92 ± 0.01 49.2 ± 5.7	
RGB-MP	20	0.9 0.83 ± 0.05 0.92 ± 0.02 45.9 ± 5.7	
RGB-MInt	20	0.9 0.83 ± 0.05 0.92 ± 0.02 45.9 ± 5.7	
RGB-a	20	0.9 0.83 ± 0.05 0.92 ± 0.02 45.9 ± 5.7	

However, we would like to note here that, as clearly stated by Jurcsik (1998), the effect is only visible if one applies the specified selections, i.e., only for bright stars of the two extreme metallicity groups. The effect was instead partially confirmed by Hilker & Richtler (2000), who measured abundances of stars in \(\omega\) Centauri with Strömgren metallicity indexes. Their Figure 15 shows a clear segregation of the most metal-rich stars in the southern half of the cluster, but they could not confirm the segregation of the most metal-poor stars.

The metal-rich group in Jurcsik (1998), with \([\text{Fe/H}] > -1.25\), is mainly a sub-sample of our RGB-MInt population, which has a pronounced peak just \(\sim 1'\) south of the cluster centre (see Figure 1 and Table 3), a value that is roughly compatible with Jurcsik estimate (\(\sim 3'\)). We thus easily explain the observed segregation of her metal-rich group, since when one draws randomly a sample of metal-rich stars, there is a higher probability to find them close to the main peak of the density distribution, i.e., in the southern half of the cluster.

Jurcsik (1998) metal-poor group, with \([\text{Fe/H}] \leq -1.75\), is instead a sub-sample of our RGB-MP, or more precisely it represents the lowest metallicity tail of the RGB-MP. We tried to isolate this sub-population by dividing our RGB-MP sample vertically, in the \((I,B-I)\) plane, in three sub-samples, equally wide in colour: (i) the bluest RGB-MP sub-sample, the RGB-MP1, most probably corresponding to Jurcsik’s metal-poor group; (ii) the intermediate sub-sample, the RGB-MP2 and (iii) the reddest sub-sample, the RGB-MP3. A two-dimensional KS test, like the one described in section 3 gives a low probability that the RGB-MP1 is extracted from the same parent distribution of the RGB-MP2 \((P_{12} = 1.42 \times 10^{-6})\) or RGB-MP3 \((P_{13} = 3.92 \times 10^{-5})\). However, we were not able to measure any significant difference in the peaks positions or in the concentration of the RGB-MP sub-samples.

We thus are unable to explain the metal-poor part of the spatial metallicity segregation found by Jurcsik (1998) on the basis of our photometric catalogue. If the Jurcsik (1998) effect will be confirmed and understood in the future, it could mean that an additional, metal-poor sub-population exists in \(\omega\) Centauri, with its own distinct properties. Otherwise, the observed spatial segregation of that group of stars could simply be due to a statistical fluctuation, explaining why Hilker & Richtler (2000) were not able to confirm the metal-poor part of the segregation effect. More data on abundances of a significant sample of stars with \([\text{Fe/H}] \leq -1.75\) are thus needed to completely explain this second half of the puzzle.

6 SUMMARY AND DISCUSSION

Using the nomenclature defined in Pancino et al. (2000), we have selected three samples with \(B < 16\): the RGB-MP, the RGB-MInt and the RGB-a. We have shown that the three samples are significantly different in their spatial and structural properties. In particular:

(i) Both the RGB-MInt and the RGB-a main density peaks are shifted by \(\sim 1'\) with respect to the cluster centre.
(ii) Both the RGB-a and the RGB-MInt populations are elongated on a direction that is perpendicular to the elongation of the RGB-MP population.
(iii) The RGB-a population is significantly more concentrated than the RGB-MP population. No firm conclusion...
can be reached for the RGB-MInt, due to the complex iso-density contour line’s shapes in its central parts.

(iv) Both the RGB-MInt and the RGB-a show complex and perturbed isodensity contour lines, resembling bubbles, shells and tails. While for the outer isodensity contours this can be due to statistical undersampling (especially for the RGB-a), in the inner parts these features are probably real.

(v) Finally, we were able to explain the metal-rich part of the weird spatial metallicity segregation, found by Jurcsik (1998) and confirmed by Hilker & Richtler (2000), thanks to the peculiar surface density distribution of the RGB-MInt and, in particular, to its centre displacement with respect to the RGB-MP centre.

Let us discuss these findings in the framework of the current scenarios for the formation and evolution of \(\omega\) Centauri. As briefly mentioned in Section 1, there is a consistent body of evidence supporting the fact that \(\omega\) Centauri built up by itself at least part of the chemical elements that we can observe today. In a standard self-enrichment scenario, we would expect the more metal-rich (and younger) populations to be more centrally concentrated than the metal-poor, dominant population. This is almost always the case for the dwarf galaxies of the local group, with only a few exceptions (Harbeck et al. 2003), and it is exactly what we observe for \(\omega\) Centauri (point (iii) above).

Unfortunately, while there is no doubt on the fact that self-enrichment must be one of the fundamental ingredients of a successful formation and evolution theory for \(\omega\) Centauri (Norris & Da Costa 1993; Smith et al. 2000), we are dealing with a complex set of observational facts, containing conflicting evidence. In fact, a few of the observational properties of \(\omega\) Centauri, concerning the shape, the structure and the kinematics (Section 1) are not easily accommodated into a simple self-enrichment scenario (Norris et al. 1996; Pancino et al. 2000; Ferraro et al. 2002b), and suggest the possibility of a merger or accretion event. However, the simple merging of two or more single metallicity clusters cannot account for the broad metallicity distribution of the RGB (Norris et al. 1996; Smith et al. 2000) and the high speed of ordinary, already formed globular clusters in the present potential well of the Milky Way makes this kind of merging quite unlikely (Thurl & Johnston 2002). The evidence presented here, concerning the structure and shape of the different sub-populations in the RGB of \(\omega\) Centauri, supports these findings and thus confirms the need for a more sophisticated scenario, that takes into account all the observational evidence collected so far.

6.2 An Accreted Component?

Another interesting point has recently emerged from the coupling of the photometric catalog by Pancino et al. (2000) and the proper motion work by van Leeuwen et al. (2000), i.e., that the RGB-a population appears to have a different bulk proper motion of \(|\delta \mu| = 0.8\) mas yr\(^{-1}\) with respect to the main population of \(\omega\) Centauri (Ferraro et al. 2002b).

This evidence suggests that the RGB-a could be an accreted population, captured by the main body of \(\omega\) Centauri. We thus should expect the RGB-a to have a different centre from the main cluster population, too, and it is exactly what we find here (point (i) above). Moreover, if a merging event has really taken place in the past history of \(\omega\) Centauri, how long ago do we expect it to have happened? We already know that \(\omega\) Centauri has a very long relaxation time, comparable to its age. We also know that the RGB-a is \(\sim 2-3\) times more concentrated than the RGB-MP (point (iii) above), and the fact that it is almost one core radius away from the centre suggests that it is moving in a significantly less dense environment, so it could have survived as a self-gravitating system for many Gyr. It is however puzzling that the (few)
radial velocities measured for the RGB-a so far are not so different from the cluster average.
So, a self-consistent set of observational facts, supporting the occurrence of an accretion or merger event in the cluster past history, is beginning to take shape. We would like to note here that this fact in not necessarily in contradiction with the occurring of self-enrichment, nor with the hypothesis that Centauri is the remaining nucleus of a larger body (a dwarf galaxy), accreted and partially disrupted by the Milky Way. If we consider the case of the Sagittarius body (a dwarf galaxy), accreted and partially disrupted by the Milky Way, the so-called Centauri, we see that more than one GC seems to be associated with the system. In particular, one of these (Terzan 7) has a metallicity of $\text{[Fe/H]} \sim -0.62$ (Harris 1996) compared with the $\text{[Fe/H]} \sim -1.59$ of M 54, which may be the nucleus of the Sgr. Interestingly, the RGB-MP has a similar metallicity to that of M 54, and the RGB-a to Terzan 7.

6.3 A Promising Framework

An interesting scenario, that could accommodate all of the observational evidence collected so far, was discussed by, e.g., Freeman (1985), Norris et al. (1997) and Smith et al. (2000); the so-called merger within a fragment scenario, descending from the general framework proposed by Searle (1977) and Searle & Zinn (1978). In this framework, a conglomerate of star-forming sub-systems or regions could evolve within a large cloud and a common potential well (a fragment), each section evolving with slightly different timescales, and slightly different chemical properties. In this context, the chemical evolution of the RGB-MP and of the RGB-MInt could have been tightly related to each other, especially since there are reasons to believe that the RGB-MInt is younger by a few Gyr (Hughes & Wallerstein 2000) and could have been enriched by the ejecta of the RGB-MP stars.

Later, a dwarf galaxy with its own globular cluster system could form, and a few globular clusters (like the RGB-a, or even the RGB-MInt) could spiral towards the system centre, while the remaining clusters could be stripped by the interaction with the Milky Way, along with most of the dwarf galaxy halo. Recent calculations by Bromm & Clarke (2002) support this line of reasoning (see also Fellhauer & Kroupa 2002), together with the example of the Sagittarius dwarf galaxy discussed above.

Although still speculative, this idea deserves to be further explored since it appears the most promising to explain Centauri's puzzling properties.

ACKNOWLEDGMENTS

We would like to thank E. Pignatelli and E. Pompei for interesting discussions on galaxy mergers. The financial support of the Agenzia Spaziale Italiana (ASI) is kindly acknowledged. This research was also partially supported by the Italian Ministero dell’Istruzione dell’Università e della Ricerca (MIUR). E. Pancino is grateful to the European Southern Observatory (ESO), where part of this work was carried out, within the Studentship Programme. A. Seleznev acknowledges the support of the Russian Federation State Scientific and Technical Program “Astronomy”.

REFERENCES

Bellazzini M., Ferraro F. R., Pancino E., 2001, MNRAS, 327, L15
Bromm V., Clarke C.J., 2002, ApJL, 566, L1
Dinescu D. I., Girard T.M., van Altena W.F., 1999, AJ, 117, 1792
Djorgovski S., 1993, ASP Conf. Ser. 50: Structure and Dynamics of Globular Clusters, 373
Evans T. L., 1983, MNRAS, 204, 975
Fasano G., Franceschini A., 1987, MNRAS, 225, 155
Fellhauer M., Kroupa P., 2002, Ap&SS, 281, 355
Ferraro F. R., Pancino E., Bellazzini M., 2002, ASP Conf. Ser. 265: Omega Centauri, A Unique Window into Astrophysics, 407
Ferraro F. R., Bellazzini M., Pancino E., 2002, ApJL, 573, L95
Freeman K. C., 1985, IAU Symp. 113: Dynamics of Star Clusters, 113, 33
Geyer E.H., Nelles B., Hopp U. 1983, A&A, 125, 359
Harbeck D., Grebel E.K., Holtzman J., Guhathakurta P., Brandner W., Geisler D., Sarajedini A., Dolphin A., Hurley-Keller D., Mateo M., 2001, AJ, 122, 3092
Harding G. A., 1965, Royal Greenwich Observatory Bulletin, 99, 65
Harris W. E., 1996, AJ, 112, 1487
Hilker M., Richtler T., 2000, A&A, 362, 895
Hughes J., Wallerstein G., 2000, AJ, 119, 1225
Ikuta C., Arimoto N., 2000, A&A, 358, 535
Jurcsik J., 1998, ApJ, 506, L113
Kholopov P. N., 1953, Publ. Astron. Sterneberg Inst. 23, 250
Lee Y.W., Joo J.M., Sohn Y.J., Rey S.C., Lee H.C., Walker A.R., 1999, Nature, 402,55
Lotz J. M., Telford R., Ferguson H. C., Miller B. W., Stiavelli M., Mack J., 2001, ApJ, 552, 572
Makino J., Akiyama K., Sugimoto D., 1991, Ap&SS, 185, 63
Merritt D., Tremblay D., 1994, AJ, 108, 514
Merritt D., Meylan G., Mayor M., 1997, AJ, 114, 1074
Meylan G., Mayor M., 1986, A&A, 166, 122
Norris J.E., Da Costa G.S., 1995, ApJ, 447, 680
Norris J.E., Freeman K.C., Mighell K.L., 1996, ApJ, 462, 241
Norris J.E., Freeman K.C., Mayor M., Seitzer P., 1997, ApJ, 487, L187
Origlia L., Ferraro F.R., Bellazzini M., 2003, ApJ in press (astro-ph/0303601)
Pancino E., Ferraro F.R., Bellazzini M., Pirotta G., Zoccali M., 2000, ApJ, 534, L83
Pancino E., Pasquini L., Hill V., Ferraro F.R., Bellazzini M., 2002, ApJL, 568, L101
Spatial distribution in ω Centauri

Peacock J.A., 1983, MNRAS, 202, 615
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 1997, Numerical Recipes of Fortran 77. The art of Scientific Computing. 2nd Ed., Cambridge University Press, New York
Sarzi M., Corsini E. M., Pizzella A., Vega Beltrán J. C., Cappellari M., Funes J. G., Bertola F., 2000, A&A, 360, 439
Searle L., 1977, in The Evolution of Galaxies and Stellar Populations, ed. B. M. Tinsley & R. B. Larson
Searle L., Zinn R., 1978, ApJ, 225, 357
Seleznev A.F, 1998, A.Rep., 42, 153
Silverman B.W., 1986, Monographs on Statistics and Applied Probability, Chapman and Hall, London
Smith V.V., Suntzeff N, Cunha K., Gallino R., Busso M., Lambert D., Straniero O., 2000, AJ, 119, 1239
Thurl C., Johnston K. V., 2002, ASP Conf. Ser. 265: Omega Centauri, A Unique Window into Astrophysics, 337
Trager S. C., King I. R., Djorgovski S., 1995, AJ, 109, 218
van den Bosch F. C., Lewis G. F., Lake G., Stadel J., 1999, ApJ, 515, 50
van Leeuwen F., Le Poole R. S., Reijns R. A., Freeman K. C., de Zeeuw P. T., 2000, A&A, 360, 472
Vanture A. D., Wallerstein G., Suntzeff N. B., 2002, ApJ, 569, 984
White R. E., Shawl S. J., 1987, ApJ, 317, 246