Genetic Alterations in HSPA Family of Genes and their Putative Association with HNSCC

M. Laksita¹, J. Vijayashree Priyadharsini²*, A. S. Smiline Girija² and P. Sankar Ganesh²

¹Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.
²Clinical Genetics Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Introduction: Head and neck squamous cell carcinoma (HNSCC) is an aggressive life-threatening disease associated with high mortality rates. Several genes related to stress response have been studied extensively to reveal their possible association with HNSCC. Members of the HSPA (heat shock protein family A) family are exclusively expressed under stress conditions suggesting that these are specialised to function in the stress response.

Aim: The aim of the present study is to demonstrate the genetic alterations in the HSPA gene family and their putative association with HNSCC.

Materials and Methods: The source of the patient's data was procured from the cBioportal database. The TCGA Firehose Legacy comprised 528 head and neck squamous cell carcinoma cases. Oncoprint data analysis can be used to derive a putative association between the disease phenotype and genotype, to identify the variations and to identify any novel variations which can be associated with the disease phenotype. The gnomAD data analysis was used to compare between the observed variants documented in the present study with that of reported variants deposited in the gnomAD repository.

*Corresponding author: E-mail: vijayashreej.sdc@saveetha.com;
Results and Discussion: The HSPA1A&HSPA1B genes harboured high frequency of amplification and deep deletions. The expression of two genes HSPA8 and HSPA13 was found to be up-regulated in the primary tumor sample in comparison to normal tissues. In Kaplan Meier analysis, HSPA8 gene expression was compared with gender, here, high expression in females shows low survival rate. Similarly, HSPA13 gene expression was compared with race, here low expression in africanamerican population shows low survival rate.

Conclusion: The present study provides preliminary data on the involvement of the HSPA family of genes with HNSCC, which has to be validated using experimental evidence in other populations.

Keywords: Carcinoma; gene expression; heat shock proteins; novel mutations; protein stability.

1. INTRODUCTION

The association between genetic alterations and human cancer was first observed decades ago [1]. Cytogenetic studies revealed that specific chromosomal abnormalities were linked to the development of certain cancers. In addition, substantial genetic disruption leads to chromosome aberrations, rearrangements, and aneuploidy and these are observed in tumour cells. However, it was not clear whether this widespread genetic instability was a cause or a consequence of the cancer phenotype [2]. An understanding of the role of genetic alterations in cancer development arose out of studies of oncogenic viruses and hereditary cancers.

Head and neck squamous cell carcinoma (HNSCC) is an aggressive life-threatening disease associated with high mortality rates. It is the sixth most common form of cancer as reported world-wide [3]. Most HNSCCs arise in the epithelial lining of the oral cavity, oropharynx, larynx and hypopharynx. About 600,000 new cases, including approximately 50,000 in the United States, are diagnosed each year. In males in their 50s or 60s, HNSCC occurs more frequently, but the occurrence in younger individuals is growing [4]. HNSCC follows a similar genetic pattern for progression in its development from premalignant lesions such as leukoplakia, dysplasia, erythroplakia and lichen planus [5]. These cancers are strongly associated with certain environmental and lifestyle risk factors like tobacco and alcohol consumption [6]. Several in silico studies have revealed novel variants which may act as putative drivers involved in transformation of normal cells to malignant ones [7]. In this respect, the therapeutic potential of targeting HSPA and modulating HSPA expression is attracting much interest [8].

All organisms, except some hyperthermophilic archaea, contain the family of HSPA chaperones [9]. The heat shock proteins function as molecular chaperones and are involved in the process of translation and transport of proteins across membranes. Members of the HSPA family are expressed under stress conditions indicating that they are specialized to function in the stress response [10]. Extracellular heat-shock proteins are sensed by the immune system as damage-associated molecular patterns (DAMPs) [11]. The surge of HSPA in the peripheral circulation and serum is observed during different kinds of exercise, and excessive use of mobile phones. Concordant increase in the levels of serum C-reactive protein was also observed and can be used as potential biomarkers in systemic inflammation. Although the HSPA family of genes have been implicated in HNSCC, the underlying molecular mechanism is not clearly understood. In the essential gene families, the present research recognises genetic alterations. In laboratory work, any differences found in the sample can be repeated to arrive at definitive proof of the interaction of the variations/mutations with the phenotype of the disorder. The present in silico research was therefore intended to examine the genetic variations in the proposed gene family in order to establish the putative relation between the disease phenotype and genotype. Our team has extensive knowledge and research experience that has translated into high quality publications [12–33]. Hence, the aim of the study is to demonstrate the genetic alterations in the HSPA gene family and their putative association with HNSCC.

2. MATERIALS AND METHODS

2.1 Data Source

Retrospective study design has been followed in the present study. The source of the patient’s data is procured from the cBioportal database [34]. This database includes an extensive array of patient information from different cohorts. 528
HNSCC cases were found in ‘The Cancer Genome Atlas’ (TCGA) where sequencing and the copy number alteration data are available for tumour samples. The list of vital genes are obtained from literature search. The genes includes, HSPA1A, HSPA1B, HSPA1L, HSPA2, HSPA4, HSPA4L, HSPA5, HSPA6, HSPA7, HSPA8, HSPA9, HSPA12A, HSPA12B, HSPA13, HSPA14, HSPH1 and HYOU1. The user described queries based on these were submitted to the cBioportal database, and the resulting oncprint data are used for further analysis.

2.2 Oncoprint Data Analysis

Oncoprint data analysis provides information on frequency distribution, variations in each of selected genes, type of variation, changes in protein coding amino acids, gene amplification, deletions, insertions, frameshifts, splice site mutations, etc. These information are used for possible correlation between genotype and phenotype, to identify the differences of less known mechanisms/genes and to know the novel variations that may be associated with the phenotype of the disease.

2.3 gnomAD Data Analysis

The data compares the observed variants documented in this study with the reported variants deposited in gnomAD repository [31].

2.4 Gene Expression and Survival Analysis

The expression of the gene presenting with highest frequency of gene alteration in HNSCC was analysed using the UALCANC (http://ualcan.path.uab.edu/cgi-bin/TCGA-survival) database. Survival curve analysis based on the tumor grade and expression profile was performed to demonstrate the putative role of heat shock protein family of genes with HNSCC. Combined survival effect analysis of gene expression and other clinical parameters such as race, gender, tumor grade, cancer subtypes were assessed using log-rank test that generated a p value which was further used to indicate statistical significance of survival correlation between groups [35].

3. RESULTS

The primary database, cBioportal and several other datasets are selected for the present study. The TCGA dataset contained information of 528 HNSCC patients. The demographic details of the patients are given in Table 1. Oncoprint data analysis is performed to analyse the genetic alterations and the variations seen in the gene family. Here, HSPA8 and HSPA13 genes were observed with high levels of variation (Fig. 1). The gene amplification was seen in 2 genes, where, both HSPA1A and HSPA1B harboured equal frequency of gene amplification. Two genes HSPA1A and HSPA1B demonstrated deep deletions. HSPA8 and HSPA13 genes showed the highest number of variations/mutations among all the genes identified with alterations (Table 2). Various truncating and missense variants with unknown significance are documented in the present study (Fig. 1). Genetic alterations of the genes associated with the HSPA family are documented. Several novel variants were identified, along with a few reported variants in HSPA4 (rs144576995, rs377082440), HSPA4L (rs773358656), HSPA6 (rs1454026580), and HSPA12A (rs782770261, rs1161715269, rs781956168).

The primary tumour in both the genes showed higher expression than the normal tumour. This implies the fact that these rare variants are associated with the risk of particular disease. The gene expression profile of HSPA8 and HSPA13 showed significant differences as compared to paired normal tissues from patients with a value of 8.36 x 10^{-4} and 10^{-12} (Fig. 2) respectively. The Kaplan - Meier plot shows the effect of gene expression level classified based on gender and race on HNSCC patient survival. The patients were stratified based on gender, race, grade of tumor to correlate with the expression profile (high, low or medium). Fig. 3 shows the expression level of HSPA8 based on gender. A significant difference observed between the four groups is 0.0042 (p-value), wherein females showing higher expression of HSPA8 were accompanied by low survival rate. Further, Fig. 4 showed that the expression level of HSPA13 in African American 0.026 (p-value) is related to low survival rate.

4. DISCUSSION

It has been postulated that the minimum constellation of mutations required for oncogenic transformation in humans includes inactivation of TP53 and RB, activation of RAS (or other members of that pathway), and constitutive expression of hTERT. More than five million people are affected and 379,000 deaths have
occurred globally due to head and neck cancer [36]. Recently, our team has identified a prognostic marker associated with HNSCC (34). The HPV, i.e., the human papilloma virus has emerged as a major cause of HNSCC among non-smokers and light drinkers [37]. According to the GLOBOCAN survey, 2018, the incidence of head and neck squamous cell carcinoma was found to be clustered in specific regions worldwide with a high incidence rate recorded in the south asian countries [38,39]. A large number of tumor suppressor genes and oncogenes have now been identified and characterized through the analysis of tumor cell DNA [40]. HSPA is expressed in very low levels in non-stressed cells and is dramatically induced in hyperthermia [41]. HSPA is the most conserved hsp throughout the evolution of prokaryotes and eukaryotes [42]. Several studies have shown that the thermosensitivity of cells is altered if the expression of HSPA is enhanced or reduced [43].

Table 1. Table represents the demographic details of patients analysed in the present study (as obtained from the cBioportal site). The paired normal tissue found adjacent to the tumor was used for comparison

Gender	Male (n = 386)	Female (n = 142)
Mutation count	6-3181	
Diagnosis age	19-90 years	
Smoking status	Smokers: 515	Data not available: 12
	No – 165	Unknown: 1
Alcohol history	Yes – 352	Data not available: 11
	No – 165	
Neoplasm Histologic grade	Grade 1: 63	Grade 2: 311
	Grade 3: 125	Grade 4: 7
	Grade GX: 18	
Race category	White: 452	African: 48
	Asian: 11	American Indian or Alaska native: 2
	Data not available: 15	

Table 2. Table represents the gene alterations in heat shock proteins family of genes

Gene	Protein coded	Cytogenetic loci	% of genetic alterations	Gene alterations	Variant allele frequency	gnomAD frequency
HSPA1A	Heat shock protein family A (Hsp70) member 1A	6p21.33	1.2	Amplification, Deep deletion	-	-
HSPA1B	Heat shock protein family A (Hsp70) member 1B	6p21.33	1.2	Amplification, Deep deletion	-	-
HSPA1L	Heat shock protein family A (Hsp70) member 1 like	6p21.33	2.4	E320K, A414D, L126F, V84D	0.13, 0.09, 0.15, 0.05	Novel, Novel, Novel, Novel
Gene	Protein coded	Cytogenetic loci	% of genetic alterations	Gene alterations	Variant allele frequency	gnomAD frequency
------------	--------------------------------------	------------------	--------------------------	-----------------	--------------------------	------------------
HSPA2	Heat shock protein family A (Hsp70)	14q23.3	2.2	Q603H	0.21	Novel
	member 2			K389R	0.18	Novel
HSPA4	Heat shock protein family A (Hsp70)	5q31.1	1.8	D831Y	0.18	rs144576995
	member 4			Q514*	0.46	Novel
				S784*	0.21	Novel
				S828L	0.32	rs377082440
				S40C	0.17	Novel
HSPA4L	Heat shock protein family A (Hsp70)	4q28.1	1.4	D566H	0.34	Novel
	member 4 like			D611Y	0.38	Novel
				E694Q	0.28	Novel
				H806Q	0.16	Novel
				A495V	0.24	Novel
				R261Q	0.26	rs773358656
HSPA5	Heat shock protein family A (Hsp70)	9q33.3	2	D610N	0.11	Novel
	member 5			D355N	0.21	Novel
				E622K	0.41	Novel
				K122N	0.14	Novel
HSPA6	Heat shock protein family A (Hsp70)	1q23.3	2.2	R313C	0.14	rs1454026580
	member 6			F70L	0.22	Novel
				H242Y	0.28	Novel
				R195H	0.21	Novel
				F94Sfs*4	0.33	Novel
HSPA7	Heat shock protein family A (Hsp70)	1q23.3	0	-	-	-
	member 7			(pseudogene)		
HSPA8	Heat shock protein family A (Hsp70)	11q24.1	3	R311C	0.30	Novel
	member 8			E110Q	0.09	Novel
				K597I	0.38	Novel
				A161D	0.15	Novel
				M621_G624del	0.15	Novel
				N306D	0.07	Novel
				R299C	0.19	Novel
				E644Q	0.04	Novel
				E600Q	0.71	Novel
HSPA9	Heat shock protein family A (Hsp70)	5q31.2	0.4	K288N	0.22	Novel
HSPA12 A	Heat shock protein family A (Hsp70)	10q25.3	1.2	L480V	0.25	Novel
				D575H	0.29	Novel
Gene	Protein coded	Cytogenetic loci	% of genetic alterations	Gene alterations	Variant allele frequency	gnomAD frequency
--------------	---------------------	------------------	--------------------------	------------------	--------------------------	-----------------
member 12A	R531C, E191V					
HSPA12B	Heat shock protein family A (Hsp70) member 12B	20p13	1	K165N	0.36	Novel
HSPA13	Heat shock protein family A (Hsp70) member 13	21q11.2	3	E401D, E160K, S143F, P321R, A208S, A11V, V12Gfs*21	0.39, 0.14, 0.08, 0.47, 0.35, 0.14, 0.41	Novel
HSPA14	Heat shock protein family A (Hsp70) member 14	10p13	1.8	R245*, S395*	0.33, 0.12	Novel
HSPH1	Heat shock protein family H (Hsp110) member 1	13q12.3	1.4	E826G, V799F, D294H, T700S, M762I	0.29, 0.29, 0.04, 0.56, 0.03	Novel
HYOU1	Hypoxia upregulated 1	11q23.3	2.6	A416T, P168L, E184K, S888*, E535K	0.54, 0.16, 0.12, 0.04, 0.07	rs782770261, rs1161715269, rs781956168

The expression of HSPAs can be induced by insults other than thermal stress, including ischemia, heavy metals, nutrient deprivation, irradiation, infections, inflammation, and exposure to organics and oxidants [44]. Members of the HSPA family are known to control all aspects of cellular protestations such as nascent protein chain folding, protein import into organelles, recovering of proteins from aggregation, and assembly of multi-protein complexes [45]. Extracellular HSPAs are stimulators of innate immune responses [46]. Studies have linked the expression of HSPAs to several phenotypes of carcinoma, viz., therapeutic resistance, metastasis, and poor clinical outcome. In malignant cells, HSPA protects cells from the stress associated with rapid proliferation, suppress cellular senescence, and resistance to stress-induced apoptosis including protection against cytostatic drugs and radiation therapy [47].

HSPA1 is among the best characterized cancer-related chaperones, while the significance of HSPA2 for cancer remains poorly understood. Previously researchers demonstrated that in primary NSCLC, HSPA1 was associated with good prognosis while HSPA2 correlated with bad prognosis, suggesting different roles of these proteins in cancer [48]. The changes in the induction of HSPA transcription are closely associated with the aging process. Various authors have studied the heat inductibility of different genes in HSPA family, such as, HSPA1A/1B and HSPA6, following the stress conditions [49]. Vidyashri et.al., has done a similar research based on genetic alterations of SPARC gene family and its association with HNSCC. Longxiang et.al., showed that downregulation of HSPA2 inhibits proliferation via ERK ½ pathway and endoplasmic reticular stress in lung adenocarcinoma [50]. In present study, the expression of the primary tumour of 2 genes, i.e., HSPA8 and HSPA13 has shown upregulation and among them, the highly
significant one is the expression of $HSPA_{13}$ gene which shows the p value as 10^{-12}. Shan Lu et.al has studied the regulation of $HSPA$ gene and have concluded that androgen receptor and its signaling regulates $HSPA$ expression in prostate cancer cells and that $HSPA_{1B}$ could be an androgen receptor target gene [51]. Dorota et.al., has discussed the expression, function and regulation of $HSPA_{2}$ protein in spermatogenic, somatic and cancer cells [52]. JG-98, a novel class of allosteric inhibitors of $HSPAs$, causes effective disruption of $HSPAs$-$BAG3$ interaction. Hence, $HSPA$-$BAG3$ complexes can be considered as broad-acting regulators of cancer cell signaling and a promising anticancer target [53].

With an ever increasing trend of head and neck cancers in Asian population [54], it has become a crucial point to identify the molecular targets involved in the pathogenesis of the disease. Accumulating evidences have proved the effect of several markers [55] in different types of patients with [56] and without habits. An extensive probing into each of these genomic signatures would aid in limiting the number of markers directly associated with the disease phenotype.

The present study demonstrated the effect of highly expressed genes of the $HSPA$ family i.e., $HSPA_{8}$ and $HSPA_{13}$ under gender and race. Under gender, high expression in females has shown low survival rate and under race, low

Fig. 1. The figure shows the oncoprint data depicting the genetic alterations in heat shock protein gene family A in HNSCC patients

![Image](image_url)
expression in African American population has shown low survival rate. The above mentioned previous researches have helped in doing this present study. The study identifies the genetic alterations in the crucial gene family. Any variations observed in the study can be replicated in experimental work so as to arrive at conclusive evidence on the association of the variations/mutations with the habit of individuals are the factors that influence the study results.

![Box-Whisker plot showing relative expression profile of HSPA8 (a) and HSPA13 (b) gene](image)

Fig. 2. Box-Whisker plot showing relative expression profile of HSPA8 (a) and HSPA13 (b) gene (Normal vs primary tumor). The X axis denotes the TCGA samples (blue bar indicates normal and red bar indicates primary tumor) and Y axis denotes the transcripts per million values. The comparison of gene expression patterns between normal vs primary tumor was found to be significant in both the genes assessed HSPA8 ($p = 8.36 \times 10^{-4}$) and HSPA13 ($<10^{-12}$). A p value less than 0.05 was considered to be significant.

![Kaplan-Meier plots showing the association of HSPA8 expression](image)

Fig. 3. Kaplan-Meier plots showing the association of HSPA8 expression classified based on the gender of HNSCC patient with respect to survival probability. The x-axis represents time in days and the y-axis shows the survival probability. A significant difference in the survival probability was observed in female patients with high level expression of HSPA8 demonstrating low survival when compared to the other groups (p value = 0.0042)
Fig. 4. Kaplan–Meier plots showing the association of HSPA13 expression classified based on the ethnicity of HNSCC patients with respect to survival probability. The x-axis represents time in days and the y-axis shows the survival probability. A significant difference in the survival probability was observed in African-American patients exhibiting low/medium level expression of HSPA13 with low survival rate when compared to the other groups (p value = 0.026)

5. CONCLUSION

The present study has discussed the relationship between the various HSPA genes about the expression, regulation, mutations and variations. It also provides preliminary data on the involvement of the HSPA family of genes with Head and neck squamous cell carcinoma (HNSCC), which has to be validated using experimental evidence.

FUNDING

With an ever increasing trend of head and neck cancers in Asian population [54], it has become a crucial point to identify the molecular targets involved in the pathogenesis of the disease. Accumulating evidences have proved the effect of several markers [55] in different types of patients with [56] and without habits. An extensive probing into each of these genomic signatures would aid in limiting the number of markers directly associated with the disease phenotype.

CONSENT

As per international standard or university standard, patients’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

We conducted our research after obtaining proper IEC approval.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Balmain A. Cancer genetics: from Boveri and Mendel to microarrays. Nature Reviews Cancer. 2001;1:77–82. Available:https://doi.org/10.1038/35094086
2. Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nature Genetics 2003;33:238–44. Available:https://doi.org/10.1038/ng1107
3. Daremipouran M, Namin HH, Soltani S, Devaney J, Frederick W, Lee EL, et al. Abstract 5307: Paired analysis of matched colon normal and tumor using whole exome sequencing. Molecular and Cellular Biology; 2013. Available:https://doi.org/10.1158/1538-7445.am2013-5307

4. Lim AM, Do H, Young RJ, Wong SQ, Angel C, Collins M, et al. Differential mechanisms of CDKN2A (p16) alteration in oral tongue squamous cell carcinomas and correlation with patient outcome. Int J Cancer. 2014;135:887–95.

5. Mountzios G, Ramplas T, Psysri A. The mutational spectrum of squamous-cell carcinoma of the head and neck: Targetable genetic events and clinical impact. Ann Oncol. 2014;25:1889–900.

6. Jayaseelan VP. Emerging role of exosomes as promising diagnostic tool for cancer. Cancer Gene Ther. 2020;27:395–8.

7. Fathima T, Arumugam P, Girija As S, Priyadharsini JV. Decoding the Genetic Alterations in Genes of DNMT Family (DNA Methyl-Transferase) and their Association with Head and Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev. 2020;21:3605–12.

8. Bayer C, Liebhardt ME, Schmid TE, Trajkovic-Arsic M, Hube K, Specht HM, et al. Validation of heat shock protein 70 as a tumor-specific biomarker for monitoring the outcome of radiation therapy in tumor mouse models. Int J Radiat Oncol Biol Phys. 2014;88:694–700.

9. Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P. Discontinuous Occurrence of the hsp70(dnaK) Gene among Archaea and Sequence Features of HSP70 Suggest a Novel Outlook on Phylogenies Inferred from This Protein. Journal of Bacteriology. 1999;181:434–43. Available:https://doi.org/10.1128/JB.181.2.434-443.1999

10. Albanèse V, Yam AY-W, Baughman J, Parnot C, Frydman J. Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell. 2006;124:75–88. Available:https://doi.org/10.1016/j.cell.2005.11.039

11. Santoro MG, Gabriella Santoro M. Heat shock factors and the control of the stress response. Biochemical Pharmacology. 2000;59:55–63. Available:https://doi.org/10.1016/s0006-2952(99)00299-3

12. Priyadharsini JV, Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species. Archives of Oral Biology. 2018;94:93–8. Available:https://doi.org/10.1016/j.archoralbio.2018.07.001

13. Vijayashree Priyadharsini J. In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. J Periodontol. 2019;90:1441–8.

14. Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): A promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2020;43:153–4.

15. Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile - An in silico approach. Heliyon. 2018;4:e01051.

16. Paramasivam A, Vijayashree Priyadharsini J. Novel insights into m6A modification in circular RNA and implications for immunity. Cell Mol Immunol. 2020;17:668–9.

17. Paramasivam A, Priyadharsini JV, Raghunandhakumar S. Implications of m6A modification in autoimmune disorders. Cell Mol Immunol. 2020;17:550–1.

18. Girija ASS, Shankar EM, Larsson M. Could SARS-CoV-2-Induced Hyperinflammation Magnify the Severity of Coronavirus Disease (CoViD-19) Leading to Acute Respiratory Distress Syndrome? Front Immunol. 2020;11:1206.

19. Jayaseelan VP, Arumugam P. Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res. 2020;43:74–5.

20. Ushanthika T, Smiline Girija AS, Paramasivam A, Priyadharsini JV. An in silico approach towards identification of virulence factors in red complex pathogens targeted by reserpine. Nat Prod Res. 2021;35:1893–8.

21. Ramalingam AK, Selvi SGA, Jayaseelan VP. Targeting prolyl tripeptidyl peptidase
from Porphyromonas gingivalis with the bioactive compounds from Rosmarinus officinalis. Asian Biomed. 2019;13:197–203.

22. Kumar SP, Girija ASS, Priyadharsini JV. Targeting NM23-H1-mediated inhibition of tumour metastasis in viral hepatitis with bioactive compounds from Ganoderma lucidum: A computational study. Pharmaceutical-Sciences 2020;82. Available:https://doi.org/10.36468/pharmaceutical-sciences.650

23. Mathivadani V, Smiline AS, Priyadharsini JV. Targeting Epstein-Barr virus nuclear antigen 1 (EBNA-1) with Murrayakoengii bio-compounds: An in-silico approach. Acta Virol. 2020;64:93–9.

24. Samuel SR, Kuduruthullah S, Khair AMB, Shaye MA, Elkaseh A, Varma SR. Dental pain, parental SARS-CoV-2 fear and distress on quality of life of 2 to 6 year-old children during COVID-19. Int J Paediatr Dent. 2021;31:436–41.

25. Samuel SR. Can 5-year-olds sensibly self-report the impact of developmental enamel defects on their quality of life? Int J Paediatr Dent. 2021;31:285–6.

26. Barma MD, Muthupandiyan I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol. 2021;126:105132.

27. Teja KV, Ramesh S. Is a filled lateral canal - A sign of superiority? J Dent Sci. 2020;15:562–3.

28. Reddy P, Krithikadatta J, Srinivasan V, Raghu S, Velumurugan N. Dental Caries Profile and Associated Risk Factors Among Adolescent School Children in an Urban South-Indian City. Oral Health Prev Dent. 2020;18:379–41.

29. Needhidasan S, Samuel M, Chidambaram R. Electronic waste - an emerging threat to the environment of urban India. J Environ Health Sci Eng. 2014;12:36.

30. Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaetechrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog. 2018;117:68–72.

31. Gupta P, Ariga P, Deogade SC. Effect of Monopoly-coating Agent on the Surface Roughness of a Tissue Conditioner Subjected to Cleansing and Disinfection: A Contact Profilometric In vitro Study. Contemp Clin Dent. 2018;9:S122–6.

32. Devi VS, Gnanavel BK. Properties of Concrete Manufactured Using Steel Slag. Procedia Engineering. 2014;97:95–104.

33. Krishnaswamy H, Muthukrishnan S, Thanikodi S, Arockiaraj G, Venkatraman V. Investigation of air conditioning temperature variation by modifying the structure of passenger car using computational fluid dynamics. Thermal Science. 2020;24:495–8. Available:https://doi.org/10.2298/tsci19040 9397k

34. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

35. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Balabhadrapatruni V S, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017;19:649–58. Available:https://doi.org/10.1016/j.neo.2017.05.002

36. Holmgren A, Sengupta R. The use of thiol by ribonucleotide reductase. Free Radical Biology and Medicine. 2010;49:1617–28. Available:https://doi.org/10.1016/j.freeradbiomed.2010.09.005

37. Jemal A, Bray F, Melissa M. Center, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A Cancer Journal for Clinicians. 2011;61:69–90. Available:https://doi.org/10.3322/caac.201 07

38. Csisszar A, Ungvari Z. Free Radicals in Aging – An Evolutionary Perspective. Systems Biology of Free Radicals and Antioxidants. 2014;137–51. Available:https://doi.org/10.1007/978-3-642-30018-9_14

39. Sivarajan M, Smiline Girija AS, Paramasivam A, Vijayashree Priyadharsini J. Computational Approach to Identify Mutations in Genes of Notch Signaling Pathway and Its Association with OSCC. Journal of Pharmaceutical Research International 2020;84–92. Available:https://doi.org/10.9734/jpri/2020/ v32i2030732

40. Anita R, Paramasivam A, Priyadharsini JV, Chitra S. The m6A readers and aberrations
associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res. 2020;10:2546–54.

41. Zhao J, Herrera-Diaz J, Gross DS. Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol. 2005;25:8985–99.

42. Eser U, Chandler-Brown D, Ay F, Straight AF, Duan Z, Noble WS, et al. Form and function of topologically associating genomic domains in budding yeast. Proc Natl Acad Sci U S A. 2017;114:E3061–70.

43. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. Author Correction: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2021;590:E53.

44. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Ceps J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

45. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem. 2002;277:15028–34.

46. Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol. 1999;162:3757–60.

47. Arumugam P, George R, Jayaseelan VP. Aberrations of m6A regulators are associated with tumorigenesis and metastasis in head and neck squamous cell carcinoma. Arch Oral Biol. 2021;122:105030.

48. Chowdhary S, Kainth AS, Gross DS. Heat Shock Protein Genes Undergo Dynamic Alteration in Their Three-Dimensional Structure and Genome Organization in Response to Thermal Stress. Mol Cell Biol. 2017;37.

Available:https://doi.org/10.1128/MCB.00292-17

49. Hageman J, Kampinga HH. Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones. 2009;14:1–21.

50. Cao L, Yuan X, Bao F, Lv W, He Z, Tang J, et al. Downregulation of HSPA2 inhibits proliferation via ERK1/2 pathway and endoplasmic reticular stress in lung adenocarcinoma. Annals of Translational Medicine. 2019;7:540–540.

Available:https://doi.org/10.21037/atm.2019.10.16

51. Lu S, Tan Z, Wortman M, Lu S, Dong Z. Regulation of heat shock protein 70-1 expression by androgen receptor and its signaling in human prostate cancer cells. Int J Oncol. 2010;36:459–67.

52. Scieglnska D, Krawczyk Z. Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans. Cell Stress Chaperones. 2015;20:221–35.

53. Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55.

54. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424.

55. Lim AM, Do H, Young RJ, Wong SQ, Angel C, Collins M, et al. Differential mechanisms of CDKN2A (p16) alteration in oral tongue squamous cell carcinomas and correlation with patient outcome. Int J Cancer. 2014;135(4):887–95.

56. Ryser MD, Lee WT, Ready NE, Leder KZ, Foo J. Quantifying the dynamics of field cancerization in tobacco-related head and neck cancer: A multiscale modeling approach. Cancer Res. 2016;76:7078–7088.

© 2021 Laksita et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle4.com/review-history/74358