Tumefactive demyelination: Clinical outcomes, lesion evolution and treatments

Staley A Brod, J William Lindsey and Flavia Nelson

Abstract
Objective: Large demyelinating lesions with possible mass effect (tumefactive multiple sclerosis or tumefactive demyelination) can be mistaken for tumour-like space-occupying lesions suggesting a malignant outcome.

Methods: We reviewed our own experience of multiple sclerosis subjects (n = 28) with tumefactive demyelination to determine the relationship between clinical outcomes and lesion evolution, clinical outcomes and their relationship to different therapies. Patients with central nervous system demyelinating disease were identified from our database over the last 10 years.

Results: No patient increased in extended disability status scale (EDSS). Overall, lesion regression was associated with improved EDSS. Lesion regression was also associated with therapy versus no therapy. No specific therapy or corticosteroid infusions improved EDSS over the long term. The absence of enhancement on follow up on magnetic resonance imaging portended lesion regression.

Conclusion: Tumefactive demyelination may predict a more benign overall course and is susceptible to traditional immunomodulatory treatments.

Keywords: Tumefactive, multiple sclerosis (MS), magnetic resonance imaging (MRI), extended disability status scale (EDSS)

Date received: 20 February 2019; accepted: 4 May 2019

Introduction
Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) whose aetiology and pathogenesis are still to be clarified.1,2 Tumefactive demyelination or tumefactive multiple sclerosis are defined as demyelinating lesions (c. 2 cm or greater)3 or lesions between 0.5 and 2 cm4 with possible mass effect that can be mistaken for tumour-like space occupying lesions3 and have a characteristic radiographic appearance.5 The clinical and imaging spectrum has been outlined in several reviews over the years.6–9 The clinical outcomes in general have been more benign than might be expected. The prevalence of tumefactive demyelination (not to be conflated with multiple sclerosis (MS) since not all tumefactive demyelination is MS) has not been formally evaluated but it is estimated to be approximately 1–2 per 1000 cases of MS10 although others suggest an incidence as high as 1.4 to 8%.4,11 Some investigators have suggested that tumefactive lesions are exquisitely sensitive to corticosteroids.12 We reviewed our own experience of MS subjects diagnosed by MS Research Group (MSRG) physicians at UTHealth to determine the relationship between clinical outcomes (extended disability status scale (EDSS)) and tumefactive demyelination lesion evolution, tumefactive demyelination lesion evolution and clinical outcomes in relation to different therapeutic agents in MS patients and the effect of changes in Gd+ enhancement on decreasing lesion size. In particular we asked if these lesions were truly benign, if treatment was necessary, if corticosteroids were the best therapy for reducing tumefactive demyelinating lesions and whether any disease modifying therapy (DMT) showed increased beneficial effects on clinical outcomes over time.
Material and methods

Human subjects

We asked the UTHealth School of Biomedical Informatics to query the Clinical Data Warehouse of our electronic medical record (Allscripts®) used in our clinical practice for the five UTHealth MSRG physicians that regularly see MS patients. The terms multiple sclerosis, tumefactive, the ICD-9 codes multiple sclerosis (340) (based on McDonald criteria 2010) or CNS demyelinating disease (341.9) were searched in the following ways: (a) patients seen with at least one note containing tumefactive (ICD9 codes not used); (b) patients evaluated with at least one note containing tumefactive and a relevant ICD9 code; or (c) patients treated with at least one note containing tumefactive, and at least one record with a relevant ICD9 code. We were able to retrieve 28 subjects who had been diagnosed by their physician with tumefactive demyelination from 2004 to 2014.

Clinical, MRI scanning and treatments

From the medical records, the patient’s initial symptoms and EDSS at the time of diagnosis of tumefactive demyelination, magnetic resonance imaging (MRI) results contemporaneous with the above diagnosis and up to two subsequent MRIs during the period of observation, treatments if any initiated after the diagnosis of tumefactive demyelination and later, symptoms and EDSS at the end of the observation period were extracted from the clinical record (Table 1). We also determined increases or decreases if any in the overall size of lesions from the first to the last brain scan. Some subjects had more than three brain MRIs but we included only MRIs showing changes or the last scan available.

EDSS was extracted directly from clinical notes. MRI brain results including dimensions of lesions were taken from fluid-attenuated inversion recovery (FLAIR) sequences of MRI reports. In some cases, reports did not provide precise lesion dimension. If radiology reports did not exist, we looked through the available databases at Memorial Hermann Hospital and the 3 T Research Center. Dimensions were derived directly from these sources by the first author. Clinical outcomes were extracted from the last available clinical note contemporaneous to the last available brain MRI. Treatment regimens used between the first, second or third brain MRI available were tabulated. In one instance (subject #11) there were no dimensions provided for the lesion seen on the initial scan. However, over time the lesion size decreased. Although no dimensions are given for subject #25, there was decrease in the cerebellar component of the lesion by report. Results of brain biopsy and cerebrospinal fluid (CSF) examinations are included if performed and available. Brain biopsy was always confirmed by a neuropathologist. No patients were tested for AQP4 or MOG antibodies. We did not assume that patients lost to follow-up (LTFU) had good outcomes. The study was reviewed and approved by our Committee for the Protection of Human Subjects (HSC-MS-14-0815). The work described in our article was carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans.

Statistics

Statistical analysis was performed using one-tailed Student’s *t* test or log rank (Mantel-Cox method) (Prism 7, Version 7.0e, GraphPad Inc).

Results

Some 28 MS patients with the diagnosis tumefactive demyelination over the last 10 years were identified. All 28 presented with tumefactive demyelination. In our data base with of c. 3000 patients, we found 28/3000 (c. 1%) with tumefactive demyelination. Diagnosis of CNS demyelinating disease was based on findings consistent with the disease including lesions dissemination in time and space consistent with MS, CIS (clinically isolated syndrome) (tumefactive lesion without attaining McDonald criteria 2010), RIS (radiographically isolated syndrome) and/or biopsy proven demyelination or lesion regression consistent with demyelinating disease. Their age, sex, EDSS, CSF and biopsy results, CIS/RIS diagnosis, results from MRIs, therapeutic interventions, lesion evolution and EDSS at the end of the observation period are outlined in Table 1. The period of observation that included serial MRI ranged from 3 to 94 months (mean 24.9 ± SE 4.6 months). Average age was 39 years ± 1.88; 16 females:12 males. Average EDSS at the beginning of observation was 2.76 ± 0.38 and at the end 1.71 ± 0.39. None of the patients became clinically worse. The patients were not treated in some instances or treated with corticosteroids, adrenocorticotropic hormone (ACTH), interferon glatiramer acetate (IFN-β-1b sq), natalizumab (IFN-β-1a sq) and cyclophosphamide (IFN-β-1a IM), singly or in combination.

We assessed the relationship between changes in EDSS and lesion evolution over the entire
Pt Age/sex	Sxs/EDSS/CSF/CIS-RIS	MRI #1 F/u (mos) -cm-location	Rx	MRI #2 F/u (mos) -cm-location	Rx	MRI #3 F/u (mos) - cm-location	Rx/EDSS/lesion evolution
1. 42/M	Lt VF cut/EDSS=2.5	4 mos – 1.9 x 2.3 – Rt Pre T2 hyper Gd+	none	8 mos – 2 x 2 NC, Gd+	none	25 mos – 2.3 x 1.9 cm – Gd+	None/ EDSS=0 NC
2. 37/M	Lt Leg weak/ EDSS=3.5/	1 mos – 3.5 x Gd+ – Rt hemisphere	Steroids, IFN-β-1b sq	30 mos – 2.7 x 2.7 x 2.9 Gd+	NTZ	32 mos – 3 x 3.3 – Gd+	NTZ/ EDSS=3.5/ NC
3. 46/M	Dysarthria/ EDSS=2.0	4 mos – 1.5 & 1.3 x 1 – Rt occip Gd+	Steroids GA	39 mos – 1.1 x 0.9 Gd+	GA	No 3rd scan	GA/ EDSS=0
4. 45/F	Hemiparesis/ EDSS=4/	0 mos – 2.7 – Rt Fl Gd+	Steroids	8 mos – 2.8 x 3.4 Gd+	IFN-β-1a sq 2.67	54 mos – New Lg – T2 J/C & Sup Rt Fl	LTFU/ EDSS = 7/
5. 48/F	Wgt loss/EDSS=0/	1 mos – 1.4 x 2 – Rt post parietal	ACTH	13 mos – 2.4 x 2.3 x 2.4	dexameth	24 mos – 2.2 x 1.9 x 2.1 -T1 hypo	ACTH/ EDSS=0/
7. 33/F	Rt weakness/ EDSS=2/	3 mos – 2.5 x 1.2 x 1.4 – Rt denate	Steroids	8 mos – 2.3 x 2.3	IFN-β-1a sq 2.67	54 mos – New Lg – T2 J/C & Sup Rt Fl	LTFU/ EDSS = 7/
8. 52/F	Tremors/EDSS=2/	1 mos – 3.9 x 2.3 – Lt parietal	IFN-β-1b sq steroids	34 mos – 4.2 x 2.2	GA	No 3rd scan	GA/ EDSS=2/NC
9. 34/F	Headaches/EDSS=0/	0 mos – 1.4 – Lt CR Gd+	none	1 mos – 1.6 x 1.2 cm Gd+	none	3 mos – 1.4 cm Gd+	GA/ EDSS=0/NC
10. 47/F	Face numb/EDSS=2/ *	1 mos – 3 x 0.5 – Lt parietal Gd+	Steroids	32 mos – 0.8 cm Gd+	CTX	62 mos – 1.3 cm Gd+	GA/EDSS=2/
11. 27/M	Aphasia/ EDSS=4/	0 mos – Lg – Lt par temp mesial Gd+	Steroids	34 mos – 4.4 x 3 x 4 Gd+	Steroids	45 mos – 1.1 cm L cerebellum	CTX/EDSS=3/
12. 35/F	Lt face numb/EDSS=3.5/ *	9 mos – 6.5 x 3.2 x 3.5 – Lt Temp	Steroids GA	75 mos – Lg size – Rt temp	IFN-β-1a sq	80 mos – Lg size – Rt temp	IFN-β-1a sq/EDSS=3.5/ NC
13. 23/F	Lt hand weak/ EDSS= 2.0	2 mos – 5.0 – Rt par Gd+	IFN-β-1a sq	12 mos – 1.1 x 1.0 – Lt parietal	IFN-β-1a sq	LTFU	IFN-β-1a sq/EDSS= 2/0/
14. 45/M	Leg stiffness/ EDSS=3.5	26 mos – 2.0 – Rt Fl Gd+	GA	46 mos – 0.5 – Lt Fl Gd+	GA	75 mos – 1.7 x 2.3 – Lt Front Gd-	GA/EDSS=3/0/
Pt Age/sex	Sxs/EDSS/CSF/CIS-RIS	MRI #1 F/u (mos)-cm-location	Rx	MRI #2 F/u (mos) -cm-location	Rx	MRI #3 F/u (mos) - cm-location	Rx/EDSS/lesion evolution
15. 32/M	Rt side weakness/ EDSS=2.5	9 mos – 2.0 x 2.3 – Lt PV Gd+	IFN-β-1a sq	56 mos – 2.3 x 1.2 – Lt PV & 1.6 x 1.0 RT PV	GA	80 mos – 2.5 Lt PV & 1.5 Rt PV parietal	GA/EDSS = 1/
16. 59/M	Lt weakness/ EDSS=6/0/	1 mos – 4.6 x 2.7 – Rt par	Steroids	10 mos – Decreased size	Steroids	20 mos – Lt parietal resolved	Steroids/EDSS2.5/
17. 41/M	Lt field cut/EDSS=1/	0 mos – 5.5 x – Lt occip	Steroids	3 mos – 5.5 – Lt occip	Steroids	LTFU	IFN-β-1b sq/EDSS7/
18. 20/M	Lt numbness/ EDSS=4/	0 mos – 2.9 x 2.8 – Lt CSO Gd+	Steroids	1 mos – 6.4 x 8.4 x 6.4 Gd+	Steroids	3 mos – 2.8 x 3.3 Gd+	None/EDSS=4/ NC
19. 38/M	Dysarthria/ EDSS=2.5/	0 mos – 4.7 x 3.0 – Lt PV to JC Gd+	Steroids	6 mos – 1.4 splenium	Steroids	6 mos – 1.4 splenium	Steroids/EDSS=0/
20. 34/F	Aphasia/EDSS=2.5	0 mos – 2.5 Rt Fl -par Gd+	Steroids	3 mos – 2.5 Gd+	IFN-β-1b sq	LTFU	IFN-β-1b sq/EDSS=0/NC
21. 50/F	Seizures/EDSS=3.5/	0 mos – Lt Gd-	None	11 mos – 2.7 Gd+	LTFU	24 mos – 2 x 1.5 x 0.5 Gd+	None/ EDSS=1.5/
22. 29/F	Dysarthria/EDSS=2/	1 mos – 2.1 x 2.2 x 2.4 – Lt Par Gd+	Steroids	6 mos – 3.2 x 2.2 Gd+	Steroids	16 mos – 1.8 x 1.8 Gd+	None/EDSS = 2.5/
23. 39/M	Numbness Lt/ EDSS=4/	0 mos – 5.0 x – Rt Temp Gd+	Steroids	6 mos – 3.2 x 2.2 Gd+	Steroids	16 mos – 1.8 x 1.8 Gd+	None/EDSS = 2.5/
24. 32/F	Lt field cut/EDSS=0/	0 mos – 2.5 x 1.8 x 2.0 Lt -occip Gd+	Steroids	39 mos – Sig decreased	Steroids	42 mos – Lt parietal	Steroids/EDSS=0/
25. 46/F	Foot drop/EDSS=7.5	1 mos – Extensive entire pons post midbrain Gd+	Steroids CTX	2 mos – Gd+ pons/ Lt cerebellum	CTX	14 mos [cere les, pons-medulla unchanged	Steroids/EDSS=7.5 NC
26. 29/F	Lt numbness/EDSS=1.5	0 mos – 1.8 x 1.0 -Rt cereb ped	IFN-β-1a sq	12 mos – 0.5 x 0.8	CombrRx/ IFN-β-1a IM	42 mos resolved	Steroids/EDSS=1.1/

(continued)
Table 1 Continued.

Pt Age/sex	Sxs/EDSS/CSF/CIS-RIS	MRI #1 F/u (mos) – cm-location	Rx	MRI #2 F/u (mos) – cm-location	Rx	MRI #3 F/u (mos) – cm-location	Rx/EDSS/lesion evolution
27. 19/F	Lt leg clumsy/EDSS=3	0 mos – Lt Par – 19 cc (BOD) Gd+	GA	6 mos – Decreased 5 cc (BOD) Gd-	GA	20 mos Unchanged	GA/EDSS=0 [1]
28. 44/m	Rt side clumsy/ EDSS=3.5	0 mos –Lt temp 0.9 & Lt par 0.9 & 2.1 × 0.9 Lt PV	IFN-β-1a IM 4.03	IFN-β-1a IM	105 mos 2.2 × 0.8 & 1.1 × 1.0	IFN-β-1a IM/EDSS=3.5 [1]	

All measurements are given in centimeters (cm). Lesions on the 2nd or 3rd scan are in the same location unless otherwise noted. In the last column the last available symptoms and EDSS are given at the end of the entire observation period. Lesion resolution or expansion was based on dimensions and not on presence or absence of gadolinium enhancement. If gadolinium enhancement is not mentioned, there was no gadolinium enhancement. No patients were tested for AQP4 or MOG antibodies.

BOD = burden of disease.
Cere = cerebellum.
CIS = tumefactive lesion without attaining McDonald criteria 2010.
CR = corona radiata.
CSO = centrum semiovale.
CTX = cyclophosphamide.
EDSS = Expanded Disability Status Scale.
Ft = frontal.
GA = glatiramer acetate.
JC = juxtacortical.
Lg = large.
LTFU = lost to follow-up.
NTZ = natalizumab.
NC = no change.
Occip = occipital.
Par = parietal.
Post = posterior.
PV = periventricular.
RIS = radiographically isolated syndrome.
Rt = right.
Lt = left.
Sup = superior.
Sxs = symptoms.
[] = decreasing tumefactive lesion size.
[+] = increasing tumefactive lesion size.
[]-[] = decreasing tumefactive lesion size followed by increasing lesion size.
◊ Biopsy proven.
* = CSF + for OCBs or elevated IgG index; neg CSF = –.
observation period for all subjects and separately for subjects followed for at least 1 year (Table 2). Although our database is relatively limited by total time of observation (c. 25 months), EDSS did not increase over time in any of our subjects regardless of length of observation. In general, subjects with decreasing size of their tumefactive lesions (80%, 8/10) had decreased EDSS compared to those individuals who had no change in lesion size (33%, 3/9), increasing lesion size (50%, 1/2) or decreasing lesion size followed by increasing lesion size (0/2, none) for all patients. Subjects followed for a year or more also had decreased EDSS with decreasing size of their tumefactive lesions (78%, 7/9). There was no relation between the presence of an active CSF (n = 4) (CSF + for OCB (oligoclonal bands) or elevated IgG index) and changes in EDSS.

Table 2. Relationship between changes in expanded disability status scale (EDSS) score and lesion evolution.

MRI appearance	▲EDSS	▼EDSS	▼▼EDSS				
	F/U < 1 yr	F/U > 1 yr	F/U < 1 yr	F/U > 1 yr	F/U < 1 yr	F/U > 1 yr	
No change	0	6	4	3	1	9	5
▼ dimension	0	2	2	8	7	10	9
▼▼ dimension	0	2	1	1	0	3	1
▼▼▼ dimension	0	2	1	0	0	2	1
	0	12	8	12	8	24	16

EDSS scores are compared between the time of the tumefactive lesion and the last available clinical examination. Better clinical outcome – ▼ dimension v. no change; ▲ dimension or ▼▼ dimension in all patients (p < 0.005); for patients followed >1 year (p < 0.02).

Table 3. Lesion evolution after each MRI brain scan in relation to different therapeutic agents.

Agent	No change (NC)	▲ dimension	▼ dimension	Total Rx				
	F/U < 1 yr	F/U > 1 yr	F/U < 1 yr	F/U > 1 yr	F/U < 1 yr	F/U > 1 yr		
None	8	3	5	4	0	0	13	7
Steroids	5	3	7	7	2	1	14	11
ACTH	0	0	0	0	1	1	1	1
IFN-β-1b sq	2	2	0	0	0	0	2	2
GA	3	2	5	4	1	0	9	6
CTX	2	2	1	1	0	0	3	3
IFN-β-1a sq	1	2	3	2	3	2	7	6
NTZ	1	2	0	0	0	0	1	2
IFN-β-1a IM	0	0	0	0	1	1	0	0
TOTAL	22	16	21	18	8	5	43	39

Assessment of outcome was made from the first brain scan until the last brain scan. All agents taken by individual subjects were included during the time after the first scan and before the second or third MRI brain scan. Some subjects use multiple agents during the same interval, so the total number of agents is greater than the number of intervals between brain scans. ACTH = 5 days 80 IU sq × 5 days; steroids solumedrol 1 gm IV × 5 days; IFN-β-1a sq, glatiramer acetate, IFN-β-1a sq, natalizumab, and IFN-β-1a IM were given at standard periodic dosages during the intervals between MR scans; cyclophosphamide 800 mg/m² IV monthly.

There was a significant difference between treatment (14/18, 78%) v. no treatment (4/18, 22%) favouring treatment for decreasing lesion size for patients followed for more than 1 year (p < 0.02).
With regard to lesion regression and the relation-
ship to different therapeutic agents (Table 3), cor-
ticosteroids were associated with regression of
only half the tumefactive lesions (50\%, 7/14,
overall; 63\%, 7/11, followed for >1y r) .
However, corticosteroid use was also associated
with no change in lesion size (36\%, 5/14; 27\%,
3/11) and also increase in lesion dimensions
(14\%, 2/14; 9\%, 1/11). Subjects that received
no specific therapy had variable lesion outcomes;
decreased lesion size (38\%, 5/13; 42\%,
4/7) , n o
change (62\%, 8/10; 42\%,
3/5), or increased (50\%,
2/5) lesion size. The only disease
modifying agent that seemed to be associated with
subsequent lesion size regression was glatiramer
acetate (GA) (56\%, 5/9; 66\%,
4/6) while only one
lesion showed enlargement. This despite treat-
ment in larger lesions (GA treated 22.75 ml
±34 SD v. other treatments 4.5 ml ±3.25 SD)
and GA’s presumed delayed onset of activity.
However, our study is underpowered to establish a
clear beneficial relationship for GA. There was a sig-
nificant difference between treatment (Table 3, all
active Rx) and no treatment favouring treatment for
decreasing lesion size for patients followed for more
than 1 year (78\% v. 22\%). Incidentally, there was
no relation between the seven biopsy-proven demy-
elinating disease and outcome – four subjects had
decreased lesion size, three showed no change in
lesion dimensions and one had increase in
lesion size.

When we compared changes in EDSS in relation to
different therapeutic agents (Table 4), no therapy
was associated with subsequent clinical improve-
ment in 66\% (4/6) of cases (66\%, 2/3 followed
for >1 y r) . Corticosteroid use was followed by clin-
ical improvement in 45\% (5/11) of cases (42\%,
3/7
followed for >1 y r) while use of other therapeutic
agents trailed behind GA with an associated tran-
sient improvement in 57\% (4/7) that was not sus-
tained (0\%, 0/3 followed for >1 y r) . There were no
statistically significant different effects of one agent
compared to another.

We next asked about the effect of changes in gad-
olinium enhancement on lesion resolution (Table 5).
The majority of lesions showing a decrease in lesion
size changed from initial enhancing to subsequent
non-enhancing (72\%, 8/11; 75\%, 6/8). Those
lesions showing no enhancement throughout obser-
vation showed decreased (62\%, 8/13; 42\%,
3/7). The only disease modifying agent that seemed to be associated with
subsequent lesion size regression was glatiramer
acetate (GA) (56\%, 5/9; 66\%,
4/6) while only one
lesion showed enlargement. This despite treat-
ment in larger lesions (GA treated 22.75 ml
±34 SD v. other treatments 4.5 ml ±3.25 SD)
and GA’s presumed delayed onset of activity.
However, our study is underpowered to establish a
clear beneficial relationship for GA. There was a sig-
nificant difference between treatment (Table 3, all
active Rx) and no treatment favouring treatment for
decreasing lesion size for patients followed for more
than 1 year (78\% v. 22\%). Incidentally, there was
no relation between the seven biopsy-proven demy-
elinating disease and outcome – four subjects had
decreased lesion size, three showed no change in
lesion dimensions and one had increase in
lesion size.

When we compared changes in EDSS in relation to
different therapeutic agents (Table 4), no therapy
was associated with subsequent clinical improve-
ment in 66\% (4/6) of cases (66\%, 2/3 followed
for >1 y r) . Corticosteroid use was followed by clin-
ical improvement in 45\% (5/11) of cases (42\%,
3/7
followed for >1 y r) while use of other therapeutic
agents trailed behind GA with an associated tran-
sient improvement in 57\% (4/7) that was not sus-
tained (0\%, 0/3 followed for >1 y r) . There were no
statistically significant different effects of one agent
compared to another.

We next asked about the effect of changes in gad-
olinium enhancement on lesion resolution (Table 5).
The majority of lesions showing a decrease in lesion
size changed from initial enhancing to subsequent
non-enhancing (72\%, 8/11; 75\%, 6/8). Those
lesions showing no enhancement throughout obser-
vation showed decreased (27\%, 3/11; 25\%, 2/8), no
change (60\%, 6/10; 40\%, 2/5), or increased (50\%,
3/6; 40\%, 2/5) lesion size. There was a trend for
lesions converting from Gd+ to Gd- with decreasing
lesion size in all patients and for patients followed
for more than a year (p < 0.10).
The review of our clinical database identified 28 MS patients who were diagnosed with tumefactive demyelination by our MS neurologists. The mean period of observation was 25 months (>2 years). The most compelling finding is that clinical improvement over the time of observation was associated with decreased size of the tumefactive lesions in the short term and in patients followed for >1 year. No patients increased their EDSS. Treatment was linked with decreasing lesion size for patients followed for more than 1 year. Corticosteroid infusions also decreased EDSS. The disease modifying compound GA did show short-term but no longer-term beneficial clinical effects compared to the other disease modifying agents. Finally, there was a trend for decrease in lesion size in subjects with Gd+ lesions at presentation and subsequent absence of enhancement on follow up. Our conclusions are supported by a lack of an apparent treatment bias between conservative and aggressive therapies since cyclophosphamide (CTX) and natalizumab were only used in three patients and patients not given treatment did not have significantly smaller lesions compared to patients given any therapy (data not shown).

There is a dearth of information on untreated tumefactive demyelination lesions in the literature. In most reports, patients were treated with corticosteroids. Our finding that patients in our cohort do well overall conforms to previous experience. Steroids do have beneficial effects in reducing lesion size12 and resolving clinical disease13–15 although steroid responsiveness is not universal.16–18 Only half of our steroid treated patients had reduction in lesion size. In one large series, 75% of lesions resolved over 4 months.19 However, the response to steroids was incomplete, as 38.5% of the patients had residual neurological deficits and 8% did not improve at all.19 Tumefactive lesions are not exquisitely sensitive to steroids and steroids do not have a universal beneficial effect. Cyclophosphamide has also shown therapeutic benefits.20

There is little if any comment on the effect of disease modifying therapy on the evolution of tumefactive lesions in the existing literature although we had no patients using fingolimod as a DMT.11,21 Therefore, our cohort of tumefactive MS may predict a more benign overall course and be susceptible to traditional immunomodulatory treatments. Our data buttresses other investigators about prognosis in tumefactive demyelination not being different compared to typical MS.22 The underlying biochemical pathways responsible for large lesion devolution or regression might be a way to study repair mechanisms using tumefactive demyelination subsets prone to milder disease.

Table 5. The effect of changes in gadolinium enhancement on tumefactive lesion resolution.

Δ lesion size	Gd+ → Gd-	Gd+ → Gd+	Gd- → Gd+	Gd- → Gd-	Total lesions			
	F/U < 1 yr	F/U > 1 yr	F/U < 1 yr	F/U > 1 yr	F/U < 1 yr	F/U > 1 yr		
No change	3	2	1	1	6	2	10^a	5^f
↓ 8^a	6^b	0	0	0	3^c	2^d	11^a,c	8^b,d
↑ 2	2	0	0	1	3^e	2^f	6^g	5^h

The initial brain scans (MRI#1) were either enhancing (Gd+) or non-enhancing (Gd-). The initial brain scan (MRI#1) was compared to the final brain scan (MRI#2 or MRI#3) for presence or absence of enhancement.

^aGd+ → Gd- decreasing lesion size all
^bGd+ → Gd- decreasing lesion size >1 yr
^cGd+ → Gd- decreasing lesion size all
^dGd+ → Gd- decreasing lesion size >1 yr
^eGd- → Gd- NC lesion size all
^fGd- → Gd- NC lesion size all >1 yr
^gGd- → Gd- decreasing lesion size all
^hGd- → Gd- decreasing lesion size >1 yr
Availability of data and materials
Not applicable.

Conflicts of interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethical approval and consent to participate
Not applicable.

ORCID iD
Staley A Brod https://orcid.org/0000-0003-3713-8890

References
1. Frohman EM, Racke MK and Raine CS. Multiple sclerosis: The plaque and its pathogenesis. *N Engl J Med*. 2006; 354: 942–955.
2. Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. *N Engl J Med*. 2000; 343: 938–952.
3. Caroli E, Salvati M and Ferrante L. Tumor-like multiple sclerosis: Report of four cases and literature review. *Tumori*. 2006; 92: 559–562.
4. Patriarca L, Torlone S, Ferrari F, et al. Is size an essential criterion to define tumefactive plaque? MR features and clinical correlation in multiple sclerosis. *Neuroradiol J*. 2016; 29: 384–389.
5. Given CA, II, Stevens BS and Lee C. The MRI appearance of tumefactive demyelinating lesions. *AJR Am J Roentgenol*. 2004; 182: 195–199.
6. Kepes JJ. Large focal tumor-like demyelinating lesions of the brain: intermediate entity between multiple sclerosis and acute disseminated encephalomyelitis? A study of 31 patients. *Ann Neurol*. 1993; 33: 18–27.
7. Turatti M, Gajofatto A, Bianchi MR, et al. Benign course of tumour-like multiple sclerosis. Report of five cases and literature review. *J Neurol Sci*. 2013; 324: 156–162.
8. Lucchinetti CF, Gavrilova RH, Metz I, et al. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. *Brain*. 2008; 131: 1759–1775.
9. Hardy TA and Chataway J. Tumefactive demyelination: An approach to diagnosis and management. *J Neurol Neurosurg Psychiatry*. 2013; 84: 1047–1053.
10. Poser S, Luer W, Bruhn H, et al. Acute demyelinating disease: Classification and non-invasive diagnosis. *Acta Neurol Scand.* 1992; 86: 579–585.
11. Sanchez P, Meca-Lallana V and Vivancos J. Tumefactive multiple sclerosis lesions associated with fingolimod treatment: Report of 5 cases. *Multiple sclerosis and related disorders*. 2018; 25: 95–98.
12. Altintas A, Petek B, Isik N, et al. Clinical and radiological characteristics of tumefactive demyelinating lesions: Follow-up study. *Mult Scler*. 2012; 18: 1448–1453.
13. Akimoto J, Nakajima N, Saída A, et al. Monofocal acute inflammatory demyelination manifesting as open ring sign. *Case report. Neurologia medico-chirurgica*. 2006; 46: 353–357.
14. Guilt Doyle MR and Kirollos RW. Tumefactive demyelinating lesion. *Neurology*. 2007; 68: 2155.
15. Selkirk SM and Shi J. Relapsing-remitting tumefactive multiple sclerosis. *Mult Scler*. 2005; 11: 731–734.
16. Seifert CL, Wegner C, Sprenger T, et al. Favourable response to plasma exchange in tumefactive CNS demyelination with delayed B-cell response. *Mult Scler*. 2012; 18: 1045–1049.
17. Wattamwar PR, Baheti NN, Kesavadas C, et al. Evolution and long-term outcome in patients presenting with large demyelinating lesions as their first clinical event. *J Neurol Sci*. 2010; 297: 29–35.
18. Mao-Draayer Y, Braff S, Pendlebury W, et al. Treatment of steroid-unresponsive tumefactive demyelinating disease with plasma exchange. *Neurology*. 2002; 59: 1074–1077.
19. Nagappa M, Taly AB, Sinha S, et al. Tumefactive demyelination: Clinical, imaging and follow-up observations in thirty-nine patients. *Acta Neurol Scand*. 2012; 138: 39–47.
20. Dastgir J and DiMario FJ, Jr. Acute tumefactive demyelinating lesions in a pediatric patient with known diagnosis of multiple sclerosis: Review of the literature and treatment proposal. *J Child Neurol*. 2009; 24: 431–437.
21. Visser F, Wattjes MP, Ponzels PJ, et al. Tumefactive multiple sclerosis lesions under fingolimod treatment. *Neurology*. 2012; 79: 2000–2003.
22. Balloy G, Pelletier J, Suchet L, et al. Inaugural tumor-like multiple sclerosis: Clinical presentation and medium-term outcome in 87 patients. *J Neurol*. 2018; 265: 2251–2259.