Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacteria that can cause acute infectious disease in livestock and wild ungulates (1). Humans are generally incidental hosts that acquire infection through handling contaminated meat or other animal products. Historically, B. anthracis was a subject of state-sponsored biowarfare research and currently poses a risk for illicit use as an agent of bioterrorism (2). B. anthracis exhibits global distribution and continues to present a significant public and animal health risk.

B. anthracis virulence is associated with two megaplasmids, pXO1 and pXO2 (3, 4). Toxigenic but attenuated live spore anthrax vaccines, lacking either of the virulence plasmids, have been in wide use since the 1930s. The most prevalent livestock vaccine is the live, nonencapsulated (pXO2) spore suspension of the Sterne strain developed in 1957 (5). In the Soviet Union, live-attenuated anthrax vaccine spore suspensions were also developed (6). Russian anthrax vaccine strains such as the Tsiankovskii-I strain and anthrax vaccine spore suspensions were also developed (5). In addition, preliminary whole-genome comparisons suggest strain 55-VNIIViM falls within the newly identified STI group (13). The genome of strain 55-VNIIViM has been made available for further cross-comparisons with other global representatives of B. anthracis.

Accession number(s). The whole-genome shotgun project for strain 55-VNIIViM has been deposited at DDBJ/ENA/GenBank under the accession number MLJX0000000. The version described in this paper is the first version, MLJX01000000.

ACKNOWLEDGMENTS

The work was made possible in part through funding by the U.S. Defense Threat Reduction Agency’s Cooperative Biological Engagement Program in Tbilisi, Georgia, administered by Metabiota.

FUNDING INFORMATION

The work was made possible in part through funding by the U.S. Defense Threat Reduction Agency’s Cooperative Biological Engagement Program administered by Metabiota.

REFERENCES

1. Turnbull PC. 2002. Introduction: anthrax history, disease and ecology.Curr Top Microbiol Immunol 271:1–19. http://dx.doi.org/10.1007/978-3-662-05767-4_1

2. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, Hauer J, McDade J, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K. 1999. Anthrax as a biological weapon: medical and public health management. JAMA 281:1735–1745. http://dx.doi.org/10.1001/jama.281.18.1735.
3. Mock M, Fouet A. 2001. Anthrax. Annu Rev Microbiol 55:647–671. http://dx.doi.org/10.1146/annurev.micro.55.1.647.
4. LePpla SH. 1995. Anthrax toxins, p 543–572. In Moss J, Igleski B, Vaughn M, Tu AT (ed.), Bacterial toxins and virulence factors in disease. Marcel Dekker, New York, NY.
5. Sterne M. 1939. The use of anthrax vaccines prepared from avirulent (uncapsulated) variants of Bacillus anthracis. Onderstepoort J Vet Sci Anim Ind 13:307–312.
6. Shlyakhov EN, Rubinstein E. 1994. Human live anthrax vaccine in the former USSR. Vaccine 12:727–730.
7. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton A, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. http://dx.doi.org/10.1093/bioinformatics/bts199.
8. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsmka K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.
9. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomas N, White O. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. Omics 12:137–141. http://dx.doi.org/10.1089/omi.2008.0017.
10. Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J, Zanecki SR, Pearson T, Simonson TS, U’Ren JM, Kachur SM, Leadem-Dougherty RR, Rhoton SD, Zinser G, Farlow J, Coker PR, Smith KL, Wang B, Kenefic LJ, Fraser-Liggett CM, Wagner DM, Keim P. 2007. Global genetic population structure of Bacillus anthracis. PLoS One 2:e241. http://dx.doi.org/10.1371/journal.pone.0000461.
11. Kenefic LJ, Pearson T, Okinaka RT, Schupp JM, Wagner DM, Hoffmaster AR, Trim CB, Trim CP, Chung WK, Beaudry JA, Jiang L, Gajer P, Foster JT, Mead J, Ravel J, Keim P. 2009. Pre-Columbian origins for North American anthrax. PLoS One 4:e4813. http://dx.doi.org/10.1371/journal.pone.0004813.
12. Afanas’ev MV, Kravets EV, Dugarzhapova ZF, Takaishvili VE, Polovinkina VS, Balakhonov SV. 2014. Comparative multilocus VNTR and SNP analysis of Bacillus anthracis vaccine strains. Mol Genet Microbiol Virol 29:86–92. http://dx.doi.org/10.3103/S0891416814020025.
13. Sahl JW, Pearson T, Okinaka R, Schupp JM, Gilleece JD, Heaton H, Birdsell D, Hepp C, Fofanov V, Noseda R, Fasanella A, Hoffmaster A, Wagner DM, Keim P. 2016. A Bacillus anthracis genome sequence from the Sverdlovsk 1979 autopsy specimens. mBio 7:e01501-16.