First report of Cryptosporidium canis in farmed Arctic foxes (Vulpes lagopus) in China

Xiao-Xuan Zhang1,2†, Wei Cong1,2†, Jian-Gang Ma1, Zhi-Long Lou1,2, Wen-Bin Zheng1, Quan Zhao2 and Xing-Quan Zhu1,2*

Abstract

Background: Cryptosporidium is an important genus of enteric zoonotic parasites, which can infect a wide range of animals including foxes. Little information is available concerning the prevalence and molecular characterisation of Cryptosporidium spp. in farmed Arctic foxes (Vulpes lagopus) in China. Thus, the objective of the present study was to investigate the prevalence of Cryptosporidium spp. in Arctic foxes in China using nested PCR amplification of the small subunit ribosomal RNA (SSU rRNA) gene.

Findings: The overall prevalence of Cryptosporidium spp. in Arctic foxes was 15.9 % (48/302), with 12.9 % in male (18/139) and 18.4 % in female (30/163) foxes, respectively. The prevalence in different farms varied from 0 to 31.43 %. The prevalence of infection in different age groups varied from 14.1 % to 19.0 %. Foxes from Hebei Province (7.8 %, 11/141) had a significantly lower Cryptosporidium spp. prevalence than those from Heilongjiang Province (22.9 %, 16/70) and Jilin Province (23.1 %, 21/91) (P = 0.0015). Sequence analysis of the SSU rRNA gene indicated that all the 48 isolates represented C. canis.

Conclusions: This is the first report of C. canis infection in farmed Arctic foxes in China, which also provides foundation data for preventing and controlling Cryptosporidium infection in foxes, other animals and humans.

Keywords: Cryptosporidium canis, Prevalence, Arctic fox, China

Findings

Background

Cryptosporidiosis is caused by species of Cryptosporidium, important zoonotic protozoan parasites [1–3]. Cryptosporidium spp. not only have a cosmopolitan distribution but can also infect a wide range of animals including foxes [1, 4]. Humans and animals are often infected through faecal-oral route and infection can result in acute or chronic diarrhea and even death [3, 5]. So far, more than 17 Cryptosporidium species/genotypes, such as C. andersoni, C. parvum, C. hominis, C. meleagris, C. felis, C. canis, C. muris, C. suis and Cryptosporidium sp. deer genotype, have been identified in humans [6–10], but only C. parvum, Cryptosporidium sp. muskrat genotype II and C. canis have been found in foxes [6, 11, 12].

The Arctic fox (Vulpes lagopus) is common in the Arctic regions [4], and has been imported to China from the former Soviet Union in the 1950s [13]. In China, with the improvement of living standards, Arctic foxes were commonly raised by farmers to provide furs for humans. More importantly, because of the close relationship between farmed foxes and humans, foxes can transfer indirectly or directly many pathogens to humans, such as T. gondii [14]. Some studies concerning Cryptosporidium spp. infections in foxes have been reported [4, 6, 12, 15], but no such information about Cryptosporidium spp. prevalence in foxes is available in China. The objective of the present study was to estimate the prevalence of Cryptosporidium infection in farmed foxes in China, for the first time.

* Correspondence: xingquanzhu1@hotmail.com
† Equal contributors
1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
2 College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province 130118, PR China

© 2016 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Methods

Ethics statement
This study was approved by the Animal Ethics Committee of Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (Approval No. LVRIAEC2013010). The Arctic foxes from which the faeces were collected, were handled in accordance with good animal practices required by the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

Specimen collection
A total of 302 faecal samples from 91 foxes in Jilin Province, from 70 foxes in Heilongjiang Province, and from 141 foxes from Hebei Province, were collected in 2014. All foxes were in good health during the sampling time. Fresh faecal samples were collected from each animal using sterile gloves immediately after the defecation onto the ground and transported to the laboratory. Information regarding geographical origin, gender and age of the foxes were acquired by a questionnaire.

DNA extraction and PCR amplification
Genomic DNA was extracted from faeces using an EZNAR Stool DNA kit (OMEGA, USA) following the manufacturer’s instructions and stored at -20 °C until PCR analysis. Cryptosporidium species/genotypes were identified by nested PCR amplification of the small subunit ribosomal RNA (SSU rRNA) gene [3]. Every amplification included positive and negative controls. Amplification products were visualised on 1.5 % agarose gels containing GoldView™ (Solarbio, China).

Sequencing and phylogenetic analyses
Positive secondary PCR products from foxes were sequenced by the Genscript Company (Nanjing, China). Cryptosporidium species/genotypes were identified by comparison with reference sequences using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and computer program Clustal X 1.83. Phylogenetic relationships of Cryptosporidium spp. were reconstructed using Neighbour-Joining (NJ) method implemented in Mega 5.0 (Kimura 2-parameter model, 1,000 replicates). All representative nucleotide sequences obtained were deposited in the GenBank under accession numbers KU215430-KU215436.

Statistical analysis
The variation in Cryptosporidium spp. prevalence (y) in foxes in relation to geographical location (x1), gender (x2) and age (x3) were analysed by χ2 test using SAS version 9.1 (SAS Institute Inc., USA). Using multivariable regression analysis each of these variables was included in the binary Logit model as an independent variable. The best model was identified by Fisher’s scoring algorithm. All tests were two-sided. Results were considered statistically significant at P < 0.05. Odds ratios (ORs) with 95 % confidence intervals (95 % CI) were also calculated.

Results and discussion
A total of 48 out of 302 Arctic foxes (15.9 %) were tested Cryptosporidium-positive by nested PCR amplification of the SSU rRNA gene (Table 1). The prevalence in different farms varied from 0 to 31.4 % (data not shown). Cryptosporidium spp. prevalence was 14.1 % (9/64) in pre-weaned foxes, 15.6 % (28/180) in young foxes, and 19.0 % (11/58) in adult foxes (Table 1). The prevalence in different regions varied between 7.8–23.1 % (Table 1). Moreover, female foxes (18.4 %, 30/163) had a higher Cryptosporidium prevalence than males (12.9 %, 18/139), although the differences were not significant (Table 1). Sequence analysis of the SSU rRNA gene indicated that all of the 48 isolates represented C. canis (Fig. 1).

In the present study, the overall Cryptosporidium spp. prevalence was 15.9 % (95 % CI 11.8–20.0) (Table 1), which was higher than that in wild Arctic foxes in the central Canadian Arctic (9 %) [4], wild foxes in wetlands

Table 1	Prevalence of Cryptosporidium canis in farmed foxes in Jilin, Heilongjiang and Hebei Provinces, northern China					
Region	Category	No. of tested	No. of positive	Prevalence (%) (95 % CI)	Odds Ratios (OR) (95 % CI)	P-value
Hebei Province	141	11	7.8 (3.4–12.2)	Reference	0.0015	
Heilongjiang Province	70	16	22.9 (13.0–32.7)	3.5 (1.5–8.0)		
Jilin Province	91	21	23.1 (14.4–31.7)	3.6 (1.6–7.8)		
Gender	Male	139	18	12.9 (7.4–18.5)	Reference	0.1962
	Female	163	30	18.4 (12.5–24.4)	1.5 (0.8–2.9)	
Age	Pre-weaned	64	9	14.1 (5.6–22.6)	Reference	0.7463
	Young	180	28	15.6 (10.3–20.9)	1.1 (0.5–2.5)	
	Adult	58	11	19.0 (8.9–29.1)	1.4 (0.6–3.8)	
Total		302	48	15.9 (11.8–20.0)		

Zhang et al. Parasites & Vectors (2016) 9:126

Page 2 of 4
adjacent to the Chesapeake Bay, USA (8 %) [6], wild red foxes in Ireland (1.6 %) and Warwickshire, UK (8.7 %) [12], and Norway (2.2 %) [16], but lower than that in red foxes in the Slovak Republic (38.7 %) [11]. These differences might be related to the detection methods, age distribution of the samples, the timing of sample collection, sample sizes and geo-ecological conditions in the investigation regions.

The effects of geographical location, gender and age were analysed using univariate analysis. The impacts of multiple variables on the prevalence of *C. canis* were evaluated by forward stepwise logistic regression analysis using Fisher’s scoring technique. In the final model, only one variable had a significant effect, described by the equation \(y = 0.5964x_1 + 0.4646 \). Region of origin has a positive effect on the risk of *C. canis* (OR = 1.8, 95 % CI 1.3–2.6). Foxes collected from the Jilin Province (23.1 %, OR = 3.6, 95 % CI 1.6–7.8) and Heilongjiang Province (22.9 %, OR = 3.5, 95 % CI 1.5–8.0) were found to be more susceptible than those collected from the Hebei Province (7.8 %, 95 % CI 3.4–12.2, \(P = 0.0015 \)) (Table 1).

Three *Cryptosporidium* species/genotypes (*C. parvum*, *C. canis* and *Cryptosporidium* sp. muskrat genotype II) have been found in foxes [4, 6, 12, 15]. Of these, *C. parvum* and *C. canis* have also been reported in humans [17, 18] suggesting that foxes could be a potential resource for humans acquiring cryptosporidiosis. In the present study, all of the 48 *Cryptosporidium*-positive samples represented *C. canis* (Fig. 1), which was similar to previous studies showing that *C. canis* is more prevalent in foxes [4, 6, 11, 16]. However, probably due to the smaller sample sizes, *C. parvum* and *Cryptosporidium* sp. muskrat genotype II were not found in the present study.

Conclusions

The results of the present study indicated the existence (15.9 %, 48/302) of *C. canis* infections in farmed Arctic foxes in northern China. Logistic regression analysis indicated that region was the significant risk factor shown by this study for *Cryptosporidium* spp. infection in the foxes examined. The data could provide a foundation for the prevention and control of *Cryptosporidium* spp. infections in foxes, other animals and humans.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

XQZ and XXZ conceived and designed the study and critically revised the manuscript. XXZ, WC, JGM and ZLL performed the experiments. XXZ and WC analysed the data. XXZ drafted the manuscript. WBZ and QZ helped in study design and implementation. All authors read and approved the final manuscript.

Acknowledgements

Project support was provided by the National Key Project of Scientific and Technical Supporting Program (Grant No. 2012BAD12B07) and the Science Fund for Creative Research Groups of Gansu Province (Grant No. 1210RJA006).
References

1. Kaupke A, Reezukla A. Emergence of novel subtypes of Cryptosporidium parvum in calves in Poland. Parasitol Res. 2015;114:4709–16.

2. Liu A, Zhang J, Zhao J, Zhao W, Wang R, Zhang L. The first report of Cryptosporidium andersoni in horses with diarrhea and multilocus subtype analysis. Parasit Vectors. 2015;8:483.

3. Qin SY, Zhang XX, Zhao GH, Zhou DH, Yin MY, Zhao Q, et al. First report of Cryptosporidium spp. in white yaks in China. Parasit Vectors. 2014;7:230.

4. Elmore SA, Lalonde LF, Samelius G, Alisauskas RT, Gajadharp AA, Jenkins EJ. Endoparasites in the feces of arctic foxes in a terrestrial ecosystem in Canada. Int J Parasitol. 2013;2:90–6.

5. Wang T, Chen Z, Xie Y, Hou R, Wu Q, Gu X, et al. Prevalence and molecular characterization of Cryptosporidium in giant panda (Ailuropoda melanoleuca) in Sichuan province, China. Parasit Vectors. 2015;8:344.

6. Zhou L, Fayer R, Trout JM, Ryan UM, Schaefer 3rd FW, Xiao L. Genotypes of Cryptosporidium species infecting fur-bearing mammals differ from those of species infecting humans. Appl Environ Microbiol. 2004;70:7574–7.

7. Ong CS, Eisler DL, Alikhani A, Fung VW, Tomblin J, Bowie WR, et al. Novel Cryptosporidium genotypes in sporadic cryptosporidiosis cases: first report of human infections with a cervine genotype. Emerg Infect Dis. 2002;8:263–8.

8. Xiao L, Bern C, Arrowood M, Sulaiman I, Zhou L, Kawai V, et al. Identification of the Cryptosporidium pig genotype in a human patient. J Infect Dis. 2002;185:1846–8.

9. Xiao L, Bern C, Limor J, Sulaiman I, Roberts J, Checkley W, et al. Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. J Infect Dis. 2001;183:492–7.

10. Ehsan AM, Geurden T, Cesaert S, Parvin SM, Islam TM, Ahmed UM, et al. Assessment of zoonotic transmission of Giardia and Cryptosporidium between cattle and humans in rural villages in Bangladesh. PLoS One. 2015;10:e0118239.

11. Ravaszova P, Halanova M, Goldova M, Valencakova A, Malcekova B, Humiková Z, et al. Occurrence of Cryptosporidium spp. in red foxes and brown bear in the Slovak Republic. Parasitol Res. 2012;110:469–71.

12. Nagano Y, Finn MB, Lowery CJ, Murphy T, Moriarty J, Power E, et al. Occurrence of Cryptosporidium parvum and bacterial pathogens in faecal material in the red fox (Vulpes vulpes) population. Vet Res Commun. 2007;31:559–64.

13. Zhang PY. The approach of fox species devolution and measures for development in China. Ani Sci & Vet Med. 2001;18:71–2 (In Chinese).

14. Prestrud KW, Dubey JP, Asbakk K, Fuglei E, Su C. First isolate of Toxoplasma gondii from arctic fox (Vulpes lagopus) from Svalbard. Vet Parasitol. 2008;151:110–4.

15. Sturdee AP, Chalmers RM, Null SA. Detection of Cryptosporidium oocysts in wild mammals of mainland Britain. Vet Parasitol. 1999;80:273–80.

16. Hamnes IS, Gjerde BK, Forberg T, Robertson LJ. Occurrence of Giardia and Cryptosporidium in Norwegian red foxes (Vulpes vulpes). Vet Parasitol. 2007;143:347–53.

17. Adamu H, Petros B, Zhang G, Kassa H, Amer S, Ye J, et al. Distribution and clinical manifestations of Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLoS Negl Trop Dis. 2014;8:2831.

18. Kinross P, Beser J, Troell K, Avén C, Björkman C, Lebbad M, et al. Cryptosporidium parvum infections in a cohort of veterinary students in Sweden. Epidemiol Infect. 2015;143:2748–56.