THE SERENDIPITOUS EXTRAGALACTIC X-RAY SOURCE IDENTIFICATION PROGRAM. I. CHARACTERISTICS OF THE HARD X-RAY SAMPLE

Fiona A. Harrison, 1 Megan E. Eckart, 1 Peter H. Mao, 1 David J. Helfand, 2 and Daniel Stern 3

Received 2003 February 23; accepted 2003 June 10

ABSTRACT

The Serendipitous Extragalactic X-Ray Source Identification (SEXSI) program is designed to extend greatly the sample of identified extragalactic hard X-ray (2–10 keV) sources at intermediate fluxes (\(\sim 10^{-13}\) to \(10^{-11}\) ergs cm\(^{-2}\) s\(^{-1}\)). SEXSI, which studies sources selected from more than 2 deg\(^2\), provides an essential complement to the Chandra Deep Fields, which reach depths of \(5 \times 10^{-16}\) ergs cm\(^{-2}\) s\(^{-1}\) (2–10 keV) but over a total area of less than 0.2 deg\(^2\). In this paper we describe the characteristics of the survey and our X-ray data analysis methodology. We present the cumulative flux distribution for the X-ray sample of 1034 hard sources and discuss the distribution of spectral hardness ratios. Our log \(N - \log S\) in this intermediate flux range connects to those found in the Deep Fields, and by combining the data sets, we constrain the hard X-ray population over the flux range in which the differential number counts change slope and from which the bulk of the 2–10 keV X-ray background arises. We further investigate the log \(N - \log S\) distribution separately for soft and hard sources in our sample, finding that while a clear change in slope is seen for the softer sample, the hardest sources are well described by a single power law down to the faintest fluxes, consistent with the notion that they lie at lower average redshift.

Subject headings: catalogs — surveys — X-rays: galaxies — X-rays: general

On-line material: machine-readable tables

1. INTRODUCTION

A primary scientific motivation for developing the Chandra X-Ray Observatory was to perform surveys of the extragalactic sky up to 10 keV. The combination of Chandra’s superb angular resolving power and high-energy response is enabling the detection and optical identification of hard X-ray source populations at much fainter fluxes than previously possible (Weisskopf, O’Dell, & van Speybroeck 1996). Exposure times of 1 Ms in each of two deep fields, the Chandra Deep Field–North (CDF-N; Brandt et al. 2001) and –South (CDF-S; Giacconi et al. 2002) reach depths of \(5 \times 10^{-16}\) ergs cm\(^{-2}\) s\(^{-1}\) (2–10 keV) and have resolved most of the X-ray background up to 7 keV. Optical spectroscopic follow-up of a sample of the Deep-Field sources has revealed a diverse counterpart population (Rosati et al. 2002; Barger et al. 2002). Attention is now concentrated on understanding the physical nature of the counterparts, as well as their evolution over cosmic time.

Wider field-of-view surveys provide an essential complement to the Deep Fields, which in total cover less than 0.2 deg\(^2\), particularly for this latter objective. Large area coverage is essential for providing statistically significant source samples at intermediate to bright fluxes (\(S_{2-10\text{keV}} \sim 10^{-13}\) to \(10^{-15}\) ergs cm\(^{-2}\) s\(^{-1}\)). At the bright end of this flux range, there are only \(~20\) sources deg\(^{-2}\), so that several square degrees must be covered to obtain significant samples. Spectroscopic identification of a large fraction of these is necessary to sample broad redshift and luminosity ranges

1 Space Radiation Laboratory, MS 220-47, California Institute of Technology, Pasadena, CA 91125.
2 Department of Astronomy, 550 West 120th Street, Columbia University, New York, NY 10027.
3 Jet Propulsion Laboratory, MS 169-506, California Institute of Technology, Pasadena, CA 91109.

and to determine space densities of seemingly rare populations such as high-redshift type 2 QSOs, which appear about once per 100 ks Chandra field (Stern et al. 2002a).

Wide-field hard X-ray surveys undertaken with instruments prior to Chandra and XMM-Newton made preliminary investigations of the bright end of the hard source populations, although the positional accuracy achievable with these experiments was insufficient to securely identify a large number of counterparts. The BeppoSAX High-Energy Large-Area Survey (HELLAS; La Franca et al. 2002) identified 61 sources either spectroscopically or from existing catalogs in 62 deg\(^2\) to a flux limit of \(S_{2-10\text{keV}} = 5.0 \times 10^{-14}\) ergs cm\(^{-2}\) s\(^{-1}\). The ASCA Large Sky Survey identified 31 extragalactic sources in 20 deg\(^2\) (Akiyama et al. 2000), with the recent addition of 85 more spectroscopically identified sources from the ASCA Medium Sensitivity Survey (Akiyama, Ueda, & Ohta 2003) to a flux threshold of \(S_{2-10\text{keV}} = 1.0 \times 10^{-13}\) ergs cm\(^{-2}\) s\(^{-1}\). Such surveys have yet been published.

We present here the Serendipitous Extragalactic X-Ray Source Identification (SEXSI) program, a new hard X-ray survey designed to fill the gap between wide-area, shallow
surveys and the Chandra Deep Fields. The survey has accumulated data from 27 Chandra fields selected from Guaranteed Time Observer (GTO) and Guest Observer observations, covering more than 2^deg^2. We have cataloged more than 1000 sources in the 2–10 keV band, have completed deep optical imaging over most of the survey area, and have obtained spectroscopic data on ~350 objects. Table 1 summarizes the published 2–10 keV X-ray surveys and demonstrates the contribution of the SEXSI program. Tabulated flux values have been corrected to the energy band of 2–10 keV and to the spectral assumptions adopted here (see §3.1), as detailed in the footnotes to the table. In the flux range of 10^{-13} to 10^{-15} ergs cm$^{-2}$ s$^{-1}$, the seven existing surveys have discovered a total of 789 sources, several hundred fewer than the total presented here. In the flux range 10^{-15} to 3×10^{-15} ergs cm$^{-2}$ s$^{-1}$ that lies between the ASCA and BeppoSAX sensitivity limits and the Chandra Deep Survey capability, where the log N–log S relation changes slope and from which the bulk of the 2–10 keV X-ray background arises (Cowie et al. 2002), we more than triple the number of known sources. Figure 1 illustrates our areal coverage in comparison with that of previous work, emphasizing how SEXSI complements previous surveys.

In this paper we present the survey methodology and X-ray data analysis techniques adopted, the X-ray source catalog, and the general characteristics of the X-ray source sample. In a companion paper (M. E. Eckart et al. 2003, in preparation, hereafter Paper II), we provide a summary of our optical follow-up work, including a catalog of R magnitudes (and upper limits thereto) for over 1000 serendipitous X-ray sources, as well as redshifts and spectral classifications for ~350 of these objects, and discuss the luminosity distribution, redshift distribution, and composition of the sample. Future papers will address detailed analyses of the different source populations, as well as field-to-field variations.

2. SELECTION OF CHANDRA FIELDS

We selected fields with high Galactic latitude ($|b| > 20^\circ$) and with declinations accessible to the optical facilities available to us ($\delta > -20^\circ$). We used observations taken with the Advanced Camera for Imaging Spectroscopy (ACIS I- and S-modes; Bautz et al. 1998) only (for sensitivity in the hard band). All the fields presented in this paper have data that are currently in the Chandra public archive, although in many cases we made arrangements with the target principal investigator for advanced access in order to begin spectroscopic observations prior to public release of the data. Table 2 lists the 27 survey fields by target and includes the target type and redshift if known, the coordinates of the field center, the Galactic neutral hydrogen column density in this direction (Dickey & Lockman 1990), the X-ray exposure time, and the ACIS chips reduced and included in this work. The observations included in our survey represent a total of 1.65 Ms of on-source integration time and include data from 134 $8' \times 8'$ ACIS chips. Net exposure times range from 18 to 186 ks; a histogram of exposure times is given in Figure 2. Targets include a

TABLE 1

Log Flux Range	ASCAa	BeppoSAXb	SSA13c	CDF-Nd	CDF-Se	Lynxf	Total	SEXSI
-14.5 to -15.0	0	0	8	106	92	49	255	55
-14.0 to -14.5	0	0	18	56	66	45	185	400
-13.5 to -14.0	0	0	6	233	212	15	62	399
-13.0 to -13.5	2	17	1	5	4	4	33	145
-12.5 to -13.0	51	89	0	1	0	1	142	24
-12.0 to -12.5	35	61	0	0	0	1	96	9
-11.5 to -12.0	5	9	0	0	0	0	14	2
-11.0 to -11.5	1	1	0	0	0	0	2	0
Totals......	94	177	33	191	183	111	789	1034

Notes.

a For each survey, we provide the primary reference(s), the satellite and X-ray instrument used, the spectral assumptions adopted, and the factor by which we multiplied the tabulated fluxes to bring them into conformity with the energy band and spectral parameters adopted in our study. For ASCA, we used Cagnoni, della Ceca, & Maccacaro 1998; GIS2-selected; $\Gamma = 1.7$, actual $N_H (N_H \approx 3 \times 10^{20} \text{cm}^{-2})$; factor = 1.06. In addition, also used were Akiyama et al. 2000; SIS-selected; best PL model and $N_H (N_H \approx 3 \times 10^{20} \text{cm}^{-2})$ from the SIS–GIS fit; factor based on individual spectral indexes ($=0.52$–1.36).

b For BeppoSAX, we used Giommi, Perri, & Fiore 2000; MECS-selected; $\Gamma = 1.7$, actual $N_H (\sim 3 \times 10^{20} \text{cm}^{-2})$; factor = 0.959.

c For SSA13, we used Mushotzky et al. 2000; ACIS-S–selected; $\Gamma = 1.2$, actual $N_H = 1.4 \times 10^{20} \text{cm}^{-2}$; factor = 0.986 and, for chip 3 only, 0.948.

d For the CDF-N, we used Brandt et al. 2001; ACIS-I–selected; hardness-ratio–derived spectral slopes, $N_H = 1.6 \times 10^{20} \text{cm}^{-2}$ not included. Cowie et al. 2002 claim the mean flux is increased by 13% from assuming $\Gamma = 1.2$, so the factor = 1.293 (to get the 2–10 keV intrinsic flux), multiplied by 0.885 (to get all sources to $\Gamma = 1.2$), and multiplied by 0.9345 (to get $\Gamma = 1.5$), so the final factor = 1.069.

e For the CDF-S, we used Giacconi et al. 2002; ACIS-I–selected; $\Gamma = 1.375$, $N_H = 0.8 \times 10^{20} \text{cm}^{-2}$; factor = 0.932.

f For the Lynx field, we used Stern et al. 2002b; ACIS-I–selected; $\Gamma = 1.4$, $N_H = 2 \times 10^{20} \text{cm}^{-2}$; factor = 1.004.
Galactic planetary nebula, various types of active galactic nuclei (AGNs), transient afterglow follow-up observations, New General Catalogue (NGC) galaxies, and clusters of galaxies, particularly those at relatively high redshifts. For the cases in which the target is an extended X-ray source, we have taken care to exclude those sources potentially associated with the target from our log N–log S analysis (see § 3.2).

3. DATA REDUCTION AND ANALYSIS

3.1. Basic X-Ray Reduction

The X-ray data reduction includes filtering raw event data to reject contaminating particle events, binning the event data into images with specific energy ranges, searching the images for sources, and extracting source fluxes.

For the initial processing steps, through source identification, we use standard tools supplied by the Chandra X-Ray Center (CXC). We employ ASCA event grades 0, 2, 3, 4, and 6, and we eliminate flickering pixels and events at the chip node boundaries. For each chip we bin events into soft (0.3–2.1 keV) and hard (2.1–7 keV) band images. The 2.1 keV energy boundary is chosen to coincide with the abrupt mirror reflectance change caused by the Ir M-shell edge, and the upper and lower limits optimize signal-to-noise ratio (S/N) in the images. We use *wavdetect* for initial source identification. In a subsequent step we test the significance of each source individually and eliminate sources with a nominal chance occurrence probability greater than 10^{-6}.

For the remainder of the processing, we primarily use our own routines to filter the *wavdetect* source list to reject spurious detections, to extract source fluxes, and to correct *wavdetect* positions when required. In some cases, particularly at large off-axis angles at which the point-spread function (PSF) is relatively broad, the *wavdetect* positions become unreliable, with some positions differing significantly from the centroid of the photon distribution. The differences are not uniformly distributed, and most are within the expected statistical tolerance. However, in typically one or two cases per field, the *wavdetect* position will differ unacceptably, a discrepancy that has also been noted by others (Brandt et al. 2001). We use the *wavdetect* positions, the standard used by most other authors, unless the PSF-normalized radial shift $\Delta r/PSF > 0^\circ.8$, in which case we use the centroid position.

After correcting source positions, we extract photons from the image to determine source fluxes. The PSF width is a strong function of the off-axis angle. To determine extraction radii, we use the encircled energy fractions tabulated by the CXC at eight off-axis angles and at five different energies. We use the 1.5 and 4.5 keV values for the soft and hard bands, respectively, and interpolate linearly between tabulated values in off-axis angle. For the extraction radius we use an encircled energy fraction ranging from 80% to 90%, depending on the band and off-axis angle (see Table 3). This optimizes the S/N, since the optimal fraction depends on the signal-to-background ratio. To determine the background level for subtraction, we identify a number of circular, source-free regions on each chip and, for each source, use the closest region to determine the background. We define a sufficient number of regions distributed over the chip to ensure that systematic background variations are small compared to statistical uncertainties.

For each *wavdetect* source, we use the background level in the extraction aperture to calculate a lower limit to the
number of total counts for which the probability\(^4\) that the detection is a random fluctuation is less than \(10^{-6}\). If the total extracted counts fall below this limit, we deem the candidate wavdetect source to have failed our significance criterion and remove the source from the catalog. In on-axis chips, there are about \(5 \times 10^5\) detection cells, so we expect \(<0.5\) false detections per chip. Off-axis chips have 4–8 times fewer detection cells, since we bin them before searching.

\(^4\) The probability is calculated using the Poisson distribution for low-count (<33) sources and the Gaussian limit for high-count (>33) sources.

Thus, on average we expect \(\leq 1\) false detection per field, depending on the number and configuration of chips read out.

To convert extracted source counts to flux, we use standard Chandra software to compute energy-weighted exposure maps using a power-law spectral model with photon spectral index \(\Gamma = 1.5\). Using these, we convert soft-band counts to a 0.5–2 keV flux and hard-band counts to a 2–10 keV flux, again adopting \(\Gamma = 1.5\), and apply an aperture correction to account for the varying encircled energy fraction used in source extraction (see Table 3). We use the Galactic column density for each field listed in Table 2 to calculate source fluxes arriving at the Galaxy in the hard and soft bands. For an on-axis source, the conversion factor in the hard band is \(S_{2-10\text{keV}} \approx 3 \times 10^{-11}\) ergs cm\(^{-2}\) s\(^{-1}\) counts\(^{-1}\), although this value varies by 5%–10% from field to field owing to the differences in location of the aim point relative to node and chip boundaries. We note that \(\Gamma = 1.5\) represents a softer spectrum than the \(\Gamma = 1.2–1.4\) typically used for counts to flux conversion for the Deep Fields; our choice was motivated by the brighter average flux of our sample.

TABLE 3

OAA \(^{(\text{arcmin})}\)	Percentage of PSF Half-Width
0–3	90.0
3–5	87.5
5–10	85.0
>10	80.0

Notes. — The value for soft count extraction is obtained by adding 0.06% to the hard counts percent of PSF half-width value. These values optimize the S/N of each detection (see § 3.1).

3.2. Source Deletions

In order to calculate the log \(N\)–log \(S\) relation and to characterize the serendipitous source populations in an unbiased manner, we remove sources associated with the observation targets. In the case of point-source targets such as AGNs, transient afterglows, and planetary nebulae, this excision is...
trivial: the target object is simply excluded from the catalog. For the nearby galaxies in which the target covers a significant area of the field, we have excised all sources within an elliptical region defined where, in our optical image of the galaxy, the galactic light is more than \(11 \sigma\) above the average background level. This led to the removal of 68 sources from the catalog. Finally, in the case of galaxy clusters, *Chandra’s* high angular resolution allows one to easily “see through” the diffuse emission from the hot intracluster gas to the universe beyond, and it is not necessary to exclude all discrete sources for optical follow-up studies. Some such sources are, however, associated with the target cluster and should not be included in our log \(N-\log S\) analysis. Thus, apart from a few sources detected in the hard band that represent the diffuse cluster emission (and have thus been removed from the catalog), we have included all discrete sources detected in the cluster fields but have flagged all those within \(\sim 1\) Mpc of the cluster centroid as potentially associated with the target. We exclude these flagged sources (and the associated effective area) from the log \(N-\log S\) analysis (a total of 190 sources). Only a small fraction of these are actually optical spectroscopically identified cluster members.

3.3. Hardness Ratio Calculation

We define the hardness ratio (HR) as \((H - S)/(H + S)\), where \(H\) and \(S\) are the corrected counts in the 2–10 and 0.5–2 keV bands, respectively. We extract the counts from our hard (2.1–7 keV) and soft (0.3–2.1 keV) band images using the centroids obtained by running *wavdetect* on the images separately (and subsequently correct the rates to the standard bands). We do this, rather than extracting counts from the soft-band image using the hard-band positions in order to minimize bias, as described below.

In a small number of cases, *wavdetect* failed to find a soft source both clearly present in the image and with a hard-source counterpart (typically as a result of a second source very nearby). In order to correct these discrepancies, and to test for any systematic differences in soft- and hard-source positions, we also derived a soft flux for each source using the hard-source centroid. We calculated HRs using both sets of soft counts (those derived by *wavdetect* and those extracted using hard-source positions). Figures 3 and 4 show a comparison of the two techniques.

Using the optimal centroid position for a fixed aperture to extract source counts systematically overestimates source fluxes, since the centroid selected will be influenced by positive background fluctuations to maximize the number of counts included—a form of Eddington bias; see Cowie et al. (2002). Thus, calculating HRs by using soft counts extracted from a region with a hard-source centroid will produce a systematic bias toward greater HRs. This is illustrated in Figure 3, in which we show the difference in the two methods for calculating the HR as a function of soft-source flux; while only nine sources have a difference of more than \(+0.05\), 48 sources have a difference of less than \(-0.05\). The mean bias is \(-0.01\). To avoid this, we use the HRs derived from the independent soft- and hard-source catalogs.

3.4. Calculation of the Effective Area Function

In order to construct the hard X-ray source log \(N-\log S\) curve, we must determine the effective area of our survey as a function of source flux (shown in Fig. 1). We do this by using the same algorithms we employ for the actual source extraction and flux conversion, calculated on a fine grid that samples the entire field of view. Our detailed calculation assures that, independent of the methodology used for background subtraction and source significance testing, our calculation of the effective area will be accurate. In addition, since we employ a significant off-axis area in the survey, calculating the response with fine sampling across the field of view is required, given the rapid PSF changes with off-axis angle and telescope vignetting.

We divide the images from each chip, with the detected sources “blanked out,” into a fine grid sampled at a pitch of 8 pixels. At each location, we repeat the steps associated with source detection: we determine the aperture from the off-axis angle, background from the closest circular background region, and effective area from the spectrally weighted exposure map at that location. Using these, we determine the minimum detectable flux at that location corresponding to a spurious detection probability of \(10^{-6}\). We step across the grid in this manner, so that we determine accurately the sky area as a function of minimum detectable flux, even for chips in which the response changes significantly over the image. This procedure results in an effective area function that optimally matches the source detection procedure and supports the construction of a log \(N-\log S\) curve free of any biases that might be introduced by the approximate techniques adopted by some other surveys.
4. THE SOURCE CATALOG

In Table 4 we present the SEXSI source catalog of 1034 hard-band discrete serendipitous X-ray sources detected as described above. Sources are designated by “CXOSEXSI” (our IAU-registered name) followed by standard truncated source coordinates. The source positions (equinox J2000.0) are those derived from the hard-band X-ray images; in Paper II we use optical astrometry to derive mean offsets for each X-ray image and provide improved positions (although offsets are typically less than 1″). We include only sources detected with a chance coincidence probability of less than 10^{-6} in the hard band. The angular distance of the source position from the telescope axis is given in column (4). Columns (5) and (6) list the background-subtracted counts for each source within the specified aperture derived from the 2.1–7 keV image, followed by the estimated background counts in that same aperture. Column (7) gives an estimate of the S/N of the detection. The S/N is calculated using the approximate formula for the Poisson distribution with small numbers of counts given in Gehrels (1986):

$$S/N = \frac{\text{source counts}}{1 + \sqrt{0.75 \times \text{source counts} + \text{background counts}}}$$

(1)

for high-count sources equation (1) converges to the Gaussian limit. Owing to the relatively large background regions we have employed, the background error is negligible in the S/N calculation. It should be emphasized that these values are not a measure of source significance (which is $P < 10^{-6}$ in all cases) but are a measure of the uncertainty in the source flux estimates. Column (8) shows the unabsorbed hard-band flux (in units of 10^{-15} ergs cm$^{-2}$ s$^{-1}$), corrected for source counts falling outside the aperture and translated to the standard 2–10 keV band, assuming a power-law photon spectral index of $\Gamma = 1.5$ and a Galactic absorbing column density appropriate to the field (see Table 2). Columns (9)–(12) provide the analogous values for the soft band. We derived soft-band fluxes by employing the same procedures on the wavdetect output from the 0.3–2.1 keV images and then matching sources in the two bands. The soft fluxes are presented in the 0.5–2 keV band. There are a large number of soft sources that lack a statistically significant hard counterpart; however, since we are interested in the 2–10 keV source populations, these sources are not included in the table or considered further here. We do include a catalog of the soft-band–only sources in the Appendix.

4.1. Comparison of Methodology with Previous Work

As Cowie et al. (2002) have recently discussed, the details of source detection and flux extraction can have nontrivial effects on the final source catalog derived from an X-ray image, as well as on conclusions drawn from the $\log N$–$\log S$ relation. As a test of our methodology, we have compared our results on one of the deeper fields in our sample, Cl 0848+4454, with the analysis published by Stern et al. (2002b; SPICES), which uses the same technique that Giacconi et al. (2002) apply to the CDF-S. The source detection algorithm, the flux estimation method, and the effective area calculations all differ from ours, so a comparison is instructive.

Stern et al. (2002b) use the SExtractor source detection algorithm (Bertin & Arnouts 1996) applied to a version of the 0.5–7 keV image with a smoothed background and an S/N cutoff of 2.1. They measure source fluxes using a source aperture of $R_S = 2.4 \times \text{PSF FWHM}$, with the background derived from an annulus of $R_S + 2''$ to $R_S + 12''$. Their simulations predict five false sources using this procedure. In contrast, we employ the wavdetect algorithm to generate a list of source candidates from the 2.1–7 keV image, use hand-selected, source-free background regions with larger average areas to minimize statistical uncertainties, and require each source to have a probability of chance occurrence less than 10^{-6}, yielding less than one false source in this field. As noted above, we also calculate a fine-scale effective area function using exactly the same significance criterion for each PSF area on the image.

Figure 5 summarizes the result of comparing the two source catalogs. Apart from three bright sources in the off-axis S-6 chip, which was not analyzed by Stern et al., our catalogs are identical down to a flux threshold of 10^{-14} ergs cm$^{-2}$ s$^{-1}$. At fainter fluxes, there are a large number of SPICES sources—33 hard-band detections—that fail to appear in our catalog (see Fig. 5, top). We examined the hard-band images at each of these locations. In seven cases, our wavdetect algorithm indicated source candidates were present, but each failed the $P < 10^{-6}$ significance test in the hard band. In most of the other cases, no source was apparent in the hard band, although quite a number had soft-band counterparts. In some cases, fortuitous background fluctuations in the annulus surrounding the source may
CXOSEXSI	R.A. (J2000.0)	Decl. (J2000.0)	Hard Band	Soft Band						
			OAA(armin)	Background	Counts	S/N	Counts	Background	S/N	Counts
J022142.6+422654	02 21 42.67	42 26 54.1	9.49	16.30	5.70	2.83	23.10	48.50	6.50	5.73
J022143.6+421631	02 21 43.64	42 16 31.6	8.33	98.53	4.47	8.81	74.80	244.27	3.73	14.56
J022151.6+422319	02 21 51.68	42 23 19.3	6.17	9.13	1.87	2.06	6.55	17.67	1.33	3.25
J022205.0+422338	02 22 05.00	42 23 38.3	4.24	13.24	0.76	2.74	8.73	0.00	0.00	0.00
J022205.1+422213	02 22 05.13	42 22 13.3	3.45	10.55	0.45	2.38	6.82	12.61	0.39	2.68
J022207.1+422918	02 22 07.11	42 29 18.8	8.93	25.10	4.90	3.84	18.90	64.86	4.14	6.94
J022210.0+422956	02 22 10.00	42 29 56.3	9.38	22.38	5.62	3.52	17.30	127.12	4.88	10.15
J022210.8+422016	02 22 10.85	42 20 16.7	2.17	10.46	0.54	2.36	6.87	10.40	0.60	2.35
J022211.7+421910	02 22 11.71	42 19 10.7	2.55	23.60	1.40	3.88	15.40	122.76	1.24	10.09
J022215.0+422341	02 22 15.04	42 23 41.6	3.15	23.60	1.40	3.88	15.40	122.76	1.24	10.09
J022215.1+422045	02 22 15.11	42 20 45.1	1.32	72.69	2.31	7.49	42.90	378.26	3.74	18.39
J022215.5+421842	02 22 15.55	42 18 42.3	2.46	11.33	2.67	2.34	6.79	13.18	3.82	2.53
J022219.3+422052	02 22 19.32	42 20 52.2	0.54	10.89	2.11	2.31	6.38	0.00	0.00	0.00
J022224.3+422139	02 22 24.37	42 21 39.0	0.91	98.89	2.11	8.92	64.60	529.79	4.21	21.96
J022225.2+422451	02 22 25.25	42 24 51.5	4.07	196.06	1.94	12.99	128.00	852.89	3.11	28.18
J022226.5+422155	02 22 26.55	42 21 55.0	1.35	10.90	2.10	2.32	6.48	47.75	4.25	5.78
J022232.5+423015	02 22 32.53	42 30 15.2	9.61	59.97	3.61	6.50	53.60	61.20	4.80	6.67
J022236.3+421730	02 22 36.37	42 17 30.8	4.23	19.39	3.61	3.30	12.00	40.32	2.68	5.30
J022236.8+422858	02 22 36.80	42 28 58.3	8.57	17.32	4.68	3.00	12.90	115.64	3.66	9.66
J022259.1+422434	02 22 59.10	42 24 34.2	7.77	42.98	4.02	5.43	32.50	17.51	4.49	3.03
J022334.0+422212	02 23 34.05	42 22 12.2	13.34	40.98	25.02	4.47	37.50	37.78	26.22	4.18
J022352.9+413941	02 23 52.98	41 39 41.2	13.76	48.27	52.73	4.35	50.30	836.51	120.5	26.18
J022333.7+413928	02 23 33.74	41 39 28.0	12.31	62.72	45.28	5.49	62.50	180.10	122.9	9.77
J022340.4+413019	02 23 40.44	41 30 19.8	14.60	87.55	158.4	5.24	89.60	647.21	524.7	18.36
J022400.3+414006	02 24 00.32	41 40 06.4	7.34	286.41	9.59	15.71	230.00	804.34	19.66	27.07

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. Table 4 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content.

a Fluxes are presented in units of 10^{-15} ergs cm$^{-2}$ s$^{-1}$.

b The source falls within the excluded area less than 1 Mpc from the cluster center. The source is not used for the log N - log S calculation.
have accounted for the reported SPICES hard-band detection. In nearly a third of the cases, a plausible optical identification has been found, so it is clear that some of these sources are real X-ray emitters. However, in no case did our algorithm suite miss a source that would pass our specified threshold. Since our effective area function is calculated in a manner fully consistent with our threshold calculation, our log N–log S is unaffected by the absence of these faint, low-significance sources from our catalog.

The bottom panel of Figure 5 indicates a systematic offset between the flux scale of the two catalogs of 15%–20%, with our SEXSI fluxes being systematically higher. Most of this effect is explained by the count-to-flux conversion factors adopted in the two studies (3.24 and 2.79 × 10^{-11} ergs cm^{-2} s^{-1} counts^{-1}, respectively, for SEXSI and SPICES), which in turn derive from the use of slightly different spectral index assumptions and a different generation of response function for the instrument. Individual fluxes for weaker sources have discrepancies of up to 40%, which can be accounted for by different flux-extraction and background-subtraction algorithms applied to low count rate sources.

In summary, the differences between the two analyses of this field, while producing catalogs differing at the ~20% level in both source existence and source flux, are well understood. In particular, we are confident that the self-consistent method we have adopted for calculating the source detection threshold and the effective area function will yield an unbiased estimate of the true log N–log S relation for hard-band X-ray sources.

5. THE 2–10 keV log N–log S RELATION

The CDF-N and -S have provided good measurements of the 2–10 keV log N–log S relationship at fluxes below ~10^{-14} ergs cm^{-2} s^{-1}. In comparison, the SEXSI sample includes 478 sources with fluxes between 10^{-12} and 10^{-14} ergs cm^{-2} s^{-1}. By combining our measurements with the Deep Field results, we can constrain the log N–log S over a broad range, which includes the break from Euclidean behavior.

We use the CDF-S fluxes from Giacconi et al. (2002) along with the SEXSI sample to construct the log N–log S between 10^{-12} and 10^{-15} ergs cm^{-2} s^{-1}. For the same reasons given by Cowie et al. (2002), we choose to work with the differential curve: the differential measurement provides statistically independent bins, and comparison does not rely on the bright-end normalization, which must be taken from other instruments. To calculate the SEXSI log N–log S, we use the effective area curve (Fig. 1) to correct for incompleteness at the faint end of the sample. We have not corrected for Eddington bias, which is, by comparison, a small effect.

We employ the CDF-S fluxes with a correction (of about 5%) to account for the different spectral index assumption ($\Gamma = 1.375$ for CDF-S compared to $\Gamma = 1.5$ for SEXSI). To correct for incompleteness in the CDF-S sample, we use the effective area curve provided to us by P. Tozzi. We calculate the differential counts by binning $N(S)$, the number of sources with flux S, into flux ranges ΔS, then computing the average effective area A_i for that range and forming the differential curve by

$$n(S)_i = \frac{S_{\text{max}}}{S_{\text{min}}} \frac{N(S)_i}{A S_i A_i}.$$

We normalize to a unit flux of 10^{-14} ergs cm^{-2} s^{-1}.

Figure 6 shows the differential log N–log S curve from the combined SEXSI and CDS-S catalogs, where the indicated errors are 1 σ. The normalizations between the two agree well in the region of overlap, especially considering the different source-extraction techniques and methodologies for calculating the effective area function. The combined data cannot be fitted with a single power law but require a break in slope between 1 × 10^{-14} and 2 × 10^{-14} ergs cm^{-2} s^{-1}. We fitted the SEXSI data with a single power law at fluxes above 1.25 × 10^{-14} ergs cm^{-2} s^{-1}, and the CDF-S data to a separate power law below this. The fits are shown as solid and dashed lines in Figure 6. The two intersect at a flux of 1.1 × 10^{-14} ergs cm^{-2} s^{-1}. We note that the exact position of the intersection depends on where we divide the data, but for reasonable choices yielding good fits, the break always lies in the range (1–2) × 10^{-14} ergs cm^{-2} s^{-1}, which contains the break point first predicted on the basis of a fluctuation analysis of the Einstein Deep Survey fields nearly two decades ago (Hamilton & Helfand 1987).

The best-fit curves are parameterized by

$$n(S) = (46.8 \pm 2.1) \left(\frac{S}{10^{-14}} \right)^{-2.46\pm0.08}$$

for $S > 1.25 \times 10^{-14}$ ergs cm^{-2} s^{-1} and

$$n(S) = (43.65^{+3.1}_{-2.3}) \left(\frac{S}{10^{-14}} \right)^{-1.41\pm0.17}$$

for $S < 1.25 \times 10^{-14}$ ergs cm^{-2} s^{-1}.
below 1×10^{-14} ergs cm$^{-2}$ s$^{-1}$. The quoted errors are 1σ formal errors on the fits. The errors on the data points are statistical errors only and do not include an estimate of the systematic uncertainties, such as biases on approximations in correcting for incompleteness. Based on the good agreement of the overall normalization with other surveys (see below), the systematic errors do not exceed the statistical uncertainty. The faint-end slope is dependent on where we divide the fit ranges; cutting the data at 2.5×10^{-14} ergs cm$^{-2}$ s$^{-1}$ yields an acceptable faint-end fit but with a steeper slope of -1.7.

Figure 7 shows the fractional residuals from the best-fit curves for the SEXSI survey (top), the CDF-S (middle), and the combined Hawaii SSA22 and CDF-N sample (bottom; Cowie et al. 2002). For the Hawaii/CDF-N data, we use the binned points (provided in digital form by L. Cowie), corrected for the different spectral slope assumed for counts-to-flux conversion. At the faint end, the overall normalizations agree reasonably well, with the CDF-N data systematically slightly (1σ) above the mean fit to the SEXSI and CDF-S data. The faint-end slope of -1.41 ± 0.17 found here is marginally steeper than the best-fit values of -1.63 ± 0.054 found by Cowie et al. (2002) and -1.61 ± 0.10 found by Rosati et al. (2002). This difference is largely due to the somewhat different normalization; in addition, as noted above, the placement of the power-law break and the binning affects the best-fit slope, so this discrepancy is not significant. Above 2×10^{-14} ergs cm$^{-2}$ s$^{-1}$, the Deep Fields contain only two to three bins, and so the shape is much better constrained by the SEXSI data. Our best-fit slope at the bright end is -2.46 ± 0.08, consistent with both a Euclidean source distribution and the value of -2.57 ± 0.22 found for the Hawaii/CDF-N data.

6. X-RAY PROPERTIES OF THE SAMPLE

Most SEXSI sources have too few X-ray counts to warrant spectral fitting, so we rely on HRs to characterize the spectral slope. As discussed in § 3.3, we calculate the HR for each source, listed in column (13) of Table 4, using positions determined by independently searching the hard and soft images. We assign hard-band sources that have no soft-band wavdetect counterpart at our significance level an HR of 1.0. We have also determined an HR derived by extracting flux from the soft-band images at the position determined by searching the hard-band images, which we designate by HR$_{HF}$. Note this does not require a significant independent detection in the soft band, so that for many sources with HR = 1, HR$_{HF}$ < 1 (see Fig. 4). For reference, the slope of the X-ray background in this energy range, $\Gamma \sim 1.4$, corresponds to an HR of -0.22.

Figure 8 presents the HR for SEXSI’s 1034 sources as a function of hard-band flux. The top panel of Figure 9 shows these same sources in an HR histogram. The bottom three panels of Figure 9 show the HR histogram broken into three flux ranges. The top right corner of each panel indicates the number of sources and average HR for each subsample. The entire sample has an average HR of 0.108 ± 0.006, corresponding to $\Gamma = 0.96$. The histograms clearly illustrate the trend, previously noted by the megasecond surveys, for higher HRs at lower fluxes.

6.1. Distribution of HRs

The highest flux (second from the top) panel in Figure 9 appears to show a bimodal distribution in HR, with a peak centered around HR ~ -0.4 ($\Gamma \sim 1.7$) and a harder, smaller peak centered around HR ~ 0.7 ($\Gamma \sim -0.1$).
Fig. 8.—Plot of HR $\equiv (H - S)/(H + S)$ of SEXSI sources as a function of hard X-ray (2–10 keV) flux. Sources detected only in the hard X-ray band are shown at an HR of 1, while sources detected only in the soft X-ray band are not shown. Dashed horizontal lines are power-law models with different photon indexes. The 190 sources flagged as potentially being associated with Chandra cluster targets ($R < 1$ Mpc; § 3.2) are marked as filled circles. The remaining 844 sources are marked as small, open circles. Error bars at the bottom of the figure show the typical uncertainties in HR measurements at three flux levels.

Table 5 shows the result of splitting the three flux-selected histograms at HR = 0, where we present the average value of HR$_H$ for the six populations. Note we use HR$_H$ to minimize the skew imposed by the sudden shift of sources to HR = 1 imposed by the requirement of separate detection in the soft image. The table shows that the means for the two populations are relatively stable as one considers fainter fluxes, but the fraction of sources in the HR$_H < 0$ population grows (see the last column in Table 5).

Figure 10 shows the 2–10 keV log N–log S relations for the SEXSI sources split at HR = 0. We have excluded the cluster fields from this analysis to avoid bias. For the HR < 0 plot (top panel), we fitted the data with a single power law at fluxes above 2.5×10^{-14} ergs cm$^{-2}$ s$^{-1}$. The best-fit curve is parameterized by

$$n(S)_{HR<0} = \left(33.9^{+1.6}_{-1.3}\right)\left(\frac{S_{2-10\text{ keV}}}{10^{-14}}\right)^{-2.38\pm0.13}.$$

(5)

The population clearly turns over at $\sim 1 \times 10^{-14}$ ergs cm$^{-2}$ s$^{-1}$. Conversely, the HR > 0.0 population (bottom panel) shows no break. We fitted the hard data with a single power law at fluxes all the way down to 2.5×10^{-15} ergs cm$^{-2}$ s$^{-1}$. The best-fit curve is parameterized by

$$n(S)_{HR>0} = \left(14.8^{+1.8}_{-1.6}\right)\left(\frac{S_{2-10\text{ keV}}}{10^{-14}}\right)^{-2.24\pm0.05}.$$

(6)

This curve is an excellent fit all the way down to the faint end of our sample. Presumably, the hard sources are on

TABLE 5

Flux Range (ergs cm$^{-2}$ s$^{-1}$)	HR$_H < 0.0$	HR$_H > 0.0$			
	(HR$_H$)	Number of Sources	(HR$_H$)	Number of Sources	Percentage of Sources
10$^{-12}$ to 10$^{-13}$	-0.38 ± 0.01	26	0.42 ± 0.02	9	26
10$^{-13}$ to 10$^{-14}$	-0.31 ± 0.01	344	0.49 ± 0.01	201	37
10$^{-14}$ to 10$^{-15}$	-0.29 ± 0.02	201	0.50 ± 0.02	253	56

Note.—See § 6.1.
average at lower redshift and thus do not exhibit the evolutionary effects likely to be responsible for the slope break until even fainter flux levels are reached.

6.2. X-Ray Spectral Comparison with Previous Work

The SEXSI catalog includes only sources independently identified in the hard-band images and so excludes those sources detected only in the soft band. Thus, we expect our average HR to be significantly larger than that reported for the Deep Fields, which include a large fraction of soft-band-only sources. Indeed, Rosati et al. (2002) analyze a stacked spectrum of the CDF-S total sample and report an average power-law index of $\Gamma = 1.375$ (HR = −0.2), much softer than our average $HR = 0.108$. Even the faintest sub-sample, $S_{2-10\text{keV}} \sim 2 \times 10^{-12}$ ergs cm$^{-2}$ s$^{-1}$, with an average $\Gamma = 1.05$ (HR = 0.04), appears softer than our entire sample.

To make a better comparison with the CDF-S, we eliminated the soft-band-only sources from that source catalog (Giacconi et al. 2002). In addition, we translated those fluxes, which had been converted from counts using $\Gamma = 1.4$, to match ours, which assume $\Gamma = 1.5$ (a correction of about 5% for the hard band). We also correct for the different spectral ranges assumed for their hard count rate measurement (2–7 keV for CDF-S compared to 2–10 keV for SEXSI). Using these converted HRs with the soft-band-only sources ignored, we find that the average HR for the CDF-S sample is 0.14 ± 0.01, comparable to the SEXSI HR of 0.108 ± 0.006. Since CDF-S samples the fainter section of the log N–log S, their slightly higher average HR is not surprising.

To further compare the surveys, we break the CDF-S sample into three flux ranges, as we did for our sample in Figure 9. The CDF-S has no sources in the bright range ($S_{2-10\text{keV}} > 10^{-13}$ ergs cm$^{-2}$ s$^{-1}$). In the medium-flux range (10^{-13} ergs cm$^{-2}$ s$^{-1} > S_{2-10\text{keV}} > 10^{-14}$ ergs cm$^{-2}$ s$^{-1}$), we calculate the CDF-S average HR to be -0.09 ± 0.01, as compared to SEXSI’s average HR of 0.008 ± 0.007. For the low-flux range (10^{-14} ergs cm$^{-2}$ s$^{-1} > S_{2-10\text{keV}} > 10^{-15}$ ergs cm$^{-2}$ s$^{-1}$), the SEXSI’s average HR is 0.25 ± 0.01, as compared to 0.13 ± 0.02 for CDF-S.

For each of these flux ranges we find the average HRs of SEXSI and CDF-S to be comparable but slightly higher for SEXSI. This is likely explained by the different survey depths and source detection processes. As with the SPICES reduction of the Cl 0848+0454 field, CDF-S detects sources in full-band (0.5–7 keV) images and then extracts fluxes from the soft- and hard-band images, regardless of detection significance in the individual bands. For a source that is below our threshold in the soft band, we report a flux of zero, while CDF-S may detect positive flux. If we compare the CDF-S HRs with our HR$_{H}$ values of -0.04 ± 0.007 and 0.15 ± 0.01 for the mid- and low-flux ranges, we are consistent with the CDF-S values of -0.09 and 0.16.

7. SUMMARY

We have completed the first “large-area” (>1 deg2) hard X-ray source survey with the Chandra X-Ray Observatory and report here the X-ray characteristics of 1034 serendipitous sources from 27 fields detected in the 2–10 keV band. This work represents a sample size in the critical flux interval of 1×10^{-13} to 3×10^{-15} ergs cm$^{-2}$ s$^{-1}$ that exceeds the sum of all previous surveys by a factor of 3. We present a technique for calculating the effective area of our survey that is fully consistent with our source detection algorithm; combined with the large source sample, this allows us to derive the most accurate log N–log S relation yet produced for hard X-ray sources at fluxes fainter than 10^{-13} ergs cm$^{-2}$ s$^{-1}$. We find that the slope of the relation is Euclidean at 1×10^{-13} to 3×10^{-15} ergs cm$^{-2}$ s$^{-1}$ that exceeds the sum of all previous surveys by a factor of 3. We present a technique for calculating the effective area of our survey that is fully consistent with our source detection algorithm; combined with the large source sample, this allows us to derive the most accurate log N–log S relation yet produced for hard X-ray sources at fluxes fainter than 10^{-13} ergs cm$^{-2}$ s$^{-1}$. We find that the slope of the relation is Euclidean at 1×10^{-13} to 3×10^{-15} ergs cm$^{-2}$ s$^{-1}$ that exceeds the sum of all previous surveys by a factor of 3. Future papers in this series will describe our optical observations of this sample, providing further insight into the populations of X-ray–luminous objects that comprise the X-ray background.

We are deeply indebted to the following Chandra guest investigators for their willingness to allow us immediate access to their data for the purposes of this statistical investigation of serendipitous sources: Jan Vrtilek, Crystal Martin, and Q. Daniel Wang. We also thank Adam...
Stanford and his collaborators for their enlightened approach to the deepest pointing included in our survey, waiving all proprietary rights to these data, and Leon van Speybroeck for contributing three of his GTO cluster fields. Elise Laird and Alan Diercks assisted greatly in the construction of our optical data-reduction pipeline with useful code and helpful advice. James Chakan assisted with the X-ray data reduction. This work has been supported by NASA grant NAG5-6035 (D. J. H.), as well as by a small Chandra archival grant. The work of D. S. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

APPENDIX

In Table 6 we present a source catalog of 879 soft-band serendipitous X-ray sources that lack a statistically significant hard-band counterpart. These sources are excluded from the main SEXSI catalog (Table 4), since the strength of SEXSI, and thus our primary scientific interest, lies in the study of 2–10 keV source populations.

These soft sources, detected and analyzed as described in § 3.1, are designated by “CXOSEXSI” (our IAU-registered name) followed by standard truncated source coordinates. The source positions (equinox J2000.0) are those derived from the soft-band X-ray images. We include only sources detected with a chance coincidence probability of less than 10^{-6} in the soft band. The angular distance of the source position from the telescope axis is given in column (4). Columns (5) and (6) list the background-subtracted counts for each source within the specified aperture derived from the 0.5–2.1 keV image, followed by the estimated background counts in that same aperture. Column (7) gives an estimate of the S/N of the detection (see § 4 for details). Again, it should be emphasized that these values are not a measure of source significance (which is $P < 10^{-6}$ in all cases) but are a measure of the uncertainty in the source flux estimates. Column (8) shows the unabsorbed soft-band flux (with units of 10^{-15} ergs cm$^{-2}$ s$^{-1}$), corrected for source counts falling outside the aperture and translated to the standard 0.5–2 keV band assuming a power-law photon spectral index of $\Gamma = 1.5$ and a Galactic absorbing column density appropriate to the field (see Table 2).

Table 6

SOFT-BAND–ONLY SOURCE CATALOG

CXOSEXSI (1)	Coordinates (J2000.0)	OAA (arcmin)	SOFT BAND				
	R.A.	Decl.	(3)	Counts (5)	Background (6)	S/N (7)	Fluxa (8)
J022045.8+421954...	02 20 45.80	42 19 54.2	17.84	387.68	449.3	12.95	37.90
J022054.2+421724...	02 20 54.22	42 17 24.3	16.62	421.68	482.3	13.57	40.60
J022101.0+422042...	02 21 01.08	42 20 42.4	14.99	123.61	199.3	6.51	11.20
J022108.5+422008...	02 21 08.52	42 20 08.2	13.64	109.91	206.0	5.85	9.88
J022111.1+421704...	02 21 11.11	42 17 04.1	13.67	98.28	199.7	5.38	8.69
J022133.3+421842...	02 21 33.35	42 18 42.3	12.90	197.24	163.7	9.85	17.40
J022122.8+421725...	02 21 22.84	42 17 25.1	11.49	190.08	87.92	10.74	16.10
J022128.4+421826...	02 21 28.41	42 18 26.2	10.23	54.50	7.50	6.11	8.94
J022131.1+422146...	02 21 31.15	42 21 46.5	9.48	1800.8	8.19	41.36	222.00
J022131.2+422144...	02 21 31.24	42 21 44.0	9.46	1659.9	8.10	39.66	204.00
J022131.5+423103...	02 21 31.52	42 31 03.3	13.86	45.62	28.38	4.73	6.99
J022131.5+422148...	02 21 31.58	42 21 48.3	9.41	1649.00	7.92	39.53	203.00
J022131.6+422144...	02 21 31.61	42 21 44.1	9.39	1574.00	7.94	38.60	194.00
J022136.1+422730...	02 21 36.11	42 27 30.7	10.82	19.42	9.58	3.01	3.00
J022140.9+422050...	02 21 40.95	42 20 50.2	7.62	20.86	3.14	3.49	2.48
J022142.1+421947...	02 21 42.18	42 19 47.4	7.47	26.10	2.90	4.04	3.10
J022144.2+423019...	02 21 44.29	42 30 19.4	11.79	25.28	13.72	3.46	3.70
J022153.5+423026...	02 21 53.50	42 30 26.1	10.97	25.00	8.00	3.67	3.59
J022155.1+421804...	02 21 55.13	42 18 04.3	5.72	7.90	1.10	1.92	0.91
J022155.5+421749...	02 21 55.56	42 17 49.8	5.77	7.84	1.16	1.90	0.90
J022202.6+421637...	02 22 02.69	42 16 37.7	5.54	14.00	1.00	2.82	1.79
J022205.9+421652...	02 22 05.90	42 16 52.3	4.98	27.05	0.95	4.25	2.99
J022221.6+422348...	02 22 21.60	42 23 48.3	2.98	11.96	3.04	2.41	0.82
J022225.6+423526...	02 22 25.61	42 35 26.7	14.63	115.19	32.81	8.73	18.10
J022225.7+422847...	02 22 25.72	42 28 47.1	7.98	16.38	2.62	3.01	2.13
J022227.1+422336...	02 22 27.18	42 23 36.6	2.93	34.28	3.72	4.75	2.21
J022227.5+422108...	02 22 27.59	42 21 08.9	1.04	168.54	5.46	11.85	10.80
J022229.3+422852...	02 22 29.30	42 28 52.7	8.15	16.07	2.93	2.95	2.09

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. Table 6 is published in its entirety in the electronic edition of the *Astrophysical Journal*. A portion is shown here for guidance regarding its form and content.

a Fluxes are presented in units of 10^{-15} ergs cm$^{-2}$ s$^{-1}$.
This soft-band–only catalog does have the target sources carefully eliminated for point sources and nearby galaxies, as described for the main SEXSI catalog in § 3.2. This led to the removal of 86 sources from this catalog. However, the sources within ~1 Mpc of target galaxy cluster centroids are not flagged, as was done with the hard sources in Table 4. In addition, there has been no attempt to search for extended sources.

REFERENCES

Akiyama, M., Ueda, Y., & Ohta, K. 2003, in IAU Colloq. 184, AGN Surveys, ed. R. F. Green, E. Ye. Khachikian, & D. B. Sanders (San Francisco: ASP), in press (astro-ph/0201495)

Akiyama, M., et al. 2000, ApJ, 532, 700

Baldi, A., Molendi, S., Comastri, A., Fiore, F., Matt, G., & Vignali, C. 2002, ApJ, 564, 190

Barger, A. J., Cowie, L. L., Bautz, M. W., Brandt, W. N., Garmire, G. P., Hornschemeier, A. E., Ivison, R. J., & Owen, F. N. 2001a, AJ, 122, 2177

Barger, A. J., Cowie, L. L., Brandt, W. N., Capak, P., Garmire, G. P., Hornschemeier, A. E., Steffen, A. T., & Wehner, E. H. 2002, AJ, 124, 1839

Barger, A. J., Cowie, L. L., Mushotzky, R. F., & Richards, E. A. 2001b, AJ, 121, 662

Bautz, M. W., et al. 1998, Proc. SPIE, 3444, 210

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393

Brandt, W. N., et al. 2001, AJ, 122, 2810

Cagnoni, I., della Ceca, R., & Maccacaro, T. 1998, ApJ, 493, 54

Cowie, L. L., Garmire, G. P., Bautz, M. W., Barger, A. J., Brandt, W. N., & Hornschemeier, A. E. 2002, ApJ, 566, L5

Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215

Fiore, F., et al. 2001, MNRAS, 327, 771

Gehrels, N. 1986, ApJ, 303, 336

Giacconi, R., et al. 2002, ApJS, 139, 369

Giommi, P., Perri, M., & Fiore, F. 2000, A&A, 362, 799

Hamilton, T. T., & Helfand, D. J. 1987, ApJ, 318, 93

Hooper, E. J., et al. 2002, BAAS, 34, 13.12

Hornschemeier, A. E., et al. 2001, ApJ, 554, 742

La Franca, F., et al. 2002, ApJ, 570, 100

Mushotzky, R. F., Cowie, L. L., Barger, A. J., & Arnaud, K. A. 2000, Nature, 404, 459

Rosati, P., et al. 2002, ApJ, 566, 667

Stern, D., et al. 2002a, ApJ, 568, 71

———. 2002b, AJ, 123, 2223

Tozzi, P., et al. 2001, ApJ, 562, 42

Ueda, Y., Ishisaki, Y., Takahashi, T., Makishima, K., & Ohashi, T. 2001, ApJS, 133, 1

Weisskopf, M. C., O’Dell, S. L., & van Speybroeck, L. P. 1996, Proc. SPIE, 2805, 2