Context-free ordinals

Z. Ésik and S. Iván
Dept. of Computer Science
University of Szeged
Szeged, Hungary

January 18, 2013

Abstract

We consider context-free languages equipped with the lexicographic ordering. We show that when the lexicographic ordering of a context-free language is scattered, then its Hausdorff rank is less than ω^ω. As a corollary of this result we obtain that an ordinal is the order type of a well-ordered context-free language iff it is less than ω^ω.

1 Introduction

When the alphabet Σ of a language $L \subseteq \Sigma^*$ is linearly ordered, we may linearly order L with the lexicographic order $<_{\text{lex}}$. We call L well-ordered, scattered, or dense when $(L, <_{\text{lex}})$ has the appropriate property.

Efficient algorithms exist to decide whether or not a regular language (given by a deterministic or nondeterministic finite automaton) is scattered or a well-ordering, cf. [3, 11]. It is well-known that an ordinal is the order type of a well-ordered regular language iff it is less than ω^ω. Moreover, the Hausdorff rank of a scattered regular language is less than ω, cf. [2, 14, 15].

The study of the lexicographic orderings of context-free languages was initiated in [4]. It is decidable for a context-free grammar whether it generates a well-ordered of scattered language [13]. In contrast, it is undecidable for a context-free grammar whether the language generated by it is dense, cf. [12]. Call an ordinal context-free if it is the order type of a well-ordered
context-free language. In [4, 5], it was shown that every ordinal less than ω^ω is a context-free ordinal and it was conjectured that no other ordinals are context-free. In this note we confirm this conjecture. Moreover, we show that the Hausdorff rank of a scattered context-free language is less than ω. These facts were formerly known only for deterministic context-free languages and languages generated by prefix grammars [5, 6].

2 Linear orderings

A linear ordering is a pair $(P, <)$ where P is some set and $<$ is a transitive binary relation on P such that for each $x, y \in P$, exactly one of $x < y$, $y < x$ and $x = y$ holds. We will sometimes denote a linear ordering $(P, <)$ by just P. When $P_1 = (P_1, <_1)$ and $P_2 = (P_2, <_2)$ are linear orderings, a function $h : P_1 \to P_2$ is an embedding of P_1 into P_2 if $h(x) <_2 h(y)$ for each $x, y \in P_1$ with $x <_1 y$. If h is also surjective, h is an isomorphism. We call an isomorphism class an order type.

Examples of linear orderings include the finite linear orderings and the ordering \mathbb{Z} of the integers, ordered as usual.

The ordered sum $P_1 + P_2$ of linear orderings P_1, P_2, or more generally, the ordered sum $\sum_{x \in Q} P_x$, where Q is any linear ordering and for each $x \in Q$, P_x is a linear ordering, are defined as usual, see e.g., [10]. The sum operation may be extended to order types. Suppose that $(P, <)$ is a linear ordering and that P is the union of its subsets Q_1 and Q_2. Then $(Q_1, <)$ and $(Q_2, <)$ are linear orderings, and we call $(P, <)$ the union of $(Q_1, <)$ and $(Q_2, <)$. When in addition Q_1 and Q_2 are disjoint, then $(P, <)$, or any linear ordering isomorphic to $(P, <)$ is called a shuffle of $(Q_1, <)$ and $(Q_2, <)$.

A linear ordering $(P, <)$ is a well-ordering if there is no infinite descending chain $x_1 > x_2 > \ldots$ in P. An ordinal is the order type of a well-ordering. It is known that any set of ordinals is well-ordered by the relation $\alpha < \beta$ if and only if $\alpha \neq \beta$ and some well-ordering of order type α can be embedded into a well-ordering of order type β iff there is some nonzero ordinal γ with $\alpha + \gamma = \beta$.

A linear ordering $(P, <)$ is a dense ordering if P has at least two elements and for each $x, y \in P$, if $x < y$ then there exists some $z \in P$ with $x < z < y$. A linear ordering $(P, <)$ is scattered if no dense ordering can be embedded into it. It is clear that every well-ordering is scattered. It is well-known that every scattered sum of scattered linear orderings is scattered, and any
well-ordered sum of well-orderings is a well-ordering. Moreover, any finite union or shuffle of scattered linear orderings is scattered, and any union or shuffle of well-orderings is a well-ordering. Moreover, if P can be embedded into Q and Q is scattered or a well-ordering, then so is P.

Hausdorff classified the countable scattered linear orderings with respect to their rank. Our definition from [15] is a slight modification of the original. For each countable ordinal α we define the class H_α of countable linear orderings as follows. H_0 consists of all finite linear orderings, and when $\alpha > 0$ is a countable ordinal, then H_α is the least class of linear orderings closed under finite ordered sum which contains all linear orderings isomorphic to an ordered sum $\sum_{i \in \mathbb{Z}} P_i$, where each P_i is in H_{β_i} for some $\beta_i < \alpha$. By Hausdorff’s theorem, a countable linear order P is scattered iff it belongs to H_α for some countable ordinal α. The rank $r(P)$ of a countable linear ordering is the least ordinal α with $P \in H_\alpha$.

From now on, all linear orderings will be assumed to be countable. In the sequel we will use the following facts without mention.

Fact 1 If P_1 is a scattered linear ordering and P_2 embeds into P_1, then $r(P_2) \leq r(P_1)$.

Fact 2 If P_1 and P_2 are scattered of rank α_1 and α_2, respectively, then the rank of the scattered linear ordering $P_1 + P_2$ is $\max\{\alpha_1, \alpha_2\}$. If Q is scattered with $r(Q) \leq 1$ and for each $x \in Q$, P_x is scattered with $r(P_x) < \alpha$, then the rank of the scattered linear ordering $\sum_{x \in Q} P_x$ is at most α.

Fact 3 If $\sum_{i \in \mathbb{Z}} P_i$ embeds into a scattered ordering P and α is an ordinal such that $r(P_i) \geq \alpha$ for infinitely many $i \in \mathbb{Z}$, then $r(P) \geq \alpha + 1$.

The first two facts are well-known. We believe that Fact 3 is also well-known, but we could not locate it in the literature. For completeness, we have spelled out a proof in the Appendix.

2.1 Lexicographic orderings

Let Σ be an alphabet and let Σ^* stand for the set of all finite words over Σ, ε for the empty word, $|u|$ for the length of the word u, $u \cdot v$ or simply uv for the concatenation of u and v. A language is an arbitrary subset L of Σ^*, the concatenation of the languages K and L is the language $K \cdot L = KL = \{uv :$
u ∈ K, v ∈ L}. When K = {u}, for some word u, we will sometimes write \(u \cdot L \) or just \(uL \) for \(\{u\}L \).

Suppose that \(\Sigma \) is equipped with a linear order \(< \). We define two partial orderings on \(\Sigma^* \), the prefix order \(<_{\text{pr}} \) and the strict order \(<_s \). For any words \(u, v \in \Sigma^* \), \(u <_{\text{pr}} v \) if and only if \(v = uw \) for some nonempty \(w \in \Sigma^* \), and \(u <_s v \) if and only if there exist words \(w, u', v' \in \Sigma^* \) and letters \(a < b \) in \(\Sigma \) with \(u = wav' \) and \(v = wbv' \). Then the set \(\Sigma^* \) of all words is linearly ordered by the lexicographic order \(<_{\text{lex}} = <_{\text{pr}} \cup <_s \). Thus, for any language \(L \subseteq \Sigma^* \), \((L, <_{\text{lex}}) \) is a linearly ordered set, called the lexicographic ordering of \(L \). It is known that every (countable) linear ordering is isomorphic to the linear ordering of a language over the binary alphabet \(\{0, 1\} \).

We call the language \(L \) well-ordered, scattered etc. if its lexicographic ordering has the appropriate property. When \(L \) is scattered, we define \(r(L) \) as \(r(L, <_{\text{lex}}) \). The order-type of a language \(L \) is the order type of \((L, <_{\text{lex}}) \).

As mentioned in the Introduction, a context-free ordinal is any ordinal that is the order type of a well-ordered context-free language. For example, consider the binary alphabet \(\{0, 1\} \), ordered by \(0 < 1 \). Then \(0^* \) and \(1^*0 \) are well-ordered of order type \(\omega \), the least infinite ordinal. For another example, consider the context-free language \(\bigcup_{n \geq 0} 1^n0(1*0)^n \). It is well-ordered of order type \(1 + \omega + \omega^2 + \ldots = \omega^\omega \). Thus, \(\omega \) and \(\omega^\omega \) are context-free ordinals. In Corollary 13 we will show that an ordinal is context-free iff it is less than \(\omega^\omega \).

3 Union and shuffle

In this section, we give an estimate on the rank of the union or a shuffle of linear orderings.

A tree domain is a prefix-closed language in \(\{0, 1\}^* \), i.e. a set \(T \subseteq \{0, 1\}^* \) with \(u \in T, v \leq_{\text{pr}} u \) implying \(v \in T \) for each \(u, v \in \{0, 1\}^* \). (Hence if \(T \neq \emptyset \), then \(\varepsilon \in T \).) Words of \(T \) are also called nodes. A path in a tree domain is a (possibly infinite) sequence \(u_0 = \varepsilon, u_1, \ldots \) of nodes such that for each integer \(n \geq 0 \), if \(u_{n+1} \) is defined then \(u_{n+1} \in \{u_n0, u_n1\} \).

When \(L \subseteq \{0, 1\}^* \) is a language and \(u \) is a word, let \(u^{-1}L \) stand for \(\{v \in \{0, 1\}^*: uv \in L\} \). Clearly \(u^{-1}L \) embeds into \(L \), thus if \(L \) is scattered, then so is \(u^{-1}L \) with \(r(u^{-1}L) \leq r(L) \). Moreover, if \(W \) is a set of words that are pairwise incomparable with respect to the prefix order, then \(\sum_{w \in W} w^{-1}L \) is
isomorphic to $\bigcup_{w \in W} w(w^{-1}L)$ and thus embeds into L.

For each language $L \subseteq \{0,1\}^*$, let $\text{Pref}(L)$ stand for the tree domain \{v \in \{0,1\}^* : \exists u \in L, v \leq_{\text{pr}} u\}. (Equivalently, \{v \in \{0,1\}^* : v^{-1}L \neq \emptyset\}.)

When T is a tree domain and $u \in \{0,1\}^*$, we also use the notation $T|_u$ for $u^{-1}T$, and refer to $T|_u$ as the sub-tree domain of T rooted at u.

For an ordinal α, let us denote by α the (linearly ordered) set $\{\beta : \beta \leq \alpha\}$. When T is a tree domain and $u \in \{0,1\}^*$, we also use the notation $T|_u$ for $u^{-1}T$, and refer to $T|_u$ as the sub-tree domain of T rooted at u.

When T is a tree domain and $u \in \{0,1\}^*$ with $\varphi(u) > 0$, the set $D_\varphi(u) = \{v \in \{0,1\}^* : \varphi(uv) = \varphi(u)\}$ is a union of finitely many paths in $T|_u$.

By condition ii), for each $u \in \{0,1\}^*$ either $\varphi(u\cdot 0) = \varphi(u)$ or $\varphi(u\cdot 1) = \varphi(u)$. Thus, if $\varphi(u) > 0$ then $D_\varphi(u)$ is a union of a finite nonzero number of infinite paths.

The introduction of markings is motivated by the following fact:

Proposition 4 The following are equivalent for a language $L \subseteq \{0,1\}^*$ and ordinal α:

i) L is scattered with $r(L) \leq \alpha$;

ii) there exists a marking φ of $\text{Pref}(L)$ over $\overline{\alpha}$;

iii) $\text{Pref}(L)$ is scattered with $r(\text{Pref}(L)) \leq \alpha$.

Proof. The third condition clearly implies the first, since L embeds into $\text{Pref}(L)$.

To show i)→ii) let $L \subseteq \{0,1\}^*$ be a scattered language with $r(L) \leq \alpha$ and let T stand for $\text{Pref}(L)$. We define $\varphi : \{0,1\}^* \rightarrow \overline{\alpha}$ by $\varphi(u) = r(u^{-1}L)$, for all $u \in \{0,1\}^*$. Since $u^{-1}L$ embeds into L, we have $\varphi(u) \leq \alpha$ for each u.

1Of course, $\overline{\alpha}$ may be identified with the ordinal $\alpha + 1$.

5
Note that if \(\varphi(u) > 0 \), then \(u \in T \) and \(T|_u \) is infinite. If \(\varphi(u) = 0 \), then by the definition of the rank we have that \(u^{-1}L \) is finite, thus \(T|_u \) is finite as well.

Since for all words \(u \in \{0, 1\}^* \) we have \(u^{-1}L - \{\varepsilon\} = (0 \cdot (u0)^{-1}L) \cup (1 \cdot (u1)^{-1}L) \) which is isomorphic to \((u0)^{-1}L + (u1)^{-1}L \), we have that \(\varphi(u) = \max\{\varphi(u \cdot b) : b \in \{0, 1\}\} \). It follows now that if \(\varphi(u) > 0 \), then \(D_\varphi(u) \) is a union of some infinite paths (and is thus a tree domain).

Now assume that there exists some \(u \in T \) with \(\varphi(u) = \beta > 0 \) such that the set \(D_\varphi(u) \) is not a union of finitely many paths. Then \(D_\varphi(u) \) is the union of an infinite number of infinite paths, so that there exists an infinite set \(W \) of nodes in \(D_\varphi(u) \) which are pairwise incomparable with respect to prefix order and such that \(\varphi(uw) = \beta \) for each \(w \in W \). Hence the ordered sum \(\sum_{w\in W} (uw)^{-1}L \) that is isomorphic to the lexicographic ordering of \(\bigcup_{w\in W} w(u^{-1}u^{-1}L) \) can be embedded into \(u^{-1}L \), which is a contradiction, since the rank of each language \((uw)^{-1}L \) with \(w \in W \) is \(\beta \), thus \(r(u^{-1}L) > \beta \), finishing the proof of i)\(\rightarrow \)ii).

For ii)\(\rightarrow \)iii) let us write again \(T \) for \(\text{Pref}(L) \) and let \(\varphi: \{0, 1\}^* \to \overline{\omega} \) be a marking of \(T \). We show by induction on \(\varphi(u) \) that \(T|_u \) is scattered and \(r(T|_u) \leq \varphi(u) \) for each node \(u \) of \(T \). When \(\varphi(u) = 0 \), by the definition of the marking \(T|_u \) is finite, hence \(T|_u \) is scattered with \(r(T|_u) = 0 \).

Now let \(\beta > 0 \) and assume the claim holds for all \(\gamma \) with \(\gamma < \beta \). Since \(\varphi \) is a marking of \(T \), for each \(u \) with \(\varphi(u) = \beta \) we have that \(D = D_\varphi(u) \) is a union of finitely many paths of \(T|_u \). Consider the set of nodes \(\widehat{D} = D \cup D0 \cup D1 \). Then \(\widehat{D} \), equipped with the lexicographic order, is scattered of rank 1. To see this, we use induction on the number \(k \) of (infinite) paths covering \(D \). If \(k = 1 \), then \(D \) is a single infinite path and \(\widehat{D} \) can be embedded into a linear ordering of order type \(\omega + \omega^* \), where \(\omega^* \) is the order type of the negative integers, ordered as usual. Thus, \(r(\widehat{D}) = 1 \). Now in the induction step, suppose that \(k > 1 \) and let \(u \in \{0, 1\}^* \) be the longest common prefix of the \(k \) infinite paths covering \(D \). Then let \(D_i \) be the set of all nodes of \(D \) of the form \(uiv \), for \(i = 0, 1 \). Note that both \(D_0 \) and \(D_1 \) are finite unions of less than \(k \) infinite paths. Also, \(\widehat{D} \) is isomorphic to a sum \(F_0 + \widehat{D}_0 + \widehat{D}_1 + F_1 \), where \(F_0 \) and \(F_1 \) are finite. Since by the induction hypothesis \(D_0 \) and \(D_1 \) have rank 1, the same holds for \(\widehat{D} \).

Then \(\widehat{D} \) can be written as the union \(\{\nu0 : \nu <_{pr} u, \nu0 \not<_{pr} u\} \cup \{u\} \cup u \cdot u^{-1}(\bigcup_{i \in [k], \nu \in D_i} D_i) \cup u \cdot u^{-1}(\bigcup_{i \in [k], \nu \in D_i} D_i) \cup \{\nu1 : \nu <_{pr} u, \nu1 \not<_{pr} u\} \), such that the lexicographic ordering of \(\widehat{D} \) is isomorphic to the ordered sum of these five languages. Since the first two and the last of these languages are finite and the other two are covered by less than \(k \) infinite paths, applying
the induction hypothesis the claim is proved.

For each \(v \in D \), let \(L_v = \{ \varepsilon \} \), and for each \(v \in \bar{D} - D \), let \(L_v = T|_v \). Then \(T|_u = \bigcup_{v \in \bar{D}} v \cdot L_v \) which is isomorphic to the ordered sum \(\sum_{v \in \bar{D}} L_v \). Since \(r(L_v) < \beta \) for each \(v \in \bar{D} \) and since \(\bar{D} \) is scattered of rank 1, we have that \(T|_u \) is scattered and \(r(T|_u) = r(\sum_{v \in \bar{D}} L_v) \leq \beta \). (End of Proof.)

Using the notion of marking, the following fact can be easily deduced:

Proposition 5 Suppose \(\varphi_i \) is a marking of the tree domain \(T_i \), \(i = 0, 1 \). Then \(\varphi(u) = \max \{ \varphi_i(u) : i \in \{0, 1\} \} \) is a marking of \(T_0 \cup T_1 \).

Proof. First note that \(\varphi(u) = 0 \) for some \(u \in \{0, 1\}^* \) iff \(\varphi_i(u) = 0 \) for \(i \in \{0, 1\} \) iff \(T_i|_u \) is finite for \(i = 1, 2 \) iff \(T_u \) is finite. It is clear that for any \(u \in \{0, 1\}^* \),

\[
\max_{b \in \{0, 1\}} \varphi(u \cdot b) = \max_{b \in \{0, 1\}} \max_{i \in \{0, 1\}} \varphi_i(u \cdot b) = \max_{i \in \{0, 1\}} \max_{b \in \{0, 1\}} \varphi_i(u) = \max_{i \in \{0, 1\}} \max_{b \in \{0, 1\}} \varphi_i(u) = \varphi_i(u).
\]

Finally, consider an arbitrary \(u \in \{0, 1\}^* \) with \(\varphi(u) = \alpha > 0 \). We show that \(D_\varphi(u) \) is a finite union of paths. It is clear that for any \(v \in \{0, 1\}^* \) and \(i \in \{0, 1\} \), \(\varphi_i(uv) \leq \alpha \). Hence,

\[
D_\varphi(u) = \{ v \in \{0, 1\}^* : \varphi(uv) = \alpha \} = \{ v \in \{0, 1\}^* : \varphi_0(uv) = \alpha \} \cup \{ v \in \{0, 1\}^* : \varphi_1(uv) = \alpha \},
\]

and since both of these sets are a union of finitely many paths (if \(\varphi_i(u) = \alpha \), then this statement comes from the fact that \(\varphi_i \) is a marking, if \(\varphi_i(u) < \alpha \), then the corresponding set is empty, which is again a union of finitely many paths), so is their union. (End of Proof.)

Corollary 6 For an arbitrary (countable) scattered linear ordering \(P \) that is the union of the scattered linear orderings \(Q_1 \) and \(Q_2 \), \(r(P) = \max\{r(Q_1), r(Q_2)\} \).

Corollary 7 If the scattered linear ordering \(P \) is a shuffle of the scattered linear orderings \(Q_1 \) and \(Q_2 \), then \(r(P) = \max\{r(Q_1), r(Q_2)\} \).

For well-orderings, Corollary 7 follows from Theorem 1.38 in [17].
4 Concatenation

In this section our aim is to prove that for scattered languages $K, L \subseteq \Sigma^*$ the concatenation KL is scattered with $r(KL) \leq r(L) + r(K)$. Actually we prove an extension of this result.

Theorem 8 Let $K \subseteq \Sigma^*$ be scattered of rank α. Suppose that for each $w \in K$, $L_w \subseteq \Sigma^*$ is scattered with $r(L_w) \leq \beta$. Then the language

$$L' = \bigcup_{w \in K} wL_w$$

is scattered with $r(L') \leq \beta + \alpha$.

Proof. First note that it suffices to prove the Theorem in the case when Σ is the binary alphabet $\{0, 1\}$, since if Σ has more than 2 elements then we can replace K by $h(K)$ and each L_w by $h(L_w)$, where $h : \Sigma^* \rightarrow \{0, 1\}^*$ is an injective homomorphism preserving the lexicographic order such that the words $h(a)$, $a \in \Sigma$ are of equal length. So let us suppose from now on that $\Sigma = \{0, 1\}$.

If $\alpha = 0$ then K is finite and L' is a finite union of scattered languages of rank at most β. Thus, by Corollary 6, L' is scattered with $r(L') \leq \beta = \beta + \alpha$.

We proceed by induction on α. Suppose that $\alpha > 0$ (so that K is infinite) and consider a marking $\varphi : \{0, 1\}^* \rightarrow \bar{\alpha}$ of K with $\varphi(\varepsilon) = \alpha$. Then $D = D_\varphi(\varepsilon)$ is a finite nonempty union of infinite paths that we denote by \hat{D}. We can partition $\hat{D} = D_0 \cup D_\ell \cup D_r$ into 3 sets:

$D_0 = D$
$D_\ell = \{w0 : w0 \in \hat{D}, w0 \not\in D\}$
$D_r = \{w1 : w1 \in \hat{D}, w1 \not\in D\}$.

(Note that if $w0 \in D_\ell$ then $w1 \in D$, and similarly, if $w1 \in D_r$, then $w0 \in D$.)

For each $w \in D_0$ let $L'_w = \{\varepsilon\}$ if $w \in L'$ and let $L'_w = \emptyset$ if $w \not\in L$. Suppose now that $wi \in D_\ell \cup D_r$, where $i = 0, 1$. Then let

$$L'_wi = \bigcup_{wv \in K} v \cdot L_{wivi} \cup \bigcup_{uv = wi, u \in K, v \not= \varepsilon} v^{-1}L_u = \bigcup_{v \in (wi)^{-1}K} v \cdot L_{wivi} \cup \bigcup_{uv = wi, u \in K, v \not= \varepsilon} v^{-1}L_u.$$
Note that L' is isomorphic to
\[\sum_{w \in \hat{D}} w \cdot L'_w. \]
Now since $\varphi(wi) < \alpha$, $(wi)^{-1}K$ is scattered of rank strictly less than α. Thus, since for any word v with $wiv \in K$ we have that L_{wiv} is scattered of rank at most β, by the induction hypothesis we have that $\bigcup_{v \in (wi)^{-1}K} v \cdot L_{wiv}$ is scattered of rank less than $\beta + \alpha$. Also, for each $u \in K$ and $v \neq \varepsilon$ with $uw = wi$ we have that L_{uw} is scattered of rank at most β, so by Corollary 6, the finite union $\bigcup_{uw=wi, \ u \in K, \ v \neq \varepsilon} v^{-1}L_u$ is scattered of rank at most $\beta < \beta + \alpha$. (Recall that wi is fixed.) Thus, by applying Corollary 6 again, we have that L'_{wi} is scattered of rank strictly less than $\beta + \alpha$. Since \hat{D} is scattered of rank 1 and since L' is isomorphic to $\sum_{w \in \hat{D}} w \cdot L'_w$, it follows now that L' is scattered of rank at most $\beta + \alpha$. (End of Proof.)

Corollary 9 If $K, L \subseteq \Sigma^*$ are scattered languages then KL is scattered and $r(KL) \leq r(L) + r(K)$.

Example 10 Suppose that α, β are countable ordinals and let $K, L \subseteq \{0, 1\}^*$ be well-ordered prefix languages of order type ω^α and ω^β, respectively. (Such languages exist since every countable ordinal is the order type of a prefix language over $\{0, 1\}$.) Then KL is well-ordered of order type $\omega^\beta \times \omega^\alpha = \omega^{\beta + \alpha}$. Also, the Hausdorff ranks of K and L are α and β, and the rank of KL is $\beta + \alpha$.

5 Scattered context-free languages

A context-free grammar over the alphabet Σ is a system $G = (N, \Sigma, P, S)$ where N is the alphabet of nonterminals, P is the finite set of productions and $S \in N$ is the start symbol. We use basic notions as usual. The language $L(p)$ generated from a word $p \in (N \cup \Sigma)^*$ is the set of all words $w \in \Sigma^*$ with $p \Rightarrow^* w$. The context-free language $L(G)$ generated by G is $L(S)$.

For any $X, Y \in N$, let $X \preceq Y$ if there exist some $p, q \in (N \cup \Sigma)^*$ with $X \Rightarrow^* pYq$. The strong component of a nonterminal X consists of all nonterminals Y such that $X \preceq Y$ and $Y \preceq X$. For strong components C and C', let $C \preceq C'$ if there exists $X \in C$ and $Y \in C'$ with $X \preceq Y$. When $C \preceq C'$ but $C \neq C'$ we write $C < C'$. The height of a strong component C is the largest integer
such that there is a sequence C_0, \ldots, C_n of strong components with $C_n = C$ and $C_i \prec C_{i+1}$ for all $i < n$. The height of a nonterminal is the height of its strong component.

The following fact was proved in [13].

Theorem 11 Suppose that $G = (N, \{0, 1\}, P, S)$ is a reduced context-free grammar which is ε-free and has no left recursive nonterminal. Then $L(G)$ is scattered iff for each strong component C containing a recursive nonterminal there is a primitive word $u_0 = v_0^C$, unique up to conjugacy, such that for all $X, Y \in C$ there is a (necessarily unique) conjugate v_0 of u_0 and a proper prefix v_1 of v_0 such that if $X \Rightarrow^+ wYp$ for some $w \in \{0, 1\}^*$ and $p \in (N \cup \{0, 1\})^*$ then $w \in v_0 v_1$.

The above theorem is applicable for example for reduced context-free grammars in Greibach normal form. We use it to prove:

Theorem 12 The rank of every scattered context-free language is strictly less than ω^ω.

Proof. First we note that it suffices to prove the theorem for nonempty context-free languages over the binary alphabet $\{0, 1\}$, not containing the empty word. Any such context-free language can be generated by a reduced context-free grammar in Greibach normal form. So suppose that $G = (N, \{0, 1\}, P, S)$ is a reduced context-free grammar in Greibach normal form generating the nonempty scattered language $L \subseteq \{0, 1\}^*$. We show that $r(L) < \omega^\omega$.

Let X be a nonterminal of height h. We prove the following fact.

Claim. Suppose that for each nonterminal X' of height $h' < h$, $L(X')$ is scattered of rank at most $\omega^{h'} + 1$. Then $L(X)$ is scattered of height at most $\omega^h + 1$.

Suppose first that X is not recursive. If $h = 0$ then $L(X)$ is finite and we are done. Suppose that $h > 0$. Then $L(X) = \bigcup \{L(p) : X \rightarrow p \in P\}$ and the height of each nonterminal occurring on the right side of any production $X \rightarrow p$ is strictly less than h. Thus, by Corollary 9 for each production $X \rightarrow p$, $L(p)$ is scattered of rank at most $\omega^{h-1} \times k(p)$ for some integer $k(p)$.

\footnote{A nonterminal X is recursive if there exist $p, q \in (N \cup \{0, 1\})^*$ with $X \Rightarrow^+ pXq$.}

10
Let $k = \max\{k(p) : X \to p \in P\}$. Then, by Corollary 6, $L(X)$ is scattered of rank at most $\omega^{h-1} \times k < \omega^h + 1$.

Suppose now that X is recursive. Then let $u_0 = u_0^X$ and $u_\infty = u_0^\omega = u_0u_0 \ldots$. Consider a finite prefix u of u_∞. Then exactly one of u_1 is a prefix of u_∞. Suppose that u_0 is not a prefix. Then consider all left derivations of the sort

$$X \Rightarrow^* wYp \Rightarrow u1q$$

where $Y \in N$, $p, q \in (N \cup \{0, 1\})^*$, $w \in \{0, 1\}^*$ such that $u1$ is not a prefix of w. There are a number of such derivations and for each such derivation each nonterminal occurring in q is of height less than h. (Indeed, if for some derivation $[\Pi]$, q contains a nonterminal Z of height h, then Z belongs to the strong component of X and there exist words $v \in \{0, 1\}^*$ and $r \in (N \cup \{0, 1\})^*$ with $X \Rightarrow^* u1vZr$ which is a contradiction to Theorem 11.) Thus, by Corollary 9, for each q there is an integer k such that $r(L(q)) \leq \omega^{h-1} \times k < \omega^h$. Let

$$L_u = \{ \bigcup_q 1L(q) \text{ if } u \notin L(X) \} \cup \{ \varepsilon \} \cup \bigcup_q 1L(q) \text{ if } u \in L(X)$$

where q is any word in a derivation $[\Pi]$. By Corollary 6, L_u is scattered of rank less than ω^h. When $u1$ is a prefix of u_∞, define L_u symmetrically.

We have that

$$L(X) = \bigcup_u u \cdot L_u$$

where u ranges over all finite prefixes of u_∞. Since the prefixes of u_∞ form a scattered language of rank 1 and since for each prefix u, L_u is scattered of rank less than ω^h, by Theorem 8, $L(X)$ is scattered of rank at most $\omega^h + 1$.

Now by the above claim, it follows immediately by induction that when the height of X is h, then $L(X)$ is scattered with $r(L(X)) \leq \omega^h + 1$. Thus, $L = L(S)$ is scattered and $r(L) < \omega^\omega$. (END OF PROOF.)

We say that an ordinal α is a context-free ordinal if there is a well-ordered context-free language L whose order type is α.

Corollary 13 An ordinal is context-free iff it is less than ω^{ω^ω}.

Proof. It is well-known that the Hausdorff rank of a well-ordering is less than ω^ω iff its order type is less than ω^{ω^ω}. On the other hand, every ordinal less than ω^{ω^ω} is context-free as shown in [4, 5]. (END OF PROOF.)
6 Conclusion

It was shown in [4] that any ordinal less than ω^ω is a context-free ordinal. Moreover, it was proved in [5] that if L is a well-ordered deterministic context-free language (or equivalently, L is definable by an algebraic recursion scheme), or a well-ordered context-free language generated by a prefix grammar, then the order type of L is less than ω^ω. However, the conjecture formulated in [5] that every context-free ordinal is less than ω^ω remained open. In this note, we confirmed this conjecture. Interestingly, the same ordinals are definable by tree automata, cf. [10]. We have also shown that the Hausdorff rank of a scattered context-free language is less than ω^ω.

A hierarchy of recursion schemes and a corresponding hierarchy of grammars and language classes inside the Chomsky hierarchy were introduced in [8, 9]. These hierarchies are closely related to the Cauca hierarchy [7]. By extending results in [5, 6] and confirming some conjectures in [6], it was shown in [1] that an ordinal is definable by a recursion scheme of order n iff it is less than $\omega \uparrow (n + 1) = \omega^{\omega^n}$, a stack of $n + 1$ ω's, and moreover, the rank of any scattered linear ordering definable by a scheme of order n is less than $\omega \uparrow n$.

We conjecture that an ordinal is the order type of the lexicographic ordering of a well-ordered language generated by a grammar of order n iff it is less than $\omega \uparrow (n + 1)$. Moreover, we conjecture that the rank of any scattered language generated by a grammar of order n is less than $\omega \uparrow n$.

By Corollary [13] and the corresponding results in [5, 6], the context-free ordinals are exactly those ordinals that arise as order types of well-ordered deterministic context-free languages. However, it is not known whether there is a (scattered) context-free linear ordering which is not isomorphic to the lexicographic ordering of any deterministic context-free language. Since the monadic theory of any graph in the Cauca hierarchy is decidable, it follows that the monadic theory of the lexicographic ordering of any deterministic context-free language is decidable. Thus, if there is a context-free linear ordering with an undecidable monadic theory, then it follows that there is a context-free linear ordering that is not isomorphic to the lexicographic ordering of any deterministic context-free language.
References

[1] L. Braud and A. Carayol, Linear orders in the pushdown hierarchy, in: ICALP 2010, LNCS 6199, Springer, 2010, 88–99.

[2] S. L. Bloom and C. Choffrut, Long words: the theory of concatenation and omega-power, Theoretical Computer Science, 259(2001), 533–548.

[3] S. L. Bloom and Z. Ésik, Deciding whether the frontier of a regular tree is scattered, Fundamenta Informaticae, 55(2003), 1–21.

[4] S. L. Bloom and Z. Ésik, Regular and algebraic words and ordinals, in: CALCO 2007, Bergen, LNCS 4624, Springer, 2007, 1–15.

[5] S. L. Bloom and Z. Ésik, Algebraic ordinals, Fundamenta Informaticae, 99(2010), 383–407.

[6] S. L. Bloom and Z. Ésik, Algebraic linear orderings, Int. J. Foundations of Computer Science, to appear.

[7] D. Caucal, On infinite graphs having a decidable monadic theory, Theoretical Computer Science, 290(2003), 79–115.

[8] W. Damm, Languages Defined by Higher Type Program Schemes, in: ICALP 1977, LNCS 52, 1977, 164–179.

[9] W. Damm, An Algebraic Extension of the Chomsky-Hierarchy, in: MFCS 1979, LNCS 74, Springer, 1979, 266–276.

[10] C. Delhommé, Automaticité des ordinaux et des graphes homogènes, C. R. Acad. Sci. Paris, Ser. I, 339(2004) 5–10.

[11] Z. Ésik, Representing small ordinals by finite automata, in Proc. 12th Workshop Descriptional Complexity of Formal Systems, Saskatoon, Canada, 2010, EPTCS, vol. 31, 2010, 78–87.

[12] Z. Ésik, An undecidable property of context-free linear orders, Information Processing Letters, 111(2010), 107–109.

[13] Z. Ésik, Scattered context-free linear orders, arXiv:1102.0850v2, 2011.

[14] S. Heilbrunner, An algorithm for the solution of fixed-point equations for infinite words, Theoretical Informatics and Applications, 14(1980), 131–141.
Appendix

In this Appendix, we provide a proof of Fact 3 that we were not able to locate in the literature.

We define for each ordinal α the following classes V_α and F_α of (countable) linear orderings, where α is a countable ordinal:

1. V_0 contains all the linear orderings having at most one element.

2. When $\alpha > 0$, V_α is the class of all orderings isomorphic to an ordered sum $\sum_{i \in \mathbb{Z}} P_i$ where each P_i is in V_{α_i} for some $\alpha_i < \alpha$.

3. For each $\alpha \geq 0$, F_α is the class of all orderings isomorphic to a finite sum $P_1 + \ldots + P_n$ where each P_i is in V_α.

Now it is clear that $F_\alpha \subseteq H_\alpha$ and $V_\alpha \subseteq H_\alpha$ for all α. We prove that also $H_\alpha \subseteq F_\alpha$ for all α. This is clear when $\alpha = 0$. So suppose that $\alpha > 0$ and that our claim holds for all $\beta < \alpha$. Since F_α is closed under finite sums, in order to prove that $H_\alpha \subseteq F_\alpha$ it suffices to show that whenever P is of the form $\sum_{i \in \mathbb{Z}} P_i$ with $P_i \in \bigcup_{\beta < \alpha} H_\beta$ for all i, then P belongs to F_α. But if $P_i \in H_{\beta_i}$, where $\beta_i < \alpha$, then by the induction hypothesis, also $P_i \in F_{\beta_i}$, thus P_i is a finite sum of linear orderings in $V_{\beta_i} \subseteq H_{\beta_i}$. Thus, if $P = \sum_{i \in \mathbb{Z}} P_i$ with $P_i \in \bigcup_{\beta < \alpha} H_\beta$ for all $i \in \mathbb{Z}$, then $P = \sum_{i \in \mathbb{Z}} Q_i$ where $Q_i \in \bigcup_{\beta < \alpha} H_\beta$ for all $i \in \mathbb{Z}$, so that $P \in H_\alpha$.

We have shown that $F_\alpha = H_\alpha$ for all α, so that for any scattered linear ordering P and countable ordinal α, $r(P) \leq \alpha$ iff $P \in F_\alpha$.

In the rest of our argument, we will make use of Claim 1 and Claim 2:
Claim 1. Suppose that \(\{a\} + P + \{b\} \) embeds into \(Q \in V_\alpha \) for some \(\alpha > 0 \). Then \(r(P) < \alpha \).

Let \(h \) be an embedding of \(\{a\} + P + \{b\} \) into \(Q \) and let us write \(Q \) as \(Q = \sum_{i \in \mathbb{Z}} Q_i \), where for each \(i \), \(Q_i \) is in \(V_{\alpha_i} \) for some \(\alpha_i < \alpha \). Then let \(a' \) denote the unique integer with \(h(a) \in Q_{a'} \), and similarly, let \(b' \) denote the unique integer with \(h(b) \in Q_{b'} \). Since \(h \) is an embedding, it follows that \(P \) embeds into \(\sum_{a' \leq i \leq b'} Q_i \), which belongs to \(F_\beta \) with \(\beta = \max \{ \alpha_i : a' \leq i \leq b' \} \). Thus, since each \(\alpha_i \) is less than \(\alpha \) we get \(r(P) < \beta < \alpha \).

Claim 2. Suppose that \(R \) is an infinite scattered linear ordering and for each \(x \in R \), \(P_x \) is a scattered with \(r(P_x) = \alpha > 0 \). Then \(r(\sum_{x \in R} P_x) > \alpha \).

Indeed, let \(Q = \sum_{x \in R} P_x \) and suppose that \(r(Q) \leq \alpha \). Then \(r(Q) = \alpha \), so that \(Q = Q_1 + \ldots + Q_n \) for some integer \(n > 0 \) and orderings \(Q_i \) with \(Q_i \in V_\alpha \) for all \(i \). Since \(R \) is infinite, there exist some \(j = 1, \ldots, n \) and \(x_1 < x_2 < x_3 \) in \(R \) such that \(P_{x_1} + P_{x_2} + P_{x_3} \) embeds in \(Q_j \) by some function \(h \). Let \(p_i \in P_{x_i} \) for \(i = 1, 3 \). Then \(\{p_1\} + P_{x_2} + \{p_3\} \) embeds in \(Q_j \in V_\alpha \), so that \(r(P_{x_2}) < \alpha \) by Claim 1, contrary to our assumptions. Thus \(r(Q) > \alpha \).

Now we are ready to complete the proof of Fact 3. Suppose that \(\sum_{i \in \mathbb{Z}} P_i \) embeds into a scattered linear ordering \(P \) and \(\alpha \) is an ordinal such that \(r(P_i) \geq \alpha \) for all \(i \in R \), where \(R \) is an infinite subset of \(\mathbb{Z} \). Then by Claim 2, \(\sum_{i \in R} P_i \) is of rank at least \(\alpha + 1 \). Since \(\sum_{i \in \mathbb{Z}} P_i \) embeds in \(\sum_{i \in \mathbb{Z}} P_i \), the rank of \(\sum_{i \in \mathbb{Z}} P_i \) is also at least \(\alpha + 1 \).