Effective pair potential for Ca-O bonds in CaGeO$_3$ perovskite, garnet, wollastonite

Ai koganemaru1, Akira Yoshiasa1, Hiroshi Arima2, Tomotaka Nakatani3, Rin Wan1, Maki Okube1, Akihiko Nakatsuka4, Osamu Ohtaka5, Kazumasa Sugiyama2

1Kumamoto University, 2Tohoku University, 3Materials and Structures Lab. Tokyo Institute Technology, 4Yamaguti University, 5Osaka University

The CaGeO$_3$ perovskite and garnet were synthesized in a cubic anvil type apparatus under high pressure. The measurements of Ca and Ge K-edge XAFS spectra were carried out in the transmission mode at temperature up to 700 K. The effective pair potentials $V(u) = au^2/2 + bu^3/3!$, for Ca-O bond in various phases of CaGeO$_3$ have been investigated by the temperature dependence of EXAFS Debye-Waller factors. The potential coefficient a for the Ca-O bond in perovskite-type CaGeO$_3$ is small, 4.4 eV/A2, compared with those in garnet (6.0 eV/A2) and wollastonite (6.4 eV/A2). The potential for Ca-O bond in perovskite is broader than those in other CaGeO$_3$ polymorphs, which is one reason for the Clausius-Clapeyron’s curve for perovskite-garnet phase boundary having a negative slope. The potential coefficients for the Ca-O in perovskite are significantly smaller than those for the longer Ge-Ge distances as the framework vibration though the potential coefficient decreases usually as a result of the larger bond distance.