Original article

ST2 levels increased and were associated with changes in left ventricular systolic function during a three-year follow-up after adjuvant radiotherapy for breast cancer

Hanna Aula a,b,*, Tanja Skyttä b, Suvi Tuohinen c,d, Tiina Luukkaala e,f, Mari Hämäläinen g, Vesa Virtanen c, Pekka Raatikainen d, Eeva Moilanen g, Pirkko-Liisa Kellokumpu-Lehtinen a,b

a Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere University, Finland
b Department of Oncology, Tampere University Hospital, PO Box 2000, 33521, Tampere, Finland
c Department of Cardiology, Heart and Lung Center, Helsinki University Hospital, PO Box 340, 00029, HUS, Finland
d Research, Innovation and Development Center, Tampere University Hospital, PO Box 2000, 33521, Tampere, Finland
e Health Sciences, Faculty of Social Sciences, Tampere University, 33014, Tampere University, Finland
f The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014, Tampere University, Finland

doi:10.1016/j.breast.2019.12.001

1. Introduction

Adjuvant radiotherapy (RT) reduces breast cancer (BCa) recurrence and mortality [1,2], but the increase in long-term cardiac morbidity and mortality caused by RT is of concern [3–9]. ST2 is released by cardiomyocytes in response to myocardial stress [10]. In heart failure patients and in population-based studies, elevated levels were associated with increased mortality [11–16]. No studies on the effect of RT alone exist, but radiation exposure was associated with increased ST2 levels in nuclear plant workers [17].
To identify predictive markers for the detection of adjuvant RT-induced changes in left ventricular (LV) function in BCa patients, we evaluated the behavior of ST2 and its association with LV systolic function before RT, after RT and at the three-year follow-up.

2. Materials and methods

This prospective, observational, single center study included 63 chemo-naïve patients with early-stage BCa or ductal carcinoma in situ (DCIS) who received postoperative RT ± concurrent endocrine therapy. Fifty patients had left-sided and 13 patients had right-sided BCa. The key inclusion and exclusion criteria, and the RT procedure were described in detail previously [18,19]. The local ethics committee (R10160) approved the study and informed consent was obtained from all participants.

Sampling and echocardiography were performed, as described previously [20,21], at the start of RT (bRT), at the end of RT (eRT) and at the three-year follow-up (3yRT). The concentrations of ST2 were measured by enzyme-linked immunosorbent assay with reagents from R&D Systems Europe Ltd. (Abingdon, UK). The detection limit and interassay coefficient of variation were 7.8 pg/ml and 6.2%, respectively. N-terminal pro-brain natriuretic peptide (proBNP) was measured at an accredited laboratory [22].

2.1. Statistical analysis

The basic statistical testing was done as described previously [23]. Multivariable linear regression analyses were performed to model the change in GLS and in left ventricular ejection fraction (LVEF) over three years, adjusting the models with the change in GLS and in LVEF (rho 0.309, p = 0.025), and BMI and the change in ST2 during the follow-up (rho 0.309, p = 0.014) correlated. Furthermore, the change in ST2 and proBNP levels during the follow-up were correlated (rho 0.329, p = 0.009).

3. Results

3.1. Changes in ST2 levels and correlations with age, BMI and proBNP

ST2 levels increased slightly from bRT to eRT and increased significantly from bRT to 3yRT (Table 1).

Age and the change in ST2 level during RT (Spearman’s rho 0.281, p = 0.025), and BMI and the change in ST2 level during the follow-up (rho 0.309, p = 0.014) correlated. Furthermore, the change in ST2 and proBNP levels during the follow-up were correlated (rho 0.329, p = 0.009).

3.2. The change in ST2 level and baseline characteristics

The change in ST2 level was significantly greater patients with hypertension during RT, p = 0.008. Diabetic patients had higher median ST2 levels at bRT than non-diabetic patients, p = 0.025. There were no other significant differences according to other baseline characteristics.

3.3. ST2 levels and systolic echocardiographic measurements

A table of echocardiographic parameters at bRT, eRT and at 3yRT was published as a supplementary table in our previous publication [23]. The change in ST2 levels during RT correlated with GLS at 3yRT (rho = 0.287, p = 0.025). Furthermore, the change in ST2 level over the three years was correlated with GLS (rho = 0.272, p = 0.034) and LVEF (rho = −0.343, p = 0.006) at 3yRT.

In multivariable linear regression analyses, no variables significantly explained the decrease in LVEF, but AI use and left-sided BCa were associated with the impairment in GLS over the follow-up, p = 0.042 and p = 0.013, respectively. The change in ST2 level did not quite reach significance in the model, p = 0.093. The variables explained 24.3% of the variance.

3.4. Grouping according to >15% and ≤15% relative change in GLS over three years

Patients were grouped according to a clinically meaningful GLS change: 14 patients with >15% (group 1) and 47 patients with ≤15% (group 2) relative worsening in GLS. Group 1 had a significant worsening in GLS during RT, p = 0.006, and during the follow-up, p < 0.001 (Table 2). Group 2 had a stable GLS during RT, p = 0.979, and the follow-up, p = 0.183.

The baseline characteristics, cardiac doses, GLS measurements and ST2 levels are displayed in Table 2. The median ST2 level increased significantly only in group 1 during RT (p = 0.035) and the follow-up (p = 0.005). In group 2, the ST2 level remained stable, p = 0.220 during RT and p = 0.500 during the follow-up.

In multivariable binary logistic regression analysis, AI users (OR 5.61 [95% CI 1.25–25.10]) were more likely to be in group 1. Furthermore, increasing mean dose to LAD (OR 1.07 [95% CI 1.00–1.15]), greater increase in ST2 levels (OR 1.15 [95% CI 0.93–1.41]) and older age (OR 1.08 [95% CI 0.96–1.22]) nearly reached significance.

4. Discussion

We report a small, yet significant, increase in ST2, a possible marker of cardiotoxicity, three years after adjuvant RT for early BCa. One earlier study found no association between RT and ST2 levels, but the ST2 levels increased 6 months after chemotherapy, which could have masked the effect of RT [26].

Older age, BMI, hypertension and diabetes affected ST2 levels,
possibly indicating that patients with underlying cardiac risk factors are at a greater risk for cardiotoxicity. These associations have been reported previously [16,27,28].

4.1. ST2 levels and changes in LV systolic function

The increase in the ST2 level during RT was associated with a higher, thus worse, GLS at the three-year follow-up. Additionally, the three-year change in the ST2 level correlated with a worsening in GLS and LVEF, both known prognostic factors for cardiovascular death [29]. The association between worsening GLS and increasing ST2 levels has been reported previously in patients with cardiac disease to manifest, longer follow-up and larger prospective clinical studies [30,31]. In multivariable analysis, the worsening in GLS and LVEF, both known prognostic factors for cardiovascular death, were statistically significant (p < 0.05).

Table 1

Baseline characteristics, cardiac doses, GLS and ST2 levels compared according to the >15% (group 1) and ≤15% (group 2) relative change in GLS.
Radiation doses to the heart
Dmean heart ≥2 Gy, n (%)
Dmean heart (Gy); Md (IQR)
V20 Gy to heart (%)
Dmean LV Gy (Gy); Md (IQR)
V20 Gy to LV (%)
Dmean RV Gy (Gy); Md (IQR)
Dmean LAD Gy (Gy); Md (IQR)
V20 Gy to LAD (%)
GLS at different time points
GLS baseline (%)
GLS after RT (%)
GLS at 3 years (%)
ST2 levels
ST2 baseline (ng/ml); Md (IQR)
ST2 after RT (ng/ml); Md (IQR)
ST2 at 3 years (ng/ml); Md (IQR)

Gls, global longitudinal strain; RT, radiotherapy; Md, median; IQR, interquartile range; p, p-value from the Mann-Whitney U test.

Statistical significance is shown in bold (p < 0.05).

4.2. Limitations

The small sample size is a limitation of our study. Furthermore, the changes in LV systolic function and ST2 levels were subclinical and a longer follow-up is needed to determine whether these changes translate into clinically relevant cardiovascular risk.

5. Conclusion

We observed a small but significant increase in ST2 levels during adjuvant RT ± endocrine therapy for BCa and during the three-year follow-up. The increase was apparent in patients with a >15% worsening in GLS, which was also associated with AI use and higher radiation dose to the LAD. As it takes years for RT-induced heart disease to manifest, longer follow-up and larger prospective clinical studies are suggested to further investigate whether the observed associations between age, LAD radiation dose and the change in ST2 level during the follow-up and the change in GLS were hypothesis generating.
studies are needed to confirm whether ST2 levels provide additional value in cardiotoxicity risk evaluation.

Ethical approval

The study was approved by the Tampere University Hospital ethics committee (R0160), Tampere, Finland, and informed consent was obtained from all participants.

Declarations of competing interest

None.

Acknowledgements

Ms. Salla Hietakangas is warmly acknowledged for her skilled technical assistance.

Financial support was provided by the Seppo Nieminen Fund (150620 and 150636), the Ida Montin Foundation (150620 and 150636), the Ida Montin Foundation (20180260), the Paulus Wijburg Foundation (Pirkanmaa Regional Fund 50181690), and the competitive state financing of the expert responsibility area of the Tampere University Hospital and the Paulo Foundation. The funding sources had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

References

[1] EBCTCG (Early Breast Cancer Trialists' Collaborative Group), McGale P, Taylor C, Correa C, Cutter D, Duane F, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014;383:2127–35. https://doi.org/10.1016/S0140-6736(14)60488-6.

[2] Early Breast Cancer Trials' Collaborative Group (EBCTCG), Darby S, McGale P, Correa C, Arriagada R, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011;378:1707–16. https://doi.org/10.1016/S0140-6736(11)61829-2.

[3] Darby SC, McGale P, Taylor CW, Petri R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 2005;6:557–65. https://doi.org/10.1016/S1470-2045(05)70251-5.

[4] Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brennan D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 2013;368:978–87. https://doi.org/10.1056/NEJMoa1209825.

[5] Bouillon K, Haddy N, Delaloge S, Garbay J-R, Garsi J-P, Brindel P, et al. Long-term mortality and morbidity in early-stage breast cancer patients after breast cancer surgery and adjuvant radiotherapy: a population-based cohort study of about 300,000 women in US SEER cancer registries. Lancet 2012;380:2127–35. https://doi.org/10.1016/S0140-6736(12)61167-4.

[6] Boekel NB, Schaapveld M, Gietema JA, Russell NS, Poortmans P, Theuws JCM, et al. Cardiovascular disease risk in a large, population-based cohort of breast cancer survivors. Int J Radiat Oncol 2016;94:1061–70. https://doi.org/10.1016/j.ijrobp.2015.11.040.

[7] Harris EER, Correa C, Hwang W-T, Liu J, Ferrari VA, et al. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 2006;24:4108–6. https://doi.org/10.1200/JCO.2005.10.107.

[8] Katsaros G, Zilberman L, Enev R, Sivkova C, Boteva R, Krause M, et al. The soluble receptor ST2 is positively associated with occupational exposure to radiation. Int J Radiat Biol 2016;92:1596–604. https://doi.org/10.1080/09553002.2016.1184512.

[9] Tuohinen SS, Skytta T, Virtanen V, Luukkaala T, Kellokumpu-Lehtinen P-L, Raatikainen P. Early effects of adjuvant breast cancer radiotherapy on right ventricular systolic and diastolic function. Anticancer Res 2015;35:2141–7.

[10] Parikh RH, Seliger SL, Christensen R, Gottlieb LS, et al. Cardiomyopathies: changes with all-cause and cardiovascular mortality in patients with breast cancer. Anticancer Res 2015;35:1599–60.

[11] Tuohinen SS, Skytta T, Virtanen V, Luukkaala T, Hämäläinen M, Virtanen V, et al. Transforming growth factor beta 1 levels predict echocardiographic changes among early-stage breast cancer patients three years after adjuvant radiotherapy for breast cancer. Radiat Oncol 2019;14:155. https://doi.org/10.1186/s13054-019-1366-1.

[12] Tuohinen SS, Skytta T, Poutanen T, Huhtala H, Virtanen V, Kellokumpu-Lehtinen P-L, et al. Radiotherapy-induced global and regional differences in early-stage left-sided versus right-sided breast cancer patients: speckle tracking echocardiography study. Int J Cardiovasc Imaging 2017;33:463–72. https://doi.org/10.1007/s10554-016-0837-8.

[13] Huang G, Zhai J, Huang X, Zheng D. Predictive value of soluble ST-2 for changes of cardiac function and structure in breast cancer patients receiving chemotherapy. Medicine (Baltimore) 2018;97:e12447. https://doi.org/10.1097/MD.0000000000012447.

[14] Chen LQ, de Lemos JA, Das SR, Ayers CR, Rohatgi A. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: the dallas heart study. Clin Chem 2013;59:536–46. https://doi.org/10.1373/clinchem.2012.191106.

[15] Lin Y-H, Zhang R-C, Hou L-B, Wang K-J, Ye Z-N, Huang T, et al. Distribution and clinical association of plasma soluble ST2 during the development of type 2 diabetes. Diabetes Res Clin Pract 2016;118:140–5. https://doi.org/10.1016/j.diabres.2016.06.006.

[16] Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV strain and ejection fraction. Heart 2014;100:1673–80. https://doi.org/10.1136/heartjnl-2014-305538.

[17] Fabiani I, Conte L, Pugliese NR, Calogero E, Barletta V, Di Stefano R, et al. The clinical association of plasma soluble ST2 during the development of type 2 diabetes. Biomarkers 2017;22:367–74. https://doi.org/10.1080/1354750X.2016.1278266.