مجله دانشکده بهداشت و انتی‌میکروفلور در ایران: یک ارزیابی مقایسه ای از خطر

فرشید فرزادفر

فرشید فرزادفر: استادیار، مرکز تحقیقات بیماری‌های غیرواگیر، پژوهشگاه علوم دندانپزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

کودکان دانش‌آموزی، دانش‌آموزی بهداشت، دانش‌آموزی هوراواس، بوستون، ایالات متحده آمریکا

شهاب نامداری، تیر: پژوهش عمومی، کارشناس برنامه پایش و ارزی‌سنجی، اردبیل، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران

ژولی کنل، جراح آدم: استادیار، استیتوس سلامت مناسب و ارزی‌سنجی، دانشگاه وانکوفر: سایت، ایالات متحده آمریکا

اردشیر حسروی: دکتری خصوصی اپیدمیولوژی، معاونت بهداشت وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران

سیامک عابدی‌نیکی: پژوهش، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران

مجد عزیزی: استاد، دانشجوی سلامت جهانی و محیط زیست، کالج سلطنتی تهران، لندن، پردازی‌های کیبر تولید را بیان می‌کند:

majid.ezzati@imperial.ac.uk

تاریخ دریافت: 1391/12/24
تاریخ پذیرش: 1391/1/23

چکیده

زمینه و هدف: شواهد جدیدی از آن است که مرگ‌ها ناشی از بیماری‌های قلبی-عروقی و سایر بیماری‌های مزمن در ایران افزایش یافته است. هدف پژوهش حاصل، تعیین تاثیر مصرف سیگار و بالا بودن شار خون سیستولیک است. این پژوهش تاکیدی بر مطالعات مربوط به این موضوع را نشان می‌دهد. در این مقاله، با توجه به این نگرش مطالعات مربوط به این موضوع را می‌پذیراییم.

روش کار: در این مطالعه، برای تعیین میانگین و انحراف معیار عوامل خطر متابولیک در سطح ملی و فرمولی از داده‌های "مطالعه نظام مراتب بیماری‌های غیرواگیر" استفاده شده است. برای انتخاب گروه منابع شما، در سال 1386 تا 1385، از داده‌های نظام ثبت مرگ استفاده شده و به کمک کلسترول نمایش داده شده است. در این مطالعه، برای تعیین عوامل خطر بر مرگ به تحقیک بیماری‌های اعتیاد سیگاری و سیستولیک بیماری از نتایج مطالعات مربوط به این موضوع استفاده شده است.

یافته‌ها: در این مطالعه، برای تعیین میانگین و انحراف معیار عوامل خطر متابولیک در سطح ملی و فرمولی از داده‌های "مطالعه نظام مراتب بیماری‌های غیرواگیر" استفاده شده است. برای انتخاب گروه منابع شما، در سال 1386 تا 1385، از داده‌های نظام ثبت مرگ استفاده شده و به کمک کلسترول نمایش داده شده است. برای تعیین عوامل خطر بر مرگ به تحقیک بیماری‌های اعتیاد سیگاری و سیستولیک بیماری استفاده شده است.

نتایج: در سال 1386، در ایران، شار خون سیستولیک بالا عدد 10 در مردان (دبایه نسبت 10 در مردان) و عدد 6 در زنان (دبایه نسبت 5 در زنان) بوده است.

مصرف سیگار: در این مطالعه، برای تعیین عوامل خطر بر مرگ به تحقیک بیماری‌های اعتیاد سیگاری استفاده شده است. در این مطالعه، برای تعیین عوامل خطر بر مرگ به تحقیک بیماری‌های اعتیاد سیگاری استفاده شده است.

در تمامی اثرات کلی، شار خون سیستولیک بالا در بیماران زن و مردان می‌باشد. در این مطالعه، برای تعیین عوامل خطر بر مرگ به تحقیک بیماری‌های اعتیاد سیگاری استفاده شده است.
مقیده

در چند دهه اخیر، تغییرات مواد غذایی در ایران

به سالنگه بوده است و به اساس سرشماری نظر و مسئول،

تعداد بالغین بالای 34 سال از 156 میلیون نفر (39٪) از

کل جمعیت) در سال 1355 به 35 میلیون نفر (50٪) از

کل جمعیت) در 1385 افزایش یافته است. همچنین، نقش

بیماری های مزمن و به ویژه بیماری های قلبی-

در Cardio-Vascular Diseases (CVD) (Sarraf-Zadegan et al. 1999)

دانستن نقش عوامل خطر متابولیک و خطر ناشی از

شیوع زندگی و به ویژه CVD در مرگ، از اهمیت بسزایی

در برنامه ریزی و تفصیل منابع برخورد است. تاثیر

عوامل خطر عمده به مراتب در ایران در یک مطالعه قابل

تخمین زده است به از در کتاب

داده های مورد استفاده در آن مطالعه قابل تعمیم به کل

کشور نبود اند. علاوه بر این در مطالعه قابل تاثیر فشار

Systolic Blood Pressure خون سیستولیک (SBP)و

Total Cholesterol(TC) (کلسترول نام

Body Mass Index (BMI) نام برای بانوی

و بالاتر از حدود آستانه بالینی مشخصی اندازه گیری شده

اند، در حالی که مطالعات کلیه برخورداری نشان داده اند که

اگر عوامل خطر با CVD در سطح بالینی که در

Levington et al. 2002)و

آستانه نیز همبستگی ندارد) (Levington et al. 2007)

بیماری، در مطالعه قابل

نقص در نظام ثبت وقایع حیاتی و سواد طبقه بنیاد علل

مرگ، و با عدم قطعیت در تخمین مراکز قابل انتساب

به آن علل ارزیابی شده است. در حال حاضر، داده های

حاصل از یک مطالعه کشوری که در سال 1384 بر روی

عوامل خطر انجام شده در دسترس است. این مطالعه بر

بیماری های غیرقابل درمان (به بیماری های قلبی-

آمده از آن بده کل کشور و کل استانها قابل تعمیم است.

روش کار

در این مطالعه، ما یک ارزیابی مقایسه ای از خطر

نسبت جامعه بر روی 5 عامل خطر قابل اصلاح انجام دادیم.

با نظر در نظر گرفتن امکان دسترسی به داده های مربوط به

مواجه و اندام، اثر عوامل خطر انتخاب شده بر اثر آلانژ

عبارت بودند از صفر سیگار، و 4 عامل خطر متابولیک

Fasting Plasma Glucose (FPG)و

In The Treatment of CVD.

به اسکایل پیشگیری، به آن نقش می شود. تعداد

مرگ در صورتی که به دو پایه مراجعه قابل و فعال

با عامل خطر به یک توزیع فرضی قابل جابجایی، تقلیل

داده شود. در برابر این نتایج عبارات از 1 توزیع عفی

ون منابع به عامل محافظ، از دو عامل خطر بر

برد تعداد در این نوع دارند:

Levington et al. 2007

نفی نیست که باعث

Intervention in the Treatment of Cardiovascular Disease (CVD) 2010

Total Cholesterol (TC), Body Mass Index (BMI), Systolic Blood Pressure (SBP), Glucose (FPG)
یک نویس انداده گیری عوامل خطر متابولیک در مطالعات سلامت به به تخمین "معمول" SD در توزیع "معمول" مواجهه در جامعه می انجامد که از تفاوت های درون- فردی ناشی می شود. برای برآورد کردن SD معمول در NCDSS، توزیع در SM از مجموعه، ما و FPG، SBP توزیع Dilution مطالعه در NCDSS از توزیع می دهد.

Ratio Lawes et al. 2004، ما (Law et al. 1994; McMahon et al. 1990 SD توزیع درون- فردی در وزن. تطبیق نتایج، زیرا در مطالعات که به دفعات BMI انداده گیری شده است، تفاوت درون- فردی چشم گیری در مشاهده نشده است (Emerson et al. 2005).

اثرات اتیولوژیک عوامل خطر: برای هر جفت شامل یک عامل خطر و یک بیماری در صورت وجود مکرر متقاعد کنش رفت یک مبنی بر رابطه علی براند آن در خطیر نسبی از مطالعات اتیولوژیک اخیر که Relative Risk در ایالات متحده CRA خلاصه آن از آنها در مطالعه در گزارش شده است (Danaei et al. 2009).
مطالعات قبلی نشان داده اند که با وجود تبعیض در طراحی مطالعات و روشن اجرای مطالعات، انداده اثر انتولوژی ها به جوازی مختلف همگونی دارد. (Mente et al. 2010)

مدیری قابل انتظار در بیان ارتباط علیه این امر، میان‌الاحزابی بر یک روز مطالعات همگونی بین سایر مطالعات مبنایی به در حال بررسی از تأثیر انتولوژی‌های مورد نظر است.

مرک به تفکیک پیوسته: داده‌های جمعیت‌برداری به تفکیک سن، جنس، و ایستاده از سرشماری‌های کشوری بین سال‌های 1375 و 1385 مورد استفاده قرار گرفته است. تعادل اعداد انسان با تفکیک سن، جنس، و وصیت زمانی‌ای نظارت بر مارک به دست آمده است که تعدادی

۲۶,۰۰۰ (Rajaratnam et al. 2010)

-mar (Khosravi et al. 2008)

∫ ∫ = (Khosravi et al. 2008)

∫ ∫ = (Rajaratnam et al. 2010)

c−p−sx−dx \cdot c−p−sx−dx

Demographic and Health Survey

Generalized Growth Balance

Effect Size

GGB

Extinct Generations(SEG)

Synthetic (GGB)

Generatralized Growth Balance

Truncation Yafteh

Demographic and Health Survey (DHS)

Downloaded from ssjsh.tums.ac.ir at 19:43 IRDT on Saturday August 14th 2021
به جمله‌ای مطرح کنم: تأثیر عوامل خطر (RR) بر RR(x) و ارزیابی نسبت میزان RR(x) در گروه‌های مختلف اجتماعی و اقتصادی.
تنبیه‌های جغرافیایی، کشور را به ۴ منطقه بزرگ تقسیم کرده (شکل ۱). منطقه جنوب شرقی پایین ترین SES و منطقه مرکزی بالاترینSES را دارد.

ر. واریانس ممکن است با استفاده از ترم انفرار

۲.۱.۱

نتایج

مرگ و امید زندگی در ایران: بعید از اصلاح بیماری ناکام بودن داده‌های مرجع ۳۵۲۰۰ میلیارد در سال ۱۳۸۴ در ایران رخ داده است. این تعداد، بستری ۲۱۷۰۰ میلیارد در بالای ۳۶ سال و بالاتر به نحو پیوسته است (۶۵/۷ در مردان. حدود ۵۳/۷ از این میزان در بالای ۳۶ سال بالاتر ناشی از CVD بوده که این میزان ۱۸/۲ در سال بالاتر ناشی از این میزان (IHD) در زنان بالاتر ناشی از سکته مغزی، ۴/۲ در دیلم بیماری‌های خاص فشارخون بالا و ۱۰/۲ ناشی از سایر انواع CVD بوده است. امید زندگی در زمان تولد در مردان ایرانی حدود ۱۳۰۰ سال است که در طیفی از ۷۰۲ تا ۷۰۵ سال در جنوب شرقی قرار گرفته است. امید زندگی در زمان تولد در زنان ایرانی معادل ۴۷ تا ۷۷/۵ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ Tان ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ تا ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون داده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و زنان (۱۳۶۵/۷ Tان ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران برون Dاده شده است. امید زندگی در زمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب تا ۷۵/۷ سال در جنوب شرقی متغیر است.

مراجعه با عامل خطر: میانگین برآورد شده BMI در مردان (۱۳۷۶/۹ تا ۱۳۶۵/۷ mmHg) و Zن (۱۳۶۵/۷ Tان ۱۳۵۶/۷ mmHg) در سال ۱۳۸۴ در ایران Bرون Dاده شده است. امید زندگی در Zمان تولد در مردان ایرانی معادل ۴۷ سال می‌باشد که از ۷۰۵ سال در غرب Tا ۷۵/۷ سال در جنوب شرقی متغیر است.
بیش از پنجاه درصد از جمعیت جهانی بدترین سطح ضغط خون را دارند. این امر نشان می‌دهد که بیماری‌های قلبی‌судانی و سرطان به دلیل بیشترین تاثیرات ویژه‌ای که بر پایه سطح ضغط خون دارند، باید بهتر تحقیق شوند. Begg et al. 2007; Danaei et al. 2009; Norman et al. 2007; Stevens et al. 2008; Rhapunski et al. 2008؛ مطالعه‌های مختلف نشان می‌دهند که ارتباط بین ضغط خون و بیماری‌های قلبی-سگانی یا سرطان وجود دارد. در اینجا، سعی می‌گردد بر این دیدگاه استدلال کند که بیماری‌های قلبی-سگانی و سرطان از نظر سطح ضغط خون می‌توانند تأثیر مثبتی بر روی بهبود کیفیت زندگی و بهبود سلامت جهانی داشته باشند.
شمال آفریقا، آسیای مرکزی و جنوب شرقی، و قاره آمریکا زیر صحرا، داده‌ها در مورد عوامل خطر و به ویژه داده‌های Danaei et al. 2011 a; b; Farzadfar et al. 2011; مطالعه بر اهمیت مطالعات کشوری، تنها برای مقایسه کشورها، بلکه برای اولین بار بیندی در سطح ملی و فروملی تاکید دارد. با تغییرات دموگرافیک و ایمپلیهولوژیک در ایران و سایر کشورها با درآمد، متوسط، پرین جامعه انتخاب نمی‌شود که در نتیجه، جلسه مشترک کشورها در سال 1990 مطالعات تندستی ضروری بوده که در مطالعات آن، سایر عوامل خطر مربوط به ریزگیری و شیوع رژیم نیز که در مطالعه حاضر نشان داده شده باشد، همگونی می‌شود، در اثر شاید نهایی استراتژیک RR در کشورهای مشارکت‌کننده است. ممکن است آنکه شاخص تحریک حاکم از آن است که آن را نسبت به جمعیت مختلف (برای مثال جمعیت غربی و آسیایی) مشاهده است Lawes et al. 2004; Yusuf et al. 2004; (Danaei et al. 2001 mmHg مقداری به مقدار خطر منافع و درمان بهتر برای بیشتری و مرتفع‌تری هایا اولیه به منظور کاهش فشار خون در سطح جامعه از طریق نشان‌پذیر و درمان بهتر برای بیشتری و مرتفع‌تری هایا اولیه به منظور CVD کاهش مقدار ناشی از حیاتی است. در این، آنالیز روند عوامل خطر در سطح جامعه و مدل‌های بالا بر روی کارآزمایی‌های تصادفی شده مطالعه داده‌های کاهش خطر مصرف نمک در طول یکدیگر را کاهش دهد. (He et al. 2002; Ikeda et al. 2008) رژیم غذایی ایرانی‌ها عمده‌تر از مصرف‌های ایرانی‌ها در طول کشورها در این مطالعات است. کاهش میزان کمک در نمان از طریق قوانین و رسانه‌ها در سطح کلان ممکن است به کاهش فشار خون در سطح کشور کمک کند. (Ghassemi et al. 2002) نتایج مطالعه حاضر حاوی پیشنهادات برای سیاست‌گذاری ها و برنامه‌های بهداشتی در سطح کشوری و استانی در ایران و همچنین در سایر کشورها با درآمد متوسط هستند. نتایج مطالعه ما نشان داده‌ها اهمیت و نیاز به مطالعات دوره ی بر روی عوامل خطر و اندام‌گیری گری روند آنها در طول زمان هستند. این مطالعات برای ارتقای سیاست‌های اعمال شدید نیاز کاربرد دارد. مطالعات سیستماتیک بررسی کرده که اخیراً بر روی عوامل خطر مشترک انجام شده نشان داده که در کشورهای در حال توسعه در آمریکای لاتین و کارائیب، خاورمیانه و
کاهش دهه در مناطق روستایی، نمونه چندین برنامه ای برای دیابت اجرا شده است (Farzadfar et al. 2011). طراحی، اجرای و ارزیابی این نوع مداخلات بسیار همیت‌دارد. به ویژه در مناطق روستایی که روند افزایش در شیوع اضطراب، وزن و چاقی در ایران و جهان مند نظر قرار گیرد (Finucane et al. 2011) با این روند، افزایش شیوع دیابت و فشار خون با انتظار تا بهروز خواهد بود. مکر آنکه مداخلات منشأ بر جامعه به اجرا درآید.

نتیجه‌گیری
در حال حاضر، برنامه‌های جامعی برای کنترل چاقی در ایران، چه در نظام مراقبت‌های اولیه و چه در مداخلات بر روی تغذیه و شیوه زندگی، وجود ندارد. اکثر چهار پیشگیری و درمان دیابت در نظام مراقبت‌های اولیه در مناطق روستایی به شده است (Farzadfar et al. 2011). مداخلات منشأ بر جامعه به پیشگیری خانواده در مورد تغذیه سالم و فعالیت بدنی که مشارکت آنها مهم است. در این مقاله، نشان داده‌اند که فعالیت بدنی افزایش می‌یابد. عادات غذایی بهبود یافته می‌کند. و افزایش وزن متوسط می‌شود (Romon et al. 2009). ادغام برنامه‌های کلیدی و پیشگیری از دیابت و چاقی در نظام مراقبت‌های اولیه و جلب مشابکت و جذب به فعالیت‌های می‌تواند همکاری در محدودیت و شیوع عوامل خطر را تمایل کند.

شکر و قدردانی
پذیرش یکی از مرکز کرکت بیماری‌های دیابت‌یکی‌تایی از ایران که داده‌های NCDSS در سال 1384 را در اختیار ما قرار دارد سبب گزار شده‌می‌باشد. همچنین از نظرات کانر دیپینیسیو بر روی نسخه اولیه این مقاله قدردانی می‌کنیم.

References
Begg, S., Vos, T., Barker, B., Stevenson, C., Stanley, L. and Lopez, A.D., 2007. The burden of disease and injury in Australia 2003. PHE 82. Canberra: AIHW.
Coale, A. and Guo, G., 1989. Revised regional model life tables at very low levels of mortality. Population Index. pp. 31-55.
Danaei, G., Ding, E.L., Mozaffarian, D., Taylor, B., Rehm, J. and Murray, C.J., 2009. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS medicine. Apr 28;6(4), pp. e1000058.
Danaei, G., Finucane, M.M., Lin, J.K., Singh, G.M., Paciorek, C.J. and Cowan, M.J., 2011. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet. 2011 Feb 12;377(9765), pp. 568-77.
Danaei, G., Finucane, M.M., Lu, Y., Singh, G.M., Cowan, M.J. and Paciorek, C.J., 2011. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet in press.
Emberson, J.R., Whincup, P.H., Morris, R.W., Wannamethee, S.G. and Shaper, A.G., 2005. Lifestyle and cardiovascular disease in middle-aged British men: the effect of adjusting for within-person variation. Eur Heart J. 26(17), pp.1774-82.
Esteghamati, A., Abbasi, M., Alikhani, S., Gouya, M.M., Delavari, A. and Shishehbor, M.H., 2008. Prevalence, awareness, treatment, and risk factors associated with hypertension in the Iranian population: the national survey of risk factors for noncommunicable diseases of Iran. Am J Hypertens. 21(6), pp. 620-6.
Ezzati, M. and Lopez, A.D., 2003. Measuring the accumulated hazards of smoking: global and regional estimates for 2000. Tob Control. 112(1), pp. 79-85.
Ezzati, M., Lopez, A.D., Rodgers, A., Vander Hoorn, S. and Murray, C.J., 2002. Selected major risk factors and global and
regional burden of disease. *Lancet.* 2; 360(9343), pp. 1347-60.

Farzadfar, F., Finucane, M.M., Danaei, G., Pelizzari, P.M., Cowan, M.J. and Paciorek, C.J., 2011. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. *Lancet.* 12; 377(9765), pp. 578-86.

Farzadfar, F., Murray, C.J., Gakidou, E., Bossert, T., Namdari, H. and Alikhani, S., 2011. Can rural primary healthcare manage noncommunicable diseases and risk factors? Evaluation of the effect of Behvarz system on diabetes and hypertension management in Iran. Submitted manuscript.

Filmer, D. and Pritchett, L.H., 2001. Estimating wealth effects without expenditure data-or tears: An application to educational enrollments in states of India. *Demography.* 338(1), pp. 18.

Finucane, M.M., Stevens, G.A., Cowan, M.J., Danaei, G., Lin, J.K. and Paciorek, C.J., 2011. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. *Lancet.* 12; 377(9765), pp. 557-67.

Ghassemi, H., Harrison, G. and Mohammad, K., 2002. An accelerated nutrition transition in Iran. Public Health Nutr. 5(1A), pp. 149-55.

He, F.J. and MacGregor, G.A., 2002. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. *J Hum Hypertens.* 16(11), pp. 761-70.

Hill, K., Lopez, A.D., Shibuya, K. and Jha, P., 2007. Interim measures for meeting needs for health sector data: births, deaths, and causes of death. *Lancet.*

Ikeda, N., Gakidou, E., Hasegawa, T. and Murray, C.J., 2008. Understanding the decline of mean systolic blood pressure in Japan: an analysis of pooled data from the National Nutrition Survey, 1986-2002. *Bull World Health Organ.* 86(12), pp. 978-88.

Jafari, N., Kabir, M.J. and Motlagh, M.E., 2009. Death Registration System in I.R.Iran. *Iranian J Publ Health.* 38, (Suppl 1), p. 3.

Janghorbani, M., Amini, M., Gouya, M.M., Delavari, A.R., Alikhani, S. and Mahdavi, A., 2008. Nationwide survey of prevalence and risk factors of prehypertension and hypertension in Iranian adults. *J Hypertens.* 26(3), pp. 419-26.

Khosravi, A., Rao, C., Naghavi, M., Taylor, R., Jafari, N. and Lopez, A.D., 2008. Impact of misclassification on measures of cardiovascular disease mortality in the Islamic Republic of Iran: a cross-sectional study. *Bull World Health Organ.* 86(9), pp.688-96.

King, G., Honaker, J., Joseph, A. and Scheve, K., 2001. Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation. *American Political Science Review.* 95(1), pp. 21.

Law, M.R., Wald, N.J. and Wu, T., 1994. Hackshaw A, Bailey A. Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: data from the BUPA study. *BMJ.* 5;308(6925), pp. 363-6.

Lawes, C.M., Parag, V., Bennett, D.A., Suh, I., Lam, T.H. and Whitlock, G., 2004. Blood glucose and risk of cardiovascular disease in the Asia Pacific region. *Diabetes Care.* 27(12), pp. 2836-42.

Lewington, S., Clarke, R., Qizilbash, N., Peto, R. and Collins, R., 2002. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. *Lancet.* 14;360(9349), pp.1903-13.

Lewington, S., Whitlock, G., Clarke, R., Sherliker, P., Emberson, J. and Halsey, J., 2007. Blood cholesterol and vascular mortality by age, sex, and blood pressure:
a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. *Lancet.* 1:370(9602), pp.1829-39.

MacMahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P. and Neaton, J., 1990. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. *Lancet.* 31;335(8692), pp. 765-74.

Mente, A., Yusuf, S., Islam, S., McQueen, M.J., Tanomsup, S. and Onen, C.L., 2010. Metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 subjects from 52 countries. J Am Coll Cardiol. 25;55(21), pp. 2390-8.

Naghavi, M., Abolhassani, F., Moradi Lakeh, M., Jafari, N., Vasegh, S. and Kazemeini, H., 2003. National burden of diseases, injuries, and risk factors and disability adjusted life expectancy in Islamic Republic of Iran in 2003. 1 ed. Tehran: Ministry of Health; 2003.

Norman, R., Bradshaw, D., Schneider, M., Joubert, J., Groenewald, P. and Lewin, S., 2007. A comparative risk assessment for South Africa in 2000: Towards promoting health and preventing disease. *SAMJ.* 97(7), pp. 5.

Peto, R., Lopez, A.D., Boreham, J., Thun, M. and Heath, C.J., 1992. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. *Lancet.* 23;339(8804), pp. 1268-78.

Preston, S.H., Heuveline, P. and Guillot, M., 2001. Demography: Measuring and Modeling Population Processes. First ed. Oxford UK: Blackwell.

Rajaratnam, J.K., Marcus, J.R., Levin-Rector, A., Chalupka, A.N., Wang, H. and Dwyer, L., 2010. Worldwide mortality in men and women aged 15-59 years from 1970 to 2010: a systematic analysis. *Lancet.* 15;375(9727), pp. 1704-20.

Romon, M., Lommez, A., Tafflet, M., Basdevant, A., Oppert, J.M. and Bresson, J.L., 2009. Downward trends in the prevalence of childhood overweight in the setting of 12-year school- and community-based programmes. *Public Health Nutr.* 12(10), pp. 1735-42.

Samavat, T., 2003. [National health program for control and prevention of hypertension]. Tehran: Ministry of Health; 2003.

Sarraf-Zadegan, N., Boshtam, M., Malekafzali, H., Bashardoost, N., Sayed-Tabatabaei, F.A. and Rafiei, M., 1999. Secular trends in cardiovascular mortality in Iran, with special reference to Isfahan. *Acta Cardiol.* 54(6), pp.327-33.

Stevens, G.A., Dias, R.H., Thomas, K.J.A., Rivera, J.A. and Carvalho, N., 2008 Characterizing the epidemiological transition in Mexico: National and subnational burden of diseases, injuries, and risk factors. *PLoS medicine.* 5(6).

Whitlock, G., Lewington, S., Sherliker, P., Clarke, R., Emberson, J. and Halsey, J., 2009. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. *Lancet.* 28;373(9669), pp.1083-96.

Yusuf, S., Hawken, S., Ounpuu, S., Dans, T., Avezum, A. and Lanas, F., 2004. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet.* 364(9438), pp.937-52.

Zhang, X., Patel, A., Horibe, H., Wu, Z., Barzi, F. and Rodgers, A., 2003. Cholesterol, coronary heart disease, and stroke in the Asia Pacific region. *Int J Epidemiol.* 32(4), pp. 563-72.
National and sub national mortality effects of metabolic risk factors and smoking in Iran: a comparative risk assessment

Farzadfar, F., Ph.D. Assistant professor, Diabetes Research Center, Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
Danaei, G., Ph.D. Assistant professor, Department of Global Health and Population, Harvard School of Public Health, Boston, USA
Namdaritabar, H., MD. Ministry of Health and Medical Education, Tehran, Iran
Rajaratnam, J.K., Ph.D. Assistant professor, Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
Marcus, J.R., Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
Khosravi, A., Ph.D. Epidemiologist, Ministry of Health and Medical Education, Tehran, Iran
Alikhani, S., MD. Ministry of Health and Medical Education, Tehran, Iran
Murray, C.J.L., Ph.D. Professor, Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
Ezzati, M., Ph.D. Professor, Department of global health and environment, London Imperial College, London, England- Corresponding author: majid.ezzati@imperial.ac.uk

Received: Jun 13, 2012 Accepted: Jun 19, 2012

ABSTRACT

Background and Aim: Mortality from cardiovascular and other chronic diseases has increased in Iran. Our aim was to estimate the effects of smoking and high systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC), and body mass index (BMI) on mortality and life expectancy, nationally and sub-nationally using representative data and comparable methods.

Materials and Methods: We used data from the Non-Communicable Disease Surveillance Survey to estimate means and standard deviations for the metabolic risk factors, nationally and by region. Lung cancer mortality was used to measure cumulative exposure to smoking. We used data from the death registration system to estimate age-, sex-, and disease-specific numbers of deaths in 2005, adjusted for incompleteness using demographic methods. We used systematic reviews and meta-analyses of epidemiologic studies to obtain the effect of risk factors on disease specific mortality. We estimated deaths and life expectancy loss attributable to risk factors using the comparative risk assessment framework.

Results: In 2005, high SBP was responsible for 41,000 (95% uncertainty interval: 38,000, 44,000) deaths in men and 39,000 (36,000, 42,000) deaths in women in Iran. High FPG, BMI, and TC were responsible for about one-third to one-half of deaths attributable to SBP in men and/or women. Smoking was responsible for 9,000 deaths among men and 2,000 among women. If SBP were reduced to optimal levels, life expectancy at birth would increase by 3.2 years (2.6, 3.9) and 4.1 years (3.2, 4.9) in men and women, respectively; the life expectancy gains ranged from 1.1 to 1.8 years for TC, BMI, and FPG. SBP was also responsible for the largest number of deaths in every region, with age-standardized attributable mortality ranging from 257 to 333 deaths per 100,000 adults in different regions.

Conclusion: Management of blood pressure through diet, lifestyle, and pharmacological interventions should be a priority in Iran. Interventions for other metabolic risk factors and smoking can also improve population health.

Keywords: Burden of Disease, Non-Communicable Chronic Diseases, Risk Factor