Measurement of $B_c(2S)^+$ and $B_c^*(2S)^+$ cross section ratios in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

The ratios of the $B_c(2S)^+$ to $B_c^+$, $B_c^*(2S)^+$ to $B_c^+$, and $B_c^*(2S)^+$ to $B_c(2S)^+$ production cross sections are measured in proton-proton collisions at $\sqrt{s} = 13$ TeV, using a data sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of $143 \text{fb}^{-1}$. The three measurements are made in the $B_c^+$ meson phase space region defined by the transverse momentum $p_T > 15$ GeV and absolute rapidity $|y| < 2.4$, with the excited $B_c^{(s)}(2S)^+$ states reconstructed through the $B_c^{(s)+}\pi^+\pi^-$, followed by the $B_c^+ \rightarrow J/\psi \pi^+$ and $J/\psi \rightarrow \mu^+\mu^-$ decays. The $B_c(2S)^+$ to $B_c^+$, $B_c^*(2S)^+$ to $B_c^+$, and $B_c^*(2S)^+$ to $B_c(2S)^+$ cross section ratios, including the unknown $B_c^{(s)+}(2S)^+ \rightarrow B_c^{(s)+}\pi^+\pi^-$ branching fractions, are $(3.47 \pm 0.63 \text{ (stat)} \pm 0.33 \text{ (syst)})\%$, $(4.69 \pm 0.71 \text{ (stat)} \pm 0.56 \text{ (syst)})\%$, and $1.35 \pm 0.32 \text{ (stat)} \pm 0.09 \text{ (syst)}$, respectively. None of these ratios shows a significant dependence on the $p_T$ or $|y|$ of the $B_c^+$ meson. The normalized dipion invariant mass distributions from the decays $B_c^{(s)+}(2S)^+ \rightarrow B_c^{(s)+}\pi^+\pi^-$ are also reported.

Submitted to Physical Review D
1 Introduction

The production cross sections of the $B_c^+$ family of mesons, quark-antiquark bound states of two different flavors, charm and beauty, are significantly smaller than those of the charmonium and bottomonium states. The unprecedented collision energies and integrated luminosities of the proton-proton (pp) data samples collected at the CERN LHC allow, for the first time, detailed studies regarding the production and properties of $B_c^+$ quarkonia. The observation of the $B_c(2S)^+$ and $B_c^*(2S)^+$ states was recently reported by the CMS experiment [1], using a pp data sample collected at $\sqrt{s} = 13$ TeV between 2015 and 2018, on the basis of well-resolved peaks in the $B_c^+(\pi^+\pi^-)$ invariant mass distribution, with the $B_c^+$ meson reconstructed in the $B_c^+ \rightarrow J/\psi \pi^+\pi^-$ decay channel, and $J/\psi \rightarrow \mu^+\mu^-$. The LHCb Collaboration also reported the observation of the $B_c^*(2S)^+$ state, using a pp data sample collected at 7, 8, and 13 TeV [2]. Masses of the $B_c(2S)^+$ and $B_c^*(2S)^+$ states are found to be consistent with theoretical predictions [3-5]. These results stimulated new theoretical studies aimed at reaching a better understanding of the $B_c^+$ quarkonium family, such as those reported in Refs. [6,7].

The present paper reports an analysis that complements the previous observation of the $B_c(2S)^+$ and $B_c^*(2S)^+$ states [1] with the measurement of the $B_c(2S)^+$ to $B_c^+$, $B_c^*(2S)^+$ to $B_c^*$, and $B_c^*(2S)^+$ to $B_c(2S)^+$ cross section ratios, an important step in making further progress on understanding these two excited $B_c^+$ states. The invariant mass distributions of the pair of pions emitted in the $B_c^+(2S)^+ \rightarrow B_c^{(*)+}\pi^+\pi^-$ decays are also presented, to probe the existence of possible intermediate structure analogous to the ones observed in decays between the $2S$ and $1S$ states of charmonium and bottomonium [6,7]. Throughout this paper, $B_c^{(*)+}$ denotes $B_c^+$ or $B_c^{*+}$, and $B_c^{(*)}(2S)^+$ denotes $B_c(2S)^+$ or $B_c^*(2S)^+$. Charge-conjugate states are also implied, unless stated otherwise. The data sample of 13 TeV pp collisions used in this analysis corresponds to an integrated luminosity of 143 fb$^{-1}$ and was collected by CMS between 2015 and 2018. The measurements are performed in a phase space region defined by the $B_c^+$ meson transverse momentum $p_T > 15$ GeV and rapidity $|y| < 2.4$.

2 Experimental apparatus, data sample, and event selection

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution, for muons with $p_T$ up to 100 GeV, of 1% in the barrel and 3% in the endcaps [8]. The single-muon trigger efficiency exceeds 90% over the full $\eta$ range, and the efficiency to reconstruct and identify muons is greater than 96%. A more detailed description of the CMS detector, together with a definition of the coordinate system used and relevant kinematic variables, can be found in Ref. [9].

The event sample was collected with a two-level trigger system [10]. At level 1, custom hardware processors select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass in the range 2.9–3.3 GeV, a dimuon vertex fit $\chi^2$ probability larger than 10%, a distance of closest approach between the two muons smaller than 0.5 cm, and a distance between the dimuon vertex and the beam axis, $L_{xy}$, larger than three times its uncertainty. Both muons must have $p_T > 4$ GeV and $|\eta| < 2.5$. In addition $p_T$ must be
aligned with the dimuon transverse decay displacement vector \( \vec{L}_{xy} \) by requiring \( \cos \theta > 0.9 \), where \( \cos \theta = \vec{L}_{xy} \cdot \vec{p}_T / (L_{xy} p_T) \). The trigger also requires a third track in the event, compatible with being produced at the dimuon vertex (normalized \( \chi^2 < 10 \)), and having \( p_T > 1.2 \) GeV, \( |\eta| < 2.5 \), and a significance on the track impact parameter of at least 2. The offline reconstruction requires two opposite-sign muons matching those that triggered the detector readout, with some requirements being stricter than at the trigger level, such as \( |\eta| < 2.4 \) and \( \cos \theta > 0.98 \). The muon candidates must pass high-purity track quality requirements [11], and fulfill the soft-muon identification requirements [8], which imply, in particular, that there are more than five hits in the silicon tracker, with at least one in the pixel layers. The two muons must also be close to each other in angular space: \( \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 1.2 \), where \( \Delta \eta \) and \( \Delta \phi \) are the differences in pseudorapidity and azimuthal angle, respectively, between their momenta.

3 Measurement of the cross section ratios
3.1 Introduction

The ratios of the \( B_c^{(*)}(2S)^+ \) to \( B_c^+ \) and \( B_c^{(*)}(2S)^+ \) to \( B_c(2S)^+ \) cross sections, \( R^{+} \), \( R^{+} \), and \( R^{+/R^{+}} \), respectively, reported in this paper are derived from the ratios of the measured yields, corrected by the detection efficiencies, \( \epsilon \):

\[
R^+ \equiv \frac{\sigma(B_c(2S)^+) \cdot B(B_c(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-)}{\sigma(B_c^+) \cdot B(B_c^+ \rightarrow B_c^+ \pi^+ \pi^-)} = \frac{N(B_c(2S)^+)}{N(B_c^+)} \frac{\epsilon(B_c^+)}{\epsilon(B_c(2S)^+)}
\]

\[
R^{++} \equiv \frac{\sigma(B_c^{(*)}(2S)^+) \cdot B(B_c^{(*)}(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-)}{\sigma(B_c^{(*)}^+) \cdot B(B_c^{(*)}^+ \rightarrow B_c^+ \pi^+ \pi^-)} = \frac{N(B_c^{(*)}(2S)^+)}{N(B_c^{(*)}^+)} \frac{\epsilon(B_c^{(*)}^+)}{\epsilon(B_c^{(*)}(2S)^+)}
\]

\[
R^{+/R^+} \equiv \frac{\sigma(B_c^{(*)}(2S)^+) \cdot B(B_c^{(*)}(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-)}{\sigma(B_c^{(*)}^+) \cdot B(B_c^{(*)}^+ \rightarrow B_c^+ \pi^+ \pi^-)} = \frac{N(B_c^{(*)}(2S)^+)}{N(B_c^{(*)}^+)} \frac{\epsilon(B_c^{(*)}^+)}{\epsilon(B_c^{(*)}(2S)^+)}
\]

The \( B \) parameters are the unknown branching fractions of the \( B_c^{(*)}(2S)^+ \rightarrow B_c^{(*)}^+ \pi^+ \pi^- \) decays. The \( B_c^{(*)}^+ \) meson is assumed to decay to the \( B_c^+ \) ground state and a low-energy photon with a branching fraction of 100%, where the photon is not reconstructed.

3.2 Measurement of the \( B_c^+ \) yield

The \( B_c^+ \rightarrow J/\psi \pi^+ \) candidates are reconstructed through a kinematic vertex fit, combining the dimuon with another track. The dimuon invariant mass is constrained to the world-average \( J/\psi \) mass [12] and the other track, assumed to be a pion, must fulfill \( |\eta| < 2.4 \) and \( p_T > 3.5 \) GeV. The primary vertex (PV) associated with the \( B_c^+ \) candidate is selected among all the reconstructed vertices [13] as the one with the smallest angle between the reconstructed \( B_c^+ \) momentum and the vector joining the PV with the \( B_c^+ \) decay vertex. To avoid biases, this PV is then refitted without the tracks associated with the muons and the pion. The \( B_c^+ \) candidates are required to have \( p_T > 15 \) GeV, \( |y| < 2.4 \), a kinematic vertex fit \( \chi^2 \) probability larger than 10%, and a decay length (distance between the \( J/\psi \pi^+ \) vertex and the PV) larger than 100 \( \mu \)m. If several \( B_c^+ \) candidates are found in the same event, only the one with the highest \( p_T \) is kept. These selection criteria were defined through studies of simulated signal samples and measured sideband events [1].

Figure [1] shows the invariant mass distribution of the reconstructed and selected \( B_c^+ \rightarrow J/\psi \pi^+ \) candidates, where the \( B_c^+ \) signal is clearly seen as a prominent peak [1]. The result of an unbinned maximum-likelihood fit is also shown, together with the signal and background contributions. The underlying background is modeled as the sum of three terms: (a) uncorrelated
3.3 Measurement of the $B_c^{(2S)^+}$ and $B_c^*^{(2S)^+}$ yields

The $B_c^{(2S)^+}$ and $B_c^*^{(2S)^+}$ candidates are also reconstructed through vertex kinematic fits, combining a $B_c^+$ candidate with two opposite-sign, high-purity tracks, assumed to be pions. The selected $B_c^+$ candidates must have invariant mass in the 6.2–6.355 GeV range, where the low-mass edge is selected so as to avoid the background caused by partially reconstructed decays (represented by the gray area below 6.2 GeV in Fig. 1). The lifetimes of the $B_c^{(2S)^+}$ and $B_c^*^{(2S)^+}$ are assumed to be negligible with respect to the measurement resolution, so that the production and decay vertices essentially coincide. Therefore, the daughter pions are among the tracks used in the refitted PV. Furthermore, one of the pions must have $p_T > 0.8$ GeV and the other...
$p_T > 0.6 \text{ GeV}$. The $B_c^+ \pi^+ \pi^-$ candidates must have $|y| < 2.4$ and a vertex kinematic fit $\chi^2$ probability larger than 10%. As before, if several $B_c^+ \pi^+ \pi^-$ candidates are found in the same event, only the one with the highest $p_T$ is kept.

Figure 2 shows the $M(B_c^+ \pi^+ \pi^-) - M(B_c^+) + m_{B_c}$ distribution, where $M(B_c^+ \pi^+ \pi^-)$ and $M(B_c^+)$ are the reconstructed invariant masses of the $B_c^+ \pi^+ \pi^-$ and $B_c^+$ candidates, respectively, and $m_{B_c}$ is the world-average $B_c^+$ mass [12]. This variable is used in the analysis because it is measured with a better resolution than $M(B_c^+ \pi^+ \pi^-)$, given that some of the measurement uncertainties cancel in the difference. The measured distribution is fitted to a superposition of two signal peaks using the same parametrization as in Eq. 2, plus a third-order Chebyshev polynomial, modeling the nonpeaking, combinatorial background. Two background contributions arising from $B_c^+ \to J/\psi K^+$ decays are also considered, with shapes identical to those of the signal peaks, ignoring a negligible shift (less than 1 MeV) to lower mass values, and normalizations fixed by the ratio of the $B_c^+ \to J/\psi K^+$ to $B_c^+ \to J/\psi \pi^+$ signal yields.

Figure 2: Invariant mass distribution of the $B_c^{(*)}(2S)^+ \to B_c^{(*)} \pi^+ \pi^-$ candidates [1]. The $B_c^+(2S)^+$ corresponds to the lower-mass peak, the $B_c(2S)^+$ to the higher. The fitted contributions are shown by the stacked distributions, the solid line representing their sum.

Given the small number of events in the two signal peaks, the $w$ and $\sigma_2$ double-Gaussian parameters are fixed to values determined in simulation studies: $w = 92\%$ and $\sigma_2 = 3.1 \sigma_1$ for the lower-mass peak; and $w = 86\%$ and $\sigma_2 = 2.8 \sigma_1$ for the higher-mass peak. The two resonances are well resolved, with a mass difference of $28.9 \pm 1.5 \text{ MeV}$, where the uncertainty is statistical only. The widths of the peaks are consistent with the measurement resolution evaluated through simulation studies, which is approximately $\sigma = 6 \text{ MeV}$ [11]. The unbinned extended maximum-likelihood fit gives $67 \pm 10$ and $52 \pm 9$ events for the lower- and higher-mass peaks, respectively. The quality of the fit can be quantified through the $\chi^2$ per degrees of freedom ratio, 41/35.

As explained in Ref. [11], the $B_c(2S)^+$ peak is seen in the $B_c^+ \pi^+ \pi^-$ invariant mass distribution at a mass value lower than that of the $B_c(2S)^+$ peak. The reason is that, contrary to what happens to the $B_c(2S)^+$, which decays directly to $B_c^+ \pi^+ \pi^-$, the $B_c(2S)^+$ meson decays to $B_c^+ \pi^+ \pi^-$ where the photon emitted in the subsequent $B_c^+ \to B_c^+ \gamma$ decay has too low energy to be reconstructed. Therefore, the $B_c^+(2S)^+$ peak is seen in the $B_c^+ \pi^+ \pi^-$ mass spectrum at the mass $M(B_c^+(2S)^+) - \Delta M$, where $\Delta M \equiv [M(B_c^+(2S)^+) - M(B_c^+) - [M(B_c^+(2S)^+) - M(B_c(2S)^+)]$. Since $M(B_c^+(2S)^+) - M(B_c^+)$ is expected to be larger than $M(B_c^+(2S)^+) - M(B_c(2S)^+)$, the $B_c^+(2S)^+$ state
corresponds to the lower-mass peak [3–5].

3.4 Reconstruction efficiencies

With respect to the observation analysis reported in Ref. [1], the main challenge in the determination of the $B_c(2S)^+ \to B_c^+ \gamma$ cross section ratios is the evaluation of the corresponding (relative) detection efficiencies. Since the trigger requires $J/\psi \to \mu^+ \mu^-$ from the $B_c^+ \to J/\psi \pi^+$ decay, the trigger efficiencies for the $B_c^+$ and $B_c^+ \pi^+ \pi^-$ candidates are essentially the same and cancel in the cross section ratios. So only the reconstruction efficiencies need to be evaluated, which is done using simulated event samples. All three mesons ($B_c^+ \to B_c^+ \gamma$, $B_c(2S)^+ \to B_c^+ \gamma$, and $B_c(2S)^+ \to B_c^+ \gamma$) are generated using the BCVEGPY 2.2 [16] Monte Carlo event generator. The events are then passed to PYTHIA 8.230 [17] to simulate the hadronization process. The decays are performed by the EVTGEN 1.6.0 package [18] and the quantum electrodynamic final-state radiation is modeled with PHOTOS 3.61 [19]. The simulated events are then processed through a detailed simulation of the CMS detector, based on the GEANT4 package [20], using the same trigger and reconstruction algorithms used to collect and process the data. The simulated events include multiple pp interactions in the same or nearby beam crossings (pileup), with a distribution matching the one observed in data. Monte Carlo samples were extensively validated using control regions in data.

The $B_c(2S)^+$ and $B_c^+(2S)^+$ efficiencies are computed as $N_{\text{rec}}(B_c(2S)^+)/N_{\text{gen}}(B_c(2S)^+)$, where $N_{\text{gen}}(B_c(2S)^+)$ are the numbers of $B_c(2S)^+$ events generated in the $B_c(2S)^+ \pi^+ \pi^-$ channel, in the phase space region of the analysis, $p_T(B_c^+) > 15$ GeV and $|y(B_c^+)| < 2.4$, and $N_{\text{rec}}(B_c(2S)^+)$ are the numbers of events that survive all the reconstruction steps and event selection criteria. The $B_c^+$ efficiency is computed in a completely analogous way, except that it uses $B_c^+$ events generated in the $B_c^+ \to J/\psi \pi^+$ decay channel. These evaluations are independently made for the 2016, 2017, and 2018 running periods. The events collected in 2015, corresponding to 2% of the total sample, are treated the same as the 2016 sample for the purpose of efficiency determination. It was checked that the 2016 Monte Carlo simulation describes the 2015 data well enough so that no residual systematic uncertainty is required. The final efficiencies are obtained as weighted averages, using the integrated luminosities as weights: $2.8 + 36.1, 42.1,$ and $61.6 \text{ fb}^{-1}$, respectively, for the 2015 + 2016, 2017, and 2018 periods [21–24]. The results are $\epsilon(B_c^+) = 1.31\%$, $\epsilon(B_c(2S)^+) = 0.26\%$, and $\epsilon(B_c(2S)^+) = 0.24\%$. The $B_c(2S)^+$ and $B_c^+(2S)^+$ reconstruction efficiencies are very similar, the slightly smaller $B_c(2S)^+$ value reflecting the (missed) low-energy photon, which implies a small reduction of the $B_c^+ \pi^+ \pi^-$ phase space.

Table 1 lists the efficiency ratios relevant for the determination of the cross section ratios. The first uncertainty (“Stat.”) shown reflects the finite size of the three simulated samples. The second (“Spread”) reflects the standard deviation of the computed values around their average and is used to conservatively cover potential residual mismatches between the running conditions and the settings used in simulation. For example, it could be that the simulated samples do not accurately reproduce the time evolution of the instantaneous luminosity within each data-taking period, which would create differences in the measured and simulated pileup distributions. The last column (“Pions”) reflects the uncertainty in the reconstruction efficiency [25] of the two pions emitted in the $B_c(2S)^+ \to B_c(2S)^+ \pi^+ \pi^-$ decays. This uncertainty is relevant for the $R^{++}$ and $R^+$ ratios, but cancels in the $R^{++}/R^+$ ratio.

3.5 Determination of the cross section ratios

Correcting the yield ratios by the corresponding efficiency ratios leads to the following $B_c(2S)^+$ to $B_c^+$, $B_c(2S)^+$ to $B_c^+$, and $B_c(2S)^+$ to $B_c(2S)^+$ cross section ratios, always including the $B_c(2S)^+ \to B_c^+$, $B_c(2S)^+ \to B_c^+$, and $B_c(2S)^+ \to B_c^+$ conversion.
Table 1: Ratios of the reconstruction efficiencies relevant for the determination of the \( R^+ \), \( R^{++} \), and \( R^{++}/R^+ \) cross section ratios. The central values are followed by the several uncertainties presented in the text.

| Central Stat. Spread Pions |
|---------------------------|
| \( e(B_c(2S)^+)/e(B_c^+) \) | 0.196 | 1.1% | 1.8% | 4.2% |
| \( e(B_c^*(2S)^+)/e(B_c^+) \) | 0.187 | 1.0% | 1.6% | 4.2% |
| \( e(B_c^*(2S)^+)/e(B_c(2S)^+) \) | 0.955 | 1.4% | 0.9% | — |

\( B_c^{(*)+}\pi^+\pi^- \) branching fractions, and always for \( p_T(B_c^+) > 15 \text{ GeV} \) and \( |y(B_c^+)| < 2.4 \):

\[
R^+ = (3.47 \pm 0.63)\%,
R^{++} = (4.69 \pm 0.71)\%, \quad \text{and} \quad \frac{R^{++}}{R^+} = 1.35 \pm 0.32.
\] (3)

The quoted uncertainties are statistical only. The fact that the \( B_c^{(*)}(2S)^+ \) events are a subset of the \( B_c^+ \) events has a negligible effect (less than 1%) on the uncertainties. The correlation between \( B_c^*(2S)^+ \) and \( B_c(2S)^+ \) yields, used in the double cross section ratio, is taken into account using an alternative fit to the \( M(B_c^+\pi^+\pi^-) - M(B_c^+\pi^-) + m_{B_c} \) distribution, which directly provides the ratio of these yields. It is worth noting again that these ratios include branching fractions (shown in Eq. (1)) that have not yet been measured.

3.6 Dependence on the \( B_c^+ \) kinematics

In order to probe if these cross section ratios show a dependence on the kinematics of the \( B_c^+ \) meson, the analysis is redone after splitting the events into three \( B_c^+ \) meson \( p_T \) bins and (independently) into three \( |y| \) bins. The bin edges are chosen so as to have similar uncertainties in the three bins: 15, 22.5, 30, and 60 GeV for \( p_T \), and 0, 0.4, 0.8, and 2.4 for \( |y| \). The amount of events with \( p_T > 60 \text{ GeV} \) corresponds to 3.4\% of the total sample and they are excluded from these kinematical distributions.

As shown in Fig. 3, none of the measured ratios shows significant variations with the \( p_T \) or \( |y| \) of the \( B_c^+ \) meson, within the probed kinematical regions. The markers are shown at the average \( B_c^+ \) \( p_T \) or \( |y| \) values of the events contributing to each bin. The horizontal displacements between the markers seen in the top panels reflect the differences between the \( B_c(2S)^+ \) and \( B_c^*(2S)^+ \) kinematic distributions.

3.7 Systematic uncertainties

Several sources of systematic effects that could potentially affect the measurement of the cross section ratios have been considered. For each of those effects, the analysis has been redone using an alternative option and the resulting cross section ratios are compared to those obtained in the baseline analysis. The observed difference between the two results is taken as the systematic uncertainty associated with that specific effect.

Naturally, no uncertainties are considered in factors that affect identically the numerator and denominator values that provide the cross section ratios, such as the efficiency of the \( J/\psi \) trigger used to collect the event sample or the efficiency of the event selections that determine the total number of \( B_c^+ \rightarrow J/\psi \pi^+ \) candidates contributing to Fig. 1. But even if the integral of the measured \( J/\psi \pi^+ \) invariant mass distribution does not change, it is possible to vary the extracted \( B_c^+ \) yield by changing the functions used in the fit to describe the shapes of the signal and background contributions, given that such variations might change the assignment of
some events from the $B_c^+$ yield to the background yield, or vice versa. The importance of this effect is evaluated by independently varying the signal and background models used in the fit.

The background model is varied by using an exponential function, instead of a first-order polynomial, to describe the uncorrelated $J/\psi \pi^+$ pairs. The varied scenario for the $B_c^+$ signal line shape consisted in replacing the double-Gaussian function by a Student’s $t$ function [26]. Since these two variations only change the fitted $B_c^+$ yield, having no effect on the number of $B_c^+ \rightarrow J/\psi \pi^+$ candidates used in the search for the $B_c^{(s)+(2S)^+}$ excited states, the corresponding (relative) systematic uncertainties, 4.3% for the signal model and 3.5% for the background model, are identical for the $R^+$ and $R^{**}$ ratios, and cancel in the $R^{**}/R^+$ double ratio.

The measurement of the $B_c^{(s)(2S)^+}$ and $B_c^+(2S)^+$ yields is also affected by the choices made to model the shapes of the signal peaks and the underlying combinatorial background seen in Fig. [2]. The effect of the signal modeling is evaluated with two independent approaches. First, the default double-Gaussian function, having a common mean and fixing the relative widths and amplitudes from fits to the simulated distributions, is replaced by a single-Gaussian function. The number of free parameters for each signal peak remains at three, but this simpler model is unable to describe the non-Gaussian tails of the peaks. Second, the signal yields are evaluated with a simple procedure that avoids fitting the mass region of the two signal peaks, thereby being insensitive to specific signal shape models. It starts by fitting the signal-free mass sidebands with the background function and then integrating that function within the two signal regions to evaluate the background yields under the peaks, which are then subtracted from the total number of events in those two regions. To evaluate the impact of the background model, these alternative fits have been made with the third-order Chebyshev polynomial used in the baseline analysis and also with the function $\delta^4 \exp(\nu \delta)$, where $\delta \equiv M(B_c^+ \pi^+\pi^-) - q_0$, and $\lambda$, $\nu$, and $q_0$ are free parameters. Comparing the cross section ratios obtained using the alternative fits with those of the baseline fit leads to fit modeling systematic uncertainties of 5.9, 2.9, and 2.9%, respectively for the $R^+$, $R^{**}$, and $R^{**}/R^+$ ratios.

![Figure 3: The $R^+$ and $R^{**}$ (upper), and $R^{**}/R^+$ (lower) cross section ratios, including the $B_c^{(s)(2S)^+} \rightarrow B_c^{(s)+}\pi^+\pi^-$ branching fractions, as functions of the $B_c^+ p_T$ (left) and $|y|$ (right). The horizontal bars show the bin widths. The markers are shown at the average $B_c^+ p_T$ or $|y|$ values of the events contributing to each bin, in the background-subtracted distributions, and the vertical bars represent the statistical uncertainties only. The systematic uncertainties are essentially independent of the $B_c^+$ kinematics.](image-url)
The fit of the $B_c^+ \pi^+ \pi^-$ invariant mass distribution also includes two small contributions representing the cases where the $B_c^+$ meson decays through the $B_c^+ \rightarrow J/\psi K^+$ channel rather than through the $B_c^+ \rightarrow J/\psi \pi^+$ channel assumed in the reconstruction. In the baseline analysis, these terms are modeled using the same shapes as the $B_c^{(*)}(2S)^+$ signal shapes and yields fixed to the yields of those resonances, scaled by the ratio of the two branching fractions, 0.079 ± 0.008 \cite{[15]}, and by the ratio of the two reconstruction efficiencies, 1.06 ± 0.01, in the signal region defined above. To evaluate the influence of these terms on the measured cross section ratios, the analysis is redone varying those two scale factors by their uncertainties. The results are insensitive to those variations, so no systematic uncertainty is assigned to this source.

When searching for $B_c^{(*)}(2S)^+$ candidates, the baseline analysis starts from an event sample composed of $B_c^+ \rightarrow J/\psi \pi^+$ events with invariant mass in the 6.2–6.355 GeV range. In order to probe if a potential residual contribution of the partially reconstructed $B_c^+$ decays could have a significant effect on the determination of the cross section ratios, the analysis is repeated with the lowest allowed invariant mass value changed from 6.2 to 6.1 GeV. The results remain essentially identical, the variations being smaller than their statistical uncertainties, evaluated taking into account that one event sample is a subset of the other, so that the results are fully correlated. Therefore, no systematic uncertainty is assigned to this potential effect.

The uncertainties affecting the ratios of reconstruction efficiencies already presented in Table \[1\] translate directly into corresponding systematic uncertainties in the cross section ratios. In the evaluation of the $B_c^{(*)}(2S)^+$ reconstruction efficiencies, it is assumed that the two pions emitted in the $B_c^+ \pi^+ \pi^-$ decay have no kinematical correlations between them, besides the constraint of being decay products of the same mother particle. To evaluate the sensitivity of the measured cross section ratios to this assumption, the reconstruction efficiencies are recomputed under two other scenarios. These assume that the $\pi^+ \pi^-$ kinematic distributions (a) reflect the existence of an intermediate resonance, or (b) are dependent on the (different) spins of the $B_c(2S)^+$ and $B_c(2S)^-$ states. The first scenario is simulated by independently reweighting the generated $B_c^{(*)}(2S)^+$ event samples, which previously reflected a simple phase space model, so that their $\pi^+ \pi^-$ invariant mass distributions (“decay kinematics”) match that in the data (presented in Section \[4\]). The second scenario follows an analogous procedure using the helicity angle distribution (“helicity angle”), where the helicity angle is the angle between the directions of the $\pi^+$ and $B_c^+$ in the dipion rest frame. The differences between the resulting ratios of reconstruction efficiencies and those obtained in the baseline scenario are considered as systematic uncertainties: 1.5, 6.9, and 4.2% for the decay kinematics, and 1.0, 6.0, and 3.5% for the helicity angle, respectively, for the $R^+, R^{++},$ and $R^{++}/R^+$ ratios.

All the values mentioned above are listed in Table \[2\] which also shows the total systematic uncertainties, computed as the sum in quadrature of the individual terms.

### 4 Invariant mass distribution of the dipion system

As a complement to the measurement of the cross section ratios, it is also interesting to measure the invariant mass distributions of the dipions emitted in the $B_c^+ \pi^+ \pi^-$ decays of the two $B_c^{(*)}(2S)^+$ states. In particular, comparing these distributions to those seen in the analogous $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ and $Y(2S) \rightarrow Y(1S) \pi^+ \pi^-$ decays should provide relevant information to characterize the excited $B_c^+$ states and their production processes \[6\] [7].

Figure \[4\] compares the invariant mass distributions, normalized to unity, of the dipions emitted in the $B_c^+(2S)^+$ (closed red circles) and $B_c^+(2S)^+$ (open blue squares) decays between themselves and with the two corresponding simulated phase space distributions (lines). The $B_c^{(*)}(2S)^+$
Table 2: Relative systematic uncertainties (in %) in the cross section ratios, including the $B_c(2S)^+ \rightarrow B_c^+(\pi^+\pi^-)$ branching fractions, corresponding to the sources described in the text. The total uncertainty is the sum in quadrature of the individual terms.

| Source                                      | $R^+$ | $R^{++}$ | $R^{++}/R^+$ |
|---------------------------------------------|-------|----------|--------------|
| $J/\psi\,\pi^+$ fit model                  | 5.5   | 5.5      |              |
| $B_c^+\,\pi^+\pi^-$ fit model              | 5.9   | 2.9      | 2.9          |
| Efficiencies: statistical uncertainty       | 1.1   | 1.0      | 1.4          |
| Efficiencies: spread among years            | 1.8   | 1.6      | 0.9          |
| Efficiencies: pion tracking                 | 4.2   | 4.2      |              |
| Decay kinematics                            | 1.5   | 6.9      | 4.2          |
| Helicity angle                              | 1.0   | 6.0      | 3.5          |
| Total                                       | 9.5   | 12.0     | 6.4          |

data distributions are derived from the $B_c^+\pi^+\pi^-$ invariant mass distribution shown in Fig. 2. The contribution of the background events under the peaks is subtracted using the shape of the measured same-sign dipion invariant mass spectrum and normalizing the sum of the $B_c^+\pi^+\pi^+$ and $B_c^+\pi^-\pi^-$ events to the $B_c^+\pi^+\pi^-$ spectrum in the invariant mass sideband regions. The dipion invariant mass distributions have also been obtained using the sPlot technique [27] to subtract the background, which resulted in distributions consistent with those reported in Fig. 4.

![Figure 4: The dipion invariant mass distributions from $B_c(2S)^+ \rightarrow B_c^+(\pi^+\pi^-)$ decays in data, normalized to unity. The inner and outer tick marks designate the statistical and total uncertainties, respectively. The lines show the corresponding predictions from phase space simulations.](image)

Simulation studies show no dependence of the reconstruction efficiencies on the $\pi^+\pi^-$ invariant mass, so no correction is applied to these normalized distributions, where only the shapes are informative. For the same reason, systematic uncertainties that affect the distributions globally are not relevant, as they have no impact on the shapes and are canceled by the normalizations.

The dipion mass-dependent systematic uncertainties have been evaluated by comparing, bin by bin, the baseline distributions with those obtained in alternative analyses, where variations are made, as mentioned above, on the models used to fit the signal and background compo-
nents of the $B_c^+ \pi^+ \pi^-$ mass distribution and on the small contributions from the $B_c^+ \rightarrow J/\psi K^+$ and partially reconstructed $B_c^+$ decays.

As seen in Fig. 4, the $B_c^{(*)}(2S)^+$ dipion invariant mass distributions are compatible with each other within the uncertainties, and have shapes different from the rather flat distributions predicted from the phase space simulations.

5 Summary

The ratios of the $B_c^{(*)}(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-$, $B_c^{(*)}(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-$, and $B_c^{(*)}(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-$ production cross sections, $R^+$, $R^{++}$, and $R^{++}/R^+$, respectively, have been measured in proton-proton collisions at $\sqrt{s} = 13$ TeV. Data set used in the analysis corresponds to an integrated luminosity of 143 fb$^{-1}$ collected by the CMS experiment at the LHC between 2015 and 2018.

The $B_c^{(*)}(2S)^+$ mesons were reconstructed through the decays $B_c^{(*)}(2S)^+ \rightarrow B_c^{(*)}+\pi^+\pi^-$, followed by the $B_c^+ \rightarrow J/\psi \pi^+ \pi^-$ and $J/\psi \rightarrow \mu^+\mu^-$. The measured cross section ratios, including the (unknown) $B_c^{(*)}(2S)^+ \rightarrow B_c^{(*)}+\pi^+\pi^-$ branching fractions, are

$$R^+ = (3.47 \pm 0.63 \text{ (stat)} \pm 0.33 \text{ (syst)}) \%,$$

$$R^{++} = (4.69 \pm 0.71 \text{ (stat)} \pm 0.56 \text{ (syst)}) \%,$$

and

$$R^{++}/R^+ = 1.35 \pm 0.32 \text{ (stat)} \pm 0.09 \text{ (syst)}.$$

No significant dependences on the transverse momentum $p_T$ or rapidity $|y|$ of the $B_c^+$ mesons have been observed for any of these three ratios. The normalized dipion invariant mass distributions for the $B_c^{(*)}(2S)^+ \rightarrow B_c^{(*)}+\pi^+\pi^-$ decays are also reported. These results, obtained in the phase space region defined by $B_c^+$ meson $p_T > 15$ GeV and $|y| < 2.4$, may provide new important input to improve the theoretical understanding of the nature of the $Bc$ heavy-quarkonium states and their production processes.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); CNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFI research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] CMS Collaboration, “Observation of two excited $B_c^+$ states and measurement of the $B_c(2S)^+$ mass in pp collisions at $\sqrt{s} = 13$ TeV”, Phys. Rev. Lett. 122 (2019) 132001, doi:10.1103/PhysRevLett.122.132001, arXiv:1902.00571.

[2] LHCb Collaboration, “Observation of an excited $B_c^+$ state”, Phys. Rev. Lett. 122 (2019) 232001, doi:10.1103/PhysRevLett.122.232001, arXiv:1904.00081.

[3] E. B. Gregory et al., “A prediction of the $B_c^+$ mass in full lattice QCD”, Phys. Rev. Lett. 104 (2010) 022001, doi:10.1103/PhysRevLett.104.022001, arXiv:0909.4462.

[4] R. J. Dowdall, C. T. H. Davies, T. C. Hammant, and R. R. Horgan, “Precise heavy-light meson masses and hyperfine splittings from lattice QCD including charm quarks in the sea”, Phys. Rev. D 86 (2012) 094510, doi:10.1103/PhysRevD.86.094510, arXiv:1207.5149.

[5] N. Mathur, M. Padmanath, and S. Mondal, “Precise predictions of charmed-bottom hadrons from lattice QCD”, Phys. Rev. Lett. 121 (2018) 202002, doi:10.1103/PhysRevLett.121.202002, arXiv:1806.04151.

[6] E. J. Eichten and C. Quigg, “Mesons with beauty and charm: New horizons in spectroscopy”, Phys. Rev. D 99 (2019) 054025, doi:10.1103/PhysRevD.99.054025, arXiv:1902.09735.
[7] A. V. Berezhnoy, I. N. Belov, A. K. Likhoded, and A. V. Luchinsky, “$B^+_c$ excitations at LHC experiments”, *Mod. Phys. Lett. A.* **34** (2019) 1950331, doi:10.1142/S0217732319503330, arXiv:1904.06732

[8] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JINST* **13** (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528

[9] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[10] CMS Collaboration, “The CMS trigger system”, *JINST* **12** (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366

[11] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* **9** (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569

[12] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, *Phys. Rev. D* **98** (2018) 030001, doi:10.1103/PhysRevD.98.030001

[13] R. Frühwirth, W. Waltenberger, and P. Vanlaer, “Adaptive vertex fitting”, *J. Phys. G* **34** (2007) N343, doi:10.1088/0954-3899/34/12/N01

[14] ARGUS Collaboration, “Search for hadronic $b \to u$ decays”, *Phys. Lett. B* **241** (1990) 278, doi:10.1016/0370-2693(90)91293-K

[15] LHCb Collaboration, “Measurement of the ratio of branching fractions $B(B^+_c \to J/\psi K^+)/B(B^+_c \to J/\psi \pi^+)$”, *JHEP* **09** (2016) 153, doi:10.1007/JHEP09(2016)153, arXiv:1607.06823

[16] C.-H. Chang, X.-Y. Wang, and X.-G. Wu, “BCVEGPY2.2: a newly upgraded version for hadronic production of the meson $B_c$ and its excited states”, *Comput. Phys. Commun.* **197** (2015) 335, doi:10.1016/j.cpc.2015.07.015, arXiv:1507.05176

[17] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012

[18] D. Lange, “The EvtGen particle decay simulation package”, *Nucl. Instrum. Meth. A* **462** (2001) 152, doi:10.1016/S0168-9002(01)00089-4

[19] N. Davidson, T. Przedzinski, and Z. Was, “PHOTOS interface in C++: technical and physics documentation”, *Comput. Phys. Commun.* **199** (2016) 86, doi:10.1016/j.cpc.2015.09.013, arXiv:1011.0937

[20] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[21] CMS Collaboration, “CMS luminosity measurement for the 2015 data-taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-15-001, 2017.

[22] CMS Collaboration, “CMS luminosity measurements for the 2016 data-taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[23] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
[24] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.

[25] CMS Collaboration, “Tracking POG results for pion efficiency with the D* meson using data from 2016 and 2017”, CMS Detector Performance Report CMS-DP-2018-050, 2018.

[26] S. Jackman, “Bayesian analysis for the social sciences”. John Wiley & Sons, New Jersey, USA, 2009. doi:10.1002/9780470686621.

[27] M. Pivk and F. R. Le Diberder, “SPlot: a statistical tool to unfold data distributions”, Nucl. Instrum. Meth. A 555 (2005) 356, doi:10.1016/j.nima.2005.08.106, arXiv:physics/0402083.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan†, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth†,
M. Jeitler†, N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, F.M. Pitters, N. Rad,
J. Schieck†, R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz†, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish‡, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello‡, A. Lelek, M. Pieters,
H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette,
I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, B. Dorney, L. Favart, A. Grebenyuk,
A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas,
C. Vender Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov‡, M. Niedziela, C. Roskas, K. Skovpen,
M. Tytgat, W. Verbeke, B. Vermaasen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco,
V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, P. Vischia, S. Wuyckens,
J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. BRANDAO MALBOUISSON,
W. Carvalho, J. Chinellato‡, E. Coelho, E.M. Da Costa, G.G. Da Silveira‡, D. De Jesus Damiao,
S. Fonseca De Souza, J. Martins‡, D. Matos Figueiredo, M. Medina Jaime§, M. Melo De Almeida,
C. Mora Herrera, L. Mundim, H. Nogima, P. Rebello Teles, L.J. Sanchez Rosas,
A. Santoro, S.M. Silva Do Amaral, A. Szajder, M. Thiel, E.J. Tonelli Manganote‡,
F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista ‡, Universidade Federal do ABC ‡, São Paulo, Brazil
C.A. Bernardes‡, L. Calligarisa, T.R. Fernandez Perez Tomei‡, E.M. Gregores‡, D.S. Lemos‡,
P.G. Mercadante‡, S.F. Novaesa, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov,
M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, A. Kapoor, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, A. Levin, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, M. Rodriguez, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla\textsuperscript{12}, S. Elgamal\textsuperscript{13}, A. Mohamed\textsuperscript{14}

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehat, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Br"ucken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominen

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besançon, F. Coudenc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro\textsuperscript{15}, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Cassagnac, A. Hakimi, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHIC UMR 7178, Strasbourg, France
J.-L. Agram\textsuperscript{16}, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine\textsuperscript{16}, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torretotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
D. Lomidze, Z. Tsamalaidze\textsuperscript{11}

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee,
D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

C. Dziwok, G. Flügge, W. Haj Ahmad17, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl18, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany

H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras19, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, V. Danilov, A. De Wit, M.M. Defranchis, L. Didukh, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, L.I. Estevez Banos, E. Gallo20, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, A. Harb, A. Jafari21, N.Z. Jomhari, H. Jung, A. Kasem19, M. Kasemann, H. Kaveh, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann22, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, Y. Otarid, D. Pérez Adán, S.K. Pflichts, D. Pitzl, A. Raspereza, A. Saggio, A. Saibel, M. Savitskyi, V. Scheurer, F. Schütze, C. Schwenkenberger, A. Singh, R.E. Sosa Ricardo, N. Tonon, O. Turkol, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, S. Wuchterl, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimí, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, V. Kutzner, J. Lange, T. Lange, A. Malara, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodriguez, O. Rieger, P. Schleper, S. Schumann, J. Schwanetz, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

M. Baselga, S. Baur, J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, K. Flöh, M. Giffels, A. Gottmann, F. Hartmann18, C. Heidecker, U. Husemann, M.A. Iqbal, I. Katkov23, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, D. Müller, Th. Müller, M. Musich, G. Quast, K. Rabbertz, J. Rauser, D. Savoiu, D. Schäfer, M. Schnepf, M. Schröder, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, R. Wolf, S. Wozniowski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

M. Diamantopoulos, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsiobitis, A. Zacharopoulou

University of Ioannina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, M.M.A. Gadallah, S. Lököš, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellari, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eötvös Loránd University, Budapest, Hungary
M. Bartók, R. Chudasama, M. Csanad, M.M.A. Gadallah, S. Lököš, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellari, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dhindra, R. Gupta, A. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, S. Nandan, P. Palit, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur, S. Thakur, S. Thakur, S. Thakur, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Kumar, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, G.B. Mohanty, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, M. Mukherjee, D. Roy, N. Sahoo

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, K. Kotheekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a,b, R. Aly a,b,c, C. Aruta a,c, A. Colaleo a, D. Creanza a,c, N. De Filippis a,c, M. De Palma a,b, A. Di Florio a,b, A. Di Pilato a,b, W. Elmetenawee a,b, L. Fiore a, A. Gelmi a,b, M. Gul a, G. Iaselli a,c, M. Incere a,b, S. Lezki a,b, G. Maggi a,c, M. Maggi a, I. Margiotta a,b, V. Mastrapasqua a,b, J.A. Merlin a, S. My a,b, S. Nuzzo a,b, A. Pompili a,b, G. Pugliese a,c, A. Ranieri a, G. Selvaggi a,b, L. Silvestris a, F.M. Simone a,b, R. Venditti a, P. Verwilligen a

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, C. Battilana a,b, D. Bonacorsi a,b, L. Borgonovi a,b, S. Braibant-Giacomelli a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, C. Ciocca a, M. Cuffiani a,b, G.M. Dallavalle a, T. Diotallevi a,b, F. Fabbri a, A. Fanfani a,b, E. Fontanesi a,b, P. Giacomelli a, L. Giommi a,b, C. Grandi a, L. Guiducci a,b, F. Iemmi a,b, S. Lo Meo a,b,38, S. Marcellini a, G. Masetti a, F.L. Navarria a,b, A. Perrotta a, F. Primavera a,b, T. Rovelli a,b, G.P. Sirolli a,b, N. Tosi a

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo a,b,39, S. Costa a,b, A. Di Mattia a, R. Potenza a,b, A. Tricomi a,b,39, C. Tuve a,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbagli a, C. Cassese a, R. Ceccarelli a,b, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, F. Fiori a, E. Focardi a,b, G. Latino a,b, P. Lenzi a,b, M. Lizzo a,b, M. Meschini a, S. Paoletti a, R. Seidita a,b, G. Sguazzoni a, L. Viliani a

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzo a,b, F. Ferro a, R. Mulargia a,b, E. Robutti a, S. Tosi a,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, A. Besch a,b, F. Brivio a,b, F. Cetorelli a,b, V. Ciriolo a,b,18, F. De Guio a,b, M.E. Dinardo a,b, P. Dini a, S. Gennai a, A. Ghezzi a,b, P. Govoni a,b, L. Guzzi a,b, M. Malberti a, S. Malvezzi a, D. Menasce a, F. Monti a,b, L. Moroni a, M. Paganoni a,b, D. Pedrin a, S. Ragazzi a,b, T. Tabarelli de Fatis a,b, D. Valsecchi a,b,18, D. Zuolo a,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a, N. Cavallo a,c, A. De Iorio a,b, F. Fabozzi a,c, F. Fienga a, A.O.M. Iorio a,b, L. Lista a,b, S. Meola a,b,18, P. Paolucci a,b,18, B. Rossi a, C. Sciacca a,b, E. Voevodina a,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bachetta a, D. Bisello a,b, A. Boletti a,b, A. Bragagnolo a,b, R. Carlin a,b, P. Checchia a, P. De Castro Manzano a, T. Dorigo a, F. Gasparini a,b, U. Gasparini a,b, S.Y. Hoh a,b, L. Layer a,40, M. Margoni a,b, A.T. Meneguzzo a,b, M. Presilla a, P. Ronchese a,b, R. Rossini a,b, F. Simonetto a,b, G. Strong, A. Tiko a, M. Tosi a,b, H. YARAR a,b, M. Zanetti a,b, P. Zotto a,b, A. Zucchetta a,b, G. Zumerle a,b
INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
C. Aime, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo.

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, V. Mariani, M. Menichelli, F. Moscatelli, A. Piccinelli, A. Rossii, A. Santocchia, D. Spiga, T. Tedeschi.

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, V. Bertacchi, L. Bianchini, T. Boccali, R. Castaldi, M.A. Ciocci, R. Dell’Orso, M.R. Di Domenico, S. Donato, L. Giannini, A. Giassi, M.T. Grippa, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scribano, N. Shafiei, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini.

INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
F. Cavallari, M. Cipriani, D. Del Re, E. Di Marco, M. Diemoz, E. Longo, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, R. Tramontano.

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, C. Biino, A. Cappati, N. Cartiglia, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, F. Leggeri, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, M. Ruspa, R. Salvatico, F. Siviero, V. Sola, A. Solano, D. Soldi, A. Staiano, D. Trocino.

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, F. Vazzoler.

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang.

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon.

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park.

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo.

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu.

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim.
Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusfi, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Balkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Deremen, S. Ginenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepenov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev
University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, J.A. Brochero CIFuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, A. García Alonso, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, A. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, J. Ripoll Sau, V. Rodríguez Bouza, S. Sanchez Cruz, A. Trapote

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieeles, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan García

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Aufray, G. Auzeinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, N. Beni, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, G. Cerminara, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Guibaud, D. Gulhan, M. Haranko, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijsers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrucci, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schweik, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe
ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lüstermann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, V. Stampf, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler58, C.M. Kuo, W. Lin, A. Roy, T. Sarkar33, S.S. Yu

National Central University, Chung-Li, Taiwan
C. Adloff59, C.M. Kuo, W. Lin, A. Roy, T. Sarkar33, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.Y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin60, Z.S. Demiroglu, F. Dolek, C. Dozen61, I. Dumanoglu62, E. Eskut, G. Gokbulut, Y. Guler, E. Gürpinar Guler63, I. Hos64, C. Isik, E.E. Kangal65, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Özdemir66, A. Polatoz, A.E. Simsek, B. Tali67, U.G. Tok, S. Turkapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak68, G. Karapinar69, K. Ocalan70, M. Yalvac71

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya72, O. Kaya73, Ö. Özçelik, S. Tekten74, E.A. Yetkin75

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak62, Y. Komurcu, S. Sen76

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci67, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci67

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev77, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder,
S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Bayor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breeden, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, R. Cousins, A. Dasgupta, A. Florent, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang
California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauer, L. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, P. Klabbors, T. Klijnsma, B. Klima, M.J. Kortelainen, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrany, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA
M. Alhusseini, K. Dilisz, S. Durugt, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.A. Vámi

The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. Gonzalez Fernández, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, H. Bandyopadhyay, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alversion, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko44, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala
The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
P. Das, G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, M. Stojanovic, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Överton, L. Perniè, D. Rathjens, A. Safonov, J. Sturdy

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, P. Thapa
University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at Cairo University, Cairo, Egypt
13: Now at British University in Egypt, Cairo, Egypt
14: Also at Zewail City of Science and Technology, Zewail, Egypt
15: Also at Purdue University, West Lafayette, USA
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
22: Also at Brandenburg University of Technology, Cottbus, Germany
23: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
24: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
25: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
26: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
27: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
28: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
29: Also at Institute of Physics, Bhubaneswar, India
30: Also at G.H.G. Khalsa College, Punjab, India
31: Also at Shoolini University, Solan, India
32: Also at University of Hyderabad, Hyderabad, India
33: Also at University of Visva-Bharati, Santiniketan, India
34: Also at Indian Institute of Technology (IIT), Mumbai, India
35: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
36: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
37: Now at INFN Sezione di Bari \textsuperscript{a}, Università di Bari \textsuperscript{b}, Politecnico di Bari \textsuperscript{c}, Bari, Italy
38: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
39: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
40: Also at INFN Sezione di Napoli \textsuperscript{a}, Università di Napoli ‘Federico II’ \textsuperscript{b}, Napoli, Italy, Università della Basilicata \textsuperscript{c}, Potenza, Italy, Università G. Marconi \textsuperscript{d}, Roma, Italy, Napoli, Italy
41: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
42: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
43: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
44: Also at Institute for Nuclear Research, Moscow, Russia
45: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
46: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
47: Also at University of Florida, Gainesville, USA
48: Also at Imperial College, London, United Kingdom
49: Also at Moscow Institute of Physics and Technology, Moscow, Russia, Moscow, Russia
50: Also at P.N. Lebedev Physical Institute, Moscow, Russia
51: Also at California Institute of Technology, Pasadena, USA
52: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
53: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
54: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
55: Also at INFN Sezione di Pavia \textsuperscript{a}, Università di Pavia \textsuperscript{b}, Pavia, Italy, Pavia, Italy
56: Also at National and Kapodistrian University of Athens, Athens, Greece
57: Also at Universität Zürich, Zurich, Switzerland
58: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
59: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
60: Also at Şırnak University, Şırnak, Turkey
61: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
62: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
63: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
64: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
65: Also at Mersin University, Mersin, Turkey
66: Also at Piri Reis University, Istanbul, Turkey
67: Also at Adiyaman University, Adiyaman, Turkey
68: Also at Ozyegin University, Istanbul, Turkey
69: Also at Izmir Institute of Technology, Izmir, Turkey
70: Also at Necmettin Erbakan University, Konya, Turkey
71: Also at Bozok Üniversitesi Rektörlüğü, Yozgat, Turkey
72: Also at Marmara University, Istanbul, Turkey
73: Also at Milli Savunma University, Istanbul, Turkey
74: Also at Kafkas University, Kars, Turkey
75: Also at Istanbul Bilgi University, Istanbul, Turkey
76: Also at Hacettepe University, Ankara, Turkey
77: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
78: Also at IPPP Durham University, Durham, United Kingdom
79: Also at Monash University, Faculty of Science, Clayton, Australia
80: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
81: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
82: Also at Ain Shams University, Cairo, Egypt
83: Also at Bingol University, Bingol, Turkey
84: Also at Georgian Technical University, Tbilisi, Georgia
85: Also at Sinop University, Sinop, Turkey
86: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
87: Also at Nanjing Normal University Department of Physics, Nanjing, China
88: Also at Texas A&M University at Qatar, Doha, Qatar
89: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea