Carbonic Anhydrase 5 Regulates Acid-Base Homeostasis in Zebrafish

Ruben Postel, Arnoud Sonnenberg*
Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

Abstract
The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5) mutation, collapse of fins (cof), which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

Introduction
Maintaining proper homeostasis is essential for every living organism. Homeostatic imbalance directly affects cellular metabolism, which eventually leads to physiological defects and pathologic conditions. Carbonic anhydrases (CA) are zinc metalloenzymes that are present in prokaryotes and eukaryotes. They catalyze the reversible dehydration/hydration reaction of carbon dioxide (CO₂ + H₂O ⇌ HCO₃⁻ + H⁺) [1,2]. CAs are involved in many physiological processes such as transport of carbon dioxide and bicarbonate between tissues, acid-base balance and biosynthetic reactions (glucogenesis, lipogenesis and ureagenesis) [3]. CAs are also important therapeutic targets, because of their involvement in various pathological conditions, such as glaucoma, obesity, some infectious diseases, cancer, epilepsy and osteoporosis [4]. Therefore, many CA inhibitors and activators have been developed in order to treat these disorders [4]. Of the five different classes of CAs (ζ-CA), vertebrates only express two CA5B and whereas CA5A is expressed only in the liver, CA5B is widely expressed in many tissues [14]. Here we describe the mapping, cloning and characterization of a ca5 mutant zebrafish (collapse of fins, cof) and show that CA5 is involved in regulating acid-base balance during embryonic development in zebrafish.

Methods
Zebrafish strains and Forward genetic screening
Adult fish were raised and maintained under standard laboratory conditions. Fish experiments were performed in accordance with institutional guidelines and as approved by the Animal Experimentation Committee of the Royal Netherlands Academy of Arts and Sciences. The cof mutant was identified during a forward genetic screen performed at the Hubrecht Institute, Utrecht, The Netherlands. N-Ethyl-N-nitroso-urea (ENU) mutagenesis was performed as previously described for the creation of the Hubrecht Institute target selected mutagenesis library [15]. F1 progeny of mutagenised male fish were outcrossed to wild-type fish in order to produce approximately 300 F2 families, which were then intercrossed. F3 progeny were screened for epidermal integrity defects at 2-3 dpf. Metiotic mapping of the collapse of fins mutation was performed using standard simple sequence length polymorphisms (SSLP). SSLP primer sequences can be found on www.ensembl.org. Genotyping PCR and subsequent sequencing of the ca5T839A mutation on finclip DNA or DNA of single embryos was performed with the following primers: F: 5’-eggacagaagacatcct-3’ and R: 5’-tgggataaacaccccattag-3’.

Zebrafish embryo culturing
Embryos were raised in egg medium (60 μg/ml sea salt) pH 7. After 24 hpf dechorionated embryos were collected and placed in agarose-coated culture dishes with egg medium or 1x Danieau’s medium (38 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO₄, 0.6 mM Ca [NO₃]₂) buffered at different pH with 10 mM Hepes.
Acetazolamide (Sigma) was dissolved in DMSO to a concentration of 0.5 M and diluted to a working concentration of 2.5 mM and 5 mM in egg- or Danieau's medium. Control embryos were treated with the same amount of DMSO solvent.

In situ hybridisation, cDNA constructs and RNA synthesis

Whole mount in situ hybridization (ISH) was performed as described previously [16]. Embryos for ISH were fixed with 4% PFA/PBS and stored in 100% methanol. After ISH, embryos were cleared in methanol and mounted in benzylbenzoate/benzylalcohol (2:1) before images were taken. The following primers were used to produce the ca5 cDNA fragment: F: 5'-tggtgctgctgaatggtcag-3'; R: 5'-tgcctctctctccatcc-3'. Fragments were cloned into the pCR1-TOPO vector (Invitrogen) and antisense dig-labelled probes were synthesised according to standard protocols. Full-length zebrafish ca5 cDNA (MGC:171653; IMAGE:7448163) was derived by PCR on cDNA with the primers: F: 5'-gcgaattccatggtcacactgacagccat-3' and R: 5'-gcctcgagttattccttagaggag-3' and cloned into the pCS2+ vector with EcoR1/Xho1. RNA was synthesised in vitro by using the SP6 mMessage mMachine kit (Ambion). The ca5T839A mutation was introduced using the QuickChange kit (Stratagene).

Figure 1. Characterization, mapping and cloning of the cof mutant. (A–D) Phenotypical comparison of wild-type and cof mutant embryos at 2 dpf (A, B) and 3 dpf (C, D). Asterisks mark the collapse of the medial fins in the cof mutant. (E) Summary of the linkage analysis and mapping of the cof locus at chromosome 25. The arrows mark the direction of the mutation. Red lines indicate the various transcripts in the genomic region. (F) Sequence chromatograms of wild-type and cof mutant cDNA. The corresponding amino acid residues are indicated below. (G) CAS protein sequence alignment of zebrafish and human and other members of the human CA protein family. Arrow marks residue M280 that is substituted to a lysine in cof mutant embryos. (H) Detection of ca5 mRNA in wild-type embryos at 24, 48 and 72 hpf by in situ hybridization. mRNA expression of insulin at 24 hpf marks the position of pancreatic β-cells. Upper panel shows dorsal view and lower panels lateral view. White arrowheads mark the expression in the lens and the pancreatic β-cells.

doi:10.1371/journal.pone.0039881.g001
Table 1. Quantification of the injection experiments and the various treatments.

Phenotype (at 3 dpf)	% wild-type	% cof mutant
cof batch of embryos (n = 65)	81	19
100 pg full-length ca5 RNA (n = 98)	99	1
100 pg ca5T839A RNA (n = 59)	83	17
untreated wild-type embryos (n = 81)	100	0
wild-type embryos treated with 5 mM AZA (n = 73)	10	90
wild-type embryos treated with 2.5 mM AZA (n = 65)	99	1
cof batch of embryos treated with 2.5 mM AZA (n = 58)	34	66
wild-type embryos raised at pH 5 (n = 67)	100	0
wild-type embryos raised at pH 7.6 (n = 67)	100	0
wild-type embryos raised at pH 10 (n = 67)	100	0
wild-type embryos +5mM AZA in pH 5 medium (n = 75)	77	23
wild-type embryos +5mM AZA in pH 7.6 medium (n = 84)	16	84
wild-type embryos +5mM AZA in pH 10 medium (n = 76)	4	96
cof batch of embryos in pH 5 medium (n = 81)	98	2
cof batch of embryos in pH 7.6 medium (n = 77)	82	18
cof batch of embryos in pH 10 medium (n = 68)	76	24

doi:10.1371/journal.pone.0039881.t001

Results

A missense mutation in zebrafish *carbonic anhydrase 5* leads to collapse of the medial fins, heart failure and rapid degeneration of the zebrafish embryo

From a forward genetic screen in zebrafish we derived a mutant allele, *collapse of fins* (cof) that is characterized by defects of epidermal integrity and collapse of the medial fins at 2 days post-fertilization (dpf) (Figure 1A, B). During later stages of development, cardiac failure with edema and necrosis of the yolk-sac can be observed (Figure 1C, D), eventually leading to the rapid degeneration of the complete embryo at 4 dpf. The cof mutant phenotype is not fully penetrant, only 19% (instead of 25%) of the embryos can be phenotypically identified as a mutant in a batch of cof embryos (see Table 1). Meiotic mapping placed the cof allele on chromosome 25 between markers G39307 and z68140 (Figure 1E). Sequencing the open reading frames of the genes within the corresponding genomic interval revealed a T839A mutation in the cof allele (see Table 1). From a forward genetic screen in zebrafish we derived a mutant allele, *collapse of fins* (cof) that is characterized by defects of epidermal integrity and collapse of the medial fins at 2 days post-fertilization (dpf) (Figure 1A, B). During later stages of development, cardiac failure with edema and necrosis of the yolk-sac can be observed (Figure 1C, D), eventually leading to the rapid degeneration of the complete embryo at 4 dpf. The cof mutant phenotype is not fully penetrant, only 19% (instead of 25%) of the embryos can be phenotypically identified as a mutant in a batch of cof embryos (see Table 1). Meiotic mapping placed the cof allele on chromosome 25 between markers G39307 and z68140 (Figure 1E). Sequencing the open reading frames of the genes within the corresponding genomic interval revealed a T839A mutation in the cof allele (see Table 1).

Expression of CA5 rescues the *ca5cof* mutant phenotype and acetazolamide treatment in wild-type embryos phenocopies the *ca5cof* mutation

To examine whether the *ca5T839A* mutation in *ca5cof* mutant embryos causes the *ca5cof* mutant phenotype, we restored CA5 expression by injecting full-length zebrafish *ca5* RNA. Injecting 100 pg *ca5* RNA rescued the *ca5cof* mutant phenotype completely, whereas it was not rescued after the injection of 100 pg mutant *ca5T839A* RNA (Figure 2A-F and Table 1).

In order to determine whether the *ca5M280K* substitution results in a reduced enzymatic activity of the CA5 protein we treated dechorionated wild-type embryos at 24 hpf with acetazolamide (AZA), a general CA inhibitor. Treatment with 5 mM AZA generated essentially a phenocopy of the *ca5cof* mutant phenotype: inclusion of the medial fins, cardiac failure and necrosis of the yolk (Figure 2I-L and Table 1), ultimately leading to degeneration of the embryo. We verified the capacity of AZA to inhibit CA5 enzymatic activity by performing synergistic interaction experiments in *ca5cof* heterozygous sibling embryos. We treated wild-type embryos and a batch of cof embryos with suboptimal concentrations of AZA. The morphology of wild-type embryos treated with 2.5 mM AZA was not altered (Figure 2M, N and Table 1), however in the cof batch of embryos around 66% of the embryos showed the *ca5cof* mutant phenotype (Table 1).
Carbonic anhydrases are also involved in the regulation of acid-base balance, also in fish [18]. Therefore we examined the effect of altered pH levels on the collapse of the medial fins in AZA-treated wild-type embryos and \(ca5^{cof} \) mutant embryos. First, wild-type embryos were raised from 24 hpf onwards in Danieau’s medium of pH 5 or pH 10, containing 5 mM AZA. These experiments show that wild-type embryos are less susceptible to AZA, when cultured in pH 5 medium, compared to embryos cultured in pH 7.6 or pH 10 medium (Figure 3A-L). Furthermore, the \(ca5^{cof} \) mutant phenotype can be rescued by raising mutant embryos in Danieau’s medium of pH 5 (see Table 1), suggesting that normally the increase in cellular pH during embryonic development is compensated by the activity of mitochondrial CA5 (Table 1). We could not observe any significant developmental defects when wild-type embryos were raised in medium of pH 5 or pH 10 (Table 1). All this shows that CA5 is involved in maintaining cellular acid-base balance during zebrafish embryonic development.

Discussion

We show that defective CA5 activity in zebrafish results in a disturbed cellular acid-base balance, which leads to the collapse of the medial fins, heart failure and eventually degeneration of the complete embryo. We show that AZA, a general CA inhibitor, can copy the phenotype caused by the \(ca5^{cof} \) mutation in wild-type embryos, suggesting that the T839A mutation results in the loss of CA5 enzymatic activity.

Human mitochondrial CA5 activity has been shown to be markedly elevated when the pH increases [19]. Thus loss or a reduced of CA5 activity results in an increase in cellular pH, which eventually leads to defects in cellular homeostasis. This is in
mRNA in the mutant embryos is not altered, suggesting that development is not impaired in the rapid degeneration of the phenotypical characteristics that we observe in the zebrafish mutants that lack pancreatic expressed in pancreatic development, we cannot rule out that defective CA5 function in zebrafish.

Although the initial phenotypical defect is observed in the medial fins, α5 mRNA expression could only be detected in the pancreatic β-cells at 2 and 3 dpf. Defective CA5 function in the pancreatic β-cells cannot explain the medial fin defects and the rapid degeneration of α5b mutants. First of all, the level of insulin mRNA in the mutant embryos is not altered, suggesting that β-cell development is not impaired in α5b mutants. In addition, zebrafish mutants that lack pancreatic β-cells do not develop the phenotypical characteristics that we observe in the α5b mutant [20]. A plausible explanation for the severe medial fin defect and the rapid degeneration of the α5b mutant would be that CA5 is expressed at low levels in the epidermis. The defective epidermal acid-base balance, severely affects the epidermal barrier function, which results in rapid necrosis and degeneration of the embryo, especially in an aquatic environment. In fish several of the CA isoforms have been implicated in regulating physiological processes of the skin. For example, in a subtype of ionocytes of the skin and gills cytoplasmic CA regulates ionic exchange and acid-base balance [21]. However, knockdown of these cytoplasmic CA isoforms did not result in obvious morphological defects [21]. Here we observe a rapid degeneration of the complete embryo upon defective CA5 function, revealing that CA5 fulfills a major role in the regulation of cellular epidermal homeostasis, during development in zebrafish.

Although we did not see any effect on pancreatic β-cell development, we cannot rule out that defective CA5 function affects insulin secretion or could affect pancreatic β-cell development during later stages of development. Human CA5B is expressed in pancreatic β-cells and has been shown to provide bicarbonate for the first step of gluconeogenesis. It is therefore implicated in insulin secretion [17,22]. Furthermore, inhibition of CA activity with AZA resulted in a strong inhibition of glucose-stimulated insulin secretion [17]. In the light of our findings, inhibition of insulin secretion in pancreatic β-cells after AZA treatment could be a secondary effect: defective acid-base balance causes impaired cellular homeostasis which leads to impaired insulin secretion.

Because CA5 is the only mitochondrial CA, it is an excellent pharmaceutical target. Currently many CA inhibitors and activators have been developed in order to treat a range of disorders [4]. Some of these compounds have been shown to inhibit or activate also the mitochondrial CA5 and are used in the clinic as anti-obesity or anti-epileptic drug [23–26]. However, pharmacological inhibitors that are selective for CA5 are currently not available.

In conclusion, in this study we report the identification of the first vertebrate in vivo model in which defective CA5 activity results in imbalanced cellular acid-base homeostasis. The fact that AZA treatment in wild-type embryos mimics the α5b mutant phenotype shows that zebrafish can be used as an easy and inexpensive in vivo model for screening and validating the functionality of novel CA5 modulators as potential therapeutics for a variety of diseases.

Acknowledgments

We thank Dr. J. Bakkers, Dr. S. Schulte-Merker, S. Chocron and M. Witte for organizing the forward genetic mutagenesis screen at the Hubrecht Institute. We thank Rabab Charafeddine, Valentine Arendsen and Sanne van den Hout for technical assistance.

Author Contributions

Conceived and designed the experiments: RP. Performed the experiments: RP. Analyzed the data: RP AS. Contributed reagents/materials/analysis tools: RP. Wrote the paper: RP AS.

References

1. Lindskog S [1997] Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74: 1–20.
2. Sly WS, Hu PY [1995] Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64: 373–401.
3. Greer C, Gross G [2000] Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80: 681–715.
4. Supuran CT [2008] Carbonic anhydrases: novel therapeutic applications for a variety of diseases. Bioorg Med Chem 16: 569–596.
5. Chegwidden WR, Carter ND [2000] Introduction to the carbonic anhydrases. EXS 90: 14–28.
6. Hewett-Emmett D [2000] The membrane carbonic anhydrases: from CO2 transport to tumor markers. EXS 90: 95–104.
7. Tashian RE [2000] Keeping pace with a fast enzyme: steps and missteps. EXS 90: 569–596.
8. Schwartz GJ [2002] Physiology and molecular biology of renal carbonic anhydrase. J Nephrol 15 Suppl 5: 561–574.
9. Schwartz GJ [2000] Physiology and molecular biology of renal carbonic anhydrase. J Nephrol 15 Suppl 5: 561–574.
10. Parkerson J M, Schwartz GJ [2005] Expression of membrane-associated carbonic anhydrase isoforms IV, IX, XII, and XIV in the rabbit: induction of CA IV and IX during maturation. Am J Physiol Renal Int Physiol 288: R1256–1263.
11. HIlve M, Supuran CT, Parkkila S [2007] Characterization and inhibition of the recently discovered carbonic anhydrase isoforms CA XIV, XV and XIV. Curr Top Med Chem 7: 893–899.
12. HIlve M, Baranauskienė L, Salzano AM, Scalonì A, Mantulis D, et al. [2008] Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 283: 27799–27809.
13. Nagao Y, Sinnickson M, Platzer JS, Swindrovskii M, Waheed A, et al. [1994] Mitochondrial carbonic anhydrase (isozyme V) in mouse and rat: cDNA cloning, expression, subcellular localization, processing, and tissue distribution. Proc Natl Acad Sci USA 91: 10530–10534.
25. Nishimori I, Innocenti A, Vollo D, Scozzafava A, Supuran CT (2007) Carbonic anhydrase inhibitors: The inhibition profiles of the human mitochondrial isoforms VA and VB with anions are very different. Bioorg Med Chem 15: 6742–6747.

26. De Simone G, Supuran CT (2007) Antisobesity carbonic anhydrase inhibitors. Curr Top Med Chem 7: 879–884.