Existence results of nonlocal Robin boundary value problems for fractional (p, q)-integrodifference equations

Jarunee Soontharanon1 and Thanin Sitthiwirattham2*

1Correspondence: thanin_sit@dusit.ac.th
2Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand

Abstract

The existence results of a fractional (p, q)-integrodifference equation with nonlocal Robin boundary condition are investigated by using Banach’s and Schauder’s fixed point theorems. Moreover, we study some properties of (p, q)-integral that will be used as a tool for our calculations.

MSC: 39A10; 39A13; 39A70

Keywords: Fractional (p, q)-integral; Fractional (p, q)-difference; Robin boundary value problems; Existence

1 Introduction

Along with the evolution of the theory and application of classical calculus, quantum calculus (calculus without limit) has also received more intense attention in the last three decades. In this article, we study the development of q-calculus which is one type of quantum calculus. The q-calculus was first introduced by Jackson [1, 2] in 1910. In recent years, the extension of this topic has been studied by many researchers and has many new results in [3–9] and their references. The knowledge of q-calculus was used in physical problems, see [10–27] and the references cited therein.

Later, the study of quantum calculus based on two-parameter (p, q)-integer was presented. The (p, q)-calculus was presented by Chakrabarti and Jagannathan [27]. The extension of studies of (p, q)-calculus was given in [28–39]. In addition, it is used in many branches such as physical sciences, hypergeometric series, Lie group, special functions, approximation theory, Bézier curves and surfaces, etc. [40–47].

Then, the study of fractional quantum calculus was initiated [48–50]. Agarwal [48] and Al-Salam [49] studied fractional q-calculus, whilst Díaz and Osler [50] proposed fractional difference calculus. In 2017, Brikshavana and Sitthiwirattham [51] introduced fractional Hahn difference calculus. Recently, Patanarapeelert and Sitthiwirattham [52] studied fractional symmetric Hahn difference calculus. Presently, Soontharanon and Sitthiwirattham [53] introduced the fractional (p, q)-difference operators and their properties.

There are some recent papers studying the boundary value problem for (p, q)-difference equations [54–56]. However, the boundary value problem for fractional (p, q)-difference
equations has not been studied since fractional \((p, q)\)-operators have been defined lately. These motivate the authors for this research. This article investigates the existence results of a fractional \((p, q)\)-integrodifference equation with nonlocal Robin boundary value conditions of the form

\[
D_{p,q}^\alpha u(t) = F\left[t, u(t), \Psi_{p,q}^\gamma u(t), D_{p,q}^\beta u(t)\right], \quad t \in I_{p,q}^T
\]

\[
\lambda_1 u(\eta) + \lambda_2 D_{p,q}^\beta u(\eta) = \phi_1(u), \quad \eta \in I_{p,q}^T \setminus \left\{ 0, \frac{T}{p} \right\},
\]

\[
\mu_1 u\left(\frac{T}{p}\right) + \mu_2 D_{p,q}^\beta u\left(\frac{T}{p}\right) = \phi_2(u),
\]

where \(I_{p,q}^T := \{ \frac{k}{p} T : k \in \mathbb{N}_0 \} \cup \{ 0 \}; 0 < q < p \leq 1 \alpha \in (1, 2], \beta, \gamma, \nu \in (0, 1], \lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}^*; F \in C(I_{p,q}^T \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R})\) is a given function; \(\phi_1, \phi_2 : C(I_{p,q}^T, \mathbb{R}) \to \mathbb{R}\) are given functionals; and for \(\varphi \in C(I_{p,q}^T \times j_{p,q}^T, [0, \infty))\), we define an operator of the \((p, q)\)-integral of the product of functions \(\varphi\) and \(u\) as

\[
\Psi_{p,q}^\gamma u(t) := (\mathcal{I}_{p,q}^\gamma \varphi u)(t) = \frac{1}{p^\gamma} \int_0^t (t -qs)^{\gamma-1} \varphi(s) \left(\frac{s}{p^{\gamma-1}}\right) d_{p,q}s.
\]

We aim to prove the existence and uniqueness of a solution for this problem by using Banach's fixed point theorem, and the existence of at least one solution by using Schauder's fixed point theorem. In addition, we provide an example to illustrate our results.

2 Preliminaries

In this section, we recall some basic definitions, notations, and lemmas. Letting \(0 < q < p \leq 1\), we define the notations

\[
[k]^q_k := \begin{cases} \frac{1-q}{1-q}, & k \in \mathbb{N} \\ 0, & k = 0 \end{cases}
\]

\[
[k]_{p,q}^\gamma := \begin{cases} \frac{p^{\gamma-k} - q}{p^{\gamma-q}} = p^{k-1} \frac{1}{p^{\gamma}}, & k \in \mathbb{N} \\ 1, & k = 0 \end{cases}
\]

\[
[k]_{p,q} := \begin{cases} \prod_{i=1}^k \frac{p^{\gamma-k^i} - q}{p^{\gamma-q}}, & k \in \mathbb{N} \\ 1, & k = 0 \end{cases}
\]

The \((p, q)\)-forward jump and the \((p, q)\)-backward jump operators are defined as

\[
\sigma_{p,q}^k(t) := \left(\frac{q}{p}\right)^k t \quad \text{and} \quad \rho_{p,q}^k(t) := \left(\frac{p}{q}\right)^k t \quad \text{for } k \in \mathbb{N}, \text{ respectively.}
\]

The \(q\)-analogue of the power function \((a - b)^q_n\) with \(n \in \mathbb{N}_0 := \{0, 1, 2, \ldots\}\) is given by

\[
(a - b)^q_0 := 1, \quad (a - b)^q_n := \prod_{i=0}^{n-1} (a - bq^i), \quad a, b \in \mathbb{R}.
\]
The \((p, q)\)-analogue of the power function \((a - b)^\frac{\tilde{a}}{p}_{p,q}\) with \(n \in \mathbb{N}_0\) is given by

\[
(a - b)^\frac{0}{p}_{p,q} := 1, \quad (a - b)^\frac{n}{p}_{p,q} := \prod_{k=0}^{n-1} (ap^k - bq^k), \quad a, b \in \mathbb{R}.
\]

For \(\alpha \in \mathbb{R}\), we define a general form:

\[
(a - b)^\frac{\alpha}{p}_{p,q} = a^\alpha \prod_{i=0}^{\infty} \frac{1 - \left(\frac{q}{p}\right)^i}{1 - \left(\frac{q^{p-1}}{p^{q-1}}\right)^{\alpha i}}, \quad \alpha \neq 0.
\]

\[
(a - b)^\frac{\alpha}{p}_{p,q} = p^{\frac{(\alpha)}{\Gamma}}(a - b)^\frac{\alpha}{p}. = a^\alpha \prod_{i=0}^{\infty} \frac{1 - \left(\frac{q}{p}\right)^i}{1 - \left(\frac{q^{p-1}}{p^{q-1}}\right)^{\alpha i}}, \quad \alpha \neq 0.
\]

Note that \(a^\frac{\alpha}{p} = a^\alpha\), \(a^\frac{\alpha}{p} = \left(\frac{q}{p}\right)^{\frac{\alpha}{\Gamma}}\) and \(0^\frac{\alpha}{p} = 0\) for \(\alpha > 0\).

The \((p, q)\)-gamma and \((p, q)\)-beta functions are defined by

\[
\Gamma_{p,q}(x) := \begin{cases}
\frac{(q^{-x^{p-1}})^{\frac{\alpha-1}{\Gamma}}}{(q^{-x^{p-1}})^{\frac{\alpha-1}{\Gamma}}} & \text{if } x \in \mathbb{R} \setminus \{0, -1, -2, \ldots\} \\
[x - 1]_{p, q}! & \text{if } x \in \mathbb{N}
\end{cases}
\]

\[
B_{p,q}(x, y) := \int_0^1 t^{x-1}(1 - qt)^{\frac{y-1}{p}}d_{p,q}t = p^{\frac{1}{\Gamma}((y-1)(x+y)-2)}\frac{\Gamma_{p,q}(x)\Gamma_{p,q}(y)}{\Gamma_{p,q}(x+y)},
\]

respectively.

Lemma 2.1 [\(53\)] For \(\alpha, \beta, \gamma, \lambda \in \mathbb{R}\),

\[
\begin{align*}
(a) \quad & (\gamma \beta - \gamma \lambda)_{p,q}^\frac{\alpha}{p} = \gamma^\alpha (\beta - \lambda)_{p,q}^\frac{\alpha}{p}, \\
(b) \quad & (\beta - \gamma \lambda)_{p,q}^\frac{\alpha + \gamma}{p} = \frac{\Gamma_{p,q}(\beta - q^\alpha \lambda)}{\Gamma_{p,q}(\beta - q^\alpha \lambda)^\frac{\alpha}{\Gamma}}, \\
(c) \quad & (t - s)_{p,q}^\alpha = 0, \quad \alpha \in \mathbb{N}_0, t \geq s, \text{ and } t, s \in \mathbb{I}_{p,q}.
\end{align*}
\]

Lemma 2.2 [\(53\)] For \(m, n \in \mathbb{N}_0, \alpha \in \mathbb{R}\), and \(0 < q < p \leq 1\),

\[
\begin{align*}
(a) \quad & (t - \sigma_{p,q}^m(t))_{p,q}^\alpha = t^\alpha \left(1 - \left(\frac{q}{p}\right)^{n}\right)^{\frac{\alpha}{p}}, \\
(b) \quad & (\sigma_{p,q}^m(t) - \sigma_{p,q}^n(t))_{p,q}^\alpha = \left(\frac{q}{p}\right)^{m\alpha} t^\alpha \left(1 - \left(\frac{q}{p}\right)^{n-m}\right)^{\frac{\alpha}{p}}.
\end{align*}
\]

Definition 2.1 For \(0 < q < p \leq 1\) and \(f : [0, T] \rightarrow \mathbb{R}\), we define the \((p, q)\)-difference of \(f\) as

\[
D_{p,q}f(t) := \begin{cases}
\frac{f(qt) - f(qt)}{(q-1)t} & \text{if } \forall \neq 0 \\
f'(0) & \text{for } t = 0
\end{cases}
\]

provided that \(f\) is differentiable at 0. \(f\) is called \((p, q)\)-differentiable on \(\mathbb{I}_{p,q}^T\) if \(D_{p,q}f(t)\) exists for all \(t \in \mathbb{I}_{p,q}^T\).
Lemma 2.3 ([31]) Let f, g be (p, q)-differentiable on I_{pq}^T. The properties of (p, q)-difference operator are as follows:

(a) $D_{pq}[f(t) + g(t)] = D_{pq}f(t) + D_{pq}g(t),$

(b) $D_{pq}[af(t)] = aD_{pq}f(t)$ for $a \in \mathbb{R},$

(c) $D_{pq}[f(t)g(t)] = f(pt)D_{pq}g(t) + g(qt)D_{pq}f(t) = g(pt)D_{pq}f(t) + f(qt)D_{pq}g(t),$

(d) $D_{pq}\left[\frac{f(t)}{g(t)}\right] = \frac{g(qt)D_{pq}f(t) - f(qt)D_{pq}g(t)}{g(pt)g(qt)} = \frac{g(pt)D_{pq}f(t) - f(pt)D_{pq}g(t)}{g(pt)g(qt)}$

for $g(pt)g(qt) \neq 0.$

Lemma 2.4 ([53]) Let $t \in I_{pq}^T$, $0 < q < p \leq 1$, $\alpha \geq 1$, and $a \in \mathbb{R}$. Then

(a) $D_{pq}(t - a)_{pq}^\alpha = [\alpha]_{pq}(pt - a)_{pq}^{\alpha - 1},$

(b) $D_{pq}(a - t)_{pq}^\alpha = -[\alpha]_{pq}(aq - t)_{pq}^{\alpha - 1}.$

Definition 2.2 Let I be any closed interval of \mathbb{R} containing a, b, and 0. Assuming that $f : I \rightarrow \mathbb{R}$ is a given function, we define (p, q)-integral of f from a to b by

$$\int_a^b f(t) d_{pq}t := \int_0^b f(t) d_{pq}t - \int_0^a f(t) d_{pq}t,$$

where

$$\mathcal{I}_{pq}f(x) = \int_0^x f(t) d_{pq}t = (p - q)x \sum_{k=0}^{\infty} \frac{q^k}{p^k} f\left(\frac{q^k}{p^k} x\right), \quad x \in I,$$

provided that the series converges at $x = a$ and $x = b.$ f is called (p, q)-integrable on $[a, b]$ if it is (p, q)-integrable on $[a, b]$ for all $a, b \in I.$

Next, we define an operator \mathcal{I}_{pq}^N as

$$\mathcal{I}_{pq}^0f(x) = f(x) \quad \text{and} \quad \mathcal{I}_{pq}^Nf(x) = \mathcal{I}_{pq}\mathcal{I}_{pq}^{N-1}f(x), \quad N \in \mathbb{N}.$$

The relations between (p, q)-difference and (p, q)-integral operators are given by

$$D_{pq}\mathcal{I}_{pq}f(x) = f(x) \quad \text{and} \quad \mathcal{I}_{pq}D_{pq}f(x) = f(x) - f(0).$$

Lemma 2.5 ([31]) Let $0 < q < p \leq 1$, $a, b \in I_{pq}^T$, and f, g be (p, q)-integrable on I_{pq}^T. Then the following formulas hold:

(a) $\int_a^b f(t) d_{pq}t = 0,$

(b) $\int_a^b \alpha f(t) d_{pq}t = \alpha \int_a^b f(t) d_{pq}t, \quad \alpha \in \mathbb{R},$

(c) $\int_a^b f(t) d_{pq}t = -\int_b^a f(t) d_{pq}t,$
Lemma 2.6 ([31], Fundamental theorem of \((p,q)\)-calculus) Letting \(f : I \to \mathbb{R}\) be continuous at 0 and

\[
F(x) := \int_0^x f(t) \, d_{p,q}t, \quad x \in I,
\]

then \(F\) is continuous at 0 and \(D_{p,q}F(x)\) exists for every \(x \in I\) where

\[
D_{p,q}F(x) = f(x).
\]

Conversely,

\[
\int_a^b D_{p,q}f(t) \, d_{p,q}t = f(b) - f(a) \quad \text{for all } a, b \in I.
\]

Lemma 2.7 ([53], Leibniz formula of \((p,q)\)-calculus) Letting \(f : I_{p,q}^T \times I_{p,q}^T \to \mathbb{R}\),

\[
D_{p,q} \left[\int_0^t f(t,s) \, d_{p,q}s \right] = \int_0^q \, t D_{p,q}f(t,s) \, d_{p,q}s + f(pt,t),
\]

where \(tD_{p,q}\) is \((p,q)\)-difference with respect to \(t\).

Next we introduce fractional \((p,q)\)-integral and fractional \((p,q)\)-difference of Riemann–Liouville type as follows.

Definition 2.3 For \(\alpha > 0\), \(0 < q < p \leq 1\), and \(f\) defined on \(I_{p,q}^T\), the fractional \((p,q)\)-integral is defined by

\[
I_{p,q}^α f(t) := \frac{1}{Γ_{p,q}(α)} \int_0^t (t - qs)^{α - 1}_p \frac{f(s)}{p^{α - 1}} \, d_{p,q}s
\]

\[
= \frac{(p-q)t}{p^{α} Γ_{p,q}(α)} \sum_{k=0}^{∞} \frac{q^k}{k!} \left(t - \left(\frac{q}{p} \right)^k \frac{1}{p^{kα}} \right) f \left(\frac{q^k}{p^{kα}} t \right),
\]

and \((I_{p,q}^0 f)(t) = f(t)\).

Definition 2.4 For \(\alpha > 0\), \(0 < q < p \leq 1\), and \(f\) defined on \(I_{p,q}^T\), the fractional \((p,q)\)-difference operator of Riemann–Liouville type of order \(α\) is defined by

\[
D_{p,q}^α f(t) := D_{p,q}^N I_{p,q}^{N-α} f(t)
\]

\[
= \frac{1}{Γ_{p,q}(-α)} \int_0^t (t - qs)^{α - 1}_p \frac{f(s)}{p^{α - 1}} \, d_{p,q}s,
\]

and \(D_{p,q}^0 f(t) = f(t)\), where \(N - 1 < α < N\), \(N \in \mathbb{N}\).
Lemma 2.8 ([53]) Letting $\alpha \in (N - 1, N), N \in \mathbb{N}, 0 < q < p \leq 1$, and $f : I_{p,q}^T \to \mathbb{R}$,

$$I_{p,q}^a I_{p,q}^b f(t) = f(t) + C_1 t^{\alpha-1} + C_2 t^{\alpha-2} + \ldots + C_N t^{\alpha-N}$$

for some $C_i \in \mathbb{R}, i = 1, 2, \ldots, N$.

Lemma 2.9 ([53]) Letting $0 < q < p \leq 1$ and $f : I_{p,q}^T \to \mathbb{R}$ be continuous at 0,

$$\int_0^x \int_0^x f(\tau) \, d_{p,q} \tau \, d_{p,q}s = \int_0^x \int_0^x f(\tau) \, d_{p,q}s \, d_{p,q}\tau.$$

Lemma 2.10 ([53]) Let $\alpha, \beta > 0, 0 < q < p \leq 1$. Then

(a) \(\int_0^t (t - q\tau)^{-1} B_{p,q}(\beta) \, d_{p,q}s = t^{\alpha+\beta} B_{p,q}(\beta + 1, \alpha) \),

(b) \(\int_0^t \int_0^x (t - q\tau)^{-1} (x - q\tau)^{\beta-1} \, d_{p,q}s \, d_{p,q}x = \frac{B_{p,q}(\beta + 1, \alpha)}{[\beta]_{p,q}} t^{\alpha+\beta} \).

Lemma 2.11 Let $\alpha, \beta > 0, 0 < q < p \leq 1$, and $n \in \mathbb{Z}$. Then

(a) \(\int_0^t (t - q\tau)^{-1} \, d_{p,q}s = p(\frac{\alpha}{p}) \Gamma_{p,q}(\alpha) \Gamma_{p,q}(\alpha + 1) t^\alpha \),

(b) \(\int_0^t \int_0^x (t - q\tau)^{-1} (x - q\tau)^{-1} \, d_{p,q}s \, d_{p,q}x = p(\frac{\alpha}{p} - 1) \Gamma_{p,q}(\alpha) \Gamma_{p,q}(\alpha + 1) t^{\alpha+\beta} \),

(c) \(\int_0^t (t - q\tau)^{-1} \left(\frac{s}{p^{\beta-1}} \right)^{\alpha-n} \, d_{p,q}s = p(\frac{\beta}{p}) \Gamma_{p,q}(\alpha - n + 1) \Gamma_{p,q}(\beta - \beta - n + 1) t^{\alpha+\beta-n} \).

Proof From Lemma 2.10(a) and the definition of (p, q)-beta function, we have

\begin{align*}
\int_0^t (t - q\tau)^{-1} \, d_{p,q}s &= t^{\alpha} B_{p,q}(1, \alpha) = p(\frac{\alpha}{p}) \Gamma_{p,q}(\alpha) \Gamma_{p,q}(\alpha + 1) t^\alpha, \\
\int_0^t \int_0^x (t - q\tau)^{-1} (x - q\tau)^{-1} \, d_{p,q}s \, d_{p,q}x &= \frac{B_{p,q}(1, \alpha)}{p^{-\alpha(\beta+1)}} \int_0^t (t - q\tau)^{-1} x^{\alpha} \, d_{p,q}x \\
&= \frac{B_{p,q}(1, \alpha)}{p^{-\alpha(\beta+1)}} \frac{B_{p,q}(\alpha + 1, -\beta)}{\Gamma_{p,q}(\alpha + 1, -\beta)} t^{\alpha+\beta} \\
&= p(\frac{\alpha}{p} - 1) \Gamma_{p,q}(\alpha) \Gamma_{p,q}(\beta - \beta - n + 1) t^{\alpha+\beta}.
\end{align*}

For $n \in \mathbb{Z}$, we have

\begin{align*}
\int_0^t (t - q\tau)^{-1} \left(\frac{s}{p^{\beta-1}} \right)^{\alpha-n} \, d_{p,q}s &= \frac{B_{p,q}(\alpha - n, -\beta + 1)}{p^{\alpha-n-1}} \Gamma_{p,q}(\alpha - n, -\beta + 1, -\beta) t^{\alpha+\beta-n+1} \\
&= p(\frac{\beta}{p}) \Gamma_{p,q}(\alpha - n + 1) \Gamma_{p,q}(\beta - n + 1) t^{\alpha+\beta-n+1}.
\end{align*}

The proof is complete. \(\square \)
We next provide a lemma showing a result of the linear variant of problem (1.1).

Lemma 2.12 Let $\Omega \neq 0$, $\alpha \in (1, 2]$, $\beta \in (0, 1]$, $0 < q < p \leq 1$, $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}^+$, $h \in C(I_{p,q}^T, \mathbb{R})$ is a given function; $\Phi_1, \Phi_2 : C(I_{p,q}^T, \mathbb{R}) \rightarrow \mathbb{R}$ are given functionals. The linear variant problem of (1.1)

$$D_{p,q}^\alpha u(t) = h(t), \quad t \in I_{p,q}^T,$$

$$\lambda_1 u(\eta) + \lambda_2 D_{p,q}^\beta u(\eta) = \phi_1(u), \quad \eta \in I_{p,q}^T - \left\{ \omega_0, \frac{T}{p} \right\},$$

$$\mu_1 u\left(\frac{T}{p} \right) + \mu_2 D_{p,q}^\beta u\left(\frac{T}{p} \right) = \phi_2(u)$$

has the unique solution

$$u(t) = \frac{1}{p(\xi)} \Gamma_{p,q}(\alpha) \int_0^t (t - qs)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s \\
- \frac{\alpha - 1}{\Omega} \left\{ B_T \Phi_1[\phi_1, h] - B_\eta \Phi_T[\phi_2, h] \right\} \\
+ \frac{\alpha - 2}{\Omega} \left\{ A_T \Phi_1[\phi_1, h] - A_\eta \Phi_T[\phi_2, h] \right\},$$

where the functionals $\Phi_1[\phi_1, h], \Phi_T[\phi_2, h]$ are defined by

$$\Phi_1[\phi_1, h] := \phi_1(u) - \frac{\lambda_1}{p(\xi)} \Gamma_{p,q}(\alpha) \int_0^\eta (\eta - qs)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s \\
- \frac{\lambda_2}{p(\xi)} \Gamma_{p,q}(\alpha) \Gamma_{p,q}(-\beta) \times \int_0^\eta \int_0^t (t - qs)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s \, d_{p,q}x,$$

$$\Phi_T[\phi_2, h] := \phi_2(u) - \frac{\mu_1}{p(\xi)} \Gamma_{p,q}(\alpha) \int_0^T \left(\frac{T}{p} - qs \right)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s \\
- \frac{\mu_2}{p(\xi)} \Gamma_{p,q}(\alpha) \Gamma_{p,q}(-\beta) \times \int_0^T \int_0^t \left(\frac{T}{p} - qs \right)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s \, d_{p,q}x,$$

and the constants $A_\eta, A_T, B_\eta, B_T,$ and Ω are defined by

$$A_\eta := \lambda_1 \eta^{\alpha - 1} + \frac{\lambda_2}{p(\xi)} \Gamma_{p,q}(-\beta) \int_0^\eta (\eta - qs)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s$$

$$= \eta^{\alpha - 1} \left(\lambda_1 + \frac{\lambda_2 \Gamma_{p,q}(\alpha)}{\Gamma_{p,q}(\alpha - \beta) \eta^{-\beta}} \right),$$

$$A_T := \mu_1 \left(\frac{T}{p} \right)^{\alpha - 1} + \frac{\mu_2}{p(\xi)} \Gamma_{p,q}(-\beta) \int_0^T \left(\frac{T}{p} - qs \right)^{\frac{\alpha - 1}{p - \beta}} h \left(\frac{s}{p \beta - 1} \right) d_{p,q}s$$

$$= \left(\frac{T}{p} \right)^{\alpha - 1} \left(\mu_1 + \frac{\mu_2 \Gamma_{p,q}(\alpha)}{\Gamma_{p,q}(\alpha - \beta) \left(\frac{T}{p} \right)^{-\beta}} \right).$$
Soontharanon and Sitthiwirattham

Advances in Difference Equations

where

Then we have

To obtain the solution, we first take a fractional (p, q)-integral of order α for (2.1).

Next, we take fractional p, q-difference of order β for (2.10) to get

Substituting $t = \eta$ into (2.10) and (2.11) and employing the first condition of (2.1), we have

Taking $t = T$ into (2.10) and (2.11) and employing the second condition of (2.1), we have

Solving (2.12) $-$(2.13), we find that

where $\Phi_0[\phi_1, h], \Phi_T[\phi_2, h], A_\eta, A_T, B_\eta, B_T, \Omega$ are defined by (2.3)$-$(2.9), respectively.
Substituting the constants C_1, C_2 into (2.10), we obtain (2.2). This completes the proof.

3 Existence and uniqueness result

In this section, we use Banach’s fixed point theorem to prove the existence and uniqueness result for problem (1.1). Let $C = C(I_{p,q}^T, \mathbb{R})$ be a Banach space of all function u with the norm defined by

$$
\|u\|_C = \max_{t \in I_{p,q}^T} \{|u(t)|, |D^\nu_{p,q} u(t)|\},
$$

where $\alpha \in (1, 2], \beta, \gamma, \nu \in (0, 1], 0 < q < p \leq 1, \lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}^+$. Define an operator $F : C \to C$ by

$$(Fu)(t) := \frac{1}{p^{(\frac{\alpha}{2})} \Gamma_{p,q}(\alpha)} \int_0^t (t - qs)^{\frac{\alpha - 1}{p,q}}$$

$$
\times F\left[\frac{s}{p^{\alpha - 1}}, u\left(\frac{s}{p^{\alpha - 1}}\right), \Psi_{p,q}^\gamma u\left(\frac{s}{p^{\alpha - 1}}\right), D^\nu_{p,q} u\left(\frac{s}{p^{\alpha - 1}}\right)\right] d_{p,q}s
$$

$$
- \frac{\lambda_2}{p^{(\frac{\alpha}{2})} \Gamma_{p,q}(\alpha) \Gamma_{p,q}(-\beta)}
\times \int_0^\eta \int_0^{\frac{\beta}{p - \beta}} (\eta - qx)^{-\frac{\beta - 1}{p,q}} \left(\frac{x}{p - \beta - 1} - qs\right)^{\frac{\alpha - 1}{p,q}} d_{p,q}s d_{p,q}x,
$$

and the constants $A_q, A_T, B_q, B_T, \Omega$ are defined by (2.5)–(2.9), respectively.
Theorem 3.1 Assume that $F : I^T_{p,q} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\varphi : I^T_{p,q} \times I^T_{p,q} \rightarrow [0, \infty)$ is continuous with $\varphi_0 = \max\{\varphi(t,s) : (t,s) \in I^T_{p,q} \times I^T_{p,q}\}$. Suppose that the following conditions hold:

(H1) There exist constants $\ell_1, \ell_2, \ell_3 > 0$ such that, for each $t \in I^T_{p,q}$ and $u_i, v_i \in \mathbb{R}$, $i = 1, 2, 3$,

$$|F[t, u_1, u_2, u_3] - F[t, v_1, v_2, v_3]| \leq \ell_1|u_1 - v_1| + \ell_2|u_2 - v_2| + \ell_3|u_3 - v_3|.$$

(H2) There exist constants $\omega_1, \omega_2 > 0$ such that, for each $u, v \in C$,

$$|\phi_1(u) - \phi_1(v)| \leq \omega_1 ||u - v||_C \quad \text{and} \quad |\phi_2(u) - \phi_2(v)| \leq \omega_2 ||u - v||_C.$$

(H3) $X := (L + \ell_3)\Theta + \omega_1 Y_T + \omega_2 Y_\eta < 1$,

where

$$L := \ell_1 + \ell_2 \varphi_0 \frac{(T)^\gamma}{\Gamma_{p,q}(\gamma + 1)},$$

$$\Theta := \frac{(T)^\gamma}{\Gamma_{p,q}(\alpha + 1)} + \mathcal{O}_1 Y_T + \mathcal{O}_2 Y_\eta,$$

$$Y_T := \frac{1}{|\Omega|} \left[|B_T| \left(\frac{T}{p} \right)^{\alpha-1} + |A_T| \left(\frac{T}{p} \right)^{\alpha-2} \right],$$

$$Y_\eta := \frac{1}{|\Omega|} \left[|B_\eta| \left(\frac{T}{p} \right)^{\alpha-1} + |A_\eta| \left(\frac{T}{p} \right)^{\alpha-2} \right],$$

$$\mathcal{O}_1 := \frac{\lambda_1 \eta^\alpha}{\Gamma_{p,q}(\alpha + 1)} + \frac{\lambda_2 \eta^{\alpha-\beta}}{\Gamma_{p,q}(\alpha - \beta + 1)},$$

$$\mathcal{O}_2 := \frac{\lambda_1 (T)^\gamma}{\Gamma_{p,q}(\alpha + 1)} + \frac{\lambda_2 (T)^{\gamma-\beta}}{\Gamma_{p,q}(\alpha - \beta + 1)}.$$

Then problem (1.1) has a unique solution in $I^T_{p,q}$.

Proof For each $t \in I^T_{p,q}$ and $u, v \in C$, we have

$$\left| \Psi_{p,q}^\gamma u - \Psi_{p,q}^\gamma v \right| \leq \frac{\varphi_0}{p^{(\gamma')}} \frac{1}{\Gamma_{p,q}(\gamma)} \int_0^t (t - qs)^{\gamma-1} \left| u \left(\frac{s}{p^{\gamma-1}} \right) - v \left(\frac{s}{p^{\gamma-1}} \right) \right| d_{p,q}s,$$

$$\leq \frac{\varphi_0}{p^{(\gamma')}} \left| u - v \right| \int_0^t \left(\frac{T}{p} - qs \right)^{\gamma-1} d_{p,q}s,$$

$$= \frac{\varphi_0 (T)^{\gamma}}{\Gamma_{p,q}(\gamma + 1)} \left| u - v \right|.$$

Denote that

$$\mathcal{H}[u - v](t) := \left| F[t, u(t), \Psi_{p,q}^\gamma u(t), D_{p,q}^\gamma u(t)] - F[t, v(t), \Psi_{p,q}^\gamma v(t), D_{p,q}^\gamma v(t)] \right|.$$

Then we obtain
\[
\left| \Phi_n^{\ast} [\phi_1, F_u] - \Phi_n^{\ast} [\phi_1, F_v] \right|
\leq \left| \phi_1 (u) - \phi_1 (v) \right| + \frac{\lambda_1}{p^{(2)} \Gamma_{p,q} (\alpha)} \int_0^u (\eta - q s)^{p - 1} \mathcal{H} | u - v | \left(\frac{s}{p^{\alpha - 1}} \right) d_p q s
\]
\[
+ \frac{\lambda_2}{p^{(2)} \Gamma_{p,q} (\alpha) \Gamma_{p,q} (-\beta)} \int_0^u \left(\eta - q \xi \right)^{p - 1} \left(\frac{x}{p^{\beta - 1} - q s} \right)^{q - 1} d_p q x
\]
\[
\mathcal{H} | u - v | \left(\frac{s}{p^{\alpha - 1}} \right) d_p q s d_p q x
\]
\[
\leq \omega_1 \| u - v \|_c + (\ell_1 | u - v | + \ell_2 | \Psi_{p,q}^\gamma u - \Psi_{p,q}^\gamma v | + \ell_3 | D_{p,q}^\gamma u - D_{p,q}^\gamma v |)
\times \left| \frac{\lambda_1 \eta^\alpha}{\Gamma_{p,q} (\alpha + 1)} + \frac{\lambda_2 \eta^\beta}{\Gamma_{p,q} (\alpha - \beta + 1)} \right|
\leq \omega_1 \| u - v \|_c + \left(\ell_1 + \ell_2 \psi_0 \frac{T}{p} \Gamma_{p,q} (\gamma + 1) \right) | u - v | + \ell_3 | D_{p,q}^\gamma u - D_{p,q}^\gamma v |) \mathcal{O}_1
\leq \left[\omega_1 + (\mathcal{L} + \ell_3) \mathcal{O}_1 \right] \| u - v \|_c.
\]

Similarly,
\[
\left| \Phi_T^{\ast} [\phi_2, F_u] - \Phi_T^{\ast} [\phi_2, F_v] \right| \leq \left[\omega_2 + (\mathcal{L} + \ell_3) \mathcal{O}_2 \right] \| u - v \|_c.
\]

Next, we have
\[
\left| (\mathcal{F} u) (t) - (\mathcal{F} v) (t) \right|
\leq \frac{1}{p^{(2)} \Gamma_{p,q} (\alpha)} \int_0^u \left(\frac{T}{p} - q s \right)^{a - 1} \mathcal{H} | u - v | \left(\frac{s}{p^{\alpha - 1}} \right) d_p q s
\]
\[
+ \frac{\ell_2}{p^{(2)} \Omega} \left[| B_T | \left| \Phi_n^{\ast} [\phi_1, F_u] - \Phi_n^{\ast} [\phi_1, F_v] \right| + | B_n | \left| \Phi_T^{\ast} [\phi_2, F_u] - \Phi_T^{\ast} [\phi_2, F_v] \right| \right]
\]
\[
+ \frac{\ell_3}{p^{(2)} \Omega} \left[| A_T | \left| \Phi_n^{\ast} [\phi_1, F_u] - \Phi_n^{\ast} [\phi_1, F_v] \right| + | A_n | \left| \Phi_T^{\ast} [\phi_2, F_u] - \Phi_T^{\ast} [\phi_2, F_v] \right| \right]
\]
\[
\leq \left[\omega_1 + (\mathcal{L} + \ell_3) \mathcal{O}_1 \right] \left| B_T \left(\frac{T}{p} \right)^{a - 1} + | A_T | \left(\frac{T}{p} \right)^{a - 2} \right|
\]
\[
+ \left[\omega_2 + (\mathcal{L} + \ell_3) \mathcal{O}_2 \right] \left| B_n \left(\frac{T}{p} \right)^{a - 1} + | A_n | \left(\frac{T}{p} \right)^{a - 2} \right| \| u - v \|_c
\]
\leq X \| u - v \|_c. \tag{3.10}
\]

Taking fractional (p, q)-difference of order v for (3.1), we get
\[
(D_{p,q}^v \mathcal{F} u) (t)
= \frac{1}{p^{(2)} \Gamma_{p,q} (\alpha) \Gamma_{p,q} (-v)} \int_0^u \int_0^t \left(\frac{s}{p^{\alpha - 1} - q s} \right)^{a - 1} d_p q x
\]
\[
\int_0^t \left(\frac{s}{p^{\alpha - 1} - q s} \right)^{a - 1} d_p q s.
\]
\[\times F\left[\frac{s}{p^{n-1}}, u\left(\frac{s}{p^{n-1}} \right), \Psi_p^\alpha u\left(\frac{s}{p^{n-1}} \right), D_{p,q}^\nu u\left(\frac{s}{p^{n-1}} \right) \right] \, dp_{p,q} \, d_{p,q} x \]

\[- \frac{1}{\Omega p^{(\frac{1}{2})} \Gamma_{p,q}(\nu)} \left\{ \mathbf{B}_T \Phi_p^\alpha[\phi_1, F_u] - \mathbf{B}_q \Phi_q^\alpha[\phi_1, F_u] \right\} \]

\[\times \int_0^t (t - qs)^{\frac{\alpha-1}{p-1}} \frac{s}{p^{\alpha-1}} \, dp_{p,q} \]

\[+ \frac{1}{\Omega p^{(\frac{1}{2})} \Gamma_{p,q}(\nu)} \left\{ \mathbf{A}_T \Phi_p^\alpha[\phi_1, F_u] - \mathbf{A}_q \Phi_q^\alpha[\phi_1, F_u] \right\} \]

\[\times \int_0^t (t - qs)^{\frac{\alpha-1}{p-1}} \frac{s}{p^{\alpha-1}} \, dp_{p,q}. \quad (3.11) \]

Similarly, we have

\[\left| (D_{p,q}^\nu F u)(t) - (D_{p,q}^\nu F v)(t) \right| < \chi \| u - v \|_C. \quad (3.12) \]

From (3.10) and (3.12), we obtain

\[\| F u - F v \|_C \leq \chi \| u - v \|_C. \]

By (H3) we can conclude that \(F \) is a contraction. Therefore, by using Banach’s fixed point theorem, \(F \) has a fixed point which is a unique solution of problem (1.1) on \(I_{p,q}^T \). \(\Box \)

4 Existence of at least one solution

In this section, we present the existence of a solution to (1.1) by using Schauder’s fixed point theorem.

Lemma 4.1 ([57]) (Arzelá–Ascoli theorem) A collection of functions in \(C[a,b] \) with the sup norm is relatively compact if and only if it is uniformly bounded and equicontinuous on \([a,b] \).

Lemma 4.2 ([57]) If a set is closed and relatively compact, then it is compact.

Lemma 4.3 ([58] (Schauder’s fixed point theorem)) Let \((D,d) \) be a complete metric space, \(U \) be a closed convex subset of \(D \), and \(T : D \to D \) be the map such that the set \(Tu : u \in U \) is relatively compact in \(D \). Then the operator \(T \) has at least one fixed point \(u^* \in U \) : \(Tu^* = u^* \).

Theorem 4.1 Suppose that (H1) and (H3) hold. Then problem (1.1) has at least one solution on \(I_{p,q}^T \).

Proof We organize the proof into three steps as follows.

Step 1. Verify that \(F \) maps bounded sets into bounded sets in \(B_L = \{ u \in C : \| u \|_C \leq L \} \). Set

\[\max_{t \in I_{p,q}^T} |F(t,0,0,0)| = M, \sup_{u \in C} |\phi_1(u)| = N_1, \sup_{u \in C} |\phi_2(u)| = N_2 \]

and choose a constant

\[L \geq \frac{M\Theta + N_1 T_T + N_2 T_q}{1 - (\Theta + \ell_3)\Theta}. \quad (4.1) \]
Denote that \(|S(t, u, 0)| = |F[t, u(t), \Psi_{p,q}^*(u(t), D_{p,q}^T u(t)) - F[t, 0, 0, 0]| + |F[t, 0, 0, 0]| \). For each \(t \in I_{p,q}^T \) and \(u \in B_L \), we obtain
\[
|\Phi^*_{\eta}[\phi_1, F_u]| \\
\leq N_1 + \frac{\lambda_1}{p^{(\zeta)}G_{p,q}(\alpha)} \int_0^\eta \left(\eta - q_s \frac{a-1}{p_a} |S(s, u, 0)| \right) d_p dq s + \frac{\lambda_2}{p^{(\zeta)}G_{p,q}(\nu)} \frac{a-1}{p_a} |S(s, u, 0)| d_p dq s d_p dq x \\
\times \int_0^\eta \frac{1}{q_s} \left(\eta - q_s \frac{a-1}{p_a} \right) \left(\frac{x}{p^{(\nu-1)}} - q_s \right) \frac{a-1}{p_a} |S(s, u, 0)| d_p dq s d_p dq x \\
\leq N_1 + \left(\left(\ell_1 + \ell_2 \varphi_0 \frac{\zeta}{p^{(\nu)}G_{p,q}(\nu + 1)} \right) |u| + \ell_3 |D_{p,q}^* u| + M \right) \mathcal{O}_1 \\
\leq N_1 + M \mathcal{O}_1 + (L + \ell_3) \mathcal{O}_1 \|u\|_C \\
\leq N_1 + \left[M + (L + \ell_3)L \right] \mathcal{O}_1. \quad (4.2)
\]

Similarly,
\[
|\Phi^*_{T}[\phi_2, F_u]| \leq N_2 + \left[M + (L + \ell_3)L \right] \mathcal{O}_2. \quad (4.3)
\]

From (4.2)–(4.3), we find that
\[
|F(u)(t)| \leq \frac{1}{p^{(\zeta)}G_{p,q}(\alpha)} \int_0^\eta \left(\frac{T}{p} - q_s \right) \frac{a-1}{p_a} |S(t, u, 0)| \left(\frac{s}{p^{(a+1)}} \right) d_p dq s \\
+ \frac{(\frac{T}{p})^{\nu-1}}{L^2} \left[|B_T| |\Phi^*_{\eta}[\phi_1, F_u]| + |B_{\eta}| |\Phi^*_{T}[\phi_2, F_u]| \right] \\
+ \frac{(\frac{T}{p})^{\nu-2}}{L^2} \left[|A_T| |\Phi^*_{\eta}[\phi_1, F_u]| + |A_{\eta}| |\Phi^*_{T}[\phi_2, F_u]| \right] \\
\leq \mathcal{O} \left[L(L + \ell_3) + M \right] + N_1 \mathcal{T} + N_2 \mathcal{Y}_\eta \\
\leq L. \quad (4.4)
\]

In addition, we obtain
\[
\left| (D_{p,q}^T F u)(t) \right| < L. \quad (4.5)
\]

Therefore, \(\|F u\|_C \leq L \), which implies that \(F \) is uniformly bounded.

Step II. The operator \(F \) is continuous on \(B_L \) because of the continuity of \(F \).

Step III. We examine that \(F \) is equicontinuous on \(B_L \). For any \(t_1, t_2 \in I_{p,q}^T \) with \(t_1 < t_2 \), we have
\[
|\mathcal{F}(u)(t_2) - \mathcal{F}(u)(t_1)| \leq \frac{\|F\|}{G_{p,q}(\alpha + 1)} |t_2^2 - t_1^2| \\
+ \frac{|t_2^{\nu-1} - t_1^{\nu-1}|}{L} \left[|B_T| |\Phi^*_{\eta}[\phi_1, F_u]| + |B_{\eta}| |\Phi^*_{T}[\phi_2, F_u]| \right] \\
+ \frac{|t_2^{\nu-2} - t_1^{\nu-2}|}{L} \left[|A_T| |\Phi^*_{\eta}[\phi_1, F_u]| + |A_{\eta}| |\Phi^*_{T}[\phi_2, F_u]| \right]. \quad (4.6)
\]
and

\[
\left| (D^{\alpha}_{p,q} F)(t_2) - (D^{\alpha}_{p,q} F)(t_1) \right| \\
\leq \frac{\|F\|}{I^{\alpha}_{p,q}(\alpha - v + 1)^v} |t_2^{\alpha - v} - t_1^{\alpha - v}| \\
+ \frac{I^{\alpha}_{p,q}(\alpha)}{|\Omega| I^{\alpha}_{p,q}(\alpha - v)^v} \left\{ |B_T| \Phi^{\ast}_{p,q}[\phi_1, F_u] + |B_q| \Phi^{\ast}_{q}[\phi_2, F_u] \right\} |t_2^{\alpha - v - 1} - t_1^{\alpha - v - 1}| \\
+ \frac{I^{\alpha}_{p,q}(\alpha - 1)}{|\Omega| I^{\alpha}_{p,q}(\alpha - v - 1)^v} \left\{ |A_T| \Phi^{\ast}_{p,q}[\phi_1, F_u] + |A_q| \Phi^{\ast}_{q}[\phi_2, F_u] \right\} |t_2^{\alpha - v - 2} - t_1^{\alpha - v - 2}|. \quad (4.7)
\]

Since the right-hand side of (4.6) and (4.7) tends to be zero when \(|t_2 - t_1| \to 0\), \(F\) is relatively compact on \(B_L\).

This implies that \(\mathcal{F}(B_L)\) is an equicontinuous set. From Steps I to III together with the Arzelá–Ascoli theorem, we see that \(\mathcal{F} : \mathcal{C} \to \mathcal{C}\) is completely continuous. By Schauder’s fixed point theorem, we can conclude that problem (1.1) has at least one solution. \(\square\)

5 An example

Consider the following fractional \((p, q)\)-integrodifference equation:

\[
D^{\frac{1}{2}} \left\{ \frac{1215}{256} \cdot u(t) + 200eD^{\frac{1}{2}} \cdot u(t) \right\} = \sum_{i=0}^{\infty} C_i [u(t_i)] + t_i^{\frac{1}{2}} = 10 \cdot \left(\frac{1}{3} \right)^{i+1},
\]

\[
100\pi u(15) + \frac{1}{10\pi} D^{\frac{1}{2}} \cdot u(15) = \sum_{i=0}^{\infty} D_i [u(t_i)] + t_i^{\frac{1}{2}} = 10 \cdot \left(\frac{1}{3} \right)^{i+1},
\]

where \(\psi(t, s) = \frac{e^{(3-\eta)}(t+200)}{(t+200)^{1/2}}\) and \(C_i, D_i\) are given constants with \(\frac{1}{300} \leq \sum_{i=0}^{\infty} C_i \leq \frac{\pi}{1000}\) and \(\frac{1}{1000} \leq \sum_{i=0}^{\infty} D_i \leq \frac{\pi}{200}\).

Letting \(\alpha = \frac{3}{2}, \beta = \frac{3}{4}, \gamma = \frac{3}{2}, \nu = \frac{3}{2}, p = \frac{3}{2}, q = \frac{1}{2}, T = 10, \eta = 10, \mu_1 = 100\pi, \mu_2 = \frac{1}{10\pi}, \phi_1(u) = \sum_{i=0}^{\infty} C_i [u(t_i)], \phi_2 = \sum_{i=0}^{\infty} D_i [u(t_i)]\) and \(F[t, u(t), \psi_{p,q}(u(t))],\)

\[
D^p_{p,q} u(t)] = \frac{1}{200e^{(3-\eta)}(t+200)^{1/2}} [e^{2\eta}(u^2 + 2|u|) + e^{-(2\pi + \cos^2 \pi t)}|\psi_{p,q}^\ast| u(t)] + e^{-(2\sin^2 \pi t)}|D^{\frac{1}{2}} u(t)],
\]

we find that

\[
|A_1| = 574.6570, \quad |A_T| = -23.8344, \quad |B_q| = 774.8145, \quad |B_T| = 51.6518,
\]

\[
\psi_0 = 0.000125, \quad \text{and} \quad |\Omega| = -48,149.3072.
\]
For all $t \in \mathbb{I}_{\frac{9}{2}}$ and $u, v \in \mathbb{R}$, we have

$$
\left| F[t, u, \Psi_{p,q}^\gamma u, D_{p,q}^\nu u] - F[t, v, \Psi_{p,q}^\gamma v, D_{p,q}^\nu v] \right|
\leq \frac{1}{2000e^2} |u - v| + \frac{1}{2000e^{2\pi^2 + 2}} \left| \Psi_{p,q}^\gamma u - \Psi_{p,q}^\gamma v \right| + \frac{1}{2000e^4} \left| D_{p,q}^\nu u - D_{p,q}^\nu v \right|.
$$

Thus, (H_1) holds with $\ell_1 = 6.767 \times 10^{-5}$, $\ell_2 = 1.264 \times 10^{-7}$, and $\ell_3 = 9.158 \times 10^{-6}$. For all $u, v \in \mathcal{C}$,

$$
\left| \phi_1(u) - \phi_1(v) \right| \leq \frac{\pi}{1000} \| u - v \|_\mathcal{C},
$$

$$
\left| \phi_2(u) - \phi_2(v) \right| \leq \frac{e}{2000} \| u - v \|_\mathcal{C}.
$$

So, (H_2) holds with $\omega_1 = 0.003142$ and $\omega_2 = 0.001571$. Since

$$
\mathcal{L} = 0.0000677, \quad \mathcal{O}_1 = 1415.89969, \quad \mathcal{O}_2 = 2770.8547,
$$

$$
\Upsilon_T = 0.005291, \quad \Upsilon_\eta = 0.003183, \quad \text{and} \quad \Theta = 51,3459,
$$

(H_3) holds with

$$
\lambda \approx 0.00397 < 1.
$$

Hence, by Theorem 3.1 this problem has a unique solution. Moreover, by Theorem 4.1 this problem has at least one solution.

Acknowledgements
The authors would like to express their gratitude to the anonymous referee for very helpful suggestions and comments which led to improvements of our original manuscript.

Funding
This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no. KMUTNB-61-KNOW-026.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The authors declare that they carried out all the work in this manuscript and read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 April 2020 Accepted: 29 June 2020 Published online: 08 July 2020
References

1. Jackson, F.H.: On q-difference equations. Am. J. Math. 32, 305–314 (1910)
2. Jackson, F.H.: On q-difference integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)
3. Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34, 147–168 (1912)
4. Mason, T.E.: On properties of the solutions of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915)
5. Adams, C.R.: On the linear ordinary q-difference equation. Am. Math. Ser. II 30, 195–205 (1929)
6. Tijdeman, W.J.: Analytic theory of linear q-difference equations. Acta Math. 62(1), 167–226 (1933)
7. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
8. Ernst, T.: A new notation for q-calculus and a new q-Taylor formula. U.U.D.M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, Uppsala University, (1999)
9. Floreanini, R., Vinet, L.: q-gamma and q-beta functions in quantum algebra representation theory. J. Comput. Appl. Math. 67, 58–68 (1996)
10. Finkelstein, R.J.: Symmetry group of the hydrogen atom. J. Math. Phys. 5(3), 443–449 (1967)
11. Gavrilik, A.M.: q-Serre relations in U_q(u_a) and q-deformed meson mass rules. J. Phys. A, Math. Gen. 27(3), 91–94 (1994)
12. Finkelstein, R.J.: q-Gauge theory. Int. J. Mod. Phys. A 11(4), 733–746 (1996)
13. Kaniadakis, G., Léonard, P., Quarati, P.: Kinetic model for q-deformed bosons and fermions. Phys. Lett. A 227(3–4), 227–231 (1997)
14. Linnik, K.N., Sali, G.V., Stepchenko, A.S.: q-functional field theory for particles with exotic statistics. Phys. Lett. A 232(6), 399–408 (1997)
15. Finkelstein, R.J.: q-field theory. Lett. Math. Phys. 34(2), 169–176 (1995)
16. Chad, F., Finkelstein, R.J.: q-deformation of the Coulomb problem. J. Math. Phys. 35(7), 3273–3284 (1994)
17. Cadavid, A.C., Finkelstein, R.J.: The q-Coulomb problem in configuration space. J. Math. Phys. 37(8), 3675–3683 (1996)
18. Finkelstein, R.J.: The q-Coulomb problem. J. Math. Phys. 37(6), 2628–2636 (1996)
19. Feigenbaum, J., Freund, P.G.: A q-deformation of the Coulomb problem. J. Math. Phys. 37(4), 1602–1616 (1996)
20. Cheng, H.: Canonical Quantization of Yang–Mills Theories, Perspectives in Mathematical Physics. International Press, Somerville (1996)
21. Finkelstein, R.J.: q-gravity. Lett. Math. Phys. 38(1), 53–62 (1996)
22. Kama, M., Nakamura, A.: One-parameter family of selfdual solutions in classical Yang–Mills theory. Phys. Lett. B 463(2–4), 257–262 (1999)
23. Negadi, T., Kibler, M.: A q-deformed Aufbau Principle. J. Phys. A, Math. Gen. 25(4), 157–160 (1992)
24. Marinova, L.P., Raychev, P.P., Maruani, J.: Molecular backbending in AgH and its description in terms of q-algebras. Mol. Phys. 82(6), 1115–1129 (1994)
25. Monteiro, M.R., Rodrigues, L.M.C.S., Wulck, S.: Quantum algebraic nature of the photon spectrum in 4He. Phys. Rev. Lett. 76(7), 1098–1100 (1996)
26. Siegel, W.: Introduction to String Field Theory. Advanced Series in Mathematical Physics, vol. 8. World Scientific Publishing, Teaneck (1988)
27. Chakrabarti, R., Jagannathan, R.A.: A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24(24), 5083–5091 (1991)
28. Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic number, and associated generalized hypergeometric series. Differ. Eq. Appl. 2006, 27 (2006)
29. Sahai, V., Yadav, S.: Representations of two-parameter quantum algebras and (p, q)-special functions. J. Math. Anal. Appl. 335(1), 268–279 (2007)
30. Burban, I.: Two-parameter deformation of the oscillator algebra and (p, q)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 2(1–4), 384–391 (1995)
31. Sadjaj, P.: On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 73, 39 (2018)
32. Hounkonnou, M.N., Kyemba, J.D.: R(p, q)-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)
33. Mursaleen, M., Ansari, K.J., Khan, A.: On (p, q)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)
34. Araci, S., Duran, U.G., Acikel, G.M., Srivastava, H.M.: A certain (p, q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 301 (2016)
35. Duran, U.: Post Quantum Calculus, [Master Thesis]. University of Gaziantep, (2016)
36. Kamsrisuk, N., Promsakon, C., Ntaouas, S.K., Tariboon, J.: Nonlocal boundary value problems for (p, q)-difference equations. Differ. Equ. Appl. 10(2), 183–195 (2018)
37. Promsakon, C., Kamsrisuk, N., Ntaouas, S.K., Tariboon, J.: On the second-order quantum (p, q)-difference equations with separated boundary conditions. Adv. Math. Phys. 2018, Article ID 908965 (2018)
38. Milovanovic, G.V., Gupta, V., Malik, N.: (p, q)-Beta functions and applications in approximation. Bol. Soc. Mat. Mex. 24, 219–237 (2018)
39. Cheng, W.T., Zhang, WH, Cai, Q.B.: (p, q)-gamma operators which preserve x^2. J. Inequal. Appl. 2019, 108 (2019)
40. Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by (p, q)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 392–394 (2021)[Corrigendum: Appl. Math. Comput. 269, 744–746 (2015)]
41. Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by (p, q)-integers. Filomat 30(3), 639–648 (2016)
42. Mursaleen, M., Khan, F., Khan, A.: Approximation by (p, q)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016)
43. Rahman, S., Mursaleen, M., Alkhaldi, A.H.: Convergence of iterates of q-Bernstein and (p, q)-Bernstein operators and the Kesikly–Rivlin type theorem. Filomat 32(12), 4351–4364 (2018)
44. Jebreen, H.B., Mursaleen, M., Ahasan, M.: On the convergence of Lupas (p, q)-Bernstein operators via contraction principle. J. Inequal. Appl. 2019, 34 (2019)
45. Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Some Opial-type integral inequalities via (p, q)-calculus. J. Inequal. Appl. 2019, 5 (2019)
46. Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. \textbf{8}(2), 100–121 (2018)
47. Khan, K., Lobiyal, D.K.: Bézier curves based on Lupaş \((p,q)\)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. \textbf{317}, 458–477 (2017)
48. Agarwal, R.P.: Certain fractional \(q\)-integrals and \(q\)-derivatives. Proc. Camb. Philos. Soc. \textbf{66}, 365–370 (1969)
49. Al-Salam, W.A.: Some fractional \(q\)-integrals and \(q\)-derivatives. Proc. Edinb. Math. Soc. \textbf{15}, 135–140 (1966)
50. Diaz, J.B., Osler, T.J.: Differences of fractional order. Math. Comput. \textbf{28}, 185–202 (1974)
51. Brikshavana, T., Sitthiwirattham, T.: On fractional Hahn calculus. Adv. Differ. Equ. \textbf{2017}, 354 (2017)
52. Patanarapeelert, N., Sitthiwirattham, T.: On fractional symmetric Hahn calculus. Mathematics \textbf{7}, 873 (2019)
53. Soontharanon, J., Sitthiwirattham, T.: On fractional \((p,q)\)-calculus. Adv. Differ. Equ. \textbf{2020}, 35 (2020)
54. Promsakon, C., Kamrasiuk, N., Ntouyas, S.K., Tariboon, J.: On the second-order \((p,q)\)-difference equations with separated boundary conditions. Adv. Math. Phys. \textbf{2018}, 9089865 (2018)
55. Promsakon, C., Kamrasiuk, N., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for \((p,q)\)-difference equations. Differ. Equ. Appl. \textbf{10}, 183–195 (2018)
56. Nuntigrangjana, T., Putjoso, S., Ntouyas, S.K., Tariboon, J.: Impulsive quantum \((p,q)\)-difference equations. Adv. Differ. Equ. \textbf{2020}, 98 (2020)
57. Griffel, D.H.: Applied Functional Analysis. Ellis Horwood Publishers, Chichester (1981)
58. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988)