DIFFERENCE SETS AND SHIFTED PRIMES

JASON LUCIER

1. Introduction

For a set of integers A we denote by $A - A$ the set of all differences $a - a'$ with a and a' in A, and if A is a finite set we denote its cardinality by $|A|$. Sárközy [12] proved, by the Hardy-Littlewood method, that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not contain a perfect square, then

$$|A| \ll n(\log_2 n)^{2/3}(\log n)^{-1/3}. $$

This estimate was improved by Pintz, Steiger and Szemerédi [10] to

$$|A| \ll n(\log n)^{-1/12} \log \log \log \log n. $$

This improvement was obtained using the Hardy-Littlewood method together with a combinatorial result concerning sums of rationals. Balog, Pelikán, Pintz and Szemerédi [1], elucidating the method in [10], proved for any fixed integer $k \geq 2$, that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not contain a perfect k-th power, then

$$|A| \ll_k n(\log n)^{-(1/4)} \log \log \log \log n. $$

In the works cited above the following basic property is used; if s is a perfect k-th power then so is $q^k s$ for every positive integer q. This multiplicative property is used in the following fashion: Suppose that B is a set of integers and $A = \{c + q^k b : b \in B\}$ for some integers c and $q \geq 1$, if $A - A$ does not contain a perfect k-th power, then the same is true for $B - B$. This deduction is the basis of an iteration argument that plays a fundamental rôle in [1], [10], and [12].

Sárközy [13] also considered the set $S = \{p - 1 : p \text{ a prime}\}$ of shifted primes, and showed that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not contain an integer from S then

$$|A| \ll n(\log \log n)^3(\log \log \log \log n)/(\log \log n)^2. $$

The argument Sárközy used in [12] cannot be applied directly to the set S of shifted primes since it does not have a multiplicative property analogous to the one possessed by the set of perfect k-th powers.

Date: May 24, 2007.
Sárközy got around this difficulty by not only considering the set S of shifted primes, but also the sets defined for each positive integer d by

$$S_d = \left\{ \frac{p-1}{d} : p \text{ a prime, } p \equiv 1 \pmod{d} \right\}.$$

In [13] Sárközy uses an iteration argument based on the following observation. Suppose B is a set of integers and $A = \{c + qb : b \in B\}$ for some integers c and $q \geq 1$, if $A - A$ does not intersect S_d for some positive integer d, then $B - B$ does not intersect S_{dq}.

In this article we show that the combinatorial argument presented in [1] and [10] can be carried out to improve Sárközy’s result on the set S of shifted primes. We shall prove the following.

Theorem. Let n be a positive integer and A a subset of $\{1, \ldots, n\}$. If there does not exist a pair of integers $a, a' \in A$ such that $a - a' = p - 1$ for some prime p, then

$$|A| \ll n \left(\frac{(\log \log \log n)^3(\log \log \log \log n)}{\log \log n} \right)^{(\log \log \log \log n)}.$$

The set of perfect squares and the set S of shifted primes are examples of *intersective* sets. To define this class of sets we introduce some notation. Given a set of positive integers H we define $D(H, n)$, for any positive integer n, to be the maximal size of a subset A of $\{1, \ldots, n\}$ such that $A - A$ does not intersect H. A set of positive integers H is called *intersective* if $D(H, n) = o(n)$.

Kamae and Mendès France [6] supplied a general criterion for determining if a set of positive integers is intersective. From their criterion they deduced the following.

(I) For any fixed integer a the set $\{p + a : p \text{ a prime, } p > -a\}$ is intersective if and only if $a = \pm 1$.

(II) Let h be a nonconstant polynomial with integer coefficients and whose leading coefficient is positive. The set $\{h(m) : m \geq 1, h(m) \geq 1\}$ is intersective if and only if for each positive integer d the modular equation $h(x) \equiv 0 \pmod{d}$ has a solution.

Let h be a polynomial as in (II) with degree $k \geq 2$ and such that $h(x) \equiv 0 \pmod{d}$ has a solution for every positive integer d. The author [8] has shown that if A is a subset of $\{1, \ldots, n\}$ such that $A - A$ does not intersect $\{h(m) : m \geq 1, h(m) \geq 1\}$, then $|A| \ll n^{(\log_2 n)^{\mu/(k-1)}(\log n)^{-2}}$, where $\mu = 3$ if $k = 2$ and $\mu = 2$ if $k \geq 3$. It is possible to improve this result with the method presented in this paper.
2. Preliminary lemmata

In this paper we use the following notations. For a real number \(x \) we write \(e(x) \) for \(e^{2\pi i x} \), and \([x] \) is used to denote the greatest integer less than or equal to \(x \). The greatest common divisor of the integers \(u \) and \(v \) is given by \((u,v) \). Euler’s totient function is given, as usual, by \(\phi \). For any positive integer \(i \) we write \(\log_i \) to denote the \(i \)-th iterated logarithm, that is, \(\log_1 n = \log n \) and \(\log_i n = \log(\log_{i-1} n) \) for every integer \(i \geq 2 \).

A fundamental rôle is played by the following relations; for integers \(n \) and \(r \), with \(n \) positive,

\[
\sum_{t=0}^{n-1} e(rt/n) = \begin{cases} n & \text{if } n \mid r \\ 0 & \text{if } n \nmid r \end{cases}, \quad \int_0^1 e(r\alpha)d\alpha = \begin{cases} 1 & \text{if } r = 0 \\ 0 & \text{if } r \neq 0 \end{cases}.
\]

Given a subset \(A \) of \(\{1, \ldots, n\} \) its generating function is given by

\[
F(\alpha) = \sum_{a \in A} e(\alpha a), \quad \alpha \in \mathbb{R}.
\]

Using the relations above we find that

\[
\sum_{t=1}^n |F(t/n)|^2 = n|A|, \quad \int_0^1 |F(\alpha)|^2d\alpha = |A|.
\]

Of course, these are particular cases of Parseval’s identity.

Sárközy’s method in [12] and [13] is based on Roth’s work [11] on three-term arithmetic progressions in dense sets. Following this method Sárközy uses a functional inequality to derive his results concerning the set of perfect squares and the set \(S \) of shifted primes. Our approach here uses, like Gowers [3] and Green [4], a density increment argument. The next lemma tells us that if the generating function of a finite set \(A \) satisfies a certain size constraint, then it must be concentrated along an arithmetic progression. We use this result in Lemma 10 to obtain a density increment that we iterate in the final section of the paper to prove the theorem.

Lemma 1. Let \(n \) be a positive integer and \(A \) a subset of \(\{1, \ldots, n\} \) with size \(\delta n \). For any real \(\alpha \) let \(F(\alpha) \) denote the generating function of \(A \). Let \(q \) be a positive integer and \(U \) a positive real number such that \(2\pi qU \leq n \). Let \(E \) denote the subset of \([0,1]\) defined by

\[
E = \left\{ \alpha \in [0,1] : \left| \alpha - \frac{a}{q} \right| \leq \frac{U}{n} \text{ for some } 0 \leq a \leq q \right\}.
\]
If \(\theta \) is a positive number such that

\[
(1) \quad \sum_{t/n \in E} |F(t/n)|^2 \geq \theta |A|^2,
\]

then there exists an arithmetic progression \(P \) in \(\{1, \ldots, n\} \) with difference \(q \) such that

\[
|P| \geq \frac{n}{32\pi qU}\quad \text{and} \quad |A \cap P| \geq |P|\delta\left(1 + 8^{-1}\theta\right).
\]

Proof. This closely resembles Lemma 20 in [8] and can be proved in the same manner. \(\square \)

We now state a combinatorial result presented by Balog, Pelikán, Pintz and Szemerédi in [1], the proof of which uses only elementary techniques. It is this result, that we use in Lemma 9, that allows us to improve Sárközy result on the set \(S \) of shifted primes.

Lemma 2. Let \(K \) and \(L \) be positive integers, and let \(\tau \) be the maximal value of the divisor function up to \(KL \). Let \(K \) be a nonempty subset of rationals such that if \(a/k \in K \) is in lowest terms then \(1 \leq a \leq k \leq K \). Suppose that for each \(a/k \in K \) there corresponds a subset of rationals \(\mathcal{L}_{a/k} \) such that if \(b/l \in \mathcal{L}_{a/k} \) is in lowest terms then \(1 \leq b \leq l \leq L \). Suppose further that \(B \) and \(H \) are positive integers such that

\[
|\mathcal{L}_{a/k}| \geq H \quad \text{for all} \quad a/k \in K
\]

and

\[
\left| \left\{ b/l \in \bigcup \mathcal{L}_{a/k} \right\} \right| \leq B \quad \text{for all} \quad l \leq L.
\]

Then the size of the set

\[
\mathcal{Q} = \left\{ \frac{a}{k} + \frac{b}{l} : \frac{a}{k} \in K, \frac{b}{l} \in \mathcal{L}_{a/k} \right\}
\]

satisfies

\[
|\mathcal{Q}| \geq |K|H \left(\frac{H}{LB\tau^8(1 + \log K)} \right).
\]

Proof. This is Lemma CR in [1]. \(\square \)
3. Exponential sums over primes

Let d and n denote positive integers. As in [13], our application of the Hardy-Littlewood method employs exponential sums over numbers from the set S_d defined in the introduction. For any real number α we set

$$S_{n,d}(\alpha) = \sum_{\substack{s \in S_d \leq n}} \log(ds + 1)e(\alpha s).$$

In this section we present some estimates related to $S_{n,d}(\alpha)$. Throughout this section we assume d and n satisfy

$$d \leq \log n.$$

Lemma 3. For n sufficiently large,

$$S_{d,n}(0) \gg \frac{dn}{\phi(d)}.$$

Proof. By the definition of S_d we find that

$$S_{d,n}(0) = \sum_{\substack{p \leq dn + 1 \mod d \equiv 1 \mod d \leq n}} \log p.$$

Since $d \leq \log n$ the Siegel-Walfisz theorem says that this sum is asymptotic to $(dn + 1)/\phi(q)$, from which the result follows. □

The next two lemmas provide estimates of $S(\alpha)$ derived by A. Sárközy.

Lemma 4. Let a and b be integers such that $(a, b) = 1$ and $1 \leq b \leq \log n$. There exists a positive real number c such that if α is a real number that satisfies

$$|\alpha - \frac{a}{b}| \leq \frac{\exp(c(\log n)^{1/2})}{n},$$

and n is sufficiently large, then

$$|S_{d,n}(\alpha)| < \frac{dn}{\phi(d)\phi(b)},$$

furthermore, if $\alpha \neq a/b$ then

$$|S_{d,n}(\alpha)| < \frac{d}{\phi(d)\phi(b)} |\alpha - \frac{a}{b}|^{-1}.$$

Proof. This is a restatement of Lemma 5 from [13]. □
Let \(R \) denote a real number that satisfies
\[
3 \leq R \leq \log n.
\]
For integers \(a \) and \(b \) such that \((a, b) = 1\) and \(0 \leq a \leq b \leq R \) we set
\[
\mathcal{M}(b, a) = \left\{ \alpha \in [0, 1] : \left| \alpha - \frac{a}{b} \right| \leq \frac{R}{n \log \log R} \right\}.
\]
Let \(m \) denote the set of real numbers \(\alpha \) for which there do not exist integers \(a \) and \(b \) such that \((a, b) = 1\), \(1 \leq b < R \), and \(\alpha \in \mathcal{M}(b, a) \).

Lemma 5. For \(\alpha \in m \) and large \(n \),
\[
S_{d,n}(\alpha) \ll \frac{dn}{\phi(d)} \cdot \frac{\log \log R}{R}.
\]
Proof. This is a restatement of Lemma 9 from [13]. \(\square \)

Lemma 6. Let \(a \) and \(b \) be integers such that \(0 \leq a \leq b \leq R \) and \((a, b) = 1\). Then for \(n \) sufficiently large
\[
\sum_{t/n \in \mathcal{M}(b, a)} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d) \phi(b)} \log R.
\]
Proof. Suppose that \(t/n \in \mathcal{M}(b,a) \). Then
\[
\left| \frac{t}{n} - \frac{a}{b} \right| \leq \frac{R}{n \log \log R} \leq \frac{\log n}{n},
\]
and since \(b \leq R \leq \log n \) we can, for large enough \(n \), apply Lemma 4 with \(\alpha \) replaced by \(t/n \).

Let \(u \) and \(v \) be integers such that
\[
\frac{u}{n} < \frac{a}{b} < \frac{v}{n}, \quad v - u = 2.
\]
Applying Lemma 4 we obtain
\[
\sum_{t/n \in \mathcal{M}(b,a), u/n \leq t/n \leq v/n} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d) \phi(b)}.
\]
For \(t/n \in \mathcal{M}(b,a) \) with \(t/n < u/n \), Lemma 4 implies
\[
|S_{d,n}(t/n)| \ll \frac{d}{\phi(d) \phi(b)} \left| \frac{t}{n} - \frac{a}{b} \right|^{-1} \ll \frac{d}{\phi(d) \phi(b)} \left| \frac{t}{n} - \frac{u}{n} \right|^{-1}.
\]
Therefore
\[
\sum_{t/n \in \mathbb{N}(b,a) \atop t/n < u/n} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d)\phi(b)} \sum_{t/n \in \mathbb{N}(b,a) \atop t/n < u/n} \frac{1}{|t-u|}
\]
\[
\ll \frac{dn}{\phi(d)\phi(b)} \sum_{1 \leq m \leq R/\log \log R} \frac{1}{m} \ll \frac{dn}{\phi(d)\phi(b)} \log R.
\]

Similarly
\[
\sum_{t/n \in \mathbb{N}(b,a) \atop v/n < t/n} |S_{d,n}(t/n)| \ll \frac{dn}{\phi(d)\phi(b)} \log R.
\]

The result follows. □

A multiplicative arithmetic function \(f \) is called strongly multiplicative if \(f(p^k) = f(p) \) for every prime \(p \) and positive integer \(k \). The next lemma contains a standard deduction on the average order over arithmetic progressions for certain strongly multiplicative arithmetic functions.

Lemma 7. Let \(x \) be a real number such that \(x \geq 1 \), and let \(d \) and \(r \) be positive integers. If \(f \) is a strongly multiplicative arithmetic function such that \(f(m) \geq 1 \) for every positive integer \(m \) and \(f(p) = 1 + O(p^{-1}) \). Then
\[
\sum_{m \leq x \atop m \equiv r \mod d} f(m) \ll f((r,d)) \frac{x}{d}.
\]

Proof. Let \(g \) be the arithmetic function defined by
\[
g(m) = \sum_{k|m} \mu\left(\frac{m}{k}\right) f(k),
\]
where \(\mu \) is the Möbius function. Using the fact that \(f \) is strongly multiplicative we deduce that
\[
g(m) = \mu(m)^2 \prod_{p|m} (f(p) - 1).
\]

Since \(f(m) \geq 1 \) for every positive integer \(m \) it follows that \(g \) is a non-negative valued arithmetic function. By the Möbius inversion formula \(f(m) = \sum_{k|m} g(k) \), therefore
\[
\sum_{m \leq x \atop m \equiv r \mod d} f(m) = \sum_{m \leq x \atop m \equiv r \mod d} \sum_{k|m} g(k) = \sum_{k \leq x} g(k) \sum_{m \leq x \atop m \equiv r \mod d} 1.
\]
The last sum above is zero if \((k, d) \nmid r\) and at most \(x(d, k)/(dk)\) if \((k, d) \mid r\). This implies, since \(g\) is a non-negative valued function, that

\[
\sum_{m \leq x \atop m \equiv r \mod d} f(m) \leq \frac{x}{d} \sum_{k \leq x \atop (k, d) \mid r} \frac{g(k)(k, d)}{k} = \frac{x}{d} \sum_{s \mid (r, d)} \sum_{k \leq x \atop (k, d) = s} \frac{g(k)}{k} = \frac{x}{d} \sum_{s \mid (r, d)} \sum_{l \leq x/s \atop (l, d/s) = 1} \frac{g(sl)}{l}.
\]

For positive integers \(u\) and \(v\) it can be verified that \(g(uv) \leq g(u)g(v)\), thus

\[
\sum_{m \leq x \atop m \equiv r \mod d} f(m) \leq \frac{x}{d} \sum_{s \mid (r, d)} \sum_{l \leq x} \frac{g(s)g(l)}{l} \\
\leq f((r, d)) \frac{x}{d} \prod_{p \leq x} \left(1 + \frac{1}{p}\right) = f((r, d)) \frac{x}{d} \prod_{p \leq x} \left(1 + \frac{f(p) - 1}{p}\right).
\]

Since \(f(p) \geq 1\) and \(f(p) = 1 + O(p^{-1})\) the previous product is bounded from above by the absolutely convergent infinite product \(\prod_p (1 + p^{-1}(f(p) - 1))\). Therefore

\[
\sum_{m \leq x \atop m \equiv r \mod d} f(m) \ll f((r, d)) \frac{x}{d}.
\]

\[\square\]

The next lemma is analogous to Proposition 11 of Green [4].

Lemma 8.

\[
\sum_{t=0}^{n-1} |S_{d, n}(t/n)|^4 \ll \left(\frac{dn}{\phi(d)}\right)^4.
\]

Proof. By Gallagher’s inequality [9, Lemma 1.2] we have

\[
\sum_{t=0}^{n-1} |S_{d, n}(t/n)|^4 \leq n \int_0^1 |S_{d, n}(\alpha)|^4 d\alpha + 2 \int_0^1 |S_{d, n}(\alpha)^3 S'_{d, n}(\alpha)| d\alpha,
\]

where \(S'_{d, n}(\alpha)\) is the derivative of \(S_{d, n}(\alpha)\) with respect to \(\alpha\). By H"older’s inequality

\[
\int_0^1 |S_{d, n}(\alpha)^3 S'_{d, n}(\alpha)| d\alpha \leq \left(\int_0^1 |S_{d, n}(\alpha)|^4 d\alpha\right)^{3/4} \left(\int_0^1 |S'_{d, n}(\alpha)|^4 d\alpha\right)^{1/4}.
\]
Let \(r_d(m) \) denote the number of pairs \((p_1, p_2)\) where \(p_1 \) and \(p_2 \) are primes such that \(p_1, p_2 \equiv 1 \pmod d \) and
\[
\frac{p_1 - 1}{d} + \frac{p_2 - 1}{d} = m.
\]

By Parseval’s identity,
\[
\int_0^1 |S_{d,n}(\alpha)|^4 d\alpha \leq (\log n)^4 \sum_{m \leq n} r_d(m)^2
\]
and
\[
\int_0^1 |S'_{d,n}(\alpha)|^4 d\alpha \leq 2\pi (n \log n)^4 \sum_{m \leq n} r_d(m)^2.
\]

From the above we deduce that
\[
(5) \sum_{t=0}^{n-1} |S_{d,n}(t/n)|^4 \ll n(\log n)^4 \sum_{m \leq n} r_d(m)^2.
\]

For each positive integer \(m \) we have
\[
r_d(m) \leq |\{ p : 1 < p \leq dm+2, p \equiv 1 \pmod d, dm+2 - p \text{ is a prime} \}|.
\]

To bound \(r_d(m) \) we apply the combinatorial sieve to estimate the size of the set above. In particular, Corollary 2.4.1 of [5] implies
\[
r_d(m) \ll \prod_{p \mid (dm+2)} \left(1 - \frac{1}{p}\right)^{-1} \frac{dm + 1}{\phi(d) \log^2((dm+1)/d)}.
\]

Note that
\[
\prod_{p \mid (dm+2)} \left(1 - \frac{1}{p}\right)^{-1} \leq \frac{d}{\phi(d)} \left(\frac{dm + 2}{\phi(dm+2)}\right),
\]
therefore
\[
r_d(m) \ll \frac{d^2m}{\phi(d)^2(\log m)^2} \left(\frac{dm + 2}{\phi(dm+2)}\right).
\]

This implies
\[
\sum_{m \leq n} r_d(m)^2 \ll \frac{d^4n^2}{\phi(d)^4(\log n)^4} \sum_{u \equiv 2 \pmod d} \left(\frac{u}{\phi(u)}\right)^2.
\]

Let \(f(u) = (u/\phi(u))^2 \). It can verified that \(f \) is a strongly multiplicative arithmetic function such that \(f(u) \geq 1 \) for every positive integer \(u \) and
Thus, we can apply Lemma 7 to obtain
\[\sum_{u \leq dn + 2 \mod d} \left(\frac{u}{\phi(u)} \right)^2 \ll n. \]
Therefore
\[\sum_{m \leq n} r_d(m)^2 \ll \frac{d^2 n^3}{\phi(d)^2 (\log n)^4}, \]
and thus, on account of (3), the result follows. \(\square \)

4. A DENSITY INCREMENT

Throughout this section \(n \) denotes a positive integer and \(A \) a subset of \(\{1, \ldots, n\} \). For any real \(\alpha \) we set
\[
F(\alpha) = \sum_{a \in A} e(\alpha a), \quad F_1(\alpha) = \sum_{a \in A \atop a \leq n/2} e(\alpha a).
\]
We denote by \(C_1 \) a fixed positive constant. This constant will be used throughout the rest of the paper. We will need \(C_1 \) to be sufficiently large, but it should be noted that the size of \(C_1 \) will never be determined by \(n \) or \(A \). Let \(\delta \) denote the density of \(A \), that is, \(|A| = \delta n \). The following parameters are defined in terms of \(C_1 \) and \(\delta \).

(6) \[R(\delta) = (C_1 \delta^{-1})^{(\log \log C_1 \delta^{-1})^7/8}, \]
(7) \[\theta(\delta) = (C_1 \delta^{-1})^{-4(\log \log \log C_1 \delta^{-1})^{-1}}, \]
(8) \[Q_1 = (C_1 \delta^{-1})^{(\log \log \log C_1 \delta^{-1})^{1/8}}, \]
(9) \[\Lambda = \left[\frac{3}{4} \log \log \log C_1 \delta^{-1} \right]. \]

With \(R = R(\delta) \) we let \(\mathcal{M}(q, a) \) be defined as in (3), and for any positive integer \(q \leq R \) we set
\[
\mathcal{M}(q) = \bigcup_{a=0 \atop (a, q) = 1}^q \mathcal{M}(q, a).
\]

Lemma 9. Let \(d \) be a positive integer such that \(d \leq \log n \). Suppose that \(A - A \) does not intersect \(S_d \) and that
\[
C_1 \delta^{-1} \leq e^{(\log \log n)^{1/2}}.
\]
Provided \(C_1 \) and \(n \) are sufficiently large there exists a positive integer \(q \leq R(\delta) \) such that

\[
\sum_{t=1}^{n-1} \frac{|F(t/n)|^2}{t/n \in \mathcal{M}(\varphi)} \geq \theta(\delta)|A|^2.
\]

Proof. Here we adopt the method used in [1]. Given any positive integer \(\lambda \) we make the following definitions. For integers \(a \) and \(k \), with \(k \geq 1 \), we define

\[
\mathcal{M}_\lambda(k, a) = \left\{ \alpha \in [0, 1] : \left| \alpha - \frac{a}{k} \right| \leq \frac{\lambda R}{n \log \log R} \right\},
\]

and for real numbers \(K, U \geq 1 \) we define

\[
\mathcal{P}_\lambda(K, U) = \left\{ \frac{a}{k} : 1 \leq a \leq k \leq K, (a, k) = 1, \max_{t/n \in \mathcal{M}_\lambda(k, a)} |F_1(t/n)| \geq |A|/U \right\}.
\]

Furthermore, we set

\[
Q_\lambda = Q_{1, \lambda}^{-1} \quad \text{and} \quad \mu_\lambda = \max_{1 \leq K \leq Q_\lambda} \frac{1 \leq U \leq U_\lambda^{-1}}{|\mathcal{P}_\lambda(K, U)| U^2}.
\]

Let \(K_\lambda \) and \(U_\lambda \) denote a pair for which \(\mu_\lambda \) takes its maximum. As \(K = U = 1 \) is considered in the definition of \(\mu_\lambda \) we have

\[
1 \leq \mu_\lambda \leq \frac{K_\lambda^2}{U_\lambda^2}.
\]

It follows that

\[
1 \leq U_\lambda \leq K_\lambda \leq Q_\lambda.
\]

For each \(\lambda \leq \Lambda \) we want that the intervals \(\mathcal{M}_\lambda(k, a) \) with \(k \leq Q_\lambda \) to be pairwise disjoint. It can be verified that this will happen if

\[
\frac{2\lambda R}{n \log \log R} < \frac{1}{Q_\lambda^2} \quad \text{(for } \lambda \leq \Lambda).\]

To show this is true we estimate \(\lambda, R, \) and \(Q_\lambda \) for \(\lambda \leq \Lambda \). By (9) and (10) we deduce that

\[
\lambda \leq \frac{3}{4} \log \log \log n \quad \text{(for } \lambda \leq \Lambda).\]

By (5) we find that \(2^\lambda \leq (\log \log C_1 \delta^{-1})^{3/4} \), and thence by (8) and (12) we find that

\[
\log Q_\lambda \leq 2^\lambda \log Q_1 \leq (\log \log C_1 \delta^{-1})^{7/8} \log C_1 \delta^{-1}.
\]
By (6) this implies $\log Q_\lambda \leq \log R$, and so

$$Q_\lambda \leq R.$$

(16)

By (6) and (10) we find, for n large enough, that

$$3 \leq R \leq \log n.$$

(17)

From the above estimates for λ, R, and Q_λ we deduce that (15) holds for sufficiently large n. Therefore, when $\lambda \leq \Lambda$ we have

$$\mu_\lambda |A|^2 = |P_\lambda(K_\lambda, U_\lambda)| \frac{|A|^2}{U_\lambda^2} \leq \sum_{t=0}^{N-1} |F_1(t/n)|^2 \leq n|A|.$$

So

$$\delta \leq \mu_\lambda^{-1}.$$

(18)

Let us assume, to obtain a contradiction, that

$$\sum_{t/n \in \mathbb{M}(q)} |F(t/n)|^2 < \theta(\delta)|A|^2 \quad (for \ all \ 1 \leq q \leq R).$$

(19)

By using Lemma 2 and (19) we will show, provided C_1 and n are sufficiently large, that

$$\mu_{\lambda+1} \geq \theta(\delta)^{-1/2} \mu_\lambda \quad (for \ 1 \leq \lambda \leq \Lambda).$$

(20)

Assuming for now that (20) holds we show how a contradiction is obtained, thus proving that the assumption (19) is false. Since $\mu_1 \geq 1$, it follows from (20) that $\mu_{\lambda+1} \geq \theta(\delta)^{-(1/2)^\lambda}$, and thus by (18) we have

$$\delta \leq \theta(\delta)^{(1/2)^\lambda}.$$

We can take C_1 to be large enough so that (19) implies $\Lambda \geq (1/4) \log_3 C_1 \delta^{-1}$, then by (7) we find that

$$\delta \leq C_1^{-1} \delta < \delta,$$

a contradiction. Therefore (19) cannot hold for all $1 \leq q \leq R$.

We now proceed to show that (20) holds. To that end, let us fix λ with $1 \leq \lambda \leq \Lambda$. For now we also fix a rational a/k in $P_\lambda(U_\lambda, K_\lambda)$. We associate with a/k a fraction $u/n \in \mathbb{M}(k, a)$ such that $|F(u/n)| \geq |A|/U_\lambda$. Such a u/n exists by the way a/k was chosen.

Since $A - A$ contains no integers from S_d we find that

$$\sum_{t=0}^{n-1} F_1(u/n + t/n)F(-t/n)S_{d,n}(t/n) = 0.$$
By the triangle inequality, Lemma 3 and the way \(u/n \) was chosen we find that
\[
|A|^2 \frac{dn}{\phi(d)} \ll \sum_{t=1}^{n-1} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)|.
\]

Set
\[
Y = (C_1 \delta^{-1})^{3/2} Q_A^2
\]
and let \(\mathcal{N} \) denote the set of \(t/n \) such that \(|F(t/n)| \leq |A|/Y\). By two applications of the Cauchy-Schwartz inequality, Parseval’s identity, and Lemma 8 we find that
\[
\sum_{t/n \in \mathcal{N}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll \frac{dn^{3/2} |A|^{1/2}}{\phi(d)} \left(\sum_{t/n \in \mathcal{N}} |F(t/n)|^4 \right)^{1/4}.
\]

Now
\[
\left(\sum_{t/n \in \mathcal{N}} |F(t/n)|^4 \right)^{1/4} \leq \max_{t/n \in \mathcal{N}} |F(t/n)|^{1/2} \left(\sum_{t=0}^{n-1} |F(t/n)|^2 \right)^{1/4} \leq \frac{|A|^{1/2}}{Y^{1/2}} \cdot \left(n |A| \right)^{1/4} = \frac{n^{1/4} |A|^{3/4}}{Y^{1/2}}.
\]
Therefore
\[
\sum_{t/n \in \mathcal{N}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll \frac{dn^{7/4} |A|^{5/4}}{\phi(d) Y^{1/2}}.
\]

By (14) and (22) we find that
\[
Y^{-1/2} = C_1^{-3/4} \delta^{3/4} Q_A^{-1} \leq C_1^{-3/4} |A|^{3/4} n^{-3/4} U^{-1},
\]
thus
\[
\sum_{t/n \in \mathcal{N}} |F_1(u/n + t/n)| |F(t/n)| |S_{d,n}(t/n)| \ll C_1^{-3/4} |A|^2 \left(\frac{dn}{\phi(d)} \right).
\]
Let \(\mathcal{N}_1 \) denote the set of \(t/n \) such that \(|F_1(u/n + t/n)| \leq |A|/Y \). By the same reasoning used in the deduction of (23) we find that

\[
(24) \quad \sum_{t/n \in \mathcal{N}_1} |F_1(u/n + t/n)||F(t/n)||S_{d,n}(t/n)| \ll C_1^{-3/4}|A|^2 \left(\frac{dn}{\phi(d)} \right).
\]

For \(\lambda \leq \Lambda \) we have \(Q_{\lambda+1}/Q_\lambda < R \). Indeed, (9) and (12) imply

\[
Q_{\lambda+1} / Q_\lambda \leq (C_1 \delta^{-1})^{(\log \log C_1 \delta^{-1})^{3/4}} < R.
\]

Let \(m^* \) denote the union of the \(\mathfrak{M}(q) \) with \(Q_{\lambda+1}/Q_\lambda \leq q \leq R \). By the Cauchy-Schwartz inequality we find that

\[
(25) \quad \sum_{t/n \in m^*} |F_1(u/n + t/n)||F(t/n)||S_{d,n}(t/n)| \leq (n|A|) \sup_{t/n \in m^*_\lambda} |S_{d,n}(t/n)|.
\]

We are now going to show that

\[
(26) \quad \sup_{t/n \in m^*_\lambda} |S_{d,n}(t/n)| \ll C_1^{-1}U_\lambda^{-1} \delta \left(\frac{dn}{\phi(d)} \right).
\]

Suppose that \(t/n \in m^* \), then \(t/n \in \mathfrak{M}(q, a) \) for some integers \(a \) and \(q \) such that \(0 \leq a \leq q \), \((a, q) = 1 \), and \(Q_{\lambda+1}/Q_\lambda \leq q \leq R \). Since \(q \leq R \leq \log n \), we deduce from Lemma 4 that

\[
S_{d,n}(t/n) \ll \frac{dn}{\phi(d)\phi(q)}.
\]

Using the well-known estimate

\[
(27) \quad \phi(q) \gg \frac{q}{\log \log q},
\]

(see for example [7, Theorem 328]), we obtain

\[
(28) \quad S_{d,n}(t/n) \ll \left(\frac{dn}{\phi(d)} \right) \frac{\log \log q}{q}.
\]

The lower bound on \(q \) implies

\[
(29) \quad \frac{\log \log q}{q} \ll \frac{\log \log Q_{\lambda+1}/Q_\lambda}{Q_{\lambda+1}/Q_\lambda}.
\]

By (12) we have \(Q_{\lambda+1}/Q_\lambda = Q_\lambda Q_1 = Q_1^{2\lambda} \), thus

\[
\frac{\log \log Q_{\lambda+1}/Q_\lambda}{Q_{\lambda+1}/Q_\lambda} = \frac{\log \log Q_1^{2\lambda}}{Q_\lambda Q_1} = \frac{\lambda(\log 2) + \log \log Q_1}{Q_\lambda Q_1}.
\]
Using (8) and (9) we find that \(\lambda \ll \frac{\log \log Q}{Q} \). By this and (14) we obtain

\[
\frac{\log \log Q_{1+\lambda}/Q_\lambda}{Q_{1+\lambda}/Q_\lambda} \ll \frac{\log \log Q_1}{U_\lambda Q_1}.
\]

Using (8) we find, by taking \(C_1 \) large enough, that

\[
\log \left(\frac{\log \log Q_1}{Q_1} \right) \leq -\log C_1 \delta^{-1},
\]

and thus

\[
\frac{\log \log Q_1}{Q_1} \leq C_1^{-1}\delta.
\]

From (29) and the subsequent estimates we obtain

\[
(30) \log \log q \ll C_1^{-1}\delta.
\]

Since \(t/n \in \mathfrak{m}^* \) is arbitrary (28) and (30) imply that (26) is true. By (25) and (26) we have

\[
(31) \sum_{t/n \in \mathfrak{m}^*} |F_1(u/n + t/n)||F(t/n)||S_{d,n}(t/n)| \ll C_1^{-1}|A|^2 \frac{dn}{\phi(d)} \left(\frac{d}{\phi(d)} \right).
\]

The contribution to the sum in (21) coming from the terms with \(t/n \in \mathfrak{m} \) can similarly be bounded. By the Cauchy-Schwartz inequality and Lemma 5 we find that

\[
\sum_{t/n \in \mathfrak{m}} |F_1(u/n + t/n)||F(t/n)||S_{d,n}(t/n)| \leq (n|A|) \sup_{t/n \in \mathfrak{m}} |S(t/n)|
\]

\[
\ll (n|A|) \left(\frac{dn}{\phi(d)} \right) \log \log R \frac{R}{R}.
\]

Since \(R \geq Q_{\lambda+1}/Q_\lambda \) the argument used the previous paragraph implies

\[
(32) \sum_{t/n \in \mathfrak{m}} |F_1(u/n + t/n)||F(t/n)||S_{d,n}(t/n)| \ll C_1^{-1}|A|^2 \frac{dn}{\phi(d)} \left(\frac{d}{\phi(d)} \right).
\]

Let \(\mathfrak{N}(b, a) \) be the set of \(t/n \in \mathfrak{M}(b, a) \) with \(t/n \neq 0 \) such that

\[
|F(t/n)| \geq \frac{|A|}{Y}, \quad |F_1(u/n + t/n)| \geq \frac{|A|}{Y}.
\]

By (23), (24), (31), and (32) it follows for \(C_1 \) large enough that

\[
\frac{d|A|^2n}{\phi(d)U_\lambda} \ll
\sum_{b \leq Q_{\lambda+1}/Q_\lambda} \sum_{(a, b) = 1} \max_{t/n \in \mathfrak{N}(b, a)} |F(t/n)| \max_{t/n \in \mathfrak{N}(b, a)} |F_1(u/n + t/n)| \sum_{t/n \in \mathfrak{N}(b, a)} |S_{d,n}(t/n)|.
\]
Since $d \leq \log n$ we can apply Lemma 6 to the inner sum above to obtain
\[
\frac{|A|^2}{U_\lambda \log R} \ll \sum_{b \leq Q_{\lambda+1}/Q_\lambda} \frac{1}{\phi(b)} \sum_{(a,b)=1} \max_{t/n \in \mathfrak{M}(b,a)} |F(t/n)| \max_{t/n \in \mathfrak{M}(b,a)} |F_1(u/n + t/n)|.
\]

Let $L(L, V, W)$ denote the set of reduced fractions $b/l \in [0, 1]$ such that
\[
\frac{L}{2} \leq l \leq L,
\]
\[
\frac{|A|}{V} \leq \max_{t/n \in \mathfrak{M}(l,b)} |F(t/n)| \leq 2 \frac{|A|}{V},
\]
\[
\frac{|A|}{W} \leq \max_{t/n \in \mathfrak{M}(l,b)} |F_1(u/n + t/n)| \leq 2 \frac{|A|}{W}.
\]

For $b/l \in L(L, V, W)$, we have
\[
\frac{1}{\phi(l)} \max_{t/n \in \mathfrak{M}(l,b)} |F(t/n)| \max_{t/n \in \mathfrak{M}(l,b)} |F_1(u/n + t/n)| \ll \frac{(\log \log 3L)|A|^2}{LVW}
\]
by (27). Therefore
\[
\frac{|A|^2}{U_\lambda \log R} \ll \sum_L \sum_V \sum_W |L(L, V, W)| \frac{(\log \log 3L)|A|^2}{LVW}.
\]

where L runs through all the powers of 2 in the interval $[1, 2Q_{\lambda+1}/Q_{\lambda}]$, and V and W run through all the powers of 2 in the interval $[1, 2Y]$. There must exist a triple (L, V, W) of such indices such that
\[
|L(L, V, W)| \gg \frac{LVW}{U_\lambda (\log \log 3L)(\log R)}.
\]
We associate this triple with a/k.

The number of possible triples (L, V, W) is $\ll (Q_{\lambda+1}/Q_{\lambda})(\log Y)^2$, which by (16) and (22) is $\ll (\log R)^3$. Therefore there exists a subset $K \subset P_{\lambda}$, satisfying
\[
|K| \gg \frac{|P_\lambda(K, U_\lambda)|}{(\log R)^3},
\]
such that for each $a/k \in K$ we associate the same triple, say (L, V, W).

Let $a/k \in K$, then together with the associated fraction $u/n \in \mathfrak{M}(k,a)$, we associate a set $L_{a/k}$ of rationals b/l, $0 \leq b \leq l$, $(b, l) = 1$, $L/2 \leq l \leq L$, such that
\[
|L_{a/k}| \gg \frac{LVW}{U_\lambda (\log \log 3L)(\log R)},
\]
\(\frac{|A|}{V} \leq \max_{v/n \in \mathcal{M}(l,b)} |F(v/n)| \leq \frac{2|A|}{V}. \)

(36) \[\frac{|A|}{W} \leq \max_{w/n \in \mathcal{M}(l,b)} |F_1(u/n + w/n)| \leq \frac{2|A|}{W}. \]

Set

\[Q = \left\{ \frac{a}{k} + \frac{b}{l} : \frac{a}{k} \in \mathcal{K}, \frac{b}{l} \in \mathcal{L}_{a/k} \right\}. \]

Let us estimate the cardinality of \(Q \). Since \(L \leq Q_{\lambda+1}/Q_{\lambda} \leq R \), assumption (19) and (35) imply

\[\left| \left\{ b : \frac{b}{l} \in \bigcup \mathcal{L}_{a/k} \right\} \right| \leq \theta(\delta)|A|^2. \]

So that \(\left| \left\{ b : \frac{b}{l} \in \bigcup \mathcal{L}_{a/k} \right\} \right| \ll \theta(\delta)V^2. \)

Lemma 2 then implies

\[|Q| \gg |\mathcal{K}| \cdot \frac{L^2 V^2 W^2}{U_\lambda^2 (\log \log 3L)^2 (\log R)^2} \cdot \frac{\theta(\delta)^{-1}}{LV^2 \tau^8 (1 + \log K_{\lambda})}. \]

From (14) and (16) we obtain \(\log K_{\lambda} \leq \log R \), by this and (33) it follows that

\[|Q| \gg W^2 \left(\frac{\theta(\delta)^{-1}}{\tau^8 (\log R)^6} \right) \frac{|P_\lambda(K_{\lambda}, U_{\lambda})|}{U_\lambda^2}. \]

Note that \(Q \) is a subset of \((0, 2]\). Let \(Q_1 = Q \cap (0, 1] \) and \(Q_2 = Q \cap (1, 2]\). Let us assume without loss of generality that \(|Q_1| \geq (1/2)|Q| \). If this is not the case, then \(|Q_2| \geq (1/2)|Q| \), and we can replace \(Q_1 \) in the argument below by the rational numbers in \(Q_2 \) shifted to the left by 1. Since \(|Q_1| \geq (1/2)|Q| \) we see that (37) is still valid with \(Q \) replaced by \(Q_1 \).

Let \(r/s = a/k + b/l \) be in \(Q_1 \). For \(u/n \in \mathcal{M}_\lambda(k,a) \) and \(w/n \in \mathcal{M}(l,b) \) we have

\[\left| \frac{r}{s} - \left(\frac{u}{n} + \frac{w}{n} \right) \right| \leq \left| \frac{u}{n} - \frac{a}{k} \right| + \left| \frac{w}{n} - \frac{b}{l} \right| \leq \frac{(\lambda + 1)R}{n \log \log R}, \]

and therefore \(u/n + w/n \in \mathcal{M}_{\lambda+1}(s,r) \). Thus, by (36) we deduce that

\[\max_{t/n \in \mathcal{M}_{\lambda+1}(s,r)} |F_1(t/n)| \geq \frac{|A|}{W} \quad \text{(for } r/s \in Q_1). \]

We now estimate the size of the denominator of \(r/s \). Certainly \(s \leq kl \leq K_{\lambda}L \). By (14) we have \(K_{\lambda} \leq Q_{\lambda} \) and \(L \) was chosen to satisfy
\[L \leq Q_{\lambda+1}/Q_\lambda. \] Therefore \(s \leq Q_{\lambda+1} \) whenever \(r/s \in Q_1. \) By this and (38) we obtain
\[
Q_1 \subset \mathcal{P}_{\lambda+1}(Q_{\lambda+1}, W).
\]
By (37), with \(Q \) replaced by \(Q_1, \) and (39) we find that
\[
\frac{\left| \mathcal{P}_{\lambda+1}(Q_{\lambda+1}, W) \right|}{W^2} \gg \left(\frac{\theta(\delta)^{-1}}{\tau^{8}(\log R)^{6}} \right) \frac{\left| \mathcal{P}_{\lambda}(K_\lambda, U_\lambda) \right|}{U_\lambda^2}.
\]
This implies
\[
\mu_{\lambda+1} \gg \frac{\theta(\delta)^{-1}}{\tau^{8}(\log R)^{6}} \mu_\lambda.
\]
We now estimate \(\tau \) the maximum of the divisor function up to \(K_\lambda L \leq Q_{\lambda+1}. \) If \(d(m) \) is the number of divisors of \(m \) then
\[
\log d(m) \ll \frac{\log m}{\log \log m}.
\]
(see [7, Theorem 317]). Thus, by (12), we have
\[
\log \tau \ll \frac{\log Q_{\lambda+1}}{\log \log Q_{\lambda+1}} \ll \frac{2^\lambda \log Q_1}{\log \log Q_1},
\]
and since \(\lambda \leq \Lambda \) we deduce from (8) and (9) that
\[
\log \tau \ll \frac{\log C_1 \delta^{-1}}{(\log \log C_1 \delta^{-1})^{1/4}}.
\]
It follows from (7) that
\[
\log \tau = o(\log \theta(\delta)^{-1}) \quad \text{(for } C_1 \delta^{-1} \to \infty)\).
\]
We also find from (6) and (7) that
\[
\log \log R = o(\log \theta(\delta)^{-1}) \quad \text{(for } C_1 \delta^{-1} \to \infty)\).
\]
Since \(\theta(\delta)^{-1} \) tends to infinity as \(C_1 \delta^{-1} \) tends to infinity, we deduce from (40), (41), and (42) that for \(C_1 \) sufficiently large
\[
\mu_{\lambda+1} \geq \theta(\delta)^{-1/2} \mu_\lambda.
\]
Since \(\lambda \leq \Lambda \) was arbitrary (20) is true, and as shown earlier the lemma can be deduced from this.

We now derive a density increment argument that will be iterated in the next section to prove our theorem.
Lemma 10. Let d be a positive integer such that $d \leq \log n$. Suppose that $A - A$ does not intersect S_d and that δ, the density of A, satisfies (14). Provided C_1 and n are sufficiently large there exist positive integers d' and n', and a subset A' of $\{1, \ldots, n'\}$ of size $\delta n'$, such that $A' - A'$ does not intersect $S_{d'}$, and moreover;
$$
d \leq d' \leq R(\delta) d, \quad R(\delta)^{-2} n' \leq n, \quad \delta' \geq \delta (1 + 8^{-1} \theta(\delta)).$$

Proof. By the hypotheses Lemma 9 implies there exists a positive integer $q \leq R(\delta)$ such that (11) is true. With this q and $U = R(\delta)/\log \log R(\delta)$ let E be defined as in Lemma 1. Note that $M(q) \subset E$. The inequality (17) is still valid, thus $2\pi q U \leq 2\pi R(\delta)^2 \leq n$ for sufficiently large n. Therefore, we can apply Lemma 1 with $\theta = \theta(\delta)$ to deduce that there exists an arithmetic progression P with difference q such that

$$\text{(43)} \quad |P| \geq \frac{n \log \log R(\delta)}{32\pi q R(\delta)}$$

and

$$\text{(44)} \quad |A \cap P| \geq |P| \delta (1 + 8^{-1} \theta(\delta)).$$

Let $n' = |P|$. Then there exists an integer c and subset A' of $\{1, \ldots, n'\}$ such that $A \cap P = \{ c + qa' : a' \in A' \}$. Put $d' = dq$. Since $A - A$ does not intersect S_d, we deduce that A' does not intersect $S_{d'}$. Let the size of A' be $\delta' n'$. Then (14) implies

$$\delta' \geq \delta (1 + 8^{-1} \theta(\delta)).$$

To finish we need to estimate n' and d'. Since $q \leq R(\delta)$ we find by (13) and for C_1 large enough that $n' \geq R(\delta)^{-2} n$, and clearly, $n' \leq n$. Now, again by the fact that $q \leq R(\delta)$, we obtain $q \leq d' = dq \leq R(\delta) q$. This completes the proof. \hfill \Box

5. Proof of the Theorem

Let us assume, for a contradiction, that the theorem is false. Then for C_1 and n sufficiently large, there exists a subset A of $\{1, \ldots, n\}$ of size δn, such that $A - A$ does not intersect S and

$$\text{(45)} \quad \delta \geq C_1 \left(\frac{\log n}{(\log_3 n)^2 (\log_4 n)} \right)^{-\log_5 n}.$$

Set

$$\text{(46)} \quad Z = \left[64 \theta(\delta)^{-1} \log C_1 \delta^{-1} \right];$$

and put $d_0 = 1$, $n_0 = n$, $A_0 = A$, and $\delta_0 = \delta$. By using Lemma 10 repeatedly we can show that for each integer k, with $1 \leq k \leq Z$, there
are integers \(d_k \) and \(n_k \) and a subset \(A_k \) of \(\{1, \ldots, n_k\} \) of size \(\delta_k n_k \) such that \(A_k - A_k \) does not intersect \(S_{d_k} \). Moreover, \(d_k, n_k, \) and \(\delta_k \) satisfy
\[
d_{k-1} \leq d_k \leq R(\delta_{k-1})d_{k-1}, \quad R(\delta_{k-1})^{-2}n_{k-1} \leq n_k \leq n_{k-1},
\]
\[
\delta_k \geq \delta_{k-1}(1 + 8^{-1}\theta(\delta_{k-1})).
\]

Since \(d_0 = 1 \) and \(n_0 = n \), these estimates imply
\[
(47) \quad d_k \leq R(\delta)^k, \quad n_k \geq R(\delta)^{-2k}n, \quad \delta_k \geq \delta(1 + 8^{-1}\theta(\delta))^k.
\]

Let us show that we can actually perform this iteration \(Z \) many times. Let \(0 \leq l \leq Z - 1 \), and suppose that we have performed this iteration \(l \) many times. To show that Lemma 10 can be applied a \((l+1)\)-th time we need to show that \(n_l \) is sufficiently large, \(d_l \leq \log n_l \), and that (10) is satisfied with \(\delta \) replaced by \(\delta_l \).

We begin by estimating \(n_l \). By (47) we obtain
\[
(48) \quad \log n_l \geq \log n - 2l \log R(\delta).
\]

Since \(l < Z \), (6) and (46) imply
\[
l \log R(\delta) \leq 64 \theta(\delta)^{-1}(\log C_1 \delta^{-1})^2(\log_2 C_1 \delta^{-1})^{7/8}.
\]

By (45) we obtain
\[
(\log C_1 \delta^{-1})^2(\log_2 C_1 \delta^{-1})^{3/4} \leq 2(\log_3 n)^2(\log_4 n)^{7/8}(\log_5 n)^2
\]
for large enough \(n \). By (7) and (45) we find, for \(n \) and \(C_1 \) sufficiently large, that
\[
\log \theta(\delta)^{-1} = \frac{4 \log C_1 \delta^{-1}}{\log_3 C_1 \delta^{-1}} \leq \log \left(\frac{\log_3 n}{(\log_3 n)^2(\log_4 n)} \right).
\]

(Here we used that \((\log x)(\log_3 x)^{-1} \) is eventually increasing.) Therefore
\[
\theta(\delta)^{-1} \leq \frac{\log_2 n}{(\log_3 n)^2(\log_4 n)}.
\]

From the above we deduce, for \(n \) and \(C_1 \) large enough, that
\[
(49) \quad l \log R(\delta) \leq \log_2 n.
\]

Therefore, by (48),
\[
\log n_l \geq \log n - 2\log_2 n = \log \left(\frac{n}{(\log n)^2} \right),
\]
and so
\[
(50) \quad n_l \geq \frac{n}{(\log n)^2}
\]
for \(l < Z \). This shows that by taking \(n \) to be arbitrarily large, the same is true for \(n_l \).
We now show that \(d_l \leq \log n_l \). By (47) we have \(\log d_l \leq l \log R(\delta) \), and thus by (49) we obtain \(\log d_l \leq (1/2) \log n \). For large \(n \) this implies
\[
d_l \leq (\log n)^{1/2} \leq \log \frac{n}{(\log n)^2} \leq \log n_l
\]
by (50).

We leave it to the reader to verify that (45) and (50) imply, for \(n \) and \(C_1 \) sufficiently large, that (10) is satisfied with \(\delta \) and \(n \) replaced by \(\delta_l \) and \(n_l \) respectively. Finally, since \(A_l - A_l \) does not intersect \(S_{d_l} \), we can apply Lemma 10 to obtain the desired outcome.

Since (47) is true with \(k = Z \) we find that
\[
\log \delta_Z \geq Z \log \left(1 + 8^{-1} \theta(\delta)\right) - \log C_1 \delta^{-1}.
\]
Since \(8^{-1} \theta(\delta) < 1 \), this implies
\[
\log \delta_Z \geq 16^{-1} Z \theta(\delta) - \log C_1 \delta^{-1}.
\]
(Here we used \(\log(1 + x) \geq x/2 \) for \(0 \leq x \leq 1 \).) For \(C_1 \) large enough \(Z \geq 32 \theta(\delta)^{-1} \log C_1 \delta^{-1} \), thus
\[
\log \delta_Z \geq 2 \log C_1 \delta^{-1} - \log C_1 \delta^{-1} > 0.
\]
This implies \(\delta_Z > 1 \), a contradiction, since by definition \(\delta_Z \leq 1 \). This contradiction establishes the theorem.

Acknowledgements

The author was supported by a postdoctoral fellowship from the Centre de recherches mathématiques at Montréal.

References

[1] A. Balog, J. Pelikán, J. Pintz and E. Szemerédi, Difference sets without \(\kappa \)-powers, *Acta Math. Hungar.*, 65 (1994), 165-187.
[2] H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, *J. Analyse Math.*, 31 (1977), 204-256.
[3] W.T. Gowers, A new proof of Szemerédi’s theorem, *Geom. Funct. Anal.*, 11 (2001), 465-588.
[4] B. Green, On arithmetic structures in dense sets of integers, *Duke Math. J.*, 114 (2002), 215-238.
[5] H. Halberstam and H.-E. Richert, *Sieve Methods* (Academic Press, London, 1974).
[6] T. Kamae and M. Mendès France, Van der Corput’s difference theorem, *Israel J. Math.*, 31 (1978), 335-342.
[7] G.H. Hardy and E.M. Wright, *An introduction to the theory of numbers*, (Oxford University Press, Oxford, 1960)
[8] J. Lucier, Intersective sets given by a polynomial, *Acta Arith.*, 123 (2006), 57-95.
[9] H.L. Montgomery, *Topics in Multiplicative Number Theory*, Lecture Notes in Math., 127 (Springer-Verlag, Berlin, 1971).

[10] J. Pintz, W.L. Steiger and E. Szemerédi, On sets of natural numbers whose difference set contains no squares, *J. London Math. Soc.*, 37 (1988), 219-231.

[11] K. F. Roth, On certain sets of integers, *J. London Math. Soc.*, 28 (1953), 104-109.

[12] A. Sárközy, On difference sets of sequences on integers I, *Acta Math. Acad. Sci. Hungar.*, 31 (1978), 125-149.

[13] A. Sárközy, On difference sets of sequences on integers III, *Acta Math. Acad. Sci. Hungar.*, 31 (1978), 355-386.

Centre de recherches mathématiques
Université de Montréal
Case postale 6128, Succursale Centre-ville
Montréal, H3C 3J7
Canada