Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

Nina E. Fatouros1,*, Dani Lucas-Barbosa1, Berhane T. Weldegergis1, Foteini G. Pashalidou1, Joop J. A. van Loon1, Marcel Dicke1, Jeffrey A. Harvey2, Rieta Gols1, Martinus E. Huigens1,3

1 Laboratory of Entomology, Research Centre, Wageningen University, Wageningen, The Netherlands, 2 Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands, 3 Dutch Butterfly Conservation, Wageningen, The Netherlands

Abstract

Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In order to shed light on these issues, we investigated volatile responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). We used gas chromatography-mass spectrometry and olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). We used scanning electron microscopy to confirm that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

Introduction

A major challenge in ecology is to understand how phenotypic plasticity of plant traits affects the complexity and dynamics of plant-associated communities. Plants are at the base of food webs, which are defined as networks of feeding connections within an ecological community [1]. Insect herbivores are the most abundant and diverse attackers of plants and induce defensive traits that influence consumers at higher trophic levels [2,3]. Upon attack by insects, plants emit a blend of volatile organic compounds that affect interactions with organisms belonging to the arthropod community of the plant [4–8]. These herbivore-induced plant volatiles (HIPVs) can consist of hundreds of compounds, such as terpenoids, green leaf volatiles and benzenoids and have been shown to act as repellents and/or attractants for herbivores and their natural enemies [4,5,8]. HIPVs can provide specific information on the status of the plant to various community members both below- and above-ground, including carnivores, herbivores, pollinators, or neighbouring plants [4,9–12]. Thus, HIPV-mediated effects on different trophic levels imply an extensive effect of plants in structuring associated communities [4,10,13].

Although the majority of the about 300,000 described herbivorous insect species [3] deposit their eggs on plant tissues, plant responses elicited by egg deposition, i.e. in the initial phase of herbivore colonization, are still not widely accepted to play a significant role in plant-insect interactions [14]. Yet, an increasing number of studies demonstrates that insect egg deposition can modify (a) the plant’s internal chemistry, with direct consequences for eggs or subsequently feeding herbivores [15–19] or (b) the plant’s surface chemistry directly affecting egg survival or indirectly by arresting egg parasitoids, tiny parasitic wasps that kill insect eggs [20–28]. Moreover, egg deposition by herbivorous insects has been shown to change plant volatile emission, i.e. oviposition-induced plant volatiles (OIPVs), utilized by parasitoids during host location [29–37]. The emission of OIPVs was initially found to require cell damage inflicted by the attacking insects either by wounding caused by the ovipositing female or adult feeding [5,14,36]. However, recent studies have indicated that mere egg deposition itself, without wounding, can also enhance or reduce volatile emission with consequences for insect preferences [36,37,39].

In the Brassicaceae plant family, egg deposition has been demonstrated to induce resistance responses at the transcriptional level that affect herbivores and parasitoid wasps that attack eggs [27,40–42]. Deposition of eggs by cabbage white butterflies (Pieris spp.) on black mustard plants, Brassica nigra, triggers the formation of a necrotic zone at the base of the eggs resembling a hypersensitive response (HR) or programmed cell death, that can lead to egg desiccation and mortality [43]. Moreover, it
Egg-Induced Plant Volatiles Affect Community

Probes of gene expression changes similar to pathogen-induced HR in Arabidopsis [42]. Egg parasitoids of the genus *Trichogramma* are arrested on the leaf surface of Brussels sprouts plants (*B. oleracea var. gemmifera*) when induced by *Paris brassicae* or *P. rapae* eggs [27,40,44]. Here, a butterfly anti-sex pheromone released with the egg-associated secretion was shown to quantitatively change plant surface chemistry [27,28], most likely epicuticular wax composition, as has been reported for other Brassicaceae [43,46].

We study oviposition-induced responses in *B. nigra*, an annual wild crucifer native to Europe. This plant species contains high concentrations of glucosinolates as defensive compounds that reduce herbivore growth and survival [47]. Generalist insects like the cabbage moth *Mamestra brassicae* suffer from the toxic breakdown products of glucosinolates, whereas specialists like the larval stages of the Large Cabbage White butterfly *P. brassicae* are adapted to them [48]. Both herbivores lay eggs in clutches on cultivated and wild brassicaceous plant species, such as *B. nigra*, with *M. brassicae* moths having a much larger host plant range than *P. brassicae* butterflies [49,50]. The generalist wasp *Trichogramma brassicae* is known to parasitize eggs of a wide range of lepidopteran species, including *P. brassicae* and *M. brassicae* [51]. *Cotesia glomerata* is a fairly specialized gregarious endoparasitoid that attacks young instars of *Paris* spp. in Eurasia.

The aim of this study was to investigate a) the effects of egg deposition on plant volatile-mediated interactions with insects at different trophic levels (figure 1) and b) the specificity of the plants’ response to egg deposition by using two different herbivores. We tested the response of the specialist butterfly *P. brassicae* and two parasitoids to volatiles of *B. nigra* plants induced by egg deposition by the specialist butterfly and a generalist moth *M. brassicae*. The behavioural differences were linked to modifications in the composition of volatile blends using gas chromatography coupled with mass spectrometry (GC-MS); cryo-scanning electron microscopy was used to study the bonding region between eggs of the two herbivores and the plant surface.

Results

Formation of Necrotic Tissue and Effects on Eggs and Egg Parasitoid

At 24 hours after oviposition (hao) by *P. brassicae*, plants start to express a necrotic zone below the egg clutches (i.e. hypersensitive response, HR+) that sometimes led to egg desiccation or egg drop-off at 72 hao (Figure 1B). All *P. brassicae* egg-infested plants were, therefore, examined for HR and separated from non-HR expressing plants (HR−). On the 10 plants on which eggs were counted, 91% of the eggs did not develop into larvae on HR+ plants, whereas 99% of the eggs hatched on HR− plants (P<0.001, 2×2 contingency test using Chi²). From these 10 plants, 50% developed HR. In contrast to eggs of *P. brassicae*, eggs of the moth *M. brassicae* did not induce any HR response in *B. nigra*; no necrosis was observed after egg deposition (Figure 1C).

Trichogramma brassicae wasps can successfully parasitize and complete their development inside eggs on plants that have expressed HR. The proportion of eggs that was parasitized by *T. brassicae* was not affected by plant phenotype, i.e. occurrence of HR (GLM; χ² 1 = 0.47, P = 0.49), but was marginally affected by the age of the eggs, i.e. 24 h or 72 h old (GLM; χ² 1 = 3.91, P = 0.053). Older eggs tended to be less parasitized than younger ones. The interaction between plant phenotype and egg age was not significant (GLM; χ² 1 = 0.34, P = 0.56). Similarly, there was no effect of plant phenotype on the number of waps offspring that emerged from parasitized host eggs (GLM; χ² 1 = 0.01, P = 0.91), but there was an effect of egg age (GLM; χ² 1 = 6.70, P = 0.01).

Less offspring emerged from 72 h old eggs than from 24 h old eggs. The effect of egg age was not influenced by the plant’s phenotype (GLM; χ² 1 = 1.15, P = 0.28).

Attraction of Egg Parasitoids

In a dynamic Y-tube olfactometer set-up, the distribution of naive *T. brassicae* wasps did not differ from 50:50 in a control test with an uninfested plant in both odour containers (t-test: t 11 = 0.27, P = 0.79). The wasps did not discriminate between clean air and volatiles from uninfested *B. nigra* plants (t-test: t 11 = -0.10, P = 0.92) or clean air and volatiles from plants infested with *P. brassicae* eggs less than 6 hao (t-test: t 9 = -0.23, P = 0.82). However, wasps were attracted to volatiles from *B. nigra* plants infested with *P. brassicae* eggs 24 hao when tested against clean air, irrespective of HR (t-test: HR−: t 9 = 5.1, P = 0.001; HR+: t 9 = 4.2, P = 0.002).

The distribution of naive *T. brassicae* wasps choosing egg-induced or non-induced clean plants was marginally affected by the interaction between plant phenotype and egg age (GLM; χ² 1 = 4.14, P = 0.059, none of the main effects was significant).

Wasps significantly preferred volatiles from plants (HR−) infested with *P. brassicae* eggs (24 hao) when tested against clean control plants (Figure 2; t-test: t 9 = 2.54, P = 0.03). However, they did not discriminate systemically (S) induced volatiles from HR− plants from which leaves with 24 h old eggs had been removed before testing, when tested against uninfested plants (t-test: t 9 = -0.45, P = 0.68). Wasps did not respond to volatiles from HR+ plants 24 hao (Figure 2; t-test: t 9 = 0.81, P = 0.44) or HR− plants 72 hao neither locally (Figure 2; t-test: t 9 = 0.90, P = 0.38) nor systemically (t-test: t 9 = -1.00, P = 0.37) induced. Yet, volatiles from HR+ plants 72 hao significantly attracted wasps locally (Figure 2; t-test: t 9 = 2.47, P = 0.03) and systemically induced (t-test: t 9 = 2.78, P = 0.04).

T. brassicae discriminated between volatiles of *M. brassicae* egg-infested *B. nigra* plants 24–36 hao and clean air (T-test: t 9 = 6.61, P<0.001). However, when the same plants were tested against volatiles of uninfested plants, the wasps did not display a preference (Figure 2; t-test: t 9 = 0.91, P = 0.38). At 48–60 hao, the wasps did not discriminate between volatiles emitted by plants infested with moth eggs and clean air (T-test: t 9 = 1.81, P = 0.10).

Attraction of Larval Parasitoids

In a wind tunnel, the distribution of naive *C. glomerata* female wasps choosing volatiles of egg-induced or non-induced clean plants was only affected by the age of the eggs (GLM; χ² 1 = 8.19, P = 0.008) and not by the occurrence of HR (Figure 2; GLM; χ² 1 = 1.99, P = 0.17). At 24 hao, *C. glomerata* wasps discriminated between OIPvS and volatiles emitted by non-induced control plants, regardless of the occurrence of HR (Figure 2; t-test: HR−: t 14 = 1.66, P = 0.004; HR+: t 14 = 4.27, P = 0.005), whereas at 96 hao, the preference for OIPvS was less pronounced and was only significant in plants that had developed HR+ (Figure 2; t-test: HR−: t 14 = 0.72, P = 0.51; HR+: t 14 = 2.93, P = 0.019). However, the interaction between plant phenotype and egg age was statistically not significant (GLM; χ² 1 < 0.01, P = 0.95).

Cotesia glomerata did not discriminate between volatiles from plants infested with eggs of the non-host *M. brassicae* and uninfested plants 24–36 hao in a wind tunnel set-up (Figure 2; t-test: t 9 = 0.22, P = 0.83). This wasp was not arrested by, and did not show any interest in, *M. brassicae* eggs.

Avoidance Behaviour of Gravid Butterflies

In a flight chamber set-up, the distribution of gravid *P. brassicae* butterflies first landing on egg-induced or non-induced clean
plants was not affected by the age of the eggs (GLM; \(\chi^2_1 = 0.08, P = 0.77 \)), the occurrence of HR (GLM; \(\chi^2_1 = 0.81, P = 0.37 \)) nor by the interaction of egg age and plant phenotype (Figure; GLM; \(\chi^2_1 = 0.01, P = 0.90 \)). Gravid female butterflies tended to first land on plants without eggs, regardless of the age and phenotype of the plants (Figure 2). However, \textit{P. brassicae} butterflies did not discriminate between moth egg-infested plants and control plants 24–36 hao (Figure 2; \(t_{5} = 1.26, P = 0.27 \)).

Specificity of OIPV Emission

The headspace of uninfested \textit{B. nigra} plants was compared with the headspace of \textit{P. brassicae} egg-infested (24 and 72 hao, HR– and HR+) and \textit{M. brassicae} moth egg-infested (24–36 hao, HR–) plants (Table 1). In total, 50 plant-related compounds were detected (present in more than 50% of the replicates of at least the control treatment). A Projection to Latent Structures Discriminant Analysis (PLS-DA) including volatiles of the five different egg treatments of \textit{B. nigra} resulted in a model with two significant principal components (Figure 3A; 2 PLS-DA principal components, \(R^2_X\text{cum} = 0.485, R^2_Y\text{cum} = 0.196, Q^2\text{cum} = 0.159 \)) and separated the five treatments to a large extent. Figure 3B shows the contribution of the emitted compounds to the two principal components. Oviposition by \textit{P. brassicae} significantly suppressed the emission of the majority of compounds in HR– plants at 24 h (Table 1; 34 compounds suppressed, \(P<0.03 \), sign test) and 72 h (Table 1; 44 compounds suppressed, \(P=0.001 \), sign test) compared to uninfested plants. Interestingly, HR+ plants carrying eggs of \textit{P. brassicae} showed an enhanced emission 24 hao compared to uninfested plants (Table 1; 33 compounds enhanced, \(P=0.05 \), sign test), whereas at 72 hao the number of compounds showing enhanced emission by HR+ plants was lower (Table 1; 20 compounds enhanced, \(P=0.20 \), sign test) and not different to uninfested plants. In HR– plants, the emission rate of 22 compounds was significantly reduced at 72 hao (Table 1).

Differences of the sesquiterpene silphiperfolene (7-\(\alpha \)-H-silphiperfol-5-ene, presilphiperfol-7-ene, 7-\(\beta \)-H-silphiperfol-5-ene and silphiperfol-6-ene) were identified for the first time in a \textit{Brassica} species. The total emission of the four silphiperfolenes increased significantly 24 h after \textit{P. brassicae} oviposition (HR–: \(P=0.05 \), HR+: \(P=0.02 \), Mann-Whitney U-test) as well as the emission of the monoterpene (E)-\(\beta \)-ocimene (HR–: \(P=0.01 \), HR+: \(P=0.03 \), figure 3, table 1). At 72 h after \textit{P. brassicae} oviposition, there was a significant increase in emission of the monoterpene isomenthone.

Figure 1. Studied insect community of \textit{B. nigra}. (A) Tritrophic system consisting of the Brassicaceae-specialist \textit{Pieris brassicae} and the generalist moth \textit{Mamestra brassicae} lay eggs in clusters on \textit{B. nigra}. The egg parasitoid \textit{Trichogramma brassicae} attacks eggs of both. The larval parasitoid \textit{Cotesia glomerata} attacks young caterpillar stages of \textit{P. brassicae}. (B) \textit{P. brassicae} clutch on \textit{B. nigra} expressing a strong necrotic zone, i.e. hypersensitive response (HR) (Photo credits: D. Lucas-Barbosa), (C) \textit{M. brassicae} egg clutch on \textit{B. nigra} without necrosis (Photo credits: N. E. Fatouros, www.bugsinthepicture.com), (D) \textit{C. glomerata} wasp on \textit{P. brassicae} eggs parasitizing a neonate that just hatched (Photo credits: N. E. Fatouros, www.bugsinthepicture.com).

doi:10.1371/journal.pone.0043607.g001
(P = 0.01) and the sesquiterpene α-funebrene (P = 0.02) in HR+ plants (Figure 3, table 1).

Oviposition by *M. brassicae* moths significantly suppressed the emission of the majority of compounds compared to uninfested plants (Table 1; 43 compounds suppressed, P < 0.001, sign test). The emission of terpenes did not change after *M. brassicae* moth oviposition; however, there was a significant reduction in the emission of three compounds, i.e. 1,2-dimethylisulfide (P = 0.02), and 2-phenylethyl isothiocyanate and pyrazine (Table 1; both: P = 0.05).

Specificity of Changes in Plant Surface Structure

P. brassicae butterflies and *M. brassicae* moths carefully deposit their eggs on *B. nigra* plants without any visible damage to the surface in the vicinity of the eggs (Figure 4A–B). Egg cement is produced by the accessory reproductive gland and attaches the eggs of *P. brassicae* and *M. brassicae* to the substrate (Figure 4C–D). After freezing, we observed that moth eggs detached more easily from the plant surface than eggs of *P. brassicae*. Egg secretion of *P. brassicae* partly peeled off after egg removal, covering the surface of HR+. *B. nigra* with a thick layer. Epidermal cell morphology and stomata are not visible under the egg cement of *P. brassicae*.

Figure 2. Proportions (±SD) of female insects choosing oviposition-induced plant volatiles (OIPVs) of *B. nigra* plants. Plants were infested with eggs of *P. brassicae* or *M. brassicae*. Columns represent arcsine of the proportion of choice for OIPVs by gravid *P. brassicae* females tested in a flight chamber (dark grey), *T. brassicae* egg parasitoids tested in a Y-tube olfactometer (light grey), and *C. glomerata* larval parasitoids tested in a windtunnel (white). All experiments were conducted in a two-choice situation between plants infested with eggs of different ages (24 h, 72 h, 96 h), and clean plants. The dashed line indicates arcsine (0.5) = no preference. Numbers below the columns represent the percentage of female insects making a choice. *P* < 0.05, one-sample t-test. Each treatment combination was replicated with at least four plant pairs. Different phenotypes: Hypersensitive response (HR), HR−: no necrotic zone observed, HR+: necrotic zone.

doi:10.1371/journal.pone.0043607.g002
Table 1. Volatile emission\(^a\) by *Brassica nigra* HR+ (+) or HR− (−) plants in response to eggs of *Pieris brassicae* (PB) and *Mamestra brassicae* (MB) sampled at 24 or 72 h after oviposition.

ID	Compound	Aliphatic	Aromatic	Terpenoids
		(N = 25)	(N = 5)	(N = 25)
		(N = 5)	(N = 5)	(N = 5)
		(N = 5)	(N = 5)	(N = 5)
		(N = 5)	(N = 5)	(N = 5)
1	2-Methylpropanal	11.56 ± 2.2	7.97 ± 1.5	17.93 ± 4.8
		3.57 ± 0.8*	6.63 ± 1.0	4.47 ± 1.3
2	2-Methyl-2-propenal	23.78 ± 4.6	12.19 ± 0.5*	34.63 ± 9.7
		5.36 ± 1.3	8.06 ± 1.2	9.26 ± 1.5
3	Ethyl acetate	134.44 ± 25.9	2.92 ± 0.9	21.81 ± 8.0
		3.69 ± 1.2	4.29 ± 1.5	12.75 ± 10.4
4	2-Methyl-1-propanol	4.41 ± 0.8	3.82 ± 1.2	6.49 ± 2.8
		1.42 ± 0.4	4.18 ± 1.5	1.48 ± 0.4
6	2-Butenal	10.70 ± 2.1	7.28 ± 1.1	17.93 ± 5.9
		3.25 ± 0.6*	4.23 ± 0.6	3.85 ± 0.4
7	3-Methylbutanal	12.33 ± 2.4	8.16 ± 1.8	17.44 ± 3.1
		5.63 ± 1.8	6.64 ± 1.4	4.45 ± 0.6
8	2-Methylbutanal	8.37 ± 1.6	5.46 ± 2.1	11.08 ± 2.9
		4.85 ± 2.4	4.50 ± 1.1	2.89 ± 0.3
9	1-Methoxy-2-propanol	134.94 ± 26.0	192.25 ± 81.7	244.20 ± 78.9
		41.31 ± 10.6	87.75 ± 53.5	63.17 ± 14.1
10	1-Penten-3-ol	189.90 ± 36.5	64.13 ± 9.9	396.15 ± 115.0
		34.91 ± 15.8*	253.93 ± 134.9	187.68 ± 61.9
11	2-Pentanone	43.81 ± 8.4	47.31 ± 19.5	39.54 ± 11.6
		8.06 ± 2.0*	15.20 ± 2.9	18.20 ± 5.5
12	3-Pentanone	53.60 ± 10.3	36.34 ± 22.2	68.65 ± 29.7
		8.25 ± 2.0*	78.72 ± 43.8	37.48 ± 12.4
15	4-Methyl-2-pentanone	7.08 ± 1.4	3.92 ± 1.3	6.57 ± 1.9
		1.34 ± 0.3	2.23 ± 0.3	2.41 ± 1.1
17	(E)-2-Pentenal	2.33 ± 0.5	1.10 ± 0.3	3.15 ± 1.4
		0.31 ± 0.2*	1.28 ± 0.5	1.67 ± 0.7
18	2,4-Pentanedione	55.07 ± 10.6	112.50 ± 89.9	45.09 ± 14.0
		2.45 ± 1.2	16.10 ± 17.7	11.76 ± 3.6
19	4-Methyl-3-penten-2-one	68.92 ± 13.3	64.25 ± 35.2	37.59 ± 7.7
		8.67 ± 2.5*	23.77 ± 11.2	15.84 ± 5.8
20	(Z)-3-Hexen-1-ol	215.11 ± 41.4	44.56 ± 12.6	179.94 ± 74.5
		18.05 ± 6.4*	43.50 ± 18.3	174.64 ± 109.8
23	6-Methyl-2-heptanone	29.31 ± 5.6	17.21 ± 2.5	34.10 ± 4.7
		6.63 ± 0.7*	15.83 ± 2.8	16.36 ± 2.8
24	(Z)-3-Hexen-1-yl acetate	573.69 ± 110.4	105.04 ± 18.8	422.09 ± 111.9
		45.69 ± 12.3*	171.72 ± 65.4	478.74 ± 173.1
28	Methyl 2-ethylhexanoate	2.81 ± 0.5	1.47 ± 0.7	3.69 ± 1.1
		1.29 ± 0.5*	1.98 ± 0.7	0.87 ± 0.5
38	Undecan-2-one	13.61 ± 2.6	11.20 ± 1.0	20.18 ± 4.3
		3.94 ± 0.6*	8.54 ± 1.6	7.93 ± 0.8

\(^a\)\(\text{Uninfested} = (N = 25)\), \(\text{24PB−} = (N = 5)\), \(\text{24PB+} = (N = 5)\), \(\text{72PB−} = (N = 5)\), \(\text{72PB+} = (N = 5)\), \(\text{24MB−} = (N = 5)\).
Discussion

Our study revealed that plant volatiles induced in the early phase of colonization by insect herbivores, before actual feeding starts, mediate interactions between a range of insect community members at different trophic levels: egg and larval parasitoids are attracted and the specialist herbivore prefers plants that are free of eggs. Moreover, we show that the plant and associated insects respond differently to egg deposition by two herbivores, the specialist butterfly *P.* brassicae and the generalist moth *M.* brassicae. Oviposition by the abundant specialist pine sawflies *Neodiprion sertifer* and the generalist specialist butterfly *Diprion pini* led to detachment of surface layers of dead cells together with the egg secretion. Interestingly, stomata are open adjacent to cells at the boundary of the necrotic zone, supposedly in the programmed cell death phase.

Furthermore, we here show that parasitism of *P.* brassicae eggs by *T.* brassicae wasps on HR+ and HR− plants was equally successful, which means that there is no conflict between the induced hypersensitive response and the performance and attraction of the egg parasitoid. While eggs of *P.* brassicae induce HR in about 50% of the observed *B.* niger plants, eggs of *M.* brassicae moths did not induce the formation of necrotic tissue. Eggs of cabbage white butterflies, moths and beetles have been shown to induce the formation of necrotic tissue leading to increased egg mortality on different plant species, including the wild crucifer *Sinapis arvensis* (F. G. Pashalidou, personal observations). Egg deposition by *Spodoptera frugiperda* on HR+ and HR− plants quickly after emergence (J.A. Harvey and F.G. Pashalidou, personal observations). Egg deposition by *Spodoptera frugiperda* suppressed HIPV emission in maize while eggs were in close contact with the plant cuticle, accompanied with accessory gland secretion. A possible explanation for the HIPV suppression was that the *S.* frugiperda egg masses are dense and cover parts of the photosynthetic tissue, thus
inhibiting the volatile emission [58]. Indeed, oviposition was shown to reduce photosynthesis, which several workers have suggested is caused by the coverage of photosynthetic tissue and/or physiological mechanisms, i.e. reduced CO₂ diffusion in the mesophyll or water deficiency [59,60]. Unlike with M. brassicae eggs, stomata were closed underneath the eggs of P. brassicae and gas/water exchange probably inhibited in B. nigra (Figure 4C–D). However, although eggs of M. brassicae are covering a slightly larger part of the leaf surface than P. brassicae eggs (Figure 1B–C), it is unlikely that this would lead to significant differences in the volatile emission demonstrated here. The observed attraction to volatiles from M. brassicae egg-infested plants by T. brassicae at 24 hao when tested against clean air is probably caused by the moths’ sex pheromone adsorbed to the plant surface, previously shown to attract Trichogramma wasps 24 h after release [61].

Chemical analysis of volatile blends revealed reduced emissions for the majority of chemical compounds in the plant treatments with eggs. Usually, insect herbivory leads to an increase in the emission of plant volatiles that attract carnivorous natural enemies [9,62]. A reduced emission induced by egg deposition has recently been demonstrated in other plant species as well [39,58]. Only HR+ plants 24 h after P. brassicae oviposition showed an increased emission, probably due to the initiation of necrosis. A significant induction of some terpenoids might contribute to the specificity of P. brassicae egg-induced volatile blends that are attractive or repellent to the tested insects. For example, the emission of (E)-β-ocimene was enhanced in B. nigra 24 h after P. brassicae oviposition.
Figure 4. Cryo-SEM micrographs of *B. nigra* leaf surfaces and adhering herbivore eggs and egg–leaf contact regions. (A–E) abaxial site of *B. nigra* leaves. (A) Eggs of *P. brassicae* 72 hao with surrounding leaf surface of HR+ *B. nigra* and trichomes. (B) Eggs of *M. brassicae* (48–60 h old) with surrounding leaf surface of HR− *B. nigra*. (C) Contact region after *P. brassicae* egg removal (72 hao) on HR− *B. nigra* consisting of accessory reproductive gland (ARG) secretion functioning as cement (arrow). (D) Contact region after *M. brassicae* egg removal consisting of a part of ARG cement and healthy leaf cells with open stomata (arrow). (E) Necrotic zone on HR+ *B. nigra* leaf induced by *P. brassicae* eggs 72 hao, with some eggs...
This monoterpene has been shown to be highly inducible by herbivory [5,8,63]. In their study on African grass, Bruce et al. [39] demonstrated similar effects: oviposition by C. partellus reduces the plant volatile emission of the main compound, the green-leaf volatile (Z)-3-hexenyl acetate, and increases the emission of minor compounds, i.e. terpenoids, causing an increased attraction of the larval parasitoid Cotesia sesamiae. The same wasps were shown to be attracted also to synthetic terpenoids [36].

Whether the attraction to OIPVs by different parasitoid species and avoidence by herbivores is adaptive for the plant and eventually leads to enhanced plant fitness remains to be proven. Kessler & Heil [64] argued that HIPV-mediated reduction in herbivory may not result in increased plant fitness because most natural enemies do not immediately kill the herbivore, plants have a high tolerance to herbivory, and HIPV are part of a network with many more functions. However, the results of our study suggest a benefit for B. nigra resulting from the release of OIPVs. Idiobiont parasitoids that immediately kill the host such as Trichogramma spp. are likely to have a greater impact on plant fitness than parasitism by koinobiont parasitoids, which allow the parasitized host to continue to feed. Trichogramma wasps have been demonstrated to be significant mortality factors for eggs of Pieris species in the field. In an on-going field survey of a Dutch B. nigra population, 30–40% of the collected Pieris eggs were found to be parasitized by Trichogramma spp. [N.E. Fatouros, unpublished data] [65]. Feeding by Pieris caterpillars can have detrimental effects on flowering brassicaceous plant species: P. brassicae caterpillars have been shown to move to and preferentially feed on the flowers of B. nigra plants a few days after hatching [66,67]. Moreover, the multifunctional effects of OIPVs released by B. nigra on different members of the insect community demonstrated here is beneficial to the plant: direct (egg-killing HR and avoidance by female butterflies) and indirect (parasitoid attraction) defence traits against Pieris butterflies work in concert which seems to lead to high Pieris egg mortality rates under natural conditions [N.E. Fatouros, unpublished data] [65].

Both parasitoid species studied here discriminated between volatiles induced by eggs of their host P. brassicae and uninfested B. nigra plants, but not between plant volatiles induced by eggs of the moth M. brassicae and uninfested B. nigra. For C. glomerata, M. brassicae cannot serve as a host and, therefore, it may be adaptive for the wasps to discriminate between host- and non-host induced plant volatile blends. Studies on brassicaceous plant species demonstrated that naive C. glomerata failed to discriminate between HIPV blends from host and non-host insects [68] or from different host instars [69]. Volatiles emitted by B. oleracea plants damaged by different herbivores were shown to be very similar [9,12]. So far, a single study revealed that parasitoids can innately use HIPV blends to discriminate between host and non-host herbivores [70]. Approaching host-infested plants in an early stage of host development might help Cotesia wasps to find host patches and avoid to fly to patches of older host larvae, which are unsuitable for development [71]. Recent studies on different maize varieties and a grass species induced by eggs of the stemborer moth C. partellus confirmed an attraction to OIPVs by a larval parasitoid [36,37,39].

Our data reveal an effect of an induced plant response on members of the insect community at different trophic levels during the pre-feeding phase of herbivore colonization. The synergistic effect of OIPVs attracting different parasitoid species and causing avoidence by herbivores might lead to an effective reduction of fitness loss caused by a common insect herbivore of brassicaceous plant species. Our findings thus suggest that studies on plant defences induced by herbivores should consider the first phase of herbivore attack before feeding damage has occurred, because of its significant impact on multi-trophic interactions. As a follow-up, we are currently investigating the role of OIPVs under natural conditions to fully understand the consequences of plant-mediated effects of insect egg deposition for the structure and dynamics of arthropod communities.

Materials and Methods

Plants and Insects
Black mustard plants (B. nigra L.) were grown in a greenhouse (18±5°C, 50–70% r.h., L16:D8). Seeds originated from the Centre for Genetic Resources (CGN, Wageningen, The Netherlands). This accession (fetal population, collected in 1975 from the Peloponnesus, Greece) had been multiplied by exposing them to pollinators in a common garden experiment in the surroundings of Wageningen, The Netherlands [66]. Plants of 3 to 5 weeks old were used in the experiments. All used insects were collected in the surroundings of Wageningen, The Netherlands. No specific permits were required for their collection. The collection sites were not privately owned or protected in any way and field samplings did not involve endangered or protected species. Mated females of P. brassicae (Lepidoptera: Pieridae) were obtained by pairing a virgin male and a virgin female butterfly one day after eclosion. Two days after mating, P. brassicae females were used in the experiments. Female M. brassicae L. (Lepidoptera: Noctuidae) moths were placed together with a B. nigra plant in a cage to allow egg deposition. Both herbivorous insects were reared on Brussels sprouts plants (B. oleracea var. gemmifera cv. Cyrus) in a climate room (21±1°C, 50–70% rh, L16:D8). Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) was reared in eggs of the moth Ephestia kuehniella (Koppert, Berkel en Rodenrijs, The Netherlands) in a climate chamber (25±1°C, 50–70% rh, L16:D8). Only mated, 2–5 days old, wasps were used in the experiments. The larval parasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) was reared in P. brassicae caterpillars, feeding on Brussels sprouts plants in a greenhouse (see above). Only mated, 2–8 days old female wasps were used in the experiments. None of the wasps used in the experiments have had previous contact with any plant material or host residues and the wasps are referred to as naïve.

Plant Treatments
For bioassays with egg-infested plants, test plants were placed into a cage with more than 100 P. brassicae adults (female: male ratio 1:1) to allow deposition of eggs onto the plants. Plants were exposed for no more than 15 min to the butterflies, to obtain 2–3 egg clutches. After this exposure time, egg-infested plants were tested immediately or kept in a greenhouse compartment (21±2°C, 70% r.h., L16:D8) either overnight (24 h) or for 48 to 72 h following egg deposition. Thus, the duration of induction in response to egg deposition was less than 6 to 96 h. Around 120 hao eggs started to hatch. Plants used as controls were kept under the same conditions as the treated plants but had not been in
contact with *P. brassicae* or any other insect. To test for a systemic induction of volatiles, butterflies were allowed to oviposit on the lower leaves and the upper leaves were covered with a mesh bag that prevented oviposition. Bags were removed afterwards. Prior to bioassays, leaves with eggs were removed. Leaves at similar stem positions were removed from control plants. Plants with 2–5 *M. brassicae* egg clutches were obtained by exposing plants to *M. brassicae* females during the scotophase. These plants were incubated for an additional one or two days in a greenhouse compartment. Thus, eggs were 24–36 or 48–60 h old when the plants were used in the bioassay.

Egg-induced Necrosis

All egg-induced plants were checked for the formation of necrotic tissue, referred to as hypersensitive response (HR) 24 h and 72 h after oviposition. The strength of HR was recorded and the plants were categorized into HR− (no necrotic zone observed) and HR+ (necrotic zone +/− eggs fallen off). Plants were kept under greenhouse conditions (22 ± 2 °C, 70% r.h., L16: D8). From 10 plants, the number of plants with necrosis was noted and the number of eggs was counted directly after oviposition and after 5 days.

Egg Parasitoid Performance

To investigate whether the performance of *T. brassicae* in eggs deposited on plants that respond with HR is affected, we infested at least five different plants with *P. brassicae* eggs and offered them 24 h or 72 h after oviposition to *T. brassicae*. Previous research showed that *Trichogramma* wasps were able to parasitize *P. brassicae* eggs 0–72 hao [26]. An egg-carrying leaf of an HR+ or HR− plant was excised and a piece of it carrying 8 eggs (about 2 cm²) was offered to a 2–3 days old inexperienced female *T. brassicae* wasp in a glass tube. After 48 h, wasps as well as hatching eggs were discarded. Successful parasitism was checked after 7 days and emerging offspring were counted 12 days after oviposition. In total, 15 female wasps were tested for each treatment.

Dynamic Y-tube Olfactometer

Bioassays with *T. brassicae* wasps were conducted in a dynamic airflow Y-tube olfactometer, a modified version of the six-arm olfactometer developed by Turlings et al. [72] (Figure 5). This olfactometer was adapted for small wasps like *Trichogramma sp.*; wasps were released in groups collected in so-called insect trapping bulbs (Figure 5). Pressurized air was filtered through activated charcoal and approximately 150 mg of Tenax-TA 25/30 mesh (Grace-Alltech) before entering the system. Subsequently, air was humidified by passing through a bottle containing 50 mL of tap water. A flow meter-controlled (Brooks Instrument B.V., Veenendaal, NL) airflow of 400 mL min⁻¹ was admitted into the system. The airflow was split into two and each subflow was led into a glass container (45 mm high, 200 mm diameter) holding an odour source through an inlet situated on the lid. These containers were sealed airtight using a Viton O-ring and a metal clamp. Air from each odour container was subsequently...

Figure 5. Overview of the Y-tube olfactometer with simultaneous volatile trapping. Wasps were released in groups and collected in insect trapping collection bulbs. Volatiles were trapped simultaneously or after a bioassay with Tenax TA tubes. Illustration credits: I. Figueroa.

doi:10.1371/journal.pone.0043607.g005
led into one of the arms of a glass Y-tube olfactometer (stem 9 cm, arms 8 cm, ID 1 cm). All glass parts were connected using Teflon tubing. The airflow was set at 100 mL min$^{-1}$ in each arm using flow meters. Experiments were carried out between 10:00 and 16:00 h in the laboratory at 21±2°C using a T5-growth light with a spectrum that is close to sunlight. Light bulbs (4×24 W) were situated above the olfactometer and the containers with the odour sources. Just before placing a plant in the odour containers, the pot of the plant was removed and the roots and soil were tightly covered with aluminium foil.

Ten adult females of *T. brassicae* were released simultaneously and their preference for one of the two odour sources was recorded. Wasps, which were attracted to light, were trapped in two round trapping bulbs connected to the Y-tube near the end of each arm. After 30 minutes, the wasps collected in each of the trapping bulbs were counted. When a wasp did not make a choice within 30 minutes, it was recorded as a “no response” and excluded from the statistical analysis. In total, 100–120 wasps were released individually 70 cm down-wind from the two plants, one set-up described in detail by Geervliet et al. [73]. Females were released using flow meters. Experiments were carried out between 10:00 and 16:00 h in the laboratory at 21±2°C using a T5-growth light with a spectrum that is close to sunlight. Light bulbs (4×24 W) were situated above the olfactometer and the containers with the odour sources. Just before placing a plant in the odour containers, the pot of the plant was removed and the roots and soil were tightly covered with aluminium foil.

Flight Chamber Experiments
Butterfly odour preferences were tested in a two-choice situation in a flight tent as described by Goh et al. [70]. A female butterfly was released 80 cm away from the uninsected and egg-infested plant, which were placed 55 cm apart. Eggs were removed just prior to testing. After releasing the butterfly, first landing and oviposition was recorded, after which the observation was ended and the female and her eggs were removed immediately. Females that did not respond within 15 min were recorded as “no response” and excluded from the analysis. Plants were switched after 3 consecutive butterfly observations with a total of max. 10 responding females per set of plants. Plants had been infested with eggs for either 24 h or 72 h (for *P. brassicae*) or 24–36 h (for *M. brassicae*). Per treatment, 43–85 butterflies were tested and 4–6 sets of plants were used.

Wind Tunnel Experiments
Attraction of *C. glomerata* wasps was conducted in a wind tunnel set-up described in detail by Geervliet et al. [73]. Females were released individually 70 cm down-wind from the two plants, one egg-infested plant and an uninsected control plant. The plant on which the female landed for the first time within 10 min following release was recorded. Non-responding wasps, i.e. those females that did not land within 10 min were counted but excluded from the statistical analysis. Each wasp was used only once. During bioassays, plants were switched after every second wasp tested. The number of tested wasps ranged between 60 and 105 wasps per treatment, tested on at least 5 different days with 5 new sets of plants.

Headspace Collection of Volatiles
When testing the response of *T. brassicae* wasps to *B. nigra* volatiles using the Y-tube olfactometer (see above), we simultaneously or afterwards collected volatiles from the headspace of the same plant(s) (Figure 5). Volatiles were collected by sucking air with odours out of a glass jar at a rate of 80 mL min$^{-1}$ for 4 h through a stainless steel cartridge filled with 200 mg Tenax TA (20/35 mesh; CAMSCO, USA). A pump (PAS-500 SPECTREX, US) was directly connected to the cartridge steel tube with Tenax TA onto the outlet for sucking the air out of the glass jar. In total, 5 plant pairs (control vs. treatment) were sampled per treatment on 5 different days. Aerial parts of the plant were weighed after volatile collection (balance Mettler-Toledo B.V., NL).

Chemical Analysis
Thermo Trace Ultra gas chromatography (GC) coupled with Thermo Trace DSQ quadruple mass spectrometer (MS) (Thermo Fisher Scientific Waltham, USA) were used for separation and detection of plant volatiles. Prior to release of volatiles, Tenax TA cartridges were dry-purged under a stream of nitrogen at 20 ml min$^{-1}$ for 10 min at ambient temperature in order to remove moisture. The collected volatiles were released thermally from the Tenax TA in an Ultra 50:50 thermal desorption unit (Markes, Llantrisant, UK) at 250°C for 10 min under a helium flow of 20 ml min$^{-1}$ while re-collecting the volatiles in a thermally cooled universal solvent trap at 10°C using Unity (Markes, Llantrisant, UK). Once the desorption process was completed, the cold trap was heated fast at 40°C s$^{-1}$ to 280°C and was kept for 5 min at 280°C, while the volatiles were released to a ZB-5MSi capillary column with dimensions 30 m L×0.25 mm I.D.×1.00 μm F.T. (Phenomenex, Torrance, CA, USA), in a split mode at a split ratio of 5:1 for further separation. The GC oven was operated at an initial temperature of 40°C and was immediately raised at 8°C min$^{-1}$ to 280°C and held there for 4 min under a helium flow of 1 ml min$^{-1}$ in constant flow mode. The DSQ MS was operated in scan mode with a mass range of 35–350 amu at 5.38 scans s$^{-1}$ and ionization was performed in EI mode at 70 eV. MS transfer line and ion source were set at 275 and 250°C, respectively.

Identification of compounds was based on comparison of mass spectra with those in the NIST 2005 and Wageningen Mass Spectral Database of Natural Products MS libraries. Experimentally obtained linear retention indices (LRRI) were also used as additional criterion for confirming the identity of compounds. Relative quantitation (peak areas of individual compounds) was carried out using a single (target) ion, in selected ion monitoring (SIM) mode. These individual peak areas of each compound were corrected for the aerial fresh weight of each plant sample and were used for further characterization of the different plant groups using statistical analysis.

Cryo-SEM Imaging
Abaxial and adaxial sites of fresh leaves with *P. brassicae* or *M. brassicae* eggs were fresh-frozen and analysed by field emission scanning microscopy (Magellan 400, FEI, Eindhoven, the Netherlands). Leaves were glued on a brass Leica sample holder by carbon glue (Leit- C, Neubauer Chemicalien, Germany), flash-frozen in liquid nitrogen and simultaneously fitted in a cryo-sample loading system (VCT 100). The Leica sample holder was transferred to a non-dedicated cryo-preparation system (MED 020/VCT 100, Leica, Vienna, Austria) onto a sample stage at −93°C. In this cryo-preparation chamber samples were freeze-dried for 2 minutes at −93°C at 1.3×10$^{-6}$ millibar to remove water vapor contamination from the surface of the sample. The sample was sputter-coated with a layer of 15 nm Tungsten at the same temperature. The samples were transferred in high vacuum into a field emission scanning microscope (Magellan 400, FEI, Eindhoven, the Netherlands) on the sample stage at −122°C at 4×10$^{-7}$ millibar. The analysis was performed with SE at 1 and 2 kV, 13 pA. All images were recorded digitally.

The interface between the *B. nigra* surface and (1) 72 h old *P. brassicae* eggs (HR− and HR+) and (2) 48–60 h old *M. brassicae* eggs (HR−) was comparatively studied (a) in contact and (b) with eggs detached after being frozen.
Statistical Analysis
To analyse whether the distribution of behavioural choices of butterflies and wasps was affected by egg age and plant phenotype, a generalized linear model (GLM) with a logit link function and a binomial distribution for errors was used. The response of a number of animals tested with one set of plants served as experimental unit in the analyses. For each phenotype - egg age - animal species-combination at least five newly prepared plant combinations were used. The responses were analysed separately for the three animal species. When overdispersion was detected in the variance parameter, we corrected for this by allowing the variance functions of the binomial distribution to have a multiplicative overdispersion factor by dividing the square root of the deviance of the model by the degrees of freedom.

To determine whether there was a preference for an odour source within a treatment combination, we used one sample t-test on the proportion of wasps preferring egg induced volatiles in each replicate. Data were arcsine-transformed and tested against arcsine (0.5), i.e. no preference for either odour source. Non-responding wasp were excluded from the analyses (both GLM and t-tests).

Percentages of *P. brassicaceae* eggs hatching on HR+ and HR− plants were compared with a chi-square test using a 2×2 contingency table. Performance of *T. brassicae* on HR+/− plants in relation to egg age was also analysed using a GLM. The proportions of *P. brassicaceae* eggs that were parasitized by *T. brassicae* were analysed using the same GLM approach as for the behavioural responses. The offspring numbers were compared with a logarithm link function and a Poisson distribution for the errors.

Volatile compounds, measured as peak area divided by the fresh weight of a plant’s foliage were analysed using the software program SIMCA P+12.0 (Umetrics AB, Umeå, Sweden). A PLS-DA was used to determine whether samples belonging to specific groups (here treatments) could be separated based on quantitative differences in volatile emissions [74]. A Y-data matrix of dummy variables was included, which assigned a sample to its respective class. The PLS-DA extension of the SIMCA P+12.0 program used for this analysis approximates the point ‘warming’ in X (matrix with volatile compounds) and Y in PLS components in such a way that maximum covariation between the components in X and Y is achieved. The results of the analyses were visualised in score plots, which reveal the sample structure according to the model components, and loading plots, which display the contribution of the volatile emission to these components, as well as the relationships among the variables. PLS-DA were performed on full data sets including all volatile compounds and on restricted data sets containing compounds of which the VIP (Variable Importance in the Projection) values were greater than 1. Data were log-transformed, mean-centred, and scaled to unit variance before they were subjected to the analysis.

A Mann-Whitney-U-test was used to test differences in peak area per compound between treated and control plants. A sign test was used to determine whether the number of compounds emitted in larger or smaller amounts differed from a 50:50 distribution.

Acknowledgments
The authors thank Irena Vafia, Lydia van Bruggen, and Illich A. Figueroa for their help with conducting some behavioural assays, André Gelding, Léon Westerd and Frans van Aagelen for culturing insects and the experimental farm of Wageningen University (Unifarm) for rearing and providing plants. Adrian van Aelst kindly helped with Cryo-SEM imaging. We thank Maarten A. Posthumus for chemical identification of some of the plant volatile compounds and Martine Kos for statistical advice.

Author Contributions
Conceived and designed the experiments: NEF DLB FGP MEH. Performed the experiments: NEF DLB FGP BW MEH. Analyzed the data: NEF DLB FGP BW RG JIAVL MD JAH MEH. Wrote the paper: NEF DLB FGP BW RG JIAVL MD JAH MEH.

References
1. Pimm SL, Lawton JH, Cohen JE. (1991) Food web patterns and their consequences. Nature 350: 669–674.
2. Karban R, Baldwin IT (1997) Induced Responses to Herbivory. Chicago: The University of Chicago Press.
3. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-Plant Biology. Oxford: Oxford University Press.
4. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15: 167–175.
5. Munn R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards for indirect plant defense. Can J Zool 88: 628–667.
6. Hilker M, Meiners T (2010) How plants “notice” attack by herbivores. Biol Rev 85: 267–280.
7. Dudarova N, Negre F, Nagoweda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25: 417–440.
8. Usinberk SB, Kumert G, Gershonzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores.Curr Opin Plant Biol 12: 479–485.
9. Dicke M (2009) Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Curr Opin Plant Biol 10: 409–414.
10. Van der Putten WH, Vet LEM, Harvey JA, Wa ¨ckers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16: 547–554.
11. Van der Putten WH, Vet LEM, Harvey JA, Wa ¨ckers FL, Le´on Westerd and Frans van Aggelen for culturing insects and the experimental farm of Wageningen University (Unifarm) for rearing and providing plants. Adrian van Aelst kindly helped with Cryo-SEM imaging. We thank Maarten A. Posthumus for chemical identification of some of the plant volatile compounds and Martine Kos for statistical advice.
12. Hare JD (2010) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Ann Rev Entomol 56: 161–180.
13. Podman EH, van Loon JJA, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci 13: 534–541.
14. Hilker M, Meiners T (2011) Plants and insect eggs: How do they affect each other? Phytochemistry 72: 1612–1623.
15. Seino Y, Suzuki Y, Sugawara K (1996) An oviducal substance produced by rice plants in response to oviposition by the whitebacked planthopper, *Sogatella furcifera* (Horváth) (Homoptera: Delphacidae). Appl Ent Zool 31: 467–473.
16. Suzuki Y, Sugawara K, Seino Y (1996) Oviducal reaction of rice plants against the whitebacked planthopper, *Sogatella furcifera* Horváth (Homoptera: Delphacidae). Appl Ent Zool 31: 111–118.
17. Beyaert I, Köppe D, Stüller J, Hammerbacher A, Yoneya K, et al. (2011) Can insect egg deposition ‘warn’ a plant of future feeding damage by herbivorous larvae? Proc Roy Soc Lond B 279: 101–108.
18. Brunese F, Gouhart-Darmont C, Bacha A, Metraux JP, Reymond P (2010) Insect eggs suppress plant defense against chewing herbivores. Plant J 62: 876–885.
19. Kim J, Tooker JF, Lathe DS, De Moraes CM, Felton GW (2012) Insect eggs can enhance wound response in plants: a study system of tomato *Solanum lycopersicum* L. and *Helicoverpa zonata* Bodall. PLoS ONE 7: e37420.
20. Petzold-Maxwell J, Wong S, Ardillano C, Gould F (2011) Host plant direct defense against eggs of its specialist herbivore, *Helicoverpa zea*. Ecol Entomol 36: 700–708.
21. Deurmont GA, Weston PA (2011) Aggregative oviposition of a phytophagous beetle overcomes egg-crushing plant defences. Ecol Entomol 36: 333–343.
22. Babyljhev NF, Lorenzen JH (1997) Hypersensitivity and egg drop: A novel mechanism of host plant resistance to Colorado potato beetle (*Coleoptera: Chrysomelidae*). *J Econom Entomol* 90: 652–657.
23. Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy SR, et al. (2000) Bruchins: Insect-derived plant regulators that stimulate neoplasm formation. PNAS USA 97: 6218–6223.
24. Doss RP, Proebsting WM, Potter SW, Clement SL (1995) Response of NP larvae? Proc Roy Soc Lond B 279: 101–108.
26. Fatouros NE, Bokuvzinskize K, Kalxkes LA, Soler Gamborena R, Dickey M, et al. (2005) Oviposition-induced plant cues: Do they arrest Trichogramma wasps during host location? Entomol Exp Appl 113: 207–215.

27. Fatouros NE, Broekgaarden C, Bokuvzinskize K, van Loon JJA, Mumm R, et al. (2006) Anti-aphidophagous compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J Chem Ecol 32: 1373–1381.

28. Colazza S, Fucarino A, Peri E, Salerno G, Conti E, et al. (2004) Insect oviposition induces volatile emission in herbaceous plants that attracts the egg parasitoid Trichogramma. J Exp Biol 207: 47–53.

29. Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nasonia vitripennis feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30: 945–964.

30. Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112: 87–93.

31. Mumm R, Tiemann T, Varama M, Hilker M (2005) Choosy egg parasitoids: Specificity of oviposition-induced pine volatiles exploited by an egg parasitoid of pine sawflies. Entomol Exp Appl 115: 217–225.

32. Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26: 221–232.

33. Hilker M, Kobs C, Varama M, Schrank K (2002) Oviposition induced emissions from a parasitoid may attract egg parasitoids. J Exp Biol 205: 453–461.

34. Conti E, Zadra C, Salerno G, Leombruni B, Volpe D, et al. (2006) Changes in the volatile profile of Brassica oleracea due to feeding and oviposition by Magonia hastata (Heteroptera: Pentatomidae). Eur J Entomol 103: 639–647.

35. Tamiru A, Bruce TJ, Midega CAO, Reymond P, Hilker M, et al. (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecolog Entomol 4: 1075–1083.

36. Tamiru A, Bruce TJ, Midega CA, Woodcock CM, Birkett MA, et al. (2012) Oviposition induced volatile emissions from African smallholder farmers’ maize varieties. J Chem Ecol 38: 231–234.

37. Hilker M, Meiners T (2006) Early herbivore alert: Insect eggs induce plant defense. J Chem Ecol 32: 1379–1397.

38. Bruessow F, Reymond P (2007) Oviposition-Induced Changes in Arabidopsis Genome Expression - Anticipating your Enemy? Plant Sig Behav 2: e1–e3.

39. Little D, Gouhier-Darimont C, Bruessow F, Reymond P, Hilker M (2007) Response of the elm leaf beetle Trichogramma minutum to attract egg parasitoids. J Exp Biol 210: 31–37.

40. Fatouros NE, Paschalidou FG, Cordero WVA, van Loon JJA, Mumm R, et al. (2009) Anti-aphidophagous compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J Chem Ecol 35: 1305–1320.

41. Bruessow F, Reymond P (2007) Oviposition-Induced Changes in Arabidopsis Genome Expression - Anticipating your Enemy? Plant Sig Behav 2: e1–e3.

42. Beament JWL, Lal R (1957) Penetration through the Egg-shell of Pieris brassicae and its solitary endoparasitoid Microplitis mediator on two populations of the invasive weed Brassica oleracea. Population Ecology 53: 587–596.

43. Harvey JA, Gols R (2011) Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp. J Chem Ecol 37: 1081–1090.

44. Polaszek A (2010) Species Diversity and Host Associations of Trichogramma in Eurasia. In: Consoli FL, Parra JRP, Zucchi R, editors. Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma. Dordrecht: Springer. 217–266.

45. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.

46. De Moraes CM, Mescher MC, Tunlinsson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580.

47. Meiners T, Hacker NK, Anderson P, Hilker M (2005) Response of the elm leaf beetle to plants induced by oviposition and feeding: the infestation rate matters. Entomol Exp Appl 115: 171–177.

48. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144.

49. Gols R, Wageenab R, Bokuvzinsky T, von Dan NM, Dickey M, et al. (2008) Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology 89: 1616–1626.

50. Penfound MFGV, Erl B, Robertson CAM, Miranda LA, Werneburg AG, et al. (2011) Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta 234: 207–213.

51. Schroder R, Forstreuter M, Hilker M (2005) A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiol 130: 470–477.

52. Velikova V, Salerno G, Frati F, Peri E, Conti E, et al. (2010) Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants. J Chem Ecol 36: 629–641.

53. Noldus LPJJ,Posing RPJ, Barendregt HE (1991) Moth sex pheromone adsorption to leaf surface: bridge in time for chemical spies. Phytochem 40: 329–334.

54. Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178: 41–44.

55. Paré P, Tunlinsson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121: 325–331.

56. Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25: 348–357.

57. Figueroa IA (2010) Attraction of Trichogramma wasps to Brassica nigra plants induced by lepidopteran eggs. Wageningen: Wageningen University. 20 p.

58. Smallegange RC, Van Loon JJA, Platt SE, Harvey JA, Agerbirk N, et al. (2007) Flower vs. leaf feeding by Pieris brassicae. Glucosinolate-rich flower tissues are preferred and sustain higher growth rate. J Chem Ecol 33: 1831–1844.

59. Lasca-Barbosa D, Van Loon JJA, Gols R, Van Beck TA, Dickey M (2012) Reproductive escape: Brassica nigra plants respond to Pieris brassicae eggs by accelerating seed production. Funct Ecol 26: tentatively accepted.

60. Geervliet JBF, Vet LEM, Dicke M (1996) Innate responses of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. J Insect Behav 9: 525–530.

61. Mattiacci L, Dicke M (1993) The parasitoid Cotesia glomerata (Hymenoptera: Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the basis of contact cues from frass, silk and herbivore-damaged leaf tissue. J Insect Behav 6: 485–498.

62. Gols R, Van Dam NM, Rasmukczeres CE, Dickey M, Harvey JA (2009) A review of the potential of plant volatiles in pest control: an overview of major advances. Funct Ecol 29: 45–55.

63. Geervliet JBF, Vet LEM, Dicke M (1994) Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomol Exp Appl 73: 289–297.

64. Eriksson L, Johansson K, Kettaneh-Wold N, Trygg JGW, Wold S (2006) Multi- and Megavariate Data Analysis. Part 1: Basic Principles and Applications. Umea, Sweden: Umetrics AB.