Studies that have compared HbA1c levels by race have consistently demonstrated higher HbA1c levels in African Americans than in whites. These racial differences in HbA1c have not been explained by measured differences in glycemia, sociodemographic factors, clinical factors, access to care, or quality of care. Recently, a number of nonglycemic factors and several genetic polymorphisms that operate through nonglycemic mechanisms have been associated with HbA1c. Their distributions across racial groups and their impact on hemoglobin glycation need to be systematically explored. Thus, on the basis of evidence for racial differences in HbA1c, current clinical guidelines from the American Diabetes Association state: “It is important to take... race/ethnicity... into consideration when using the A1C to diagnose diabetes.” However, it is not clear from the guidelines how this recommendation might be actualized. So, the critical question is not whether racial differences in HbA1c exist between African Americans and whites; the important question is whether the observed differences in HbA1c level are clinically meaningful. Therefore, given the current controversy, we provide a Point-Counterpoint debate on this issue. In the point narrative below, Dr. Herman provides his argument that the failure to acknowledge that HbA1c might be a biased measure of average glycemia and an unwillingness to rigorously investigate this hypothesis will slow scientific progress and has the potential to do great harm. In the counterpoint narrative that follows Dr. Herman’s contribution, Dr. Selvin argues that there is no compelling evidence for racial differences in the validity of HbA1c as a measure of hyperglycemia and that race is a poor surrogate for differences in underlying causes of disease risk.

—William T. Cefalu
Editor in Chief, Diabetes Care

In the 1990s and early 2000s, studies that compared HbA1c levels by race in people with type 2 diabetes consistently demonstrated higher HbA1c levels in African Americans than in whites. In a 2006 meta-analysis, Kirk et al. (1) reported mean HbA1c levels by race in U.S. adults with type 2 diabetes. All eleven studies that assessed HbA1c levels in African Americans and whites demonstrated higher HbA1c levels in African Americans (1). The mean difference ranged from 0.2 to 2.0%, and the median between-group difference was ~0.65% (1).

Until the mid-2000s, the observed differences in HbA1c by race were universally attributed to health disparities, that is, preventable differences in health indicators in different population groups. More recently, differences in HbA1c were demonstrated in African American and white adults who were selected to have the same fasting and post–glucose load glucose levels. In the Diabetes Prevention Program (DPP), eligibility was based on both impaired fasting glucose (glucose levels of...
95–125 mg/dL) and impaired glucose tolerance (2-h post–glucose load glucose levels of 140–199 mg/dL). Despite having comparable fasting and post–glucose load glucose levels, African Americans had significantly higher HbA1c levels than whites in the DPP (6.2 ± 0.6% vs. 5.8 ± 0.4%, P < 0.0001) both before and after adjusting for age, sex, BMI, blood pressure, fasting glucose, glucose area under the curve, corrected insulin response, and insulin sensitivity (2). Similarly, in A Diabetes Outcome Progression Trial (ADOPT), eligibility was based on short-duration, drug-naïve type 2 diabetes and fasting glucose levels between 126–180 mg/dL (3). HbA1c, adjusted for age, sex, and BMI, was 8.0 ± 1.1% in African Americans and 7.3 ± 0.8% in whites (P < 0.0001) despite comparable fasting glucose levels (153 mg/dL vs. 151 mg/dL) and lower 30-min post–glucose load glucose levels in African Americans than in whites (233 mg/dL vs. 245 mg/dL) (3). These observations suggested that unknown factors associated with race might impact HbA1c independent of glycemia (Table 1).

More recent studies that have compared HbA1c by race and have statistically adjusted for access to care and quality of care while controlling for sociodemographic and clinical factors have not been able to explain these racial differences in HbA1c. For example, in a population-based study (11), more recent studies have suggested that potential confounders have also not been able to explain the observed differences in HbA1c by race. Adams et al. (5) examined racial differences in HbA1c in insured, managed-care patients with type 2 diabetes who had comparable access to care and who were initiating antihyperglycemic treatment. At initiation of therapy, African Americans had higher average HbA1c levels than whites (9.8 vs. 8.9%), and after 1 year of treatment, after adjusting for baseline HbA1c, number of physician visits, treatment intensification, medication and test strip use, and medication adherence, as well as age, sex, BMI, hypertension, dyslipidemia, and comorbidities, the African American–white difference in HbA1c remained 0.5% (5). It thus appears that racial differences in HbA1c levels occur independently of glycemia across the spectrum of glucose tolerance and cannot be explained by access to care, quality of care, sociodemographic characteristics, or clinical characteristics.

Table 1—Proposed explanations for differences in HbA1c by race and the weight of evidence supporting those explanations

Factors proposed to explain difference	Weight of evidence	References
Age, sex, education, income	Weak	2,3,4
BMI and/or insulin secretion/insulin sensitivity	Weak	2,3,5
Fasting or postprandial glucose levels	Weak	2,3,21
Diet and/or physical activity	Weak	4,6
Dietary fat	Moderate	7
Alcohol consumption	Moderate	8
Smoking	Strong	9
Insurance, access to care, quantity or quality of care	Weak	4,5
Antihyperglycemic therapy, treatment intensification, medication adherence	Weak	4,5
Diabetes distress, self-efficacy, depression	Weak	4
SNPs related to red blood cell biology	Strong	10,11
SNPs related to hemoglobin	Moderate	12
SNPs related to hemoglobin glycation	Moderate	11,13,14

Clearly, one can hypothesize that unmeasured differences in diet and physical activity between African Americans and whites might result in unmeasured differences in fasting and postprandial glucose levels. In reality, however, studies such as the National Health and Nutrition Examination Survey that have systematically assessed diet and physical activity in African American and white adults have not demonstrated differences in diet that might explain the observed findings (6). Other carefully performed studies have suggested that lifestyle factors such as dietary fat (7), alcohol (8), and even cigarette smoking (9) may impact HbA1c levels independent of glycemia. Additional studies are warranted to assess the independent contribution of these factors to racial differences in HbA1c.

In addition to lifestyle factors, racial differences in red cell phenotypes may potentially account for racial differences in HbA1c. Approximately a dozen single nucleotide polymorphisms (SNPs) have been associated with HbA1c, and more than half of them appear to operate through “nonglycemic” mechanisms related to erythrocyte biology (10). Although some evidence suggests that these polymorphisms may contribute little to the variation in HbA1c observed on a population basis (11), more recent studies have cast doubt on this assertion. A recent report from the African Genome Variation Project identified a novel locus associated with HbA1c levels in the HBB2 gene on chromosome 16 (P = 6.9 × 10−15) (12). This 3.8-kb deletion has been previously associated with the alpha thalassemia trait and is common among Africans in whom the minor allele frequency has been reported to be 25% as compared with less than 1% in Europeans (12). Its potential impact on hemoglobin glycation warrants further investigation (12). Similarly, three enzymes have been described that deglycate HbA1c. Two of the three appear not to be present in humans, but the third, fructosamine 3-kinase, is present in the erythrocyte and has shown significant genome-wide association with HbA1c in both Europeans and Asians (11,13,14). This polymorphism warrants further investigation in African American populations. Although research to date has not definitively identified polymorphisms that might explain nonglycemic
differences in HbA1c between African Americans and whites, the data are clearly not sufficient to dismiss the possibility that such polymorphisms exist.

Finally, it has been argued that because diabetic complications occur more frequently in African Americans than in whites and there are no racial differences in the association between HbA1c and diabetic complications, there is no reason not to treat African Americans and whites to the same target HbA1c levels. There are, however, at least three problems with this argument.

First, although it is clear that diabetic complications occur more frequently in African Americans than in whites, it is also clear that the major cause is not the difference in glycemia between African Americans and whites but the differences in income, education, access to care, quality of care, cardiovascular risk factor treatment, and risk factor control (15). The greater unadjusted prevalence of diabetic complications in African Americans compared with whites is attenuated by adjustment for the more frequent occurrence of nonglycemic risk factors for diabetic complications in African Americans (15).

Second, it has been argued that the association between HbA1c and diabetic complications and comorbidities do not differ by race. Many of the studies purporting to demonstrate this lack of association between HbA1c and complications across racial groups have assessed differences in the adjusted odds of diabetic complications and comorbidities between racial groups by calculating a P value for interaction (15,16). Failing to observe a significant P value for interaction, the authors have concluded that the association between HbA1c and outcomes do not differ by race (15,16). A plausible alternative explanation for the failure to observe a significant interaction between African Americans and whites is insufficient statistical power, not the absence of an effect. Indeed, larger and more robust studies have demonstrated that the adjusted risk of diabetic complications, comorbidities, and death increase with HbA1c, and are greater in whites than in African Americans within HbA1c categories ≥7% (17–19). This suggests that at any given HbA1c level ≥7.0%, glycemic exposure is greater in whites compared with African Americans or, conversely, that glycemic exposure is lower in African Americans than in whites at any given HbA1c level.

The third problem with promoting a “one size fits all” HbA1c target and ignoring potential racial differences in the association between glycemia and HbA1c is that such a policy might result in a greater incidence of hypoglycemia in African Americans. For over a decade, diabetes quality of care measures focused on the prevention of hyperglycemia and rewarded HbA1c lowering to achieve target HbA1c levels <7%. This, combined with a desire to eliminate health disparities, resulted in a progressive diminution and indeed eradication of racial differences in HbA1c in the U.S. between 1998 and 2010 (20). Yet, achieving the same target HbA1c levels in whites and in African Americans may predictably result in lower blood glucose levels in African Americans than in whites. Findings from the DURAbility of Basal versus Lispro mix 75/25 insulin Efficacy (DURABLE) trial illustrate this point (21). In that trial, mean 7-point glucose profiles were assessed by self-monitoring of blood glucose. In post hoc analyses, a mean 7-point glucose profile of 100 mg/dL corresponded to an HbA1c of 7.2% in whites and 7.6% in African Americans (21). Extrapolating from the same data set, a mean HbA1c of 7.0% would correspond to a mean 7-point glucose profile of 89 mg/dL in whites and a mean 7-point glucose profile of 86 mg/dL in African Americans (21).

Data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, which was designed to achieve HbA1c levels <6% in the intensive treatment group and 7.0–7.9% in the standard treatment group, demonstrated an annual study-wide incidence of hypoglycemia requiring medical assistance of 3.14% in the intensive treatment group and 1.03% in the standard treatment group (22). Strikingly, however, the hazard ratio for hypoglycemia requiring medical assistance was 1.43 (1.20–1.71, P < 0.0001) for African Americans compared with whites after adjusting for multiple risk factors including age, sex, duration of diabetes, BMI, and renal disease (22). Other studies have demonstrated that rates of hospital emergency department visits for hypoglycemia are approximately twofold higher in African Americans than in whites (23). It thus appears that because at any given HbA1c level, glucose levels are lower in African Americans compared with whites, the risk of severe hypoglycemia is increased in African Americans when efforts are made to treat African Americans and whites to the same target HbA1c levels (24).

In summary, consistent differences in mean HbA1c levels have been observed by race. These differences cannot be entirely explained by measured differences in glycemia, differences in sociodemographic or clinical factors, or differences in access to care or quality of care. It is wrong to conclude that the observed differences in HbA1c between African Americans and whites must not exist because we cannot explain them. Differences in the distribution of nonglycemic factors associated with hemoglobin glycation such as dietary fat, alcohol consumption, and cigarette smoking, should be explored across racial groups. In addition, genetic polymorphisms associated with HbA1c that operate through “nonglycemic” mechanisms, their distributions across racial groups, and their impact on hemoglobin glycation need to be more systematically explored. Our current failure to identify and characterize these polymorphisms is not sufficient to dismiss the possibility that they exist. Finally, focusing on the greater rate of diabetic complications and comorbidities in African Americans compared with whites and single-mindedly focusing on glycemia as the cause neglects the contribution of nonglycemic risk factors and diverts attention from the need to address and control them. Focusing on a “one size fits all” target for HbA1c while neglecting direct measures of glycemia such as the results of self-monitoring of blood glucose presents a real likelihood for harm. Although the evidence does not currently exist to state unequivocally that race alters HbA1c independently of glycemia, the lack of direct evidence does not negate that possibility. As scientists, we must be willing to accept the possibility that there are alternative explanations for established dogma. The failure to acknowledge alternative hypotheses will slow scientific progress and has the potential to do great harm.

Funding. Research support was provided by National Institute of Diabetes and Digestive and
Kidney Diseases grant P30DK020572 (to the Michigan Diabetes Research Center) and grant P30DK092926 (to the Michigan Center for Diabetes Translational Research).

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

References
1. Kirk JK, D’Agostino RB Jr, Bell RA, et al. Disparities in HbA1c levels between African-American and non-Hispanic white adults with diabetes: a meta-analysis. Diabetes Care 2006; 29:2130–2136
2. Herman WH, Ma Y, Uwaifo G, et al.; Diabetes Prevention Program Research Group. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care 2007;30:2453–2457
3. Viberti G, Lachin J, Holman R, et al.; ADOPT Study Group. A Diabetes Outcome Progression Trial (ADOPT): baseline characteristics of type 2 diabetic patients in North America and Europe. Diabet Med 2006;23:1289–1294
4. Heisler M, Faul JD, Hayward RA, Lang K, Blum C, Weir D. Mechanisms for racial and ethnic disparities in glycemic control in middle-aged and older Americans in the Health and Retirement Study. Arch Intern Med 2007;167:1853–1860
5. Adams AS, Trinacty CM, Zhang F, et al. Medication adherence and racial differences in A1C control. Diabetes Care 2008;31:916–921
6. Kant AK, Graubard BI, Kumanyika SK. Trends in black-white differentials in dietary intakes of U.S. adults, 1971-2002. Am J Prev Med 2007;32:264–272
7. Harding AH, Sargeant LA, Welch A, et al.; EPIC-Norfolk Study. Fat consumption and HbA1c levels: the EPIC-Norfolk Study. Diabetes Care 2001; 24:1911–1916
8. Ahmed AT, Karter AJ, Warton EM, Doan JU, Weisner CM. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Southern California Diabetes Registry. J Gen Intern Med 2008;23:275–282
9. Soulimane S, Simon D, Herman WH, et al.; DETECT-2 Study Group; DESIR Study Group. HbA1c, fasting and 2 h plasma glucose in current, ex- and never-smokers: a meta-analysis. Diabetologia 2014;57:30–39
10. Grimsby JL, Perna EA, Vassy JL, et al.; MAGIC Investigators. Race-ethnic differences in the association of genetic loci with HbA1c levels and mortality in U.S. adults: the third National Health and Nutrition Examination Survey (NHANES III). BMC Med Genet 2012;13:30
11. Soranzo N, Sanna S, Wheeler E, et al.; WTCCC. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways [published correction appears in Diabetes 2011;60:1050–1051]. Diabetes 2010;59:3229–3239
12. Gurdasani D, Carstensen T, Tekola-Ayele F, et al. The African Genome Variation Project shapes medical genetics in Africa. Nature 2015; 517:327–332
13. Chen P, Takeuchi F, Lee JY, et al.; CHARGE Association. Multiple nonglycemic genomic loci are newly associated with glycated hemoglobin in East Asians. Diabetes 2014;63:2551–2562
14. Chen P, Ong RT, Tay WT, et al. A study assessing the association of glycated hemoglobin A1C (HbA1C) associated variants with HbA1C, chronic kidney disease and diabetic retinopathy in populations of Asian ancestry. PLoS One 2013;8:e79767
15. Bower JK, Brancati FL, Selvin E. No ethnic differences in the association of glycated hemoglobin with kidney disease and cardiovascular outcomes. Diabetes Care 2013;36:2995–3001
16. Zhao W, Kitzmazarzy PT, Horswell R, Wang Y, Johnson J, Hu G. Sex differences in the risk of stroke and HbA1c among diabetic patients. Diabetologia 2014;57:918–926
17. Zhao W, Kitzmazarzy PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and coronary heart disease risk among diabetic patients. Diabetes Care 2014;37:428–435
18. Hunt KJ, Gebregziabher M, Lynch CP, Echols C, Mauldin PD, Egede LE. Impact of diabetes control on mortality by race in a national cohort of veterans. Ann Epidemiol 2013;23: 74–79
19. Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care 2013;36:2271–2279
20. Wolfenbuttel BH, Herman WH, Gross JL, Dharmalingam M, Jiang HH, Hardin DS. Ethnic differences in glycemetic markers in patients with type 2 diabetes. Diabetes Care 2013;36: 2931–2936
21. Miller ME, Bonds DE, Gerstein HC, et al.; ACCORD Investigators. The effects of baseline characteristics, glycemia treatment approach, and glycated haemoglobin concentration on the risk of severe hypoglycaemia: post hoc epidemiological analysis of the ACCORD study. BMJ 2010;340:b5444
22. Ginde AA, Espinola JA, Camargo CA Jr. Trends and disparities in U.S. emergency department visits for hypoglycemia, 1993-2005. Diabetes Care 2008;31:511–513
23. Lipska KJ, Ross JS, Wang Y, et al. National trends in US hospital admissions for hyperglycemia and hypoglycemia among Medicare beneficiaries, 1999 to 2011. JAMA Intern Med 2014; 174:1116–1124