Quantum Stephani exact cosmological solutions and the selection of time variable

P Pedram, S Jalalzadeh and S S Gousheh

Department of Physics, Shahid Beheshti University, Evin, Tehran 19839, Iran

E-mail: s-jalalzadeh@sbu.ac.ir

Received 14 July 2007, in final form 11 September 2007
Published 30 October 2007
Online at stacks.iop.org/CQG/24/5515

Abstract
We study a perfect fluid Stephani quantum cosmological model. In the present work, the Schutz’s variational formalism which recovers the notion of time is applied. This gives rise to a Wheeler–DeWitt equation for the scale factor. We use the eigenfunctions in order to construct wave packets for each case. We study the time-dependent behavior of the expectation value of the scale factor, using many-worlds and de Broglie–Bohm interpretations of quantum mechanics.

PACS numbers: 98.80.Qc, 04.40.Nr, 04.60.Ds

1. Introduction

In recent years, observations show that the expansion of the universe is accelerating in the present epoch [1] contrary to the Friedmann–Robertson–Walker (FRW) cosmological models, with non-relativistic matter and radiation. Some different physical scenarios using exotic forms of matter have been suggested to resolve this problem [2–6]. In fact the presence of exotic matter is not necessary to drive an accelerated expansion. Instead we can relax the assumption of the homogeneity of space, leaving the isotropy with respect to one point. The most general class of the non-static, perfect fluid solutions of Einstein’s equations that are conformally flat is known as the ‘Stephani universe’ [7, 8]. This model can be embedded in a five-dimensional flat pseudo-Euclidean space, which is not expansion-free and has non-vanishing density [9, 7, 10]. In general, it has no symmetry at all, although its three-dimensional spatial sections are homogeneous and isotropic [11]. The spherically symmetric Stephani universes and some of their subcases have been examined in numerous papers [8]. So it may be important to study the quantum behavior of this model.

The notion of time can be recovered in some cases of quantum cosmology, for example when gravity is coupled to a perfect fluid [12–14]. These kinds of systems are often studied as follows [13, 14, 16]. The first one uses Schutz’s formalism for the description of the
perfect fluid \cite{17, 18}, and the second one selects the dynamical variable of perfect fluid as the reference time. Finally, one uses canonical quantization to obtain the Wheeler–Dewitt (WD) equation in minisuperspace, which is a Schrödinger-like equation \cite{12}. After solving the equation, one can construct wave packets from the resulting modes. The wave packets can be used to compute the time-dependent behavior of the scale factor. If the selected time variable results in a close correspondence between the expectation value of the scale factor and the classical prediction (prediction of general relativity) for enough time, the selected time variable can be considered as acceptable. This approach has been extensively employed in the literature, indicating in general the suppression of the initial singularity \cite{12–16, 19–21}.

We can also study this situation from the ontological interpretation of quantum mechanics \cite{13, 22–26}. In this approach, the problem of time is solved in any situation (not only in the presence of the matter field). In fact, the ontological interpretation predicts that the system follows a real trajectory given by

\[p_q = S_q, \]

where \(p_q \) is the momentum conjugated to the variable \(q \). Here, \(S \) is the phase of the wavefunction (\(\Psi = R e^{iS} \)), where \(R \) and \(S \) are real functions. The equation of motion (1) is governed not only by a classical potential \(V \) but also by the following quantum potential: \(V_Q = \nabla^2 R R \).

In the present paper, we use the formalism of quantum cosmology in order to quantize the Stephani cosmological model in Schutz’s formalism \cite{17, 18} and find the WD equation in minisuperspace. In the Schutz’s variational formalism, the wavefunction depends on the scale factor \(a \) and on the canonical variable associated with the fluid, which plays the role of time \(T \). Here, we describe matter as a perfect fluid matter. Although, this is semiclassical from the start, but it has the advantage of defining a variable, connected with the matter degrees of freedom which can be identified with time and leads to a well-defined Hilbert space.

2. The model

The action for gravity plus perfect fluid in Schutz’s formalism is written as

\[S = \int_M d^4x \sqrt{-g} R + 2 \int_{\partial M} d^3x \sqrt{h} h_{ab} K^{ab} + \int_M d^4x \sqrt{-g} p, \]

where \(K^{ab} \) is the extrinsic curvature and \(h_{ab} \) is the induced metric over the three-dimensional spatial hypersurface, which is the boundary \(\partial M \) of the four-dimensional manifold \(M \) in units where \(16\pi G = 1 \) \cite{27}. The last term of (2) represents the matter contribution to the total action, where \(p \) is the pressure. In Schutz’s formalism \cite{17, 18}, the fluid’s four-velocity is expressed in terms of five potentials \(\epsilon, \xi, \theta, \tau, \) and \(\mu \):

\[u^\nu = \frac{1}{\mu} (\epsilon,^\nu + \xi,^\nu + \theta,^\nu), \]

where \(\mu \) is the specific enthalpy, the variable \(\tau \) is the specific entropy, while the potentials \(\xi \) and \(\theta \) are connected with rotation and are absent in models of the FRW type. The variables \(\epsilon \) and \(\theta \) have no clear physical meaning. The four-velocity satisfies the following normalization condition:

\[u^\nu u_\nu = -1. \]

The metric in the spherically symmetric Stephani universe \cite{7–9, 11, 28, 29} has the following form:

\[ds^2 = - \left[F(t) \frac{a(t)}{V(r, t)} \frac{d}{dt} \left(\frac{V(r, t)}{a(r, t)} \right) \right]^2 dr^2 + \frac{a^2(t)}{V^2(r, t)} (dr^2 + r^2 d\Omega^2), \]
where the functions $V(r, t)$ and $F(t)$ are defined as

$$V(r, t) = 1 + \frac{1}{4} k(t)r^2,$$

$$F(t) = \frac{a(t)}{\sqrt{C^2(t)a^2(t) - k(t)}}. \quad (7)$$

Using the line element (5) and the Einstein’s equation, one can easily show that the functions $C(t), k(t)$ and $a(t)$ are not all independent but are related to each other with the expressions

$$\rho(t) = \frac{3C^2(t)}{8\pi G}, \quad (8)$$

$$p(r, t) = \frac{1}{8\pi G} \left[2C(t)\dot{C}(t) \frac{V(r, t)/a(t)}{a(t)} - 3C^2(t) \right]. \quad (9)$$

where an overdot denotes derivative with respect to t. Note that in the spherically symmetric Stephani models with the given coordinate system, the energy density $\rho(t)$ is uniform, contrary to the pressure $p(r, t)$, which is not uniform and depends on the distance from the symmetry center at $r = 0$. This is the reason for the absence of the barotropic equation of state $(p = p(\rho))$ in such models. However, if we assume some relations between $\rho(t)$ and $p(r, t)$, this could allow us to eliminate one of the unknown functions such as $C(t)$. Therefore, we are left with two unknown functions $k(t)$ and $a(t)$. The first one, $k(t)$, plays the role of a spatial curvature and the second one, $a(t)$, is the Stephani version of the FRW scale factor.

Now, we consider an observer placed at the symmetry center of the spherically symmetric Stephani universe and our physical assumptions will concern in the vicinity of $r \approx 0$. First, we assume that locally the matter in the universe satisfies the barotropic equation of state

$$p(r \approx 0, t) = \alpha \rho(t). \quad (10)$$

By substituting the Stephani metric (equation (5)) in the action (equation (2)) and choosing a curvature function $k(t)$ in the form [30]

$$k(t) = \beta a^\gamma (t), \quad (11)$$

and after some thermodynamical considerations [12], the final reduced effective action near $r \approx 0$ takes the form

$$S = \int dt \left[-\frac{\dot{a}^2}{N} + 6\beta Na^{1+\gamma} + N^{-1/\alpha} a^{3(\alpha + 1)/(\alpha + 1)} \left(\dot{\epsilon} + \theta \dot{\tau} \right)^{1/\alpha + 1} \exp \left(-\frac{\tau}{a} \right) \right]. \quad (12)$$

The reduced action may be further simplified by canonical methods [12] to the super-Hamiltonian

$$\mathcal{H} = -\frac{p_\alpha^2}{24a} - 6\beta a^{1+\gamma} + \frac{p_{\dot{\epsilon}} e^\gamma}{a^{3\alpha}}, \quad (13)$$

where $p_\alpha = -12\dot{a}/N$ and $p_\epsilon = -\rho_0 a 0 N a^{3(\alpha + 1)}, \rho_0$ being the rest mass density of the fluid. Using the canonical transformations

$$T = p_\tau e^{-\tau} p_e^{-(\alpha + 1)}, \quad p_T = p_{\dot{\epsilon}} e^{\gamma},$$

$$\dot{\tau} = \epsilon - (\alpha + 1) \frac{p_\tau}{p_{\dot{\epsilon}}}, \quad \dot{\epsilon} = p_\epsilon,$$

which are the generalization of the ones used in [12], the super-Hamiltonian takes the form

$$\mathcal{H} = -\frac{p_\alpha^2}{24a} - 6\beta a^{1+\gamma} + \frac{p_T}{a^{3\alpha}}. \quad (15)$$
where the momentum p_T is the only remaining canonical variable associated with the matter which appears linearly in the super-Hamiltonian.

The classical dynamics is governed by the Hamilton equations, derived from equation (15) and Poisson brackets, namely

$$
\begin{align*}
\dot{a} &= \{a, N\mathcal{H}\} = -\frac{Np_a}{12a}, \\
\dot{p}_a &= \{p_a, N\mathcal{H}\} = -\frac{Np_a^2}{24a^2} + 6N(1 + \gamma)\beta a^{\gamma} - \frac{3Nap_T}{a^{3\alpha - 2}}, \\
\dot{T} &= \{T, N\mathcal{H}\} = Na - \frac{3}{2}a^{3\alpha - 1}, \\
\dot{p}_T &= \{p_T, N\mathcal{H}\} = 0.
\end{align*}
$$

(16)

We also have the constraint equation $\mathcal{H} = 0$. Choosing the gauge $N = a^{3\alpha}$, we have the following equations for the system:

$$
\begin{align*}
T &= t, \\
\dot{a} &= \left(3\alpha - \frac{1}{2}\right)\frac{a^2}{a} - \frac{1}{2}(1 + \gamma)\beta a^{a^{\gamma - 1}} - \frac{\alpha}{4}a^{3\alpha - 2}p_T, \\
0 &= -\frac{6a^2}{a^{3\alpha - 1}} - 6\beta a^{\gamma + 1} + \frac{p_T}{a^{3\alpha}}.
\end{align*}
$$

(17, 18, 19)

Note that the classical equations for $\gamma = +1$ case in [31] are corresponding with choosing the gauge $N = 1$. In this gauge, the constraint equation $\mathcal{H} = 0$ reduces to

$$
-6a\dot{a}^2 - 6\beta a^{\gamma + 1} + a^{-3\alpha}p_T = 0,
$$

(20)

or

$$
\left(\frac{da(t)}{dt}\right)^2 + \beta a(t) = \frac{p_T}{6a^{3\alpha + 1}(t)}.
$$

(21)

Imposing the standard quantization conditions on the canonical variables ($p_a \rightarrow -i\frac{\partial}{\partial a}, p_T \rightarrow -i\frac{\partial}{\partial T}$) and demanding that the super-Hamiltonian operator (15) annihilate the wavefunction, we are led to the following WD equation in minisuperspace ($\hbar = 1$)

$$
\frac{\partial^2\Psi}{\partial a^2} - 144\beta a^{2\gamma + 1}\Psi = 124a^{1 - 3\alpha}\frac{\partial\Psi}{\partial t} = 0.
$$

(22)

According to equation (17), $T = t$ can be associated with the time coordinate [32, 33]. Equation (22) takes the form of a Schrödinger equation $i\frac{\partial \Psi}{\partial t} = \hat{H}\Psi$. As discussed in [20, 33], in order for the Hamiltonian operator \hat{H} to be self-adjoint the inner product of any two wavefunctions Φ and Ψ must take the form

$$
(\Phi, \Psi) = \int_{0}^{\infty} a^{1 - 3\alpha}\Phi^*\Psi\,da.
$$

(23)

On the other hand, the wavefunctions should satisfy the following boundary conditions [33, 34]:

$$
\Psi(0, t) = 0 \quad \text{or} \quad \left.\frac{\partial \Psi(a, t)}{\partial a}\right|_{a=0} = 0.
$$

(24)

The WD equation (22) can be solved by the separation of variables as follows:

$$
\Psi(a, t) = e^{iEt}\psi(a),
$$

(25)
where the scale factor-dependent part of the wavefunction \(\psi(a) \) satisfies
\[
-\psi'' + 144\beta a^{3+\gamma} \psi = 24E a^{1-3\alpha} \psi,
\]
and the prime denotes derivative with respect to \(a \).

An interesting feature of the Stephani model is that the spatial curvature is time-dependent. The recent observational data show that our universe is spatially flat. Moreover, negative powers in equation (11) lead to the spatially flat universe in the present epoch. In the following section we solve a general class of exactly solvable models with \(\gamma = -(1 + 3\alpha) \) and find the corresponding eigenfunctions. Then we construct the wave packets by appropriate superimposing of these eigenfunctions and compute the expectation value of the scale factor versus time. After solving the classical equations exactly, we compare the classical and quantum solutions and show that these solutions are asymptotically the same. Moreover, we study the case using the de Broglie–Bohm interpretation of quantum mechanics and find the corresponding Bohmian trajectories which are different from the classical case for small times due to the effect of the quantum potential.

3. Quantum cosmological models with \(\gamma = -(1 + 3\alpha) \)

In this section, we consider the particular relation between \(\gamma \) and \(\alpha \) as \(\gamma = -(1 + 3\alpha) \). In this case, the WD equation (26) takes the form
\[
-\psi'' + 24(E - 6\beta)a^{1-3\alpha} \psi = 0,
\]
and hence equation (25) has the following general time-dependent solutions under the form of Bessel functions:
\[
\Psi_E(a, t) = e^{i(E-6\beta)t} \sqrt{a} \left[c_1 J_{\frac{1}{3}\left(\frac{96(E-6\beta)}{3(1-\alpha)} a^{\frac{1-\alpha}{2}}\right)} + c_2 Y_{\frac{1}{3}\left(\frac{96(E-6\beta)}{3(1-\alpha)} a^{\frac{1-\alpha}{2}}\right)} \right].
\]
Wave packets can be constructed by superimposing these solutions to obtain physically allowed wavefunctions. The general structure of these wave packets are
\[
\Psi(a, t) = \int_{-6\beta}^{\infty} A(E) \Psi_E(a, t) \, dE.
\]
We choose \(c_2 = 0 \) to satisfy the first boundary condition of equation (24). Defining \(r = \sqrt{\frac{96(E-6\beta)}{3(1-\alpha)}} \), simple analytical expressions for the wave packet can be found by choosing \(A(E) \) to be a quasi-Gaussian function
\[
\Psi(a, t) = \sqrt{a} \int_{-6\beta}^{\infty} r^{\nu+1} e^{-r^2 ||(1-\alpha)^2+6\beta|| J_r(ra^{\frac{1-\alpha}{2}})} \, dr,
\]
where \(\nu = \frac{1}{3(1-\alpha)} \) and \(\kappa \) is an arbitrary positive constant. The above integral is known [35], and the wave packet takes the form
\[
\Psi(a, t) = a e^{\frac{\nu(a-1-\alpha)}{\kappa}} \frac{-6\beta}{(2B)\kappa},
\]
where \(B = \kappa - \frac{1}{3(1-\alpha)^2}t \). Now, we can verify what these quantum models predict for the behavior of the scale factor of the universe. By adopting the many-worlds interpretation [36], and with regards to the inner product relation (23), the expectation value of the scale factor
\[
\langle a \rangle_t = \frac{\int_{0}^{\infty} a^{1-3\alpha} \Psi(a, t)^* a \Psi(a, t) \, da}{\int_{0}^{\infty} a^{1-3\alpha} \Psi(a, t)^* \Psi(a, t) \, da}.
\]
is easily computed, leading to
\[\langle a \rangle_t = \frac{\Gamma(\frac{3\alpha - 5}{3\alpha - 1})}{\Gamma(\frac{3\alpha - 4}{3\alpha - 1})} \left[\frac{18(1-q)^4}{(32)^2} t^2 + 2\kappa^2 \right] \frac{1}{\Gamma_1} \cdot \tag{33} \]

Now, we can calculate the dispersion of the wave packets
\[(\Delta a)^2 = \langle a^2 \rangle_t - \langle a \rangle_t^2, \tag{34} \]
using (31) and (32), we have
\[(\Delta a)^2 = \frac{3\pi \Gamma\left(\frac{1}{3-\alpha}\right) - 16\pi \Gamma\left(\frac{1}{3-\alpha}\right) \Gamma\left(\frac{5-3\alpha}{6-3\alpha}\right) \left[\frac{18(1-q)^4}{(32)^2} t^2 + 2\kappa^2 \right] \frac{1}{\Gamma_1} \cdot \tag{35} \]

This shows the dispersion of the wave packets through the time with the minimum at \(t = 0 \).
This is similar to the free-particle case, where the wave packets disperse more rapidly for more localized initial states.

The important feature of this model is the avoidance of the singularity. Equation (33) shows that the expectation value of the scale factor never vanishes for all time. On the other hand, at the quantum level, since the probability density of finding the scale factor at \(a = 0 \) (with regards to the inner product relation (23) and the behavior of Bessel functions for small values of the argument) is zero at all times \(\lim_{a \to 0} a^{1-3\alpha} |\Psi(a,t)|^2 = 0 \), we have an indication that these models may not have singularities at the quantum level.

In the classical case, by eliminating the \(p_T \) variable in the equations of motion (18) and (19), the resulting equation in the case \(\gamma = -(1 + 3\alpha) \) takes the following simple form:
\[\ddot{a} = (3\alpha - 1) \frac{\dot{a}^2}{2a}, \tag{36} \]
which has the exact solution as
\[a(t) = a_0 t \frac{\pi^2}{\Gamma_1}, \tag{37} \]
where
\[a_0 = \frac{\Gamma(\frac{3\alpha - 5}{3\alpha - 1})}{\Gamma(\frac{3\alpha - 4}{3\alpha - 1})} \left[\frac{18(1-q)^4}{(32)^2} \right] \frac{1}{\Gamma_1}. \tag{38} \]

Figure 1 shows the behavior of the classical scale factor (37) and quantum mechanical expectation value of the scale factor (37) versus time for various cases.

It is known that the results obtained by using the many-worlds interpretation agree with those that can be obtained using the ontological interpretation of quantum mechanics [22–26].

In the Bohmian interpretation, the wavefunction is written as
\[\Psi = R e^{iS}, \tag{39} \]
where \(R \) and \(S \) are real functions. Inserting this expression in the WD equation (22) (for \(\gamma = -(1 + 3\alpha) \)), we have
\[\frac{\partial S}{\partial t} = \frac{1}{24a^{1-3\alpha}} \left(\frac{\partial S}{\partial a} \right)^2 - 6\beta + Q = 0, \tag{40} \]
\[\frac{\partial R}{\partial t} = \frac{1}{12a^{1-3\alpha}} \frac{\partial R}{\partial a} \frac{\partial S}{\partial a} - \frac{1}{24a^{1-3\alpha}} R \frac{\partial^2 S}{\partial a^2} = 0. \tag{41} \]
Here, $Q = \frac{1}{24}a^{1-3\alpha}R\frac{\partial^2 R}{\partial a^2}$ is the quantum potential which modifies the Hamilton–Jacobi equation. In fact, the deviation from the classical trajectory happens whenever the quantum potential is more important than the classical potential. The real functions $R(a, t)$ and $S(a, t)$ can be obtained from the wavefunction (31) as

$$R = \left[4\kappa^2 + \left(\frac{3}{16} \right)^2 (1-\alpha)^4 t^2 \right]^{-\frac{3}{6(1-\alpha)}} a \exp \left(-\frac{\kappa a^{3(1-\alpha)}}{4\kappa^2 + \left(\frac{3}{32} \right)^2 (1-\alpha)^4 t^2} \right),$$

$$S = -\frac{3}{128} \left(1-\alpha \right)^2 a^{3(1-\alpha)t} + \frac{4-3\alpha}{3(1-\alpha)} \arctan \left[\frac{3 (1-\alpha)^2 t}{\kappa} \right] + 6\beta t.$$
In the Bohmian interpretation, the behavior of the scale factor is governed by the following equation:

\[p_a = \frac{\partial S}{\partial a}. \tag{44} \]

On the other hand, from the definition of \(p_a \) (16) and for \(N = a^{3\alpha} \) we have \(p_a = -12a^{1-3\alpha} \dot{a} \).

Therefore, the Bohmian trajectory becomes

\[\frac{512 \dot{a}}{a} = 3(1 - \alpha)^3 \frac{t}{\left[k^2 + \left(\frac{3}{32} \right)^2 (1 - \alpha)^4 r^2 \right]^2}. \tag{45} \]

which the integration yields

\[a(t) = a_0 \left[k^2 + \left(\frac{3}{32} \right)^2 (1 - \alpha)^4 r^2 \right]^{\frac{1}{4(1-\alpha)}}, \tag{46} \]

where \(a_0 \) is the constant of integration. This completely coincides with the computation of the expectation value of the scale factor. Now we can find the quantum potential

\[Q(a, t) = -\kappa \frac{1 - \alpha}{32} \left[k^2 + \left(\frac{3}{32} \right)^2 (1 - \alpha)^4 r^2 \right] \left\{ 3\kappa (1 - \alpha)a^{3(1-\alpha)} - (4 - 3\alpha) \left[k^2 + \left(\frac{3}{32} \right)^2 (1 - \alpha)^4 r^2 \right] \right\}. \tag{47} \]

Using the relation between the scale factor and time (46), the quantum potential can be written in terms of the scale factor as

\[Q(a) = \frac{1 - \alpha}{32} a_0^{4(1-\alpha)} (4 - 3\alpha) - 3\kappa (1 - \alpha)a_0^{3(1-\alpha)} a^{3(1-\alpha)}. \tag{48} \]

It is obvious that the quantum effects are negligible for large values of the scale factor and are important for small values of the scale factor. Therefore, asymptotically we have the classical behavior.

In the following section, for completeness we briefly consider some interesting and exactly solvable cases which have bound state solutions.

4. Bound state solutions

In this section, we study four different cases of \(\gamma \) and \(\alpha \). We find the exact discrete energy spectrum and corresponding eigenfunctions.

For \(\gamma = -1 \) and \(\alpha = 1/3 \) (radiation), the WD equation (26) reduces to

\[-\psi'' + 144\beta a \psi = 24E \psi, \tag{49} \]

which can be rewritten as

\[\psi'' - 144\beta \left(a - \frac{E}{6\beta} \right) \psi = 0, \tag{50} \]

by taking \(x = a - \frac{E}{6\beta} \), we have

\[\frac{d^2}{dx^2} \psi(x) - 144\beta x \psi(x) = 0, \tag{51} \]

which is the Airy’s differential equation [37]. This equation has two solutions as \(\text{Ai}(144\beta^{1/3} x) \) and \(\text{Bi}(144\beta^{1/3} x) \). The first one is an exponentially decreasing function
Quantum Stephani exact cosmological solutions and the selection of time variable

Figure 2. Plot of the wavefunction ($\psi(a)$) for $\beta = 1$ and $n = 8$, showing the oscillatory behavior for the small values of the scale factor and exponential damping for the large values of the scale factor.

of x, and the second one grows exponentially and is physically unacceptable. Therefore, the solution is

$$\psi(a) = A_i \left[(144\beta)^{1/3} \left(a - \frac{E_{6\beta}}{6\beta} \right) \right]. \quad (52)$$

We choose the first boundary condition (24), which leads to

$$A_i \left[-E \left(\sqrt{\frac{3}{2} \beta} \right)^{-2/3} \right] = 0. \quad (53)$$

Airy’s function $A_i(x)$ has infinitely many negative zeros $z_n = -a_n$, where $a_n > 0$, therefore, the energy levels quantize and take the values

$$E_n = \left(\sqrt{\frac{3}{2} \beta} \right)^{2/3} a_n. \quad (54)$$

The time-dependent eigenfunctions take the form

$$\Psi_n(a, t) = e^{iE_n t} A_i \left[(144\beta)^{1/3} \left(a - \frac{E_{6\beta}}{6\beta} \right) \right]. \quad (55)$$

It is important to note that Airy’s function $A_i(x)$ has an oscillatory behavior for $x < 0 \left(a < \frac{E_{6\beta}}{6\beta} \right)$ while for $x > 0 \left(a > \frac{E_{6\beta}}{6\beta} \right)$ decreases monotonically and is an exponentially damped function for large a (figure 2). Therefore, the solutions (55) show a classical behavior for small a and a quantum behavior for large a. This is contrary to usually expected results in the previous section. In fact detecting quantum gravitational effects in large universes is noticeable which has been also observed in the FRW and Kaluza-Klein models [32, 38].

In $\gamma = -1$ and $\alpha = -1/3$ (cosmic strings) case, the WD equation (26) reduces to

$$-\psi'' + 144\beta a \psi = 24Ea^2 \psi. \quad (56)$$

For $E < 0$, the above equation can be written as

$$-\psi'' + 24|E| \left[\left(a - \frac{3\beta}{E} \right)^2 - \left(\frac{3\beta}{E} \right)^2 \right] \psi = 0, \quad (57)$$
by taking $x = a - \frac{3\beta}{E}$, we have
\[-\frac{d^2}{dx^2} \psi(x) + 24|E|x^2\psi(x) = \frac{216\beta^2}{|E|}\psi(x).\] (58)

This equation is identical to the time-independent Schrödinger equation for a harmonic oscillator with unit mass and energy λ:
\[-\frac{d^2}{dx^2}\psi(x) + \omega^2 x^2\psi(x) = 2\lambda\psi(x),\] (59)
where $2\lambda = \frac{216\beta^2}{|E|}$ and $\omega^2 = \frac{24|E|}{4}$. Therefore, the allowed values of λ are $\omega(n + 1/2)$ and the possible values of E are
\[E_n = -\left(\frac{113\beta^2}{\sqrt{24(n + \frac{1}{2})}}\right)^{\frac{1}{3}}, \quad n = 0, 1, 2, \ldots,\] (60)

therefore, the stationary solutions are
\[\Psi_n(a, t) = e^{iE_n t}\phi_n \left(a - \frac{3\beta}{E_n}\right),\] (61)
\[\phi_n(x) = H_n \left(\frac{24}{|E|}\right)^{\frac{1}{4}}x e^{-\sqrt{6|E|}x^2},\] (62)
where H_n are the Hermite polynomials. The wavefunctions (61) are similar to the stationary quantum wormholes as defined in [39]. However, neither of the boundary conditions (24) can be satisfied by these wavefunctions.

For $\gamma = -2$ and $\alpha = 0$ (dust regime), the WD equation (26) reduces to
\[-\psi'' + 144\beta^2 \psi = 24Ea\psi,\] (63)
which can be written as
\[\psi'' - 24E \left(\frac{6\beta}{E} - a\right)\psi = 0,\] (64)
by taking $x = \frac{6\beta}{E} - a$, we have
\[\psi'' - 24E x\psi = 0,\] (65)
which is again the Airy’s differential equation [37]. Therefore, the physically acceptable solution is
\[\psi(a) = Ai \left(\left(24E\right)^{1/3}\left(\frac{6\beta}{E} - a\right)\right).\] (66)

We choose the first boundary condition (24), which leads to
\[Ai[12\sqrt{2}\beta E^{-2/3}] = 0.\] (67)
Airy’s function $Ai(x)$ has infinitely many negative zeros z_n, therefore, the energy levels quantize and take the values of
\[E_n = \left(\frac{12\sqrt{2}\beta}{z_n}\right)^{3/2},\] (68)
which exist only for the negative values of β. The time-dependent eigenfunctions take the form
\[\Psi_n(a, t) = e^{iE_n t} Ai \left(\left(24E_n\right)^{1/3}\left(\frac{6\beta}{E_n} - a\right)\right).\] (69)
These solutions (69) show a quantum behavior for small \(a \) and a classical behavior for large \(a \).

In \(\gamma = -2 \) and \(\alpha = -1/3 \) (cosmic strings) case, the WD equation (26) reduces to
\[
-\psi'' + 144\beta \psi = 24Ea^2\psi.
\]
(70)

For \(E < 0 \), the above equation can be written as
\[
-\psi'' + 24|E|a^2\psi = -144\beta \psi.
\]
(71)

This equation is identical to the time-independent Schrödinger equation for a harmonic oscillator with unit mass and energy \(\lambda \), where \(2\lambda = -144\beta \) and \(\omega^2 = 24|E| \). Therefore, the allowed values of \(\lambda \) are \(\omega(n + 1/2) \) and the possible values of \(E \) are
\[
E_n = \frac{-216\beta^2}{(n + \frac{1}{2})^2}, \quad n = 0, 1, 2, \ldots
\]
(72)

for \(\beta < 0 \). Thus, the stationary solutions are
\[
\Psi_n(a, t) = e^{iE_nt}\phi_n(a),
\]
(73)
\[
\phi_n(a) = H_n\left((-24|E_n|)^{\frac{1}{4}}a\right)e^{-\sqrt{6|E_n|}a^2}.
\]
(74)

The solutions for odd \(n \) satisfy the first boundary condition (24) and the appropriate wave packets can be constructed by superposing these stationary solutions.

5. Conclusion

In this work, we have investigated the perfect fluid Stephani quantum cosmological models. The use of Schutz’s formalism allowed us to obtain a Schrödinger-like WD equation in which the only remaining matter degree of freedom plays the role of time. We have obtained eigenfunctions and therefore constructed the acceptable wave packets by appropriate linear combination of these eigenfunctions. The time evolution of the expectation value of the scale factor has been determined using the many-worlds and Bohmian interpretations of quantum cosmology. We have shown that contrary to the classical case, the expectation values of the scale factor avoid singularity in the quantum case. At the end, we solved some interesting bound state cases and found their discrete energy eigenvalues. We have also shown that in some bound state cases, we may observe the quantum effects in the large scales which correspond to the quantum behavior at the late time cosmology.

References

[1] Riess G et al 1998 Astron. J. 116 1009
[2] Vilenkin A 1984 Phys. Rev. Lett. 53 1016
[3] Davies R L 1997 Phys. Rev. D 36 997
[4] Silveira V and Waga I 1994 Phys. Rev. D 50 4890
[5] Kamionkowski M and Toubnas N 1996 Phys. Rev. Lett. 77 587
[6] Caldwell R R, Rahul D and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582
[7] Kramer D, Stephani H, MacCallum M A H and Herlt E 1980 Exact Solutions of Einstein's Field Equations (Cambridge: Cambridge University Press)
[8] Krasiński A 1998 Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press)
[9] Stephani H 1967 Commun. Math. Phys. 4 137
[10] Barnes A 1974 Gen. Rel. Grav. 2 147
[11] Krasiński A 1983 Gen. Rel. Grav. 15 673
[12] Lapchinskii V G and Rubakov V A 1977 Theor. Math. Phys. 33 1076
[13] Alvarenga F G, Fabris J C, Lomes N A and Monerat G A 2002 Gen. Rel. Grav. 34 651
[14] Batista A B, Fabris J C, Gonçalves S V B and Tossa J 2002 Phys. Rev. D 65 063519
[15] Pedram P, Jalalzadeh S and Gousheh S S 2007 Phys. Lett. B at press (Preprint 0708.4143)
[16] Pedram P, Jalalzadeh S and Gousheh S S 2007 Int. J. Theor. Phys. at press (Preprint 0705.3587)
[17] Schutz B F 1970 Phys. Rev. D 2 2762
[18] Schutz B F 1971 Phys. Rev. D 4 3559
[19] Gotay M J and Demaret J 1983 Phys. Rev. D 28 2402
[20] Lemos N A 1996 J. Math. Phys. 37 1449
[21] Alvarenga F G, Batista A B, Fabris J C and Gonçalves S V B 2003 Gen. Rel. Grav. 35 1659
[22] Holland P R 1993 The Quantum Theory of Motion: An Account of the de Broglie–Bohm Interpretation of Quantum Mechanics (Cambridge: Cambridge University Press)
[23] Pinto-Neto N 1999 Proc. 8th Brazilian School of Cosmology and Gravitation II ed M Novello (Gif-sur-Yvette: Editions Frontieres)
[24] Neumaier A 2000 Bohmian mechanics contradicts quantum mechanics Preprint quant-ph/0001011
[25] Marchildon L 2000 No contradictions between Bohmian and quantum mechanics Preprint quant-ph/0007068
[26] Ghose P 2001 On the incompatibility of quantum mechanics and the de Broglie–Bohm theory II Preprint quant-ph/0103126
[27] Arnowitt R, Deser S and Misner C W 1962 Gravitation: An Introduction to Current Research ed L. Witten (New York: Wiley)
[28] Stephani H 1967 Commun. Math. Phys. 5 337
[29] Dąbrowski M P 1993 J. Math. Phys. 34 1447
[30] Godłowski W, Stelmach J and Szydłowski M 2004 Class. Quantum Grav. 21 3953 (Preprint astro-ph/0403534)
[31] Stelmach J and Jakacka I 2001 Class. Quantum Grav. 18 2643
[32] Lemos N A and Alvarenga F G 1999 Gen. Rel. Grav. 31 1743 (Preprint gr-qc/9906061)
[33] Alvarenga F G and Lemos N A 1998 Gen. Rel. Grav. 30 681
[34] Monerat G A, Silva E V C, Oliveira-Neto G, Filho L G F and Lemos N A 2006 Phys. Rev. D 73 044022
[35] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic) formula 6.631-4
[36] Tipler F J 1986 Phys. Rep. 137 231
[37] Magnus W, Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Functions of Mathematical Physics (New York: Springer)
[38] Colistete R Jr, Fabris J C and Pinto-Neto N 1998 Phys. Rev. D 57 4707
[39] Hawking S W and Page D B 1990 Phys. Rev. D 42 2655