Research Article

Comparative Pharmacokinetic Studies of Four Ginsenosides in Rat Plasma by UPLC-MS/MS after Oral Administration of Panax quinquefolius-Acorus gramineus and Panax quinquefolius Extracts

Hailong Xie,1,2 Dongxue Wang,2 Wenjun Zhang,2 Xinjia Yan,2 and Ying Zhao2

1College of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
2College of Pharmacy, Harbin University of Commerce, 138 Tongda Road, Harbin 150076, China

Correspondence should be addressed to Ying Zhao; zhaoy0204@163.com

Received 13 February 2019; Revised 31 July 2019; Accepted 10 August 2019; Published 6 November 2019

Academic Editor: Eduardo Dellacassa

Copyright © 2019 Hailong Xie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Panax quinquefolius (PQ) and Acorus gramineus (AG) are drug target pairs in traditional Chinese medicine (TCM), which are used to treat age-related diseases. In the present study, we simultaneously determined the contents of four main bioactive ginsenosides (Rb1, Rb2, Rd, and Re) in rat plasma using an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Plasma specimens were purified by using the solid-phase extraction procedure, and separation was performed on Waters ACQUITY UPLC BEH C18 (100 mm × 2.1 mm, 1.7 μm) in multiple reaction monitoring (MRM) mode and negative electrospray ionization (ESI) mode. The established UPLC-MS/MS method showed good linear correlation (r ≥ 0.9978), stability (−11.93 to 12.11%), precision (RSD < 14.63%), and recovery (76.43%–95.20%). The lower limit of quantification was 3.6 ng/mL for Rb1, 1.6 ng/mL for Rb2, 1.2 ng/mL for Rd, and 2.5 ng/mL for Re. This validated method was successfully employed to investigate the pharmacokinetics of the four ginsenosides in rat plasma after oral administration of PQ-AG and PQ extracts. The results revealed the pharmacokinetic profiles of PQ-AG drug pair and clarified that AG played a critical role in stimulating the absorption of active ginsenosides in PQ. Collectively, our findings provided valid and reliable evidence for the rational use of PQ-AG in clinical practice.

1. Introduction

In multiple diseases caused by complex pathogenic factors, the advantages of using a single herb are absent or show weaker meaning. The drug target pairs are the combination of two relatively fixed drugs based on the theory of traditional Chinese medicine (TCM), showing important clinical significance in various diseases [1–4]. Panax quinquefolius (PQ) is used to restore vital energy and treat diabetes [5] and tumor [6] as Qi-tonifying agents in TCM. Acorus gramineus (AG) possesses the effects of stimulating appetite [7], resolving dampness [8], inducing resuscitation [9], improving learning and memory [10], and so on. Moreover, AG can promote drug absorption [11, 12]. As described in early publications and our previous studies, PQ-AG drug pair is popular due to its remarkable and reliable therapeutic actions, such as antioxidant, antiaging, and blood circulation promoting properties, especially in treating diabetes [13–15].

A great progress has been made in pharmacological research of ginsenosides. However, only few pharmacokinetic studies have investigated drug pairs. In recent years, some methods have been used for the determination of ginsenosides. An LC-MS/MS method has been established to determine the concentrations of ginsenosides in plasma and brain [16]. Moreover, an HPLC-MS/MS method has been used to characterize and quantify ginsenosides in plant extracts from Panax ginseng and PQ [17]. An LC-MS fingerprint and a chemometric approach, in combination with multivariate statistics, have been used to distinguish between P. quinquefolius samples derived from the United States and China [18].
Because only few reports have assessed the pharmacokinetic profiles and the compatibility mechanism of the drug pair, we developed an ultra-performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry (UPLC-MS/MS) method to compare the pharmacokinetic profiles of four major bioactive components of ginsenosides, Rb1, Rb2, Rd, and Re (Figure 1) in rat plasma after oral administration of PQ-AG and single PQ extracts. Collectively, our findings provided scientific evidence on reasonable compatibility of the drug pair and laid the foundations for further investigation of the behavioral mechanism.

2. Materials and Methods

2.1. Chemicals and Reagents. Rb1 (MUST-14032301), Rb2 (MUST-14072210), Rd (MUST-16012503), Re (MUST-14091710), and dioscin (MUST-15012101) (IS, purity ≥ 98%) were purchased from Chengdu MANSITE Pharmaceutical Co., Ltd. (Chengdu, Sichuan, China). PQ and AG were collected from Heilongjiang Ruixiang Pharmaceuticals Company (Harbin, Heilongjiang, China) and identified by Ruifeng Fan from the Heilongjiang University of Chinese Medicine. The plant species were deposited (specimen 2015093104) at the Pharmacy College. Acetonitrile and methanol were of HPLC grade and purchased from Fisher (Emerson, America). Formic acid was of HPLC grade and purchased from Sigma-Aldrich (St Louis, MO, USA). All other reagents were of analytical grade.

2.2. Animals. Male SD rats (230 ± 20 g) were obtained from the Laboratory Animal Center of Changchun Yisi (Changchun, Jilin, China). The animal experiments were performed in accordance with the Guide for the Care National Institutes of Health. Before the experiments, the rats were fed in an environmentally controlled room with temperature of 22 ± 2°C, humidity of 50 ± 10%, and 12 h dark-light cycle for 5 days.

2.3. Chromatographic Conditions. Chromatographic analysis was performed on a Waters Acquity UPLC system (Waters Corp., Milford, MA, USA). An ACQUITY UPLC BEH C18 (100 × 2.1 mm, 1.7 μm) column was used for all analytes. The column temperature was at 35°C. The mobile phase was composed of formic acid aqueous solution (A, 0.1%) and acetonitrile (B) at a gradient elution of 25% B at 0–0.5 min, 25%–50% B at 0.5–2.0 min, 50–60% B at 2.0–5.0 min, 60–25% B at 5.0–5.5 min, and 25% B at 5.5–7.0 min, with a flow rate of 0.2 mL/min.

2.4. MS Conditions. MS detection was performed using the Xevo Triple Quadrupole MS (Waters Corp.) equipped with an ESI source in both positive and negative ionization modes. The experimental parameters were set as follows: CV 2.80 kV; desolvation temperature 350°C; source temperature 650°C; cone gas flow 50 L/h; and desolvation gas flow 650 L/h. The detection was carried out using the MRM scan mode. The CV and CE were optimized for each analyte, and selected values are listed in Table 1 and Figure 2.

2.5. Preparation of PQ-AG and PQ Extracts. The powder of PQ (0.5 kg) and PQ-AG (1.0 kg, with equal proportions of PQ and AG) was extracted for three times by refluxing with water (1 : 10, w/v) for 2 h of each time. Then, the extracts were filtered, and the filtrates were pooled and concentrated to dryness under reduced pressure by rotary evaporator.

2.6. Preparation of Calibration Standards and QC Samples. The standard stock solution was prepared in methanol with four ginsenosides at the final concentration of 1.14 mg/mL for Rb1, 0.10 mg/mL for Rb2, 0.78 mg/mL for Rd, and 1.58 mg/mL for Re. The working standard solution at required concentrations was obtained by continuously diluting the stock solution. The IS stock solution was also prepared with methanol at a final concentration of 720 ng/mL. Calibration samples were prepared by mixing solutions of standard mixture, internal standard, and methanol with rat blank plasma at the final concentrations of 3.6, 7.2, 35.6, 71.2, 142.4, 284.8, 569.5, and 1, 139.0 ng/mL for Rb1, 1.6, 3.2, 6.3, 31.3, 62.5, 125.0, 250.0, and 500.0 ng/mL for Rb2, 1.2, 2.4, 4.9, 24.4, 48.8, 97.6, 195.1, and 390.2 ng/mL for Rd, and 2.5, 4.9, 9.9, 49.3, 98.6, 197.1, 394.3, and 788.5 ng/mL for Re. QC samples were also prepared with the same method at low, middle, and high concentrations (7.2, 142.4, and 911.4 ng/mL for Rb1, 3.2, 62.5, and 400.0 ng/mL for Rb2, 2.4, 48.8, and 312.2 ng/mL for Rd, 5.0, 98.6, and 630.8 ng/mL for Re). All solutions were stored at 4°C.

2.7. Preparation of Plasma Samples. Plasma specimens (200 μL) were mixed with IS solution (20 μL, 720 ng/mL) in an Eppendorf tube and centrifuged at 4, 000 rpm for 15 min at 4°C. Then, the supernatant was removed from plasma sample. Hydrochloric acid (4 μL) was added into 200 μL plasma sample, and then, the mixture was vortexed for 1 min. Waters OASIS HLB SPE C18 columns (Waters, USA) were used to remove the proteins in plasma samples, and it was pre-activated by 3 mL methanol and 3 mL water. Then, 2 mL of 100% methanol was used to wash the column, and the eluate was collected and dried under nitrogen gas (45°C). Subsequently, 100 μL of 100% methanol was used to redisolve the residues, followed by centrifugation at 13, 000 rpm for 15 min at 4°C. Before UPLC-MS/MS analysis, the sample was finally filtered through a 0.22 μm membrane filter.

2.8. Method Validation. The selectivity, linearity, precision, accuracy, extraction recover, matrix effects (ME), and stability were determined based on the FDA guidelines [19]. To verify whether there was endogenous interference, the specificity between the blank plasma and plasma samples after oral administration of PQ and PQ-AG extracts was evaluated by chromatographic comparisons. The precision and accuracy of analytical methods were expressed as %CV and the relative standard deviation (RSD) value for the QC samples. Recoveries
Figure 1: The chemical structures of Rb₁, Rb₂, Rd, Re, and dioscin (IS).

Table 1: Precursor/production pairs and parameters for MRM of ginsenosides.

Analytes	Ionization mode	[M-H]⁻ (m/z)	MRM transitions (precursor-product)	Cone voltage (V)	Collision energy (eV)
Rb₁	Negative	1107.5	1107.5 → 621.2	80	40
			1107.5 → 459.6*		45
Rb₂	Negative	1077.7	1077.7 → 621.5	80	50
			1077.7 → 459.5*		60
Rd	Negative	945.5	945.5 → 621.5*	85	50
			945.5 → 459.5		45
Re	Negative	945.5	945.5 → 637.5	80	45
			945.5 → 475.5*		40
Dioscin	Negative	867.6	867.6 → 721.0	85	45

*Quantitative ion.

Figure 2: Continued.
were determined by the peak areas of the standard plasma and
pure reference samples. The stability assays were carried out to
demonstrate the experimental conditions of the samples.

2.8.1. Selectivity. Chromatograms of six different blank plasma
samples were compared with those of the correspondingly
spiked plasma and the plasma samples after oral administration
of PQ-AG and PQ extracts to assess the selectivity.

2.8.2. Linearity and LLOQ. The calibration curves were
constructed by plotting the peak area ratio versus the
calculated concentrations of the four analytes with a weighted \((1/x^2)\)
least square linear regression using spiked plasma samples at
six concentrations. The LLOQ was defined as the lowest
analytical concentration of the calibration curve, at which
the measured precision expressed as RSD was within ±20%
and the accuracy was within ±20%.

2.8.3. Precision and Accuracy. The intraday and interday
precisions as well as accuracies were evaluated by de-
termining the ginsenoside concentration in QC samples at
three different levels (LQC, MQC, and HQC) in six

![Figure 2: Product ion mass spectra of Rb1 (a), Rb2 (b), Rd (c), Re (d), and dioscin (e).](image-url)
replicates on the same day and during three different days. The precision was defined as RSD of the measured concentration, and the accuracy (%) of the measured mean value was deviated from the nominal value. The intraday and interday precisions were within 15%. The accuracy was within 80–120%. The RSD of LLOQ samples should be within 20%.

2.8.4. Extraction Recovery and ME. Blank plasma samples from six rats were extracted and then spiked with analytes and IS to evaluate the ME. ME was evaluated by comparing the peak areas of QC samples at three concentration levels after sample preparation with those prepared in solution at the same concentration level. Recovery was calculated by comparing the peak areas of QC samples with those spiked after sample preparation at the same concentration level.

2.8.5. Stability. The stability of the four analytes was determined by exposing plasma samples to QC at three concentration levels in six replicates. Samples were stored at −80°C for 1 month to assess the short-term storage stability. Freeze-thaw stability was performed after three freeze-thaw cycles at −80°C during three consecutive days. To evaluate the post preparative stability, extracted QC samples were kept in the autosampler (4°C) for 12 h before analysis. The stability assessment of these samples was calibrated with freshly prepared standard as previously described.

2.9. Statistical Analysis. DAS 3.2 software (Mathematical Pharmacology Professional Committee of China, Shanghai, China, 2011) was applied for the analysis of concentration-time data to investigate the pharmacokinetic parameters of four ginsenosides in various groups. Data were presented as the mean ± SD (standard deviation) with triplicate measurements. A significance level was set at \(P < 0.05 \).

2.10. Pharmacokinetic Studies. Male SD rats were randomly and evenly divided into two groups (\(n = 6 \) per group) in pharmacokinetic studies. To evaluate the compatible effect of AG upon PQ treatment, rats were given PQ at a dosage of 0.54 g/kg (equivalent to the amount of raw drug 0.54 g) in the PQ group. PQ-AG was combined with an equal proportion to prepare the mixed extract. The oral dosage in rats was 1.08 g/kg (equivalent to the amount of the raw drug including 0.54 g AG and 0.54 g PQ) in the PQ-AG group. Blood samples were collected at specific time points of 0, 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 12.0, 16.0, 24.0, and 48.0 h. All the plasma samples were obtained by centrifuging the blood samples at 3, 500 rpm for 10 min, then labeled and frozen at −80°C prior to analysis.

3. Results and Discussion

3.1. Optimization of UPLC-MS Conditions. In the optimization process, we found that acetonitrile/H2O system offered the best performance among different mobile phases, including methanol/water, acetonitrile/water, and methanol/acetonitrile/water. Formic acid in water could provide the best peak shape among different modifiers. We also optimized additional UPLC conditions, such as column temperature (25, 30, 35, and 40°C) and flow rate (0.2, 0.3, and 0.4 mL/min). The highest selectivity and resolution were obtained for all tested compounds within 7.0 min under the optimized UPLC conditions as follows: Waters ACQUITY UPLC BEH C18 (100 × 2.1 mm, 1.7 im) column at 35°C and 0.1% formic acid in water (A)-acetonitrile (B) mobile phase at a flow rate of 0.2 mL/min. The precursor ion was [M-H]− at \(m/z \) 1, 107.5 for Rb1, and the product ion peak was at \(m/z \) 459.6, which correspond to the loss of four molecules of Glc [M-4Glc-H]−. The precursor ion was [M-H]− at \(m/z \) 1, 077.7 for Rb2, and the product ion peak was at \(m/z \) 459.5, which correspond to the loss of three molecules of Glc and one molecule of Ara [M-3Glc-Ara-H]−. The precursor ion was [M-H]− at \(m/z \) 945.5 for Rd, and the product ion peak at \(m/z \) 621.5, which correspond to the loss of two molecules of Glc [M-2Glc-H]−. The precursor ion was [M-H]− at \(m/z \) 876.6 for Re, and the product ion peak was at \(m/z \) 475.5, which correspond to the loss of two molecules of Glc and one molecule of Rha [M-2Glc-Rha-H]−. The precursor ion was [M-H]− at \(m/z \) 945.5 for Re, and the product ion peak was at \(m/z \) 721.0, which correspond to the loss of one molecule of Rha [M-Rha-H]−. Table 1 summarizes the main MS parameters, including cone voltage (CV) and collision energy (CE).

Under the above-mentioned chromatographic conditions, saponin components showed more intensive depotized ions in the negative ion mode than those of protonated or sodiated precursors in the positive mode. Therefore, an UPLC-MRM-MS with an ESI interface in the negative mode was used for separation and detection of all compounds tested. Reference standards showed good peak shape and excellent resolution. Figure 2 shows the typical mass spectra and MS/MS spectra of Rb1, Rb2, Rd, Re, and dioscin. Dioscin was used as the IS. The chemical structure of IS was found to be similar to analytes, and it exhibited a stable response, indicating effective separation.

3.2. Method Validation

3.2.1. Selectivity. Figure 3 illustrates the typical multiple reaction monitoring (MRM) chromatograms from blank plasma sample and the sample at 8 h after oral administration of PQ and PQ-AG extracts. No interference peaks were detected during the retention time of IS as well as Rb1, Rb2, Rd, and Re.

3.2.2. Linearity and Lower Limit of Quantification (LLOQ). Table 2 displays the typical equations of calibration curves for the four analytes. The correlation coefficient (r) for each calibration curve was higher than 0.9978. The result indicated that the ratio of peak area strongly correlated with the concentration of each compound within the acceptable linearity ranges. The LLOQs of the four analytes are shown in Table 2.

3.2.3. Precision and Accuracy. The precision and accuracy of the assay were validated for the samples at LLOQ and three
Figure 3: Continued.
Figure 3: Continued.
Figure 3: Continued.
QC levels analyzed on the same day or during three consecutive days. The results are presented in Table 3. The intraday precision and interday precision ranged from 4.57\% to 14.63\%.

3.2.4. Extraction Recovery and ME. The recoveries were obtained at three concentration levels, ranging from 76.43\% to 95.20\%. The ME of all the analytes in blank plasma were within the acceptable range of 90.44\%–107.11\% (Table 4).

Figure 3: Representative MRM chromatograms of Rb\textsubscript{1}, Rd, Re, Rb\textsubscript{2}, and IS in rat plasma samples. Blank rat plasma (a), a blank plasma with IS and analytes at MQC levels (b), a plasma sample taken 8 h after oral administration of PQ (c), and PQ-AG extracts (d).
The ME of IS was 92.30%. Therefore, it demonstrated that ME of the plasma was negligible in the assay.

3.2.5. Stability. The sample stability during storage and processing procedures was evaluated by the analysis of QC samples (Table 5), showing that these analytes were stable after short-term storage (1-month storage at −80°C), post-preparative stability (12 h in the autosampler at 4°C), and three freeze-thaw cycles. All compounds remained stable for 2 weeks at −80°C.

Table 2: The regression equations, linear ranges, and LLOQs of the four compounds.

Compound	Linear regression equation	Linear range (ng/mL)	r	LLOQ (ng/mL)
Rb1	\(Y = 2.823 \times 10^{-3}X + 9.654 \times 10^{-2} \)	3.6–1139	0.9987	3.6
Rb2	\(Y = 7.729 \times 10^{-4}X + 2.824 \times 10^{-3} \)	1.6–500.0	0.9989	1.6
Rd	\(Y = 7.714 \times 10^{-3}X + 9.646 \times 10^{-2} \)	1.2–390.2	0.9979	1.2
Re	\(Y = 4.036 \times 10^{-4}X + 3.149 \times 10^{-3} \)	2.5–788.5	0.9978	2.5

Table 3: Precision and accuracy for the determination of the ginsenosides in rat plasma.

Compounds	Spiked concentration (ng/mL)	Measured (ng/mL)	Intraday precision RSD (%)	Interday precision RSD (%)	Accuracy Re (%)
Rb1	3.6	3.3 ± 0.21	12.01	13.73	3.40
	7.2	7.1 ± 0.10	7.55	7.02	−1.22
	142.4	143.1 ± 1.05	6.83	4.57	4.39
	911.4	910.9 ± 0.05	9.57	5.44	6.01
Rb2	1.6	1.7 ± 0.13	13.54	14.01	−1.84
	3.2	3.2 ± 0.05	14.32	14.48	−5.32
	62.5	61.5 ± 0.18	8.07	8.07	3.76
	400.0	399.3 ± 0.25	9.97	9.19	5.37
Rd	1.2	1.3 ± 0.17	14.61	10.22	4.20
	2.4	2.7 ± 0.21	13.57	13.74	−2.10
	48.8	49.5 ± 0.17	10.83	7.22	−4.05
	312.2	311.9 ± 0.26	6.39	6.04	5.01
Re	2.5	2.5 ± 0.07	11.65	10.34	−6.94
	5.0	4.89 ± 0.26	14.63	14.57	3.29
	98.6	98.3 ± 0.04	8.77	11.22	7.35
	630.8	632.8 ± 0.31	12.08	7.58	−4.10

Table 4: Recoveries and matrix effects of the ginsenosides in rat plasma.

Compound	Concentration (ng/mL)	Extraction recovery	Matrix effect		
		Mean (%)	RSD (%)	Mean (%)	RSD (%)
Rb1	7.2	77.51	6.31	93.37	8.12
	142.4	85.73	1.52	98.36	4.33
	911.4	76.43	13.15	90.44	8.79
Rb2	3.2	79.62	2.50	91.11	8.01
	62.5	86.89	10.74	97.83	7.52
	400.0	78.15	4.62	102.10	3.77
Rd	2.4	86.64	13.60	99.67	12.74
	48.8	95.20	10.17	100.29	8.88
	312.2	88.58	6.51	106.2	13.74
Re	5.0	82.34	6.74	102.56	11.12
	98.6	86.32	3.33	99.52	7.65
	630.8	85.79	12.10	107.11	15.02

The ME of IS was 720. Accuracy of the plasma was 92.30%. Therefore, it demonstrated that ME was negligible in the assay.

3.3. Pharmacokinetics Study. Figure 4 shows the mean plasma concentration-time curves of Rb1, Rb2, Rd, and Re after oral administration of PQ-AG or PQ. Table 6 summarizes the pharmacokinetic parameters of noncompartment model, including maximum plasma concentration (\(C_{\text{max}} \)), time to reach the maximum concentrations (\(T_{\text{max}} \)), half-time (\(t_{1/2} \)), and area under concentration-time curve (\(\text{AUC}_{0-\infty} \)). These results showed that UPLC-MS/MS could be used to detect Rb1, Rb2, Rd, and Re, revealing good absorption of four compounds. The significant differences among Rb1, Rb2, Rd, and Re were observed.
between PQ-AG and PQ groups after oral administration. For Rb1 with certain bioavailability [20], the plasma C_{max} was 600.2 ± 53.6 ng/mL in the PQ-AG group, which was significantly higher than that (461.2 ± 15.9 ng/mL) of the PQ group (P < 0.05). Meanwhile, the T_{max} of Rb1 was 6.67 ± 1.03 h for the PQ-AG group and 7.00 ± 1.10 h for the PQ group, illustrating Rb1 with high uptake in rat plasma for the PQ-AG group. The reason might be attributed to those other components in the PQ-AG group which promoted the absorption and metabolism of Rb1. The C_{max} and T_{max} values of Rb2 in the PQ-AG group were 264.1 ± 24.5 ng/mL and 7.67 ± 0.82 h, respectively. The C_{max} and T_{max} values of Rd showed a good absorption in the PQ-AG

Table 5: Stability of the ginsenosides in rat plasma.

Compound	Spiked concentration (ng/mL)	Mean concentration (ng/mL)	Short term freeze-thaw cycles	Postpreparation	Re (%)	Recovery (%)		
Rb1	7.2	7.1	-7.55	6.86	96.32	97.66	101.85	
	142.4	141.2	7.95	-4.48	9.35	104.8	95.35	101.65
	911.4	910.5	7.53	7.75	-4.67	96.34	101.95	96.10
Rb2	3.2	3.0	-9.70	-9.69	-9.72	93.67	94.21	93.37
	62.5	61.6	-2.12	6.77	2.39	95.33	100.41	99.94
	400.0	402.9	7.11	9.36	7.90	98.74	103.82	99.63
Rd	2.4	2.4	8.64	-11.93	4.43	102.66	97.24	100.10
	48.8	49.7	10.24	8.87	9.98	103.61	100.20	101.71
	312.2	310.2	7.35	8.12	-7.02	101.27	102.00	94.81
Re	5.0	5.1	-10.71	7.33	8.54	97.30	104.07	104.63
	98.6	95.5	12.11	7.53	8.92	99.25	94.12	97.21
	630.8	634.2	8.40	-9.85	9.76	101.73	97.39	102.50

Figure 4: Mean concentration-time profiles of Rb1 (a), Rb2 (b), Rd (c), and Re (d) after oral administration of PQ-AG and PQ extracts (n = 6, mean ± SD).
Table 6: Pharmacokinetic parameters of the ginsenosides after oral administration of PQ-AG and PQ extracts in rats (n = 6, mean ± SD).

Group	Compounds	C_{max} (ng/mL)	T_{max} (h)	t_{1/2} (h)	AUC_{0→t} (ng·h/mL)	AUC_{0→∞} (ng·h/mL)
PQ-AG	Rb1	600.2 ± 53.6*	6.67 ± 1.03	18.52 ± 2.61*	8132.99 ± 454.40*	8414.43 ± 487.69*
	Rb2	264.1 ± 24.5*	7.67 ± 0.82	15.61 ± 5.21*	2458.74 ± 242.86*	2518.20 ± 288.99*
	Rd	283.4 ± 11.1*	6.33 ± 0.82*	14.21 ± 1.98*	3874.28 ± 356.39*	3955.23 ± 382.94*
	Re	460.4 ± 30.2*	0.58 ± 0.20*	9.81 ± 2.15*	3427.96 ± 293.76*	3582.89 ± 396.42*
PQ	Rb1	461.2 ± 15.9	7.00 ± 1.10	15.61 ± 1.52	5983.67 ± 313.47	6146.74 ± 328.31
	Rb2	160.1 ± 18.8	7.67 ± 0.82	13.34 ± 1.58	1214.41 ± 99.25	1229.91 ± 99.58
	Rd	200.9 ± 7.3	7.67 ± 0.82	13.11 ± 2.61	3005.92 ± 229.63	3324.67 ± 317.05
	Re	354.7 ± 26.6	1.08 ± 0.20	8.14 ± 1.20	2331.52 ± 214.10	2379.76 ± 223.68

*P < 0.05 compared with PQ group.

The results showed that AG enhanced the absorption and delayed the elimination of the four analytes in PQ. Moreover, it could result in a better bioavailability of ginsenosides. Some previous literatures have shown that certain compounds in AG may suppress P-glycoprotein functions in the intestinal membrane and the activity of enzyme CYP1A2 [27]. These findings could probably explain why the main components of PQ accumulated after PQ-AG was simultaneously administered. Although these hypotheses needed to be further investigated, we believed that AG and the compatibility of ingredients could result in a better absorption of ginsenosides in PQ.

4. Conclusions

In the present study, we successfully applied a simple, rapid, and sensitive UPLC-MS/MS method to simultaneously determine four bioactive ginsenosides in PQ and the combination of PQ and AG. We, for the first time, reported pharmacokinetic parameters of Rb1, Rb2, Rd, and Re in PQ-AG after oral administration. Our data showed that the four analytes had a better absorption and slower elimination after PQ and AG were combined. The changes of four main active substances in vivo provided valuable insights into the compatibility principles of PQ-AG. In addition, our current findings clarified the rational compatibility of TCM, suggesting better clinical application and research potentials.

Data Availability

All data contained in the manuscript will be made available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

Ying Zhao conceived and designed the experiments. Hailong Xie performed the experiments. Dongxue Wang analyzed the data. Ying Zhao contributed reagents/materials/analysis tools. Hailong Xie and Ying Zhao wrote the paper. Ying Zhao acquired funding for the research. All authors approved the final manuscript.
Acknowledgments
This research was funded by the National Natural Science Foundation of China (81673871 and 81573592).

References
[1] M. Cokol, H. N. Chua, M. Tasan et al., “Systematic exploration of synergistic drug pairs,” Molecular Systems Biology, vol. 7, no. 1, p. 544, 2011.
[2] X. Tan, L. Hu, L. J. Luquette et al., “Systematic identification of synergistic drug pairs targeting HIV,” Nature Biotechnology, vol. 30, no. 11, pp. 1125–1130, 2012.
[3] S. J. Lauer, B. M. Camitta, B. G. Leventhal et al., “Intensive alternating drug pairs for treatment of high-risk childhood acute lymphoblastic leukemia. A pediatric oncology group pilot study,” Cancer, vol. 71, no. 9, pp. 2854–2861, 1993.
[4] Y. Chen, J. Wang, L. Yuan, L. Zhou, X. Jia, and X. Tan, “Interaction of the main components from the traditional Chinese drug pair Chaihu-Shaoyao based on rat intestinal absorption,” Molecules, vol. 16, no. 11, pp. 9600–9610, 2011.
[5] V. Vukas, Z. Z. Xu, E. Jovanovski et al., “Efficacy and safety of American ginseng (Panax quinquefolius L.) extract on glycemic control and cardiovascular risk factors in individuals with type 2 diabetes: a double-blind, randomized, cross-over clinical trial,” European Journal of Nutrition, vol. 58, no. 3, pp. 1237–1245, 2019.
[6] B. Qi, S. Wang, Q. Wang et al., “Characterization and immunostimulating effects on murine peritoneal macrophages of a novel protein isolated from Panax quinquefolius L.,” Journal of Ethnopharmacology, vol. 193, pp. 700–705, 2016.
[7] S. B. Rajput, M. B. Tonge, and S. M. Karuppayil, “An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (sweet flag) and other Acorus species,” Phytomedicine, vol. 21, no. 3, pp. 268–276, 2014.
[8] K. Y.-C. Lam, C.-F. Ku, H.-Y. Wang et al., “Authentication of Acori Tatarinowii Rhizoma (Shi Pu Cong Pu) and its adulterants by morphological distinction, chemical composition and ITS sequencing,” Chinese Medicine, vol. 11, no. 1, p. 41, 2016.
[9] W. T. Zhang, D. Chai, S. Xu, P. Liu, and K. Liu, “Effect of Acorus tatarinowii Schott on the amino acid neurotransmitters in the striatum fococerebral ischemia in rat,” Zhongguo Ying Yong Sheng Li Xue Zazhi, vol. 30, pp. 352–356, 2014.
[10] Z.-B. Liu, W.-M. Niu, X.-H. Yang, Y. Wang, and W.-G. Wang, “Study on perfume stimulating olfaction with volatile oil of Acorus gramineus for treatment of the Alzheimer’s disease rat,” Journal of Traditional Chinese Medicine, vol. 30, no. 4, pp. 283–287, 2010.
[11] Y. Long, J.-C. Li, and X.-R. Zhao, “A study on prescription formulation and compatibility of Rhizoma caprifoliata-Acorus gramineus on the treatment of diabetic cognitive dysfunction,” Journal of Southwest University for Nationalities (Natural Science Edition), vol. 39, no. 4, pp. 516–519, 2013.
[12] V. Vukas, J. L. Sievenpiper, V.-Y. Koo et al., “American ginseng (Panax quinquefolius L.) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus,” Archives of Internal Medicine, vol. 160, no. 7, pp. 1099–1103, 2000.
[13] Y. Cao, Y. Hu, P. Liu, H.-X. Zhao, X.-J. Zhou, and Y.-M. Wei, “Effects of a Chinese traditional formula Kai Xin San (KXS) on chronic fatigue syndrome mice induced by forced wheel running,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 19–25, 2012.
[14] R. Jesky and C. Hallong, “Are herbal compounds the next frontier for alleviating learning and memory impairments? An integrative look at memory, dementia and the promising therapeutics of traditional Chinese medicines,” Phytotherapy Research, vol. 25, no. 8, pp. 1105–1118, 2011.
[15] Y. Lu, H. Li, J. Liu, P. Bi, and Y. Wei, “Simultaneous and sensitive quantification of seven active compounds in Huan-Nao-Yi-Cong-Fang and rat serum by UPLC-ESI/MS,” Analytical Methods, vol. 6, no. 15, pp. 5727–5733, 2014.
[16] W. Wang, Q.-P. Liao, L.-H. Quan et al., “The effect of Acorus gramineus on the bioavailabilities and brain concentrations of ginsenosides Rg1, Re and Rb1 after oral administration of Kai-Xin-San preparations in rats,” Journal of Ethnopharmacology, vol. 131, no. 2, pp. 313–320, 2010.
[17] X. Wang, T. Sakuma, E. Asafa-Adjaye, and G. K. Shiu, “Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L by LC/MS/MS,” Analytical Chemistry, vol. 71, no. 8, pp. 1579–1584, 1999.
[18] J. Sun and P. Chen, “Differentiation of Panax quinquefolius grown in the USA and China using LC/MS-based chromatographic fingerprinting and chemometric approaches,” Analytical and Bioanalytical Chemistry, vol. 399, no. 5, pp. 1877–1889, 2011.
[19] U.S. Food and Drug Administration, 2018, https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf.
[20] Y. S. Lee, W. S. Kim, K. H. Kim et al., “Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states,” Diabetes, vol. 55, no. 8, pp. 2256–2264, 2006.
[21] C. Yang, S. Wang, X. Guo, J. Sun, L. Lai, and L. Wu, “Simultaneous determination of seven anthraquinones in rat plasma by ultra high performance liquid chromatography-tandem mass spectrometry and pharmacokinetic study after oral administration of Semen cassiae extract,” Journal of Ethnopharmacology, vol. 169, pp. 305–313, 2015.
[22] C. Gao, X. Chen, and D. Zhong, “Absorption and disposition of scutellarin in rats: a pharmacokinetic explanation for the high exposure of its isomeric metabolite,” Drug Metabolism and Disposition, vol. 39, no. 11, pp. 2034–2044, 2011.
[23] S. F. Zhou, C. C. Xue, X. Q. Yu, and G. Wang, “Metabolic activation of herbal and dietary constituents and its clinical and toxicological implications: an update,” Current Drug Metabolism, vol. 8, no. 6, pp. 526–553, 2007.
[24] N. Öztürk, S. Korkmaz, Y. Öztürk, and K. Başer, “Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts,” Planta Medica, vol. 72, no. 4, pp. 289–294, 2006.
[25] Z. Wang, S. Wang, Y. Sun et al., “New analytical method for the study of the metabolism of gentiopicroside in rats after oral administration by LC-TOF-MS following picolinoyl derivatization,” Journal of Separation Science, vol. 37, no. 3, pp. 237–243, 2014.
[26] H. Han, A.-Z. Xiong, C.-Y. He, Q. Liu, L. Yang, and Z.-T. Wang, “Combination of UHPLC/Q-TOF-MS, NMR spectroscopy, and ECD calculation for screening and identification of reactive metabolites of gentiopicroside in humans,” Analytical and Bioanalytical Chemistry, vol. 406, no. 6, pp. 1781–1793, 2014.
[27] M.-H. Ka, E. H. Choi, H.-S. Chun, and K.-G. Lee, “Anti-oxidative activity of volatile extracts isolated from Angelica tenuissima roots, peppermint leaves, pine needles, and sweet flag leaves,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 4124–4129, 2005.