Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans

Lois M. Douglas, Hong X. Wang, Sabine Keppeler-Ross, Neta Dean, and James B. Konopka

Department of Molecular Genetics and Microbiology and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA

ABSTRACT The human fungal pathogen Candida albicans causes lethal systemic infections because of its ability to grow and disseminate in a host. The C. albicans plasma membrane is essential for virulence by acting as a protective barrier and through its key roles in interfacing with the environment, secretion of virulence factors, morphogenesis, and cell wall synthesis. Difficulties in studying hydrophobic membranes have limited the understanding of how plasma membrane organization contributes to its function and to the actions of antifungal drugs. Therefore, the role of the recently discovered plasma membrane subdomains termed the membrane compartment containing Can1 (MCC) was analyzed by assessing the virulence of a sur7Δ mutant. Sur7 is an integral membrane protein component of the MCC that is needed for proper localization of actin, morphogenesis, cell wall synthesis, and responding to cell wall stress. MCC domains are stable 300-nm-sized punctate patches that associate with a complex of cytoplasmic proteins known as an eisosome. Analysis of virulence-related properties of a sur7Δ mutant revealed defects in intraphagosomal growth in macrophages that correlate with increased sensitivity to oxidation and copper. The sur7Δ mutant was also strongly defective in pathogenesis in a mouse model of systemic candidiasis. The mutant cells showed a decreased ability to initiate an infection and greatly diminished invasive growth into kidney tissues. These studies on Sur7 demonstrate that the plasma membrane MCC domains are critical for virulence and represent an important new target for the development of novel therapeutic strategies.

IMPORTANCE Candida albicans, the most common human fungal pathogen, causes lethal systemic infections by growing and disseminating in a host. The plasma membrane plays key roles in enabling C. albicans to grow in vivo, and it is also the target of the most commonly used antifungal drugs. However, plasma membrane organization is poorly understood because of the experimental difficulties in studying hydrophobic components. Interestingly, recent studies have identified a novel type of plasma membrane subdomain in fungi known as the membrane compartment containing Can1 (MCC). Cells lacking the MCC-localized protein Sur7 display broad defects in cellular organization and response to stress in vitro. Consistent with this, C. albicans cells lacking the SUR7 gene were more susceptible to attack by macrophages than cells with the gene and showed greatly reduced virulence in a mouse model of systemic infection. Thus, Sur7 and other MCC components represent novel targets for antifungal therapy.

The human fungal pathogen Candida albicans commonly exists as a harmless commensal organism on the skin and gastrointestinal tract of humans. Medical interventions or immunosuppression permits C. albicans to enter the bloodstream and invade tissues, which can lead to organ failure and death (1, 2). Changes in medical care and the lack of more efficient antifungal drugs are leading to increased candidiasis (3). Thus, a better understanding of the mechanisms that permit survival in the host is needed to develop novel therapeutic approaches. In particular, knowledge of the plasma membrane is limited, but it plays a multifaceted role in C. albicans pathogenesis by mediating environmental sensing, nutrient uptake, virulence factor secretion, cellular morphogenesis, and cell wall biogenesis (4, 5). The significance of studies on the plasma membrane is underscored by the fact that the most effective antifungal drugs currently used affect this essential barrier or its resident proteins (6).

Plasma membrane organization is poorly understood because of the difficulties in studying hydrophobic membrane components. For example, the structure and function of lipid raft domains in the plasma membrane remain controversial (7, 8). However, recent studies indicate that the fungal plasma membrane consists of at least three distinct protein-organized subdomains. One type of domain consists of a series of 300-nm-sized patches that were named the membrane compartment containing Can1 (MCC) because it contains the Can1 arginine permease (9–11). The MCC patches are immobile and are thus distinct from the mobile cortical actin patches detected at sites of endocytosis (10, 12). The MCC patches are also distinct in that they are associated
with membrane invaginations that appear as 50-nm-deep furrows (8). Another domain, termed the membrane compartment occupied by Pma1 (MCP), contains proteins that readily diffuse, such as the plasma membrane ATPase Pma1, and are present throughout the plasma membrane but are excluded from the MCC (11). A third domain consists of punctate patches containing the TORC2 complex, which regulates cell polarity and ceramide synthesis (13).

Analysis of the MCC in Saccharomyces cerevisiae has identified other integral membrane protein constituents, including several nutrient symporters and two different families of proteins that are predicted to contain four membrane-spanning domains (14, 15). One family is represented by Nce102, which in S. cerevisiae is implicated in sphingolipid signaling and regulation of MCC formation (14). The other family of tetraspanners is represented by Sur7. Mutation of SUR7 in S. cerevisiae alters sphingolipid composition and causes defects in sporation and osmotic stress (12, 16). Other Sur7 family members (Fmp45, Ynl194c, and Pum1/Ylr414c) are implicated in nitrogen stress, cell wall integrity, and survival in starvation phase (17–19). The MCC proteins also colocalize with a complex of cytoplasmic proteins that reside on the inner surface of the plasma membrane; this complex is known as an eisosome (20).

Eisosomes include Pil1 and Lsp1, paralogs that contain BAR domains and are thought to promote membrane curvature at sites of the MCC and eisosomes (21, 22). Pil1 and Lsp1 are also needed for efficient endocytosis, cell wall structure, and MCC/eisosome formation (12, 20). Other important proteins present in eisosomes include the Pkh1/2 protein kinases, which regulate endocytosis, cell wall integrity, actin localization, and response to heat stress (23–25). Pkh1/2 also regulate the formation of eisosomes by phosphorylating Pil1 and Lsp1 (24, 25).

The MCC/eisosome proteins are widely conserved in fungi, but their functional roles have diverged, possibly because of differences in genetic redundancy (22–30). C. albicans encodes only two obvious members of the Sur7 family: Sur7 and Fmp45. Deletion of C. albicans SUR7 caused broad defects in cellular organization, including severe mislocalization of actin and septins (26, 27, 31). A striking phenotype of the sur7Δ mutant is that it forms abnormal extensions of cell wall growth into the cytoplasm. Cell wall function is also abnormal, as indicated by increased sensitivity to cell wall stress (32). Consistent with this, sur7Δ cell walls contain less of the β-1,3-glucan that is needed to confer cell wall strength and rigidity. The in vitro studies also revealed that sur7Δ mutants have defects in virulence-related functions, including hyphal morphogenesis, invasive growth into agar, and biofilm formation (27, 31, 32). In addition, sur7Δ cells are also more sensitive to the antifungal drug fluconazole, which perturbs ergosterol synthesis, and to agents that cause cell wall stress (e.g., the Pkc1 inhibitor ceresporamide) (27, 32). Therefore, the virulence properties of the C. albicans sur7Δ mutant were analyzed in this study. The sur7Δ mutant was found to be more sensitive to attack by macrophages than the wild type, which correlates with increased sensitivity to oxidative stress and copper. The sur7Δ mutant cells were also strongly defective in invasive growth and virulence in a mouse model of systemic candidiasis. These results indicate that Sur7 and the MCC/eisosome domains represent novel targets for therapeutic intervention of plasma membrane function.

RESULTS

sur7Δ C. albicans cells are phagocytosed less efficiently by macrophages. The altered cell wall phenotypes of the *C. albicans sur7Δ* mutant, including decreased β-glucan and increased mannose, may affect recognition by cells of the innate immune system (32). To examine this, *sur7Δ* cells were assayed for their ability to be phagocytosed by the mouse macrophage-like cell line J774, using a competition assay that compares the uptake of one cell type expressing green fluorescent protein (GFP) with another cell type expressing red fluorescent protein (RFP) (33). This assay can sensitively determine whether a given cell type is phagocytosed faster (e.g., *S. cerevisiae*) or slower (e.g., mannann mutants) than wild-type *C. albicans* (33). Interestingly, the competition assays showed that *sur7Δ* cells were phagocytosed at a lower efficiency than the wild-type control strain (Fig. 1). Similar results were obtained with mouse bone marrow-derived macrophages.

The ability of *sur7Δ* cells that have been phagocytosed to form hyphae and break free of a macrophage was analyzed in time course studies. As expected (34), the wild-type control strain formed elongated hyphae by 2 h postinfection (Fig. 2A) and by 4 h had typically lysed the J774 cells (Fig. 2B). Similar results were observed for an *fmp45Δ* mutant lacking the SUR7 paralog FMP45 and for a control strain in which the *sur7Δ* mutation was complemented by reintroduction of a wild-type copy of SUR7. In contrast, at 4 h postinfection, the majority of *sur7Δ* cells either formed smaller hypha-like outgrowths or failed to undergo detectable growth within the macrophage. Even after 6 h, the *sur7Δ* cells showed primarily reduced hyphal outgrowths that failed to lyse the macrophages (Fig. 2C). After 24 h, it was still possible to find *sur7Δ* mutant cells that did not escape from the J774 macrophage cells (Fig. 2C), whereas there were no macrophages left adhering to the substrate in cultures infected with wild-type *C. albicans*. These results are consistent with a previous report that *sur7Δ* cells were defective in killing macrophages when assayed at 24 h after infection, although the status of the *sur7Δ* cells was not reported in that study (31). The variable growth of *sur7Δ* cells within J774 cells may relate to the fact that the population of *sur7Δ* cells is heterogeneous, as the mutant cells become progressively more abnormal with age (32).
FIG 2 Intracellular growth of C. albicans after phagocytosis. The C. albicans strains indicated by their genotypes were added to the macrophage cell line J774, and then cell morphology was determined by microscopic examination after 2 h (A) or 4 h (B). The arrow indicates the greater extent of growth of a cell that is outside and had not been phagocytosed. Comp., complemented. (C) Images of the sur7Δ mutant captured after the indicated times of incubation with J774 cells. (D) sur7Δ cells were cross-linked to the fluorescent dye fluorescein and then imaged at 6 h postinfection. This method distinguishes between the input cells, which are fluorescent, and the new cell growth, which is not fluorescent (32). The results revealed that all of the small rounded cells were fluorescent, indicating that they were the original input cells that had not grown further. In contrast, the cells that showed various degrees of polarized growth to form elongated cell structures were fluorescent only on one end, revealing the extent of new growth that occurred in the macrophage (Fig. 2D). Thus, sur7Δ cells are better than wild-type cells at avoiding phagocytosis but grow poorly following phagocytosis and are defective at killing macrophages.

Increased sensitivity of sur7Δ cells to a subset of phagolysosomal conditions. C. albicans cells that have been phagocytosed must switch to using two carbon molecules for nutrition, rather than the glucose that is present in the culture medium (35). However, the sur7Δ mutant cells grew similarly to the wild-type cells when spotted onto synthetic minimal medium containing ethanol or acetate (Fig. 3A). This indicates that the poor intraphagosomal growth is not due to a defect in growth on nonfermentable carbon sources.

Pathogens trigger macrophages to undergo changes in the phagosomal compartment that are designed to destroy the invading cells (34, 36). Therefore, sur7Δ cells were examined for sensitivity to conditions in vitro that mimic different aspects of the phagolysosomal environment. Growth assays showed that there were no changes in the sensitivity of sur7Δ cells to the iron chelator bathophenanthrolinedisulfonic acid (BPS), the nitric oxide generator of diethylenetriaminepentaacetic acid (DPTA) NONOate (Fig. 3B), or the antimicrobial host defense peptide LL-37 (Fig. 3C). The growth of the sur7Δ cells was also not affected by lowering the pH to 5.5, the typical pH of a phagosome, and the mutant cells even grew well on plates buffered to pH 3.5 (Fig. 3D). The oxidizing agent H2O2 caused the most apparent effect on the growth of the sur7Δ mutant. Dilutions of cells spotted onto a yeast extract-dextrose (YPD) medium plate containing 5 mM H2O2 showed an obvious defect in the growth of sur7Δ cells compared to the wild-type control strain or the sur7Δ mutant. Dilutions of cells showed a higher (6.6-fold-increased) sensitivity of sur7Δ cells to a broad range of phagolysosomal conditions.

sur7Δ cells are more sensitive than the wild type to a variety of different oxidizing conditions. sur7Δ cells were next examined for sensitivity to chemicals that preferentially cause distinct types of oxidative damage. Cells were examined for sensitivity to, in addition to H2O2, menadione (superoxide-generating agent), cumene hydroperoxide (aromatic hydroperoxide), diamide (thiol oxidant), and cadmium chloride (increases reactive oxygen species) (37). These compounds were tested in broth dilution assays, and the effects on growth were measured after 48 h. The sur7Δ mutant was about 2-fold more sensitive than the wild type to H2O2, menadione, cumene hydroperoxide, and diamide (Fig. 4A). The sur7Δ cells showed a higher (6.6-fold-increased) sensitivity to cadmium, perhaps because cadmium also has additional effects on cells (38). For example, the Pkc1 cell wall integrity pathway is important for resistance to cadmium (39), and sur7Δ cells are also more sensitive to the Pkc1 inhibitor cercosporamide (32). Thus, sur7Δ cells are more sensitive to a broad range of chemicals that increase oxidative damage in cells.
The assays described above monitored the cumulative effects after 2 days of growth and could therefore be influenced by the ability of cells to induce genes that counteract oxidative stress and permit adaptation to higher levels of oxidant. To more closely mimic the oxidative burst that occurs in a phagosome, C. albicans cells were incubated for 25 min in various concentrations of H_2O_2.

FIG 3 Growth of $\text{sur}7\Delta$ under phagosome-like conditions. (A) Dilutions of the indicated cell types were spotted onto solid agar medium containing 2% dextrose, 2% acetate, or 2% ethanol as a carbon and energy source. (B) Effects on growth of the indicated concentration of the iron chelator BPS or the NO-generating agent DPTA NONOate. Cells were incubated in 96-well trays with different concentrations of BPS or DPTA NONOate for 2 days at 37°C, and then the extent of growth was determined using a spectrophotometer. (C) Susceptibility to killing by an antimicrobial peptide was assayed by incubating the indicated cells with the indicated concentrations of LL-37 for 90 min, after which cells were plated to quantify their viability. (D) Effects of pH on growth were determined by spotting dilutions of the indicated cells onto YPD agar plates buffered to the indicated pH. (E) Sensitivity to oxidation was determined by spotting dilutions of cells onto YPD agar plates with or without 5 mM H_2O_2. Plates were incubated for 2 days at 37°C and then photographed. Strains used included the wild-type control (DIC185), the $\text{sur}7\Delta$ mutant (YJA11), and the complemented $\text{sur}7\Delta$ strain carrying a copy of the wild-type SUR7 gene (YJA12).
sur7 mutant with poor growth in macrophages. The effects of copper on the can potentiate the effects of oxidation on the killing of (40). Copper was prepared for these assays by first reducing it with reported that copper is imported into the phagosome, where it (Fig. 4B). Sensitivity to copper was also tested, since it has been tion required to cause 50% cell death was about 3-fold lower (40). Copper was prepared for these assays by first reducing it with ascorbic acid, which potentiates its ability react with H₂O₂ to form hydroxyl radicals that are more toxic (40, 41). The results showed a significant increase in the sensitivity of sur7Δ cells to a 25-min exposure to copper. The combination of H₂O₂ and copper caused a synergistic effect on killing (Fig. 4B), demonstrating that copper can potentiate the effects of oxidation on the killing of C. albicans.

Increased copper sensitivity for sur7Δ mutant correlates with poor growth in macrophages. The effects of copper on sur7Δ cells were examined further by assaying the ability of cells to grow in the presence of different dilutions of copper. Interestingly, the sur7Δ cells were ~2,000-fold more sensitive to copper than the wild type (Fig. 5A), indicating that elevated copper levels may also contribute to the slow growth of sur7Δ cells in the phagosome. Increased sensitivity to copper was previously reported for mutation of C. albicans CRP1, which encodes a plasma membrane protein that exports copper out of the cell (42, 43). Analysis of strains carrying a CRP1-GFP fusion gene showed that Crp1-GFP was localized primarily to the plasma membrane in both sur7Δ cells and the wild type, indicating that the copper sensitivity of sur7Δ cells was not due to a defect in the membrane trafficking of Crp1-GFP (Fig. 5B). In some images, Crp1-GFP appeared to have a slightly punctate distribution in the plasma membrane that was usually more obvious in sur7Δ cells. This slightly punctate pattern was also seen for the MCP protein Pma1-GFP (11) and was not as distinct as the pattern seen for Sur7, suggesting that Crp1-GFP is present in the MCP domain (Fig. 5C). sur7Δ cells also displayed unusual patches of apparently intracellular Crp1-GFP that correlate with the expected formation of the ectopic intracellular growth of the plasma membrane and cell wall in this mutant.

Dose-response assays showed that Crp1-GFP began to be detectably induced at 0.1 mM copper in both the wild type and the sur7Δ mutant and was induced to higher levels with increasing copper in the medium (Fig. 5B). Comparison of the signal intensity in digital images indicated that the dose-response curve for induction of Crp1-GFP was shifted for sur7Δ cells so that they were about 3-fold more sensitive than the wild-type control. The observation that the sur7Δ mutant is 2,000-fold more sensitive than the wild type to copper but is only 3-fold more sensitive for the induction of Crp1-GFP indicates that sur7Δ cells do not be- have as though they are accumulating high levels of copper. Consistent with this, copper levels were similar in wild-type and sur7Δ cells grown in the absence of added copper, and both cell types showed similar increases in copper content when grown in the presence of 100 μM CuSO₄ (Fig. 5D). These results suggest that another type of copper detoxification mechanism is defective in sur7Δ cells. An interesting possibility is that copper sensitivity may relate to the endosomal trafficking defect of sur7Δ cells, since endosomes have been implicated in copper sequestration (see Discussion).

The significance of the copper-sensitive phenotype of sur7Δ cells with regard to their poor growth in macrophages was examined by infecting 1774 macrophages with C. albicans cells in the presence of the cell-permeable copper chelator ammonium tetra-thiomolybdate. To compare the extents of growth in macrophages, C. albicans cells were scored as small if they appeared as budding cells or had a germ tube smaller than the size of the mother cell, medium if they had a germ tube with a diameter less than that of the macrophage, and large if they had distorted the macrophage or lysed it. The sur7Δ cells incubated with 1.25 μM and 2.5 μM chelator showed increasing fractions of medium and large cells (Fig. 6A), consistent with copper contributing to their poor growth. Wild-type C. albicans was not affected by the chela- tor, as essentially all of the cells still formed large germ tubes. Higher concentrations of chelator (not shown) started to cause an inhibitory effect on C. albicans growth.

To determine if other copper-sensitive mutants showed a similar phenotype, we analyzed a previously reported crp1Δ cup1Δ double mutant that lacks both the Crp1 copper exporter and the Cup1 copper binding protein (42, 43). A cup2Δ mutant that lacks the Cup2 transcription factor, which induces the copper-responsive CRP1 and CUP1 genes, was also analyzed (44). All of the mutant cells that were not phagocytosed grew well outside the macrophages and formed large germ tubes in the culture medium (not shown). Interestingly, the crp1Δ cup1Δ mutant that is nearly 10,000-fold more sensitive to copper (Fig. 6B) grew poorly in macrophages, similar to what occurred with sur7Δ cells (Fig. 6C).
This further indicates that copper resistance is important for efficient growth in macrophages. Although the cup2/H9004 mutant was ~2,000-fold more sensitive to copper than the wild type, like sur7/H9004 cells, it showed only a slight change in growth in macrophages. These results indicate that the poor growth of sur7/H9004 cells is likely due to a combination of factors that includes increased sensitivity to copper, oxidation, and cell wall stress.

Decreased virulence of the sur7Δ mutant in a mouse model systemic infection. The virulence of the sur7Δ mutant was examined in a mouse model of hematogenously disseminated candidiasis in which BALB/c mice were infected via the lateral tail vein. To determine whether the sur7Δ mutant was defective in initiating an infection, the number of CFU/g of C. albicans in the kidneys was analyzed 2 days postinoculation. Mice infected with the wild-type strain contained high levels of C. albicans at day 2, with a median of 5.9×10^6 CFU/g kidney (Fig. 7A). In contrast, the median number of CFU/g kidney at day 2 after infection with the sur7Δ mutant was nearly 1,000-fold lower (5.0×10^3 CFU/g kidney). Surprisingly, the sur7Δ mutant showed a broad range of numbers of CFU/g, from 7.5×10^6 to 2.6×10^3. It is not clear why there was such a wide variation, but it is interesting to note that the highest CFU/g levels all resulted from four mice that were injected with the same batch of sur7Δ mutant cells. The other seven mice, which were infected with two other independent batches of sur7Δ cells, showed much lower levels of CFU/g kidney tissue at day 2. Thus, there may have been something distinct about the mice or the sur7Δ cells that were used in one of the three independent assays. Nonetheless, the sur7Δ mutation mutant showed significantly lower numbers of CFU/g at day 2 ($P = 0.0053$), indicating a defect in initiating an infection.

The eight mice injected with the wild-type control strain, DIC185, became moribund after 2 days, as expected (Fig. 7B). Similar results were observed for mice infected with the complemented sur7Δ strain carrying a wild-type copy of SUR7. In contrast, only 2 out of 12 mice infected with the sur7Δ mutant succumbed to infection, and both of these took 11 days longer than wild-type-infected mice to succumb. These mice showed numbers of CFU/g kidney tissue that were greater than or equal to those of mice infected with wild-type C. albicans. The majority of the 10 mice infected with the sur7Δ mutant that remained viable up through the completion of the assay at day 28 contained very low numbers of or no detectable CFU/g kidney tissue (Fig. 7A). Seven of these surviving mice infected with the sur7Δ mutant lacked detectable CFU in their kidney tissue, indicating that they had...
cleared the infection (Fig. 7A). Thus, the sur7Δ mutant is very strongly defective in virulence. Interestingly, two mice infected with the sur7Δ/H9004 mutant that did not display obvious symptoms of infection at day 28 had CFU/g levels in the kidney that were in the range of the values seen for moribund mice infected with the wild-type control strain. The diminished symptoms of these mice may be related to distinct patterns of growth of sur7Δ/H9004 cells in vivo as described below.

Defects of sur7Δ cells in invasive growth and morphogenesis in vivo. Kidneys from infected mice were fixed with formaldehyde, and then histopathological analysis was performed using periodic acid-Schiff (PAS) staining. As expected, the wild-type control strain caused widely disseminated infections in the kidneys, with large numbers of hyphal filaments emanating from multiple foci, which were found primarily in the outer cortex region of the organ (Fig. 8A). In contrast, kidneys from mice that succumbed to infection with the sur7Δ mutant at day 13 showed

FIG 6 Effects of copper chelator and mutations that increase sensitivity to copper on the growth of *C. albicans* in J774 macrophage cells. (A) J774 macrophages were incubated with the indicated concentrations of the cell-permeable copper chelator ammonium tetrathiomolybdate, and then the extents of growth of the wild-type and sur7Δ cells were assessed after 4 h of infection. *C. albicans* cell size was scored as follows: S, small budding cells and cells with a germ tube smaller than the size of the mother cell; M, medium cells with a germ tube diameter less than that of the macrophage; and L, large cells that distorted the macrophage or lysed it. Results are the averages of results from three independent experiments. The decrease in the number of small cells and the increase in the numbers of medium and large cells caused by addition of the chelator were significant (*P* < 0.0002). (B) Sensitivity of mutant strains to growth in the presence of CuSO4. The data represent the results of two independent experiments, each done in triplicate. (C) J774 cells were infected with the indicated *C. albicans* strains for 4 h, and then the extent of cell growth was recorded. Results represent the averages of results from three independent experiments. Strains used included the wild-type (DIC185), sur7Δ (YJA11), cup1Δ (YLD116-7), crp1Δ (YLD115-1), cup1Δ crp1Δ (KC25), and cup2Δ (YLD117-1) strains. Error bars indicate SD.

FIG 7 Virulence defect of the sur7Δ mutant in a mouse model of hematogonously disseminated candidiasis. BALB/c mice were injected via the tail vein with 10^6 cells of the indicated strain. (A) The number of CFU/gram of kidney tissue was determined at day 2 postinfection. Numbers of CFU/gram of kidney were also determined for two sur7 Δ strain-infected mice that became moribund on day 13 (day 13m) and for the sur7Δ strain-infected mice that survived to the end of the experiment (day 28). (B) Survival curves for mice infected with the designated strains demonstrating the greatly reduced virulence of the sur7Δ mutant. Strains included the wild-type control (DIC185), the sur7Δ mutant (YJA11), and the complemented sur7Δ strain carrying a wild-type copy of SUR7 (YJA12).
fungal staining primarily in the central renal space near the region that exits to the bladder. The *sur7Δ* cells were primarily in a large clump that did not invade the neighboring tissue (Fig. 8A and B). An interesting possibility is that the *sur7Δ* cells are better able to grow in the more open central renal space rather than in the solid outer cortex, since previous *in vitro* studies demonstrated that *sur7Δ* cells are defective in growing invasively into agar (27). Other mutants that display defects in invasive growth into agar have also been reported to grow predominantly in a cluster in the central renal space and cause less severe symptoms in mice (4, 45).

The morphogenesis of the *sur7Δ* cells grown *in vivo* was examined in more detail by staining kidney homogenates with calcofluor white, which preferentially stains fungal cell wall chitin but not mammalian tissues. As expected, the wild-type control cells were observed mainly as elongated filamentous hyphae, although some pseudohyphal cells could be observed (Fig. 8C). In contrast, the *sur7Δ* cells formed a broader range of cell morphologies that included wider hyphae and a variety of aberrant-looking pseudohypha-type cells.

DISCUSSION

Little is known about the organization of the plasma membrane or how it is affected by antifungal therapy. Thus, the recent identification of MCC enzymes/eisosomes as a novel type of membrane domain has provided important new insight into the lateral organization of the plasma membrane (11). A key role for these domains in *C. albicans* was suggested by previous studies showing that *sur7Δ* mutants mislocalized actin, septins, and cell wall growth (27). The abnormal cellular organization of *sur7Δ* mutants is linked to defects in morphogenesis, cell wall strength, and invasive growth into agar (27, 31, 32). Therefore, in this study, the virulence properties of a *sur7Δ* mutant were analyzed. The results revealed defects in intraphagosomal growth and virulence in a mouse model of systemic candidiasis that correlate with increased sensitivity to oxidation, copper, and cell wall stress.

Sur7 promotes resistance to a subset of stress conditions encountered in the macrophage phagosome. Sur7 had opposing effects on the infection of macrophages in that *sur7Δ* cells were phagocytosed less efficiently than wild-type cells (Fig. 1) but grew poorly once they were internalized (Fig. 2). *sur7Δ* cells were not significantly altered in their responses to most conditions encountered in the phagolysosomal environment, such as low iron, nitric oxide, the antimicrobial peptide LL-37, or growth on poor carbon sources (Fig. 3). This study, in contrast, the *sur7Δ* cells formed a broader range of cell morphologies that included wider hyphae and a variety of aberrant-looking pseudohypha-type cells.

Copper also has other antimicrobial properties, and recent studies have demonstrated that copper influx into macrophage phagosomes inhibits bacterial growth (40, 47, 48). Gamma interferon stimulates macrophages to take up copper by inducing the expression of the high-affinity copper importer CTR1. The ATP7A copper exporter is then stimulated to translocate from the Golgi apparatus to the phagosome, where it promotes an increase in copper concentration (40). Consistent with this, *Escherichia coli* and *Salmonella enterica* copA mutants that are more sensitive than wild-type strains to copper due to a defect in copper export showed decreased survival in macrophage phagosomes (40, 47). Thus, the 2,000-fold-increased copper sensitivity of *sur7Δ* cells indicates that increased copper in the phagosome may contribute to the growth defect of *sur7Δ* cells in macrophages. In further support of this, a *C. albicans* crp1Δ *cup1Δ* mutant that is ~10,000-fold more sensitive to copper also grew poorly in macrophages (Fig. 6). Since the concentration of copper in the phagosome is expected to increase over time, these results are consistent with observations that the growth initiated by many *sur7Δ* cells within the first few hours does not continue at later time points (Fig. 2). In contrast, wild-type *C. albicans* cells are highly resistant to copper and are probably not affected by copper influx into the phagosome. All together, these results identify a novel role for copper resistance in promoting the growth of *C. albicans* in macrophages. Interestingly, nonpathogenic *S. cerevisiae* lacks an ortholog of the CRP1 copper exporter (42, 43), whereas *C. albicans* and a diverse group of other pathogenic fungi, including *Cryptococcus gattii*, *Aspergillus fumigatus*, and *Histoplasma capsulatum* contain a CRP1 ortholog. This further supports that resistance to copper is important for the survival of a broad range of fungal pathogens in the host.

Novel role for Sur7 in resistance to copper. The CRP1 copper exporter has the most significant role in promoting resistance to copper of any known *C. albicans* gene (42, 43). Although Crp1 is a plasma membrane protein, its function does not seem to be altered in *sur7Δ* cells (Fig. 5). Crp1-GFP was induced by copper and localized to the plasma membrane as expected. Furthermore, the level of copper in the *sur7Δ* mutant was not significantly different than that in the wild type when cells were grown either in the presence or in the absence of added copper (Fig. 5D). Thus, *sur7Δ* cells do not accumulate high levels of copper but instead are more sensitive to copper. These new data indicate that another type of copper detoxification mechanism exists in *C. albicans* and that *sur7Δ* cells are deficient in this mechanism. One possibility for the increased sensitivity to copper comes from the results of high-throughput genetic studies of *S. cerevisiae* that suggest that excess copper is exported into endosomal vesicles and then accumulates in the vacuole (49). This mechanism could be impaired in *C. albicans sur7Δ* mutants, since they have a defect in the fusion of late endosomal vesicles with the vacuole (27).

Virulence defects of the *sur7Δ* strain. The *sur7Δ* mutant was strongly defective in a mouse model of systemic candidiasis. Whereas all of the mice infected with the wild-type strain succumbed to infection by day 2, ~83% of the mice infected with the *sur7Δ* mutant survived to the end of the experiment (day 28) and 58% of the mice cleared the infection (Fig. 7). Part of the virulence defect was due to its reduced ability to initiate an infection; the median number of CFU/g of kidney at day 2 was almost 1,000-fold lower than for the wild-type control (Fig. 7). The decreased virulence is likely due to a combination of factors that include in-
mains. sur7Δ cells are ~2-fold more sensitive to caspofungin, which correlates with altered cell wall formation and decreased cell wall β-glucan (32). Although the primary target of caspofungin is β-glucan synthase, it is interesting that a related type of an echinocandin class drug can chemically cross-link to the MCC/eisosome proteins Pip1 and Lsp1 (52, 53). The cell wall defects of sur7Δ cells are also thought to account for the 8-fold-increased sensitivity to the drug cercosporamide, which inhibits Pkc1 from inducing cell wall repair genes (32). Interestingly, pkc1 mutants are more sensitive than the wild type to fluconazole (54), an inhibitor of ergosterol synthesis, suggesting that an impaired Pkc1 pathway in sur7Δ cells may contribute to the observed 5-fold-increased sensitivity of these cells to fluconazole (27).

Studies on Sur7 and other MCC/eisosome components also have important implications for the development of novel therapeutic approaches. An advantage of targeting MCC domains is that, rather than blocking one specific function, inhibitory drugs are expected to cause multiple defects, including increased sensitivity to cell wall stress, copper, oxidation, and the immune system, as seen in the sur7Δ mutant (Fig. 2 to 6). Disruption of Sur7 and MCC domains is also expected to cause defects in invasive growth and biofilm formation (27, 31). Sur7 is also a potential drug target in that it is not conserved in mammalian cells, aside from a short Cys-containing motif in extracellular loop 1 (27). Thus, further studies on MCC/eisosome domains will help to make current drug therapy more effective and to reveal new avenues for therapeutic intervention.

MATERIALS AND METHODS

Strains and media. The *C. albicans* strains used in this study were derived from BWP17 or CA14, and their genotypes are listed in Table 1. The construction of the homozygous sur7Δ deletion strain YJA11 (27), the complemented strain YJA12, in which a wild-type copy of SUR7 was reintroduced into the sur7Δ mutant (27), and the homozygous fmp45Δ deletion strain YHXW3 (32) was described previously. *C. albicans* strains expressing CRP1-GFP were created by homologous recombination of GFP sequences into the 3′ end of the CRP1 open reading frame, essentially as described previously (55). In brief, PCR primers containing ~70 bp of sequence homologous to the 3′ end of the CRP1 open reading frame was used to amplify a cassette containing a more photostable version of enhanced GFP (C. albicans GFPy) and a URA3 selectable marker (55). This cassette was transformed into *C. albicans*, and the Ura+ colonies were screened to identify those that carry CRP1-GFP. Strains expressing GFP and RFP under the control of the ADH1 promoter were constructed as described previously (33). Cells were grown in rich YPD medium or synthetic medium lacking the nutrients indicated in the text (56).

Competition assay for macrophage phagocytosis. Competition assays testing the ability of *C. albicans* to be phagocytosed were carried out using the mouse macrophage-like cell line J774 and primary mouse bone marrow-derived macrophages, essentially as described previously (33). The bone marrow-derived macrophages were isolated out of cells harvested from the femurs of BALB/c mice as previously described (36, 41). *C. albicans* cells for the competition assays were grown in YPD plus 50 μg/ml uridine; the cells were harvested by centrifugation, washed once, and then resuspended in phosphate-buffered saline (PBS). The yeast cells were adjusted to a final concentration of 10⁶ cells/ml using a hemocytometer. The *C. albicans* cells were added to J774 or primary macrophages at a multiplicity of infection (MOI) of 10. At 40 to 60 min after the addition of yeast, calcofluor white was added (1-μg/ml final concentration) directly to the culture medium for ~10 s and then the coverslips were immediately mounted on a glass slide for imaging. The images were captured using a Zeiss Axioskop fluorescence microscope equipped with a DAGE-MTI...

FIG 8. *C. albicans* growth in kidneys. (A) Kidneys were excised from a mouse infected with the wild-type strain (DIC185) for 2 days or from a mouse infected with the sur7Δ mutant strain (YJA11) that became moribund after 13 days of infection. Kidney sections were stained by the periodic acid-Schiff (PAS) staining method, which stains the *C. albicans* cells a dark magenta color (see the arrows for examples). Kidney tissue infected with the DIC185 wild-type strain demonstrated a high level of penetration by hyphal filaments emanating from multiple sites in the outer cortex. In contrast, sur7Δ mutant cells were mostly restricted to the central renal space of the kidney. (B) Higher magnification images of a region of the PAS-stained kidney sections taken with a 60× objective. (C) Kidney homogenates were stained with calcofluor white and then examined by fluorescence microscopy using a 100× objective. Arrows point to examples of sur7Δ cells with pseudohyphal morphology.
charge-coupled-device (CCD) camera, and then the number of cells expressing RFP or GFP was quantified.

Growth of C. albicans within macrophages. The ability of *C. albicans* strains to grow within the mouse macrophage-like cell line J774 was assayed essentially as described previously (45). The J774 cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum. The J774 cells were grown to near confluence and then seeded on coverslips in 24-well trays at 10^4 cells per well. After overnight growth, the J774 cells were washed with PBS, infected with *C. albicans* at an MOI of 1, and then incubated in DMEM with 10% fetal bovine serum at 37°C with 5% CO2. The *C. albicans* cells were prepared for the assay by harvesting a fresh overnight culture grown in YPD medium, washing it with PBS, and then resuspending the cells in serum-free DMEM. Cover-slips removed at various times after infection were observed microscopically for the ability of *C. albicans* to form hyphal and mycelial macrophages. The *sur7A* cells that grew poorly in macrophages were smaller and therefore more difficult to detect than larger hyphal cells, which could be observed in multiple focal planes. Thus, some of the variability in the quantitations of the extents of cell growth within macrophages was most likely caused by undercounting of the small cells. To examine the effects of copper chelation, the J774 cells were incubated with the concentration of CuSO_4 for 2 h. Cells were then analyzed by fluorescence microscopy using a Zeiss AxioCam camera.

Growth assays and sensitivity to inhibitors. Growth under different conditions was assayed by spotting dilutions of cells onto agar plates containing the medium components or chemicals indicated in the text. The pH levels on agar plates were buffered to pH 3.5 with 100 mM citrate, to pH 5.5 with 150 mM succinate, to pH 7.5 with 150 mM HEPES, and to pH 8.5 with 150 mM bicine. Sensitivity to iron chelation, nitric oxide, and different oxidizing agents was also analyzed by broth dilution assays in 96-well plates. These assays made use of the iron chelator BPS (bathophenanthrolinedisulfonic acid; Sigma-Aldrich Co.), the NO-generating compound DPTA NONOate (dipropylentetramine NONOate; Cayman Chemical Co., Ann Arbor, MI), and the oxidizing agents hydrogen peroxide, menadione, diamide, cumene hydroperoxide, and cadmium chloride (Sigma-Aldrich). Wild-type and mutant cells were adjusted to 2 × 10^4 cells/ml, and then aliquots were placed in the wells of a 96-well plate. Serial dilutions of the chemicals were made, and then the plates were covered with an Aeroseal oxygen-permeable barrier (Research Products International Corp., Mount Prospect, IL) and incubated at 37°C for 2 days. The optical density at 600 nm (OD_600) was then measured to determine the extent of cell growth. Susceptibility to the antimicrobial host defense peptide LL-37 (Sigma-Aldrich Co.) was tested with strains grown overnight in YPD at 30°C, washed twice in 1 mM potassium phosphate buffer, pH 7, and then diluted to 2.5 × 10^5 cells/ml. Twenty microliters (5,000 cells) was then combined with 1 mM potassium phosphate buffer, pH 7, and LL-37 (Sigma-Aldrich Co.) in low-retention phosphate buffer, pH 7, and then incubated at 37°C for 20 min with shaking at 250 rpm, followed by dilution with 360 µl 1 mM potassium phosphate buffer. Thirty microliters was then spotted onto a YPD plate and incubated at 30°C for 48 h. The number of colonies was assessed to determine the effects of LL-37 on viability.

Analysis of copper responses. Strains carrying the CRP1-GFP fusion gene were grown in synthetic medium with different concentrations of CuSO_4 for 2 h. Cells were then analyzed by fluorescence microscopy using an Olympus BH2 microscope equipped with a Zeiss AxioCam camera.

Virulence assays. *C. albicans* strains were grown overnight at 30°C in YPD medium with 80 mg/liter uridine, reinoculated into fresh medium the next day, and incubated again overnight at 30°C. Cultures of *sur7A* cells were sonicated for 5 to break up aggregates, washed twice in PBS, counted in a hemocytometer, and diluted to 1 × 10^6 cells/ml with PBS. Cell density determinations were confirmed by plating dilutions of cells onto YPD agar plates. Female BALB/c mice were injected in the lateral tail vein with 1 × 10^6 cells. Mice were considered to be moribund if they could no longer reach food and water and were then euthanized humanely. Statistical analysis of the survival curves was performed using Prism 4 (GraphPad Software Inc., La Jolla, CA) to carry out a log rank test (Mantel-Haenszel test). To quantify the fungal burden, kidneys were disrupted for 30 s with a tissue homogenizer (PRO Scientific, Inc., Oxford, CT).
CT) and then serial dilutions of the homogenate were plated onto YPD plates. After incubation at 30°C for 2 days, the number of CFU per gram of kidney tissue was determined. Statistical analysis of the CFU data was carried out with Prism software using one-way ANOVA with the non-parametric Kruskal-Wallis test and Dunn’s post hoc test.

Periodic acid-Schiff staining of formaldehyde-fixed kidneys from infected mice was carried out by McLaren Laboratories (Smithtown, NY). Homogenized kidney tissue was stained with calcofluor white (20 ng/ml) for 10 min, pelleted by centrifugation, resuspended in 1% KOH, incubated for 5 min at room temperature, and then examined by fluorescence microscopy (57).

ACKNOWLEDGMENTS

This work was supported by Public Health Service grant AI-47837 awarded to J.B.K. from the National Institute of Allergy and Infectious Diseases.

We thank the members of our labs for their helpful advice and comments on the manuscript and gratefully acknowledge Francisco Javier Alvarez, Scott Filler, Aaron Mitchell, and Daniel Kornitzer for providing strains deposited by Suzanne Noble. We also thank the lab of James Bliska for sharing expertise and equipment, Qingzhi Zhu for help with ICP-MS analysis of copper, and Patricio Mentaboa for assistance with experimental procedures.

REFERENCES

1. Heitman J, Filler SG, Edwards JEJ, Mitchell AP. 2006. Molecular principles of fungal pathogenesis. ASM Press, Washington, DC.
2. Odds FC. 1988. Candida and candidosis. Bailliere Tindall, Philadelphia, PA.
3. Pfaffer MA, Diekema DJ. 2010. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 36:1–53.
4. Douglas LM, Martin SW, Konopka JB. 2009. BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infect. Immun. 77:4150–4160.
5. Klis FM, de Groot P, Hellingwerf K. 2001. Molecular organization of the cell wall of Candida albicans. Mol. Microbiol. 39(1):1–8.
6. Odds FC, Brown AJ, Gow NA. 2003. Antifungal agents: mechanisms of action. Trends Microbiol. 11:272–279.
7. Munro S. 2003. Lipid rafts: elusive or illusive? Cell 115:377–388.
8. Strádalová V, et al. 2009. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J. Cell Sci. 122:2887–2894.
9. Malinsky J, Malínský J, Opekarová M, Tanner W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14:4427–4436.
10. Malinsky J, Opekarová M, Tanner W. 2004. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J. Cell Sci. 117:6031–6041.
11. Malinsky J, Opekarová M, Tanner W. 2010. The lateral compartmentation of the yeast plasma membrane. Yeast 27:473–487.
12. Young ME, et al. 2002. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol. Cell. Biol. 22:927–934.
13. Berchtold D, Walther TC. 2009. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 20:1565–1575.
14. Fröhlich F, et al. 2009. A genome-wide screen for genes affecting eicosanoids reveals Nce102 function in sphingolipid signaling. J. Cell Biol. 185:1227–1242.
15. Grossmann G, et al. 2008. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183:1075–1088.
16. Yoshikawa K, et al. 2009. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res. 9:32–44.
17. Hosiner D, et al. 2011. Pum1p is a metal ion-inducible, calcineurin/Crz1p-regulated plasma membrane protein required for cell wall integrity. Biochim. Biophys. Acta 1808:1108–1119.
18. Martinez MJ, et al. 2004. Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol. Biol. Cell 15:5295–5305.
19. Xu T, et al. 2010. A profile of differentially abundant proteins at the yeast cell periphery during pseudohyphal growth. J. Biol. Chem. 285:15476–15488.
20. Walther TC, et al. 2006. Eicosanome mark static sites of endocytosis. Nature 439:998–1003.
21. Olivera-Coutu A, Grana M, Harispe I, Aguilar PS. 2011. The eicosome core is composed of BAR domain proteins. Mol. Biol. Cell 22:2360–2372.
22. Ziolkowska NE, Karotki L, Rehman M, Huisken NT, Walther TC. 2011. Eicosome-driven plasma membrane organization is mediated by BAR domains. Nat. Struct. Mol. Biol. 18:854–856.
23. Dickson RC, Sumanasekera G, Lester RL. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45:447–465.
24. Luo G, Gruhler A, Liu Y, Jensen ON, Dickson RC. 2008. The sphingolipid-long chain base-phk1P2-Ypk1P2 signaling pathway regulates eisosome assembly and turnover. J. Biol. Chem. 283:10433–10444.
25. Walther TC, et al. 2007. Phk kinases control eisosome assembly and organization. EMBO J. 26:4946–4955.
26. Alvarez FJ, Douglas LM, Konopka JB. 2009. The Sur7 protein resides in punctate membrane subdomains and mediates spatial regulation of cell wall synthesis in Candida albicans. Commun. Integr. Biol. 2:76–77.
27. Alvarez FJ, Douglas LM, Rosebrock A, Konopka JB. 2008. The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans. Mol. Biol. Cell 19:5214–5225.
28. Kabeche R, Baldissera S, Hammond J, Howard L, Moseley JB. 2011. The filament-forming protein FIl1 assembles linear eisosomes in fission yeast. Mol. Biol. Cell 22:4059–4067.
29. Seger S, Rischatsch R, Philippens P. 2011. Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii. J. Cell Sci. 124:1629–1634.
30. Vangelatos I, et al. 2010. Eicosanome organization in the filamentous ascomycete Aspergillus nidulans. Eukaryot. Cell 9:1441–1454.
31. Bernardo SM, Lee SA. 2010. Candida albicans Sur7 contributes to secretion, biofilm formation, and macrophage killing. BMC Microbiol. 10:133.
32. Wang HX, Douglas LM, Aimanandi V, Latgé JP, Konopka JB. 2011. The Candida albicans Sur7 protein is needed for proper synthesis of the fibrillar component of the cell wall that confines strept. Eukaryot. Cell 10:72–80.
33. Kepper-Ross S, Douglas L, Konopka JB, Dean N. 2010. Recognition of yeast by murine macrophages requires mannann but not glucann. Eukaryot. Cell 9:1776–1787.
34. Seider K, Heyken A, Lüttich A, Miramón P, Hube B. 2010. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr. Opin. Microbiol. 13:392–400.
35. Lorenz MC, Bender JA, Fink GR. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:1076–1087.
36. Roos D, Winterbourn CC. 2002. Immunology. Lethal weapons. Science 296:669–671.
37. Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. 2004. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc. Natl. Acad. Sci. U. S. A. 101:6564–6569.
38. Gardarin A, et al. 2010. Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol. Microbiol. 76:1034–1048.
39. Jin YH, et al. 2008. Global transcriptome and deletion profiles of yeast exposed to transition metals. PLoS Genet. 4:e1000053.
40. White C, Lee J, Kambe T, Fritsche K, Petris MJ. 2011. A phenotypic profile of P1-type ATPas in resistance to copper and silver ion toxicity. J. Bacteriol. 193:4899–4905.
41. Elzanowska H, Wolcott RG, Hannum DM, Hurst JK. 1995. Bactericidal properties of hydrogen peroxide and copper or iron-containing complex ions in relation to leukocyte free function. Free Radic. Biol. Med. 18:437–449.
42. Riggio PJ, Kamamoto CA. 2000. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J. Bacteriol. 182:4899–4905.
43. Weissman Z, Berdicevsky I, Cавari BZ, Kornitzer D. 2000. The high copper tolerance of Candida albicans is mediated by a P1-type ATPase. Proc. Natl. Acad. Sci. U. S. A. 97:3520–3525.
44. Homann OR, Dea J, Noble SM, Johnson AD. 2009. A phenotypic profile of the Candida albicans regulatory network. PLoS Genet. 5:e1000783.

45. Warenda AJ, Kauffman S, Sherrill TP, Becker JM, Konopka JB. 2003. *Candida albicans* septin mutants are defective for invasive growth and virulence. Infect. Immun. 71:4045–4051.

46. Liu X, Zweier JL. 2001. A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes. Free Radic. Biol. Med. 31:894–901.

47. Osman D, et al. 2010. Copper homeostasis in *Salmonella* is atypical and copper–CueP is a major periplasmic metal complex. J. Biol. Chem. 285:25259–25268.

48. Wolschendorf F, et al. 2011. Copper resistance is essential for virulence of *Mycobacterium tuberculosis*. Proc. Natl. Acad. Sci. U. S. A. 108:1621–1626.

49. Jo WJ, et al. 2008. Identification of genes involved in the toxic response of *Saccharomyces cerevisiae* against iron and copper overload by parallel analysis of deletion mutants. Toxicol. Sci. 101:140–151.

50. Lech T, Sadlik JK. 2007. Contribution to the data on copper concentration in blood and urine in patients with Wilson’s disease and in normal subjects. Biol. Trace Elem. Res. 118:16–20.

51. Grossmann G, Opekárová M, Malinsky J, Weig-Meckl I, Tanner W. 2007. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 26:1–8.

52. Edlind TD, Katiyar SK. 2004. The echinocandin “target” identified by cross-linking is a homolog of Pil1 and Lsp1, sphingolipid-dependent regulators of cell wall integrity signaling. Antimicrob. Agents Chemother. 48:4491.

53. Radding JA, Heidler SA, Turner WW. 1998. Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in *Candida albicans*. Antimicrob. Agents Chemother. 42:1187–1194.

54. LaFayette SL, et al. 2010. PKC signaling regulates drug resistance of the fungal pathogen *Candida albicans* via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog. 6:e1001069.

55. Zhang C, Konopka JB. 2010. A photostable green fluorescent protein variant for analysis of protein localization in *Candida albicans*. Eukaryot. Cell 9:224–226.

56. Sherman F. 2002. Getting started with yeast. Methods Enzymol. 350:3–41.

57. Pringle JR. 1991. Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol. 194:732–735.