Identification of AnkG107, a Muscle-specific Ankyrin-G Isoform*

Claire Gagelin‡, Bruno Constantin§, Christiane Deprette‡, Marie-Aline Ludosky‡, Michel Recouvreur‡, Jean Cartaud‡, Christian Cognard§, Guy Raymond§, and Ekaterini Kordeli¶‡

From the ‡Biologie Cellulaire des Membranes, Département de Biologie Cellulaire, Institut Jacques Monod, UMR 7592, CNRS/Universités Paris 6 et Paris 7, 75251 Paris, France, and §Biomembranes et Signalisation Cellulaire, UMR 6558, CNRS, Université de Poitiers, 86022 Poitiers, France

We previously showed that alternatively spliced ankyrins-G, the Ank3 gene products, are expressed in skeletal muscle and localize to the postsynaptic folds and to the sarcoplasmic reticulum. Here we report the molecular cloning, tissue expression, and subcellular targeting of AnkG107, a novel ankyrin-G from rat skeletal muscle. AnkG107 lacks the entire ANK repeat domain and contains a 76-residue sequence near the COOH terminus. This sequence shares homology with COOH-terminal sequences of ankyrins-R and ankyrins-B, including the muscle-specific skAnk1. Despite widespread tissue expression of Ank3, the 76-residue sequence is predominantly detected in transcripts of skeletal muscle and heart, including both major 8- and 5.6-kb mRNAs of skeletal muscle. In 15-day-old rat skeletal muscle, antibodies against the 76-residue sequence localized to the sarcolemma and to the postsynaptic membrane and cross-reacted with three endogenous ankyrins-G, including Ank3–5kb, respectively); (ii) AnkG190, a kidney- and lung-specific ankyrin-G isoform that contains ANK repeats and associates with Na,K-ATPase at the lateral plasma membrane of epithelial cells (12); (iii) AnkG119, an isoform with a truncated ANK domain, including kidney (14) and the nervous system (13), where they are targeted to the nodes of Ranvier and initial axonal segments (13, 17–19). These isoforms contain extended “tail” sequences between the spectrin-binding and COOH-terminal domains. Ankyrins-G expressed in tissues other than brain lack the tail domain, and their molecular masses range from 100 to 220 kDa. Currently, cloned ankyrins-G of the latter category include: (i) epithelial mouse Ank3 polypeptides that display a polarized plasma membrane localization or a cytoplasmic distribution depending on the presence or lack of the ANK repeat domain (Ref. 14; Ank3–7kb and Ank3–5kb, respectively); (ii) AnkG119, a kidney- and lung-specific protein that contains ANK repeats and associates with Na,K-ATPase at the lateral plasma membrane of epithelial cells (12); (iii) AnkG119, an isoform with a truncated ANK repeat domain and a very short distinct COOH-terminal domain, that binds β spectrin and associates with the Golgi apparatus and trans-Golgi network in epithelial cells (15); (iv) two short 100- and 120-kDa isoforms that lack the ANK repeat domain and associate with lysosomes in macrophages (16).

In skeletal muscle fibers, assembly of specialized membrane domains is a functional requirement, both at the cell surface (i.e. the postsynaptic membrane and the costameres) and in the postsynaptic membrane.

* This work was supported by the Centre National de la Recherche Scientifique, the Universités Paris 6 and 7, and by grants from the Association Française contre les Myopathies (to J. C. and G. R.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The nucleotide sequence reported in this paper has been submitted to the DDBJ/GenBank™/EBI Data Bank with accession number AJ428573.

© 2002 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.
cytoplasm, where Ca²⁺-regulated excitation-contraction coupling occurs. In this tissue, multiple ankyrins are expressed by all three genes (15, 20–24) and localize to several membrane sites, including the postsynaptic membrane (23, 25, 26), the costameres (27), the triads (28), and the nonjunctional sarcoplasmic reticulum (22, 23) (Table I). Interestingly, the lack of Ank2 gene products in skeletal muscle fibers and cardiomyocytes of ankyrin-B(−/−) mice resulted in a congenital myopathy, abnormal properties of cardiac Na⁺ channels, and dramatic alterations in intracellular localization of Ca²⁺-homeostasis proteins, namely the Ca²⁺-ATPase (SERCA) and the ryanodine receptors (24, 29). Ank1 and Ank3 gene products still expressed in these mice cannot rescue ankyrin-B(−/−) muscle cell, indicating that ankyrins have gene-specific functions. Taken together, these data and the diversity of ankyrin gene expression and localization suggest that ankyrins play key roles in the assembly and functioning of membrane domains in skeletal muscle fibers. However, most of these isoforms have not yet been identified at the molecular level. Currently, cloned ankyrins that are expressed in skeletal muscle include the Golgi-associated AnkG119 (15) and two small, membrane-bound Ank1 gene products of 20 and 26 kDa suggested to link the sarcoplasmic reticulum to the contractile apparatus (Ref. 22; skAnk1). Our previous studies (23) identified at least two major 8- and 5.6-kb gene products in skeletal muscle fibers. However, most of these isoforms have not yet been identified at the molecular level. Currently, cloned ankyrins that are expressed in skeletal muscle include the Golgi-associated AnkG119 (15) and two small, membrane-bound Ank1 gene products of 20 and 26 kDa suggested to link the sarcoplasmic reticulum to the contractile apparatus (Ref. 22; skAnk1). Our previous studies (23) identified at least two major 8- and 5.6-kb Ank3 transcripts and one major ankyrin-G polypeptide of ~100 kDa in rat skeletal muscle. Furthermore, ankyrins-G were localized to the troughs of the postsynaptic membrane and to the sarcoplasmic reticulum of fast-twitch, SERCA1-expressing muscle fibers.

Here we report the cDNA cloning and characterization of a novel ankyrin isoform from rat skeletal muscle, which we name AnkG107, based on its predicted size of 106,911 Da and homology to the known isoforms of the ankyrin-G family. AnkG107 lacks the entire membrane-binding ANK repeat domain, displays highly conserved ankyrin-G spectrin-binding and COOH-terminal domains, and contains a unique among ankyrins-G 76-residue sequence near the COOH terminus, which shows homology with corresponding ankyrin-R and ankyrin-B COOH-terminal sequences and is predominantly expressed in heart and skeletal muscle. Endogenous ankyrins-G carrying this sequence displayed developmentally regulated expression and localized to the sarcolemma and to the postsynaptic membrane. Transfection of GFP-1-tagged constructs expressing either the full-length molecule or AnkG107 domains in rat myotubes in culture showed that this isoform is targeted to the plasma membrane apparently via the spectrin-binding domain. Moreover, these experiments strongly suggested that the muscle-specific 76-residue sequence is required for the stabilization of AnkG107 at the membrane.

EXPERIMENTAL PROCEDURES

Isolation of the AnkG107 cDNA—All molecular procedures were carried out using standard methods (30). An oligo(dt) and random primed rat skeletal muscle 5'-stretch plus agt10 cDNA library (CLONTECH, Palo Alto, CA) was double screened by plaque hybridization of nylon filters (Nytran-Plus; Schleicher & Schuell) using as probes two random primed ²²P-labeled (Rediprime system; Amersham Biosciences, Inc.) AnkG107 cDNA fragments from the spectrin-binding (bp 229–1103) and COOH-terminal (bp 1778–2255) domains, previously amplified by RT-PCR from rat skeletal muscle total RNA (PCR A and B, respectively, in Ref. 23). Hybridization was performed at 65 °C overnight, and posthybridization washes were at a maximum stringency of 0.2× SSC, 65 °C. cDNA inserts from clones positive to both probes were subcloned into the plasmid vector pBluescript ISKk(+) (Stratagene) and sequenced (Applied Biosystems), leading to identification of one full-length clone, λ21, that contained Ank3 sequences. Computer-assisted searches of amino acid sequence homology were performed utilizing FASTA (31) and BLAST (32) programs.

Northern Blot Analysis—Ank3 domain-specific cDNA probes were prepared by standard PCRs using as template the rat skeletal muscle cDNA clone λ21 for the spectrin-binding domain (bp 62–793) and 76-aa insert (bp 2633–2860) and a rat brain Ank3 cDNA clone kindly provided by Dr. S. Lambert (University of Massachusetts Medical School, Worcester, MA) for the membrane-binding and COOH-terminal (corresponding to bp 2255–2921 without insert) domains. The locations of the hybridization probes are illustrated in Fig. 3B. PCR products were gel-purified (Qiagen) and ²²P-labeled using random primed DNA synthesis (Rediprime system; Amersham Biosciences). The 228-bp PCR product encoding the 76-aa insert was sequenced to confirm its identity.

Total RNA was isolated from adult rat hind limb skeletal muscle using the guanidinium thiocyanate/phenol/chloroform method (RNA Plus; Bioprobe Systems) and enriched in poly(A⁺) RNA by oligo(dT) chromatography (30). 20 μg of partially purified poly(A⁺) RNA were fractionated in 0.8% formaldehyde/agarose gel and transferred to nylon filters (Nytan-plus; Schleicher & Schuell). After fixation by ultraviolet light (UV cross-linker; Stratagene), filters were hybridized with rat Ank3 domain-specific cDNA probes and washed at 68 °C with 0.2× SSC, 0.1% SDS, before autoradiography. A rat multiple tissue Northern blot (CLONTECH) was first hybridized with cDNA probe encoding the 76-aa insert and then stripped and probed with the spectrin-binding domain cDNA probe. Hybridizations were performed at 65 °C overnight, and posthybridization washes were at a maximum stringency of 0.1× SSC, 0.1% SDS, 50 °C.

Preparation of cDNA Constructs—cDNA fragments encoding the full-length AnkG107, the spectrin-binding domain (AnkG107Nter; bp 590–960) and the COOH-terminal domain (AnkG107Cter; bp 591–960) were amplified by PCR using the clone λ21 as a template and primers carrying EcoRI sites. A rat brain Ank3 cDNA clone was used to PCR-amplify the COOH-terminal domain lacking the 76-aa insert (AnkG107Cter;7676a). PCR fragments were confirmed by DNA sequencing and introduced into the EcoRI site of either pcDNA3 vector (Invitrogen), or pEGFP-N1 vector (CLONTECH) under the control of the cytomegalovirus promoter while keeping in-frame with the downstream enhanced green fluorescent protein (EGFP). The cDNA construct of the full-length Ank107 lacking the 76-aa insert (AnkG107Cter;7676a-EGFP) was obtained by replacing the COOH-terminal domain-encoding EcoRV-
KpnI fragment of construct AnkG107-GFP, with the corresponding fragment of construct AnkG107_Cter176aa-GFP.

Preparation of Antibodies—To raise antibodies against rat skeletal muscle ankyrin-G, a cDNA fragment (bp 62–790) was amplified by PCR using the λ2 clone as template and subcloned into vector pGEM3Z (Promega Technologies) between the EcoRI and XhoI sites containing the NH$_2$-terminal portion of glutathione S-transferase and amino acids 7–250 of the AnkG107, spectrin-binding domain. The recombiant fusion protein was expressed in E. coli BL21(DE3)pLysS cells and affinity-purified using glutathione-Sepharose beads according to the manufacturer’s directions (Amersham Biosciences). To avoid proteolytic degradation, affinity-purified polypeptides were eluted to polyacrylamide SDS gels, and the band containing the full-length fusion protein was cut out of the gel and injected into rabbits. The resulting antiserum (anti-ankGSpbd) was affinity-purified using fusion protein coupled to cyanogen bromide-activated Sepharose 4B (Amersham Biosciences).

Antibodies against the AnkG107 76-residue insert were raised in rabbits against two peptides corresponding to amino acid residues 864–878 and 925–939 (see Fig. 1) (Eurogentec). The peptides represented sequences not included in the region of homology with the other ankyrin genes. Specific antibodies (anti-ank,G68aa) were affinity-purified against the antigenic peptides immobilized on HiTrap N-hydroxysuccinimide (NHS)-activated columns (Amersham Biosciences).

In Vitro Translation and Translation

In vitro translation and translation were carried out in TNT-coupled rabbit reticulocyte lysate systems (Promega) according to the manufacturer’s protocols, using the pcDNA3-AnkG107 construct. Products were resolved by SDS-PAGE electrophoresis and revealed by Western blot analysis. In control experiments, an aliquot was removed in the beginning of the reaction and analyzed by Western blot analysis; alternatively, in vitro translation was performed with antisense AnkG107 cDNAs. Both controls provided identical results.

Cell Culture and Transfection of AnkG107 cDNA Constructs in Rat Myotubes—Primary cultures of mammalian skeletal muscle cells were initiated from neonatal myogenic cells obtained by trypsinization of muscle pieces from hind limbs of 1–3-day-old rats, as previously reported (35). For 3 days following plating, cells were maintained in growth medium consisting of Ham’s F-12 medium (Invitrogen) with 10% heat-inactivated horse serum (Invitrogen), 10% fetal calf serum (SFM), and 1% antibiotics. Myoblasts underwent myogenesis in differentiation medium. After 48 h of culture, differentiation medium containing Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 5% heat-inactivated horse serum was used to promote the formation of myotubes, which occur spontaneously at 15–18 h.

The various AnkG107 cDNA constructs were transfected into the myoblasts using the Effectene Reagent kit (Qiagen, Courtaboeuf, France) according to the manufacturer’s recommendations. Myoblasts were cultured for 36 h on glass coverslips (50–1100 cells) in growth medium and then rinsed twice in serum-free medium (Opti-MEM; Invitrogen). An aliquot was removed to determine the number of transfected cells, and the remaining myoblasts were transfected with 0.1 μg of plasmid cDNA per 35-mm plate using a 16-h incubation. A 16-h incubation in transfection medium was replaced with fresh complete growth medium.

Western Blot Analysis—Pieces of 15-day-old and adult rat extensor digitorum longus (EDL), soleus, and sternomastoid skeletal muscles were excised, rapidly frozen in liquid nitrogen, and ground into a powder. Tissue powder was added to boiling SDS-PAGE sample buffer containing 125 mM Tris-HCl, pH 6.8, 15% SDS, 2% 2-mercaptoethanol, homogenized, and passed through a 26-gauge needle. Samples were rapidly centrifuged, and the supernatant was used in SDS-PAGE and Western blot analysis, as previously described (23).

4-day-old myotubes in culture were washed in TBS (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM EGTA, 2 mM MgCl$_2$) and lysed on ice with cold radioimmune precipitation buffer consisting of 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.05% Nonidet P-40, 1% Tween 20, 1% Triton X-100, 0.1% SDS, 10% glycerol supplemented with 0.5 mM phenylmethylsulfonyl fluoride, 1% aprotinin, and 1% protease inhibitor mixture (Sigma). Homogenates of myotubes were then sonicated and analyzed by SDS-PAGE and Western blot as previously described (23).

The first antibody was stripped by incubation in Tris-HCl, pH 6.8, 2% SDS, 0.1% 2-mercaptoethanol for 1 h at 55 °C.

Immunofluorescence and Confocal Microscopy—EDL and diaphragm skeletal muscles were removed by dissection from 15-day-old and adult Sprague-Dawley rats and immediately fixed with 3% paraformaldehyde, 0.1% phosphate buffer, pH 7.4, for 1 h at 4 °C. Fixed tissue was cut into small blocks, infused with increasing sucrose solutions (0.5–2.1 M in PBS (20 mM phosphate buffer, pH 7.5, 150 mM NaCl), and frozen in liquid nitrogen. Semithin (0.5–1 μm) cryosections of muscle fibers were immunolabeled for indirect immunofluorescence with primary antibodies diluted at 2–5 μg/ml as previously described (23). Monoclonal antibodies to the Ca$^{2+}$-ATPase (SERCA1) were from Affinity Bioreagents. Fluorescein isothiocyanate- and Cy3-conjugated secondary antibodies were from Jackson Immunoresearch Laboratories (West Grove, PA). Fluorescein isothiocyanate-conjugated α-bungarotoxin (1 μg/ml; Sigma) was used to label acetylcholine receptors in the postsynaptic membrane. Micrographs were taken with a Leica DMR microscope equipped with a CCD camera (Princeton Laboratories). Images were acquired, pseudocolored, and merged using the MetaView Imaging System (Universal Imaging Corporation, West Chester, PA) and arranged using Adobe Photoshop 5.0.

4-day-old myotubes in culture were fixed in 4% paraformaldehyde in TBS for 20 min at room temperature and either directly observed for GFP fluorescence or permeabilized with 0.1% Triton X-100/TBS for 10 min and labeled for indirect immunofluorescence with primary antibodies diluted at 2–5 μg/ml. RR-conjugated secondary antibodies were from Jackson Immunoresearch Laboratories. Samples were analyzed using confocal laser-scanning microscopy (Bio-Rad MRC 1024 ES equipped with an argon/krypton laser) using an inverted microscope (Olympus IX70, Tokyo, Japan).

The relative intensities of cytoplasmic and cortical GFP fluorescence were measured and scaled on 256 levels along transversal lines crossing the z plane of the confocal optical section. Line intensity profiles were obtained with Lasersharp Processing software (Bio-Rad) and analyzed by line-width method as described. For each ratio, mean cortical fluorescence intensity was obtained by averaging measurements at two different intersections of the line with the periphery of the myotube. The mean intensity of the homogenous cytoplasmic labeling was directly calculated by the software from values measured inside a square region of interest devoid of cytoplasmic clusters. For comparison, the ratio of mean cortical over mean cytoplasmic fluorescence intensities ($F_{cortex}/F_{cytoplasm}$) was calculated and reported on a graph (see Fig. 7).

RESULTS

Isolation and Characterization of AnkG107, a Novel Ankyrin-G Isoform from Rat Skeletal Muscle—Ank3 cDNA sequences from the spectrin-binding and COOH-terminal domains were previously amplified by RT-PCR from rat skeletal muscle total RNA (23). Here we used the two PCR products as probes to double screen a rat skeletal muscle cDNA library. Seven out of 10 positive colonies hybridized with both probes, and the cDNA clone with the largest insert (clone λ21) was isolated and sequenced. This clone provided a 3262-bp cDNA sequence with a single open reading frame encoding a protein of 960 amino acids with a predicted molecular mass of 106,911 Da (Fig. 1). This protein, named AnkG107, is highly homologous to previously cloned ankyrin-G isoforms (12–16), with maximum amino acid identity (88.6%) to the mouse epithelial Ank3–5kb polypeptide (Fig. 2B; Ref. 14). AnkG107 and the Ank3–5kb isoform share identical NHL-terminal sequences lacking the entire ANK repeat membrane-binding domain and starting with amino acids MALPHIS followed by nearly identical spectrin binding (EDAII ...) and COOH-terminal (ALR ...) domains. cDNA clone λ21 also contained 48 nucleotides of 5′-untranslated sequences showing 83.3% identity to corresponding mouse Ank3–5kb sequences (14), and 197 bp of 3′-untranslated sequences identical to corresponding sequences of rat epithelial AnkG109 (12). We conclude that AnkG107 is a novel isoform of the ankyrin-G family encoded by Ank3.

The major difference between AnkG107 and the Ank3–5kb isoform occurs in the COOH-terminal domain. AnkG107 contains a unique 76-residue insert near the COOH-terminal sequences that is not present in any of the currently cloned ankyrin-G isoforms. Interestingly, when compared with sequences present in available data bases, significant homology was found only between the 76-residue insert and sequences from the COOH-terminal domains of ankyrins-R and ankyrins-B, the Ank1 and Ank2 gene products (Fig. 2A). These sequences include the
entire exon 40 (67.9% amino acid identity and 96.4% overall similarity) and the first 9 residues of exon 41 of human ANK1 (34) and corresponding mouse Ank1 (35) gene sequences (Fig. 2A). Maximum similarity (77.6%) over the entire 76-residue sequence is observed with the muscle Ank1 gene product skAnk1 (22), where homology is extended to the last 29 residues.

FIG. 1. Nucleotide and deduced amino acid sequence of AnkG107. The first six NH2-terminal amino acids (in italics) and the start of the spectrin-binding (EDAIT . . .) and COOH-terminal (ALR . . .) domains are indicated. The amino acid sequence of the 76-residue insert in the COOH-terminal domain is underlined. In the spectrin-binding domain, double underlined residues PKI show AnkG107 sequence divergence from ankyrins-G. These sequence data are available from GenBank™/EMBL/DDBJ under accession number AJ428573.

FIG. 2. Sequence analysis and domain structure of AnkG107. A, comparison of the 76-residue insert from AnkG107 COOH-terminal domain and homologous amino acid sequences from the COOH-terminal domains of ankyrins-R (AnkR, skAnk1) and ankyrins-B (AnkB). Identical and conserved residues are in boldface and italic type, respectively. The arrows indicate human ankyrin-R sequences corresponding to the ends of exons 39, 39a, and 40 of the ANKI gene (34). B, schematic representation of the postulated domain structure of AnkG107 and comparison with the mouse epithelial Ank3–5kb polypeptide (14), the ankyrin-G isoform that shares maximum amino acid sequence homology. The two polypeptides are almost identical with the exception of a 12-residue deletion and the 76-residue insertion (gray box) in the COOH-terminal domain of AnkG107, unique features of this isoform.
pressed in skeletal muscle, would have resulted in a different pattern of transcripts and therefore is unlikely. These data indicate that (i) the smaller 5.6-kb transcript does not contain ANK repeats and therefore could encode the AnkG107 isoform and (ii) the spectrin-binding and COOH-terminal domains, including the novel 76-residue sequence, are present in both transcripts. Therefore, at least two ankyrin-G polypeptides are expressed in skeletal muscle, characterized by the 76-residue insert near the COOH terminus and differing in the presence or lack of the repeat domain (Fig. 3B).

High stringency hybridization of poly(A⁺) RNA from several rat tissues with the 76-residue cDNA probe identified a limited tissue expression pattern (Fig. 3C). Interestingly, positive transcripts were detected in skeletal muscle (8–9 kb and 5.6–6.2 kb) and heart (7.5 kb). This pattern differed from that of the ankyrin-G family in general, as revealed by a cDNA probe from the spectrin-binding domain (Fig. 3D). This probe contains sequences present in all currently identified ankyrins-G and detected a variety of Ank3 transcripts in most tissues, as previously reported (13, 14). Transcripts positive to both probes displayed the same pattern but different relative hybridization signal intensities. The spectrin-binding domain probe provided relatively low hybridization signals in skeletal muscle and heart when compared with other tissues. Inversely, the only nonmuscle tissues showing a barely detectable hybridization signal with the 76-residue probe were kidney and testis, where Ank3 transcripts display the highest levels of expression (Fig. 3D). In addition, brain, spleen, lung, and liver were totally negative to 76-residue probe (Fig. 3C), despite the presence of Ank3 transcripts in brain and lung. These observations further support the specificity of the 76-residue probe.

When muscle tissues were compared, relative signal intensities of the two probes suggested that transcripts carrying the 76-residue insert are predominant in skeletal muscle. Moreover, small insert-positive transcripts likely to encode AnkG107 are detected only in skeletal muscle. Collectively, these data indicate that ankyrin-G isoforms containing the 76-residue insert, and therefore, AnkG107, are expressed in muscle tissues, and in particular in skeletal muscle.

Expression and Subcellular Localization of Endogenous Ankyrins-G Carrying the 76-Residue Insert in Skeletal Muscle—The weak hybridization signal of the 76-residue probe with Ank3 transcripts in muscle (Fig. 3A) could indicate that only a minor fraction of ankyrins-G contain these sequences. Indeed, a 228-nt difference in transcript size may not be detectable in the present Northern blots, and therefore, comigration of transcripts with and without the 76-residue insert is not to be excluded. To elucidate this hypothesis, we raised domain-specific antibodies against muscle ankyrins-G. Antibodies to the 76-residue insert (anti-ankG76aa) were raised against two peptides not sharing homology with Ank1 and Ank2 sequences. Antibodies to the spectrin-binding domain (anti-ankGSpbd) were raised against the NH₂-terminal portion of the AnkG107 spectrin-binding domain. This region is present in all currently cloned ankyrins-G and contains unique sequences previously used to generate ankyrin-G-specific peptide antibodies (13, 23). Anti-ankGSpbd and the previous peptide antibodies provided identical Western blot and immunolocalization patterns in rat skeletal muscle (not shown).

Selective cross-reaction of endogenous AnkG107 with either of the two antibodies was not expected, because this alternatively spliced isofrom can not be distinguished from other muscle ankyrins-G on the basis of primary amino acid sequence. To get information on endogenous AnkG107, a full-length cDNA construct was in vitro translated in rabbit reticulocyte lysate (Fig. 4A). One band of 130-kDa apparent molecular mass was re-
revealed by Western blot with both anti-ankG_Spbd and anti-ankG76aa antibodies and was occasionally accompanied by a minor lower polypeptide that may indicate posttranslational modifications. Western blot analysis using anti-ankG_Spbd showed that in vitro translated AnkG107 comigrated with one endogenous polypeptide in 15-day-old rat skeletal muscle homogenates (Fig. 4B), suggesting that AnkG107 is expressed in this tissue. In these homogenates, anti-ankG_Spbd cross-reacted with several polypeptides including the major 100-kDa ankyrin-G previously reported in the adult tissue (23). Among those ankyrins-G, only three minor polypeptides of 130, 190, and 300 kDa cross-reacted with anti-ankG76aa. Interestingly, these polypeptides appeared significantly decreased in the adult (Fig. 4C). Specificity of the anti-ankG76aa antibody is shown in Fig. 4D, where preincubation of the antiserum with the antigenic peptides completely abolished cross-
reaction with the three polypeptides. These results showed that only a minor fraction of ankyrins-G contains the 76-residue insert, in agreement with Northern blot analysis, and their expression appears developmentally regulated.

In longitudinal semithin cryosections of 15-day-old rat EDL skeletal muscle, ankyrins-G containing the 76-residue insert localized to the sarcolemma (Fig. 4, a–c). Major accumulation was observed on the postsynaptic membrane of the neuromuscular junction. Labeling was abolished following preincubation of anti-ankG76aa with antigens (Fig. 4, a′–c′). Interestingly, no labeling was detectable in adult EDL and diaphragm muscle fibers (Fig. 4, d–h), further supporting a developmentally regulated decrease in the expression of these polypeptides.

Subcellular Targeting of AnkG107 in Transfected Myotubes—We used primary cultures of rat myotubes to study the subcellular distribution of transfected AnkG107, using confocal immunofluorescence microscopy (Fig. 5). In nontransfected myotubes, ankyrins-G are present on the sarcolemma as well as in the cytoplasm (Fig. 5a), as revealed by anti-ankGSpbd. Western blot analysis of total extracts of nontransfected myotubes using anti-ankGSpbd confirmed the expression of several ankyrin-G isoforms (Fig. 4b, left), including the major 100-kDa protein of adult muscle (23), a major 160-kDa band, and minor 220-, 190-, and 65-kDa bands. AnkG107 is not expressed at this stage of cell differentiation, since no polypeptide comigrating with in vitro translated AnkG107 was revealed by either anti-ankGSpbd or anti-ankG76aa (Fig. 5b, right) antibodies.

Transfected AnkG107 was mainly targeted to the sarcolemma (Fig. 5, c and e), in agreement with in situ localization experiments (Fig. 4), and was also detected in cytoplasmic clusters. In optical sections tangential to the surface of transfected myotubes, AnkG107 appeared organized in parallel, longitudinal strands (Fig. 5, d and f). The transfected polypeptides were revealed by both domain-specific antibodies, which provided identical results. When anti-ankGSpbd was used, the high level expression of AnkG107 resulted in a higher fluorescence signal that allowed distinction between transfected and endogenous ankyrins-G.

To further evaluate the role of AnkG107 domains, and in particular of the 76-residue insert, in subcellular targeting, myotubes were transfected with GFP constructs. Subcellular distribution of the full-length GFP fusion protein was identical to AnkG107 (Fig. 5, c and e), as revealed by both GFP fluorescent signal (Fig. 5g) and anti-ankGSpbd immunolabeling (Fig. 5h), showing that the presence of GFP in the COOH terminus did not alter the targeting properties of AnkG107. GFP constructs (Fig. 6A) contained the spectrin-binding domain (AnkG107Spbd-GFP), the COOH-terminal domain with and without the 76-residue insert (AnkG107Cter-GFP and AnkG107CterΔ76aa-GFP, respectively), and full-length AnkG107 without the 76-residue insert (AnkG107Δ76aa-GFP). Interestingly, deletion of the 76-residue insert did not prevent localization of AnkG107 to the sarcolemma but resulted in an additional cytoplasmic distribution (Fig. 6b) not observed with the full-length molecule (Fig. 6a). A similar pattern was obtained with the spectrin-binding domain (Fig. 6c). Localization of the COOH-terminal domain to the sarcolemma was partial and less frequently observed (Fig. 6d). Moreover, similarly to the other AnkG107 truncated polypeptides, a significant fraction of this domain distributed in the cytoplasm. Interestingly, deletion of the 76-residue insert totally abolished membrane distribution of the COOH-terminal domain and resulted in a predominantly diffuse cytoplasmic labeling (Fig. 5e) distinct from that of the GFP alone (Fig. 6f). These observations were further analyzed by representing the subcellular distribution of expressed AnkG107 domains as the ratio of cortical over cytoplasmic GFP fluorescence intensities across the transfected myotubes (Fig. 7).

DISCUSSION

In this study, we report the molecular cloning and characterization of a novel ankyrin-G polypeptide that is expressed in skeletal muscle. We named this isoform AnkG107 based on its
AnkG107, a Muscle-specific Ankyrin-G

Experimental Procedures.

AnkG107 is a novel muscle-specific ankyrin-G isoform—molecular cloning and sequencing analysis of a full-length cDNA clone showed that AnkG107 (i) lacks the entire ANK repeat, membrane-binding domain, (ii) starts with the spectrin-binding domain, (iii) possesses a 76-residue insert near the COOH terminus, (iv) contains a 76-residue insert near the COOH terminus, (v) is encoded by the 5.6-kb transcript. This pattern of expression is similar to that in mouse kidney epithelial cells (14), where two classes of transcripts were identified (6.9–7.5 kb and 4.6–6.3 kb) with smaller transcripts lacking the repeat domain. With the exception of the 76-residue insert, AnkG107 is nearly identical to the Ank3–5kb polypeptides encoded by the small epithelial Ank3 transcripts (Fig. 2B). Some of these polypeptides contain an alternatively spliced acidic insert in the COOH-terminal domain that is not found in AnkG107. A 5.7-kb epithelial mRNA, similar in size to the skeletal muscle transcript, lacks the acidic insert and could encode the Ank3–5kb polypeptide that shows maximum homology to AnkG107. Alternative expression of distinct insert sequences could provide ankyrin isoforms encoded by the same gene with tissue-specific functions.

Fig. 6. Contribution of distinct AnkG107 domains to the subcellular targeting of AnkG107 in transfected myotubes. A, a schematic representation of GFP-tagged cDNA constructs encoding distinct domains of AnkG107. Construct AnkG107-GFP contains the full-length AnkG107 molecule. Construct AnkG107Δ76aa-GFP lacks the 76-residue insert. Deletion of the COOH-terminal domain results in construct AnkG107ΔSbp-GFP containing NH2-terminal amino acids MALPHS and the spectrin-binding domain. Constructs AnkG107ΔSbp-GFP and AnkG107ΔSbp ΔCer-GFP represent the COOH-terminal domain with and without the 76-residue insert, respectively. B, primary cultures of neonatal rat myoblasts were transiently transfected with the cDNA constructs shown in A, and the expressed polypeptides were detected by the GFP fluorescence in myotubes 4 days following fusion of myoblasts. Full-length AnkG107 localized to the plasma membrane and to cytoplasmic clusters (a, AnkG107-GFP). Deletion of either the 76-residue insert (b, AnkG107Δ76aa-GFP) or the total COOH-terminal domain (c, AnkG107ΔSbp-GFP) did not abolish sarcolemmal labeling but resulted in an additional homogeneous cytoplasmic distribution. A significant fraction of the COOH-terminal domain was detected in the cytoplasm (d, AnkG107ΔSbp ΔCer-GFP). This domain also displayed partial and less frequent localization to the plasma membrane, as illustrated in d, where two myotubes with and without membrane labeling are present in the same optical field. Deletion of the 76-residue insert prevented the plasma membrane localization of the COOH-terminal domain and resulted in a predominantly diffuse cytoplasmic labeling (e, AnkG107ΔSbp ΔCerΔ76aa-GFP). The GFP alone distributed in the cytoplasm and the nuclei (f, GFP). Although the spectrin-binding domain is sufficient to address AnkG107 to the membrane, the 76-residue insert appears to confer stabilization of membrane. White traces in all images shows the relative cortical and cytoplasmic fluorescence intensity profiles along a straight line (white dotted lines) crossing the labeled myotubes (see “Experimental Procedures”). Bars, 10 μm.

Fig. 7. Comparison of cortical over cytoplasmic distribution of AnkG107 domains in transfected rat myotubes. GFP fluorescence intensity profiles of transfected GFP-tagged AnkG107 domains as shown in Fig. 6 were measured and analyzed using a ratiometric method as described under “Experimental Procedures.” The mean ratios ± S.E. of cortical over cytoplasmic fluorescence intensities (Fcortex/Fcytoplasm) obtained from two different experiments are shown for each construct. Two ratios were calculated per myotube to take into account heterogeneous distribution within one cell. Statistical significance was determined using a two-tailed student’s t test. A decrease in ratio values indicates increased cytoplasmic labeling. Values of Cter 76aa at the dotted line set at 1 indicate no difference between cortical and cytoplasmic intensities.
The 76-residue insertion is a unique feature of AnkG107 among the presently cloned ankyrins-G. Surprisingly, the only sequences showing extensive homology with this insert are from the COOH-terminal domains of ankyrins-R and ankyrins-B, the Ank1 and Ank2 gene products, and include the entire exon 40 of Ank1 gene. The COOH-terminal sequences vary among ankyrin genes and apparently regulate the protein interactions of the two other conserved domains (38, 39). Consequently, they could provide specificity with regard to the particular functions of the different isoforms. The only sequences conserved to all three ankyrin genes within the COOH-terminal domain were a 12-kDa stretch of residues, also sequences conserved to all three ankyrin genes within the particular functions of the different isoforms. The only sequence constitutes an additional region of homology among ankyrins in this domain. Moreover, despite extensive alternative splicing (21) and variation among species (35), occurring in ankyrin-R COOH-terminal sequences, exon 40 and the first part of exon 41 are present in most human ANK1 (and rodent Ank1) gene transcripts (34), suggesting that these sequences are essential to the molecular structure of ankyrins-R. Interestingly, maximum homology is observed between the 76-residue insert and skAnk1, the muscle-specific, truncated, membrane-bound Ank1 gene product (36, 37). Homology is extended to the nonhydrophobic portion of the alternative exon 39a, which is specifically expressed in muscle tissues presumably under the control of an alternate muscle promoter of the Ank1 gene (36). These observations raise the question whether the presence of the 76-residue insert provides AnkG107 with muscle-specific functions. In favor of this hypothesis, expression of the 76-residue insert is predominantly detected in skeletal muscle and heart, by contrast with the widespread tissue expression of the ankigrin-G family (Fig. 3; Refs. 13 and 14). With regard to muscle tissues, insert-containing transcripts are predominant in the skeletal muscle. Moreover, this tissue contains the only small insert-positive transcripts likely to encode AnkG107. These observations suggest that AnkG107 is a skeletal muscle ankyrin-G isoform.

Endogenous 76-Residue Insert-containing Ankyrins-G Are Transiently Expressed and Associate with the Postsynaptic Membrane in Developing Muscle Fibers—The weak hybridization signal of the insert probe in Northern blots of mRNAs from adult skeletal muscle could reflect the presence of the 76-residue sequence only in a minor subset of Ank3 transcripts. An interesting hypothesis would be that polypeptides carrying this sequence are assigned to specific sites within muscle fibers. To elucidate this question, we immunolocalized these polypeptides in rat skeletal muscle fibers using antibodies raised against the 76-residue insert. Interestingly, labeling was on the sarcolemma and accumulated in the troughs of the postsynaptic folds in 15-day-old muscle fibers, a period of time coincident with formation of the postsynaptic folds and synaptic maturation. A surprising observation was that this labeling was completely lost in adult muscle fibers, suggesting that expression of these ankyrin-G isoforms is developmentally regulated. Ankyrins-G lacking the 76-residue insert remain localized to the adult postsynaptic membrane (23, 26). In agreement with immunolocalization results, in 15-day-old skeletal muscle homogenates anti-ankG76aa antibodies cross-reacted with three 130-, 190-, and >300-kDa polypeptides that appeared significantly decreased in the adult tissue. Moreover, the three polypeptides corresponded to a subset of minor proteins when compared with the general pattern of ankyrins-G detected in 15-day-old skeletal muscle by antibodies against the spectrin-binding domain. These results confirmed the hypothesis that the 76-residue sequence is expressed in a subset of muscle ankyrins apparently involved in temporally restricted events during postnatal maturation of the postsynaptic apparatus. Regarding the >300-kDa polypeptide, it is of interest that minor high molecular weight neuronal ankyrins-G, AnkG1480 and AnkG270, are specifically associated with the axolemma of nodes of Ranvier and initial axonal segments (13, 17–19), membrane domains with similar molecular composition and functional properties to the troughs of the postsynaptic membrane of muscle fibers. Further studies are on the way to better identify the isoforms carrying the 76-residue sequence and their function in developing muscle fibers.

Role of the 76-Residue Sequence in Targeting of AnkyrinG to Membrane Domains of Muscle Cells—To get an insight into the potential function of the muscle-specific 76-residue insert, we transfected AnkG107 in primary cultures of rat muscle cells. In vitro translated AnkG107 comigrated with the 130-kDa endogenous polypeptide in rat skeletal muscle homogenates, strongly suggesting that the cloned polypeptide is present in muscle and participates in the labeling of the sarcolemma. Several ankyrins-G are expressed in myotubes and localize to the sarcolemma and in the cytoplasm. Interestingly, no 130-kDa polypeptide cross-reacting with any of the two domain-specific antibodies was detected in extracts of myotubes, suggesting that this isoform is not yet expressed at this early stage of muscle cell differentiation.

Full-length AnkG107 was mainly targeted to the sarcolemma. An interesting observation was that subsarcolemmal AnkG107 organized in parallel strands running along the longitudinal axis of myotubes. Other cytoskeletal proteins, including dystrobin and spectrin, have been observed in myofibers to form a discontinuous subsarcolemmal lattice including longitudinal strands (41). The periodic pattern of AnkG107 distribution may thus indicate that this isoform associates with the cortical cytoskeleton. The lack of ANK repeats does not prevent ankyrins from interacting with membrane sites. Such interactions could involve the spectrin-binding domain as well, as was shown for the binding of kidney AnkG190 to the Na⁺/K⁺-ATPase (6, 12). Ankyrins-G with a truncated or totally deleted ANK repeat domain are still capable of localizing to membrane compartments (15, 16).

The contribution of the different domains of AnkG107, and in particular of the 76-residue insert, to the sarcolemma localization was evaluated by studying their subcellular targeting in transfected rat myotubes. The AnkG107 spectrin-binding domain was recruited at the plasma membrane, as was previously shown for other ankyrin-G isoforms in neurons (19). However, and at variance with the full-length molecule, a significant amount of the spectrin-binding domain was detected in the cytoplasm. A likely interpretation of the cytoplasmic distribution would be that the truncated AnkG107 molecules are not stabilized at the membrane. Targeting of the COOH-terminal domain of AnkG107 to the sarcolemma was much less efficient but still possible, at variance with the neuronal ankyrin-G COOH-terminal domain that remained in the cytoplasm of transfected neurons (19). The COOH-terminal domains of these two ankyrin-G isoforms differ only in the presence of the 76-residue insert. Interestingly, deletion of the 76-residue insert totally abolished membrane localization of the AnkG107 COOH-terminal domain in transfected myotubes. Accordingly, deletion of the 76-residue insert from the full-length AnkG107 molecule did not prevent recruitment at the plasma membrane but resulted in increased cytoplasmic distribution, similar to the spectrin-binding domain. Collectively, transfection experiments suggested that the 76-residue insert partially contributes to the targeting and is essential to the stabilization of AnkG107 at the plasma membrane.
Taken together, these results show that fine tuning of distinct functions of ankryins encoded by the same gene may be achieved by tissue-dependent and developmentally regulated alternative processing, leading to the expression of distinct sequences. A working hypothesis is that a subset of ankyrins-G playing a key role in the assembly of distinct membrane domains during postnatal differentiation of muscle fibers are stabilized into a membrane-associated multiprotein complex via interactions of the 76-residue insert with other muscle proteins.

Acknowledgments—We thank Anne Cantereau for technical assistance with confocal microscopy.

REFERENCES
1. Bennett, V., and Baines, A. J. (2001) Physical Rev. 81, 1353–1392
2. Beck, K. A., and Nelson, W. J. (1996) Am. J. Physiol. (Tokyo) 270, C1263–C1270
3. De Matteis, M. A., and Morrow, J. S. (2000) J. Cell Sci. 113, 2331–2343
4. Lambert, S., and Bennett, V. (1996) Curr. Top. Membr. 43, 129–145
5. Beerk, P. (1995) Proteins 17, 363–374
6. Davis, J. Q., and Bennett, V. (1993) J. Biol. Chem. 268, 17252–17256
7. Srivivasan, Y., Lewallen, M., and Angelides, K. J. (1992) J. Biol. Chem. 267, 7483–7489
8. Davis, J. Q., McLaughlin, T., and Bennett, V. (1993) J. Cell Biol. 121, 121–133
9. Morgan, C. W., and Kopito, R. R. (1993) J. Cell Biol. 105, 1137–1142
10. Michaely, P., and Bennett, V. (1995) J. Cell Biol. 120, 22050–22057
11. Michaely, P., and Bennett, V. (1995) J. Biol. Chem. 270, 31298–31302
12. Thevananth, S., Rolli, A. H., and Devarajan, P. (1998) J. Biol. Chem. 273, 23952–23958
13. Kordeli, E., Lambert, S., and Bennett, V. (1995) J. Biol. Chem. 270, 2352–2359
14. Peters, L. L., John, K. M., Lu, F. M., Eicher, E. M., Higgins, A., Yialamas, M., Turtazo, L. C., Otsuka, A. J., and Lux, S. E. (1995) J. Biol. Chem. 130, 313–330
15. Devarajan, P., Stabach, P. R., Mann, A. S., Ardito, T., Kashgarian, M., and Morrow, J. S. (1996) J. Cell Biol. 133, 819–830
16. Hoek, T. C., Peters, L. L., and Lux, S. E. (1997) J. Cell Biol. 136, 1059–1070
17. Zhang, X., and Bennett, V. (1996) J. Biol. Chem. 271, 31391–31398
18. Lambert, S., Davis, J. Q., and Bennett, V. (1997) J. Neurosci. 17, 7025–7036
19. Zhang, X., and Bennett, V. (1998) J. Cell Biol. 142, 1571–1581
20. Moon, R. T., Ngui, J., Wold, B. J., and Lazarides, E. (1985) J. Cell Biol. 100, 152–160
21. Birkenmeier, C. S., White, R. A., Peters, L. L., Hall, E. J., Lux, S. E., and Barker, J. E. (1993) J. Biol. Chem. 268, 9533–9540
22. Zhou, D., Birkenmeier, C. S., Sharp, J. J., Barker, J. E., and Bloch, R. J. (1997) J. Cell Biol. 136, 621–631
23. Kordeli, E., Luofsky, M.-A., Deprette, C., Frappier, T., and Cartaud, J. (1998) J. Cell Sci. 111, 2197–2207
24. Tuva, S., Buhusi, M., Davis, L., Reedy, M., and Bennett, V. (1999) J. Cell Biol. 147, 995–1008
25. Flucher, B. E., and Daniels, M. P. (1989) Neuron 3, 163–175
26. Wood, S. J., and Slater, C. R. (1998) J. Cell Biol. 140, 675–684
27. Nelson, W. J., and Lazarides, E. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 3292–3296
28. Flucher, B. E., Morton, M. E., Froehner, S. C., and Daniels, M. P. (1990) Neuro 5, 339–351
29. Chauhan, V. S., Tuva, S., Buhusi, M., Bennett, V., and Grant, A. O. (2000) Circ. Res. 86, 441–447
30. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
31. Pearson, W. R., and Lipman, D. J. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 2444–2448
32. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol. 215, 403–410
33. Cognard, C., Constantin, B., Rivet-Bastide, M., Imbert, N, Besse, C., and Raymond, G. (1993) Development 117, 1153–1161
34. Gallagher, P. G., Tse, W. T., Scarpa, A. L., Lux, S. E., and Forget, B. G. (1997) J. Biol. Chem. 272, 19220–19228
35. White, R. A., Birkenmeier, C. S., Peters, L. L., Barker, J. E., and Lux, S. E. (1992) Mamm. Genome 3, 281–283
36. Gallagher, P. G., and Forget, B. G. (1998) J. Biol. Chem. 273, 1339–1348
37. Birkenmeier, C. S., Sharp, J. J., Gifford, E. J., Deveau, S. A., and Barker, J. E. (1998) Genomics 50, 79–88
38. Hall, T. G., and Bennett, V. (1987) J. Biol. Chem. 262, 10537–10545
39. Davis, L. H., Davis, J. Q., and Bennett, V. (1992) J. Biol. Chem. 267, 18966–18972
40. Cleveland, J. L., and Ihle, J. N. (1995) Cell 81, 479–482
41. Porter, G. A., Dmytrenko, G. M., Winkelmann, J. C., and Bloch, R. J. (1992) J. Cell Biol. 117, 997–1005