STRUCTURAL ELUCIDATION OF CISOID AND TRANSOID CYCLIZATION PATHWAYS OF A SESQUITERPENE SYNTHASE USING 2-FLUOROFARNESYL DIPHOSPHATES

By Joseph P. Noel, Nikki Dellas, Juan A. Faraldos, Yuxin Zhao, B. Andes Hess, Jr., Lidia Smentek, Robert M. Coates, and Paul E. O'Maille

SUPPORTING INFORMATION

Table of Contents

Preparation and characterization of (2-cis, 6-trans)-2-fluorofarnesyl diphosphate...............S2
Global comparison of TEAS wt and M4 crystal structures (Table S1).................................S5
Annotation of structures by B-factor (Figure S1)..S6
J-K loop comparison between current and previous TEAS structures (Figure S2)..............S7
Spatial distribution of M4 mutations (Figure S3)..S8
Farnesyl chain topology of wild-type TEAS from fluorofarnesyl analogues(Figure S4).........S9
Mutational effects in M4 TEAS on the active site contour and substrate-binding (Figure S5)..S10
Computational Details...S11
Supplemental methods (protein expression, purification and kinetic measurement).........S31
Preparation and Characterization of (2-cis, 6-trans)-2-Fluorofarnesyl Diphosphate

General Aspects:

1H and 13C NMR spectra were recorded in CDCl$_3$ (1H, 7.26; 13C, 77.0) or CD$_3$OD [1H, 3.31 (quintet); 13C, 49.2 (septet)] with U400 and U500 spectrometers in SCS NMR Spectroscopy Facility at the University of Illinois. Chemical shifts are in ppm and coupling constants are in Hertz. The abbreviation ‘app’ is used to describe the apparent multiplicity of the peak and may or may not be a valid first-order analysis.

All chemical reactions were performed in flame-dried glassware under nitrogen. THF and Et$_2$O were dried and distilled from Na/benzophenone; benzene and CH$_2$Cl$_2$ were dried and distilled from CaH$_2$. Hexane and ethyl acetate were freshly distilled from CaH$_2$. DMF, acetonitrile, and CDCl$_3$ were dried over molecular sieves (4 Å) prior use. TLC analyses were performed on silica gel 60 F254 precoated-plates 250 µm. All retention factors (R$_f$) are on silica gel TLC plates until otherwise noted. TLC visualizations were performed with 5% phosphomolybdic acid (0.2 M in 2.5% concd. H$_2$SO$_4$/EtOH (v/v)), I$_2$ vapor, or UV light. Commercial reagents were used without further purification unless specifically noted. Column chromatography was performed according to Still’s procedure1 using 100-700 times excess 32-64 µm grade silica gel. Products separated by chromatography are specified in elution order.

\[
\text{OH} \quad \text{LiCl/MsCl} \quad \text{Collidine} \quad \text{DMF} \quad 2.5 \text{h} \quad \text{F} \quad \text{Cl}
\]

(2Z, 6E)-1-Chloro-3,7,11-trimethylundeca-2,6,10-triene ((2-cis, 6-trans)-2-Fluorofarnesyl Chloride) (2-cis, 6-trans)-2-Fluorofarnesol2 was converted to the allylic chloride under Meyers’ conditions3 as previously described for (2-trans, 6-trans)-2-fluorofarnesol.4 Reaction of the
alcohol (44 mg, 0.18 mmol) with LiCl (77 mg, 1.8 mmol), s-collidine (222 mg, 1.8 mmol), and MsCl (67 mg, 0.54 mmol) in dry DMF provided the chloride as a yellow oil (47 mg, 99%). The chloride was converted to the diphosphate directly without purification. Product characterization data: TLC R_f 0.83 (15% EtOAc in hexane); 1H NMR (CDCl$_3$, 400 MHz) δ 5.09 (m, 2H, vinyl H), 4.18 (dd, 2H, $J = 22.5, 0.5$ Hz, CH_2Cl), 1.95-2.18 (m, 8H, 4CH_2), 1.72 (app d, 3H, $J_{app} = 3.5$ Hz, CH_3), 1.68 (d, 3H, $J = 1.0$ Hz, CH_3), 1.60 (s, 6H, 2CH_3); 19F NMR (CDCl$_3$, 376 MHz) δ –116.7 (td, $J = 23.2, 2.8$ Hz).

(2E, 6E)-2-Fluoro-3,7,11-trimethyl undeca-2,6,10-trien-1-yl Diphosphate, Trisammonium Salt (2b, (2-cis, 6-trans)-2-Fluorofarnesyl Diphosphate).

The diphosphorylation was carried out as previously described for the trans,trans isomer4 using Poulter's methodology.5 The reaction of the chloride (47 mg, 0.18 mmol), HOPP(NBu$_4$)$_3$ (320 mg, 0.36 mmol) and 3 Å molecular sieves (400 mg) in CH$_3$CN (2.0 mL) provided the crude tetrabutylammonium diphosphate as a yellow oil (366 mg). Based on the 31P NMR spectrum, it was a 1: 0.81 mixture of inorganic pyrophosphate and organic diphosphate (corrected yield 91%). Ion exchange chromatography on BioRad (NH$_4$)$^+$cation exchange resin (40 mL of 25 mM NH$_4$HCO$_3$ in 2% v/v 1-propanol/D.I. water) and lyophilization followed by washing with MeOH (3 x 5 mL) to remove the inorganic pyrophosphate afforded the (NH$_4$)$^+$ salt of diphosphate 2b as a white solid (51 mg, 68 %): 1H NMR (CD$_3$OD, 400 MHz) δ 5.17-5.11 (m, 1H, vinyl H), 5.11-5.05 (m, 1H, vinyl H), 4.59 (dd, 2H, $J = 23.3, 5.4$ Hz, CH_2OPP), 2.16-2.11 (m, 4H, CH_2), 2.09-2.04 (m, 2H, CH_2), 2.00-1.95 (m, 2H, CH_2), 1.68 (d, 3H, $J = 3.5$ Hz, CH_3), 1.66 (q, 3H, $J = 1.2$ Hz,
CH_3, 1.61 (d, 3H, $J = 1.2$ Hz, CH_3), 1.60 (br d, 3H, $J = 0.6$ Hz, CH_3); ^{31}P NMR (CD$_3$OD, 162 MHz) δ -7.99 (br d, $J = 14.9$ Hz), -9.30 (br d, $J = 14.1$ Hz); ^{19}F NMR (CD$_3$OD, 376 MHz) δ -118.9 (td, $J = 23.2$, 3.5 Hz).

References

(1) Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* 1978, 43, 2923-2925.

(2) Jin, Y.; Williams, D. C.; Croteau, R.; Coates, R. M. *J. Am. Chem. Soc.*, 2005, 127, 7834-7842.

(3) Collington, E.W.; Meyers, A. I. *J. Org. Chem.* 1971, 36, 3044-3045.

(4) Shishova, E. Y.; Yu, F.; Miller, D. J.; Faraldos, J. A.; Zhao, Y.; Coates, R. M.; Allemann, R. K.; Cane, D. E.; Christianson, D. W. *J. Biol. Chem.* 2008, 283, 15431-15439. (ms ref 17).

(5). Woodside, A. B.; Huang, Z.; Poulter, C. D. *Org. Synth.* 1993, *Coll. Vol.* 8, 616-620.
Table S1. Global comparison of TEAS wt and M4 crystal structures.

	M4 TEAS·cis-2F-FPP	M4 TEAS·trans-2F-FPP	wt TEAS·cis-2F-FPP	wt TEAS·trans-2F-FPP
M4 TEAS·cis-2F-FPP	-	-	-	-
M4 TEAS·trans-2F-FPP	0.242	-	-	-
wt TEAS·cis-2F-FPP	0.282	0.321	-	-
TEAS wt-trans-2F-FPP	0.29	0.328	0.219	-
5EAT	0.334	0.369	0.294	0.335

Global comparisons were performed by superposing all C-alpha carbons to derive root mean square deviation (rmsd) values expressed in the unit angstroms.
Figure S1. Annotation of global structure using B-factors reveals a similar pattern of dynamically accessible polypeptide segments. All structures were colored according to their refined isotropic by B-factors, with the corresponding color values of the blue to red gradient shown in the legend at the bottom right.
Figure S2. Disorder in the J-K loop of experimental crystal structures. An active site model for the wild-type TEAS trans-2F-FPP is shown as a van der Waals surface clipped to reveal the bound substrate analogue and helices J and K with the intervening loops. All experimental structures are overlaid on the original TEAS-FHP structure (pdb id 5eat) shown in a grey semitransparent trace. Each structure is colored as indicated in the legend below, with the omitted J-K loop regions highlighted in grey.
Figure S3. Spatial distribution of M4 mutations and closest distances to the farnesyl chain. a. The global structure of M4 TEAS with bound cis-2F-FPP ligand modeled into the active site and the protein backbone is depicted as rainbow colored ribbons. Distances from the active sited center to the side-chains of the M4 mutations are shown as dashed lines.
Figure S4. Farnesyl chain topology of wild-type TEAS from fluorofarnesyl analogues. a. Observable electron density from the wild-type complex with cis-2F-FPP reveals a U-shaped curl (left panel) possibly contributed to by four distinct binding modes of the farnesyl chain (right panel). b. Calculated electron density contoured at 1σ in the SIGMAA-weighted 2Fo-Fc map with the modeled trans-2F-FPP shown with a plane passing through the U-shape curl of the farnesyl chain (left panel). An overlay of trans-2F-FPP (silver chain) with farnesylhydroxy phosphonate (FHP, white chain) in the calculated electron density for the trans-2F-FPP ligand from the left panel.
Figure S5. Spatial depiction of mutational effects in M4 TEAS on the active site contour and substrate-binding mode in the trans-2F-FPP and cis-2F-FPP complexes. The ribbon and active site surface (cream) of wild-type TEAS wild is superimposed on the corresponding M4 TEAS 2F-FPP complex, with ribbons and side chains rendered with rainbow coloration (as in Fig. 3a and 4a). The ligand from wild-type TEAS (cyan) and M4 TEAS (gray) is overlaid and electron density from the SIGMAA-weighted 2Fo-Fc electron density maps at 1σ is shown for Y520 and I516 for the M4 TEAS structures.
Computational Details

As noted in the article Hong and Tantillo\(^1\) concurrently carried out computational studies on the conversion of (6S)-\(\alpha\)-bisabolyl cation to \(\alpha\)-cedrene. In Figure 2a of the current article, the pathway reported by Hong and Tantillo proceeds via the curved blue arrow, avoiding the formation of the \(\alpha\)-acorenyl cation. In contrast to this, we located an alternative pathway (red curved arrow via transition structure 14) that instead avoids the formation of the (7R)-\(\beta\)-bisabolyl cation. The question then arises how might two pathways exist that both lead from (6S)-\(\alpha\)-bisabolyl cation to \(\alpha\)-cedrene (3). It was found that these two pathways lead from two different conformers, a and b of (6S)-\(\alpha\)-bisabolyl cation (Figure S7):

![Figure S6](image)

Figure S6.

Note that the location of the side-chain (\(R\)) in these two conformers is quite different and might very well affect the course of any reaction they might undergo. The enzyme could utilize this by it “freezing” one of these conformers, which would direct the course of the ensuing reaction. The red pathway (via transition structure 14) shown in Figure 2 in the article leads from

\(^1\) Hong, Y. J.; Tantillo, D. J. *J. Am. Chem. Soc.* **2009**, *131*, 7999-8015.
conformer a, and the blue pathway from b. A transition structure was also located that leads from (1R, 4S, 5S)-α-acorenyl cation to the carbocation precursor to (-)-α-cedrene (2).²

² An analogous pathway was also located that leads from (6R)-α-bisabolycation to the epimer of the (-)-α-cedrene (2) shown if Figure 2a in the article (the methyl group in the five-membered ring is cis to the CH₂ group of the adjacent six-membered ring:

This “epimeric” pathway was essentially indistinguishable from that reported here with the exception of this methyl group placement.
Geometries and Energies of All Stationary Points

(6S)-α-bisabolyl cation

Charge = 1 Multiplicity = 1

	6	0	-2.267409	-1.296044	-0.667234
2	6	0	-0.931583	-0.651595	-0.274241
---	---	---	----------	----------	----------
3	6	0	-3.472203	-0.657890	-0.011413
4	6	0	-1.070916	0.887354	-0.320722
5	6	0	0.280379	2.960189	-0.824636
6	6	0	0.109652	1.706628	-0.054776
7	6	0	1.106677	1.357899	0.956191
8	6	0	2.570046	1.102027	0.333108
9	6	0	2.692825	-0.153128	-0.466951
10	6	0	-2.110623	1.308237	0.819681
11	6	0	-3.376071	0.506208	0.643636
12	6	0	-4.779301	-1.387881	0.162530
13	6	0	3.305882	-1.295070	-0.096742
14	6	0	3.952077	-1.536144	1.243213
15	6	0	3.401521	-2.452853	-1.058017
16	1	0	-2.397633	-1.269287	-1.759619
17	1	0	-2.231792	-2.362243	-0.407043
18	1	0	-0.137070	-0.984027	-0.948244
19	1	0	-0.651203	-0.968618	0.736385
20	1	0	0.958984	3.678137	-0.359563
21	1	0	0.703741	2.679048	-1.805987
22	1	0	-0.684040	3.428566	-1.051122
23	1	0	-1.528362	1.196295	-1.268170
24	1	0	0.822947	0.489097	1.550370
25	1	0	1.239970	2.229924	1.612201
26	1	0	2.831023	1.981033	-0.266330
27	1	0	3.231840	1.099656	1.200990
28	1	0	2.265744	-0.114605	-1.470631
29	1	0	-1.653515	1.133183	1.802130
30	1	0	-2.329939	2.380017	0.752328
31	1	0	-4.263711	0.959200	1.082507
32	1	0	-5.607047	-0.841996	0.298428
33	1	0	-5.020866	-1.543664	-1.222342
34	1	0	-4.726805	-2.383115	0.297402
35	1	0	5.023817	-1.735837	1.115700
36	1	0	3.848707	-0.707346	1.947325
37	1	0	3.526626	-2.432041	1.713078
38	1	0	4.451567	-2.707980	-1.250850
39	1	0	2.938499	-3.352814	-0.632175
40	1	0	2.922803	-2.238201	-2.017890

SCF Done: E(RB+HF-LYP) = -586.365866023 A.U. after 1 cycles
Frequencies -- 26.6249 33.7822 50.7079
Zero-point correction= 0.365327 (Hartree/Particle)
Thermal correction to Energy= 0.383301
Thermal correction to Enthalpy= 0.384245
Thermal correction to Gibbs Free Energy= 0.318499
Sum of electronic and zero-point Energies= -586.000539
Sum of electronic and thermal Energies= -585.982565
Sum of electronic and thermal Enthalpies= -585.981621
Sum of electronic and thermal Free Energies= -586.047367
mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.379668
DFT + ZPE = -586.01434

14 – transition structure linking (6S)-α-bisabolyl cation with (1R,4S,5S)-a-acorenyl cation

Charge = 1 Multiplicity = 1

1 6 0 -1.561819 3.011953 0.199064
2 6 0 -0.596343 2.165354 -0.649350
3 6 0 -2.431453 2.176256 1.111275
4 6 0 0.091963 1.084510 0.154049
5 6 0 2.393059 1.672747 -0.799609
6 6 0 1.486149 0.827695 0.068211
7 6 0 2.138178 -0.374764 0.705617
8 6 0 2.483062 -1.448940 -0.383437
9 6 0 1.298949 -1.940581 -1.174043
10 6 0 -0.869282 0.190987 0.917631
11 6 0 -2.109742 0.909054 1.396193
12 6 0 -3.655058 2.849425 1.671574
13 6 0 0.656720 -3.115696 -1.044314
14 6 0 0.998249 -4.177927 -0.029528
15 6 0 -0.485330 -3.471675 -1.964993
16 1 0 -0.999005 3.752783 0.787173
17 1 0 -2.189736 3.598399 -0.482284
18 1 0 0.100635 2.796731 -1.201382
19 1 0 -1.178502 1.608784 -1.399054
20 1 0 3.430557 1.582026 -0.471868
21 1 0 2.330674 1.299891 -1.829799
22 1 0 2.124383 2.729935 0.816763
23 1 0 0.928205 1.617355 1.007487
24 1 0 1.502022 -0.837615 1.460181
25 1 0 3.067941 -0.056961 1.190061
26 1 0 3.237527 -1.032528 -1.062356
27 1 0 2.976104 -2.262889 0.154360
28 1 0 0.962630 -1.274966 -1.971925
29 1 0 -1.122656 -0.634451 0.233308
30 1 0 -0.373715 -0.290790 1.766411
31 1 0 -2.754215 0.318550 2.042978
32 1 0 -4.203245 2.193005 2.352534
33 1 0 -3.384259 3.760710 2.221018
34 1 0 -4.336274 3.157503 0.867811
35 1 0 1.274130 -5.111618 -0.536127
36 1 0 1.818163 -3.906551 0.639523
37 1 0 0.122301 -4.412376 0.589339
38 1 0 -0.253591 -4.382164 -2.532694
39 1 0 -1.399150 -3.688531 -1.395948
40 1 0 -0.704741 -2.674623 -2.682017

SCF Done: E(RB+HF-LYP) = -586.350482839 A.U. after 1 cycles
Frequencies -- -522.5457 29.3134 40.5082
Zero-point correction= 0.363077 (Hartree/Particle)
Thermal correction to Energy= 0.380476
Thermal correction to Enthalpy= 0.381421
Thermal correction to Gibbs Free Energy= 0.317184
Sum of electronic and zero-point Energies= -585.987406
Sum of electronic and thermal Energies= -585.970006
Sum of electronic and thermal Enthalpies= -585.969062
Sum of electronic and thermal Free Energies= -586.033299

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.374902
DFT + ZPE = -586.01183

(1R, 4S, 5S)-α-acorenyl cation (lower energy conformer – product of IRC)
#6-31g* b3lyp nopop freq guess=read geom=check

Charge = 1 Multiplicity = 1

1	6	0	-2.530442	-0.063980	-0.165330
2	6	0	-1.246163	-0.923381	-0.118245
3	6	0	-2.453121	1.187110	0.679010
4	6	0	-3.745432	1.926885	0.896253
5	6	0	-1.285146	1.613336	1.180740
6	6	0	0.031777	0.894658	1.002754
7	6	0	0.001588	-0.043136	-0.222096
8	6	0	0.170697	0.734686	-1.568419
9	6	0	1.654787	1.134138	-1.619467
10	6	0	-0.239891	-0.047562	-2.825913
11	6	0	2.434080	-0.100514	-1.114052
12	6	0	1.434277	-0.993549	-0.339366
13	6	0	1.768755	-1.481120	0.965501
14	6	0	2.762256	-0.810667	1.838525
15	6	0	1.139525	-2.713373	1.496425
16	1	0	-2.758400	0.219338	-1.202616
17	1	0	-3.378461	-0.681328	0.158652
18	1	0	-1.275635	-1.675743	-0.912876
19	1	0	-1.236684	-1.462091	0.836792
20	1	0	-3.599295	2.838311	1.482412
21	1	0	-4.474976	1.295348	1.420283
22	1	0	-4.205337	2.206262	-0.061026
23	1	0	-1.253469	2.524924	1.773841
24	1	0	0.244132	0.315453	1.916039
25	1	0	0.841752	1.629255	0.924570
26	1	0	-0.463077	1.626675	-1.493443
27	1	0	1.962765	1.423325	-2.628139
28	1	0	1.848493	1.997339	-0.975365
29	1	0	-0.087798	0.583683	-3.707270
30	1	0	-1.293240	-0.339528	-2.817493
SCF Done: E(RB+HF-LYP) = -586.375831628 A.U. after 1 cycles
Frequencies -- 48.4539 78.0842 109.4122
Zero-point correction= 0.368243 (Hartree/Particle)
Thermal correction to Energy= 0.384587
Thermal correction to Enthalpy= 0.385531
Thermal correction to Gibbs Free Energy= 0.326229
Sum of electronic and zero-point Energies= -586.007589
Sum of electronic and thermal Energies= -585.991245
Sum of electronic and thermal Enthalpies= -585.990300
Sum of electronic and thermal Free Energies= -586.049603

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.396703994
DFT + ZPE = -586.02846

(1R, 4S, 5S)-α-acorenyl cation (higher energy conformer)
#6-31g* b3lyp nopop freq guess=read geom=check

Charge = 1 Multiplicity = 1

SCF Done: E(RB+HF-LYP) = -586.366027117 A.U. after 1 cycles

Frequencies -- 27.1277 42.9804 79.6402
Zero-point correction= 0.367584 (Hartree/Particle)
Thermal correction to Energy= 0.384217
Thermal correction to Enthalpy = 0.385162
Thermal correction to Gibbs Free Energy = 0.324108
Sum of electronic and zero-point Energies = -585.998443
Sum of electronic and thermal Energies = -585.981810
Sum of electronic and thermal Enthalpies = -585.980865
Sum of electronic and thermal Free Energies = -586.041919

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*
DFT = -586.386818366
DFT + ZPE = -586.01923

(1R, 4R, 5S)-a-acorenyl cation

#6-31g* b3lyp nopop freq geom=check guess=read

Charge = 1 Multiplicity = 1

S20
	1	0				
18	1	0	1.932639	-1.047006	1.964268	
19	1	0	-0.479926	-0.845206	2.336423	
20	1	0	-0.547277	-2.251280	1.280197	
21	1	0	-0.818816	-0.290670	-1.938036	
22	1	0	-1.260701	-1.839733	-1.279695	
23	1	0	-3.050710	0.939420	-1.384345	
24	1	0	-3.481831	1.781216	0.094014	
25	1	0	-1.415124	2.971081	-0.062560	
26	1	0	-0.995654	2.024761	-1.483293	
27	1	0	-2.560580	0.115967	1.497846	
28	1	0	-3.132636	-2.181422	0.647659	
29	1	0	-4.407634	-0.992261	0.383357	
30	1	0	-3.401908	-1.500575	-0.970655	
31	1	0	3.856110	-1.078465	0.512034	
32	1	0	3.590303	-0.670984	-1.206649	
33	1	0	3.544632	-2.342665	-0.686461	
34	1	0	-0.591838	1.341759	1.475052	
35	1	0	1.492790	2.662901	-1.281804	
36	1	0	2.716753	1.406137	-1.185860	
37	1	0	1.123272	1.075511	-1.940894	
38	1	0	1.545113	1.472527	2.346535	
39	1	0	2.967665	1.608350	1.262049	
40	1	0	1.787171	2.912334	1.355131	

SCF Done: E(RB+HF-LYP) = -586.381341674 A.U. after 1 cycles

Frequencies -- 79.8947 82.1013 101.8161

Zero-point correction= 0.369611 (Hartree/Particle)

Thermal correction to Energy= 0.385474

Thermal correction to Enthalpy= 0.386419

Thermal correction to Gibbs Free Energy= 0.328742

Sum of electronic and zero-point Energies= -586.011730

Sum of electronic and thermal Energies= -585.995867

Sum of electronic and thermal Enthalpies= -585.994923

Sum of electronic and thermal Free Energies= -586.052600

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.403228493

DFT + ZPE = -586.03362

Tertiary carbocation precursor to (+)-2-epi-prezizaene
#6-31g* b3lyp nopop freq guess=read geom=check

Charge = 1 Multiplicity = 1

1	6	0	-0.517646	-1.839934	1.112556	
2	6	0	0.806011	-1.046329	1.189215	
3	6	0	-0.980237	-1.698530	-0.449070	
4	6	0	0.368955	-1.437998	-1.137265	
5	6	0	-1.861305	-0.567182	-0.237711	
6	6	0	-3.316075	-0.851440	-0.161030	
7	6	0	-1.338491	0.833152	-0.065420	
8	6	0	-2.113601	1.723041	-1.097871	
9	6	0	0.195754	0.919587	-0.369974	
10	6	0	-1.720950	1.352317	1.358257	
11	6	0	1.001535	-0.398121	-0.207549	
12	6	0	2.434495	0.092165	-0.530635	
13	6	0	2.516224	1.491991	0.145160	
14	6	0	3.589340	-0.844209	-0.171066	
15	6	0	1.052091	1.978108	0.358472	
16	1	0	-0.403509	-2.920266	1.245595	
17	1	0	-1.269960	-1.520389	1.840877	
18	1	0	1.622665	-1.743438	1.396722	
19	1	0	0.799067	-0.316699	2.003306	
20	1	0	-1.514554	-2.595564	-0.767935	
21	1	0	0.253006	-1.086339	-2.167914	
22	1	0	0.929191	-2.379762	-1.166638	
23	1	0	-3.907758	-0.923800	0.349089	
24	1	0	-3.512842	-1.842057	0.261258	
25	1	0	-3.663905	-0.901920	-1.207920	
26	1	0	-1.678349	2.725840	-1.050251	
27	1	0	-3.178638	1.805030	-0.866678	
28	1	0	-1.997450	1.356854	-2.122832	
29	1	0	0.268053	1.152562	-1.441874	
30	1	0	-1.462979	2.412451	1.413649	
31	1	0	-1.179671	0.830436	2.150484	
---	---	---	---	---		
32	1	0	-2.792265	1.264141	1.553838	
33	1	0	2.458775	0.242754	-1.619753	
34	1	0	3.035965	1.420923	1.106886	
35	1	0	3.093713	2.188443	-0.469259	
36	1	0	4.536461	-0.428466	-0.530618	
37	1	0	3.475215	-1.833141	-0.631201	
38	1	0	3.687837	-0.979109	0.912074	
39	1	0	0.882627	2.985382	-0.034758	
40	1	0	0.822708	2.015012	1.427440	

SCF Done: $E(RB+HF-LYP) = -586.385770487$ A.U. after 6 cycles

Frequencies -- 65.1480 75.6308 102.3592

Zero-point correction= 0.371457 (Hartree/Particle)
Thermal correction to Energy= 0.386534
Thermal correction to Enthalpy= 0.387479
Thermal correction to Gibbs Free Energy= 0.331410

Sum of electronic and zero-point Energies= -586.014313
Sum of electronic and thermal Energies= -585.999236
Sum of electronic and thermal Enthalpies= -585.998292
Sum of electronic and thermal Free Energies= -586.054361

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.413165107
DFT + ZPE = -586.04171

Precursor tertiary carbocation to (-)-α-cedrene (higher energy conformer, “product of irc”)
#6-31g* b3lyp noppop freq guess=read geom=check

Charge = 1 Multiplicity = 1

1	6	0	-1.986145	-0.560007	-1.114734
2	6	0	-0.781513	0.086170	-1.838199
3	6	0	-2.217552	-0.185175	0.297395
4	6	0	-3.503960	-0.541928	0.925710
5	6	0	-1.185848	0.486173	1.053205
6	6	0	-0.406203	1.477554	0.162920
7	6	0	0.301039	0.549500	-0.844947
8	6	0	1.559341	1.212918	-1.478450
9	6	0	2.643086	0.963292	-0.403848
10	6	0	1.967247	0.640631	-2.845117
11	6	0	2.367337	-0.464735	0.104850
12	6	0	0.822117	-0.642151	0.039375
13	6	0	0.016973	-0.622800	1.389883
14	6	0	0.758609	-0.028554	2.602065
15	6	0	-0.500501	-2.011915	1.788301
16	1	0	-2.930420	-0.466980	-1.671180
17	1	0	-1.855232	-1.659683	-1.050131
18	1	0	-1.136859	0.941965	-2.424643
19	1	0	-0.378699	-0.636733	-2.552875
20	1	0	-3.397150	-0.765693	1.992025
21	1	0	-4.040986	-1.337414	0.402254
22	1	0	-4.131464	0.367131	0.870340
23	1	0	-1.569396	0.875362	1.999477
24	1	0	0.292214	2.037442	0.789229
25	1	0	-1.058101	2.210797	-0.324916
26	1	0	1.381796	2.288895	-1.605625
27	1	0	3.656736	1.077380	-0.800267
28	1	0	2.543771	1.687553	0.413951
29	1	0	2.891249	1.119387	-3.184750
30	1	0	1.207561	0.824774	-3.611888
31	1	0	2.153104	-0.439438	-2.808477
32	1	0	2.793615	-0.648743	1.093574
33 1 0 2.829825 -1.194593 -0.567190
34 1 0 0.602618 -1.596704 -0.452522
35 1 0 0.089492 0.053443 3.464510
36 1 0 1.196624 0.953479 2.410095
37 1 0 1.571446 -0.703100 2.889735
38 1 0 -1.058526 -2.514408 0.989941
39 1 0 -1.131896 -1.973863 2.683114
40 1 0 0.354508 -2.654094 2.025771

SCF Done: E(RB+HF-LYP) = -586.390371153 A.U. after 1 cycles
Frequencies -- 68.7704 79.1418 130.8598
Zero-point correction= 0.370146 (Hartree/Particle)
Thermal correction to Energy= 0.385171
Thermal correction to Enthalpy= 0.386115
Thermal correction to Gibbs Free Energy= 0.330378
Sum of electronic and zero-point Energies= -586.020225
Sum of electronic and thermal Energies= -586.005200
Sum of electronic and thermal Enthalpies= -586.004256
Sum of electronic and thermal Free Energies= -586.059993

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*
DFT = -586.41745987
DFT + ZPE = -586.04731

Precursor tertiary carbocation to (-)-α-cedrene (lower energy conformer)

#6-31g* b3lyp nopop freq guess=read geom=check
Charge = 1 Multiplicity = 1

1 6 0 0.821187 0.289456 0.500298

SCF Done: E(RB+HF-LYP) = -586.391511674 A.U. after 1 cycles
Frequencies -- 63.1134 79.6270 139.0493
Zero-point correction= 0.370440 (Hartree/Particle)
Thermal correction to Energy= 0.385371
Thermal correction to Enthalpy= 0.386315
Thermal correction to Gibbs Free Energy= 0.330835
Sum of electronic and zero-point Energies= -586.021071
Sum of electronic and thermal Energies= -586.006140
Sum of electronic and thermal Enthalpies= -586.005196

Sum of electronic and thermal Free Energies = -586.060677

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.422749615
DFT + ZPE = -586.05231

15 - Transition state linking (1R, 4R, 5S)-a-acorenyl cation to the tertiary carbocation precursor to (+)-2-epi-prezizaene

#6-31g* b3lyp nopop freq guess=read geom=check

Charge = 1 Multiplicity = 1

1	6	0	-0.075792	-0.059851	2.022135
2	6	0	0.135954	-1.986766	0.648942
3	6	0	1.285919	-1.393393	-0.032680
4	6	0	1.058069	0.101099	-0.234890
5	6	0	0.925973	0.743102	1.171389
6	6	0	1.235805	2.031866	-1.715148
7	6	0	-0.273333	1.692351	-1.531922
8	6	0	2.046731	0.815643	-1.186074
9	6	0	3.418703	1.177587	-0.612730
10	6	0	-0.894200	-1.138354	1.156151
11	6	0	-1.952040	-1.860305	1.994654
12	6	0	-0.296337	0.242909	-0.988298
13	6	0	-1.511909	-0.266034	-0.157045
14	6	0	-2.412993	0.848329	0.392092
15	6	0	-2.377840	-1.223571	-0.998424
16	1	0	0.417704	-0.594241	2.839042
17	1	0	-0.845327	0.566078	2.480791
18	1	0	0.101730	-3.070760	0.791232
19	1	0	1.478815	-1.952873	-0.965237
20	1	0	2.176810	-1.636461	0.583700
21	1	0	0.603024	1.783226	1.072875
22	1	0	1.900232	0.764701	1.668548
23	1	0	1.494455	2.933971	-1.149814
24	1	0	1.487426	2.39505	-2.758841
25	1	0	-0.835386	1.769361	-2.467263
26	1	0	-0.734494	2.395321	-0.833987
27	1	0	2.207591	0.128426	-2.030149
28	1	0	3.951596	0.298473	-0.229133
29	1	0	4.047750	1.619772	-1.392110
30	1	0	3.343192	1.911075	0.197556
31	1	0	-2.426549	-2.675109	1.440877
32	1	0	-2.734762	-1.176075	2.328275
33	1	0	-1.493590	-2.287856	2.892930
34	1	0	-0.215176	-0.420945	-1.860822
35	1	0	-2.890288	1.343936	-0.460815
36	1	0	-3.216723	0.451658	1.017735
37	1	0	-1.883865	1.620874	0.953943
38	1	0	-1.808853	-2.085468	-1.365879
39	1	0	-3.248192	-1.592476	-0.448681
40	1	0	-2.753385	-0.681777	-1.873688

SCF Done: E(RB+HF-LYP) = -586.367407599 A.U. after 1 cycles
Frequencies -- -248.5415 70.6111 90.0784
Zero-point correction= 0.369393 (Hartree/Particle)
Thermal correction to Energy= 0.383950
Thermal correction to Enthalpy= 0.384894
Thermal correction to Gibbs Free Energy= 0.330413
Sum of electronic and zero-point Energies= -586.998014
Sum of electronic and thermal Energies= -585.983457
Sum of electronic and thermal Enthalpies= -585.982513
Sum of electronic and thermal Free Energies= -586.036995

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.394419128
DFT + ZPE = -586.02503

transtion state linking (1R, 4S, 5S)-α-acorenyl cation to the tertiary carbocation precursor to (-)-α-cedrene
#6-31g* b3lyp nopop freq(noraman) guess=read geom=check

Charge = 1 Multiplicity = 1

1	6	0	-2.381569	-0.765704	-0.505685
2	6	0	-1.221983	-0.759414	0.507604
3	6	0	-2.465895	0.584853	-1.186299
4	6	0	-3.826515	1.140148	-1.500233
5	6	0	-1.321463	1.223172	-1.464169
6	6	0	0.036284	0.581207	-1.287873
7	6	0	0.131497	-0.498174	-0.163500
8	6	0	0.880849	-1.765932	-0.699003
9	6	0	2.338205	-1.304540	-0.874395
10	6	0	0.778753	-3.036591	0.155571
11	6	0	2.660327	-0.441080	0.370295
12	6	0	1.313614	-0.084241	1.041780
13	6	0	1.087479	1.236292	1.547910
14	6	0	1.806320	2.428771	1.041206
15	6	0	0.118136	1.480465	2.643024
16	1	0	-2.257955	-1.569703	-1.246353
17	1	0	-3.311699	-0.989663	0.029079
18	1	0	-1.190118	-1.690330	1.079792
19	1	0	-1.452482	0.040418	1.217279
20	1	0	-3.765496	2.114785	-1.993047
21	1	0	-4.432644	1.249048	-0.590879
22	1	0	-4.379365	0.460037	-2.161992
23	1	0	-1.336675	2.196860	-1.949847
24	1	0	0.802032	1.354268	-1.183351
25	1	0	0.296797	0.085510	-2.234277
26	1	0	0.432681	-1.989236	-1.676572
27	1	0	3.023800	-2.150415	-0.973113
28	1	0	2.444422	-0.703642	-1.782884
29	1	0	1.372668	-3.827489	-0.313858
30	1	0	-0.246694	-3.408836	0.231986
31	1	0	1.169396	-2.908115	1.172616
---	---	---	---	---	---
32	1	0	3.243024	0.442651	0.099417
33	1	0	3.260190	-0.989549	1.103852
34	1	0	1.039896	-0.813690	1.809422
35	1	0	2.711561	2.536120	1.665477
36	1	0	1.227881	3.348303	1.170185
37	1	0	2.158820	2.330112	0.012860
38	1	0	-0.244661	0.573467	3.126192
39	1	0	-0.735782	2.046921	2.236685
40	1	0	0.566153	2.146771	3.393924

SCF Done: \(E(\text{RB+HF-LYP}) = -586.366331328 \) A.U. after 1 cycles

Frequencies -- -55.6163 23.9536 113.6646
Zero-point correction= 0.367854 (Hartree/Particle)
Thermal correction to Energy= 0.383462
Thermal correction to Enthalpy= 0.384406
Thermal correction to Gibbs Free Energy= 0.326406
Sum of electronic and zero-point Energies= -585.998477
Sum of electronic and thermal Energies= -585.982870
Sum of electronic and thermal Enthalpies= -585.981926
Sum of electronic and thermal Free Energies= -586.039925

mpw1pw91/6-311+G(2d,p)//B3LYP/6-31G*

DFT = -586.387200021
DFT + ZPE = -586.01935
Supplemental Methods

Protein expression and purification

pH9GW expression vectors (an in-house Gateway destination vector) were transformed into *E. coli* BL21(λDE3) and plated on LB agar containing 50 μg/mL kanamycin for selection. Colonies were transferred to 100 mL of liquid media (LB with kanamycin) followed by 16-h growth with shaking at 37 °C at 275 rpm. Cultures were diluted 50-fold into 1 L of Terrific Broth with kanamycin, followed by growth with shaking at 37 °C at 275 rpm until cultures reached OD600 ≥ 1.5. Protein expression was induced by addition of isopropyl β-D-thiogalactoside (IPTG) to 0.1 mM followed by growth with shaking at 20 °C at 275 rpm for 5 h. Cells were harvested by centrifugation and cell pellets frozen at -20 °C. Frozen pellets were re-suspended in lysis buffer (50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 20 mM imidazole, pH 8.0, 10% [v/v] glycerol, 10 mM β-mercaptoethanol, and 1% [v/v] Tween-20) containing 1 mg/mL lysozyme followed by stirring at 4 °C for 1 h. After sonication and centrifugation, the clarified supernatant was passed over a column of Ni^{2+}–NTA resin (Qiagen), washed with 10 bed volumes of lysis buffer and 10 bed volumes of wash buffer (50 mM Tris–HCl, pH 8.0, 500 mM NaCl, 20 mM imidazole, pH 8.0, 20 mM β-mercaptoethanol, and 10% [v/v] glycerol), and the His-tagged protein was eluted with elution buffer (50 mM Tris–HCl, pH 8.0, 500 mM NaCl, 250 mM imidazole, pH 8.0, 20 mM β-mercaptoethanol, and 10% [v/v] glycerol). N-terminal His-tags were removed via proteolysis with thrombin as follows: thrombin was added to a ratio of 1:1,000 [w/w] directly to the eluted protein fraction and dialyzed against two changes of buffer (50 mM Tris–HCl, pH 8.0, 100 mM NaCl, and 10 mM β-mercaptoethanol) over 24 h at 4 °C. Following digestion, samples were passed over a column containing 0.5 mL Benzamidine Sepharose to remove thrombin and 0.5 mL Ni^{2+}-NTA resin to capture undigested protein. The resulting protein solutions were collected and
concentrated to approximately 10 mg/mL or greater by centrifugation using 30,000 Da molecular weight cut-off concentrators (Millipore, Bedford, MA). Concentrated samples were injected onto a Sephacryl S-200 column equilibrated with buffer (25 mM Tris–HCl, pH 8.0, 50 mM NaCl and 1 mM DTT). Fractions corresponding to digested protein were verified by SDS-PAGE, pooled and concentrated (as described above) to approximately 20 mg/mL and aliquoted for freezing at -80 °C. Samples were judged to be ~99% pure by Coomassie stained SDS-PAGE gels.

Kinetic measurement

Kinetic characterization of purified wild-type and M4 mutant TEASs were conducted as previously described (1). Briefly, 500-µL scale reactions using a 3-component buffer system (25 mM 2- (N-morpholino)ethanesulfonic acid (MES), 50 mM Tris, and 25 mM 3-(cyclohexylamino)propanesulfonic acid (CAPS) at pH 7.0 with 10 mM MgCl₂) were conducted in triplicate at room temperature (25 °C) with 15 nM protein and variable concentrations of (cis,trans)-FPP. Reaction products were analyzed using a Hewlett-Packard 6890 gas chromatograph (GC) coupled to a 5973 mass selective detector (MSD) equipped with an HP-5MS capillary column (0.25 mm i.d. 30 m with 0.25 µm film thickness) (Agilent Technologies). Product quantification was performed using SIM mode, set to detect ions with m/z = 91, 133, and 189. The GC was operated at a He flow rate of 2 mL/min, and the MSD was operated at 70 eV. Split-less injections (2 µL) were performed with an inlet temp of 250 °C, a temp that drives the Cope rearrangement of germacrene A (11) to completion. The GC was programmed with an initial oven temp of 50 °C (5-min hold), which was then increased 10 °C/min up to 180 °C (4-min hold), followed by a 100 °C/min ramp until 240 °C (1-min hold). A solvent delay of 8.5 min was allowed prior to the acquisition of the MS data. (+)-2-Epi-prezizaene (2) was quantified by integration of peak areas using Enhanced Chemstation (version B.01.00, Agilent Technologies). The GC–MS instrument was calibrated with an authentic (+)-2-epi-prezizaene standard(16).
Corrected velocity data (Table 1) were fitted to the Michaelis–Menten equation using GraphPad Prism (version 4.00 for Windows, GraphPad Software).

References

1. O'Maille, P. E., Chappell, J. & Noel, J. (2004) A single-vial analytical and quantitative gas chromatography-mass spectrometry assay for terpene synthases. *Anal Biochem* 335, 210-217.