A SHORT NOTE ON ASYMPTOTIC ENUMERATION OF CONTINGENCY TABLES WITH NON-UNIFORM MARGINS

DA WU

Abstract. In this short note, we compute the precise asymptotics for the number of contingency tables with non-uniform margins. More precisely, for parameter \(n, \delta, B, C > 0 \), we consider the set of matrices whose first \(\lfloor n^\delta \rfloor \) rows and columns have sum \(BCn \) and the remaining \(n \) rows and columns have sum \(Cn \). We compute the precise asymptotics of the cardinality of this set when \(B < B_c = 1 + \sqrt{1 + 1/C} \) using the maximal entropy principle introduced in [1]. The only contribution of this note is a detailed expansion of the determinant of quadratic forms in asymptotic formulas.

1. Introduction

Let \(\mathbf{r} = (r_1, \ldots, r_m) \) and \(\mathbf{c} = (c_1, \ldots, c_n) \) be two positive integer vectors such that
\[
\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} c_j = N.
\]
Let \(M(\mathbf{r}, \mathbf{c}) \) be the set of \(m \times n \) non-negative integer matrices with \(i \)-th row sum \(r_i \) and \(j \)-th column sum \(c_j \) for all \(1 \leq i \leq m, 1 \leq j \leq n \). Suppose all the \(r_i \) and \(c_j \) depend on the dimension \(m \) and \(n \), one of the fundamental problems in Combinatorics is to provide the precise asymptotics of \(\#M(\mathbf{r}, \mathbf{c}) \) as \(m, n \to \infty \). Recently, following the work by Pak and Lyu in [2] we are interested in the case of non-uniform margin with two different values. More precisely, we consider the case when
\[
\tilde{\mathbf{r}} = \tilde{\mathbf{c}} = (\lfloor BCn \rfloor, \ldots, \lfloor BCn \rfloor, \lfloor Cn \rfloor, \ldots, \lfloor Cn \rfloor) \in \mathbb{N}^{\lfloor n^\delta \rfloor + n}
\]
for parameters \(B, C > 0 \) and \(0 \leq \delta < 1 \). Let
\[
M_{n,\delta}(B, C) := M(\tilde{\mathbf{r}}, \tilde{\mathbf{c}}).
\]
We are interested in precise asymptotics of \(\#M_{n,\delta}(B, C) \) when \(n \to \infty \). It is shown in [2] that the typical table (defined in [1]) associated with \(\tilde{\mathbf{r}} \) and \(\tilde{\mathbf{c}} \) are uniform bounded in large \(n \) limit when \(B < B_c = 1 + \sqrt{1 + 1/C} \). In this case, we apply the maximal entropy method in [1] to compute the precise asymptotics of \(M_{n,\delta}(B, C) \). When \(B > B_c \), since entries in top left corner will blow up in large \(n \) limit, the precise asymptotics is not known. However, loose estimate of \(\log \#M_{n,\delta}(B, C) \) is known with error \(O(n \log n + n^{2\delta}) \), see the main theorem in [3].

2. Precise Asymptotics of \(\#M_{n,\delta}(B, C) \) in Sub-critical Regime

In this section, we compute the precise asymptotic formula for \(\#M_{n,\delta}(B, C) \) when \(0 \leq \delta < 1 \) and \(B < B_c = 1 + \sqrt{1 + 1/C} \) (subcritical case). The computation is based on Theorem 1.3 in [1] and Lemma 5.1 in [2], which will be restated below.
2.1. Review of Literature. First, we recall the general asymptotic formula for \(\#M(r, c) \) when all of the entries of typical table \(Z \) are of same order. More detailed description can be found in [1] Section 1. We say margins \(r = (r_1, \ldots, r_m) \) and \(c = (c_1, \ldots, c_n) \) are \(\delta' \text{-smooth} \) if they satisfy the following two conditions:

(i): \(m \geq \delta'n \) and \(n \geq \delta'm \). Namely, dimensions of the matrix are of the same order asymptotically.

(ii): \(\delta'\tau \leq z_{ij} \leq \tau \) for some \(\tau \) such that \(\tau \geq \delta' \) and all \(1 \leq i \leq m, 1 \leq j \leq n \). Namely, entries of typical table are of the same order asymptotically.

Next, for typical table \(Z = (z_{ij}) \) associated with \(M(r, c) \), we define the quadratic form \(q : \mathbb{R}^{m+n} \to \mathbb{R} \) as the following:

\[
q(s, t) := \frac{1}{2} \sum_{1 \leq j \leq m} \sum_{1 \leq k \leq n} (z_{jk}^2 + z_{jk})(s_j + t_k)^2,
\]

where \(s = (s_1, \ldots, s_m) \) and \(t = (t_1, \ldots, t_n) \). Notice that the null space is spanned by the vector \(\mathbf{v} = (1, \ldots, 1, -1, \ldots, -1) \). Let \(H = u^\perp \subseteq \mathbb{R}^{m+n} \) and \(q|_H \) is a positive definite quadratic form and we can define its determinant \(\det(q|_H) \) to be the product of non-zero eigenvalues of \(q \).

We also define the polynomials \(f, h : \mathbb{R}^{m+n} \to \mathbb{R} \) by

\[
f(s, t) := \frac{1}{6} \sum_{1 \leq j \leq m} \sum_{1 \leq k \leq n} z_{jk}(z_{jk} + 1)(2z_{jk} + 1)(s_j + t_k)^3
\]

and

\[
h(s, t) := \frac{1}{24} \sum_{1 \leq j \leq m} \sum_{1 \leq k \leq n} z_{jk}(z_{jk} + 1)(6z_{jk}^2 + 6z_{jk} + 1)(s_j + t_k)^4,
\]

where \(s = (s_1, \ldots, s_m) \) and \(t = (t_1, \ldots, t_n) \). Consider the Gaussian probability measure on \(H \) with density proportional to \(e^{-q} \) and define

\[
\mu := \mathbb{E}[f^2] \quad \text{and} \quad \nu := \mathbb{E}[h].
\]

Now, we can state the main theorem in [1].

Theorem 2.1 ([1], Theorem 1.3). Fix \(0 < \delta' < 1 \) and let \(r \) and \(c \) be \(\delta' \text{-smooth} \) margins and \(Z = (z_{ij}) \) be the associated typical table for \(M(r, c) \). Then

\[
\#M(r, c) \asymp \frac{e^{q(Z)} \sqrt{m+n}}{(4\pi)^{(m+n-1)/2} \sqrt{\det(q|_H)}} \exp\left(-\frac{\mu}{2} + \nu\right)
\]
as \(m, n \to +\infty \).

Remark 2.2. There exists some positive constants \(\gamma_1(\delta') \) and \(\gamma_2(\delta') \) such that

\[
\gamma_1(\delta') \leq \exp\left(-\frac{\mu}{2} + \nu\right) \leq \gamma_2(\delta').
\]

Therefore,

\[
\exp\left(-\frac{\mu}{2} + \nu\right) = O(1).
\]
Remark 2.3. Using the change of coordinate basis,
\begin{equation}
\text{det}(q|_M) = (m + n) \cdot 2^{1-m-n} \text{det} Q,
\end{equation}
where $Q = (q_{ij})$ is the $(m + n - 1) \times (m + n - 1)$ symmetric matrix with
\begin{equation}
q_{j,k+m} = q_{k+m,j} = z_{jk}^2 + z_{jk} \quad \text{for } 1 \leq j \leq m, 1 \leq k \leq n - 1,
\end{equation}
\begin{equation}
q_{jj} = r_j + \sum_{k=1}^{n} z_{jk}^2 = \sum_{k=1}^{n} (z_{jk} + z_{jk}^2) \quad \text{for } 1 \leq j \leq m,
\end{equation}
\begin{equation}
q_{k+m,k+m} = c_k + \sum_{j=1}^{n} z_{jk}^2 = \sum_{j=1}^{n} (z_{jk} + z_{jk}^2) \quad \text{for } 1 \leq k \leq n - 1.
\end{equation}
Therefore, we can further simplify (2.3) to
\begin{equation}
\#M(r, c) \propto \frac{e^{g(Z)}}{(2\pi)^{(m+n-1)/2} \sqrt{\text{det} Q}} \exp \left(-\frac{\mu}{2} + \nu \right).
\end{equation}
See [1] Section 1.4 for a more detailed explanation.

Next, we recall the key Lemma in [2] regarding the asymptotics of entries of $Z = (z_{ij})$ associated with $M_{n,\delta}(B,C)$.

Lemma 2.4 ([2], Lemma 5.1). Fix $0 \leq \delta < 1$ and let $Z = (z_{ij})_{1 \leq i,j \leq n + [n^\delta]}$ be the typical table of $M_{n,\delta}(B,C)$. Let $B_c = 1 + \sqrt{1 + 1/C}$ and we have the following,
(i): If $B < B_c$, then
\begin{equation}
z_{11} = \frac{B^2(C + 1)}{(B_c - B)(B_c + B - 2)} + O(n^{\delta-1}), \quad z_{1,n+1} = BC + O(n^{\delta-1}).
\end{equation}
(ii): If $B > B_c$, then
\begin{equation}
z_{n+1,n+1} = C + O(n^{\delta-1}), \quad z_{1,n+1} = B_cC + O(n^{\delta-1}), \quad n^{\delta-1}z_{11} = C(B - B_c) + O(n^{\delta-1}).
\end{equation}

Remark 2.5. The behaviour of $z_{n+1,n+1}$ is more predictable. It is shown in [1] that
\begin{equation}
|z_{n+1,n+1} - C| = n^{\delta-1}z_{1,n+1} \leq BCn^{\delta-1}.
\end{equation}
Hence, it is trivial that
\begin{equation}
z_{n+1,n+1} = C + O(n^{\delta-1}).
\end{equation}

2.2. Computation of $\#M_{n,\delta}(B,C)$. Now, we go back to our setting of $\#M_{n,\delta}(B,C)$. Recall $0 \leq \delta < 1$ and $B < B_c = 1 + \sqrt{1 + 1/C}$. First, notice that when $B < B_c$, all of entries of $Z = (z_{ij})$ have well-defined finite limits, and by symmetry
\begin{equation}
e^{g(Z)} = \prod_{1 \leq i,j \leq n + [n^\delta]} \frac{(z_{ij} + 1)^{z_{ij}+1}}{z_{ij}^{z_{ij}}}
= \left(\frac{z_{11} + 1}{z_{11}^{z_{11}}} \right)^{[n^\delta]^2} \left(\frac{(z_{n+1,n+1} + 1)^{z_{n+1,n+1}+1}}{z_{n+1,n+1}^{z_{n+1,n+1}} \cdot z_{n+1,n+1}^{z_{n+1,n+1}}} \right)^n \left(\frac{(z_{1,n+1} + 1)^{z_{1,n+1}+1}}{z_{1,n+1}^{z_{1,n+1}} \cdot z_{1,n+1}^{z_{1,n+1}}} \right)^{2n[n^\delta]}.
\end{equation}
Next, we compute the determinant of Q in (2.7). By (2.6), Q has entries

\begin{equation}
q_{jj} = [BCn] + [n^\delta] \left(\frac{B^2(C + 1)}{(B_c - B)(B_c + B - 2)} + O(n^{\delta-1}) \right)^2 + n (BC + O(n^{\delta-1}))^2
\end{equation}

when $1 \leq j \leq [n^\delta]$ and $[n^\delta] + n + 1 \leq j \leq 2[n^\delta] + n$

\begin{equation}
q_{jj} = [Cn] + [n^\delta] (BC + O(n^{\delta-1}))^2 + n(C + O(n^{\delta-1}))^2
\end{equation}

when $[n^\delta] + 1 \leq j \leq [n^\delta] + n$ and $2[n^\delta] + n + 1 \leq j \leq 2([n^\delta] + n) - 1$.

\begin{equation}
q_{ij} = q_{ji} = \left(\frac{B^2(1 + C)}{(B_c - B)(B_c + B - 2)} + O(n^{\delta-1}) \right)^2 + \frac{B^2(1 + C)}{(B_c - B)(B_c + B - 2)} + O(n^{\delta-1})
\end{equation}

when $1 \leq i \leq [n^\delta]$ and $[n^\delta] + n + 1 \leq j \leq 2[n^\delta] + n$.

\begin{equation}
q_{ij} = q_{ji} = (BC + O(n^{\delta-1}))^2 + BC + O(n^{\delta-1})
\end{equation}

when $1 \leq i \leq [n^\delta]$, $2[n^\delta] + n + 1 \leq j \leq 2([n^\delta] + n) - 1$ and when $[n^\delta] + 1 \leq i \leq [n^\delta] + n$, $[n^\delta] + n + 1 \leq j \leq 2[n^\delta] + n$.

\begin{equation}
q_{ij} = q_{ji} = (C + O(n^{\delta-1}))^2 + C + O(n^{\delta-1})
\end{equation}

when $[n^\delta] + 1 \leq i \leq [n^\delta] + n$ and $2[n^\delta] + n + 1 \leq j \leq 2([n^\delta] + n) - 1$.

The rest of the entries are zero. Notice that all the off-diagonal entries have size $O(1)$ while all the entries on the diagonal has asymptotical order n. To compute the asymptotics of $\det Q$, we write $Q = A + E$ where $A = \text{diag}(q_{11}, q_{22}, \ldots, q_{2([n^\delta] + n) - 1, 2([n^\delta] + n) - 1})$ is the diagonal matrix. By diagonal expansion of the determinant,

\begin{equation}
\det(Q) = \det(A+E) = \det(A) + S_1 + S_2 + \ldots + S_{2([n^\delta] + n - 1)} + \det(E)
\end{equation}

where

\[S_k = \sum_{1 \leq i_1 < \ldots < i_k \leq 2([n^\delta] + n) - 1} \left(\prod_{r=1}^{k} q_{i_r, i_r} \right) \det(E_{i_1, \ldots, i_k}) \]

E_{i_1, \ldots, i_k} is the principle minor of order $2([n^\delta] + n) - 1 - k$ of E. Trivially, $\det(E) = 0$, and

\begin{equation}
\det(A) = \prod_{i=1}^{2([n^\delta] + n) - 1} q_{ii}
\end{equation}
Furthermore, \(S_{2([n^δ]+n)-3} = 0 \), and
\[
S_{2([n^δ]+n)-4} = 0
\]
\[
S_{2([n^δ]+n)-5} = ([n^δ])^2 n(n-1) \left[(z_{11}^2 + z_{11})(z_{n+1,n+1}^2 + z_{n+1,n+1}) - (z_{1,n+1}^2 + z_{1,n+1})^2\right]
\]
\[
S_{2([n^δ]+n)-i} = 0 \quad \forall i \geq 6
\]
The above computation is based on the symmetry of typical table, i.e.
\[
z_{ij} = z_{i'j'} \quad \text{if } r_i = r_{i'} \text{ and } c_j = c_{j'}
\]
Therefore,
\[
(2.20) \quad \det(Q) = \left(\prod_{i=1}^{2([n^δ]+n)-1} q_i\right) - (q_1 \cdots q_{[n^δ]+n-1}) (q_{[n^δ]+n+2} \cdots q_{2[n^δ]+2n-1}) \left[(z_{1,n+1}^2 + z_{1,n+1})^2\right]
\]
\[
+ ([n^δ])^2 n(n-1) \left[(z_{11}^2 + z_{11})(z_{n+1,n+1}^2 + z_{n+1,n+1}) - (z_{1,n+1}^2 + z_{1,n+1})^2\right]
\]
where we write \(q_i \) in place of \(q_{ii} \). Finally, by (2.13), (2.14), (2.15), (2.16), (2.17), (2.7) and Lemma 2.4 we get the precise asymptotics of \(\#M_{n,δ}(B,C) \).

3. Left half of the \(M_{n,δ}(B,C) \)

In this section, we compute the case when
\[
r_1 = \begin{pmatrix} B_n C_n, \ldots, B_n C_n \\ \frac{[n^δ]}{n^δ} \text{ entries} \\ C_n - B_n C_n \delta, \ldots, C_n - B_n C_n \delta \end{pmatrix} \in \mathbb{Z}_{>0}^{n^δ+n^δ}
\]
and
\[
c_1 = (C_n, \ldots, C_n) \in \mathbb{Z}_{>0}^n
\]
By symmetry and margin conditions, \(Z = (z_{ij}) \) satisfies
\[
\left\{ \\
\begin{array}{c}
n z_{11} = B_n C_n \\
n^δ z_{11} + n z_{1,n+1} = C n
\end{array} \right.
\]
which implies that
\[
\left\{ \\
\begin{array}{c}
z_{11} = B_n C \\
z_{1,n+1} = C - z_{11} n^{δ-1} = C - B_n C n^{δ-1}
\end{array} \right.
\]
Next, we compute the exact asymptotic formula of \(\#M(r_1, c_1) \). Recall the formula,
\[
\frac{e^{θ(Z)}}{(2π)^{(m+n-1)/2} \sqrt{det(Q)}} \exp \left(-\frac{μ}{2} + ν\right)
\]
where \(Q = (q_{ij}) \in \mathbb{R}^{(2n+n^\delta-1) \times (2n+n^\delta-1)} \) has entries

\[
q_{ii} = \begin{cases}
B_c C n + n (B_c C)^2 & 1 \leq i \leq [n^\delta] \\
C n - B_c C n^\delta + n (C - B_c C n^\delta - 1)^2 & [n^\delta] + 1 \leq i \leq [n^\delta] + n \\
C n + n^\delta (B_c C)^2 + (n - n^\delta) (C - B_c C n^\delta - 1)^2 & [n^\delta] + n + 1 \leq i \leq 2n + [n^\delta] - 1
\end{cases}
\]

and

\[
q_{ij} = q_{ji} = \begin{cases}
B_c C + (B_c C)^2 & 1 \leq i \leq [n^\delta], n + [n^\delta] + 1 \leq j \leq 2n + [n^\delta] - 1 \\
C - B_c C n^\delta - 1 + (C - B_c C n^\delta - 1)^2 & [n^\delta] + 1 \leq i \leq [n^\delta] + n, n + [n^\delta] + 1 \leq j \leq 2n + [n^\delta] - 1
\end{cases}
\]

The rest of the entries are 0. We write \(Q = A + E \) where

\[
A = \text{diag} (q_{11}, \ldots, q_{2n+[n^\delta]-1,2n+[n^\delta]-1})
\]

By diagonal expansion of the determinants,

\[
det(Q) = det(A + E) = det(A) + S_1 + S_2 + \ldots + S_{2n+[n^\delta]-2} + det(E)
\]

where

\[
S_k = \sum_{1 \leq i_1 < \ldots < i_k \leq 2n+[n^\delta]-2} \left(\prod_{r=1}^{k} q_{i_r,i_r} \right) \det (E_{i_1,\ldots,i_k})
\]

\(E_{i_1,\ldots,i_k} \) is the principle minor of order \(2n + [n^\delta] - 2 - k \) of \(E \). It is not hard to see that

\[
S_{2n+[n^\delta]-2} = 0 \\
S_{2n+[n^\delta]-3} \\
\quad = -[n^\delta](n-1) \left\{ B_c C n + n (B_c C)^2 \right\}^{[n^\delta]-1} \left\{ C n - B_c C n^\delta + n (C - B_c C n^\delta - 1)^2 \right\} \times \\
\quad \left\{ C n + n^\delta (B_c C)^2 + (n - n^\delta) (C - B_c C n^\delta - 1)^2 \right\}^{n-2} (B_c C + (B_c C)^2)^2 \\
\quad - n(n-1) \left\{ B_c C n + n (B_c C)^2 \right\}^{[n^\delta]} \left\{ C n - B_c C n^\delta + n (C - B_c C n^\delta - 1)^2 \right\}^{n-1} \times \\
\quad \left\{ C n + n^\delta (B_c C)^2 + (n - n^\delta) (C - B_c C n^\delta - 1)^2 \right\}^{n-2} \left(C - B_c C n^\delta - 1 + (C - B_c C n^\delta - 1)^2 \right)^2
\]

\(S_{2n+[n^\delta]-i} = 0 \)
for all \(i \geq 4 \). Therefore,
\[
\det Q = \det A + S_{2n+[n^\delta]-3}
\]
\[
= (q_{11})^{[n^\delta]} \left(q_{n+1,n+1} \right)^n (q_{2n+1,2n+1})^{n-1}
\]
\[
- [n^\delta](n-1)(q_{11})^{[n^\delta]-1} \left(q_{n+1,n+1} \right)^n (q_{2n+1,2n+1})^{n-2} \left(B_c C + (B_c C)^2 \right)^2
\]
\[
- n(n-1)(q_{11})^{[n^\delta]} \left(q_{n+1,n+1} \right)^n (q_{2n+1,2n+1})^{n-2} \left(C - B_c C n^{\delta-1} + (C - B_c C n^{\delta-1})^2 \right)^2
\]
\[
= \{ B_c C n + n (B_c C)^2 \}^{[n^\delta]} \left\{ Cn - B_c C n^{\delta} + n \left(C - B_c C n^{\delta-1} \right)^2 \right\} \times \n
\]
\[
\left\{ Cn + n^\delta (B_c C)^2 + (n - n^\delta) \left(C - B_c C n^{\delta-1} \right)^2 \right\}^{n-1}
\]
\[
- [n^\delta](n-1) \left\{ B_c C n + n (B_c C)^2 \right\}^{[n^\delta]-1} \left\{ Cn - B_c C n^{\delta} + n \left(C - B_c C n^{\delta-1} \right)^2 \right\} \times \n
\]
\[
\left\{ Cn + n^\delta (B_c C)^2 + (n - n^\delta) \left(C - B_c C n^{\delta-1} \right)^2 \right\}^{n-2} \left(B_c C + (B_c C)^2 \right)^2
\]
\[
- n(n-1) \left\{ B_c C n + n (B_c C)^2 \right\}^{[n^\delta]} \left\{ Cn - B_c C n^{\delta} + n \left(C - B_c C n^{\delta-1} \right)^2 \right\}^{n-1} \times \n
\]
\[
\left\{ Cn + n^\delta (B_c C)^2 + (n - n^\delta) \left(C - B_c C n^{\delta-1} \right)^2 \right\}^{n-2} \left(C - B_c C n^{\delta-1} + (C - B_c C n^{\delta-1})^2 \right)^2
\].

Plugging in (2.7) and we are done.

REFERENCES

[1] A. Barvinok and J.A. Hartigan, An asymptotic formula for the number of non-negative integer matrices with prescribed row and column sums, Trans. AMS, Vol. 364 (2012), 4323-4368

[2] S. Dittmer, H. Lyu and I. Pak, Phase transition in random contingency tables with non-uniform margins, to appear in Trans. AMS; arXiv: 1903. 08743.

[3] H. Lyu and I. Pak, On the number of contingency tables and the independent heuristic, arXiv:2009.10810

University of Pennsylvania, Department of Mathematics, David Rittenhouse Lab, 209 South 33rd Street, Philadelphia, PA, 10104-6395

Email address: dawu@math.upenn.edu