Prevalence of Macrolide-Lincosamide-Streptogramin-B resistance among clinical *Staphylococcus aureus* isolates in University of Ilorin Teaching Hospital, Ilorin, Nigeria

Abstract:

Background: Inducible antibiotic resistance among Gram-positive cocci is a significant public health challenge that is grossly underreported within Africa, especially Nigeria. Hence, the aim of this study was to determine the prevalence of macrolide-lincosamide-streptogramin-B (MLSb) resistance among clinical isolates of *Staphylococcus aureus* aureus at University of Ilorin Teaching Hospital, Ilorin, Nigeria.

Methodology: Clinical isolates were presumptively identified by Gram’s stain reaction and conventional biochemical tests such as catalase, coagulase, DNase, and manitol fermentation. Phenotypic MLSa resistance was determined by placing clindamycin and erythromycin discs within 15 mm of each other and observing for a D-zone. Antibiotic sensitivity testing to selected antibiotics including cefoxitin for detection of methicillin resistance, was done using the modified Kirby-Bauer disc diffusion method.

Results: Of the total 112 *S. aureus* isolates tested in the study, 31 (27.7%) were MLSa-resistant. MS phenotype (16.1%) was the most prevalent phenotype followed by constitutive MLSa (cMLSa) resistance (6.2%), and inducible MLSa (iMLSa) resistance (5.4%). All MLSa-resistant and sensitive *S. aureus* isolates were susceptible to linezolid, rifampin, tigecycline, and mupirocin while resistance rates of the MLSa resistant isolates (n=31) to other antibiotics were: tetracycline (58.1%), ciprofloxacin (48.4%), fusidic acid (41.9%), gentamicin (38.71%), cotrimoxazole (35.5%), fosfomycin (29.0%), and cefoxitin (70.9%). Comparatively, resistance rates of the MLSa-susceptible isolates (n=81) to other antibiotics are: tetracycline (70.4%), ciprofloxacin (39.5%), fusidic acid (22.2%), gentamicin (45.7%), cotrimoxazole (46.9%), fosfomycin (18.5%) and cefoxitin (34.6%). There was no significant difference in the antibiotic resistance rates between MLSa resistant and MLSa sensitive strains to the antibiotics (p>0.05 except to fusidic acid (p=0.0369) and cefoxitin (p<0.0001). There was also no significant difference in antibiotic resistance rates with respect to the three MLSa resistance phenotypes (p>0.05), except for fusidic acid which was significantly higher in cMLSa than other phenotypes (p=0.007).

Conclusion: The introduction of MLSa resistance detection among Gram-positive cocci in routine microbiological practice can play an important role in monitoring inducible resistance and thereby preventing therapy failure.

Keywords: *Staphylococcus aureus*; D test; constitutive MLSa; inducible MLSa; MS phenotype; resistance
Abstrait:

Contexte: La résistance inductible aux antibiotiques chez les cocci à Gram positif est un défi de santé publique important qui est largement sous-estimé en Afrique, en particulier au Nigeria. Par conséquent, le but de cette étude était de déterminer la prévalence de la résistance au macrolide-lincosamide-streptogramine-B (MLS₈) parmi les isolats cliniques de Staphylococcus aureus à l’hôpital universitaire d’Ilorin, Ilorin, Nigeria.

Méthodologie: Les isolats cliniques ont été identifiés par présomption par la réaction de coloration de Gram et des tests biochimiques conventionnels tels que le catalase, la coagulase, la DNase et la fermentation du mannitol. La résistance phénotypique au MLS₈ a été déterminée en plaçant des disques de clindamycine et d’erythromycine à moins de 15 mm l’un de l’autre et en observant une zone D. Les tests de sensibilité aux antibiotiques pour certains antibiotiques, y compris la céfoxitine, pour la détection de la résistance à la méthicillin ont été effectués à l’aide de la méthode de diffusion sur disque de Kirby-Bauer modifiée.

Résultats: Sur les 112 isolats de S. aureus testés dans l’étude, 31 (27,7%) étaient résistants à la MLS₈. Le phénotype MS (16,1%) était le phénotype le plus répandu, suivi de la résistance constitutive au MLS₈ (cMLS₈) (6,2%) et de la résistance inductible au MLS₈ (iMLS₈) (5,4 %). Tous les isolats de S. aureus résistants et sensibles au MLS₈ étaient sensibles au linézolid, à la rifampicine, à la tigécycline et à la mupirocine, tandis que les taux de résistance des isolats résistants au MLS₈ (n=31) à d’autres antibiotiques l’étaient; tétacycline (58,1%), ciprofloxacine (48,4%), acide fusidique (41,9%), gentamicine (38,7%), cotrimoxazole (35,5%), fosfomycine (29,0%) et céfoxitine (70,9%). Comparativement, les taux de résistance des isolats sensibles au MLS₈ (n=81) à d’autres antibiotiques sont; tétacycline (70,4%), ciprofloxacine (39,5%), acide fusidique (22,2%), gentamicine (45,7), cotrimoxazole (46,9%), fosfomycine (18,5%) et céfoxitine (34,6%). Il n’y avait pas de différence significative dans les taux de résistance aux antibiotiques entre les souches résistantes au MLS₈ et les souches sensibles au MLS₈ aux antibiotiques (p>0,05) sauf à l’acide fusidique (p=0,0369) et à la céfoxitine (p<0,0001).

Il n’y avait pas de différence significative dans les taux de résistance aux antibiotiques par rapport aux trois phénotypes de résistance MLS₈ (p > 0,05), à l’exception de l’acide fusidique qui était significativement plus élevé dans cMLS₈ que les autres phénotypes (p=0,007).

Conclusion: L’introduction de la détection de la résistance MLSB parmi les coques Gram-positifs dans la pratique microbiologique de routine peut jouer un rôle important dans la surveillance de la résistance inductible et ainsi prévenir l’échec du traitement.

Mots clés: Staphylococcus aureus; essai D; MLS₈ constitutif; MLS₈ inductible; phénotype SEP; la résistance

Introduction:

Macrolide, lincosamide, and streptogramin B (MLS₈) are a group of chemically distinct antibiotics that function primarily by inhibiting bacterial protein synthesis (1). The macrolides contain 14–16 membered lactone rings, the lincosamides are alkyl derivatives of proline that lack a lactone ring, and streptogramin B antibiotics are cyclic peptide compounds composed of two distinct factors (A and B) possessing synergistic inhibitory and bactericidal activity (2). MLS₈ antibiotics are clinically used as alternative drugs for the treatment of some S. aureus infections such as skin and soft tissue infections, especially in penicillin-allergic patients (3). However, widespread use of these antibiotics have selected for the development of resistant strains (4).

Resistance of staphylococci to erythromycin was first reported in 1956, a few years after its introduction (5). Bacterial resistance to macrolides occurs via at least three different mechanisms including target modification, enzyme hydrolysis, and efflux pump (5, 6, 7). The erm methylase gene mediates target modification by altering a site in the 23S rRNA, a common binding site for macrolides, lincosamides, and streptogramin B. Modification of the 23S rRNA confers cross-resistance to MLS₈ antibiotics. Hydrolytic enzymes such as erythromycin esterases (encoded by ereA and ereB) have been reported in S. aureus that lyses the lactone ring of the macrocyclic nucleus and phosphotransferases, consequently with introduction of a phosphate on the 2’-hydroxyl group of the amino sugar. Macrolide efflux pumps which are ATP transporters (encoded by msrA and msrB) have also been reported in S. aureus. Expression of MLS₈ resistance in staphylococci may be constitutive or inducible. Constitutively resistant isolates are resistant to all macrolides, lincosamides, and streptogramin-B type antibiotics. Inducibly-resistant isolates, when tested individually, are only resistant to 14- and 15-membered macrolides, while 16-membered macrolides, commercially available lincosamide and streptogramin antibiotics remain active (5).

Staphylococcus aureus is a clinically significant bacterial pathogen that causes a vast array of diseases in humans and animals alike. S. aureus diseases range from mild skin and soft tissues infections to severe and life-threatening infections such as septicemia, toxic shock syndrome, endocarditis, and pneumonia (8-9). Inducible clindamycin resistant S. aureus is a concern in clinical settings as they are not readily detected by routine laboratory methods. However, data on this antibiotic cross-resistance among clinical isolates of Gram-positive cocci in Nigeria are inadequate. Hence, this study was conducted to determine the prevalence of MLS₈ resistance among clinical isolates of S. aureus in the University of Ilorin Teaching Hospital, Ilorin, Kwara State, Nigeria.
Materials and method:

Study setting and ethical approval

University of Ilorin Teaching Hospital (UITH) is a tertiary healthcare centre located in Ilorin, Kwara State, North Central, Nigeria. The hospital renders its services to patients from various states including, Kwara, Kogi, Niger, Oyo, Osun, Ekiti, Lagos, and Kebbi, as well as the Federal Capital Territory (FCT) (10). Ethical approval for the study was obtained from the Ethical Review Board (ERB) of the UITH.

Study design

The study is a laboratory-based design that used clinical isolates of S. aureus recovered from clinical specimens submitted to the Department of Medical Microbiology and Parasitology of UITH.

Culture isolation and identification of S. aureus

Clinical specimens, including wound specimens, aspirates, eye swabs and ear swabs were inoculated directly on sheep blood and MacConkey agar plates. Bact/Alert-positive blood specimens were cultured on sheep blood, chocolate, and MacConkey agar plates. Inoculated plates were incubated aerobically while chocolate agar plates were incubated in microaerophilic environment in candle extinction jar. All culture plates were incubated at 37°C for 18-24 hours. Isolates on culture plates were identified morphologically by Gram’s stain reaction and standard biochemical tests that included catalase, coagulase, DNase and mannitol fermentation tests. Isolates that were Gram-positive cocci in clusters, catalase-positive, coagulase-positive, DNase-positive, and mannitol-fermenters were identified as S. aureus.

Antibiotic sensitivity test (AST) of S. aureus

Antibiotic sensitivity testing (AST) was carried out on each S. aureus isolate using the modified Kirby-Bauer disc diffusion method. Bacterial inoculum was standardized to 0.5 McFarland standard before inoculating the surface of freshly prepared Mueller-Hinton agar (MHA) plates. The isolates were tested against the following antibiotics (Oxoid, UK): tetracycline (30µg), cotrimoxazole (1.25/23.75µg), mupirocin (5µg), linezolid (30µg), erythromycin (15µg), tigecycline (15µg), fusidic acid (10µg), fosfomycin (50µg), clindamycin (2µg), ciprofloxacin (5µg), rifampin (5µg), gentamicin (10µg) and cefoxitin (30µg). *Staphylococcus aureus* ATCC 25923 was used as control strain for AST while *S. aureus* ATCC 43300 was used as control strain for cefoxitin disc test.

The diameters of zone of inhibition were measured with a calibrated ruler and interpretation of each isolate as sensitive, intermediate or resistant to the antibiotics was done using the Clinical and Laboratory Standards Institute (CLSI) breakpoints (11). Isolates with diameter of zone of inhibition ≤ 21 mm were classified as methicillin resistant (MRSA) and those with diameter ≥ 22 mm as methicillin sensitive (MSSA).

Phenotypic detection of MLSβ resistance

Freshly prepared Mueller-Hinton agar (MHA) plates were inoculated with standardized (0.5 McFarland) inoculum of the test organisms using a sterile cotton swab. Inducible clindamycin resistance was detected by placing erythromycin (15µg) and clindamycin (2µg) (Oxoid, UK) within 15-20 mm of each other, and incubating the plates aerobically at 37°C for 24 hours. The diameters of zone of inhibition were measured with a calibrated ruler and interpretation of the result of each isolate was done with the Clinical and Laboratory Standards Institute (CLSI) breakpoints (11).

Resistance of the test isolate to both erythromycin (zone diameter of inhibition ≤ 13mm) and clindamycin (zone diameter of inhibition ≤ 14 mm) discs was reported as constitutive resistance (cMLSβ), resistance to erythromycin alone with the formation of a D-shaped zone of inhibition between the two discs was reported as inducible resistance (iMLSβ; D-test positive), while resistance to erythromycin alone with no appearance of a D-zone was reported as MS phenotype (D-test negative) (11).

Statistical analysis

Statistical analysis was done using IBM SPSS version 21.0. Fisher exact test (with Odds ratio and 95% CI) was used to determine association between methicillin resistance and MLSβ resistance as well as between MLSβ resistance and antibiotic resistance. The Chi square test was used to measure significant difference between MLSβ resistance phenotypes and antibiotic resistance. P value less than 0.05 was considered to be statistically significant.

Results:

A total of 112 clinical isolates of *S. aureus* were recovered from clinical specimens. Of these, 31 (27.7%) were MLSβ-resistant. The prevalence of the MLSβ resistance phenotypes were MS phenotype (16.1%, n=18), cMLSβ (6.2%, n=7), and iMLSβ (5.4%, n=6). A total of 50 (44.6%) isolates were methicillin resistant (MRSA) while 62 (55.4%) were methicillin sensitive (MSSA) isolates (Table 1).
Prevalence of MLS\(_B\) resistance in Staphylococcus aureus

Table 1: Prevalence of MLS\(_B\) resistance in MRSA compared to MSSA isolates

S. aureus strain	MLS\(_B\) resistant n (%)	MLS\(_B\) sensitive n (%)	Total n (%)	OR	95% CI	p-value
MRSA	22 (70.9)	28 (34.6)	50 (44.6)	4.627	1.88-11.388	0.000526*
MSSA	9 (29.1)	53 (65.4)	62 (55.4)			
Total	31 (27.7)	81 (72.3)	112 (100)			

MRSA = methicillin resistant Staphylococcus aureus; MSSA = methicillin sensitive Staphylococcus aureus; MLS\(_B\) = macrolide-lincosamide-streptogramin B; OR=Odds ratio; CI = Confidence interval; * = statistically significant

Table 2: Univariate analysis of antibiotic resistance phenotypes of MLS\(_B\)-resistant Staphylococcus aureus

Antibiotics	cMLS\(_B\) (%) (n=7)	iMLS\(_B\) (%) (n=6)	MS phenotype (%) (n=18)	Total (%) (n=31)	\(X^2\)	p-value
Tetracycline	3 (42.9)	6 (100.0)	9 (50.0)	18 (58.1)	5.479	0.0646
Cotrimoxazole	3 (42.9)	1 (16.7)	7 (38.9)	11 (35.5)	1.185	0.5528
Ciprofloxacin	2 (28.6)	5 (83.3)	8 (44.4)	15 (48.4)	4.147	0.1258
Gentamicin	2 (28.6)	3 (50.0)	7 (38.9)	12 (38.7)	0.6259	0.7313
Fusidic acid	6 (85.7)	0	7 (38.9)	13 (41.9)	9.912	0.007*
Fosfomycin	2 (28.6)	2 (33.3)	5 (27.8)	9 (29.0)	0.06834	0.9664
Cefoxitin	5 (71.4)	3 (50.0)	14 (77.8)	22 (70.9)	1.686	0.4304

cMLS\(_B\) = constitutive macrolide-lincosamide-streptogramin B; iMLS\(_B\) = inducible macrolide-lincosamide-streptogramin B; MS = macroline sensitive; \(X^2\) = Chi square; n = number of isolates; * = statistically significant

Table 3: Univariate analysis of antibiotic resistance of MLS\(_S\)-resistant and MLS\(_S\)-sensitive Staphylococcus aureus

Antibiotics	MLS\(_S\)-sensitive (%) (n=81)	MLS\(_S\)-resistant (%) (n=31)	Total (%) (n=112)	OR	95% CI	p-value
Tetracycline	57 (70.4)	18 (58.1)	75 (65.5)	1.715	0.7271-4.047	0.2631
Cotrimoxazole	38 (46.9)	11 (35.5)	49 (40.2)	1.607	0.6829-3.780	0.2961
Ciprofloxacin	32 (39.5)	15 (48.4)	47 (38.5)	0.6966	0.3026-1.603	0.4022
Gentamicin	37 (45.7)	12 (38.7)	49 (40.2)	1.331	0.5720-3.099	0.5314
Fusidic acid	18 (22.2)	13 (41.9)	31 (25.4)	0.3956	0.1632-0.9588	0.0369*
Fosfomycin	15 (18.5)	9 (29.0)	24 (19.7)	0.5556	0.2133-1.447	0.3027
Cefoxitin	28 (34.6)	22 (70.9)	50 (44.6)	4.627	1.88-11.388	0.000526*

MLS\(_S\) = macrolide-lincosamide-streptogramin B; OR=Odds ratio; CI = Confidence interval; n = number of isolates; * = statistically significant

All the MLS\(_S\)-resistant and MLS\(_S\)-sensitive isolates of S. aureus were sensitive to linezolid, rifampicin, mupirocin, and tigecycline. The resistance rates of the MLS\(_S\)-resistant isolates (n=31) to other antibiotics are; tetracycline (58.1%), ciprofloxacin (48.4%), fusidic acid (41.9%), gentamicin (38.7%), cotrimoxazole (35.5%), fosfomycin (29.0%), and cefoxitin (70.9%) (Table 2). Comparatively, resistance rates of the MLS\(_S\)-sensitive isolates (n=81) to other antibiotics are; tetracycline (70.4%), ciprofloxacin (39.5%), fusidic acid (22.2%), gentamicin (45.7%), cotrimoxazole (46.9%), fosfomycin (18.5%) and cefoxitin (34.6%) (Table 3).

Discussion:

The rapid spread of antibiotic resistant strains of S. aureus has complicated treatment options for infections, especially in low- and middle-income countries. This seeming difficulty due to antibiotic resistance led to the prominence of clindamycin, a MLS\(_B\) antibiotic, for the treatment of skin and soft tissue infections caused by S. aureus and also for treatment in penicillin-allergic patients. Although rapid evolution of clindamycin resistance has been attributed to the use and misuse of clindamycin, inappropriate use of erythromycin can induce cross-resistance to clindamycin and streptogramin B antibiotics since all three antibiotics classes have a similar binding site. Hence, the inability to detect this resistance phenotype can lead to misuse of clindamycin, and consequently treatment failure (12-13).

MLS\(_B\) resistance rate in this study was 27.7% which is comparable to 27.85% and 28.7% reported in Ethiopia and Nepal, India respectively (14-15). In a similar study, Ifediora et al., (16) reported 58.9% prevalence rate of MLS\(_B\)-resistant S. aureus in Abia State, Nigeria. Kishk et al., (17) reported a prevalence of 54.54% in Egypt while Lupinacci et al., (18) reported 68% in Sao Paulo, Brazil. In similar studies in India, Adhikari et al., (19) reported a prevalence of 54.4% in Nepal while Kavitha (20) reported a prevalence of 40.9% in Kilpauk. Furthermore, Sarrou et al., (21) reported a prevalence of 40.1% in Central A. J. Clin. Exper. Microbiol. 2022; 23 (2): 168-173.
Greece, Goudarzi et al., (22) reported a prevalence of 42.16% in Tehran, Iran, and Jajaireh et al., (23) reported 60.6% in Jordan. Although, the prevalence of MLS₈-resistant S. aureus in our study seems lower compared to other locations, it still remains a significant cause of worry, especially in clinical settings.

The current study reported a 5.4% prevalence of iMLS₈ which is lower than prevalence rates reported in Egypt (13.64%) and Ethiopia (24.1%) (15, 18). The reported iMLS₈ prevalence is also lower than 12.1% reported in a similar study carried out in Abia State, Nigeria (16). Similar studies in India have also reported higher prevalence rates including Nepal (11.48%), and Kilpauk (15.5%) (14, 19–20). In similar studies in Tehran, Iran, Khodabandeh et al., (23) and Goudarzi et al., (24) reported 22.9% and 14.2% iMLS₈ prevalence respectively. Similar studies have also reported higher iMLS₈ prevalence rates including Brazil (7.2%), Central Greece (11.48%) and Jordan (46.5%) (17, 21–22). The seemingly low prevalence of iMLS₈ among S. aureus is however not a call to complacency, but a call to a higher level of attention in the prescription of macrolides so as to keep this resistance low. Ultimately, the true prevalence of iMLS₈ among S. aureus is a function of accurate diagnosis, geographical variation, peculiar characteristics of the healthcare facility, and the population under study (23).

The current study reported a 6.2% prevalence of cMLS₈ S. aureus that is higher than prevalence rates reported in Ethiopia (2.53%) and India (4.6%) (14–15). This prevalence rate is however lower than 27.5% reported in Abia State, Nigeria (16). Similar studies have reported higher prevalence rates in Iran (56.2% and 23%), Egypt (38.64%), Brazil (60.8%), India (29.25% and 13.1%), Greece (26.44%), and Jordan (11.3%) (17–24). Lower prevalence of cMLS₈ S. aureus reported in this study can be attributed to the rational prescription and usage of macrolides, both within community and hospital settings which has not favoured the prominence of hyper-resistant strains and molecular types.

In our study, the 16.1% prevalence of MS phenotype of MLS₈ resistance is comparable to prevalence rates in Iran (16.6%) and India (16.6%) (14, 24), but lower than 19.2% reported in Abia State, Nigeria (16). Similar studies have reported lower prevalence of the MS phenotype in Egypt (2.27%), Ethiopia (1.26%), India (13.7% and 12.3%), Greece (2.90%), Iran (4.9%), and Jordan (2.82%) (15, 18–23). Our study also reported significant association between MLS₈ resistance and methicillin resistance in clinical isolates of S. aureus. The prevalence of MLS₈ resistance was significantly higher among MRSA isolates than MSSA strains of S. aureus. This assertion is in tandem with the reports of Ifediora et al., (16) in Abia State, Nigeria and Kavitha (20) in Kilpauk, India. Similar studies have also reported higher MLS₈ resistance among MRSA strains than MSSA strains (14–15, 17–19, 22–23). Furthermore, MRSA isolates have been globally reported to be multidrug resistant, especially the nosocomial strains. Hence, the spread of MRSA in clinical settings should be monitored to help thwart the possible evolution of MLS₈ resistant strains of S. aureus.

Our study also reported varying antibiotic resistance patterns among MLS₈-resistant isolates, which is similar to reports of other studies on S. aureus (15, 23). MLS₈ resistance was associated with high resistance to fusidic acid in the study, however, there was no association between MLS₈ resistance and resistance to other tested antibiotics. All MLS₈-Resistant and sensitive S. aureus isolates in our study were susceptible to linezolid, rifampicin, tigecycline and mupirocin, hence, these antibiotics can be employed in the treatment of S. aureus infections in this region. However, caution should be taken in the administration of these antibiotics as antibiotic pressure can select for spontaneous evolution of resistant strains.

References:

1. Mansouri, S., and Sadeghi, J. Inducible clindamycin resistance in methicillin-resistant and susceptible Staphylococcus aureus isolated from South East of Iran. Jundishapur J Microbiol. 2014; 7 (12): e11868
2. Leclercq, R., and Courvalin, P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991; 35: 1267–1272
3. Drinkovic, D., Fuller, E. R., Shore, K. P., Holland, D. J., and Ellis-Pegler, R. Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J Antimicrob Chemother. 2001; 48 (2): 319-316
4. Deotale, V., Mendiratta, D. K., Raut, U., and Narang, P. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J Med Microbiol. 2010; 28: 124–126
5. Schmitz, F.-J., Verhoef, J., Fluit, A. C. The Sentry Participants Group. Prevalence of resistance to MLS antibiotics in 20 European university hospitals participating in the European SENTRY surveillance programme. J Antimicrob Chemother 1999; 43 (6): 783–792
6. Leclercq, R. Mechanisms of resistance to macrolides and Lincosamines: Nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002; 34: 482–492
7. Sasirekha, B., Usha, M. S., Amruta, J. A., Ankit, S., Brinda, N., and Divya, R. Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. J Biotech. 2014; 4: 85–89
8. Bibalan, M.H., Shakeri, F., and Javid, N. Accessory Gene Regulator Types of Staphylococcus aureus Isolated in Gorgan, North of Iran. J Clin Diagn Res. 2014; 8 (4): 7–9.
9. Osiyemi, J. A., Ade, T. I., Akinduti, P. A., Osiyemi, E. O., Sunmol, N. O., and Awoyemi, O. A. Regional burden of methicillin-resistant Staphylococcus aureus (MRSA) in South-West, Nigeria: A
systematic review. Trop J Health Sci. 2020; 27 (1): 1-6.
10. Ogah, S. A., Ologe, F. E., Dunmade, A. D., and Lawal, I. A. Facial index as seen in University of Ilorin Teaching Hospital (UITH), Ilorin Nigeria. Asian J Multidiscip Stud. 2014; 2 (5): 20-22.
11. Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing (M100; 31st ed). USA: Clinical Laboratory Standards Institute 2021.
12. Patel, M., Waites, K. B., Moser, S. A., Cloud, G. A., and Hoesley, C. J. Prevalence of inducible clindamycin resistance among community- and hospital-associated Staphylococcus aureus isolates. J Clin Microbiol. 2006; 44: 2481-2484.
13. Vandana, K. E., Singh, J., Chiranjay, M., and Bairy, I. Inducible clindamycin resistance in Staphylococcus aureus: Reason for treatment failure. J Glob Infect Dis. 2009; 1: 76-77
14. Baral, R., and Khanal, B. Inducible clindamycin resistance in Staphylococcus aureus strains isolated from clinical samples. Int J Biomed Res. 2017; 8 (2): 81-84
15. Mama, M., Aklilu, A., Misgna, K., Tadesse, M., and Alemayehu, E. Methicillin- and inducible clindamycin-resistant Staphylococcus aureus among patients with wound infection attending Arba Minch Hospital, South Ethiopia. Int J Microbiol. 2019 https://doi.org/10.1155/2019/2965490
16. Ifediora, A. C., Nwabueze, R. N., Amadi, E. S., and Chikwendu, C. J. Methicillin and inducible clindamycin-resistant Staphylococcus aureus isolates from clinical samples in Abia State. Microbiol Res J Int. 2019; 29 (4): 1-9
17. Lupinacci, F. S., Bussius, D., Acquesta, F., et al. High prevalence of clindamycin resistance in Staphylococcus aureus blood culture isolates in Sao Paulo, Brazil. J Lab Phys. 2017; 9: 314-316
18. Kishk, R. M., Anani, M. M., Nemr, N. A., Soliman, N. M., and Fouad, M. M. Inducible Clindamycin resistance in clinical isolates of Staphylococcus aureus in Suez Canal University Hospital, Ismailia, Egypt. J Infect Dev Ctries. 2020; 14 (11): 1281-1287
19. Adhikari, R. P., Shrestha, S., Barakoti, A., and Amatya, R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis. 2017; 17: 483
20. Kavitha, A. V. Inducible clindamycin resistance among Staphylococcus aureus isolates from various clinical samples. Uni J Pre Para Clin Sci. 2020; 6 (8): 4
21. Jajajreh, D., Aqel, A., Alzoubi, H., and Al-Zereini, W. Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: The first study in Jordan. J Infect Dev Ctries. 2017; 11 (4): 350-354
22. Sarrou, S., Malli, E., Tsilipounidaki, K., Florou, Z., et al. MLSB-resistant Staphylococcus aureus in Central Greece: Rate of resistance and molecular characterization. Microb Drug Resist. 2018; 0: 1-8.
23. Goudarzi, M., Tayebi, Z., Fazeli, M., Miri, M., and Nasiri, M. J. Molecular characterization, drug resistance and virulence analysis of constitutive and inducible clindamycin resistance Staphylococcus aureus strains recovered from clinical samples, Tehran- Iran. Infect Drug Resist. 2020; 13: 1155-1162
24. Khodabandeh, M., Mohammadi, M., Abdosalehi, M. R., et al. Analysis of resistance to macrolide-lincosamide-streptogramin B among mecA-positive Staphylococcus aureus isolates. Osong Publ Hlth Res Perspect. 2019; 10 (1): 26-31