Boundary-limited and glassy-like phonon thermal conduction in EtMe$_2$Sb[Pd(dmit)$_2$]$_2$

Minoru Yamashita
The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan

In molecular-based quantum-spin-liquid candidate EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ with two-dimensional $S=1/2$ triangular lattice, a finite residual linear term in the thermal conductivity, $k_0/T \equiv \kappa/T(T \to 0)$, has been observed and attributed to the presence of itinerant gapless excitations. Here we show that the data of k_0 measured in several single crystals are divided into two groups with and without the residual linear term. In the first group with finite k_0/T, the phonon thermal conductivity κ_{ph} is comparable to that of other organic compounds. In these crystals, the phonon mean free path ℓ_{ph} saturates at low temperatures, being limited by the sample size. On the other hand, in the second group with zero k_0/T, κ_{ph} is one order of magnitude smaller than that in the first group, comparable to that of amorphous solids. In contrast to the first group, ℓ_{ph} shows a glassy-like non-saturating behavior at low temperatures. These results suggest that the crystals with long ℓ_{ph} are required to discuss the magnetic excitations by thermal conductivity measurements.

Quantum spin liquids (QSLs) are novel state of matter, in which the strong quantum fluctuations melt the magnetic order even at zero temperature. The ground states of QSLs have attracted much attention for decades because of the emergence of exotic elementary excitations, such as spinons in the one-dimensional (1D) QSL and itinerant Majorana fermions in the Kitaev QSL. QSLs are frequently found in a class of materials known as frustrated magnets. Candidate materials hosting the QSLs have been found in various materials with triangular, kagome, honeycomb, and pyrochlore lattices.

To reveal the nature of QSL states, it is crucially important to clarify whether the low-lying excitations are gapped or gapless, and whether they are localized or itinerant. The specific heat (C) and thermal conductivity (κ) measurements provide vital information on these issues. The former includes both localized and itinerant excitations, while the latter sensitively detects the itinerant low-lying excitations, which is not contaminated by localized impurities. Gapless itinerant excitations have been reported by thermal conductivity measurements in some of QSL candidate materials including organic EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ and κ-H$_3$(Cat-EDT-TTF)$_2$, and inorganic Ta$_2$Ti$_3$O$_7$ and 1T-TaS$_2$. In these materials, the gapless excitations have been discussed in terms of spinon Fermi surface. On the other hand, the absence of the gapless excitations has been reported in κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ and YbMgGaO$_4$, which has been discussed in terms of a gapped QSL, inhomogeneity effects, and scattering effect on spin excitations by disorder.

In EtMe$_2$Sb[Pd(dmit)$_2$]$_2$, dimerized Pd(dmit)$_2$ molecules form 2D triangular lattice of spin $S=1/2$ which is separated by layers of non-magnetic cation EtMe$_2$Sb$^+$. Despite the large exchange energy of $J \sim 235$ K, no evidence of magnetic order has been reported down to ~ 19 mK ($\sim J/12000$). The presence of gapless excitations has been reported by the specific heat and magnetic susceptibility measurements. Moreover, the thermal conductivity measurements have revealed the presence of a finite residual linear term, $k_0/T \equiv \kappa/T(T \to 0)$, indicating that the gapless excitations contain itinerant contributions.

Recently, the absence of k_0/T in EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ has been reported by two groups. In this letter, we re-vestigate the thermal conductivity of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$. We show that there are two types of crystals with zero and finite k_0/T. We find that the phonon thermal conductivity κ_{ph} of crystals with finite k_0/T, which is comparable to κ_{ph} of other organic compounds, is much larger than κ_{ph} of crystals with zero k_0/T.

Figure 1 summarizes the temperature dependence of κ/T of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ obtained from different batches, along with that of other materials. Thermal conductivity was measured by the standard steady-state method. The samples were cooled down slowly with the rate of $\sim 10–30$ K/hour and ~ 100 K/hour for sample A-E and for sample F, respectively. For comparison, we also plot κ/T of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ from refs. 26, 27, the non-magnetic compound Et$_2$Sb$_2$[Pd(dmit)$_2$]$_2$, another QSL candidate κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, quasi two-dimensional superconductors κ-(BEDT-TTF)$_2$Cu(NCS)$_2$ and λ-(BETS)$_2$GaCl$_4$, and amorphous solids (vitreous silica and pyrex). It is obvious that κ/T of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ is divided into two groups. One group including samples A, B,C and D has a large κ/T value, which is comparable to other organic compounds. We refer this group as large-κ group. On the other hand, the other group including samples E and F has a small κ/T value, which is one order of magnitude smaller than that of the large-κ group and is comparable to amorphous solids. We refer this group as small-κ group. We note that the magnitude and temperature dependence of κ/T in the small-κ group are similar to those reported in refs. 24, 27.

Thermal conductivity of magnetic insulators consists of phonon and spin contributions. Since phonon contribution is usually dominant above 1 K, the observed large difference in κ/T points to very different κ_{ph} between the two groups of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$. It has been reported that the specific heat of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ with large κ/T is close to that with small κ/T. As κ_{ph} is given by $C_{ph}v_{ph}\ell_{ph}$, where C_{ph} is the specific heat of phonons, v_{ph} the sound velocity, and ℓ_{ph} the mean free path of phonons, the large difference of κ/T...
is attributed to the larger difference of ℓ_{ph}.

Figure 2 (a) depicts κ/T vs. T^2 in the low temperature regime of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ of the large-κ group, along with non-magnetic Et$_2$Me$_2$Sb[Pd(dmit)$_2$]$_2$. These EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ crystals show the temperature dependence of $\kappa/T = k_0/T + \beta_3 T^2$ with a finite k_0/T. In the non-magnetic Et$_2$Me$_2$Sb[Pd(dmit)$_2$]$_2$, k_0/T is absent. The observed T^2-dependence of κ/T is a typical behavior of phonon conduction in the boundary scattering limit, where ℓ_{ph} is limited by the sample size. This can be quantitatively supported by the following estimation. In the boundary scattering regime, the effective sample size is given by $R_{eff} \approx \sqrt{w \cdot t}$, where w and t is the sample width and the thickness, respectively. Figure 2(b) depicts β_3, which is obtained by the slope of κ/T vs. T^2 in Fig. 2(a), plotted as a function of R_{eff} for samples A-D. β_3 increases linearly with R_{eff} within the error range. We estimate the sound velocity from the linear relationship shown by the solid line in Fig. 2(b). The sound velocity is estimated by $v_{ph} = 3(\beta_3/R_{eff})/\beta_C$, where β_C is the coefficient of T^3-term in the specific heat. By using $\beta_C = 22.8$ mJ K$^{-4}$ mol$^{-1}$ from the reported specific heat data [24], we obtain $v_{ph} \sim 2100$ m/s. This value is comparable to $v_{ph} \sim 1400$ m/s estimated from the Debye relation, $\beta_C = 4\pi k_B (k_B/\hbar v_{ph})^3$. These results indicate that κ_{ph} of EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ in the large-κ group is in the boundary scattering limit at low temperatures.

Figure 3 depicts the temperature dependence of ℓ_{ph} for EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ below 2 K. In this temperature range, specific heat shows T^3-dependence [24], indicating $C_{ph} = \beta_C T^3$. We evaluate ℓ_{ph} by the relation $\kappa_{ph} = \beta_C T^3 v_{ph} \ell_{ph} / 3$ using $v_{ph} = 2100$ m/s. As shown in Fig. 3, ℓ_{ph} in the large-κ group saturates below ~ 0.5 K due to the boundary scattering. In sharp contrast, ℓ_{ph} in the small-κ group increases as the temperature is lowered without exhibiting saturating behavior. We point out that this non-saturating behavior of ℓ_{ph} bears resemblance to that observed in amorphous solids [31]. In fact, as shown in Fig. 1, κ in the small-κ group is similar to that...
of vitreous silica or pyrex [30]. We note that the glassy-like thermal conductions have been observed even in crystalline materials such as clathrate compounds [32], Tb$_2$Ti$_2$O$_7$ [33], and Ba$_3$CuSb$_2$O$_9$ [34]. In these materials, κ_{ph} is suppressed by rattling of the guest atoms [32], a strong spin fluctuations [33], and random domains [34].

We discuss here several possible origins for the large difference of κ_{ph} between the two groups of EtMe$_3$Sb[Pd(dmit)$_2$]. First is the influence of phonon scattering by spin excitations suggested in refs. [26, 27]. Similar effects have also been discussed in Tb$_2$Ti$_2$O$_7$ [33] and YbMgGaO$_4$ [18]. However, the large different spin-phonon scattering rate between the two groups consisting of the same molecules is unlikely. Second is the structural domain formation. In EtMe$_3$Sb[Pd(dmit)$_2$], the non-centrosymmetric cations EtMe$_3$Sb$^+$ have two orientations in the crystal [35], which may give rise to large number of domains of different sizes. In Ba$_3$CuSb$_2$O$_9$ [34], for instance, the Cu$^{2+}$-Sb$^{5+}$ dumbbells have the Ising degree of freedom in the structure, giving rise to domains of random size structures [36, 37]. Third is the microcracks. In thermal conductivity measurements, unavoidable mechanical stress is applied on the crystal, which often leads to the formation of microcracks in organic compounds. EtMe$_3$Sb[Pd(dmit)$_2$] may be sensitive to such a stress. In all cases, the specific heat measurements cannot distinguish between the large and small κ groups, whereas κ exhibits remarkably different behavior between the two groups. In the second and the third cases, ℓ_{ph} is determined by the domains with broad size distribution, giving rise to a strong suppression of κ_{ph} and non-saturating temperature dependence of ℓ_{ph}, similar to amorphous solids. Further studies are necessary to resolve these issues.

Finite κ_0/T is observable only in EtMe$_3$Sb[Pd(dmit)$_2$] of the large-κ group. As shown in Fig. 2(a), the magnitude of κ_0/T is strongly sample dependent, implying that the mean free path of the spin excitations are extremely sensitive to the impurities. Therefore, the absence of κ_0/T in the small-κ group may imply that EtMe$_3$Sb[Pd(dmit)$_2$] of small-κ group contains higher concentration of impurities. We also note that thermal conductivity studies of other organic compounds with large κ_{ph} have successfully detected the magnetic contribution. In κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, as shown in Fig. 1, κ_{ph} is comparable to that of EtMe$_3$Sb[Pd(dmit)$_2$] in the large-κ group. At low temperatures, κ shows an activated-temperature dependence, suggesting a gap formation in the magnetic excitations [17]. Moreover, a finite κ_0/T has been observed in κ-H$_2$(Cat-EDT-TTF)$_2$, in which ℓ_{ph} exceeds the effective sample size at low temperatures [12]. These results appear to indicate that samples with long ℓ_{ph} and with very low impurity concentration are crucial to study the itinerant magnetic excitations by thermal conductivity measurements.

The author thanks Yuichi Kasahara, Reizo Kato, Yuji Matsuda, and Takasada Shibauchi for fruitful discussions.

![FIG. 3. The temperature dependence of the phonon mean free path ℓ_{ph} of EtMe$_3$Sb[Pd(dmit)$_2$]. See the main text for detail.](image)
N. Yoneyama, N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda, Nature Physics 5, 44 (2008).

[18] Y. Xu, J. Zhang, Y. S. Li, Y. J. Yu, X. C. Hong, Q. M. Zhang, and S. Y. Li, Phys. Rev. Lett. 117, 267202 (2016).

[19] F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, S. Ohira-Kawamura, C. Baines, Y. Shimizu, K. Kanoda, I. Watanabe, and G. Saito, Nature 471, 612 (2011).

[20] M. Yamashita, T. Shibauchi, and Y. Matsuda, ChemPhysChem 13, 74 (2012).

[21] Y. Li, D. Adroja, R. I. Bewley, D. Voneshen, A. A. Tsirlin, P. Gegenwart, and Q. Zhang, Phys. Rev. Lett. 118, 107202 (2017).

[22] T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Phys. Rev. B 77, 104413 (2008).

[23] T. Itou, A. Oyamada, S. Maegawa, and R. Kato, Nature Physics 6, 673 (2010).

[24] S. Yamashita, T. Yamamoto, Y. Nakazawa, M. Tamura, and R. Kato, Nature Communications 2, 275 (2011).

[25] D. Watanabe, M. Yamashita, S. Tonegawa, Y. Oshima, H. M. Yamamoto, R. Kato, I. Sheikin, K. Behnia, T. Terashima, S. Uji, T. Shibauchi, and Y. Matsuda, Nature Communications 3, 1090 (2012).

[26] P. Bourgeois-Hope, F. Laliberté, E. Lefrançois, G. Grissonnanche, S. René de Cotret, R. Gordon, R. Kato, L. Taillefer, and N. Doiron-Leyraud, arXiv:1904.10402.

[27] J. M. Ni, B. L. Pan, Y. Y. Huang, J. Y. Zeng, Y. J. Yu, E. J. Cheng, L. S. Wang, R. Kato, and S. Y. Li, arXiv:1904.10395.

[28] S. Belin, K. Behnia, and A. Deluzet, Phys. Rev. Lett. 81, 4728 (1998).

[29] M. A. Tanatar, T. Ishiguro, H. Tanaka, and H. Kobayashi, Phys. Rev. B 66, 134503 (2002).

[30] R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

[31] R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976).

[32] T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Rev. Mod. Phys. 86, 669 (2014).

[33] Q. J. Li, Z. Y. Zhao, C. Fan, F. B. Zhang, H. D. Zhou, X. Zhao, and X. F. Sun, Phys. Rev. B 87, 214408 (2013).

[34] K. Sugii, M. Shimozawa, D. Watanabe, Y. Suzuki, M. Halim, M. Kimata, Y. Matsumoto, S. Nakatsuji, and M. Yamashita, Phys. Rev. Lett. 118, 145902 (2017).

[35] M. Tamura and R. Kato, Science and Technology of Advanced Materials 10, 024304 (2009).

[36] Y. Wakabayashi, D. Nakajima, Y. Ishiguro, K. Kimura, T. Kimura, S. Tsutsumi, A. Q. R. Baron, K. Hayashi, N. Hoppo, S. Hosokawa, K. Ohwada, and S. Nakatsuji, Phys. Rev. B 93, 245117 (2016).

[37] A. Smerald and F. Mila, Phys. Rev. Lett. 115, 147202 (2015).