Growing with dinosaurs: natural products from the Cretaceous relict *Metasequoia glyptostroboides* Hu & Cheng—a molecular reservoir from the ancient world with potential in modern medicine

Ole Johan Juvik · Xuan Hong Thy Nguyen · Heidi Lie Andersen · Torgils Fossen

Received: 21 November 2014 / Accepted: 10 February 2015 / Published online: 22 February 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract After the sensational rediscovery of living exemplars of the Cretaceous relict *Metasequoia glyptostroboides*—a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from *M. glyptostroboides* during the entire period in which the tree has been investigated (1954–2014) with main focus on the compounds specific to this plant source. Studies on the biological activity of pure compounds and extracts derived from *M. glyptostroboides* are reviewed for the first time. The unique potential of *M. glyptostroboides* as a source of bioactive constituents is founded on the fact that the tree seems to have survived unchanged since the Cretaceous era. Since then, its molecular defense system has resisted the attacks of millions of generations of pathogens. In line with this, some recent landmarks in *Metasequoia* paleobotany are covered. Initial spectral analysis of recently discovered intact 53 million year old wood and amber of *Metasequoia* strongly indicate that the tree has remained unchanged for millions of years at the molecular level.

Keywords *Metasequoia glyptostroboides* · Natural products · Biological activity · Paleobotany · Living fossil

Introduction

Metasequoia glyptostroboides Hu et Cheng (Cupressaceae) is a deciduous conifer native to southeast China (Hu 1948b). The tree is particularly interesting because it seems to have remained unchanged for millions of years since the Cretaceous period (145–66 million years ago). During this long timespan the tree has survived substantial ecological and climate changes and resisted attacks from countless generations of bacteria, viruses, fungi and other plant pathogens. Phytochemical investigations of natural products from *M. glyptostroboides* have been performed since the early 1950s (Bate-Smith 1954; Bate-Smith and Lerner 1954; Hattori et al. 1954). A significant number of natural products have hitherto been characterised from *M. glyptostroboides* although there is as yet no complete review of natural products thereof. In current literature a limited number of
natural products from *M. glyptostroboides* have occasionally been included in reviews which focused on specific compound classes such as flavonoids (Beckmann et al. 1971; Gadek and Quinn 1989; Harborne and Mabry 1982; Hida 1958; Sawada 1958; Takahashi et al. 1960b), carotenoids (Ida 1981a, b) and sugars (Hida et al. 1962). A review reports on sources of shikimic acid including *M. glyptostroboides* (Hattori et al. 1954). Another review, which includes this tree, examines leaf waxes of several deciduous conifers without reporting any chemical constituents (Isoi 1958). The lack of complete, comprehensive literature of natural products from *M. glyptostroboides* has consequently led to cases of double reporting, where previous characterizations from this plant source have been overlooked.

The current review covers six decades of phytochemical investigation of *M. glyptostroboides* (1954–2014). A complete compilation of the considerable number of compounds characterized from *M. glyptostroboides* is presented for the first time (Table 1). Such a compilation may be invaluable for the increasing number of researchers working with natural products from this unique species. The exceptionality of *M. glyptostroboides* necessitates a particular focus on compounds unique to this species including available data regarding their biological activity. Consequently, the current paper also includes the first comprehensive review of studies on various biological activities of extracts and pure compounds from *M. glyptostroboides* as well as current medical applications. Moreover, the potential influence of geographical localization on secondary metabolite production of *M. glyptostroboides* is briefly discussed as this may be particularly relevant in view of the fact that since its rediscovery seven decades ago the tree has been extensively cultivated all over the world in regions where climatic conditions are suitable for this species, mainly covering its original prehistorical habitat.

The longevity of *M. glyptostroboides* may make this species a molecular window into the ancient world. Technological improvements allowing for characterization of modified and original natural products from fossil material, have consequently lead to characterization of such compounds from fossil leaves from *M. glyptostroboides*. These compounds which are included in the current review (Table 2) (Zhao et al. 2007) include two natural products reported both from fresh leaves and fossil leaves (Table 1 and 2) (Fujita 1990; Zhao et al. 2007). In line with this, correlations to recent identifications of natural products and modified derivatives thereof from well preserved fossil *M. glyptostroboides* originating from the Miocene era are discussed.

Brief History

Metasequoia was first described as a new extinct genus in 1941 by the Japanese paleobotanist Shigero Miki (1901–1974) (Miki 1941). He based his work on field samples of fossil remains from Japan, which he identified himself. Based on these observations Miki described two new species that were different from *Sequoia*, but with some common features, and renamed two published species previously ascribed to *Sequoia*. The first of these species was *Sequoia disticha* Heer, which was described in 1876 by Oswald Heer (1809–1883), a Swiss pioneer in paleobotany, based on field samples of fossil remains collected by a Swedish expedition to Svalbard in 1872–1873 (Heer and Nordenskiöld 1876). Five decades later the second species, *Sequoia japonica* Endō, was described in 1936 by the Japanese paleontologist Seidō Endō based on field samples from Korea and Japan (Endō 1936). The name of the new genus means “resemble a *Sequoia*”, and acknowledges the fact that the two genera *Sequoia* and *Metasequoia* resemble each other.

During the early 1940’s a series of events in southeast China led to the sensational discovery of a living species of *Metasequoia*. At the centre of the events is a large deciduous tree, in the small village of Moudao in western Szechuan (Sichuan), locally known as “shui-sha” or water fir in English (Hsueh 1985; Hu 1948a). The story of the collection of specimens and identification of the tree covers seven years from 1941 to 1948, and a complete summary of events and the people involved is beyond the scope of this article. An account of the discovery of *Metasequoia* was written by Hu in 1948 (Hu 1948a). The story of the collection of specimens and identification of the tree covers seven years from 1941 to 1948, and a complete summary of events and the people involved is beyond the scope of this article. An account of the discovery of *Metasequoia* was written by Hu in 1948 (Hu 1948a). The great interest and rapid accumulation of botanical knowledge necessitated a botanical review as early as 1952 (Florin 1952). Fifty years after the first description of the tree a special thematic issue of *Arnoldia* (Madsen 1998–1999) celebrated the event and a
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
	Alcohols			
1	Ethanol	Leaves	GC–MS	Fujita (1990)
2	Butylcarbinol (pentan-1-ol)	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
3	*n*-Hexanol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
4	3-Hexen-1-ol	Shoots	N/A	Fujita et al. (1975)
5	*Cis*-3-Hexen-1-ol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
6	*Trans*-2-Hexen-1-ol	Leaves	GC–MS	Fujita (1990)
7	*n*-Octanol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
8	1-Octen-3-ol (Amyl vinyl carbinol)	Shoots, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Bajpai and Kang (2011b)
9	7-Octen-2-ol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
10	9,12-Tetradecadien-1-ol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
11	Ginnol [\(+\)-*n*-Nonacosanol-(10)]	Leaves	IR, MS, OR	Beckmann and Schuhle (1968)
12	2-Phenyl ethyl alcohol	Seeds	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
13	4-Methyl-1-(1-methylethyl)-3-cyclohexane-1-ol	Seeds	GC–MS	Mou et al. (2007)
14	3-Cyclohexene-1-ol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
15	Sequoyitol	Leaves	PC	Kariyone et al. (1958)
		Leaves	PPC	Takahashi et al. (1960a)
		Heartwood	IR, MP, EA	Sato et al. (1966)
16	Benzyl alcohol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
	Aldehydes			
17	Benzaldehyde	Leaves	GC–MS	Fujita (1990)
	Alkanes			
18	Tetracosane	Leaves	GC–MS	Fujita (1990)
		Fossil leaves	GC–MS	Zhao et al. (2007)
19	Pentacosane	Leaves	GC–MS	Fujita (1990)
		Fossil leaves	GC–MS	Zhao et al. (2007)
20	Cyclobutane	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	---	----------------	--------------------------	------------
21	Cyclopentane	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
22	2,3,3-Trimethyl tricycle heptane	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
	Alkynes			
23	(Z)-3-Heptadecen-5-yne	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
24	13-Heptadecyn-1-ol	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
25	1-Dodecyn-4-ol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
	Amide			
26	Valeranamide	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
	Apocarotenoids			
27	Icariside B1	Branches and stems	N/A	Zeng et al. (2013)
28	Icariside B1 aglycon	Branches and stems	N/A	Zeng et al. (2013)
29	4'-Dihydrophaseic acid	Branches and stems	N/A	Zeng et al. (2013)
30	4'-Dihydrophaseic acid 4'-O-β-D-glucopyranoside	Branches and stems	N/A	Zeng et al. (2013)
	Dihydrostilbenoids			
31	6-Carboxydihydroresveratrol 3-O-β-glucopyranoside	Leaves	NMR, MS	Nguyen et al. (2014)
	Esters			
32	Isopropyl acetate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
33	Methyl 4-methoxybutanoate	Seeds	GC–MS	Mou et al. (2007)
34	Cis-3-Hexenyl acetate	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
35	1-Octen-3-yl acetate	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
36	Methyl-decanoate	Leaves	GC–MS	Eryin and Rongai (1997)
	Furans			
37	Furan	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
38	5-Ethyl-2(5H)-furanone	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
	Ketones			
39	2-Butanone	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
40	3-Pinanone	Seeds	GC–MS	Mou et al. (2007)
41	6,10,14-Trimethyl pentadecan-2-one	Leaves	GC–MS	Fujita (1990)
42	β-Ionone	Leaves	GC–MS	Eryin and Rongai (1997)
43	Acetophenone	Leaves	GC–MS	(Bajpai et al. 2009)
Table 1 continued

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
	Fatty acids and their derivatives			
44	C₅H₁₁COOH (Hexanoic acid)	Cones	GC–MS	Bajpai et al. (2007a)
45	C₅H₁₁COOH (Octanoic acid)	Leaves	GC–MS	Bajpai et al. (2009)
46	C₆H₁₂COOH (Capric acid)	Heartwood	GLC	Sato et al. (1966)
47	C₇H₁₄COOH (Caprylic acid/ Dodecanoic acid)	Heartwood	GLC	Sato et al. (1966)
48	C₁₂H₂₄COOH (Tridecyclic acid/ Tridecanoic acid)	Photosynthetic tissue	GLC	Mongrand et al. (2001)
49	C₁₃H₂₅COOH (Myristic acid/ Tetradecanoic acid)	Heartwood	GLC	Sato et al. (1966)
50	C₁₄H₂₆COOH (Pentadecanoic acid)	Twigs	IR, GC, S	Hayashi et al. (1969)
51	C₁₄H₂₇COOH	Twigs	IR, GC, S	Hayashi et al. (1969)
52	C₁₅H₃₀COOH (Palmitic acid/ Hexadecanoic acid)	Heartwood	GLC	Sato et al. (1966)
53	C₁₅H₂₉COOH	Twigs	IR, GC, S	Hayashi et al. (1969)
54	C₁₅H₃₀COOH	Photosynthetic tissue	GLC	Mongrand et al. (2001)
55	C₁₆H₃₂COOH	Twigs	IR, GC, S	Hayashi et al. (1969)
56	16:2 Δ7,10	Photosynthetic tissue	GLC	Mongrand et al. (2001)
57	C₁₆H₃₃COOH (Margaric acid/ Heptadecanoic acid)	Twigs	IR, GC, S	Hayashi et al. (1969)
58	C₁₇H₃₄COOH (Stearic acid/ Octadecanoic acid)	Twigs	IR, GC, S	Hayashi et al. (1969)
59	C₁₇H₃₅COOH (Oleic acid)	Photosynthetic tissue	GLC	Mongrand et al. (2001)
60	C₁₇H₃₆COOH (Linoleic acid)	Twigs	IR, GC, S	Hayashi et al. (1969)
61	C₁₇H₃₇COOH	Twigs	IR, GC, S	Hayashi et al. (1969)
62	18:1 Δ9	Photosynthetic tissue	GLC	Mongrand et al. (2001)
63	18:2 Δ9,12	Photosynthetic tissue	GLC	Mongrand et al. (2001)
64	18:3 Δ9,12,15	Photosynthetic tissue	GLC	Mongrand et al. (2001)
65	C₁₉H₃₈COOH (Eicosanoic acid/ Icosanoic acid)	Twigs	IR, GC, S	Hayashi et al. (1969)
66	20:2 Δ5,11	Photosynthetic tissue	GLC	Mongrand et al. (2001)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	--	------------------	--------------------------	------------
67	20:2 Δ11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
68	20:3 Δ5,11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
69	20:4 Δ5,11,14,17	Photosynthetic tissue	GLC	Mongrand et al. (2001)
70	22:0	Photosynthetic tissue	GLC	Mongrand et al. (2001)
71	6,9,12,15-Docosatetraenoic acid	Leaves	GC–MS	Bajpai et al. (2009)
72	Methyl arachidonate	Seeds	GC–MS	Bajpai and Kang (2011b)
73	2-Hydroxypropanoic acid	Leaves	GC–MS	Bajpai et al. (2009)
74	Shikimic acid	N/A	IR	Hattori et al. (1954)
75	Cyanidin	Leaves and other tissues	PC	Bate-Smith (1954)
76	Delphinidin	Leaves	PC, S	Hida (1958)
77	Apigenin	Leaves	TLC, UV, MS, NMR	Krauze-Baranowska (2004)
78	Apigenin-7-glucosid (Cosmosiin)	Leaves	TLC, PC	Beckmann and Geiger (1968)
79	Luteolin	Leaves	TLC, UV, MS, NMR	Krauze-Baranowska (2004)
80	Luteolin-7-glucosid	Leaves	TLC, PC	Beckmann and Geiger (1968)
81	Tricetin	Leaves	TLC, PC	Beckmann and Geiger (1968)
82	Tricetin-7-glucosid	Leaves	TLC, PC	Beckmann and Geiger (1968)
83	Tricetin 3′-O-glucoside	Leaves	TLC, UV, MS, NMR	Krauze-Baranowska (2004)
84	Aromadendrin-7-O-β-glucopyranoside	Leaves	NMR, MS	Nguyen et al. (2014)
85	Aromadendrin oxide	Leaves	GC–MS	Bajpai et al. (2009)
86	Kaempferol	N/A	PC	Takahashi et al. (1960b)
87	Kaempferol-3-rhamnosid (Afzelin)	Leaves	TLC, UV, MS, NMR	Beckmann and Geiger (1968)
88	Quercetin	N/A	PC	Takahashi et al. (1960b)
89	Quercetin-3-rhamnosid (Quercitrin)	Leaves	PPC	Takahashi et al. (1960a)

Flavonoids

I. Anthocyanidins

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
67	20:2 Δ11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
68	20:3 Δ5,11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
69	20:4 Δ5,11,14,17	Photosynthetic tissue	GLC	Mongrand et al. (2001)
70	22:0	Photosynthetic tissue	GLC	Mongrand et al. (2001)
71	6,9,12,15-Docosatetraenoic acid	Leaves	GC–MS	Bajpai et al. (2009)
72	Methyl arachidonate	Seeds	GC–MS	Bajpai and Kang (2011b)
73	2-Hydroxypropanoic acid	Leaves	GC–MS	Bajpai et al. (2009)
74	Shikimic acid	N/A	IR	Hatttori et al. (1954)

Flavonoids

I. Anthocyanidins

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
67	20:2 Δ11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
68	20:3 Δ5,11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
69	20:4 Δ5,11,14,17	Photosynthetic tissue	GLC	Mongrand et al. (2001)
70	22:0	Photosynthetic tissue	GLC	Mongrand et al. (2001)
71	6,9,12,15-Docosatetraenoic acid	Leaves	GC–MS	Bajpai et al. (2009)
72	Methyl arachidonate	Seeds	GC–MS	Bajpai and Kang (2011b)
73	2-Hydroxypropanoic acid	Leaves	GC–MS	Bajpai et al. (2009)
74	Shikimic acid	N/A	IR	Hatttori et al. (1954)

Flavonoids

I. Anthocyanidins

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
67	20:2 Δ11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
68	20:3 Δ5,11,14	Photosynthetic tissue	GLC	Mongrand et al. (2001)
69	20:4 Δ5,11,14,17	Photosynthetic tissue	GLC	Mongrand et al. (2001)
70	22:0	Photosynthetic tissue	GLC	Mongrand et al. (2001)
71	6,9,12,15-Docosatetraenoic acid	Leaves	GC–MS	Bajpai et al. (2009)
72	Methyl arachidonate	Seeds	GC–MS	Bajpai and Kang (2011b)
73	2-Hydroxypropanoic acid	Leaves	GC–MS	Bajpai et al. (2009)
74	Shikimic acid	N/A	IR	Hatttori et al. (1954)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	---	------------------	--------------------------	------------
90	Quercetin-3-glucoside (isoquercetin, isoquercitrin)	Leaves	MP, MS, NMR, UV	Duan et al. (2009)
91	Quercetin-3-O-α-rhamnopyranoside-7-O-β-glucopyranoside	Leaves	NMR, MS	Nguyen et al. (2014)
92	Isorhamnetin	N/A	PC	Takahashi et al. (1960b)
93	Myricetin	N/A	PC	Takahashi et al. (1960b)
94	Myricetin-3-rhamnosid (Myricitin)	Leaves	MP, MS, NMR, UV	Duan et al. (2009)
95	Catechin	Heartwood	IR, TLC, MP, EA	Sato et al. (1966)
96	Epicatechin	Heartwood	IR, TLC, MP, EA	Sato et al. (1966)
97	Gallocatechin	Branches and stems	N/A	Zeng et al. (2013)
98	Epi-Gallocatechin	Branches and stems	N/A	Zeng et al. (2013)
99	Amentoflavone	Leaves	TLC, UV	Gadek and Quinn (1989)
100	7-Monomethyl Amentoflavone (Sequoiaflavone)	Leaves	TLC, UV	Gadek and Quinn (1989)
101	4′-Monomethyl Amentoflavone (Podocarpus flavone A)	Leaves	TLC, UV	Gadek and Quinn (1989)
102	7, 4″-Dimethyl Amentoflavone (Podocarpus flavone B)	Leaves	TLC, UV	Gadek and Quinn (1989)
103	4′,4″-Dimethyl Amentoflavone (Isoginkgetin)	Leaves	TLC, UV	Gadek and Quinn (1989)
104	7, 4′,4″-Trimethyl Amentoflavone (Sciadopitysin)	Leaves	TLC, UV	Gadek and Quinn (1989)
105	2,3-Dihydro dimethyl Amentoflavone	Leaves	TLC, UV	Gadek and Quinn (1989)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	---	-----------------	--------------------------	------------
106	2,3-Dihydroamentoflavone-7″,4″″-dimethylether	Leaves	NMR, MP	Beckmann et al. (1971)
107	Amentoflavone-7″,4″″-dimethyl ether	Leaves	NMR, MP	Beckmann et al. (1971)
108	Bilobetin	Leaves	TLC, UV, MS, NMR	Krauze-Baranowska (2004)
109	Ginkgetin	Leaves	TLC, UV, MS, NMR	Krauze-Baranowska (2004)
110	Hinokiflavone	Leaves N/A	Sawada (1958)	
111	Isocryptomerin	Leaves	NMR, MP	Beckmann et al. (1971)
112	Isoginkgetin	Leaves	MP, MS, NMR, UV	Duan et al. (2009)
113	Robustaflavone	Leaves	TLC, UV	Gadek and Quinn (1989)
114	Sciadopitysin	Leaves	MP, MS, NMR, UV	Duan et al. (2009)
115	Sotetsuflavone	Leaves	NMR, MP	Beckmann et al. (1971)
116	2,3-Dihydrohinokiflavone	Leaves	NMR, MP	Beckmann et al. (1971)
117	2,3-Dihydroisoginkgetin	Leaves	TLC, UV, MS, NMR	Krauze-Baranowska (2004)
118	2,3-Dihydrosciadopitysin	Leaves	MP, MS, NMR, UV	Duan et al. (2009)

II. Biflavansols

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
119	Catechin (4 → 8) Catechin	Bark	NMR, MS	Chen et al. (2014)
120	Galloycatechin (4 → 8) Galloycatechin	Bark	NMR, MS	Chen et al. (2014)
121	Galloycatechin (4 → 8) Epigalloycatechin	Bark	NMR, MS	Chen et al. (2014)
122	Galloycatechin (4 → 8) Catechin	Bark	NMR, MS	Chen et al. (2014)
123	Catechin (4 → 8) Galloycatechin	Bark	NMR, MS	Chen et al. (2014)
124	Galloycatechin (4 → 8) Epicatechin Epicatechin	Bark	NMR, MS	Chen et al. (2014)

Hydrocarbons

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
125	1-Methyl-4-(1-methylene)-benzene	Seeds	GC–MS	Mou et al. (2007)
126	1,2,3,4,4a,9,10,10α-Octahydro-1-phenanthrene	Seeds	GC–MS	Mou et al. (2007)
127	1,6,10-Dodecatrione	Leaves	GC–MS	Bajpai et al. (2009)
128	Ethylene (Ethene)	Stems	GC–FID	Du et al. (2004)
129	Tricyclene	Leaves	GC–MS	Bajpai and Kang (2011b)

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
129	Tricyclene	Cones	GC–MS	Bajpai and Kang (2011b)
Table 1 continued

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
130	Perylene	Cones	GC–MS	Bajpai et al. (2007a)
131	Arctigenin	Branches and stems	N/A	Zeng et al. (2013)
132	(+)(−)-Lariciresinol	Branches and stems	N/A	Zeng et al. (2013)
133	Matairesinol	Branches and stems	N/A	Zeng et al. (2013)
134	(−)-Meridinol	Branches and stems	N/A	Zeng et al. (2013)
135	Pinopalustrin	Branches and stems	N/A	Zeng et al. (2013)
136	Pinoresinol	Branches and stems	N/A	Zeng et al. (2013)
137	Thujaostandin	Branches and stems	N/A	Zeng et al. (2013)
138	1-(4-hydroxy-3-methoxyphenyl)-2-[4(3-hydroxypropyl)-2-methoxyphenoxy]-propane-1,3-diol	Branches and stems	N/A	Zeng et al. (2013)
139	2-[2-hydroxy-4-(3-hydroxypropyl)phenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol	Branches and stems	N/A	Zeng et al. (2013)
140	(7S,8S)-3-methoxy-3′,7-epoxy-4′,8-oxyneoligna-4,9,9′-trio1	Branches and stems	N/A	Zeng et al. (2013)
141	Agatharesinol	Heartwood	UV, IR, OR, NMR	Enoki et al. (1977a)
142	Athrotaxin	Heartwood	UV, IR, OR, NMR	Enoki et al. (1977a)
143	Hydroxyathrotaxin	Heartwood	MP, OR, IR, UV, MS, NMR	Enoki et al. (1977b)
144	(−)-Evofolin	Branches and stems	N/A	Zeng et al. (2013)
145	Ficuscal	Branches and stems	N/A	Zeng et al. (2013)
146	Metasequirin A	Heartwood	UV, IR, MS, NMR	Enoki et al. (1977a)
147	Hydroxymetasequirin A	Heartwood	MS, IR, UV, NMR	Enoki et al. (1977b)
148	Metasequirin B	Heartwood	MS, IR, UV, NMR	Enoki et al. (1977b)
149	Metasequirin C	Heartwood	N/A	Nagasakī et al. (2004)
150	Metasequirin D	Stems and leaves	IR, MS, NMR, OR, UV	Dong et al. (2011)
151	Metasequirin E	Stems and leaves	IR, MS, NMR, UV	Dong et al. (2011)
152	Metasequirin F	Stems and leaves	IR, MS, NMR, UV	Dong et al. (2011)
153	Metasequirin G	Branches and stems	NMR, MS	Zeng et al. (2012)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
---	---	-----------------	--------------------------	----------
154	Metasequirin H	Branches and stems	NMR, MS	Zeng et al. (2012)
155	Metasequirin I	Branches and stems	NMR, MS	Zeng et al. (2012)
156	Sequirin C	Branches and stems	N/A	Zeng et al. (2013)
157	Sequosempervirin B	Branches and stems	N/A	Zeng et al. (2013)
158	Sequosempervirin F	Branches and stems	N/A	Zeng et al. (2013)
159	Threo-2,3-bis-(4-hydroxy-3-methoxyphenyl)-3-	Branches and stems	N/A	Zeng et al. (2013)
	raethoxypropanol			
160	7'R,8'S-Threoguaiacylglycerol 8'-vanillic acid ether	Branches and stems	N/A	Zeng et al. (2013)
161	7'S,8'R-Threoguaiacylglycerol 8'-vanillic acid ether	Branches and stems	N/A	Zeng et al. (2013)
	Quinic acid derivatives			
162	3-O-(E)-Coumaroylquinic acid	Leaves	NMR, MS	Nguyen et al. (2014)
163	3-O-(Z)-Coumaroylquinic acid	Leaves	NMR, MS	Nguyen et al. (2014)
164	3-O-(E)-Coumaroylquinic acid methyl ester	Leaves	NMR, MS	Nguyen et al. (2014)
165	3-O-(Z)-Coumaroylquinic acid methyl ester	Leaves	NMR, MS	Nguyen et al. (2014)
	Terpenoids			
	I. Monoterpenoids			
166	Borneol	Leaves	GC–MS	Eryin and Rongai (1997)
		Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
167	Bornneol formate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
168	Bornylene	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
169	Endo bornyl acetate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
170	Exo bornyl acetate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
171	Isobornyl acetate	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
172	Camphene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Seeds	GC–MS	Mou et al. (2007)
173	Camphene hydrate	Leaves	GC–MS	Fujita (1990)
174	α-Campholenone aldehyde	Leaves	GC–MS	Eryin and Rongai (1997)
175	α-Campholene aldehyde	Leaves	GC–MS	Fujita (1990)
176	Camphor	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
177	Cis-Carane	Cones	GC–MS	Bajpai et al. (2007a)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	--	-----------------------------------	---------------------------	----------------------------------
178	δ-3-Carene	Shoot, branchlet and trunk	GC–MS	Bajpai et al. (2007b)
		Leaves	N/A	Fujita et al. (1975)
		Cones	GC–MS	Eryin and Rongai (1997)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
		Seeds	GC–MS	Mou et al. (2007)
179	3-Caren-4-ol	Leaves	GC–MS	Bajpai et al. (2009)
180	Carnosol	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
181	Trans-carveol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
182	Carvone	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
183	3-Cymene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
184	3-Cymene-8-ol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
185	Dihydrocarvyl acetate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
186	Cyclofenchene	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
187	1,8-Cineole	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
188	Citronellyl acetate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
189	α-Fenchene	Seeds	GC–MS	Mou et al. (2007)
190	Fenchol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
191	Fenchone	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
192	α-Fenchyl alcohol	Leaves	GC–MS	Fujita (1990)
193	Geraniol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
194	Geranyl acetate	Leaves	GC–MS	Fujita and Kawai (1991)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
195	Geranyl bromide	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
196	Homomyrtenol	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
197	Limonene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
Table 1 continued

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
198	*cis*-Limonene oxide	Seeds	GC–MS	Bajpai and Kang (2011b)
199	Linalool	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
200	Linalool oxide	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
201	Trans-Linalool oxide	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
202	cis-Linalool oxide	Leaves	GC–MS	(Fujita 1990)
		Leaves	N/A	(Fujita and Kawai 1991)
203	Linalyl acetate	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
204	Linaloyl propionate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
205	Methylol pinene (Nopol)	Cones	GC–MS	Bajpai et al. (2007a)
206	Myrcene	Leaves	GC–MS	Eryin and Rongai (1997)
207	β-Myrcene	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
		Seeds	GC–MS	Mou et al. (2007)
		Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
208	Myrtenol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
		Leaves	GC–MS	Bajpai and Kang (2011b)
209	Nerol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
210	Nopyl acetate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
211	Ocimene	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
212	Perilla-aldehyde (tentative identification)	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
213	α-Phellandrene*	Leaves	GC–MS	Fujita (1990)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	--	------------------	--------------------------	------------
214	1-Phellandrene^a	Leaves	N/A	Fujita and Kawai (1991)
215	β-Phellandrene	Seeds	GC–MS	Mou et al. (2007)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Seeds	GC–MS	Mou et al. (2007)
216	α-Pinene^b	Heartwood	GLC	Sato et al. (1966)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
		Seeds	GC–MS	Mou et al. (2007)
		Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
217	1-α-Pinene^b	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
218	β-Pinene^c	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Seeds	GC–MS	Mou et al. (2007)
219	1-β-Pinene^c	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
220	2-β-Pinene	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
221	2-Pinen-4-ol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
222	Trans-Pinocarved	Leaves	GC–MS	Eryin and Rongai (1997)
223	Sabinene	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
		Seeds	GC–MS	Mou et al. (2007)
224	Cis-Sabinenehydrate	Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
225	α-Terpineol	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
		Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	---	-----------------	--------------------------	------------
226	δ-Terpineol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
227	α-Terpinene	Leaves	GC–MS	Fujita (1990)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
228	δ-Terpinene	Seeds	GC–MS	Mou et al. (2007)
229	γ-Terpinene	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Cones	GC–MS	Bajpai et al. (2007b)
230	Terpinen-4-ol^d	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
		Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
		Cones	GC–MS	Bajpai et al. (2007b)
231	Terpinolene	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
232	α-Terpinolene	Leaves	GC–MS	Eryin and Rongai (1997)
		Seeds	GC–MS	Mou et al. (2007)
233	γ-Terpinolene	Leaves	GC–MS	Eryin and Rongai (1997)
234	Terpiteol-4^d	Cones	GC–MS	Bajpai et al. (2007b)
235	α-Terpiny acetate	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
236	α-Thujene	Leaves	GC–MS	Fujita (1990)
		Cones	GC–MS	Bajpai et al. (2007a)
		Cones	GC–MS	Bajpai et al. (2007b)
237	Thymol	Leaves	GC–MS	Bajpai et al. (2009)
		Cones	GC–MS	Bajpai and Kang (2011b)
238	Tricyclene	Cones	GC–MS	Bajpai et al. (2007b)
		Seeds	GC–MS	Mou et al. (2007)
239	Verbenol	Leaves	GC–MS	Bajpai et al. (2009)
		Leaves	GC–MS	Bajpai and Kang (2011b)

II. Sesquiterpenoids

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
240	(–)-Acora-2,4(14),8-trien-15-oic acid	Stems, leaves	IR, MS, NMR, UV	Dong et al. (2011)
241	Bergamotene	Leaves	GC–MS	Bajpai and Kang (2011b)
242	α-Bisabolol	Leaves	GC–MS	Bajpai and Kang (2011b)
243	α-Bisabolene epoxide	Leaves	GC–MS	Bajpai and Kang (2011b)
244	β-Bisabolene	Leaves	GC–MS	Fujita (1990)
		Cones	GC–MS	Bajpai et al. (2007b)
245	β- Bourbonene	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Eryin and Rongai (1997)
246	α-Cadinol (C₁₃H₂₆O₁)	Twigs	IR,GC, standard	Hayashi et al. (1969)
		Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	---	------------------	--------------------------	------------
247	δ-Cadinol	Leaves	GC–MS	Fujita (1990)
248	δ-Cadinene	Leaves	GC–MS	Fujita (1990)
249	Calamene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
250	Calacorene	Leaves	GC–MS	Fujita (1990)
251	α-Calacorene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
252	Caryophylla-1(12),8(15)-dien-9α-ol	Leaves	GC–MS	Fujita (1990)
253	Caryophylla-1(12),8(15)-dien-9β-ol	Leaves	GC–MS	Fujita (1990)
254	Caryophylla-1(12),7-dien-9α-ol	Leaves	GC–MS	Fujita (1990)
255	Caryophylla-1(12),7-dien-9β-ol	Leaves	GC–MS	Fujita (1990)
256	Caryophylla-1(12),7-dien-9-one	Leaves	N/A	Fujita and Kawai (1991)
257	Caryophylla-1(12),8(15)-dien-9-one	Leaves	N/A	Fujita and Kawai (1991)
258	Caryophyllene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
259	β-Caryophyllene	Leaves	GC–MS	Fujita (1990)
260	γ-Caryophyllene	Cones	GC–MS	Bajpai et al. (2007b)
261	Caryophyllene oxide	Leaves	GC–MS	Fujita (1990)
262	9,3 H-Caryophyllene	Leaves	N/A	Fujita and Kawai (1991)
263	Isocaryophyllene	Leaves	N/A	Fujita and Kawai (1991)
264	Trans-Caryophyllene	Leaves	GC–MS	Eryin and Rongai (1997)
265	α-Chamigrene	Cones	GC–MS	Bajpai et al. (2007b)
266	β-Cubebene	Leaves	GC–MS	Eryin and Rongai (1997)
267	(R)-Cuparene	Cones	GC–MS	Bajpai et al. (2007b)
268	α-Elemene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
269	β-Elemene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	--	------------------	---------------------------	------------
270	β-Farnesene	Leaves	GC–MS	Fujita (1990)
271	α-Farnesene	Leaves	GC–MS	Bajpai et al. (2009)
272	Trans-β-Farnesene	Leaves	GC–MS	Fujita (1990)
273	Cis-Farnesol	Cones	GC–MS	Bajpai et al. (2007a, b)
274	Hexahydrofarnesylacetone	Leaves	GC–MS	Eryin and Rongai (1997)
275	Humuladiene I: C_{15}H_{24}O	Leaves	GC–MS	Fujita (1990)
276	Humuladiene II: C_{15}H_{24}O	Leaves	GC–MS	Fujita (1990)
277	Humuladienone I	Leaves	N/A	Fujita and Kawai (1991)
278	Humuladienone II	Leaves	N/A	Fujita and Kawai (1991)
279	α-Humulene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
280	Humulene epoxide I	Leaves	GC–MS	Fujita (1990)
281	Humulene epoxide II	Leaves	N/A	Fujita and Kawai (1991)
282	Humulenol II (tentative identification)	Leaves	N/A	Fujita and Kawai (1991)
283	Humulene	Leaves	GC–MS	Eryin and Rongai (1997)
284	Longipinenepoxide	Cones	GC–MS	Bajpai et al. (2007a)
285	T-Muurolol	Leaves	N/A	Fujita and Kawai (1991)
286	Nerolidol	Leaves	GC–MS	Fujita (1990)
287	β-Selinene	Cones	GC–MS	Bajpai et al. (2007a)
288	Solanone	Cones	GC–MS	Bajpai et al. (2007a)
289	Spathulenol	Leaves	GC–MS	Fujita (1990)
290	γ-Terpinine	Cones	GC–MS	Bajpai et al. (2007b)
291	Veridiflorol	Leaves	GC–MS	Bajpai and Kang (2011b)
292	α-Ylangene	Shoot, branchlet and trunk	N/A	Fujita et al. (1975)
293	C_{15}H_{24}O	Leaves	GC–MS	Fujita (1990)
294	C_{15}H_{22}O	Leaves	GC–MS	Fujita (1990)
III. Diterpenoids and their derivatives				
295	Ferruginol	Cones	GC–MS	Bajpai et al. (2007a)
296	3-Acetoxylabda-8(20),13-dien-15-oic acid	Brown autumn leaves	¹³C NMR	Braun and Breitenbach (1977)
297	3β-Acetoxy-8 (17),13E-labdadien-15-oic acid	Leaves	MP, MS, NMR,	Duan et al. (2009)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
298	12α-Hydroxy-8,15-isopimaradien-18-oic acid	Stems, leaves	IR, MS, NMR, UV	Dong et al. (2011)
299	Metaseglyptorin A	Stems and leaves	IR, MS, MP, NMR, UV	Dong et al. (2011)
300	Metasequoic acid A	Twig (branch)	NMR	Sakan et al. (1988)
301	Metasequoic acid B	Twig (branch)	NMR	Sakan et al. (1988)
302	Metasequoic acid C	Stems, leaves	IR, MS, NMR, UV	Dong et al. (2011)
303	Phytol	Leaves	GC–MS	Fujita (1990)
304	Sugiol	Cones	GC–MS	Bajpai et al. (2007b)
305	Taxaquinone	Cones	NMR, IR, MS	Bajpai and Kang (2014a)
306	Taxodone	Cones	MP, NMR	Bajpai and Kang (2014a)
307	Totarol	Cones	GC–MS	Bajpai et al. (2007a)
308	Totarol acetate	Cones	GC–MS	Bajpai et al. (2007b)
309	2-Pentenoic acid, 5-(decahydro-6-hydroxy-5,5,8a-trimethyl-1-naphthalenyl)-3-methyl-1-[1S-(1α,4αβ,6α,8αa)]- (9CI)	N/A	NMR, IR, MS	Asahi and Sakan (1984)
310	2-Pentenoic acid, 5-[6-(acetyloxy)decahydro-5,5,8a-trimethyl-1-naphthalenyl]-3-methyl-1-[1S-(1α,4αβ,6α,8αa)]- (9CI)	N/A	NMR, IR, MS	Asahi and Sakan (1984)
311	2-Pentenoic acid, 5-(decahydro-5,5,8a-trimethyl-1-naphthalenyl)-3-methyl-1-[1R-(1α,4αβ,8αa)]- (9CI)	N.A.	NMR, IR, MS	Asahi and Sakan (1984)
312	Metaseglyptorin A	Leaves	NMR, MS, IR	Dong et al. (2011)
313	Adonirubin	Leaves	TLC	Czeczuga (1987)
314	Antheraxanthin	Leaves	TLC	Czeczuga (1987)
315	Apo-12’-violaxanthal	Leaves	TLC	Czeczuga (1987)
316	Astaxanthin	Leaves	TLC	Czeczuga (1987)
317	Auroxanthin	Leaves	TLC	Czeczuga (1987)
318	Canthaxanthin	Leaves	TLC	Czeczuga (1987)
319	a-Carotene	Leaves	UV	Ida (1981b)
			UV	Ida (1981a)
			TLC	Czeczuga (1987)
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	--	------------------	---------------------------	------------
320	β-Carotene	Leaves	UV	Ida (1981b)
		Leaves	UV	Ida (1981a)
		Leaves	TLC	Czeczuga (1987)
321	γ-Carotene	Leaves	TLC	Czeczuga (1987)
322	α-Cryptoxanthin	Leaves	TLC	Czeczuga (1987)
323	β-Cryptoxanthin	Leaves	TLC	Czeczuga (1987)
324	Lycopene	Leaves	UV	Hida and Ida (1961)
		Leaves	UV	Ida (1981b)
		Leaves	UV	Ida (1981a)
		Leaves	TLC	Czeczuga (1987)
326	Lutein epoxide	Leaves	TLC	Czeczuga (1987)
327	Luteoxanthin	Leaves	TLC	Czeczuga (1987)
328	Mutatoxanthin	Leaves	TLC	Czeczuga (1987)
329	Mutatochrome	Leaves	TLC	Czeczuga (1987)
330	Neoxanthin	Leaves	TLC	Czeczuga (1987)
331	Rhodoxanthin	Leaves	TLC	Czeczuga (1987)
332	Violaxanthin	Leaves	UV	Hida and Ida (1961)
		Leaves	UV	Ida (1981b)
		Leaves	UV	Ida (1981a)
		Leaves	TLC	Czeczuga (1987)
333	Zeaxanthin	Leaves	TLC	Czeczuga (1987)

Phenolic compounds

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
334	p-Cresol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
335	Metaseol	Root bark	IR, MP, MS, NMR, UV	Nakatani et al. (1991)
336	Phenol	Leaves	GC–MS	Fujita (1990)
		Leaves	N/A	Fujita and Kawai (1991)
		Leaves	GC–MS	Baipai and Kang (2011b)
337	Protocatechuic acid	Heartwood	IR, TLC, MP, EA	Sato et al. (1966)
338	Protocatechuic aldehyde	Heartwood	IR, TLC, MP, EA	Sato et al. (1966)

Phenylpropanes

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
339	7-(3-ethoxy-5-methoxyphenyl)propane-7,8,9-triol	Branches and stems	NMR, MS	Zeng et al. (2012)
	(1-(3-ethoxy-5-methoxyphenyl)propane-1,2,3-triol)			
340	7-(3-hydroxy-5-methoxyphenyl)propane-7,8,9-triol	Branches and stems	NMR, MS	Zeng et al. (2012)
	(1-(3-hydroxy-5-methoxyphenyl)propane-1,2,3-triol)			
No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
-----	---	-----------------	---------------------------	------------
	Phenylpropens			
341	Chavicol	Leaves	GC–MS	Bajpai et al. (2009)
342	Eugenol	Leaves	GC–MS	Bajpai and Kang (2011b)
343	Guaiacol	Leaves	GC–MS	Bajpai et al. (2009)
	N-heterocycles			
344	2,3-Benzopyrrole	Leaves	GC–MS	Bajpai et al. (2009)
345	2-Cyanoaziridine	Cones	GC–MS	Bajpai et al. (2007a)
346	2,3-Dimethyl 1,3-isopropylpyrazine	Leaves	GC–MS	Bajpai et al. (2009)
347	Imidazole	Leaves	GC–MS	Bajpai et al. (2009)
348	Indole-3-acetic acid	Stems	GC–MS	Du et al. (2004)
349	Pyridine	Leaves	GC–MS	Bajpai and Kang (2011b)
350	Pyrrolidine	Leaves	GC–MS	Bajpai et al. (2009)
	Sterols			
351	β-Sitosterol	Leaves	MS, IR	Beckmann and Schuhle (1968)
		Twigs	LST, MP, IR	Hayashi et al. (1969)
		Leaves	MP, UV, MS, NMR	Duan et al. (2009)
352	Campest-4-en-3-one	Branches and stems	N/A	Zeng et al. (2013)
353	Stigmasterol	Twigs	LST, MP, IR	Hayashi et al. (1969)
	Steroids			
354	Campest-4-en-3-one	Twigs	IR, UV, NMR, MP	Hayashi et al. (1969)
355	Stigmast-4-en-3-one	Twigs	IR, UV, NMR, MP	Hayashi et al. (1969)
356	Stigmast-4-22-dien-3-one	Twigs	IR, UV, NMR, MP	Hayashi et al. (1969)
357	5α-Stigmastan-3,6-dione	Twigs	IR, ORD, MS, NMR	Hayashi et al. (1969)
	Sugars			
358	Fructose	Leaves	PC	Kariyone et al. (1958)
359	Galactose	Leaves	PC	Hida et al. (1962)
360	Glucose	Leaves	PC	Kariyone et al. (1958)
detailed review of the chronology of the history of *M. glyptostroboides* was written by Ma in 2003 (Ma 2003).

Natural habitat and distribution of *M. glyptostroboides*

M. glyptostroboides is endemic to southeast China where the largest native population is found in the Shui-Hsa River valley, also called Xiaohe River Valley, in Zhonglu in Hubei Province (Wang et al. 2006). However, native trees have also been found in an estimated area of about 800–1000 km² within eastern Chongqing municipality, western Hubei, and western Hunan Provinces (Bartholomew et al. 1983; Chu and Cooper 1950; Gressit 1953; Leng et al. 2007; Tang et al. 2011; Wang et al. 2006). In this region the tree occurs as a constituent of the Mixed Mesophytic Forest and grows at an altitude ranging from 800 to 1500 m. Because of this limited distribution, the declining number of individuals, the decreasing available habitat, together with low genetic diversity (Li et al. 2005), *M. glyptostroboides* is classified as endangered on The IUCN Red List of Threatened Species (Farjon 2013). The natural habitat of the tree is in the humid and warm lower mountain slopes with river and stream valleys. In the nearby city of Lichuan, 1083 m above sea level and approximately 60 km from Zhonglu, the monthly mean temperature varies from around 1.9 °C in January to 22.6 °C in August with an annual mean temperature of 12.7 °C. Rainfall is seasonal with a mean annual precipitation of 1319 mm, most of which (85 %) falls during the seven months from April to October (Tang et al. 2011). After discovering *M. glyptostroboides* as a living species, there was an intense effort to cultivate the tree throughout the world (Chu and Cooper 1950). The tree is highly adaptable and since 1948, *M. glyptostroboides* has been successfully grown in nearly 50 countries in Asia, Africa, Europe and America (Ma 2007).

Botanical description*

M. glyptostroboides is a large deciduous conifer that belongs to the family Cupressaceae (Fig. 1) and is the only living species in the genus. It is a fast growing tree that can reach a height of 45 m and 2.2 m in diameter (Ma 2007). *M. glyptostroboides* has a pyramidal shape when young, but can develop a more rounded shape with age. The bark is reddish brown in the early stage, and becomes darker and more greyish over time, with vertical furrows and armpits under the branches. The branchlets are up to about 7.5 cm long and usually arranged distichously with up to 50–60 leaves. The bright green opposite linear leaves provide foliage of feathery texture in mid-spring. During autumn the colour changes to orange, yellow and red-brown before the foliage falls off in wintertime. *M. glyptostroboides* is monoecious, with both male (pollen) and female cones growing on different branches of the same tree. The trees can in general produce cones when they are 9–15 m high, while pollen cones are produced when the tree attains a height of 18–27 m. Pollen cones are pendulous (5–6 mm long), and are produced mid-June, pollen

No.	Substances alphabetically according to group	Part of the tree	Methods of identification	References
361	Sucrose (Saccharose)	Leaves	PC	Hida et al. (1962)
362	α-D-Fructofuranoside	Leaves	PC	Kariyone et al. (1958)
		Leaves	PC	Hida et al. (1962)
		Branches and stems	N/A	Zeng et al. (2013)

EA elemental analysis, *FID* flame ionization detection, *GC* gas chromatography, *GLC* gas–liquid chromatography, *GC–MS* gas chromatography mass spectrometry, *IR* infrared spectroscopy, *LST* Liebermann and Salkowski color test, *MS* mass spectrometry, *MP* melting point, *NMR* nuclear magnetic resonance, *OR* optical rotation, *PC* paper chromatography, *PPC* paper partition chromatography, *S* standard [comparison of unknown with standard compound (s)], *TLC* thin layer chromatography, *UV* ultra violet to visible spectroscopy, *N/A* not available

a,b,c,d Compound names labelled with the same letter may refer to the same compound
Table 2 Compounds identified from fossil leaves of *Metasequoia glyptostroboides* Hu et Cheng

No.	Substances alphabetically according to group	Part of the tree	Method of identification	References
	Alcohols			
1	2,3-Dimethyl-3-buten-2-ol	Fossil leaves	GC–MS	Zhao et al. (2007)
2	2-Methyl-Cyclopentanol	Fossil leaves	GC–MS	Zhao et al. (2007)
3	2-Hexanol	Fossil leaves	GC–MS	Zhao et al. (2007)
4	2-Heptanol	Fossil leaves	GC–MS	Zhao et al. (2007)
5	2-Hexyl-1-decanol	Fossil leaves	GC–MS	Zhao et al. (2007)
6	(E)-2-undecen-1-ol	Fossil leaves	GC–MS	Zhao et al. (2007)
7	2-methyl-3-(1-metylethenyl)-cyclohexanol	Fossil leaves	GC–MS	Zhao et al. (2007)
8	2-(E)-hexenal	Fossil leaves	GC–MS	Zhao et al. (2007)
9	Decanal	Fossil leaves	GC–MS	Zhao et al. (2007)
	Aldehydes			
10	Pentadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
11	Hexadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
12	2,6,10,14-tetramethyl-hexadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
13	Heptadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
14	Octadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
15	Nonadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
16	Eicosane (Icosane)	Fossil leaves	GC–MS	Zhao et al. (2007)
17	Heneicosane	Fossil leaves	GC–MS	Zhao et al. (2007)
18	Docosane	Fossil leaves	GC–MS	Zhao et al. (2007)
19	Tricosane	Fossil leaves	GC–MS	Zhao et al. (2007)
20	Tetracosane	Fresh leaves	GC–MS	Fujita (1990)
21	Pentacosane	Fresh leaves	GC–MS	Fujita (1990)
22	1,2-Dimethylcyclopentane	Fossil leaves	GC–MS	Zhao et al. (2007)
	Esters			
23	Dibutyl phthalate	Fossil leaves	GC–MS	Zhao et al. (2007)
24	Diisobutyl phthalate	Fossil leaves	GC–MS	Zhao et al. (2007)
25	Bis (2-ethylhexyl) phtalate	Fossil leaves	GC–MS	Zhao et al. (2007)
	Furans			
26	Dibenzofuran	Fossil leaves	GC–MS	Zhao et al. (2007)
	Ketones			
27	1-(methylphenyl)-ethanone	Fossil leaves	GC–MS	Zhao et al. (2007)
28	3-(E)-Penten-2-one	Fossil leaves	GC–MS	Zhao et al. (2007)
29	4-Hydroxy-4-Methyl-2-pentanone	Fossil leaves	GC–MS	Zhao et al. (2007)
30	1-(Naphthalenyl)-ethanone	Fossil leaves	GC–MS	Zhao et al. (2007)
31	1,7,7-trimethyl-bicyclo2.2.1heptan-2-one	Fossil leaves	GC–MS	Zhao et al. (2007)
32	6,8-Dioxabicyclo [3.2.1] octane	Fossil leaves	GC–MS	Zhao et al. (2007)
33	Benzophenone	Fossil leaves	GC–MS	Zhao et al. (2007)
34	Tetrahydro-3,6-dimethyl-2H-pyran-2-one	Fossil leaves	GC–MS	Zhao et al. (2007)
	Fatty acids and their derivatives			
35	Dodecanoic acid, methyl ester	Fossil leaves	GC–MS	Zhao et al. (2007)
forms in November, and is dispersed with wind in early spring, and is only produced in regions with relatively warm climates. The cones are globose to ovoid (1.5–2.5 cm long) with 16–28 scales in opposite pairs in four rows. The cone is produced early in July, but fertilization occurs in June the following year. The seeds mature 4–5 months after fertilisation (Li 1998/1999).

Natural products from *Metasequoia glyptostroboides*

To assist current and future researchers with interests in the vast number of natural products from *M. glyptostroboides*, all compounds hitherto reported from this species are systematized for the first time in Table 1, according to compound class. The information provided also includes from which part of the tree the compounds have been detected, as well as the methods used for identifications in each instance where such information is available. Approximately 362 natural products have been characterized from *M. glyptostroboides* (Table 1). The majority of these compounds have been characterized from the leaves, although seeds, branches, heartwood and bark have also been analyzed (Table 1). Twenty-six natural products were unique to *M. glyptostroboides* at the time they were characterized (Figs. 2, 3, 4, 5, 6). The structures of these novel compounds are shown in Figs. 2, 3, 4, 5, and 6. The compound classes, which include natural products specific to *M. glyptostroboides* are discussed in detail below. The various categories of natural products from this plant source are systematized in Figs. 7, 8, and 9.

Table 2 continued

No.	Substances alphabetically according to group	Part of the tree	Method of identification	References
36	Formic acid octyl ester	Fossil leaves	GC–MS	Zhao et al. (2007)
37	Hexadecanoic acid methyl ester	Fossil leaves	GC–MS	Zhao et al. (2007)
38	Octadecanoic acid methyl ester	Fossil leaves	GC–MS	Zhao et al. (2007)
39	Tetradecanoic acid methyl ester	Fossil leaves	GC–MS	Zhao et al. (2007)
40	Anthracene	Fossil leaves	GC–MS	(Zhao et al. 2007)
41	Naphthalene	Fossil leaves	GC–MS	Zhao et al. (2007)
42	1-Methyl-naphthalene	Fossil leaves	GC–MS	Zhao et al. (2007)
43	2-Methyl-naphthalene	Fossil leaves	GC–MS	Zhao et al. (2007)
44	Retene	Fossil leaves	GC–MS	Zhao et al. (2007)
45	Isocyanato-cyclohexane	Fossil leaves	GC–MS	Zhao et al. (2007)
46	I. Monoterpenoids		GC–MS	Zhao et al. (2007)
	L-(−)-menthol	Fossil leaves	GC–MS	Zhao et al. (2007)
47	II. Diterpenoids and their derivatives		GC–MS	Zhao et al. (2007)
	2,6,10-Trimethyl-hexadecane	Fossil leaves	GC–MS	Zhao et al. (2007)
48	III. Triterpenoids		GC–MS	Zhao et al. (2007)
	Squalene	Fossil leaves	GC–MS	Zhao et al. (2007)
49	N-heterocycles		GC–MS	Zhao et al. (2007)
	2,3-Dimethyl-N-phenylpyrrolidine	Fossil leaves	GC–MS	Zhao et al. (2007)
50	Sulphur-containing compounds		GC–MS	Zhao et al. (2007)
	4-Hydroxybenzenesulfonic acid	Fossil leaves	GC–MS	Zhao et al. (2007)
51	1,2-Benzisothiazole	Fossil leaves	GC–MS	Zhao et al. (2007)

GC–MS gas chromatography mass spectrometry

* These compounds are known plasticizers and could as such be artefacts
Characterization and structure elucidation

The majority of known compounds reported from *M. glyptostroboides* are relatively volatile, which may reflect the fact that the majority of samples from this plant source have been characterized by GC–MS. X-ray data have not been reported for any compound isolated from *M. glyptostroboides*. However, an increasing number of compounds have been characterized in detail at atomic resolution, mainly by using a combination of 2D NMR spectroscopy and MS (Table 1). Supporting structural information for a not insignificant minority of the characterized compounds has been achieved by using OR (for chiral compounds) and IR spectroscopy, as well as various forms of co-chromatography and MP determinations (Table 1).
Terpenoids

Terpenoids comprise the largest group of natural products characterized from *M. glyptostroboides*. Until now, 168 different terpenoids have been reported from this plant source (Table 1 and Fig. 7). The majority of these compounds are monoterpenoids, of which 74 have been identified (Fig. 8). Conifers are known to be rich sources of monoterpenoids (Cvrkal and Janak 1959). All of these monoterpenoids are known from other plant sources, as is also the case for the 21 tetraterpenoids (carotenoids) and the single triterpenoid identified. Sesquiterpenoids comprise the second largest group of terpenoids identified from *M. glyptostroboides* counting 55 different structures (Fig. 8). One of these, namely (−)-acora-2,4(14),8-trien-15-oic acid (240) is specific to *M. glyptostroboides* (Fig. 2). Among the 17 diterpenoids reported, the six compounds 3β-acetoxy-8 (17),13-

E-labdadien-15-oic acid (297), 12β-hydroxy-8,15-isopimaradien-18-oic acid (298), metasequoic acid A-C (300–302), and metaseglyptorin A (312) are specific to *M. glyptostroboides* (Fig. 2).

Flavonoids

Flavonoids are the most important polyphenolic compounds synthesized by plants. According to Markham (1982) approximately 2% of all carbon photosynthesized by higher plants are biosynthetically converted to flavonoids (Markham 1982). More than 10,000 different flavonoids have hitherto been reported (Tahara 2007). No less than 50 flavonoids have been reported from *M. glyptostroboides*, which means that they are one of the main groups of natural products characterized from this tree (Figs. 7, 9a). The majority of them are non-glycosylated monomeric (14) or dimeric (26) flavonoids (Fig. 9b). Nine flavonoid
monoglycosides and one flavonoid diglycoside have been reported from *M. glyptostroboides*. The glycosylation positions in these compounds are restricted to the 3-, 7- and 3’-positions of the aglycones (Table 1). Glucose and rhamnose are the only sugar units found in the flavonoid glycosides reported from *M. glyptostroboides*, where glucose is the predominant glycosyl unit (Table 1). Acylated flavonoids have hitherto not been identified from this species. The flavonoids most characteristic for *M. glyptostroboides* are dimers of either two flavone units or a flavone and a flavanone unit (Table 1 and Fig. 5). Three such compounds, namely 2,3-dihydroamentoflavone-7”,4”-dimethylether (106), 2,3-dihydrohinokiflavone (116) and 2,3-dihydrosciadopitysin (118) were discovered in nature for the first time from this species (Fig. 5). Moreover, an anticancer drug based on one of these compounds (dihydrohinokiflavone) isolated from *M. glyptostroboides* has been patented (Jung et al. 2004).

Lignans and norlignans

The largest population of compounds specific to *M. glyptostroboides* belongs to the norlignans. Lignans and norlignans comprise classes of phenylpropanoid-derived natural products with abundant occurrence in nature (Suzuki and Umezawa 2007). Lignans are dimeric phenylpropanoids where the monomers are linked at the central carbon (C8) (Suzuki and Umezawa 2007). Norlignans are naturally occurring phenolic compounds based on a diphenylpentane carbon skeleton consisting of a phenyl–ethyl unit linked to a phenyl-propyl unit. Lignans are widely distributed within the plant kingdom (Suzuki and Umezawa 2007), while norlignans, on the other hand, are mainly found in conifers and monocotyledons (Suzuki and Umezawa 2007).

While some lignans are already established as active principles of anticancer drugs such as podophyllotoxines.
(Stahelin and von Wartburg 1991), there is also an increased recent interest in research on norlignans with significant anticancer activity such as agatharesinol acetonide isolated from *Sequoia* (Zhang et al. 2005). Altogether 10 lignans have been reported from *M. glyptostroboides* (Table 1). All of these compounds are known from other plant sources. The biosynthetic pathways of the norlignans of *M. glyptostroboides* appear, however, to be more unique to this species. Among the 21 norlignans characterized from this plant source (Table 1), the majority of the compounds, namely hydroxyathrotaxin (143), hydroxymetasequirin A (147), and metasequirin A-I (146, 148–155) are unique to *M. glyptostroboides* (Figs. 3, 4).

Other aromatic compounds specific to *M. glyptostroboides*

Four further aromatic natural products unique to *M. glyptostroboides* deserve particular attention. The symmetric natural product metaseol (335), isolated from the root bark, belongs to the diphenylmethanes, a relatively rare class of natural product (Nakatani et al. 1991). Metaseol has only been detected in *M. glyptostroboides* and is the first and only symmetric diphenylmethane ever isolated from any natural source. The two new phenylpropanoids 7-(3-ethoxy-5-methoxyphenyl)propane-7,8,9-triol (339) and 7-(3-hydroxy-5-methoxyphenyl)propane-7,8,9-triol (340) (Fig. 6) isolated from branches and stems of *M. glyptostroboides* exhibited mild cytotoxic activity against A549 and Colo 205 cell lines (Zeng et al. 2012). 6-Carboxydihydroresveratrol-3-glucoside (31) is the only stilbenoid (bibenzyl) derivative hitherto reported from *M. glyptostroboides* (Nguyen et al. 2014). Bibenzyl aglycones with carboxylic substituents have a restricted occurrence in nature. The fact that these compounds have mainly been found in species belonging to the oldest lineages of plant families like the fern *Hicriopteris glauca* (Fang et al. 2012), Liverworts (Pryce 1971; Pryce 1972; Valio et al. 1969) and algae (Huneck and Pryce 1971) indicate that these compounds may be biogenetic precursors of modern plant stilbenoids, with the COOH group being a biogenetic archaicism (Nguyen et al. 2014).
Temperature and sunlight conditions – potential influential factors on secondary metabolite synthesis

Reports on natural products from *M. glyptostroboides* available in current literature have been conducted on trees growing at quite a few rather different localities, including several European and Asian countries, including China (Dong et al. 2011), South Korea (Bajpai and Kang 2010a, 2011a, b; Bajpai et al. 2007a, b, 2009, 2010, 2014a; Duan et al. 2009), Japan (Fujita 1990; Hayashi et al. 1969; Ida 1981a, b; Nakatani et al. 2007a, b, 2009, 2010, 2014a; Duan et al. 2009).
Natural products of *Metasequoia glyptostroboides* – a molecular window into the Cretaceous era

Metasequoia is presumed to have evolved in eastern Russia during the early Late Cretaceous period, around 100 million years ago as the earliest dawn redwood fossils were reported from this region (Yang 1998/1999). The unique potential of the tree as a source of bioactive constituents is founded on the fact that it seems to have survived unchanged since the Cretaceous era. Since then, its unusually successful molecular defense system has resisted the attacks of millions of generations of pathogens. Unlike fossils, where the original molecules may be fragmentary at best, if present at all (Schweitzer et al. 2009), living fossils like *M. glyptostroboides* may provide a detailed, intact, high-resolution system from which ancient natural products can be uncovered and characterized. However, already at a very early stage after its discovery, doubt was cast about whether or not *M. glyptostroboides* had remained unchanged at the molecular level—or even if the present species could reasonably be named identically to a species existing in the Cretaceous era (Schopf 1948). The predominant view was that in fossils of plants, only the morphology was preserved, whereas the original molecules were lost (Calvin 1969). Until recently, detection or any identification of the original natural products of fossil material of any species appeared to be unlikely. However, recent development in analytical technology has made it possible to identify at least fragments of the original molecules, modified natural products or even unmodified natural products from well preserved fossils dating back as far as to the Cretaceous era (Bern et al. 2009; Schweitzer 2004; Schweitzer et al. 1997). As a consequence, Zhao et al. (2007) succeeded in identifying 51 different compounds from fossil *M. glyptostroboides* excavated at Svalbard, Norway, dating from the Miocene era (23–5 million years ago) (Table 2) (Zhao et al. 2007). Although the majority of these compounds were considered to be modified natural products, which may, however, in some instances had kept their original core structures (such as squalene and retene), two of these compounds, namely the hydrocarbons tetracosane and pentacosane, have also been identified from fresh plant material (Tables 1 and 2) (Fujita 1990; Zhao et al. 2007). Hydrocarbons are among the few natural products with sufficient expectable life time to be discovered intact in fossilized material which has been preserved over a time scale of millions of years (Calvin 1969). When keeping in mind that the growth conditions may influence the biosynthesis of natural products of *M. glyptostroboides* as indicated by Nguyen et al. (2014) (Nguyen et al. 2014), further compounds reported by Zhao may be either compounds with intact core structure or surviving original natural products from the relatively warm Miocene era, when the natural habitat of the tree included Svalbard in the far north. Very recently, an intact and significantly older piece of *Metasequoia* wood buried deeply in a kimberlite pipe that intruded northwestern Canada’s Slave Province 53.3 ± 0.6 million years ago was discovered (Wolfe et al. 2012). Initial comparative IR spectral analysis of this intact 53 million year old wood and amber of *Metasequoia* with fresh wood from present *M. glyptostroboides* gave similar results, strongly indicating that the tree has remained unchanged for millions of years at the molecular level (Wolfe et al. 2012). Attempts to
recover DNA from well preserved fossilized *Metasequoia* needles encapsulated in amber have hitherto been unsuccessful (Yang 1998/1999). However, it may be possible that the 53 million year old intact *Metasequoia* wood recently discovered could contain intact DNA or sufficiently large fragments thereof required for a direct comparison with DNA of the present *M. glyptostroboides*.

Biological and pharmacological effects of substances and extracts of *M. glyptostroboides*

An increasing number of studies of various biological activities and medicinal applications of the title plant have been reported in current literature. These include studies performed on pure compounds, as well as extracts, and applications as plant medicines. Several recent patents exploiting substances or extracts of *M. glyptostroboides* visualize the increased commercial potential of medicinal applications based on the bioactive constituents from this species. (Ding 2003; Jung et al. 2004; Lee et al. 2009; Wu 2009). The different types of biological activities reported in current *Metasequoia* literature are treated in separate paragraphs below.

Antioxidant activity

Antioxidant activity, as well as radical scavenging activity has been determined for both extracts and pure compounds from *M. glyptostroboides*. Bajpai et al. (2009) tested the antioxidant activity of the essential oil and various organic extracts (n-hexane, chloroform, ethyl acetate and methanol) of *M. glyptostroboides*. DPPH was used to identify antioxidant activity. The study revealed that essential oil and ethyl acetate extracts showed higher or similar antioxidant activity compared to the standards, butylated hydroxyanisole and ascorbic acid. This might be accounted for by the high total phenolic content in the ethyl acetate extracts (Bajpai et al. 2009). Chen et al. (2014) reported significant DPPH radical, superoxide anion radical, and hydroxyl radical scavenging capacity, total antioxidative capacity, lipid peroxidation inhibitory activity, and metal ions chelating capacity of chromatographic fractions derived from bark extracts of *M. glyptostroboides*. The observed activities were correlated with the proanthocyanidin content of the active fractions isolated (Chen et al. 2014).

The DPPH scavenging activity of the pure compound 6-carboxydihydroresveratrol-3-O-β-glucopyranoside isolated from *M. glyptostroboides* was significant, though the IC\textsubscript{50} value was approximately 11-fold higher than the reference compound gallic acid (Nguyen et al. 2014). Hinokiflavone, a biflavone which occurs in leaves of *M. glyptostroboides*, has been identified as a potent antioxidant using hyphenated HPLC-DPPH (Zhang et al. 2011). The compound used for these studies was, however, not isolated from *M. glyptostroboides*.

Arachidonic acid metabolism inhibition

Arachidonic acid metabolites play important roles in disease conditions such as inflammation and development of cancer (Hyde and Missailidis 2009). Therefore, there is an increasing interest in discovering inhibitors of key enzymes of the arachidonic acid cascade reaction, such as 15-lipoxygenase (Gillmor et al. 1997; Samuelsson et al. 1987). The dihydrostilbenoid glucoside 6-carboxydihydroresveratrol-3-O-β-glucopyranoside, a compound specific to *M. glyptostroboides*, proved to be a significant inhibitor of 15-lipoxygenase with IC\textsubscript{50} at a comparable level to the standard inhibitor quercetin (Nguyen et al. 2014).

Antibacterial effect

There is a continuous need for the discovery of novel antibiotics, due to the observed development of bacterial resistance to the antibiotics presently known. Because *M. glyptostroboides* has resisted the attack of millions of generations of pathogens, apparently without changing, the tree may be a promising source of natural products with antibiotic activity. Indeed, significant antibiotic activity towards several types of bacteria has been reported for extracts, as well as for pure compounds derived from this species.

Bajpai et al. (2007a) identified 59 compounds from the floral cone of *M. glyptostroboides*, which mainly contained oxygenated mono- and sesquiterpenes and the corresponding hydrocarbons. These compounds
together with the complete methanol extract and methanol derived sub fractions were tested for antimicrobial effect against eleven different food spoilage and foodborne bacterial strains, four gram-positive bacteria and seven gram-negative bacteria. The essential oil, methanol extracts and various organic sub-fractions exhibited significant potential for antibacterial activity. The study indicated that mediated essential oils and extracts from *M. glyptostroboides* can be applied as natural preservatives or flavouring additives in the food industry to control spoilage and foodborne pathogenic bacteria which cause severe destruction of food (Bajpai et al. 2007a). Very recently, Bajpai et al. (2014a, b) reported anti-listeria activity of essential oils of *M. glyptostroboides*. The anti-listerial activity of essential oils of *M. glyptostroboides* acted synergistically with the peptide antibiotic nisin (Bajpai et al. 2014b).

The observed antibacterial activity of extracts derived from *M. glyptostroboides* may be rationalized by the fact that several pure compounds with significant antibacterial activity have been isolated from this plant source. Metaseol, a compound specific to *M. glyptostroboides*, exhibited potent antibacterial activity against *Bacillus subtilis* and *Escherichia coli* (Nakatani et al. 1991). Two abietane type diterpenoids, sugiol and taxodore, isolated from the ethyl acetate cone extract from *M. glyptostroboides*, proved to have antibacterial effect against several foodborne pathogenic bacteria, which may cause destruction and reduce the quality of food. Both studies showed that gram-positive bacteria were more sensitive to sugiol and taxodore than gram-negative bacteria. Sugiol exhibited higher antibacterial activity compared to the standard streptomycin in regard to gram-positive bacteria. Taxodore, on the other hand, exhibited lower antibacterial activity than the standard streptomycin. However both compounds inhibited gram-positive bacteria to some extent. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for sugiol against foodborne pathogens were lower than for taxodore. The MIC is determined by the lowest concentration of the compound that does not show any growth of the test organism. MBC is defined as the complete absence of growth of bacterial colonies on the agar surface in the lowest concentration of sample. MIC for sugiol and taxodore varied from 62.5 to 250 µg/ml and 250–1000 µg/ml against different foodborne pathogens while MBC varied from 125 to 250 µg/ml and 250–2000 µg/ml, respectively. Similar antibacterial effects have also been detected for taxoquinone (Bajpai et al. 2010). The findings indicate that sugiol, taxodore and taxoquinone could be possible candidates for application in the food industry for the control of foodborne pathogens. Such potential applications would, however, require further studies on the safety and toxicity of these compounds (Bajpai and Kang 2010a, 2011a; Bajpai et al. 2010).

Antifungal and antidermatophytic effects

The essential oil and various organic extracts (hexane, chloroform, ethyl acetate and methanol) of *M. glyptostroboides* have shown potential antidermatophytic effect against infectious fungal pathogens of the skin. They also inhibit some fungal spore germination at certain concentrations. Essential oils and extracts could therefore be used as a source of new antidermatophytic agents to control superficial human fungal infection (Bajpai et al. 2009). Bajpai and Kang have reported that the essential oil of *M. glyptostroboides* leaf has a moderate to high antifungal activity against seven different plant pathogenic fungal species namely *Botrytis cinerea* KACC 40573, *Rhizoctonia solani* KACC 4011, *Fusarium oxysporum* KACC 41083, *Sclerotinia sclerotiorum* KACC 41065, *Colletotrichum capsici* KACC 40978, *Fusarium solani* KACC 41092 and *Phytophthora capsici* KACC 40157. The results from the study also show that methanol, ethyl acetate and chloroform leaf extracts have strong antifungal activity against the tested plant pathogens. These findings indicate that the extracts and oil of *M. glyptostroboides* could be considered as potential antifungal agents to control several plant pathogenic fungi causing severe diseases in food, crops and vegetables (Bajpai and Kang 2010b).

Studies on antifungal activity of pure compounds isolated from *M. glyptostroboides* are hitherto limited to a few studies on diterpenoids. These include three antifungal diterpenoids reported by Asahi and Sakan (1984) (Table 1, compounds 305–307) and the diterpenoid taxoquinone (Bajpai and Kang 2014). The latter compound exhibited significant antifungal activity against pathogenic isolates of several *Candida* species.
Antiviral activity

In current literature, studies on antiviral activity of natural products isolated from *M. glyptostroboides* have hitherto only been performed on pure hinokiflavone. This dimeric flavonoid, isolated from *M. glyptostroboides*, exhibited antiviral activity against influenza viruses A and B (Miki et al. 2008). The mechanism at molecular level is based on the fact that hinokiflavone acts as an inhibitor of viral sialidase (also known as viral neuraminidase/exo-α-sialidase) (Miki et al. 2008), an enzyme which plays at least two important roles in the viral life cycle. These include the facilitation of virion progeny release and general mobility of the virus in the respiratory tract (von Itzstein 2007). The observed anti-influenza activity was amplified significantly when hinokiflavone was conjugated with sialic acid (Miki et al. 2008). Several identified antiviral natural products originate from the shikimic acid biosynthetic pathway (Andersen and Helland 1996; De Bruyne et al. 1999; Hayashi et al. 2003), which is also the case for hinokiflavone. The B-ring systems of this dimeric flavonoid, in addition to C-2, and C-2'' originate from this biosynthetic pathway. The observed antiviral activity of these compounds may be rationalized by the fact that the slightly modified shikimic acid derivative oseltamivir, which is the active constituent of the anti-influenza drug Tamiflu, possess its antiviral activity through inhibition of the influenza viral sialidase (von Itzstein 2007).

Anticancer activity

Recently, analyses of anticancer activity of extracts and pure compounds derived from *M. glyptostroboides* have been published. Zeng et al. (2012) reported that five pure compounds specific to *M. glyptostroboides*, namely the norlignans metasequirin G-I (153–155; Fig. 4) and the phenylpropanes 7-(3-ethoxy-5-methoxyphenyl)propane-7,8,9-triol (339) and 7-(3-hydroxy-5-methoxyphenyl)propane-7,8,9-triol (340) (Fig. 6), exhibited cytotoxic activity against A549 and Colo 205 cell lines with IC₅₀ values within the range 50–100 μM (Zeng et al. 2012). The fact that an anticancer drug based on dihydrohinokiflavone isolated from *M. glyptostroboides* has been patented (Jung et al. 2004) should encourage exploitation of the anticancer potential of the multitude of structurally relatively similar biflavonoids identified in leaves of this species (Table 1).

Protective effects on cerebral ischemia–reperfusion injury

Wang et al. (2004) reported that a mixture of flavonoids from *M. glyptostroboides* (referred to as total flavonoids) exhibited protective effects on cerebral ischemia–reperfusion injury in rats (Wang et al. 2004). This is in agreement with the previous findings that intake of flavonoid-rich food has been reported to significantly improve coronary circulation in healthy human adults (Shiina et al. 2009).

Other medicinal applications

As a medicinal plant *M. glyptostroboides* is a constituent of a plant medicine used for treatment of diabetes (Ding 2003) and has also applications in traditional Chinese medicine (TCM) (Wu 2009). Medicinal compositions for skin care have been prepared from *M. glyptostroboides* (Arashima et al. 2008; Lee et al. 2009).

Concluding remarks

The living fossil *M. glyptostroboides*, a tree which seems to have remained unchanged since the Cretaceous era, is a unique source of novel natural products. It is apparent that the chemical defense system of the tree, based on its bioactive secondary metabolites, has resisted the attack of millions of generations of pathogens during geological time. The potential of these compounds and extracts containing them has only very recently been explored in modern medicine. As a consequence of the significant strides in the development of chromatographic methods and increasingly sensitive spectroscopic instruments, in particular the development of cryogenic probe technology for high-field NMR instruments, discovery of an increasing number of novel natural products from *M. glyptostroboides* is expected to continue in the near future. The fact that several medicinal applications based on compounds from this plant source as active...
principles currently exist, would encourage such development, including extensive testing of biological activity of these new compounds. The latter point may be further reinforced by the fact that, at present, compounds specific for *M. glyptostroboides* have hitherto only been tested to a limited extent with respect to their biological activity. Indications that the growth and sunlight conditions may significantly influence the qualitative production of the selection of natural products of this species strongly encourage international research cooperation leading to a coordinated global exploitation of plant material from geographically exceptionally different localities.

Acknowledgments The authors are indebted to Prof. George W. Francis (Department of Chemistry, University of Bergen, Norway) for improving the language of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Andersen ØM, Helland DE (1996) Use of anthocyanidin and derivatives for treatment of retroviral infections. WO96 11692A1, 25 April 1996

Arashima M, Negishi R, Asano Y, Yoshida H (2008) A medicinal composition for caring skin prepared from *Metasequoia glyptostroboides*. JP 2008074743, 03 April 2008

Asahi M, Sakan F (1984) Antifungal activity of diterpenes from *Metasequoia glyptostroboides*. J Agric Chem Soc Jpn 58(9):887–889

Bajpai VK, Kang SC (2010a) Antibacterial abietane-type diterpenoid, taxodone from *Metasequoia glyptostroboides*. J Am Oil Chem Soc 87(3):327–336. doi:10.1007/s11746-009-1500-6

Bajpai VK, Kang SC (2010b) Antifungal activity of leaf essential oil and extracts of *Metasequoia glyptostroboides Miki ex Hu*. J Food Biochem 35(1):289–302. doi:10.1111/j.1745-4514.2010.00382.x

Bajpai VK, Kang SC (2014) Antimycotic potential of a diterpenoid taxoquinone against *Candida* species isolated from *Metasequoia glyptostroboides*. Bangl J Pharmacol 9(2):154–160. doi:10.3329/bjp.v9i2.17555

Bajpai VK, Rahman A, Choi UK, Youn SJ, Kang SC (2007a) Inhibitory parameters of the essential oil and various extracts of *Metasequoia glyptostroboides Miki ex Hu* to reduce food spoilage and food-borne pathogens. Food Chem 105(3):1061–1066. doi:10.1016/j.foodchem.2007.05.008

Bajpai VK, Rahman A, Kang SC (2007b) Chemical composition and anti-fungal properties of the essential oil and crude extracts of *Metasequoia glyptostroboides Miki ex Hu*. Ind Crop Prod 26(1):28–35. doi:10.1016/j.indcrop.2006.12.012

Bajpai VK, Yoon JI, Kang SC (2009) Antioxidant and anti-dermatophytic activities of essential oil and extracts of *Metasequoia glyptostroboides Miki ex Hu*. Food Chem Toxicol 47(6):1355–1361. doi:10.1016/j.fct.2009.03.011

Bajpai VK, Na M, Kang SC (2010) The role of bioactive substances in controlling foodborne pathogens derived from *Metasequoia glyptostroboides Miki ex Hu*. Food Chem Toxicol 48(7):1945–1949. doi:10.1016/j.fct.2010.04.041

Bajpai VK, Sharma A, Kang SC, Baek KH (2014a) Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from *Metasequoia glyptostroboides*. Asian Pac J Trop Med 7(1):9–15

Bajpai VK, Yoon JI, Bhardwaj M, Kang SC (2014b) Anti-listerial synergism of leaf essential oil of *Metasequoia glyptostroboides* with nisin in whole, low and skim milks. Asian Pac J Trop Med 7(8):602–608. doi:10.1016/S1995-7645(14)00102-4

Bartholomew B, Boufford DE, Spongberg SA (1983) *Metasequoia glyptostroboides*—its present status in central China. J Arnold Arbor 64(1):105–128

Bate-Smith EC (1954) Leuco-Anthocyanins. 1. Detection and identification of anthocyanidins formed from Leuco-Anthocyanins in plant tissues. Biochem J 58(1):122–125

Bate-Smith EC, Lerner NH (1954) Leuco-Anthocyanins. 2. Systematic distribution of Leuco-Anthocyanins in leaves. Biochem J 58(1):126–132

Beckmann S, Geiger H (1968) Composition of *Metasequoia Glyptostrobus*. 2. Flavone and flavonol glycosides. Phytochemistry 7(9):1667–1671. doi:10.1016/S0031-9422(00)88622-7

Beckmann S, Schuhle H (1968) Composition of *Metasequoia glyptostroboides Hu Et Cheng* L. (+)-N-nonacosan-10-Ol (ginnol) and beta-sitosterine. Z Naturforsch Pt B 23(4):471–473

Beckmann S, Geiger H, De Groot Pfeiferer W (1971) Components of *Metasequoia glyptostroboides*. 3. Bilavones and 2,3-dihydrobilavones from *Metasequoia glyptostroboides*. Phytochemistry 10(10):2465–2474. doi:10.1016/S0031-9422(00)89893-3

Bern M, Phinney BS, Goldberg D (2009) Reanalysis of tyrannosaurus rex mass spectra. J Proteome Res 8(9):4328–4332

Braun S, Breitenbach H (1977) Structural elucidation of new diterpenoid, taxodone from *Metasequoia glyptostroboides Hu Et Cheng*. Tetrahedron 33(1):145–150. doi:10.1016/0040-4020(77)80445-6

Calvin M (1969) Chemical evolution; molecular evolution towards the origin of living systems on the earth and elsewhere. Oxford University Press, New York, p ix

Chen FY, Zhang L, Zong SL, Xu SF, Li XY, Ye YP (2014) Antioxidant capacity and proanthocyanidin composition of...
the bark of *Metasequoia glyptostroboides*. Evid-Based Compl Alt 1–11. Artn 136203. doi:10.1155/2014/136203

Chu KL, Cooper WS (1950) An ecological reconnaissance in the native home of *Metasequoia glyptostroboides*. Ecology 31(2):260–278. doi:10.2307/193291

Cvrkal H, Janak J (1959) Anwendungen der Gaschromatografie zur Identifizierung einiger Terpene aus Athernischen Ölen von Nadelbaumen (*Coniferae*). Collect Czech Chem Commun 24(6):1967–1974

Czechuga B (1987) Investigation of the carotenoids of the embryophyta. 9. Ketoncarotenoids—autumn carotenoids in *Metasequoia glyptostroboides*. Biochem Syst Ecol 15(3):303–306. doi:10.1016/0305-1978(87)90003-2

De Bruyne T, Pieters L, Deelstra H, Vlietinck A (1999) Condensated vegetable tannins: biodiversity in structure and biological activities. Biochem Syst Ecol 27(4):445–459

Ding XA (2003) A plant medicine for the treatment of diabetes. CN 1456218, 19 Nov 2003

Dong LB, He J, Wang YY, Wu XD, Deng X, Pan ZH, Xu G, Peng LY, Zhao Y, Li Y, Gong X, Zhao QS (2011) Terpenoids and norlignans from *Metasequoia glyptostroboides*. J Nat Prod 74(2):234–239. doi:10.1021/Np100694k

Du S, Sugano M, Tsushima M, Nakamura T, Yamamoto F (2004) Endogenous indole-3-acetic acid and ethylene evolution in wilted *Metasequoia glyptostroboides* stems in relation to compression-wood formation. J Plant Res 117(2):171–174. doi:10.1007/s10265-003-0135-1

Duan CH, Lee JN, Lee CM, Lee GT, Lee KK (2009) Phytochemical constituents from *Metasequoia glyptostroboides* leaves. Nat Prod Sci 15(1):12–16

Endo S (1936) New fossil species of *Sequoia* from the far-east. Proc Imp Acad Tokyo 12:172–175

Enoki A, Takahama S, Kitao K (1977a) The Extractives of Metasekoia, *Metasequoia glyptostroboides Hu et Cheng*. I. The isolation of Metasequirin-A, Athrotaxin and Agatharesinol from the heartwood. J Jpn Wood Res Soc 23(11):579–586

Enoki A, Takahama S, Kitao K (1977b) The extractives of Metasekoia, *Metasequoia glyptostroboides Hu et Cheng*. II. The isolation of Hydroxyathrotaxin, Metasequirin-B and Hydroxymetasequirin-A. J Jpn Wood Res Soc 23(11):587–593

Eryin S, Rongai L (1997) Analysis of the chemical constituents of volatile oils of *Metasequoia glyptostroboides* leaves. Zhongyaoaocai 20(10):514–515

Fang X, Lin X, Liang S, Zhang WD, Feng Y, Ruan KF (2012) Two new compounds from *Hieriopteris glauca* and their potential antitumor activities. J Asian Nat Prod Res 14(12):1175–1179. doi:10.1080/10286020.2012.739615

Farjon A (2013) *Metasequoia glyptostroboides*. The IUCN red list of threatened species. Version 2014.2. www.iucnredlist.org, 22 Oct 2014

Florin R (1952) On *Metasequoia*, living and fossil. Bot Notiser 1952, Hæfte 1 Lund 1–29

Fujita S (1990) Miscellaneous contributions to the essential oil of plants from various territories. 50. Essential oils from the foliage of *Metasequoia glyptostroboides Hu Et Cheng*—change in composition during growth. Agr Biol Chem Tokyo 54(3):819–822

Fujita S-I, Kawai K (1991) On the components of the essential oils of *Metasequoia glyptostroboides Hu et Cheng* (III): changes in the oxidation products of β-caryophyllene and α-humulene during growth. Bull Mukogawa Women’s Univ Educ 39:63–67

Fujita Y, Fujita SI, Iwamura JJ, Nishida S (1975) Miscellaneous contributions to essential oils of plants from various territories. 38. Components of essential oils of *Metasequoia glyptostroboides Hu Et Cheng*. J Pharm Soc Jpn 95(3):349–351

Gadek PA, Quinn CJ (1989) Biflavones of *Taxodiaceae*. Biochem Syst Ecol 17(5):365–372. doi:10.1016/0305-1978(89)90049-5

Gillmor SA, Villasenor A, Fletterick R, Sigal E, Browner MF (1997) The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol 4(12):1003–1009. doi:10.1038/nst1297-1003

Gressit JL (1953) The California Academy-Lingnan dawn-redwood expedition. Proc Calif Acad Sci 28(2):25–28

Harborne JB, Mabry TJ (1982) The flavonoids: advances in research, vol XII. Chapman and Hall, New York, London, p 744

Hattori S, Yoshida S, Hasegawa M (1954) Occurrence of shikimic acid in the leaves of Gymnospermis. Physiol Plant 7(2):283–289. doi:10.1111/j.1399-3054.1954.tb0777.x

Hayashi S, Okude T, Shimizu A, Matsuura T (1969) Neutral constituents of methanol extract from twigs of *Metasequoia glyptostroboides Hu Et Cheng*. Chem Pharm Bull 17(1):163–167

Hayashi K, Mori M, Knox YM, Suzutan T, Ogasawara M, Yoshida I, Hosokawa K, Tsukui A, Azuma M (2003) Anti influenza virus activity of a red-fleshed potato anthocyanin. Food Sci Technol Res 9(3):242–244. doi:10.3136/fstr.9.242

Heer O, Nordenskiöld AE (1876) Beiträge zur fossilen Flora Spitzbergens: gegründet auf die Sammlungen der schwedischen Expedition vom Jahre 1872 auf 1873. P.A. Norstedt & söner, Stockholm, Kongl svenska vetenskaps-akademiens handlingar, 141 p, 132 leaves of plates

Hida M (1958) Studies on anthocyanidin and leuco-anthocyanidin in autumnal red leaves and green leaves of the conifers. Bot Mag Tokyo 71(845–846):425–429

Hida M, Ida K (1961) Studies on carotenoids of green and autumnal red leaves of *Metasequoia glyptostroboides*. Bot Mag Tokyo 74:369–374

Hida M, Ono S, Harada E (1962) Studies on the sugars in the leaves of conifers. Bot Mag Tokyo 75:153–157

Hsueh C-J (1985) Reminiscences of collecting the type specimen of *Metasequoia glyptostroboides*. Evid-Based Compl Altern Med 242

Hu H-H (1948a) How *Metasequoia*, the “Living Fossil,” was discovered in China. J NY Bot Gard 49(585):201–207

Hu H-H (1948b) On the new family *Metasequoiacae* and on the genus *Metasequoia* found in Szechuan and Hupheh. Bull Fan Mem Inst Biol Bot 1(2):153–161

Huneck S, Pryce RJ (1971) Constituents of liverworts and mosses. 9. Lumularic acid from *Marchantia alpestris*. Z Naturforsch Pt B 26(7):738
Hyde CA, Missaillidis S (2009) Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol 9(6):701–715. doi:10.1016/j.intimp.2009.02.003

Ida K (1981a) Ecophysiological studies on the response of Taxodiaceae conifers to shading with special reference to the behavior of leaf pigments. 2. Chlorophyll and carotenoid contents in green leaves grown under different grades of shading. Bot Mag Tokyo 94(1035):181–196. doi:10.1007/BF02488609

Ida K (1981b) Ecophysiological studies on the response of Taxodiaceae conifers to shading, with special reference to the behavior of leaf pigments. 1. distribution of carotenoids in green and autumnal reddish brown leaves of gymnosperms. Bot Mag Tokyo 94(1033):41–54. doi:10.1007/BF02490202

Isao K (1958) The leaf waxes of deciduous conifers. J Pharm Soc Jpn 78(7):814

Jung AS, Kim Ay, Lee HJ, Park SJ, Yoon SO (2004) Anticancer drug comprising dihydrohinokiflavone or pharmacologically acceptable salt thereof as active ingredient. KR 2004069833:06

Kariyone T, Takahashi M, Isoi K, Yoshikura M (1958) Chemical constituents of the plants of Coniferae and allied orders. XX. Studies on the components of the leaves of Metasequoia glyptostroboides Hu et Cheng. (1). J Pharm Soc Jpn 78(7):801–802

Katou T, Homma T (1996) Isolation and chemical structure of Metasequoia glyptostroboides Hu et Cheng. (2). J Pharm Soc Jpn 78(7):803–808

Krauze-Baranowska M (2004) Flavonoids from Metasequoia glyptostroboides. Acta Pol Pharm 61(3):199–202

Lee GT, Lee JN, Yoo YK, Park SH, Lee KK (2009) Cosmetic composition for alleviating the skin wrinkle comprising the extract of Metasequoia glyptostroboides Hu et Cheng. Acta Pol Pharm 66(1):51–52

Madsen K (ed) (1998–1999) Arnoldia the magazine of the Arnold Arboretum, Harvard University, Boston, Massachusetts, 58:4–59:1, 1–84

Markham KR (1982) Techniques of flavonoid identification, vol xii. Academic Press, Biological techniques Series, London, New York, p 113

Miki S (1941) On the change of flora in Eastern Asia since tertiary period (I). J Jpn Bot 11:237–303

Miki K, Nagai T, Nakamura T, Tujii M, Koyama K, Kinoshita K, Furuhata K, Yamada H, Takahashi K (2008) Synthesis and evaluation of influenza virus sialidase inhibitory activity of hinokiflavone-sialic acid conjugates. Heterocycles 75(4):879–885

Mongrand S, Badoc A, Patouille B, Lacomblez C, Chavent M, Cassagne C, Bessoule JJ (2001) Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition. Phytochemistry 58(1):101–115. doi:10.1016/S0031-9422(01)00139-X

Mou XL, Fu C, Wu HK, Abduazimov BB, Yang Y (2007) Composition of essential oil from seeds of Metasequoia glyptostroboides growing in China. Chem Nat Compd 43(3):334–335. doi:10.1007/s10600-007-0124-z

Nagasaki T, Osada N, Sato M, Yasuda S, Takahashi K, Imai T (2004) Studies on the immunolabeling of heartwood ex- tractives: characterization of anti-agatharesinol antiserum. J Wood Sci 50(1):82–86. doi:10.1007/s10086-003-0530-1

Nakatani M, Amano K, Shibata K, Komura H, Hase T (1991) Metaseol, a symmetrical diphenylmethane from Metasequoia glyptostroboides. Phytochemistry 30(3):1034–1036. doi:10.1016/0031-9422(91)85306-K

Nguyen XHT, Juvik OJ, Ostvedal DO, Fossen T (2014) 6-Carboxydihydroresveratrol 3-O-beta-glucopyranoside—a novel natural product from the cretaceous relict Metasequoia glyptostroboides. Fitoterapia 95:109–114. doi:10.1016/j. fitote.2014.03.001

Pryce RJ (1971) Lunularic acid, a common endogenous growth inhibitor of liverworts. Planta 97(4):354–357. doi:10.1007/BF00390214

Pryce RJ (1972) Occurrence of lunularic and abscisic acids in plants. Phytochemistry 11(5):1759–1761. doi:10.1016/0031-9422(72)85033-7

Radušienė J, Karpavičienė B, Stanius Ž (2012) Effect of external and internal factors on secondary metabolites accumulation in St. John’s Wort. Bot Lith 18(2):101–108

Sakan F, Iwashita T, Hamanaka N (1988) Structures of metasequoic acid-A and acid-B. Chem Lett 1:239–242. doi:10.1246/Cl.1988.123

Samuelsson B, Dahlén SE, Lindgren CA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237(4819):1171–1176

Sato A, Senda M, Kakutani T, Watanabe Y, Kitao K (1966) Studies on wood phenolics (II) extractives from heartwood of Metasequoia glyptostroboides Hu et Cheng. J Jpn Bot 11:244–247. doi:10.1016/j.jsb.2014.03.001

Schopf JM (1948) Should there be a living Metasequoia? Science 110:344–345

Schweitzer MH (2004) Molecular paleontology: some current advances and problems. Annu Paléontol 90:81–102

Schweitzer MH, Marshall M, Carron K, Bohle DS, Arnold EV, Barnard D, Horner JR, Starkey JR (1997) Heme
compounds in dinosaur trabecular bone. P Natl Acad Sci USA 94(12):6291–6296. doi:10.1073/pnas.94.12.6291
Schweitzer MH, Zheng WX, Organ CL, Avci R, Suo ZY, Freimark LM, Lebleu VS, Duncan MB, Heiden MGV, Neveu JM, Lane WS, Cottrell JS, Horner JR, Cantley LC, Kalluri R, Asara JM (2009) Biomolecular characterization and protein sequences of the Campanian Hadrosaur B. canadensis. Science 324(5927):626–631. doi:10.1126/science.1165069
Shiina Y, Funabashi N, Lee K, Murayama T, Nakamura K, Wakatsuki Y, Daimon M, Komuro I (2009) Acute effect of oral flavonoid-rich dark chocolate intake on coronary circulation, as compared with non-flavonoid white chocolate, by transthoracic Doppler echocardiography in healthy adults. Int J Cardiol 131(3):424–429. doi:10.1016/j.ijcard.2007.07.131
Stahelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain Memorial Award Lecture. Cancer Res 51(1):5–15
Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53(4):273–284. doi:10.1007/s10086-007-0892-x
Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotech Biochem 71(6):1387–1404. doi:10.1271/Bbb.70028
Takahashi M, Ito T, Mizutani A (1960a) Chemical constituents of the plants of coniferae and allied orders. XLIV. Studies on the structure of dictichin and the components of Taxodiaceae plants, Metasequoia glyptostroboides Hu et Cheng and others. J Pharm Soc Jpn 80(11):1557–1559
Takahashi M, Ito T, Mizutani A, Isi K (1960b) Constituents of the plants of Coniferae and allied orders. XLIII. Distribution of flavonoids and stilbenoids of Coniferae leaves. J Pharm Soc Jpn 80(10):1488–1492
Tang CQ, Yang YC, Ohsawa M, Momohara A, Hara M, Cheng SL, Fan SH (2011) Population structure of relict Metasequoia glyptostroboides and its habitat fragmentation and degradation in south-central China. Biol Cons 144(1):279–289. doi:10.1016/j.bioccons.2010.09.003
Valio IFM, Burdon RS, Schwabe WW (1969) New natural growth inhibitor in liverwort Lunularia Cruciat (L) Dum. Nature 223(5211):1176–1178. doi:10.1038/2231176a0
von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6(12):967–974. doi:10.1038/nrd2400
Wang F, Yu EX, Liu WW (2004) Protective effects of total flavones of Metasequoia on cerebral ischemia-reperfusion injury in rats. China J Chin Mater Med 29(2):179–181
Wang X, Ma L, Guo B, Fan S, Tan J (2006) Analysis of the change in the original Metasequoia glyptostroboides population and its environment in Lichuan, Hubei from 1948 to 2003. Front Forest China 1(3):285–291. doi:10.1007/s11461-006-0032-6
Wolfe AP, Csank AZ, Reyes AV, McKellar RC, Tappert R, Muehlenbachs K (2012) Pristine early eocene wood buried deeply in kimberlite from Northern Canada. PLoS ONE. doi:10.1371/journal.pone.0045537
Wu S (2009) Se-rich beverage of traditional Chinese medicine. CN 101579139, 18 Nov 2009
Yang H (1998/1999) From fossils to molecules: the Metasequoia tale continues. Arnoldia 58/59(4/1):60–71
Zeng Q, Cheng XR, Qin JJ, Guan B, Chang RJ, Yan SK, Jin HZ, Zhang WD (2012) Norlignans and phenylpropanoids from Metasequoia glyptostroboides Hu et CHENG. Helv Chim Acta 95(4):606–612. doi:10.1002/hlca.201100363
Zeng Q, Guan B, Cheng XR, Wang CH, Jin HZ, Zhang WD (2013) Chemical constituents from Metasequoia glyptostroboides Hu et Cheng. Biochem Sys Ecol 50:406–410. doi:10.1016/j.bse.2013.06.004
Zhang YM, Tan NH, Yang YB, Lu Y, Cao P, Wu YS (2005) Norlignans from Sequoia sempervirens. Chem Biodivers 2(4):497–505. doi:10.1002/cbdv.200590030
Zhang Y, Shi S, Wang Y, Huang K (2011) Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments. J Chromatogr B 897(2):191–196. doi:10.1016/j.jchromb.2010.12.004
Zhao Y, Wu S, Zhang H, Luo X, Liu Y, Zhou J (2007) Volatiles from two gymnosperm fossils: miocene leaves of Metasequoia glyptostroboides and early cretaceous seed cone of Pityostrobus spp. Chin J Appl Environ Biol 13(1):33–36