Search for Higgs bosons decaying to $\tau^+\tau^-$ pairs in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

V.M. Abazov,35 B. Abbott,73 B.S. Acharya,29 M. Adams,49 T. Adams,47 G.D. Alexeev,35 G. Alkhazov,39 A. Alton,61 G. Alves,2 M. Aoki,48 M. Aron,58 A. Askew,47 B. Asman,41 O. Atramentov,65 C. Avila,8 J. Backus-Mayes,80 F. Badaud,13 L. Bagly,48 B. Baldin,48 D.V. Bandurin,47 S. Banerjee,29 E. Barberis,60 P. Baringer,56 J. Barreto,3 J.F. Bartlett,48 U. Bassler,18 V. Bazterra,49 S. Beale,6 A. Bean,56 M. Begalli,3 M. Begel,71 C. Belanger-Champagne,41 L. Bellanonti,48 S.B. Beri,77 G. Bernardi,17 R. Bernhard,22 I. Bertram,42 M. Besançon,18 R. Beuselinck,43 V.A. Bezzubov,38 P.C. Bhat,48 V. Bhatnagar,27 G. Blazey,50 S. Blessing,47 K. Bloom,64 A. Boehlein,48 D. Boline,70 E.E. Boos,37 G. Borissoff,42 T. Bose,59 A. Brandt,76 O. Brandt,23 R. Brock,62 G. Brooijmans,68 A. Bross,48 D. Brown,17 J. Brown,17 X.B. Bu,48 M. Buchler,79 V. Buescher,24 V. Bunichev,37 S. Burdin,42 T.H. Burnett,80 C.P. Buszello,41 B. Calpas,15 E. Camacho-Pérez,32 M.A. Carrasco-Lizarraga,56 B.C.K. Casey,48 H. Castilla-Valdez,32 S. Chakrabarti,70 D. Chakraborty,50 K.M. Chan,54 A. Chandra,78 G. Chen,56 S. Chevalier-Thery,18 D.K. Cho,75 S.W. Cho,31 S. Choi,31 B. Choudhary,28 S. Cihangir,48 D. Claes,64 J. Clutter,56 M. Cooke,48 W.E. Cooper,48 M. Corcoran,76 F. Couderc,18 M.-C. Cousinou,15 A. Croc,18 D. Cutts,75 A. Das,45 G. Davies,43 K. De,76 S.J. de Jong,34 E. De La Cruz-Burelo,32 F. Déliot,18 M. Demarteau,48 R. Dermina,69 D. Denisov,48 S.P. Denison,38 S. Desai,48 C. Deterre,18 K. DeVaughan,64 H.T. Diehl,48 M. Diesburg,48 P.F. Ding,44 A. Dominguez,64 T. Dorland,80 A. Dubey,28 L.V. Dudko,37 D. Duggan,95 A. Duperrin,15 S. Dutt,27 A. Dyskant,50 M. Eads,64 D. Edmunds,62 J. Ellison,46 V.D. Elvira,48 Y. Enari,17 H. Evans,52 A. Evdokimov,38 V.N. Evdokimov,38 G. Facini,60 T. Ferbel,69 F. Fiedler,24 F. Filthaut,34 W. Fisher,62 H.E. Fisk,48 M. Fortner,50 H. Fox,42 S. Fuess,48 A. Garcia-Bellido,69 V. Gavrilo,36 P. Gay,13 W. Geng,15,62 D. Gerbaudo,66 C.E. Gerber,49 Y. Gershtein,65 G. Ginter,48 G. Golovanov,35 A. Goussiou,80 P.D. Grannis,70 S. Greder,19 H. Greenlee,48 Z.D. Greenwood,58 E.M. Gregores,4 G. Grenier,29 Ph. Gris,13 J.-F. Grivaz,16 A. Grohsjean,38 S. Grünendahl,48 M.W. Grünwald,30 T. Guillemin,16 F. Guo,70 G. Gutierrez,48 P. Guiterrez,73 A. Haas,68 S. Hagopian,47 J. Haley,60 L. Han,7 K. Harder,44 A. Harel,69 J.M. Hauptman,55 J. Hays,43 T. Head,44 T. Hebbeker,21 D. Hedin,50 H. Hegab,74 A.P. Heinson,46 U. Heintz,75 C. Hensel,23 I. Heredia-De La Cruz,32 K. Herner,81 G. Hesketh,44 M.D. Hildreth,54 R. Hirosky,51 T. Hoang,17 D.J. Hobbs,79 B. Hoeneisen,12 M. Hohlfeld,24 Z. Hubacek,10,18 N. Huske,17 V. Hynek,10 I. Iashvili,67 Y. Ichenko,77 R. Illingworth,48 A.S. Ito,48 S. Jaebeen,75 M. Jaffré,16 D. Jamin,15 A. Jayasinghe,75 R. Jesik,43 K. Johns,45 M. Johnson,48 D. Johnston,64 A. Jonckheere,48 P. Jonsson,43 J. Joshi,27 A.W. Jung,48 A. Juste,40 K. Kaadze,57 E. Kajfasz,15 D. Karanov,37 P.A. Kasper,48 I. Katsanos,64 R. Kehoe,77 S. Kermiche,15 N. Khatatlany,48 A. Khanov,74 A. Kharchilava,67 Y.N. Kharzeev,35 M.H. Kirby,27 J.M. Koehl,27 A.V. Kozelov,38 J. Kraus,62 S. Kulikov,38 A. Kumar,67 A. Kubco,11 T. Kurča,20 V.A. Kuzmin,37 J. Kvita,39 S. Lammers,52 G. Landsberg,75 P. Lebrun,24 H.S. Lee,31 S.W. Lee,55 W.M. Lee,48 J. Lellouch,17 L. Li,36 Q.Z. Li,48 S.M. Lietti,5 J.K. Lim,31 D. Lincoln,48 J. Linnemann,62 V.V. Lipaev,38 R. Lipton,48 L. Liu,7 Z. Liu,6 A. Lobodonko,39 M. Lokajíček,11 R. Lopes de Sa,70 H.J. Lubatti,80 R. Luna-García,62 A.L. Lyon,48 A.K.A. Maciel,2 D. Mackin,78 R. Madar,18 R. Magaña-Villalba,32 S. Malik,64 V.L. Malyshiev,57 Y. Maravin,49 J. Martinez-Ortega,32 R. McCarthy,70 C.L. McGivern,56 M.M. Meier,34 A. Mehnitchouk,53 D. Meneze,30 P.G. Mercadante,4 M. Merkin,37 A. Meyer,21 J. Meyer,23 F. Miconi,19 N.K. Mondal,29 G.S. Muanza,15 M. Mulhearn,79 E. Nagy,51 M. Naimuddin,28 M. Narain,75 R. Nayyar,28 H.A. Neal,61 J.P. Negret,8 P. Neustroev,39 S.F. Novaes,5 T. Nunnemann,25 G. Obrant,39 J. Orduna,78 N. Osman,15 J. Osta,54 G.J. Otero y Garzón,1 M. Padilla,46 A. Pal,76 N. Parashar,53 V. Parihar,75 S.K. Park,31 J. Parsons,68 R. Partridge,75 N. Parra,52 A. Patwa,71 B. Penning,48 M. Periló,37 K. Peters,44 Y. Peters,44 K. Petridis,44 G. Petrolito,69 P. Pétrillo,16 R. Piegaa,1 M.-A. Pleier,71 P.L.M. Podesta-Lerma,32 V.M. Podstavkov,48 P. Polozov,36 A.V. Popov,38 M. Prewitt,78 D. Price,52 N. Prokopenko,38 S. Protopopescu,71 J. Qian,61 A. Quadt,23 B. Quinn,63 M.S. Rangel,2 K. Ranjan,28 P.N. Ratoff,42 I. Razumov,38 P. Renkel,77 M. Rijssenbeek,70 I. Ripp-Baudot,19 F. Rizatdinova,74 M. Rominskiy,48 A. Ross,42 C. Royon,18 P. Rubinov,48 R. Ruchti,54 G. Safronov,36 G. Sajot,14 P. Salcido,50 A. Sánchez-Hernández,32 M.P. Sanders,25 B. Sanghi,48 A.S. Santos,3 G. Savage,48 L. Sawyer,17 T. Scanlon,43 R.D. Schamberger,70 Y. Scheglov,39 H. Schellman,51 T. Schilephake,26 S. Schlobohm,80 C. Schwanenberger,44 R. Schwienhorst,62 J. Sekaric,56 H. Severini,73 E. Shabalina,23 V. Shary,18 A.A. Shchukin,84 R.K. Shivpuri,28 V. Simak,77 V. Sirotchenko,48 P. Skubic,73 P. Slattery,69 D. Smirnov,54 K.J. Smith,67 R.G. Snow,64
J. Snow,72 S. Snyder,71 S. Söldner-Rembold,44 L. Sonnenschein,21 K. Soustruznik,9 J. Stark,14 V. Stolin,36 D.A. Stoyanova,38 M. Strauss,73 D. Strom,49 L. Stutte,48 L. Suter,44 P. Svoisky,73 M. Takahashi,44 A. Tanasijczuk,1 W. Taylor,6 M. Titov,18 V.V. Tokmenin,35 Y.-T. Tsai,69 D. Tsybychev,70 B. Tuchming,18 C. Tully,66 L. Uvarov,39 S. Uvarov,39 S. Uzunyan,50 R. Van Kooten,52 W.M. van Leeuwen,33 N. Varelas,49 E.W. Varnes,45 I.A. Vasilyev,38 P. Verdier,20 L.S. Vertogradov,35 M. Verzocchi,48 M. Vesterinen,44 D. Vilanova,16 P. Vokac,10 H.D. Wahl,47 M.H.L.S. Wang,48 J. Warchol,54 G. Watts,80 M. Wayne,54 M. Weber9,48 L. Welty-Rieger,51 A. White,76 D. Wicke,26 M.R.J. Williams,42 G.W. Wilson,56 M. Wobisch,58 D.R. Wood,60 T.R. Wyatt,44 Y. Xie,48 C. Xu,61 S. Yacoob,51 R. Yamada,48 W.-C. Yang,44 T. Yasuda,48 Y.A. Yatsunenko,35 Z. Ye,48 H. Yin,48 K. Yip,71 S.W. Youm,48 J. Yu,76 S. Zeilitch,79 T. Zhao,60 B. Zhou,61 J. Zhu,61 M. Zieliński,69 D. Ziemiańska,52 and L. Zivkovic,75

(The D0 Collaboration*)

1 University of Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidad de los Andes, Bogotá, Colombia
9 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
10 Czech Technical University in Prague, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 LPNHE, Université de Paris VI and VII, CNRS/IN2P3, Paris, France
14 LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
15 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
17 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
18 CEA, Irfu, SPP, Saclay, France
19 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21 III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
23 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
26 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
27 Panjab University, Chandigarh, India
28 Delhi University, Delhi, India
29 Tata Institute of Fundamental Research, Mumbai, India
30 University College Dublin, Dublin, Ireland
31 Korea Detector Laboratory, Korea University, Seoul, Korea
32 CINVESTAV, Mexico City, Mexico
33 Nikhef, Science Park, Amsterdam, the Netherlands
34 Radboud University Nijmegen, Nijmegen, the Netherlands and Nikhef, Science Park, Amsterdam, the Netherlands
35 Joint Institute for Nuclear Research, Dubna, Russia
36 Institute for Theoretical and Experimental Physics, Moscow, Russia
37 Moscow State University, Moscow, Russia
38 Institute for High Energy Physics, Protvino, Russia
39 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
40 Institució Catalana de Recerca i Estudis Avancers (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
41 Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden
42 Lancaster University, Lancaster LA1 4YB, United Kingdom
43 Imperial College London, London SW7 2AZ, United Kingdom
44 The University of Manchester, Manchester M13 9PL, United Kingdom
45 University of Arizona, Tucson, Arizona 85721, USA
46 University of California Riverside, Riverside, California 92521, USA
47 Florida State University, Tallahassee, Florida 32306, USA
48 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
49 IHEP, Beijing, People’s Republic of China
50 INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria
51 IFIN-HH, Bucharest, Romania
52 INFN, Frascati, Rome, Italy
Supersymmetry (SUSY) \cite{1} is one of the extensions of the standard model (SM) proposed to address its shortcomings, such as the hierarchy problem caused by the quadratically divergent radiative corrections to the Higgs boson mass. In the minimal supersymmetric standard model (MSSM), two complex Higgs boson doublets lead to five physical Higgs bosons: two neutral CP-even \(h, H\), one neutral CP-odd \(A\), and two charged Higgs bosons \(H^\pm\). The three neutral Higgs bosons \(h, H, A\) are collectively denoted as \(\phi\). At tree level, the Higgs sector of the MSSM is fully described by two parameters, which are commonly chosen to be the mass of the CP-odd Higgs boson, \(M_A\), and the ratio of the vacuum expectation values of the two Higgs doublets, \(\tan \beta\). Radiative corrections introduce dependencies on additional MSSM parameters. The neutral MSSM Higgs bosons decay into \(\tau^+\tau^-\) and \(b\bar{b}\) pairs with branching ratios of \(\approx 10\%\) and \(\approx 90\%\), respectively. Their production cross section is enhanced by a factor that depends on \(\tan \beta\) with respect to the cross section for the SM Higgs boson at the same Higgs boson mass. Moreover, for large \(\tan \beta\), the Higgs bosons \(A\) and either \(h\) or \(H\) are nearly degenerate in mass which leads to an effective doubling of \(\sigma_{\phi}(M_\phi)\).

Searches for the production of neutral MSSM Higgs bosons have been performed at the CERN \(e^+e^-\) Collider (LEP) \cite{2}. The CDF and D0 Collaborations at
the Fermilab Tevatron Collider and the CMS Collaboration at the CERN Large Hadron Collider have excluded \( M_A \) of up to 300 GeV in a restricted region of \( \tan \beta \approx 30 \)–100, by searching for the exclusive processes \((b\bar{b})\phi \to (b\bar{b})\phi \) [2] and \( b^0 \to b\tau^+\tau^- \) [3], and for the inclusive process \( \phi \to \tau^+\tau^- \) [3, 4].

This Letter presents a search for the inclusive process \( gg, b\bar{b} \to \phi \to \tau^+\tau^- \), where the tau lepton pairs are reconstructed through their decay into \( \ell \mu \) or \( \mu \tau \) final states, and \( \tau_h \) represents the hadronic decay modes of the tau lepton. The search for \( \tau^+\tau^- \) final states is interpreted in a model-independent way and in the context of the MSSM. The data were recorded with the D0 detector [9] at a center-of-mass energy of \( \sqrt{s} = 1.96 \) TeV and correspond to an integrated luminosity of 5.4 fb\(^{-1}\). This represents a significant increase compared to the results previously published by the CDF and D0 Collaborations, which are based on integrated luminosities of 1.8 fb\(^{-1}\) [7] and 1.0 fb\(^{-1}\) [8], respectively.

Signal samples are generated using the PYTHIA [10] Monte Carlo (MC) event generator with the CTEQ6L1 parton distribution functions (PDF) [11]. Dominant background processes comprise \( Z+\text{jets}, W+\text{jets}, \) and multijet production. Background from multijet events arises when jets are misidentified as leptons. Additional backgrounds include \( t\bar{t} \) and SM diboson production. The backgrounds from \( Z+\text{jets}, W+\text{jets}, \) and \( t\bar{t} \) production are modeled using ALPGEN [12], with parton showering and hadronization provided by PYTHIA. The ALPGEN-generated samples make use of the MLM [13] jet-parton matching scheme to improve the jet multiplicity modeling. Diboson processes (WW, WZ, ZZ) are simulated using PYTHIA. In all cases TAUOLA [14] is used to model the tau lepton decays. Simulated events are then processed by a GEANT-based [15] simulation of the D0 detector, and data events from random beam crossings are overlaid to model detector noise and multiple \( p\bar{p} \) interactions. Higher order quantum chromodynamics (QCD) calculations of cross sections are used to normalize the simulated background samples, except for the background from multijet production, for which the normalization and differential distributions are derived from data.

Events are selected by requiring at least one single muon trigger for the \( \mu \tau_h \) channel, while for the \( e\mu \) channel, they need to fulfill either inclusive electron or muon trigger conditions. Electrons are reconstructed using their characteristic energy deposits, including the transverse and longitudinal shower profiles in the electromagnetic (EM) calorimeter. Muons are identified by combining tracks in the central tracking detector with patterns of hits in the muon spectrometer. Electrons and muons are required to be isolated in the calorimeter and in the tracking detectors.

Tau lepton decays into hadrons are characterized as narrow, isolated jets with lower track multiplicity than quark or gluon jets. Three types of tau lepton decays are distinguished by their detector signature. One-prong tau decays consisting of energy deposited primarily in the hadronic calorimeter associated with a single track (\( \pi^+\nu\)-like) are denoted as \( \tau \)-type 1; \( \tau \)-type 2 corresponds to one-prong tau decays with energy deposited in both the hadronic and EM calorimeters, associated with a single track (\( \rho^+\nu\)-like); and \( \tau \)-type 3 are multi-prong decays with energy in the calorimeter and two or more associated tracks with invariant mass below 1.7 GeV. A calibration for the energy of \( \tau_h \) candidates measured in the calorimeter is derived from data. It is based on the ratio of the calorimeter energy and the transverse momentum, \( p_T \), measured in the tracking detector for the \( \tau_h \) candidates. The ratio is adjusted in the simulation to match the data as a function of the fraction of the \( \tau_h \) energy deposited in the EM calorimeter.

A set of neural networks, one for each \( \tau \)-type, is applied to discriminate hadronic tau decays from jets [16]. The input variables are related to isolation and shower shapes, and exploit correlations between calorimeter energy deposits and tracks. When requiring the neural network discriminants (\( NN \)) to be \( NN > 0.9 \) for \( \tau \)-types 1, 2 and \( NN > 0.95 \) for \( \tau \)-type 3, approximately 67% of \( Z/\gamma^* \to \tau^+\tau^- \) events are retained in data, while 98% of the multijet background events are rejected.

A series of selections is used to reduce the background from \( Z+\text{jets}, W+\text{jets}, \) and multijet production. The \( Z/\gamma^* \to \tau^+\tau^- \) process differs from a Higgs boson signal only through the mass and spin of the produced resonance and cannot be further reduced. One isolated muon with \( p_T^\mu > 15 \) GeV and an isolated hadronic tau lepton with transverse energy \( E_T^\tau > 12.5 \) GeV (\( \tau \)-types 1, 2) or \( E_T^\tau > 15 \) GeV (\( \tau \)-type 3) are required in the \( \mu \tau_h \) channel. The muon and the \( \tau_h \) must be oppositely charged, where the charge of the \( \tau_h \) candidate is determined by the curvature of the associated track. For \( \tau \)-type 3 the charge is obtained by summing over all tracks associated with the \( \tau_h \). The pseudorapidity \( \eta \) is required to be \( |\eta| < 1.6 \) for muons and \( |\eta| < 2.5 \) for tau leptons. The transverse momentum sums of all tracks associated with the \( \tau_h \) candidate, \( p_T^\tau \), are required to be greater than 7, 5, 10 GeV for \( \tau \)-types 1, 2, and 3, respectively. At least one hit in the active layers of the D0 silicon vertex detector is required for the tracks associated with the \( \tau_h \). The \( \tau_h \) and the muon are required to originate from the same \( p\bar{p} \) vertex and must be separated from each other by \( \Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.5 \), where \( \Delta \phi \) is the difference in azimuthal angle. This requirement suppresses the \( Z/\gamma^* \to \mu^+\mu^- \) background. The transverse \( W \) boson mass in \( W \to \ell \nu \) events is given by \( M_W^\ell = \sqrt{2p_T^\ell E_T \left[1 - \cos(\Delta \phi(\ell, E_T))\right]} \) with \( \ell = e, \mu \). The components \( E_{T_x} \) and \( E_{T_y} \) of the missing transverse energy, \( E_T \), are computed from calorimeter cells and the momenta of muons, and corrected for the energy response of electrons, tau leptons, and jets. We require
$M_T^{\mu\tau} < 50 \text{ GeV}$ to reject $W(\to \mu\nu)+\text{jets}$ events where jets are misidentified as $\tau_h$ candidates.

In the $e\mu$ channel, events with at least one muon with $p_T^{\mu} > 10$ GeV and $|\eta_{\mu}| < 1.6$, and an oppositely charged electron with $p_T^e > 12$ GeV and $|\eta_e| < 2$ are selected. The $e\mu$ pair formed by the leptons with the highest $p_T$ are selected as a candidate; they must be separated by $\Delta R > 0.4$. To reject $Z \to \mu\mu\gamma$ events, an electron candidate is rejected if it shares the same track with a muon. Multijet background and $W$ boson production are suppressed by requiring the mass of the $e\mu$ pair to be larger than 20 GeV and $E_T + p_T^\tau + p_T^{\mu} > 65$ GeV. Background from $W+\text{jets}$ production is reduced by requiring $\min\{M_T^{\mu\tau}, M_T^{\mu\mu}\} < 10$ GeV. The difference in the azimuthal angle, $\Delta \varphi(\ell, E_T)$, has to be $< 0.3$ where $\ell = e, \mu$ is the lepton with the smaller $p_T$. This requirement rejects background from $WW, tt$, and $W+\text{jets}$ production. Requiring the scalar sum of the transverse momenta of all jets to be $< 70$ GeV rejects a large fraction of $tt$ events.

To determine the expected background contribution from multijet production in the $\mu\tau_h$ channel, two $NN_\tau$ regions are selected in addition to the high $NN_e$ “signal” region defined previously: the “medium” region in the range $0.25 < NN_\tau < 0.75$ and the “low” region with $NN_\tau < 0.1$. The samples are further divided depending on whether the muon and the $\tau_h$ candidate have the same or opposite charge. Background from $W+\text{jets}$ production in these samples is reduced by requiring $M_T^{\mu\mu} < 50$ GeV. The transverse mass is calculated from the $E_T$ and from the azimuthal angle $\Delta \varphi(\mu, E_T)$ between the direction of the muon transverse momentum $p_T^\mu$ and the $E_T$. The estimated contribution from MC-simulated background processes is then subtracted from the resulting distributions, and the shape of the multijet background is derived from the distributions of same-sign $\mu\tau_h$ pairs with $NN_\tau > 0.9$. Multijet events mainly populate the low $NN_\tau$ region, and the ratio of opposite to same-sign $\mu\tau_h$ pair events in this region is extrapolated to yield the normalization of multijet events in the signal sample. This estimate of the multijet background contribution is verified by an independent method which uses the medium $NN_\tau$ region. The difference between the estimates obtained by the two methods is used as systematic uncertainty on the multijet background.

Multijet background in the $e\mu$ channel is determined by applying the same selection criteria as for signal apart from the electron likelihood and muon isolation criteria, which are inverted. The normalization is then taken from the ratio of the numbers of events in the opposite and same-sign samples.

We search for an enhancement from a $\tau^+\tau^-$ resonance above the expected background in the distribution of the visible mass $M_{\text{vis}} = \sqrt{(P_{T1} + P_{T2} + P_T)^2}$, which is calculated using the four-vectors of the measured tau lepton decay products, $P_{T1,2}$, and the missing transverse momentum, $P_T = (E_T, E_x, E_y, 0)$. In the $e\mu$ final state, the four-vectors $P_{\tau_{1,2}}$ are calculated using the reconstructed electron and muon, respectively. After imposing all selection requirements, the $M_{\text{vis}}$ distributions for the $\mu\tau_h$ and $e\mu$ final states are shown in Fig. 1. Table 1 gives the yields of the predicted background and of data, summed over the $M_{\text{vis}}$ distributions shown in Fig. 1.

Several sources of systematic uncertainty affect both the signal efficiency and background estimation. Both uncertainties that modify only the normalization and uncertainties that change the shape of the $M_{\text{vis}}$ distribution are taken into account. Those that affect the normalization include the integrated luminosity (6.1%), muon identification efficiency (2.9%), $\tau_h$ identification (12%, 4.2%, and 7% for $\tau$-types 1, 2, and 3, respectively), efficiency to reconstruct the $\tau_h$ track (1.4%), electron identifica-
TABLE I: Expected number of events for backgrounds, number of events observed in data and efficiency, relative to all $\tau$ lepton decays, for a signal with $M_\phi = 120$ GeV summed over the $M_{\text{vis}}$ distributions shown in Fig. 1. The total uncertainties are also given.

| Channel                      | $\mu\tau_h$ | $e\mu$ |
|------------------------------|--------------|--------|
| $Z/\gamma^* \to \tau^+\tau^-$ | 6914 ± 591   | 697 ± 55 |
| Multijet                     | 972 ± 98     | 53 ± 8 |
| $W \to e\nu, \mu\nu, \tau\nu$ | 363 ± 60     | 19 ± 5 |
| $Z/\gamma^* \to e^+e^-, \mu^+\mu^-$ | 353 ± 32     | 34 ± 6 |
| Diboson + $t\bar{t}$        | 180 ± 12     | 27 ± 5 |
| Total Background             | 8782 ± 603   | 830 ± 56 |
| Data                         | 8574         | 825    |
| Efficiency (%)               | 1.16 ± 0.03  | 0.20 ± 0.01 |

FIG. 2: Model-independent expected and observed 95% C.L. upper limits on the product of production cross section and branching ratio for $\phi \to \tau^+\tau^-$ as a function of $M_{\phi}$, assuming a SM total width for the Higgs boson. The ±1,2 standard deviation (s.d.) variations of the expected limits are shown as bands.

The $M_{\text{vis}}$ distribution is used to calculate upper limits on the cross section in this channel based on a modified frequentist method with a log-likelihood ratio test statistics [18] and a profiling technique to reduce the impact of systematic uncertainties [15]. The value of $CL_s$, is calculated as $CL_s = CL_{s+b}/CL_b$, where $CL_{s+b}$ and $CL_b$ are the $p$-values under signal+background and background-only hypotheses, respectively. The expected and observed limits are calculated by scaling the signal until 1 − $CL_s$ reaches 0.95. The combined limits on the product of production cross section and branching ratio into tau lepton pairs are given in Fig. 2 and Table II as a function of $M_{\phi}$.

The combined limits assume a scalar resonance with the decay width of a SM Higgs boson, which is negligible compared to the experimental resolution on $M_{\text{vis}}$. In addition to $M_A$ and $\tan \beta$, the masses and couplings of the Higgs bosons in the MSSM depend on additional parameters through radiative corrections. The production cross section limits are therefore translated into exclusions in the $\tan \beta$ versus $M_A$ plane for two representative MSSM scenarios assuming a CP-conserving Higgs sector [20], the $m_{\phi}^{\text{max}}$ scenario [21] and the no-mixing scenario [22] with a Higgs mass parameter $\mu = 200$ GeV. The signal cross sections and branching ratios are calculated using the FEYNHIGGS [23] program, where the $gg \to \phi$ production cross section is taken from [24] and the $b\bar{b} \to \phi$ production cross section from [25].

At large values of $\tan \beta$, the Higgs boson width increases with $\tan \beta$ and can become significantly larger than the value in the SM. This effect was previously studied by convolving a relativistic Breit-Wigner function with the next-to-leading order calculation of the signal cross section from FEYNHIGGS as a function of $M_\phi$ and $\tan \beta$ [8]. In the ($M_A, \tan \beta$) region where this analysis sets 95% C.L. limits, and for $\mu = 200$ GeV, the Higgs boson width is smaller than 0.1$M_\phi$ and less than half of the experimental resolution on $M_{\text{vis}}$. The signal cross section in this channel is largely insensitive to $\text{sign}(\mu)$. The ratio of the $gg \to \phi$ and $b\bar{b} \to \phi$ production sections also depends on $\tan \beta$. For this inclusive search, the difference between the efficiencies of the two production mechanisms is small and can be neglected.

The region in the MSSM parameter space excluded at the 95% C.L. is shown in Fig. 3 up to $M_A = 300$ GeV. For
\( M_A \approx 140 \text{ GeV} \), the expected exclusion reaches \( \tan \beta \approx 30 \), which is comparable to recent limits obtained in \([6]\). The upper limits on the product of the \( p \bar{p} \) production cross section for a neutral Higgs boson and branching ratio into tau leptons represent the most stringent limits to date.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); AIP (USA); CEA and CNRS/IN2P3 (France); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[1] H. J. Hoogeveen, Phys. Lett. \textbf{110}, 1 (1984); H. E. Haber and G. L. Kane, Phys. Rep. \textbf{117}, 75 (1985).
[2] S. Schael \textit{et al.} (ALEPH, DELPHI, L3, and OPAL Collaborations), Eur. Phys. J. C \textbf{47}, 547 (2006).
[3] T. Affolder \textit{et al.} (CDF Collaboration) Phys. Rev. Lett. \textbf{86}, 4472 (2001); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. \textbf{95}, 151801 (2005); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. \textbf{95}, 221802 (2008); V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B \textbf{698}, 97 (2011).
[4] V. M. Abazov \textit{et al.} (D0 Collaboration), Phys. Rev. Lett. \textbf{102}, 051804 (2009); V. M. Abazov \textit{et al.} (D0 Collaboration), Phys. Rev. Lett. \textbf{104}, 151801 (2010).
[5] D. Acosta \textit{et al.} (CDF Collaboration), Phys. Rev. D \textbf{72}, 072004 (2005); A. Abulencia \textit{et al.} (CDF Collaboration), Phys. Rev. Lett. \textbf{96}, 011802 (2006); V. M. Abazov \textit{et al.} (D0 Collaboration), Phys. Rev. Lett. \textbf{97}, 121802 (2006); V. M. Abazov \textit{et al.} (D0 Collaboration), Phys. Rev. Lett. \textbf{102}, 051804 (2009).
[6] S. Chatrchyan \textit{et al.} (CMS Collaboration), Phys. Rev. Lett. \textbf{106}, 231801 (2011).
[7] T. Aaltonen \textit{et al.} (CDF Collaboration), Phys. Rev. Lett. \textbf{103}, 201801 (2009).
[8] V. M. Abazov \textit{et al.} (D0 Collaboration), Phys. Rev. Lett. \textbf{101}, 071804 (2008).
[9] V. M. Abazov \textit{et al.} (D0 Collaboration), Nucl. Instrum. Methods Phys. Res. A \textbf{565}, 463 (2006).
[10] T. Sjöstrand \textit{et al.}, Comput. Phys. Commun. \textbf{135}, 238 (2001).
[11] J. Pumplün \textit{et al.}, J. High Energy Phys. \textbf{07}, 012 (2002); D. Stump \textit{et al.}, J. High Energy Phys. \textbf{10}, 046 (2003).
[12] M. L. Mangano \textit{et al.}, J. High Energy Phys. \textbf{07}, 01 (2003).
[13] S. Hoeche \textit{et al.}, \texttt{arXiv:hep-ph/0602031} (2006).
[14] Z. Was, Nucl. Phys. Proc. Suppl. \textbf{88}, 96 (2001). We use version 2.5.04.
[15] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
[16] V. M. Abazov \textit{et al.} (D0 Collaboration), Phys. Rev. D \textbf{71}, 072004 (2005); Erratum-ibid. D \textbf{77}, 039901 (2008).
[17] The pseudorapidity is defined as \( \eta = -\ln(\tan(\theta/2)) \), where \( \theta \) is the polar angle with respect to the proton beam direction.
[18] T. Junk, Nucl. Instrum. Methods in Phys. Res. A \textbf{434}, 435 (1999); A. Read, J. Phys. G \textbf{28}, 2693 (2002).
[19] W. Fisher, FERMILAB-TM-2386-E (2007).
[20] M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C \textbf{26}, 601 (2003).
[21] \( M_{\text{ SUSY}} = 1 \text{ TeV}, X_t = 2 \text{ TeV}, m_2 = 0.2 \text{ TeV}, \mu = +200 \text{ GeV}, \text{ and } m_3 = 0.8 \text{ TeV} \).
\[ M_{\text{SUSY}} = 2 \text{ TeV}, \ X_t = 0 \text{ TeV}, \ M_2 = 0.2 \text{ TeV}, \ \mu = +200 \text{ GeV}, \ \text{and} \ m_{\tilde{g}} = 1.6 \text{ TeV}. \]

[22] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009); S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). We use version 2.8.1.

[23] C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys. 04, 003 (2009); D. de Florian and M. Grazzini, Phys. Lett. B 674, 291 (2009); R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002); C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220 (2002); V. Ravindran, J. Smith, and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003); M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas, Nucl. Phys. B 453, 17 (1995); R. Bonciani, G. Degrassi, and A. Vicini, J. High Energy Phys. 11 (2007) 095; U. Aglietti, R. Bonciani, G. Degrassi, and A. Vicini, J. High Energy Phys. 01 (2007) 021; S. Catani, D. de Florian, M. Grazzini, and P. Nason, J. High Energy Phys. 07, 028 (2003).

[25] R. V. Harlander, and W. B. Kilgore, Phys. Rev. D 68, 013001 (2003), and references therein.