Lymphoma immunotherapy - Section 2

Biomarkers for immune checkpoint blockers
Kirsty Wienand, Margaret A. Shipp
Dana-Farber Cancer Institute, Boston, MA, USA

Take Home Messages
- Describe genetic bases for immune evasion in classical Hodgkin lymphoma (cHL) and additional lymphoid malignancies.
- Discuss the rationale for considering PD-1 blockade as a treatment option in cHL and additional lymphoid malignancies.
- Describe factors that influence the efficacy of checkpoint blockade in cHL and additional lymphoid malignancies.

Checkpoint blockade in solid tumors
Therapeutic antibodies that block checkpoint pathways have shown promising activity in multiple tumor types. The most extensively targeted immune checkpoint pathway components are CTLA-4 (cytotoxic T lymphocyte antigen 4) and the PD-1 receptor and its ligand, PD-L1. However, only ~30% of patients with sensitive solid tumors respond to single-agent blocking CTLA-4 and PD-1 antibodies. These findings have prompted searches for biomarkers of response and resistance to checkpoint blockade. In solid tumors, candidate biomarkers include: 1) relative levels of expression of checkpoint pathway components such as PD-L1; 2) genetic bases for tumor immunogenicity including mutational burden and expression of neoantigens; 3) cellular composition and cytokine milieu of the primary tumor; and 4) the circulating immune cell signature.

Checkpoint blockade in lymphoid malignancies
Recent studies indicate that certain lymphoid malignancies have even higher response rates to specific types of checkpoint inhibition, particularly PD-1 blockade. Additionally, emerging data highlight specific biomarkers of response and resistance to PD-1 blockade in these tumors.

Genetic bases of immune evasion

Alterations of PD-1 pathway components
Classical Hodgkin lymphoma (cHL) is a lymphoid malignancy with the highest reported response rate to PD-1 blockade. CHLs exhibit near-uniform copy number alterations (CNAs) of chromosome 9p24.1 which includes the PD-L1, PD-L2 and JAK2 loci. In cHL, the magnitude of chromosome 9p24.1 copy gain is associated with copy number-dependent increased expression of the PD-1 ligands. In cHL and other B-cell lymphomas, the most accurate way to assess PD-L1 expression by malignant cells is a dual immunohistochemical assay for PD-L1 and the B-cell transcription factor, PAX5.

In newly diagnosed patients with cHL who were treated with standard induction therapy, progression-free survival (PFS) was significantly shorter for patients with the highest level 9p24.1 alterations (amplification). Additionally, the incidence of 9p24.1 amplification was increased in patients with advanced stage disease. However, in patients with relapsed/refractory cHL, higher level 9p24.1 copy number alterations and increased PD-L1 expression were associated with more favorable responses to PD-1 blockade. These findings suggest that this genetically driven immune evasion pathway makes CHLs less responsive to empiric chemotherapy but more sensitive to targeted PD-1 blockade. In cHL, additional bases of enhanced PD-1 ligand expression include chromosomal rearrangements involving either PD-L1 or PD-L2 and viral (EBV) infection.

Alterations of antigen presentation pathway components
Like other lymphoid malignancies, cHLs exhibit additional genetic bases of immune evasion that have implications for the mechanism of action of PD-1 blockade. For example, Hodgkin Reed Sternberg (HRS) cells have frequent inactivating mutations and copy loss of the PD-L1 ligands. HRS cell expression of MHC class II mediating antigen presentation and CD4+ infiltrating T cells in select solid tumors and the identification of tumor neoantigens that are primarily recognized by CD4+ T cells.

Analyses of the intact tumor microenvironment
Recent imaging techniques have allowed a more complete characterization of the intact tumor microenvironment in cHL.
Using multiplex immunofluorescence and digital image analysis, we recently characterized the T cell infiltrate in immediate proximity to HRS cells. PD-L1+ HRS cells were significantly more likely to be in physical contact with PD-1+ CD4+ T cells than PD-1+ CD8+ T cells. In addition, PD-L1+ HRS cells physically co-localized with PD-L1+ tumor-associated macrophages in microenvironmental immunoprotective niches. These studies highlight the utility of more comprehensive imaging approaches to define the specific architecture of lymphoid malignancies and their associated immune cell infiltrates. More recent approaches to characterize the tumor immune microenvironment utilize panels of over 30 metal-labeled antibodies and lasers or ion beams to liberate tags for subsequent mass spectrometry detection.

Genetic analyses of recurrent alterations

The paucity of Reed Sternberg cells in the cHL tumor microenvironment has limited comprehensive genetic approaches to the detection of recurrent 9p24.1 alterations and additional perturbations of antigen presentation pathway components. However, recent studies suggest that genetic signatures of cHL may be captured in cell-free DNA potentially facilitating serial monitoring and additional assessment of important parameters such as mutational load and neoantigen expression.

Implications for other lymphoid malignancies

Additional lymphoid malignancies, including primary mediastinal large B-cell lymphoma, primary central nervous system lymphoma and primary testicular lymphoma, were found to have similar recurrent alterations of chromosome 9p24.1 and increased expression of the PD-1 ligands. Analyses of such genetic features will likely lead to a more precise targeted strategy for checkpoint blockade in lymphoid malignancies and the development of rational combination therapies.

References

1. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16:275-87.
2. Davids MS, Kim HT, Bachireddy P, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 2016;375:143-53.
3. Cogdill AP, Andrews MC, Wargo JA. Hallmarks of response to immune checkpoint blockade. Br J Cancer 2017;11:1-7.
4. Dijkstra KK, Voabil P, Schumacher TN, Voest EE. Genomics- and transcriptomics-based patient selection for cancer treatment with immune checkpoint inhibitors: A review. JAMA Oncol 2016;2:1490-5.
5. Krieg C, Nowicka M, Guglietta S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med 2018;24:144-153. Accompanying editorial. Goswami S, Basu S, Sharma P. A potential biomarker for anti-PD-1 immunotherapy. Nat Med 2018 24:123-124.
6. Armand P, Engert A, Younes A, et al. Nivolumab for...
relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: Extended follow-up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol 2018;35:1428-39.

7. Roemer MGM, Advani RH, Ligon AH, Nakanuma Y, Redd RA, Homer H, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 2016;34:2690-7.

Chromosome 9p24.1/PD-L1/PD-L2 copy number alterations and associated increased expression of the PD-1 ligands are defining features of classical Hodgkin lymphoma.

8. Roemer MGM, Advani RH, Redd RA, et al. Classical Hodgkin lymphoma with reduced beta2M/MHC class I expression is associated with inferior outcome independent of 9p24.1 status. Cancer Immun Res 2016;4:910-6.

9. Roemer MGM, Redd RA, Cader FZ, et al. Major histocompatibility complex II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol 2018;36:942-50.

In patients with relapsed/refractory classical Hodgkin lymphoma who were treated with PD-1 blockade, genetically driven PD-1 expression and MHC class II positivity on HRS cells were predictors of favorable outcome. In contrast, clinical responses to PD-1 blockade were not dependent on MHC class I expression on HRS cells.

10. Reichel J, Chadburn A, Rubinstein PG, et al. Flow sorting and exome sequencing reveal the oncogene of primary Hodgkin and Reed-Sternberg cells. Blood 2015;125:1061-72.

11. Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015;520:692-6.

12. Linnemann C, van Buuren MM, Bies L, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 2015;21:81-5.

13. Carey CD, Gusenleitner D, Lipschitz M, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood 2017;130:2420-30. Multiplex immunofluorescence and digital image analysis were used to elucidate the topography of the tumor microenviroment (TME) of classical Hodgkin Lymphoma, including the spacial relationship between PD-L1+ and PD-L1+ cells. PD-L1+ HRS cells exist in a microenvironmental niche enriched for CD4+ T cells and surrounding PD-L1+ tumor-associated macrophages.

14. Levenson RM, Borowsky AD, Angelo M. Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging. Lab Invest 2015;95:397-405.

Mass spectrometry immunohistochemistry (MSIHC) is a promising imaging approach in which large panels of metal-labeled antibodies are used to characterize the tumor microenvironment in intact formalin-fixed paraffin-embedded tumor tissues. Lasers or ion beams are used to liberate the tags for subsequent mass spectrometry.

15. Vandenbergh P, Wlodarska I, Tousseyn T, et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study, Lancet Haematol 2013;2:e55-65. Accompanying editorial. Hohaus S. Genomic imbalances in circulating DNA in Hodgkin’s lymphoma. Lancet Haematol 2015;2:e48-9.

16. Spina V, Bruscaggin A, Cuccaro A, et al. Circulating tumor DNA reveals genetics, clonal evolution and residual disease in classical Hodgkin lymphoma. Blood 2018 Feb 15. [Epub ahead of print]. Longitudinal circulating tumor DNA profiling was used to monitor the responses of patients with classical Hodgkin lymphoma to combination chemotherapy or checkpoint blockade.

17. Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016;127:869-81.

18. Twu DD, Mortok A, Chan FC, et al. Recurrent genomic rearrangements in primary testicular lymphoma. J Pathol 2015;236:136-41.

19. Twu DD, Steidl C. Structural genomic alterations in primary mediastinal large B-cell lymphoma. Leuk Lymphoma 2015;56:2239-50.

20. Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood 2017;130:267-70.