Kendomycin Cytotoxicity against Bacterial, Fungal, and Mammalian Cells Is Due to Cation Chelation

Dale Tranter,§ Ireos Filipuzzi,§ Thomas Lochmann, Britta Knapp, Juho Kellosalo, David Estoppey, Dominik Pistorius, Axel Meissner, Ville O. Paavilainen,§ and Dominic Hoepfner§

ABSTRACT: Kendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators. Furthermore, addition of excess iron and copper attenuated kendomycin cytotoxicity in bacteria, yeast, and mammalian cells. Finally, NMR analysis demonstrated a direct interaction with cations, corroborating a close link between the observed kendomycin polypharmacology across different species and modulation of iron and/or copper levels.

Natural products serve as privileged chemical probes for interrogating cellular biology, expanding the druggable genome, and eventually developing new therapeutics. The secondary metabolite kendomycin (Figure 1A) is a macrocyclic polyketide produced by several Streptomyces species. Since its discovery, a variety of cytotoxic activities, including killing of both Gram-negative and -positive bacteria, pathogenic fungi, and a number of human cancer cell lines, were reported. This generated substantial interest in kendomycin, leading to the establishment of a total synthesis method and identification and cloning of its corresponding polyketide synthase cluster. Kendomycin was proposed to inhibit yeast and mammalian proteasomes, but whereas a highly conserved protein target or interference with common biomolecules such as nucleic acids, lipids, or ions. It was the aim of this study to identify the mechanism of action of kendomycin and thereby explain its pan-species activity.

■ RESULTS AND DISCUSSION

Kendomycin was previously characterized as a weak inhibitor of yeast and mammalian proteasomes. To test whether proteasome inhibition plays a role in kendomycin cytotoxicity in human cells, a FACS-based proteasomal degradation assay was used that monitors cellular turnover of a destabilized UbG76V-GFP reporter as a measure of proteasome activity. As expected, treating cells with the established proteasome inhibitor MG132 resulted in cellular accumulation of GFP. However, kendomycin failed to increase cellular GFP fluorescence even at acutely cytotoxic concentrations (Figures 1B and S1, Supporting Information), suggesting direct proteasome inhibition is not the primary mechanism of action of kendomycin.

Kendomycin has been shown to affect the uptake of radiolabeled isoleucine in bacteria, indicative of protein synthesis inhibition. To investigate the proposed kendomycin mechanism of action in mammalian cells, metabolic labeling of HCT116 cells with 35S methionine/cysteine was used. As expected, treatment with an established ribosomal inhibitor cycloheximide abolished all protein synthesis, while the Sec61 translocation inhibitor apratoxin A prevented biogenesis only of newly labeled secretory proteins. In contrast to cycloheximide or apratoxin A, kendomycin did not influence production of total or secretory proteins (Figure 1C). Therefore, inhibition of protein biogenesis is also not a likely primary mechanism by which kendomycin exerts its cytotoxic effect across a range of species.

Mutations at the target binding site of cytotoxic compounds can interfere with compound binding without affecting target functionality, and isolation and characterization of such resistance-conferring point mutations is the method of choice for identifying targets of cytotoxic compounds. Given the broad cytotoxic range of kendomycin, both yeast and...
mammalian cells were randomly mutagenized by ethyl methanesulfonate and screened for permissive kendomycin-resistant mutants. In total, 48 *Saccharomyces cerevisiae* colonies were isolated, grown to saturation in the absence of drug, and then replated on agar supplemented with kendomycin. However, no resistance was observed to persist in any clones using this approach, indicating that initial resistance was obtained through adaptation rather than mutation.

Figure 1. Kendomycin toxicity is not concurrent with proteostatic perturbations. (A) Structure of kendomycin. (B) Kendomycin treatment does not inhibit proteasome activity in mammalian cells. Fluorescence distribution of DMSO (gray fill), 250 nM MG132 (black), and 250 nM kendomycin (green) treated HEK293T cells expressing UbG76V-GFP proteosomal reporter and quantification from S1, Supporting Information. (C) HCT-116 cells grown in the presence of indicated concentrations of kendomycin, apratoxin A (inhibitor of the Sec61 protein translocon), or cycloheximide (protein synthesis inhibitor) and 35S-labeled methionine/cysteine. Total protein shows cellular lysate; secreted protein shows the contents of the growth medium following TCA precipitation. As expected, cycloheximide inhibits protein biogenesis in both total and secreted fractions, while apratoxin A inhibits biogenesis of only secreted proteins. Kendomycin has no effect on biogenesis of either total or secreted fractions.

Figure 2. Chemogenomic profiling identifies a conserved link between iron dependence and kendomycin sensitivity. (A) The IC₅₀ values of kendomycin are plotted against those of mycobactin A, resulting in a Pearson correlation coefficient (R) of 0.71, suggesting that kendomycin might utilize a similar mechanism of action to the bacterial siderophore. (B) HIP profile of kendomycin tested in two independent biological replicates at 16.5 µM. Sensitivity of the heterozygous deletion strains is plotted against statistical significance (z-score) as previously described. Black dots represent nonessential and gray squares essential genes of the *S. cerevisiae* genome. Alignment of the z-scores of kendomycin and the clinical cation chelator exjade reveals a conserved set of hypersensitive hits, shown in (C), providing further evidence that kendomycin shares a similar mechanism of action with cation chelators in general. The relative gene-level depletion (D) and the enrichment (E) scores from an inhibitor-sensitized CRISPR screen of kendomycin at 400 nM in HCT116 cells are shown. The RSA p-value, a gene-level measure for conserved depletion (RSA down) or enrichment (RSA up) of its respective guides, is plotted against Q, a gene-level effect size corresponding to the RSA p-value for depletion (Q₁) or enrichment (Q₃). The most significant hits reveal an abundance of iron interactive processes.
gously, 18 resistant clonal HCT116 cell lines were identified that were subjected to whole-genome sequencing. The resulting SNP data identified many mutations, but none of these were enriched at particular genes or cellular pathways (Table S1, Supporting Information). Together, these results are in accordance with an earlier global proteomic response study, which identified numerous kendomycin-modulated proteins spreading throughout multiple diverse biological processes, but lacking an obvious functional connection. Together, these results suggest that the target of kendomycin may not be a valid target of mutagenesis.

To identify the mechanism of action of kendomycin by an alternative unbiased approach, it was assayed against the Cancer Cell Line Encyclopedia, a collection of 512 human cancer cell lines (broadinstitute.org/ccle) with established sensitivities to a host of drug-like small molecules. When querying the distribution of antiproliferative IC50 values against the tested compounds, the closest correlation with kendomycin (R = 0.71) was observed with the iron-chelating siderophore mycobactin A12 (Figure 2A), despite a lack of structural similarity between the two compounds. This prompted the hypothesis that kendomycin may exert its cytotoxic effect by cation modulation. Thus, it was attempted to assess kendomycin impact on yeast cells in an unbiased, genome-wide manner by chemogenomic haploinsufficiency profiling (HIP), a gene dosage-dependent method that assesses the effect of compounds against S. cerevisiae targets and pathways and can also reveal compound mechanisms not directly targeting a protein. Consistent with the hypothesis that kendomycin might act through a nonprotein target, the HIP profile of kendomycin did not reveal strongly affected heterozygous deletion strains (Figure 2B). The most pronounced effect was observed in a heterozygous deletion of AFT2, an iron-regulated transcriptional activator that activates genes involved in iron homeostasis. Weaker, but still statistically significant hits included a heterozygous deletion of an uncharacterized ORF YIL102C, reported to be sensitive to Al(III), and the galactose permease GAL2. When correlating this profile to our database of >3000 HIP profiles, an overlap of hits with the clinical cation chelator Exjade was apparent (Figure 2C), providing further experimental support for cation modulation by kendomycin.

A similar chemogenomic profiling experiment was performed in human cells using CRISPR/Cas9-mediated gene attenuation, as previously published. The obtained sequencing data were plotted to identify genes for which the modulation can confer hypersensitivity (Figure 2D) or hyper-resistance (Figure 2E). Genes that conferred hypersensitivity against kendomycin were the mitochondrial E3 ubiquitin ligase MARC5, involved in stress-induced apoptosis, and the mitochondrial membrane protein OPA3, reported to exert cell-protective functions. Weaker, but

Figure 3. Exogenous cations ameliorate kendomycin cytotoxicity across species. Spectra of 250 μM kendomycin with increasing concentrations of iron (A) or copper (B). A320 were measured in quadruplicate, and average values used to estimate a binding curve for each (A and B, bottom), from which Kapp was determined. (C) Kinetics of kendomycin toxicity and rescue by supplementation with 0.5 mM FeCl2 in HCT116 cells. Cell proliferation in the presence of kendomycin is halted at 10 h, while Fe(II) supplementation allows continued proliferation. Dose−response curves of kendomycin were performed in the presence and absence of (D) 0.25 mM FeCl2 and 0.25 mM CuCl2 against B. subtilis, (E) 1 mM FeCl2 and 0.25 mM CuCl2 against HCT116 cells in duplicate, and inhibition curves were fitted by regression. Shift in the dose−response curves indicates that cation supplementation ameliorates kendomycin toxicity under these conditions.
statistically significant hits included the iron responsive element binding protein 2, IREB2, the ABC transporter ABCC1, which transports dinitrosyl-dithiol-iron complexes,21 GCLC, the rate-limiting enzyme of glutathione synthesis essential for iron–sulfur cluster formation,22 and XIAP, the iron- and copper-dependent X-linked inhibitor of apoptosis.23,24 Most of the mammalian hypersensitive hits were directly linked to iron metabolism or were closely connected to iron-dependent processes. The hits conferring hyper-resistance exclusively comprised genes directly linked to mitochondrial protein synthesis such as subunits of the mito-ribosome and different tRNA synthetases. Mitochondria, the major consumers of cellular iron, are dispensable in the high-glucose medium routinely used in mammalian tissue culture, reducing cellular iron demand.20 This may explain the frequency of iron metabolism-regulating genes in the resistance profile. Taken together, the data obtained from yeast and mammalian cells support interference of kendomycin with iron-dependent processes.

Next, it was desired to test whether addition of exogenous iron or other cations could modulate kendomycin activity. Mixing kendomycin with iron or copper in a test tube resulted in a concentration-dependent color change suggestive of a direct interaction (Figure S2, Supporting Information). Importantly, no color change was observed with other cations, including calcium, cobalt, magnesium, or manganese, indicative of highly selective cation chelation. To quantitatively determine relative affinities for kendomycin toward different physiologically relevant cations, an absorbance-based assay was used. The characteristic A_{320} nm absorbance peak of kendomycin was effectively quenched by addition of selected cations Fe(II), Fe(III), or Cu(II) (Figure 3A and B, Figure S2, Supporting Information). Conversely, addition of Ca$^{2+}$ or Mg$^{2+}$ did not cause any detectable changes in the UV spectra, suggesting a lack of interaction with these cations (Figure S2, Supporting Information). Modeling the concentration-dependent quenching allowed determination of kendomycin affinities toward different cations. Based on this analysis, the apparent kendomycin affinities were K_{app} 19 μM (Fe(II)), 48 μM (Cu(II)), and 76 μM (Fe(III)), with no observed binding for calcium or magnesium. Further, supplementing cultures of B. subtilis (Figure 3D), S. cerevisiae (Figure 3E), or human HCT116 colon carcinoma cells (Figures 3C and F) with iron partially alleviated cytotoxicity in all three species, consistent with the essential role of iron for viability of all forms of life.25 In contrast, copper rescued kendomycin cytotoxicity only in bacteria and yeast under these conditions, possibly reflecting the mechanisms that these species use to tightly regulate free copper and mitigate its antimicrobial effect.26

Having established a plausible link between cation availability and kendomycin cytotoxicity, it was sought to demonstrate direct cation binding. To test this, the complete chemical shift assignment of kendomycin using 1D and 2D NMR approaches was determined (Figure S3, Supporting Information) followed by measurements in the presence of different cations. Addition of iron(II) or copper(II) resulted in a dose-dependent shift and broadening of the NMR signals (Cu(II) Figure 4A; Fe(II) Figure S4, Supporting Information) and a decreased overall intensity of kendomycin signals. Based on the magnitude of the paramagnetic effect of the metal ions, we were able to derive a rough epitope mapping27 indicating the 2,5-dihydroxy-7-methyl-1-benzofuran-6(2H)-one moiety as the metal ion binding site (Figure 4C). In order to prove the presence of a coordination complex and to rule out redox-based mechanisms, the kendomycin–copper complex was quenched with TFA, reverting the 1H NMR spectrum to one

Figure 4. Kendomycin cation binding. (A) 1H NMR spectra of 4 mM kendomycin with increasing concentrations of CuSO$_4$: 0 (black), 0.33 (red), 0.66 (blue), and 1 equivalent (green). See Figure S3 in the Supporting Information for complete chemical shift assignments. (B) 1H NMR spectra of kendomycin (black) and of kendomycin treated with 1 equivalent of aqueous CuSO$_4$ and quenched after 1 day with TFA (red) prior to analysis. Protected peak is indicative of the copper interaction site. (C) Proposed kendomycin Cu(II) complex and potential mechanism for H/D exchange (axial water not shown for better representation).
identical to the parent compound with only H-24 missing (Figure 4B).

LC-MS experiments of the TFA-quenched complex indicated that the lack of this signal can be attributed to H/D exchange (Figure S4, Supporting Information). Using time-dependent quenching experiments, we could show that the H/D exchange occurs with an approximate rate constant of \(k \approx 0.06\) h\(^{-1}\) (Figure S5, Supporting Information). Since no H/D exchange was observed in the absence of copper or iron ions, it was postulated that the underlying mechanism is linked to the metal binding mode in the complex. Assuming a geometry similar to other hydroxynaphthoquinone copper(II) complexes,28 a 2:1 stoichiometry with a bidentate kendomycin ligand can be proposed. This binding mode could explain the observed H/D exchange via an opening of the hemiketal in equilibrium (Figure 4C). Other molecular mechanisms such as proton-coupled electron transfer for the quinone ligand might be included but were not resolved with the experimental setup used in this study.

In summary, genome-wide and focused data sets generated in yeast and mammalian cells, as well as molecular data, all indicate that the reported activities of kendomycin are attained by sequestration of iron and copper. Since iron is vital for all phyla, this also explains the pan-species activity of kendomycin. Oxidative stress and cation imbalance are linked to many diseases, and chelating natural products such as curcumin and gossypol29 are used in this study.

Chemogenetic Screening. HCT116 cells were grown in McCoy's 5A medium supplemented with 10% fetal bovine serum (FBS). EMS-mutagenized and untreated cells were seeded in 10 cm dishes at a density of 0.5 × 10\(^6\) cells/dish. Then, 24 h after plating the medium was removed and replaced with media containing a range of concentrations of the compound. Selection was maintained for 14 days by replacement of medium and compound every 48–72 h. Colonies were isolated from selection plates at an uppermost selection concentration of 2 \(\mu\)M kendomycin. Resistance of isolated cell lines to a panel of cytotoxic compounds compared to the parental pool of HCT116 cells and cell lines showing generalized increase in resistance were discarded. In total 18 cell lines showing mild resistance to kendomycin were obtained, eight of which were derived from cells that were treated with EMS 24 h prior to initiation of selection as described.34 Confirmed cell lines were then subjected to whole-genome sequencing.

Chemogenomic Profiling. Yeast haploinsufficiency profiling,34 measuring individual kendomycin hypersensitivity of a genome-wide collection of heterozygous deletion strains relative to the isogenic wild-type; CRISPR profiling, measuring hypersensitivity of HCT116 mammalian cells transduced with a genome-wide sgRNA library resulting in editing of all annotated protein-coding genes;35 and CCLE profiling,36 measuring IC\(_50\) curves of cytotoxic compounds against the Cancer Cell Line Encyclopedia, were performed as described.

Bacterial Growth Inhibition. Mid logarithmic B. subtilis cultures in LB medium samples were back-diluted to low optical density, and 125 \(\mu\)L of cultures was dispensed with an electronic multichannel pipet into a 96-well plate. Then, 5 \(\mu\)L from an 8-point kendomycin serial dilution series was added to the wells of six columns to allow for data sets in duplicates. Two columns were supplemented with freshly prepared 0.25 mM FeCl\(_3\) or 0.25 mM CuCl\(_2\), respectively. Plates were incubated at 37 °C with 1000 rpm orbital shaking, and cell densities determined by A\(_{600}\).

Yeast Growth Inhibition. Single-colony inhibition was performed as described.33 Colonies were then washed off the plates with 1 mL of PBS, and cell densities determined by A\(_{600}\) measurement.

Mammalian Growth Inhibition. HCT-116 cells were maintained at 37 °C, 5% CO\(_2\) in McCoy's 5A medium supplemented with 10% FBS. For cell proliferation assays, cells were seeded in 96-well viewplates (PerkinElmer, cat. no. 600S182) at a density of 2500 cells/well. Then, 16 h after plating the cells were treated with the indicated compounds or carrier. Next, 72 h after compound dosing the medium was supplemented with 10% Alamar Blue (resazurin) and the cells were returned to the incubator for a further 4 h. Fluorescence intensity (excitation 580 nm, emission 620 nm) was measured using a microplate reader (PerkinElmer EnSquire). Viability was calculated as a percentage of maximal growth under carrier, and dose–response curves were calculated using GraphPad Prism 7. Dose–response curves were calculated from quadruplicate technical replicates.

For cell imaging time courses, cells were seeded in 24-well imaging plates (Nunc Nunclon-treated multidish wells) at a density of 25 000 cells/well. Then, 16 h after plating, the cells were treated with indicated compounds or carrier. Immediately following dosing, plates were loaded into a precalibrated CellIQ continuous cell culturing platform. Cultures were imaged at 3 points per condition every 10 min for 48 h.

NMR Analysis. Standard 1D and 2D NMR methodology was applied for structure elucidation and titration experiments. For NMR spectral assignment, 0.4 mg of kendomycin was dissolved in 500 \(\mu\)L of DMSO-\(d_6\)/\(D_2\)O (80:20% v/v). The obtained clear solution was transferred into a 5.0 mm NMR sample tube for measurement. \(^1\)H and \(^13\)C detected 1D and 2D NMR spectra of the sample were recorded at 300 K using a Bruker 600 MHz AVANCE III HD spectrometer equipped with a 5.0 mm \(^13\)C/(\(^1\)H) CryoProbe with a z-gradient system. For titration experiments 1.0 mg of kendomycin was dissolved in 600 \(\mu\)L of DMSO-\(d_6\)/\(D_2\)O (85:15% v/v) in the
presence of 0.33, 0.66, and 1.0 equiv of either CuSO4 or FeSO4. The obtained orange to dark red solutions were transferred into 5.0 mm NMR sample tubes prior to acquisition. 1H NMR data were recorded at 300 K using a Bruker 500 MHz AVANCE III spectrometer equipped with a 5 mm BBO probe with a z-gradient system. All spectra were referenced according to the internal solvent signal (δH: DMSO = 2.50 ppm and 13C: DMSO = 39.5 ppm).

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jnatprod.9b00826.

Additional information (PDF)

■ AUTHOR INFORMATION

Corresponding Authors

Ville O. Paavilainen — Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland; orcid.org/0000-0002-3160-7767; Phone: +358-50-448 4600; Email: ville.paavilainen@helsinki.fi

Dominic Hoepfner — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland; orcid.org/0000-0001-8450-7543; Phone: +41 79 863 45 24; Email: dominic.hoepfner@novartis.com

Authors

Dale Tranter — Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland; orcid.org/0000-0001-7757-5484

Ireos Filipuzzi — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland; orcid.org/0000-0002-2493-6183

Thomas Lochmann — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland

Britta Knapp — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland

Juho Kellosalo — Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland

David Estoppey — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland

Dominik Pistorius — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland

Axel Meissner — Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jnatprod.9b00826

Author Contributions

§I. Filipuzzi and D. Tranter contributed equally to this work.

Notes

The authors declare the following competing financial interest(s): The authors declare that they have no conflicts of interest with the contents of this article. Authors with the affiliation Novartis Institutes for BioMedical Research are employees of Novartis and may have stock in the company.

■ ACKNOWLEDGMENTS

This work was supported by the Academy of Finland (grants 289737 and 314672), U.S. National Institutes of Health (Project 1R01GM132649-01), and the Sigrid Juselius Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors are grateful to Ralph Rießen and Thomas Aust for operating the HIP HOP platform, Sven Schuierer for support in yeast data, Florian Nigsch for mammalian data processing, Alicia Lindemann and Carsten Russ for sequencing support, John Reece-Hoyes for providing the lentiviral sgRNA library, and N. Ross for CLIP profiling. We acknowledge the use of the University of Helsinki HiLife Flow Cytometry Unit at the Faculty of Biological and Environmental Sciences.

■ REFERENCES

(1) Enkh-Amsgan, J.; Komáki, H.; Daram, D.; Ando, K.; Tsetseg, B. J. Antimicrob. Chemother. 2012, 65, 103–108.
(2) Elnakady, Y. A.; Rohde, M.; Sasse, F.; Backes, C.; Keller, A.; Lennhof, H.-P.; Weissman, K. J.; Müller, R. ChemBioChem 2007, 8, 1261–1272.
(3) Yuan, Y.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 14720–14721.
(4) Wenzel, S. C.; Bode, H. B.; Kochems, I.; Müller, R. ChemBioChem 2008, 9, 2711–2721.
(5) Beck, P.; Heinemeyer, W.; Spath, A.-L.; Elnakady, Y.; Müller, R.; Groll, M. J. Mol. Biol. 2014, 426, 3108–3117.
(6) Johnson, E. S.; Ma, P. C.; Ota, I. M.; Varshavsky, A. J. Biol. Chem. 1995, 270, 17442–17456.
(7) Elnakady, Y. A.; Chatterjee, I.; Bischoff, M.; Rohde, M.; Josten, M.; Sahl, H.-G.; Herrmann, M.; Müller, R. PLoS One 2016, 11, e0146165.
(8) Paatero, A. O.; Kellosalo, J.; Dúnak, B. M.; Almaliti, J.; Gestwicki, J. E.; Gerwick, W. H.; Taunton, J.; Paavilainen, V. O. Chem. Biol. Interact. 2016, 23, 561–566.
(9) Filipuzzi, I.; Cotesta, S.; Perruccio, F.; Knapp, B.; Fu, Y.; Studer, C.; Pries, V.; Riedl, R.; Hellwell, S. B.; Petrovic, K. T.; Mova, N. R.; Sanglard, D.; Tao, J.; Hoepfner, D. PLoS Genet. 2016, 12, e1006374.
(10) Krastel, P.; Roggo, S.; Schirle, M.; Ross, N. T.; Perruccio, F.; Aspesi, P.; Aust, T.; Buntin, K.; Estoppey, D.; Liechty, B.; Mapa, F.; Memmert, K.; Miller, H.; Pan, X.; Riedl, R.; Thibaut, C.; Thomas, J.; Wagner, T.; Weber, E.; Xie, X.; Schmitt, E. K.; Hoepfner, D. Angew. Chem., Int. Ed. 2015, 54, 10149–54.
(11) Zaryn, S.; Jarriault, S. Worm 2013, 2, e25081.
(12) Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A. A.; Kim, S.; Wilson, C. J.; Lehár, J.; Kryukov, G. V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M. F.; Monahan, J. E.; Morris, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F. A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I. H.; Cheng, J.; Yu, G. K.; Yu, J.; Aspesi, P.; de Silva, M.; Jagtap, K.; Jones, M. D.; Wang, L.; Hatton, C.; Palecsandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R. C.; Liessed, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J. P.; Gabriel, S. B.; Getz, G.; Ardile, K.; Chan, V.; Myer, V. E.; Weber, B. L.; Porter, J.; Warnacht, M.; Finan, P.; Harris, J. L.; Meyerson, M.; Golub, T. R.; Morrissey, M. P.; Sellers, W. R.; Schlegel, R.; Garraway, L. A. Nature 2012, 483, 603–607.
(13) Giaever, G.; Flaherty, P.; Kumm, J.; Proctor, M.; Nislow, C.; Jaramillo, D. F.; Chu, A. M.; Jordan, M. I.; Arkin, A. P.; Davis, R. W. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 793–798.
(14) Hoepfner, D.; Hellwell, S. B.; Sadlish, H.; Schuierer, S.; Filipuzzi, I.; Brachat, S.; Bullhar, B.; Pilkat, U.; Abraham, Y.; Altorf, M.; Aust, T.; Baeriswyl, L.; Cerino, R.; Chang, L.; Estoppey, D.; Eichenberger, J.; Frederiksen, M.; Hartmann, N.; Hohendahl, A.; Knapp, B.; Krastel, P.; Melin, N.; Nigsch, F.; Oakeley, E.; Pettijean, V.; Petersen, F.; Riedl, R.; Schmitt, E. K.; Staudt, F.; Studer, C.; Tallarico, J. A.; Wetzel, S.; Fishman, M. C.; Porter, J. A.; Movva, N. R. Microbiol. Res. 2014, 169, 107–120.
(15) Lee, A. Y.; St Onge, R. P.; Proctor, M. J.; Wallace, I. M.; Niles, A. H.; Spagnuolo, P. A.; Jitkova, Y.; Gronda, M.; Wu, Y.; Kim, K. M.; Cheung-Ong, K.; Torres, N. P.; Spear, E. D.; Hu, M. K.; Schlecht, U.; Suresh, S.; Duby, G.; Heisler, L. E.; Surendra, A.; Fung, E.; Urbanus, M. L.; Gebbia, M.; Liefeld, T.; MacConaill, L.; Sougnez, C.; Onofrio, R. C.; Liessed, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J. P.; Gabriel, S. B.; Getz, G.; Ardile, K.; Chan, V.; Myer, V. E.; Weber, B. L.; Porter, J.; Warnacht, M.; Finan, P.; Harris, J. L.; Meyerson, M.; Golub, T. R.; Morrissey, M. P.; Sellers, W. R.; Schlegel, R.; Garraway, L. A. Nature 2012, 483, 603–607.
(16) Courel, M.; Lallet, S.; Camadro, J.-M.; Blaiseau, P.-L. Mol. Cell. Biol. 2005, 25, 6760–6771.

(17) Tun, N. M.; O’Doherty, P. J.; Perrone, G. G.; Bailey, T. D.; Kersaïtis, C.; Wu, M. J. Metalomics 2013, 5, 1060–1075.

(18) Estoppey, D.; Hewett, J. W.; Guy, C. T.; Harrington, E.; Thomas, J. R.; Schirle, M.; Cuttat, R.; Waldh, A.; Gerrits, B.; Yang, Z.; Schuierer, S.; Pan, X.; Xie, K.; Carbone, W.; Knehr, J.; Lindeman, A.; Russ, C.; Frias, E.; Hoffmann, G. R.; Varadarajan, M.; Ramadan, N.; Reece-Hoyes, J. S.; Wang, Q.; Chen, X.; McAllister, G.; Roma, G.; Bouwmeester, T.; Hoepfner, D. Sci. Rep. 2017, 7, 42728.

(19) Xu, S.; Cherok, E.; Das, S.; Li, S.; Roelofs, B. A.; Ge, S. X.; Polster, B. M.; Boyman, L.; Lederer, W. J.; Wang, C.; Karbowiak, M. Mol. Biol. Cell 2016, 27, 349–359.

(20) Pei, W.; Kratz, L. E.; Bernardini, I.; Sood, R.; Yokogawa, T.; Dorward, H.; Ciccone, C.; Kelley, R. I.; Ansker, Y.; Burgess, H. A.; Huizing, M.; Feldman, B. Development 2010, 137, 2587–2596.

(21) Kovacevic, Z.; Sahni, S.; Lok, H.; Davies, M. J.; Wink, D. A.; Richardson, D. R. Biochim. Biophys. Acta, Gen. Subj. 2017, 1861, 995–999.

(22) Sen, S.; Cowan, J. A. JBIC, J. Biol. Inorg. Chem. 2017, 22, 1075–1087.

(23) Zuo, J.; Schmitt, S. M.; Zhang, Z.; Prakash, J.; Fan, Y.; Bi, C.; Kodanko, J. J.; Dou, Q. P. J. Cell. Biochem. 2012, 113, 2567–2575.

(24) Liang, Y.; Ewing, P. M.; Laursen, W. J.; Tripp, V. T.; Singh, S.; Splan, K. E. J. Inorg. Biochem. 2014, 140, 104–110.

(25) Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G. L.; Thornton, J. M. JBIC, J. Biol. Inorg. Chem. 2008, 13, 1205–1218.

(26) Vincent, M.; Duval, R. E.; Hartemann, P.; Engels-Deutsch, M. J. Appl. Microbiol. 2018, 124, 1032–1046.

(27) Espersen, W. G.; Martin, R. B. J. Am. Chem. Soc. 1976, 98, 40–44.

(28) Dunham, M. J.; Gartenberg, M. R.; Brown, G. W. Methods in Yeast Genetics and Genomics, 2015 ed.; Cold Spring Harbor Laboratory Press, 2015.

(34) Junne, T.; Wong, J.; Studer, C.; Aust, T.; Bauer, B. W.; Beibel, M.; Buillar, B.; Brucoli, R.; Eichenberger, J.; Estoppey, D.; Hartmann, N.; Knapp, B.; Krastel, P.; Melin, N.; Oakeley, E. J.; Oberer, L.; Riedl, R.; Roma, G.; Schuierer, S.; Petersen, F.; Tallarico, J. A.; Rapoport, T. A.; Spiess, M.; Hoepfner, D. J. Cell Sci. 2015, 128, 1217–1229.