Geospatiotemporal and causal inference study of cannabis and other drugs as risk factors for female breast cancer USA 2003–2017

Albert Stuart Reece1,2* and Gary Kenneth Hulse1,2

1 Division of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia, 2 School of Medical and Health Sciences, Edith Cowan University, 27 Joondalup Dr, Joondalup, WA 6027, Australia

Correspondence address. University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia. Tel: (+61 7) 3844-4000; Fax: (+61 7) 3844-4015; E-mail: stuart.reece@bigpond.com

Abstract
Breast cancer (BC) is the commonest human cancer and its incidence (BC incidence, BCI) is rising worldwide. Whilst both tobacco and alcohol have been linked to BCI genotoxic cannabinoids have not been investigated. Age-adjusted state-based BCI 2003–2017 was taken from the Surveillance Epidemiology and End Results database of the Centers for Disease Control. Drug use from the National Survey of Drug Use and Health, response rate 74.1%. Median age, median household income and ethnicity were from US census. Inverse probability weighted (ipw) multivariable regression conducted in R. In bivariate analysis BCI was shown to be significantly linked with rising cannabis exposure [β-est. = 3.93 [95% confidence interval 2.99, 4.87], P = 1.10 × 10^-15]. At 8 years lag cigarettes:cannabis [β-est. = 2660 (2150.4, 3169.3), P = 4.60 × 10^-22] and cannabis:alcoholism [β-est. = 7010 (5461.6, 8558.4), P = 1.80 × 10^-17] were significant in ipw-panel regression. Terms including cannabidiol [CBD; β-est. = 16.16 (0.39, 31.93), P = 0.446] and cannabigerol [CBG; β-est. = 6.23 (2.06, 10.39), P = 0.0034] were significant in spatiotemporal models lagged 1:2 years, respectively. Cannabis-liberal paradigms had higher BCI [67.50 ± 0.26 v. 65.19 ± 0.21/100 000 (mean ± SEM), P = 1.87 × 10^-11]; β-est. = 2.31 (1.65, 2.96), P = 0.9.09 × 10^-17]. 55/58 expected values >1.25 and 13/58 >100. Abortion was independently and causally significant in space–time models. Data show that exposure to cannabis and the cannabinoid Δ9-tetrahydrocannabinol, CBD, CBG and alcoholism fulfil quantitative causal criteria for BCI across space and time. Findings are robust to adjustment for age and several known sociodemographic, socio-economic and hormonal risk factors and establish cannabinoids as an additional risk factor class for breast carcinogenesis. BCI is higher under cannabis-liberal legal paradigms.

Key words: cannabis; alcoholism; breast cancer; cannabidiol; THC; cannabigerol; breast carcinogenesis; abortion

Introduction
Globally 2.1 million women were diagnosed with breast cancer (BC) in 2018 including 626,679 deaths from this cause [1]. This equates to one case every 18 seconds. The BC incidence (BCI) is increasing worldwide. In the USA 279,100 cases are expected to occur in 2020 [2]. 276,480 of these tumours or 99.06% occur in females [2] and female BC will be the subject of analysis. Data from the Centers of Disease Control (CDC) Atlanta, Georgia, indicate that the BCI rose nationally from about 100 cases/100,000 to 127 cases/100,000 from 1980 to 1987, possibly related to the widespread introduction of mammographic screening but has been essentially unchanged since that time [2]. Happily the mortality rate has dropped progressively since 1990 due to various screening practices enabling earlier detection and therapeutic advances [2].

The aetiology of BC is usually understood to relate to a combination of factors including increased hormonal exposure so that factors such as early menarche, delayed menopause, reduced parity, advanced maternal age at first pregnancy, reduced breast-feeding, oral contraception and menopausal hormone replacement therapy are known to be linked with increased BCI [1, 3–6]. Obesity, central adiposity, lack of physical activity and alcohol use are also implicated [1]. The role of tobacco is controversial, although some data indicate it may increase severity of BC in those identified. The literature on the effects of elective termination of pregnancy on BC is controversial with meta-analyses reaching both positive [7] and negative conclusions [8, 9] being published. The main factors that influence risk include being a woman and getting older with most BC found in women who are 50 years old or older, with age also likely reflecting exposure to environmental factors. Significant ethnic differences are also described [10]. Mutations in the BRCA genes on Chromosomes 17 and 13 which
play critical roles in homologous DNA repair and are linked with BC.
BRCA mutations occur with varying frequencies by ethnicity being
0.5% amongst Asian populations and 10.2% amongst women of
Ashkenazi Jewish descent [1]. Mutations in checkpoint 2 kinase
(CHEK2), ataxia telangiectasia mutated (ATM), partner and local-
izer of BRCA2 (PALB2), tumour protein P53 (TP53), phosphatase
and tensin homolog (PTEN) and serine threonine kinase 11 (STK11)
are also implicated [1].

A recent PubMed literature search identified numerous papers
discussing the putative potential of cannabinoid-derived thera-
petin in BC for various indications albeit in the absence of sup-
portive randomized clinical trials [11], however we were not able to
identify any papers investigating the possibility that cannabinoids
may impact the aetiological risk for BCI.

On the basis of several published series [12–16] it is often said
that the cancer which is most closely linked with cannabis expo-
sure is testicular cancer [17–21]. Other studies link adult cannabis
exposure with cancer of the head and neck, larynx, prostate, lung,
brain and urethelium [12, 22–31] and for several tumours dose-
response relationships have been demonstrated [22, 24, 25, 32].

However it is important to appreciate that the evidence linking
cannabis exposure with a paediatric cancer whose inci-
dence peaks in the first 5 years of life—acute myeloid leukaemia
(AML) [33–35] is equally as strong as that for testicular cancer
[33, 34, 36, 37]. Cannabis has also been linked with other
paediatric tumours including neuroblastoma, rhabdomyoblast-
toma, acute lymphoid leukaemia (ALL) and total paediatric cancer
[28, 33, 34, 36, 38–43]. It is widely understood that paediatric cancer
largely results from inherited genotoxic or epigenotoxic car-
cinogenic insults [44–46]. Indeed, as was found by the California
Environmental Protection Agency some years ago the evidence
for paediatric cancerogenesis is more uniform than the evidence for
adult oncogenesis [47].

Since BC (present report and [37]) is the commonest adult can-
cer and ALL, along with total paediatric cancer, is the commonest
paediatric cancer these findings make cannabis a major player in the
epidemiology of both adult and childhood oncogenesis and
therefore across the whole span of life. Since cannabis has been
shown to be driving ALL and total paediatric cancer rates [43, 48]
transgenerational aspects of cannabinoid oncogenesis are clearly
important. In that the breast is also part of the reproductive sys-

This study set out to investigate the potential involvement of
cannabis, cannabinoids and other substances in patterns of BCI
across space and time in the USA to assess if any epidemiological
relationships could be identified, if any putative relationship
was robust to multivariable adjustment and if the relationship fulfilled
the formal criteria for causality.

Our intention prior to data analysis was to include substance
exposure as an addition to known covariates which had previously
been linked with BCI.

Methods

Data Cancer

National age-adjusted BCI rates including ethnic-specific inci-
dence rates were taken from the SEER*Explorer online web tool
[10]. State-based age-adjusted BCI data were taken from the
National Program of Cancer Registries (NPCR) and Surveillance,
Epidemiology, and End Results (SEER) Incidence data set US Can-
cer Statistics Public Use database 2019 submission 2001–2017 for
each US state using the SEER*Stat software rate sessions [49].

Drugs

Drug use data at the state level was taken from the state-
based datafiles of the National Survey of Drug Use and Health
(NSDUH) Restricted Use Data Analysis System (RDAS) of the Sub-
stance Abuse and Mental Health Data Archive (SAMHDA) con-
ducted annually by the Substance Abuse and Mental Health Ser-
dices Administration (SAMHSA) [50]. The drugs of interest were
tobacco (as last month cigarettes use, shown as “Cigarettes” in
tables); alcohol use disorder (“AUD”, formerly known as
alcohol dependence); last month cannabis use (“Cannabis”);
last year non-medical use of analgesics (“Analgesics”) and last
year use of cocaine (“Cocaine”). Cannabis use intensity by
nativity at the national level was also sourced from the
SAMHSA NSDUH RDAS data set using the RDAS variable “mrmj-
days”. The concentration of cannabinoids in federal seizures
was taken from publications of the Drug Enforcement Agency
[51–53].

Socio-Economic

Data on state-based ethnicity prevalence, median household
income (“Income” in the tables) and median age was taken from
the US Census Bureau via the tidycensus package in R [54]. The ethnicities of interest were Caucasian-American,
African-American, Hispanic-American, American Indian/Alaska
Native (AIAN) and Native Hawaiian/Pacific Islander (NHPI).
Some of the CDC data refers to Non-Hispanic ethnicities (NH).
This abbreviation appears in our tables where appropriate. In
some cases there were minor disparities between the ethnic
designations employed from the major data sets. Ethnicities
were matched as closely as possible between the various data
sets.

Reproductive Factors

Data on termination of pregnancy were sourced from the Annual
CDC Abortion Surveillance Monitoring Reports and was recorded
for abortions performed for intrastate residents only [55]. Data
on menopausal hormone replacement therapy (HRT) was sourced
by specific enquiry from CDC (Atlanta, Georgia). Following the
Womens Health Initiative Study [3] a marked decline occurred
in the rate of HRT prescribing nationally [56]. CDC was able
to provide national-level data only for five years as discussed
below [56]. Data were temporally kriged to provide estimates
for the intervening years. As mentioned, only national-level
data were available. Data on hormonal methods of contracep-
tion (hormonal contraception/combined oral contraceptive pill,
COCP) were sourced from published reports directed by specific
query from CDC [56–60]. Hormonal methods of contraception
include the sum of oral contraception, injectable contraception
and implant contraception. Data were only supplied for four years.
The data set was completed for the intervening years by temporal
kriging.

Cannabis Legal Status

Cannabis legal status was derived from an internet search [61].

Derived Data

State-Based Cannabinoid Exposure Estimates

State-based estimates of cannabinoid exposure were derived by
multiplying the concentration of cannabinoids identified in fed-
eral seizures of cannabis as published by DEA laboratories [51–53]
by the mean level of last month cannabis use in that state follow-

Accepted practices [16, 43, 62–69]. The cannabis use intensity
in each category of use (1–3 days last month, 4–5 days, 6–19 days
and 20–30 days) was summed and averaged for each year of the NSDUH for each ethnicity to provide a cannabis use intensity score. This score was then multiplied by the prevalence of the relevant ethnicity in that state to derive a state-based estimate of monthly cannabis exposure. This measure was then multiplied by the ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations, respectively, in federal seizures to derive estimates of ethic THC and CBD exposures at the state level.

Substance Exposure Quintiles

Substance exposure in each year was divided into quintiles for the substances cigarettes, AUD, cannabis, cocaine and analgesics.

Dichotomization

Substance exposure quintiles were dichotomized as the two highest quintiles versus the lower three quintiles. Similarly cannabis legal status was dichotomized as states where cannabis was illegal versus those where a more liberal policy was in place.

Statistics

Data were processed in R version 4.0.3 and R-Studio version 1.3.1093 from the R Foundation for Statistical Computing and the Comprehensive “R” Archive Network (CRAN) in November 2020. Numeric data are listed as mean ± SEM. Data were manipulated using dplyr and the tidyverse suite [70]. All data was log-transformed based on the results of the Shapiro test. The probability of Student’s t and Fisher’s F at extreme values was calculated using the functions pt and pf from the stats package. Graphs were drawn in ggplot2 [71]. Maps were drawn with ggplot2 and sf (“Simple Features”) [71, 72]. All maps have been originally drawn for this paper. Some maps use the “plasma” colour palette from R package viridis [73]. Other colour palettes were custom designed for this paper. Reduction of initial regression models was by serial deletion of the least significant term according to the classical method of model reduction. Only final reduced models are presented. Serial linear models were processed in broom, broom mixed and purrr [74–76].

Correlation matrices were constructed using the R-packages corrplot and corrgram [77–79]. Paired correlation plots were constructed with the gpairs function from GGally [80]. Graphs were assembled into four or six panels using the ggarrange function from ggpubr [81].

A variety of regression techniques were used for the following reasons. Linear regression was performed in R-Base. Mixed effects regression from package lme [82, 83] was performed as it is ideally suited to repeated measures of the same locations and it provides standard deviations from which to calculate expected values (e-values), and inverse probability weights can be employed. However, it does not allow lagging or the use of instrumental variables. Panel regression from package plm [84] was performed as the data are of the panel form and it allows the use of instrumental variables and lagging, although not together, and inverse probability weights can be employed. It also provides standard deviations from which e-values can be calculated. Robust generalized regression was performed from the survey package [81] as it allows inverse probability weights to be employed and provides robust regression estimates. It does not however allow lagging, instrumental variables or provide standard deviations for the calculation of e-values. Geospatiotemporal regression was performed using the spatial panel random error maximum likelihood (spreml) function from package splm (spatial panel linear models) [85–87] as the data are distributed across time and space, which are shown to be important environmental factors in these regression models, both spatial and temporal lagging can be performed, and standard deviations can be calculated to allow the derivation of e-values. However, models cannot be weighted using inverse probability weights and instrumental variables cannot be employed.

For both mixed effects and robust generalized regression the state was the level of the identifier.

For panel models the effects were two ways which relate to both space and time, model type was pooling relating to least squares algorithm, the random method was that of Swarny and the instrumental method that of Amemiya [84]. All panel models were inverse probability weighted.

Geospatial neighbourhood weights using the “queen” edge and corner relationships were calculated and edited using the spdep package in R [88]. All geospatial models used the spatial error with serial correlation and random effects with spatial lagging (“spreml+lag”) error structure which was confirmed in final models to be the appropriate model design specification as previously described [89]. Model coefficients are presented as phi for the random error component, psi for the serial correlation in the residual error, rho for the spatial error coefficient and lambda for the autocorrelation in the spatial error. The spreml constrained optimization method used was that of Baltagi, Pfaffermayr, Greene and Song (“BFGS”) [87, 89].

The use of inverse probability weights allows an observational study to be considered as a pseudo-randomized study from which causal conclusions can be drawn. Inverse probability weights were calculated using the R package ipw [90]. Cannabis exposure was adjusted across groups controlled for all other substance exposure. Inverse probability weighting was applied to all robust generalized regression models, mixed effects models and panel models. e-Values are a quantitative index of the required association between some hypothetical unmeasured confounding variable and both the dependent variable and the exposure of concern, measured on the risk ratio scale. e-Values were calculated from the R package EValue [91–93]. e-Values greater than 1.25 are considered in the literature to be indicative of presumptively causal relationships [94]. All t-tests were two tailed. P < 0.05 was considered significant throughout.

Data Availability

All data used during this study including datafiles, shapefiles, edited geospatial weights, inverse probability weights and programming code in “R” are included in this published article and its supplementary information files. Data have been made publicly available on the Mendeley Database Repository and can be accessed via: http://dx.doi.org/10.17632/yzjcvhphmc.1.

Ethics

The Human Research Ethics Committee of the University of Western Australia provided ethical approval for the study to be undertaken on 7 January 2020 (No. RA/4/20/4724). Consent to participate was not required as the data utilized were derived from publicly available anonymous data sets and no individually identifiable data were employed.

Results

The BC data set was the national BC state-based census data set [49]. The NSUDH is an annually conducted nationally representative data set which is representative of the non-institutionalized US population. It has a published 74.1% response rate [95].
Supplementary Figure S1 map-graphically presents the rates BCI across the USA over time.

As the leading risk factor for BC is chronological age it is important to take that into account. Supplementary Figure S2 map-graphically presents the relative median population ages across the USA over time.

Supplementary Figure S3 standardizes the BCI by age by dividing the BCI by chronological age. The results are presented map-graphically and considerable changes are noted from Supplementary Figure S1 with the hotspot in New England becoming more moderate and Utah emerging as a high corrected-incidence zone.

Supplementary Table S1A shows the raw data for menopausal HRT as derived from CDC data [56]. Supplementary Table S1B shows temporal kriging of these data to complete the missing years of the analysis. This is required as spatiotemporal analysis algorithms do not permit the presence of missing data. As no state-based data were available for this parameter the same values have been used for all states.

Supplementary Table S2 shows the data for the rates of hormonal contraception used in each US state as directed by CDC [57–60].

Supplementary Table S3 shows these data after temporal kriging for each of the years 2003–2017 and completion of the data set for each state.

Supplementary Table S4 shows the elective termination of pregnancy (abortion) data as derived from the annual CDC Abortion surveillance reports [55]. Supplementary Table S5 shows these data after temporal kriging.

Supplementary Table S6 shows the final bivariate linear regression results of the BCI against various groups of covariates. Significant relationships with cannabis use, cannabinoids and abortion rates are noted.

Supplementary Figure S4 shows the relationship of the (A) BCI to the abortion rate, (B) the log(BCI) to the standardized (z-transformed) abortion rate, (C) the log(BCI) to the log abortion rate and (D) the log(BCI) to the log (standardized abortion rate). The positive relationship between the BCI and abortion rate is noted to hold regardless of the transformation of both variables.

Supplementary Table S7 gives the final bivariate linear regression models for the BCI against the logarithm of the abortion rate. The relationship is noted to be highly significant.

Supplementary Table S6 lists the applicable linear regression results for the BCI by ethnicity for the state-level data. In the first model of the table the comparator group is African-Americans. In the model section of the table the comparator group is AIAN-Americans. In each case highly significant differences are noted.

Figure 1 shows the BCI as a function of exposure to various substances. Obviously positive relationships are shown with cannabis and cocaine.

Figure 2 shows the BCI as a function of various cannabinoid exposures. Positive relationships are noted in each case.

Supplementary Table S8 gives the line slopes of the regression lines for the various substances and the various cannabinoids. Since the rates of cigarette use, alcohol dependence, cocaine and analgesic use and CBD exposure are all falling it is of interest to consider quintile analyses of these exposures.
Cannabinoid and other drug risk factors for female breast cancer

Figure 2: Graphs of relationship of BCI to cannabinoid exposure

Figure 3: Graphs of relationship of BCI to substance exposure quintiles. (A) Scatterplot of BCI by cigarette use quintiles over time, (B) scatterplot of BCI by AUD quintiles over time, (C) scatterplot of BCI by cannabis use quintiles over time, (D) boxplot of BCI by cigarette use quintiles over aggregated time, (E) boxplot of BCI by AUD quintiles over aggregated time and (F) boxplot of BCI by cannabis use quintiles over aggregated time

the BCI as a function of the tobacco, AUD and cannabis quintiles as scatterplots and boxplots. Chi-squared test for trend for each of these three substances is: tobacco: Chi.Squ. = −892.39, df = 796, P = 0.0096; AUD: Chi.Squ. = 814.31, df = 796, P = 0.3184; cannabis: Chi.Squ. = 853.62, df = 796, P = 0.767.

Supplementary Table S9 illustrates the results of these regressions for four substances by quintile.

The applicable slopes, regression coefficients and significance values of the bivariate linear regressions for the cannabis quintiles are shown in Supplementary Table S10. The lower half of
the table lists the results for consideration of the dichotomized quintile comparisons. Highly significant results are shown.

The cannabis quintiles may be further aggregated into the lower three quintiles compared to the upper two quintiles. The time-based trends and boxplots for BCI are shown in Fig. 4. The differences between the BCIs of the higher and lower quintiles are significant (68.45 ± 0.36 v. 65.62 ± 0.18, t = 6.9603, df = 232.24 and P = 3.44 × 10^{-11}). The BCI of the fourth cannabis quintile is significantly lower than that of the fifth cannabis quintile (66.54 ± 0.45 v. 68.45 ± 0.36, t = 3.133, df = 279.96, P = 0.0010).

Figure 5 is a compound correlogram prepared in the R package “corrplot”. It shows the correlations colour coded in the lower triangle and with the significance of the Pearson correlation coefficients shown in the upper triangle both by their P-value and as ellipses. The correlations are coded from purple to red in increasing order. Ellipses slope positively for positive correlations and negatively for negative correlations. The width of the ellipse also codes the strength of association with narrower ellipses indicating higher correlations. The diagonal is blank. The correlogram is ordered by hierarchical clustering according to the Ward 2 method. The BCI is denoted as "CancerRt" in this figure. Positive relationships amongst the cannabinoids and across ethnic THC exposure are noted in this correlogram. The BCI is noted to be positively related to cannabis, cannabinoids including CBD, abortions and cocaine exposure.

Supplementary Table S11 lists the results of mixed effects repeated measures regressions with state as the identifying variable from a series of successively more complex (mostly) additive models. The model series is of interest because in each model in which cannabis appears it is seen to be significant.

Supplementary Table S12 lists a series of successively more complex interactive mixed models. The first model is the full
interactive model and includes age, substances, ethnic prevalences, income and reproductive exposures. Five terms including cannabinoids are significant, and cannabis is noted to be independently and powerfully significant in this model \((\beta \text{-est.} = 24.73 \text{ [95% confidence interval (CI) 14.98, 34.47], } P = 8.40 \times 10^{-7}) \). In place of the ethnic prevalence the second and third models list the ethnic THC and CBD exposure, respectively. In the second model Asian THC exposure is noted to be significant \((\beta \text{-est.} = 3.53 \text{ (2.88, 4.18), } P = 1.10 \times 10^{-24}) \) and in the third model Caucasian CBD exposure is noted to be significant \((\beta \text{-est.} = 65.45 \text{ (50.11, 80.79), } P = 3.00 \times 10^{-16}) \). The fourth model features the individual cannabinoids as main effects. CBD, cannabigerol (CBG) and THC are all independently significant of which the most positively significant one is CBD \((\beta \text{-est.} = 3.00 \text{ (0.53, 5.47), } P = 0.0174) \). Terms including cannabinoids are significant \((\beta \text{-est.} = 150.10 \text{ (74.14, 226.05), } P = 0.0001) \).

The intrastate elective pregnancy termination rate is also noted to be highly significant in all four models.

Supplementary Table S13 shows the final regression models from panel regression first including age and substances, then a full additive model and then a full interactive model. In each model cannabis is significant \((\beta \text{-est.} = 26.87 \text{ (22.81, 30.94), } P = 1.06 \times 10^{-34}) \).

Supplementary Table S14 shows the results from final interactive panel models lagged to 2, 4, 6 and 8 years. In each case terms including cannabis are noted to be significant \((\beta \text{-est.} = 1016.82 \text{ (822.42, 1211.21), } P = 1.30 \times 10^{-22} \text{ at 6 years lag}) \).

Supplementary Table S15 lists a series of final interactive panel models which include respectively cannabinoids, ethnic THC exposure and ethnic CBD exposure as instrumental variables. Interestingly in these models the significance of cannabis in the model covariates is greatly reduced. In the final model where ethnic CBD exposure is listed as the instrumental variable no terms including cannabis appear. These results confirm that the effect of cannabis as a covariate is partly accounted for by the listing of the various cannabinoids as instrumental variables.

Table 1 presents a series of geospatiotemporal models of increasing complexity. As shown in the first model when age and cannabis exposure are regressed interactively against the BCI together only cannabis use remains significant in the final model. The second model shows that when age and substances are regressed additively against BCI the only term remaining in the final model is cannabis exposure. The third model is an important additive model which lists all the non-ethnicity covariates. Only cannabis exposure \((\beta \text{-est.} = 1.56 \text{ (0.69, 2.42), } P = 0.0004) \) and abortion \((\beta \text{-est.} = 1.20 \text{ (0.54, 1.85), } P = 0.0003) \) remain as significant in the final model with positive coefficients. In a similar interactive model terms including cannabis are highly significant (fourth model). In a full interactive model including substance, age, income and ethnicity terms including cannabis do not appear in the final model (fifth model). In a full interactive model where an interactive term between THC:CBD:CBG replaces the term for cannabis an interactive term including the CBG:CBD interaction is significant in the final model (sixth model).

In an interactive model which replaces ethnicity with ethnic THC exposure Non-Hispanic African-American, Hispanic-American and Non-Hispanic Caucasian-American THC exposures are significant in the final model (seventh model). When the ethnic CBD exposure is used to replace the ethnic prevalences the CBD of the same three ethnic groups remains significant in the final model (eighth model).
Table 1: Introductory geospatiotemporal models

Parameter	Estimate (CI)	P-value	SD	Log.Lik	Coefficient	Value	P-value
Cannabis alone							
spreml(Cancer_Rate ~ Age × Cannabis)							
Cannabis	1.45 (0.61 2.29)	0.0007	3.6514	−1780.87	phi	1.5969	2.11E − 05
					psi	0.3437	1.46E − 15
					rho	−0.4217	3.90E − 05
					lambda	0.4754	4.75E − 12
Additive model							
spreml(Cancer_Rate ~ Age + Cigarettes + Cannabis + AUD + Analgesics + Cocaine)							
Cannabis	1.45 (0.61 2.29)	0.0007	3.6514	−1780.87	phi	1.5969	2.11E − 05
					psi	0.3437	1.46E − 15
					rho	−0.4217	3.90E − 05
					lambda	0.4754	4.75E − 12
Additive model without ethnicity							
spreml(Cancer_Rate ~ Age + Cigarettes × Cannabis × AUD + Analgesics + Cocaine + Income + Abortion + HRT + COCP)							
Abortion	1.2 (0.54, 1.85)	0.0003	3.5943	−1772.073	phi	1.575016	5.22E − 05
					psi	0.3144	3.41E − 13
					rho	−0.4243	2.91E − 05
					lambda	0.4645	2.30E − 12
Interactive model							
spreml(Cancer_Rate ~ Age + Cigarettes × Cannabis × AUD + Analgesics + Cocaine)							
Cigarettes × Cannabis	3.59 (1.94 5.24)	0.0010	1.90E − 05	3.6773	phi	1.6995	8.95E − 06
					psi	0.3144	3.41E − 13
					rho	−0.4243	2.91E − 05
					lambda	0.4645	2.30E − 12
Interactive full model							
spreml(Cancer_Rate ~ Age + Cigarettes × Cannabis × AUD + Analgesics + Cocaine + Income + Abortion + HRT + COCP + Caucasians + African + AIAN + Hispanic + Asian)							
Asian	2 (1.08 2.92)	0.0004	3.0967	−1763.77	phi	1.2367	5.59E − 05
					psi	0.3152	3.41E − 13
					rho	−0.4243	2.91E − 05
					lambda	0.4645	2.30E − 12
Interactive full model—Cannabinoids as main effects							
spreml(Cancer_Rate ~ Age + Cigarettes × THC × CBG × CBD + AUD + Analgesics + Cocaine + Income + Abortion + HRT + COCP + Caucasians + African + Hispanic + Asian)							
Abortion	1.21 (0.54 1.88)	0.0004	0.3096	−1763.67	phi	1.1775	4.41E − 05
					psi	0.3321	1.18E − 14
					rho	−0.4176	3.99E − 05
					lambda	0.4478	5.27E − 11
Interactive full model—Ethnic THC exposure as main effects							
spreml(Cancer_Rate ~ Age + Cigarettes + AUD + Analgesics + Cocaine + Income + Abortion + HRT + COCP + Caucasians + African + Hispanic + Asian)							
NHAfrican THC × Hispanic THC	1.14 (0.48 1.81)	0.0007	0.0279	−1764.30	phi	1.5874	7.72E − 06
					psi	0.3168	2.17E − 13
					rho	−0.4176	3.99E − 05
					lambda	0.4419	6.98E − 11
Interactive full model—Ethnic CBD exposure as main effects							
spreml(Cancer_Rate ~ Age + Cigarettes + AUD + Analgesics + Cocaine + Income + Abortion + HRT + COCP + Caucasians + African + Hispanic + Asian)							
NHCaucas THC × Hispanic THC	5.63 (2.85, 8.4)	0.0001	3.5743	−1759.431	phi	1.4579	9.55E − 05
					psi	0.3004	8.16E − 12
					rho	−0.3859	3.00E − 04
					lambda	0.4104	2.94E − 08
Table 2: Lagged geospatiotemporal models

Lagged models	Parameter	Estimate (CI)	P-value	SD	Log.Lik	Coefficient	Value	P-value
Temporal models								
Table 2: (Continued)

Lagged variables	Parameter	Estimate (CI)	P-value	SD	Log Lik	Coefficient	Value	P-value
	spremi(Cancer_Rate ~ Age + Cigarettes × THC × CBG × AUD + Analgesics + Cocaine + Income + Abortion + HRT + COCP + Caucas + African + Hispanic + Asian)							
THC	Abortion	1.31 (0.54 2.08)	0.0009	3.7106	−1635.79	phi	1.9328	0.0000134
CBG	Cigarettes	67.68 (3.55 131.82)	0.0386			psi	0.2759	0.055
CBD	Cigarettes:CBD	16.16 (0.39 31.93)	0.0446			rho	−0.4538	0.0365
CBD	CBD	−3.87 (−7.42 −0.31)	0.0329			lambda	0.3150	0.0000134
THC	Cigarettes:THC	−79.49 (−133.54 −25.43)	0.0039			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG	−21.85 (−36.69 −7.02)	0.0039			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG:CBD	−294.66 (−492.99 −96.33)	0.0036			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG:CBD	−82.92 (−137.82 −28.01)	0.0031			phi	1.9328	0.0000134

Lagging cannabinoids—THC × CBG × CBD

1 Temporal lag

THC	Abortion	1.31 (0.54 2.08)	0.0009	3.7106	−1635.79	phi	1.9328	0.0000134
THC	Cigarettes	67.68 (3.55 131.82)	0.0386			psi	0.2759	0.055
THC	Cigarettes:CBD	16.16 (0.39 31.93)	0.0446			rho	−0.4538	0.0365
THC	CBD	−3.87 (−7.42 −0.31)	0.0329			lambda	0.3150	0.0000134
THC	Cigarettes:THC	−79.49 (−133.54 −25.43)	0.0039			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG	−21.85 (−36.69 −7.02)	0.0039			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG:CBD	−294.66 (−492.99 −96.33)	0.0036			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG:CBD	−82.92 (−137.82 −28.01)	0.0031			phi	1.9328	0.0000134

Lagging cannabinoids—THC × CBG × CBD

2 Temporal lags

THC	Abortion	1.31 (0.54 2.08)	0.0009	3.7106	−1635.79	phi	1.9328	0.0000134
THC	Cigarettes	67.68 (3.55 131.82)	0.0386			psi	0.2759	0.055
THC	Cigarettes:CBD	16.16 (0.39 31.93)	0.0446			rho	−0.4538	0.0365
THC	CBD	−3.87 (−7.42 −0.31)	0.0329			lambda	0.3150	0.0000134
THC	Cigarettes:THC	−79.49 (−133.54 −25.43)	0.0039			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG	−21.85 (−36.69 −7.02)	0.0039			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG:CBD	−294.66 (−492.99 −96.33)	0.0036			phi	1.9328	0.0000134
THC	Cigarettes:THC:CBG:CBD	−82.92 (−137.82 −28.01)	0.0031			phi	1.9328	0.0000134

One en passant notes that the intrastate abortion rate appears as an independently significant term in all four models in which it appears as an input term namely the last four of these models.

Table 2 presents a series of ten lagged geospatiotemporal models. Both spatially and temporally lagged models are presented. The lagged variables are indicated in the first column. At temporal lags 14 terms including cannabis are significant in final models and have positive regression coefficients (Models 1–5). Cannabis exposure is independently significant at one spatial lag in Models 1–5.

When an interactive term including the cannabinoids THC, CBD and CBG is used to replace cannabis at one temporal lag a term including CBD is significant [cigarettes:CBD interaction: β-est. = 16.16 (0.39, 31.93), P = 0.0446]. When the same procedure is repeated at two temporal lags terms including CBG and CBD are significant in final models.

The intrastate abortion rate is again included in all ten final models.

Table 3 lists selected e-values which issue from these models. Supplementary Table S16 is an ordered list of the minimal e-values. It is noted to range from 1.13 to 65.66 × 10−14. Many highly significant differences are seen between many of the lines in the scatter-plots and between the notches for the illegal—Decriminalized cannabis status and the illegal and liberal cannabis legislative paradigms.

The results of linear regressions as suggested by Fig. 6 are shown in Table 4. Many highly significant differences are documented. For example the decriminalized status is noted to have a significantly higher BCI [β-est. = 3.36 (2.51, 4.21), P = 2.60 × 10−14] as is the liberal status [β-est. = 2.31 (1.65, 2.96), P = 9.09 × 10−12]. The relevant e-values are shown in Table 3. For these two data the minimum e-values are 2.32 and 2.14.

For the BCI by dichotomized legal status the relevant BCIs for illegal versus liberal status are 65.19 ± 0.21 and 67.50 ± 0.27/100,000, respectively (t = 6.8354, df = 654.84, P = 1.87 × 10−11). The intrastate abortion rate has featured in many of the above regression tables in final models. Supplementary Table S17 summarizes the estimates and their CIs, relative risks (RRs) and e-values from 23 final models. As shown in Supplementary Table S18 21 of these 23 minimum e-values are greater than the critical 1.25 threshold [94].

Discussion

Main Results

Data demonstrate for the first time a strong relationship between cannabis exposure and BCI which is robust to adjustment for other age, sociodemographic and selected reproductive covariates in regression models of various forms, is applicable to all cannabisinoids investigated namely THC, CBG and CBD, is maintained across space and time, is observed across all six ethnicities studied, persists after spatial and temporal lagging to at least eight years, is evident after inverse probability weighting and is associated with high e-values and may thus be properly said to be causal in nature. BCI is significantly higher under medical and decriminalized cannabis legal paradigms and under cannabis-liberal paradigms generally. To the best of our knowledge this relationship has not been disclosed previously.
Table 3: e-Values for BCI

Parameter	Estimate (CI)	RR (CI)	e-Values
LINEAR MODELS			
Cannabis_Use	3.93 (2.99, 4.87)	2.23 (1.84, 2.69)	3.88, 3.09
Cannabinoids			
THC	2.25 (1.61, 2.89)	1.57 (1.38, 1.79)	2.53, 2.11
Cannabichromene	3.68 (2.76, 4.6)	2.11 (1.75, 2.55)	3.64, 2.90
CBG	3.23 (2.42, 4.04)	1.93 (1.64, 2.27)	3.27, 2.66
CBN	1.96 (1.38, 2.54)	1.458 (1.32, 1.67)	2.33, 1.97
CBD	1.15 (0.39, 1.9)	1.25 (1.08, 1.45)	1.81, 1.37
Legal status			
Decriminalized	3.36 (2.51, 4.21)	1.98 (1.67, 2.35)	3.37, 2.32
Medical	1.63 (0.8, 2.46)	1.39 (1.17, 1.65)	2.13, 1.64
Time × Legal status	0.33 (0.13, 0.52)	1.06 (1.02, 1.10)	1.32, 1.18
Year × Medical	0.28 (0.08, 0.47)	1.05 (1.02, 1.09)	1.28, 1.14
Dichotomized legal status			
Liberal	2.31 (1.65, 2.96)	1.59 (1.39, 1.82)	2.56, 2.14
Year × Liberal	0.18 (0.07, 0.3)	1.03 (1.01, 1.06)	1.24, 1.13
MIXED EFFECTS MODELS			
Cannabis alone	3.06 (2.15, 3.97)	2.16 (1.72, 2.72)	3.75, 2.83
Age × cannabis interaction	8.75 (3.55, 13.96)	9.42 (2.49, 35.59)	18.33, 4.42
Adding—Drugs	3.95 (2.81, 5.09)	2.89 (2.12, 3.91)	5.21, 3.67
Adding—Full model	3.08 (1.9, 4.26)	2.46 (1.75, 3.49)	4.37, 2.89
Interactive—Full model	24.73 (14.98, 34.47)	1.67E + 03 (90.37, 31.16E + 04)	3.35E + 03, 180.25
Cigarettes × Cannabis:AUD	1974.44 (1121.84, 2827.04)	3.25E + 03 (3.33E + 04)+, Infinity)	Infinity, 6.66E + 146
Interactive with ethnic THC exposure	3.53 (2.88, 4.18)	3.31 (2.67, 4.15)	6.12, 4.78
Asian THC	27.9 (21.49, 34.32)	1.35E + 04 (1.52E + 03, 1.19E + 05)	2.70E + 04, 3.05E + 03
NHWhite THC	5.94 (4.41, 7.47)	7.57 (4.49, 12.74)	14.61, 8.46
NHWhite THC × Hispanic THC	3.99 (2.77, 5.21)	3.89 (2.57, 5.90)	7.26, 4.59
Interactive with ethnic CBD exposure	65.45 (50.11, 80.79)	9.23E + 09 (7.45E + 06, 1.14E + 11)	1.85E + 09, 1.49E + 07
NHCaucas_CBD: NHAfrican_CBD	7.87 (5.55, 10.18)	11.95 (5.78, 24.75)	23.41, 11.03
Asian CBD	1.32 (0.67, 1.98)	1.52 (1.58, 1.66)	2.40, 1.77
Interactive—Cannabinoids as main effects	150.1 (74.14, 226.05)	2.14E + 21 (3.77E + 10, 1.21E + 32)	4.28E + 21, 7.56E + 10
Cigarettes × CBG	25.77 (5.11, 46.44)	4.59E + 03 (5.46, 3.87E + 06)	9.19E + 03, 10.39
CBD	3.00 (0.53, 5.47)	2.67 (1.19, 2.78)	4.78, 1.67
Cigarettes × CBD	80.19 (5.88, 154.5)	2.49E + 11 (7.51, 8.25E + 21)	4.97E + 11, 14.50
PANEL REGRESSION			
Additive model—Drugs only	5.52 (4.18, 6.86)	1.27 (1.20, 1.36)	1.87, 1.70
Adding full model	8.226 (6.79, 9.66)	1.51 (1.41, 1.63)	2.40, 2.17
Interactive full model	26.87 (22.81, 30.94)	4.23 (3.40, 5.26)	7.93, 6.26
Cannabis	26.69 (19.39, 33.98)	1.28 (1.18, 1.37)	1.87, 1.66
Interactive full model—2 Lags	110.73 (53.78, 167.69)	2.64E + 04 (232.51, 3.01E + 06)	4.33E + 04, 464.53
Cannabis:AUD	1639.45 (1309.82, 1969.08)	4.00E + 29 (8.99E + 23, 1.78E + 35)	8.00E + 29, 1.79E + 24
Interactive full model—4 Lags	116.37 (66.05, 166.7)	2.90E + 03 (93.04, 9.07E + 03)	5.81E + 03, 185.58
Cannabis:AUD	2190 (1656.88, 2723.12)	3.59E + 63 (2.75E + 51, 4.69E + 75)	7.19E + 63, 5.51E + 51
Cannabis:AUD	5240 (3640.64, 6859.36)	1.92E + 167 (2.73E + 130, 1.34E + 204)	Infinity, 5.47E + 130
apparently because it has not been investigated earlier and has also not been explored in a space–time context by prior researchers.

Cannabis genotoxicity has previously been demonstrated in relation to testicular and several paediatric cancers [12–15, 28, 33, 34, 36, 38–41], with genotoxicity expected to be reflected in birth defects and in tumourigenesis rates [96]. Transgenerationally transmissible cannabis genotoxicity has also been implied by previous studies linking prenatal cannabis exposure with congenital birth defects including anencephalus, diaphragmatic hernia, gastoschisis and oesophageal atresia [97–100], with ventricular septal defect and Ebstein anomaly [101] and more recently with atrial septal defect [65]. Prenatal paternal exposure has been linked with transposition of the great vessels [102]. Indeed a classical report from Hawaii linked prenatal cannabis exposure with 21 birth defects [103], in Canada total birth defects were recently linked with cannabis use [104], in Australia 18 defects were linked with cannabis exposure [105] and in Colorado a 29% rise in total congenital defects was noted across the period of legalization [106, 107].

One report has recently identified 42 birth defects as being significantly more common in the highest quintile of cannabis using US states compared to the others including arm reduction defects [64]. Reports from several areas in France where cannabinoids are allowed in the food chain and Germany show an unexplained spike in congenital limb defect anomalies [108–111]. However no such rise has been noted in nearby Switzerland where cannabinoids are not permitted to enter the food chain [108–110]. On the basis of this recent European experience one can only conclude in the broader genotoxic context that allowing cannabinoids to enter food chain can potentially lead to very serious public health consequences indeed.

The major question at issue appears to be therefore not “Is cannabis genotoxic?”—for that issue has clearly been settled in the affirmative beyond reasonable doubt—but “How genotoxic is cannabis?”—or more precisely “What are the limits of cannabis genotoxic?”—for that issue has clearly been settled in the affirmative beyond reasonable doubt.

As important as what has been shown, it seems that what has not been shown is even more intriguing. The striking finding that the commonest human cancer is causally related to cannabis consumption leaves open the question of which other cancers might also be similarly implicated. It raises the important issue that cannabis-related genotoxicity may have been seriously

Parameter	Estimate (CI)	RR (CI)	e-Values
Interactive full model—Cannabis as instrumental variables			
Cigarettes:Cannabis	20.44 (9.5, 31.38)	281.71 (13.84, 5.73E + 03)	562.93, 27.15
Cannabis AUD	196.03 (74.72, 317.34)	3.14E + 23 (9.66E + 08, 1.02E + 38)	6.28E + 23, 1.93E + 09

Interactive full model—Ethnic THC exposure as instrumental variables

Parameter	Estimate (CI)	RR (CI)	e-Values
Cigarettes:Cannabis	23.95 (8.92, 38.97)	729.25 (11.75, 45.24E + 04)	1.45E + 03, 22.99
Cannabis AUD	245.79 (56.05, 435.54)	2.42E + 29 (5.58E + 06, 1.05E + 52)	4.84E + 29, 1.11E + 07

Interactive full model—Cannabinoids as instrumental variables

Parameter	Estimate (CI)	RR (CI)	e-Values
Cannabis	1.45 (0.61, 2.29)	1.43 (1.16, 1.77)	2.22, 1.60
Additive model			
Cannabis	1.45 (0.61, 2.29)	1.44 (1.16, 1.77)	2.22, 1.60
Additive model without ethnicity			
Cannabis	1.56 (0.69, 2.42)	1.47 (1.18, 1.83)	2.31, 1.66
Interactive model			
Cigarettes:Cannabis	3.59 (1.94, 5.24)	2.43 (1.62, 3.65)	4.30, 2.62

Interactive full model—Ethnic THC exposure as main effects

Parameter	Estimate (CI)	RR (CI)	e-Values
NHAfrican_THC:Hispanic_THC	1.14 (0.48, 1.81)	1.33 (1.13, 1.58)	2.01, 1.51
NHAfrican_THC	1.8 (0.34, 3.25)	1.18 (1.09, 1.26)	2.53, 1.41

Interactive full model—Cannabinoids exposure as main effects

Parameter	Estimate (CI)	RR (CI)	e-Values
NHCAucas_CBD	5.63 (2.85, 8.4)	4.39 (2.10, 8.90)	8.13, 3.63

GEOSPATIAL MODELS

Parameter	Estimate (CI)	RR (CI)	e-Values
Cannabis	7.26 (0.83, 13.7)	1.48 (1.19, 1.85)	2.39, 1.67
1 Temporal lags			
Cigarettes:Cannabis:Analgesics	313.25 (200.08, 426.42)	7.19E + 03 (209.11, 2.47E + 05)	1.44E + 04, 417.71
2 Temporal lags			
Cigarettes:Cannabis	21.23 (3.72, 38.73)	244.77 (2.64, 2.26E + 04)	489.04, 4.72
3 Temporal lags			
Cigarettes:Cannabis:Analgesics	20.15482 (1.77, 38.54)	166.36 (1.58, 1.74E + 04)	332.22, 2.54
4 Temporal lags			
Cigarettes:Cannabis	20.84 (1.36, 40.31)	185.30 (1.42, 2.42E + 04)	370.10, 2.19
1 Spatial lag			
Cannabis	20.69 (5.29, 36.09)	273.37 (4.23, 1.76E + 04)	546.24, 7.94
Lagging cannabinoids—THC × CBG			
THC:AUD	16.69 (11.04, 22.35)	64.43 (15.75, 263.63)	128.37, 30.98
1 Temporal lag cannabinoids—THC × CBG	16.16 (0.39, 31.93)	52.63 (1.11, 2.49E + 03)	104.76, 1.46
2 Temporal lag cannabinoids—THC × CBG			
Cigarettes CBG	6.23 (2.06, 10.39)	4.55 (1.65, 12.52)	8.57, 2.69
Cannabinoid and other drug risk factors for female breast cancer

Figure 6: Graphs of relationship of BCI to cannabis legal status. (A) Scatterplot of BCI by cannabis legal status, (B) boxplot of BCI by cannabis legal status, (C) scatterplot of BCI by cannabis legal status dichotomized as illegal versus liberal legal paradigms and (D) boxplot of BCI by dichotomized cannabis legal status

Table 4: Linear regression of the relationship of cannabis legal status to BCI

Parameter	Estimate (CI)	P-value	Model	SD	Adj. R-Squared	F	Df	P-value
Legal status								
$\text{lm(Cancer_Rate \sim Legal_Status)}$								
Decriminalized	3.36 (2.51, 4.21)	2.60E − 14		4.4734	0.0757	21.44	3746	2.51E − 13
Medical	1.63 (0.8, 2.46)	0.0001						
Time × Legal status	$\text{lm(Cancer_Rate \sim Year \times Legal_Status)}$							
Decriminalized	$-651.52 (-1050.31, -252.73)$	0.0014		4.4233	0.0962	12.39	7742	4.62E − 15
Medical	$-555.49 (-947.68, -163.31)$	0.0056						
Year: Decriminalized	0.33 (0.13, 0.52)	0.0014						
Year: Medical	0.28 (0.08, 0.47)	0.0055						
Dichotomized legal status	$\text{lm(Cancer_Rate \sim Dichotomized legal_status)}$							
Liberal	2.31 (1.65, 2.96)	9.09E − 12		4.5133	0.0591	48.03	1748	9.09E − 12
Time × Dichotomized legal status	$\text{lm(Cancer_Rate \sim Year \times Dichotomized legal_status)}$							
Liberal	$-436.94 (-746.96, -126.92)$	0.0059		4.4887	0.0693	19.6	3746	3.08E − 12
Year: Liberal	0.18 (0.07, 0.3)	0.0018						

underestimated in our culture generally in the consciousness of the public health community, the medical profession, government and health regulators and the general community alike. Indeed a recent analysis of European data confirms that cannabis exposure is similarly related to several common cancers when considered in a space–time paradigm and by applying the tools of causal inference (three manuscripts in press).

AUD (formerly known as alcohol dependence) is featured in some final geospatial models but it was not independently significant or prominent in the results in the same way as cannabis,
the cannabinoids or abortion. The index of alcohol consumption used in the present analysis was AUD which is a different metric to alcohol consumption per se. The AUD measure was used as we wished to look at the possibly genotoxic effects of alcohol which are likely more linked with individuals dosing at higher levels. Importantly it has been noted that foetal alcohol syndrome is mediated epigenomically via the cannabinoid type 1 receptor (CB1R) [112–119].

While there are many modes of consuming cannabis, some common ones involve mixing cannabis with tobacco, and consuming as either a self-rolled cigarette or cigar, or smoking in a pipe. Accordingly, this may cause confounding when assessing the association of cannabis use with selected morbidities. However, despite laboratory based mechanistic evidence that compounds found in tobacco may induce BC [120, 121], data from a number of systematic epidemiological reviews have identified no overall association [122, 123]. Notwithstanding controversy still continues with a number of recent cohort studies indicating an increased risk of BCI among women with a significant history of tobacco use, or who commenced use at a young age [124, 125]. Unequivocal results likely reflect tobacco’s negative or lesser role as a contributing antecedent to BC compared to other more robust known aetiological factors. It is therefore unlikely that co-use of tobacco with cannabis impacts largely on study findings.

Although the intrastate abortion rate was not a primary focus of the present analysis it was included as a covariate. It is noted that abortion persisted as an independently significant term in many final space–time models and so it appears to be an independent BCI covariate in this space–time and causal inference analysis. However since much of these data are temporally and spatially kriged, this conclusion should be regarded as provisional at this point.

Pathophysiological Mechanisms

Endocrine Disruption

Various cannabinoids have been shown to interact with the endocrine system and have been noted to act as endocrine disruptors in ovaries, testes and placenta [126–130], and cannabinoids are also involved in breast pathophysiology [11, 131] and are normally excreted in breast milk [132, 133]. Endocrine disruption has been noted to be a powerful negative impactor of human health [134, 135]. Agonists at the Type 1 and 2 cannabinoid receptors (CB1R and CB2R) are known to interfere with the hypothalamic-pituitary-gonadal axis in human females [11], hypothalamic-pituitary-adrenal axis [136–138], with insulin [139, 140] and other hormones and to stimulate human prolactin levels [141–143]. Various cannabinoid concentrations have been noted both to stimulate [131] and inhibit [144–146] the growth of BC cells in culture.

It was recently noted that many hormones cause rapid and widespread re-arrangement of the genome through epigenomic mechanisms [147]. This makes sense particularly for the many steroid and sex hormones which are lipophilic and directly engage nuclear hormone receptors [148].

Genotoxicity and Epigenotoxicity

Several cannabinoids also act at clinically relevant doses by multiple genotoxic mechanisms on genes, the bases of DNA, chromosomes and the epigenome [64, 149–158]. Cannabis tars contain most of the same carcinogens as tobacco tars [159–163]. For example the cannabinoid THC has long been known to test positive in the micronuclear assay and micronuclei are known to be a major engine for chromothriptic events [149, 164]; THC, CBD and cannabiol (CBN) have been implicated in chromosomal translocation events [165]; THC and CBN have been implicated in congenital heart defects incidence across USA [65, 101]; cannabidiavirin and CBD have been shown to test positive in the comet assay for DNA breaks and have been shown to cause the oxidation of all four DNA bases [166]; THC largely modulates DNA methylation at CpG islands of sperm DNA with neurological and functional impacts for subsequent generations [150, 151, 154–156, 158]; and cannabis use has been linked with the chromosomal trisomy Downs syndrome in Canada, Australia, Colorado, Hawaii and the USA [103–105, 167, 168]. Cannabinoids are also highly toxic to mitochondria [169–177] which impact genetic and epigenetic processes directly through ATP and epigenetic substrate supply [107, 178, 179] and also indirectly through mitonuclear balance pathways [178, 179]. Hence multiple pathways exist by which cannabis use could potentially impact BCI.

The subjects of cannabinoid genotoxicity and epigenotoxicity are large and complex and have been reviewed in detail elsewhere [40, 64, 65, 105, 107, 149–158, 166, 168, 180]. In this regard a recent single tumour cell DNA sequencing study showing that haematological malignancies can arise due to clonal sweeps in the setting of specific genotoxic stressors is of particular interest and may also apply to solid organ carcinogenesis [181].

Transgenerational Effects

Epimutations of the DNA methylome noted in the sperm after cannabis use in rats and humans include pathways in cancer, hippo pathways and mitogen-activated protein kinase pathways which are all involved in cancer [156, 182]. Significant overlap has also been found with autism genes, genes involved in neural, cerebral, cognitive and brain development and learning, glutamatergic synapse formation and cardiogenesis [156, 182]. This important finding implies transgenerational epigenetic inheritance in humans and confirmed the significance of such findings in rodents on reproductive outcomes.

Reproductive cancers identified as cannabis-associated by a recent review of European data include testicular cancers including both non-seminoma germ cell and seminoma and also its homologue in the female the dysgerminoma of the ovary together with breast, vulvar and vaginal cancers [183].

In a recent review of European congenital anomalies genital disorders including hypospadias and the genetic syndromes trisomies 21, 18 and 13 (Syndromes of Down, Edwards and Patau) along with chromosomal disorders, genetic and microdeletion syndromes, and Turner (female XO) and Klinefelter (male XXY) syndromes were found to be cannabis-related [183]. It is important to note that if one adds together the length of all the chromosomes implicated by these clinical syndromes (13, 18, 21, 22 and X) with those implicated from cannabis-related tumorigenesis (testicular cancer and ALL [43, 48]. Chromosomes 12 and 19) one arrives at a surprising 585 MB of the 3000 MB or 19.5%, of human genome directly impacted by cannabinoid genotoxicity.

Accelerated Ageing Including Potentially Gamete Ageing

It was shown several years ago that cannabis consumption is associated with an increase in cardiovascular age and therefore the biological age of the human organism [185].
It has also been shown that patients who consume tobacco, opioids and cannabis have a dramatic truncation of the female reproductive lifespan with a 58% reduction in their fertile period as measured by the key metric the Follicle Stimulating Hormone (FSH)/Luteinizing Hormone (LH) ratio which inverts pre-menopausally and is a sensitive biomarker of the perimenopause [185]. These investigators found a reduction in the age of ratio inversion from 46.2 years to 28.1 years. It was also recently demonstrated that smoking 20 cigarettes daily reduces the age of natural menopause by only one year [186]. Moreover, these investigators also found that ovarian ageing is invariably caused by activation of the DNA damage response (DDR). This further implies that the dramatic acceleration of premature ovarian failure by combined opioid–cannabinoid use is induced by a marked increase in ovarian DDR to damaged germline DNA.

Numerous deleterious effects of cannabinoids on sperm development have been described including DNA fragmentation, disruption of protamine–histone substitution and so DNA packing, DNA nicking by nuclear transition protein 2 (tnp2), protection of DNA and nuclear size and a reduced concentration of sperm in the seminiferous ducts [177, 187, 188]. Cannabinoids are also found in the midcycle oviduct fluid and in the fluid of the Graafian follicle [177, 187, 188].

Together with the finding that nuclear architecture is exquisitely sensitive to hormonal signals [147] this demonstrates that reproductive tissues can be powerfully impacted by environmental stimuli. A dramatic effect of cannabis on oocyte cell division was also shown by classical investigators including the documentation of a 20% cell loss with just a single oocyte cell division and severe derangement of nuclear architecture including nuclear blebs and bridges and chromosomal nondisjunctions [189]. The above noted parallelism between the well-established cannabis-testicular non-seminomatous germ cell tumours [12–15, 18–21] and the newly described link between cannabis consumption and the homologous female tumour the ovarian dysgerminoma is particularly germane in regard to gonadal and germ cell ageing (manuscript submitted).

These more recent findings collectively imply accelerated ageing of the germ cells themselves and thus the gametes derived from them as their downstream progeny. In terms of breast carcinogenesis one can conjecture that it may be shown in time that these factors may be relevant to either the oncogenic incubation phase in the adult or in pre-conceptual developmental influences.

It is important to observe that whilst malignant and congenital anomaly outcomes are relatively rare as cannabinoids increasingly enter the food chain [190], population-wide genomic and epigenomic ageing can be expected to become universal as implied by elegant, sophisticated and powerful research on epigenomic ageing from Harvard Medical School [191].

Generalizability

We feel that the present results are widely generalizable for several reasons. The present analysis is based on a large population-level data set and has many narrow CIs and highly significant P-values. This analysis takes into account many covariates which have been previously shown to be related to BCI. Many very high e-values imply that the inclusion of further covariates is unlikely to disturb the main conclusions. Moreover, the results explain various lifestyle factors which may be driving a global increase in the BCI beyond those which are have been identified to date. The strongly positive results from the causal inference analyses indicate that the relationship fulfills the criteria for causality and so is likely to apply in all nations where data of adequate quality exists.

Strengths and Limitations

This report has a number of strengths and weaknesses. Its strengths include the use of a national census database for BC and socio-economic and sociodemographic variables, the use of a nationally representative sample with high response rates for drug use data, the confirmation of the main results by a variety of regression techniques, the use of multivariable regression across both space and time simultaneously, the use of spatially and temporally lagged models, the use of additive and interactive models, the calculation of high precision P-values down to $P < 10^{-320}$, the use of multiple covariates across different domains, the use of multiple graphs and map-graphs to display the results and direct the analysis, the use of different forms of correlation, the use of the techniques of causal inference particularly inverse probability weighting and e-values and the use of robust regression techniques. Weaknesses include the unavailability of some component data sets for HRT, hormonal contraception and abortions, the unavailability of data relating to other reproductive factors such as age of first childbirth, age of menarche, age of menopause and duration of breastfeeding and the limitation of the present analysis to state-level data. However, the generally high e-values indicate that the inclusion of further covariates is unlikely to change the principal conclusions substantially. Clearly subsequent analyses in this field need to be performed by those who have access to more comprehensive data sets and can perform analyses at higher geospatial resolution.

A further extension of the present work is the combining of causal inference techniques into spatial models. In R-packages such as the complex survey package it is possible to assign the error term as a product of several lists of weights [81]. This facility is not presently implemented in geospatial modelling techniques in R. However such an implementation within geospatial methods would represent a major addition to the field by ushering in a first-in-class causal geospatial method which has not previously been deployed. Such an implementation would therefore powerfully enhance both formal quantitative causal inference as well as geospatial inferential techniques. The option of the use of instrumental variables within spatial methods would also be analytically and inferentially of both considerable interest and utility.

The implications of this finding are far reaching. As noted in the Background section of the present paper BC is the commonest cancer of all. Cannabis is presently enjoying widespread popularity deriving from its celebrated and indeed unique status in the popular culture and the common perception of its apparent safety as a “soft drug.” In many US states foods which are marketed as low in THC are represented as posing no threat to human health. The dramatic results presented above applying to CBG and CBD in particular demonstrate that in relation to BC this is quite untrue and indeed in terms of the downstream public health implications constitutes a very dangerous practice.

This is particularly applicable to “industrial hemp” which is said to be low in THC, but likely higher in other cannabinoids. The US Farm Act is believed to have allowed hemp products to be used as cattle fodder, implying that cannabinoids can now enter the food chain in meat, milk and dairy products. If used in chicken feed, this will extend also to eggs.
In states such as Colorado where cannabis is completely legalized, CBD cookies, sauces, jams and sweets are widely marketed apparently as they are non-psychoactive and said to be benign. Both claims are likely erroneous. CBD in fact does bind to CB1 receptors at high doses [192–196] which can presumably be achieved under high level dosing such as may commonly be seen under cannabis-legal paradigms, and CBD has mental and genotoxic effects which can be reversed by application of canonical CB1 antagonists [96].

Conclusion

The present analysis shows that BCI demonstrates a strong bivariate relationship to cannabis use and exposure to the cannabinoids THC, CBD and CBG across all ethnicities which is maintained after multivariable regression performed in a variety of model types, persists after space–time regression and is a causal relationship as demonstrated by the canonical accepted tools of epidemiological causal inferential reasoning. BCI was significantly higher under cannabis-liberal legal paradigms including medicalization and decriminalization. The kriged intrastate abortion rate was also shown to be an independent and robust BCI covariate in space–time analyses and was shown to be causally related to BCI. Due to the missing data fraction in this covariate field this conclusion is provisional at this point. This work therefore adds the cannabinoids as a previously unrecognized class of breast carcinogens which may explain some of the recent global rise in BCI. These robust and internally consistent findings involving on the one hand the commonest human cancer of all and on the other three major cannabinoids including CBD carry far-reaching implications and indicate that cannabinoid genotoxicity has been seriously underestimated broadly across western culture. Cannabinoid genotoxicity can be expected to manifest in public health in the clinical domains of congenital anomalies and cancer epidemiology. Combining recent multi-jurisdictional congenital anomaly data from Colorado, Hawaii, Canada, Australia and the USA [64, 103–105, 157, 167, 168] with the present report and previous testicular and paediatric cancer reports [12–15, 18, 21, 33, 34, 36, 38, 39], together with well-documented negative impacts on mental health [66] and paediatric autism rates [62, 63, 100], the conclusion that widespread cannabis genotoxicity and neurotoxicity as implicit in cannabis-liberal paradigms constitute an impending public health disaster of catastrophic proportions seems inescapable. Further historical and time-projected health econometric quantitative studies across these wide domains of clinical pathology are indicated.

Acknowledgements

Not applicable.

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files. Data have been made publicly available on the Mendeley Database Repository and can be accessed from this URL: http://dx.doi.org/10.17632/y2jcvphmc.1.

Supplementary data

Supplementary data is available at EnvEpig online.

Funding

No funding was provided for this study. No funding organization played any role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

Conflict of interest statement

None declared.

Ethics approval and consent to participate

The Human Research Ethics Committee of the University of Western Australia provided ethical approval for the study to be undertaken on 7 January 2020 (No. RA/4/20/4724). Consent to participate was not required as the data utilized were derived from publicly available anonymous data sets and no individual identifiable data were utilized. All methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication

Not applicable.

Author contributions

A.S.R. assembled the data, designed and conducted the analyses, and wrote the first manuscript draft. G.K.H. provided technical and logistic support, co-wrote the paper, assisted with gaining ethical approval, and provided advice on manuscript preparation and general guidance to study conduct. All authors have read and approved the manuscript.

Abbreviations

Acronym	Expanded meaning
lambda	Autocorrelation in the spatial error model term
LogLik	Log Likelihood at Model Optimization
phi	Random Effects model term
psi	Serial error correlation model term
rho	Spatial error model term
semsre	Spatial error with serial correlation and random effects with spatial lagging

References

1. Harbeck N, Penault-Llorca F, Cortes J et al. Breast cancer. Nat Rev Dis Primers 2019;5:66–96.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:7–30.
3. Rossouw JE, Anderson GL, Prentice RL et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321–33.
4. Skouby S. Consequences for HRT following the HERS II and WHI reports: the primum non nocere is important, but translation into quo vadis is even more essential. Acta Obstet Gynecol Scand 2002;81:793–8.
5. Morch LS, Skovlund CW, Hannaford PC et al. Contemporary hormonal contraception and the risk of breast cancer. N Engl J Med 2017;377:2228–39.
6. Busund M, Bugne NS, Braaten T et al. Progestin-only and combined oral contraceptives and receptor-defined premenopausal breast cancer risk: the Norwegian Women and Cancer Study. Int J Cancer 2018;142:2293–302.

7. Beral V, Bull D, Doll R et al. Breast cancer and abortion: collaborative reanalysis of data from 53 epidemiological studies, including 83 000 women with breast cancer from 16 countries. Lancet 2000;366:1007–16.

8. Brind J, Chinchilli VM, Severs WB et al. Induced abortion as an independent risk factor for breast cancer: a comprehensive review and meta-analysis. J Epidemiol Community Health 1996;50:481–96.

9. Brind J, Condy SJ, Lanfranchi A et al. Induced abortion as an independent risk factor for breast cancer: a systematic review and meta-analysis of studies on south Asian women. Issues Law Med 2018;33:32–54.

10. National Cancer Institute and Centers for Disease Control. SEER Explorer. Atlanta, Georgia. https://seer.cancer.gov/explorer/application.html (1 January 2022, date last accessed).

11. Dobovšek L, Krstanović F, Borštnar S et al. Cannabinoids and hormone receptor-positive breast cancer treatment. Cancers (Basel) 2020;12:525–36.

12. Daling JR, Doody DR, Sun X et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 2009;115:1215–23.

13. Trabert B, Sigurdson AJ, Sweeney AM et al. Marijuana use and testicular germ cell tumors. Cancer 2011;117:848–53.

14. Lacson JC, Carroll JD, Tuazon E et al. Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonsesminoma risk. Cancer 2012;118:5374–83.

15. Callaghan RC, Allebeck P, Akre O et al. Cannabis use and incidence of testicular cancer: a 42-year follow-up of Swedish men between 1970 and 2011. Cancer Epidemiol Biomarkers Prev 2017;26:1644–52.

16. Reece AS, Hulse GK. Causal inference multiple imputation investigation of the impact of cannabinoids and other substances on ethnic differentials in US testicular cancer incidence. BMC Pharmacol Toxicol 2021;22:40–71.

17. Volkow ND, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med 2014;371:878–9.

18. Gurney J, Shaw C, Stanley J et al. Cannabis exposure and risk of testicular cancer: a systematic review and meta-analysis. BMC Cancer 2015;15:897–906.

19. Ghasemisfes M, Barrow B, Leonard S et al. Association between marijuana use and risk of cancer: a systematic review and meta-analysis. JAMA Netw Open 2019;2:e1916318–32.

20. Campeny E, López-Pelayo H, Nutt D et al. The blind men and the elephant: systematic review of systematic reviews of cannabis use related health harms. Eur Neuropsychopharmacol 2020;33:1–35.

21. Song A, Myung NK, Bogunil D et al. Incident testicular cancer in relation to using marijuana and smoking tobacco: a systematic review and meta-analysis of epidemiologic studies. Urol Oncol 2020;38:e642–e641–9.

22. Aldington S, Harwood M, Cox B et al. Cannabis use and risk of lung cancer: a case-control study. Eur Respir J 2008;31:280–6.

23. Voirin N, Berthiller J, Benhaim-Luzon V et al. Risk of lung cancer and past use of cannabis in Tunisia. J Thorac Oncol 2006;1:577–9.

24. Berthiller J, Straif K, Boniol M et al. Cannabis smoking and risk of lung cancer in men: a pooled analysis of three studies in Maghréb. J Thorac Oncol 2008;3:1398–403.

25. Zhang ZF, Morgenstern H, Spitz MR et al. Marijuana use and increased risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomarkers Prev 1999;8:1071–8.

26. Hashibe M, Ford DE, Zhang ZF. Marijuana smoking and head and neck cancer. J Clin Pharmacol 2002;42:1035–75.

27. Sidney S, Quesenberry CP Jr, Friedman GD et al. Marijuana use and cancer incidence (California, United States). Cancer Causes Control 1997;8:722–8.

28. Efird JT, Friedman GD, Sidney S et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: cigarette smoking and other lifestyle behaviors. J Neurol Oncol 2004;68:57–69.

29. Moiché Bokobo P, Atxa de la Presa MA, Cuesta Angulo J. Transient testicular cancer with epididymal carcinoma and the elephant: systematic review of systematic reviews of cannabinoids and other substances in testicular cancer risk. Urol Oncol 2021;39.e1007–11.

30. Robison LL, Buckley JD, Daigle AE et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 1989;63:1904–11.

31. Nieder AM, Lipke MC, Madjar S. Transitional cell carcinoma associated with marijuana: case report and review of the literature. Urology 2006;67:200.

32. Daling JR, Doody DR, Sun X et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 2009;115:1215–23.

33. Robison LL, Buckley JD, Daigle AE et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 1989;63:1904–11.

34. Wen WQ, Shu XO, Steinbuch M et al. Paternal military service and risk for childhood leukemia in offspring. Am J Epidemiol 2000;151:231–40.

35. Reece AS, Hulse GK. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021;11:13892–912.

36. Trivers KF, Mertens AC, Ross JA et al. Parental marijuana use and risk of childhood acute myeloid leukaemia: a report from the Children’s Cancer Group (United States and Canada). Paediatr Perinat Epidemiol 2006;20:110–8.

37. Reece AS, Hulse GK. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021;11:13892–912.

38. Kuijten RR, Bunin GR, Nass CC et al. Gestational and familial risk factors for childhood astrocytoma: results of a case-control study. Cancer Res 1990;50:2608–12.

39. Grufferman S, Schwartz AG, Ruymann FB et al. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 1993;4:217–24.

40. Reece AS. Chronic toxicology of cannabis. Clin Toxicol (Philad) 2009;47:517–24.

41. Volkow ND, Baler RD, Compton WM et al. Adverse health effects of marijuana use. N Engl J Med 2014;370:2219–27.

42. Reece AS, Hulse GK. Cannabinoid exposure as a major driver of pediatric acute lymphoblastic leukemia rates across the USA: combined geospatial, multiple imputation and causal inference study. BMC Cancer 2021;21:984–1017.

43. Reece AS, Hulse GK. A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid
exposure as drivers of rising US pediatric cancer rates. BMC Cancer 2021;21:197–230.

44. Grobner SN, Worst BC, Weischenfeldt J et al. The landscape of genomic alterations across childhood cancers. Nature 2018;555:321–7.

45. Ma X, Liu Y, Liu Y et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukemias and solid tumours. Nature 2018;555:371–6.

46. Lang G-T, Jiang Y-Z, Shi J-X et al. Characterization of the genomic landscape and actionable mutations in Chinese breast cancers by clinical sequencing. Nat Commun 2020;11:5679–91.

47. Tomar RS, Beaumont J, Hsieh JCY. Reproductive and Cancer Hazard Assessment Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency: evidence on the carcinogenicity of marijuana smoke. California Health Dept 2009;1:1–150.

48. Reece AS, Hulse GK. Cannabinoid exposure as a major driver of pediatric acute lymphoid leukemia rates across the USA: combined geospatial, multiple imputation and causal inference study. BMC Cancer 2021;21:984–1017.

49. National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence – U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001-2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June 2020. www.cdc.gov/cancer/public-use (1 January 2022, date last accessed).

50. Substance Abuse and Mental Health Services Administration. Substance Abuse and Mental Health Data Archive (SAMHDA) https://www.datafiles.samhsa.gov/ (1 January 2022, date last accessed).

51. ElSohly MA, Mehemic Z, Foster S et al. Changes in cannabis potency over the last 2 decades (1995-2014): analysis of current data in the United States. Biol Psychiatry 2016;79:613–9.

52. Chandra S, Radwan MM, Majumdar CG et al. New trends in cannabis potency in USA and Europe during the last decade (2008-2017). Eur Arch Psychiatry Clin Neurosci 2019;269:5–15.

53. ElSohly MA, Ross SA, Mehemic Z et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980-1997. J Forensic Sci 2000;45:24–30.

54. Kyle Walker. Tidycommons: Load US Census Boundary and Attribute Data as 'tidyverse' and 'sf'-Ready Data Frames https://www.r-pkg.org/pkg/tidycommons; https://cran.rstudio.com/web/packages/tidycommons/tidycommons.pdf (1 January 2022, date last accessed).

55. Kortsmit K, Jatalouc TC, Mandel MG et al. Abortion surveillance - United States, 2018. MMWR Surveill Summ 2020;69:1–29.

56. Sprague BL, Trentham-Dietz A, Cronin KA. A sustained decline in postmenopausal hormone use: results from the National Health and Nutrition Examination Survey, 1999-2010. Obstet Gynecol 2012;120:595–603.

57. Boulet SL, D’Angelo DV, Morrow B et al. Contraceptive use among nonpregnant and postpartum women at risk for unintended pregnancy, and female high school students, in the context of zika preparedness - United States, 2011-2013 and 2015. MMWR Morb Mortal Wkly Rep 2016;65:780–7.

58. Pazol K, Ellington SR, Fulton AC et al. Contraceptive use among women at risk for unintended pregnancy in the context of public health emergencies - United States, 2016. MMWR Morb Mortal Wkly Rep 2018;67:898–902.

59. Bensyl DM, Iuliano DA, Carter M et al. Contraceptive use—United States and territories, behavioral risk factor surveillance system, 2002. MMWR Surveill Summ 2005;54:1–72.

60. Douglas-Hall A, Kost K, Kavanaugh ML. State-Level Estimates of Contraceptive Use in the United States, 2017. https://www.guttmacher.org/sites/default/files/report_pdf/state-level-estimates-contraceptive-use-in-us-2017.pdf (1 January 2022, date last accessed).

61. Legality of cannabis by U.S. jurisdiction. https://en.wikipedia.org/wiki/Legality_of_cannabis_by_US_jurisdiction (1 January 2022, date last accessed).

62. Reece AS, Hulse GK. Epidemiological associations of various substances and multiple cannabinoids with Autism in USA. Clin Pediatr 2019;4:1–20.

63. Reece AS, Hulse GK. Effect of cannabis legalization on US Autism incidence and medium term projections. Clin Pediatr 2019;4:1–17.

64. Reece AS, Hulse GK. Cannabis in pregnancy – rejoinder, exposition and cautionary tales. Psychiatric Times 2020, 37. https://www.bing.com/search?q=Cannabis+in+Pregnancy+&oq=%E2%80%93+Rejoinder+%2C+Exposition+and+Cautionary+Tales&FORM=U92017531&PC=U92017531&pglt=92017443&FORM=ANSFA92017481&PC=U92017531 (1 January 2022, date last accessed).

65. Reece AS, Hulse GK. Contemporary epidemiology of rising atrial septal defect trends across USA 1991-2016: a combined ecological geospatiotemporal and causal inferential study. BMC Pediatr 2020;20:539–50.

66. Reece AS, Hulse GK. Co-occurrence across time and space of drug- and cannabinoid- exposure and adverse mental health outcomes in the National Survey of Drug Use and Health: combined geotemporal and causal inference analysis. BMC Public Health 2020;20:1655–69.

67. Reece AS, Hulse GK. Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development. Sci Rep 2021;11:13892–912.

68. Reece AS, Hulse GK. Cannabinoid exposure as a major driver of pediatric acute lymphoid leukaemia rates across the USA: combined geospatial, multiple imputation and causal inference study. BMC Cancer 2021;21:984–1017.

69. Reece AS, Hulse GK. Geotemporal and causal inference epidemiological analysis of US survey and overview of cannabis, cannabidiol and cannabinoid genotoxicity in relation to congenital anomalies 2001–2015. BMC Pediatr 2022;22:47–124.

70. Wickham H, Averick M, Bryan J et al. Welcome to the Tidyverse. J Open Source Softw 2019;4:1–29.

71. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Vol. 1. New York: Springer-Verlag, 2016.

72. Pebesma E. Simple features for R: standardized support for spatial vector data. R J 2018,10:439–46.

73. Garnier S. Viridis: Default Color Maps from ‘matplotlib’. https://CRAN.R-project.org/package=viridis (1 January 2022, date last accessed).

74. Henry H, Wickham H. Purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr (1 January 2022, date last accessed).

75. Robinson D. Broom: Convert Statistical Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom (1 January 2022, date last accessed).
76. Bolker B. Broom.mixed: Tidying Methods for Mixed Models. http://github.com/bbolker/broom.mixed (1 January 2022, last accessed).

77. Taiyun W. R package "corrgram". Visualization of a Correlation Matrix https://github.com/taiyun/corrgram (1 January 2022, last accessed).

78. Wright K. Corrgram: Plot a Correlogram. https://CRAN.R-project.org/package=corrgram (1 January 2022, last accessed).

79. Wright K: Package ‘corrgram’. CRAN, 2013: 1–8. (1 January 2022, last accessed).

80. Schloerke B, GAllay: Extension to ‘ggplot2’. https://CRAN.R-project.org/package=GGally (1 January 2022, last accessed).

81. Lumley T. Complex Surveys: A Guide to Analysis Using R. Vol. 1. Wiley, 2010. (1 January 2022, last accessed).

82. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-Plus. Vol. 1. Springer, 2000.

83. Pinheiro, Bates, DebRoy S et al. nlme: Linear and Nonlinear Mixed Effects Models. Vol. 1. R. Comprehensive R Archive Network, 2020.

84. Croissant Y, Millo G, Tappe O. Package ‘plm’ https://cran.r-project.org/web/packages/plm/plm.pdf (1 January 2022, last accessed).

85. Millo G, Piras G. Package ‘splm’. CRAN, 2018: 1–27. (1 January 2022, last accessed).

86. Millo G, Piras G. splm: Spatial Panel Data Models in R. J Stat Softw 2012;47:1–38.

87. Millo G. Maximum likelihood estimation of spatially and serially correlated panels with random effects. Comput Stat Data Anal 2014;71:914–33.

88. Bivand R, Anselin L, Berke O et al. The spdep package. In: CRAN. CRAN, Comprehensive “R” Archive Network, 2007, 1–143.

89. Croissant Y, Millo G. Panel Data Econometrics with R. Vol. 1. Oxford, UK: John Wiley and Sons, 2019.

90. Wal W, Gerskus R. ipw: an R package for inverse probability weighting. J Stat Softw 2011;43:1–18.

91. Mathur MB, Smith LH, Ding P, VanderWeele TJ. Package ‘EValue’ https://cran.r-project.org/web/packages/EValue/EValue.pdf (1 January 2022, last accessed).

92. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 2017;167:268–74.

93. Mathur MB, Ding P, Riddell CA et al. Web site and R package for computing E-values. Epidemiology 2018;29:e45–7.

94. VanderWeele TJ, Ding P, Mathur M. Technical considerations in the use of the E-Value. J Causal Inference 2019;7:1–11.

95. Substance Abuse and Mental Health Services Administration. National Survey of Drug Use and Health (NSDUH 2018) https://www.datafiles.samhsa.gov/study/national-survey-drug-use-and-health-nsduh-2018-nid18757 (1 January 2022, last accessed).

96. Fish EW, Murdough LB, Zhang C et al. Cannabinoids exacerbate alcohol teratogenesis by a CB1-Hedgehog interaction. Sci Rep 2019;9:16057–75.

97. Mmhj VG, Reehuis J, Caton AR et al. Maternal periconceptional illicit drug use and the risk of congenital malformations. Epidemiology 2009;20:60–6.

98. Van Gelder MMH, Donders ART, Devine O et al. Using Bayesian models to assess the effects of under-reporting of cannabis use on the association with birth defects, national birth defects prevention study, 1997-2005. Paediatr Perinat Epidemiol 2014;28:424–33.

99. Skarsgard ED, Meaney C, Bassil K et al. Maternal risk factors for gastroschisis in Canada. Birth Defects Res A Clin Mol Teratol 2015;103:111–8.

100. Reece AS, Hulse GK. Gastrochisis and autism-dual canaries in the Californian Coalmine. JAMA Surg 2019;154:366–7.

101. Jenkins KJ, Correa A, Feinstein JA et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007;115:2995–3014.

102. Wilson PD, Loffredo CA, Correa-Villasenor A et al. Attributable fraction for cardiac malformations. Am J Epidemiol 1998;148:414–23.

103. Forrester MB, Merz RD. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986-2002. J Toxicol Environ Health A 2007;70:7–18.

104. Reece AS, Hulse GK. Canadian cannabis consumption and patterns of congenital anomalies: an ecological geospatial analysis. J Addict Med 2020;14:e195–210.

105. Reece AS, Hulse GK. Broad spectrum epidemiological contribution of cannabis and other substances to the teratological profile of Northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol Toxicol 2020;21:75–103.

106. Reece AS, Hulse GK. Cannabis teratology explains current patterns of Coloradan congenital defects: the contribution of increased cannabinoid exposure to rising teratological trends. Clin Pediatr (Phila) 2019;58:1085–123.

107. Reece AS. Known cannabis teratogenicity needs to be carefully considered. Br Med J 2018;362:k3357.

108. Agence France-Presse in Paris. France to investigate cause of upper limb defects in babies. In: The Guardian. London: The Guardian; 2018. https://www.theguardian.com/world/2018/oct/21/france-to-investigate-cause-of-upper-limb-defects-in-babies (1 January 2022, date last accessed).

109. Gant J. Scientists are baffled by spatter of babies born without hands or arms in France, as investigation fails to discover a cause. In: Daily Mail. vol. Sunday 14th July London, U.K.: Daily Mail; 2019. https://www.dailymail.co.uk/news/article-7242059/Scientists-baffled-babies-born-without-hands-arms-France-probe-fails-discover-cause.html (1 January 2022, date last accessed).

110. Willsher K. Baby arm defects prompt nationwide investigation in France. In: Guardian. London: The Guardian; 2018. https://www.theguardian.com/world/2018/oct/31/baby-arm-defects-prompt-nationwide-investigation-france (1 January 2022, date last accessed).

111. Robinson M. Babies born with deformed hands spark investigation in Germany. https://edition.cnn.com/2019/09/16/health/hand-deformities-babies-gelsenkirchen-germany-intl-scli-grm/index.html (1 January 2022, date last accessed).

112. Gal P, Sharpless MK. Fetal drug exposure-behavioral teratogenesis. Drug Intell Clin Pharm 1984;18:186–201.

113. Psychoyos D, Hungund B, Cooper T et al. A cannabinoid analogue of Delta9-tetrahydrocannabinol disrupts neural development in chick. Birth Defects Res B Dev Reprod Toxicol 2008;83:477–88.

114. Selevosrov O, Tobiasz A, Jackson JS et al. Maternal alcohol exposure during mid-pregnancy dilates fetal cerebral arteries via endocannabinoid receptors. Alcohol (Fayetteville, NY) 2017;61:51–61.

115. Shor S, Nuñman I, Kulaga V et al. Heavy in utero ethanol exposure is associated with the use of other drugs of abuse in a high-risk population. Alcohol (Fayetteville, NY) 2010;44:623–7.
116. Subbanna S, Nagre NN, Shivakumar M et al. CB1R-mediated activation of caspase-3 causes epigenetic and neurobehavioral abnormalities in postnatal ethanol-exposed mice. Front Mol Neurosci 2018;11:45.

117. Subbanna S, Nagre NN, Umaphy NS et al. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int J Neuropsychopharmacol 2014;18:1–15.

118. Subbanna S, Psychyos D, Xie S et al. Postnatal ethanol exposure alters levels of 2-arachidonoylglycerol-metabolizing enzymes and pharmacological inhibition of monoacylglycerol lipase does not cause neurodegeneration in neonatal mice. J Neurochem 2015;134:276–87.

119. Subbanna S, Shivakumar M, Psychyos D et al. Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. J Neurosci 2013;33:6350–66.

120. Conway K, Edmiston SN, Cui L et al. Prevalence and spectrum of p53 mutations associated with smoking in breast cancer. Cancer Res 2002;62:1987–95.

121. Firozi PF, Bondy ML, Sahin AA et al. Aromatic DNA adducts and polymorphisms of CYP1A1, NAT2, and GSTM1 in breast cancer. Carcinogenesis 2002;23:301–6.

122. Hamajima N, Hirose K, Tajima K et al. Alcohol, tobacco and breast cancer—collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 2002;87:1234–45.

123. Terry PD, Rohan TE. Cigarette smoking and the risk of breast cancer in women: a review of the literature. Cancer Epidemiol Biomarkers Prev 2002;11:953–71.

124. Gram IT, Braaten T, Terry PD et al. Breast cancer risk among women who start smoking as teenagers. Cancer Epidemiol Biomarkers Prev 2005;14:61–6.

125. Olson JE, Vachon CM, Vierkant RA et al. Prepregnancy exposure to cigarette smoking and subsequent risk of postmenopausal breast cancer. Mayo Clin Proc 2005;80:1423–8.

126. Leisegang K, Dutta S. Do lifestyle practices impede male fertility? Andrologia 2020;53:e13595.

127. Maia J, Almada M, Midão L et al. The Cannabinoid delta-9-tetrahydrocannabinol disrupts estrogen signaling in human placenta. Toxicol Sci 2020;177:420–30.

128. Mendelson JH, Mello NK. Effects of marijuana on neuroendocrine hormones in human males and females. NIDA Res Monogr 1984;44:97–114.

129. Payne KS, Mazur DJ, Hotaling JM et al. Cannabis and male fertility: a systematic review. J Urol 2019;202:674–81.

130. Sempio C, Wymore E, Palmer C et al. Detection of Cannabinoids by LC-MS-MS and ELISA in Breast Milk. J Anal Toxicol 2020;45:686–92.

131. Landrigan P, Garg A, Droller DB. Assessing the effects of endocrine disruptors in the National Children’s Study. Environ Health Perspect 2003;111:1678–82.

132. Appiah-Kusi E, Petros N, Wilson R et al. Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology (Berl) 2020;237:1121–30.

133. Gur YL, Spriggs S, Alishayev J et al. Cannabidiol for the reduction of cue-induced craving and anxiety in drug-abstinent individuals with heroin use disorder: a double-blind randomized placebo-controlled trial. Am J Psychiatry 2019;176:911–22.

134. Longnecker MP, Bellinger DC, Crews D et al. An approach to assessment of endocrine disruption in the National Children’s Study. Environ Health Perspect 2003;111:1691–7.

135. Patil AS, Mahajan UB, Agrawal YO et al. Plant-derived natural therapeutics targeting cannabinoid receptors in metabolic syndrome and its complications: a review. Biomed Pharmacother 2020;132:110889.

136. Zizzari P, Fe R, Falk S et al. CB1 and GLP-1 receptors cross-talk provides new therapies for obesity. Diabetes 2020;70:415–22.

137. Alagbonsi AI, Olayaki LA, Abdulrahim HA et al. Cannabinoid-deficient Benin republic hemp (Cannabis sativa L) improves semen parameters by reducing prolactin and enhancing anti-oxidant status. BMC Complement Altern Med 2019;19:132–40.

138. Androvicova R, Horacek J, Tintera J et al. Individual prolactin reactivity modulates response of nucleus accumbens to erotic stimuli during acute cannabis intoxication: an fMRI pilot study. Psychopharmacology (Berl) 2017;234:1933–43.

139. Geweke FM, Mueller JK, Lange B et al. Role of the endocannabinoid system in the pathophysiology of schizophrenia: implications for pharmacological intervention. CNS Drugs 2018;32:605–19.

140. Moreno E, Cavic M, Krivokuca A et al. The interplay between cancer biology and the endocannabinoid system—significance for cancer risk, prognosis and response to treatment. Cancers (Basel) 2020;12:3275–96.

141. Schoeman R, Beukes N, Frost C. Cannabinoid combination induces cytoplasmic vacuolation in MCF-7 breast cancer cells. Molecules 2020;25:4682–702.

142. Tomko A, O’Leary L, Trask H et al. Antitumor activity of abnormal cannabidiol and its analog O-1602 in taxol-resistant preclinical models of breast cancer. Front Pharmacol 2019;10:1124.
153. Szutorisz H, Hurd YL. High times for cannabis: epigenetic imprint and its legacy on brain and behavior. Neurosci Biobehav Rev 2018;85:93–101.

154. Watson CT, Szutorisz H, Garg P et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropharmacology 2015;40:2993–3005.

155. Levin ED, Hawkey AB, Hall BJ et al. Paternal THC exposure in rats causes long-lasting neurobehavioral effects in the offspring. Neurotoxicol Teratol 2019;74:106806.

156. Murphy SK, Itchon-Ramos N, Visco Z et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 2018;13:1208–21.

157. Reece AS, Hulse GK. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et al.’s ‘cannabinoid exposure and altered DNA methylation in rat and human sperm’ epigenetics 2018; 13: 1208-1221. Epigenetics 2019;14:1041–56.

158. Schrott R, Acharya K, Itchon-Ramos N et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 2020;15:161–73.

159. Rotolo MC, Pellegrini M, Martucci P et al. Cannabinoids determination in bronchoalveolar lavages of cannabis smokers with lung disease. Clin Chem Lab Med 2018;57:498–503.

160. Bhattacharyya S, Mandal S, Banerjee S et al. Cannabis smoke can be a major risk factor for early-age laryngeal cancer: a molecular signaling-based approach. Tumour Biol 2015;36:6029–36.

161. Hashibe M, Morgenstern H, Cui Y et al. Marijuana use and the risk of lung and upper aerodigestive tract cancers: results of a population-based case-control study. Cancer Epidemiol Biomarkers Prev 2006;15:1829–34.

162. Hashibe M, Straif K, Tashkin DP et al. Epidemiologic review of marijuana use and cancer risk. Alcohol 2005;35:265–75.

163. British Lung Foundation. Cannabis: A Smoking Gun. London: British Lung Foundation, 2005.

164. Hall W, Degenhardt L. Adverse health effects of non-medical cannabis use. Lancet 2009;374:1383–91.

165. Zimmerman AM, Zimmerman S, Raj AY. Effects of cannabinoids on spermatogenesis in mice. In: Marihuana and Medicine. Nahas GG, Sutin KM, Harvey DJ et al. (eds) Humana Press, 1999, 347–58.

166. Russo C, Ferk F, Misik M et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch Toxicol 2019;93:179–88.

167. Reece AS, Hulse GK. Cannabis consumption patterns parallel the East-West Gradient in Canadian neural tube defect incidence: an ecological study. Glob Pediatr Health 2019;6:1–12.

168. Reece AS, Hulse GK. Cannabis teratology explains current patterns of Coloradan congenital defects: the contribution of increased cannabinoid exposure to rising teratological trends. Clin Pediatr (Phila) 2019;58:1085–123.

169. Chiu P, Karler R, Craven C et al. The influence of delta9-tetrahydrocannabinol, cannabidiol and cannabidiol on tissue oxygen consumption. Res Commun Chem Pathol Pharmacol 1975;12:267–86.

170. Hayakawa K, Mishima H, HazeKawa M et al. Cannabidiol potentiates pharmacological effects of delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism. Brain Res 2008;1188:157–64.

171. Delong GT, Wolf CE, Poklis A et al. Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabinohemone and its modulation by delta(9)-tetrahydrocannabinol. Drug Alcohol Depend 2010;112:126–33.

172. Mato S, Victoria Sanchez-Gomez M, Matute C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia 2010;58:1739–47.

173. Fisar Z, Singh L, Hroutova J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicon Lett 2014;231:62–71.

174. Hebert-Chatelain E, Reguero L, Puente N et al. Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor. Mol Metab 2014;3:495–504.

175. Sarafan TA, Kyouymjjan S, Khoshaghideh F et al. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 2003;284:L298–306.

176. Sarafan TA, Habib N, Oldham M et al. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol 2006;290:L1202–9.

177. Rossato M, Ion Popa F, Ferigo M et al. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J Clin Endocrinol Metab 2005;90:894–91.

178. Canto C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 2015;22:51–53.

179. Egervari G, Glastad KM, Berger SL. Food for thought. Science 2020;370:660–2.

180. Reece AS, Hulse GK. Canadian cannabis consumption and patterns of congenital anomalies: an ecological geospatial analysis. J Addict Med 2020;14:e195–210.

181. Miles LA, Bowman RL, Merlinsky TR et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 2020;587:477–34.

182. Schrott R, Murphy SK, Modliszewski JL et al. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. Environ Epigenetics 2021;7:1–10.

183. Reece AS, Hulse GK. Cannabinoid- and substance-relationships of European congenital anomaly patterns: a space-time panel regression and causal inferential study. Environ Epigenetics 2022;8:1–40.

184. Reece AS, Norman A, Hulse GK. Cannabis exposure as an inter-active cardiovascular risk factor and accelerator of organisinal ageing: a longitudinal study. BMJ Open 2016;6:e011891–901.

185. Reece AS, Thomas MR, Norman A et al. Dramatic acceleration of reproductive ageing, contraction of biochemical fecundity and healthspan-lifespan implications of opioid-induced endocrinopathy-FSH/LH ratio and other interrelationships. Reprod Toxicol 2016;66:20–30.

186. Ruth KS, Day FR, Hussain J et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 2021;596:393–7.

187. Chioccarelli T, Cacciola G, Altucci L et al. Cannabinoid receptor 1 influences chromatin remodeling in mouse spermatids by affecting content of transition protein 2 mRNA and histone displacement. Endocrinology 2010;151:5017–29.

188. Rossato M, Pagano C, Vettor R. The cannabinoid system and male reproductive functions. J Neuroendocrinol 2008;20 Suppl 1:90–3.

189. Morishima A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res Monogr 1984;44:25–45.

190. Walker LA, Koturbash I, Kingston R et al. Cannabidiol (CBD) in dietary supplements: perspectives on science, safety, and potential regulatory approaches. J Diet Suppl 2020;17:493–502.
191. Lu Y, Brommer B, Tian X et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588:124–9.

192. Laprairie RB, Bagher AM, Kelly ME et al. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 2015;172:4790–805.

193. Stanley CP, Hind WH, Tu Farelli C et al. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation. Cardiovasc Res 2015;107:568–78.

194. Sartim AG, Guimaraes FS, Joca SR. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex—possible involvement of 5-HT1A and CB1 receptors. Behav Brain Res 2016;303:218–27.

195. Stern CAJ, Da Silva TR, Raymundi AM et al. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 2017;125:220–30.

196. Fogaca MV, Campos AC, Coelho LD et al. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropharmacology 2018;135:22–33.