Crystal structure and Hirshfeld surface analysis of 3-(hydroxymethyl)-3-methyl-2,6-diphenylpiperidin-4-one

Mustafa Kemal Gümuş, a,b Sevgi Kansiz, c* Gulzhama Bagitovna Tulemisova, b Necmi Dege d and Eiad Saife f,*

*Science-Technology Research and Application Center, Artvin Coruh University, Artvin, Turkey, bDepartment of Chemistry and Chemical Technologies, Faculty of Natural and Agricultural Sciences, Atyrau State University named after Kh. Dostmukhamedov, 060011, Atyrau, Kazakhstan, cSamsun University, Faculty of Engineering, Department of Fundamental Sciences, 55420, Samsun, Turkey, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Computer and Electronic Engineering Technology, Sanaa Community College, Sanaa, Yemen, and fDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139, Samsun, Turkey. *Correspondence e-mail: sevgi.kansiz@samsun.edu.tr, eiad.saif@scc.edu.ye

A new synthesis of the title compound, C19H21NO2, was developed with good yield and purity using the reaction of 4-hydroxy-3-methyl-2-butanone, benzaldehyde and ammonium acetate in glacial acetic acid as a solvent. The central piperidine ring adopts a chair conformation, and its least-squares basal plane forms dihedral angles of 85.71 (11) and 77.27 (11)° with the terminal aromatic rings. In the crystal, the molecules are linked by O—H···C and C—H···O hydrogen bonds into double ribbons. The Hirshfeld surface analysis shows that the most important contributions are from H···H (68%), C···H/ H···C (19%) and O···H/H···O (12%) interactions.

1. Chemical context

Many piperidine derivatives are found to possess pharmacological activity and are constituents of important drugs. Numerous biological effects including antiviral, antitumor, bactericidal, fungicidal and anti-inflammatory activities have been reported for these compounds (Kappe, 2000; Rameshkumar et al., 2003; Sasitha & John, 2021). In this work, a new protocol for the synthesis of diphenylpiperidin-4-one from 4-hydroxy-3-methyl-2-butanone, benzaldehyde and ammonium acetate under mild reaction conditions was developed. In addition, 3-(hydroxymethyl)-3-methyl-2,6-diphenylpiperidin-4-one was characterized by single crystal X-ray diffraction and studied by Hirshfeld surface analysis.

2. Structural commentary

The title compound, C19H21NO2, crystallizes in the space group Pna21 with one molecule in the asymmetric unit of the...
As shown in Fig. 1, it involves two terminal aromatic rings (C1–C6 and C14–C19) and a central piperidinone fragment (N1/C7–C10/C13/O1). The piperidine ring adopts a chair conformation, with the carbonyl O1 and the N-bound H1 atoms being in the equatorial positions. The least-squares basal plane of the piperidine ring (C7, C8, C10, C13) makes dihedral angles of 85.71 (11) and 77.27 (11)°, respectively, with the planes of the C1–C6 and C14–C19 aromatic rings.

3. Supramolecular features

In the crystal, molecules of the title compound are linked by strong O—H···O and weak C—H···O hydrogen bonds (Table 1) into double ribbons stretched along the c-axis direction (Fig. 2). Neighbouring molecules in the ribbon are related by the 2_1 screw axis. Besides this, the molecules are connected by N1—H1···C3 contacts into chains along the b-axis direction, thus layers perpendicular to the a axis are formed. No π–π or C—H···π interactions are present in this structure.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of May 2021; Groom et al., 2016) revealed several related structures, viz. dimethyl-3-(2-hydroxyethyl)-9-oxo-7-phenylethyl-6,8-diphenyl-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate (BACLUM; Caujolle et al., 1981), dimethyl-2,4-bis(2-methoxyphenyl)-3,7-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate (REXNUD; Comba et al., 1997). In these three structures, the piperidine rings adopt a chair conformation, as in the title compound.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis of the title compound was performed using Crystal Explorer 17 (Turner et al., 2017; Spackman & Jayatilaka, 2009). Fig. 3 shows the 3D surface mapped over dnorm over the range 0.5456 (red) to 1.6913 (blue) a.u. The large and small red spots indicate the O—H···O and C—H···O intermolecular interactions. The two-dimensional fingerprint plots, shown in Fig. 4, present all interactions and those delineated into H···H (68%), C···H/H···C (19%) and O···H/H···O (12%) components.
6. Synthesis and crystallization

The title compound was prepared (Fig. 5) according to the procedure reported in the literature for preparation of diphenylpiperidin-4-one (Kim & Tulemisova, 1997). To a mixture of 3.03 g (0.03 mol) of 4-hydroxy-3-methyl-2-butanone and 6.04 g (0.06 mol) of benzaldehyde in glacial acetic acid as a solvent, kept at 293–298 K until the initial keto alcohol disappears as indicated by TLC (1.5 h), 2.3 g (0.03 mol) of ammonium acetate was added. Then the mixture was stirred at the same temperature for 6–7 h. The formed white precipitate was separated and after acidification of the solution with 5% hydrochloric acid to pH 4, the hydrochlorides were converted to bases by neutralization with K₂CO₃ in a strongly basic reaction. After the extraction with diethyl ether of the by-product base (control of the completeness of extraction by TLC), the title compound was extracted with chloroform. After drying the chloroform extracts and distilling off the solvent, a white crystalline compound was obtained (5.95 g, 70%), readily soluble in chloroform, acetone, and hot ethanol (Fig. 5).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atom was refined freely. The O-bound H atom was located in a difference-Fourier map and refined with O—H = 0.82 Å, and with $U_{eq}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were positioned geometrically (C—H = 0.93, 0.96, 0.97 and 0.98 Å for sp², hybridized, methyl, methylene and methine C atoms, respectively) and refined using a riding model, with $U_{eq}(H) = 1.5U_{eq}(C)$ and $1.2U_{eq}(C)$ for methyl and other H atoms, respectively.

Acknowledgements

Author contributions are as follows. Conceptualization, MKG, SK, and ES; synthesis, MKG and GBT; writing (review and
editing of the manuscript) MKG and SK; formal analysis, MKG, SK and ND; crystal-structure determination, MKG, SK and ND; validation, MKG, GBT and ES; project administration, MKG and SK. MKG thanks the Ministry of Education and Science of the Republic of Kazakhstan for financial support as a visiting professor at Atyrau State University.

References

Caujolle, R., Lattes, A., Jaud, J. & Galy, J. (1981). Acta Cryst. B37, 1699–1703.
Comba, P., Nuber, B. & Ramlow, A. (1997). J. Chem. Soc. Dalton Trans. pp. 347–352.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.
Kim, D. G. & Tulemisova, G. B. (1997). Russ. J. Org. Chem. 33, 1337–1340.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
Rameshkumar, N., Veena, A., Ilavarasan, R., Adiraj, M., Shanmugapandian, P. & Sridhar, S. K. (2003). Biol. Pharm. Bull. 26, 188–193.
Rossetti, A., Landoni, S., Meneghetti, F., Castellano, C., Mori, M., Colombo Dugoni, G. & Sacchetti, A. (2018). New J. Chem. 42, 12072–12081.
Sasitha, T. & John, W. J. (2021). Heliyon, 7, e06127.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
Spek, A. L. (2020). Acta Cryst. E76, 1–11.
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia. http://hirshfeldsurface.net.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Crystal structure and Hirshfeld surface analysis of 3-(hydroxymethyl)-3-methyl-2,6-diphenylpiperidin-4-one

Mustafa Kemal Gümüş, Sevgi Kansiz, Gulzhamal Bagitovna Tulemisova, Necmi Dege and Eiad Saif

Computing details

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017/1 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

3-(Hydroxymethyl)-3-methyl-2,6-diphenylpiperidin-4-one

Crystal data

\[\text{C}_{19}\text{H}_{21}\text{NO}_{2} \]

\[M_r = 295.37 \]

Orthorhombic, \(Pna_2_1 \)

\(a = 17.3298 \) (8) Å

\(b = 14.1856 \) (7) Å

\(c = 6.5857 \) (3) Å

\(V = 1618.99 \) (13) Å\(^3\)

\(Z = 4 \)

\(F(000) = 632 \)

\(D_a = 1.212 \) Mg m\(^{-3}\)

Mo \(K\alpha \) radiation, \(\lambda = 0.71073 \) Å

Cell parameters from 17006 reflections

\(\theta = 1.9–31.5^\circ \)

\(\mu = 0.08 \) mm\(^{-1}\)

\(T = 296 \) K

Prism, colorless

0.72 × 0.57 × 0.33 mm

Data collection

Stoe IPDS 2
diffractometer

Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus

Detector resolution: 6.67 pixels mm\(^{-1}\)

rotation method scans

Absorption correction: integration

(X-RED32; Stoe & Cie, 2002)

\(T_{\text{min}} = 0.958, T_{\text{max}} = 0.973 \)

17314 measured reflections

4763 independent reflections

3441 reflections with \(I > 2\sigma(I) \)

\(R_{\text{int}} = 0.042 \)

\(\theta_{\text{max}} = 31.2^\circ, \theta_{\text{min}} = 1.9^\circ \)

\(h = -24\rightarrow25 \)

\(k = -20\rightarrow20 \)

\(l = -7\rightarrow9 \)

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\(R(F^2) = 0.041 \)

\(wR(F^2) = 0.096 \)

\(S = 1.01 \)

4763 reflections

204 parameters

1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement
$$w = \frac{1}{\sigma(F_o^2) + (0.0515P)^2}$$
where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\text{max}} < 0.001$

$\Delta \rho_{\text{max}} = 0.16 \text{ e} \ \text{Å}^{-3}$

$\Delta \rho_{\text{min}} = -0.19 \text{ e} \ \text{Å}^{-3}$

Absolute structure: Flack x determined using 1072 quotients $[(I^-)-(I^+)]/[(I^-)+(I^+)]$ (Parsons et al., 2013)

Absolute structure parameter: 0.8 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

x	y	z	U_{eq}			
O1	-0.52068 (8)	-0.46901 (9)	-0.4103 (2)	0.0600 (4)		
O2	-0.60074 (9)	-0.40945 (10)	-0.0228 (2)	0.0610 (4)		
H2	-0.565229	-0.447609	-0.026638	0.091*		
N1	-0.58527 (9)	-0.20075 (10)	-0.4826 (2)	0.0446 (3)		
C14	-0.69489 (10)	-0.21260 (11)	-0.2492 (3)	0.0421 (4)		
C9	-0.54765 (10)	-0.39351 (11)	-0.4587 (3)	0.0417 (4)		
C13	-0.61836 (10)	-0.25456 (10)	-0.3131 (3)	0.0396 (3)		
H13	-0.582802	-0.250220	-0.197803	0.048*		
C6	-0.47125 (11)	-0.16339 (12)	-0.6872 (3)	0.0483 (4)		
C10	-0.62508 (9)	-0.36075 (11)	-0.3756 (3)	0.0388 (3)		
C11	-0.64790 (12)	-0.42148 (12)	-0.1929 (3)	0.0482 (4)		
H11A	-0.700646	-0.406616	-0.155468	0.058*		
H11B	-0.646451	-0.487258	-0.233009	0.058*		
C7	-0.50597 (10)	-0.22790 (12)	-0.5292 (3)	0.0453 (4)		
H7	-0.474939	-0.224784	-0.404983	0.054*		
C19	-0.74209 (11)	-0.16475 (13)	-0.3861 (3)	0.0515 (4)		
H19	-0.725854	-0.156467	-0.519485	0.062*		
C8	-0.50769 (11)	-0.32968 (13)	-0.6060 (3)	0.0484 (4)		
H8A	-0.534221	-0.331932	-0.735585	0.058*		
H8B	-0.455272	-0.351604	-0.626845	0.058*		
C12	-0.68510 (11)	-0.37561 (13)	-0.5433 (3)	0.0508 (4)		
H12A	-0.674874	-0.333097	-0.653506	0.076*		
H12B	-0.735741	-0.363652	-0.490172	0.076*		
H12C	-0.682287	-0.439401	-0.591446	0.076*		
C15	-0.72036 (12)	-0.22177 (14)	-0.0520 (3)	0.0555 (5)		
H15	-0.688985	-0.251458	0.043011	0.067*		
C18	-0.81260 (13)	-0.12956 (14)	-0.3257 (4)	0.0638 (6)		
H18	-0.843205	-0.097262	-0.418500	0.077*		
C1	-0.51207 (14)	-0.13749 (15)	-0.8595 (4)	0.0630 (5)		
H1A	-0.562927	-0.157131	-0.875089	0.076*		
C17	-0.83831 (13)	-0.14174 (16)	-0.1288 (4)	0.0692 (6)		
H17	-0.886403	-0.119157	-0.089324	0.083*		
C3	-0.40316 (15)	-0.05295 (15)	-0.9865 (4)	0.0730 (7)		
H3	-0.379964	-0.017017	-1.087645	0.088*		
	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
---	------	------	------	------	------	------
O1	0.0654 (9)	0.0459 (7)	0.0686 (9)	0.0199 (6)	0.0128 (8)	0.0080 (6)
O2	0.0811 (10)	0.0618 (7)	0.0400 (7)	0.0271 (7)	−0.0050 (7)	0.0015 (6)
N1	0.0489 (8)	0.0368 (6)	0.0480 (9)	0.0024 (6)	0.0031 (7)	0.0004 (6)
C14	0.0454 (9)	0.0369 (7)	0.0439 (7)	0.0037 (7)	−0.0020 (8)	−0.0021 (6)
C9	0.0468 (9)	0.0383 (7)	0.0399 (8)	0.0044 (7)	−0.0039 (7)	−0.0052 (6)
C13	0.0428 (9)	0.0376 (7)	0.0383 (8)	0.0038 (6)	−0.0031 (7)	0.0005 (7)
C6	0.0484 (10)	0.0428 (8)	0.0537 (11)	−0.0033 (7)	0.0038 (9)	−0.0028 (8)
C10	0.0424 (8)	0.0370 (7)	0.0372 (8)	0.0030 (6)	−0.0040 (7)	0.0002 (6)
C11	0.0524 (10)	0.0425 (8)	0.0495 (10)	0.0046 (7)	0.0047 (9)	0.0050 (7)
C7	0.0448 (9)	0.0468 (8)	0.0441 (9)	−0.0011 (7)	−0.0013 (8)	−0.0006 (8)
C19	0.0549 (11)	0.0475 (9)	0.0521 (10)	0.0092 (8)	−0.0043 (9)	0.0034 (8)
C8	0.0478 (10)	0.0465 (9)	0.0509 (10)	0.0044 (8)	0.0061 (8)	−0.0008 (8)
C12	0.0536 (11)	0.0482 (9)	0.0507 (10)	0.0017 (8)	−0.0117 (9)	−0.0064 (8)
C15	0.0594 (11)	0.0600 (10)	0.0471 (11)	0.0121 (9)	0.0023 (9)	0.0022 (9)
C18	0.0584 (12)	0.0527 (10)	0.0803 (16)	0.0175 (9)	−0.0110 (11)	0.0034 (11)
C1	0.0735 (14)	0.0611 (11)	0.0544 (12)	−0.0208 (10)	−0.0075 (11)	0.0033 (10)
C17	0.0518 (12)	0.0604 (11)	0.0954 (19)	0.0141 (10)	0.0101 (13)	−0.0121 (12)
C3	0.0806 (16)	0.0533 (10)	0.0851 (18)	0.0009 (10)	0.0272 (14)	0.0154 (12)
C16	0.0682 (13)	0.0748 (13)	0.0632 (14)	0.0105 (11)	0.0176 (12)	−0.0050 (11)
C2	0.0980 (17)	0.0631 (12)	0.0540 (13)	−0.0150 (12)	−0.0030 (12)	0.0060 (11)
C5	0.0459 (12)	0.0746 (14)	0.0940 (19)	−0.0035 (10)	−0.0049 (12)	0.0283 (14)
C4	0.0533 (13)	0.0824 (16)	0.119 (3)	−0.0099 (11)	0.0055 (15)	0.0365 (17)

Geometric parameters (Å, ″)

	O1—C9	1.211 (2)	0.9300
O2	1.397 (2)	C8—H8A	0.9700
O2—H2	0.8200	C8—H8B	0.9700
N1—C7	1.460 (2)	C12—H12A	0.9600
N1—C13	1.469 (2)	C12—H12B	0.9600
N1—H1	0.90 (3)	C12—H12C	0.9600
C14—C15	1.378 (3)	C15—C16	1.385 (3)
C14—C19	1.394 (3)	C15—H15	0.9300
C14—C13	1.513 (2)	C18—C17	1.382 (4)
C9—C8	1.497 (3)	C18—H18	0.9300

Acta Cryst. (2022), E78, 29-32
Supporting Information

Bond	Distance (Å)
C9—C10	1.522 (2)
C13—C10	1.566 (2)
C13—H13	0.9800
C6—C5	1.378 (3)
C6—C1	1.387 (3)
C6—C7	1.511 (3)
C10—C12	1.532 (3)
C10—C11	1.531 (2)
C11—H11A	0.9700
C7—C8	1.530 (3)
C7—H7	0.9800
C19—C18	1.379 (3)
C11—O2—H2	109.5
C7—N1—C13	112.98 (14)
C7—N1—H1	113.2 (19)
C13—N1—H1	107 (2)
C15—C14—C19	117.87 (17)
C15—C14—C13	120.38 (16)
C19—C14—C13	121.74 (17)
O1—C9—C8	121.79 (16)
O1—C9—C10	121.04 (16)
C8—C9—C10	117.15 (14)
N1—C13—C14	110.43 (13)
N1—C13—C10	109.24 (13)
C14—C13—C10	112.72 (13)
N1—C13—H13	108.1
C14—C13—H13	108.1
C10—C13—H13	108.1
C5—C6—C1	117.8 (2)
C5—C6—C7	120.78 (19)
C1—C6—C7	121.40 (17)
C9—C10—C12	107.29 (14)
C9—C10—C11	109.78 (14)
C12—C10—C11	108.28 (15)
C9—C10—C13	108.82 (13)
C12—C10—C13	111.86 (13)
C11—C10—C13	110.75 (14)
O2—C11—C10	114.21 (15)
O2—C11—H11A	108.7
C10—C11—H11A	108.7
O2—C11—H11B	108.7
C10—C11—H11B	108.7
H11A—C11—H11B	107.6
N1—C7—C6	111.10 (15)
N1—C7—C8	107.46 (14)
C6—C7—C8	110.59 (16)

Bond Angles (°)

Angle	Value
C9—C8—C7	111.45 (15)
C9—C8—H8A	109.3
C7—C8—H8A	109.3
C9—C8—H8B	109.3
C7—C8—H8B	109.3
C10—C12—H12B	109.5
C10—C12—H12C	109.5
C10—C12—H12A	109.5
H8A—C8—H8B	108.0
C14—C13—H13	119.3
C14—C13—H13	119.3
C19—C18—C17	120.7 (2)
C19—C18—H18	119.6
C14—C15—H15	119.3
C14—C15—H15	119.3
C16—C15—H15	119.3
C5—C6—C7	121.80 (17)
C2—C1—C6	120.8 (2)
C2—C1—H1A	119.6
C6—C1—H1A	119.6
C6—C1—H17	119.6
C6—C1—H17	119.6
C18—C17—H17	120.5
C18—C17—H17	120.5
C18—C17—C14	118.9 (2)
C18—C17—C14	118.9 (2)
C18—C17—C16	118.9 (2)
C18—C17—C16	118.9 (2)
C1—C2—H2A	120.2
C1—C2—H2A	120.2
C1—C2—H2A	120.2
C3—C2—H2A	120.1 (3)
C4—C5—C6	121.1 (2)

Acta Cryst. (2022). E78, 29-32
Bond	Angle (°)
N1—C7—H7	109.2
C6—C7—H7	109.2
C8—C7—H7	109.2
C18—C19—C14	120.7 (2)
C18—C19—H19	119.7
C14—C19—H19	119.7
C7—N1—C13—C14	170.51 (14)
C7—N1—C13—C10	−64.98 (17)
C15—C14—C13—N1	−152.01 (17)
C19—C14—C13—N1	28.7 (2)
C15—C14—C13—C10	85.5 (2)
C19—C14—C13—C10	−93.80 (19)
O1—C9—C10—C12	−102.5 (2)
C8—C9—C10—C12	75.99 (19)
O1—C9—C10—C11	15.0 (2)
C8—C9—C10—C11	−166.55 (15)
O1—C9—C10—C13	136.33 (17)
C8—C9—C10—C13	−45.2 (2)
N1—C13—C10—C9	50.76 (17)
C14—C13—C10—C9	173.93 (15)
N1—C13—C10—C12	−67.59 (18)
C14—C13—C10—C12	55.57 (19)
N1—C13—C10—C11	171.52 (14)
C14—C13—C10—C11	−65.32 (18)
C9—C10—C11—O2	67.49 (18)
C12—C10—C11—O2	−175.68 (14)
C13—C10—C11—O2	−52.70 (19)
C13—N1—C7—C6	−173.39 (15)
C13—N1—C7—C8	65.51 (18)
C5—C6—C7—N1	137.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O2—H2···O1ⁱ	0.82	2.05	2.8194 (18)	156
C8—H8A···O2ⁱⁱ	0.97	2.47	3.379 (3)	155
N1—H1···C3ⁱⁱⁱ	0.90 (3)	2.75 (3)	3.605 (2)	161 (3)

Symmetry codes: (i) −x−1, −y−1, z+1/2; (ii) x, y, z−1; (iii) −x−1, −y, z+1/2.