Data Article

Experimental data on the compressive and flexural strength of lateritic paving tiles compounded with pulverized cow bone

Peter Omoniyia,b,*, Idehai Ohijeagbonb, Jacob Awedab, Olatunji Abolusoroa, Esther Akinlabic

aDepartment of Mechanical Engineering Science, University of Johannesburg, South Africa
bDepartment of Mechanical Engineering, University of Ilorin, Nigeria
cPan African University for Life and Earth Sciences Institute (PAULESI), Ibadan, Nigeria

\textbf{A R T I C L E I N F O}

Article history:
Received 12 June 2020
Revised 4 August 2020
Accepted 3 November 2020
Available online 6 November 2020

Keywords:
Casting
Compressive strength
Flexural strength
Laterite
Sharp sand
Pulverized cow bones

\textbf{A B S T R A C T}

This article presents the data of the bulk density, compressive strength and flexural strength of lateritic paving tiles compounded with pulverized cow bones (PCB) as reinforcement, the data set are presented in three categories. Category A involves the mixture of laterite and PCB, category B involves the mixture of sharp sand and PCB, lastly, category C involves the mixture of laterite, sharp sand and PCB. The paving tiles were made using the casting method in a 200 × 100 × 60 mm mould, using 20, 15, 10% wt. Portland cement as a binder and cured for 28 days in a curing tank. The data provided will give useful information for predicting the mechanical properties of paving tiles at different PCB constituent percentage.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

*Corresponding author at: Department of Mechanical Engineering Science, University of Johannesburg, South Africa.
E-mail address: omoniyi.po@unilorin.edu.ng (P. Omoniyi).
Social media: (P. Omoniyi)

https://doi.org/10.1016/j.dib.2020.106511
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Mechanical Engineering, Civil and Structural Engineering
Specific subject area	Waste Management, recycling, Construction Materials
Type of data	Table, Figure, Chart
How data were acquired	Casting of paving tiles compounded with pulverized cow bones in the laboratory and carrying out bulk density test, compressive test and flexural strength tests
Data format	Raw
Parameters for data collection	Samples produced were cured in curing tank at room temperature for 28 days.
Description of data collection	Data were collected from the readings of the universal testing machine (UTM) FS50AT
Data source location	Institution: University of Ilorin, City/Town/Region: Ilorin, Country: Nigeria
Data accessibility	Latitude and longitude (and GPS coordinates, if possible) for collected samples/data: 8.4928°N, 4.5962°E
Related research article	Data are as presented in this article.
J. O. Aweda, P. O. Omoniyi, I. O. Ohijeagbon, Suitability of Pulverized Cow Bones as a Paving Tile Constituent, Int. Conf. Eng. Sustainable World 2018. https://doi:10.1088/1757-899X/413/1/012046	

Value of the Data

- The data set gives an opportunity for further improvement in the knowledge base and applications of the suitability of PCB as a paving tile constituent.
- The building and road sector will hugely benefit from the data.
- The data set will be helpful in building an empirical model for the prediction of the mechanical properties of lateritic paving tiles.
- The test data will also allow further investigation into the mechanical behaviour of the lateritic paving tiles.
- The data will provide requisite information and guide in the planning and designing of sustainable and affordable paving tiles in the construction sectors.

1. Data description

The data provided contains the information on the bulk density, compressive strength and flexural strength of PCB reinforced lateritic tiles, with 20, 15 and 10% Portland cement addition as a binder.

Pulverized Cow Bones (%)	Laterite (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	50	20	1.72	4.56	1.23
20	60	20	1.74	4.05	0.53
10	70	20	1.75	4.03	0.36
5	75	20	1.77	3.44	0.20
0	80	20	1.80	3.50	0.50
Table 2
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 15% Cement Content and Laterite.

Sample Composition	Pulverized Cow Bones (%)	Laterite (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	55	15		1.70	3.03	0.84
20	65	15		1.73	3.86	0.54
10	75	15		1.74	3.68	0.21
5	80	15		1.76	3.09	0.18
0	85	15		1.82	3.25	0.40

Table 3
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 10% Cement Content and Laterite.

Sample Composition	Pulverized Cow Bones (%)	Laterite (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	60	10		1.68	1.53	0.57
20	70	10		1.72	2.61	0.56
10	80	10		1.73	3.23	0.12
5	85	10		1.75	3.04	0.09
0	90	10		1.85	3.05	0.30

Table 4
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 20% Cement Content and Sharp Sand.

Sample Composition	Pulverized Cow Bones (%)	Sharp Sand (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	50	20		1.77	4.16	0.95
20	60	20		1.83	3.01	0.91
10	70	20		1.95	2.26	0.84
5	75	20		2.04	1.30	0.78
0	80	20		2.10	1.50	0.80

Table 5
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 15% Cement Content and Sharp Sand.

Sample Composition	Pulverized Cow Bones (%)	Sharp Sand (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	55	15		1.85	3.93	0.89
20	65	15		1.86	2.68	0.85
10	75	15		1.92	1.89	0.73
5	80	15		2.08	1.09	0.65
0	85	15		2.12	1.40	0.60

Tables 1–3 shows the mechanical properties of category A paving tiles with 20, 15 and 10% cement addition respectively and mixture of PCB with laterite. Tables 4–6 shows the mechanical properties of category B paving tiles, with 20, 15 and 10% cement addition respectively and mixture of PCB with sharp sand. Tables 7–9 shows the mechanical properties of category C paving tiles with 20, 15, 10% cement addition respectively and mixture of PCB, sharp sand and laterite.
Table 6
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 10% Cement Content and Sharp Sand.

Sample Composition	Physical and Mechanical Properties				
Pulverized Cow Bones (%)	Sharp Sand (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	60	10	1.65	1.24	0.12
20	70	10	1.72	0.92	0.12
10	80	10	1.82	0.53	0.09
5	85	10	1.92	0.23	0.09
0	90	10	2.01	0.22	0.10

Table 7
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 20% Cement Content, Sharp Sand and Laterite.

Sample Composition	Physical and Mechanical Properties					
Pulverized Cow Bones (%)	Sharp Sand (%)	Laterite (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	10	40	20	2.45	5.05	1.83
20	35	25	20	2.54	5.05	1.79
10	50	20	20	2.62	3.41	1.75
5	55	20	20	2.65	2.42	1.70
0	40	40	20	2.60	4.68	1.80

Table 8
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 15% Cement Content, Sharp Sand and Laterite.

Sample Composition	Physical and Mechanical Properties					
Pulverized Cow Bones (%)	Sharp Sand (%)	Laterite (%)	Cement (%)	Bulk density (g/cm³)	Compressive Strength (MPa)	Flexural Strength (MPa)
30	20	35	15	2.42	5.05	1.21
20	30	35	15	2.50	5.04	1.09
10	40	35	15	2.57	3.04	0.90
5	50	30	15	2.62	2.40	0.86
0	50	35	15	2.68	2.84	1.05

Fig. 1 shows a typical lateritic paving tile produced. Finally, Figs. 2–4 shows the performance of the paving tiles at different cement composition.

2. Experimental Design, Materials and Methods

The pulverized cow bones (PCB) used in this research study consist of waste femurs, scapulurs and ribs of cow procured from an abattoir in Ilorin, Nigeria. They were washed and sun-dried for 4 weeks, to reduce the moisture content and eliminate the organic matter in the marrows of the bones. Thereafter, they were crushed and pulverized using a laboratory ball mill. The properties of other materials such as lateritic soil and sharp sand used are same as used in [1] and were carried out in accordance with the appropriate standards of American society for test and materials standard (ASTM). The pulverized cow bones were mixed with the lateritic soil and sharp sand. Cement satisfying the requirements of ASTM C150/C150M [2] was used as binder in various proportions.
Table 9
Physical and Mechanical Properties of Experimental Lateritic Paving Tiles with 10% Cement Content, Sharp Sand and Laterite.

Sample Composition	Bulk density (g/cm3)	Compressive Strength (MPa)	Flexural Strength (MPa)			
Pulverized Cow Bones (%)	Sharp Sand (%)	Laterite (%)	Cement (%)			
30	30	30	10	2.40	3.08	0.26
20	25	45	10	2.46	3.05	0.12
10	30	50	10	2.53	3.36	0.05
5	45	40	10	2.58	2.38	0.08
0	45	45	10	2.50	2.34	0.10

Fig 1. Paving tiles samples.

Percentage composition of cement was chosen, based on literature review, where researchers [3,4] have observed that percentage addition of cement above 20%, will not further improve the mechanical properties of tiles and will be of less economic importance. Therefore, the mixing ratios are indicated in Tables 1–9.

Each paving tile was produced by adopting the method used by Aweda et al., [1] and ASTM C685/C685M [5]. universal tensile machine FS50AT was used in carrying out the compressive and flexural strength of the paving tiles, following ASTM standards [6,7] respectively. Bulk density was carried out in accordance with ASTM C948 [8]. The paving tiles were cured in a curing tank for 28 days.
Fig 2. Engineering properties of paving tiles made with laterite and PCB.

Fig 3. Engineering properties of paving tiles made with sharp sand and PCB.
Fig. 4. Engineering properties of paving tiles made with laterite, sharp sand and PCB.

Ethics Statement

All experiments complied with the ARRIVE guidelines and were carried out in accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments.

Declaration of Competing Interest

None declared.

Acknowledgements

The authors acknowledge the contribution of the materials laboratory of the Department of Mechanical Engineering and soil laboratory of the Department of Civil Engineering, University of Ilorin, Nigeria for their support during the research. Also the Pan African Univeristy for Life and Earth Sciences Institute, Ibadan (PAULESI) for the article processing charge payment.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2020.106511.
References

[1] J.O. Aweda, P.O. Omoniyi, I.O. Ohijeagbon, Suitability of pulverized cow bones as a paving tile constituent, in: 2nd International Conference on Engineering for Sustainable World, Ota, 2018, pp. 1–12, doi:10.1088/1757-899X/413/1/012046.
[2] ASTM C150/C150M, Standard specification for portland cement, United States, (2017).
[3] I.O. Ohijeagbon, Models for estimating the properties of clay/cement tiles, Nigeria J. Technol. Dev. 4 (2004) 20–26.
[4] H.D. Olusegun, A.S. Adekunle, O.S. Ogundele, I.O. Ohijeagbon, Composite analysis of laterite-granite concrete tiles, epistemics in science, Eng. Technol. 1 (2011) 53–59.
[5] ASTM C685/C685M, Standard specification for concrete made by volumetric batching and continuous mixing, United States, (2014).
[6] ASTM C109/C109M, Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens), (2016).
[7] ASTM C293, Standard test method for determination of flexural strength of concrete using simple beam with center point loading, (2015).
[8] ASTM C948, Standard test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete, United States, (2016).