Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

Yun-A Jo1,2, Heon-Young Chang1,2†

1Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566, Korea
2Research and Training Team for Future Creative Astrophysicists and Cosmologists (BK21 Plus Program), Daegu 41566, Korea

An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.

Keywords: GRBs, data analysis

1. INTRODUCTION

Gamma-ray bursts (GRBs) are extremely energetic phenomena in the universe and their peak energy in their spectra ranges from ~10 to ~400 keV (e.g., Barraud et al. 2003; Piran 2004; Zhang 2007). They are considered to be tracers of star formation history in the early universe because GRBs, especially long bursts, appear to be associated with the death of massive stars (Woosley 1993; Paczyński 1998; MacFadyen & Woosley 1999). Since they were first detected in the late 1960s (Klebesadel et al. 1973), we have obtained extensive information on observed GRBs with follow-up observations of afterglow (e.g., Costa et al. 1997; Frail et al. 1997; Metzger et al. 1997; van Paradijs et al. 1997). In part, this is because not only are they brief, but it is also impractical to determine their distance with observations in gamma-ray ranges. Nonetheless, bearing in mind that the prompt emission contains immediate details on the central engine, an analysis of light curves and spectra of the observed GRBs in gamma-ray ranges is frequently demanded (e.g., Chang 2012).

With the successful launching of space missions (such as Swift and Fermi), several empirical relationships between various properties of the light curves of prompt gamma-ray emissions and observed GRB energetics have been established as standard candles at a cosmological distance scale. Familiar relationships include that of the variability and the isotropic peak luminosity (Fenimore & Ramirez-Ruiz 2000; Reichart et al. 2001), of the number of peaks of GRB light curves and the isotropic luminosity (Schaefer 2003), and of the spectral lag and the isotropic peak luminosity (Norris et al. 2000; Norris 2002; Gehrels et al. 2006; Zhang et al. 2006; Schaefer 2007; Hakkila et al. 2008; Zhang et al. 2008; Ukwatta et al. 2010, 2012; Qi & Lu 2012). In addition, emission properties of GRBs are studied in terms of the peak energy of the prompt spectrum and prompt light curves (Fenimore et al. 1996; Kobayashi et al. 1997; Beloborodov et al. 1998;
found in Chang (2012). Having more GRBs at hand presently, it will be beneficial to update reported correlations and verify whether the conclusions drawn from an earlier GRB sample still hold. This is the main goal of this paper. In doing so, we investigate the lag-luminosity relationship in great detail by looking at spectral lags resulting from all possible combinations of channels, rather than taking into account only the spectral lag between channels 2 and 3 as used in earlier research, Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV).

Over the course of the analysis, we compiled the opening angles of 205 long GRBs, demonstrating that its distribution is bimodal. As the physical property of GRBs critically depends on whether the geometry of the gamma-ray emitting ejecta is spherical or jet-like (Harrison et al. 1999; Kulkarni et al. 1999; Meszéros & Rees 1999; Sari et al. 1999), the jet opening angle of GRBs is an important quantity to measure. Unfortunately, however, the jet opening angle is difficult to reliably estimate because it requires observations of an achromatic jet break time in the power-law decay of the afterglow emission (Harrison et al. 1999; Sari et al. 1999; O’Brien et al. 2006; Ryan et al. 2015); as such, these statistical attributes are indeterminate. We further investigate the relationship between peak luminosity and peak energy because peak energy is somehow related to the jet angle via the bulk Lorentz factor.

This paper is organized as follows. We begin with brief descriptions of the distribution of opening angles of long GRB jets in Section 2. We present results of analysis and discuss the correlation between spectral lag and peak luminosity as well as the correlation between peak energy and peak luminosity in Sections 3 and 4, respectively. Finally, we summarize and conclude by discussing the implications of our findings in Section 5.

2. DISTRIBUTION OF OPENING ANGLES

We statistically examine here the opening angles of long GRBs, which are archived together with short GRBs in Ryan et al. (2015). There, jet angles of the long and short GRBs detected by the Swift satellite are derived from light curves of afterglows, assuming a uniform circumburst medium. Because large Lorentz factors simply imply strong beaming of the radiation, the jet opening angle \(\Delta \theta_{\text{opening}} \) can be basically defined by \(\Delta \theta_{\text{opening}} = 1/\Gamma_{\text{opening}} \), where the bulk Lorentz factor \(\Gamma_{\text{opening}} \) is calculated using the observed light curves of the afterglow (e.g., Sari et al. 1999). Two assumptions can be made in estimating \(\Gamma_{\text{opening}} \): a homogeneous circumburst medium with a typical density value of \(n_g = 1 \text{ cm}^{-3} \) or a wind density...
profile of \(n(r) \propto r^{-2} \) (e.g., Mirabal et al. 2003). It is interesting to note here that though a wind profile is expected based on the premise that GRBs are associated with the death of a massive star, most of GRBs are consistent with a constant density environment, and only a small portion exhibits a wind profile.

In Fig. 1, we show that the distribution of opening angles of the long GRBs is bimodal, which is well represented by a double Gaussian function having maxima at \(-0.1\) and \(-0.3\) radians rather than a single Gaussian function (cf., Gao & Dai 2010). The number of GRBs is counted in bins 0.01 radians wide resulting in a histogram to which a double Gaussian function is fitted by adjusting six parameters simultaneously. The thick curve represents the best fit of the double Gaussian function. It should be noted, in comparison, that the distribution using the pre-Swift measurements in particular is often suggested to be a Poisson distribution or a fairly broad Gaussian distribution appearing similar to the uniform distribution (e.g., Frail et al. 2001; Bloom et al. 2003; Racusin et al. 2009). To compare the goodness of the single and double Gaussian fits we compared reduced chi-square values and obtained 0.31 and 0.17, respectively. To make sure we have repeated fitting processes with bin sizes of 0.05 and 0.005 and came to the same conclusions. We suspect that the bimodal distribution of jet opening angles can be explained either by the fact that GRBs in origin are due to two populations with broad and narrow jets or because the energy injection from the source to outflow is sporadic rather than continuous, as has been repeatedly suggested (Panaitescu et al. 2006; Schady et al. 2007; Curran et al. 2008).

3. SPECTRAL LAG AND LUMINOSITY

Here, we investigate the relationship between the spectral lag and the peak luminosity. For spectral lags in the observer frame, we have used data from Ukwatta et al. (2010) and Kawakubo et al. (2015). Because Swift/BAT has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV), six observed spectral lags can be defined. We denote the spectral lag between channel \(i \) and channel \(j \) as \(\tau_{ij} \). We choose GRBs only whose spectral lag is positive, i.e., only those in whose light curves the hard photons arrive earlier than the soft ones. While the spectral lag in the observer frame is measured with observed light curves of two arbitrary energy channels, the two energy channels in the observer frame correspond to a different pair of energy channels in the GRB source frame as a result of the cosmological expansion. Hence, effects of the expanding universe should be taken into account, i.e., time dilation and redshift in energy, to study physical properties in the source frame. Two corresponding corrections are required: 1) to correct for the time dilation effect by multiplying the spectral lag value in the observer frame by \((1+z)^{-1}\), and 2) to take into account the fact that the observed energy channels correspond to different energy channels in the source frame. Though the second correction is not straightforward, an approximate correction can be made based on the assumption that the pulse width is proportional to the energy (Fenimore et al. 1995; Gehrels et al. 2006; Zhang et al. 2009).

Alternatively, a simpler second correction can be made by defining the two energy channels in the source frame to project those two channels into the observer frame and extract spectral lags between them using the relationship \(E_{\text{observed}} = E_{\text{source}}/(1+z) \), as in Ukwatta et al. (2010, 2012). For the isotropic peak luminosity \(L_{\text{iso}} \) data of GRBs are adopted from Ukwatta et al. (2010, 2012) and Kawakubo et al. (2015). We have subsequently selected GRBs whose redshifts and jet opening angles are known to further analyze the relationship of collimation-corrected peak luminosity \(L_{\text{coll}} \) in the source frame. We have derived the collimation-corrected peak luminosity using the opening angles shown in Fig. 1. We have basically followed the method used in Chang (2012) for the current analysis.

In Fig. 2, as an example, we show the peak luminosity, \(L_{\text{iso}} \) or \(L_{\text{coll}} \), versus the spectral lag between channel 2 and channel 3 \(\tau_{23} \) in a log-log plot, obtained from 58 or 54 long GRBs detected by the Swift satellite. In the top and bottom panels, results of the isotropic peak luminosity and the collimation-

![Fig. 1. Distribution of opening angles of long GRBs. The number of GRBs is counted in bins 0.01 radians wide. The thick curve represents the best fit of a double Gaussian function.](http://janss.kr)
corrected peak luminosity are shown, respectively. In the left and right panels, using GRBs whose redshifts are known, results of the observer frame and the source frame are shown, respectively. Thick straight lines represent the best fit of the data obtained by the linear least-squares method. Parameters of the best fit are given in Table 1. We also provide the linear Pearson’s correlation coefficients of the relationship with null probabilities in Tables 2 and 3 for results for the spectral lag parameters τ defined by other combinations of channels. As reported in Chang (2012), there is an anti-correlation between the peak luminosity and the spectral lag. In agreement with the previous conclusion, the correlation coefficient improves significantly in the source frame. Because GRBs are believed to be beamed, it is natural to expect that the collimation-corrected peak luminosity may correlate with the spectral lag. According to what we found in Table 3, the collimation-corrected luminosity correlates in a similar way with the spectral lag, except that the correlations are somewhat looser. As for the correlations resulting from six spectral lags in combination with different channels, spectral lags involving channels 3 and 4 end up with high correlation coefficients, i.e., τ_{34}.

4. PEAK ENERGY AND LUMINOSITY

Because the jet opening angle is inversely proportional to the bulk Lorentz factor, it is then reasonable to suspect that the peak energy and the peak luminosity should be correlated even though the physical mechanisms leading
to these correlations are still unclear (Kumar & Piran 2000; Eichler & Levinson 2004; Zhang & Choi 2008; Nava et al. 2008, 2010; Ghirlanda et al. 2011; Lazzati et al. 2011; Nava et al. 2012; Zhang et al. 2012). In fact, using a dataset of 11 Burst And Transient Source Experiment (BATSE) long GRBs in the observer frame, Yonetoku et al. (2004) first derived such a relationship, i.e., that between peak energy and isotropic peak luminosity. Some recent studies qualitatively draw a conclusion that short and long bursts should follow the same the peak energy and the peak luminosity relationship (Ghirlanda et al. 2009; Zhang et al. 2009, 2012; Qin & Chen 2013). This conclusion is different from the cases of Amati and Ghirlanda relationship, which are derived from long bursts but are not followed by the majority of short bursts (Amati 2006; Ghirlanda et al. 2009).

Motivated by the current situation, we now investigate the peak energy and the collimation-corrected peak luminosity relationship of GRBs in the source frame.

In Fig. 3, we show the peak luminosity, \(L_{\text{iso}} \) or \(L_{\text{coll}} \) versus the peak energy in log-log plot, obtained from 39 long GRBs detected by the Swift satellite, as shown in Fig. 2. In the top and bottom panels, results of the isotropic peak luminosity and the collimation-corrected peak luminosity are shown, respectively. In the left and right panels, using long GRBs whose redshifts are known, results of the observer frame and the source frame are shown, respectively. The observer-frame peak energy \(E_{\text{p,o}} \) and the source-frame peak energy \(E_{\text{p,s}} \) are related by

\[
E_{\text{p,s}} = E_{\text{p,o}} (1+z),
\]

where \(E_{\text{p,o}} \) is derived as

\[
E_{\text{p,o}} = (2+\alpha) E_0
\]

from the spectrum, of which \(\alpha \) and \(E_0 \) are the lower energy index and break energy fitted with the Band function, respectively (Band et al. 1993). Thick straight

Table 1. Best fit \(y = Ax + B \)

\(\tau_{ij} \)	\(L_{\text{iso}} \)	\(L_{\text{coll}} \)		
Observer frame	Source frame	Observer frame	Source frame	
A	B	A	B	
\(\tau_{12} \)	-0.25382	52.70837	-0.50075	53.25362
\(\tau_{13} \)	-0.16435	52.53990	-0.50432	53.41046
\(\tau_{14} \)	-0.35277	53.12920	-0.63849	53.87498
\(\tau_{23} \)	-0.31710	52.81496	-0.63358	53.44567
\(\tau_{24} \)	-0.34029	53.02610	-0.56549	53.60150
\(\tau_{34} \)	-0.44339	53.14270	-0.68426	53.62907

Table 2. Linear Pearson’s and Spearman’s correlation coefficients (Corr. Coe.) and null probabilities (Prob.) of the relationship between spectral lag \(\tau \) and isotropic peak luminosity \(L_{\text{iso}} \)

\(\tau_{ij} \)	Pearson’s	Spearman’s	Pearson’s	Spearman’s
Observer frame	Corr. Coe.	Prob.	Corr. Coe.	Prob.
Source frame	Corr. Coe.	Prob.	Corr. Coe.	Prob.
\(\tau_{12} \)	-0.27464	0.03694	-0.24273	0.06639
\(E_{\text{p}}, L_{\text{iso}} \)	-0.48040	0.00014	-0.47643	0.00016
\(\tau_{13} \)	-0.16125	0.22242	-0.15453	0.24256
\(\tau_{14} \)	-0.32737	0.03432	-0.32349	0.03664
\(\tau_{23} \)	-0.31793	0.01501	-0.29669	0.02373
\(\tau_{24} \)	-0.34427	0.02558	-0.38767	0.01119
\(\tau_{34} \)	-0.42558	0.00691	-0.42555	0.00692

Table 3. Linear Pearson’s and Spearman’s correlation coefficients (Corr. Coe.) and null probabilities (Prob.) of the relationship between spectral lag \(\tau \) and collimation-corrected peak luminosity \(L_{\text{coll}} \)

\(\tau_{ij} \)	Pearson’s	Spearman’s	Pearson’s	Spearman’s
Observer frame	Corr. Coe.	Prob.	Corr. Coe.	Prob.
Source frame	Corr. Coe.	Prob.	Corr. Coe.	Prob.
\(\tau_{12} \)	-0.26110	0.05652	-0.27934	0.04803
\(\tau_{13} \)	-0.19455	0.15077	-0.29667	0.12646
\(\tau_{14} \)	-0.31123	0.04498	-0.37041	0.01575
\(\tau_{23} \)	-0.29609	0.02917	-0.28832	0.03449
\(\tau_{24} \)	-0.31106	0.04495	-0.41652	0.00907
\(\tau_{34} \)	-0.34354	0.03225	-0.35965	0.02453
lines represent the best fit of the data obtained by the linear least-squares method. Parameters of the best fit are given in Table 1. In Table 4, we provide the linear Pearson’s correlation coefficients of the relationship with null probabilities. In agreement with earlier claims (Yonetoku et al. 2004; Nava et al. 2008; Ghirlanda et al. 2009; Nava et al. 2012; Zhang et al. 2012), we have found that they are positively correlated.

Fig. 3. Peak luminosity L_{iso} or L_{coll} versus peak energy $E_{p,o}$ or $E_{p,s}$. In the top and bottom panels, results of the isotropic peak luminosity and the collimation-corrected peak luminosity are shown, respectively. In the left and right panels, results of the observer frame and the source frame are shown, respectively. Thick straight lines represent the best fit of the data obtained by the linear least-squares method.

Table 4. Linear Pearson’s and Spearman’s correlation coefficients (Corr. Coe.) and null probabilities (Prob.) of the relationship between peak energy and peak luminosity

	Observer frame	Source frame		
	Pearson’s	Spearman’s	Pearson’s	Spearman’s
$E_{p,o}$ - L_{iso}	0.43248	0.00532	0.49958	0.00103
$E_{p,o}$ - L_{coll}	0.36077	0.02220	0.45333	0.00331

The collimation-corrected luminosity correlates with the peak energy more loosely. We also note the correlations are significantly improved when the parameters in the source frame are considered.
5. SUMMARY AND CONCLUSIONS

As an extension of the Ukwatta et al. (2010, 2012) relationship in which the isotropic peak luminosity and the spectral lag is anti-correlated in the source frame, Chang (2012) reported the relationship between the collimation-corrected peak luminosity and the spectral lag in the source frame using 12 long GRBs, detected by the Swift/BAT, whose redshifts and jet opening angles are archived in the published literature. Such a correlation would contribute to properly understanding the underlying process of the gamma-ray radiation of GRBs. In the present analysis, we have revisited the correlations found in Chang (2012) using a larger dataset to increase the statistical significance. We have investigated the lag-luminosity relationship in great detail by looking at spectral lags resulting from all possible combinations of channels rather than taking into account only the spectral lag between channels 2 and 3. We have also compiled all the opening angle data published in the literature.

Our main findings and implications are as follows:

(1) The distribution of opening angles of 205 long GRBs is bimodal and well represented by a double Gaussian function having maxima at ~0.1 and ~0.3 radians. We suspect that the bimodal distribution of jet opening angles can be explained either by the fact that GRBs in origin are due to two populations with broad and narrow jets or because energy injection from the source to outflow is sporadic rather than continuous.

(2) The anti-correlation between the peak luminosity, \(L_{iso}\), or \(L_{coll}\), and spectral lag is confirmed both in the observer frame and in the source frame. In agreement with the previous conclusion, the correlation coefficient improves significantly in the source frame. The collimation-corrected luminosity correlates with the spectral lag less tightly. As for the correlations resulting from six spectral lags in combination with different channels, it is found that spectral lags involving channel 3 and 4 end up with high correlation coefficients, i.e., \(r_{ij}\).

(3) Peak luminosity, \(L_{iso}\) or \(L_{coll}\) is positively correlated with peak energy. We also note that the correlations are significantly improved in the source frame. Because the jet opening angle is inversely proportional to the bulk Lorentz factor, it is natural to expect a positive correlation given the negative correlation between the jet opening angle and peak energy.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for critical comments and helpful suggestions that greatly improved the original version of the manuscript. This work was supported by BK21 Plus of the National Research Foundation of Korea, and Heon-Young Chang was supported by a National Research Foundation of Korea Grant funded by the Korean government (NRF-2015M1A3A3A02009155).

REFERENCES

Amati L, The \(E_{iso}-E_{p}\) correlation in gamma-ray bursts: updated observational status, re-analysis and main implications, Mon. Not. Roy. Astron. Soc. 372, 233-245 (2006). http://dx.doi.org/10.1111/j.1365-2966.2006.10840.x

Amati L, Frontera F, Tavani M, in’Zand JJM, Antonelli A, et al., Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts, Astron. Astrophys. 390, 81-89 (2002). http://dx.doi.org/10.1051/0004-6361:20020722

Band D, Matteson J, Ford L, Schaefer B, Palmer D, et al., BATSE observations of gamma-ray burst spectra. I - Spectral diversity, Astrophys. J. 413, 281-292 (1993). http://dx.doi.org/10.1086/172995

Barraud C, Olive JF, Lestrade JP, Atteia JL, Hurley K, et al., Spectral analysis of 35 GRBs/XRFs observed with HETE-2/FREGATE, Astron. Astrophys. 400, 1021-1030 (2003). http://dx.doi.org/10.1051/0004-6361:20030074

Beloborodov AM, Stern BE, Svensson R, Self-similar temporal behavior of gamma-ray bursts, Astrophys. J. 508, L25-L27 (1998). http://dx.doi.org/10.1086/311710

Bloom JS, Frail DA, Kulkarni SR, Gamma-ray burst energetics and the gamma-ray burst Hubble diagram: promises and limitations, Astrophys. J. 594, 674-683 (2003). http://dx.doi.org/10.1086/377125

Burrows DN, Racusin J, GRB 070125: X-ray light curve analysis, GRB Coordinates Network (GCN) Observation Report Circulars, 6181 (2007).

Chang HY, Correlation between collimation-corrected peak luminosity and spectral lag of gamma-ray bursts in the source frame, J. Astron. Space Sci. 29, 253-258 (2012). http://dx.doi.org/10.5140/JASS.2012.29.3.253

Chang HY, Yi I, Power density spectra of gamma-ray burst light curves: implications on theory and observation, Astrophys. J. 542, L17-L20 (2000). http://dx.doi.org/10.1086/312915

Chevalier RA, Li ZY, Gamma-ray burst environments and progenitors, Astrophys. J. 520, L29-L32 (1999). http://dx.doi.org/10.1086/312147

Costa E, Frontera F, Heise J, Feroci M, in’t Zand J, et al., Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997, Nature 387, 783-785 (1997). http://dx.doi.org/10.1038/42885

http://janss.kr
Curran, PA, van der Horst AJ, Wijers RMAJ, Are the missing X-ray breaks in gamma-ray burst afterglow light curves merely hidden?, Mon. Not. Roy. Astron. Soc. 386, 859-863 (2008). http://dx.doi.org/10.1111/j.1365-2966.2008.13043.x

Daigne F, Mochkovitch R, Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties, Mon. Not. Roy. Astron. Soc. 296, 275-286 (1998). http://dx.doi.org/10.1046/j.1365-8711.1998.01305.x

Daigne F, Mochkovitch R, Gamma-ray bursts from internal shocks in a relativistic wind: a hydrodynamical study, Astron. Astrophys. 358, 1157-1166 (2000).

Eichler D, Levinson A, An interpretation of the $hν_{peak}$ - $Fν_{iso}$ correlation for gamma-ray bursts, Astrophys. J. 614, L13-L16 (2004). http://dx.doi.org/10.1086/425310

Fenimore EE, The average temporal and spectral evolution of gamma-ray bursts, Astrophys. J. 518, 375-379 (1999). http://dx.doi.org/10.1086/307245

Fenimore EE, Ramirez-Ruiz E, Redshifts for 220 BATSE gamma-ray bursts determined by variability and the cosmological consequences, eprint arXiv:astro-ph/0004176 (2000).

Fenimore EE, in’t Zand JJM, Norris JP, Bonnell JT, Nemiroff RJ, Gamma-ray burst peak duration as a function of energy, Astrophys. J. Lett. 448, L101-L104 (1995). http://dx.doi.org/10.1086/309603

Fenimore EE, Madras CD, Nayakshin S, Expanding relativistic shells and gamma-ray burst temporal structure, Astrophys. J. 473, 998-1012 (1996). http://dx.doi.org/10.1086/178210

Frail DA, Kulkarni SR, Nicastro L, Feroci M, Taylor GB, The radio afterglow from the $γ$-ray burst of 8 May 1997, Nature 398, 261-263 (1997). http://dx.doi.org/10.1038/38451

Frail DA, Kulkarni SR, Sari R, Djorgovski SG, Bloom JS, et al., Beaming in gamma-ray bursts: evidence for a standard energy reservoir, Astrophys. J. 562, L55-L58 (2001). http://dx.doi.org/10.1086/338119

Gao Y, Dai ZG, GRB jet beaming angle statistics, Res. Astron. Astrophys. 10, 142-150 (2010). http://dx.doi.org/10.1086/1674-4527/10/2/005

Gehrels N, Norris JP, Barthelmy SD, Granot J, Kaneko Y, et al., A new $γ$-ray burst classification scheme from GRB 060614, Nature 444, 1044-1046 (2006). http://dx.doi.org/10.1038/nature03376

Ghirlanda G, Ghisellini G, Lazzati D, The collimation-corrected gamma-ray burst energies correlate with the peak energy of their $νFν$ spectrum, Astrophys. J. 616, 331-338 (2004). http://dx.doi.org/10.1086/424913

Ghirlanda G, Ghisellini G, Firmani C, Gamma-ray bursts as standard candles to constrain the cosmological parameters, New J. Phys. 8, 123 (2006). http://dx.doi.org/10.1088/1367-2630/8/7/123

Ghirlanda G, Nava L, Ghisellini G, Celotti A, Firmani C, Short versus long gamma-ray bursts: spectra, energetics, and luminosities, Astron. Astrophys. 496, 585-595 (2009). http://dx.doi.org/10.1051/0004-6361:200811209

Ghirlanda G, Nava L, Ghisellini G, Gamma ray bursts: short vs. long, Adv. Space Res. 47, 1332-1336 (2011). http://dx.doi.org/10.1016/j.asr.2010.08.009

Ghirlanda G, Nava L, Ghisellini G, Celotti A, Burlon D, et al., Gamma-ray bursts in the comoving frame, Mon. Not. Roy. Astron. Soc. 420, 483-494 (2012). http://dx.doi.org/10.1111/j.1365-2966.2011.20053.x

Hakkila J, Giblin TW, Norris JP, Fragile PC, Bonnell JT, Correlations between lag, luminosity, and duration in gamma-ray burst pulses, Astrophys. J. Lett. 677, L81-L84 (2008). http://dx.doi.org/10.1086/588094

Harrison FA, Bloom JS, Frail DA, Sari R, Kulkarni SR, et al., Optical and radio observations of the afterglow from GRB 990510: evidence for a jet, Astrophys. J. 523, L121-L124 (1999). http://dx.doi.org/10.1086/312282

Kawakubo Y, Sakamoto T, Yoshida A, Kazanas D, Systematic spectral lag analysis of Swift known-z GRBs, Adv. Astron. 2015, 341018 (2015). http://dx.doi.org/10.1155/2015/341018

Klebesadel RW, Strong IB, Olson RA, Observations of gamma-ray bursts of cosmic origin, Astrophys. J. 182, L85-L88 (1973). http://dx.doi.org/10.1086/181225

Kobayashi S, Piran T, Sari R, Can internal shocks produce the variability in gamma-ray bursts?, Astrophys. J. 490, 92-98 (1997). http://dx.doi.org/10.1086/512791

Kulkarni SR, Djorgovski SG, Odewahn SC, Bloom JS, Gal RR, et al., The afterglow, redshift and extreme energetics of the $γ$-ray burst of 23 January 1999, Nature 398, 389-394 (1999). http://dx.doi.org/10.1038/18821

Kumar P, Gamma-ray burst energetics, Astrophys. J. 523, L113-L116 (1999). http://dx.doi.org/10.1086/312265

Kumar P, Piran T, Energetics and luminosity function of gamma-ray bursts, Astrophys. J. 535, 152-157 (2000). http://dx.doi.org/10.1086/308847

Lamb DQ, Donaghy TQ, Graziani C, A unified jet model of X-ray flashes and $γ$-ray bursts, New Astron. Rev. 48, 459-464 (2004). http://dx.doi.org/10.1016/j.newar.2003.12.030

Lazzati D, Morseny BJ, Begelman MC, High-efficiency photospheric emission of long-duration gamma-ray burst jets: the effect of the viewing angle, Astrophys. J. 732, 34 (2011). http://dx.doi.org/10.1088/0004-637X/732/1/34

Liang E, Zhang B, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications, Astrophys. J. 633, 611-623 (2005). http://dx.doi.org/10.1086/491594

Liang EW, Dai ZG, The peak energy distribution of the $νFν$ spectra and the implications for the jet structure models of gamma-ray bursts, Astrophys. J. 608, L9-L12 (2004). http://
Correlation of L_{iso} with τ and E_p of the Observed GRBs

Yun-A Jo & Heon-Young Chang

dx.doi.org/10.1086/422253

Liang EW, Dai ZG, Wu XR: The luminosity-E_p relation within gamma-ray bursts and the implications for fireball models, Astrophys. J. 606, L29-L32 (2004). http://dx.doi.org/10.1086/421047

MacFadyen AI, Woosley SE, Collapsars: gamma-ray bursts and explosions in “failed supernovae”, Astrophys. J. 524, 262-289 (1999). http://dx.doi.org/10.1086/307790

Mészáros P, Rees MJ, Relativistic fireballs and their impact on external matter - models for cosmological gamma-ray bursts, Astrophys. J. 405, 278-284 (1993). http://dx.doi.org/10.1086/172360

Mészáros P, Rees MJ, GRB 990123: reverse and internal shock flashes and late afterglow behaviour, Mon. Not. Roy. Astron. Soc. 306, L39-L43 (1999). http://dx.doi.org/10.1046/j.1365-8711.1999.02800.x

Metzger MR, Djorgovski SG, Kulkarni SR, Steidel CC, Adelberger KL, et al., A complete sample of bright BATSE and Fermi bursts, eprint arXiv:1004.1410 (2010).

Nava L, Ghisellini G, Ghirlanda G, Tavecchio F, Firmani C, On the interpretation of spectral-energy correlations in long gamma-ray bursts, Astron. Astrophys. 450, 471-481 (2006). http://dx.doi.org/10.1051/0004-6361:20054211

Nava L, Ghirlanda G, Ghisellini G, Firmani C, Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux, Mon. Not. Roy. Astron. Soc. 391, 639-652 (2008). http://dx.doi.org/10.1111/j.1365-2966.2008.13758.x

Nava L, Ghirlanda G, Ghisellini G, Celotti A, Spectral properties of long and short gamma-ray bursts: comparison between BATSE and Fermi bursts, eprint arXiv:1004.1410 (2010).

Nava L, Salvaterra R, Ghirlanda G, Ghisellini G, Campagna S, et al., A complete sample of bright Swift long gamma-ray bursts: testing the spectral-energy correlations, Mon. Not. Roy. Astron. Soc. 421, 1256-1264 (2012). http://dx.doi.org/10.1111/j.1365-2966.2011.20394.x

Norris JP, Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms, Astrophys. J. 579, 386-403 (2002). http://dx.doi.org/10.1086/342747

Norris JP, Marani GF, Bonnell JT, Connection between energy-dependent lags and peak luminosity in gamma-ray bursts, Astrophys. J. 534, 248-257 (2000). http://dx.doi.org/10.1086/308725

O’Brien PT, Willingale R, Osborne J, Goad MR, Page KL, et al., The early X-ray emission from GRBs, Astrophys. J. 647, 1213-1237 (2006). http://dx.doi.org/10.1086/505457

Paczynski B, Are gamma-ray bursts in star-forming regions?, Astrophys. J. 494, L45-L48 (1998). http://dx.doi.org/10.1086/311148

Panaitescu A, Kumar P, Fundamental physical parameters of collimated gamma-ray burst afterglows, Astrophys. J. 560, L49-L53 (2001). http://dx.doi.org/10.1086/324061

Panaitescu A, Kumar P, Properties of relativistic jets in gamma-ray burst afterglows, Astrophys. J. 571, 779-789 (2002). http://dx.doi.org/10.1086/340094

Panaitescu A, Mészáros P, Burrows D, Nousek J, Gehrels N, et al., Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications, Mon. Not. Roy. Astron. Soc. 369, 2059-2064 (2006). http://dx.doi.org/10.1111/j.1365-2966.2006.10453.x

Piran T, The physics of gamma-ray bursts, Rev. Mod. Phys. 76, 1143-1210 (2004). http://dx.doi.org/10.1103/RevModPhys.76.1143

Qi S, Lu T, Toward tight gamma-ray burst luminosity relations, Astrophys. J. 749, 99 (2012). http://dx.doi.org/10.1088/0004-637X/749/2/99

Qin YP, Chen ZF, Roles of the kinetic and dynamic mechanisms in the L_p-E_p relation, Astrophys. J. 767, 2 (2013). http://dx.doi.org/10.1088/0004-637X/767/1/2

Racusin JL, Liang EW, Burrows DN, Falcone A, Sakamoto T, et al., Jet breaks and energetics of Swift gamma-ray burst X-ray afterglows, Astrophys. J. 698, 43-74 (2009). http://dx.doi.org/10.1088/0004-637X/698/1/43

Rees MJ, Mészáros P, Unsteady outflow models for cosmological gamma-ray bursts, Astrophys. J. 430, L93-L96 (1994). http://dx.doi.org/10.1086/187446

Reichart DE, Lamb DQ, Fenimore EE, Ramirez-Ruiz E, Cline TL, et al., A possible Cepheid-like luminosity estimator for the long gamma-ray bursts, Astrophys. J. 552, 57-71 (2001). http://dx.doi.org/10.1086/320434

Rhoads JE, The dynamics and light curves of beamed gamma-ray burst afterglows, Astrophys. J. 525, 737-749 (1999). http://dx.doi.org/10.1086/368106

Ryan G, van Eerten H, MacFadyen A, Zhang BB, Gamma-ray bursts are observed off-axis, Astrophys. J. 799, 3 (2015). http://dx.doi.org/10.1088/0004-637X/799/1/3

Sari R, Piran T, Halpern JP, Jets in gamma-ray bursts, Astrophys. J. 519, L17-L20 (1999). http://dx.doi.org/10.1086/312109

Schady P, de Pasquale M, Page MJ, Vetere L, Pandey SB, et al., Extreme properties of GRB 061007: a highly energetic or a highly collimated burst?, Mon. Not. Roy. Astron. Soc. 380, 1041-1052 (2007). http://dx.doi.org/10.1111/j.1365-2966.2007.12138.x

Schaefer BE, Explaining the gamma-ray burst E_{peak} distribution, Astrophys. J. 583, L71-L74 (2003). http://dx.doi.org/10.1086/368106
Schaefer BE, The Hubble diagram to redshift >6 from 69 gamma-ray bursts, Astrophys. J. 660, 16-46 (2007). http://dx.doi.org/10.1086/511742

Ukwatta TN, Stamatikos M, Dhuga KS, Sakamoto T, Barthelmy SD, et al., Spectral lags and the lag-luminosity relation: an investigation with Swift BAT gamma-ray bursts, Astrophys. J. 711, 1073-1086 (2010). http://dx.doi.org/10.1088/0004-637X/711/2/1073

Ukwatta TN, Dhuga KS, Stamatikos M, Dermer CD, Sakamoto T, et al., The lag-luminosity relation in the GRB source frame: an investigation with Swift BAT bursts, Mon. Not. Roy. Astron. Soc. 419, 614-623 (2012). http://dx.doi.org/10.1111/j.1365-2966.2011.19723.x

van Paradijs J, Groot PJ, Galama T, Kouveliotou C, Strom RG, et al., Transient optical emission from the error box of the gamma-ray burst of 28 February 1997, Nature 386, 686-689 (1997). http://dx.doi.org/10.1038/386686a0

Wei DM, Gao WH, Are there cosmological evolution trends on gamma-ray burst features?, Mon. Not. Roy. Astron. Soc. 345, 743-746 (2003). http://dx.doi.org/10.1046/j.1365-8711.2003.06971.x

Woosley SE, Gamma-ray bursts from stellar mass accretion disks around black holes, Astrophys. J. 405, 273-277 (1993). http://dx.doi.org/10.1086/172359

Yonetoku D, Murakami T, Nakamura T, Yamazaki R, Inoue AK, et al., Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation, Astrophys. J. 609, 935-951 (2004). http://dx.doi.org/10.1086/421285

Zhang B, Gamma-ray bursts in the Swift era, Chin. J. Astron. Astrophys. 7, 1-50 (2007). http://dx.doi.org/10.1088/1009-9271/7/1/01

Zhang B, Zhang BB, Virgili FJ, Liang EW, Kann DA, et al., Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs, Astrophys. J. 703, 1696-1724 (2009). http://dx.doi.org/10.1088/0004-637X/703/2/1696

Zhang ZB, Choi CS, An analysis of the durations of Swift gamma-ray bursts, Astron. Astrophys. 484, 293-297 (2008). http://dx.doi.org/10.1051/0004-6361:20079210

Zhang ZB, Deng JG, Lu RJ, Gao HF, Relative spectral lag: a new redshift indicator of gamma-ray bursts, Chin. J. Astron. Astrophys. 6, 312-322 (2006). http://dx.doi.org/10.1088/1009-9271/6/3/06

Zhang ZB, Xie GZ, Choi CS, Testing a new luminosity/redshift estimator of GRBs, Int. J. Mod. Phys. D 17, 1391-1399 (2008). http://dx.doi.org/10.1142/S0218271808012966

Zhang ZB, Chen DY, Huang YF, Correlation between peak energy and peak luminosity in short gamma-ray bursts, Astrophys. J. 755, 55 (2012). http://dx.doi.org/10.1088/0004-