NEGATIVE RESULT

Certain types of iron oxide nanoparticles are not suited to passively target inflammatory cells that infiltrate the brain in response to stroke

Christopher Harms1,2,7, Anna Lena Datwyler1,7, Frank Wiekhorst1, Lutz Trahm1, Randall Lindquist4, Eyk Schellenberger4, Susanne Mueller1, Gunnar Schütz5, Farnoosh Roohi5, Andreas Ide5, Martina Füchtemeier1, Karen Gertz1, Golo Kronenberg1, Ulrike Harms1,2, Matthias Endres1,2,6, Ulrich Dirnagl1,6 and Tracy D Farr1

Intravenous administration of iron oxide nanoparticles during the acute stage of experimental stroke can produce signal intensity changes in the ischemic region. This has been attributed, albeit controversially, to the infiltration of iron-laden blood-borne macrophages. The properties of nanoparticles that render them most suitable for phagocytosis is a matter of debate, as is the most relevant timepoint for administration. Both of these questions are examined in the present study. Imaging experiments were performed in mice with 30 minutes of middle cerebral artery occlusion (MCAO). Iron oxide nanoparticles with different charges and sizes were used, and mice received 300 μmol Fe/kg intravenously: either superparamagnetic iron oxide nanoparticles (SPIOs), ultrasmall SPIOs, or very small SPIOs. The particles were administered 7 days before MCAO, at the time of reperfusion, or 72 hours after MCAO. Interestingly, there was no observable signal change in the ischemic brains that could be attributed to iron. Furthermore, no Prussian blue-positive cells were found in the brains or blood leukocytes, despite intense staining in the livers and spleens. This implies that the nanoparticles selected for this study are not phagocytosed by blood-borne leukocytes and do not enter the ischemic mouse brain.

Journal of Cerebral Blood Flow & Metabolism (2013) 33; doi:10.1038/jcbfm.2013.22; published online 27 February 2013

Keywords: inflammation; iron oxide nanoparticles; magnetic resonance imaging; stroke

INTRODUCTION

There is a profound inflammatory response to stroke that includes recruitment of blood-borne leukocytes to the brain. Because one of the roles of monocytes on their maturation is phagocytosis, it is generally believed that this subpopulation of leukocytes can take up contrast agents from the blood stream and bring them to the ischemic brain. For magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPIOs) are widely used, reviewed in (refs 1–3). In general, they consist of an iron oxide core that can be encased in a variety of metabolizable monomers or polymers; the most common coating used is polysaccharides. The coating influences overall hydrodynamic diameter and surface charge, which in turn determines the pharmacokinetic properties of the particles such as blood half-life, uptake, and elimination.4,5 These properties are extremely important when attempting to use these agents to target blood-borne monocytes. Superparamagnetic iron oxide nanoparticles are generally grouped according to size. Micron-sized particles of iron oxides are the largest (0.7 to 3 μm), followed by SPIOs (60 to 200 nm), ultrasmall SPIOs (USPIOs, 10 to 60 nm), and very small SPIOs (VSOPs, <10 nm). The superparamagnetism of iron oxide nanoparticles means they exhibit high transversal relaxivity and are thus generally used to produce signal loss in T2- and T2*-weighted images, although some particles exhibit significant longitudinal relaxivity and can produce hyperintensity in T1-weighted images under certain conditions.

USPIOs are the most commonly used nanoparticles to attempt to image the monocyte response to stroke. This is generally because their small size affords them some degree of protection from uptake by the mononuclear phagocyte, or reticuloendothelial, system; i.e., the macrophages in the lymph nodes, spleen, and liver (Kupffer cells).6 Therefore, their blood half-life is slightly longer than that of SPIOs. The first preclinical study administered USPIOs 5 hours after permanent middle cerebral artery occlusion (MCAO) in the rat and observed signal loss within the first 2 days in T2-weighted images.7 Prussian blue (iron stain)-positive cells were detected in the lesion boundary at 7 days. However, the same group was only able to observe a delayed (48 to 72 hours) hyperintense signal change in the ischemic hemisphere on T1-weighted images when the same strategy was used in a transient model of MCAO,8 which is more consistent with the known timecourse of monocyte infiltration to the ischemic brain.9,10

1 Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité University Medicine, Berlin, Germany; 2 Klinik und Hochschulambulanzen für Neurologie, Charité University Medicine, Berlin, Germany; 3 Physikalisch-Technische Bundesanstalt, Berlin, Germany; 4 Department of Radiology, Charité University Medicine, Berlin, Germany; 5 MR & CT Contrast Media Research, Bayer HealthCare Pharmaceuticals, Berlin, Germany and 6 Excellence Cluster NeuroCure, Charité University Medicine, Berlin, Germany.

Correspondence: TD Farr, Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité University Medicine, Berlin 10117, Germany.

E-mail: tracy.farr@charite.de

1 These authors contributed equally to the study.

This work was supported by grants from the Federal Ministry of Education and Research (Center for Stroke Research Berlin) (UD, ME, TDF and CH), the German Research Foundation (Clinical Research Group KFO213 to CH, UH, ME and ES, HA-5741/1-1 and HAS741/1-2), the Cluster of Excellence NeuroCURE Exc 257, and the European Union’s 7th Framework Programme (FP7/2008-2013) under grant agreements 201024 and 202213 (European Stroke Network).

Received 9 October 2012; revised 23 January 2013; accepted 24 January 2013

www.jcbfm.com
These studies served as a launching platform for this technique and clinical studies began to emerge that showed a more heterogeneous pattern of USPIO signal enhancement in stroke patients. When USPIOs were administered 6 days after symptom onset, a strong T$_2^*$ signal decrease was observed on account of the blood-pool effect of the iron, which paralleled an increase in T$_2$ contrast that was attributed to parenchymal accumulation.1,2,3 Earlier USPIO administration (between 24 to 96 hours of symptom onset) resulted in T$_1$ enhancement in only one-third of patients.1,3 This highlighted the need for further preclinical investigation with particular focus on delaying the timepoint of USPIO administration. However, studies that used this approach were less promising. The first preclinical study only administrated USPIOs for up to 3 days after transient MCAO in mice and no signal changes were observed in any of the images.14 Comparable results were obtained by another group that administered USPIOs between 3 and 6 days after transient MCAO in rats.15

Despite exhibiting a poor half-life when compared with USPIOs, SPIOs consistently exhibit much higher uptake by different type of macrophages in vitro.2,16,17 Therefore, if their administration is timed correctly, they could have a better chance for uptake in vivo. This was tested by a group that administrated SPIOs continuously (between 3 and 14 days) after transient MCAO in the rat.19 Focal regions of signal loss were observed in T$_2^*$-weighted images between 3 and 4 days after MCAO in the lesion boundary and vessels that were associated with Prussian blue-positive cells. Another group observed signal loss in the ischemic boundary in T$_2^*$-weighted images when SPIOs were administered 7 days before MCAO.19 Therefore, the goals of the present study were first, to investigate the most suitable type of iron oxide nanoparticle for imaging blood-borne macrophages. We used USPIOs and SPIOs in accordance with the literature, as well as VSOPs. This is the first time VSOPs have been used to attempt to track blood-borne monocytes in experimental stroke. In the second instance, we aimed to identify the most relevant timepoint for contrast agent administration, which is also lacking in the literature. For this purpose, the three different nanoparticle formulations were infused either at 7 days before MCAO, at the time of reperfusion, or 72 hours after MCAO.

MATERIALS AND METHODS

Experimental Design

All experiments were approved by the Landesamt für Gesundheit und Sozialen Wohlfahrt (permit number G 0200/07 and A 0045/11). Animals were housed in a temperature (22–24°C), humidity (55% ± 10%), and light (12/12 hours light/dark cycle) controlled environment and given ad libitum access to food and water.

To assess the potential of MRI to detect iron-containing macrophages in the brain, 42 male C57BL/6 N mice (8 weeks of age, Charles River, Sulzfeld, Germany) received 30 minutes of MCAO (n = 33) or sham surgery (n = 9). Animals randomly received one of three different types of iron oxide nanoparticles (300 μmol Fe/kg): SPIOs, USPIOs, or VSOPs coupled to the fluorescent dye Dy-682 (Dyomics, Jena, Germany), at one of three different timepoints with respect to MCAO: 7 days before, at reperfusion, or 72 hours after MCAO. Animal experiments were conducted in accordance with the German Animal Welfare Act. Animals were housed in a temperature (22–24°C), humidity (55% ± 10%), and light (12/12 hours light/dark cycle) controlled environment and given ad libitum access to food and water.

To assess the potential of MRI to detect iron-containing macrophages in the brain, 42 male C57BL/6 N mice (8 weeks of age, Charles River, Sulzfeld, Germany) received 30 minutes of MCAO (n = 33) or sham surgery (n = 9). Animals randomly received one of three different types of iron oxide nanoparticles (300 μmol Fe/kg): SPIOs, USPIOs, or VSOPs coupled to the fluorescent dye Dy-682 (Dyomics, Jena, Germany), at one of three different timepoints with respect to MCAO: 7 days before, at reperfusion, or 72 hours after MCAO. Magnetic resonance imaging was performed daily for up to 5 days after MCAO. At the conclusion of the MRI experiments, terminal blood samples were taken to harvest the blood leukocyte fraction and livers, spleens, and brains were harvested for histological analysis.

To determine blood iron content and leukocyte uptake of the nanoparticles, mice were killed at the time of injection in one experimental model. 12 additional mice underwent MCAO and randomly received one of the three different types of iron oxide nanoparticles (300 μmol Fe/kg, n = 4, each) at 72 hours after MCAO. Blood samples were collected just before and at approximately 2, 5, 15, 30, and 45 minutes after injection and mice were subsequently euthanized. Iron content was measured in the blood samples and organs (heart, lungs, kidney, and portions of the liver and spleen) with magnetic particle spectroscopy (MPS), and an additional blood sample was taken before euthanasia to harvest the blood leukocyte fraction.

To confirm that blood-borne macrophages are indeed capable of migrating to the ischemic brain, additional experiments were performed in bone marrow chimeras (see Supplementary Methods and Results).

MCAO Procedure

Animals weighed between 19 and 27 g (average 24.1 ± 1.4 g) at the time of the MCAO. Anesthesia was achieved using isoflurane in a 70:30 nitrous oxide:oxygen mixture, and core body temperature was maintained at 37.2 ± 0.8°C using an automated heat blanket with temperature feedback (Harvard Apparatus, Hugo Sachs Elektronik, March-Hugstetten, Germany). Transient occlusion of the MCA was performed using a modified intraluminal filament technique. Mice were placed in a supine position and the neck was shaved and cleaned. A midline incision was made in the neck, and the left sternomastoid muscle was retracted to expose the left carotid artery (CA). A silk suture was tied around the CA below the bifurcation into the internal and external carotid arteries, respectively. A loose suture was placed around the external carotid artery and secured externally. Another loose suture was placed on the internal carotid artery and a microclip was placed directly above it. A small incision was made in the CA and a 20-mm-long filament coated with 5 mm of silicone to a final diameter of 190 μm (Devco Corporation, Redbank, CA, USA) was inserted into the incision. The loose internal carotid artery suture was tightened around the filament, the microclip released, and the filament advanced up the internal carotid artery until resistance was felt (~ 9 mm). The animals were recovered and the filament was left in place for 30 minutes. Reperfusion was induced by withdrawing the filament and ligating the CA around the incision site. All other threads were removed, muscles and glands guided back into place, and the incision sutured. Xylocain gel was applied to the sutured wound before recovery. Animals received 1.5 mL of physiological saline subcutaneously daily until weight stabilized and were provided with wet diet to facilitate eating.

Magnetic Resonance Imaging Measurements

Anesthesia was also achieved using isoflurane. Magnetic resonance imaging experiments were conducted on a 7 T Pharmascan 70/16 (Bruker BioSpin MRI GmbH, Ettlingen, Germany) equipped with actively shielded head volume resonator (RAPID Biomedical, Würzburg, Germany). During scanning, body temperature and respiration rate were monitored with an MRI compatible system (Small Animal Instruments, Stony Brook, NY, USA).

The entire imaging protocol was selected to be completed within 90 minutes. True-FOV: 25 × 25 mm$, z axis: 256 (voxel size: 0.96 mm thick slices). It consisted of a spin-echo multi-slice multi-echo T$_2$ sequence (TR/TE: 3000/10.5 ms, 16 echoes, 9 minutes), a fast low-angle shot T$_1$-weighted sequence (TR/TE: 150/3.5 ms, flip angle 30°, 4 minutes), a rapid acquisition with relaxation enhancement T$_1$-weighted sequence (TR/TE: 800/13.2 ms, 2 averages, rapid acquisition with relaxation enhancement factor 2.3 minutes), and a fast low-angle shot T$_2$-weighted sequence (TR/TE: 1000/7.2 ms, flip angle 30°, 4 minutes) that was not strongly T$_2^*$-weighted to avoid strong endogenous susceptibility effects.

Contrast Agents

One of three different types of iron oxide nanoparticles (for details regarding nanoparticle synthesis and characterization, see Supplementary Methods) were administrated (300 μmol Fe/kg) intravenously at one of three timepoints: 7 days before MCAO, at reperfusion, or 3 days after MCAO. Polyethylene glycol-coated SPIOs with a net positive charge (87 nm diameter, $R_1 = 11$, $R_2 = 295$ (mmol/L s$^{-1}$) at 1.4 T in water), polycrylic acid-coated USPIOs with a net negative charge (17 nm diameter, $R_1 = 17$, $R_2 = 56$ (mmol/L s$^{-1}$)) at 1.4 T in water), and citrate-coated VSOPs coupled to the fluorescent dye Dy-682 (9 nm diameter, $R_1 = 14$, $R_2 = 33$ (mmol/L s$^{-1}$) at 1.4 T in water) were adjusted for osmolarity for in vivo use with 15% D-mannitol (Sigma-Aldrich, Taufkirchen, Germany). The dye concentration in the VSOP-Corporation, Redbank, CA, USA) was inserted into the incision. The loose internal carotid artery suture was tightened around the filament, the microclip released, and the filament advanced up the internal carotid artery until resistance was felt (~ 9 mm). The animals were recovered and the filament was left in place for 30 minutes. Reperfusion was induced by withdrawing the filament and ligating the CA around the incision site. All other threads were removed, muscles and glands guided back into place, and the incision sutured. Xylocain gel was applied to the sutured wound before recovery. Animals received 1.5 mL of physiological saline subcutaneously daily until weight stabilized and were provided with wet diet to facilitate eating.
Germany) to assess blood–brain barrier integrity with pre and post contrast T1-weighted images.

MR-Image Analysis
Quantitative T2 maps were fitted on a voxelwise basis using a monoexponential decay function in Paravision version 4 software (Bruker Biospin). Subsequently, all data were exported to Imagej version 1.44p freeware (National Institutes of Health, Bethesda, MD, USA). An unblinded observer used the Sync Windows Analyze Tool to draw two circular (1.2 mm diameter) regions of interest (ROIs) on the slice image that was located 0.14 mm from bregma20 intact and ischemic striatum. T2 (ms) was measured in these ROIs from the T2* maps and data were expressed as a ratio of the intact to ischemic hemisphere. An additional large rectangular ROI (24 x 4 mm) was also drawn above the brain on the T1- and T2*-weighted images. Subsequently, signal-to-noise ratios in the striatum were calculated by dividing the signal intensity of each ROI by the standard deviation of the noise in the large rectangular ROI. These data were also expressed as a ratio of the intact to ischemic hemisphere.

Magnetic Particle Spectroscopy
Quantification of nanoparticle iron content in blood samples from 12 MCAO mice was determined immediately after nanoparticle injection using a commercial MPS (Bruker BioSpin MRI GmbH).21 Primarily, this device is dedicated to quantify the performance of magnetic nanoparticles as tracers for a novel imaging modality called magnetic particle imaging.22 Magnetic particle spectroscopy detects specifically the nonlinear magnetic response of magnetic nanoparticles exposed to an oscillating magnetic field. Biological tissue and paramagnetic blood iron do not contribute to the MPS signal.

Blood samples (between 50 and 100 µL) were collected in ethylenediaminetetraacetic acid-coated capillaries before and at approximately 2, 5, 15, 30, and 45 minutes after injection (72 hours after MCAO) of the different nanoparticle formulations. After blood sampling, animals were euthanized with an overdose of anesthetic and perfused transcardially with physiological saline. The heart, lungs, kidneys, livers, and spleens were extracted and weighed, and the livers and spleens were divided for MPS and histology. Blood samples and organs (up to 180 µL) were collected in polymerase chain reaction compatible fast reaction tubes (Applied Biosystems, Darmstadt, Germany) and stored at −80 °C. Brains and pieces of the livers and spleens from the 12 additional animals used to determine blood iron content were also treated in this fashion. Sections from each organ, as well as the slides containing the blood leukocytes, were stained with Prussian blue to detect iron using the Accustain Iron Kit (Sigma-Aldrich). Slides were placed in equal parts of 4% potassium ferrocyanide (K4Fe(CN)6) and 1.2 mmol/L of HCl for 10 minutes at room temperature. They were subsequently rinsed in deionized water and counterstained in 1% pararosanilin hydrochloride for 4 minutes. The slides were rinsed again, rapidly dehydrated in 70, 80, 96, and 100% alcohol, placed in xylene, and subsequently coverslipped with Vitro Clud (Langenbrink, Emmendingen, Germany).

RESULTS
Overall mortality within the primary study was low (1/42), two mice were euthanized prematurely because of excessive weight-loss in accordance with our animal care guidelines and one animal was excluded on the basis that no MCAO was observed in the T2-weighted images. Group assignments and drop outs are presented in Table 1. Only one of the additional 12 mice that were used for blood nanoparticles iron content analysis by MPS was euthanized prematurely and another died after particle injection.

Blood Leukocyte Harvest
Terminal blood samples were collected from all mice and processed to retrieve the leukocyte fraction. The samples were adjusted to equal volumes (5 mL) with 1 mol/L phosphate-buffered saline and embedded on 2.5 mL of Histopaque-1083 (Sigma-Aldrich). They were subsequently centrifuged for 30 minutes at 850 g at room temperature. The leukocyte-containing phase was washed with RPMI medium (also containing 10% fetal calf serum, 1% penicillin and streptomycin, and 1% glutamate), and centrifuged at 1200 rpm at 4 °C for 8 minutes. The cells were washed in phosphate-buffered saline, fixed for 20 minutes at room temperature in 4% paraformaldehyde, washed, and placed on slides.

Histology
Mice that underwent MRI for up to 5 days after MCAO were euthanized with intraperitoneal chloral hydrate (4% in water), perfused with physiological saline, and the brains, livers, and spleens were snap frozen in − 40 °C methylbutane, sectioned to 20 µm using a cryostat (Leica Microsystems, Wetzlar, Germany) and stored at −80 °C. Brains and pieces of the livers and spleens from the 12 additional animals used to determine blood iron content were also treated in this fashion. Sections from each organ, as well as the slides containing the blood leukocytes, were stained with Prussian blue to detect iron using the Accustain Iron Kit (Sigma-Aldrich). Slides were placed in equal parts of 4% potassium ferrocyanide (K4Fe(CN)6) and 1.2 mmol/L of HCl for 10 minutes at room temperature. They were subsequently rinsed in deionized water and counterstained in 1% pararosanilin hydrochloride for 4 minutes. The slides were rinsed again, rapidly dehydrated in 70, 80, 96, and 100% alcohol, placed in xylene, and subsequently coverslipped with Vitro Clud (Langenbrink, Emmendingen, Germany).
that received iron at 3 days after MCAO as the ischemic region became hyperintense in T1-weighted images after Gadolinium diethylenetriaminepentaacetic acid infusion (Figure 1, bottom panel).

Semiquantification of the signal-to-noise ratio in T1- and T2*-weighted images, and T2 (ms), was performed in the intact and ischemic striatum to try and elucidate subtle changes in signal. Subsequent values were expressed as a ratio of the intact to ischemic hemisphere; thus, a value of 1 would indicate that there is no difference in signal-to-noise ratio, or T2, between hemispheres. Both T1 and T2* ratios in animals treated with VSOPs at 7 days before MCAO or at the time of reperfusion remained unchanged (around 1) at all measured timepoints after MCAO (Figure 2A and C). However, the T2* ratios of these animals were ~0.6 within the first 48 hours of MCAO (Figure 2B), which is not surprising given that T2* values are increased in the ischemic territory because of vasogenic edema. As edema resolves T2* values will decline slightly, which is visualized by the gradual increase in T2* ratios over time in the animals treated with VSOPs at 72 hours after MCAO (Figure 2B). In these same animals, no changes in T2 or T2* ratios were observed directly after injection of the iron (72 to 72.5 hours, Figure 2B and C). However, a decrease in the T1 ratio was observed at this timepoint because of the Gadolinium diethylenetriaminepentaacetic acid injection (Figure 2A).

Similar results were obtained from the animals treated with SPIOs and USPIOs (Figure 3 A–C and D–F, respectively). No changes in T2* ratios were observed over time in either SPIO (Figure 3C) or USPIO (Figure 3F) treated animals when nanoparticles were infused at 7 days before MCAO, at reperfusion, or at

Figure 1. Images from animals treated with intravenous contrast agents at different timepoints with respect to middle cerebral artery occlusion (MCAO). A timecourse of T1-weighted images, T2 maps, and T2*-weighted images from a representative animal in each of the treatment groups (left panel—VSOPs, middle panel—SPIOs, and right panel—USPIOs) after MCAO. The top panel contains animals that received iron oxides 7 days before MCAO, the middle panel: at the time of reperfusion, and the bottom panel: at 72 hours after MCAO. T2 values (ms) are indicated in the color scale bar below the images. Note the blood-pool effect of the iron oxides after infusion (72.5 hours) in the T2*-weighted images in the bottom most row. SPIOs, superparamagnetic iron oxide nanoparticles; USPIOs, ultrasmall SPIOs; VSOPs, very small SPIOs.
72 hours after MCAO. This was also the case for T_1 ratios. However, there was a decrease in the T_1 ratio at 72.5 hours after Gadolinium diethylenetriaminepentaacetic acid injection in the animals treated with SPIOs at 72 hours after MCAO (Figure 3A). This effect was not observed in the animals treated with USPIOs at 72 hours after MCAO (Figure 3D). Animals in this group did not exhibit such severe lesions, as is indicated by the lower T2 values and thus T2 ratio of only 0.8 (Figure 3E). T2 ratios of the other USPIO, and SPIO-treated groups, were comparable (beginning ~0.6 and increasing to 0.8 by 120 hours after MCAO).

DISCUSSION

The present study administered three different types of iron oxide nanoparticles, each with a different size and coating, at three different timepoints with respect to MCAO. Interestingly, no regions of circumscribed signal change that could be attributed to iron were observed in T_2, T_2^*, or T_1-weighted images under any combination of conditions. A detailed examination of the corresponding tissue sections was unable to identify any Prussian blue-positive cells. No Prussian blue-positive cells were observed in any of the examined sections (Figure 5). However, the livers and spleens of all animals in the study were highly positive for iron. Iron in the spleen was not always homogenously distributed and appeared to be both intracellular and extracellular. Prussian blue staining was always observed inside the cells of the liver. The blood leukocyte fraction was also examined and none of the slides contained any Prussian blue-positive cells.

Magnetic Particle Spectroscopy

Magnetic particle spectroscopy revealed that the concentration of magnetic nanoparticles in the blood was negligible before injection. However, the nanoparticle iron concentration increased dramatically in all three groups within the first 2 minutes of the infusion (between 100 and 200 ng Fe/mg of blood) (Figure 4). This response began to decline as early as 5 minutes after injection and was nearly at baseline levels by 45 minutes, and this pattern was similar for all three nanoparticle formulations.

Hearts, lungs, and kidneys also contained a negligible amount of nanoparticle iron. However, the portions of the spleens and livers (respectively) from all three groups contained high amounts of nanoparticle iron: VSOPs (362 ± 56 and 197 ± 82 ng Fe/mg of tissue), UPSIOs (223 ± 76 and 172 ± 53 ng Fe/mg of tissue), and SPIOs (41 ± 3 and 58 ± 21 ng Fe/mg of tissue). When this was corrected for total organ weight, assuming homogenous distribution, the liver contained ten times more nanoparticle iron than the spleen in VSOP- and USPIO-treated animals, and 30 times more in the SPIO-treated animals. Overall particle concentration, in general, was lower in the SPIO-treated group.

Histology

Three brain sections (1.42, 0.14, and −1.7 mm from bregma) from each of the animals were examined for the presence of Prussian blue-positive cells. No Prussian blue-positive cells were observed in any of the examined sections (Figure 5). However, the livers and spleens of all animals in the study were highly positive for iron. The blood leukocyte fraction was also examined and none of the slides contained any Prussian blue-positive cells.
change may be because of passive entry of the USPIOs into the brain and/or accumulation in the cerebral spinal fluid and interstitial space, and experiments using transient models were never as promising. The results of the present study using a transient model are in agreement, with the notable exception that we did not observe a delayed hyperintensity develop in T1-weighted images that was reported by one group. While clinical studies have also reported T1 increases when USPIOs were administered 6 days after symptom onset, it is still not clear if this represents accumulation of iron-containing cells. The T1 effect can overcome the susceptibility effect when iron concentration is low or when the iron is extracellular as opposed to clustered intracellularly. Therefore, it is possible that the T1 hyperintensity could reflect low amounts of iron in the interstitial space.

In contrast to USPIOs, very little work has been done with SPIOs on account of their short half-lives. One group attempted to overcome the restrictions imposed by poor circulation times by administering SPIOs on a daily basis, and were able to observe signal change in the ischemic brain; unfortunately, we only administered SPIOs once per animal. Another group has suggested that administration of SPIOs 7 days before MCAO allows these particles to accumulate in the bone marrow progenitor cells; thus, any contrast observed in the brain after stroke would be from cells that originated in the bone marrow and not because of passive entry of contrast into the brain. The preloading strategy was not successful in our hands, although it is not clear if SPIOs are capable of accumulating in the bone marrow. This property has generally been attributed to USPIOs on account of their half-life, and even USPIOs show relatively little bone marrow accumulation beyond 24 hours in rodents. The SPIOs

Figure 3. Signal intensity changes in the images over time in SPIO- and USPIO-treated animals. Semiquantitative analysis (means ± s.d.) of the signal-to-noise ratio in the striatum, expressed as a ratio of the intact to ischemic hemisphere in T1- (A) and T2*-weighted images (C) for SPIO-treated groups (circles with dotted line—SPIOs at 7 days before MCAO (n = 4), triangles with solid line—SPIOs at reperfusion (n = 3), and squares with dashed line—SPIOs at 72 hours after MCAO (n = 2). T2 values in the striatum are expressed as a ratio of the intact to ischemic hemisphere (B). Similar results are presented for USPIO-treated animals in the right panel (D–F). Note the decrease in the T1 ratio after Gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) administration (72.5 hours) in the animals that received SPIOs at 3 days after MCAO. MCAO, middle cerebral artery occlusion; SPIOs, superparamagnetic iron oxide nanoparticles; USPIOs, ultrasmall SPIOs; VSOPs, very small SPIOs.

Figure 4. Nanoparticle iron concentration (ng Fe/mg blood) in the blood as measured by magnetic particle spectroscopy before (0 second) and up to 45 minutes (2700 seconds) after injection in animals treated with VSOPs (gray symbols), USPIOs (empty symbols), and SPIOs (black symbols). Note: each symbol corresponds to a different animal (n = 3 per group). SPIOs, superparamagnetic iron oxide nanoparticles; USPIOs, ultrasmall SPIOs; VSOPs, very small SPOIs.
used in the present study would be more suitable than most other formulations for this purpose, because they were coated with polyethylene glycol to increase circulation time. As we did not measure the bone marrow, we cannot exclude the possibility that the SPIOs accumulated there.

The fact that none of the particles appear to be suited to track blood-borne monocytes is not entirely surprising if we consider their historical development. The first-generation SPIOs (Endorem, Guerbet, Paris, France; Feridex, Amag Pharma, Lexington, MA, USA; coated in dextran with a neutral charge) were developed for iron replacement therapy. Subsequent formulations were coated with carboxy-dextran and possessed a negative charge (SH U 555 A/Resovist, Bayer Schering, Berlin, Germany) because this reduced side effects of administration. Both formulations are sterically stabilized, which means they are not stable for long in vivo. Early pharmokinetic studies in rodents revealed that SPIO half-life was extremely short (less than 10 minutes) as nearly 90% are absorbed by Kupffer cells and macrophages in the spleen; even coating them with polyethylene glycol, as is the case in the present study, does not

Figure 5. Prussian blue staining of the tissues and leukocyte fractions. Prussian blue sections from a representative animal treated with VSOPs (top row), SPIOs (middle row), and USPIOs (bottom row) at 72 hours after MCAO. The ischemic and intact striatum images contain higher magnification insets. Prussian blue-positive cells were only found in the spleens and livers. Note: scale bars in the leukocyte images correspond to 16 µm, all other scale bars correspond to 50 µm. The letter v in the top corner of the intact and ischemic striatum denotes the ventricles as an anatomical reference. MCAO, middle cerebral artery occlusion; SPIOs, superparamagnetic iron oxide nanoparticles; USPIOs, ultrasmall SPIOs; VSOPs, very small SPIOs.
extend the half-life much beyond this. Thus, the properties of SPIOs make them unattractive as a candidate to target monocytes. Even though USPIOs exhibit slightly longer circulation times (~80 minutes in rats), this is still not very long when trying to observe a process that lasts for several days and involves a constant turnover of cells. What was also not well considered when we began infusing these particles into experimental stroke models was the fact that blood-borne monocytes may not necessarily behave in the same way after their maturation into macrophages as the macrophages in the liver and spleen. It is well known that USPIO uptake in vitro by monocytic cells is relatively poor.16,17,24,34 Thus, it is not surprising that uptake may also be poor in vivo, although few groups have actually examined this in their models. Blood leukocytes harvested from animals with MCAO directly after USPIO infusion (6 hours), or 24 hours later, were Prussian blue negative.24 The results of the present study are in agreement with this.

It is necessary to point out that there are several limitations with the present study. The first is that we did not include statistical analysis of our results on account of the small group sizes, which makes it difficult to make definitive conclusions. However, as the results were emerging as overwhelmingly negative, we could not justify the continued use of resources and animals. The second is that our experiments were conducted solely in mice, which is unfortunate as we cannot directly compare our findings with those that were obtained in rats. The third important limitation was that we chose to focus our attention on nanoparticle formulations that were consistent with those used in the published literature (namely, USPIOs and SPIOs). As was previously mentioned, the half-lives of these formulations are not conducive for labeling blood-borne leukocytes. While the same appears to be true for the VSOps used in the present study, it is possible that similar particles with longer circulation times, such monocristalline iron oxide nanocompound,35 or cross-linked iron oxide nanoparticles, could result in uptake by blood-borne leukocytes.

In conclusion, certain formulations of iron oxide nanoparticles, at least the ones used in the present study, appear to have a limited application as agents to label blood-borne monocytes of bone marrow origin in a mouse model of transient focal ischemia.

DISCLOSURE/CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
The authors wish to acknowledge Janet Lips and Marco Foddis for technical assistance.

REFERENCES
1 Beckmann N, Cannet C, Babin AL, Ble F, Zurbruegg S, Kneuer R et al. In vivo monitoring of macrophage infiltration and activity in inflammation using magnetic resonance imaging. WIREs Nanomed Nanobiotechnol 2009; 1: 272–298.
2 Jander S, Schroeter M, Saleh A. Imaging inflammation in acute brain ischemia. Stroke 2007; 38: 642–649.
3 Deddens LH, Van Tilborg GA, Mulder WJ, De Vries HE, Dijkhuizen RM. Imaging neuroinflammation after stroke: current status of cellular and molecular MRI strategies. Cerebrovasc Dis 2012; 33: 392–402.
4 Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11: 2139–2331.
5 Roohi F, Lohrke J, Ide A, Schutz G, Dassler K. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int J Nanomed 2012; 7: 4447–4458.
6 Di Marco M, Sadun C, Port M, Guilbert J, Couvreur P, Dubernet C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomed 2007; 2: 609–622.
7 Rausch M, Sauter A, Frohlich J, Neubacher U, Radu EW, Rudin M. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn. Reson. Med 2001; 46: 1018–1022.
8 Rausch M, Baumann D, Neubacher U, Rudin M. In vivo visualization of phagocytic cells in rat brains after transient ischemia by USPIO. NMR Biomed 2002; 15: 278–283.
9 Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GP. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188–199.
10 Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S. In vivo MRI of brain inflammation in human ischemic stroke. Brain 2004; 127: 1670–1677.
11 Nighoghossian N, Wiart M, Cakmak S, Berthezene Y, Derex L, Cho TH et al. Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke 2007; 38: 303–307.
12 Saleh A, Schroeter M, Ringelstein A, Hartung HP, Siebler M, Modder U et al. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 2007; 38: 2733–2737.
13 Dedens A, Vidyasagar R, Feng J, Nansivin J, McColl BW, Kauppinen RA et al. Proliferating resident microglia after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2007: 27: 1941–1953.
14 Farr TD, Seehafer JU, Nelles M, Hoehn M. Challenges towards MR imaging of the peripheral inflammatory response in the subacute and chronic stages of transient focal ischemia. NMR Biomed 2011; 24: 35–45.
15 Kim J, Kim DI, Lee SK, Kim DJ, Lee JE, Ahn SK. Imaging of the inflammatory response in reperfusion injury after transient cerebral ischemia in rats: correlation of superparamagnetic iron oxide-enhanced magnetic resonance imaging with histopathology. Acta Radiol 2008; 49: 580–588.
16 Metz S, Bonettura G, Rudelius M, Settles M, Rummey EJ, Daldrup-Link HE. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 2004; 14: 1851–1858.
17 Kim J, Kim DI, Lee SK, Kim DJ, Lee JE, Ahn SK. Imaging of the inflammatory response in reperfusion injury after transient cerebral ischemia in rats: correlation of superparamagnetic iron oxide-enhanced magnetic resonance imaging with histopathology. Acta Radiol 2008; 49: 580–588.
18 Henning EC, Ruetzler CA, Gaudinski MR, Hu TC, Latour LL, Hallenbeck JM et al. Feridex preloading permits tracking of CNS-resident macrophages after ischemic brain injury. Stroke 2004; 35: 1229–1239.
19 Paxinos G, Franklin KBJ. The mouse brain in stereotactic coordinates. 2nd edn (Academic Press: San Diego, 2001.
20 Snyder SR, Heinen U. Characterization of magnetic nanoparticles for therapy and diagnostics. In: http://www.bruker-biospin.com/mps-apps.html Application note: Bruker Biospin 04/11: T128513.
21 Miller, F, Sauter A, Frohlich J, Neubacher U, Radu EW, Rudin M. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn. Reson. Med 2001; 46: 1018–1022.
22 Lutz AM, Weishaupt D, Persohn E, Goepfert K, Froehlich J, Sasse B et al. Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics. Radiology 2005; 234: 765–775.
23 Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn. Reson. Med 2003; 49: 646–654.
24 Simon GH, Bauer J, Saborovski O, Fu Y, Corot C, Wendland MF et al. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol 2006; 16: 738–745.
25 Desestret JC, Desestret V, Marcellino S, Devillard E, Chauveau F, Lagarde F et al. Quantitative effects of cell internalization of two types of ultrasmall...
supercparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. *Eur Radiol* 2010; **20**: 275–285.

30 Azoulay R, Olivier P, Baud O, Verney C, Santus R, Robert P et al. USPIO (Ferumoxtran-10)-enhanced MRI to visualize reticuloendothelial system cells in neonatal rats: feasibility and biodistribution study. *J Magn Reson Imag* 2008; **28**: 1046–1052.

31 Simon GH, Raatschen HJ, Wendland MF, Von Vopelius-Feldt J, Fu Y, Chen MH et al. Ultrasmall superparamagnetic iron-oxide-enhanced MR imaging of normal bone marrow in rodents: original research original research. *Acad Radiol* 2005; **12**: 1190–1197.

32 Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. *Am J Roentgenol* 1989; **152**: 167–173.

Supplementary Information accompanies the paper on the Journal of Cerebral Blood Flow & Metabolism website (http://www.nature.com/jcbfm)