Supplementary Materials for

Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies

Yingdan Wang1, Xiang Zhang1, Yunping Ma1,2, Yanjun Wang3, Wuqiang Zhan1, Qinwen Zheng1, Meng Zhang1, Ping Ji1, Mei Liu1, Qianying Liu1, Tingting Sun1, Tongyu Zhu1, Yumei Wen1, Lei Sun1*, Jincun Zhao3,4,5*, Fan Wu2*, Zhenguo Chen1*, Jinghe Huang1*

1Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, the Fifth People's Hospital of Shanghai, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China.

2Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China.

3State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China;

4Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

5Guangzhou Laboratory, Bio-island, Guangzhou 510320, China

*These authors contributed equally.

*Correspondence to: llsun@fudan.edu.cn, zhaojincun@gird.cn, wufan@renji.com, ZhenguoChen@fudan.edu.cn, or jinghehuang@fudan.edu.cn.

Keywords: COVID-19; SARS-CoV-2; Bispecific antibodies; Omicron; BA.2
Table S1. Mutations in spike proteins of Omicron, BA.1.1, BA.2 and BA.3.

Spkie	Mutation	BA.1	BA.1.1	BA.2	BA.3
NTD	T19I				
	A24-26				
	A27S				
	A67V				
	Δ69-70				
	T95I				
	G142D				
	A143-145				
	A21I				
	L212I				
	V213G				
	ins214EPE				
	G339D				
	R346K				
	S371L/F	L	L	F	F
	S373P				
	S375F				
	T376A				
	D405N				
	R408S				
	K417N				
	N440K				
	G446S				
	S477N				
	T478K				
	E484A				
	Q493R				
	G496S				
	Q498R				
	N501Y				
	Y505H				
SD1	T547K				
SD2	D614G				
	H655Y				
	N679K				
	P681H				
FP	N764K				
	D796Y				
	N856K				
HR1	Q954H				
	N969K				
	L981F				
Donor ID	mAb ID	VH	CDRH3 sequence	VL	CDRL3 sequence
----------	---------	-------------	----------------	---------	----------------
Donor 1	GW01	IGHV3-43	ARDRSYSGFDVFNYEYGMVD	IGLV1-44	AAWDDSLNWV
Donor 1	4L12	IGHV3-66	ARDLITYGMDV	IGKV1-9	QQLNSYPFLLT
Donor 2	16L9	IGHV3-53	ARGEIQPYHHGMVD	IGLV2-8	SSYAGSSNDV

Table S2. The germline and CDRH3 sequences of GW01, 4L12, and 16L9.
Table S3. Cryo-EM data collection and refinement statistics of SARS-CoV-2 complexed with IgG FD01.

Data collection and processing	State 1	State 2	State 3	State 4	State 5	State 6	Local refine NRF
Magnification	81,000						
Voltage (kV)	300						
Electron exposure (e⁻/Å²)	58						
Defocus range (μm)	-1.2 to -2.5						
Pixel size (Å)	1.064						
Initial particles (no.)	1,003,956						
Symmetry imposed	C1						
Final particles (no.)	194,026	62,040	74,415	141,577	39,294	71,568	249,122
Map resolution (Å)	3.47	3.70	3.91	3.47	3.87	6.11	3.51

Refinement							
R.m.s. deviations							
Bond lengths (Å)	0.003	0.003	0.003	0.003	0.003	0.002	0.002
Bond angles (°)	0.539	0.506	0.499	0.557	0.527	0.437	0.524
Validation							
MolProbity score	2.52	2.48	2.46	2.50	2.53	2.41	2.88
Clashscore	9.18	8.06	8.38	8.44	8.14	7.67	10.97
Rotamer outlier (%)	5.14	5.34	5.30	5.39	5.97	5.33	9.21
Ramachandran plot							
Favored (%)	91.75	92.00	92.74	91.84	91.67	93.20	88.62
Allowed (%)	7.95	7.90	7.14	8.13	8.17	6.80	11.38
Disallowed (%)	0.30	0.11	0.13	0.03	0.16	0.00	0.00

| EMDB | 32655 | 32656 | 32657 | 32659 | 32660 | 32661 | 32654 |
| PDB | 7WOQ | 7WOR | 7WOS | 7WOU | 7WOV | 7WOW | 7WOP |
Fig. S1. Binding affinities of GW01, 16L9, 4L12, REGN10987, and ten bispecific antibodies to SARS-CoV-2 RBD-his, Omicron trimer-his and Omicron RBD-his measured by bilayer interferometry. Antibodies were immobilized on anti-human IgG (AHC) biosensors and then tested for their binding abilities to the target proteins.
Fig. S2. Cryo-EM data collection and processing of FD01 bound SARS-CoV-2 Omicron S. (a) Representative electron micrograph and 2D classification results of FD01 bound SARS-CoV-2 S. (b) The reconstruction map of the complex structures at
six states. (c) Gold-standard Fourier shell correlation curves generated in RELION for structures of six states. The 0.143 cut-off is indicated by a horizontal dashed line. (d) The local-refined map of the NRF region. (e) Gold-standard Fourier shell correlation curves generated in cryoSPARC for local-refined map. (f) Density maps of residues around the interface.
Fig. S3. Data processing flowchart of FD01 bound SARS-CoV-2 Omicron S trimer. Particles number above cyan line is used for particle counting statistics.
Fig. S4. Data processing flowchart of local refinement of RBD-FD01.

Select all 3D-classes of OS-trimer with good RBD and FD01 density
De-duplicate

217,667 particles (1.064 Å/pixel)

Auto-refine with reference aligned C3 symmetry

Expand particles with C3 symmetry
653,001 particles

Subtract with one NRF mask
No-alignment 3D class

249,122 particles

Export to cryoSPARC
Local refinement

3.51 Å
Fig. S5. IgG FD01 crosslinks Omicron S trimers to form trimer dimer conformation. (a) SDS-PAGE of the FD01 in IgG and Fab form; (b) Negative stain images of Omicron S trimer-FD01 Fab and Omicron S trimer-FD01 IgG, showing that only IgG FD01 can induce the formation of trimer dimer.
Fig. S6. Sequence alignment of SARS-CoV-2 WT and all VOCs RBDs. Conserved amino acids are highlighted as red. Residues involved in 16L9 or GW01 are marked with triangles in green or magenta, respectively. Residues involved in both 16L9 and GW01 binding are marked with triangles in blue.
Fig. S7. Five representative bispecific antibodies block RBD binding to ACE2.

Binding of ACE2 to the SARS-CoV-2 RBD in competition with bispecific antibodies (red), S309 (blue), control IgG1 (green), and IgG1+ACE2 (black).
Fig. S8. Hypothesis of binding features when Omicron S trimer meets with mAbs of 16L9 or GW01.
Supplementary Video: Conformation transitions of Omicron S trimer and the representative bispecific antibody GW01-16L9 (FD01) in six states.