The Werner gap in the presence of simple coloured noise

Minh Cong Tran¹, Wiesław Laskowski² and Tomasz Paterek¹,³

¹ School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
² Institute of Theoretical Physics and Astrophysics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
³ Centre for Quantum Technologies, National University of Singapore, Singapore

E-mail: cmtran@ntu.edu.sg, wieslaw.laskowski@ug.edu.pl and tomasz.paterek@ntu.edu.sg

Received 15 February 2014
Accepted for publication 10 June 2014
Published 8 October 2014

Abstract
The ‘Werner gap’ is the range of relevant parameters characterizing a quantum state for which it is both entangled and admits a local hidden variable model. Werner showed that the gap becomes maximal for entanglement mixed with white noise if subsystems have infinitely many levels. Here we study pure entangled states mixed with simple coloured noise modelled as a single pure product state. We provide an explicit local hidden variable model for quantum correlations of some states of this family and provide hints that there is probably a model for all quantum predictions. This demonstrates essentially a maximal Werner gap already for just two qubits. Additionally to its fundamental interest, the study has implications for quantum computation and communication.

This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.

Keywords: Bell’s theorem, local hidden variable model, entanglement

(Some figures may appear in colour only in the online journal)

1. Introduction

Twenty five years separates two seminal contributions to the foundations of physics that are the topics of this special issue. In 1964, Bell demonstrated that there is no local hidden
variable (LHV) model (classical-like model) underlying the statistical predictions of quantum mechanics [1]. He proved this by constructing the (Bell) inequality that is satisfied by the predictions of all of the classical-like models and which is violated by quantum mechanical expectation values for suitable measurements performed on maximally entangled states. It was made clear that entanglement is a necessary ingredient for the violation, but the question of whether its presence allows for the violation of some Bell inequality was left open for twenty five years. In 1989, Werner showed that in fact entanglement is not sufficient, by constructing an explicit LHV model for all quantum mechanical predictions of some entangled mixed states [2].

Both findings are clearly of great importance. It is tempting to remove the statistical nature of quantum mechanics by introducing some underlying theory that keeps our classical mechanistic notions intact, whereas Bell’s result proves this to be impossible. From the practical side, it gives tools for discriminating between classical-like and quantum predictions, and hence is used to reveal quantum superiority when performing certain tasks, e.g. cryptography [3], communication complexity [4] or computation [5]. All of these problems are related to computer science, because predictions of LHV models can be seen as ones arising from computations conducted on classical computers that are fed with data from a common source such as the Internet (but importantly the computers are not allowed to communicate with each other once the data have been received). Therefore, finding states violating Bell inequalities is also of practical interest, and according to Werner’s work, for many tasks, entanglement is not the source of quantum advantage.

Here we consider a class of mixed entangled states which nevertheless do not violate any Bell inequality for correlation functions. The class studied contains a pure entangled state mixed with a pure product state. All states of this family are known to be entangled even in the presence of an infinitesimal admixture of infinitesimally small entanglement [6]. For completeness, we provide an independent proof of this statement in appendix A. We then focus on two qubits (spin-$\frac{1}{2}$ systems) and give a simple LHV model for a maximally entangled state mixed with a specific product state that shows that no Bell inequality is violated for entanglement admixture at least up to $\frac{1}{2}$. The model mimics all quantum correlations of the state as well as local expectation values for equatorial measurements on the Bloch sphere. Next we extend the model to less entangled pure states. Since smaller entanglement is being admixed, one might intuitively expect the range of its admixture compatible with the LHV model to increase. We do indeed show this to be the case and, in the limit of tiny entanglement, its admixture compatible with the LHV model approaches unity. Therefore, we demonstrate that the Werner gap [7], i.e. the range of pure entanglement admixture for which the mixed entangled state admits an LHV model, can be essentially maximal already for the system of just two qubits. For comparison, in his already mentioned seminal contribution, Werner shows that his original model gives the maximal gap in the limit of infinite-dimensional systems [2]. It should be emphasized that Werner’s model mimics all quantum predictions, whereas our model mimics only the correlations. Nevertheless, we conjecture that for the two-qubit states studied, such a general model exists and provide hints as to why this should be the case.

Finally, we show a similarity between the cases of white and coloured noise. For both cases, known LHV models for two qubits cannot reach the entanglement admixture for which known Bell inequalities are violated. For coloured noise, we show this by studying standard Bell inequalities for correlation functions [8, 9].
2. The Werner gap

Let us begin with the definition of the Werner gap and a brief and incomplete history of it. The state introduced by Werner is invariant under the same unitary operation applied to both of its \(d\)-level subsystems and has the form \([2]\)

\[
\rho_{\text{Werner}} = p \rho_{\text{ent}} + (1 - p) \frac{1}{d^2} \mathbb{I}.
\]

(1)

The entangled state is an even mixture of all the singlet states \(|\psi_{kl}^\pm\rangle = \frac{1}{\sqrt{2}} (|k\rangle - |l\rangle)\) in two-dimensional subspaces:

\[
\rho_{\text{ent}} = \frac{2}{d(d-1)} \sum_{k<l} |\psi_{kl}^\pm\rangle \langle \psi_{kl}^\pm|.
\]

(2)

whereas the unentangled completely mixed state \(\frac{1}{d^2} \mathbb{I}\) is called ‘white noise’. The state (1) is entangled for

\[
p > p_{\text{ent}} = \frac{1}{d + 1}.
\]

(3)

and Werner constructed an explicit LHV model for all projective measurements for admixtures:

\[
p < p_{\text{lhv}} = 1 - \frac{1}{d}.
\]

(4)

We define the ‘Werner gap’ as the range of parameters describing the state for which it is both entangled and admits an LHV model. For the case of equation (1), the Werner gap is therefore defined as

\[
\Delta \equiv p_{\text{lhv}} - p_{\text{ent}}.
\]

(5)

In the simplest system of two qubits, the gap is \(\Delta = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}\), and it reaches the maximum achievable value, \(\Delta \to 1\), as \(d \to \infty\). As far as we know, this is the only example of an entangled state admitting an LHV model for the whole range of relevant parameters. Almeida et al [10] found an LHV model for the isotropic states which even for large \(d\) shows a positive Werner gap, but the gap is never greater than \(\frac{1}{2}\) and it tends to zero for \(d \to \infty\). The results of Werner were improved by Acin et al [11], who show a two-qubit LHV model for entanglement admixtures roughly below \(p_{\text{lhv}} < \frac{2}{5}\), and using the results related to Grothendieck’s constant show that for any mixed state, i.e. in the worst case scenario, the admixture of entanglement to white noise below which there is an LHV model is in the limit of infinite dimension somewhere in between 0.5611 and 0.5964. This latter result holds for quantum mechanical predictions for joint correlations of traceless two-outcome observables. The Werner gap for correlations between pairs of dichotomic observables was studied in [7], and the present work is an extension of it to correlations (and some local expectation values) between arbitrary projective measurements, but it is not as general as those of Werner and Almeida et al.
3. States of interest

We shall consider here mainly the states of two qubits of the following form:

\[\rho = p |\psi_{\text{ent}}\rangle \langle \psi_{\text{ent}}| + (1 - p) |\psi_{\text{prod}}\rangle \langle \psi_{\text{prod}}|, \]

(6)

where \(|\psi_{\text{ent}}\rangle \) is a pure entangled state, \(|\psi_{\text{prod}}\rangle \) is a pure product state, and \(p \) is a probability characterizing admixture of entanglement. (See [12] for interesting results regarding LHV models for a similar class of states.) The Werner gap for this state is the range of \(p \) for which both the state is entangled and it admits an LHV model for correlations between all possible projective measurements that can be performed upon it. We first show that all such states are entangled as soon as \(p > 0 \), and next, by specifying \(|\psi_{\text{ent}}\rangle \) and \(|\psi_{\text{prod}}\rangle \), we will present their LHV models together with the range of settings for which we have agreement with quantum predictions.

4. Entanglement

Any state of the form (6) is entangled for all \(p > 0 \). This has been effectively shown on several occasions by noticing that \(\rho \) is of rank 2. Reference [13] proves that every entangled state of rank 2 has an entangled 2 \times 2-dimensional subspace (see also [6]), and provides necessary and sufficient conditions for the entanglement of such states in terms of the decomposition of common eigenstates of concurrence matrices. Another derivation of the ‘if and only if’ conditions is presented in [14]. An explicit expression for the amount of entanglement in such states is given in [15] and in principle could be used for the proof. Finally, a direct theorem characterizing the entanglement of states (6) is presented in [6] and uses the criterion of positive partial transposition [16, 17].

For completeness, in appendix A we give yet another proof of this statement for \(N \) qubits that uses geometrical properties of the underlying Hilbert space.

5. The local hidden variable model

Despite being entangled, some states (6) admit an LHV model. Let us first restrict our attention to the two-qubit states

\[\rho = p |\psi\rangle \langle \psi| + (1 - p) |z+\rangle \langle z+| \otimes |z+\rangle \langle z+|, \]

(7)

where \(|\psi\rangle = \frac{1}{\sqrt{2}} (|z+\rangle - |z-\rangle) \) is the Bell singlet state, and \(|z\pm\rangle \) is the eigenstate of the local \(\sigma_z \) Pauli operator corresponding to the eigenvalue \(\pm 1 \). For this state, quantum mechanics predicts that correlations between outcomes of local dichotomic measurements are given by

\[E_{\text{QM}}(\vec{a}, \vec{b}) = -p \vec{a} \cdot \vec{b} + (1 - p) a_x b_x, \]

\[= -p a_x b_x - p a_x b_y + (1 - 2p) a_y b_x, \]

(8)

where \(\vec{a} = (a_x, a_y, a_z) \) and \(\vec{b} = (b_x, b_y, b_z) \) are the Bloch vectors parametrizing the local observables. For the local expectation values quantum predictions are
The LHV model for the quantum correlations of the states with \(p \leq \frac{1}{2} \) is very simple and we only need to realize that they are identical to those in the following separable state:

\[
\rho_{\text{sep}} = \frac{P}{2} |x+\rangle \langle x+| \otimes |x-\rangle \langle x-| + \frac{P}{2} |x-\rangle \langle x-| \otimes |x+\rangle \langle x+|
\]

\[
+ \frac{P}{2} |y+\rangle \langle y+| \otimes |y-\rangle \langle y-| + \frac{P}{2} |y-\rangle \langle y-| \otimes |y+\rangle \langle y+|
\]

\[
+ (1 - 2P) |z+\rangle \langle z+| \otimes |z+\rangle \langle z+| \quad \text{for} \quad p \leq 1/2.
\]

Note also that the local expectation values agree with the quantum ones for equatorial measurements \(a_0 = b_0 = 0 \). Although we were not able to construct an explicit LHV model also covering the remaining local expectation values, using the software of [18] we cannot find a violation of any Bell inequality with up to ten settings per side for \(p < \frac{1}{2} \). While allowing more settings might lower the value of the critical admixture slightly, it is very unlikely that it can be smaller that \(\frac{1}{2} \). An additional hint that there exists a model for all the quantum predictions of the states with \(p \leq \frac{1}{2} \) comes from the following theorem.

Theorem 1. *If there exists an LHV model for the state (7) with \(p = \frac{1}{2} \), then it can be used to construct an LHV model for any \(p \leq \frac{1}{2} \).*

The feature that makes the state with \(p = \frac{1}{2} \) special is the lack of correlations along local \(z \) axes while having non-zero local expectation values:

\[
E_{\frac{1}{2}}(\vec{a}, \vec{b}) = -\frac{1}{2} a_x b_x - \frac{1}{2} a_x b_y,
\]

\[
E_{\frac{1}{2}}(\vec{a}) = \frac{1}{2} a_x,
\]

\[
E_{\frac{1}{2}}(\vec{b}) = \frac{1}{2} b_x.
\]

Consider this hypothetical protocol used with probability \(2q \), where \(q < \frac{1}{2} \). This gives

\[
E(\vec{a}, \vec{b}) = -q a_x b_x - q a_x b_y,
\]

\[
E(\vec{a}) = q a_x,
\]

\[
E(\vec{b}) = q b_x.
\]

With the remaining \(1 - 2q \) probability, the source sends a product state \(|z+\rangle |z+\rangle \), and locally the algorithm for calculating the outcomes just follows the usual quantum rules. This exactly adds the missing terms

\[
E_q(\vec{a}, \vec{b}) = -qa_x b_x - qa_x b_y + (1 - 2q)a_x b_y,
\]

\[
E_q(\vec{a}) = (1 - q)a_x,
\]

\[
E_q(\vec{b}) = (1 - q)b_x.
\]

\[
\square
\]
Consider now the following two-parameter family of states:
\[
\rho = p \left| \psi_+ \right\rangle \left\langle \psi_+ \right| + (1 - p) \left| z+ \right\rangle \left\langle z+ \right| \otimes \left| z+ \right\rangle \left\langle z+ \right|.
\] (14)
where the entangled state is of the form
\[
\left| \psi_+ \right\rangle = \cos \xi \left| z+ \right\rangle \left| z- \right\rangle - \sin \xi \left| z- \right\rangle \left| z+ \right\rangle, \quad \text{with} \quad \xi \in [0, \pi/4].
\] (15)
We study its correlations only. Quantum mechanics predicts
\[
E_{OM}(\vec{a}, \vec{b}) = -p \sin (2\xi) a, b, -p \sin (2\xi) a, b, + (1 - 2p) a, b.
\] (16)
Using the same method as above, the separable state of the form (10) with the weights
\[p \sin (2\xi), \quad p \sin (2\xi), \quad \text{and} \quad 1 - 2p\] provides the LHV model for
\[
\rho_{\text{LHV}} \leq \frac{1}{1 + \sin (2\xi)}.
\] (17)
Therefore, for very weakly entangled states, as \(\xi \to 0 \), even a very high admixture of entanglement has correlations compatible with the LHV model, \(\rho_{\text{LHV}} \to 1 \). Since the state is entangled for all \(p_{\text{ent}} > 0 \), the Werner gap essentially reaches its maximal value, \(\Delta \to 1 \).

Finally, we show using standard Bell inequalities for correlation functions \([8, 9]\) that despite the essentially maximal Werner gap, the LHV model does not recover all of the range where the inequalities are not violated. Therefore, either inequalities with a higher number of settings improve on the set of states allowing the violation, or there exists an LHV model for the bigger set of states. The necessary and sufficient condition for violation of a complete set of such inequalities is given by \([8]\)
\[
E^2(\vec{a}, \vec{b}) + E^2(\vec{a}, \vec{b}) > 1,
\] (18)
where the sum on the left-hand side involves the two biggest squared correlations in a state, measured along bi-orthogonal axes. For our state, either \(E^2(\vec{a}, \vec{b}) = p^2 \sin^2(2\xi) \) and \(E^2(\vec{a}, \vec{b}) = (1 - 2p)^2 \), or \(E^2(\vec{a}, \vec{b}) = E^2(\vec{a}, \vec{b}) = p^2 \sin^2(2\xi) \); hence the state violates some two-setting correlation Bell inequality for
\[
p > \min \left(\frac{1}{\sqrt{2} \sin (2\xi)}, \frac{4}{4 + \sin^2 (2\xi)} \right)
\] (19)
\[
= \begin{cases}
\frac{1}{\sqrt{2} \sin (2\xi)} & \text{for} \quad \xi \in [\xi_1, \xi_2], \\
\frac{4}{4 + \sin^2 (2\xi)} & \text{otherwise}
\end{cases}
\] (20)
where \(\xi_1 \approx 0.16\pi \) and \(\xi_2 \approx 0.34\pi \). The range of parameters \(\xi \) and \(p \) where the states do not admit the LHV model for correlations and yet do not violate the standard correlation Bell inequalities is depicted in figure 1.

6. Conclusions

We presented a simple state for which the Werner gap, i.e. the range of relevant parameters for which the state is both entangled and allows a local hidden variable model, is maximal. Our example involves two qubits, whereas the only other case of a maximal Werner gap known to us involves two systems of dimensionality approaching infinity. The model
presented mimics quantum correlations between all projective measurements and local expectation values for equatorial measurements, and it is argued that a local hidden variable model probably exists for all quantum predictions. All of this shows that the ability to violate a Bell inequality is highly dependent on the type of noise in the experiment [7, 19–21] and therefore tasks such as communication complexity, with performance directly linked to the amount of Bell violation [4], should be executed in well controlled environments.

Acknowledgments

This work was supported by the National Research Foundation, Ministry of Education of Singapore Grant No. RG98/13, start-up grant of the Nanyang Technological University, and NCN Grant No. 2012/05/E/ST2/02352. WL is supported by the Polish Ministry of Science and Higher Education Grant No. IdP2011 000361.

Appendix. Pure entanglement mixed with a pure product state

We prove here for \(N \) qubits that a tiny admixture of even infinitesimal entanglement to a product state always gives a mixed entangled state. Our main theorem uses the lemma that is Theorem 1 of [22], stating that for any plane in \(\mathbb{C}^d \otimes \mathbb{C}^d \) defined by two product vectors, either all the states in this plane are product vectors, or there is no other product vector in it. For completeness, we also prove this lemma.

Lemma 1. Let \(|\Psi\rangle \) be an arbitrary pure product state of \(N \) qubits. Then the superposition

\[
|\Psi'\rangle = \alpha |00...0\rangle + \beta |\Psi\rangle,
\]

(A.1)
is either a product state for any complex \(\alpha, \beta \), or an entangled state for any complex \(\alpha, \beta \neq 0,1 \).
The cases of $\alpha = 0, 1$ are trivial. Consider $\alpha \neq 0, 1$, and hence $\beta \neq 0, 1$ as well. By assumption, $|\Psi'\rangle$ is a product state:

$$|\Psi'\rangle = a \left(|0\rangle + k_1 |1\rangle \right) \otimes \left(|0\rangle + k_2 |1\rangle \right) \otimes \ldots \otimes \left(|0\rangle + k_N |1\rangle \right),$$ \hspace{1cm} (A.2)

where a is a normalization constant. Clearly, if only one k_j is non-zero, the superposed state $|\Psi'\rangle$ is a product state for all α and β. We show that if at least two coefficients k_j are non-zero, say k_1 and k_2, the superposed state $|\Psi'\rangle$ is entangled for all $\alpha, \beta \neq 0, 1$. Assume by way of contradiction that there exist α and β such that $|\Psi'\rangle$ is a product state. Then

$$|\Psi'\rangle = a' \left(|0\rangle + k_1 |1\rangle \right) \otimes \left(|0\rangle + k_2 |1\rangle \right) \otimes \ldots \otimes \left(|0\rangle + k_N |1\rangle \right)$$

$$= a |00\ldots0\rangle + \beta a \left(|0\rangle + k_1 |1\rangle \right) \otimes \left(|0\rangle + k_2 |1\rangle \right) \otimes \ldots \otimes \left(|0\rangle + k_N |1\rangle \right),$$ \hspace{1cm} (A.3)

and the coefficients satisfy

$$\alpha + \beta a = a',$$ \hspace{1cm} (A.4)

$$\beta ak_1 = a' k_1,$$ \hspace{1cm} (A.5)

$$\beta ak_2 = a' k_2,$$ \hspace{1cm} (A.6)

$$\vdots$$

$$\beta ak_N = a' k_N,$$ \hspace{1cm} (A.7)

$$\beta ak_1k_2 = a' k_1k_2,$$ \hspace{1cm} (A.8)

$$\vdots$$

Since β, a, k_i are all non-zero, k_1 is also non-zero. From (A.5) and (A.8) it follows that $k_2 = k_2', \ldots, k_N = k_N'$. From (A.6) one has $\beta a = a'$, and from (A.4) one has $a = 0$, which contradicts the assumption that $\alpha \neq 0$.

Theorem 2. The N-qubit state

$$\rho = \epsilon |\psi_{\text{ent}}\rangle \langle \psi_{\text{ent}}| + (1 - \epsilon) |\psi_{\text{prod}}\rangle \langle \psi_{\text{prod}}|,$$ \hspace{1cm} (A.9)

where $|\psi_{\text{ent}}\rangle$ and $|\psi_{\text{prod}}\rangle$ are respectively entangled and product pure states, is entangled if and only if $\epsilon > 0$.

Without loss of generality we put $|\psi_{\text{prod}}\rangle = |00\ldots0\rangle \equiv |0\rangle$, i.e. these product states define the computational basis, and set $\epsilon > 0$. The pure entangled state can always be decomposed as

$$|\psi_{\text{ent}}\rangle = a |0\rangle + b |0^\perp\rangle,$$ \hspace{1cm} (A.10)

where $|0^\perp\rangle$ is a state orthogonal to $|0\rangle$ and a, b are normalized complex coefficients. The density matrix ρ in the two-dimensional subspace spanned by $|0\rangle$ and $|0^\perp\rangle$ reads

$$\rho = \begin{pmatrix} (1 - \epsilon) + \epsilon |a|^2 & \epsilon ab^* \\ \epsilon a^* b & \epsilon |b|^2 \end{pmatrix},$$ \hspace{1cm} (A.11)
We shall proceed by contradiction. Assume that ρ is separable:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle \langle \psi_i|,$$
(A.12)

where λ_i is the probability of the pure product state $|\psi_i\rangle$. For a non-trivial separable state there must be at least two linearly independent product states and they can be used to decompose any other state in the two-dimensional subspace \mathcal{S}, spanned by $|0\rangle$ and $|0^+\rangle$, which is the support of ρ. Since the subspace \mathcal{S} contains the entangled state $|\psi_{\text{ent}}\rangle$, by lemma 1 there are only two product states in \mathcal{S}. One of them is $|\psi_1\rangle = |0\rangle$, and the other one must be of the form $|\psi_2\rangle = \alpha |0\rangle + \beta |0^+\rangle$. Hence,

$$\rho = (1 - \lambda) |\psi_1\rangle \langle \psi_1| + \lambda |\psi_2\rangle \langle \psi_2|,$$
(A.13)

$$= \begin{pmatrix}
1 - \lambda + \lambda \alpha \alpha^* & \lambda \alpha \beta^* \\
\lambda \beta \alpha^* & \lambda \beta \beta^*
\end{pmatrix}.$$
(A.14)

Comparing (A.11) and (A.13), one finds

$$b \lambda = \frac{\beta}{a} \lambda.$$
(A.15)

Hence $|\psi_{\text{ent}}\rangle$ is the same state as $|\psi_2\rangle$, contradicting the assumption that $|\psi_{\text{ent}}\rangle$ is entangled, and we conclude that ρ cannot be separable. \square

References

[1] Bell J 1964 Physics 1 195
[2] Werner R F 1989 Phys. Rev. A 40 4277
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Buhrman H, Cleve R, Massar S and de Wolf R 2010 Rev. Mod. Phys. 82 665
[5] Anders J and Browne D E 2009 Phys. Rev. Lett. 102 050502
[6] Horodecki P, Smolin J A, Terhal B M and Thapliyal A V 2003 Theor. Comput. Sci. 292 589
[7] Laskowski W, Paterek T, Brukner Č and Žukowski M 2010 Phys. Rev. A 81 042101
[8] Žukowski M and Brukner Č 2002 Phys. Rev. Lett. 88 210401
[9] Werner R F and Wolf M M 2001 Phys. Rev. A 64 032112
[10] Almeida M L, Pironio S, Barrett J, Toth G and Acin A 2007 Phys. Rev. Lett. 99 040403
[11] Acin A, Gisin N and Toner B 2006 Phys. Rev. A 73 062105
[12] Hirsch F, Tulio Quintino M, Bowles J and Brunner N 2013 Phys. Rev. Lett. 111 160402
[13] Badziag P, Deuar P, Horodecki M, Horodecki P and Horodecki R 2002 J. Mod. Opt. 49 1289
[14] Fei S-M, Gao X-H, Wang X-H, Wang Z-X and Wu K 2003 Commun. Theor. Phys. 39 525
[15] Osborne T J 2005 Phys. Rev. A 72 022309
[16] Peres A 1996 Phys. Rev. Lett. 77 1413
[17] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[18] Gruca J, Laskowski W, Żukowski M, Kiesel N, Wieczorek W, Schmid C and Weinfurter H 2010 Phys. Rev. A 82 012118
[19] Cabello A, Feito A and Lamas-Linares A 2005 Phys. Rev. A 72 052112
[20] Seevinck M and Uffink J 2008 Phys. Rev. A 78 032101
[21] Aolita L, Chaves R, Cavalcanti D, Acin A and Davidovich L 2008 Phys. Rev. Lett. 100 080501
[22] Sanpera A, Tarrach R and Vidal G 1998 Phys. Rev. A 58 826