Synthesis and characterization of new imidazole azo ligand with some of transition metal ions, and their biological effect on two pathogenic bacteria of burn patients.

Israa N. Witwit¹, Husham M. Mubark¹, Hutham Mahmood Yousif Al-Labban¹, Ahmed Abduljabbar Jalooob Aljanaby²

¹Department of Chemistry, University of Kufa, Faculty of Science, Najaf, Iraq
²Department of Biology, University of Kufa, Faculty of Science, Iraq

Abstract

New imidazole azo ligand (DPIDA) was prepared by coupling reaction between 4,5-di-phenyl imidazole and N1,N1-dimethyl benzene 1,4-diamine dihydrochloride and studied the complexation of this ligand with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) ions. The free ligand and its complexes characterized by Mass, ¹H NMR, IR, UV-Vis, and molar conductivity that indicated the octahedral geometry of them with a bidentate ligand which coordinated from (N3) atom of imidazole ring and one nitrogen atom of azo group. Biological activity of ligand (DPIDA) and its complexes tested against two multi-drug resistant aerobic pathogenic bacteria isolated from patients with a burn. Three concentrations were selected (50, 100, 150) mg/ml for each crude synthesized derivative compounds. The derivative compound (4,5-diphenyl imidazole) with concentration 150 mg/ml had an excellent antibacterial effect against Staphylococcus aureus and Pseudomonas aeruginosa with inhibition zone 21.83 ± 0.1764 mm and 24.30 ± 0.4163 mm respectively.

INTRODUCTION

Heterocyclic azo compounds have a lot of scientific attention especially in the last five decades because of their applications in different of applied and academic fields such as Analytical reagents (Khawassek and Mahmoud, 2012), antibacterial (Witwit et al., 2018), antifungal (Slassi et al., 2019a) anticancer (Vernieuwe et al., 2017) and Optical electrical switching of liquid crystals (Oh et al., 2017). Imidazole azo ligands considered as an essential type of heterocyclic azo ligands chiefly in coordination chemistry due to their ability to form stable complexes with metal ions in various of oxidation states (Al-Adille and Kyhoiesh, 2017), formation of stable five-member ring with each ion through (N3) atom of imidazole ring and one of nitrogen atoms of azo group (Al-Muhanaa and Al-Khafagy, 2018). As well as the contribution of imidazole molecule in preparation of many ligands which have π– conjugated system that increases their stability and follows the colour change of them before and after the coordination with metal ions (Ç. Erbaş and Gülle, 2018). The goal of this research is representing by preparation and characterization of new ligand as a derivative of 4,5-diphenylimidazole, studying it’s coordination behavior with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II), and experienced their biological activity against two types of multi-drug resistant aerobic pathogenic bacteria have isolated from burn patients.
MATERIALS AND METHODS

Chemicals and Instruments

All chemicals and solvents were equipped with high purity from Sigma Aldrich, BDH and Merck companies. Mass Spectrum was measured using AB SCIEX 3200 QTRAP Mass analyzer, FT-IR carried out by Shimadzu FTIR8400 using KBr disks from (400-4000) cm⁻¹. Electronic spectrum measured by Shimadzu UV-1650 UV-Vis Spectrophotometer, The element analysis performed on Costech ECS Elemental 4010, magnetic measurements of prepared complexes recorded by Balance Magnetic Susceptibility Model –M.S.B Auto, Molar conductivity menstruated via 720(WTW), and ¹HNMR carried out by Bruker Avance-111 300 MHz NMR Spectrometer.

Preparation of (DPIDA) ligand

Two and thirty-one gram of N1, N1-dimethylbenzene1,4-diamine dihydrochloride was dissolved in twenty-five ml of distilled water than one ml of hydrochloric acid added gradually to this solution which cooled in ice bath 0-5 °C, the formation of diazonium salt occurred by addition of the solution of sodium nitrate which prepared by dissolved 0.70 gm of it in 10 ml of distilled water drop by drop with stirring. This solution left in the ice bath for 30 minute then coupled with alcoholic solution of 4,5- diphenyl imidazole which prepared by dissolving 2.21 gm of imidazole derivative and 0.44 gm of sodium hydroxide in 25 ml of ethanol, orange precipitate was appeared after the completing of addition, filtered and dried then recrystalysid from ethanol yield percentage 71% as shown in scheme 1.

Preparation of complexes (general method)

All complexes were prepared with mole ratio 1:2 (metal: ligand) by mixing 1 mmole of metal chloride of ethanol, orange precipitate was appeared after the completing of addition, filtered and dried then recrystalysid from ethanol yield percentage 71% as shown in scheme 1.

Biological Activity

Biological activity testing was done to detect the antibacterial activity of four synthesized derivatives compounds against two multi-drug resistant aerobic pathogenic bacteria isolated from patients with burn infection: Staphylococcus aureus (S.aureus) is a gram-positive bacteria and pseudomonas aeruginosa (P.aeruginosa) as a gram harmful bacteria. The two pathogenic bacteria were provided with kindly from the university of Kufa, Faculty of science, department of microbiology, Iraq. Antibacterial activity test was done according to the agar well diffusion method (Aljanaby, 2013, 2018). Three concentrations were selected (50, 100, 150) mg/ml for each crude synthesized derivative compounds. Four wells were made by crock-poorer (Oxoid, UK) in Muller-Hinton agar surface (Oxoid, UK) and swabbed with two pathogenic bacteria with turbidity according to 0.5 McFarland tube. Fifty μl of each dilution was transferred to each well and left at (20)°C for 3 hours and incubated at (37)°C for 24 hours. Four replicates were done for each test. The inhibition zone around each well was measured in millimetres (Adam et al., 2019); (Aljanaby and Alhasnawi, 2017).

Statically analysis

Graph pad prism V.6 windows soft were used in statically analysis to compare between diameters of inhibition zone (mm) according to T-test. P-value < 0.05 was considered indicative of statistically significant (Adam et al., 2019).

RESULTS AND DISCUSSION

¹HNMR spectra of free ligand (DPIDA) in (d⁶ DMSO) inhibit a singlet signal in (3.03) ppm due to the protons of (N=CH₂) groups, whilst the siglet signal of (N-H) for imidazole ring (Rehab et al., 2016) appeared in (12.63) ppm, this spectrum confirms the number of protons in the molecular structure, as shown in Figure 1. Mass spectrum of (DPIDA) ligand showed molecular ion peak(M+1) at m/e (368) , the initial fragmentation started by losing (-N₂) molecule at m/e (340) , while the base peak appeared at (e/z = 221) corresponding to 4,5- diphenylimidazole fragment (C₁₅H₁₄N₂) (Mehdi and Ali, 2005). The spectrum of Mn(DPIDA)₂Cl₂ complex exhibited molecular peak at (e/z = 860) that affirmed the molecular weight of this complex, the fragmentation also started by losing the nitrogen’s of the two coordinated azo ligands at (e/z=804) and continued to the last step which showed the fragment of 4,5- diphenylimidazole as base peak, theFigures 2 and 3andSchemes 2 and 3 illustrated the fragmentation of ligand, and it’s complicated.

Uv-Vis spectrum of free ligand (DPIDA) show up three bands at 284, 257, 238 nm which attributed to (π-π*) transitions of aromatic rings which shifted to higher wavelengths with little changes of values in complexes spectrums , while the bands at 466 nm of (n-π*) transitions that exhibited redshift in the ranges of complexes as a result of charge transfer transitions after coordination as shown in Table 2 . IR spectra of ligand (DPIDA) showed v(N-H) peak
Table 1: Some of the physicochemical properties of (DPIDA) ligand and its complexes

Compound (Empirical Formula)	Mwt	Yield (%)	Elemental Analysis	m.p (°C)
(DPIDA) C_{23}H_{21}N_{5}	367.46	71	C%: (75.20)	232-234
			H%: (5.73)	
			N%: (19.06)	
			M%: (19.08)	
[Mn(DPIDA)_{2}Cl_{2}]	860.75	68	C%: (64.19)	310-312
(C_{46}H_{42}Cl_{2}N_{10}Mn)			H%: (4.92)	
			N%: (16.27)	
			M%: (6.38)	
[Co(DPIDA)_{2}Cl_{2}]	864.75	75	C%: (63.89)	325-328
(C_{46}H_{42}Cl_{2}N_{10}Co)			H%: (4.90)	
			N%: (16.20)	
			M%: (6.82)	
[Ni(DPIDA)_{2}Cl_{2}]	864.51	78	C%: (63.91)	332-334
(C_{46}H_{42}Cl_{2}N_{10}Ni)			H%: (4.90)	
			N%: (16.20)	
			M%: (6.79)	
[Cu(DPIDA)_{2}Cl_{2}]	869.36	72	C%: (63.55)	346-348
(C_{46}H_{42}Cl_{2}N_{10}Cu)			H%: (4.87)	
			N%: (16.11)	
			M%: (7.31)	
[Zn(DPIDA)_{2}Cl_{2}]	871.19	74	C%: (63.42)	353-355
(C_{46}H_{42}Cl_{2}N_{10}Zn)			H%: (4.86)	
			N%: (16.08)	
			M%: (7.50)	
[Cd(DPIDA)_{2}Cl_{2}]	918.22	71	C%: (60.17)	364-367
(C_{46}H_{42}Cl_{2}N_{10}Cd)			H%: (4.61)	
			N%: (15.25)	
			M%: (12.24)	
[Hg(DPIDA)_{2}Cl_{2}]	1006.4084	54	C%: (54.90)	375-377
(C_{46}H_{42}Cl_{2}N_{10}Hg)			H%: (4.21)	
			N%: (13.92)	
			M%: (19.93)	
			(19.88)	

Figure 1: 1HNMR spectrum of (DPIDA) ligand in d^6DMSO solvent

Figure 2: Mass spectrum of (DPIDA) ligand
Table 2: Molar Conductivity, Magnetic Susbtibility and Electronic Transitions of ligands and their complexes.

Compound	Molar Conductivity	μ.eff. (B.M.)	λ max (nm)	Transitions	Geometry
(DPIDA)	——	——	——	——	——
[Mn(DPIDA)₂Cl₂]	23.6	20.6	5.74	281, 242, 284, 257, 238, 466	Octahedral
[Co(DPIDA)₂Cl₂]	21.8	18.3	4.70	250, 280, 472, 536	Octahedral
[Ni(DPIDA)₂Cl₂]	21.7	18.2	2.84	230, 281, 254, 550	Octahedral
[Cu(DPIDA)₂Cl₂]	20.5	17.1	1.73	232, 278, 536, 254	Distorted Octahedral
[Zn(DPIDA)₂Cl₂]	18.3	14.6	Dia	274, 250, 232, 485	Octahedral
[Cd(DPIDA)₂Cl₂]	17.8	13.2	Dia	230, 244, 308, 468	Octahedral
[Hg(DPIDA)₂Cl₂]	15.4	11.7	Dia	230, 286, 504, 254	Octahedral
Ahmed Abdul jabbar jaloob Aljanaby et al., Int. J. Res. Pharm. Sci., 10(3), 1847-1856

Scheme 1: Preparation of (DPIDA) ligand

Scheme 2: Mass Fragmentation of (DPIDA) ligand.

Table 3: IR frequencies of ligand and its complexed.

Compound	v(N-H) imidazole	v(C=N) imidazole	v(N=N)	v(C-N) imidazole	v(M-N)
(DPIDA)	3400 w	1588 m	1498 m	1315 m	-
[Mn(DPIDA)₂Cl₂]	3403 w	1572 m	1489 m	1325 m	543 w
[Co(DPIDA)₂Cl₂]	3400 w	1570 m	1486 m	1328 m	540 w
[Ni(DPIDA)₂Cl₂]	3405 w	1566 m	1484 m	1320 m	435 w
[Cu(DPIDA)₂Cl₂]	3400 w	1575 m	1489 m	1323 m	511 w
[Zn(DPIDA)₂Cl₂]	3402 w	1568 m	1488 m	1321 m	525 w
[Cd(DPIDA)₂Cl₂]	3402 w	1570 m	1482 m	1324 m	532 w
[Hg(DPIDA)₂Cl₂]	3400 w	1565 m	1485 m	1324 m	523 w
Scheme 3: Mass Fragmentation of Mn (II) Complex

Figure 4: IR spectrum of (DPIDA) ligand
of imidazole ring at (3400) cm\(^{-1}\) (Abbas and Kadhim, 2016) two peaks at (3034) and (3061) cm\(^{-1}\) due to the vibrations of aromatic \(v(C-H)\), and one peak at (2991) cm\(^{-1}\) of aliphatic \(v(C-H)\) that showed no significant changes in the spectra of the complexes frequencies. The peaks at (1588) cm\(^{-1}\) and (1315) cm\(^{-1}\) exhibited a stretching of \(v(C=N)\) and \(v(C-N)\) (Al-Hasani and Almaliky, 2015) respectively of imidazole ring that proceed a changing in position and intensity in complexes which is an indicate the participation of (N3) atom in coordination, also the values of \(v(N=N)\) (Jarad et al., 2018); (Slassi et al., 2019b) peak at (1498) cm\(^{-1}\) shifted to lower values in the complexes that’s considered as an evidence on coordination proceed through one nitrogen atom of azo group, new values of \(v(M-N)\) frequencies appeared between (543 -511) cm\(^{-1}\) in the complexes that consider as additional evidence on coordination process as shown inTable 3 and Figures 4, 5 and 6.

Conductivity measurements at 25°C in both of DMF and DMSO solvents for \((10^{-3})\) M encouraged non-ionic character of all complexes, The values of molar conductivity ranged between 23.6-15.4 S.cm\(^2\).mole in DMF, while their values within 20.6-
Table 4: Antibacterial activity of four derivative compounds against two types of aerobic pathogenic bacteria isolated from patients with burns infections.

Derivative compounds	Multi-drug resistance aerobic pathogenic bacteria		
	S.aureus	Paeruginosa	
	Concentration ME± SE, R=4	Concentration ME± SE, R=4	
(DPIDA)	50 mg/ml 5.4667 ± 0.42557	50 mg/ml 4.8667 ± 0.43333	
	100 mg/ml 7.7667 ± 0.29627	100 mg/ml 7.6333 ± 0.088192	
Hg complex	150 mg/ml 8.7333 ± 0.12019	150 mg/ml 8.9000 ± 0.11547	
	50 mg/ml 9.4333 ± 0.23333	50 mg/ml 9.7333 ± 0.088192	
Zn Complex	50 mg/ml 11.500 ± 0.20817	50 mg/ml 11.960 ± 0.070238	
	100 mg/ml 12.037 ± 0.05174	100 mg/ml 12.617 ± 0.29946	
Cu Complex	150 mg/ml 12.17 ± 0.1901	150 mg/ml 12.95 ± 0.02333	
	50 mg/ml 12.42 ± 0.1654	50 mg/ml 12.43 ± 0.2010	
Co Complex	100 mg/ml 12.72 ± 0.1352	100 mg/ml 12.72 ± 0.1251	
	150 mg/ml 11.767 ± 0.24037	150 mg/ml 12.567 ± 0.20276	
Mn Complex	50 mg/ml 12.000 ± 0.26458	50 mg/ml 12.833 ± 0.03333	
	150 mg/ml 14.900 ± 0.40415	150 mg/ml 15.733 ± 0.088192	
Cd Complex	50 mg/ml 14.830.09536=3	50 mg/ml 14.72 ± 0.1844	
	100 mg/ml 15.28 ± 0.1802	100 mg/ml 16.07 ± 0.07142	
	150 mg/ml 16.11 ± 0.1068	150 mg/ml 16.74 ± 0.1949	
4,5-diphenyl imidazo	50 mg/ml 18.81 ± 0.2275	50 mg/ml 18.52 ± 0.2217	
	100 mg/ml 18.81 ± 0.1757	100 mg/ml 18.70 ± 0.1695	
	150 mg/ml 18.86 ± 0.2781	150 mg/ml 19.51 ± 0.2623	
	50 mg/ml 17.833 ± 0.17638	50 mg/ml 18.70 ± 0.11547	
	100 mg/ml 18.767 ± 0.17638	100 mg/ml 19.533 ± 0.17638	
	150 mg/ml 21.83 ± 0.1764	150 mg/ml 24.30 ± 0.4163	

C: Concentrations of derivative compounds, R: Numbers of replicates, M: Mean of the diameter of inhibition zone (mm), SE: Standard error of the mean.

11.7 S.cm².mole, as well as no white precipitate of AgCl observed when a drops of 0.1 N from AgNO₃ solution to metal complexes solutions added which also confirms the absence of counter ion outside the coordination sphere (Reddy et al., 1997) (Hayder and Aljanaby, 2019) as apparent in Table 2. The suggested structure of the complexes showed the octahedral geometry that two (DPIDA) ligands coordinated with central metal ion as bidentate through nitrogen atom number 3 of imidazole ring and one nitrogen atom of the azo group as explained in Figure 7.

The results of biological activity demonstrated that most the ligand and complexes have good antibacterial activity against two pathogenic bacteria with inhibition zones in three concentrations Table 4 and Figure 8 and Figure 9. While, the derivative compound 4,5-diphenyl imidazol with concentration 150mg/ml had excellent antibacterial effect against S.aureus and Paeruginosa with inhibition zone 21.83 ± 0.1764 mm and 24.30 ± 0.4163 mm respectively.

CONCLUSION

Seven complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) ions with new imida-
The 4,5-diphenyl imidazol derivative compound was found to possess excellent antibacterial activity against both S. aureus and P. aeruginosa. The results indicate the potential of these compounds for the treatment of bacterial infections, particularly in patients with burns. Further studies are needed to fully understand the mechanism of action and to evaluate their clinical efficacy.

REFERENCES

Abbas, A., Kadhim, R. S. 2016. Preparation, Spectral and Biological Studies of Azo Ligand Derived from Proline with Cu(II), Ag(I) and Au(III) Metal Ion. IOSR Journal of Applied Chemistry, 9(8):20–31.

Adam, R. W., Al-Labban, H. M. Y., Aljanaby, A. A. J., Abbas, N. A. 2019. Synthesis, Characterization and Antibacterial Activity of Some New of. Novel, 1(2):99–110.

Al-Adilee, K., Kyhoiesh, H. A. 2017. Preparation and identification of some metal complexes with new heterocyclic azo dye ligand 2-[2-(1-Hydroxy-4-Chloro phenyl) azo]-imidazole and their spectral and thermal studies. Journal of Molecular Structure, 1137:160–178.

Al-Hasani, T. J., Almaliky, Z. S. 2015. New Pd and Pt Complexes of Guanine–Azo Dye: Structural, Spectroscopic, Dyeing Performance and Antibacterial Activity Studies. Iraqi Journal of Science, 56(4):2718–2731.

Al-Muhanaa, S. S., Al-Khafagy, A. H. 2018. Preparation and Biological Activities of New Heterocyclic Azo Ligand and Some of Its Chelate Complexes. Nano Biomedicine and Engineering, 10(1):10–5101.

Aljanaby, A. A. J. 2018. Antibacterial activity of an aqueous extract of Alkanna tinctoria roots against drug resistant aerobic pathogenic bacteria isolated from patients with burns infections. Russian Open Medical Journal, 7(1):0104.

Aljanaby, A. A. J., Alhasnawi, H. M. R. J. 2017. Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from different clinical sources in Al-Najaf Province-Iraq. Pakistan Journal of Biological Sciences.

Aljanaby, A. A. J. 2013. Antibacterial activity of an aqueous extract of Petroselinum crispum leaves against pathogenic bacteria isolated from patients with burns infections in Al-najaf Governorate. Iraq. Research on Chemical Intermediates, 39(8):3709–3714.

Ç. Erbaş, S., Gülle, S. 2018. Synthesis and Photophysical Behaviours of Novel Phenanthro [9, 10-d] imidazole Substituted Azo Dyes in Solvent Media. Celal Bayar Üniversitesi Fen Bilimleri. Dergisi, 14(3):285–289.
Hayder, T., Aljanaby, A. A. J. 2019. Antibiotics susceptibility patterns of Citrobacter freundii isolated from pa-tients with urinary tract infection in Al-Najaf governorate–Iraq. International Journal of Research in Pharmaceutical Sciences, 10(2):1481–1488.

Jarad, S. K., et al. 2018. Synthesis, Spectral Studies and Biological Activity of Azo dye Complexes with Some Metallons. Journal of Global Pharma Technology, 10(06):97–106.

Khwassek, Y. M., Mahmoud, G. M. 2012. Studies on the extraction of copper (II) by pyrazoloquinoxaline derivatives from aqueous solutions. Research Journal of Chemical Sciences.

Mehdi, R. T., Ali, A. M. 2005. Preparation and characterization of new azo imidazole ligand and some Transition Metal Complexes. Iraqi National Journal Of Chemistry, 20:540–546.

Oh, S. W., Baek, J. M., Kim, S. H., Yoon, T. H. 2017. Optical and electrical switching of cholesteric liquid crystals containing azo dye. RSC Advances, 7(32):19497–19501.

Reddy, K. H., Reddy, M. R., Raju, K. M. 1997. Synthesis, characterization, electrochemistry and axial ligation properties of macrocyclic divalent metal complexes of acetylacetone buckled with different diamines. Polyhedron, 16(15):2673–2679.

Rehab, Al-Hassani., Journal, B. S. 2016. Synthesis, Characterization, Antimicrobial and Theoretical Studies of V(IV),Fe(III),Co(II),Ni(II),Cu(II), and Zn(II)Complexes with Bidentate (NN) Donar Azo Dye Ligand. Baghdad Science Journal, 13(4):793–805.

Slassi, S., Fix-Tailler, A., Larcher, G., Amine, A., El-Ghayoury, A. 2019a. Imidazole and Azo-Based Schiff Bases Ligands as Highly Active Antifungal and Antioxidant Components. Heteroatom Chemistry.

Slassi, S., Fix-Tailler, A., Larcher, G., Amine, A., El-Ghayoury, A. 2019b. Imidazole and Azo-Based Schiff Bases Ligands as Highly Active Antifungal and Antioxidant Components. Heteroatom Chemistry.

Vernieuwe, K., Cuypers, D., Kirschhock, C. E. A., Houthoofd, K., Vrielinck, H., Lauwaert, J., Buysser, K. D. 2017. Thermal processing of aqueous AZO inks towards functional TCO thin films. Journal of Alloys and Compounds, 690:360–368.

Witwit, I. N., Motaweq, Z. Y., Mubark, H. M. 2018. Synthesis, characterization, and biological efficacy on new mixed ligand complexes based from azo dye of 8-hydroxy quinoline as a primary ligand and imidazole as a secondary ligand with some of transition metal ions. Journal of Pharmaceutical Sci-nences and Research.