Serum hepcidin concentrations and type 2 diabetes

Alex Aregbesola, Sari Voutilainen, Jyrki K Virtanen, Adeola Aregbesola, Tomi-Pekka Tuomainen

Hepcidin is a peptide hormone with both paracrine and endocrine functions that help in maintaining body iron stores. Type 2 diabetes (T2D) is one of the sequelae of excess body iron stores; thus, iron regulatory hormone hepcidin may have a direct or at least an indirect role in the aetiopathogenesis of T2D. Both human and animal studies at molecular and genetic levels have attempted to establish a role for hepcidin in the development of T2D, and a few epidemiologic studies have also showed a link between hepcidin and T2D at population level, but the findings are still inconclusive. Recent data have suggested different pathways in which hepcidin could be associated with T2D with much emphasis on its primary or secondary role in insulin resistance. Some of the suggested pathways are via transcription modulator of hepcidin (STAT3); ferroportin 1 expression on the cells involved in iron transport; transmembrane protease 6 enzyme; and pro-inflammatory cytokines, interleukin-1, IL-6, tumor necrosis factor-α and IL-10. This review briefly reports the existing evidence on the possible links between hepcidin and T2D and concludes that more data are needed to confirm or refute hepcidin’s role in the development of T2D. Examining this role could provide a further evidence base for iron in the aetiopathogenesis of T2D.

Key words: Serum hepcidin; Body iron; Diabetes; Type 2 diabetes; Insulin resistance

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Excess body iron has been demonstrated as an independent risk factor of type 2 diabetes (T2D). Lately, manipulation of serum hepcidin concentrations through the use of hepcidin agonist is being suggested in the management of iron overload diseases, of which T2D is one. However, little is known about the role of hepcidin in the development of T2D; hence, the need for a review of the existing evidence linking hepcidin and T2D. We discuss some of the main mechanisms through which hepcidin could be associated with T2D.
INTRODUCTION

Recently, attention has been shifting towards the iron-regulatory hormone hepcidin and its possible role in the aetiopathogenesis of type 2 diabetes (T2D). Hepcidin is primarily a hepatic peptide synthesized as a preprohepcidin, which is a 84-amino acid peptide. It undergoes enzymatic cleavage into a 60- to 64-residue prohepcidin peptide and finally into a biologically active 25-amino acid peptide hormone, hepcidin[1-3]. Tissues of the kidney[4], pancreatic beta cell[5], macrophages[6] and adipocytes[7] have also been reported to produce hepcidin, but the role of this extra hepatic contribution to serum hepcidin is still unclear.

Hepcidin’s role is to maintain iron homeostasis[8,9]. It performs this action by regulating the expression and function of cell membrane-embedded ferroportin (FPN)[10], the cellular iron exporter in iron-transporting cells[11-13]. In response to the level of body iron stores, hepcidin regulates dietary iron absorption from the intestine and iron release from macrophages, by decreasing the cell surface expression of FPN.

Among the known diseases associated with the iron overload syndrome is T2D[14,15]. Even mildly elevated body iron has been demonstrated as a risk factor of T2D[16]. Some recent epidemiologic studies have tried to explore the association between serum hepcidin and T2D, with inconsistent findings[14-16]. Also, serum glucose concentration has been shown to regulate serum hepcidin[17]. As the underlying mechanisms between body iron stores and T2D still need further clarifications, hepcidin could provide some answers. Therefore, we reviewed the emerging links between hepcidin and T2D.

ROLE OF HEPcidIN IN IRon METABOLISM

Iron is a transition metal that is predominantly absorbed in the duodenum and upper jejunum[18]. The intestinal absorption of iron is in two waves of uptake of iron from intestinal lumen into the intestinal mucosa and from mucosa into the blood[19]. The two known forms of dietary iron are heme and non-heme iron. The heme iron is well absorbed by the body while the non heme iron predominantly in ferric form Fe³⁺ is reduced to ferrous Fe²⁺ form by the duodenal cytochrome b reductase[20]. This is transported by the divalent-cation transporter 1, a member of the natural- resistance-associated macropage protein family, across the intestinal apical membrane[21] and later stored in the cytosol of ferritin or exported from the basolateral membane of the enterocytes via FPN1. Because of its numerous health effects due to excess or deficiency, there is a need to strictly regulate iron within the physiological range.

Following a feedback mechanism, hepcidin is either up- or down-regulated by hepatocytes, depending on the level of body iron. Genetically, the mRNA of the gene (HEPC) coding for hepcidin increases with increase in body iron stores. At molecular level, hepcidin regulates iron transport from iron-exporting tissue into plasma by inhibiting intestinal iron absorption[19], release of iron from macrophages[22] and the placental passage of iron[23]. It performs these functions by binding to FPN1, which is expressed on the duodenal enterocytes, hepatocytes, placental syncytiotrophoblasts and the reticuloendothelia macrophages. It later internalizes and degrades FPN1 leading to a reduction in the ability of these cells to export iron into the plasma[24]. Conversely, there is re-expression of FPN1 on these iron-exporting cells in iron deficiency. However, it must be noted that body iron is not the only stimulus for hepcidin release. Hepcidin also responds to inflammation, infection, or both; as such, hepcidin appears to be a link between iron and inflammation. The antimicrobial properties of hepcidin would require conditions inconsistent with those observed in the serum, further emphasizing its iron-regulatory role rather than its broad-spectrum antibiotic activity[24].

MECHANISMS LINKING HEPcidIN AND T2D

Insulin resistance is a feature of T2D, and the relationship between iron metabolism and insulin resistance has been suggested to be bidirectional[25]. However, the association between hepcidin and insulin resistance remains vague. Molecular studies have showed that insulin stimulates hepcidin via STAT3, which is a novel transcription modulator of hepcidin[26]. A study by Wang et al[26] in which they induced diabetes in rats using streptozotocin with or without high-fat diet, showed a significant reduction in hepcidin expression in the liver, mediated by STAT3, causing abnormal elevation of FPN in the intestine, leading to serum iron elevation. Le Guennou et al[27] showed a 3.5-fold reduction in hepcidin mRNA in the group with higher insulin resistance when compared to the control group. Some previous studies[15,28,29] also have shown reduced hepcidin and prohepcidin concentrations in T2D subjects, suggesting insulin signal loss among T2D subjects with elevated iron stores.

Another mechanistic link between hepcidin and insulin is through glucose stimulation. One of the extrahepatic sources of serum hepcidin is the beta cell of the pancreas[5]. Insulin and hepcidin release have also been localized to beta cell granules where hepcidin may evoke its paracrine function. Thus, as glucose stimulates insulin release, there is a concomitant production of hepcidin. In the trial arm of a study by Aigner et al[17] in which they assessed the effect of glucose on serum iron and hepcidin, they found an increase in serum hepcidin in glucose-treated subjects compared to the control group treated with only water.

To further strengthen the association between hepcidin and T2D, a genome-wide association study (GWAS) by Gan et al[30] evaluated the association of transmembrane protease serine 6 (TMPRSS6) variants.
with risk of T2D. TMPRSS6 is an enzyme that inhibits the expression of hepcidin and its iron-lowering variants were used in their study. They found a reduced risk between the two TMPRSS6 variants and T2D ($P = 0.0277$). It is at least plausible to report that lower hepcidin concentration exacerbates insulin resistance seen in T2D, if causal relationship

STUDIES LINKING HEPCIDIN AND T2D

Existing data across different populations suggest a link between hepcidin and T2D (Table 1). There are four case-control studies [14-16,29]. In Sam et al.,[15] a study, the authors measured serum hepcidin and serum hepcidin/ferritin ratio, which has been suggested as a marker of adequate hepcidin production for a particular iron dosage. Aso et al. [29] matched their control subjects for body mass index (BMI), and serum creatinine, and also measured serum ferritin, prohepcidin and adiponectin, and both studies showed decrease in serum hepcidin/prohepcidin in T2D subjects when compared with the healthy controls. Because of the confounding effect of obesity and renal status in serum hepcidin measurement, Sam et al. matched their control subjects for body mass index (BMI) and serum creatinine. Aso et al. assessed the correlation between adiponectin and prohepcidin in T2D subjects on the basis that adiponectin has a beneficial role in insulin resistance, the hallmark of T2D, through iron regulation from interleukin (IL)-1α and -6, IL-1β, and tumor necrosis factor-α. In the development of insulin resistance, IL-6 is the most important inflammatory cytokine regulating hepcidin expression. IL-6 stimulates STAT3 via interleukin-6 receptor (IL-6R), and in addition, IL-10 in T2D. Increased circulating concentration of these pro-inflammatory cytokines such as IL-1α, IL-6 and tumor necrosis factor-α, which have been suggested as markers of T2D risk, may affect hepcidin expression and function during STAT3 phosphorylation. Thus, a low hepcidin concentration could stimulate IL-6, thereby enhancing its role in the development of T2D. A population-based study by Spranger et al. showed that IL-1α and IL-1β concentrations predict the risk of T2D. It is therefore tempting to speculate from the available evidence that hepcidin has a role in insulin resistance, the hallmark of T2D, through iron regulation from interleukin (IL)-1α and -6, IL-1β, and tumor necrosis factor-α. In the development of insulin resistance, IL-6 is the most important inflammatory cytokine regulating hepcidin expression.
In conclusion, we have briefly reviewed the emerging evidence pertaining to the role of hepcidin in T2D. Although the causative role of body iron in insulin resistance and T2D has been documented in both observational and interventional studies, the role of hepcidin in this process is still uncertain. However, in addition to the regulatory role in body iron stores, serum hepcidin concentrations have been linked to pro-inflammatory cytokines, STAT3, and TMPRSS6, all of which have been associated with T2D. Data gathered in this review showed that hepcidin concentrations vary in different populations with T2D. Further, hepcidin has either a primary or secondary role in insulin resistance which characterizes T2D. However, it is still inconclusive from these accumulated data that serum hepcidin is an independent risk factor in the aetiology of T2D. Thus, more experimental and clinical studies are needed to confirm or refute the claim that hepcidin has a role in T2D.

REFERENCES

1. Krause A, Neitz S, Míguel HT, Schulz A, Forssmann WG, Schulz-Knappe P, Abermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 2000; 480: 147-150 [PMID: 11034317 DOI: 10.1016/S0014-5793(00)01920-7]

2. Park CH, Valore EV, Waring AJ, Ganz T. Hecipdin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 2001; 276: 7806-7810 [PMID: 1111131 DOI: 10.1074/jbc.M00892200]

3. Singh B, Aroa S, Agrawal P, Gupta SK. Hepcidin: a novel peptide hormone regulating iron metabolism. Clin Chim Acta 2011; 412: 823-830 [PMID: 2133642]

4. Kulakisz H, Theilig F, Bachmann S, Gehrke SG, Rost D, Janetzko A, Cetin Y, Stremmel W. The iron-regulatory peptide hormone hepcidin: expression and cellular localization in the mammalian kidney. J Endocrinol 2005; 184: 361-370 [PMID: 15684344 DOI: 10.1677/joe.1.05729]

5. Kulakisz H, Fein E, Reederk P, Stremmel W, Adler G, Cetin Y. Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol 2008; 197: 241-249 [PMID: 18434354 DOI: 10.1677/JOE-07-0528]

6. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 2007; 82: 934-945 [PMID: 17660338 DOI: 10.1189/jlb.0407216]

7. Bekri S, Guio P, Anty R, Luciani N, Dahman M, Ramesh B, Iannelli A, Staccioli-Myr A, Casanova D, Ben Amor I, Saint-Paul MC, Huet PM, Sadoul JL, Gugenheim J, Sai SK, Tran A, Le Marchand-Brustel Y. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 2006; 131: 788-796 [PMID: 16952548 DOI: 10.1053/j.gastro.2006.07.007]

8. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-2093 [PMID: 15514116 DOI: 10.1126/science.1104742]

9. Ganz T. Hepcidin and its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program 2006: 29-35, 507 [PMID: 17124036 DOI: 10.1182/asheduction-2006.1.29]

10. Franchini M, Montagnana M, Lippi G. Hepcidin and iron metabolism: from laboratory to clinical implications. Clin Chim Acta 2010; 411: 1565-1569 [PMID: 20620132 DOI: 10.1016/j.cca.2010.07.003]

11. Kelly DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2: 2 [PMID: 19133145 DOI: 10.1186/1755-8794-2-2]

12. Adams PC, Kertesz AE, Valberg LS. Clinical presentation of hemochromatosis: a changing scene. Am J Med 1991; 90: 445-449 [PMID: 212084 DOI: 10.1016/0002-9344(91)80084-Y]

13. Arebesola A, Voutilainen S, Virtanen JK, Mursu J, Tuomainen TP. Body iron stores and the risk of type 2 diabetes in middle-aged men. Eur J Endocrinol 2013; 169: 247-253 [PMID: 23715774 DOI: 10.1530/EJE-13-0145]

14. Jiang F, Sun ZZ, Tang YT, Xu C, Jiao XY. Hepcidin expression and iron parameters change in Type 2 diabetic patients. Diabetes WJD | www.wjgnet.com 981 July 10, 2015 | Volume 6 | Issue 7 |
Aregbesola A et al. Serum hepcidin and diabetes

Res Clin Pract 2011; 93: 43-48 [PMID: 21513996 DOI: 10.1016/j.diarcs.2011.03.028]

15 Sam AH, Busbridge M, Amin A, Webber L, White D, Franks S, Martin NM, Sleeth M, Ismail NA, Daud NM, Papamargaritis D, Le Roux CW, Chapman RS, Frost G, Bloom SR, Murphy KG. Hepcidin levels in diabetes mellitus and polycystic ovary syndrome. Diabet Med 2013; 30: 1495-1499 [PMID: 23796160 DOI: 10.1111/dme.12262]

16 Guo X, Zhou D, An P, Wu Q, Wang H, Wu A, Mu M, Zhang D, Zhang Z, Wang H, He L, Liu Y, Wang F. Associations between serum hepcidin, ferritin and HB concentrations and type 2 diabetes risks in a Han Chinese population. Br J Nutr 2013; 110: 2180-2185 [PMID: 23742704 DOI: 10.1017/S0007114513001827]

17 Aigner E, Felder TK, Oberkofler H, Hahne P, Auer S, Soyal S, Stadlmayr A, Schwenoha K, Pirich C, Hengster P, Datz C, Patsch W. Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. J Nutr Biochem 2013; 24: 112-117 [PMID: 22819549 DOI: 10.1016/j.jnbt.2012.02.017]

18 Muir A, Hopfer U. Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Am J Physiol 1985; 248: G376-G379 [PMID: 3976894]

19 Wherry MS, Jones LG, Crosby WH. Studies on iron absorption, intestinal regulatory mechanisms. J Clin Invest 1964; 43: 1433-1442 [PMID: 14192524 DOI: 10.1172/JCI105019]

20 Su D, Asard H. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J 2006; 273: 3722-3734 [PMID: 16911521 DOI: 10.1111/j.1742-4658.2006.05381.x]

21 Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482-488 [PMID: 9242408]

22 Fleming RE, Sly WS. Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci USA 2001; 98: 8160-8162 [PMID: 11459944 DOI: 10.1073/pnas.114599498]

23 Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Felder TK, Oberkofler H, Hahne P, Auer S, Solay A, Stadlmayr A, Schwenoha K, Pirich C, Hengster P, Datz C, Patsch W. Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. J Nutr Biochem 2013; 24: 112-117 [PMID: 22819549 DOI: 10.1016/j.jnbt.2012.02.017]

24 Aigner E, Felder TK, Oberkofler H, Hahne P, Auer S, Solay A, Stadlmayr A, Schwenoha K, Pirich C, Hengster P, Datz C, Patsch W. Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. J Nutr Biochem 2013; 24: 112-117 [PMID: 22819549 DOI: 10.1016/j.jnbt.2012.02.017]

25 Muir A, Hopfer U. Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Am J Physiol 1985; 248: G376-G379 [PMID: 3976894]

26 Wherry MS, Jones LG, Crosby WH. Studies on iron absorption, intestinal regulatory mechanisms. J Clin Invest 1964; 43: 1433-1442 [PMID: 14192524 DOI: 10.1172/JCI105019]

27 Su D, Asard H. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J 2006; 273: 3722-3734 [PMID: 16911521 DOI: 10.1111/j.1742-4658.2006.05381.x]

28 Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482-488 [PMID: 9242408]

29 Fleming RE, Sly WS. Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci USA 2001; 98: 8160-8162 [PMID: 11459944 DOI: 10.1073/pnas.114599498]

30 Aigner E, Felder TK, Oberkofler H, Hahne P, Auer S, Solay A, Stadlmayr A, Schwenoha K, Pirich C, Hengster P, Datz C, Patsch W. Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. J Nutr Biochem 2013; 24: 112-117 [PMID: 22819549 DOI: 10.1016/j.jnbt.2012.02.017]

31 Muir A, Hopfer U. Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Am J Physiol 1985; 248: G376-G379 [PMID: 3976894]

32 Wherry MS, Jones LG, Crosby WH. Studies on iron absorption, intestinal regulatory mechanisms. J Clin Invest 1964; 43: 1433-1442 [PMID: 14192524 DOI: 10.1172/JCI105019]

33 Su D, Asard H. Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J 2006; 273: 3722-3734 [PMID: 16911521 DOI: 10.1111/j.1742-4658.2006.05381.x]

34 Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997; 388: 482-488 [PMID: 9242408]

35 Fleming RE, Sly WS. Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci USA 2001; 98: 8160-8162 [PMID: 11459944 DOI: 10.1073/pnas.114599498]
