A Simplified Review on Microsphere and Their Different Applications

Shital Bidkar a, Sana Maniyar a, Jayant Bidkar a, Shubrajit Mantry a and Ganesh Dama a

a Sharadchandra Pawar College of Pharmacy, Dumbarwadi, Otur, Maharashtra 410504, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2022/v34i16B35744

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/83479

ABSTRACT

Microspheres are small free-flowing particles with 1-1000um diameter and can be used to overcome the problems of conventional drug delivery. By altering the materials, methods, and polymers the therapeutic efficacy of microspheres containing drug content can be altered. We have discussed about microspheres, their various types, techniques used to manufacture microspheres, also about the advantages and different application of microsphere. Microspheres are used in novel drug delivery system. The microsphere will be assessed using a variety of procedures to determine its quality. Microspheres will play an important role in the delivery of novel medication in the future. Microspheres use in treatment of different disease conditions.

Keywords: Microsphere; drug delivery; polymer; advantages; application; evaluation.

1. INTRODUCTION

1.1 Microspheres [1]

Some of the troubles of triumph over with the aid of using generating manage drug transport machine which beautify the healing efficacy of a given drug for attain most healing efficacy and minimal aspect outcomes it essential to supply the agent to the goal tissue with inside the premier amount. In a sustained managed launch fashion, there are numerous strategies in turning in a healing substance to the goal web page. Microsphere, a utility for drug is one such
method which may be utilized in a sustained managed launch fashion. The variety of strategies for the guidance of microspheres gives load of possibility to govern drug management issue. This method permits the correct transport of small amount of the robust drugs, decreased drug awareness on the web page aside from the goal webpage and the safety of the labile compound earlier than and after the management and previous to the web page of action [1].

Microspheres are small globular debris particle with diameters inside the micrometre variety (usually one μm to thousand μm). Microspheres are definitely called micro particles. A variety of natural and manufactured materials can be used to create a microsphere. Commercially available glass polymer microspheres, polymer microspheres, and ceramic microspheres are all available. Stable and empty microsphere distinct broadly in density and consequently are use for unique application hollow microsphere are commonly used as additives to lower the density of cloth [2].

1.2 Advantages of Microspheres [3]

A. Decreasing the size contributes to an increasing the surface area and can increase the energy of poorly soluble fabrics.
B. Porating a steady quantity of medication inside the frame which could increase patient compliance.
C. Decrease Dose and risk is decreases.
D. Drug packaging with polymer prevents the drug escape enzymatic cleavage whilst making it great for method transport machine.
E. Smaller duration of dosing offer to better patient conformance.
F. Useful usage of medicinal drug can intensify bioavailability and decrease dangerous effects occurrence or severity.
G. Helps guards the GIT from opioid provokes.
H. Adjustment liquid into solid form and avoid the unsightly flavour.
I. Dependable approach, if modified, to impart the remedy to the target region with precision and to sustain the targeted concentration at the targeted web page and not using undue effect.
J. Lessen valuable reactivity linked to the outside international.

K. Decomposable microspheres get the useful resource over large polymer implants via that they just do not simply necessarily contain scientific remedies for implantation and reduction.
L. Managed launch transport delivery decomposable microspheres are being used to control release of drug prices at the same time as additionally reducing toxicity, reducing the pain of repeated injection [3].
M. They offer safety earlier than and after administration for irrational drug.
N. Decrease concentration of drug at website aside from the tissue or the goal organ.
O. Reduced dose and toxicity.
P. Provide constant and prolonged curing effect [4].

3. TYPES OF POLYMER [5]

For the practise of microspheres, a number of specific materials, both biodegradable and non-biodegradable, were researched. These materials include polymers, which are split into two types.

1. Synthetic polymers
2. Natural polymer

1. Synthetic polymers: They are separated into two categories and serve as carrier materials:

(A) Non-biodegradable polymers: Epoxy polymers, Poly methyl methacrylate, Acrolein, Glycidyl methacrylate, and biodegradable polymers are only a few examples. Glycolides and Lactides, as well as their copolymers, Poly alkyl cyano acrylates, Poly anhydrides, and Poly—caprolactone are just a few examples (PCL).

2. Natural polymers: They are procure from different sources like carbohydrates proteins, and chemically modified carbohydrates.

a. Proteins- Albumin, Gelatin, Collagen.
b. Poly (acryl) dextran, Poly (acryl) starch, and DEAE cellulose (A) Agarose are chemically modified carbohydrates, Gelatine, Starch, Chitosan, and Carrageenan (B) Agarose, Gelatine, Starch, Chitosan, and Carrageenan (C) Agarose, Gelatine, Starch, Chitosan, and Carrageenan.
1. **Bio adhesive microsphere**
 Adhesion can be describe as sticking of medicine to the membrane with the aid of using the sticking belonging of the water answerable polymers. Adhesion of medicine transport device to the mucosal membrane inclusive of buccal, optical, rectal, nasal and numerous others may be can be nominated as bio adhesion. These diversities of microspherespar ade a continuous duration at the point of functioning and causes associated with the immersion point and make greater re medical action. Carrier technology is a smart way to medicine delivery that involves connecting the drug to a carrier flyspeck, such as microspheres, Nanospheres, liposomes, nanoparticles, and so on, that controls the release and immersion of the medicine. Because of their small size and methodological carrying capacity, microspheres play a major role in these particulate medicine delivery systems [6].

2. **Magnetic microspheres [6]**
 This kind of dispatching machine could be tones veritally critical which confine the medicine to the complaint web runner. On this huge volume of voluntarily circulating medicine can be replaced by means of lower of magnetically centred medicine. Glamorous carriers gain glamorous responses to a glamorous area from assimilatedaccoutrements which are used for glamorous microspheres are chitosan, dextran and so forth. Individual microspheres and remedial glamorous microspheres are the two sorts.

Therapeutic magnetic microspheres [6]
It was used to provide chemotherapy agents to liver tumours. This technique can also focus pills such as proteins and peptides.

#Diagnostic microspheres [6]
It can be used to monitor liver function and identify intestinal loops. From distinct stomach structures by producing Nano length particles that are supra magnetic iron oxides.

3. **Floating microspheres [6]**
Because the maturity viscosity of floating categories is lower than that of gastric fluid, it floats in the stomach without altering the rate of gastric evacuation. If the system is floating on gastric content,
material will enhance stomach arithstone and modify tube awareness if the medicine is launched slowly at the preferred rate. It also minimises the chances of striking and curing jitting and has a longer-lasting mending effect. Another benefit is that it has a longer-lasting therapeutic effect, which lessens the need for regular dosage.

4. Polymeric microspheres [7]

Microspheres made of polymer are extremely handy for generating size labels.; chromatographic padding; functional coatings; Food, medicine, and cosmetics complements, inks and colours; supports for catalysts; carriers for proteins, enzymes, and cells; reagents for immunological diagnostics; controlled-release or target-specific medicines; and so forth [7].

The following are two forms of polymeric microspheres: biodegradable polymeric microspheres and synthetic polymeric microspheres [6].

- **Biodegradable polymeric microspheres:** Because starch and other herbal polymers are biodegradable, biocompatible, and bio sticky, they are used. When in contact with mucosal membranes, biodegradable polymers increase the residence period due to their high degree of swelling in aqueous media, resulting in gel formation. The fee and quantity of drug launch is controlled by way of concentration of polymer and the discharge pattern in a sustained manner. The principle drawback is, in scientific use drug loading efficiency of biodegradable microspheres is complex and is hard to manipulate the drug launch.

- **Synthetic polymeric microspheres:** Artificial polymeric microspheres are used as bulking agents, fillers, and embolic debris in clinical software, drug transport cars, and other applications, and have been shown to be safe and biocompatible. However, the main disadvantage of these microspheres is that they migrate away from the injection site, increasing the risk of embolism and organ damage.

5. Radioactive microspheres

Radioembolization remedy microspheres sized 10-30 nm are of larger than capillaries and gets tapped in first capillary bed after they encounter. They may be injected to the arteries that cause tumour of interest as a result, such radioactive microspheres emit an excessive amount of radiation while inflicting no harm to the surrounding tissues, it varies from a drug delivery system in that radiation is not usually emitted from microspheres. Rather, it comes from inside a radioisotope. Emitters include the various forms of radioactive microspheres.

6. Mucoadhesive microspheres

Mucoadhesive microspheres that are of 1-1000 mm in diameter and consisting either entirely of a mucoadhesive polymer or having an outer coating of it and coupling of mucoadhesive houses to microspheres has additional blessings, e.g., efficient absorption and improved bioavailability of the medication because of an excessive floor to quantity ratio, a miles extra intimate touch with the mucus layer, specific targeting of drug to the absorption website online completed by anchoring plant lectins, bacterial adhesions and antibodies, and so forth. On the surface of the microspheres. Mucoadhesive microspheres may be tailor-made to stick to any mucosal tissue which include the ones observed in eye, nasal hollow space, urinary and gastrointestinal tract, consequently imparting the possibilities of localized as well as systemic managed release of medicine.

4. GENERAL METHODS OF PREPARATION [8]

The microspheres may be set via the use of any of the multitudinous ways banded within the ensuing sections, still the preference of approach specifically depends on the character of polymer used, the medicine, the intended use and the period of remedy. Also, the system of instruction and its choice are equivocally decided via some expression and technology associated factors as appertained to below-

1. The flyspeck size demand
2. The medicine or the protein ought to not be negatively tortured by the process
3. Reproducibility of the release profile and the system
4. No stability hassle
5. There need to be no toxic product(s) related to the veritably last product

5. METHOD OF PREPARATION [5]

Techniques for microsphere preparation

- Single emulsion technique
- Double emulsion technique
- Polymerization
 - 1. Normal polymerization
 - a. Bulk
 - b. Suspension
 - c. Emulsion
- Interfacial polymerization
- Phase separation coacervation technique
- Spray drying and spray coangeling
- Solvent extraction
- Quassi emulsion solvent diffusion

Picture 1. Single emulsion technique [8]

Picture 2. Double emulsion technique [8]
Picture 3. Polymerization [5]

Microspheres

Picture 4. Phase separation coaservation technique [8]
Bidkar et al.; JPRI, 34(16B): 24-36, 2022; Article no.JPRI.83479

Picture 5. Spray drying and spray congealing method [9]

Picture 6. Solvent extraction method [10]
Picture 7. Quasi emulsion solvent diffusion method [11]
6. EVALUATION [5]

1. Morphological examination: Scanning electron microscopy was used to investigate the morphology of microspheres (SEM, JSM-T220A, JEOL, Tokyo, Japan). Microsphere samples were dusted onto double-sided tape on an aluminium stub, then gold-coated to a thickness of 400 microns.

2. Production yield, drug content and loading efficiency: The weight of dried microspheres (W1) recovered from each of three batches, as well as the total weight of the original dry microspheres, weight of starting materials (W2) were used to compute the percentage of production yield as follows: W1 / W2 x 10 = Production Yield as a Percentage.

E= Qp / Qt100 was used to compute the percentage of drug encapsulation in microspheres, where E is the percentage of microsphere encapsulation, Qt is the yield of microspheres in g, while Qp is the product of drug content per g of microspheres.

The proportion of loaded microspheres was calculated using the formula L=Qm / Wm100, where L represents the percentage of loaded microspheres, Wm represents the weight of the microspheres, and Qm represents the amount of drug in Wm.

3. Particle size measurement: The most widely used techniques for measuring particle size and form are scanning electron microscopy and thermal electron microscopy. Light microscopy is used to measure particle size, while confocal florescence microscopy is utilized to determine structural characterization. The field viewed through the microscope can be projected on a screen or recorded for later assessment using this technique. To alleviate the strain of eye examination, particles can instead be counted using electronic scanners. An electron microscope or a scanning electron microscope can be used to measure very small particle sizes. The latter is likewise capable of confirming a particle depth estimate.

4. Determination of bulk density and angle of repose: Helium and a multivolume psychrometer are used to estimate the density of microspheres. Transferring the exact weight of microspheres (Wm) into a 100mL graduated cylinder yielded apparent volumes (V) ranging from 50 to 100 mL. The following formula was used to compute the bulk density in grammes per millilitre: Wm / V = Bulk Density.

The angle of repose was calculated by dropping microsphere samples through a glass funnel onto the horizontal plate of a powder characteristic tester, which was meticulously built up (PP-N, Hosokawa powder tester, Kawaramachi Chuo-ku, Osaka, Japan). The average of three determinations was used to arrive at the final outcome.

5. Zeta potential study: A zeta metre was used to assess the zeta potential of microspheres distributed in 0.0005M phosphate buffer at pH 6.8. (ZM3UG, Zeta meter, Zeta Meter Co, Staunton, VA). Each formulation's directional movement of 200 microspheres was recorded and averaged over three measurements.

6. Adhesion property: Vyas et al. proposed a modified approach for determining the adhesive property. Within 1 hour after the animal's death, 2 freshly cut segments of pig intestine, each 5cm long, were obtained from a local abattoir and cleaned with isotonic saline solution. Warm phosphate buffer was peristaltically pumped over the mucosal surface at a rate of 5 mL/min., which was mounted to a polyethylene plate positioned at a 40° angle to the horizontal plane. The time it took to completely wash microspheres out of pig intestine was measured five times and averaged.

Swelling property: The microspheres were swelled in a 6.8 pH phosphate buffer. Their diameters were measured using a laser particle size distribution analyser on a regular basis until erosion and dissolution lowered them. The difference between the diameter of microspheres at time t was used to quantify the percentage of swelling at different time intervals (Dt) and the beginning time (t = 0 [D0]) as estimated from the following equation and averaged from three measurements.: - Swelling Percentage = Dt - D0 100

5. Infrared absorption study: Using the potassium bromide disc method, an infrared
spectrophotometer (1760X, PerkinElmer, Wellesley, MA) was used to analyse the IR spectra of propranolol HCl and additives in spray-dried microspheres.

7. FT-IR [8]

Spectroscopy with Depreciated Total Reflectance FT-IR is used to determine the degeneracy of the carrier system’s polymeric matrix. The outside of the microspheres are probed, and total reflectance is measured alternately (ATR). Depending on the manufacturing techniques and settings, the ATRFT-IR offers information regarding the face composition of the microspheres.

1. Isoelectric point determination [5]: Microelectrophoresis, which examines the mobility of microspheres, is used to estimate the isoelectric point of microspheres.

2. Chemical analysis: Electron spectroscopy is used to determine the surface chemistry of microspheres.

Surface carboxylic acid residue: This is measured by using radioactive glycine. On of microspheres

Beaker method [8]: The dosage form in this system is made to cleave at the bottom of the Teac tube containing the medium and agitated slightly with an overhead stirrer. The stirrer speed for the studies in the literature ranges from 60 to 300 rpm, and the volume of the medium used in the studies ranges from 50 to 500 ml.

In Vivo methods [8]: Animal models: Beast models are used generally for the webbing of the series of composites, researching the mechanisms and utility of saturation enhancers or estimating a set of phrasing in general, the procedure involves anesthetizing the beast b followed by administration of the pharmaceutical form. The oesophagus is ligated in rats to aid immersion channels other than the oral mucosa. Blood is extracted and ananomized at different intervals.

Buccal absorption test: Beckett & Triggs invented the buccal immersion test in 1967. It's a straightforward and dependable method for determining the dosage of a medication. For single and multiconstituent admixtures of medication, the loss of the mortal oral concavity is observed. The test has been successfully used to research the relative significance of medicament structure, contact time, earliest medicament immersion and PH of the result while the medicament is held in the oral concavity.

8. APPLICATIONS OF MICROSPHERES [12]

8.1 Microspheres Used For Vaccine Delivery

Vaccines provide protection through increasing resistance to infectious illnesses. Tetanus, diphtheria, and cholera vaccines are examples of vaccinations encapsulated in microspheres. Microspheres carrying vaccinations boost immunologic response by delaying antigen release for weeks or even months. The vaccine is kept from deterioration until it is released by encapsulating it in a suitable carrier. By encapsulating numerous antigenic epitopes or each antigen and adjuvant in a single carrier, managed vaccination transport may further limit systemic side effects. For the sustained release of encapsulated antigen, biodegradable polymers are used, which decay within the body to dependable, low-molecular-weight molecules that are easily removed. 13 Chitosan microspheres encapsulate a wide spectrum of compounds with ease [12].

8.2 Microspheres Containing Monoclonal Antibodies

Monoclonal antibodies have a high specificity for antigen molecules found at the web site of interest [12]. Monoclonal antibodies’ specificity is employed to direct pharmacologically energetic substances to target areas via microspheres. Methods for connecting monoclonal antibodies with microspheres include covalent coupling, nonspecific adsorption, coupling via chemicals, and precise adsorption. The unfastened carboxyl organization, aldehyde groups, amino companies or hydroxyl businesses on the surface of the microspheres may be linked to the antibodies. Microspheres sporting anti-vascular endothelial thing formulation (containing monoclonal antibodies) confirmed launch up to 6 months.

8.3 Topical Porous Microspheres [14]

Microspheres with porous surfaces that can be applied to the skin Microsponges are porous
microspheres with a network of linked voids with particle lengths ranging from 5 to 300 m. Because they may entrap a wide range of energetic components like as emollients, fragrances, and essential oils, these porous microspheres with energetic components can be used in formulations such as creams, creams, and powders. Microsponges are non-collapsible devices with a porous floor that govern the discharge of energy components.

9. IMAGING

The size of the flyspecks affects the imaging of specific locations significantly. Patches inserted intravenously from the portal tone will become entangled in the capillary bed of the lungs. Using labelled mortal serum albumin microspheres, this Miracle is used for scintigraphy imaging of tumor millions in the lungs. Prepared microsphere by ionic crosslinking and Rush system Studied the gastric hearstone time of tetracycline loaded chitosan microspheres. Following their oral administration in gerbil’s chitosan microsphere suspend in the non-acid- suppressed and acid suppressed Countries. The radioactivity in fluids was monitored with a gamma counter, and creatures were offered at various times.

9.1 Microspheres in Gene Delivery [12]

For transport of genes, often recombinantadenoviruses are used because of their excessive efficiency and feature anin-depth range of cell goals, though when utilized in vivo they generate immune responses and oncogenicity also, repeated gene therapy is required while viral vectors are used. Microspheres are employed to encapsulate genes in non-viral gene shipping, providing long-term gene stability. Microspheres are robust, easy to assemble, target cells/tissue, elicit modest immunological reactions, and may be manufactured in large quantities.

9.2 Ophthalmic Drug Delivery through Microspheres

Bio adhesive and permeability-enhancing qualities are imparted by polymers utilized in ophthalmic medication transportation. In comparison to other formulations for ocular medication delivery, such as ointments or solutions, polymer hydrogels are more effective due to their elasticity. As compare to other formulations forophthalmic drug transport including ointments or suspensions. A Chitosan gel improves adhesion to the mucin membrane, spreads over the conjunctiva and the corneal floor of the eye and preconneal drug residence instances is multiplied by means of stopping the elimination of drug thru lachrymal go with the flow. Medication-loaded microspheres could be suspended in a polymer hydrogel device for long-term or controlled drug delivery in the eye [13,15].

9.3 Nasal Drug Delivery Though Microspheres

The mucosa of the nose is an ideal location for bio adhesive medication delivery systems. Microspheres are created to have accurate bioadhesive homes and swell easily in contact withthenasal mucosa enhancing thebioavailability and house time of thedrugs inside the nasal direction. Numerous polymer salts along with chitosan lactate, Chitosan aspartate, chitosan glutamate, and chitosan hydrochloride are all examples of chitosan. These are properly applicants for nasal sustained release of vancomycin hydrochloride. Nasal administration of chitosan microspheres containing diphtheria toxoid produces a protective local and systemic immune response towards the toxoid with the aid of enhancing the manufacturing of IgGantibodies [16]. Microspheres absorb themoisture foundin mucosa consequences in shrinking of the nasal cells motive quick time period separation of tight junction via which absorption of drug is extended [17]. Dextran and starch microspheres are considered to be secure for nasal drug delivery [12].

9.4 Microspheres for Delivery of Protein and Peptides

The controlled release of proteins and peptides from biodegradable polymer microspheres has been investigated. Microspheres help maintain steady-state plasma awareness of a protein or peptide throughout time 19. In the microsphere components of protein/peptide tablets, biodegradable polylactic acid, polylactic-coglycolic acid, and chitosan microspheres can be used 18. Commercially available peptide drugs such as triptorelin, lanreotide, buserelin, and abarelix utilize the microsphere-based transport gadget [20].

Microspheres used in cancer treatment: Using radioactive microspheres with a -emitter to target cancers in the liver (e.g. yttrium-90). The hepatic artery is injected with a suspension of radioactive microspheres, while tumor arteries are injected
with microspheres with a diameter of 30 micron. After being exposed to radiations, tumor cells are eliminated without damaging nearby normal cells. Colon cancer could be treated with polymeric microspheres carrying the medication five-fluorouracil. The medicine is protected from degradation in the gastrointestinal environment by these polymeric microspheres [12].

10. CONCLUSION

The microsphere will be assessed using a variety of procedures to determine its quality. Microspheres will play an important role in the delivery of novel medication in the future. Microspheres use in treatment of different disease conditions.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It’s not applicable.

ETHICAL APPROVAL

It’s not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Patel NR, Patel DA, Bharadia PD, Pandya V, Modi D. Microsphere as a novel drug delivery. International Journal of Pharmacy & Life Sciences. 2011;2(8).
2. Katariasahl et al.; IJRPC. 2011;1(4).
3. Dhadde Gurunath S, Mali Hanmant S, Raut Indrayani D, Nitalikar Manoj M, Bhutkar Mangesh A. A review on microspheres: Types, method of preparation, characterization and application. Asian Journal of Pharmacy and Technology. 2021;11(2):2.
4. Mahalemanisha, Saudagar R. B2 Microsphere: A Review. Journal of Drug Delivery and Therapeutics. 2019(3s):854-856.
5. Rastogi V, Shukla SS, Singh R, Lal N, Yadav P. Microspheres: a promising drug carrier. Journal of Drug Delivery and Therapeutics. 2016;6(3):18-26.
6. Das MK, Ahmed AB, Saha D. Microsphere A Drug Delivery System–A Review. International Journal of Current Pharmaceutical Research. 2019:34-41.
7. Chai Z, Zheng X, Sun X. Preparation of polymer microspheres from solutions. Journal of Polymer Science Part B: Polymer Physics. 2003;41(2):159-65.
8. Gurung BD, Kakkar S. An overview on microspheres. International Journal of Health and Clinical Research. 2020;3(1):11-24.
9. Hemlatakaurav et al; mucoadhesive microspheres as carrier in drug delivery: A review; International Journal of Drug Development & Research 2020;4(2):21-34.
10. Bruno Gander, Microencapsulation by Solvent Extraction / Evaporation:reviewing the state of art of microsphere preparation technology; Journal of Control Release. 2005;102:313-332.
11. M.P.Chandak et al; Microsphere: A novel drug delivery system May 2020. International Journal of Pharmacy and Technology. 2020;12(1):31955-31973.
12. Kakkar V, Wani SU, Gautam SP, Qadrie ZL. Role of microspheres in novel drug delivery systems: preparation methods and applications. International Journal of Current Pharmaceutical Research. 2020:10-5.
13. Nellore RV, Young D, Pande PG, Bhagat HR. Evaluation of biodegradable microspheres as vaccine adjuvant for hepatitis B surface antigen. PDA Journal of Pharmaceutical Science and Technology. 1992;46(5):176-80.
14. Harsh Bansal et.al; microsphere: Methods of preparation and applications; a comparative study ;International Journal of Pharmaceutical Sciences Review and Research. 2011;10(1). Article-012
15. Liu W, Lee BS, Mieler WF, Kang-Mieler JJ. Biodegradable microsphere-hydrogel
ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro. Current Eye Research. 2019;44(3):264-74.

16. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE. Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine. 2003;21(13-14):1400-8.

17. Rathanan M, Kumar DS, Shirwaikar A, Kumar R, Kumar DS, Prasad RS. Preparation of mucoadhesive microspheres for nasal delivery by spray drying. Indian Journal of Pharmaceutical Sciences. 2007;69(5):651.

18. Ma G. Microencapsulation of protein drugs for drug delivery: Strategy, preparation and applications. Journal of Controlled Release. 2014;193:324-40.

19. Saez V, Hernández JR, Peniche C. Microspheres as delivery systems for the controlled release of peptides and proteins. Biotecnología Aplicada. 2007;24(2):108-16.

20. Srivastava V, editor. Peptide therapeutics: Strategy and tactics for chemistry, manufacturing, and controls. Royal Society of Chemistry; 2019.

21. Rajput MS, Agrawal P. Microspheres in cancer therapy. Indian Journal of Cancer. 2010;47(4):458.

© 2022 Bidkar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/83479