Energy Efficient Algorithm for High Speed Packet Data Transfer on Smartphone Environment

S.Pandikumar, M.Sumathi

Abstract: Energy efficiency is the main concern of the 21st century. The smartphone could be a trendy battery operated device and also the experience of the smartphone usage is entirely counting on the battery life. The state of the Smartphone can be Screen_OFF and Screen_ON. Majority of the time spent by the user on the phone is in screen off mode however 30% to 40% of the battery power consumption in this state through Always_On Apps. These apps send tiny burst to their server for various functions at a specific interval of time and keep RRC state busy. This paper proposes an energy-efficient algorithm for high-speed packet data transfer on a Smartphone called PSEO (PS Energy Optimization). It schedules data communication throughout the screen off state based on the radio signal quality. PSEO regulate Data_ON and Data_OFF period while not affecting the user convenience based on the independent value of RSRQ. The proposed research saves the energy up to 28.88%, 78.60% and 16.20% on average of total network energy, Screen_Off energy, and overall smartphone energy respectively.

Keywords: 3G/4G, Cellular Network, Energy Consumption, Radio Signal Strength, RSRQ, Smartphone.

I. INTRODUCTION

The power consumption of the hand-held devices is a crucial issue nowadays. The increase of the mobile internet traffic and rise of mobile Apps are the foremost deciding factor in battery backup. The long timeline of energy efficient researches underlines nearly 80% of the internet traffic is generated by mobile apps therein 30% to 40% of the traffic is generated by asynchronous network activities while not the knowledge of the users [1, 2]. However, achieving energy efficiency in smartphone when connecting high-speed data network with varied asynchronous traffic continues to remain difficult and yet it’s an iconic challenge to handle. Broadly speaking, the mobile usage is classified into two categories that are Active and Inactive. The study [2] underline up to 40% of the total smartphone energy is consumed at the time of screen off. The very fact is that the magnitude relation of screen state ON and OFF of the typical phone is 1:3 respectively, thus most of the time the UE isn’t operated by the user however it operated by some hidden factors. That influencing factors are networks and Apps. Generally, the mobile Apps are often classified based on their characterization that is Social Network, Gaming, Multimedia, Utility, Location Service and Instant Messenger. Among those, all the Apps are often updating data with their server through short message known as keep-alive messages. Even the cloud-based applications are worst in behavior as a result of that sort of Apps have to update themselves fairly often through notifications that sort of Apps are known as Always-On Apps. A typical smartphone has N number of Apps been incessantly generate these sorts of short network burst are known as asynchronous network traffic. These short bursts have terribly less packet load, as an instance, weather applications have a connection with their server for less than 3 sec and also the payload is a smaller amount than 2 kb. Even a typical social network App having an association to the server for 2 to 4 sec and transfer a short payload about 1 to 3 kilobyte [3]. This asynchronous traffic generated from client or server as well. The one will not predict and optimize server generated traffic however the researches can optimize user-generated one. The paper propose an adaptive radio connection management scheme called PS Energy Optimizer (PSEO) to minimize the energy consumption of radio network when the smartphone is in inactive (Screen is Off). This model schedule data network connection based on the radio signal quality only when the phone is in Screen_OFF mode. It uses the periodic scheduling time without affecting user experience and at the same time reduce ton of RRC connection requests. The architecture does not influence the data scheduling when the screen is ON and the wireless hotspot is active. The rest of this paper is organized as follows. Section II highlights the juice of literature review. Section III and Section IV introduce the contextual of the work. Section V presents the architecture of PSEO and its components. This section elaborately discusses the working principles of PSEO with algorithm and calculation of PS Cycle time for Data On. Section VI presents the experimental data and results. Section X concludes the research.

II. LITERATURE SURVEY

A. Power Consumption of the 3G Radio Interface

Feng Qian and Oliver Spatscheck team done such remarkable work regarding Screen_Off energy optimization and the team proposed lot of measurement results and arose number of research problems as well. The research [2] introduced two optimization techniques such that fast dormancy and batching. The study [4, 5, 6] focuses on settings of critical inactivity timer values that determine when to release radio resources after a period of inactivity. Aruna Balasubramanian et al [7] in front of the smartphone energy consumption research and they proposed a measurement-driven model for measuring the energy consumption of network activities (3G, GSM and WiFi) and developed energy efficient protocol called TailEnder to minimize the cumulative network energy consumption. Moo-Ryong Ra et al [8] suggested architecture called SALSA which is an optimal online algorithm to fine tune Energy-Delay trade-off and
achieve 10-40% of energy gain. The research [9] reveal personalized network activity-aware predictive dormancy technique, called Personalized Diapause (pD) to automatically identifying user-specific tail-time transmission characteristics for various network activities. Guangtao Xue [10] determine a scheme SmartCut, which effectively mitigates the tail effect of radio usage in 3G networks with little side-effect on user experience. The study [11] proposed a user-level dynamic decision algorithm to have fine-grain user level optimization to set dynamic tail time.

B. Offloading and Traffic Aware

Study [12] found local computation limitation at the smartphone is the real bottleneck for opening most webpages and propose an architecture, called Virtual-Machine based Proxy (VMP), to shift the computing from smartphones to the VMP because reason of the long delay and high power consumption in web browsing is not due to the bandwidth limitation most of time in 3G networks. The research [13] proposed an energy-aware approach for web browsing based on browsing speed and user responses in 3G based smartphones. Ya-Ju Yu et al [14], develop an energy adaptive approach and design an energy-efficient downlink resource allocation scheme to support multimedia applications.

C. Inactive mode and radio signal strength

The research [15, 3] proposed a methodology ExpCO2 to reduce smartphone energy consumption, when it’s not interactively used by the user, particularly in Screen OFF state. The experimental result shows that particular amount of energy is consumed during inactive mode of smartphone. The optimization control network activity by toggle the data state ON and OFF at the Screen OFF and this reduce energy consumption upto 34% without affecting the Quality of Experience. Xiaomeng Chen et al [16] introduced a new system called HUSH screen-Off energy optimizer to reduce smartphone energy consumption by 15.7% due to background activities in the screen-Off state. The study [17] present a novel technique called LoadSense for a cellular client to obtain a measure of the cellular load, locally and passively, that allows the client to determine the ideal times for communication when available throughput to the client is likely to be high. Nishkam Ravi [18] proposes a new context-aware battery management architecture for mobile devices (henceforth CABMAN). Ning Ding et al [19] proposed what-if analysis to quantify the potential energy savings from opportunistically delaying network traffic by exploring the dynamics of signal strength experienced by users.

III. CHARACTERIZING ENERGY CONSUMPTION IN SMARTPHONE

According to the fundamental architecture of 3G and 4G [20] the RRC state machine is that the response to regulate radio resources and paging parameters between UE and NodeB’s. After connection to RRC the user equipment (UE) must stay in a high-power state, occupying radio resources for some required time before the allocated resource is released by the network, and then the UE enters a low power state. This required time period, also known as the Radio Resource Control (RRC) tail time [7], is necessary and important for cellular networks to prevent frequent state promotions (resource allocation), which can cause unacceptably long delays for the UE, as well as additional processing overheads for the radio access network [21, 22].

Today’s cellular carriers use a static and conservative setting of the tail time in the order of many seconds, these times are recommended by 3GPP (based on versions) and configured by network providers. Previous studies revealed this tail time to be the root cause of energy loss and radio resource inefficiencies in both 3G [7, 25, 27] and 4G networks [26]. There are several kinds of researches [7, 23, 24, 28-30] fine tune the RRC state machine and achieved minimum radio energy loss. But still, there is a loophole to killing energy in the wild. As per the text, these asynchronous short network traffic wakeup RRC state continuously for a short time, because of this RRC wasted their resources at tail time unnecessarily cause extreme signaling overhead and energy consumption on UE. The problem is short wakeup of RRC is continuous arise by N number of Apps with N number of activities at frequent time interval. Background activities of Apps throughout screen on time aren’t bothering however throughout screen off is that the focus one.

IV. ANATOMIZING THE FACTORS INFLUENCING ENERGY LOSS IN SCREEN OFF STATE

During screen off the user cannot access Apps, games, and video, even the display unit is shut down. However the actual quantity of energy consumed in the screen off state that we tend to think about it’s energy loss. In this state, some factors are influence the loss of energy in UE, which are

- Apps
- RRC state
- Radio Signal

Among these App is a core factor of energy loss, RRC and radio signal is a dependent factor to Apps. Each App initiates numerous background activities and each background activities may differ by its payload and CPU utilization [Fig 1]. Obviously these App activities (Act1, Act2, ……, Act n) wakeup CPU unit and establish RRC connection between UE and RNC for a short while. The energy loss of the UE is directly proportional to the amount of activities generated by apps and number of RRC connection is established.

V. ARCHITECTURE OF PS ENERGY OPTIMIZATION

PSEO is a model to reduce energy loss in Screen_off state without affecting user experience by scheduling data connection. This model precisely focuses to minimize radio energy consumption because the radio unit is the major energy hunger in UE. It does not depend on 3G/4G networks and does not require any additional network parameters and major changes in operating system, it completely generic.
PSEO can easily integrate with all type of data network and all kind of mobile operating systems. This approach does not partial to particular App, because it deactivate all apps request through disable the data communication.

5.1.1 Screen State
It is a key factor to enable and disable the PSEO activities. PSEO become active when the screen state is Off (inactive). Once the screen is ON the PSEO is neutralize their activities and controls and enables data connection without any constraints. When the screen state is Off that time only PSEO initiate PS Cycle.

5.1.2 Background Workload
This logical unit represents the traffic which are generated by Always_On App eventually its also called client generated or asynchronous traffic. PSEO bothering about the traffic only when generated in the screen of and this traffic are handled by operating system automatically and stored in local buffer.

5.1.3 Always_On Apps
It is some time called Cloud based Apps which is tries to be always connected with their remote server to update data. Text already discussed elaborately. PSEO handling the Always_On workload which is generated only in screen Off time.

5.1.4 Data Communication Module
This module is nothing but 3G/4G interface in UE. This module is managing upload and downloads user data. The working principle of this module is controlled by operating system but PSEO control the cell link for data connection through periodic scheduling of connection.

5.1.5 Radio Interface
It managed by RRC and UE. This is backbone of data communication and entirely depends upon the user activities. PSEO indirectly control radio interface through scheduling data communication.

5.1.6 Radio Signal Strength
This part is the deciding factor of PS cycle time and the entire working principle of PSEO is directly depends on radio signal quality. This will discussed sec x.

B. Working Principles of PS Energy Optimization
PSEO schedules the data connection based on the radio signal strength and it act as a control module of data connection during screen_off. The outline of PSEO is just sense the state of the UE screen and if the screen is off then the data communication is scheduled by dynamic time slots (Fig 3). PSEO does not control the data connection in screen_on because of the quality of user experience and PSEO immediately enable the data connection when the user initiate screen_on event. PSEO split the screen_off time into number of PS cycles, each cycle has Data_on and Data_off time slot (Fig 4). The Data_off time slot is constant which is derived from the research [15], about this time nothing can be transmitted and the Apps generated traffic is automatically managed by operating system and this traffic will be transferred when the data communication is become active. The Data_on time slot is calculated based on RSRQ. The base value of Data_on time slot is 1 minute and it could be dynamic. During this slot the Apps generated background traffic in Data_off is transmitted by operating system and fetch the external traffic as well. The base value of Data_on is maintained when the signal is good otherwise it will be modified. If the signal strength is excellent the base value will be reduced and if the signal is poor the base value will be increased. That is the proposed mechanism to maintain the trade_off between the quality of user experience and energy loss. The technical specification of PSEO is discussed in forthcoming sections.
Algorithm1: PS Energy Optimization

Function DataScheduler ()

Input: ScreenState, DataState, Data_ON_sec, Data_OFF_Min, SignalStrength

Output: Minimize energy loss

Initialize: SignalStrength ← 0 where -3 ≥ Signalstrength ≥ -16

Data_ON_sec ← 60 and Data_OFF_Min ← 29

While UE is ON do
Detecting Screen Events

if Screen Event Triggered for Inactive then
 if Hotspot is disabled then
 ScreenState \leftarrow \text{OFF}
 Toggle data communication state OFF
 end if
 if Screen Event Triggered for Active then
 ScreenState \leftarrow \text{ON}
 Toggle data communication state ON
 end if
end if

Detecting data communication module Events

if Data communication Disable Event is Triggered then
 if ScreenState is OFF then
 Toggle data communication ON after Data_OFF_min
 end if
end if

if Data communication Enable Event is Triggered then
 if ScreenState is OFF then
 read SignalStrength
 if SignalStrength is -3 ≥ Signalstrength ≥ -16 then
 Get Data_ON_sec from DataON_TimeSlot Function
 Toggle data communication OFF after Data_ON_sec
 else
 Toggle data communication OFF
 end if
 end if
end if

End Function

Function DataON_TimeSlot()

basevalue \leftarrow 60 \text{ sec}

Get RSRQ

if RSRQ is between -3 to -5 then
 DataON_slot = basevalue - \text{subtract Seconds}
Elseif RSRQ is between -6 to -11 then
 No change of basevalue
Elseif RSRQ is between -12 to -16 then
 DataON_slot = basevalue + \text{Addition Seconds}
Return DataON_slot

End Function

C. Mechanism of Calculating PS Cycle time for Data_On

Let \(\Delta t \) is a time period of radio communication state is active that means duration of Data_on and \(\Delta t \) is relative to be active only when R_{signal} is active and R_{signal} \rightleftharpoons \Delta t. \) Let \(\Delta t \) denotes the time unit of radio communication inactive state that mean the duration of Data_off. It’s a fixed off bound and it does not affected by any of the network and application factors so \(\Delta t \notin R_{signal} \) where R_{signal} is an instantaneous receiving signal quality ratio on UE. R_{signal} is an independent variable which is directly related to the factors of radio interface that can be a distance and cell load, so R_{signal} \in \{distance, cell load\} [19, 32] and it’s a dynamic cumulative value which calculated by

\[
R_{signal} = \frac{\tau}{\delta} \lambda \quad \lambda > 0
\]

As mentioned earlier R_{signal} is a cell link quality factor that influence the data transfer rate from the UE and R_{signal} \propto Data_{throughput}. The receiving ratio may differ according to the UE in same condition. Where \(\tau \) signify Reference Signal Receiving Power (RSRP) it’s an average signal strength based on RE \(\sqrt{17} \) can be calculated through

\[
\tau = \delta - 10\log(12 \times \lambda)
\]

where \(\delta \) is RSSI and \(\lambda \) is a number of resource block (RB) which is similar to the carrier bandwidth \(\lambda \in \{1,4,3,5,10,20\} \) usually \(\lambda \) measured by MHz. Accordance of Equ (1) the can get signal ratio and the output of R_{signal} \in \{-3,-4,\cdots,-9\} which is normally measured by dBm [17]. According to the research [17, 19, 32, 33] the range of R_{signal} indicate the cell link quality and Data_{throughput}. Even R_{signal} quality can be categorized into 3 logical levels Signal_Excellent, Signal_good and Signal_poor and this would be

\[
R_{signal} = \begin{cases}
-3 > Signal_Excellent > -5 \\
-6 > Signal_good > -11 \\
-12 > Signal_poor > -16
\end{cases}
\]

From the Equ (1) and (2) the \(\Delta t \) can be calculated

\[
\Delta t = T_{avg} \pm T_{affect}
\]

Where T_{avg} is \(\Delta t \) duration which is assumed by 1 minute based on the research [15] and the T_{affect} is a time variant which calculated based on the output of R_{signal}. T_{affect} can be calculated through the following consideration

i) If R_{signal} = Signal_Excellent the T_{affect} will be negative value.

ii) If R_{signal} = Signal_good the T_{affect} will be 0.

iii) If R_{signal} = Signal_poor the T_{affect} will be positive value.
The T_{affect} value is variant and it will be impact by -5 seconds. If $R_{signal} = Signal_{excellent}$ then T_{affect} is subtracted by 5 sec for each RSRQ value. If $R_{signal} = Signal_{poor}$ then T_{affect} is adding 5 sec for each RSRQ variation. Simply the principle is working based on the mapping (Fig. 5 and Fig.6)

![Fig 5. Correlation between Signal Strength and Data on time](image)

However if the signal strength is excellent, the Data throughput should be high [17, 19, 32, 33] so PSEO no need to maintain Δt for 1 min, it can be reduce. If the signal strength is good, the Data throughput will be average [19, 32] so need not to modify the duration of Δt. If the signal strength is poor the Δt duration should be increased because of low Data throughput -

![RSRQ vs T_affect](image)

Fig 6. Mapping of Signal Strength and T_{affect}

D. Calculating the Energy of PS Cycle Time

Let $Traffic_{App}(\Delta t)$ is amount of data in bytes which is generated during the time slot Δt. $Traffic_{App} \in A(i)j, i, j \in [1, 2, 3 \ldots n]$ where A is an App running in UE. Δt is a constant time slot of data disable duration. The Δt traffic is related to total number of apps and its activities (Eq (6)).

$$Traffic_{App}(\Delta t) = \sum_{j=1}^{n} App(i)j$$ \hspace{1cm} (6)

Let $\mu[\Delta t]$ denotes the amount of data transfer during the time slot Δt. Δt is set from a cumulative random value calculated from finite range of RSSI, RSRP and RSRQ values (see Eq 1) and assume $\mu[\Delta t] > 0$. According to the Eq (4) $P_{\mu[\Delta t]} \propto Traffic_{App}(\Delta t)$. So the total power of one PS_{cycle} can be calculated in (7). PS_{cycle} is nothing but duration of $\Delta t + \Delta t$ and this would be $Screen_off \Rightarrow PS_{cycle}$

$$P_{PS_{cycle}} = P_{[\Delta t]} + P_{[\mu[\Delta t]}}$$ \hspace{1cm} (7)

In the equ (7), $P_{[\Delta t]}$ should be 0 because there is no data transfer during Δt slot and assume at the end of the PS_{cycle} i.e end of Δt, $\mu[\Delta t]$ and $Traffic_{App}[\Delta t]$ should be zero and let both should be zero for next cycle (Fig 7).
Proceedings of Equ (7) the total power consumption of inactive mode \(P_{\text{Scr-off}} \in P_{PS\text{cycle}(i)}(i \in \{1, 2, 3 \ldots n\}) \) and this can be calculated by

\[
P_{\text{Scr-off}} = \sum_{i=1}^{n} P_{PS\text{cycle}(i)}
\]

(8)

Proceeding of Equ (4), (7) and (8) the total radio energy gain can be calculated by

\[
\text{Energy Gain by PSEO} = P'_{\text{Scr-off}} - P_{\text{Scr-off}}
\]

(9)

Where \(P'_{\text{Scr-off}} \) is total energy consumption of radio interface in the Screen_off duration without the implementation of PSEO.

E. Measuring Radio Energy during Data_On

Power consumption of radio interface is directly proportional to the number of transport block send and received over data network [35]. The power consumption of radio interface in UE can be formulate into

\[
P = P_{\text{RRC State}} + P_{\text{load}} + P_{\text{Proc}}(s)
\]

(10)

where \(P \) is radio transmission energy, \(P_{\text{RRC State}} \) is power consumption to maintain RRC states including tail time. \(P_{\text{load}} \) is power consumption of sending and receiving packets and \(P_{\text{Proc}}(s) \) is energy for encapsulation and decapsulation process of packets. \(S \) is the size of the packet in bytes.

Here \(P \propto P_{\text{load}} \) and \(P_{\text{RRC State}} \) is a minimum power consumption from UE side to handle RRC states typical inactivity time setting. \(P_{\text{Proc}}(s) \) is assumed as a linear and incremental power that proportional to size of the transport blocks \(P_{\text{Proc}}(s) \propto \text{Trans}_{\text{block}} \).

Equation (10) depicts the cumulative energy of radio transmission and those energy \((P) \) can be break into energy per packets and per processing time of packets. One IP packet can be divided into number of transport blocks and which is proportional to size of the packet as well. Here the notation of finding transport blocks.

\[
N(\text{Trans}_{\text{block}}) = \left[\frac{S}{\text{MTBS}} \right]
\]

(11)

where MTBS is Maximum Transport Block Size and these blocks will decide the \(P_{\text{load}} \) energy [34]. The time spend to process the packets is \(N(\text{Trans}_{\text{block}})T \) in that \(T \) is transmission time interval and it decide transmission rate [34]. So the packet transmission interval should be \(I > N(\text{Trans}_{\text{block}})T \) thus

\[
P_{\text{load}} = \frac{N(\text{Trans}_{\text{block}})}{I} \times P_{\text{PacketSend,Recv}}
\]

(12)

\[\text{when } I > N.T \]

where \(P_{\text{PacketSend,Recv}} \) is a power consumption of sending and receiving one packet and \(I \) is packet sending interval. From the Equ (11) and Equ (12) the power consumption of one RRC connection is calculate from

\[
P = P_{\text{RRC State}} + \frac{P_{\text{PacketSend,Recv}}}{I} \left(\left[\frac{S}{\text{MTBS}} \right] \right)
\]

(13)

Equation (13) depicts power consumption can be decided by the number of packets, number of transport block and packet sending and receiving interval \(I \) are the influencing factors of radio interface power consumption.

VI. RESULT ANALYSIS

A. Experimental Setup

The experimental data has been collected from 50 users from different age group and different professionals. The traces collected from android 5+ phones for 30 days. These traces include packet payloads, user input events, RSRQ value and power consumption log. During the test, the users are advised to install PSEO App in their smartphone and uninstall unnecessary Apps. The users essentially have the following Apps for network traffic monitoring and other purposes.
The test intentionally left gaming Apps. WhatsApp, Facebook, Instagram, Cricbuzz, Twitter, Youtube, Gmail, Google Play store, Browser. The test users are selected from various professionals and having their different smartphone models.

B. Analysis of User Interaction

The result of 30 days usage pattern reveals various interesting quantitative results and facts. Obviously each and every user has different mindset and usage patterns and it entirely depends on age and nature of job. In this study, the traces have been collected from various professionals (Table- I) and different age groups. The average age is 32 to 35 because the middle aged people are the most hungers of smartphones and the minimum age of the trace is 18 and maximum age is 65 (Table-I). The users are selected evenly from various professionals and almost cover all major area. The mechanic and taxi driver domain account 1 user each and remaining areas having minimum 2 users and above (Table-I). The analysis of the trace is clearly reveals that marketing people uses phone excessively during the working days. Marketing people, Academic people and Home makers are the top 3 highest phone users and their average usages are 4.0 hrs, 3.0 hrs and 3.54 hrs respectively (Fig 8, Fig 9, Fig 10, Table-I)

![Fig 8. Average usage of mobile phone (Screen On duration) in hours.](image1)

![Fig 9. Highest usage of mobile phone (Screen On duration) in hours.](image2)

![Fig 10. User wise minimum Screen_On duration](image3)
Table-I. Average usage time and screen events during the log period

ld	Δ^2	Δ^3	σ_{usage}	Δ_{Low}	Δ_{High}	$\Delta_{Tot\ Events}$	$\Delta_{Avg\ Events}$	σ_{events}
U1	2.5	1.49	1.93	0.52	7.3	2880	96	86.12
U2	2.60	2.12	1.75	0.41	5.17	10397	346	110.01
U3	4.21	4.21	1.41	2.45	6.54	2914	97	14.29
U4	5.82	5.38	2.86	2.17	11.21	12148	404	160.95
U5	1.69	1.20	1.07	0.57	3.34	2271	76	11.51
U6	5.33	5.38	1.06	4.14	7.16	9197	307	45.28
U7	5.66	5.35	1.43	3.53	8.07	1886	63	21.51
U8	5.31	5.02	1.37	3.43	7.11	4311	144	15.96
U9	1.26	1.42	0.55	0.52	2.10	1508	50	4.91
U10	5.12	5.24	2.16	2.15	8.07	1208	40	8.54
U11	3.83	2.15	2.92	1.14	7.30	3034	101	17.50
U12	3.03	2.48	1.78	1.00	5.45	4757	158	28.73
U13	2.50	2.19	0.91	1.26	4.12	4302	143	24.54
U14	3.46	3.45	0.79	2.01	4.45	4225	141	29.88
U15	2.67	2.80	0.90	1.14	3.56	3111	104	18.22
U16	2.15	2.18	0.76	1.14	3.45	2965	99	11.28
U17	3.00	3.36	0.58	2.14	3.51	2391	78	7.31
U18	2.81	3.45	1.11	1.14	4.06	2117	71	9.21
U19	2.00	2.18	0.92	1.06	3.51	1542	51	8.21
U20	1.35	1.45	0.48	0.56	2.14	1328	44	5.40
U21	3.07	3.51	1.17	1.14	4.45	4286	142	39.00
U22	3.78	4.45	1.33	1.10	5.14	6942	231	65.00
U23	1.94	1.44	1.12	1.30	4.40	2211	74	17.87
U24	3.11	3.01	0.79	2.29	4.32	2914	97	18.79
U25	2.78	3.14	1.17	1.18	4.56	2571	85	20.00
U26	2.35	2.45	1.08	1.14	3.56	1714	57	6.00
U27	3.50	3.56	0.88	2.16	4.45	4800	160	33.00
U28	2.64	2.45	0.63	2.14	3.51	3600	120	105.65
U29	3.02	3.11	0.84	2.16	4.48	3257	109	83.36
U30	3.03	3.19	0.50	2.41	3.56	3514	117	31.65
U31	2.66	2.56	0.91	1.28	4.11	4080	136	30.01
U32	2.28	2.45	0.62	1.08	3.08	3737	125	87.10
U33	1.46	1.11	0.53	1.08	2.26	1886	63	9.38
U34	1.50	1.21	0.51	1.09	2.28	2091	70	0.74
U35	1.54	1.29	0.51	1.11	2.36	1663	55	22.01
U36	2.41	2.45	0.32	2.01	3.01	5477	183	25.28
U37	1.65	1.45	0.46	1.01	2.18	2614	87	48.00
U38	3.03	3.16	0.48	2.18	3.46	7200	240	20.00
U39	3.28	3.16	0.46	2.55	4.01	8143	271	106.00
Energy Efficient Algorithm for High Speed Packet Data Transfer on Smartphone Environment

User	Δ^a	Wakupsb	Payload (GB)c	ΣT	ΣAvg	% of packetsd	ΣUp	$\Sigma Down$
U1	21.5	82980	28.99	1.3E+08	242.53	4.57 %	31	258
U2	21.4	23023	15.20	3E+07	541.71	5.83 %	55	346
U3	19.79	82125	17.81	4.3E+07	446.83	9.20 %	32	138
U4	18.18	19718	35.01	1.2E+08	324.77	3.04 %	47	111
U5	22.31	104817	33.56	3.2E+07	243.04	5.60 %	38	259
U6	18.67	25948	38.68	6.1E+07	416.62	4.84 %	59	330
U7	18.34	126446	16.09	9.5E+07	482.43	12.06 %	72	347
U8	18.69	55320	28.16	9.8E+07	309.55	4.55 %	46	279
U9	22.74	159322	12.42	3E+07	440.05	11.03 %	83	266
U10	18.88	199152	10.67	8.1E+07	442.21	17.06 %	89	390
U11	20.17	78872	28.34	3.8E+07	406.22	4.35 %	32	286
U12	20.97	50418	22.70	5.6E+07	436.28	6.19 %	58	311
U13	21.5	55070	36.90	4.4E+07	298.78	3.33 %	43	160
U14	20.54	56497	38.01	5.3E+07	262.86	3.42 %	35	292
U15	21.33	76597	20.67	5.8E+07	383.09	6.30 %	54	229
U16	21.85	80465	16.89	2.2E+07	410.38	10.52 %	82	301
U17	21.0	102129	16.68	1.9E+07	554.78	7.46 %	46	361
U18	21.19	112198	18.71	6.2E+07	324.65	9.21 %	74	296
U19	22.0	156198	10.80	1.3E+07	417.89	10.78 %	71	120
U20	22.65	181047	12.06	2.5E+07	521.76	8.74 %	51	163
U21	20.93	56099	28.90	4.4E+07	706.19	4.27 %	57	158
U22	20.22	34485	26.10	5.3E+07	533.10	5.08 %	82	307
U23	22.06	107650	22.04	3.5E+07	683.73	4.36 %	49	184
U24	20.89	82125	28.69	2.6E+07	474.10	6.41 %	67	227
U25	21.22	93719	12.89	1.4E+07	305.65	11.93 %	76	329

Δ^a Mean of Screen On duration in hours.
Δ^b Median of Screen On duration in hours.
σ_{usage} Standard deviation of Screen usage.
Δ_{Low} Minimum Screen On duration in hours.
Δ_{High} Maximum Screen On duration in hours.
σ_{events} Standard deviation of Screen usage.
User	Total Payload (GB)	Minimum Payload (GB)	Average Payload (GB)	% of Data Transferred	Wakeups During Inactive	Total Wakeups During Inactive
U26	21.65	139756	18.20	3.1E+07	425.90	6.23 %
U27	20.5	49788	30.18	7.7E+07	420.87	6.12 %
U28	21.36	66384	20.15	3.5E+07	320.67	8.58 %
U29	20.98	73083	32.10	1.2E+08	283.98	4.15 %
U30	20.97	68086	19.56	5.3E+07	398.14	7.27 %
U31	21.34	58574	26.98	4.1E+07	401.25	5.29 %
U32	21.72	63729	22.07	4.5E+07	331.52	4.11 %
U33	22.5	126446	12.90	1.6E+07	376.13	10.89 %
U34	22.5	113801	12.20	1.4E+07	331.19	9.39 %
U35	22.46	144838	16.46	5.4E+07	327.76	8.16 %
U36	21.59	43530	15.78	3.9E+07	438.24	11.81 %
U37	22.35	91564	14.90	2.1E+07	454.86	6.15 %
U38	20.97	33192	25.89	6.5E+07	425.45	7.05 %
U39	20.72	29395	14.90	2.6E+07	620.65	8.23 %
U40	19.96	21945	34.12	1.1E+08	346.10	4.13 %
U41	20.1	53825	17.09	2.5E+07	244.39	7.09 %
U42	20.96	55707	15.90	4.9E+07	346.08	10.74 %
U43	21.82	62235	21.09	2.0E+07	423.46	8.71 %
U44	22.11	68086	10.01	1.1E+07	281.80	16.87 %
U45	21.53	27375	13.63	1.8E+07	301.92	13.41 %
U46	19.59	24894	28.22	2.8E+07	394.10	6.28 %
U47	19.19	21472	26.01	5.9E+07	473.01	6.75 %
U48	21.4	122555	13.53	1.9E+07	371.65	10.13 %
U49	22.42	113801	10.02	1.3E+07	322.87	11.84 %
U50	20.99	66942	13.04	1.3E+07	210.14	11.42 %

\[\Delta \] user wise mean of Screen Off duration in hours.
\[\Sigma \] total network packets transferred.
\[\Sigma_{Up} \] Average of uplink packet payload during inactive (bytes).
\[\Sigma_{Down} \] Average of downlink packet payload during inactive (bytes).
\[\Sigma_{Avg} \] Average Packet payload (bytes).
\[U \] user wise total network wakeups during inactive.
\[T \] % of data transferred during inactive.
\[% \] user wise mean of Screen Off duration in hours.
\[% \] user wise total network wakeups during inactive.
\[% \] % of data transferred during inactive.

C. Analysis of Network Traffic

This section investigates the statistics of data transfer during Screen_Off (Table-II). The average packet payload of the user is 391.08 bytes. In that, average uplink packet payload is 57.82 bytes and downlink packet payload in Screen_Off is 258.4 bytes. This data discloses thousands of minimum payload packets were transferred during the inactive mode. The users U1, U3, U5, U11, U14, U33, U45, and U48 registered their low packet uplink average of 31, 32, 35, 37, 39 and 30 bytes respectively. The inactive mode network events are triggered by Always_On apps. The individual user wise wakeups are listed in Table-II and the highest wakeups leads

![User wise network packet payload](image-url)
highest packet transmission in the Screen_Off. The trace tells the user U10 generates highest number of network wakeups in 30 days i.e 199152 wakeups, average of 6638 wakeups per day.

D. Energy Consumption Measurement

The dataset collected in two phases that is “without PSEO” and “With PSEO” (Fig 12) each of these phase data collected for 15 days from all users. The “without PSEO” means the user use their phone as it is but “with PSEO” means the mobile phone with PSEO app and set the basic time slot for PS Cycle. This Cycle time slot will be changed based on the RSRQ variations. According to the dataset the user U4 and U8 secure the highest network energy consumer that is they consume 1994 mAh and 1984 mAh respectively. Among the 50 users the U15 and U39 consume highest network energy in inactive state that is 803.25 mAh and 846 mAh respectively. After the implementation of PSEO the energy consumption of user U15 and U39 is 159.17 mAh and 166.10 mAh respectively. This energy savings directly depends on number of PS cycle and total unlock counts. The PS Cycle of U15 and U39 is 494 and 550 times respectively (Table-III).

Mechanism of PSEO reduced maximum 91.25% of network energy in Screen_Off for user U4. The U4 consume 478.64 mAh of network energy during Screen_Off before the implementation of PSEO but after the PSEO implementation the user U4 consumes 41.77 mAh (91.25%) only (Fig 13). It saves the overall energy of smartphone to 14.56% because the user actively uses mobile phone for 5.82 hrs averagely and he unlocks the screen often, so that, the user has 398 PS Cycle only and he is in moderated RSRQ variations.

Fig 12. Basic Setting of PS Cycle time slot of PSEO

User	Without PSEO	With PSEO							
	Δa	Δb	Δc	Δd	Δe	Δf	Δg	Δh	ΔEnergy
U1	1252	41%	513.32	512	863.88	129.13	384.19	74.84	9.61
U2	1841	38%	699.58	528	1362.34	151.89	547.69	78.29	18.26
U3	1317	38%	500.46	584	974.58	100.12	400.34	79.99	12.52
U4	1994	24%	478.44	398	1658.72	41.77	436.67	91.27	14.56
U5	1541	30%	462.3	524	1248.21	57.84	404.46	87.49	9.99
U6	1506	36%	542.16	548	1144.56	100.12	442.04	81.53	13.71
U7	1548	32%	495.36	465	1222.92	74.03	421.33	85.06	13.6
U8	1984	33%	654.72	674	1527.68	120.59	534.13	81.58	17.81
U9	1567	41%	642.47	485	1096.9	162.74	479.73	74.67	14.54
U10	1710	35%	598.5	495	1214.1	143.57	644.08	80.18	29.28
U11	1343	34%	456.62	686	993.82	88.72	367.90	80.57	11.15
U12	1310	41%	537.1	600	890.8	141.87	395.23	73.59	12.36
U13	1706	43%	733.58	632	1108.9	126.75	606.83	82.72	28.23
U14	1926	41%	789.66	611	1367.46	199.00	590.66	74.80	23.63
U15	1785	45%	803.25	494	1142.4	159.17	644.08	80.18	29.28
U16	1668	41%	683.88	493	1100.88	164.52	519.36	75.94	20.78
U17	1223	37%	452.51	535	880.56	96.70	355.81	78.63	16.95
-----	------	-----	--------	-----	--------	-------	--------	-------	-------
U18	1342	43%	577.06	555	858.88	177.74	399.32	69.20	19.02
U19	1674	38%	636.12	605	1222.02	141.75	494.37	77.72	12.06
U20	1637	37%	605.69	466	1211.38	127.48	478.21	78.95	11.67
U21	1911	32%	611.52	533	1433.25	122.88	488.64	79.91	16.29
U22	1227	37%	453.99	569	907.98	88.04	365.95	80.61	10.46
U23	1312	44%	577.28	529	813.44	189.37	387.91	67.20	19.4
U24	1907	39%	743.73	547	1373.04	178.24	565.49	76.03	26.93
U25	1362	41%	558.42	531	898.92	159.86	398.56	71.37	9.73
U26	1845	36%	664.2	608	1365.3	142.69	521.51	78.52	17.39
U27	1283	35%	449.05	564	923.76	95.73	353.32	78.68	10.71
U28	1748	31%	541.88	596	1328.48	100.05	441.83	81.54	11.05
U29	1721	35%	602.35	620	1307.96	114.56	487.79	80.98	15.25
U30	1226	39%	478.14	618	821.42	127.79	350.35	73.27	9.74
U31	1426	33%	470.58	605	1040.98	97.06	373.52	79.37	17.79
U32	1419	44%	624.36	465	908.16	114.77	509.59	81.62	16.99
U33	1264	44%	556.16	588	783.68	181.34	374.82	67.39	11.72
U34	1850	43%	795.5	571	1221	164.47	631.03	79.32	19.72
U35	1869	32%	598.08	531	1439.13	107.56	490.52	82.02	24.53
U36	1697	31%	526.07	581	1374.57	69.95	456.12	86.70	13.83
U37	1862	43%	800.66	524	1173.06	166.24	634.42	79.24	22.66
U38	1275	32%	408	555	1007.25	55.68	352.32	86.35	8.6
U39	1880	45%	846	550	1222	166.10	679.90	80.37	19.43
U40	1896	30%	568.8	630	1535.76	78.07	490.73	86.27	16.36
U41	1000	43%	430	567	680	107.60	322.40	74.98	16.12
U42	1919	36%	690.84	520	1439.25	142.71	548.13	79.34	27.41
U43	1329	42%	558.18	540	850.56	120.94	437.24	78.33	16.82
U44	1596	38%	606.48	571	1149.12	139.81	466.67	76.95	11.39
U45	1691	44%	744.04	574	1048.42	112.74	631.30	84.85	31.57
U46	1811	30%	543.3	600	1394.47	94.96	448.34	82.52	14.47
U47	1507	41%	617.87	450	1054.9	155.36	462.51	74.86	11.29
U48	1454	43%	625.22	585	959.64	182.57	442.65	70.80	10.8
U49	1282	41%	525.62	594	846.12	148.71	376.91	71.71	12.16
U50	1510	41%	619.1	555	1072.1	149.54	469.56	75.85	15.66

Δ Total Avg Network Energy consumption per charging (mAh).
Δ% % of network energy consumption in inactive without PSEO.
Δ Network Energy consumption in inactive without PSEO (mAh).
Δ Total PS Cycle Occurred.
Δ Total Avg Network Energy consumption per charging (mAh).
Δ Network Energy Consumption in inactive mode.
Energy Efficient Algorithm for High Speed Packet Data Transfer on Smartphone Environment

\[\Delta^E \] Network Energy gain in inactive mode (mAh).
\[\Delta^V \] % of network energy gain in inactive Compare % with without PSEO value (mAh).
\[\Delta^{Energy} \] % of overall energy saved.

![Graph showing Energy Consumption without PSEO vs PSEO optimization](image)

Fig 13. Comparison of “without PSEO” and “with PSEO”

Finally, the PSEO reduce the energy consumption of smartphone in inactive mode is 28.88%, 78.60% and 16.20% of network energy, Screen_Off energy and overall smartphone energy respectively. This model does not affecting QoS because it optimizes only on Screen_Off network transfer and 99% of the users tell PSEO is comfortable and only 2 users feel it was inconvenience.

VII. CONCLUSION

Modern gadgets specifically smartphone detain day-to-day activities and it requires consistent energy constantly every day. This research focuses on the energy loss of Smartphone and proposed a contemporary architecture to save energy. This paper proposed a generic model of PSEO to attenuate the energy loss on UE throughout Screen_OFF mode periodically. The model recommends data On/Off period is ±1, 29 min respectively as a result of Data_On duration is variant depends on RSRQ. The findings of the research is

- A typical user actively spends 2.54 hrs/day of their time with the smartphone.
- Averagely 38% of network energy consumed during the Screen_Off state.
- Averagely 78881 wakeups initiated by network Apps during the Screen_Off.
- The Average uplink packet size is 57.82 bytes during the inactive mode.
- If the RSRQ is high, the network latency is reduced and when the RSRQ is low the latency became high.

Apart from the above result, the PSEO save the energy up to 28.88%, 78.60% and 16.20% on average of total network energy, Screen_Off energy, and overall smartphone energy respectively and it saves averagely 466.35 mAh per user every day (assume the users drain their battery completely every day)

REFERENCE

1. Sanee Rosen et al (2015) “Revisiting Network Energy Efficiency of Mobile Apps: Performance in the Wild”, Proceedings of the 2015 Internet Measurement Conference, pp. 339-345, Tokyo, Japan.
2. Feng Qian and junxian Huang et al (2012) “Screen-Off Traffic Characterization and Optimization”. In Proceedings of the 2012 ACM Internet Measurement Conference, IMC ’12, pages 357–364. ACM.
3. Qualcomm (2012) Technical Document, “Managing Background Data Traffic in Mobile Devices”, Jan.
4. Feng Qian et al (2010) “Characterizing Radio Resource Allocation for 3G Networks”, pp. 137-150, IMC’10.
5. Pokka and Barbuzzi et al (2009) “Theory and Practice of RRC State Transitions in UMTS Networks”, 5th IEEE Broadband Wireless Access Workshop, pp 1-6, 7th of July.
6. Yuheng Huang et al (2015) “Adaptive Fast Dormancy for Energy Efficient Wireless Packet Data Commu-niations”, IEEE ICC 2013 - Wireless Networking Symposium.
7. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani (2009), “Energy Consumption in Mobile Phones: A Measurement Study and Implications for Network Applications”. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, pp. 280-293, ACM.
8. Moo-Ryong Ra et al (2010) “Energy-Delay Tradeoffs in Smartphone Applications”, MobiSys’10.
9. Yeseong Kim et al (2016) “A Personalized Network Activity-Aware Approach to Reducing Radio Energy Consumption of Smartphones”, IEEE Transactions on Mobile Computing, Vol. 15, No. 3, pp. 544 – 557.
10. Guangtao Xue et al(2015) “SmartCut: Mitigating 3G Radio Tail Effect on Smartphones”, IEEE Transa-cions on Mobile Computing, Vol. 14, No. 1. pp 169-179.
11. Jacques Bou Abdo et al (2014) “Application-Aware Fast Dormancy in LTE”, IEEE 28th International Conference on Advanced Information Networking and Applications.
12. Bo Zhao et al (2011) “Reducing the Delay and Power Consumption of Web Browsing on Smartphones in 3G networks”, 31st International Conference on Distributed Computing Systems.
13. Bo Zhao et al (2015) “Energy-Aware Web Browsing in 3G Based Smartphones”, IEEE Transactions on Parallel and Distributed Systems 26(3):761-774.
14. Ya-Ju Yu et al (2015) “Energy-Adaptive Downlink Resource Allocation in Wireless Cellular Systems”, IEEE Transactions on Mobile Computing, Volume: 14, Issue: 9.
15. Selim Ickin et al (2013), “QoE-Based Energy Reduction by Controlling the 3G Cellular Data Traffic on the Smartphone”, 22nd ITC Specialist Seminar on Energy Efficient and Green Networking (SSEEGN).
16. Xiaomeng Chen et al (2015), “Smartphone Background Activities in the Wild: Origin, Energy Drain, and Optimization”, MobiCom’15, Sep 2015.
17. Abhijnan Chakraborty et al (2013) “Coordinating Cellular
Background Transfers using LoadSense', MobiCom’13.
18. Nishkam Ravi et al (2008) “Context-aware Battery Management for Mobile Phones”, Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom).
19. Ning Ding et al (2013) “Characterizing and Modeling the Impact of Wireless Signal Strength on Smartphone Battery Drain”, SIGMETRICS’13.
20. Dr.M.Sumathi, S.Pandikumar (2017) “My Research Begins with 3G Networks”, Naplin Publication, Madurai.
21. “System impact of poor proprietary fast dormancy” (2009) 3GPP discussion and decision notes RP-090941.
22. P. P. C. Lee, T. Bu, and T. Woo (2007) “On the Detection of Signaling DoS Attacks on 3G Wireless Networks”.
23. “UE Fast Dormancy behavior” (2007) 3GPP discussion and decision notes R2-075251, 2007.
24. “Configuration of fast dormancy” in release 8 (2009), 3GPP discussion and decision notes RP-090960.
25. M. Chuah, et al (2002) “Impacts of Inactivity Timer Values on UMTS System Capacity”. In Wireless Communications and Networking Conference.
26. J. Huang, et al (2012) “A Close Examination of Performance and Power Characteristics of 4G LTE Networks”. In MobiSys.
27. C.-C. Lee, J.-H. Yeh, and J.-C. Chen (2004) “Impact of inactivity timer on energy consumption in WCDMA and CDMA2000”. In the Third Annual Wireless Telecommunication Symposium (WTS).
28. F. Qian, et al (2012) “Periodic Transfers in Mobile Applications: Network-wide Origin, Impact, and Optimization”. In World Wide Web.
29. F. Qian, et al (2010) TOP: “Tail Optimization Protocol for Cellular Radio Resource Allocation”. In Proc. ICNP.
30. M. Ra, J. Paek, et al (2010). “Energy-delay tradeoffs in smartphone applications”. In MobiSys.
31. Y. Wang et al (2009) “A framework of energy efficient mobile sensing for automatic user state recognition”. In MobiSys.
32. Xufeng Xie et al (2017) “Accelerating Mobile Web Loading Using Cellular Link Information”, MobiSys’17.
33. Aaron Schulman et al (2010) “Bartender: A Practical Approach to Energy-aware Cellular Data Scheduling”, MobiCom’10.
34. Le Wang et al (2011) “Power consumption analysis of constant bit rate data transmission over 3G mobile wireless networks”, 11th International Conference on ITS Telecommunications.
35. C.Johnson (2008) “Radio Access Network for UMTS: Principle and Practice”. John Willey & Sons, 2008.
36. S.Pandikumar, G.Sujatha, and M.Sumathi (2018), “PS Energy Optimization: A Proposed Model of Adaptive Radio Connection Management”, International Journal of Management, Technology And Engineering, Vol. 8, Issue XII, pp. 1506-1519.

AUTHORS PROFILE

Dr.S.Pandikumar., MCA., M.Phil., Ph.D. is working as an Assistant Professor in Department of Computer Science, The American College, Madurai, India. He has 11 years of teaching experience and successfully published 12 books in various topics. He published 25 research papers in various international journals and presented 48 papers in various international and national conferences. He received best teacher award twice in his service. His area of research is Cellular Networks, Green Computing, IoT.

Dr.M.Sumathi., M.Sc.,Ph.D is an Associate Professor & Head in the Department of Computer Science, Sri Meenakshi Government Arts College for Women, Madurai, Tamil Nadu, India. Her research interest includes Image Processing, Pattern Recognition, Soft Computing, Biometrics, Cloud Computing and Data Mining. The author has 50 international and 5 national publications. She has 25 years of teaching experience. As an educationist she has conceptualized and implemented a new curriculum with layered learning, hands-on work and research orientation as a part of undergraduate education.