Spectral Index of the Diffuse Radio Background between 50-100 MHz

Tom Mozdzen, Nivedita Mahesh*, Raul Monsalve, Alan Rogers, Judd Bowman

MNRAS, Issue-4, Vol-483, March 2019
EDGES Instrument

- **Location:** Murchison Radio Observatory (-26.7° deg)
- **System:** Blade Dipole zenith pointing, Ground plane and temperature controlled receiver
- **Band:** Two low-band instruments (50-100MHz)
- **Beamwidth:** @ 75MHz -
 - 71.6 deg (parallel)
 - 108 deg (perp)
Data Collection

- **Data collection:**
 - 244 nights/348 days
 - Different configurations
 - Only night time data (minimize solar and ionospheric disturbances)

Instrument configuration	Year	Day Numbers	Span
Lowband 1 NS	2016	258 to 366	109
Lowband 1 NS	2017	001 to 017	17
Lowband 2 NS	2017	082 to 142	61
Lowband 2 EW	2017	155 to 171	17
Lowband 2 EW, no shield	2017	181 to 239	58
Data Processing

● **Absolute Calibration:**
 ○ Coefficients estimated from the standard loads in the lab & S11 from the field

● **Beam correction:**
 ○ Scaled Haslam sky map
 ○ Simulated beam solution
 ■ FEKO model
 ■ Dielectric Ground

● **Time Binning:** Raw resolution ⇒ 20 min averages

● **Freq Binning:** Raw resolution ⇒ 400KHz (125 bins)
The calibrated data is modelled as a power law. (primary components are synchrotron and free-free emission)

Worked with two 2 and 3 term fits

\[T_{\text{ant}} = T_{75} \left(\frac{\nu}{\nu_{75}} \right)^\beta + T_{\text{CMB}}, \]

\[T_{\text{ant}} = T_{75} \left(\frac{\nu}{\nu_{75}} \right)^\beta + \gamma \ln\left(\frac{\nu}{\nu_{75}} \right) + T_{\text{CMB}}, \]

- \(\beta \) - Spectra index
- \(\gamma \) - Curvature to the spectral index
- \(T_{\text{CMB}} \) - Background temperature (2.723K)
The fitting was carried out for every LST bin each day.

- **Estimated Parameters:** β & T_{75}
- **Range:** -2.46 to -2.60
- **Galaxy up:** -2.46
- **Galaxy down:** -2.58
- **Stable over time**
Results - Two parameter Fitting

Averaging the results:

- Averaged the parameters over days
- Added uncertainty
- Results from all configurations are within the systematic uncertainties
Results - 2 & 3 parameter fitting

2 Parameters

3 Parameters

2 Parameters
1. **Ground Loss:**
 a. Finite ground plane ⇒ part of the beam is going to look into the ground
 b. Taking the higher limit of 0.5 per constant loss sin
 \[\Delta \beta = 0.002 \]

2. **Antenna & Balun Loss:**
 a. Balun that connects
 b. Antenna panel resistances
 \[\Delta \beta = 0.005 \]
 \[\Delta \beta = 0.001 \]

3. **Beam Chromaticity:**
 a. Calculated beta from two models finite ground and infinite
 b. Effect of uncertainty in the spatial structure of foreground at 75MHz
 i. Used different scaling indices: -2.65 to -2.45
 \[\Delta \beta = 0.004 \]
 \[\Delta \beta = 0.01 \]
 \[\sigma_\beta = 0.006 + \text{data scatter} \]

Adding all the errors in quadrature:
Results - Ionosphere Impact

\[T_{sky} = T_{75} \left(\frac{v}{v_{75}} \right)^{\beta} \times \left[e^{-\tau \left(\frac{v}{v_{75}} \right)^{-2}} \right] + T_e \left[1 - e^{-\tau \left(\frac{v}{v_{75}} \right)^{-2}} \right] + T_{CMB}, \]

Absorption; \(\tau = 0.005 \)

- Correcting for the ionosphere made \(\beta \) more negative for both 2 & 3 parameter fits

Fits	Points	No Ionosphere	With Ionosphere
2 - Param	Galaxy Down	-2.58	-2.594
3 - param	Galaxy Down	-2.60	-2.61
Results - Standard sky models

- **Comparison**: Spectral index results to simulated observations.
 - **Use**: EDGES beam (NS orientation) and sky maps:
 - de Oliveira-Costa GSM
 - Improved GSM
 - GMOSS
 - Haslam 408MHz & Guzman 45MHz

\[
T_{\text{ant}}(\nu) = \int_{\Omega} T'_{\text{sky-model}}(\nu, \Omega) B(\nu_{75}, \Omega)d\Omega + T_{\text{CMB}},
\]
Discussions

- Used EDGES lowband data (50 - 100 MHz)
- Instrument calibration, including corrections for ground loss, antenna losses, and beam chromaticity - Results stable over time.
- Derived the β
 - two-parameter and
 - three-parameter equations
- Three-parameter β are more negative than two-parameter by approximately 0.02.
- Looked at effects of ionosphere
- Compared results to values from sky models.

FUTURE WORK:

- Combine Lowband, Midband & Highband data and estimate β
EXTRA SLIDES
Results - Extended Model

- To investigate the possibility of bias added two more terms:

\[T_{\text{ant}} = T_{75} \left(\frac{\nu}{\nu_{75}} \right)^{\beta + \gamma \ln\left(\frac{\nu}{\nu_{75}} \right)} + a_4 \left[\ln\left(\frac{\nu}{\nu_{75}} \right) \right]^2 + a_5 \left[\ln\left(\frac{\nu}{\nu_{75}} \right) \right]^3 + T_{\text{CMB}}, \]

- Minimal change when compared to 3 term fits

Terms	RMS(K)
2	2.7
3	0.85
5	0.66

Day 264

LST = 3.83 h
Day 264

Residuals (K)

LST = 19.83 h

Beam Factor

Frequency (MHz)

NS

EW
Parameter	LST (h)	No ionospheric corrections (fitting terms)	With ionospheric corrections (fitting terms)	Exp–log (terms)		
		2	3	2	3	5
T_{75} (K)	0	1806	1807	1815	1816	1807
	6	1673	1673	1681	1682	1673
	12	2566	2568	2579	2580	2568
	18	4749	4752	4773	4776	4751
β	0	-2.576	-2.592	-2.590	-2.603	-2.591
	6	-2.571	-2.585	-2.585	-2.595	-2.585
	12	-2.539	-2.568	-2.553	-2.578	-2.565
	18	-2.463	-2.489	-2.477	-2.499	-2.489
γ	0	-	-0.055	-	-0.042	-0.068
	6	-	-0.047	-	-0.034	-0.041
	12	-	-0.099	-	-0.086	-0.090
	18	-	-0.089	-	-0.076	-0.079
a_4	0	-	-	-	-	-0.048
	6	-	-	-	-	-0.004
	12	-	-	-	-	-0.053
	18	-	-	-	-	0.018
a_5	0	-	-	-	-	-0.022
	6	-	-	-	-	-0.031
	12	-	-	-	-	-0.158
	18	-	-	-	-	-0.025
RMS	0	3.7	1.2	2.9	1.2	1.0
Resid. (K)	6	2.9	0.9	2.2	0.9	0.9
	12	9.0	1.6	7.9	1.6	1.4
	18	15	3.6	13	3.6	2.8
Results - Three parameter fitting

- β, T_{75} & γ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.
Results - Three parameter fitting

- β, T_{75} & γ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 - 12h mainly because less data there.
Results - Three parameter fitting

- β, T_{75} & γ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.
Results - Three parameter fitting

- β, T_{75}, and γ
- Stable over time (within each instrument)
- Averaged the parameters over days
- Added uncertainty
- More between 8 -12h mainly because less data there.
Results - Two parameter Fitting

The fitting was carried out for every LST bin each day.

- Estimated Parameters: β & T_{75}
- Range: 1000K to 5000K
- Galaxy up: 4770K
- Galaxy down: 1800K
- Stable over time (within each instrument)
The fitting was carried out for every time bin each day.

- **Estimated Parameters:** β & T_{75}
- **Range:** 2K to 15K
- **Galaxy up:** 17K
- **Galaxy down:** 3K
- **Stable over time (within each instrument)**
Introduction

Motivation

Spectral index useful for:

- To carry out basic ISM science
- To 21cm community for foreground removal

Our Approach

- EDGES can help estimate the diffuse radio structure
- It has a wide beam that averages the sky flux
- We have already estimated and reported the spectral index for 100-200 MHz
Results - Standard sky models

- **The GH model:**
 - For 2-param: good agreement at low LST values, around GC spectral index becomes more negative by up to 0.04
 - For 3-param shows more consistent agreement with measurements of spectral index across all LST values, differing by only up to ±0.02 across all LST.
- **The improved GSM** model more negative than the measured values
- **The GMOSS model** yields more positive predictions of the spectral index. (up to +0.10).
- We also include the spectral index as reported in the high-band paper (Mozdzen et al. 2017).
- The low-band spectral index has become less negative by approximately 0.02–0.04 as compared to the high-band results.