Microbiota of Aquatic and Terrestrial Habitats of the Dzou Cave

S E Mazina1,2,*, A Yu Titov3, E V Kozlova2 and A V Popkova2

1Department of Radiochemistry, Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, GSP-1, Moscow, 119991 Russian Federation
2Department of Ecological Monitoring and Forecasting, Faculty of Ecology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198 Russian Federation
3Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701 Russian Federation

*Email: conophytum@mail.ru

Abstract. Microbiota of the deep caves has been poorly explored. The most relevant issues of the caves biodiversity are the sources of the microorganisms’ propagules and characteristics of autochthonous microbiota. The investigation presents the assessment of microbiota biodiversity from the Dzou cave (Western Caucasus). The aim of the study was to identify the species composition of micromycetes and phototrophs of the cave and to assess the sanitary-indicative microbiota in different habitats depending on the anthropogenic load. Microscopic and cultural methods were used to identify the microbiota from the entrance zone of the cave, as well as from aquatic and terrestrial habitats of the unlit deepest parts of the cave. The analysis of the phototrophic communities composition developed in the entrance area of the cave was carried out, 22 species were identified, among which cyanobacteria prevailed. The biodiversity of micromycetes was determined: 48 species were identified in the entrance zone, 60 species – in the dark zone of the cave. Comparison of the species composition of the dark and illuminated zones of the cave showed that in addition to species \textit{Humicola grisea}, \textit{Hemicarpenteles ornatus} and \textit{Alternaria sp.}, all species of entrance area are found in the unlit part of the cave. Representatives of genus \textit{Penicillium} and \textit{Aspergillus} were dominants. Revealed increase of the micromycetes and bacteria number was driving by increase in the level of anthropogenic load, especially in places of tourist camps. It was noted that the propagules of phototrophs are present in the cave substrates even at great depth, excluding some water samples, which may indicate the periodic drift of propagules or anthropogenic factor. The largest number of micromycetes species was detected in the clay deposits and rock samples. The least number of species was isolated from the water streams of the cave. A large number of micromycetes propagules was found in substrates near tourist camps, but their biodiversity was lower than in cave soils.

1. Introduction
The popularity of extreme leisure activities leads to an increased interest in speleotourism and speleology. As a result, the anthropogenic load on both mountain ecosystems and subterranean karst ecosystems is intensifying, while there are practically no studies to assess the stability of underground ecosystems and the permissible anthropogenic load. Considering the role of karst massifs in
hydrological processes, there is a question of preserving and maintaining them in the optimal functional mode. In some cases, when subterranean cavities have been subjected to significant anthropogenic impact, there is a need for special measures for the unique cave ecosystems rehabilitation [1]. The accumulation of waste, as well as the excess of values of sanitary-indicative microbiota in hard-to-reach caves, were noted [2,3].

The entrance areas of the caves can be considered as ecotones and can serve as refugia. Characterized by more stable climatic conditions, compared to the surface, the entrance areas of the caves are illuminated and colonized by photosynthetic species. Deep entrance wells of caves with prevalence in communities of cyanobacteria and algae represent special habitats. As rule, phototrophs in the form of visual fouling in the unlit (dark) zone of caves are absent. However, lampenflora is formed in excursion caves equipped with stationary lighting. This is an indication of the species transport from the surface to the cave [4,5]. Bacteria and micromycetes represent heterotrophic component in the communities of phototrophs of both the entrance zone and the lampenflora [6-8]. The largest number of microbiota studies was conducted in caves equipped for sightseeing purposes, caves with unique paleolithic paintings, as well as caves with natural monuments status [9-12]. Hard-to-reach caves are least studied, although in recent years there have been several works devoted to the study of such objects [13,14].

One of the major cave systems is the Dzou cave, located on the Arabica massif (Caucasus). The depth of the cavity is 1090 meters at the moment. The cave was discovered in 1983 by a team of Moscow speleologists led by E. Starodubov. Since 1992 the cave has been actively explored by various cave commands. During this time, passages were completed and a topographic map of 4.7 km of cave passages was made. However, biodiversity research was not performed in the Dzou cave.

The aim of the present study was to identify the species composition of micromycetes and phototrophs and the assessment of sanitary-indicative microbiota in various habitats of the Dzou cave, depending on the anthropogenic load.

2. Materials and Methods

The Dzou cave is located in the Northern part of the Arabica massif, composed of upper Jurassic and lower Cretaceous limestone [15]. The height of the entrance is 2240 meters above sea level (N43° 26.607' E40° 22.894').

Aquatic habitats appear in the cave at a depth of about 330 m. The constant water stream with flow rate of 20 l/sec is observed from a depth of 570 m. According to observations of speleologists, conducted during cave visits, the low-water flow rate can reach 300-500 l/sec at a depth of 1020 m [16].

The air temperature in the cave varies at different depths. According to Lavrov [16] the summer air temperature reached 3.3° C at a depth of 700 meters and 4.0° C at a depth of 1000 m (hall of Abkhazia), 3.9° C at a depth of 1020 m near the main water stream. The water temperature in the main stream during the low-water period was unstable and varied from 3.1° C in the stream at a depth of 700 m to 4.0° C in the river at a depth of 1020 m.

In August 2016, samples of cave substrates (clay sediments and rocks) and water samples were taken from different parts of the cave, as well as samples of phototrophic communities from the entrance well, which were re-selected in June 2017. Substrate samples were collected in the area of underground base camps of tourists, areas remote from visits, more or less dry vaults of the cave and along the underground river. During the study, 28 samples were taken from the entrance zone of the cave and 34 samples from the dark zone of the cave. Sampling sites are present on the cave plan (figure 1).

Samples of communities, cave substrates and water were placed in sterile vials and analyzed in a laboratory. At the sampling sites, the temperature was measured by electronic devices with an error of 1%. Acidity of water was determined using the pH meter "Expert-001", sediments were measured in aqueous extract according to the standard procedure [17].
Examined of phototrophs from fouling communities was carried out with use of methods of light microscopy (Leica DMLS (Germany) and Biolam MBS-9 (Russia) at magnification of 1200-1500). Gromov medium №6, Bristol medium and extract from substrates (similar to soil extraction) were used for algae and cyanobacteria cultivation. The liquid and agarose medium were applied. The exposure was carried out at a temperature of 11 and 25° C and illumination of 30-40 µmol×m⁻²×s⁻¹. The method of glass fouling was carried out at the primary cultivation. For a more complete identification of the species composition of phototrophs from the illuminated zone, medium samples from communities were cultured in Gromov No. 6 liquid medium. In addition, in order to identify the propagules of photosynthetic organisms brought into the caves by water streams, the specimens of substrates and water from the unlit zone were cultured in Gromov No. 6 liquid medium and Bristol medium. Preliminary the water was filtered with use of nuclear filters, and in consequence the filtrate was introduced in a culture medium [18]. The cultivation time was 11 months. Identification of algae and cyanobacteria was performed with use of the following keys [19-26]. Systematics of cyanobacteria and algae is given by [27]. Mosses were determined by Ignatov, Ignatova, [28], lichens by Andreev [29]. The abundance of phototrophs was evaluated using 5-point scale [30].

Dzou Cave

Western Caucasus, Arabica

until 700 m: by V. Kiselev
after 700 m to 1077 m: by D. Provalov,
O. Klimchuk

Instruments: Suunto compass, clinometer

location of sampling sites

Figure 1. Plan of the Dzou Cave showing locations of sampling sites.
The total microbial number in water and substrates was revealed by the method of staining with DAPI dye, a luminescent microscope Zeiss Axiostar plus was used to observe the cells [18]. Bacteria of the *Escherichia coli* group were identified by membrane filters method applying the Endo medium at 37°C. An oxidase test and Gram stain was performed for lactose-positive colonies [18].

Clostridium perfringens bacteria were determined on Wilson-Blair medium at 43°C [18]. The number of microorganisms was expressed in colony-forming units by the weight of dry substrate (clay deposits) [18].

Substrates samples in the first dilution were used to identify the micromycetes. In addition, the method of fouling was used [18]. Chapek and Chapek-Dox (concentration of sucrose 0.3%) mediums and potato glucose agar, soil extract and starvation medium [18] were used. Cultivation of micromycetes was carried out at a temperature of 4, 12 and 24°C, accounting for grown colonies and isolation of pure cultures was carried out every week at low temperature. The cultivation time was at least 4 weeks (maximum 12 weeks) [5]. Samples were stored and grown in the dark. Identification of micromycetes was carried out using the following keys [31-37]. Systematics of micromycetes and lichens is given using the database [38]. Statistical processing was performed in the program Excel.

3. Results and Discussion

3.1. Entrance Area of the Cave

In the illuminated entrance zone, the flora included representatives of Bryophyta – 2 species (10% of all reported species, 1 class, 1 order, 2 families, 2 genera), Cyanobacteria – 12 species (57%, 1 class, 4 orders, 8 families, 10 genera), Bacillariophyta – 4 species (19%, 1 class, 4 orders, 3 families, 4 genera), Chlorophyta – 3 species (14%, 1 class, 2 orders, 2 families, 3 genera). Representatives of Magnoliophyta and Pteridophyta departments were not found. The analysis of the species abundance did not reveal any dominants (tables 1 and 2).

Table 1. Photosynthetic species of the entrance area of the Dzou cave.

Species	The score of abundance	The species found in the samples, depth, m aquatic habitats	terrestrial habitats
Empire Prokaryota			
Phylum Cyanobacteria			
Order Nostocales			
Nostoc commune Vaucher ex Bornet & Flahault, 1888	3		
Nostoc microsopicum Carmichael ex Bornet & Flahault, 1886	3	300	
Trichormus variabilis (Kützing ex Bornet & Flahault) Komárek & Anagnostidis, 1989	2		
Scytonema sp.	2		
Scytonema ocellatum Lyngbye ex Bornet & Flahault, 1886	2		
Tolypothrix tenuis Kützing ex Bornet & Flahault, 1886	2		
Order Synechococcales			
Leptolyngbya tenuis (Gomont) Anagnostidis & Komárek, 1988	2		
Order Chroococcales			
Aphanothece saxicola Nägeli, 1849

Gloeocapsa rupestris (Lyngbye) Bornet in Wittrock & Nordstedt, 1880

Order Oscillatoriales

Cyanothecae aeruginosa (Nägeli) Komárek, 1976

Kamptothecae chlorinum (Kützing ex Gomont) Strunecký, Komárek & J.Smarda, 2014

Oscillatoria tenuis C.Agardh ex Gomont, 1892

Table 2. Photosynthetic species of the entrance area of the Dzou cave.

Species	The score of abundance	The species found in the samples, depth
		aquatic habitats
		terrestrial habitats

Empire Eukaryota

Phylum Bacillariophyta

Order Naviculales

Navicula sp. 2 - 340

Humidophila contenta (Grunow) Lowe, Kociolek, J.R.Johansen, Van de Vijver, Lange-Bertalot & Kopalová, 2014 3 900-1000 inflow «Chuma» -

Luticola nivalis (Ehrenberg) D.G.Mann in Round, R.M.Crawford & D.G.Mann, 1990 1 - -

Order Mastogloiales

Achnanthes sp. 1 - -

Phylum Chlorophyta

Order Chlorellales

Chlorella vulgaris Beyerinck [Beijerinck], 1890 3 1000 inflow, 1040, lake 170, 330-340, 430, 600, 1000, 1077

Order Prasiolales

Desmococcus olivaceus (Persoon ex Acharius) J.R.Laundon, 1985 2 600 -

Stichococcus bacillaris Nägeli, 1849 2 - -

Bryophyta

Order Hypnales

Stereodon pallescens (Hedw.) Mitt, 1859 2 - -

Sciurohypnum starkei (Brid.) Ignatov et Huttunen, 2003 2 - -

Mosses’ Protonema 2 - 170, 330-340, 430, 600, 1000, 1077

Phylum Lichinomycetes
In the phototrophic biofouling zone, 57 species of microscopic fungi were isolated from the substrates, including one lichen, *Lichinella* sp. Zygomycota included 9 species from 4 genera, which accounted for 16% of the total species diversity of micromycetes in the illuminated zone. Ascomycota included 48 species from 10 genera, which accounted for 84% of the total number of species. The richest genera were *Penicillium* with 19 species accounted, including associated teleomorphs (33% of the total composition of micromycetes input zone), followed by *Aspergillus* with 13 species (23%), *Cladosporium* and *Fusarium* with 4 species for each (7%), *Mucor, Mortierella* and *Trichoderma* with 3 species for each (5%) (table 3).

The predominance of Cyanobacteria revealed in the composition of phototrophic communities in the entrance zone in summer is typical for the conditions of lower air and substrates humidity (Popović et al., 2017). Differences between species composition in the various years were not found.

Table 3. Micromycetes of the Dzou cave.

Species	Cave entrance well	Camps of tourists	aquatic habitats	terrestrial habitats
Mucoromycota				
Absidia coerulea Bainier, 1889	1	1	-	1
Mortierella elongata Linnem., 1941	1	-	-	1
Mortierella hyalina (Harz) W. Gams, 1970	1	1	-	1
Mortierella minutissima Tiegh., 1878	1	-	-	1
Mucor circinelloides Tiegh., 1875	1	1	-	1
Mucor circinelloides f. griseocyamus (Hagem) Schipper, 1970	1	1	-	1
Mucor hiemalis Wehmer, 1903	1	1	1	1
Rhizopus stolonifer (Ehrenb.) Vuill., 1902	1	1	-	1
Umbelopsis isabellina (Oudem.) W. Gams, 2003	1	1	-	1
Ascomycota				
Alternaria sp.	-	-	-	1
Alternaria alternata (Fr.) Keissl., 1912	1	1	1	1
Aspergillus candidus Link, 1809	1	1	-	1
Aspergillus clavatus Desm., 1834	1	1	-	1
Aspergillus flavipes (Bainier & Sartory) Thom & Church, 1926	1	1	-	1
Aspergillus fumigatus Fresen., 1863	1	1	1	1
Aspergillus nidulans (Eidam) G. Winter, 1884	1	1	1	1
Aspergillus niger Tiegh., 1867	1	1	1	1
Species	Author	Year		
--	-------------------------	------		
Aspergillus flavus var. oryzae (Ahlb.)	Kurtzman, 1986			
Aspergillus reptans	Samson & W. Gams, 1985			
Aspergillus sydowii (Bainier & Sartory)	Thom & Church, 1926			
Aspergillus sulphureus (Fresen.)	Wehmer, 1901			
Aspergillus terreus	Thom, 1918			
Aspergillus versicolor (Vuill.)	Tirab., 1908			
Aspergillus wentii	Wehmer, 1896			
Aureobasidium pullulans (de Bary) G. Arnaud	1918			
Botrytis cinerea	Pers., 1794			
Chaetomium globosum	Kunze ex Fr., 1829			
Cladosporium cladosporioides (Fresen.)	G.A. de Vries, 1952			
Cladosporium gossypicola	Pidopl. & Deniak, 1953			
Cladosporium herbarum (Pers.)	Link, 1816			
Cladosporium sphaerospermum Penz., 1882				
Fusarium culmorum (W.G. Sm.) Sacc., 1895				
Fusarium equiseti (Corda) Sacc., 1886				
Fusarium lateritium	Nees, 1817			
Fusarium oxysporum Schltl., 1824				
Hemicarpenteles ornatus (Raper, Fennell & Tresner) Arx, 1974	-			
Humicola grisea Traena, 1914				
Paecilomyces variotii	Bainier, 1907			
Penicillium adamentzii K.M. Zalessky, 1927				
Penicillium canescens Sopp, 1912				
Penicillium citrinum	Thom, 1910			
Penicillium chrysogenum	Thom, 1910			
Penicillium vulpinum (Cooke & Massee)	Seifert & Samson, 1985			
Penicillium cyanescum (Bainier & Sartory)	Biourge, 1923			
Penicillium cyclopium Westling, 1911				
Penicillium glandicola	Seifert & Samson, 1985			
Penicillium funiculosum	Thom, 1910			
Penicillium corylophilum Dierckx, 1901				
Penicillium simplicissimum	Thom, 1930			
3.2 Main Part of the Cave

During the analysis, the air temperature in the cave gradually increased from 3.3 °C at a depth of 300 m to 4.9 °C at a depth of 1000 m. The water temperature varied between 3.4-3.8 °C. The acidity of water was in the range from 7.7 to 8.3, the pH of clay sediments was 7.0–8.4 (table 4).

A total of 60 species of microscopic fungi were revealed in the dark zone of the cave. Zygomycota included 9 species from 4 genera, which accounted for 15% of the total species diversity in the dark zone of the cave. Ascomycota included 51 species from 12 genera, which accounted for 85% of the total number of species. The largest species diversity was found to be genera *Penicillium* with 19 species, including associated teleomorphs (32% of the total number of species of micromycetes dark zone of the cave), and *Aspergillus* - 13 species (22%), genus *Cladosporium*, *Mortierella* and *Fusarium* included 4 species for each (7%), *Mucor* and *Trichoderma* 3 species (5%) (table 3).

Comparison of the species composition of the dark and illuminated zones of the cave showed that in addition to species *Humicola grisea*, *Hemicarpentes ornatus* and *Alternaria sp.*, all of the species found in illuminated entrance zone were detected in deep dark part of the cave. This may be a result of introducing of fungal propagules into the cave by water and air streams [39] and also this fact may testify to the similarity of conditions in both the entrance area and the main part of the cave. It can be assumed that fungal biota of the main part of Dzou cave consists of species isolated from the surface above the cave, including the area of potential catchment, as revealed in other caves [40,41].

Representatives of genus *Alternaria*, *Aspergillus*, *Botrytis*, *Cladosporium genera* are often isolated from plant substrates, whereas genus *Humicola*, *Mucor*, *Paecilomyces*, *Penicillium*, *Rhizopus* are typical soil species [42]. It is possible that several paths of propagation of propagules are realized in the cave, both with air currents, and with particles of soil and plant debris. Powerful water streams entering the cave in the period of flood are able to transfer large masses of organic matter. This organic matter can be distributed over long distances and its stocks provides the nutrition for fungi [39].

Penicillium lanosum Westling, 1911	1	1	-	1
Penicillium multicolor Grig.-Man. & Porad., 1915	1	-	1	1
Penicillium janczewskii K.M. Zalessky, 1927	1	1	-	1
Penicillium simplicissimum (Oudem.) Thom, 1930	1	-	-	1
Penicillium purpureogenum Stoll, 1923	1	1	1	1
Penicillium roseopurpureum Dierckx, 1901	1	-	-	1
Penicillium waksmaniai K.M. Zalessky, 1927	1	-	-	1
Talaromyces luteus (Zukal) C.R. Benj., 1955	1	1	-	1

3.3.1 Analysis of the Terrestrial Habitats (Table 4)

Description	Depth, m	Place of selection	Micromycetes	Clostridium perfringens	E. coli group bacteria	Total microbial number	Air temperature	pH
Entrance well	0-18	Wall, rock	-	0	12	2x10^7	-	-
18 m	18-20	Floor, ground	35x10^3	35	25	5x10^8	-	8.2
Location	Depth (m)	Parameter	Value 1	Value 2	Value 3	Value 4		
---------------------------------------	-----------	----------------	---------	---------	---------	---------		
Bottom of the well 14 m	70-75	Floor, ground	12x10^3	4	16	3x10^8		
Old bottom well 19 m	170	Floor, ground	14x10^3	19	6	4x10^7		
Camps of tourists 300	330-340	Wall, rock	19x10^3	0	2	2x10^7		
		Floor, ground	23x10^3	3	8	5x10^7		
Bottom of the well 48 m	430	Wall, rock	12x10^3	0	6	2x10^6		
Wall	600	Wall, ground	82x10^2	0	6	8x10^5		
Camps of tourists 700	700	Wall, ground	42x10^2	0	0	4x10^7		
		Floor, ground	13x10^3	8	2	6x10^8		
Meander Chuma	900-1000	Wall, ground	12x10^3	0	0	5x10^7		
		Floor, ground	24x10^3	0	4	9x10^8		
New influx	1000	Wall, ground	3x10^2	0	0	2x10^8		
Hall of Abkhazia	1000	Wall, rock	6x10^2	0	0	2x10^6		
		Floor, ground	18x10^3	0	3	3x10^8		
Near the river under the ledge	1077	Wall, rock	13x10^3	0	5	3x10^8		
		Floor, ground	42x10^2	0	8	5x10^9		
Camps of tourists 1000	1000	Wall, rock	23x10^4	0	8	2x10^8		
		Floor, ground	41x10^2	0	8	2x10^9		
Kunlegis	1040	Wall, rock	2x10^2	0	2	8x10^3		
		Floor, ground	2x10^2	0	2	3x10^6		
Far point	1077	Floor, ground	12x10^2	0	14	5x10^6		
The greatest species diversity of micromycetes was found in the substrates of the cave. It is interesting to note that the number of species isolated from samples in different parts of the cave was the smallest for water samples, and the greatest for the cave soils, the variety of species on tourists camps was low. Thus, it can be assumed that species diversity near the tourist sites reduces due to the abundance of organic matter. It is possible that culture methods revealed stored propagules of micromycetes in the soil rather than species that actually develop in the cave environment. The isolation of micromycetes in caves is complicated by the use of a standard medium that is not adapted for the cave environment, wherefore it is difficult to assess which species in the selected sample are dominant [42].

Indirect evidence of the implementation of the water and man-made pathways of introduction can serve as detection of phototrophs *Navicula* sp., *Humidophila contenta*, *Chlorella vulgaris*, *Desmococcus olivaceus* and protonema of mosses at considerable depths, including those near underground tourist sites (table 2). Mosses are often found in caves in the form of a protonema [10,43], which requires less light to maintain its vital activity than for algae and cyanobacteria [44].

The maximum number of microorganisms was noted in entrance zone of the cave, the total number of coliform bacteria was increased there, also the clostridia and a high number of micromycetes was noted. Deeper into the cave the total microbial number in the soil and the number of coliform bacteria decreases. Clostridia was found only in areas the tourists camps. The appearance of coliform bacteria in the water flows may be due to the proximity of the surface or a decrease in the filtration capacity of rocks (bare karst, large faults through which water passes or high water pollution at the entrance run off from pastures) (table 5).

Table 5. The number of microorganisms in the aquatic habitats (in 1 liter).

Description	Depth, m	Place of selection	Total microbial number	Micromycetes	E. coli group bacteria	Air temperature°C	pH
Camps of tourists 300	330-340	Main watercourse	2x10⁶	4	0	3.3	8.0
Stream	500	Stream	2x10⁶	6	2	-	7.9
River under the ledge	570	Stream	5x10⁵	4	4	-	7.8
Affluent 600	570 (600)	Main watercourse	8x10³	2	0	3.4	8.1
Camps of tourists 700	700	Main watercourse	3x10⁷	0	0	3.8	8.1
Camps of tourists 700	700	Watercourse	5x10⁶	2	12	-	8.3
Meander Chuma	900-1000	Affluent 1	6x10⁶	2	5	4.9	7.8
Meander «Chuma»	900-1000	Affluent 2	3x10⁶	3	0	-	8.0
New water after fault 1000 New affluent after fault 3x10⁵ 6 0 - 7,9

Camps of tourists 1000 1000 Main watercourse 2x10⁷ 4 0 - 7,8

River 1030 The beginning of the river 5x10⁵ 0 0 - 7,7

Camps of tourists 1000 1040 Lake (siphon) under camp of tourists 3x10⁷ 14 6 - 7,8

River under the ledge 1077 River under the ledge 7x10⁵ 2 - 7,8

The caves are characterized by an increase in the biodiversity of microorganisms in geochemically heterogeneous areas and the predominance of saprophytic microorganisms in oligotrophic environments [45]. Representatives of Enterobacteriaceae were found in aquatic communities of caves, and the presence of fecal coliforms in the waters of caves and an increase in the total microbial number are associated with anthropogenic load [10,46,47], which is confirmed in this study.

4. Conclusion
An analysis of biodiversity in the entrance zone of Dzou cave revealed the prevalence of cyanobacteria among the other phototrophs, which is typical for the caves. No obvious dominants have been found; in this case we can speak about polydominating among the phototrophs in the entrance zone of the cave. The composition of micromycetes species in illuminated and dark zones of the cave practically coincides, the largest number of species is found in the substrates. An increase in the sanitary-indicative groups of bacteria and propagules of micromycetes was found in areas of the cave with increased anthropogenic load.

References
[1] Mulec J and Kosi G 2009 Lampenflora algae and methods of growth control J. Cave Karst Stud. 71 109–15
[2] Chelius M K, Beresford G, Horton H, Quirk M, Selby G, Simpson R T, Horrocks R and Moore J C 2009 Impacts of alterations of organic inputs on the bacterial community within the sediments of wind cave, South Dakota, USA Int. J. Spel. 38(1) 1-10
[3] Mazina S E, Bazarova E P and Kontsevova A A 2015 Sanitary and indicative microbiota of the Snow-Illusion-Mezhennoy cave system Fundamental'nye issledovaniya 2(2b) 5808-14
[4] Mulec J and Kosi G 2008 Algae in the aerophytic habitat of Račiške ponikve cave (Slovenia) Nat. Slov. 10(1) 39–49
[5] Popkova A, Mazina S and Lashenova, T 2019 Phototrophic communities of Ahshtyrskaya cave in the condition of artificial light Ecol. Mont. 23 8-19
[6] Czerwik-Marcinkowska J 2013 Observations on aerophytic cyanobacteria and algae from ten caves in the Ojców National Park Acta Agr. 66(1) 39–52
[7] Pfendler S, Einhorn O, Bousta, F et al 2017 UV-C as a means to combat biofilm proliferation on prehistoric paintings: evidence from laboratory experiments Environ. Sc. Pollut. Res. 24 21601-09

[8] Kozlova E, Popkova A, Mazina S and Pešić V 2009 The micromycetes of fouling communities in the caves of Lovćen National Park, Montenegro Ecol. Mont. 23 1-7

[9] Mulec J 2014 Human impact on underground cultural and natural heritage sites, biological parameters of monitoring and remediation actions for insensitive surfaces: case of Slovenian show caves J. Nat. Cons. 22(2) 132-41

[10] Mazina S E J 2015 Lamp flora of the Novoafonskaya cave Nauchnyj zhurnal KubGAU 113(9)

[11] Piano E, Bona F, Falasco E, La Morgia V, Badino G and Isiaia M 2015 Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps) Sc. Tot. Env. 536 1007-18

[12] Pfendler S, Karimi B, Maron P, Ciadamidaro L, Valot B, Bousta F, Alaoui-Sosse, B and Aleya L 2018 Biofilm biodiversity in French and Swiss show caves using the metabarcoding approach: First data Sc. Tot. Env. 615 1207-17

[13] Mazina S E, Bazarova E P and Kontsevova A A 2015 Sanitary and indicative microbiota of the Snow-Illusion-Mezhennoy cave system Fundamentalnye Issledovanija 2(2b) 5808-14

[14] Klusaite A, Vickackaitė V, Vaitkevičienė B, Karnickaitė R., Bukelskis D., Kieraite Mežienė, Aleya L, 2018 Sanitary and indicative microbiota of the Snow-Illusion-Mezhennoy cave system Fundamentalnye Issledovanija 2(2b) 5808-14

[15] Klimchuk A B 1990 Karst aquifers of the Arabica massif Peshchery Mezhvuzovskij Sbornik Nauchnyh Trudov (Perm: University Press) pp 6-16

[16] Lavrov S V A report about the caving trip of the 5th category of complexity in the village of Dzou (Arabika Range, Abkhazia) of the team of the speleo club “Barrier” (speleo-section of the Moscow Institute of Physics and Technology) of 12 people from July 19 to August 14, 2003 (library MGTSTK)

[17] Vorob'eva L A 2006 Theory and Practice of Chemical Analysis of Soils (Moscow: GEOS) p. 400

[18] Netrusov A I, Yegorova M A and Zakharchuk L M 2005 Workshop on Microbiology: A manual for Students of Higher Educational Institutions (Moscow: Akademiya Publishing Center) p. 608

[19] Andreeva V M 1998 Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) (St. Petersburg: Nauka) p 351

[20] Zabelina M M 1951 Key to Freshwater Algae of the USSR. Issue 4. Diatoms (Moscow: Sovetskaya nauka) p 620

[21] Gollerbach M M 1953 Key to Freshwater Algae of the USSR. Issue 2. Blue-green Algae (Moscow: Sovetskaya nauka) p 652

[22] Klimchuk A B 1990 Karst aquifers of the Arabica massif Peshchery mezhvuzovskij sbornik nauchnyh trudov (Perm: University Press) pp 6-16

[23] Komárek J and Fott B 1983 Chlorophyceae (Grunalgen). Ordnung: Chlorococcales. Das Phytoplankton des Suswassers, Systematik und Biologie eds. Elster H J, Ohle W. Stuttgart, (Germany: Schweizerbart’sche Verlagsbuchhandlung) p 1044

[24] Komárek J and Anagnostidis K 1998 Cyanoprokaryota, 1. Teil/1st Part: Chroococcales eds. Ettl H, Gartner G, Heynig H, Mollenhauer D Jena-Stuttgart-Lubeck-Ulm: Gustav Fischer p 548

[25] Komárek J and Anagnostidis K 2005 Cyanoprokaryota 2. Teil: Oscillatoriales, eds. Ettl H, Gartner G, Heynig H., Mollenhauer D Berlin: Spektrum Akademischer Verlag p 759

[26] Hofmann G, Werum M and Lange-Bertalot H 2013 Diatomeen im Suswasser – Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis (Konigstein: Koeltz Scientific Books) p 908

[27] http://www.algaebase.org

[28] Ignatov M S and Ignatov E A 2003 Flora of Mosses in the Middle Part of European Russia (Moscow: KMK), 1 - p 608 p 2 -p. 609-960 p
[29] Andreev M P 2008 Rod of Lecidoma Goth. Schneid. & Hertel in Hertel – Lecidom. Key to Lichens in Russia (St. Petersburg: Nauka) 10 378-380
[30] Mazina S E and Maximov V N 2011 Photosynthetic organism communities of the Akhshtyrskaia excursion cave Mos. Un. Bio. Sc. Bul. 66(1) 37-41
[31] Ellis M B 1971 Dematiaceous Hyphomycetes (England: Commonwealth Mycological Institute) p 608
[32] Ellis M B and Ellis J P 1997 Microfungi on Land Plants, an Identification Handbook second edition (England: The Richmond Publishing Co Ltd) p 868
[33] Samson R A and Varga J 2007 Aspergillus Systematics in the Genomic Era (The Netherlands: Fungal Biodiversity Centre Studies in Mycology) p 206
[34] Samson R A, Houbraeken J, Thrane U, Frisvad J C and Andersen B 2010 Food and Indoor Fungi (The Netherlands: Fungal Biodiversity Centre Utrecht) p 390
[35] Watanabe, T Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species, third edition (US: CRC Press) p 426
[36] Bensch K, Braun U, Groenewald J Z and Crous P W 2012 The genus Cladosporium Studies in Mycology p 401
[37] Woudenberg J H C, Groenewald J Z, Binder M and Crous P W 2013 Alternaria redefined Stud. Myc. 75 171-212
[38] http://www.mycobank.org
[39] Hsu M J and Agoramoorthy G 2001 Occurrence and diversity of thermophilous soil microfungi in forest and cave ecosystems of Taiwan Fun. Div. 7 27–33
[40] Mazina S E, Arias P O, Kharlamova M D, Chernykh N A and Baeva Y I 2018 Bioindication of anthropogenic load in caves Kinderlinskaya and Oktyabrskaya (Republic of Bashkortostan, Russia): comparative analysis of rosk and sediments micromycetes species composition. International Multidisciplinary Scientific GeoConferences SGEM 18(5,2) 157-164
[41] Mazina S E, Mazina S E, Kontsevova A A and Mannapova R T 2018 Micromycetes of the Kinderlinskaya cave soil Izvestiya TSKHA 8 35-48
[42] Dix N J and Webster J 1995 Fun. Ec. (London: Chapman and Hall) p 549
[43] Vanderwolf K J, Malloch D, McAlpine D F and Forbes G J 2013 A world review of fungi, yeasts, and slime molds in caves Int. J. Spel. 36(2) 93-104
[44] Culver D C and Pippin T 2009 The Biology of Caves and Other Subterranean Habitats (Oxford University Press) pp 1-273
[45] Barton H A, Taylor N M, Kreate M P, Springer A C, Oehrle S A and Bertog J L 2007 The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments Int. J. Spel. 36(2) 93-104
[46] Laiz L, Groth I, Gonzalez I and Saiz-Jimenez C 1991 Microbiological study of the dripping waters in Altamira cave (Santillana del Mar, Spain) J. Mic. Meth. 361-2 129-38.
[47] D’Angeli I M, Serrazanetti D I, Montanari, C, Vannini L, Gardini F and De Waele J 2017 Geochemistry and microbial diversity of cave waters in the gypsum karst aquifers of Emilia Romagna region, Italy Sc. Tot. Env. 538 538–52