A graphical algorithm for the integration of monomials in the Chow ring of the moduli space of stable marked curves of genus zero

Jiayue Qi *

Abstract
The Chow group of zero cycles in the moduli space of stable pointed curves of genus zero is isomorphic to the integer additive group. Let M be a monomial in this Chow group. If no two factors of M fulfill a particular quadratic relation, then the monomial can be represented equivalently by a specific tree; otherwise, M is mapped to zero under the stated isomorphism. Starting from this tree representation, we introduce a graphical algorithm for computing the corresponding integer for M under the aforementioned isomorphism. The algorithm is linear with respect to the size of the tree.

1 Introduction
The moduli space of stable n-pointed curves of genus zero, denoted by \mathcal{M}_n in our paper, is a renowned object in modern intersection theory; for example, it is the base for the definition of Gromov-Witten invariants [1]. It is a smooth irreducible projective compactification of stable n-pointed genus-zero curves, which was originally introduced by Knudsen and Mumford in their series of papers [2], [3] and [4].

Chow rings are essential in intersection theory, to indicate the intersection numbers of subvarieties. Let X be a projective variety of dimension k. The Chow ring $A^*(X)$ of X is a graded ring, and is the direct sum of $k+1$ groups, each of them is composed of cycles (formal sums of subvarieties) of a fixed dimension. Conventionally, the group constituted by cycles of codimension r is called the Chow group of codimension r and denoted by $A^r(X)$, and $A^r(X) = \{0\}$ when $r > k$. Particularly, $A^k(X)$ is the Chow group of cycles of dimension zero and is isomorphic to the integer additive group.

In this paper, we work in the Chow ring of the moduli space \mathcal{M}_n of stable n-pointed curves of genus zero and we denote it by $A^*(n)$. Since \mathcal{M}_n is of dimension $n - 3$, we know that $A^*(n) = \bigoplus_{r=0}^{n-3} A^r(n)$, where $A^r(n)$ denotes the Chow group of codimension r. We have $A^d(n) = \{0\}$ when

*Doctoral Program “Computational Mathematics” W1214, Johannes Kepler University Linz.
r > n − 3, and $A^{n-3}(n) \cong \mathbb{Z}$ — we use the notation \int to denote this isomorphism, following the convention. The integer under this isomorphism is called the integral value or value of the given element in $A^{n-3}(n)$. A set of generators of the group $A^1(n)$ was given in Keel's paper [5], where each generator is indexed by a bi-partition of $\{1, \ldots, n\}$ and this set is also the generating set for the whole ring.

We will introduce an algorithm for computing the integral value of a product of the Keel generators, that is, a monomial in the generators. The problem originally showed up as a sub-problem for counting the realization of Laman graphs (minimally-rigid graphs) on a sphere [6], when we wanted to improve the algorithm given in [6]. With the help of this algorithm, we invented another algorithm for the same goal. However, by efficiency it does not seem faster than the one provided in [6]. But we see this problem fundamental, standing on its own and find the algorithm elegant and concise, also may be helpful for other similar or even further-away problems. Therefore, we formulate it on its own. We consider the situation when this monomial is of degree $n−3$, otherwise we define its value to be zero. The input is $n−3$ such generators, hence is linear in n and the output is an integer. Our algorithm is polynomial in n.

A quadratic relation between the generators was introduced in Keel’s paper [5]. This relation is called Keel’s quadratic relation in our paper. With the help of this relation, we know that if any two factors of fulfills the relation, then the whole monomial has value zero. This observation naturally formed the first step of our algorithm. We check if any of the two factors of the input monomial fulfills this relation: if yes, return zero; otherwise, we consider an equivalent characterization of the given monomial, in a specific tree — loaded tree. This first part is polynomial in n in the worst case. In the second step, we transfer this tree via three steps to a forest. Next, we compute the integral value of the given monomial directly from the obtained forest. The second part is linear with respect to n.

The tree characterization of the given monomial is inspired by [7, Section 2.2] and was first introduced in [8]. Our paper can be considered as a proper extension for [8]. We will describe the same algorithm, but with all the detailed proofs provided. Note that the same problem was considered in [9], where an equivalent characterization for the algebraic reductions (in the ambient ring) for the input monomial is given, as some operations on the tree representation. In fact, we were motivated by that characterization, then we started to try-out many examples using the algorithm provided in [9]. Eventually and excitingly, we discovered our algorithm which as an algorithm, is much more efficient and neat, comparing to the one given in [9]. Later on, we managed to prove the correctness of our algorithm with the help of some more advanced algebraic geometry tools.

2 Preliminaries

Since the main problem this paper focus on is exactly the same with the papers [8] and [9], the preliminaries will be very much similar to them. However, for completeness, we introduce everything from scratch.
Let \(n \in \mathbb{N} \), \(n \geq 3 \), define \(N := \{1, \ldots, n\} \). Denote by \(\mathcal{M}_n \) the moduli space of stable \(n \)-pointed curves of genus zero. A bi-partition \(\{I, J\} \) of \(N \) where the cardinalities of \(I \) and \(J \) are both at least 2 is called a cut; we call \(I \) and \(J \) parts of this cut. There is a hypersurface \(D_{I,J} \in \mathcal{M}_n \) for each cut \(\{I,J\} \) and its class in the Chow ring is denoted by \(\delta_{I,J} \). Note that \(D_{I,J} = D_{J,I} \), and as well \(\delta_{I,J} = \delta_{J,I} \). This Chow ring is a graded ring and we denote it by \(A^*(n) \). Then we have \(A^*(n) = \bigoplus_{r=0}^{n-3} A^r(n) \). These homogeneous components are defined as the Chow groups (of \(A^* \)) for \(r > n \); we call it the Chow group of codimension \(r \). It is known that \(A^*(n) = \{0\} \) for \(r > n - 3 \) and \(A^{n-3}(n) \cong \mathbb{Z} \). We denote this isomorphism by \(\int : A^{n-3}(n) \to \mathbb{Z} \). We can extend this map so that it is defined on the whole ring by setting the value of all other elements to be zero: \(\int : A^*(n) \to \mathbb{Z} \), \(\int(M) = 0 \) if \(M \notin A^{n-3}(n) \); it is then a group homomorphism between the Chow ring and integer additive group, we call it the integral map.

The set \(\{\delta_{I,J} \mid \{I,J\} \text{ is a cut}\} \) generates the group \(A^1(n) \), and also the whole ring \(A^*(n) \). Then we can view \(\prod_{k=1}^{n-3} \delta_{I_k,J_k} \) as an element in \(A^{n-3}(n) \), since \(A^*(n) \) is a graded ring. We define the value of \(M := \prod_{k=1}^{n-3} \delta_{I_k,J_k} \) to be \(\int(\prod_{k=1}^{n-3} \delta_{I_k,J_k}) \). The problem we deal with in this paper is to compute the value of a given monomial \(M = \prod_{k=1}^{n-3} \delta_{I_k,J_k} \).

Keel introduced a quadratic relation between the generators of \(A^*(n) \) in \(\mathbb{Z} \); we call it Keel’s quadratic relation. We say that two generators \(\delta_{I_1,J_1}, \delta_{I_2,J_2} \) fulfill Keel’s quadratic relation \(\{ \delta_{1,2,3,4,5} \} \) if the following four conditions hold: \(I_1 \cap I_2 \neq \emptyset \); \(I_1 \cap J_2 \neq \emptyset \); \(J_1 \cap I_2 \neq \emptyset \); \(J_1 \cap J_2 \neq \emptyset \). And in this case, we have \(\delta_{I_1,J_1} \cdot \delta_{I_2,J_2} = 0 \). For example, when \(n = 5 \), \(\delta_{1,2,3,4,5} = 0 \) since these two factors fulfill the Keel’s quadratic relation. Note that we use abbreviated notations for the index of the generators, for instance \(\delta_{1,2,3,4,5} \) represents \(\delta_{I_1,J_1} \cdot \delta_{I_2,J_2} \). We will use this abbreviation also in the later context. Motivated by this quadratic relation, we realize that when ever two factors of the given monomial fulfill this relation, the value of the monomial is zero. Hence the first step of our algorithm is to check whether there are two factors fulfilling this relation. There are in total \(n - 3 \) input factors, so we need to check \(\binom{n-3}{2} \) many pairs in the worst case. The checking for each pair of generators is linear in \(n \). Hence the algorithm in this step is polynomial in the worst case.

We call those monomials of which no two factors fulfill the Keel’s quadratic relation tree monomials, since there exists a one-to-one correspondence between these monomials and a specific type of trees which we call loaded trees (see Definition \ref{def:loaded_tree}). Then, how should we compute the value of a tree monomial (in \(A^{n-3}(n) \))? The following theorem indicates the first thing to check, when we have a tree monomial at hand.

Theorem 2.1. \(\int(M) = 1 \) and we call this type of tree monomials clever monomials.

Actually, we can combine the first two steps as one step, serving as the first part of our algorithm. This is because going through all the pairs of generators once is sufficient: we can check whether the pair fulfills the Keel’s quadratic relation or not and whether the generators in the pair are distinct at the same time. Hence the first part of our algorithm is
Figure 1: On the left is a loaded tree with 5 labels and 2 edges; its monomial is \(\delta_{12,345} \cdot \delta_{123,45} \). On the right is a loaded tree with 6 labels and 3 edges; its monomial is \(\delta_{12,3456} \cdot \delta_{34,1256} \cdot \delta_{56,1234} \). Note that we use an abbreviated notation for the labeling set of vertices, for instance 12 refers to \(\{1, 2\} \), for a neater picture.

polynomial with respect to \(n \).

2.1 Loaded trees

In this section, we introduce the one-to-one correspondence between tree monomials and loaded trees.

Definition 2.2 (\cite{8}, Definition 0.1.). A loaded tree with \(n \) labels and \(k \) edges is a tree \(T = (V, E) \) together with a labeling function \(h : V \to 2^N \) and an edge multiplicity function \(m : E \to \mathbb{N}^+ \) such that the following three conditions hold:

1. \(\{h(v)\}_{v \in V, h(v) \neq \emptyset} \) form a partition of \(N \); elements in \(N \) are called the labels of \(T \).
2. \(\sum_{e \in E} m(e) = k \).
3. For every \(v \in V \), \(\deg(v) + |h(v)| \geq 3 \), note that here multiple edges are only counted once for the degree of its incident vertices.

We define the monomial of a loaded tree as follows. Removing any edge \(e \) gives us two components of the tree, then the two sets of labels in each components respectively gives us a cut \(\{I, J\} \) of \(N \); \(\delta_{I, J} \) is the corresponding factor of the edge \(e \). The product of the corresponding factors of all edges is defined to be the monomial of the given loaded tree. We see that a loaded tree uniquely determines its monomial. We see two examples of loaded trees and their monomials in Figure 1. Note that in the example, we use an abbreviated notation for the labeling set of vertices shown on the picture. We will keep using it in the later context, for neater pictures.

The following theorem tells us the existence of a one-to-one correspondence between tree monomials and loaded trees.

Theorem 2.3. (\cite{9}, Theorem 2.2.) There is a one-to-one correspondence between tree monomials \(M = \prod_{i=1}^{k} \delta_{I_i, J_i} \) and loaded trees with \(n \) labels and \(k \) edges, where \(I_i \cup J_i = N \) for all \(1 \leq i \leq k \).

Remark 2.4. Note that the original idea of this correspondence came from Section 2.2 of paper \cite{7}. However, it is better explained and stated
in \[9\], in the sense of monomials whose factors are indexed by cuts of \(N\), i.e., generators of \(A^*(n)\). Usually we denote by \(M_T\) the monomial of loaded tree \(T\), and by \(T_M\) the loaded tree of monomial \(M\). We call the corresponding loaded tree for clever monomials clever trees.

It is trivial to obtain the monomial of a loaded tree, while the other direction not. The algorithm for this direction is described in \[8\]. Note that it specifies the ambient group of the input monomial, but the same algorithm also works for a monomial of any other degree. The idea of this algorithm comes from Section 2.2 of the paper \[7\]. We will not go into details of this algorithm in the paper. For completeness, we also illustrate this algorithm here, see Algorithm 1.

Algorithm 1: monomial to tree (Algorithm 1 in \[8\])

input: a tree monomial \(M\) in \(A^{n-3}(n)\)

output: a loaded tree with \(n\) labels and \(n - 3\) edges

\[
C \leftarrow \text{collection of any cut that corresponds to some factor of } M; \\
P \leftarrow \text{collection of all the parts of cuts in } C; \\
c \leftarrow \text{any element } c = \{I, J\} \in C; \\
\text{for each element } p \in P \setminus \{I, J\} \text{ do} \\
\quad \text{if } p \subset I \text{ or } p \subset J \text{ then} \\
\quad \quad c := c \cup \{p\} \\
\text{end if} \\
\text{end for} \\
H \leftarrow \text{the Hasse diagram of elements in } c \text{ with respect to set containment order; } \\
\text{Consider } H \text{ as a graph } (V, E); \\
\text{for each vertex } V \text{ of } H \text{ do} \\
\quad \text{Define labelling set } h(V) \text{ as its corresponding element in } c; \\
\quad \text{Update the labelling set: } h(V) := h(V) \setminus h(V_1) \text{ if } V_1 \text{ is less than } V \text{ in } H \\
\text{end for} \\
E := E \cup \{\{I, J\}\}; \\
\text{Attach this labelling function } h \text{ to } H; \\
\text{Set the multiplicity function value } m(e) \text{ for each edge } e \text{ as the power of its corresponding factor in } M; \\
\text{return } H = (V, E, h, m)
\]

Let us see an example on constructing the corresponding loaded tree of a given monomial, using Algorithm 1 so as to have an intuitive comprehension.

Example 2.5. Given a tree monomial \(\delta_3^{12,34,56,78,9} \cdot \delta_1^{123,45,67,89} \cdot \delta_1^{123,45,67,89} \cdot \delta_1^{123,45,67,89}\). Obviously we have the set of labels \(N := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}\). We collect the parts in set \(P := \{\{1, 2, 3\}, \{4, 5, 6, 7, 8, 9\}, \{1, 2, 3, 4, 5\}, \{6, 7, 8, 9\}, \{1, 2, 3, 4, 5, 8, 9\}, \{6, 7\}, \{1, 2, 3, 4, 5, 6, 7\}, \{8, 9\}\}\) and we pick any cut \(c = \{1, 2, 3, 4, 5\}, \{6, 7, 8, 9\}\) from the set of cuts. After collecting all parts which are either contained in \(\{1, 2, 3, 4, 5\}\) or \(\{6, 7, 8, 9\}\), we obtain
\[c = \{\{1,2,3,4,5\},\{6,7,8,9\},\{1,2,3\},\{6,7\},\{8,9\}\}, \text{ then we construct} \]
the corresponding Hasse diagram for \(c \), see Figure 2(a). The output loaded tree \(T_M \) is shown in Figure 2(b). It is easy to see that if we go back from the tree constructing monomial, we again obtain \(M \).

![Tree Diagram](image)

Figure 2: On the left is the Hasse diagram of set \(\{\{1,2,3,4,5\},\{6,7,8,9\},\{1,2,3\},\{6,7\},\{8,9\}\} \) with respect to set containment order. On the right is the corresponding loaded tree of monomial \(\delta_{123,456789} \cdot \delta_{12345,6789} \cdot \delta_{1234589,67} \cdot \delta_{1234567,89} \). Multiplicity function values are written in blue.

Note that if a loaded tree has no edges, then its monomial has no factors; we call such monomial an **empty monomial**. We extend this one-to-one correspondence a little by including a single tree and a single monomial: the loaded tree with 3 labels and no edges corresponds to the empty monomial; the loaded tree with \(k \) labels and no edges has no corresponding monomial if \(k \neq 3 \). With this extension proposed, we can now define the value of a loaded tree as the value of its corresponding monomial. Hence our goal can be expressed in other words now: **compute the value of a loaded tree with \(n \) labels and \(n-3 \) edges, where \(n \geq 3 \).** We call such loaded trees **proper loaded trees**. Later we will see, the extension above is done so as to guarantee that the loaded tree has the same value with its monomial, which also ought to hold by definition.

This tree representation is the foundation for our algorithm, and constitute the second part of our algorithm — transferring the tree monomial to its corresponding loaded tree; this step is at most polynomial to \(n \). However, all the main contents so far are already mentioned in [9]. In the next section, we introduce our graphical algorithm on computing the value of a loaded tree, i.e., the third part of our algorithm, which chiefly reflect the efficiency and conciseness of our algorithm.

3 The graphical algorithm

In this section, we illustrate a graphical algorithm, computing the value of a proper loaded tree. We already know that the value of a clever tree is one — this will just be a special case for our general algorithm. We postpone the correctness proof of the algorithm to later sections. Note that the algorithm is the same as described in [8], only some terms (names of the trees) are modified.

Here we give the sketch of the third part of our algorithm:
1. **Input:** a loaded tree with n labels and $n-3$ edges, i.e., a proper loaded tree with n labels.

2. **Output:** the value of the input loaded tree (which is an integer).

3. Transfer the loaded tree to a **weighted tree**.

4. Calculate the **sign of the tree value**.

5. Construct a **redundancy tree** from the weighted tree.

6. Construct a **redundancy forest** from the redundancy tree.

7. Apply a recursive algorithm to each tree in the redundancy forest, obtaining the absolute tree value.

8. Product of the sign and absolute value gives us the tree value.

In the sequel, we will explain the algorithm step by step, with a running example.

A **weighted tree** is a tuple (V,E,w) where (V,E) is a tree and $w : V \cup E \rightarrow \mathbb{N}$ is the weight function assigning to each edge and each vertex a non-negative integer weight. Let $LT = (V,E,h,m)$ be a loaded tree, define a function $w : V \cup E \rightarrow \mathbb{N}$ by $w(v) := \deg(v) + |h(v)| - 3$ for all $v \in V$ and $w(e) := m(e) - 1$ for all $e \in E$. From the third item of Definition 2.2, we see that $w(v) \geq 0$ for all $v \in V$ and naturally multiplicity of any edge is in \mathbb{N}^+. Hence, (V,E,w) is a weighted tree; we call it the **weighted tree of** LT. It is not hard to verify that $\sum_{v \in V} w(v) = \sum_{e \in E} w(e)$ holds for a weighted tree if it is of some proper loaded tree. This identity is called the **weight identity** [9, Section 2]. From Remark 3.8. and the reduction chain algorithm (Section 5.2) of [9], we know that if the value of the given loaded tree is non-zero, then the sign of the tree value is -1 to the power of the edge weight sum (or equivalently, the vertex weight sum). This is because each recursion step contributes a negative sign to the value, and from the linear reduction ([9, Section 3]) we know that each recursive step reduces the edge weight sum by one.

We say that the tuple (V,E,w) is a **redundancy tree** if (V,E) is a tree and $w : V \rightarrow \mathbb{N}$ is a function defined on the vertex set. In the last step of the algorithm, we obtained a weighted tree. Then, we replace each edge by two edges with a vertex in the middle — inheriting the weight of the replaced edge — connecting them. We see that in this way, we actually get a redundancy tree. We call the so-gained tree the **redundancy tree of the given loaded tree** (or, of the given weighted tree). A **redundancy forest** is defined to be a forest in which each tree is a redundancy tree. From the redundancy tree we obtained in the last step, we will obtain a redundancy forest via deleting all vertices of zero weight-value and their incident edges; this so-obtained forest is then called the **redundancy forest of the given loaded tree / weighted tree / redundancy tree**.

After we obtain the redundancy forest of the given loaded tree, we apply a recursive formula to each redundancy tree in the forest, so as to obtain the absolute value of the loaded tree. Let RF be the redundancy forest of loaded tree LT, define the **value of** RF (denoted by $f(RF)$) as the product of the values of all the trees in the forest. Define the **value of a redundancy tree** $RT = (V,E,w)$ recursively as follows. Pick any leaf $l \in V$, compare the weight of l and that of its unique parent l_1: if
Figure 3: On the left is a loaded tree LT with 14 labels and 11 edges. Labels are tagged in black. On the right is the weighted tree WT of the loaded tree LT described in Figure 3a. Weight function values are marked in red.

$w(l) > w(l_1)$, then return 0; otherwise, $\int(RT) := (w(l_1)) \cdot \int(RT_1)$, where $RT_1 = (V_1, E_1, w_1)$ is the redundancy tree defined as follows. Deleting leaf vertex l and its incident edge from RT, then replace the weight of l_1 by $w(l_1) - w(l)$. Formally speaking, we have $V_1 = V \setminus \{l\}$, $E_1 = E \setminus \{l, l_1\}$, $w_1(l_1) = w(l_1) - w(l)$ and $w_1(v) = w(v)$ for all $v \in V_1 \setminus \{l_1\}$. When RT is a degree-zero vertex, $\int(RT) = 0$ if it has non-zero weight and $\int(RT) = 1$ otherwise. If RT is a null graph — the graph that contains no vertices or edges — then $\int(RT) = 1$. Then we say that the value of loaded tree LT is the value of the redundancy forest RF.

Let us see an example, on how to obtain the value of a given loaded tree.

Example 3.1. [8, Example 0.4.] Figure 3a depicts LT — a loaded tree with 14 labels and 11 edges, while Figure 3b shows the weighted tree WT of LT. We obtain that the edge weight sum of WT is $2 + 4 + 0 + 1 = 7$, while its vertex weight sum $1 + 1 + 4 + 0 + 1 = 7$. Then we obtain that the sign of $\int(LT)$ is $(-1)^7 = -1$. Figure 4a shows the redundancy tree RT (or of WT), and Figure 4b describes the corresponding redundancy forest RF. Then apply the recursive formula on RF, we obtain

$$\int(RF) = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \times \left[\begin{array}{c} 4 \\ 1 \end{array} \right] \times \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \times \left(\begin{array}{c} 4 \\ 3 \end{array} \right) \times \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \times \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \times \left[\begin{array}{c} 1 \\ 1 \end{array} \right] = 32.$$

Product of 32 and -1 tells us that the value of the loaded tree LT shown in Figure 3a is -32.

Consider the whole procedure, from inputting a proper loaded tree, to finally obtaining the tree value. Termination is trivial since the input tree is finite, so does its redundancy forest. In the recursion formula calculus, each step strictly reduces the size of the redundancy forest. Because of the following identity of binomial coefficients, we know that the recursive formula gives us the same value, no matter in which sequence do we consider and delete the leaf vertices of a redundancy tree.

$$\binom{c}{a} \cdot \binom{c-a}{b} \equiv \binom{c}{b} \cdot \binom{c-b}{a}.$$

Therefore, the above process is indeed an algorithm. We call it the **forest algorithm**. It is not hard to see that the complexity of the forest
algorithm is linear with respect to the number of vertices of the input loaded tree. If the input loaded tree is a clever tree, then any vertex of its redundancy tree has value one. Therefore, its redundancy forest is a null graph and hence the input loaded tree has value one. This indicates that the value of clever trees can also be handled by the forest algorithm, as a special case.

Based on the forest algorithm, let us consider again the extension of the one-to-one correspondence between loaded trees and tree monomials: a loaded tree with a single vertex and 3 labels has the null graph as its redundancy forest, hence has value one; a loaded tree with a single vertex and \(k\) \((k \neq 3)\) labels has the single vertex with non-zero weight as its redundancy forest, hence has value zero. And the correctness on the base cases directly come from the definition of \(j\). Given the correctness of the forest algorithm, our previous extension stands defensible. In the next section, we prove the correctness of the forest algorithm.

4 Correctness

This section contains three sub-sections. First we introduce three kinds of edge-cutting operation on trees, and describe the main theorem using algebraic language. Second, we prove the correctness of the forest algorithm using an algebraic theorem posted in the first part. Third, we use pure algebraic tools to prove the main theorem.

4.1 Three types of edge-cutting

In this section, we introduce three different types of edge-cutting, and using these graphical operations, express the main theorem in algebraic language. In order not to interrupt the story later on, we need to introduce the concept of star-cut first.

Definition 4.1 (star). Let \(T = (V, E)\) be a tree with \(|V| \geq 3\). If there exists \(v \in V\) all other vertices is a neighbor of \(v\), then we call this tree a **star**.
Given a tree $T = (V, E)$. We can pick any edge $e = \{u, v\} \in E$. We call the process of cutting off edge e, attaching a new vertex u_1 to u, v_1 to v via a new edge e_1 and e_2, respectively an edge-cut of T; after this process, we obtain two new trees T_1, T_2 from T. If we obtain a star after applying edge cut on some edge of T, we call this edge cut a star-cut.

Proposition 4.2. Star cut exists for any tree with no less than three vertices.

Proof. Let T be an arbitrary tree with no less than three vertices. Define L to be the set of leaves of T. Then define an equivalence relation on L by $v_1 \sim v_2$ iff $N(v_1) = N(v_2)$ for any two leaves v_1, v_2 of T, where $N(v)$ refers to the set of neighbors of vertex v. It is not hard to see that there is a 1-1 correspondence between support (non-leaf) vertex set of T and set of equivalence classes we define above.

If T is a star, then the proposition holds since we can apply edge-cut to any edge of T and we will get a star after it. Otherwise we delete all leaves of T, obviously we obtain a nontrivial tree T_1 — here non-trivial means that it is not a single vertex. So it must have a vertex u with degree 1, w.l.o.g., assume $\{u, u'\} \in E(T_1)$, then we also have $\{u, u'\} \in E(T)$. Obviously, u is a support vertex of T. If we apply edge-cut to edge $\{u, u'\}$ in T, we get a star centered at vertex u, it is a star-cut. \qed

We continue by recalling the single-edge cutting operation defined in [9]. Let T be a loaded tree and $e = \{u, v\}$ be any edge of T with multiplicity r and corresponding factor $\delta_{1, 2}$. When $r = 1$, we construct two other loaded trees T_1 and T_2 by cutting off edge e and add one more label x to u and v, respectively. Imagine that we cut off edge e, we would obtain two components: all the labels in one component form the set I_1; we call this component Component-I$_1$ and the other component Component-I$_2$. Assume that u is in Component-I$_1$ and v is in Component-I$_2$. Since the multiplicities of edges do not influence of being a loaded tree, we know that T_1 and T_2 are still loaded trees and the weights of vertices u and v stay unchanged after the edge-cutting. From [9] Proposition 5.10 we know that $\mid f(T) \mid = \mid f(T_1) \mid \cdot \mid f(T_2) \mid$.

When $r > 1$, let s_1 be the number of edges of T_1 and s_2 be that of T_2. Let $N := I_1 \cup I_2$ and $\mid N \mid = n$. A quick calculation reveals that it can never happen that both T_1 and T_2 are proper, which indicates that $\mid f(T) \mid$ is always zero, if we want an analogous relation as in the single-edge cutting case. Therefore, we need to modify our construction. We construct T'_1 (from T_1) by removing the label x and attaching to u a new vertex u' via an edge e' connecting u and u', where the labeling set of u' is $\{a, b\}$ and the multiplicity of e' is set to be $\mid I_1 \mid + 2 - s_1 - 3 = \mid I_1 \mid - s_1 - 1$; note that a, b are two new labels not in N. The construction of T_2 via T_2 is done analogously. In this way, we are able to obtain proper trees by adding new edges at the end of the obtained trees. Cutting off an edge of T, obtaining T'_1 and T'_2 as stated above, is called a multi-edge cutting operation. In this section, a main task for us is to investigate the relation between the value of T and the values of T'_1 and T'_2. In the sequel, we will introduce more algebraic notations, so as to express better the theorem.

First, notice that T'_1 and T'_2 are both in many cases strictly smaller than T, in those cases their monomials live in different ambient Chow.
ring than \(T \). For this, we introduce a foot index for the integral symbol, indicating the ambient space. For instance, let \(M \) be a monomial in \(A^{n-3}(n) \), then \(M \) is in the Chow ring of \(M_n \). Let \(N := \{1, \cdots, n\} \) be the labeling set of \(M_n \), we denote by \(\int_{M_n}(M) \) for the value of \(M \). In this section, we will use this notation, so as to clarify the ambient Chow ring and the labels in the ambient variety as well. In order to avoid crashes of notations, we denote by \(A^*(X) \) instead of \(A^*(X) \) for the Chow ring of the variety \(X \), in this section.

Let \(M_T \) be the monomial of \(T \), let \(\delta_{I_1,I_2} \) be the corresponding factor of the edge \(e \) and let \(r \geq 1 \) be the multiplicity of \(e \); note that \(I_1 \cup I_2 = N \). Let \(\mu_1 \) be the product of factors of edges in Component-\(I_1 \) and let \(\mu_2 \) be that in Component-\(I_2 \) — note that all factors inherit the multiplicities of their corresponding edges via their powers. From the property of \(M_T \) being a tree monomial, we obtain the following conclusion. Let \(S \) be the multi-set of the factors of \(M_T \), note that factors with power higher than one appear more than once in the set. Then \(\mu_1 \) is the product of the generators \(\delta_{U,V} \in S \) such that \(U \not\subseteq I_1 \), and \(\mu_2 \) is the product of the generators \(\delta_{U,V} \in S \) such that \(V \not\subseteq I_2 \). Then \(M_T = \mu_1 \cdot \mu_2 \cdot \delta_{I_1,I_2} \) and \(\int(T) = \int_{M_n} \mu_1 \cdot \mu_2 \cdot \delta_{I_1,I_2} \). Let \(s_1, s_2 \) be the degrees of \(\mu_1 \) and \(\mu_2 \), respectively; then \(\mu_1 \in A^{s_1}(M_N), \mu_2 \in A^{s_2}(M_N) \). Since \(T \) is a proper loaded tree, we know that \(r = |N| - s_1 - s_2 - 3 \).

Replacing each factor \(\delta_{U,V} \) in \(\mu_1 \) by \(\delta_{U,V \setminus I_2 \cup \{x\}} \), we obtain the product \(\gamma_1 \in A^{s_1}(M_{I_1 \cup \{x\}}) \). Replacing each factor \(\delta_{U,V} \) in \(\mu_2 \) by \(\delta_{U,V \setminus I_1 \cup \{x\}} \), we obtain the product \(\gamma_2 \in A^{s_2}(M_{I_2 \cup \{x\}}) \). With out loss of generality, assume that the labels of \(T_1 \) form \(I_1 \) and those of \(T_2 \) form \(I_2 \). Then it is not hard to see that \(M_{T_1} = \gamma_1 \) and \(M_{T_2} = \gamma_2 \). Replacing each factor \(\delta_{U,V} \) in \(\mu_1 \) by \(\delta_{U,V \setminus I_1 \cup \{a,b\}} \), we get the product \(\nu_1 \in A^{s_1}(M_{I_2 \cup \{a,b\}}) \). Replacing each factor \(\delta_{U,V} \) in \(\mu_2 \) by \(\delta_{U,V \setminus I_2 \cup \{a,b\}} \), we get the product \(\nu_2 \in A^{s_2}(M_{I_1 \cup \{a,b\}}) \). It is not hard to see that \(M_{T_1} = \nu_1 \cdot (\delta_{I_1 \cup \{a,b\}})^{|I_1| - s_1 - 1} \) and \(M_{T_2} = \nu_2 \cdot (\delta_{I_2 \cup \{a,b\}})^{|I_2| - s_2 - 2} \). Then the following theorem will reveal to us the relation between the value of \(T \) and the values of \(T_1 \) and \(T_2 \).

Theorem 4.3. With the notations above, the following equation holds.

\[
\int_{M_n} \mu_1 \cdot \mu_2 \cdot (\delta_{I_1,I_2})^r = \left(\frac{r - 1}{|I_1| - s_1 - 2} \right) \cdot \int_{M_{I_2 \cup \{a,b\}}} \nu_1 \cdot (\delta_{I_1 \cup \{a,b\}})^{|I_1| - s_1 - 1} \\
\int_{M_{I_2 \cup \{a,b\}}} \nu_2 \cdot (\delta_{I_2 \cup \{a,b\}})^{|I_2| - s_2 - 1}
\]

4.2 Correctness proof

In this section, we prove the correctness of the forest algorithm given that Theorem 4.3 holds.

Let \(LT = (V, E, h, m) \) be a proper loaded tree with labeling set \(N = \{1, \cdots, n\} \); denote by \(w \) its weight function. First, we cut off all single edges of \(LT \); [9] Lemma 5.12] says that \(|\int(LT)| \) is the product of absolute value of all new trees obtained after the series of operations. In the forest algorithm, this operation is equivalent to deleting all weight-zero vertices of the redundancy tree \(RT \) of \(LT \) that come from an edge of \(LT \).
Let $l \in V$ be any leaf that has non-zero weight and let $e = \{l, l_1\}$ be its unique incident edge. Now we cut off the multiple edge e, obtain two new trees T'_1 and T'_2 and apply the above formula. We see that by definition, in this case, $r - 1 = m(e) - 1 = w(e)$. Since T is proper, we have $|I_1| + |h(l)| - 3 = m(e) + s_1$. By definition we have $|h(l)| + \deg(l) - 3 = w(l)$. Hence we get $|I_1| - s_1 - 2 = m(e) - 1 - w(l) = w(e) - w(l)$. Hence the binomial coefficient on the right hand side of the formula is $\binom{w(e) - w(l)}{w(e)} = \binom{w(l)}{w(l)}$.

Note that $|I_2| = |h(l)|$, $s_2 = 0$ and $w(l) = |I_2| + 1 - 3$ (if T'_2 is proper), we obtain $|I_2| - s_2 - 1 = w(l) + 1$. Hence the new edge e'_2 added to l in T'_2 has multiplicity $w(l) + 1$, hence its weight is $w(l)$. Hence T'_2 is a proper loaded tree with two vertex connecting by an edge and the weights of two vertices are $w(l)$ and 0, respectively. Since $w(l) \neq 0$, it is a sun-like tree, by [9, Theorem 7.1], we know that its absolute value is $\binom{w(l)}{w(l)} = 1$. Tree T'_1 is obtained by replacing vertex l by a weight-zero vertex, and replacing edge e by an edge e'_1 with multiplicity $w(e) - w(l) + 1$ and hence the weight of e'_1 is $w(e) - w(l)$. Hence $\int(T) = \binom{w(e)}{w(l)} \cdot \int(T_1)$. Notice that if some leaf has weight bigger than its parent vertex, after cutting off its unique incident edge, the obtained tree where this leaf lives will be unproper, which leads to the input loaded tree being value zero. In the forest algorithm, this step is equivalent to applying the recursive formula first to all the non-zero-weight leaves of the redundancy forest RF if the leaf comes from some leaf of LT and return zero if some leaf in RF has weight bigger than its parent vertex and this leaf vertex comes from some leaf of LT.

We can repeat the above process to all the leaves that have non-zero weight, namely cut off the edges of which the incident leaf has non-zero weight. One can check that the above formula will not help when the leaf has weight zero, hence the next step we will do is to consider a star-cut.

Note that the concept of star-cut is compatible with multi-edge cut; these two operations can be combined. Our next step is to do a star-cut, then apply the formula in Theorem 4.3. Denote by T_2 the star-shaped loaded tree, and by T_1 the other loaded tree we obtain from T, after a star-cut. First, it is clear that after the first step, all leaves have weight zero. Hence all leaves of T_2 have weight zero. Suppose that T_2 is proper. If the middle vertex v of T_2 has weight zero, then by its properness, we know that all edges have weight zero as well; it is a clever tree hence has value $1 = \binom{0}{0, \ldots, 0}$. If its middle vertex has non-zero weight, then its a sun-like tree, then by [9, Theorem 7.1] we obtain that $|\int(T_2)| = \binom{k}{m_1, \ldots, m_q}$, where k is the weight of v and m_1, \ldots, m_q are the weights of its edges. One property of multinomial coefficients says that

$$\binom{k}{m_1, \ldots, m_q} = \frac{k!}{m_1! \cdot m_2! \cdots m_q!}.$$

Let e_1, e_2 be the new edges added to T_1, T_2 respectively, w.l.o.g. let m_q be the weight of e_2, denote by w_i the weight function of T_i, $i = 1, 2$. Since T_2 is proper, we know that m_q equals the multiplicity of e_2 minus 1, that is, $m_q = |I_2| - s_2 - 2$. Also, we see that $w_1(e_1) = |I_1| - s_1 - 2$ and that
Then when we focus on the vertex \(w \) in \(RF \) that comes from this middle vertex, recursively apply the forest algorithm, at some point, the weight of \(w \) must be less than that of one of its adjacent leaves; or, when \(w \) itself becomes a leaf, its weight is bigger than the parent. Both cases of course should give us zero in the output. This fact, in the forest algorithm, is described as: return zero if some leaf in \(RF \) has weight bigger than its parent vertex and this leaf vertex does not come from some leaf of \(LT \).

We can repeat the star-cut operation until the loaded tree has only two vertices. Actually, any weight-zero vertex will become a middle vertex of some leaf of \(LT \). As described as:

\[
\text{return zero if some leaf in } RF \text{ has weight bigger than its parent vertex and this leaf vertex does not come from some leaf of } LT.
\]

In this section, we prove Theorem 4.3 which indicates the main geometric structure hidden beneath the forest algorithm, however using pure algebra.

Let \(f: X \to Y \) be a map between two smooth projective varieties. Then \(f \) induces the pushforward map \(f_*: A^*(X) \to A^*(Y) \), which is a group homomorphism, and the pullback map \(f^*: A^*(Y) \to A^*(X) \), which is a ring homomorphism that preserves the degree of the ambient group under the projection, and the pullback map \(f^* \) is a group homomorphism that preserves the degree of the ambient group under the projection, and the pullback map \(f^* \) is a ring homomorphism that preserves the degree of the ambient group.

It is known that \(D_{1,2} \cong \mathcal{M}_{1,2} \times \mathcal{M}_{1,2} \), where \(x \notin N \) is a new label. Denote by \(p_{1,x,N} \) the projection from \(D_{1,2} \) to \(\mathcal{M}_{1,2} \). Let \(\iota := \iota_1, \iota_2 \) and let \(p_1 := p_{1,x,N}, p_2 := p_{1,y,N} \). Then we have \(\iota^*(p_{1} \cdot p_{2}) = p_{1}^*(\gamma_1) \cdot p_{2}^*(\gamma_2) \). Then apply the pushforward map on both sides, we obtain \(\mu_1 \cdot \mu_2 = \iota^*(p_{1}^*(\gamma_1) \cdot p_{2}^*(\gamma_2)) \); this equation will be used later in the proof of Theorem 4.3. Define \(\beta_{*,1,2} \) by \(\iota^*(1) \cdot \delta_{1,2} \). Consider the isomorphism \(D_{1,2} \cong \mathcal{M}_{1,2} \times \mathcal{M}_{1,2} \); since \(\mathcal{M}_{1,2} \) is just a point, we obtain that \(D_{1,2} \cong \mathcal{M}_{1,2} \). Therefore the inverse of \(p_{1,x,1,2} \) exists. Since pullback is degree-preserving and \(\delta_{1,2} \in A^0(\mathcal{M}_{1,2}) \), we know that \(\beta_{*,1,2} \in A^0(\mathcal{M}_{1,2}) \). Analogously, we define \(\beta_{*,2} \in A^0(\mathcal{M}_{2,1}) \), simply by replacing \(I_1 \) by \(I_2 \), in the definition of \(\beta_{*,1,2} \). Let \(\beta_1 := \beta_{*,1,2} \), \(\beta_2 := \beta_{*,2} \).
Lemma 4.4. The following equation holds:

\[i^* (\delta_{1,2}) = p_1^* (\beta_1) + p_2^* (\beta_2), \]

where \(x \notin N \) is a new label.

In order to prove the above lemma, we need to introduce some basic properties of the Chow group of a direct product of two varieties in \(\mathcal{M}_N \).

Let \(X \) and \(Y \) be two smooth projective varieties of \(\mathcal{M}_N \), then we have \(A^1 (X \times Y) \cong A^1 (X) \oplus A^1 (Y) \). Let \(\pi_i, \pi_r \) be the projection from \(X \times Y \) to \(X \) and \(Y \), respectively. We know that for any \(y_0 \in Y \), there exists a right inverse \(\sigma \) of \(\pi_1 \) such that \(\sigma_l (x) := (x, y_0) \). Let \(\sigma_r \) be any such inverse; the choice of the element in \(Y \) does not matter; we define \(\sigma_r \) analogously, as a right inverse for \(\pi_r \). Then for any \(t \in A^1 (X \times Y) \), we have \(t = \pi_1^* \circ \sigma_l (t) + \pi_r^* \circ \sigma_r (t) \). Observe that we have the isomorphism \(D_{1,2} \cong \mathcal{M}_{[1],[2]} \times \mathcal{M}_{[2],[1]} \) in \(\mathcal{M}_N \). Let \(q_{1,i,N} \) be any right inverse (as described above) of \(p_{1,i,N} \) for \(i = 1, 2 \). Denote by \(q_i := q_{1,i,N} \) for \(i = 1, 2 \). Then, from the above analysis, we know that for any \(t \in A^1 (D_{1,2}) \), we have \(t = p_1^* \circ q_1 (t) + p_2^* \circ q_2 (t) \). Now we will introduce an equation telling us the relation between the integral value on the direct product and the integral values on its two coordinates; this will be used later in our proof. Let \(\alpha \in A^1 (X) \), \(\beta \in A^1 (Y) \). Then we have

\[
\int_{X \times Y} \pi_1^* (\alpha) \cdot \pi_r^* (\beta) = \int_X \alpha \cdot \int_Y \beta.
\]

We need one more preparation before proving Lemma 4.4. Define \(s_{k,l,N} : \mathcal{M}_{N \backslash \{k\}} \rightarrow \mathcal{M}_N \) as

\[
s_{k,l,N} := i_{(k,l),N \backslash \{k\},l,N}^{-1} \circ p_{N \backslash \{k\},l,N}^{-1},
\]

where \(k, l \) are two distinct labels of \(N \). Note that \(p_{N \backslash \{k\},l,N} \) is an isomorphism, hence it has an inverse. There is a surjective forgetful map \(c_{a,N} : \mathcal{M}_N \rightarrow \mathcal{M}_{N \backslash \{a\}} \) for any \(a \in N \). The above defined map \(s_{k,l,N} \) is a right inverse of \(c_{k,N} \). The image of \(s_{k,l,N} \) is the hypersurface \(D_{(k,l),N \backslash \{k,l\}} \) in \(\mathcal{M}_N \).

Proof of Lemma 4.4. Recall that \(i^* \) is the pullback map from \(A^1 (\mathcal{M}_N) \) to \(A^1 (\mathcal{M}_{1,2}) \) and that \(\delta_{1,2} \in A^1 (\mathcal{M}_N) \). Since pullback is a degree-preserving ring homomorphism, we know that \(i^* (\delta_{1,2}) \in A^1 (\mathcal{M}_{1,2}) \).

Using the result from earlier analysis, we have Equation (a):

\[
i^* (\delta_{1,2}) = p_1^* \circ q_1 (i^* (\delta_{1,2})) + p_2^* \circ q_2 (i^* (\delta_{1,2})).
\]

We claim that it suffices to prove Equation (b): \(q_1^* \circ i^* (\delta_{1,2}) = \beta_1 \) and Equation (c): \(q_2^* \circ i^* (\delta_{1,2}) = \beta_2 \). Suppose they hold, then from (b) we have: \(p_1^* \circ q_1^* \circ i^* (\delta_{1,2}) = p_1^* (\beta_1) \). Analogously, we obtain \((q_2 \circ p_2)^* (i^* (\delta_{1,2})) = p_2^* (\beta_2) \) from (c). Substituting the equalities back to Equation (a), we obtain the wanted equation. Since (b) and (c) are symmetric, it suffices to prove (b).

We prove Equation (b) by induction on \(|I_2| \). Recall the definition of \(\beta_1 \), in this case, we have: \(\beta_1 = (p_1^{-1})^* \circ i^* (\delta_{1,2}) \). It suffices to show that \((p_1^{-1})^* = q_1 \). Since \(q_1 \) is a right inverse of \(p_1 \), we have \(p_1 \circ q_1 = id \).

14
But in this case p_1 is an isomorphism, so does q_1. Therefore, $q_1 = p_1^{-1}$. Hence $(p_1^{-1})^* = q_1^*$. Suppose Equation (b) holds when $|I_2| = z - 1$, now $|I_2| = z \geq 3$, $z \in \mathbb{N}$. Let $k, l \in I_2$ be two distinct labels and let $I_2' := I_2 \setminus \{k\}$, $N' := N \setminus \{k\} = I_1 \cup I_2'$. Then we have the following equality: $i \circ q_1 = s_{k,l,N} \circ i_{I_1,I_2'} \circ q_{I_1,x,N'}$ of maps from $M_{I_1 \cup (x)}$ to M_N.

Since pullback is a contravariant functor and $\delta_{I_1,I_2} \in A^\bullet(M_N)$, we obtain:

$$q_1^* \circ i^*(\delta_{I_1,I_2}) = q_{I_1,x,N'}^* \circ i_{I_1,I_2'}^* \circ s_{k,l,N}(\delta_{I_1,I_2}) = q_{I_1,x,N'}^* \circ i_{I_1,I_2'}^*(\delta_{I_1,I_2}).$$

Now we can use the induction hypothesis, since $|I_2'| = |I_2| - 1 = z - 1$. Hence we have $q_1^* \circ i^*(\delta_{I_1,I_2}) = \beta_1$.

Proof of Theorem 4.3. From earlier analysis, we have

$$\mu_1 \cdot \mu_2 \cdot \delta_{I_1,I_2} = i_*(p_1^*(\gamma_1) \cdot p_2^*(\gamma_2)).$$

Use the adjoint formula between pullback and pushforward, the result in Lemma 4.4, the property that the pullback being a ring homomorphism and the integral map being a group homomorphism. Then consider the isomorphism $D_{I_1,I_2} \cong M_{I_1 \cup (x)} \times M_{I_2 \cup (x)}$, and use the fact on direct product of varieties mentioned earlier, we further get

$$\int_{M_N} \mu_1 \cdot \mu_2 \cdot \delta_{I_1,I_2} = \int_{M_N} (\delta_{I_1,I_2})^{\gamma_2 - 1} \cdot i_*(p_1^*(\gamma_1) \cdot p_2^*(\gamma_2))$$

$$= \int_{D_{I_1,I_2}} i^*(\delta_{I_1,I_2})^{\gamma_2 - 1} \cdot p_1^*(\gamma_1) \cdot p_2^*(\gamma_2)$$

$$= \int_{D_{I_1,I_2}} (p_1^*(\beta_1) + p_2^*(\beta_2))^{\gamma_2 - 1} \cdot p_1^*(\gamma_1) \cdot p_2^*(\gamma_2)$$

$$= \sum_{k=0}^{r-1} \binom{r-1}{k} \int_{D_{I_1,I_2}} p_1^*(\beta_1^k \cdot \gamma_1) \cdot p_2^*(\beta_2^{r-1-k} \cdot \gamma_2)$$

$$= \sum_{k=0}^{r-1} \binom{r-1}{k} \int_{M_{I_1 \cup (x)}} \beta_1^k \cdot \gamma_1 \cdot \int_{M_{I_2 \cup (x)}} \beta_2^{r-1-k} \cdot \gamma_2.$$

Recall that the integral value is defined to be zero if the monomial is not in the Chow group of codimension 3 of the ambient Chow ring. Therefore, we can already omit those summands that are zero in the above sum. Since $\beta_1 \in A^1(M_{I_1 \cup (x)})$ and $\beta_2 \in A^1(M_{I_2 \cup (x)})$, we see that we only need to consider the summands such that $k + s_1 = |I_1| + 1 - 3$ and $r - 1 - k + s_2 = |I_2| + 1 - 3$ hold, that is, $k = |I_1| - s_1 - 2 = r + 1 + s_2 - |I_2|$. Hence there is only one summand left, we obtain the following formula:

$$\int_{M_N} \mu_1 \cdot \mu_2 \cdot \delta_{I_1,I_2} = \binom{r - 1}{|I_1| - s_1 - 2} \cdot \int_{M_{I_1 \cup (x)}} \beta_1^{[I_1] - s_1 - 2} \cdot \gamma_1 \cdot \int_{M_{I_2 \cup (x)}} \beta_2^{[I_2] - s_2 - 2} \cdot \gamma_2.$$

As a special case, let $I_2 = \{a, b\}$, then we have $\mu_1 = \nu_1$, $\mu_2 = 1$, $s_2 = 0$.

In this case, we see that $|I_1| + 2 - 3 = s_1 + r$, that is, $r = |I_1| - s_1 - 1$.

The formula becomes

$$\int_{M_{I_1 \cup \{a,b\}}} \nu_1 \cdot (\delta_{I_1,\{a,b\}})^{[I_1] - s_1 - 2} \cdot \gamma_1 = \int_{M_{I_1 \cup (x)}} \beta_1^{[I_1] - s_1 - 2} \cdot \gamma_1.$$
analogously, when \(I_1 = \{a, b\} \), we get the following equation:

\[
\int_{M_{I_2 \cup \{a, b\}}} \nu_2 \cdot (\delta_{I_2, \{a, b\}}) |I_2| - s_2 - 1 = \int_{M_{I_2 \cup \{a\}}} \beta_2 |I_2| - s_2 - 2 \cdot \gamma_2.
\]

The statement then follows.

5 Acknowledgement

The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK9.

I am very much grateful to Josef Schicho for formulating my rough graphical ideas down as in Theorem 4.3 (exquisite!) and providing me with the proof (technical but astounding!) of it, which to a great extend realized the correctness proof, hence further drew a perfect full stop on the forest algorithm. I thank Nicolas Allen Smoot for helping me express in a better way the proof of the existence of star-cuts.

References

[1] Behrend Kai. Gromov-Witten invariants in algebraic geometry. Inventiones mathematicae, 127.3 (1997): 601-617.

[2] Knudsen Finn, and Mumford David. The Projectivity of the moduli space of stable curves I: Preliminaries on “det” and “Div”. Mathematica Scandinavica, 39.1 (1977), 19-55.

[3] Knudsen Finn F. The projectivity of the moduli space of stable curves, II: The stacks \(M_{g,n} \). Mathematica Scandinavica, 52.2 (1983), 161-199.

[4] Knudsen Finn F. The Projectivity of the Moduli Space of Stable Curves, III: The Line Bundles on \(M_{g,n} \), and a proof of the Projectivity of \(M_{g,n} \) in Characteristic 0. Mathematica Scandinavica (1983), 200-212.

[5] Keel Sean. Intersection theory of moduli space of stable \(n \)-pointed curves of genus zero. Transaction of the American Mathematical Society, 330 (1992), no. 2, 545-574.

[6] Matteo Gallet, Georg Grassegger, Josef Schicho. Counting realizations of Laman graphs on the sphere. The Electronic Journal of Combinatorics, Volume 27, Issue 2 (2020).

[7] Qi Jiayue, Schicho Josef. Five Equivalent Ways to Describe Phylogenetic Trees. [arXiv:2011.11774] preprint.

[8] Qi Jiayue. A calculus for monomials in Chow group of zero cycles in the moduli space of stable curves. DK-Report, No. 2020-11, September 2020.

[9] Qi Jiayue. A tree-based algorithm on monomials in the Chow group of zero cycles in the moduli space of stable pointed curves of genus zero. [arXiv:2101.03789] preprint.