Effect of 5-FU on modulation of disarrangement of immune-associated cytokines in experimental acute pancreatitis

Xiao-Li Chen, Sang-Zhu Ciren, Hui Zhang, Li-Geng Duan, Alexander J Wesley

Xiao-Li Chen, Sang-Zhu Ciren, Hui Zhang, Li-Geng Duan, Department of General Surgery, The Huaxi Hospital, Medical Center, University of Sichuan, Chengdu 610041, China
Alexander J Wesley, Department of Surgery, Transplantation Division, University of Cincinnati Medical Center, Cincinnati OH 45267-0558, United States

Author contributions: Chen XL designed this study, coordinated the experiment and was the primary writer of this manuscript; Ciren SZ, Zhang H, Duan LG performed the experiment and took part in writing the manuscript; Wesley AJ was the tutor of this study and revised the manuscript.

Correspondence to: Xiao-Li Chen, MD, Department of General Surgery, The Huaxi Hospital, Huaxi Medical Center, University of Sichuan, Wainan guoxuexiang 34#, Chengdu 610041, China. zean_z@yahoo.com.cn
Telephone: +86-28-85422868 Fax: +86-28-85534151
Received: September 2, 2008 Revised: March 13, 2009
Accepted: March 20, 2009
Published online: April 28, 2009

Abstract

AIM: To investigate the effects of 5-Fluorouracil (5-FU) on modulation of pro-inflammatory and anti-inflammatory cytokines in acute pancreatitis and the mechanism of it in the treatment of acute pancreatitis.

METHODS: Male Sprague Dawley rats were assigned to 3 Groups: Group A, sham operated rats as controls (n = 7); Group B, acute pancreatitis induced by duodenal injection with 5% sodium cholate at a volume of 1.0 mL/kg without any other treatment; Group C, after the pancreatitis was induced as in Group B, the rats were injected intravenously with 5-FU 40 mg/kg. The animals in Groups B and C were killed at 2, 6 and 24 h after operation (n = 7), and blood samples were taken for measurement of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) (by bioassay), and interleukin-10 (IL-10), transforming growth factor-β (TGF-β) (by ELISA). The wet weight of pancreatic tissue, serum amylase levels and white blood cells were also measured.

RESULTS: Four rats in Group B and one in Group C died after pancreatitis was induced. Both pro-inflammatory cytokines (TNF-α, IL-1, IL-6) at the 2 and 6 h period and the anti-inflammatory cytokines (IL-10, TGF-β) at 24 h increased significantly (P < 0.05) in rats of Group B. After treatment with 5-FU, TNF-α, IL-1, and IL-6 in serum of rats of Group C were inhibited at 2 and 6 h after operation (P < 0.05), and IL-10, TGF-β were inhibited at 24 h compared to Group B (P < 0.05). Obvious improvements in the severity of the acute pancreatitis, including the amylase levels, wet weight of pancreatic tissue and neutrophil counts, were also observed after treatment with 5-FU.

CONCLUSION: 5-FU is an anti-metabolic and immunosuppressive agent which can minimize the abnormal immune cytokine response and relieve the pathological disorders associated with experimental acute pancreatitis.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Pancreatitis; Cytokines; Systemic inflammatory response syndrome; 5-Fluorouracil

Peer reviewer: Christos Dervenis, Professor, Christos Dervenis, MD, FRCS, Head, 1st Department of Surgery, Agia Olga Hospital, Athens 14233, Greece

Chen XL, Ciren SZ, Zhang H, Duan LG, Wesly AJ. Effect of 5-FU on modulation of disarrangement of immune-associated cytokines in experimental acute pancreatitis. World J Gastroenterol 2009; 15(16): 2032-2037 Available from: URL: http://www.wjgnet.com/1007-9327/15/2032.asp DOI: http://dx.doi.org/10.3748/wjg.15.2032

INTRODUCTION

5-Fluorouracil (5-FU) has been used in the treatment of acute pancreatitis both experimentally and clinically since 1970[1-3]. Several animal experiments of pancreatitis treated with 5-FU have shown very promising results, especially for a decrease in amylase and trypsin levels and improvement of survival rates[2,3]. It has been reported that prolongation of pancreatic allograft survival and protection from pancreatitis in dog pancreas allografts occur after pretreatment with 5-FU[4]. A prospective controlled clinical study was carried out in 1983, which showed that treatment with 5-FU was of some benefit in the modulation of clinical pancreatitis[5]. Clinical studies conducted in Russia documented that both the mortality and the length of hospital stay were reduced after treatment with 5-FU[6-8]. In China, administration of 5-FU
has been considered as an adjuvant therapy of acute pancreatitis. More than one thousand patients with acute pancreatitis have received the treatment of 5-FU each year in China, with many reports showing some beneficial results.\(^{[1-3,5,9,10]}\) While there are many studies focusing on clinical observation of 5-FU treatment, research involving the mechanisms is sparse, but many investigators felt that the effect of 5-FU treatment for pancreatitis was derived from inhibiting the activities of pancreatic enzymes.\(^{[20-24]}\) Recently, it has been increasingly clear that disarrangement of the immune system during acute pancreatitis is the determining factor in the pathophysiological process.\(^{[5,9-10]}\) Considering that abnormal inflammation-associated cytokines (pro- and anti-inflammatory cytokines) present a primary index of disarrangement of immune function during acute pancreatitis,\(^{[28-24]}\) we designed this animal experiment to investigate the inhibiting effect of 5-FU on the inflammatory cytokines (TNF-\(\alpha\), IL-1, IL-6) and anti-inflammatory cytokines (IL-10, TGF-\(\beta\)) in acute pancreatitis and the relationship between the level of cytokines in serum and degree of acute pancreatitis.

**MATERIALS AND METHODS**

**Materials**

Sodium cholate was purchased from Sigma. Rat TGF-\(\beta\) and IL-10 EIA kits were purchased from R & D Co., USA. Reagents and instruments for measurement of TNF-\(\alpha\), IL-1, IL-6 were supplied by the Immunology Department, Medical Center, Sichuan University. Sprague Dawley (SD) rats were purchased from the Experimental Animal Center, Sichuan University, China.

**Animals and pancreatitis model**

SD rats (male, 10-12 wk-old, weighing 200-250 g) were fasted but allowed to drink water freely for 16 h before the experiment. They were allocated randomly into three Groups: Group A (\(n = 7\)), sham operation, with the same laparotomy under general anesthesia as Group B and sham intubation of the choledo-pancreatic duct but without any drug injection. These rats were killed 2 h later. In Group B, the acute pancreatitis Group, SD rats were injected with 5% sodium cholate into the choledo-pancreatic duct at a volume of 1.0 mL/kg using a midline laparotomy under general anesthesia and strict aseptic conditions to establish acute pancreatitis; Group C, acute pancreatitis with treatment of 5-FU. After pancreatitis was induced as in Group B, the rats were injected intravenously 40 min later with 5-FU 40 mg/kg. (This dosage is equal to 10-15 mg/kg in humans based on body surface). All the animals in Groups B and C were resuscitated post-operatively with 0.9% sodium chloride, subcutaneously at 6 mL/kg per hour. The surviving animals in Groups B and C were killed at 2, 6 and 24 h after operation (\(n = 7\)). Blood samples were taken for measurement of TNF-\(\alpha\), IL-1, IL-6, IL-10, and TGF-\(\beta\). The wet weight of pancreatic tissue was 0.5 ± 0.09 g. At 2, 6 and 24 h after operation, the total and differential count of leukocytes, were also measured and recorded.

All the measurements of cytokines were done in the Department of Immunology, Medical Center, Sichuan University. IL-1, IL-6 and TNF-\(\alpha\) were measured by bioassay according to Lederer, Kimura and Heo’s methods.\(^{[25-27]}\) IL-10 and TGF-\(\beta\) were measured by EIA according to the manufacturer’s instructions. Amylase and white blood cells levels were tested by the Clinical Laboratory, Medical Center, Sichuan University.

**Statistical analysis**

We used the analysis of variance for continuous variables to detect variation among Groups with the same time (version 9.0 SAS Institute, Inc, Cary, NC). Statistical significance was regarded as \(P < 0.05\). All reported \(P\) values are 2 sided. Continuous variables were described as mean ± SD unless stated.

**RESULTS**

There were 4 deaths in Group B at the 4, 6, 8, 15 h time points after pancreatitis was induced, and one rat died in Group C at 12 h.

In Group A, TNF-\(\alpha\), IL-1, IL-6, IL-10, and TGF-\(\beta\) in the serum of rats were detected as basic concentrations because of tissue injury resulting from sham operation. After acute pancreatitis was induced in Group B, the concentrations of pre-inflammatory cytokines such as TNF-\(\alpha\), IL-1 and IL-6 in the serum of rats increased rapidly. At the 2, 6, and 24 h periods, TNF-\(\alpha\), IL-1, IL-6 in Group B and Group C were significantly higher than that of Group A (\(P < 0.05\)). After pancreatitis was treated with 5-FU, the concentrations of IL-1 and IL-6 in serum of rats in Group C were significantly lower than those of Group B at 2, 6 h periods after operation (\(P < 0.05\)). At 24 h after operation, the concentration of TNF-\(\alpha\) in serum of Group C was also lower than that of Group B (\(P < 0.05\)). But at the time point 24 h, TNF-\(\alpha\), IL-1, IL-6 in Groups B and C still maintained a higher level and there was no significant difference between these two Group (Table 1). We presume that this is due to 5-FU being quickly catabolised in the body so that its regulating action disappeared swiftly and was not maintained up to 24 h. Serum IL-10 and TGF-\(\beta\) were significant higher in Group B and Group C than in Group A at the 24 h period (\(P < 0.05\)). At 24 h after operation, compared to Group B, the concentrations of IL-10 and TGF-\(\beta\) in serum of rats of Group C were decreased significantly (\(P < 0.05\)) (Table 2). When we collected the samples of pancreas after rats were sacrificed, we found that samples of pancreas in Group C were more obviously swollen and congested than those of Groups A and C. Since some doctors have investigated histopathological change of pancreas in detail in similar animal experiments with 5-FU, here we only chose the wet weight of pancreas (index of pancreatic edema) and serum amylase as indexes of severity of acute pancreatitis. In the control Group, the weight of pancreatic tissue was 0.5 ± 0.09 g. At 2, 6, 24 h
Table 1: Change of level of pro-inflammatory cytokines in serum

| Group | IL-1 (ng/mL) | IL-6 (IU/mL) | TNF (IU/mL) |
|-------|--------------|--------------|-------------|
| A     | 0.26 ± 0.06  | 34.5 ± 6.40  | 11.82 ± 1.87 |
| B (2 h)| 1.02 ± 0.12  | 98.83 ± 12.43| 43.67 ± 5.72 |
| (6 h)| 1.13 ± 0.17   | 101.0 ± 15.07| 48.67 ± 5.32 |
| (24 h)| 1.15 ± 0.13   | 127.17 ± 13.91| 55.33 ± 12.79|
| C (2 h)| 0.80 ± 0.07   | 76.33 ± 7.43  | 35.33 ± 4.50  |
| (6 h)| 0.70 ± 0.06   | 74.33 ± 11.02 | 31.17 ± 4.54  |
| (24 h)| 1.02 ± 0.18   | 112.67 ± 20.06| 42.33 ± 11.64|

GROUPS: A: Sham operation Group without acute pancreatitis and drug injection; B: Acute pancreatitis Group; C: Acute pancreatitis with 5-FU group. 2 h, 6 h, 24 h: 2 h, 6 h, 24 h after operation. *Compared to sham operation Group (Group A), P < 0.05; †Compared to pancreatitis Group (Group B), P < 0.05.

Table 2: Change of level of anti-inflammatory cytokines in serum

| Group | IL-10 (pg/mL) | TGF-β (pg/mL) |
|-------|---------------|---------------|
| A     | 22.05 ± 14.87 | 60.40 ± 13.20 |
| B (2 h)| 36.52 ± 9.76  | 64.58 ± 10.56 |
| (6 h)| 37.75 ± 6.54  | 72.87 ± 18.34 |
| (24 h)| 68.13 ± 19.90 | 103.77 ± 28.95|
| C (2 h)| 28.82 ± 6.63  | 61.15 ± 30.31 |
| (6 h)| 45.5 ± 4.72   | 80.27 ± 19.83 |
| (24 h)| 24.0 ± 7.86   | 68.52 ± 11.51 |

GROUPS: A: Sham operation Group without acute pancreatitis and drug injection; B: Acute pancreatitis Group; C: Acute pancreatitis with 5-FU group. 2 h, 6 h, 24 h: 2 h, 6 h, 24 h after operation. *Compared to sham operation Group (Group A), P < 0.05; †Compared to pancreatitis Group (Group B), P < 0.05.

DISCUSSION

More and more studies have been reported to support the theory that the severity of acute pancreatitis largely depends on the degree of secondary disarrangement of inflammatory mediators[31-34]. Damage caused by trypsin at the initial stage of acute pancreatitis is an event that triggers the systemic inflammatory response syndrome (SIRS)[28]. The pathological process of SIRS results in the clinical manifestation and damage to other organs in acute pancreatitis[35-37]. If SIRS persists and anti-inflammatory cytokines are not adequate to suppress this response, SIRS may lead to clinical sepsis and the multiple organ dysfunction syndrome, which could account for one of the main causes of death in severe pancreatitis[31,32]. Along with the production and release of large amounts of pro-inflammatory cytokines in acute pancreatitis, anti-inflammatory cytokines (IL-10, TGF-β, IL-4, IL-13) and other immunosuppressive factors (PGE2, glucocorticosteroids) start to be synthesized and released. This process could be helpful to restrain SIRS and restore the balance between the inflammatory and anti-inflammatory responses. However, when the anti-inflammatory cytokines and other immunosuppressive factors become predominant in severe acute pancreatitis, these mediators will inhibit the immunity against pathogens, especially inhibiting the cellular immune function, and this will result in the so-called compensatory anti-inflammatory response syndrome (CARS) and secondary immunological deficiency syndrome[33-35]. CARS seems to be related to the systemic infection and pancreatic abscess which develop during severe acute pancreatitis[37-39]. In the present experiment, after pancreatitis was induced in animals in Group B, pro-inflammatory cytokines such as TNF-α, IL-1 and IL-6, increased promptly, and 24 h later, the anti-inflammatory cytokines IL-10 and TGF-β increased sequentially. These results indicate that there is a pro-inflammatory process (SIRS) followed by an anti-inflammatory process in acute pancreatitis. It is thus suggested that the strategy for acute pancreatitis should not only include modulation of SIRS, but also prevention of CARS.

With this knowledge, the mechanism of treatment of acute pancreatitis should be not only focused on the modulation of SIRS, but also include the modulation of anti-inflammatory responses.
Acute pancreatitis with 5-FU should be evaluated further. Previously, it was thought that inhibition of exocrine secretion of the pancreas was a fundamental mechanism of treatment of acute pancreatitis with 5-FU. 5-FU traditionally is classified as an antimetabolite agent. 5-FU is a derivant of pyrimidine, and interferes with the synthesis of DNA and RNA both in normal cells and tumor cells. 5-FU also inhibits the synthesis of protein. Essentially, 5-FU can serve as a proteinase inhibitor and exert general action throughout the whole process of acute pancreatitis. 5-FU decreases the synthesis and secretion(244,760),(794,788) of inflammatory enzymes. Thus, it can alleviate the damage to pancreatic tissues by auto-digestion at the initial stage. This function has been confirmed previously. Results from the present experiment provide evidence that 5-FU can reduce inflammation-associated cytokines. We also presume that 5-FU inhibits proteinases produced by leukocytes, which is thought a powerful factor in development of MODS. In this study, after the treatment of acute pancreatitis with 5-FU, the activity of inflammation-related cytokines was inhibited. Meanwhile, the level of serum amylase and the weight of pancreatic tissue, factors that reflect the severity of pancreatic injury and pathological lesions, were improved significantly. This indicated that 5-FU could improve the severity of acute pancreatitis by means of modulation of disarrangement of inflammation.

We cannot recommend that 5-FU could be a definite therapy for acute pancreatitis based only on the results of this experiment. We know that there is much difference between animal experiments and clinical practice with regard to results of medical research. Deterioration of acute pancreatitis is never due to simple inflammatory processes, many factors may be involved including secondary infection, derangement of blood circulation, even genetic predisposition so that clinical effects of 5-FU on acute pancreatitis need to be validated by large scale, prospective controlled studies. But we do think that 5-FU may be a candidate for treatment of SIRS based on results of this experiment. After the immunopathogenesis of sepsis following surgical disease was elucidated, many biological products were introduced for use against the pre-inflammatory cytokines and the prevention of SIRS, such as anti-endotoxin antibodies, anti-TNF-α antibodies, IL-1 receptor antagonists and monoclonal anti-interleukin 8 antibody. None of these interventions have been shown to improve the prognosis of sepsis, possibly because many patients were already in a state in which anti-inflammatory responses dominated. Because inflammation plays an important role in the defense against pathogenic microbes and reparation of injured tissue, there is a possibility of infection becoming lethal by excessive anti-inflammatory therapy. In our study, elevated TGF-β and IL-10 levels in an animal model of acute pancreatitis predicted the potential tendency of immunodepression. We think that the decrease of both pro-inflammatory cytokines in addition to the decrease of anti-inflammatory cytokines after treatment with 5-FU may offer a rational strategy for treatment of SIRS. As observed above, 5-FU has multiple actions and biphasic regulation for the disarrangement of immunity in acute pancreatitis. Compared with the effect of single inflammatory cytokine blockers, treatment with 5-FU for SIRS and CARS in surgical disease may be the more effective method. Moreover, immunoregulation with 5-FU displayed in this experiment opens a new possible pathway towards the search for therapy of surgical systemic inflammatory response syndrome.

**COMMENTS**

**Background**

5-Fluorouracil (5-FU) has been used in the treatment of acute pancreatitis both experimentally and clinically since 1970, but the mechanisms of the therapeutic effect of 5-FU are not clear, and it has been considered an adjuvant therapy of acute pancreatitis. Recently, it has been increasingly clear that disarrangement of the immune system during acute pancreatitis is the determining factor in the pathophysiology process. Abnormal inflammation-associated cytokines (pro- and anti-inflammatory cytokines) present a primary index of disarrangement of immune function during acute pancreatitis and lead to sepsis. Sepsis revealed as self-destructive inflammatory reaction remains a puzzle worldwide with respect to its pathological mechanism and corresponding preventive and therapeutic strategies for the clinicians.

**Research frontiers**

The hotspots of sepsis therapy research have focused on the modification of the inflammatory factors existing in sepsis, ever since the basis of sepsis injuries were revealed as self-destructive inflammatory reactions. Although with some frustrations, research is still focused on the immune regulation.

**Innovations and breakthroughs**

The authors designed an acute pancreatitis animal model to investigate the inhibiting effect of 5-FU on the inflammatory cytokines (TNF-α, IL-1, IL-6) and anti-inflammatory cytokines (IL-10, TGF-β) in acute pancreatitis and the relationship between the level of cytokines in serum and degree of acute pancreatitis. The experiments obtained encouraging results that the 5-FU, as an immunosuppressive agent, could be effective because of its regulation of immunity. Previously it was thought that inhibition of exocrine secretion of pancreas was a fundamental mechanism of treatment of acute pancreatitis with 5-FU. This trial reveals the immunoregulatory effect of 5-FU in the therapy of acute pancreatitis. The majority of research in the last 20 years on sepsis focused on the blocking agents of inflammatory factors, which failed in clinical trials. According to their trial, 5-FU has multiple actions and biphasic regulation for disarrangement of immunity in acute pancreatitis. Compared with the effects of single inflammatory cytokine blockers, treatment with 5-FU for SIRS and CARS in surgical disease may be the more effective method.

**Applications**

This trial reveals the potential of 5-FU treatment against acute pancreatitis and sepsis in the clinic. 5-FU is cheaper and safer as a typical immunosuppressive agent, and has been a familiar therapy compared to new medicines.

**Terminology**

5-FU is one of the first pyrimidine antagonists to be synthesized as an antineoplastic agent; 5-FU in vivo is transformed enzymatically into 5-fluoro-2'-deoxyuridine-5-monophosphate (FdUMP), which covalently binds and inhibits thymidylate synthase (TS) and interferes with the synthesis of nucleic acids and prevents the cell from making DNA. Another bio-transformed form of 5-FU, 5-fluorouridine-5-triphosphate (FUTP), also incorporates itself into RNA and disrupts biosynthesis of the cell. 5-FU decreases the synthesis and secretion of the pancreas was a fundamental mechanism of treatment of acute pancreatitis with 5-FU. This trial provides evidence that 5-FU can reduce the synthesis and secretion of the pancreas by auto-digestion at the initial stage. This function has been confirmed previously. Results from the present experiment provide evidence that 5-FU can reduce inflammation-associated cytokines. We also presume that 5-FU inhibits proteinases produced by leukocytes, which is thought a powerful factor in development of MODS. In this study, after the treatment of acute pancreatitis with 5-FU, the activity of inflammation-related cytokines was inhibited. Meanwhile, the level of serum amylase and the weight of pancreatic tissue, factors that reflect the severity of pancreatic injury and pathological lesions, were improved significantly. This indicated that 5-FU could improve the severity of acute pancreatitis by means of modulation of disarrangement of inflammation.

We cannot recommend that 5-FU could be a definite therapy for acute pancreatitis based only on the results of this experiment. We know that there is much difference between animal experiments and clinical practice with regard to results of medical research. Deterioration of acute pancreatitis is never due to simple inflammatory processes, many factors may be involved including secondary infection, derangement of blood circulation, even genetic predisposition so that clinical effects of 5-FU on acute pancreatitis need to be validated by large scale, prospective controlled studies. But we do think that 5-FU may be a candidate for treatment of SIRS based on results of this experiment. After the immunopathogenesis of sepsis following surgical disease was elucidated, many biological products were introduced for use against the pre-inflammatory cytokines and the prevention of SIRS, such as anti-endotoxin antibodies, anti-TNF-α antibodies, IL-1 receptor antagonists and monoclonal anti-interleukin 8 antibody. None of these interventions have been shown to improve the prognosis of sepsis, possibly because many patients were already in a state in which anti-inflammatory responses dominated. Because inflammation plays an important role in the defense against pathogenic microbes and reparation of injured tissue, there is a possibility of infection becoming lethal by excessive anti-inflammatory therapy. In our study, elevated TGF-β and IL-10 levels in an animal model of acute pancreatitis predicted the potential tendency of immunodepression. We think that the decrease of both pro-inflammatory cytokines in addition to the decrease of anti-inflammatory cytokines after treatment with 5-FU may offer a rational strategy for treatment of SIRS. As observed above, 5-FU has multiple actions and biphasic regulation for the disarrangement of immunity in acute pancreatitis. Compared with the effect of single inflammatory cytokine blockers, treatment with 5-FU for SIRS and CARS in surgical disease may be the more effective method. Moreover, immunoregulation with 5-FU displayed in this experiment opens a new possible pathway towards the search for therapy of surgical systemic inflammatory response syndrome.

**REFERENCE**

1. Johnson RM, Barone RM, Newson BL, Das Gupta TK.
Nyhus LM. Treatment of experimental acute pancreatitis with 5-fluorouracli (5-FU). Am J Surg 1973; 125: 211-222

2 Mann SK, Mann NS. Effect of chlorophyll-a, fluorouracil, and pituitrin on experimental acute pancreatitis. Arch Pathol Lab Med 1979; 103: 79-81

3 Kinami Y, Miyazaki I, Kawamura M, Sugii M, Sakane Y. Clinical effects of anticancer drugs to pancreatic diseases as protein synthesis inhibitors. Gastroenterol Jpn 1976; 11: 123-132

4 Castellanos J, Maniglio F, Toledo-Pereyra LH, Chatney CH, Lillehei RC. Consistent protection from pancreatitis in canine pancreas allografts treated with 5-fluorouracil. J Surg Res 1975; 18: 350-354

5 Sarriao IA. 5-Fluorouracil in the treatment of acute pancreatitis. Am J Surg 1983; 145: 349-352

6 Aliyev RG, Magomedov AV, Buttav KZ. [Treatment of acute pancreatitis with 5-fluorouracil] Vestn Khir Im I I Grek 1978; 121: 61-64

7 Nishanov KhT, Kaem RI. [ Morphology of experimental acute pancreatitis during treatment with 5-fluorouracil] Biull Eksp Biol Med 1980; 89: 366-368

8 Laptev YV. [5-fluorouracil treatment of destructive pancreatitis] Khirurgiya (Mosk) 1981; 67-73

9 Cui RL, Wang HL, Gao FY, Ding SL. The primary observation on 5-fluorouracil in treatment of acute pancreatitis. Zhongguo Shi Yong Neike Za Zhi 1983; 3: 246

10 Zhou MT, Zhang QY, Peng SY. Regional intra-arterial infusion with 5-fluorouracil or octreotide for treatment of acute necrotic pancreatitis. Chin J Hepatobiliary Surg 1999; 5: 92-94

11 Gu FY, Liu YL, Pan RW. Local arterial infusion of 5-FU in treatment of acute pancreatitis. Chin J Surg 1995; 39: 339-341

12 Chen BQ, Zhong NL, Liu CT, Fan W, Hao HS, Zhang T. The mechanism of 5-fluorouracil in protection of kidney from injury of severe acute pancreatitis. Chin J Crit Care Med Surg 2006; 9: 215-217

13 de Beaux AC, Ross JA, Mainjap YJ, Fearon KC, Carter DC. Proinflammatory cytokine release by peripheral blood mononuclear cells from patients with acute pancreatitis. Br J Surg 1996; 83: 1071-1075

14 McKay CJ, Gallagher G, Brooks B, Imrie CW, Baxter JN. Increased monocyte cytokine production in association with systemic complications in acute pancreatitis. Br J Surg 1996; 83: 919-923

15 de Beaux AC, Goldie AS, Ross JA, Carter DC, Fearon KC. Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg 1996; 83: 349-353

16 Brivet FG, Emilie D, Galanaud P. Pro- and anti-inflammatory cytokines during acute severe pancreatitis: an early and sustained response, although unpredictable of death. Parisian Study Group on Acute Pancreatitis. Crit Care Med 1999; 27: 749-755

17 Normann Y, Yang J, Fink G, Carter G, Ku G, Denham W, Livingston D. Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Interferon Cytokine Res 1997; 17: 113-118

18 Messmann H, Vogt W, Falk W, Vogl D, Zirngibl H, Leser HG, Scholmerich J. Interleukins and their antagonists but not TNF and its receptors are released in post-ERP pancreatitis. Eur J Gastroenterol Hepatol 1998; 10: 611-617

19 Mayer J, Rau B, Gansauge F, Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000; 47: 546-552

20 Schlag G, Redl H. Mediators of injury and inflammation. World J Surg 1996; 20: 406-410

21 Brady M, Christmas S, Sutton R, Neoptolemos J, Slavin J. Cytokines and acute pancreatitis. Baillieres Best Pract Res Clin Gastroenterol 1999; 13: 265-289

22 Osman MG, Gesser B, Mortensen JT, Matsuhashi K, Jensen SL, Larsen CG. Profiles of pro-inflammatory cytokines in the serum of rabbits after experimentally induced acute pancreatitis. Cytokine 2002; 17: 53-59

23 Pizzarri R, Billi P, Miniero R, Barakat B. Serum interleukin-10 in human acute pancreatitis. Dig Dis Sci 1997; 42: 1469-1472

24 Konturek PC, Dembinski A, Warzezka Z, Czerwaczek P, Konturek SJ, Stachura J, Hahn EG. Expression of transforming growth factor-beta 1 and epidermal growth factor in caerulein-induced pancreatitis in rat. J Physiol Pharmacol 1997; 48: 59-72

25 Lederer JA, Czapurnyck JS. Production and purification of bovine monocyte-derived interleukin 1. Vet Immunol Immunopathol 1989; 23: 201-211

26 Kimura H, Ishibashi T, Shikama Y, Okano A, Akiyama Y, Uchida T, Maruyama Y. Interleukin-1 beta (IL-1 beta) induces thrombocytosis in mice: possible implication of IL-6. Blood 1990; 76: 2493-2500

27 Heo DS, Park JG, Hata K, Day R, Herberman RB, Whiteside TL. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antimullerian cytotoxicity. Cancer Res 1990; 50: 3681-3690

28 Petersson U, Borgerstrom A, Olsson F, Fork FT, Toth E. Enzyme leakage, trypsinogen activation, and inflammatory response in endoscopic retrograde cholangiopancreatography-induced pancreatitis. Pancreas 2002; 24: 321-328

29 Mozo G, del Olmo ML, Caro-Paton A, Reyes E, Manzano L, Belmonte A, Alvarez-Mon M. Lung changes and cytokine levels in a model of experimental acute pancreatitis. Rev Esp Enferm Dig 2002; 94: 53-66

30 Hirota M, Nozawa F, Okabe A, Shibata M, Beppu T, Shimada S, Egami H, Yamaguchi Y, Ikei S, Okajima T, Okamoto K, Ogawa M. Relationship between plasma cytokine concentration and multiple organ failure in patients with acute pancreatitis. Pancreas 2000; 21: 141-146

31 Goris RJ, MODS/SIRS: result of an overwhelming inflammatory response? World J Surg 1996; 20: 418-421

32 Kim PK, Deutschman CS. Inflammatory responses and mediators. Surg Clin North Am 2000; 80: 885-894

33 Hirota M, Nozawa F, Okabe A, Shibata M, Kuwata K, Ogawa M. [SIRS and CARs: discussion based on the pathologic condition of acute pancreatitis] Rinsho Byori 2000; 48: 527-532

34 Murata A, Kikuchi M, Mishima S, Sakaki S, Goto H, Matsuoka T, Tanaka H, Yukioka T, Shimazaki S. [Cytokine imbalance in critically ill patients: SIRS and CARs] Nippon Geka Gakkai Zasshi 1999; 100: 414-418

35 Ono S, Ichikura T, Mochizuki H. [The pathogenesis of the systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome following surgical stress] Nippon Geka Gakkai Zasshi 2003; 104: 499-505

36 Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 2001; 16: 83-96

37 Simovit MO, Bonham MJ, Abu-Zidan FM, Windsor JA. Anti-inflammatory cytokine response and clinical outcome in acute pancreatitis. Crit Care Med 1999; 27: 2662-2665

38 Ogawa M. Acute pancreatitis and cytokines: “second attack” by septic complication leads to organ failure. Pancreas 1998; 16: 312-315

39 Farkas G, Marton J, Mandi Y, Szeredkenyi E, Balogh A. Progress in the management and treatment of infected pancreatic necrosis. Scand J Gastroenterol Suppl 1998: 228: 31-37

40 Norman JG, Franz MG, Fink GS, Messina J, Fabri PJ, Gower WR, Carey LC. Decreased mortality of severe acute pancreatitis after proximal cytokine blockade. Ann Surg 1995; 221: 625-631; discussion 631-634

41 Hirano T. Cytokine suppressive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop. J Surg Res 1999; 81: 224-229

42 Dinarello CA, Gelbard JA, Wolff SM. Anticytokine strategies in the treatment of the systemic inflammatory
response syndrome. JAMA 1993; 269: 1829-1835
43 Denham W, Norman J. The potential role of therapeutic cytokine manipulation in acute pancreatitis. Surg Clin North Am 1999; 79: 767-781
44 Bhatia M, Brady M, Zagorski J, Christmas SE, Campbell F, Neoptolemos JP, Slavin J. Treatment with neutralising antibody against cytokine induced neutrophil chemoattractant (CINC) protects rats against acute pancreatitis associated lung injury. Gut 2000; 47: 838-844
45 Clark MA, Plank LD, Connolly AB, Streat SJ, Hill AA, Gupta R, Monk DN, Shenkin A, Hill GL. Effect of a chimeric antibody to tumor necrosis factor-alpha on cytokine and physiologic responses in patients with severe sepsis—a randomized, clinical trial. Crit Care Med 1998; 26: 1650-1659
46 Fisher CJ Jr, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, Abraham E, Schein RM, Benjamin E. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996; 334: 1697-1702
47 Ziegler EJ, Fisher CJ Jr, Sprung CL, Straube RC, Sadoff JC, Foulke GE, Wortel CH, Fink MP, Dellinger RP, Teng NN. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med 1991; 324: 429-436
48 Fisher CJ Jr, Slotman GJ, Opal SM, Pribble JP, Bone RC, Emmanuel G, Ng D, Bloedow DC, Catalan MA. Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: a randomized, open-label, placebo-controlled multicenter trial. Crit Care Med 1994; 22: 12-21
49 Fink G, Yang J, Carter G, Norman J. Acute pancreatitis-induced enzyme release and necrosis are attenuated by IL-1 antagonism through an indirect mechanism. J Surg Res 1997; 67: 94-97
50 Osman MO, Kristensen JU, Jacobsen NO, Lausten SB, Deleuran B, Deleuran M, Gesser B, Matsushima K, Larsen CG, Jensen SL. A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits. Gut 1998; 43: 232-239
51 Iwagaki H, Hizuta A, Uomoto M, Takeuchi Y, Kohoka H, Okamoto T, Tanaka N. Clinical value of cytokine antagonists in infectious complications. Res Commun Mol Pathol Pharmacol 1997; 96: 25-34
52 Remick DG. Cytokine therapeutics for the treatment of sepsis: why has nothing worked? Curr Pharm Des 2003; 9: 75-82

S- Editor Li LF  L- Editor Logan S  E- Editor Ma WH