Influence of Different Irrigation Methods and Water Salinity Levels on Tomato (Solanum lycopersicum) Growth under Vertisols of Tungabhadra Project Command

R.H. Rajkumar1*, M. Nemichandrappa1, T. Anilkumar Dandekar1, M.S. Ayyanagowdar2, B.S. Polisgowdar2, Satyanarayana Rao3 and J. Vishwanatha4

1Department of Soil and Water Engineering, CAE, UAS, Raichur, India
2Department of Irrigation and Drainage Engineering, CAE, UAS, Raichur, India
3Main Agricultural Research Station, UAS, Raichur, India
4AICRP on Saline water scheme, A.R.S, Gangavathi, UAS Raichur, India

* Corresponding author

Abstract

The field experiment was carried out at Agricultural Research station, Gangavathi (Karnataka), during 2018-19 and 2019-20 to study the influence of M0–furrow, M1–surface drip and M2–subsurface drip irrigation techniques and irrigation salinity levels of S0–0.65 dS m⁻¹ (normal water), S1–2 dS m⁻¹, S2–3 dS m⁻¹, S3–4 dS m⁻¹ and S4–5 dS m⁻¹ on tomato (Solanum lycopersicum) growth parameters under Vertisols of Tungabhadra Project Command. During two years, the growth attributes such as plants per treatments, plant height during 30, 60, 90 and 120 days after transplanting (DAT), number of branches per plant during 30, 60, 90 and 120 DAT, number of fruits were significantly influenced by the different irrigation techniques and different irrigation saline water levels. The maximum number of plants per treatments, plant height and number of branches per plant during 30, 60, 90 and 120 DAT were recorded higher under subsurface and surface drip as compared to furrow irrigation except plant height during 30 DAT. Similarly, under different irrigation saline water levels, maximum number of plants, plant height and branches were recorded under 0.65 dS m⁻¹ and 2 dS m⁻¹ treatment and least was recorded in 5 dS m⁻¹ treatment. From the study it was concluded that the growth of tomato was good under subsurface drip and surface drip as compared to furrow irrigation under main treatments and under sub treatments, 0.65 and 2 dS m⁻¹ treatments performed better as compared to higher salinity levels. Whenever there is shortage of fresh water, saline water upto 2 dS m⁻¹ can be used to grow tomato without much effect on the crop growth.

Keywords

Tomato, Subsurface drip, Surface drip, Plant height, Branches, Salinity

Introduction

The world’s oceans may seem unbounded, the amount of fresh water virtually available to the mankind is the most finite. The fresh water is about 2.5 per cent (3.5 crore km³) of the total global waters which is distributed in glaciers and snow lakes (69%), lake and rivers (0.3%). The salt water is about 97.5 per cent (136.5 crore km³) of which 0.7% in the form of soil moisture and 30% as ground water. Human use of fresh water has
increased more than 35 fold over the past three centuries. The inland saline water has now great potential for the use in irrigation which the application of the adaptable water use technologies as a non conventional water resource (Gleick, 1993). Saline water irrigation is practiced in several regions of the world (Rhoades et al, 1992), where water scarcity prevents the use of freshwater for irrigation. Poor quality water constitutes 32-84% of ground water surveyed in different parts of India is related either saline or alkali (Minhas, 1996).

If saline water is skillfully used for irrigation, it can be beneficial for agricultural production, particularly in fruits and vegetables. The successful use of low quality water requires the selection of salt tolerant crops, and the application of a suitable water management strategy. There is a necessity of development of proper irrigation management practices like drip irrigation techniques, so that poor quality saline water can be used with minimum adverse effect on crop yield.

Surface drip irrigation (SD) and subsurface drip irrigation (SDI) methods can be very effective in applying irrigation without leaf wetting.

Of course, more advanced irrigation technologies such as SDI can offer greater achievable irrigation application efficiency and distribution uniformity. In SDI, small amount of water is applied to the soil through the drippers placed below the soil surface with discharge rates same as surface drip irrigation. Subsurface drip irrigation helps in reducing the evaporation loss, very little interference with cultivation or cultural practices, possible increase in longevity of laterals and drippers, increases water use efficiency, saves labour and water saving of up to 30-70%. It can also be used in hilly regions and on saline or alkali soils (Mane et al., 2008).

During the last few years, irrigated tomato has been expanding rapidly in the semi-arid part of Karnataka around shallow to deep wells having a salinity of more than 2 dS m$^{-1}$ with normal irrigation methods. This leading to land becomes more prone to the salt affected. Tomato is considered moderately sensitive to salt stress, since it can tolerate an ECe (EC of the saturated soil extract) of about 2.5 dS m$^{-1}$ and fruit yield decrease by 10% with each unit of ECe increasing above the threshold value (Maas, 1986; FAO, 2005). Campos et al., (2006) stated that the maximum soil salinity level tolerated by tomato is 2.5 dS m$^{-1}$, without reduction in the growth. However, there is no much information available on the effect of different irrigation techniques under saline water growth of tomato crop in Vertisols under TBP command area. Therefore to see the influence of different irrigation methods and use of different saline water levels on growth of tomato, a study has been conducted.

Materials and Methods

Description of study area

The experiment was carried out at Agricultural Research Station (A.R.S), Gangavathi. The site is located in Koppal district of Karnataka state of India and falls in the Northern Dry Zone viz., Zone-III of agro ecological region 6 in the state. The field’s location corresponds to 150 27' 22.15" N latitude and 760 31’ 54.83” E longitudes with elevation of 423.17 m above mean sea level (msl). According to the data at Meteorological Department of the A.R.S, Gangavathi, the mean annual rainfall based on 38 years record (1979-2015) is 530.9 mm (Anon., 2017). Although, monsoonal climate sets in early June, rains during September-October (Northeast) are more assured in this region. Normally dry weather prevails over entire summer months with hottest period observed
during April-May. During the first year of study period, the total rainfall was 112.1 mm and out of it, 107.9 mm was in the month of May, 2018 and during second season, the total rainfall was only 13.2 mm (3.6 mm in January and 9.6 mm in February month, 2019). The maximum open pan evaporation of 6.0 mm day\(^{-1}\) was recorded in the months of March, 2018 and April, 2018 with the minimum evaporation of 0.9 mm day\(^{-1}\) in the month of January, 2018. During second year, the maximum open pan evaporation of 6.0 mm day\(^{-1}\) was recorded in the month of April, 2018 and the minimum evaporation of 1.0 mm day\(^{-1}\) in the month of December, January, February and March, 2019.

The texture of the soil was determined by international pipette method. The soils texture of the study area is classified as clay with 33.6 per cent sand, 22.6 per cent silt and 43.8 per cent clay at 0-30 cm depths, 25.1 per cent sand, 27.6 per cent silt and 47.3 per cent clay at 30-60 cm depths and 17.5 per cent sand, 27.2 per cent and 55.3 per cent clay at 60-90 cm depths. The density of soil was found to be 1.26, 1.25 and 1.23 g cm\(^{-3}\) at 0-30, 30-60 and 60-90 cm depths respectively. The irrigation water used for experiment was from irrigation pond water, where water was stored through the field channels of seventeen distributory, left bank canal of TBP command. This water was analyzed for pH and EC and was found to be 7.10 and 0.65 dS m\(^{-1}\) respectively.

The three different irrigation techniques and five different saline levels of irrigation water were kept as main and sub treatments respectively. The main treatments were M\(_0\)–Furrow irrigation, M\(_1\)–Surface drip irrigation and M\(_2\)–Subsurface drip irrigation and sub treatments were S\(_0\)–Normal (0.65 dS m\(^{-1}\)) water, S\(_1\)=2 dS m\(^{-1}\), S\(_2\)=3 dS m\(^{-1}\), S\(_3\)=4 dS m\(^{-1}\) and S\(_4\)=5 dS m\(^{-1}\). Four water tanks (2, 3, 4 and 5 dS m\(^{-1}\)) of 2000 liter capacity and one tank (normal water i.e. 0.65 dS m\(^{-1}\)) with a capacity of 2500 liter were installed on 8.0 (L) x 2.4 (W) m cement concrete platform. The filtered water was connected to five water tanks with separate control valves for filling.

After filling up the tanks, a known quantity of sodium chloride (NaCl) was calculated and added (Soria and Cuartero, 1998) to get desired EC\(_{iw}\) of saline water of 2, 3, 4 and 5 dS m\(^{-1}\) as per the calculation procedure given by Bibha Rani and Sharma (2015). Every time after adding NaCl to the tanks, the irrigation water was thoroughly mixed. Under subsurface drip treatment, drip laterals were buried at a depth of 20 cm below the ground. The Tomato nursery plants were sown with plant to plant and row to row distance of 0.4 and 1.2 m respectively. To meet the nutrient requirement and as per the recommended dose of fertilizer, the nitrogen, phosphorus and potassium at the rate 250:250:250 kg ha\(^{-1}\) were supplied from the different fertilizers through manually for furrow irrigated plots and the water soluble fertilizers like Urea, 19:19:19, KNO\(_3\) and CaNO\(_3\) were applied in splits through irrigation using fertilizer injection system (Venturi) for drip irrigated treatments at different growth stages. All agronomic practices except method of irrigation and application of fertilizer were kept same in all treatments. Manual weeding was done two times during the crop cycle.

Tomato growth attributes

The different observations were recorded during growth period of tomato crop for two years (Two seasons). After one month, a well established tomato plants were counted and noted for all the treatments to know the influence of different treatments on plant population. Plant height was recorded at intervals of 30, 60, 90 and 120 days after transplanting (DAT). Height was measured from the base of the plant to the top of the
plant with the help of meter scale. Five plants were tagged at random in each treatment for recording the number of branches at an interval of 30 days from the date of transplanting. Number of branches per plant was counted at 30, 60, 90 and 120 DAT. Average number of branches was calculated. Total number of fruits per plant was recorded from each tagged plants during every picking. After the final harvest, the numbers of fruit picked from individual plots were totaled.

Results and Discussion

Every time after filling up of the water tanks, a known quantity of salt (NaCl) were added to obtain desire level of salinity and different saline water was applied through furrow, surface drip and subsurface drip irrigation methods to different treatments. The results of growth parameters of tomato which are influenced by different irrigation techniques and saline water levels were discussed below.

Number of established plants

During first season, among different irrigation techniques, significantly higher established plants were observed in M$_2$ (36.6) treatment followed by M$_1$ (36.47) and least in M$_0$ (35.33). In different irrigation water salinity levels, significantly higher plants were observed in S$_0$ (37.11) followed by S$_1$ (36.89) and least in case of S$_4$ (34.33).

Interaction effect showed no significant effect. During second season of the crop, significantly higher established plants were observed in M$_2$ (36.53) treatment followed by M$_1$ (36.40) and least in M$_0$ (35.33). In different irrigation water salinity levels, significantly higher plants were observed in S$_0$ (37.33) followed by S$_1$ (37.22) and least in case of S$_4$ (34.0). Interaction effect found to be non significant (Table 1).

Plant height

In general, height of the plants across the growth stages showed increasing trend irrespective of irrigation technique and irrigation saline water levels (Table 2 and 3) in both the season. The pooled data of two season shows that at 30, 60, 90 and 120 DAT, M$_2$ (55.45, 84.42, 106.94 and 111.03 cm respectively) recorded significantly higher plant height followed by M$_1$ (54.37, 82.71, 105.97 and 110.51 cm respectively) and least in case of M$_0$ (50.41, 75.50, 98.94 and 100.29 cm respectively). Among irrigation salinity levels, height of the plant varied significantly at all four stages of the crop. The treatment S$_0$ recorded significantly higher plant height (58.31, 85.66, 112.25 and 116.13 cm respectively) followed by S$_1$ (56.78, 83.73, 111.61 and 115.5 cm respectively) and least in case of S$_4$ (47.62, 74.28, 88.81 and 95.45 cm, respectively). The highest salinity levels of irrigation reduced the plant height as compared to normal water. The above findings were in proximity with Malash *et al.*, 2005. The interaction effect found to be non significant (Table 2 and 3).

Number of branches per plant

The pooled data of two season indicates that at 30, 60, 90 and 120 DAT, M$_2$ recorded significantly higher branches (7.2, 11.71, 15.53 and 17.47 per plant, respectively) followed by M$_1$ (7.16, 11.57, 14.98 and 17.25 per plant respectively) and least in case of M$_0$ (6.62, 10.41, 12.76 and 14.54 per plant respectively). Among irrigation salinity levels, yield levels, number of branches varied significantly at all four stages of the crop. The treatment S$_0$ recorded significantly higher branches (7.94, 12.64, 15.97 and 18.23 respectively) followed by S$_1$ (7.71, 12.18, 15.86 and 18.1 respectively) and least in case of S$_4$ (5.96, 9.99, 12.78 and 14.57 per plant, respectively). The interaction effect found to be non significant (Table 4 and 5).
Table 1: Number of established plants per treatment and number of fruits as influenced by different irrigation techniques and saline water.

Treatment details	Number of plants per treatment	Number of fruits per plant				
	2018	2019	Pooled	2018	2019	Pooled
Irrigation techniques (M)						
M₀	35.33	35.33	35.33	47.20	45.73	46.47
M₁	36.47	36.40	36.43	58.47	57.40	57.93
M₂	36.60	36.53	36.57	59.20	58.13	58.67
SE m ±	0.04	0.05	0.04	0.32	0.37	0.26
C.D (p=0.05)	0.11	0.15	0.11	0.94	1.07	0.75
Irrigation saline water levels (S)						
S₀	37.11	37.33	37.22	62.11	61.11	61.61
S₁	36.89	37.22	37.06	60.89	59.78	60.33
S₂	36.44	36.22	36.33	54.44	53.67	54.06
S₃	35.89	35.67	35.78	52.56	51.22	51.89
S₄	34.33	34.00	34.17	44.78	43.00	43.89
SE m ±	0.07	0.09	0.08	0.47	0.71	0.52
C.D (p=0.05)	0.21	0.26	0.23	1.35	2.04	1.49
Interaction (MₓS)						
M₀ S₀	36.67	36.67	36.67	53.00	52.00	52.50
M₀ S₁	35.67	35.00	35.83	51.67	50.33	51.00
M₀ S₂	35.67	35.67	35.67	49.33	47.67	48.50
M₀ S₃	35.00	35.00	35.00	45.33	44.00	44.67
M₀ S₄	33.67	33.33	33.50	36.67	34.67	35.67
M₁ S₀	37.00	37.33	37.17	66.33	65.33	65.83
M₁ S₁	37.00	37.67	37.50	65.33	64.33	64.83
M₁ S₂	36.67	36.33	36.50	56.33	56.33	56.33
M₁ S₃	36.67	36.33	36.50	56.00	54.33	55.17
M₁ S₄	34.67	34.33	34.50	48.33	46.67	47.50
M₂ S₀	37.67	38.00	37.83	67.00	66.00	66.50
M₂ S₁	37.67	38.00	37.83	65.67	64.67	65.17
M₂ S₂	37.00	36.67	36.83	57.67	57.00	57.33
M₂ S₃	36.00	35.67	35.83	56.33	55.33	55.83
M₂ S₄	34.67	34.33	34.50	49.33	47.67	48.50
SE m ±	0.22	0.27	0.24	1.41	2.12	1.55
C.D (p=0.05)	NS	NS	NS	NS	NS	NS

Note: M₀: Furrow Irrigation
S₀: Normal water (ECiw=0.65 dS m⁻¹)
M₁: Surface drip
S₁: ECiw=2.0 dS m⁻¹
M₂: Subsurface drip
S₂: ECiw=3.0 dS m⁻¹
S₃: ECiw=4.0 dS m⁻¹
S₄: ECiw=5.0 dS m⁻¹
Table 2: Average plant height of tomato as influenced by different irrigation techniques and saline water during 30 and 60 DAT

Treatment details	Average plant height (cm) -30 DAT	Average plant height (cm)-60 DAT				
	2018	2019	Pooled	2018	2019	Pooled
Irrigation techniques (M)						
M₀	51.20	49.61	50.41	79.33	71.67	75.50
M₁	55.40	53.33	54.37	84.36	81.06	82.71
M₂	56.17	54.73	55.45	85.61	83.23	84.42
SE m ±	0.38	0.38	0.36	0.31	0.59	0.43
C.D (p=0.05)	NS	NS	NS	0.90	1.69	1.23
Irrigation saline water levels (S)						
S₀	58.82	57.80	58.31	87.53	83.78	85.66
S₁	57.26	56.31	56.78	85.49	81.98	83.73
S₂	54.59	52.51	53.55	84.72	78.53	81.63
S₃	51.67	49.88	50.77	80.93	77.23	79.08
S₄	48.94	46.30	47.62	76.83	71.73	74.28
SE m ±	0.62	0.75	0.68	0.62	0.93	0.72
C.D (p=0.05)	1.79	2.17	1.96	1.79	2.68	2.07
Interaction (MxS)						
M₀ S₀	58.93	57.00	57.97	84.93	77.00	80.97
M₀ S₁	56.47	55.67	56.07	82.07	76.67	79.37
M₀ S₂	48.27	47.07	47.67	81.63	69.77	75.70
M₀ S₃	47.20	45.87	46.53	78.00	72.37	75.18
M₀ S₄	45.13	42.47	43.80	70.03	62.53	66.28
M₁ S₀	58.03	57.23	57.63	88.67	86.67	87.67
M₁ S₁	57.00	56.40	56.70	87.00	83.43	85.22
M₁ S₂	58.87	55.17	57.02	85.40	82.40	83.90
M₁ S₃	53.10	50.80	51.95	81.27	78.47	79.87
M₁ S₄	50.00	47.07	48.53	79.47	74.33	76.90
M₂ S₀	59.50	59.17	59.33	89.00	87.67	88.33
M₂ S₁	58.30	56.87	57.58	87.40	85.83	86.62
M₂ S₂	56.63	55.30	55.97	87.13	83.43	85.28
M₂ S₃	54.70	52.97	53.83	83.53	80.87	82.20
M₂ S₄	51.70	49.37	50.53	81.00	78.33	79.67
SE m ±	1.87	2.26	2.04	1.87	2.79	2.15
C.D (p=0.05)	NS	NS	NS	NS	NS	NS

Note:
M₀: Furrow Irrigation
S₀: Normal water (ECiw=0.65 dS m⁻¹)
S₁: ECiw=2.0 dS m⁻¹
S₂: ECiw=3.0 dS m⁻¹
S₃: ECiw=4.0 dS m⁻¹
S₄: ECiw=5.0 dS m⁻¹
Table 3 Average plant height of tomato as influenced by different irrigation techniques and saline water during 90 and 120 DAT

Treatment details	Average plant height (cm)-90 DAT	Average plant height (cm)-120 DAT				
	2018	2019	Pooled	2018	2019	Pooled
Irrigation techniques (M)						
M₀	98.87	99.01	98.94	99.77	100.81	100.29
M₁	105.71	106.22	105.97	109.17	111.85	110.51
M₂	106.66	107.21	106.94	109.99	112.07	111.03
SE m ±	0.40	0.42	0.37	0.32	0.51	0.32
C.D (p=0.05)	1.15	1.22	1.06	0.91	1.48	0.93
Irrigation saline water levels (S)						
S₀	112.15	112.34	112.25	115.64	116.61	116.13
S₁	111.22	112.00	111.61	114.78	116.23	115.51
S₂	106.51	107.07	106.79	107.19	109.80	108.49
S₃	99.80	100.77	100.28	100.27	101.34	100.81
S₄	89.06	88.56	88.81	93.68	97.22	95.45
SE m ±	0.39	1.25	0.76	0.48	1.25	0.78
C.D (p=0.05)	1.14	3.59	2.19	1.38	3.59	2.26
Interaction (MₓS)						
M₀ S₀	109.57	108.33	108.95	110.30	111.33	110.82
M₀ S₁	108.97	109.33	109.15	110.17	111.37	110.77
M₀ S₂	101.23	102.17	101.70	102.50	103.07	102.78
M₀ S₃	92.57	93.67	93.12	92.93	94.60	93.77
M₀ S₄	82.03	81.53	81.78	82.97	83.67	83.32
M₁ S₀	112.97	114.70	113.83	117.83	118.33	118.08
M₁ S₁	112.07	114.00	113.03	116.83	118.33	117.58
M₁ S₂	108.27	108.33	108.30	109.03	112.33	110.68
M₁ S₃	102.93	103.73	103.33	103.47	103.93	103.70
M₁ S₄	92.33	90.33	91.33	98.67	106.33	102.50
M₂ S₀	113.93	114.00	113.97	118.80	120.17	119.48
M₂ S₁	112.63	112.67	112.65	117.33	119.00	118.17
M₂ S₂	110.03	110.70	110.37	110.03	114.00	112.02
M₂ S₃	103.90	104.90	104.40	104.40	105.50	104.95
M₂ S₄	92.80	93.80	93.30	99.40	101.67	100.53
SE m ±	1.18	3.74	2.28	1.44	3.74	2.35
C.D (p=0.05)	NS	NS	NS	NS	NS	NS

Note:
M₀: Furrow Irrigation
S₀: Normal water (ECiw=0.65 dS m⁻¹)
S₁: ECiw=2.0 dS m⁻¹
S₂: ECiw=3.0 dS m⁻¹
S₃: ECiw=4.0 dS m⁻¹
S₄: ECiw=5.0 dS m⁻¹
Table 4: Number of branches of tomato as influenced by different irrigation techniques and saline water during 30 and 60 DAT

Treatment details	Number of branches-30 DAT	Number of branches-60 DAT				
	2018	2019	Pooled	2018	2019	Pooled
Irrigation techniques (M)						
M₀	6.54	6.70	6.62	10.47	10.35	10.41
M₁	7.09	7.22	7.16	11.58	11.55	11.57
M₂	7.13	7.28	7.20	11.91	11.63	11.77
SE m ±	0.03	0.03	0.03	0.06	0.07	0.06
C.D (p=0.05)	0.09	0.09	0.08	0.18	0.19	0.19
Irrigation saline water levels (S)						
S₀	7.87	8.01	7.94	12.62	12.67	12.64
S₁	7.64	7.78	7.71	12.33	12.02	12.18
S₂	6.93	7.04	6.98	11.33	11.19	11.26
S₃	6.26	6.47	6.37	10.26	10.08	10.17
S₄	5.90	6.03	5.96	10.06	9.92	9.99
SE m ±	0.08	0.08	0.08	0.10	0.09	0.10
C.D (p=0.05)	0.23	0.23	0.22	0.30	0.25	0.27
Interaction (MxS)						
M₀ S₀	7.52	7.68	7.60	11.67	11.83	11.75
M₀ S₁	7.31	7.44	7.37	11.20	11.00	11.10
M₀ S₂	6.69	6.75	6.72	10.93	10.80	10.87
M₀ S₃	5.60	5.91	5.76	9.43	9.17	9.30
M₀ S₄	5.57	5.70	5.63	9.10	8.97	9.03
M₁ S₀	8.03	8.13	8.08	12.97	13.10	13.03
M₁ S₁	7.75	7.88	7.82	12.70	12.80	12.75
M₁ S₂	7.05	7.20	7.12	11.27	11.10	11.18
M₁ S₃	6.60	6.76	6.68	10.57	10.48	10.53
M₁ S₄	6.03	6.11	6.07	10.40	10.27	10.33
M₂ S₀	8.05	8.20	8.13	13.23	13.07	13.15
M₂ S₁	7.87	8.01	7.94	13.10	12.27	12.68
M₂ S₂	7.05	7.16	7.11	11.80	11.68	11.74
M₂ S₃	6.57	6.75	6.66	10.77	10.60	10.69
M₂ S₄	6.10	6.27	6.18	10.67	10.53	10.60
SE m ±	0.24	0.24	0.23	0.31	0.26	0.29
C.D (p=0.05)	NS	NS	NS	NS	NS	NS

Note:
M₀: Furrow Irrigation
S₀: Normal water (ECiw=0.65 dS m⁻¹)
M₁: Surface drip
S₁: ECiw=2.0 dS m⁻¹
M₂: Subsurface drip
S₂: ECiw=3.0 dS m⁻¹
S₃: ECiw=4.0 dS m⁻¹
S₄: ECiw=5.0 dS m⁻¹
Table 5 Number of branches of tomato as influenced by different irrigation techniques and saline water during 90 and 120 DAT

Treatment details	Number of branches-90 DAT	Number of branches-120 DAT				
	2018	2019	Pooled	2018	2019	Pooled
Irrigation techniques (M)						
M0	12.79	12.72	12.76	14.57	14.51	14.54
M1	15.01	14.95	14.98	17.29	17.22	17.25
M2	15.55	15.51	15.53	17.50	17.43	17.47
SE m +	0.14	0.14	0.14	0.15	0.15	0.15
C.D (p=0.05)	0.41	0.41	0.41	0.43	0.43	0.43
Irrigation saline water levels (S)						
S0	15.88	16.06	15.97	18.07	18.40	18.23
S1	15.82	15.89	15.86	17.93	18.27	18.10
S2	14.29	14.11	14.20	16.24	15.91	16.08
S3	13.34	13.26	13.30	15.29	14.96	15.12
S4	12.90	12.66	12.78	14.73	14.40	14.57
SE m +	0.17	0.17	0.17	0.19	0.23	0.21
C.D (p=0.05)	0.50	0.49	0.49	0.56	0.67	0.61
Interaction (MxS)						
M0 S0	13.58	13.92	13.75	15.67	16.00	15.83
M0 S1	13.47	13.50	13.48	15.47	15.80	15.63
M0 S2	13.33	13.13	13.23	14.47	14.13	14.30
M0 S3	11.97	11.77	11.87	13.97	13.63	13.80
M0 S4	11.60	11.30	11.45	13.30	12.97	13.13
M1 S0	16.63	16.80	16.72	19.07	19.40	19.23
M1 S1	16.60	16.77	16.68	18.93	19.27	19.10
M1 S2	14.47	14.27	14.37	17.20	16.87	17.03
M1 S3	13.83	13.73	13.78	15.73	15.40	15.57
M1 S4	13.50	13.17	13.33	15.50	15.17	15.33
M2 S0	17.43	17.47	17.45	19.47	19.80	19.63
M2 S1	17.40	17.40	17.40	19.40	19.73	19.57
M2 S2	15.07	14.93	15.00	17.07	16.73	16.90
M2 S3	14.23	14.27	14.25	16.17	15.83	16.00
M2 S4	13.60	13.50	13.55	15.40	15.07	15.23
SE m +	0.52	0.51	0.51	0.58	0.70	0.64
C.D (p=0.05)	NS	NS	NS	NS	NS	NS

Note: M0: Furrow Irrigation
S0: Normal water (ECiw=0.65 dS m⁻¹)
S1: ECiw=2.0 dS m⁻¹
S2: ECiw=3.0 dS m⁻¹
M1: Surface drip
S3: ECiw=4.0 dS m⁻¹
S4: ECiw=5.0 dS m⁻¹
M2: Subsurface drip
S5: ECiw=6.0 dS m⁻¹
S6: ECiw=7.0 dS m⁻¹
Number of fruits per plant

The pooled data of two season indicted that, among irrigation techniques, significantly higher number of fruits were counted in a single plant in M2 (58.67) during entire harvesting stage followed by M1 (57.93) but lesser fruits in case of M0 (46.47). Among irrigation saline water levels, significantly higher fruits were counted in S0 (61.61) followed by S1 (60.33) and least in case of S4 (43.89). No significant effect was found under interaction (Table 1). Similar results were obtained by Takase et al., 2010 and Malash et al., 2005. The reduction of fruit number may be due to reduction in flower number per cluster (Malash et al., 2002).

It is concluded that in two seasons the growth attributes such as plants per treatments, plant height during 30, 60, 90 and 120 DAT, number of branches per plant during 30, 60, 90 and 120 DAT, average single fruit and ten fruits weight were significantly influenced by the different irrigation techniques and different irrigation saline water levels. The maximum number of plants per treatments, plant height and number of branches per plant during 30, 60, 90 and 120 DAT were recorded higher under subsurface and surface drip as compared to furrow irrigation except plant height during 30 DAT. Similarly, under different irrigation saline water levels, maximum number of plants, plant height and branches were recorded under 0.65 dS m\(^{-1}\) and 2 dS m\(^{-1}\) treatment and least was recorded in 5 dS m\(^{-1}\) treatment. Hence it is concluded that whenever there is shortage of fresh water, saline water upto 2 dS m\(^{-1}\) can be used to grow tomato crop without much effect on the growth parameter.

References

Anonymous, 2017, Ann. Rep. (2017-18). Management of salt affected soil and use of saline water in agriculture. Weather data of A.R.S., Gangavathi., p.72.

Bibha Rani and Sharma, V. K., 2015, Standardization of methodology for obtaining the desired salt stress environment for salinity effect observation in rice seedlings. Int. J. of Environ. Sci.,6(2):232-236.

Campos, Carlos Alberto Brasiliano, Pedro Dantas Fernandes, Hans Raj Gheyi, Flavio Favaro Blanco, Cira Belem Goncalves and Selma Aparecida Ferreira Campos, 2006, Yield and fruit quality of industrial tomato under saline irrigation. Scientia Agricola, 63(2):46-52.

Gleick, P. H., 1993, Water in crisis. A guide to the world’s fresh water resources. New York Oxford University Press. p. 473.

FAO, Field Guide, 2005. 20 things to know about the impact of salt water on agricultural land in aceh province. Field Guide on Salinity in Aceh-Draft publication RAP 05, pp. 1-7.

Maas, E. V., 1986, Salt tolerace of plants. Appl. Agric. Res., 1:12-26.

Malash, N., Ghaibeh, A., Yoe, A., Ragab, R. and Cuartero, J., 2002, Effect of water salinity on yield and fruit quality of tomato. Acta. Hort., 573: 423-434.

Malash, N., Flowers, T. J. and Ragab, R., 2005, Effect of irrigation systems and water management practices using saline and non-saline water on tomato production. Agril. Water Mgmt., 78(1–2):25-38.

Mane, M. S, Ayare, B. L. and Magar, S. S., 2008, Principles of drip irrigation system. Jain Brothers publishers, New Delhi. p. 191.

Minhas, P. S., 1996, Saline water management for irrigation in India. Agril. Water Mgmt., 30(1):1-24.

Rhodes, J. D., Kandiah, A. and Mashak, A.
M., 1992, The use of saline waters for crop production. *Irrigation and Drainage*, p. 150.

Soria, T. and Cuartero, J., 1998, Tomato fruit yield and water consumption with salty water irrigation. *Acta Hortic.*, 45(8):15-19.

Takase, M. J., Owusu-Sekyere, D. and Sam-Amoah, L. K., 2010, Effects of water of different quality on tomato growth and development. *Asian J. of Plant Sci.*, 9(6):380-384.

How to cite this article:

Rajkumar, R.H., M. Nemichandrappa, T. Anilkumar Dandekar, M.S. Ayyanagowdar, B.S. Polisgowdar, Satyanarayana Rao and Vishwanatha, J. 2019. Influence of Different Irrigation Methods and Water Salinity Levels on Tomato (*Solanum lycopersicum*) Growth under Vertisols of Tungabhadra Project Command. *Int.J.Curr.Microbiol.App.Sci.* 8(08): 2566-2576. doi: https://doi.org/10.20546/ijcmas.2019.808.298