Structural insights and molecular dynamics into the inhibitory mechanism of a Kunitz-type trypsin inhibitor from Tamarindus indica L

Amanda Fernandes de Medeiros, Beatriz Blenda Pinheiro de Souza, Lucas Pinheiro Coutinho, Aline Melro Murad, Paula Ivani Medeiros dos Santos, Norberto de Kássio Vieira Monteiro, Elizeu Antunes dos Santos, Bruna Leal Lima Maciel, Ana Heloneida de Araújo Morais

ABSTRACT
Trypsin inhibitors from tamarind seed have been studied in vitro and in preclinical studies for the treatment of obesity, its complications and associated comorbidities. It is still necessary to fully understand the structure and behaviour of these molecules. We purified this inhibitor, sequenced de novo by MALDI-TOF/TOF, performed its homology modelling, and assessed the interaction with the trypsin enzyme through molecular dynamics (MD) simulation under physiological conditions. We identified additional 75 amino acid residues, reaching approximately 72% of total coverage. The four best conformations of the best homology modelling were submitted to the MD. The conformation n°287 was selected considering the RMSD analysis and interaction energy (-301.0128 kcal.mol⁻¹). Residues Ile (54), Pro (57), Arg (59), Arg (63), and Glu (78) of pTTI presented the highest interactions with trypsin, and arginine residues were mainly involved in its binding mechanism. The results favour bioprospecting of this protein for pharmaceutical health applications.

Introduction
Proteolytic enzymes are critical elements for several biological events, such as digestion, healing, viral replication and the blood clotting cascade, and these processes must be regulated with great precision. Within proteolytic enzymes, more than a third are serine proteases (EC 3.4.21), which are subdivided into families according to catalytic mechanisms and specificity, especially the S1 peptidase family, with trypsin (EC 3.4.21.11) as the most representative member being mainly related to the digestive process.

The proteolytic enzymes are regulated by protease inhibitors (PIs) and these natural regulators are present in multiple forms in the animals, plants and microorganisms. The purification and characterisation of PIs biomolecules may lead to a molecule with structure and functions and used as a potential biomolecule for herbal medicine nutraceutical or even a medicine. Tamarind; antitryptic; homology modelling; computational methods; protein-protein interaction

KEYWORDS
Tamarind; antitryptic; homology modelling; computational methods; protein-protein interaction

ARTICLE HISTORY
Received 28 November 2020
Revised 23 December 2020
Accepted 11 January 2021

CONTACT Ana Heloneida de Araújo Morais aharaudominor@gmail.com Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY
2021, VOL. 36, NO. 1, 480–490
https://doi.org/10.1080/14756366.2021.1876686
rats under a HGLI diet\textsuperscript{17}, representing a promising formulation for the clinical application.

Another study purified the trypsin inhibitor from Tamarind seeds (pTTI), verifying it was a competitive inhibitor with 19.578 kDa, resistant to high temperatures and extreme pH\textsuperscript{10}. Medeiros et al.\textsuperscript{10} also evaluated the effect of pTTI on plasma CCK and leptin in Wistar rats with diet-induced obesity, and results similar to the partially purified TTI were found\textsuperscript{15}, without altering CCK concentrations, but reducing leptin, suggesting an improvement in the leptin resistance profile, a characteristic present in obesity and SM. Further, Carvalho et al.\textsuperscript{18} indicated pTTI, was able to reduce molecular and plasma levels of TNF-\alpha (tumour necrosis factor-\alpha), VLDL-C (very-low-density lipoprotein-cholesterol), and TG (triglycerides) in Wistar rats with diet-induced dyslipidemia. Thus, we have a protein with beneficial biological effects in experimental studies applied in the context of obesity and associated complications.

However, information about a better understanding of the structure and physical-chemical properties of pTTI are important for pTTI function’s enlightenment. Once the variety of bioactive compounds, such as Pis, in nature is limited, synthetic peptides presenting similar biological activity may be an alternative to overcome this barrier\textsuperscript{19,20}.

Comprehension of the antitrypsin activity mechanism and its structure, through molecular dynamics (MD) under physiological conditions, may contribute to future research, such as in the synthesis of a bioactive peptide from pTTI. It is of great scientific interest to understand the interactions between biomolecules that are involved in biological reactions, especially those that are related to diseases at a global level, such as obesity, metabolic syndrome and its associated comorbidities; and to achieve this study objective, MD appear as an important computational tool\textsuperscript{21}.

According to several discoveries in preclinical studies, biological activities attributed to TTI and considering this molecule is limited in nature, it is important to expand the protein identification to provide technical and scientific advances, such as the generation of bioactive peptides derived from the pTTI that attract the interest of the pharmaceutical industry. In this present work, the protein sequence of pTTI was extended, homology modelling was performed, and its interaction with the enzyme trypsin was validated using MD simulation.

Materials and methods

Plant material

The tamarind (\textit{Tamarindus indica} L.) fruit, was obtained from the seed bank in Natal-RN, Brazil, and registered in the National System for the Management of Genetic Heritage and Associated Traditional Knowledge under the number AF6CE9C. The pulp was removed, the seeds were peeled and ground, and used for the procedures.

Purification and sequencing of the tamarind seed trypsin inhibitor

\textbf{pTTI purification and preparation for MSMS analysis}

The purification process was performed according to Medeiros et al.\textsuperscript{10}. The disulphide bridges from cys were reduced, and the free thiol groups alkylated to obtain the protein’s secondary structure. The reduction and alklylation steps were carried out according to Medeiros et al.\textsuperscript{10} and the reduced and alkylated pTTI fractions were subjected to chromatographic analysis. The procedure was performed on reverse-phase HPLC on an analytical column (Pharmacia Biotech \textmu\textit{R}C \textit{C}2/\textit{C}18 \textit{S}T 4.6/100 mm, 120 Å, cod. No.175057–01). Solvent A (analytical water grade + 0.1% of trifluoroacetic acid (TFA)) and B (acetonitrile (ACN) + 0.1% TFA) were used. The pTTI purification was performed using the following gradient steps: three minutes with 5% of solvent B, to desalinate and remove the surfactant from the sample, a linear gradient of 5–95% of solvent B in 22 min (4.09% B min\textsuperscript{−1}), and a final step, of 5 min at 95% of solvent B, with a flow of 1 mL min\textsuperscript{−1}, monitored by UV detection at 216 nm for peptide detection and 280 nm for aromatic ring detection, in a run of 30 min.

\textbf{Proteolytic digestion of pTTI and MALDI-TOF/TOF MS/MS mass spectrometry}

The cleavage of the reduced and alkylated pTTI was performed with two sequencing grade proteolytic enzymes, according to the manufacturer’s instructions: trypsin (Sequencing Grade Modified Trypsin, Promega trypsin, v511A), with the use of surfactant (RapiGest SF, Water, Part 186001861) and endoproteinase GluC (\textit{Staphylococcus aureus} Protease V8–Typical GluC Digest, P8100).

The products generated by the enzymatic cleavages with trypsin and GluC were centrifuged at 24,500 × g and 6 °C for 30 min, and the supernatants were eluted in a linear gradient of 5–95% solvent B in a C18 analytical column (Pharmacia Biotech \textmu\textit{R}C \textit{C}2/\textit{C}18 \textit{S}T 4.6/100 mm, 120 Å, cod. No.175057–01) with a flow of 1 mL min\textsuperscript{−1}. Each fraction was collected manually and analysed by mass spectrometry using MALDI-TOF/TOF/MS/MS in positive mode.

Then, they were analysed in an ultraflexXTreme mass spectrometer (Bruker Daltonics, Bremen–Germany) after mixing 1:3 (v/v) with saturated solution of \textit{x}-cyano-4-hydroxycinnamic acid (\textit{x}-CHCA) (5 mg CHCA, 250 \mu L of ACN, 50 \mu L TFA 3% and 200 \mu L of deionised H\textsubscript{2}O) and application in MALDI plate. The MS and spectra were obtained in positive reflected mode in the range of m/z between 700 and 4500 and MS/MS spectra were acquired in the same mass range in LIFT\textsuperscript{TM} method after external calibration using calibration standards (Protein Calibration Standard I and II) (Bruker Daltonics, Bremen–Germany). The new sequencing of the pTTI triptych fragments was performed by signalling and manual interpretation of the spectra, using the FlexAnalysis 3.4 software (Bruker Daltonics, Bremen–Germany).

\textbf{Computational methods}

\textbf{Multiple alignments}

The pTTI protein sequence obtained by MS/MS was compared with other sequences present in the protein database of NCBI (National Centre for Biotechnology Information) (https://www.ncbi.nlm.nih.gov/) and PDB (Protein Data Bank proteins) files using the BLASTp algorithm (Basic Local Alignment Search Tool–protein)\textsuperscript{22} (https://blast.ncbi.nlm.nih.gov/Blast.cgi), with multiple alignments of protein sequences on the Clustal Omega server\textsuperscript{23} (https://www.ebi.ac.uk/Tools/msa/clustalo/).

\textbf{Homology modelling and validation of predicted models}

The three-dimensional structure of the pTTI was determined based on multiple alignments with the four proteins, of vegetable origin, with the highest percentage identity (%) ID deposited on the NCBI/PDB\textsuperscript{24} database server: 4AN7\_B, 4AN6\_A\textsuperscript{14}, 4J2K\_A\textsuperscript{25} and 1TIE\_A\textsuperscript{26} (https://www.rcsb.org/). Amino acids from the sequence with higher % ID protein sequence were used (4AN7\_B) to fill the gaps\textsuperscript{14}. Homology modelling was performed in the Modeller\textsuperscript{27} 9.21 program.
where \( IPE_{i,j} \) is the interaction energy between a group of atoms \( i \) and a group of atoms \( j \), and \( N_i \) and \( N_j \) are the total number of atoms on groups \( i \) and \( j \), \( V_{elec} \) and \( V_{vdW} \) are the terms corresponding to electrostatic and van der Waals contribution, respectively. This parameter is often used to evaluate interaction energies in protein–ligand and protein–protein systems.

### Results

#### Purification and sequencing of the tamarind seed trypsin inhibitor

**Purification and determination of molecular weight of the trypsin inhibitor of purified tamarind seed**

The chromatogram demonstrates the protein profile of the partially purified inhibitor (Figure 1(A)). The major peak was collected and named pTTI, eluted in 35 min in 45% of solvent B (ACN/TFA 0.1%). The pTTI presented different ions with \( m/z \) values \([M + H]^+ = 19,586 \text{Da}; [M + 2H]^+ = 9792 \text{Da} \) e \([M + 3H]^+ = 6528 \text{Da}\) (Figure 1(B)).

The pTTI, when reduced and alkylated, showed a protein peak with greater absorbance with a retention time (RT) of 51 min and solvent concentration B of approximately 41% (Figure 1(C)). Consequently, pTTI was analysed by MALDI-TOF, verifying the reduction and alkylation reaction. The pTTI presented two predominant ions with \( m/z \) values \([M + 3H]^+ = 6602,789 \text{Da} \) and \( m/z \) \([M + 2H]^+ = 9,906,420 \text{Da}\) (Figure 1(D)), which indicates pTTI. It can be inferred that the pTTI is reduced and alkylated, since the difference in mass observed shows the presence of the acetamide group in the reduced thiol groups.

#### Proteolytic digestion of pTTI

The chromatograms of the digestion profiles of both enzymes are shown in Figure 2. Within the initial 3 min of chromatography after enzymatic digestion, the digestion salts are eluted (Figure 2(A,B)), and in the case of trypsin digestion, the surfactant is also eluted (Figure 2(A)), followed by fractions resulting from digestion.

#### Sequencing and analysis by mass spectrometry by MALDI-TOF/TOF MS/MS

The peptide sequences from reduced and alkylated pTTI determined were shown in Table 1, with peptides number 1, 2, 4 and 6 originating from digestion with trypsin and peptides number 3 and 5 coming from digestion with GluC. The ions acquired by MALDI-TOF/TOF, of each proteolytic digestion, with sequential signals are highlighted in Supplementary Fig. S1. The mass spectra of the peptides with the \( y \) and \( b \)-ions series assigned are shown in Supplementary Fig. S2.

The sequencing identified additional 75 amino acid residues, expanding the coverage percentage of the sequencing from 28% (with the sequencing of 53 previously published residues) to 72% in total, comprising 128 amino acid residues elucidated from the pTTI. Peptide 4 showed a glycine residue, which is not found in peptide number 3 that contains part of the same fragment, this may occur due to the presence of pTTI isoform fragment. It is not possible to distinguish leucine and isoleucine residues and glutamine and lysine, by mass spectrometry because their molecular masses are identical, with 113 Da and 128 Da, respectively.

#### Computational methods

Table 2 shows the proteins with the highest identity with the pTTI. According to Figure 3, it is possible to observe the alignment...
of the primary structure of the pTTI with the sequences obtained in the BLASTp database, which were used to perform the homology modelling. Among the acquired sequences, it was possible to fill in the gaps remaining in the sequencing of the pTTI with the sequence of the highest percentage of identity, 4AN7_B, which comprises: 28 residues between numbers 66 and 93, 21 residues from number 138 to 158 and 7 residues in C-terminus portion 178 to 184; totalling the addition of 56 amino acid residues.

Figure 1. Identification of native pTTI and postreduction and alkylation by reverse-phase high-performance liquid chromatography and mass spectrometry. (A) Chromatographic profile of the TTI in the C18 Vydac reverse-phase analytical column. (B) Mass spectrum with the pTTI MALDI-TOF ionisation source. (C) Chromatographic profile of the reduced and alkylated pTTI in a C2/C18 Pharmacia Biotech μRPC analytical column. (D) Mass spectrum with reduced and alkylated pTTI MALDI-TOF ionisation source. TTI: Partially purified trypsin inhibitor from tamarind seeds. pTTI: Purified trypsin inhibitor from tamarind seeds.

Figure 2. Chromatograms of the reduced and alkylated pTTI by reverse-phase high-performance liquid chromatography treated with digestive enzymes with degree sequencing for mass spectrometry. (A) Chromatographic profile of pTTI digested with trypsin in a C2/C18 Pharmacia Biotech μRPC analytical column. (B) Chromatographic profile of pTTI digested with GluC in a C2/C18 Pharmacia Biotech μRPC analytical column. pTTI: Purified trypsin inhibitor from tamarind seeds.
The proteins mentioned above were used as a basic model for homology construction, and the five models with the highest DOPE score are shown in Table 3.

The results of the validation in MolProbity to validate the predicted models are shown in Table 4.

Due to a set of factors, such as residues with bad bonds and MolProbity score, the best result was achieved for model number 56, hence this model was used to generate 500 possible conformations for pTTI structure. Among these conformations, four were selected according to the sum of the violations and the geometric restrictions (Figure 4).

The best conformation of the pTTI obtained from model number 56 was subjected to MD simulations to analyse pTTI interactions with trypsin enzyme. The MD revealed a Root Mean Square
Deviation (RMSD) plot as a function of time and in an aqueous system (Supplementary Fig. S2). Regarding the total energy of interaction, taking as a minimum and maximum point the interval between sudden changes, the results demonstrated the interaction conformation number 287 has the lowest interaction energy value (Table 5), suggesting, the conformation n. 287 was the best model and, therefore, may represent the putative pTTI structure.

**Table 4.** MolProbity selection criteria for the five best models generated by Modeller.

| Model Number | Ramachandran favoured | Residues with bad angles | Residues with bad bonds | MolProbity score |
|--------------|-----------------------|--------------------------|-------------------------|-----------------|
| 37           | 86.81%                | 0.00%                    | 1.56%                   | 3.77            |
| 56           | 87.36%                | 0.00%                    | 1.11%                   | 3.44            |
| 63           | 86.26%                | 0.00%                    | 1.81%                   | 3.63            |
| 94           | 89.01%                | 0.00%                    | 1.86%                   | 3.70            |
| 148          | 87.91%                | 0.00%                    | 1.36%                   | 3.67            |

**Figure 4.** Visualisation of the four best conformations generated by CONCOORD of model n. 56 of the pTTI and their respective values of the sum of violations for conformations number 177 (A), 200 (B), 287 (C), and 323 (D). The N-terminal portion which is a residue of Asp is highlighted in red and the C-terminal portion, which is a residue of Val in tan, in all images. (The colours: yellow, β-sheet; tan, β-bridge; white, coil; cyan, turn; red, N-terminal portion; tan, C-terminal portion). pTTI: Purified trypsin inhibitor from tamarind seeds.

**Table 5.** Interaction potential energy of the molecular dynamics between the four best conformations of the pTTI with the enzyme trypsin.

| Conformer number | IPE (kcal.mol⁻¹) |
|------------------|------------------|
| 177              | −172.8038        |
| 200              | −235.1159        |
| 287              | −301.0128        |
| 323              | −96.5838         |

IPE: interaction potential energy.
Figure 5. Visualisation of the stages of molecular dynamics simulation between model number 56 in conformation number 287 of pTTI with the enzyme trypsin. (A) Immediately before the MD, with the molecules positioned 10 Å apart. (B) During MD, arginine residues are discarded; above Arg 63 and below Arg 59 (in grey, both). (C) Immediately after MD. (The colours: yellow, β-sheet; tan, β-bridge; white, coil; cyan, turn; blue, 3_10-helix; purple, α-helix). pTTI: Purified trypsin inhibitor from tamarind seeds.
The pTTI model was built up from other proteins recognised as trypsin inhibitor extracted from a vegetal source of the tamarind fruit seeds. The protein sequence obtained through mass spectrometry considerably increased the coverage percentage compared to the previously known protein sequence. The former coverage sequence was nearby 52 amino acid residues and our efforts expanded the sequence to a total of 128 amino acid residues, representing 72% of the total pTTI molecular mass (19,586 Da).

Analysis regarding the protein identification pTTI exhibited high identity to tamarind Kunitz inhibitor–TKI (66% of identity—represents 127 hits of the 128 sequenced pTTI residues). The pTTI protein sequence’s missing gaps were manually completed considering the TKI protein sequence identity deposited in BLASTp database. Nevertheless, even with high similarity between both sequences, a difference of 989 Da in molecular masses between pTTI and TKI remains. This difference may be because they are isoforms.

The pTTI model was built up from other proteins recognised as trypsin inhibitors and also extracted from seeds, including two proteins from Tamarindus indica, one from Enterolobium contortisiliquum, and lastly one from Erythrina caffra. All proteins described were extracted from plants belonging to the Fabaceae family, which impacts the relation of protein identity between them. In silico modelling demonstrated to be an extremely useful tool for hypotheses application, especially in molecular biology/biochemistry providing clearance regarding putative active sites and protein-ligand interactions and specificity of purified or designed biomolecules for drug discovery. The three-dimensional structure model of the pTTI provided constructive information concerning pTTI interaction with trypsin, reinforcing the need for future studies with other molecules that may interact with pTTI, with applications in the healthcare system.

The MD performed in this study was between two large proteins under physiological conditions, unusual computational parameters, nonetheless with great relevance and application in the healthcare area. The best model fitting the MD parameters revealed arginine residue in two positions, which is positively charged; the isoleucine and proline residues, which have nonpolar and aliphatic characteristics; and glutamate, which has a negative charge. Considering the two residues that presented the most significant interaction, Arg (59) and Arg (63), it is possible to evaluate the biomolecule dynamics and infer that the active site of trypsin for interaction with pTTI has a negative character. Thus, electrostatic interactions are observed between pTTI and trypsin, and these residues should receive attention as the target of further studies about pTTI.

A recently published study proposed a model system that measures the binding mechanism between trypsin and its inhibitor bovine pancreatic trypsin inhibitor (BPTI)—an inhibitor type Kunitz, known as aprotinin—using MD approach. The electrostatic bonding is mainly performed by Van der Waals force, with the trypsin binding cavity being negative and BPTI positively charged. BPTI Arg (17) is a crucial residue that requires conformational rearrangement to bind into trypsin’s active site perfectly and is responsible for the protein complex maintainance. Therefore, the residues Arg (59) and Arg (63) of pTTI may also be critical for the pTTI inhibition mechanism.

Furthermore, the importance of the aqueous medium during the interaction process between proteins is also discussed. In the trypsin and BPTI interaction, the solvation layer is an agent that enhances the electrostatic force between the molecules, bringing the molecules closer together and displacing the water molecules throughout protein-protein interactions. Consequently, an MD under physiological conditions is a crucial factor for the effective interaction energy, which represents those that have the greatest interaction with trypsin, among them Arg (59), Arg (63), Ile (54), Pro (57) and Glu (78). pTTI: Purified trypsin inhibitor from tamarind seeds.

**Figure 5** shows the 287 pTTI conformer and trypsin before, during and after the MD simulation. The amino acid residues of pTTI that most interacted with the trypsin were Arg (59), Arg (63), Ile (54), Pro (57) and Glu (78) (**Figure 6**), which showed lower IPE. Among the residues, Arg (59) and (63) are those that have the greatest interaction with trypsin, and both are highlighted in grey (above Arg (63) and below Arg (59) when MD occurs (**Figure 5(B)**)).

Gathering all information obtained through CONCOORD and MD, the model number 56 in its conformation number 287 may represent the pTTI structure and its interaction with trypsin, in a system under physiological conditions.

**Discussion**

Countless biological processes involving ligand-protein interactions and substances with potential bioactivity are investigated concerning healthcare applications. Considering previously studies carried out with TTI and its bioactive properties in preclinical studies, it is crucial to understand acutely this biomolecule.

In the current work, we pursue more information regarding a trypsin inhibitor’s identity extracted from a vegetal source of the tamarind fruit seeds. The protein sequence obtained through mass spectrometry considerably increased the coverage percentage compared to the previously known protein sequence. The former coverage sequence was nearby 52 amino acid residues and our efforts expanded the sequence to a total of 128 amino acid residues, representing 72% of the total pTTI molecular mass (19,586 Da).

Analysis regarding the protein identification pTTI exhibited high identity to tamarind Kunitz inhibitor–TKI (66% of identity—represents 127 hits of the 128 sequenced pTTI residues). The pTTI protein sequence’s missing gaps were manually completed considering the TKI protein sequence identity deposited in BLASTp database. Nevertheless, even with high similarity between both sequences, a difference of 989 Da in molecular masses between pTTI and TKI remains. This difference may be because they are isoforms.

The pTTI model was built up from other proteins recognised as trypsin inhibitors and also extracted from seeds, including two proteins from Tamarindus indica, one from Enterolobium contortisiliquum, and lastly one from Erythrina caffra. All proteins described were extracted from plants belonging to the Fabaceae family, which impacts the relation of protein identity between them. In silico modelling demonstrated to be an extremely useful tool for hypotheses application, especially in molecular biology/biochemistry providing clearance regarding putative active sites and protein-ligand interactions and specificity of purified or designed biomolecules for drug discovery. The three-dimensional structure model of the pTTI provided constructive information concerning pTTI interaction with trypsin, reinforcing the need for future studies with other molecules that may interact with pTTI, with applications in the healthcare system.

The MD performed in this study was between two large proteins under physiological conditions, unusual computational parameters, nonetheless with great relevance and application in the healthcare area. The best model fitting the MD parameters revealed arginine residue in two positions, which is positively charged; the isoleucine and proline residues, which have nonpolar and aliphatic characteristics; and glutamate, which has a negative charge. Considering the two residues that presented the most significant interaction, Arg (59) and Arg (63), it is possible to evaluate the biomolecule dynamics and infer that the active site of trypsin for interaction with pTTI has a negative character. Thus, electrostatic interactions are observed between pTTI and trypsin, and these residues should receive attention as the target of further studies about pTTI.

A recently published study proposed a model system that measures the binding mechanism between trypsin and its inhibitor bovine pancreatic trypsin inhibitor (BPTI)—an inhibitor type Kunitz, known as aprotinin—using MD approach. The electrostatic bonding is mainly performed by Van der Waals force, with the trypsin binding cavity being negative and BPTI positively charged. BPTI Arg (17) is a crucial residue that requires conformational rearrangement to bind into trypsin’s active site perfectly and is responsible for the protein complex maintainance. Therefore, the residues Arg (59) and Arg (63) of pTTI may also be critical for the pTTI inhibition mechanism.

Furthermore, the importance of the aqueous medium during the interaction process between proteins is also discussed. In the trypsin and BPTI interaction, the solvation layer is an agent that enhances the electrostatic force between the molecules, bringing the molecules closer together and displacing the water molecules throughout protein-protein interactions. Consequently, an MD under physiological conditions is a crucial factor for the effective interaction energy, which represents those that have the greatest interaction with trypsin, among them Arg (59), Arg (63), Ile (54), Pro (57) and Glu (78). pTTI: Purified trypsin inhibitor from tamarind seeds.

**Figure 6**. Representative graph of the interaction energy of each amino acid residue of the pTTI and enzyme trypsin. The highlighted residues have the lowest interaction energy, which represents those that have the greatest interaction with trypsin, among them Arg (59), Arg (63), Ile (54), Pro (57) and Glu (78). pTTI: Purified trypsin inhibitor from tamarind seeds.
study of understanding the interaction, considering water in the environment through in vivo/in vitro reactions. These insights are essential to study the mechanism of interaction between proteins, which is suggested to be similar between several protein-protein complexes and may be extrapolated to the interaction between pTTI and trypsin.

Previous studies have shown the activities and health application perspectives of Tamarind enzyme inhibitors, and with pTTI, findings and insights are gathered in Figure 7. The exploration of computational technologies is a handling tool for unravelling the pTTI structure and innovation towards the bioprospecting of active molecules from plant origin, useful for the biotechnology industry. Designed bioactive peptides, MD studies with other proteins related to energy metabolism (membrane receptor), and MD with other compounds support new application perspectives, whether in silico, in vitro, or in vivo studies. Therefore, the study of these molecules directly influences future proposals for application in healthcare-related to obesity, its complications, and associated comorbidities, thus linked to a possibility of interest to the pharmaceutical industry.

Acknowledgements

We thank the support of Dr. Carlos Bloch Jr. and Dr. Maura Vianna Prates, researchers at the Laboratory of Spectrometry Mass of Embrapa Brazilian Agricultural Research Corporation (Embrapa)--Genetic Resources and Biotechnology (Cenargen). We also thank Dr. José de Lima Cardozo Filho for data interpretation and conducting the mass spectrometry experiments. The authors thank Embrapa-Cenargen and High-Performance Computing Center (NPAD) at Federal University of Rio Grande do Norte (UFRN), the National High-Performance Processing Center of the Federal University of Ceará (UFC) for providing computational resources.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES--Finance Code 001] and the Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq--Award Number: 426116/2018–6].

ORCID

Amanda Fernandes de Medeiros http://orcid.org/0000-0002-1354-0116
Beatriz Blenda Pinheiro de Souza http://orcid.org/0000-0002-6793-6386
Lucas Pinheiro Coutinho http://orcid.org/0000-0001-9591-5593
Aline Melro Murad http://orcid.org/0000-0003-3222-4001
Paula Ivani Medeiros dos Santos http://orcid.org/0000-0003-2955-8174
Norberto de Cássio Vieira Monteiro http://orcid.org/0000-0002-5847-5733
Elizeu Antunes dos Santos http://orcid.org/0000-0003-4372-2161
Bruna Leal Lima Maciel http://orcid.org/0000-0002-0724-1961
Ana Heloneida de Araújo Morais http://orcid.org/0000-0002-6460-911X

Figure 7. Summary of claims in pre-clinical studies already documented, findings and insights related to the biochemical characterisation of pTTI presented in this paper. pTTI: Purified trypsin inhibitor from tamarind seeds.
References

1. Farady CJ, Craik CS. Mechanisms of macromolecular protease inhibitors. Clin Lymphoma 2010;11:19–222341–2346.
2. Laskowski, M, Jr, Kato I. Protein inhibitors. Annu Rev Biochem 1980;49223:593–626.
3. Page MJ, Di Cera E. Serine peptidases: classification, structure and function. Cell Mol Life Sci 2008;65:1220–36.
4. Di Cera E. Serine proteases. IUBMB Life 2009;61:510–5.
5. Santos EA, Oliveira AS, Arajo Rablo LM, Ferreira A, Arajo Morais AH. Affinity chromatography as a key tool to purify protein protease inhibitors from plants. In: Affinity chromatography. InTech; 2012. p. 35. http://www.intechopen/books/affinity-chromatography/affinity-chromatography-as-a-key-tool-to-purify-protease-inhibitors-from-plants.
6. Ryan CA. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol 1990;28:425–49.
7. Fan S-G, Wu G-J. Characteristics of plant proteinase inhibitors and their applications in combating phytophagous insects. Bot Bull Acad Sinica 2005;46:273–92.
8. Oliveira AS, Pereira RA, Lima LM, et al. Activity toward bruchid pest of a Kunitz-type inhibitor from seeds of the algaroba tree (Prosopis juliflora D.C.). Pestic Biochem Phys 2002;72:122–32.
9. Fook J, Macedo LLP, Moura GEDD, et al. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase. Life Sci 2005;76:2881–91.
10. Medeiros AF, Costa I de S, Carvalho FMC, et al. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indica L. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity. J Enzyme Inhib Med Chem 2018;33:334–48.
11. Carvalho FMCC, Lima VCOO, Costa IS, et al. A trypsin inhibitor from tamarind reduces food intake and improves inflammatory status in rats with metabolic syndrome regardless of weight loss. Nutrients 2016;8:544–14.
12. Queiroz JLC, Costa ROA, Matias LLR, et al. Chitosan–whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindus indica L. Food Hydrocolloids 2018;84:247–56.
13. Ribeiro J, Serquiz A, Silva P, et al. Trypsin inhibitor from Tamarindus indica L. seeds reduces weight gain and food consumption and increases plasmatic cholecystokinin levels. Food Chem 2018;33:334–48.
14. Daliri E, Oh D, Lee B. Bioactive peptides. Foods 2017;6:32.
15. Perez Espitia PJ, de Fátima Ferreira Soares N, dos Reis Coimbra JS, et al. Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Safety 2012;11:187–204.
16. Wang X, Singh N, Li W, Molecular dynamics simulation of biomolecular interactions. In: Systems Medicine. Amsterdam: Elsevier; 2021:182–189.
17. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990;215:403–10.
18. Siivere F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Sys Biol 2011;7:539.
19. Berman HM, Battistuz T, Bhat TN, et al. The protein data bank. Acta Crystallogr D Biol Crystallogr 2002;58:899–907.
20. Zhou D, Lobo YA, Batista IFC, et al. Crystal structures of a plant trypsin inhibitor from Enterolobium contortisiliquum (EcTI) and of its complex with bovine trypsin. PLoS One 2013;8:e62252.
21. Onesti S, Brick P, Blow DM. Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J Mol Biol 1991;217:153–76.
22. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016;54:139–48.
23. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815.
24. Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 2018;27:305–315.
25. Groot BL, Van Aalten DMF, Scheek RM, et al. Prediction of protein conformational freedom from distance constraints. Pro Struct Funct Genet 1997;29:240–51.
26. Jung SH, Kim C-K, Lee G, et al. Structural analysis of recombinant human propreoinsulins by structure prediction, molecular dynamics, and protein-protein docking. Genom Inform 2017;15:142–6.
27. Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementa- tion. Comput Phys Commun 1995;91:43–56.
28. Huang J, Mackerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 2013;34:2135–45.
29. Jorgensen WL, Chandrasekrhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926–35.
30. Arfken GB, Weber HJ, Harris FE. Mathematical methods for physicists. Amsterdam: Elsevier Inc; 2013.
31. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
32. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
33. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
34. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
35. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
36. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
37. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
38. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
39. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
40. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
41. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
42. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Standards 1952;49:626.
41. Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys 1983;50:1055–76.
42. Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 1981;52:7182–90.
43. Amorim-Carmo B, Daniele-Silva A, Parente AMS, et al. Potent and broad-spectrum antimicrobial activity of analogs from the scorpion peptide stigmurin. Int J Mol Sci 2019;20:623.
44. Ribeiro LF, Tullman J, Nicholes N, et al. A xylose-stimulated xylanase-xylose binding protein chimera created by random nonhomologous recombination. Biotechnol Biofuels 2016;9:119.
45. Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol 2018;9:923–16.
46. Xiang Z. Advances in homology protein structure modeling. Curr Pro Pept Sci 2006;7:217–27.
47. Nelson DL, Cox MM, Lehninger principles of biochemistry. 6th ed. New York: W.H. Freeman and Company; 2013.
48. Ascenzi P, Bocedi A, Bolognesi M, et al. The bovine basic pancreatic trypsin inhibitor (Kunitz Inhibitor): a milestone protein. Curr Pro Pept Sci 2003;4:231–51.
49. Kahler U, Kamenik AS, Waibl F, et al. Protein-protein binding as a two-step mechanism: preselection of encounter poses during the binding of BPTI and Trypsin. Biophys J 2020;119:652–66.
50. Carvalho F. d, Maciel BLL, Morais AH, de A. Tamarind Enzymatic inhibitors: activities and health application perspectives. Food Rev Int 2020;20:1–14.