We characterize the multifractal behavior of Brownian motion in the vicinity of an absorbing star Polymer. We map the problem to an $O(M)$-symmetric ϕ^4-field theory relating higher moments of the Laplacian field of Brownian motion to corresponding composite operators. The resulting spectra of scaling dimensions of these operators display the convexity properties which are necessarily found for multifractal scaling but unusual for power of field operators in field theory. Using a field-theoretic renormalization group approach we obtain the multifractal spectrum for absorption at the core of a polymer star as an asymptotic series. We evaluate these series using resummation techniques.
I. INTRODUCTION

The concept of multifractality developed in the last decade has proven to be a powerful tool for analyzing systems with complex statistics which otherwise appear to be intractable \[1,2\]. It has found direct application in a wide range of fields including turbulence, chaotic attractors, Laplacian growth phenomena etc. \[3,4\]. Let us give a simple example of a multifractal (MF) phenomenon. On a possibly fractal set \(X \subset \mathbb{R}^d\) of total size \(R\) a field \(\varphi(r)\) is given at a microscopic scale \(\ell\). Then normalized moments of this field may have power law scaling behavior for \(\ell/R \to 0\):

\[
< \varphi(r)^n > / < \varphi(r) >^n \sim (R/\ell)^{-\tau_n}.
\]

Nontrivial multifractal scaling is found if \(\tau_n \neq 0\). When the moments are averages over the sites of \(X\), \(\varphi(r)\) defines a measure on \(X\) and rigorous arguments show that the \(\tau_n\) are convex from below as functions of \(n\) \[5,6\].

Here, we generalize an idea of Cates and Witten \[7\] by deriving the MF spectrum in the frames of a field theoretical formalism and make use of renormalization group (RG) methods. We relate the MF spectrum to the spectrum of scaling dimensions of a family of composite operators of Lagrangian \(\phi^4\) field theory. This gives an example of power of field operators whose scaling dimensions show the appropriate convexity for a MF spectrum \[8–10\].

We thus address a special case of a growth process controlled by a Laplacian field. The latter may describe a variety of phenomena depending on the interpretation of the field. For diffusion limited aggregation this field is given by the concentration of diffusing particles, in solidification processes it is given by the temperature field, in dielectric breakdown it is the electric potential, in viscous fingers formation it is the pressure \[4\]. In all these processes the resulting structure appears to be of fractal nature and is characterized by appropriate fractal dimensions \[11\]. The growth and spatial correlations of the structure are governed by spectra of multifractal dimensions \[1,2\]. In general, the boundary conditions determining the field will be given on the surface of the growing aggregate itself. It is this dynamic coupling that produces the rich structure of the phenomena and seems to make the general dynamical problem intractable.

Here, we study a simpler case where the fractal structure is given and we look for the distribution of a Laplacian field \(\rho(r)\) and its higher moments near the surface of the structure \[7\]. We will follow the diffusion picture, considering the aggregate as an absorbing fractal, “the absorber”. The field \(\rho(r)\) gives the concentration of diffusing particles and vanishes on the surface of the absorber. More specifically, we consider the Laplacian field \(\rho(r)\) in the vicinity of an absorbing polymer, or near the core of a polymer star. In general, we assume the ensemble of absorbers to be characterized by either random walk (RW) or self-avoiding walk (SAW) statistics. Multifractal scaling is found for the \(n\)-moments \(\langle \rho^n(r) \rangle\) of the field with respect to these ensembles.

This formulation of the problem allows us to use the polymer picture and theory developed for polymer networks and stars \[12,13\] and extended for copolymer stars \[9,10\]. The theory is mapped to a Lagrangian \(\phi^4\) field theory with several couplings \[14–16\] and higher order composite operators \[13,9,10\] to describe star vertices.

Our article is organized in the following way. In the next section we present the path integral formulation of the Laplace equation and relate it to a polymer representation. The
field theoretical representation and renormalization of this polymer model is discussed in section III where we discuss the renormalization group (RG) flow and corresponding expressions for the exponents τ_n. We calculate the multifractal spectrum to third order of perturbation theory using two complementary approaches: the zero mass renormalization with successive ε-expansion (see e.g. [17]) and the massive renormalization group approach at fixed dimension [18]. For some special cases we reproduce previous results [7] that were obtained in lower order of perturbation theory. In section IV we derive the multifractal spectra in terms of series expansions. These we present in both of our RG approaches. The resulting series are asymptotic. In section V we take this into account and obtain numerical values only by careful resummation. In section VI we discuss our results and conclude the present study.

II. PATH INTEGRAL SOLUTION OF THE LAPLACE EQUATION AND POLYMER ABSORBER MODEL

In this section we show how to describe the diffusion of particles in the presence of an absorbing polymer using a “polymer” formalism that represents both the random walks of the diffusing particles and the absorber itself in the same way [7,19]. Let us formulate this problem first in terms of diffusion of particles in time. The probability to find a diffusing particle at point r_{1} at time t if it started at point r_{0} at time $t=0$ can be described by the following normalized path integral:

$$G^0(r_{0},r_{1},t) = \langle \delta(r^{(1)}(0) - r_{0})\delta(r^{(1)}(t) - r_{1}) \rangle_{H_{0}(r^{(1)},t)}.$$ \hspace{1cm} (2)

The angular brackets in Eq. (2) stand for the following average:

$$\langle \cdots \rangle_{H_{0}(r^{(1)},t)} = \frac{\int (\cdots) \exp(\mathcal{H}_0(r^{(1)},t))d\{r^{(1)}\}}{\int \exp(\mathcal{H}_0(r^{(1)},t))d\{r^{(1)}\}}, \hspace{1cm} (3)$$

which is performed with the Hamiltonian:

$$\mathcal{H}_0(r^{(1)},t) = \int_{0}^{t} \left(\frac{d^{(1)}(\tau)}{2d\tau}\right)^2 d\tau.$$ \hspace{1cm} (4)

The integration in Eq. (2) is performed over all paths $r^{(1)}(\tau)$ with $0 \leq \tau \leq t$. Note that we have absorbed the diffusion constant by a re-definition of time. The unit of the dimensionless Hamiltonian \mathcal{H}_0 is the product $k_B T$ of Boltzmann constant and temperature while that of time t is the square microscopic length ℓ^2. Spatial boundaries may be included in Eq. (2) by restricting the path integral to a subspace. $G^0(r_{0},r_{1},t)$ obeys the following differential equation:

$$\left(\Delta + \frac{d}{2t} - \frac{\partial}{\partial t}\right)G^0(r_{0},r_{1},t) = 0.$$ \hspace{1cm} (5)

Here, d is the dimension of space. In a given volume V a random walker will visit any site after some finite time and we may assume a steady state limit for $G^0(r_{0},r_{1},t)$ for $t = \infty$. In this case $G^0(r_{0},r_{1},t)$ will become independent of r_{0} and its limit will define a field $\rho(r)$:
\begin{equation}
\rho(r_1) = \lim_{t \to \infty} \frac{1}{V} \int dr_0 G^0(r_0, r_1, t).
\end{equation}

This field \(\rho(r) \) then obeys the Laplace equation:
\begin{equation}
\Delta \rho(r) = 0.
\end{equation}

We introduce boundary conditions in such a way that the field \(\rho(r) \) equals some constant \(\rho_\infty \) at the extremal volume boundaries (or at \(|r| = \infty \)) and vanishes on the absorber. The absorber itself we describe by a path \(r^{(2)}(s), 0 \leq s \leq S_2 \). These boundary conditions are implemented by an avoidance interaction \(u_{12} \) punishing any coincidence of the path \(r^{(1)} \) of the RW and the path \(r^{(2)} \) of the absorber. The correlation function of a random walk in the presence of an absorbing path \(r^{(2)}(s) \) with \(0 \leq s \leq S_2 \) may then be written as
\begin{equation}
G(r_0, r_1, S_1) = \langle \delta(r^{(1)}(0) - r_0) \delta(r^{(1)}(S_1) - r_1) \rangle
\times \exp \left\{ -\frac{u_{12}}{3!} \int_0^{S_1} ds_1 \int_0^{S_2} ds_2 \delta(r^{(1)}(s_1) - r^{(2)}(s_2)) \right\} \mathcal{H}_0(r^{(1)}, S_1),
\end{equation}
where we have adopted the notation \(t = S_1 \).

We are interested in ensemble averaged moments \(\langle \rho^n(r_0 + \xi) \rangle \) of the field in the vicinity of the absorber, i.e. with microscopic \(\xi \). For the RW ensemble the average is performed with respect to the Hamiltonian \(\mathcal{H}_0(r^{(2)}, S_2) \), for the SAW ensemble an additional interaction has to be included. The moments we calculate as an ensemble average over all configurations of the absorbing polymer choosing the site \(r_0 \) on the middle of the polymer \footnote{\label{foot:1}}. Formally we write these moments for \(\xi \to 0 \) as
\begin{equation}
\lim_{|\xi| \to 0} \langle \rho^n(r_0 + \xi) \rangle = \lim_{S_a, m \to \infty} \frac{1}{\mathcal{Z}^0_{s_m_n}} \int \prod_{a=1}^{m+n} dr_a G^*_{mn}(r_0, r_1, \ldots, r_{m+n}, S_1, \ldots, S_{m+n}).
\end{equation}

The normalization \(\mathcal{Z}^0_{s_m_n} \) takes care of the configurations of the absorber, as explained in the next section. The correlation function \(G^*_{mn} \) is defined as
\begin{equation}
G^*_{mn}(r_0, r_1, \ldots, r_{m+n}, S_1, \ldots, S_{m+n}) = \langle \prod_{a=1}^{m+n} \delta(r^{(a)}(0) - r_0) \delta(r^{(a)}(S_a) - r_a) \rangle
\times \exp \left\{ -\sum_{a,b=1}^{m+n} \frac{\tilde{u}_{ab}}{3!} \int_0^{S_a} ds_a \int_0^{S_b} ds_b \delta(r^{(a)}(s_a) - r^{(b)}(s_b)) \right\} \mathcal{H}_0(r^{(a)}, S_a).
\end{equation}
Here, the absorbing walk is represented by \(m = 2 \) paths \(r^{(1)}, r^{(2)} \), while the remaining \(n \) paths represent \(n \) random walks, as it is shown in the figure\footnote{\label{foot:2}}. The interaction matrix \(\tilde{u}_{ab} \) is in this case given by \(\tilde{u}_{ab} = \{ 0 \text{ if } a, b \leq m \text{ or } a, b > m; \text{ otherwise} \} \).

The limits in Eq. \eqref{foot:1} look rather ill defined at first sight, and indeed they should not be taken naively. Also the evaluation of the functional integral \eqref{foot:2} is not defined in this bare form. Luckily we have at hand the polymer field theory which has dealt with the problems of evaluating these formal expressions \footnote{\label{foot:3}}. We will show below how the theory is mapped to a renormalizable \(O(M) \) symmetric field theory in terms of which the limits and a perturbative expansion of \eqref{foot:2} make sense. For instance the limit \(|\xi| \to 0 \) may be interpreted as a short
distance limit defining a composite operator, while the limit \(S_{a>m} \to \infty \), with \(S_{b\leq m} \) stay finite corresponds to a short chain limit derived in [22]. In the frames of the polymer picture we may interpret \(G^*_{mn}(r_0, r_1, \ldots, r_{m+n}, S_1, \ldots, S_{m+n}) \) as the correlation function of \(m+n \) interacting walks all starting at point \(r_0 \) with end points at \(r_1, \ldots, r_{m+n} \). These describe what is called a polymer star. The normalized partition function of such a star of \(m+n \) polymer chains with chain lengths parametrized by \(S_a \) may be written as [12,13]:

\[
Z^*_{mn}\{S_a\} = \frac{1}{\mathcal{N}_{mn}} \int d^{m+n}r \prod_{a=1}^{m+n} G^*_{mn}(r_0, r_1, \ldots, r_{m+n}, S_1, \ldots, S_{m+n}).
\] (11)

The normalization \(\mathcal{N}_{mn} \) is chosen such that \(Z^*_{mn}\{S_a\}|_{\bar{u}_{ab}=0} = 1 \) for vanishing interactions and the point \(r_0 \) is arbitrary. We have studied this problem of polymer stars with general interaction matrix \(\bar{u}_{ab} \) in [9,10]. Here we will choose

\[
\bar{u}_{ab} = \begin{cases}
 u_{11} & \text{if } a, b \leq m \\
 u_{22} & \text{if } a, b > m \\
 u_{12} & \text{else}
\end{cases}
\] (12)

This allows us to think of the absorbing paths \(r^{(1)}, \ldots, r^m \) as being either of a RW \((u_{11}=0)\) or of a SAW \((u_{11} \neq 0)\) ensemble. With \(m > 2 \) we also include in our study the moments of the diffusion field near to the core of a polymer star. We included \(u_{22} \) only to ease notation, in the present context \(u_{22} = 0 \).

III. FIELD THEORY AND RENORMALIZATION

As is well known, the polymer model may be mapped to the limit \(M = 0 \) of \(O(M) \)-symmetrical Lagrangian field theory [23]. We adopt the formalism developed for multicomponent polymer solutions which allows us to describe both polymers and interacting random walks [16]. Its field theory is given by the following Lagrangian:

\[
\mathcal{L}\{\phi_a, \mu_a\} = \frac{1}{2} \sum_{a=1}^{m+n} \int d^d r \left(\mu_a \phi_a^2 + (\nabla \phi_a)^2 \right) \\
+ \frac{1}{4!} \sum_{a,b=1}^{m+n} \bar{u}_{a,b} \int d^d r \phi_a^2(r) \phi_b^2(r).
\] (13)

The \(\phi^2 \) terms should be read as scalar products of fields \(\phi_a \) with \(M \) component

\[
\phi_a^2 = \sum_{a=1}^M (\phi_a^0)^2.
\] (14)

The parameter \(\mu_a \) is a chemical potential conjugated to the chain length variables \(S_a \) in Eq. (8). Correlation functions in this theory are defined by averaging with the Lagrangian \(\mathcal{L} \):

\[
\langle \cdots \rangle_{\mathcal{L}} = \int \mathcal{D}[\phi_a(r)](\cdots) \exp[-\mathcal{L}\{\phi_a, \mu_a\}]|_{M=0}.
\] (15)
Here, functional integration $\int D[\phi_a(r)]$ is defined in such a way that normalization is already included: $\langle 1 \rangle_{\mathcal{L}} = 1$ if all $\bar{u}_{a,b} \equiv 0$. The limit $M = 0$ in Eq. (15) can be understood as a selection rule for the diagrams which contribute to the perturbation theory expansion and can be easily checked in this context to correspond to interacting polymers in the following way: The partition function Z_{smn} defined in Eq. (8) is mapped to the field theoretical correlation function \tilde{Z}_{smn} via Laplace transforms in the chain length variables S_a to conjugate chemical potentials (“mass variables”) μ_a:

$$\tilde{Z}_{smn}\{\mu_a\} = \int_0^\infty \prod_b dS_b e^{-\mu_b S_b} Z_{smn}\{S_a\}. \quad (16)$$

In terms of the above defined Lagrangian field theory \tilde{Z}_{smn} is given by

$$\tilde{Z}_{smn}\{\mu_a\} = \langle \int \prod_{a=1}^{m+n} dr_a \phi_a(r_0) \phi_a(r_a) \rangle_{\mathcal{L}}. \quad (17)$$

Our interest is in the scaling properties of these functions. Note that by (17) these are governed by the spectrum of scaling dimensions of the composite operators $\prod_a \phi_a$. To extract these dimensions we use RG methods [24,25]. Here, we apply the results of our previous approaches to the problem of co-polymer stars [9,10]: massless renormalization group scheme with successive ε-expansion (see e.g. [17]) and massive renormalization group approach at fixed dimension [18] compiled in a pseudo-ε expansion [26]. On the basis of correlation functions it is standard to define vertex functions $\Gamma^{(4)}_{aabb}$ corresponding to the couplings \bar{u}_{ab} as well as vertex functions $\Gamma^{(4)}_{\Pi \phi_a}$ with insertion of composite operators $\prod_a \phi_a$. Explicit expressions may be found in [10]. We define renormalization and introduce renormalized couplings \bar{g}_{ab} by:

$$\bar{u}_{ab} = \mu^\varepsilon Z_{\phi_a} Z_{\phi_b} Z_{ab} \bar{g}_{ab}. \quad (18)$$

The renormalizing Z-factors are power series in the renormalized couplings \bar{g}_{ab} subject to the following renormalization conditions:

$$Z_{\phi_a}(\bar{g}_{aa}) \frac{\partial}{\partial k^2} \Gamma^{(2)}_{aa}(\bar{u}_{aa}(\bar{g}_{aa})) = 1, \quad (19)$$

$$Z_{ab}(\{\bar{g}_{ab}\}) \Gamma^{(4)}_{aabb}(\bar{u}_{ab}(\{\bar{g}_{ab}\})) = \mu^\varepsilon \bar{g}_{ab}. \quad (20)$$

The scale parameter μ is equal to the mass at which the massive scheme is evaluated or it gives the scale of the external momenta in the massless scheme.

In order to renormalize the star vertex functions we introduce renormalization factors $Z^{*mn}_{\Pi \phi_a}$ by:

$$\left(\prod_{a=1}^k Z^{1/2}_{\phi_a}\right) Z^{*mn}_{\Pi \phi_a} \Gamma^{*mn}_{\Pi \phi_a}(\bar{u}_{ab}(\{\bar{g}_{ab}\})) = \mu^{\delta_{\Pi \phi_a}}, \quad (21)$$

where $\delta_{\Pi \phi_a}$ is the engineering dimension of the composite operator

$$\delta_{\Pi \phi_a} = (m + n)(\varepsilon - 1) + 4 - \varepsilon. \quad (22)$$
The renormalized couplings \bar{g}_{ab} and renormalizing Z-factors depend on the scale parameter μ. This is expressed by the following RG flow equations:

$$\mu \frac{d}{d\mu} \bar{g}_{ab} = \bar{\beta}_{ab}(\{\bar{g}_{ab}\}), \quad (23)$$

$$\mu \frac{d}{d\mu} \ln Z_{I\phi_a}^{\star mn}(\{\bar{g}_{ab}\}) = \eta_{I\phi_a}(\{\bar{g}_{ab}\}). \quad (24)$$

Our original problem is described by two sets of walks of different species. In this case only the three different couplings u_{11}, u_{12} and u_{22} in Eq. (12) remain. We will refer to their renormalized counterparts as $g_{11}, g_{22}, g_{12} = g_{21}$. The corresponding functions $\beta_{11}, \beta_{22}, \beta_{12}$ define the flow in the space of couplings. This RG flow was discussed in [15,16]. Its fixed points are determined by the set of equations:

$$\beta_{11}(g_{11}^*) = 0,$$

$$\beta_{22}(g_{22}^*) = 0,$$

$$\beta_{12}(g_{11}^*, g_{22}^*, g_{12}^*) = 0. \quad (25)$$

In the space of the three couplings one finds [16] 8 fixed points corresponding to the absence or presence of inter- and intra- species interaction. The equations for the fixed points of the β-functions were found to have the following nontrivial solutions: $\beta_{aa}(g_s^*) = 0$ and for $a \neq b$: $\beta_{12}(0, 0, g_C^*) = 0, \beta_{12}(g_s^*, 0, g_1^*) = 0, \beta_{12}(0, g_s^*, g_1^*) = 0, \beta_{12}(g_s^*, g_s^*, g_s^*) = 0$, corresponding to all combinations of interacting and non-interacting chains.

The phenomenon we address in this article corresponds to the case of a non-vanishing interaction between the two species of walks, while one set has no self-interaction. Thus we consider the two fixed points which we call G ($g_{11} = g_{22} = 0, g_{12} = g_C^*$) and U ($g_{11} = g^*, g_{22} = 0, g_{12} = g_U^*$). The first ($G$) corresponds to a set of random walks interacting with another set of random walks of a second species and thus describes absorption on random walk absorbers, the second (U) corresponds to a set of random walks interacting with a set of self-avoiding walks and thus describes absorption on SAW (polymer) absorbers.

Having m walks of the first species and n walks of second species we define the following exponents in the fixed points G, U:

$$\eta_{mn}^G = \eta_{I\phi_a}(g_{11} = g_{22} = 0, g_{12} = g_C^*), \quad (26)$$

$$\eta_{mn}^U = \eta_{I\phi_a}(g_{11} = g^*, g_{22} = 0, g_{12} = g_U^*), \quad (27)$$

which govern the scaling properties of the partition sum (11).

The scaling may be formulated in terms of the size R of the absorbing walks while the RWs of the diffusing particles are taken infinitely long. This corresponds to a short chain expansion [22]. We have to normalize the partition function by the number of configurations of the absorber given by Z_{sm0} and by the nth power of the first moment (see Eq. (11)). For large R on the microscopic scale ℓ the moments of $\rho(r_0)$ at point r_0 in the vicinity of the core of the star scale like

$$\left< \rho(r_0)^n \right> / \left< \rho(r_0) \right>^n = Z_{smn}/Z_{sm0} \left(Z_{sm1}/Z_{sm0} \right)^{-n} \sim \left(R/\ell \right)^{-\tau_{mn}}, \quad (28)$$

where $R = S_{a \leq m}$ and the exponents τ_{mn} are given as
\[\tau_{mn} = -\eta_{mn} + m\eta_{m1} - (n - 1)\eta_{m0}. \] (29)

Here, \(\nu \) is the correlation length critical exponent of the walks: \(\nu = 1/2 \) for random walks and \(\nu \simeq 0.588 \) for self-avoiding walks at \(d = 3 \). For the fixed point \(G \) we have \(\eta^G_{m0} = 0 \) and \(\nu = 1/2 \) for all walks. The scaling near a RW star is then described by inserting the value of \(\eta^G \) while the scaling near a SAW star is obtained by inserting \(\eta^U \). In previous work [9,10], we obtained the exponents \(\eta^G_{mn}, \eta^U_{mn} \) in third order of perturbation theory.

IV. MULTIFRACTAL SPECTRUM

A widely used characterization for the MF spectrum is the so called spectral function \(f_m(\alpha) \) [2]. To obtain this function for the absorption process on the center of a star with \(m \) legs we analytically continue the set of exponents \(\tau_{mn} \) in the variable \(n \) and calculate the following Legendre transform

\[f_m(\alpha_{mn}) = -\tau_{mn} + n\alpha_{mn} + D_m \quad \text{with} \quad \alpha_{mn} = \frac{d\tau_{mn}}{dn} + D_m. \] (30)

Following the standard definition we have included into Eq. (31) the fractal dimension \(D_m \) of the absorber. In particular, this gives the maximal value of the spectral function \(f_m(\alpha_{mn}) \) to be equal to the dimension \(D_m \). However the last is ill defined in the case of absorption near the core of a polymer star. That is why in the subsequent analysis we will neglect \(D_m \) in the expressions (30). Note as well that we have defined the exponents \(\tau_{mn} \) based on ensemble averages for the moments \(<\rho(r)^m> \). This definition deviates from the standard approach where an average over the support of \(\rho(r) \) is assumed. One has to expect some deviations from the behavior of the standard \(f(\alpha) \) which we will discuss below [6].

To obtain the expressions for the spectral function we use the perturbation expansions for the \(\eta \) exponents given to third order both in massless and massive renormalization [9,10]. These exponents are available both in terms of \(\varepsilon \)-expansion and pseudo-\(\varepsilon \)-expansion series. The first corresponds to collecting perturbation theory terms of the same power of \(\varepsilon = 4 - d \). In the pseudo-\(\varepsilon \) expansion series [26] each power of the pseudo-\(\varepsilon \) parameter \(\tau \) collects the contributions from the dimension-dependent loop integrals of the same order. In the final results the limit \(\tau = 1 \) is taken. Starting from the relations for \(\tau_{mn} \) (29) and the spectral function (30) some algebra results in the corresponding expansions for the MF spectra for absorption on stars of random walks (RW) and self avoiding walks (SAW):

\[\alpha_{mn}^{RW}(\varepsilon) = -m\left(2n - 1\right)\varepsilon^2/8 + m\left(4mn + 6n\zeta(3) - 12n + 3n^2
ight. \]
\[+5 - 2m - 3\zeta(3)\right)\varepsilon^3/16, \] (31)

\[f_m^{RW}(\varepsilon) = -mn^2\varepsilon^2/8 + mn^2\left(-6 + 2n + 2m + 3\zeta(3)\right)\varepsilon^3/16, \] (32)

\[\alpha_{mn}^{SAW}(\varepsilon) = -9m\left(2n - 1\right)\varepsilon^2/128 + 3m\left(168mn + 54n^2 + 157
ight) \]
\[+180n\zeta(3) - 350n - 84m - 90\zeta(3)\right)\varepsilon^3/2048, \] (33)

\[f_m^{SAW}(\varepsilon) = -9mn^2\varepsilon^2/128 + 3mn^2\left(-175 + 36n + 84m + 90\zeta(3)\right)\varepsilon^3/2048, \] (34)
\[
\alpha_{mn}^{RW}(\tau) = -m\varepsilon \left(1 + 4ni_1 - 2i_1 - 2n\right)\tau^2/4 + \alpha_{3\text{loop}}^{RW}\tau^3, \tag{35}
\]
\[
f_m^{RW}(\tau) = -\varepsilon mn^2 \left(-1 + 2i_1\right)\tau^2/4 + f_{3\text{loop}}^{RW}\tau^3, \tag{36}
\]
\[
\alpha_{mn}^{SAW}(\tau) = -9m\varepsilon \left(1 - 2n + 4ni_1 - 2i_1\right)\tau^2/64 + \alpha_{3\text{loop}}^{SAW}\tau^3, \tag{37}
\]
\[
f_m^{SAW}(\tau) = -9\varepsilon mn^2 \left(-1 + 2i_1\right)\tau^2/64 + f_{3\text{loop}}^{SAW}\tau^3. \tag{38}
\]

Here \(\zeta(3) \simeq 1.202\) is the Riemann zeta function, \(i_1, i_2\) are the two-loop integrals depending on the space dimension \(d\): at \(d = 3\), \(i_1 = 2/3, i_2 = -2/27\). The explicit form of the three-loop contributions in Eqs. (35)–(38) is given in the appendix A.

V. RESUMMATION AND RESULTS

As is well known, the series of type (31) - (38), as they occur in field theory appear to be of asymptotic nature with zero radius of convergence. However, knowing the asymptotic behavior of the series as derived from the RG theory we may evaluate these asymptotic series by resummation (see e.g. \[27\]). To this end several procedures are available differing in the amount of information that is used to control the convergence. We extract this additional information for the case of our Lagrangian (13) from \[16,28\]. We expect the following behavior of the \(k\)th order perturbation theory term \(A_k\) for any of the above quantities:

\[
A_k \sim k! k^b (-a)^k. \tag{39}
\]

The constant \(a\) for the \(\varepsilon\)-expansion of Lagrangian \(\phi^4\) field theory with one coupling was derived in \[28\]: \(a = 3/8\). For the unsymmetric fixed point \(U\), where two different couplings are present the value \(a = 27/64\) has been proposed \[16\]. We assume here that the same properties also hold for the pseudo-\(\varepsilon\) expansion in terms of \(\tau\). With the above information at hand one can make use of the Borel summation technique improved by the conformal mapping procedure which has served a powerful tool in field theory calculations (see \[27\] for example). We present some details of the resummation procedure in appendix B.

As stated before, we have chosen a definition for the generalized spectral functions \(f_m(\alpha)\) neglecting the fractal dimension \(D_m\) of the absorber. In this way we ease the comparison of the spectral functions \(f_m(\alpha)\) for different values of \(m\), the number of legs of the absorbing star. We have shifted all maxima of \(f_m(\alpha)\) to the point known for \(m = 2\) with \(D_{m=2} = 2\) in the RW case and \(D_{m=2} = 1.71\) in the SAW case.

The results of the resummation of the series for the spectral functions are presented in figures 2-6. Each point marked by a symbol corresponds to the resummation of both \(f_m(\alpha_{mn})\) and \(\alpha_{mn}\) for a given pair \((m, n)\) where we used a half-integer spacing for the values of \(n\). Note that the right wings of the curves correspond to negative \(n < 0\). In this region reliable resummations were feasible only for sufficiently large \(m\). We have only included resummations that were successful in minimizing the deviation between the second and third order resummed values as described in the appendix B.

In Fig.4 we study the effect of different RG and resummation procedures for \(f_{2\text{RW}}^{RW}(\alpha)\) in \(d = 3\) dimensions. The most simple approach is to directly insert \(\varepsilon = 1\) into the \(\varepsilon\)-expansion and for the \(\tau\)-expansion to use \(\tau = 1\) and the \(d = 3\)-dimensional values for the integrals.
can be seen from the curves, this will work only for the series truncated at second order and for small \(n \), i.e. near the maximum of \(f_2(\alpha) \) at \(n = 0 \). In addition we have performed an analytical continuation of our series using [2/1] Padé approximants for the series truncated at third order. The symmetry of the Padé approximant holds only in the region shown and may be an artifact of the method. On the left wing, where it coincides with the resummed results the Padé approximant gives a continuation which is compatible with the estimation for the minimal \(\alpha \) value \(\alpha_{\text{min}} = d - 2 \) \(^7\). The Padé result is \(\alpha_{\text{min}}(\varepsilon) = 1.333 \), \(\alpha_{\text{min}}(\tau) = 1.017 \) for the RW absorber and \(\alpha_{\text{min}}(\varepsilon) = 1.250 \), \(\alpha_{\text{min}}(\tau) = 1.013 \) for the SAW absorber, which is calculated here only from third order perturbation theory. The Padé approximant, while already significantly improving the convergence of the results, introduces some apparently artificial singularities. Moreover it does not make full use of the known asymptotics for the \(\varepsilon \)-expansions. We have therefore chosen a more sophisticated method of resummation that has proven to reproduce reliable data in many field theoretic applications \(^{25,27}\). The results of these resummations are again shown for both RG approaches. Note that though the results obtained for \(\alpha_n \) and \(f_2(\alpha_n) \) for a specific value of \(n \) differ in both approaches, the same curve \(f_2(\alpha) \) is described with better coincidence for the left wing of the curves, corresponding to positive \(n \).

Figs. 3-6 present the resummed MF spectra \(f_m(\alpha) \) of Brownian motion near general \(m \)-leg polymer stars in \(d = 3 \) dimensions. The family of curves \(f_m(\alpha) \) appear to approach some limiting envelope for increasing \(m \) in all cases. This behavior is more pronounced in the case of Brownian motion near an absorbing SAW star. This provides evidence that the MF spectrum catches rather general properties of the phenomena under consideration. Here, for the absorption of diffusing particles on a polymer star the spectrum only slightly varies with the number of legs \(m \) of the star even in the vicinity of the core of the star. Only the absorption on an endpoint (\(m = 1 \)) proves to be an exception.

The behavior of the maximum of the spectra may also be studied in terms of the series expansion. The original position of the maximum is given by its \(\alpha \)-coordinate in \(\varepsilon \)-expansion in the following form:

\[
\alpha_{m,0} = \eta_{m,1} - \eta'_{m,0}; \tag{40}
\]

\[
\alpha_{\text{RW}}^{\text{max}} = m\varepsilon/8 + \ldots; \tag{41}
\]

\[
\alpha_{\text{SAW}}^{\text{max}} = m(1 - m)\varepsilon/8 + \ldots. \tag{42}
\]

For \(m > 1 \) the position of the SAW maximum is shifted in opposite direction to that of the RW maximum. In \(\varepsilon \)-expansion we find for the curvature at the maximum:

\[
1/f''_m(\alpha) = -\eta''_{m,0}; \tag{43}
\]

\[
1/f''_{m,\text{RW}}(\alpha) = -m\varepsilon^2/4(1 - \varepsilon/2(2m - 6 + 3\zeta(3))) + \ldots, \tag{44}
\]

\[
1/f''_{m,\text{SAW}}(\alpha) = -9m\varepsilon^2/64 + \ldots. \tag{45}
\]

Here, we use the notations \(f'_m(\alpha) = d/d\alpha f_m(\alpha_{m,n})|_{n=0} \) and \(\eta'_{m,n} = d/d\eta_{m,n}|_{n=0} \) and correspondingly for higher derivatives. As can be seen also in the plots, the radius \(R_m \sim 1/f''_m(\alpha) \) of the curvature increases with \(m \) for both RW and SAW star. Some asymmetry is also present in the plots. It may be more explicitly extracted from the series by considering

\[
f''_m(\alpha)/f'''_m(\alpha) = (\eta''_{m,0})^2/\eta'''_{0,m}, \tag{46}
\]
\[
\frac{f_{m^{\text{RW}}}(\alpha)}{f_{m^{\text{RW}}}(\alpha)} = \frac{m\varepsilon}{12(1 - \varepsilon(2m - 6 + 3\zeta(3))) + \ldots}, \tag{47}
\]
\[
\frac{f_{m^{\text{SAW}}}(\alpha)}{f_{m^{\text{SAW}}}(\alpha)} = \frac{m\varepsilon}{16(1 - \varepsilon(7m/2 - 175/24 + 15/64\zeta(3))) + \ldots}. \tag{48}
\]

This shows that the asymmetry at the maximum decreases slightly with \(m\). The plots seem to indicate that it approaches some limiting value.

From the plots we present here, in general one may deduce that the series for the MF spectra for diffusion near an absorbing polymer star possess stable resummations and that the shape of the resulting curves is robust against the change of the number of legs \(m\) of the polymer star while a limiting curve seems to be approached with increasing \(m\).

VI. CONCLUSIONS

The present work represents extended results on the MF behavior of Brownian motion in the vicinity of an absorbing polymer structure. We extend the ideas by Cates and Witten \cite{7} to map this problem to a problem of interacting walks. The former authors used a Fixman expansion technique to extract the exponents governing the MF scaling. This approach is equivalent to a direct renormalization method and unique to dimensional renormalization with \(\varepsilon\)-expansion. The Fixman expansion assumes without proof the renormalizability of the quantities corresponding to higher moments of the Laplacian field of Brownian motion. Here, we map the problem to an \(O(M)\)-symmetric \(\phi^4\)-field theory relating the above quantities to corresponding composite operators for which renormalizability has been proven \cite{13}. Furthermore, the scaling exponents of these operators have been calculated in our previous work \cite{9,10}. There, it has been shown that the resulting spectra of scaling dimensions of these operators display the convexity properties which are necessarily found for multifractal scaling but unusual for power of field operators in field theory \cite{6,8}.

The extensive RG study in \cite{9,10} with three loop results allows us here to consider the general case of Brownian motion near the core of a star polymer with \(m\) legs. The higher order calculation was improved by resummation to give reliable estimates for the families of MF spectra describing the multiscaling of Brownian motion near absorbing RW or SAW stars.

Our results have proven to be equally stable under change of the general RG treatment. We applied two complementary RG approaches, the dimensional renormalization with successive \(\varepsilon\)-expansion as well as massive renormalization at fixed space dimensionalities. The resummation in particular enabled us to extend the region over which the curves for the MF spectra coincide in both RG approaches reflecting the stability of the scheme of calculations. Our plotted results (figs. \cite{3,6}) indicate some independence of the spectral function on the number of legs of the absorbing polymer star. For higher number of legs the spectrum seems to approach a limiting curve. The MF spectra calculated here show most of the common features shared by spectral functions that describe a variety of MF phenomena. Let us note however that unlike the common definition of the underlying scaling exponents based on site averages we here rely on ensemble averages for the moments of the Laplacian field of Brownian motion. We average over the configurational ensembles of absorbing polymer stars. Only for the case of \(m = 2\) legs of the absorbing star, also a site average definition could be used. As has been noted also in \cite{4,29} the ensemble average leads to the possibility
of negative values of the spectral function (see figs. 2–4). Furthermore, the fractal dimension
is not defined for the core of a polymer star.

Experimentally, such absorbing systems are realized in diffusion-controlled reactions with
traps or reaction sites attached to polymer chains. This is described by the irreversible
reaction $A + B \rightarrow 0$ with freely diffusing particles A and traps B attached along the polymer
chain [19]. The higher nth moments of the field at some special trap might then describe
the reaction rate for $A^n + C \rightarrow 0$. If C is located at the core of a polymer star this system
realizes all aspects of our study. While extensive MC studies exist for many problems in the
field of DLA, we hope that our detailed calculations might initiate also an MC approach to
the present problem. The current study also allows an extrapolation to $d = 2$ dimensions.

Though one should not expect to find results of a pure two-dimensional approach due to
topological restrictions in $d = 2$ that are not present in the perturbative ε-expansion [30].

While standard in field theoretical studies of critical phenomena, the resummation tech-
nique as to our knowledge was not applied in the theory of multifractals. We hope that our
attempt will attract attention for this possibility in the context of other problems that arise
in the theory of multifractal measures.

ACKNOWLEDGMENTS

This work was supported in part by SFB 237 of Deutsche Forschungsgemeinschaft and
by the Minerva foundation. Yu.H. acknowledges hospitality of the Institut für Theoretische
Physik II, Heinrich-Heine-Universität Düsseldorf, where this work was completed.

It is our pleasure to acknowledge discussions with Lothar Schäfer, Bertrand Duplantier
and Alexander Olemskoi. We are indebted to Gleb Oshanin for attracting our attention to
the references [19].

APPENDIX A: THREE-LOOP CONTRIBUTIONS TO THE Multifractal
Spectrum

Here, we collect the three-loop contributions of the expressions for the Hölder exponents
α_{mn} (35), (37) and the spectral functions $f_m(\alpha_{mn})$ (36), (38) obtained in the pseudo-ε-
expansion scheme. The expressions read:

\begin{align}
\alpha_{3\text{loop}}^{\text{RW}} &= -\frac{m\varepsilon}{8} \left(3i_6m - 3n^2 + 3m - 6mn + 20i_1 - 6i_4 + 3i_5 - 3i_6 + 3i_7 - 16i_1^2 - 46ni_1 \right) \\
&\quad - 5 + 6i_4m + 3i_5m + 12n - 9i_4n^2 - 12i_4mn + 9n^2i_1 + 32ni_1^2 - 6i_7n - 6i_5mn \\
&\quad - 6i_6mn + 6i_6n + 18i_4n - 12mi_1 + 24nmni_1 - 6i_5n \right), \\
\alpha_{3\text{loop}}^{\text{SAW}} &= -\frac{3m\varepsilon}{512} \left(-86 - 718ni_1 - 198mi_1 + 36i_6m + 126i_4m + 36i_5m - 27n^2 + 54m \\
&\quad - 108mn + 332i_1 + 4i_2 - 108i_4 + 36i_5 - 36i_6 + 45i_7 - 72i_5n + 72i_6n - 90i_7n \right),
\end{align}

\begin{align}
f_{3\text{loop}}^{\text{RW}} &= -\frac{\varepsilon mn^2}{8} \left(6 - 2n - 6i_4n + 9i_4 - 3i_5m - 6i_4m - 3i_6m - 3i_7 - 3i_5 + 12mi_1 \\
&\quad + 16i_1^2 - 23i_4 + 6ni_1 - 3m + 3i_6 \right),
\end{align}

\begin{align}
\alpha_{3\text{loop}}^{\text{SAW}} &= -\frac{3m\varepsilon}{512} \left(-86 - 718ni_1 - 198mi_1 + 36i_6m + 126i_4m + 36i_5m - 27n^2 + 54m \\
&\quad - 108mn + 332i_1 + 4i_2 - 108i_4 + 36i_5 - 36i_6 + 45i_7 - 72i_5n + 72i_6n - 90i_7n \right).
\end{align}
\[f_{3\text{loop}}^{SAW} = -\frac{3\varepsilon m n^2}{512} \left(95 - 18n - 54i_4n + 135i_4 - 36i_5m - 126i_4m - 45i_7 - 36i_5 \right) \]
\[+198mi_1 + 248i_1^2 - 359i_1 + 54ni_1 - 54m + 36i_6 - 4i_2 + 8i_2i_1 \].

The numerical values of the two-loop \((i_1, i_2)\) and three-loop \(i_3-ri_8\) integrals at \(d = 3\) equal [31]:

\[i_1 = \frac{2}{3}, \quad i_2 = -\frac{2}{27}, \quad i_3 = -0.0376820725, \quad i_4 = 0.3833760966, \quad i_5 = 0.5194312413, \]
\[i_6 = 1/2, \quad i_7 = 0.173906107, \quad i_8 = -0.0946514319. \]

APPENDIX B: RESUMMATION PROCEDURE

Here, we briefly describe the resummation method for the asymptotic series that we applied in our calculations [27,28,32]. The starting point is the expansion for the function of interest:

\[\beta(\varepsilon) = \sum_k A_k \varepsilon^k. \] (B1)

The coefficients \(A_k\) are supposed to possess the following behavior

\[A_k = c k^{b_0} (-a)^k k! \left[1 + O(1/k) \right], \quad k \to \infty \] (B2)

with known values of constants \(c, b_0, a\). The property (B2) indicates the Borel sumability of the series (B1). The Borel resummation procedure takes into account the asymptotic behavior of the coefficients and maps the asymptotic series to a convergent one with the same asymptotic limit. The procedure is as follows. For the series (B1) we define a Borel-Leroy transform \(f^B(\varepsilon)\) by

\[f^B(\varepsilon) = \sum_j \frac{f^{(j)} \varepsilon^j}{\Gamma(j + b + 1)}, \] (B3)

with the Euler Gamma function \(\Gamma(x)\) and a fit parameter \(b\). Then the initial series may be regained from

\[f^{\text{res}}(\varepsilon) = \int_0^\infty dt e^{-t} f^B(\varepsilon t). \] (B4)

Assuming the behavior of the high order terms (B2) one concludes that the singularity of the transformed series \(f^B(\varepsilon)\) closest to the origin is located at the point \((-1/a)\). Conformally mapping the \(\varepsilon\) plane onto a disk of radius 1 while leaving the origin invariant,

\[w = \frac{(1 + a\varepsilon)^{1/2} - 1}{(1 + a\varepsilon)^{1/2} + 1}, \quad \varepsilon = \frac{4}{a} \frac{w}{(1-w)^2}, \]

and substituting this into \(f^B(\varepsilon)\), and re-expanding in \(w\), we receive a series defined on the disk with radius 1 in the \(w\) plane. This series is then re-substituted into Eq. (B4).
In order to weaken a possible singularity in the w-plane the corresponding expression is multiplied by $(1-w)^\alpha$ and thus one more parameter α is introduced [32]. In the resummation procedure the value of a is taken from the known large-order behavior [16,28] of the ε-expansion series while α was chosen in our calculations as a fit parameter defined by the condition of minimal difference between resummed second order and third order results. The resummation procedure was seen to be quite insensitive to the parameter b introduced by the Borel-Leroy transformation (B3). The above procedure was applied to both the ε- and pseudo-ε-expansion series.

[1] H. G. E. Hentschel and I. Procaccia, Physica D, 8, 435 (1983).
[2] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. A, 33(2), 1141 (1986).
[3] B. B. Mandelbrot, J. Fluid. Mech., 62, 331 (1974); T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett., 56, 854 (1986); T.A. Witten and M.E. Cates, Science, 232, 1607 (1988); M. Marsili and L. Pietronero, Physica A, 175, 9 (1991); J. M. Deutsch and R. A. Zacher, Phys. Rev. E, 49, R8 (1994); G. Eyink and N. Goldenfeld, Phys. Rev. E, 50, 4679 (1994).
[4] P. Meakin, in Springer Proceedings in Physics. Computer Simulation Studies in Condensed Matter Physics, edited by D.P. Landau, K.K. Mon, and H.-B. Schütter (Spring-Verlag, Berlin Heidelberg, 1988), Vol. 33, pp. 55–64; F. Family, ibid, pp. 65–75.
[5] W. Feller, An Introduction to Probability Theory (Wiley, New York, 1966).
[6] B. Duplantier and A. W. W. Ludwig, Phys. Rev. Lett., 66, 247 (1991).
[7] M. E. Cates and T. A. Witten, Phys. Rev. Lett., 56, 2497 (1986); M. E. Cates and T. A. Witten, Phys. Rev. A, 35, 1809 (1987).
[8] C. von Ferber and Yu. Holovatch, in Renormalization Group 96 edited by D. V. Shirkov, D. I. Kazakov, and V. B. Priezzhev (Joint Inst. for Nucl. Research, Dubna, Russia, 1997) pp. 123–134.
[9] C. von Ferber and Yu. Holovatch, Europhys. Lett., 39, 31 (1997); Physica A, 249, 327 (1998).
[10] C. von Ferber and Yu. Holovatch, Phys. Rev. E, 56, 6370 (1997).
[11] B. B. Mandelbrot, The fractal geometry of nature, (W. H. Freeman and Company, New York, 1983).
[12] B. Duplantier, Phys. Rev. Lett., 57, 941 (1986); B. Duplantier, J. Stat. Phys., 54, 581 (1989); K. Ohno, K. Binder, J.Phys. (Paris), 49, 1329 (1988).
[13] L. Schäfer, C. von Ferber, U. Lehr, and B. Duplantier, Nucl. Phys. B, 374, 473 (1992).
[14] L. Schäfer and Ch. Kappeler, J. Phys. (Paris), 46, 1853 (1985).
[15] L. Schäfer and C. Kappeler, Colloid Polym. Sci., 268, 995 (1990).
[16] L. Schäfer, U. Lehr, and C. Kappeler, J. Phys. (Paris) I, 1, 211 (1991).
[17] E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase transitions and critical phenomena, edited by C.Domb and M.S.Green (Academic Press, New York, 1976), Vol. 6, pp. 125–247.
[18] G. Parisi, J. Stat. Phys., 23, 49 (1980).
[19] S. F. Burlatsky, G. S. Oshanin, V. N. Likhachev, Sov. J. Chem. Phys., 7, 1680 (1991); S. F. Burlatsky, G. S. Oshanin, Phys. Lett. A, 145, 61 (1990); G. Oshanin, M. Moreau, S. Burlatsky, Adv. Coll. Int. Sci., 49, 1 (1994).
[20] This redefinition leads to some peculiarities in the MF spectrum as discussed in [7] and as we will see later.

[21] P.-G. de Gennes, *Scaling Concepts in Polymer Physics* (Cornell University Press, Ithaca and London, 1979); J. des Cloizeaux and G. Jannink, *Polymers in Solution* (Clarendon Press, Oxford, 1990); L. Schäfer *Universal Properties of Polymer Solutions as Explained by the Renormalization Group* (Springer, Berlin, in press).

[22] C. von Ferber, Nucl. Phys. B, 490, 511 (1997).

[23] P. G. de Gennes, Phys. Lett. A, 38, 339 (1972).

[24] N. N. Bogoliubov and D. V. Shirkov, *Introduction to the theory of quantized fields* (Wiley & Sons, New York, 1959).

[25] J. Zinn-Justin, *Euclidean field theory and critical phenomena* (Oxford University Press, New York, 1989).

[26] B. G. Nickel, unpublished, see ref. 19 in [27].

[27] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B, 21, 3976 (1980).

[28] L.N. Lipatov, Sov. Phys. JETP, 45, 216 (1977); E. Brézin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. D, 15, 1544 (1977).

[29] T. C. Halsey, K. Honda, and B. Duplantier, J. Stat. Phys., 85, 681 (1996).

[30] E.g. for the random walk in $d = 2$ the absorbing polymer can in general be approached only from one side.

[31] B.G. Nickel, D.I. Meiron, and G.A. Baker, Jr., University of Guelph Report 1977 (unpublished); Yu. Holovatch and T. Krokhmal’s’kii, J. Math. Phys., 35, 3866 (1994).

[32] J. Zinn-Justin, Phys. Rep., 70, 109 (1981).
FIG. 1. n random walks that end at point r_0 on the absorbing polymer.

FIG. 2. MF spectrum for diffusion near an absorbing RW. Comparison of different approximation and resummation schemes.
FIG. 3. MF spectra for diffusion near an absorbing RW star (ε expansion).

FIG. 4. MF spectra for diffusion near an absorbing RW star (τ-expansion).
FIG. 5. MF spectra for diffusion near an absorbing SAW star (expansion).

FIG. 6. MF spectra for diffusion near an absorbing SAW star (expansion).