The Risk of Adverse Effects of TNF-α Inhibitors in Patients With Rheumatoid Arthritis: A Network Meta-Analysis

Bei He†, Yun Li†, Wen-wen Luo†, Xuan Cheng†, Huai-rong Xiang†, Qi-zhi Zhang†, Jie He† and Wen-xing Peng†,2*

1 Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China, 2 Institute of Clinical Pharmacy, Central South University, Changsha, China

Objectives: To evaluate the safety of each anti-TNF therapy for patients with rheumatoid arthritis (RA) and then make the best choice in clinical practice.

Methods: We searched PUBMED, EMBASE, and the Cochrane Library. The deadline for retrieval is August 2021. The ORs, Confidence Intervals (CIs), and p values were calculated by STATA.16.0 software for assessment.

Result: 72 RCTs involving 28332 subjects were included. AEs were more common with adalimumab combined disease-modifying anti-rheumatic drugs (DMARDs) compared with placebo (OR = 1.60, 95% CI: 1.06, 2.42), DMARDs (1.28, 95% CI: 1.08, 1.52), etanercept combined DMARDs (1.32, 95% CI: 1.03, 1.67); certolizumab combined DMARDs compared with placebo (1.63, 95% CI: 1.07, 2.46), DMARDs (1.30, 95% CI: 1.10, 1.54), etanercept combined DMARDs (1.34, 95% CI: 1.05, 1.70). In SAEs, comparisons between treatments showed adalimumab (0.20, 95% CI: 0.07, 0.59), etanercept combined DMARDs (0.39, 95% CI: 0.15, 0.96), golimumab (0.19, 95% CI: 0.05, 0.77), infliximab (0.15, 95% CI: 0.03,0.71) decreased the risk of SAEs compared with golimumab combined DMARDs. In infections, comparisons between treatments showed adalimumab combined DMARDs (0.59, 95% CI: 0.37, 0.95), etanercept (0.49, 95% CI: 0.28, 0.88), etanercept combined DMARDs (0.56, 95% CI: 0.35, 0.91), golimumab combined DMARDs (0.51, 95% CI: 0.31, 0.83) decreased the risk of infections compared with infliximab combined DMARDs. No evidence indicated that the use of TNF-α inhibitors influenced the risk of serious infections, malignant tumors.

Conclusion: In conclusion, we regard etanercept monotherapy as the optimal choice for RA patients in clinical practice when the efficacy is similar. Conversely, certolizumab + DMARDs therapy is not recommended.

Systematic Review Registration: identifier PROSPERO CRD42021276176.

Keywords: adverse effects, TNF-α inhibitors, rheumatoid arthritis, network meta-analysis, serious adverse events
INTRODUCTION

Rheumatoid arthritis (RA) is one of the most prevalent chronic inflammatory diseases, which can cause cartilage and bone damage as well as a disability that carries a substantial burden for both the individual and society (1). Currently, antitumors necrosis factor (anti-TNF) therapy has been established as an efficacious therapeutic strategy in RA (2). TNF-α is a pro-inflammatory cytokine known to have a key role in the pathogenesis of chronic immune-mediated diseases (3). Five TNF-α inhibitors have received regulatory approval for clinical use in rheumatology: adalimumab, golimumab, infliximab, certolizumab, and etanercept (4). They are commonly used in the treatment of rheumatoid arthritis.

Besides therapeutic effects, some studies reported that TNF-α inhibitors may also cause some adverse effects in patients with RA (5–8). Although there have been some pair-wise meta-analyses and network meta-analyses that evaluate the safety of different TNF-α inhibitors therapies for patients with RA. Nevertheless, most of the trials only focused on total AEs and SAEs or just one kind of detailed AEs, and some of the initial meta-analyses were contradicted by subsequent studies. For instance, Bongartz et al. reported that RA patients who were treated by anti-TNF therapies had an increased risk of serious infections and malignancies (9), while another trial evaluating malignancy risk in RA patients concluded that there was no significant evidence of an increased risk of malignancy using TNF-α inhibitors (10).

To evaluate the safety of TNF-α inhibitors in patients with RA, we choose six safety outcomes to systematically assess 10 anti-TNF therapies from 72 RCTs with a sample size of 28332 patients. Our network meta-analysis seeks to infer the risk of adverse effects of two therapies in patients with rheumatoid arthritis by direct and indirect comparisons. Simultaneously, it extracts and analyzes data from all randomized control trials (RCTs) to select the best therapy. The objective of the current study is to better characterize the safety of each anti-TNF therapy for patients with RA and then make the best choice in clinical practice.

METHOD

Study Selection
We searched PUBMED, EMBASE, and the Cochrane Library with the terms of drugs (adalimumab, certolizumab, etanercept, infliximab, and golimumab) and diseases (rheumatoid arthritis). After matching each “drug” and “disease”, restricting search results with the condition “randomized controlled trial”, we finally form the retrieval expressions that adapt to different databases. The deadline for retrieval is August 2021. Two investigators performed the literature screening according to the inclusion and exclusion criteria independently. The repeated studies were excluded firstly. Afterward, excluded unrelated studies by reading the titles and abstracts. The literature that met the inclusion and exclusion criteria was further screened by reading the full text. Disagreements were resolved by consensus Equations.

Inclusive Criteria
RCTs associated with adalimumab, certolizumab, etanercept, infliximab, and golimumab in the treatment of rheumatic diseases are included. Subjects should be greater than or equal to 18 years old and should be diagnosed with rheumatoid arthritis according to American College of Rheumatology criteria or other authoritative criteria. Disease progression, race, nationality, and complications are not limited. For the types of interventions, the experimental groups use TNF-α inhibitors, with or without disease-modifying antirheumatic drugs (DMARDs). The control groups use placebo (with or without DMARDS) or DMARDs alone.

Exclusive Criteria
RCTs that accord with any of the following criteria will be excluded: (1) studies with no accessible records of AE, SAE, malignant tumors, infections, severe infections, or malignant tumors (requiring intravenous antibiotic treatment or hospitalization or threatening patient's life); (2) repetitive studies with shorter follow-up time; (3) studies with improper control (other therapy in experimental group or control group); (4) studies with Jadad score lower than or equal to 3 points; (5) studies with full texts not available.

Data Extraction
Data extraction was performed independently by He Bei and Li Yun, and the EndNote software was used to filter duplications and irrelevant literature by reading titles and abstracts. The remaining articles were then browsed in full text to determine whether they met the inclusion criteria. After removing ineligible publications, the two reviewers independently extracted data from each study, and disagreements were resolved by reaching a consensus. From each eligible study, we extracted and summarized the following details: the first author, year of publication, country, the total number of participants, type of TNF-α inhibitors, age range, follow-up time, duration of trials.

Assessment of Risk of Bias
Two investigators independently assessed each study’s risk of bias as low, unclear, and high. Disagreements were resolved by consensus. The items included: Random sequence generation; allocation concealment; blinding of participants and personnel; blinding of outcome assessment; incomplete outcome data; selective reporting; other bias.

Quality Assessment
Two reviewers independently used the modified Jadad scale to assess the quality of RCTs (randomized control trials). NOS includes three aspects (selection, comparability, and exposure for case-control studies or outcomes for cohort studies), as well as scores of 4, 2, and 3, respectively. The modified Jadad scale comprises four parts: generation of the allocation sequence, concealment of allocation, blinding, and incomplete outcome data, and scores of 2, 2, 2, and 1 for four parts, respectively. Studies with scores of 1-3 were considered to be of low quality; 4-7 high quality.
Data Synthesis and Analysis
Network meta-analysis was performed to compare each of the 10 anti-TNF therapies. Based on the multivariate framework, the network meta-analysis was conducted using frequency theory, and two program packages, network, and mvmeta, developed by STATA 16 software based on multiple regression theory, were used for statistical analysis. Firstly, an evidence network diagram was drawn to show the comparison between interventions, and the consistency test was conducted according to the existence of closed rings. Second, for counting data, OR was used for calculation, the network meta of adverse drug reactions was analyzed, 95% confidence interval was used for all effect sizes, and 95%CI of OR did not cross effect line 1, indicating that P<0.05 was statistically significant. SUCRA analysis was used to seek therapies that had the highest probability of adverse events, with the higher the SUCRA value, the higher the risk. Stata 16.0 draws a comparative-correction funnel plot to determine whether there is a small sample effect in the analysis and recognition network, to evaluate the publication bias of the final screening. All tests were two-sided with a significance level of 0.05.

RESULT
By searching databases, we retrieved 3200 original records. After excluding duplicates and irrelevant articles, 211 full-text articles were assessed for eligibility. By reading full-text, 72 articles met the inclusive criteria and exclusive criteria (11–82). The following diagram of the study selection process for this meta-analysis is shown in Figure 1. The 72 articles included 28332 patients, followed up for about 16-104 weeks. 72 articles involved RCT experiments, including 21 adalimumab trials, 13 certolizumab trials, 21 etanercept trials, 9 golimumab
trials, and 8 infliximab trials. Table 1 summarizes the relevant characteristics.

Adverse Events

58 articles (12, 15, 16, 19, 21–26, 28–38, 40–42, 44–47, 49–56, 58–69, 71–75, 77, 79–82) reported the occurrence of AEs and 23778 RA patients was included. The network of eligible comparisons is shown in Figure 2. Network meta-analysis showed that adalimumab combined DMARDs compared with placebo therapy statistically significantly increased the risk of AEs by 60% (1.60, 95% CI: 1.06, 2.42); compared with DMARDs, the risk of AEs increased by 28% (1.28, 95% CI: 1.08, 1.52) (Table 2 and Figure 3). Certolizumab also found that compared with placebo therapy, the risk of AE increased by 127% (2.27, 95% CI: 1.22, 4.24). In addition, certolizumab combined DMARDs compared with placebo therapy statistically significantly increased the risk of AEs by 63% (1.63, 95% CI: 1.07, 2.46); compared with DMARDs, the risk of AEs increased by 30% (1.30, 95% CI: 1.10, 1.54). Comparisons between treatments showed certolizumab combined DMARDs increased the risk of AEs compared with etanercept combined DMARDs (1.34, 95% CI: 1.05, 1.70); adalimumab combined DMARDs increased the risk of AEs compared with etanercept combined DMARDs (1.32, 95% CI: 1.03, 1.67) (Table 2). There was no statistically significant difference between other comparisons.

We have made global consistency. The test result p-value was 0.9095, so the consistency model could be used. We also established local consistency and the p-value of the test result exceeded 0.05, which was considered local. We analyzed SUCRA to research the probability of adverse events for each therapy. The results indicated that certolizumab had the highest probability to cause AEs (SUCRA = 0.906), while PBO had the lowest probability to cause AEs (SUCRA = 0.066) compared with the other therapies (Figure 3). There was a funnel plot with no obvious asymmetry, indicating no publication bias (Figure 4).

Serious Adverse Events

58 articles (12, 13, 15, 17–19, 22, 24–27, 29–32, 34–36, 38, 40–52, 54, 56–60, 62–70, 72–82) reported the occurrence of SAEs and 23805 RA patients was included. The network of eligible comparisons was shown in Figure 5. Network meta-analysis showed that golimumab combined DMARDs compared with placebo therapy statistically significantly increased the risk of SAEs by 227% (3.27, 95% CI: 1.08, 9.92); Compared with DMARDs, the risk of SAEs increased by 170% (2.70, 95% CI: 1.15, 6.32). Comparisons between treatments showed adalimumab (0.20, 95% CI: 0.07, 0.59), etanercept (0.35, 95% CI: 0.12, 1.00), etanercept combined DMARDs (0.39, 95% CI: 0.15, 0.96), golimumab (0.19, 95% CI: 0.05, 0.77) decreased the risk of SAEs compared with golimumab combined DMARDs; adalimumab (0.39, 95% CI: 0.18, 0.84) decreased the risk of SAEs compared with certolizumab combined DMARDs; golimumab combined DMARDs increased the risk of SAEs compared with infliximab (6.50, 95% CI: 1.41, 29.90) (Table 3). There was no statistically significant difference between other comparisons.

We did the global consistency test. The test result p-value was 0.8840. We also made local consistency and the test result p-value was greater than 0.05, which was considered to be locally consistent. According to the SUCRA analysis, golimumab combined DMARDs had the highest risk to cause SAEs (SUCRA = 0.940), while adalimumab had the lowest risk to cause SAEs (SUCRA = 0.0130) compared with the other 11 therapies (Figure 6). There was a funnel plot asymmetry, with the right corner of the pyramidal part of the funnel missing, which suggested a possible bias (Figure 7).

Infections

40 articles (12, 15, 17, 22, 25–28, 30, 31, 33, 34, 36, 38, 40–42, 45, 49, 54–56, 58–60, 62–66, 72–77, 79–82) reported the occurrence of AEs and 15285 RA patients was included. The network of eligible comparisons was shown in the Supplementary Figure 1. Network meta-analysis showed that golimumab combined DMARDs compared with DMARDs increased the risk of infections by 35% (1.35, 95% CI: 1.10, 1.66); infliximab combined DMARDs compared with DMARDs increased the risk of infections by 102% (2.02, 95% CI: 1.31, 3.11). Comparisons between treatments showed adalimumab combined DMARDs (0.59, 95% CI: 0.37, 0.95), etanercept (0.49, 95% CI: 0.28, 0.88), etanercept combined DMARDs (0.56, 95% CI: 0.35, 0.91), golimumab combined DMARDs (0.51, 95% CI: 0.31, 0.83) decreased the risk of infections compared with infliximab combined DMARDs (supplementary Table 1). There was no statistically significant difference between other comparisons.

We did the global consistency test. The test result p-value was 0.6713. We also established local consistency and the p-value of the test result exceeded 0.05, which was considered local. According to the SUCRA analysis, infliximab combined DMARDs had the highest risk to cause infections (SUCRA = 0.910), while DMARDs had the lowest risk to cause infections SUCRA = 0.210) compared with the other 11 therapies (Supplementary Figure 2). There was a funnel plot (Supplementary Figure 3) with no obvious asymmetry, indicating no publication bias.

Serious Infections

55 articles (11–20, 22, 23, 26–38, 40, 42, 45, 47–49, 51, 52, 54, 56–60, 62–66, 68, 69, 72–77, 80–82) reported the occurrence of serious infections, involving a total of 24740 RA patients. The network of eligible comparisons was shown in the Supplementary Figure 4. Network meta-analysis showed that there was no statistically significant difference between 12 therapies (Supplementary Table 2).

We did the global consistency test. The resulting p-value was 0.4900. We also made local consistency and the test result p-value was greater than 0.05, which was considered to be locally consistent. According to the SUCRA analysis, certolizumab had the highest risk to cause serious infections (SUCRA = 0.817), while etanercept combined DMARDs had the lowest risk to cause serious infections (SUCRA = 0.285) compared with the other therapies (Supplementary Figure 5). There was a funnel plot asymmetry, with the right corner of the pyramidal part of the funnel missing, which suggested a possible bias (Supplementary Figure 6).
Author, Year	Duration of trials (years)	Quality score	Follow-up time (Week)	Average age (years old)	Duration of rheumatoid arthritis (years)	Number of women (n)	Number of patients (n)	Total number of cases (n)	Intervention measures
Den et al. (11)	NA	4	4	55	11.9	22	31	120	Placebo
adalimumab 0.5mg/Kg									
adalimumab 1mg/Kg									
adalimumab 3mg/Kg									
adalimumab 5mg/Kg									
adalimumab 10mg/Kg									
adalimumab 40mg eow+DMARD									
adalimumab 20mg qw									
adalimumab 40mg qw									
adalimumab 80mg qw									
placebo									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo+MTX									
Frust et al. (15)	NA	4	24	55.8	11.5	252	318	636	Placebo
adalimumab 40mg eow+DMARD									
adalimumab 20mg qw									
adalimumab 40mg qw									
adalimumab 80mg qw									
placebo									
adalimumab 20mg eow+MTX									
Van der Putte et al. (13)	NA	4	12	53.7	10.4	61	72	284	Placebo
adalimumab 20mg eow+DMARD									
adalimumab 40mg eow+DMARD									
adalimumab 80mg eow+DMARD									
adalimumab 10mg/Kg									
adalimumab 10mg/Kg									
Weinblatt et al. (14)	NA	5	24	53.5	13.1	52	69	271	Placebo
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo+MTX									
Keystone et al. (16)	NA	5	52	56.1	11	158	207	619	Placebo
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo+MTX									
van der Putte et al. (19)	2000.1-2001.6	7	26	53.1	9.3	84	106	544	Placebo
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Kim et al. (25)	NA	5	18	48.5	6.8	62	65	128	Placebo
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Miyasaka et al. (31)	CHANGE	2004.2-2005.6	5	24	54.8	9.3	84	106	544
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Bejarano et al. (28)	2003.3.5-2004.12.2	7	56	47	9.5	44	75	148	Placebo
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Chen et al. (33)	NA	5	12	53	6.2	26	35	47	Placebo
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
van Volkenhoven et al. (46)	PREMIER (NCT00195663)	6	104	51.9	0.7	193	268	799	Placebo
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Detert et al. (48)	HIT HARD	2007.6-2010.9	5	24	47.2	0.15	61	87	172
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Kavanaugh et al. (49)	OPTIMA (NCT00420927)	2006.12-2010.7	5	26	50.7	0.33	380	515	1032
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Horslev-Petersen et al. (57)	OPERA	2007.8-2009.12	5	104	56.2	0.24	56	89	180
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Kennedy et al. (58)	ALTARA	2010.11-2012.7	5	12	50.2	0.15	61	87	172
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Takeuchi et al. (62)	HOPEFUL 1	2009.3-2010.11	5	26	54	0.3	144	171	334
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Taylor et al. (74)	RA-BEAM	2012.11-2015.9	5	24	53	0.3	144	171	334
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Fleischmann et al. (77)	SELECT - COMPARE (NCT01895764)	2013.3-2014.10	4	26	53	0.3	144	171	334
adalimumab 40mg eow+MTX									
adalimumab 20mg eow+MTX									
adalimumab 40mg eow+MTX									
adalimumab 80mg eow+MTX									
placebo									
Ducourau et al. (81)	NCT02889796	2016.8.30-2019.6.20	7	24	53	7.3	391	475	800
adalimumab 40 mg bw+MTX
adalimumab 20 mg bw+MTX
adalimumab 40 mg bw+MTX
adalimumab 80 mg bw+MTX
placebo |

(Continued)
TABLE 1 | Continued

Author, Year	Duration of trials (years)	Quality score	Follow-up time (Week)	Average age (years old)	Duration of rheumatoid arthritis (years)	Number of women (n)	Number of patients (n)	Total number of cases (n)	Intervention measures	
Fleischman et al. (77)	FAST4WARD 2003.6-2004.7	6	24	52.7	8.7	87	111	220	certolizumab 400mg placebo	
Smolen et al., 2009	RAPID 2 2005.6-2006.9	4	24	51.9	6.5	192	246	619	certolizumab 400mg + MTX placebo + MTX	
Choy et al. (42)	NCT00544154	7	24	53	9.4	91	126	247	certolizumab 400mg + MTX placebo	
Weinblatt et al. (47)	REALISTIC (NCT00717236)	7	12	55.4	8.6	660	q	1063	certolizumab (certolizumab 400mg qw 0, 2 and 4, followed by certolizumab 200 mg eow) +DMARDs placebo + DMARDs	
Schiff et al.	NCT01147341	4	52	56.1	12	NR	27	37	certolizumab 400mg qw 0, 2 and 4, followed by 200mg eow) +DMARDs placebo	
Yamamoto et al. (63)	J-RAPID 2008.11.19-2010.8.18	7	24	54.3	6.0	58	72	316	certolizumab 100mg eow + MTX placebo + MTX	
Furst et al.	DOSEFLEX 2011.10-2013.8	7	52	49.4	4.0	129	159	316	certolizumab 400mg/200mg eow +MTX placebo + MTX	
Smolen et al.	CERTAIN	5	24	53.6	4.5	81	96	194	certolizumab 200mg eow +MTX placebo + MTX	
Atsumi et al.	C-OPERA (NCT01451203)	2011.10-2013.8	7	52	49.1	4.7	75	98	certolizumab 400mg/200mg eow +MTX placebo + MTX	
Emery et al. (72)	C-EARLY (NCT01519791)	2012.1-2015.9	6	52	50.4	0.24	497	660	879	certolizumab 400mg/200mg eow +MTX placebo + MTX
Kang et al. (75)	NCT00999317	2009.12-2011.8	4	24	51.6	6.5	72	85	127	certolizumab 400mg/200mg eow +MTX placebo + MTX
Bi et al. (76)	RAPID-C (NCT02151851)	2014.7.23-2016.6.17	6	24	48.2	7.0	268	316	429	certolizumab 200 mg eow (loading dose: 400 mg certolizumab qw 0, 2 and 4, followed by 200 mg certolizumab eow) +DMARDs placebo + DMARDs
Hetland et al. (79)	NCT01491815	2012.12.3-2018.12.11	6	24	47.1	6.6	95	113	399	active conventional treatment certolizumab 200 mg qw (400 mg qw 0, 2, and 4) + MTX placebo + MTX
Genovese et al. (59)	1997.5-1999.3	5	104	49	1	75	217	632	three 2.5-mg MTX qw and placebo biw 10 mg of etanercept biw and three placebo tablets qw, 25 mg of etanercept biw and three placebo tablets qw certolizumab pegol (400 mg weeks 0, 2, 4, adalimumab (40 mg once qw) plus placebo 50 mg etanercept qw 25 mg etanercept biw	
Smolen et al. (1)	2011.12.14-2013.11.11	4	12	53	5.9	96	457	914	certolizumab pegol (400 mg weeks 0, 2, 4, adalimumab (40 mg once qw) plus placebo	
Keystone et al. (16)	N/A	5	8	54	10.8	36	457	914	certolizumab pegol (400 mg weeks 0, 2, 4, adalimumab (40 mg once qw) plus placebo	

(Continued)
Author, Year	Duration of trials (years)	Quality score	Follow-up time (Week)	Average age (years old)	Duration of rheumatoid arthritis (years)	Number of women (n)	Number of patients (n)	Total number of cases (n)	Intervention measures	
van der Heijde et al. (26)	TEMP0 2000.10-2001.7	6	104	52.5	6-8	171	231	682	etanercept 25mg biw + MTX	
Lan et al. (21)									etanercept 25mg biw + placebo	
van Riel et al. (22)	ADORE 2003.3-2004.5	4	16	53	10	126	159	314	etanercept 25 mg biw	
Weissman et al. (27)	RA	6	16	60.6	10.1	192	266	535	etanercept 25mg biw	
Emery et al. (28)	COMET	2004.10-2006.2	7	52	50.5	8-8	196	274	542	etanercept 50mg qw + MTX
Lan et al. (21)									placebo + MTX	
van Riel et al. (22)									placebo + MTX	
Kim et al. (44)	APPEAL	2007.6-2009.3	6	16	48.4	6.5	17	197	300	etanercept 25 mg biw+MTX
Takeuchi et al. (83)	NCT00445770	NA	6	52	51.8	3.0	145	182	550	etanercept 25 mg biw
Emery et al. (56)	NCT00913458	2009.10-2012.12.17	5	39	49.6	0.54	47	63	193	etanercept (25 mg)+MTX
Machado et al. (59)	NCT00848354	2009.6-2011.3	5	24	48.4	7.9	248	281	423	etanercept(50 mg)+MTX
Nam et al. (60)	EMPIRE	2006.10-2009.5	7	78	47.9	0.5	44	55	110	etanercept(50 mg)+MTX
Smolens et al. (62)	PRESERVE (NCT00565409)	3	52	46.4	6-4	157	202	34	etanercept 25mg qw+MTX	
Keystone et al. (67)	CAMEO (NCT00854368)	2012.12	6	104	54.3	9.0	72	98	205	etanercept 50 mg qw
van Vollenhovn et al. (70)	NR	4	20	59.6	16.6	18	27	191	etanercept 50 mg qw+MTX	
Yamanaka et al. (71)	ENCOUREAGE (UMIN000002687)	2009.8-2014.4	5	52	52.8	2.0	138	161	191	toch 25 mg biw + MTX
Pavelka et al. (73)	NCT01578850	2012.7-2015.3	6	28	46.1	8.0	136	167	343	etanercept 50mg qw +DMARDs
Curtis et al. (82)	SEAM-RA	2015.2.20-2018.6.26	6	48	56.2	9.7	76	101	153	placebo+MTX
Kay et al. (30)									etanercept	
Emery et al. (34)	GO-BEFORE	2005.12.12-2007.10.1	6	24	50.9	3.5	135	159	634	etanercept 50mg qw +DMARDs
Keystone et al. (36)	GO-FORWARD	20005.12.19-2007.9.17	5	16	52	4.5	72	89	444	etanercept 50mg qw + Placebo
									Placebo+MTX	

(Continued)
Malignant Tumors

32 articles (14–20, 23, 26, 27, 29–32, 34–39, 43, 47–49, 52, 57, 60, 65, 74, 75, 77, 79) reported the occurrence of malignant tumors, involving 16947 RA patients. The network of eligible comparisons was shown in the Supplementary Figure 7. Mesh meta-analysis showed that there was no statistically significant difference between 12 therapies (Supplementary Table 3).

We did the global consistency test. The test result p-value was 0.6219. We also made local consistency and the test result p-value was greater than 0.05, which was considered to be locally consistent. According to the SUCRA analysis (Supplementary Figure 8), golimumab had the highest risk to cause malignant tumors (SUCRA =0.778), while golimumab combined DMARDs had the lowest risk to cause malignant tumors (SUCRA = 0.285) compared with the other 11 therapies.

DISCUSSION

Based on the data and information of included RCTs, our study aims to evaluate the risk of adverse effects of 10 anti-TNF therapies in patients with rheumatoid arthritis. All available direct and indirect evidence of various treatment options was analyzed and compared simultaneously by network meta-

TABLE 1 | Continued

Author, Year	Duration of trials (years)	Quality score	Follow-up time (Week)	Average age (years old)	Duration of rheumatoid arthritis (years)	Number of women (n)	Number of patients (n)	Total number of cases (n)	Intervention measures
Smolen et al. (38) GO-AFTER (NCT00299546)	2006.2.21-2007.9.26	7	16	55	9.6	113	153	461	Golimumab 50 mg q4w
	2006.2.21-2007.9.26	55	8.7	122	153	Placebo			
Kremer et al. (40) NCT00361335	2006.8.24-2008.8.25	6	16	49.9	7.4	21	128	643	Golimumab 2mg/kg q12w
	2006.8.24-2008.8.25	48.4	8.4	10	129	Placebo			
Tanaka et al. (45) GO-FORTH	2008.5-2009.11	5	16	50.4	8.8	15	86	261	Golimumab 50 mg q4w+MTX
	2008.5-2009.11	50	8.1	78	87	Placebo+MTX			
Takeuchi et al. (53) GO-MONO NA	2010.8-2011.10	4	16	52.9	8.1	81	101	308	Golimumab 50 mg q4w
Li et al. (68) NCT01248780	2010.8-2011.10	51.1	8.7	73	88	Placebo+MTX			
Maini et al. (17)	2008.5-2009.11	51.6	9.4	85	102	Placebo+MTX			
St. Clair et al. (18) START	2009.7-2010.1	7	54	51	0.9	255	359	1004	Placebo+MTX
Aire et al. (12)	2010.8-2011.10	50	0.9	247	363	Placebo+MTX			
Westhoven et al. (23)	2010.8-2011.10	50	0.9	212	282	Placebo+MTX			
Zhang et al. (24)	2010.8-2011.10	50	0.9	40	49	Placebo+MTX			
Schiff et al. (32) ATTEST	2006.2-2007.2	6	28	48.9	7.3	13	86	275	Placebo+MTX
Kim et al. (50) NCT00020852	2006.6-2007.2	6	28	49.1	7.3	136	165	275	Placebo+MTX
Lannirai (51) NCT00020852	2006.6-2007.2	6	28	49.4	8.4	96	110	138	Placebo+MTX
Repo et al. (51) NCT00020852	2006.6-2007.2	6	28	49.3	7.4	64	89	138	Placebo+MTX

biw, twice a week; qw, weekly; eow, every two weeks; q4w, every four weeks; q8w, every 8 weeks; q12w, every 12 weeks; MTX, methotrexate; DMARD, disease-modifying anti-rheumatic drugs; NA, not re.
analysis, which has a great advantage over traditional meta-analysis and makes up for the lack of head-to-head comparisons (83). To comprehensively assess the safety of anti-TNF therapies in RA patients, we also pay attention to detailed AEs like infections, serious infections, malignant tumors. What’s more, our meta-analysis included all RCTs with medium or high quality more recent studies to August 2021, which avoided the deficiency of observational studies and low-quality studies.

![Figure 2](image-url)
FIGURE 2 | Network of treatment comparisons for adverse events. The size of the circles corresponds to the total number of people. Direct comparable treatments are connected with a line. ADA, adalimumab; + D, plus DMARD; CZP, certolizumab; ETA, etanercept; GOL, golimumab; INF, infliximab; PBO, placebo; DMARD, disease-modifying anti-rheumatic drugs.

![Figure 3](image-url)
FIGURE 3 | The analysis SUCRA of adverse events for 12 therapies. ADA, adalimumab; + D, plus DMARD; CZP, certolizumab; ETA, etanercept; GOL, golimumab; INF, infliximab; PBO, placebo; DMARD, disease-modifying anti-rheumatic drugs.

Table 2 OR of adverse events for 12 therapies.

Treatmen-t	SUCRA	PrBest	MeanRank
ADA	33.5	0.2	8.3
ADA+D	74.0	5.5	3.0
CZP	90.6	70.7	2.0
CZP+D	76.1	3.6	7.9
ETA	37.1	0.2	7.9
ETA+D	27.2	0.0	3.0
GOL	53.5	4.5	6.1
GOL+D	59.1	1.7	5.5
INF	51.8	1.8	6.4
INF+D	59.9	4.2	6.3
PBO	6.6	11.3	11.3
DMARD	38.7	2.6	8.6

Results below the diagonal are the rate ratios with 95% confidence intervals from the network meta-analysis of direct and indirect comparisons between the row-defining treatment and the column-defining treatment. Numbers in red highlight statistically significant results. ADA, adalimumab; + D, plus DMARD; CZP, certolizumab; ETA, etanercept; GOL, golimumab; INF, infliximab; PBO, placebo; DMARD, disease-modifying anti-rheumatic drugs.
Therefore, our studies are much more reliable than the other meta-analyses or network meta-analyses.

After analysis of 10 therapies for patients with RA from 72 RCTs, we found golimumab monotherapy, in
tifl iximab monotherapy, etanercept monotherapy, adalimumab monotherapy, and etanercept+DMARDs therapy are the safer treatments when the
efficacies are similar, they did not increase the risk of all analyzed safety indexes. A comprehensive analysis of the results of network meta-analysis and SUCRA sequencing diagram of adverse reactions showed that etanercept monotherapy is the safest therapy of the 10 therapies was etanercept monotherapy. Etanercept monotherapy was recommended as an alternative treatment due to its good safety outcomes. Certolizumab+DMARDs was considered the worst therapy, so it was necessary to avoid using this therapy. Besides, etanercept may be able to reduce the expression and production of vascular endothelial growth factor, NO, and inducible NO synthase and contribute to having a beneficial effect upon the progression of atherosclerosis, reducing the risk of acute cardiovascular and/or cerebrovascular events (84). This is further demonstrated that etanercept therapy is safer. In 2014, Murdaca et al. investigated the role of single-nucleotide polymorphisms (SNPs) at positions -238, -308, and +489 of the TNF-α gene in the response to TNF-α inhibitors (adalimumab, etanercept, or in
tifl iximab) and found that the SNP +489 G allele may promote the response to etanercept. Thus, genetic polymorphisms could be performed before treatment to determine suitability for the etanercept monotherapy (85).

After head-to-head comparisons for the effects of these 10 anti-TNF therapies on the risk of serious infections, malignant tumors, we found no difference of 10 therapies. And compared with PBO therapy or DMARDS therapy, these 10 anti-TNF therapies did not affect the risk of serious infections, malignant tumors, and tuberculosis infection. This may be indicated that these 10 anti-TNF therapies are safe for serious infections, malignant tumors, and tuberculosis infection.

Interestingly, among these 10 anti-TNF therapies, five are TNF-α inhibitor monotherapies and another five are TNF-α inhibitors combinations of DMARDs. It was easy to find that in most cases the safety of TNF-α inhibitor monotherapy was superior to the corresponding TNF-α inhibitors combinations.
TABLE 3 | OR of serious adverse events of 12 therapies.

| | ADA | 2.05 | (0.94, 4.49) | 4.27 | (0.94, 19.46) | 2.57 | (1.95, 5.66) | 1.80 | (0.97, 3.42) | 1.96 | (0.97, 3.97) | 0.96 | (0.36, 2.60) | 5.08 | (1.68, 15.30) | 0.78 | (0.24, 2.49) | 2.20 | (1.00, 4.81) | 1.55 | (0.94, 2.56) | 1.88 | (0.93, 3.80) |
|---|
| 0.49 | ADA | 2.08 | (0.22, 1.07) | 1.25 | (0.40, 10.71) | 0.88 | (0.78, 2.02) | 0.95 | (0.44, 1.75) | 0.47 | (0.59, 1.54) | 2.48 | (0.15, 1.52) | 0.38 | (0.99, 6.22) | 1.07 | (0.10, 1.42) | 0.76 | (0.65, 1.75) | 0.92 | (0.34, 1.68) |
| 0.23 | CZP | 0.60 | (0.05, 1.07) | 0.42 | (0.09, 2.47) | 0.46 | (0.12, 3.08) | 0.23 | (0.09, 1.99) | 1.19 | (0.09, 2.27) | 0.38 | (0.04, 1.20) | 0.18 | (0.19, 7.30) | 0.51 | (0.03, 1.08) | 0.44 | (0.10, 2.65) | 0.36 | (0.09, 1.53) |
| 0.39 | CZP | 0.70 | (0.18, 0.84) | 0.76 | (0.49, 1.29) | 0.38 | (0.48, 1.21) | 0.76 | (0.12, 1.20) | 1.98 | (0.79, 4.92) | 0.30 | (0.08, 1.12) | 0.61 | (0.53, 1.38) | 0.73 | (0.28, 1.32) | 0.73 | (0.53, 1.02) | 1.05 | (0.87, 1.22) |
| 0.56 | ETA | 1.09 | (0.29, 1.06) | 0.54 | (0.57, 2.29) | 2.83 | (0.50, 11.25) | 0.43 | (0.72, 83.2) | 0.43 | (0.62, 1.91) | 0.43 | (0.19, 1.53) | 0.43 | (1.00, 8.02) | 0.43 | (0.13, 1.45) | 0.43 | (0.61, 2.45) | 0.43 | (0.47, 1.58) |
| 0.51 | ETA | 0.92 | (0.25, 1.04) | 0.92 | (0.65, 1.69) | 1.31 | (0.44, 10.77) | 0.92 | (0.52, 1.61) | 0.40 | (1.04, 1.65) | 0.40 | (0.14, 1.50) | 0.40 | (0.12, 0.80) | 0.79 | (0.11, 1.41) | 0.96 | (0.69, 1.82) | 0.96 | (0.39, 1.61) |
| 1.04 | GOF | 2.03 | (0.38, 2.80) | 1.68 | (0.14, 3.23) | 0.96 | (0.06, 8.68) | 0.81 | (0.83, 23.50) | 5.26 | (0.67, 6.15) | 0.81 | (1.29, 21.45) | 2.28 | (0.21, 1.33) | 1.61 | (0.70, 7.36) | 1.95 | (0.68, 3.80) | 0.31 | (0.64, 5.97) |
| 0.20 | GOF | 0.39 | (0.03, 0.59) | 0.39 | (0.40, 1.01) | 0.19 | (0.14, 5.15) | 0.39 | (0.20, 1.26) | 0.19 | (0.12, 1.00) | 0.39 | (0.15, 0.96) | 0.19 | (0.05, 0.77) | 0.39 | (0.03, 0.71) | 0.37 | (0.10, 1.09) | 0.37 | (0.16, 0.87) |
| 1.28 | INF | 2.51 | (0.40, 4.08) | 1.24 | (0.71, 9.76) | 2.30 | (0.93, 32.24) | 1.24 | (0.89, 12.15) | 6.50 | (0.71, 8.70) | 1.24 | (0.32, 4.79) | 6.50 | (1.41, 29.90) | 1.24 | (0.76, 10.45) | 2.41 | (0.70, 5.67) | 2.41 | (0.68, 8.55) |
| 0.46 | INF | 0.82 | (0.21, 1.00) | 0.82 | (0.57, 1.53) | 0.82 | (0.38, 10.02) | 0.82 | (0.72, 1.89) | 2.31 | (0.41, 1.64) | 0.82 | (0.55, 1.45) | 2.31 | (0.14, 1.42) | 0.36 | (0.92, 5.79) | 0.86 | (0.10, 1.32) | 0.86 | (0.61, 1.21) |
| 0.64 | INF | 0.62 | (0.39, 1.06) | 1.26 | (0.60, 2.92) | 1.65 | (0.65, 11.51) | 1.26 | (0.76, 3.61) | 3.27 | (0.62, 2.55) | 1.26 | (0.62, 2.55) | 1.26 | (0.26, 14.6) | 1.19 | (1.08, 9.92) | 0.86 | (0.18, 1.43) | 0.86 | (0.64, 3.13) |
| 0.53 | INF | 0.51 | (0.26, 1.07) | 1.41 | (0.77, 1.55) | 0.96 | (0.46, 11.25) | 1.41 | (0.98, 1.93) | 2.70 | (0.52, 1.74) | 0.96 | (0.75, 1.45) | 2.70 | (0.17, 1.57) | 0.83 | (1.12, 1.47) | 0.83 | (0.83, 1.65) | 0.83 | (0.59, 2.47) |
| 0.53 | PBO | 0.70 | (0.15, 5.62) | 0.41 | (0.26, 1.07) | 0.17 | (0.77, 1.55) | 0.17 | (0.98, 1.93) | 0.17 | (0.52, 1.74) | 0.17 | (0.75, 1.45) | 0.17 | (1.15, 6.32) | 0.17 | (0.12, 1.47) | 0.17 | (0.83, 1.65) | 0.17 | (0.40, 1.69) |

Results below the diagonal are the rate ratios with 95% confidence intervals from the network meta-analysis of direct and indirect comparisons between the row-defining treatment and the column-defining treatment. Numbers in red highlight statistically significant results. ADA, adalimumab; + D, plus DMARD; CZP, certolizumab; ETA, etanercept; GOL, golimumab; INF, infliximab; PBO, placebo; DMARD, disease-modifying anti-rheumatic drug.
of DMARDs. For example, the SUCRAs of safety outcomes for golimumab+ DMARDs are as follows: 59.1% (AEs), 94.0% (SAEs), and 57.5% (serious infections). By contrast, golimumab monotherapy was safer with corresponding SUCRAs of 53.5%, 16.7%, and 31.8%. Previous researchers have also conducted comparisons between TNF-\(\alpha\) inhibitor monotherapy and TNF-\(\alpha\) inhibitor combined with MTX. For instance, Breedveld et al. demonstrated that the proportions of RA patients inducing AEs and serious infections were higher under the treatment of adalimumab + DMARDs than the adalimumab monotherapy, which was in line with our results. However, some studies published before also presented no difference between the two kinds of treatment groups (86). Patients with RA treated with etanercept and those treated with etanercept + DMARDs were similar. Thus, further research should be conducted to estimate whether TNF-\(\alpha\) inhibitor combined with DMARDs therapy benefits TNF-\(\alpha\) inhibitor monotherapy or not.

Although we have made the study as comprehensive as possible, there are still some limitations. Firstly, even though the included trials were all RCTs, the results of safety comparisons among 10 drug therapies still showed some statistical inconsistency. Perhaps the RCTs with contradictions between direct and indirect evidence should be reconsidered. Secondly, 22 trials only had a follow-up time of fewer than 20 weeks. A short duration was not enough to judge the safety of treatment. Thirdly, medication dose, treatment cost, patient compliance, and other influential factors also affected trial homogeneity. Last but not least, different RCTs included in our research had different definitions of safety outcomes. There was still a shortage of clear definitions of AEs and SAEs.

In conclusion, we regard etanercept monotherapy as the optimal choice for RA patients in clinical practice when the efficacy was similar. Conversely, certolizumab+DMARDs therapy was not recommended. It was necessary to conduct long-term studies on patients with RA to provide a more complete assessment of diverse treatments and make a more judicious choice in clinical practice. All efforts should be made to improve the life quality and health standards for patients with RA.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

W-xP, YL, and BH conceived this meta-analysis. YL and XC extracted data. H-rX provided statistical advice and Q-zZ did all statistical analyses. YL, BH, and W-wL contributed to data interpretation. YL, BH, and JH drafted the report. H-rX, XC, and JH critically reviewed the article. All authors read and approved the final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.814429/full#supplementary-material
REFERENCES

1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid Arthritis. Lancet (2016) 388:2023–38. doi: 10.1016/S0140-6736(16)03173-8

2. Koga T, Kawakami A, Tsokos GC. Current Insights and Future Prospects for the Pathogenesis and Treatment for Rheumatoid Arthritis. Clin Immunol (2021) 225:108680. doi: 10.1016/j.clinimm.2021.108680

3. Bradley JR. TNF-Mediated Inflammatory Disease. J Pathol (2008) 214:149–60. doi: 10.1002/path.2287

4. Genovese MC, Fleischmann R, Kivitz A, Lee EB, Hoogstraten HV, Kimura T, et al. Efalizumab in Rheumatoid Arthritis: Monoclonal Antibody, for the Treatment of Rheumatoid Arthritis in Patients With Active Rheumatoid Arthritis (COMET): A Randomised, Double-Blind, Parallel-Group, Multicenter, Randomized, Placebo-Controlled Trial of Infliximab Combined With Low Dose Methotrexate in Japanese Patients With Rheumatoid Arthritis. J Rheumatol (2007) 34:1159–65. doi: 10.3899/jr.07-412

5. Borzoni S, Mathews H. The Safety and Efficacy of Enbrel Monoclonal Antibody (CD21) in Patients With Rheumatoid Arthritis. J Rheumatol (2002) 29:13. doi: 10.3899/jr.02-019

6. Maneiro JR, Souto A, Gomez-Reino JJ. Risks of Malignancies Related to Tofacitinib and Biological Drugs in Rheumatoid Arthritis: Systematic Review, Meta-Analysis, and Network Meta-Analysis. Semin Arthritis Rheum (2017) 47:49–56. doi: 10.1016/j.semarthrit.2017.02.007

7. Den Broeder A, van de Putte L, Rau R, Schattenkirchner M, Riel PV, Sander M, et al. A Single Dose, Placebo Controlled Study of the Fully Human Anti-Tumor Necrosis Factor-α Antibody Adalimumab (D2E7) in Patients With Rheumatoid Arthritis. J Rheumatol (2002) 29:2275–85. doi: 10.1001/jama.295.19.2275

8. van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel P, et al. Efficacy and Safety of Adalimumab as Monotherapy in Patients With Rheumatoid Arthritis Whom Previous Disease Modifying Antirheumatic Drug Treatment Has Failed. Ann Rheum Dis (2004) 63:508–16. doi: 10.1136/ard.2003.013052

9. van Riel PL, Taggart AJ, Sany J, Gaubitz M, Nab HW, Pedersen R, et al. Efficacy and Safety of Combination Etanercept and Methotrexate Versus Etanercept Alone in Patients With Early, Aggressive Rheumatoid Arthritis Who Had Not Had Previous Methotrexate Treatment. Arthritis Rheum (2006) 54:26–37. doi: 10.1002/art.21519

10. Lam JC, Chou SJ, Chen YH, Hsieh TY, Young M Jr. A Comparative Study of Etanercept Plus Methotrexate and Methotrexate Alone in Taiwanese Patients With Active Rheumatoid Arthritis: A 12-Week, Double-Blind, Randomized, Placebo-Controlled Study. J Formos Med Assoc (2004) 103 (8):618–23.

11. van Riel P, Taggart AJ, Sany J, Gaubitz M, Nab HW, Pedersen R, et al. Efficacy and Safety of Combination Etanercept and Methotrexate Versus Etanercept Alone in Patients With Rheumatoid Arthritis With an Inadequate Response to Methotrexate: The ADORE Study. Ann Rheum Dis (2006) 65:1478–83. doi: 10.1136/ard.2005.043299

12. Westhovens R, Yocum D, Han J, Berman A, Strusberg I, Geusens P, et al. The Safety of Infliximab, Combined With Background Treatments, Among Patients With Rheumatoid Arthritis and Various Comorbidities: A Large, Randomized, Placebo-Controlled Trial. Arthritis Rheum (2006) 54:1075–86. doi: 10.1002/art.21734

13. Zhang FC, Hou Y, Huang F, Wu DH, Bao CD, Ni LQ, et al. Infliximab Versus Placebo in Rheumatoid Arthritis Patients Receiving Concomitant Methotrexate: A Preliminary Study From China. APLAR J Rheumatol (2006) 9:127–30. doi: 10.1111/j.1479-8777.2006.00186.x

14. Kim HJ, Lee SK, Song YW, Yoo DH, Koh EM, Yoo B, et al. A Randomized, Double-Blind, Placebo-Controlled, Phase III Study of the Human Anti-Tumor Necrosis Factor-α Antibody Adalimumab Administered as Subcutaneous Injections in Korean Rheumatoid Arthritis Patients Treated With Methotrexate. APLAR J Rheumatol (2007) 9:16–19. doi: 10.1111/j.1479-8777.2007.00248.x

15. Van Der Heijde D, Klareskog L, Landewe R, Bruyn GAW, Cantagrel A, Durez P, et al. Disease Remission and Sustained Halting of Radiographic Progression With Combination Etanercept and Methotrexate in Patients With Rheumatoid Arthritis. Arthritis Rheum (2007) 56:3928–39. doi: 10.1002/art.23141

16. Smolen WS, Paulus HE, Burch FX, Kivitz AJ, Fierer J, Dunn M, et al. A Placebo-Controlled, Randomized, Double-Blind Study Evaluating the Safety of Etanercept in Patients With Rheumatoid Arthritis and Concomitant Comorbid Diseases. Rheumatology (Oxford) (2007) 46:1122–5. doi: 10.1093/rheumatology/kem333

17. Bejarano V, Quinn M, Conaghan PG, Reece R, Keenan A-M, Walker D, et al. Effect of the Early Use of the Anti-Tumor Necrosis Factor Adalimumab on the Prevention of Job Loss in Patients With Early Rheumatoid Arthritis. Arthritis Rheum (2008) 59:1467–74. doi: 10.1002/art.24106

18. Emery P, Breedveld FC, Hall S, Durez P, Chang DJ, Robertson D, et al. Comparison of Methotrexate Monotherapy With a Combination of Methotrexate and Etanercept in Active, Early, Moderate to Severe Rheumatoid Arthritis (COMET): A Randomised, Double-Blind, Parallel Treatment Trial. Lancet (2008) 372:375–82. doi: 10.1016/s0140-6736(08)61000-4
Methotrexate and Intra-Articular Triamcinolone in Early Rheumatoid Arthritis Increased Remission Rates, Function and Quality of Life. The OPERA Study: An Investigator-Initiated, Randomised, Double-Blind, Parallel-Group, Placebo-Controlled Trial.

Ann Rheum Dis (2014) 73:654-61. doi: 10.1136/annrheumdis-2012-202735

58. Kennedy WP, Simon JA, Offutt C, Horn P, Herman A, Townsend MJ, et al. Efficacy and Safety of Pateclizumab (Anti-Lymphotixin-α) Compared to Adalimumab in Rheumatoid Arthritis: A Head-to-Head Phase 2 Randomized Controlled Study (The ALTARA Study).

Arthritis Res Ther (2014) 16:467. doi: 10.1186/s13075-014-0467-3

59. Machado DA, Guzman RM, Xavier RM, Simon J, Abraham, Mele L, et al. Two Dosing Regimens of Certolizumab Pegol in Patients With Active Rheumatoid Arthritis Patients With an Inadequate Response to Methotrexate: Results of a Phase III, Double-Blind, Randomised, Multicentre, Double-Blind, Placebo-Controlled Phase III Study.

Ann Rheum Dis (2017) 76:96–104. doi: 10.1136/annrheumdis-2015-209057

60. Takeuchi T, Miyasaka N, Pedersen R, Sugiyama N, Hirose T. Radiographic Outcome of Combination Etanercept and Methotrexate Inadequate Responder Chinese Patients With Active Rheumatoid Arthritis: 24-Week Results From a Randomised, Double-Blind, Placebo-Controlled Phase 3 Study.

Clin Exp Rheumatol (2019) 37:227–34.

61. Smolen JS, Keystone EC, Pope JE, Thorne JC, Poulin-Costello M, Phan-Chronis K, Veira A, et al. Two-Year Radiographic and Clinical Outcomes From the Canadian Methotrexate and Etanercept Outcome Study in Patients With Rheumatoid Arthritis.

Rheumatol Int (2015) 35:2177–75. doi: 10.1136/annrheumdis-2014-205325

62. Takeuchi T, Yamanaka H, Ishiguro N, Miyasaka N, Mukai M, Matsubara T, et al. Adalimumab, a Human Anti-TNF Monoclonal Antibody, Outcome Study for the Prevention of Joint Damage in Japanese Patients With Early Rheumatoid Arthritis: The HOPEFUL 1 Study.

Ann Rheum Dis (2014) 73:536–43. doi: 10.1136/annrheumdis-2012-202433

63. Adalimumab, a Human Anti-TNF Monoclonal Antibody, Outcome Study for the Prevention of Joint Damage in Japanese Patients With Early Rheumatoid Arthritis: The HOPEFUL 1 Study.

Ann Rheum Dis (2014) 73:536–43. doi: 10.1136/annrheumdis-2012-202433

64. Kennedy WP, Simon JA, Offutt C, Horn P, Herman A, Townsend MJ, et al. Efficacy and Safety of Pateclizumab (Anti-Lymphotixin-α) Compared to Adalimumab in Rheumatoid Arthritis: A Head-to-Head Phase 2 Randomized Controlled Study (The ALTARA Study).

Arthritis Res Ther (2014) 16:467. doi: 10.1186/s13075-014-0467-3

65. Takeuchi T, Yamamoto K, Takeuchi T, Miyasaka N, Pedersen R, Sugiyama N, Hirose T. Radiographic Outcome of Combination Etanercept and Methotrexate Inadequate Responder Chinese Patients With Active Rheumatoid Arthritis: 24-Week Results From a Randomised, Double-Blind, Placebo-Controlled Phase 3 Study.

Clin Exp Rheumatol (2019) 37:227–34.

66. Fleischmann R, Pangan A, Song IH, Myser L, Bessette L, Peterfy C, et al. Upadacitinib Versus Placebo or Adalimumab in Patients With Rheumatoid Arthritis: A Head-to-Head Phase 2 Randomized, Placebo-Controlled Trial.

Ann Rheum Dis (2014) 73:536–43. doi: 10.1136/annrheumdis-2012-202433

67. Yamanaka H, Nagaoka S, Lee SK, Bae SC, Kasama T, Kobayashi H, et al. Adalimumab, a Human Anti-TNF Monoclonal Antibody, Outcome Study for the Prevention of Joint Damage in Japanese Patients With Early Rheumatoid Arthritis: The HOPEFUL 1 Study.

Ann Rheum Dis (2014) 73:536–43. doi: 10.1136/annrheumdis-2012-202433

68. Perlak LJ, Milenovic S, Kostic AD, Polasek SM, Wekerle H, et al. Proinflammatory Cytokine Secretion by HumanPeripheral Blood Mononuclear Cells As a Function Of Hip Dysplasia: Potential Positive Effects of TNF-α Inhibitors.

Redox Rep (2013) 18:95–9. doi: 10.1179/135100213X13400000046

69. Murphy GA, Gulli R, Spanò F, Lantieri F, Burlando M, Parodi A, et al. TNF-α Alpha Gene Polymorphisms: Association With Disease Susceptibility and Response to Anti-TNF-α Treatment in Psoriatic Arthritis.

J Invest Dermatol (2014) 134:2503–9. doi: 10.1038/jid.2014.123

70. van Bijlert L, Taggart AI, Sany J, Gauthitz M, Nab HW, Pedersen R, et al. Efficacy and Safety of Combination Etanercept and Methotrexate Versus Etanercept Alone in Patients With Rheumatoid Arthritis Who Initially Had Moderate Disease Activity—Results From the ENCourAGE Study, A Prospective, International, Multicenter Randomized Study.

Modern Rheumatol (2016) 26:651–61. doi: 10.1034/j.1479-5954.2015.1123349

71. Emery P, Bingham CO, Burmeister GR, Bykerk V, Forst DE, Mariette X, et al. Certolizumab Pegol in Combination With Dose-Optimised Methotrexate in DMARD-Naive Patients With Early, Active Rheumatoid Arthritis With Poor Prognostic Factors: 1-Year Results From C-EARLY, A Randomised, Double-Blind, Placebo-Controlled Phase III Study.

Ann Rheum Dis (2017) 76:96–104. doi: 10.1136/annrheumdis-2015-209057

72. Taylor PC, Keystone EC, van der Heide D, Weinblatt ME, del Carmen Morales L, Gonzalez JR, et al. Baricitinib Versus Placebo or Adalimumab in Rheumatoid Arthritis.

N Engl J Med (2017) 375:652–62. doi: 10.1056/NEJMoa1608345

73. Kang YM, Park YE, Park W, Choe JY, Cho CS, Shim SC, et al. Rapid Onset of Efficacy Predicts Response to Therapy With Certolizumab Plus Methotrexate in Japanese Patients With Active Rheumatoid Arthritis.

Korean J Intern Med (2018) doi: 10.3904/kjim.2016.213

74. Bi L, Li Y, He L, Xu H, Jiang Z, Wang Y, et al. Efficacy and Safety of Certolizumab Pegol in Combination With Methotrexate in Methotrexate-Inadequate Responder Chinese Patients With Active Rheumatoid Arthritis: 24-Week Results From a Randomised, Double-Blind, Placebo-Controlled Phase III Study.

Clin Exp Rheumatol (2019) 37:227–34.

75. Jansen JP, Fleurence R, Boersma C, Annemans L, Cappelleri JC, Gudbjornsson B, et al. Interpreting Indirect Treatment Comparisons and Network Meta-Analysis for Health-Care Decision Making: Report of the ISPOR Task Force on Indirect Treatment Comparisons and Network Meta-Analysis.

Value Health (2011) 14:417–28. doi: 10.1111/j.1524-4733.2011.01402.1589918

76. Curtis JR, Emery P, Karis E, Haraoui B, Bykerk V, Yen PK, et al. Etanercept or Methotrexate Withdrawal in Rheumatoid Arthritis Patients in Sustained Remission: 1-Year Results From a Randomised, Observer Blinded, Controlled Clinical Trial.

Ann Rheum Dis (2020) 79:848–58. doi: 10.1136/annrheumdis-2020-219214

77. Hetland ML, Haavardsholm EA, Rudin A, Nordström D, Nurmonned M, Gudbjornsson B, et al. Active Conventional Treatment and Three Different Biological Treatments in Early Rheumatoid Arthritis: Phase IV Investigator Initiated, Randomised, Observer Blinded Clinical Trial.

BMJ (Clinical Res ed.) (2020) 371:m4328. doi: 10.1136/bmj.m4328

78. Haraoui B, Erens M, Pedersen R, Sugiyama N, Hirose T. Radiographic and Clinical Outcomes Following Etanercept Monotherapy in Japanese Rheumatoid Arthritis Patients With an Inadequate Response to Methotrexate: Results of the C-OPERA Study.

Ann Rheum Dis (2020) 80:848–58. doi: 10.1136/annrheumdis-2020-219214

79. Kurth T, Verbeek N, Drexler H, van der Helm-van Mil PS, Dijkmans PA, et al. Interactions Between Cytokines and Tissue Remodelling in Rheumatoid Arthritis.

Frontiers in Immunology | www.frontiersin.org February 2022 Volume 13 Article 814429

15
Patients With Rheumatoid Arthritis With an Inadequate Response to Methotrexate: The ADORE Study. *Ann Rheum Dis* (2006) 65:1478–83. doi: 10.1136/ard.2005.043299

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 He, Li, Luo, Cheng, Xiang, Zhang, He and Peng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.