Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review

Yong Li, Mihong Ren, Jiajun Wang, Rong Ma, Hai Chen, Qian Xie, Hongyan Li, Jinxiu Li and Jian Wang*

College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China

Background: Borneol is a terpene and bicyclic organic compound that can be extracted from plants or chemically synthesized. As an important component of proprietary Chinese medicine for the treatment of stroke, its neuroprotective effects have been confirmed in many experiments. Unfortunately, there is no systematic review of these studies. This study aimed to systematically examine the neuroprotective effects of borneol in the cascade reaction of experimental ischemic stroke at different periods.

Methods: Articles on animal experiments and cell-based research on the actions of borneol against ischemic stroke in the past 20 years were collected from Google Scholar, Web of Science, PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), and other biomedical databases. Meta-analysis was performed on key indicators in vivo experiments. After sorting the articles, we focused on the neuroprotective effects and mechanism of action of borneol at different stages of cerebral ischemia.

Results: Borneol is effective in the prevention and treatment of nerve injury in ischemic stroke. Its mechanisms of action include improvement of cerebral blood flow, inhibition of neuronal excitotoxicity, blocking of Ca²⁺ overload, and resistance to reactive oxygen species injury in the acute ischemic stage. In the subacute ischemic stage, borneol may antagonize blood-brain barrier injury, intervene in inflammatory reactions, and prevent neuron excessive death. In the late stage, borneol promotes neurogenesis and angiogenesis in the treatment of ischemic stroke.

Conclusion: Borneol prevents neuronal injury after cerebral ischemia via multiple action mechanisms, and it can mobilize endogenous nutritional factors to hasten repair and regeneration of brain tissue. Because the neuroprotective effects of borneol are mediated by various therapeutic factors, deficiency caused by a single-target drug is avoided. Besides, borneol promotes other drugs to pass through the blood-brain barrier to exert synergistic therapeutic effects.

Keywords: L-borneol, D-borneol, DL-borneol, ischemic stroke, cascade reaction, neuroprotection

INTRODUCTION

Borneol is a bicyclic terpenoid with strong fat solubility (Lv et al., 2012). The 2020 edition of Chinese Pharmacopoeia contains three commercial borneol products: D-borneol (Chinese name “Tianranbingpian”), L-borneol (Chinese name “Aipian”), and Synthetic borneol (Chinese name “Bingpian”). D-borneol are extracted from fresh branches and leaves of Cinnamomum camphora (L.)
FIGURE 1 | Mechanism of borneol against cerebral ischemia injury and chemical structure of three borneols. (A) Levorotatory borneol (endo-(1 S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol, (–)-borneol), which is extracted from fresh leaves of Blumea balsamifera (L.) DC. (B) Dextrorotatory borneol (endo-(1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol, (+)-borneol), which is extracted from fresh branches and leaves of Cinnamomum camphora (L.) Presl. (C) Synthetic borneol (DL-borneol) is an optically inactive (±) borneol that is mainly a mixture of (±) borneol and is obtained via the chemical transformation of camphor and turpentine oil.

FIGURE 2 | Flow diagram of the search process.
especially in the upper part of the body, including the brain (Chen et al., 2017; Wang and Wang, 2018). L-borneol is processed from the sublimation of Blumea balsamifera (L.) DC (Islam et al., 2010). Synthetic borneol is a racemic borneol (A mixture with D-borneol and L-borneol as the main components) prepared by chemical synthesis of turpentine and camphor (Chinese Pharmacopoeia Committee, 2020) (Figure 1). Borneol has been used in China for more than 1600 years (Li et al., 2013). In Traditional Chinese Medicine (TCM) theory, borneol is a upper ushering drug that guides herbs to their target organs, especially in the upper part of the body, including the brain (Chen et al., 2019). In addition, borneol is suitable for the treatment of mental diseases accompanied by signs of heat syndrome because the herbal medicine has the property of being “cold” (Zou et al., 2017; Wang and Wang, 2018). Several proprietary Chinese medicine preparations such as Angong Niuhuang pills and Xingnaojing injection contain borneol and are widely used in the clinical treatment of stroke (Guo et al., 2014; Zhang et al., 2019).

Cerebral stroke is a disorder of cerebral blood circulation of the central nervous system and may either be ischemic or hemorrhagic. Ischemic stroke accounts for approximately 80% of stroke cases (Fan et al., 2017). Ischemic stroke is accompanied by extremely complex physiological and pathological processes. The acute stage of ischemic stroke is characterized by glutamate excitotoxicity, intracellular Ca2+ overload, oxidative stress, and production of free radicals. The subacute stage is characterized by apoptosis and necrosis, blood-brain barrier damage, brain edema, and an inflammatory response. The late stage of ischemic stroke is characterized by reactive astrocyte proliferation, glial scar formation, angiogenesis, and neurogenesis (Steliga et al., 2020). These processes occur at different time points, overlap with each other, and eventually lead to brain injury and repair after ischemia.

In the study of brain diseases, the regulatory effect of borneol on blood-brain barrier has always been the focus of relevant practitioners. In fact, there are also abundant studies have shown that borneol has a neuroprotective effect on cerebral ischemic. Unfortunately, the neuroprotective mechanism of borneol is complex and involves many aspects, and only few reviews have focused on the protective mechanism of borneol at different periods of cerebral ischemia. Therefore, we take the review of borneol intervention in cerebral ischemia as the main content of the article, and supplement the meta-analysis of key indicators in vivo studies, hoping to provide some valuable references for borneol’s experimental research and clinical application.

METHODS

Search Strategy

A comprehensive search strategy was conducted in several databases, including Google Scholar, Web of Science, ScienceDirect, PubMed, and CNKI from their inceptions to March 2021. For data mining, the following words were used in the databases mentioned above: “borneol” or “D-borneol” or “L-borneol” or “synthetic borneol” and “cerebral ischemic” or “ischemic stroke” or “neuroprotection.” In almost all cases, the original articles or abstracts were obtained and the relevant data was extracted.

Eligibility and Exclusion Criteria

Both animal experiments (in vivo) and cell studies (in vitro) on borneol intervention in ischemic stroke have been included in the review. But all studies accepted for meta-analysis should be met the following eligibility criteria: 1) The drugs used must be borneol, whether D-borneol, L-borneol, or synthetic borneol, it should be noted that the literature on combination of drugs, which sets borneol alone as a group to compare with the model group, can also be included in this study; 2) The animal model used must be a cerebral ischemia model, whether permanent or cerebral ischemia-reperfusion; and 3) the control group receiving vehicle or no adjunct intervention was included in the studies. Exclusion criteria were as follows: 1) the study was a case report, clinical trial, review, or in vitro study; 2) lack of the control group; 3) the targeting disease was not ischemic stroke; 4) the intervention was a combination of borneol and another agent with potential effect on ischemic stroke; 5) the anesthesia used in the experiment has obvious neuroprotective effect (Figure 2).

Statistical Analysis

To evaluate the effect of borneol on cerebral ischemia in animal experiments, Revman version 5.3 was performed for statistical analysis. If statistical heterogeneity was found ($p < 0.1, I^2 > 50$), a model of random effect (RE) was applied to evaluate pooled effect with 95% CI; and if no statistical evidence of heterogeneity existed ($p \geq 0.1, I^2 \leq 50$), a model of fixed effect (FE) was set with 95% CI. If the outcomes were applied at the same scale, the weighted mean difference (WMD) was calculated as a summary statistic; and if the same results were measured in different ways, the standardized mean differences (SMD) were used. Heterogeneity was assessed by standard chi-square test and I^2 statistics. A probability value less than 0.05 was considered statistically significant. To minimize bias and human error, the meta-analysis was performed by 2 independent reviewers and disagreements reconciled by a third independent reviewer.

RESULTS

Mechanism of Borneol Intervention in the Acute Stage of Ischemic Stroke

Decreased cerebral blood flow in the acute phase of ischemic stroke (within 24 h of human cerebral ischemia) causes a decrease in oxygen and metabolic substrates to neurons. Subsequently, the lack of oxygen interrupts oxidative phosphorylation by the mitochondria and drastically reduces cellular ATP production. Inhibition of the Na+/K+-ATPase function causes a profound loss of ionic gradients and depolarization of regulated neurons, which leads to excessive release of excitatory amino acids—particularly glutamate—to the extracellular compartment. The presence of excessive amounts of free glutamate into the synapses and extrasynaptic sites can lead eventually to neuronal death.
Excitotoxicity leads to a number of deleterious consequences, including impairment of cellular calcium homeostasis, generation of free radicals and oxidative stress, mitochondrial damage, and activation of transcription factors. All these mechanisms acting synergy can cause acute neuron death by apoptosis (Rama and Garcia, 2016). Borneol participates in multiple physiological and pathological processes in the acute phase of ischemic stroke and impedes disease progression by antagonizing the damage in the initial stage of ischemic stroke.

Improving Cerebral Blood Flow
Disordered energy metabolism is required in the development of cerebral ischemia. Stenosis and occlusion of blood vessels lead to the interruption of local blood flow and alters blood circulation. Cerebral infarction occurs when the supply of nutrients provided by local blood circulation does not meet the energy metabolism needs of brain cells beyond a certain time limit. Therefore, timely improvement of the blood supply to the brain is the primary goal of the clinical treatment of ischemic stroke. Borneol has the pharmacological effects of relaxing blood vessels, reducing blood pressure and cerebral vascular resistance, inhibiting thrombosis, and promoting thrombolysis, thereby improving cerebral blood flow after cerebral ischemia.

Regulation of Vascular Neuropeptide
In an in vivo canine study, DL-borneol reduced abdominal aortic blood pressure, increased common carotid blood flow, and reduced cerebrovascular resistance (Shang et al., 2015). L-borneol has a vasorelaxant effect that depends on the presence of vascular endothelium and the participation of nitric oxide (NO) and prostanoids. In addition, L-borneol directly relaxed vascular smooth muscle, which is dependent on K_ATP channels (Santos et al., 2018). Under pathological conditions, D-borneol increased blood flow in the cortex in photochemical-mediated cerebral ischemia model rats and DL-borneol increased blood flow in the cortex and striatum in transient global cerebral ischemia reperfusion (tGICIR) animal models (Yu et al., 2016; Li, 2018; Wang et al., 2018; Yu et al., 2015).
The meta-analysis results of three studies jointly suggested that borneol could improve the blood microcirculation in different brain regions (Figure 3).

Endothelin 1 (EDN1/ET) and calcitonin gene-related peptide (CGRP) are neuropeptides that contract and dilate blood vessels, respectively. Cerebral ischemia/reperfusion injury induces increased EDN1 secretion, promotes vascular smooth muscle contraction, and aggravates low perfusion. Conversely, CGRP is a strong neuropeptide vasodilator that serves as an endogenous endothelin antagonist to reverse vasospasms and improve blood circulation. Stroke leads to increased EDN1 and decreased CGRP levels (Yuan et al., 2006; Giannopoulos et al., 2008). Borneol can effectively reduce EDN1 levels and tends to increase CGRP levels (Huang, 2018), suggesting that it can dilate blood vessels and improve cerebral blood flow during cerebral ischemia.

Regulation of the Fibrinolytic System and Anti-Thrombosis

The thrombus causing cerebral ischemia is mainly composed of platelets, leukocytes, erythrocytes, and fibrin (Michael et al., 2016). The dissolution time of plasma euglobulin reflects the activity of fibrinolytic enzymes. Borneol significantly shortens the euglobulin lysis time in rats, reduces the weight of the whole blood clot in mice, and inhibits ADP-induced platelet aggregation in rabbits (He, 2005). Furthermore, borneol inhibits venous thrombosis and arteriovenous shunt in a concentration-dependent manner and exerts anticoagulant activity by prolonging prothrombin time and thrombin time (Li et al., 2008). 5-hydroxytryptamine (5-HT), secreted and released by platelets, plays an important role in platelet aggregation and thrombosis. Ca²⁺, as the second messenger, also plays a key role in the process of platelet activation. The deformation, aggregation and release of platelets are accompanied by the increase in the level of intracellular Ca²⁺ (Wöckel et al., 2008). Borneol inhibits FeCl₃-induced arterial thrombosis in rats, which involves inhibition of platelet 5-HT release and platelet aggregation, as well as the decrease of cytoplasmic Ca²⁺ level in platelet (Yang et al., 2010). The mechanisms of borneol improves cerebral blood flow and the results of meta-analysis of cerebral blood flow are shown in Figure 3.

Inhibition of Neuronal Excitotoxicity

The excessive release of glutamate and the drastic disruption of glutamate transporters, that occurs early after the cerebral ischemic is toxic to neurons, mainly through the activation of ionotropic receptors and intracellular calcium overload that trigger detrimental cascades causing excitotoxic neuronal death (Lai et al., 2014). Conversely, some in vitro studies showed that activation of GABA_A and GABA_B receptors played a neuroprotective role (Costa et al., 2004; Xu et al., 2008). The expression of GABA_A receptors after ischemia is decreased in distinct brain regions of rodents subjected to transient MCAO (Huang and Zhao, 2017). And the disruption of GABA-mediated neurotransmission early during reperfusion may also contribute to ongoing neuronal excitability (Mele et al., 2014). Neuroprotection is achieved in the preclinical setting by GABAergic drugs acting through multiple mechanisms, such as GABA receptors agonists or positive modulators. Borneol plays a neuroprotective role by reducing glutamate (Glu) levels, activating GABA_A receptor, and then blocking the necrosis and apoptosis of neurons.

In one study, D-borneol and L-borneol enhanced the actions of γ-amino butyric acid (GABA) at recombinant GABA_A receptor and had moderate direct action on these receptors (Granger et al., 2005). D-borneol has neuroprotective effects after primary neuronal injury induced by glutamate at low concentrations, and this effect is consistent with the activation of GABA_A receptor (Cheng et al., 2006; Chen et al., 2013). In addition, borneol reduces Glu levels in the hippocampus and hypothalamus in a tGcIR rat model (Yu et al., 2019a). The inhibitory effects of borneol on Glu secretion were also confirmed in a transient bilateral carotid occlusion (tBCO) rodent model (Huang, 2018). The meta-analysis results of the above two studies further suggested that borneol could reduce glutamate levels with small heterogeneity (Figure 4). Borneol promoted glutamate clearance in hypoxia/reoxygenation astrocytes and improved astrocyte viability during hypoxia (Chai et al., 2019). Borneol, combined with echinacoside, artificial moschus, Ligusticum chuanxiong, and other drugs, can also improve the content of Glu after cerebral ischemia (Liu et al., 2002a; Zhong et al., 2012; Yu et al., 2019b). The mechanisms by which borneol attenuates the toxicity of excitatory amino acid and the meta-analysis results of glutamate level are shown in Figure 4.

Protection Against Damage Caused by Reactive Oxygen Species

The reactive oxygen species (ROS) causing cerebral ischemic injury include superoxide anion (O₂⁻), hydroxyl radical (OH⁻), and hydrogen peroxide (H₂O₂). Brain tissue is rich in iron ions that catalyze the formation of free radicals, which makes the brain more vulnerable to ROS (González-Ibarra et al., 2011). When thrombolysis exceeds the therapeutic time window, a large amount of ROS is produced by dysfunctional mitochondria, the neutrophil respiratory burst, increased xanthine oxidase formation in capillary endothelial cells, and catecholamine self-oxidation after cerebral ischemia/reperfusion (Huang and Zhao, 2017). Furthermore, cerebral ischemia decreases the ability of the antioxidant system to scavenge ROS. The antioxidant system is composed of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and other antioxidant enzymes. Improving antioxidant enzymes activity or activating related pathways is an important way to combat ischemic brain injury. Borneol improves the body’s ability to resist ROS by increasing the activity of antioxidant enzymes and activating the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway.

Several studies have shown that borneol injection reduces malondialdehyde (MDA) levels and increases SOD and GSH-Px activity to accelerate the scavenging of superoxide anion free radicals after pMCAO in a rodent model (He et al., 2006; He et al., 2007). Borneol also increases SOD and GSH-Px activity and decreases MDA levels in the cerebral cortex, hippocampus, hypothalamus, and striatum of rats subjected to tGcIR (Yu et al., 2016). L-borneol and DL-borneol increase SOD and decrease MDA in ischemic brain tissue and the serum in a
rodent model of tMCAO (Tian, 2013). The meta-analysis results of related studies further suggested that borneol could resist free radical damage by reducing MDA levels and increasing the activities of GSH-PX and SOD (Figure 5). Borneol, combined with musk, *Ligusticum chuanxiong*, and other drugs, can also attenuate ROS injury after cerebral ischemia (Liu et al., 2002b; Wang, 2011; Yu et al., 2017a). Besides, DL-borneol increases SOD and CAT activity, and D-borneol increases SOD and GSH-Px activity in OGD/R-treated PC12 cells (Huang et al., 2020).

Borneol may protect against free radical damage by activating the Nrf2-ARE signaling pathway. Nrf2, an anti-oxidative stress nuclear transcription factor, translocates from the cytoplasm to the nucleus and binds to the ARE receptor to activate the Nrf2-ARE signaling pathway when cells are exposed to ROS. The activation of this pathway induces the expression of downstream antioxidant enzymes to reduce cell damage caused by ROS and maintain the dynamic cellular redox balance (Wang et al., 2015). Circulating macrophages will enter the core area of cerebral ischemia through the blood-brain barrier to remove damaged cells after organic injury occurs in the brain. An *in vitro* cell experiment demonstrated that D-borneol promotes the expression of Nrf2 in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) (Sun et al., 2019). It is also worth mentioning that L-borneol and D-borneol protected human neuroblastoma cells (SH-SY5Y) against β-amyloid induced toxicity, exerted an antioxidative effect by increasing the expression and nuclear translocation of Nrf2 (Hur et al., 2013). Borneol, combined with *Salvia miltiorrhiza*, not only increased SOD levels and decreased MDA levels but also upregulated the expression of Nrf2 and inhibited the oxidative stress. The combination of these two drugs is more effective than *Salvia miltiorrhiza* alone, suggesting that borneol plays a synergistic role by activating the Nrf2-ARE signaling pathway *in vivo* (Liang et al., 2016). The actions of borneol against ROS damage and the meta-analysis results of related indicators are detailed in Figure 5.

Regulation of the Expression of NOS to Protect Against NO Damage

NO plays a dual role in neuroprotection and neurotoxicity. Nitric oxide synthase (NOS) isozymes are crucial in determining the role of NO in cerebral ischemia. There are three isozymes of NOS: neuronal NOS (nNOS/NOS1), inducible NOS (iNOS/NOS2), and endothelial NOS (eNOS/NOS3) (Chen et al., 2017). The transient increase of NO after cerebral ischemia is mainly mediated by eNOS and nNOS. NO synthesized by eNOS can dilate blood vessels, inhibit platelet aggregation, reduce leukocyte adhesion, and enhance collateral circulation to play a short-term neuroprotective effect (Ito et al., 2010). NO synthesized by nNOS can dilate blood vessels, inhibit platelet aggregation, reduce leukocyte adhesion, and enhance collateral circulation to play a short-term neuroprotective effect (Ito et al., 2010). NO synthesized by nNOS participates in glutamate-induced neuronal Ca2+ overload, mediates early glutamate excitotoxicity (Zhou and Zhu, 2009). Also, nNOS activation contributes to microvascular damage and decreased cerebral perfusion early after reoxygenation and worsens brain damage (Hsu et al., 2014). The slow upregulation of iNOS in the late stage of cerebral ischemia leads to delayed neuronal injury by producing excessive NO, increasing microvascular permeability, and inducing brain edema (Li and Mu, 2014). Therefore,
promoting the expression of eNOS in the early stage or inhibiting the expression of iNOS in the latter stage is a good therapeutic strategy for treating cerebral ischemia. Studies have found that borneol plays a neuroprotective effect by increasing eNOS expression and reducing iNOS expression, but the effect of borneol on nNOS is not clear.

Intravenous administration of D-borneol inhibits iNOS expression in rodent brain tissue and, consequently, reduces peroxynitrite (ONOO⁻) levels after tMCAO and pMCAO (Wu et al., 2014b; Chang et al., 2017). L-borneol and DL-borneol also reduce the expression level of iNOS in a pMCAO rodent model (Tian, 2013). In an in vitro oxygen-glucose deprivation–reperfusion (OGD/R) ischemia model, borneol inhibited the activity and expression of iNOS in primary cortical neurons and, therefore, reduced the production of iNOS-derived NO (Liu et al., 2011). In addition, borneol promotes the synthesis of eNOS-derived NO under both physiological and brain contusion conditions and has a stronger effect on the synthesis of NO by endothelial cells in the pathological state (Zhao et al., 2001). Borneol, combined with catalpol and puerarin, increases the expression of eNOS in rats with MCAO (Wu et al., 2016). The combination of borneol and musk promotes the synthesis of NO in vascular endothelial cells and inhibits the expression of iNOS in a global cerebral ischemia/reperfusion rat model (Zhang et al., 2002; Liu et al., 2011).

Inhibition of Intracellular Ca²⁺ Overload

Calcium overload is considered being the last common pathway of neuronal injury during cerebral ischemia/reperfusion (Vannucci et al., 2001; Shi, 2014). The ways of calcium entering neurons following cerebral ischemia include glutamate receptors; voltage-dependent calcium channel; transient receptor potential channels; acid-sensing ion channels; sodium-calcium exchanger operating in entry mode; inward excitoxic injury current calcium permeable channels; mitochondria and endoplasmic reticulum calcium release, etc. And the pathways of calcium exit into neurons include Ca²⁺-ATPase pump; Na⁺-Ca²⁺ exchanger operating in exit mode, etc (Singh et al., 2019).

It was found that both L-borneol and DL-borneol significantly reduced Ca²⁺ concentration in ischemic ipsilateral brain tissue of rats subjected to tMCAO (Ni, 2011; Tian, 2013). DL-borneol...
cytoplasmic Na\(^+\) levels by increasing Na\(^+-\)K\(^+\)ATPase activity, (He et al., 2006; Wang, 2011). Besides, borneol reduces ROS injury pathways which prevent Ca\(^2+\) from entering neurons via sodium-calcium exchange (He, 2005). ROS increase cytoplasmic Ca\(^{2+}\) accumulation of lactic acid, which may interfere with Ca\(^{2+}\) dehydrogenase (LDH) in ischemic brain tissue to inhibit the reaction. Mechanism of borneol inhibiting cytoplasmic Ca\(^{2+}\) overload and the meta-analysis results of related indicators are showed in Figure 6.

Suppress Acute Hyperthermia

During the acute stage of cerebral ischemia, fever increases the mortality and disability rates by aggravating neuronal damage (Wrotek et al., 2012). The leukocytes gather in the core area of cerebral infarction and release endogenous heat generators, and these cytokines raise the hypothalamic thermoregulation set point by triggering the release of arachidonic acid and activating cyclooxygenase to produce prostaglandins (Blatteis et al., 2005). Correlation analysis of clinical data and models of cerebral ischemia show that the harmful effects of fever after stroke are mediated by the increased excitotoxicity by glutamate, and the protective effect of hypothermia is also closely related to decreased glutamate release (Campos et al., 2012; Campos et al., 2013). Through feedback regulation, fever can further aggravate cerebral ischemic injury by promoting the secretion of excitatory neurotransmitters, increasing the production of ROS, accelerating the metabolic rate, and aggravating the significantly decreased the concentration of Ca\(^{2+}\) in hippocampal and hypothalamic neurons after cerebral ischemia reperfusion (CIR) in rats (Yu et al., 2019a). Previous studies have found that borneol significantly increased the activity of lactate dehydrogenase (LDH) in ischemic brain tissue to inhibit the accumulation of lactic acid, which may interfere with Ca\(^{2+}\) entering cells through acid-sensitive ion channels (He, 2005; He et al., 2006; Wang, 2011). Besides, borneol reduces cytoplasmic Na\(^+\) levels by increasing Na\(^+-\)K\(^+\)ATPase activity, which prevent Ca\(^{2+}\) from entering neurons via sodium-calcium exchange (He, 2005). ROS increase cytoplasmic Ca\(^{2+}\) concentration by destroying the integrity of the biofilm, but borneol prevents the damage of biofilm by accelerating the scavenging of ROS. Glutamate mediates calcium influx in neurons by activating glutamate receptors, while borneol reduces the level of glutamate (Huang, 2018; Yu et al., 2019b). In addition, L-borneol and DL-borneol increased the expression and activity of Ca\(^{2+}\)-Mg\(^{2+}\)-ATPase, promoting the outflow of intracellular Ca\(^{2+}\) (Ni, 2011; Tian, 2013). The meta-analysis results also suggested that borneol could reduce the calcium content and increase the activities of LDH, Ca\(^{2+}\)-ATPase and Na\(^+-\)K\(^+\)-ATPase (Figure 6). Overall, these publications show that borneol can improve the concentration of intracellular Ca\(^{2+}\), block the pathological injury caused by Ca\(^{2+}\) overload, and interfere with the process of neuronal apoptosis in the cascade reaction.
Mechanisms of Borneol Intervention in the Subacute Stage of Ischemic Stroke

The physiological and pathological responses in the subacute stage of ischemic stroke (within 2–7 days after the occurrence of human cerebral ischemia) play a key role in the transformation of brain injury in the infarcted area. Apoptosis and necrosis occur in the first few hours after ischemic stroke and reach a peak after 24 h (Wang et al., 2015b). Structural damage to the blood-brain barrier and the high expression of astrocyte aquaporins continue to aggravate brain edema and reach a peak 3–4 days after ischemia (Badaut et al., 2002; Badaut et al., 2007). Compared with the treatment of primary injury after arterial occlusion, secondary injury caused by inflammation may have a longer treatment time window. Intervening in the inflammatory response is an important means of treatment (Kawabori and Yenari, 2015). Therefore, the therapeutic use of borneol for blood-brain barrier damage, different types of cell death, and the inflammatory response in the subacute stage of ischemic stroke have important consequences for the treatment and rehabilitation of stroke patients.

Intervention of Inflammatory Cytokine Expression

Tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) are key inflammatory factors in cerebral ischemic injury. Nuclear factor kappa B (NF-kB) also plays an important role in the inflammatory process (Sun et al., 2014). All kinds of borneols significantly reduce TNF-α levels, while D-borneol and DL-borneol reduce IL-1β levels and DL-borneol reduces IL-6 in cerebral ischemia/reperfusion models (Ni, 2011; Chang et al., 2017; Wen, 2017; Yu et al., 2017b; Dong et al., 2018). Myeloperoxidase (MPO) is a specific marker of neutrophils (Tu et al., 2010). D-borneol inhibits MPO activity, and inhibits neutrophil infiltration in the brain tissue of rats subjected to pMCAO (Shao et al., 2018). Inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) showed a neuroprotective effect in ischemic stroke rat model (Singh and Chopra, 2014). Cerebral ischemia/reperfusion induces the upregulation of COX-2 expression, resulting in the aggravation of the cerebral injury (Zhang et al., 2019). Cysteinyl leukotriene receptor 2 (CYSLTR2) is a subtype of cysteinyi leukotriene receptor, an inflammatory mediator (Zhang, 2013). Borneol inhibits the activities of 5-LOX and COX-2 of rats subjected to tMCAO and blocks CYSLTR2 expression in the hippocampus (Duan et al., 2012; Liu et al., 2018). As shown in Figure 7, the meta-analysis results suggested that borneol played an anti-inflammatory role by reducing the levels of TNF-α, IL-1β and IL-6, and inhibiting the expression of 5-LOX and COX-2 in serum or brain tissue of cerebral ischemic animals. What’s more, borneol inhibits proinflammatory factor release and cytoplasmic inhibitor of kappa B alpha (IkBa) degradation, and blocks NF-κB p65 nuclear translocation induced by OGD/R. Borneol also inhibits the release of TNF-α and the expression of intercellular adhesion molecule-1 (ICAM1), reverses OGD/R-induced neuronal injury, nuclear pyknosis, ROS production, and the disappearance of mitochondrial membrane potential (Liu et al., 2011). Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders. Both LPS treatment and oxygen-glucose deprivation of neurons lead to the activation of microglia. Borneol has a direct inhibitory effect on the activation of microglia mediated by LPS in vitro. There was an increase in neuronal death after the addition of activated microglia culture supernatant, but the microglia culture medium treated with borneol reduced the toxicity of microglia to neurons with the decrease of TNF-α, IL-1β, and IL-6 levels, and the increase of interleukin-10 (IL-10) levels (Wang et al., 2019). Taken together, these studies described above suggest that borneol protects against acute brain cell injury by attenuating inflammation. The mechanism of borneol attenuating inflammatory injury and the meta-analysis of related indicators are shown in Figure 7.

Resistance to Damage of the Blood-Brain Barrier

The blood-brain barrier (BBB) is a selective structural and functional barrier between the brain tissue and blood. The structural barrier is composed of vascular endothelial cells, pericytes, basal lamina, and astroglial terminal feet (Ueno, 2009). The functional barrier depends on P-glycoprotein (P-gp), which can expel specific substances that enter the endothelial cells back into the bloodstream (Ueno et al., 2010). The protective effect of borneol on the BBB is achieved by structurally up-regulating the expression of tight junction proteins in vascular endothelial cells, inhibiting structural destruction of the BBB mediated by metalloproteinases, and functionally inhibiting the efflux of P-gp on neuroprotective drugs.

Direct Protective Effect on BBB

The meta-analysis results of several studies confirmed that borneol could reduce the infiltration of Evans blue (EB) into the brain and decrease the brain water content after cerebral ischemia (Jia, 2014; Liu et al., 2017; Dong et al., 2018; Wang, 2011; Yao et al., 2011) (Figure 8). The mechanism of borneol inhibits BBB structural damage may involve the downregulation of matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9), and the upregulation of TIMP metalloproteinase inhibitor 1 (TIMP1). MMP9 and MMP2 are proteases that promote the opening of the BBB and the formation of brain edema by degrading the basal lamina of cerebral vessels. TIMP1 antagonizes MMP2 and MMP9 activity. DL-borneol increases
Borneol attenuates the neuronal damage caused by inflammation via reducing the release of inflammatory cytokines such as TNF-α, IL-1β and IL-6, and down-regulating the expression of COX-2 and 5-LOX, etc. Borneol may reduce the expression of COX-2 and 5-LOX via the inhibition of inflammatory cytokines such as TNF-α, IL-1β and IL-6, and down-regulating the expression of COX-2 and 5-LOX, etc. (Liu et al., 2007). Borneol downregulates MMP2 and MMP9 expression in rats subjected to tMCAO, and DL-borneol inhibits MMP9 mRNA expression in rats subjected to tMCAO (Liu et al., 2009; Wang et al., 2018). In addition, aquaporin 4 (AQP4) is concentrated at the foot process of astrocytes. The outer surface of blood vessels is almost surrounded (85%) by the end feet of glial cells. Thus, increased expression of this protein can induce brain edema (Hu et al., 2017). D-borneol and L-borneol upregulate Claudin 5 (CLDN5) and tight junction protein 1 (TJP1) expression. CLDN5 and TJP1 are key components of tight junctions between cerebral microvascular endothelial cells, and their expression is significantly decreased in ischemic brain tissue (Li et al., 2017). Previous studies have confirmed that D-borneol upregulates CLDN5 and TJP1 expression in tMCAO model rats and brain microvascular endothelial cells with OGD /R treatment (Xu and Zhang, 2015; Xu and Zhang et al., 2016). L-borneol and DL-borneol increased the expression of CLDN5 in an animal model of permanent cerebral ischemia (Xu et al., 2016).
Borneol inhibits brain edema after cerebral ischemia, which may be related to the downregulation of AQP4 mRNA expression (Liu et al., 2009).

Indirect Protective Effect on BBB
The anatomy of the BBB protects the central nervous system (CNS) from toxins and variations in blood composition, and maintains the consistency of the brain’s micro-environment (Abbott and Friedman, 2012). Although considerable advancements have been made in drug delivery to the CNS, the clinical application of CNS drugs is still limited by their poor bioavailability due to the BBB (Denora et al., 2009). Borneol promotes the penetration and accumulation of neuroprotective drugs such as gastodin, pueraer, kaempferol, and nimodipine, increases the bioavailability of these drugs, thereby exerting an indirect neuroprotective effect (Cai et al., 2008; Gao et al., 2010; Wu et al., 2014a; Zhang et al., 2015). The mechanism of this effect is closely related to the regulation of P-gp.

One study showed that P-gp was expressed 30 min after focal cerebral ischemia in rats and lasted for 24 h (Xing et al., 2007). Borneol downregulates the expression of P-gp both physiologically and pathological conditions. L-borneol inhibits P-gp expression in rats subjected to tMCAO (Yu et al., 2011; Tian, 2013). P-gp, which is encoded by mdr1a (Abbott and Friedman, 2012), is expressed on the luminal membrane of brain microvascular endothelial cell (BMEC) and confers multidrug resistance to various chemotherapeutic agents (Chen et al., 2003). In an in vitro BBB model composed of rat brain BMECs and astrocytes, L-borneol downregulated the efflux function of P-gp by inhibiting the expression of mdr1a mRNA and P-gp, and this process was related to the transient activation of NF-kB (Fan et al., 2015).

Borneol also affects 5-HT, a known BBB neurotransmitter (Ke et al., 2000). Borneol can mediate BBB opening by increasing 5-HT in the hypothalamus of rats (Hui et al., 2009). Since P-gp is a lipophilic protein (Abbott et al., 2010), borneol easily binds to P-gp after passing through the BBB and inhibits the binding of 5-HT to P-gp, which results in a reduction in P-gp-mediated efflux of 5-HT and a consequent increase in 5-HT in cerebral vascular endothelial cells (Yuan et al., 2006). The mechanism of borneol protecting BBB and results of meta-analysis of related indicators are shown in Figure 8.

Regulation of Various Forms of Cell Death
Previous studies applied TTC staining to evaluate cerebral infarction area, showing that borneol had significant differences in alleviating cerebral infarction (Wen, 2017; Dong et al., 2018). The cytotoxic effects of excitatory amino acid toxicity, oxidative stress, and ROS damage in the acute stage of cerebral ischemia lead to rapid disintegration and necrosis of neurons. Delayed neuronal injury after several days of ischemia exhibits characteristics of apoptosis. Cellular injury in the central necrotic area of the cerebral infarction is irreversible, but the peripheral ischemic penumbra is salvageable (Guo, 2000). BCL2 apoptosis regulator (BCL2) and BCL2 associated X, apoptosis regulator (BAX) are typical BCL-2 family apoptosis-inhibiting protein and apoptosis-inducing protein, respectively. Regulating the balance between BAX and BCL2 can hinder the expansion of infarct area (Xu et al., 2016). Previous reports demonstrated that D-borneol and L-borneol reduced the BAX/BCL2 ratio in rats subjected to pMCAO and DL-borneol reduced the BAX/BCL2 ratio in both pMCAO and tMCAO models (Huang, 2018; Wen, 2017). Caspase-3 (CASP3) induces neuronal apoptosis in
ischemic stroke, and which is interrupted by L-borneol and D-borneol after cerebral ischemia/reperfusion (Wen, 2017; Yu et al., 2020). Tumor protein 53 (p53) is mainly expressed in the mitochondria and contributes to cell apoptosis (Liu, 2016; Wang et al., 2017; Ren, 2018). The mechanism of borneol intervention in the late stage of ischemic stroke is shown in Figure 9.

Mechanism of Borneol Intervention in the Late Stage of Ischemic Stroke

In the late stage of ischemic stroke (one week after the occurrence of cerebral ischemia in humans), reactive glial cell hyperplasia targeting microRNA-125a and microRNA-140 and upregulates heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) expression to promote the expression of stress granules. At the same time, L-camphor can improve apoptosis and autophagy by regulating the autophagy-related proteins, p62 and LC3, and apoptosis-related proteins BCL-XL and CASP3 (Li, 2016; Liu, 2017; Ren, 2018). The mechanism of borneol intervention in various forms of neuronal death and related meta-analysis results are shown in Figure 9.
and glial scar formation limit the expansion of brain damage and separate the necrotic infarct core from the surrounding normal tissues (Sims and Yew, 2017). The reconstruction of the glial cell groups, the neovascularization of the blood vessels, and the regeneration of the nerve myelin sheath play leading roles in the repair process at this stage. Borneol helps the body recover to a healthy physiological state more quickly by promoting angiogenesis and accelerating the repair of damaged neurons in the late stage of stroke.

Promoting the Growth and Repair of Neurons and Angiogenesis

Animal experiments confirmed that borneol improved the neurological function score and reduced the cerebral infarction area (Wu et al., 2014b; Dong et al., 2018). Immunofluorescence staining showed that borneol also lowered neuronal mortality and promoted neurogenesis (Zhang et al., 2017b; Yu et al., 2020). Tanshinol borneol ester (DBZ) is a novel synthetic compound derived from Dantonic®. DBZ plays a role in inducing angiogenesis in both in vivo and in vitro experiments (Liao et al., 2019). Borneol promotes neurogenesis and angiogenesis in the brain, possibly through the upregulation of endogenous neurotrophic factors and regulation of the Wnt/β-catenin pathway.

Increasing Endogenous Neurotrophic Factors

Ischemic brain injury destroys nerves and cerebral vessels and induces compensatory neonatal reactions in brain tissue, including nerve regeneration and vascular remodeling. Borneol regulates brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2/bFGF), and glial cell derived neurotrophic factor (GDNF), and promotes repair of nerves as well as remodeling of blood vessels by activating the Wnt/β-catenin pathway.

In a tMCAO rodent model, DL-borneol significantly decreased VEGF mRNA on the first day after cerebral ischemia but increased VEGF mRNA levels on the second and third days (Hu et al., 2005; Ni, 2011). Three kinds of borneol can upregulate the expression of VEGF in a pMCAO rat model after ischemia (Dong et al., 2018). Under physiological conditions, endothelial cells express approximately 10 times less fms related receptor tyrosine kinase 1 (FLT1/VEGFR1) than kinase insert domain receptor (KDR/VEGFR2) (DeVal and Black, 2009). Binding of VEGF to VEGFR2 activates intracellular tyrosine kinases and multiple downstream signals that induce angiogenesis. The inhibition of VEGFR2 signaling disturbs endothelial cell proliferation after stroke (Shimotake et al., 2010). On the contrary, VEGFR1 negatively regulates cell proliferation and reduces angiogenesis (Mendes et al., 2018). Increasing evidence suggests that cerebral ischemia upregulates VEGFR1 expression, which positively correlates with the degree of damage (Yoo et al., 2010; Causey et al., 2012). In a BMECs model treated with OGD, borneol increased the expression of VEGF, reduced the expression of VEGFR1, and tended to increase the expression of VEGFR2 (Yu et al., 2019a). The latest research confirms that L-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect (Ma et al., 2021). In a tMCAO rat model, borneol significantly enhanced the expression of NGF, BDNF, GDNF, and VEGF mRNA after 48 h of reperfusion. Borneol not only increased the expression of NGF, GDNF, and VEGF mRNA but also significantly increased the level of bFGF mRNA after 72 h of reperfusion (Hu, 2004).

Regulation of the Wnt/β-Catenin Pathway

The Wnt/β-catenin pathway regulates neuronal differentiation and microangiogenesis, and this pathway is crucial for endothelial cell maintenance of the BBB homeostasis and normal neural function. The Wnt/β-catenin pathway participates in the proliferation and differentiation of neural stem cells, the formation of axons, the occurrence of cortical patterns, vascular regeneration and remodeling in the nervous system, and the formation of the BBB. Wnt family member 3A (WNT3A), β-catenin, disheveled (Dsh), and lymphoid enhancer binding factor 1 (LEF1) are positive regulatory molecules of the Wnt/β-catenin pathway, while glycogen synthase kinase 3 beta (GSK3B) and APC regulator of WNT signaling pathway (APC) are negative regulators of this pathway (Wen et al., 2016). Three kinds of borneol activate the Wnt/β-catenin signal pathway by regulating the expression of positive and negative regulatory molecules in rats subjected to pMCAO, performing the neuroprotective effect of CNS (Wen, 2017). In another study, the combination of borneol, astragaloside IV, and Panax notoginseng saponins promotes the proliferation of neurons and repairs damaged neurons, enhancing the resistance of rats to cerebral ischemia/reperfusion injury, which is also associated with the regulation of the Wnt/β-catenin signaling pathway (Yang et al., 2019).

DISCUSSION

Summary of Results

Ischemic brain injury is an extremely complex process, but the neuroprotective effect of many drugs is more likely to play a single role in the ischemic cascade reaction. In summary, borneol has protective effects at all three stages of cerebral ischemic injury. In the acute stage of cerebral ischemia, borneol improves cerebral blood flow by relaxing blood vessels and eliciting anti-thrombotic effects, inhibits neuronal excitotoxicity by reducing Glu levels and activating GABA_A receptors, improves the ability of the body to resist ROS injury by increasing the activity of antioxidant enzymes, regulates the activity of different types of ROS and antioxidants, reduces the content of intracellular Ca^{2+}, interferes with the process of neuron death, and antagonizes the symptoms of acutely elevated body temperature. In the subacute phase of ischemia stroke, borneol interferes with the expression of inflammatory cytokines, the destruction of BBB, and multiple forms of neuron death. In the late stage of brain injury, borneol promotes neuronal repair and angiogenesis. Furthermore, borneol mobilizes endogenous nutritional factors to hasten self-repair of the body, avoiding...
Study	Drug	Dosage and delivery way	Animal	Model	Time of ischemia/hypoperfusion	Outcome measures	Conclusion/possible mechanisms of neuroprotection
Li (2018)	D-borneol	ip, 10 mg/kg	Kunming mice	Photochemical cerebral ischemia model	24 h	(1) Improve neurological deficits	(1) Improve neurological deficits
						(2) Reduce brain edema and cerebral infarction size	
					(3) Increase cerebral blood flow		
					(4) Attenuate neuronal apoptosis by downregulating the expression of Caspase-3		
					(5) Protect the BBB by downregulating the expression of MMP-9		
Wang et al. (2018)	D-borneol	ig, 30 mg/kg	Male, SD rats	pMCAO 2 h	7 day	(1) Improve neurological function score	(1) Reduce cerebral infarction size
						(2) Cerebral blood flow	
						(3) Cerebral infarction rate	
						(4) Cerebral histopathology with H&E staining	
						(5) MMP-2	
						(6) MMP-9 and MMP-9 mRNA	
						(7) Claudin-5 mRNA	
						(8) ZO-1	
						(9) Caspase-3	
						(10) MMP-2	
						(11) Claudin-5 mRNA	
						(12) MMP-9	
Yu et al. (2020)	DL-borneol	ig, 80 mg/kg	SD rats (sex in half)	GCIR 60s	7 day	(1) Improve neurological function score	(1) Improve microcirculation
						(2) Reduce cerebral infarction size	
						(3) Improve the brain histopathological morphology	
						(4) Decrease the expression of MMP-2, MMP-9 and MMP-9 mRNA	
						(5) Increase the expression of ZO-1 and Claudin-5 mRNA	
						(6) Reduce oxidative reactions by increasing the activity of SOD and decreasing the MDA content	
						(7) Neuroprotection via NO signaling pathway	
He 2005 (1)	D-borneol	kr, 2.0, 1.0, 0.5 mg/kg	Kunming mice (sex in half)	tMCAO 15 min	22 h	(1) Decrease cerebral infarction rate	(1) Reduce cerebral infarction rate
						(2) Improve neurological deficits and memory ability	
He 2005 (2)	D-borneol	kr, 1.4 mg/kg	Male and female, Wistar rats	tMCAO 2 h	22 h	(1) Improve neurological function score	(1) Reduce cerebral infarction rate
						(2) Neurological function score (2) Improve neurological function score	
						(3) Neurological function score (3) Improve neurological function score	
He 2005 (3)	D-borneol	kr, 2.0, 1.0, 0.5 mg/kg	Kunming mice (sex in half)	tMCAO 30 min	2 h	(1) Decrease cerebral infarction rate	(1) Reduce cerebral infarction rate
						(2) Improve neurological deficits and memory ability	
He et al. (2006)	D-borneol	kr, 0.35, 0.7, 1.4 mg/kg	Kunming mice (sex in half)	tMCAO 3 h	3 h	(1) Decrease oxidative reactions by increasing the activity of SOD and decreasing MDA levels	
						(2) Improve the energy metabolism disorder by upregulating the activity of Na⁺⁺-K⁺⁺-ATPase, Ca²⁺⁺-ATPase, Mg²⁺⁺-ATPase, and LDH	
He et al. (2007)	D-borneol	kr, 2.0, 1.0, 0.5 mg/kg	Kunming mice (sex in half)	pRBCO	6 h	(1) Improve oxidative reactions by increasing the activity of SOD and decreasing MDA levels	
						(2) Improve the energy metabolism disorder by upregulating the activity of LDH	
						(3) Reduce oxidative reactions by increasing the activity of SOD and decreasing the concentration of MDA	
						(4) Dilate blood vessels by increasing OGRP content and reducing ET content	
						(5) Anti-inflammatory by increasing the expression of SOD, GSH-Px, and decreasing MDA levels	
						(6) Neuroprotection via P-GP signaling pathway	
						(7) Neuroprotection via NOS signaling pathway	
Tian (2013)	L-borneol	ig, 133.3, 200 mg/kg	Male, SD rats	tMCAO 2 h	22 h	(1) Improve oxidative reactions by increasing the activity of SOD and decreasing MDA levels	
						(2) Improve the energy metabolism disorder by upregulating the activity of Na⁺⁺-K⁺⁺-ATPase, Ca²⁺⁺-ATPase, Mg²⁺⁺-ATPase, and LDH	
						(3) Reduce oxidative reactions by increasing the activity of SOD and decreasing MDA levels	
						(4) Neuroprotection via P-GP signaling pathway	
						(5) Neuroprotection via NOS signaling pathway	

(Continued on following page)
TABLE 1 | (Continued) Summary of borneol intervention for ischemic stroke.

Study	Drug	Dosage and delivery way	Animal	Model	Time of ischemia/reperfusion	Outcome measures	Conclusion/possible mechanisms of neuroprotection
Ni et al. (2011)	DL-borneol	ig, 200 mg/kg	Male, SD rats	tMCAO 2 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Antioxidant and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Tang et al. (2010)	DL-borneol	ig, 200 mg/kg	Male, SD rats	pMCAO 6 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Wen et al. (2017)	D-borneol, L-borneol, DL-borneol	ig, D-borneol (200 mg/kg), L-borneol (200 mg/kg), DL-borneol (200 mg/kg)	Male, SD rats	pMCAO 24 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Dong et al. (2018)	D-borneol, L-borneol, DL-borneol	ig, D-borneol (200 mg/kg), L-borneol (200 mg/kg), DL-borneol (200 mg/kg)	Male, SD rats	pMCAO 24 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Antioxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Wu et al. (2014b)	D-borneol	iv, 0.3 mg/kg, 0.8 mg/kg	SD rats	tMCAO 2 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Xu et al. (2016)	D-borneol	ig, 28 mg/kg	SD rats	tMCAO 2 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Ju et al. (2014)	D-borneol	ig, 200 mg/kg	Water rats (sex in half)	tMCAO 20 min	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Chang et al. (2013)	D-borneol	iv, 1 mg/kg	Male, SD rats	Photochemical cerebral ischemia model	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Shao et al. (2018)	D-borneol	iv, 500 mg/kg	Rats	tMCAO 2 h	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels
Yan et al. (2018)	DL-borneol	ig, 500 mg/kg	Rats	tBCO 0.5 h	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels	
Huang et al. (2001)	DL-borneol	ig, 1000 mg/kg	SD rats (sex in half)	tBCO 40 min	(1) Cerebral infarction rate	(1) SOD, MDA	(1) SOD, MDA, NO, COX-2, iNOS (2) Anti-oxidative and anti-inflammatory effect by decreasing the expression of TNF-α, IL-1β, and iNOS (3) Neuroprotective by increasing the activity of SOD and decreasing MDA levels

(Continued on following page)
TABLE 1 | (Continued) Summary of borneol intervention for ischemic stroke.

Study	Drug	Dosage and delivery way	Animal Model	Time of ischemia/reperfusion	Outcome measures	Conclusion/possible mechanisms of neuroprotection
Wang (2011)	DL-borneol	ip, 66.67 mg/kg, 133.34 mg/kg, 200 mg/kg	SD rats (sex in half)	pBCO 3 h	(1) Brain water content	Reduce oxidative reactions by increasing the activity of SOD and decreasing the concentration of MDA.
					(2) SOD and MDA	Improve the energy metabolism disorder by upregulating the activity of Na+-K+-ATPase and improving the activity of LDH.
					(3) LDH and Na+-K+-ATPase	Anti-inflammatory by decreasing the activity of COX-2 and 5-LOX.
Duan et al. (2012)	DL-borneol	ip, 25 g/kg, 50 mg/kg, 200 mg/kg	Male, SD rats	tMCAO 2 h, 24 h	(1) Neurological function score	Anti-inflammatory by decreasing the activity of COX-2, 5-LOX and CysLT2.
Liu et al. (2018)					(2) COX-2	Anti-inflammatory by decreasing the activity of COX-2, 5-LOX and CysLT2.
Liu et al. (2007)			Male and female, SD rats	tMCAO 2 h, 24 h	(1) Brain water content	Reduce cerebral water content and permeability of BBB.
Yao et al. (2011)					(2) Brain EB content	Reduce the permeability of BBB.

Note: tMCAO, temporary middle cerebral artery occlusion; pMCAO, permanent middle cerebral artery occlusion; BCO, bilateral common carotid artery occlusion; GCIR, global cerebral ischemia and reperfusion; Ip, intraperitoneal administration; Ig, intragastric administration; Iv, intravenous administration.

Borneol is a naturally occurring product in a class of “orifice-opening” agents used in TCM for resuscitative purpose, and is widely used as an upper ushering drug for various brain diseases in many Chinese herbal formulae (Zhang et al., 2017; Chen et al., 2019). This is consistent with the findings of many scholars that borneol has a beneficial effect on increasing the bioavailability, tissue distribution, and blood concentration of other drugs, and making other drugs transport through BBB easier (Xiao et al., 2007; Cai et al., 2008; Lu et al., 2011).

Heat-clearing is a traditional effect of borneol as a resuscitation-inducing aromatic medicine (Zou et al., 2017; Wang and Wang, 2018). Some researchers found that oral administration of borneol had a certain improvement effect on fever in the acute phase of stroke, which is consistent with the understanding of “inducing resuscitation with drugs of pungent flavor and cool naturenature” of borneol in TCM clinical practice. But the time-effect, dose-effect relationships, and mechanisms of borneol inhibiting stroke hyperpyrexia deserve a more thorough study.

Oral administration is the most common route in the clinical use of borneol. Borneol is absorbed rapidly into the brain and has the same concentration in the brain as in the blood within 5 min of oral administration (Pan et al., 2014). In mice, a single oral dose of borneol accumulates in organs in this order: lung < muscle < spleen < heart < kidney < brain < liver (Huang et al., 2009). The distribution of borneol in the brain also shows regional specificity, with the highest concentration in the cortex, moderate concentrations in the hippocampus and hypothalamus, and lowest concentration in the striatum (Yu et al., 2013). Besides, the biphasic half-life and elimination of D-borneol and DL-borneol in the plasma were 0.7–8.5 h and 0.8–8.0 h, respectively, (Cheng et al., 2013). Another study found that 10 h after a single dose of 2 g L-borneol, about 81% of borneol is excreted in the form of glucuronic acid binding in urine (Bhattia et al., 2008). These studies suggest that while borneol is easily absorbed, it does not easily accumulate in the body.

Outlooks

In Table 1, we found that borneol administration in ischemic stroke was mainly oral, with some instances of intravenous administration being recorded. However, it has been reported that intranasal administration of borneol had rapid absorption into the blood and brain compared with oral administration while having similar bioavailability compared to intravenous administration (Zhao et al., 2012). Therefore, it is necessary to pay more attention to the nasal administration of borneol in the future research of brain diseases.

It is undeniable that only few patients receive thrombolysis within 6–8 h in the treatment of cerebral ischemia, which results in most patients developing permanent cerebral ischemia...
is also necessary to clarify the botanical source, spatial structure makes it dif
taxonomic names used by researchers are not the same, which commercial species or isomers of borneol, and the botanical
of later work. Besides, it is worth noting that there are many
in the intervention of ischemic stroke should be one of the focuses
effects in ischemic injury may be different. Consequently, the
organic carbon atoms and several optical isomers. L-borneol and
Ann. Heterotropia in their activity (Wermuth, 2015). Borneol is a bicyclic compound with three
the success of borneol in preventing enlargement of infarction and improving neurological function score. Overall, the previous review excessively focused on the regulation of borneol on BBB and ignored its overall effect on the treatment of cerebral ischemia. But this review comprehensively highlights the potential application of borneol as a neuroprotective agent against cerebral ischemia. We strongly believe that the research field of borneol anti-ischemic stroke is still promising.

CONCLUSION

Although borneol is rarely used alone in the clinical treatment of brain diseases, it cannot be ignored that borneol exerts a significant neuroprotective effect even when used alone in vivo and in vitro studies. The meta-analysis results of various animal experiments further indicated that borneol has an intervention effect in energy metabolism, inflammatory reaction, apoptosis, and necrosis as well as other processes of cerebral ischemic cascade reaction. This possible explanation for the benefits and the success of borneol in preventing enlargement of infarction and improving neurological function score. Overall, the previous review excessively focused on the regulation of borneol on BBB and ignored its overall effect on the treatment of cerebral ischemia. But this review comprehensively highlights the potential application of borneol as a neuroprotective agent against cerebral ischemia. We strongly believe that the research field of borneol anti-ischemic stroke is still promising.

AUTHOR CONTRIBUTIONS

YL, MR, JW (3rd author), QX, HL, and JL of our team are responsible for collecting relevant documents, YL is responsible for writing the first draft of the paper, JW (9th author), RM and HC are responsible for reviewing the manuscript, and YL is responsible for submitting the final manuscript.

TABLE 2 | Quality assessment of included studies.

Study years	A	B	C	D	E	F	G	Total
Li (2018)	+	+	+	+	+	+	6	
Wang et al. (2018)	+	+	+	+	+	+	4	
Yu et al. (2020)	+	+	+	+	+	+	5	
Yu et al. (2016)	+	+	+	+	+	+	5	
Yu et al. (2019a)	+	+	+	+	+	+	4	
He (2005)	+	+	+	+	+	+	4	
He et al. (2006)	+	+	+	+	+	+	5	
He et al. (2007)	+	+	+	+	+	+	5	
Huang (2018)	+	+	+	+	+	+	5	
Tian (2013)	+	+	+	+	+	+	5	
Ni (2011)	+	+	+	+	+	+	5	
Tang (2010)	+	+	+	+	+	+	5	
Wen (2017)	+	+	+	+	+	+	5	
Dong et al. (2018)	+	+	+	+	+	+	5	
Wu et al. (2014)	+	+	+	+	+	+	6	
Xu et al. (2016)	+	+	+	+	+	+	4	
Ju (2014)	+	+	+	+	+	+	5	
Chang et al. (2017)	+	+	+	+	+	+	6	
Shao et al. (2018)	+	+	+	+	+	+	4	
Yan et al. (2018)	+	+	+	+	+	+	4	
Huang et al. (2001)	+	+	+	+	+	+	3	
Wang (2011)	+	+	+	+	+	+	5	
Duan et al. (2012)	+	+	+	+	+	+	4	
Liu et al. (2018)	+	+	+	+	+	+	3	
Liu et al. (2007)	+	+	+	+	+	+	4	
Yao et al. (2011)	+	+	+	+	+	+	4	

A, peer-reviewed publication; B, random allocation; C, blinded conduct of the Experiments; D, blinded assessment of outcome; E, use of anesthetic without significant neuroprotection; F, compliance with animal welfare regulations; G, detailed description of animals and models.
FUNDING

This work is financially supported by grants from National Natural Science Foundation of China (81873023 and 81473371).

ACKNOWLEDGMENTS

YL gratefully acknowledges the support provided by all the members of the scientific research team during the preparation of this manuscript. Special thanks to JW and RM.

REFERENCES

Abbott, N. J., and Friedman, A. (2012). Overview and Introduction: the Blood-Brain Barrier in Health and Disease. Epilepsia. 53, 1–6. doi:10.1111/j.1528-1167.2012.03696.x

Abbott, N. J., Patabeendo, A. K. A., Dolman, D. E. M., Yusof, S. R., and Begley, D. J. (2010). Structure and Function of the Blood-Brain Barrier. Neurobiol. Dis. 37 (1), 13–25. doi:10.1016/j.nbd.2009.07.030

Baduat, J., Lasbennes, F., Magistretti, P. J., and Regli, L. (2002). Aquaporins in Brain: Distribution, Physiology, and Pathophysiology. J. Cereb. Blood Flow Metab. 22, 367–378. doi:10.1097/00004647-200204000-00001

Baduat, J., Ashwal, S., Tone, B., Regli, L., Tian, H. R., and Obenaus, A. (2007). Temporal and Regional Evolution of Aquaporin-4 Expression and Magnetic Resonance Imaging in a Rat Pup Model of Neonatal Stroke. Pediatr. Res. 62 (3), 240–254. doi:10.1203/PDR.0b013e3180b291b

Bhatia, S. P., McGinty, D., Letizia, C. S., and Api, A. M. (2008). Fragrance Material Safety. Chem. Brain Barrier in Health and Disease.

Cai, Z., Hou, S., Li, Y., Zhao, B., Yang, Z., Xu, S., et al. (2008). Effect of Borneol on Cerebral Ischemia. Tianjin J. Traditional Chin. Med. 04, 27588. doi:10.3390/ijms161126051

Chen, Z., Mou, R. T., Feng, D. X., Wang, Z., and Chen, G. (2017). The Role of Nitric Oxide in Stroke. Med. Gas. Res. 7 (3), 194–203. doi:10.4103/2045-9912.215750

Chen, Z. X., Xu, Q. Q., Shan, C. S., Shi, Y. H., Wang, Y., Chang, R. C. C., et al. (2019). Borneol for Regulating the Permeability of the Blood-Brain Barrier in Experimental Ischemic Stroke: Preclinical Evidence and Possible Mechanism. Oxidative Med. Cell Longevity. 2019, 1–15. doi:10.1155/2019/2936737

Cheng, C., Liu, X. W., Du, F. F., Li, M. J., Xu, F., Wang, F. Q., et al. (2013). Sensitive Assay for Measurement of Volatile Borneol, Isoborneol, and the Metabolite Camphor in Rat Pharmacokinetic Study of Borneol (Bingpian) and Borneol Syntheticum (Synthetic Bingpian). Acta Pharmacol. Sin. 34, 1337–1348. doi:10.1038/aps.2013.86

Cheng, X. P., Sun, H., and Yu, X. H. (2006). Effect of Borneol Syntheticum on GABA Receptor-Mediated Currents in Rat Hippocampal Neurons. Pharmacol. Clinics Chin. Matetia Mediea 22 (5), 14–16. doi:10.3989/jissn.1006-085X.2006.05.008

Chinese Pharmacopoeia Committee (2020). The Pharmacopoeia of People’s Republic of China. Beijing, China: China Medical Science Press

Costa, C., Leone, G., Saulle, E., Pisani, F., Bernardi, G., and Calabresi, P. (2004). Coactivation of GABA A and GABA B Receptor Results in Neuroprotection during In Vitro Ischemia. Stroke. 35 (2), 596–600. doi:10.1161/01.STR.0000113691.32026.06

De Val, S., and Black, B. L. (2009). Transcriptional Control of Endothelial Cell Development. Developmental Cell 16, 180–195. doi:10.1016/j.devcel.2009.01.014

Denora, N., Trapani, A., Laquintana, V., Lopedota, A., and Trapani, G. (2009). Recent Advances in Medicinal Chemistry and Pharmaceutical Technology-Strategies for Drug Delivery to the Brain. Curr Top Med Chem. 9 (2), 182–196. doi:10.2174/156802609787521571

Dong, T., Chen, N., Ma, X., Wang, J., Wen, J., Xie, Q., et al. (2018). The Protective Roles of L- Borneol, D- Borneol and Synthetic Borneol in Cerebral Ischemia via Modulation of the Neurovascular Unit. Biomed. Pharmacother. 102, 874–883. doi:10.1016/j.biopha.2018.03.087

Duan, S. W., Wang, X., Wang, B., Li, Y. W., and Wang, Y. J. (2012). Effect of Musk, Borneol, Diosgenin and Geniposide on Inflammatory Injury in Cerebral Ischemia and Reperfusion Rats. Pharmacol. Clin. Chin. Materia Med. 28 (03), 43–46. doi:10.1342/j.cnki.zyxy.2012.03.038

Fan, X., Chai, L., Zhang, H., Wang, Y., Zhang, B., and Gao, X. (2015). Borneol Depresses P-Glycoprotein Function by a NF-κB Signaling Mediated Mechanism in a Blood Brain Barrier In Vitro Model. Int J Mol Sci. 16 (11), 27576–27588. doi:10.3390/ijms161226051

Fan, J., Li, Y., Fu, X. Y., Li, L. J., Hao, X. T., and Li, S. S. (2017). Nonhuman Primate Models of Focal Cerebral Ischemia. Neural Regen. Res. 12 (2), 321–328. doi:10.4103/1673-5374.200815

Gao, C., Li, X., Li, Y., Wang, L., and Xue, M. (2010). Pharmacokinetic Interaction between Puerarin and Edaravone, and Effect of Borneol on the Brain Distribution Kinetics of Puerarin in Rats. J. Pharm. Pharm. 62, 360–367. doi:10.1211/jpp.62.03.0011

Giannopoulos, S., Kosmidou, M., Hatzitoxilos, A. I., Savopoulo, C. G., Zikas, A., and Karamouzis, M. (2008). Measurements of Endothelin-1, C-Reactive Protein and Fibrinogen Plasma Levels in Patients with Acute Ischemic Stroke. Neuro. Res. 30 (7), 727–730. doi:10.1111/j.1743-5373.2007.x297904

Ginsberg, M. D., and Busto, R. (1998). Combating Hyperthermia in Acute Stroke. Stroke. 29 (2), 529–534. doi:10.1161/01.STR.29.2.529

González-Ilbarra, F. P., Varon, J., and López-Méa, E. G. (2011). Therapeutic Hyperthermia: Critical Review of the Molecular Mechanisms of Action. Front. Neurol. 2, 4. doi:10.3389/fneur.2011.00004

Granger, R. E., Campbell, E. L., and Johnston, G. A. R. (2005). (+)– and (−)–borneol: Efficacious Positive Modulators of GABA Action at Human Recombinant
Ito, Y., Ohkubo, T., Asano, Y., Hattori, K., Shimazu, T., Yamazato, M., et al. (2010). Effects of Borneol on Rat's Blood Brain Barrier and Zonula Occludens-1 after Global Cerebral Ischemia-Reperfusion Injury. Xinxiang: Xinxiang Medical University

Jiang, X. F., Zou, J. L., Yuan, Y. M., Francis, C. P. Law, Qiao, Y. J., and Yao, M. C. (2008). Preliminary Study: Biotransformation of Borneol to Camphor in Mouse, Rats, and Rabbits. World Sci. Technology. 10 (3), 27–36. doi:10.5187/5355(09)060013-2

Kawabori, M., and Yenari, M. (2015). Inflammatory Responses in Brain Ischemia. Curr Med Chem. 22 (10), 1258–1277. doi:10.2174/0929867322666150291915036

Ke, Y. Q., Xu, R. X., and Chen, C. C. (2000). Effect of 5-Hydroxytryptamine Level Changes on Permeability of Blood-Brain Barrier Following Brain Injury. Chin. J. Clin. Neurosurg. 5 (21), 40–42. doi:10.3969/j.issn.1009-153X.2000.01.015

Kong, Q., Wu, Z., Chu, X., Liang, R., Xia, M., and Li, L. (2013). Study on the Anti-cerebral ischemia Effect of Borneol and its Mechanism. Afr. J. Trad. Compl. Alt. Med. 11 (1), 161–164. doi:10.4314/atcam.v11i11.25

Lai, T. W., Zhang, S., and Wang, Y. T. (2014). Excitotoxicity and Stroke: Identifying Novel Targets for Neuroprotection. Prog. Neurobiol. 115, 157–188. doi:10.1016/j.pneurobio.2013.11.006

Li, M. H., Hu, S. X., and Li, H. Q. (2013). The Commodity Types and Historical Origins of Traditional Chinese Medicine Borneol. Modern Chinese Medicine. doi:10.3969/j.issn.1673-4890.2013.06.023

Li, Y. J. (2016). The Molecular Mechanisms of Left-Handed Camphor Prevents Autophagy by Targeting mir-140 in PC12 Cells. Guangzhou: Guangzhou University of Chinese Medicine

Li, Y. (2018). Mechanism Study of Natural Borneol in Treatment of Ischemic Stroke. Taian: Taian Medical University. doi:10.27353/id.cnki.gtsyc.2018.00151

Li, Y. H., Sun, X. P., Zhang, Y. Q., and Wang, N. S. (2008). The Antithrombotic Effect of Borneol Related to its Anticoagulant Property. Am. J. Chin. Med. 36 (04), 719–727. doi:10.1162/000291403X1850681

Li, X., Wan, X., Gao, J. J., Zhao, C. S., Liu, X. F., Yang, L. J., et al. (2017). Effects of Huazhou Sidney Huoxue Tongluo Prescription on Expression of Tight Junction Protein and Structure in Rat Brain. Zhongguo Jiedu Huoxue Tongluo Prescription on Expression of Tight Junction ZO-1 and Occludin in Rats with Cerebral Ischemia Reperfusion Injury. Global Traditional Chinese Medicine. doi:CNKI:SUN:HQZY.0.2017-07-005

Liang, Z. W., Dong, Q. F., Wang, M. M., Gao, K., Li, J. K., and Yang, L. (2016). Protective Effects of Borneol “Meridian Guiding” Salvia Miltiorrhiza in Treatment of Cerebral Ischemia/Reperfusion. Prog. Med. Biomed. 16 (13), 2430–2433. doi:10.12344/j.cnki.pmb.2016.00337

Liao, S., Han, L., Zheng, X., Wang, X., Zhang, P., Wu, J., et al. (2019). Tanshinol and Saffron, a Novel Synthetic Small Molecule Angiogenesis Stimulator Inspired by Botanical Formulations for Angina Pectoris. Br. J. Pharmacol. doi:10.1111/bph.14714

Liu, H. T., and Mu, D. Z. (2014). “Inducible Nitric Oxide Synthase and Brain Hypoxic-Ischemic Brain Damage”. Zhongguo Dang Dai Er Ke Zhi Zha. 16 (9), 96–97. Chinese. doi:10.3969/j.issn.1008-8830.2014.09.022

Liu, Y. Q. (2017). L-camphor Target MicroRNA-125-3p on the Mechanism of Cerebral Ischemia Reperfusion Injury. Guangzhou University of Traditional Chinese Medicine

Liu, Y. M., Zhang, C. A., Xu, Q. Y., and Peng, S. Q. (2002a). Effect of Moschus and Borneol on the Content of Aminoacid Neurotransmitter in Brain Tissue of Rats with Cerebral Ischemia and Reperfusion Injury. Traditional Chin. Drug Res. Clin. Pharmacol. (04), 231–233. doi:10.3321/j.issn.1003-9783.2002.04.013

Liu, Y. M., Zhang, Z. A., Xu, Q. Y., Zeng, Z. L., and Peng, S. Q. (2002b). The Influence on the Brain Edema, SOD and MDA of Ischemia Reperfusion in Rat by Borneol or Combined with Salvianolic Acid B and Saponins of Panax Notoginseng. Tianjin: Tianjin University of Traditional Chinese Medicine

Huang, L. (2018). The Same Effect of Beta-Arsenare, Borneol, Muscone and Styrax Naphthia about in Inducing Reussculation and Protecting the Brain. Guangzhou: Guangzhou University of Chinese Medicine

Huang, N., and Zhao, J. (2017). Pathophysiology, second Edition. Bei Jing: Bei Jing Science Press

Huang, P., Jiang, X. F., Zou, J. L., Yuan, Y. M., Yao, M. C., and Lu, Y. S. (2009). A Novel GC-MS Bioanalytical Method for Natural Borneol and its Application in Investigating Natural Borneol Distribution in Mice Mode. Tradit Chin. Med. Mater. Med. 11, 821–827. doi:10.3969/j.issn.1673-3849.2009.06.012

Huang, L., Han, L. S., Koo, B.-S., and Jeon, S. (2013). Borneol Alleviates Oxidative Damage in the Neonatal Brain. Tai’an: Taian Medical University. doi:10.27353/id.cnki.gtsyc.2018.00151

Huang, L. (2018). Enhanced Permeability of Blood-Brain Barrier Following Brain Injury and Blood-Brain Barrier Permeability in Rat Model of Cerebral Focal Ischemia with Reperfusion. Beijing: Beijing Traditional Chin. Med. 28 (06), 459–462. doi:10.3969/j.cnki.cnkl.bjz.0.2009-06-025

Liu, R., Zhang, L., Lan, X., Li, L., Zhang, T.-T., Sun, J.-H., et al. (2011). Protection by Borneol on Cortical Neurons against Oxygen-Glucose Deprivation/reperfusion: Influencing of Anti-inflammatory and Anti-inflammation through Nuclear Transcription Factor sappαB Signaling Pathway. Neuroscience. 176, 408–419. doi:10.1016/j.neuroscience.2010.11.029

Liu, Y. M., Xiao, H. H., Xiao, G. F., Xia, X. H., Xu, Q. Y., and Shen, Q. (2009). Influence of Moxusine Compounded with Borneol on Blood Brain Barrier after Ischemic Reperfusion Injury. J. Guangzhou Univ. Traditional Chin. Med. 24 (6), 498–501. doi:10.3969/j.issn.1007-3213.2007.06.016

Liu, L., Wei, H., and Xu, L. (2018). Effects of Different Doses of Musk and Borneol on the Neurological Deficit Score activities of COX-2 and 5-LOX in Brain and
C-terminal Expression in the hippocampus of Cerebral IR Model. J. Clin. Exp. Med. 17 (12), 1241–1244. doi:10.3969/j.issn.1671–4695.2018.12.003

Lu, Y., Du, S.-y., Chen, X.-l., Wu, Q., Song, X., Xu, B., et al. (2011). Enhancing Effect of Natural Borneol on the Absorption of Geniposide in Rat via Intranasal Administration. J. Zhejiang Univ. Sci. B. 12 (2), 143–148. doi:10.1631/jzus.B1000121

Luo, S. L., Wang, J., Wen, J., Cao, C., and Xie, Q. (2016). Monitoring the Impact of Three Borneol Temperature Fever Rats Dynamic Concept Based on TCM. Lishizhen Med. Materia Med. Res. 27 (3), 521–523. doi:10.3969/j.issn.0085–0805.2016.03.004

Lv, X. X., Sun, M. J., and Sun, F. Z. (2012). [Research of Bormol Promote Drugs through Blood-Brain Barrier]. Zhongguo Zhong Yao Za Zhi. 37 (7), 878–881. doi:10.4268/j.ccm20120702

Ma, R., Xie, Q., Li, H., Guo, X., Wang, J., Li, Y., et al. (2021). l-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled with Neurogenesis via Ang1-VEGF-BDNF Pathway. Front. Pharmacol. 12. doi:10.3389/fphar.2021.641894

Ma, R., Xie, Q., Li, Y., Chen, Z., Ren, M., Chen, H., et al. (2020). Animal Models of Cerebral Ischemia: a Review. Biomed. Pharmacother. 131, 110686. doi:10.1016/j.biopharma.2020.110686

Mcbride, D. W., and Zhang, J. H. (2017). Precision Stroke Animal Models: the Permanent MCAO Model Should Be the Primary Model, Not Transient MCAO. Transl. Stroke Res. 8 (5), 397–404. doi:10.1016/j.s12979-017-0554-2

Mele, M., Ribeiro, L., Inácio, A. R., Wieloch, T., and Duarte, C. B. (2014). GABAA Receptor Dephosphorylation Followed by Internalization Is Coupled to Neuronal Death in In Vitro Ischemia. Neurobiol. Dis. 65, 220–232. doi:10.1016/j.nbd.2014.01.019

Mendes, R. T., Nguyen, D., Stephens, D., Pamuk, F., Fernandes, D., Hasturk, H., et al. (2018). Hyoxia-induced Endothelial Cell Responses - Possible Roles during Periodontal Disease. Clin. Exp. Dent. Res. 4, 241–248. doi:10.1002/cerd.12353

Michael, S., Ignaz, G., Christoph, K., and Peter, K. (2016). Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 17 (3), 298. doi:10.3390/ijms17030298

Ni, C. X. (2011). The Effects of Aromatic Resuscitation Drugs on Anti-brain Ischemia and the Function of Blood-Brain Barrier. Chengdu: Chengdu University of traditional Chinese Medicine

Pan, X. U., Ying, L., Liu, Shou-Ying, D. U., Yang, L. U., Bai, J., and Guo, Q. L. (2014). Comparatific Pharmacokinetics of Borneol in Cerebral Ischemia-Reperfusion and Sham-Operated Rats. J. Zhejiang University Science B. 15 (1), 84–91. doi:10.1631/jzus.B1300141

Rama, R., and Garcia, J. C. (2016). Excitotoxicity and Oxidative Stress in Acute Stroke. Excitotoxicity and Oxidative Stress in Acute Stroke. InTech

Ren, Z. X. (2018). mik140-HnrnpA1 Inhibits Stress Granule Formation and L-Carnitine Intervention. Guangzhou: Guangzhou University of Chinese Medicine

Santos, S. E., Ribeiro, F. P. R. A., Menezes, P. M. N., Duarte Filho, L. A. M., Mendes, R. T., Nguyen, D., Stephens, D., Pamuk, F., Fernandes, D., Hasturk, H., et al. (2018). Hyoxia-induced Endothelial Cell Responses - Possible Roles during Periodontal Disease. Clin. Exp. Dent. Res. 4, 241–248. doi:10.1002/cerd.12353

Shang, K., Sui, D. J., Liu, Q. M., Wang, D. Y., Zhang, X., and Qiu, Z. D. (2015). Effects of Pair Herbs “Yanhusuo-bingpian” on Calcium Regulation in Ischemic Neuron. Ind. J. Clin. Biochem. 246, 220–223. doi:10.1007/s12918-015-0152-4

Sun, S. P., Du, Y. Y., Gao, X., Wang, Y., Zhang, J. H., Wu, C. G., et al. (2019). Effect of Borneol on Lipopolysaccharide-induced RAW264.7 Macrophage Inflammation Model. J. Toghua Normal Univ. 40 (4), 27–32.

Tian, H. (2013). Comparative Research on Mechanism of Neuroprotective Effect and Influence of Blood-Brain Barrier between L-Borneol and Borneol Synthetic. Chengdu: Chengdu University of Traditional Chinese Medicine

Tu, X.-y., Yang, W.-z., Shi, S.-s., Shan, C., Zhang, G.-l., Ni, T.-r., et al. (2010). Spatio-Temporal Distribution of Inflammatory Response by Flurbiprofen Following Focal Cerebral Ischemia. Neurochem. Res. 35 (8), 1147–1155. doi:10.1007/s11064-010-0167-6

Ueno, M. (2009). Mechanisms of the Penetration of Blood-Borne Substances into the Brain. Curr. Neuropharmacol. 7 (2), 142–149. doi:10.2174/15701590978848901

Ueno, M., Nakagawa, T., Wu, B., Onodera, M., Huang, C.-l., Kusaka, T., et al. (2010). Transports in the Brain Endothelial Barrier. Curr Med. Chem. 17, 1125–1138. doi:10.2174/2092986710790827816

Vannucci, R. C., Brucklacher, R. M., and Vannucci, S. J. (2001). Intracellular Calcium Accumulation during the Evolution of Hypoxic-Ischemic Brain Damage in the Immature Rat. Developmental Brain Res. 126 (1), 117–20. doi:10.1016/s0165-3806(00)00135-8

Wang, Y. (2011). The Effect of Musk.Borneol and Compatibility of Them on the Animal Models of Cerebral Ischemia. Chengdu: Chengdu University of Traditional Chinese Medicine

Wang, L. Y., Liu, J., Li, Y., Li, B., Zhang, Y. Y., Jing, Z. W., et al. (2015a). Time–dependent Variation of Pathways and Networks in a 24-hour Window after Cerebral Ischemia-Reperfusion Injury. BMC Syst. Biol. 9 (1), 11. doi:10.1186/s12918-015-0152-4

Wang, N., Ma, H. P., Qi, X. Z., Meng, P., and Jia, Z. P. (2015b). Progress of Nrfr2-ARE Signaling Pathway in Protection of Oxidative Stress Injury of the Body. Med. Pharm. J. Chin. People’s Liberation Army 27 (12), 21–27. doi:10.3969/j.issn.2095-140X.2015.12.005

Wang, Z.-p., Tian, Y., and Lin, J. (2017b). Role of Wild-type P53-Induced Phosphatase 1 in Cancer. Oncol. Lett. 14, 3893–3898. doi:10.3892/ol.2017.6685

Wang, J., Qi, X. L., Fan, C. D., and Gao, H. L. (2018). Study on Action Mechanism of Borneol Combined with Safflower on Cerebral Ischemia Injury in Rats. Chin. J. Hosp. Pharm. 038 (023), 2410–2415. doi:10.13286/j.cnki.chinoshppharmacyj.2018.23.006

Wang, L., Liang, Q., Lin, A., Wu, Y., Min, H., Song, S., et al. (2019). Borneol Alleviates Brain Injury in Sepsis Mice by Blocking Neuronal Effect of Endotoxin. Life Sci. 232, 116647. doi:10.1016/j.lfs.2019.116647

Wang, J., and Wang, S. Y. (2018). Chinese Herbal Medicine. Beijing: China Medical Science Press

Wen, J. (2017). Research on Protection Mechanism of Aromatic Resuscitation Drug against Neurovascular Unit in Permanent Cerebral Ischemia Model Rats. Chengdu: Chengdu University of traditional Chinese Medicine
Intervention of Borneol on Cerebral Ischemia

Yoo, K.-Y., Hwang, I. K., Lee, C. H., Choi, J. H., Kwon, S.-H., Kang, I.-J., et al. (2010). Difference of Fibroblast Growth Factor Receptor 1 Expression Among CA1-3 Regions of the Gerbil hippocampus after Transient Cerebral Ischemia. J. Neural Sci. 296, 13–21. doi:10.1016/j.jns.2010.08.018

Yu, B., Lu, G. H., Sun, Y., Lin, X., and Fang, T. H. (2011). Effect of Electroacupuncture Combined with Intragastric Administration of Borneol on the Permeability of Blood-Brain Barrier in the Mouse. Acupuncture Res. 36 (05), 335–340.

Yu, B., Ruan, M., Cui, X. B., Gao, J. M., Xu, L., and Dong, X. P. (2013). Effects of Borneol on the Pharmacokinetics of Geniposide in Cortex, hippocampus, Hypothalamus and Striatum of Conscious Rat by Simultaneous Brain Microdialysis Coupled with UPLC-MS. J. Pharm. Biomed. Anal. 77, 128–132. doi:10.1016/j.jpba.2013.01.017

Yu, B., Ruan, M., Zhang, Z. N., Cheng, H. B., and Shen, X. C. (2016). Synergic Effect of Borneol and Liraglutide on the Neuroprotection in Global Cerebral Ischemia/reperfusion Injury: A Region-Specific Study. Evid Based Complement. Altern. Med. 2016, 1–8. doi:10.1155/2016/4072809

Yu, B., Liang, T., Huang, S. W., and Li, Y. (2017a). The Anti-ischemia Effect of Different Dose of Borneol Combining with Chuanxiong Rhizoma on the Global Cerebral Ischemia Rats in Different Brain Regions. Chin. J. Gerontol. 37 (10), 2352–2355. doi:10.3969/j.issn.1005-9022.2017.10.005

Yu, B., Ruan, M., Liang, T., Huang, S. W., Yu, Y., Cheng, H. B., et al. (2017b). The Synergic Effect of Tetramethylpyrazine Phosphate and Borneol for Protecting Against Ischemia Injury in Cortex and hippocampus Regions by Modulating Apoptosis and Autophagy. J. Mol. Neurosci. 63 (1), 70–83. doi:10.1007/s12031-019-0958-1

Yu, B., Shen, X. C., Liang, T., Huang, S. W., Yang, L., Cheng, H. B., et al. (2017c). Research on the Synergic Effect of Different Doses of Borneol and Chuanxiong Rhizoma on the Anti-ischemia Effect in Different Brain Regions. Chin. J. Hosp. Pharm. 37 (18), 1792–1796. doi:10.13286/j.cnki.chinpharmacy.2017.18.05

Yu, B., Ruan, M., Xu, L., Liu, S. J., Xu, H. Q., and Sheng, X. C. (2019a). Synergic Effect of Chuanxiong Rhizoma and Borneol on Protecting hippocampus and Hypothalamus of Rats from Global Cerebral Ischemia Reperfusion Injury. Chin. Pharmacol. Bull. 35 (9), 1302–1307. doi:10.1007/s11977-2019-09092-8

Yu, B., Zhong, F. M., Yao, Y., Deng, S. Q., Xu, H. Q., Lu, J. F., et al. (2019b). Synergistic Protection of Tetramethylpyrazine Phosphate and Borneol on Brain Microvascular Endothelial Cells Injured by Hypoxia. Am. J. Transl. Res. 11 (4), 2168–2180.

Yu, B., Ruan, M., Liang, T., and Yu, Y. (2020). Synergy between Borneol and Extract of Ligusticum Chuanxiong Hort against Cortex and Striatum Ischemia. Int. J. Pharmacol. 16, 104–119. doi:10.3923/ijp.2020.104.119

Yuan, Z., Zhang, J. P., Liu, Y. F., and Zhang, B. L. (2006). Study on the Relationship between P-Glycoprotein and Borneol Promoting the Physiological Opening of Blood-Brain Barrier. Tianjin J. Traditional Chin. Med. 023 (03), 261–262. doi:10.3969/j.issn.1672-1519.2006.03.041

Zhang, C. A., Liu, Y. M., Xu, Q. Y., and Peng, S. Q. (2002). Effect of Aromatic Herbs for Resuscitation on NO Content and Expression of NOS in Brain Tissue of Rats with Cerebral Sclerosis and Reperfusion Injury. J. Guangzhou Univ. Traditional Chin. Med. 19 (02), 115–118. doi:10.1007/s10717-006-0203-1

Zhang, Y. X. (2013). Cysteinyi Leukotriene CysLT2 Receptor Mediates Neuronal Injury Damage through Activation Microglia. Hangzhou: Zhejiang University

Zhang, Q., Wu, D., Wu, J., Ou, Y., Mu, C., Han, B., et al. (2015). Improved Blood-Brain Barrier Distribution: Effect of Borneol on the Brain Pharmacokinetics of Kaempferol in Rats by In Vivo Microdialysis Sampling. J. Ethnopharmacol. 162, 270–277. doi:10.1016/j.jep.2015.01.003

Zhang, Q.-L., Fu, B. M., and Zhang, Z.-J. (2017a). Borneol, a Novel Agent that Improves Central Nervous System Drug Delivery by Enhancing Blood-Brain Barrier Permeability. Drug Deliv. 24 (1), 1037–1044. doi:10.1080/2163955X.2016.1235080

Zhang, X.-G., Shang, C., Zhu, J.-Z., Bao, X.-Y., Tong, Q., Wu, X.-F., et al. (2017b). Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice. Front. Physiol. 8, 1133. doi:10.3389/fphys.2017.01133

Zhang, Y.-M., Qu, X.-Y., Tao, L.-N., Zhai, J.-H., Gao, H., Song, Y.-Q., et al. (2019). XingNaoJing Injection Ameliorates Cerebral Ischaemia/reperfusion Injury via SIRT1-Mediated Inflammatory Response Inhibition. Pharm. Biol. 57 (9), 16–24. doi:10.1080/13880209.2019.1698819

Xia, Y. O., Ping, Q. N., and Chen, Z. P. (2007). The Enhancing Effect of Synthetic Borneol on the Absorption of Tetratetramethylpyrazine Phosphate in Mouse. Int. J. Pharm. 337 (1-2), 74–79. doi:10.1016/j.ijpharm.2006.12.034

Xing, H. Y., Sun, S. G., Mei, Y. W., Shi, J., and Dirk, M. H. (2007). Inhibition of Serotonin-induced Platelet Intracellular Ca2+ Response in Patients with Anorexia Nervosa. Pharmacopsychiatry 41 (1), 10–16. doi:10.1055/s-2007-992145

Wroket, S. E., Kozak, W. E., Hess, D. C., and Fagan, S. C. (2011). Treatment of Fever after Stroke: Conflicting Evidence. Pharmacotherapy 31 (11), 1085–1091. doi:10.1592/phco.31.11.1085

Wu, J., Wang, H. J., Wang, H. J., Yang, S., Liu, Y., and Xu, X. Y. (2016). [Borneol Promotes Catalpol and Puerarin Crossing through Blood-Brain Barrier in Focal Cerebral Ischemic Rats]. Zhongguo Zhong Yao Za Zhi. 41 (21), 3988–3995. doi:10.4266/j.shx.20161221

Wu, J., Wang, H. J., Yang, S., Liu, Y., and Xu, X. Y. (2016). [Borneol Promotes Catalpol and Puerarin Crossing through Blood-Brain Barrier in Focal Cerebral Ischemic Rats]. Zhongguo Zhong Yao Za Zhi. 41 (21), 3988–3995. doi:10.4266/j.shx.20161221

Yu, B., Ruan, M., Xu, L., Liu, S. J., Xu, H. Q., and Sheng, X. C. (2019a). Synergic Effect of Chuanxiong Rhizoma and Borneol on Protecting hippocampus and Hypothalamus of Rats from Global Cerebral Ischemia Reperfusion Injury. Chin. Pharmacol. Bull. 35 (9), 1302–1307. doi:10.1007/s11977-2019-09092-8

Yu, B., Zhong, F. M., Yao, Y., Deng, S. Q., Xu, H. Q., Lu, J. F., et al. (2019b). Synergistic Protection of Tetramethylpyrazine Phosphate and Borneol on Brain Microvascular Endothelial Cells Injured by Hypoxia. Am. J. Transl. Res. 11 (4), 2168–2180.

Yu, B., Ruan, M., Liang, T., and Yu, Y. (2020). Synergy between Borneol and Extract of Ligusticum Chuanxiong Hort against Cortex and Striatum Ischemia. Int. J. Pharmacol. 16, 104–119. doi:10.3923/ijp.2020.104.119

Yuan, Z., Zhang, J. P., Liu, Y. F., and Zhang, B. L. (2006). Study on the Relationship between P-Glycoprotein and Borneol Promoting the Physiological Opening of Blood-Brain Barrier. Tianjin J. Traditional Chin. Med. 023 (03), 261–262. doi:10.3969/j.issn.1672-1519.2006.03.041
Zhao, B. S., Xu, Q., Mi, S. Q., and Wang, N. S. (2001). The Relationship between eNOS and the Function of Borneol in Stimulating the BBB’s Opening. *J. Brain Nervous Dis.* 9 (4), 207–209. doi:10.3969/j.issn.1006-351X.2001.04.006

Zhao, J.-y., Lu, Y., Du, S.-y., Song, X., Bai, J., and Wang, Y. (2012). Comparative Pharmacokinetic Studies of Borneol in Mouse Plasma and Brain by Different Administrations. *J. Zhejiang Univ. Sci. B* 13, 990–996. doi:10.1631/jzus.B1200142

Zhong, M., Chen, H., Jiang, Y., Tu, P. F., Liu, C. L., Zhang, W. X., et al. (2012). Effect of Echinacoside on Striatal Extracellular Level of Amino Acids Neurotransmitter in Cerebral Ischemia Rats. *Chin. Pharmacol. Bull.* (3), 361–365. doi:10.3969/j.issn.1001-1978.2012.03.015

Zhou, L., and Zhu, D.-Y. (2009). Neuronal Nitric Oxide Synthase: Structure, Subcellular Localization, Regulation, and Clinical Implications. *Nitric Oxide* 20, 223–230. doi:10.1016/j.niox.2009.03.001

Zou, L., Zhang, Y., Li, W., Zhang, J., Wang, D., Fu, J., et al. (2017). Comparison of Chemical Profiles, Anti-inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol. *Molecules* 22 (9), 1446. doi:10.3390/molecules22091446

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Li, Ren, Wang, Ma, Chen, Xie, Li, Li and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
GLOSSARY

5-HT 5-hydroxytryptamine
5-LOX 5-lipoxygenase
APC adenomatous polyposis coli
BBB blood-brain barrier
BDNF brain-derived neurotrophic factor
bFGF/FGF2 fibroblast growth factor 2
BMEC brain micro-vascular endothelial cell
Cadm2 bell adhesion molecule 2
CAT Catalase
CGRP calcitonin gene-related peptide
CIR cerebral ischemia reperfusion
CNS central nervous system
COX-2 cyclooxygenase-2
CysLT-2 cysteinyl leukotriene receptor-2
Dsh disheveled
EB evans blue
eNOS endothelial nitric oxide synthase
ET-1 endothelin-1
GABA gamma-aminobutyric acid
GDNF glial cell-derived neurotrophic factor
Glu glutamic acid
GSH-Px glutathione peroxidase
GSK-3β glycogen synthase kinase-3 beta
H₂O₂ Hydrogen peroxide
HnrnpA1 heterogeneous Nuclear Ribonucleoprotein A1
ICAM-1 intercellular adhesion molecule-1
IL-10 interleukin-10
IL-1β interleukin-1β
IL-6 interleukin-6
iNOS inducible nitric oxide synthase
LC3 microtubule-associated protein light chain 3
LEF1 lymphoid Enhancer-Binding Factor 1
LFA-1 lymphocyte function-associated antigen-1
MDA malondialdehyde
MMP 2 matrix metallopeptidase 2
MMP 9 matrix metallopeptidase 9
MPO Myeloperoxidase
mTOR mammalian Target of rapamycin
NF-κB nuclear factor-κB
NGF nerve growth factor
NMDA-R N-methyl-D-aspartate glutamate receptor
nNOS neuronal nitric oxide synthase
NO nitric oxide
NOS nitric oxide synthase
O₂⁻ superoxide anion
OGD/R Oxygen-Glucose Deprivation/Reperfusion
OH⁻ hydroxyl radical
p53 tumor protein 53
p62 sequestosome-1
pBCO permanent bilateral carotid occlusion
pCIR permanent cerebral ischemia reperfusion
P-gp P-glycoprotein
ROS reactive oxygen species
SOD superoxide dismutase
tBCO transient bilateral carotid occlusion
TCM traditional Chinese Medicine
TTC 2,3,5-Triphenyltetrazolium chloride
tGCIR transient Global cerebral ischemia reperfusion
TIMP-1 tissue inhibitor of metalloproteinase-1
tMCAO transient middle cerebral artery occlusion
TNF-α necrosis factor-α
VEGF vascular endothelial growth factor
VEGFR1/FLT1 fms related receptor tyrosine kinase 1
VEGFR2/KDR Kinase insert domain receptor
Wnt3a wnt family member 3A