STRICTLY STRONG A∞-WEIGHTS, BESOV AND SOBOLEV CAPACITIES IN METRIC MEASURE SPACES

ŞERBAN COSTEA

ABSTRACT. This article studies strong A∞-weights in Ahlfors Q-regular and geodesic metric spaces satisfying a weak (1, s)-Poincaré inequality for some 1 < s ≤ Q ≤ ∞. It is shown that whenever max(1, Q − 1) < s ≤ Q, a function u yields a strong A∞-weight of the form w = e^{Qu} if the minimal s-weak upper gradient g_u has sufficiently small \| g_u \|_{L^{s,q}(X,\mu)} norm. Similarly, it is proved that if 1 < Q < p < ∞, then w = e^{Qu} is a strong A∞-weight whenever the Besov p-seminorm \| u \|_{B^p(X)} of u is sufficiently small.

1. Introduction

In this paper (X, d, µ) is a complete and unbounded metric measure space. In addition, we assume that it is Ahlfors Q-regular for some Q > 1. That is, there exists a constant C = c_µ such that, for each x ∈ X and all r > 0,

\[C^{-1} r^Q ≤ \mu(B(x, r)) ≤ Cr^Q. \]

Furthermore, X is assumed to be geodesic. That is, every pair of points can be joined by a curve whose length is the distance between the points.

We will also assume that (X, d, µ) satisfies a weak (1, s)-Poincaré inequality for some s ∈ (1, Q]. That is, there exist constants C > 0 and λ ≥ 1 such that for all balls B with radius r, all measurable functions u on X and all upper gradients g of u we have

\[\frac{1}{\mu(B)} \int_B |u - u_B| d\mu ≤ Cr \left(\frac{1}{\mu(\lambda B)} \int_{\lambda B} g^s d\mu \right)^{1/s}, \]

where \(\lambda B \) represents the ball concentric with B with radius \(\lambda \) times the radius of B whenever \(\lambda > 0 \), and \(u_E \) denotes the average of u on the measurable set \(E \subset X \) with respect to the measure µ whenever \(0 < \mu(E) < \infty \). We recall that a nonnegative Borel function g is an upper gradient for a real-valued measurable function u on X if for all rectifiable paths \(\gamma : [0, l_\gamma] \to X \) we have

\[|u(\gamma(0)) - u(\gamma(l_\gamma))| ≤ \int g ds. \]

Here and throughout the paper the rectifiable curve \(\gamma : [0, l_\gamma] \to X \) is assumed to be parametrized by the arc length ds, where \(l_\gamma \) is the length of \(\gamma \).

We study sufficient conditions under which we get strong A∞-weights in X. A non-trivial doubling measure \(\nu \) on X is a Radon measure for which there exists a constant \(C > 1 \) such that

\[0 < \nu(2B) ≤ C \nu(B) \]

2000 Mathematics Subject Classification. Primary: 30C99.
Key words and phrases. Strong A∞-weights, Besov spaces, Newtonian spaces, capacity.

Work partially supported by NSERC, by the Emil Aaltonen foundation, by the Fields Institute, and by the NSF grant DMS 0244421.
for all balls B.

To every doubling measure ν on X we can associate a quasidistance on X defined by

$$
\delta_\nu(x, y) = \nu(B_{xy})^{1/Q},
$$

where $B_{xy} := B(x, d(x, y)) \cup B(y, d(y, x))$. To say that $\delta_\nu(x, y)$ is a quasidistance means by definition that $\delta_\nu : X \times X \to [0, \infty)$ is symmetric, vanishes if and only if $x = y$, and satisfies

$$
\delta_\nu(x, z) \leq C(\delta_\nu(x, y) + \delta_\nu(y, z))
$$

for some $C \geq 1$ and all $x, y, z \in X$. If (4) was satisfied with $C = 1$, then the quasidistance δ_ν would in fact be a distance function.

We call ν a metric doubling measure if the quasidistance δ_ν is comparable to a distance δ'_ν; that is, there exists a distance function δ'_ν on X and a constant $C > 0$ such that

$$
C^{-1}\delta'_\nu(x, y) \leq \delta_\nu(x, y) \leq C\delta'_\nu(x, y)
$$

for all $x, y \in X$.

We say that a nonnegative function $w \in L^1_{\text{loc}}(X)$ is an A_p-weight with respect to the measure μ for some $1 < p < \infty$ and we write $w \in A_p(\mu)$ if there exists a constant $C \geq 1$ such that

$$
\left(\frac{1}{\mu(B)} \int_B w(x)^{-1/(p-1)} d\mu(x)\right)^{p-1} \frac{1}{\mu(B)} \int_B w(x) d\mu(x) \leq C
$$

for all balls $B \subset X$. We say that w is a A_∞-weight with respect to the measure μ and we write $w \in A_\infty(\mu)$ if w is an A_p-weight with respect to μ for some p in $(1, \infty)$. That is,

$$
A_\infty(\mu) = \cup_{p > 1} A_p(\mu).
$$

We define w to be a strong A_∞-weight if it is the density of a metric doubling measure ν and moreover, it is an A_∞-weight with respect to μ. That is,

$$
d\nu(x) = w(x) d\mu(x)
$$

where $w \in A_\infty(\mu)$ and ν is a metric doubling measure.

Strong A_∞-weights in \mathbb{R}^n were introduced in the early 90’s by David and Semmes in [DS] and [Sem] when trying to identify the subclass of A_∞-weights that are comparable to the Jacobian determinants of quasiconformal mappings.

Question 1.1. In the Euclidean setting, metric doubling measures have densities that are A_∞-weights. (See [Sem].) An open question in the metric setting is whether or not metric doubling measures necessarily have A_∞-densities.

In the last few years strong A_∞-weights were studied by Bonk, Heinonen, and Saksman in [BHS1] and [BHS2] and by the author in [Cos1].

In the Euclidean setting Bonk and Lang proved in [BL] that if ν is a signed Radon measure on \mathbb{R}^2 such that $\nu^+(\mathbb{R}^2) < 2\pi$ and $\nu^-(\mathbb{R}^2) < \infty$, then (\mathbb{R}^2, D_ν) is bi-Lipschitz equivalent to \mathbb{R}^2 endowed with the Euclidean metric, where

$$
D_\nu(x, y) = \inf \left\{ \int_\alpha e^u ds : \alpha \text{ analytic curve connecting } x, y \right\},
$$

u is a solution of $-\Delta u = \nu$ with $|\nabla u| \in L^2(\mathbb{R}^2)$, and $\nu = \nu^+ - \nu^-$ is the Jordan decomposition of ν. In particular, it is proved that $w = e^{2u}$ is comparable to the
Jacobian of a quasiconformal mapping \(f : \mathbb{R}^2 \to \mathbb{R}^2 \), which implies that \(w \) is a strong \(A_\infty \)-weight.

Here we prove a result in \((X, d, \mu)\), related to [Cos1, Theorem 5.1] and to the result from [BL]. It states that \(A_\infty \)-weights of the form \(w = e^{Qu} \) are strong \(A_\infty \)-weights if \(u \) is a locally integrable function that has an upper gradient \(g \) in the Morrey space \(\mathcal{L}^{s,Q-s}(X, \mu) \) with small \(\| \cdot \|_{\mathcal{L}^{s,Q-s}(X, \mu)} \) norm for some \(s > 1 \) lying in \((Q - 1, Q]\).

We say that for \(1 \leq s \leq Q \), the Morrey space \(\mathcal{L}^{s,Q-s}(X, \mu) \) is defined to be the linear space of locally \(\mu \)-integrable functions \(u \) on \(X \) such that

\[
\|u\|_{\mathcal{L}^{s,Q-s}(X, \mu)} = \sup_{x \in X} \sup_{r > 0} \left(r^{s-Q} \int_{B(x,r)} |u(y)|^s \, d\mu(y) \right)^{1/s}.
\]

In particular \(\mathcal{L}^{Q,0}(X, \mu) = L^Q(X) \). We refer to [Gia, p. 65] for more information about Morrey spaces in the Euclidean setting and their use in the theory of partial differential equations.

If \((X, d, \mu)\) is an Ahlfors \(Q \)-regular metric space with \(Q > 1 \) satisfying a weak \((1, s)\)-Poincaré inequality for some \(s \in (1, Q]\), it follows from (1) that there exists a constant \(C \) depending only on \(s \) and on data of \(X \) such that

\[
[u]_{\text{BMO}(X)} \leq C \|g\|_{\mathcal{L}^{s,Q-s}(X, \mu)}
\]

whenever \(g \) is an upper gradient of \(u \). Here and throughout the paper \([u]_{\text{BMO}(X)}\) is the \textit{bounded mean oscillation} seminorm that measures the oscillation of \(u \) on balls in \(X \), given by

\[
[u]_{\text{BMO}(X)} = \sup_{a \in X} \sup_{r > 0} \frac{1}{\mu(B(a, r))} \int_{B(a,r)} |u(x) - u_{B(a,r)}| \, d\mu(x).
\]

In [BHS1, Theorem 3.1] the authors prove that if \(u \) belongs to the Bessel potential space \(L^{\alpha,\frac{n}{\alpha}}(\mathbb{R}^n), 0 < \alpha < n \), then \(w = e^{hu} \) is a strong \(A_\infty \)-weight with data depending only on \(\alpha, n \), and the \(L^{\alpha,\frac{n}{\alpha}} \)-norm of \(u \). Here we prove a result similar to [BHS1, Theorem 3.1] and [Cos1, Theorem 5.2]. This result yields strong \(A_\infty \)-weights of the form \(w = e^{Qu} \) when \(u \) has small Besov \(p \)-seminorm, \(1 < Q < p < \infty \).

For \(1 < Q < p < \infty \) we define

\[
B_p(X) = \{ u \in L^p(X) : \|u\|_{B_p(X)} < \infty \},
\]

where

\[
\|u\|_{B_p(X)} = \|u\|_{L^p(X)} + [u]_{B_p(X)}
\]

with

\[
[u]_{B_p(X)} = \left(\int_X \int_X \frac{|u(x) - u(y)|^p}{d(x,y)^{2Q}} \, d\mu(x) \, d\mu(y) \right)^{1/p}.
\]

The expressions \(\|u\|_{B_p(X)} \) and \([u]_{B_p(X)}\) from (8) and (9) are called the \textit{Besov} \(p \)-\textit{norm} and the \textit{Besov} \(p \)-\textit{seminorm} of \(u \) respectively. If \((X, d, \mu)\) is Ahlfors \(Q \)-regular, there exists a constant \(C \) depending on \(p \) and on the data of \(X \) such that

\[
[u]_{\text{BMO}(X)} \leq C[u]_{B_p(X)}
\]

whenever \(u \in L^1_{\text{loc}}(X) \).

Besov spaces have been studied in the last decades by Jonsson and Wallin in [JW], by Fukushima and Uemura in [FU], by Xiao in [Xia], and by the author in [Cos1] and [Cos2]. Recently they have been used in the study of quasiconformal mappings in metric spaces and in geometric group theory. See [Bou] and [BP].
Capacities associated with Besov spaces were studied by Neterov in [Net1] and [Net2], by Adams and Hurri-Syrjänen in [AHS], by Adams and Xiao in [AX1] and [AX2], and by the author in [Cos1]. Bourdon in [Bou] and the author in [Cos2] studied Besov p-capacity in metric settings.

Acknowledgements. This article was written when the author was a visiting member of the Fields Institute in 2008. Part of the research was done when the author was a visiting postdoctoral researcher at the Helsinki University of Technology in 2007. The author wishes to thank Mario Bonk for useful conversations leading to Lemma 3.3 and Carlos Pérez for helpful discussions regarding the John-Nirenberg lemma.

2. **Preliminaries**

In this section we recall standard definitions and results. The open ball with center $x \in X$ and radius $r > 0$ is denoted $B(x, r) = \{ y \in X : d(x, y) < r \}$, the closed ball by $\overline{B}(x, r) = \{ y \in X : d(x, y) \leq r \}$, and the sphere by $S(x, r) = \{ y \in X : d(x, y) = r \}$. Throughout this paper, C will denote a positive constant whose value is not necessarily the same at each occurrence; it may vary even within a line. $C(a, b, \ldots)$ is a constant that depends only on the parameters a, b, \ldots. Here Ω will denote a nonempty open subset of X. For $E \subset X$, the closure and the complement of E with respect to X will be denoted by \overline{E} and $X \setminus E$ respectively; diam E is the diameter of E with respect to the metric d and $E \subset\subset F$ means that \overline{E} is a compact subset of F.

For a measurable $u : \Omega \to \mathbb{R}$, supp u is the smallest closed set such that u vanishes on the complement of supp u. We also use the spaces

\[
\text{Lip}(\Omega) = \{ \varphi : \Omega \to \mathbb{R} : \varphi \text{ is Lipschitz} \},
\]

\[
\text{Lip}_0(\Omega) = \{ \varphi : \Omega \to \mathbb{R} : \varphi \text{ is Lipschitz and supp } \varphi \subset\subset \Omega \}.
\]

2.1. **Newtonian spaces.** We introduce now some definitions and known results about Newtonian spaces to be used in this paper. Let $1 \leq s < \infty$. The s-modulus of a family of paths Γ in X is the number

\[
\inf \rho \int_X \rho^s \, d\mu,
\]

where the infimum is taken over all non-negative Borel measurable functions ρ such that for all rectifiable paths γ which belong to Γ we have

\[
\int_\gamma \rho \, ds \geq 1.
\]

It is known that the s-modulus is an outer measure on the collection of all paths in X.

A property is said to hold for s-almost all paths, if the set of paths for which the property fails is of zero s-modulus. If (2) holds for s-almost all paths γ, then g is said to be a s-weak upper gradient of u. We could have stated the definition of the weak $(1, s)$-Poincaré inequality by requiring the inequality (1) to hold for all s-weak upper gradients of u. (See [KoM].) Similarly we can define weak (q, s)-Poincaré inequalities for $q > 1$.

Without further notice, we assume that $1 < s < \infty.$ We define the space $\widetilde{N}^{1,s}(X)$ to be the collection of all the functions u that are s-integrable and have a s-integrable s-weak upper gradient g. This space is equipped with the norm

\[
\|u\|_{\widetilde{N}^{1,s}(X)} = \left(\|u\|_{L^s(X)}^s + \inf \|g\|_{L^s(X)}^s \right)^{1/s},
\]
where the infimum is taken over all \(s \)-weak upper gradients of \(u \). The \textit{Newtonian space} on \(X \) is the quotient space
\[
N^{1,s}(X) = \tilde{N}^{1,s}(X)/\sim
\]
with the norm \(||u||_{N^{1,s}(X)} = ||u||_{\tilde{N}^{1,s}(X)} \), where \(u \sim v \) if and only if \(||u - v||_{\tilde{N}^{1,s}(X)} = 0 \). For basic properties of the Newtonian spaces we refer to [Sha1]. Cheeger in [Che] gives an alternative definition which leads to the same space when \(1 < s < \infty \). For future reference we recall some known facts (see [KiM] and [Sha2]):

(i) The functions in \(\tilde{N}^{1,s}(X) \) are defined outside a path family of \(s \)-modulus zero. This implies that the functions in \(\tilde{N}^{1,s}(X) \) cannot be changed arbitrarily on sets of measure zero.

(ii) If \(1 < s < \infty \), every function \(u \) that has a \(s \)-integrable \(s \)-weak upper gradient has in fact a minimal \(s \)-integrable \(s \)-weak upper gradient in \(X \), denoted by \(g_u \), in the sense that if \(g \) is another \(s \)-weak upper gradient of \(u \), then \(g_u \leq g \mu \)-a.e. in \(X \).

(iii) For every \(c \in \mathbb{R} \) the minimal \(s \)-weak upper gradient satisfies \(g_u = 0 \) \(\mu \)-a.e. on the set \(\{ x \in X : u(x) = c \} \).

(iv) If \(u \in N^{1,s}(X) \) and \(v \) is a bounded Lipschitz continuous function, then \(uv \in N^{1,s}(X) \) and \(g_{uv} \leq |u|g_u + |v|g_u \mu \)-a.e.

We emphasize that these properties hold without any additional assumptions on the measure \(\mu \) and on the space \(X \).

The \(s \)-capacity of a set \(E \subset X \) is defined by (see [BBS])
\[
C_s(E) = \inf_u ||u||_{N^{1,s}(X)},
\]
where the infimum is taken over all functions \(u \in N^{1,s}(X) \) whose restriction on \(E \) is bounded below by 1. A property is said to hold \textit{s-quasieverywhere} (or \textit{s-q.e.}), if it holds everywhere except on a set of \(s \)-capacity zero. A function is \textit{s-quasicontinuous}, if there is an open set of arbitrarily small \(s \)-capacity such that the function is continuous when restricted to the complement of the set. Every function in \(\tilde{N}^{1,s}(X) \) is defined \(s \)-quasieverywhere. Moreover, if \(u, v \in N^{1,s}(X) \) and \(u = v \mu \)-a.e., then \(u \) and \(v \) belong to the same equivalence class in \(N^{1,s}(X) \).

We introduce the notion of a local Newtonian space as follows.

Definition 2.1. We say that \(u \) belongs to the \textit{local Newtonian space} \(N^{1,s}_{loc}(X) \) if \(u \in N^{1,s}(\Omega) \) for every open set \(\Omega \subset X \). If \(u \in N^{1,s}_{loc}(X) \) with \(1 < s < \infty \), then \(u \) has a minimal \(s \)-weak upper gradient \(g_u \) in \(X \) in the following sense: if \(\Omega \subset X \) is an open set and \(g \) is the minimal upper gradient of \(u \) in \(\Omega \), then \(g_u = g \mu \)-a.e. in \(\Omega \).

From now on throughout the rest of the paper we assume that the measure \(\mu \) is Borel and Ahlfors \(Q \)-regular for some \(Q > 1 \). Furthermore we assume that the space supports a weak \((1, s)\)-Poincaré inequality for some \(1 < s \leq Q \). We recall a few useful properties of Newtonian spaces that hold under these additional assumptions (see [BBS] and [KiM]):

(i) The space \(X \) is proper (that is, closed and bounded sets are compact).

(ii) Lipschitz functions are dense in \(N^{1,s}(X) \) and Lipschitz functions which vanish in the complement of an open set \(\Omega \) are dense in \(N^{1,s}_{loc}(\Omega) \), where
\[
N^{1,s}_{loc}(\Omega) = \{ u \in N^{1,s}(X) : u = 0 \text{ s-q.e. in } X \setminus \Omega \}.
\]

(iii) Every function in \(N^{1,s}(X) \) is \(s \)-quasicontinuous.
Now we introduce the relative Sobolev s-capacity as in [Cos3]. See also [Bjo].

Definition 2.2. Let $1 < s, Q < \infty$. Suppose (X, d, μ) is a proper and unbounded Ahlfors Q-regular metric space that satisfies a weak $(1, s)$-Poincaré inequality. Let $\Omega \subset X$ be open. For $E \subset \Omega$ we let

$$A(E, \Omega) = \{u \in N_0^{1,s}(\Omega) : u \geq 1 \text{ in a neighborhood of } E\}.$$

We call $A(E, \Omega)$ the set of admissible functions for the condenser (E, Ω). The relative s-capacity of the pair (E, Ω) is defined by

$$\text{cap}_s(E, \Omega) = \inf \left\{ \int_{\Omega} g_s \, d\mu : u \in A(E, \Omega) \right\}.$$

2.2. Besov spaces and capacities.

Now we introduce some definitions and results about Besov spaces and capacities to be used in this paper. We follow [Cos2]. See also [Cos1].

Let $1 < Q < p < \infty$ be fixed. Suppose (X, d, μ) is an Ahlfors Q-regular metric space. For an open set $\Omega \subset X$ we define

$$B_p(\Omega) = \{u \in B_p(X) : u = 0 \ \mu\text{-a.e. in } X \setminus \Omega\},$$

where $B_p(X)$ is defined as in (7). For a function $u \in B_p(\Omega)$ we let

$$||u||_{B_p(\Omega)} = ||u||_{B_p(X)} \text{ and } [u]_{B_p(\Omega)} = [u]_{B_p(X)}.$$

We notice that $\text{Lip}_0(\Omega) \subset B_p(\Omega)$ when $1 < Q < p < \infty$. We define $B^0_p(\Omega)$ as the closure of $\text{Lip}_0(\Omega)$ in $B_p(\Omega)$ with respect to the Besov p-norm. It has been proved in [Cos2] that $B_p(X)$, $B_p(\Omega)$, and $B^0_p(\Omega)$ are reflexive spaces. (See [Cos2, Lemma 3.1] and the discussion before [Cos2, Lemma 3.4].)

The Besov p-capacity of a set $E \subset X$ is defined by (see [Cos2])

$$\text{Cap}_{B_p}(E) = \inf\{||u||_{L^p(X)}^p + [u]_{B_p(X)}^p : u \in B^0_p(X) \},$$

where the infimum is taken over all functions $u \in B_p(X)$ that are bounded from below by 1 in an open neighborhood of E. A property is said to hold Besov p-quasieverywhere (or simply B_p-q.e.), if it holds everywhere except a set of Besov p-capacity zero. A locally integrable function u is called B_p-quasicontinuous if there exists an open set of arbitrarily small Besov p-capacity such that u is continuous when restricted to the complement of the set.

Remark 2.3. It has been shown in [Cos2] that if $u \in B_p(X)$, then there exists a B_p-quasicontinuous function v such that $u = v \ \mu$-a.e. Such a function v is called a quasicontinuous representative of u. In addition, we can choose v to be Borel. Moreover, two such quasicontinuous representatives agree in fact B_p-q.e. Similar statements were proved if $u \in L^1_{\text{loc}}(X)$ with $[u]_{B_p(X)} < \infty$. (See [Cos2, Section 5].)

Suppose $\Omega \subset X$ is open. For $E \subset \Omega$ the relative Besov p-capacity of the condenser (E, Ω) is defined by (see [Cos2])

$$\text{cap}_{B_p}(E, \Omega) = \inf\{[u]_{B_p(\Omega)}^0 : u \in B^0_p(\Omega) \text{ and } u \geq 1 \text{ in a neighborhood of } E\}.$$
3. Main results

In this section we present the results about strong A_∞-weights. We prove the following theorems.

Theorem 3.1. Let $1 < s \leq Q < \infty$ be fixed. We assume that $s > Q - 1$. Suppose (X, d, μ) is an Ahlfors Q-regular and geodesic unbounded metric space satisfying a weak $(1, s)$-Poincaré inequality. Let $u \in N^1_{loc}(X)$ be such that it has a minimal s-weak upper gradient g_u in the Morrey space $L^{s, Q-s}(X, \mu)$. There exists a constant $\varepsilon > 0$ depending only on s and on the data of X such that if $\|g_u\|_{L^{s, Q-s}(X, \mu)} < \varepsilon$, then $w = e^{Qu}$ is a strong A_∞-weight with data depending only on s and on the data associated with X.

Theorem 3.2. Let $1 < s < Q < p < \infty$ be fixed. Suppose (X, d, μ) is an Ahlfors Q-regular and geodesic unbounded metric space satisfying a weak $(1, s)$-Poincaré inequality. Let $u \in L^1_{loc}(X)$ be such that $[u]_{B_p(X)} < \infty$. There exists a constant $\varepsilon > 0$ depending only on p and on the data of X such that if $[u]_{B_p(X)} < \varepsilon$, then $w = e^{Qu}$ is a strong A_∞-weight with data depending only on p and on the data associated with X.

For $r \in (0, \infty)$ we define the Hausdorff r-content of a set $E \subset X$ by

$$\Lambda_r^\infty(E) = \inf \{ \sum_i \text{diam}(G_i)^r : E \subset \bigcup_i G_i \}.$$

where the infimum is taken over all coverings of E by open sets G_i.

The following lemma is a generalization of [BHS1, Lemma 3.11]. We again thank Mario Bonk for his contribution to this result.

Lemma 3.3. Suppose (X, d, μ) is a proper and unbounded geodesic Ahlfors Q-regular metric space admitting a weak $(1, Q)$-Poincaré inequality for some $1 < Q < \infty$. Suppose $0 < r \leq 1$. Let $x, y \in X$ and let $E \subset X$ be a bounded Borel set. Suppose that B_1, \ldots, B_k are open balls such that $x \in B_1, y \in B_k$ and $B_i \cap B_{i+1} \neq \emptyset$ for $i = 1, \ldots, k - 1$. Then there exists constants c_1 and C depending on r and on the data of X with the following property: if

(11) $$\Lambda_r^\infty(E) \leq c_1 d(x, y)^r,$$
then

(12) $$\sum_{i \in G_0} \text{diam}(B_i)^r > \frac{1}{(20C)^r} d(x, y)^r,$$

where

(13) $$G_0 = \left\{ i = 1, \ldots, k : \mu(E \cap B_i) \leq \frac{1}{2} \mu(B_i) \right\}.$$

Proof. Since X is Ahlfors Q-regular, proper and geodesic, it follows that it is also locally linearly connected. That is, there exists a constant $C \geq 2$ such that every pair of points in $B(x, R)$ can be joined by a rectifiable path in $B(x, CR)$ and every pair
of points in $X \setminus B(x, R)$ can be joined by a continuum in $X \setminus B(x, R/C)$. (See [HeK, Section 3] and [Hei, Sections 8,9].)

We choose a family $\mathcal{I} \subset \{1, \ldots, k\}$ such that

$$CB_i \cap CB_j = \emptyset$$

whenever $i \neq j \in \mathcal{I}$ and

$$\bigcup_{i=1}^{k} CB_i \subset \bigcup_{i \in \mathcal{I}} 5CB_i,$$

where C is the constant associated with the locally linear connectivity of X. (See [Hei, Theorem 1.16].) For every $i = 1, \ldots, k - 1$ let $x_i \in B_i \cap B_{i+1}$. We let $x_0 = x$ and $x_k = y$. Since X is locally linearly connected, we have that for every $i = 1, \ldots, k$ there exists a rectifiable path γ_i in CB_i connecting x_{i-1} and x_i. This yields a rectifiable path $\gamma \in \bigcup_{i=1}^{k} CB_i$ connecting x and y and therefore

$$\Lambda_{\infty}^r(\bigcup_{i \in \mathcal{I}} 5CB_i) \geq \Lambda_{\infty}^r(\bigcup_{i=1}^{k} CB_i) \geq d(x, y)^r. \quad (14)$$

We can assume without loss of generality that $\Lambda_{\infty}^r(E) > 0$. Let $(D_j)_{j \in \mathcal{J}}$ be a countable covering by open balls for E such that

$$\frac{1}{5} D_i \cap \frac{1}{5} D_j = \emptyset$$

whenever $i \neq j \in \mathcal{J}$ (see [Hei, Theorem 1.16]) and such that

$$\sum_{j \in \mathcal{J}} \operatorname{diam}(D_j)^r < 2^{r+1} \Lambda_{\infty}^r(E).$$

For every $i \in \mathcal{I}$ we define

$$\mathcal{F}_i = \{j \in \mathcal{J} : D_j \cap CB_i \neq \emptyset\}.$$

We denote

$$\mathcal{G} = \{i \in \mathcal{I} : \operatorname{diam}(D_j) \leq \operatorname{diam}(CB_i) \text{ for all } j \in \mathcal{F}_i\} \text{ and } \mathcal{B} = \mathcal{I} \setminus \mathcal{G}.$$

Suppose $i \in \mathcal{B}$. Then there exists $j = j_i \in \mathcal{F}_i$ such that

$$D_{j_i} \cap CB_i \neq \emptyset \text{ and } \operatorname{diam}(D_{j_i}) > \operatorname{diam}(CB_i).$$

We notice that

$$5CB_i \subset 14D_{j_i} \text{ and } \operatorname{diam}(5CB_i) < 14 \operatorname{diam}(D_{j_i}).$$

Therefore

$$\Lambda_{\infty}^r(\bigcup_{i \in \mathcal{B}} 5CB_i) \leq \sum_{j \in \mathcal{J}} \operatorname{diam}(14D_j)^r \leq 28^r \sum_{j \in \mathcal{J}} \operatorname{diam}(D_j)^r < 2^{r+1} 28^r \Lambda_{\infty}^r(E). \quad (15)$$

We let

$$\mathcal{G}_1 = \{i \in \mathcal{G} : \sum_{j \in \mathcal{F}_i} \operatorname{diam}(D_j)^r < c_0 \operatorname{diam}(CB_i)^r\} \text{ and } \mathcal{G}_2 = \mathcal{G} \setminus \mathcal{G}_1$$

for some c_0 to be chosen later. We want to evaluate

$$\sum_{i \in \mathcal{G}_2} \operatorname{diam}(5CB_i)^r.$$
Before we do that, we notice that there exists a number M depending only on the data of X such that every ball D_j intersects at most M pairwise disjoint balls CB_i of bigger diameter. Therefore

\begin{equation}
\Lambda_r^\infty\left(\bigcup_{i \in \mathcal{G}_2} 5CB_i\right) \leq \sum_{i \in \mathcal{G}_2} \text{diam}(5CB_i)^r \leq 10^r \sum_{i \in \mathcal{G}_2} \text{diam}(CB_i)^r
\end{equation}

\begin{align*}
& \leq c_0^{-1} 10^r \sum_{i \in \mathcal{G}_2} \left(\sum_{j \in \mathcal{F}_i} \text{diam}(D_j)^r\right) \\
& \leq c_0^{-1} 10^r \sum_{i \in \mathcal{G}_2} \left(\sum_{j \in \mathcal{F}_i} \text{diam}(D_j)^r\right) \\
& \leq c_0^{-1} M 10^r \sum_{j \in \mathcal{F}} \text{diam}(D_j)^r < c_0^{-1} M 2^{r+1} 10^r \Lambda_r^\infty(E).
\end{align*}

We show now that if c_0 is taken small enough, then

\[\mu(E \cap B_i) \leq \frac{1}{2} \mu(B_i) \text{ for every } i \in \mathcal{G}_1. \]

Indeed, for all $i \in \mathcal{G}_1$ we have

\[\mu(E \cap B_i) \leq \mu\left(\bigcup_{j \in \mathcal{F}_i} D_j \cap CB_i\right) \leq \sum_{j \in \mathcal{F}_i} \mu(D_j) \leq \frac{c_\mu}{c_\mu} \sum_{j \in \mathcal{F}_i} \text{diam}(D_j)^Q \]

\[\leq c_\mu \text{diam}(CB_i)^{Q-r} \sum_{j \in \mathcal{F}_i} \text{diam}(D_j)^r \leq c_0 c_\mu \text{diam}(CB_i)^Q. \]

So, if we let $c_0 = \frac{1}{2} c_\mu^{-2}(2C)^{-Q}$, we get

\[\mu(E \cap B_i) \leq \frac{1}{2} \mu(B_i) \text{ for every } i \in \mathcal{G}_1. \]

From (14), (15), (16), the subadditivity of Λ_r^∞, and the fact that $\mathcal{I} = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{B}$, it follows that

\[d(x, y)^r \leq \Lambda_r^\infty(\bigcup_{i \in \mathcal{I}} 5CB_i) < \sum_{i \in \mathcal{G}_1} \text{diam}(5CB_i)^r + 2^{r+1} (28^r + c_0^{-1} M 10^r) \Lambda_r^\infty(E). \]

If we choose c_1 such that $2^{r+1} (28^r + c_0^{-1} M 10^r) c_1 = 1 - 2^{-r}$, then we notice that

\[(10C)^r \sum_{i \in \mathcal{G}_1} \text{diam}(B_i)^r \geq \sum_{i \in \mathcal{G}_1} \text{diam}(5CB_i)^r > 2^{-r} d(x, y)^r \]

whenever $\Lambda_r^\infty(E) < c_1 d(x, y)^r$. Since $\mathcal{G}_1 \subset \mathcal{G}_0$, this finishes the proof. \hfill \Box

Lemma 3.4. Suppose $1 < s, Q < \infty$. Suppose that (X, d, μ) is a complete and unbounded Ahlfors Q-regular metric measure space that satisfies a weak $(1, s)$-Poincaré inequality. Let $\Omega \subset X$ be open and let $E \subset \Omega$. Suppose $u \in N_0^{1,s}(\Omega)$ is compactly supported in Ω. If $u \geq 1$ on E, then

\[\text{cap}_s(E, \Omega) \leq \int_\Omega q_u^s d\mu. \]

Proof. Since $u \in N_0^{1,s}(\Omega)$ is compactly supported in Ω, there exists a sequence $\varphi_j \in \text{Lip}_0(\Omega)$ converging to u in $N^{1,s}(X)$. Without loss of generality we can assume that all the functions φ_j are supported in an open set $U \subset \subset \Omega$ and that the sequence φ_j converges to u pointwise μ-a.e. Since φ_j is a Cauchy sequence in $N_0^{1,s}(\Omega)$, there is a subsequence, denoted again by φ_j, such that

\[\|\varphi_j - \varphi_{j+1}\|_{N^{1,s}(X)} < 2^{-2j} \text{ for every } j \geq 1. \]

For the open set

\[E_j = \{x \in X : |\varphi_j(x) - \varphi_{j+1}(x)| > 2^{-j}\} \]
we have
\[C_s(E_j) \leq 2^{js}||\varphi_j - \varphi_{j+1}||_{N^{1,s}(X)}^s < 2^{-js}. \]
If we put
\[G_j = \bigcup_{k=j} E_k, \]
we have from the subadditivity of the s-capacity that
\[C_s(G_j)^{1/s} \leq \sum_{k=j} C_s(E_k)^{1/s} \leq \sum_{k=j} 2^{-k} = 2^{1-j}. \]
Thus the sequence φ_j converges uniformly outside open sets of arbitrarily small s-capacity to a quasicontinuous function v and we can assume without loss of generality that $v = 0$ on $X \setminus U$. Moreover, $v \in N_0^{1,s}(\Omega)$ because $N_0^{1,s}(\Omega)$ is a Banach space. On the other hand, φ_j converges to u μ-a.e. in X. Thus u and v are two functions in $N^{1,s}(X)$ that agree μ-a.e., hence they agree s-q.e. on X. We let
\[E_0 = \{ x \in X : u(x) \neq v(x) \} \]
and $E_1 = E \setminus E_0$.
We fix $\varepsilon \in (0,1)$. We choose open sets $G \subset U$ such that $C_s(G) < \varepsilon$ and $\varphi_j \to v$ uniformly on $X \setminus G$. We let
\[\tilde{G}_j = \{ x \in X : \varphi_j(x) > 1 - \varepsilon \}. \]
Then \tilde{G}_j is open and
\[E_1 \setminus G \subset \tilde{G}_j \text{ for } j \geq j_\varepsilon. \]
Consequently, for $j \geq j_\varepsilon$ we have via the subadditivity of the relative s-capacity (see [Cos3, Theorem 3.2 (vi)])
\[\text{cap}_s(E, \Omega) = \text{cap}_s(E_1, \Omega) \leq \text{cap}_s(\tilde{G}_j, \Omega) + \text{cap}_s(G, \Omega). \]
Since $\varphi_j > 1 - \varepsilon$ on \tilde{G}_j, we have
\[\text{cap}_s(\tilde{G}_j, \Omega) \leq (1 - \varepsilon)^{-s} \int_{\Omega} g_{\varphi_j}^s \, d\mu, \]
and hence by letting $j \to \infty$, we obtain
\[\text{cap}_s(E, \Omega) \leq (1 - \varepsilon)^{-s} \int_{\Omega} g_u^s \, d\mu + \varepsilon. \]
The lemma follows by letting $\varepsilon \to 0$.

We prove Theorem 3.1 now.

Proof. Since (X, d, μ) satisfies a weak $(1, s)$-Poincaré inequality, it follows from [HaK] that (X, d, μ) satisfies in fact a weak (s, s)-Poincaré inequality with possibly another constant λ.

We have that $u \in N_{loc}^{1,s}(X)$ has a minimal s-weak upper gradient $g_u \in L^{s,Q-s}(X, \mu)$, hence we can assume without loss of generality that u is a Borel s-quasicontinuous function. Since g_u has small $L^{s,Q-s}(X, \mu)$ norm, it follows from (6) that u has small BMO-seminorm. Therefore, from John-Nirenberg lemma, it follows that $w(x) = e^{Qu(x)}$ is an A_∞-density with respect to μ for some doubling measure ν with data depending
on X. That is, (see [MP, Theorem 1.4], [MMNO, Theorem A], and [Buc, Theorem 2.2]), there exists a constant C depending on s and on data of X such that

\begin{equation}
\frac{1}{\mu(B)} \int_B e^{Q(u(x) - u_B)} \, d\mu(x) < C \quad \text{and} \quad \int_{2B} w(x) \, d\mu(x) \leq C \int_B w(x) \, d\mu(x)
\end{equation}

for every ball $B \subset X$. We write $d\nu(x) = w(x) \, d\mu(x)$. We recall the definition of δ_ν from (4). We shall show that there exists a constant $C \in (0, 1]$ such that

\begin{equation}
d_\nu(x_1, x_2) := \inf \sum_{i=1}^k \nu(B_i)^{1/Q} \geq C\delta_\nu(x_1, x_2)
\end{equation}

for all $x_1, x_2 \in X$, where the infimum is taken over finite chains of open balls connecting x_1 and x_2 satisfying

\begin{equation}
x_1 \in B_1, x_2 \in B_k \text{ and } B_i \cap B_{i+1} \neq \emptyset \text{ for all } i = 1, \ldots, k - 1.
\end{equation}

Indeed, (18) implies both that d_ν is a distance and that is comparable to δ_ν as required in (5). Towards this end, fix $x_1, x_2 \in X$, $x_1 \neq x_2$. Let γ be a geodesic segment connecting x_1 and x_2, and let a be the midpoint of γ. We denote $R = d(x_1, x_2)$ and $B = B(a, R)$.

Let $\eta \in \text{Lip}_0(6B)$ be a nonnegative $1/R$-Lipschitz function such that $\eta = 1$ on $3B$. Since u is s-quasicontinuous and Borel, it follows that $v(x) = \eta(x)|u(x) - u_{3B}|$ is a Borel s-quasicontinuous function in $N_{\alpha}^{1,s}(6B)$ compactly supported in $6B$.

Let $E = \{x \in 3B : |u(x) - u_{3B}| > 1\}$. We have that E is a Borel set since u is a Borel function. Since v is an s-quasicontinuous function in $N_{\alpha}^{1,s}(6B)$ compactly supported in $6B$, we have from Lemma 3.4 that

\begin{align*}
\text{cap}_s(E, 6B) &\leq \int_{6B} g_u^s \, d\mu \leq \int_{6\lambda B} (\eta g_u + |u - u_{3B}| g_u)^s \, d\mu \\
&\leq C \int_{6\lambda B} g_u^s \, d\mu \leq C (6R)^{Q-s} \|g_u\|_{L^{s,Q-s}(X,\mu)}^s.
\end{align*}

This implies that

\begin{equation}
\text{cap}_s(E, 6B) \leq C \|g_u\|_{L^{s,Q-s}(X,\mu)}^s,
\end{equation}

which together with [Cos3, Theorem 4.4] yields

\begin{equation}
\frac{\Lambda_\infty(E)}{R} \leq C \frac{\text{cap}_s(E, 6B)}{(6R)^{Q-s}} \leq C_0 \|g_u\|_{L^{s,Q-s}(X,\mu)}^s.
\end{equation}

We choose $\varepsilon > 0$ such that $C_0 \varepsilon^s < c_1$ where c_1 is the constant from (11) and C_0 is the constant from the last inequality in (21).

Now let B_1, \ldots, B_k be an arbitrary chain of balls connecting x_1 and x_2 as in (19). We assume first that $B_i \subset 3B$ for all $i = 1, \ldots, k$. Let G_0 be defined like in (13). We
have

\[\sum_{i=1}^{k} \nu(B_i)^{1/Q} \geq \sum_{i \in G_0} \nu(B_i)^{1/Q} \geq \sum_{i \in G_0} \nu(B_i \setminus E)^{1/Q} = \sum_{i \in G_0} \left(\int_{B_i \setminus E} e^{Qu(x)} \, d\mu(x) \right)^{1/Q} \]

\[\geq \sum_{i \in G_0} \left(\int_{B_i \setminus E} e^{Q(uB^{-1})} \, d\mu(x) \right)^{1/Q} = e^{uB^{-1}} \left(\sum_{i \in G_0} \mu(B_i \setminus E)^{1/Q} \right) \]

\[\geq e^{uB^{-1}} \sum_{i \in G_0} \left(\frac{1}{2} \mu(B_i) \right)^{1/Q} \geq C e^{uB} \mu(3B)^{1/Q}. \]

From (17), (22), and the definition of \(\delta_\nu \) there exists \(C \) such that

\[\sum_{i=1}^{k} \nu(B_i)^{1/Q} \geq C \left(\int_{3B} e^{Qu(x)} \, d\mu(x) \right)^{1/Q} \geq C \delta_\nu(x_1, x_2). \]

Next, if the chain \((B_i) \) does not lie entirely in \(3B \), then there exists a smallest number \(k' \) with \(1 \leq k' \leq k \) such that \(B_k' \cap S(a, 2R) \neq \emptyset \). Let \(x_0 \in B_k' \cap S(a, 2R) \). Then \(B_1, \ldots, B_{k'} \) is a chain of balls connecting \(x_1 \) and \(x_0 \) and \(d(x_1, x_2) \leq d(x_1, x_0) \).

If \(B_k' \subset 3B \), then from the fact that \(x_1 \in B_1 \cap 2B \) and from the definition of \(k' \) it follows that the subchain \(B_1, \ldots, B_{k'} \) is contained in \(3B \). Therefore we can apply the preceding argument to the chain \(B_1, \ldots, B_{k'} \) connecting the points \(x_1 \) and \(x_0 \) to conclude that (18) holds; in the opposite case, \(\text{diam } B_k' \geq R \). The doubling condition for \(\nu \) then implies \(\nu(B) \leq C \nu(B_k') \). Thus, (18) is true in all cases. This finishes the proof.

Lemma 3.5. Suppose \(1 < Q < p < \infty \). Suppose \((X, d, \mu) \) is a complete and unbounded Ahlfors \(Q \)-regular metric measure space. Let \(\Omega \subset X \) be open and let \(E \subset \Omega \). Suppose \(u \in B^0_p(\Omega) \) is a \(B_p \)-quasicontinuous function compactly supported in \(\Omega \). If \(u \geq 1 \) on \(E \), then

\[\hbox{cap}_{B_p}(E, \Omega) \leq [u]^p_{B_p(\Omega)}. \]

Proof. Since \(u \in B^0_p(\Omega) \) is compactly supported in \(\Omega \), there exists a sequence \(\varphi_j \in Lip_0(\Omega) \) converging to \(u \) in \(B_p(X) \). (See [Cos2, Lemma 3.14].) Without loss of generality we can assume that all the functions \(\varphi_j \) are supported in an open set \(U \subset \subset \Omega \) and that the sequence \(\varphi_j \) converges to \(u \) pointwise \(\mu \)-a.e. Since \(\varphi_j \) is a Cauchy sequence in \(B^0_p(\Omega) \), there is a subsequence, denoted again by \(\varphi_j \), such that

\[||\varphi_j - \varphi_{j+1}||^p_{L_p(X)} + ||\varphi_j - \varphi_{j+1}||^p_{B_p(X)} < 2^{-j(p+1)} \]

for every \(j \geq 1 \).

For the open set

\[E_j = \{ x \in X : |\varphi_j(x) - \varphi_{j+1}(x)| > 2^{-j} \} \]

we have

\[\text{Cap}_{B_p}(E_j) \leq 2^{jp} \left(||\varphi_j - \varphi_{j+1}||^p_{L_p(X)} + ||\varphi_j - \varphi_{j+1}||^p_{B_p(X)} \right) < 2^{-j}. \]

If we put

\[G_j = \bigcup_{k=j}^\infty E_k, \]

we have via the subadditivity of the Besov \(p \)-capacity (see [Cos2, Theorem 5.3 (ii)])

\[\text{Cap}_{B_p}(G_j) = \sum_{k=j}^\infty \text{Cap}_{B_p}(E_k) \leq \sum_{k=j}^\infty 2^{-k} = 2^{1-j}. \]
Thus the sequence φ_j converges uniformly outside open sets of arbitrarily small Besov p-capacity to a B_p-quasicontinuous function v and we can assume without loss of generality that $v = 0$ on $X \setminus U$. Moreover, $v \in B_p^0(\Omega)$ because $B_p^0(\Omega)$ is a Banach space. On the other hand, φ_j converges to $u \mu$-a.e. in X. Thus u and v are two B_p-quasicontinuous functions in $B_p(X)$ that agree μ-a.e., hence they agree B_p-q.e. (See [Kil, p.262] and [Cos2, Theorem 5.16].) We let

$$E_0 = \{x \in X : u(x) \neq v(x)\}$$

and $E_1 = E \setminus E_0$.

We fix $\varepsilon \in (0, 1)$. We choose an open set $G \subset U$ such that $\text{Cap}_{B_p}(G) < \varepsilon$ and $\varphi_j \to v$ uniformly on $X \setminus G$. We let

$$\tilde{G}_j = \{x \in X : \varphi_j(x) > 1 - \varepsilon\}.$$

Then \tilde{G}_j is open and

$$E_1 \setminus G \subset \tilde{G}_j \text{ for } j \geq j_\varepsilon.$$

Consequently, for $j \geq j_\varepsilon$ we obtain via the subadditivity of the relative Besov p-capacity (see [Cos2, Theorem 4.2 (vi)])

$$\text{cap}_{B_p}(E, \Omega) = \text{cap}_{B_p}(E_1, \Omega) \leq \text{cap}_{B_p}(\tilde{G}_j, \Omega) + \text{cap}_{B_p}(G, \Omega).$$

Since $\varphi_j > 1 - \varepsilon$ on \tilde{G}_j, we have

$$\text{cap}_{B_p}(\tilde{G}_j, \Omega) \leq (1 - \varepsilon)^{-p}[\varphi_j]_{B_p(\Omega)},$$

and hence by letting $j \to \infty$, we obtain

$$\text{cap}_{B_p}(E, \Omega) \leq (1 - \varepsilon)^{-p}[u]_{B_p(\Omega)} + \varepsilon.$$

The lemma follows by letting $\varepsilon \to 0$.

Now we prove Theorem 3.2.

Proof. Since u has small Besov p-seminorm, it follows via (10) that u has small BMO-seminorm. Therefore, by John-Nirenberg lemma (see [MP, Theorem 1.4], [MMNO, Theorem A], and [Buc, Theorem 2.2]) there exists a constant C depending on p and on the data of X such that $w = e^{\tilde{Q}u}$ is an A_∞-density with respect to μ for some doubling measure ν satisfying (17) with C. We write $d\nu(x) = w(x) \, d\mu(x)$. We recall the definition of δ_ν from (4). We shall show that there exists a constant $C \in (0, 1]$ such that (18) holds for all $x_1, x_2 \in X$, where the infimum is taken over finite chains of open balls connecting x_1 and x_2 satisfying (19).

Indeed, (18) implies both that d_ν is a distance and that is comparable to δ_ν as required in (5). Towards this end, fix $x_1, x_2 \in X$. We can assume without loss of generality that $x_1 \neq x_2$. Let γ be a geodesic segment connecting x_1 and x_2, and let a be the midpoint of γ. We denote $R = d(x_1, x_2)$ and $B = B(a, R)$.

Let $\eta \in Lip_0(6B)$ be a nonnegative $1/R$-Lipschitz function such that $\eta = 1$ on $3B$. We let the function v be defined by $v = \eta|u - u_{3B}|$. Since $u \in L^1_{\text{loc}}(X)$ with $[u]_{B_p(X)} < \infty$, it follows via [Cos2, Lemma 3.11] that $v \in B_p^0(6B)$. Moreover, since v is compactly supported in Ω, it follows via [Cos2, Theorem 5.12] that there exists a B_p-quasicontinuous function \tilde{v} compactly supported in Ω such that $v = \tilde{v}$ μ-a.e. in Ω. Moreover, we can assume that \tilde{v} is Borel via an argument similar to the one from Lemma 3.5. Thus we can assume without loss of generality that v is B_p-quasicontinuous and Borel.
Let
\[E = \{ x \in 3B : |u(x) - u_{3B}| > 1 \} = \{ x \in 3B : v(x) > 1 \}. \]
Hence \(E \) is a Borel set since \(v \) is a Borel function. From Lemma 3.5 and [Cos2, Lemma 3.11] we obtain
\[\text{cap}_{B_p}(E, 6B) \leq [v]_{B_p(6B)} \leq C [u]_{B_p(X)} \]
where \(C \) is a constant that depends only on \(p \) and on data of \(X \). This together with [Cos2, Theorem 4.10] yields
\[\frac{A^\infty(E)}{R} \leq C \text{cap}_{B_p}(E, 6B) \leq C [v]_{B_p(6B)} \leq C_0 [u]_{B_p(X)}, \]
where \(R \) is the radius of \(B \) and \(C_0 \) is a constant that depends only on \(p \) and on data of \(X \). We choose \(\varepsilon > 0 \) such that \(C_0 \varepsilon^p < c_1 \) where \(c_1 \) is the constant from (11) and \(C_0 \) is the constant from the last inequality in (23).

Now let \(B_1, \ldots, B_k \) be an arbitrary chain of balls connecting \(x_1 \) and \(x_2 \) as in (19). We assume first that \(B_i \subset 3B \) for all \(i = 1, \ldots, k \). Let \(\mathcal{G}_0 \) be defined like in (13). The proof now continues like in Theorem 3.1, with the only difference that the constants who depended on \(s \) and on the data of \(X \) will now depend on \(p \) and on the data of \(X \). □

Theorem 3.1 yields the following consequence:

Theorem 3.6. Let \(1 < s \leq Q < \infty \) be fixed. We assume that \(s > Q - 1 \). Suppose \((X, d, \mu)\) is a metric measure space as in Theorem 3.1. Let \(u \) be a Borel function in \(N^{1,s}_{\text{loc}}(X) \) such that it has a minimal \(s \)-weak upper gradient \(g_u \) in the Morrey space \(L^{s,Q-s}(X, \mu) \). There exists a constant \(\varepsilon > 0 \) depending only on \(s \) and on the data of \(X \) such that if
\[||g_u||_{L^{s,Q-s}(X, \mu)} < \varepsilon, \]
then
\[\delta_{\nu}(x_1, x_2) \leq CD_{\nu}(x_1, x_2) \] for all \(x_1, x_2 \) in \(X \),
where \(C > 0 \) is a constant depending only on \(s \) and on the data associated with \(X \) and
\[D_{\nu}(x, y) = \inf \left\{ \int_{\gamma} e^{u} ds : \gamma \text{ a rectifiable curve connecting } x, y \right\}. \]

For a discussion about line integration see [Hei, Chapter 7].

Theorem 3.2 yields the following consequence:

Theorem 3.7. Let \(1 < s < Q < p < \infty \) be fixed. Suppose \((X, d, \mu)\) is a metric measure space as in Theorem 3.2. Let \(u \) be in \(L^{1}_{\text{loc}}(X) \) such that \([u]_{B_p(X)} < \infty \). There exists a constant \(\varepsilon > 0 \) depending only on \(p \) and on the data of \(X \) such that if \([u]_{B_p(X)} < \varepsilon \), then
\[\delta_{\nu}(x_1, x_2) \leq CD_{\nu}(x_1, x_2) \] for all \(x_1, x_2 \) in \(X \),
where \(C > 0 \) is a constant depending only on \(p \) and on the data associated with \(X \) and \(D_{\nu} \) is defined as in (25). Here \(\bar{u} \) is a \(B_p \)-quasicontinuous Borel representative of \(u \).

One should compare the metrics \(D_{\mu} \) in Theorems 3.6 and 3.7 to those studied in [BL], [Res] and [Cos1].
Question 3.8. Another open question is whether or not the inequality (24) can be reversed in general. The answer is yes in the Euclidean setting when \(n \geq 2 \). (See [Cos1, Theorems 5.4 and 5.5].)

We prove now Theorem 3.6.

Proof. It is easy to see that \(D_\nu \) is indeed symmetric, nonnegative and satisfies the triangle inequality. From (24) it would follow immediately that \(D_\nu \) is a distance function dominating \(\delta_\nu \). So fix \(x_1, x_2 \) in \(X \). We can assume without loss of generality that \(x_1 \neq x_2 \). Like before, let \(a \) be a point such that \(d(x_1, a) = d(a, x_2) = R/2 \), where \(R = d(x_1, x_2) \). We denote \(B = B(a, R) \). Like in the proof of Theorem 3.1, let

\[
v = \eta|u - u_{3B}| \text{ and } E = \{ x \in 3B : |u(x) - u_{3B}| > 1 \},
\]

where \(\eta \in Lip_0(6B) \) is a nonnegative \(1/R \)-Lipschitz function such that \(\eta = 1 \) on \(3B \).

We notice that \(E \) is a Borel set and \(v \) is a Borel and \(s \)-quasicontinuous function in \(N^1_s(6B) \) compactly supported in \(6B \).

Let \(\gamma \) be a rectifiable curve connecting \(x_1 \) and \(x_2 \) and let \(|\gamma| \) be its image. We assume first that \(|\gamma| \subset 3B \). We obviously have

\[
\int_\gamma e^u ds \geq \int_{\gamma \cap (3B \setminus E)} e^u ds.
\]

As in the proof of Theorem 3.1, we have

\[
\frac{\Lambda^\infty_1(E)}{R} \leq C \frac{\text{cap}_s(E, 6B)}{(6R)^{2-s}} \leq C_0 \| g_u \|_{L^\infty_c(X, \mu)}^{s} < C_0 \varepsilon^s,
\]

text{hence}

\[
\Lambda^\infty_1(|\gamma| \cap (3B \setminus E)) \geq \Lambda^\infty_1(|\gamma| \cap 3B) - \Lambda^\infty_1(|\gamma| \cap E) \\
\geq R - \Lambda^\infty_1(E) \geq (1 - c_1)R
\]

if \(\varepsilon > 0 \) is small enough, where \(c_1 \) is the constant from (11).

Thus we obtain

\[
\int_\gamma e^u ds \geq \int_{\gamma \cap (3B \setminus E)} e^u ds \geq \int_{\gamma \cap (3B \setminus E)} e^{u_{3B}-1} ds \\
\geq \Lambda^\infty_1(|\gamma| \cap (3B \setminus E)) e^{u_{3B}-1} \geq CR \ e^{u_{3B}} \\
\geq C \left(\int_{3B} e^{Qu(z) d\mu} \right)^{1/Q} \geq \Lambda^\infty_1(E)^{1/Q},
\]

where the last inequality follows from (17). Therefore

\[
\int_\gamma e^u ds \geq C \left(\int_{3B} e^{Qu(z) d\mu} \right)^{1/Q} \geq C \delta_\nu(x_1, x_2) \text{ whenever } |\gamma| \subset 3B.
\]

Now we assume that \(|\gamma| \setminus 3B \neq \emptyset \). Suppose that \(\gamma \) is parametrized by its arc length parametrization. Let \(t_0 = \inf \{ t \in [0, l_\gamma] : \gamma(t) \notin B(a, 2R) \} \). Then, since \(\gamma \) is a path with \(\gamma(0), \gamma(l_\gamma) \in 2B \), it follows that

\[
0 < t_0 < l_\gamma \text{ and } \gamma([0, t_0]) \subset B(a, 2R).
\]

Let \(x_0 = \gamma(t_0) \) and let \(\tilde{\gamma} \) be the restriction of \(\gamma \) to \([0, t_0]\). Then \(x_0 \in S(a, 2R) \) and \(d(x_1, x_2) \leq d(x_1, x_0) \). Therefore

\[
\Lambda^\infty_1(|\gamma| \cap (3B \setminus E)) \geq \Lambda^\infty_1(|\tilde{\gamma}| \cap (3B \setminus E)) \geq (\Lambda^\infty_1(|\tilde{\gamma}|) - \Lambda^\infty_1(|\tilde{\gamma}| \cap E) \\
\geq d(x_1, x_0) - \Lambda^\infty_1(E) \geq (1 - c_1)R.
\]
if \(\varepsilon > 0 \) is small enough, where \(c_1 \) is the constant from (11). By repeating the argument from (27) with \(\tilde{\gamma} \) instead of \(\gamma \), we obtain

\[
\int_{\tilde{\gamma}} e^u ds \geq C \left(\int_{3B} e^{Qu(z)} d\mu(z) \right)^{1/Q}.
\]

The desired conclusion follows.

\[\square\]

Now we prove Theorem 3.7.

Proof. For the existence and “uniqueness” of \(B_p \)-quasicontinuous Borel representatives of \(u \) see [Cos2, Corollary 5.19]. We notice that \(D_\nu \) does not depend on the choice of the \(B_p \)-quasicontinuous Borel representative. Indeed, if \(\tilde{u} \) and \(\tilde{v} \) are two such representatives, then from [Cos2, Corollary 5.18] we have \(\tilde{u} = \tilde{v} \) \(B_p \)-q.e., which implies via [Cos2, Corollary 4.15] that

\[
\int_{\gamma} e^u ds = \int_{\gamma} e^v ds
\]

for every rectifiable curve \(\gamma \) in \(X \). So we can assume without loss of generality that \(u \) is a \(B_p \)-quasicontinuous Borel function itself.

It is easy to see that \(D_\nu \) is indeed symmetric, nonnegative and satisfies the triangle inequality. From (24) it would follow immediately that \(D_\nu \) is a distance function dominating \(\delta_\nu \). So fix \(x_1, x_2 \) in \(X \). We can assume without loss of generality that \(x_1 \neq x_2 \). Like before, let \(a \) be a point such that \(d(x_1, a) = d(a, x_2) = R/2 \), where \(R = d(x_1, x_2) \). We denote \(B = B(a, R) \).

Let \(\eta \in L^1_0(6B) \) be a nonnegative \(1/R \)-Lipschitz function such that \(\eta = 1 \) on \(3B \).

Like in the proof of Theorem 3.2, let

\[
v = \eta |u - u_{3B}| \quad \text{and} \quad E = \{ x \in 3B : |u(x) - u_{3B}| > 1 \} = \{ x \in 3B : v(x) > 1 \}.
\]

We notice that \(E \) is a Borel set and \(v \) is a \(B_p \)-quasicontinuous Borel function in \(B^0_p(6B) \) compactly supported in \(6B \).

Let \(\gamma \) be a rectifiable curve connecting \(x_1 \) and \(x_2 \) and let \(|\gamma| \) be its image. We assume first that \(|\gamma| \subset 3B \). We obviously have

\[
\int_{\gamma} e^u ds \geq \int_{\gamma \cap (3B \setminus E)} e^u ds.
\]

Like in the proof of Theorem 3.2, we have

\[
\frac{\Lambda_\infty^\infty(E)}{R} \leq C \cap_{B_p}(E, 6B) \leq C_0[u]_{B_p(X)}^p < C_0 \varepsilon^p.
\]

The proof now continues like in Theorem 3.6, with the only difference that the constants who depended on \(s \) and on the data of \(X \) will now depend on \(p \) and on the data of \(X \).

\[\square\]

References

[AHS] D.R. Adams and R. Hurri-Syrjänen. Besov functions and vanishing exponential integrability. *Illinois J. Math.*, 47 (2003), no. 4, 1137–1150.

[AX1] D.R. Adams and J. Xiao. Strong type estimates for homogeneous Besov capacities. *Math. Ann.*, 325 (2003), no. 4, 695–709.

[AX2] D.R. Adams and J. Xiao. Nonlinear potential analysis on Morrey spaces and their capacities. *Indiana Univ. Math. J.*, 53 (2004), no. 6, 1631–1666.
A. Björn, J. Björn and N. Shanmugalingam. Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions in metric measure spaces. To appear in Houston J. Math.

J. Björn. Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math., 46 (2002), no. 2, 383–403.

M. Bonk, J. Heinonen and E. Saksman. The quasiconformal Jacobian problem. Contemporary Math., 355 (2004), 77–96.

M. Bonk, J. Heinonen and E. Saksman. Logarithmic potentials, quasiconformal flows and q-curvature. Duke Math. J., 142 (2008), 197–239.

M. Bonk and U. Lang. Bi-Lipschitz parametrization of surfaces. Math. Ann., 327 (2003), 135–169.

M. Bourdon. Une caractérisation algébrique des homéomorphismes quasi-Möbius. Ann. Acad. Sci. Fenn. Math., 32 (2007), no. 1, 235–250.

M. Bourdon and H. Pajot. Cohomologie l_p et espaces de Besov. J. Reine Angew. Math., 558 (2003), 85–108.

S. Buckley. Inequalities of John-Nirenberg type in doubling spaces. J. d’ Analyse Math., 79 (1999), 215–240.

J. Cheeger. Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal., 9 (1999), 428–517.

Ş. Costea. Strong A_{∞}-weights and scaling invariant Besov capacities. Rev. Mat. Iberoamericana, 23 (2007), no. 3, 1067–1114.

Ş. Costea. Besov capacity and Hausdorff measures in metric measure spaces. To appear in Publ. Mat.

Ş. Costea. Sobolev capacity and Hausdorff measures in metric measure spaces. To appear in Ann. Acad. Sci. Fenn. Math.

G. David and S. Semmes. Strong A_{∞}-weights, Sobolev inequalities and quasiconformal mappings. Analysis and partial differential equations. Lecture Notes in Pure and Appl. Math., 122 (1990), 101–111.

M. Fukushima and T. Uemura. On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets. Potential Anal., 18 (2003), no. 1, 59–77.

M. Giaquinta. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, 1983.

P. Hajlasz and P. Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc., 2000.

J. Heinonen. Lectures on Analysis on Metric Spaces. Springer-Verlag, 2001.

J. Heinonen and P. Koskela. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181 (1998), 1–61.

A. Jonsson and H. Wallin. Function spaces on subsets of \mathbb{R}^n. Math. Rep., 2 (1984), no. 1.

T. Kilpeläinen. A remark on the uniqueness of quasi continuous functions. Ann. Acad. Sci. Fenn. Math., 23 (1998), no. 1, 261–262.

J. Kinnunen and O. Martio. Nonlinear potential theory on metric spaces. Illinois J. Math., 46 (2002), no. 3, 857–883.

P. Koskela and P. MacManus. Quasiconformal mappings and Sobolev spaces. Studia Math., 131 (1998), 1–17.

P. MacManus and C. Pérez. Trudinger inequalities without derivatives. Trans. Amer. Math. Soc., 354 (2002), no. 5, 1997–2012.

J. Mateu, P. Mattila, A. Nicolau and J. Orobitg. BMO for non doubling measures. Duke Math. J., 102 (2002), no. 3, 533–565.

Yu. Netrusov. Metric estimates of the capacities of sets in Besov spaces. In Proc. Steklov Inst. Math., 190, 167–192. American Mathematical Society, 1992.

Yu. Netrusov. Estimates of capacities associated with Besov spaces. J. Math. Sci., 78 (1996), 199–217.
[Res] Yu. Reshetnyak. On the conformal representation of Alexandrov surfaces. Report of the Department of Mathematics, University of Jyväskylä, 83 (2001), 287–304.

[Sem] S. Semmes. Bi-Lipschitz mappings and strong A_∞-weights. Ann. Acad. Sci. Fenn. Ser. A I Math., 18 (1993), no. 2, 211–248.

[Sha1] N. Shanmugalingam. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana, 16 (2000), no. 2, 243–279.

[Sha2] N. Shanmugalingam. Harmonic functions on metric spaces. Illinois J. Math., 45 (2001), 1021–1050.

[Xia] J. Xiao. Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation. Adv. Math., 207 (2006), no. 2, 828–846.