Angiotensin II-induced podocyte apoptosis is mediated by endoplasmic reticulum stress/PKC-δ/p38 MAPK pathway activation and trough increased Na⁺/H⁺ exchanger isoform 1 activity

Vanessa Gerolde Cardoso¹, Guilherme Lopes Gonçalves¹, Juliana Martins Costa-Pessoa¹, Karina Thieme², Bruna Bezerra Lins¹, Fernando Augusto Malavazzi Casare¹, Mariana Charleaux de Ponte¹, Niels Olsen Saraiva Camara² and Maria Oliveira-Souza¹*
Background
Podocytes are highly specialized cells characterized by complex actin-rich foot processes that reside on the outside of the glomerular basement membrane (GBM). The foot processes interdigitate with the counterparts of neighboring cells to form a slit diaphragm composed of proteins, such as nephrin and p-cadherin. Under physiological conditions, podocytes play a critical role in the maintenance of the structure and function of the glomerular filtration barrier [1]. However, numerous studies have demonstrated a relevant contribution of podocytes in the pathogenesis and progression of chronic kidney diseases [2–7]. Along this line, slit diaphragm disruption and foot process effacement have been considered early manifestations of progressive podocyte damage and cell loss [8], resulting in glomerular hemodynamic disorders, proteinuria and glomerulosclerosis [9–12].

Angiotensin II (Ang II) is the major component of the renin-angiotensin system (RAS) and has numerous physiological functions. However, at high circulating concentrations, Ang II stimulates intrarenal RAS and induces glomerular injury, which progresses toward end-stage renal disease [7, 13]. Podocytes express both types of Ang II receptors (AT1R and AT2R) and have been shown to be target cells of the peptide [14]. Additionally, in vitro and in vivo studies have demonstrated that under high Ang II concentrations, podocytes showed decreased nephrin expression and increased number of apoptotic events [6, 15]. Although these mechanisms have not been thoroughly explored, previous studies have indicated that the effects of Ang II via AT1R activation on podocyte injury are related to reactive oxygen species (ROS) overproduction mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [16, 17]. In other cell types, ROS production is closely related to ER stress, protein kinase C delta (PKC-δ) and p38 mitogen-activated protein kinase (p38 MAPK) activation, and together, these events are associated with apoptotic responses [18–21].

In turn, p38 MAPK also regulates mechanisms involved in intracellular pH (pHi) control [22], particularly by phosphorylating the Na⁺/H⁺ exchanger isoform 1 (NHE1) at serine sites (Ser 726 and Ser 729) [23]. NHE1 protein is ubiquitously distributed in the plasma membrane and in polarized epithelial cells; its mature form is localized almost exclusively in the basolateral membrane [24]. NHE1 regulates cellular pH and volume and participates in multiple cellular functions, including proliferation, migration and apoptosis [25]. We previously demonstrated that NHE1 is activated by Ang II in renal tubular cells [26, 27]. Grenier et al. [23] demonstrated potential link between NHE1 activity and alkalinization-mediated apoptosis in NHE1-transfected cells. Additionally, podocytes have been shown to express NHE1 [28] and undergo apoptosis when exposed to high concentrations of Ang II [6]. However, the mechanisms associated with Ang II/AT1R/NHE1 and podocyte apoptosis have not been elucidated.

In light of these evidences, we aimed to test the hypothesis that Ang II-induced podocyte apoptosis is associated with ER stress/PKC-δ/p38 MAPK activation and pHi changes. These findings will provide relevant information regarding the molecular mechanisms through which Ang II contributes to the progression of chronic kidney disease associated with podocyte injury.

Methods

Animal study design
Study was performed with the approval of the ETHICS COMMITTEE ON ANIMAL USE, Institute of Biomedical Sciences, University of Sao Paulo (CEUA-ICB/USP), Sao Paulo, Brazil (Protocol n° 139/110/2011). Wistar rats (Animal Laboratory of the Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil), weighing 160–200 g were housed in cages and maintained in a temperature-controlled room with a light-dark cycle of 12:12-h, with free access to tap water and standard rat chow for 2 weeks. To address the role of chronic Ang II on podocyte apoptosis in vivo, animal models have been described previously [7]. Briefly, rats (n = 6/group) were randomly assigned to sham surgery (control) or osmotic minipump insertion (Alzet model 2006, Alza, Mountain View, Calif., USA) for Ang II infusion (Tocris Bioscience, Bristol, UK) at 200 ng · kg⁻¹ · min⁻¹ for 42 days. An additional group was treated with losartan (AT1 receptor antagonist, 10 mg·kg⁻¹·day⁻¹, s.c.; DuPont 753, Merck Pharmaceuticals, Deepwater, NJ) or Ang II plus losartan for 14 days. For all surgical procedures, the animals were anesthetized with zoletil (50 mg/kg zolazepam and 50 mg/kg tiletamine) and virbaxyl (5 mg/kg xylazine; Virbac). After the treatment, the animals were again anesthetized, the kidneys were perfused [7] and euthanasia was performed by exsanguination. One kidney was fixed in 4% paraformaldehyde solution for immunofluorescence analysis.

Cell culture
Study was performed with the approval of the ETHICS COMMITTEE ON ANIMAL USE, Institute of Biomedical Sciences, University of Sao Paulo (CEUA-ICB/USP), Sao Paulo, Brazil (Protocol n° 673/14). A conditionally immortalized mouse podocyte cell line was developed by Prof. Dr. Karlhans Endlich, University of Heidelberg, Germany and generously donated by Prof. Dr. Niels Olsen Saraiva Camara, Institute of Biomedical Sciences, University of Sao Paulo. The cells were cultured as previously described [29, 30] and summarized here. To induce proliferation, podocytes were grown in 75-cm²
flasks coated with type I collagen and maintained in RPMI medium (Thermo Fisher Scientific INC, St Peters, MO, USA) supplemented with 30 U/ml mouse recombinant γ-interferon (Cell Sciences, Newburyport, MA, USA) at the permissive temperature (33 °C). To induce differentiation, podocytes were maintained at 37 °C without γ-interferon for 10–13 days. Finally, 2.0 × 10^4 cells/well at passages 8–12 were used in experiments.

Cell culture treatment and experimental design

Differentiated podocytes were treated with 1 μM Ang II (Tocris Bioscience) for 24 h. To examine the beneficial effects of losartan on Ang II-induced podocyte injury, differentiated cells were incubated with culture media containing 1 μM losartan (Dupont 753, Merck Pharmaceuticals) for 30 min, followed by incubation with Ang II plus losartan for 24 h. To inhibit NHE1 and p38 MAPK activity, cariporide (10 μM, Santa Cruz Biotechnology, Dallas, TX, USA) and SB203580 (0.1 μM, Merck Millipore, Temecula, CA, USA) were added for 30 min, followed by incubation with Ang II plus specific inhibitors for 24 h.

Immunoblotting

Total proteins extracts from control and Ang-II and/or inhibitors treated podocytes were obtained using ice-cold RIPA buffer (BioRad, Sao Paulo, Brazil) with protease and phosphatase inhibitors (Sigma Aldrich). In the next day, sections were washed three times with PBS and incubated with the secondary antibody, donkey anti-goat Alexa Fluor 488 (1:200, Thermo Fischer Scientific, MA) and fluorescence was subsequently analyzed using a BD L80 confocal microscope equipped with a 63× objective Plan-Apochromat, zoom factor 1, a laser excitation of 546 nm to Alexa fluor 568 and 594 nm acquisition and 405 nm to DAPI. Analyses were performed by investigators blinded to the study groups.

Annexin V and propidium iodide (PI) staining assay

Control and Ang II and/or SB203580 treated podocytes were trypsinized and 3 ml of BioLegend Cell Staining Buffer (BioLegend, San Diego, CA, USA) were added to the cell samples. The cell suspensions were centrifuged at 2500 rpm for 5 min, twice. Cells were resuspended in Annexin V Binding Buffer (BioLegend) and 1 × 10^5 cells/ml were transferred to a cytometry sample tube containing 1 μL of FITC-Annexin V (100 μg/ml) and 0.3 μL of PI (5 μg/ml). Samples were incubated in the dark for 10 min and fluorescence was subsequently analyzed using a BD FACS Canto II Flow Cytometer (San Jose, CA, USA), calibrated to detect 10,000 events. Cells positive for Annexin V-FITC were considered apoptotic.

Fluorescence pH measurement

As described previously [22, 27, 31, 32], the functional activity of the Na⁺/H⁺ isoform 1 (NHE1) was measured fluorometrically in control or treated podocytes cultured on glass coverslips, by using a pH-sensitive fluorescent probe [2’, 7’-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF-AM); Molecular Probes, Eugene, OR, USA] combined with the high K⁺-nigericin method.
Statistical analysis
Data are reported as the mean ± SEM. Statistical significance was determined by 1-way ANOVA with a Bonferroni post-hoc test for comparisons of multiple groups. The differences with $p < 0.05$ were considered statistically significant.

Results
Chronic effect of Ang II/AT1R on glomerular GRP 78 expression in rats
As shown in Fig. 1a, b, using rat kidney sections and immunofluorescence staining, we observed that treatment with Ang II for 6 weeks (42 days) induced an increase in glomerular GRP 78 expression. Although losartan treatment alone did not change glomerular GRP 78 expression, the AT1R antagonist reverted the Ang II effects [(fluorescence intensity) Ctl, 12.17 ± 0.21; AII, 23.5 ± 2.5; Los, 14.5 ± 0.93 and AII/Los, 14.23 ± 1.79 ($n = 6$)]. Nephrin staining was used to identify podocytes.

Chronic treatment with Ang II leads to ER stress and PKC-δ phosphorylation in podocytes
Since Ang II induced an increase in glomerular and podocytes GRP 78 expression in vivo, we decided to further study its effects and the activated intracellular signaling pathways using an in vitro model of cultured podocytes. First, we confirmed that the differentiated mouse podocytes express podocin and AT1R (Fig. 2a, b). Next, we examined the effects of Ang II through AT1R on ER stress and apoptosis signaling pathways. 24 h Ang II treatment (1 μM) induced a significant increase in GRP 78 expression, enhanced the expression of an important ER stress component, eIF2-α, and also increased the phosphorylation of PKC-δ. All these Ang II effects were abrogated by losartan co-treatment (Fig. 3 and Table 1).

Ang II stimulates p38 MAPK protein expression and apoptosis in podocytes
Because Ang II triggers ER stress and may have an important role in apoptosis, we evaluated the phosphorylation status of p38 MAPK and its contribution to apoptosis in Ang II-treated podocytes. As shown in Fig. 4a and Table 1, compared with control cells, podocytes treated with Ang II (1 μM) for 24 h showed significant increases in p38 MAPK phosphorylation, which was prevented by the AT1R antagonist. We next explored whether Ang II or p38 MAPK played a role in podocyte apoptosis. We observed that compared with control, chronic treatment with Ang II (1 μM) induced significant p38 MAPK-mediated decrease of podocyte viability, a slight increase of early podocyte apoptosis (29%) and significant late podocyte apoptosis. Podocyte necrosis was similar between both groups. These effects were prevented by SB203580, a specific p38 MAPK inhibitor (Fig. 4b and Table 1).

Fig. 1 Ang II induces glomerular GRP 78 expression. a Immunofluorescence to detect the podocyte marker nephrin and GRP 78 in glomeruli from 6 weeks Ang II-treated rats. Original magnification, ×630; bar, 10 μm. b Quantification of glomerular GRP 78. Values represent the mean ± SEM ($n = 6$/group)
In addition, the protein expression analysis confirmed that phospho p38 MAPK-mediated the stimulatory effects of Ang II on Bax levels, which exceeded Bcl-2 when compared with controls. Consequently, the Bax/Bcl-2 ratio increased when compared with the control group (Fig. 5 and Table 1).

Ang II-mediated p38 MAPK activation induces intracellular pH changes in podocytes

In renal tubular cells, acute treatment with Ang II has been shown to result in intracellular alkalinization [33]. Additionally, it is known that alkalinization may favor apoptotic events in other cells [23, 26, 27]. To distinguish
among several membrane ion exchangers that could potentially induce intracellular alkalinization, we first evaluated sodium-dependent intracellular pH (pHi) recovery after acid loading, using the pH-sensitive probe BCECF. As shown in Fig. 6a, a representative trace of pHi recovery demonstrated that after acid loading with NH₄Cl and 138 mM NMDG, the re-addition of a sodium solution induced pHi recovery to values approaching baseline levels. The mean of 11 experiments revealed that under control conditions, podocytes have a mean pHi baseline of 7.18 ± 0.01. This value increased to 7.69 ± 0.03 in the presence of NH₄Cl, decreased to 6.5 ± 0.04 during acid loading and recovered to 7.11 ± 0.02 after the addition of Na⁺ solution. Using linear regression analysis, the pHi recovery rate was calculated during recovery in the first 2 minutes in the absence (NMDG) or presence of sodium (Fig. 6b and Table 2). The results indicated that after acid loading, the mean pHi recovery rate in the solution containing NMDG was 0.045 ± 0.006 (pHi units/min). This value significantly increased after the addition of

Protein	Ctl	All (1 μM)	All/Los (1 μM)	All/SB (0.1 μM)	n
GRP 78	1.00 ± 0.00	1.71 ± 0.15	1.05 ± 0.01	–	4
peIF2-α	1.00 ± 0.00	1.87 ± 0.21	1.12 ± 0.09	–	4
pPKC-δ	1.00 ± 0.00	1.59 ± 0.04	1.05 ± 0.10	–	5
pP38MAPK	1.00 ± 0.00	1.70 ± 0.03	0.94 ± 0.06	–	4
Total Bax	1.00 ± 0.00	1.64 ± 0.11	–	0.95 ± 0.03	4
Total Bcl-2	1.00 ± 0.00	1.19 ± 0.07	–	1.04 ± 0.03	4
Bax/Bcl-2 ratio	1.00 ± 0.00	1.39 ± 0.08	–	0.90 ± 0.01	4

Cell Viability %

Viable: 90.93 ± 0.70 87.34 ± 0.59 92.65 ± 0.73 5–6
Early apoptosis: 0.62 ± 0.06 0.80 ± 0.07 0.43 ± 0.03 5–6
Late Apoptosis: 4.99 ± 0.28 6.99 ± 0.50 4.61 ± 0.30 5–6
Necrosis: 3.43 ± 0.47 3.97 ± 0.36 2.48 ± 0.41 5–6

Values are means ± SEM, n, number of experiments. *p < 0.001, **p < 0.01 and ***p < 0.01 versus control (Ctl); *p < 0.001, **p < 0.01 and ***p < 0.05 versus angiotensin II (Ang II); Los, losartan, SB, SB203580; p phosphorylated protein expression

Fig. 4 a Relative expression and representative bands of phosphorylated and non-phosphorylated p38 MAPK in control and treated podocytes. GAPDH was used as internal control; the values are mean ± S.E. of 4 experiments. b Podocyte apoptosis in control, Ang II (1 μM) and/or SB203580 (0.1 μM) treated cells, for 24 h, detected by flow cytometry using Annexin V/propidium iodide staining Q1, cells in necrosis; Q2, cells in late apoptosis; Q3, cells in early apoptosis and Q4, healthy cells. Late apoptosis quantification is expressed as mean ± SEM of 5–6 experiments, in triplicate.
Fig. 5

(a) Relative expression and (b) representative bands of Bax and Bcl-2 in control and treated podocytes. GAPDH was used as internal control.

(c) Bax/Bcl-2 ratio. Values are mean ± SEM of 4 experiments.

Fig. 6

(a) pH recovery after acid loading.

Representative experiment of podocytes exposed to Na⁺-control solution, Na⁺-free solution with N-methyl-D-glucamine-NMDG (138 mM), followed by replacement of Na⁺-control solution (Na⁺ 138 mM).

(b) pH recovery rate using NMDG and Na⁺ solutions (138 mM).

(c) The effects of Ang II (1 μM) and/or Losartan (1 μM) for 24 h on pH recovery rate after acid loading in control and treated podocytes. The values are mean ± SEM of 8–11/group.
sodium solution, indicating that in podocytes, sodium is required for pH recovery rate after acid loading. Then, we investigated whether extracellular Ang II (1 μM) acting via AT1R could affect the pH recovery rate. As shown in Fig. 6c and Table 2, compared with control, podocytes treated with Ang II for 24 h showed significant increase in pH recovery rate, which was normalized in Ang II/losartan cotreated cells. Losartan 1 μM alone did not change this parameter.

We also investigated whether the effect of Ang II/AT1R on pH recovery rate was mediated through NHE1, by treating the cells with 10 μM cariporide, a specific NHE1 inhibitor for 24 h. Under this condition, the Na⁺-mediated pH recovery rate significantly decreased when compared to both control and Ang II-treated groups (Fig. 7a and Table 2). However, the NHE1 protein expression remained unchanged (Fig. 7b) [(Relative NHE1 protein expression) Ctl, 1.00 ± 0.00; All, 0.79 ± 0.07; Carip, 0.84 ± 0.13; All/Carip, 0.86 ± 0.12 (n = 4)].

To examine the relationship between Ang II, p38 MAPK activation and intracellular alkalinization, we used a p38 MAPK inhibitor, SB203580 (0.1 μM). Compared with control, treatment with SB203580 alone did not change the pH recovery rate. However, SB203580 prevented the increase in pH recovery rate induced by Ang II (Fig. 7c and Table 2).

Table 2 pH recovery rate in control and treated podocytes

	dpHi/dt (Units/min)	n
NMDG, 138 mM	0.045 ± 0.006	11
Control solution, Na⁺ 138 mM, added after NMDG solution	0.179 ± 0.025\(^a\)	11
Control solution, Na⁺ 138 mM	0.176 ± 0.016	10
All 1 μM	0.372 ± 0.028\(^b\)	10
Losartan (1 μM)	0.220 ± 0.017	11
All/Losartan (1 μM)	0.217 ± 0.029\(^c\)	8
Cariporide (10 μM)	0.061 ± 0.006\(^d\)	6
All/Cariporide (10 μM)	0.067 ± 0.005\(^db\)	10
SB203580 (0.1 μM)	0.177 ± 0.023	6
All/ SB203580 (0.1 μM)	0.217 ± 0.036\(^e\)	7

Values are mean ± SEM. n, number of experiments. \(^* p < 0.001\) versus NMDG (N-methyl-D-glucamine); \(^a p < 0.001\) versus control; \(^b p < 0.001\) versus Angiotensin II (All) and \(^c p < 0.001\) versus Angiotensin II/losartan; \(^d p < 0.001\) versus Angiotensin II/Cariporide; \(^e p < 0.01\) versus Angiotensin II/ SB203580.

Discussion

Podocytes play an essential role in maintaining the integrity of the GBM. Thus, podocyte injury is closely related to glomerular damage and proteinuria. RAS activation and the consequent high Ang II levels are important mediators of tissue damage in many pathological conditions, including hypertension and chronic kidney disease [6]. So, it is of sum importance to understand intracellular events associated with podocyte injury and apoptosis. To investigate the effect of Ang II on
podocyte damage, we studied early events (e.g., ER stress) and signaling pathways (GRP 78, PKC-δ and p38 MAPK activation) that lead to NHE1-dependent cytosol pH changes and its relation to apoptosis.

Under physiological conditions, ER is a multifunctional organelle essential for the balance between ER protein synthesis and chaperone GRP 78-mediated protein folding [34]. GRP 78 binds to the luminal domain of ER sensor proteins such as inositol-requiring kinase alpha (IRE1-α), activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) [35] and subsequently maintains their inactivated states. However, pathophysiological stimulus can disrupt ER homeostasis, resulting in the accumulation of misfolded and unfolded proteins and subsequently cellular toxicity [36]. This condition is known as ER stress and activates the unfolded protein response (UPR) pathway, which in association with GRP 78 can restore ER homeostasis [37]. However, over prolonged stimulus, GRP 78 preferentially binds to unfolded or misfolded proteins and dissociates from sensor proteins, favoring their activation [38, 39] and consequently regulates ER stress response genes [40]. Activated PERK initiates the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2-α), activating transcription factor 4 (ATF4), which upregulates the expression of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) and caspases, leading to apoptosis and tissue injury [41]. It has been reported that the Ang II plays an important role in the ER stress-induced renal apoptosis, including tubular cells and podocytes, especially in diabetic nephropathy [42, 43]. Ha et al. [44] showed that Ang II could induce podocyte ER stress via PERK-eIF2-α-ATF4 axis and P13-kinase pathway. On this background, using in vivo and in vitro approaches, we further studied the molecular signaling elicited by Ang II that culminates in podocyte apoptosis. Our results showed that, rats chronically treated with Ang II exhibited an AT1R-mediated increase of glomerular GRP 78.

Corroborating the in vivo finding, cultured podocytes treated with Ang II also showed increased GRP 78 expression, as well as increased eIF2-α phosphorylation, which were all abrogated with losartan co-treatment. These data provide new information that supports the association of Ang II/AT1R signaling and ER stress on podocyte injury.

Previous studies have demonstrated that protein kinase C delta (PKC-δ) also plays an important role in apoptosis. PKC-δ interacts constitutively with Abl, a non-receptor tyrosine kinase localized in the nucleus, cytoplasm and ER [45, 46]. However, under ER stress condition, the PKCδ-Abl complex translocates from the ER to the mitochondria to induce ER-stress-mediated apoptosis [47]. Finally, PKC-δ has been shown to interact with several members of the mitogen-activated protein kinase (MAPK) family, including p38 MAPK [48]. Indeed, in the present study, we observed that in podocytes, chronic treatment with Ang II induced significant increases in phosphorylated PKC-δ and p38 MAPK expression by an AT1R-dependent mechanism.

Regarding potential relationships between ER stress and p38 MAPK signaling in podocytes, it is known that in ER stress condition, p38 MAPK phosphorylates and activates the transcription factor CHOP (at Ser78 and Ser81), which favors apoptosis in the same cell lines [49–51]. Furthermore, p38 MAPK is reported to promote the phosphorylation and activation of pro-apoptotic protein Bax [52]. Our results with cultured podocytes were in agreement with these findings, since chronic treatment with Ang II induced an AT1R-dependent increase in the expression of the phosphorylated subunit of p38 MAPK. In addition, we observed that Ang II treatment induced p38 MAPK-dependent apoptosis in podocytes, which is associated with Bax protein activation.

Considering that p38 MAPK directly phosphorylates NHE1 [22, 23, 53], we speculated whether Ang II/p38 MAPK-dependent apoptosis signaling is also related to NHE1-mediated pH changes in podocytes. NHE1 and other NHE isoforms promote cellular proton extrusion, using energy from a sodium gradient to catalyze the electroneutral exchange of 1 Na⁺ for 1 H⁺. Under physiological conditions, NHE1 is quickly activated by acid loading or osmotic cell shrinkage to maintain intracellular pH and volume homeostasis, ensuring cell survival. Moreover, NHE1 can also regulate other cellular events, including proliferation, migration and apoptosis [54, 55]; however, these mechanisms remain unclear. Whereas under apoptosis conditions, p38 MAPK can phosphorylate NHE1 at serine sites (Ser 726 and Ser 729) [23], we investigated the relationship between p38 MAPK and NHE1 in the apoptotic response induced by Ang II. In the current study, we observed a pH baseline in podocytes of 7.18 ± 0.01 units, which is in agreement with other cell lines [26, 31]. We initially used NMDG to confirm the Na⁺-dependent pH recovery rate after acid loading in podocytes. In addition, we used cariporide, a specific NHE1 inhibitor to confirm the NHE1 activity, and we also investigated whether NHE-1 is chronically activated by Ang II/AT1R signaling in podocytes. Our results revealed a significant stimulatory effect of Ang II via AT1R on pH recovery rate after acid loading. Furthermore, our results demonstrated that NHE1 activity, rather than changes in its protein content, is essential for podocyte intracellular pH recovery after acid loading, since cariporide treatment significantly reduced the pH recovery rate. Interestingly, the
stimulatory effect of Ang II on pH recovery rate after acid loading was prevented by SB203580. Therefore, our data suggest that Ang II/AT1R activate p38 MAPK pathway leading to NHE1 activation and consequently enhancing the pH recovery rate after acid loading.

Conclusion

In conclusion, our study provides new molecular mechanisms to Ang II-induced podocyte apoptosis, showing that chronic AT1R signaling induces ER stress/PKC-δ/p38 MAPK pathway activation. Activated p38 MAPK simultaneously stimulates pro-apoptotic Bax protein and NHE1 activity, favoring cellular apoptosis (Fig. 8).

Abbreviations

Abbreviation	Description
Ang II	Angiotensin II
AT1R	Ang II AT1 receptor
BCECF/AM	(2′, 7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester)
eIf2-α	Eukaryotic initiation factor 2
ER	Endoplasmic reticulum
FITC	Fluorescein isothiocyanate
GBM	Glomerular basement membrane
IFN-γ	Interferon-γ
NADPH	Nicotinamide adenine dinucleotide phosphate
NHE1	Na+/H+ exchanger isoform 1
p38 MAPK	p38 mitogen-activated protein kinase
pHi	Intracellular pH
PKC-δ	Protein kinase C delta
RAS	Renin-angiotensin system
ROS	Reactive oxygen species
SB203580	Pyrimidyl imidazole

Acknowledgements

The authors thank Dr. Karlhans Endlich, University of Heidelberg, Germany, for kindly supplying immortalized mouse podocytes; Dr. Margarida de Mello Aires and Dr. Gerhard Malnic for providing some reagents used in this study; Tatiana Carolina Alba Loureiro for helping with flow cytometry analysis and Dr. Mario Costa Cruz for technical support to confocal microscopy (Core facility for scientific research University of Sao Paulo CEFAP-USP).

Funding

This work was supported by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) to Maria Oliveira-Souza (13/19569–3; 17/02020–0), Gerhard Malnic (13/23087–4), Vanessa Gerolde Cardoso (14/19154–0), Karina Thieme (14/17251–9), Fernando Augusto Malavazzi Casare (11/14022–0); by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) to Mariana Charleaux de Ponte (14/151575–2) and Bruna Bezerra Lins (140414/2016–2); by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior to Guilherme Lopes Gonçalves.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

VGC designed and performed most of the experiments, analyzed the data and helped to write the manuscript; GLP and JMCP performed cell culture, molecular studies and image analysis; KT helped with the experimental design and manuscript revision; BBL and FAMC provided the kidney tissues; MCP and NOSC contributed with data discussion; MOS designed the experiments, supervised the study and wrote the manuscript. All authors approved the final manuscript.

Ethics approval

Study was performed with the approval of the ETHICS COMMITTEE ON ANIMAL USE, Institute of Biomedical Sciences, University of Sao Paulo (CEUA-ICB/USP), Sao Paulo, Brazil. For animal study (Protocol n° 139/110/2011) and for cell culture study (Protocol n° 673/14).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508-900, Brazil. 2Laboratory for Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil. 3Laboratory of Carbohydrates and Radioimmunoassays (LIM-18), Medical School, University of Sao Paulo, Sao Paulo, Brazil.
References

1. Awanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol. 2003;7(4):255–9.
2. Benigni A, Gagliardini E, Remuzzi G. Changes in glomerular perm-selectivity induced by angiotension II imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin Nephrol. 2004;24(2):131–40.
3. Macconi D, Bonomelli M, Benigni A, Plati T, Sargiani F, Longaretti L, Conti S, Kawachi H, Hill P, Remuzzi G, et al. Pathophysiologic implications of reduced podocyte number in a rat model of progressive glomerular injury. Am J Pathol. 2006;168(1):42–54.
4. Durvasula RV, Shankland SJ. Podocyte injury and targeting therapy: an update. Curr Opin Nephrol Hypertens. 2006;15(1):1–7.
5. Hoffmann S, Podlich D, Hähnel B, Križ W, Gretz N. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J Am Soc Nephrol. 2004;15(6):1475–87.
6. Jia J, Ding G, Zhu J, Chen C, Liang W, Frank N, Singhal PC. Angiotensin II infusion induces nephron expression changes and podocyte apoptosis. Am J Nephrol. 2008;28(3):500–7.
7. Casare FA, Thieme K, Costa-Pessoa JM, Rossoni LV, Couto GK, Fernandes MB, Casarini DE, Oliveira-Souza M. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am J Physiol Renal Physiol. 2016;310(11):F295–307.
8. Kerjaschki D. Dysfunctions of cell biological mechanisms of visceral epithelial cell (podocytes) in glomerular diseases. Kidney Int. 1994;45(2):300–13.
9. Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P, Böttinger EP. Apoptosis in podocytes induced by TGF-β and Smad2. J Clin Invest. 2001;108(6):1807–16.
10. Canaud G, Bienaimé F, Vau A, Treins C, Baron W, Nguyen C, Cooper SA, Link CD, et al. Oxidative stress and glomerular filtration barrier injury: role of the renin-angiotensin system in the renal 2 transient regen. Am J Physiol Renal Physiol. 2006;291(6):F1308–14.
11. de Galanera MR, Navarro A, Ansoarena E, Garzón AG, Módol T, López-Zabalza MJ, Martínez-Navarro IJ, Jarrín MJ. Unfolded protein response induced by Brefeldin a increases collagen type I levels in hepatic stellate cells through the ERα1, p38 MAPK and Smad-dependent pathway. Biochim Biophys Acta. 2016;1863(8):2115–23.
12. Kim D, Kim JH, Lee GH, Kim HT, Lim JM, Park SJ, Chae SW, Chae HJ, Kim HR. p38 Mitogen-activated protein kinase is involved in endoplasmic reticulum stress-induced cell death and autophagy in human gingival fibroblasts. Biol Pharm Bull. 2010;33(4):455–9.
13. Larroque-Cardoso P, Swidler A, Ingueuene C, Négre-Salvayre A, Elbaz M, Reyland ME, Salvayre R. Vindis C. Role of protein kinase C δ in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells. Cell Death Dis. 2013;4(4):520.
14. Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG. Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem. 2003;278(36):33753–62.
15. Sharma M, Sharma R, Greene AS, McCarthy ET, Savin VJ. Documentation of AT-1R/CHOP-JNK-Caspase12 pathway by olmesartan treatment attenuates podocyte apoptosis induced by AngII imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin Nephrol. 2004;24(2):131–40.
16. Whaley-Connell AT, Chowdhury NA, Hayden MR, Stump CS, Habibi J, Pincus D, Chevalier MW, Aragon T, van Anken E, Vidal SE, El-Samad H, Rasheed Z, Haqqi TM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human choroendcyte. Biochim Biophys Acta. 2012;1823(12):2179–89.
17. Chaudhari N, Talwar P, Panimietty A, Lefebvre d’Hellencourt C, Ravan P. A molecular web endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci. 2014;8:213.
18. Sommer T, Jarosec B. Bip binding keeps ATf6 at bay. Dev Cell. 2002;3(1):1–2.
19. Gardner BM, Walter P. Unfolded proteins are IRE1-activating ligands that directly induce the unfolded protein response. Science. 2011;333(6051):1891–4.
20. Pincus D, Chevalier MW, Asagón T, van Anken E, Vidal SE, El-Samad H, Walter P. Bip binding to the ER-stress sensor IRE1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 2010;8(7):e1000415.
21. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein quality control in cardiovascular development and disease. Circ Res. 2010;108(6):807–14.
22. Costa-Pessoa JM, Damasceno RS, Machado UF, Beloto-Silva O, Salvayre R. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J Am Soc Nephrol. 2004;15(6):1475–87.
44. Ha TS, Park HY, Seong SB, Ahn HY. Angiotensin II induces endoplasmic reticulum stress in podocyte, which would be further augmented by PI3-kinase inhibition. Clin Hypertens. 2015;21:13.

45. Ito Y, Pandey P, Mishra N, Kumar S, Narula N, Kharbanda S, Saxena S, Kufe D. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol. 2001;21(18):6233–42.

46. Shaul Y. c-Abl: activation and nuclear targets. Cell Death Differ. 2000;7(1):10–6.

47. Qi X, Mochly-Rosen D. The PKCdeltAbl complex communicates ER stress to the mitochondria - an essential step in subsequent apoptosis. J Cell Sci. 2008;121(Pt 6):804–14.

48. Gomel R, Xiang C, Finniss S, Lee HK, Lu W, Okhimenko H, Brodie C. The localization of protein kinase CdeltA in different subcellular sites affects its proapoptotic and antiapoptotic functions and the activation of distinct downstream signaling pathways. Mol Cancer Res. 2007;5(6):627–39.

49. Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell. 2007;129(7):1337–49.

50. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DRS expression in human carcinoma cells. J Biol Chem. 2004;279(44):45495–502.

51. Wang XZ, Kuroda M, Sok J, Batchvarova N, Kimmel R, Chung P, Zinzimer H, Ron D. Identification of novel stress-induced genes downstream of chop. EMBO J. 1998;17(1):3619–30.

52. Kim BJ, Ryu SW, Song BJ. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281(30):21256–65.

53. Khaled AR, Moor AN, Li A, Kim K, Ferris DK, Muegge K, Fisher RJ, Fliegel L, Durum SK. Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalization. Mol Cell Biol. 2001;21(22):7545–57.

54. Besson P, Fernandez-Rachubinski F, Yang W, Fliegel L. Regulation of Nav1/Nav1 channel expression: mitogenic stimulation increases NHE1 promoter activity. Am J Phys. 1998;274(3 Pt 1):C831–9.

55. Putney JK, Barber DL. Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem. 2003;278(45):44645–9.