Thermal conductivity of the quasi one-dimensional spin system \(\text{Sr}_2\text{V}_3\text{O}_9 \)

To cite this article: M Uesaka et al 2010 J. Phys.: Conf. Ser. 200 022068

View the article online for updates and enhancements.

Recent citations

- Observation of the Thermal Conductivity due to Spins in the One-Dimensional Antiferromagnetic Ising-Like Spin System \(\text{ACoX}_3 \) (\(A = \text{Rb, Cs}; X = \text{Cl, Br} \))
 Yoshiharu Matsuoka et al.

You may also like

- Frequency dependence of the quasi-soft Raman-active modes in rotationally distorted \(\text{R}^3\text{B}_2\text{O}_5 \) perovskites (\(\text{R}^3\text{—rare earth, B}^3\text{—Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga} \))
 N D Todorov, M V Abrashev and V G Ivanov

- IMPROVING THE PRECISION OF TIME-DELAY COSMOGRAPHY WITH OBSERVATIONS OF GALAXIES ALONG THE LINE OF SIGHT
 Zach S. Greene, Sherry H. Suyu, Tommaso Treu et al.

- ANALYSIS OF MAGNETOROTATIONAL INSTABILITY WITH THE EFFECT OF COSMIC-RAY DIFFUSION
 Takuhto Kuwabara and Chung-Ming Ko

The Electrochemical Society

242nd ECS Meeting
Oct 9 – 13, 2022 • Atlanta, GA, US

Abstract submission deadline: April 8, 2022

Connect. Engage. Champion. Empower. Accelerate.

MOVE SCIENCE FORWARD
Thermal Conductivity of the Quasi One-Dimensional Spin System Sr$_2$V$_3$O$_9$

M Uesaka1, T Kawamata2, N Kaneko1, M Sato1, K Kudo3, N Kobayashi3, Y Koike1

1 Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
2 Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
3 Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

E-mail: uesaka@teion.apph.tohoku.ac.jp

Abstract. We have measured the thermal conductivity along the [101] direction, $\kappa_{[101]}$, along the [10 ¯1] direction, $\kappa_{[10\bar{1}]}$, and along the b-axis, κ_b, of the quasi one-dimensional S=1/2 spin system Sr$_2$V$_3$O$_9$ in magnetic fields up to 14 T, in order to find the thermal conductivity due to spinons and to clarify whether the spin-chains run along the [101] or [10 ¯1] direction. It has been found that both $\kappa_{[101]}$, $\kappa_{[10\bar{1}]}$ and κ_b show one peak around 10 K in zero field and that the magnitude of $\kappa_{[10\bar{1}]}$ is larger than those of $\kappa_{[101]}$ and κ_b. By the application of magnetic field along the heat current, the peak of $\kappa_{[10\bar{1}]}$ is markedly suppressed, while the peaks of $\kappa_{[101]}$ and κ_b little change. These results indicate that there is a large contribution of spinons to $\kappa_{[10\bar{1}]}$ and suggest that the spin-chains run along the [101] direction.

1. Introduction

Recently, the thermal conductivity in low-dimensional quantum spin systems has attracted interest, because a large contribution of magnetic excitations to the thermal conductivity has been observed in some compounds regarded as low-dimensional quantum spin systems. In one-dimensional (1D) antiferromagnetic (AF) Heisenberg spin systems with the spin quantum number S = 1/2, especially, it has theoretically been proposed that the thermal conduction due to magnetic excitations, namely, spinons is ballistic [1, 2, 3]. In fact, a large contribution of spinons to the thermal conductivity has been observed in the S=1/2 1D AF Heisenberg spin system Sr$_2$CuO$_3$ [4]. Moreover, the ballistic nature of the thermal conduction due to spinons has experimentally been confirmed in Sr$_2$CuO$_3$ [5].

The compound Sr$_2$V$_3$O$_9$ contains three kinds of vanadium ions in the unit cell. Two of them are nonmagnetic V$^{5+}$ ions located in VO$_4$ tetrahedra, and the rest is V$^{4+}$ ions with S = 1/2 located in VO$_6$ octahedra. The VO$_6$ octahedra are connected with each other by sharing an oxygen at the corner along the [101] direction, as shown Fig. 1. The ac-plane with the magnetic network is weakly stacked along the b-axis. The magnetic properties are understood in terms of the S=1/2 1D AF chain model with the exchange interaction between the nearest spins, J = 82 K, estimated from the susceptibility measurements [6]. However, it has been suggested from the ESR measurements [7] and a theory by Koo and Whangbo [8] that the spin-chain direction is
Figure 1. Crystal structure of Sr$_2$V$_3$O$_9$. V$^{5+}$ ions and V$^{4+}$ ions are located in VO$_4$ tetrahedra and VO$_6$ octahedra, respectively. VO$_6$ octahedra are connected with each other along the [101] direction by sharing an oxygen at the corner and are also connected via a VO$_4$ tetrahedron along the [101] direction. Not the [101] direction but the [101] direction, along which VO$_6$ octahedra are connected via a VO$_4$ tetrahedron as shown Fig. 1.

Therefore, in order to find the contribution of spinons to the thermal conductivity and also to clarify whether the spin-chain direction is the [101] or [101] direction, we have measured the thermal conductivity of Sr$_2$V$_3$O$_9$ along the [101], [101] directions and the b-axis. The precise measurement of thermal conductivity needs a large-size single crystal. Therefore, we have attempted to grow large-size single crystals of Sr$_2$V$_3$O$_9$ by the floating-zone (FZ) method.

2. Experimental

First, polycrystalline powder of Sr$_2$V$_2$O$_7$ was prepared by the solid-state reaction method, in order to prepare a feed rod for the FZ growth. The prescribed amount of SrCO$_3$ and V$_2$O$_5$ powder was mixed in the molar ratio of SrCO$_3$: V$_2$O$_5$ = 2 : 1 and prefired in air at 700 °C for 72 h. After pulverization, the prefired powder of Sr$_2$V$_2$O$_7$ was mixed with VO$_2$ powder in the molar ratio of Sr$_2$V$_2$O$_7$: VO$_2$ = 1 : 1 and isostatically cold-pressed at 600 bar into a rod of 7 mm in diameter and ~100 mm in length. Then, the rod was sintered at 540 °C in Ar for 24 h. As a result, a sintered feed rod was prepared. The FZ growth was carried out by the twice-scanning technique in an infrared heating furnace equipped with a double ellipsoidal mirror (NEC Machinery Corp, Model SC-K15HD-H). A high-density premelted feed rod was prepared through the first scan using the sintered feed rod. In the first scan, the molten zone was scanned at a speed of ~20 mm/h under flowing Ar of 1.5 atm. Next, the second scan, namely, a usual growing procedure was carried out using the premelted feed rod at the growth rate of 1.0 mm/h in the same atmosphere as in the first scan. Thermal-conductivity measurements were
Figure 3. Temperature dependence of the thermal conductivity of Sr$_2$V$_3$O$_9$ along the [101] direction, $\kappa_{[101]}$, along the [10$\bar{1}$] direction, $\kappa_{[10\bar{1}]}$, and along the b-axis, κ_b, in zero field and a magnetic field of 14 T parallel to the respective heat current.

Figure 4. Temperature dependence of the difference between $\kappa_{[10\bar{1}]}$ and κ_b in zero field and 14 T.

carried out by the conventional steady-state method.

3. Results and Discussion

We have succeeded in growing a single-crystal rod, owing to the stable upkeep of the molten zone during the FZ growth. Figure 2(a) shows an as-grown single-crystal rod with ~ 6 mm in diameter and ~ 100 mm in length. The grown crystals were characterized by the x-ray back-Laue photography, as shown in Fig. 2(b). Although the grown crystals were composed of several domains, the diffraction spots were very sharp. The dimensions of the single-domain region were typically ~ 6 mm in diameter and ~ 25 mm in length. The single crystals were also confirmed by the powder x-ray diffraction to be of the single phase without any impurity phases. Accordingly, it is concluded that we have succeeded in the growth of high-quality single-crystals. The high quality was supported by the magnetic-susceptibility result that no Curie term due to impurities and/or lattice defects was observed at very low temperatures.

Figure 3 shows the temperature dependence of the thermal conductivity along the [101] direction, $\kappa_{[101]}$, along the [10$\bar{1}$] direction, $\kappa_{[10\bar{1}]}$, and along the b-axis, κ_b, in zero field and a magnetic field of 14 T parallel to the respective heat current. In zero field, both $\kappa_{[101]}$, $\kappa_{[10\bar{1}]}$ and κ_b show a peak around 10 K. The magnitude of $\kappa_{[10\bar{1}]}$ at the peak is larger than those of $\kappa_{[101]}$ and κ_b. Since Sr$_2$V$_3$O$_9$ is an insulator, the thermal conductivity is described as the sum of the thermal conductivity due to phonons, κ_{phonon}, and due to spinons, κ_{spinon}. It is known that the anisotropy of κ_{phonon} is usually not so large and that the contribution of κ_{spinon} markedly appears along the direction where the magnetic interaction is strong. Therefore, the large anisotropy of the thermal conductivity is guessed to be due to a large contribution of κ_{spinon} to $\kappa_{[10\bar{1}]}$. By the application of magnetic field parallel to the heat current, the peak of $\kappa_{[10\bar{1}]}$ around 10K is suppressed with increasing field, while there is little change in $\kappa_{[101]}$ and κ_b, as shown in Fig. 3. This result also supports the guess that there is a large contribution of κ_{spinon} to $\kappa_{[10\bar{1}]}$, because κ_{spinon} is expected to be affected by the application of a magnetic field.
comparable with $J/(g\mu_B)$ (g: the g-factor, μ_B: the Bohr magneton). Furthermore, the little change in $\kappa_{[101]}$ and κ_b by the application of magnetic field indicates that the contribution of κ_{spinon} is very small along the [101] direction and b-axis. Accordingly, it is concluded that the spin-chain direction is the [10\,\bar{1}] direction, as suggested from the ESR measurements [7] and the theory by Koo and Whangbo [8].

Here, we estimate κ_{spinon} in $\kappa_{[10\bar{1}]}$, where both κ_{spinon} and κ_{phonon} are included. In the temperature dependence of $\kappa_{[10\bar{1}]}$, only one peak is observed around 10 K, indicating that both peaks of κ_{spinon} and κ_{phonon} are overlapped. Therefore, it is very hard to estimate κ_{spinon} and κ_{phonon} separately. As for $\kappa_{[101]}$, a small contribution of κ_{spinon} to $\kappa_{[101]}$ is guessed to exist, because the [101] direction is not exactly perpendicular to the [10\,\bar{1}] direction but 84.48˚ tilted from the [10\,\bar{1}] direction. As for κ_b, it is due to only κ_{phonon}. Therefore, neglecting the anisotropy of κ_{phonon}, κ_{spinon} along the [10\,\bar{1}] direction is very roughly estimated to be $\kappa_{[10\bar{1}]} - \kappa_b$, as shown in Fig. 4. However, this is not simply accepted as the temperature dependence of κ_{spinon} along the [101] direction, because unusual two peaks appear around 4 K and 28 K. What is remarkable at least is that the peak around 4 K is strongly suppressed by the application of magnetic field while the other peak around 28 K little changes. Therefore, it is expected that the peak around 4 K is attributed to the contribution of κ_{spinon}. On the other hand, it is likely that the peak around 28 K appears because of the difference of κ_{phonon} between the [10\,\bar{1}] direction and the b-axis. Accordingly, at least these results indicate that the temperature dependence of κ_{spinon} exhibits a peak around 4 K in $\kappa_{[101]}$. In order to estimate the value of κ_{spinon} in $\text{Sr}_2\text{V}_3\text{O}_9$ exactly, the estimate of the anisotropy of κ_{phonon} between the [10\,\bar{1}] direction and b-axis is necessary.

4. Summary

Large-size single-crystals of $\text{Sr}_2\text{V}_3\text{O}_9$ have successfully been grown by the FZ method and the thermal conductivity have been measured in magnetic fields up to 14 T. The magnitude of $\kappa_{[101]}$ in zero field is larger than those of $\kappa_{[101]}$ and κ_b. By the application of magnetic field, only $\kappa_{[101]}$ is suppressed. These anisotropic behaviors suggest that the spin-chains run along the [101] direction. Moreover, it is concluded from the field effect of $\kappa_{[10\bar{1}]} - \kappa_b$ related to the behavior of κ_{spinon} that the temperature dependence of κ_{spinon} exhibits a peak around 4 K.

Acknowledgments

The thermal conductivity measurements were performed at the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] Castella H, Zotos X and Prelovšek P 1995 Phys. Rev. Lett. 74 972
[2] Zotos X, Naef P and Prelovšek P 1997 Phys. Rev. B 55 11029
[3] Klümper A and Sakai K 2002 J. Phys. A 35 2173
[4] Sologubenko A V, Felder E, Giannó K, Ott H R, Vietkine A and Revcolevschi A 2000 Phys. Rev. B 62 R6108
[5] Kawamata T, Takahashi N, Adachi T, Noji T, Kudo K, Kobayashi N and Koike Y 2008 J. Phys. Soc. Jpn. 77 034607
[6] Kaul E E, Rosner H, Yushankhai V, Sichelschmidt J, Shpanchenko R V and Geibel C 2003 Phys. Rev. B 67 174417
[7] Ivanshin V A, Yushankhai V, Sichelschmidt J, Zakharov D V, Kaul E E and Geibel C 2003 Phys. Rev. B 68 064404
[8] Koo H J and Whangbo M H 2007 Solid State Sciences 9 824