Activity of bromodomain protein inhibitors/binders against asexual-stage *Plasmodium falciparum* parasites

Ming Jang Chua\(^a\), Dina Robaa\(^b\), Tina S. Skinner-Adams\(^a\), Wolfgang Sippl\(^b,1\), Katherine T. Andrews\(^a,*,1\)

\(^a\) Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
\(^b\) Institute of Pharmacy, Martin Luther-University Halle-Wittenberg, Halle, Germany

A R T I C L E I N F O

Keywords:
- *Plasmodium falciparum*
- Anti-plasmodial activity
- Bromodomain protein inhibitor

A B S T R A C T

Bromodomain-containing proteins (BDPs) are involved in the regulation of eukaryotic gene expression. Compounds that bind and/or inhibit BDPs are of interest as tools to better understand epigenetic regulation, and as possible drug leads for different diseases, including malaria. In this study, we assessed the activity of 42 compounds demonstrated or predicted (using virtual screening of a pharmacophore model) to bind/inhibit eukaryotic BDPs for activity against *Plasmodium falciparum* malaria parasites. In silico docking studies indicated that all compounds are predicted to participate in a typical hydrogen bond interaction with the conserved asparagine (Asn1436) of the *P. falciparum* histone acetyltransferase (PfGCN5) bromodomain and a conserved water molecule. Only one compound (the dimethylisoxazole SGC-CBP30; a selective inhibitor of CREBBP (CBP) and EP300 bromodomains) is also predicted to have a salt-bridge between the morpholine nitrogen and Glu1389. When tested for in vitro activity against asynchronous asexual stage *P. falciparum* Dd2 parasites, all compounds displayed 50% growth inhibitory concentrations (IC\(_{50}\)) > 10 \(\mu\)M. Further testing of the three most potent compounds using synchronous parasites for 72 h showed that SGC-CBP30 was the most active (IC\(_{50}\) 3.2 \(\mu\)M). In vitro cytotoxicity assays showed that SGC-CBP30 has ∼7-fold better selectivity for the parasites versus a human cell line (HEK 293). Together these data provide a possible starting point for future investigation of these, or related compounds, as tools to understand epigenetic regulation or as potential new drug leads.

1. Introduction

Bromodomains are conserved acetyl-lysine-specific protein-interaction modules (Filippakopoulos and Knapp, 2014). Bromodomain-containing proteins (BDPs) have been shown to play important roles in regulating eukaryotic gene expression and mutations or changes in the expression of BDPs has been linked to human diseases, including cancer, inflammation, neurological disorders, cardiovascular disease and diabetes (Ferri et al., 2016; Jung et al., 2015). As a result of these links, BDP inhibitors are under investigation as drug leads, with the hope that interfering with lysine acetylation mediated signalling may be therapeutic (Papavasiliou and Papavasiliou, 2014).

Similar to higher eukaryotes, the epigenetic regulation of gene expression is important in human protozoan pathogens. For example, parasites such as *Toxoplasma*, *Trypanosoma* and *Plasmodium* that cause toxoplasmosis, trypanosomiasis and malaria, respectively, rely on epigenetic modifications to regulate gene expression (Jeffers et al., 2017). BDPs have also been identified in all of these parasites, and have been hypothesized to be potential drug targets (reviewed in (Jeffers et al., 2017)). Seven BDP encoding genes have been annotated in *Plasmodium falciparum* (Jeffers et al., 2017), with two partially characterised to date. *P. falciparum* histone acetyltransferase GCN5 (PfGCN5; PF3D7_0823300) has been shown to have lysine acetyltransferase (KAT) activity (Fan et al., 2004; Josling et al., 2012) and *P. falciparum* bromodomain protein 1 (PfBDP1; PF3D7_1033700) has been shown to be involved in the regulation of invasion-related genes in asexual stage parasites (Josling Gabrielle et al., 2015). Both of these BDPs appear to be essential for parasite growth (Josling Gabrielle et al., 2015; Cui et al., 2007). While the crystal structure of PfGCN5 bromodomain in complex with a triazolophthalazine-based small molecule inhibitor (L-45/L-Moses) has been reported (Moustakim et al., 2017), there is a gap in our knowledge with respect to studies investigating the growth inhibitory effect of BDP binders/inhibitors against malaria parasites (reviewed in (Jeffers et al., 2017)). In this study, a panel of 42 potential BDP...
Table 1

In vitro activity of BDP inhibitors against asexual stage *P. falciparum* Dd2 parasites.

Compound	Structure	cLog P	IC\textsubscript{50} PfDd2 (μM)	Compound	Structure	cLog P	IC\textsubscript{50} PfDd2 (μM)
Chloroquine	![Chloroquine structure](image)	4.63	0.11 (± 0.04)	OSSIL\textsubscript{258894}	![OSSIL258894 structure](image)	2.29	33.87 (± 4.52)
Bromosporineb	![Bromosporine structure](image)	1.67	26.33 (± 7.13)	OSSIL\textsubscript{258896}	![OSSIL258896 structure](image)	3.16	33.98 (± 21.38)
CPI-203b	![CPI-203 structure](image)	3.28	81.43 (± 13.68)	OSSIL\textsubscript{258897}	![OSSIL258897 structure](image)	3.37	35.00 (± 0.00)
PFI-4b	![PFI-4 structure](image)	2.35	26.43 (± 3.82)	OSSIL\textsubscript{258891}	![OSSIL258891 structure](image)	2.99	40.78 (± 28.87)
SGC-CBP30b	![SGC-CBP30 structure](image)	5.09	10.03 (± 0.32)	OSSIL\textsubscript{258895}	![OSSIL258895 structure](image)	2.75	47.43 (± 8.06)
OSSK\textsubscript{842646}	![OSSK842646 structure](image)	4.83	11.28 (± 2.00)	OSSIL\textsubscript{2588907}	![OSSIL2588907 structure](image)	2.43	71.77 (± 20.41)
OSSK\textsubscript{764253}	![OSSK764253 structure](image)	3.07	32.45 (± 15.98)	OSSIL\textsubscript{258903}	![OSSIL258903 structure](image)	4.77	> 100
OSSK\textsubscript{764205}	![OSSK764205 structure](image)	3.65	20.23 (± 1.60)	OSSIL\textsubscript{258893}	![OSSIL258893 structure](image)	3.32	> 100
OSSK\textsubscript{995759}	![OSSK995759 structure](image)	2.77	43.24 (± 12.43)	OSSIL\textsubscript{158302}	![OSSIL158302 structure](image)	4.78	14.70 (± 0.00)
OSSL\textsubscript{308235}	![OSSL308235 structure](image)	1.73	53.83 (± 17.10)	OSSK\textsubscript{711135}	![OSSK711135 structure](image)	3.20	> 100
OSSK\textsubscript{764265}	![OSSK764265 structure](image)	1.64	57.30 (± 19.34)	OSSK\textsubscript{711274}	![OSSK711274 structure](image)	4.63	36.93 (± 20.19)
OSSK\textsubscript{764219}	![OSSK764219 structure](image)	1.35	72.40 (± 3.35)	OSSK\textsubscript{711212}	![OSSK711212 structure](image)	2.35	87.35 (± 1.67)

(continued on next page)
binders/inhibitors, including 38 identified by an in silico pharmacophore screen, were examined for predicted binding to *P. falciparum* BDP/bromodomains and for in vitro growth inhibitory activity against asexual-stage *P. falciparum* infected erythrocytes. The three most potent anti-plasmodial compounds were assessed in an additional *P. falciparum* growth inhibition assay, and for cytotoxicity against a mammalian cell line.

2. Methods

2.1. Compounds

The anti-plasmodial control drug chloroquine diphosphate salt (Sigma-Aldrich, USA) was prepared as a 10–20 mM stock in phosphate buffered saline (PBS). The BDP binders/inhibitors bromosporine, CPI-203, PFI-4 and SGC-CBP30 (all from Selleck Chemicals, USA) were prepared as 10–20 mM stocks in DMSO. A further 38 compounds (Table 1) were obtained from the Princeton Biomolecular Research, Inc. (Princeton, NJ, USA) compound library, and prepared as 10–20 mM stocks in DMSO. These 38 compounds were selected based on virtual screening of a pharmacophore model of the bromodomain of PF3D7_0110500 (PDB ID 4PY6), selected as it was the only *P. falciparum* bromodomain/BDP in the Protein Databank (Berman et al., 2000) crystallized in complex with an inhibitor (the PLK1 kinase/BRD4 dual inhibitor BI-2536) (Chen et al., 2015). Based on the crystal structure of PF3D7_0110500 (PDB ID 4PY6) in complex with BI-2536, a pharmacophore model was generated using the program LigandScout 3.1 (Wolber and Langer, 2005). Residues of the protein binding pocket

Compound	Structure	cLog P	IC₅₀ PfDD2 (μM)	Compound	Structure	cLog P	IC₅₀ PfDD2 (μM)
OSSK_764195		2.79	72.88 (± 8.79)	OSSK_711203		4.33	> 100
OSSK_764277		1.86	81.25 (± 12.64)	OSSL_094251		4.59	23.25 (± 6.15)
OSSK_842567		4.21	> 100	OSSK_442833		3.46	48.06 (± 6.79)
OSSK_711132		2.29	> 100	OSSL_094246		2.90	> 100
OSSK_447894		1.91	> 100	OSSK_287503		3.12	> 100
OSSL_326023		2.79	> 100	OSSL_695521		3.61	59.60 (± 26.44)
OSSL_258906		3.54	11.80 (± 3.06)	OSSL_094264		1.57	> 100
OSSL_258905		5.24	28.82 (± 4.58)	OSSK_446201		3.91	97.20 (± 0.00)
OSSL_258904		2.90	26.03 (± 2.24)	OSSK_310407		4.40	> 100
OSSL_258898		3.56	28.17 (± 4.79)				

a Purchased from Selleck Chemicals.

b Purchased from Princeton Biomolecular Research Inc.
were assigned as excluded volume features. The model was manually curated: the hydrophobic feature generated for the ethyl moiety of the inhibitor was removed and a hydrophobic feature was added for the methyl-group of the dihydropteridine core. The pharmacophore model was screened against the Princeton Biomolecular Research, Inc. compound collection (multiconformational format) using the iscreen module implemented in LigandScout 3.1, using default settings.

2.2. Docking studies

Pharmacophore hits identified by virtual screening were prepared for docking using the LigPrep tool as implemented in Schrödinger's software (Anonymous, 2012), where all possible tautomeric forms as well as stereoisomers were generated and energy minimized using the OPLS force field. The P/GCN5-bromodomain (PDB ID 4QNS) and P/BDP1 (PDB ID 3FKM) crystal structures were retrieved from the PDB. The protein structures were superposed and subsequently prepared with Schrödinger's Protein Preparation Wizard: Hydrogen atoms were added and the hydrogen bond network was subsequently optimized. The protonation states at pH 7.0 were predicted using the PROPKA tool within the Schrödinger program. The structures were assigned as excluded volume features. The model was manually curated: the hydrophobic feature generated for the ethyl moiety of the inhibitor was removed and a hydrophobic feature was added for the methyl-group of the dihydropteridine core. The pharmacophore model was screened against the Princeton Biomolecular Research, Inc. compound collection (multiconformational format) using the iscreen module implemented in LigandScout 3.1, using default settings.

2.3. P. falciparum in vitro culture and growth inhibition assays

P. falciparum multi-drug resistant Dd2 parasites were cultured in O positive human erythrocytes in RPMI 1640 media (Gibco, USA) supplemented with 10% heat-inactivated pooled human serum and 5 μg/mL gentamicin. Cells were cultured at 37 °C in 5% O2 and 5% CO2 in N2, essentially as previously described (Trager and Jensen, 1976). Growth inhibitory activity of compounds was tested in vitro against asexual intraerythrocytic stage parasites over 48 h starting with asynchronous parasites or over 72 h starting with ring-stage parasites, using [3H] hypoxanthine-uptake growth inhibition assays, as previously described (Chua et al., 2017). At least three independent assays, each in triplicate wells, were carried out and 50% inhibitory concentrations (IC50s) were determined by log-linear interpolation (Huber and Koella, 1993). Data are presented as mean IC50 (± SD). The antimalarial drug chloroquine was determined by log-linear interpolation (Huber and Koella, 1993). Data are presented as mean IC50 (± SD). The antimalarial drug chloroquine was determined by log-linear interpolation (Huber and Koella, 1993).

2.4. Cytotoxicity assays

Cytotoxicity assays were carried out using human embryonic kidney cells (HEK 293), as previously described (Engel et al., 2015). All assays were carried out in triplicate wells on three separate occasions. Data are presented as mean IC50 (± SD), with IC50's calculated determined by log-linear interpolation (Huber and Koella, 1993).

3. Results and discussion

To investigate the anti-plasmodial activity of potential BDP inhibitors/ (hereafter termed BDPi), a panel of 42 compounds (Table 1) was tested. Compounds included four known BDPi (bromosporine, CPI-203, FPI-4 and SGC-CBP30; Table 1) with different mammalian BDP specificities. Bromosporine (Picaud et al., 2016) is a pan-BDP inhibitor, while CPI-203 (Filippakopoulos et al., 2010), FPI-4 (Demont et al., 2014) and SGC-CBP30 (Gallenkamp et al., 2014) each have specificity for different mammalian BDPs. A further 38 compounds were selected by virtual screening of the Princeton Biomolecular Research Inc. compound library. These compounds were selected based on in silico screening of a pharmacophore-model (Supplementary Figure S1) obtained using the crystal structure of PF3D7_0110500 (PDB ID 4PY6) which, at commencement of this study, was the only available structure of a P. falciparum bromodomain crystallized in complex with an inhibitor (the PLK1 kinase/BRD4 dual inhibitor BI-2536) (Chen et al., 2015). The 38 compounds identified as potential inhibitors/binders by this virtual screen (Table 1) span different chemotypes, including some known BDPI scaffolds such as benzimidazolone (Demont et al., 2014; Bamborough et al., 2016) and triazolophthalazine (Fedorov et al., 2014).

Docking studies were carried out on all 42 compounds with the available crystal structures of bromodomains of P/GCN5 (PDB ID 4QNS) and P/BDP1 (PDB ID 3FKM). Each compound is predicted to participate in a typical hydrogen bond interaction with the conserved asparagine of P/GCN5 (Asn1436) and a conserved water molecule (Supplementary Figure S2; SGC-CBP30, OSSL_258906, OSSL_158302 and OSSK_842646 shown). Additionally, SGC-CBP30 is predicted to have a salt-bridge between the morpholine nitrogen and Glu1389 (Supplementary Figure S2a). This salt-bridge is also observed in the previously published crystal structure of the bromodomain and GCN5 in complex with triazolophthalazine (Moustakim et al., 2017) (Supplementary Figure S2a). The salt-bridge interaction was not observed for any of the other compounds assessed for anti-plasmodial activity in this study. Docking in the available crystal structure of P/BDP1 (PDB ID 3FKM) was, however, more problematic, since the crystal structure is in apo form, and part of the ZA loop (residues 362–366) is missing. This ZA loop is a highly flexible loop which is known to constitute an important part of the inhibitor-binding pocket of bromodomains (Filippakopoulos et al., 2010; Muller et al., 2011). Docking studies revealed that the compounds can form hydrogen bond interactions with the conserved Asn413 of P/BDP1, and SGC-CBP30 can also profit from an additional salt bridge with Asp361 (Supplementary Figure S2). While these docking studies provide interesting preliminary predictions regarding interactions with P. falciparum BDPi, future studies are needed to experimentally determine if these specific compounds bind/inhibit P. falciparum BDPi(s) and, if so, with what specificity. Since the selective CPB/EP300 inhibitor SGC-CBP30 showed the highest antiplasmodial activity among the tested compounds, a BLAST search (Altschul et al., 1990) was conducted in order to find the closest homologues of CPB and EP300 bromodomains in P. falciparum (Supplementary Figure S3). This revealed that P/BDP1 shares the highest homology with CPB and EP300.

In vitro 48 h activity assays with asynchronous asexual intraerythrocytic stage P. falciparum line Dd2 parasites demonstrated that all 42 BDPI lack potent anti-Plasmodium activity (IC50 ≥ 10 μM; Table 1). The three most potent compounds were the CPB/EP300 bromodomain inhibitor SGC-CBP30 (IC50 10.03 (± 0.32)), the die thylbenzimidazolone OSSK_842646 (IC50 11.28 (± 2.00)) and the triazolophthalazine OSSK_258906 (IC50 11.80 (± 3.06)). The activity of these compounds was confirmed in a 72 h assay starting with synchronous ring-stage parasites. The activity of OSSK_842646, OSSK_258906 and the control drug chloroquine was not significantly different between 48 h and 72 h assays (P > 0.05; Table 2). While the dimethylisoxazole SGC-CBP30 showed greater activity in the 72 versus 48 h assay (Table 2; p = 0.006), potency was still low (μM range). Although cytotoxicity studies with SGC-CBP30 suggest low selectivity for the parasite versus HEK 293 cells (Table 2; ~7-fold), an IC50 value for OSSK_842646, OSSK_258906 against HEK 293 cells was not achieved (IC50 > 50 μM) so selectivity indices could not be accurately determined (Table 2; > 4-fold).

The current study describes the anti-plasmodial activity of a panel of compounds known or predicted to bind/inhibit mammalian BDP(s). While data suggest that these compounds have low potency against the P. falciparum parasites, they provide a possible starting point for the investigation of rationally designed analogues with improved activity.
against malaria parasites. In addition, as LC-MS data show that BDPs’ are also expressed in sexual stages of Plasmodium parasite development (Silvestrini et al., 2010), investigating the activity of these compounds against different Plasmodium life cycle stages may be warranted. Further studies on the potential specificity of these compounds for Plasmodium BDPs may also validate these inhibitors as chemical tools to study Plasmodium epigenetic regulatory processes.

Acknowledgements

We thank the Australian Red Cross Blood Service for the provision of human blood and sera. We thank the Australian National Health and Medical Research Council (APP1074016 to KTA) for research support of human blood and sera. We thank the Australian National Health and Medical Research Council (APP1074016 to KTA) for research support of human blood and sera. We thank the Australian National Health and Medical Research Council (APP1074016 to KTA) for research support of human blood and sera. We thank the Australian National Health and Medical Research Council (APP1074016 to KTA) for research support of human blood and sera.

References

Anonymous, 2012. Schrödinger Suite 2012: Glide, Version 5.8. Schrödinger, Llc, New York, NY.

Bamborough, P., Barnett, H.A., Becher, I., Bird, M.J., Chung, C.W., Craggs, P.D., Demont, E.H., Diallo, H., Fallon, D., Gordon, L.J., Grandidi, P., Hobbs, C.I., Hooper-Greenhill, E., Jones, E.J., Law, R.P., Le Gall, A., Lugo, D., Michan, A.M., Mitchell, D.J., Pirojsha, R.K., Sheppard, R.J., Watson, A.J., Watson, R.J., 2016. GSK8634, a chemical probe for inhibition of the BRPF1 bromodomain. ACS Med. Chem. Lett. 7, 552–557.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank. Nucleic Acids Res. 28, 235-242.

Chua, M.J., Danny, W., Schubert, T., Längst, G., Gilson Paul, R., Crabb Brendan, S., Moes, S., Engel, J.A., Jones, A.J., Avery, V.M., Sumanadan, S., Ng, S.S., Fairlie, D.P., Skinner-Adams, T., Andrews, K.T., 2015. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int J Parasitol Drugs Drug Resist 5, 117–126.

Fan, Q., An, L., Cui, L., 2014. Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryot. Cell 3, 264-276.

Fedorov, O., Lingard, H., Wells, C., Monteiro, O.P., Picard, S., Keates, T., Yapp, C., Philpott, M., Martin, S.J., Fellerat, I., Marsden, B.D., Filipakopoulos, P., Muller, S., Knapp, S., Brennan, P.E., 2014. [1,2,4]triazolo[4,3-a]pyridazinones: inhibitors of diverse bromodomains. J. Med. Chem. 57, 462–476.

Ferri, E., Petosa, C., McKenna, C.E., 2016. Bromodomains: structure, function and pharmacology of inhibition. Biochem. Pharmacol. 106, 1–18.

Filipakopoulos, P., Knapp, S., 2014. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337-356.

Filipakopoulos, P., Qi, J., Picard, S., Shen, Y., Smith, W.B., Fedorov, O., Morse, E.M., Keates, T., Hickman, T.T., Fellerat, I., Philpott, M., Munro, S., McKeown, M.R., Wang, Y., Christie, A.L., West, N., Cameron, M.J., Schwartz, B., Heightman, T.D., La Thangue, N., French, C.A., Wiest, O., Kung, A.L., Knapp, S., Broader, J.E., 2010. Selective inhibition of BET bromodomains. Nature 468, 1067–1073.

Gallenkamp, D., Gelato, K.A., Haendler, B., Weimann, H., 2014. Bromodomains and their pharmacological inhibitors. ChemMedChem 9, 438–464.

Huber, W., Koelsa, J.C., 1993. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 55, 257–261.

Jeffers, V., Yang, C., Huang, S., Sullivan Jr., W.W., 2017. Bromodomains in Protozoan parasite evolution; function, and opportunities for drug development. Microbiol. Mol. Biol. Rev. 81.

Josling, G.A., Selvarajah, S.A., Petter, M., Duff, M.F., 2012. The role of bromodomain proteins in regulating gene expression. Genes 3, 320–343.

Josling Gabrielle, A., Petter, M., Oehring Sophie, C., Gupta Archna, P., Dietz, O., Wilson Jung, M., Gelato, K.A., Murphy, E.J., Mendez-Johnson, J., Daniels, D., Hou, C.D., Lin, Y.H., Walker, J.R., Hui, R., Yang, H., Darrell, L., Rogers, C.M., Monteiro, O.P., Fedorov, O., Huber, K.V., Knapp, S., Heer, S., Dixon, D.J., Brennan, P.E., 2017. Discovery of a PCAF bromodomain chemical probe. Angew. Chem. Int. Ed. Engl. 56, 827–831.

Muller, S., Filipakopoulos, P., Knapp, S., 2015. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 17, 741-751.

Müller, S., Filipakopoulos, P., Knapp, S., Costa, C., Schreiber, S.L., Kellie, S.J., 2015. Bromodomain inhibition in cell signaling and cancer therapy. Epigenetics 7, 487-501.

Moustakim, M., Clark, P.G., Trulli, L., Ferrer, P., Kinouchi, M., Chakravarty, D., Laffy, G.V., Hishiki, K., Lin, Y.H., Walker, J.R., Hui, R., Yang, H., Darrell, L., Rogers, C.M., Monteiro, O.P., Fedorov, O., Huber, K.V., Knapp, S., Heer, S., Dixon, D.J., Brennan, P.E., 2017. Discovery of a PCAF bromodomain chemical probe. Angew. Chem. Int. Ed. Engl. 56, 827–831.

Muller, S., Filipakopoulos, P., Knapp, S., 2015. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 17, 741–751.

Plasmodium falciparum - the major human malaria parasite. Mol. Cell. Proteomics 9, 1437–1448.

Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous culture. Science 193, 763–767.

Wolfer, G., Langer, T., 2005. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 45, 160–169.