This is the accepted manuscript made available via CHORUS. The article has been published as:

Solar neutrino results in Super-Kamiokande-III

K. Abe et al. (Super-Kamiokande Collaboration)

Phys. Rev. D **83**, 052010 — Published 24 March 2011

DOI: [10.1103/PhysRevD.83.052010](https://doi.org/10.1103/PhysRevD.83.052010)
Solar neutrino results in Super–Kamiokande–III

K. Abe,1 Y. Hayato,1,3 T. Iida,1,4 M. Ikeda,1,* C. Ishihara,1 K. Ikoy,1 J. Kameda,1 K. Kobayashi,1 Y. Koshio,1 Y. Kozuma,1 M. Miura,1 S. Moriyama,1,3 M. Nakahata,1,3 S. Nakayama,1 Y. Obayashi,1 H. Ogawa,1 H. Sekiya,1 M. Shiozawa,1,4 Y. Suzuki,1,4 A. Takeda,1 Y. Takenaga,1 K. Ueno,1 K. Ueshima,1 H. Watanabe,1 S. Yamada,1 T. Yokozawa,1 S. Hazama,2 H. Kaji,2 T. Kajita,2,3 K. Kanezuki,2,3 T. McLaughlan,2 K. Okumura,2 Y. Shimizu,2 N. Taninoto,2 M.R. Vagins,3,7 L. Labarga,4 L.M Magro,4 F. Dufour,5 E. Kearns,5,3 M. Litos,5 J.L. Raff,4 J.L. Stone,3,5 L.R. Sulak,5 W. Wang,5,7 M. Goldhaber,6 K. Bays,7 D. Casper,7 J.P. Cravens,7 W.R. Kropp,7 S. Mine,7 C. Regis,7 A. Renshaw,7 M.B. Smy,7,3 H.W. Sobel,7,3 K.S. Ganezer,8 J. Hill,8 W.E. Keig,8 J.S. Jang,9 J.Y. Kim,9 I.T. Lim,9 J. Albert,10 R. Wendell,10 T. Wongjirad,10 K. Scholberg,10,3 C.W. Walter,10,3 T. Ishizuka,11 S. Tasaka,12 J.G. Learned,13 S. Matsumo,13 Y. Watanabe,14 T. Hasegawa,15 T. Ishida,15 T. Kobayashi,15 T. Nakadaira,15 K. Nakamura,15,3 K. Nishikawa,15 H. Nishino,15 Y. Oyama,15 K. Sakashita,15 T. Sekiguchi,15 T. Tsukamoto,15 A.T. Suzuki,16 Y. Takeuchi,16,3 A. Minamino,17 T. Nakaya,17,3 Y. Fukuda,18 Y. Itow,19 G. Mitsuka,19 T. Tanaka,19 C.K. Jung,20 G. Lopez,20 C. McGrew,20 R. Terri,20 C. Yanagisawa,20 N. Tumura,21 H. Ishino,22 A. Kibayashi,22 S. Mino,22 T. Morii,22 M. Sakuda,22 H. Toyota,22 Y. Kuno,23 M. Yoshida,23 S.B. Kim,24 B.S. Yang,24 T. Ishizuka,25 H. Okazawa,26 Y. Choi,27 K. Nishijima,28 Y. Yosowara,28 M. Koshiba,29 Y. Totsuka,29,30 M. Yokoyama,29 S. Chan,30 Y. Heng,30 Z. Yang,30 H. Zhang,30 D. Kieleczewska,31 P. Mijakowski,31 K. Connolly,32 M. Dziomba,32 E. Thrane,32 § and R.J. Wilkes32

(The Super-Kamiokande Collaboration)

1Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan
2Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Chiba 277-8582, Japan
3Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
4Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
5Department of Physics, Boston University, Boston, MA 02215, USA
6Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
7Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
8Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA
9Department of Physics, Chonnam National University, Kwangju 500-757, Korea
10Department of Physics, Duke University, Durham NC 27708, USA
11Junior College, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0214, Japan
12Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan
13Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA
14Physics Division, Department of Engineering, Kanagawa University, Kanagawa, Yokohama 221-8686, Japan
15High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
16Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan
17Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan
18Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan
19Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan
20Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA
21Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan
22Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan
23Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
24Department of Physics, Seoul National University, Seoul 151-742, Korea
25Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
26Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka, 425-8611, Japan
27Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
28Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
29The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
30Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
31Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland
32Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

The results of the third phase of the Super-Kamiokande solar neutrino measurement are presented and compared to the first and second phase results. With improved detector calibrations, a full detector simulation, and improved analysis methods, the systematic uncertainty on the total neutrino flux is estimated to be ±2.1%, which is about two thirds of the systematic uncertainty for the first phase of Super-Kamiokande. The observed 8B solar flux in the 5.0 to 20 MeV total electron energy region is 2.32±0.04 (stat.) ±0.05 (sys.) ×107 cm−2 sec−1 under the assumption of pure electron-flavor content, in agreement with previous measurements. A combined oscillation analysis...
The third phase of Super-Kamiokande (SK-III) began in October 2006 and ended in August 2008 when the electronics were replaced. In SK-III, all 11129 PMTs have acrylic and Fiber Reinforced Plastic (FRP) PMT covers (blast shields) which were added at the start of SK-II in order to protect against propagating shock waves from PMT implosions. In the inner detector, the active photodetector coverage is 40% (40% in SK-I and 19% in SK-II). Thanks to detector improvements and superior analysis techniques, the SK-III’s solar neutrino flux measurement is more precise than either SK-I’s [2](SK before the accident) or SK-II’s [3] (SK with 46.5% of its PMTs) even with an exposure of only two years. In particular, the water purification system, event reconstruction and selection tools, as well as Monte Carlo detector simulation were improved. They will be explained in Chapter II and III in detail.

In Chapter IV, the results of oscillation analyses are presented. By adding SK-III data, it was found that the energy spectrum and the time variation of solar neutrinos obtained from our measurements favor only the large mixing angle solution (LMA) by constraining the \(^8 \text{B} \) and hep neutrino flux to SNO NC flux [19, 20] and Standard Solar Model (SSM) prediction [7] respectively. The first result of three-flavor neutrino oscillation analysis was improved. They will be explained in Chapter IV, the \(^8 \text{B} \) flux value obtained from the results of all solar neutrino experiments (global solar analysis) will be shown to compare with the prediction of the SSM.

*Present address: Department of Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan
\‡Present address: Department of Physics, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706
\∗Deceased.
\†Present address: Department of Physics and Astronomy, University of Minnesota, MN, 55455, USA

PACS numbers: 14.60.Pq

I. INTRODUCTION

A major background for the solar neutrino observation at SK is the radioactivity from radon (Rn) from the U/Th decay chain in the water. The water in the detector is made from natural mine water using a very high performance water purification system. Even though the water is extremely pure there is still some Rn remaining. The Rn background events are very similar to solar events, so it is very difficult to remove them using only analysis tools. To reduce it, we have upgraded the system since the end of SK-I, including the addition of a new heat exchanger and two reverse osmosis units during the SK-II and III periods.

In addition, we investigated the water flow in the detector by intentionally injecting radon-enriched water. Tracing the resulting background events in time from this injected Rn, we found stagnation of water in the top and bottom of the detector volume, which increased the background. To counter this effect, we installed new pipes and changed the water flow. Previously, the water was supplied from the bottom of the inner detector (ID) and drained from the top of both the ID and outer detector (OD). Now, it is supplied from the ID bottom and drained from the top and bottom in OD and the top in ID with a total flow of 60 tons/hr, which is two times faster than before. This final setting has been in effect since August, 2007. As a result of these improvements, we have a central region with half of SK-I’s background, enabling a lowering of the energy threshold.

Note that the excessive background near the wall and bottom consisting of \(\gamma \) rays due to the FRP cover also existed in SK-II. This background could not be reduced by improving the water system.

II. SK-III PERFORMANCE

A. Water system

The event vertex reconstruction for solar neutrino analysis performs a maximum likelihood fit to the timing residuals of the Cherenkov signal as well as the dark noise background for each testing vertex [5]. The vertex
reconstruction method in SK-III was initially installed in SK-II and further improved over SK-II. It now has better resolution than SK-I.

Figure 1 shows the vertex resolution for SK-III. The vertex resolution is defined as the distance from the true vertex position containing 68.3% of all reconstructed vertices. The vertex resolution in SK-I for 5 MeV electrons is 125 cm; here it is improved to 100 cm.

A bias in vertex reconstruction is called the “vertex shift”. The vertex shift is defined as the vector from the averaged vertex of reconstructed events to that of the corresponding simulated Monte Carlo (MC) events. Because the vertex shift results in events moving in or out of the fiducial volume, it represents one of the main systematic uncertainties for the solar neutrino flux measurement.

The vertex shift is measured by placing a Ni-Cf gamma ray source [4] at several positions inside the detector (Hereafter, the calibration using this Ni-Cf source is called “Ni calibration” or “Ni events”). The reconstructed data vertices at the fiducial volume edge were shifted more than 10 cm from the real source position inward toward the detector center, while those of the MC simulation were shifted less than 3 cm. It was found that this shift in data was due to an electronic effect of the relative hit timing within a wide range (∼100 nsec). We measured the timing linearity by artificially shifting the common stop signal of individual TDCs for each hit channel. We found that a correction of -0.7% to the hit timing was required to restore linearity. After the correction was applied, the vertex shift shortened significantly.

Figure 2 shows the vertex shift in SK-III with timing correction. The definition of x and z in Figure 2 (and other variables) is explained in Figure 3.

2. Direction

The direction reconstruction is based on the SK-I method: a likelihood function is used to compare Cherenkov ring patterns between data and MC simulation. An energy dependence is now included in the likelihood function for SK-III. The ring pattern distributions and their energy dependences are simulated for several energy ranges using electron MC simulation events.

Figure 4 shows the likelihood as a function of the reconstructed event energy and the opening angle between the reconstructed direction and the direction from the vertex to each hit PMT. Figure 5 shows the absolute angular resolution, which is defined as the angle of the cone around the true direction containing 68.3% of the reconstructed directions. For SK-III, the angular resolution is
FIG. 4: Likelihood value for reconstruction of event direction as a function of the reconstructed total electron energy and opening angle between the reconstructed direction and the direction from vertex to each hit PMT.

FIG. 5: The solid line shows the angular resolution of SK-III as a function of the true total electron energy, while the dashed line shows that of SK-I.

improved compared to SK-I by about 10% at 10 MeV and is close to the limit due to multiple Coulomb scattering of electrons. Note that the improvement of vertex reconstruction also contributes to the improvement of angular resolution, especially in the low energy region below 6.5 MeV.

3. Energy

The reconstruction of event energy is similar to that for SK-I [2]. The most important modifications with respect to SK-I are due to photo-cathode coverage and blast shields. Starting with the number of in-time hit PMTs (N_{50} coincident within 50 ns after the subtraction of time-of-flight (TOF) of Cherenkov photon from the reconstructed vertex to the hit PMT position), several corrections, described below, are made. The resulting effective hit sum N_{eff} has less position dependence than N_{50}. From N_{eff}, we determine energy. This procedure is further outlined in [2], and is also explained in [3].

The definition of N_{eff} is:

$$N_{eff} = \sum_i (X_i + \epsilon_{\text{tail}} - \epsilon_{\text{dark}}) \times \frac{N_{all}}{N_{alive}} \times \frac{1}{S(\theta_i, \phi_i)} \times \exp\left(\frac{r_i}{\lambda(t)}\right) \times G_i(t)$$

(2.1)

where the explanations for the factors are as follows:

X_i: This factor estimates the effect of multiple photo-electrons in the i-th hit PMT. If an event occurs close to a detector wall and is directed towards the same wall, the Cherenkov cone does not have much distance to expand, and the observed number of hits is small. The correction X_i for this effect is defined as

$$X_i = \begin{cases} \log \left(\frac{1}{1 - x_i} \right), & x_i < 1 \\ 3.0, & x_i = 1 \end{cases}$$

(2.2)

where x_i is the ratio of hit PMTs in a 3×3 PMT region surrounding the i-th PMT to the total number of live PMTs in the same area. The $-\log(1 - x_i)$ term is the estimated number of photons per one PMT in that area and is determined from Poisson statistics. When $x_i = 1$, 3.0 is assigned to X_i.

ϵ_{tail}: Some Cherenkov photons being scattered or reflected arrive late at the PMT, and make late hits outside the 50 nsec time window. To correct the effect of the late hits, the term

$$\epsilon_{\text{tail}} = \frac{N_{100} - N_{50} - N_{alive} \times R_{\text{dark}} \times 50 \text{ nsec}}{N_{50}}$$

(2.3)

is added where N_{100} is the maximum number of hits found by a 100 nsec sliding time window search.

ϵ_{dark}: This factor corrects for hits due to dark noise in the PMTs.

$$\epsilon_{\text{dark}} = \frac{50\text{nsec} \times N_{alive} \times R_{\text{dark}}}{N_{50}}$$

(2.4)

where N_{alive} is the number of all live inner detector (ID) PMTs and R_{dark} is the measured dark rate for a given data taking period.

$\frac{N_{alive}}{N_{all}}$: This factor is for the time variation of the number of dead PMTs. N_{all} is total number of PMTs and for SK-III it is 11129.

$\frac{1}{S(\theta_i, \phi_i)}$: This factor accounts for the direction-dependent photocathode coverage. $S(\theta_i, \phi_i)$ is the effective photocathode area of the i-th hit PMT as viewed from the angles (θ_i, ϕ_i) to take into account the shadowing of PMTs for glancing angles θ_i. S
is determined by MC simulation with the FRP PMT covers; the resulting \(N_{\text{eff}} \) is checked by an electron linear accelerator (LINAC) and an in-situ deuterium-tritium neutron generator (DT) calibration data.

\[\exp\left(\frac{r_i}{\lambda(t)} \right) \]: The water transparency is accounted for by this factor, where \(r_i \) is the distance from the reconstructed vertex to the i-th hit PMT. \(\lambda(t) \) is the measured water transparency for a given data taking period.

\(G_i(t) \): This factor adjusts the relative quantum efficiency of the PMTs. The differences in the quantum efficiency depend on the fabrication date of the PMTs.

After determining \(N_{\text{eff}} \), an event’s energy in MeV can be calculated as a function of \(N_{\text{eff}} \). The relation between \(N_{\text{eff}} \) and MeV is obtained using mono-energetic electron MC simulated events as shown in Figure 6. The conversion function from \(N_{\text{eff}} \) to MeV is determined by fitting the relation with a fourth-order polynomial function for the lower energy region (\(<25\) MeV) and a first-order polynomial function for the higher energy region (\(\geq 25\) MeV).

The systematic uncertainty of the reconstructed energy is checked by LINAC and DT calibration.

When calculating the energy for data events, the water transparency value, as determined by decay electrons from cosmic-ray muons, measured for six-day intervals, is used as an input parameter. For MC events, the change in water transparency and the relative quantum efficiency is simulated.

The detector’s energy resolution is well described by a Gaussian function. The energy resolution is described by

\[\sigma(E) = -0.123 \pm 0.376 \sqrt{E} + 0.0349 \frac{E}{200} + 0.0349 \frac{E}{600} \]

(2.5)

in units of MeV (see Figure 7). The SK-I resolution is \(\sigma = 0.2468 + 0.1492 \sqrt{E} + 0.0690E \) which is shown also in Figure 7. For low energy SK-III events, the energy resolution is improved by 5%, which is mainly due to the improved vertex reconstruction.

C. Energy calibration

As for SK-I, the primary instrument for energy calibration in SK-III is LINAC. A detailed discussion of the LINAC calibration methods can be found elsewhere [12]. Single electrons are injected into the SK detector at various positions and at energies between 4.4 and 18.9 MeV. However, we could only take data with 4.4 MeV electrons at two positions, because the tuning of the electron beam is difficult for the lower energies. For this reason we did not include the 4.4 MeV data, and the lowest energy we included in this analysis is 4.7 MeV. The reconstructed energies of LINAC events are compared against those of the MC simulation to determine the energy scale. The absolute correction factor for PMT quantum efficiency was tuned to minimize any deviation between data and MC. The effect of the water transparency change on the energy scale was estimated as 0.22% by averaging over all energies and positions. The uncertainty of the electron beam energy, determined by a Ge detector measurement, is 0.21% (the same as for SK-I).

In addition to the LINAC calibration, energy scale calibration is done using \(^{16}\text{N} \) produced with DT [13]. The generated 14.2 MeV neutrons exchange their charge with \(^{16}\text{O} \). The produced \(^{16}\text{N} \) decays into \(\beta \) and \(\gamma \) with a half-life of 7.13 seconds. With a Q-value of 10.4 MeV, \(^{16}\text{N} \) most probably decays into \(^{16}\text{O} \), an electron with maximum energy 4.3 MeV and a \(\gamma \) ray of energy 6.1 MeV. The
FIG. 8: The z dependence of the energy scale measured by LINAC calibration. The marker shows an average of (MC-DATA)/DATA over four energies at each data-taking point. The error bars show the RMS of (MC-DATA)/DATA for four energies. The filled circle markers are for R=4 m (x=-4 m, y=0 m) and the square markers are for r=12 m (x=-12 m, y=0 m). The open circle markers show the z dependence obtained by DT calibration. The dashed and dotted lines show ±1 and 0.5%, respectively. The edge of the fiducial volume is the same as the edge of the plot window (from -1610 cm to 1610 cm).

peak value of the energy distribution is taken to evaluate the energy scale. DT data-taking is faster than LINAC data taking, so more positions can be checked.

The position dependence of the energy scale systematic uncertainty was estimated using only LINAC calibration data for SK-I and II, while for SK-III, in addition DT calibration data are used to take into account the z-dependence and φ-dependence of the energy scale. The z-dependence is measured by LINAC, and the φ-dependence is measured by DT. The LINAC can only take data at φ = 180 degrees, whereas the DT generator can take data at five different positions at the same z position: center (r=4 m), φ = 0, 90, 180, and 270 degrees (r = 12 m).

Figure 8 shows the difference of the energy scale between LINAC data and LINAC MC as a function of LINAC position. By averaging over all positions, the z-dependence is estimated to be 0.06% (the difference between r=4 m and r=12 m is also included here.)

Figure 9 shows the difference of energy scale between DT data and DT MC. The vertical axis is normalized by the average of measurements at the same z positions. The mean value of the deviation from the average is taken as the φ-dependence of energy scale, which is 0.35%. A resulting uncertainty of ±0.35% for the overall position dependence is estimated.

16N decays allow directional studies of the energy scale which are not possible with the LINAC beam. The observed energy at several positions in the detector is compared with the MC-simulated energy and the difference is shown to agree with values obtained from LINAC data and MC. The 16N energy scale difference between LINAC direction (downward direction) and the average of the other directions is estimated as ±0.25%, as shown in Figure 10. This difference is taken as the directional uncertainty of the energy scale.

Finally, the energy scale uncertainty is calculated to be 0.53% which is summarized in Table I. This is slightly smaller than the SK-I estimated value of 0.64%.

Energy resolutions of LINAC events are also compared for data and MC simulation. Figure 11 shows the difference of the energy resolution between data and MC as a function of the total electron energy. From Figure 11, ±2.5% systematic uncertainty is assigned to energy cor-

FIG. 9: The φ dependence of the energy scale measured by DT calibration. The marker shows (MC-DATA)/DATA for each point and the error bars show statistical uncertainty. The circle, square, and triangle markers are for z=+12 m, 0 m, and -12 m respectively. Zaverage is the average difference of energy scale between MC simulation and DT data obtained at the same z-position. The dashed and dotted lines show ±1 and 0.5%, respectively.

FIG. 10: Energy scale difference between LINAC direction and other direction measured by DT calibration (LINAC direction range includes 76% of 7 MeV electrons). The solid and dotted lines show ±1 and 0.5%, respectively.
Position dep. 0.35 %
Direction dep. 0.25 %
Water transparency 0.22 %
LINAC energy sys. 0.21 %
Total 0.53 %

| TABLE I: Systematic uncertainty of the energy scale. |

related systematic uncertainty for the spectrum measurement.

Quantitative estimates of trigger efficiencies are also obtained from 16N data. The lowest hardware threshold setting has been in effect since April 2008. At this setting, the SK-III trigger achieved more than 99% efficiency at 4.5 MeV total electron energy. Before this time, the trigger efficiency was more than 99% at 5.0 MeV total electron energy. Figure 12 shows the trigger efficiencies of the lowest threshold period in SK-III.

D. Optical calibration

1. **Light Propagation in Water**

For light propagation in water, a three-part model of light propagation consisting of absorption and two kinds of scattering is adopted for SK-III (as well as both SK-I and SK-II). In contrast to the previous phases, for SK-III the models are tuned using nitrogen/dye laser calibration. We measured the attenuation length of scattering and absorption for four wavelengths (337, 365, 400 and 420 nm) and tuned the water coefficients based on the measurement. The water coefficients are described by:

\[
\alpha_{\text{ray}}(\lambda) = \frac{r_1}{\lambda^4} + \frac{r_3}{\lambda^4}
\]

\[
\alpha_{\text{mie}}(\lambda) = \frac{m}{\lambda^4}
\]

\[
\alpha_{\text{abs}}(\lambda) = \frac{a}{\lambda^4} + \alpha_{\text{long}}(\lambda, a)
\]

Based on the data of Feb. 2007 and 2008, we determined r_1, m, and a. $\alpha_{\text{long}}(\lambda, a)$ was determined by a third-party independent measurement introduced in SK-II[6][3]. Near the 400 nm region, we modified the relation using nitrogen/dye laser calibration. The crossing point of the SK and independent measurements[14] is varied by another parameter (a). The results of the determination of these parameters are shown in Figure 13.

The time dependence and position dependence of the water quality are described in the following.

a. **Time Dependence**

The time variations of the water coefficients and the water transparency are measured simultaneously by nitrogen/dye laser calibration and using decay electrons from cosmic-ray muons. These measurements confirmed that the change of the water transparency is mainly caused by the change of the absorption coefficient. We obtained the relation of the absorption coefficient and the water transparency in SK-III using those data as well as water transparency as measured by decay electrons from cosmic-ray muons, as for SK-I.

Figure 14 shows the time variation of the measured water transparency during SK-III and the stability of the peak energy of the decay electrons in SK-III as a function of time. The stability of the energy scale has 0.47% RMS.

b. **Position Dependence**

It was found that the PMT hit rates measured for a Ni-Cf gamma-ray source at the top region in the detector are systematically lower than those for the bottom region by $3 \sim 5\%$. This rate difference is denoted the “top-bottom asymmetry” (TBA). The MC simulation cannot reproduce the top-bottom asymmetry.
FIG. 13: Wavelength dependence of the water coefficients: scattering and absorption combined (black, solid), absorption (red, dashed), Rayleigh scattering (green, dotted) and Mie scattering (blue, dashed-dotted). The absorption coefficient is a function of water transparency and the water transparency in this graph is 139 m.

FIG. 14: The upper figure shows the time variation of the measured water transparency (weighted by the Cherenkov spectrum) during SK-III. The lower figure shows the stability of the peak energy of decay electrons in SK-III as a function of time.

Asymmetry with a uniform attenuation length throughout the detector volume. In order to solve this problem, a simple model of the light absorption is introduced to take into account the dependence of the attenuation length on depth. In this modeling, depth-dependence of the absorption parameter is considered, because the dominant contribution to the time variation of the water transparency is the absorption. The depth-dependence can be modeled as

\[\alpha_{abs}(\lambda, z) = \begin{cases} \alpha_{abs}(\lambda)(1 + \beta \cdot z), & \text{for } z \geq -1200 \text{cm} \\ \alpha_{abs}(\lambda)(1 - \beta \cdot 1200), & \text{for } z < -1200 \text{cm} \end{cases} \]

(2.6)

Below \(z = -1200 \text{ cm} \), the absorption coefficient is assumed to be uniform due to convection of the water. \(\beta \) is called the TBA parameter (unit is cm\(^{-1}\)) and it varies in time, because TBA varies. The \(\beta \) for each period was tuned to minimize the TBA for that period.

Figure 15 shows a comparison of the hit-rate between data and MC simulation with the tuned \(\beta \) value, which is \(8.85 \times 10^{-5} \text{ cm}^{-1} \), and without \(\beta \) correction, respectively. The hit-rate is defined as the number of hits in each PMT in units of the averaged number of hits for all PMTs during the calibration run. As shown by the figure, data and MC show better agreement with the \(\beta \) correction.

2. Reflectivity of Black Sheet

In the detector simulation, the reflectivity of the black sheet which covers the ID wall is calculated using the law of Fresnel, taking into account the polarization of Cherenkov photons. To better model the real situation, we measure the reflectivity for three incident angles using calibration data taken from a movable light injector and a black sheet reflector. We found that a value of half of the SK-I reflectivity gives better agreement and a wavelength-dependent correction is newly applied for SK-III.

In addition, to better describe the diffuse and specular reflection on the black sheet, we use two models for reflection: the Lambert model is used to describe diffuse
3. PMT and Electronics

The PMT must be simulated as precisely as possible. Reflection and quantum efficiency are tuned using the nitrogen/dye laser calibration data. In contrast to the description used for SK-I, we put a wavelength dependence into the reflection and an incident angle dependence into the quantum efficiency. The position and width of the PMT after-pulses and the timing resolution were tuned using data from single electrons injected into the SK detector by LINAC. After these tunings, the timing distributions of LINAC data and MC simulation agree very well, as shown in Figure 16.

III. DATA ANALYSIS

A. Data set

As for SK-I and II, SK-III has two trigger levels for solar neutrino analysis: low-energy (LE) and super-low-energy (SLE) thresholds. SLE triggered events are filtered online to reduce the amount of data written to limited storage space. Events reconstructed outside the fiducial volume are rejected. The data are reduced by a factor of approximately six. From Aug. 4th, 2006 to Jan. 24th, 2007, only the LE trigger threshold was applied. The LE trigger is 100% efficient above 6.5 MeV and the livetime of this period is 121.7 days. The threshold was lowered and the first SLE data were taken with more than 99% efficiency at 5.0 MeV from Jan. 24th, 2007 to Apr. 17th, 2008. This period is called the SLE1 period, and the livetime of this period is 298.2 days after rejecting high background periods caused by radioactive impurities accidentally injected into the detector.

B. Event selection

Basic explanations of each selection step are as follows:

- Run selection
 In this selection, short runs (< 5 min.), runs with hardware and/or software problems, or calibration runs are rejected.

- Cosmic-ray muon
 Cosmic-ray muon events are rejected by a total charge cut (< 2000 photo-electron (p.e.) in ID).

- Electronic noise reduction
 Events due to electronic noise are rejected.

- Fiducial volume cut
 Events which have reconstructed vertex position within 2 m of the ID wall are also rejected.

- Spallation cut
 This cut is to reject events caused by cosmic-ray muons.

- Event quality cut
 In this step, results of event reconstructions are tested. In particular, (a) quality of vertex and direction reconstruction, and (b) hit pattern, (c) result of the second vertex reconstruction used for SK-I [2] are checked. Events produced by flasher PMTs are also rejected in this step.

- External event cut
 This cut is to reject events induced by radioactivity from the PMTs or the detector wall structure.

- Cosmogenic 16N cut
 Events caused by decay of 16N are rejected. The 16N is produced when cosmic ray μ is captured by 16O in water.

- Small clustered hit cut and tighter fiducial volume cut
 These cuts reject events which have clustered hits (see III C and III D).

For more detailed descriptions of the reduction steps, please refer to [2, 3].
C. Small clustered hit cut for the lowest energy region

This cut is newly developed for SK-III to reduce the low energy background in regions near the edge in the detector. As described in the previous section, the target background is assumed to be triggered by a coincidence of dark hits and small clusters of hits due to radioactive sources in the FRP or the structure of the detector wall.

We can separate this background from the solar neutrino signal by searching for a small cluster in both space and time. A real neutrino signal at the edge region also has similar characteristics, but it causes a bigger cluster compared to the background events. Thus, the key is to evaluate the size of the hit cluster.

In order to check the size of the hit cluster for an event, a new cut variable was created. This variable is a product of two factors. One factor is the radius of a circle which contains the clustered hits in an event, and the other is the number of clustered hits within a 20 nsec time window. The criteria of the edge region are determined as follows:

\[
\begin{align*}
& \{ r^2 > 180 \text{ m}^2 \text{ for } 5.5 \leq E < 6.5 \text{ MeV} \\
& \{ r^2 > 155 \text{ m}^2 \text{ for } 5.0 \leq E < 5.5 \text{ MeV}
\end{align*}
\]

(3.1)

where \(r \) is defined in Figure 3. Figure 18 shows the vertex distribution of the final data sample for the 5.0-6.5 MeV energy region before and after the small cluster hits cut.

D. Tighter fiducial volume cut

This cut is to reject the remaining background in the edge region. As shown in Figure 19, background events in the bottom region still remain in the final data sample. This non-uniformity of vertex distribution of the background distorts the angular distribution of the background, which causes a large systematic uncertainty for the day-night asymmetry of solar neutrino flux.

To set a tight fiducial volume, the significance as a function of detector radius is calculated. Based on the significance calculation, the final value of fiducial volume is obtained for each energy region.

- 5.0 – 5.5 MeV : \((r^2 < 180 \text{ m}^2 \text{ and } z > -7.5 \text{ m}) = 13.3 \text{ kton}\)
- 5.5 – 20 MeV : no tight fiducial volume cut = 22.5 kton

Note that in the future, we hope to remove this tighter fiducial volume cut by improving our signal extraction method, because solar neutrino events are preferentially rejected in the low energy region by this cut.
FIG. 19: Vertex distribution of final data sample in the 5.0-6.5 MeV energy region (22.5 kton fiducial volume).

FIG. 20: Number of events after each event reduction step as a function of energy. From the top, the markers show events after spallation cut, event quality cut, external event cut, 16N cut, and small clustered hit cut plus tight fiducial volume cut. The dashed histogram shows the number of events in the SK-I final sample.

E. Summary of event selection

Figure 20 shows the energy spectrum after each step of the reduction and Figure 21 shows the remaining efficiency of 8B solar neutrino MC with respect to the reconstructed energy. The number of events after each reduction step is summarized in Table II (real data) and III (solar neutrino MC simulation). While the event rate in the real data as a function of energy is the same as for SK-I, the cut efficiencies are improved by 10% in the final SK III data sample.

F. Simulation of solar neutrinos

The method to extract the energy spectrum and the flux of solar neutrinos in SK-III is based on that of SK-I and II. The 8B and hep neutrino spectra are generated separately. The total 8B and hep flux values are referred from the Standard Solar Model (SSM) [7]. We use the spectrum and its uncertainty of 8B and hep neutrinos calculated by Winter [10] and Bahcall [11] respectively. The event time of a solar neutrino event is simulated from the livetime of the SK-III full operation period, so that the expected zenith angle distribution of the solar neutrinos is taken into account.

TABLE II: Reduction results for data.

Reduction step	5.0-6.5 MeV	6.5-20.0 MeV
Spallation cut	1861770	114350
Event quality cuts	734843	58187
External event cut	54820	43146
16N cut	54351	39879
Small cluster hits cut	42916	
Tight fidv. cut	24311	
Final	24311	39879

TABLE III: Reduction results for solar neutrino MC events in %. For the spallation cut and 16N cut, position-dependent dead time is considered.
neutrinos can be simulated correctly.

G. Systematic uncertainty

The following items are updated with respect to SK-I with the improved calibration, detector simulation and analysis tools described above.

- Angular resolution
 In order to estimate the systematic uncertainty on the total flux due to the angular resolution difference between data and MC simulation, a predicted energy spectrum is made by artificially shifting the reconstructed direction of the solar neutrino MC events. The shifted direction is calculated as the reconstructed direction \(\pm \) the systematic uncertainty of angular resolution with respect to the generated direction of the recoil electron. After the solar angle fitting, the systematic uncertainty due to the uncertainty of angular resolution is estimated as \(\pm 0.67\% \) on the total flux in 5.0-20 MeV region (\(\pm 1.2\% \) for SK-I). This method of estimation is the same as for SK-I, so the improvement is due to the new detector simulation and angular reconstruction.

- Vertex shift and resolution
 The vertex shift difference between data and MC is used to estimate the systematic uncertainty of the fiducial volume. We measure this difference using Ni calibration rather than the LINAC, because LINAC electrons always point downwards while solar neutrino recoil electrons go in all directions. Also, very few positions near the edge of the fiducial volume can be probed by the LINAC. As an example, Figure 22 shows the observed vertex shift difference as a function of energy at (15.2 m, -0.7 m, 12 m), where the vertex shift in the x direction is larger than other positions in Figure 2. There is no evidence that the vertex shift difference is energy dependent.

To estimate the total flux uncertainty due to the vertex shift, the reconstructed vertex positions of the solar neutrino MC events are artificially shifted outward. Then, the fraction of events rejected by the fiducial volume cut due to the shift is estimated. Figure 23 shows the systematic uncertainty on the fiducial volume due to the vertex shift which is based on the results of the Ni calibration. Note that in SK-I, and II, the estimation was done by a calculation based on the size of the vertex shift, whereas in SK-III, MC simulations after event selection are used to take into account the cuts’ efficiencies at the edge of the fiducial volume. This new method gives a more accurate estimation.

This study shows that 0.54% of the MC events are rejected after shifting the vertex position, and this fraction is set to the total flux systematic uncertainty due to the vertex shift (\(\pm 1.3\% \) for SK-I).

The improvement with respect to SK I is mainly due to the reduction of the vertex shift.

In Figure 23, the step in the fiducial volume uncertainty between 5.0 and 6.0 MeV is due to the tight fiducial volume cut for the lower energy region (\(< 5.5\text{MeV}\)). This relative difference of fiducial volume systematic uncertainty is taken into account in the uncertainty of the energy spectrum shape. Between 5.5 and 20 MeV, since vertices are assumed to be shifted in the same direction for all energies, the relative differences are 0.1%. Consequently, the systematic uncertainty of the spectrum shape is set to 0.1% in that energy region. In the 5.0-5.5 MeV region, the systematic error is set to 0.5% because the uncertainty of the fiducial volume is relatively 0.5% larger than for the other region.

The vertex resolution is also compared for data...
and MC simulation using LINAC events. Figure 24 shows the difference of vertex resolution as a function of energy. This difference results in only a second order effect on the systematic uncertainty of the fiducial volume.

- Event quality cuts
 The systematic uncertainties associated with the event quality cuts are estimated separately for (a), (b) and (c) of III B. For (a) and (b), the systematic uncertainties on the total flux are taken from the differences of the efficiencies between the LINAC data and MC simulation which are ±0.4% and ±0.25%, respectively.

 For (c), the second vertex cut, the estimation is done in the same way as for the first vertex fitter, resulting in a 0.45% contribution to the total flux uncertainty.

 The combined uncertainty is 0.65% which is about one third of SK-I's. The improvement is due to the improved event selection methods and better-tuned MC simulation.

- Small clustered hits cut
 Using DT data and MC simulation at the position (x=-12 m, y=0 m, z=0 m), a difference in cut efficiency between DT data and MC events of 2% is obtained. Considering the entire fiducial volume and the energy region of the solar neutrino signal, this difference corresponds to a 0.5% uncertainty on the total flux in the 5.0-20 MeV region. A value of 2% is assigned to the spectral shape uncertainty for the 5.0 to 6.5 MeV bins.

- Signal extraction method
 The solar neutrino flux is obtained by fitting a solar angle distribution (see Figure 26). To check biases of the fitting method to the flux value, the solar angle fit is applied to dummy data which have known numbers of signal and background events. As a result, ±0.7% difference is found between the input and the output number of signal events for the total flux, and ±2% difference is found especially in the 5.0 < E < 5.5 MeV region.

1. Summary of systematic uncertainties

- Flux, time variation, day-night asymmetry
 The systematic uncertainties on total flux, time variation and day-night asymmetry are summarized in Table IV. The systematic uncertainty on the total flux is estimated to be 2.1%. This is about two thirds of the corresponding SK-I value. The main contributions to the improvement are the vertex shift, angular resolution, and event selection uncertainties, which are re-estimated for SK-III.

- Spectrum
 The systematic uncertainty of the spectral shape consists of two components:

 - Energy-correlated:
 The energy-correlated systematic uncertainties are obtained by counting the number of events in the solar neutrino MC simulation with artificially shifted energy scale, energy resolution and ^{8}B ν energy spectrum. The results of the calculations are shown in Figure 25. These correlations are taken into account in the oscillation analysis.

 - Energy-uncorrelated:
 The energy uncorrelated spectral uncertain-

Source	Total Flux
Energy scale	±1.4
Energy resolution	±0.2
^{8}B spectrum	±0.2
Trigger efficiency	±0.5
Angular resolution	±0.67
Fiducial volume (vertex shift)	±0.54
Event quality cuts	
- Quality cut	±0.4
- Hit pattern cut	±0.25
- Second vertex	±0.45
Spallation	±0.2
External event cut	±0.25
Small cluster hits cut	±0.5
Background shape	±0.1
Signal extraction method	±0.7
Livetime	±0.1
Cross section	±0.5
Total	±2.1

TABLE IV: Summary of the systematic uncertainty of the total flux in %.

FIG. 24: The difference of vertex resolution between MC simulation and data as a function of energy obtained by LINAC calibration. The dashed line and the dotted line show 1 cm and 2 cm difference respectively.
ties are listed in Table V. To obtain the effect on the energy spectral shape, relative differences of each uncertainty between each energy bin are studied. For example, the uncertainty of the fiducial volume due to the vertex shift is 0.54% in total, and the relative differences are obtained as 0.1% for 5.5-20 MeV region, but 0.5% for 5.0-5.5 MeV region with the tight fiducial volume. These uncertainties are taken into account in the oscillation analysis without correlations.

H. Total Flux Result

Recoil electrons from elastic solar ν-electron scattering are strongly forward-biased. SK-III statistically separates solar ν’s from background with an unbinned likelihood fit to the directional distribution with respect to the Sun. For a live time of 548 days of SK-III data, from 5.0 to 20.0 MeV, the extracted number of signal events is 8132_{-133}^{+133} (stat.) ± 186 (sys.). The corresponding 8B flux is obtained using the 8B spectrum of [10] to be:

$$(2.32 \pm 0.04\text{(stat.)} \pm 0.05\text{(sys.)}) \times 10^6 \text{ cm}^{-2}\text{sec}^{-1}.$$

This result is consistent with SK-I $(2.38 \pm 0.02\text{(stat.)} \pm 0.08\text{(sys.)}) \times 10^6 \text{ cm}^{-2}\text{sec}^{-1}$ and SK-II $(2.41 \pm 0.05\text{(stat.)} \pm 0.16\text{(sys.)}) \times 10^6 \text{ cm}^{-2}\text{sec}^{-1}$). The SK-I and II values are recalculated using the 8B spectrum of [10].

Figure 26 shows the angular distribution of extracted solar neutrino events.

FIG. 26: The angular distribution of the solar neutrino final sample events. The dotted line seen under the peak in the solar direction represents background contributions.

IV. OSCILLATION ANALYSIS WITH SK-III RESULT

Oscillations of solar neutrinos have been studied by numerous experiments. The results from such experiments have placed increasingly stringent constraints on the mixing angle between neutrino mass and flavor eigenstates as well as on the neutrino mass difference.

In section IV B, the result of the two-flavor neutrino oscillation analysis using SK-I,II,III data is presented.
Energy (MeV)	ALL $-1 \leq \cos \theta_z \leq 1$	Observed rate $-1 \leq \cos \theta_z < 0$	Expected rate $0 < \cos \theta_z \leq 1$	hep 8B
5.0 - 5.5	83.3$^{+7.3}_{-10.0}$	94.6$^{+10.8}_{-13.0}$	73.5$^{+13.7}_{-13.0}$	193.4
5.5 - 6.0	67.9$^{+6.4}_{-6.1}$	75.2$^{+9.8}_{-9.7}$	61.5$^{+8.8}_{-8.9}$	177.0
6.0 - 6.5	63.5$^{+5.5}_{-5.4}$	55.9$^{+7.0}_{-6.9}$	71.0$^{+7.4}_{-7.7}$	160.4
6.5 - 7.0	55.3$^{+4.9}_{-4.7}$	51.3$^{+3.9}_{-3.7}$	59.1$^{+3.9}_{-3.8}$	139.7
7.0 - 7.5	54.0$^{+2.5}_{-2.4}$	55.9$^{+3.7}_{-3.6}$	52.3$^{+3.3}_{-3.2}$	121.9
7.5 - 8.0	40.6$^{+2.1}_{-2.0}$	39.9$^{+3.2}_{-3.1}$	41.2$^{+2.9}_{-2.8}$	105.8
8.0 - 8.5	36.7$^{+1.9}_{-1.8}$	37.5$^{+2.8}_{-2.7}$	35.9$^{+2.3}_{-2.2}$	91.8
8.5 - 9.0	30.9$^{+1.6}_{-1.5}$	28.7$^{+2.4}_{-2.3}$	32.9$^{+2.3}_{-2.2}$	75.0
9.0 - 9.5	22.6$^{+1.2}_{-1.2}$	20.0$^{+1.9}_{-1.9}$	25.2$^{+1.9}_{-1.8}$	61.8
9.5 - 10.0	19.5$^{+1.3}_{-1.3}$	18.0$^{+1.5}_{-1.5}$	20.8$^{+1.6}_{-1.5}$	49.5
10.0 - 10.5	14.5$^{+1.9}_{-1.9}$	15.2$^{+1.5}_{-1.5}$	13.8$^{+1.3}_{-1.2}$	39.2
10.5 - 11.0	14.0$^{+0.9}_{-0.9}$	15.2$^{+1.5}_{-1.5}$	13.0$^{+1.2}_{-1.2}$	30.3
11.0 - 11.5	9.6$^{+0.8}_{-0.8}$	9.67$^{+1.0}_{-1.0}$	9.56$^{+1.0}_{-1.0}$	22.7
11.5 - 12.0	5.74$^{+0.65}_{-0.67}$	5.33$^{+0.92}_{-0.94}$	6.17$^{+0.83}_{-0.85}$	16.8
12.0 - 12.5	5.01$^{+0.52}_{-0.53}$	4.20$^{+0.68}_{-0.69}$	5.77$^{+0.74}_{-0.76}$	12.0
12.5 - 13.0	3.11$^{+0.39}_{-0.40}$	2.74$^{+0.59}_{-0.60}$	3.47$^{+0.55}_{-0.57}$	8.4
13.0 - 13.5	1.97$^{+0.36}_{-0.36}$	1.63$^{+0.49}_{-0.49}$	2.30$^{+0.44}_{-0.44}$	5.5
13.5 - 14.0	1.37$^{+0.24}_{-0.24}$	1.17$^{+0.36}_{-0.36}$	1.53$^{+0.36}_{-0.36}$	3.7
14.0 - 14.5	2.22$^{+0.31}_{-0.31}$	2.08$^{+0.41}_{-0.41}$	2.35$^{+0.43}_{-0.43}$	3.7
15.0 - 16.0	0.86$^{+0.18}_{-0.18}$	0.394$^{+0.164}_{-0.164}$	1.26$^{+0.28}_{-0.28}$	1.2
16.0 - 20.0	0.117$^{+0.067}_{-0.067}$	0.252$^{+0.12}_{-0.12}$	0.00$^{+0.442}_{-0.442}$	0.5

TABLE VI: SK-III observed energy spectra expressed in units of event/kton/year. The errors in the observed rates are statistical only. The expected rates neglecting oscillation are for the BP2004 SSM flux values. θ_z is the angle between the z-axis of the detector and the vector from the Sun to the detector.

![Graph](image)

FIG. 27: Ratio of observed and expected energy spectra. The dashed line represents the SK-III average.

A conventional two flavor analysis is done in order to compare directly with previous results. The results from all other solar neutrino experiments and KamLAND are combined in section IV C. The two-flavor analysis in SK-III is accomplished in basically the same way as the previous SK-I and SK-II analyses. Updates to the experimental data which are used in this analysis are explained in each section.

In section IV D, the results of the three flavor analysis are shown. The experimental data have been improved statistically and systematically and now have a few percent uncertainty. In this paper, we present the first result of a three-flavor analysis using full SK data information.

A. χ^2 definition

The oscillation analysis of SK uses the spectrum, time variation (zenith angle dependence), and total flux in determination of the solar neutrino oscillation parameters ($\theta_{12}, \Delta m_{12}$). For each set of oscillation parameters, the total 8B and hep neutrino fluxes are fit to the data. The entire SK-III observed spectrum is utilized for a 5.0 MeV threshold. The MSW [15] ν_e survival probabilities are numerically calculated from the solar matter distribution provided by SSM(BP2004). The absolute 8B and hep neutrino flux predictions of the SSM are only used as a normalization. The uncertainty of the 8B neutrino flux of the SSM is not used in the calculation of the χ^2. We use the uncertainty of the SNO neutral current (NC) measurement instead (see the next section); hence, the absolute 8B flux predicted by the SSM does not affect the fitted 8B neutrino flux value. For the hep neutrino flux, we use the uncertainty of the SSM, since experimental uncertainty is still large; hence the fitted hep neutrino flux is constrained by the SSM prediction. The predicted neutrino spectrum is then converted to an expected SK-III rate spectrum by using the $\nu - e$ elastic scattering
cross section and the SK-III detector energy resolution. To account for the systematic uncertainties in energy resolution as well as the energy scale and the \(^8\)B neutrino spectrum model shape, the combined rate predictions are modified by energy shape factors, \(f(E_i, \delta_B, \delta_S, \delta_R)\). The quantities \(\delta_B, \delta_S\), and \(\delta_R\) represent uncertainty in the \(^8\)B neutrino spectrum, SK-III energy scale, and SK-III energy resolution respectively. The function \(f\) serves to shift the rate predictions corresponding to a given uncertainty \(\delta\) in the data rate. The following equation describes the SK-III spectrum \(\chi^2\) along with energy-correlated systematic error shape factors applied to the expected rate:

\[
\chi^2_{\text{SK-III}} = \sum_{i=1}^{21} \left(\frac{d_i - (\beta b_i + \eta h_i) \times f(E_i, \delta_B, \delta_S, \delta_R)}{\sigma_i^2} \right)^2 + \left(\frac{\delta_B}{\sigma_B} \right)^2 + \left(\frac{\delta_S}{\sigma_S} \right)^2 + \left(\frac{\delta_R}{\sigma_R} \right)^2 + 2\Delta \log(\mathcal{L}) + \frac{(\phi_{\text{SNO}} - \beta)^2}{\sigma_{\text{SNO}}^2} + \frac{(1 - \eta)^2}{\sigma_{\text{hep}}^2},
\]

where \(d_i\) is the observed rate divided by the expected, unoscillated rate for the \(i^{th}\) energy bin. Similarly, \(b_i\) and \(h_i\) are the predicted MSW oscillated rates divided by the unoscillated rate for \(^8\)B and hep neutrinos respectively. \(\beta\) (\(\eta\)) scales the \(^8\)B (hep) neutrino flux. \(\mathcal{L}\) is the unbinned time-variation likelihood for the SK-III solar zenith angle flux variation above a 5.0 MeV threshold. This likelihood is analogous to the one used in SK-I and SK-II. The last two terms in the Equation 4.1 are the constraining terms of \(^8\)B and hep fluxes respectively. The value of \(\phi_{\text{SNO}}\) is the NC value coming from the measurement of SNO divided by the SSM flux value, and \(\sigma_{\text{SNO}}\) is the accompanying uncertainty of their measurements [19, 20]. The numerical values are \(\phi_{\text{SNO}} = 0.899\) and \(\sigma_{\text{SNO}} = 0.032\). \(\sigma_{\text{hep}}\) is the uncertainty of SSM prediction on the hep neutrino flux, which is 16% [7].

B. Oscillation Results - SK with constrained flux

The oscillation analysis is performed by including \(\chi^2\) terms corresponding to the SK-I and SK-II values (namely, the spectrum and unbinned time variation for SK-I and SK-II). By constraining the \(^8\)B flux to the total NC flux value from SNO, allowed parameter regions can be obtained. Figure 28 shows allowed regions at 95% confidence level. The result is consistent with previous SK-I and II results. This result is the first to show that the energy spectrum and the time variation of the solar neutrino flux measured by SK favor only LMA solution at 95% C.L., by constraining the \(^8\)B neutrino flux to the SNO NC flux and the hep neutrino flux to the SSM prediction.

C. Combined Oscillation Results from several experiments

The combination of other solar neutrino experimental results such as the SNO, Borexino and radiochemical results with the SK combined analysis is accomplished with a two-flavor neutrino oscillation analysis by constructing a global \(\chi^2\). For the SNO results, the total CC rates observed in the 306-day pure D\(_2\)O phase (SNO-I) [17], 391-day salt phases (SNO-II)[18], and 385-day NCD phase (SNO-III) [19], the combined NC rates of LEATA [20] and SNO-III, and the predicted day-night asymmetry for SNO-I and II are used. In this analysis, the correlations between the SNO CC and NC rates are not taken into account. The \(^7\)Be solar neutrino flux of Borexino’s 192-day [21] and the radiochemical experiments of Homestake [22], GALLEX-GNO [23], and SAGE [24] are then included into the global \(\chi^2\) with the fluxes and their correlations calculated by SSM in a way shown by [25]. Figure 29 shows the combined solar allowed region. The best fit parameter set is \(\sin^2 \theta_{12} = 0.30 \pm 0.02 (\tan^2 \theta_{12} = 0.42 \pm 0.02)\) and \(\Delta m^2_{21} = 6.2^{+1.5}_{-1.0} \times 10^{-5}\)eV\(^2\), consistent with the SK-I global analysis. In addition, combining the above and KamLAND data, the best fit parameter set is \(\sin^2 \theta_{12} = 0.31 \pm 0.01 (\tan^2 \theta_{12} = 0.44 \pm 0.03)\) and \(\Delta m^2_{21} = 7.6 \pm 0.2 \times 10^{-5}\)eV\(^2\) as shown in Figure 30.

Figure 31 shows the 95% allowed region for all solar experiments before and after the SK-III result is included. As shown in the figure, the SK-III result contributes about 5% improvement to the uncertainty of \(\Delta m^2_{12}\).
D. Three flavor analysis

In a three-flavor analysis, the calculation of oscillation probability is based on [27]. The probability can be calculated with three parameters: θ_{12}, θ_{13}, and Δm^2_{21}, assuming $\Delta m^2_{12} \ll \Delta m^2_{23} \sim \Delta m^2_{13}$. We fixed $\Delta m^2_{23} = 2.4 \times 10^{-3}$ eV2 and the normal hierarchy is assumed. For the solar neutrino oscillation, the other mixing parameters are irrelevant, but we set $\theta_{23} = \pi/4$ and $\delta_{CP} = 0$ in our calculation.

As done for the two-flavor analysis, the oscillation probabilities depending on different zenith angles are calculated, and then the rate of the radiochemical experiments, Borexino (7Be neutrino flux), and SNO (CC for all phases, NC for LETA and phase-III) are calculated. SNO day-night asymmetries for phase I and II are also predicted.

The KamLAND spectra and rates from surrounding reactors are calculated based on the information from the KamLAND official database [28] and the published paper [26]. Because the information in [28] is used for their second result [29], we normalized the calculated neutrino spectrum without oscillation to that of Figure 1 of [26]. The oscillation probability is calculated using three-flavor vacuum oscillation. The amount of background and systematic uncertainties for each energy bin are read from Figure 1 of [26]. The background is fixed in our calculation of χ^2. The systematic uncertainty for each energy bin is treated as an energy-un correlated systematic uncertainty. The systematic uncertainty of event rate on Table 1 of [26] is also taken into account. We checked first that the contour of the two-flavor analysis in Figure 2 of [26] was reproduced with $\theta_{13} = 0$. We also checked that our three-flavor contour was very close to the contour presented in [30], and consistent with their latest result [31].

The oscillation parameters are scanned in the following regions: 10^{-5} eV$^2 < \Delta m^2_{12} < 2 \times 10^{-4}$ eV2, $0.1 < \tan^2 \theta_{12} < 1.0$, and $0 < \sin^2 \theta_{13} < 0.25$. Figure 32 shows the allowed region of the solar neutrino parameters, $(\theta_{12}, \Delta m^2_{12})$, obtained by the three-flavor analysis of the global solar results. The allowed region for KamLAND obtained by our three-flavor analysis and the allowed region for global solar and KamLAND combined analysis are also shown in Figure 32. Inclusion of another oscillation parameter θ_{13} results in a weaker constraint.
on the solar parameter space.

Figure 33 shows the allowed region in \((\theta_{12}, \theta_{13})\) space obtained from the global solar analysis and our KamLAND analysis. As shown in the figure, in the global solar contour, the larger value of \(\theta_{13}\) prefers the larger value of \(\theta_{12}\), while in the KamLAND contour the larger value of \(\theta_{13}\) prefers the smaller value of \(\theta_{12}\). The global solar analysis finds that the best fit values at \(\sin^2 \theta_{12} = 0.31 \pm 0.03\) (\(\tan^2 \theta_{12} = 0.44 \pm 0.06\)) and \(\Delta m^2_{21} = 6.0^{+2.2}_{-2.5} \times 10^{-5}\)eV\(^2\). Combined with the KamLAND result, the best-fit oscillation parameters are found to be \(\sin^2 \theta_{12} = 0.31^{+0.03}_{-0.02}\) (\(\tan^2 \theta_{12} = 0.44^{+0.06}_{-0.04}\)) and \(\Delta m^2_{21} = 7.7 \pm 0.3 \times 10^{-5}\)eV\(^2\). The best fit value of \(\sin^2 \theta_{13}\) is 0.01, and an upper bound is obtained, \(\sin^2 \theta_{13} < 0.060\) at the 95\% C.L., for the global solar analysis. Combining with the KamLAND contour, the best fit value of \(\sin^2 \theta_{13}\) is \(0.025^{+0.018}_{-0.016}\) and the 95\% C.L. upper limit of the \(\sin^2 \theta_{13}\) is found to be 0.059.

The flux value of \(^8\)B neutrinos can be extracted using the oscillation parameters obtained from the fitting of the global solar and KamLAND result. As in Equation 4.1, \(\beta\) is a free parameter to minimize the \(\chi^2\) and there is no constraint from the SSM prediction in \(\chi^2_{K+SNO}\). Table VII summarizes the scaled \(^8\)B flux values by using \(\beta_m\) at the best fit point obtained by the global solar analysis and the global solar + KamLAND analyses in both two and three flavor analyses. The size of the error corresponds to the maximum and minimum flux values among the 1\(\sigma\) oscillation parameter region. As shown in the table, the \(^8\)B flux agrees well with the latest SSM prediction [32], and the size of the uncertainty is 2 \(\sim\) 3\% which is consistent with the SNO result [20].

V. CONCLUSION

Super-Kamiokande has measured the solar \(^8\)B flux to be \((2.32 \pm 0.04\) (stat.) \(\pm 0.05\) (sys.)) \(\times 10^{6}\) cm\(^{-2}\)s\(^{-1}\) during its third phase; the systematic uncertainty is smaller than for SK-I. Combining all solar experiments in a two flavor fit, the best fit is found to favor the LMA region at \(\sin^2 \theta_{12} = 0.30^{+0.02}_{-0.01}\) (\(\tan^2 \theta_{12} = 0.42^{+0.04}_{-0.02}\)) and \(\Delta m^2_{21} = 6.2^{+1.3}_{-1.9} \times 10^{-5}\)eV\(^2\). Combined with the KamLAND result, the best-fit oscillation parameters are found to be \(\sin^2 \theta_{12} = 0.31 \pm 0.01\) (\(\tan^2 \theta_{12} = 0.44 \pm 0.03\)) and \(\Delta m^2_{21} = 7.6 \pm 0.2 \times 10^{-5}\)eV\(^2\), in excellent agreement with previous solar neutrino oscillation measurements. In a three-flavor analysis combining all solar neutrino experiments and the KamLAND result, the best fit value of \(\sin^2 \theta_{13}\) is found to be \(0.025^{+0.018}_{-0.016}\) and an upper bound is obtained as \(\sin^2 \theta_{13} < 0.059\) at 95\% C.L..
VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. Super-K has been built and operated from funds provided by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the U.S. Department of Energy, and the U.S. National Science Foundation. This work was partially supported by the Research Foundation of Korea (BK21 and KNRC), the Korean Ministry of Science and Technology, the National Science Foundation of China, and the Spanish Ministry of Science and Innovation (Grants FPA2009-13697-C04-02 and Consolider-Ingenio-2010/CPAN).

[1] S. Fukuda et al., Nucl. Instr. Meth. A501 (2003) 418.
[2] J. Hosaka et al., Phys. Rev. D73 112001 (2006).
[3] J.P. Cravens et al., Phys. Rev. D78 032002 (2008).
[4] S. Fukuda et al. Nucl.Instr.and Meth. A 51 418 (2003).
[5] M. Smy, Proc. of the 30th ICRC, 5 1279 (2007).
[6] R.M.Pope and E.S.Fry, Appl. Opt. 36, 8710-8723 (1997).
[7] J.N.Bahcall and M.H.Pinsonneault, Phys. Rev. Lett. 92 121301 (2004).
[8] C.E.Ortiz, A.Garcia, R.A.Waltz, M.Bhattacharya, A.K.Komine.
[9] J.N.Bahcall et al., Phys. Rev. C54 411 (1996).
[10] W.T.Winter, S.J.Freedman, K.E.Rehm, J.P.Schiffer, Phys.
[11] Rev. C, 73 025503 (2006).
[12] J.N.Bahcall et al., Nucl. Phys. B (Proc. Suppl.), 77, 64-72
[13] M.Nakahata, et al. Nucl. Instr. Meth. A421 113 (1999).
[14] E.Blauffuss, et al., Nucl. Instr. Meth. A458 636 (2001).
[15] S.P. Mikheyev and A.Y. Smirnov, Sov. J. Nucl. Phys. 42
[16] 913 (1985); L. Wolfenstein, Phys. Rev. D17 2369 (1978).
[17] B. Aharmim et al., Phys. Rev. C, 75 045502 (2007).
[18] S.N.Ahmed et al., Phys. Rev. C. 72 055502 (2005).
[19] B. Aharmim et al., Phys. Rev. Lett. 101 111301 (2008).
[20] B. Aharmim et al., Phys. Rev. C 81 055504 (2010).
[21] C. Arpesella et al., Phys. Rev. Lett. 101 091302 (2008).
[22] B.T.Cleveland et al., Astrophys. J. 496 505 (1998).
[23] M. Altmann et al., Phys. Lett. B490 16 (2000); also pre-
[24] sented at Neutrino 2004 by C. Cattadori.
[25] J.N.Abdurashitov et al., Phys. Rev. C60 055801 (1999).
[26] J.N.Abdurashitov et al., Phys. Rev. C54 411 (1996).
[27] V.Barger,K.Whisnant,S.Pakvasa,R.J.N.Phillips, Phys.
[28] Rev. D. 22 2718 (1980).
[29] KamLAND official data base web page:
http://www.awa.tohoku.ac.jp/KamLAND/datarelease/2ndresult.html
[30] T. Araki et al., Phys. Rev. Lett. 94 081801 (2005)
[31] K. Ichimura for KamLAND collaboration, 34th Internation-
[32] al Conference on High Energy Physics (ICHEP 2008).
[33] A. Gando et al. arXiv:1009.4771
[34] A.M. Serenelli et al. arXiv:0909.2668v2