N and Z odd-even staggering in Kr + Sn collisions at Fermi energies

S. Piantelli, G. Casini, P.R. Maurenzig, A. Olmi, S. Barlini, M. Bini, S. Carboni, G. Pasquali, G. Poggi, A.A. Stefanini, S. Valdrè, R. Bougault, E. Bonnet, B. Borderie, A. Chbihi, J.D. Frankland, D. Gruyer, O. Lopez, N. Le Neindre, M. Fàrlog, M.F. Rivet, E. Vient, E. Rosato, G. Spadaccini, M. Vigilante, M. Bruno, T. Marchi, L. Morelli, M. Cinausero, M. Degerlier, F. Gramegna, T. Kozik, T. Twaróg, R. Alba, C. Maiolino, and D. Santonocito (FAZIA Collaboration)

1 Sezione INFN di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
2 Dipartimento di Fisica, Univ. di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
3 LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen-Cedex, France
4 GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen cedex, France
5 Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay cedex, France
6 Horia Hulubei, National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest-Măgurele, Romania
7 Sezione INFN di Napoli e Dip. di Fisica, Univ. di Napoli “Federico II”, I 80126 Napoli, Italy
8 Sezione INFN di Bologna and Dip. di Fisica, Univ. di Bologna, 40126 Bologna, Italy
9 INFN Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro (Padova) Italy
10 Neveshir University Science and Art Faculty, Physics Department, Neveshir, Turkey
11 Jagiellonian University, Institute of Nuclear Physics IFJ-PAN, PL-31342 Kraków, Poland
12 INFN Laboratori Nazionali del Sud, Via S.Sofia 62, 95125 Catania, Italy

(Dated: May 22, 2014)

The odd-even staggering of the yield of final reaction products has been studied as a function of proton (Z) and neutron (N) numbers for the collisions 84Kr+124Sn and 84Kr+124Sn at 35 MeV/nucleon, in a wide range of elements (up to $Z \approx 20$). The experimental data show that staggering effects rapidly decrease with increasing size of the fragments. Moreover the staggering in N is definitely larger than the one in Z. Similar general features are qualitatively reproduced by the GEMINI code. Concerning the comparison of the two systems, the staggering in N is in general rather similar, being slightly larger only for the lightest fragments produced in the n-rich system. In contrast the staggering in Z, although smaller than that in N, is sizably larger for the n-poor system with respect to the n-rich one.

PACS numbers: 25.70.-z, 25.70.Lm, 25.70.Mn, 25.70.Pq, 29.40.-n

I. INTRODUCTION

The odd-even staggering in the yields of reaction products is a feature that has been observed since many years in the charge distributions of a large variety of nuclear reactions. This phenomenon was extensively studied in relation to fission fragments of actinide nuclei (see, e.g., [1-4] and references therein), where it was attributed to pairing effects in the nascent fragments.

Odd-even staggering was observed also in light fragments produced by fragmentation or spallation at relativistic energies (see, e.g., [5, 6]) and more recently even in heavy ion collisions at Fermi energies (15 ≤ E/A ≤ 50 MeV/nucleon) [7-13]. The study of odd-even effects has gained renewed interest from this last finding. In fact, in order to study the symmetry energy [14, 16], one needs to reliably estimate the primary isotopic distributions of fragments and this is possible only if the effects of secondary decays are small or sufficiently well understood.

Usually the staggering consists in even-Z fragments presenting systematically higher yields with respect to the neighboring odd-Z ones. When isotopic identification is achieved (as in spectrometer-based experiments), additional features emerge: for example, fragments with $N = Z$ show a particularly strong staggering, while fragments with odd difference $N - Z$ present a reverse staggering (“anti-staggering”), favoring the production of fragments with odd Z [8, 17, 18]. Moreover, if systems with different N/Z are compared, the n-poor system shows an enhanced staggering in the charge distribution with respect to the n-rich one [8, 11, 17], while the opposite is observed for the N distribution [11].

In low-energy heavy-ion collisions, the odd-even staggering may be a signature of nuclear structure effects in the reaction mechanism, if part of the reaction proceeds through very low excitation energies [19]. In collisions at intermediate (or Fermi) energies the preferred interpretation is that structure effects are restored in the final products of hot decaying nuclei and that the odd-even staggering depends - in a complex and presently not very well understood way - on the structure of the nuclei produced near the end of the evaporation chain [5, 17, 20]. At present, no theoretical model exists that is able to reproduce all the details of the observed staggering, although some general characteristics are reproduced. For example, in [17] a staggering effect is observed in events...
simulated with the GEMINI code \cite{21}, where staggering originates from the mass parametrization that includes a pairing contribution \cite{22}, fading out with increasing excitation energy and spin. A comparison with the results of ISMM \cite{23} is presented in \cite{18}, where staggering is attributed to a pairing-dependent term, rapidly oscillating as a function of Z, that affects an otherwise smooth distribution.

In this work we present an analysis of the data taken by the FAZIA Collaboration \cite{24} in the collisions 84Kr +112Sn (henceforth “n-poor” system) and 84Kr+124Sn (“n-rich” system) at a bombarding energy of 35 MeV/nucleon. The odd-even staggering effects are investigated as a function of atomic number (Z staggering) and neutron number (N staggering) for the two colliding systems. Some comparisons with the results of GEMINI and with other experimental data available in literature are presented too.

II. SETUP AND EXPERIMENTAL RESULTS

The experiment was performed at the Superconducting Cyclotron of LNS (Laboratori Nazionali del Sud) of INFN in Catania. A pulsed beam of 84Kr at 35 MeV/nucleon was used to bombard two targets of 112Sn (areal density 415 $\mu g/cm^2$) and 124Sn (areal density 600 $\mu g/cm^2$). Reaction products were detected in a Si-Si-CsI(Tl) telescope of the FAZIA Collaboration (thicknesses: 300 μm, 500 μm and 10 cm, respectively), covering the angular range between 4.8° and 6°, close to the grazing angles of the two reactions (4.1° for the n-poor and 4.0° for the n-rich system). The same set of data was analyzed also in a recent paper \cite{25}, where the good performances of the FAZIA telescope in terms of charge and mass identification capability were used to investigate the isospin transport by means of fragments isotopically resolved up to Z = 20. More details on the experimental setup can be found in \cite{25,26} while the performances of the FAZIA telescopes are illustrated in \cite{26,30}.

The present analysis concerns ions identified with the $\Delta E - E$ technique, as it was done in Ref. \cite{24}. The data were acquired in singles, so a characterization of the centrality of the collisions is not possible. However, as explained on the basis of Fig. 2 in \cite{24}, from the accessible phase space region one can expect that most detected products are either quasi-projectile residues ($Z \sim 20–36$), or fission fragments of the quasi-projectile, with a possible component of emissions from the neck region (light fragments with velocities close to that of the center-of-mass). Since all products are forward emitted in the center-of-mass reference frame, it is reasonable to suppose that quasi-target contributions are negligible. As already shown in \cite{25}, the charge and mass distributions of the detected products present significant differences between the n-poor and n-rich systems, in spite of the fact that the projectile is the same and the accessible phase space is associated predominantly to quasi-projectile ejectiles. This fact was taken as a proof of isospin diffusion. We now want to investigate in how far some differences can be found also in the staggering of the final yields of fragments. It is worth noting that being staggering a differential effect between neighboring nuclei, the detection efficiencies cancel out almost exactly. Moreover, being the kinematics of the two colliding systems very similar, also geometric effects are practically the same in the two sets of data.

To put in quantitative evidence the odd-even staggering one has to remove from the experimental yields Y the dependence of the smoothed yield Y on varying proton or neutron number of the fragments. This can be obtained in various ways \cite{1,7,17}. The treatment of Tracy et al. \cite{1}, based on a finite difference method of third order, gives a quantitative measure of the effect and has been used by most authors. In this paper we have used a similar procedure, based on the finite differences of fourth order, that uses five data point and will be described in a forthcoming paper \cite{31}; one advantage is that it avoids using semi-integer values of Z. We have checked that anyhow the presented results are very little sensitive to the particular method used to estimate the smooth behavior of the yield. For each point of the yield distribution, one

FIG. 1: Staggering as a function of Z, highlighted by the ratio $R(Z)$ for the system (a) 84Kr+124Sn and (b) 84Kr+112Sn, both at 35 MeV/nucleon. Bars indicate statistical errors.

FIG. 2: Staggering as a function of N, highlighted by the ratio $R(N)$ for the system (a) 84Kr+124Sn and (b) 84Kr+112Sn, both at 35 MeV/nucleon. Bars indicate statistical errors.
can finally build the ratio between the experimental and the smoothed yields, \(R = Y/Y' \), which by construction oscillates above and below the line \(R = 1 \) and gives a direct visual impression of the staggering.

Figures 1(a) and 1(b) display the staggering in \(Z \) (already visible in the charge distributions of fig. 3 in Ref. [25]) by means of the ratio \(R(Z) \) for the \(n \)-rich \(n \)-poor systems, respectively. The amplitude of the odd-even effect is on average larger for the \(n \)-poor system, thus confirming the findings of previous papers [3, 11, 17]. Quantitatively the staggering in \(Z \) remains of the order of \(\approx \pm 10\% \). For both systems, the staggering is rather pronounced at low-medium \(Z \) (up to \(\approx 20 \)), then it tends to disappear for higher \(Z \) values. Around \(Z = 30 \) we observe a renewed increase of the staggering, mainly in the \(n \)-poor system. A very similar behavior was observed also in [12], both in inclusive analysis and with some selection of the centrality; in that case the studied system was \(^{112}\text{Sn}+^{58}\text{Ni} \) at 35 MeV/nucleon.

Thanks to the good isotopic resolution of the FAZIA telescopes, it is here possible to perform an extensive analysis also for the staggering in \(N \), for the first time in a rather wide range. Figures 2(a) and 2(b) present the staggering in \(N \) by means of the ratio \(R(N) \) for the two systems. Here the \(N \) distribution does not extend beyond \(N = 20 \), because we have isotopic resolution up to \(Z \approx 20 \) (and correspondingly up to \(N \approx 22 \), with the method requiring two points on both sides of each \(N \)). This is the limit of our isotopic resolution in the present case.

The most apparent –and to our knowledge rather new– feature is that the staggering as a function of \(N \) is large (definitely much larger than that in \(Z \)), especially for the lighter fragments where it reaches a rather surprising value of \(\approx \pm 30\% \), and slowly decreases with increasing \(N \). Indeed it strongly differs from the typical behavior in low-energy fission, where the fission fragments usually display a staggering in \(N \) weaker than in \(Z \) [3, 52]. The second observation is that, at first sight, the behavior of the staggering in \(N \) is very similar in the \(n \)-rich and \(n \)-poor systems, and this seems in contrast with the conclusions of Lombardo et al. [11] in lighter systems at 25 MeV/nucleon for \(4 \leq N \leq 13 \).

As in the method originally proposed by Tracy [1], one can use a parameter \(\delta(Z) = (-1)^Z(R(Z) - 1) \) to describe in a quantitative way the behavior of staggering phenomena: a positive \(\delta(Z) \) corresponds to the usual staggering that favors the production of even \(Z \) (or \(N \)); \(\delta(Z) \approx 0 \) means absence of any significant staggering, while negative \(\delta(Z) \) indicates a reverse effect (“anti-staggering”) favoring the production of fragments with odd \(Z \) (or \(N \)) values. The obtained values of the parameter \(\delta \) are presented in Fig. 3 both for the staggering in \(Z \) [part (a)] and in \(N \) [part (b)]; full symbols are for the \(n \)-poor system and open symbols for the \(n \)-rich one.

The main characteristics, already visible in Figs. 1 and 2, appear even clearer in this presentation: i) the staggering in \(N \) is significantly higher than that in \(Z \), by a factor of about 3 or more; ii) the staggering in \(N \) is indeed very similar for both systems (except for the marginal region \(N \leq 7 \)); iii) the staggering in \(Z \) tends to disappear above \(Z = 20 \) up to \(Z \sim 28 \), with a sudden clear bump (in spite of the large statistical errors) around \(Z = 30 \) [12], which is more pronounced for the \(n \)-poor system; iv) the staggering in \(Z \) shows some difference between the two systems, with the \(n \)-poor system featuring higher \(\delta \) below \(Z = 10 \), between \(Z = 12 \) and \(Z = 18 \), and around \(Z = 30 \). The negative value for \(\delta(Z) = 5 \) in Fig. 3 is caused by the missing \(^8\text{Be} \), which distorts the needed yield of Be isotopes much more than the yield of \(N = 4 \) isotones.

In fragmentation reactions it was observed [23] that the even-odd staggering in \(Z \) is reduced for \(n \)-rich projectiles (like \(^{40}\text{Ar} \)) with respect to symmetric ones (like \(^{36}\text{Ar} \)). Recently Lombardo et al. [11] found that also at Fermi energies a \(n \)-rich system has a reduced staggering in \(Z \) and an enhanced one in \(N \), while the opposite happens for a \(n \)-poor system. They drew their conclusion on the base of a parameter \(S \) (obtained from the squared deviations with respect to a polynomial fit to the yield distributions in the interval \(4 \leq N \leq 13 \) or \(4 \leq Z \leq 13 \), see [11]) that summarizes in a single number the average importance of the staggering in each system. Applying that procedure to our case would give too rough an approximation, because our distributions span a range more than twice as large and hence a simple polynomial fit would give a poor description of the smoothed distributions. Therefore we prefer to apply our procedure also to their data and present in Table 4 averaged values of the parameter \(\delta \), obtained in different ranges of \(Z \) and \(N \).

Our results show that the staggering in \(N \) is definitely larger than that in \(Z \), by a factor between 2 and 5. Concerning the comparison of the two systems, \(^{84}\text{Kr}+^{112}\text{Sn} \) and \(^{84}\text{Kr}+^{112}\text{Sn} \), the staggering in \(N \) is the same within errors when evaluated over the full distributions, thus supporting the visual impression already conveyed by Fig. 1 (and in seeming contradiction with [11]). However, if only nuclei in the range \(4 \leq N \leq 13 \) are used for averaging (as it can be done for the data of [11]), then it appears
that also in our case the n-rich system has a slightly enhanced staggering in N (0.242±0.003 vs. 0.224±0.004), which is mainly due to the lightest nuclei with N ≤ 7. In contrast, the weaker staggering in Z displays a difference of about a factor of 2 between the two systems (in fair agreement with [11]), that in our case persists almost independently of the considered range of Z.

The last two columns of Table I give the ratios \(\langle \delta_N \rangle / \langle \delta_Z \rangle \) between the staggering parameters in N and Z, evaluated in a common range. For light fragments (Z, N up to 11), the clear prevalence of N staggering over Z staggering is stronger in the n-rich system than in the n-poor one, a fact that can be inferred also from the data of [11]. This effect is slightly reduced in the larger range of Z, N up to 18. It is worth noting the systematic dependence of the staggering phenomena on isospin that is displayed by both experiments, in spite of the differences in total mass and bombarding energy. With increasing N/Z of the systems, the decrease of the staggering in Z is accompanied by an increase of the staggering in N. As a consequence, the ratio \(\langle \delta_N \rangle / \langle \delta_Z \rangle \) evolves from about 0.5 for symmetric matter (N/Z=1.0) to about 7 for the very asymmetric case (N/Z=1.4).

If one takes a look at the 1-proton (1-neutron) separation energies as a function of Z (N) for various N (Z), one finds a clear staggering, mainly due to pairing effects, but there is no apparent difference between protons and neutrons. Tentatively, one may relate the different magnitude of the staggering in Z and N to the common assumption that pairing correlations, similarly to shell effects, should be washed out with increasing excitation energy. Proton emission is expected to be more probable in the early steps of the evaporation (where the excitation energy is higher) rather than in the last ones, unless the system is very n-poor as in the case of \(^{40}\text{Ca} + ^{40}\text{Ca}\). Therefore proton emission might be less sensitive to pairing effects than neutron emission, which is expected to prevail in the last steps, also because it is insensitive to the repulsive effect of the Coulomb barrier.

To gain some more insight, we performed calculations with the code GEMINI for the statistical decay (evaporation and sequential fission followed by statistical evaporation) of nuclei with initial excitation energy and spin corresponding to a semiperipheral collision. The calculated results are found to be little sensitive to moderate variations of the input parameters. The experimental gross features of Fig. 4 are qualitatively reproduced. For example, in Figs. 4(a) and 4(b) the parameter \(\delta \) is presented as a function of Z and N for two decaying nuclei with 2.7 MeV/nucleon of excitation energy and spin J = 50. One nucleus (squares) is the \(^{84}\text{Kr}\) projectile, the other (dots) is a slightly lighter nucleus of \(^{74}\text{Ge}\), chosen to simulate some pre-evaporative emission, like e.g. in case of mid-velocity or pre-equilibrium phenomena. The magnitude of the N staggering is comparable to that of the experiment and rapidly decreases with increasing N; the magnitude of the Z staggering clearly remains below that of the N staggering. A more detailed reproduction of the experimental data is not attempted, because the initial distribution of decaying primary reaction products is unknown and cannot be simulated by the decay of a single nucleus with a single value of the excitation energy and spin.

In the literature, the staggering in Z has been often looked at for chains of constant neutron excess N−Z. Figure 5 shows this presentation of the data for the system \(^{84}\text{Kr} + ^{124}\text{Sn}\). Similar results are obtained for the other system \(^{84}\text{Kr} + ^{112}\text{Sn}\). In the upper left panel there are the chains with even N−Z and in the upper

![FIG. 4: Parameter δ for the staggering in Z (a) and N (b) from GEMINI simulations of the decay \(^{84}\text{Kr}\) (full squares) or \(^{74}\text{Ge}\) (full circles) at 2.7 MeV/nucleon of excitation energy.](image-url)
right one the chains with odd $N - Z$. One sees that the $N = Z$ chain displays by far the largest positive staggering, namely a strong enhancement of even Z with respect to the neighboring odd values resulting in positive values of δ. The effect for the other chains with even $N - Z$ is definitely smaller. In contrast, chains with odd $N - Z$ seem to display a negative staggering (or “antistaggering”), namely a depression of the yields of even Z (negative values of δ), which appears to be stronger for nuclei with larger values of $N - Z$.

A similar qualitative behavior (although with much larger uncertainties) is observed in Fig. 4 of [3] for the fragmentation of 1 GeV/nucleon 238U in a titanium target and an even quantitative agreement is found with the data of Fig. 11 of [3], concerning the spallation of 1 GeV/nucleon 136Xe in a liquid hydrogen target.

The general behavior observed in Fig. 5 can be understood simply from the fact that there is staggering both in N and Z (i.e., even N and Z values are enhanced and odd ones are depressed) and the effect is larger in N than in Z. The staggering is thus intensified for the even $N - Z$ chains of Fig. 5(a), which are formed only by even-even nuclei (benefiting from both enhancements) and odd-odd nuclei (depressed by both effects). In case of odd $N - Z$ chains, the nuclei are always odd-even or even-odd and therefore the staggering in N and Z works in opposite directions. The net result is that even Z are depressed due to the prevalent effect of odd N contributions and, conversely, odd Z are enhanced due to the prevalent effect of even N: the net result is the moderate “seeming “anti-staggering” visible in Fig. 5(b).

The same data can be plotted as a function of the neutron content N of the fragments, as shown in the lower panels of Fig. 5. The points are exactly the same as in the upper panels, there are just horizontal shifts for the various chains and an additional change of sign for all chains corresponding to odd-A nuclei in Fig. 5(d) with respect to Fig. 5(b). Therefore the seeming antistaggering in Z, commonly observed for odd mass nuclei, is an artifact of the selection: in reality the production of final fragments is intensified for even Z and even N nuclei, with a more pronounced effect for the N “pairing”. This is at variance with what was usually observed in low-energy fission.

III. SUMMARY AND CONCLUSIONS

In summary, we have investigated the odd-even staggering effects in the yields of fragments produced in two reactions with the same beam of 84Kr at 35 MeV/nucleon and two different targets, one n-rich (124Sn) and one n-poor (112Sn). The data were collected by the FAZIA Collaboration by means of a telescope located close to the projectile grazing angle. The high resolution of the telescope allowed us to obtain good isotopic identification for all ions in the wide range up to $Z \approx 20$.

The staggering was studied for complex fragments emitted in the phase space of the quasi-projectile (residues, fission products, midvelocity products). For the present analysis, the usual parameter δ [1], which allows to perform quantitative comparisons among different sets of data, has been slightly modified [3]. The staggering of medium-light fragments has been extensively analyzed as a function of both the atomic number Z and the neutron number N, for the first time over a rather wide range. It is found that, for a given reaction, the staggering in N is definitely larger than that in Z. In agreement with other authors [9, 11, 17], we observe in the n-poor system a larger staggering in Z with respect to the n-rich one, while the staggering in N is in general rather similar, being slightly larger only for the lightest fragments produced in the n-rich system. However the difference between the two systems is smaller for the staggering in N and varies with the considered range in N. Simulations with the GEMINI code [21] qualitatively reproduce the larger effect for N staggering.

The staggering in Z for selected values of the neutron excess $N - Z$ presents features similar to those already reported in literature [11, 17, 18]. Qualitatively they arise from the interplay between staggering in Z and N. The
production of final fragments is intensified for even values of both Z and N, with the latter dominating over the former. The reason why the staggering in N is larger than that in Z and their dependence on isospin remain for the moment obscure and deserve further investigations. They will strongly benefit from the future availability of unstable radioactive beams and from the development of high-resolution detectors, covering large solid angles and coupled with setups capable of a good characterization of the events.

Acknowledgments

Many thanks are due to the crew of the Superconducting Cyclotron, in particular D. Rifuggiato, for providing a very good quality beam, and to the staff of LNS for continuous support. The authors wish to warmly thank also R. J. Charity for discussions about the GEMINI code. The support of the detector and mechanical workshops of the Physics Department of Florence is gratefully acknowledged. Funding was received from the European Union Seventh Framework Programme FP7(2007-2013) under Grant Agreement No. 262010-ENSAR. We acknowledge support by the Foundation for Polish Science MPD program, co-financed by the European Union within the European Regional Development Fund.

[1] B. L. Tracy, J. Chaumont, R. Klapisch, J. M. Nitschke, A. M. Poskanzer, E. Roeckl, and C. Thibault, Phys. Rev. C 5, 222 (1972).
[2] I. Tsekhanovich, H. Denschlag, M. Davi, Z. Büyükmumcu, M. Wöstheinrich, F. Gönnenwein, S. Oberstedt, and H. Faust, Nucl. Phys. A 658, 217 (1999).
[3] K.-H. Schmidt, J. Benlliure, and A. Junghans, Nucl. Phys. A 693, 169 (2001).
[4] H. Naik, S. P. Dange, and A. V. R. Reddy, Nucl. Phys. A 781, 1 (2007).
[5] M. Ricciardi, A. Ignatyuk, A. Kelic, P. Napolitani, F. Rejmund, K.-H. Schmidt, and O. Yordanov, Nucl. Phys. A 733, 299 (2004).
[6] A. M. Poskanzer, G. W. Butler, and E. K. Hyde, Phys. Rev. C 3, 882 (1971).
[7] C. Zeitlin, L. Heilbronn, J. Miller, S. E. Rademacher, T. Borak, T. R. Carter, K. A. Frankel, W. Schimmerling, and C. E. Stronach, Phys. Rev. C 56, 388 (1997).
[8] P. Napolitani et al., Phys. Rev. C 76, 064609 (2007).
[9] L. B. Yang et al., Phys. Rev. C 60, 041602 (1999).
[10] E. M. Winchester et al., Phys. Rev. C 63, 014601 (2000).
[11] I. Lombardo et al., Phys. Rev. C 84, 024613 (2011).
[12] G. Casini et al., Phys. Rev. C 86, 011602 (2012).
[13] E. Geraci et al., Nucl. Phys. A 732, 173 (2004).
[14] M. Colonna and F. Matera, Phys. Rev. C 71, 064605 (2005).
[15] J. Su, F.-S. Zhang, and B.-A. Bian, Phys. Rev. C 83, 014608 (2011).
[16] A. Raduta and F. Gulminelli, Phys. Rev. C 75, 044605 (2007).
[17] M. D’Agostino et al., Nucl. Phys. A 861, 47 (2011).
[18] J. R. Winkelbauer, S. R. Souza, and M. B. Tsang, arXiv 1303.1160 (2013).
[19] G. Ademard et al., Phys. Rev. C 83, 054619 (2011).
[20] M. D’Agostino et al., Nucl. Phys. A 875, 139 (2012).
[21] R. J. Charity, Phys. Rev. C 82, 014610 (2010).
[22] P. Moller and J. Nix, Nucl. Phys. A 361, 117 (1981).
[23] S. R. Souza, P. Danielewicz, S. Das Gupta, R. Donangelo, W. A. Friedman, W. G. Lynch, W. P. Tan, and M. B. Tsang, Phys. Rev. C 67, 051602 (2003).
[24] http://fazia2.in2p3.fr/spip (2006).
[25] S. Barlini et al. (FAZIA Collaboration), Phys. Rev. C 87, 054607 (2013).
[26] S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012).
[27] L. Bardelli, G. Poggi, G. Pasquali, and M. Bini, Nucl. Instrum. Methods A 602, 501 (2009).
[28] L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011).
[29] N. Le Neindre et al., Nucl. Instrum. Methods A 701, 145 (2013).
[30] S. Barlini et al., Nucl. Instrum. Methods A 707, 89 (2013).
[31] A. Olmi et al., in preparation.
[32] G. Siegert, H. Wollnik, J. Greif, R. Decker, G. Fiedler, and B. Pfeiffer, Phys. Rev. C 14, 1864 (1976).
[33] C. N. Knott et al., Phys. Rev. C 53, 347 (1996).