High sensitivity characterization of an ultra-high purity NaI(Tl) crystal scintillator with the SABRE proof-of-principle detector

F. Calaprice,1,* S. Copello,2 I. Dafinei,3 D. D’Angelo,4,5 G. D’Imperio,3 G. Di Carlo,6 M. Diemoz,7 A. Di Giacinto,6 A. Di Ludovico,1 A. Ianni,6 M. Iannone,6 F. Marchegiani,6 A. Mariani,7,† S. Milanà,3,8 S. Nisi,6 F. Nuti,8 D. Orlandi,6 V. Pettinacci,3 L. Pietrofaccia,1 S. Rahatlou,3,9 M. Souza,1 B. Suerfu,10,‡ C. Tomei,3 C. Vignoli,6 M. Wada,11 and A. Zani4

1Physics Department, Princeton University, Princeton, NJ 08544, USA
2Dipartimento di Fisica, Università degli Studi di Genova and INFN Genova, Genova I-16146, Italy
3INFN - Sezione di Roma, Roma I-00185, Italy
4INFN - Sezione di Milano, Milano I-20133, Italy
5Dipartimento di Fisica, Università degli Studi di Milano, Milano I-20133, Italy
6INFN - Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila) I-67100, Italy
7Gran Sasso Science Institute, L’Aquila I-67100, Italy
8School of Physics, The University of Melbourne, Melbourne, VIC 3010, Australia
9Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
10University of California Berkeley, Department of Physics, Berkeley, CA 94720, USA
11AstroCeNT, Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Warsaw, Poland

We present new results on the radiopurity of a 3.4-kg NaI(Tl) crystal scintillator operated in the SABRE proof-of-principle detector setup. The amount of potassium contamination, determined by the direct counting of radioactive 40K, is found to be 2.2 ± 1.5 ppb, lowest ever achieved for NaI(Tl) crystals. With the active veto, the average background rate in the crystal in the 1-6 keV energy region-of-interest (ROI) is 1.20 ± 0.05 counts/day/kg/keV, which is a breakthrough since the DAMA/LIBRA experiment. Our background model indicates that the rate is dominated by 210Pb and that about half of this contamination is located in the PTFE reflector. We discuss ongoing developments of the crystal manufacture aimed at the further reduction of the background, including data from purification by zone refining. A projected background rate lower than ~0.2 counts/day/kg/keV in the ROI is within reach. These results represent a benchmark for the development of next-generation NaI(Tl) detector arrays for the direct detection of dark matter particles.

The existence of dark matter is widely accepted [1], yet the particle nature of dark matter is still an open fundamental question. Over the last 25 years, a series of experimental efforts have been made to search for the interaction of dark matter particles with ordinary matter in underground laboratories [1]. However, almost all efforts yielded null results despite the impressive progress in background reduction techniques and detector technologies [2–9]. Experimental efforts have mainly focused on the search for the so-called weakly-interacting massive particles (WIMPs) introduced in 1985 [10]. At present, the best sensitivity has been obtained with a ton-scale liquid xenon time projection chamber: the spin-independent WIMP-nucleon scattering cross section is estimated to be less than ~4×10\(^{-47}\) cm\(^2\) for a 30-GeV WIMP [2].

As an alternative way to probe particle dark matter, it was shown that the motion of the Earth around the Sun in the dark matter halo can induce an annual modulation in the dark matter interaction rate [11]. The modulation, which is of the order of a few % in amplitude, has a specific phase that allows to discriminate against other non-modulating and modulating backgrounds. This approach has been exploited by the DAMA experiment (short for DAMA/NaI and DAMA/LIBRA) [12], which has been observing a clear annual modulation in its array of 250-kg extremely radiopure NaI(Tl) crystals. The annual modulation is consistent with the dark matter hypothesis, but in the standard WIMP framework, it is in tension with other more sensitive direct detection experiments [2–6, 8, 13]. Due to a potential target-dependence of WIMP-nucleon interactions, a verification using the same target material is indispensable.

To test the DAMA annual modulation, ANAIS [14] and COSINE [15] are currently operating 112.5 kg and 106 kg of NaI(Tl) crystal scintillators, respectively. However, they could not provide a definite answer to the longstanding controversy due to their signal-to-noise ratio diminished by constant radioactive backgrounds several times higher than that observed in the DAMA crystals [16, 17]. Large fractions of the backgrounds come from radioactive contaminants in the crystal, most notably 40K, 210Pb and 3H. This indicates that the definitive test of the annual modulation claim has to be addressed by next-generation experiments using NaI(Tl) crystals with radiopurity similar to or below the DAMA level, such as in the proposed SABRE experiment [18].

In this article, we report a detailed study of the background components of an ultra-high radiopurity crystal grown for the SABRE experiment. While preliminary measurements on the same crystal had been performed on the surface [19] and underground inside a passive
This crystal—NaI-33—was grown using ultra-high purity NaI powder after a series of R&D activities [21, 22]. The preparation of the powder and the crucible were carried out at Princeton [19, 22] and the crystal growth was done at Radiation Monitoring Devices (RMD) in Massachusetts using the vertical Bridgman method [19, 23]. The crystal has a mass of 3.4 kg, and is wrapped with ten layers of PTFE tape (about 1 mm) and optically coupled directly to 3-inch Hamamatsu R11065 photomultiplier tubes (PMTs) that features high quantum efficiency and low radioactivity [19]. The crystal-PMT assembly is sealed inside a 2-mm-thick, high-purity copper enclosure [20], whose inner volume is constantly flushed with nitrogen gas to purge moisture and radon. The enclosure tubes (PMTs) that features high quantum efficiency and low radioactivity [19]. The crystal-PMT assembly is sealed inside a 2-mm-thick, high-purity copper enclosure [20], whose inner volume is constantly flushed with nitrogen gas to purge moisture and radon. The enclosure is deployed vertically via a 2-mm-thick, 121-cm-long blind-end copper tube into a 1.3-m-diameter, 1.5-m-long stainless steel veto vessel [18]. The veto vessel is filled with 2 tonnes of pseudocumene (PC) liquid scintillator and 2.86 g/L of 2,5-diphenyloxazole (PPO) wavelength shifter, and is instrumented with ten Hamamatsu R5912 8-inch PMTs to serve as active veto to enhance background rejection [21, 22]. The inner surface of the veto vessel is lined with reflective Lumirror foils to improve light collection [22]. The light yield of the active veto is measured to be 0.52±0.01 photoelectrons/keV (phe/keV) at 2615 keV using a 228Th calibration source. The veto vessel is further shielded from the cavern by an inner high-density polyethylene (HDPE, 10 cm on the top and bottom and at least 40 cm on the sides) and an outer gamma shielding (~90 cm of water on the sides and top, and 15-cm of lead on the bottom) [18]. A PTFE tube is used to position wire-mount calibration sources next to the copper enclosure.

The DAQ system consists of a CAEN V1495 custom FPGA trigger and two CAEN V1720 ADC boards (12-bit, 250 MS/s) [22]. The data acquisition is triggered by the logical AND between the two PMTs coupled to the crystal with a 125-ns coincidence window irrespective of the status of the veto detector [22]. Upon trigger, waveforms in the subsequent 3.5-µs window in all PMTs are digitized and read out by a dedicated DAQ software [24].

The light yield and FWHM resolution of NaI-33 crystal scintillator, measured by fitting the 59.5-keV photo-peak of an 241Am source, is determined to be 12.1 ± 0.2 phe/keV and 13.5%, respectively. The light yield is slightly higher than that measured in [20]. To determine the background rate in the 1-6 keV ROI, data were taken between August 9, 2020 and September 5, 2020 for a total exposure of 26.4 days. To reject coincident backgrounds, events with energy larger than 50 keV in the veto are rejected with 42% veto rejection power in the ROI. In addition, to reduce noise, the following cuts were applied:

- $\langle t \rangle_{600} = \frac{\sum_{t_i<600 \text{ ns}} h_i t_i}{\sum_{t_i<600 \text{ ns}} h_i} \in [140, 270] \text{ ns};$
- Trigger time delay $\in [-36, 36] \text{ ns};$
- No. of clusters in each PMT $\geq 2;$
- $C_{(0,1000)}/h_{\text{max}} > 50 \text{ ns};$
- $0.2 < C_{(200,400)}/C_{(0,200)} < 0.9;$
- $0.1 < C_{(400,600)}/C_{(200,400)} < 0.9.$

where h_i is the amplitude at time t_i in ns, and $C_{(t_1,t_2)}$ is the pulse area between t_1 and t_2 in ns. These variables are described in detail in [20]. Figure 2 shows the final acceptance rate as a function of energy after these cuts. The average event acceptance in the ROI is estimated to be 77.6% [25]. The energy spectrum after cuts and efficiency correction is shown in Fig. 3 (black dots) up to 100 keV, and in Fig. 4 up to 20 keV. The measured rate in 1-6 keV (1-10 keV) is 1.20 ± 0.05 cpd/kg/keV (1.09 ± 0.04 cpd/kg/keV).

A spectral analysis was performed to quantify the contribution of different background components [25]. Predicted spectral shapes from different background sources were calculated by Monte Carlo [26]. In the fit, the activities of the following components were treated as free or semi-free parameters: 40K, 210Pb, 3H, 226Ra, 232Th, 129I, 121mTe, 127mTe, and a flat component which includes 87Rb and other internal and external background contributions. In addition, 210Pb from the PTFE reflector wrapping the crystal was included to reproduce the peak at ~12 keV due to X-rays from 210Pb. In the spectral fit, a Gaussian penalty was applied to 40K with mean equal to 0.14±0.01 mBq/kg corresponding to
the prediction from ICP-MS measurements [19]. Assuming secular equilibrium for 226Ra and 232Th chain segments, Gaussian penalties ($(5.9 \pm 0.6)\mu Bq/kg$ for 226Ra and $(1.6 \pm 0.3)\mu Bq/kg$ for 232Th) were implemented based on measurements from 214Bi-Po and 212Bi-Po time-correlated events, respectively [20].

The result of the fit is shown in Fig. 3 and in Fig. 4. The p-value of the fit is equal to 0.26 with $\chi^2/N_{dof} = 96/88$. Table I summarises the breakdown of the background components determined from the fit. The background rate in the ROI, dominated by 210Pb in the bulk of the crystal and on the surface of the PTFE reflector, is found to be conservatively equal to 1.16 ± 0.10 cpd/kg/keV. The 40K activity is estimated to be 0.14 ± 0.01 mBq/kg. This value is consistent with an independent measurement of 40K using the coincidence between 3.2-keV X-ray/auger electrons in the crystal and 1.46 MeV gamma ray in the active veto, which yielded 0.07 ± 0.05 mBq/kg (2.2 ± 1.5 ppb, or < 4.7 ppb at 90% CL) despite limited statistics.

Table I. Background components in NaI-33 from the spectral fit, current rate in ROI (1-6 keV), and projected rate in ROI for future crystals. The future rate assumes underground crystal production with zone-refining purification and improved reflector radiopurity. The activity of 210Pb in the reflector is normalized to the crystal mass for comparison with bulk activities. Upper limits are given as one-sided 90% CL. Rates are conservatively calculated using upper limits.

Source	Activity in NaI-33 [mBq/kg]	Rate in ROI [cpd/kg/keV]	Projected rate in NaI-33 [cpd/kg/keV]	Projected rate in ROI [cpd/kg/keV]
40K	0.14 ± 0.01	0.018 ± 0.001	≤ 0.004	
210Pb (bulk)	0.41 ± 0.02	0.28 ± 0.01	$\leq 0.093 \pm 0.003$	
226Ra	0.0059 ± 0.0006	0.0044 ± 0.0005	0.0044 ± 0.0005	
232Th	0.0016 ± 0.0003			
3H	0.012 ± 0.007	≤ 0.12		
129I	1.34 ± 0.04			
121mTe	≤ 0.084	≤ 0.011		
127mTe	0.016 ± 0.006			
210Pb (PTFE)	0.32 ± 0.06	0.63 ± 0.09	≤ 0.007	
Other	0.10 ± 0.05	0.10 ± 0.05		
total	1.16 ± 0.10	0.21 ± 0.05		

The activity of bulk 210Pb is determined to be 0.41 ± 0.02 mBq/kg, consistent with earlier measurements using α counting of 210Po [19, 20]. Although this value is about one order of magnitude larger than that in DAMA, it is smaller than those in ANAIS and COSINE, where on average the activity is about 1 mBq/kg [27, 28].

The activity of 210Pb in the reflector is measured to be 1.1 ± 0.2 mBq, with the first 4μm from the crystal surface mostly responsible for background events.
Although the commercial PTFE tape was carefully cleaned by acid leach [22], this analysis indicates that the cleaning procedure is not very effective in removing 210Pb impurities. The 210Pb radioactivity of PTFE has been studied by other experiments: the special PTFE used in the CUORE-0 experiment has a 210Pb activity $\leq 123 \mu$Bq/kg$_{PTFE}$ (90% CL) [29, 30]; in the DarkSide-50 experiment [31], 210Pb activity in PTFE is measured to be ≤ 38 mBq/kg$_{PTFE}$ (90% CL) by γ-spectroscopy [32] and ≤ 46 mBq/kg$_{PTFE}$ by 210Po α counting [33]. These considerations imply that the background due to the PTFE reflector can be reduced to a secondary component by custom or special manufacturing of the PTFE tapes.

The activation rate of 3H in NaI is measured to be 83 ± 27 cpd/kg by ANAIS [34]. NaI-33 has undergone a 9-month surface exposure at sea level and a 12-month cooling underground. At the predicted activation rate, NaI-33 would have seen a 3H activity of (37 ± 12) μBq/kg. The actual 3H activity is estimated to be (12 ± 7) μBq/kg. Although limited by statistics, the 3H production rate in NaI-33 seems to be lower. One possibility is that the previously reported 3H rate is not entirely due to cosmogenic 3H, and instead varying amount of 3H is introduced into the crystal as NaOH impurity depending on the powder drying and crystal growth method [22].

To further improve radiopurity of crystals to be grown in the future, we have tested the zone refining of ultra-high purity NaI powder. Table II, reproduced from [35], shows that many impurities are greatly reduced in the first three samples (about 50% of the ingot), and in particular 40K and 87Rb are reduced to negligible levels.

Isotope	Impurity concentration (ppb)					
	Powder	S_1	S_2	S_3	S_4	S_5
20K	7.5	<0.8	<0.8	1	16	460
85Rb	<0.2	<0.2	<0.2	<0.2	<0.2	0.7
209Pb	1.0	0.4	0.4	<0.4	0.5	0.5
24Mg	14	10	8	6	7	140
133Cs	44	0.3	0.2	0.5	3.3	760
138Ba	9	0.1	0.2	1.4	19	330

Quantitatively, the reduction of K and Rb depends on the segregation coefficient k and the fraction of the purified material to be reserved [22, 35]. The segregation coefficient of K is estimated to be 0.57 while for Rb it is < 0.59 at 90% CL [35]. Based on this, Table III lists the reduction of impurity concentration for different combinations of number of zone passes and fraction of the material reserved (Fig. 9 in [35]). Based on this, the purity can be further improved by a factor of 10 with 25 zone passes (1-week processing time) and at the cost of 20% of the initial material, or at the same cost of material but with 50 zone passes (2-week processing time), the average purity can be improved by a factor of 25. Therefore, for future NaI crystals, the background due to 40K and 87Rb can be made subdominant compared to the amplitude of the modulation.

Table III. Reduction of K for different numbers of passes and when different fractions of the ingot is reserved.

No. of passes	Fraction of material retained	Impurity reduction			
	50%	60%	70%	80%	90%
10	0.3	0.36	0.42	0.48	0.56
25	0.03	0.050	0.07	0.11	0.25
50	0.001	0.0026	0.0086	0.037	0.18

210Pb is more or less uniformly reduced by a factor of ≈ 3 without following the typical impurity distribution of zone refining [35]. Although one can still exploit this factor of 3, zone refining is not as efficient in removing 210Pb. Thus we have started new R&D activity to explore alternative purification methods and have achieved preliminary progress. Since the analysis of data on the removal of Pb is still in progress, in this article, we adopt the conservative reduction factor for 210Pb obtained from zone refining alone.

With the aforementioned measures, a projected background rate of 0.21 cpd/kg/keV can be practically achieved in the future SABRE crystals (see Table I). In this projection, we have assumed the contamination level of NaI-33 for 40K and bulk 210Pb scaled by the reduction factor of zone refining in Table III. For 210Pb in the reflector, we have assumed a contamination equal to the upper limit for the PTFE measured in DarkSide-50. To suppress cosmogenic backgrounds to a negligible level, we are also investigating the possibility of establishing an underground crystal growth facility at the Canfranc Laboratory in Spain [36].

To quantify the sensitivity to the dark matter-induced annual modulation, the figure-of-merit (FoM) defined in [37] can be used where a small FoM indicates a high sensitivity. In this framework, the DAMA/LIBRA phase II [38] has FoM $= 8 \times 10^{-4}$ d$^{-1}$kg$^{-1}$keV$^{-1}$. A similar value of FoM can be obtained with a 60 kg\times5 yr exposure and the predicted background rate of 0.21 cpd/kg/keV in Table I. With the same exposure and background rate, the minimum detectable rate [39] is expected to be $\leq (2 \pm 1) \times 10^{-3}$ cpd/kg/keV at 90% CL, which is about 5 times less than DAMA modulation amplitude of $10.5 \pm 1.1 \times 10^{-3}$ cpd/kg/keV in 1-6 keV ROI [38]. On the other hand, for the current generation of NaI(Tl) detector arrays, several decades are needed to obtain the same FoM as DAMA/LIBRA phase II. Therefore, the present
backgrounds are due to bulk experiments except DAMA. At present, the dominant several times lower than all presently running NaI-based and paves the road to the next-generation NaI-based experiments with higher sensitivities.

This work has been supported by INFN funding and National Science Foundation under the award number PHY-1248625, PHY-1506397 and PHY-1620085.

We thank Ezio Previtali, Andrea Giuliani, and Monica Sisti for discussions about PTFE radiopurity in CUORE. We thank Fausto Ortica and Aldo Romani from Perugia University for support in photospectrometric measurements. We thank the Gran Sasso Laboratory for the support during the growth of crystals, the background in the ROI in future experiments with higher sensitivities.

1. G. Bertone and D. Hooper, Reviews of Modern Physics 90, 045002 (2018).
2. E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, L. Altheuser, F. Amaro, M. Anthony, F. Arneodo, L. Baudis, et al., Physical Review Letters 121, 111302 (2018).
3. D. Akerib, S. Alsum, H. Araujo, X. Bai, A. Bailey, J. Ballajthy, P. Beltrame, E. Bernard, A. Bernstein, T. Biesiadzinski, et al., Physical Review Letters 118, 021303 (2017).
4. X. Cui, A. Abdakerim, W. Chen, X. Chen, Y. Chen, B. Dong, D. Fang, C. Fu, K. Giboni, F. Giuliani, et al., Physical Review Letters 119, 181302 (2017).
5. P. Agnese, I. Albuquerque, T. Alexander, A. Alton, G. Araujo, M. Ave, H. Back, B. Baldin, G. Batignani, K. Biery, et al., Physical Review D 98, 102006 (2018).
6. G. Angloher, M. Bauer, I. Bavykina, A. Bento, C. Bucci, C. Cienniak, G. Deuter, F. von Feilitzsch, D. Hauff, P. Huff, et al., The European Physical Journal C 72, 1 (2012).
7. A. Aguilar-Arevalo, D. Amidei, D. Baxter, G. Canelo, B. C. Vergara, A. Chavarria, J. D’Olivo, J. Estrada, F. Favela-Perez, R. Gaier, et al., Physical Review Letters 125, 241803 (2020).
8. R. Agnese, T. Aralis, T. Aramaki, I. Arququist, E. Azadbakht, W. Baker, S. Banik, D. Barker, D. Bauer, T. Binder, et al., Physical Review Letters 121, 051301 (2018).
9. R. Agnese, T. Aralis, T. Aramaki, I. Arququist, E. Azadbakht, W. Baker, S. Banik, D. Barker, D. Bauer, T. Binder, et al., Physical Review Letters 122, 069901 (2019).
10. M. W. Goodman and E. Witten, Physical Review D 31, 3059 (1985).
11. A. K. Drukier, K. Freese, and D. N. Spergel, Physical Review D 33, 3495 (1986).
12. R. Bernabei et al., Prog. Part. Nucl. Phys. 114, 103810 (2020).
13. P. Agnes, I. Albuquerque, T. Alexander, A. Alton, G. Araujo, D. M. Asner, M. Ave, H. O. Back, B. Baldin, G. Batignani, et al., Phys. Rev. Lett. 121, 081307 (2018).
14. J. Amarè, S. Cebrian, I. Coarasa, C. Cuesta, E. Garcia, M. Martinez, M. Oliván, Y. Ortizgoza, A. O. de Solórzano, J. Puimedón, et al., The European Physical Journal C 79, 1 (2019).
15. G. Adhikari, P. Adhikari, E. B. de Souza, N. Carlin, S. Choi, W. Choi, M. Djamaï, A. Ezeribe, C. Ha, I. Hahn, et al., The European Physical Journal C 78, 1 (2018).
16. J. Amarè, S. Cebrian, I. Coarasa, C. Cuesta, E. Garcia, M. Martinez, M. Oliván, Y. Ortizgoza, A. O. de Solórzano, J. Puimedón, et al., Physical Review Letters 123, 031301 (2019).
17. G. Adhikari, P. Adhikari, E. B. de Souza, N. Carlin, S. Choi, M. Djamaï, A. Ezeribe, C. Ha, I. Hahn, E. Jeon, et al., Physical Review Letters 123, 031302 (2019).
18. M. Antonello, E. Barberio, T. Baroncelli, J. Benziger, L. Bignell, I. Bolognino, F. Calaprice, S. Copello, D. D’angelo, G. D’imperio, et al., The European Physical Journal C 79, 1 (2019).
19. B. Suerfu, M. Wada, W. Peloso, M. Souza, F. Calaprice, J. Tower, and G. Ciampi, Physical Review Research 2, 013223 (2020).
20. M. Antonello, I. Arququist, E. Barberio, T. Baroncelli, J. Benziger, L. Bignell, I. Bolognino, F. Calaprice, S. Copello, I. Dafinei, et al., The European Physical Journal C 81, 1 (2021).
21. E. K. Shields, SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors, Ph.D. thesis, Princeton University (2015).
22. Suerfu, Developing Ultra-Low Background Sodium-Iodide Crystal Detector for Dark Matter Searches, Ph.D. thesis, Princeton University (2018).
23. P. Bridgman, in Proceedings of the American academy of arts and sciences, Vol. 60 (JSTOR, 1925) pp. 305–383.
24. B. Suerfu, Journal of Instrumentation 13, T12004 (2018).
25. A. Mariani, The Proof-of-Principle of the SABRE experiment for the search of galactic dark matter through annual modulation, Ph.D. thesis, Gran Sasso Science Institute (2021).
26. M. Antonello, E. Barberio, T. Baroncelli, J. Benziger, L. Bignell, I. Bolognino, F. Calaprice, S. Copello, D. D’Angelo, G. D’imperio, et al., Astroparticle Physics 106, 1 (2019).
27. J. Amarè, S. Cebrian, I. Coarasa, C. Cuesta, E. Garcia, M. Martinez, M. Oliván, Y. Ortizgoza, A. O. De Solórzano, J. Puimedón, et al., The European Physical Journal C 79, 1 (2019).
28. G. Adhikari, P. Adhikari, E. B. de Souza, N. Carlin,
J. Choi, S. Choi, M. Djamal, A. Ezeribe, L. Franca, C. Ha, et al., arXiv preprint arXiv:2101.11377 (2021).

[29] C. Alduino, K. Alfonso, D. Artusa, F. Avignone III, O. Azzolini, M. Balata, T. Banks, G. Bari, J. Beeman, F. Bellini, et al., Journal of Instrumentation 11, P07009 (2016).

[30] C. Alduino, K. Alfonso, D. Artusa, F. Avignone, O. Azzolini, T. Banks, G. Bari, J. Beeman, F. Bellini, A. Bersani, et al., The European Physical Journal C 77, 1 (2017).

[31] P. Agnes, T. Alexander, A. Alton, K. Arisaka, H. Back, B. Baldin, K. Biery, G. Bonfini, M. Bossa, A. Brigatti, et al., Physics Letters B 743, 456 (2015).

[32] M. Laubenstein and P. Meyer, private communication (2020).

[33] G. Zuzel, K. Pelczar, and M. Wójcik, Applied Radiation and Isotopes 126, 165 (2017).

[34] J. Amaré, J. Castel, S. Cebrián, I. Coarasa, C. Cuesta, T. Dafni, J. Galán, E. García, J. Garza, F. Iguaz, I. Irastorza, G. Luzón, M. Martínez, H. Mirallas, M. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, J. Puimedón, E. Ruiz-Chóliz, M. Sarsa, J. Villar, and P. Villar, Astroparticle Physics 97, 96 (2018).

[35] B. Suerfu, F. Calaprice, and M. Souza, “Zone refining of ultra-high purity sodium iodide for low-background detectors,” (2021), arXiv:2105.06431 [physics.ins-det].

[36] A. Ianni, Journal of Physics: Conference Series 675, 012002 (2016).

[37] I. Coarasa, J. Amaré, S. Cebrián, C. Cuesta, E. García, M. Martínez, M. Oliván, Y. Ortigoza, A. O. de Solórzano, J. Puimedón, et al., The European Physical Journal C 79, 1 (2019).

[38] R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, V. Caracciolo, R. Cerulli, C. Dai, A. d’Angelo, A. Di Marco, H. He, et al., Nuclear Physics and Atomic Energy 19, 307 (2018).

[39] N. Tsoulfanidis, Measurement and detection of radiation (CRC press, 2010).