Time series analysis of Nevirapine syrup consumption in prevention of mother-to-child transmission and optimal supply chain model in Oshana region, Namibia

Emmanuel Magesa, Kabwebe Honore Mitonga, Pencheho Angula
School of Public Health, University of Namibia, Namibia

Abstract
HIV/AIDS continue to be serious communicable disease whose impact on public health in Namibia is massive. It is estimated that the prevalence rate of HIV in Namibia is 17.2%, ranking the country as the fifth highest in sub-Saharan Africa (SSA). Some improvement in reducing the number of cases of HIV/AIDS has been made in the country, but the sporadic shortage of medicines continues to slow down government efforts to foster the emergence of an HIV-free generation of Namibians. Develop and demonstrate a mathematical supply-chain model, which can establish parameters to prevent stock-outs of NVP syrup. The study done in various countries on inventory control with gamma probability distribution encompasses both normal and negative exponential probability distribution models to represent the lead time demand of fast- and slow-moving items respectively, as a special case but also to cover the gap left by them. These models play an important part in defining the optimal ordering and pricing policies. The study conducted in Eastern Uganda on strengthening the program for the prevention of mother to child transmission of HIV, noticed that there was no consistency of NVP syrup supply to the facilities.

Study design
A retrospective, quantitative, descriptive design was appraised over a five-year period (2012-2016).

Study setting
The study was conducted at Oshakati Multi Regional medical depot (OMRMD) and all primary health care (PHC) facilities in Oshana region except Eloolo clinic.

Sampling technique for health facilities
Oshakati Multi Regional medical depot (OMRMD) and all PHC facilities in Oshana region was selected in sampling.

Data collection procedures
Data of NVP syrup, on initial stock, quantity ordered, received, consumed and expired as from 2012-2016 were collected from all PHC facilities and OMRMD, by examining existing data from Syspro database for inventory management, baby and mother follow up monthly reports, NVP syrup register and Electronic dispensing tools (EDT).

Data analysis
The data were then analyzed by SPSS version 24 software, in which probability distribution of consumption for NVP syrup was determined. Simple linear regression was applied for time-series analysis to forecast consumption and predict when stock-out would occur. The significance level was set at < 0.05. Assumptions and notations were made in order to develop an optimal mathematical supply chain model.

Introduction
Strengthening of supply chain of Anti-retroviral therapy (ARVs) is very crucial in order to make essential medicines available. In Namibia, several efforts have been done to strengthen supply chain of ARVs, including strengthening Prevention of Mother to Child Transmission (PMTCT) programs, but sporadic shortage has been reported. The situation may be caused by the absence of a clear picture of aggregation of consumption figures of Nevirapine (NVP) syrup in medical stores and within health facilities, which has not been given much attention. This study has examined the supply-chain system in Oshana region and has developed an optimal mathematical supply-chat model, which is needed to ensure achievement of optimal conditions to prevent stock-outs of NVP syrup. The supply chain models help in determining the optimum level of inventories that should be maintained in managing the frequency of ordering, deciding on quantity of medicines to be stored, tracking the flow of supply chain to provide uninterrupted service to customers without any delay in delivery.

The study done in various countries on inventory control with gamma probability distribution encompasses both normal and negative exponential probability distribution models to represent the lead time demand of fast- and slow-moving items respectively, as a special case but also to cover the gap left by them. These models play an important part in defining the optimal ordering and pricing policies. The study conducted in Eastern Uganda on strengthening the program for the prevention of mother to child transmission of HIV, noticed that there was no consistency of NVP syrup supply to the facilities.

Assumptions:
(i) Daily demand is stochastic, i.e. daily demand is independent of each other
(ii) Inflation rate is constant.
(iii) Single supplier is considered.
(iv) Health facilities use periodic review inventory policy.
(v) Transport cost from OMRMD to all PHC facilities is constant.
(vi) The supply of NVP syrup is greater than the demand.
(vii) Storage capacity is the same to all PHC facilities.
(viii) The service level is 98%
(ix) Lead time for each level of the supply chain is constant.
(x) OMRMD deliver the same lot size when the PHC facilities write requisition.
(xi) Shortage of NVP syrup is not allowed.

Notations
(i) AMC= Total average monthly consumption of NVP syrup for all PHC facilities.

Correspondence: Emmanuel Salvatory Magesa, School of Public Health, University of Namibia, Namibia
E-mail: emgesa2002@yahoo.com

Key words: Nevirapine syrup; Mother to Child Transmission, HIV/AIDS.

Contributions: The authors contributed equally.

Acknowledgements: The authors wish to thank all staffs from Oshana health directorate who plays a key role in the supply chain of essential medicines for their support with the study. No funding was received for the study. There is no conflict of interest in this study. Conflict of interest: The authors declare no potential conflict of interest.

Funding: none

Ethics approval: The ethical approval was obtained from the University of Namibia (UNAM), School of Public Health, Ministry of Health and Social Services (MoHSS) and from respective study sites.

Received for publication: 26 January 2019.
Revision received: 5 August 2019.
Accepted for publication: 17 August 2020.

This work is licensed under a Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0).

©Copyright: the Author(s), 2020
Licensee PAGEPress, Italy
Journal of Public Health in Africa 2020; 11:1029
doi:10.4081/jphia.2020.1029
Qmax = AMC (L + rf) + zu

Qmax = μD (μL + rf) + zu

To prevent a stock out of NVP syrup during the lead time, the service level (1- α) should be 98%.

Therefore, Qmax = μD (μL + rf) + 2.05

2.05(μL + rf)σD + μDσ2L

The variance (V) = Expected demand (E)

V [DL + rf] = E [Σ i=1 t D(t)] = (rf + μL) μD.

(iii) The Variance (V) = V[DL + rf] = V [Σ i=1 t D(t)] = (rf + μD) σ2D + μ2L μ2D.

Null (H0) and alternative (Ha) hypothesis was stated that the frequency distribution of NVP syrup consumption follows gamma probability distribution and does not follow gamma probability distribution respectively.

As shown in Table 1: χ2(4) = 53.87, P= 0.16 > 0.05. Therefore, there is statistically significant evidence that the distribution of consumption of NVP syrup at PHC facilities and OMRMD follows a gamma distribution.

The classic multiplicative model (Yt=St, x I, x Tt) was used to derive seasonal and irregular components, while a simple linear regression was used to forecast and assess the fitness. Year 2-8, represent 2012-2018. MA (4) is a centered, moving average of four periods. CMA (4) is a centered, moving average of four periods. So is the seasonal trend, it is irregular trends, Cn is the forecasted consumption of Nevirapine syrup in over a quarter and Tt is the time trend.

Table 2 indicates that in quarter 1, 2 and 3 the consumption of NVP syrup is below the baseline by 17%, 19% and 28% respectively and quarter 4 is above the baseline by 37%. Consumption of NVP syrup in year 2017-2018 was forecasted.

For a month = 9.6/3= 3.2 days, therefore replenishment time is 10/3 = 3 (Table 3). Hence the standard deviation of lead time (σLT) = 13 days. This is also the amount of time that safety stock will have to hold at all health facilities combined. For the demand average (μD) = AMC =12393/60 = 206 B/240mL of NVP syrup = μD. For the daily demand of NVP syrup 12393/ 60 = 10B/240mL of NVP syrup. The safety stock (ss) is 13 x 10 = 130 B/240mL of NVP syrup. The safety stock level = ss = Z x σLT x μD = 2.05 x 13 x 10 = 266 B/240mL of NVP syrup as a safety stock.
Reorder point of NVP syrup (ROP)

ROP = 13 x 13 + 266 = 435 B/240ml of NVP syrup

Optimal reorder frequency

= 60 orders needed /32 orders requested = 1.8 months, which is equivalent to 1.8 x 4 weeks = 7 weeks. Optimal reorder frequency is 7 weeks.

Gamma supply chain model for consumption of NVP syrup

For the consumption of NVP syrup at health facilities, the mathematical model proposed is a gamma probability distribution model with probability density function as follows,

\[f(x; \alpha, \beta) = \frac{(x/\beta)^{\alpha-1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} \quad x \geq 0, \beta > 0. \]

The equation above can be rewritten as the equation below

\[\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt \quad \text{where} \quad \Gamma(\alpha) = \text{gamma function}. \]

\(\beta \) is scale parameter = variance /consumption of NVP syrup with non-zero observation = 48092/206 = 233. \(\alpha \) = shape parameter = consumption of NVP syrup with non-zero observation/standard deviation = 206/219 = 1. From the formula above \(\Gamma(\alpha) = 0.0018 \times 0.18\% \).

Table 4 shows that simulation of 2-month reorder interval is not far from the mean demand of 206.

In this study Monte Carlo simulation technique was used to assess the performance or the impact of gamma supply chain model at 1-month interval, 2-month interval and 3-month interval. Table 4 shows the impact of the supply chain model by a reorder interval of 1 month, 2 months and 3 months. In gamma probability distribution model 1000 cases were simulated. Note that exponential and normal distribution are the special cases of gamma distribution probability models.

Table 2. Quarter year consumption of NVP syrup and forecasting for all health facilities (N=60).

t	Year	Quarter	\(Y_t \)	MA (4)	Baseline CMA (4)	\(Y_t/CMA \) St, It	\(S_t \)	Deseasonalize	\(T_t \)	Forecasting
1	2	1	354			0.83	426	302	251	
2	2	2	738			0.81	911	339	275	
3	3	262	560.75	569.62	0.44	0.72	351	377	271	
4	4	898	578.5	556.87	1.61	1.37	655	414	567	
5	5	425	535.25	524.25	0.81	0.83	512	451	374	
6	6	256	513.25	460.12	1.23	0.81	697	489	396	
7	7	1	165	407	403.5	0.41	0.72	229	526	379
8	8	473	400	359.37	1.32	1.37	345	563	711	
9	9	1	397	318.75	357.62	1.11	0.83	478	601	499
10	10	2	140	396.5	417.25	0.57	0.81	296	638	516
11	11	1	476	348	424.37	1.08	0.72	661	676	457
12	12	4	639	446.75	465.62	1.37	1.37	466	713	977
13	13	1	432	484.5	475.75	0.91	0.83	520	750	622
14	14	2	391	467	450.62	0.87	0.81	482	788	638
15	15	3	406	434.25	421.5	0.96	0.72	563	825	594
16	16	4	508	488.75	429.9	1.18	1.37	370	863	1182
17	17	1	330	451	687.5	0.48	0.83	397	900	747
18	18	2	560	924	1014.6	0.55	0.81	691	937	759
19	19	3	2298	1105.3	722	0.72	3191	975	702	
20	20	4	1233			1.37	899	1012	1386	
21	21	1				0.83	1049	871		
22	22	2				0.81	1087	880		
23	23	3				0.72	1124	809		
24	24	4				1.37	1161	1591		
25	25	1				0.83	1199	995		
26	26	2				0.81	1236	1001		
27	27	3				0.72	1274	917		
28	28	4				1.37	265	363		
Discussion

Figure 1 shows that consumption of NVP syrup follows gamma distribution and this was confirmed by chi-square goodness of fit test as indicated in Table 1. In the consumption forecasting (Table 2) indicate that in every fourth quarter, there is an increase of NVP syrup consumption by almost 37%, while the first three quarters are 17%, 19% and 28% below baseline consumption respectively. Forecasted consumption of NVP syrup has considered all the irregularities or unexpected in NVP syrup consumption.7,8 Gamma supply chain model for NVP syrup was proposed based on the consumption distribution of Nevirapine syrup as indicated in Table 2. The model suggested help to accommodate the fluctuation of the demand of NVP syrup. The fluctuation can be due to seasonality, irregularities etc. as indicated in Table 2. The traditional method is ineffective in estimating consumption/demand, because it does not consider the effects of seasonality or irregularities in consumption of NVP syrup. This method assumes that the demand is normally distributed. As a result the sporadic shortage of medicines, including NVP syrup have been reported in public health facilities.1,2

Gamma supply chain model has been used in different field, to predict different events that might occur, hence appropriate measures can be taken, including inventories in pharmaceutical sector.9 Gamma model is fit to inventory of medicines as it is a flexible, which means it has characteristics of other probability distributions like normal, exponential and Poisson.3,4 Therefore, all these distribution models mentioned are part of gamma model.10 Different studies have shown efficiency of gamma model in strengthening inventories both in public and private health facilities.11,12 Gamma supply chain model was validated by simulation at 1, 2 and 3 month reorder interval as indicated in Table 4. The results show that the mean simulated is not far from mean demand of 206 B/240mL. Therefore, the gamma supply chain model is an appropriate fit in preventing stock out of NVP syrup by optimally estimated the demand of NVP syrup at reorder frequency of 7 weeks. In case of traditional method the ordering frequency is 6 weeks.13

Limitations

The study conducted in Oshana region only, and exclude the supply chain at the national level.

Conclusions and recommendations

Optimal gamma supply-chain model developed helps to prevent stock-outs of NVP syrup by predicting when a stock-out might occur, which enables appropriate measures for its prevention. Further studies are needed, which comprises the components of supply chain from all the levels from nation level.

References

1. Mabirizi D, Phulu B, Churfo W, et al. Implementing an Integrated Pharmaceutical Management Information System for Antiretrovirals and Other Medicines: Lessons From
Namibia. Glob Health Sci Pract 2018;6:723–735.

2. Mutenda N, Bukowski A, Nitschke AM, et al. Assessment of the World Health Organization’s HIV Drug Resistance Early Warning Indicators in Main and Decentralized Outreach Antiretroviral Therapy Sites in Namibia. PLoS One 2016;11:e0166649.

3. Li G, Lv F, Guan X. A collaborative scheduling model for the supply-hub with multiple suppliers and multiple manufacturers. Sci World J 2014;2014:894573.

4. Li L, Wang Y. Coordinating a supply chain with a loss-averse retailer and effort dependent demand. Sci World J 2014;2014:231041.

5. Türkay M, Saraçoğlu Ö, Arslan MC. Sustainability in Supply Chain Management: Aggregate Planning from Sustainability Perspective. PLoS One 2016;11:e0147502.

6. Yang L, Huang C, Liu C. Distribution of essential medicines to primary care institutions in Hubei of China: effects of centralized procurement arrangements. BMC Health Serv Res 2017;17:727.

7. Lane J, Verani A, Hijazi M, et al. Monitoring HIV and AIDS Related Policy Reforms: A Road Map to Strengthen Policy Monitoring and Implementation in PEPFAR Partner Countries. PLoS ONE 2016;11:e0146720.

8. Oshana District, Republic of Namibia. District coordination committee report; 2016.

9. Braglia M, Castellano F. A novel approach to safety stock management in a coordinated supply chain with controllable lead time using present value. Appl Stoc Mod Bus 2016;32:99-112.

10. Fang H, Jiang D, Yang T, et al. Network evolution model for supply chain with manufactures as the core. PLoS One 2018;13:e0191180.

11. Chapman F, Benjamin P, Sarah H, et al. Classical inventory model. Sci World J 2014;40.5: 1426–1441.

12. Liao G, Hung C, Meng C, et al. The Study of the Optimal Parameter Settings in a Hospital Supply Chain System in Taiwan. Sci World J 2014;967140.

13. Republic of Namibia, Ministry of Health and Social Services, Directorate of tertiary health care and clinical support services, division of pharmaceutical services. Pharmaceutical standard operation procedures (2nd Edition), 2014.