Research Article

Rapid Identification of Chemical Constituents in *Hericium erinaceus* Based on LC-MS/MS Metabolomics

Fei Yang, Honglin Wang, Guoquan Feng, Sulan Zhang, Jinmei Wang, and Lili Cui

1National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
2Zhengzhou Institute for Food and Drug Control, Zhengzhou 450006, Henan, China
3International School of Qiushi, Kaifeng 475009, China
4The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China

Correspondence should be addressed to Lili Cui; cuill@vip.henu.edu.cn

Received 19 February 2021; Revised 14 March 2021; Accepted 22 March 2021; Published 29 March 2021

Academic Editor: Xiao-zhi Tang

Copyright © 2021 Fei Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hericium erinaceus is a precious edible and medicinal fungus with high nutritional value. It has many functions, such as enhancing immunity, antitumor antioxidation, antihyperglycemic, antihyperlipidemic, and protecting gastric mucosa. However, there are few researches about the *H. erinaceus* compounds. In this paper, ultraperformance liquid chromatography tandem high-resolution mass spectrometry (UPLC-Q-exactive-MS/MS) was used to isolate and identify the compounds in *H. erinaceus*. 102 compounds were identified in *H. erinaceus* by comparing with standard databases such as MZVault, MZCloud, and BGI Library (self-built standard library by BGI Co., Ltd), including flavonoids, terpenoids, phenolic acids, phenylpropanoids, steroids, organic acids, and amino acids.

1. Introduction

Hericium erinaceus is a precious edible and medicinal fungus, and it is listed as one of the “Four Famous Cuisines” of China, together with bear’s paws, trepang, and shark’s fin [1]; it has been used for a long time in traditional Chinese medicine [2]. Researches showed that the chemical constituents of *H. erinaceus* include terpenoids, phenolics, steroids, pyranones, fatty acids, and alkaloids; about 80 small molecular compounds were isolated and identified from *H. erinaceus* [3]. Terpenoids in *H. erinaceus* were mainly diterpenoids with cyathane skeleton. Terpenoids in *H. erinaceus* were first isolated and identified by Kawagishi et al. from mycelia of *H. erinaceus*, named Erinacines A-C [4]. Subsequently, Kawagishi et al. isolated and identified Erinacines D-G, Erinacines J, and Erinacines K from mycelia of *H. erinaceus* [5–7]; Lee et al. isolated and identified Erinacines H and Erinacines I from mycelia of *H. erinaceus* [8]; Kenmoku et al. isolated and identified Erinacine P and Erinacine Q from mycelia of *H. erinaceus* [9, 10]. Most of these diterpenoids compounds were stimulators of nerve growth factor-synthesis. Phenolics were also main constituents in *H. erinaceus*. 8 phenolics were isolated and identified from fruiting bodies of *H. erinaceus* by the Kawagishi team between 1990 and 1993, named Hericenone A-H [11–13]. After that, three phenolics were isolated and identified by Arnone et al. [14] with 5′-carbonyl group replaced by 5′-methylene, named Hericenes A-C. Subsequently, two new phenolics were isolated from fruiting bodies of *H. erinaceus* by Ma et al. [15], named Hericenone I and Hericenone D; they have the same fatty acid chain. A new skeleton phenolic compound was isolated from fruiting bodies of *H. erinaceus* by Li et al. [16], named Erinacene D. In addition to terpenoids and phenolics compounds, *H. erinaceus* was rich in steroids, six new (erinarols A-F), and five known ergostane-type sterol fatty acid esters were isolated from the fruiting bodies of *H. erinaceus*; erinarols A and B significantly activated the transcriptional activity of PPARα, PPARγ, and PPARδ [17]. Previous pharmacological studies showed that *H. erinaceus*
had many pharmacological activities, such as regulating immunity [18, 19], neuroprotection [20, 21], antidepressant [22, 23], antioxidant [24], antitumor [25], anti-hyperglycemic [26], and antihyperlipidemic properties [27], and protecting gastric mucosa [28, 29].

High-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) technology has the advantage of rapid identification of compounds. With the maturity of LC-MS/MS technology, it is more and more widely used in the field of food and medicine [30–35]. In this study, ultraperformance liquid chromatography tandem high-resolution mass spectrometry (UPLC-Q-Exactive-MS/MS) combined with standard substance database was used to rapidly identify the chemical components of \textit{H. erinaceus}.

\section{Materials and Methods}

\subsection{Instrument.} The LC-MS experiment was carried out by ultraperformance liquid chromatography (Waters 2D UPLC, USA) and high-resolution mass spectrometry (Q Exactive, Thermo, USA). The Hypersil GOLD aQ column (100 mm×2.1 mm, 1.9 μm) was purchased from Thermo Fisher Scientific, USA. Low-temperature high-speed centrifuge (Centrifuge 5430) was purchased from Eppendorf. The vortex finder (QL-901) was purchased from Qilinbei Instrument Manufacturing Co., Ltd. The pure water meter (Milli-Q) was purchased from Integral Millipore Corporation, USA.

\subsection{Reagent.} \textit{d}_3-leucine, \textit{13C}_9-phenylalanine, \textit{d}_5-tryptophan, and \textit{13C}_3-progesterone were used as internal standards. Methanol (A454-4) and acetonitrile (A996-4) were both in mass spectral grade, which were purchased from \textit{H}ermo Fisher Scientific, USA. Ammonium formate (17843–250G) was obtained from Honeywell Fluka, USA. Formic acid (50144–50 mL) was obtained from DIMKA, USA.

\subsection{Materials.} Fruiting bodies of \textit{H. erinaceus} were obtained from Henan Longfeng Industrial Co., Ltd. The specimens (No. 2020-09-09) were saved in National Research and Development Center of Edible Fungi Processing Technology, Henan University.

\subsection{Preparation of Sample.} According to the methods commonly used by our team, dry fruiting bodies of \textit{H. erinaceus} were crushed by the grinding machine. 100 g of \textit{H. erinaceus} powder was immersed with 50% ethanol (1000 mL) for 2 times at room temperature, each time for 3 days. The filtrate was concentrated to obtain 48.6 g extract. 50 mg extract of \textit{H. erinaceus} was weighed, and then 800 μL of solution with 70% methanol: internal standard (V/V = 85 : 1) was added to the sample. Two small steel beads were added to the sample and ground in a tissue grinder (50 Hz, 5 min), ultrasound for 10 min at 4°C water, and the sample was placed for 1 h at −20°C. After that, the sample was centrifuged for 15 min at 4°C, 25000 rpm, 500 μL of supernatant was filtered through 96-well filter plate, and the filtrate was used to detect.

\subsection{Chromatographic Conditions.} The LC-MS experiment was carried out on Hypersil GOLD a Q column (100 mm×2.1 mm, 1.9 μm). The mobile phase was 0.1% formic acid-water (liquid A) and 0.1% formic acid-acetonitrile (liquid B). The elution gradient was as follows: 0−2 min 5% B; 2−22 min 5%−95% B; 22−27 min 95% B; 27.1−30 min 5% B. The flow rate was 0.3 mL/min, the column temperature was 40°C, and the injection volume was 5 μL.

\subsection{Mass Spectrometry Conditions.} The MS and MS2 data were collected by the Q Exactive mass spectrometer. The range of \textit{m/z} was 150−1500 with the MS resolution 70000, and the AGC was 1 × 106, and the maximum injection time was 100 ms. According to the strength of the MS ions, top3 was selected for determining MS2 fragmentation. The MS2 resolution was 35000, AGC was 2 × 106, the maximum injection time was 50 ms, and the fragmentation energy was set as 20, 40, and 60 eV. Ion source (ESI) parameters are as follows: sheath gas flow rate was 40, aux gas flow rate was 10, spray voltage (|KV|) of positive ion mode was 3.80, spray voltage (|KV|) of negative ion mode was 3.20, capillary temp was 320°C, and aux gas heater temp was 350°C.

\subsection{Data Analysis.} High-resolution mass spectrometer (Q Exactive, Thermo Fisher Scientific, USA) was used to collect data in positive and negative ion modes, respectively, to improve the chemical constituent coverage. Raw mass spectrum data collected by LC-MS/MS were imported into Compound Discoverer 3.1 (Thermo Fisher Scientific, USA) for data processing. It mainly includes peak extraction, retention time correction within and between groups, additive ion merging, missing value filling, background peak labeling, and metabolite identification. Finally, the molecular weight, retention time, peak area, and identification results of the compound were derived.

\section{Results}

\subsection{Total Ion Chromatogram.} The total ion chromatogram of \textit{H. erinaceus} is shown in Figure 1.

\subsection{Results of Compound Identification.} The compounds of \textit{H. erinaceus} were analyzed by LC-MS/MS; the identification of structure was based on the retention time, MS data, and MS2 data compared with the standard database. The identified compounds were classified into three grades (Level 1, Level 2, and Level 3) according to the comparison results, there into, Level 2 was confirmed on the basis of MS data, MS2 data, and properties of compounds, and Level 3 was identified on the basis of MS data and MS2 data. The credibility sequence is as follows: Level 1 > Level 2 > Level 3. Detailed results are shown in Table 1. 102 compounds were preliminarily identified in \textit{H. erinaceus} with grade of identification as Level 1 and Level 2, including 31 organic acids, 10 nucleotides and analogues, 8 amino acids, 6 carbohydrates and derivatives, 5 flavonoids, 3 unsaturated fatty acids, 3 terpenoids, 3 phenolic acids, 1 phenylpropanoid, 1
steroid, and 32 other compounds. Most flavonoids and organic acids were easily deprotonated and responded in the negative ion mode. Most nucleoside compounds were easily protonated and responded in the positive ion mode. The identification process of some compounds was as follows.

Compound 49, C_{13}H_{10}O_{6}, was easily deprotonated in the negative ion mode to produce ion m/z 285 [M − H]$^-$ and then RDA cracking to get 2 fragment ions m/z 133 [C_{6}H_{4}O_{2} − H]$^-$ and m/z 151 [C_{7}H_{4}O_{4} − H]$^-$, Compound 49 was identified as luteolin compared to the database and references [36]. The M^2 spectrum is shown in Figure 3.

Compound 60 produced ion m/z 283 [M − H]$^-$, then lost the methyl group, and got ion 268 [M − H − CH$_3$]$^-$, combined with retention time, MS data, and M^2 data, compound 60 was identified as acacetin by comparin with the database and references [37]. The M^2 spectrum is shown in Figure 2.

Compound 62 was easily protonated in the positive ion mode to produce ion m/z 249 [M + H]$^+$, then lost the hydroxyl group, and got ion m/z 231 [M + H − H$_2$O]$^+$, Compound 62 was identified as atracylenolide II by comparing with the database and references [38]. The M^2 spectrum is shown in Figure 4.

4. Discussion and Conclusion

In this study, 102 compounds were preliminarily identified in H. erinaceus, including organic acids, nucleotides and analogues, amino acids, carbohydrates and derivatives, flavonoids, unsaturated fatty acids, terpenoids, phenolic acids, phenylpropanoid, and steroid. It revealed that the compounds in H. erinaceus were diverse. Previous studies showed that the chemical constituents of H. erinaceus include terpenoids, phenolics, steroids, pyranones, fatty acids, and alkaloids; thereinto, reports about terpenoids and phenolics in H. erinaceus were more [3–16]. Terpenoids and phenolics were less in this study; the reasons may be different material parts, different origins, different varieties, different extraction methods, and so on. In addition, nucleotides were also the main constituents in H. erinaceus. Yan et al. [39] studied the content of five nucleosides in H. erinaceus from different habitats by high-performance liquid chromatography; the results showed that different origins of H. erinaceus had the same nucleoside components, such as cytosine, inosine, and adenosine, and the content of inosine and adenosine in H. erinaceus was higher. In this study, 10 nucleotides and analogues were identified, including adenosine, adenine, guanosine, guanine, and uridine.

Most of the compounds in H. erinaceus had a good biological activity; researches about polysaccharide were more, which had a wide variety of pharmacological functions such as antimicrobial, antiabetic, and antihypertension ones [1]. Small molecular compounds isolated from H. erinaceus also had many biological activities. Diterpenoids in H. erinaceus could promote the synthesis of nerve growth factors, such as Erinacines A, Erinacines B, Erinacines C, Erinacines D, Erinacines E, Erinacines F, Erinacines G, Erinacines H, and Erinacines I [4–6]. Phenolics compounds in H. erinaceus could also promote the synthesis of nerve growth factors, such as Hericenone C, Hericenone D, Hericenone E, and Hericenone H [12, 13]. Hericenones A and B showed cytotoxicity against HeLa cells [11]. In addition, Hericenone B was found to be a potential antiplatelet aggregation agent [40]. Steroids in H. erinaceus could activate the transcriptional activity of PPARs, PPAR, and PPARy, such as erinarols A and erinarols B. In addition, nucleosides and flavonoids may be the main active components of H. erinaceus. Nucleoside components have many biological activities, such as antitumor, antivirus, and gene therapy. Studies have shown that adenosine, inosine, and guanosine have many pharmacological effects such as regulating immunity, neuroprotection, and treatment of cardiovascular diseases [41]. Flavonoids also have many pharmacological effects, such as neuroprotection, antimyocardial ischemia, hypotension, improved learning and memory, antigastric ulcer, protection of reproductive tissue, anti-inflammatory, and antitumor [42].

In a word, H. erinaceus has high nutritional value and medicinal value. At present, it has been developed into a variety of functional foods, including health wine, health drinks, healthy yogurt, tea, cans, and health vinegar [2], which was of great significance to study the chemical composition of H. erinaceus. In this study, 102 compounds were preliminarily identified to provide reference for the follow-up study of H. erinaceus.
Number	Retention time (min)	Molecular formula	Relative molecular weight (Da)	The measured values (m/z)	Adduct ions	Error (ppm)	Peak	Compound name	Compound type	mzVault best match	mzCloud best match	Level
1	0.743	C₁₇H₂₃N₃O₁₇P₂	607.08113	606.07379	[M – H]⁻	-0.72	143833617.1	Udp-α-acetylglucosamine	Nucleotides and analogues	NA	95.8	Level 2
2	0.826	C₁₇H₂₃NO₃	161.10508	162.12124	[M + H]^+	-0.70	454543107.3	L(−)-Carnitine	Others	77.9	85.7	Level 2
3	0.869	C₅H₁₀O₅	134.02147	133.01422	[M – H]⁻	-0.41	2352956792.8	DL-Malic acid	Organic acids	NA	98.8	Level 2
4	0.87	C₃H₆O₃	116.011	115.00369	[M – H]⁻	0.33	1998652749.7	Fumaric acid	Organic acids	90.7	98.1	Level 1
5	0.883	C₅H₁₀O₅	129.04263	128.03534	[M – H]⁻	0.31	1198916725.1	4-Oxoprolipine	Amino acids	NA	88	Level 2
6	0.928	C₅H₁₀O₅	152.06831	151.06111	[M – H]⁻	-1.07	533909840.4	Ribitol	Carbohydrates and derivatives	90.6	98.1	Level 1
7	0.939	C₆H₁₀O₆	182.07893	181.07164	[M – H]⁻	-0.61	328836918.0	D(-)-Mannitol	Carbohydrates and derivatives	93.0	98.4	Level 2
8	0.94	C₁₂H₂₂O₁₂	358.1107	357.10416	[M – H]⁻	-1.19	58626917.89	Lactobionic acid	Carbohydrates and derivatives	87.8	NA	Level 1
9	1.026	C₆H₁₀O₇	182.07914	183.0865	[M + H]^+	0.55	272725138.5	Galactitol	Carbohydrates and derivatives	85.6	93.8	Level 1
10	1.061	C₉H₁₃N₅O₅	243.08565	244.07914	[2M + H]^+	0.55	156519671.1	Cytarabine	Nucleotides and analogues	79.0	85.6	Level 2
11	1.066	C₉H₁₃N₅O₅	181.07393	182.08116	[M + H]^+	0.21	226778893.2	L-Tyrosine	Amino acids	86.5	91.3	Level 2
12	1.079	C₆H₁₀O₇	222.07377	221.06636	[M – H]⁻	-0.81	939035522.5	Ethyl-β-d-glucuronide	Others	NA	96.2	Level 2
13	1.08	C₆H₁₀O₇	244.0691	243.0618	[M – H]⁻	-1.77	270847192.6	Uridine	Nucleotides and analogues	87.9	86.2	Level 2
14	1.084	C₆H₁₀O₇	192.02693	191.01961	[M – H]⁻	-0.38	261106825.7	Citric acid	Organic acids	92.1	96.7	Level 1
15	1.088	C₆H₁₀O₇	148.03713	147.02985	[M – H]⁻	-0.31	355626048.3	D-α-hydroxyglutaric acid	Organic acids	NA	91.2	Level 2
16	1.094	C₆H₁₀O₇	174.0163	173.00929	[M – H]⁻	-0.82	116011083.2	Trans-aconitic acid	Organic acids	43.7	81.9	Level 2
17	1.095	C₇H₁₁N₅O₅	189.06359	188.05672	[M – H]⁻	-0.67	91397041.99	N-acyl-dl-glutamic acid	Amino acids	NA	87.1	Level 2
18	1.099	C₆H₁₀O₇	178.04763	177.04068	[M – H]⁻	-0.59	177666674.9	Δ-Gluconic acid δ-lactone	Carbohydrates and derivatives	NA	90.6	Level 2
19	1.106	C₆H₁₀O₇	164.04747	165.03914	[M + NH₄]^+	0.74	246283181.7	2-Hydroxycinnamic acid	Phenylpropanoids	77.2	86.1	Level 2
20	1.134	C₆H₁₀O₇	118.02667	117.01939	[M – H]⁻	0.54	319467862.4	Succinic acid	Organic acids	91.9	91	Level 1
21	1.14	C₁₀H₁₂N₃O₄	267.09628	321.09454	[M + FA – H]⁻	-1.76	302054111.9	Adenosine	Nucleotides and analogues	86.1	85.2	Level 2
22	1.142	C₇H₁₀O₇	206.0424	205.03548	[M – H]⁻	-1.25	118715221.1	3-Hydroxy-3- (methoxy carbonyl) pentanedioic acid	Others	4.8	87.8	Level 2
23	1.143	C₇H₉N₃	135.05446	134.04736	[M – H]⁻	-0.25	111025841.7	Adenine	Nucleotides and analogues	76.2	81.1	Level 1
24	1.15	C₁₀H₁₃N₅O₅	283.0917	284.09888	[M + H]^+	0.12	843230783.7	Guanosine	Nucleotides and analogues	84.8	NA	Level 2
25	1.153	C₅H₉N₃O	151.04949	152.05672	[M + H]^+	0.53	291864775.2	Guanine	Nucleotides and analogues	80.0	91.6	Level 1
26	1.181	C₁₀H₁₃N₃O₃	251.1088	252.10921	[M + H]^+	0.17	597456561.5	2′-Deoxyadenosine	Nucleotides and analogues	84.5	93.6	Level 2
Number	Retention time (min)	Molecular formula	Relative molecular weight (Da)	The measured values (m/z)	Adduct ions	Error (ppm)	Peak	Compound name	Compound type	mzVault best match	mzCloud best match	Level
--------	---------------------	-------------------	-------------------------------	--------------------------	-------------	-------------	------	----------------	----------------	-----------------	-----------------	-------
27	1.187	C₆H₁₂O₆	180.0632	161.0457	[M – H – H₂O]⁻	-0.40	136214268.5	L-Sorbose	Carbohydrates and derivatives	66.2	89.4	Level 1
28	1.47	C₇H₁₃N₂O₄S	289.0893	289.0962	[M + H]⁺	-0.82	82256337.5	2′-o-Methyladenosine thymidinosine	Others	NA	85.2	Level 2
29	3.116	C₇H₁₃N₂O₄	204.08972	203.08231	[M – H]⁻	-0.75	46680672.16	1-Tryptophan	Amino acids	92	92.9	Level 1
30	3.123	C₁₁H₁₂N₂O₄	260.13022	260.13786	[M + H]⁺	0.17	228758811.1	2′-o-Methyladenosine thymidinosine	Others	NA	93	Level 2
31	3.29	C₇H₁₃N₂O₄S	297.08932	297.09625	[M + H]⁺	-0.82	82256337.5	2′-o-Methyladenosine thymidinosine	Others	NA	93	Level 2
32	4.218	C₇H₁₂O₃	126.03166	125.02444	[M – H]⁻	-0.27	23877907.5	Pyrogallol	Phenolic acids	85.7	69.8	Level 2
33	4.221	C₇H₁₂O₃	170.02147	169.01414	[M – H]⁻	-0.33	71859123.5	Gallic acid	Phenolic acids	85.5	84.6	Level 2
34	4.236	C₇H₁₂O₃	160.07347	159.06624	[M – H]⁻	-0.56	770557559.2	3-Methyladipic acid	Organic acids	87.1	96.9	Level 2
35	4.352	C₁₂H₁₃N₂O₄	216.08996	215.08209	[M + H]⁺	0.37	179365585.2	2,3,4,9-Tetrahydro-1H-β-carboline-3-carboxylic acid	Organic acids	NA	92.9	Level 2
36	4.734	C₆H₁₂O₃	132.07867	131.07133	[M – H]⁻	0.21	111408164.4	2-Hydroxyacproic acid	Organic acids	NA	89.2	Level 2
37	5.007	C₆H₁₂O₃	173.10533	172.10225	[M + H]⁺	0.77	49085835.4	N-Acetyl-L-leucine	Amino acids	84.2	88.9	Level 2
38	5.273	C₆H₁₂O₃	166.06292	165.05562	[M – H]⁻	-0.47	71202767.9	L(-)-3-Phenylactic acid	Others	79.8	92.4	Level 2
39	5.495	C₆H₁₂O₃	210.13664	210.13735	[M + H]⁺	-0.87	148811351.4	Cyclo(leucylprolyl)	Amino acids	86.6	86.6	Level 2
40	5.832	C₆H₁₂O₃	174.08912	173.08185	[M – H]⁻	-0.50	361132054.6	Suberic acid	Organic acids	89.2	92.8	Level 2
41	5.85	C₆H₁₂O₃	207.08931	206.08209	[M – H]⁻	-1.14	138547712.2	N-Acetyl-L-phenylalanine	Amino acids	89.4	88.5	Level 2
42	6.629	C₆H₁₂O₃	186.08906	185.08185	[M – H]⁻	-0.78	68946334.8	1-(Carboxymethyl)cyclohexanecarboxylic acid	Organic acids	NA	89.1	Level 2
43	6.977	C₆H₁₂O₃	242.08046	241.08263	[M + H]⁺	0.35	161472292.4	Lumichrome	Others	89.6	39.1	Level 2
44	7.755	C₁₁H₁₇N₂O₄	210.10987	210.11719	[M + H]⁺	-0.38	89473999.72	2-Hydroxyacproic acid	Organic acids	93.2	96.7	Level 1
45	7.998	C₁₁H₁₇N₂O₄	202.12036	201.13111	[M – H]⁻	-0.74	435644695.3	3-Tartaric acid	Organic acids	NA	87.5	Level 2
46	8.296	C₁₁H₁₇N₂O₄	286.04722	285.04053	[M – H]⁻	-1.80	17137849.28	Luteolin	Flavonoids	94.3	86.7	Level 2
47	9.458	C₁₁H₁₇N₂O₄	270.05241	269.04538	[M – H]⁻	-1.52	9772253.50	Apigenin	Flavonoids	96.2	86.7	Level 1
48	9.756	C₁₁H₁₇N₂O₄	300.06343	301.07077	[M + H]⁺	0.15	3178963.77	Diosmetin	Flavonoids	78	88.5	Level 2
49	9.757	C₁₁H₁₇N₂O₄	300.06297	299.05612	[M – H]⁻	-1.39	100200736.4	Hispidulin	Flavonoids	93	79.8	Level 1
50	9.785	C₁₁H₁₇N₂O₄	248.14096	249.14859	[M + H]⁺	-1.14	76530068.2	(3-ar,8r,8ar,9ar)-8-Hydroxy-8a-methyl-3,5-bis(methylene) decahydrobenzofuran-2(3H)-one	Others	81.7	80.9	Level 2
51	10.161	C₁₁H₁₇N₂O₄	194.13062	195.13806	[M + H]⁺	-0.32	139186228.7	Sedanolide	Others	NA	88.1	Level 2

Table 1: Continued.
Number	Retention time (min)	Molecular formula	Relative molecular weight (Da)	The measured values (m/z)	Adduct ions	Error (ppm)	Peak	Compound name	Compound type	mzVault best match	mzCloud best match	Level
55	10.163	C_{18}H_{34}O_{5}	330.24027	329.23309	[M − H]^-	−1.08	4975697767	(15z)-9,12,13-Trihydroxy-15-octadecenoic acid	Organic acids	NA	90.2	Level 2
56	10.459	C_{12}H_{20}O_{4}	230.15155	229.1442	[M − H]^-	−1.13	18453143.37	Dodecanedioic acid	Organic acids	NA	90.1	Level 2
57	11.508	C_{20}H_{30}O_{4}	334.21425	335.22144	[M + H]^+	−0.48	288459427.2	2-Hydroxy-4,5′,8a′-trimethyl-1′-oxo-4-vinylcyclohexyl-1′-h-spiro[cydopentane-1,2′-naphthapolene]-5′-carboxylic acid	Organic acids	68.1	85.2	Level 2
58	11.573	C_{16}H_{20}O_{5}	188.14116	187.13385	[M − H]^-	−0.46	612620120.09	10-Hydroxydecanoic acid Bis(methylbenzylidene) sorbitol	Organic acids	NA	85.5	Level 2
59	11.73	C_{22}H_{32}O_{6}	386.17282	387.17999	[M + H]^+	0.27	16230645.1	Acetatin	Flavonoids	94.6	83.2	Level 2
60	11.791	C_{16}H_{20}O_{5}	284.06798	283.06070	[M − H]^-	−1.75	1982609.94	Dodecanedioic acid	Organic acids	NA	90.1	Level 2
61	11.863	C_{15}H_{20}O_{5}	246.12566	247.13295	[M + H]^+	0.27	4367209.94	Argabin	Terpenoids	65	86.7	Level 2
62	12.006	C_{12}H_{18}O_{4}	248.14096	249.14842	[M + H]^+	−1.14	1670639.17	Atractylenolide III	Terpenoids	92.9	92.4	Level 2
63	12.437	C_{14}H_{18}O_{4}	258.18284	257.17584	[M − H]^-	−1.03	3550240.87	Tetradecanedioic acid	Organic acids	NA	88.7	Level 2
64	12.818	C_{20}H_{32}O_{5}	320.23487	321.24219	[M + H]^+	−0.37	240249419.6	3-Methyl-5-[(1s,2r,4ar)-1,2,4a,5-tetramethyl-7-oxo-1,2,3,4,4a,7,8,8a-octahydro-1-naphthol[enyl] pentanoic acid	Organic acids	78.1	90.5	Level 2
65	12.858	C_{20}H_{32}O_{2}	304.23998	305.24768	[M + H]^+	−0.83	6899745.63	Arachidonic acid Bis(4-ethylbenzylidene) sorbitol	Organic acids	61.9	89.3	Level 2
66	12.934	C_{21}H_{30}O_{5}	414.20413	415.21118	[M + H]^+	0.24	150755385.4	Ethyl paraben	Others	NA	94.9	Level 2
67	12.976	C_{19}H_{28}O_{3}	166.06299	167.07022	[M + H]^+	−0.02	92932147.44	4-Ethoxy ethylbenzoate	Others	NA	84	Level 2
68	12.977	C_{19}H_{28}O_{5}	194.09427	195.10172	[M + H]^+	−0.12	215420117.3	Ethyl paraben	Others	69	90.6	Level 2
69	13.247	C_{18}H_{28}O_{4}	314.24521	313.23795	[M − H]^-	−1.60	106403352.7	4-Hydroxy-12z-octadecenoic acid	Organic acids	94.9	Level 2	
70	13.379	C_{13}H_{26}O_{2}	266.15457	265.14728	[M − H]^-	−2.31	919909720.2	Dodecyl sulfate	Organic acids	94.3	Level 2	
71	13.427	C_{15}H_{26}O_{2}	300.20881	301.21606	[M + H]^+	−0.39	260138250.1	Isotretinoin	Organic acids	85.1	Level 2	
72	13.908	C_{18}H_{34}NO_{2}	297.26671	298.27426	[M + H]^+	−0.22	57608549.56	2-Aminoacetad-4-yne-1,3-diol	Others	NA	92.4	Level 2
73	14.152	C_{16}H_{30}O_{2}	292.20372	293.21088	[M + H]^+	−0.42	477279239	9,6,13r-12z-Oxophytoendioic acid	Organic acids	NA	92.4	Level 2
74	14.574	C_{12}H_{20}O_{2}	192.11508	193.12238	[M + H]^+	0.28	134018825.8	Senkunolide A	Others	85.9	NA	Level 2
75	14.763	C_{11}H_{4}NO_{2}	453.28511	452.27756	[M − H]^-	−0.95	115696629.3	Glycerophospho-n-palmitoyl ethanolamine	Others	NA	93.5	Level 2
76	14.975	C_{18}H_{30}O_{2}	278.22423	279.23184	[M + H]^+	−1.24	3057598727	A-Eleostearic acid	Unsaturated fatty acids	91	96.7	Level 2
Number	Retention time (min)	Molecular formula	Relative molecular weight (Da)	The measured values (m/z)	Adduct ions	Error (ppm)	Peak	Compound name	Compound type	mzVault best match	mzCloud best match	Level
--------	----------------------	-------------------	--------------------------------	---------------------------	-------------	-------------	------	---------------	--------------	-------------------	-------------------	-------
77	15.058	C₁₈H₃₆O₅S	326.19129	325.18396	[M − H]⁻	−0.84	934129316.5	4-Dodecylbenzenesulfonic acid (3s)-3-Methyl-5-[(1s,8ar)-2,5,5,8a-tetramethyl-4-oxo-1,4,4a,5,6,7,8,8a-octahydro-1-naphthalenyl] pentanoic acid	Others	NA	92.4	Level 2
78	15.149	C₂₀H₄₂O₃	320.23482	321.24207	[M + H]⁺	−1.02	654199927.6	Organic acids	64.3	89.1	Level 2	
79	15.292	C₁₈H₃₆O₂	278.22423	279.23172	[M + H]⁺	−1.26	1402325459	Pinolenic acid (r)-3-Hydroxy myristic acid	Organic acids	90.2	95.8	Level 2
80	15.332	C₁₈H₃₆O₃	244.20347	243.19621	[M − H]⁻	−1.52	22659032.03	Organic acids	NA	88.9	Level 2	
81	15.832	C₁₈H₃₆O₂	294.2195	295.22685	[M + H]⁺	0.003	5846063601	9-Oxo-10(e),12(e)-octadecadienoic acid	Organic acids	NA	97.6	Level 2
82	16.357	C₁₉H₃₈O₄	470.33934	471.34756	[M + H]⁺	−0.57	30986480.74	18-β-glycyr rhetic acid Ginkgolic acid 9(2),11(1),13(3)-octadecatrienoic acid methyl ester	Terpenoids	87.3	90.6	Level 2
83	17.175	C₂₀H₄₂O₃	320.23482	321.24222	[M + H]⁺	−1.02	129134534.2	Ginkgolic acid 9(2),11(1),13(3)-octadecatrienoic acid methyl ester	Phenolic acids	66	86.1	Level 2
84	17.422	C₁₈H₃₆O₂	292.23998	293.24725	[M + H]⁺	−0.87	84449956.04	Organic acids	NA	94	Level 2	
85	17.727	C₂₀H₃₄O₃	306.25582	307.26297	[M + H]⁺	−0.21	59379266.82	Linolenic acid ethyl ester	Others	91.1	96.2	Level 2
86	17.935	C₂₁H₄₈O₄	354.27685	355.28397	[M + H]⁺	−0.44	469393052.8	1-Linoleoyl glycerol	Others	NA	94.4	Level 2
87	18.154	C₁₆H₃₈O₃	272.23457	271.22726	[M − H]⁻	−2.12	232231687.4	16-Hydroxyhexadecanoic acid 3-Methyl-5-(5,5,8a-trimethyl-2-methylene-7-oxodecacydro-1-naphthalenyl) pentyl acetate	Organic acids	NA	93.3	Level 2
88	18.184	C₂₂H₅₄O₃	348.26628	349.2735	[M + H]⁺	−0.47	79521502.69	Others	NA	85	Level 2	
89	18.301	C₂₀H₃₄O₃	318.21935	319.22678	[M + H]⁺	−0.46	87070678.64	11-α-hydroxy-17-methyltestosterone	Steroids	74.9	85.5	Level 2
90	18.528	C₁₆H₃₂O₂	254.22444	255.23161	[M + H]⁺	−0.54	93625271.65	Palmitoleic acid	Organic acids	79.8	97.2	Level 2
91	18.532	C₁₆H₃₂O₂	254.22421	253.21733	[M − H]⁻	−1.45	75050753.73	Δ2-Trans-hexadecenoic acid	Unsaturated fatty acids	NA	86.4	Level 2
Number	Retention time (min)	Molecular formula	Relative molecular weight (Da)	The measured values (m/z)	Adduct ions	Error (ppm)	Peak	Compound name	Compound type	mzVault best match	mzCloud best match	Level
--------	---------------------	-------------------	-------------------------------	---------------------------	-------------	-------------	------	---------------	--------------	-------------------	-------------------	-------
92	18.608	C₁₈H₃₇NO₂	299.28227	300.28955	[M + H]⁺	−0.52	60691604.46	Palmitoyl ethanolamide	Others	NA	95.2	Level 2
93	18.618	C₂₀H₃₉NO₂	325.29787	326.30499	[M + H]⁺	−0.64	205900632.2	Oleoyl ethanolamide 5-((3z)-5-Hydroxy-3-methyl-3-penten-1-yl)-1,4a-dimethyl-6-methylenedecahydro-1-naphthalencarboxylic acid	Others	NA	94.2	Level 2
94	18.94	C₂₀H₃₂O₃	320.23475	319.228	[M − H][−]	−1.22	11930213.5	9(z),11(e)-Conjugated linoleic acid	Organic acids	80.5	86.2	Level 2
95	18.948	C₁₈H₃₅NO	280.23944	279.23248	[M − H][−]	−2.81	1954067053	Unsaturated fatty acids	Others	85.8	87.3	Level 2
96	19.741	C₁₈H₃₅NO	281.27169	282.27902	[M + H]⁺	−0.61	800775254.3	Oleamide	Others	NA	97.3	Level 2
97	20.138	C₁₈H₃₅NO	255.25604	256.26334	[M + H]⁺	−0.68	144475650.8	Hexadecanamide	Others	NA	90.2	Level 2
98	20.821	C₂₀H₃₄O₂	306.25582	307.26343	[M + H]⁺	−0.21	6347388.901	Linolenic acid ethyl ester	Others	90.2	96.2	Level 1
99	20.977	C₂₀H₄₂O₄	358.30821	359.31543	[M + H]⁺	−0.27	26828479.9	1-Stearoylglycerol	Others	91.3	89.1	Level 2
100	21.524	C₂₀H₄₂O₂	282.25578	283.26306	[M + H]⁺	−0.34	21237622.49	Ethyl palmitoleate	Others	64.8	93.9	Level 2
101	22.225	C₁₈H₃₇NO	283.28734	284.29741	[M + H]⁺	−0.61	133000171.1	Stearamide	Others	NA	90.6	Level 2
102	22.746	C₂₀H₃₄O₂	310.28707	311.29428	[M + H]⁺	−0.37	22068099.07	Ethyl oleate	Others	57.8	96.3	Level 2
Data Availability

The data used to support this study are available within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding this study.

Acknowledgments

This work was supported by the National Key R&D Program of China (2018YFD0400200), the Major Public Welfare Projects in Henan Province (201300110200), and the Key Project in Science and Technology Agency of Henan Province (192102110214 and 202102110283).

References

[1] M. Wang, Y. Gao, D. Xu, T. Konishi, and Q. Gao, “Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines,” Food & Function, vol. 5, no. 12, pp. 3055–3064, 2014.
[2] J. Y. Tan, J. J. Wang, X. L. Wang et al., “The health value of Hericium erinaceus (Review),” Edible and Medicinal Mushroom, vol. 23, no. 3, pp. 188–193, 2015.
[3] Y. Zhang, Chemical Constituents of Hericium erinaceus, Northwest A & F University, Xianyang, China, 2016.
[4] H. Kawagishi, A. Shimada, R. Shirai et al., “Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum,” Tetrahedron Letters, vol. 35, no. 10, pp. 1569–1572, 1994.
[5] H. Kawagishi, A. Simada, K. Shizuki et al., “Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum,” Heterocyclic Communications, vol. 2, no. 1, pp. 51–54, 1996.
[6] H. Kawagishi, A. Shimada, S. Hosokawa et al., “Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum,” Tetrahedron Letters, vol. 37, no. 41, pp. 7399–7402, 1996.
[7] H. Kawagishi, A. Msui, S. Tokuyama, and T. Nakamura, “Erinacines J and K from the mycelia of Hericium erinaceum,” Tetrahedron, vol. 62, no. 36, pp. 8463–8466, 2006.
[8] E. W. Lee, K. Shizuki, S. Hosokawa et al., “Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum,” Bioscience, Biotechnology, and Biochemistry, vol. 64, no. 11, pp. 2402–2405, 2000.
[9] H. Kenmoku, T. Sassa, and N. Kato, “Isolation of erinacine P, a new parental metabolite of cythane-xylidosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B,” Tetrahedron Letters, vol. 41, no. 22, pp. 4389–4393, 2000.
[10] H. Kenmoku, T. Shirai, T. Toyomasu, N. Kato, and T. Sassa, “Erinacine Q, a new erinacine from Hericium erinaceum, and its biosynthetic route to erinacine C in the basidiomycete,” Bioscience, Biotechnology, and Biochemistry, vol. 66, no. 3, pp. 571–575, 2002.
[11] H. Kawagishi, M. Ando, and T. Mizuno, “Hericenone A and B as cytotoxic principles from the mushroom,” Tetrahedron Letters, vol. 31, no. 3, pp. 373–376, 1990.
[12] H. Kawagishi, M. Ando, H. Sakamoto et al., “Hericenones C, D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum,” Tetrahedron Letters, vol. 32, no. 35, pp. 4561–4564, 1991.
[13] H. Kawagishi, M. Ando, and K. Shinba, “Chromans, hericenones F, G and H from the mushroom of Hericium erinaceum,” Phytochemistry, vol. 32, no. 1, pp. 175–178, 1993.
[14] A. Arnone, R. Cardillo, G. Nasini, and O. V. de Pava, “Secondary mold metabolites: part 46. hericenes A-C and erinapyrone C, new metabolites produced by the fungus Hericium erinaceus,” Journal of Natural Products, vol. 57, no. 5, pp. 602–606, 1994.
[15] B.-J. Ma, H.-Y. Yu, J.-W. Shen et al., “Cytotoxic aromatic compounds from Hericium erinaceum,” The Journal of Antibiotics, vol. 63, no. 12, pp. 713–715, 2010.
[16] W. Li, Y. N. Sun, W. Zhou, S. H. Shim, and Y. H. Kim, “Erinacene D, a new aromatic compound from Hericium erinaceum,” The Journal of Antibiotics, vol. 67, no. 10, pp. 727–729, 2014.
[17] W. Li, W. Zhou, S. B. Song, S. H. Shim, and Y. H. Kim, “Sterol fatty acid esters from the mushroom Hericium erinaceum and their PPAR transactivational effects,” Journal of Natural Products, vol. 77, no. 12, pp. 2611–2618, 2014.
[18] Z. Liu, L. Liao, Q. Chen et al., “Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in muscovy duck reovirus-infected ducklings,”
W. Li, W. Zhou, E.-J. Kim, S. H. Shim, H. K. Kang, and B. Liang, Z. D. Guo, F. Xie, and F. Zhao, “Antihyperglycemic effects of Hericium erinaceus (Bull.: Fr.) Pers. against high-dose corticosterone-induced oxidative stress in PC-12 cells,” BMC Complementary Medicine and Therapies, vol. 20, no. 1, p. 340, 2020.

P. S. Chong, S. Khairuddin, A. C. K. Tse et al., “Hericium erinaceus potentially rescues behavioural motor deficits through ERK-CREB-PSD95 neuroprotective mechanisms in rat model of 3-acetylpyridine-induced cerebellar ataxia,” Scientific Reports, vol. 10, no. 1, p. 14945, 2020.

F. Limanaqi, F. Biagioni, C. L. Busceti, M. Polzella, C. Fabrizi, and F. Foraini, “Potential antidepressant effects of scutellaria baicalensis, Hericium erinaceus and Rhodiola Rosea,” Anti-oxidants (Basel, Switzerland), vol. 9, no. 3, p. 234, 2020.

P. S. Chong, M.-L. Fung, K. H. Wong, and L. W. Lim, “Therapeutic potential of Hericium erinaceus for depressive disorder,” International Journal of Molecular Sciences, vol. 21, no. 1, p. 163, 2019.

T. Qin, X. Liu, Y. Luo et al., “Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress,” International Journal of Biological Macromolecules, vol. 152, pp. 1265–1273, 2020.

W. Li, W. Zhou, E.-J. Kim, S. H. Shim, H. K. Kang, and Y. H. Kim, “Isolation and identification of aromatic compounds in lion’s mane mushroom and their anticancer activities,” Food Chemistry, vol. 170, pp. 336–342, 2015.

B. Liang, Z. D. Guo, F. Xie, and F. Zhao, “Antihyperglycemic and antihyperlipidemic activities of aqueous extract of Hericium erinaceus in experimental diabetic rats,” BioMed Central, vol. 13, no. 1, p. 253, 2013.

K. Hiwatashi, Y. Kosaka, N. Suzuki et al., “Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet,” Bioscience, Biotechnology, and Biochemistry, vol. 74, no. 7, pp. 1447–1451, 2014.

E. D. Yuan, M. Huang, L. Li et al., “Protective effect of Hericium erinaceus mycelium/fruit body polysaccharide on gastric mucosa,” Journal of Chinese Institute of Food Science and Technology, vol. 20, no. 11, pp. 71–78, 2020.

W. Chen, D. Wu, Y. Jin et al., “Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats,” International Journal of Biological Macromolecules, vol. 159, pp. 948–956, 2020.

M. Hamza, E. Imane, A. Amal et al., “Antioxidant, anti-inflammatory and antidiabetic properties of LC-MS/MS identified polyphenols from coriander seeds,” Molecules, vol. 26, no. 2, p. 487, 2021.

Q. Y. Zhang, X. J. Wang, X. M. Wang et al., “Development of a pass-through SPE cartridge for the rapid determination of fipronil and its metabolites in chicken eggs by LC-MS/MS,” Food Analytical Methods, 2021.

W. Li, Y. Zhang, S. Shi et al., “Spectrum-effect relationship of antioxidant and tyrosinase activity with malus pumila flowers by UPLC-MS/MS and component knock-out method,” Food and Chemical Toxicology, vol. 133, p. 110754, 2019.

J. Ma, S. Fan, L. Sun, L. He, Y. Zhang, and Q. Li, “Rapid analysis of fifteen sulfonamide residues in pork and fish samples by automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry,” Food Science and Human Wellness, vol. 9, no. 4, pp. 363–369, 2020.

S. Fan, J. Ma, M. Cao et al., “Simultaneous determination of 15 pesticide residues in Chinese cabbage and cucumber by liquid chromatography-tandem mass spectrometry utilizing online turbulent flow chromatography,” Food Science and Human Wellness, vol. 10, no. 1, pp. 78–86, 2021.

J. M. Ma, Q. Li, S. F. Fan et al., “Determination of 8 endogenous alkaloid components in boletus using ultrahigh-performance liquid chromatography combined with quadrupole-time of flight mass spectrometry,” Journal of Food Quality, vol. 2020, Article ID 8865725, 10 pages, 2020.

Q. Q. Xu, B. H. Bao, L. Zhang et al., “UPLC-QTOF-MS analysis and multicomponent quantitative analysis of cayratia japonica,” Journal of Nanjing University Traditional Chinese Medicine, vol. 36, no. 4, pp. 517–524, 2020.

X. N. Lu, Y. W. Zheng, F. Wen et al., “Study of the active ingredients and mechanism of Spargani rhizoma in gastric cancer based on HPLC-Q-TOF–MS/MS and network pharmacology,” Scientific Reports, vol. 11, no. 1, p. 1905, 2021.

Y.-Y. Shi, S.-H. Guan, R.-N. Tang, S.-J. Tao, and D.-A. Guo, “Simultaneous determination of atractylenolide II and atractylenolide III by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of atractylodes macrocephala rhizoma extract,” Biomedical Chromatography, vol. 26, no. 11, pp. 1386–1392, 2012.

X. X. Yan, H. Zhang, F. K. Zhang et al., “Determination of five nucleosides in Hericium erinaceus from different habitats by high performance liquid chromatography,” Chinese Journal of Traditional Medical Science and Technology, vol. 25, no. 4, pp. 520–522, 2018.

K. Mori, H. Kikuchi, Y. Obara et al., “Inhibitory effect of hericenone B from Hericium erinaceus on collagen-induced platelet aggregation,” Phytomedicine, vol. 17, no. 14, pp. 1082–1085, 2010.

X. J. Ding, L. Xiong, Q. M. Zhou et al., “Advances in studies on chemical structure and pharmacological activities of natural nucleosides,” Journal of Chengdu University of TCM, vol. 41, no. 2, pp. 102–108, 2018.

J. H. Qi and F. X. Dong, “Research progress of the pharmacological action of flavonoids,” Journal of Beijing Union University, vol. 34, no. 3, pp. 89–92, 2020.