Implementing NB-IoT in Software - Experiences Using the srsLTE Library

André Puschmann, Paul Sutton, Ismael Gomez

WInnComm Europe 2017, Oulu, Finland
Outline

• Introduction

• Narrowband Internet of Things (NB-IoT)
 – Overview
 – srsLTE extension
 – Evaluation
 – Exploring commercial deployments

• Summary
Company At a Glance

- Irish startup
- Founded at Trinity College Dublin in 2012
- Offices in Cork (Ireland) and Barcelona (Spain)
- High-performance software for wireless systems
 - Software Defined Radio
 - 3GPP LTE/LTE-Advanced
 - Satellite systems (DVB-S2/RCS2)
 - Internet of Things
- Commercial and research projects
Recent Public-Funded Projects

www.softwareradiosystems.com
What is a Software Radio?

- RF Front-End
- Baseband Processor

Components:
- Sandisk SDIN8DE4 16 GB NAND flash
- Qualcomm WTR1605M LTE/HSPA+/CDMA2K TDSCDMA/EDGE/GPS transceiver
- Qualcomm PM8841 power management IC
- Broadcom BCM4330 5G Wi-Fi combo chip with integrated power and low-noise amplifiers (the updated version of the BCM4335).
- Avago RF335
- InvenSense MPU-6515 six-axis (gyro + accelerometer) MEMS MotionTracking device
- Asahi Kasei AK8963 3-axis electronic compass

Additional Components:
- SK Hynix H9CKNNNBTEMPKL-NTM 2 GB LPDDR3-1600 RAM
- The Quad-core, 2.26 GHz Snapdragon 802 SoC is layered beneath the RAM
- Qualcomm WCD9320 audio codec
- Analogic AN8706 SlimPort transmitter
- Qualcomm PM9841 power management IC
- Texas Instruments B2419212C controlled 4.5 A USB/adapter charger
- Avago ACAH-7600
What is a Software Radio?

Software
- HTTP
- SPDY
- TLS
- QUIC
- TCP
- UDP
- WEBRTC
- SRTP
- SCTP
- DTLS
- ICE, STUN, TURN

Hardware
- LTE (USB0)
What is a Software Radio?
Narrowband Internet of Things

• Low-Power Wide Area (LPWA)
 – Internet of Things (IoT) / Machine to Machine (M2M)
 – Characterization:
 • Low device costs and energy consumption
 • Better coverage and lower bandwidth requirements
 – Market currently dominated by technology in unlicensed spectrum (e.g., sigfox, LoRa, etc.)

• Make LTE ready for the Internet of Things (IoT)
 – Provide LPWA solution based on cellular technology
 – First final version available with 3GPP Release 13 (June 2016)

• SRS with compliant implementation after <6m
Technical Overview

- Transmission scheme based on LTE, i.e., OFDM with 15kHz SC spacing
- System bandwidth reduced to 1 resource block (180kHz)
- LTE frame structure: 10ms frames, 1ms sub-frames, 500us slots
- In-band, guard-band and standalone deployment
- Narrowband alternatives for all LTE channels (multiplexed in time)
 - E.g., Narrowband Physical Broadcast Channel (NPBCH)
Approach

- **10x Years Battery Life**
 - Better Power Saving Mode (PSM) & sleep cycles (eDRX)
 - Avoid unnecessary receiver wakeups

- **Extended Coverage**
 - Up to +20dB compared to GSM
 - Repetitive transmissions and new control channels

- **Module Cost Reduction**
 - Reduced complexity, functionality and capability
 - E.g., half-duplex operation, single antenna, reduced memory requirements
srsLTE: One Library for many Things

- Modular and portable, high-performance LTE library
- LTE Release 8 compliant
- All LTE bandwidths up to 20 MHz
- Transmission mode 1 (single antenna) and 2 (transmit diversity)
- All uplink and downlink channels
- Cell search and sync procedures
- Highly optimized Turbo decoder for Intel SSE4.1/AVX (+100Mbps)
- NB-IoT support (R13)
srsLTE: NB-IoT Extensions
Evaluation - Overview

- Downlink acknowledged (AM) vs. unacknowledged (UM)
- Tx flow: Grant → Guard → Data (→ Guard → Ack)

```
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| NPBCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPSS | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NSSS |
```

Even frames

```
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| NPBCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPSS | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH | NPDCCH or NPDSCH |
```

Odd frames

- "Peak rate"
 - 3 SF data, i.e. 680 bit / 3ms = 226 kbit/s
- UM peak rate:
 - 1 SF grant + 4 SF guards + 3 SF data = 8 SF
 - 680 bit / 8ms = 85 kbit/s
- AM peak rate:
 - 1 SF grant + 4 SF guards + 3 SF data +12 SF guard + 1 SF ACK
 - 680 bit / 21ms = 32.38 kbit/s
Evaluation – Theoretical Analysis

Unacknowledged Mode

Acknowledged Mode

![Graph](image-url)
Evaluation – Experiments

- Practical considerations:
 - Anchor vs. non-anchor carrier transmissions
 - Multi-user scheduling constraints
 - ...

- Example allocation:
 - In every DL frame:
 - Grant in SF 1
 - Data in SF 6-8
 - Rate: 680 bit / 10ms = 68 kbit/s
Exploring Commercial Deployments

- Vodafone Spain started roll-out in Q1/2017
- Inband deployment in 800 MHz band
- Single PRB with guard PRB mostly
Live demonstration at MWC’17
Summary and Outlook

• NB-IoT as new cellular standard for mMTC
• srsLTE extension with PHY layer
 – All DL and UL channels and signals
• Analysis and experiments show max. DL rate between 33-85 kbit/s
• srsUE extension for NB-IoT with upper layers
Thanks!

SOFTWARE RADIO SYSTEMS
Backup
airScope: The LTE Analyzer

- LTE air interface analyzer
- Capture and decode entire downlink control traffic of arbitrary LTE cells in real-time
- Per-user and cell-wide measurements, e.g.,
 - Active users, UL and DL traffic
 - Channel quality
 - Congestion patterns
 - Scheduling performance
- Web-based graphical interface
- Standalone or distributed deployment
srsUE: Open-source LTE UE

- Builds upon srsLTE
- First open-source LTE UE (AGPLv3)
- Full-speed UL and DL (75 Mbps)

- Detailed logging interface with per layer output and hex dumps
- Command line trace interface
- Wireshark support