Research Article

Associated Links Among Smoking, Chronic Obstructive Pulmonary Disease, and Small Cell Lung Cancer: A Pooled Analysis in the International Lung Cancer Consortium

Ruyi Huang, Yongyue Wei, Rayjean J. Hung, Geoffrey Liu, Li Su, Ruyang Zhang, Xuchen Zong, Zuo-Feng Zhang, Hal Morgenstern, Irene Brüske, Joachim Heinrich, Yun-Chul Hong, Jin Hee Kim, Michele Cote, Angela Wenzlaff, Ann G. Schwartz, Isabelle Stucker, John Mclaughlin, Michael W. Marcus, Michael P.A. Davies, Triantafillos Liloglou, John K. Field, Keitaro Matsuou, Matt Barnett, Mark Thornquist, Gary Goodman, Yi Wang, Size Chen, Ping Yang, Eric J. Duell, Angeline S. Andrew, Philip Lazarus, Joshua Muscat, Penella Woll, Janet Horsman, M. Dawn Teare, Anath Flugelman, Gad Rennert, Yan Zhang, Hermann Brenner, Christa Stegmaier, Erik H.F.M. van der Heijden, Katja Aben, Lambertus Kiemeny, Juan Barros-Dios, Monica Pérez-Ríos, Alberto Ruano-Ravina, Neil E. Caporaso, Pier Alberto Bertazzi, Maria Teresa Landi, Juncheng Dai, Hongbing Shen, Guillermo Fernandez-Tardon, Marta Rodriguez-Suarez, Adonina Tardon, David C. Christiani.

Abstract

Smoking is the major cause of lung cancer, with chronic obstructive pulmonary disease (COPD) and small cell lung cancer (SCLC) emerging as more prevalent cancers. Despite an increasing number of studies, evidence of the association among smoking, COPD, and SCLC is limited. This study investigated the association among smoking, COPD, and SCLC within the International Lung Cancer Consortium.

Results

The study included 15,743 cases of SCLC, 117,078 cases of non-small cell lung cancer, and 343,068 controls. The OR for SCLC associated with smoking was 2.37 (95% CI: 2.18-2.58). The OR for COPD associated with SCLC was 1.34 (95% CI: 1.15-1.58). The OR for SCLC associated with COPD was 1.43 (95% CI: 1.18-1.72).

Conclusion

The findings from this pooled analysis provide additional evidence for the association between smoking, COPD, and SCLC. Further research is needed to elucidate the underlying mechanisms and to identify potential targets for prevention and intervention.

Keywords: Smoking, Chronic Obstructive Pulmonary Disease, Small Cell Lung Cancer, International Lung Cancer Consortium.
Background: The high relapse and mortality rate of small-cell lung cancer (SCLC) fuels the need for epidemiologic study to aid in its prevention.

Methods: We included 24 studies from the ILCCO collaboration. Random-effects panel logistic regression and cubic spline regression were used to estimate the effects of smoking behaviors on SCLC risk and explore their non-linearity. Further, we explored whether the risk of smoking on SCLC was mediated through COPD.

Findings: Significant dose–response relationships of SCLC risk were observed for all quantitative smoking variables. Smoking pack-years were associated with a sharper increase of SCLC risk for pack-years ranged 0 to approximately 50. The former smokers with longer cessation showed a 43% lower risk of SCLC compared with current smoking; smoking cessation < 5 years declined SCLC risk vs. subjects who had quit smoking < 5 years. Compared with non-COPD subjects, smoking behaviors showed a significantly higher effect on SCLC risk among COPD subjects, and further, COPD patients showed a 1.86-fold higher risk of SCLC. Furthermore, smoking behaviors on SCLC risk were significantly mediated through COPD which accounted for 0.70% to 7.55% of total effects.

Interpretation: This is the largest pooling study that provides improved understanding of smoking on SCLC, and further demonstrates a causal pathway through COPD that warrants further experimental study.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2.5.1. Non-linear Exposure–Response Relationships of Smoking Behaviors on SCLC

The odds ratios (ORs) of SCLC and their 95% confidence intervals (95% CIs) for daily smoking intensity, duration of smoking, lifetime cumulative smoking, age of smoking initiation, and time since quitting for former smokers. To explore the non-linear association between smoking and SCLC, we generated common categorical variables related to smoking status (never smoker defined as no cumulative smoking, current smoker defined as cumulative smoking of any amount plus time since quitting smoking less than or equal to 1 year, and former smoker defined as smokers who had quit more than 1 year before diagnosis or interview), daily smoking intensity (1–9, 10–19, 20–29, 30–39, and 40 or more cigarettes/day), smoking duration (1–19, 20–29, 30–39, 40–49, and 50 or more years), and lifetime cumulative smoking (1–19, 20–39, 40–59, 60–79, and 80 or more pack-years; one pack-year being equivalent to 20 cigarettes/day smoked during 1 year). Former smokers were further categorized according to age of smoking initiation (less than 15 years, 15–20, 20–25, 25–30, or more than 30 years) and time since quitting (<5, 5–9, 10–19, or 20 or more years).

Other variables included in the pooled analysis were gender, age at diagnosis or interview, geographical region (North America, Europe, and Asia and Oceania), self-reported race (Asian, Black, White, Hawaiian, Hispanic, Other), family history of lung cancer (yes, no), and education level (non, elementary, vocational, postsecondary, university).

2.5.2. Interaction and Mediation Analyses

The associations between cumulative smoking and SCLC risk were further tested in subgroups with and without preexisting COPD. We conducted the Wald test for effect modification from COPD by adding an interaction term. It is well-established that smoking is the risk to both COPD and SCLC, and COPD is a risk factor to SCLC. To explore whether the effect of smoking on the risk of SCLC is mediated through COPD, the VanderWeele’s mediation analysis was performed. The smoking effect on SCLC was decomposed to two parts: the indirect effect which represents the effect of smoking is mediated through COPD and the direct effect which represents the effect of smoking on SCLC by pathways other than COPD. To obtain direct and indirect effects of smoking on SCLC risk, ORs for mediation analysis in the case–control setting were calculated by combining the regression of COPD and the regression of SCLC risk. The proportion mediated was obtained by ORD × (ORD - 1)/(ORD × ORC - 1), where ORD is the direct effect odds ratio and ORC is the indirect effect odds ratio (Campbell, 1996).

All tests were two-sided and evaluated using SAS software (version 9.4; SAS Institute, Cary, NC) or STATA statistical package (Version 14; Stata Corp. LP, College Station, TX, USA). A P-value of less than 0.05 was considered statistically significant.

3. Results

3.1. Characteristics of Study Populations

In the 24 studies with recruitment initiated since 1969, 4346 SCLC patients and 37,942 non-SCLC controls were identified (Table S1). Among ten studies with available COPD status, 1543 COPD and 14,665 non-COPD subjects were further analyzed to explore stratified and mediation effects. Demographic characteristics are summarized in Table 1. SCLC patients were significantly older, male-predominant, less educated, and more commonly had a family history of lung cancer than their respective controls (P < 0.01). For smoking behaviors, the proportions of current smokers/former smokers, the amount of lifetime cumulative smoking pack-years, smoking duration, and smoking intensity (cigarettes per day) in SCLCs or COPDs were significantly higher than in their respective controls, while the time since quitting smoking was significantly lower than that in controls (P < 0.01). The frequency of COPD diagnosis was higher among SCLC cases (20.6%) than controls (7.6%) (P < 0.001).

3.2. Association of Smoking Behaviors With SCLC Risk

Former smokers had a significantly higher risk on SCLC vs. non-smokers (OR, 6.21, 95% CI 5.21–7.41, P < 0.001) while a much higher risk existed among current smokers vs non-smokers (OR, 26.72, 95% CI 22.54–31.68, P < 0.001) (Table 2). A statistically significant dose–response for SCLC risk was observed for all quantitative smoking variables (Table 2). Cumulative smoking intensity (smoking pack-years) was associated with increased risk of SCLC vs. non-smokers in a significant dose–response manner [ORs ranged from 4.33 for those who had pack-years < 20 to 69.03 for those who had pack-years ≥ 80, P for trend (Pr) < 0.001]. Smoking intensity had a
similar dose–response model (ORs from 4.35 \times 10^{-10} \text{ cigarettes-per-day to } 34.49 \times 40 \text{ cigarettes-per-day}, P_{trend} < 0.001), as well as smoking duration (ORs ranged from 2.37 \times 10^{-2} \text{ years to } 48.80 \times 50 \text{ years}, P_{trend} < 0.001), and age of initiation (ORs from 7.09^{\text{smoking_after}_{30}} to 24.04^{\text{smoking_before}_{15}}, P_{trend} < 0.001). The former smokers with longer cessation showed a considerably decreased risk on SCLC risk in a dose–response trend vs. subjects who had quit smoking for less than 5 years [OR for those who had quit for 5–9 years (OR_{5–9}, 0.57, 95\% CI 0.45–0.73; OR_{10–19}, 0.28, 95\% CI 0.23–0.36; OR_{20–29}, 0.11, 95\% CI 0.09–0.14; P_{trend} < 0.001]. The sensitivity analysis yielded similar results with further adjustment for study areas (Caucasian-dominated areas vs. non-Caucasian-dominated areas), source of controls (hospital-based vs. population-based), and family history of lung cancer (yes vs. no) (Table 2).

3.3. Stratified Analyses of Smoking Behaviors on SCLC Risk

Further, we performed the stratified analyses by COPD, gender, ethnicity, source of control, and 1st degree family history of lung cancer. All the smoking variables showed a higher effect on SCLC risk in COPD subgroup than those in non-COPD subjects with significance or borderline significance except for time since quitting smoking which was probably due to insufficient sample size (Table S2). Male smokers had a trend of stronger dose–response on SCLC risk than that in female but with a lack of statistical significance (Table S3). Smoking variables in Caucasian-dominated populations showed stronger effects on SCLC risk than those in non-Caucasian dominant populations (Table S4). No statistical significance was observed for time since quitting smoking probably due to insufficient sample size from non-Caucasian populations (Table S4).

Further, stratified analyses by control type showed a trend of higher effects of smoking behaviors on SCLC risk in the studies with population-based controls than those in the studies with hospital-based controls (Table S5). Further, in stratified analysis by family history of lung cancer, smoking behaviors showed a trend of, but non-significant, stronger effects in subjects with family history of lung cancer than the others (Table S6).

3.4. Non-linear Exposure–Response Relationships

Further, non-linear exposure–response relationships of smoking pack-years and time since quitting smoking were explored using restricted cubic spline regression model (Fig. 1). The SCLC risk for cumulative smoking pack-years revealed an upward spline with a knot at approximately 50 pack-years (P_{non-linear} < 0.001); the slope of the first segment was larger than that of the second segment (Fig. 1a). The results were consistent in the subgroup analyses stratified by COPD status (Fig. 1b for non-COPD, 1c for COPD), by gender (Fig. 1d for male, 1e for female), and study area (Fig. 1f for Caucasian-dominated areas, Fig. 1g for non-Caucasian-dominated areas). In contrast, there were significantly decreasing trends between time since quitting smoking and SCLC risk among former smokers (Fig. 1h) which obtained consistent results among the subgroup analyses (Fig. 1i–m). We were not able to perform the cubic spline analysis among the former smokers in studies from non-Caucasian-dominated areas due to insufficient cases recruited.

3.5. Smoking Effect on SCLC Mediated Through COPD

Smoking behaviors were positively associated with COPD risk (Table S7). COPD status was independently associated with SCLC risk (OR, 1.86, 95\% CI 1.61–2.16, P < 0.001) with adjustment for age, gender, and smoking pack-years. Furthermore, to explore whether the association between smoking and SCLC risk was mediated through COPD, we performed a series of mediation analyses (Table 3). A statistically significant indirect effect on SCLC risk mediated through COPD was observed for former smokers [OR_{indirect}, 1.03, P < 0.001; proportion mediated (%M), 3.57\%] or current smokers [OR_{indirect} per SD, 1.06, P < 0.001; %M, 5.86\%]. Smoking pack-years [OR_{indirect} per SD, 1.03, P < 0.001; %M, 4.49\%], smoking intensity [OR_{indirect} per SD, 1.01, P < 0.001; %M, 2.52\%], smoking duration [OR_{indirect} per SD, 1.05, P < 0.001; %M, 7.55\%], and time since quitting smoking [OR_{indirect} per SD, 0.98, P = 0.005; %M, 0.70\%]. Overall, less than 10\% of smoking’s risk effect on SCLC was mediated through COPD (Fig. 2).

Table 1

Basic characteristics and smoking behaviors in the pooled dataset.

Variable	SCLC (n = 4346)	COPD* (n = 503)	Non-COPD* (n = 1940)	Non-SCLC (n = 37,942)	COPD* (n = 1040)	Non-COPD* (n = 12,725)
Study area						
Caucasian-dominated	4153 (95.6)	503 (100)	1940 (100)	35,944 (94.7)	1040 (100)	12,725 (100)
Non-Caucasian-dominated	193 (4.4)					
Age, mean (SD)	61.2 (10.5)	63.9 (9.4)	60.6 (10.7)	1955 (53)		
Gender, (female), n (%)	1371 (31.6)	193 (38.4)	601 (31.0)	14,269 (37.6)	373 (35.9)	5262 (41.4)
Ethnicity (Caucasian), n (%)	2310 (87.1)	299 (19.5)	83 (17.5)	1435 (9.8)	67 (17.3)	764 (12.2)
Education (greater than university), n (%)	487 (15.9)	82 (20.0)	260 (16.8)	7047 (32.1)	228 (27.6)	3733 (43.9)
First degree family history of lung cancer (≥1), n (%)	173 (15.2)	27 (17.5)	137 (83)	1435 (9.8)	67 (17.3)	764 (12.2)
Smoking status						
Never	166 (4.5)	3 (0.8)	101 (7.1)	13,613 (37.5)	278 (28.7)	5075 (45.0)
Former	987 (27.0)	114 (31.2)	332 (23.4)	13,002 (35.8)	400 (41.3)	3875 (34.4)
Current	2510 (68.5)	249 (68.0)	987 (69.5)	9096 (26.7)	291 (30.0)	2332 (20.7)
Smoking pack-years, mean (SD)	46.8 (27.9)	53.7 (31.5)	43.3 (27.1)	276 (24.2)	32.7 (27.7)	242 (23.4)
Smoking intensity (cigarettes per day), mean (SD)	24.1 (12.4)	25.0 (13.0)	23.0 (12.1)	18.7 (12.2)	13.3 (12.5)	18.0 (12.4)
Smoking duration, (years, mean (SD)	39.1 (10.6)	42.0 (10.4)	38.9 (10.4)	31.2 (14.3)	39.7 (11.7)	32.7 (14.4)
Age of initiation, (years, mean (SD)	18.1 (4.9)	18.0 (4.5)	18.4 (4.8)	18.8 (5.7)	18.6 (5.2)	18.8 (5.4)
Age of cessation, (years, mean (SD)	55.9 (10.9)	58.9 (9.6)	53.9 (10.7)	46.0 (14.8)	47.5 (13.3)	42.8 (14.5)
Time since quitting smoking among former smokers, (years, mean (SD)	3.9 (7.7)	4.0 (8.0)	3.5 (7.4)	13.8 (13.3)	11.6 (13.0)	12.5 (13.1)

Values are presented as n (%) for categorical data or mean/(standard deviation) (SD) for continuous variables. The categorical variables were tested by Fisher’s exact test and continuous variables were compared by Student t-test between groups/subgroups. The quantitative smoking variables were summarized among former or current smokers. SCLC: small cell lung cancer; COPD: chronic obstructive pulmonary disease.

- **a** P-value ≤ 0.01 of COPD vs. non-COPD among SCLC cases.
- **b** P-value ≤ 0.01 of COPD vs. non-COPD among overall samples.
- **c** P-value ≤ 0.01 of COPD vs. non-SCLC among overall samples.
- **d** P-value ≤ 0.01 of COPD vs. non-COPD among non-SCLC subjects.
To our knowledge, this is the largest study investigating the relationship among multiple quantitative smoking risk factors, COPD, and risk of SCLC (Pesch et al., 2012). The major strength of this study is its large sample size, which allowed us to have greater power to detect the exposure–response relationship of smoking behaviors, COPD, and SCLC risk in more homogeneous subgroups, and the risks of smoking mediated through COPD (Zhai et al., 2014a). Furthermore, the multi-ethnic design makes this study generalizable to the other populations (St Sauver et al., 2012). The pooling study also took advantage of the well-planned questionnaires that collected data on detailed smoking behaviors such as cumulative smoking, age since smoking initiation, and time since quitting smoking, as well as COPD status.

Our study addressed the information gap regarding the non-linear exposure-response relationships between the cigarette smoking behaviors, COPD, and risk of SCLC. SCLC risk rises sharply with the first 50 pack-years of cumulative smoking, and increases continuously with further smoking. A similar steep slope with a subsequent leveling-off of lung cancer risk for intensity of smoking and a plateauing of the SCLC risks by duration of smoking were seen in previous studies (Pesch et al., 2012; Zhai et al., 2014a; Vineis et al., 2000). Findings of very high relative risks for SCLC in smokers are in agreement with experimental findings that more extensive damage triggers the regeneration of quiescent sub-populations of cells (Li and Clevers, 2010). Those cells that are centrally located in the lungs are possibly the cellular precursors of SCLC that respond to more extensive damage (Liu and Engelhardt, 2008; Liu et al., 2012; Zhai et al., 2014a; Vineis et al., 2000). Findings of very high relative risks for SCLC in smokers are in agreement with experimental findings that more extensive damage triggers the regeneration of quiescent sub-populations of cells (Li and Clevers, 2010). Those cells that are centrally located in the lungs are possibly the cellular precursors of SCLC that respond to more extensive damage (Liu and Engelhardt, 2008; Liu et al., 2012; Zhai et al., 2014a; Vineis et al., 2000). Findings of very high relative risks for SCLC in smokers are in agreement with experimental findings that more extensive damage triggers the regeneration of quiescent sub-populations of cells (Li and Clevers, 2010). Those cells that are centrally located in the lungs are possibly the cellular precursors of SCLC that respond to more extensive damage (Liu and Engelhardt, 2008; Liu et al., 2006). The leveling-off association among extremely heavy and long-term smokers might be explained by a potential saturation effect, or competing risks among heavy smokers (Vineis et al., 2000).

Juvenile initiated cigarette smoking would have over 15-fold higher risk of SCLC in the following years compared with non-smokers. The risks for SCLC in smokers are in agreement with experimental findings that more extensive damage triggers the regeneration of quiescent sub-populations of cells (Li and Clevers, 2010). Those cells that are centrally located in the lungs are possibly the cellular precursors of SCLC that respond to more extensive damage (Liu and Engelhardt, 2008; Liu et al., 2006). The leveling-off association among extremely heavy and long-term smokers might be explained by a potential saturation effect, or competing risks among heavy smokers (Vineis et al., 2000).
The risk remains 3.59 fold higher (95% CI 2.71–7.46, P < 0.001) after 20 years’ cessation compared with never smokers. A possible mechanism for this long-term carcinogenic effect of smoking is that cigarette smoke can exert a wide range of irreversible changes in lung tissue that affect its function (Thorley and Tetley, 2007).

The risk of lung cancer in patients with COPD has long been established (Zhai et al., 2014a; Purdue et al., 2007; Raviv et al., 2011). However, most of the studies focused on the risk of overall lung cancer or NSCLC, while the relationship with SCLC was rarely explored or underpowered (Kato et al., 2011). Our analysis offers insights suggesting that 86% of increased risk of SCLC occurs in persons with COPD independent from smoking. Further, our study suggests that smoking has a higher damaging effect on lungs among subjects diagnosed of COPD than non-COPD subjects, which indicates a synergistic mechanism in lung cancer pathophysiology. This finding agrees with that of our previous study of non-small cell lung cancer (Zhai et al., 2014a). One biological explanation for this association between COPD and SCLC is that long-term pulmonary inflammation from COPD damages lung tissue and produces free radicals that may induce mutagenesis during tissue regeneration (Ballaz and Mulshine, 2003). Another potential mechanistic explanation is that...
impaired mucociliary function in COPD patients could hamper the removal of harmful particles (Zhai et al., 2014b; Houtmeyers et al., 1999). Other mechanisms associated with the presence of COPD that might be associated with the inflammation and associated cytokines, development of lung cancer includes alterations to cell cycle regulation, shared genetic and epigenetic susceptibilities (Houghton, 2013). Furthermore, no study has previously investigated the role of COPD as a causal mediator between smoking and SCLC. Our study demonstrates that less than 10% of the smoking risk effect on SCLC is mediated through COPD. Wang et al. reported one-third of the effect of smoking behavior on lung cancer mediated through COPD. The findings indicate a histologically-different causal role of COPD among smoking and lung cancer, which warrants further validation and experimental study (Wang et al., 2010).

We acknowledge some limitations in our study. First, misclassification of SCLC or COPD has to be considered since our study included diverse countries in which different diagnostic criteria may apply. A pathology comparability analysis was performed by Stang et al. in a German case series; the agreement between pathologists was 94% among non-COPD and 87% for COPD, and lower in never smokers (Stang et al., 2006). Second, studies included were lacking information on spirometry, and underdiagnostics of COPD was thus significant among non-COPD subjects, which is about 70% of the total population (Mannino et al., 2000; Lamprecht et al., 2015; Bednarek et al., 2008). Due to underdiagnosed COPD patients, risks of smoking behaviors among non-COPD subgroups were, to some extent, underestimated. However, physician-diagnosed COPD is compatible with spirometry-based COPD for epidemiological studies (Straus et al., 2002; Eissner et al., 2005; Murgia et al., 2014). A validation assessment also confirmed that self-reported physician-diagnosed COPD correlates with high rates of true COPD in medical records (Barr et al., 2002). Therefore, such underdiagnosis of COPD contributes to the more conservative results for the evaluation of the risk difference between COPD and non-COPD. On the other hand, a more accurate COPD diagnostic method will result in a higher stratified effect as well as stronger statistical power. Third, medication information of COPD patients was also important to this association study. Inhaled corticosteroids (ICS) are anti-inflammatory drugs that have proven benefits for worsening COPD patients (Kew and Seniukovich, 2014), as well as a decreased risk of lung cancer in a dose–response manner (Parimon et al., 2007; Lee et al., 2013). Statins are also recognized as powerful anti-inflammatory agents beyond low-density lipoprotein cholesterol reduction (Pruefer et al., 2002), which have a beneficial role in COPD treatment including reduced risk of lung cancer (Janda et al., 2009; van Gestel et al., 2009). Inclusion of the medication information in future study increases both statistical power and clinical interpretation. Besides, the source of controls, SCLC case ascertainment, COPD verification, geographical area, and recruitment period could explain partial heterogeneity. Though we detected a significant indirect effect of smoking on SCLC risk mediated by COPD, we were not able to determine the temporal relationship between COPD and SCLC in this study, and reverse causality of the pre-diagnosed stage of SCLC could thus possibly affect COPD development as well.

5. Conclusion

This study emphasizes the non-linear association of smoking with the relative risk of SCLC. The pattern is partially supported by prior SCLC studies (Pesch et al., 2012; Vineis et al., 2000) and hypothesis-generating experiments. Smoking also has a strong effect on COPD, and COPD is an independent risk factor on SCLC, and further, a part of smoking risk effect on SCLC is mediated through COPD. The mutually shared predisposition or common mechanistic pathway among smoking behaviors, COPD and SCLC warrants investigation to facilitate early detection of SCLC.

Funding

This work was supported by the National Institutes of Health and National Cancer Institute (Grants CA091284, CA074386, CA090578, ES00002, CA80127, CA84354, CA68384, The Intramural Research Program, CA060691, HHSN261201000028C, P30CA022453, CA167462, DA11386, CA90833, CA77954, CA919142, CA96134, and ES010306); BIS (Bundesamt für Strahlenschutz, Germany) (Grant St. Sch. 1066, 4074, 4074/1); Mayo Clinic Foundation; Canadian Cancer Society Research Institute (Grant 020214); FIS/Spain (Grant FIS-01-310, FIS-Pi03-0365, and FIS-07-BIO60604); FICYT/Asturias (Grants FICYT P802-67 and FICYT IB09-133); Roy Castle Lung Cancer Foundation in UK; Ministry of Education, Science, Sports, Culture, and Technology of Japan (Grants-in-Aid for Scientific Research on Priority and Innovative Areas); Ministry of Health, Labor, and Welfare of Japan [Third-Term Comprehensive 10-Year Strategy for Cancer Control]; National Cancer Center Research and Development Fund (23-A-4); Health and Labor Sciences Research Grants for Research on Applying Health Technology from Ministry of Health, Labor and Welfare; the Bi-national Israel-US Science Foundation; the Baden-Württemberg Ministry of Science Research and Arts Foundation; the Ann Fitzpatrick Alper Research Program for Environmental Genomics of the University of California at Los Angeles Jonsson Comprehensive Cancer Center. Dr. Wei is partially supported by the National Natural Science Foundation of China (Grant 81402764) and the Natural Science Foundation of Jiangsu, China (Grant BK20140907). Dr. Zhang is partially supported by the National Natural Science Foundation of China (Grant No. 81402763).
Role of Sponsors
The sponsors of all the funding bodies had no role in the design of the study, the collection and analysis of the data, or the preparation of the manuscript.

Author Contributions
Dr. Ru-Yi Huang generated the conception, done the data analysis, interpreted the data, and wrote the manuscript. Dr. Yongyue Wei generated the conception together with analyzing the data in depth and revising the manuscript. Dr. Rayjean Hung was in charge of the data harmonization, monitor of the consortium work and offered statistical assistance for the manuscript. All authors from the ILCCO group contributed to the design and execution of the work and to the preparation and drafting critically of this report. Additionally, all had the opportunity to contribute to the interpretation of the results and to the redrafting of the report. Approval of the final report was obtained from all authors. Dr. David Christiani wrote and supervised the project concept and was responsible for the final report.

Conflicts of Interest
We declare that we have no conflicts of interest.

Acknowledgments
We thank Dr. June Carroll and the Mount Sinai Hospital Granovsky Gluskin Family Medicine Centre for helping with the recruitment of the MSH-PMH study. We thank the study participants and the Lung Cancer Study Team of the MGH Thoracic Oncology Center.

Appendix A Supplementary Data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ebiom.2015.09.031.

References
Armstrong, B.G., Sloan, M., 1989. Ordinal regression models for epidemiologic data. Am. J. Epidemiol. 129 (1), 191–204.
Ballaz, S., Mulshine, J.L., 2003. The potential contributions of chronic inflammation to lung carcinogenesis. Clin. Lung Cancer 5 (1), 46–62.
Barr, R.C., Herbstman, J., Speizer, F.E., Camargo Jr., C.A., 2002. Validation of self-reported chronic obstructive pulmonary disease in a cohort study of nurses. Am. J. Epidemiol. 155 (10), 965–971.
Bednarek, M., Maciejewski, J., Wozniak, M., Kuca, P., Zielinski, J., 2008. Prevalence, severity and underdiagnosis of COPD in the primary care setting. Thorax 63 (5), 402–407.
Brenner, D.R., Hung R.J., Tsao, M.S., et al., 2010. Lung cancer risk in never-smokers: a population-based case–control study of epidemiologic risk factors. BMC Cancer 10, 285.
Campbell, I., 1996. Usefulness of generalized additive models. Stat. Methods Med. Res. 5 (3), 331–332.
Convey, M.R., 1990. A random effects model for binary data. Biometrics 46, 317–328.
Cote, M.L., Liu, M., Bonassi, S., et al., 2012. Increased risk of lung cancer in individuals with a family history of the disease: a pooled analysis from the International Lung Cancer Consortium. Eur. J. Cancer 48 (13), 1957–1968.
Eisner, M.D., Trupin, L., Katz, P.P., et al., 2005. Development and validation of a survey-based COPD Severity Score. Chest 127 (6), 1890–1897.
Engeland, A., Haldorsen, T., Andersen, A., Tretli, S., 1996. The impact of smoking habits on lung cancer risk: 28 years’ observation of 26,000 Norwegian men and women. Cancer Causes Control 7 (3), 366–376.
Etzel, C.J., Smith, D.L., Duffy, S., Cassidy, A., 2005. The Liverpool Lung Project Research protocol. Int. J. Oncol. 27 (6), 1633–1645.
Friedman, N.D., Letzmann, M.F., Holfenbecker, A.R., Schatzkin, A., Ahnert, C.C., 2008. Cigarette smoking and subsequent risk of lung cancer in men and women: analysis of a prospective cohort study. Lancet Oncol. 9 (7), 649–656.
Fruit, M., De Royaucroix, D., Papal, S., Crino, L., Peters, S., Felip, E., 2013. Small-cell lung cancer (SCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), v999–v105.
Purdue, M.P., Gold, I., Jarvholm, B., Alavanja, M.C., Ward, M.H., Vermeulen, R., 2007. Impaired lung function and lung cancer incidence in a cohort of Swedish construction workers. Thorax 62 (1), 51–56.

Raviv, S., Hawkins, K.A., DeCamp Jr., M.M., Kalhan, R., 2011. Lung cancer in chronic obstructive pulmonary disease: enhancing surgical options and outcomes. Am. J. Respir. Crit. Care Med. 183 (9), 1138–1146.

Roca, M., Roca, I.C., Mihaescu, T., 2012. Lung cancer—a comorbidity in chronic obstructive pulmonary disease. Rev. Med. Chir. Soc. Med. Nat. Iasi 116 (4), 1055–1062.

Ruano-Ravina, A., Figueiras, A., Barros-Dios, J.M., 2004. Type of wine and risk of lung cancer: a case–control study in Spain. Thorax 59 (11), 981–985.

Ruano-Ravina, A., Pereyra, M.F., Castro, M.T., Perez-Rios, M., Abal-Arca, J., Barros-Dios, J.M., 2014. Genetic susceptibility, residential radon, and lung cancer in a radon prone area. J. Thorac. Oncol. 9 (8), 1339–1348.

Schottker, B., Haug, U., Schomburg, L., et al., 2013. Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am. J. Clin. Nutr. 97 (4), 782–793.

Schwartz, A.G., Ruckdeschel, J.C., 2006. Familial lung cancer: genetic susceptibility and relationship to chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173 (1), 16–22.

Schwartz, A.G., Cote, M.L., Wenzlaff, A.S., Land, S., Amos, C.I., 2009. Racial differences in the association between SNPs on 15q25.1, smoking behavior, and risk of non-small cell lung cancer. J. Thorac. Oncol. 4 (10), 1195–1201.

Sevilya, Z., Leitner-Dagan, Y., Pinchev, M., et al., 2014. Low integrated DNA repair score and lung cancer risk. Cancer Prev. Res. (Phila.) 7 (4), 398–406.

St Sauver, J.L., Grossardt, B.R., Leibson, C.L., Yawn, B.P., Melton 3rd, L.J., Rocca, W.A., 2012. Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project. Mayo Clin. Proc. 87 (2), 151–160.

Stang, A., Pohlslabren, H., Muller, K.M., Jahn, I., Giersiepen, K., Jockel, K.H., 2006. Diagnostic agreement in the histopathological evaluation of lung cancer tissue in a population-based case–control study. Lung Cancer 52 (1), 29–36.

Strain, S.E., McAlister, F.A., Sackett, D.L., Deeks, J.J., 2002. Accuracy of history, wheezing, and forced expiratory time in the diagnosis of chronic obstructive pulmonary disease. J. Gen. Intern. Med. 17 (9), 684–688.

Thorley, A.J., Tetley, T.D., 2007. Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulm. Dis. 2 (4), 409–428.

VanderWeele, T.J., Vansteelandt, S., 2010. Odds ratios for mediation analysis for a dichotomous outcome. Am. J. Epidemiol. 172 (12), 1339–1348.

VanderWeele, T.J., Asomaning, K., Tchetgen Tchetgen, E.J., et al., 2012. Genetic variants on 15q25.1, smoking, and lung cancer: an assessment of mediation and interaction. Am. J. Epidemiol. 175 (10), 1013–1020.

Vineis, P., Kogevinas, M., Simonato, L., Brennan, P., Bottella, P., 2000. Levelling-off of the risk of lung and bladder cancer in heavy smokers: an analysis based on multicentric case–control studies and a metabolic interpretation. Mutat. Res. 463 (1), 103–110.

Wang, Y., McKay, J.D., Rafnar, T., et al., 2014. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 46 (7), 736–741.

Wang, J., Spitz, M.R., Amos, C.I., Wilkinson, A.V., Wu, X., Shete, S., 2010. Mediating effects of smoking and chronic obstructive pulmonary disease on the relation between the CHRNA5-A3 genetic locus and lung cancer risk. Cancer 116 (14), 3458–3462.

Yang, P., Allen, M.S., Aubry, M.C., et al., 2005. Clinical features of 5628 primary lung cancer patients: experience at Mayo Clinic from 1997 to 2003. Chest 128 (1), 452–462.

Young, R.P., Hopkins, R.J., 2011. How the genetics of lung cancer may overlap with COPD. Respirology 16 (7), 1047–1055.

Zhai, R., Yu, X., Shafer, A., Wain, J.C., Christiani, D.C., 2014b. The impact of coexisting COPD on survival of patients with early-stage non-small cell lung cancer undergoing surgical resection. Chest 145 (2), 346–353.

Zhai, R., Yu, X., Wei, Y., Su, L., Christiani, D.C., 2014a. Smoking and smoking cessation in relation to the development of co-existing non-small cell lung cancer with chronic obstructive pulmonary disease. Int. J. Cancer 134 (4), 961–970.

Zhang, M., Hu, Z., Huang, J., et al., 2010. A 3′-untranslated region polymorphism in IGF1 predicts survival of non-small cell lung cancer in a Chinese population. Clin. Cancer Res. 16 (4), 1236–1244.