Molecular Genetic Characterization of the Turkish National Green Plum (Prunus cerasifera Ehrh.) Collection

Gülsüm ÇAKIR 1 Tülin TAŞCIOĞLU 2 Andaç ÇAVDAR 3
Sami DOĞANLAR 4 Amy FRARY 5 Anne FRARY 5*

1, 2, 4, 6 Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, İzmir/TURKEY
3 Aegean Agricultural Research Institute, Menemen, İzmir/TURKEY
5 Department of Biological Sciences, Mount Holyoke College, South Hadley, MA/USA

1https://orcid.org/0000-0003-4911-3746 2https://orcid.org/0000-0003-2987-2313 3https://orcid.org/0000-0002-5689-2883 4https://orcid.org/0000-0002-5712-0826 5https://orcid.org/0000-0002-8973-0100

*Corresponding author’s (Sorumlu yazar) e-mail: annefrary@iyte.edu.tr
Received (Geliş tarihi): 30.10.2020 Accepted (Kabul tarihi): 15.01.2021

ABSTRACT: Plum is an important fruit worldwide and has high nutritional value. Prunus cerasifera Ehrh., a type of European plum species, is very popular in Turkey and is usually eaten at the green, unripe stage. In this work for the first time, the genetic diversity and population structure of the 66 accessions housed in the Turkish National P. cerasifera collection were investigated using molecular markers. A total of 47 Sequence-Related Amplified Polymorphism (SRAP) primer pairs were used and found to be highly polymorphic with 98% of the 495 amplified alleles providing polymorphism. Average diversity of the accessions was 0.39 as determined using the dice coefficient and was similar to P. cerasifera germplasm from France, Iran and Belarus but higher than that from China. This difference was expected as Turkey, Iran and Belarus are within the geographical origin of this species which was distributed to Europe during ancient times. The genetic relationships among accessions of the germplasm collection were assessed using unweighted neighbor joining dendrogram and population structure analyses. The dendrogram and population structure results were strongly correlated as both methods clustered the material into two main groups with a much smaller third admixed group. The analysis also indicated that Can and Papaz types, despite their morphological differences are not genetically distinct and provides information about genetic relationships that can be used in future plum breeding.

Keywords: Plum, Prunus cerasifera Ehrh., SRAP, national collection, fruit genetics, green plum diversity.
INTRODUCTION

Prunus is a genus of the Rosaceae family and consists of over 286 approved species including the stone fruit species plums, almonds, cherries and peaches (The Plant List, 2013). In the early classifications of Prunus dating back to the 1600s, only plum was included in the genus by John Ray, Joseph Pitton de Tournefort, Johann Jacob Dillenius and Herman Boerhavee (Faust and Surányi, 1999). In 1940, species in Prunus were classified into five subgenera as proposed by Alfred Rehder: Amygdalus (L.) Focke (peaches and almonds), Prunus Focke (plums and apricots), Cerasus Pers (sweet and tart cherries), Padus (Moench) Koehne (deciduous bird-cherries) and Laurocerasus Koehne (evergreen laurel-cherries) (Milošević and Milošević, 2018). Subsequently, Lithocerasus (flowering, sand cherries) was added to the list as the sixth Prunus subgenus (Ingram, 1948).

Plum species in the subgenus Prunus are cultivated worldwide and can be divided into three groups: Japanese, American and European plums. Among the Japanese species (Japon eriği) are Prunus salicina and P. mume, two species that can grow to 10 meters and produce fruits with yellow-pink flesh. The American plums (Amerikan eriği), Prunus americana, can reach 15 meters and their fruits have red skin and yellow flesh (Heiges, 1897; Cobianchi and Watkins, 1984). European plums (Avrupa eriği) include four subspecies: Prunus domestica, P. spinosa, P. mahaleb and P. cerasifera that grow up to 10 meters in height, generally producing fruits with yellow flesh covered by deep-purple-blue skin (Walkowiak-Tomczak et al., 2008).

Interestingly, there is a conflict in the common names used for plum species compared to the literature. In Turkey, plum cultivars are classified into three groups: Can, European, and Japanese (Anonymous, 2012). American plums are not included, perhaps because P. americana is not commonly grown in Turkey. According to the Turkish classification, P. cerasifera (Myrobalan plum, green plum, cherry plum, or “Kiraz eriği”) falls within the “Can” plums and is represented by several varieties that are named Can. In the literature, P. cerasifera is considered to be a European plum species. P. cerasifera is one of the most consumed plum species in Turkey. This species is adapted to the varied climatic and soil conditions of Turkey as well as other parts of the world (Ayanoğlu et al., 2007). P. cerasifera is mostly grown in the coastal areas of the Mediterranean region and the green plum market has a high economic impact and drives production (Ayanoğlu et al., 2007).

Beyond their economic impact as a fruit crop, plums are valued for their delicious taste and nutritional content (Walkowiak-Tomczak et al., 2008). Due to their high carbohydrate content, plums constitute a source of “ready to be used” energy (Anonymous, 2019b). In addition, plum fruits are rich in metabolites such as anthocyanins, phenolic acids, carotenoids, and fiber (pectin) (Birwal et al., 2007). One serving (100 g) of fresh plum contains minerals such as potassium (157 mg), phosphorus (16 mg), magnesium (7 mg) and calcium (6 mg) as well as vitamin A (17 µg), vitamin C (9.5 mg), vitamin K (6.4 µg) and vitamin B complex: thiamine (0.028 mg), pantothenic acid (0.135 mg), riboflavin (0.026 mg), niacin (0.417) (Anonymous, 2019b). The purported health benefits of plum fruit include prevention of cancer and heart diseases, regulation of the digestive system, resistance to infectious agents or free radicals, balancing of blood pressure, and reduction in the severity of Alzheimer’s disease (Birwal et al., 2017).
Turkey’s plum production increased 19% in the last decade and, with 291,934 tons of production in 2017, Turkey currently ranks 6th worldwide (Anonymous, 2019a; Anonymous, 2019c). P. cerasifera is one of the most consumed plum species in Turkey as it is adapted to varied climatic and soil conditions (Ayanoglu et al., 2007) and is an early spring favorite fruit. In Turkey, there are a number of economically important P. cerasifera cultivars including Can, Papaz, Havran, Kebap and Aynalı. Among these cultivars, Can, Papaz and Aynalı are harvested and consumed as green sour plums. In addition to their fresh use, there is increasing interest in dried plum production for industrial (prune powder) and commercial uses (table prunes) in Turkey and elsewhere (Bolat et al., 2017).

P. cerasifera has also been studied for its tolerance to biotic and abiotic stress factors and its potential for use as a rootstock. Stress factors affect the growth and yield of current European, Japanese and American plum cultivars which could be improved by the use of suitable rootstocks (Nasri et al., 2019). P. cerasifera can be used as a rootstock for cultivation of other plum species as it is resistant to temperature extremes (Ercisli, 2004; Ercisli et al., 2006). In other work, Lecouls et al. (1999, 2004) investigated root-knot nematode (RKN) resistance genes in Myrobalan parental lines with molecular markers. They hypothesized that the RKN resistance genes Ma1, Ma2 and Ma3 might be closely linked and can be used in the generation of new interspecific hybrids and to supply a nematode resistant rootstock source. These researchers also identified molecular markers for these genes and suggested that they may control different RKN resistance mechanisms. In addition to its pest resistance, P. cerasifera is a flood sensitive species (Domingo et al., 2002; Amador et al., 2012; Almada et al., 2013; Rubio-Cabetas et al., 2018). The photoperiod responses of somaclonal variants of P. cerasifera plantlets under flooding conditions were tested by Iacona et al. (2019). This work suggested that some of the variants had flooding stress tolerance independent from photoperiod while other variants had sensitivity depending on photoperiod. Tolerant variants are, of course, interesting for rootstock development.

The breeding and selection of new, genetically diverse and adaptable P. cerasifera species and rootstocks can be aided by the use of molecular tools. These tools can also provide pivotal information for the conservation and management of plum germplasm. As a perennial tree species, plum accessions are expensive and laborious to maintain. Therefore, it is important to characterize this germplasm with all available methods (phenological, horticultural, molecular genetic) to ensure that these valuable resources are maintained and used for optimal benefit. To date, only a limited number of molecular genetic diversity analyses have been done within P. cerasifera (Ayanoglu et al., 2007; Horvath et al., 2008; Wöhrmann et al., 2011; Zhao et al., 2015). As a result, there is a need for assessment of the genetic diversity and structure of more plum specimens using different molecular markers. One such marker system is Sequence-Related Amplified Polymorphisms (SRAP). SRAP markers have high levels of polymorphism and reproducibility (Li and Quiros, 2001) indicating that they should be a useful system for investigating plum genetic diversity and population structure. In addition, these markers are not species-specific and are, therefore, cost effective. In our study, 47 SRAP marker combinations were used to assess genetic diversity among 66 plum (P. cerasifera) accessions conserved by the Aegean Agriculture Research Institute (AARI) (Menemen, Turkey). This material represents Turkey’s national green plum germplasm collection; therefore, it is important to characterize this gene pool for future plum breeding efforts. To our knowledge, this is the first study using SRAP markers for characterization of P. cerasifera germplasm. Such work provides a foundation for the development of new high-quality cultivars, as well as conservation and management of the national collection and natural plum populations. In the future, this molecular genetic information can be combined with phenological and horticultural data to identify quantitative trait loci (QTL) and molecular markers that can be used to improve the yield and quality of the plum crop.
MATERIALS and METHODS

Plant materials

Leaf tissue from 66 *P. cerasifera* accessions which were collected in six cities (Balıkesir, İzmir, Aydin, Manisa, Muğla, and Denizli) in two regions of Turkey (Marmara and Aegean) were obtained from the Aegean Agricultural Research Institute (AARI) (Table 1). The germplasm included economically important local cultivars such as cultivars Can and Papaz.

Table 1. Plum materials used in this study, their PI numbers, local names and collection locations. Note: Sub Pop indicates sub-population membership based on Structure analysis and No indicates genotype number used in data analyses.

No	PI-Number § (TUR0010)	Local Name	Sampling Location	Structure (Sub Pop)	Sub Pop A	Sub Pop B	Darwin (Cluster)
39	130 Havran	İzmir	A	0.999	0.001	A	
55	131 Can	İzmir	A	0.999	0.001	A	
48	134 Akpapaz	Manisa	A	0.994	0.006	A	
47	137 Papaz	Aydn	A	0.999	0.001	A	
43	140 Kebap	İzmir	A	0.999	0.001	A	
45	143 Can	İzmir	A	0.994	0.006	A	
36	145 Papaz	Balıkesir	A	0.999	0.001	A	
62	146 Can	Balıkesir	A	0.998	0.002	A	
56	147 Havran	Unknown	A	0.999	0.001	A	
57	148 Şam	Balıkesir	A	0.999	0.001	A	
63	151 Can	İzmir	A	0.999	0.001	A	
35	153 Can	İzmir	A	0.997	0.003	A	
52	157 Havran	İzmir	A	0.999	0.001	A	
58	158 Can	İzmir	A	0.998	0.002	A	
64	162 Kebap	Manisa	A	0.999	0.001	A	
38	163 Can	Manisa	A	0.997	0.003	A	
61	164 Can	Manisa	A	0.871	0.129	A	
50	165 Can	Manisa	A	0.999	0.001	A	
60	167 Can	Balıkesir	A	0.842	0.158	A	
44	168 Yeşil Şam	Balıkesir	A	0.999	0.001	A	
37	169 Sari Şam	Balıkesir	A	0.999	0.001	A	
51	173 Papaz	Muğla	A	0.999	0.001	A	
41	175 Papaz	Aydn	A	0.999	0.001	A	
59	176 Papaz	Aydn	A	0.999	0.001	A	
42	178 Papaz	İzmir	A	0.999	0.001	A	
46	183 Can	İzmir	A	0.999	0.001	A	
49	186 Papaz	İzmir	A	0.999	0.001	A	
66	189 Can	İzmir	A	0.999	0.001	A	
53	190 Can	Aydn	A	0.999	0.001	A	
54	605 Unknown	İzmir	A	0.999	0.001	A	
65	606 Unknown	Unknown	A	0.999	0.001	A	
40	608 Can	Unknown	A	0.999	0.001	A	
34	132 Can	İzmir	B	0.806	0.914	B	
7	135 Papaz	Denizli	B	0.002	0.998	B	
13	139 Can	Aydn	B	0.001	0.999	B	
3	142 Papaz	İzmir	B	0.001	0.999	B	
14	144 Bekiroğlu	İzmir	B	0.001	0.999	B	
5	149 Papaz	İzmir	B	0.024	0.976	B	
19	150 Can	İzmir	B	0.001	0.999	B	

DNA extraction

Genomic DNAs were isolated from fresh leaf tissue with a modified CTAB method (Doyle, 1987). DNA concentrations (ng/µl) of all *Prunus* samples were measured at Abs 260/280 (nm) using a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, Vantaa, Finland). All genomic DNAs were stored at -20°C.
Table 1. Continued

No	PI-Number §	Local Name	Sampling Location	Structure (Sub Pop)	Sub Pop A	Sub Pop B	Darwin (Cluster)
10	154 Papaz	İzmir	B	0.001	0.999	B	
18	155 Can	İzmir	B	0.002	0.998	B	
33	156 Papaz	Aydin	B	0.108	0.892	B	
25	159 Havran	İzmir	B	0.001	0.999	B	
21	160 Papaz	İzmir	B	0.067	0.933	B	
17	161 Unknown	Manisa	B	0.002	0.998	B	
15	170 Odemis	Balikesir	B	0.003	0.997	B	
20	171 Can	Muğla	B	0.001	0.999	B	
30	172 Can	Muğla	B	0.005	0.995	B	
11	174 Papaz	Muğla	B	0.002	0.998	B	
26	180 Papaz	Manisa	B	0.002	0.998	B	
24	181 Can	Manisa	B	0.056	0.944	B	
22	182 Can	İzmir	B	0.008	0.992	B	
28	184 Can	İzmir	B	0.001	0.999	B	
1	185 Papaz	İzmir	B	0.016	0.984	B	
27	187 Havran	İzmir	B	0.002	0.998	B	
23	188 Can	İzmir	B	0.001	0.999	B	
16	191 Halil Efendi	Tokat	B	0.021	0.979	B	
32	252 Unknown	Unknown	B	0.12	0.88	B	
8	270 Can	Unknown	B	0.001	0.999	B	
31	604 Unknown	Unknown	B	0.3	0.7	B	
4	607 Unknown	Unknown	B	0.011	0.989	B	
29	133 Papaz	Manisa	ADX	0.518	0.482	C	
12	141 Papaz	İzmir	ADX	0.514	0.486	C	
9	152 Papaz	İzmir	ADX	0.534	0.466	C	
6	179 Papaz	Manisa	ADX	0.532	0.468	C	

§The accessions have the same standard initial letters (TUR0010___); therefore, these initials were eliminated from the abbreviated accession names.

§Bireyler aynı standard başlangıç harflerine sahiptir (TUR0010___); bu nedenle, genotip ismi kısaltmalarında bu başlangıç işaretleri göz ardı edilmiştir.

Molecular marker analysis

SRAP analysis

Polymerase Chain Reactions (PCRs) were performed with 47 combinations of SRAP primers (Table 2) (Li and Quiros, 2001, Lin et al., 2005). The components of each 25 µl PCR reaction were:

- 2 µl 10x buffer, 1 µl (20 ng) DNA sample, 2 µl (25 mM) MgCl₂, 1.5 µl (20 mM) dNTP, 0.5 µl (10 pmol) forward primer, 0.5 µl (10 pmol) reverse primer and 1 µl (0.25 U) Taq DNA polymerase.

The PCR reaction had two main stages. Stage I (5x cycles) was: 5 min of initial denaturation at 94 °C, followed by denaturation at 94 °C for 1 min, then 1 min annealing at 35 °C, then followed by 1 min extension at 72 °C for 5 cycles. Stage II (35x cycles) was: denaturation 94 °C for 1 min, 1 min annealing at 50 °C and 1 min extension at 72 °C followed by a final extension at 72 °C for 10 min. A hold at 4 °C ended the reactions. PCR products were electrophoresed at 110 volts through 3% agarose gels (Lonza, Sea Kem® LE Agarose) and imaged under UV light after ethidium bromide staining.

Table 2. SRAP primer sequences.

Forward Primer Sequences (5’ – 3’)
me1
me2
me3
me4
me5
me6

Reverse Primer Sequences (5’ – 3’)
em1
em2
em3
em4
em5
em6
em7
em8
em9
Data analyses

Alleles obtained as a result of SRAP analysis were scored dominantly as present (1), absent (0) or missing data (9). The mean, maximum and minimum genetic diversity values per marker were determined by Gene Diversity software (GDdom) (Abuzayed et al., 2017). Population structure based on the markers was analyzed with the computer program Structure (Structure 2.3.4) in order to classify genotypes (Pritchard et al., 2000). During this analysis, different models \((K = 1\) to \(10\)) were tested and evaluated after 10,000 Markov Chain Monte Carlo (MCMC) burn-in cycles and ad hoc statistics to determine the optimal population number. In addition, each model was tested 20 times with 300,000 repetitions. The results were analyzed with Structure Harvester software to determine the best population model \((K)\) (Earl, 2012). The model with the highest \(\Delta K\) value was accepted as the best model for the population. To assign individuals to subpopulations within the selected model \((K)\), a genetic identity threshold of \(\geq 0.70\) for the genotypes was used. Genotypes with identity values below this threshold were not included in a subpopulation and were considered genetically admixed genotypes.

The marker data were analyzed by hierarchical classification. For this purpose, a dendrogram was generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.

RESULTS

Allelic profile of plum species

In this work, 47 SRAP primer combinations were assayed on 66 \(P. cerasifera\) accessions. Example gel images are provided in Figure 1.

A total of 495 alleles displaying 98% polymorphism (485 alleles) in the 66 accessions was generated by dominant scoring. The mean number of alleles per primer combination was 10.4, with the most alleles generated in the program DARwin (Perrier and Jacquemoud-Collet, 2006) using the Dice coefficient and unweighted neighbor joining algorithm. In addition, a Mantel test was performed to determine the correlation between the distance matrix and the dendrogram. DARwin was also used for PCoA analysis (Principal Coordinate Analysis).

The populations of Can and Papaz which had more than one individual, were analyzed for their within and between population genetic diversity in GenAlEx plugin (Peakall and Smouse, 2006) with construction of a random haploid binary data matrix and AMOVA analysis. Genetic separation analysis was performed with 9999 paired permutations and \(P\) values less than 0.05 were accepted as significant.
obtained from primer combination me1-em1 (13 alleles) (Table 3). The fewest alleles (8) were obtained from combination me3-em9. For each primer pair, approximately 90% polymorphism was observed except for the me5-em1 (63%) primer combination. The random haploid binary data matrix for Can and Papaz populations was constructed with an assumption of an average equal number of individuals for each population (N) and a high level of gene flow (Nm) was observed between these two main populations with a value of 13.27 (Table 4).

Genetic diversity

Gene diversity (GD) values were calculated for each SRAP primer combination (Table 3) and the maximum average GD was 0.46 for the me4-em3 primer combination. The minimum average GD was 0.19, which was shared by two different primer pairs: me5-em1 and me3-em4.

Table 3. Numbers of alleles, mean gene diversity (GD) values and standard deviations (SD) for each primer combination.

Primer pair	∑Na	Mean GD ± SD	Primer pair	∑Na	Mean GD ± SD
me4-em3	13	0.46 ± 0.01	me5-em4	19	0.32 ± 0.03
me3-em7	10	0.44 ± 0.02	me4-em4	9	0.32 ± 0.04
me3-em5	12	0.43 ± 0.03	me4-em8	14	0.31 ± 0.05
me1-em3	8	0.40 ± 0.04	me4-em1	14	0.31 ± 0.05
me8-em7	12	0.39 ± 0.04	me3-em8	9	0.31 ± 0.04
me2-em3	10	0.39 ± 0.04	me3-em6	13	0.31 ± 0.04
me5-em2	10	0.38 ± 0.04	me2-em6	9	0.30 ± 0.05
me1-em5	10	0.38 ± 0.05	me6-em1	12	0.29 ± 0.05
me2-em5	12	0.38 ± 0.04	me3-em1	9	0.29 ± 0.04
me4-em6	11	0.37 ± 0.03	me3-em3	10	0.29 ± 0.05
me6-em7	10	0.37 ± 0.04	me5-em6	11	0.29 ± 0.04
me2-em4	12	0.37 ± 0.05	me2-em1	12	0.28 ± 0.05
me1-em7	10	0.36 ± 0.05	me1-em4	10	0.27 ± 0.04
me3-em2	4	0.36 ± 0.10	me4-em2	10	0.27 ± 0.05
me2-em8	8	0.35 ± 0.05	me3-em9	8	0.27 ± 0.06
me3-em5	11	0.35 ± 0.06	me6-em6	12	0.26 ± 0.05
me1-em8	9	0.34 ± 0.05	me2-em9	6	0.25 ± 0.06
me5-em8	9	0.34 ± 0.05	me1-em2	18	0.24 ± 0.04
me5-em3	10	0.34 ± 0.05	me4-em5	10	0.24 ± 0.06
me5-em7	8	0.33 ± 0.06	me6-em5	9	0.20 ± 0.05
me4-em9	7	0.33 ± 0.07	me1-em9	8	0.20 ± 0.04
me2-em2	9	0.33 ± 0.05	me5-em1	8	0.19 ± 0.07
me2-em7	18	0.33 ± 0.04	me3-em4	6	0.19 ± 0.05
me1-em1	13	0.32 ± 0.05			
Population structure

Population structure analysis was performed in Structure software and the results were used to determine the best model for the population based on ΔK values via Structure Harvester program. Consequently, the optimal number of subpopulations in the national collection was determined to be $K = 2$ (Figure 2). For assignment of accessions to each subpopulation, the identity threshold was set at ≥ 0.70 (Table 1). The number of individuals in subpopulations A and B were 32 and 30, respectively. In addition, four accessions (6% of the total) were classified as admixed. Slightly more than half (56%) of the Can plums fell into subpopulation A accounting for 44% of the cultivars in this group. Papaz plums accounted for 22% of subpopulation A. Can and Papaz plums represented 37% and 33% of subpopulation B accessions, respectively. The four admixed individuals were Papaz accessions. None of the subpopulations reflected the geographical origins of the plums.

Unweighted neighbor joining dendrogram

The mean dissimilarity value for the unweighted neighbor joining dendrogram was 0.39 with a maximum of 0.68 and a minimum of 0.05. The dendrogram consisted of three main clusters: A, B and C (Figure 3). The dendrogram clusters reflected the observed subpopulations in population structure analysis. The first cluster, cluster A, consisted of 32 individuals in total while cluster B consisted of 30 accessions. Cluster C, contained only one unknown and four Papaz accessions which were determined to be admixed in the population structure analysis. Clustering did not coincide with geographic origin.

Figure 2. Q-plot of *P. cerasifera* accessions based on SRAP markers. The x-axis represents individuals sorted according to subpopulation. The y-axis reflects the genetic contribution from each subpopulation to single individuals. The bar plot for $K=2$ is shown. Each accession is represented by a vertical bar. Red and green colored sections within each vertical bar indicate membership coefficient (Q on the y-axis) of the accession to each subpopulation. Subpopulation A is colored red and subpopulation B is colored green. Accession codes are abbreviated into three digits. For example, TUR0010145 is shortened to 145. Admixed accessions that do not belong to either subpopulation are indicated with *.

Şekil 2. *P. cerasifera* bireylerinin SRAP markörlerine dayalı Bar grafiği $K=2$ için gösterilmiştir. Her birey üçey bir çubukla gösterilmiştir. x-ekseni, alt popülasyonlara göre sıralanmış bireyleri temsil etmektedir. y-ekseni, her alt popülasyonun her bir bireye ne kadar genetik katkıda bulunduğunun bir göstergesidir. Her üçey çubuktaki kirmızı ve yeşil renkli kısımlar bireylerin her bir alt popülasyona üyeliğin (y-ekseninde Q) belirtmektedir. Altın popülasyon A kırmızı ve alt popülasyon B yeşil renktedir. Birey kodları üç basamak olarak kısaltılmıştır. Örneğin, TUR0010145, 145 olarak kısaltılmıştır. Herhangi bir alt popülasyona dahil olmayıp karışık genetik çeşitliliğe sahip olan bireyler * ile belirtilmiştir.
Principle coordinate analysis

Principle coordinate analysis (PCoA) revealed three main clusters: A, B and C (Figure 4). The first, second and third eigen vectors explained 40.25%, 17.53% and 5.39% of the variation, respectively. This analysis agreed with the population structure and dendrogram results in that the Papaz plums were dispersed in all three clusters with the Can plums found in clusters A and B. Some of the Can and Papaz accessions were closely related to other plum types including Kebab, Havran, and Şam plums. As with the other analyses, no clustering based on collection location was observed.

Analysis of molecular variance (AMOVA)

AMOVA was carried out for the Can and Papaz types because they had sufficient numbers of accessions (25 and 21, respectively) for such analysis. Among population/type (Can vs. Papaz) diversity represented only 2% of total genetic diversity for these plums while 98% of diversity occurred within types (data not shown). These results indicated that Can and Papaz plums are each genetically diverse types with very little genetic separation between them.
DISCUSSION

Characterization of Turkey’s *P. cerasifera* germplasm resources is essential for more informed germplasm conservation, collection and management. Because *P. cerasifera* is very adaptable and a useful rootstock, its proper conservation is crucial to meet future biotic, abiotic and climatic challenges to this species. Genetic characterization is also an important step toward the improvement of this species via plant breeding as it allows selection of genetically distinct parents and opens the door to marker-assisted selection.

In this work, the molecular genetic diversity of the national *P. cerasifera* plum germplasm collection was determined. The 66 accessions in the collection were originally sampled from the Aegean (51 accessions), Marmara (7) and Black Sea (1) and unknown (7) regions of Turkey and were assessed with 47 SRAP marker combinations. The effectiveness of SRAP markers in other *Prunus* species was shown in the work of Zubair et al. (2016) who investigated wild and local *Prunus* germplasm including *P. arabica* (wild species), *P. argentea* (wild species) and *P. dulcis* (local species) with 16 primer combinations and found that SRAPs were an effective marker system. In our work, a total of 495 alleles were generated from the SRAP markers and the percentage of polymorphic alleles was very high (98%).

In other work, Ayanoğlu et al. (2007) obtained 580 alleles but only 20.7% polymorphism with six AFLP markers on 20 *P. cerasifera* accessions collected from the Antalya, Mersin and Hatay provinces in the Mediterranean region of Turkey. Comparison between the present work and that of Ayanoğlu et al. (2007) indicates that, within this species, the polymorphism information content of SRAP markers (495 alleles, 98% percentage of polymorphism) is higher than for AFLPs. The disparity in results could partially be due to the smaller number of accessions used by Ayanoğlu et al. (2007). However, SRAP markers have the additional advantages of being easier and cheaper to assay than AFLPs.

When SSR markers were used to determine genetic diversity in *P. cerasifera*, they were found to have similarly high levels of polymorphism as SRAP markers with 96% of fragments showing polymorphism in 40 Chinese accessions (Zhao et al., 2015). As compared to SSR markers, SRAPs are somewhat more economical as the same markers can be used for many different species while SSR markers are usually developed on a species-specific level.

The mean genetic variation across the accessions was 0.39 as determined using a measure of genetic diversity for dominant markers that ranges from 0 to a maximum of 0.50. All other studies evaluated genetic diversity on a scale of 0 to 1.0. According to this range, our mean genetic diversity value was 0.78. Ayanoglu et al. (2007) and Zhao et al. (2015) found the lowest levels of genetic dissimilarity in
their studies which examined Turkish (0.09) (this extremely low value may be the result of the small number of accessions studied) and Chinese (0.33) germplasm. Other research using *P. cerasifera* accessions from France, Iran and Belarus had mean diversity values of 0.65, 0.68 and 0.72, respectively (Horvath *et al.*, 2008; Wöhrmann *et al.*, 2011; Urbanovich *et al.*, 2017), which agree with the level of diversity seen in our Turkish material. Thus, our data suggest that Turkish *P. cerasifera* germplasm has a high genetic diversity that is similar to that seen in nearby countries. In general, other studies have indicated that *P. cerasifera* germplasm population structure is simple with two to three subpopulations (Ayanoglu *et al.*, 2007; Zhao *et al.*, 2015; Urbanovich *et al.*, 2017). In our work, the dendrogram analysis revealed two main clusters with a small third group of five accessions. This agreed with the population structure analysis which also placed the accessions in two main subpopulations and a small, admixed group. On the other hand, Wöhrmann *et al.* (2011) were not able to distinguish different clusters in Iranian material: all individuals in the population were not able to distinguish different clusters in Mediterranean regions of Turkey. The current study examined the national collection housed at the AARI which primarily contains individuals sampled from the Aegean region. In contrast, Ayanoglu *et al.* (2007) examined 20 accessions sampled from Mediterranean locations. Comparison of these results suggests that Aegean materials are more diverse than Mediterranean ones; however, a true comparison cannot be made because of the different marker systems and number of accessions used in the two studies.

Can and Papaz plums are very popular varieties of *P. cerasifera* in Turkey. Can plums mature earlier, have smaller, sourer fruit and higher yields than Papaz plums. Can plums are yellow when fully ripe whereas Papaz are red (Andaç Çavdar, personal communication). Despite these phenological and horticultural differences, our results indicate that Can and Papaz are not genetically distinct types. In addition, AMOVA analysis indicated that within type (Can vs. Papaz) diversity (98%) was much higher than among type diversity (2%), reinforcing the conclusion that they are not genotypically distinct varieties. The shared genetic diversity among these varieties is most likely due to their origins from natural crosses within and between different parental materials. *P. cerasifera* is described as self-fertile, half self-fertile or even out-crossing (Anonymous, 2012). These types of mating behavior could result in genetic diversity which is perpetuated by clonal propagation.

CONCLUSION

The Turkish National *P. cerasifera* germplasm collection consisting of different plum accessions including the most economically valuable types, Can and Papaz, was investigated with molecular markers for the first time. There was no distinct genetic clustering in the germplasm according to geographical origin or type, however, a high level of diversity was observed in the collection. These results were expected based on the origin of this species in Western and Central Asia. The findings are promising for the conservation of *P. cerasifera* and the development of new cultivars to meet the challenges of future consumer demands and
cultivation conditions. The genotypic data generated in this work can be combined with phenotyping of this valuable collection to allow genetic mapping of phenological and horticultural traits.

ACKNOWLEDGEMENTS

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

Abuzayed, M., N. El-Dabba, A. Frary, and S. Doganlar. 2017. GDOM: An online tool for calculation of dominant marker gene diversity. Biochemical Genetics 55(2): 155-157.

Almada, R., M. J. Arismendi, P. Pimentel, P. Rojas, P. Hinrichsen, M. Pinto, B. Sagredo. 2013. Class 1 nonsymbiotic and class 3 truncated hemoglobin-like genes are differentially expressed in stone fruit rootstocks (Prunus L.) with different degrees of tolerance to root hypoxia. Tree Genet. Genomes 9, 1051–1063.

Amador, M. L., S., Sancho, B., Bielsa, J., Gomez-Aparisi, and M. J., Rubio-Cabetas. 2012. Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiol. Plant. 144, 357–368.

Anonymous. 2012. Erik Yetiştiriciliği. pp: 3-27. In: Sert Çekirdekli Meyve Yetiştiriciliği-2, 62BHY146. Ankara.

Anonymous. 2019a. Food and Agriculture Organization of the United Nations (FAOSTAT). http://www.fao.org/faostat/en/#home [Accessed 21.12.2019].

Anonymous. 2019b. USDA. The PLANTS Database. Available online: http://plants.usda.gov. [Accessed 10.12.2019]. National Plant Data Team, Greensboro, NC 27401-4901 USA.

Anonymous. 2019c. TÜİK. Bitkisel üretim istatistikleri. Konularına Göre İstatistikler (in Turkish). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. TS30685.

Asif, M. 2011. The role of fruits, vegetables, and spices in diabetes. International Journal of Nutrition, Pharmacology, Neurological Diseases, 1(1), 27. doi: 10.4103/2231-0738.77527.

Ayanoglu, H., S. Buyazit, G. Inan, M. Bakr, A. E. Akpinar, K. Kazan, and A. Ergün. 2007. AFLP analysis of genetic diversity in Turkish green plum accessions (Prunus cerasifera L.) adapted to the Mediterranean region. Scientia Horticulturae 114(4): 263-267.

Birwal, P., G. Deshmukh, S.P. Saurabh and S. Pragati. 2017. Plums: a brief introduction. Journal of Food, Nutrition and Population Health 1(1).

Bolat, I., B. E. Ak, I. Acar and A. Ikinci. 2017. Plum culture in Turkey. pp. 15-18 In: III EUFRIN Plum and Prune Working Group Meeting on Present Constraints of Plum Growing in Europe 1175. doi: 10.17660/ActaHortic.2017.1175.4.

Cobianchi, D., and R. Watkins. 1984. Descriptor list for plum and allied species (Prunus). IBPGR.

Domingo, R., A. Pérez-Pastor, and M. C. Ruiz-Sánchez. 2002. Physiological responses of apricot plants grafted on two different rootstocks to flooding conditions. J. Plant Physiol. 159: 725–732. doi: 10.1078/0176-1617-0670.

Doyle, J. J. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin - Botanical Society of America 19: 11–15.

Earl, D. A. 2012. Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources 4(2): 359-361. doi: https://doi.org/10.1007/s12686-011-9548-7

Erbil, Y. and M. Öztürk. 2000. Erik Raporu. Yalova, Turkey: Bitkisel Üretim Özel İhtisas Komisyonu Meyvecilik Alt Komisyonu Raporu (in Turkish). ISBN 975 – 19 – 2915-6.

Ercisli, S. 2004. A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution 51(4): 419-435. https://doi.org/10.1023/B:GRES.0000023458.60138.79.

Ercisli, S., A. Esitken, E. Orhan and O. Ozdemir. 2006. Rootstocks used for temperate fruit trees in Turkey: an overview. Sodininkyste ir Darzininkyste 25 (3): 27-33.

Faust, M., and D. Surányi. 1999. Origin and dissemination of plums. Hort. Rev 23: 179-231. ISBN 0-471-25445-2.

Heiges, S. B. 1897. Report of the Pomologist for 1895. US Government Printing Office. SB 354 H45 1895.

Horvath, A., H. Christmann, and F. Laigret. 2008. Genetic diversity and relationships among Prunus cerasifera (cherry plum) clones. Botany 86(11): 1311-1318. doi: https://doi.org/10.1139/B08-097

AUTHOR CONTRIBUTIONS

GÇ and TT provided equal contributions; GÇ performed research and analysis and wrote first draft; TT performed analysis, interpreted data and revised manuscript; AC provided plant material and information about accessions; SD conceptualized research; AF and AF conceptualized research, interpreted data and revised manuscript.
Iacona, C., L. Pistelli, M. Cirilli, L. Gatti, R. Mancinelli, M. N. Ripa, and, R. Muleo. 2019. Day-length is involved in flooding tolerance response in wild type and variant genotypes of rootstock Prunus domestica L. Frontiers in Plant Science, 10, 546. doi: https://doi.org/10.3389/fpls.2019.00546.

Ingram, C. 1948. Ornamental Cherries. Publisher, Country Life.

Lecouls, A. C., V. Bergougnoux, M. J. Rubio-Cabetas, C. Pons, B. Bielsa, M. L. Amador, C. Marti, and A. Granell. 2018. Preformed and induced mechanisms underlie the differential responses of Prunus rootstock to hypoxia. J. Plant Physiol. 228, 134–149. doi: 10.1016/j.jplph.2018.06.004.

Slavin, J. L., and B. Lloyd. 2012. Health benefits of fruits and vegetables. Advances in Nutrition, 3(4), 506-516. doi: https://doi.org/10.3945/an.1112.002154.

The Plant List (2013). Version 1.1. http://www.thefl理论tlist.org/ (accessed 1st January, 2020).

Urbanovich, O. Y., P. V. Kuzmitskaya and A. V. Kilchevsky. 2017. Identification and genetic diversity of plum cultivars grown in Belarus. Russian Journal of Genetics 53(7): 775-784. doi: https://doi.org/10.1134/S1022795417070134.

Walkowiak-Tomczak, D., J. Regula and G. Lysiak. 2008. Physico-chemical properties and antioxidant activity of selected plum cultivars fruit. Acta Scientiarum Polonorum Technologia Alimentaria 7(4): 15-22. ISSN: 1644-0730.

Wöhrmann, T., D. Guicking, K. Khosbakhht and K. Weising. 2011. Genetic variability in wild populations of Prunus divaricata Ledeb. in northern Iran evaluated by EST-SSR and genomic SSR marker analysis. Genetic Resources and Crop Evolution 58(8): 1157-1167. ISSN: 0925-9864.

Zhu, Y., Y. Li, Y. Liu and Y.F. Yang. 2015. Genetic diversity of wild Prunus cerasifera Ehrh. (plum cherry plum) in China revealed by simple-sequence repeat markers. Gene Conserve 14(56). doi: 10.1016/j.gene.2015.02.035.

Zhebentyayeva, T., V. Shankar, R. Scorza, A. Callahan, M. Ravelonandro, S. Castro, T. Dejong, C. A. Sasaki and C. Dardick. 2019. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Horticulture Research, 6(1), 1-13. doi: https://doi.org/10.1038/s41438-018-0090-6

Zubair, S.J., A.M. Ali and J.M. Jubrael. 2016. Genetic variation assessment of some Prunus species using SRAP markers. Science Journal of University of Zakho 4(2): 173-176. doi: 10.25271/2016.4.2.77.