Crystal structure, 1H and 13C NMR spectral studies of 1,2,4,5-oxadiazaborole derivatives

Meryem Pir*, Hikmet Ağırbaş, Onur Şahin

1Kocaeli University, Department of Chemical Technology, Kocaeli, Turkey; ORCID ID orcid.org/0000-0003-4305-8838
2Kocaeli University, Department of Chemistry, Kocaeli, Turkey
3Sinop University, Department of Scientific and Technological Research Application and Research Center, Sinop, Turkey, ORCID ID orcid.org/0000-0003-3765-3235

ARTICLE INFO

Article history:
Received 02 October 2018
Received in revised form 11 December 2019
Accepted 15 December 2019
Available online 31 December 2019

Research Article
DOI: 10.30728/boron.466719

Keywords:
1H and 13C chemical shifts, GIAO-DFT calculations, Oxadiazaboroles, Substituent effect, X-ray structure.

1. Introduction

In medicinal chemistry, boron compounds have great potential in drug discovery. These compounds have been reported in the literature as having potential biological activities [1-5]. Some of these are: heterocyclic aminoboron compounds (antituberculosis agents) [6], boron-containing GSK2251052 (antimicrobial agent) [7], oxaboroles (antibacterial prototypes) [8], α-amino cyclic boronates (inhibitors of HCV NS3 protease) [9], benzoxaboroles (anti-inflammatory agents) [10], boronic acid esters (antibacterial agents) [11], boron-containing thiosemicarbazones (antifungal agents) [12], organoboron derivatives (antimicrobial and antifertility activities) [13] and aryl boronate esters (antimicrobial agents) [14]. The other heterocyclic systems containing B-N bonds also show biological activities. Hence, oxadiazaboroles should be interesting compounds for biological activity studies. When we consider the structure of 1,2,4,5-oxadiazaboroles, the presence of oxygen-, nitrogen- and boron- in the five-membered heterocycle system, it can be expected some physiological activities. In relation to this, the study of the transmission of substituent effects on these heterocycles may provide better insight for their structure-activity relationships.

The chemical shifts in 1H and 13C NMR spectra are often used for the study of the transmission of substituent effects on molecules. Analysis of the substituent chemical shifts (SCS) is based on Hammett or modified Hammett equations [15-18].

In this study, we calculated the 1H and 13C NMR chemical shifts of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r) were studied respectively. Single and dual substituent parameters were used for the correlation analysis of substituent-induced chemical shifts with σ, F and R constants. The calculations have shown the polar and resonance substituent effects on N-H proton and C=N carbon atoms. The p value was found positive for compounds (1a-r), which means that the substituent effect is normal. Additionally, crystal structure of compound (1i) was also studied. Density functional theory (DFT) calculations were carried out to calculate the theoretical chemical shifts, bond distances and bond angles.

ABSTRACT

Substituent effects on 1H and 13C NMR chemical shifts of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r) were studied respectively. Single and dual substituent parameters were used for the correlation analysis of substituent-induced chemical shifts with σ, F and R constants. The calculations have shown the polar and resonance substituent effects on N-H proton and C=N carbon atoms. The p value was found positive for compounds (1a-r), which means that the substituent effect is normal. Additionally, crystal structure of compound (1i) was also studied. Density functional theory (DFT) calculations were carried out to calculate the theoretical chemical shifts, bond distances and bond angles.

SCS = $p\sigma + q$ (1)

SCS = $p_1\sigma_f + p_2\sigma_r + q$ (2)

In the equations, σ is Hammett substituent constant [18], p shows the sensitivity of 1H and 13C NMR chemical shifts to substituent effects, ρ_f and ρ_r give the information about nonconjugative and conjugative effects respectively and q is the intercept. ρ_f and ρ_r are relative measures of the transmission of inductive and resonance effects through the system. When a fit correlation with equation (1) is obtained, the use of equation (2) shows the nonconjugative (ρ_f) and conjugative effects (ρ_r).

Additionally, crystal structure of compound (1i) was also studied.

*Corresponding author: pirmeryem@gmail.com
Figure 1. Structure of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r).

Table 1. Crystal data and structure refinement parameters for 5-(4-bromophenyl)-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (1i).

Empirical formula	C_{13}H_{10}BBN_{2}O
Formula weight	300.95
Crystal system	Triclinic
Space group	P-1
\(a\) (\(\AA\))	5.597 (4)
\(b\) (\(\AA\))	7.624 (4)
\(c\) (\(\AA\))	15.296 (9)
\(a^{\circ}\)	75.92 (2)
\(\beta^{\circ}\)	84.21 (3)
\(\gamma^{\circ}\)	89.64 (3)
\(V\) (\(\AA^3\))	629.8 (7)
\(Z\)	2
\(D_v\) (\(g\ cm^{-3}\))	1.587
\(\mu\) (\(\mu\ m\))	3.25
\(\theta\) range (\(^\circ\))	3.4-28.6
Measured refls.	11406
Independent refls.	2342
\(R_{int}\)	0.063
\(S\)	1.18
R1/wR2	0.096/0.281

The molecular structure of 1i with the atom labeling is shown in Figure 2. The central ring make dihedral angles of 29.15(35)\(^\circ\) and 25.92(39)\(^\circ\) with the two phenyl rings. The dihedral angle of the phenyl rings is 54.25(28)\(^\circ\). Molecules of 1i are linked into sheets by the combination of N-H...N hydrogen bonds, C-H...π and π...π interactions (Tables 3 and 4). Atom N1 atom acts as hydrogen-bond donor, via atom H1, to atom N2 in the molecule at (x+1, y, z), forming a C(4) chain running which is parallel to the a axis (Figure 3). Compound (1i) also contains four C-H...π and one π...π interactions. An intermolecular π...π contact occurs between the two symmetry-related rings of neighbouring molecules. The distance between the ring centroids is 3.563(5) \(\AA\). The combination of C-H...π and π...π interactions produce 3D supramolecular network.

3.2. Substituent effects on \(^{13}\)C=N and \(^1\)H-N chemical shifts of (1a-r)

We have also obtained experimental and theoretical \(^{13}\)C and \(^1\)H NMR chemical shifts of C=N carbon and N-H proton in 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r). Computer aid is ranging from molecular design to architectural design [19,20] and also helps to control the experimental data. Therefore, we performed density functional theory (DFT) calculations on compounds (1a-r) to characterize their three-dimensional structures, predict their \(^{13}\)C=N and \(^1\)H-N chemical shifts.

3.1. X-Ray diffraction analysis

Compound (1i) was crystallized from acetone-hexane mixture, yielding single crystals for X-ray diffraction analysis. Suitable crystal of 1i was selected for data collection which was performed on a Bruker D8 QUEST diffractometer equipped with a graphite-monochromatic Mo-K\(_\alpha\) radiation at 296 K. The structure was solved by direct methods using SHELXS-97 [27] and refined by full-matrix least-squares methods on \(F^2\) using SHELXL-97 [27] from within the WINGX [28] suite of software. Hydrogen atoms bonded to C and N were refined using a riding model, with C-H=0.93 Å and N-H=0.86 Å. Molecular diagrams were created using MERCURY [29]. Supramolecular analyses were made and the diagrams were prepared with the aid of PLATON [30]. Details of data collection and crystal structure determinations and selected atomic parameters are given in Tables 1 and 2.

The distance between the two symmetry-related rings of neighbouring molecules. The distance between the ring centroids is 3.563(5) \(\AA\). The combination of C-H...π and π...π interactions produce 3D supramolecular network.
dihydro-1,2,4,5-oxadiazaboroles (1a-r) (Figure 1) to search the factors that affect the change of the chemical shifts. The correlations between the experimental and theoretical values gave fair results (Table 5); \(r^2 \): 0.812 (for \(^{13}\text{C}\) chemical shifts) and \(r^2 \): 0.670 (for \(^{1}\text{H}\) chemical shifts). The values of \(^{13}\text{C}\)N=N and \(^{1}\text{H}\)N refer to the center peak of DMSO-\(d_6\) which have the values of 39.50 ppm and 2.50 ppm for \(^{13}\text{C}\) and \(^{1}\text{H}\) respectively.

The aromatic \(^{1}\text{H}\) NMR and \(^{13}\text{C}\) NMR chemical shifts, measured for oxadiazaborole compounds (1a-r) [21] are given in Table 6.

Table 2. Selected bond distances (Å) and angles (º) for 5-(4-bromophenyl)-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaborole (1i).

Bond distances (Å)	Experimental (X-ray)	Calculated (DFT)
C8-B1	1.587(15)	1.521
B1-N1	1.388(14)	1.443
C7-N1	1.392(13)	1.359
C9-C10	1.404(15)	1.394
B1-O1	1.411(15)	1.411
C7-N2	1.300(14)	1.355
C11-Br1	1.906(10)	1.869
N2-O1	1.480(11)	1.358

Bond angles (º)	Experimental (X-ray)	Calculated (DFT)
N2-C7-N1	116.8(10)	111.3
N1-B1-O1	106.8(9)	103.7
B1-N1-C7	105.3(9)	107.1
N2-C7-C1	118.0(9)	120.4
N1-B1-C8	132.2(10)	133.1
C7-N2-O1	102.1(8)	106.9
N1-C7-C1	125.2(9)	128.2
O1-B1-C8	120.8(9)	123.0
B1-O1-N2	108.9(8)	110.8

Dihedral angles (º)	Experimental (X-ray)	Calculated (DFT)
C9-C8-B1-N1	−23.0(2)	0.0
C2-C1-C7-N1	−29.4(15)	0.0

Table 3. Hydrogen-bond parameters for 1i (Å, º).

D-H:···A	D-H	H···A	D···A	D-H···A
N1—H1···N2	0.86	2.56	3.421	177
C3—H3···Cg(3)\(^{ii}\)	0.93	2.86	3.523	130
C6—H6···Cg(3)\(^{iii}\)	0.93	2.89	3.544	128
C10—H10···Cg(2)\(^{iv}\)	0.93	2.86	3.540	131
C13—H13···Cg(2)\(^{v}\)	0.93	2.87	3.555	131

Symmetry code: (i) x+1, y, z; (ii) 2-x, -y, 1-z; (iii) 1-x, 1-y, 1-z; (iv) 2-x, 1-y, 1-z; (v) 1-x, -y, 1-z; Cg(2)=C1-C6; Cg(3)=C18-C13

Table 4. \(\pi\)···\(\pi\) interaction distances for 1i (Å).

Cg(I)	Cg(J)	Perpendicular distance
Cg(1)	Cg(1)	3.723(8)
Cg(1)	Cg(1)	3.563(5)

Symmetry code: (i) 1-x, -y, 1-z; Cg(1)=C1/N2/C7/N1/B1

Correlations of \(^{13}\text{C}\) and \(^{1}\text{H}\) NMR chemical shifts of C=N carbon and N-H proton with \(\sigma\) were done. The good fits with positive \(\rho\) values were obtained (Table 7). This shows that the changes in the electron density at C=N carbons and N-H protons are normal and not reverse [31-35]. This means that the substituent dipoles can not polarize \(\pi\)-units (as localized systems) through the space, because of the long distance.

In order to determine the relative importance of substituent resonance and field effects, DSP (dual sub-
stituent parameter) analyses of the 13C=N and 1H-N chemical shifts were carried out. The ρ_F and ρ_R values are given in Table 8 (F and R substituent constants are taken from [18]). As given in Table 8, ρ_R values are greater than the corresponding ρ_F values. This shows that C=N carbon and N-H proton in the heterocyclic ring are more sensitive towards the substituent resonance effects through resonance Structures III, IV and V (Figure 5) rather than polar substituent effects (Figure 4, Structures I and II).

Table 5. 1H-N and 13C=N NMR chemical shifts (in ppm) of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r) (experimental/theoretical).

Compounds	X	γ C=N (ppm)	γ N-H (ppm)
1a	p-N(CH$_3$)$_2$	156.974	9.231
	p-OH	159.115	9.265
		155.339	8.108
1b	p-OH	159.149	9.397
1c	p-CH$_3$	159.206	9.467
		156.028	8.197
1d	m-N(CH$_3$)$_2$	159.231	9.447
	m-CH$_3$	159.259	9.489
1e	H	159.267	9.533
1f	m-N(CH$_3$)$_2$	159.276	9.457
1g	m-OCH$_3$	159.038	9.533
1h	m-N(CH$_3$)$_2$	159.236	9.447
1i	m-CH$_3$	159.259	9.489
1j	m-N(CH$_3$)$_2$	159.267	9.533
1k	m-CH$_3$	159.259	9.489
1l	m-N(CH$_3$)$_2$	159.267	9.533
1m	p-Br	159.294	9.626
1n	p-Br	159.294	9.626
1o	m-Br	159.278	9.701
1p	p-Br	159.278	9.701
1r	m-Br	159.278	9.701
r		0.812	0.670

a) Except m-N(CH$_3$)$_2$ (1e); b) Except m-N(CH$_3$)$_2$ (1e) and m-OCH$_3$ (1h); r. Correlation coefficient

Figure 3. Crystal structure of 1i, showing the formation of a chain along a axis generated by N-H···N hydrogen bonds.

Table 5. 1H-N and 13C=N NMR chemical shifts (in ppm) of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r) (experimental/theoretical).
Table 6. Aromatic 1H and aromatic 13C NMR chemical shifts (in ppm) of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiaza boroles (1a-r) (experimental).

Compounds (Substituent, X)	1H (ppm)	13C (ppm)
Ta (p-N(CH3)2)	7.095-7.063, 6.882, 6.678-6.651, 5.917	152.098, 135.169, 130.564, 128.896, 126.994,
Tb (p-OH)	7.040-7.007, 6.853-6.825, 6.633-6.610, 5.975-5.946	160.177, 135.829, 130.713, 128.991, 126.895,
Tc (p-OCH3)	7.084-6.973, 6.680-6.649, 6.183	161.627, 135.660, 130.689, 128.937, 126.806,
Td (p-Ch3)	7.078-7.047, 6.937, 6.662-6.641, 6.414	140.842, 133.965, 130.747, 128.979, 128.944,
Te (m-N(CH3)2)	7.083-7.030, 6.678-6.656, 6.483-6.339, 6.347-6.313	150.145, 130.787, 128.997, 128.894, 126.801,
Tf (m-Ch3)	7.079-7.032, 6.834-6.789, 6.648-6.616, 6.477-6.417	137.221, 134.509, 131.788, 131.028, 130.784,
Tg (H)	7.085-7.021, 6.662-6.565	133.893, 131.111, 130.762, 128.967, 128.249,
Th (m-OCH3)	7.082-7.050, 6.674-6.495	159.037, 130.573, 129.371, 128.760, 126.440,
Tl (p-Br)	7.099-7.067, 7.006-6.979, 6.872-6.838, 6.708-6.681	135.809, 131.359, 130.815, 128.979, 126.543,
Tj (p-Cl)	7.066-7.040, 6.690-6.675	136.169, 135.642, 130.793, 128.964, 128.406,
Tk (m-Cl)	7.069-7.038, 6.973, 6.684-6.626	133.374, 132.176, 130.909, 130.825, 130.371,
Tl (m-Br)	7.426-6.639	139.261, 133.801, 132.522, 130.846, 130.685,
Tm (p-COCH3)	7.179, 7.100-7.068, 6.698-6.676	138.520, 134.129, 130.885, 129.024, 128.091,
Tn (m-CN)	7.433, 7.336, 7.137-7.050, 6.865-6.813, 6.710-6.688	138.093, 137.357, 134.409, 130.927, 129.465,
To (m-NO2)	7.863, 7.487-7.390, 7.080-7.048, 6.924-6.871, 6.695-6.674	147.691, 139.997, 130.922, 129.975, 129.021,
Tp (p-SO2CH3)	7.294, 7.185, 7.084-7.052, 6.687-6.665	142.888, 134.770, 134.671, 130.983, 129.082,
Tr (p-NO2)	7.461, 7.298, 7.091-7.060, 6.692-6.677	128.119, 126.579, 126.455, 126.326, 125.665,

Table 7. Statistical results of SSP (single substituent parameter) correlation analysis of 13C=N and 1H-NMR chemical shifts of (1a-r) against X.

Bonds	r	p	q	n
13C=N	0.880	0.289	159.22	17
1H-N	0.983	0.388	9.51	17

Table 8. Statistical results of DSP (dual substituent parameter) correlation analysis of 13C=N and 1H-NMR chemical shifts of (1a-r) against F and R constants.

Bonds	r	p_F	p_R	q	p_F/p_R	n
13C=N	0.997	0.273	0.354	159.27	0.771	10
1H-N	0.987	0.388	0.412	9.53	0.942	10

Figure 4. The polar substituent effect in compounds (1a-r).
4. Conclusions

In this study, we have carried out the combined experimental and theoretical spectroscopic analysis of 5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r), using 1H, 13C NMR techniques and DFT. In general, good correlations between experimental and calculated values have been observed. X-ray studies helped in establishing the structure with optimized geometric parameters (bond lengths, bond angles and dihedral angles) which are determined by DFT theory and compared with the experimental data. The substituent chemical shift (SCS) values with applied linear free energy relationships (LFERs) analysis were correlated with Hammett type substituent constants and substituent effects from the aryl groups were observed to be efficiently transmitted to the heterocyclic framework of the compounds. The ρ_F/ρ_R values indicated that the resonance effect is significant at the C=N carbon and N-H proton of compounds (1a-r).

Supplementary material

Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 1454233. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgement

The authors thank Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

[1] Ciaravino V., Plattner J., Chanda S., An assessment of the genetic toxicity of novel boron-containing therapeutic agents, Environ. Mol. Mutagen., 54, 338−346, 2013.

[2] Bhomia J., Sharma J., Lakhne R., Sharma R., Gupta R. S., Sharma S. A., Singh Y., Syntheses, silylation, characterization, and antimicrobial and antifertility activities of organoboron derivatives of some bioactive monofunctional bidentate semicarbazones, Appl. Organometal Chem., 32 (1), 2018.

[3] McKinney D. C., Zhou F., Eymann C. J., Ferguson A. D., Prince D. B., Breen J., Giacobbe R. A., et al. 4,5-Disubstituted 6-aryloxy-1,3-dihydrobenzo[c][1,2] oxaboroles are broad-spectrum serine β-lactamase inhibitors, ACS Infect. Dis., 1, 310−316, 2015.

[4] Reddy E. R., Trivedi R., Giribabu L., Sridhar B., Kumar K. P., Srinivasa M., Sarma A. V. S., Carbohydrate-based ferrocenyl boronate esters: Synthesis, characterization, crystal structures, and antibacterial activity, Eur. J. Inorg. Chem., 2013 (30), 5311−5319, 2013.

[5] Wang K., Cui J., Xie L., Qian X., Design, synthesis, and evaluation of unsymmetrical difluoro-boron complexes with imidazoline as potential fungicides, Heteroat. Chem., 20 (7), 418−424, 2009.

[6] Campbell-Verduyn L. S., Bowes E. G., Li H., Vallee A. M., Vogels C. M., Decken A., Gray C. A., et al. Heterocyclic aminoboron compounds as antituberculosis agents, Heteroat. Chem., 25 (2), 100−106, 2014.

[7] Ross J. E., Scangarella-Oman N., Jones R. N., Determination of disk diffusion and MIC quality control guidelines for GSK2251052: A novel boron-containing antibacterial, Diagn. Microbiol. Infec. Dis., 75, 437−439, 2013.

[8] Li X., Zhang Y. K., Plattner J. J., Mao W., Alley M. R. K., Xia Y., Hernandez V., et al. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone, Bioorg. Med. Chem. Lett., 23, 963−966, 2013.

[9] Li X., Zhang Y. K., Liu Y., Ding C. Z., Li Q., Zhou Y., Plattner J. J., et al. Synthesis and evaluation of novel alpha-amino cyclic boronates as inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett., 20 (12), 3550−3556, 2010.

[10] Akama T., Baker S. J., Zhang Y. K., Hernandez V., Zhou H., Sanders V., Freund Y., et al. Discovery and
structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis, Bioorg. Med. Chem. Lett., 19, 2129–2132, 2009.

[11] Baker S. J., Akama T., Zhang Y. K., Sauro V., Pandit C., Singh R., Kully M., et al. Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity for the potential treatment of cutaneous diseases, Bioorg. Med. Chem. Lett., 16, 5963–5967, 2006.

[12] Hicks J. W., Kyle C. B., Vogels C. M., Wheaton S. L., Baertlocher F. J., Decken A., Westcott S. A., Synthesis, characterization, and antifungal activity of boron-containing thiocromatic semicarbazones, Chemistry&Biodiversity, 5, 2415–2422, 2008.

[13] Bhomia J., Sharma J., Lakhne R., Sharma R., Gupta R. S., Sharma R. A., Singh Y., Syntheses, silylation, characterization, and antimicrobial and antifertility activities of organoboron derivatives of some bioactive monofunctional bidentate semicarbazones, Applied Organometallic Chemistry, 32 (1), e3983, 2018.

[14] Trivedi R., Reddy E. R., Kumar Ch. K., Sridhar B., Kumar K. P., Rao M. S., Efficient synthesis, structural characterization and anti-microbial activity of chiral aryl boronate esters of 1,2-diisopropylidenedioxy-α,β-xylofuranose, Bioorg. Med. Chem. Lett., 21, 3890-3893, 2011.

[15] Neuvonen K., Fülöp F., Neuvonen H., Koch A., Klein-peter E., Pihlaja K., Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines as explained by resonance polarization concept, J. Org. Chem., 70 (26), 10670–10678, 2005.

[16] Perjesi P., Linnanto J., Kohlemainen E., Osz E., Virtanen E., E-2-benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-(2-(benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones, J. Mol. Struct., 740, 81–89, 2005.

[17] Markinovic A. D., Jovanovic B. Z., Todorovic N., Juranic I. O., Linear free energy relationships of the H and 13C NMR chemical shifts in 3-cyano-4-(substituted phenyl)-6-phenyl-2(1H)pyridines, J. Mol. Struct., 920 (1), 90–96, 2009.

[18] Hansch C., Leo A., Taft R. W., A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 91, 165–195, 1991.

[19] Agirbas A., The use of digital fabrication as a sketching tool in the architectural design process, Real Time-Proceedings of the 33rd eCAADe Conference, Vienna-Austria, 16–18 September, 2015.

[20] Agirbas A., Ardaman E., Simulation as an avant-garde form exploration tool: A case study with nCloth, DCA-European Conference Proceedings, Istanbul-Turkey, 11–14 May, 2016.

[21] Pir M., Agirbas H., Budak F., İltür M., Synthesis, characterization, antimicrobial activity, and QSAR studies on substituted oxadiazaboroles, Med. Chem. Res., 25 (9), 1794–1812, 2016.

[22] Ditchfield R., Self-consistent perturbation theory of diamagnetism. A gauge-invariant LCAO method for NMR chemical shifts, Mol. Phys., 27 (4), 789–807, 1974.

[23] Dodds J. L., McWeeny R., Sadlej A. J., Self-consistent perturbation theory: Generalization for perturbation-dependent non-orthogonal basis set, Mol. Phys., 41 (6), 1419, 1980.

[24] McWeeny R., Perturbation theory for the Fock-Dirac density matrix, Phys. Rev., 126, 1028, 1962.

[25] Wolinski K., Hilton J. F., Pulay P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 112, 8251–8260, 1990.

[26] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., et al. Gaussian 03, Revision B.05, Gaussian, Inc., Wallingford CT, 2004.

[27] Sheldrick G. M., A short history of SHELX, Acta Cryst., A64 (1), 112–122, 2008.

[28] Farrugia L. J., WINGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr., 32, 837–838, 1999.

[29] Mercury, version 3.0; CCDC, available online via ccdc.cam.ac.uk/products/mercury, 2016.

[30] Spek A. L., PLATON-a multipurpose crystallographic tool. Utrecht University, Utrecht, 2005.

[31] Bromilow J., Brownlee R. T. C., Craik D. J., Fiske P. R., Rowe J. E., Sadek M., Carbon-13 substituent chemical shifts in the side-chain carbons of aromatic systems: The importance of p-polarization in determining chemical shifts, J. Chem. Soc. Perkin Trans. 2 (5), 753, 1981.

[32] Reynolds W. F., Polar substituent effects, Prog. Phys. Org. Chem., 14, 165–203, 1983.

[33] Hamer G. K., Peat I. R., Reynolds W. F., Investigations of substituent effects by nuclear magnetic resonance spectroscopy and all-valance electron molecular orbital calculations. 1,4-substituted styrenes, Can. J. Chem., 51 (6), 897-914, 1973.

[34] Neuvonen K., Fülöp F., Neuvonen H., Simeonov M., Pihlaja K., Correlation analysis of the 13C chemical shifts of substituted benzaldehyde 2-aminobenzoylhydrazones. Study of the propagation of substituent effects along a heteroatomic chain, J. Phys. Org. Chem., 10 (1), 55–66, 1997.

[35] Neuvonen K., Fülöp F., Neuvonen H., Pihlaja K., A correlation analysis of C=N 13C chemical shifts. The use of substituted benzaldehyde (2-hydroxyxycyclohexyl)hydrazones as probes, J. Org. Chem., 59 (20), 5895–5900, 1994.