TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets

Chengrun Yang¹, Gabriel Bender¹, Hanxiao Liu¹, Pieter-Jan Kindermans¹, Madeleine Udell², Yifeng Lu¹, Quoc Le¹, Da Huang¹

¹Google Research, Brain Team ²Stanford University

NeurIPS 2022 Poster #54518
Neural architecture search (NAS)

People want neural networks that are ...

- accurate: low loss
- fast: low latency
- cheap: low power or memory usage
- interpretable
- fair
- ...

Neural architecture search (NAS) matters to improve accuracy while meeting the latency desiderata.

Source: MobileNet-EdgeTPU blog post
Q: How to find the best architecture within a user-given resource limit?

number of parameters, #FLOPs, latency, …
Our NAS on tabular datasets

- candidate choices: the number of units in each hidden layer
- **bottleneck structures** are critical to get good tradeoffs between network size and quality
 - Definition: a layer being much wider or narrower than its neighbors
 - Example: 48-240-24-256-8
 - Intuition for outstanding performance: the weights mimic the low-rank factors of wider networks
Factorized search space in weight-sharing NAS

- “Factorized”: learn a separate distribution for each search component
- Benefit: reduce the size of the RL action space from product to sum
- Pitfall: ?
Previous works: resource-aware RL rewards

With a sampled architecture y with quality reward $Q(y)$ and resource consumption $T(y)$, and resource target T_0, previously proposed resource-aware rewards:

- **MnasNet** [1]: making an architecture cheaper always improves its reward
 - $Q(y) \times (T(y) / T_0)^\beta$
 - $Q(y) \times \max\{1, (T(y) / T_0)^\beta\}$

- **Absolute Value Reward** in **TuNAS** [2]: prefer architectures with resource consumption close to our target

 $Q(y) + \beta \times |T(y) / T_0 - 1|$

in which $\beta < 0$, and we tune its absolute value.

[1] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, Quoc V. Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. CVPR 2019.

[2] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, Quoc Le. Can weight sharing outperform random architecture search? An investigation with TuNAS. CVPR 2020.
Intuition for the failure of resource-aware rewards

- With a feasible set V, we only want to sample among feasible architectures, in which feasibility is determined by all layers.
- However, in the factorized search space, we learn a separate distribution for the choices of each layer.

=> Co-adaptation makes it difficult to sample large layer sizes and thus choose a bottleneck structure.
We propose: rejection-based reward

- the set of feasible architectures: V
- one step of the REINFORCE update: $\ell = \ell + \eta * \nabla J(y)$
- algorithm: In each RL step
 - sample a child network y
 - if y is feasible:
 - compute (or estimate) a differentiable $P(Y)$: the probability of sampling an architecture in V
 - single-step objective: $J(y) = \text{stop_gradient}[Q(y) - Q_{avg}] * \log (P(y) / P(V))$
 - else if y is infeasible: skip this step
- intuition: rejection sampling
 - we want to sample from: $P(y \mid y \in V)$, which requires coupled distributions across layers
 - we have: layer-wise distributions $P(y)$ in a factorized search space
 - what we do: sample from $P(y)$, accept when the sampled architecture y is feasible, reject otherwise
When the sample space is large: estimate $P(V)$ by Monte-Carlo sampling

- what we want: $\hat{P}(V)$, an estimate of the differentiable $P(V)$
- what we have: candidate architectures, each with a sampling probability
- what we do: sample from a proposal distribution q for N times, obtain an estimate

$$\hat{P}(V) = \frac{1}{N} \sum_{k\in[N]} \frac{p^{(k)}}{q^{(k)}} \cdot 1(z^{(k)} \in V)$$

In theory:

$\hat{P}(V)$ is an unbiased and consistent estimate of $P(V)$, $\nabla \log[P(y)/\hat{P}(V)]$ is a consistent estimate of $\nabla \log[P(y)/P(V)]$.

In experiments:

- For simplicity: set $q = \text{stop}_\text{grad}(p)$, i.e. sample with the current distribution p.
- To get an accurate estimate: have a large enough N.
more contents in paper, including:

- performance on **real tabular (and vision!) datasets**
- **ablation** studies
- analysis on the difficulty of **hyperparameter tuning**
- comparison with Bayesian optimization and evolutionary search in our setting
Open questions: can TabNAS

- find better architectures in more domains?
- improve RL results for more complex architectures?
- be useful for other resource-constrained RL problems?

Thanks!