PARAGen: A Parallel Generation Toolkit

Jiangtao Feng*1, Yi Zhou2, Jun Zhang1, Xian Qian2, Liwei Wu2, Zhexi Zhang2, Yanming Liu*3, Mingxuan Wang2, Lei Li*4, Hao Zhou*5

1Shanghai AI Laboratory
2ByteDance Inc.
3Shanghai Jiaotong University
4University of California Santa Barbara
5Institute for AI Industry Research, Tsinghua University

Abstract

PARAGen is a PyTorch-based NLP toolkit for further development on parallel generation. PARAGen provides thirteen types of customizable plugins, helping users to experiment quickly with novel ideas across model architectures, optimization, and learning strategies. We implement various features, such as unlimited data loading and automatic model selection, to enhance its industrial usage. ParaGen is now deployed to support various research and industry applications at ByteDance. PARAGen is available at https://github.com/bytedance/ParaGen.

1 Introduction

Recently, neural sequence generation model achieve great success (Vaswani et al., 2017; Lewis et al., 2020; Liu et al., 2020). Among a surge of sequence generation algorithms, parallel generation or non-autoregressive generation methods gain increasing attention on various tasks for high inference speed (Gu et al., 2018; Saharia et al., 2020; Qian et al., 2021a; Gu and Kong, 2021; Huang et al., 2022) and competitive performance against auto-regressive transformer (Gu et al., 2019; Chan et al., 2020; Qian et al., 2021b). Apart from natural language processing, parallel generation also demonstrates its superiority and scalability on text-to-speech synthesis (Ren et al., 2021) and high-resolution image synthesis (Chang et al., 2022).

Several toolkits on sequence generation has been presented for developing sequence generation algorithms, such as FairSeq (Ott et al., 2019), Tensor2Tensor (Vaswani et al., 2018), Transformers (Wolf et al., 2020) and OpenNMT (Klein et al., 2017). These toolkits are mostly born with autoregressive transformers with maximum likelihood estimation training and are used for research purposes.

* Work was done at ByteDance.

In this paper, we present PARAGen, an extensible toolkit for parallel generation, which is first developed with Glancing Transformer on WMT-21 Competition (Qian et al., 2021b). We redesign the code architecture for easy modification on training and decoding methods, such as glancing training (Qian et al., 2021a), imitation learning (Wei et al., 2019), inference algorithms (noisy parallel decoding) (Gu et al., 2018), and mask-predict decoding (Ghazvininejad et al., 2019), which are critical to enhancing parallel generation algorithm developments. Besides, PARAGen also suits industrial usage with robust implementations and attractive features, such as unlimited data loading, asynchronized input/output, plug-in Huggingface tokenizers/models (Wolf et al., 2020) and fast training/inference with LightSeq (Wang et al., 2021, 2022). Apart from parallel generation, PARAGen also reproduces typical tasks.
with step-by-step scripts, such as autoregressive translation (Vaswani et al., 2017), text summarization (Lewis et al., 2020), text classification (Wang et al., 2018), and extractive question answering (Rajpurkar et al., 2016). As for large-scale pretraining, PARAGEN supports BERT pretraining (Devlin et al., 2019), and multilingual translation with mBART pretraining (Liu et al., 2020). PARAGEN is now deployed to support various research and industrial applications at ByteDance.

2 Architecture Design

The overall architecture of PARAGEN is shown as Figure 1. PARAGEN consists of four main functional blocks: data, model, trainer, and evaluator. The data block focuses on data input, processing, sampling, and loading; the model block consists of neural models in training and inference; the trainer is implemented for scheduling the training process; the evaluator defines the evaluation metrics. Compared with the previous frameworks, we offer 13 types of plug-ins across the three blocks, which makes PARAGEN more extensible for experimenting with new ideas.

2.1 Data

We design the data organization block on four base concepts, including reading, preprocessing, sampling strategy and loading, deriving four customizable class or functions respectively, i.e. Dataset, Data Processing, Sampler and DataLoader. We address PARAGEN ’s data processing paradigm along with two key topics: online-offline data processing and unlimited data loading challenge.

Dataset The Dataset instances read data and organize it to a dict-format object, despite their storage format on disks. Users are allowed to develop their own Dataset class for customization usage by implementing load and callback functions. Currently, PARAGEN supports data stored in various formats, including raw texts, parallel texts, and JSON files. The Datasets as well as other classes in PARAGEN co-work with an underlying io module to suit different file systems, reading and writing data on a local disk or a Hadoop file system. It is worth noting that the io module is also modularized and extensible to suit data input/output under more scenarios. Besides, we also develop StreamingDataset, reading data in a streaming way. The StreamingDataset can read extremely large-scale data with constant memory consumption, making it extensible to industrial usage.

Data Processing Data preprocessing, such Byte-Pair Encoding (Sennrich et al., 2016), is critical to sequence generation and varies from task to task. To enhance task-specific data preprocessing, PARAGEN provides interfaces within Task class to allow customization. The data processing is roughly divided into two categories, offline data processing as data_collate_fn and online data processing collate_fn. The data_collate_fn refers to offline data processing and proceeds before the training/inference stage start with input from Dataset. Thus data processed by data_collate_fn remains unchanged during the training/inference process, which speeds up training and inference by eliminating repeated data processing. The collate_fn is designed as online processing to enhance flexibility and to allow users to adjust data processing strategies, such as batching, during training and inference. We believe the combination of offline and online data processing would make data processing more flexible and extensible.

Sampler The sampling strategy is a non-negligible algorithm in the online data processing. Although PyTorch provides a base class of sampling strategy, it is still often ignored by existing generation frameworks. PARAGEN allows users to develop their sampling strategies by implementing a Sampler instance to decide how data are organized into batches. A technical challenge of incorporating customizable sampling strategies is their compatibility with the feature of unlimited data loading. We solve this problem in the DataLoader with a cache mechanism.

DataLoader DataLoader is the final stage of data processing and the beginning of neural model processing, acting as a bridge to connect data and neural models. It can also be viewed as a coordinator of data processing. It first fetches a batch of samples, according to the sampling strategy determined by Sampler, from data memory with offline processed data. Then it sends the data batches to online data processing, which becomes a private object of DataLoader instance at initialization, and gets a batch to feed the neural network. However, in the original PyTorch, DataLoader is incompatible with streaming data.
loading. We extend the dataloader and implement a StreamingDataLoader to read data streamingly, further featuring unlimited data loading.

2.2 Module
A key principle of designing PARAGEN’s model block is based on the concept separation of training and inference. Unlike classification models, sequence generation ones become different when they are applied in training and inference. For example, a sequence generation model is trained in a teacher-forcing way whilst it generates sequences with the help of the beam search algorithm. Thus we defines four sub-modules for PARAGEN model block: Model, Generator, Criterion and Search. Model and Criterion are often used in training process whereas Generator and Search are in inference. We argue that the training-inference separation of neural models would benefit the downstream neural model optimization (Wang et al., 2021) in industrial usage without harming flexibility in developing new models.

Model We implement the architecture of neural models with learnable parameters by inheriting PARAGEN’s Model class. Similar to the models in the existing, it consumes a batch of samples and produces logits over the predicted target. We provide several popular implementations, including parallel generation, autoregressive sequence generation, extraction model, and sequence classification/regression. Besides, Huggingface models at present are widely-used for their large-scale pre-training models, and we implemented a Huggingface model wrapper to make it compatible in PARAGEN.

Generator In PARAGEN, we advocate Generator, instead of the original Model, to apply to the inference stage. Generator is designed as a wrapper to Model with extra decoding algorithms, such as beam search and greedy search in autoregressive sequence generation (Vaswani et al., 2017), noisy padding mask in parallel generation (Gu et al., 2018), and even extraction algorithms in extractive tasks. Although the extra decoding algorithms could also be implemented as post-processing, they would benefit from tensor computation on GPUs, which further speeds up the computations. It is also recommended in PARAGEN to have decoding algorithms on GPUs and post-processing on CPUs work with each other to achieve the tradeoff between flexibility and speedup. We here argue that it is essential for industrial usage to separate Generator from Model, because Generator, which is gradient-free, requires more elaborated and extreme optimization to enhance efficiency. Previous study (Wang et al., 2021) shows that joint optimization on neural models and decoding algorithms achieves significant speedup and reduces GPU memory consumption. Nevertheless, such joint optimization does not suit Model in training. In PARAGEN, we implement Generators for sequence extraction, auto regressive sequence generation and parallel sequence generation.

Criterion Like previous frameworks, we define Criterion class as the objective functions across various tasks. It measures the divergence between predicted logits and golden reference. From the Criterion, we compute the gradients of all the learnable parameters for optimization. We also allow neural models, such as Huggingface models, to compute loss by themselves. Due to the modularization in PARAGEN, Criterion classes can be combined to enhance multi-task learning.

Search Search or decoding algorithms, such as beam search and noise padding mask, are critical to sequence generation. We modularize Search to support users in developing their awesome sequence search algorithms, for both autoregressive or parallel generation, more than existing ones. The Search algorithms act as a part of Generator, co-working with Model to produce final sequences.

2.3 Trainer
One big difference between PARAGEN and existing learning framework is customizing the training process. Recent research shows that a neural model with the same architecture trained with a well-designed training strategy performs significantly better. Customizing a Trainer helps the users to experiment with training strategies conveniently. The Trainer formulate the whole training process and includes several types of customization: loss computation, optimizer, and rate scheduler.

Loss computation Trainer leaves an interface forward_loss for implementation of loss computation. Elaboration on loss computation is critical to deep learning algorithms to enhance mod-
els’ performance. For examples, a) GLAT (Qian et al., 2021a) can be used for computing a three-stage objective, glancing at the target, modifying neural network inputs/targets, and learning; b) FreeLB (Zhu et al., 2020) adopts an adversarial gradient to inject to neural model to learn it robustly; c) CoNT (An et al., 2022) leverage a generation process to adopt contrastive learning to enhance sequence generation. Thus we believe that customization on loss computation frees developers from the stereotyped training process and encourage new experimental training algorithms.

Optimizer PARAGEN provides Optimizer customization following the original PyTorch. All the optimizers implemented in PyTorch and Huggingface can be used directly, and experimental optimizers are also encouraged. The coordination of Optimizer to advanced optimization algorithms, such as mix-precision training, apex support, and distributed training, is automatic.

Rate Scheduler We implement a functional tool called Rate Scheduler to define how a rate typed as an integer or float is scheduled. The rate in PARAGEN could be any hyper-parameter beyond the learning rate, allowing users to schedule their training process more flexibly. In design, the original PyTorch treats the optimizer as an attribute to the learning rate scheduler, but PARAGEN does this differently by setting the scheduled learning rate as a part of the optimizer. The learning rate is actively scheduled through the interaction between Optimizer and Trainer.

2.4 Evaluator

Evaluator formulates the overall evaluation process in PARAGEN, supporting customization on two aspects, including data sets and metrics. In evaluations, we compute the Cartesian product of data sets and metrics to obtain several performance scores. The scores are averaged to obtain an overall judgment on the current neural model. These scores will further return to Trainer for model selection.

Metric We provide Metric for independent evaluation of the divergence between predicted hypotheses and ground-truth references. Metric in PARAGEN can be designed as lexical metrics (BLEU (Papineni et al., 2002a) and Rouge (Lin, 2004)), numeric metrics (Accuracy and F1-score), and model-based metrics (BERT-score (Zhang et al., 2019))

2.5 Difference to FairSeq

A close sequence generation toolkit to PARAGEN is FairSeq (Ott et al., 2019). PARAGEN differs from FairSeq in four aspects: a) FairSeq is for general purpose sequence generation, while PARAGEN is carefully designed for parallel generation; b) Fairseq’s standard pipeline requires binarizing the data first, which is extremely fast and efficient for training. Such a way may make on-the-fly data manipulation a bit difficult. PARAGEN allows reading the raw data and modifying it dynamically in the training loop, without sacrificing the speed. c) FairSeq supports 5 types of customizable modules whereas PARAGEN offers 13 classes. Fairseq provides a unified training loop, PARAGEN disentangles the training and inference process into independent modules (Trainer, Evaluator), so that the customization for each task is more user-friendly. d) PARAGEN implements more features specially designed for industrial usage.

3 Implementation & Features

PARAGEN implements fundamental functions, such as distributed training on multiple machines and GPUs (with Horovod (Sergeev and Balso, 2018)), mix-precision training (with apex\(^1\)), incremental decoding for the autoregressive models, breakpoint resuming, out-of-memory recovery, early stopping, and accumulated gradients. Moreover, we also implement advanced functions, including unlimited data loading, automatic model selection, multi-task training, and fast training/inference with LightSeq. In this section, we focus on these advanced features.

Unlimited Data Loading Pretrained models have shown its strong capability in generalizing to new tasks (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2019; Lewis et al., 2020; Raffel et al., 2020; Floridi and Chiriatti, 2020). However, such pretrained models usually demand billions, trillions, and even more of the training data. Moreover, for industrial usage, the large amount of internal data is a challenge for data loading. In PARAGEN, we implement a StreamingDataLoader that reads data from disk in a streaming way with the file input stream. It also features data distribution with multi-

\(^1\)https://github.com/NVIDIA/apex
GPU training and local shuffling for data batching. With the help of StreamingDataLoader, PARA GEN can read unlimited data with limited memory usage.

Automatic Model Selection PARA GEN automatically selects the best models with a customized assessment metric during the training process. By providing the trainer with an assess_by arguments as `{DATA_NAME}.{METRIC_NAME}`, the trainer picks up the checkpoints that performs the best on `{DATA_NAME}` with respect to `{METRIC_NAME}`. Note that once a checkpoint is selected to save, PARA GEN also saves the average of k checkpoints before and marks the averaged checkpoints as `best_avg`.\(^2\)

Asynchronized Input/Output PARA GEN uses an asynchronized input/output implementation for reading and writing to maximize the utility of GPU resources. Asynchronized output is important for model selection. Because the computation of `best_avg` checkpoints costs a long time to finish, especially for large models in industrial applications.

Multi-Task Learning PARA GEN provides an easy-to-use way for multi-task learning. PARA GEN implements a `MultiTaskCriterion` which automatically combines a list of criteria.

Plug-in Hugginface Tokenizers and Models Hugginface (Wolf et al., 2020) is a widely used pre-trained model library and demonstrates its effectiveness among various tasks. In PARA GEN, Hugginface can be directly used in an import-register way. It allows researchers to develop algorithms upon pre-trained models and to use advanced features provided in PARA GEN.

Fast Training and Inference with LightSeq In PARA GEN, researchers and developers can use LightSeq easier to speedup their transformer models/modules in training (Wang et al., 2022) and inference (Wang et al., 2021). Without understanding the details of LightSeq, users can speed up their transformer models/modules by simply appending a `LS` prefix to the model/module class name in the configuration.

\(^2\)We find it performs better compared with the average of the last-k checkpoints after the training process ends.

4 Reproducibility

PARA GEN can be used for various tasks beyond parallel generation. We provide reproducible results and scripts on six benchmarks on PARA GEN, including: a) glancing transformer on WMT14 En-De; b) transformer on IWSLT14 De-En, WMT14 En-De, and WMT14 En-Fr; b) transformer on Multi-News and XSum; c) mBART on Multilingual Translation; d) plug-in Hugginface on SQuAD 1.1; e) BERT pretraining and fine-tuning on GLUE benchmark. For simplicity, we eliminate the details of reproduction configurations and hyper-parameters. The reproduction results are shown in Appendix A and scripts can be found in our repository.

5 Conclusions

We present the ParaGen toolkit for parallel sequence generation. It supports 13 types of modules for customization and advocates a plug-in usage for further development. Its robust implementation and features enhance the research algorithm design and industrial development. In the future, we will create more plugins to extend PARA GEN to more research areas.

References

Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong, Xipeng Qiu, and Xuanjing Huang. 2022. Cont: Contrastive neural text generation. arXiv preprint arXiv:2205.14690.

William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and Navdeep Jaitly. 2020. Imputer: Sequence modelling via imputation and dynamic programming. In International Conference on Machine Learning, pages 1403–1413. PMLR.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. 2022. Maskgit: Masked generative image transformer. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4):681–694.
Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. 2019. Mask-predict: Parallel decoding of conditional masked language models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6112–6121, Hong Kong, China. Association for Computational Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. 2018. Non-autoregressive neural machine translation. In International Conference on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-autoregressive neural machine translation: Tricks of the trade. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 120–133, Online. Association for Computational Linguistics.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Levenshtein transformer. Advances in Neural Information Processing Systems, 32.

Chenyang Huang, Hao Zhou, Osmar Zaiane, Lili Mou, and Lei Li. 2022. Non-autoregressive translation with layer-wise prediction and deep supervision. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. 2017. OpenNMT: Open-source toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations, pages 67–72, Vancouver, Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002a. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002b. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 186–191, Belgium, Brussels. Association for Computational Linguistics.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021a. Glancing transformer for non-autoregressive neural machine translation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1993–2003, Online. Association for Computational Linguistics.

Lihua Qian, Yi Zhou, Zaixiang Zheng, Yaoming Zhu, Zehui Lin, Jiangtao Feng, Shanbo Cheng, Lei Li, Mingxuan Wang, and Hao Zhou. 2021b. The volctrans GLAT system: Non-autoregressive translation meets WMT21. In Proceedings of the Sixth Conference on Machine Translation, pages 187–196, Online. Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.
Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. 2021. Fastspeech 2: Fast and high-quality end-to-end text to speech. In International Conference on Learning Representations.

Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. 2020. Non-autoregressive machine translation with latent alignments. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1098–1108, Online. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed deep learning in TensorFlow. *arXiv preprint arXiv:1802.05799*.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan Gomez, Stephan Gouws, Llion Jones, Łukasz Kaiser, Naël Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit. 2018. Tensor2Tensor for neural machine translation. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track), pages 193–199, Boston, MA. Association for Machine Translation in the Americas.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. *Advances in neural information processing systems*, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.

Xiaohui Wang, Yang Wei, Ying Xiong, Guuyue Huang, Xian Qian, Yufei Ding, Mingxuan Wang, and Lei Li. 2022. Lightseq2: Accelerated training for transformer-based models on gpus. In *Proceedings of The International Conference for High Performance Computing, Networking, Storage and Analysis (SC’22)*.

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, and Lei Li. 2021. LightSeq: A high performance inference library for transformers. In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers*, pages 113–120, Online. Association for Computational Linguistics.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. 2019. Imitation learning for non-autoregressive neural machine translation. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 1304–1312, Florence, Italy. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text generation with bert. In *International Conference on Learning Representations, ICLR*.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. 2020. Freelb: Enhanced adversarial training for natural language understanding. In *International Conference on Learning Representations*.
A Reproducible Results

We implement typical models on various tasks: a) glancing transformer on WMT14 En-De; b) transformer on IWSLT14 De-En, WMT14 En-De, and WMT14 En-Fr; c) mBART on Multilingual Translation; d) plug-in Huggingface on SQuAD 1.1; e) BERT pretraining and fine-tuning on GLUE benchmark. These models are implemented with reproducible scripts. The detailed reproducible results are shown in the rest of the section.

A.1 Glancing Transformer on WMT14 En-De

We trained Glancing Transformer on Transformer-AT distilled data. We report sacrebleu (Post, 2018) and tokenized BLEU (Papineni et al., 2002b) for completeness.

Model	sacrebleu	tok bleu
GLAT	24.40	24.98
GLAT + avg-ckpt	24.58	25.29

Table 1: BLEUs on distilled WMT14 En-De. GLAT+avg-ckpt is the average checkpoint among the last 10 checkpoints.

A.2 Transformer on Machine Translation

We implement widely-used transformer architecture and provide its results on IWSLT/WMT benchmarks. For IWSLT14 De-En, we use transformer-small architecture; for WMT14 En-De and WMT14 En-Fr, we use transformer-big architecture. Similar to Glancing Transformer, we report its results with sacrebleu and tokenized bleu.

Task	Model	sacrebleu	tok bleu
IWSLT14 De-En	small	33.1	34.5
WMT14 En-De	base	26.9	27.5
WMT14 En-De	big	27.7	28.4
WMT14 En-Fr	big	40.3	43.3

Table 2: BLEUs on machine translation benchmarks.

A.3 mBART on Multilingual Translation

PARAGEN provides implementation to pre-train mBART from scratch. We finetune the pre-trained mBART on XX-en translation tasks.

Language Pairs	mBART	mBART + avg-ckpt
 de-en | 41.45 | 41.84 |
 fr-en | 39.09 | 39.41 |
 ja-en | 21.68 | 22.84 |
 pl-en | 32.03 | 32.50 |
 ro-en | 36.75 | 37.24 |
 nn-en | 12.75 | 14.14 |
 hi-en | 26.34 | 27.78 |

Table 3: Results on XX-en translation with mBART pre-trained from scratch.

Task	model	rouge-1	rouge-2	rouge-n
Multi-News	tr-base	33.59	5.91	30.71
XSum	bart-base	46.80	17.93	43.01

Table 4: Results on abstractive text summarization.

A.4 Abstractive Text Summarization

A.5 Question Answering

PARAGEN also provides results on extractive question answering with plug-in Huggingface models. We test various pre-trained models in Huggingface on SQuAD 1.1.

Model	F1	Exact Match
BERT-base-uncased	88.31	81.02
BERT-base-cased	88.34	81.11
BERT-large-cased	90.73	83.87
RoBERTa-base	91.88	85.34
RoBERTa-large	93.44	87.26
BART-base	91.27	84.52
BART-large	93.14	86.70

Table 5: Plug-in Huggingface Pretrained Models on SQuAD 1.1.

A.6 BERT

PARAGEN supports training BERT from scratch with customized data. We train BERT on two data sets, news and wibo, and test it on GLUE benchmarks (Wang et al., 2018). We use standard evaluation metrics for each task.
Task	Metric	news	wibo
CoLA	Matthews’ Corr	61.82	58.36
SST-2	Accuracy	93.00	91.86
STS-B	Pearson/Spearman Corr	86.97/86.88	87.95/87.65
MRPC	F1/Accuracy	91.13/87.75	91.13/87.50
QQP	F1/Accuracy	87.95/91.05	88.05/91.16
MNLI-m/mm	Accuracy	83.42/83.28	83.24/83.06
QNLI	Accuracy	89.22	90.81
RTE	Accuracy	67.15	61.37

Table 6: Results on GLUE by BERT pre-trained on news and wibo dataset.