Post-translational regulation of antiviral innate signaling

Yilong Zhou, Chenxi He, Lin Wang and Baoxue Ge

Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China

The innate immune system initiates immune responses by pattern-recognition receptors (PRR). Virus-derived nucleic acids are sensed by the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family and the toll-like receptor (TLR) family as well as the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors activate IRF3/7 and NF-κB signaling pathways to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses within the cell. However, to achieve a favorable outcome for the host, a balanced production of IFNs and activation of antiviral responses is required. Post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are crucial for this immune homeostasis in antiviral responses. Canonical PTMs including phosphorylation and ubiquitination have been extensively studied and other PTMs such as methylation, acetylation, SUMOylation, ADP-ribosylation and glutamylation are being increasingly implicated in antiviral innate immunity. Here we summarize our recent understanding of the most important PTMs regulating the antiviral innate immune response, and their role in virus-related immune pathogenesis.

Keywords: Antiviral immunity • Interferons • Phosphorylation • Post-translational modifications • PRR • Ubiquitination

Introduction

Infectious diseases, especially virus infections, are still a serious threat to humanity and the host innate immune system represents a critical defense against invading viruses. Host cells can initiate these innate immune responses by detecting viral DNA and RNA with a set of pattern recognition receptors (PRRs) including the toll-like receptor (TLR) family and the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family, as well as cytosolic DNA sensors such as cyclic GMP-AMP (cGAMP) synthase (cGAS), IFI16 and DDX41 [1, 2]. After recognition of viral nucleic acids, these PRRs trigger the production of proinflammatory cytokines, chemokines and type I interferons (IFNs), which subsequently induce synthesis of antiviral proteins, death of infected cells and activation of the adaptive immune response [3, 4]. These antiviral signals must be spatially and temporally orchestrated to achieve an optimal outcome for the host and much attention has been raised to understanding the signaling pathways and regulatory factors in the antiviral innate immunity.

Toll-like receptors, including TLR3, TLR7, TLR8 and TLR9, sense endosomal nucleic acids derived from the enclosed microbes and infected apoptotic cells. While TLR9 detects unmethylated CpG DNA species, TLR3 and TLR7/8 recognize double-stranded RNA (dsRNA) and single-stranded RNA (ssRNA), respectively [5] (Fig. 1). Following ligand binding, the TLRs form a signaling platform in which distinct Toll/interleukin-1 receptor (TIR) domain-containing adaptors are engaged. For instance, TLR3 signals via TIR-domain-containing adaptor protein inducing interferon beta (TRIF), and TLR7/8/9 rely on myeloid differentiation factor-88 (MyD88) [6]. For the TRIF-dependent pathway, the ubiquitin E3 ligase TNF receptor-associated factor 3 (TRAF3) is recruited and hence activates TANK-binding kinase-1 (TBK1) and Inhibitor-κB kinase ε (IKKε) [7]. Activated TBK1 and IKKs then phosphorylate IFN regulatory factor (IRF) transcription factors IRF3 and IRF7 to
Phosphorylates the transcription factor IRF3. NF-κB recognizes specific molecular features of viral RNA such as 5′-phosphorylated ends, which is in contrast to TLR3 and TLR7, which mainly show endosomal sensing by TLRs. Viral RNA in the cytosol is recognized by RLRs, including Retinoic acid-inducible gene of plasmacytoid dendritic cells [9, 10]. Notably, I (RIG-I), melanoma differentiation-associated protein 5 (MDA5) is also recognized by RLRs, including Retinoic acid-inducible gene of plasmacytoid dendritic cells [9, 10].

The immunostimulatory effect of foreign DNA was reported more than 50 years ago, but only recently the sensors that link DNA to type I IFNs have been identified. Cytosolic viral DNA is mainly recognized by cyclic GMP-AMP (cGAMP) synthase (cGAS) that contains a nucleotidyltransferase (NTase) domain. Following DNA binding, cGAS synthesizes a second messenger molecule, cyclic GMP-AMP (cGAMP), which then activates the stimulator of interferon genes (STING) [17, 18]. STING is an ER-located adaptor protein that plays an essential role upstream of TBK1 in the cytosolic viral DNA sensing pathway [19]. Although some other proteins such as IFI16, DDX41 and Mre11 are also reported to be receptors mediating DNA-induced IFN-β production in a STING-dependent manner, only cGAS, which enzymatically generates cGAMP as a second messenger that activates STING, provides a clear molecular mechanism for DNA-stimulated IFN-β production [20] (Fig. 1).

Post-translational modifications (PTMs), involving the covalent linkage of new functional groups to amino acid chains, greatly expand the function of proteins and thus play crucial roles in numerous physiological activities. PTMs control immune responses via regulating protein folding, stability, localization and interaction with other molecules [21, 22]. The best characterized PTMs, phosphorylation and ubiquitination, as well as other PTMs such as SUMOylation, methylation and acetylation, have been shown to play a role in antiviral signaling via reversible post-translational modification of virus sensors and downstream signaling molecules [21, 23]. Moreover, emerging studies have shown that different PTMs mutually interact, indicating a precise and elaborate PTMs regulatory network in the antiviral immunity [24, 25]. In this review, we focus on our recent knowledge how individual PTMs regulate antiviral innate immune responses and their functions in virus-related immune pathogenesis and disorders.

Phosphorylation

In eukaryote, phosphorylation is the kinase-catalyzed conjugation of a phosphate group to the serine (Ser), threonine (Thr) or tyrosine (Tyr) residues of proteins. In this process, introducing a single phosphoryl group with a -2 charge at physiological pH always results in significant protein conformation change, which can influence protein properties and/or create binding motifs for other molecules. Nevertheless, this rigid PTM can be reversed through enzyme-catalyzed hydrolysis by specific phosphatases [26].

In the TLR pathway, Bruton’s tyrosine kinase (BTK), EGFR and Src have been shown to phosphorylate tyrosine residues in the cytoplasmic domain of TLR3 to enhance IFN-β production in macrophages in response to poly (I:C) and LPS stimulation [27–29]. Moreover, in the late phase of infections, the iNOS/Src signal axis retains TLR3 activation through Src-induced Tyr759 phosphorylation to support sustained IFN-β transcription [30] (Fig. 2).

Figure 1. Antiviral signaling pathways. PRRs (red) are activated by endosomal and cytosolic viral RNA and DNA species. TLR7, TLR8 and TLR9 recruit MyD88 and MyD88 in turn activates TRAF6. TRL3 recruits TRIF and subsequently activates TRAF3. TRAF6 and TRAF3 then induce the formation of NEMO-IKKα/β and NEMO-IKKα/β/TBK1 complex respectively. IKKα/β activate the transcription factor NF-κB and IKKα/β/TBK1 phosphorylates the transcription factor IRF3. NF-κB and IRF3 then translocate into the nucleus and drive proinflammatory cytokines and type I IFNs expression. For the RLR pathway, RIG-I and MDA5 activate TRAF3-TBK1 axis through the mitochondria-located adaptor MAVS. For the cGAS pathway, cGAS recognizes cytosolic DNA and activate the ER-located adaptor STING, which then translocates to and activates TBK1.

Red circle, phosphorylation.
Yilong Zhou et al.

For the cytosolic DNA sensing pathways, BTK gested to be crucial for IRF3 activation [8, 38, 39]. Recently, a study demonstrated that PTEN, a known tumor suppressive phosphatase, unexpectedly promotes antiviral immunity by reversing IRF3 phosphorylation at Ser97, thereby driving IRF3 nuclear transport [40] (Fig. 2). In addition, the DNA-dependent protein kinase (DNA-PK) binds with and phosphorylates IRF3 on Thr135, causing IRF3 to be retained in the nucleus and extending the half-life of IRF3 transcriptional activity in HEK1B cells [41] (Fig. 2). Other signaling molecules, such as MAPKs, IKKα, IKKβ and IκBα, are also regulated by phosphorylation and we note that several excellent reviews on this subject have been published [42, 43].

Multiple phosphorylation-dependent processes are also critical for type I IFN production in the RLR pathway. Phosphorylation of RIG-I by protein kinase Cα (PKCα) and PKCθ keeps RIG-I silent in resting cells thus avoiding premature activation of RIG-I signaling [44] (Fig. 2). The casine kinase II (CK II) constitutively phosphorylates RIG-I and hence maintains a quiescent state of RIG-I in HEK293T cells, however, when cells are stimulated with viral RNA, RIG-I is rapidly dephosphorylated [45]. Through phosphatase RNAi screening, PP1α and PP1γ were identified as primary phosphatases responsible for RIG-I and MDA5 dephosphorylation in HEK293T and NHLF cells [46] (Fig. 2). Furthermore, it is reported that IKKε negatively regulates antiviral signaling by phosphorylating RIG-I at Ser855 in HEK293T and MEF cells [47]. MAVS occupies a central position within the RLR signaling cascade and Ty9 on N-terminal is proved as an essential phosphorylation site for the recruitment of TRAF3 and TRAF6, as well as IFN-β production. However, a definite kinase responsible for Ty9 phosphorylation has yet to be identified [48].

Among the cytosolic viral DNA signaling, both DDX41 and cGAS are regulated by phosphorylation. Phosphorylation of Tyr414 on DDX41 by BTK was found to be essential for dsDNA recognition and recruitment of STING in BMDMs, HEK293T and MEF cells [49] (Fig. 2). By contrast, Akt phosphorylates cGAS on Ser291 (for mouse) and Ser305 (for human), which inhibits cGAS enzymatic activity in synthesizing cGAMP, leading to a moderate immune responses for the host [50] (Fig. 2).

Notably, a general mechanism of IRF3 activation was recently proposed in which different adaptor proteins (including TRIF for TLR3, MAVS for RIG-I and STING for cGAS) are phosphorylated by cognate downstream IKKs and TBK1 at conserved motif-lxIS (x for any amino acid, S is phosphorylation site) [51]. These negatively charged motifs then attract the positive charged surface of IRF3, leading to efficient IRF3 phosphorylation by TBK1. Phosphorylated IRF3 then dissociates from the adaptors and forms a homodimer that enters the nucleus to turn on type I interferon transcription [51]. In line with this, protein phosphatase magnesium-dependent 1A (PPM1A) was reported to dampen the phosphorylation cascade by catalytically dephosphorylating MAVS, STING and TBK1 [52, 53]. This model suggests a general phosphorylation-mediated signal transduction in three distinct innate immune pathways, which is impressively similar to the activation mechanism of TGF-β/Smad and JAK/STAT pathways, indicating an intrinsic unity of signal transduction. A detailed list about discussed phosphorylation of the target proteins, enzymes and signaling functions are included in Table 1.

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu
Ubiquitination

Ubiquitination involves the covalent and reversible addition of a 76 amino acid protein named ubiquitin to lysine or other residues in target proteins. A step-wise catalysis by the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase (E3) is needed for this PTM. Ubiquitin can undergo ubiquitination itself at its seven lysine residues (K6/K11/K27/K29/K33/K48/K63) or its amino-terminal methionine, which generates different types of ubiquitin chains with distinct functions. Ubiquitin chains can be topologically classified into four types of architectures: homogeneous chains, multiple chains in which one substrate is separately modified by distinct chains, mixed chains in which a tandem chain contains two linkage types, and branched chains [54, 55]. Different ubiquitin chains have distinct functions, for instance, K48-linked ubiquitin chain often targets protein for protease degradation while K63-linked ubiquitin and branched chains [54, 55]. Different ubiquitin chains have distinct functions, for instance, K48-linked ubiquitin chain often targets protein for protease degradation while K63-linked ubiquitin chain mediates protein–protein interaction [54, 55].

In the TLR pathway, several TLRs including TLR3 and TLR9 are K48-linked ubiquitinated by Triad3A, which induces protease degradation of these receptors [56] (Fig. 3). Whether other E3 ligases could modify TLRs directly, and whether the remaining TLRs are also regulated by ubiquitination, is still unknown. However, in contrast to the limited data available for the direct ubiquitination of TLRs, their downstream signaling proteins are reported to be extensively ubiquitinated. Myd88 is K48-linked ubiquitinated by the E3 ligase Nrdp1 in the TLR7 pathway, leading to attenuated TNF production by macrophages in response to VSV infection [57]. TRIF is targeted for K48-linked ubiquitination by the E3 ligase WWP2, and the abolition of WWP2 boosts IFN-β, TNF-α, and IL-6 expression after TLR3 agonist poly (I:C) stimulation in 293-TLR3 and BMDM cells [58] (Fig. 3).

K63-linked ubiquitination of TRAF6 and TRAF3 is required for NF-κB and IRF3 activation. Mechanistically, following activation by TLR signal, TRAF6 not only catalyzes its own K63-linked ubiquitination, but also generates unanchored K63-linked ubiquitin chains, both of which serve as scaffolds for TAB2/TAB3-TAK1 and NEMO-IKKβ/IKKγ complex binding [59]. TRAF3 K63-linked ubiquitination also creates a platform for NEMO-TBK1/IKKα complex recruitment and activation [60]. Notably, a recent study unveiled a novel K63-K48 branched ubiquitination of TRAF6 contributing to IL-1β signaling, which led us to consider whether branched or mixed ubiquitination are also relevant for antiviral immunity [61]. Several ubiquitin-modifying enzymes, including A20, CYLD and OTUB2, are shown to remove the K63-linked ubiquitination of TRAF6, and a set of deubiquitinating enzymes including DUBA, OTUB1 and UCHL1 abolish TRAF3 K63-ubiquitination, which moderates TRAF6 and TRAF3 activation respectively [62–67] (Fig. 3).

In addition, NEMO, the cognate binding partner of the IKKα/IKKβ complex and TBK1/IKKε kinase complex, has been shown to undergo K27-, K29- and linear ubiquitination, and these PTMs regulate NF-κB and IRF3 activation [68–70] (Fig. 3). TBK1 is targeted for K63-linked ubiquitination by RNF128 and Nrdp1, which facilitate TBK1 activation [57, 71] (Fig. 3). By contrast, Triad3A and DTX4 catalyze K48-linked ubiquitination of TRAF3 and TBK1, respectively, leading to target protein degradation and moderate IFN-β production [72–75] (Fig. 3). IRF3 is reported
Figure 3. Regulation of antiviral signaling pathways by ubiquitination. TLR9 and TLR3 are K48-linked ubiquitinated by Triad3A and subsequently degraded by proteasome. RIG-I is K48-linked ubiquitinated by RNF122 and RNF125 and then undergoes proteolytic degradation. USP4 remove the K48-linked ubiquitination of RIG-I and promotes RIG-I signaling. TRIM25, TRIM4, RNF135 and MEX3c catalyzed RIG-I K63-linked ubiquitin chain and promote RIG-I activation. USP3, USP21 and CYLD inhibit RIG-I K63-linked ubiquitination and activation. MDAS is K48-linked ubiquitinated by RNF122 and TRIM13 and then degraded by proteasome. USP14 promotes cGAS signaling by removing K48-linked ubiquitin chain of cGAS. MyD88 and TRIF are K48-linked ubiquitinated by Nrdp1 and WWP2 respectively, and then they are sequestered to proteolytic degradation. TRAF6 are inhibited by A20, CYLD and OTUB2 that specially remove TRAF6 K63-linked ubiquitination. TRAF3 are inhibited by DUBA, OTUB1 and UCHL1 that specially remove TRAF3 K63-linked ubiquitination. TRAF3 are also targeted for proteolytic degradation by Triad3-mediated K48-linked ubiquitination. MAVS is activated by TRIM31-mediated K63-linked ubiquitination. RNF5, MARCH5, ITCH and Smurf1/2 catalyze MAVS K48-linked ubiquitination and induce MAVS degradation by protease. TRIM44 removes ITCH-induced K48-linked ubiquitination of MAVS and thus promotes RIG-I signaling. TRIM25 catalyzes K63-linked ubiquitination and promotes proteolytic degradation of STING. RNF26 catalyzes STING K11-linked ubiquitination and inhibit STING degradation. AMFR catalyzes STING K27-linked ubiquitination and promotes STING activation. TRIM25 promotes NF-κB signaling by catalyzing NEMO linear and K29-linked ubiquitination respectively. Nrdp1 and RNF128 catalyzing TBK1 K63-linked ubiquitination and thus promoting TBK1 activation. DTX4 induces TBK1 proteolytic degradation by adding K48-linked ubiquitin chain to it. Pin1, RBCK1, Ro52 and RAUL catalyze RIG-I K48-linked ubiquitination and promote RIG-I proteolytic degradation.

Ubiquitination is a key regulatory mechanism for RLR pathways as well. For instance, TRIM25, an IFN-inducible E3 ligase belonging to the tripartite motif (TRIM) protein family, catalyzes RIG-I K63-linked ubiquitination at K172, which promotes RIG-I’s interaction with MAVS and ultimately IFN-β production [81] (Fig. 3). Genetic and structural analyses show that TRIM25-mediated ubiquitination at K172 is crucial for RIG-I activation in mammalian cells in response to NDV, Sev, VSV and influenza infections [81–83]. Moreover, RIG-I is also K63-linked ubiquitinated by RNF135, TRIM4 and MEX3c, whose abrogation dampens virus-induced IFN production [84–87] (Fig. 3). Several reports suggested that it is unanchored K63-linked ubiquitin chain that binds with RIG-I and triggers downstream IRF3 phosphorylation [88, 89]. An unsolved question is which type of K63-linked ubiquitin chain, covalent or non-covalent, is essential for RIG-I activation in vivo.

As K63-linked ubiquitination is crucial for RIG-I activation, it is not surprising that this PTM is tightly controlled by deubiquitinating enzymes. For example, CYLD, USP21 and USP3 are shown to remove K63-linked ubiquitin chains of RIG-I, thereby moderating IRF3 phosphorylation and IFN-β production [90–92] (Fig. 3). Moreover, the LUBAC complex, which is composed of HOIL-1L and HOIP, counteracts TRIM25-mediated RIG-I activation by sequestering TRIM25 to K48-linked ubiquitination and degradation [93]. MAVS also undergoes K63-linked ubiquitination at K500, yet the E3 ligase has not been identified [94]. Interestingly, a recent study in Raw264.7, HEK293T and BMDM cells suggests that K500 of MAVS is also K48-linked ubiquitinated by MARCH5, a mitochondria-resident E3 ligase [95] (Fig. 3). Perhaps a spatial and/or temporal regulation of K500 ubiquitination on MAVS is in place to control this. Besides, TRIM31 is shown to be K48-linked ubiquitinated by Pin1, RBCK1 and Ro52 as well as RAUL, which also catalyzes K48-linked ubiquitination of IRF7 [76–80] (Fig. 3).

Ubiquitination is a key regulatory mechanism for RLR pathways as well. For instance, TRIM25, an IFN-inducible E3 ligase belonging to the tripartite motif (TRIM) protein family, catalyzes RIG-I K63-linked ubiquitination at K172, which promotes RIG-I’s interaction with MAVS and ultimately IFN-β production [81] (Fig. 3). Genetic and structural analyses show that TRIM25-mediated ubiquitination at K172 is crucial for RIG-I activation in mammalian cells in response to NDV, Sev, VSV and influenza infections [81–83]. Moreover, RIG-I is also K63-linked ubiquitinated by RNF135, TRIM4 and MEX3c, whose abrogation dampens virus-induced IFN production [84–87] (Fig. 3). Several reports suggested that it is unanchored K63-linked ubiquitin chain that binds with RIG-I and triggers downstream IRF3 phosphorylation [88, 89]. An unsolved question is which type of K63-linked ubiquitin chain, covalent or non-covalent, is essential for RIG-I activation in vivo.

As K63-linked ubiquitination is crucial for RIG-I activation, it is not surprising that this PTM is tightly controlled by deubiquitinating enzymes. For example, CYLD, USP21 and USP3 are shown to remove K63-linked ubiquitin chains of RIG-I, thereby moderating IRF3 phosphorylation and IFN-β production [90–92] (Fig. 3). Moreover, the LUBAC complex, which is composed of HOIL-1L and HOIP, counteracts TRIM25-mediated RIG-I activation by sequestering TRIM25 to K48-linked ubiquitination and degradation [93]. MAVS also undergoes K63-linked ubiquitination at K500, yet the E3 ligase has not been identified [94]. Interestingly, a recent study in Raw264.7, HEK293T and BMDM cells suggests that K500 of MAVS is also K48-linked ubiquitinated by MARCH5, a mitochondria-resident E3 ligase [95] (Fig. 3). Perhaps a spatial and/or temporal regulation of K500 ubiquitination on MAVS is in place to control this. Besides, TRIM31 is shown
to serve as a positive regulator of MAVS aggregation by promoting K63-linked ubiquitination of MAVS at K10, K311 and K461 in HEK293T and BMDM cells, thus driving IFN-β production [96] (Fig. 3). The K48-linked ubiquitination, often leading to protease degradation of target proteins, also plays an important role in the RLR pathway as the abundance of receptors and signaling proteins must be tightly controlled. Indeed, RIG-I, MDA5 and MAVS are K48-linked ubiquitinated and thus repressed by RNF125 while ubiquitin-specific protease 4 (USP4) specifically removes the K48-linked ubiquitin chain of RIG-I, thus stabilizing the RIG-I protein and facilitating RIG-I activation [97, 98] (Fig. 3). RIG-I is also reported to be K48-linked ubiquitinated by RNF122 and CHIP, while another E3 ligase, TRIM13, catalyzes MDA5 K48-linked ubiquitination and promotes its degradation [99–101] (Fig. 3).

MAVS is targeted for K48-linked ubiquitination by multiple E3 ligase including Smurf1/2, RNF5 and ITCH, which induces MAVS degradation and RLR signal termination [102–104] (Fig. 3). Interestingly, TRIM44 dampens ITCH-induced K48-linked ubiquitination of MAVS, thus facilitating IFN production [105] (Fig. 3).

It has become evident that the cGAS-STING pathway is also regulated by ubiquitination. STING is targeted for K63-linked ubiquitination by TRIM32 and TRIM56 at K150, which potentiates STING dimerization and interaction with TBK1 [106] (Fig. 3). Interestingly, the STING K150 residue also undergoes K48-linked ubiquitination and K11-linked ubiquitination by RNF5 and RNF26, respectively [107, 108] (Fig. 3). RNF5-mediated K48-linked ubiquitination at K150 is dampened by RNF26-induced K11-linked ubiquitination. In contrast, RNF26 did not affect the K63-linked ubiquitination of STING at K150 [108]. Besides, AMFR, an endoplasmic reticulum (ER) located E3 ligase, catalyzes the K27-linked ubiquitination at K150 as well, which promotes TBK1 activation and IFN-β production in MEF and BMDM cells in response to HSV infection [109] (Fig. 3). The discrepancies of ubiquitination at K150 of STING might be caused by different experimental methods and/or a temporal regulation of homogeneous/mixed/branched ubiquitin chain during STING activation. More detailed studies are required to fully understand the dynamic interplay of these ubiquitin-related processes.

Autophagy is a central cell homeostatic process by which damaged organelles, protein aggregates and invading microbes are sequestered in autophagosomes and delivered to the lysosome for degradation, however, the interplay between antiviral immunity and autophagy is largely unknown. A recent study showed that cGAS is targeted for K48-linked ubiquitination and subsequent selective autophagic degradation [110]. Mechanistically, cGAS is constitutively K48-linked ubiquitinated and recognized by autophagy receptor p62, leading to selective autophagic degradation [110]. Upon viral infection, TRIM14 recruits USP14 to cleave the K48-linked ubiquitin chain of cGAS, which disrupts the cGAS-p62 interaction, thereby preventing cGAS autophagic degradation [110] (Fig. 3). An interesting question is whether other signal molecules in antiviral innate immunity are also regulated by ubiquitination-mediated selective autophagy. A detailed list of ubiquitination in antiviral signaling is included in Table 2.

Unconventional PTMs

In light of the development of mass spectrometry (MS) technology, and in the context of the extensively investigated antiviral signaling pathways, the importance of some unconventional PTMs in the innate response has been revealed. These unconventional PTMs include methylation, acetylation, SUMOylation and ADP-ribosylation.

Methylation refers to the transfer of a methyl group from the donor S-adenosylmethionine (SAM) to the lysine or arginine residues of target proteins. The histones are the first and the best described target proteins of methylation, and notably, several studies have emphasized the importance of non-histone methylation in regulating innate immunity [111]. For instance, the NF-κB subunit, p65, is hyper methylated and has distinct functions when methylated. In particular, the protein lysine methyltransferases (PKMT) SETD6 catalyzes monomethylation of p65 at K310 and dampens p65-driven inflammatory responses [112, 113]. Mechanistically, K310-methylated p65 recruits the ankyrin repeat of the histone methyltransferase GLP to maintain a repressed chromatin state of p65 target genes, thus inhibiting the transcription of proinflammatory cytokines such as TNF and IL-1α [112, 113]. Moreover, the protein kinase Cζ (PKCζ) phosphorylates p65 at Ser311, blocking the interaction of p65 with GLP and promoting proinflammatory gene expression [112]. In contrast, methylation of p65 at K218 and K221 by NSD1, as well as at K37 by SET9 potentiates transcription of p65-regulated genes [114, 115]. Notably, the NDS1-mediated methylation of p65 is clearly induced upon double-stranded RNA stimulation, yet the complete function of p65 methylation in viral infections is still unknown [114]. An interesting question is whether other signaling proteins are also methylated in antiviral immunity, since the role of methylation beyond histones is of comprehensive concern.

Acetylation is the inverse introduction of an acetyl group to protein lysine residues. Several studies have highlighted the importance of acetylation in antiviral responses. MAPK phosphatase 1 (MKP1), a dual-specificity phosphatase that inactivates p38 MAPK, is acetylated by p300, resulting in enhanced MKP1 activity and moderate proinflammatory cytokine expression [116]. RIG-I is shown to be acetylated at K909 in resting Huh7 and HEK293 cells, and HCV or VSV infections induce a quick deacetylation of RIG-I by histone deacetylase 6 (HDAC6) [117, 118]. This deacetylation is crucial for RIG-I activation and downstream IFN-β production in vivo, since HDAC6 knockout mice show increased susceptibility to HCV and VSV infection [117, 118] (Fig. 4). Notably, another histone deacetylase, HDAC9, deacetylates TBK1 and enhances its kinase activity [119] (Fig. 4). Moreover, the DNA methyltransferase Dnmt3a contributes to IFN-β production by maintaining high HDAC9 expression, which uncovers the crosstalk between epigenetics and post-translational modifications in antiviral immunity [119].

One of the features of immune homeostasis is the negative feedback regulation of signaling pathways by varying PTMs. Apart from IKK- mediated RIG-I phosphorylation in preventing
Table 2. Ubiquitination of PRR signaling pathways

Signaling protein	Enzymes	Functions	Ref.
TLR3, TLR9	Triad3A	Catalyzing K48-linked ubiquitination and degradation	[56]
Myd88	Nrdp1, WWP2	Inducing K48-linked ubiquitination and degradation	[57]
TRIF	A20, CYLD and OTUB2	Mediating K48-linked ubiquitination and degradation	[58]
TRAF6	DUBA, OTUB1 and UCHL1	Removing the K63-linked ubiquitination of TRAF6 to inhibit TRAF6 activation	[62–65]
TRAF3	Triad3	Depleting the K63-linked ubiquitination of TRAF3 to suppress TRAF3 activation	[65–67]
NEMO	TRIF WWP2	Mediating K48-linked ubiquitination and degradation	[60]
NEMO	TRAF6 A20, CYLD and OTUB2	Removing the K63-linked ubiquitination of TRAF6 to inhibit TRAF6 activation	[62–65]
NEMO	TRAF3 DUBA, OTUB1 and UCHL1	Catalyzing K48-linked ubiquitination and activation of NF-κB and IRF3	[66]
NEMO	TRAF3 HOIL-1L, HOIP	Inducing linear ubiquitination and NF-κB activation	[69]
NEMO	TRAF7	Catalyzing K29-linked ubiquitination to suppress NF-κB activation	[70]
TBK1	RNF128	Catalyzing K48-linked ubiquitination and degradation	[71]
TBK1	DTX4	Inducing K48-linked ubiquitination and degradation	[74, 75]
IRF3	Pin1, RBCK1, Ro52 and RAUL	Catalyzing K48-linked ubiquitination and degradation	[76–80]
IRF7	RAUL	Inducing K48-linked ubiquitination and degradation	[80]
RIG-I	TRIM25, TRIM13, TRIM4 and MEX3c	Catalyzing RIG-I K63-linked ubiquitination and RIG-I K63-linked ubiquitination is critical for RIG-I activation	[81–87]
RIG-I	CYLD, USP21, USP3, CHIP	Removing RIG-I K63-linked ubiquitination to inhibit RIG-I activation	[90–92]
RIG-I	RNF125, RNF122, CHIP	Inducing K48-linked ubiquitination and degradation of RIG-I	[97, 99, 100]
RIG-I	USP4	Removing RIG-I K48-linked ubiquitination to promote RIG-I activation	[98]
MDA5	RNF125 TRIM13	Catalyzing K48-linked ubiquitination of TRIM25 to inhibit RIG-I activation	[97, 101]
TRIM25	HOIL-1L, HOIP	Inducing K48-linked ubiquitination of TRIM25 to inhibit RIG-I activation	[93]
MAVS	TRIM31	Inducing K63-linked ubiquitination of MAVS and activation of MAVS	[96]
MAVS	MARCH5, Smurf1/2, RNF5 and ITCH TRIM44	Catalyzing K48-linked ubiquitination of MAVS to inhibit MAVS	[95, 102–104]
MAVS	TRIM32, TRIM56	Catalyzing K48-linked ubiquitination of STING to activate STING	[106]
MAVS	RNF5	Catalyzing K48-linked ubiquitination of STING and degradation	[107]
MAVS	RNF26	Catalyzing K11-linked ubiquitination and inhibiting K48-linked ubiquitization of STING	[108]
MAVS	AMFR, INSIG1	Catalyzing K27-linked ubiquitination of STING to activate STING	[109]

Excessive RIG-I activation [46], ISG15, an IFN-stimulated ubiquitin-like protein, suppresses RIG-I signaling by conjugating to RIG-I [120, 121] (Fig. 4). The biological function of this process, termed ISGylation, is still poorly understood. In addition, during murine gamma herpesvirus 68 (γHV68) infection of MEF cells, RIG-I is also reported to be deamidated by PFAS, which converts glutamine or asparagine residues to glutamate or aspartate respectively [122]. Moreover, the viral homologues of PFAS, named Vgat, promote RIG-I deamidation and subsequent MAVS and IKKβ activation [122] (Fig. 4). A probable question is whether the deamidation of RIG-I is a general or γHV68 infection specific regulation process.

Interestingly, a recent study suggested that the aryl hydrocarbon receptor (AhR) pathway, known for mediating the toxic activity of many environmental xenobiotics, is unexpectedly linked to antiviral responses via ADP-ribosylation, a PTM referring to the addition of one or more ADP-ribose moieties to proteins [123]. AhR signaling was shown to specifically induce the expression of Tiparp/Parp7 which in turn dampens TBK1 activity via catalyzing TBK1 ADP-ribosylation [123] (Fig. 4). The study highlighted the function of PTMs as an access point connecting different signaling pathways and physiological processes such as nutritional dysregulation stress and innate resistance against viral infections.
The cGAS pathway has been characterized for a few years and its regulatory mechanism is still not clear. Recently, a published work showed that cGAS activity is controlled by reversible glutamylation, a PTM which involves the addition of glutamate side chains to the γ-carboxyl groups of glutamic acid residues of the target proteins [124]. The tubulin tyrosine ligase–like (TTLL) 4 and 6 were shown to promote IFN-β production by catalyzing monoglutamylation and polyglutamylation of cGAS, respectively, while the carboxypeptidase CCP5 and CCP6 both remove the glutamate chain of cGAS in macrophages [124] (Fig. 4).

Processed by specific small ubiquitin related modifier (SUMO) enzymes E1, E2, and E3, SUMOylation is a PTM resembling ubiquitination as ubiquitination use ubiquitin to covalently attach to target protein while SUMOylation use SUMO [125]. A number of studies have highlighted the importance of SUMOylation in antiviral signaling. For example, SUMOylation of RIG-I and MDA5 by the E3 ligase PIAS2 and TRIM38 promotes type I IFN production and antiviral activities in the cell [126–128]. cGAS and STING are SUMOylated by the ubiquitin ligase TRIM38, which prevents their K48-linked ubiquitination and degradation, hence facilitating antiviral innate immune responses [129] (Fig. 4). In agreement, the deSUMOylating enzyme Sentrin/SUMO-specific protease (SENP) 2 alleviates antiviral responses by deSUMOylating cGAS, STING and IRF3 [129] (Fig. 4). Furthermore, TBK1 K694 SUMOylation contributes to its antiviral activities as K694 mutated TBK1 presents enforced interaction with TANK1, a known negative regulator of TBK1 [130] (Fig. 4). The E3 ligase responsible for TBK1 SUMOylation has not been identified yet, but at least it is known that the adenoviral protein Gam1 inhibits SUMOylation of TBK1 [130]. Notably, SUMOylation also represses antiviral responses via targeting the Ifnb1 gene promoter [131]. It seems that SUMOylation leads to both enhancing and suppressive functions in antiviral innate immunity, depending on the substrate specificity. Overall, however, an intrinsic question is why the cells extensively utilize the “long peptide chains” and “multi-enzymes” PTMs, such as ubiquitination, SUMOylation, ISGylation, polyglutamylation and ADP-ribosylation, to control antiviral signaling.

Figure 4. Non-canonical PTMs of RIG-I, cGAS, STING and TBK1. RIG-I is deamidated by PFAS at Q10, N245 and N445. RIG-I’s deamidation is crucial for RIG-I signaling during γHV68 infection. TRIM38 promotes RIG-I activation by inducing RIG-I SUMOylation at K96 and K888. ISG5 limits RIG-I activation by catalyzing RIG-I ISGylation. HADAC6 is critical for RIG-I activation by removing RIG-I K909 acetylation. TRIM38 also promotes cGAS signaling by catalyzing cGAS K231 and K470 SUMOylation as well as STING K337 SUMOylation. SENP2 inhibits cGAS signaling by counteracting TRIM38-mediated SUMOylation of cGAS and STING. AHR signaling moderates antiviral response by promoting PARP7-mediated TBK1 ADP-ribosylation. Dnmt3a contributes to IFN-β production by promoting HDAC9 expression. HDAC9 removes TBK1 K241 acetylation to boost TBK1 kinase activity. Dea, deamidation. SUMO, SUMOylation. ISGy, ISGylation. Ac, acetylation. Gluy, glutamylation. PAr, ADP-ribosylation. CARD, caspase recruitment domain. RD, regulatory domain. Mab21, Mab-21 domain. TM, transmembrane domain. CBD, c-di-GMP binding domain. CTT, c-terminal tail. UBD, ubiquitin-binding domain. HLH, helix-loop-helix domain.

PTMs in virus related immune disorders and therapy

Due to the critical role of PTMs in antiviral responses, it is not surprising that virus have evolved strategies to actively interfere or hijack the PTMs of host proteins. Influenza A viruses (IAVs) are serious infectious RNA viruses that cause grievous economic and health consequences. The influenza non-structural protein 1 (NS1) is known to act as a virulence factor inhibiting host immune responses. The NS1 encoded by human, avian, swine and mouse-adapted influenza viruses can bind with human TRIM25 and inhibit TRIM25-catalyzed RIG-I ubiquitination [132]. However, the NS1 from mouse-adapted influenza viruses targets RNF135, but not TRIM25, to inhibit RIG-I K63-linked ubiquitination, which indicates a species divergence between human and mouse influenza infections and immune responses [132]. The papillomaviruses induce expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UICH1) in keratinocytes, which inhibits TRAF3 K63-linked ubiquitination and subsequent IRF3 phosphorylation, as well as IFN-β expression [67]. UICH1 also promotes K48-linked ubiquitination of NEMO, leading to attenuated proinflammatory cytokines production [67]. In addition, a large number of viruses, such as severe acute respiratory syndrome (SARS) coronavirus, human coronavirus NL63, mouse hepatitis virus (MHV) A59, herpes simplex virus 1 (HSV-1), Kaposi’s sarcoma-associated herpesvirus (KSHV), HBV, Epstein-Barr virus and some arteriviruses, have been shown to block IFN-β
Conclusion

The idea of PAMPs and PRRs was started two decades ago [136]. At that time, protein phosphorylation was already extensively explored and ubiquitination was just around the corner from receiving wide-spread interest [137]. Twenty years of study have not only highlighted the cornerstone role of the PRR pathway in infection immunity, but also reveals the importance of PTMs in regulating numerous cell activities. For the antiviral innate immune responses, several intriguing and crucial aspects still await further investigation.

Though much progress has been made in characterizing PTMs and enzymes, which regulate type I interferon production, the in vivo relevance of these enzymes and modifications to antiviral immunity still need to be addressed in future studies, as a considerable part of these functions and mechanisms are characterized in vitro or in non-immune cells. More detailed genetic and biochemical evidence is also needed for a full understanding of PTM role in antiviral responses. Moreover, while multiple kinases and E3 ligases contributing to IFN-β production are identified, not much is known about the phosphatases and deubiquitinating enzymes which functions as IFN-β production brake. Though insufficient interferon production may cause chronic infections, excessive interferon production often causes autoimmune and/or inflammatory diseases such as Aicardi–Goutières Syndrome, systemic lupus erythematosus, arthritis and influenza pneumonia. In this regard, we must address significant gaps in knowledge of PTMs and enzymes that are moderating antiviral responses, many of which could be new and favorable antiviral and autoimmune therapeutic targets.

While phosphorylation and ubiquitination are shown to regulate antiviral innate immunity, the exact roles of other PTMs, such as acetylation, methylation, ADP-ribosylation, SUMOylation, ISGylation and palmitoylation, are still poorly addressed. Even for phosphorylation and ubiquitination, a global map of regulation network and the detailed mechanisms of each signaling protein cannot clearly be drawn. Moreover, differences in observations generated from studies using different virus species, host species and host cell lineages make the questions even trickier. Meanwhile, whether additional novel PTMs might exist in antiviral signaling is unknown. In this regard, advanced technological platforms such as mass spectrometry, fluorescence imaging, nuclear magnetic resonance (NMR) and Raman spectroscopy are eagerly required for both in vitro and in vivo characterizing the dynamics and interplay of different PTMs.

Genome sequencing has unveiled the importance of antiviral signaling in various human diseases such as IRF7 in influenza infection, TRAF3 in herpes simplex encephalitis and MDA5 in systemic lupus erythematosus [138–140]. Given the pivotal role of PTMs in modulating antiviral innate immune responses, we eagerly await the identification of disease-relevant mutations in numerous PTM enzymes and the possible diagnostic markers and therapeutic targets for virus-related immune disorders.

Acknowledgements: This work was supported by National Natural Science Foundation of China (No.91542111 and 81330069).

Conflict of interest: The authors declare no commercial or financial conflict of interest.

References

1 Takeuchi, O. and Akira, S., Pattern recognition receptors and inflammation. Cell 2010. 140: 805–820.
2 Barrat, F. J., Elkon, K. B. and Fitzgerald, K. A., Importance of nucleic acid recognition in inflammation and autoimmunity. Annu. Rev. Med. 2016. 67: 323–336.
3 Ivashkiv, L. B. and Donlin, L. T., Regulation of type I interferon responses. Nat. Rev. Immunol. 2014. 14: 36–49.
4 Sin, W. X., Li, P., Yeong, J. P. and Chin, K. C., Activation and regulation of interferon-beta in immune responses. Immunol. Res. 2012. 53: 25–40.
5 Kawai, T. and Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010. 11: 373–384.
6 Gay, N. J., Symmons, M. F., Gangloff, M. and Bryant, C. E., Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 2014. 14: 546–558.
7 Saha, S. K. and Cheng, G., TRAF3: a new regulator of type I interferons. Cell Cycle 2006. 5: 804–807.
8 Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J. et al., IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003. 4: 491–496.
9 Honda, K., Ohba, Y., Yanai, H., Negishi, H., Mizutani, T., Takaoka, A., Taya, C. et al., Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 2005. 434: 1035–1040.
10 Wang, L., Zhao, J., Ren, J., Hall, K. H., Moorman, J. P., Yao, Z. Q. and Ning, S., Protein phosphatase 1 abrogates IRF7-mediated type I IFN response in antiviral immunity. Eur. J. Immunol. 2016. 46: 2409–2419.
11 Rehwinkel, J. and Reis e Sousa, C., Rigorous detection: exposing virus through RNA sensing. Science 2010. 327: 282–286.
lated with imidazoquinoline agonists.

...to initiate antiviral response.

...O. et al., Unconventional post-translational modification in immunological signaling.

...Mancinelli, R. and van't Veer, C. et al., Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 2000. 164: 5996-6004.

...Schlee, M., Master sensors of pathogenic RNA - RIG-I like receptors.

...Mollendepartments and STING to initiate type 1 interferon response.

...Immunity 2017. 47: 1414–1426

...Biochem. J. 2008. 409: 275–287.

...Cell: 5791–5803.

...Proc. Natl. Acad. Sci. USA 2012. 109: 5791–5796.

...Mol. Syst. Biol. 2013. 9: 714.

...Trans. R. Soc. Lond. B. Biol. Sci. 2012. 367: 2513–2516.

...Lee, K. G., Saito, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T. et al., Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005. 23: 19–28.

...Muzio, M., Bosisco, D., Polentarutti, N., D’Amico, G., Stoppacciaro, A., Mancinelli, R., van’t Veer, C. et al., Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 2000. 164: 5996-6004.

...Lee, K. G., Hunter, T. 25 Mowen, K. A. and David, M.

...Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T. et al., Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005. 23: 19–28.

...Pitha, P. M. and Hiscott, J.

...Kawasaki, T.

...Rowe, T. M. and Sen, G. C., Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci. Signal. 2012. 5: r50.

...Sarkar, S. N., Smith, H. L., Rowe, T. M. and Sen, G. C., Double-stranded RNA signaling by Toll-like receptor 3 requires specific tyrosine residues in its cytoplasmic domain. J. Biol. Chem. 2003. 278: 4393-4396.

...Hsieh, M. Y., Chang, M. Y., Chen, Y. J., Li, Y. K., Chuang, T. H., Yu, G. Y., Cheung, C. H. et al., The inducible nitric-oxide synthase (cNOS)/Src axis mediates Toll-like receptor 3 tyrosine 759 phosphorylation and enhances its signal transduction, leading to interferon-beta synthesis in macrophages. J. Biol. Chem. 2014. 289: 9026-9029.

...Rajagopal, R., Waller, A. S., Mendoza, J. D. and Wightman, P. D., The covalent modification and regulation of TRLR8 in HEK-293 cells stimulated with imidazoquinoline agonists. Biochem. J. 2008. 409: 275–287.

...Zhou, Y., He, C., Yan, D., Liu, F., Liu, H., Chen, J., Cao, T. et al., The kinase CK1epsilon controls the antiviral immune response by phosphorylating the signaling adaptor TRAF3. Nat. Immunol. 2016. 17: 397–405.

...Jiao, S., Zhang, Z., Li, C., Huang, M., Shi, Z., Wang, Y., Song, X. et al., The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nat. Immunol. 2015. 16: 246–257.

...Kimhore, N., Huynh, Q. K., Mathialagan, S., Hall, T., Rouw, S., Creeley, D., Lange, G. et al., IKK-1 and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2: comparative analysis of recombinant human IKK-1, TBK-1, and IKK-2. J. Biol. Chem. 2002. 277: 13840-13847.

...Lei, C. Q., Zhong, B., Zhang, Y., Zhang, J., Wang, S. and Shu, H. B., Glycogen synthase kinase 3beta regulates IF3 transcription factor-mediated antiviral response via activation of the kinase TBK1. Immunity 2010. 33: 878–889.

...Zhao, Y., Liang, L., Fan, Y., Sun, S., An, L., Shi, Z., Cheng, J. et al., PPM1B negatively regulates antiviral response via dephosphorylating TBK1. Cell Signal 2012. 24: 2197–2204.

...An, T., Li, S., Pan, W., Tien, P., Zhong, B., Shu, H. B. and Wu, S., DYRK2 negatively regulates type I interferon induction by promoting TBK1 degradation via Ser527 phosphorylation. PLoS Pathog. 2015. 11: e1005179.

...Mori, M., Yoneyama, M., Ito, T., Takahashi, K., Inagaki, F. and Fujita, T., Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J. Biol. Chem. 2004. 279: 9698–9702.

...Lin, R., Heylbroeck, C., Pitha, P. M. and Hiscott, J., Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transcriptional activation, and proteasome-mediated degradation. Mol. Cell Biol. 1998. 18: 2986–2996.

...Li, S., Zhu, M., Pan, R., Fang, T., Cao, Y. Y., Chen, S., Zhao, X. et al., The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat. Immunol. 2016. 17: 241–249.

...Karpova, A. Y., Trost, M., Murray, J. M., Cantley, L. C. and Howley, P. M., Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc. Natl. Acad. Sci. U.S.A 2002. 99: 2818–2823.

...Arthur, J. S. and Ley, S. C., Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013. 13: 679-692.

...Sun, S. C., Non-canonical NF-kappaB signaling pathway. Cell Res. 2011. 21: 71–85.

...Maharaj, N. P., Wies, E., Stoll, A. and Gack, M. U., Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. J. Virol. 2012. 86: 1358–1371.

...Sun, Z., Ren, H., Liu, Y., Teeling, J. L. and Gu, J., Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J. Virol. 2011. 85: 1036–1047.

...Wies, E., Wang, M. K., Maharaj, N. P., Chen, K., Zhou, S., Finberg, R. W. and Gack, M. U., Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 2013. 38: 437–449.

...Zhang, X., Yu, H., Zhao, J., Li, X., Li, J., He, J., Xia, Z. et al., IKK negatively regulates RIG-I via direct phosphorylation. J. Med. Virol. 2016. 88: 712–718.

...Wen, C., Yan, Z., Yang, X., Guan, K., Xu, C., Song, T., Zheng, Z. et al., Identification of tyrosine-9 of MAVS as critical target for inducible phosphorylation that determines activation. PLoS One 2012. 7: e41687.

...Lee, K. G., Kim, S. S., Kui, L., Voon, D. C., Mauduit, M., Bist, P., Bi, X. et al., Bruston’s tyrosine kinase phosphatases DDX41 and activates its binding of dDNA and STING to initiate type 1 interferon response. Cell Rep. 2015. 10: 1055–1065.
Yau, R. and Rape, M. (2015). The ubiquitin code. Annu. Rev. Biochem. 2012: 81: 203–229.

Yau, R. and Rape, M. (2016). The increasing complexity of the ubiquitin code. Nat. Cell Biol. 2016: 18: 579–586.

Chung, T. H. and Ulevitch, R. J. (2004). Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 2004: 5: 495–502.

Wang, C., Chen, T., Zhang, J., Yang, M., Li, N., Xu, X. and Gao, X. (2009). The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat. Immunol. 2009: 10: 744–752.

Yang, Y., Liao, B., Wang, S., Yan, B., Jin, Y., Shu, H. B. and Wang, Y. Y. (2016). E3 ligase WW2 negatively regulates TLR3-mediated innate immune response by targeting IRF3. Proc. Natl. Acad. Sci. U S A 2013: 110: 5115–5120.

Chen, J. and Chen, Z. J. (2015). Regulation of NF-kappaB activation by TNFR family members. J. Biol. Chem. 2015: 285: 1096–1104.

Lei, C. Q., Zhang, Y., Xia, T., Jiang, L. Q., Zhong, B. and Shu, H. B. (2008). Foxo1 negatively regulates cellular antiviral response by promoting degradation of IkappaB kinase (IKKgamma)/NF-kappaB essential modulator (NEMO). J. Immunol. 2012: 13: 387–395.

Lin, M., Zhao, Z., Yang, Z., Tan, P., Xie, W., Qin, Y. et al. (2008). USP38 inhibits type I interferon signaling by editing TBK1 ubiquitination through NLRP4 signaling. Mol Cell 2016: 64: 267–281.

Saitoh, T., Kun-Yi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S. et al. (2006). Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response. Sci. Rep. 2016: 6: 23771.

Zhang, M., Tian, Y., Wang, R. P., Gao, D., Zhang, Y., Diao, F. C., Chen, D. Y. et al. (2009). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res. 2008: 1096–1104.

Zhang, M., Tian, Y., Wang, R. P., Gao, D., Zhang, Y., Diao, F. C., Chen, D. Y. et al. (2009). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res. 2008: 1096–1104.

Shu, H. B. and Wang, Y. (2009). Human papillomavirus (HPV) upregulates the cellular ubiquitinase UCHL1 to suppress the keratinocyte’s innate immune response. PLoS Pathog 2009: 5: e1000384.

Higgs, R., Ni Gabbann, J., Ben Lari, N., Breen, E. P., Fitzgerald, K. A. and Jeffreiers, C. A. (2009). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2009: 466: 916–920.

Gack, M. U., Shin, Y. C., Joo, C. H., Urano, T., Liang, C., Sun, L., Takeuchi, O. et al. (2008). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007: 446: 916–920.

Gack, M. U., Kirkhofer, A., Shin, Y. C., Inn, K. S., Liang, C., Cui, S., Myong, S. et al. (2007). Roles of RIG-1-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Nat. Proc. Natl. Acad. Sci. U S A 2008: 105: 16743–16748.

Sanchez, J. G., Chiang, J. J., Sparrer, K. M., Alam, S. L., Chi, M., Rognowicz, M. D., Sankanar, B. et al. (2006). Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep. 2016: 16: 1315–1325.

Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M. and Seya, T. (2008). The ubiquitin ligase Riplet is essential for RIG-1-dependent innate immune responses to RNA virus infection. Cell Host Microbe. 2010: 8: 496–509.

Oshiumi, H., Matsumoto, M., Hatakeyama, S. and Seya, T. (2008). Ribosomal RNA binds TRIM25, an E3 ubiquitin ligase. Nat. Immunol. 2008: 9: 1125–1260.

Gack, M. U., Shin, Y. C., Joo, C. H., Urano, T., Liang, C., Sun, L., Takeuchi, O. et al. (2008). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2008: 446: 916–920.

Gack, M. U., Kirchofer, A., Shin, Y. C., Inn, K. S., Liang, C., Cui, S., Myong, S. et al. (2007). Roles of RIG-1-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Nat. Proc. Natl. Acad. Sci. U S A 2008: 105: 16743–16748.

Sanchez, J. G., Chiang, J. J., Sparrer, K. M., Alam, S. L., Chi, M., Rognowicz, M. D., Sankanar, B. et al. (2006). Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep. 2016: 16: 1315–1325.

Oshiumi, H., Miyashita, M., Inoue, N., Okabe, M., Matsumoto, M. and Seya, T. (2008). The ubiquitin ligase Riplet is essential for RIG-1-dependent innate immune responses to RNA virus infection. Cell Host Microbe. 2010: 8: 496–509.
interferon-beta induction during the early phase of viral infection. J. Biol. Chem. 2009. 284: 807–817.

Yan, J., Li, Q., Mao, A. P., Hu, M. M. and Shu, H. B., TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J. Mol. Cell. Biol. 2014. 6: 154–163.

Kuniyoshi, K., Takeuchi, O., Pandey, S., Sato, T., Iwasaki, H., Akira, S. and Kawai, T., Pivotal role of RNA-binding E3 ubiquitin ligase MXE3C in RIG-I-mediated antiviral innate immunity. Proc. Natl. Acad. Sci. U S A 2014. 111: 5646–5651.

Zeng, W., Sun, L., Jiang, X., Chen, X., Hou, F., Adhikari, A., Xu, M. and Chen, Z. J., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010. 141: 315–330.

Jiang, X., Kinch, L. N., Brautigam, C. A., Chen, X., Du, F., Grishin, N. V. and Chen, Z. J., Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012. 36: 959–973.

Friedman, C. S., O’Donnell, M. A., Legarda-Addison, D., Ng, A., Cardenas, W. B., Young, J. S., Moran, T. M. et al., The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 2008. 9: 930–936.

Fan, Y., Yao, M., Yu, Y., Liu, S., Shi, Z., Cheng, J., Zhang, H. et al., USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitase. J. Virol. 2014. 211: 313–328.

Cui, J., Song, Y., Li, Y., Zhu, Q., Tan, P., Qin, Y., Wang, H. Y. et al., USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res. 2014. 24: 400–416.

Inn, K. S., Gack, M. U., Tokunaga, F., Shi, M., Wong, L. Y., Iwai, K. and Jung, J. U., Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction. Mol Cell 2011. 41: 354–365.

Paz, S., Vilasco, M., Arguello, M., Sun, Q., Lacoste, J., Nguyen, T. L., Zhao, T. et al., Ubiquitin-regulated recruitment of IkappaBalpha kinase epsilon to the MAVS interferon signaling adapter. Mol Cell Biol 2009. 29: 3401–3412.

Yoo, Y. S., Park, Y. Y., Kim, J. H., Cho, H., Kim, S. H., Lee, H. S., Kim, T. H. et al., The mitochondrial ubiquitin ligase MARCH5 resolves MAVS aggregates during antiviral signalling. Nat. Commun. 2015. 6: 7910.

Liu, B., Zhang, M., Chu, H., Zhang, H., Wu, H., Song, G., Wang, P. et al., The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adapter MAVS through Lys63-linked polyubiquitination. Nat Immunol 2017. 18: 214–224.

Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T. and Shi-motono, K., Negative regulation of the RIG-I signalling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. U S A 2007, 104: 7500–7505.

Wang, L., Zhao, W., Zhang, M., Wang, P., Zhao, K., Zhao, X., Yang, S. et al., USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J Virol 2013. 87: 4507–4515.

Wang, W., Jiang, M., Liu, S., Zhang, S., Liu, W., Ma, Y., Zhang, L. et al., RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc. Natl. Acad. Sci. U S A 2016. 113: 9581–9586.

Zhao, K., Zhang, Q., Li, X., Zhao, D., Liu, Y., Shen, Q., Yang, M. et al., Cytoplasmic STAT4 promotes antiviral type I IFN production by blocking CHIP-mediated degradation of RIG-I. J. Immunol. 2016. 196: 1209–1217.

Narayan, K., Waggoner, L., Pham, S. T., Hendricks, G. L., Waggoner, S. N., Conlon, J., Wang, J. P. et al., TRIM13 is a negative regulator of MDA5-mediated type I interferon production. J Virol. 2014. 88: 10748–10757.

Wang, Y., Tong, X. and Ye, X., Ndfp1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. J. Immunol. 2012. 189: 5304–5313.

Zhong, B., Zhang, Y., Tan, B., Liu, T. T., Wang, Y. Y. and Shu, H. B., The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J. Immunol. 2010. 184: 6249–6255.

You, F., Sun, H., Zhou, X., Sun, W., Liang, S., Zhai, Z. and Jiang, Z., PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 2009. 10: 1300–1308.

Yang, B., Wang, J., Wang, Y., Zhou, H., Wu, X., Tian, Z. and Sun, B., Novel function of Trim44 promotes an antiviral response by stabilizing VISA. J. Immunol. 2013. 190: 3613–3619.

Zhang, J., Hu, M. M., Wang, Y. Y. and Shu, H. B., TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 2012. 287: 28664–28655.

Zhong, B., Zhang, L., Lei, C., Li, Y., Mao, A. P., Yang, Y., Wang, Y. Y. et al., The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 2009. 30: 397–407.

Qin, Y., Zhou, M. T., Hu, M. M., Hu, Y. H., Zhang, J., Guo, L., Zhong, B. et al., RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PloS Pathog 2014. 10: e1004358.

Wang, Q., Liu, X., Cui, Y., Tang, Y., Chen, W., Li, S., Yu, H. et al., The ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 2014. 41: 919–933.

Chen, M., Meng, Q., Qin, Y., Liang, P., Tan, P., He, L., Zhou, Y. et al., TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol Cell 2016. 64: 105–119.

Biggar, K. K. and Li, S. S., Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol. 2015. 16: 5–17.

Levy, D., Kuo, A. J., Chang, Y., Schaefer, U., Kitson, C., Cheung, P., Espejo, A. et al., Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat. Immunol. 2011. 12: 29–36.

Mukherjee, N., Cardenas, E., Bedolla, R. and Ghosh, R., SETD6 regulates NF-kappaB signaling in urothelial cell survival: implications for bladder cancer. Oncotarget 2017. 8: 15114–15125.

Lu, T., Jackson, M. W., Wang, B., Yang, M., Chance, M. R., Miyagi, M., Gudkov, A. V. et al., Regulation of NF-kappaB by NSD1/18X11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. U S A 2010. 107: 46–51.

Ea, C. K. and Baltimore, D., Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc. Natl. Acad. Sci. U S A 2009. 106: 18972–18977.

Cao, W., Bao, C., Padalko, E. and Lowenstein, C. J., Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J. Exp. Med. 2008. 205: 1491–1503.

Choi, S. J., Lee, H. C., Kim, J. H., Park, S. Y., Kim, T. H., Lee, W. K., Jiang, D. J. et al., HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. EMBO J 2016. 35: 429–442.

Liu, H. M., Jiang, F., Lee, Y. M., Hsu, S., Huang, T. Y., Maricotigiano, J. and Gale, M., Jr., Regulation of retinoic acid inducible gene-1 (RIG-I) activation by the histone deacetylase 6. ElBioMedicine 2016. 9: 195–206.

Li, X., Zhang, Q., Ding, Y., Liu, Y., Zhao, D., Zhao, K., Shen, Q. et al., Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat. Immunol. 2016. 17: 806–815.
120 Arimoto, K., Konishi, H. and Shimotohno, K., Ubch8 regulates ubiquitin and ISG15 conjugation to RIG-I. Mol Immunol 2008. 45: 1078–1084.

121 Kim, M. J., Hwang, S. Y., Imai, A., Min, I. and Yoo, J. Y., Negative feedback regulation of RIG-1-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol 2008. 82: 1474–1483.

122 He, S., Zhao, J., Song, S., He, X., Minassian, A., Zhou, Y., Zhang, J. et al., Viral pseudo-enzymes activate RIG-1 via deamidation to evade cytokine production. Mol Cell 2015. 58: 134–146.

123 Yamada, T., Horimoto, H., Kameyama, T., Hayakawa, S., Yamato, H., Daizai, M., Takada, A. et al., Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 2016. 17: 687–694.

124 Xia, P., Ye, B., Wang, S., Zhu, X., Du, Y., Xiong, Z., Tian, Y. et al., Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 2016. 17: 369–378.

125 Flotho, A. and Melchior, F., Sumoylation: a regulatory protein modification in health and disease. Rev. Biochem. 2013. 82: 357–385.

126 Fu, J., Xiong, Y., Xu, Y., Cheng, G. and Tang, H., MDA5 is SUMOylated by Pias2beta in the upregulation of type I interferon signaling. Mol Immunol 2011. 48: 415–422.

127 Mi, Z., Fu, J., Xiong, Y. and Tang, H., SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 2010. 1: 275–283.

128 Hu, M. M., Liao, C. Y., Yang, Q., Xie, X. Q. and Shu, H. B., Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J Exp. Med. 2017.

129 Hu, M. M., Yang, Q., Xie, X. Q., Liao, C. Y., Lin, H., Liu, T. T., Yin, L. et al., Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity 2016. 45: 555–569.

130 Saul, V. V., Niedenthal, R., Pich, A., Weber, F. and Schmitz, M. L., SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. Biochem Biophys Acta 2015. 1853: 136–143.

131 Decque, A., Joffre, O., Magalhaes, J. G., Cossec, J. C., Blecher-Gonen, N., Lapacquette, P., Silvin, A. et al., Sumylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat Immunol 2016. 17: 140–149.

132 Rajabaum, R., Albrecht, R. A., Wang, M. K., Maharaj, N. P., Versteeg, G. A., Nistal-Villan, E., Garcia-Sastre, A. et al., Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 2012. 8: e1003059.

133 Heaton, S. M., Borg, N. A. and Dixit, V. M., Ubiquitin in the activation and attenuation of innate antimicrobial immunity. J. Exp. Med. 2016. 213: 1–13.

134 Calistri, A., Munegato, D., Carli, I., Parolin, C. and Palu, G., The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014. 3: 386–417.

135 Chang, T. H., Kubota, T., Matsuoka, M., Jones, S., Bradfute, S. B., Bray, M. and Ozato, K., Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog 2009. 5: e1000493.

136 Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A., The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996. 86: 973–983.

137 Bailly, V., Lauder, S., Prakash, S. and Prakash, L., Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 1997. 272: 23360–23365.

138 Giancaneli, M. J., Huang, S. X., Luthra, P., Garner, H., Itan, Y., Volpi, S., Lafaille, F. G. et al., Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 2015. 348: 448–453.

139 Perez de Diego, R., Sancho-Shimizu, V., Lorenzo, L., Puel, A., Plancois, S., Picard, C., Herman, M. et al., Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 2010. 33: 400–411.

140 Rice, G. I., del Toro Duany, Y., Jenkinson, E. M., Forte, G. M., Anderson, B. H., Ariauod, G., Bader-Muenier, B. et al., Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 2014. 46: 503–509.

Abbreviations: AHR: aryl hydrocarbon receptor · BTK: Bruton’s tyrosine kinase · cGAMP: cyclic GMP-AMP · HDAC6: histone deacetylase 6 · HSV: herpes simplex virus · IFNs: interferons · IKBk: Inhibitor-β kinase ε · IRF: IFN regulatory factor · LGP2: laboratory of genetics and physiology 2 · MAVS: mitochondrial antiviral-signaling · MDA5: melanoma differentiation-associated protein 5 · MST4: mammalian STE20-like protein kinase 4 · MyD88: myeloid differentiation factor-88 · NS1: non-structural protein 1 · PKC: protein kinase C · PRR: pattern-recognition receptors · PTMs: post-translational modifications · RIG-I: retinoic acid-inducible gene 1 · RLR: RIG-I-like receptor · Sev: Sendai virus · STING: stimulator of interferon genes · SUMO: small ubiquitin related modifiers · TBK1: TANK-binding kinase-1 · TLR: toll-like receptor · TRAF3: TNF receptor-associated factor 3 · TRIF: TIR-domain-containing adaptor protein inducing interferon beta · TRIM: tripartite motif · USP4: ubiquitin-specific protease 4 · VSV: vesicular stomatitis virus

Full correspondence: Dr. Baoxue Ge, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University, 1239 SiPing Road, 200092, Shanghai, China
e-mail: gębaoxue@sibs.ac.cn

Received: 29/3/2017
Revised: 22/6/2017
Accepted: 24/7/2017