TRANSITION PROBABILITIES OF POSITIVE LINEAR FUNCTIONALS ON *-ALGEBRAS

KONRAD SCHMÜDGEN

Abstract. Using unbounded Hilbert space representations basic results on the transition probability of positive linear functionals \(f \) and \(g \) on a unital *-algebra are obtained. The main assumption is the essential self-adjointness of GNS representations \(\pi_f \) and \(\pi_g \). Applications to functionals given by density matrices and by integrals and to vector functionals on the Weyl algebra are given.

AMS Subject Classification (2000). 46L50, 47L60; 81P68.

Key words: transition probability, non-commutative probability, unbounded representations

1. Introduction

Let \(f \) and \(g \) be states on a unital *-algebra \(A \). Suppose that these states are realized as vectors states of a common *-representation \(\pi \) of \(A \) on a Hilbert space with unit vectors \(\varphi \) and \(\psi \), respectively, that is, \(f(a) = \langle \pi(a)\varphi, \varphi \rangle \) and \(g(a) = \langle \pi(a)\psi, \psi \rangle \) for \(a \in A \). In quantum physics the number \(|\langle \varphi, \psi \rangle|^2 \) is then interpreted as the transition probability from \(f \) to \(g \) in these vector states. The (abstract) transition probability \(P_A(f, g) \) is defined as the supremum of values \(|\langle \varphi, \psi \rangle|^2 \), where the supremum is taken over all realizations of \(f \) and \(g \) as vectors states in some common *-representation of \(A \). This definition was introduced by A. Uhlmann [17]. The square root \(\sqrt{P_A(f, g)} \) is often called fidelity in the literature [3], [10].

The transition probability is related to other important topics such as the Bures distance [8], Sakai’s non-commutative Radon-Nikodym theorem [5] and the geometric mean of Pusz and Woronowicz [12]. It was extensively studied in the finite dimensional case (see e.g. the monograph [7]) and a number of results have been derived for \(C^* \)-algebras and von Neumann algebras (see e.g. [3], [6], [1], [2], [4], [3], [19]).

The aim of the present paper is to study the transition probability \(P_A(f, g) \) for positive linear functionals \(f \) and \(g \) on a general unital
-algebra A. Then, in contrast to the case of C^-algebras, the corresponding $*$-representations of A act by unbounded operators in general and a number of technical problems of unbounded representation theory on Hilbert space come up. Dealing with these difficulties in a proper way is a main purpose of this paper. In section 2 we therefore collect all basic definitions and facts on unbounded Hilbert space representations that will be used throughout this paper.

In section 3 we state and prove our main theorems about the transition probability $P_A(f,g)$ for a general $*$-algebras. The crucial assumption for these results is the essential self-adjointness of the GNS representations π_f and π_g. This means that we restrict ourselves to a class of "nice" functionals. In contrast we do not restrict the $*$-representation π where the functionals f and g are realized as vector functionals. (In some results it is assumed that π is closed or biclosed, but this is no restriction of generality, since any $*$-representation has a closed or biclosed extension.)

In section 4 we apply Theorem 8 from section 3 to generalize two standard formulas (24) and (33) for the transition probability to the unbounded case; these formulas concern trace functionals $f(\cdot) = \text{Tr} \rho(\cdot)t$ and functionals on commutative $*$-algebras given by integrals. A simple counter-example based on the Hamburger moment problem shows that these formulas can fail if the assumption of essential self-adjointness of GNS representations is omitted. In section 5 we determine the transition probability of positive functionals on the Weyl algebra given by certain functions from $C^\infty_0(\mathbb{R})$. In this case both GNS representations π_f and π_g are not essentially self-adjoint and the corresponding formula for $P_A(f,g)$ is in general different from the standard formula (24).

Throughout this paper we suppose that A is a complex unital $*$-algebra. The involution of A is denoted by $a \to a^+$ and the unit element of A by 1. Let $\mathcal{P}(A)$ be the set of all positive linear functionals on A. Recall that a linear functional f on A is called positive if $f(a^+a) \geq 0$ for all $a \in A$. Let $\sum A^2$ be the set of all finite sum of squares a^+a, where $a \in A$. All notions and facts on von Neumann algebras and on unbounded operators used in this paper can be found in [11] and [16], respectively.

2. Basics on Unbounded Representations

Proofs of all unproven facts stated in this section and more details can be found in the author’s monograph [15]. Proposition 11 below is a new result that might of interest in itself.
Let $\langle \mathcal{D}, \langle \cdot, \cdot \rangle \rangle$ be a unitary space and $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ the Hilbert space completion of $(\mathcal{D}, \langle \cdot, \cdot \rangle)$. We denote by $L(\mathcal{D})$ the algebra of all linear operators $a : \mathcal{D} \to \mathcal{D}$, by I_D the identity map of \mathcal{D} and by $B(\mathcal{H})$ the $*$-algebra of all bounded linear operators on \mathcal{H}.

Definition 1. A representation of A on \mathcal{D} is an algebra homomorphism π of A into the algebra $L(\mathcal{D})$ such that $\pi(1) = I_D$ and $\pi(a)$ is a closable operator on \mathcal{H} for $a \in A$. We then write $\mathcal{D}(\pi) := \mathcal{D}$ and $\mathcal{H}(\pi) := \mathcal{H}$.

A $*$-representation π of A on \mathcal{D} is a representation π satisfying

(1) $\langle \pi(a)\varphi, \psi \rangle = \langle \varphi, \pi(a^+)(\psi) \rangle$ for $a \in A$, $\varphi, \psi \in \mathcal{D}(\pi)$.

Let π be a representation of A. Then

(2) $\mathcal{D}(\pi^*) := \cap_{a \in A} \mathcal{D}(\pi(a)^*)$ and $\pi^*(a) := \pi(a^+)^* [\mathcal{D}(\pi^*)]$ for $a \in A$,

defines a representation π^* of A on $\mathcal{D}(\pi^*)$, called the adjoint representation to π. Clearly, π is a $*$-representation if and only if $\pi \subseteq \pi^*$.

If π is a $*$-representation of A, then

(3) $\mathcal{D}(\pi) := \cap_{a \in A} \mathcal{D}(\pi(a))$ and $\pi(a) := \overline{\pi(a)} [\mathcal{D}(\pi)]$, $a \in A$,

(4) $\mathcal{D}(\pi^{**}) := \cap_{a \in A} \mathcal{D}(\pi^*(a))$ and $\pi^{**}(a) := \pi^*(a^+)^* [\mathcal{D}(\pi^{**})]$, $a \in A$,

are $*$-representations π^* and π^{**} of A, called the closure resp. the biclosure of π. Then

$$\pi \subseteq \pi^* \subseteq \pi^{**} \subseteq \pi^*.$$

If π is a $*$-representation, then $\mathcal{H}(\pi) = \mathcal{H}(\pi^*)$. But for a representation π it may happen that the domain $\mathcal{D}(\pi^*)$ is not dense in $\mathcal{H}(\pi)$, that is, $\mathcal{H}(\pi^*) \neq \mathcal{H}(\pi)$.

Proposition 1. Let π and ρ be representations of a $*$-algebra A such that $\rho \subseteq \pi$. Then:

(i) $P_{\mathcal{H}(\rho)}\pi^*(a) \subseteq \rho^*(a) P_{\mathcal{H}(\rho)}$, where $P_{\mathcal{H}(\rho)}$ is the projection of $\mathcal{H}(\pi)$ onto $\mathcal{H}(\rho)$.

(ii) If $\mathcal{H}(\rho) = \mathcal{H}(\pi)$, then $\pi^* \subseteq \rho^*$.

(iii) $\rho^{**} \subseteq \pi^{**}$.

Proof. (i): Let P denote the projection $P_{\mathcal{H}(\rho)}$ and fix $\psi \in \mathcal{D}(\pi^*)$. Let $\varphi \in \mathcal{D}(\rho)$ and $a \in A$. Using the assumption $\rho \subseteq \pi$ we obtain

$$\langle \rho(a^+)\varphi, P\psi \rangle = \langle P\rho(a^+)\varphi, \psi \rangle = \langle \rho(a^+)\varphi, \psi \rangle = \langle \pi(a^+)\varphi, \psi \rangle = \langle \varphi, \pi(a^+)^*\psi \rangle = \langle \varphi, \pi^*(a)^*\psi \rangle = \langle P\varphi, \pi^*(a)^*\psi \rangle = \langle \varphi, P\pi^*(a)^*\psi \rangle.$$

From this equality it follows that $P\psi \in \mathcal{D}(\rho(a^+)^*)$ and $\rho(a^+)^*P\psi = P\pi^*(a)^*\psi$. Hence $\psi \in \cap_{b \in A} \mathcal{D}(\rho(b)^*) = \mathcal{D}(\rho^*)$ and $\rho^*(a)P\psi = P\pi^*(a)^*\psi$. This proves that $P\pi^*(a) \subseteq \rho^*(a) P.$
(ii) follows at once from (i), since $P = I$ by the assumption $\mathcal{H}(\rho) = \mathcal{H}(\pi)$.

(iii): Let $\xi \in \mathcal{D}(\rho^{**})$ and $\psi \in \mathcal{D}(\pi^*)$. Since $\mathcal{H}(\rho^{**}) \subseteq \mathcal{H}(\rho^*) \subseteq \mathcal{H}(\rho)$ by definition, $P\xi = \xi$. By (i), $P\psi \in \mathcal{D}(\rho^*)$ and $\rho^*(a)P\psi = P\rho^*(a)\psi$. Therefore, we derive

$$\langle \pi^*(a)\psi, \xi \rangle = \langle \pi^*(a)\psi, P\xi \rangle = \langle P\pi^*(a)\psi, \xi \rangle = \langle \rho^*(a)\pi^*(a)\psi, \xi \rangle = \langle \psi, \rho^{**}(a^+)\xi \rangle$$

for $a \in A$. Hence $\xi \in \mathcal{D}(\pi^*(a)^*)$ and $\pi^*(a)^*\xi = \rho^{**}(a^+)\xi$ for $a \in A$. This implies that $\xi \in \mathcal{D}(\pi^{**})$ and $\pi^{**}(a^+)\xi = \pi^*(a)^*\xi = \rho^{**}(a^+)\xi$. Thus we have proved that $\rho^{**} \subseteq \pi^{**}$. □

Definition 2. A \ast-representation π of a \ast-algebra A is called

- closed if $\pi = \overline{\pi}$, or equivalently, if $\mathcal{D}(\pi) = \mathcal{D}(\overline{\pi})$,
- biclosed if $\pi = \pi^{**}$, or equivalently, if $\mathcal{D}(\pi) = \mathcal{D}(\pi^{**})$,
- self-adjoint if $\pi = \pi^*$, or equivalently, if $\mathcal{D}(\pi) = \mathcal{D}(\pi^*)$,
- essentially self-adjoint if π^* is self-adjoint, that is, if $\pi^* = \pi^{**}$, or equivalently, if $\mathcal{D}(\pi^{**}) = \mathcal{D}(\pi^*)$.

Remark. It should be emphasized that the preceding definition of essential self-adjointness is different from the definition given in [15].

In [15, Definition 8.1.10], a \ast-representation was called essentially self-adjoint if $\overline{\pi}$ is self-adjoint, that is, if $\overline{\pi} = \pi^*$.

Let π be a \ast-representation. Then the \ast-representations $\overline{\pi}$ and π^{**} are closed, π^{**} is biclosed and $(\overline{\pi})^* = \pi^*$. It may happen that $\overline{\pi} \neq \pi^{**}$, so that $\overline{\pi}$ is closed, but not biclosed. The locally convex topology on $\mathcal{D}(\pi)$ defined by the family of seminorms $\{\| \cdot \|_a := \| \pi(a) \cdot \| : a \in A\}$ is called the graph topology and denoted by $t_{\pi(A)}$. Then the \ast-representation π is closed if and only if the locally convex space $\mathcal{D}(\pi)[t_{\pi(A)}]$ is complete.

Proposition 2. If π_1 is a self-adjoint \ast-subrepresentation of a \ast-representation π of A, then there exists a \ast-representation π_2 of A on the Hilbert space $\mathcal{H}(\pi) \ominus \mathcal{H}(\pi_1)$ such that $\pi = \pi_1 \oplus \pi_2$.

Proof. [15, Corollary 8.3.3]. □

For a \ast-representation of A we define two commutants

$$\pi(A)^\prime_s = \{ T \in \mathbf{B}(\mathcal{H}(\pi)) : T \varphi \in \mathcal{D}(\pi), T\pi(a)\varphi = \pi(a)T\varphi \text{ for } a \in A, \varphi \in \mathcal{D}(\pi) \},$$

$$\pi(A)^\prime_{ss} = \{ T \in \mathbf{B}(\mathcal{H}(\pi)) : T\overline{\pi(a)} \subseteq \overline{\pi(a)}T, T^*\overline{\pi(a)} \subseteq \overline{\pi(a)}T^* \}.$$

The symmetrized commutant $\pi(A)^\prime_{ss}$ is always a von Neumann algebra. If π is closed, then

$$\pi(A)^\prime_{ss} = \pi(A)^\prime_s \cap (\pi(A)^\prime_s)^*.$$
If \(\pi_1 \) and \(\pi_2 \) are representations of \(A \), the intertwining space \(I(\pi_1, \pi_2) \) consists of all bounded linear operators \(T \) of \(\mathcal{H}(\pi_1) \) into \(\mathcal{H}(\pi_2) \) satisfying
\[
T \varphi \in \mathcal{D}(\pi_2) \quad \text{and} \quad T \pi_1(a) \varphi = \pi_2(a) T \varphi \quad \text{for} \quad a \in A, \varphi \in \mathcal{D}(\pi_1).
\]

The \(*\)-representation \(\pi_f \) in the following proposition is called the GNS representation associated with the positive linear functional \(f \).

Proposition 3. Suppose that \(f \in \mathcal{P}(A) \). Then there exists a \(*\)-representation \(\pi_f \) with algebraically cyclic vector \(\varphi_f \), that is, \(\mathcal{D}(\pi_f) = \pi_f(A) \varphi_f \), such that
\[
f(a) = \langle \pi_f(a) \varphi_f, \varphi_f \rangle, \quad a \in A.
\]
If \(\pi \) is another \(*\)-representation of \(A \) with algebraically cyclic vector \(\varphi \) such that \(f(a) = \langle \pi(a) \varphi, \varphi \rangle \) for all \(a \in A \), then there exists a unitary operator \(U \) of \(\mathcal{H}(\pi) \) onto \(\mathcal{H}(\pi_f) \) such that \(U \mathcal{D}(\pi) = \mathcal{D}(\pi_f) \) and \(\pi_f(a) = U^* \pi(a) U \) for \(a \in A \).

Proof. [15, Theorem 8.6.4]. \(\square \)

We study some of the preceding notions by a simple but instructive example.

Example 1. *(One-dimensional Hamburger moment problem)*

Let \(A \) by the polynomial \(*\)-algebra \(\mathbb{C}[x] \) with involution determined by \(x^+ := x \). We denote by \(M(\mathbb{R}) \) the set of positive Borel measures \(\mu \) such that \(p(x) \in L^1(\mathbb{R}, \mu) \) for all \(p \in \mathbb{C}[x] \). The number \(s_n = \int x^n d\mu(x) \) is the \(n \)-th moment and the sequence \(s(\mu) = (s_n)_{n \in \mathbb{N}_0} \) is called the moment sequence of a measure \(\mu \in M(\mathbb{R}) \). The moment sequence \(s(\mu) \), or likewise the measure \(\mu \), is called *determinate*, if the moment sequence \(s(\mu) \) determines the measure \(\mu \) uniquely, that is, if \(s(\mu) = s(\nu) \) for some \(\nu \in M(\mathbb{R}) \) implies that \(\nu = \mu \).

For \(\mu \in M(\mathbb{R}) \) we define a \(*\)-representation \(\pi_\mu \) of \(A = \mathbb{C}[x] \) by \(\pi_\mu(p) q = p \cdot q \) for \(p \in A \) and \(q \in \mathcal{D}(\pi_\mu) := \mathbb{C}[x] \) on the Hilbert space \(\mathcal{H}(\pi_\mu) := L^2(\mathbb{R}, \mu) \). Put \(f_\mu(p) = \int p(x) d\mu(x) \) for \(p \in \mathbb{C}[x] \). Obviously, the vector \(1 \in \mathcal{D}(\pi_\mu) := \mathbb{C}[x] \) is algebraically cyclic for \(\pi_\mu \). Therefore, since \(f_\mu(p) = \langle \pi_\mu(p), 1 \rangle \) for \(p \in \mathbb{C}[x] \), \(\pi_\mu \) is (unitarily equivalent to) the GNS representation \(\pi_{f_\mu} \) of the positive linear functional \(f_\mu \) on \(A = \mathbb{C}[x] \).

Statement: The \(*\)-representation \(\pi_\mu \) is essentially self-adjoint if and only if the moment sequence \(s(\mu) \) is determinate.

Proof. By a well-known result on the Hamburger moment problem (see e.g. [16, Theorem 16.11]), the moment sequence \(s(\mu) \) is determinate if and only if the operator \(\pi_\mu(x) \) is essentially sel-adjoint. By [15]
Proposition 8.1(v)], the latter holds if and only if the \(\ast\)-representation \((\pi_\mu)\ast\) is self-adjoint, that is, if \(\pi_\mu\) is essentially self-adjoint.

By [15, Proposition 8.1(vii)], the closure \(\overline{\pi_\mu}\) of the \(\ast\)-representation \(\pi_\mu\) is self-adjoint if and only if all powers of the operator \(\pi_\mu(x)\) are essentially self-adjoint. This is a rather strong condition. It is fulfilled (for instance) if 1 is an analytic vector for the symmetric operator \(\pi_\mu(x)\), that is, if there exists a constant \(M > 0\) such that

\[
\|\pi_\mu(x)^n1\| = s_{2n}^{1/2} \leq M^n n! \quad \text{for} \quad n \in \mathbb{N}.
\]

From the theory of moment problems it is well-known that there are examples of measures \(\mu \in \mathcal{M}(\mathbb{R})\) for which \(\pi_\mu(x)\) is essentially self-adjoint, but \(\pi_\mu(x^2)\) is not. In this case \(\pi_\mu\) is essentially self-adjoint (which means that \((\pi_\mu)\ast\) is self-adjoint), but the closure \(\overline{\pi_\mu}\) of \(\pi_\mu\) is not self-adjoint.

3. Main Results on Transition Probabilities

Let \(\text{Rep}A\) denote the family of all \(\ast\)-representations of \(A\). Given \(\pi \in \text{Rep}A\) and \(f \in \mathcal{P}(A)\), let \(S(\pi, f)\) be the set of all representing vectors for the functional \(f\) in \(\mathcal{D}(\pi)\), that is, \(S(\pi, f)\) is the set of vectors \(\varphi \in \mathcal{D}(\pi)\) such that \(f(a) = \langle \pi(a)\varphi, \varphi \rangle\) for \(a \in A\). Note that \(S(\pi, f)\) may be empty, but by Proposition 3 for each \(f \in \mathcal{P}(A)\) there exists a \(\ast\)-representation \(\pi\) of \(A\) for which \(S(\pi, f)\) is not empty. If \(f\) is a state, that is, if \(f(1) = 1\), then all vectors \(\varphi \in S(\pi, f)\) are unit vectors.

Definition 3. For \(f, g \in \mathcal{P}(A)\) the transition probability \(P_A(f, g)\) of \(f\) and \(g\) is defined by

\[
P_A(f, g) = \sup_{\pi \in \text{Rep}A} \sup_{\varphi \in S(\pi, f), \psi \in S(\pi, g)} |\langle \varphi, \psi \rangle|^2.
\]

If \(A\) is a unital \(\ast\)-subalgebra of \(B\) and \(f, g \in \mathcal{P}(B)\), then it is obvious that

\[
P_B(f, g) \leq \mathcal{P}_A(f[A], g[A]),
\]

because the restriction of any \(\ast\)-representation of \(B\) is a \(\ast\)-representation of \(A\).

Let \(\mathcal{G}(f, g)\) denote the set of all linear functionals on \(A\) satisfying

\[
|F(b^+a)|^2 \leq f(a^+a)g(b^+b) \quad \text{for} \quad a, b \in A.
\]

Any vector \(\varphi \in S(\pi, f)\) is called an amplitude of \(f\) in the representation \(\pi\) and any linear functional of \(\mathcal{G}(f, g)\) is called a transition form from \(f\)
to g. If $\varphi \in S(\pi, f)$ and $\psi \in S(\pi, g)$, then the functional $F_{\varphi, \psi}$ defined by

$$F_{\varphi, \psi}(a) := \langle \pi(a)\varphi, \psi \rangle, \quad a \in A,$$

is a transition form from f to g. Indeed, for $a, b \in A$ we have

$$|F_{\varphi, \psi}(b^+a)|^2 = |\langle \pi(b^+a)\varphi, \psi \rangle|^2 = |\langle \pi(a)\varphi, \pi(b)\psi \rangle|^2 \leq \|\pi(a)\varphi\|^2 \|\pi(b)\psi\|^2 = f(a^+a)g(b^+b)$$

which proves that $F_{\varphi, \psi} \in \mathcal{G}(f, g)$. By Theorem 4 below, each functional $F \in \mathcal{G}(f, g)$ arises in this manner. The number $|F_{\varphi, \psi}(1)|^2 = |\langle \varphi, \psi \rangle|^2$ is called the transition probability of the amplitudes φ and ψ and by definition the transition probability $P_A(f, g)$ is the supremum of all such transition amplitudes.

The following description of the transition probability was proved by P.M. Alberti for C^*-algebras [1] and by A. Uhlmann for general $*$-algebras [18].

Theorem 4. Suppose that $f, g \in \mathcal{P}(A)$. Then

$$P_A(f, g) = \sup_{F \in \mathcal{G}(f, g)} |F(1)|^2. \tag{11}$$

There exist a $*$-representation π of A and vectors $\varphi \in S(\pi, f)$ and $\psi \in S(\pi, g)$ such that

$$P_A(f, g) = |\langle \varphi, \psi \rangle|^2. \tag{12}$$

Next we express the transition forms of $\mathcal{G}(f, g)$ and hence the transition probability in terms of intertwiners of the corresponding GNS representations. This provides a powerful tool for computing the transition probability. Recall π_f denotes the GNS representation of A associated with $f \in \mathcal{P}(A)$ and φ_f is the corresponding algebraically cyclic vector.

Proposition 5. Suppose that $f, g \in \mathcal{P}(A)$. Then there a one-to-one correspondence between the sets $\mathcal{G}(f, g)$ and $I(\pi_f, (\pi_g)^*)$ given by

$$F(b^+a) = \langle T\pi_f(a)\varphi_f, \pi_g(b)\varphi_g \rangle \quad \text{for} \quad a, b \in A, \quad \tag{13}$$

where $F \in \mathcal{G}(f, g)$ and $T \in I(\pi_f, (\pi_g)^*)$. In particular, $F(1) = \langle T\varphi_f, \varphi_g \rangle$.

Proof. Let $F \in \mathcal{G}(f, g)$. Then

$$|F(b^+a)|^2 \leq f(a^*a)g(b^*b) = \|\pi_f(a)\varphi_f\|^2 \|\pi_g(b)\varphi_g\|^2 \quad \text{for} \quad a, b \in A.$$
Hence there exists a bounded linear operator T of $\mathcal{H}(\pi_g)$ into $\mathcal{H}(\pi_f)$ such that $\|T\| \leq 1$ and (13) holds. Let $a, b, c \in A$. Using (13) we obtain

$$
\langle T\pi_f(a)\varphi_f, \pi_g(c^+\pi_g(b)\varphi_g \rangle = F((c^+)b^+a) = F(b^+(ca))
$$

Hence $T\pi_f(b)\varphi_f \in D(\pi_g(c^*))$ and $\pi_g(c^+)T\pi_f(a)\varphi_f = T\pi_f(c^+)\pi_f(a)\varphi_f$. Because $c \in A$ was arbitrary, $T\pi_f(a)\varphi_f \in D((\pi_g)^*)$. Then

$$(\pi_g)(c^+)T\pi_f(a)\varphi_f = T\pi_f(c^+)\pi_f(a)\varphi_f \quad \text{for} \quad a \in A,$$

which means that $T \in I(\pi_f, (\pi_g)^*)$.

Conversely, let $T \in I(\pi_f, (\pi_g)^*)$ and $\|T\| \leq 1$. Define $F(a) = \langle T\pi_f(a)\varphi_f, \varphi_g \rangle$ for $a \in A$. It is straightforward to check that (13) holds and hence (5), that is, $F \in \mathcal{G}(f, g)$.

Clearly, by (13), $F = 0$ is equivalent to $T = 0$. Thus we have a one-to-one correspondence between functionals F and operators T. □

Combining Theorem 4 and Proposition 5 and using the formula $F(1) = \langle T\varphi_f, \varphi_g \rangle$ we obtain

Corollary 6. For any $f, g \in \mathcal{P}(A)$ we have

(14) $P_A(f, g) = \sup_{T \in I(\pi_f, (\pi_g)^*), \|T\| \leq 1} |\langle T\varphi_f, \varphi_g \rangle|^2$.

If the GNS representations of f and g are essentially self-adjoint, a number of stronger results can be obtained.

Theorem 7. Suppose that f and g are positive linear functionals on A such that their GNS representations π_f and π_g are essentially self-adjoint. Let π be a biclosed \ast-representation of A such that the sets $S(\pi, f)$ and $S(\pi, g)$ are not empty. Fix vectors $\varphi \in S(\pi, f)$ and $\psi \in S(\pi, g)$. Then

(15) $P(f, g) = \sup_{T \in \pi(A)^\prime \ast, \|T\| \leq 1} |\langle T\varphi, \psi \rangle|^2$.

Proof. Let $T \in \pi(A)^\prime \ast$ and $\|T\| \leq 1$. Similarly, as in the proof of Proposition 5, we define $F(a) = \langle T\pi(a)\varphi, \psi \rangle$, $a \in A$. Since $\pi(A)^\prime \ast \subseteq \pi(A)^\prime$, we obtain

$$
|F(b^+a)|^2 = |\langle T\pi(b^+a)\varphi, \psi \rangle|^2 = |\langle \pi(b^+)T\pi(a)\varphi, \psi \rangle|^2
$$

$$
= |\langle T\pi(a)\varphi, \pi(b)\psi \rangle|^2 \leq \|\pi(a)\varphi\|^2 \|\pi(b)\psi\|^2 = f(a^+a)g(b^+b)
$$

for $a, b \in A$, that is, $F \in \mathcal{G}(f, g)$. Clearly, we have $\langle T\varphi, \psi \rangle = F(1)$. Let ρ_f and ρ_g denote the restrictions $\pi[\pi(A)\varphi$ and $\pi[\pi(A)\psi$, respectively. Since $\rho_f \subseteq \pi$ and $\rho_g \subseteq \pi$ and π is biclosed, it follows
from Proposition 1(iii) that \((\rho_f)^{**} \subseteq \pi^{**} = \pi\) and \((\rho_g)^{**} \subseteq \pi^{**} = \pi\).

Since \(\phi \in S(\pi, f)\) and \(\psi \in S(\pi, g)\), the representations \(\rho_f\) and \(\rho_g\) are unitarily equivalent to the GNS representations \(\pi_f\) and \(\pi_g\), respectively. For notational simplicity we identify \(\rho_f\) with \(\pi_f\) and \(\rho_g\) with \(\pi_g\). Since \(\rho_f\) and \(\rho_g\) are essentially self-adjoint by assumption, \((\rho_f)^{**}\) and \((\rho_g)^{**}\) are self-adjoint. Therefore, by Proposition 2, there are subrepresentations \(\rho_1\) and \(\rho_2\) of \(\pi\) such that \(\pi = (\rho_f)^{**} \oplus \rho_1\) and \(\pi = (\rho_g)^{**} \oplus \rho_2\).

Conversely, suppose that \(F \in \mathcal{G}(f, g)\). By Proposition 3 there is an intertwiner \(T_0 \in I(\rho_f, (\rho_g)^*) \cong I(\pi_f, (\pi_g)^*)\) such that \(\|T_0\| \leq 1\) and (13) holds with \(T\) replaced by \(T_0\). Define \(T : \mathcal{H}(\rho_f) \oplus \mathcal{H}(\rho_1) \rightarrow \mathcal{H}(\rho_g) \oplus \mathcal{H}(\rho_2)\) by \(T(\xi_f, \xi_1) = (T_0\xi_f, 0)\). Clearly, \(T^*\) acts by \(T^*(\eta_g, \eta_2) = (T_0^*\eta_1, 0)\). Since \((\rho_f)^{**} = (\rho_f)^*\) and \((\rho_g)^{**} = (\rho_f)^*\) by assumption and \(T_0 \in I(\rho_f, (\rho_g)^*)\), it follows from Proposition 8.2.3(iii) and (iv), in (15) that

\[
T_0 \in I((\rho_f)^{**}, (\rho_g)^*) = I((\rho_f)^*, (\rho_g)^*),
T_0^* \in I((\rho_g)^{**}, (\rho_f)^*) = I((\rho_g)^*, (\rho_f)^*).
\]

From these relations we easily derive that the operators \(T\) and \(T^*\) are in \(\pi(A)'_s\), so that \(T \in \pi(A)'_s\) by (5). Then we have \(\|T\| = \|T_0\| \leq 1\) and \(F(1) = \langle T_0\phi, \psi \rangle = \langle T\phi, \psi \rangle\). Together with the first paragraph of this proof we have shown that the supremum over the operators \(T \in \pi(A)'_s\), \(\|T\| \leq 1\), is equal to the supremum over the functionals \(F \in \mathcal{G}(f, g)\). Since the latter is equal to \(P_A(f, g)\) by Theorem 4 this proves (15). \(\square\)

Remark. A slight modification of the preceding proof shows the following: If we assume that the closures \(\pi_f\) and \(\pi_g\) of the GNS representations \(\pi_f\) and \(\pi_g\) are self-adjoint, then the assertion of Theorem 7 remains valid if it is only assumed that \(\pi\) is \(\text{closed}\) rather than biclosed. A similar remark applies also for the subsequent applications of Theorem 7 given below.

Theorem 8. Suppose that \(f,g \in \mathcal{P}(A)\) and the GNS representations \(\pi_f\) and \(\pi_g\) are essentially self-adjoint. Suppose that \(\pi\) is a biclosed *-representation of \(A\) and there exist vectors \(\phi \in S(\pi, f)\) and \(\psi \in S(\pi, g)\). Let \(F_\phi\) and \(F_\psi\) denote the vector functionals on the von Neumann algebra \(\mathcal{M} := (\pi(A)'_s)'\) given by \(F_\phi(x) = \langle x\phi, \phi \rangle\) and \(F_\psi(x) = \langle x\psi, \psi \rangle\),
Further, there exist vectors $\varphi' \in S(\pi, f)$ and $\psi' \in S(\pi, g)$ such that

$$\langle x \varphi', \varphi' \rangle = \langle x \varphi, \varphi \rangle \quad \text{and} \quad \langle x \psi', \psi' \rangle = \langle x \psi, \psi \rangle \quad \text{for } x \in \mathcal{M} \quad \text{and}$$

$$P_A(f, g) = P_{\mathcal{M}}(F_\varphi, F_\psi). \quad \text{(16)}$$

Proof. Since $\pi(A)_{ss}'$ is a von Neumann algebra, we have $T \in \pi(A)_{ss}'$ if and only if $T \in (\pi(A)_{ss}')'' = \mathcal{M}'. \quad \text{Therefore, applying formula (15) to the } \ast\text{-representation } \pi \text{ of } A \text{ and to the identity representation of the von Neumann algebra } \mathcal{M}, \text{it follows that the supremum of } \|T \varphi, \psi\|^2 \quad \text{over all operators } T \in \pi(A)_{ss}' = \mathcal{M}', \quad \text{with } \|T\| \leq 1, \quad \text{is equal to } P_A(f, g) \quad \text{and also to } P_{\mathcal{M}}(F_\varphi, F_\psi). \quad \text{This yields the equality (16).}$$

Now we prove the existence of vectors φ' and ψ' having the desired properties. In order to do so we go into the details of the proof of [2, Appendix 7]. Besides we use some facts from von Neumann algebra theory [11]. We define a normal linear functional on the von Neumann algebra \mathcal{M} by $h(\cdot) = \langle \cdot, \varphi \rangle$. Let $h = R_u \cdot h$ be the polar decomposition of h, where u is a partial isometry from \mathcal{M}'. Then we have $|h| = R_u \cdot h$ and hence $\|h\| = \|\cdot h\| = |h|(1) = h(u^*) = \langle u^* \varphi, \psi \rangle$. Therefore, we obtain

$$P_{\mathcal{M}}(F_\varphi, F_\psi) = \sup_{T \in \mathcal{M}', \|T\| \leq 1} |\langle T \varphi, \psi \rangle|^2 = \|h\|^2 = \langle u^* \varphi, \psi \rangle^2, \quad \text{(18)}$$

where the first equality follows formula (15) applied to the von Neumann algebra \mathcal{M}. In the proof of [2, Appendix 7] it was shown that there exist partial isometries $v, w \in \mathcal{M}'$ satisfying

$$\langle u^* \varphi, \psi \rangle = \langle v^* w \varphi, \psi \rangle, \quad \text{(19)}$$

$$w^* w \geq p(\varphi), \quad v^* v \geq p(\psi), \quad \text{(20)}$$

where $p(\varphi)$ and $p(\psi)$ are the projections of \mathcal{M}' onto the closures of $\mathcal{M} \varphi$ and $\mathcal{M} \psi$, respectively. Set $\varphi' := w \varphi$ and $\psi' := v \psi$. Comparing (19) with (18) and (19) we obtain (17).

From (20) it follows that $\langle x \varphi', \varphi' \rangle = \langle x \varphi, \varphi \rangle$ and $\langle x \psi', \psi' \rangle = \langle x \psi, \psi \rangle$ for $x \in \mathcal{M}$ and that $w^* w \varphi = \varphi$ and $v^* v \psi = \psi$. Since $w, w^* \in \mathcal{M}' = \pi(a)'_{ss}$ and π is closed, we have $w, w^* \in \pi(a)'_{ss}$ by (15). Therefore, w and w^* leave the domain $\mathcal{D}(\pi)$ invariant, so that $\varphi' = w \varphi \in \mathcal{D}(\pi)$ and $\psi' = v \psi \in \mathcal{D}(\pi)$. For $a \in A$ we derive

$$\langle \pi(a) \varphi', \varphi' \rangle = \langle \pi(a) x \varphi, w \varphi \rangle = \langle w^* \pi(a) w \varphi, \varphi \rangle$$

$$= \langle \pi(a) w^* w \varphi, \varphi \rangle = \langle \pi(a) \varphi, \varphi \rangle = f(a).$$

That is, $\varphi' \in S(\pi, f)$. Similarly, $\psi' \in S(\pi, g). \quad \square$
Theorem 16 allows us to reduce the computation of the transition probability of the functionals f and g on A to that of the vector functionals F_φ and F_ψ of the von Neumann algebra $\mathcal{M} = (\pi(A)_{ss})'$. In the next section we will apply this result in two important situations.

The following theorem generalizes a classical result of A. Uhlmann [17] to the unbounded case.

Theorem 9. Let $f, g \in \mathcal{P}(A)$ be such that the GNS representations π_f and π_g are essentially self-adjoint. Suppose that there exist a positive linear functional h on A and elements $b, c \in A$ such that $f(a) = h(b^+ ab)$ and $g(a) = h(c^+ ac)$ for $a \in A$. Assume that $c^+ b \in \sum A^2$. Then

$$P_A(f, g) = h(c^+ b)^2.$$

Proof. Recall that π_h is the GNS representation of h with algebraically cyclic vector φ_h. By the assumptions $f(\cdot) = h(b^+ \cdot b)$ and $g(\cdot) = h(c^+ \cdot c)$ we have $\pi_h(b)\varphi_h \in S(\pi, f)$ and $\pi_h(c)\varphi_h \in S(\pi, g)$. Therefore,

$$h(c^+ b)^2 = \langle \pi_h(b)\varphi_h, \pi_h(c)\varphi_h \rangle^2 \leq P_A(f, g).$$

To prove the converse inequality we want to apply Theorem 7 to the biclosed representation $\pi := (\pi_h)^{**}$. Suppose that $T \in \pi(A)_{ss}'$ and $\|T\| \leq 1$. Set $R := \pi(c^+ b)$. Since $c^+ b \in \sum A^2$ by assumption, R is a positive, hence symmetric, operator. Since $\pi := (\pi_h)^{**}$ is closed, we have $T \in \pi(A)'_s$. Using these facts and the Cauchy-Schwarz inequality we derive

$$\langle T\pi_h(b)\varphi_h, \pi_h(c)\varphi_h \rangle^2 = \langle T\pi(b)\varphi_h, \pi(c)\varphi_h \rangle^2 = \langle \pi(b)T\varphi_h, \pi(c)\varphi_h \rangle^2 = \langle RT\varphi_h, \varphi_h \rangle^2 \leq \langle RT\varphi_h, T\varphi_h \rangle \langle R\varphi_h, \varphi_h \rangle = \langle RT\varphi_h, T\varphi_h \rangle h(c^+ b).$$

Since $T \in \pi(A)'_{ss}$, we have $TR \subseteq RT$. There exists a positive self-adjoint extension \tilde{R} of R on $\mathcal{H}(\pi)$ such that $T\tilde{R} \subseteq \tilde{R}T$ [16 Exercise 14.14]. The latter implies that $T\tilde{R}^{1/2} \subseteq \tilde{R}^{1/2}T$ and hence

$$\langle RT\varphi_h, T\varphi_h \rangle = \langle \tilde{R}T\varphi_h, \tilde{T}\varphi_h \rangle = \langle \tilde{R}^{1/2}T\varphi_h, \tilde{R}^{1/2}T\varphi_h \rangle = \langle T\tilde{R}^{1/2}\varphi_h, T\tilde{R}^{1/2}\varphi_h \rangle \leq \langle \tilde{R}^{1/2}\varphi_h, \tilde{R}^{1/2}\varphi_h \rangle = \langle R\varphi_h, \varphi_h \rangle = \langle \pi_h(c^+ b)\varphi_h, \varphi_h \rangle = h(c^+ b)$$

Inserting (22) into (21) we get

$$\langle T\pi_h(b)\varphi_h, \pi_h(c)\varphi_h \rangle^2 \leq h(c^+ b).$$

Hence $P_A(f, g) \leq h(c^+ b)$ by Theorem 7. \qed
Remarks. 1. The assumption $c^*b \in \sum A^2$ was only needed to ensure that the operator $R = \pi(c^*b) \equiv (\pi_h)^{**}(c^*b)$ is positive. Clearly, this is satisfied if $F(c^*b) \geq 0$ for all positive linear functionals F on A.

2. If the closures of the GNS representations π_f and π_g are self-adjoint, we can set $\pi := \pi_h$ in the preceding proof and it suffices to assume that $h(a^*c^*ba) \geq 0$ for all $a \in A$ instead of $c^*b \in \sum A^2$.

4. Two Applications

To formulate our first application we begin with some preliminaries.

Let ρ be a closed \ast-representation of A. We denote by $B_1(\rho(A))_+$ the set of positive trace class operators on $H(\rho)$ such that $tH(\rho) \subseteq D(\rho)$ and the closure of $\rho(a)t\rho(b)$ is trace class for all $a, b \in A$.

Now let $t \in B_1(\rho(A))_+$. We define a positive linear functional f_t by

$$f_t(a) := \text{Tr} \rho(a) t, \quad a \in A,$$

where Tr always denotes the trace on the Hilbert space $H(\rho)$. Note that $f_t(a) \geq 0$ if $\rho(a) \geq 0$ (that is, $\langle \rho(a) \varphi, \varphi \rangle \geq 0$ for all $\varphi \in D(\rho)$).

In unbounded representation theory a large class of positive linear functionals is of the form f_t. We illustrate this by restating the following theorem proved in [14]. Recall that a Frechet–Montel space is a complete metrizable locally convex space such that each bounded sequence has a convergent subsequence.

Theorem 10. Let f be a linear functional on A and let ρ be a closed \ast-representation of A. Suppose that the locally convex space $D(\rho)[t_{\rho(A)}]$ is a Frechet–Montel space and $f(a) \geq 0$ whenever $\rho(a) \geq 0$ for $a \in A$. Then there exists an operator $t \in B(\rho(A))_+$ such that $f = f_t$, that is, $f(a) = \text{Tr} \rho(a) t$ for $a \in A$.

Further, let \mathcal{M} be a type I factor acting on the Hilbert space $H(\rho)$ and let $\text{tr}_\mathcal{M}$ denote its canonical trace. Since in particular t is of trace class, $F_t(x) = \text{Tr} xt, \ x \in \mathcal{M}$, defines a positive normal linear functional F_t on \mathcal{M}. Hence there exists a unique positive element $\hat{t} \in \mathcal{M}$ such that $\text{tr}_\mathcal{M}(\hat{t}) < \infty$ and

$$F_t(x) \equiv \text{Tr} xt = \text{tr}_\mathcal{M} xt \quad \text{for} \quad x \in \mathcal{M}. \quad (23)$$

The element \hat{t} can be obtained as follows. Since \mathcal{M} is a type I factor, there exist Hilbert spaces H_0 and H_1 such that, up to unitary equivalence, $H(\pi) = H_0 \otimes H_1$ and $\mathcal{M} = B(H_0) \otimes \mathbb{C} \cdot I_{H_1}$. The canonical trace of \mathcal{M} is then given by $\text{tr}_\mathcal{M}(y \otimes \lambda \cdot I_{H_1}) := \text{Tr} \lambda y$, where Tr denotes the trace on the Hilbert space H_1. Now $\tilde{F}_t(y) := F_t(y \otimes I_{H_1}), \ y \in B(H_0)$, defines a positive normal linear functional \tilde{F}_t on $B(H_0)$. Hence there exists a unique positive trace class operator \tilde{t} on the Hilbert space H_0...
Theorem 11. Let ρ be a closed $*$-representation of A such that the von Neumann algebra $\mathcal{M} := (\rho(A)_{ss})'$ is a type I factor. For $s, t \in \mathcal{B}(\rho(A))_+$, let f_s, f_t denote the positive linear functionals on A defined by

$$f_s(a) = \text{Tr} \rho(a)s, \quad f_t(a) = \text{Tr} \rho(a)t \quad \text{for} \quad a \in A.$$

Suppose that the GNS representations π_s and π_t are essentially self-adjoint. Then

$$P_A(f_s, f_t) = (\text{Tr}_M |\tilde{t}|^{1/2} \tilde{s}^{1/2}|)^2 = (\text{Tr}_M (\tilde{s}^{1/2} \tilde{t} \tilde{s}^{1/2})^{1/2})^2.$$

Proof. Let ρ_∞ be the orthogonal sum $\bigoplus_{n=0}^\infty \rho$ on $\mathcal{H}_\infty = \bigoplus_{n=0}^\infty \mathcal{H}(\rho)$. Since ρ is biconed, so is the $*$-representation ρ_∞ of A. We want to apply Theorem 8. First we will describe the GNS representations π_s and π_t as $*$-subrepresentations of ρ_∞.

The result is well-known if $\mathcal{H}(\rho)$ is finite dimensional [17], so we can assume that $\mathcal{H}(\rho)$ is infinite dimensional. Since $s \in \mathcal{B}_1(\rho(A))_+$, there are a sequence $(\lambda_n)_{n \in \mathbb{N}}$ of nonnegative numbers and an orthonormal sequence $(\varphi_n)_{n \in \mathbb{N}}$ of $\mathcal{H}(\rho)$ such that $\varphi_n \in \mathcal{D}(\rho)$ for $n \in \mathbb{N}$,

$$s\varphi = \sum_n \langle \varphi, \varphi_n \rangle \lambda_n \varphi_n \quad \text{for} \quad \varphi \in \mathcal{H}(\rho),$$

and $(\rho(a)\lambda_n^{1/2} \varphi_n)_{n \in \mathbb{N}} \in \mathcal{H}_\infty$ for all $a \in A$. Further, for $a \in A$ we have

$$f_s(a) = \sum_{n=1}^\infty \langle \rho(a)\varphi_n, \lambda_n \varphi_n \rangle.$$

All these facts are contained in Propositions 5.1.9 and 5.1.12 in [15]. Hence

$$\rho_\Phi(a)(\rho(b)\lambda_n^{1/2} \varphi_n) := (\rho(ab)\lambda_n^{1/2} \varphi_n), \quad a, b \in A,$$

defines a $*$-representation ρ_Φ of A on the domain

$$\mathcal{D}(\rho_\Phi) := \{(\rho(a)\lambda_n^{1/2} \varphi_n)_{n \in \mathbb{N}}; a \in A\}$$

with algebraically cyclic vector $\Phi := (\lambda_n^{1/2} \varphi_n)_{n \in \mathbb{N}}$. From (25) we derive

$$f_s(a) = \sum_{n=1}^\infty \langle \rho(a)\lambda_n^{1/2} \varphi_n, \lambda_n^{1/2} \varphi_n \rangle = \langle \rho_\Phi(a)\Phi, \Phi \rangle =: f_\Phi(a), \quad a \in A,$$

that is, f_s is equal to the vector functional f_Φ in the representation ρ_Φ. Therefore, by the uniqueness of the GNS representation, π_s is unitarily equivalent to ρ_Φ. Likewise, the GNS representation π_t is
unitarily equivalent to the corresponding \(*\)-representation \(\rho_\Psi\), where
\[t\varphi = \sum_n \langle \varphi, \psi_n \rangle \mu_n \psi_n \]
is a corresponding representation of the operator \(t \) and \(\Psi := (\mu_n^{1/2} \psi_n)_{n \in \mathbb{N}} \). Clearly, since \(\rho_\Psi \subseteq \rho_\infty \) and \(\rho_\Psi \subseteq \rho_\infty \), we have \(\Phi \in S(\rho_\infty, f_s) \) and \(\Psi \in S(\rho_\infty, f_1) \).

Let \(\mathcal{M}_\infty \) denote the von Neumann algebra \((\rho_\infty(A)'_{ss})'\). Then, by Theorem \[\ref{main1} \] we have

\[(26) \quad P_\Lambda(f_s, f_1) \equiv P_\Lambda(f_\Phi, f_\Psi) = P_{\mathcal{M}_\infty}(F_\Phi, F_\Psi). \]

Let \(x \in \mathcal{B}(\mathcal{H}_\infty) \). We write \(x \) as a matrix \((x_{jk})_{j,k \in \mathbb{N}}\) with entries \(x_{jk} \in \mathcal{B}(\mathcal{H}(\rho)) \). Clearly, \(x \) belongs to in \(\rho_\infty(A)'_{ss} \) if and only if each entry \(x_{jk} \) is in \(\rho(A)'_{ss} \). Further, it is easily verified that \(x \) is in \((\rho_\infty(A)'_{ss})'\) if and only if there is a (uniquely determined) operator \(x_0 \in (\rho(A)'_{ss})' \) such that \(x_{jk} = \delta_{jk} x_0 \) for all \(j, k \in \mathbb{N} \). The map \(\pi(x_0) := x \) defines a \(*\)-isomorphism of von Neumann algebras \(\mathcal{M} := (\rho(A)'_{ss})' \) and \(\mathcal{M}_\infty = (\rho_\infty(A)'_{ss})' \), that is, \(\pi \) is a \(*\)-representation of \(\mathcal{M} \).

As above, we let \(F_s \) and \(F_t \) denote the normal functionals on \(\mathcal{M} \) defined by \(F_s(x) := \text{Tr} x s \) and \(F_t(x) := \text{Tr} x t \), \(x \in \mathcal{M} \). Repeating the preceding reasoning with \(\rho \) and \(A \) replaced by \(\pi \) and \(\mathcal{M} \), respectively, we obtain \(F_s(\cdot) = \langle \pi_0(\cdot) \Phi, \Phi \rangle = F_\Phi(\cdot) \) and \(F_t = F_\Psi \). Hence \(P_\mathcal{M}(F_s, F_t) = P_{\mathcal{M}_\infty}(F_\Phi, F_\Psi) \), so that

\[(27) \quad P_\Lambda(f_s, f_1) = P_\mathcal{M}(F_s, F_t) \]

by \((26)\). It is proved in \[\cite{3} \] Corollary 1 (see also \[\cite{17} \]) that

\[P_\mathcal{M}(F_s, F_t) = (\text{tr}_\mathcal{M} |\hat{s}^{1/2} \hat{s}^{1/2}|)^2. \]

Combined with \((27)\) this yields \((30)\) and completes the proof. \(\square \)

Let us remain the assumptions and the notations of Theorem \[\ref{main1} \].

In general, \(P_\Lambda(f_s, f_1) \) is different from \((\text{Tr} (s^{1/2} t s^{1/2})^2)^2\) a simple examples show. However, if in addition \(\rho \) is \textit{irreducible} (that is, if \(\rho(A)'_{ss} = \mathbb{C} \cdot I \)), then \(s = \hat{s} \) and \(t = \hat{t} \) as noted above and therefore by \((24)\) we have

\[(28) \quad P_\Lambda(f_s, f_1) = (\text{Tr} (s^{1/2} t s^{1/2})^2)^2. \]

We now apply the preceding theorem to an interesting example.

Example 2. \textit{(Schrödinger representation of the Weyl algebra)}

Let \(A \) be the Weyl algebra, that is, \(A \) is the unital \(*\)-algebra generated by two hermitian generators \(p \) and \(q \) satisfying

\[pq - qp = -i1, \]
and let \(\rho \) be the Schrödinger representation of \(A \), that is,

\[
(\rho(q)\varphi)(x) = x\varphi(x), \quad (\rho(p)\varphi)(x) = -i\frac{d}{dx}\varphi(x), \quad \varphi \in D(\rho) := \mathcal{S}(\mathbb{R}),
\]
on \(L^2(\mathbb{R}) \). Since \(\rho \) is irreducible, \(\rho_\infty(A)_{ss} = \mathbb{C} \cdot I \). Hence \(\mathcal{M} = \mathcal{B}(\mathcal{H}(\rho)) \) and \(\text{tr}_\mathcal{M} = \text{Tr} \). Therefore, if \(s, t \in \mathcal{B}(\pi(A))_+ \) and the GNS representations \(\pi_{f_s} \) and \(\pi_{f_t} \) are essentially self-adjoint, it follows from Theorem 11 and formula (28) that

\[
P_A(f_s, f_t) = (\text{Tr}|ts^{1/2}s^{1/2}|)^2 = (\text{Tr}(s^{1/2}ts^{1/2})^{1/2})^2.
\]

Let us specialize this to the rank one case, that is, let \(s = \varphi \otimes \varphi \) and \(t = \psi \otimes \psi \) with \(\varphi, \psi \in D(\rho) \), so that \(f_s(a) = \langle \rho(a)\varphi, \varphi \rangle \) and \(f_t(a) = \langle \rho(a)\psi, \psi \rangle \) for \(a \in A \). Then formula (30) yields

\[
P_A(f_s, f_t) = |\langle \varphi, \psi \rangle|^2.
\]

Recall that (31) holds under the assumption that the GNS representations \(\pi_{f_s} \) and \(\pi_{f_t} \) are essentially self-adjoint. We shall see in section 5 below that (31) is no longer true if the latter assumption is omitted.

Now we turn to the second main application.

Theorem 12. Let \(X \) be a locally compact topological Hausdorff space and let \(A \) be a \(\ast \)-subalgebra of \(C(X) \) which contains the constant function 1 and separates the points of \(X \). Let \(\mu \) be a positive regular Borel measure on \(X \) such that \(A \subseteq L^1(X, \mu) \) and let \(\eta, \xi \in L^\infty(X, \mu) \) be non-negative functions. Define positive linear functionals \(f_\eta \) and \(f_\xi \) on \(A \) by

\[
f_\eta(a) = \int_X a(x)\eta(x) \, d\mu(x), \quad f_\xi(a) = \int_X a(x)\xi(x) \, d\mu(x) \quad \text{for} \quad a \in A.
\]

Suppose that the GNS representations \(\pi_{f_\eta} \) and \(\pi_{f_\xi} \) are essentially self-adjoint. Then

\[
P_A(f_\eta, f_\xi) = \left(\int_X \eta(x)^{1/2} \xi(x)^{1/2} \, d\mu(x) \right)^2.
\]

Proof. We define a closed \(\ast \)-representation \(\pi \) of the \(\ast \)-algebra \(A \) on \(L^2(X, \mu) \) by \(\pi(a)\varphi = a \cdot \varphi \) for \(a \in A \) and \(\varphi \) in the domain

\[
\mathcal{D}(\pi) := \{ \varphi \in L^2(X, \mu) : a \cdot \varphi \in L^2(X, \mu) \quad \text{for} \quad a \in A \}.
\]

First we prove that \(\pi(A)_{ss}' = L^\infty(X, \mu) \), where the functions of \(L^\infty(X, \mu) \) act as multiplication operators on \(L^2(X, \mu) \). Let \(\mathfrak{A} \) denote the \(\ast \)-subalgebra of \(L^\infty(X, \mu) \) generated by the functions \((a \pm i)^{-1} \),
where \(a = a^+ \in A \). Obviously, \(L^\infty(X, \mu) \subseteq \pi(A)'_{ss} \). Conversely, let \(x \in \pi(A)_{ss}' \). It is straightforward to show that for any \(a = a^+ \in A \) the operator \(\overline{\pi(a)} \) is self-adjoint and hence equal to the (self-adjoint) multiplication operator by the function \(a \). By definition \(x \) commutes with \(\overline{\pi(a)} \), hence with \((\pi(a) \pm iI)^{-1} = (a \pm i)^{-1} \), and therefore with the whole algebra \(\mathfrak{A} \). The *-algebra \(A \) separates the points of \(X \), so does the *-algebra \(\mathfrak{A} \). Therefore, from the Stone–Weierstrass theorem [9 Corollary 8.2], applied to the one point compactification of \(X \), it follows that \(\mathfrak{A} \) is norm dense in \(C_0(X) \). Hence \(x \) commutes with \(C_0(X) \) and so with its closure \(L^\infty(X, \mu) \) in the weak operator topology. Thus, \(x \in L^\infty(X, \mu)' \). Since \(L^\infty(X, \mu)' = L^\infty(X, \mu) \), we have shown that \(\pi(A)'_{ss} = L^\infty(X, \mu) \). Therefore, \(\mathcal{M} := (\pi(A)'_{ss})' = L^\infty(X, \mu) \).

Let \(F_\eta \) and \(F_\xi \) denote the positive linear functionals on \(\mathcal{M} \) defined by \(|32|\) with \(A \) replaced by \(\mathcal{M} \). For \(\mathcal{M} = L^\infty(X, \mu) \) it is well-known (see e.g. formula (14) in \([1]\)) that \(P_{\mathcal{M}}(F_\eta, F_\xi) = (\int_X \eta(x)1/2 \xi(x)1/2 \, d\mu(x))^2 \). Since \(P_A(f_\eta, f_\xi) = P_\mathcal{M}(F_\eta, F_\xi) \) by Theorem 8, we obtain \(|33|\). \(\square \)

In the following two examples we reconsider the one dimensional Hamburger moment problem (see Example 11) and we specialize the preceding theorem to the case where \(X = \mathbb{R} \) and \(A = \mathbb{C}[x] \).

Example 3. **Determinate Hamburger moment problems**

Let \(\mu_\eta \) and \(\mu_\xi \) be the positive Borel measures on \(\mathbb{R} \) defined by \(d\mu_\eta = \eta \, d\mu \) and \(d\mu_\xi = \xi \, d\mu \). Since \(\mathbb{C}[x] \in L^1(\mathbb{R}, \mu) \) and \(\eta, \xi \in L^\infty(\mathbb{R}, \mu) \), we have \(\mu_\eta, \mu_\xi \in M(\mathbb{R}) \). If both measures \(\mu_\eta \) and \(\mu_\xi \) are determinate, then the GNS representations \(\pi_{f_\mu_\eta} \) and \(\pi_{f_\mu_\xi} \) are essentially self-adjoint (as shown in Example 11) and hence formula \(|33|\) holds by Theorem 12.

Example 4. **Indeterminate Hamburger moment problems**

Suppose \(\nu \in M(\mathbb{R}) \) is an indeterminate measure such that \(\nu(\mathbb{R}) = 1 \).

Let \(V_\nu \) denote the set of all positive Borel measures \(\mu \in M(\mathbb{R}) \) which have the same moments as \(\nu \), that is, \(\int x^n \, d\nu(x) = \int x^n \, d\mu(x) \) for all \(n \in \mathbb{N}_0 \). Since \(\nu \) is indeterminate and \(V_\nu \) is convex and weakly compact, there exists a measure \(\mu \in \mathbb{V}_\nu \) which is not an extreme point of \(V_\nu \), that is, there are measures \(\mu_1, \mu_2 \in \mathbb{V}_\nu \), \(\mu_j \neq \mu \) for \(j = 1, 2 \), such that \(\mu = \frac{1}{2}(\mu_1 + \mu_2) \). Since \(\mu_j(M) \leq 2\mu(M) \) for all measurable sets \(M \) and \(\mu_1 + \mu_2 = 2\mu \), there exists functions \(\eta, \xi \in L^\infty(\mathbb{R}, \nu) \) satisfying

\[
(34) \quad \eta(x) + \xi(x) = 2, \quad \|\xi\|_\infty \leq 2, \quad \|\eta\|_\infty \leq 2, \quad d\mu_1 = \eta \, d\mu, \quad d\mu_2 = \xi \, d\mu.
\]

Define \(f(p) = \int p(x) \, d\mu(x) \) for \(p \in \mathbb{C}[x] \). Since \(\mu_1, \mu_2, \mu \in \mathbb{V}_\nu \), the functionals \(f_\eta \) and \(f_\xi \) defined by \(|32|\) are equal to \(f \). Therefore, since \(f(1) = \mu(\mathbb{R}) = \nu(\mathbb{R}) = 1 \), we have \(P_A(f_\eta, f_\xi) = P_A(f, f) = 1 \).
Put $J := \left(\int_X \eta(x)^{1/2} \xi(x)^{1/2} \, d\mu(x) \right)^2$. From (34) we obtain $\eta(x)\xi(x) = \eta(x)(2 - \eta(x)) \leq 1$ and hence $J \leq 1$, since $\mu(\mathbb{R}) = 1$. If J would be equal to 1, then $\eta(x)(2 - \eta(x)) = 1$ a.e. on \mathbb{R} which implies that $\eta(x) = 1$ a.e. on \mathbb{R} by (34). But then $\mu_1 = \mu_2 = \mu$ which contradicts the choice of measures μ_1 and μ_2. Thus we have proved that $J \neq 1 = P_A(f_\eta, f_\xi)$, that is, formula (33) does not hold in this case.

The classical moment problem leads to a number of open problems concerning transition probabilities. We will state three of them.

Let $M(\mathbb{R}^d)$, $d \in \mathbb{N}$, denote the set of positive Borel measures μ on \mathbb{R}^d such that all polynomials $p(x_1, \ldots, x_d) \in \mathbb{C}[x_1, \ldots, x_d]$ are μ-integrable. For $\mu \in M(\mathbb{R}^d)$ we define a positive linear functional g_μ on the \ast-algebra $A := \mathbb{C}[x_1, \ldots, x_d]$ by

$$g_\mu(p) = \int p \, d\mu, \quad p \in \mathbb{C}[x_1, \ldots, x_d].$$

Then the main problem is the following:

Problem 1: Given $\mu, \nu \in M(\mathbb{R}^d)$, what is $P_A(g_\mu, g_\nu)$?

This seems to be a difficult problem and it is hard to expect a sufficiently complete answer. For $d = 1$ Example 3 contains some answer under the assumption that both measures μ_η and μ_ξ are determinate. This suggests the following questions:

Problem 2: What about the case when the measures μ_η and/or μ_ξ in Example 3 are not determinate?

Problem 3: Is formula (33) still valid in the multi-dimensional case $d > 1$ if μ_η and μ_ξ are determinate?

It can be shown that the answer to problem 3 is affirmative if all multiplication operators $\pi_\mu(x_j)$, $j = 1, \ldots, d$, are essentially self-adjoint. The latter assumption is sufficient, but not necessary for μ being determinate [13]. In the multi-dimensional case determinacy turns out to be much more difficult than in the one-dimensional case, see e.g. [13].

5. **Vector Functionals of the Schrödinger Representation**

The crucial assumption for the results in preceding sections was the essential self-adjointness of GNS representations π_f and π_g. In this section we consider the simplest situation where π_f and π_g are not essentially self-adjoint.

In this section A denotes the Weyl algebra (see Example 2) and π is the Schrödinger representation of A given by (29). For $\eta \in \mathcal{D}(\pi) = \mathcal{S}(\mathbb{R})$ let f_η denote the positive linear functional f_η on A given by

$$f_\eta(x) = \langle \pi(x) \eta, \eta \rangle, \quad x \in A.$$
Consider the following condition on the function η:

\[(*) \text{ There are finitely many mutually disjoint open intervals } J_l(\eta) = (\alpha_l, \beta_l), \; l = 1, \ldots, r, \text{ such that } \eta(t) \neq 0 \text{ for } t \in J(\eta) \triangleq \cup_l J_l(\eta) \text{ and } \eta^{(n)}(t) = 0 \text{ for } t \in \mathbb{R}/J(\eta) \text{ and all } n \in \mathbb{N}_0. \]

The main result of this section is the following theorem.

Theorem 13. Suppose that φ and ψ are functions of $C_0^\infty(\mathbb{R})$ satisfying condition $(*)$. Then

\[P_A(f_\varphi, f_\psi) = \left(\sum_{k,l} \left| \int_{J_k(\varphi) \cap J_l(\psi)} \varphi(x)\overline{\psi(x)} \, dx \right| \right)^2. \tag{35} \]

(If $J_k(\varphi) \cap J_l(\psi)$ is empty, the corresponding integral is set zero.)

Before we turn to the proof of the theorem let us discuss formula (35) in two simple cases.

- If both sets $J(\varphi)$ and $J(\psi)$ consist of a single interval, then
 \[P_A(f_\varphi, f_\psi) = \left| \int_{\mathbb{R}} \varphi(x)\overline{\psi(x)} \, dx \right|^2 = |\langle \varphi, \psi \rangle|^2, \]
 that is, in this case formula (31) holds.

- Let $\varphi, \psi \in C_0^\infty(\mathbb{R})$ be such that $J(\varphi) = J(\psi)$, $J_k(\varphi) = J_k(\psi)$ and $\varphi(x) = \epsilon_k \psi(x)$ on $J_k(\varphi)$ for $k = 1, \ldots, r$, where $\epsilon_k \in \{1, -1\}$. Then formula (35) yields $P_A(f_\varphi, f_\psi) = \|\varphi\|^4$. It is easy to choose $\varphi \neq 0$ and the numbers ϵ_k such that $\langle \varphi, \psi \rangle = 0$, so formula (31) does not hold in this case.

The proof of Theorem 13 requires a number of technical preparations. The first aim is to describe the closure $\overline{\pi f_\eta}$ of the GNS representation πf_η for a function $\eta \in C_0^\infty(\mathbb{R})$ satisfying condition $(*)$.

Let ρ_η denote the restriction of π to the dense domain

\[\mathcal{D}(\rho_\eta) = \{ \xi \in \bigoplus_{l=1}^r C^\infty((\alpha_l, \beta_l)) : \xi^{(k)}(\alpha_l) = \xi^{(k)}(\beta_l) = 0, \; k \in \mathbb{N}_0, \; l = 1, \ldots, r \} \]

in the Hilbert space $L^2(\mathcal{J}(\eta))$. The following lemma says that ρ_η is unitarily equivalent to $\overline{\pi f_\eta}$.

Lemma 14. There is a unitary operator U of $\mathcal{H}(\pi f_\eta)$ onto $L^2(\mathcal{J}(\eta))$ given by $U(\pi f_\eta(a)\eta) = \rho_\eta(a)\eta$, $a \in A$, such that $\rho_\eta = U\overline{\pi f_\eta}U^*$.

Proof. From the properties of GNS representations it follows easily that the unitary operator U defined by $U(\pi f_\eta(a)\eta) = \rho_\eta(a)\eta$, $a \in A$, provides unitary equivalences $\tau_\eta = U\pi f_\eta U^*$ and $\overline{\pi_\eta} = U\overline{\pi f_\eta}U^*$, where τ_η denotes the restriction of π to $\mathcal{D}(\rho_\eta) = \pi(A)\eta$. Clearly, $\tau_\eta \subseteq \rho_\eta$ and hence $\overline{\pi_\eta} \subseteq \overline{\pi f_\eta}$. \hfill \ensuremath{\blacksquare}
TRANSITION PROBABILITIES OF POSITIVE LINEAR FUNCTIONALS ON ∗-ALGEBRAS

ρ_η, since ρ_η is obviously closed. To prove the statement it therefore suffices to show that ρ_η is the closure of τ_η, that is, π(Λ)η is dense in D(ρ_η) in the graph topology of ρ_η(A). For this the auxiliary Lemmas 15 and 16 proved below are essentially used.

Each element a ∈ A is of a finite sum of terms f(q)p^n, where n ∈ N and f ∈ C[q]. Since η ∈ C_0^∞(R), the set J(η) and hence the operators π_0(f(q)) are bounded. Therefore, the graph topology τ_{min}(A) is generated by the seminorms ∥ρ_η(p^n)∥, n ∈ N_0, on D(ρ_η). Let ψ ∈ D(ρ_η).

First assume that ψ vanishes in some neighbourhoods of the end points α_l, β_l. Then, by Lemma 16, for any m ∈ N there is sequence (f_n)_{n∈N} of polynomials such that

\[
\lim_{n} \rho_η((ip)^k)(\rho_η(f(q))η - ψ) = \lim_{n} ((f_n η)^{(k)} - ψ^{(k)}) = 0
\]

in L^2(J(η)) for k = 0, \ldots, m. This shows that ψ is in the closure of ρ_η(A)η with respect the graph topology of ρ_η(A).

The case of a general function ψ is reduced to the preceding case as follows. Suppose that ε > 0 and 2ε < min_l |β_l - α_l|. We define

ψ_ε(x) = ψ(x - ε + 2ε(x - α_l - ε)(β_l - α_l - 2ε)^{-1}) for x ∈ (α_l, β_l)

and l = 1, \ldots, r and ψ_ε(x) = 0 otherwise. Then ψ_ε vanishes in some neighbourhoods of the end points α_l, β_l, so ψ_ε is in the closure of ρ_η(A)η as shown in the preceding paragraph. Using the dominated Lebesgue convergence theorem it follows that

\[
\lim_{ε \to 0} \rho_η((ip)^k)(ψ_ε - ψ) = \lim_{ε \to 0} (ψ_ε^{(k)} - ψ^{(k)}) = 0
\]

in L^2(J(η)) for k ∈ N_0. Therefore, since ψ_ε is in the closure of ρ_η(A)η, so is ψ.

Lemma 15. Suppose that g ∈ C^{(k)}([α, β]), where α, β ∈ R and k ∈ N. Then there exists a sequence (f_n)_{n∈N} of polynomials such that f_n(j)(x) → g(j)(x) uniformly on [α, β] for j = 0, \ldots, k as n → ∞.

Proof. By the Weierstrass theorem there is a sequence (h_n)_{n∈N} of polynomials such that h_n(x) → g(k)(x) uniformly on [α, β]. Fix γ ∈ [α, β] and set h_{n,k} := h_n. Then

\[
h_{n,k-1}(x) := g(k)(γ) + \int_γ^x h_{n,k}(s) ds → g(k-1)(x) = g(k)(γ) + \int_γ^x g(k)(s) ds.
\]

Clearly, (h_{n,k-1})_{n∈N} is sequence of polynomials and we have h_{n,k-1}(x) = h_{n,k}(x) on [α, β]. Proceeding by induction we obtain sequences (h_{n,k-j})_{n∈N}, j = 0, \ldots, k, of polynomials such that h_{n,k-j}(x) → g(k-j)(x) and h_{n,k-j}(x) = h_{n,k+1-j}(x) on [α, β]. Setting f_n := h_{n,0} the sequence (f_n)_{n∈N} has the desired properties. □
Lemma 16. Suppose that $\eta \in C_0^\infty(\mathbb{R})$ satisfies condition (\ast). Let $\psi \in \bigoplus_{r=1}^\infty C_0^{(m)}((\alpha_1, \beta_1))$, where $m \in \mathbb{N}$. Then there exists a sequence $(f_n)_{n \in \mathbb{N}}$ of polynomials such that $\lim_{n \to \infty} (f_n \psi)^{(k)} = \psi^{(k)}$ in $L^2(\mathcal{J} \psi)$ for $k = 0, \ldots, m$.

Proof. By the assumption ψ vanishes in some neighbourhoods of the end points α_l and β_l. Set $\psi(x) = 0$ on $\mathbb{R}/\mathcal{J} \psi$. Then, $\psi \eta^{-1}$ becomes a function of $C^{(m)}([\alpha, \beta])$, where $\alpha := \min_l \alpha_l$ and $\beta := \max_l \beta_l$. Therefore, by Lemma 14 there exists a sequence $(f_n)_{n \in \mathbb{N}}$ of polynomials such that $f_n^{(j)}(x) \to (\psi \eta^{-1})^{(j)}(x)$ for $j = 0, \ldots, m$ uniformly on $[\alpha, \beta]$. Then

$$(f_n \eta)^{(k)} = \sum_{j=0}^k \binom{k}{j} f_n^{(j)} \eta^{(k-j)} \to \sum_{j=0}^k \binom{k}{j} (\psi \eta^{-1})^{(j)} \eta^{(k-j)} = \psi^{(k)}$$

as $n \to \infty$ uniformly on $[\alpha, \beta]$ and hence in $L^2(\mathcal{J} \psi)$.

Now we are able to give the

Proof of Theorem 13. Let us abbreviate $\pi_\varphi = \pi_{f_\varphi}$ and $\pi_\psi = \pi_{f_\psi}$. By Lemma 14 the closure $\pi_\psi = \pi_{f_\psi}$ of the GNS representation π_{f_ψ} is unitarily equivalent to the representation ρ_ψ. For notational simplicity we shall identify the representations π_ψ and ρ_ψ via the unitary U defined in Lemma 14. Using this description of $\pi_\psi \cong \rho_\psi$ it is straightforward to check that the domain $\mathcal{D}(\pi_\psi^*)$ consists of all functions $g \in C^\infty(\mathcal{J} \psi)$ such that their restrictions to $\mathcal{J}_l \psi$ extend to functions of $C^\infty(\mathcal{J}_l \psi)$ and $g(t) = 0$ on $\mathbb{R}/\mathcal{J} \psi$. Further, we have $(\pi_\psi^* f \psi g) = f \cdot g$ and $(\pi_\psi^* \psi g) = -ig'$ for $g \in \mathcal{D}(\pi_\psi^*)$ and $f \in \mathbb{C}[q]$.

Suppose that $T \in I(\pi_\varphi, (\pi_\psi)^*)$ and $\|T\| \leq 1$. Set $\xi := T \varphi$. By the intertwining property of T, for each polynomial f we have

$$(36) \quad T(f \cdot \varphi) = T \pi_\varphi(f \psi \varphi) = (\pi_\psi)^*(f \psi) T \varphi = (\pi_\psi)^*(f \psi) \xi = f \cdot \xi.$$

Therefore, since $\|T\| \leq 1$, we obtain

$$(37) \quad \int_{\alpha}^\beta |f(x)|^2 |\xi(x)|^2 dx = \int_{\alpha}^\beta |T(f \cdot \varphi)(x)|^2 dx \leq \int_{\alpha}^\beta |f(x)|^2 |\varphi(x)|^2 dx$$

for all polynomials f and hence for all functions $f \in C(\alpha, \beta)$ by the Weierstrass theorem. Hence (37) implies that

$$(38) \quad |\xi(x)| \leq |\varphi(x)| \text{ on } [\alpha, \beta].$$

Therefore, $\xi(x) = 0$ if $x \in \mathbb{R}/\mathcal{J} \varphi$. Clearly, $\xi(x) = 0$ if $x \in \mathbb{R}/\mathcal{J} \psi$, since $\xi \in \mathcal{D}(\pi_\psi^*)$. Since φ satisfies condition (\ast), the set $\{f \cdot \varphi : f \in \mathbb{C}[x]\}$ is dense in $L^2(\mathcal{J} \varphi) = \mathcal{H}(\pi_\varphi)$. Therefore, it follows from (36)
that T is equal to the multiplication operator by the bounded function $\xi \varphi^{-1}$. (Note that $\xi \varphi^{-1}$ is bounded by (38).) In particular, we obtain

$$\varphi' \cdot \xi \varphi^{-1} = T \varphi' = T \pi_\varphi(ip) \varphi = (\pi_\psi)^* (ip) T \varphi = (\pi_\psi)^* (ip) \xi = \xi'$$

Thus, $\varphi'(x)\xi(x) = \varphi(x)\xi'(x)$ which in turn implies that $(\xi')'(x) = 0$ for all $x \in \mathcal{J}(\varphi) \cap \mathcal{J}(\psi)$. Hence $\xi(x) = \lambda \varphi(x)$ for some constant $\lambda \in \mathbb{C}$ on each connected component of $\mathcal{J}(\varphi) \cap \mathcal{J}(\psi)$. By (38), $|\lambda| \leq 1$. The connected components of the open set $\mathcal{J}(\varphi) \cap \mathcal{J}(\psi)$ are precisely the intervals $\mathcal{J}_l(\varphi) \cap \mathcal{J}_k(\psi)$ provided the latter is not empty.

Conversely, suppose that for all indices l, k such that $\mathcal{J}_l(\varphi) \cap \mathcal{J}_k(\psi) \neq \emptyset$ a complex number $\lambda_{k, l}$, where $|\lambda_{k, l}| \leq 1$, is given. Set $\xi(x) = \lambda_{k, l} \varphi(x)$ for $x \in \mathcal{J}_l(\varphi) \cap \mathcal{J}_k(\psi)$ and $\xi(x) = 0$ otherwise. From the description of the domain $D((\pi_\psi)^*)$ given in the first paragraph of this proof it follows that $\xi \in D((\pi_\psi)^*)$. Define $T(\pi_\varphi(a) \varphi) := (\pi_\psi)^* (a) \xi$, $a \in \mathbb{A}$. It is easily checked that T extends by continuity to an operator T of $\mathcal{H}(\pi_\varphi) = L^2(\mathcal{J}(\varphi))$ into $\mathcal{H}((\pi_\psi)^*) = L^2(\mathcal{J}(\psi))$ such that $T \in I(\pi_\varphi, (\pi_\psi)^*)$ and $\|T\| \leq 1$. Since $T \varphi = \xi$, we have

$$\langle T \varphi, \psi \rangle = \sum_{k, l} \lambda_{k, l} \int_{\mathcal{J}_l(\varphi) \cap \mathcal{J}_k(\psi)} \varphi(x) \overline{\psi(x)} \, dx.$$

Therefore, the supremum of expressions $|\langle T \varphi, \psi \rangle|$ is obtained if we choose $\lambda_{k, l}$ such that the number $\lambda_{k, l} \int_{\mathcal{J}_l(\varphi) \cap \mathcal{J}_k(\psi)} \varphi \overline{\psi} \, dx$ is equal to its modulus $|\int_{\mathcal{J}_k(\varphi) \cap \mathcal{J}_l(\psi)} \varphi \overline{\psi} \, dx|$. This implies formula (35). \square

Acknowledgements. The author would like to thank P.M. Alberti for many fruitful discussions on transition probabilities.

References

[1] P.M. Alberti, A note on the transition probability over C^*-algebras, Lett. Math. Phys. 7(1983), 107–112.

[2] P.M. Alberti, A study on the geometry of pairs of positive linear forms, algebraic transition probability and geometrical phase over non-commutative operator algebras (I), Z. Anal. Anw. 11(1992), 293–334.

[3] P.M. Alberti, Playing with fidelities, Rep. Math. Phys. 51(2003), 87–125.

[4] P.M. Alberti and A. Uhlmann, On Bures distance and $*$-algebraic transition probability between inner derived positive linear forms over W^*-algebras, Acta Appl. Math. 60(2000), 1–37.

[5] H. Araki, Bures distance function and a generalization of Sakai’s non-commutative Radon-Nikodym theorem, Publ. RIMS Kyoto Univ. 8(1972), 335–362.

[6] H. Araki and G. Raggio, Remark on transition probability, Lett. Math. Phys. 6(1982), 237–240.
[7] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States, Cambridge Univ. Press, Cambridge, 2006.
[8] D.J.C. Bures, An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite W^*-algebras, Trans. Amer. Math. Soc. 35(1969), 199–212.
[9] J.B. Conway, A Course in Functional Analysis, Springer-Verlag, Berlin, 1990.
[10] R. Josza, Fidelity for mixed quantum states, J. Mod. Optics 4(1994), 235–2323.
[11] R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, vol. II, Academic Press, London, 1986.
[12] W. Pusz and S.L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8(1975), 159–170.
[13] M. Putinar and K. Schmüdgen, Multivariate determinateness, Indiana Univ. Math. J. 57(2008), 2931–2968.
[14] K. Schmüdgen, On trace representation of linear functionals on unbounded operator algebras, Commun. Math. Phys. 63(1978), 113–130.
[15] K. Schmüdgen, Unbounded operator algebras and representation theory, Birkhäuser-Verlag, Basel, 1990.
[16] K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Springer-Verlag, Berlin, 2012.
[17] A. Uhlmann, The "transition probability" in the state space of a \ast-algebra, Rep. Math. Phys. 9(1976), 273–279.
[18] A. Uhlmann, The transition probability for states of \ast-algebras, Ann. Phys. 42(1985), 524–532.
[19] S. Yamagami, Geometric mean of states and transition amplitudes, Lett. Math. Phys. 64(2008), 123–137.

Universität Leipzig, Mathematisches Institut, Augustusplatz 10/11, D-04109 Leipzig, Germany
E-mail address: schmuedgen@math.uni-leipzig.de