QSPR analysis of certain degree based topological invariants using MLR model

P. Gayathri¹* and S. Sunantha²

Abstract
QSPR models are vital role for molecular design of new compounds. In this paper, we calculate the degree based topological invariants of alkanes and also to find the correlation coefficient, linear regression and multiple linear regression models (MLR) for the prediction of boiling point of alkenes.

Keywords
Multiple correlation coefficient, MLR models, Topological invariants and boiling point.

AMS Subject Classification
05C05, 05C07, 05C12.

1 Department of Mathematics, A.V.C.College(Autonomous) (Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.), Mannampandal-609305, Mayiladuthurai, Tamil Nadu, India.
2 Department of Mathematics, Vivekananda College of Arts and Science for Women (Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India.), Thenpathi, Sirkali, Tamil Nadu, India.
*Corresponding author: *sgsunantha@gmail.com

1. Introduction and Preliminaries

Chemical graph theory is a study of graph theory together with chemistry. It is very useful in physic-chemical and biological properties of organic compounds. Topological invariants are a numerical value which can be used for Quantitative Structure Property Relationship (QSPR) and Quantitative Structure Activity Relationship (QSAR) studies [1-4]. Alkane contains carbon and hydrogen atoms and also carbon-carbon single bonds. It is very useful in chemical engineering and chemical reactions of molecules. Alkanes are important raw materials of the chemical industry and the principal constituent of gasoline and lubricating oils. In this article, we study correlation between the topological indices and the boiling points of corresponding alkanes. [5] Also we study the linear regression equation of boiling points also MLR model for boiling points. Besides we compare the experimental boiling points and the calculated boiling points of alkanes using topological invariants. The main goal of this article is to find the Multiple Linear Regression model (MLR) for the prediction of boiling points of alkenes in terms of its topological invariants.

In this study, we consider multiplicative topological invariants like Second Multiplicative Zagreb index, New Multiplicative version of first Zagreb index, Multiplicative Sum Connectivity index, Multiplicative Product Connectivity index, Multiplicative Atom Bond Connectivity index and Multiplicative Geometric Arithmetic index also we consider additive indices like Randic, Geometric-Arithmetic, Sum connectivity, Harmonic, First Zagreb, Second Zagreb, Second Modified Zagreb, Inverse sum, Alberston, Atom-Bond connectivity, Symmetric Division, Augmented Zagreb indices respectively. [6-11]

Correlation: Correlation analysis is to determine the degree of relationship between variables. Also this is the co variation between two or more variables. If the ratio of change between two variables is uniform then it is called the linear correlation. Positive or negative correlation depends upon the direction of change of the variables in the same direction or opposite direction.

Coefficient of determination (r^2): The coefficient of...
determination is the ratio of the expected variance to the total variance.

\[r^2 = \frac{\text{Expected Variance}}{\text{Total Variance}} \]

Regression: Regression is the study of the average relationship between two or more variables. Regression analysis predicts the value of dependent variables from the values of independent variables. Regression equation of X on Y is

\[\overline{Y} = \beta_0 + \beta_1 \overline{X} \]

Regression equation of Y on X is

\[\overline{X} = \frac{\beta_0}{\beta_1} \overline{Y} - \frac{\beta_0}{\beta_1} \overline{X} \]

where, \(\overline{X} \) = Mean of X series, \(\overline{Y} \) = Mean of Y series

We have used here Eight Multiplicative degree based topological invariants and twelve Additive degree based topological invariants which are listed in Table 1 and Table 2. Also the experimental boiling points of alkanes are in Table 3. Besides the calculated values of these indices are listed in table 4, 5, 6, 7. Also table 8 and 9 indicated that the correlation coefficient between boiling points and its corresponding indices. Linear Regression equations of boiling points in terms of its indices are noted in table 10 and table 11 respectively. In table 12 and table 13 indicated the MLR model for prediction of boiling points. Table 14 has contained predicted boiling points and its residuals.

1.1 Multiple Linear Regression model

Multiple Linear Regression is a statistical method which uses several variables to find the outcome of a dependent variable. The objective of MLR is to calculate the linear relationship between the independent variables and dependent variable. The formula for MLR is

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \cdots \]

Where, \(Y \) = dependent variable, \(X \) = independent variable and \(\beta_0, \beta_1, \beta_2, \ldots, \beta_p \) = Regression coefficients.

2. MLR Model and Correlation analysis

Table 1. Formulae for degree based Multiplicative invariants

Topological Invariants	Formulae
Second Multiplicative Zagreb index \((MT_1)\)	\(I_1(G) = \prod_{uv \in E(G)} d_G(u)d_G(v) \)
New multiplicative version of first Zagreb index \((MT_2)\)	\(I_2'(G) = \prod_{uv \in E(G)} [d_G(u) + d_G(v)] \)
First multiplicative hyper-Zagreb index \((MT_3)\)	\(H1_1(G) = \prod_{uv \in E(G)} [d_G(u) + d_G(v)]^2 \)
Second multiplicative hyper-Zagreb index \((MT_4)\)	\(H1_2(G) = \prod_{uv \in E(G)} [d_G(u)d_G(v)]^2 \)

Table 2. Formulae for degree based Additive Topological invariants

Topological Invariants	Formulae		
Randic index \((AT_1)\)	\(\chi(G) = \sum_{e \in E(G)} \frac{1}{\sqrt{d_G(e)}} \)		
Geometric-Arithmetic index \((AT_2)\)	\(GA(G) = \sum_{e \in E(G)} \frac{d_G(e)}{\sqrt{d_G(e)}} \)		
Sum Connectivity index \((AT_3)\)	\(SC(G) = \sum_{e \in E(G)} \frac{1}{\sqrt{d_G(e)}} \)		
Harmonic index \((AT_4)\)	\(HI(G) = \sum_{e \in E(G)} \frac{1}{d_G(e)} \)		
First Zagreb index \((AT_5)\)	\(M_1(G) = \sum_{e \in E(G)} i + j \)		
Second Zagreb index \((AT_6)\)	\(M_2(G) = \sum_{e \in E(G)} ij \)		
Second Modified Zagreb index \((AT_7)\)	\(M_2'(G) = \sum_{e \in E(G)} \frac{1}{i} \)		
Inverse Sum index \((AT_8)\)	\(IS(G) = \sum_{e \in E(G)} \frac{i}{j} \)		
Alberston index \((AT_9)\)	\(Alb(G) = \sum_{e \in E(G)}	i - j	\)
Atom-Bond Connectivity index \((AT_{10})\)	\(ABC(G) = \sum_{e \in E(G)} \sqrt{\frac{i+j}{2}} \)		
Symmetric Division index \((AT_{11})\)	\(SD(G) = \sum_{e \in E(G)} \frac{i+j}{2} \)		
Augmented Zagreb index \((AT_{12})\)	\(AZI(G) = \sum_{e \in E(G)} (\frac{i+j}{2})^3 \)		

Table 3. The boiling points of alkanes in K

S.No	Compound	\(T_{bp}(K) \)
1	2-methylbutane	300.95
2	2,2-dimethylpropane	282.65
3	n-hexane	342.15
4	2-methylpentane	333.45
5	3-methylpentane	336.45
6	2,2-dimethylbutane	322.85
7	2,3-dimethylbutane	331.15
8	n-heptanes	371.55
Table 4. The degree based Multiplicative connectivity indices of alkanes

Compound	MT_1	MT_2	MT_3	MT_4
2-methylbutane	108	240	57600	11664
2,2-dimethylpropane	256	625	390625	65536
n-hexane	256	576	331776	65536
2-methylpentane	432	960	921600	186624
3-methylpentane	432	900	810000	186624
2,2-dimethylbutane	1024	2250	5062500	1048576
2,3-dimethylbutane	729	1536	2359296	531441
n-heptanes	1024	2304	5308416	1048576
2-methylhexane	1728	3840	14745600	2985984
3-methylhexane	1728	3600	12960000	2985984
2,2-dimethylpentane	4096	9000	81000000	16777216
2,3-dimethylpentane	2916	5760	33177600	8503056
2,4-dimethylpentane	2916	6400	40960000	8503056
3,3-dimethylpentane	4096	8100	65610000	16777216
3-ethylpentane	1728	3375	11390625	2985984
n-octane	4096	9216	84934656	16777216
2-methylheptane	6912	15360	23592960	47775744
3-methylheptane	6912	14400	207360000	47775744
4-methylheptane	6912	14400	207360000	47775744
n-nonane	16384	36864	1358954496	268435456

Table 5. The degree based Multiplicative connectivity indices of alkanes

Compound	MT_5	MT_6	MT_7	MT_8
2-methylbutane	0.0645	0.0962	0.3330	0.6928
2,2-dimethylpropane	0.0400	0.0625	0.5625	0.4096
n-hexane	0.0416	0.0625	0.1768	0.8880
2-methylpentane	0.0323	0.0481	0.2357	0.6928
3-methylpentane	0.0333	0.0481	0.2041	0.7390
2,2-dimethylbutane	0.0211	0.0313	0.3248	0.4551
2,3-dimethylbutane	0.0255	0.0370	0.2963	0.5625
n-heptanes	0.0208	0.0313	0.1250	0.8889
2-methylhexane	0.0161	0.0241	0.1667	0.6928
3-methylhexane	0.0167	0.0241	0.1443	0.7390
2,2-dimethylpentane	0.0105	0.0156	0.2296	0.4551
2,3-dimethylpentane	0.0183	0.0156	0.1875	0.2528
3-ethylpentane	0.0172	0.0241	0.1250	0.7883
n-octane	0.0104	0.0156	0.0884	0.8889
2-methylheptane	0.0081	0.0120	0.1179	0.6928
3-methylheptane	0.0083	0.0120	0.1021	0.7390
4-methylheptane	0.0083	0.0120	0.1021	0.7390
n-nonane	0.0052	0.0078	0.0625	0.8889

Table 6. The degree based Additive connectivity indices of alkanes

Compound	AT_1	AT_2	AT_3	AT_4	AT_5	AT_6
2-methylbutane	2.2701	3.6547	2.0246	2.0667	16	14
2,2-dimethylpropane	2	3.2	1.7889	1.6	20	16
n-hexane	2.9142	4.8856	2.6548	2.8334	18	16
2-methylpentane	2.7701	4.6547	2.5246	2.5667	20	18
3-methylpentane	2.8081	4.7112	2.5491	2.6333	20	19
2,2-dimethylbutane	2.5607	4.2856	2.3272	2.2	24	22
2,3-dimethylbutane	2.6427	4.464	2.4082	2.3333	22	21
n-heptanes	3.4142	5.8856	3.1547	3.3333	22	20
2-methylhexane	3.2701	5.6547	3.0246	3.0667	24	22
Table 7. The degree based Additive connectivity indices of alkanes

Compound	AT_1	AT_3	AT_5	AT_{10}	AT_{11}	AT_{12}
3-methyl(hexane)	3.3081	5.7112	3.0491	3.1333	24	23
2,2-dimethylpentane	3.0607	5.2856	2.8272	2.7	28	26
2,3-dimethylpentane	3.1807	5.5207	2.9328	2.9	26	26
2,4-dimethylpentane	3.1259	5.4237	2.8944	2.8	26	24
3,3-dimethylpentane	3.1213	5.3712	2.8656	2.8	28	28
3-ethylpentane	3.3461	5.7678	3.0737	3.2	24	24
n-octane	3.9142	6.8856	3.6547	3.8333	26	24
2-methylheptane	3.7701	6.5647	3.5246	3.5667	28	26
3-methylheptane	3.8081	6.7112	3.5491	3.6333	28	27
4-methylheptane	3.8081	6.7112	3.5491	3.6333	28	27
n-nonane	4.4142	7.8856	4.1547	4.3333	30	28

Table 8. The correlation coefficient between multiplicative indices and boiling points of alkanes

Topological invariants	r
Second Multiplicative Zagreb index (MT_1)	0.774717
New multiplicative version of first Zagreb index (MT_2)	0.766797
First multiplicative hyper-Zagreb index (MT_3)	0.598968
Second multiplicative hyper-Zagreb index (MT_4)	0.610895
multiplicative sum connectivity index (MT_5)	-0.80006
Multiplicative product connectivity index (MT_6)	-0.80370
Multiplicative atom bond connectivity index (MT_7)	-0.91724
Multiplicative geometric-arithmetic index (MT_8)	0.503631

Table 9. The correlation coefficient between additive indices and boiling points of alkanes

Topological invariants	r
Randic index (AT_1)	0.9958
Geometric-Arithmetic index (AT_2)	0.99593
Sum Connectivity index (AT_3)	0.99528
Harmonic index (AT_4)	0.98546
First Zagreb index (AT_5)	0.77146
Second Zagreb index (AT_6)	0.78002
Second Modified Zagreb index (AT_7)	0.97878
Inverse Sum index (AT_8)	0.9791
Alberston index (AT_9)	-0.5264
Atom-Bond Connectivity index (AT_{10})	0.90386
Symmetric Division index (AT_{11})	0.24289
Augmented Zagreb index (AT_{12})	0.95123

Table 10. Regression equation of boiling point BP based on its multiplicative topological invariants T

Topological invariants	R.E of BP on $MT(G)$	R^2
Second Multiplicative Zagreb index (MT_1)	$B.P = 0.006MT_1 + 334.9$	0.600
New multiplicative version of first Zagreb index (MT_2)	$B.P = 0.003MT_2 + 335.7$	0.588
First multiplicative hyper-Zagreb index (MT_3)	$B.P = 7E - 08MT_3 + 349.0$	0.358
Also, with MT

According to equation in the Table 10 and the square values in Table 12.

Table 12. MLR Statistics: Predictors Topological Invariants, Pearson correlation coefficient R^2, R^2_{Adj}, Standard error of estimate S, Fisher Coefficient F, Mean Square MS, Residual, Significance of models Sig.

Topological Invariants	MT_1, MT_2, MT_6, MT_7	MT_3, MT_6, MT_7
R^2	0.987	0.958
R^2_{Adj}	0.984	0.95
S	4.3569	7.60121
F	284.165	120.792
MS	5394.293	6979.154
Residual	18.983	57.778
Sig. (p)	0.000b	0.000b

Here the highest square correlation coefficient is 0.987 and its F value is 284.165. Standard error of estimate is 4.3569. If $p < 0.001$ then the overall regression model is significant. Also Adjusted R square is 0.984. Therefore 98.4% of variability of boiling points explained by its invariants. The corresponding MLR model is given by

$$BP = 404.407 - 8029.049MT_3 + 5017.711MT_6 - 209.805MT_7 + 0.002MT_1$$ (2.1)

This equation has four invariants Second Multiplicative Zagreb, Multiplicative sum connectivity, Multiplicative product connectivity, Multiplicative atom bond connectivity with high calibration statistics and prediction ability. According to equation in the Table 11 and the square correlation coefficients gives better correlation between T_{BP} with $MT_1 > MT_2 > MT_3 > AT_4 > AT_7 > AT_5 > AT_12$ of alkanes respectively. Also, AT_3, AT_6, AT_7, AT_10 and AT_11 of alkanes are having poor correlation with T_{BP}. In next stage, by using SPSS software different MLR model were examined and the best MLR model was obtained by using correlation coefficient, coefficient of determination, standard error of estimate, Mean square, The Fisher statistic and Durbin-Watson significance values in Table 12.

2.1 Result and discussion

According to equation in the Table 10 and the square correlation coefficients gives better correlation between T_{BP} with $MT_1 > MT_6 > MT_5 > MT_1$ of alkanes respectively. Also, MT_6, MT_3, MT_2 and MT_4 of alkanes are having poor correlation with T_{BP}. In next stage, by using SPSS software MLR model is examined by using correlation coefficient, coefficient of determination, standard error of estimate, Mean square, The Fisher statistic and Durbin-Watson significance values in Table 12.

Topological Invariants	R.E of BP on $AT(G)$	R^2
Randic index(AT_1)	$BP = 57.32AT_1 + 174.9$	0.991
Geometric-Arithmetic index(AT_2)	$BP = 29.35AT_1 + 196.5$	0.991
Sum Connectivity index(AT_3)	$BP = 58.18AT_1 + 186.7$	0.990
Harmonic index(AT_4)	$BP = 50.94AT_1 + 206.2$	0.971
First Zagreb index(AT_5)	$BP = 6.771AT_1 + 193.8$	0.595
Second Zagreb index(AT_6)	$BP = 6.227AT_1 + 216.5$	0.608
Second Modified Zagreb index(AT_7)	$BP = 93.04AT_1 + 190.0$	0.958
Inverse Sum index(AT_8)	$BP = 31.19AT_1 + 192.5$	0.958
Alberston index(AT_9)	$BP = -5.256AT_1 + 392.7$	0.277
Atom-Bond Connectivity index(AT_{10})	$BP = 46.14AT_{10} + 156.0$	0.817
Symmetric Division index(AT_{11})	$BP = 3.4446AT_{11} + 303.4$	0.059
Augmented Zagreb index(AT_{12})	$BP = 2.454AT_{12} + 262.6$	0.904
Table 13. MLR Statistics: Predictors Topological Invariants, Pearson correlation coefficient R^2, R^2_{adj}, Standard error of estimate S, Fisher Coefficient F, Mean Square MS, Residual, Significance of models Sig.

Topological Invariants	AT_1	AT_2	AT_3	AT_4	AT_5	AT_6	AT_7	AT_8	AT_9, AT_{10}, AT_{11}	AT_1, AT_2, AT_3, AT_4, AT_5, AT_6, AT_7, AT_8, AT_9, AT_{10}, AT_{11}
R^2	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995	0.995
R^2_{adj}	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994	0.994
S	2.625	2.6084	2.7017	2.6847	2.5818					
F	789.19	1065.66	986.365	1005.72	1087.85					
MS	5439.63	7251.016	7248.11	7248.865	7251.753					
Residual	6.893	6.804	7.348	7.208	6.666					
Sig. (p)	0.000b	0.000b								

To predict the boiling points, the following models were obtained.

$$BP = 195.761 + 23.27TA_4 + 5.483AT_7 + 14.973AT_8$$
$$- 0.0984AT_2 - 3.651AT_1 - 10.654AT_2$$
$$- 4.327AT_3$$
$$2.1$$

$$BP = 185.307 + 19.755AT_3 + 30.879AT_7 + 11.088AT_8$$
$$- 2.161AT_1 + 1.606AT_5 + 5.452AT_4$$
$$3.2$$

$$BP = 183.665 + 33.407AT_2 - 38.848AT_4 + 58.872AT_7$$
$$- 1.599AT_1 - 2.841AT_3$$
$$4.3$$

$$BP = 247.504 + 154.592AT_2 - 278.535AT_3$$
$$+ 26.910AT_4 + 2.536AT_1$$
$$5.4$$

$$BP = 185.543 + 158.708AT_1 + 92.567AT_2$$
$$- 286.512AT_3$$
$$6.5$$

Finally, one model with highest square correlation coefficient 0.99, Fisher coefficient ($F = 1087.854$), Standard error of estimate S, Fisher Coefficient F, Mean Square MS, Residual, Significance of models Sig.

To predict the boiling points, the following models were obtained.

$$BP = 195.761 + 23.27TA_4 + 5.483AT_7 + 14.973AT_8$$
$$- 0.0984AT_2 - 3.651AT_1 - 10.654AT_2$$
$$- 4.327AT_3$$
$$2.1$$

$$BP = 185.307 + 19.755AT_3 + 30.879AT_7 + 11.088AT_8$$
$$- 2.161AT_1 + 1.606AT_5 + 5.452AT_4$$
$$3.2$$

$$BP = 183.665 + 33.407AT_2 - 38.848AT_4 + 58.872AT_7$$
$$- 1.599AT_1 - 2.841AT_3$$
$$4.3$$

$$BP = 247.504 + 154.592AT_2 - 278.535AT_3$$
$$+ 26.910AT_4 + 2.536AT_1$$
$$5.4$$

$$BP = 185.543 + 158.708AT_1 + 92.567AT_2$$
$$- 286.512AT_3$$

Finally, one model with highest square correlation coefficient 0.99, Fisher coefficient ($F = 1087.854$), Standard error of estimate S, Fisher Coefficient F, Mean Square MS, Residual, Significance of models Sig.
3. Conclusion

Mathematical regression models are very useful in QSPR studies. In very particular, MLR model is used to find the regression between more than two variables in QSPR studies. In this article, we have found the MLR model for prediction of boiling points of alkanes in terms of its topological invariants. Also, the result of this article indicated that the boiling points of alkanes highly correlated with Second Multiplicative Zagreb, Multiplicative sum connectivity, Multiplicative product connectivity, Multiplicative atom bond connectivity also Randić, geometric-arithmetic, sum connectivity indices.

References

[1] J. Deviller and A. T. Balban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, Amsterdam, Netherlands, 1999.
[2] M. Randić, Quantitative Structure-Property Relationship: boiling points and planar benzenoids, New J. Chem., 20(1996), 1001–1009.
[3] M. Randić, Comparative structure-property studies: Regression using a single descriptor, Croat. Chem. Acta., 66(1993), 289–312.
[4] M. Randić and M. Pompe, On characterization of CC double bond in alkenes, SAR ad QSAR, Environ. Res., 10(1999), 451–471.
[5] Esmat Mohammadinasab, Modeling boiling points of Alkane Derivatives, Studia UBB Chemia, LXII(1)(2017), 143–152.
[6] R. Todeshine and V. Consonni, New local vertex invariants and descriptors based on functions of vertex degrees, MATCH Commun. Math. Comput. Chem., 64(2010), 359–372.
[7] M. Eliaśi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem., 68(2012), 217–230.
[8] V. R. Kulli, Multiplicative hyper-Zagreb indices and coindices of graphs, Intern. Journal of Pure Algebra, 6(7)(2016), 342–347.
[9] V. R. Kulli, B. Stone, S. Wang and B. Wei, Multiplicative Zagreb and multiplicative hyper-Zagreb indices of Polycyclic Aromatic hydrocarbons, Benzenoid Systems, Submitted.
[10] M. Randić, On characterization of molecular branching, Journal of the American Chemical Society, 97(23)(1975), 6609–6615.
[11] Mojtaba Shamsipur, Bahram Hemmateenjad and Morteza Akhond, Highly correlating distance/connectivity-based topological indice 1: QSPR studies of Alkanes, Bull. Korean Chem. Soc., 25(2)(2004), 253–259.