The helium atom in a strong magnetic field

W Becken, P Schmelcher and F K Diakonos†
Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, Heidelberg 69120, Germany

Received 27 October 1998

Abstract. We investigate the electronic structure of the helium atom in a magnetic field between \(B = 0 \) and 100 au. The atom is treated as a nonrelativistic system with two interacting electrons and a fixed nucleus. Scaling laws are provided connecting the fixed-nucleus Hamiltonian to the one for the case of finite nuclear mass. Respecting the symmetries of the electronic Hamiltonian in the presence of a magnetic field, we represent this Hamiltonian as a matrix with respect to a two-particle basis composed of one-particle states of a Gaussian basis set. The corresponding generalized eigenvalue problem is solved numerically, providing results for vanishing magnetic quantum number \(M = 0 \) and even or odd \(z \)-parity, each for both singlet and triplet spin symmetry. Total electronic energies of the ground state and the first few excitations in each subspace as well as their one-electron ionization energies are presented as a function of the magnetic field, and their behaviour is discussed. Energy values for electromagnetic transitions within the \(M = 0 \) subspace are shown, and a complete table of wavelengths at all the detected stationary points with respect to their field dependence is given, thereby providing a basis for a comparison with observed absorption spectra of magnetic white dwarfs.

1. Introduction

Since the astrophysical discovery of strong magnetic fields on the surfaces of white dwarfs (\(\lesssim 10^5 \) T) and neutron stars (\(\approx 10^8 \) T), the interest in the behaviour and the properties of matter in strong magnetic fields has increased enormously. In the case of atoms in strong magnetic fields most of the literature is concerned with the hydrogen atom. The eigenvalues and the eigenfunctions of the hydrogen atom are, therefore, known very precisely and for many excited states [1–7]. For the hydrogen atom in a strong magnetic field it was possible to perform a comparison of the theoretical predictions resulting from \textit{ab initio} computations with the data obtained from astronomical observation. The results provided overwhelming evidence for the existence of hydrogen in the atmosphere of the corresponding astrophysical objects [6]. However, there are several spectral features and structures which cannot be explained by hydrogenic spectra such as, for example, in the spectrum of the magnetic white dwarf GD229 [8–10], which leads to the conjecture that there are further components to the atmospheres, i.e. atoms with more than one electron.

So far our knowledge about atoms with more than one electron in strong magnetic fields is very sparse. Most of the \textit{ab initio} computations on multi-electron systems deal with two-electron systems, i.e. the helium atom, the hydrogen anion and the helium-like cations [6, 11–14]. For two-electron atoms the investigations cover much smaller parts of the spectrum than is the case for the hydrogen atom, and their accuracy is considerably poorer. To perform
a comparison with astrophysical observation, however, accurate transition energies for a large set of field strengths have to be available which requires even more accurate data for the total energies. In particular, in the relevant regime of intermediate field strengths, for which the diamagnetic energies and the Coulomb energies are of the same order of magnitude, there do not exist sufficiently accurate data for a large number of excited states which would allow this comparison. The reason is that, for example, the numerical basis set methods established so far have their starting point either in the low-field regime or in the high-field regime and are, therefore, especially adapted to their corresponding regimes but fail to be effective in the opposite regime, thereby leaving a gap in a certain regime where none of them provides good convergence.

The scope of the present paper is to introduce one uniform basis set method which is capable of accurately describing two-electron systems for arbitrary field strengths. We present numerical results for the energy levels of the ground state and a considerable number of excited states of the helium atom in a magnetic field ranging from $B = 0$ to 100 au ($B = 1$ au corresponds to 2.35×10^5 T).

In order to perform a detailed comparison of our numerical data with already existing results, let us first provide an overview of the results presented in the literature so far. Almost all of the results we mention here are variational, i.e. they provide upper bounds for the exact energy values. However, we have to distinguish between Hartree–Fock calculations and calculations which take into account the electronic correlation.

The first Hartree–Fock calculations on helium in a strong magnetic field were performed in 1976 by Virtamo [15]. Virtamo has provided the global ground-state energies of helium in very strong fields ($B = 80$ to 8×10^4 au). In this regime the lowest energy is achieved by aligning both spins antiparallel to the magnetic field, which means that the global ground state in question is a spin triplet state. The same state is also investigated in the work of Pröschel et al [12]. They use a Slater-determinant approach starting from Landau levels in order to cover a slightly broader regime of field strengths than Virtamo ($B \sim 2.1$ to 2.1×10^5 au). Hartree–Fock results for several other states besides the ground state of helium in the high-field regime are provided in the works of Ivanov [14, 16], where the singlet and triplet states are considered for positive total z-parity and magnetic quantum numbers $m = 0$ and -1 as well as for negative z-parity and $m = 0$. Here the magnetic field ranges from $B = 0$ to 100 au, occupying 11 field strengths, and thus includes both the low- and high-field regime as well as the intermediate regime. On an even finer grid of field strengths (34 values between $B = 8 \times 10^{-4}$ and 8×10^3 au) the energies of the triplet ground state and several triplet excited states but no singlet states are given in the work of Thurner et al [13]. In the latter work there exists a gap in the list of eigenenergies for several states in the vicinity of $B \sim 1$ au because the ansatz of the applied approach changes in the intermediate regime from a spherical to a cylindrical symmetry and thus fails to provide accurate results in the intermediate regime. An important work is also the Hartree–Fock study of Jones et al [17]. They present the HF energies for the global low-field ground state for various field strengths between $B = 8 \times 10^{-4}$ and 8 au and thus also address the intermediate regime. They additionally provide energies for several excited states (but those results are crude approximations providing no upper bounds).

In comparison to the considerable number of Hartree–Fock investigations there are many fewer data available on fully correlated calculations of helium so far. Mueller et al [18] obtain variational upper-bound estimates of the binding energies of the triplet states with negative z-parity and the magnetic quantum numbers $m = 0$ and -1 and of the singlet ground state which has positive z-parity and $m = 0$. Their field strengths range from $B \sim 4.2$ to 2.1×10^4 au. A similar high-field regime ($B = 4.2, 42, 420$ au) is addressed by the work of Vincke and Baye [19], which also presents variational estimates for binding energies. They consider the singlet
and triplet states for positive z-parity and $m = 0, -1, -2$. The first correlated calculations in
the intermediate regime have been provided by Larsen [20], who has given the energies of the
singlet states with positive z-parity and $m = 0, -1$ or with negative z-parity and $m = 0$ as
well as the triplet ground state for the four field strengths $B = 0.2, 0.5, 1.0, 2.0$ au. Park and
Starace [21] have computed upper and lower bounds for the singlet ground state in the low-field
regime between $B = 0$ and 0.15 au. Recently, Jones et al [22] have applied a released-phase
quantum Monte Carlo method to the helium atom. Energies for spin triplet states with both
positive and negative z-parity and $m = 0, -1$ are given for field strengths from $B = 0$ up to
8.0 au. Though in principle the results of those investigations are variational, their numerical
values must be handled with care when using them as upper bounds for the helium energies.
The reason is that due to the statistical character of their method the results possess error bars
which might trespass the exact values of the helium energies. Very recently the finite-element
technique has also been used to calculate energies for several singlet and triplet states of helium
in a magnetic field [23]. Also this approach does not provide a significant improvement.

In the present work we use a Gaussian basis set method which permits one to perform fully
correlated calculations on singlet and triplet states of helium with arbitrary spatial symmetry.
This basis set method has been developed by Schmelcher and Cederbaum [24] for molecules
and has already been successfully applied to the hydrogen molecule ion [25] and to the neutral
hydrogen molecule [26, 27] in strong magnetic fields. We translate this basis set in order to be
applicable to ab initio calculations of atoms in strong magnetic fields. We remark that using, for
example, a Hylleraas basis set yields more accurate results in the field-free or weak-field case
due to explicitly correlated orbitals. However, it is not efficient and accurate in the presence
of a strong magnetic field due to the spherical symmetry of the exponentials [28]. In contrast
to this our basis set described in detail in section 3 below can be adapted to any field strength.

All the helium states considered are classified according to a maximal set of conserved
quantities, which we choose to be the total spin S^2, the z-component S_z of the total spin, the
total spatial magnetic quantum number M and the total spatial z-parity Π_z. For 20 field strengths
from $B = 0$ up to 100 au numerical helium energies for singlet and triplet states are given for
$M = 0$ and for $\Pi_z = 0, 1$. In each of these two subspaces we present the energies of the ground
state and the first five excited states for singlet and four excited states for triplet spin symmetry.
The accuracy of our method in the field-free case can be determined by the comparison of
our results with the very precise field-free values calculated by Braun et al [29], Accad et al
[30] or by Drake and Yan [31], and our relative deviation ranges from 10^{-6} to 10^{-4}. We do
not observe this accuracy dropping considerably with increasing magnetic field, which means
that our basis set method produces accurate results, particularly in the intermediate regime.
Both with respect to the achieved relative accuracy as well as with respect to the number of
excited states, our investigation therefore provides valuable results. Data for $M \neq 0$ will be
presented in future work. The stationary components of the transitions obtained in the present
investigation provide an important part of the data which have very recently been used to show
the presence of helium in the atmosphere of the magnetic white dwarf GD229 [10].

In detail we proceed as follows. In section 2 we discuss the influence of the finite nuclear
mass, i.e. the scaling relations which connect the Hamiltonian for a finite nuclear mass to
a Hamiltonian with infinite nuclear mass. In all of the remaining sections, we consider the
nonrelativistic case with infinite nuclear mass and an electron spin g-factor equal to 2. Section 3
starts with the nonrelativistic Hamiltonian of a helium atom with infinite nuclear mass in a
magnetic field. The corresponding symmetries of this Hamiltonian are discussed and serve for
constructing a suitable basis set. The matrix representation of the Hamiltonian with respect to
this basis gives rise to an eigenvalue problem. The results of its diagonalization are discussed
in section 4 where we present total energies, ionization energies and transition energies as well
as the wavelengths of their stationary components, all of them given under the assumption of infinite nuclear mass.

2. Finite nuclear mass scaling relations and further corrections

We use a nonrelativistic approach to the helium atom. This is justified because the relative changes in the helium energies due to relativistic effects are smaller than the relative accuracy of our nonrelativistic energies \[32\]. Additionally, for simplicity we use an electron spin g-factor equal to 2 throughout the paper. The following scaling laws as well as all of our numerical results can be adapted trivially to a g-factor of any desired accuracy by multiplying every occurring spin operator or eigenvalue by \(g/2\).

Though our electronic structure calculations will be carried out with the assumption of an infinite nuclear mass, they can, by means of a scaling law, be translated into results with a finite nuclear mass. The latter are necessary in order to achieve the accuracy for a detailed comparison with astrophysical data. The idea of introducing such a scaling relation is not new and has already been applied to one-electron systems \[33\]. In order to demonstrate how this idea is applied on the helium atom, we will start with the full Hamiltonian describing a neutral system with two interacting electrons with masses 1 and charge \(-1\) in the Coulomb field of a nucleus with charge 2 and finite mass \(M_0\) in a magnetic field \(B\). Assuming a vanishing pseudo-momentum of the centre of mass (see \[34–36\] for a pseudo-separation of the centre-of-mass motion for neutral systems in a magnetic field) one obtains the following exact pseudo-separated Hamiltonian (which is established in the symmetric gauge \(A(r) = \frac{1}{2} B \times r\))

\[
H_e = \sum_i \left(\frac{1}{2\mu} p_i^2 + \frac{1}{2\mu'} B \cdot l_i + \frac{1}{8\mu} (B \times r_i)^2 - \frac{2}{|r_i|} + B \cdot s_i \right) + \frac{1}{2|r_2 - r_1|} \\
+ \frac{1}{2M_0} \sum_{i \neq j} (p_ip_j - p_i(B \times r_j) + \frac{1}{4}(B \times r_i)(B \times r_j)) \tag{1}
\]

where \(\mu = M_0/(M_0 + 1)\) is the reduced mass and \(\mu' = M_0/(M_0 - 1)\) (we use atomic units throughout the paper). We take into account the dominant part of the finite-mass corrections by introducing these quantities \(\mu, \mu'\) and neglecting the mass polarization terms represented by the sum over \((i \neq j)\). Our basic idea is now to find a scaling law joining the spectrum of the remaining part \(H(M_0, B)\) in the first line of the Hamiltonian \(H_e\) with the spectrum of the infinite-mass Hamiltonian \(H(\infty, \bar{B})\) at a suitable different field strength \(\bar{B}\). The neglect of the mass polarization terms of the sum over \((i \neq j)\) in equation (1) is justified by the fact that they are expected to provide a smaller correction to the total energy than the corresponding diagonal mass corrections, i.e. the replacement of the masses by reduced ones.

We will show how it is possible to establish a relation between the operators \(H(M_0, B)\) and \(H(\infty, \bar{B})\) themselves which is even more fundamental than only a relation between the corresponding spectra. The relation in question cannot be a simple unitarian one because such a transformation would leave the spectrum invariant. Instead, we will show that there is a unique way to represent \(H(M_0, B)\) in the form \(UH(M_0, B)U^{-1} = \alpha H(\infty, \bar{B}) + \beta\), where \(\alpha\) is a number and \(\beta\) is a suitable operator commuting with the Hamiltonian.

Before factoring out a suitable prefactor \(\alpha\) the terms of \(H(M_0, B)\) must be transformed in such a way that their mutual ratios possess the correct infinite-mass values, i.e. all ratios must contain neither \(\mu\) nor \(\mu'\). The misproportion between the kinetic energy and the Coulomb energy terms is the only one which cannot be absorbed in the parameter \(B\) or be removed by separating a suitable additive operator \(\beta\) commuting with the Hamiltonian. Thus we are
obliged to introduce the canonical scale transformation \(r \to r/\mu, \ p \to \mu p \) of the coordinates themselves. We realize this transformation by the unitarian \(U = e^{-\frac{1}{\mu} \ln(\mu|x p y p z|)} \), yielding

\[
U H(M_0, B)U^{-1} = \mu \left[\sum_{i=1}^{2} \left(\frac{1}{2} p_i^2 + \frac{1}{8} \langle B/\mu \rangle \times r_i \rangle^2 - \frac{2}{|r_i|} + \frac{1}{|r_2 - r_1|} \right) + \sum_{i} \left(\frac{1}{2\mu} B \cdot l_i + B \cdot s_i \right) \right].
\]

The operator \(s_i \) of the spin degree of freedom is not affected by the above transformation, and \(l_i = r_i \times p_i \) is also unchanged because the scaling factors of \(r_i \) and \(p_i \) cancel each other. The expression in square brackets is already an essential part of the desired infinite-mass Hamiltonian at the adjusted field strength \(B = B/\mu^2 \): only the Zeeman orbital and spin term at the field strength \(B \) are missing. These operators can be provided by hand, which must be repaired by subtracting the same operators at the end where they almost cancel exactly the original Zeeman and spin terms leaving only a contribution of order \(B/M_0 \):

\[
U H(M_0, B)U^{-1} = \mu \cdot H(\infty, B/\mu^2) - \frac{1}{M_0} B \cdot \sum_{i}(l_i + s_i).
\]

Therefore, we obtain

\[
U H(M_0, B)U^{-1} = \mu \cdot H(\infty, B/\mu^2) - \frac{1}{M_0} B \cdot \sum_{i}(l_i + s_i).
\]

In particular, the spectrum of \(H(M_0, B) \) is identical to the spectrum of the unitarily equivalent operator represented by the right-hand side of (4). The latter spectrum can be simply connected to the spectrum of \(H(\infty, B/\mu^2) \) itself because the operators \(\sum_i B \cdot l_i \) and \(\sum_i B \cdot s_i \) commute with the Hamiltonian: in the following section we will use an angular momentum and spin basis, in the case of which the additional operator \(-(1/M_0) B \cdot \sum_i(l_i + s_i) \) gives rise to a trivial energy shift of order \(B/M_0 \).

3. Symmetries, Hamiltonian and basis sets

3.1. Symmetries and Hamiltonian

In the following we assume the magnetic field to point in the +z-direction. Then the Hamiltonian \(H(\infty, B) \) for infinite nuclear mass at given field strength \(B \) (in the following we will omit the argument ‘\(\infty \)’) reads

\[
H = \sum_{i=1}^{2} \left(\frac{1}{2} p_i^2 + \frac{1}{2} B l_{iz} + \frac{1}{8} B^2 (x_i^2 + y_i^2) - \frac{2}{|r_i|} + B s_{iz} \right) + \frac{1}{|r_2 - r_1|}.
\]

The sum contains the one-particle operators, i.e. the Coulomb potential energies \(-2/|r_i| \) of the electrons in the field of the nucleus as well as their kinetic energies, already split into parts, \(\frac{1}{2} p_i^2 \), the Zeeman term \(\frac{1}{2} B l_{iz} \) and the diamagnetic term \(\frac{1}{8} B^2 (x_i^2 + y_i^2) \), and their spin energies \(B s_{iz} \). The two-particle operator \(1/|r_2 - r_1| \) represents the electron–electron repulsion energy.

There exist four independent commuting conserved quantities: the total spin \(S^2 \), the z-component \(S_z \) of the total spin, the z-component \(L_z \) of the total angular momentum and the total spatial z-parity \(\Pi_z \). In the following calculations we consider separately each subspace of a specified symmetry, i.e. with given eigenvalues of \(S^2, S_z, L_z \) and \(\Pi_z \).
3.2. The underlying one-particle basis set

The key ingredient of our basis set method is the Gaussian one-particle basis set which is our starting point for the construction of spatial two-particle states. According to the azimuthal symmetry with respect to the magnetic field axis, cylindrical coordinates are suitable for representing the one-particle basis functions

$$\Phi_i(\rho, \varphi, z) = \rho^{n_{\rho,i}} e^{-\alpha_i \rho^2} z^{n_{z,i}} e^{in_{\varphi} \varphi} \quad i = 1, \ldots, n$$

(6)

where \(\alpha_i\) and \(\beta_i\) are positive nonlinear variational parameters and the exponents \(n_{\rho,i}\) and \(n_{z,i}\) obey the following restrictions:

\[n_{\rho,i} = |m_i| + 2k_i; \quad k_i = 0, 1, 2, \ldots \quad \text{with} \quad m_i = \ldots, -2, -1, 0, 1, 2, \ldots \]

(7)

\[n_{z,i} = \pi_{z,i} + 2l_i; \quad l_i = 0, 1, 2, \ldots \quad \text{with} \quad \pi_{z,i} = 0, 1. \]

(8)

The basis function \(\Phi_i\) is an eigenfunction of the \(z\)-component of the angular momentum with an eigenvalue of \(m_i\) and an eigenfunction of \(z\)-parity with eigenvalue \((-1)^{\pi_{z,i}}\). The Gaussian-like expression \(\rho^{|m_i|} e^{-\alpha_i \rho^2}\) is identical to the \(\rho\) dependence of the lowest Landau state in the field \(B\) if we choose \(\alpha_i\) to be \(B/4\) and thus represents an adjustment to the existence of the magnetic field (see, e.g., equation (8) in [36]). The monomials \(\rho^{2k_i}\) and \(z^{n_{z,i}}\) are suitable for describing excitations. The flexibility of our basis set which permits us to choose suitable values of the nonlinear parameters \(\alpha_i\) and \(\beta_i\) is one of its major advantages: for low field strengths an isotropic choice \(\alpha_i = \beta_i\) will be reasonable where \(\alpha_i, \beta_i\) cover a regime which allows \(\Phi_i\) to optimally approximate Slater-type orbitals. At high field strengths, however, where the magnetic field destroys the spherical symmetry of the problem, an isotropic basis set method would be inefficient. Here we choose the distribution of the \(\alpha_i\) to be peaked around \(B/4\), whereas the \(\beta_i\) are well tempered in a large regime.

The best choice of the \(\alpha_i\) and \(\beta_i\) has been computed by the requirement to solve optimally the one-particle problem of the H atom or the He\(^+\) ion in a magnetic field of given strength \(B\). To achieve this, we applied the following optimization procedure. For any given one-particle subspace \((m, \pi_z)\) which will be involved in the two-particle configurations, we have chosen a suitable number, typically 20, of functions of the type (6) with the same one-particle quantum numbers \((m_i = m, \pi_{z,i} = \pi_z)\) but different starting values \(\alpha_i\) and \(\beta_i\). With respect to this basis we built up the overlap matrix and the matrix of the one-particle Hamiltonian, representing a generalized eigenvalue problem for the one-particle energies. Then, we determined systematically the values of the \(\alpha_i\) and \(\beta_i\) which minimized the energy eigenvalues of the one-particle ground state or a desired excited state. Our tool was a repeated reconstruction and diagonalization of the matrices directed by the pattern-search method applied in the \(\{\alpha_i, \beta_i\}\)-space. We remark that due to the large number of parameters it is very time consuming to find the best selection of parameters \(\{k_i, l_i\}\). Additionally the starting values for the nonlinear parameters \(\alpha_i\) and \(\beta_i\) have to be chosen carefully in order to find a ‘good’ minimum close to the global one on the complicated hypersurface.

3.3. The two-particle basis set

Our basic idea for solving the time-independent Schrödinger equation for the Hamiltonian (5) is to construct a basis set of suitable two-particle states \(|q\rangle\) each of which is itself an eigenstate of the conserved quantities with eigenvalues \(M, \Pi_z, S, S_z\), respectively. With respect to this not necessarily orthonormal basis we construct a matrix representation \(H_{pq}\) of the Hamiltonian and define an overlap matrix \(S_{pq}\) by

$$H_{pq} := \langle p | H | q \rangle$$

$$S_{pq} := \langle p | q \rangle$$

(9)

(10)
where the states \(|p\rangle\) and \(|q\rangle\) lie in the same subspace of given eigenvalues of \(M, \Pi_z, S\) and \(S_z\). By construction, the matrix \(H\) is Hermitian and the matrix \(S\) is Hermitian and positive definite. In addition to these general properties, in the special case of the basis sets we use, all the matrix elements turn out to be real. By solving the finite-dimensional generalized real-symmetric eigenvalue problem

\[
(H - ES) \cdot \psi = 0
\]

we obtain eigenvectors \(\psi\) whose corresponding eigenvalues \(E\) are strict upper bounds to the exact eigenvalues of the Hamiltonian (5) within the given subspace.

We choose our two-particle basis functions to be direct products of a pure spatial part \(|\psi_q\rangle\) with a pure spin part \(|\chi_q\rangle\):

\[
|q\rangle = |\psi_q\rangle \otimes |\chi_q\rangle.
\]

The spin part is assumed to be one of the usual orthonormal singlet or triplet spin eigenstates. This means that the overlap matrix is nontrivial purely due to the spatial part,

\[
S_{pq} = \langle \psi_p | \psi_q \rangle
\]

and each matrix element of the Hamiltonian decomposes into a spatial and a spin contribution:

\[
H_{pq} = \langle \psi_p | H_{\text{spat}} | \psi_q \rangle + S_{pq} \langle \chi_p | H_{\text{spin}} | \chi_q \rangle.
\]

The spin contribution \(\langle \chi_p | H_{\text{spin}} | \chi_q \rangle\) is trivial and equals \(+B \cdot S_z\), according to (5), and therefore it vanishes for singlet states or is either \(-B, 0\) or \(+B\) for triplet states. Due to its prefactor \(S_{pq}\) it can simply be absorbed as a shift in the energy eigenvalue \(E\) in equation (11). Since a spin singlet state is antisymmetric and a triplet state is symmetric, with respect to particle exchange, the spatial part associated with a spin singlet state must be symmetric, whereas the spatial part associated with a spin triplet state must be antisymmetric.

In contrast to the spin part, the spatial part is by no means trivial and it is an art to find a suitable finite-dimensional basis set for accurately approximating the Hilbert space of bound states of \(H_{\text{spat}}\). This is the reason why we spent so much effort on providing a powerful one-particle basis set (see section 3.2). It serves now as a good starting point to compose the desired two-particle states. We chose a two-particle basis state to be

\[
|\psi_q\rangle := b_i^\dagger b_j^\dagger |0\rangle \quad i = 1, \ldots, n \quad j = i, \ldots, n
\]

where \(b_i^\dagger\) is a creation operator of the \(i\)th one-particle basis state \(|i\rangle = b_i^\dagger |0\rangle\), whose position representation is given by (6). This means that we will treat the helium atom by a full configuration interaction (full CI) approach within the one-particle basis set of states \(|i\rangle\). Depending on whether the spin part \(|\chi_q\rangle\) is a singlet or triplet state, the operators \(b_i^\dagger\) must be bosonic or fermionic, respectively.

Now, in order to establish a basis set of two-particle states spanning the subspace with the given pure values of the total magnetic quantum number \(M\) and the total \(z\)-parity \(\Pi_z\), we must select all the combinations \(i, j\) with

\[
m_i + m_j = M
\]

\[
\mod(\pi_{z_i} + \pi_{z_j}, 2) = \Pi_z
\]

yielding a dimension \(N\) of the constructed two-particle basis set which is, in general, smaller than \(n(n + 1)/2\). We remark that for triplet spin symmetry those states in (15) with \(i = j\) fail to exist which means that the dimension \(N\) for triplet subspaces is, in general, smaller than for singlet subspaces.
3.4. Matrix elements

In order to calculate the matrix elements of the Hamiltonian (5), we must rewrite its spatial part in second quantization, $\hat{H}_{\text{spat}} = \hat{H}_I + \hat{H}_T$, where \hat{H}_I and \hat{H}_T denote the second-quantized counterparts of the familiar one- and two-particle operators whose position representations read

$$\hat{H}_I(p, r) = \frac{1}{2} p^2 + \frac{1}{2} \mathbf{B} \cdot \mathbf{l} + \frac{1}{8} B^2 (x^2 + y^2) - \frac{2}{|r|}$$ \hspace{1cm} (18)$$

$$\hat{H}_T(r_1, r_2) = \frac{1}{|r_2 - r_1|}.$$ \hspace{1cm} (19)

The next step now is to calculate the spatial matrix elements according to (14). With $|\psi_q\rangle := b_i^\dagger b_j^\dagger |0\rangle$ and $|\psi_p\rangle := b_k^\dagger b_l^\dagger |0\rangle$ a straightforward calculation leads to

$$\langle \psi_p | \langle \psi_q | = \langle i | k | (j | l) \pm \langle i | l | (j | k) \hspace{1cm} (20)$$

$$\langle \psi_p | \hat{H}_I | \psi_q \rangle = \langle i | H_I | k | (j | l) \pm \langle i | H_I | l | (j | k) + \langle j | H_I | l | (i | k) \pm \langle j | H_I | k | (i | l) \hspace{1cm} (21)$$

$$\langle \psi_p | \hat{H}_T | \psi_q \rangle = \langle i | H_T | k | l \pm \langle i j | H_T | k l \hspace{1cm} (22)$$

where $| ij \rangle := | i \rangle \otimes | j \rangle$ and where the sign ‘±’ stands for ‘+’ in the singlet case and for ‘−’ in the triplet case.

All the $n(n + 1)/2$ different one-particle matrix elements $\langle i | H_I | k \rangle$ are relatively easily evaluated (see appendix B). Each matrix element $\langle i | H_I | k \rangle$ equals a prefactor depending on the parameters of $| i \rangle$ and $| k \rangle$ times the one-particle overlap $\langle i | k \rangle$, reflecting the fact that the one-particle operators not only conserve the total magnetic quantum number M and the total z-parity Π_z, but also the magnetic quantum numbers and z-parities of the individual one-particle states. We remark that the mentioned prefactors in the matrix elements of the Zeeman term do not even depend on any basis state, rendering them purely proportional to the overlap, $\langle i | \frac{1}{2} \mathbf{B} \cdot \mathbf{l} | k \rangle = \frac{1}{2} m_k B \langle i | k \rangle$. Thus the Zeeman term just gives rise to a shift in the energies.

The only coupling between two-particle states composed of one-particle states with different combinations of magnetic quantum numbers or z-parities arises due to the two-particle operator of the electron–electron interaction. In contrast to the one-particle matrix elements, the evaluation of the matrix elements $\langle ij | H_T | kl \rangle$ is by no means trivial (see appendix C). An additional problem is the large number of different two-particle matrix elements which is of the order of $N(N + 1)/2$ rather than $n(n + 1)/2$. This means that a sophisticated and detailed analysis of the analytical representation of the two-particle matrix elements by means of a series of different representations of hypergeometric functions has been necessary in order to achieve an effective numerical implementation and an acceptable CPU time for performing a calculation for one given field strength. Details on the representation of the quantities $\langle ij | H_T | kl \rangle$ are given in appendix C.

4. Results and discussion

4.1. Spectroscopic notation and properties

Before presenting the numerical results of our calculations we shall explain our spectroscopic notation in the presence of the field as well as its correspondence to the field-free notation. According to the four conserved quantities M, Π_z, S^2 and S_z, we denote a state by $i_S^{2S + 1} M^{(\nu)}$ where $(2S + 1)$ is the spin multiplicity and $\nu = 1, 2, 3, \ldots$ is the degree of excitation within a given subspace. If obvious, we will omit the index S_z in the following. In the present paper we will investigate and show results for the subspaces $1^0^+, 3^0^+, 1^0^-$ and 3^0^-.

For a vanishing field, there exists a one-to-one correspondence between our field notation \(n^{2S+1} L_M \) and the familiar field-free notation \(n^{2S+1} L_M \) for the lowest 55 singlet states and the lowest 54 triplet states of He. We have also provided the precise total zero-field energy of each state given in the literature.

For a vanishing field, there exists a one-to-one correspondence between our field notation \(n^{2S+1} L_M \) and the familiar field-free notation \(n^{2S+1} L_M \) for the lowest 55 singlet states and the lowest 54 triplet states of He. We have also provided the precise total zero-field energy of each state given in the literature.

\[
\begin{array}{cccc}
\text{Field free} & n^{2S+1} L_M & \text{Field} & n^{2S+1} L_M \left(-1 \right)^{l_z} \\
\hline
\text{Energy} & \nu & \text{Energy} & \nu \left(-1 \right)^{l_z} \\
-2.903724377^a & 1^1 S_0 & -2.175229378^a & 2^3 S_0 \\
-2.145974046^a & 2^1 S_0 & -2.133164191^b & 2^3 P_0 \\
-2.1238430864^b & 2^1 P_{1/2} & -2.058689067^a & 3^3 S_0 \\
-2.061271988^a & 3^1 S_0 & -2.055620184^b & 3^3 P_0 \\
-2.0556207328^b & 3^1 D_{3/2} & -2.055636309^b & 3^3 D_0 \\
-2.0551463620 & 3^1 P_{1/2} & -2.033586717^a & 4^3 S_0 \\
-2.0312798461^b & 4^1 D_{5/2} & -2.032583464 & 4^1 P_{1/2} \\
-2.0312551443^b & 4^1 F_{7/2} & -2.031288847^b & 4^3 D_0 \\
-2.0310696504^b & 4^1 F_{5/2} & -2.031255168^b & 4^3 F_{1/2} \\
-2.0211137^c & 5^1 S_0 & -2.022661324 & 5^3 S_0 \\
-2.020153861^b & 5^1 D_2 & -2.020551187^b & 5^3 P_{3/2} \\
-2.0200009371^b & 5^1 F_{7/2} & -2.020201279^b & 5^3 D_0 \\
-2.0200000710^b & 5^1 F_{5/2} & -2.020000071^b & 5^3 F_{1/2} \\
-2.0199059899^b & 5^1 G_{9/2} & -2.020000071^b & 5^3 G_{9/2} \\
-2.0190059899^b & 5^3 P_{1/2} & -2.020000071^b & 5^3 G_{9/2} \\
\end{array}
\]

\(^a\) Baker et al [39].
\(^b\) Drake and Yan [31].
\(^c\) Accad and Pekeris [30].
the one-particle ionization threshold \(T(B = 0) = -2.0 \text{ au} \) must be one-particle excitations with \(l_1 = 0 \) and \(l_2 = L \).

We emphasize that the mentioned one-to-one correspondence for \(B = 0 \) does not contradict the fact that the \(L^2 \)-symmetry is higher than the \(\Pi_z \) symmetry: at a finite field strength the former is broken, whereas the latter is still valid. The field-free notation becomes meaningless for a finite field and could only be maintained as a labelling device for the energy eigenstates because a given \(n_{5}^{2S+1}M^{(-1)\Pi} \) state at a finite field develops in a unique way from the equally labelled \(n_{5}^{2S+1}M^{(-1)\Pi} \) state at \(B = 0 \) which, in turn, is identical with one unique \(n_{5}^{2S+1}LM \) state. We remark that energy curves within a subspace of given symmetries \(n_{5}^{2S+1}M^{(-1)\Pi} \) are not expected to cross [38], whereas crossings between curves of different subspaces are allowed.

In table 1 we also provide the energies of the field-free states which have been very precisely calculated by Accad and Pekeris [30] or by Drake and Yan [31]. We want to keep track of the energetic order of the states for several reasons. The first reason is that we need the energies for associating the energy quantum numbers \(\nu \) to the states. It would not be sufficient to use the same counting \(n \) as in the field-free case because there exist different states with the same \(n \) but different \(L \) which possess the same \(\Pi_z \) symmetry, as is evident already for the states \(3^10^+ \) and \(4^10^+ \).

The second reason is to point out the approximate degeneracy of the field-free states with the same energy quantum number \(n \) but different \(L \). Whereas the electron–electron interaction is only able to slightly perturb the otherwise exact degeneracy of those states, we will see that the magnetic field will completely remove this degeneracy. This effect can even be observed for the behaviour of the corresponding states in the H atom and thus is primarily an effect of the magnetic field alone rather than of the two-particle character of the He atom. It occurs in addition to the well known removal of the degeneracy of states with the same quantum number \(L \) but different \(M \) whose energies split for finite field in \((2L + 1) \) different energy values.

The properties of the field-free states of helium summarized in table 1 serve as a good starting point for presenting our data for finite fields.

4.2. Aspects for the selection of basis functions

In order to obtain accurate results by our basis set method two major difficulties have been overcome by an optimal selection of basis functions. The first difficulty is the limited number \(n \) of one-particle functions from equation (6) which can be used to describe the exact wavefunction. The second difficulty, which is not completely independent from the previous one, is to describe electronic correlation by using a basis composed of one-particle states.

One manifestation of correlation is the fact that different electrons avoid occupying the same region in space which we also expect to be the consequence of the electron–electron repulsion in a magnetic field. In particular, we describe this by two electrons tending to occupy two regions in opposite directions from the nucleus which corresponds to the situation \(\varphi_2 - \varphi_1 = \pi \). The Coulomb interaction \(1/|r_1 - r_2| \) breaks the independent conservation of the \(z \)-components \(l_{z1}, l_{z2} \) of the two angular momenta, only leaving the sum \(L_z = l_{z1} + l_{z2} \) as a conserved quantity. A Fourier representation of the angular part of any fully correlated two-particle wavefunction \(\Psi(r_1, r_2) \) is given by \(\Psi(\varphi_1, \varphi_2) = \sum_{m_1,m_2} A_{m_1m_2} e^{i(m_1\varphi_1 + m_2\varphi_2)} \). In order to obtain an eigenfunction of \(L_z \) we must demand the constraint \(m_1 + m_2 = M \), yielding \(\Psi(\varphi_1, \varphi_2) = e^{iM\varphi_1} \sum_{m} A_{M-m,m} e^{im(\varphi_2 - \varphi_1)} \). This expression contains angular correlation as can already be seen explicitly by considering the lowest cosine term \(B_m \cos m(\varphi_2 - \varphi_1) \) contained in the series above: assuming \(B_m \) to be negative, \(\Psi(\varphi_1, \varphi_2) \) is largest for \(\varphi_2 - \varphi_1 = \pi \) and
The helium atom in a strong magnetic field

lowest for \(\varphi_2 - \varphi_1 = 0 \). Therefore, it appears fruitful to choose one-particle wavefunctions with opposite magnetic quantum numbers \(\pm 1 \) and \(\pm 2 \) or even higher angular momenta combining to a total magnetic quantum number \(M = 0 \) in order to describe the angular correlation well. Correlation can also be described by wavefunctions possessing a node at the nucleus position and thus allowing the two electrons to be located in opposite directions with respect to the nucleus.

The maximum dimension \(N \) of the Hamiltonian matrix is limited by CPU and storage resources. Through a very efficient implementation (see appendices A–C) of the matrix elements and by optimized storage usage we were able to push the number of two-particle basis functions to \(N \approx 4300 \), which represents the limit with respect to linear dependences of similar basis functions resulting in instabilities of the numerical diagonalization of the generalized eigenvalue problem (11).

Let us discuss the strategy for the selection of basis functions for the example of the subspace \(0^+ \). We first focus on the basis functions optimized for a nuclear charge \(Z = 1 \), i.e. the hydrogen atom. We selected 31 functions with symmetry \(0^+ \), among which 13 have a \(\rho \) exponent equal to 2 instead of 0 in order to describe correlation with the aid of their nodes. To further improve the description of correlation we also used each of the 13 functions with \(m^z = \pm 1^+ \) and \(\pm 2^+ \) as well as with \(m^z = 0^- \) and \(\pm 1^- \). The first excited state is already rather well described by this basis set, but is still improved by adding basis functions optimized for excitations of the H atom in a magnetic field. Whereas for the first excited state correlation effects are still important, the higher excitations are (as in the field-free case) more and more dominated by one-electron excitations for which, automatically, the two electrons are spatially separated. Therefore, higher excitations were described throughout by adding functions with values \(k_i = 1 \) or \(l_i = 1 \) in equations (7) and (8), which are subsequently optimized to describe the corresponding higher excitations within the \(0^+ \) subspace of hydrogen.

In order to describe the higher excitations of the He atom the optimization for \(Z = 1 \) is sufficient because the nucleus with \(Z = 2 \) is screened by the inner electron. For the ground state and the first two excited states, however, we have also observed important contributions from functions optimized for \(Z = 2 \). Here we used a similar selection scheme as for the functions optimized for \(Z = 1 \), but only half the number of functions.

Altogether we arrive at a number of \(n = 244 \) different one-particle states, from which \(N_1 = 4378 \) two-particle states for singlet and \(N_3 = 4288 \) two-particle states for triplet spin symmetry can be composed according to equation (15).

In a similar manner, we built up the basis for the \(0^- \) subspace by involving functions optimized for \(Z = 1 \) as well as for \(Z = 2 \). We observe the effect of the latter optimized functions to be less significant in the \(0^- \) case than in the \(0^+ \) case. This appears naturally, since in any two-particle state with \(0^- \) symmetry at least one electron is in an excited one-particle state and is only attracted by a screened nucleus with effective charge closer to \(Z = 1 \) than to \(Z = 2 \). For this reason, we used \(n = 195 \) one-particle states which is slightly less than in the \(0^+ \) case. According to equation (15) we obtain \(N_1 = N_3 = 3600 \) two-particle states for the singlet and triplet subspace, respectively. The numbers \(N_1 \) and \(N_3 \) do not differ due to the fact that the identical spatial one-particle quantum numbers which are always forbidden for the triplet two-particle states do not occur for the \(0^- \) singlet subspace either because two different one-particle \(z \)-parities are required to form an odd total \(z \)-parity.

In the following subsection we discuss the results of our He calculations. Their accuracy is estimated by comparison with the field-free data. If available, we also provide a comparison of our data for finite field strengths with the literature.
Table 2. Total energies \(E \) of the singlet ground state \(1\,{}^10^+ \), one-electron ionization threshold \(T \) and, if available, best energy values given in the literature, as a function of the magnetic field strength \(B \).

\(B \)	\(E(1\,{}^10^+) \)	Literature	\(T \)
0.0000	\(-2.903\,351\)	\(-2.903\,724\,377^a\)	\(-2.000\)
0.0008	\(-2.903\,346\)	\(-1.999\,599\,960\)	
0.004	\(-2.903\,342\)	\(-1.997\,999\,000\)	
0.008	\(-2.903\,340\)	\(-1.995\,995\,995\)	
0.020	\(-2.903\,270\)	\(-1.989\,975\,001\)	
0.040	\(-2.903\,036\)	\(-1.979\,900\,008\)	
0.080	\(-2.902\,083\)	\(-2.901\,95^b\)	\(-1.959\,600\,176\)
0.160	\(-2.898\,290\)	\(-1.918\,402\,804\)	
0.240	\(-2.892\,035\)	\(-1.876\,414\,090\)	
0.400	\(-2.872\,501\)	\(-2.871\,4^b\)	\(-1.790\,105\,922\)
0.500	\(-2.855\,859\)	\(-2.853\,85^c\)	\(-1.734\,628\,064\)
0.800	\(-2.787\,556\)	\(-2.775\,85^b\)	\(-1.561\,526\,260\)
1.000	\(-2.729\,508\)	\(-2.727\,2^c\)	\(-1.440\,989\,741\)
1.600	\(-2.507\,952\)	\(-1.058\,421\,519\)	
2.000	\(-2.329\,780\)	\(-2.326\,6^c\)	\(-0.788\,842\,154\)
5.000	\(-0.574\,877\)	\(1.456\,132\,354\)	
10.000	\(3.064\,582\)	\(5.609\,851\,957\)	
20.000	\(11.267\,051\)	\(14.478\,404\,55\)	
50.000	\(38.076\,320\)	\(42.453\,697\,55\)	
100.000	\(84.918\,313\)	\(90.439\,453\,48\)	

\(^a\) Baker et al [39].
\(^b\) Thurner et al [11].
\(^c\) Larsen [20].

4.3. Energies for finite field strengths

4.3.1. Results for \(M = 0 \) and even \(z \)-parity

(a) Results for the singlet states \(\nu \,{}^10^+ \). For the singlet subspace \(\nu \,{}^10^+ \) we present the ground state and the first four excitations, i.e. \(1 \leq \nu \leq 5 \). In the low-field regime and part of the intermediate regime the \(\nu \,{}^10^+ \) state is the global ground state. The numerical results for the total energy of the \(\nu \,{}^10^+ \) state as a function of the magnetic field are shown in table 2. We observe that apart from \(B = 0 \) and 0.08 our results for the energies are, throughout, lower and thereby better than the best ones given in the literature. We remark that the \(\nu \,{}^10^+ \) state is the state which causes the most difficulties for an accurate description by our method. The first reason is that it is the only state for which both electrons considerably occupy the one-particle ground state which forces the two electrons to be close to each other in a narrow domain of space and which thus gives rise to a relatively strong contribution of electronic correlation. The second reason is that the above-mentioned one-particle ground state, which would be a Slater-type orbital for \(B = 0 \), possesses a cusp at the origin which is difficult to obtain accurately by the superposition of Gaussians. This second effect, however, can be expected to become less important with increasing field strength since the cusp in the direction perpendicular to the field axis is smoothed out by the increasing dominance of the magnetic field.

The overall increase of the total energies (see table 2) with increasing field strength has its origin in the strongly increasing kinetic energy in the presence of the external field. The total binding energy of the two electrons can be obtained from the total energies \(E(B) \) in table 2 by
subtracting the minimal energy B of two free electrons in the field, yielding $E(B) - B$ (here and in the following all ionizations are considered with fixed quantum numbers).

However, for an analysis of the electronic structure the one-electron ionization energies for the process He \rightarrow He$^+ + e^-$ are much more sensitive. The corresponding one-particle ionization threshold $T(B)$ is provided in the fourth column of table 2. This threshold T can easily be obtained as the sum of the lowest Landau energy $B/2$ of the ionized electron and the total one-particle energy $E_{\text{tot}}^{(1)}(Z = 2)$ of the other electron in the Coulomb field of the nucleus with charge $Z = 2$ in the presence of the magnetic field. This quantity $E_{\text{tot}}^{(1)}(Z = 2)$, in turn, can be received from the highly accurate values for the one-particle binding energy $E_{\text{bind}}^{(1)}(Z = 1)$ computed by Kravchenko et al [5]. First we extract the total energies for $Z = 1$ from $(-E_{\text{bind}}^{(1)}(Z = 1)) := E_{\text{tot}}^{(1)}(Z = 1) - B/2$, and then we use the nuclear charge scaling relation $E(Z, B) = Z^2 E(Z = 1, B/Z^2)$ in [6], yielding

$$T(B) = B - 4E_{\text{bind}}^{(1)}(Z = 1, B/4).$$ \hspace{1cm} (23)

This threshold T lies essentially closer to the values $E(1^10^+)$ than the higher threshold B for two-particle ionization. We consider it, in fact, to be the optimal reference point for the total energies, and as expected the total energies of the excitations ν^{10^+} which are given in table 3 approach closer and closer to the value T with increasing excitation. In agreement with the above-mentioned considerations about the special difficulties in achieving accurate results for the ground state we obtain much more precise values for the excitations within the same basis set.

The one-particle ionization energies for all the states ν^{10^+}, $1 \leq \nu \leq 5$, i.e. the values of $E(B) - T(B)$, are given in figure 1 as a function of the magnetic field. A logarithmic scale on the energy axis is necessary for covering the three orders of magnitude for the different

B	$E(2^10^+)$	$E(3^10^+)$	$E(4^10^+)$	$E(5^10^+)$
0.0000	-2.145 911	-2.061 255	-2.055 613	-2.033 579
0.0008	-2.145 911	-2.061 246	-2.055 607	-2.033 531
0.004	-2.145 869	-2.061 028	-2.055 489	-2.032 867
0.08	-2.145 743	-2.060 374	-2.055 122	-2.031 451
0.20	-2.144 852	-2.056 838	-2.052 030	-2.026 808
0.40	-2.141 787	-2.050 850	-2.038 691	-2.018 836
0.80	-2.130 812	-2.036 626	-2.004 123	-1.995 610
1.60	-2.096 743	-1.999 728	-1.962 448	-1.945 128
0.24	-2.054 961	-1.956 971	-1.919 910	-1.902 875
0.40	-1.965 307	-1.865 411	-1.830 581	-1.814 978
0.50	-1.908 671	-1.807 640	-1.773 700	-1.758 191
0.80	-1.736 422	-1.632 339	-1.599 198	-1.584 566
1.00	-1.617 870	-1.511 771	-1.478 551	-1.464 143
1.60	-1.241 729	-1.130 213	-1.096 276	-1.081 100
2.00	-0.975 861	-0.861 382	-0.826 959	-0.811 912
5.00	1.252 363	1.379 993	1.416 706	1.432 270
10.00	5.393 200	5.530 945	5.569 418	5.585 430
20.00	14.248 991	14.396 817	14.437 004	14.453 455
50.00	42.207 510	42.368 689	42.411 075	42.428 159
100.00	90.180 690	90.351 969	90.395 965	90.414 700

Table 3. Total energies E of the excited singlet states ν^{10^+} for $2 \leq \nu \leq 5$ as a function of the magnetic field strength B as well as field-free reference values.

\(^a\) Baker et al [40].
\(^b\) Drake and Yan [31].
states. We observe that though the ground state 1^10^+ becomes monotonically more strongly bound with increasing field strength this is not, in general, the case for the excitations. Below $B \sim 0.005$ au none of the energies differs considerably from its field-free value. Between $B \sim 0.005$ and ~ 0.1 au a rearrangement takes place which is caused by the increasing dominance of the magnetic forces over the Coulomb forces. The first effect to be observed is that the 4^10^+ state leaves the energetical vicinity of the 3^10^+ state. According to table 1, for $B = 0$ these states would coincide with the 3^1S_0 and 3^1D_0 states, respectively, and thus both correspond to the same energy quantum number $n = 3$. The degeneracy of these two states is only slightly disturbed in the field-free case whereas a finite field removes this approximate degeneracy completely above $B \sim 0.01$ au.

At $B \sim 0.08$ au the states 4^10^+ and 5^10^+ experience an avoided crossing. It can be easily recognized even though the strong curvature of the graphs would make a finer grid of calculated energy values on the field axis desirable. The present grid is, nevertheless fine enough to observe that the calculated points are well aligned, confirming the good convergence of our calculations.

(b) Results for the triplet states ν^30^+. For the triplet subspace ν^30^+ we present the ground state and the first three excitations, i.e. $1 \leq \nu \leq 4$. The numerical results together with the available data from the literature are given in table 4. Many more data are available in the literature than for the singlet states. These numbers convincingly demonstrate that our
Table 4. Total energies \(E \) of the triplet states \(v_0^3 0^+ \) \((S_z = -1)\) for \(1 \leq v \leq 4 \) as a function of the magnetic field strength \(B \). We have also provided the results given in the literature so far.

\(B \)	\(E(1^3 0^+) \)	\(E(2^3 0^+) \)	\(E(3^3 0^+) \)	\(E(4^3 0^+) \)
	This work	Literature	This work	Literature
0.0000	-2.175220	-2.175229378\(^a\)	-2.068687	-2.068689067472\(^a\)
	-2.055630	-2.055363639453\(^b\)		
0.0008	-2.176019	-2.175050\(^c\)	-2.069480	-2.069278\(^d\)
	-2.056424	-2.037278		
0.0040	-2.179190	-2.178220\(^e\)	-2.072505	-2.072302\(^f\)
	-2.059507	-2.039893		
0.0080	-2.183098	-2.18305(5)\(^d\)	-2.075969	-2.0760(1)\(^d\)
	-2.063153	-2.042333		
0.0200	-2.194461	-2.084626	-2.072654	
	-2.048567			
0.0400	-2.212236	-2.211222\(^c\)	-2.096580	-2.092686\(^d\)
	-2.083143	-2.060290		
0.0800	-2.243958	-2.24383(3)\(^d\)	-2.121107	-2.1209(1)\(^d\)
	-2.087409	-2.082249		
0.1600	-2.296318		-2.166290	-2.123762
	-2.105446	-2.0687(9)\(^d\)		
0.2400	-2.339560		-2.206689	-2.1927\(^c\)
	-2.143909	-2.162609		
0.4000	-2.412723	-2.4112\(^c\)	-2.279523	-2.2615\(^c\)
	-2.235815	-2.217383		
0.5000	-2.454347	-2.4528\(^c\)	-2.321985	-2.279382
	-2.261303			
0.8000	-2.573615	-2.5737(3)\(^d\)	-2.443352	-2.4395(9)\(^d\)
	-2.403631	-2.386891		
1.0000	-2.650655	-2.6492\(^c\)	-2.520902	-2.482164
	-2.465921	-2.3497(21)\(^d\)		
1.6000	-2.867620	-2.8669(5)\(^d\)	-2.736687	-2.7330(8)\(^d\)
	-2.698755	-2.682563		
2.0000	-2.999708	-2.9982\(^c\)	-2.867135	-2.829137
	-2.813101	-2.6665(26)\(^d\)		
5.0000	-3.768199	-3.7667\(^e\)	-3.624558	-3.584967
	-3.568584			
10.000	-4.627450	-4.626\(^f\)	-4.473459	-4.432177
	-4.415350			
20.000	-5.772448	-5.771\(^f\)	-5.607619	-5.564582
	-5.547290			
50.000	-7.815256	-7.814\(^f\)	-7.635847	-7.590520
	-7.563695			
100.00	-9.843074	-9.842\(^e\)	-9.652632	-9.605634
	-9.586289			

\(^a\) Baker et al [40].
\(^b\) Drake and Yan [31].
\(^c\) Jones et al [17].
\(^d\) Jones et al [22].
\(^e\) Ivanov [16].
\(^f\) Thurner et al [13].
approach to the solution of the two-electron problem in a strong magnetic field is superior to any other method existing in the literature.

Among the three related triplet states with $S_z = 0, \pm 1$ the one with $S_z = -1$ possesses the lowest energy due to the spin shift BS_z. Therefore, we have given in table 4 those lowest energies. Although for $B = 0$ the singlet state 1^10^+ is the global ground state and the triplet state 1^30^+ (i.e. $S_z = 0$) stays above it for any field strength, the spin shift $(-B)$ causes the related triplet state $1^3^-10^+$ ($S_z = -1$) to become the ground state within the $M = 0$ subspace above $B \sim 1.112$ au. For the triplet ground state it is much easier, within our approach, to obtain accurate results than it is for the singlet ground state. This can be understood in the following picture: in the triplet ground state only, one of the electrons occupies the one-particle ground state with the cusp, whereas the other one already predominantly occupies an excited one-particle state and thus gives rise to a lower correlation contribution than in the singlet ground state.

In analogy to the case of the singlet states we provide in figure 1 the dependence of the one-particle ionization energies on the field strength for the triplet states. The reference threshold $T(B)$ has the same value as for the singlet case because, following our general definition of the threshold, we keep the spins fixed.

We observe that the ionization energy of any state v^30^+ in figure 1 behaves similarly to the ionization energy of its singlet counterpart $(v + 1)^10^+$. This relationship has its origin in the fact that two states differing only with respect to their spin symmetry possess, according to the field-free notation in table 1, similar contributions to their energies. The only difference with respect to the matrix elements of equations (20)–(22) for two such states is the sign of the exchange terms. Those might be small if the particles are sufficiently spatially separated as is the case for all states apart from the 1^10^+ state. This statement is confirmed by the fact that the singlet–triplet splitting is particularly small between the 4^10^+ state and the 3^30^+ state. These states belong to the field-free states 3^1D_0 and 3^3D_0 (see table 1), respectively, and the one-particle orbitals with d-symmetry involved here are even more spatially separated from the participating s-orbitals than the p-orbitals playing a role in other states with larger singlet–triplet splitting. Of course this argument breaks down when the magnetic field destroys the spherical symmetry sufficiently and causes a mixture of total angular momenta. Consequently, the splitting between the 4^10^+ state and the 3^30^+ state grows considerably at $B \sim 0.02$.

4.3.2. Results for $M = 0$ and odd z-parity

(a) Results for the singlet states v^10^-. For the singlet subspace v^10^- we present the ground state and the first four excitations, i.e. $1 \leq v \leq 5$. For $B \leq 0.08$, even the energies for the state 6^10^- show an excellent convergence. The corresponding data are presented in table 5. For a graphical representation we choose the ionization energies which are calculated from the total energies with respect to the same threshold $T(B)$ as in the case of the 0^+ subspace. The reason is that in a one-electron ionization process, of helium constrained to keep 0^- symmetry, the ionized electron can adopt the negative z-parity, allowing the remaining electron to occupy the one-particle ground state which possesses 0^+ symmetry. The ionized electron, in turn, has the same Landau energy $B/2$ as in the 0^+ case because the z-parity does not have any influence on the Landau energy which is only assigned to the transverse degrees of freedom.

The curves for the ionization energies are shown in figure 2. We observe that for very low fields the 6^10^- state and the 5^10^- state are approximately degenerate which is in agreement with the fact that for two values of v, μ within the same bracket of the sequence
Table 5. Total energies \(E \) of the states \(^1\!\!0^{-} \), \(1 \leq \nu \leq 6 \) as a function of the magnetic field strength \(B \) as well as field-free reference values and the values for finite field, if available. For \(B > 0.1 \) au, the energy values for the \(6^1\!\!0^{-} \) state are not optimally converged.

\(B \)	\(E(1^1\!\!0^{-}) \)	\(E(2^1\!\!0^{-}) \)	\(E(3^1\!\!0^{-}) \)	\(E(4^1\!\!0^{-}) \)	\(E(5^1\!\!0^{-}) \)	\(E(6^1\!\!0^{-}) \)
0.0000	-2.123 412	-2.055 015	-2.031 252	-2.031 014	-2.019 999	-2.019 877
	-2.123 843 430 864a	-2.055 146 3620a	-2.031 255 1443a	-2.031 069 65a	-2.020 002 937a	-2.019 905 990a
0.0008	-2.123 413	-2.055 009	-2.031 238	-2.030 994	-2.019 958	-2.019 824
0.004	-2.123 388	-2.054 868	-2.030 983	-2.030 463	-2.019 427	-2.018 337
0.008	-2.123 314	-2.054 438	-2.030 349	-2.028 842	-2.018 198	-2.014 716
0.020	-2.122 782	-2.051 758	-2.026 727	-2.020 802	-2.012 781	-2.005 504
0.040	-2.120 940	-2.044 641	-2.017 663	-2.006 440	-2.000 816	-1.994 681
0.080	-2.114 310	-2.027 515	-1.997 336	-1.983 478	-1.976 059	-1.970 825
0.160	-2.093 203	-1.990 787	-1.957 118	-1.942 289	-1.934 541	-1.926 719
0.240	-2.065 812	-1.952 090	-1.916 192	-1.900 745	-1.892 719	-1.884 719
0.400	-2.000 350	-1.870 342	-1.831 436	-1.815 130	-1.806 747	-1.798 747
0.500	-1.954 646	-1.816 921	-1.776 662	-1.759 971	-1.751 519	-1.743 119
	-1.954 55b	-1.948 143	-1.905 029	-1.868 324	-1.859 733	-1.851 733
0.800	-1.802 966	-1.648 143	-1.605 029	-1.587 531	-1.578 773	-1.570 773
1.000	-1.692 794	-1.529 609	-1.485 166	-1.467 297	-1.458 395	-1.450 395
	-1.691 85b	-1.515 043	-1.470 929	-1.454 324	-1.445 767	-1.437 767
1.600	-1.331 851	-1.151 043	-1.103 929	-1.085 324	-1.076 152	-1.067 152
2.000	-1.072 194	-0.883 229	-0.834 892	-0.816 003	-0.806 576	-0.800 576
	-1.069 05b	-1.055 726	-1.009 802	-0.992 024	-0.983 496	-0.977 496
5.000	1.137 045	1.355 762	1.408 108	1.428 117	1.437 859	1.445 859
10.000	5.270 657	5.506 354	5.560 116	5.581 403	5.591 134	5.598 134
20.000	14.124 717	14.372 781	14.428 726	14.449 668	14.459 766	14.469 766
50.000	42.086 569	42.346 227	42.403 449	42.424 712	42.434 863	42.439 863
100.000	90.064 304	90.330 942	90.388 895	90.410 339	90.420 669	90.425 669

a Drake and Yan [31].
b Larsen [20].
Figure 2. Ionization energies of the singlet and triplet states \(k^0^- \) and \(n^3^- \), \(k = 1,...,6 \), \(n = 1,...,6 \). The full curves correspond to the singlet states, the broken ones show the triplet states.

(1), (2), (3, 4), (5, 6), (7, 8, 9), (10, 11, 12), ... the two states \(v^10^- \) and \(\mu^10^- \) correspond to the same quantum number \(L \) according to table 1. As in the \(0^+ \) subspace, this approximate degeneracy is removed for fields above \(B \sim 0.02 \). The region between \(B \sim 0.02 \) and 0.1 exhibits some avoided crossings.

(b) Results for the triplet states \(v^30^- \). In contrast to the singlet case there exist many more data in the literature for the triplet state. In table 6 we have listed them together with our results for the states \(v^30^- \) (i.e. \(S_z = -1 \), \(1 \leq v \leq 5 \)). Again our results are better than any references for finite field strengths.

The ionization energies for the \(v^30^- \) states are also shown in figure 2. As in the singlet case, we achieved a good convergence even for the fifth excited state \(6^30^- \) below \(B = 0.08 \). The singlet–triplet splitting between the states \(v^10^- \) and \(v^30^- \) behaves similar to a function of the field like the corresponding splitting in the \(1/3^+0^- \) subspaces.

4.4. Transitions

In order to interpret experimental spectra from magnetic white dwarfs like GD229, it is necessary to determine transition energies from our total energies. The selection rules for electric dipole transitions are \(\Delta S = 0 \), \(\Delta S_z = 0 \) for the spin degrees of freedom and
Table 6. Total energies E of the triplet states $\nu_d^3 J^3 O^0 (S_z = -1)$ for $1 \leq v \leq 6$ as a function of the magnetic field strength B. We have also provided the results given in the literature so far.

B	$E(1^3O^0)$	$E(2^3O^0)$	$E(3^3O^0)$	$E(4^3O^0)$	$E(5^3O^0)$	$E(6^3O^0)$			
	This work	Literature	This work	Literature	This work	Literature			
0.0000	-2.132 910	-2.133 164 191	-2.058 016	-2.058 081 084	-2.032 298	-2.032 324 354	-2.031 252	-2.020 538	
0.0008	-2.133 710	-2.132 3	-2.058 810	-2.058 4	-2.033 081	-2.032 038	-2.021 293	-2.020 753	
0.004	-2.136 889	-2.134 4	-2.061 884	-2.061 5	-2.035 896	-2.034 870	-2.023 839	-2.022 647	
0.008	-2.140 826	-2.140 8(8)	-2.065 499	-2.065 5(5)	-2.039 077	-2.035 0(10)	-2.037 514	-2.026 642	-2.023 039
0.020	-2.152 378		-2.075 054		-2.047 603		-2.041 411	-2.033 564	-2.025 840
0.040	-2.170 822	-2.169 276	-2.088 326	-2.086 102	-2.059 120	-2.046 510	-2.041 394	-2.035 472	
0.080	-2.205 130	-2.205 0(6)	-2.111 478	-2.110 0(3)	-2.079 242	-2.057 8(14)	-2.064 505	-2.056 648	-2.051 347
0.160	-2.266 575	-2.262 806	-2.154 912	-2.112 992	-2.118 891	-2.103 193	-2.095 063		
0.240	-2.322 032	-2.319 8	-2.196 517	-2.186 8	-2.157 959	-2.141 609	-2.133 225		
0.400	-2.422 361	-2.419 6	-2.275 521	-2.246 3	-2.233 362	-2.216 039	-2.207 275		
0.500	-2.480 172		-2.322 570		-2.278 711		-2.260 925	-2.252 044	
0.800	-2.638 222	-2.639 7(9)	-2.455 054	-2.454 5(6)	-2.407 425	-2.392 5(7)	-2.388 624	-2.379 366	
1.000	-2.733 813		-2.537 231		-2.487 761		-2.468 471	-2.459 030	
1.600	-2.987 185	-2.987 3(8)	-2.760 330	-2.759 6(8)	-2.706 990	-2.674 9(6)	-2.686 687	-2.676 877	
2.000	-3.135 142		-2.893 357		-2.838 224		-2.817 461	-2.807 405	
5.000	-3.959 235		-3.657 879		-3.596 162		-3.573 739	-3.563 137	
10.000	-4.848 590		-4.509 715		-4.444 111		-4.420 729	-4.409 789	
20.000	-6.014 488		-5.645 191		-5.576 755		-5.552 682	-5.541 487	
50.000	-8.059 466		-7.672 999		-7.602 384		-7.577 781	-7.566 423	
100.00	-10.079 973		-9.688 173		-9.616 899		-9.592 135	-9.580 675	

a Drake and Yan [31].
b Jones et al [17].
c Jones et al [22].
d Thurner et al [13].
Figure 3. (a) Transition energies for the singlet transitions $\mu^10^+ \rightarrow \nu^10^-$, $\mu = 1, \ldots, 5$, $n = 1, \ldots, 6$ as a function of the field strength. The curves are interpolated on a grid of field strengths given by our calculations. (b) Transition energies for the triplet transitions $\mu^30^+ \rightarrow \nu^10^-$, $\mu = 1, \ldots, 4$, $n = 1, \ldots, 6$ as a function of the field strength.
The data presented we are able to treat the \(\Delta M = 0 \), \(\Delta \Pi_z = \pm 1 \) or \(\Delta M = \pm 1 \), \(\Delta \Pi_z = 0 \) for the spatial degrees of freedom. With the data presented we are able to treat the \(\Delta M = 0 \) transitions. We obtain a spectrum of 30 transition energy curves for singlet transitions and 24 for triplet transitions which we show in figures 3(a) and (b), respectively. In both logarithmic representations, we observe singularities belonging to zeros in the transition energies which arise due to level crossings of the initial state and the final state.

Since the magnetic field of a white dwarf is not constant but varies by a factor of two for a dipole geometry, the spectrum of wavelengths is in general smeared out. Transitions whose wavelengths are stationary with respect to the magnetic field, however, reflect themselves by characteristic absorption edges in the observable spectrum.

Due to this important role of the stationary lines we have summarized all transitions showing stationary points in tables 7 and 8. The position and the wavelength of each stationary point have been determined by interpolation using the relatively crude grid of our calculations. This allows us to perform a comparison of the stationary components with the observed

Component \(\nu^{2\Sigma+1} M^{(\nu=1)}^{\Pi_z} \)	Wavelength (Å)	Position \(B \) (au)	max/min
\(2^10^+ \rightarrow 1^10^- \)	3.665 ± 13	18.3 ± 0.3	min
\(2^10^+ \rightarrow 2^10^-	4.291 ± 5	0.140 ± 0.005	min
\(2^10^+ \rightarrow 3^10^-	5.169 ± 11	0.899 ± 0.003	max
\(2^10^+ \rightarrow 3^10^-	3.258 ± 5	0.184 ± 0.005	min
\(2^10^+ \rightarrow 3^10^-	3.475 ± 6	0.68 ± 0.02	max
\(2^10^+ \rightarrow 4^10^-	2.949 ± 10	0.17 ± 0.02	min
\(2^10^+ \rightarrow 4^10^-	3.073 ± 5	0.625 ± 0.005	max
\(2^10^+ \rightarrow 5^10^-	2.797 ± 5	0.200 ± 0.005	min
\(2^10^+ \rightarrow 5^10^-	2.905 ± 5	0.605 ± 0.005	max
\(3^10^+ \rightarrow 2^10^-	90.300 ± 3000	0.023 ± 0.001	max
\(3^10^+ \rightarrow 2^10^-	43.600 ± 1000	0.11 ± 0.02	min
\(3^10^+ \rightarrow 2^10^-	18.518 ± 100	8.9 ± 0.2	min
\(3^10^+ \rightarrow 3^10^-	10.655 ± 40	0.14 ± 0.01	min
\(3^10^+ \rightarrow 3^10^-	17.350 ± 40	1.45 ± 0.1	max
\(3^10^+ \rightarrow 4^10^-	7.916 ± 40	0.18 ± 0.01	min
\(3^10^+ \rightarrow 4^10^-	10.250 ± 10	1.05 ± 0.10	max
\(3^10^+ \rightarrow 5^10^-	6.969 ± 40	0.18 ± 0.01	min
\(3^10^+ \rightarrow 5^10^-	8.538 ± 5	0.98 ± 0.06	max
\(4^10^+ \rightarrow 2^10^-	666.000 ± 190000	0.008 ± 0.004	min
\(4^10^+ \rightarrow 3^10^-	18.000 ± 12	0.0188 ± 0.0002	min
\(4^10^+ \rightarrow 3^10^-	52.800 ± 110	6.6 ± 0.3	min
\(4^10^+ \rightarrow 4^10^-	13.850 ± 200	0.032 ± 0.002	min
\(4^10^+ \rightarrow 4^10^-	41.630 ± 220	1.75 ± 0.01	max
\(4^10^+ \rightarrow 5^10^-	11.530 ± 100	0.025 ± 0.002	min
\(4^10^+ \rightarrow 5^10^-	22.750 ± 30	1.28 ± 0.02	max
\(4^10^+ \rightarrow 6^10^-	9.730 ± 12	0.00239 ± 0.0003	min
\(5^10^+ \rightarrow 4^10^-	25.000 ± 2000	0.059 ± 0.001	min
\(5^10^+ \rightarrow 5^10^-	34.390 ± 40	0.0085 ± 0.0015	max
\(5^10^+ \rightarrow 5^10^-	23.000 ± 600	0.067 ± 0.005	min
spectrum of the magnetic white dwarf GD229 [10]. Indeed, the accurate data on many excited states presented here are part of an analysis accomplished very recently [10], which clearly shows that there is strong evidence for the existence of He in the atmosphere of GD229. This might also be the case for other magnetic white dwarfs and therefore the present data will serve astrophysicists for further comparison with observational data.

Component $\nu_{\mathrm{3541}}^{\mathrm{M}-i_{\mathrm{E}^4}}$	Wavelength (Å)	Position B (au)	max/min
$1^3\Omega^{-} \rightarrow 1^3\Omega^{-}$	1869 \pm 5	40 \pm 2	min
$1^3\Omega^{-} \rightarrow 2^3\Omega^{-}$	3184 \pm 3	0.224 \pm 0.005	min
$1^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	4289 \pm 3.5	2.25 \pm 0.02	max
$1^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	2503 \pm 3	0.281 \pm 0.005	min
$1^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	2837 \pm 2	1.51 \pm 0.01	max
$1^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	2292 \pm 3	0.293 \pm 0.005	min
$1^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	2522 \pm 1	1.39 \pm 0.01	max
$1^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	2197 \pm 5	0.299 \pm 0.005	min
$2^3\Omega^{-} \rightarrow 2^3\Omega^{-}$	2394 \pm 1	1.34 \pm 0.02	max
$2^3\Omega^{-} \rightarrow 2^3\Omega^{-}$	5650 \pm 2100	0.05 \pm 0.01	max
$2^3\Omega^{-} \rightarrow 2^3\Omega^{-}$	39900 \pm 300	0.17 \pm 0.01	min
$2^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	12090 \pm 25	26.8 \pm 0.3	min
$2^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	9347 \pm 3	0.25 \pm 0.01	min
$2^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	16130 \pm 45	3.65 \pm 0.15	max
$2^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	6990 \pm 10	0.26 \pm 0.01	min
$2^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	9180 \pm 5	2.22 \pm 0.06	max
$2^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	6186 \pm 10	0.27 \pm 0.01	min
$2^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	7630 \pm 3.5	1.87 \pm 0.05	max
$3^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	18000 \pm 2000	0.026 \pm 0.003	min
$3^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	37428 \pm 80	20.5 \pm 0.5	min
$3^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	12400 \pm 1000	0.039 \pm 0.003	min
$3^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	22200 \pm 100	0.14 \pm 0.02	max
$3^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	21650 \pm 50	0.25 \pm 0.02	min
$3^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	40600 \pm 40	4.5 \pm 0.3	max
$3^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	10400 \pm 300	0.030 \pm 0.002	min
$3^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	15950 \pm 100	0.135 \pm 0.015	max
$3^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	15450 \pm 50	0.275 \pm 0.015	min
$3^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	21000 \pm 55	2.6 \pm 0.3	max
$3^3\Omega^{-} \rightarrow 6^3\Omega^{-}$	9400 \pm 100	0.032 \pm 0.002	min
$4^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	477000 \pm 15000	0.0225 \pm 0.0015	max
$4^3\Omega^{-} \rightarrow 3^3\Omega^{-}$	150000 \pm 90000	0.08 \pm 0.02	min
$4^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	96500 \pm 1000	0.0062 \pm 0.0002	max
$4^3\Omega^{-} \rightarrow 4^3\Omega^{-}$	20150 \pm 300	0.064 \pm 0.001	min
$4^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	266000 \pm 5000	0.17 \pm 0.03	max
$4^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	181000 \pm 12000	0.26 \pm 0.04	min
$4^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	31400 \pm 400	0.014 \pm 0.001	max
$4^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	16800 \pm 500	0.068 \pm 0.005	min
$4^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	44700 \pm 3000	0.18 \pm 0.02	max
$4^3\Omega^{-} \rightarrow 5^3\Omega^{-}$	38000 \pm 6000	0.31 \pm 0.03	min
5. Conclusions and outlook

We have investigated the electronic structure of the helium atom in a magnetic field by a fully correlated approach. We have assumed the nucleus to possess infinite mass but provided scaling laws for how to connect our fixed-nucleus results to the data which should be expected for the true finite nuclear mass. One of the goals of our work, the identification of the features in the spectrum of white dwarf GD229 with electronic transitions in atomic helium, has already been successfully demonstrated [10]. This has been possible due to the high accuracy of our calculations on many excited states considering the electronic structure for magnetic fields for \(0 \leq B \leq 100 \) au, i.e. \(0 \leq B \leq 2.3505 \times 10^7 \) T.

The starting point of our ab initio treatment of the helium atom in a magnetic field was its full fixed-nucleus Hamiltonian which possesses four conserved quantities: the total spin \(S^2 \) and its \(z \)-component \(S_z \), the \(z \)-component \(L_z \) of the electronic angular momentum and the electronic \(z \)-parity \(\Pi_z \). Due to the magnetic field the spherical rotational invariance is broken, resulting in the fact that the total electronic angular momentum \(L^2 \) fails to be a conserved quantity for a nonvanishing field, \(B \neq 0 \). Our full configuration interaction approach has been able to overcome the difficulty that the symmetry of the system changes from purely spherical for \(B = 0 \) to mainly cylindrical for high fields. For this purpose we have used a one-particle basis set of anisotropic Gaussians furnished with monomials in the coordinates \(\rho \) or \(z \) transverse or longitudinal to the field axis, respectively. The degree of anisotropy has been obtained as a result of the direct optimization of the nonlinear parameters for the transversal or longitudinal Gaussian by the requirement to solve optimally the one-particle problem of the \(\text{H} \) atom or the \(\text{He}^+ \) ion in a magnetic field of given strength. The one-particle basis functions were composed to two-particle states of pure total symmetry in the sense of the four conserved quantities mentioned above. In the present paper, we have provided results for the singlet and triplet states in the subspaces with vanishing spatial magnetic quantum number \(M = 0 \) and positive or negative \(z \)-parity.

In each of these subspaces we have built up a matrix for the Hamiltonian and for the overlap between the nonorthogonal two-particle states which provided a variational estimation for the energy eigenvalues after the diagonalization of a generalized eigenvalue problem. By very elaborate techniques for the evaluation of the matrix elements, we were able to treat matrix dimensions of about 4000 within less than 1 day of CPU time on a moderate Silicon Graphics workstation. The relative accuracy of the results for the energies ranged between \(10^{-4} \) for the singlet ground states and \(10^{-5} \) for the triplet states or general excited states for \(2 < \nu < 5 \). To achieve this, a careful selection of the basis functions was necessary, i.e. combinations of one-particle magnetic quantum numbers \(m = \pm 1, \pm 2, \ldots \) were important to describe correlation whereas one-particle functions describing high excitations of the one-particle systems \(\text{H} \) or \(\text{He}^+ \) also provided the major contribution for high excitations of the two-particle system \(\text{He} \).

To enable a comparison of our calculated transitions with the observed spectra of magnetic white dwarfs, we have determined all the stationary points associated with the transitions between states with \(M = 0 \) and different \(z \)-parities. It turned out that the stationary points in the regime \(B \sim 0.1 \) and \(\sim 0.3 \) can be identified with lines in the spectrum of white dwarf GD229, which is even further confirmed by transitions involving \(M = -1 \) and positive \(z \)-parity [10, 41]. This provides strong evidence for the existence of helium in the atmosphere of this white dwarf. The present data will additionally be helpful in order to see whether there is also evidence for helium in other magnetic cosmic objects.

In order to complete the treatment of the electronic structure of helium in a magnetic field, we will, in the near future, calculate data for subspaces with higher magnetic quantum numbers for both odd and even \(z \)-parity. Furthermore, a detailed investigation of the oscillator strengths
as a function of the magnetic field is necessary in order to estimate properly the intensities of the transitions.

Acknowledgments

The Deutsche Studienstiftung (WB) and the Deutsche Forschungsgemeinschaft (WB) are gratefully acknowledged for financial support. PS acknowledges many helpful discussions during the CECAM workshop on ‘Atoms in strong magnetic fields’. FKD acknowledges financial support by the European Union. It is a pleasure for us to thank U Kappes for many fruitful discussions as well as for his input with respect to the computational aspects of the present work.

Appendix A. The overlap matrix elements

In the following we only give the results for the analytical representation of the matrix elements. The evaluation of the overlap integral is very simple because it factors into an integral over the transverse coordinate ρ and an integral over the longitudinal coordinate z. Both integrals can be reduced to a Gaussian type

$$\int_0^{\infty} r^n e^{-\gamma r^2} \, dr = \left(\frac{\pi}{\gamma}\right)^{n/2}$$

yielding for the dependence of the one-particle overlap $\langle i | k \rangle$ on the parameters of the states $| i \rangle$ and $| k \rangle$:

$$\langle i | k \rangle = \delta_{m_i m_k} \delta_{\pi_i \pi_k} \frac{1}{3} \left(\frac{n_i}{2} \right) \left(\frac{n_k}{2} \right) \left(\frac{n_i}{2} + 1 \right)$$

where we define $(-1)! := 1$ and $\gamma_{ik} := \gamma_i + \gamma_k$. The Kronecker delta symbols reflect the orthogonality of two one-particle states with different magnetic quantum numbers or different z-parities. We observe that the overlap is real and all the parameters of the wavefunctions $| i \rangle$ and $| k \rangle$ enter symmetrically in equation (A1).

Appendix B. The one-particle matrix elements

B.1. The matrix elements of the kinetic energy

The matrix elements of the operator $(p + \frac{1}{2} B \times r)^2$ are evaluated by using cylindric coordinates in which we consider

$$\langle i | T_\rho | k \rangle = \delta_{m_i m_k} \delta_{\pi_i \pi_k} \frac{1}{3} \left(\frac{n_i}{2} \right) \left(\frac{n_k}{2} \right) \left(\frac{n_i}{2} + 1 \right)$$

where T_ρ, T_ϕ, T_z represent the Laplacian, T_{Zeeman} is the Zeeman term and T_{dia} is the diamagnetic term. The evaluation of any of the matrix elements $\langle i | T | k \rangle$ is relatively simple since the derivatives generate prefactors but leave the types of the integrals unchanged in comparison to the overlap integral. A consequence is that the results are found to be proportional to the overlap $\langle i | k \rangle$ between the same two states. In detail we have

$$\langle i | T_\rho | k \rangle = \langle i | k \rangle \begin{cases} \frac{-n_{\rho_i}^2 \alpha_i^2 + 2(n_{\rho_i} n_{\rho_k} + n_{\rho_{ik}}) \alpha_i \alpha_k - n_{\rho_i}^2 \alpha_k^2}{2 \alpha_i \alpha_k} & n_{\rho_{ik}} \neq 0 \\ \alpha_{ik} & n_{\rho_{ik}} = 0 \end{cases}$$

$$\langle i | T_\phi | k \rangle = \langle i | k \rangle \begin{cases} \frac{n_{\rho_i} \alpha_i^2 - n_{\rho_k} \alpha_k^2}{\alpha_{ik}} & n_{\rho_{ik}} \neq 0 \\ 0 & n_{\rho_{ik}} = 0 \end{cases}$$

$$\langle i | T_z | k \rangle = \langle i | k \rangle \begin{cases} \frac{-m_{\rho_i}^2}{n_{\rho_k}} & n_{\rho_{ik}} \neq 0 \\ 0 & n_{\rho_{ik}} = 0 \end{cases}$$
\[\langle i | T | k \rangle = \langle i | k \rangle \]
\[\times \begin{cases}
\frac{n_{\rho_i}}{(n_{\rho_i} - 1) \beta_{ik}} & \text{for } n_{\rho_i} \neq 1 \\
\beta_i \beta_k / \beta_{ik} & \text{for } n_{\rho_i} = 1
\end{cases} \]
\[\langle i | T_{\text{Zeeman}} | k \rangle = \langle i | k \rangle \frac{1}{2} m_k B \]
\[\langle i | T_{\text{dia}} | k \rangle = \langle i | k \rangle \frac{n_{\rho_{ik}} + 2 B^2}{2 \alpha_{ik}}. \]

Again we observe that each matrix element is real and symmetric with respect to an interchange of the states \(|i⟩\) and \(|k⟩\). Due to the selection rules in the prefactor \(\langle i | k \rangle\) the occurrence of the single quantity \(m_k\) does not destroy this symmetry. Physically, the proportionality to \(\langle i | k \rangle\) means that the operator of the kinetic energy does not couple one-particle states involving different magnetic quantum number or \(z\)-parity.

B.2. The matrix elements of the electronic Coulomb interaction with the nucleus

The evaluation of the matrix elements of the one-particle operator \(V_f = 1/r\) is much more complicated than the other one-particle matrix elements discussed above. The reason is that the Coulomb potential possesses a spherical symmetry rather than the cylindrical symmetry of the basis functions. We have overcome this difficulty by applying a Singer transformation [42], leaving for the spatial integrations the convenient Gaussian types. The remaining integration due to the Singer transformation, however, is not as simple but it can be solved by involving the Gaussian hypergeometric function \(2F_1\), yielding

\[\langle i | V_f | k \rangle = -\langle i | k \rangle \beta_{ik}^{1/2} \]
\[\times 2F_1 \left(\frac{n_{\rho_{ik}} + n_{\sigma_k} + 1}{2}, \frac{1}{2}, \frac{n_{\rho_{ik}} + n_{\sigma_k} + 3}{2}; 1 - \frac{\beta_{ik}}{\alpha_{ik}} \right). \]

It is important to remark that very elaborate techniques are necessary to evaluate the function \(2F_1\) for the various occurring arguments with a high accuracy and with an acceptable efficiency. The standard expansion of \(2F_1(a, b, c; z)\) in a power series of \(z\) is by no means sufficient because a singularity of \(2F_1(a, b, c; z)\) for \(z = 1\) constrains the convergence domain of such a series to \(|z| < 1\). The consequence is that for \(\beta_{ik}/\alpha_{ik} \ll 1\) the convergence of the standard series would be arbitrarily slow. Moreover, for \(\beta_{ik}/\alpha_{ik} > 2\) the application of the standard series is completely useless. Using basis sets whose parameters \(\alpha_i, \beta_i\) usually cover the range from \(10^{-4}\) up to \(10^3\), we have thus been obliged to use various formulae for suitable analytic continuations of \(2F_1(a, b, c; z)\) to the domain \(|z| \geq 1\) [43]. By these techniques we achieved an accuracy of \(10^{-13}\) for the one-particle interaction integrals with no loss of efficiency compared with the simple integrals of the kinetic energy.

We remark that also the matrix elements of the electron–nucleus interaction are proportional to the overlap \(\langle i | k \rangle\). This is in agreement with the fact that the spherically symmetric Coulomb potential \(V_f = 1/r\) neither breaks the azimuthal symmetry nor disturbs the behaviour of the one-particle basis functions under the reflection \(z \to -z\).
Appendix C. The two-particle matrix elements

In contrast to the one-particle matrix elements treated above we cannot provide a single formula for the efficient and accurate calculation of the matrix elements $\langle ij | H_{ll} | kl \rangle$ of the two-particle interaction. The reason is the large number of different cases due to the various constellations of the individual one-particle functions which have to be treated differently in order to ensure a fast and highly accurate evaluation. We therefore provide in the following only an outline of the procedure and indicate the necessary techniques. Details can be obtained from the authors upon request.

First we apply a Singer transformation [42] in order to remove the Coulomb singularity in the integrand of the matrix elements, thereby introducing the new variable u according to $1/(r_1 - r_2) = (2/\sqrt{\pi}) \int_0^\infty du \ e^{-u^2(r_1 - r_2)^2}$. Although the underlying symmetry of the basis set is cylindrical, it is advantageous to carry out the spatial integrations in Cartesian coordinates. The $z_1 z_2$-integral can always be factored out, and the coupling between the two particles can be removed by the substitution $z_1 \to z_1 - u^2/(\beta_k + u^2)$. The resulting integral can be decomposed into a sum of $(n \omega + 1)$ integrals each factoring in two pure z_1 and z_2 integrals of the Gaussian type $\int_{-\infty}^{\infty} e^{-\beta (u) z^2}$ which can easily be evaluated.

The transversal part of the electron–electron integral is much more complicated than the z-integration. First each term $\rho_i^{(m_i+n_i+2k_i)e^{i(m_i-n_i)\rho_i}}$ gives rise to factors $(k_i + 1)(m_i+1)(n_i+1)$ according to its decomposition to $(x_1^2 + y_1^2)^{k_i} (x_1 - i \sgn(m_i) y_1)^{m_i} (x_1 + i \sgn(n_i) y_1)^{n_i}$ in Cartesian coordinates (again the same number of expressions arises for particle 2). Next, the particle decoupling transformation analogous to the one mentioned above multiplies the number of integrals by an additional large factor n_d.

At this stage, all the Gaussian integrations in x_1, x_2, y_1, y_2, z_1 and z_2 can be carried out, resulting in functions of the remaining variable u of type $u^2(1 + a_1 u^2)^{y_1}(1 + a_2 u^2)^{y_2}(1 + a_3 u^2)^{y_3}(1 + a_4 u^2)^{y_4}$, where the r_i are positive or negative integers or half-integers. The coordinates can always be chosen such that one r_i is a positive integer. Multiplying out the factor $(1 + a_1 u^2)^{y_1}$ enables us to reduce the remaining u-integral to an expression involving the Appell hypergeometric function $F_1(a, b, b', c; t_1, t_2)$.

For each of the $N(N + 1)/2$ matrix elements $\langle ij | H_{ll} | kl \rangle$, we thus have to evaluate $n_d((k_i + 1)(m_i + 1)(n_i + 1))^2(n \omega + 1)(r + 1)$ times the function F_1 with in general various different arguments a, b, b', c. Only the two arguments t_1, t_2 are universal for a fixed matrix element:

$$ t_1 = \frac{\beta_{ik}}{\beta_{ik} + \beta_{jl}} \quad \text{and} \quad t_2 = 1 - \frac{(\alpha_{ik} + \alpha_{jl})\beta_{ik}\beta_{jl}}{(\beta_{ik} + \beta_{jl})\alpha_{ik}\alpha_{jl}}. $$

For $|t_1| \ll 1$ and $|t_2| \ll 1$ we implemented the usual standard series expression of

$$ F_1(a, b, b'; c; t_1, t_2) = \sum_{m=0}^{\infty} \frac{(a, m)(b, m)}{(c, m)(1, m)} 2 F_1(a + m, b'; c + m; t_2) t_1^m $$

where

$$ 2 F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)(1, n)} z^n $$

is the Gaussian hypergeometric function. However, the fact that for many basis functions either the argument $|t_1|$ or $|t_2|$ or even both happen to lie close to 1 or above makes this standard representation useless since its convergence domains are the unit circles with respect to t_1 and t_2 [44]. Therefore, it was necessary to use a large number of analytic continuation formulae for F_1, each of which is valid for one specified class of arguments a, b, b', c. Even more, we have systematically compared the CPU times for altogether more
than 50 ways of evaluating F_1 and selected the fastest one for each class of arguments, involving, for example, all of the continuation formulae for the Gaussian hypergeometric function $\zeta F_1(a, b, c; z)$ given in equations (15.3.3)–(15.3.12) in [43]. We have additionally derived new formulae for $\zeta F_1(a, b, c; z)$ adapted for parameter constellations not covered in [43], and we investigated the different possibilities how to reduce F_1 to $2F_1$ or one of its derivatives.

We point out that without such a systematic analysis of the convergence properties of series representations for F_1 the present work would not have been possible: The reduction of CPU time for the same accuracy (10^{-12}) of our representation of the series compared to the most primitive selection of continuation formulae is about 10^3.

References

[1] Friedrich H 1982 Phys. Rev. A 26 1827
[2] Rössner W, Wunner G, Herold H and Ruder H 1984 J. Phys. B: At. Mol. Phys. 17 29
[3] Wittgen D and Friedrich H 1986 J. Phys. B: At. Mol. Phys. 19 991
[4] Ivanov M V 1988 J. Phys. B: At. Mol. Opt. Phys. 21 447
[5] Kravchenko Yu P, Liberman M A and Johansson B 1996 Phys. Rev. A 54 287
[6] Ruder H, Wunner G, Herold H and Geyer F 1994 Atoms in Strong Magnetic Fields (Berlin: Springer)
[7] Schmelcher P and Schweizer W 1998 Atoms and Molecules in Strong External Fields (New York: Plenum)
[8] Green R F and Liebert J 1980 Publ. Astron. Soc. Pac. 93 105
[9] Schmidt G D et al 1990 Astrophys. J. 350 758
[10] Jordan S, Schmelcher P, Becken W and Schweizer W 1998 Astron. Astrophys. 336 L33–6
[11] Thurner G, Herold H, Ruder H, Schlicht G and Wunner G 1982 Phys. Lett. A 89 133
[12] Pröschel P, Rössner W, Wunner G, Ruder H and Herold H 1982 J. Phys. B: At. Mol. Phys. 15 1959
[13] Thurner G, Köhbel H, Braun M, Herold H, Ruder H and Wunner G 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4719
[14] Ivanov M V 1991 Opt. Spektrosk. 70 2
[15] Virtamo J 1976 J. Phys. B: At. Mol. Phys. 9 751
[16] Ivanov M V 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4513
[17] Jones M D, Ortiz G and Ceperley D M 1996 Phys. Rev. A 54 219
[18] Mueller R O, Rau A R P and Spruch L 1975 Phys. Rev. A 11 789
[19] Vincze M and Baye D 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2089
[20] Larsen D M 1979 Phys. Rev. B 20 20
[21] Park C-H and Starace A F 1984 Phys. Rev. A 29 442
[22] Jones M D, Ortiz G and Ceperley D M 1997 Phys. Rev. E 55 6202
[23] Braun M, Schweizer W and Elster H 1998 Phys. Rev. A 57 3739
[24] Schmelcher P and Cederbaum L S 1988 Phys. Rev. A 37 672
[25] Kappes U and Schmelcher P 1994 J. Chem. Phys. 100 2878
[26] Kappes U and Schmelcher P 1995 Phys. Rev. A 51 4542
[27] Kappes U and Schmelcher P 1996 Phys. Rev. A 53 3869
[28] Detmer T, Schmelcher P, Diakonos F K and Cederbaum L S 1997 Phys. Rev. A 56 1825
[29] Detmer T, Schmelcher P and Cederbaum L S 1998 Phys. Rev. A 57 1767
[30] Scrinzi A Private communication
[31] Brau M, Schweizer W and Herold H 1993 Phys. Rev. A 48 1916
[32] Accad Y and Pekeris C L 1971 Phys. Rev. A 24 516
[33] Drake G W F and Yan Z-C 1992 Phys. Rev. A 46 2378
[34] Chen Z and Goldman S P 1992 Phys. Rev. A 45 1722
[35] Pavlov-Verevk V B and Zhilinskii B I 1980 Phys. Lett. A 78 244
[36] Johnson B R, Hirschfelder J O and Yang K-H 1983 Rev. Mod. Phys. 55 109
[37] Schmelcher P, Cederbaum L S and Kappes U 1994 Conceptual Trends in Quantum Chemistry (Dordrecht: Kluwer) pp 1–51
[38] Schmelcher P and Cederbaum L S 1992 Phys. Rev. A 43 287
[39] Westerveld W B, Kets F B, Heideman H G M and van Eck J 1979 J. Phys. B: At. Mol. Phys. 12 15 2575
[40] von Neumann J and Wigner E P 1929 Eigenwerte bei adiabatischen processen Phys. Z. XXX 467
[41] Baker J D, Freund D E, Hill R N and Morgan J D III 1990 Phys. Rev. A 41 1247
[40] Baker J D, Hill R N and Morgan J D III 1989 Relativistic, Quantum Electrodynamic, and Weak Interaction Effects in Atoms (AIP Conf. Proc. vol 189) ed W Johnson, P Mohr and J Sucher (New York: American Institute of Physics) pp 123–45

[41] Becken W and Schmelcher P in preparation

[42] Singer K 1960 Proc. R. Soc. A 402 412

[43] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)

[44] Appell P and Kampé de Fériet J 1926 Les Fonctions Hypergéométriques et Hypersphériques (Paris: Gauthier-Villars)