Cryo-EM structure of a mitochondrial calcium uniporter

Yoo et al., Science 361, 506–511 (2018)

Calcium transport plays an important role in regulating mitochondrial physiology and pathophysiology. The mitochondrial calcium uniporter (MCU) is a calcium-selective ion channel that is the primary mediator for calcium uptake into the mitochondrial matrix. Here, we present the high-resolution structural characterization of the full-length MCU from Neurospora crassa to an overall resolution of ~3.7 angstroms. Our structure reveals a tetrameric architecture, with the soluble and transmembrane domains adopting different symmetric arrangements within the channel. The conserved W-D-Φ-E-P-V-T-Y sequence motif of MCU pore forms a selectivity filter comprising two acidic rings separated by one helical turn along the central axis of the channel pore. The structure combined with mutagenesis gives insight into the basis of calcium recognition.

Mitochondrial Ca2+ transport is critical for shaping the dynamics of intracellular calcium signaling, regulating energy metabolism, generating reactive oxygen species, and modulating cell death (1, 2). Ca2+ uptake across the mitochondrial inner membrane was shown to occur via a “uniporter” (3), and electrophysiological studies of the mitoplast inwardly-rectifying Ca2+ current (I_{MICU}) showed that this “uniporter” is an ion channel that exhibits a remarkable selectivity for Ca2+ (4). Recent genomics studies have identified the key components of the uniporter holocomplex (uniplex) (5–9). In vertebrates, it comprises the mitochondrial calcium uniporter (MCU), an auxiliary transmembrane protein essential MCU regulator (EMRE) (8), and the auxiliary EF hand–containing proteins mitochondrial calcium uptake 1 (MICU1) and MICU2 (6, 10). EMRE plays a dual role in maintaining MCU in an open state and recruiting MICU1 and MICU2 (11), which regulate the activity of MCU in a Ca2+-dependent manner (6, 12–15). Whereas MCU is widely distributed across all major branches of eukaryotes (16), EMRE is metazoan-specific (8). The MCU ortholog from *Dipterostigmatellus discoideum*, an organism lacking EMRE, alone is capable of reconstituting channel activity in yeast (17). In fungi, MCU is typically present without the MICU1/2 homologs (18). Recent studies have further shown that fungal MCU homologs are also able to reconstitute channel activity in vitro and in vivo on their own (18, 19). Taken together, these data establish that MCU is the Ca2+-conducting pore-forming unit of the uniplex.

A single protomer of MCU is predicted to possess two transmembrane helices (TM1 and TM2), two coiled-coils (CC1 and CC2), and an N-terminal domain (NTD) located on the matrix side. All MCU homologs contain a highly conserved sequence motif W-D-Φ-E-P-V-T-Y (Φ denotes hydrophobic amino acids) located between TM1 and TM2. This motif is oriented facing the intermembrane space and is thought to form the selectivity filter in the oligomeric channel (5, 7, 9). The NTD is composed of ~100 residues and extends into the mitochondrial matrix. Crystallographic studies of the human mitochondrial MCU NTD revealed a distinct structural fold similar to a β-grasp, and subsequent functional studies revealed its modulatory role in MCU function (20, 21). A structure of the NTD-deleted MCU homolog from *Caenorhabditis elegans* (cMCU-ANTD) was recently determined by using nuclear magnetic resonance (NMR) and negative-stain electron microscopy, revealing a pentameric architecture (22), although the absence of the NTD limited further structural insights into the full-length channel assembly. We therefore conducted structural studies of a full-length MCU homolog using cryo-electron microscopy (cryo-EM). After screening a number of MCU homologs based on phylogenetic analyses (16), we found that a homolog from *Neurospora crassa* (MCUNC) was suitable for structural studies. To prevent proteolysis, we introduced a Tyr232Ala mutation into a flexible loop within the NTD (fig. S1). This Tyr232Ala mutant eluted at a similar volume as that of wild-type MCUNC during size-exclusion chromatography and exhibited a similar overall architecture, as determined with negative-stain EM (fig. S2). MCUNC was prepared under two different Ca2+ conditions for EM studies, referred to as low and high Ca2+ (supplementary materials, methods and materials). In both conditions, MCUNC was reconstituted in amphiphil and subjected to single-particle three-dimensional (3D) cryo-EM analysis. MCUNC unambiguously showed by means of EM a tetrameric arrangement under both Ca2+ conditions (fig. S3). The attainable resolution of these reconstructions (4.7 to 7 Å) (fig. S3 and supplementary materials, materials and methods) appeared to be limited by flexibility of the NTD. Therefore, we attempted to cross-link the NTD of MCUNC using the water-soluble cross-linker bis-sulfosuccinimidyl suberate (BS3), in the presence of high Ca2+, and reconstituted the BS3-cross-linked MCUNC into nanodiscs for EM analyses. The 3D reconstruction of cross-linked MCUNC in nanodiscs was determined to an overall resolution of ~3.7 Å (fig. S4). Comparison of the 3D reconstructions of cross-linked MCUNC and native MCUNC showed that cross-linking did not appreciably affect the structure of MCUNC (fig. S4). Thus, data of cross-linked and native MCUNC were combined to yield an improved reconstruction at an overall resolution of ~3.7 Å (fig. S4 and supplementary materials, materials and methods) that allowed for de novo model building (table S1 and supplementary materials, materials and methods).

SDS–polyacrylamide gel electrophoresis (SDS-PAGE) analysis of BS3–cross-linked MCUNC indicated a complete conversion of the monomeric MCU band to a single band with an apparent molecular weight most compatible with tetrameric MCUNC (fig. S2). Both cross-linked and native MCUNC in detergent micelles eluted at similar volumes during size-exclusion chromatography, suggesting that cross-linking did not alter the oligomeric state of MCUNC. Last, 2D classification and asymmetric 3D classification of both the native and cross-linked MCUNC samples unambiguously showed a tetrameric organization of MCUNC with no evidence for a pentamer, strongly supporting the tetrameric architecture of MCUNC in our final structures (figs. S3 and S4).

The overall shape of the MCUNC homotetramer is a prolate spheroid with dimensions of ~40 by 48 by 130 Å (fig. 1). The transmembrane domain (TMD) is formed by TM1 and TM2 helices, and the matrix region comprises the coiled-coil domain (CCD) and the NTD. TM1 and CC1 form a long and continuous helix at the periphery of the channel, while the TM2 helices line the central symmetry axis (fig. 1B). The TM helices are arranged so that TM1 from one protomer primarily interacts with TM2 from the adjacent protomer (fig. 1E). TM2 is followed by ~15 amino acids near the matrix-membrane interface but could not be accurately modeled (fig. S6). Immediately C-terminal to this region, a short helix, which we termed the junctional helix (JH), is positioned nearly perpendicular to TM1 and TM2 and forms a junction between TM2 and CC2. In the CCD, CC1 and CC2 form a dimeric coiled-coil, resulting in four dimeric coiled-coils within the tetramer. Because of the uncertainty of the connection between TM2 and JH, we cannot rule out the possibility that CC2 interacts with CC1 from the neighboring protomer (fig. S6). Unlike human MCU (hMCU), CC2 of MCUNC is formed by three putative helical regions at its C terminus, which is not resolved in the 3D reconstruction (fig. S1). The NTD comprises six β-strands (β1 to β6) and two α-helices (α1 and α2) and is connected to CC1 of the CCD, α2, located between the CCD and the rest of the NTD, positions the
NDT relative to the rest of the channel (Fig. 1, C to E). Despite the low sequence identity (~17% for the structured regions), the NTD is structurally very similar to the hMCU NTD fragment [Protein Data Bank (PDB) ID: 5KUJ, Cα root mean square deviation 1.8 Å] (figs. S1 and S7) (20, 21).

All MCU homologs contain the highly conserved sequence motif W-D-Ф-Е-P-V-T-Y, which has been proposed to form the selectivity filter (5, 7, 22). In our MCU_NcC structure, this sequence motif is located in the N-terminal region of TM2 (Fig. 2), with the carboxylate side chains of conserved acidic residues Asp³⁵⁵ and Glu³⁵⁸ from each protomer directed toward the central symmetry axis, forming two acidic rings along the channel pore. The first acidic ring formed by Asp³⁵⁵, which we term site 1 (S1), is located at the mouth of the pore and exposed to the intermembrane space. The distances between diagonally positioned Asp³⁵⁵ are ~8.8 Å, indicating that a hydrated Ca²⁺ is likely to bind to this ring (Fig. 2C and fig. S1). The second acidic ring formed by Glu³⁵⁸ is termed site 2 (S2). There is an extensive network of interactions surrounding Glu³⁵⁸ involving residues in the W-D-Ф-Е-P-V-T-Y motif that position the carboxylate group of Glu³⁵⁸ toward the central symmetry axis. Specifically, Pro³⁵⁹ appears to make interprotomer CH-p interactions with Trp³⁵⁴ from the adjacent subunit, the amide nitrogen in the indole ring of Trp³⁵⁴ hydrogen bonds to the carboxylate group of Glu³⁵⁸ from an adjacent protomer, and Tyr³⁶² is involved in both p-p interactions with Trp³⁵⁴ as well as hydrogen bonding interactions with Thr³⁶¹ from the adjacent protomer (Fig. 2, C and D, and fig. S4). Although the EM density for the MCU motif is sufficiently high to place side-chain atoms, the exact chemical nature of these interactions should be interpreted with caution. The distance between the carboxylate groups of Glu³⁵⁸ from diagonally opposing protomers is ~4.8 Å, suggesting that only dehydrated Ca²⁺ can be coordinated at S2. There is a strong EM density at the center of S2 (>17σ) (fig. S8A) that we tentatively assign to Ca²⁺ because (i) the density peak is present in both an asymmetric reconstruction of MCU_{NC} as well as the corresponding half maps (fig. S8, B and C), and (ii) calcium was present in high concentration during both protein purification and EM grid preparation (supplementary materials and methods).

The coordination of dehydrated Ca²⁺ by acidic residues has been observed in both TRPV6 and Orai1 and was proposed to be key to the Ca²⁺ selectivity of these channels (23, 24). We therefore suggest that together, this S2 acidic ring plays an important role in the selective Ca²⁺ transport by MCU. Consistent with our structural observations, mutation of Glu³⁵⁸ has been shown to abolish hMCU activity (22). We also observed two polar amino acids, Thr³⁶¹ and Tyr³⁶², located one helical turn below S2 that line the central axis of the pore, which we tentatively term “site 3” (S3). The diagonal distances between the side chains are large (13 to 14 Å), so S3 may play a role in hydrating Ca²⁺ ions exiting S2. We observed an EM density at the center of S3, the identity of which is unclear (fig. S8A to C). The selectivity filter organization of MCU_{NC} is in contrast with other classical tetrameric cation channels, where the selectivity filter is formed by loops connecting a TM helix and a pore helix (25, 26).

In order to investigate the role of the above-described interactions of the W-D-Ф-Е-P-V-T-Y motif in Ca²⁺-permeation by MCU, we used site-directed mutagenesis and Ca²⁺-uptake assays. Although functional assays are not currently available for MCU_{NC}, we exploited the high conservation of the selectivity filter within the MCU family and used an established mitochondrial Ca²⁺-uptake assay in human embryonic kidney (HEK) 293 cells lacking hMCU to test the activity of transfected hMCU mutants designed based on our MCU_{NC} structure (II). Specifically, we tested
Fig. 2. Ion conduction pore and selectivity filter. (A) The ion conduction pathway of MCUnc and the pore radius along the central axis [generated with HOLE software (30)] indicate three constrictions at Asp355, Glu358, and Tyr362. Front and rear protomers were removed for clarity. (B) Putative Ca\(^{2+}\) coordination sites, among which a strong cryo-EM density peak was observed and tentatively modeled as Ca\(^{2+}\) at site 2. (C) Top views of the putative Ca\(^{2+}\) coordination sites constituted of Asp355 at S1 (left); Trp354, Glu358, and Pro359 at S2 (middle); and Thr361 and Tyr362 at S3 (right). (D) Detailed view from the membrane plane showing the extensive network of interactions engaged by residues in the “W-D-Φ-Φ-E-P-V-T-Y” motif. The CH-π (Pro359 and Trp354) and π-π (Trp354 and Tyr362) interactions are highlighted by blue dashed lines. (E) Mitochondrial calcium uptake of human MCU (hMCU) mutants from MCUnc structure-based mutagenesis at the ion conduction pore. Representative traces of calcium uptake in digitonin-permeabilized cells after 10 μM CaCl\(_2\) was added. Mutation of Trp260 to Ala or Phe suppresses hMCU channel function, whereas mutation of Thr267 or Tyr268 to Ala solely reduces the activity. Mutation of Tyr268 to Phe shows calcium uptake to the comparable extent as wild-type hMCU expressed in MCU knockout (KO) cells. (F) Bar graph showing the calcium uptake of hMCU mutants relative to the wild-type hMCU between 0.5 and 3 min time points (mean ± SEM, n ≥ 4 independent measurements). To detect the expression of hMCU mutants, cell lysates were analyzed by means of immunoblotting with antibody to FLAG. Wild-type HEK293T cells and MCU knockout cells were confirmed by means of antibody to hMCU. β-actin was used as the loading control.
the importance of Trp^{260}, Thr^{267}, and Tyr^{268} (Trp^{364}, Thr^{371}, and Tyr^{362} in MCU_{NC}) for Ca^{2+} uptake by hMCU (Fig. 2, E and F). Mutation of Trp^{260} (Trp^{364} in MCU_{NC}) to either phenylalanine or alanine abolished hMCU-mediated Ca^{2+} uptake, and mutation of Thr^{267} (Thr^{361} in MCU_{NC}) to phenylalanine mutant, indicating that aromaticity is important for this position, which is in agreement with the above-described interactions. None of the tested mutations appreciably affected the expression level of hMCU compared with that of wild type (Fig. 2F).

Viewing along the symmetry axis of the channel, a symmetry mismatch occurs in which the TMD adopts a fourfold symmetry, whereas both the CCD and the NTD show a twofold symmetric organization (Fig. 3). This observed symmetry mismatch is apparent in the 3D reconstructions of both native MCU_{NC} and BS3 cross-linked MCU_{NC} (Fig. S3). Local and global alignments of protomers A and B in the MCU_{NC} structure indicate that the domain rearrangements between the TMD and the CCD-NTD account for the symmetry break (Fig. 3 and fig. S9), with the departure from fourfold symmetry originating from two distinct interaction networks engaged by neighboring NTDs (Fig. 3). With respect to the NTDs and CCDs, the channel adopts a dimer-of-dimers assembly; within the NTD dimer comprising protomers A and B (the A/B dimer), there is a large dimer interface (~620 Å²) defined by both NTDs and CCDs, whereas there is a comparatively minimal dimer interface (~380 Å²) mediated by the NTD dimer comprising protomers B and C (the B/C dimer).

The dimer-of-dimers assembly of soluble domains and the tetrameric assembly of the TMD in MCU_{NC} is analogous to that of ionotropic glutamate receptors (iGluRs) (27). In iGluRs, the ligand-binding domain (LBD) and amino terminal domain (ATD) assume twofold symmetric arrangements, whereas the TMD adopts a fourfold symmetric arrangement. The LBD transitions into various conformations, including a pseudo-fourfold arrangement during the gating cycle of iGluR (28, 29), indicating that the NTD dimer-of-dimers assembly might play a comparable role in MCU gating. This notion is further supported by recent studies that suggest phosphorylation of the NTD or divalent cation binding to the NTD modulates MCU function (fig. S7) (20, 21).

Many structural and architectural features observed in our MCU_{NC} structure contrast with those of cMCU-NTD (Fig. 4). First, cMCU-NTD and MCU_{NC} adopt distinct pentameric and tetrameric stoichiometries, respectively, which could result from construct design (truncation of the NTD versus full-length protein), choice of detergents (zwitterionic Fos-choline-14 versus dodecylmaltoside), and/or protein preparation (extraction from inclusion body versus the membrane). The Ca^{2+} channel function has not been shown in either cMCU (22) nor MCU_{NC}. Therefore, the in vivo oligomeric status of MCU has not been established, and we cannot exclude the possibility that fungal and cMCUs may adopt different oligomeric arrangements. These discrepancies await further validation. Second, the arrangement of TM1 and TM2 in MCU_{NC} establishes an extensive inter-protomer interface, whereas the TM helices in cMCU-NTD only form intra-protomer interactions. Third, although the selectivity filter sequence is located on TM2 in MCU_{NC}, the corresponding residues in cMCU-NTD are positioned.

Fig. 3. Hinge rotation enables the mismatch in channel symmetry. (A) Top-view comparison of channel symmetry sliced through the three layers depicted in the tetrameric MCU_{NC} channel. The TMD exhibits fourfold symmetry, whereas both the CCD and NTD display twofold symmetry. The lines are drawn between Cα atoms of Trp^{264}, Asp^{267}, and Ser^{255} (B and C) Alignment of protomer A (red) and protomer B (blue) at (B) NTD and (C) TMD, showing the rigid body rotations of TMD and NTD around the hinge point JH. (D) Distinct interfacial networks between each NTD and its neighboring partner.
within a loop, leading to different selectivity filter structures (fig. S10). Last, the CCD in MCU\textsubscript{Nc} consists of four dimeric coiled coils, formed by CC1 and CC2, whereas the CC2 from each protomer in cMCU-\textsubscript{NTD} forms a pentameric coiled coil in the CCD (Fig. 4).

Our studies provide structural insights into the design principle of the MCU\textsubscript{Nc} selectivity filter, which will serve as a platform to understand the mechanism of selective calcium permeation by this channel family.

REFERENCE AND NOTES

1. C. Mammiucani, G. Gherardi, R. Rizzuto, Front. Oncol. 7, 139 (2017).
2. K. J. Kamer, V. K. Mootha, Nat. Rev. Mol. Cell Biol. 16, 545–553 (2015).
3. T. E. Gunter, D. R. Pfeffer, Am. J. Physiol. 258, C755–C786 (1990).
4. Y. Krizhok, G. Krapivinsky, D. E. Clapham, Nature 427, 360–364 (2004).
5. J. M. Baughman et al., Nature 476, 341–345 (2011).
6. F. Porec et al., Nature 457, 291–296 (2010).
7. D. de Stefani, A. Raffaello, E. Teardo, I. Szabo, R. Rizzuto, Nature 476, 336–340 (2011).
8. Y. Sancak et al., Science 342, 1379–1382 (2013).
9. A. Raffaello et al., EMBO J. 32, 2362–2376 (2013).
10. K. J. Kamer, V. K. Mootha, EMBO Rep. 15, 299–307 (2014).
11. M. F. Tsai et al., eLife 5, e15545 (2016).
12. N. E. Hoffman et al., Cell Reports 5, 1576–1588 (2013).
13. K. J. Kamer, Z. Grabarek, V. K. Mootha, EMBO Rep. 18, 1397–1411 (2017).
14. G. Csdóás et al., Cell Metab. 17, 976–987 (2013).
15. K. Málitánkaram et al., Cell 151, 630–644 (2012).
16. A. G. Bick, S. E. Calva, V. K. Mootha, Science 336, 886 (2012).
17. E. Kovács-Bogdán et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8985–8990 (2014).
18. J. Song, X. Liu, P. Zhai, J. Huang, L. Lu, Fungal Genet. Biol. 94, 15–22 (2016).
19. G. Wu et al., Biochem. Biophys. Res. Commun. 496, 127–132 (2018).
20. Y. Lee et al., EMBO Rep. 16, 1338–1339 (2015).
21. S. K. Lee et al., Cell Chem. Biol. 23, 1157–1169 (2016).
22. K. Oxnoid et al., Nature 533, 269–273 (2016).
23. X. Hou, L. Pedi, M. M. Diver, S. B. Long, Science 338, 1308–1313 (2012).
24. K. Sadome, A. K. Singh, M. V. Yelshanskaya, A. I. Sobolevsky, Nature 534, 506–511 (2016).
25. D. A. Doyle et al., Science 330, 69–77 (1998).
26. M. Hirsch et al., Nature 550, 411–414 (2017).
27. A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, Nature 462, 745–756 (2009).
28. E. T. Twomey, M. V. Yelshanskaya, R. A. Grassucci, J. Frank, A. I. Sobolevsky, Nature 549, 65–65 (2017).
29. E. T. Twomey, A. I. Sobolevsky, Biochemistry 57, 267–276 (2018).
30. O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, M. S. Sansom, J. Mol. Graph. 14, 354–360, 376 (1996).

ACKNOWLEDGMENTS

Cryo-EM data were collected at The Scripps Research Institute (TSRI) electron microscopy facility. We thank A. Kuk and Y. Suo at Duke University, who helped with calcium flux experiments and preliminary negative-staining EM analyses, respectively. We thank J.-C. Dacon at TSRI High Performance Computing facility for computational support.

Fig. 4. Comparison of cryo-EM structure MCU\textsubscript{Nc} and NMR structure cMCU-\textsubscript{NTD}.

(A and B) Side and top views showing the tetrameric configuration of MCU\textsubscript{Nc}. (C) The selectivity filter sequence (yellow) of MCU\textsubscript{Nc} is located at the beginning of TM2. (D) Close-up view of the hydrophobic interactions (silver spheres) between CC1 and CC2. Hydrophobic residues are colored in teal. (E) Viewed from the intermembrane space, CC1 (orange), and CC2 (red) of MCU\textsubscript{Nc} form dimeric coiled-coils within each protomer via extensive hydrophobic interactions (highlighted by silver spheres).

(F and G) Side and top views showing cMCU-\textsubscript{NTD} (PDB ID: 5ID3) forms a pentamer. (H) The “D-Φ-Φ-Φ” motif (yellow) in cMCU is located at the loop connecting TM1 and TM2. (I) Close-up view of the hydrophobic residues (silver spheres) located on CC1 and CC2. Hydrophobic residues are colored in teal. (J) Viewed from the intermembrane space, CC2 (red) forms a pentameric helical bundle via hydrophobic interactions (silver spheres) pointing toward the central axis. Hydrophobic residues (silver spheres) on CC1 (orange) are exposed to the mitochondrial matrix.
and W. Anderson for microscope support. We thank S. Y. Kim at Duke Functional Genomics Shared Resource for generating the hMCU knockout cell line. **Funding:** This work was supported by the National Institutes of Health (R35NS097241 to S.-Y.L.; DP2EB02402 and R21AR072950 to G.C.L.). G.C.L. is supported as a Searle Scholar and a Pew Scholar. Computational analyses of EM data were performed by using shared instrumentation funded by NIH S10OD021634. **Author contributions:** J.Y. conducted all biochemistry of MCU and the mitochondrial Ca2+ uptake assay under the guidance of S.-Y.L. M.A.H. performed negative-staining EM experiments, and M.W. conducted all cryo-EM experiments under the guidance of G.C.L. and M.A.H. J.Y., Y.Y., M.A.H., and M.W. performed model building and refinement. All authors wrote the paper. **Competing interests:** The authors declare no competing interests. **Data and materials availability:** The coordinates are deposited in the Protein Data Bank with the PDB ID 6DT0, and the electron density maps have been deposited in the Electron Microscopy Data Bank with the ID EMD-8911. All other data are available in the manuscript or the supplementary materials.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/361/6401/506/suppl/DC1
Materials and Methods
Figs. S1 to S10
Tables S1
References (31–49)
16 April 2018; accepted 20 June 2018
10.1126/science.aar4056