Floral and Faunal Diversity in Sri Lankan Mangrove Forests: A Systematic Review

Ahalya Arulnayagam 1,2, Jong-Seong Khim 3 and Jinsoon Park 2,*

1 Department of Coastal and Marine Resources Management, Ocean University of Sri Lanka, Colombo 1500, Sri Lanka; ahalyaa@oucu.ac.lk
2 Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
3 School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 151742, Korea; jskocean@snu.ac.kr
* Correspondence: jpark@kmou.ac.kr; Tel.: +82-51-410-4327

Abstract: The paper gives a historical overview, and a summary of key findings from 70 previously published research papers giving scientific data over the years from 1980 to 2019. They concern the flora and/or fauna in the mangrove forests along the Sri Lankan coast, addressing diversity, taxonomy, distribution, and ecological interactions. A total of 28 mangrove floral species from 13 plant families have been reported so far. Similarly, faunal diversity studies have reported 99 invertebrates, dominated by Arthropoda (n = 55) and Mollusca (n = 26), and 214 vertebrates comprising Pisces (n = 112), Aves (n = 72), Reptilia (n = 13) and Amphibia (n = 2). Most studies have been concentrated on the Southwestern coast (n_flora = 20, n_fauna = 6). Negombo has been a hotspot for mangrove research, with a higher number of studies (n_flora = 11, n_fauna = 5). The majority of the mangrove studies were focused on mangrove floral diversity and taxonomy and were conducted over recent years (2010–2019). Scientific data on mangrove fauna is restricted to a certain geographical extent. This paper intends to identify the research gaps in the field of Sri Lankan mangroves regarding various aspects and suggests advancement in future studies. Overall, outputs from the present study would be helpful for upcoming researchers to focus more on filling the gaps in knowledge.

Keywords: Sri Lanka; mangroves; research gap; conservation; mangrove flora; mangrove fauna

1. Introduction

Mangroves are unique ecological assemblages of woody halophytes, circumscribed to the intertidal zone generally found in the tropical and subtropical zones. Mangroves comprise angiosperms that are uniquely adapted to extreme saline environments by means of salt-secreting leaves, low water potentials, and high intercellular salt concentrations, making them able to maintain favorable water relations in saline environments, as well as viviparous water-dispersed propagules [1]. Mangroves have been widely acknowledged for their immense coastal significance, like coastal productivity [2], powerful carbon sequestration [3], and providing nesting, breeding, and feeding grounds to a variety of marine and brackish species [4], as well as climate change mitigation and coastal protection [5]. Mangroves are globally distributed across 112 countries, covering an extent of 18 million hectares [6], of which nearly 42% are confined to Asia [7].

Sri Lanka is a tropical island located in the Indian Ocean toward the southeast of India, between latitudes 5°55′–9°51′ North and longitudes 79°41′–81°54′ East. It spans about 65,610 km², with a coastline of nearly 1705 km [8] and a continental shelf of 30,000 km² that is 120 m in depth [9]. Sri Lanka enjoys a wide array of coastal ecosystems, such as mangroves, coral reefs, salt marshes, and seagrasses since it covers a total brackish water area of about 158,016 ha [5]. Sri Lankan mangroves are unique, yet they are not distributed evenly throughout the island. As the tidal amplitude can be as low as 75 cm [4,8],...
mangrove distribution tends to exhibit a narrow spread and seldom displays an isolated forest patch [10].

Sri Lankan mangroves are often under-studied and underrepresented in the conservation agenda [11]. The wider scope of knowledge on Sri Lankan mangrove flora and fauna species composition and distribution has not been documented cohesively, despite the great progress that has been achieved during the past few decades. This review intends to achieve an exhaustive checklist of the species distribution of Sri Lankan mangrove ecosystems available, to be published for a global platform. In this present study, we aimed to provide a list of mangrove flora in the Sri Lankan mangrove ecosystems, supported by taxonomic re-identification of the previously reported taxa. Secondly, mangrove fauna previously reported in the research were gathered and organized accordingly, so that they reflected the taxonomic groupings. Accordingly, the spatiotemporal distribution of mangrove flora and fauna was overviewed in terms of biogeography, highlighting faunal and floral assemblages that, in particular, reflect habitat classification. Finally, an opportunity for imminent research studies assisting the sound science behind ecosystem-based management of the Sri Lankan mangrove ecosystems was suggested, by highlighting the potential biodiversity of mangrove flora and fauna and creating a way forward for effective conservation.

2. Materials and Methods

The existing peer-reviewed articles, based on the faunal and floral studies in the highest cohort concerning research quality, were collected through certain science-based search engines. We sourced peer-reviewed articles from the 1980s to the present (2019) to analyze the trends of scientific research related to Sri Lankan mangrove biodiversity. The analysis was conducted in two stages. First, a review of existing literature on mangrove floral and faunal distribution was conducted to identify the range of research materials, academic papers, and other documents available on the topic. This systematic, quantitative literature review identified 70 documents, including articles and research papers, via a preliminary screening process of 134 articles. We excluded those articles that did not address the purpose of our present review. English-language scientific studies (including original research papers and conference proceedings), and technical reports relevant to the research objective, were identified from the online scientific databases, including Web of Science (WoS), Science Direct and Google Scholar. Local research papers and proceedings were collected from the locally available databases. The search was conducted over an extended period and finalized in May 2020. The principal keywords used were “mangroves”, “Sri Lanka”, and “distribution”. Spare terms like “mangrove flora” and “mangrove fauna” were also used. Additionally, we examined the References sections of each preliminary article for pertinent documents that might have been missed in the initial research.

As soon as a group of papers defining the research the purpose related to the keywords had been identified, the selection was refined with respect to whether the paper addressed the specific purpose of this review. The final collection of 70 documents were reviewed to ensure each of them addressed mangrove flora and fauna in Sri Lanka. Each of the 70 documents in the final selection was coded according to a variety of variables: author nomenclature, publication year, journal type, source journal (if available), study location, climatic zone, tidal range, and whether the article discussed fauna or flora or both (Supplementary Data: Table S1). Once we compiled the data, all the taxa of mangrove flora were cross-checked with the mangrove reference database and herbarium. Available online https://www.marinespecies.org/mangroves/ (accessed on 1 April 2020), and specific literature sources. For the mangrove fauna, the taxonomical data were verified and presented with the accepted name, as defined by the World Register of Marine Species (WoRMS) database (available online: https://www.marinespecies.org/ (accessed on 15 April 2020)), the UniProt database (available online: https://www.uniprot.org/ (accessed on 10 February 2020)), the Reptilian database (https://reptile-database.reptarium.cz/ (accessed on 15
The second component was the complementary data collection of mangrove conservancy actions and regulations in Sri Lanka, with a focus on the future of mangrove ecosystems. The inspection of significant activities and updated laws and legislations is extended in this paper and appraised, so that theoretical perspectives and critical analysis are informed by reference to practice. This could also serve as an aid to increase the efficacy of research and conservatory actions undertaken in the future.

3. Results and Discussion

The review intends to focus on synchronizing the available published scientific data into one meta-dataset. The summary of the collected data is given in Table 1.

Study Location	Type of Study (Flora/Fauna)	Reference
All islands	Flora	[3,9,12–24]
	Fauna	[25,26]
	Fauna and flora	[4,27,28]
Ampara	Flora	[5,10]
Batticaloa	Flora	[29–32]
Chilaw	Flora	[33,34]
	Fauna	[35]
Galle—Unawatuna	Flora	[36,37]
Kalametiya	Flora	[38]
Kilinochchi	Flora	[39]
Maduganga	Flora	[40]
Mannar	Flora	[41]
Matara	Flora	[42–47]
Negombo	Flora	[48]
	Fauna	[49–52]
	Fauna and flora	[53–63]
Puttalam	Flora	[64]
	Fauna and flora	[65–68]
Rekawa	Flora	[69]
Trincomalee	Flora	[70,71]

3.1. Trend of Mangrove Research in Sri Lanka

Of the 70 documents examined in this study, 66 were peer-reviewed articles, three were “gray literature” (annual reports from the IUCN (International Union for the Conservation of Nature (Sri Lanka)), FAO (Food and Agriculture Organization (Sri Lanka)) and NARA (National Aquatic Resources Research and Development Agency (Sri Lanka)) and one Ph.D. thesis. All the articles reviewed were focused on the topic of either mangrove flora or fauna, or both. The documents were published between 1980 and 2020. The facts show that only a few articles [11] had been published before the year 2000, and more than half of the studies [45] have been carried out long after 2010. This indicates that a promising scientific effort has been made on mangrove ecology during recent years, and the numbers are expected to increase with time (Figure 1A). The majority of the data have been published in local journals; hence, the global onlookers were not aware of the potential of Sri Lankan mangrove ecosystems. It is believed that this compendious review will provide the international assembly with a prospective understanding of the biodiversity and distribution of mangrove ecosystem diversity in Sri Lanka, in a chronological manner. The degree of studies was mostly (44%) based on discussing the diversity, taxonomy and distribution of the mangrove flora and fauna (Figure 1B). Corresponding to that,
research efforts have been made involving the ecosystem services that would relate most significantly to fisheries and tourism.

Of the chosen studies, 15% have focused on economical assessment, landscape decline (with aerial photography), and modeling ecosystem functions, while 13% were focused on ecosystem dynamics, mostly on salinity gradient influence and carbon sequestration. Very few studies were made on chlorophyll assessment and productivity measurement, which is a drawback in mangrove research since net primary productivity assessments are means of determining forest productivity. On the other hand, it is understandable that, for a nation developing its research efforts toward mangrove ecosystems, taking a big step forward is not possible. This could also be explained by the fact that there is no research study based on DNA metabarcoding and ecological assessment with eDNA analyses. This analysis of research studies will provide a concise view of the state research efforts at the moment in the country, as well as encouraging the upcoming scientists to work more on the areas where data are lacking.

It should be noted that, even though there are research studies based on diversity, dynamics, and services, we do not have a comprehensive study including all the sections in one, or of the entire mangrove forests reported so far. It is recommended that such a collective effort should be taken, involving experts in the fields of ecology, taxonomy, and molecular biology.

Taking a closer look at the degree of studies across the locality throughout the years, mangrove research has been concentrated more on the western and southern parts of the country, especially on Negombo [11], since the 1980s (Figure 2). The primary reason for this could be the location of Negombo in a wet zone; the area is expected to exhibit higher mangrove density and diversity, since mangrove diversity is believed to be influenced by climatic factors [6]. Otherwise, Puttalam, Batticaloa, and Rekawa have mostly been targeted. Puttalam and Batticaloa are in the dry zone, and Rekawa is in the intermediate zone. Few or no studies have been conducted in the northern and eastern parts of the country since the sites were not accessible for longer periods. Currently, attempts are being
made to study the ecology of wetlands in those areas, and future papers are expected to demonstrate a promising research output in the coming years. Figure 3 explains the spatial and temporal distribution of mangrove-based scientific research efforts that have been reported to date from the 1980s. It is clear and accurate that lesser or no research efforts are taken in the northern, eastern and southern coastal line, while studies have been more concentrated toward the western coast. In addition, analysis shows that research efforts have focused more on estuarine mangrove diversity than on fringe areas. It should be noted that fringe mangroves are not taken into exclusive consideration, and we think that this might be because the Sri Lankan coastline exhibits a widespread extent of estuarine mangroves [27].

Figure 2. Overview of the representation of the status of mangrove research in Sri Lanka (both flora and fauna) at a glance, gathered from the review of 70 chosen articles.
There are ambiguities in the exact extent of island-wide mangrove distribution since the Northern and Eastern areas were not accessible, due to the civil war. From time to time, the data on the mangrove extent varies with the updates. Past studies reported an estimated total of 12,189 hectares of mangroves, whereas NARA (1997) indicated that 18,489 hectares were covered with mangroves [4]. However, estimates represent the total extent of mangroves of Sri Lanka to be about 15,670 ha [18], of which 5,009 ha are in the dry and intermediate zones, 644 ha in the intermediate zone, and 430 ha in the wet zone [3]. At present, mangrove forests subsist in patches, in association with the estuaries and lagoons [27]. The present study intended to provide an updated extent of mangrove distribution, according to the latest records, and it shows the current spatial distribution of mangrove flora to be a total of 15,981 hectares (Table 1). According to existing and collected data, the largest mangrove patch is reported in Puttalam, in the Kalpitiya lagoon, and the second and third are in the Jaffna peninsula and the Trincomalee–Batticaloa coastal belt, respectively [8]. Since mangrove distribution is affected by climate and soil texture [57],...
and Sri Lanka exhibits a widespread distribution of climatic regimes, ranging from dry to wet zones [72], mangrove distribution shows a high discrepancy.

Mangroves are broadly categorized into true mangrove, species restricted to mangrove habitats and mangrove associates, and species not confined to the intertidal areas but that occur in the vicinity of terrestrial vegetation [22]. In general, most of the true mangroves are visible all around the country. However, the floristic composition of the dry zone varies more than that of the wet zone [27]. Fluctuations in the freshwater influx differ widely from the wet zone to the dry zone, which influences the salinity gradient and the cohesive ecosystems [73] of mangroves. Salinity fluctuates from 0–35 ppt and can be affected by freshwater discharge, tidal amplitude, topography, and the extent of the lagoon or estuary [8]. Studies have reported “low saline” and “high saline” mangrove forest types in Sri Lanka, addressing the floristic characteristics [26]. According to their perspective, the “low saline” environment is present in the river estuaries, while “high saline” environments would be on the shores of lagoons and adjacent islands. Depending on the intensity of flooding and the topographical characteristics, mangrove forests are further categorized as scrub, overwash, and basin [27].

3.2. Analysis of the Mangrove Flora in Sri Lanka and an Updated Checklist

Considering the floral species, uncertainties prevail in the number of mangrove species available in Sri Lanka. While previous studies [26] have reported twenty-three true mangrove species, while a recent has recorded twenty-one, which is widely accepted at the present time [13]. This paper has collected a significant range of studies conducted throughout the past decades and provides a list of the true mangrove species recorded in each study. Table 2 demonstrates that the cumulative number fluctuates between 20 and 29. Figure 2 elucidates that there is a gap prevailing in assessing the species richness and abundance of mangrove flora in Sri Lanka with respect to the region, and with developing research methodologies; this should be acknowledged as far as possible. The west coast of the country is mainly targeted for mangrove-based research since it falls under the wet zone and is the easiest to access. Furthermore, the literature shows that there is a potential need for a critical review on the species richness of mangrove flora in Sri Lanka, and to address the possible scientific implications when preparing a nationwide comprehensive checklist for mangrove flora in Sri Lanka.

The total number of species recorded ranges from 17 to 25. A notable number of mangrove species have been recorded by [13] that includes 20 species, whereas [32] has recorded 17 species from the Chilaw lagoon alone. The number of species listed by de [26] and [37] is identical, yet the latter included two more species. The list gives a concise view of the mangroves growing in Sri Lanka, of which almost all the researchers have recorded Avicennia marina, Aegiceras corniculatum, Bruguiera gymnorrhiza, Exoecaria agallocha, Lumnitzera racemosa, Rhizophora apiculata, and R. mucronata (Figure 3A). To date, the final list provided by a recent study has been used as a standard key to the mangrove floral regime [17], which includes a total of 22 species of true mangrove, from 12 families. The majority of the species come from the Rhizophoraceae (32%) and Sonneratiaceae (14%). A total of 15 families have been reported so far, while others are less frequently studied and are more or less equally distributed (Figure 4A). The fact that other species are less studied is probably because they are either absent or are fewer in number.

A comprehensive list has been created, including the entire mangrove flora recorded over the past 40 years. All the scientific meta-data were validated with the mangrove reference database and herbarium, and also specific literature sources. In addition, details such as habitat type, and information regarding some minor environmental parameters, if available, were also included in the list. Such an analysis shows that Sri Lankan mangroves represent 13 families, which brings the net total to 28 (Table 2). For a country whose mangrove extent is restricted, this kind of numerical representation is useful and indeed valuable, such that conservation becomes an essential tool. Still, this number could have been an underestimation, given the fact that most of the country’s mangrove forests were
not extensively studied. As we believe, the actual number is still undefined since some parts of the country are not included in the survey prospectus.

![Figure 4](image_url) **Figure 4.** Summary of the key findings of the most-reported taxa: (A) flora, and (B) fauna, in the Sri Lankan mangrove forests, gathered from the 70 articles reviewed.

District	Mangrove Areas	Area (ha)	Remarks
Mullaitivu	Nathikadal estuary, Nayaru estuary, Kokkilai estuary	1040	*
Kilinochchi	Punareen, Mandakal aru, Pallakuda, Nachchikuda, Ratchamunai	1855	*
Mannar	Vidanthal tivu, Vanakali, Aruvi aru	1351	*
Jaffna	Thondamanr, Chundikkulam, Jaffna estuary	2505	*
Galle	Bentota, Kosgoda, Madu ganaga, Madampe oya, Hikkaduwa	406	*
Matara	Thodanduwa, Gin ganga, Unawatuna, Koggala	39	*
Hambantota	Polattu modara, Kirala kele, Nilwala estuary, Devundara estuary,	692	*
	Tangalle, Rekawa, Kahanda modara, Ambalanthottai, Walawa ganga estuary,		
	Kalametiya, Bundala		
Puttalam	Puttalam lagoon	2300	[23]
Gampaha		634	
Ampara	Pottuvil	618	**
Batticaloa	Batticaloa lagoon, Dutch bar, Mattikali, Kokkadicholai, Saththurukondan	2071	**
Trincomalee	Uppar lagoon, Yan Oya	2395	[74]
Kalutara	Kalutara	75	[4]
	Total	15981	

* Forest Department of Sri Lanka; ** Coast Conservation Department, Sri Lanka.
On a separate note, some mangrove species have been recorded by only one author, such as Dolichandrone spathacea, Exoecaria indica [57], and Xylocarpus moluccensis [18]. This might be due to their being either exclusive to a specific area or not very abundant throughout the island, or they could have been removed from their native area. It should also be understood that since only one study has reported them for the past few decades, the reliability of the data remains insignificant. It is clear that the southwest coastline, specifically Chilaw and Negombo, represents almost the entire floral regime that has been reported throughout the island, according to the studies [19]. This might be a prospective reason for further mangrove research studies to be concentrated more on these areas.

3.3. Analysis of Mangrove Fauna in Sri Lanka with Taxonomic Remarks

To provide a list of the mangrove faunal species reported in Sri Lanka, their occurrence and distribution were analyzed based on the metadata collected from previous articles. Unlike the extensive studies conducted on mangrove flora, faunal studies are comparatively fewer. Of the 70 articles screened, only 14 reported data regarding the faunal assemblage. This has restricted the scope of the paper in the field of regional comparison. Further research has targeted only the southwest coast and is especially concentrated on Negombo (n = 7) (Figures 2 and 3B). Most of them are more recent, after the year 2000. This paper intends to propose that there is a research gap prevailing in the field of mangrove fauna distribution throughout the island, and that this might be due to several reasons, such as a lack of access to mangrove sites, lack of expertise, or poor research facilities in which to conduct extensive faunal assemblage and community studies. One study in the 1980s and two studies in the 1990s shows that there was no or very little effort taken by the scientific community in reporting the faunal diversity in the Sri Lankan mangrove ecosystems (Figure 3). It is obvious that floral studies have been proliferating steadily with time, but faunal reporting has not. Many more attempts should be made to address such a research gap in the field of mangrove ecology in Sri Lanka.

Of the reported species, vertebrates and invertebrates have prominently occupied their niches in the mangrove ecosystem. Invertebrate fauna include a wide range of species from nematodes to arthropods, while chordate diversity includes species ranging from fish to mammals. Arthropods seem to have a potential role to play in the mangrove ecology, whereas the majority of the Pisces family is of vertebrates (Figure 4). Other than that, mollusks, annelids, and very few nematodes are reported in Sri Lanka, whilst birds were prominently observed in mangrove ecosystems. It could be understood that amphibians and reptiles would be “migrating” from place to place, due to which factor a proper survey would not have been possible. One likely technique for reporting them could be a long-term monitoring survey. Taking a glance at the trend in mangrove faunal research, it can be stated that scientific studies have focused more on macrofauna rather than microfauna distribution. The literature has not recorded a promising amount of either macrofauna or micro. Even though Sri Lankan mangrove ecosystems are prominent, and the country’s economy is widely dependent on fisheries and aquaculture, it is disappointing to see the scientific implication of reporting such a flourishing richness of species. The outcomes of this review suggest that scientists should concentrate more on the species richness and assemblage of mangrove fauna, and report them to the global arena, which would collateral promote their conservation.

As a part of this review, we attempted to provide a critical re-identification of the previously reported species, via comparisons with the database of the world register of marine species (WoRMS) and appropriate literature sources. The list of recent, valid (or appropriate) taxonomic names from the previously identified species was specifically suggested for 99 species: 1 Nematoda, 17 Annelids, 26 Mollusca, and 55 Arthropoda (Table 4). The species were identified to genus or species level, and are listed alphabetically under each phylum, which finally yields an updated list of invertebrates in the Sri Lankan mangrove ecosystem. See Table 3 below. Correspondingly, 214 vertebrates, including 112 Pisces, 2 Amphibians, 13 Reptilia, 72 Aves, and 15 Mammalia species, were crosschecked and an updated check-
list was prepared (Table 5). Their taxonomical nomenclature was checked with WoRMS, UniProt, the reptilian database, Avibase, and the Indian biodiversity portal, respectively. Tables 4 and 5 show the structured comprehensive list, as aforementioned.

Table 3. Collective list of mangrove flora reported to date in Sri Lankan mangrove forests, gathered from the scientific research articles reviewed in the present study.

Family	Species with Revised Scientific Nomenclature	Remarks
Acanthaceae	Acanthus ilicifolius L.	1
Pteridaceae	Acrostichum aureum L.	1
Primulaceae	Aegiceras corniculatum (L.) Blanco	1
Acanthaceae	Avicennia marina (Forssk.) Vierh.	1
Acanthaceae	Avicennia officinalis L.	1
Rhizophoraceae	Bruguiera cylindrica (Linnaeus) Blume	1
Rhizophoraceae	Bruguiera gymnorrhiza (L.) Lamk.	1
Rhizophoraceae	Bruguiera sexangula (Lour.) Poir.	1
Rhizophoraceae	Ceriops decandra (Griff.) Ding Hou	1
Rhizophoraceae	Ceriops tagal (Perr.) C.B. Robinson	1
Fabaceae	Cynometra iripa Kostel	2
Bignoniaceae	Dolichandrone spathacea (L. fil.) K. Schum.	2
Euphorbiaceae	Excoecaria agallocha L.	1
Euphorbiaceae	Excoecaria indica (Willd.) Muell.-Arg.	1
Malvaceae	Hirtiera littonilis Dryand.	1
Combretaceae	Lumnitzera litora (Jack) Voigt	1
Combretaceae	Lumnitzera racemosa Willd.	1
Arecaaceae	Nypa fruticans (Thurb.) Wurmb.	1
Lythraceae	Pemphis acidula Forst.	1
Rhizophoraceae	Rhizophora apiculata Bl.	1
Rhizophoraceae	Rhizophora mucronata Lamk.	1
Rubiaceae	Scyphiphora hydrophyllacea Gaertn. f.	1
Lythraceae	*Sonneratia alba J. Smith	1
Lythraceae	Sonneratia apetala Buch.-Ham.	1
Lythraceae	Sonneratia casicolaris (L.) Engler	1
Meliaceae	*Xylocarpus granatum König	1
Meliaceae	Xylocarpus moluccensis (Lamk.) Roem.	1
Meliaceae	Xylocarpus rumphii (Kostel.) Mabb.	3

* Reported as Endangered Species in Sri Lanka; 1—Mangrove Reference Database and Herbarium, 2—India Biodiversity Portal, 3—the Plant List.

Table 4. Comprehensive checklist of invertebrates observed in mangrove ecosystems previously reported in Sri Lanka, assembled from the scientific research articles studied in the current review.

Phylum	Taxa (Notation)	Habitat	Remarks
Nematoda	Dorylaimus stagnalis (Dujardin, 1845)	Brackish, Fresh	WoRMS
Annelida	*Eunice* (Cuvier, 1817)	Marine	WoRMS
Gonioda	*Audouin and H Milne Edwards, 1833	Marine	WoRMS
Heterospionidae	*Hartman, 1965*	Marine	WoRMS
Limnodrilus	*Claparede, 1862*	Brackish, Fresh	WoRMS
Lumborineridae	*Schmarda, 1861*	Marine	WoRMS
Neanthes	*negomboensis* (De Silva, 1965)	Marine	WoRMS
Nephys	(Cuvier, 1817)	Marine	WoRMS
Nereididae	*Blainville, 1818*	Marine	WoRMS
Pilargidae	*Saint-Joseph, 1899*	Marine	WoRMS
Sabella	*Linnaeus, 1767*	Marine	WoRMS
Sabellariidae	*Johnston, 1865*	Marine	WoRMS
Sphaeridoridae	*Malmgren, 1867*	Marine	WoRMS
Spionidae	*Grube, 1850*	Marine	WoRMS
Syllidae	*Grube, 1850*	Marine	WoRMS
Neanthes	*manatensis* (Pillai, 1965)	Marine	WoRMS
Phylum	Taxa (Notation)	Habitat	Remarks
----------	--	---------------	---------------
Mollusca			
	Trypanosyllis zebra (Grube, 1860)	Marine	WoRMS
	Neopomatus uschakovi (Pillai, 1960)	Brackish	WoRMS
	Anadara (Gray, 1847)		WoRMS
	Cassidula multiplicata (Martens, 1865)	Marine	WoRMS
	Cassidula nucleus (Gmelin, 1791)	Brackish, Terrestrial	WoRMS
	Cassidula quadrasi (Hidalgo, 1888)	Marine	WoRMS
	Cerithidea cingulata (Gmelin, 1791)	Brackish	WoRMS
	Crassostrea (Sacco, 1897)		WoRMS
	Dentalium (Linnaeus, 1758)	Marine	WoRMS
	Faunus ater (Linnaeus, 1758)	Brackish	WoRMS
	Cafarinium tumidum (Röding, 1798)		WoRMS
	Geloina bengalensis (Lamarck, 1818)	Brackish	WoRMS
	Geloina coaxans (Gmelin, 1791)		WoRMS
	Littorina scabra (Linnaeus, 1758)	Marine	WoRMS
	Marcia (H. Adams and A. Adams, 1857)		WoRMS
	Melampus (Melampus) fasciatus (Deshayes, 1830)	Brackish, Terrestrial	WoRMS
	Meretrix casta (Gmelin, 1791)	Marine	WoRMS
	Nerita polita (Linnaeus, 1758)	Marine	WoRMS
	Perna (Bruguière, 1789)	Marine	WoRMS
	Pinna bicolor (Gmelin, 1791)		WoRMS
	Pleuroloca trapezium (Linnaeus, 1758)	Marine	WoRMS
	Saccostrea cucculata (Born, 1778)	Marine	WoRMS
	Telescopium telecopium (Linnaeus, 1758)	Marine, Brackish	WoRMS
	Terebralia palustris (Linnaeus, 1767)	Marine, Brackish	WoRMS
	Squamopleura imitator (Nierstrasz, 1905)	Marine	WoRMS
	Euchelus asper (Gmelin, 1791)	Marine	WoRMS
	Cellana radiata (Born, 1778)	Marine	WoRMS
Arthropoda			
	Alpheus edwardsii (Audouin, 1826)	Marine	WoRMS
	Atyopsis spinipes (Newport, 1847)	Fresh	WoRMS
	Balanus amphitrite (Darwin, 1854)	Marine, Brackish	WoRMS
	Balanus (Costa, 1778)	Marine	WoRMS
	Baruna socialis (Stebbing, 1904)	Marine	WoRMS
	Caridina gracilrostris (de Man, 1892)	Fresh	WoRMS
	Caridina propinqu (de Man, 1908)	Fresh	WoRMS
	Carinilae zeylanica (Arudrangasam and Costa, 1962)	Fresh	WoRMS
	Ceridocus (Costa, 1853)	Marine	WoRMS
	Chironantes darinensis (Campbell, 1967)	Marine, Fresh	WoRMS
	Chiromantes (Gistel, 1848)	Marine, Fresh	WoRMS
	Cirolana villegi (Stebbing, 1904)	Marine	WoRMS
	Cribanarius longifars (de Haan, 1849)	Marine	WoRMS
	Entomobrya (Rondani, 1861)	Marine	WoRMS
	Episesarma versicolor (Tweedie, 1940)	Marine, Brackish	WoRMS
	Eupagurus (Brandt, 1851)		WoRMS
	Holotrichia (F.Schmitz, 1897)	Marine	WoRMS
	Lembos (Spence Bate, 1857)	Marine	WoRMS
	Lembos (Spence Bate, 1857)	Marine	WoRMS
	Ligia exotica (Roux, 1828)	Terrestrial	WoRMS
	Macrobrachium elegantum (Pan, Hou and S. Li, 2010)	Fresh	WoRMS
	Macrobrachium rosenbergii (de Man, 1879)	Marine	WoRMS
	Macrobrachium scabrum (Heller, 1862)	Fresh	WoRMS
	Macrophthalmus depressus (Rüppell, 1830)	Marine	WoRMS
	Macrophthalmus sulcatus (H. Milne Edwards, 1852)	Marine	WoRMS
	Messor bidens	Terrestrial	[75]
	Messor darwinensis	Terrestrial	[75]
	Messor spp.	Terrestrial	[75]
Faunal diversity varied widely from meiofauna to macrofauna, comprising members from nematodes to mammals. The invertebrate diversity seemed to be dominated by arthropods (56%) whilst the vertebrate peak in number was Pisces (52%) (Table 5). As the literature suggests [76], mangroves serve as a habitat for most marine, brackish and freshwater invertebrates, and for fish during the spawning, reproductive and juvenile phases of their lifecycle. The present review supports the fact that arthropods, mollusks, and fishes are recurrently reported in mangrove environments. Yet, it is unclear whether the researchers have reported juveniles or adults in their publications. This poses uncertainty in validating the aforesaid point. Meanwhile, it should be appreciated that mangrove ecosystems have the capability to harbor a massive number of species, and undoubtedly can be marked as a biodiversity hotspot. Mangroves represent a unique ecological niche for many species of fauna.

Prominent invertebrates, seen in all mangroves regardless of the climatic zone, include grapsid crabs, portunid crabs, hermit crabs, and fiddler crabs. Penaeid prawns are abundantly seen in all the estuaries and lagoons. Studies have reported that the mangrove environment is dominated by gastropods and grapsid crabs, but the present review presents the dominance of arthropods over the mollusks [26]. This could mean that either the study has underreported some species, or there has been a promising increase in the scientific reporting of invertebrate fauna. Mud lobsters (Thalassina anomala) are unique to the mangrove ecosystems [28].
Table 5. Comprehensive checklist of vertebrates observed in the mangrove ecosystems of Sri Lanka, as reported in previous literature, collected from the scientific research articles reviewed in the existing study.

Class	Species	Habitat	Remarks
Pisces	Acanthopagrus latus (Houttuyn, 1782)	Marine, Brackish, Fresh	WoRMS
	Acanthurus weberi (Ahl, 1923)	Marine	WoRMS
	Acanthurus (Forsskål, 1775)	Marine	WoRMS
	Ambassis commersoni (Cuvier, 1828)	Marine, Brackish, Fresh	WoRMS
	Ambassis dayi (Bleeker, 1874)	Brackish, Fresh	WoRMS
	Ambassis urontina (Bleeker, 1852)	Marine, Brackish, Fresh	WoRMS
	Anchovella indica (van Hasselt, 1823)	Marine	WoRMS
	Anguilla bicolor (McClelland, 1844)	Marine	WoRMS
	Apaprius (Jordan and Richardson, 1908)	Marine	WoRMS
	Aplocheilus melastigma (McClelland, 1839)	-	WoRMS
	Apogon thermalis (Cuvier, 1829)	Marine	WoRMS
	Arios cælatus (Valenciennes, 1840)	Marine, Brackish	WoRMS
	Arios dissimulieri (Valenciennes, 1840)	Marine, Brackish, Fresh	WoRMS
	Arios jella (Day, 1877)	Marine	WoRMS
	Arios platystomus (Day, 1877)	Marine	WoRMS
	Arios subrostreus (Valenciennes, 1840)	Marine	WoRMS
	Arios venosus (Valenciennes, 1840)	Marine	WoRMS
	Arothron hispidus (Linnaeus, 1758)	Marine	WoRMS
	Arothron immaculatus (Bloch and Schneider, 1801)	Marine	WoRMS
	Arothron reticulatis (Bloch and Schneider, 1801)	Marine	WoRMS
	Arothron stellatus (Anonymous, 1798)	Marine	WoRMS
	Autistes puta (Cuvier, 1829)	Marine	WoRMS
	Bagrus thalassinus (Rüppell, 1837)	Marine, Brackish, Fresh	WoRMS
	Bathygobius fuscus (Rüppell, 1830)	Marine, Brackish, Fresh	WoRMS
	Brachirus orientalis (Bloch and Schneider, 1801)	Marine	WoRMS
	Butis butis (Hamilton, 1822)	Marine	WoRMS
	Calligonon fasciatus (Valenciennes, 1840)	Marine	WoRMS
	Carangoides (Bleeker, 1851)	Marine	WoRMS
	Caranx ignobilis (Forsskål, 1775)	Marine	WoRMS
	Caranx sexfasciatus (Quoy and Gaimard, 1825)	Marine, Brackish, Fresh	WoRMS
	Caranx (Lacepède, 1801)	Marine	WoRMS
	Centropomus (Lacepède, 1802)	Marine	WoRMS
	Chaetodon suratensis (Bloch, 1790)	Brackish	WoRMS
	Chanos canos (Forsskål, 1775)	Marine, Brackish, Fresh	WoRMS
	Cheilodipterus butis (Hamilton, 1822)	Marine, Brackish, Fresh	WoRMS
	Chelonodon patoca (Hamilton, 1822)	Marine	WoRMS
	Cichlops (Müller and Troschel, 1849)	Marine	WoRMS
	Claris braehii (Günther, 1864)	Fresh	WoRMS
	Cottus chatareus (Hamilton, 1822)	Brackish, Fresh	WoRMS
	Cygnoglossus bilineatus (Lacepède, 1802)	Marine, Brackish	WoRMS
	Decuria malabaricus (Jerdon, 1849)	Fresh	WoRMS
	Electris fusca (Forster, 1801)	Marine, Brackish, Fresh	WoRMS
	Epinephelus tawina (Forsskål, 1775)	Marine	WoRMS
	Eulophus melanurus (Bleeker, 1851)	Brackish, Fresh	WoRMS
	Eucromis cyanus (Bleeker, 1850)	Brackish, Fresh	WoRMS
	Gerres argyreus (Forster, 1801)	Marine	WoRMS
	Gerres ogena (Forsskål, 1775)	Marine	WoRMS
	Gerres (Quoy and Gaimard, 1824)	Marine, Brackish, Fresh	WoRMS
	Glossogobius bicellatus (Valenciennes, 1837)	Marine, Brackish, Fresh	WoRMS
	Glossogobius celebrius (Valenciennes, 1837)	Marine, Brackish, Fresh	WoRMS
	Gobius koeleri (Pallas, 1770)	Marine	WoRMS
	Gobius sadananus (Hamilton, 1822)	Marine	WoRMS
	Hemirhamphus margaritus (Forsskål, 1775)	Machine	WoRMS
	Heniochus ammicatus (Linnaeus, 1758)	Marine	WoRMS
	Holocentrus surinamensis (Bloch, 1790)	Marine	WoRMS
	Hyporhamphus xanthopterus (Valenciennes, 1847)	Marine	WoRMS
	Icthyocampus carce (Hamilton, 1822)	Marine, Brackish, Fresh	WoRMS
Class	Species	Habitat	Remarks
-------	---------	---------	---------
Lates calcarifer (Bloch, 1790)	Marine, Brackish, Fresh	WoRMS	
Leiognathus brevirostris (Valenciennes, 1835)	Marine, Brackish	WoRMS	
Leiognathus (Lacepède, 1802)	Marine, Brackish, Fresh	WoRMS	
Liza ceramensis (Bleeker, 1853)	Marine, Brackish, Fresh	WoRMS	
Liza macrolepis (Smith, 1846)	Marine, Brackish, Fresh	WoRMS	
Liza oligolepis (Bleeker, 1859)	Marine, Brackish, Fresh	WoRMS	
Lutjanus argentimaculatus (Forsskål, 1775)	Marine, Brackish, Fresh	WoRMS	
Lutjanus diascanthus (Lacepède, 1802)	Marine, Brackish	WoRMS	
Lutjanus fulviflamma (Forsskål, 1775)	Marine, Brackish	WoRMS	
Lutjanus gymnocaephalus (Lacepède, 1802)	Marine, Brackish, Fresh	WoRMS	
Macrones guilo (Hamilton, 1822)	-	WoRMS	
Monodactylus argenteus (Linnaeus, 1758)	Marine, Brackish, Fresh	WoRMS	
Monodactylus argenteus (Linnaeus, 1758)	Marine, Brackish, Fresh	WoRMS	
Monodactylus argenteus (Linnaeus, 1758)	Marine, Brackish, Fresh	WoRMS	
Monotretus cutcutia (Hamilton, 1822)	-	WoRMS	
Mugil macrolepis (Smith, 1846)	Marine, Brackish, Fresh	WoRMS	
Mugil parsia (Hamilton, 1822)	Marine, Brackish, Fresh	WoRMS	
Mugil strongylcephalus (Richardson, 1846)	Marine, Brackish, Fresh	WoRMS	
Mugil tade (Forsskål, 1775)	Marine, Brackish, Fresh	WoRMS	
Mugil waigensia (Quoy and Gaimard, 1825)	Marine, Brackish, Fresh	WoRMS	
Muraena brummeri (Bleeker, 1858)	Marine	WoRMS	
Ophichthus rutidodermatoides (Bleeker, 1852)	-	WoRMS	
Ophiturus cancrivorus (Richardson, 1848)	Marine, Brackish, Fresh	WoRMS	
Ophiurocus rutidodermatoides (Bleeker, 1852)	Marine, Brackish	WoRMS	
Osteogeneiosus sphenochephalus (Day, 1877)	Marine, Brackish, Fresh	WoRMS	
Pelates quadrilineatus (Bloch, 1790)	Marine, Brackish	WoRMS	
Periophthalmus koelreuteri (Pallas, 1770)	Marine, Brackish, Fresh	WoRMS	
Pimelodites sona Hamilton, 1822	Marine, Brackish	WoRMS	
Platax orbicularia (Forsskål, 1775)	Marine, Brackish	WoRMS	
Plotosus canius (Hamilton, 1822)	Marine, Brackish, Fresh	WoRMS	
Prancesus duodecimalis (Valenciennes, 1835)	Marine, Brackish	WoRMS	
Promicrops lanceolatus (Bloch, 1790)	Marine, Brackish	WoRMS	
Puntius vittatus (Day, 1865)	Brackish, Fresh	WoRMS	
Puntius (Hamilton, 1822)	Brackish, Fresh	WoRMS	
Rasbora daniconius (Hamilton, 1822)	Brackish, Fresh	WoRMS	
Siganus concatenatus (Valenciennes, 1835)	Marine, Brackish	WoRMS	
Siganus fasciatus (Houttuyn, 1782)	Marine, Brackish	WoRMS	
Siganus javus (Linnaeus, 1766)	Marine, Brackish	WoRMS	
Siganus ocellatus (Bloch & Schneider, 1801)	Marine, Brackish	WoRMS	
Siganus vermiculatus (Valenciennes, 1835)	Marine, Brackish	WoRMS	
Siganus (Forsskål, 1775)	Marine, Brackish	WoRMS	
Silius maculatus (Thunberg, 1792)	Marine, Brackish, Fresh	WoRMS	
Silius militaris (Linnaeus, 1758)	Marine, Brackish, Fresh	WoRMS	
Sphagebranchus longipinnis (Kner and Steindachner, 1867)	Marine, Brackish	WoRMS	
Sphyraena (Artedi, 1793)	Marine, Brackish	WoRMS	
Syngnathus spicifer djarong (Bleeker, 1853)	-	WoRMS	
Tachysurus caelatus (Valenciennes, 1840)	Marine, Brackish	WoRMS	
Terapon jarbua (Forsskål, 1775)	Marine, Brackish, Fresh	WoRMS	
Tetrodon fluviatilis (Hamilton, 1822)	-	WoRMS	
Therapon theraps (Cuvier, 1829)	Marine, Brackish, Fresh	WoRMS	
Thyrsites macrura (Bleeker, 1854)	Marine, Brackish, Fresh	WoRMS	
Toxotes chatareus (Hamilton, 1822)	-	WoRMS	
Triacanthus brevirostris (Temminck & Schlegel, 1850)	Marine, Brackish	WoRMS	
Tylosurus strongylurus (van Hasselt, 1823)	Marine, Brackish	WoRMS	
Zenarchopterus dispar (Valenciennes, 1847)	Marine, Brackish, Fresh	WoRMS	
Class	Species	Habitat	Remarks
-------------	-----------------------------------	------------------	--------------------------
Amphibia	*Bufo melanostictus* (Schneider, 1799)	Terrestrial	UniProt
	Limnonectes limnocharis (Gravenhorst, 1829)	Terrestrial	UniProt
	Ahaetulla nasuta (Bonnaterre, 1790)	Terrestrial	The Reptile Database
	Calotes calotes (Linnaeus, 1758)	Terrestrial	The Reptile Database
	Cerberus rynchops (Schneider, 1799)	Terrestrial	The Reptile Database
	Crocodilus palustris (Lesson, 1831)	Terrestrial	The Reptile Database
	Crocodilus porosus (Schneider, 1801)	Terrestrial	The Reptile Database
	Daboia russelli (Shaw and Nodder, 1797)	Terrestrial	The Reptile Database
	Dendrelaphis tristis (Daudin, 1803)	Terrestrial	The Reptile Database
	Fowlea piscator (Schneider, 1799)	Terrestrial	The Reptile Database
Reptilia	*Gerarda prevostiana* (Eydoux and Gervais, 1837)	Terrestrial, open marshes	Avibase
	Ahaetulla nasuta (Bonnaterre, 1790)	Terrestrial	The Reptile Database
	Calotes calotes (Linnaeus, 1758)	Terrestrial	The Reptile Database
	Cerberus rynchops (Schneider, 1799)	Terrestrial	The Reptile Database
	Crocodilus palustris (Lesson, 1831)	Terrestrial	The Reptile Database
	Crocodilus porosus (Schneider, 1801)	Terrestrial	The Reptile Database
	Daboia russelli (Shaw and Nodder, 1797)	Terrestrial	The Reptile Database
	Dendrelaphis tristis (Daudin, 1803)	Terrestrial	The Reptile Database
	Fowlea piscator (Schneider, 1799)	Terrestrial	The Reptile Database
	Gerarda prevostiana (Eydoux and Gervais, 1837)	Terrestrial, open marshes	Avibase
	Naja naja (Linnaeus, 1758)	Terrestrial	The Reptile Database
	Ptyas mucosa (Linnaeus, 1758)	Terrestrial	The Reptile Database
	Python molurus (Linnaeus, 1758)	Terrestrial	The Reptile Database
	Varanus salvator (Laurenti, 1768)	Terrestrial	The Reptile Database
	Acridotheres tristis (Linnaeus, 1766)	Terrestrial	Avibase
Aves	*Anas acuta* (Linnaeus, 1758)	Terrestrial, Aquatic	Avibase
	Anas crecca (Linnaeus, 1758)	Aquatic, Wetlands	Avibase
	Anas penelope (Linnaeus, 1758)	Terrestrial, Aquatic, Wetlands	Avibase
	Anas querquedula (Linnaeus, 1758)	Terrestrial	Avibase
	Ardea alba (Linnaeus, 1758)	Marine, Freshwater, Terrestrial	Avibase
	Ardea cinerea (Linnaeus, 1758)	Terrestrial	Avibase
	Ardea modesta (Gray, J.E., 1831)	Shallow water	Avibase
	Ardea purpurea mantensis (Meyen, 1834)	Terrestrial, Fresh water	Avibase
	Ardea grisea (Sykes, 1832)	Terrestrial	Avibase
	Arenaria interpres (Linnaeus, 1758)	Terrestrial, Estuarine	Avibase
	Bubulcus ibis (Linnaeus, 1758)	Terrestrial	Avibase
	Calidris ferruginea (Pontoppidan, 1763)	Terrestrial, Fresh water	Avibase
	Calidris minuta (Leisler, 1812)	Marine	Avibase
	Caprimulgus asiaticus (Latham, 1790)	Terrestrial	Avibase
	Ceruleus leucomelas (Reichenbach, 1851)	Terrestrial, Aquatic, Wetlands	Avibase
	Ceryle rudis (Linnaeus, 1758)	Terrestrial	Avibase
	Charadrius alexandrinus (Linnaeus, 1758)	Terrestrial	Avibase
	Charadrius dubius (Scopoli, 1786)	Terrestrial	Avibase
	Charadrius leucophaeus (Lesson, 1826)	Terrestrial	Avibase
	Charadrius mongolus (Pallas, 1776)	Terrestrial	Avibase
	Chlidonias hybrida (Pallas, 1811)	Terrestrial	Avibase
	Chlidonias leucopterus (Temminck, 1815)	Terrestrial	Avibase
	Chroicocephalus brunnicephalus (Jerdon, 1840)	Terrestrial	Avibase
	Crypsilus saularis (Linnaeus, 1758)	Terrestrial	Avibase
	Corvus macrorhynchos Wagler, 1827	Terrestrial	Avibase
	Dendrocopos major (Horsfield, 1821)	Terrestrial	Avibase
	Egretta garzetta (Linnaeus, 1766)	Terrestrial	Avibase
	Egretta garzetta (Linnaeus, 1766)	Terrestrial	Avibase
	Egretta gularis asha (Sykes, 1832)	Terrestrial	Avibase
	Egretta intermedia (Wagler, 1829)	Terrestrial	Avibase
	Eudynamys scolopaceus (Linnaeus, 1766)	Terrestrial	Avibase
	Fulica atra (Linnaeus, 1758)	Terrestrial, Marine, Fresh water	Avibase
	Gelochelidon nilotica (Gmelin, 1789)	Terrestrial	Avibase
	Haliaeetus leucogaster (Gmelin, 1789)	Terrestrial, Wetlands	Avibase

Table 5. Cont.
Table 5. Cont.

Class	Species	Habitat	Remarks
Himantopus himantopus	(Linnaeus, 1758)	Terrestrial, Shallow water	Avibase
Hydropogne caspia	(Pallas, 1770)	Terrestrial, Marine, Estuarine	Avibase
Larus brunnicephalus	(Jerdon, 1840)	Terrestrial	Avibase
Larus fuscus	(Linnaeus, 1758)	Terrestrial	Avibase
Limosa lapponica	(Linnaeus, 1758)	Terrestrial	Avibase
Limosa limosa	(Linnaeus, 1758)	Terrestrial	Avibase
Microcarbo niger	(Vieillot, 1817)	Terrestrial	Avibase
Mycereria leucocephala	(Pennant, 1769)	Terrestrial	Avibase
Numenius arquaia	(Linnaeus, 1758)	Terrestrial	Avibase
Nycticorax nycticorax	falklandicus (Hartert, 1914)	Terrestrial	Avibase
Nycticorax nycticorax	(Linnaeus, 1758)	Terrestrial	Avibase
Oriolus xanthornus	(Linnaeus, 1758)	Terrestrial	Avibase
Pelargopsis capensis	gural (Pearson, 1841)	Terrestrial	Avibase
Phalacrocorax fuscicollis	(Stephens, 1826)	Terrestrial	Avibase
Phalacrocorax nigro	(Vieillot, 1817)	Terrestrial	Avibase
Phoenicopterus ruber	(Linnaeus, 1758)	Terrestrial	Avibase
Platalea leucorodia	(Linnaeus, 1758)	Terrestrial	Avibase
Pluvialis dominica	(Müller, 1776)	Terrestrial	Avibase
Pluvialis squatarola	(Linnaeus, 1758)	Terrestrial	Avibase
Psittacula eupatria	eupatria (Linnaeus, 1766)	Terrestrial	Avibase
Serra albitrons	(Pallas, 1764)	Terrestrial	Avibase
Serra hirundo	(Linnaeus, 1758)	Terrestrial	Avibase
Serra albitrons sinensis	(Gmelin, JF, 1789)	Terrestrial	Avibase
Thalaseus bergii	(Lichtenstein, MHC, 1823)	Terrestrial	Avibase
Threskiornis melanocephalus	(Latham, 1790)	Terrestrial	Avibase
Tringa glareola	(Linnaeus, 1758)	Terrestrial	Avibase
Tringa nebularia	(Gunnerus, 1767)	Terrestrial	Avibase
Tringa stagnatilis	(Bechstein, 1803)	Terrestrial	Avibase
Tringa totanus	(Linnaeus, 1758)	Terrestrial	Avibase
Tringa totanus	(Linnaeus, 1758)	Terrestrial	Avibase
Vanelus indicus	(Boddart, 1783)	Terrestrial	Avibase
Zarpinia fusca zeuglatica	(Baker, ECS, 1927)	Terrestrial	Avibase
Zapernia pusilla	(Pallas, 1776)	Terrestrial	Avibase
Mammalia			
Axis axis	(Erxleben, 1777)	Terrestrial	India Biodiversity Portal
Babalus bubalis	(Linnaeus, 1758)	Terrestrial	India Biodiversity Portal
Canis aureus	(Linnaeus, 1758)	Terrestrial	India Biodiversity Portal
Elephas maximus	maximus (Linnaeus, 1758)	Terrestrial	BioLib
Loris tardigradus	(Linnaeus, 1758)	Terrestrial	India Biodiversity Portal
Latra lutra	(Linnaeus, 1758)	Terrestrial	India Biodiversity Portal
Melursus ursinus	(Shaw, 1791)	Terrestrial	India Biodiversity Portal
Moschiola meminna	(Erxleben 1777)	Terrestrial	BioLib
Panthera pardus kotiya	(Deraniyagala, 1956)	Terrestrial	Veron et al., 2015 1
Paradoxurus zeyloneensis	(Schreber, 1776)	Terrestrial	India Biodiversity Portal
Preshysis entellus	(Dufresne, 1797)	Terrestrial	India Biodiversity Portal
Priomylurus virocurrentius	(Bennett, 1833)	Terrestrial	India Biodiversity Portal
Rusa unicolor	(Kerr, 1792)	Terrestrial	India Biodiversity Portal
Sus scrofa	(Linnaeus, 1758)	Terrestrial	India Biodiversity Portal
Trachypithecus vetulus	(Erxleben, 1777)	Terrestrial	Rudran, 2007 2

Disappointingly, only one article has reported about microfauna, and it includes only Carpella spp., Noctiluca spp., and Ceratium spp. [27], of which the former two were reported in Kalpitiya and Batticaloa, and the latter in the Negombo lagoon. This implies a huge limitation in assessing microfaunal diversity in the mangrove ecosystem, and the reason for such a drop is still unknown. The paper has also identified the Cladocerans and rotifers
that are found in the wet zone, but still, it lacks a specific scientific notation and proper ecological survey. This limits the faunal studies to the basics, and data analysis resting on such a basis makes it impossible to predict any fact regarding this data.

Vertebrates, especially birds (72 species), have been thoroughly recorded in the mangrove ecosystems, yet scientific data fails to report whether they are endemic or migratory. Despite this missing fact, it should be appreciated that most of the Sri Lankan mangrove wetlands and swamps could house immense numbers of bird species. Avifaunal diversity includes a wide range of cormorants, ducks, egrets, gulls, herons, and so on. Mangrove wetlands play an important role in attracting migratory birds at any phase of their life cycle, seeking their food in the creeks and channels, and nesting in the trees [77]. Among the fish, *Periophtalmus koelreuteri*, commonly called the mudskipper, is prominently found in almost all the mangrove forests. Research [4] suggests that there are more than 150 species of fish, yet we have managed to record only 112 of them. Many of the tetrapods tend to be migrants in a mangrove forest, and we think that this could mainly be because of the salinity of the environment. This could be also a reason why they are not significantly considered for ecological surveys.

3.4. Limitations in the Literature Review

Although the systematic literature review was conducted by searching the research topic using the combined keywords “mangrove flora” and “mangrove fauna”, and “Sri Lanka” through the scientific databases, there were still some relevant studies that could not be included. In addition, native-language publications were not considered in this study. This might lead to a slight prejudice in the metadata that is generated. In addition, the limitations of this search strategy could not only lead to some uncertainty regarding the integrity and representativeness of the analytical literature but could also result in a biased distribution of the publications. Since mangroves belong to estuarine, fringe, and/or marine habitats, not including such terminologies on the search engine could shrink the number of studies to be considered. Thus, the search stratagem of considering mangrove habitats should be further extended in future studies.

Since there is a lesser number of publications on mangrove faunal diversity, and most of them focus on Negombo while the other coastal districts are left behind, we cannot look at the regional occurrence of fauna and their distribution pattern. In addition, some mangrove faunal studies have ambiguities from the taxonomical perspective [48]. Certain studies have sought to identify and analyze the macrobenthic community in the Negombo estuary, although they could have reported the taxonomical nomenclature up to class and/or order level. Only a few species have been identified to the lower taxonomy, while the majority remain at the highest possible level. This might create a bias in the data analysis, as mentioned above.

3.5. Deforestation and Anthropocene Decline of Mangrove Ecosystems

Mangroves have an adaptive capability, as demonstrated by the fact that they have survived harsh environmental conditions, and climate and sea-level changes, for millennia [78,79]. However, due to the unprecedented increase in such factors over the past few years, mangroves tend to suffer extensive degradation. Major factors responsible for the decline of mangroves in Sri Lanka are aquaculture and urban development (Forest Department, 2015, NAQDA (National Aquaculture Development Authority of Sri Lanka), 2018). Studies have reported the decline of mangroves in Sri Lanka due to illegal felling, encroachment, and intensive clearing for infrastructure development, landfilling for housing schemes, and firewood. Dayalatha and Ali (2018) reported that nearly 34 percent of the mangrove in the Puttalam-Kalpitiya area has been converted for industrial shrimp farming. Researchers suggest that the intact mangroves support much of the local community via fisheries and sources of food, timber, medicine, and fuelwood. However, the overexploitation of resources over the past few decades has resulted in an enormous decline in mangrove forests [80]. Apart from these problems, tourism-aided mangrove
disturbance has also been studied recently. The fact that they house plenty of animals and birds and carry a scenic beauty makes mangroves one of the potential sites for sustainable tourism development. However, mangrove-based tourism activities and related forest decline are discussed and explored from the point of view of tourism development, rather than mangrove forest disturbance. In other words, monetary profits overtake mangrove sustainability on the country’s development agenda.

As an important point, Sri Lanka harbors three mangrove species declared to be “Endangered” by IUCN. This category includes *Brugueira cylindrica*, *Sonneratia alba*, and *Xylocarpus granatum* [22]. This calls for an immediate and intensified conservation plan, coupled with government policy to ensure sustainable mangrove productivity. Moreover, the loss of mangroves is the initial stage for biodiversity decline, both in quality and quantity [81], that would significantly affect the health and livelihoods of the coastal community. The shrinking of mangroves means a loss of a wide ecological niche for the feeding, breeding and, hatching of many marine creatures, as well as migratory species. This would have a profoundly negative impact on the coastal communities and coastal health of Sri Lanka.

3.6. Conservation Actions and Legal Protection of Mangroves in Sri Lanka

Problems arising from uncertainties are the fundamental reason why some attacks on the scientific consensus are unavoidable. Despite their unique ecological contributions, mangroves are being destroyed and degraded due to haphazard activities, mainly by humankind. The reasons include urbanization, coastal development, and/or reclamation projects [8]. Even though there is a lack of a solitary organization committed to the protection and conservation of mangroves, they are being protected by parts of several jurisdictions, statutory bodies, and a national policy. However, applying partial knowledge to extant problems (as may be proposed) may invite other, much-feared types of unforeseen consequences.

Primary conservancy action is provided by the Forest Department under the Forest Ordinance of 1907. Secondary protection is provided by the Wildlife Conservation Department, under the Fauna and Flora Protection Ordinance and by the Coast Conservation Department [24]. Apart from these laws and legislations, certain sections of the following acts contribute toward the protection and conservation of mangroves in Sri Lanka:

I. The National Resources Energy & Science Authority (NARESA);
II. The National Aquatic Resources Agency (NARA);
III. The Soil Conservation Act, 1951;
IV. The Crown Lands Ordinance of 1947;
V. The Tourist Development Act, 1968;
VI. The Urban Development Authority Law of 1978;
VII. The National Environment Act of 1980;
VIII. The Coast Conservation Act of 1981.

In addition, a non-governmental organization named “Sudeesa”, set up in 1992, is exclusively committed to mangrove replanting and conservation activities on the Sri Lankan coast.

A generalized list of potential problems is devastating and extremely difficult to work with, for both political and scientific reasons. A science-based focus on the obvious and ubiquitous types of damage might help in that situation, emphasizing an item of great interest, and would hence be useful in education. Educating the public about the possible problems ahead is a necessary and most welcomed activity. A national mangrove conservation policy or an act endorsing participants from government, private and public sectors is needed to conduct and harmonize the future of mangrove conservation, management, restoration/rehabilitation, and the sustainability of Sri Lankan mangroves.
4. Conclusions

In the present review, a total of 70 scientific papers noting mangrove floral and faunal studies in the Sri Lankan coast over the past 40 years was analyzed, to create intensive metadata representing Sri Lanka’s mangrove biodiversity in a single source. A comprehensive checklist has been created with the metadata collected. We have listed a total of 99 invertebrate species and 214 vertebrate species, with updated and revised taxonomy and nomenclature. Among the invertebrates, Arthropoda was the most prominent class, with 55 species, while Pisces was recorded with the richest species diversity of 112, followed by the Aves class with 72 species. Expedited mangrove studies have been concentrated on the southwestern coast, most significantly in Negombo, resulting in a legitimate bias in the distribution of scientific efforts.

We recommend the following suggestions for further studies on Sri Lankan mangrove ecological and taxonomical study: (1) efforts should be taken to study the mangrove fauna extensively; (2) efforts should be harmonized to investigate for a more even distribution of species and localities along the coast; (3) the efforts of conservation and public awareness on mangrove protection should be rationalized, both legally and institutionally.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/su13179487/s1, Table S1: Results of the systematic literature review (with detailed data coding).

Author Contributions: A.A.: conceptualization, study design, formal analysis, writing original draft; J.P.: supervision, writing original draft, funding acquisition; J.-S.K.: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This review is a part of the project titled “A study on ecology, vegetation structure and ecosystem carbon stocks of mangroves in Sri Lanka”, funded by the project “Development of Blue Carbon Information System and its Assessment for Management” [grant number 20170318].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not available.

Acknowledgments: The authors are thankful to the Forest Department of Sri Lanka and the Coast Conservation Department, Sri Lanka for providing data support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duke, N.C. Mangroves; Springer: Berlin/Heidelberg, Germany, 2011.
2. Subasinghe, U. Floral diversity of six mangrove forests along the northwestern coastline of wet, intermediate and dry climate zones of Sri Lanka. WILDLANKA 2015, 3, 184–194.
3. Kodikara, K.A.S.; Mukherjee, N.; Jayatissa, L.P.; Dahdouh-Guebas, F.; Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka. Restor. Ecol. 2017, 25, 705–716. [CrossRef]
4. Katupotha, K.N.J. Mangroves in Lagoon Ecosystems: A Neglected Habitat in Sri Lanka. Wildlanka 2016, 4, 79–105. Available online: http://dr.lib.sjp.ac.lk/bitstream/123456789/3731/1/MangrovesinLagoonEcosystems--ANeglectedHabitatinSriLanka.pdf (accessed on 1 March 2020).
5. Prasanna, M.G.M.; Ranawana, K.B.; Jayasuriya, K.G. Species composition, abundance and diversity of mangroves in selected sites in Amparara District in the east coast of Sri Lanka. Ceylon J. Sci. 2019, 48, 169. [CrossRef]
6. Kathiresan, K.; Bingham, B.L. Biology of Mangroves and Mangrove Ecosystems. Adv. Mar. Biol. 2001, 40, 81–251.
7. Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [CrossRef]
8. Karunathilake, K.M.B.C. Status of Mangroves in Sri Lanka. J. Coast. Dev. 2003, 7, 5–9. Available online: https://www.omicsonline.com/open-access/status-of-mangroves-in-sri-lanka-1410-5217-7-156.pdf (accessed on 18 January 2020).
9. DasGupta, R.; Shaw, R. Participatory Mangrove Management in a Changing Climate; Springer: Berlin/Heidelberg, Germany, 2017.
10. Ellepola, G.; Ranawana, K.B. Panama Lagoon: A unique mangrove ecosystem in the east coast of Sri Lanka. Wel. Sri Lanka 2015, 2, 10–19.
11. Arulnayagam, A. Floral distribution, abundance and diversity of mangroves in Sangupiddy, Kilinochchi, the northern coast of Sri Lanka. Int. J. Ecol. Environ. 2020, 1, 21–27. [CrossRef]
12. Ranawana, K.B. *Mangroves of Sri Lanka;* Publication of Seacology-Sudeesa Mangrove Museum: Puttalam, Sri Lanka, 2017; pp. 1–58. Available online: http://icsrslanka.org/conservation-sri-lanka/wp-content/uploads/2019/04/MANGROVE_SOF_SL.pdf (accessed on 1 April 2020).

13. Pinto, L. *Mangroves of Sri Lanka;* Publication of Seacology-Sudeesa Mangrove Museum: Puttalam, Sri Lanka, 1986; pp. 1–58. Available online: https://dokument.pub/loris-volume-28-issue-4-flipbook-pdf.html (accessed on 1 April 2020).

14. Dahdouh-Guebas, F.; Pululkuuttige, J.L. A bibliometrical review on pre- and post-tsunami assumptions and facts about man-groves and other coastal vegetation as protective buffers. *Ruhuna J. Sci.* 2009, 4, 28. [CrossRef]

15. Amarasinghe, M.D.; Perera, K.A.R.S. Historical biogeography of Sri Lankan mangroves. *Ceylon J. Sci.* 2017, 46, 111. [CrossRef]

16. Abeyasinghe, F.D.; Triest, L.; De Greef, B.; Koedam, N.; Hettiarachchi, S. Genetic and geographic variation of the mangrove tree *Bruguiera* in Sri Lanka. *Aquat. Bot.* 2000, 67, 131–141. [CrossRef]

17. Jayatissa, L.P. *Present Status of Mangroves in Sri Lanka.* In *The National Red List 2012 of Sri Lanka. Conservation Status of the Fauna and Flora;* Convention on Biological Diversity: Colombo, Sri Lanka, 2012; pp. 77–87.

18. Food and Agriculture Organization of the United Nations. *Global Forest Resources Assessment 2005: Thematic Study on Mangroves;* Nigeria Country Profile; FAO: Rome, Italy, 2005.

19. Amarasinghe, M.D.; Perera, K.A.R.S. Ecological biogeography of mangroves in Sri Lanka. *Ceylon J. Sci.* 2017, 46, 119. [CrossRef]

20. Iftekhar, M.S. An overview of mangrove management strategies in three South Asian countries: Bangladesh, India and Sri Lanka. *Int. For. Rev.* 2008, 10, 38–51. [CrossRef]

21. Satyanarayana, B.; Van der Stocken, T.; Rans, G.; Kodikara, K.A.S.; Ronsmans, G.; Jayatissa, L.P. Island-wide coastal vulnerability assessment of Sri Lanka reveals that sand dunes, planted trees and natural vegetation may play a role as potential bar-riers against ocean surges. *Glob. Ecol. Conserv.* 2017, 12, 144–157. [CrossRef]

22. Katrien, Q.; Dahdouh-Guebas, F.; Nitto, D.; Jayatissa, L.P.; Koedam, N. Categorisation of Land-Cover and Land-Use Adjacent to a Sri Lankan Mangrove Lagoon Using Object-Based Classification: State-of-the-Art. *VLIZ Spec. Publ.* 2015, 39, 50–51.

23. Central Environmental Authority, Sri Lanka. *Annual Report;* CEA: Battaramulla, Sri Lanka, 2015.

24. Sarathchandra, C.; Kambach, S.; Ariyaratna, S.C.; Xu, J.; Harrison, R.D.; Wickramasinghe, S. Significance of Mangrove Biodiversity Conservation in Fishery Production and Living Conditions of Coastal Communities in Sri Lanka. *Diversity* 2018, 10, 20. [CrossRef]

25. National Aquatic Resources Research. *Sri Lankan Fisheries Year Book;* NARA: Colombo, Sri Lanka, 2008.

26. De Silva, M.; De Silva, P.K. Status, diversity and conservation of the mangrove forests of Sri Lanka. *J. South Asian Nat. Hist.* 1998, 3, 79–102.

27. International Union for Conservation of Nature. *Information Brief on Mangroves in Sri Lanka;* IUCN: Grand, Switzerland, 2010.

28. Jonsson, M.N.; Hedman, A.M. Carbon stock assessment of mangrove ecosystems in Batticaloa Lagoon, Sri Lanka, with different degrees of human disturbances. *Singap. J. Trop. Geogr.* 2018, 40, 199–218. [CrossRef]

29. Mathiventhal, T.; Jayasingam, T. Impacts of Disturbances on Floristic Composition of Selected Mangrove Ecosystems in Batticaloa, Sri Lanka. Ph.D. Thesis, Eastern University, St Davids, PA, USA, 2004.

30. Mathiventhal, T.; Jayasingam, T. Impacts of natural and human disturbances on the density of tree species in selected mangrove ecosystem in Batticaloa, Sri Lanka. *J. Sci. Manag.* 2012, 13, 107–115.

31. Thavanayagam, M.; Thangamuthu, J. Impact of Flood on Rhizophora Plantation in Batticaloa, Sri Lanka. *J. Med. Bioeng.* 2014, 3, 117–121. [CrossRef]

32. Jayasuriya, P.M.A. The distribution and the species composition of the existing mangrove vegetation around Chilaw lagoon. *Vidyodaya J. Sci.* 1991, 3, 103–113.

33. Grandgirard, J.; Poinsot, D.; Krespi, L.; Nonen, J.-P.; Cortesero, A.-M. Costs of secondary parasitism in the facultative hyperparasitoid *Pachycrepidoideus dubius:* Does host size matter? *Entomol. Exp. Appl.* 2002, 103, 239–248. [CrossRef]

34. Jayawardena, J.W.K.K.; Amararasinghe, M.D.; Ranawana, K.B. Mangrove Vegetation Structure and the Abundance of Shrimps in Chilaw Lagoon. *Sri Lanka J. Aquat. Sci.* 1999, 4, 69–81.

35. Dahdouh-Guebas, F.; Verheyden, A.; De Genst, W.; Hettiarachchi, S.; Koedam, N. Four decade vegetation dynamics in Sri Lankan mangroves as detected from sequential aerial photography: A case study in Galle. *Bull. Mar. Sci.* 2000, 67, 741–759.

36. Satyanarayana, B.; Mulder, S.; Jayatissa, L.P.; Dahdouh-Guebas, F. Are the mangroves in the Galle-Unawatuna area (Sri Lanka) at risk? A social-ecological approach involving local stakeholders for a better conservation policy. *Ocean Coast. Manag.* 2013, 71, 225–237. [CrossRef]

37. Jayatissa, L.; Guero, M.-C.; Hettiarachchi, S.; Koedam, N. Changes in Vegetation Cover and Socio-Economic Transitions in a Coastal Lagoon (Kalametiya, Sri Lanka), As Observed by Teledetection and Ground Truthing, Can be Attributed to an Upstream Irrigation Scheme. *Environ. Dev. Sustain.* 2002, 4, 167–183. [CrossRef]

38. Bambaradeniya, C.N.B.; Ekanyake, S.P.; Kekulandala, L.D.C.B.; Fernando, R.H.S.S.; Samarawickrama, V.A.P.; Priyadharsana, T.G.M. An Assessment of the Status of Biodiversity in the Maduganga Mangrove Estuary. *Occ. Pap. IUCN Sri Lanka* 2002, 1, 49.

39. Victor, N.L.H.P. *Economic Valuation of Mangroves in Mannar Region: A Discrete Choice Experiment;* National Aquatic Resources Research: Colombo, Sri Lanka, 2015; pp. 79–84.

40. Gunarathne, K.; Kodikara, K.; Kukuhennadige, H.; Madarasinghe, S.; Loku Pulukuttige, J. Diversity and Ecosystem Health of Inland Mangrove Forest in Garanduwa Lagoon, Southern Province, Sri Lanka. In Proceedings of the 15th Academic Sessions University of Ruhuna, Matara, Sri Lanka, 7 March 2018.
41. Amarasinghe, U.S.; Amarasinghe, M.D.; Nissanka, C. Investigation of the Negombo estuary (Sri Lanka) brush park fishery, with an emphasis on community-based management. *Fish. Manag. Ecol.* 2002, 9, 41–56. [CrossRef]

42. Costa, H.H.; Wijeyaratne, M.J.S. Utilization of mangrove species in brushpark construction and their effects on Negombo Estuary fishery (Sri Lanka). *J. Appl. Ichthyol.* 1994, 10, 96–103. [CrossRef]

43. Dahanyayaka, W.P. Potential of the conservation oriented mangrove based ecotourism-Negombo. *Sri Lanka J. Aquat. Sci.* 2015, 44, 34–44.

44. Jayakody, J.; Amarasinghe, M.; Pahalawattaarachchi, V.; De Silva, K. Vegetation structure and potential gross primary productivity of mangroves at Kadolkele in Meegamuwa (Negombo) estuary, Sri Lanka. *Sri Lanka J. Aquat. Sci.* 2010, 13, 95. [CrossRef]

45. Pinto, M.L. Distribution and zonation of mangroves in the northern part of the Negombo lagoon (Sri Lanka). *J. Natl. Sci. Found. Sri Lanka* 1982, 10, 245. [CrossRef]

46. Prakash, T.G.S.L.; Weerasingha, A.; Withanage, P.W.A.B.M.; Kusuminda, T.G.T. Mangrove Diversity in Muthurajawela and Negombo Lagoon Wetland Complex, Sri Lanka: Insights for Conservation and Management. *Wildlanka* 2017, 5, 99–106.

47. Dahanyayaka, D.; Wijeyaratne, M. Diversity of macrobenthic community in the Negombo estuary, Sri Lanka with special reference to environmental conditions. *Sri Lanka J. Aquat. Sci.* 2010, 11, 43. [CrossRef]

48. Priyadarshani, S.; Jayamanne, S.; Hirimuthugoda, Y. Diversity of mangrove crabs in Kadolkele, Negombo estuary, Sri Lanka. *Sri Lanka J. Aquat. Sci.* 2010, 13, 109. [CrossRef]

49. Dissanayake, N.; Chandrasekara, U. Effects of Mangrove Zonation and the Physicochemical Parameters of Soil on the Distribution of Macrobenthic Fauna in Kadolkele Mangrove Forest, A Tropical Mangrove Forest in Sri Lanka. *Adv. Ecol.* 2014, 2014, 564056.

50. Pinto, L.; Punchihewa, N.N. Utilisation of mangroves and seagrasses by fishes in the Negombo Estuary, Sri Lanka. *Mar. Biol.* 1996, 126, 333–345. [CrossRef]

51. Pinto, L.; Wignarajah, S. Some ecological aspects of the edible oyster Crassostrea cuçulata (born) occurring in association with mangroves in negombo lagoon, Sri Lanka. *Hydrobiologia* 1980, 69, 11–19. [CrossRef]

52. Amarasinghe, M.D.; Balasubramaniam, S. Structural properties of two types of mangrove stands on the northwestern coast of Sri Lanka. *Hydrobiologia* 1992, 247, 17–27. [CrossRef]

53. Gunathilaka, M.D.K.L. Diversity of Mangrove Species in Kala Oya Estuary in Sri Lanka. *Imp. J. Interdiscip. Res.* 2014, 9, 494–498.

54. Ekanayake, S.; de Goonetilleke, W.A.; Jayasekera, A.; Asela, M.; Pieris, A.; Bandara, K. First substantiated record of Ceriops decandra (Rhizophoraceae) in Sri Lanka. *J. Asian Biodivers.* 2016, 8, 37–40. [CrossRef]

55. Jayatissa, L.P.; Dahdouh-Guebas, F.; Koedam, N. A review of the floral composition and distribution of mangroves in Sri Lanka. *Bot. J. Linn. Soc.* 2002, 138, 29–43. [CrossRef]

56. Kumara, M.P. The Impacts of Tree Density on the Physical and Biological Characteristics of Planted Mangrove Stands in Sri Lanka. *Sri Lanka J. Aquat. Sci.* 2010, 13, 295–305. [CrossRef]

57. Kaleel, M.I.M.; Nijamir, K. The environmental challenges of declining mangroves: An analytical survey in Puttalam District in Sri Lanka. *World News Nat. Sci.* 2007, 14, 106–115.

58. Perera, K.A.R.S.; Amarasinghe, M. Partitioning of System Total Carbon Pool of Kala Oya. *Int. J. Adv. Sci. Eng. Technol.* 2017, 1, 1–4.

59. Perera, N.; Kotagama, S.W. Bottlenecks in conserving mangroves associated with the Puttalam Estuary, with special reference to the Seguwantivu Conservation Forest. In Proceedings of the Meeting on Mangrove Ecology, Functioning and Management (MMM3), Galle, Sri Lanka, 2–6 July 2012; p. 138.

60. Phillips, D.; Kumara, M.P.; Loku Puluikkutige, J.; Krauss, K.; Huxham, M. Impacts of Mangrove Density on Surface Sediment Accretion, Belowground Biomass and Biogeochemistry in Puttalam Lagoon, Sri Lanka. *Wetlands* 2017, 29, 37.

61. Perera, K.A.R.S.; Amarasinghe, M.D.; Somaratna, S. Vegetation Structure and Species Distribution of Mangroves along a Soil Salinity Gradient in a Micro Tidal Estuary on the North-western Coast of Sri Lanka. *Am. J. Mar. Sci.* 2013, 9, 7–15. [CrossRef]

62. Weragodatenna, D.D.D.; Gunaratne, A.B.A.K. Change Detection of Mangrove Coverage in Puttalam Lagoon of Sri Lanka Using Satellite Remote Sensing Techniques; National Aquatic Resources Research: Colombo, Sri Lanka, 2015.

63. Bournazel, J.; Kumara, M.P.; Jayatissa, L.P.; Viergever, K.; Morel, V.; Huxham, M. The impacts of shrimp farming on land-use and carbon storage around Puttalam lagoon, Sri Lanka. *Ocean Coast. Manag.* 2015, 113, 18–28. [CrossRef]

64. Jayatissa, L.P.; Wickramasinghe, W.A.A.D.L.; Dahdouh-Guebas, F.; Huxham, M. Interspecific Variations in Responses of Mangrove Seedlings to Two Contrasting Salinities. *Int. Rev. Hydrobiol.* 2008, 93, 700–710. [CrossRef]

65. Madarasingshe, S.; Kodikara, K.; Pulukkuttige, J.L. *Acacia auriculiformis* (Fabaceae), A threat to mangrove forest in Rekawa la-goon Sri Lanka: A case study. In Proceedings of the 35th Annual Sessions Theme Biodiversity Conservation: Moving towards Ecosystem Services Institute of Biology, Colombo, Sri Lanka, 25 September 2015.

66. Madhusanka, D.; Kumara, M.P. Distribution patterns of mangrove saplings among different light habitats, Rekawa mangroves, Sri Lanka. *Biodivers. Ecol. Health* 2018, 23, 29.

67. Thilakaratna, W.; Pathirana, P.B.M.; Kumara, M.P. Role of Anthropogenic Canopy Gaps on Natural Regeneration Pattern of Monospecific Ceriops Tagal in Rakawa Lagoon, Sri Lanka. *Int. J. Soc. Sci.* 2018, 3, 295–305. [CrossRef]

68. Jayathilaka, R.A.M.; Suwandelhannadi, W.K. *Diversity of Flora and Fauna in Rakawa Lagoon*; National Aquatic Resources Research: Colombo, Sri Lanka, 2018.
69. Perera, K. Effect of Vegetation Structure on Carbon Assimilation Capacity of Mangrove Ecosystems in the East Coast of Sri Lanka.
 J. Coast. Dev. **2014**, *17*, 1000382.

70. Fowzul, A. Mangroves vanishing in the Eastern Province. *Wildlanka* **2013**, *1*, 77–79.

71. Bastiaanssen, W.; Chandrapala, L. Water balance variability across Sri Lanka for assessing agricultural and environmental water use. *Agric. Water Manag.* **2003**, *58*, 171–192. [CrossRef]

72. Silva, E.I.L.; Katupotha, J.; Amarasinghe, O.; Manthrihilake, H.; Ariyaratna, R. *Lagoons of Sri Lanka: From the Origins to the Present*; International Water Management Institute: Colombo, Sri Lanka, 2013.

73. Vyddiyaratnam, P. Mangrove Forest Cover Change Detection along the Coastline of Trincomalee District, Sri Lanka Using GIS and Remote Sensing Techniques. *J. Mar. Sci. Res. Oceanogr.* **2019**, *2*, 1–5.

74. Steiner, F.M.; Seifert, B.; Grasso, D.A.; Le Moli, F.; Arthofer, W.; Stauffer, C. Mixed colonies and hybridisation of Messor har-vester ant species (Hymenoptera: Formicidae). *Org. Divers. Evol.* **2011**, *11*, 107–134. [CrossRef]

75. Duke, N.C. *Mangrove Floristics and Biogeography*; Springer: Berlin/Heidelberg, Germany, 1992; pp. 63–100.

76. Macnae, W. Flora of Mangrove swamps and forests in the indo-west-pacific region. *Adv. Mar. Biol.* **1968**, *6*, 73–270.

77. Alongi, D.M. The Impact of Climate Change on Mangrove Forests. *Curr. Clim. Chang. Rep.* **2015**, *1*, 30–39. [CrossRef]

78. Dayalatha, W.; Ali, S. The Use of Mangroves as a Source of Fire Wood: A Socio-Economic Study on Selected Mangroves in Southern Sri Lanka. *J. Soc. Sci. Humanit. Rev.* **2018**, *3*, 175. [CrossRef]

79. Suresh, S.S. Mangrove Area Assessment in India: Implications of Loss of Mangroves. *J. Earth Sci. Clim. Chang.* **2015**, *6*, 1. [CrossRef]

80. Hakim, L.; Siswanto, D.; Makagoshi, N. Mangrove Conservation in East Java: The Ecotourism Development Perspectives. *J. Trop. Life Sci.* **2017**, *7*, 277–285. [CrossRef]

81. Sathurusinghe, A. *Forest Cover Rehabilitation—Sri Lanka*; Forest Department: Battaramulla, Sri Lanka, 2010.