Computational Study of Halogen-Halogen Interactions in Polyhalide Ionic Liquids

Yanmin Xu
East China University of Science and Technology

Jiaqiang Zhang
East China University of Science and Technology

La Yang
East China University of Science and Technology

Yifei Zhang
East China University of Science and Technology

Zhijian Xu
Shanghai Institute of Materia Medica Chinese Academy of Sciences

Yunxiang Lu (yxlu@ecust.edu.cn)
East China University of Science and Technology https://orcid.org/0000-0003-2607-7586

Research Article

Keywords: Polyhalide ionic liquids, Interhalogen interactions, Covalency, Computational

DOI: https://doi.org/10.21203/rs.3.rs-770538/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Computational study of halogen-halogen interactions in polyhalide ionic liquids

Yanmin Xu¹ · Jiaqiang Zhang¹ · La Yang¹ · Yifei Zhang¹ · Zhijian Xu² · Yunxiang Lu¹

¹ Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
² Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China

* Yunxiang Lu: yxlu@ecust.edu.cn

Abstract
Recent years have seen many specific applications of polyhalide ionic liquids (ILs) such as oxidizing solvents for metals and alloys, immersion fluids for optical mineralogy, and electrolyte components for dye-sensitized solar cells. In this work, interhalogen interactions in a set of polyhalide ILs composed of polyhalide anions, \([X_3]^-\), \([X_5]^-\) and \([X_7]^-\) (X = I or Br), with two typical cations, tetramethylammonium \([\text{NMe}_4]^+\) and 1,3-dimethylimidazolium \([\text{DMIM}]^+\), were thoroughly studied from a computational point of view. In addition, a halogen-bonded supramolecular anion, \([\text{C}_6\text{F}_{13}-\text{I}\cdots\text{I}\cdots\text{I}-\text{C}_6\text{F}_{13}]^-\), was also taken into account for comparison. Unlike those in bare polyhalide ions, halogen-halogen interactions in ionic pairs for the investigated ILs are somewhat asymmetric caused by the interactions between the cations and the anions. Most interhalogen contacts in ionic pairs have some covalent content, while I···I interactions in the complexes of the supramolecular anion are purely noncovalent. In general, there are two classes of interhalogen bonds in ionic pairs: one class with longer X···X distances shows primarily ionic character, while the other with shorter distances has a larger degree of covalency, i.e. intermediate ionic/covalent nature.

Keywords Polyhalide ionic liquids · Interhalogen interactions · Covalency · Computational
Introduction

Room temperature ionic liquids (ILs) are completely composed of ions with melting points below 100°C [1–3]. These non-volatile liquids have several unique properties, such as excellent thermal stability, high ionic conductivity, and low combustibility, which are being explored as environmentally benign solvents [4–7]. In addition, ILs have also been described as “designer solvents” with characteristics that can be tuned to meet specific requirements for a particular application [8, 9].

ILs can be roughly divided into three categories: (i) aprotic ILs, the most frequently used ILs so far; (ii) protic ILs that are formed by the simple proton transfer from a Brønsted acid to a Brønsted base [10–12]; (iii) solvate ILs, the equimolar mixtures of alkali metal salts and oligoethers [13]. Over the past few years, polyhalide ILs consisting of polyhalide anions in their structure have attracted increasing research interest and can be recognized as an important subclass of ILs [14, 15]. A common synthesis route of these ILs is the addition of elemental chlorine, bromine or iodine to halide IL precursors.

Polyhalide ILs have been used as selective halogenation reagents in organic synthesis for a long time. Bortolini et al. previously studied several trihalide ILs composed of trihalide anions ([I$_3$]$^-$, [IBr$_2$]$^-$, [ICl$_2$]$^-$) and imidazolium cations with different alkyl chain lengths as reagent-solvents for stereoselective iodination of alkenes and alkynes. High yields and stereoselectivities of the reactions were observed when using these “green” alternative media [16]. Of particular attention is that many other specific applications of such ILs were also reported in recent years. For example, a series of polyhalide ILs, which are comprised of trihalides (like [I$_3$]$^-$, [Br$_3$]$^-$, [IBr$_2$]$^-$) and higher polyhalides ([I$_5$]$^-$, [I$_2$]$^-$, [I$_6$]$^-$) with imidazolium cations, have been developed as immersion fluids for optical mineralogy [17]. These environmentally benign fluids not only have high refractive indices but also reduce health risk. Subsequently, the group of Kloo prepared some trihalide ILs containing trihalide ions ([Br$_3$]$^-$, [IBr$_2$]$^-$, [I$_2$Br]$^-$) and imidazolium cations with different lengths of alkyl chains, which were used as electrolyte components for dye-sensitized solar cells [18]. They found high efficiency and long-term stability achieved by these ILs-based electrolytes. More recently, a number of trihalide ILs consisting of trihalides (like [I$_3$]$^-$, [Br$_3$]$^-$, [IBr$_2$]$^-$, [I$_2$Br]$^-$) and a variety of cations, e.g. imidazolium, ammonium, phosphonium and pyridinium, were synthesized and applied as oxidizing agents for dissolving various metals and alloys under mild conditions [19, 20]. These trihalide ILs provided a safe dissolution method for
metals and alloys, because the whole dissolution process can proceed without the production of any gases.

Polyhalide ions have been extensively investigated during the last decades due to their interesting structures and vast applications. The most well-studied polyhalides are the simplest trihalide anions ([X_3]^−, X = Cl, Br, I), in which the bonding was characterized as a three-center, four-electron (3c-4e) σ bond through topological analysis of either experimental or theoretical electron density [21]. Furthermore, recent X-ray adsorption spectroscopy (XAS) experiments have unraveled that the degree of charge transfer in solid-state I_2Cl^− and I_2Br^− materials is comparable to that detected in coordination complexes, and X⋯X contacts in these systems thus should have substantial covalent contributions [22]. However, halogen-halogen interactions in polyhalide ILs, especially those in higher polyhalide ILs, have received far less attention to date. Given that polyhalide ILs have shown great potential in diverse fields of chemistry, it is certainly necessary to study the properties of interhalogen interactions in these ILs from a computational viewpoint.

![Scheme 1 Chemical structures of polyhalide anions under study (X = I or Br).](image)
In this work, a series of polyhalide ILs composed of trihalide ([I$_3^-$], [Br$_3^-$], [IBr$_2^-$]), pentahalide ([I$_5^-$], [Br$_5^-$], [I$_2$Br$_3^-$]) and heptahalide anions ([I$_7^-$], [Br$_7^-$], [I$_3$Br$_4^-$]) with two typical cations, tetramethylammonium [NMe$_4^+$] and 1,3-dimethylimidazolium [DMIM]$^+$, were systematically investigated by using DFT calculations. In addition, a halogen-bonded supramolecular anion, [C$_6$F$_{13}$-I···I···I-C$_6$F$_{13}^-$] (abbreviated as [SI$_3^-$]), was also considered for comparison, as displayed in Scheme 1. Very recently, Bruce and co-workers have firstly reported unconventional halogen-bonded ionic liquid crystals based on such supramolecular anions and imidazolium cations [23]. To gain a deeper understanding of halogen-halogen interactions in these ILs, many computational approaches, such as quantum theory of atom in molecules (QTAIM) [24], electron localization function (ELF) [25], mayer bond order (MBO) [26, 27], intrinsic bond strength index (IBSI) [28], and independent gradient model (IGM) [29, 30], were also employed. For the first time the features of interhalogen interactions in polyhalide ILs and their discrepancies versus classical halogen bonds were examined.

Computational methods

All the geometries of isolated ions and ionic pairs for the investigated ILs were fully optimized without any symmetry constraints via the hybrid functional B3LYP including empirical dispersion correction term (DFT-D3) [31–33], which has been widely used for studying molecular interactions in a large number of ILs [34, 35]. The aug-cc-pvdz-PP basis set [36], which uses pseudopotentials to describe the core electrons, was employed for the heaviest I atom (28 core electrons), while for the remaining atoms Dunning’s correlation-consistent basis set, aug-cc-pvdz [37], was applied. Frequency calculations were carried out at the same level of theory for all the optimized geometries to affirm that they are real minima on the potential energy surface. All of these calculations were performed by means of the Gaussian 09/16 suite of programs [38, 39].

Many possible binding sites for polyhalide anions around the cations were initially taken into consideration, and the most stable configurations of ionic pairs were then employed for the following analyses. The interaction energy was computed as the difference between the energy of ionic pair and the sum of the energies of optimized cation and anion with considering the basis set superposition error (BSSE) correction [40].

To obtain interhalogen bonding characteristics, the QTAIM, ELF and IGM analyses were
undertaken with the Multiwfn program [41] and visualized using the VMD package [42]. In addition, the MBO and IBSI computations were also done via the Multiwfn software, to assess the relative strength of halogen-halogen interactions in the ILs under study.

Fig. 1 Optimized geometries of ionic pairs of polyiodide anions with [NMe₄]⁺ and the values of ΔE.

Table 1 Geometric data for bare polyiodide ions and ionic pairs containing these anions a

Complexes	r₁	r₂	θ	r₃	r₄	r₅	r₆	θ₁	θ₂	θ₃	θ₄	θ₅	θ₆
I₃⁻	3.020	3.020	180.0										
[DMIM][I₃]	3.031	2.991	169.3										
[NMe₄][I₃]	3.037	2.986	168.8										
I₅⁻	3.128	2.911	167.8	167.8	107.6								
[DMIM][I₅]	3.182	2.868	169.8	172.9	88.0								
[NMe₄][I₅]	3.098	2.913	2.929	176.5	174.5	90.6							
I₇⁻-P	3.211	2.855	2.855	2.855	178.6	178.6	178.6	101.8	101.8	101.8			
[DMIM][I₇]-P	3.166	2.869	2.847	2.836	175.6	175.9	173.0	86.5	92.4	86.9			
[NMe₄][I₇]-P	3.231	2.847	2.846	2.846	170.9	170.9	170.9	84.3	84.4	84.4			
I₇⁻-L	3.191	2.994	2.868	2.868	178.1	103.1	180.0	103.1	178.1				
[DMIM][I₇]-L	3.201	3.006	2.983	2.857	2.859	176.4	90.6	176.6	99.5	172.2			
[NMe₄][I₇]-L	3.160	2.990	2.990	2.876	2.876	177.9	99.6	177.5	99.6	177.5			
SI₃⁻	3.329	3.328	87.0										
Results

Geometrical properties of polyhalide ions in ionic pairs for the investigated ILs

The optimized structures of ionic pairs containing polyiodide anions ([I$_3^-$], [I$_5^-$], [I$_7^-$]) are displayed in Figures 1 and S1, and the geometrical data of these complexes and isolated polyiodides are summarized in Table 1. Unless otherwise noted, we only concentrate on the results of these systems, since ionic pairs involving polybromide anions ([Br$_3^-$], [Br$_5^-$], [Br$_7^-$]) and mixed ones ([IBr$_2^-$], [I$_2$Br$_3^-$], [I$_3$Br$_4^-$]) generally exhibit similar geometrical features.

As expected, bare triiodide ion displays a linear and symmetrical structure with two equivalent I⋯I distances, hence indicating the delocalized 3c-4e bond. However, this anion becomes asymmetric in [DMIM][I$_3^-$] and [NMe$_4$][I$_3^-$] with the difference between the two I⋯I distances being of about 0.04 Å. Furthermore, this anion tends to bend in ionic pairs ($\theta \approx 169^\circ$), which can be ascribed to the interactions between this anion and the cations. Notably, upon the formation of ionic pair complexes one I⋯I distance elongates and simultaneously the other shortens, leading to a comparable overall length to isolated I$_3^-$ (ca. 6.04 Å). Therefore, in IL environment trihalide anions have a less linear and asymmetric structure caused by the cation-anion interactions.

Bare pentaiodide ion can be considered as the adduct of two Lewis acidic I$_2$ molecules with a Lewis basic iodide anion. As a matter of fact, the two interacting I⋯I distances (r_1 and r_2) are computed much longer than other two distances (r_3 and r_4) in this anion that has a V-shaped structure. Similarly, when complexed with the cations, the pentaiodide anion becomes asymmetric, in view of the two I$_3$ units exhibiting different I⋯I distances and interaction angles. Furthermore, owing to the I atoms in I$_5^-$ involved into HB interactions with the cations, this anion undergoes an obvious bent, producing two almost perpendicular I$_3$ units ($\theta_3 \approx 90^\circ$). Overall, iodine-iodine bonds in [DMIM][I$_3$] and [NMe$_4$][I$_5$] can be divided into two catalogues: the shorter ones showing the I⋯I distances approaching that of molecular I$_2$ (2.732 Å) and the longer ones with the distances moving towards those in the complexes of SI$_3^-$ (ca. 3.43 Å).

Two configurations, pyramid (P) and long chain (L), were constructed for bare heptaiodide ion, as displayed in Scheme 1. In P configuration, r_1, r_2 and r_3 are identical (about 3.21 Å)
accompanied by equivalent \(r_4, r_5 \) and \(r_6 \) (ca. 2.86 Å), and \(\theta_1, \theta_2 \) and \(\theta_3 \) are close to 180° while \(\theta_4, \theta_5 \) and \(\theta_6 \) amount to 101.8°. Evidently, this configuration can be seen as the adduct of three \(\text{I}_2 \) molecules with a single iodide anion. As a result of three \(\text{I}_2 \) molecules establishing iodine-iodine contacts with \(\Gamma \), the interacting \(\text{I} \cdots \text{I} \) distances in \(\text{I}_7^- \) (\(r_1, r_2, r_3 \)) appear to be approximately 0.03 Å longer than those in \(\text{I}_5^- \) (\(r_1 \) and \(r_2 \)). In contrast, in the L configuration three kinds of interatomic distances (\(r_1/r_2, r_3/r_4, r_5/r_6 \)) and two different triiodide angles (\(\theta_1/\theta_3/\theta_5, \theta_2/\theta_4 \)) were detected, which can be viewed as the \(\text{I}_2 \cdots \text{I}_3 \cdots \text{I}_2 \) motif. The central \(\text{I}_3 \) unit remains essentially linear with the distances close to those in triiodide ion. In general, these geometrical features of isolated heptaiodide ion are reproduced in \([\text{DMIM}][\text{I}_7] \) and \([\text{NMe}_4][\text{I}_7] \). However, all the triiodide angles in ionic pairs become smaller, thus suggesting less linear interactions and more bent structures, as also observed in the cases of \(\text{I}_5^- \) and \(\text{I}_3^- \). Furthermore, in the L configuration of ionic pairs, the two \(\text{I}_2 \) molecules are located at the same side of the central \(\text{I}_3 \) unit, unlike that in isolated \(\text{I}_7^- - \text{L} \), because the anion is able to establish more HBs with the cations in such geometry. Similarly, \(\text{I} \cdots \text{I} \) bonds in \([\text{DMIM}][\text{I}_7] \) and \([\text{NMe}_4][\text{I}_7] \) can be classified into two groups: the shorter ones with the interatomic distances less than 3.0 Å and the longer ones having the distances within the 3.160-3.238 Å range.

As can be deduced from Table 2, polybromide ions and mixed ones exhibit similar geometric properties as those of polyiodides, with the exception of shorter \(\text{Br} \cdots \text{Br} \) and \(\text{Br} \cdots \text{I} \) distances. This can be attributed to the smaller atomic radius of the Br atom with respect to the I atom. Here it is worth mentioning that different polyhalide anions affect the interaction energies of ionic pair complexes to a less degree with the largest gap amounting to only about 4 kcal/mol. Although higher polyhalides have a more diffuse charge, more HB interactions can be formed between these larger anions and the cations.

Table 2 Geometric data for bare polybromide ions and mixed ones and ionic pairs containing these anionsa

Complexes	\(r_1 \)	\(r_2 \)	\(r_3 \)	\(r_4 \)	\(\theta_1 \)	\(\theta_2 \)	\(\theta_3 \)
\(\text{Br}_5^- \)	2.641	2.641	180.0				
\([\text{DMIM}][\text{Br}_3] \)	2.661	2.599	172.2				
\([\text{NMe}_4][\text{Br}_3] \)	2.652	2.605	171.9				
\(\text{IBr}_2^- \)	2.798	2.798	180.0				
\([\text{DMIM}][\text{IBr}_2] \)	2.803	2.767	168.2				
\([\text{NMe}_4][\text{IBr}_2] \)	2.807	2.755	168.2				

a
Distances in angstroms, and angles in degrees. The structures of ionic pairs of mixed polyhalide anions with [NMe₄]⁺ are given in Figure S2. The definitions of \(r \) and \(\theta \) are shown in Scheme 1.

Fig. 2 AIM graphs of ionic pairs of polyiodide anions with [NMe₄]⁺. The orange points correspond to BCPs, and bond paths are shown as yellow lines.
Table 3 AIM results for ionic pairs containing polyiodide anions

| Complexes | Contacts | $10^2 \rho (r)$ | $10^2 \nabla \rho (r)$ | $10^2 G(r)$ | $10^2 V(r)$ | $|V(r)|G(r)$ | $10^2 H(r)$ |
|--------------|----------|-----------------|--------------------------|-------------|-------------|--------------|-------------|
| [DMIM][I$_3$]| r_1 | 3.896 | 4.462 | 1.585 | -2.010 | 1.268 | -0.425 |
| | r_2 | 4.023 | 4.492 | 1.672 | -2.221 | 1.328 | -0.549 |
| [NMe$_4$][I$_3$] | r_1 | 3.890 | 4.579 | 1.573 | -2.001 | 1.272 | -0.428 |
| | r_2 | 4.241 | 4.480 | 1.681 | -2.242 | 1.333 | -0.561 |
| [DMIM][I$_5$] | r_1 | 2.935 | 4.726 | 1.296 | -1.411 | 1.089 | -0.115 |
| | r_2 | 3.209 | 4.795 | 1.392 | -1.585 | 1.139 | -0.193 |
| | r_3 | 5.225 | 3.670 | 1.949 | -2.981 | 1.530 | -1.032 |
| | r_4 | 4.998 | 3.872 | 1.887 | -2.807 | 1.488 | -0.919 |
| [NMe$_4$][I$_5$] | r_1 | 3.408 | 4.868 | 1.460 | -1.702 | 1.166 | -0.243 |
| | r_2 | 3.572 | 4.895 | 1.521 | -1.818 | 1.195 | -0.297 |
| | r_3 | 4.800 | 4.120 | 1.847 | -2.664 | 1.442 | -0.817 |
| | r_4 | 4.668 | 4.231 | 1.815 | -2.572 | 1.417 | -0.757 |
| [DMIM][I$_7$]-P | r_1 | 2.988 | 4.855 | 1.335 | -1.457 | 1.091 | -0.121 |
| | r_2 | 2.738 | 4.746 | 1.246 | -1.306 | 1.048 | -0.060 |
| | r_3 | 2.600 | 4.654 | 1.193 | -1.222 | 1.024 | -0.029 |
| | r_4 | 5.212 | 3.674 | 1.947 | -2.976 | 1.528 | -1.029 |
| | r_5 | 5.424 | 3.406 | 1.996 | -3.141 | 1.574 | -1.145 |
| | r_6 | 5.526 | 3.304 | 2.026 | -3.227 | 1.593 | -1.200 |
| [NMe$_4$][I$_7$]-P | r_1 | 2.656 | 4.623 | 1.199 | -1.241 | 1.035 | -0.042 |
| | r_2 | 2.652 | 4.623 | 1.197 | -1.239 | 1.035 | -0.042 |
| | r_3 | 2.653 | 4.623 | 1.197 | -1.239 | 1.035 | -0.042 |
| | r_4 | 5.415 | 3.441 | 1.996 | -3.132 | 1.569 | -1.136 |
| | r_5 | 5.420 | 3.441 | 1.998 | -3.136 | 1.570 | -1.138 |
| | r_6 | 5.420 | 3.441 | 1.998 | -3.136 | 1.570 | -1.138 |
| [DMIM][I$_7$]-L | r_1 | 2.817 | 4.714 | 1.265 | -1.352 | 1.069 | -0.086 |
| | r_2 | 2.830 | 4.741 | 1.267 | -1.348 | 1.064 | -0.082 |
| | r_3 | 4.055 | 4.725 | 1.664 | -2.147 | 1.290 | -0.483 |
| | r_4 | 4.240 | 4.583 | 1.700 | -2.255 | 1.326 | -0.555 |
| | r_5 | 5.353 | 3.426 | 1.965 | -3.074 | 1.564 | -1.109 |
| | r_6 | 5.323 | 3.498 | 1.968 | -3.061 | 1.555 | -1.093 |
| [NMe$_4$][I$_7$]-L | r_1 | 3.032 | 4.842 | 1.343 | -1.477 | 1.100 | -0.133 |
| | r_2 | 3.033 | 4.840 | 1.344 | -1.478 | 1.100 | -0.134 |
| | r_3 | 4.153 | 4.734 | 1.702 | -2.220 | 1.304 | -0.518 |
| | r_4 | 4.151 | 4.758 | 1.701 | -2.218 | 1.304 | -0.517 |
| | r_5 | 5.174 | 3.649 | 1.923 | -2.935 | 1.526 | -1.011 |
| | r_6 | 5.173 | 3.650 | 1.923 | -2.934 | 1.526 | -1.011 |
| [DMIM][SI$_3$] | r_1 | 1.773 | 3.436 | 0.797 | -0.735 | 0.922 | 0.062 |
| | r_2 | 2.019 | 3.688 | 0.892 | -0.861 | 0.965 | 0.030 |
| [NMe$_4$][SIm] | r_1 | 1.927 | 3.631 | 0.863 | -0.818 | 0.948 | 0.045 |
| | r_2 | 1.928 | 3.633 | 0.863 | -0.819 | 0.948 | 0.045 |

All values are given in a.u.
QTAIM analysis

The QTAIM method, based on the critical points of the electron density $\rho(r)$, has been widely used to visualize and quantify noncovalent interactions [24]. Popelier and Koch proposed some basic topological criteria to characterize weak interactions: the existence of bond critical point (BCP) between the donor and acceptor atoms; $\rho(r)$ at BCP for closed-shell interactions varying from 0.002 a.u. to 0.04 a.u. [43, 44].

All interhalogen bonds in ionic pairs under investigation were identified by the QTAIM method, i.e. the presence of a BCP between the two halogen atoms involved, as displayed in Figure 2. The AIM parameters at the BCPs for these complexes are summarized in Tables 3 and S1. It is clear that the values of $\rho(r)$ fall beyond the proposed range of noncovalent interactions (> 0.04 a.u) for a number of X⋯X bonds. Furthermore, these bonds always have shorter interatomic distances, while those within the range commonly possess longer distances. For example, in [DMIM][I$_5$] and [NMe$_4$][I$_5$], the two interacting I⋯I contacts (r_1 and r_2) with longer distances have smaller $\rho(r)$, ranging from 2.935 a.u. to 3.572 a.u., whereas $\rho(r)$ for other two shorter contacts (r_3 and r_4) is predicted to be out of the range (4.668 a.u. ~ 5.225 a.u.). As a matter of fact, the values of $\rho(r)$ correlate well with the distances for all interhalogen interactions in the complexes of polyiodide ions, as displayed in Figure S3.

Tables 3 and S1 also lists the energetic properties at the BCPs, i.e. local kinetic energy density $G(r)$, local potential energy density $V(r)$, and electronic energy density $H(r)$. The relationships of these AIM parameters are given as follows

$$\frac{1}{4\pi^2} \rho(r) = 2G(r) + V(r) \quad (1)$$
$$H(r) = G(r) + V(r) \quad (2)$$

$G(r)$ is usually positive while $V(r)$ is always negative [45, 46]. It has been proposed that the interactions are purely noncovalent if $H(r) > 0$ or $|V(r)|/G(r) < 1$, whereas the interactions have some covalent content when $H(r) < 0$ or the ratio > 1 [47]. As can be seen from Tables 3 and S1, negative values of $H(r)$ are predicted for most interhalogen interactions in ionic pairs under study, thereby implying some degree of covalency. Furthermore, X⋯X contacts with shorter interatomic distances always possess higher ratio and vice versa. For instance, in [DMIM][I$_5$] and [NMe$_4$][I$_5$], the two interacting I⋯I contacts (r_1 and r_2) have the ratio values smaller than 1.2, while the ratio of other two shorter contacts (r_3 and r_4) increases, approaching the magnitude of molecular I$_2$.
Consequently, the former interhalogen interactions can be recognized as strong ionic halogen bonds, while the latter ones show a larger degree of covalency, that is, intermediate ionic/covalent nature.

It is noteworthy that some Br⋯Br contacts in ionic pairs including heptabromide anion exhibit positive $H(r)$ with the ratio < 1 (cf. Table S1), in line with longer interatomic distances and smaller values of $\rho(r)$. Clearly, these interhalogen interactions are entirely noncovalent and can be considered as conventional weak halogen bonds, as those in the complexes of SI$_3^-$.

Fig. 3 Contour line map of $\nabla^2 \rho(r)$ for polyiodide anions in representative ionic pairs. Bond CPs are shown in blue, nuclear CPs in brown, and bond paths are shown as brown lines.

The contour line maps of Laplacian of electron density $\nabla^2 \rho(r)$ for polyiodide anions in representative ionic pairs are depicted in Figure 3. The blue and brown points denote bond and nuclear CPs, respectively. Evidently, in [NMe$_4$][I$_3$] a stronger polarization along the terminal bond paths (r_3 and r_4) is observed compared with other two paths (r_1 and r_2), which indicates a higher covalent content for the former two I⋯I bonds, consistent with the above findings. Similarly, in the two configurations of [NMe$_4$][I$_7$], the polarization along the terminal bond paths appears to be stronger than other paths. Furthermore, the central I$_3$ unit in [NMe$_4$][I$_7$]-L shows a similar contour plot as that in [NMe$_4$][I$_3$].
Table 4 ELF, MBO and IBSI values for ionic pairs containing polyiodide anions

Complexes	Contacts	ELF	MBO	IBSI	Complexes	Contacts	ELF	MBO	IBSI
[DMIM][I₃]	r₁	0.396	0.590	0.166	[NMe₄][I₃]	r₁	0.399	0.567	0.166
	r₂	0.432	0.633	0.180		r₂	0.437	0.599	0.176
[DMIM][I₅]	r₁	0.276	0.402	0.105	[NMe₄][I₅]	r₁	0.331	0.467	0.123
	r₂	0.308	0.461	0.114		r₂	0.348	0.429	0.129
	r₃	0.536	0.775	0.194		r₃	0.492	0.697	0.175
	r₄	0.515	0.772	0.183		r₄	0.478	0.716	0.171
[DMIM][I₇]-P	r₁	0.276	0.356	0.096	[NMe₄][I₇]-P	r₁	0.243	0.310	0.094
	r₂	0.247	0.309	0.097		r₂	0.242	0.310	0.093
	r₃	0.232	0.288	0.093		r₃	0.242	0.309	0.085
	r₄	0.535	0.799	0.169		r₄	0.554	0.826	0.195
	r₅	0.555	0.840	0.194		r₅	0.554	0.826	0.193
	r₆	0.563	0.856	0.196		r₆	0.554	0.826	0.182
[DMIM][I₇]-L	r₁	0.259	0.379	0.099	[NMe₄][I₇]-L	r₁	0.284	0.366	0.127
	r₂	0.262	0.346	0.114		r₂	0.284	0.366	0.127
	r₃	0.405	0.591	0.159		r₃	0.414	0.575	0.183
	r₄	0.431	0.599	0.165		r₄	0.413	0.575	0.183
	r₅	0.552	0.846	0.193		r₅	0.535	0.787	0.222
	r₆	0.547	0.866	0.210		r₆	0.535	0.786	0.222
[DMIM][SI₃]	r₁	0.158	0.241	0.069	[NMe₄][SI₃]	r₁	0.175	0.233	0.063
	r₂	0.188	0.176	0.064		r₂	0.175	0.233	0.063

Fig. 4 ELF maps of polyiodide anions in representative ionic pairs.
ELF, MBO and IBSI results

The ELF approach is capable of showing the degree of electronic localization at different positions in three-dimensional real space, which has been extensively used for a wide variety of systems, such as organic molecules, atomic crystals, coordination compounds and clusters, as well as for different issues, e.g. examining aromaticity, portraying favorable electronic delocalization path and exploring variation of electronic structure during chemical reaction [48–51]. ELF is essentially an indicator for determining electron localization degree in local region.

The ELF graphs of polyiodide ions in representative ionic pairs are displayed in Figure 4, and the ELF values of X···X bonds in all studied complexes are summarized in Tables 4 and S2. As can be seen, in [NMe₄][I₅] the terminal two I···I bonds (r₃ and r₄) have larger ELF values, moving towards the magnitude of molecular I₂ (about 0.65), thus suggesting a greater degree of covalency. In contrast, the ELF values of the two interacting I···I contacts (r₁ and r₂) decrease, that is, a more delocalized character of the electrons of these bonds. Similarly, in the two configuration of [NMe₄][I₇], the shorter iodine-iodine bonds always have larger ELF values and vice versa. Furthermore, the ELF plot of the central I₃ unit in [NMe₄][I₇]-L is similar to that in [NMe₄][I₅], in good agreement with the above QTAIM outcomes. Notably, the smallest ELF values (< 0.2) are predicted for I···I interactions in the complexes of SI₃⁻, which indicates the greatest degree of electronic delocalization. Therefore, a disappearing covalent contribution occurs and these interactions are purely noncovalent, as also unveiled by the QTAIM method.

The MBO is an index for the definition of bond strength, which has been proved very effective in chemical reaction analysis and description of bonding mechanism of complex molecules [52]. The MBO between atom A and B is defined as

\[
I_{AB} = I_{AB}^{\alpha} + I_{AB}^{\beta} = 2 \sum_{a \in A, b \in B} \left[(P^{\alpha} S)_{ba} (P^{\beta} S)_{ba} + (P^{\beta} S)_{ba} (P^{\alpha} S)_{ba} \right]
\]

where \(P^{\alpha} \) and \(P^{\beta} \) are alpha and beta density matrix, respectively, and S is overlap matrix.

The calculated MBO values of X···X bonds in ionic pairs under investigation are also listed in Tables 4 and S2. It is seen that in [DMIM][I₅] and [NMe₄][I₅] much larger MBO values are predicted for the terminal two iodine-iodine bonds (r₃ and r₄) with respect to other two ones (r₁ and r₂). As a consequence, the former bonds are much stronger than the latter ones, leading to a greater covalent content. Notably, the MBO values of the terminal three iodine-iodine bonds (r₄, r₅, r₆) in the P configuration of [DMIM][I₇] and [NMe₄][I₇] increase further, moving toward 1,
hence indicating intermediate covalent/ionic character. In contrast, the MBO values of the three interacting I⋯I contacts \((r_1, r_2, r_3)\) further decrease, approaching those of the complexes of SI\(_3^-\), which implies weaker strength and thus ionic nature. As expected, I⋯I bonds in the central I\(_3\) unit of [DMIM][I\(_7\)]-L and [NMe\(_4\)][I\(_7\)]-L exhibit similar MBO values as those in the systems of I\(_5^-\), consistent with the above QIAIM and ELF findings. In fact, a good correlation was found between the MBO values and the interatomic distances for all interhalogen interactions in polyiodide ionic pairs (see Figure S3).

The IBSI, a powerful and robust tool for interpretation accessible to a wide community of chemists, was also recommended to quantify strength of chemical bonds. It has been demonstrated that magnitude of IBSI of transition metal coordination bond is markedly smaller than that of covalent bond, and magnitude of IBSI of weak interactions is even much lower [28]. This feature of IBSI may be used to distinguish types of interactions. The IBSI is expressed as

\[
\text{IBSI} = \frac{\int d^2 \delta g^{\text{pair}} dr}{\int d^2 \delta g^{H_2} dr}
\]

where \(d\) is the distance between the two atoms to be studied, and \(\delta g^{\text{pair}}\) represents atomic pair index. The denominator is the data for a reference system (H\(_2\) in its equilibrium structure).

It is not surprising that all the trends found in ELF and MBO are reproduced in IBSI. For example, the terminal two iodine-iodine bonds \((r_3\) and \(r_4)\) in [DMIM][I\(_5\)] and [NMe\(_4\)][I\(_5\)] possess larger IBSI values compared with other two ones \((r_1\) and \(r_2)\). The lowest magnitude of IBSI is predicted for I⋯I interactions in the complexes of SI\(_3^-\), thereby suggesting the weakest strength.

![Figure 5](image_url) IG M dyed isosurfaces of the interactions within anions for three representative ionic pairs.
To gain deeper insight into the features of interhalogen interactions in polyhalide ILs, the IGM method, based on electron density gradient ($\nabla \rho$), was employed herein. This approach provides an intra/inter uncoupling scheme that automatically extracts the signature of intra- (δg_{intra}) and inter- (δg_{inter}) molecular interactions within and between two user-selected fragments. The δg function is defined as follows

$$g(r) = \left| \sum_A \nabla \rho_A(r) \right|$$

(5)

$$g^{\text{IGM}}(r) = \sum_A \text{abs}[\nabla \rho_A(r)]$$

(6)

$$\delta g(r) = g^{\text{IGM}}(r) - g(r)$$

(7)

where ρ_A stands for atomic density of atom A. The abs operator makes each of the three gradient
components to be its absolute value [53]. This method is remarkably attractive to assess the role of interactions that occur in an intramolecular mode between atoms or subfragments in one single molecule.

Figures 5 and 6 depict the color-coded δg isosurfaces of the interactions within the anions for representative ionic pairs, where strong attractive interactions are shown in blue and green region indicates weak interactions. Also given in these figures are the scatter plots of iodine-iodine bonds in these systems. The first observation from Figures 5 and 6 is the blue isosurfaces between the I atoms in polyiodide ionic pairs and the green isosurfaces between these atoms in the complexes of SI_3^-. Clearly, iodine-iodine interactions in ionic pairs are markedly stronger and thus have some covalent contributions, while I···I contacts in the latter complexes are much weaker and belong to conventional weak halogen bonds. Secondly, in $[NMe_4][I_5]$ the wider and darker blue isosurfaces between the terminal I atoms indicate somewhat stronger terminal I···I bonds (r_3 and r_4) with respect to other two ones (r_1 and r_2). Furthermore, the first spike peak in the scatter plot corresponds to the terminal I···I bonds, while the spike peak for other two ones is located at a less negative value. Therefore, the former interactions have a greater content of covalency, while the latter ones can be categorized as strong halogen bonds. Lastly, similar features of such interactions were also detected in the two configurations of $[NMe_4][I_7]$, and the central I$_3$ unit in $[NMe_4][I_7]$-L shows similar IGM plots as those in $[NMe_4][I_5]$, in good accordance with the above QTAIM and ELF results.

Discussion

As stated above, polyhalide ions have been the target of a number of research works. The most well-studied polyhalides are the simplest trihalide anions, and the bonding in these anions can be described as a delocalized 3c-4e bond [54, 55]. Particularly, as revealed by previous K-edge XAS experiments, charge transfer is extremely large in some trihalide systems, comparable to that observed in coordination complexes. Consequently, X···X bonds in these systems should be partially covalent, analogous to coordination bonds [22]. However, interhalogen interactions in polyhalide ILs remain largely unexploited, although these ILs have shown potential applications in many scientific fields. Incorporating polyhalide ions into the IL structure could combine the properties of these ions (such as strong oxidizing power and high reactivity) and the advantages
of ILs (like negligible vapor pressure and highly tunable character).

Cation-anion interactions and intermolecular forces in ILs were intensively studied from both theoretical and experimental viewpoints, since these intrinsic interactions are directly related to the physicochemical properties of ILs. However, the interactions within anions or cations of ILs have drawn much less attention to date, possibly due to their absence in most cases. As a matter of fact, such intramolecular interactions play a fundamental role in certain specific characteristics of ILs. Wang et al. previously reported an interesting method for decreasing the viscosity variation in CO$_2$ capture process by amino-functionalized ILs through the formation of intramolecular HBs [56]. When it comes to polyhalide ILs, many of their applications are indeed based on the properties of polyhalide anions in which multiple halogen-halogen interactions are presented. For instance, trihalide ILs can be used as oxidizing solvents for metals and alloys, mainly arising from the strong oxidizing character of trihalides [19, 20, 57]. Therefore, a detailed understanding of interhalogen bonds in polyhalide ILs should be of particular importance for realizing the potential of these ILs.

According to our calculations on ionic pair complexes for a series of polyhalide ILs, all the defined angles become smaller in ionic pairs compared with those in isolated ions. Namely, the geometry of polyhalide anions tends to bent when complexed with the cations, on account of the formation of HBs between these anions and the cations. Furthermore, most interhalogen bonds in ionic pairs show some covalent content, and these bonds also have much larger ELF and MBO values than those in the complexes of SI$_3^-$ with the presence of conventional weak halogen bonds. Notably, in higher polyhalide systems, halogen-halogen bonds can be divided into two catalogues according to interatomic distances: the longer ones belonging to strong ionic halogen bonds and the shorter ones having a larger degree of covalency.

The substantial covalent content of interhalogen interactions in ILs could be intriguing for systems where electronic transport is of significance. Furthermore, owing to the delocalized bonding in polyhalides, polyhalide ILs possess much lower viscosity with respect to traditional halide ILs, attractive as solvents or components of electrolytes. In addition, higher halogen concentrations in these ILs may also be beneficial for dye-sensitized solar cells, in which the iodide/triiodide redox couple was generally used [58]. All in all, polyhalide ILs not only show the properties of polyhalides but also have the favorable characteristics of ILs, and two different types of halogen-halogen interactions with some covalent contributions were characterized in higher
polyhalide ILs, which will inspire the applications of these ILs in a wider chemical community.

Conclusions

In the present work, interhalogen bonds in a series of polyhalide ILs, which are comprised of trihalides ([I$_3^-$], [Br$_3^-$], [IBr$_2^-$]), pentahalides ([I$_5^-$], [Br$_5^-$], [I$_2$Br$_3^-$]) and heptahalides ([I$_7^-$], [Br$_7^-$], [I$_3$Br$_4^-$]) with two typical cations ([NMe$_4^+$] and [DMIM]$^+$), were investigated in detail using DFT calculations. In addition, I···I interactions in the complexes of a supramolecular anion SI$_3^-$ with the same cations were also examined for comparison. Several computational approaches, such as QTAIM, ELF, MBO and IGM, were employed, with the aim of understanding these bonds in depth.

Compared with those in bare polyhalide ions, halogen-halogen interactions in ionic pairs for the ILs under study become somewhat asymmetric induced by the cation-anion interactions. As disclosed by the QTAIM method, most X···X bonds in ionic pair complexes are partially covalent, as a result of negative $H(r)$ or the ratio $|V(r)|/G(r) > 1$. Furthermore, $\rho(r)$ at the BCPs correlates well with the interatomic distance for all interhalogen interactions in polyiodide ionic pairs. Therefore, X···X bonds having shorter interatomic distances are relatively stronger, while the longer ones show a weaker strength. Notably, the shorter X···X bonds always possess larger ELF, MBO and IBSI values, approaching the magnitudes of molecular X_2, while smaller values are estimated for the longer ones, moving towards those of the complexes of SI$_3^-$. On the basis of these findings, interhalogen interactions in ionic pairs can be divided into two groups: one group with longer interatomic distances can be recognized as strong ionic halogen bonds, while the other with shorter distances has a greater covalent content, i.e. intermediate ionic/covalent character.

The results and conclusions reported in this work can provide helpful guidance for applying polyhalide ILs in diverse scientific fields.

Supplementary Information The online version contains supplementary material available at
Declarations

Funding Funded through the National Natural Science Foundation of China (22078085 and 91834301).

Conflicts of interest The authors declare that they have no conflicts of interest.

Data availability Data can be obtained from the corresponding authors through email.

Code availability Not applicable.

Author contribution All authors, Y. Xu, J. Zhang, L. Yang, Y. Zhang, Z. Xu, Y. Lu, made contributions to this study.

References

1. Rogers RD (2003) CHEMISTRY: ionic liquids--solvents of the future? Science 302:792–793. https://doi.org/10.1126/science.1090313
2. Yuan J, Antonietti M (2011) Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers. Macromolecules 44:744–750. https://doi.org/10.1021/ma102858b
3. Tanaka K, Ishiguro F, Chuo Y (2010) POSS ionic liquid. J Am Chem Soc 132:17649–17651. https://doi.org/10.1021/ja105631j
4. Zhao W, Leroy F, Heggen B, Zahn S, Kirchner B, Balasubramanian S, Müller-Plathe F (2009) Are there stable ion-pairs in room-temperature ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Am Chem Soc 131:15825–15833. https://doi.org/10.1021/ja906337p
5. Gon M, Tanaka K, Chuo Y (2018) Recent progress in the development of advanced element-block materials. Polym J 50:109–126. https://doi.org/10.1038/pj.2017.56
6. Borghi F, Piazzoni C, Ghidelli M, Milani C, Podestà A (2021) Nanoconfinement of ionic liquid into porous carbon electrodes. J Phys Chem C 125:1292–1303. https://doi.org/10.1021/acs.jpcc.0c08145
7. Virgili JM, Nedoma AJ, Segalman RA, Balsara NP (2010) Ionic liquid distribution in ordered block copolymer solutions. Macromolecules 43:3750–3756. https://doi.org/10.1021/ma9027307
8. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576. https://doi.org/10.1021/cr1003248
9. Newington I, Perez-Arlandis JM, Welton T (2007) Ionic liquids as designer solvents for nucleophilic aromatic substitutions. Org Lett 9:5247–5250. https://doi.org/10.1021/ol702435f
10. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpK_a from aqueous solutions. J Am Chem Soc 125:15411–15419. https://doi.org/10.1021/ja035783d
11. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237.
12. Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure–property relationships and expanding applications. Chem Rev 115:11379–11448. https://doi.org/10.1021/cr068040u

13. Zhang C, Ueno K, Yamazaki A, Yoshida K, Moon H (2014) Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J Phys Chem B 118:5144–5153. https://doi.org/10.1021/jp501319e

14. Wolff M, Okrut A, Feldmann C (2011) [(Ph)₃PBr][Br₇], [(Bz)(Ph)₃P][Br₈], [((n-Bu)₂MeN)₂][Br₂₀], [C₄MPyr]₂[Br₂₀], and [(Ph)₃PCl]₂[Cl₂I₄]: extending the horizon of polyhalides via synthesis in ionic liquids. Inorg Chem 50:11683–11694. https://doi.org/10.1021/ic201291k

15. Li X, Li Z, Orefice M, Binnemans K (2019) Metal recovery from spent samarium–cobalt magnets using a trichloride ionic liquid. ACS Sustain Chem Eng 7:2578–2584. https://doi.org/10.1021/acssuschemeng.8b05604

16. Bortolini O, Bottai M, Chiappe C, Conte V, Pieraccini D (2002) Trihalide-based ionic liquids. Reagent-solvents for stereoselective iodination of alkenes and alkynes. Green Chem 4:621–627. https://doi.org/10.1039/b209436n

17. Deetlefs M, Seddon KR, Shara M (2006) Neoteric optical media for refractive index determination of gems and minerals. New J Chem 30:317. https://doi.org/10.1039/b513451j

18. Gorlov M, Pettersson H, Hagfeldt A, Kloo L (2007) Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids. Inorg Chem 46:3566–3575. https://doi.org/10.1021/ic062244b

19. Li X, Binnemans K (2021) Oxidative dissolution of metals in organic solvents. Chem Rev 121:4506–4530. https://doi.org/10.1021/acs.chemrev.0c00917

20. Van den Bossche A, De Witte E, Dehaen W, Binnemans K (2018) Trihalide ionic liquids as non-volatile oxidizing solvents for metals. Green Chem 20:3327–3338. https://doi.org/10.1039/C8GC01061G

21. Keil H, Sonnenberg K, Müller C, Herbst-Irmer R, Beckers H, Riedel S, Stalke D (2021) Insights into the topology and the formation of a genuine ppσ bond: experimental and computed electron densities in monoanionic trichlorine [Cl₃]⁻. Angew Chem Int Ed 60:2569–2573. https://doi.org/10.1002/anie.202013727

22. Mustoe CL, Gunabalasingam M, Yu D, Patrick B, Kennespohhl P (2017) Probing covalency in halogen bonds through donor K-edge X-ray absorption spectroscopy: polyhalides as coordination complexes. Faraday Discuss 203:79–91. https://doi.org/10.1039/C7FD00076F

23. Cavallo G, Terraneo G, Monfredini A, Saccone M, Priimagi A, Pilati T, Resnati G, Metrangolo P (2016) Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions. Angew Chem 128:6408–6412. https://doi.org/10.1002/ange.201601278

24. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:7

25. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

26. Mayer I (1986) On bond orders and valences in the ab initio quantum chemical theory. Int J Quantum Chem 29:73–84. https://doi.org/10.1002/qua.560290108

27. Mayer I (2007) Bond order and valence indices: a personal account. J Comput Chem 28:204–221.
28. Klein J, Khartabil H, Boisson J-C, Contreras-García J, Piquemal, J, Hénon E (2020) New way for probing bond strength. J Phys Chem A 124:1850–1860. https://doi.org/10.1021/acs.jpca.9b09845
29. Lefebvre C, Khartabil H, Boisson J-C, Contreras-García J, Piquemal, J, Hénon E (2018) The independent gradient model: a new approach for probing strong and weak interactions in molecules from wave function calculations. ChemPhysChem 19:724–735. https://doi.org/10.1002/cphc.201701325
30. Ponce-Vargas M, Lefebvre C, Boisson J-C, Hénon E (2020) Atomic decomposition scheme of noncovalent interactions applied to host–guest assemblies. J Chem Inf Model 60:268–278. https://doi.org/10.1021/acs.jcim.9b01016
31. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
32. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785
33. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344
34. Hunt PA, Kirchner B, Welton T (2006) Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. Chem-Eur J 12:6762–6775. https://doi.org/10.1002/chem.200600103
35. Wu Y, Zhang T (2009) Structural and electronic properties of amino acid based ionic liquids: a theoretical study. J Phys Chem A 113:12995–13003. https://doi.org/10.1021/jp906465h
36. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-\(d \) group 16–18 elements. J Chem Phys 119:11113–11123. https://doi.org/10.1063/1.1622924
37. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569
38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ (2009) Gaussian, Inc., Wallingford CT
39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B,
Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, and Fox DJ (2016) Gaussian, Inc., Wallingford CT

40. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

41. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

42. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

43. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878. https://doi.org/10.1021/jp9805048

44. Popelier P (2000) On the full topology of the laplacian of the electron density. Coord Chem Rev 197:169–189. https://doi.org/10.1016/S0010-8555(99)00189-7

45. Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croatica Chemica acta 57:1259–1281

46. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317:97–102. https://doi.org/10.1016/S0009-2614(99)01306-8

47. Yuan Y, Mills MJL, Li F, Du Y, Wei J, Su W (2020) Halogen bonds and other noncovalent interactions in the crystal structures of trans-1,2-diiodo alkenes: an ab initio and QTAIM study. J Mol Model 26:331. https://doi.org/10.1007/s00894-020-04591-2

48. Poater J, Duran M, Solà M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches. Chem Rev 105:3911–3947. https://doi.org/10.1021/cr030085x

49. Manzetti S, Lu T (2013) Alternant conjugated oligomers with tunable and narrow HOMO–LUMO gaps as sustainable nanowires. RSC Adv 3:25881. https://doi.org/10.1039/c3ra41572d

50. Manzetti S, Lu T, Behzadi H, Estrafili M, Thi Le H, Vach H (2015) Intriguing properties of unusual silicon nanocrystals. RSC Adv 5:78192–78208. https://doi.org/10.1039/C5RA17148B

51. Emamian S, Lu T, Moeinpour F (2015) Can the high reactivity of azomethine betaines in [3 + 2] cycloadDITION reactions be explained using singlet-diradical character descriptors? What molecular mechanism is actually involved in these cycloadditions? RSC Adv 5:62248–62259. https://doi.org/10.1039/C5RA08614K

52. Mayer I (1983) Charge, bond order and valence in the ab initio SCF theory. Chem Phys Lett 97:270–274.
53. Lefebvre C, Rubez G, Khartabil H, Boisson J, Contreras-García J, Hénon E (2017) Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys Chem Chem Phys 19:17928–17936. https://doi.org/10.1039/C7CP02110K
54. Artau A, Nizzi KE, Hill BT, Sunderlin L, Wenthold P (2000) Bond dissociation energy in trifluoride ion. J Am Chem Soc 122:10667–10670. https://doi.org/10.1021/ja001613e
55. Riedel S, Köchner T, Wang X, Andrews L (2010) Polyfluoride anions, a matrix-isolation and quantum-chemical investigation. Inorg Chem 49:7156–7164. https://doi.org/10.1021/ic100981c
56. Luo XY, Fan X, Shi GL, Li H, Wang CM (2016) Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond. J Phys Chem B 120:2807–2813. https://doi.org/10.1021/acs.jpcb.5b10553
57. Van den Bossche A, Vereycken W, Vander Hoogerstraete T, Dehaen W, Binnemans K (2019) Arsenic from semiconductors using tribromide ionic liquids. ACS Sustain Chem Eng 7:14451–14459. https://doi.org/10.1021/acssuschemeng.9b01724
58. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826. https://doi.org/10.1021/ar900138m
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Sl.docx