Supporting Information

Single and Two-Stage, Closed-Tube, Point of Care, Molecular Detection of SARS-CoV-2

Jinzhao Songa,b,*, Mohamed El-Tholothb,d,f, Yize Lic, Jevon Graham-Wootene, Yining Liangb, Juan Lia, Weijian Lia, Susan R. Weissc, Ronald G. Collmanc,e, Haim H. Baub

a. The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China

b. Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA

c. Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

d. Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt

e. Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

f. Health Sciences Division, Veterinary Sciences Program, Al Ain Men’s Campus, Higher Colleges of Technology, Al Ain 17155, UAE

* Corresponding author

Dr. Jinzhao Song

The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China

Email songjinzhao@ucas.ac.cn; songjinz@seas.upenn.edu.
Table of Contents

Supplementary Methods: ..S-3
 qRT-PCR...S-3
 Calibration Curves..S-3
 Verification of the Specificity of Our LAMP Assay...S-3
 Infectivity of Coronavirus and RNA Integrity after Heat Treatment...........................S-3
 Block Heater..S-4

Supplementary Results and Discussion: ..S-4
 Comparison of Direct RT-LAMP with OptiGene Reaction Mix and NEB Colorimetric Master Mix..S-4

Figure S1: Target region and sequences of LAMP primers for SARS-CoV-2- ORF1ab gene.....S-6
Figure S2: Target region and sequences of LAMP primers for SARS-CoV-2- N geneS-7
Figure S3: Quantification of inactivated SARS-CoV-2 with contrived samplesS-8
Figure S4: RT-RPA detection of SARS-CoV-2 ORF1ab and N geneS-9
Figure S5: Comparison among LAMP, RT-PCR, and Closed-Tube Penn-RAMP for SARS-CoV-2 Detection ..S-10
Figure S6: Effect of heat treatment on the stability of coronavirus-IBV RNAS-11
Figure S7: The effect of medium type: VTM, saline, water, and saliva on PCR amplification...S-12
Figure S8: Detection of SARS-CoV-2 with NEB colorimetric LAMP bufferS-13
Table S1: Coronavirus sequences used for alignment in this studyS-14
Table S2: Sequences and concentrations of SARS-CoV-2 LAMP primersS-15
Table S3: Synthesized DNA targets ..S-16
Table S4: Sequences of EXO-RPA probes ..S-17
Table S5: IBV infectivity after various heat treatments ...S-18
Table S6: Effect of RNase inhibitor during heat treatment of COVID-19 patient samplesS-19
Table S7: Comparison of colorimetric detection of “dirty” (unprocessed) swab samples from COVID-19 patients with RT-LAMP and RT-Penn-RAMP ..S-21
Table S8: Comparison of VTM with H2O as a swab collection medium for direct LAMP detection of “dirty” patient swab sample ...S-22

References: ...S-23
Supplementary Methods

qRT-PCR

We carried out RT-PCR with the CDC Emergency Use Authorization (EUA) primers/probes (IDT, Catalog number: 10006713). Five microliters of extracted SARS-CoV-2 RNA and the premixed primers/probes at the CDC’s recommended concentrations were added to the reaction buffer (New England Biolabs, Luna Universal Probe One-Step RT-qPCR kit, cat #E3006L). RT-PCR was carried out with a Thermal Cycler (BioRad, Model CFD3240) with the temperature profile of 55°C for 10 min, and then 95°C for 1 min, followed by 45 cycles of amplification (95°C for 15 s and 60°C for 1 min).

Calibration Curves

To obtain a calibration curves, we determined the threshold time as a function of template concentration from a dilution series of purified SARS-CoV-2 RNA genome (USA-WA1/2020 strain). This calibration curve was verified with a Twist Synthetic SARS-CoV-2 RNA Control (MN908947.3, Twist Bioscience).

Verification of the Specificity of Our LAMP Assay

RNAs of coronaviruses from different genera [Alphacoronavirus (PEDV and TGEV); Gammacoronavirus (IBV); and Deltacoronavirus (PDCoV)], MERS-CoV (Betacoronavirus) cDNA, and SARS-CoV (Betacoronavirus) synthetic DNA (Table S2) were used as negative controls to verify the specificity of our LAMP assay.

Infectivity of Coronavirus and RNA Integrity after Heat Treatment

To reduce the burden on our BSL3 facilities, we used avian infectious bronchitis gammacoronavirus (IBV) isolate (10^{3.2} EID_{50} /ml) as a surrogate for SARS-Cov-2 to examine the effect of heat treatment on coronavirus infectivity and on RNA degradation.

Coronavirus Infectivity after Heat Treatment. We incubated 400 µl aliquots of IBV in 1.5 ml cryotubes submerged in a water bath at 56°C, 70°C, and 95°C for 5 min, 10 min, and 30 min. Immediately after incubation, the tubes were placed on ice. The 50% embryo infective dose (EID_{50}) titer was then determined with the Reed–Muench method. Later, we verified in BSL3 experiments that the optimal deactivation conditions identified for IBV are also applicable to SARS-CoV-2.
Coronavirus RNA Quality with RNase inhibitor protection.

We evaluated the stability of coronavirus RNA of the heat-treated samples in the presence and in the absence of RNase inhibitor by monitoring the threshold cycle as a function of sample preparation conditions. We used the RNase inhibitor iNtRON (optimal working temperature 42°C, Cat. 25011, iNtRON Biotechnology, Seongnam, Korea), RNase inhibitor RNasin® (recommended temperature from 50 to 70°C, Cat. N2615, Promega), and a home-made RNase inhibitor TCEP/EDTA\(^3\). RNA was extracted with the RNA extraction kit (Qiagen, Cat. No. 52904/52906) and quantified with real-time RT-qPCR\(^4\).

Block Heater

An inexpensive, portable block heater (Fig. 5) was developed in house. Our block heater consists of a PID controller (STM32F103C8T6), heating silk nickel chrome wire (HAZY XH-RS2090), two Pt1000 temperature sensors, an LCD screen, control buttons, an aluminum heating block, a buzzer (12V, Risym) to alert the user of scheduled operations, and an OEM power supply that works with an adjustable step-down regulated power supply module (Risym LM2596S-ADJ) to provide 5V DC to the PID controller and 12V to other system components. The various components were packaged in a 3D-printed box.

Supplementary Results and Discussion

Comparison of Direct RT-LAMP with OptiGene Reaction Mix and NEB Colorimetric Master Mix

We repeated our experiments using NEB colorimetric master mix (NEB #M1800) (Figure S8). The NEB master mix includes phenol red – a pH indicator that reacts to proton produced during polymerase, changing from purple to yellow (Figure S8A). We obtained similar threshold times for virions in saline, water, and saliva in the presence of TCEP/EDTA and after incubation at 95°C for 5 min (Figure S8B). In contrast to the OptiGene master mix, the NEB buffer mix performed poorly in the absence of pre-incubation (95°C, 5 min) (Figure S8C). We suspect that this is caused by differences in the reaction mix compositions. The OptiGene reaction mix includes detergent that lyses the virus and appears to be absent in the NEB reaction mix,
The pH-based colorimetric detection is, however, inappropriate for testing saliva because saliva's acidity varies from one person to another and depends on diet. Hence, in the absence of pH control, the NEB colorimetric test occasionally produces false positives. Indeed, we have observed, in a few cases (Figure S8D), an immediate color change when sample was added to the reaction mix, prior to incubation. The LCV dye has the advantage over phenol red, being less sensitive to pH variations.
Figure S1: Target region and sequences of LAMP primers for SARS-CoV-2- ORF1ab gene: A) SARS-CoV-2 amplicon sequence with the LAMP primers’ positions indicated; arrows show the extension direction. B) Comparison of the targeted sequence of the ORF1ab gene with other human coronaviruses (SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-229E, HCoV-OC43 and HCoV-NL63).
Figure S2: Target region and sequences of LAMP primers for SARS-CoV-2 N gene: A) SARS-CoV-2 amplicon sequence with the LAMP primers' positions indicated; arrows show the extension direction. B) Comparison of the targeted N gene sequence with other human coronaviruses (SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-229E, HCoV-OC43 and HCoV-NL63).
Figure S3: Quantification of inactivated SARS-CoV-2 with contrived samples. (A) RT-PCR amplification curves of 5×10^6, 5×10^5, 5×10^4, 5×10^3, 500, 50, 5, and 0 (no template control) copies of SARS-CoV-2 RNA genome per reaction (all experiments in duplicate). (B) Threshold PCR cycle (Ct) as a function of the log of SARS-CoV-2 RNA genome copies per reaction. (C) Amplification curves of ~40 copies per microliter spiked in VTM, saline, water, and saliva behaved similarly.
Figure S4: RT-RPA detection of SARS-CoV-2 ORF1ab and N gene with LAMP F3/B3 primers as forward and backward primers. (A) RT-RPA amplification curves targeting the ORF1ab gene in the presence of 5×10^4, 5×10^3, 5×10^2, 50, 5, and 0 copies of SARS-CoV-2 RNA per reaction. (B) Threshold time of ORF1ab RT-RPA correlates with the template concentration ($n = 3$). (C) RT-RPA amplification curves targeting the N gene in the presence of 5×10^4, 5×10^3, 5×10^2, 50, 5, and 0 copies of SARS-CoV-2 RNA per reaction. (D) Threshold time of N gene RT-RPA correlates with the template concentration ($n = 3$). In both cases, RT-RPA sensitivity is about 50 copies/reaction. For real time amplicon monitoring, we used EXO-RPA probe (Table S5). The RT-RPA threshold time may have been adversely affected by our use of shorter (18~22 nt) forward and backward primers than commonly used in RPA (28-35 nt).
Figure S5: Comparison among LAMP, RT-PCR, and Closed-Tube Penn-RAMP for SARS-CoV-2 Detection. (A) LAMP, (B) PCR, (C) closed-tube Penn-RAMP detection of 70000, 7000, 700, 70, 7, and 0 (no template control) copies per reaction. The limits of detection of LAMP, PCR, and closed-tube Penn-RAMP are, respectively, 70, 70, and 7 copies per reaction. The threshold time of LAMP (D), threshold cycle of PCR (E), and threshold time of single-tube Penn-RAMP (F) as functions of the log of synthesized DNA (Table S2) with a sequence equivalent to SARS-CoV-2 (n = 3). These experiments were carried out before SARS-CoV-2 samples became available in the USA. (This data was published in our preprint in ChemRxiv⁵).
Figure S6: Effect of heat treatment on the stability of coronavirus-IBV RNA: IBV-RT-PCR threshold cycle as a function of heat treatment conditions: in the absence of RNase inhibitors (gray bar), in the presence of commercial low working temperature (42°C) RNase inhibitor iNtRON (black bar), and in the presence of homemade RNase inactivating mixture (striped bar). \(10^{3.2}\) EID\(_{50}\) /ml IBV isolate.
Figure S7: The effect of medium type: VTM, saline, water, and saliva on PCR amplification. Similar quantities of SARS-CoV-2 virions were spiked in various media, incubated at 95°C for 5 min, RNA-purified, and subjected to RT-PCR. SARS-CoV-2 RNA degrades in VTM during incubation.
Figure S8: Detection of SARS-CoV-2 with NEB colorimetric LAMP buffer. (A) Visual detection of SARS-CoV-2 with RT-LAMP. (B) The threshold time of as a function of medium type in the presence of TCEP/EDTA and thermal incubation at 95°C for 5 min. (C) The threshold time as a function of medium type in the presence of TCEP/EDTA but without pre-heating. 4 μL of ~40 RNA genomes/μL were added to 25 μL NEB colorimetric LAMP reaction mix (NEB #M1800). (D) Occasionally, the NEB colorimetric LAMP buffer changed color due to sample’s acidity (false positive). All experiments were carried out with the N gene LAMP primer set. RT = room temperature.
Coronavirus	GISAID or Genbank accession ID	Specimen source	Country	Patient age	Collection date
SARS-COV-2	EPI_ISL_402119	Alveolar lavage fluid	China	49	2019-12-30
SARS-COV-2	EPI_ISL_402120	Alveolar lavage fluid	China	61	2020-01-01
SARS-COV-2	EPI_ISL_402121	Alveolar lavage fluid	China	32	2019-12-30
SARS-COV-2	EPI_ISL_402123	Bronchoalveolar lavage fluid	China	65	2019-12-24
SARS-COV-2	EPI_ISL_402124	Bronchoalveolar lavage fluid	China	49	2019-12-30
SARS-COV-2	EPI_ISL_402126	Throat swab	Japan	30	2020-01-14
SARS-COV-2	EPI_ISL_402127	Bronchoalveolar lavage fluid	China	32	2019-12-30
SARS-COV-2	EPI_ISL_402128	Bronchoalveolar lavage fluid	China	52	2019-12-30
SARS-COV-2	EPI_ISL_402129	Bronchoalveolar lavage fluid	China	40	2019-12-30
SARS-COV-2	EPI_ISL_402130	Bronchoalveolar lavage fluid	China	56	2019-12-30
SARS-COV-2	EPI_ISL_403932	Endotracheal aspirates	China	66	2020-01-14
SARS-COV-2	EPI_ISL_403933	Endotracheal aspirates	China	65	2020-01-15
SARS-COV-2	EPI_ISL_403936	Throat swab	China	68	2020-01-17
SARS-COV-2	EPI_ISL_403937	Nasal swab	China	49	2020-01-18
SARS-COV-2	EPI_ISL_403962	Nasopharyngeal swab and Throat swab	Thailand	61	2020-01-08
SARS-COV-2	EPI_ISL_403963	Nasopharyngeal swab and Throat swab	Thailand	74	2020-01-13
SARS-COV-2	EPI_ISL_404253	Sputum	USA	63	2020-01-21
SARS-COV-2	EPI_ISL_404895	Oropharyngeal swab	USA	30	2020-01-19
TGEV	Genebank NC_038861.1	--	--	--	--
PDCoV	Genebank KX022605.1	--	--	--	--
Table S2: Sequences and concentrations of SARS-CoV-2 LAMP primers.

Amplicon	Primer name	Sequence (5’ to 3’)	Concentration (μM)
ORF1ab	F3	TGCTTCAGTCAGCTGATG	0.2
	B3	TTAATTTGTCATCTTCCGTCCTT	0.2
	FIP	TCAGTACTAGTGCTGTGCC-CACAATCGTTTTTTAAACGGGT	1.6
	BIP	TCGTATACAGGGGTCTCTGACATCTA-TCTTGGAAAGCGACAACAA	1.6
	Loop F	CTGCACATTACACCGCAA	0.8
	Loop B	GTAGCTGTTTTTGCTAAATTCC	0.8
N gene	F3	CGGCAGTCAAGCCTCTCC	0.2
	B3	TTGCTCTCAAGCTGGTTCAA	0.2
	FIP	TCCCCTACTGCTGCTGAG-CGTTCCCTATCAGTAGCG	1.6
	BIP	TTCTCCTGCTAGAATGGCTGCG-TCTGTCAAGCAGCAGCAAG	1.6
	Loop B	AATGGCGGGTATGCTGCTCT	0.8

Table S3. Synthesized DNA targets

Source	Genebank Accession	--	--	--	--
PEDV	NC_003436.1	--	--	--	--
IBV	NC_001451.1	--	--	--	--
HCoV-229E	NC_002645.1	--	--	--	--
OC43	KX344031.1	--	--	--	--
NL63	JX504050.1	--	--	--	--
HKU1	KF686346.1	--	--	--	--
SARS-CoV	NC_004718.3	--	--	--	--
MERS-CoV	NC_019843.3	--	--	--	--

Synthesized SARS-CoV-2 DNA (ORF1ab Fragment, 619 nt)
Synthesized SARS-CoV-2 DNA (N gene Fragment, 599 nt)

DNA Sequence
5'- CTG CTA AAG CTT ACA AAG ATT ATC TAG CTA GTG GGG GAC AAC CAA TCA CTA
ATT GTG TTA AGA TGT TGT GTA CAC ACA CTG GTA CTG GTC AGG CAA TAA CAG TTA
CAC CGG AAG CCA ATA TGG ATC AAG AAT CCT TTG GTG GTG CAT CGT GTT GTC
TGT ACT GCC GTT GCC ACA TAG ATC ATC CAA ATC CTA AAG GAT TTT GTG ACT TAA
AAG GTA AGT TAC CTG GTA CAC CTG CTA CAA CTT GTA GTC AAT CTG TGG TGG GTT TTA
CAC TTA AAA ACA CAG TCT GTG GCC TCT GCG GTA TGT GGA AAG GTT ATG GCT
GTA GTT GTG ATC AAC TCC GCG AAC CCA TGC TTC AGT CAG CTG ATG AAC AAT CTG TTT
AAG ATG AGC TGG TTT TGG TGC TAA ATT CCT AAA AAC TAA TTG TTG TGC CTT CCA AGA
AAA GGA CGA AGA TGA CAA TTT AAT TGA TTC TTA CTT TGT AGT TAA GAG ACA CAC
TTT CTC TAA CTA CCA ACA TGA AGA AAC AAT TTA TAA TTT ACT T -3 '

Synthesized SARS DNA (ORF1ab Fragment, 619 nt)

DNA Sequence
5'- GGA CTT CCC TAT GGT GCT AAC AAA GAC GGC ATC ATA TGG GTT GCA ACT GAG
GGA GCC TTG AAT ACA CCA AAA GAT CAC ATT GGC ACC CGC AAT CCT GCT AAG
AAT GCT GCA ATC GTG CTA CAA CTT CCT CAA GGA ACA ACA TGG CCA AAA GCC
TTC TAC GCA GAA GGC AGA AGA GGA GGC ATG CAA GCC TCT TCT CGT TCC TCA
TCA CTG AGT CGC AAC AGT TCA AGA AAT TCA ACT CCA GCC AGC AGT AGG GGA ACT
TCT CCT GCT AGA ATG GCT GCC AAT GGC GGT GAT GCT CCT TTG CTG CTG CTG ATT GTC
CTG CTG GTT CAC AGG ATG TTG AGT AAC CAG TTG GAG AAA ATG TCT GGT GAA GGC
CAA CCA AAA CAA GGC CAA ACT GTC ACT AAG AAA TCT GCT GAG ACT TCT AAG AGG CTG
CAA CTA ATG AAA TCG CTA CCA ACA TGA AGA AAC AAT TTA TTA TTT ACT T -3 '

Synthesized SARS DNA (N gene Fragment, 272 nt)

DNA Sequence
5'- TGC CAA AAG GCC TAT CAT AGG AGG ATT ACC TAG CAA GTG GAG GAC AAC CAA TCA CCA
ACT GTG TGA AGA TGT TGT GTA CAC ACA CTG GTA CAG GAC AGG CAA TTA CTG
TAA CAC CAG AAG CTA ACA TGG ACC AAG AGT CCT TTG GTG GTG CTT CAT GTT GTC
TGT ATT GTA GAT GCC ACA TTG ACC ATC CAA ATC CTA AAG GAT TCT GTG ACT TGA
AAG GTA ATG AGC TCC AAA TAC CTA CCA CTG TTT GTG CTA ATG ACC CAG TGG TTG
TTA CAC TTA GAA ACA CAG TCT GTA CCG TCT GCG GAA GTG GAA AAG GTT AAT GCT
GCT GTA GTT GTG ACC AAC TCC GCG AAC CCT TGA TGC AGT CGG ATG CAT AAA CTA CTT
TTG TAA ACG GGT TTG CGG TGT AAG TGC AGC CCG TCT TAC ACC GTG CGG CAC AGG CAC
TAG TCA TTG TGG CTA GAG GCC TCT TGG TTA TGA TAT TTA AAA AAG AGT TGC TGG CTT
CCA GGA GAA GGA TGA AGG AGG CAA TTT ATT AGA ATG TGA CTA TCA AGG CAA TTT
ATT AGA CTC TTA CTT TGT AGT TAA GAG GCA TAC TAT GTC TAA CTA CCA ACA TGA
AGA GAC TAT TTA TAA AAA CTT GGT GCT TGG TGG TGG TGG GTT TGG TGG TGG TGG TCC
GCC CCC AGC GCT TCA GCG TGC TGG TGC TGG TGC TGG TGG TGG TGG TGG TGG TGG TGG

Synthesized SARS DNA (N gene Fragment, 272 nt)

DNA Sequence
5'- TGC CAA AAG GCC TAT CAT AGG AGG ATT ACC TAG CAA GTG GAG GAC AAC CAA TCA CCA
ACT GTG TGA AGA TGT TGT GTA CAC ACA CTG GTA CAG GAC AGG CAA TTA CTG
TAA CAC CAG AAG CTA ACA TGG ACC AAG AGT CCT TTG GTG GTG CTT CAT GTT GTC
TGT ATT GTA GAT GCC ACA TTG ACC ATC CAA ATC CTA AAG GAT TCT GTG ACT TGA
AAG GTA ATG AGC TCC AAA TAC CTA CCA CTG TTT GTG CTA ATG ACC CAG TGG TTG
TTA CAC TTA GAA ACA CAG TCT GTA CCG TCT GCG GAA GTG GAA AAG GTT AAT GCT
GCT GTA GTT GTG ACC AAC TCC GCG AAC CCT TGA TGC AGT CGG ATG CAT AAA CTA CTT
TTG TAA ACG GGT TTG CGG TGT AAG TGC AGC CCG TCT TAC ACC GTG CGG CAC AGG CAC
TAG TCA TTG TGG CTA GAG GCC TCT TGG TTA TGA TAT TTA AAA AAG AGT TGC TGG CTT
CCA GGA GAA GGA TGA AGG AGG CAA TTT ATT AGA ATG TGA CTA TCA AGG CAA TTT
ATT AGA CTC TTA CTT TGT AGT TAA GAG GCA TAC TAT GTC TAA CTA CCA ACA TGA
AGA GAC TAT TTA TAA AAA CTT GGT GCT TGG TGG TGG TGG GTT TGG TGG TGG TGG TCC
GCC CCC AGC GCT TCA GCG TGC TGG TGC TGG TGC TGG TGG TGG TGG TGG TGG TGG TGG
Table S4: Sequences of EXO-RPA probes*
--
ORF1ab EXO-RPA probe
5'-TGTCGTATACAGGGCTTTTGACATCTACAA[FAM-dT]G[THF][BHQ-dT]AAAGTAGCTGGTTTTG[3'-block]
N gene EXO-RPA probe
5'-TAGAATGGCTGGCAATGGCGGTGATGCTGC[FAM-dT][THF][BHQ-dT]TGCTTTGCTGCTGCTT [3'-block]

*ORF1ab EXO-RPA probe was designed in house, and N gene EXO-RPA probe sequence is from literature\(^6\).
Table S5: IBV infectivity after various heat treatments.

Virus	Temperature	Time (Minutes)	Pre-treatment virus titer (EID_{50/ml})	Post-treatment virus titer (EID_{50/ml})
IBV	56 °C	30	10^{3.2}	0
	70 °C	5	10^{3.2}	0*
	70 °C	10	10^{3.2}	0
	70 °C	30	10^{3.2}	0
	95 °C	5	10^{3.2}	0
	95 °C	10	10^{3.2}	0
	95 °C	30	10^{3.2}	0

* A few virus particles remained infectious.
Table S6. Effect of RNase inhibitor during heat treatment of COVID-19 patient samples.

Patient No.	Sample type	CDC RT-PCR with purified RNA	CDC RT-PCR with purified RNA	CDC RT-PCR with purified RNA
		Lysis buffer inactivation	Heating inactivation (56 °C, 1 hour) in the absence of RNase inhibitor	Heating inactivation (56 °C, 1 hour) in the presence of RNase inhibitor
228	NP/OP/VTM	++	+	++
234	NP/OP/VTM	++	-	-
235	NP/OP/VTM	+++	+++	+++
240	NP/OP/VTM	+++	+++	+++
242	NP/OP/VTM	+++	+++	+++
247	NP/OP/VTM	++	-	++
248	NP/OP/VTM	++	+	+
251	NP/OP/VTM	+++	+++	+++
258	NP/OP/VTM	+	+	+
256	NP/OP/VTM	++	+	+
257	NP/OP/VTM	+++	+++	+++
258	NP/OP/VTM	+	+	+
256	NP/OP/VTM	++	++	++
257	NP/OP/VTM	++	++	++
260	NP/OP/VTM	+	+	+
262	NP/OP/VTM	++	++	++
263	NP/OP/VTM	+++	+++	+++
266	NP/OP/VTM	+++	+++	+++
264	OP/VTM	+	+	+
264	OP/H₂O	+	+	+
266	NP/OP/VTM	+++	+++	+++
266	NP/OP/H₂O	+++	+++	+++
269	NP/VTM	+++	+++	+++
269	NP/OP/H₂O	+++	+++	+++
272	NP/OP/VTM	+++	+++	+++
272	NP/OP/H₂O	+++	+++	+++
272	NP/OP/VTM	+++	+++	+++
272	NP/OP/H₂O	+++	+++	+++
275	NP/OP/VTM	+	+	+
275	NP/OP/H₂O	+	+	+
279	NP/OP/VTM	+++	+++	+++
279	NP/OP/H₂O	+++	+++	+++
283*	NP/OP/VTM	-	-	-
283*	NP/OP/H₂O	+	+	+
284*	NP/OP/VTM	+++	+++	+++
Sample	Sample Type	RT-PCR Ct	Treatment	
--------	-------------	-----------	-----------	
284*	NP/OP/H₂O	+++	TCEP/EDTA	
288*	NP/OP/VTM	-	Rnasin®	
288*	NP/OP/H₂O	+	TCEP/EDTA	
290	NP/OP/VTM	+++	Rnasin®	
290	NP/OP/H₂O	+++	TCEP/EDTA	
291	NP/OP/VTM	+++	Rnasin®	

1. “+++++”, “++++”, “+++”, “+” indicates, respectively, positive when Ct <20, <24, <28, <32, <36. “-” indicates negative.
2. Shaded area compares test results of samples treated with Rnasin® with untreated samples.
3. Different swabs from the same patient (labeled with “*”) provide different RT-PCR Ct, which is likely caused by variations in swab sample collection.
| Patient No. | Sample type | CDC RT-PCR with purified RNA | RT-LAMP with “dirty” sample | RT-RAMP with “dirty” sample |
|------------|-------------|-----------------------------|-----------------------------|-----------------------------|
| 227 | NP/VTM | - | - | - |
| 228 | NP/OP/VTM | + | Positive | - |
| 234 | NP/OP/VTM | - | - | - |
| 235 | NP/OP/VTM | +++ | Positive | Positive |
| 232 | NP/VTM | - | - | - |
| 232 | OP/VTM | - | - | - |
| 233 | NP/VTM | - | - | - |
| 233 | OP/VTM | - | - | - |
| 240 | NP/OP/VTM | +++ | Positive | Positive |
| 242 | NP/OP/VTM | +++++ | Positive | Positive |
| 244 | NP/OP/VTM | - | - | - |
| 245 | NP/OP/VTM | - | - | - |
| 247 | NP/OP/VTM | ++ | Positive | - |
| 246 | NP/OP/VTM | - | - | - |
| 248 | NP/OP/VTM | + | Positive | - |
| 251 | NP/OP/VTM | +++++ | Positive | Positive |
| 252 | NP/OP/VTM | - | - | - |
| 233 | NP/OP/VTM | - | - | - |
| 237 | NP/OP/VTM | - | - | - |
| 248 | NP/OP/VTM | + | Positive | - |
| 251 | NP/OP/VTM | +++ | Positive | Positive |
| 252 | NP/OP/VTM | - | - | - |
| 255 | NP/OP/VTM | - | - | - |
| 252 | NP/OP/VTM | - | - | - |
| 253 | NP/OP/VTM | + | Positive | - |
| 255 | NP/OP/VTM | - | - | - |
| 256 | NP/OP/VTM | +++ | Positive | Positive |
| 257 | NP/OP/VTM | +++ | Positive | Positive |
| 258 | NP/OP/VTM | + | Positive | - |
| 254 | NP/OP/VTM | - | - | - |
| 256 | NP/OP/VTM | ++ | Positive | - |
| 254 | NP/OP/VTM | - | - | - |
| 257 | NP/OP/VTM | ++ | Positive | - |
| 260 | NP/OP/VTM | + | Positive | - |
| 259 | NP/OP/VTM | - | - | - |
| 262 | NP/OP/VTM | ++ | Positive | - |
| 263 | NP/OP/VTM | +++ | Positive | Positive |
| 263 | NP/OP/VTM | - | - | - |
| 266 | NP/OP/VTM | +++ | Positive | Positive |

“++++”, “+++++”, “+++”, “++”, “+” indicates, respectively, positive when Ct <20, <24, <28, <32, <36. “−” indicates negative.
Table S8: Comparison of VTM with H₂O as a swab collection medium for direct LAMP detection of "dirty" patient swab sample.

Patient No.	Sample type	CDC RT-PCR with purified RNA, Ct	LAMP with “dirty” sample, Tt
		Lysis buffer inactivated	Heat inactivated (56 °C, 1 hour) Adding RNase inhibitor
279	NP/OP/VTM	+++	++
279	NP/OP/H₂O	+++	+++
284	NP/OP/VTM	+++	+++
284	NP/OP/H₂O	+++	+++
288	NP/OP/VTM	+	-
288	NP/OP/H₂O	++	+
290	NP/OP/VTM	+++	+++
290	NP/OP/H₂O	+++	+++
291	NP/OP/VTM	+++	+++
291	NP/OP/H₂O	+++	+++

1. "++++", "+++", "++", "+" indicates, respectively, positive when Ct<24, <28, <32, <36 for RT-PCR, and Tt<10, <12, <14, <18 min for RT-LAMP. Ct = threshold cycle; Tt = threshold time.

2. The threshold cycle Ct is defined as the cycle number until the fluorescent signal increases above the baseline level to ~10% of the saturation level.

3. The threshold time Tt is defined as the reaction time until the fluorescent signal increases above the baseline level to ~10% of the saturation level.
References:

(1) Centers for Disease Control and Prevention, Division of Viral Diseases, CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel. 2020 https://www.fda.gov/media/134922/download (accessed July 17, 2021).
(2) Reed, L.; Muench, H. A Simple Method for Determining 50 Per Cent Endpoints. Am. J. Hyg 1938, 27, 493-497.
(3) Rabe, B. A.; Cepko, C. Sars-Cov-2 Detection Using Isothermal Amplification and a Rapid, Inexpensive Protocol for Sample Inactivation and Purification. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 24450-24458.
(4) Callison, S. A.; Hilt, D. A.; Boynton, T. O.; Sample, B. F.; Robison, R.; Swayne, D. E.; Jackwood, M. W. Development and Evaluation of a Real-Time Taqman Rt-Pcr Assay for the Detection of Infectious Bronchitis Virus from Infected Chickens. J. Virol. Methods 2006, 138, 60-65.
(5) El-Tholoth, M.; Bau, H. H.; Song, J. A Single and Two-Stage, Closed-Tube, Molecular Test for the 2019 Novel Coronavirus (Covid-19) at Home, Clinic, and Points of Entry. ChemRxiv 2020.
(6) El Wahed, A. A.; Patel, P.; Maier, M.; Pietsch, C.; Rüster, D.; Böhlken-Fascher, S.; Kissenkötter, J.; Behrmann, O.; Frimpong, M.; Diagne, M. M. Suitcase Lab for Rapid Detection of Sars-Cov-2 Based on Recombinase Polymerase Amplification Assay. Anal. Chem. 2021, 93, 2627-2634.