Cold damage to grapes is a worldwide concern but is especially prominent in cool climates. A great deal of research has been conducted to document the types of injuries that can occur as a result of frost and freeze events (Fennell, 2004; Goffinet, 2001; Wample et al., 2001). Injury to the grapevine trunk also facilitates the systemic movement of Agrobacterium vitis and the formation of crown gall from endophytic infections with the bacterium (Burr and Otten, 1999). The climate of the inland Pacific Northwest is characterized by long, warm sunny days during the summer; large diurnal temperature fluctuations throughout spring, summer, and fall; and cold to freezing temperatures in the winter (http://weather.wsu.edu). Thus, there is potential for cold injury to grape from fall through the spring corresponding to the harvest, dormant, and early growth stages of the crop. The objective of this article is to provide an overview of the potential risks and possible protection methods for grapes in Washington state, where there are over 12,000 ha of wine and 10,000 ha of juice grapes in production (National Agricultural Statistics Service, 2007).

TIMES OF RISK

In central Washington, based on a 6-year average, daily mean and minimum temperatures from bud burst to harvest are above freezing, resulting in little risk for cold injury during June to September (Fig. 1). However, minimum temperatures for late season and postharvest dip precipitously low (less than 0 °C), and mean and minimum dormant season temperatures are cold enough to present risk to grapes. Implicitly, multイヤer average data obscure the specific temperatures of any given year, which suggests that the potential risk of cold injury is greater in some years than in others.

Historically, widespread cold temperature events that have the potential to damage grape plants occur in Washington every 4 to 8 years (Wolfe, 2001). Site and variety play a role in the extent of the damage and are discussed in another section. The fine line between severe widespread damage and localized damage is well illustrated in Figure 2. During the 1995–1996 winter, temperatures in late January/early February were cold enough (less than –20 °C) to result in severe bud damage in ‘Cabernet Sauvignon’, which was reflected in widespread damage throughout the growing region and a significantly reduced crop plus vine damage the next season (Wolfe, 2001). Although there also was a very cold period in early Jan. 2004, the minimum temperature was just above the level for bud damage to ‘Cabernet Sauvignon’ (Fig. 2), and overall crop and vine loss was much more localized (i.e., site-specific) than in 1996 (J. Watson, personal communication).

As Figure 1 shows, another period of potentially damaging cold temperatures is the postharvest period in late October/early November. Like with winter damage, the incidence of injury varies from year to year. Weather and bud cold-hardiness data from 2001 to 2004 illustrate this (Fig. 3). In 2001, daily minimum temperatures did not fall below the level of bud hardiness during the months of October or November (Fig. 3A). However, in the next 3 years, daily minimum temperatures fell below bud hardiness for some varieties at the very end of October (Fig. 3B–D). Some bud damage was indeed noted in these years (Keller and Mills, 2007). This suggests that the fall, in addition to midwinter, is a risky time for cold damage to grape vines in this growing region.

SENSITIVITY OF DIFFERENT VARIETIES

Cultivar differences in bud hardiness have been noted by other researchers (Fennell, 2004; Wolfe, 2001). For inland Washington, the majority of juice grape varieties are Concord grape (Vitis labruscana Bailey), whereas there are a number of different red and white grape (Vitis vinifera L.) varieties grown. Mills et al. (2006) evaluated dormant-season bud cold hardness of a number of established and promising varieties. Of the well-established white varieties (Washington Wine Commission, 2007), ‘Riesling’ has bud hardness to the lowest temperatures, whereas ‘Gewürztraminer’ has less hardy buds in the fall/early winter (October through mid-January, 18–20 °C) and ‘Chardonnay’ has less hardy buds (near –20 °C) between January and March (Fig. 4). Although the upcoming white variety ‘Pinot Gris’ shows bud hardness that is intermediate between the well-established white wine varieties, ‘Viognier’ bud hardness is low in the late October/early November (10–17 °C) and December/January (near –20 °C) time periods that are associated with past damaging cold events (Fig. 4). The pattern of bud cold hardiness is a similar pattern as found in the well-established versus upcoming red wine varieties. ‘Merlot’, ‘Cabernet Sauvignon’, ‘Cabernet Franc’, and ‘Syrah’ have a fairly narrow range of bud hardness temperatures (between –20 and –23 °C December and January), and the upcoming variety, ‘Malbec’, if anything, shows bud hardness to colder temperatures (Fig. 5). However, ‘Mourvedre’ and ‘Sangiovese’ buds are less hardy (between –18 and –20 °C) throughout the colder months of the year (Fig. 5B), suggesting that these varieties may be very site-limited in the region.

MANAGEMENT TO MINIMIZE COLD DAMAGE

To help grape producers assess the level of risk of cold injury to their plants, Washington State University monitors the cold hardness of a range of V. vinifera and V. labruscana grape cultivars during the key months of the year using differential thermal analysis (Mills et al., 2006). Lethal temperatures for buds and cane xylem and phloem are posted online (http://winegra pes.wsu.edu/frigid.html) and updated weekly. Critical temperature adjustments need to be made for variation in site, because there are mesoclimatic differences between where cold-hardiness sample tissues are collected and each individual vineyard site. Because the temperature at which the bud and cane...
Nevertheless, there still can be a need to de
on slopes with barrier-free cold air drainage.
preferentially grown at higher elevation and
and in valley floors, whereas wine grapes are
generally grown at low elevation
areas of cold air ponding is critical (Snyder
radiant with thermal inversions in this area
product quality (Evans, 2001).

Deficit irrigation is widely used as a
standard practice for high-quality wine grape
production in the inland Northwest area.
However, soil moisture is generally replen-
ished after harvest to minimize root injury
from winter freeze (Evans, 2001; Wample
et al., 2001). Young vines, especially after
their first season of growth, are sometimes
buried using plows in the fall to prevent
potentially lethal damage from unusually
low temperatures. In addition, some growers,
especially on valley floors, grow one or two
suckers that are buried each fall and unburied
in the spring to avoid cold injury. These
buried canes serve as backup reserves in case
a cold event kills the aboveground portion of
the plant. Although costly, this practice is
feasible in eastern Washington because,
unlike in most of the rest of the world, grapes
are generally grown on their own roots (i.e.,
not grafted to rootstocks).
The cold-hardier V. labruscana juice
grapes are generally pruned soon after leaf
fall; both manual and mechanical pruning are
used for juice grapes (Keller et al., 2004).
However, pruning of V. vinifera wine grapes,
which are mostly cordon-trained and spur-
pruned in the inland Northwest, is usually
delayed as long as possible to enable growers
to compensate for bud damage suffered
during the winter. Because hand pruning
shortly before budbreak is not possible for
many large vineyards as a result of labor
shortage, growers often mechanically pre-
prune their vines to relatively high bud
numbers and then manually adjust final bud
numbers later. In response to bud-damaging
fall cold events, Keller and Mills (2007)
compared pruning treatments to vary bud
number and pruning time using standard spur
pruning (prebudbreak, early March), late spur
pruning (postbudbreak, middle of May),
standard spur pruning with late repruning
double pruning, early March and middle of May),
minimal pruning (no pruning except
trimming of dead cane ends to facilitate bud
counting), and minimal pruning with disbud-
ing of all nodes (buds sliced off with a
grafting knife). Overall, they found that late
pruning had no advantage in cluster
number and pruning time using standard spur
pruning and that double pruning reduced bud number, cluster number, and yield. Additionally, their
data showed that minimal pruning resulted in
higher bud and cluster numbers, although this
did not always translate into higher yields,

Fig. 2. Minimum to maximum temperature range in (A) 1995–1996 and (B) 2003–2003 from October
through March and mean bud hardiness level (10%, 50%, and 90% lethality) for ‘Cabernet Sauvignon’
in central Washington.
largely as a result of reduced cluster size. Overall, this study suggests that minimal or light mechanical pruning may be a viable, inexpensive, and temporary strategy to achieve acceptable crop yields in seasons after relatively extensive bud damage and phloem injury as a result of very low fall or winter temperatures.

Although commercial grape production in eastern Washington predominantly relies on own-rooted plants, there is an interest in grafting to rootstocks. This is of economic concern, because grafted vines cannot simply be retrained from suckers after lethal cold injury to the trunk. Because the parents of most commercial rootstocks have evolved in North American regions that regularly experience cold winters (e.g., Galet, 1998; Pongrác, 1983), they are likely to be cold-hardier than their V. vinifera grafting partners. Therefore, one possible way of increasing winter survival could be to alter the height of grafting. To evaluate this, buds of ‘Chardonnay’, ‘Merlot’, and ‘Syrah’ were made low (27 cm aboveground surface) and for both ‘Chardonnay’ and ‘Merlot’, grafts also were made high (69 cm aboveground surface) on the rootstock trunk on five different rootstocks. The data showed two- to threefold higher graft survival when grafts were made at the higher position than the lower position (Keller et al., 2007), suggesting that high grafts on a cold-tolerant rootstock has the potential to improve winter survival. Because many rootstocks are also more resistant to A. vitis than are V. vinifera cultivars, high grafting may also limit the incidence of crown gall after extreme cold events (Burr and Otten, 1999).

CONCLUSIONS

Overall, risk of grape vine injury from cold temperatures, in terms of both bud and phloem damage, in the inland Pacific Northwest is
greatest in the fall with intermittent potential for localized damage during the winter. Because most of the spring and fall injuries are associated with radiant frost events, after site selection, use of wind machines to prevent cold air ponding has been shown to be the most effective management tool for cold injury in Washington. Attempts to modify pruning after cold damage have not resulted in improved crop yield or quality. Although the majority of the grapes in this area are own-rooted, research has shown that for grafting onto rootstocks, higher bud placement can improve bud survival and suggest that cold-hardy rootstocks could be an option for winter cold-challenged sites.

Literature Cited

Burr, T.J. and L. Otten. 1999. Crown gall of grape: Biology and disease management. Annu. Rev. Phytopathol. 37:53–80.

Evans, R.G. 1999. Frost protection in orchards and vineyards. 8 Oct. 2007. <http://www.sidney.ars.usda.gov/Site_Publisher_Site/pdfs/personnel/Frost%20Protection%20in%20Orchards%20and%20Vineyards.pdf>.

Evans, R.G. 2001. The art of protecting grapevines from low temperature injury, p. 60–72. In: Rantz, J.M. (ed.). Proc. ASEV 50th Anniversary Annual Meeting, Amer. Soc. Enology Viticulture, Davis, CA.

Fennell, A. 2004. Freezing tolerance and injury in grapevines, p. 201–235. In: Arora, R. (ed.). Adaptations and responses of woody plants to environmental stresses. The Haworth Press, Inc., Binghamton, NY.

Galet, P. 1998. Grape varieties and rootstock varieties. Translated from French by Smith, J. Oenoplurumédia, Chaintre, France.

Goffinet, M.C. 2001. The anatomy of low-temperature injury of grapevines, p. 94–100. In: Rantz, J.M. (ed.). Proc. ASEV 50th Anniversary Annual Meeting, Amer. Soc. Enology Viticulture, Davis, CA.

Keller, M. and L.J. Mills. 2007. Effect of pruning on recovery and productivity of cold-injured Merlot grapevines. Amer. J. Enol. Vitic. 58:351–357.

Keller, M., L.J. Mills, and D.S. Hackett. 2007. Field grafting and cold injury: Grafting height but not rootstock affects scion survival. Proc. XV International Symposium Groupe d’Etude des Systèmes de Conduite de la Vigne, Poreč, Croatia. p. 294–300.

Keller, M., L.J. Mills, R.L. Wample, and S.E. Spayd. 2004. Crop load management in Concord grapes using different pruning techniques. Amer. J. Enol. Vitic. 55:35–50.

Mills, L.J., J.C. Ferguson, and M. Keller. 2006. Cold-hardiness evaluation of grapevine buds and cane tissues. Amer. J. Enol. Vitic. 57:194–200.

National Agricultural Statistics Service. 2007. Grape release. 20 Sept. 2007. <http://www.nass.usda.gov/Statistics_by_State/WashingtonPublications/Fruit/grape07.pdf>.

Pongrácz, D.P. 1983. Rootstocks for grape-vines. David Philip Publisher, Cape Town, South Africa.

Synder, R.L. and J.P. de Melo-Abreu. 2005. Frost protection: Fundamentals, practices, and economics. Vol. 1. FAO Environ. Nat. Res. Series 10. FAO, Rome, Italy.

Wample, R.L. and A. Bary. 1992. Harvest date as a factor in carbohydrate storage and cold hardiness of Cabernet Sauvignon grapevines. J. Amer. Soc. Hort. Sci. 117:32–36.

Wample, R.L., S. Hartley, and L. Mills. 2001. Dynamics of grapevine cold hardiness, p. 81–93. In: Rantz, J.M. (ed.). Proc. ASEV 50th Anniversary Annual Meeting, Amer. Soc. Enology Viticulture, Davis, CA.

Wample, R.L., S.E. Spayd, R.G. Evans, and R.G. Stevens. 1993. Nitrogen fertilization of White Riesling grapes in Washington: Nitrogen seasonal effects on bud cold hardness and carbohydrate reserves. Amer. J. Enol. Vitic. 44:159–167.

Washington Wine Commission. 2007. Varieties. 8 Oct. 2007. <http://www.washingtonwine.org/washington-wine/varieties>.

Wolf, T.K. 2004. Crop yield effects on cold hardiness of ‘Cabernet Sauvignon’ dormant buds. Acta Hort. 640:177–187.

Wolf, T.K. and J.D. Boyer. 2001. Site selection and other vine management principles and practices to minimize the threat of cold injury, p. 49–59. In: Rantz, J.M. (ed.). Proc. ASEV 50th Anniversary Annual Meeting, Amer. Soc. Enology Viticulture, Davis, CA.

Wolfe, W. 2001. Vine and vineyard management following low temperature injury, p. 101–110. In: Rantz, J.M. (ed.). Proc. ASEV 50th Anniversary Annual Meeting, Amer. Soc. Enology Viticulture, Davis, CA.