Associations of Hydroxysteroid 17-beta Dehydrogenase 13 Variants with Liver Histology in Chinese Patients with Metabolic-associated Fatty Liver Disease

Wen-Yue Liu1,8, Mohammed Eslam28, Kenneth I. Zheng3, Hong-Lei Ma3, Rafael S. Rios3, Min-Zhi Lv4, Gang Li3, Liang-jie Tang3, Pei-Wu Zhu5, Xiao-Dong Wang3,6, Christopher D. Byrne7, Giovanni Targher8, Jacob George29 and Ming-Hua Zheng3,6,9*

1Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 2Storl Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, Australia; 3NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 4Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China; 5Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; 6Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China; 7Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK; 8Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy; 9Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China

Abstract

Background and Aims: In Europeans, variants in the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene impact liver histology in metabolic-associated fatty liver disease (MAFLD). The impact of these variants in ethnic Chinese is unknown. The aim of this study was to investigate the potential associations in Chinese patients. Methods: In total, 427 Han Chinese with biopsy-confirmed MAFLD were enrolled. Two single nucleotide polymorphisms in HSD17B13 were genotyped: rs72613567 and rs6531975. Logistic regression was used to test the association between the single nucleotide polymorphisms and liver histology. Results: In our cohort, the minor allele TA of the rs72613567 variant was related to an increased risk of fibrosis (odds ratio (OR): 2.93 (1.20–7.17), p=0.019 for the additive model; OR: 3.32 (1.39–7.91), p=0.007 for the recessive model), representing an inverse association as compared to the results from European cohorts. In contrast, we observed a protective effect on fibrosis for the minor A allele carriers of the HSD17B13 rs6531975 variant [OR: 0.48 (0.24–0.98), p=0.043 for the additive model; OR: 0.62 (0.40–0.94), p=0.025 for the dominant model]. HSD17B13 variants were only associated with fibrosis but no other histological features. Furthermore, HSD17B13 rs6531975 modulated the effect of PNPLA3 rs738409 on hepatic steatosis. Conclusions: HSD17B13 rs72613567 is a risk variant for fibrosis in a Han Chinese MAFLD population but with a different direction for allelic association to that seen in Europeans. These data exemplify the need for studying diverse populations in genetic studies in order to fine map genome-wide association studies signals.

Citation of this article: Liu WY, Eslam M, Zheng KI, Ma HL, Rios RS, Lv MZ, et al. Associations of hydroxysteroid 17-beta dehydrogenase 13 variants with liver histology in Chinese patients with metabolic-associated fatty liver disease. J Clin Transl Hepatol 2021;9(2):194–202. doi: 10.14218/JCTH.2020.00151.

Keywords: Metabolic-associated fatty liver disease (MAFLD); Nonalcoholic fatty liver disease (NAFLD); Hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13); Single nucleotide polymorphism (SNP).

Abbreviations: BMI, body mass index; CI, confidence interval; GWAS, genome-wide association studies; HOMA, homeostasis model assessment; HSD17B13, hydroxysteroid 17-beta dehydrogenase 13; IFNL3, interferon lambda-3; IR, insulin resistance; MAH, minor allele frequency; MAFL, metabolic-associated fatty liver disease; MICA, MIC class I polypeptide-related chain A; NCAI, neurocan; OR, odds ratio; PNPLA3, patatin-like phospholipase domain containing protein 3; SNP, single nucleotide polymorphism; TLL1, tollidin-like 1; TLR3, toll-like receptor 3.

*These authors contributed equally to this study.

Correspondence to: Ming-Hua Zheng, NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University; No. 2 Fuxue Lane, Wenzhou Zhejiang 325000, China. ORCID: http://orcid.org/0000-0003-4984-2431. Tel: +86-577-55579611; Fax: +86-577-55578523. E-mail: zhengmh@wmu.edu.cn; Jacob George, Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney 2145, Australia. Tel: +61-2-88907705, Fax: +61-2-96357582, E-mail: jacob.george@sydney.edu.au
fibrosis and cirrhosis. MAFLD arises from “multiple hits,” with genes acting as important modifiers of the clinical phenotype. Our understanding of the underpinnings of MAFLD has been enhanced by numerous genetic association studies, and all of the polymorphisms identified to date explain only 10–20% of disease heritability. It is broadly acknowledged that there is overrepresentation of subjects of European ancestry in human genetics research, with ~79% of all genome-wide association studies (GWAS) participants being of European descent. This overrepresentation hinders a complete understanding of the human genetic architecture. Moreover, it can also have a negative impact, including prediction accuracies between 1.6-4.9-fold lower for other ethnicities than Europeans. Hence, increasing the representation of diverse populations and studying other ethnicities has become a research priority.

Several variants in the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene encoding a hepatic lipid droplet protein have been identified to impact the histological features of MAFLD. However, the impact of HSD17B13 gene variants on MAFLD histology among those of Chinese ancestry is unknown. Notably, allele frequencies, haplotype patterns and the effect size of polymorphisms vary considerably across populations and ethnicities. As HSD17B13 has been proposed as a therapeutic target for MAFLD, it is pivotal to explore whether the effect of this variant observed in Caucasian populations extends to other populations, as also to the effect size.

It is known that the genetic association of variants in HSD17B13 with the histological features of MAFLD is complex, with different potentially causative single nucleotide polymorphisms (SNPs) and various SNPs associated with different phenotypic patterns. For example, alleles of rs6531975 and rs72613567 associate with decreased injury and with increased hepatic fat. However, there are other studies that show no association of rs72613567 with steatosis. Non-coding SNPs (e.g., rs6531975) not in linkage disequilibrium with rs72613567 have also been associated with decreased hepatic fat. Adding to this complexity, a recent study of 487 patients suggested that those harboring the ‘protective’ TA-allele of rs72613567 have a numerically increased risk for mortality, liver-related death and hepatic decompensation. Likewise, while some reports have suggested that there is a potential interaction between HSD17B13 and variants in the patatin-like phospholipase domain containing protein 3 (PNPLA3) gene in MAFLD, subsequent reports have cited a failure to discern an association.

Genotyping for the HSD17B13 (rs72613567 and rs6531975) and PNPLA3 (rs738409) variants were performed using the MassARRAY (Agena Biosciences, San Diego, CA, USA) or TaqMan assay (Bio-Rad, Hercules, CA, USA) platforms, according to the manufacturer’s protocol. For the purpose of genotyping, each sample used approximately 20 ng of genomic DNA. Locus-specific PCR and detection primers were designed using Assay Design Suite v3.1.

Statistical analysis

Statistical analyses were performed using R software (v3.5.2; R Foundation for Statistical Computing, Vienna, Austria) and SPSS 19.0 (SPSS Inc., Armonk, NY, USA). Continuous variables were expressed as mean±standard deviation and compared using the one-way analysis of variance test. Categorical variables were expressed as frequency (%) and compared using the chi-square test. The Hardy-Weinberg equilibrium was assessed using the chi-square test. Multivariate logistic regression models were undertaken to test the association between the aforementioned SNPs and liver histology features. A p-value <0.05 was considered to be statistically significant.

Results

Patient characteristics

The study comprised 427 consecutive biopsy-confirmed MAFLD patients; their clinical, biochemical, and histological features are depicted in Supplementary Table 1. The average age was 41 years, with 73.8% being male. About 287
Liu W.Y. et al: HSD17B13 variants and MAFLD

(67.2%) had fibrosis (≥F1), 226 (52.9%) had severe steatosis (S2-S3), 157 (36.8%) had severe ballooning (B2) and 84 (19.7%) had severe inflammation (A2-A3).

Genotype distribution, Hardy-Weinberg equilibrium calculations

Two SNPs in HSD17B13 were genotyped: rs72613567 and rs6531975. The genotype distributions of rs72613567 and rs6531975 in HSD17B13 were in Hardy-Weinberg equilibrium (all, \(p > 0.05 \)). The minor allele frequency (MAF) for rs72613567 and rs6531975 was 0.32 and 0.30 in our cohort, respectively. Each of these MAFs is close to the MAF in general East Asian population in the 1000 Genomes Project.20 The overall genotype distribution of rs72613567 T/T, T/TA and TA/TA was 47.3%, 42.0% and 10.7%, while the distribution of rs6531975 G/G, G/A and A/A was 49.8%, 40.5% and 9.8%, respectively.

Clinical and laboratory characteristics stratified by HSD17B13 variants

The baseline characteristics of study participants according to rs72613567 genotypes is presented in Table 1. There were significant differences in levels of fasting glucose, triglycerides and high-density lipoprotein cholesterol among rs72613567 genotypes (all, \(p < 0.05 \)). Table 2 shows the baseline characteristics of study participants according to rs6531975 genotypes. No significant differences were observed among the rs6531975 genotypes.

HSD17B13 variants and hepatic steatosis

The proportion of severe steatosis in rs72613567 T/T, T/TA and TA/TA was 103 (52.0%), 91 (51.7%) and 27 (46.7%) respectively. No association between HSD17B13 variants and severe steatosis was observed in multivariate logistic regression model (Table 4).

HSD17B13 variants and hepatocyte ballooning and lobular inflammation

The proportion of severe ballooning in rs72613567 T/T, T/TA and TA/TA was 73 (36.9%), 58 (33.0%) and 21 (46.7%) respectively.
Liu W.Y. et al: HSD17B13 variants and MAFLD

Table 2. Baseline characteristics of biopsy-confirmed MAFLD patients according to rs6531975 genotypes

	G/G (n=209)	G/A (n=170)	A/A (n=41)	p-value
Age in years	41.8±12.3	40.6±11.2	38.9±13.8	0.300
Male sex, %	160 (76.6%)	122 (71.8%)	27 (65.9%)	0.287
Diabetes, %	61 (29.2%)	60 (35.3%)	12 (29.3%)	0.420
Hypertension, %	74 (35.4%)	67 (39.4%)	14 (34.1%)	0.672
Waist circumference in cm	91.6±7.9	91.2±9.3	90.8±9.8	0.824
BMI in kg/m²	26.5±3.1	26.8±3.6	26.7±3.5	0.690
Platelet count as 10⁹/L	246.0±62.3	243.9±60.9	257.4±65.1	0.457
Hemoglobin A1c, %	6.1±1.4	6.1±1.4	5.9±1.3	0.537
Total cholesterol in mmol/L	5.0±1.1	5.1±1.1	5.3±1.6	0.324
Triglycerides in mmol/L	2.2±1.4	2.4±1.6	2.1±1.0	0.284
HDL-cholesterol in mmol/L	1.0±0.2	1.0±0.2	1.0±0.2	0.665
LDL-cholesterol in mmol/L	3.0±0.9	3.0±0.9	3.4±1.2	0.061
Albumin in g/L	46.1±3.6	46.5±4.3	46.7±3.1	0.412
ALT in U/L	70.3±53.4	81.2±93.1	84.3±73.5	0.275
AST in U/L	44.1±30.1	50.2±40.8	51.0±35.7	0.193
GGT in U/L	72.6±103.3	76.7±96.9	60.9±41.7	0.636
Creatinine in µmol/L	68.0±13.0	66.4±15.2	63.5±13.7	0.137
Uric acid in µmol/L	390.8±100.9	391.6±112.9	412.2±115.7	0.489
PNPLA3 rs738409				0.684
C/C	62 (30.1%)	48 (29.1%)	14 (34.1%)	
C/G	93 (45.1%)	83 (50.3%)	16 (39.0%)	
G/G	51 (24.8%)	34 (20.6%)	11 (26.8%)	

Categorical values are shown as n (%). Continuous variables are shown as mean±standard deviation.

respectively, while the proportion of severe ballooning in rs6531975 G/G, G/A and A/A was 79 (37.8%), 63 (37.1%) and 11 (26.8%) respectively. The proportion of severe inflammation in rs72613567 T/T, T/TA and TA/TA was 35 (17.7%), 35 (19.9%) and 12 (26.7%) respectively, while the proportion of severe inflammation in rs6531975 G/G, G/A and A/A was 40 (19.1%), 35 (20.6%) and 8 (19.5%) respectively (Table 3). Both severe ballooning and inflammation were unrelated to HSD17B13 variants in multivariate analysis (Table 4).

HSD17B13 variants and fibrosis

The prevalence of having fibrosis in rs72613567 T/T, T/TA and TA/TA was 135 (68.2%), 111 (63.1%) and 38 (84.4%) respectively. A higher prevalence of fibrosis was observed in patients with the TA/TA genotype in rs72613567 (p<0.05) (Table 3). In rs6531975 genotypes, the prevalence of having fibrosis in G/G, G/A and A/A was 150 (71.8%), 109 (64.1%) and 38 (26.8%) respectively. The A allele carriers of rs6531975 showed a nonsignificant trend for a reduced prevalence of having fibrosis (p=0.082) (Table 3).

To further understand the association between HSD17B13 variants and liver histology in Chinese patients with MAFLD, multivariate logistic regression modeling was undertaken. As shown in Table 4, rs72613567 TA/TA increased the risk of fibrosis with an odds ratio (OR) of 2.93 [TA/TA vs. T/T, 95% confidence interval (CI): 1.20–7.17, p=0.019] for the additive model and an OR of 3.32 (TA/TA vs. T/T+T/TA, 95% CI: 1.39–7.91, p=0.007) for the recessive model after adjusting for age, sex, BMI, presence of diabetes, fasting glucose, triglycerides and high-density lipoprotein cholesterol. In contrast, the rs6531975 A allele appeared to have a protective impact on fibrosis, with an OR of 0.48 (A/A vs. G/G, 95% CI: 0.24–0.98, p=0.043) for the additive model and an OR of 0.62 (G/A+A/A vs. G/G, 95% CI: 0.40–0.94, p=0.025) for the dominant model after adjusting for age, sex, BMI and presence of diabetes.

Interaction of PNPLA3 and HSD17B13 variants

Next, we conducted interaction analysis for HSD17B13 (rs72613567 and rs6531975) and PNPLA3 (rs738409) variants for their impact on liver histology. For fibrosis, no interaction effects were observed between the two genes. In contrast, there was an interaction between rs6531975 A allele and PNPLA3 (rs738409) C/G+GG genotypes (p=0.007) for the recessive model after adjusting for age, sex, BMI, presence of diabetes, fasting glucose, triglycerides and high-density lipoprotein cholesterol. In contrast, the rs6531975 A allele appeared to have a protective impact on fibrosis, with an OR of 0.48 (A/A vs. G/G, 95% CI: 0.24–0.98, p=0.043) for the additive model and an OR of 0.62 (G/A+A/A vs. G/G, 95% CI: 0.40–0.94, p=0.025) for the dominant model after adjusting for age, sex, BMI and presence of diabetes.
Table 3. Liver histology features of biopsy-confirmed MAFLD patients according to *HSD17B13* genotypes

SNP	Severe steatosis	Severe ballooning	Severe inflammation	Presence of fibrosis								
	OR	95% CI	p									
HSD17B13 rs72613567												
T/T (n=198)	ref.	–	–									
T/TA (n=176)	1.24	0.78–1.96	0.368	0.93	0.60–1.44	0.737	1.24	0.72–2.16	0.437	0.77	0.49–1.20	0.252
TA/TA (n=45)	1.62	0.77–3.42	0.203	1.37	0.69–2.72	0.368	1.99	0.89–4.43	0.092	2.93	1.20–7.17	0.019
Dominant model												
T/T (n=198)	ref.	–	–									
T/TA+TA/TA (n=243)	1.30	0.84–2.02	0.234	1.01	0.67–1.52	0.973	1.38	0.83–2.31	0.216	0.96	0.63–1.48	0.867
TA/TA (n=45)	1.46	0.72–2.98	0.292	1.42	0.74–2.73	0.295	1.80	0.85–3.83	0.127	3.32	1.39–7.91	0.007
Recessive model												
T/T (n=198)	ref.	–	–									
T/TA+TA/TA (n=243)	1.30	0.84–2.02	0.234	1.01	0.67–1.52	0.973	1.38	0.83–2.31	0.216	0.96	0.63–1.48	0.867
TA/TA (n=45)	1.46	0.72–2.98	0.292	1.42	0.74–2.73	0.295	1.80	0.85–3.83	0.127	3.32	1.39–7.91	0.007
HSD17B13 rs6531975‡												
G/G (n=209)	ref.	–	–									
G/A (n=170)	0.69	0.44–1.08	0.104	0.95	0.62–1.45	0.802	0.94	0.56–1.60	0.830	0.65	0.42–1.02	0.063
A/A (n=41)	0.91	0.43–1.94	0.809	0.59	0.28–1.24	0.164	0.84	0.35–2.00	0.690	0.48	0.24–0.98	0.043
Dominant model												
G/G (n=209)	ref.	–	–									
G/A+G/A (n=170)	0.73	0.48–1.11	0.138	0.87	0.58–1.30	0.496	0.92	0.56–1.52	0.751	0.62	0.40–0.94	0.025
A/A (n=41)	1.08	0.52–2.23	0.833	0.60	0.29–1.24	0.170	0.86	0.37–1.98	0.726	0.59	0.30–1.16	0.123

†OR and 95% CI obtained by binary logistic regression analysis adjusted for age, sex, BMI, presence of diabetes, fasting glucose, triglycerides and HDL-cholesterol.
‡OR and 95% CI obtained by binary logistic regression analysis adjusted for age, sex, BMI, presence of diabetes. ref., reference.
Liu W.Y. et al: HSD17B13 variants and MAFLD

Discussion

We characterized the impact of HSD17B13 gene variants on histological features in a cohort of Han Chinese with MAFLD. This study has three key findings. First, we confirmed the HSD17B13 region as a susceptibility locus for MAFLD-related fibrosis but extended these findings toward the identification of an inverse allelic direction of association as compared to that reported in Europeans. Second, the HSD17B13 variants are only associated with fibrosis and not any other histological feature. Third, the HSD17B13 variants modulate the effect of PNPLA3 rs738409 on hepatic steatosis but no other histological features.

The association between HSD17B13 variants and liver histological features seems to be complex, with multiple

Fig. 1. Interaction of HSD17B13 rs6531975 and PNPLA3 rs738409 on liver steatosis. (A) Prevalence of mild steatosis and severe steatosis according to rs6531975 and rs738409 genotypes. (B) Interaction effect of rs6531975 and rs738409 on steatosis after adjusting for age, sex, BMI and presence of diabetes. Patients with the rs6531975 A allele (G/A+A/A) attenuated the risk effect of the rs738409 G allele (C/G+G/G) on steatosis, with an OR of 0.57 (95% CI: 0.34–0.96, p=0.034).
Liu W.Y. et al: HSD17B13 variants and MAFLD

suggested functional variants. Notably, in our cohort, the minor allele TA of the rs72613567 variant was related to an increased risk of fibrosis, representing an inverse association as compared to the results in European cohorts. Hence, if there is a shared causal variant across European and Chinese populations, it is unlikely to be rs72613567. In this regard, we observed a protective effect in the minor A allele carriers of the HSD17B13 rs6531975 variant, but this is not in strong linkage disequilibrium with rs72613567. Thus, further fine-mapping studies in Han Chinese populations and comparison to other populations would be helpful to identify shared causal variants across different ethnicities.

The differential effect size and allele direction of variants discovered by GWAS between ethnicities is not uncommon. In one Chinese MAFLD cohort, researchers found that the neurocan (known as NCAN) rs2228603 T variant associated with a higher level of high-density lipoprotein, while it was positively related to liver steatosis in the USA population. Similarly, toll-like receptor 3 (known as TLR3) rs3775290 and interferon lambda-3 (known as IFNL3) rs12979860 variants in Chinese hepatocellular carcinoma populations showed opposite effects to those in non-Asian populations. Inconsistent results have also been observed in other Asian populations, such as among Japanese. For example, tollloid-like 1 (known as TLL1) rs17047200 and MHC class I polypeptide-related chain A (known as MICA) rs2596542 variants were suggested to have protective impacts on fibrosis and hepatocellular carcinoma in

Fig. 2. Interaction of HSD17B13 rs72613567 and PNPLA3 rs738409 on liver steatosis. (A) Prevalence of mild steatosis and severe steatosis according to rs72613567 and rs738409 genotypes. (B) Interaction effect of rs72613567 and rs738409 on steatosis after adjusting for age, sex, BMI and presence of diabetes. No interaction effect was observed between rs72613567 and rs738409.
Caucasians. The associations were inverse to those of a Japanese cohort. Besides, there are several MAFLD-related SNPs in Europeans for which there has been no association in Chinese populations. Along the same line, lower genetic prediction accuracies (between 1.6-4.9-fold lower) were observed in other ethnicities compared to Europeans. Hence, increasing the representation of diverse populations and studying other ethnicities has recently become a research priority to enhance understanding of the human genetic architecture and its translational implications.

The ethnic differences in the characteristics of patients with MAFLD might also contribute to the observed differences in the genetic findings. There is growing evidence, for example, that the MAFLD disease course in Asian populations is different to that in Caucasians. As an example, for the same BMI, there is a higher prevalence of MAFLD in Asians. Published reports also indicate that lean MAFLD accounts for 36.9% of cases in China, but only 17.3% of the total disease burden in the USA. Differences in metabolic adaptation have been reported between lean and non-lean MAFLD patients, suggesting that lean fatty liver disease likely has a distinct pathophysiology.

Another intriguing aspect of this study is the lack of association found between rs72613567 variants and other historical features. To date, the nature of the association between the rs72613567 allelic variant and the histological features of MAFLD, particularly steatosis, is unclear. Abul-Husn and colleagues suggested a lack of association between the rs72613567 TA variant and steatosis in human liver, consistent with the study of Pirola et al. However, a study by Ma et al. found a significant association with hepatic steatosis. Similarly, in animal and in vitro studies, inconsistent results have been reported for an effect of HSD17B13 on hepatic lipid accumulation. Abul-Husn et al. showed no differences in lipid accumulation according to HSD17B13 isoforms. Similarly Ma et al. reported that HSD17B13 overexpression or knockout in HepG2 cells did not affect lipid content. On the other hand, Marion et al. noted hepatic steatosis in HSD17B13 knockout mice, whilst Su et al. observed steatosis in mice that overexpressed HSD17B13. Collectively, these results imply that HSD17B13 variants could have a direct impact on fibrosis rather than effects on steatosis. These findings may be associated with retinol metabolism, since retinol plays a crucial role in the activation and transformation of hepatic stellate cells to matrix secreting myofibroblasts and the development of hepatic fibrosis. Since HSD17B13 participates in the bile limiting system of retinol metabolism, the mutant in HSD17B13 might conceivably influence the process of fibrosis.

The interaction between HSD17B13 and PNPLA3 variants in MAFLD is also a subject of controversy. In this work, we noted an interaction between these variants with regard to steatosis, but not with other histological features. As HSD17B13 has been suggested as a potential therapeutic target for MAFLD and considering the growing concerns about the failure of phase 2 and 3 clinical trials in this disease, that was at least partially attributed to clinical heterogeneity, our study highlights the importance of first understanding the functional basis of the various proposed genomic and other targets before therapeutic development. Collectively, our data support such an approach. The data from HSD17B13-knockout mice, in fact, suggest that HSD17B13 triggers steatosis and inflammation, which is opposite to what has been reported in humans.

The present study has limitations. First, the sample size is modest. In case the observed opposite finding is due to the sample size, we performed a post-hoc power analysis. The power calculated for the model was 72%. It is close to, but less than 80%. Considering the low proportion of the rs72613567 TA variant in the general population, we think it is acceptable. In addition, lack of a validation cohort from populations in other parts of China or those of Chinese ancestry living outside mainland China is another limitation.

In conclusion, the HSD17B13 rs72613567 variant appears to be a risk variant for hepatic fibrosis in a Han Chinese MAFLD population, with a different direction for allelic association to that seen in Europeans.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82070588), High Level Creative Talents from Department of Public Health in Zhejiang Province (S2032102600032) and Project of New Century 551 Talent Nurturing in Wenzhou. GT was supported in part by grants from the University School of Medicine of Verona (Verona, Italy). CDB was supported in part by the Southampton NHRI Biomedical Research Centre (IS-BRC-20004). UK. ME and JG were supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney (Sydney, Australia) and the National Health and Medical Research Council of Australia (NHMRC) Program (APP1053206, APP1149976) and Project (APP11107178 and APP11108422) grants.

Conflict of interest

The authors have no conflict of interests related to this publication.

Author contributions

Study concept and design (WYL, ME, JG, MHZ), acquisition of data (HLM, LJT, GL, PWZ), pathology analysis (XDW), drafting of the manuscript (WYL, ME, MZL), statistical analysis (WYL, ME, MZL), study supervision (JG, MHZ), guarantor of the article (MHZ).

References

[1] EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016;64:1388–1402. doi:10.1016/j.jhep.2015.11.004.

[2] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease–Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64:73–84. doi:10.1002/hep.28431.

[3] Zhou F, Zhou J, Wang W, Zhang XJ, Ji YY, Zhang P, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis. Hepatology 2019;70:1119–1133. doi:10.1002/hep.30702.

[4] Masuoka HC, Chalasani N. Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann N Y Acad Sci 2013;1281:106–22. doi:10.1111/nyas.12016.

[5] Buzzetti E, Finazzi M, Tsachazis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016;65:1036–1048. doi:10.1016/j.metabol.2015.12.012.

[6] Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol 2020;17:40–52. doi:10.1038/s41575-019-0212-0.

[7] Eslam M, Valenti L, Romero S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018;68:268–279. doi:10.1016/j.jhep.2017.09.003.

[8] Martin AA, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet 2019;51:S84–S91. doi:10.1038/s41588-019-0379-x.

[9] Ma Y, Belyaeva OV, Brown PM, Fujita K, Voiles K, Karki S, et al. 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology 2019;69:1504–1519. doi:10.1002/hep.30350.

[10] Abul-Husn NS, Cheng X, Li AH, Xin Y, Schurrmann C, Stevis P, et al. A
protein-truncating HSD17B13 variant and protection from chronic liver disease. Nutrients 2020;12:14387.

[52] Buuydiene A, Lilakia V, Kashuba E, Norkuniene J, Jokubauskiene S, Gi- neikiene E, et al. Impact of the uridine-cytidine kinase like-1 protein and IL28B rs12979860 on the development of hepatocellular carcinoma in cirrhotic chronic hepatitis C patients-A pilot study. Medicine (Kaunas) 2018;54:67. doi:10.3390/medicina54050067.

[53] John M, Metwally M, Mangia A, Romero-Gomez M, Berg T, Sheridan D, et al. TLL1 rs17047200 increases the risk of fibrosis progression in caucasian patients with chronic hepatitis C. Gastroenterology. 2017;153:1448–1449. doi:10.1053/j.gastro.2017.04.056.

[54] Lange CM, Biberst J, Cellier C, Cerny A, Heim MH, et al. Compar- ative genetic analyses point to HCP5 as susceptibility locus for HCV-associ- ated hepatocellular carcinoma. J Hepatol 2013;59:504–509. doi:10.1016/j.jhep.2013.04.032.

[55] Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–458. doi:10.1038/ng.909.

[56] Matsuura K, Sawai H, Ito K, Ogawa S, Iio E, Isoaga M, et al. Genome-wide association study identifies TLL1 variant associated with development of hepatocellular carcinoma after eradication of hepatitis C virus infection. Gas- troenterology. 2017;152:1383–1394. doi:10.1016/j.gastro.2017.01.041.

[57] Yuan C, Lu L, An B, Jin W, Dong Q, Xin Y, et al. Association between LVPLA1 rs2137855 polymorphism with ultrasound-defined non-alcoholic fatty liver disease in a Chinese Han population. Hepat Mon 2015;15:e32155. doi:10.5812/hepatmon.33155.

[58] Peng XE, Chen FL, Liu W, Hu Z, Lin X. Lack of association between SREBF-1c gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese Han population. Sci Rep 2016:6:32110. doi:10.1038/srep32110.

[59] Niu TH, Jiang M, Xin YN, Jiang XJ, Lin ZH, Xuan SY. Lack of association between apolipoprotein C3 gene polymorphisms and risk of nonalcohol- ica fatty liver disease in a Chinese Han population. World J Gastroenterol 2014;20:3655–3662. doi:10.3748/wjg.v20.i16.3655.

[60] Younossi ZM, Stepanova M, Negro F, Hallaj S, Younossi Y, Lai M, et al. Non-alcoholic fatty liver disease in lean individuals in the United States. Medi- cine (Baltimore) 2012;91:319–327. doi:10.1097/MD.0b013e3187796449.

[61] Chen F, Esraili S, Rogers GB, Bugiani E, Pettia S, Marchesini G, et al. Lean NALFD: A distinct entity shaped by differential metabolic adaptation. Aliment Pharmacol Ther 2020;11:10427–10442. doi:10.1111/apt.15632.

[62] Adam M, Heikel H, Sobolevski C, Portius D, Maki-Jouppila J, Mehmuud A, et al. Hydroxysteroid (17β) dehydrogenase 13 deficiency triggers he- patocellular carcinoma in cirrhotic chronic hepatitis C patients-A pilot study. J Hepatol 2019;70:987–994. doi:10.1016/j.jhep.2019.03.039.

[63] Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol 2013;3:1473–1492. doi:10.1002/cphy.c120035.

[64] Sghaier I, Zidi S, Mouelhi L, Ghazoueni E, Brochot E, Almawi WY, et al. Impact of the uridine-cytidine kinase like-1 protein and PPP1R3B gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese population. Sci Rep 2016;6:32110. doi:10.1038/srep32110.

[65] Niu TH, Jiang M, Xin YN, Jiang XJ, Lin ZH, Xuan SY. Lack of association between apolipoprotein C3 gene polymorphisms and risk of nonalcohol- ic fatty liver disease in a Chinese Han population. World J Gastroenterol 2014;20:3655–3662. doi:10.3748/wjg.v20.i16.3655.

[66] Younossi ZM, Stepanova M, Negro F, Hallaj S, Younossi Y, Lai M, et al. Non-alcoholic fatty liver disease in lean individuals in the United States. Medi- cine (Baltimore) 2012;91:319–327. doi:10.1097/MD.0b013e3187796449.

[67] Chen F, Esraili S, Rogers GB, Bugiani E, Petta S, Marchesini G, et al. Lean NALFD: A distinct entity shaped by differential metabolic adaptation. Aliment Pharmacol Ther 2020;11:10427–10442. doi:10.1111/apt.15632.

[68] Adam M, Heikel H, Sobolevski C, Portius D, Maki-Jouppila J, Mehmuud A, et al. Hydroxysteroid (17β) dehydrogenase 13 deficiency triggers he- patocellular carcinoma in cirrhotic chronic hepatitis C patients-A pilot study. J Hepatol 2019;70:987–994. doi:10.1016/j.jhep.2019.03.039.

[69] Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol 2013;3:1473–1492. doi:10.1002/cphy.c120035.

[70] Bellan M, Colletta C, Barbaglia MN, Salmi L, Clerici R, Mallela VR, et al. Non-alcoholic fatty liver disease: An international expert consensus statement. J Hepatol 2020;73:202–209. doi:10.1016/j.jhep.2020.03.039.

[71] Liu W, Zheng KJ, Pan XY, Ma HL, Zhu PW, Wu XX, et al. Effect of PNPLA3 polymorphism on diagnostic performance of various noninvasive markers for diagnosing and staging nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2020;35:1057–1064. doi:10.1111/jgh.14894.

[72] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabeto- logia 1985;28:412–419. doi:10.1007/BF00280883.

[73] American Diabetes Association. Improving care and promoting health in populations: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020;43:S7–S13. doi:10.2337/dci20-0001.

[74] Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonal- coholo fatty liver disease. Hepatology. 2005;41:1313–1321. doi:10.1002/hep.20701.

[75] Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. Global human genetic variation. Nature 2015;526:68–74. doi:10.1038/nature15393.

[76] Wu MJ, Yuan C, Lu LL, An BQ, Xuan SY, Xin YN. Role of NOD2 rs228603 polymorphism in the incidence of nonalcoholic fatty liver disease: a case-control study. Lipids Health Dis 2016;15:207. doi:10.1186/s12944-016- 0254-4.

[77] Hernaæz R, McLean J, Lazo M, Brancait FL, Hirschorn JN, Boreckii IB, et al. Association between variants in or near PNPLA3, GCKR, and PPP1R3B and risk of ultrasound-defined non-alcoholic fatty liver disease based on data from the third Nation- al Health and Nutrition Examination Survey. Clin Gastroenterol Hepatol 2013;11:1183–1190.e2. doi:10.1016/j.cgh.2013.02.011.

[78] Huang X, Li H, Wang J, Huang C, Lu Y, Qin X, et al. Genetic polymorphisms in Toll-like receptor 3 gene are associated with the risk of hepatitis B virus-related liver diseases in a Chinese population. Gene. 2015;569:218–224. doi:10.1016/j.gene.2015.05.054.

[79] Sghaier I, Zidi S, Mouelhi L, Ghazoueni E, Brochot E, Almawi WY, et al. TLR3 and TLR4 SNP variants in the liver disease resulting from hepatitis B virus and hepatitis C virus infection. Br J Biomed Sci 2019;76:35–41. doi:10.1080/09674845.2018.1547179.

[80] Hou W, Qiao K, Huo Z, Du Y, Wang C, Syn WK. Association of IFNL3 rs12979860 polymorphism with HCV-related hepatocellular carcino- ma susceptibility in a Chinese population. Clin Exp Gastroenterol 2019;12:433–439. doi:10.2147/CEG.S206194.