The scissors mode from a different perspective

Matthew Harper, Larry Zamick
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
March 18, 2015

Abstract

The scissors mode, a magnetic dipole excitation—mainly orbital—is usually discussed in terms of a transition from a $I = 0^+$ ground state to a $I = 1^+$ excited state. This is understandable because it follows from the way the experiment is performed—e.g. inelastic electron scattering. Here however, we start with the excited 1^+ state and consider all possible transitions to $I = 0^+, 1^+$ and 2^+ states with final isospins. There is a larger transition to the 0^+_2 state than to ground. This has a much richer structure. We note that the “sum of sums” is independent of the interaction.

1 Introduction

In a collective picture the scissors mode is an orbital magnetic dipole excitation, in which the deformed proton symmetry axis vibrates against the corresponding axis of the neutrons. Some early discussions of this mode are contained by Richter’s group, Bohle et al. [1, 2] as well as LoIudice and Palumbo [3], Suzuki and Rowe [4], Iachello [5], Dieperink [6] and Lipparini and Stringari [7]. A shell model approach was proposed by Zamick [8] and Poves, Retamosa and Moya de Guerra [9]. There has been continued interest in this topic as can be seen by the review article by K. Heyde et al. [10]. More recently, there has been work on M1 excitations by J. Beller et al. [11] in which the initial state has $I = 1^+$. This is of great relevance to the theme of the present work. There has been considerable work on J^max pairing by Zhao and Arima [12], Cederwall [13], Xu et al. [14], Fu et al. [15] Zamick and Escuderos [16], Hertz-Kintish and Zamick [17].

In all the experiments which are mainly inelastic electron scattering, one starts with the $J = 0^+$ ground state and considers excitations to $I = 1^+$ states. The supporting calculations follow suit. However, since there are no practical constraints for theory, we will here start with the $I = 1^+$ scissors mode state and follow the various branches to which it can connect. Now we can go not only from $I = 1^+$ to $I = 0^+$ but also $I = 1^+$ to $I = 2^+$ which gives a much richer spectrum.

This work can be regarded as an extension of previous work by the authors [18]. In that work the main focus was on selection rules with a $J = 0 \ T = 1$ pairing interaction i.e. why certain B(M1)’s vanish. In this work we will make quantitative comparisons of the non-vanishing strengths with different interactions.

2 B(M1) Results for Various Interactions

We present results in Tables II through XXII, which are $^{44}\text{Ti} \ I = 1$ to 0, $^{44}\text{Ti} \ I = 1$ to 2, $^{46}\text{Ti} \ I = 1$ to 0, and $^{46}\text{Ti} \ I = 1$ to 2. As well as, $^{44}\text{Ti} \ I = 1$ to 1, $^{46}\text{Ti} \ I = 1$ to 1. There are four interactions used: $J = 0 \ T = 1$ Pairing, Q.Q, MBZE [1] and $J^\text{max} \ T = 0$ pairing. These are represented by 8 numbers (7 independent), corresponding to two nucleons coupled to $J = 0$ to $J = 7$. Here they are:
We also present the results in various figures. All B(M1)'s are in units of \((\mu_N)^2\).

Table I. Matrix Elements for the Interactions

State\((v, T, t)\)	\(I = 0\) Unshifted Energy	\(I = 2\) Unshifted Energy	\(I = 2\) Unshifted Energy	\(I = 2\) Unshifted Energy	
000	0.000	2.6996	0	0	2.6996
020	0.750	8.0995	0	0	8.0995
400	2.250	1.9300	0.1117	2.8922	4.9339
400	2.250	0.8986	7.7693	1.9187	10.4966
sum		13.6277	7.7910	4.8109	26.2296

Table II. Pairing B(M1) \(^{44}\)Ti \(I=1\) to \(I=0\)

State\((v, T, t)\)	\(I = 1\) Unshifted Energy				
210	1.500	2.250	2.250	2.250	sum
411					4.3477
411					52.1569
411					9.8523
222					19.9421
221					22.1874
411					22.5721
250					131.1483

Table III. Pairing B(M1) \(^{46}\)Ti \(I=1\) to \(I=2\)

State\((v, T, t)\)	\(I = 1\) Unshifted Energy									
220	1.750	2.0000	2.0000	2.5000	2.5000	2.5000	2.5000	2.5000	sum	
411	1.0799	0	0	0	0	0	0	0	1.7099	
411	9.7200	0	0	0	0	0	0	0	9.7200	
411	2.4344	2.8794	0.0491	0.5611	0.4150	0	0	0	6.3390	
411	2.7500	0.3947	0.7573	5.7648	0.1157	2.0588	0	0	6.3390	
611	2.7500	0	1.0423	0.0987	3.1539	0.2640	2.3989	0.6317	9.0913	
611	2.7500	0	0.0049	0.1721	0.0858	0.4450	0.0001	1.7267	7.5895	
sum			13.6290	4.6839	6.0847	3.9165	3.1828	2.3990	2.3584	36.2543

In some cases, in order to remove degeneracies with schematic interactions we add -1.00 MeV to all the odd \(J, T=0\) matrix elements. If we did not do this, then states of different isospins would be degenerate and arbitrary mixtures of these states would appear in the computer output. This trick pushes up states of higher isospin to higher energies, but leaves the energies of lower isospin unchanged. We call these new energies shifted. These higher isospin states in \(^{44}\)Ti are indicated with a star (*) for \(T=1\) and two stars (**) for \(T=2\). Similarly, higher isospin states for \(^{46}\)Ti are given one star (*) for \(T=2\) and two stars (**) for \(T=3\). We give the seniority, isospin, and reduced isospin for the pairing interactions so we do not use the star notation for labeling the states.
Table V. Pairing B(M1) 46Ti $I=1$ to $I=2$

State(v,T,t)	$I=1$	$I=2$	220	411	411	421	421	611	611	sum
		Unshifted Energy	1.7500	2.0000	2.0000	2.500	2.500	2.7500	2.7500	
211	1.0000	1.3712	0.9874	0.3326	0.0005	0.0019	0	0	2.6936	
211	1.0000	0.1715	0.4367	0.1472	0.0813	0.3238	0	0	1.1605	
221	1.5000	2.5716	2.2323	0.7524	0.0222	0.0883	0	0	5.6668	
412	1.5000	0	0.0916	1.5360	0.0607	0.4819	0	0	2.1702	
411	2.0000	0	0.0847	0.0914	0.5024	0.0261	0.4364	0.0065	1.1475	
411	2.0000	0	0.0041	0.0186	0.0014	0.0668	1.5191	0.0152	1.6244	
422	2.0000	0	0.2746	4.6069	0.1821	1.4454	0	0	6.5090	
410	2.2500	12.1303	0.0646	1.6850	0.0832	0.5004	0	0	14.4635	
410	2.2500	2.9785	3.5617	0.1189	0.6431	0.5838	0	0	7.8860	
410	2.2500	5.6386	0.4668	2.4445	0.0273	0.9432	0	0	9.2804	
231	2.2500	2.0572	0	0	1.1354	4.5230	0	0	7.7156	
421	2.5000	0	0.1804	0.0338	0.6237	0.0188	0.6123	0.0630	1.5320	
421	2.5000	0	0.0862	0.2962	0.8883	0.2597	5.2534	0.0019	6.7857	
611	2.7500	0	2.1377	0.2523	6.7325	0.4370	2.3618	0.0555	11.9768	
611	2.7500	0	0.2654	0.0135	0.4044	0.4321	0.5975	0.8390	2.1141	
611	2.7500	0	0.0367	0.1344	0.0050	0.5082	7.1099	1.4178	9.2120	
611	2.7500	0	0.0375	0.0024	0.1070	0.0127	0.0873	0.0461	0.2930	
611	2.7500	0	0.1215	1.3291	0.3483	4.0036	0.0007	5.7321	11.5347	
sum			26.6789	11.0699	11.8488	14.6567	13.7952	17.5400	8.1771	103.7666

Table VI. Q.Q B(M1) 44Ti $I=1$ to $I=0$

State $I=1$	$I=0$	Unshifted Energy	$I=2$	$I=3$	$I=4$	sum
		Unshifted Energy	I_1	I_2	I_3	
		I_1	I_2	I_3		
0_1	0.0000	1.3174	0.0015	0.0007	1.3196	
0_2	3.6031	1.8021	6.1454	0.1535	8.1010	
0_3	7.5748	0.1833	9.0414	0.9530	10.1777	
0_4	10.9236	0.0414	0.0577	6.5323	6.6323	
sum		3.3442	15.2460	7.6404		26.2306

Table VII. Q.Q B(M1) 44Ti $I=1$ to $I=2$

State $I=2$	$I=1$	$I=2$	$I=3$	sum		
		I_1	I_2	I_3		
		I_1	I_2	I_3		
2_1	0.9655	2.4898	0.0111	0.0016	2.5025	
2_2	3.6015	0	0	0	0	
2_3	4.7502	0.1735	20.6912	1.3251	22.1898	
2_4	6.4691	13.7051	8.2795	1.2061	23.1907	
2_5	7.5695	0	0	0	0	
2_6	7.6179	0.1271	0.8452	21.6001	22.5724	
2_7	7.7501	0.0545	46.3395	0.6632	47.0572	
2_8	9.7351	0	0	0	0	
2_9	10.4893	0.1723	0.0767	13.4996	13.6586	
sum		16.7223	76.2432	38.2057	131.1711	
Table VIII. Q.Q B(M1) 46Ti $I=1$ to $I=0$

$I = 0$ Unshifted Energy	$I = 1$	$I = 2$	$I = 3$	$I = 4$	$I = 5$	$I = 6$	$I = 7$	sum
0.0000	4.3546	8.1095	8.7081*	10.4611*	10.5846	10.8481	11.6407*	1.3947
2.6505	0.0003	0.3008	0.0015	0.00161	6.2831			
7.9741	0.1986	5.0379	0.3734	0.1137	0.0310	0.2988	0.0004	6.0534
9.7327**	0.0191	0.4441	0.2985	2.9265	0.1054	4.0417	0.8731	9.7262
10.7392	0.000099	0.0097	0.0013	0.0020	0.8983	0.0079	4.1814	5.1007
sum	4.2584	5.5820	9.7093	3.0425	1.3355	4.3499	7.9853	36.2929

Table XI. Q.Q B(M1) 46Ti $I=1$ to $I=2$

$I = 2$ Unshifted Energy	$I = 1$	$I = 2$	$I = 3$	$I = 4$	$I = 5$	$I = 6$	$I = 7$	sum
0.8630	4.3546	8.1095	8.7081*	10.4611*	10.5846	10.8481	11.6407*	0.6523
1.4911	0.0011	0.0030	0.0001	0.0017	1.9270			
1.8998	0.0151	0.0182	0.0005	0.0050	0.0017	2.3874		
1.0660	0.1476	0.0395	0.0276	0.1994	0.0026	0.6348		
0.0486	0.2012	0.3204	0.0569	0.0156	0.0226	1.2446		
2.5182	1.9267	0.0346	0.4418	0.0221	0.0027	4.7820		
1.1676	0.0683	0.2179	0.0103	0.0004	12.3131			
8.5380	0.0120	0.0168	2.4499	0.2874	0.0202	0.7989		
9.6011*	0.0372	0.2940	0.5506	0.5938	0.3825	3.3436	0.0549	8.2593
9.6672	0.0428	0.0018	5.5999	0.2733	2.7290	0.1841	2.1744	10.9653
9.8751*	0.1340	0.0460	0.0143	0.8130	4.0584	0.0469	0.0097	5.1723
10.5511	0.0154	0.0132	0.0092	4.2207	3.1012	0.1246	0.1755	7.6598
10.8708**	0.0372	0.2940	0.5506	0.5938	0.3825	3.3436	0.0549	8.2593
11.2619	0.0079	0.0528	1.0658	0.0045	3.7622	0.0004	4.0527	8.9463
11.3626	0.0340	0.0075	0.1386	0.3283	10.7713	0.1488	11.4285	
12.1399	0.0005	0.0004	0.0345	0.5456	0.1533	0.0738	1.4694	2.27714
12.4314	0.0004	0.0099	0.0935	0.4677	1.4645	0.0974	6.3983	8.5227
12.8660	0.0084	0.0333	0.1017	0.0005	0.0112	0.7700	0.8951	
sum	7.9429	10.6435	20.2928	14.1072	17.0165	14.9782	18.7921	103.7732

Table X. MBZB B(M1) 44Ti $I=1$ to $I=0$

$I = 0$ Unshifted Energy	$I = 1$	$I = 2$	$I = 3$	sum
0.0000	5.66864*	7.58685*	9.72619*	1.35304
5.58610	0.13111	5.29543	0.05642	5.48296
8.28402**	1.95508	6.07014	0.07579	8.10101
8.7875	0.17022	1.73958	9.38455	11.29435
sum	3.43889	13.27571	9.51676	26.2314
Table XI. MBZE B(M1) 44Ti $I=1$ to $I=2$

$I=2$	Unshifted Energy	$I=1$	$I=2$	$I=3$	$I=4$	$I=5$	$I=6$	$I=7$
2_1	1.16313		1.34744	0.42560	0.04716	1.82020		
2_2	4.95650		12.97910	1.30523	0.27252	14.55685		
2_3	5.23665		0	0	0	0		
2_4	7.81197		0	0	0	0		
2_5	7.82336		1.09707	37.57634	12.68482	51.35823		
2_6	7.96963		1.53883	10.26440	6.83864	18.64187		
2_7	9.26771		0	0	0	0		
2_8	9.87032		0.09840	16.68741	5.40033	22.18614		
2_9	11.88190		0.11349	0.11945	22.34037	22.57331		
sum	17.19433	66.37843	47.58384					

Table XII. MBZE B(M1) 46Ti $I=1$ to $I=0$

$I=0$	Unshifted Energy	$I=1$	$I=2$	$I=3$	$I=4$	$I=5$	$I=6$	$I=7$
0_1	0.00000	3.65521	6.05887	7.78516	8.73868	9.46213*	10.61597*	11.36444*
0_2	4.62474	2.47374	0.18000	0.29729	0.51637	0.99056	0.14637	0.06077
0_3	6.27338	0.67490	4.31054	0.11501	0.15137	0.78449	0.00119	0.07790
0_4	7.93821	0.12817	0.46911	1.37366	0.36023	0.58752	2.16170	0.08942
0_5	9.31823	0.00351	0.18194	3.21205	0.38400	0.04369	0.32570	5.58837
0_6	13.20357**	0	0	0	0	4.6867	1.79917	3.25315
sum	3.83994	5.15914	5.00393	1.52357	7.20572	4.44894	9.07959	36.26083

Table XIII. MBZE B(M1) 46Ti $I=1$ to $I=2$

$I=1$	Unshifted Energy	$I=2$	$I=3$	$I=4$	$I=5$	$I=6$	$I=7$	
2_1	1.14826	0.20333	0.03800	0.00273	0.00135	0.00364	0.00619	0.02923
2_2	2.49693	1.20214	0.46560	0.06665	0.00391	0.08832	0.13831	0.00351
2_3	3.42179	1.73449	0.01221	0.22106	0.00967	0.00787	0.00670	0.03729
2_4	4.88264*	0.24575	1.20038	0.26325	0.00453	0.28514	0.00118	0.00090
2_5	5.15177	0.50943	0.76123	0.03848	0.24204	0.48245	0.17814	0.01875
2_6	6.15814	0.64804	0.07549	0.36327	0.03414	0.02360	1.45758	0.11907
2_7	7.69411	0.09696	3.30106	0.23216	0.05538	0.54470	1.07923	1.26442
2_8	7.25799	0.46379	1.32288	0.00002	0.23771	8.01263	0.25422	0.30383
2_9	7.53733	0.00342	0.03632	4.01174	0.55212	0.14699	0.45188	0.21191
2_{10}	8.22517	0.19893	0.00043	0.08763	5.40760	4.16620	0.02142	1.45222
2_{11}	8.25484*	1.62241	0.47339	0.53906	0.06593	2.14453	0.18033	0.24099
2_{12}	8.49974	0.04708	0.19257	6.07608	1.84693	0.62106	1.35405	0.32188
2_{13}	9.50002*	0.39393	1.53351	3.33853	1.81402	0.00121	0.00053	0.46185
2_{14}	9.91064*	0.01248	0.00940	0.07097	2.30873	0.02298	3.63939	0.03948
2_{15}	10.18382	0.00954	0.06965	0.27111	0.94621	0.15988	1.72104	10.96380
2_{16}	10.40254*	0.05283	0.56227	4.13858	2.90402	0.01365	2.05851	0.27184
2_{17}	11.89813*	0.00532	0.00054	0.06234	0.61446	0.07426	0.44744	0.19571
2_{18}	14.78987**	0	0	0	0	0.07617	0.00399	7.63472
sum	7.42257	10.0549	16.05596	17.04875	16.87528	12.73913	23.57140	103.76801
Table XIV. J_{max} B(M1) ^{44}Ti $I=1$ to $I=0$

$I = 0$	Unshifted Energy	1_1	1_2	1_3	sum
01	0.0758	1.3441	0	0	1.3441
02	5.0769	0.2309	4.6967	1.3398	6.2674
03	5.0769	0.2627	5.8869	4.3617	10.5173
04	5.0769**	1.1300	5.6054	4.3646	11.1000
sum		2.9737	16.189	7.0661	26.2288

Table XV. J_{max} B(M1) ^{44}Ti $I=1$ to $I=2$

$I = 2$	Unshifted Energy	1_1	1_2	1_3	sum
01	1.0776	2.8055	0	6.0010	14.8682
02	3.0518	10.7765	0.0698	4.6408	15.4871
03	3.0676*	0	0	0	0
04	5.0769	0.4151	54.3381	2.0636	56.8168
05	5.0769	0.0086	0.2783	10.9842	11.2711
06	5.0769*	0	0	0	0
07	5.0769*	0	0	0	0
08	5.0769**	0.6861	23.0100	8.3647	32.0593
09	5.0769**	0.1578	3.2658	9.2783	12.7019
sum		14.8682	80.9620	35.3326	131.1628

Table XVI. J_{max} B(M1) ^{46}Ti $I=1$ to $I=0$

$I = 0$	Unshifted Energy	1_1	1_2	1_3	1_4	1_5	1_6	1_7	sum
01	1.0143	1.6533	0.0134	0.0005	0	0	0	0	1.6670
02	2.4037	0.0905	2.8076	0.3393	0.0991	0.0183	0.0161	0.0002	2.2811
03	4.0284	1.8661	1.0119	0.0091	0.4326	0.0680	2.0710	0.0018	5.4605
04	4.9091	0.0136	0.5472	4.7113	0.2183	2.8754	0.0207	0.3620	8.7485
05	7.0280	0	0.0002	0.3270	1.4752	0.0037	0.1439	5.4312	7.3812
06	7.0280**	0	0	0	0	0.0956	3.7398	5.8845	9.7199
sum		3.6236	4.3803	5.3863	2.1352	3.0610	5.9916	11.6797	36.2577
Table XVII. J_{max} B(M1) ^{46}Ti $I=1$ to $I=2$

$I = 2$	Unshifted Energy	$I = 1$	I_1	I_2	I_3	I_4	I_5	I_6	I_7	sum
21	1.0281	2.4966	3.0068	4.8057	5.1080*	5.4724	5.6332*	7.0280*	1.0079	
22	1.7145	1.4089	1.8389	0	0.0055	0.0002	0.0036	0.0008	3.2572	
23	2.4212	0.0064	0.2088	0.0189	0.0048	0.0114	0.0079	0.0011	0.2593	
24	2.7178	0.0639	1.4115	0.0500	0.0011	0.0679	0.0153	0.0019	1.6116	
25	3.1507	0.0964	1.5097	0.8884	0.0500	0.0149	0.1374	0.0035	2.7003	
26	3.7368	0.0392	2.2568	0.0312	4.6084	0.1493	0.0380	0.0006	7.1235	
27	3.9423	0.1232	0.0827	0.0085	0.7506	0.6391	0.1956	0.0019	1.8016	
212	4.0692*	2.6849	0.0001	0.0410	0.0132	2.1248	0.7631	0.0010	5.6281	
28	4.1408	1.2421	0.0179	0.1064	0.0300	0.5087	4.4675	0.0108	6.3834	
29	4.6429	0.00005	0.1848	8.8388	0.8913	0.0559	0.0605	0.0219	10.0533	
213	4.8658*	0.0005	0.9376	4.6612	2.0247	0.0229	0.0774	0.1122	7.8365	
210	5.2300	0.0003	0.4780	0.1015	0.4972	7.5926	0.4851	0.0425	9.1972	
216	5.4124*	0.0017	0.2989	0.1136	0.1323	3.1652	1.1913	0.5122	5.4152	
211	5.5500	0.0010	0.1784	0.8460	0.4731	3.0674	7.7698	3.0925	15.3652	
214	7.0280	0	0.00005	0.0058	0.4008	0.1698	0.0383	1.3172	1.9320	
215	7.0280	0.00001	0.0010	0.3228	0.1072	0.5371	0.0262	13.8722	14.8665	
217	7.0280*	0	0.0007	0.3348	0.3573	0.0048	0.0049	0.9106	1.6131	
218	7.0280**	0	0	0	1.5404	0.6822	5.4929	7.7155	25.3321	

Table XVIII. ALL INTERACTIONS B(M1) ^{44}Ti $I=1$ to $I=1$

$I = 1$	Unshifted Energy	$I = 1$	I_1	I_2	I_3	sum
I_1	–	0.1466	0	0	0.1466	
I_2	–	0	0.1466	0	0.1466	
I_3	–	0	0	0.1466	0.1466	

Table XIX. Pairing B(M1) ^{46}Ti $I=1$ to $I=1$

$I = 1$	Unshifted Energy	$I = 1$	I_1	I_2	I_3	I_4	I_5	I_6	I_7	sum
I_5	1.7500	0.1466	0	0	0	0	0	0	0.1466	
I_1	2.0000	0.6726	0.0666	0.5047	0.0883	1.4888	0.00001	0.1466		
I_2	2.0000	0.0066	0.1744	0.7997	0.3788	0.5271	0.1994			
I_6	2.5000	0.5047	0.1744	1.6374	1.3985	0.4689	5.2148			
I_7	2.5000	0.0883	0.7997	1.6374	0.3968	4.2042	1.1124	8.2388		
I_3	2.7500	0.1488	0.3788	1.3985	4.2042	6.5634	1.0992	15.1338		
I_4	2.7500	0.00001	0.5271	0.4689	1.1124	1.0992	0.2795	3.48714	36.9016	

sum 0.1466 2.76104 1.9194 5.2148 8.2388 15.1338 3.48714 36.9016
Table XX. Q.Q B(M1) 46Ti $I=1$ to $I=1$

I = 1	I = 1 Unshifted Energy	I_1	I_2	I_3	I_4	I_5	I_6	I_7	sum
1	4.3546	0.1475	0.0001	0.0003	0.0016	0.0023	0.0012	0.0006	0.15351
2	8.1095	0.0001	0.1417	0.0026	0.0084	0.0320	0.0075	0.0060	0.1982
3	8.7081*	0.0003	0.0026	0.4191	0.3493	0.6084	0.2609	0.1632	1.8038
4	10.4611*	0.0016	0.0084	0.3493	0.7721	4.4337	1.3977	0.8162	7.7790
5	10.5846	0.0023	0.0320	0.6084	4.4337	6.9384	3.3583	1.4211	16.7942
6	10.8481	0.0012	0.0075	0.2609	1.3977	3.3583	0.5204	0.6096	6.1556
7	11.6407*	0.0006	0.0060	0.1632	0.8162	1.4211	0.6096	1.0009	4.0176
sum		0.15351	0.1982	1.8038	7.7790	16.7942	6.1556	4.0176	36.9019

Table XXI. MBZE B(M1) 46Ti $I=1$ to $I=1$

I = 1	I = 1 Unshifted Energy	I_1	I_2	I_3	I_4	I_5	I_6	I_7	sum
1	3.65521	0.20475	0.00235	0.03278	0.17333	0.04688	0.00029	0.06086	0.52124
2	6.05887	0.00235	0.12924	0.02634	0.19778	0.01634	0.00696	0.00190	0.44391
3	7.78516	0.03278	0.02634	0.35892	3.47085	0.20043	1.73496	0.19646	6.02074
4	8.73868	0.17333	0.19778	3.47085	6.05178	1.84761	0.33556	4.24016	16.31977
5	9.46213*	0.04688	0.01634	0.20043	1.84761	1.09868	0.02403	0.46457	3.69854
6	10.61597*	0.00029	0.06996	1.73496	0.33556	0.02403	0.52859	1.02258	3.71957
7	11.36444*	0.06086	0.00190	0.1632	4.24016	0.46457	1.02258	0.20025	6.18678
sum		0.52124	0.44391	6.02074	16.31977	3.69854	3.71957	6.18678	36.90425

Table XXII. J_{max} B(M1) 46Ti $I=1$ to $I=1$

I = 1	I = 1 Unshifted Energy	I_1	I_2	I_3	I_4	I_5	I_6	I_7	sum
1	2.4966	0.1456	0.0004	0.0022	0.0022	0.0003	0.0001	0	0.1508
2	3.0668	0.0004	0.0098	0.5060	0.4823	0.1481	0.0067	0.0005	1.2150
3	4.8057	0.0022	0.5060	1.4629	2.6995	0.0218	0.3418	0.0659	5.1001
4	5.1080*	0.0022	0.4823	2.6995	1.6023	0.2780	0.1540	0.0105	5.2288
5	5.4724	0.0003	0.1481	0.0218	0.2780	11.5766	3.0925	1.7817	16.8990
6	5.6332*	0.0001	0.0067	0.3418	0.1540	3.0925	1.2682	0.4129	5.2762
7	7.0280*	0	0.0005	0.0659	0.0105	1.7817	0.4129	0.8250	3.0965
sum		0.1508	1.2150	5.1001	5.2288	16.8990	5.2762	3.0965	36.9051
Figure 1: Strong B(M1) Diagrams

We here repeat the expressions for the B(M1)’s given by Harper and Zamick [12]

\[B(M1) = \frac{3}{4\pi} \frac{2I_f + 1}{2I_i + 1} \left[g_{jp} X_1 + (-1)^{I_f-I_i} g_{jn} X_2 \right]^2 \]

(1)

Here \(g_j = g_l \pm \left(\frac{g_s - g_l}{2l + 1} \right) \)

(2)

\(g_{sp} = 5.586 \)
\(g_{lp} = 1 \)
\(g_{sn} = -3.826 \)
\(g_{ln} = 0 \)

(3)

(4)

For the case \(I_f \) is not equal to \(I_i \) we find:

\[X_1 = (-1)^{I_f-I_i+1} X_2 \]

(5)

\[B(M1) = \frac{3}{4\pi} \frac{2I_f + 1}{2I_i + 1} (g_{jp} - g_{jn})^2 X_1^2 \]

(6)

3 Selection Rules for the Pairing Interaction

In a previous work we commented on selection rules for vanishing B(M1)’s with a \(J=0 \) T=1 pairing interaction. The basis states were written \((v,T,t)\)-seniority, isospin and reduced isospin. We briefly repeat the selection rules here and refer to tables II,III,IV, and V. For the \(J = 0 \ T = 1 \) pairing interaction we previously found the following:

a. Transitions with \(\Delta T=2 \) or more are forbidden.
b. For \(N=Z \) nuclei \(T=1 \) to \(T=1 \) M1 transitions are zero.
c. \(\Delta v=4 \) M1 transitions are forbidden.
d. Transitions in which both \(v \) and \(t \) change are forbidden.

Here we discuss case d in more detail than we did in ref 9. In say, \(^{46}\text{Ti} \) we break the six nucleons into three pairs. We cannot have an M1 transition involving only a pair of identical particles–we must consider a neutron-proton pair. The only way to change seniority is to create or destroy a \(J=0^+ T=1 \) pair. The reduced isospin excludes \(J=0^+ T=1 \) pairs. If the M1 operator acts on a \(J=0^+ T=1 \) pair it creates a \(J=1^+ T=0 \) pair. Since this new pair has \(T=0 \) it will not change the reduced isospin. Alternately, if we act on a \(J=1^+ T=0 \) pair we note that because it has \(T=0 \), it does not contribute to the reduced isospin. The M1 operator will change this to a \(J=0^+ T=1 \) pair and such pairs are excluded from the reduced isospin set. Hence, if we change seniority we cannot change the reduced isospin. These arguments of course also explain c, why \(v \) cannot change by more than two units.

In tables IV and V, we show using the \(J=0^+ \) pairing interaction, \(^{46}\text{Ti} \) transitions from \(1^+ \) to \(0^+ \) states and \(1^+ \) to \(2^+ \) states respectively. We find an abundance of confirmations of rule d. We note in table IV that all transitions from the \(I=0^+ (220) \) configuration to \(1^+ \) states except for \((220) \) vanish. These latter \(1^+ \) states have configurations \((411) \), \((611) \) and \((421) \). In table V we see that \(B(M1)'s \) from \(J=2^+ (410) \) to \(1^+ (611) \) vanish.

In table V we also see that \(\Delta v=4 \) \(B(M1)'s \) are zero e.g. \((211) \) to \((611) \). Note that the \(\Delta T=2 \) transitions from the last \(2^+ \) state \((231) \) to \(I=1^+ T=1 \) states all vanish. This selection rule is the easiest to understand i.e. in terms of the Wigner-Eckart theorem.

4 Selection Rules for the Q.Q and \(J_{\text{max}} \ T=0 \) Interactions.

We find also some vanishing \(B(M1)'s \) when the quadrupole-quadrupole interaction Q.Q is employed. Some are not surprising like the \(T=1 \) to \(T=1 \) transitions in \(N=Z \) \(^{44}\text{Ti} \) shown in Table VII. Likewise, the \(\Delta T=2 \) transitions in Table IX from the \(2_{18}^+ \ T=3 \) state in \(^{46}\text{Ti} \) to all \(T=1 \) \(I=1^+ \) states. However, the vanishing \(B(M1)'s \) in the top line of Table VIII involving \(I=0^+ \) and \(I=1^+ \) states in \(^{46}\text{Ti} \) are hard to explain and we will not attempt to do so here. The vanishings are from the lowest \(0^+ \) state to two \(T=1 \) states and one \(T=2 \) state. But we have non-vanishings to other \(T=1 \) and \(T=2 \) states, so there is no simple connection with isospin.

Also, what is special about the lowest \(0^+ \) state with \(T=1 \) from the other \(0^+ T=1 \) states in the lower rows?? There are no vanishings for the latter states except of course in the bottom row where we have the \(\Delta T=2 \) selection rule . That is to say the \(0_0 \) state has \(T=3 \) and will not connect to \(I=1^+ T=1 \) states.

There are other peculiarities with the Q.Q interaction. As noted in [18], in \(^{44}\text{Ti} \) there is a degenerate pair of \(I=2^+ \) states at \(7.75 \text{ MeV} \)–one has isospin \(T=0 \) and the other \(T=2 \).

Likewise we find some hard to understand selection rules for the \(J_{\text{max}} \ T=0 \) interaction. In Table XVI we find for \(^{46}\text{Ti} \), from the lowest \(0^+ \) state there are vanishing \(B(M1)'s \) to one \(T=1 \) state and two \(T=2 \) states. As in the case with Q.Q this is hard to understand.

5 Sums of Sums

Note that the sum of sums, i.e. sum of all \(B(M1)'s \) from all \(1^+ \) states to all \(0^+ \) states, is independent of the interaction–same for pairing as for Q.Q.

This is easy to show, utilizing the fact that the \(D \)'s form a complete set and the wave functions are normalized to unity.

\[
\sum_{\alpha} D^\alpha(J_pJ_n)D^\alpha(J'_pJ'_n) = \delta_{J_pJ'_p}\delta_{J_nJ'_n} \tag{7}
\]

\[
\sum_{J_pJ_n} D^\alpha(J_pJ_n)^2 = 1 \tag{8}
\]
This leads to the following expression for the sum of sums.

\[
SS = \frac{3}{4\pi} \frac{2I_f + 1}{2I + 1} (g_p - g_n)^2 \sum_{J_p J_n} U(1, J_p J_f J_n; J_p J_i) \times J_p (J_p + 1)
\]

(9)

6 Non-Monotonic Behavior of the B(M1) 1^+_1 to 0^+_1 as One Switches from $J = 0$ pairing to J_{max} Pairing

Let us focus on the 1^+_1 transitions. The conventional scissors mode excitation is from 0^+_1 to 1^+_1 which will of course be a factor of three larger than the reverse transition 1^+_1 to 0^+_1. With the Q.Q interaction we note however that there are even larger B(M1)’s to other states. In 46Ti whereas the B(M1) for 1^+_1 to 0^+_1 is 1.3901, from 1^+_1 to 0^+_2 it is 2.6505, almost twice as large. One possible explanation of this is that the 0^+_2 state is a double scissors mode excitation.

Let us however now focus on the 1^+_1 to 0^+_1 in 46Ti, i.e. the conventional spin-scissors mode. Here are some values from the above tables:

Table XXIII. Comparison of 1^+_1 to 0^+_1 in 46Ti

Interaction	Table	B(M1)
$J = 0$ Pairing	VI	1.0799
Q.Q	VII	1.3901
MBZE	XII	0.55962

It is puzzling that Q.Q and MBZE are so different because there is a big overlap between their respective wave functions.

To better understand this we now consider simple interactions which are mixtures of $J=0$ pairing and J_{max} pairing:

\[
V = a\delta_{J = 0} + b\delta_{J = 7}
\]

(10)

We present the B(M1) for selected values of (a, b),

Table XXIV. B(M1) for a Mixture of Pairing and J_{max}

a	b	B(M1)	
-1	0	1.082	$J=0$ pairing
-1.15	-1	0.210	close to lowest B(M1)
-1	-1	0.260	equal $J=0$ and $J = J_{max}$ pairing
0	-1	1.641	J_{max} pairing

We see a fairly complicated behavior—relatively large B(M1)’s at the two limits, $J=0$ pairing and J_{max} pairing. However, for equal $J=0$ and $J = J_{max}=7$ pairing the value is much smaller, 0.210 as compared with 1.080 and 1.641. We get a non-monotonic behavior for this spin scissors mode. We get the lowest possible B(M1) for (a, b) close to (-1.15,-1) i.e. B(M1)=0.210.

Going back to Q.Q and MBZE, evidently there is more $J = 0$ and $J = J_{max}$ interference in MBZE than there is in Q.Q.

7 Additional Comments

We note that the B(M1) from the lowest 1^+ to the lowest 0^+ (generally considered the scissors mode transition) is considerably smaller than the transition from this 1^+ to all 0^+ states. For example with MBZE (the most realistic interaction here) the respective numbers are 1.6533 and 3.6136. The respective numbers from 1^+ to 2^+ are 1.0252 and 6.6738.
Note in Table XIV that along the diagonal of the one to one “transitions” in ^{44}Ti the values of “B(M1)” are all the same. Of course they are not real transitions, but they can be related to the magnetic moments. Note that for N=Z nuclei in the single j approximation the magnetic g factor is independent of the details of the wave function. As seen in the appendix of [18] the value is

$$g = \frac{g_p + g_n}{2} = 0.55 \tag{11}$$

This explains why all the diagonal “B(M1)’s” are the same in ^{44}Ti. This is not the case in ^{46}Ti. The off diagonal zeros in Table XV are due to the fact, as mentioned in [18] that in N=Z nuclei transitions from T to the same T (in this case $T=1$) are forbidden.

References

[1] D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. LoIudice, F. Palumbo, and G. Scholten, Phys. Lett, 1378, 27 (1984)
[2] D. Bohle, G. Kuchler, A. Richter, and W. Steffen, Phys. Lett. 1488, 260 (1984)
[3] N. LoIudice and F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978); Nucl. Phys. A236, 193 (1979)
[4] T. Suzuki and D. J. Rowe, Nucl. Phys. A289, 461 (1977)
[5] F. Iachello, Nucl. Phys. A358, 89C (1981). F. Iachello, Phys. Rev. Lett. 53, 1427 (1984)
[6] A. E. L. Dieperink, Prog. Part. Nucl. Phys. 9, 121 (1983)
[7] E. Lipparini and S. Stringari, Phys. Rev. Lett. 63, 570 (1989)
[8] L. Zamick Phys. Rev. C31, 1955 (1985)
[9] A. Poves, J. Retamosa, and E. Moya de Guerra, Phys. Rev. C 39, 1639 (1989)
[10] K. Heyde, P. von Neumann-Cosel and A. Richter Rev.Mod.Phys. 82, 2365 (2010)
[11] J. Beller et al., PRL 111, 172501 (2013)
[12] Y.M. Zhao and A. Arima, Phys. Rev. C72, 064307 (2005)
[13] B. Cederwall et al., Nature (London) 469, 08968 (2001)
[14] Z.X. Xu, C. Qi, J.Blomqvist, R.J. Liotta and R. Wyss, Nucl. Phys. A877,51 (2012)
[15] G.J. Fu, Y.M. Zhao and A.Arima, Phys. Rev. C88, 064303 (2013)
[16] L.Zamick and A. Escuderos, Phys. Rev.C 87, 044302 (2015)
[17] D. Hertz-Kintish and L.Zamick Annals of Physics,351,655 (2014)
[18] M.Harper and L.Zamick, Phys. Rev. C 91,014304 (2015)
[19] A.Escuderos, L. Zamick and B.F. Bayman,arXiv:nucl-th/ 0506050