Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells

Citation for published version:
Godoy, P, Schmidt-Heck, W, Natarajan, K, Lucendo Villarin, B, Szkolnicka, D, Asplund, A, Bjorquist, P, Widera, A, Stoeber, R, Campos, G, Hammad, S, Sachinidis, A, Chaudhari, U, Damm, G, Weiss, TS, Nussler, AK, Synnergren, J, Edlund, K, Küppers-Munther, B, Hay, DC & Hengstler, JG 2015, ‘Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells’, Journal of Hepatology, vol. 63, no. 4, pp. 934-942. https://doi.org/10.1016/j.jhep.2015.05.013

Digital Object Identifier (DOI):
10.1016/j.jhep.2015.05.013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published in:
Journal of Hepatology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells

Patricio Godoy1,11, Wolfgang Schmidt-Heck2, Karthick Natarajan3, Baltasar Lucendo-Villarin4, Dagmara Szkolnicka4, Annika Asplund5,6, Petter Bjorquist7, Agata Widera1, Regina Stoeber1, Gisela Campos1, Seddik Hammad1, Agapios Sachinidis3, Georg Damm8, Thomas S. Weiss9, Andreas Nussler10, Jane Synnergren6, Karolina Edlund1, Barbara Küppers-Munther5, David Hay4,*, Jan G. Hengstler1,*

1 IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany
2 Leibniz Institute for Natural Product Research and Infection Biology eV-Hans-Knöll Institute, Jena, Germany
3 University of Cologne, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, 50931 Cologne, Germany
4 MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom, EH16 4UU
5 Takara Bio Europe AB (former Cellartis AB), Arvid Wallgrens Backe 20, 41346, Gothenburg, Sweden
6 Systems Biology Research Center, School of Bioscience, University of Skövde, Sweden
7 NovaHep AB, Arvid Wallgrens Backe 20, 41346, Gothenburg, Sweden
8 Charité University Medicine Berlin, Department of General-, Visceral- and Transplantation Surgery, D13353 Berlin, Germany
9 Center for Liver Cell Research, Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
10 Eberhard Karls University Tübingen, BG Trauma Center, Siegfried Weller Institut, D72076 Tübingen, Germany

11 Department of Physiology, Faculty of Biological Sciences, University of Concepción, Chile

*Corresponding authors:

Jan G. Hengstler, Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund. Ardeystrasse 67, 44139, Dortmund, Germany. Phone:+49-231-108-4348: Fax: +49-231-108-4403. Email: Hengstler@ifado.de

David Hay, MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, UK. Phone: +44-131-651-9549. Fax: +44-131-651-9501. Email: davehay@talktalk.net

Electronic word count

Abstract: 250; Introduction: 391; Materials & methods: 527; Results: 2,317; Discussion: 856; References: 925; Figure legends: 699

Number of figures

6

Abbreviations

FH: Freshly isolated hepatocytes. CS: collagen sandwich. CM: collagen monolayer. SC: stem cells. HLC: hepatocyte-like cells. TF: transcription factors.

Key words
Stem cells, hepatocytes, differentiation, gene array, bioinformatics, transcriptomics, gene networks

Conflict of interests

The authors declare no conflict of interests

Financial support

This study was supported by the European Union Seventh Framework Programme (FP7)-Health projects DETECTIVE (EU-project FP7-Health Grant Agreement No. 266838) and NOTOX (EU-project FP7-Health Grant Agreement No. 267038), and the BMBF (German Federal Ministry of Education and Research) project Virtual Liver (0313854). Dr David Hay was supported by the UK Regenerative medicine platform (MR/K026666/1 and MR/L022974/1). Mr. Baltasar Lucendo-Villarin and Ms. Dagmara Szkolnicka were funded by MRC PhD studentships.

Authors’ contributions

PG, DH, JGH were responsible for the overall conception design of the study. WSH, AS, JS, performed gene array analysis and bioinformatics analyses. TSW, GD, AN assisted with the acquisition of fresh primary human hepatocytes. AW, RS, GC, SH performed the cultivation of primary human hepatocytes. DS and BLV conducted
experiments to obtain HLC-MRC. BKM, PB, and AA conducted experiments to obtain HLC-CEL. KN, AS HLC-UKK conducted experiments to obtain HLC-UKK. PG, JGH, DH, KE, PB, BKM, AN all contributed to the interpretation of data, drafting of article and critical revision of the manuscript.
Abstract

Background & aims: The differentiation of stem cells to hepatocyte-like cells (HLC) offers the perspective of unlimited supply of human hepatocytes. However, the degree of differentiation of HLC remains controversial. To obtain an unbiased characterization, we performed a transcriptomics study with HLC derived from human embryonic and induced stem cells (ESC, hiPSC) from three different laboratories.

Methods: Genome-wide gene expression profiles of ESC and HLC were compared to freshly isolated and up to 14 days cultivated primary human hepatocytes. Gene networks representing successful and failed hepatocyte differentiation, and the transcription factors (TF) involved in their regulation were identified.

Results: Gene regulatory network analysis demonstrated that HLC represent a mixed cell type with features of liver, intestine, fibroblast and stem cells. The “unwanted” intestinal features were associated with KLF5 and CDX2 transcriptional networks. Cluster analysis identified highly correlated groups of genes associated with mature liver functions (n=1,057) and downregulated proliferation-associated genes (n=1,562) that approach levels of primary hepatocytes. However, three further clusters containing 447, 101 and 505 genes failed to reach levels of hepatocytes. Key TF of two of these clusters include SOX11, FOXQ1 and YBX3. The third unsuccessful cluster, controlled by HNF1, CAR, FXR and PXR, strongly overlaps with genes repressed in cultivated hepatocytes compared to freshly isolated hepatocytes, suggesting that current in vitro conditions lack stimuli required to maintain gene expression in hepatocytes, which consequently also explains a corresponding deficiency of HLC.

Conclusions: The present gene regulatory network approach identifies key transcription factors for interventions to improve HLC differentiation.
Introduction

Primary human hepatocytes represent a well-established tool in pharmacology and toxicology [1] and have been applied for transplantation in metabolic liver diseases [2]. However, a major limitation is availability, since primary hepatocytes have to be isolated from surgically resected liver tissue [1]. Recently, protocols have been established and optimized to generate hepatocyte-like cells (HLC) from human embryonic stem cells (ESC) or human-induced pluripotent stem cells (hiPSC) [3-7] and induced pluripotent stem cells (hiPSC) [8-9]. These protocols first differentiate the ESC or hiPSC into endodermal cells that are then further differentiated into hepatoblasts and HLC. These HLC express markers and functions of mature hepatocytes such as albumin (ALB) and transthyretin (TTR), and urea synthesis [7,4,9]. HLC present advantages over primary hepatocytes in terms of low batch-to-batch variation and, in principle, unlimited supply.

A limitation of the currently available characterizations of HLC derived from ESC or hiPSC is that they are usually based on a selected set of markers [10]. Furthermore, little is known about the transcriptional regulatory networks controlling the differentiation program. With the rationale that identification of suboptimal gene networks represents a tractable target for improving cell phenotype, we performed a whole genome gene array study, including the starting embryonic stem cell (ESC) or human-induced pluripotent stem cell (hiPSC) populations from three different research centers, as well as the correspondingly differentiated HLC, and compared them to freshly isolated primary human hepatocytes. Two approaches were used to dissect the gene regulatory networks controlling successful and undesired outcomes. First, we used the novel CellNet platform to determine the state and identity of differentiation in HLC, and to estimate control mechanisms by transcription factors represented by “network influence scores” [11]. Second, we generated gene clusters based on common expression patterns, and identified transcriptional regulators (i.e. transcription factors) associated with each cluster. In addition, we showed a high correlation between genes with minimal upregulation in HLC and genes downregulated during cultivation of primary human hepatocytes, suggesting that the microenvironment of current culture systems is partly responsible for the insufficient differentiation of HLC.
In summary, we present evidence based on unbiased bioinformatic analyses that HLC derived from ESC and hiPSC represent an intermediate cell type with features of liver, ESC, colon cells and fibroblasts. Moreover, we define a transcriptional regulatory framework that can be used for development of mature and homogeneous hepatocyte populations in the future.
Materials and methods

Human embryonic stem cell cultivation and differentiation into hepatic-like cells (HLC)

For the present study, HLC were available from three different centers: University Klinik Köln, Germany (UKK), Medical Research Council Centre for Regenerative Medicine, Edinburgh UK (MRC) and Cellartis, Gothenburg, Sweden (CEL). The human embryonic stem cells H9 (WA9, Wicell research institute, Madison; USA) (used by UKK and MRC) were cultured and propagated as described [7]. Cellartis used the commercial hESC and hiPSC cell lines SA181 and ChiPS4, for the generation of hepatic-like cells CEL\textsubscript{hESC} and CEL\textsubscript{hiPSC} respectively [9]. HLC generated by MRC were collected after 17 (MRC\textsubscript{D17}) and 21 (MRC\textsubscript{D21}) days of differentiation [7]. HLC generated by the UKK protocol were collected after 18 days of differentiation. Since UKK’s protocol yields a mixed population of HLC islands and non-HLC, they were harvested as either as total (UKK\textsubscript{total}) population or as HLC foci (UKK\textsubscript{foci}). At least three independent experiments (biological replicas) were analyzed for all systems. Detailed descriptions of the protocols can be found in the supplemental section (Suppl. Table 1). A schematic representation of the different cultivation protocols can be found in Fig. 1A.

Primary human hepatocyte isolation and culture

Primary human hepatocytes were obtained under patient informed consent from surgical liver resection, following the 1975 Declaration of Helsinki as previously described [1]. Detailed protocols for isolation and culture of human hepatocytes in monolayer and sandwich systems are described in Godoy et al 2013[1] and in the supplemental section.

Microarray analysis
Analysis of gene expression in ESC, HLC and primary hepatocytes was performed with Affymetrix GenChip® Human Genome HG-U133 plus 2.0 chips (Santa Clara, CA, USA) as previously described [12, 13]. Gene expression levels in ESC, HLC and cultivated primary hepatocytes in collagen monolayer (CM) or collagen sandwich (CS) were compared to freshly-isolated primary human hepatocytes (FH). Genes with a fold change greater than 2 over FH expression levels (p-value<0.05, FDR corrected) were taken as significantly deregulated (Suppl. Table 2 for ESC and HLC; Suppl. Table 3 and 4 for primary hepatocytes in monolayer or sandwich cultures respectively).

Bioinformatics

The CellNet platform [11] was used to determine tissue identity based on gene expression profiles of ESC, HLC and FH. The CellNet algorithm also generates a metric for gene regulatory networks associated with the genes belonging to specific tissue identities. The fuzzy c-means algorithm [14] was applied to generate gene clusters with similar expression patterns in ESC and HLC. Of the twenty clusters identified by this approach, we selected those with strongest changes in gene expression, and created five cluster groups containing clusters with similar expression patterns (see supplemental section for details). Enrichment analysis of Gene ontology annotation was performed on the gene lists corresponding to each cluster group, using the manually curated Gene Ontology database of BioBase Knowledge Library (BKL) on the ExPlain™ web service (BioBase GmbH, Wolfenbüttel, Germany). Overrepresented transcription factor binding sites on the promoters of genes in cluster groups were identified using the PRIMA (Promoter Integration in Microarray Analysis) algorithm [15] of the Expander Software 6.1 (EXPression ANalyzer and DisplayER [16]).
Additional information on materials and methods including RNA isolation, cDNA synthesis, qRT-PCR, immunostaining and fluorescent microscopy are provided in the supplemental section.
Results

Genome-wide characterization of ESC-derived hepatocyte-like cells

Human embryonic stem cell derived hepatocyte-like cells (HLC) were provided by three different centers (UKK, MRC, CEL) that focus on developing liver technologies from hESC and hiPSC. While the goal is the same, the experimental details and some differentiation factors differ between the protocols used by the three centers (Fig. 1A). The phenotype of HLC obtained by these protocols has already been published [3,7,9,17]. Here, we confirmed the successful hepatic differentiation of HLC by immunofluorescence analysis of albumin, showing a relatively uniform expression in all HLC (Fig. 1B).

To obtain an unbiased assessment of HLC differentiation, we performed whole-genome gene array analysis of ESC as well as HLC and compared them to freshly isolated primary human hepatocytes. Cells were harvested as undifferentiated stem cells (ESC or hiPSC) or corresponding HLC (scheme for differentiation protocols, Fig. 1A; sample overview: Suppl. Tab. 1). Since the UKK differentiation method yields a mixed cell population with and without hepatocyte-like features, we harvested both whole cell preparations and HLC foci (Suppl. Fig. 1). A set of 10,420 differentially expressed genes (DEG) was defined for further evaluation, which were either differential between FH and HLC or between FH and ESC or hiPSC (p-value <0.05; 2-fold threshold, FDR adjusted; Suppl. Table 2). Principal component analysis (PCA) of the 1,000 genes with highest variance revealed the following features (Fig. 2A): (1) ESC (and hiPSC) approach primary hepatocytes after differentiation into HLC, however, they do not fully reach their position suggesting a partial gain of mature hepatic features. (2) Although the HLC from the three centers result in distinct clusters, their overall position in relation to ESC and FH is close to each other, suggesting that the three protocols induce similar differentiation features. Nonetheless, HLC from MRC and CEL were closer to FH than HLC from UKK. This is also supported by Euclidean distance (ED) analysis (Suppl. Fig 2 and Suppl. Table 5). (3) Since cultivation of primary hepatocytes induces dedifferentiation associated with massive deregulation of gene expression [1], we analyzed the gene expression profile of primary human
hepatocytes cultivated for up to 14 days in sandwich and monolayer conditions [1]. Interestingly, overall gene expression values of the primary hepatocytes began to approach stem cell derived-HLC during the extended period of cultivation (Fig. 2A; Euclidean distances in Suppl. Fig. 3 and Suppl. Table 6). (4) The ESC and hiPSC, although from different sources and cultivated in independent labs, cluster closely together. Similarly, the primary freshly-isolated human hepatocytes, although from different donors, also adopt closely neighboring positions in the PCA. (5) Modifications of the final differentiation steps, such as extending the incubation period from 17 to 21 days in MRC and the selective collection of hepatocyte-like foci in UKK had a relatively small influence on overall gene expression patterns. The partial hepatic differentiation of HLC was also evidenced by heat map representation and unsupervised clustering of the 200 genes with highest variance, followed by gene ontology enrichment analysis (Fig. 2B). For example, some genes associated with small molecule metabolic process were induced in HLC to levels comparable to primary hepatocytes (group 3), while many genes involved in xenobiotic metabolism remained low (group 4) (Fig. 2B). Likewise, cell cycle-associated genes were only partially repressed in HLC (group 1), and several extracellular matrix genes such as collagen 1A2 remained high in HLC compared to primary hepatocytes. In conclusion, HLC from the three centers achieve a similar incomplete differentiation stage towards mature primary hepatocytes.

Gene regulatory network analysis demonstrates multi-organ differentiation in HLC

To further characterize these HLC, we applied a recently established bioinformatics algorithm (CellNet [11]), which assesses cell identity based on gene expression profiles and gene regulatory networks [11]. While FH and ESC scored a single tissue classification of “liver” and “esc” (respectively), HLC showed a mixed classification including “liver”, “esc”, “colon” and “fibroblast” (Suppl. Fig. 4). CellNet also estimates a metric of the gene regulatory network (GRN) associated with the tissue classifications. The metric integrates TF influence over gene expression, based on experimental approaches including ChIP-Seq and gene expression profiles after TF overexpression
or siRNA-mediated knockdown [11]). ESC and FH scored with a maximal GRN status (1.0) for “stem cell” and “liver”, respectively (Fig. 3A). All HLC showed a strong but not complete decrease in the “esc” GRN status, indicating that their stem cell features are not fully extinguished (Fig. 3A). Conversely, a strong increase in “liver” GRN was detected in all HLC compared with their corresponding ESC (Fig. 3A). Importantly, the “liver” GRN status in all HLC was higher than in the previously reported iHeps, reaching scores equal or higher than 0.5 in HLC (Fig. 3A), whereas iHeps only achieved 0.3 [18]. The GRN status also revealed an increase in “colon” and “fibroblast” status for all HLC (Fig. 3A), in agreement with the tissue classification analysis.

CellNet also generates a “network influence score” (NIS) whereby the potential influence of individual TF on each GRN is estimated [11]. The ESC network contains TF with known roles in stem cells such as NANOG and POU5F1B. The NIS of these TF was high in ESC and strongly reduced in HLC (Fig. 3B). Nonetheless, other TF such as SALL2 and LIN28A remained with a high NIS in HLC (Fig. 3B). The NIS for the “liver” GRN identified several liver-enriched TF such as FXR (NR1H4), CAR (NR1I3), PXR (NR1I2) and HNF4, whose low influence in ESC was partially increased in all HLC (Fig. 3B). Likewise, NIS analysis identified several colon-enriched TF such as KLF5, CDX2 and NKX2-3, whose influence increased in HLC compared with their corresponding ESC (Fig. 3B). The expression of KLF5 and CDX2 were transcriptionally increased in HLC compared to FH (Fig. 4), supporting the estimation of their activity in HLC. Furthermore, several colon-enriched genes such as MEP1A and CDH17 were also strongly induced in HLC (Fig. 4). The NIS of fibroblast-enriched genes contains genes such as TWIS1 and SNAI2, known to promote epithelial-to-mesenchymal transition (EMT), thereby representing an “unwanted” feature. Altogether, CellNet unveiled details of the differentiation stage of HLC, namely the acquisition of a mixed phenotype with partial loss of stem cell features and gain of hepatocyte, colon and fibroblast lineages.

Cluster groups identify transcriptional regulators between successful and insufficient differentiation processes
To further dissect transcriptional mechanisms controlling gene expression in HLC, we determined differentially expressed transcription factors and overrepresentation of transcription factor binding sites (TFBS) in correlated gene groups. Twenty clusters were formed based on fuzzy c-means clustering (Suppl. Fig 6-7, Suppl. Table 6 and Suppl. M&M) [14] that were assigned to five cluster groups (Fig. 5A) (see Suppl. Section).

Cluster group I contains 1,057 genes with low expression in ESC that increased after the HLC differentiation protocols to levels comparable to those in primary hepatocytes. Conversely, Cluster group II contains 447 genes with low expression in ESC that were minimally induced after differentiation into HLC (Fig. 5A). Cluster groups I and II are enriched in GO categories associated with mature liver functions, including “metabolic process” (GO:00081), “catalytic activity” (GO:00038) and “immune system process” (GO:00023) (Fig. 5A, representative genes in Suppl. Table 8). Hence, cluster group I represents successful hepatocyte differentiation of HLC, while the genes in cluster group II did not reach the levels of hepatocytes. Cluster group I contains several transcription factors with known roles in hepatocyte differentiation [19], including transcriptionally upregulated HNF1A, HNF4A, CEBPA, CEBPD, and CEBPD (Fig. 5A, Suppl. Table 9). The upregulation of these transcription factors was confirmed by quantitative real time PCR (Fig. 5B). Furthermore, the binding site for HNF1 was significantly overrepresented in cluster I (Fig. 5A, Suppl. Table 10). The increased expression of these TF is consistent with the successful hepatocyte differentiation of HLC, since their role as inducers of liver-specific genes is well-established [19]. Cluster group II also contains TF controlling liver metabolic functions, such as CAR, FXR, SHP, PXR (Fig. 5A and Suppl. Table 9). In contrast with TF of cluster group I, these TF were only slightly induced in HLC (Fig. 5A-B, Suppl. Table 9). The low expression of these TF in HLC is consistent with the NIS results for the “liver” gene regulatory network. The binding site for HNF1 was also overrepresented in cluster group II. The complexity of the gene regulatory networks is illustrated by the fact that overrepresented binding sites of HNF1 appear in both, cluster I and II. The difference between both clusters may be due to HNF1 interaction partners. Indeed, FXR and PXR, known to functionally interact with HNF1 show low expression levels in HLC (Fig. 5 and Suppl. Table 9).
Cluster group III contains 1,562 genes whose expression was high in ESC and strongly decreased during differentiation into HLC (Fig. 5A). Conversely, cluster group IV contains 101 genes with high expression levels in ESC that did not decrease to the levels of FH during the differentiation process (Fig. 5). Cluster group III is enriched in GO terms such as “cell cycle” (GO:0007049) and “regulation of mitosis” (GO:0007088) (Suppl. Table 8). Genes in these categories include cyclins as well as cyclin-dependent kinases, and the involved transcriptionally upregulated TF as well as overrepresented TFBS are well established as control factors of proliferation such as E2F5 and MYB (Fig. 5; Suppl. Tables 9-10). The downregulation of cell cycle-associated genes suggests repression of the self-renewal potential, a well-known feature of stem cell differentiation. Cluster IV also contains GO terms associated to cell cycle such as “regulation of nuclear division” and “regulation of mitosis”, and included genes such as CCNB1, CDK1, ECT2, TOP2A and TTK. Although the expression of these genes was downregulated in HLC compared to stem cells, their levels remained above those of primary hepatocytes (Fig. 5A and Suppl. Table 8). It contains only one TF, namely SOX11 (Suppl. Table 9). The observation that cell cycle-associated genes were not fully downregulated in HLC prompted us to determine the expression levels of the representative TF identified by our analysis by real time qPCR (Fig. 5C). While MYB expression was strongly reduced in HLC, the levels of E2F5 and SOX11 remained elevated (Fig. 5C), suggesting that they may be responsible for the sustained expression of cell cycle-associated genes in cluster group IV.

Cluster group V contains genes whose expression is at least 4-fold higher in stem cells compared to hepatocytes and which further increase during differentiation. This cluster shows overrepresentation of GO terms such as “extracellular region” (GO:0005576) and “cell migration” (GO:0016477) (Fig 5A; Suppl. Table 8). Genes in these categories include extracellular matrix genes such as collagens (e.g. COL1A1, COL12A1), other matrix proteins (FBN1, LAMB3, LAMA5), integrins (e.g. ITGA3, ITGA6, ITGAV) and cytokines (EGF, WNT5A). The deregulated TF identified in this cluster group, including FOXQ1, YBX3, TWIST1, and SOX4, may be responsible for the not fully differentiated phenotype of HLC (Fig. 5 and Suppl. Table 9). For example, FOXQ1 is an oncogene found overexpressed in colorectal [20] and breast cancer [21],
where it induces proliferation, dedifferentiation and epithelial to mesenchymal transition (EMT). FOXQ1 is also overexpressed in hepatocellular carcinoma and induces metastasis [22]. Similarly, YBX3 can induce proliferation and dedifferentiation [23] [24]. The upregulation of these TF in HLC was also demonstrated by real time qPCR analyses (Fig. 5C). Therefore, they represent an undesirable outcome of the differentiation process.

In conclusion, cluster group analysis reveals gene groups representing successful and failed outcomes in HLC differentiation. Furthermore, we identify key TF responsible for aberrant expression clusters, thereby giving a basis for over expression or knockdown approaches to improve HLC differentiation.

Cultivation-dependent repression of liver metabolism genes

It is well known that primary hepatocytes dedifferentiate in culture, whereby expression of many metabolic genes decreases. Interestingly, in vitro dedifferentiated primary hepatocytes resemble stem cell-derived HLC more closely than freshly isolated hepatocytes, which can be seen from the PCA (Fig. 2A) and can also be objectified by the analysis of Euclidean distances (Suppl. Fig. 3 and Suppl. Table 6). Therefore, one might hypothesize that if the same genes which decrease during cultivation in primary hepatocytes also remain low after differentiation of stem cells into HLC, this mutual deficiency may be due to a general failure of culture conditions to deliver key factors of differentiation present in vivo, i.e. real liver tissue environment. To test this hypothesis, we analyzed the correlation between downregulated genes after 14 days of monolayer culture of primary hepatocytes and the difference between HLC versus freshly isolated hepatocytes (gene expression in HLC minus expression in freshly isolated hepatocytes) (Fig. 6A). Interestingly, a highly significant correlation was obtained (P<0.001; R=0.54). We further analyzed the 10, 20 and 40% genes with the highest correlation coefficients, indicated by red, purple and green colors respectively in Fig. 6A. Interestingly, these genes belong predominantly to the aforementioned cluster group II (Fig. 6B). This correlation remained even when including the top 20 or 40% genes (Fig. 6B). As
described above, metabolism-associated GO terms are overrepresented in this cluster group. Similarly, metabolism GO terms were enriched in the top 10% to 40% correlated genes (Suppl. Table 11). All these metabolism-associated genes are expressed at much lower levels in HLC than in primary hepatocytes, independent of which of the three differentiation protocols (MRC, CEL, UKK) the HLC were obtained (Suppl. Table 12). The same genes were also down regulated during a 14 days cultivation period of primary hepatocytes, when the hepatocytes were kept in two-dimensional monolayer cultures (Suppl. Table 12). To see if decreased expression of metabolic genes is explained by the culture conditions we also used a 3D culture system, where hepatocytes were cultivated between two layers of soft gel collagen (Suppl. Table 12). 3D culture ameliorated or abolished the decrease in expression for some genes including ADH1C, CYP4F2, CYP7A1 and HSD11B1, but the situation remained similar for the majority of genes. In conclusion, mechanisms inherent to in vitro cultivation systems antagonize the differentiation towards mature liver, affecting both the stability of primary hepatocytes and the potential for gain of liver functions in HLC.
Discussion

The differentiation of human embryonic stem cells (hESC) to hepatocyte-like cells and the advent of induced pluripotency seem to open exciting new possibilities to generate an unlimited supply of human hepatocytes for numerous applications [2,25]. Indeed, recent studies reported that hESC-derived HLC ‘exhibited hepatic functions’ [7] [4] and hiPSCs show a ‘successful lineage conversation of non-hepatic human cells into mature hepatocytes’ [10]. However, also more critical viewpoints about the differentiation status of HLC have been published [26,18]. The present genome-wide study demonstrates that the interpretation of ESC (and hiPSC)-derived HLC as almost fully differentiated hepatocytes might be further away from the truth than previously suggested. In reality, a mixed phenotype of liver, colon, stem cells and fibroblasts is obtained. This seems to be in agreement with principles of embryonic development. After gastrulation, the naive endoderm transforms into a primitive gut tube which becomes regionalized into foregut, midgut, and hindgut domains. As development proceeds, the foregut gives rise to the liver, while the hindgut forms the large intestine. In line with this, a recent proteomics approach demonstrated that HLC resemble embryonic rather than mature liver [27]. Results of the present GRN analysis show that HLC represent a progenitor cell type that has neither been determined as liver nor as colon cell, with high expression of colon-associated TF such as KLF5, CDX2 and NKX2-3 (Suppl. Fig 12). Nonetheless, the in vivo equivalent of HLC is unclear. To further differentiate HLC to pure populations of mature hepatocytes it will be useful to suppress transcription factors responsible of colon development.

A strength of the present study is that gene regulatory network analysis of HLC established by three different labs resulted in very similar conclusions. Moreover, cluster analysis demonstrated that gene expression alterations during the differentiation process fall into five distinct groups. **Cluster group I** supports the ‘favorable’ interpretation obtained in several previous studies. It contains genes strongly upregulated during the differentiation process that are involved in hepatic metabolism (Suppl. Table 11). However, it should be considered that also **Cluster Group II** contains genes representative of normal liver functions, such as metabolism and synthesis of
coagulation and complement factors. In contrast to **cluster I** they remain orders of magnitudes lower than those in primary hepatocytes. Interestingly, **cluster II** genes largely overlap with genes whose expression decreases during cultivation of primary hepatocytes (**Fig. 5**). This striking overlap could mean that key mechanisms responsible for maintenance of the liver’s metabolic genes are generally absent in vitro. Discovery of factors that maintain expression of cluster IV genes in primary hepatocytes may also help to improve stem cell differentiation. The binding site of HNF1, a TF involved in expression of genes characteristic of differentiated hepatocytes [19] is overrepresented in **Cluster group II** genes; further ‘liver transcription factors’, such as CAR, FXR, PXR are upregulated during stem cell differentiation but only to levels much lower than those observed in primary hepatocytes.

The second ‘favorable’ **Cluster group III** contains proliferation-associated genes that are suppressed during the differentiation process, thereby approaching the low expression levels of primary hepatocytes. In contrast, **Cluster group IV** contains also proliferation-associated genes, but expression levels stay higher compared to primary hepatocytes. SOX11 seems to represent a critical transcription factor for these genes. **Cluster group V** contains genes whose expression is upregulated in comparison to levels in mature hepatocytes. These genes include extracellular matrix proteins and integrins as well as the transcription factor TWIST1 which previously have been reported to be upregulated when primary hepatocytes dedifferentiate in culture [28] [29] [13]. These “unfavorable” clusters (II, IV and V) contain only 1,053 genes (28.7%) compared to the much higher number of 2,619 genes (71.3%) of the favorable clusters (I and III). Therefore, the majority of genes whose expression is influenced during differentiation approach levels similar to those observed in hepatocytes. Nevertheless, a major hurdle on the path to stem cell-derived hepatocytes are control mechanisms of gene cluster groups II, IV and V. Since the transcription factors controlling their expression have been identified in this study, research in future should aim at adjusting their activity to levels of primary hepatocytes.

Besides hESC derived HLC also three independent batches of hiPSC-HLC were analysed in the present study. Bioinformatic analyses demonstrate a high degree of
similarity to hESC-HLC considering the position in the PCA and cluster analysis. A minor difference is that the proliferation associated cluster group III genes were lower in hiPSC-HLC compared to hESC-HLC. An exception was the stronger suppression of ESC gene network features in CEL-HLC compared to those from UKK and MRC (Fig. 3). The CEL protocol also resulted in enhanced colon network features compared to the other protocols. This illustrates that more efficient suppression of ESC features does not necessarily lead to enhanced hepatocyte but may enhance the “unwanted” colon features.

In conclusion, the present unbiased, genome-wide study reveals the strengths and limitations of current protocols aiming at generating hepatocytes from hESC or hiPSC. The observation of intestinal fate specification and definition of five cluster groups, two in agreement with hepatocyte-like differentiation and three ‘problematic’ clusters, and their assignment to key transcription factors give a basis for improvements of differentiation protocols in future.
Figure legends

Figure 1. Overview of stem cell differentiation protocols and gain of albumin expression in HLC. **A)** Schematic representation of cultivation conditions of stem cells to achieve a HLC phenotype in the three research centers involved in this study. **B)** Fluorescent microscopy imaging of ESC and differentiated HLC from MRC stained with antibodies against albumin. The expression of albumin (green) can be detected uniformly in HLC after 17 days of differentiation. The specificity of the staining is confirmed by the absence of green color in HLC stained with IgG control antibodies. Nuclei are stained with DAPI (blue). Scale bars correspond to 100 μm. **C)** Description of abbreviations and expanded description of all ESC and HLC models used in the current study.

Figure 2. Partial gain of hepatic differentiation in HLC. **A)** Principal component analysis generated with the 1,000 genes with highest variance in stem cells and HLC from the three centers. The top two principal components represent 88.5% of the variance. The graph includes cultivated primary hepatocytes in 2D (monolayer) or 3D (sandwich) cultures. **B)** Heat map representation of the 200 DEG with highest variance in ESC, HLC and primary hepatocytes (FH and cultivated in monolayer or sandwich). Representative GO terms and selected genes are indicated for each gene group.

Figure 3. CellNet allows identification of multi-tissue gene regulatory networks in HLC. **A)** Gene regulatory network (GRN) status in FH, ESC and HLC. Bars represent the strength of tissue-specific GRN. Each network (i.e. ESC, liver, colon and fibroblast) was established by a training set in CellNet, representing the maximum value of 1.0. The “ESC” GRN status is strongly repressed in all HLC compared with their corresponding ESC. Conversely, a gain of “Liver” GRN is observed for all HLC cohorts. The “colon” GRN scores are also induced in all HLC, albeit to lower values than those of “liver” GRN. **B)** Identification of transcription factors with highest influence over the ESC, liver and colon GRN. The CellNet algorithm establishes a metric for the influence of TF over the genes contained in each tissue GRN. The heat maps indicate the top ten TF with the highest influence on each GRN.

Figure 4. Identification of colon-associated genes in HLC. The graphs on the left indicate the mRNA expression levels of the transcription factors KLF5 and CDX2, and the colon genes MEP1A and CDH17, in ESC and HLC. The tissue specificity for these
genes was validated by querying the Proteinatlas® [30]. Here, representative pictures of immunostainings for the aforementioned genes are shown, indicating the nuclear expression of KLF5 and CDX2 in colon crypts, and the membranous expression of MEP1A and CDH17. The colon-enriched expression for these genes is also shown at the transcriptional level (RNAseq).

Figure 5. Cluster groups unveil detailed features of complete and partial hepatic differentiation of HLC. After establishing 20 fuzzy clusters representing distinct gene expression patterns on HLC (see supplemental section), five cluster groups were formed selecting clusters containing genes with average fold changes over five-fold (see supplemental section for detailed descriptions). The Cluster groups contain 3,217 genes, allowing for a more robust and precise bioinformatics analysis. The most relevant biological motifs and representative genes are shown. Furthermore, the potential transcriptional control mechanisms such as deregulated (representative) transcription factors and overrepresented TFBS are shown. **B-C)** Real time quantitative PCR analysis of selected transcription factors in ESC and HLC-MRC at 17 and 21 days of differentiation. Expression levels were normalized to those in freshly isolated hepatocytes. Bars correspond to mean values ± standard error of the mean. Representative of three independent biological replicas.

Figure 6. Comparable repression of metabolism-associated genes during cultivation of primary hepatocytes and differentiated HLC. **A)** Correlation between genes repressed in primary hepatocytes after 14 days of cultivation in 2D (monolayer) conditions and genes deregulated in HLC (UKK-islands) compared to FH. The red dots represent the top 10%, while the purple and green dots correspond to the additional 20 and 40% genes with highest correlation. **B)** Venn diagram analysis indicates the high overlap between top 10, 20 and 40% correlated genes with genes in Cluster group II (Fig. 5). The light blue circles represent genes in each Cluster group as described in Fig. 5. Red circles represent genes in the top 10 to 40% with highest correlation, as described in A.
References

[1] Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of toxicology 2013;87:1315-1530.

[2] Nussler A, Konig S, Ott M, Sokal E, Christ B, Thasler W, et al. Present status and perspectives of cell-based therapies for liver diseases. Journal of hepatology 2006;45:144-159.

[3] Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proceedings of the National Academy of Sciences of the United States of America 2008;105:12301-12306.

[4] Medine CN, Lucendo-Villarin B, Storck C, Wang F, Szkolnicka D, Khan F, et al. Developing high-fidelity hepatotoxicity models from pluripotent stem cells. Stem cells translational medicine 2013;2:505-509.

[5] Basma H, Soto-Gutierrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 2009;136:990-999.

[6] Ishii T, Fukumitsu K, Yasuchika K, Adachi K, Kawase E, Suemori H, et al. Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells. Am J Physiol-Gastr L 2008:295:G313-G321.

[7] Szkolnicka D, Farnworth SL, Lucendo-Villarin B, Hay DC. Deriving functional hepatocytes from pluripotent stem cells. Current protocols in stem cell biology 2014;30:1G 5 1-1G 5 12.

[8] Holmgren G, Sjogren AK, Barragan I, Sabirsh A, Sartipy P, Synnergren J, et al. Long-term chronic toxicity testing using human pluripotent stem cell-derived hepatocytes. Drug metabolism and disposition: the biological fate of chemicals 2014;42:1401-1406.

[9] Ulvestad M, Nordell P, Asplund A, Rehnstrom M, Jacobsson S, Holmgren G, et al. Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells. Biochemical pharmacology 2013;86:691-702.

[10] Huang PY, Zhang LD, Gao YM, He ZY, Yao D, Wu ZT, et al. Direct Reprogramming of Human Fibroblasts to Functional and Expandable Hepatocytes. Cell Stem Cell 2014;14:370-384.

[11] Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: network biology applied to stem cell engineering. Cell 2014;158:903-915.

[12] Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Muller A, et al. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 2009;49:2031-2043.

[13] Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, et al. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 2010;52:2127-2136.
[14] Bezdek JC, Hathaway RJ. Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm. IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council 1992;3:787-793.
[15] Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y. Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome research 2003;13:773-780.
[16] Ulitsky I, Maron-Katz A, Shavit S, Sagir D, Linhart C, Elkon R, et al. Expander: from expression microarrays to networks and functions. Nature protocols 2010;5:303-322.
[17] Szkolnicka D, Farnsworth SL, Lucendo-Villarin B, Storck C, Zhou W, Iredale JP, et al. Accurate prediction of drug-induced liver injury using stem cell-derived populations. Stem cells translational medicine 2014;3:141-148.
[18] Morris SA, Cahan P, Li H, Zhao AM, San Roman AK, Shivdasani RA, et al. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 2014;158:889-902.
[19] Costa RH, Kalinichenko VV, Holterman AX, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003;38:1331-1347.
[20] Kaneda H, Arao T, Tanaka K, Tamura D, Aomatsu K, Kudo K, et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer research 2010;70:2053-2063.
[21] Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q. FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer research 2011;71:3076-3086.
[22] Xia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology 2014;59:958-973.
[23] Lima WR, Parreira KS, Devuyst O, Caplanusi A, N'Kuli F, Marien B, et al. ZONAB promotes proliferation and represses differentiation of proximal tubule epithelial cells. Journal of the American Society of Nephrology : JASN 2010;21:478-488.
[24] Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Molecular and cellular biology 2006;26:2387-2398.
[25] Szkolnicka D, Zhou W, Lucendo-Villarin B, Hay DC. Pluripotent stem cell-derived hepatocytes: potential and challenges in pharmacology. Annual review of pharmacology and toxicology 2013;53:147-159.
[26] Hengstler JG, Brulport M, Schormann W, Bauer A, Hermes M, Nussler AK, et al. Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert opinion on drug metabolism & toxicology 2005;1:61-74.
[27] Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. Journal of hepatology 2015;62:581-589.
[28] Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Mueller A, et al. Extracellular Matrix Modulates Sensitivity of Hepatocytes to Fibroblastoid Dedifferentiation and Transforming Growth Factor beta-induced Apoptosis. Hepatology 2009;49:2031-2043.
[29] Godoy P, Lakkapamu S, Schug M, Bauer A, Stewart JD, Bedawi E, et al. Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes. Biological chemistry 2010;391:73-83.

[30] Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:1260419.
Figure 1 revised

A

Cell Line	Culture Medium	Growth Factors	Supplements	Days
UKK	RPMI 1640/BS7	Activin A (100 ng/ml)	Glutamax (0.5%)	3 days
MRC	RPMI 1640/BS7	Wnt3a (50 ng/ml)	Activin A (100 ng/ml)	3 days
hESC	RPMI 1640/BS7	Wnt3a (50 ng/ml)	Activin A (100 ng/ml)	3 days
hPSC-ChiPSC4	RPMI 1640/BS7	Wnt3a (50 ng/ml)	Activin A (100 ng/ml)	3 days
CEL	RPMI 1640/BS7	Wnt3a (50 ng/ml)	Activin A (100 ng/ml)	Proprietary protocol

B

Image	Description
ESC-MRC	Albumin expression
HLC-MRC-D17	Albumin expression
HLC-MRC-D21	Albumin expression
HLC-MRC-D17	IgG control

C

Abbreviation	Description
ESC-MRC	Embryonic stem cells from MRC
HLC-MRC-D17	Hepatic-like cells from MRC, 17 days of differentiation
HLC-MRC-D21	Hepatic-like cells from MRC, 21 days of differentiation
ESC-CEL	Embryonic stem cells from Cellartis
hiPSC-CEL	Human-induced pluripotent stem cells from Cellartis
HLC-ESC-CEL	Hepatic-like cells after differentiation of ESC from Cellartis
HLC-hiPSC-CEL	Hepatic-like cells after differentiation of hiPSC from Cellartis
ESC-UKK1	Embryonic stem cells from University of Cologne (batch 1)
ESC-UKK2	Embryonic stem cells from University of Cologne (batch 2)
HLC-UKKtotal	Hepatic-like cells obtained after differentiation of ESC, U. Cologne
HLC-UKKfoci	Hepatic-like cells obtained after differentiation of ESC, U. Cologne
Figure 3

Click here to download high resolution image
Figure 5

Table A

Cluster groups	Number of genes	Representative genes	Representative TF	TFBS
I Cluster 5	1,057	ABCA1, APOA1, ALDH1A1, CYP1A1, GSTA, C3, C5, FGA, STAT4, IL1R1, A2M	FOXA1, FOXA2, CEBPA, CEBPD, HNF1B, PPARA, PPARG	HNF1
II Cluster 10	447	CYP2E1, CYP3A4, SULT1E1, UGT2B15, C2, C6, C9, F5, F7, HPR, HRG	CAR, FXR, PXR, SHP	HNF1
III Cluster 1	1,562	CCNA1, CCNA2, CDC25A, CDK4, CDK7, PCNA	MYB, E2F5, E2F3, E2F7, TCF3, SOX2, SOX8	E2F, NF-Y, ETS, ZF5
IV Cluster 9	101	CCNB1, CCNB2, CDK1, ECT2, TOP2A, TTK	SOX11	n.a.
V Cluster 7	505	COL1A1, COL4A1, FBN1, LAMN3, ITGA3, ITGA6, EG1, WNT5A	FOXO1, YBX3, SOX4, YAP2, TWIST1	n.a.

Figure B

Figure C
Figure 6

Click here to download high resolution image
Supplementary table 1

Click here to download Supplementary material: Suppl Table 1-Differentially Expressed genes_HLC_vs_FH.xls
Supplementary table 3

Click here to download Supplementary material: Suppl Table 3-Differentially Expressed genes Human heps_CS_vs_FH.xls
Supplementary table 5

Click here to download Supplementary material: Suppl Table 5-Euclidean distance HLC_vs_D14 primary heps.xls
Supplementary table 6

Click here to download Supplementary material: Suppl Table 6-FuzzyCluster_20clusters_SC.xls
Supplementary table 8
Click here to download Supplementary material: Suppl Table 8-Transcription Factors in cluster groups.xls
Supplementary table 9

Click here to download Supplementary material: Suppl Table 9-TFBS in cluster groups.xls
Supplementary table 10

Click here to download Supplementary material: Suppl Table 10-GSEA_Down_Regulated_during_Cult-V2.xls
Supplementary table 11

Click here to download Supplementary material: Suppl Table 11-Common genes downreg human heps CM D14 and HLC.xlsx
Click here to download Supplementary material: Pathway_Analysis_HLC-cluster-groups for reviewers.xls