Is agro-ecotourism approach a potential to support climate change mitigation?

R T Suryandari1,* R L Wicaksono2 A Agustina2

Departement of Management Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, Kentingan Surakarta 57126 Indonesia
Departement of Forest Management Universitas Sebelas Maret Jl. Ir. Sutami 36 A Kentingan Surakarta 57126 Indonesia

*Corresponding author: retno.tanding@yahoo.com staff.uns.ac.id

Abstract. Indonesia is one of the biggest contributors to greenhouse emission globally. The trigger of such contributions can be traced to Land Use, Land Use Change, and Forestry (LULUCF). The problem of deforestation is complex, involving social, economic and political sectors. On the other hand, a holistic approach has not been widely discussed and implemented. This paper attempts to review and aims at providing potential answer on how to manage the forest and its relations with people in order to combat forest destruction caused by people. We believed that managing such relationship is the key to maintain the sustainability of the forest while keeping its roles and sustainability. Literature review was employed to develop a problem framework, and to develop alternatives in bridging the relationships between forest and local community. Collecting relevant literatures using keywords such as “forest and climate change mitigation”, “agroforestry and climate change”, “ecotourism and climate change”, and “agroforestry and ecotourism”. 96 articles were found. Further, through matching the content and the research goals of the articles, 13 articles were selected for further content analysis. We proposed agro-ecotourism as the alternative answer that can be pursued to balance the relationship between forest and people, especially in putting forest as an important partner rather than an exploitable asset. Hence, agro-ecotourism may help to increase the awareness among local community on the critical roles of the forest in the long term to fight against climate changes.

1. Introduction

Climate change is a global phenomenon that has been becoming a global concern today. The impact is not only felt locally but also globally, even across sectors and strata of society [1]. These impacts include decreased water quality and quantity [2], changes in habitat and species extinction [3,4], health problems [5,6], droughts that affect agricultural productivity [7,8], rising sea levels that endanger the existence of coastal areas and islands [9,10] includes an increase in the intensity of the occurrence of extreme natural disasters [11,12]. The phenomenon is fundamentally related to the condition, which is termed "The Great Acceleration." Reference [13] state that the term "Great Acceleration aims to capture the holistic, comprehensive and interlinked nature of the post-1950 changes simultaneously sweeping across the socio-economic and biophysical spheres of the Earth System, encompassing far more than climate change". Specifically, this is manifested by an increase in the use
of fuels (fossil & non-fossil) from both production and consumption, which contribute to an increase in greenhouse gas (GHG) concentrations in the atmosphere [12]. In addition, the Land Use, Land Use Change, and Forestry (LULUCF) sectors including deforestation and forest degradation, especially in the tropics region also causes the increasing GHG concentrations in the atmosphere [14], [15], [16], [17], [18].

Reference [19] state that the contribution of the sector reaches 10% of total global emissions. Specifically, forests in Indonesia and Brazil are the most significant contributors to emissions through deforestation, this happens due to the potential carbon storage that reaches 35% of the total carbon in the world's tropical forests [20]. In the period 1950-1997, Indonesia lost 37% of forest cover [21]. The decrease in the area of forest cover takes place with a relatively high and fluctuating speed [22]. Facing similar problem as other developing countries in tropical regions, deforestation in Indonesia is significant problem that demands attention as well as it prompts specific approach to solve.

Many factors underlie and drive deforestation in Indonesia. Some authors mention that these factors include expansion of plantation/agricultural land, illegal logging, population pressures and government policies [21]; [22]; [23]; [24]. These various factors imply that deforestation in Indonesia is a result of the complexity of the problems associated with socio-economic aspects, including the policy process [25]. In line with this, [26 in general divide the causes of deforestation on two main components, namely direct and underlying causes which consist of several aspects such as natural causes, human activities, and governance weaknesses, broader socio-economic and political causes.

Reference [27] emphasizes that “Deforestation results from complex socioeconomic processes, and in many situations, it is impossible to isolate a single cause. Therefore, a comprehensive and holistic effort is needed to minimize and even solve the problem of deforestation in Indonesia, which is an essential part of climate change mitigation [28]. The approach used so far is considered to be partial and not optimal in involving the community for forest management, including minimizing deforestation. Community involvement in forest management and avoided deforestation is considered to have significant results [29].

Indonesia has committed to reduce emissions from the forest sector with reforestation, carbon conservation, and forest fire mitigation [30]. But, the decision maker is too slow in mitigation practice because the forest fire from time to time becomes more difficult to solve. Reducing emissions is and will remain a great challenge for Indonesia, if the problems of illegal logging have not been addressed properly. This is caused by many of the forest area that prohibit to cleared due to deforestation [30].

Technically, this approach is carried out by planting wood plants together with other plants (plantation or agricultural commodities) and or livestock farming [32]. Technically, agroforestry land management practices include variations such as home gardens, intercropping, live fences, parklands, riparian buffers, shaded perennial crop systems, shelterbelts, silvopasture, improved fallows, rotational woodlots, tree plantations on arable land and shifting cultivation [32]. This approach aims to optimize the role and function of land to obtain a variety of benefits [32]; [31] including supporting climate mitigation and adaptation [33].

On the other hand, Ecotourism has been recognized to give benefits economically, socially and culturally as well as environmentally. Ecotourism is a method to introduce and promote natural beauty and cultural attraction. The development of ecotourism requires tripartite cooperation, community, government and private sector. In order to develop ecotourism, we needed community, government, and private sector contribution. Relying only one active party will not sustain the ecotourism development [34].

We propose Agro Eco-tourism as a method in developing a forest to become tourism destination and for agroforestry. We hope the combination of agroforestry and ecotourism, in addition to providing education to the community about forests conservation, socio-economic benefits, also creating climate change mitigation. This paper aims to provide potential answers to how to manage the forest and its relations with people in order to combat the forest destruction caused by people. In answering this
question, this study examines the literature related to agroforestry, and ecotourism, then proposing a new approach to combat the climate change.

2. Methods
The method used in this research is content analysis and literature study. The authors have collected relevant literatures to acquire an understanding about existing methods and strategies generally employed to mitigate climate change. First, authors utilized scientific publication to be able to draw a better understanding about climate change mitigations. Articles were collected from various journals related to agro-ecotourism and climate change mitigation. Using Science Direct Database, including research articles only, Keywords used were “forest and climate change mitigation”, “agroforestry and climate change”, “ecotourism and mitigation”, and “agroforestry and ecotourism”. Details of the number of the articles are available on Table 1. All articles were published in the periods of 2003-2019. After filtering these set of articles, by excluding the duplicate which appears more than once during search, the authors found 96 articles. By matching the research goals and the articles’ content, 13 articles were further analyzed.

Table 1. Database for literature review

No	Keywords	Number of article found
1.	“forest and climate change mitigation”	88
2.	“agroforestry and climate change”	5
3.	“Ecotourism and mitigation”	1
4.	“agroforestry and ecotourism”	4

3. Result and Discussion
Based on the literature search, using certain keywords “forest and climate change mitigation”, “agroforestry and climate change”, “ecotourism and mitigation”, and “agroforestry and ecotourism”, three categories we found in the preliminary results. The categories were climate change mitigation, agroforestry and climate change mitigation, dan ecotourism. The existing studies discussed on how agroforestry or ecotourism benefits climate change mitigation separately. Out of the articles collected, the authors have not found a single article which combined and discussed both methods together in climate change mitigation.

3.1. Climate change mitigation
One big challenge for climate change mitigation is to slow down the speed of deforestation or forest degradation. Currently these problems contribute to 15% of global greenhouse gas emission. One of the program, Reducing Emission from Deforestation and Forest Degradation, (REDD), also sustainable forest management and sink enhancement (REDD +) have been promoted as suitable programs to support the efforts for forest conservation and to increase the carbon stock activities as well as the development of alternative energy resources
Several mitigation activities that were found and offered in the existing research literature in the mitigation of climate change are as follow:

- Renewable energy, energy efficiency [35]; [36]; [37]; [38]
- Reducing deforestation and forest degradation [22]
- Replanting, restoration, reforestation, and plantation practice [39]; [40]
- implementation carbon sequestration projects [41]; [42]
- developing alternative energy resources [43]
- sustainable peatlands management [44]
- eco-friendly vehicles [36]; [44]
- reducing GHG emissions [45]
- ecotourism development [46]; [47]
The authors focus the discussion in this paper on the agroforestry and eco-tourism as methods for climate change mitigation that may, and mostly, require the involvement of local community living surrounding the forest to implement and to develop either agroforestry or ecotourism.

3.2. Agroforestry and climate change mitigation
Mitigation is defined as a series of human intervention activities to prevent long-term climate damage through reducing anthropogenic emissions and increase greenhouse gas uptake [50]. The activities may be implemented in several sectors, such as 1. Forestry & agriculture, 2. Energy, 3. Waste, 4. Transportation, 5. Industry, and 6. Infrastructure / buildings [51]. Climate change mitigation is not only related to the efforts to reduce emissions and to increase the absorption of greenhouse gases alone, but also related to several additional benefits such as economic development, environmental management, agricultural development, and improvement of the quality of life of the community, including improving welfare [52].

Agroforestry has an essential role in climate change mitigation because it involve safeguarding the stability of greenhouse gas concentrations in the atmosphere, improving the functioning of ecosystems, increasing resistance to extreme climates through the enrichment of soil fertility & retention, and soil carbon sequestration [50], [53],[54], [55], [56]. Specifically, [32] state that agroforestry mitigation potential is 27 ± 14 t CO$_2$ e / ha / y. Furthermore, agroforestry can increase the stock of carbon biomass in trees ranging from 46-51% [57].

Agroforestry plays a significant role in increasing soil carbon uptake through increasing the number of hair roots, rhizodeposition, and litter accumulation [58], [59], [60]. Furthermore, this land management system has a variety of additional roles such as the fulfillment of household needs, job creation, and social equality, providers of animal feed, firewood, and medicinal plants [61]. Thus, it can be said that agroforestry is relevant to climate change mitigation. Even climate change mitigation can be achieved significantly by combining a complex set of actions between the agriculture and forestry sectors (agroforestry) [50].

One limitation of agroforestry is the local community may perceive the method as impairing the level of crops productivity. Hence the local community has the tendency to go against the agroforestry method. Furthermore, as local community have limited knowledge to select proper commodities suitable to the soil condition, this limited knowledge also limit the ability to generate more income from conventional farming. Hence, a more reason to be reluctant to accept agroforestry method.

3.3. Ecotourism
Ecotourism is an approach based on 5 elements, which are natural, sustainable ecologically, educative, benefit for community, and creation of tourist satisfaction. Alternative for the development of ecotourism was to involve community with 3 dimensions concept : economic, social and political dimensions. To be successful, ecotourism development must include soil and water conservation consideration [62]. Ecotourism is actively accepted as a method to improve environment consciousness, management, and conservation [47]. Ecotourism can protect large amounts of forest over the long term [46]. Ecotourism can be a major income generator and support local economies [46], and it will impact to forest sustainability. A country like Indonesia, through natural diversity and local cultural ecotourism can attract many visitors from all over the world. In current moment, Indonesia offers at least 160 ecotourism sites all over Indonesia. The developments of those sites are mostly involving the cooperation among local community, government and private sectors. Although many sites of Eco-tourism show significant contribution to the economic welfare of local community, however there are cases in which the natural environment as the main asset of eco-tourism were severely harmed by the high number of visitors attracted to visit the ecotourism sites. The regulation to limit the number of visitor allowed to visit the sites on one particular time is a hinder to the economic interest of the local community, And this point is the weakness of the ecotourism development. To discourage visitors from
harming the natural environment, limiting the number of visitors is the only way to conserve the forest, and in the same time, limiting the income earned by the local community.

3.4. Agro Ecotourism

Some text As agroforestry and ecotourism has their own weaknesses, a new approach is proposed in this paper. We propose Agro Eco-tourism as a method in developing a forest to become tourism destination, and in the same time allows the local farmers benefitted from the forest through agroforestry. This approach offers a better scheme economically for the local communities, in a way that while the farmers has to accept smaller income from practice of agroforestry in the short run, however in the long run the local communities may be able to receive more benefit economically through ecotourism. Also by practicing agroforestry, in the long run, local community will have a better and higher quality of natural environment. We propose that balancing the short term and long term economic benefit, with a proper approach to the local community, the new method will be adequately accepted and will be adopted in the long run.

We believed that climate change mitigation is a complex problem, and requires a comprehensive solution. It involves not only how to increase the land coverage, also how to ensure the community living surrounding the forest, that the local communities will have economic and natural benefit by living in harmony with the forest. Agro ecotourism may have the answer to solve both natural and economic challenges. By involving the community, government and private sectors, the possibility to improve the quality of the forest through increasing the number of trees to cover the forest, and in the long run improving the livelihood of the local farmers seems possible.

4. Conclusion

After the compilation of the literatures about agroforestry and eco-tourism, it can be concluded that there was a diversity of methodologies in approaching climate change mitigation. This paper focused on agroforestry and ecotourism review methods, as the method that involved local communities in its implementation. Literatures have supported the notion that agroforestry could increase the stock of carbon biomass and soil carbon, although agroforestry had weakness in convincing the local farmers to adopt the method for the seemingly declining income from crops. On the other hand, developing ecotourism has its own weakness since it limits the possibility to have higher number of visitors. Combining the two, agro ecotourism is proposed as a new approach that balances the less attractive agroforestry method with the long term benefit for the local community.

5. Recommendation

The concept of Agro-Ecotourism requires more studies in the future, and experimentation in implementing the method and involving local community in its operationalization. Future thought can be directed to further developing the concept of agro ecotourism. Also, future research may want to show a real calculation, benefits and cost of implementing agro ecotourism. Through the real calculation, it will be easier for the local community to understand, to calculate calculating their benefit in the long, unforeseen future. and to adopt the method

References
[1] Makondo C C and Thomas D S G 2018 Climate Change Adaptation: Linking Indigenous Knowledge With Western Science for Effective Adaptation. Environmental Science and Policy 88 83–91. https://doi.org/10.1016/j.envsci.2018.06.014

[2] Yang Q Zhang X Almendinger JJ Huang M Chen X Leng G Li X 2019 Climate Change Will Pose Challenges to Water Quality Management in the St. Croix River Basin. Environmental Pollution 251 302–311. https://doi.org/10.1016/j.envpol.2019.04.129

[3] Kidane Y O Steinbauer M J Beierkuhnlein C 2019 Dead End for Endemic Plant Species? A Biodiversity Hotspot Under Pressure. Global Ecology and Conservation 19 e00670. https://doi.org/10.1016/j.gecco.2019.e00670

[4] Watson J E M Rao M Kang A L Xie Y 2012 Climate Change Adaptation Planning for Biodiversity Conservation: A review. Advances in Climate Change Research 3(1) 1–11. https://doi.org/10.3724/sp.j.1248.2012.00001

[5] St. Louis ME Hess JJ 2008 Climate Change. Impacts on and Implications for Global Health. American Journal of Preventive Medicine 35 (5) 527–538. https://doi.org/10.1016/j.amepre.2008.08.023

[6] Vineis P Chan Q Khan A 2011 Climate Change Impacts on Water Salinity and Health. J. Epidemiology and Global Health 1 (1) 5–10. https://doi.org/10.1016/j.jegh.2011.09.001

[7] Hertel T W Burke M B, Lobell D B 2010 The Poverty Implications of Climate-Induced Crop Yield Changes by 2030. Global Environmental Change 20 (4) 577–585. https://doi.org/10.1016/j.gloenvcha.2010.07.001

[8] Leng G Tang Q Rayburg S 2015 Climate Change Impacts on Meteorological, Agricultural and Hydrological Droughts in China. Global and Planetary Change 126 23–34. https://doi.org/10.1016/j.gloplacha.2015.01.003

[9] Goharnejad H Shamsai A Hosseini S A 2013 Vulnerability Assessment of Southern Coastal Areas of Iran to Sea Level Rise: Evaluation of Climate Change Impact. Oceanologia 55(3) 611–637. https://doi.org/10.5697/oce.55-3.611

[10] Nurhidayah L and McIlgorm A 2019 Coastal Adaptation Laws and the Social Justice of Policies to Address Sea Level Rise: An Indonesian Insight. Ocean and Coastal Management 171 11–18. https://doi.org/10.1016/j.ocecoaman.2019.01.011

[11] Heim W Wilson C Lee B Rajakapaka D de Moel H Athukorala W Managi S 2019 Climate Change and Natural Disasters: Government Mitigation Activities and Public Property Demand Response. Land Use Policy 82 436–443. https://doi.org/10.1016/j.landusepol.2018.12.026

[12] Woodward A 2019 Climate Change: Disruption, Risk and Opportunity. Global Transitions 1 44–49. https://doi.org/10.1016/j.glt.2019.02.001

[13] Steffen W Broadgate W Deutsch L Gaffney O Ludwig C 2015 The Trajectory of the Anthropocene: The Great Acceleration. Anthropocene Review 2(1) 81–98. https://doi.org/10.1177/2053019614564785

[14] Buizer M Humphreys D De Jong W 2014 Climate Change and Deforestation: the Evolution of an Intersecting Policy Domain. Environmental Science and Policy 35 1–11. https://doi.org/10.1016/j.envsci.2013.06.001

[15] Forsell N Turkovska O Gusti M Obersteiner M Den Elzen M Havlik P 2016 Assessing the INDCs’ Land Use, Land Use Change, and Forest Emission Projections. J. Carbon Balance and Management 11(1) https://doi.org/10.1186/s13021-016-0068-3

[16] Harris N L Brown S Hagen S C Saatchi S S Petrosa S Salas W Lotsch A 2012 Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science 336 (6088) 1573–1576. https://doi.org/10.1126/science.1217962

[17] Mersmann F Wehnert T Andreeva T Fekete H Luna L Streitferdt V 2017 Implementation of
Nationally Determined Contributions - Indonesia Country Report. Retrieved from https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-10-26_climate-change_24-2017_country-report-indonesia.pdf

[18] Mitchard E T A 2018 The Tropical Forest Carbon Cycle and Climate Change. Nature 559(7715) 527–534. https://doi.org/10.1038/s41586-018-0300-2

[19] Grassi G House J Dentener F Federici S Den Elzen M Penniman J 2017 The Key Role of Forests in Meeting Climate Targets Requires Science for Credible Mitigation. Nature Climate Change 7(3) 220–226. https://doi.org/10.1038/nclimate3227

[20] Baccini A Goetz S J Walker W S Laporte N T Sun M Sulla-Menashe D Houghton R A 2012 Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. J. Nature Climate Change 2(3) 182–185. https://doi.org/10.1038/nclimate1354

[21] Tsujino R Yumoto T Kitamura S Djamiluddin I Darnaedi D 2016 History of Forest Loss and Degradation in Indonesia. Land Use Policy 57 335–347. https://doi.org/10.1016/j.landusepol.2016.05.034

[22] Tacconi L Rodrigues R J Maryudi A Muttaqin M Z 2019 Law Enforcement and Deforestation: Lessons for Indonesia from Brazil. Forest Policy and Economics 108 101943. https://doi.org/10.1016/j.forpol.2019.05.029

[23] Kubitza C Krishna V V Urban K Alamsyah Z Qaim M 2018 Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia. Ecological Economics 147 312–321. https://doi.org/10.1016/j.ecolecon.2018.01.021

[24] Susanti A Maryudi A J walker W S Laporte N T Sun M Sulla-Menashe D Houghton R A 2012 Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. J. Nature Climate Change 2(3) 182–185. https://doi.org/10.1038/nclimate1354

[25] Purnamasari R S 2010 Dynamics of Small-Scale Deforestation in Indonesia: Examining the Effects of Poverty and Socio-Economic Development. Unasylva 61(1–2) 14–20.

[26] Geist H J Lambin E F 2001 What Drives Tropical Deforestation? A Meta-Analysis Of Proximate and Underlying Causes of Deforestation Based on Subnational Case Study Evidence (LUCC Report Series No. 4 (116) https://doi.org/10.1098/rslb.2008.0691

[27] Walker R T 1987 Land Use Transition and Deforestation in Developing Countries. Geographical Analysis 19(1) 18–30. https://doi.org/10.1111/j.1538-4632.1987.tb00111.x

[28] Lambin E F Gibbs H K Heilmayr R Carlson K M Fleck L C Garrett R D Walker N F 2018 The Role of Supply-Chain Initiatives in Reducing Deforestation. Nature Climate Change 8(2) 109–116. https://doi.org/10.1038/s41558-017-0061-1

[29] Santika T Meijaard E Buddiharta S Law E A Kusworo A Hutabarat J A Wilson K A 2017 Community Forest Management in Indonesia: Avoided Deforestation in the Context of Anthropogenic and Climate Complexities. Global Environmental Change 46 60–71. https://doi.org/10.1016/j.gloenvcha.2017.08.002

[30] Tacconi L and Muttaqin M Z 2019 Reducing Emissions from Land Use Change in Indonesia: An Overview. Forest Policy and Economics 108 101979. https://doi.org/10.1016/j.forpol.2019.101979.

[31] van Noordwijk M Daguma L A Dewi S Leimona B Catacutan D C Lusiana B Minang P A 2018 SDG Synergy Between Agriculture and Forestry in the Food, Energy, Water and Income Nexus: Reinventing Agroforestry? Current Opinion in Environmental Sustainability 34 33–42. https://doi.org/10.1016/j.cosust.2018.09.003

[32] Kim D G Kirschbaum M U F Beedy T L 2016 Carbon sequestration and net emissions of CH 4 and N 2 O under agroforestry: Synthesizing available data and suggestions for future studies. Agriculture, Ecosystems and Environment 226 65–78. https://doi.org/10.1016/j.agee.2016.04.011

[33] Lasco R D Delfino R J P Catacutan D C Sinelton E S Wilson D M 2014. Climate risk adaptation by smallholder farmers: The roles of trees and agroforestry. Current Opinion in Environmental...
Sustainability, 6(1) 83–88. https://doi.org/10.1016/j.cosust.2013.11.013

[34] Idajati H Pamungkas A Kukinul V 2016 The Level of Participation in Mangrove Ecotourism Development, Wonorejo Surabaya. Procedia-Social & Behavioral Sci. 227 515-520

[35] Edenhofer O Pichs-Madruga R Sokona Y Seyboth K Matschoss P Kadner S Zwickel T Eickemeier P Hansen G Schlömer S von Stechow C 2011 Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

[36] Wood N and Roelich K 2019 Tensions, Capabilities, and Justice in Climate Change Mitigation of Fossil Fuels. Energy research and social sci. 52 114-122. https://doi.org/10.1016/j.erss.2019.02.014.

[37] Handayani K Krozer Y Filatova T 2017 Trade-Offs Between Electrification and Climate Change Mitigation: An Analysis of the Java-Bali Power System in Indonesia. Applied Energy 208 1020-1037. https://doi.org/10.1016/j.apenergy.2017.09.048.

[38] Kusumadewi T V and Limmeechokchai B 2017 CO2 Mitigation in Residential Sector in Indonesia and Thailand: Potential of Renewable Energy and Energy Efficiency. Energy Procedia 138 955-960. https://doi.org/10.1016/j.egypro.2017.10.086.

[39] Liao C Luo Y Fang C Li B 2010 Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation. Plos One 5(5) e10867. doi:10.1371/journal.pone.0010867

[40] Aryapratama R and Pauliuk S 2019 Estimating In-Use Wood-Based Materials Carbon Stocks in Indonesia: Towards A Contribution to the National Climate Mitigation Effort. Resources, Conservation and Recycling 149 301-311. https://doi.org/10.1016/j.resconrec.2019.06.010.

[41] Lah O 2017 Factors of Change : The Influence of Policy Environment Factors on Climate Change Mitigation Strategies in the Transport Sector. Transportation Research Procedia 25 3495-3510.

[42] Kirkby C A Guidice R Day B Turner K Soares-Filho B S Oliveira-T-Ferreiro-Dominguez A 2011 Closing the Ecotourism-Conservation Loop in the Peruvian Amazon. Environmental Conservation 38 (1) 6-17. doi:10.1017/S0376892911000099.

[43] Song D and Kawahara S 2016 Ecotourism and World Natural Heritage: Its Influence on Islands in Japan. J. Marine and Island Cult. 5 36-46. http://dx.doi.org/10.1016/j.ijmic.2016.05.006.

[44] Mosquera-Losada M R Santiago-Freijanes J J Rotis-Diaz M Moreno G den Herder M Aldrey-Vazquez J A Ferreiro-Dominguez N Pantera A Pisanelli A Rigueiro-Rodriguez A 2018 Agroforestry in Europe: A land Management Policy Tool to Combat Climate Change. J. Land Use Policy 78 603-613. https://doi.org/10.1016/j.landusepol.2018.06.052.

[45] Yulandhika T and Nugrahanti I M 2014 Mitigation and Adaptation Planning of Climate Change in East Kalimantan: A Critical Review. Procedia - Social and Behavioral Sciences 135 64 –
9

69. doi: 10.1016/j.sbspro.2014.07.326.

[50] Tubiello F 2012 Climate change adaptation and mitigation: challenges and opportunities in the food sector. Retrieved from http://www.fao.org/docrep/016/i2855e/i2855e.pdf

[51] APPENAS 2013 Indonesia’s Framework for Nationally Appropriate Mitigation Actions. Retrieved from http://ranradgrk.bappenas.go.id/rangrk/index.php/home/publications

[52] Moser S C 2012 Adaptation, Mitigation, and Their Disharmonious Discontents: An Essay. Climatic Change 111(2) 165–175. https://doi.org/10.1007/s10584-012-0398-4

[53] Feliciano D Ledo A Hillier J Nayak D R 2018 Which Agroforestry Options Give the Greatest Soil and Above Ground Carbon Benefits in Different World Regions?. J. Agriculture, Ecosystems and Environment 254 117-129. https://doi.org/10.1016/j.agee.2017.11.032.

[54] Hartoyo A P P Siregar I Z Supriyanto Prasetyo L B Thaleza I 2016 Biodiversity, Carbon Stocks and Community Monitoring in Traditional Agroforestry Practices: Preliminary Results from Two Investigated Villages in Berau, East Kalimantan. Procedia Environmental Sci. 33 376-385. doi: 10.1016/j.proenv.2016.03.088

[55] Utomo B Prawoto A A Bonnet S Bangwiwat A Gheewala S H 2016 Environmental Performance of Cocoa Production from Monoculture and Agroforestry Systems in Indonesia. J. of Cleaner Production 134 583-591. http://dx.doi.org/10.1016/j.jclepro.2015.08.102.

[56] Wise R M and Cacho O J 2011 A Bioeconomic Analysis of the Potential of Indonesian Agroforests as Carbon Sinks. J. Environmental Sci. & Policy 14 451-461. doi:10.1016/j.jenvsci.2010.12.008

[57] Aalde H Amstel A van Gonzalez P Gytarsky M Krug T Kurz W A, Lasco R D Martino D L McConkey B G Ogle S M Paustian K Raison J Ravindranath N H Schoene D Smith P Somogyi ZVL 2006 Generic Methodologies Applicable to Multiple Land-Use Categories. In T. K. (eds) Eggleston S, Buendia L, Miwa K, Ngara T (Ed.), IPCC Guidelines for National Greenhouse Gas Inventories (4th ed.). Kanagawa: IGES.

[58] Beedy T L, Snapp S S Akinnifesi F K Sileshi G W 2010 Impact of Gliricidia Sepium Intercropping on Soil Organic Matter Fractions in a Maize-Based Cropping System. Agriculture, Ecosystems and Environment 138 (3–4) 139–146. https://doi.org/10.1016/j.agee.2010.04.008

[59] Kaonga M L and Coleman K 2008 Modelling Soil Organic Carbon Turnover in Improved Fallows in Eastern Zambia Using the RothC-26.3 Model. Forest Ecology and Management 256(5) :1160–1166. https://doi.org/10.1016/j.foreco.2008.06.017

[60] Lorenz K and Lal R 2014 Soil Organic Carbon Sequestration in Agroforestry Systems. A Review. Agronomy for Sustainable Development 34(2) 443–454. https://doi.org/10.1007/s13593-014-0212-y

[61] Jat M L Dagar J C Sapkota T B Yadvinde-Singh Govaerts B Ridaura S L Stirling C 2016 Climate Change and Agriculture: Adaptation Strategies and Mitigation Opportunities for Food Security in South Asia and Latin America. In Advances in Agronomy 137 https://doi.org/10.1016/bs.agron.2015.12.005

[62] Hsu P 2019 Economic Impact of Wetland Ecotourism: An Empirical Study of Taiwan’s Cigu Lagoon Area. J. Tourism Management Perspectives 29 31–40. https://doi.org/10.1016/j.tmp.2018.10.003.

[63] Lenao M and Basupi B 2016 Ecotourism Development and Female Empowerment in Botswana: A Review. J. Tourism Management Perspectives 18 51–58. http://dx.doi.org/10.1016/j.tmp.2015.12.021.