10-VERTEX GRAPHS WITH CYCLIC AUTOMORPHISM GROUP
OF ORDER 4

PETERIS DAUGULIS

Abstract. We describe computational results about undirected graphs having 10 vertices and
automorphism group isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

1. Introduction.

This paper deals with a special case of the problem of finding undirected graphs
having a given automorphism group and minimal number of vertices. All graphs in
this paper are undirected.

Studies of automorphism groups of graphs started in 1930s with the classical
results of Frucht [5] who proved in the late 1930s that for any finite group G
there is a graph $\Gamma = (V, E)$ such that $\text{Aut}(\Gamma) \cong G$. In the 1970s it was proved by Babai
[1] in a constructive way that for any finite group G there is a graph Γ
such that $\text{Aut}(\Gamma) \cong G$ and $|V(\Gamma)| \leq 2|G|$ if G is not cyclic of order 3, 4 or 5. An estimate
$|V(\Gamma)| \leq 3|G|$ and a construction in the three exceptional cases was obtained by
Sabidussi [7]. Examples of graphs with $3n$ vertices and cyclic automorphism group
$\mathbb{Z}/n\mathbb{Z}$ are easy to construct and widely known since 1960s, see [6]. We can mention
that there are 4 isomorphism types of graphs with 9 vertices which form 2 isomorphism
types up to complementarity. See Babai [2] for a comprehensive exposition of this
area.

Although it has been mentioned in the literature that 10-vertex graphs with
cyclic automorphism group of order 4 do exist, see [4], we could not find details about
such graphs in research surveys or textbooks. Therefore we present a short note
summarizing computational results related to this problem.

We use standard notations of graph theory, see Diestel [4]. For a graph $\Gamma = (V, E)$
the subgraph induced by $X \subseteq V$ is denoted by $\Gamma[X]$.

2. Main computational results.

Denote by F the set of isomorphism classes of graphs $\Gamma = (V, E)$ such that
$|V| = 10$ and $\text{Aut}(\Gamma) \cong \mathbb{Z}/4\mathbb{Z}$. By default we mean that isomorphism types of graphs

*Department of Mathematics, Daugavpils University, Daugavpils, LV-5400, Latvia (peteris.daugulis@du.lv).
considered in this paper belong to F.

Proposition 2.1. Let $\Gamma \in F$.

1. $|F| = 12$. Elements of F form 6 isomorphism classes up to complementarity.
2. $18 \leq |E(\Gamma)| \leq 27$.
3. $3 \leq \delta(\Gamma) \leq 5$, $4 \leq \Delta(\Gamma) \leq 6$ (minimal and maximal degree).
4. $\text{girth}(\Gamma) = 3$.
5. $3 \leq \omega(\Gamma) \leq 4$ (clique number).
6. $3 \leq \kappa(\Gamma) \leq 5$, $\kappa(\Gamma) = \lambda(\Gamma)$ (vertex and edge connectivity).
7. $2 \leq \text{diam}(\Gamma) \leq 3$.
8. $3 \leq \chi(\Gamma) \leq 4$ (chromatic number).
9. F contains one planar graph.
10. F contains one Eulerian graph.
11. All graphs in F are Hamiltonian.
12. None of graphs in F is vertex, edge or distance transitive.
13. There are no graphs having less than 10 vertices and automorphism group isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

Proof. All statement are proved by direct computation. \[\square\]

Cases.

We describe two elements of F.

The planar graph.

The only planar graph $\Gamma_1 \in F$ is shown in Fig.1. It can be thought as embedded in the 3D space, a plane embedding is not given. $\text{Aut}(\Gamma_1)$ is generated by the vertex permutation $g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10)$.

Subgraphs $\Gamma_1[1, 2, 3, 4, 5, 7, 9]$ and $\Gamma_1[1, 2, 3, 4, 6, 8, 10]$ which can be thought as
being drawn above and below the orbit $\Gamma_1[1, 2, 3, 4]$ are interchanged by g.

The graph with minimal number of edges.

The graph $\Gamma_2 \in F$ with minimal number of edges (18 edges) is shown in Fig. 2. $\text{Aut}(\Gamma_2)$ is generated by the vertex permutation $g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10)$.

Other graphs.

All other graphs in F can be obtained starting from Γ_1 or Γ_2 and adding or removing edges in $\Gamma_2[1, 2, 3, 4]$, the edge $(9, 10)$ and edges in $\Gamma_2[5, 6, 7, 8]$.

Fig. 1. - Γ_1 the planar graph in F.

Fig. 2. - Γ_2 - the graph in F with minimal number of edges.
Acknowledgement. Computations were performed using the computational algebra system MAGMA, see [3], and graph lists made public by Brendan McKay, available at http://cs.anu.edu.au/~bdm/data/.

REFERENCES

[1] Laszlo Babai (1974), On the minimum order of graphs with given group, Canad. Math. Bull., 17, pp. 467-470.
[2] Laszlo Babai (1995), Automorphism groups, isomorphism, reconstruction, In Graham, Ronald L.; Grötschel, Martin; Lovász, László, Handbook of Combinatorics I, North-Holland, pp. 1447-1540.
[3] Wieb Bosma, John Cannon, and Catherine Playoust (1997), The Magma algebra system. I. The user language, J. Symbolic Comput., 24, pp. 235-265.
[4] Reinhard Diestel (2010), Graph Theory. Graduate Texts in Mathematics, Vol.173, Springer-Verlag, Heidelberg.
[5] Robert Frucht (1939), Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Mathematica (in German) 6, pp. 239-250.
[6] Frank Harary and Edgar Palmer (1966), The smallest graph whose group is cyclic, Chechoslovak Math. J., 16 (91), pp. 70-71.
[7] Gert Sabidussi (1959), On the minimum order of graphs with given automorphism group, Monatshefte für Mathematik, Volume 63, Issue 2, pp. 124-127.