Simulated evaluation of new switching based median filter for suppressing SPN and RVIN

Vorapoj Patanavijit, Kornkamol Thakulsukanant
Assumption University, Thailand

ABSTRACT

In the past two decades, the SPN (salt and pepper noise) suppressing method is worldwide interested researches on computer vision and image processing hence many SPN suppressing methods have been proposed. In general, the primary goal of SPN removal method is the suppressing of SPN in digital images thereby one of the recent effective and powerful SPN suppressing methods is a new switching-based median filtering (NSMF), which is innovated for suppressing high density SPN. Consequently, this paper thoroughly examines its efficiency and constrain of a new switching-based median filtering when this filter is used for contaminated image, which is synthesized by SPN and RVIN (random-value impulsive noise). In these simulations, six well-known images (Lena, Mobile, Pepper, Pentagon, Girl, Resolution) with two impulsive noise classes (SPN and RVIN) are used for measuring the its efficiency and constrain. An evaluation of the efficiency is conducted with many previous methods in forms of subjective and objective indicators.

Keywords:
AMF (adaptive median filter)
Digital image processing
NSMF (new switching-based median filtering)
SMF (standard median filtering)

1. INTRODUCTION OF NSMF (NEW SWITCHING-BASED MEDIAN FILTERING)

Digital images [1]-[4] are generally contaminated by impulsive noise [5]-[23] due to communicating unsuccess, improper operating of CCD sensor, ADC synchronized erroneous and memory site erroneous hence noise suppressing method is one of the most vital process for sophisticated digital image process [24]-[26] for instance, face identification, license plate identification, remote sensing, etc. Even through the original Median Filter (SMF) [5]-[7] and Adaptive Median Filter (AMF) [14], [27] are known as the practical noise suppressing method [5]-[23] for SPN, one of the recent effective and powerful SPN suppressing methods is a NSMF (new switching-based median filtering) [28], which is proposed for suppressing only SPN, especially high density. From some results [28], it can conclude that NSMF has good efficiency while the NSMF has low computational complexity however there are no research of the NSMF for SPN at all density and random-value impulsive noise. Consequently, this paper thoroughly examines its efficiency and constrain of a novel modified median filtering based switching technique.

2. STATISTICAL THEORY OF NSMF

The NSMF comprises of four modified processes (Process 1- Process 4) as showing in Figure 1 instead of three processes (for previous proposed method), namely, detection, estimation, and replacement.

a) Process 1: Detecting the processed pixel as noisy pixel or noiseless pixel. If the processed pixel is 0 or 255 then the processed pixel is classified as contaminated noise otherwise the pixel is noiseless.

b) Process 2: Substituting the processed input pixel by using 1st order linear predictor.

c) Process 3: Estimating the expected original image by using a median filtering based on L-estimators.
d) **Process 4:** Replacing contaminated pixels by the estimated pixels.

![Flowchart](image-url)

Figure 1. The flowchart of overall method of new switching-based median filtering (NSMF)

Simulated evaluation of new switching based median filter for suppressing SPN... (Vorapoj Patanavijit)
2.1. Statistical Theory of Estimating Process

Let \(X = \{x_1, x_2, x_3, \ldots, x_n\} \) is the original image, which is noiseless, and \(Y = \{y_1, y_2, y_3, \ldots, y_n\} \) is the contaminated image, which is comprised of a set of noiseless pixels \(\{y_{j1}, y_{j2}, \ldots, y_{j_n}\} \) and a set of noisy pixels \(\{y_{j1}, y_{j2}, \ldots, y_{j_n}\} \). Let \(Z = \{x_1, x_2, x_3, \ldots, z_{j1}, z_{j2}, \ldots, z_{j_n}\} \), which is comprised of a set of noiseless pixels \(\{y_{j1}, y_{j2}, \ldots, y_{j_n}\} \) and a set of substituted pixels for the noisy pixels \(\{z_{j1}, z_{j2}, \ldots, z_{j_n}\} \), and \(z_{med} \) be the median of \(Z \).

Let \(x_1[n] \) is the \(i^{th} \) order statistic of the original image and \(\hat{x}[n] \) is the expected original image, which can be defined from set of original noiseless pixels \(\{x_1[n]\} \). By linear prediction, Finite Impulse Response (FIR) linear predictor of order \(p \) can be statistically defined as:

\[
\hat{x}[n+1] = \sum_{k=0}^{p-1} h[n] x[n-k]
\]

where \(h[k] \) are the prediction filter coefficients.

The \(h[k] \) is statistically defined by the Wiener-Hopf [5] equation as

\[
R_k h[k] = r_k
\]

where \(R_k \) is an autocorrelation matrix, \(h[k] \) is predictor coefficient vector, and \(r_k \) is autocorrelation vector. The autocorrelation \(R_k \) can be statistically defined as

\[
E[x[l-k]x[n-k]] = R_k \delta[n-k]
\]

where \(k = 0 \) to \((p-1) \) and \(l = 0 \) to \((p-1) \).

By Auto Regressive Moving Average (ARMA) in time domain, the causal Infinite Impulse Response (IIR) predictor is given by

\[
H[z] = z^{-1} [1 - Q[z]^{-1}]
\]

which can be statistically defined as

\[
\hat{x}[n+1] = \sum_{k=0}^{\infty} a_k \hat{x}[n-k] + \sum_{k=0}^{\infty} h_k \hat{x}[n-k]
\]

Let \(\hat{x}[n] \) is an expected original image from one or more noiseless pixels and \(\hat{x}[n] = d[k] \)

\[
E[\hat{x}[n] x[n+1]] = E[d[n] x[n+1]] = \hat{d}[k]
\]

2.2. Statistical Theory of Replacing Process

If the processed input pixel is 0 or 255 then the pixel is defined as a noisy pixel and is replace by the replacing process, which comprises of 10 processing step as following:

1) **Processing Step 1**: Setting the \(3 \times 3 \) window with center at the processed pixel \(x(i, j) \).

2) **Processing Step 2**: If \(0 < x(i, j) < 255 \) then the processed input pixel is classified as noiseless pixel and it is left unchanged and, then, the processed pixel \(x(i, j) \) moves to the next position.

3) **Processing Step 3**: If \(x(i, j) = 0 \) or \(x(i, j) = 255 \) then the processed input pixel is classified as noisy pixel and go to Processing Step 4.

4) **Processing Step 4**: Converting the \(3 \times 3 \) window (2D) to the vector \(Y_x \) (1D)

5) **Processing Step 5**: Sorting to the vector \(Y_x \) (1D) in ascending order

6) **Processing Step 6**: If \(x[n] = 255 \) then replacing \(x[n] \) from left to right by following equation
Simulated evaluation of new switching based median filter for suppressing SPN... (Vorapoj Patanavijit)

\[x[n] = \alpha \cdot x[n-1] \text{ with } \alpha = (R_{n+1}/R_{n+2}), 0 < \alpha < 1 \] (6)

\[R_{n+1} = x[n-1] \cdot x[n-2] \] (7)

\[R_{n+2} = x[n-1] \cdot x[n-1] \] (8)

If \(\alpha = 0 \) then \(x[n] = x[n-1] \)

a) Processing Step 7: If \(x[n] = 0 \) then replacing \(x[n] \) from right to left by following equation

\[x[n] = \alpha \cdot x[n+1] \text{ with } \alpha = (R_{n+1}/R_{n+2}), 0 < \alpha < 1 \] (9)

\[R_{n+1} = x[n+1] \cdot x[n+2] \] (10)

\[R_{n+2} = x[n+1] \cdot x[n+1] \] (11)

If \(\alpha \geq 1 \) then \(x[n] = x[n+1] \)

b) Processing Step 8: Estimating the vector \(Z_{n} (1D) \) by the predicted value, Sort the vector \(Z_{n} (1D) \), and Determine the median value.

c) Processing Step 9: Replace the processed pixel \(x(i, j) \) with its median value.

d) Processing Step 10: Reprocess the Processing Steps 1 to Processing Steps 3 until the entire image is processed completely.

3. ILLUSTRATION OF NSMF

In this NSMF calculation example, the processed pixel intensity is 255 therefore the processed pixel is noisy and the processed pixel is suppressed by NSMF as shown in Figure 2. From the NSMF process, the denoised pixel is suppressed and the output pixel is replaced to be “200”.

4. SIMULATION OUTCOMES

In this simulation section under both SPN and RVIN, six tested images (Lena (256x256), Mobile (704x480), Pepper (256x256), Pentagon (512x512), Girl-Tiffany (256x256) and Resolution (128x128)) are employed to analytically simulate the upper bound of NSMF efficiency. This simulation analyses the noise suppressing efficiency of the NSMF by first applying the SPN and the RVIN on tested images. Subsequently, the NSMF processes for suppressing the noisy images, which are used to compute the PSNR with the known original images. From the simulation outcomes in Table 1 for SPN (salt&pepper noise), the NSMF algorithms have the better quality outcomes than SMF (Standard Median Filter) and GMF (Gaussian Mean Filter) at all cases however the NSMF algorithms have the better quality outcomes than AMF for high noise density.

From the simulation outcomes in Table 2 for RVIN, the NSMF algorithms have the better quality outcomes than SMF (Standard Median Filter), GMF (Gaussian Mean Filter) and AMF at all cases. However, the NSMF algorithms have the worst quality outcomes than AMF for all noise density in Resolution image because this image pixel intensity are “0” or “255”.

Simulated evaluation of new switching based median filter for suppressing SPN... (Vorapoj Patanavijit)
$y(i-L,j+1) = 200$
$y(i,j+1) = 205$
$y(i+L,j+1) = 188$

$y(i-L,j) = 169$
$y(i,j) = 255$
$y(i+L,j) = 255$

$y(i-L,j-1) = 255$
$y(i,j-1) = 255$
$y(i+L,j-1) = 255$

$y(i,j) \text{ is an impulsive noisy image}$

$Y_{old} = \text{Convert } I_{old}(W_{old})$

$Y_{old} = \begin{bmatrix}
200 & 205 & 188 \\
169 & 255 & 255 \\
255 & 255 & 255
\end{bmatrix}$

$Y_{old} = [200 \ 205 \ 188 \ 169 \ 255 \ 255 \ 255 \ 255 \ 255]$

$Y_{old} = \text{Ascending-Sort } (Y_{old})$

$Y_{old} = \text{Ascending-Sort } ([200 \ 205 \ 188 \ 169 \ 255 \ 255 \ 255 \ 255 \ 255])$

$Y_{old} = [169 \ 188 \ 200 \ 205 \ 255 \ 255 \ 255 \ 255 \ 255]$

$Y_{i_{w00}} = 255$

For $i_{w00} = 1, y_{w00}(1) = y_{i0}(1) \rightarrow y_{w00}(1) = 169$

For $i_{w00} = 2, y_{w00}(2) = y_{i0}(2) \rightarrow y_{w00}(2) = 188$

For $i_{w00} = 3, y_{w00}(3) = y_{i0}(3) \rightarrow y_{w00}(3) = 200$

For $i_{w00} = 4, y_{w00}(4) = y_{i0}(4) \rightarrow y_{w00}(4) = 205$

For $i_{w00} = 5, \alpha = y_{i0}(n-2)/y_{i0}(n-1) = 200/205$

For $i_{w00} = 6, \alpha = y_{i0}(n-2)/y_{i0}(n-1) = 205/200$

For $i_{w00} = 7, \alpha = y_{i0}(n-2)/y_{i0}(n-1) = 200/205$

For $i_{w00} = 8, \alpha = y_{i0}(n-2)/y_{i0}(n-1) = 205/200$

For $i_{w00} = 9, \alpha = y_{i0}(n-2)/y_{i0}(n-1) = 200/205$

$Y_{i_{w00}} = [169 \ 188 \ 200 \ 205 \ 200 \ 205 \ 205 \ 205 \ 200]$

$Z_{i_{w00}} = \text{Ascending-Sort } (Y_{i_{w00}})$

$Z_{i_{w00}} = [169 \ 188 \ 200 \ 205 \ 200 \ 205 \ 205 \ 205 \ 200]$

$\hat{y}(i,j) = \text{Median } (Z_{i_{w00}}) = 200$

Figure 2. The example of overall calculation of new switching-based median filtering (NSMF)**

* Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 2, August 2019 : 688 - 696
Table 1. Denoising Performance Result of SPN

SPN	Tested Images	Noise Density	Observed Image	Denoising Algorithm	PSNR (dB)
	Lena (256x256)	10	15.6564	0.6146	SMF
	Mobile (704x480)	10	15.1637	1.9806	GMF
	Pepper (256x256)	10	15.3798	0.6146	AMF
	Pentagon (512x512)	10	15.7999	0.6146	NSMF
	Girl-Tiffany (256x256)	10	13.6890	1.9806	
	Resolution (128x128)	10	15.4785	0.6146	

Simulated evaluation of new switching based median filter for suppressing SPN... (Vorapoj Patanavijit)
Tested Images	Noise Density	Observed Image	Denoising Algorithm
Lena (256x256)			
10	19.7193	31.1555	23.2638
20	16.6527	29.7106	20.1102
30	14.9222	27.5271	18.2831
40	13.6990	24.9693	16.9480
50	12.6883	22.3406	15.8415
60	11.8913	19.7498	14.9352
70	11.2184	17.7591	14.1493
80	10.6422	16.0345	13.4958
90	10.1515	14.5534	12.9029
Mobile (704x480)			
10	18.4574	21.4778	21.1512
20	15.5151	20.8069	18.3393
30	13.7727	19.7265	16.5214
40	12.5299	18.5715	15.1796
50	11.3304	17.1060	14.0526
60	10.7497	15.5745	13.1263
70	10.0875	14.2337	12.3371
80	9.4794	12.9625	11.5980
Pepper (256x256)			
10	19.1143	31.4270	22.6205
20	16.0921	28.8665	19.4820
30	14.3745	26.5900	17.6137
40	13.1825	23.3362	16.2549
50	12.0209	20.7731	15.1438
60	11.3328	18.2128	14.0998
70	10.7068	16.2565	13.3352
80	10.1086	14.5768	12.5873
Pentagon (512x512)			
10	20.2113	29.5200	23.6997
20	17.2386	28.0433	20.7616
30	15.4355	26.6678	18.9263
40	14.1860	24.9238	17.6449
50	13.2544	22.9472	16.6548
60	12.4342	20.9049	15.7838
70	11.7829	19.0652	15.0817
80	11.1849	17.3449	14.4326
Girl-Tiffany (256x256)			
10	16.4414	31.6049	19.9110
20	13.4343	28.1774	16.5639
30	11.6674	23.8175	14.5342
40	10.3946	19.8213	12.9626
50	9.4483	16.7201	11.7613
60	8.6273	14.0847	10.6637
70	7.9734	12.1107	9.8004
80	7.3939	10.4710	8.9936
Resolution (128x128)			
10	17.7992	18.6254	20.1134
20	14.6190	17.9190	17.1729
30	12.7370	17.1231	15.3050
40	11.3691	16.2456	13.8148
50	10.5048	15.5229	12.8678
60	9.7510	14.3607	11.9178
70	9.9026	13.6671	11.1682
80	8.4955	12.3904	10.4038
90	8.0315	11.6735	9.8152

Table 2. Denoising Performance Result of RVIN
5. CONCLUSION

This in-depth research assesses the efficiency of the noise suppressed method based on NSMF under two impulsive noise classes (SPN and RVIN). These simulations employ on six well-known images (Lena, Mobile, Pepper, Pentagon, Girl, Resolution) under two impulsive noise classes for assessing the highest suppressed images in term of PSNR. Many previous noise suppressed methods, such as SMF (Standard Median Filter), GMF (Gaussian Mean Filter) and AMF, are used to assess the analogy efficiency. From simulation outcomes, the NSMF has a good PSNR for high noise density and this filter can work well for RVIN.

ACKNOWLEDGEMENTS

The research project was funded by Assumption University.

REFERENCES

[1] I. Pitas and A. N. Venetsanopoulos, Nonlinear Digital Filters Principles and Applications, Kluwer Academic Publishers, Norwell, Mass, USA, 1990.
[2] J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Filtering, CRC Press, Boca Raton, Fla, USA, 1997.
[3] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice-Hall,Upper Saddle River,NJ, USA, 2nd edition, 2002.
[4] M. H. Hayes, Statistical Digital Signal Processing and Modeling, JohnWiley & Sons, Singapore, 2002.
[5] W. K. Pratt, “Median filtering,” Tech. Rep., Image Proc. Inst., Univ. Southern California, Los Angeles, Sep. 1975.
[6] N. C. Gallagher Jr. and G. L. Wise, “A theoretical analysis of the properties of median filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 1136–1141, 1981.
[7] T. A. Nodes and N. C. Gallagher Jr., “Median filters: some modifications and their properties,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 5, pp. 739–746, 1982.
[8] E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images,” IEEE Transactions on Image Processing, vol. 5, no. 6, pp. 1012–1025, 1996.
[9] D. R. K. Brownrigg, “The weighted median filter,” Communications of the ACM, vol. 27, no. 8, pp. 807–818, 1984.
[10] O. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation,” IEEE Transactions on Signal Processing, vol. 39, no. 2, pp. 395–410, 1991.
[11] G. R. Arce and J. L. Paredes, “Recursive weighted median filters admitting negative weights and their optimization,” IEEE Transactions on Signal Processing, vol. 48, no. 3, pp. 768–779, 2000.
[12] Y. Dong and S. Xu, “A new directional weighted median filter for removal of random-valued impulse noise,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 193–196, 2007.
[13] T. Chen, K.-K.Ma, and L.-H. Chen, “Tri-state median filter for image denoising,” IEEE Transactions on Image Processing, vol. 8, no. 12, pp. 1834–1838, 1999.
[14] H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms and results,” IEEE Transactions on Image Processing, vol. 4, no. 4, pp. 499–502, 1995.
[15] S. Zhang and M. A. Karim, “A new impulse detector for switching median filters,” IEEE Signal Processing Letters, vol. 9, no. 11, pp. 360–363, 2002.
[16] H.-L. Eng and K.-K. Ma, “Noise adaptive soft-switching median filter,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 242–251, 2001.
[17] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of impulse noise from highly corrupted images,” IEEE Transactions on Circuits and Systems II, vol. 46, no. 1, pp. 78–80, 1999.
[18] P.-E. Ng and K.-K.Ma, “A switching median filter with boundary discriminative noise detection for extremely corrupted images,” IEEE Transactions on Image Processing, vol. 15, no. 6, pp. 1506–1516, 2006.
[19] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detailpreserving regularization,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479–1485, 2005.
[20] K. S. Srinivasan and D. Ebenezer, “A new fast and efficient decision-based algorithm for removal of high-density impulse noises,” IEEE Signal Processing Letters, vol. 14, no. 3, pp. 189–192, 2007.
[21] S. Schulte, M. NachtgeaU, V. DeWitte, D. van der Weken, and E. E. Kerre, “A fuzzy impulse noise detection and reduction method,” IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1153–1162, 2006.
[22] A. Ben Hamza and H. Krim, “Image denoising: a nonlinear robust statistical approach,” IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 3045–3054, 2001.
[23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[24] E. Pavankumar, Manojkumar Raigopal, Robust Visual Multi-Target Trackers: A Review, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 12, No. 1, October 2018, pp. 7-16.
BIOGRAPHIES OF AUTHORS

Vorapoj Patanavijit received the B.Eng., M.Eng. and Ph.D. degrees from the Department of Electrical Engineering at the Chulalongkorn University, Bangkok, Thailand, in 1994, 1997 and 2007 respectively. He has served as a full-time lecturer at Department of Electrical and Electronic Engineering, Faculty of Engineering, Assumption University since 1998 where he is currently an Associate Professor. He has authored and co-authored over 150 national/international peer-reviewed publications in Digital Signal Processing (DSP) and Digital Image Processing (DIP). He received the best paper awards from many conferences such as ISCIT2006, NCIT2008, EECON-33 (2010), EECON-34 (2011), EECON-35 (2012) and etc. Moreover, he is invited to be the guest speaker at IWAIT2014 and contributed the invited paper at iEECON 2014. He has served as a Technical Program Committees (TPC) on Signal Processing of ECTI (Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology) Association, Thailand since 2012 to 2015. As a technical reviewer of international journals since 2006, he has been assigned to review over 60 journal papers (indexed by ISI) from IEEE Transactions on Image Processing, IEEE Journal of Selected Topics in Signal Processing (J-STSP), IET in Image Processing (IEEE), IEEE Signal Processing Letters (IEEE), EURASIP Journal on Applied Signal Processing (JASP), Digital Signal Processing (Elsevier Ltd.), Journals of Neurocomputing (Elsevier Ltd.), Neural Networks (Elsevier Ltd.), International Journal for Light and Electron Optics (Optik) (Elsevier Ltd.), The Visual Computer (Springer), Journal of Electronic Imaging (SPIE), Journal of Optical Engineering (SPIE), IEICE Journal Electronics Express (ELEX) and ECTI Transactions on CIT (ECTI Thailand). As a technical reviewer of over 40 international/national conferences since 2006, he has been assigned to review over 130 proceeding papers. He has participated in more than 8 projects and research programmed funded by public and private organizations. He works in the field of signal processing and multidimensional signal processing, specializing, in particular, on Image/Video Reconstruction, SRR (Super-Resolution Reconstruction), Compressive Sensing, Enhancement, Fusion, Digital Filtering, Denoising, Inverse Problems, Motion Estimation, Optical Flow Estimation and Registration.

Kornkamol Thakulsukanant received the B.Eng (Electrical Engineering) from Assumption University, Thailand in 1994, MSc. (Telecommunications and Computer Network Engineering) from London South Bank University, United Kingdom in 1997 and Ph.D. (in Electronic and Electrical Engineering) from Bristol University, United Kingdom in 2009 respectively. She served as a full-time lecturer at Faculty of Science and Technology, Assumption University since 1998 until 2014 and she has served as full-time lecturer at School of Management and Economics, Assumption University where she has been currently an Assistant Professor (in IT) since 2014. She works in the field of Digital Signal Processing (DSP) and Digital Image Processing (DIP), specializing, in particular, on Digital Image Reconstruction/Enhancement.