Twisted Dirac Operators and the noncommutative residue for manifolds with boundary II

Sining Weia, Yong Wangb,*

aSchool of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P.R.China
bSchool of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P.R.China

Abstract

In this paper, we establish two kinds of Kastler-Kalau-Walze type theorems for Dirac operators and signature operators twisted by a vector bundle with a non-unitary connection on six-dimensional manifolds with boundary.

Keywords: Twisted Dirac operators; Twisted signature operators; Noncommutative residue; Non-unitary connection.

1. Introduction

The noncommutative residue found in \cite{1,2} plays a prominent role in noncommutative geometry. For one-dimensional manifolds, the noncommutative residue was discovered by Adler \cite{3} in connection with geometric aspects of nonlinear partial differential equations. For arbitrary closed compact n-dimensional manifolds, the noncommutative residue was introduced by Wodzicki in \cite{2} using the theory of zeta functions of elliptic pseudodifferential operators. In \cite{4}, Connes used the noncommutative residue to derive a conformal 4-dimensional Polyakov action analogy. Furthermore, Connes made a challenging observation that the noncommutative residue of the square of the inverse of the Dirac operator was proportional to the Einstein-Hilbert action in \cite{4}. In \cite{5}, Kastler gave a brute-force proof of this theorem. In \cite{5}, Kalau and Walze proved this theorem in the normal coordinates system simultaneously. And then, Ackermann proved that the Wodzicki residue of the square of the inverse of the Dirac operator $Wres(D^{-2})$ in turn is essentially the second coefficient of the heat kernel expansion of D^2 in \cite{5}.

Recently, Ponge defined lower dimensional volumes of Riemannian manifolds by the Wodzicki residue \cite{4}. Fedosov et al. defined a noncommutative residue on Boutet de Monvel’s algebra and proved that it was a unique continuous trace in \cite{10}. In \cite{11}, Schrohe gave the relation between the Dixmier trace and the noncommutative residue for manifolds with boundary. In \cite{12}, Wang generalized the Kastler-Kalau-Walze type theorem to the cases of 3, 4-dimensional spin manifolds with boundary and proved a Kastler-Kalau-Walze type theorem. In \cite{12,13,14,15}, Y.Wang and his coauthors computed the lower dimensional volumes for 5,6,7-dimensional spin manifolds with boundary and also got some Kastler-Kalau-Walze type theorems. In \cite{15}, authors computed $Wres((\pi^+ D^{-2}) \circ (\pi^+ D^{-n+2}))$ for any-dimensional manifolds with boundary, and proved a general Kastler-Kalau-Walze type theorem.

In \cite{16}, J.Wang and Y.Wang proved the known Lichnerowicz formula for Dirac operators and signature operators twisted by a vector bundle with a non-unitary connection and got two Kastler-Kalau-Walze type theorems for twisted Dirac operators and twisted signature operators on four-dimensional manifolds with boundary.

The motivation of this paper is to establish two Kastler-Kalau-Walze type theorems for twisted Dirac operators and twisted signature operators with non-unitary connections on six-dimensional manifolds with...
boundary.

This paper is organized as follows: In Section 2, we recall the definition of twisted Dirac operators and compute their symbols. In Section 3, we give a Kastler-Kalau-Walze type theorems for twisted Dirac operators on six-dimensional manifolds with boundary. In Section 4 and Section 5, we recall the definition of twisted signature operators and compute their symbols, and we give a Kastler-Kalau-Walze type theorems for twisted signature operators on six-dimensional manifolds with boundary.

2. Twisted Dirac operator and its symbol

In this section we consider a n-dimensional oriented Riemannian manifold (M,g^M) equipped with a fixed spin structure. We recall twisted Dirac operators. Let $S(TM)$ be the spinors bundle and F be an additional smooth vector bundle equipped with a non-unitary connection ∇_F. Let $\tilde{\nabla}^{F,*}$ be the dual connection on F, and define

$$\nabla_F = \frac{\tilde{\nabla}^F + \tilde{\nabla}^{F,*}}{2}, \quad \Phi = \frac{\tilde{\nabla}^F - \tilde{\nabla}^{F,*}}{2},$$

(2.1)

then ∇_F is a metric connection and Φ is an endomorphism of F with a 1-form coefficient. We consider the tensor product vector bundle $S(TM) \otimes F$, which becomes a Clifford module via the definition:

$$c(a) = c(a) \otimes \text{id}_F, \quad a \in TM,$$

(2.2)

and which we equip with the compound connection:

$$\tilde{\nabla}^{S(TM) \otimes F} = \nabla^{S(TM)} \otimes \text{id}_F + \text{id}_{S(TM)} \otimes \tilde{\nabla}^F.$$

(2.3)

Let

$$\nabla^{S(TM) \otimes F} = \nabla^{S(TM)} \otimes \text{id}_F + \text{id}_{S(TM)} \otimes \nabla^F,$$

(2.4)

then the spinor connection ∇ induced by $\nabla^{S(TM) \otimes F}$ is locally given by

$$\nabla^{S(TM) \otimes F} = \nabla^{S(TM)} \otimes \text{id}_F + \text{id}_{S(TM)} \otimes \nabla + \text{id}_{S(TM)} \otimes \Phi.$$

(2.5)

Let $\{e_i\} (1 \leq i,j \leq n) (\{\partial_i\})$ be the orthonormal frames (natural frames respectively) on TM,

$$D_F = \sum_{i,j} g^{ij} c(\partial_j) \nabla^{S(TM) \otimes F}_{\partial_j} = \sum_{j} c(e_j) \nabla^{S(TM) \otimes F}_{e_j},$$

(2.6)

where $\nabla^{S(TM) \otimes F}_{\partial_j} = \partial_j + \sigma^*_j + \sigma_j$ and $\sigma^*_j = \frac{1}{4} \sum_{k} \langle e_j, e_k \rangle c(e_j) c(e_k), \quad \sigma_j$ is the connection matrix of ∇^F, then the twisted Dirac operators $\tilde{D}_F, \tilde{D}_F^*$ associated to the connection ∇ as follows.

For $\psi \otimes \chi \in S(TM) \otimes F$, we have

$$\tilde{D}_F(\psi \otimes \chi) = D_F(\psi \otimes \chi) + c(\Phi)(\psi \otimes \chi),$$

(2.7)

$$\tilde{D}_F^*(\psi \otimes \chi) = D_F(\psi \otimes \chi) - c(\Phi^*)(\psi \otimes \chi),$$

(2.8)

where $c(\Phi) = \sum_{i=1}^n c(e_i) \otimes \Phi(e_i)$ and $c(\Phi^*) = \sum_{i=1}^n c(e_i) \otimes \Phi^*(e_i)$, $\Phi^*(e_i)$ denotes the adjoint of $\Phi(e_i)$.

Then, we have obtain

$$\tilde{D}_F = \sum_{j} c(e_j) \nabla^{S(TM) \otimes F}_{e_j} + c(\Phi),$$

(2.9)

$$\tilde{D}_F^* = \sum_{j} c(e_j) \nabla^{S(TM) \otimes F}_{e_j} - c(\Phi^*).$$

(2.10)
Let ∇^{TM} denote the Levi-Civita connection about g^M. In the local coordinates $\{x_i; 1 \leq i \leq n\}$ and the fixed orthonormal frame $\{e_1, \cdots, e_n\}$, the connection matrix $(\omega_{x,t})$ is defined by

$$\nabla^{TM}(\tilde{e}_1, \cdots, \tilde{e}_n) = (\tilde{e}_1, \cdots, \tilde{e}_n)(\omega_{x,t}).$$ (2.11)

Let $c(\tilde{e}_i)$ denote the Clifford action, $g^{ij} = g(dx_i, dx_j)\nabla^{TM}_{\partial_j} = \sum_k \Gamma^{ik}_{ij}$ and the tangent vector $\xi = \sum \xi_j dx_j$ and $\xi^j = g^{ij} \xi_i$, by Lemma 1 in [13] and Lemma 2.1 in [12], for any fixed point $x_0 \in \partial M$, we can choose the normal coordinates U of x_0 in ∂M (not in M), by the composition formula and (2.2.11) in [12], we obtain in [10].

Lemma 2.1. Let $\tilde{D}_{p}, \tilde{D}_{F}$ be the twisted Dirac operators on $\Gamma(S(TM) \otimes F)$, then

$$\sigma_{-1}(\tilde{D}_{p})^{-1} = \sigma_{-1}(\tilde{D}^{-1}) = \sqrt{-1}e(\xi),$$ (2.12)

$$\sigma_{-2}(\tilde{D}_{p})^{-1} = \frac{c(\xi)c_0(\tilde{D}^{*})c(\xi)}{\|\xi\|^4} + \frac{c(\xi)}{\|\xi\|^6} \sum_j c(dx_j)\left[\partial_{x_j}[c(\xi)]\|\xi\|^2 - c(\xi)\partial_{x_j}[\|\xi\|^2]\right];$$ (2.13)

$$\sigma_{-2}(\tilde{D}_{p}^{-1}) = \frac{c(\xi)c_0(D)c(\xi)}{\|\xi\|^4} + \frac{c(\xi)}{\|\xi\|^6} \sum_j c(dx_j)\left[\partial_{x_j}[c(\xi)]\|\xi\|^2 - c(\xi)\partial_{x_j}[\|\xi\|^2]\right],$$ (2.14)

where

$$\sigma_0(\tilde{D}^{*}) = -\frac{1}{4} \sum_{s,t} \omega_{s,t}(e_i)c(e_t)c(e_s)c(e_t) + \sum_{j=1}^{n} c(e_j)(\sigma_j^{\tilde{p}} - \Phi^{e}(e_j));$$ (2.15)

$$\sigma_0(D) = -\frac{1}{4} \sum_{s,t} \omega_{s,t}(e_i)c(e_t)c(e_s)c(e_t) + \sum_{j=1}^{n} c(e_j)(\sigma_j^{\tilde{p}} + \Phi^{e}(e_j)).$$ (2.16)

Let $\alpha = \sum_{j=1}^{n} c(e_j)(\sigma_j^{\tilde{p}} - \Phi^{e}(e_j)).$ $\beta = \sum_{j=1}^{n} c(e_j)(\sigma_j^{\tilde{p}} + \Phi^{e}(e_j)).$ $\sigma_0(D) = -\frac{1}{4} \sum_{s,t} \omega_{s,t}(e_i)c(e_t)c(e_s)c(e_t), \partial^j = g^{ij}\partial_i, \sigma^j = g^{ij}\sigma_j,$ we note that

$$\sigma_{-2}(\tilde{D}_{p}^{-1}) = \frac{c(\xi)c_0(D)c(\xi)}{\|\xi\|^4} + \frac{c(\xi)}{\|\xi\|^6} \sum_j c(dx_j)\left[\partial_{x_j}[c(\xi)]\|\xi\|^2 - c(\xi)\partial_{x_j}[\|\xi\|^2]\right],$$

$$\sigma_{-2}(\tilde{D}_{p}^{-1}) = \frac{c(\xi)c_0(D)c(\xi)}{\|\xi\|^4} + \frac{c(\xi)}{\|\xi\|^6} \sum_j c(dx_j)\left[\partial_{x_j}[c(\xi)]\|\xi\|^2 - c(\xi)\partial_{x_j}[\|\xi\|^2]\right] + \frac{c(\xi)\beta(e)(\xi)}{\|\xi\|^4},$$ (2.17)

where

$$\sigma_{-2}(\tilde{D}_{p}^{-1}) = \frac{c(\xi)c_0(D)c(\xi)}{\|\xi\|^4} + \frac{c(\xi)}{\|\xi\|^6} \sum_j c(dx_j)\left[\partial_{x_j}[c(\xi)]\|\xi\|^2 - c(\xi)\partial_{x_j}[\|\xi\|^2]\right].$$ (2.18)
By (2.6), (2.9) and (2.10), we have

\[
\bar{D}_F \bar{D}_F^* = D_F^2 - D_F c(\Phi^*) + c(\Phi) D_F - c(\Phi) c(\Phi^*)
\]

\[
= -g^{ij} \partial_i \partial_j - 2 \sigma_{S(TM) \otimes F} \partial_j + \Gamma^k \partial_k + \sum_j \left[c(\Phi) c(e_j) - c(e_j) c(\Phi^*) \right] e_j + \sum_j c(e_j) (\partial_j S^{(TM) \otimes F}) c(\Phi^*)
\]

\[
- g^{ij} \left[(\partial_i \sigma_{S(TM) \otimes F})^* + \sigma_{S(TM) \otimes F} (\partial_j \sigma_{S(TM) \otimes F}) - \Gamma_k^{ij} \sigma_k^{S(TM) \otimes F} \right] + \frac{1}{4} s + \frac{1}{2} \sum_{i \neq j} R^F(e_i, e_j) c(e_i) c(e_j)
\]

\[
+ \sum_j \left[c(\Phi) c(e_j) \right] \sigma_j^{S(TM) \otimes F} - \sum_j c(\Phi) c_j (\Phi^*) - c(\Phi) c(\Phi^*) + \frac{1}{2}
\]

Combining (2.10) and (2.20), we have

\[
\bar{D}_F^* \bar{D}_F^* = \sum_{i=1}^n \left(c(e_i, dxi)(-g^{ij} \partial_i \partial_j) + \sum_{i=1}^n \left(c(e_i, dxi) \right) \left\{ (\partial_i g^{ij}) \partial_j \partial_j - g^{ij} (4 \sigma_{S(TM) \otimes F} \partial_j - 2 \Gamma_k^{ij} \partial_k) \partial_l \right\} \right)
\]

\[
+ \sum_{i=1}^n \left(c(e_i, dxi) \right) \left\{ -2 (\partial_i g^{ij}) \sigma_k^{S(TM) \otimes F} \partial_j + g^{ij} (\partial_j \Gamma_k) \partial_k - 2 g^{ij} (\partial_i \sigma_{S(TM) \otimes F} \partial_j + (\partial g^{ij}) \Gamma_k^{ij} \partial_k \partial_k \right\}
\]

\[
+ \sum_{i=1}^n \left(c(e_i, dxi) \right) \left\{ g^{ij} \left[(\partial_i \sigma_k^{S(TM) \otimes F}) + \sigma_k^{S(TM) \otimes F} (\partial_j \sigma_{S(TM) \otimes F}) - \Gamma_k^{ij} \sigma_k^{S(TM) \otimes F} \right] + \frac{1}{2} \right\}
\]

\[
+ \sum_{i=1}^n \left(c(e_i, dxi) \right) \left\{ -g^{ij} \left[\sigma_k^{S(TM) \otimes F} - \Gamma_k^{ij} \sigma_k^{S(TM) \otimes F} \right] + \frac{1}{2} \right\}
\]

\[
+ \left(\sum_{i \neq j} R^F(e_i, e_j) c(e_i) c(e_j) \right) + \left(\sigma_0 (D + \alpha) (-g^{ij} \partial_i \partial_j) + \sum_{i=1}^n \left(c(e_i, dxi) \right) \left\{ 2 \sum_{i=1}^n \left(c(\Phi) c(e_i) - c(e_i) \right) \right\} \right)
\]

\[
+ \left(\sum_{i \neq j} R^F(e_i, e_j) c(e_i) c(e_j) \right) + \left(\sigma_0 (D + \alpha) \left\{ -2 \sigma_k^{S(TM) \otimes F} \partial_j + \Gamma_k \partial_k + \sum_{i=1}^n \left(c(\Phi) c(e_i) - c(e_i) c(\Phi^*) \right) \right\} \right)
\]

\[
+ \left(\sum_{i \neq j} R^F(e_i, e_j) c(e_i) c(e_j) \right) + \left(\sum_{i \neq j} R^F(e_i, e_j) c(e_i) c(e_j) \right)
\]

By the above composition formulas, then we obtain:

Lemma 2.2. Let \(\bar{D}_F, \bar{D}_F^* \) be the twisted Dirac operators on \(\Gamma(S(TM) \otimes F) \),

\[
\sigma_3(\bar{D}_F \bar{D}_F \bar{D}_F^*) = \sqrt{-1} e(\xi) |\xi|^2;
\]

\[
\sigma_2(\bar{D}_F \bar{D}_F^*) = c(dx_n) h'(0) |\xi|^2 + c(\xi) (4 \sigma^k - 2 \Gamma^k) \xi_k + \sigma_0 (D) |\xi|^2 + \alpha |\xi|^2 - 2 \left[c(\xi) c(\Phi) c(\xi) + |\xi|^2 c(\Phi^*) \right].
\]

Write

\[
\sigma_2(D^3) = c(dx_n) h'(0) |\xi|^2 + c(\xi) (4 \sigma^k - 2 \Gamma^k) \xi_k + \sigma_0 (D) |\xi|^2 = c(\xi) (4 \sigma^k - 2 \Gamma^k) \xi_k - \frac{1}{4} |\xi|^2 h'(0) c(dx_n).
\]

\[
D_x^* = (-\sqrt{-1})^n \partial_x^*; \quad \sigma(\bar{D}_F \bar{D}_F \bar{D}_F^*) = p_3 + p_2 + p_1 + p_0; \quad \sigma((\bar{D}_F \bar{D}_F \bar{D}_F^*)^{-1}) = \sum_{j=3}^\infty q_j.
\]
By the composition formula of pseudodifferential operators, we have

\[
1 = \sigma((\tilde{\Delta}_F^p \tilde{\Delta}_F^q \tilde{\Delta}_F^r)^{-1})
= (p_3 + p_2 + p_1 + p_0)(q_3 + q_4 + q_5 + \cdots) + \sum_j (\partial_{\xi_j} p_3 + \partial_{\xi_j} p_2 + \partial_{\xi_j} p_1 + \partial_{\xi_j} p_0)(D_{x_j} q_3 + D_{x_j} q_4 + D_{x_j} q_5 + \cdots)
= p_3 q_3 + (p_3 q_4 + p_2 q_3 + \sum_j \partial_{\xi_j} p_3 D_{x_j} q_3) + \cdots. \tag{2.25}
\]

Then

\[
q_3 = p_3^{-1}; \quad q_4 = -p_3^{-1} [p_2 p_3^{-1} + \sum_j \partial_{\xi_j} p_3 D_{x_j} (p_3^{-1})]. \tag{2.26}
\]

By Lemma 2.1 in [12] and (2.21)-(2.27), we obtain

Lemma 2.3. Let \(\tilde{\Delta}_F^p, \tilde{\Delta}_F^q, \tilde{\Delta}_F^r\) be the twisted Dirac operators on \(\Gamma(S(TM) \otimes F)\), then

\[
\sigma_{-\lambda}((\tilde{\Delta}_F^p \tilde{\Delta}_F^q \tilde{\Delta}_F^r)^{-1}) = \frac{\sqrt{\pi}c(\xi)}{|\xi|^{12}},
\]

\[
\sigma_{-\lambda}((\tilde{\Delta}_F^p \tilde{\Delta}_F^q \tilde{\Delta}_F^r)^{-1}) = \sigma_{-\lambda}(D^{-\lambda}) = -\frac{c(\xi)\sigma_2(D^{\lambda})c(\xi)}{|\xi|^6} + \frac{c(\xi)\sigma_1(D^{\lambda})c(\xi)}{|\xi|^6} + \frac{c(\xi)\sigma_0(D^{\lambda})c(\xi)}{|\xi|^6},
\]

where

\[
\sigma_{-\lambda}(D^{-\lambda}) = \frac{c(\xi)\sigma_2(D^{\lambda})c(\xi)}{|\xi|^6} + \frac{c(\xi)\sigma_1(D^{\lambda})c(\xi)}{|\xi|^6} + \sum_j \left[c(dx_j) |\xi|^2 + 2\xi_j c(\xi) \right] \left[\partial_{x_j} [c(\xi)] |\xi|^2 - 2c(\xi) \partial_{x_j} |\xi|^2 \right]. \tag{2.29}
\]

3. A Kastler-Kalau-Walze type theorem for six-dimensional manifolds with boundary associated with twisted Dirac Operators

In this section, we shall prove a Kastler-Kalau-Walze type formula for six-dimensional compact manifolds with boundary. Some basic facts and formulae about Boutet de Monvel’s calculus are recalled as follows.

Let

\[
F : L^2(\mathbb{R}_+) \to L^2(\mathbb{R}_+); \quad F(u)(v) = \int e^{-ixt} u(t) dt
\]
denote the Fourier transformation and \(\varphi(\mathbb{R}^+)(= r^+ \varphi(\mathbb{R})) \) (similarly define \(\varphi(\mathbb{R}^-)\)), where \(\varphi(\mathbb{R})\) denotes the Schwartz space and

\[
r^+ : C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R}^+); \quad f \to f(\mathbb{R}^+); \quad \mathbb{R}^+ = \{x \geq 0; \ x \in \mathbb{R}\}. \tag{3.1}
\]

We define \(H^+ = F(\varphi(\mathbb{R}^+)); \ H^- = F(\varphi(\mathbb{R}^-))\) which are orthogonal to each other. We have the following property: \(h \in H^+ (H^-) \) iff \(h \in C^\infty(\mathbb{R})\) which has an analytic extension to the lower (upper) complex half-plane \(\{\text{Im} \xi < 0\} (\{\text{Im} \xi > 0\})\) such that for all nonnegative integer \(l\),

\[
\frac{d^l}{d\xi^l}(\xi) \sim \sum_{k=1}^\infty \frac{d^l}{d\xi^l}(\xi), \tag{3.2}
\]
as \(|\xi| \to +\infty, \\text{Im} \xi \leq 0 (\text{Im} \xi \geq 0)\).

Let \(H^+\) be the space of all polynomials and \(H^- = H_0^- \bigoplus H^+; \ H = H^+ \bigoplus H^-\). Denote by \(\pi^+ (\pi^-) \) respectively the projection on \(H^+ (H^-)\). For calculations, we take \(H = \tilde{\mathbb{H}} = \{\text{rational functions having no poles on the real axis}\} \ (\tilde{\mathbb{H}} \text{ is a dense set in the topology of } \mathbb{H})\). Then on \(\tilde{\mathbb{H}}\),

\[
\pi^+ h(\xi_0) = \frac{1}{2\pi i} \lim_{u \to 0^+} \int_{\xi_0 + iu}^{t_0^+} \frac{h(\xi)}{\xi - \xi \xi_0 + iu} d\xi, \tag{3.3}
\]
where Γ^+ is a Jordan close curve included $\text{Im} \xi > 0$ surrounding all the singularities of h in the upper half-plane and $\xi_0 \in \mathbb{R}$. Similarly, define π^+ on \hat{H},

$$\pi^+ h = \frac{1}{2\pi} \int_{\Gamma^+} h(\xi) d\xi.$$ \hspace{1cm} (3.4)

So, $\pi^+(H^-) = 0$. For $h \in H \cap L^1(R)$, $\pi^+ h = \frac{1}{2\pi} \int_{\Gamma^+} h(\nu) d\nu$ and for $h \in H^+ \cap L^1(R)$, $\pi^+ h = 0$. Denote by \mathcal{B} Boutet de Monvel’s algebra (for details, see Section 2 of [14]).

An operator of order $m \in \mathbb{Z}$ and type d is a matrix

$$A = \left(\begin{array}{cc} \pi^+ P + G & K \\ T \\ S \end{array} \right): C^\infty(X, E_1) \oplus C^\infty(\partial X, F_1) \rightarrow C^\infty(X, E_2),$$

where X is a manifold with boundary ∂X and E_1, E_2 are vector bundles over X (∂X). Here, $P: C^\infty_0(\Omega, E_1^\dagger) \rightarrow C^\infty(\Omega, E_2^\dagger)$ is a classical pseudodifferential operator of order m on Ω, where Ω is an open neighborhood of X and $E_i|X = E_i$ ($i = 1, 2$). P has an extension: $E'(\Omega, E_1^\dagger) \rightarrow \mathcal{D}'(\Omega, E_2^\dagger)$, where $E'(\Omega, E_1^\dagger) (\mathcal{D}'(\Omega, E_2^\dagger))$ is the dual space of $C^\infty(\Omega, E_1^\dagger)$ ($C^\infty_0(\Omega, E_2^\dagger)$). Let $e^+ : C^\infty(X, E_1) \rightarrow E'(\Omega, E_1^\dagger)$ denote extension by zero from X to Ω and $r^+ : D'(\Omega, E_2^\dagger) \rightarrow \mathcal{D}'(\Omega, E_2)$ denote the restriction from Ω to X, then define

$$\pi^+ P = r^+ P e^+ : C^\infty(X, E_1) \rightarrow \mathcal{D}'(\Omega, E_2).$$

In addition, P is supposed to have the transmission property; this means that, for all j, k, α, the homogeneous component p_j of order j in the asymptotic expansion of the symbol p of P in local coordinates near the boundary satisfies:

$$\partial^k_x \partial^\alpha_p p_j(x', 0, 0, +1) = (-1)^j \partial^k_x \partial^\alpha_p p_j(x', 0, 0, -1),$$

then $\pi^+ P : C^\infty(X, E_1) \rightarrow C^\infty(X, E_2)$ by Section 2.1 of [14].

In the following, write $\pi^+ D^{-1} = \left(\begin{array}{cc} \pi^+ D^{-1} & 0 \\ 0 & 0 \end{array} \right)$, we will compute

$$\text{Wres}[\pi^+(D_p^{-1}) \circ \pi^+((\tilde{D}_p \tilde{D}_p \tilde{D}_p)^{-1})].$$

Let M be a compact manifold with boundary ∂M. We assume that the metric g^M on M has the following form near the boundary

$$g^M = \frac{1}{h(x_n)} g^{\partial M} + dx_n^2,$$ \hspace{1cm} (3.5)

where $g^{\partial M}$ is the metric on ∂M. Let $U \subset M$ be a collar neighborhood of ∂M which is diffeomorphic $\partial M \times [0, 1]$. By the definition of $h(x_n) \in C^\infty([0, 1])$ and $h(x_n) > 0$, there exists $\tilde{h} \in C^\infty((-\varepsilon, 1))$ such that $\tilde{h}_{|0, 1)} = h$ and $\tilde{h} > 0$ for some sufficiently small $\varepsilon > 0$. Then there exists a metric \tilde{g} on $\tilde{M} = M \cup_{\partial M} \partial M \times (-\varepsilon, 0]$ which has the form on $U \cup_{\partial M} \partial M \times (-\varepsilon, 0]$

$$\tilde{g} = \frac{1}{h(x_n)} g^{\partial M} + dx_n^2,$$ \hspace{1cm} (3.6)

such that $\tilde{g}|_{\partial M} = g$. We fix a metric \tilde{g} on the \tilde{M} such that $\tilde{g}|_{M} = g$. Note \tilde{D}_F is the twisted Dirac operator on the spinor bundle $S(TM) \otimes F$ corresponding to the connection $\tilde{\nabla}$.

Now we recall the main theorem in [10].

Theorem 3.1. (Fedosov-Golse-Leichtnam-Schröhe) Let X and ∂X be connected, dim$X = n \geq 3$, $A = \left(\begin{array}{cc} \pi^+ P + G & K \\ T \\ S \end{array} \right) \in \mathcal{B}$, and denote by p, b and s the local symbols of P, G and S respectively. Define:

$$\text{Wres}(A) = \int_X \int_S \text{tr}_E [p_{n-1}(x, \xi)] \sigma(\xi) dx$$

$$+ 2\pi \int_{\partial X} \int_S \{ \text{tr}_E [\text{tr} b_{n-1}(x', \xi')] + \text{tr}_F [s_{1-n}(x', \xi')] \} \sigma(\xi') dx',$$ \hspace{1cm} (3.7)
Then

\[\text{a) } \text{Wres}(\pi_4(D_F^{-1}) \circ \pi_4((D_F^{*}D_F D_F^{*})^{-1})) = \int_{M} \int_{|\xi|=1} \text{trace}_{S(T(M)) \otimes F}[\sigma_{-n}((D_F^{*}D_F D_F^{*})^{-2})] \sigma(\xi) dx \]

\[+ \int_{\partial M} \Phi. \]

(3.8)

where

\[\Phi = \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{j,k=0}^{\infty} (-i)^{|\alpha|+j+k+\ell} \text{trace}_{S(T(M)) \otimes F}[\partial_{\xi}^j \partial_{\xi}^k \sigma_r((D_F^{*}D_F D_F^{*})^{-1})(x',0,\xi',\xi_n) \times \partial_{\xi_n}^\alpha \partial_{\xi_n}^{j+1} \partial_{\xi_n}^{k} \sigma_{\ell}((D_F^{*}D_F D_F^{*})^{-1})(x',0,\xi',\xi_n)] d\xi_n \sigma(\xi') dx'. \]

(3.9)

and the sum is taken over \(r - k + |\alpha| + \ell - j - 1 = -n, r \leq -1, \ell \leq -3. \)

Locally, we can use Theorem 2.4 in [19] to compute the interior term of (3.8), then

\[\int_{M} \int_{|\xi|=1} \text{trace}_{S(T(M)) \otimes F}[\sigma_{-n}((D_F^{*}D_F D_F^{*})^{-2})] \sigma(\xi) dx \]

\[= 8 \pi^3 \int_{M} \text{Tr} \left[\left(-\frac{S}{12} + c(\Phi^*)c(\Phi) - \frac{1}{4} \sum_{i} [c(\Phi^*)c(e_i) - c(e_i)c(\Phi)] \right)^2 + \frac{1}{2} \sum_{j} c(e_j) \nabla_{e_j} c(\Phi) \right] \text{dvol}(M). \]

(3.10)

So we only need to compute \(\int_{\partial M} \Phi. \)

From the formula (3.9) for the definition of \(\Phi, \) now we can compute \(\Phi. \) Since the sum is taken over \(r + \ell - k - j - |\alpha| - 1 = -6, r \leq -1, \ell \leq -3, \) then we have the \(\int_{\partial M} \Phi \) is the sum of the following five cases:

case (a) (I) \(r = -1, l = -3, j = k = 0, |\alpha| = 1. \)

By (3.9), we get

\[\text{case (a) (I)} = \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \sum_{|\alpha| = 1} \text{trace}_{S(T(M)) \otimes F}[\partial_{\xi}^j \partial_{\xi}^k \sigma_{\ell}((D_F^{*}D_F D_F^{*})^{-1})] (x_0) d\xi_n \sigma(\xi') dx'. \]

(3.11)

By Lemma 2.2 in [12], for \(i < n, \) we have

\[\partial_{\xi} \sigma_{-3}((D_F^{*}D_F D_F^{*})^{-1})(x_0) = \partial_{\xi} \left[\frac{ic(\xi)}{|\xi|^4} \right] (x_0) = i \partial_{\xi} [c(\xi)] |\xi|^{-4} (x_0) - 2ic(\xi) \partial_{\xi} [|\xi|^2] |\xi|^{-6} (x_0) = 0. \]

(3.12)

so case (a) (I) vanishes.

case (a) (II) \(r = -1, l = -3, |\alpha| = k = 0, j = 1. \)

By (3.9), we have

\[\text{case (a) (II)} = -\frac{1}{2} \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace}_{S(T(M)) \otimes F}[\partial_{\xi}^j \partial_{\xi}^k \sigma_{\ell}((D_F^{*}D_F D_F^{*})^{-1})] (x_0) d\xi_n \sigma(\xi') dx'. \]

(3.13)

By (2.23) in [12], we have

\[\pi^+_\xi \partial_{\xi_n} \sigma_{-1}(D_F^{-1})(x_0)|_{|\xi'|=1} = \frac{\partial_{\xi_n} [c(\xi')(x_0)]}{2(\xi_n - i)} + ih'(0) \left[\frac{ic(\xi')}{4(\xi_n - i)} + \frac{c(\xi') + ic(dx_n)}{4(\xi_n - i)^2} \right]. \]

(3.14)
By (2.28) and direct calculations, we have
\[
\partial_{\xi_n}^2 \sigma_{-3}((\hat{D}_F^2 \hat{D}_F \hat{D}_F^{-1})^{-1}) = i \left[\frac{(20 \xi_n^2 - 4)c(\xi') + 12(\xi_n^3 - \xi_n)c(dx_n)}{(1 + \xi_n^4)^4} \right].
\] (3.15)

Since \(n = 6 \), trace_{S(TM)}[\pi_{-1}] = -8\text{dim}F. By the relation of the Clifford action and \(\text{trace}AB = \text{trace}BA \), then
\[
\text{trace}[c(\xi')(\xi dx_n)] = 0; \text{trace}[(\xi dx_n)^2] = -8\text{dim}F; \text{trace}[c(\xi')^2](x_0)|_{\xi'|=1} = -8\text{dim}F;
\]
\[
\text{trace}[\partial_{x_n} c(\xi')(\xi dx_n)] = 0; \text{trace}[\partial_{x_n} c(\xi')^2](x_0)|_{\xi'|=1} = -4h'(0)\text{dim}F.
\] (3.16)

By (3.14), (3.15) and (3.16), we get
\[
\text{trace}\left[\partial_{x_n} \pi_{-1}^c(\hat{D}_F^{-1}) \times \partial_{\xi_n}^2 \sigma_{-3}((\hat{D}_F^2 \hat{D}_F \hat{D}_F^{-1})^{-1}) \right](x_0) = h'(0)\text{dim}F \frac{-8 - 24 \xi_n i + 40 \xi_n^2 + 24i \xi_n^3}{(\xi_n - i)^6(\xi_n + i)^4}.
\] (3.17)

Then we obtain
\[
\text{case (a) (II)} = \frac{-1}{2} \int_{\xi'|=1}^{+\infty} h'(0)\text{dim}F \frac{-8 - 24 \xi_n i + 40 \xi_n^2 + 24i \xi_n^3}{(\xi_n - i)^6(\xi_n + i)^4} d\xi_n \sigma(\xi') dx'
\]
\[
= h'(0)\text{dim}F \Omega_4 \int_{\hat{TM}^+} \frac{4 + 12 \xi_n i - 20 \xi_n^2 - 12i \xi_n^3}{(\xi_n - i)^6(\xi_n + i)^4} d\xi_n dx'
\]
\[
= h'(0)\text{dim}F \Omega_4 \frac{\pi i}{5!} \left[\frac{8 + 24 \xi_n i - 40 \xi_n^2 - 24i \xi_n^3}{(\xi_n + i)^4} \right] |_{\xi_n=0} dx'
\]
\[
= \frac{-15}{16} \frac{\pi h'(0)\text{dim}F dx'}.
\] (3.18)

where \(\Omega_4 \) is the canonical volume of \(S_4 \).

\text{case (a) (III)} \(r = -1, l = -3, |\alpha| = j = 0, k = 1. \) By (3.9), we have
\[
\text{case (a) (III)} = \frac{-1}{2} \int_{\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace}\left[\partial_{x_n} \pi_{-1}^c(\hat{D}_F^{-1}) \times \partial_{\xi_n} \partial_{x_n} \sigma_{-3}((\hat{D}_F^2 \hat{D}_F \hat{D}_F^{-1})^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'.
\] (3.19)

By (2.2.29) in [12], we have
\[
\partial_{\xi_n} \pi_{-1}^c(\hat{D}_F^{-1})(x_0)|_{\xi'|=1} = -\frac{c(\xi') + ic(dx_n)}{2(\xi_n - i)^2}. \] (3.20)

By (2.28) and direct calculations, we have
\[
\partial_{\xi_n} \partial_{x_n} \sigma_{-3}((\hat{D}_F^2 \hat{D}_F \hat{D}_F^{-1})^{-1}) = -\frac{4i \xi_n \partial_{x_n} c(\xi')(x_0)}{(1 + \xi_n^4)^3} + i \frac{12h'(0)\xi_n c(\xi')}{(1 + \xi_n^4)^4} - i \frac{(2 - 10 \xi_n^2) h'(0) c(dx_n)}{(1 + \xi_n^4)^4}.
\] (3.21)

Combining (3.16), (3.20) and (3.21), we have
\[
\text{trace}\left[\partial_{\xi_n} \pi_{-1}^c(\hat{D}_F^{-1}) \times \partial_{\xi_n} \partial_{x_n} \sigma_{-3}((\hat{D}_F^2 \hat{D}_F \hat{D}_F^{-1})^{-1}) \right](x_0)|_{\xi'|=1} = h'(0)\text{dim}F \frac{8i - 32 \xi_n - 8i \xi_n^2}{(\xi_n - i)^6(\xi + i)^4}.
\] (3.22)
Then
\[
\text{case (a) III) } = -\frac{1}{2} \int_{|\xi'|=1}^{+\infty} h'(0) \text{dimK} \frac{8i - 32\xi_n - 8i\xi_n^2}{(\xi_n - i)^{\delta}} d\xi_n \sigma(\xi') dx' \\
= -\frac{1}{2} h'(0) \text{dimF} \frac{8i - 32\xi_n - 8i\xi_n^2}{(\xi_n - i)^{\delta}} d\xi_n dx' \\
= -h'(0) \text{dimF} \frac{8i - 32\xi_n - 8i\xi_n^2}{(\xi_n - i)^{\delta}} |_{\xi_n = -1} dx' \\
= -\frac{25}{16} \pi h'(0) \text{dimF} dx',
\]
where \(\Omega_4 \) is the canonical volume of \(S_4 \).

\textbf{case (b)} \(r = -1, l = -4, |\alpha| = j = k = 0. \)

By (3.9), we have
\[
\text{case (b) } = -i \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-4}((\tilde{D}_F^{\alpha} \tilde{D}_F^{-1})) \right] (x_0) d\xi_n \sigma(\xi') dx' \\
= -i \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\sigma_{-4}(D^{-3}) + \frac{c(\xi) c(\Phi)}{|\xi|^6} \right) - \frac{2c(\xi) c(\Phi)}{|\xi|^4} \right] (x_0) d\xi_n \sigma(\xi') dx' \\
:= D_1 + D_2 + D_3 + D_4, \tag{3.24}
\]
where
\[
D_1 = -i \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-4}(D^{-3}) \right] (x_0) d\xi_n \sigma(\xi') dx'; \tag{3.25}
\]
\[
D_2 = -i \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi) c(\Phi)}{|\xi|^6} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'; \tag{3.26}
\]
\[
D_3 = 2i \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi) c(\Phi)}{|\xi|^6} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'; \tag{3.27}
\]
\[
D_4 = 2i \int_{|\xi'|=1}^{+\infty} \text{trace} \left[\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\Phi)}{|\xi|^4} \right) \right] (x_0) d\xi_n \sigma(\xi') dx'. \tag{3.28}
\]

By (2.2.44) in [12], we have
\[
\pi^+_{\xi_n} \sigma_{a-1}(\tilde{D}_F^{-1}) = \frac{c(\xi') + ic(dx_n)}{2(\xi_n - i)}. \tag{3.29}
\]
In the normal coordinate, \(g^j(x_0) = \delta^j_j \) and \(\partial_{x_j} (g^{\alpha\beta}) (x_0) = 0 \), if \(j < n \); \(\partial_{x_j} (g^{\alpha\beta}) (x_0) = h'(0) \delta^j_j \), if \(j = n \). So by Lemma A.2 in [12], we have \(\Gamma^\alpha (x_0) = \frac{1}{2} h'(0) \Gamma^k (x_0) = 0 \) for \(k < n \). By the definition of \(\delta^k \) and Lemma 2.3 in [12], we have \(\delta^m (x_0) = 0 \) and \(\delta^k = \frac{1}{2} h'(0) c^k \left(\tilde{e}_k \right) c(\tilde{e}_n) \) for \(k < n \). We obtain
\[\sigma_{-4}(D^{-3})(x_0) = \frac{1}{|\xi|^8} c(\xi) \left(h'(0)c(\xi) \sum_{k \neq n} \xi_k c(\xi_k) c(\xi_n) - 5h'(0)\xi_n c(\xi) - \frac{5}{4} h'(0)|\xi|^2 c(dx_n) \right) c(\xi) \\
+ \frac{c(\xi)}{|\xi|^10} \left(|\xi|^4 c(dx_n) \partial_{x_n} [c(\xi)](x_0) - 2h'(0)|\xi|^2 c(dx_n) c(\xi) + 2\xi_n |\xi|^2 c(\xi) \partial_{x_n} [c(\xi)](x_0) \right) \\
+ 4\xi_n h'(0)c(\xi) c(\xi) \left(\frac{c(\xi) c(dx_n) c(\xi)}{|\xi|^6} \right) + h'(0) \left(\frac{c(\xi) c(dx_n) c(\xi)}{|\xi|^2} \right) \\
= \frac{-17 - 9\xi_n^2}{4(1 + \xi_n^2)^4} h'(0)c(\xi) c(dx_n) c(\xi') + \frac{33\xi_n + 17\xi_n^3}{2(1 + \xi_n^2)^4} h'(0)c(\xi) + \frac{49\xi_n^2 + 25\xi_n^4}{2(1 + \xi_n^2)^4} h'(0)c(dx_n) \\
+ \frac{1}{(1 + \xi_n^2)^3} c(\xi') c(dx_n) \partial_{x_n} [c(\xi)](x_0) - \frac{3\xi_n}{(1 + \xi_n^2)^4} \partial_{x_n} [c(\xi')] c(\xi)(x_0) \\
+ \frac{3}{(1 + \xi_n^2)^3} h'(0)c(\xi) c(\xi'). \] (3.30)

Then

\[\partial_{\xi_n} \sigma_{-4}(D^{-3})(x_0) = \frac{59\xi_n + 27\xi_n^3}{2(1 + \xi_n^2)^4} h'(0)c(\xi) c(dx_n) c(\xi') + \frac{33 - 180\xi_n^2 - 85\xi_n^4}{2(1 + \xi_n^2)^4} h'(0)c(\xi) \\
+ \frac{49\xi_n - 97\xi_n^3 - 50\xi_n^5}{2(1 + \xi_n^2)^4} h'(0)c(dx_n) - \frac{6\xi_n}{(1 + \xi_n^2)^4} c(\xi) c(dx_n) \partial_{x_n} [c(\xi')](x_0) \\
- \frac{3 - 15\xi_n^2}{(1 + \xi_n^2)^4} \partial_{x_n} [c(\xi')](x_0) + \frac{4\xi_n^3 - 8\xi_n^5}{(1 + \xi_n^2)^4} h'(0)c(dx_n) + \frac{2 - 10\xi_n^2}{(1 + \xi_n^2)^4} h'(0)c(\xi'). \] (3.31)

By (3.16),(3.29) and (3.31), we obtain

\[\text{trace} \left[\pi_\xi^+ \sigma_{-4}(D^{-3}) \right] (x_0) |_{\xi = 1} = h'(0)dimF \frac{4i(-17 - 42i\xi_n + 50\xi_n^2 - 16i\xi_n^2 + 29\xi_n^4)}{(\xi_n - i)^5(\xi_n + i)^3}. \] (3.32)

By (3.25) and (3.32), we have

\[D_1 = 4h'(0)dimF \frac{2\pi i}{4!} \left[-17 - 42i\xi_n + 50\xi_n^2 - 16i\xi_n^2 + 29\xi_n^4 \right] \mid_{\xi = 1} = \frac{-129}{16} \pi h'(0)dimF \Omega_4 dx'. \] (3.33)

Since

\[\partial_{\xi_n} \left(\frac{c(\xi) c(\xi)}{|\xi|^6} \right) = c(dx_n) \alpha c(\xi') + c(\xi') c(dx_n) + 2\xi_n c(dx_n) \alpha c(dx_n) - \frac{6\xi_n c(\xi) c(\xi)}{(1 + \xi_n^2)^4}, \] (3.34)

then

\[\text{trace} \left[\pi_\xi^+ \sigma_{-4}(D^{-3}) \right] \times \partial_{\xi_n} \left(\frac{c(\xi) c(\xi)}{|\xi|^6} \right) (x_0) \]
\[= \frac{4(\xi_n + i) + 2}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(\xi') \alpha] + \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n) \alpha]. \] (3.35)

By the relation of the Clifford action and \text{trace}AB = \text{trace}BA, we then have the equalities

\[\text{trace} \left[c(dx_n) \sum_{j=1}^n c(e_j)(\sigma_j^F - \Phi^*(e_j)) \right] = \text{trace} \left[- |\boldsymbol{d}| \otimes (\sigma_j^F - \Phi^*(e_j)) \right]; \] (3.36)

\[\text{trace} \left[c(\xi') \sum_{j=1}^n c(e_j)(\sigma_j^F - \Phi^*(e_j)) \right] = \text{trace} \left[- \sum_{j=1}^{n-1} \xi_j (\sigma_j^F - \Phi^*(e_j)) \right]. \] (3.37)
We note that \(i < n \), \(\int_{|\xi'|=1} \xi \sigma(\xi') = 0 \), so \(\text{trace}[c(\xi')\alpha] \) has no contribution for computing case (b).

By (3.26) and (3.35), then

\[
D_2 = -i \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \frac{4\xi_n i + 2}{2(\xi_n + i)|\xi_n - i|} \text{trace}\left[-\mathbb{I} \otimes (\sigma_n^\xi - \Phi^*(\epsilon_n)) \right] d\xi_n \sigma(\xi') dx' \\
= \frac{3}{2} \pi \text{dim} F \text{trace}\left[\sigma_n^\xi - \Phi^*(\epsilon_n) \right] \Omega_4 dx'.
\]

(3.38)

Since

\[
\partial_{\xi_n} \left(\frac{c(\xi) c(\Phi^*) c(\xi)}{\xi^6} \right) = \frac{c(dx_n) c(\Phi^*) c(\xi') + c(\xi') c(\Phi^*) c(dx_n) + 2\xi_n c(dx_n) c(\Phi^*) c(dx_n) - 6\xi_n c(\xi) c(\Phi^*) c(\xi)}{(1 + \xi_n^4)^4},
\]

then

\[
\text{trace}\left[\pi_{+}^\xi \sigma_{-1} (\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\xi) c(\Phi^*) c(\xi)}{\xi^6} \right) \right] (x_0) \\
= \frac{(4\xi_n i + 2)i}{2(\xi_n + i)(1 + \xi_n^4)^4} \text{trace}[c(\xi') c(\Phi^*)] + \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^4)^4} \text{trace}[c(dx_n) c(\Phi^*)].
\]

(3.40)

By the relation of the Clifford action and \(\text{trace} AB = \text{trace} BA \), then we have the equalities

\[
\text{trace}\left[c(dx_n) \sum_{j=1}^{n} c(e_j) \otimes \Phi^*(e_j) \right] = \text{trace}\left[-\mathbb{I} \otimes \Phi^*(\epsilon_n) \right], \quad (3.41)
\]

\[
\text{trace}\left[c(\xi') \sum_{j=1}^{n} c(e_j) \otimes \Phi^*(e_j) \right] = \text{trace}\left[-\sum_{j=1}^{n-1} \xi_j \Phi^*(e_j) \right], \quad (3.42)
\]

We note that \(i < n \), \(\int_{|\xi'|=1} \xi \sigma(\xi') = 0 \), so \(\text{trace}[c(\xi') c(\Phi^*)] \) has no contribution for computing case (b).

By (3.27) and (3.40), then

\[
D_3 = 2i \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^4)} \text{trace}\left[-\mathbb{I} \otimes \Phi^*(\epsilon_n) \right] d\xi_n \sigma(\xi') dx' \\
= -3\pi \text{dim} F \text{trace}\left[\Phi^*(\epsilon_n) \right] \Omega_4 dx'.
\]

(3.43)

Since

\[
\partial_{\xi_n} \left(\frac{c(\Phi)}{\xi^4} \right) = -\frac{2\xi_n c(\Phi)}{(1 + \xi_n^4)^4}, \quad (3.44)
\]

then

\[
\text{trace}\left[\pi_{+}^\xi \sigma_{-1} (\tilde{D}_F^{-1}) \times \partial_{\xi_n} \left(\frac{c(\Phi)}{\xi^4} \right) \right] (x_0) \\
= \frac{-2\xi_n}{2(\xi_n - i)(1 + \xi_n^4)^4} \text{trace}[c(\xi') c(\Phi)] + \frac{-2\xi_n i}{2(\xi_n - i)(1 + \xi_n^4)^4} \text{trace}[c(dx_n) c(\Phi)].
\]

(3.45)
By the relation of the Clifford action and \(\text{trace} AB = \text{trace} BA \), then we have the equalities
\[
\text{trace} \left[c(dx_n) \sum_{j=1}^n c(e_j) \otimes \Phi(e_j) \right] = \text{trace} \left[-id \otimes \Phi(e_n) \right], \tag{3.46}
\]
\[
\text{trace} \left[c(\xi') \sum_{j=1}^n c(e_j) \otimes \Phi(e_j) \right] = \text{trace} \left[-\sum_{j=1}^{n-1} \xi_j \Phi(e_j) \right]. \tag{3.47}
\]

We note that \(i < n \), \(\int_{|\xi'|=1} \xi_i \sigma(\xi') = 0 \), so \(\text{trace}[c(\xi')c(\Phi)] \) has no contribution for computing case (b).

By (3.28) and (3.45), then
\[
D_4 = 2i \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \frac{-2\xi_n i}{2(\xi_n + i)^3(\xi_n - i)^2} \text{trace} \left[-id \otimes \Phi(e_n) \right] d\xi_n \sigma(\xi') d\xi'.
\]

By (3.24), then
\[
\text{case (b)} = -\frac{129}{16} \pi h'(0) \text{dim} F \Omega_4 dx' + \frac{3}{2} \pi \text{dim} F \text{trace} \left[\sigma_n - \sigma_n F \phi(e_n) \right] \Omega_4 dx' - 3\pi \text{dim} F \text{trace} \left[\phi^*(e_n) \right] \Omega_4 dx' - \pi \text{dim} F \text{trace} \left[\phi(e_n) \right] \Omega_4 dx'. \tag{3.49}
\]

case (c) \(r = -2, l = -3, |\alpha| = j = k = 0 \).

By (3.9), we have
\[
\text{case (c)} = -i \int_{|\xi'|=1} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-2}(\tilde{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}(\tilde{D}_F \tilde{D} \tilde{D}_I^{-1}) \right] (x_0) d\xi_n \sigma(\xi') d\xi'. \tag{3.50}
\]

By (2.18), we have
\[
\pi_{\xi_n}^+ \sigma_{-2}(\tilde{D}_F^{-1}) = \pi_{\xi_n}^+ \left(\sigma_{-2}(D^{-1}) + \frac{c(\xi)\beta_c(\xi)}{|\xi|^4} \right). \tag{3.51}
\]

By (2.19), we have
\[
\pi_{\xi_n}^+ \left(\sigma_{-2}(D^{-1}) \right)(x_n)|_{|\xi'|=1} = \pi_{\xi_n}^+ \left[\frac{c(\xi)\sigma_0(D)(x_0)c(\xi) + c(\xi)c(dx_n)\partial_{\xi_n}c(\xi')(x_0)}{(1 + \xi_n^2)^2} \right] - h'(0) \pi_{\xi_n}^+ \left[\frac{c(\xi)c(dx_n)c(\xi)}{1 + \xi_n^2} \right] := A_1 - A_2, \tag{3.52}
\]

where
\[
A_1 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi')c_0(D)c(\xi') + i\xi_n c(dx_n)\sigma_0(D)c(dx_n) \right. \nonumber
\]
\[
+ (2 + i\xi_n)c(\xi')c(dx_n)\partial_{\xi_n}[c(\xi')] + ic(dx_n)\sigma_0(D)c(\xi') + ic(\xi')\sigma_0(D)c(dx_n) - i\partial_{\xi_n}[c(\xi')] \right] \nonumber
\]
\[
= \frac{1}{4(\xi_n - i)^2} \left[5h'(0)c(dx_n) - \frac{5i}{2} h'(0)c(\xi') - (2 + i\xi_n)c(\xi')c(dx_n)\partial_{\xi_n}[c(\xi')] + i\partial_{\xi_n}[c(\xi')] \right]; \tag{3.53}
\]
\[
A_2 = \frac{h'(0)}{2} \left[c(dx_n) \right] + \frac{c(dx_n) - ic(\xi')}{8(\xi_n - i)^2} + \frac{3\xi_n - 7i}{8(\xi_n - i)^3} \left(ic(\xi') - c(dx_n) \right). \tag{3.54}
\]
On the other hand,

$$\pi^+_{\xi_0} \left(\frac{c(\xi)\beta c(\xi)}{|\xi|^4} \right)(x_0)|_{|\xi'|=1} = \frac{(-i\xi_n - 2)c(\xi')\beta c(\xi') - i\left[c(dx_n)\beta c(\xi') + c(\xi')\beta c(dx_n)\right]}{4(\xi_n - i)^2}. \quad (3.55)$$

By (2.28), we obtain

$$\partial_{\xi_n} \sigma_3((\tilde{\mathcal{D}}^*_{\xi_0} \tilde{\mathcal{D}}^*_{\xi_0} \mathcal{D}^*_{\xi_0})^{-1}) = -\frac{4i\xi_n c(\xi') + (i - 3i\xi_n^2)c(dx_n)}{(1 + \xi_n)^3}. \quad (3.56)$$

By (3.53) and (3.56), we have

$$\text{tr}[A_1 \times \partial_{\xi_n} \sigma_3((\tilde{\mathcal{D}}^*_{\xi_0} \tilde{\mathcal{D}}^*_{\xi_0} \mathcal{D}^*_{\xi_0})^{-1})]|_{|\xi'|=1} = \frac{h'(0) \text{dim} \mathcal{F} \left[\frac{3 + 12i\xi_n + 3\xi_n^2}{(\xi_n - i)^3(\xi_n + i)^3} \right]}{(3.57)}$$

Similarly, we have

$$\text{trace}[A_2 \times \partial_{\xi_n} \sigma_3((\tilde{\mathcal{D}}^*_{\xi_0} \tilde{\mathcal{D}}^*_{\xi_0} \mathcal{D}^*_{\xi_0})^{-1})]|_{|\xi'|=1} = \frac{h'(0) \text{dim} \mathcal{F} \left[\frac{4i - 11\xi_n - 6i\xi_n^2 + 3\xi_n^3}{(\xi_n - i)^3(\xi_n + i)^3} \right]}{(3.58)}$$

By (3.57) and (3.58), we obtain

$$-i \int_{|\xi'|=1}^{+\infty} \text{trace}\left[\pi^+_{\xi_0} \sigma_2(D^{-1}) \times \partial_{\xi_n} \sigma_3((\tilde{\mathcal{D}}^*_{\xi_0} \tilde{\mathcal{D}}^*_{\xi_0} \mathcal{D}^*_{\xi_0})^{-1}) \right] (x_0) d\xi_n \sigma(\xi') d\xi'$$

$$= -i \text{dim} \mathcal{F} h'(0) \int_{|\xi'|=1}^{+\infty} \frac{7i + 26\xi_n + 15i\xi_n^2}{(\xi_n - i)^3(\xi_n + i)^3} d\xi_n \sigma(\xi') d\xi'$$

$$= -i \text{dim} \mathcal{F} h'(0) \frac{2\pi i}{4i} \left[\frac{-7i + 26\xi_n + 15i\xi_n^2}{(\xi_n + i)^3} \right]_{|\xi_n|=\Omega_4} d\xi'$$

$$= \frac{55}{16} \text{dim} \mathcal{F} h'(0) \Omega_4 d\xi'. \quad (3.59)$$

By (3.55) and (3.56), we have

$$\text{trace}\left[\pi^+_{\xi_0} \left(\frac{c(\xi)\beta c(\xi)}{|\xi|^4} \right) \times \partial_{\xi_n} \sigma_3((\tilde{\mathcal{D}}^*_{\xi_0} \tilde{\mathcal{D}}^*_{\xi_0} \mathcal{D}^*_{\xi_0})^{-1}) \right] (x_0)$$

$$= \frac{(3\xi_n - i)}{2(\xi_n - i)(1 + \xi_n^2)} \text{trace}[c(dx_n)\beta] + \frac{3\xi_n - i}{2(\xi_n - i)(1 + \xi_n^2)} \text{trace}[c(\xi')\beta]. \quad (3.60)$$
By the relation of the Clifford action and trace $AB = \text{trace}BA$, then we have the equalities
\begin{equation}
\text{trace}\left[c(dx_n) \sum_{j=1}^{n} c(e_j)(\sigma_j F + \Phi(e_j)) \right] = \text{trace}\left[-\mathbf{id} \otimes (\sigma_n F + \Phi(e_n)) \right]; \tag{3.61}
\end{equation}

\begin{equation}
\text{trace}\left[c(\xi') \sum_{j=1}^{n} c(e_j)(\sigma_j F + \Phi(e_j)) \right] = \text{trace}\left[-\sum_{j=1}^{n-1} \xi_j(\sigma_j F + \Phi(e_j)) \right]. \tag{3.62}
\end{equation}

We note that $i < n$, \(\int_{|\xi'|=1} \xi_i \sigma(\xi') = 0 \), so trace\([c(\xi')\beta]\) has no contribution for computing case (c). Then, we obtain
\begin{align*}
-i \int_{|\xi'|=1} & \int_{-\infty}^{+\infty} \text{trace}\left[\pi_+ \left(\frac{c(\xi')\beta c(\xi)}{|\xi'|^4} \right) \times \partial_{\xi_n} \sigma_{-1} \left((\tilde{D}_F \tilde{D}_F^{-1})^{-1} \right) \right] (x_0) d\xi_n \sigma(\xi') dx' \\
= -i \int_{|\xi'|=1} & \int_{-\infty}^{+\infty} \frac{(3\xi_n - i)\pi_{-1}}{2(\xi_n - i)(1 + \xi_n^2)^2} \text{trace}[c(dx_n)\beta] d\xi_n \sigma(\xi') dx' \\
= -2\pi \text{dim} F \text{trace}[\sigma_n F + \Phi(e_n)] \Omega_4 dx'. \tag{3.63}
\end{align*}

Then
\begin{equation*}
\text{case (c)} = \frac{55}{16} \text{dim} F \pi h'(0) \Omega_4 dx' - 2\pi \text{dim} F h'(0) \text{trace}[\sigma_n F + \Phi(e_n)] \Omega_4 dx'. \tag{3.64}
\end{equation*}

Now \(\Phi \) is the sum of the cases (a), (b) and (c), then
\begin{equation*}
\Phi = \left[4h'(0) - \text{trace}\left(\Phi(e_n) \right) - 3\text{trace}\left(\Phi^*(e_n) \right) + \frac{3}{2} \text{trace}\left(\sigma_n F - \Phi^*(e_n) \right) - 2\text{trace}\left(\sigma_n F + \Phi(e_n) \right) \right] \pi \text{dim} F \Omega_4 dx'. \tag{3.65}
\end{equation*}

By (4.2) in \cite{12}, we have
\begin{equation*}
K = \sum_{1 \leq i,j \leq n-1} K_{i,j} \delta_{ij}^M; K_{i,j} = -\Gamma_{i,j},
\end{equation*}
and \(K_{i,j} \) is the second fundamental form, or extrinsic curvature. For \(n = 6 \), then
\begin{equation*}
K(x_0) = \sum_{1 \leq i,j \leq n-1} K_{i,j}(x_0) \delta_{ij}^M(x_0) = \sum_{i=1}^{5} K_{i,i}(x_0) = -\frac{5}{2} h'(0). \tag{3.66}
\end{equation*}
Hence we conclude that

Theorem 3.2. Let \(M \) be a 6-dimensional compact spin manifolds with the boundary \(\partial M \). Then
\begin{equation*}
\text{Wres}[\pi^+((\tilde{D}_F^{-1}) \circ \pi^+((\tilde{D}_F^{-1})) \right] = 8\pi^3 \int_{M} \text{Tr} \left[\left[-\frac{8}{12} + c(\Phi^*) c(\Phi) - \frac{1}{4} \sum_{i} [c(\Phi^*) c(e_i) - c(e_i) c(\Phi)]^2 - \frac{1}{2} \sum_{j} \nabla_{e_j}^F (c(\Phi^*)) c(e_j) \right) \right] \text{vol}_{M} + \int_{\partial M} \left[-\frac{8}{3} K - \text{trace}\left(\Phi(e_6) \right) - 3\text{trace}\left(\Phi^*(e_6) \right) + \frac{3}{2} \text{trace}\left(\sigma_6 F - \Phi^*(e_6) \right) - 2\text{trace}\left(\sigma_6 F + \Phi(e_6) \right) \right] \pi \text{dim} F \Omega_4 dx'. \tag{3.67}
\end{equation*}
where \(s \) is the scalar curvature.
4. Twisted signature operator and its symbol

Let us recall the definition of twisted signature operators. We consider a n-dimensional oriented Riemannian manifold (M,g^M). Let F be a real vector bundle over M. Let g^F be an Euclidean metric on F. Let

\[\wedge^* (T^*M) = \bigoplus_{i=0}^{n} \wedge^i (T^*M) \]

be the real exterior algebra bundle of T^*M. Let

\[\Omega^*(M,F) = \bigoplus_{i=0}^{n} \Omega^i(M,F) = \bigoplus_{i=0}^{n} C^\infty (M, \wedge^i (T^*M) \otimes F) \]

be the set of smooth sections of $\wedge^* (T^*M) \otimes F$. Let \ast be the Hodge star operator of g^{TM}. It extends on $\wedge^* (T^*M) \otimes F$ by acting on F as identity. Then $\Omega^*(M,F)$ inherits the following standardly induced inner product

\[\langle \zeta, \eta \rangle = \int_M \langle \zeta \wedge \ast \eta \rangle_F, \quad \zeta, \eta \in \Omega^*(M,F). \]

Let ∇^F be the non-Euclidean connection on F. Let d^F be the obvious extension of ∇^F on $\Omega^*(M,F)$. Let $\delta^F = d^F \ast$ be the formal adjoint operator of d^F with respect to the inner product. Let \bar{D}^F be the differential operator acting on $\Omega^*(M,F)$ defined by

\[\bar{D}^F = d^F + \delta^F. \]

Then $\nabla^{F,e}$ is an Euclidean connection on (F,g^F). Let $\nabla^{\wedge^* (T^*M)}$ be the Euclidean connection on $\wedge^* (T^*M)$ induced canonically by the Levi-Civita connection ∇^{TM} of g^{TM}. Let ∇^e be the Euclidean connection on $\wedge^* (T^*M) \otimes F$ obtained from the tensor product of $\nabla^{\wedge^* (T^*M)}$ and $\nabla^{F,e}$. Let $\{e_1, \ldots, e_n\}$ be an oriented (local) orthonormal basis of T^M. The following result was proved by Proposition in [20].

The following identity holds

\[d^F + \delta^F = \sum_{i=1}^{n} c(e_i) \nabla^e_{e_i} - \frac{1}{2} \sum_{i=1}^{n} \bar{c}(e_i) \omega(F,g^F)(e_i). \]

Let $D_{\bar{F}} = \sum_{i=1}^{n} c(e_i) \nabla^e_{e_i}$ and $\omega(F,g^F)$ be any element in $\Omega(M,EndF)$, then we define the generalized twisted signature operators \bar{D}_F, $\bar{D}_{\bar{F}}$ as follows.

For sections $\psi \otimes \chi \in \wedge^* (T^*M) \otimes F$,

\[\bar{D}_F(\psi \otimes \chi) = D_{\bar{F}}(\psi \otimes \chi) - \frac{1}{2} \sum_{i=1}^{n} \bar{c}(e_i) \omega(F,g^F)(e_i) (\psi \otimes \chi), \]

\[\bar{D}_{\bar{F}}(\psi \otimes \chi) = D_{\bar{F}}(\psi \otimes \chi) - \frac{1}{2} \sum_{i=1}^{n} \bar{c}(e_i) \omega^*(F,g^F)(e_i) (\psi \otimes \chi). \]

Here $\omega^*(F,g^F)(e_i)$ denotes the adjoint of $\omega(F,g^F)(e_i)$.

In the local coordinates $\{x_1; 1 \leq i \leq n\}$ and the fixed orthonormal frame $\{\tilde{e}_1, \ldots, \tilde{e}_n\}$, the connection matrix $(\omega_{s,t})$ is defined by

\[\tilde{\nabla}(\tilde{e}_1, \ldots, \tilde{e}_n) = (\tilde{e}_1, \ldots, \tilde{e}_n)(\omega_{s,t}). \]

Let M be a 6-dimensional compact oriented Riemannian manifold with boundary ∂M. We define that $\bar{D}_F: C^\infty (M, \wedge^* (T^*M) \otimes F) \rightarrow C^\infty (M, \wedge^* (T^*M) \otimes F)$ is the generalized twisted signature operator. Take
the coordinates and the orthonormal frame as in Section 3. Let \(\epsilon(e_j^*) \), \(\iota(e_j^*) \) be the exterior and interior multiplications respectively. Write

\[
\epsilon(\hat{e}_j) = \epsilon(e_j^*) - \iota(e_j^*); \quad \hat{\epsilon}(\hat{e}_j) = \epsilon(e_j^*) + \iota(e_j^*),
\]

(4.10)

We’ll compute \(\text{tr}_{\Lambda^r(T^*M) \otimes F} \) in the frame \(\{ e_{i_1}^* \wedge \cdots \wedge e_{i_k}^* \mid 1 \leq i_1 < \cdots < i_k \leq 6 \} \). By (3.2) and (4.8) in [12], we have

\[
\hat{D}_F = \sum_{i=1}^{n} c(e_i) \nabla e_i - \frac{1}{2} \sum_{i=1}^{n} \hat{c}(e_i) \omega(F, g^F)(e_i)
\]

\[
= \sum_{i=1}^{n} c(e_i) \left(\nabla^{\Lambda^n(T^*M)} \otimes id_F + \text{id}_{\Lambda^r(T^*M) \otimes \nabla^{F^c}} \right) - \frac{1}{2} \sum_{i=1}^{n} \hat{c}(e_i) \omega(F, g^F)(e_i)
\]

\[
\hat{D}_F^* = \sum_{i=1}^{n} c(e_i) \left[\hat{e}_i + \frac{1}{4} \sum_{s,t} \omega_{s,t}(\hat{e}_i)[\hat{c}(\hat{e}_s)\hat{c}(\hat{e}_t) - c(\hat{e}_s)c(\hat{e}_t)] \otimes \text{id}_F + \text{id}_{\Lambda^r(T^*M) \otimes \sigma_i} \right]
\]

\[
- \frac{1}{2} \sum_{i=1}^{n} \hat{c}(e_i) \omega(F, g^F)(e_i),
\]

(4.11)

\[
\sigma_1(\hat{D}_F) = \sigma_1(\hat{D}_F^*) = \sqrt{-1}c(\xi);
\]

(4.13)

\[
\sigma_0(\hat{D}_F) = \sum_{i=1}^{n} c(e_i) \left[\frac{1}{4} \sum_{s,t} \omega_{s,t}(\hat{e}_i)[\hat{c}(\hat{e}_s)\hat{c}(\hat{e}_t) - c(\hat{e}_s)c(\hat{e}_t)] \otimes \text{id}_F + \text{id}_{\Lambda^r(T^*M) \otimes \sigma_i} \right]
\]

\[
- \frac{1}{2} \sum_{i=1}^{n} \hat{c}(e_i) \omega(F, g^F)(e_i);
\]

(4.14)

\[
\sigma_0(\hat{D}_F^* = \sum_{i=1}^{n} c(e_i) \left[\frac{1}{4} \sum_{s,t} \omega_{s,t}(\hat{e}_i)[\hat{c}(\hat{e}_s)\hat{c}(\hat{e}_t) - c(\hat{e}_s)c(\hat{e}_t)] \otimes \text{id}_F + \text{id}_{\Lambda^r(T^*M) \otimes \sigma_i} \right]
\]

\[
- \frac{1}{2} \sum_{i=1}^{n} \hat{c}(e_i) \omega(F, g^F)(e_i).
\]

(4.15)

By the composition formula and (2.2.11) in [12], we obtain in [19],

Lemma 4.1. Let \(\hat{D}_F, \hat{D}_F^* \) be the twisted signature operators on \(\Gamma(\Lambda^r(T^*M) \otimes F) \), then

By the composition formula of pseudodifferential operators in Section 2.2.1 of [12], we have

Lemma 4.2. The symbol of the twisted signature operators \(\hat{D}_F, \hat{D}_F^* \) as follows:

\[
\sigma_{-1}(\hat{D}_F^{-1}) = \sigma_{-1}(\hat{D}_F^*)^{-1} = \frac{\sqrt{-1}c(\xi)}{|\xi|^2};
\]

(4.16)

\[
\sigma_{-2}(\hat{D}_F^{-1}) = \frac{c(\xi)\sigma_0(\hat{D}_F)c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^6} \sum_j c(\text{d}x_j) \left[\partial_{x_j}(c(\xi))|\xi|^2 - c(\xi)\partial_{x_j}(|\xi|^2) \right];
\]

(4.17)

\[
\sigma_{-2}(\hat{D}_F^*)^{-1} = \frac{c(\xi)\sigma_0(\hat{D}_F^*)c(\xi)}{|\xi|^4} + \frac{c(\xi)}{|\xi|^6} \sum_j c(\text{d}x_j) \left[\partial_{x_j}(c(\xi))|\xi|^2 - c(\xi)\partial_{x_j}(|\xi|^2) \right].
\]

(4.18)
Since Ψ is a global form on ∂M, so for any fixed point $x_0 \in \partial M$, we can choose the normal coordinates U of x_0 in ∂M (not in M) and compute $\Psi(x_0)$ in the coordinates $\tilde{U} = U \times [0, 1)$ and the metric $\frac{1}{h(x_n)}g_{\partial M} + dx_n^2$.

The dual metric of $g_{\partial M}$ on \tilde{U} is $\frac{1}{h(x_n)}g_{\partial M} + dx_n^2$. Write $g^M_{ij} = g^M(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})$; $\tilde{g}^M_{ij} = g^M(dx_i, dx_j)$, then
\[
\begin{bmatrix}
\frac{1}{h(x_n)}g^M_{ij} & 0 \\
0 & 1
\end{bmatrix}; \quad \begin{bmatrix}
\frac{1}{h(x_n)}g^M_{ij} & 0 \\
0 & 1
\end{bmatrix},
\]
(4.19)
and
\[
\partial x_i, g^M_{ij}(x_0) = 0, \quad 1 \leq i, j \leq n - 1; \quad g^M_{ij}(x_0) = \delta_{ij}.
\]
(4.20)

Let $\{e_1, \ldots, e_{n-1}\}$ be an orthonormal field in U about $g_{\partial M}$ which is parallel along geodesics and
\[
e_i = \frac{\partial}{\partial x_i}(x_0),
\]
then $\tilde{e}_1 = \sqrt{h(x_n)}e_1, \ldots, \tilde{e}_{n-1} = \sqrt{h(x_n)}e_{n-1}, \tilde{e}_n = dx_n$ is the orthonormal frame field in \tilde{U} about $g_{\partial M}$. Locally $\Lambda^\ast(T^*M)|\tilde{U} \cong \tilde{U} \times \Lambda^\ast_{\tilde{\mathbb{C}}}(\mathbb{T})$. Let $\{f_1, \ldots, f_n\}$ be the orthonormal basis of $\Lambda^\ast_{\tilde{\mathbb{C}}}(\mathbb{T})$.

Take a spin frame field $\sigma : \tilde{U} \to \text{Spin}(M)$ such that $\pi\sigma = \{\tilde{e}_1, \ldots, \tilde{e}_n\}$ where $\pi : \text{Spin}(M) \to O(M)$ is a double covering, then $\{[\sigma, f_i], 1 \leq i \leq 4\}$ is an orthonormal frame of $\Lambda^\ast(T^*M)|\tilde{U}$. In the following, since the global form Ψ is independent of the choice of the local frame, so we can compute $\text{tr}_{\Lambda^\ast(\text{Spin}(M))}$ in the frame $\{[\sigma, f_i], 1 \leq i \leq 4\}$. Let $\{E_1, \ldots, E_n\}$ be the canonical basis of \mathbb{R}^n and $c(E_i) \in \mathfrak{d}_{C}(n) \cong \text{Hom}(\Lambda^\ast_{C}(\mathbb{T}), \Lambda^\ast_{\tilde{\mathbb{C}}}(\mathbb{T}))$ be the Clifford action. By [12], then
\[
c(\tilde{e}_i) = [(\sigma, c(E_i))]; \quad c(\tilde{e}_i)(\sigma, f_i) = [\sigma, (c(E_i))f_i]; \quad \frac{\partial}{\partial x_i} = [(\sigma, \partial_{\tilde{\mathbb{C}}})],
\]
(4.21)
then we have $\frac{\partial}{\partial x_i}c(\tilde{e}_i) = 0$ in the above frame. By Lemma 2.2 in [12], we have

\textbf{Lemma 4.3.}

\[
\begin{aligned}
\partial_{x_i}(|\xi|^2_{g_{\partial M}})(x_0) &= \begin{cases} 0, & \text{if } j < n; \\ h'(0)|\xi|^2_{g_{\partial M},} & \text{if } j = n. \end{cases} \\
\partial_{x_j}[c(\xi)](x_0) &= \begin{cases} 0, & \text{if } j < n; \\ \partial x_i(c(\xi'))(x_0), & \text{if } j = n. \end{cases}
\end{aligned}
\]
(4.22)
(4.23)

where $\xi = \xi' + \xi_n dx_n$.

Then an application of Lemma 2.3 in [12] shows

\textbf{Lemma 4.4.} The symbol of the twisted signature operators \tilde{D}_F, \tilde{D}_F as follows:

\[
\sigma_0(\tilde{D}_F) = -\frac{5}{4} h'(0)c(dx_n) + \frac{1}{4} h'(0) \sum_{i=1}^{n-1} c(\tilde{e}_i)c(\tilde{c}_n)c(\tilde{c}_i)(x_0) \otimes \text{id}_F
\]
\[+ \sum_{i=1}^{n} c(\tilde{e}_i)\sigma_i^{F, c} - \frac{1}{2} \sum_{i=1}^{n} \tilde{c}(e_i)\omega(f, g^F)(e_i);
\]
(4.24)
\[
\sigma_0(\tilde{D}_F) = -\frac{5}{4} h'(0)c(dx_n) + \frac{1}{4} h'(0) \sum_{i=1}^{n-1} c(\tilde{e}_i)c(\tilde{c}_n)c(\tilde{c}_i)(x_0) \otimes \text{id}_F
\]
\[+ \sum_{i=1}^{n} c(\tilde{e}_i)\sigma_i^{F, c} - \frac{1}{2} \sum_{i=1}^{n} \tilde{c}(e_i)\omega(f, g^F)(e_i).
\]
(4.25)
We write

\[
\theta := -\frac{5}{4} h'(0) c(dx_n) + \frac{1}{4} h'(0) \sum_{i=1}^{n-1} c(\tilde{e}_i) \tilde{c}(\tilde{e}_i) (x_0) \otimes i d_F := -\frac{5}{4} h'(0) c(dx_n) + m;
\]

\[
\vartheta^* := \sum_{i=1}^n c(\tilde{e}_i) \sigma^{F,e}_i - \frac{1}{2} \sum_{i=1}^n \tilde{c}(e_i) \omega^*(F, g^F)(e_i);
\]

\[
\vartheta := \sum_{i=1}^n c(\tilde{e}_i) \sigma^{F,e}_i - \frac{1}{2} \sum_{i=1}^n \tilde{c}(e_i) \omega(F, g^F)(e_i).
\]

Let \(\tilde{c}(\omega) = \sum_i c(e_i) \omega(F, g^F)(e_i) \) and \(\tilde{c}(\omega^*) = \sum_i c(e_i) \omega^*(F, g^F)(e_i) \), then similar to (2.20), we have

\[
\hat{D}_F \hat{D}^*_F = -g^{ij} \partial_i \partial_j - 2 \sigma^{j,(T^*M)\otimes F}_i \partial_j + \Gamma^k \partial_k - \frac{1}{2} \sum_j \left(\tilde{c}(\omega) c(e_j) + c(e_j) \tilde{c}(\omega^*) \right) e_j
\]

\[
- g^{ij} \left[(\partial_i \sigma^{\lambda,(T^*M)\otimes F}_j) + \sigma^{\lambda,(T^*M)\otimes F} \sigma^{j,(T^*M)\otimes F,e} - \Gamma^k_{ij} \sigma^{\lambda,(T^*M)\otimes F} \right]
\]

\[
- \frac{1}{2} \sum_j \tilde{c}(\omega) c(e_j) \sigma^{\lambda,(T^*M)\otimes F,e}_j - \frac{1}{2} \sum_j c(e_j) e_j (\tilde{c}(\omega^*)) + \frac{1}{4} s + \frac{1}{4} \tilde{c}(\omega) \tilde{c}(\omega^*)
\]

\[
- \frac{1}{2} \sum_j c(e_j) \sigma^{\lambda,(T^*M)\otimes F,e}_j (\omega^*) + \frac{1}{2} \sum_{i \neq j} R^{F,e}(e_i, e_j) c(e_i) c(e_j).
\]

where \(s \) is the scalar curvature, \(R^{F,e} \) denotes the curvature-tensor on \(F \).
Combining (4.9) and (4.10), we have

\[
\hat{D}_F^*D_FD_F = \sum_{i=1}^{n} c(e_i)(e_i, dx_i)(-g^{ij}\partial_i\partial_j) + \sum_{i=1}^{n} c(e_i)(e_i, dx_i) \left\{ - (\partial_i g^{ij})\partial_i\partial_j - g^{ij}(4\sigma_i^{\Lambda^*(T^*M)\otimes F}\partial_j - 2\Gamma_{ij}^{k}\partial_k) \partial_i \right\} \\
+\left(\theta + \vartheta^*\right)(-g^{ij}\partial_i\partial_j) - \frac{1}{2} \sum_{i=1}^{n} c(e_i)(e_i, dx_i) \left\{ 2 \sum_{j,k} \left[\hat{(c)}(w)c(e_j) + (c(e_j)\hat{(c)}(w^*)) \right](e_j, dx^k) \right\} \times \partial_k \\
+\frac{n}{2} \sum_{i=1}^{n} c(e_i)(e_i, dx_i)\partial_i \left\{ - g^{ij} \left[(\partial_i \sigma_i^{\Lambda^*(T^*M)\otimes F}) + \sigma_i^{\Lambda^*(T^*M)\otimes F} \sigma_i^{\Lambda^*(T^*M)\otimes F} + \Gamma_{ij}^{k} \sigma_i^{\Lambda^*(T^*M)\otimes F} \right] + \frac{1}{4} \hat{c}(\omega) \hat{c}(\omega^*) \right\} \\
- \frac{1}{2} \sum_{i=1}^{n} \hat{c}(\omega)c(e_j)\sigma_j^{\Lambda^*(T^*M)\otimes F,e} - \frac{1}{2} \sum_{i=j} c(e_j)(e_j, \hat{(c)}(\omega^*)) + \frac{1}{2} \sum_{i,j} R_{F,e}(e_i, e_j) c(e_i)c(e_j) + \frac{1}{4} \hat{c}(\omega) \hat{c}(\omega^*) \\
- \frac{1}{2} \sum_{i,j} c(e_j)\sigma_j^{\Lambda^*(T^*M)\otimes F,e} \hat{(c)}(\omega^*) \left\{ - 2 \sigma_i^{\Lambda^*(T^*M)\otimes F} \partial_j + \Gamma_{ik}^{k}\partial_k - \frac{1}{2} \sum_{j} \hat{c}(\omega)c(e_j) + c(e_j) \right\} \\
\times \hat{c}(\omega^*) - g^{ij} \left[(\partial_i \sigma_i^{\Lambda^*(T^*M)\otimes F}) + \sigma_i^{\Lambda^*(T^*M)\otimes F} \sigma_i^{\Lambda^*(T^*M)\otimes F} + \Gamma_{ij}^{k} \sigma_i^{\Lambda^*(T^*M)\otimes F} \right] + \frac{1}{4} \hat{c}(\omega) \hat{c}(\omega^*) \\
+ \frac{1}{2} \sum_{j} c(e_j)(e_i, dx_i)\partial_i \left\{ - g^{ij} \left[(\partial_i \sigma_i^{\Lambda^*(T^*M)\otimes F}) + \sigma_i^{\Lambda^*(T^*M)\otimes F} \sigma_i^{\Lambda^*(T^*M)\otimes F} + \Gamma_{ij}^{k} \sigma_i^{\Lambda^*(T^*M)\otimes F} \right] + \frac{1}{4} \hat{c}(\omega) \hat{c}(\omega^*) \right\} \\
\times \hat{c}(\omega^*) - \frac{1}{2} \sum_{j} c(e_j)\sigma_j^{\Lambda^*(T^*M)\otimes F,e} \hat{c}(\omega^*) + \frac{1}{2} \sum_{i,j} R_{F,e}(e_i, e_j) c(e_i)c(e_j) \right\} \times \partial_k \\
\times (\hat{(c)}(w)c(e_j) + (c(e_j)\hat{(c)}(w^*)) \left\{ \partial_k(e_j, dx^k) \right\} \right\}. \quad (4.28)
\]

By the above composition formulas, then we obtain:

Lemma 4.5. Let \(\hat{D}_F^*, D_F^*\) be the twisted signature operators on \(\Gamma(\Lambda^*(T^*M) \otimes F)\), then

\[
\sigma_3(\hat{D}_F^* D_F D_F^*) = \sqrt{-1} c(\xi)|\xi|^2; \quad (4.29)
\]

\[
\sigma_2(\hat{D}_F^* D_F D_F^*) = \sigma_2(D^3) + |\xi|^2 |\theta^*| + |c(\xi)\hat{c}(w)c(\xi) - |\xi|^2\hat{c}(w^*)|, \quad (4.30)
\]

where,

\[
\sigma_2(D^3) = c(\xi)(4\sigma^k - 2\Gamma^k)\xi_k - \frac{1}{4} |\xi|^2 h'(0)c(dx_n). \quad (4.31)
\]

\[
p = \frac{1}{4} h'(0) \sum_{i=1}^{5} \hat{(c)}(\xi_i)\hat{(c)}(\xi_i)(\xi_i(x_0)). \quad (4.32)
\]

Write

\[
D_x^* = (-\sqrt{-1})^{a_j}e_j^*; \quad \sigma(\hat{D}_F^* D_F D_F^*) = p_3 + p_2 + p_1 + p_0; \quad \sigma((\hat{D}_F^* D_F D_F^*)^{-1}) = \sum_{j=3}^{\infty} q_{-j}. \quad (4.33)
\]
By the composition formula of pseudodifferential operators, we have

\[
1 = \sigma((\hat{D}_F^\ast \hat{D}_F \hat{D}_F)^{-1}) = (p_3 + p_2 + p_1 + p_0)(q_{-3} + q_{-4} + q_{-5} + \cdots)
+ \sum_j (\partial_{\xi_j} p_3 + \partial_{\xi_j} p_2 + \partial_{\xi_j} p_1 + \partial_{\xi_j} p_0) (D_{x_j} q_{-3} + D_{x_j} q_{-4} + D_{x_j} q_{-5} + \cdots)
= p_3 q_{-3} + (p_3 q_{-4} + p_2 q_{-4} + \sum_j \partial_{\xi_j} p_3 D_{x_j} q_{-3}) + \cdots.
\]

(4.34)

Then

\[
q_{-3} = p_3^{-1}; \quad q_{-4} = -p_3^{-1}[p_2 p_3^{-1} + \sum_j \partial_{\xi_j} p_3 D_{x_j} (p_3^{-1})].
\]

(4.35)

By Lemma 2.1 in [12] and (4.30)-(4.36), we obtain

\[\tag{Lemma 4.6}
\]

Let \(\hat{D}_F^\ast \hat{D}_F \) be the generalized twisted signature operators on \(\Gamma(\wedge^*(T^*M) \otimes F) \), then

\[
\sigma_{-3}((\hat{D}_F^\ast \hat{D}_F \hat{D}_F)^{-1}) = \frac{\sqrt{-1} c(\xi)}{|\xi|^4}; \quad (4.36)
\]

\[
\sigma_{-4}((\hat{D}_F^\ast \hat{D}_F \hat{D}_F)^{-1}) = \sigma_{-4}(D^{-3}) + \frac{c(\xi) p c(\xi)}{|\xi|^6} + \frac{c(\xi) \tilde{c} c(\xi)}{|\xi|^6} - \frac{c(\xi) \tilde{c}(\omega^*) c(\xi)}{|\xi|^6} + \frac{\tilde{c}(\omega)}{|\xi|^4}. \quad (4.37)
\]

where

\[
\sigma_{-4}(D^{-3}) = \frac{c(\xi) \sigma_2(D^3) c(\xi)}{|\xi|^8} + \frac{c(\xi)}{|\xi|^{10}} \sum \left[c(dx_j)|\xi|^2 + 2\tilde{c}(\xi) \left[\partial_{x_j} c(\xi) \right] |\xi|^2 - 2c(\xi) \partial_{x_j} (|\xi|^2) \right]. \quad (4.38)
\]

Hence we conclude that

\[\tag{Theorem 4.7}
\]

For even \(n \)-dimensional oriented compact Riemannian manifolds without boundary, the following equality holds:

\[
Wres(\hat{D}_F^\ast \hat{D}_F) = \frac{(2\pi)^{\frac{n+2}{2}}}{(4\pi^2 - 2)!} \int_M \text{Tr} \left[-\frac{s}{12} + \frac{n}{16} \left[\delta(\omega^*) - \delta(\omega) \right]^2 + \frac{1}{4} \delta(\omega^*) \delta(\omega) - \frac{1}{4} \sum_j \nabla^F_{x_j} (\delta(\omega^*) c(e_j) + \frac{1}{4} \sum_j c(e_j) \nabla^F_{x_j} \delta(\omega)) \right] \text{vol} M. \quad (4.39)
\]

5. A Kastler-Kalau-Walze theorem for six-dimensional Riemannian manifolds with boundary associated to twisted Signature Operators

In this section, we shall prove a Kastler-Kalau-Walze type formula for \(\hat{D}_F^\ast \hat{D}_F \). An application of (2.1.4) in [14] shows that

\[
\widetilde{Wres}[\pi^+(\hat{D}_F^{-1}) \circ \pi^+((\hat{D}_F^\ast \hat{D}_F \hat{D}_F)^{-1})] = \int_M \int_{|\xi|=1} \text{Tr} \left[\sigma_{-n}(\sigma_{-n}((\hat{D}_F^\ast \hat{D}_F \hat{D}_F)^{-1})) \sigma(\xi) dx + \int_{\partial M} \Psi \right]. \quad (5.1)
\]

where

\[
\Psi = \int_{|\xi|=1} \int_{|\xi|=1}^{+\infty} \sum_{j,k=0}^\infty \frac{(-i)^{\alpha+j+k+\ell}}{\alpha! (j+k+1)!} \text{Tr} \left[\partial_{\xi_j}^{\ell} \partial_{\xi_k}^{l} \sigma_{-n}((\hat{D}_F^{-1})(x', 0, \xi', \ell)) \right] d\xi_n \sigma(\xi') dx', \quad (5.2)
\]
and the sum is taken over \(r - k + \vert \alpha \vert + \ell - j - 1 = -n, r \leq -1, \ell \leq -1 \).

Locally we can use Theorem 4.3 [19] to compute the interior term of (5.1), then

\[
\int_M \int_{\vert \xi \vert = 1} \text{trace}_{\pi_\ast \tilde{T} \ast \tilde{M}} |(\sigma_{-4}(\hat{D}_{\kappa}^\ast \tilde{D}_{\kappa}^F)^{-2})| \sigma(\xi) d\xi
\]

\[
= 8\pi^3 \int_M \text{Tr} \left[\frac{8}{12} + \frac{3}{8} [\hat{c}(\omega^*) - \hat{c}(\omega)]^2 - \frac{1}{4} \hat{c}(\omega^*) \hat{c}(\omega) - \frac{1}{2} \sum_j \nabla_{\xi_j} (\hat{c}(\omega^*)) \alpha(e_j) + \frac{1}{4} \sum_j \alpha(e_j) \nabla^{\tilde{F}}_{\xi_j} (\hat{c}(\omega^*)) \right] d\text{vol}_M. \tag{5.3}
\]

So we only need to compute \(\int_{D_M} \Psi \). From the remark above, now we can compute \(\Psi \) (see formula (3.6) for the definition of \(\Psi \)). Since the sum is taken over \(r + \ell - k - j - \vert \alpha \vert - 1 = -6, r \leq -1, \ell \leq -3 \), then we have the \(\int_{D_M} \Psi \) is the sum of the following five cases:

case a) I) \(r = -1, l = -3, j = k = 0, \vert \alpha \vert = 1 \).

By (5.2), we get

case a) I) \(- \int_{\vert \xi \vert = 1} \int_{-\infty}^{+\infty} \sum_{\vert \alpha \vert = 1} \text{trace} \left[\partial_{n_\xi} \pi_{\ast \xi} \sigma_{-1}(\hat{D}_{\kappa}^\ast)^\dagger \times \partial_{n_\xi} \partial_{n_\xi} \sigma_{-3}(\hat{D}_{\kappa}^\ast \tilde{D}_{\kappa}^F \tilde{D}_{\kappa}^\ast)^{-1}) \right] (\xi_0) d\xi_n \sigma(\xi') d\xi'. \tag{5.4}
\]

By Lemma 2.2 in [12], for \(i < n \) we have

\[
\partial_{n_\xi} \sigma_{-3}(\hat{D}_{\kappa}^\ast \tilde{D}_{\kappa}^F \tilde{D}_{\kappa}^\ast)^{-1}) (\xi_0) = \partial_{n_\xi} \left[\frac{ic(\xi')}{\vert \xi \vert} \right] (\xi_0) = i \left[\partial_{n_\xi} [c(\xi)] \vert \xi \vert^{-4}(\xi_0) - 2c(\xi) \partial_{n_\xi} [\vert \xi \vert^2] \vert \xi \vert^{-6}(\xi_0) \right] = 0. \tag{5.5}
\]

so **case a) I)** vanishes.

case a) II) \(r = -1, l = -3, \vert \alpha \vert = k = 0, j = 1 \).

By (5.2), we have

case a) II) \(- \int_{\vert \xi \vert = 1} \int_{-\infty}^{+\infty} \text{trace} \left[\partial_{n_\xi} \pi_{\ast \xi} \sigma_{-1}(\hat{D}_{\kappa}^\ast)^\dagger \times \partial_{n_\xi} \partial_{n_\xi} \sigma_{-3}(\hat{D}_{\kappa}^\ast \tilde{D}_{\kappa}^F \tilde{D}_{\kappa}^\ast)^{-1}) \right] (\xi_0) d\xi_n \sigma(\xi') d\xi'. \tag{5.6}
\]

By Lemma 2.2 in [12], we have

\[
\pi_{\ast \xi} \partial_{n_\xi} \sigma_{-1}(\hat{D}_{\kappa}^\ast)^\dagger (\xi_0) \vert \xi \vert = 1 = \frac{\partial_{n_\xi} [c(\xi') \vert \xi \vert]}{2(\xi_n - i)} + \frac{ic(\xi')}{4(\xi_n - i)^2}. \tag{5.7}
\]

By direct calculations we have

\[
\partial_{n_\xi} \sigma_{-3}(\hat{D}_{\kappa}^\ast \tilde{D}_{\kappa}^F \tilde{D}_{\kappa}^\ast)^{-1}) \right] (\xi_0) = i \left[\frac{(20\xi_n^2 - 4)c(\xi') + 12(\xi_n^2 - \xi_n)c(\xi_n)}{(1 + \xi_n^2)} \right]. \tag{5.8}
\]

By (5.7) and (5.8), we obtain

\[
\text{trace} \left[\partial_{n_\xi} \pi_{\ast \xi} \sigma_{-1}(\hat{D}_{\kappa}^\ast)^\dagger \times \partial_{n_\xi} \sigma_{-3}(\hat{D}_{\kappa}^\ast \tilde{D}_{\kappa}^F \tilde{D}_{\kappa}^\ast)^{-1}) \right] (\xi_0) = 8h'(0) dim F \frac{8 - 24\xi_n i + 40\xi_n^2 + 24i\xi_n^3}{(\xi_n - i)^6(\xi_n + i)^4}. \tag{5.9}
\]

Then we obtain

case a) II) \(- \frac{1}{2} \int_{\vert \xi \vert = 1} \int_{-\infty}^{+\infty} 8h'(0) dim F \frac{8 - 24\xi_n i + 40\xi_n^2 + 24i\xi_n^3}{(\xi_n - i)^6(\xi_n + i)^4} d\xi_n \sigma(\xi') d\xi'. \)

\[
= 8h'(0) dim F \frac{\pi i}{5!} \left[\frac{8 + 24\xi_n i - 40\xi_n^2 - 24i\xi_n^3}{(\xi_n + i)^4} \right] \bigg|_{\xi_n = i} d\xi' \tag{5.10}
\]

\[
= \frac{15}{2} \pi h'(0) \Omega_4 dim F d\xi'.
\]
where Ω_4 is the canonical volume of S_4.

case a) III) $r = -1, l = -3, |\alpha| = j = k = 1.$

By (5.2) and an integration by parts, we have

$$
\text{case a) III} = -\frac{1}{2} \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx'.
$$

By Lemma 2.2 in [12], we have

$$
\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(\hat{D}_F^{-1})(x_0)||_{|\xi'|=1} = \frac{c(\xi') + ic(dx_n)}{2(\xi_n - i)^2}.
$$

By (4.37) and direct calculations, we have

$$
\partial_{\xi_n} \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) = -\frac{4\xi_0 \partial_{\xi_n} c(\xi')(x_0) + i(12\xi_0^2 + 2(2 - 10\xi_0^2)h(0)c(dx_n))}{(1 + \xi_n^2)^4}.
$$

Combining (5.12) and (5.13), we have

$$
\text{trace} \left[\partial_{\xi_n} \pi_{\xi_n}^+ \sigma_{-1}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right] (x_0)||_{|\xi'|=1} = 8h'(0)dimF \frac{8i - 32\xi_n^2 - 8i\xi_n^2}{(\xi_n - i)^4(\xi + i)^4}.
$$

Then

$$
\text{case a) III} = -\frac{1}{2} \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} 8h'(0)dimF \frac{8i - 32\xi_n^2 - 8i\xi_n^2}{(\xi_n - i)^4(\xi + i)^4} d\xi_n \sigma(\xi') dx'
$$

$$
= -8h'(0)dimF \Omega_4 \pi \left[\frac{8i - 32\xi_n^2 - 8i\xi_n^2}{(\xi + i)^4} \right]_{|\xi'|=1}^{(4)} dx'
$$

$$
= \frac{25}{2} \pi h'(0) \Omega_4 \text{dim} F dx'
$$

(5.15)

where Ω_4 is the canonical volume of S_4.

case b) $r = -2, l = -3, |\alpha| = j = k = 0.$

By (5.2) and an integration by parts, we have

$$
\text{case c)} = -i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace} \left[\pi_{\xi_n}^+ \sigma_{-2}(\hat{D}_F^{-1}) \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right] (x_0) d\xi_n \sigma(\xi') dx'.
$$

Then an application of Lemma 4.3 shows

$$
\sigma_{-2}(\hat{D}_F^{-1})(x_0) = \frac{c(\xi)\sigma_0(\hat{D}_F)(x_0)c(\xi)}{|\xi'|^4} + \frac{c(\xi)}{|\xi'|^6} \sum_j c(dx_j) \left[\partial_{\xi_j}(c(\xi))(\xi)|^2 - c(\xi)\partial_{\xi_j}(\xi)|^2 \right] (x_0)
$$

$$
= \frac{c(\xi)\sigma_0(\hat{D}_F)(x_0)c(\xi)}{|\xi'|^4} + \frac{c(\xi)}{|\xi'|^6} c(dx_n) \left[\partial_{\xi_n}(c(\xi))(x_0) - c(\xi)h'(0)|\xi'|^2 \right]_{|\xi'|=0}.
$$

(5.17)

Hence,

$$
\pi_{\xi_n}^+ \sigma_{-2}((\hat{D}_F)^{-1})(x_0) := B_1 + B_2 + B_3 + B_4,
$$

(5.18)
where

\[
B_1 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi')(-\frac{5}{4}h'(0)c(dx_n))c(\xi') + i\xi_n c(dx_n)(-\frac{5}{4}h'(0)c(dx_n))c(dx_n) + (2 + i\xi_n)c(\xi')c(dx_n)\partial_{x_n} c(\xi') + ic(dx_n)(-\frac{5}{4}h'(0)c(dx_n))c(\xi') - i\partial_{x_n} c(\xi') \right]
\]

\[
B_2 = -\frac{1}{4(\xi_n - i)^2} \left[\frac{5}{2}h'(0)c(dx_n) - \frac{5i}{2}h'(0)c(\xi') - (2 + i\xi_n)c(\xi')c(dx_n)\partial_{x_n} c(\xi') + i\partial_{x_n} c(\xi') \right];
\]

\[
B_3 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi')c(\xi') + i\xi_n c(dx_n)pc(dx_n) + (2 + i\xi_n)c(\xi')c(dx_n)\partial_{x_n} c(\xi') + ic(dx_n)pc(\xi') + ic(\xi')pc(dx_n) - i\partial_{x_n} c(\xi') \right]
\]

\[
B_4 = -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi')pc(\xi') + i\xi_n c(dx_n)pc(dx_n) + ic(dx_n)pc(\xi') + ic(\xi')pc(dx_n) \right]
\]

On the other hand,

\[
\partial_{\xi_n} \sigma_{-3}((\tilde{D}^\nu_F \tilde{D} F \tilde{D}^\nu_F)^{-1}) = -\frac{4i\xi_n c(\xi')}{(1 + \xi_n^2)^3} + \frac{i(1 - 3\xi_n^2)}{(1 + \xi_n^2)^3}.
\]

From (5.19) and (5.24), we have

\[
\operatorname{tr}[B_1 \times \partial_{\xi_n} \sigma_{-3}((\tilde{D}^\nu_F \tilde{D} F \tilde{D}^\nu_F)^{-1})(x_0)]|_{\xi'|=1}
= \operatorname{tr}\left\{ \frac{1}{4(\xi_n - i)^2} \left[\frac{5}{2}h'(0)c(dx_n) - \frac{5i}{2}h'(0)c(\xi') - (2 + i\xi_n)c(\xi')c(dx_n)\partial_{x_n} c(\xi') + i\partial_{x_n} c(\xi') \right] \right\}
\times \frac{8h'(0)}{(\xi_n - i)^2}\frac{3 + 12i\xi_n + 3\xi_n^2}{(\xi_n + i)^3}.
\]

Similarly, we obtain

\[
\operatorname{tr}[B_2 \times \partial_{\xi_n} \sigma_{-3}((\tilde{D}^\nu_F \tilde{D} F \tilde{D}^\nu_F)^{-1})(x_0)]|_{\xi'|=1}
= \operatorname{tr}\left\{ -\frac{h'(0)}{2} \left[\frac{c(dx_n)}{4i(\xi_n - i)} + \frac{c(dx_n) - ic(\xi')}{8(\xi_n - i)^2} + \frac{3\xi_n - 7i}{8(\xi_n - i)^3}[ic(\xi') - c(dx_n)] \right] \right\}
\times \frac{4i\xi_n c(\xi') + (i - 3i\xi_n^2) c(dx_n)}{(1 + \xi_n^2)^3}
\]

\[
= -8h'(0) \frac{4i - 11\xi_n - 6i\xi_n^2 + 3\xi_n^3}{(\xi_n - i)^2(\xi_n + i)^3}.
\]

For the signature operator case,

\[
\operatorname{tr}[c(\xi')pc(\xi')c(dx_n)](x_0) = \operatorname{tr}[pc(\xi')c(dx_n)c(\xi')](x_0) = |\xi'|^2 \operatorname{tr}[pc(dx_n)],
\]

and

\[
c(dx_n)p(x_0) = -\frac{1}{4}h'(0) \sum_{i=1}^{n-1} c(\bar{e}_i) \bar{c}(\bar{e}_i) c(\bar{e}_n) \bar{c}(\bar{e}_n)
= -\frac{1}{4}h'(0) \sum_{i=1}^{n-1} [c(\bar{e}_i) \bar{c}(\bar{e}_i) - \bar{c}(\bar{e}_i) c(\bar{e}_i)][c(\bar{e}_n) \bar{c}(\bar{e}_n) - \bar{c}(\bar{e}_n) c(\bar{e}_n)].
\]
By Section 3 in [12], then

$$\text{tr}_{\Lambda \cdot (T^*M)} \{ [e(e_i*)u(e_i*) - u(e_i*)e(e_i*)][e(e_n*)u(e_n*) - u(e_n*)e(e_n*)] \}$$

$$= a_{n,m} \langle e_i*, e_n* \rangle^2 + b_{n,m} |e_i*|^2 |e_n*|^2 = b_{n,m}. \quad (5.28)$$

where $b_{n,m} = \left(\frac{4}{m - 2} \right) + \left(\frac{4}{m} \right) - 2 \left(\frac{4}{m - 1} \right)$.

Then

$$\text{tr}_{\Lambda \cdot (T^*M)} \{ [e(e_i*)u(e_i*) - u(e_i*)e(e_i*)][e(e_n*)u(e_n*) - u(e_n*)e(e_n*)] \} = \sum_{m=0}^{6} b_{6,m} = 0. \quad (5.29)$$

Hence in this case,

$$\text{tr}_{\Lambda \cdot (T^*M)} [e(dx_n) p(x_0)] = 0. \quad (5.30)$$

We note that $\int_{|\xi|=1} \xi_1 \cdots \xi_{2q+1} \sigma(\xi') = 0$, then $\text{tr}_{\Lambda \cdot (T^*M)} [e(\xi') p(x_0)]$ has no contribution for computing Case (b).

So, we obtain

$$\text{tr} [B_3 \times \partial_{\xi_n} \sigma_{-3} ((\hat{D}_F \hat{D}_F \hat{D}_F)^{-1}) (x_0)]_{|\xi|=1}$$

$$= \text{tr} \left\{ -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi') P_1 c(\xi') + i\xi_n c(dx_n) P_1 c(dx_n) + (2 + i\xi_n)c(\xi') P_1 c(dx_n) \right] \right\} \times \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2)c(dx_n)}{(1 + \xi_n^2)^3}$$

$$= 8h'(0) \text{dim} F \frac{3\xi_n^2 - 3i\xi_n - 2}{(\xi_n - i)^2(\xi_n + i)^3}. \quad (5.31)$$

Then, we have

$$\text{trace} [B_3 + B_2 + B_3] \times \partial_{\xi_n} \sigma_{-3} ((\hat{D}_F \hat{D}_F \hat{D}_F)^{-1}) (x_0) dx_n \sigma(\xi') dx'$$

$$= 8h'(0) \text{dim} F \frac{3\xi_n^2 + 9\xi_n^2 + 21\xi_n - 5i}{(\xi_n - i)^2(\xi_n + i)^3}. \quad (5.32)$$

By the relation of the Clifford action and $\text{tr} AB = \text{tr} BA$, then we have the equalities

$$\text{tr} [c(\xi') c(dx_n)] = 0, i < n; \text{tr} [c(\xi') c(dx_n)] = -64 \text{dim} F, i = n; \text{tr} [c(\xi') c(dx_n)] = \text{tr} [c(\xi') c(dx_n)] = 0. \quad (5.33)$$

Then $\text{tr} [\partial c(\xi')]$ has no contribution for computing Case b.

Then, we have

$$\text{trace} [B_3 + \partial_{\xi_n} \sigma_{-3} ((\hat{D}_F \hat{D}_F \hat{D}_F)^{-1})]_{|\xi|=1}$$

$$= \text{trace} \left\{ -\frac{1}{4(\xi_n - i)^2} \left[(2 + i\xi_n)c(\xi') \beta_1 c(\xi') + i\xi_n c(dx_n) \beta_1 c(dx_n) + ic(dx_n) \beta_1 c(\xi') + ic(\xi') \beta_1 c(dx_n) \right] \right\} \times \frac{-4i\xi_n c(\xi') + (i - 3i\xi_n^2)c(dx_n)}{(1 + \xi_n^2)^3}$$

$$= \frac{i(3\xi_n - i)}{2(\xi_n - i)^2(\xi_n + i)^3} \text{trace}[c(dx_n) \beta_1]$$

$$= -32 \text{dim} F \frac{1 + 3i\xi_n}{(\xi_n - i)^2(\xi_n + i)^3} \text{trace}[\sigma_{F,n}] \quad (5.34)$$
From (5.33), we obtain
\[
-i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace}\left[(B_1 + B_2 + B_3) \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right](x_0) d\xi_n \sigma(\xi') dx'
\]
\[
= -8 \dim F h'(0) \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \frac{3\xi_n^3 + 9\xi_n^2 i + 21\xi_n - 5i}{(\xi_n - i)^4 (\xi_n + i)^3} d\xi_n \sigma(\xi') dx'
\]
(5.35)

From (5.35), we obtain
\[
-i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace}\left(B_4 \times \partial_{\xi_n} \sigma_{-3}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right)(x_0) d\xi_n \sigma(\xi') dx'
\]
\[
= 32 \dim F \text{trace}[\sigma_n^{F,e}] \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \frac{1 + 3\xi_n}{(\xi_n - i)^4 (\xi_n + i)^3} d\xi_n \sigma(\xi') dx'
\]
\[
= -16 \dim F \text{trace}[\sigma_n^{F,e}][\Omega_4 dx']
\]
(5.36)

Then

\[
\text{case b)} = \left[\frac{45}{2} h'(0) - 16 \text{trace}[\sigma_n^{F,e}] \right] \pi \dim F \Omega_4 dx'
\]
(5.37)

\text{case c)} r = -1, l = -4, |\alpha| = j = k = 0.

By (5.2) and an integration by parts, we have
\[
\text{case b)} = -i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace}\left(\pi_n^{+} \sigma_{-1}(\hat{D}_F^*)^{-1} \times \partial_{\xi_n} \sigma_{-4}((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1}) \right)(x_0) d\xi_n \sigma(\xi') dx'
\]
\[
= -i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{+\infty} \text{trace}\left(\pi_n^{+} \sigma_{-1}(\hat{D}_F^*)^{-1} \times \partial_{\xi_n} \left(\sigma_{-4}(D^{-3}) + \frac{c(\xi)p(x_0)c(\xi) + c(\xi)\partial_n(x_0)c(\xi)}{|\xi|^6} \right) \right)(x_0) d\xi_n \sigma(\xi') dx'.
\]
(5.38)

By (3.12) in [19], we have
\[
\pi_n^{+} \sigma_{-1}(\hat{D}_F^*)^{-1} = -\frac{c(\xi') + ic(dx_n)}{2(\xi_n - i)}
\]
(5.39)

In the normal coordinate, \(g^{ij}(x_0) = \delta_i^j \) and \(\partial_{x_j}(g^{ij})(x_0) = 0 \), if \(j < n \); \(\partial_{x_j}(g^{0j})(x_0) = h'(0) \delta_0^j \), if \(j = n \). So by Lemma A.2 in [12], we have \(\Gamma^m(x_0) = \frac{1}{2} h'(0) \) and \(\Gamma^k(x_0) = 0 \) for \(k < n \). By the definition of \(\delta^k \) and Lemma 2.3 in [12], we have \(\delta^m(x_0) = 0 \) and \(\delta^k = \frac{1}{4} h'(0) c(\xi) c(\xi_0) \) for \(k < n \). By (3.15) in [19], we obtain
\[
\sigma_{-4}(D^{-3})(x_0) = \frac{1}{|\xi|^6} e(\xi)(h'(0)c(\xi) \sum_{k<n} \xi_k e(\xi_k) c(\xi_n) - 5h'(0)\xi_n c(\xi) - \frac{5}{4} h'(0)|\xi|^2 c(dx_n))c(\xi) \\
+ \frac{c(\xi)}{|\xi|^{10}} (|\xi|^4 c(dx_n) \partial_{x_n} [c(\xi')])(x_0) - 2h'(0)|\xi|^2 c(dx_n) c(\xi) + 2\xi_n |\xi|^2 c(\xi) \partial_{x_n} [c(\xi')](x_0) \\
+ 4\xi_n h'(0)c(\xi)c(\xi) + h'(0) \frac{c(\xi)c(dx_n)c(\xi)}{|\xi|^6}.
\]

Then

\[
\partial_{\xi_n} \sigma_{-4}(D^{-3})(x_0) = \frac{59\xi_n + 27\xi_n^3 h'(0)c(\xi')c(dx_n) c(\xi') + \frac{33 - 180\xi_n^2 - 85\xi_n^4}{2(1 + \xi_n^2)^5} h'(0)c(\xi')
\]

\[
+ \frac{49\xi_n - 97\xi_n^2 - 50\xi_n^5}{2(1 + \xi_n^2)^5} h'(0)c(dx_n) c(\xi') - \frac{3}{(1 + \xi_n^2)^4} \partial_{x_n} [c(\xi')](x_0) + \frac{4\xi_n^3 - 8\xi_n^4}{(1 + \xi_n^2)^4} h'(0)c(dx_n) c(\xi') + \frac{2 - 10\xi_n^2}{(1 + \xi_n^2)^4} h'(0)c(\xi').
\]

Combining (5.40) and (5.42), we obtain

\[
\text{trace} \left[\pi_+^+ \sigma_{-1}(\hat{D}^{-1}_F) \times \partial_{\xi_n} \sigma_{-4}(D^{-3}) \right](x_0)|_{\xi |^1 = 32h'(0)dimF \frac{(-17 - 42i\xi_n + 50\xi_n^2 - 16i\xi_n^3 + 29\xi_n^4)}{\left(\xi_n - i\right)^5 (\xi + i)^5}}.
\]

Then

\[
-i \int_{|\xi| = 1}^{\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi_+^+ \sigma_{-1}(\hat{D}^{-1}_F) \times \partial_{\xi_n} \sigma_{-4}(D^{-3}) \right](x_0) d\xi_n c(\xi') dx'
\]

\[
= 32h'(0)dimF \frac{2\pi i}{4!} \left[\frac{(-17 - 42i\xi_n + 50\xi_n^2 - 16i\xi_n^3 + 29\xi_n^4)}{(\xi + i)^5} \right]^{(4)}|_{\xi_n = -i} \Omega_4 dx'
\]

\[
= \frac{129}{2} \pi h'(0)dimF \Omega_4 dx'.
\]

Since

\[
\partial_{\xi_n} \left(\frac{c(\xi)p(x_0)c(\xi)}{|\xi|^6} \right) = \frac{c(dx_n)p(x_0)c(\xi') + c(\xi')p(x_0)c(dx_n) + 2\xi_n c(dx_n)p(x_0)c(dx_n) - 6\xi_n c(\xi)p(x_0)c(\xi)}{(1 + \xi_n^2)^4}
\]

from (5.40) and (5.45), then we have

\[
\text{trace} \left[\pi_+^+ \sigma_{-1}(\hat{D}^{-1}_F) \times \partial_{\xi_n} \left(\frac{c(\xi)p(x_0)c(\xi)}{|\xi|^6} \right) \right](x_0)
\]

\[
= \frac{(4\xi_n i + 2)i}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(\xi')p(x_0)] + \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^2)^3} \text{trace}[c(dx_n)p(x_0)].
\]
We have (5.46) has no contribution for computing case b).
Similarly, we have

\[
\text{trace} \left[\pi^{+}_{\xi_n} \sigma_{-1}(\hat{D}^{-1}_F) \times \partial_{\xi_n} \left(\frac{c(\xi) \partial^* c(\xi)}{\lvert \xi \rvert^6} \right) \right](x_0)
\]

\[
= \frac{(4\xi_n i + 2)i}{2(\xi_n + i)(1 + \xi_n^2)^2} \text{trace}[c(\xi') \partial^*] + \frac{4\xi_n i + 2}{2(\xi_n + i)(1 + \xi_n^2)^2} \text{trace}[c(dx_n) \partial^*].
\] (5.46)

Then

\[
-i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi^{+}_{\xi_n} \sigma_{-1}(\hat{D}^{-1}_F) \times \partial_{\xi_n} \left(\frac{c(\xi) \partial^* c(\xi)}{\lvert \xi \rvert^6} \right) \right](x_0) d\xi_n \sigma(\xi') dx'
\]

\[
= -i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{\infty} \frac{4\xi_n i + 2}{2(\xi_n + i)^2(\xi_n - i)^2} \text{trace} \left[-\mathbf{i} \sigma \otimes \sigma_{n}^{F,c} \right] d\xi_n \sigma(\xi') dx'.
\]

\[
= 12\pi \text{dim} F \text{trace} \left[\sigma_{n}^{F,c} \right] \Omega_4 dx'.
\] (5.47)

Similarly,

\[
-i \int_{|\xi'|=1}^{+\infty} \int_{-\infty}^{\infty} \text{trace} \left[\pi^{+}_{\xi_n} \sigma_{-1}(\hat{D}^{-1}_F) \times \partial_{\xi_n} \left(\frac{c(\xi) \partial^* c(\xi)}{\lvert \xi \rvert^6} \right) \right](x_0) d\xi_n \sigma(\xi') dx'
\]

\[
= 4\pi \text{dim} F \text{trace} \left[w(F, g^F)(e_n) \right] \Omega_4 dx' - 12\pi \text{dim} F \text{trace} \left[w^*(F, g^F)(e_n) \right] \Omega_4 dx'.
\] (5.48)

Then

\[
\text{case c) } = -\frac{129}{2} \pi h'(0) \text{dim} F \Omega_4 dx' + 12\pi \text{dim} F \text{trace} \left[\sigma_{n}^{F,c} \right] \Omega_4 dx'
\]

\[
+ 4\pi \text{dim} F \text{trace} \left[w(F, g^F)(e_n) \right] \Omega_4 dx' - 12\pi \text{dim} F \text{trace} \left[w^*(F, g^F)(e_n) \right] \Omega_4 dx'.
\] (5.49)

Now \(\Psi \) is the sum of the cases a), b) and c), then

\[
\Psi = 23\pi h'(0) \text{dim} F \Omega_4 dx' - 4\pi \text{dim} F \text{trace} \left[\sigma_{n}^{F,c} \right] \Omega_4 dx'
\]

\[
+ 4\pi \text{dim} F \text{trace} \left[w(F, g^F)(e_n) \right] \Omega_4 dx' - 12\pi \text{dim} F \text{trace} \left[w^*(F, g^F)(e_n) \right] \Omega_4 dx'.
\] (5.50)

By (4.2) in [12], we have

\[
K = \sum_{1 \leq i, j \leq n-1} K_{i,j} g_{ij}^{i,j}, \quad K_{i,j} = -\Gamma_{i,j},
\]

and \(K_{i,j} \) is the second fundamental form, or extrinsic curvature. For \(n = 6 \), then

\[
K(x_0) = \sum_{1 \leq i, j \leq n-1} K_{i,j}(x_0) g_{ij}^{i,j}(x_0) = \sum_{i=1}^{5} K_{i,i}(x_0) = -\frac{5}{2} h'(0).
\] (5.51)

Hence we conclude that
Theorem 5.1. Let M be a 6-dimensional compact manifolds with the boundary ∂M. Then

$$\widetilde{\text{Wres}}[\pi^+(\hat{D}_F^{-1}) \circ \pi^+((\hat{D}_F^* \hat{D}_F \hat{D}_F^*)^{-1})]$$

$$= 8\pi^3 \int_M \text{Tr} \left[-\frac{s}{12} + \frac{3}{8} [\hat{c}(\omega^*) - \hat{c}(\omega)]^2 - \frac{1}{4} \hat{c}(\omega^*) \hat{c}(\omega) - \frac{1}{4} \sum_j \nabla_{e_j}^F (\hat{c}(\omega^*)) c(e_j) \right. $$

$$+ \frac{1}{4} \sum_j c(e_j) \nabla_{e_j}^F (\hat{c}(\omega)) \bigg] d\text{vol}_M + \int_{\partial M} \left[-\frac{46}{8} \pi \text{dim} F \text{dim} \text{trace} (\sigma_{6,F}^F, e) \right.$$

$$+ 4\pi \text{dim} F \text{trace} \left(w^*(F, g^F)(e_6) \right) - 12\pi \text{dim} F \text{trace} \left(w(F, g^F)(e_6) \right) \bigg] \Omega_4 d\nu'.$$

(5.52)

where s is the scalar curvature.

Acknowledgements

This work was supported by NSFC. 11771070 . The authors thank the referee for his (or her) careful reading and helpful comments.

References

References

[1] V. W. Guillemin: A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Adv. Math. 55, no. 2, 131-160, (1985).

[2] M. Wodzicki: local invariants of spectral asymmetry. Invent. Math. 75(1), 143-178, (1995).

[3] M. Adler: On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations, Invent. Math. 50, 219-248, (1979).

[4] A. Connes: Quantized calculus and applications. Xth International Congress of Mathematical Physics(Paris,1994), Inter-

[5] A. Connes: The action functional in Noncommutative geometry. Comm. Math. Phys. 117, 673-683, (1998).

[6] D. Kastler: The Dirac Operator and Gravitation. Comm. Math. Phys. 166, 633-643, (1995).

[7] W. Kalau and M. Walze: Gravity, Noncommutative geometry and the Wodzicki residue. J. Geom. Physics. 16, 327-344, (1995).

[8] T. Ackermann: A note on the Wodzicki residue. J. Geom. Phys. 20, 404-406, (1996).

[9] R. Ponge.: Noncommutative Geometry and lower dimensional volumes in Riemannian geometry, Lett. Math. Phys. 83, 1-19 (2008).

[10] B. V. Fedosov, F. Golse, E. Leichtnam, E. Schrohe: The noncommutative residue for manifolds with boundary. J. Funct.

[11] E. Schrohe: Noncommutative residue, Dixmier's trace, and heat trace expansions on manifolds with boundary. Contemp. Math. 242, 161-186, (1999).

[12] Y. Wang: Gravity and the Noncommutative Residue for Manifolds with Boundary. Letters in Mathematical Physics. 80,

[13] Y. Wang: Lower-Dimensional Volumes and Kastler-kalau-Walze Type Theorem for Manifolds with Boundary. Commun.

[14] Y. Wang, Differential forms and the Wodzicki residue for manifolds with boundary, J. Geom. Phys. 56 731-753,(2006).

[15] J. Wang, Y. Wang. : A Kastler-Kalau-Walze Type Theorem for 7-Dimensional Manifolds with Boundary. Abstract and

[16] J. Wang, Y. Wang. : A Kastler-Kalau-Walze Type Theorem for five-dimensional manifolds with boundary[1]. International

[17] J. Wang and Y. Wang: The Kastler-Kalau-Walze type theory for 6-dimensional manifolds with boundary.Journal of

[18] J. Wang and Y. Wang:A general A Kastler-Kalau-Walze type theorem for manifolds with boundary.International Journal

[19] J. Wang and Y. Wang:Twisted Dirac operators and the noncommutative residue for manifolds with boundary.J.Pseudo-

[20] J. M. Bismut and W. Zhang.: An Extension of a theorem by Cheeger and Müller, Astérisque, No. 205, paris, (1992).