A TRH ANALOG (DN-1417): EFFECTS ON LOCAL CEREBRAL GLUCOSE UTILIZATION IN CONSCIOUS AND PENTOBARBITALIZED RATS DETERMINED BY THE AUTORADIOGRAPHIC 2-DEOXY-[14C]GLUCOSE METHOD

Yasuo NAGAI, Shigehiko NARUMI, Masaomi MIYAMOTO, Yoshiaki SAJI and Yuji NAGAWA

Central Research Division, Takado Chemical Industries, Ltd., Juso-Honmachi, Yodogawa-ku, Osaka 532, Japan

Accepted February 17, 1983

Abstract—Effects of a TRH (thyrotropin-releasing hormone) analog, DN-1417 (γ-butyrolactone-γ-carbonyl-L-histidyl-L-prolinamide citrate), with regard to the rate of local cerebral glucose utilization (LCGU) were assessed using the autoradiographic 2-deoxy-D-[14C]glucose method to clarify the possible sites of action in conscious and pentobarbitalized rats. DN-1417 (0.5–5 mg/kg, i.v.) significantly shortened the pentobarbital-induced sleeping time in a dose dependent manner, and this effect of DN-1417 was reduced by intracerebroventricular (i.c.v.) pretreatment with atropine methylbromide (20 μg). DN-1417 (5 mg/kg, i.v.) by itself slightly increased the LCGU in the thalamus dorsomedial nucleus and mammillary body and significantly increased it in the septal nucleus. Pentobarbital (30 mg/kg, i.v.) alone produced a marked and diffuse reduction in LCGU throughout the brain at a rate of about 46% of the control. DN-1417 (5 mg/kg, i.v.) markedly reversed the reduction of LCGU induced by pentobarbital. The antagonistic effect of DN-1417 in LCGU was about twice as potent as that of TRH. Locally, significant reversal effects by DN-1417 were observed in the hypothalamus, septal nucleus, hippocampus, mammillary body, thalamus dorsomedial nucleus, caudate-putamen, nucleus accumbens, pontine gray matter and so on. These actions of DN-1417 were almost completely abolished in all areas except for the visual cortex under the condition of pretreatment with atropine methylbromide (20 μg, i.c.v.). On the other hand, pimozide (1 mg/kg, i.p.) augmented the actions of DN-1417. Thus, DN-1417 seems to act on the level of consciousness via a reticulo-thalamo-cortical system, and reverses the LCGU reduction induced by pentobarbital via a cholinergic mechanism. The hypothalamus appears to be a crucial site in mediation of the antagonistic action of DN-1417 on pentobarbital.

Following observations of the clinical (1–5) and experimental effects (6–10) of TRH, we have looked for a more potent and long-acting analog that does not have hormonal action. TRH is short-acting in the central nervous system (CNS) due to its short half-life in tissues (11, 12), and most of its effects in the CNS are independent of the function of the hypothalamo-pituitary axis.

Among a number of TRH analogs, γ-butyrolactone-γ-carbonyl-L-histidyl-L-
prolinamide citrate (DN-1417) is the most potent with regard to the CNS activity, and it is without hormonal action (13). DN-1417 is approx. 2-6 times more potent and longer-acting than TRH: it increases motor activity, shortens pentobarbital- and ethanol-induced sleeping time, antagonizes pento-barbital- and reserpine-induced hypothermia, while its TSH-releasing activity is only approx. 1/40 that of TRH in rats (14).

Thus it seems of considerable importance, in evaluating the pharmacological mechanism and the possible action sites in brain, to study the effect of DN-1417 on local cerebral glucose utilization (LCGU) since there is a close relationship between energy metabolism and the level of functional activity in the CNS (15). We now report the antagonistic effects of DN-1417 against pentobarbital-induced reduction of LCGU in rats, and the results were compared with findings obtained with TRH.

Materials and Methods

Animals: Experiments were performed on male Sprague-Dawley (Jcl: SD, SPF) rats weighing 280-330 g for measurements of pentobarbital-induced sleeping time and rats weighing 350-450 g for measurements of LCGU and miscellaneous physiological parameters.

Materials: [14C]DG (spec. act., 50-56 mCi/mmol) was purchased from New England Nuclear Corp. Other drugs, reagents and enzymes used were DN-1417 (γ-butyrolactone-γ-carbonyl-L-histidyl-L-prolinamide citrate, Takeda), TRH (L-pyroglutamyl-L-histidyl-L-prolinamide L-tartrate monohydrate, Takeda), pentobarbital Na (Mintal®, Tanabe), glucose-oxidase (Boehringer-Mannheim, grade II), peroxidase (Boehringer-Mannheim, grade II), ABTS® (Boehringer-Mannheim, Superior quality), atropine methylbromide (Tropin®, Takeda), and pimozide (Orap®, Fujisawa). Peptides and pentobarbital were dissolved in 0.9% physiological saline (saline). The doses were expressed in terms of the weight of the salt.

Measurement of pentobarbital-induced sleeping time: DN-1417 (0.2-5 mg/kg) or saline was given to groups of 7-8 rats intravenously (i.v.) 10 min after the onset of loss of the righting reflex induced by intraperitoneal (i.p.) administration of pentobarbital (40 mg/kg). The time from the administration of DN-1417 to the time of regaining the righting reflex was taken as the sleeping time.

Atropine methylbromide (20 µg/rat) was given intracerebroventricularly (i.c.v.) as described previously (16), 5 min before and DN-1417 (5 mg/kg, i.v.) was administered 15 min after the injection of pentobarbital (30 mg/kg, i.v.). Percent shortening of the sleeping time by DN-1417 was calculated by the formula: [1-(sleeping time in DN-1417-treated group/sleeping time in saline-treated control group)]×100.

Measurement of rate of local cerebral glucose utilization: Surgical procedures, measurements of plasma glucose, plasma [14C] concentration and brain tissue [14C] concentration and calculation of LCGU were performed as described previously (16). An interval of 5 min between application of DN-1417 and infusion of [14C]DG was taken as in the case of TRH (16). Pimozide (1 mg/kg, i.p.) or atropine methylbromide (20 µg, i.c.v.) was administered 4 hr and 5 min before, respectively; and DN-1417 (5 mg/kg, i.v.) or TRH (10 mg/kg, i.v.) was administered 15 min after administration of pentobarbital. Pentobarbital (30 mg/kg, i.v.) was administered 20 min before an intravenous infusion of 50 µCi/0.5 ml of saline/rat of [14C]DG over a 30 sec period.

Measurement of miscellaneous physiological parameters: Another series of experiments were performed to assess the effects of various drug treatments on physiological
parameters such as blood gases and general circulation. Groups of four rats were subjected to the same surgical procedures as for measurements of LCGU. Blood pressure, heart rate and arterial blood pH, pCO₂ and pO₂ were measured as described previously (16).

Statistics: Statistical comparison between different treatments was made by the Student’s t-test.

Results

Antagonistic effect of DN-1417 on pentobarbital-induced sleep: As shown in Table 1, DN-1417 in doses of 0.5–5 mg/kg, i.v. significantly shortened the pentobarbital-induced sleeping time, in a dose dependent manner, when DN-1417 was injected 10 min after loss of the righting reflex by the administration of pentobarbital (40 mg/kg, i.p.). Citric acid, a salt constituent of DN-1417, was not effective in a dose (1.7 mg/kg, i.v.) equivalent to the highest dose of DN-1417 (5 mg/kg, i.v.) used. The shortening action of DN-1417 (5 mg/kg) injected 15 min after the administration of pentobarbital (30 mg/kg, i.v.) was almost completely blocked by pretreatment with atropine methylbromide (20 μg, i.c.v.) (Table 2).

Effects of DN-1417 by itself and against pentobarbital in LCGU: The rates of LCGU in various brain structures of rats treated with DN-1417, pentobarbital alone and its combination with DN-1417 or TRH are given in Table 3. DN-1417 by itself slightly increased LCGU in the thalamus dorsomedial nucleus and mammillary body, as compared with the control; and a significant increase was found

Table 1. Effect of DN-1417 on pentobarbital-induced sleeping time in rats

Treatment	Dose (mg/kg, i.v.)	Sleeping time (mean±S.E.M. min)	Shortening (%)
Saline	—	43.1±1.2	—
Citric acid	1.7	45.7±3.2	—6.0
DN-1417	0.2	39.9±5.1	7.6
	0.5	34.8±2.1	19.3^a
	1.0	31.0±2.6	28.3^a
Inc.	5.0	25.4±1.8	41.1^a

All values are the mean±S.E.M. of 7–8 rats. DN-1417, citric acid or saline was administered 10 min after loss of the righting reflex by the administration of pentobarbital (40 mg/kg, i.p.). Citric acid, a constituent of DN-1417, was not effective in a dose (1.7 mg/kg) equivalent to DN-1417 (5 mg/kg) used. ^aStatistically significant level, P<0.01 vs. saline.

Table 2. Influence of atropine methylbromide (ATMB) on the antagonistic effect of DN-1417 against pentobarbital-induced sleeping time

Treatment	Dose	Sleeping time (mean±S.E.M. min)	Shortening (%)
Saline	—	38.4±2.1	—
DN-1417	5 mg/kg	18.4±2.6^a	52.1
ATMB	20 μg	45.4±5.5	—
ATMB +DN-1417	20 μg	40.2±3.2	11.5

All values are the mean±S.E.M. of 5 rats. ATMB (20 μg, i.c.v.) was administered 5 min before and DN-1417 (5 mg/kg, i.v.) was administered 15 min after the injection of pentobarbital (30 mg/kg, i.v.). ^aStatistically significant level, P<0.001 vs. saline.
Table 3. Effects of DN-1417, pentobarbital alone and its combination with DN-1417 or TRH on local cerebral glucose utilization in rats

Structure	Control	DN-1417	Pentobarbital	Saline	DN-1417	TRH
Visual cortex	71.7±4.6	87.5±11.3	31.8± 4.0	46.0±3.9	48.7±5.7	
Auditory cortex	102.0±7.3	112.3±29.8	50.1± 6.4	61.8±3.7	64.6±7.1	
Parietal cortex	80.6±5.4	98.6± 6.8	33.7± 5.5	46.9±4.2	51.2±5.2	
Sensory-motor cortex	84.3±5.4	91.3± 4.6	36.1± 4.1	53.2±4.5	48.6±5.1	
Olfactory cortex	65.6±5.0	69.7± 7.2	22.9± 8.2	43.8±3.5	50.2±5.4	50.2±5.4
Frontal cortex	67.8±5.5	71.2± 6.6	26.5± 5.3	38.3±4.1	43.0±5.1	
Thalamus: Lateral nucleus	84.3±4.9	93.8± 6.4	30.2± 5.8	48.9±4.1	46.6±5.3	
Ventricle nucleus	69.7±5.6	85.5± 6.2	29.2± 6.4	44.7±3.6	44.3±6.0	
Dorsomedial nucleus	103.0±6.7	125.0±10.2	42.8± 6.5	67.0±4.3	65.3±7.8	
Habenula	95.4±5.8	98.4± 6.2	45.2± 6.5	59.6±3.9	54.6±6.4	
Subthalamic nucleus	67.4±5.4	66.4± 4.2	33.0± 2.9	40.2±3.2	35.3± 4.1	
Medial geniculate body	74.9±5.9	75.6± 5.4	29.5± 8.4	40.4±3.4	40.8±5.8	
Lateral geniculate body	65.4±4.6	71.0± 3.5	28.1± 4.4	41.2±2.6	42.2±4.8	
Hypothalamus	44.6±4.1	49.2± 2.8	19.1± 1.6	36.6±4.2	31.6±3.4	
Mamillary body	106.6±8.3	124.9±7.6	41.4± 4.7	77.0±4.7	50.7±3.7	
Hippocampus: Ammon’s horn	62.4±6.9	67.8± 3.3	34.9± 5.0	50.1±3.0	46.3±4.9	
Dentate gyrus	43.8±5.6	46.7± 3.8	22.0± 3.5	34.8±4.0	34.3±4.3	
Amygdala	43.2±5.0	44.4± 3.1	27.8± 8.1	35.1±3.2	33.7± 5.7	
Septal nucleus	38.8±2.2	49.5± 3.8	14.5± 3.7	32.2±2.0	32.1±4.0	
Caudate-putamen	85.7±5.7	92.4± 4.9	31.4± 5.4	49.4±2.2	53.5±6.4	53.5±6.4
Nucleus accumbens	64.5±7.2	73.5± 5.8	27.7± 6.6	50.0±3.5	52.4±4.4	
Globus pallidus	32.3±3.3	39.2± 5.8	12.2± 1.4	29.2±6.3	24.5±3.2	
Substantia nigra	61.3±7.8	53.5± 6.1	17.5± 4.1	32.8±2.6	30.6±3.3	
Raphe nucleus	71.1±3.7	71.9± 5.6	24.6± 5.0	39.0±4.5	40.9±4.7	
Locus caeruleus	85.8±4.9	94.6± 2.8	31.8± 4.7	46.2±4.9	46.1±5.8	
Vestibular nucleus	108.1±6.3	109.2±7.3	71.2± 6.5	76.3±6.3	81.8±7.5	
Cochlear nucleus	125.2±7.4	128.8±3.1	78.7±13.6	108.1±9.2	116.5±12.3	
Superior olivary nucleus	136.2±8.6	148.3±8.7	90.5±11.9	119.0±8.9	119.9±16.8	
Lateral lemniscus	130.8±4.0	103.8±4.0	71.9± 5.4	74.8±16.4	93.3±8.1	
Inferior colliculus	156.7±9.2	163.9±3.7	81.6±10.9	99.6±3.6	110.0±10.3	
Superior colliculus	65.4±5.8	70.3± 5.7	30.7± 5.3	51.7±3.9	46.8±6.9	
Pontine gray matter	45.6±2.9	49.7± 3.3	19.8± 3.2	33.7±3.8	32.1± 3.5	
Cerebellar cortex	44.2±6.7	42.7± 3.8	17.9± 3.8	27.4±3.5	31.7±4.3	
Cerebellar nucleus	78.7±4.6	80.8± 7.3	45.9± 5.2	50.8±5.2	53.9±5.0	

All values are the mean±S.E.M. of 5 rats. DN-1417 (5 mg/kg, i.v.) was administered 5 min before the infusion of [14C]DG. Pentobarbital (30 mg/kg, i.v.) was injected 15 min before the injection of DN-1417 (5 mg/kg, i.v.). TRH (10 mg/kg, i.v.) or saline, which was administered 5 min before the infusion of [14C]DG. Statistically significant level: a) P<0.05, b) P<0.01, c) P<0.001 vs. control and d) P<0.05, e) P<0.01, f) P<0.001 vs. pentobarbital alone.

in the septal nucleus (P<0.05). Figure 1 shows the representative autoradiographs of the coronal section at the level of the septal nucleus. The dark areas in the autoradiograph represent high glucose utilization. Throughout the brain except for the amygdala, pentobarbital induced a marked and diffuse reduction in LCGU to about 46% of the control. DN-1417 and TRH given 15 min after pentobarbital significantly
EFFECT OF DN-1417 ON LCGU IN RATS

Fig. 1. Representative autoradiographs of coronal sections at level of the septal nucleus in rats. Autoradiographs were taken from a control rat (A) and a rat treated with DN-1417 (5 mg/kg, i.v.) (B). Abbreviation used: LS, septal nucleus.

EFFECT OF DN-1417 ON LCGU IN RATS

reversed the reduction in LCGU induced by pentobarbital. The effect of DN-1417 (5 mg/kg) was roughly equipotent to TRH (10 mg/kg). The structures reversed by DN-1417 did not always coincide with those by TRH and were observed in the following 16 of 34 structures examined: cerebral cortex (visual, sensory-motor and olfactory cortices), diencephalon (thalamus dorsomedial nucleus, hypothalamus, mammillary body and lateral geniculate body), limbic areas (hippocampus ammon's horn and dentate gyrus and septal nucleus), basal ganglia (caudate-putamen, nucleus accumbens and globus pallidus) and mesencephalon (substantia nigra, superior colliculus and pontine gray matter).

Influence of pimozide or atropine methylbromide on the antagonistic effect of DN-1417 against pentobarbital in LCGU: A second series of experiments were performed with pimozide and atropine methylbromide. The antagonistic effect of DN-1417 on pentobarbital in LCGU was augmented by a dopamine receptor blocker, pimozide (1 mg/kg, i.p.), but a cholinergic blocker, atropine methylbromide (20 μg, i.c.v.), abolished the effect of DN-1417 in all structures except for the visual cortex (Fig. 2). Figure 3 shows representative autoradiographs of coronal sections at the level of the hypothalamus under conditions of various treatments. In the hypothalamus, DN-1417 antagonized the effect of pentobarbital, and it was blocked by atropine methylbromide.

Effects of various drug treatments on miscellaneous physiological parameters: Physiological parameters were measured before and at two points of time after saline administration instead of [14C]DG, which corresponded to 10 and 45 min after the beginning of the [14C]DG infusion in the experiment of LCGU, respectively (Table 4). Pentobarbital dramatically reduced blood pressure to about 50–60 mmHg and heart rate to about 60–70% of the control immediately after the injection. The recovery was gradual, and several minutes after the injection, the systolic blood pressure returned to about 90–100 mmHg. This recovery was accelerated by the administration of either DN-1417 or TRH. The heart rate did not recover so rapidly and was little influenced by the administration of DN-1417 or TRH. The depression of respiration induced by pentobarbital tended to raise the blood pCO2 and lower the blood pO2. As a result, the blood pH shifted slightly to acidic side from pH 7.4.

Discussion

In a foregoing paper (16), we reported that TRH clearly shortened the pentobarbital-induced sleeping time and the effect of TRH was almost completely blocked by pretreat-
Fig. 2. Influence of pimozide (PMZ) or atropine methylbromide (ATMB) on the antagonistic effect of DN-1417 against pentobarbital in local cerebral glucose utilization in rats. All values are the mean of 5 animals. DN-1417 (5 mg/kg, i.v.) was administered 15 min after the injection of pentobarbital. (A) Influence of PMZ on the antagonistic effect of DN-1417 against pentobarbital. PMZ (1 mg/kg, i.p.) was administered 4 hr before the injection of pentobarbital (30 mg/kg, i.v.). Statistically significant level: *P<0.05, **P<0.01, ***P<0.001, pentobarbital+PMZ (shaded bar) vs. pentobarbital+PMZ+DN-1417 (white bar). (B) Influence of ATMB on the antagonistic effect of DN-1417 against pentobarbital. ATMB (20 ug, i.c.v.) was administered 5 min before the injection of pentobarbital (30 mg/kg, i.v.). Statistically significant level: *P<0.05, pentobarbital+ATMB (dotted bar) vs. pentobarbital+ATMB+DN-1417 (white bar).

TRH by itself (5 mg/kg, i.v.) reduced LCGU in the whole brain to about 80% of the control, and yet it reversed the reduction of LCGU induced by pentobarbital (30 mg/kg, i.v.). The effect of TRH was abolished by pretreatment with atropine methylbromide (20 µg, i.c.v.) in rats. TRH by itself (5 mg/kg, i.v.) reduced LCGU in the whole brain to about 80% of the control, and yet it reversed the reduction of LCGU induced by pentobarbital (30 mg/kg, i.v.). The effect of TRH was abolished by pretreatment with atropine methylbromide (20 µg, i.c.v.).

A TRH analog, DN-1417, shortened the pentobarbital-induced sleeping time and antagonized the reduction of LCGU induced by pentobarbital to a greater extent than did TRH. These effects were also abolished by atropine methylbromide (20 µg, i.c.v.). Unlike TRH, DN-1417 by itself slightly increased LCGU in the thalamus dorsomedial nucleus and mammillary body; and especially, a significant increase was noted in the septal nucleus. TRH and DN-1417 have different actions on LCGU, suggesting that DN-1417...
EFFECT OF DN-1417 ON LCGU IN RATS

Fig. 3. Representative autoradiographs of coronal sections at the level of the hypothalamus in rats. Autoradiographs were taken from a control rat and rats treated with DN-1417, pentobarbital, pentobarbital + DN-1417, pentobarbital + atropine methylbromide (ATMB) + DN-1417, and pentobarbital + pimozide (PMZ) + DN-1417. PMZ (1 mg/kg, i.p.) was administered 4 hr before and ATMB (20 µg, i.c.v.) was administered 5 min before the injection of pentobarbital (30 mg/kg, i.v.). The rat was treated with DN-1417 (5 mg/kg, i.v.) at 15 min after the injection of pentobarbital.

may act on the CNS in a manner different from TRH.

The mammillary body in the rat receives input from the ventromedial hypothalamus (17) and sends efferents into the mammillo-thalamic tract which terminates in the cell groups within the anterior thalamic nuclei (18). It also connects with the frontal cortex via the anterior thalamus (19). From the autoradiographs, the thalamus dorsomedial nucleus of the present studies corresponds to a part of the anterior thalamic nuclei. The reticulo-thalamo-cortical system that includes the above regions plays a significant role in attention, consciousness, sleep and wakefulness (20–22). Therefore, the increase in LCGU in the mammillary body, thalamus dorsomedial nucleus and some parts of the cerebral cortex suggests that DN-1417 may stimulate a reticulo-thalamo-cortical system and control the level of consciousness. These effects of DN-1417 were more evident under the condition of pentobarbital-induced sleep. DN-1417 did not produce any change in LCGU in the nucleus accumbens, in which TRH stimulated [3H]dopamine release was observed in the in vitro experiments (23, 24). The nucleus accumbens has been suggested as a site of motor stimulant action by TRH and DN-1417 in rats (9).

Pentobarbital induced a marked and diffuse reduction in LCGU in almost all the cerebral structures, as shown in Table 3. DN-1417 significantly reversed the effect of pentobarbital in the various structures, and the effect of DN-1417 was roughly twice as potent as that of TRH in the rat whole brain. The most sensitively reversed structures were the hypothalamus and septal nucleus, followed by the hippocampus, mammillary
Table 4. Effects of various treatments on miscellaneous physiological parameters in rats

Treatment	Time (min)	pH	pCO₂ (mm Hg)	pO₂ (mm Hg)	Heart rate (beat/min)	Blood pressure (mm Hg)
Control	10 min	7.39±0.01	35.4±2.7	91.3±4.3	479.5±7.8	128.8±3.0
Saline	10 min	7.30±0.01	33.5±2.4	93.3±3.1	505.0±20.1	121.3±4.5
45 min	7.36±0.01	33.4±2.0	96.0±3.8	471.0±28.0	117.5±4.8	
DN-1417	10 min	7.43±0.01	34.8±0.9	101.8±9.1	490.5±11.6	128.9±2.4
45 min	7.43±0.02	31.0±0.8abc	88.3±7.0	481.5±11.6	121.3±1.3abc	
Control	10 min	7.45±0.02	27.1±2.3	103.3±9.7	472.5±21.5	118.3±0.6abc
Pentobarbital	10 min	7.41±0.01	34.6±1.5	86.0±2.0	497.5±9.8	124.3±1.5
45 min	7.39±0.01	39.3±1.2	91.3±1.4	458.5±28.9	112.5±4.3	
Pentobarbital	10 min	7.40±0.01	32.9±0.5	88.0±1.5	472.5±12.1	127.8±3.6
+ DN-1417	45 min	7.36±0.01	36.6±2.9	95.7±7.5	415.5±22.8	113.5±7.0
Pentobarbital	10 min	7.40±0.01	33.3±2.0	89.7±4.4	426.0±10.7abc	111.5±3.8abc
+ TRH	45 min	7.43±0.02	34.9±1.5	94.3±0.9	478.5±12.1	119.0±0.6
Control	10 min	7.42±0.03	34.7±2.3	94.0±2.0	448.5±3.8	123.3±1.4
Pentobarbital	10 min	7.36±0.01	40.8±2.0	89.0±2.9	402.0±12.2abc	107.0±3.3abc
+ ATMB	45 min	7.38±0.02	36.7±2.5	97.3±3.5	444.0±13.6	112.5±3.6abc
Pentobarbital	10 min	7.42±0.01	33.9±0.5	92.3±2.2	480.0±17.1	125.0±1.8
+ ATMB	45 min	7.34±0.02	42.9±3.5abc	65.6±4.4	450.0±15.7	106.3±5.9abc
+ DN-1417	45 min	7.39±0.01	35.2±1.5	88.3±2.8	424.5±20.1	103.0±3.0abc
Pentobarbital	10 min	7.40±0.02	34.8±1.2	94.2±7.1	489.0±7.1	123.5±1.2
+ PMZ	45 min	7.38±0.01	38.7±1.3	90.6±3.5	377.5±25.1abc	110.3±3.9abc
Pentobarbital	10 min	7.40±0.02	36.2±1.8	94.7±3.7	396.0±26.9abc	110.8±3.9abc
- DN-1417	45 min	7.43±0.01	36.8±0.6	92.5±2.3	483.0±12.6	124.0±5.1
+ PMZ	10 min	7.38±0.02	41.2±0.9abc	82.8±0.6ab	456.0±17.7	114.3±3.4
- DN-1417	45 min	7.42±0.01	36.9±2.0	89.2±2.9	426.0±16.8ab	115.0±2.3

All values are the mean±S.E.M. of 4 rats. Pimoide (PMZ, 1 mg/kg, i.p.) was administered 4 hr before and ATMB (20 μg, i.c.v.) was administered 5 min before the injection of pentobarbital (30 mg/kg, i.v.). Pentobarbital (30 mg/kg, i.v.) and DN-1417 (5 mg/kg, i.v.) or TRH (10 mg/kg, i.v.) were injected 20 min and 5 min before the saline instead of [14C]DG administration, respectively. Statistically significant level: ab P<0.05, abc P<0.01 vs. control.

body, thalamus dorsomedial nucleus, pontine gray matter, sensory-motor cortex and so on. In these structures, non-specific actions also may be involved due to the recovery of the righting reflex by DN-1417 during the 45 min interval after initiating the [14C]DG infusion.

Kalivas and Horita reported that the most sensitive site in the analeptic action of TRH against pentobarbital-induced sleep was the lateral septum and suggested that TRH modulates neuronal function in the cholinergic septal-hippocampal pathway via the septum (25, 26). The increase in LCGU by itself and the reversal effect of DN-1417 against pentobarbital in the septal nucleus may support the above speculation.

Miyamoto et al. elucidated the neuroanatomical substrates mediating the shortening action of TRH or DN-1417 on pentobarbital-induced sleep using an intracerebral microinjection technique in rats (27). The most sensitive sites were the posterior hypothalamic regions including the dorsal
EFFECT OF DN-1417 ON LCGU IN RATS 643

premammillary nucleus, lateral hypothalamic area and posterior nucleus of hypothalamus. Importance of cholinergic mechanisms was suggested in the effects of TRH or DN-1417 in these structures, but not in the septal nucleus. These results coincided with the present findings on LCGU in the hypothalamus and mammillary body.

Pentobarbital reduces the turnover rate of acetylcholine (ACh) in the cerebral cortex (28), hippocampus (29), and hypothalamus (30) due to the inhibition of choline uptake. Narumi et al. showed that TRH or DN-1417 reversed [3H]-choline uptake reduction induced by pentobarbital and stimulated the conversion of [3H]-choline to [3H]-ACh in the slices of rat cerebral cortex, hippocampus, striatum and diencephalon (31). Yarbrough et al. reported the TRH antagonized the reduction in sodium dependent high affinity choline uptake induced by pentobarbital (32). As high affinity choline uptake mechanisms are energy dependent (33, 34), all these results coincide with the present findings that DN-1417 or TRH reverses the LCGU reduction induced by pentobarbital in the hippocampus, caudate-putamen, cerebral cortex and thalamus dorsomedial nucleus via cholinergic mechanisms. On the other hand, dopaminergic mechanisms may not be involved in the effect of DN-1417 or TRH because pimozide did not block the antagonistic effect of DN-1417 against pentobarbital in LCGU. The results are in line with the fact that pimozide did not block the shortening effect of DN-1417 or TRH on pentobarbital-induced sleep (27).

Pentobarbital dramatically reduced blood pressure and heart rate immediately after the injection, but the levels reverted to normal within a few minutes when the LCGU experiment was started. Pentobarbital may reduce glucose transfer into the brain due to these effects on general circulation (35), but the reduction is revised to some extent by the lumped constant (0.483) which Sokoloff introduced for thiopental on LCGU (16). Thus, these changes in physiological parameters probably do not substantially alter the results of LCGU.

In conclusion, DN-1417 by itself increased the LCGU in the septal nucleus, mammillary body and thalamus dorsomedial nucleus and reversed the reduction of LCGU induced by pentobarbital in the hypothalamus, septal nucleus, hippocampus, mammillary body, thalamus dorsomedial nucleus, and pontine gray matter, probably via a reticulo-thalamo-cortical system. A cholinergic mechanism is responsible for the antagonistic effect of DN-1417 on pentobarbital in LCGU, but a dopaminergic mechanism may not be involved in it.

Acknowledgment: We thank M. Ohara, Kyushu University, for comments on the manuscript.

References
1) Kastin, A.J., Ehrensing, R.H., Schalch, D.S. and Anderson, M.S.: Improvement in mental depression with decreased thyrotropin response after administration of thyrotropin-releasing hormone. Lancet II, 740–742 (1972)
2) Wilson, I.C., Lara, P.P. and Prange, A.J., Jr.: Thyrotropin-releasing hormone in schizophrenia. Lancet II, 43–44 (1973)
3) Chase, T.M., Woods, A.C., Lipton, M.A. and Morris, C.E.: Hypothalamic releasing factors and Parkinson disease. Arch. Neurol. 31, 55–56 (1974)
4) Huey, L.Y., Janowsky, D.S., Mandell, A.J., Judd, L.L. and Pendery, M.: Preliminary studies on the use of thyrotropin releasing hormone in manic states, depression and the dysphoria of alcohol withdrawal. Psychopharmacol. Bull. 11, 24–27 (1975)
5) Naaije, P.: Thyrotropin, prolactin and growth hormone responses to TRH in barbiturate coma and in depression. Clin. Endocrinol. (Oxf.) 9, 49–58 (1978)
6) Prange, A.J., Jr., Breese, G.R., Cott, J.M., Martin, B.R., Cooper, B.R., Wilson, I.C. and Plotnikoff, N.P.: Thyrotropin releasing hormone: Antagonism of pentobarbital in rodents. Life Sci. 14, 447–455 (1974)
7) Plotnikoff, N.P., Prange, A.J., Jr., Breese, G.R. and Wilson, I.C.: Thyrotropin releasing hormone: Enhancement of DOPA activity in thyroidectomized rats. Life Sci. 14, 1271–1278 (1974)

8) Breese, G.R., Cott, J.M., Cooper, B.R., Prange, A.J., Jr., Lipton, M.A. and Plotnikoff, N.P.: Effects of thyrotropin-releasing hormone (TRH) on the actions of pentobarbital and other centrally acting drugs. J. Pharmacol. Exp. Ther. 193, 11–22 (1975)

9) Miyamoto, M. and Nagawa, Y.: Mesolimbic involvement in the locomotor stimulant action of thyrotropin-releasing hormone (TRH) in rats. Eur. J. Pharmacol. 44, 143–152 (1977)

10) Yarbrough, G.G. and Singh, D.K.: Intravenous thyrotropin releasing hormone (TRH) enhances the excitatory actions of acetylcholine (ACh) on rat cortical neurons. Experientia 34, 390 (1978)

11) Prasad, C. and Peterkofsky, A.: Demonstration of pyroglutamylpeptidase and amidase activities toward thyrotropin-releasing hormone in hamster hypothalamus extracts. J. Biol. Chem. 251, 3229–3234 (1976)

12) Nagai, Y., Yokohama, S., Nagawa, Y., Hirooka, Y. and Nihei, N.: Blood level and brain distribution of thyrotropin-releasing hormone (TRH) determined by radioimmunoassay after intravenous administration in rats. J. Pharmacobiodyn. 3, 500–506 (1980)

13) Fukuda, N., Nishimura, O., Shikata, M., Hatanaka, C., Miyamoto, M., Saji, Y., Nakayama, R., Fujino, M. and Nagawa, Y.: Synthesis and pharmacology of TRH analogs to separate central nervous actions from endocrine activity. Chem. Pharm. Bull. 28, 1667–1672 (1980)

14) Miyamoto, M., Fukuda, N., Narumi, S., Nagai, Y., Saji, Y. and Nagawa, Y.: γ-Butyrolactone-γ-carbonyl-histidyl-prolinamide citrate (DN-1417): A novel TRH analog with potent effects on the central nervous system. Life Sci. 28, 861–869 (1981)

15) Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O. and Shinohara, M.: The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977)

16) Nagai, Y., Narumi, S., Nagawa, Y., Sakurada, O., Ueno, H. and Ishii, S.: Effect of thyrotropin-releasing hormone (TRH) on local cerebral glucose utilization, by the autoradiographic 2-deoxy-[14C]glucose method, in conscious and pentobarbitalized rats. J. Neurochem. 35, 963–971 (1980)

17) Saper, C.B., Swanson, L.W. and Cowan, W.M.: The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J. Comp. Neurol. 169, 409–442 (1976)

18) Croteau, J.A.F.: An autoradiographic study of the projections of the mammillo-thalamic tract in the rat. Brain Res. 85, 211–219 (1975)

19) Divac, I., Kosmal, A., Bjorklund, A. and Lindvall, O.: Subcortical projection to the prefrontal cortex in the rat as revealed by the horseradish peroxidase technique. Neuroscience 3, 785–796 (1978)

20) Lindsley, D.B.: Attention, consciousness, sleep and wakefulness. In Handbook of Physiology, Sect. 1, Neurophysiology, Edited by Field, J., Magoun, H.W. and Hall, V.E., Vol. III, p. 1553–1593, Am. Physiol. Soc., Washington, D.C. (1960)

21) Scheibel, M.E. and Scheibel, A.B.: Structural organization of nonspecific thalamic nuclei and their projection toward cortex. Brain Res. 6, 60–94 (1967)

22) Skinner, J.E. and Lindsley, D.B.: Electrophysiological and behavioral effects of blockade of the nonspecific thalamo-cortical system. Brain Res. 6, 95–118 (1967)

23) Kerwin, R.W. and Pycock, C.J.: Thyrotropin releasing hormone stimulates release of [3H]-dopamine from slices of rat nucleus accumbens in vitro. Br. J. Pharmacol. 67, 323–325 (1979)

24) Narumi, S. and Nagawa, Y.: Biogenic amines and thyrotropin-releasing hormone (TRH). In Protein, Nucleic Acid and Enzyme, Edited by Nagatsu, T., Vol. 26, p. 1702–1707, Kyoritsu Shuppan, Tokyo (1981) (in Japanese)

25) Kalivas, P.W. and Horita, A.: Thyrotropin-releasing hormone: Central site of action in antagonism of pentobarbital narcosis. Nature 278, 461–463 (1979)

26) Kalivas, P.W. and Horita, A.: Thyrotropin-releasing hormone: Neurogenesis of actions in the pentobarbital narcotized rat. J. Pharmacol. Exp. Ther. 212, 203–210 (1980)

27) Miyamoto, M., Nagai, Y., Narumi, S., Saji, Y. and Nagawa, Y.: TRH and its analog (DN-1417): Antipentobarbital action and involvement of cholinergic mechanism. Pharmacol. Biochem. Behav. 17, 797–806 (1982)

28) Mitchell, J.F.: The spontaneous and evoked release of acetylcholine from the cerebral cortex. J. Physiol. 165, 98–118 (1963)

29) Atweh, S., Simon, J.R. and Kuhar, M.J.: Utilization of sodium-dependent high affinity choline uptake in vitro as a measure of the activity of cholinergic neurons in vivo. Life Sci.
EFFECT OF DN-1417 ON LCGU IN RATS

30) Simon, J.R., Atweh, S. and Kuhar, M.J.: Sodium-dependent high affinity choline uptake: A regulatory step in the synthesis of acetylcholine. J. Neurochem. 26, 909-922 (1978)

31) Narumi, S., Nagai, Y., Miyamoto, M. and Nagawa, Y.: Thyrotropin-releasing hormone (TRH) and its analog (DN-1417): Interaction with pentobarbital in choline uptake and acetylcholine synthesis of rat brain slices. Life Sci. 32, 1637-1645 (1983)

32) Yarbrough, G.G., Haubrich, D.R. and Schmidt, D.E.: Thyrotropin releasing hormone (TRH) and MK-771 interactions with CNS cholinergic mechanisms. In Iontophoresis and Transmitter Mechanism in the Mammalian Central Nervous System, Edited by Ryall, R.W. and Kelly, J.S., p. 136-138. Elsevier/North-Holland and Biomedical Press, New York (1978)

33) Nakamura, R., Cheng, S.-C. and Naruse, H.: A study on the precursors of the acetyl moiety of acetylcholine in the brain slices. Biochem. J. 118, 443-450 (1970)

34) Tuček, S. and Cheng, S.-C.: Provenance of the acetyl group of acetylcholine and compartmentation of acetyl-CoA and Krebs cycle intermediates in the brain in vivo. J. Neurochem. 22, 893-914 (1974)

35) Gjedde, A. and Rasmussen, M.: Pentobarbital anesthesia reduces blood-brain glucose transfer in the rat. J. Neurochem. 35, 1382-1387 (1980)