Sequential Catalytic Functionalization of Aryltriazenyl Aldehydes for the Synthesis of Complex Benzenes

Sangwon Seo, Ming Gao, Eva Paffenholz, and Michael C. Willis

ABSTRACT: We demonstrate that aryltriazenes can promote three distinctive types of C–H functionalization reactions, allowing the preparation of complex benzene molecules with diverse substitution patterns. 2-Triazenylbenzaldehydes are shown to be efficient substrates for Rh(I)-catalyzed intermolecular alkyne hydroacylation reactions. The resulting triazene-substituted ketone products can then undergo either a Rh(III)-catalyzed C–H activation, or an electrophilic aromatic substitution reaction, achieving multifunctionalization of the benzene core. Subsequent triazene derivatization provides traceless products.

KEYWORDS: hydroacylation, rhodium, triazene, benzene, sequential catalysis

Given the abundance of C–H bonds in organic molecules, the functionalization of these bonds represents an ideal method for chemical manipulation. Transition-metal catalysis has played a significant role in the advancement of this field, providing powerful methods that are comparable to conventional metal-catalyzed cross-coupling reactions. In particular, the use of directing group strategies has been the dominant approach to achieve regioselective reactions. A limitation of such strategies is the coordinating group, which, by design, is present to direct the metal catalyst to specific C–H bonds of the starting material, will also be present in the final product. This limits synthetic flexibility, and, thus, the ability to remove or transform the directing group to other useful functionalities is advantageous. In addition, it would be beneficial if the coordinating group was able to promote, not only one, but multiple C–H functionalization reactions in a selective way.

Metal-catalyzed hydroacylation reactions are examples of C–H functionalizations in which the C–C multiple bond of an alkene or alkyne inserts into the formyl C–H bond of an aldehyde. Despite the advent of several non-chelation-controlled methods for hydroacylation reactions, intermolecular versions of these processes based on the use of some form of substrate chelation remain the most common. Aldehydes featuring P-, O-, N-, and S-based chelating groups, as well as chelating alkenes, have all been used, and reactions that proceed under mild reaction conditions and encompass broad substrate scopes have been achieved. Regio- and enantioselective reactions have also been reported, and applications have been developed. With these advances in place, strategies to mitigate the issues associated with the presence of chelating-substituents are needed. In this context, approaches have been developed where the chelating group is either incorporated into a target structure, or transformed to an alternate functionality. For example, our laboratory has shown that a chelating methyl sulfide employed in hydroacylation reactions can be directly utilized in subsequent Rh-catalyzed carbothiolation, arylation, or reduction reactions.
2-triazeny benzaldehydes (Scheme 1c). The triazene group offers many potential advantages: (1) although not previously reported, the triazene group should be capable of acting as a directing group in metal-catalyzed intermolecular hydroacylation, with the first nitrogen atom positioned to form a stable five-membered acyl-metal-hydride complex; (2) the electron-donating properties of the triazene would promote electrophilic aromatic substitution reactions; (3) triazene removal, with respect to di-functionalization, which, in turn, limits synthetic applications. However, we were confident that our reaction design, in which a variety of chemically distinct C–H bonds are present, would alleviate these issues. Herein, we show that it is indeed possible to use triazene groups in Rh-catalyzed chelation-controlled alkyne hydroacylation, and in a variety of

Further functionalization processes, allowing access to complex benzene products.

2-Triazeny benzaldehyde starting materials were prepared from widely available anthranilic acids using simple procedures. With the substrates in hand, we began our investigation by evaluating a range of known hydroacylation catalysts. It quickly became apparent that the combination of [Rh(nbd)_2]BF_4 (nbd = norbornadiene) and bis(diphenylphosphinoethane) (dppe), in dichloromethane solvent at room temperature, was the most efficient catalyst system for the coupling reaction between the piperidine derivative 1a and a selection of terminal alkynes (see the Supporting Information for further details, as well as Scheme 2a). Excellent conversions and yields were achieved with 1-octyne (2a), t-Bu-substituted alkyne (2b), and phenylacetylene (2c), exclusively delivering the linear isomers of the hydroacylation adducts 3a–3c.

We next explored how readily the triazene group could be removed and replaced with a H-atom (see Scheme 2b). Initial attempts using either known reducing (H-SiCl_3) or acidic conditions were not successful. However, we found that by using either BF_3·OEt_2 or triflic acid, the triazene group could be efficiently removed (Scheme 2b). The use of a THF/water solvent mixture was important for the success of these reactions, because it presumably aids solubility of the diazonium salt intermediate.

Next, we examined the scope of sequential hydroacylation/triazene removal, with respect to different alkynes and 2-triazeny benzaldehydes (Scheme 3). The reaction was generally effective, affording good to excellent yields of the traceless hydroacylation products. Note that both transformations were performed at ambient temperature. Aldehyde 1a could be combined with a range of terminal alkynes, including those used in Scheme 2 (4a–4c), as well as cycloalkyl-substituted alkynes (4d, 4e), enyne (4f), remote-aryl alkyne (4g), and ferrocenyl (4h) substrates. The reactions also proceeded well with a variety of different functional groups positioned around the arene core of the aldehydes; 4-chloro (4i), 4-trifluoromethyl (4j), 5-trifluoromethoxy (4k), and 5-fluoro (4l) substituents were all well-tolerated.

The ability of the coordinating triazene group to facilitate sequential C–H functionalization reactions was evaluated next. Using the conditions developed by Huang for the ortho-C–H
olefination of aryltriazenes as a starting point,24 we found that a Rh(III)-catalyst system could promote the C−H activation of the initial hydroacylation products. Further optimization showed that the original reaction conditions could be simplified, allowing the reaction to proceed efficiently in the absence of silver co-catalysts and at lower temperatures. With the modified conditions in place, we performed the three-component transformations in a sequential manner, with a simple filtration through a silica pad separating the two steps (see Scheme 4). Using two distinctive catalysts, the combination of 2-triazenylbenzaldehyde 1a and t-Bu-substituted alkyne 2b, followed by the ortho-olefination with butyl acrylate, gave the double C−H functionalization product 5a in an excellent yield with absolute regiocontrol. A range of other terminal alkynes could also be employed successfully, including 1-octyne (5b), and those substituted with alkyl chloride (5c), phenyl (5d) and 3-thienyl (5e) groups. In addition, variation of the aldehyde component was possible; 6-fluoro (5f), 5-methyl (5g), 5-flouro (5h), 4-chloro (5i), and 2-naphthyl (5j) substrates all delivered the final products in good to excellent yields. Importantly, the reaction could be performed on increased scale, with the isolation of 1.2 g of benzene 5f showcasing the excellent practicability of the developed method.

The scope, with respect to the alkene component, was also examined. In addition to tert-butyl acrylate (5k), a selection of alkenes absent from Huang’s report was also compatible with the sequential process. These compounds included acrylamide (5l), phenylsulfone (5m), and styrene (5n), which afforded the corresponding products in good yields. As previously noted, the triazene group could subsequently be removed using triflic acid, providing the meta-substituted products (6a and 6b).

Having explored the utility of the triazene unit as a directing group in metal-catalyzed sequential C−H functionalization reactions, we next turned our attention to its potential use as a controlling substituent in electrophilic aromatic substitution reactions. We envisioned that the electron-donating ability of the triazene should allow simple installation of electrophiles onto the benzene core, which would, when combined with hydroacylation and triazene removal, give access to additional...
substitution patterns. Attracted by the versatility of aryl bromides in organic synthesis, we selected bromination as the transformation of choice. We found that one-pot addition of NBS to the hydroacylation reaction mixture with stirring for 1 h at room temperature resulted in para-selective bromination, relative to the triazene substituent. In situ removal of the triazene could be achieved as observed previously, to afford the meta-substituted bromo enone products 7 (see Scheme 5).

Scheme 5. Meta-selective One-Pot Hydroacylation/Bromination, Followed by Removal of the Triazene Group

Bromination using an isolated hydroacylation product confirmed that the process was not metal-catalyzed. In addition, a control reaction established that a simple (E)-chalcone was unreactive under these reaction conditions, confirming the requirement for the triazene group. The scope of the one-pot hydroacylation/bromination was general, and a range of alkynes and aldehydes could be employed successfully. tert-Butyl (7a), 1-octyne (7b), and cyclopentyl (7c) substrates were efficiently transformed to the corresponding sequential products. Phenyl- (7d) and phthalimide-substituted (7e) alkyd examples were also compatible. Bromination of the non-triazene-substituted aromatic rings was not observed in these substrates, establishing the high regioselectivity of this reaction.

2-Triazenylbenzaldehydes substituted with 4-fluoro (7f), 4-chloro (7g), 4-methyl (7h), or 6-fluoro (7i) were also suitable substrates, affording the meta-bromo products in good yields. The 3-fluoro (7j) substrate was also well-tolerated for one-pot hydroacylation/bromination, but triazene removal was inefficient. Chlorination could also be achieved if NBS was replaced with 1-chloro-1,2-benziodoxol-3-one, with meta-chloro-variant (7k) obtained in good yield. The mild reaction conditions and high yields achieved for these meta-halogenated products complements recent metal-catalyzed variants, which often require forcing reaction conditions and specific electron-poor substrates.

Until this point, functionalization of the triazene substituent had only involved conversion to a H atom. However, the full potential of this group was established by transformation to a diverse set of products. For example, Pd-catalyzed cross-coupling of triazene-containing hydroacylation adduct 3c with an aryl boronic acid delivered the arylation product 8 in 88% yield (Scheme 6). Alternatively, treatment of 3c with MeI provided the corresponding aryl iodide 9, which could either be isolated, or reacted directly in a Pd-catalyzed Sonogashira-coupling reaction to deliver alkyne 10. Reaction of 3c with TMS-N3 afforded the azide-substituted enone 11 in excellent yield. The triazene group could also be converted to a deuterium atom via treatment with deuterated TFA and deuterated THF.

Having established a series of transformations that exploit the triazene substituent of hydroacylation adducts, we then combined several of these reactions with hydroacylation (Scheme 7). Because of the importance of polyaromatic compounds, the Pd-catalyzed detriazenate arylation reaction was further studied in a sequential manner (Scheme 7a). 4-Methyl (13a), 2-methyl (13b), and 3-chloro-4-methoxy (13c) aryl boronic acids were combined with 3-fluoro, 4-chloro, and 6-fluoro substrates, respectively, following hydroacylation, giving the biaryl products in excellent yields. Although the addition of a Pd catalyst is required for the arylation step, the overall catalyst loading of the Rh(I) complex is reduced, no oxidant is needed, less-costly reagents are used, and at a lower temperature, when compared to the earlier reported cascade.

Scheme 6. Transformations of the Triazene Group Using Hydroacylation Adduct 3c

“Reaction conditions: (i) (1 equiv), alkynes (1.5 equiv), [Rh(nbd)3]BF4 (5 mol %), dppe (5 mol %), CH2Cl2, 23 °C, 16 h; then NBS (1.5 equiv), 23 or 40 °C, 1–1.5 h, (ii) TIOH (3.3 equiv), THF/H2O, 23 °C, 1 h; Sequential yields = yields over two steps, obtained using one silica purification. 1-chloro-1,2-benziodoxol-3-one used in place of NBS.

ACS Catalysis pubs.acs.org/acscatalysis
Letter
https://doi.org/10.1021/acscatal.1c01722
ACS Catal. 2021, 11, 6091−6098
C−S activation process. Using a single Rh(I) complex, as previously reported by our laboratory, it was possible to achieve sequential alkyne hydroacylation and aryl boronic acid conjugate addition into the enone (Scheme 7b). The triazene group remained intact during these one-pot reactions, and it could then be exploited in a Pd-catalyzed coupling reaction with a further aryl boronic acid to a polyaryl ketone in a selective manner. Finally, alkyne hydroacylation, para-bromination, and ortho-olefination could be combined to achieve three successive C−H functionalization reactions, delivering complex pentasubstituted benzene in a simple procedure. The Pd-catalyzed Suzuki-coupling of was also possible, and it afforded the arylation product.

Scheme 7. (a) Sequential Hydroacylation/Detriazenative Arylation, (b) One-Pot Hydroacylation/1,4-Conjugate Addition Followed by Arylation, and (c) Multiple C−H Functionalizations Followed by Suzuki Coupling

ACS Catalysis pubs.acs.org/acscatalysis

Letter

https://doi.org/10.1021/acscatal.1c01722

ACS Catal. 2021, 11, 6091−6098

6095

of sequential transformations, including ortho-C−H olefination, para-bromination, and a range of detrizenaive functionalizations. Each class of sequential reaction utilizes mild reaction conditions and tolerates a broad range of functional groups, delivering traceless, ortho- and meta-substituted hydroacylation products. The ability to link together multiple distinct transformations in a selective and efficient manner demonstrates the versatility of triazanyl aldehyde substrates for the preparation of complex benzenes, which remain valuable motifs in drug discovery.

ASSOCIATED CONTENT
+ Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.1c01722.

Experimental procedures and supporting characterization data and spectra (PDF)

AUTHOR INFORMATION

Corresponding Author
Michael C. Willis − Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom; orcid.org/0000-0002-0636-6471; Email: michael.wallis@chem.ox.ac.uk

Authors
Sangwon Seo − Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom; orcid.org/0000-0003-2281-9167
Ming Gao − Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
Eva Paffenholz − Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.1c01722

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the EPSRC (No. EP/K024205/1).

REFERENCES

(1) (a) Lam, N. Y. S.; Wu, K.; Yu, J. Q. Advancing the Logic of Chemical Synthesis: C−H Activation as Strategic and Tactical Disconnections for C−C Bond Construction. Angew. Chem., Int. Ed. 2021, in press, DOI: 10.1002/anie.202011901. (b) Gandeepan, P.; Muller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C−H Activation. Chem. Rev. 2019, 119, 2192−2452. (c) Davies, H. M. L.; Morton, D. Collective Approach to Advancing C−H Functionalization. ACS Cent. Sci. 2017, 3, 936−943. (d) Davies, H. M.; Morton, D. Recent Advances in C−H Functionalization. J. Org. Chem. 2016, 81, 343−350.

(2) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C−H activation: examples and concepts. Chem. Soc. Rev. 2016, 45, 2900−2936.

(3) (a) Gandeepan, P.; Ackermann, L. Transient Directing Groups for Transformative C−H Activation by Synergistic Metal Catalysis. Chem. 2018, 4, 199−222. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak Coordination as a Powerful Means for Developing Broadly Useful C−H Functionalization Reactions. Acc. Chem. Res. 2012, 45,
Regioselective hydrocarboxylation of 1,3-diienes by cobalt catalysis. J. Am. Chem. Soc. 2014, 136, 3772–3775. (g) Shibahara, F.; Bower, J. F.; Kirsch, M. J. Dienes Hydrocarboxylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-Catalyzed C-C Bond-Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones. J. Am. Chem. Soc. 2008, 130, 14120–14122. (h) Omura, S.; Fukuyama, T.; Horiguchi, J.; Murakami, Y.; Ryu, I. Ruthenium Hydride-Catalyzed Addition of Aldehydes to Dienophiles Leading to β,γ-Unsaturated Ketones. J. Am. Chem. Soc. 2008, 130, 14094–14095. (i) Roy, A. H.; Lenges, C. P.; Brookhart, M. Scope and Mechanism of the Intermolecular Addition of Aromatic Aldehydes to Olefins Catalyzed by Rh(I) Olefin Complexes. J. Am. Chem. Soc. 2007, 129, 2082–2093. (j) Lenges, C. P.; Brookhart, M. Co(I)-Catalyzed Intermolecular Hydrocarboxylation of Olefins with Aromatic Aldehydes. J. Am. Chem. Soc. 1997, 119, 3165–3166. (k) Tsuda, T.; Kiyoi, T.; Saeugus, T. Nickel(I)-catalyzed hydrocarboxylation of alkynes with aldehydes to alpha, beta-enoynes. J. Org. Chem. 1990, 55, 2554–2558. (l) Marder, T. B.; Roe, D. C.; Mülstein, D. Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen activation. Intermolecular hydrocarboxylation: the addition of aldehydes to alkenes. Organometallics 1988, 7, 1451–1453. (m) Lee, H.; Jun, C. H. Hydrocarboxylation of 1-Alkene with 2-(Diarylphosphinopheno)Benzaldehyde by Rh(I). Bull. Korean Chem. Soc. 1995, 16, 66–68. (n) Li, H.; Su, C.; Chang, Z. X.; Hao, L.; Li, F. R.; Xia, C. Rhodium-Catalyzed Ring-Opening Hydrocarboxylation of Alkylideneclopropanes with Chelating Aldehydes for the Synthesis of gamma, delta-4-Unsaturated Ketones. Org. Lett. 2020, 22, 5145–5150. (o) Murphy, S. K.; Petrone, D. A.; Coulter, M. A.; Dong, V. M. Catalytic Hydrocarboxylation as an Approach to Homoloidal Products. Org. Lett. 2011, 13, 6216–6219. (p) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. Regio- and Enantioselective Intermolecular Hydrocarboxylation: Substrate-Directed Addition of Salicylaldehydes to Homoolidic Sulfoxides. J. Am. Chem. Soc. 2010, 132, 16330–16333. (q) Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. Ruthenium Catalyzed Coupling Reaction of Salicyl Aldehydes with Alkenes via Cleavage of the Aldehyde C-H Bond. J. Org. Chem. 1997, 62, 4564–4565. (r) Imai, M.; Tanaka, M.; Tanaka, K.; Yamamoto, Y.; Imai-Ogata, N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Double-Cleavage-Assisted Rh-Catalyzed Intermolecular Hydrocarboxylation between Salicylaldehydes and 1,4-Penta- or 1,5-Hexadienes. J. Org. Chem. 2004, 69, 1144–1150. (s) Barbic-Silk, J.; Hardy, S.; Willis, M. C.; Weller, A. S. Rh(DPEPhos)-Catalyzed Alkyn Hydrocarboxylation Using beta-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale. J. Am. Chem. Soc. 2018, 140, 7347–7357. (t) Coxon, T. J.; Fernandez, M.; Ogata, N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Double-Cleavage-Assisted Rh-Catalyzed Intermolecular Hydrocarboxylation between Salicylaldehydes and 1,4-Penta- or 1,5-Hexadienes. J. Org. Chem. 2004, 69, 1144–1150. (u) Barbic-Silk, J.; Hardy, S.; Willis, M. C.; Weller, A. S. Rh(DPEPhos)-Catalyzed Alkyn Hydrocarboxylation Using beta-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale. J. Am. Chem. Soc. 2018, 140, 7347–7357. (v) Imai-Ogata, N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Double-Cleavage-Assisted Rh-Catalyzed Intermolecular Hydrocarboxylation between Salicylaldehydes and 1,4-Penta- or 1,5-Hexadienes. J. Org. Chem. 2004, 69, 1144–1150. (w) Barbic-Silk, J.; Hardy, S.; Willis, M. C.; Weller, A. S. Rh(DPEPhos)-Catalyzed Alkyn Hydrocarboxylation Using beta-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale. J. Am. Chem. Soc. 2018, 140, 7347–7357. (x) Imai-Ogata, N.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Double-Cleavage-Assisted Rh-Catalyzed Intermolecular Hydrocarboxylation between Salicylaldehydes and 1,4-Penta- or 1,5-Hexadienes. J. Org. Chem. 2004, 69, 1144–1150. (y) Barbic-Silk, J.; Hardy, S.; Willis, M. C.; Weller, A. S. Rh(DPEPhos)-Catalyzed Alkyn Hydrocarboxylation Using beta-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale. J. Am. Chem. Soc. 2018, 140, 7347–7357.
C. Intermolecular Hydroacylation: High Activity Rhodium Catalysts Containing Small-Bite-Angle Diphosphine Ligands. J. Am. Chem. Soc. 2012, 134, 4885–4897. (c) Pawley, R. J.; Moehl, G. L.; Dallanegra, R.; Chaplin, A. B.; Brashway, S. K.; Weller, A. S.; Willis, M. C. Controlling Selectivity in Intermolecular Alkene or Aldehyde Hydroacylation Reactions Catalyzed by \{(Rh(L-2)}{(+)} Fragments. Organometallics 2010, 29, 1717–1728. (d) Willis, M. C.; Woodward, R. L. Rhodium-catalyzed reductive aldon reactions using aldehydes as the stoichiometric reductants. J. Am. Chem. Soc. 2005, 127, 18012–18013 For an intramolecular example, see: (e) Bendorf, H. D.; Allenes. Hydroxy ketones prepared by regioselective hydroacylation. 13 174 130

Organometallics Hydroacylation Reactions Catalyzed by \{Rh(L-2)}{(+)} Fragments. Controlling Selectivity in Intermolecular Alkene or Aldehyde Hydroacylation. (b) Bendorf, H. D.; Chaplin, A. B.; Brayshaw, S. K.; Weller, A. S.; Willis, M. C. Traceless Chelation-Controlled Rhodium-Catalyzed Intermolecular Alkene and Aldehyde Hydroacylation. Chem. - Eur. J. 2013, 19, 3125–3130. (c) Hooper, J. F.; Chaplin, A. B.; Gonzalez-Rodriguez, C.; Thompson, A. L.; Weller, A. S.; Willis, M. C. Aryl Methyl Sulfoxides as Substrates for Rhodium-Catalyzed Alkene Carbodithiation: Arene Functionalization with Activating Group Recycling. J. Am. Chem. Soc. 2012, 134, 2906–2909. (d) Jun, C.-H.; Hong, J.-B.; Kim, Y.-H.; Chung, K.-Y. The Catalytic Alkylation of Aromatic Imines by Wilkinson’s Complex: The Domino Reaction of Hydroacylation and ortho-Alkylation. Angew. Chem., Int. Ed. 2000, 39, 3440–3442. (e) Suleymarov, A. A.; Severin, K. Vinyl and Alkynyl Triazenes: Synthesis, Reactivity, and Applications. Angew. Chem., Int. Ed. 2021, 60, 6879–6889. (f) Bräse, S. The Virtue of the Multifunctional Triazene Linkers in the Efficient Solid-Phase Synthesis of Heterocycle Libraries. Acc. Chem. Res. 2004, 37, 805–816. (c) Kimball, D. B.; Haley, M. M. Triazenes: A Versatile Tool in Organic Synthesis. Angew. Chem., Int. Ed. 2002, 41, 3338–3351. (a) Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Rhodium(III)-catalyzed C-H activation of arenes using a versatile and removable triazene directing group. Angew. Chem., Int. Ed. 2012, 51, 7242–7245. (b) Wang, C.; Sun, H.; Fang, Y.; Huang, Y. General and efficient synthesis of indoles through triazene-directed C-H annulation. Angew. Chem., Int. Ed. 2013, 52, 5795–5798. (c) Sun, H.; Wang, C.; Yang, Y. F.; Chen, P.; Wu, Y. D.; Zhang, X.; Huang, Y. Synthesis of indole[2,1-a]isoquinolines via a triazene-directed C-H annulation cascade. J. Org. Chem. 2014, 79, 11863–11872. (d) Wang, D.; Cui, S. Rh(III)-catalyzed aromatic C–H bond carbonifunctionalization oftiazines by \(\alpha\)-diazomalonate. Tetrahedron 2016, 72, 2725–2730. (e) Ando, S.; Burrows, J.; Koide, K. Synthesis of Violaceic Acid and Related Compounds through Aryl Triazene. Org. Lett. 2017, 19, 1116–1119. (f) Tan, F. J.; Bormann, C. T.; Perrin, F. G.; Chadwick, F. M.; Severin, K.; Cramer, N. Divergent Synthesis of Densely Substituted Amines and Pyridines via Cyclotrimerization Reactions of Alkynyl Triazenes. J. Am. Chem. Soc. 2019, 141, 10372–10383. (g) Nilova, A.; Campeau, L. C.; Sherer, E. C.; Stuart, D. R. Analysis of Benzoid Substitution Patterns in Small Molecule Active Pharmaceutical Ingredients. J. Med. Chem. 2020, 63, 13389–13396. (b) Taylor, R. D.; MacCoss, M.; Lawson, A. D. Rings in drugs. J. Med. Chem. 2014, 57, 5845–5859. (a) Galli, A.; Brase, S. Ortho-trifluoromethylation of function- alized aromatic triazenes. Angew. Chem., Int. Ed. 2012, 51, 3713–3715. (b) Reingruber, R.; Vanderheiden, S.; Wagner, A.; Nieg; M.; Muller, T.; Es-Sayed, M.; Bräse, S. 1-Aryl-3,3-diisopropyltriazenes: An Easily Accessible and Particularly Stable Class of Triazenes Towards Strong Basic and Lewis Acid Conditions. Eur. J. Org. Chem. 2008, 3314–3327. (a) Hafner, A.; Brase, S.ortho-tribromination of azides. Tetrahedron Lett. 2000, 41, 3813–3816. (b) Lenden, P.; Entwistle, D. A.; Willis, M. C. An Alkyne Hydroacylation Route to Highly Substituted Furans. Angew. Chem., Int. Ed. 2011, 50, 10657–10660. (j) Willis, M. C.; Sapmaz, S. Intermolecular hydroacylation of acrylate esters: a new route to 1,4-dicarboxyls. Chem. Commun. 2001, 2558–2559. (c) Sapmaz, S. Intermolecular hydroacylation of acrylate esters: a new route to 1,4-dicarboxyls. Chem. Commun. 2001, 2558–2559.
Aromatic Diazonium Ions. Angew. Chem., Int. Ed. Engl. 1978, 17, 141–150.
(32) Wang, M.; Zhang, Y.; Wang, T.; Wang, C.; Xue, D.; Xiao, J. Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one. Org. Lett. 2016, 18, 1976–1979.
(33) (a) Schroder, N.; Wencel-Delord, J.; Glorius, F. High-yielding, versatile, and practical [Rh(III)Cp*]-catalyzed ortho bromination and iodination of arenes. J. Am. Chem. Soc. 2012, 134, 8298–8301.
(b) Yang, L.; Lu, Z.; Stahl, S. S. Regioselective copper-catalyzed chlorination and bromination of arenes with O2 as the oxidant. Chem. Commun. 2009, 6460–6462. (c) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. A Simple Catalytic Method for the Regioselective Halogenation of Arenes. Org. Lett. 2006, 8, 2523–2526.
(34) Feng, Z.; Xiao, Y.-L.; Zhang, X. Copper-catalyzed cross-coupling of bromozinc-difluoromethylphosphonate with iodo/bromoaryl triazenes. Org. Chem. Front. 2014, 1, 113–116.
(35) Vanderheiden, S.; Bulat, B.; Zevaco, T.; Jung, N.; Bräse, S. Solid phase synthesis of selectively deuterated arenes. Chem. Commun. 2011, 47, 9063–9065.