On Gorenstein homological dimension of groups

Yuxiang Luo, Wei Ren*

School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P.R. China

Abstract

Let G be a group and R be a ring. We define the Gorenstein homological dimension of G over R, denoted by Ghd_RG, as the Gorenstein flat dimension of trivial RG-module R. It is proved that $\text{Ghd}_SG \leq \text{Ghd}_RG$ for any flat extension of commutative rings $R \to S$; in particular, Ghd_RG is a refinement of Ghd_ZG if R is \mathbb{Z}-torsion-free. We show a Gorenstein homological version of Serre’s theorem, i.e. $\text{Ghd}_RG = \text{Ghd}_RH$ for any subgroup H of G with finite index. As an application, G is a finite group if and only if $\text{Ghd}_RG = 0$; this is different from the fact that the homological dimension of any non-trivial finite group is infinity.

Key Words: Gorenstein homological dimension, group ring, Gorenstein flat.

2010 MSC: 20J05, 18G20, 16S34.

1. Introduction

In group theory, it is a long history issue to study groups through their (co)homological properties, which arose from both topological and algebraic sources. For any group G, the cohomological dimension cd_ZG and the homological dimension hd_ZG, is defined as the projective dimension and the flat dimension of the trivial $\mathbb{Z}G$-module \mathbb{Z}, respectively.

Enochs, Jenda and Torrecillas introduced the concepts of Gorenstein projective, Gorenstein injective and Gorenstein flat modules, and developed Gorenstein homological algebra [12], which has its origin dated back to the study of G-dimension by Auslander and Bridger [3] in 1960s. As counterparts in Gorenstein homological algebra, the Gorenstein (co)homological dimensions of groups are extensively studied, see for example [1, 2, 4, 6, 11, 17, 25].

In [2, Definition 4.5], the Gorenstein homological dimension Ghd_ZG of any group G is defined to be the Gorenstein flat dimension of the trivial $\mathbb{Z}G$-module \mathbb{Z}. Analogously, we may define Gorenstein homological dimension of group G over any coefficient ring R, denoted by Ghd_RG, to be the Gorenstein flat dimension of the trivial RG-module R. The Gorenstein homological dimension of groups generalizes the notion of homological dimension of groups, in the sense that $\text{Ghd}_RG = \text{hd}_RG$ if hd_RG is finite.

First, we intend to compare Ghd_RG with Ghd_ZG. More general, we concern the Gorenstein homological dimensions under the extension of coefficient rings. If $R \to S$ is a flat extension
of commutative rings, we show that for any group G, $\operatorname{Ghd}_S G \leq \operatorname{Ghd}_R G$ holds; see Theorem 2.6. This implies that if R is \mathbb{Z}-torsion-free, then $\operatorname{Ghd}_R G$ is a refinement of $\operatorname{Ghd}_S G$; especially, $\operatorname{Ghd}_S G \leq \operatorname{Ghd}_Z G$ (see Corollary 2.7). A specific case leading to the equality $\operatorname{Ghd}_R G = \operatorname{Ghd}_S G$ is given in Proposition 2.8 where G is a countable group and $S = R[x]/(x^n)$.

It is natural to consider the behavior of Gorenstein homological dimensions under extensions of groups. If a subgroup H of G is assumed to be of finite index, it is proved in [2, Proposition 4.11] that $\operatorname{Ghd}_Z H \leq \operatorname{Ghd}_Z G$. Moreover, the equality $\operatorname{Ghd}_Z H = \operatorname{Ghd}_Z G$ holds provided that the supremum of injective length (dimension) of flat \mathbb{Z}-modules, denoted by $\operatorname{silf}(\mathbb{Z}G)$, is finite; see [2, Theorem 4.18].

Our result strengthens and extends [2, Proposition 4.11] and [2, Theorem 4.18]. We show in Theorem 3.2 that if H is a subgroup of G with finite index, then $\operatorname{Ghd}_R H = \operatorname{Ghd}_R G$ for any commutative ring R, where the assumption for the finiteness of $\operatorname{silf}(\mathbb{Z}G)$ is removed. Recall that Serre’s Theorem establishes an equality between cohomology dimensions of a torsion-free group and its subgroup of finite index; see details in [7, Theorem VIII 3.1]. In this sense, the result can also be regarded as a Gorenstein homological version of Serre’s Theorem.

There is a homological characterization for finite groups immediately; see Corollary 3.3. That is, G is a finite group if and only if $\operatorname{Ghd}_R G = 0$ for any commutative ring R; this generalizes [2, Proposition 4.12]. It is worth to compare this with a well-known fact: for any non-trivial finite group G one always has $\operatorname{hd}_Z G = \infty$, since the finiteness of $\operatorname{hd}_Z G$ implies the group G is necessarily torsion-free, while every finite group is torsion. We may also compare this result with [11, Corollary 2.3], which concerns Gorenstein cohomological dimension of finite groups.

2. Gorenstein homological dimension of groups

Let A be a ring, M be a (left) A-module. An acyclic complex

$$
\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F_{-1} \rightarrow \cdots
$$

is called a totally acyclic complex of flat modules, provided that each F_i is a flat (left) A-module, and for any injective (right) A-module I, the complex remains acyclic after applying $I \otimes_A -$. The module M is said to be Gorenstein flat if there exists a totally acyclic complex of flat modules such that $M \cong \operatorname{Ker}(F_0 \rightarrow F_{-1})$; see [12, 13].

It is proved in [15, Theorem 3.7] that for a right coherent ring A, the class of Gorenstein flat left A-modules is closed under extensions and direct summands. This result is extended and generalized to any ring recently by the work [24]. The following is immediate from [24, Corollary 4.12].

Lemma 2.1. Let A be a ring. Then the class of Gorenstein flat A-modules is closed under extensions and direct summands.

The Gorenstein flat dimension of modules is defined in the standard way by using resolutions. Let M be any left A-module. The Gorenstein flat dimension of M, denoted by $\operatorname{Gfd}_A M$, is defined
by declaring that \(\text{Gfd}_A M \leq n \) if and only if \(M \) has a Gorenstein flat resolution \(0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0 \) of length \(n \); see for example [12, 15].

Remark 2.2. It is not easy to show that the class of Gorenstein flat modules is closed under extensions; however, this basic property is crucial for studying homological properties of Gorenstein flat modules. For this reason, the rings are assumed to be coherent in [12]; as a generalization, the notion of GF-closed rings is introduced in [7]. Thanks to [24, Corollary 4.12], now we can remove the assumptions of coherent rings and GF-closed rings in many situations, see for example [15, Theorem 3.14] and the main theorem of [26], when dealing with Gorenstein flat modules and Gorenstein flat dimension of modules.

Recall that for any group \(G \), the Gorenstein homological dimension of \(G \) is defined to be the Gorenstein flat dimension of the \(\mathbb{Z}G \)-module \(\mathbb{Z} \) with the trivial group action; see [2, Definition 4.5]. Analogously, we have the following.

Definition 2.3. Let \(R \) be a ring. For any group \(G \), the Gorenstein homological dimension of \(G \) over \(R \), denoted by \(\text{Ghd}_R G \), is defined to be the Gorenstein flat dimension of the trivial \(RG \)-module \(R \).

Let \(R \) be a, \(G \) be any group. Recall that the homological dimension of a group \(G \) over \(R \), denoted by \(\text{hd}_R G \), is defined to be the flat dimension \(\text{id}_{RG} \) of the trivial \(RG \)-module \(R \). Since flat modules are necessarily Gorenstein flat, and the flat dimension of any Gorenstein flat module is either zero or infinity, it follows that \(\text{Ghd}_R G \leq \text{hd}_R G \) with the equality if \(\text{hd}_R G \) is finite.

First, we intend to compare \(\text{Ghd}_R G \) with \(\text{Ghd}_\mathbb{Z} G \). More general, we consider Gorenstein homological dimensions of the group under extensions of coefficient rings; see Theorem 2.6.

Lemma 2.4. Let \(R \to S \) be a flat extension of commutative rings, i.e. \(S \) is flat as an \(R \)-module. Then, for any group \(G \), \(RG \to SG \) is also a flat extension.

Proof. Since \(S \) is a flat \(R \)-module, by Lazard’s theorem we have \(S \cong \lim P_i \), where \(P_i \) are finitely generated projective \(R \)-modules. Then, the isomorphism \(SG \cong RG \otimes_R S \cong \lim (RG \otimes_R P_i) \) implies that \(SG \) is a flat \(RG \)-module, that is, \(RG \to SG \) is a flat extension, as expected. \(\square \)

Lemma 2.5. Let \(R \to S \) be a flat extension of commutative rings, and \(G \) be any group. For any Gorenstein flat \(RG \)-module \(M \), the induced \(SG \)-module \(S \otimes_R M \) is also Gorenstein flat.

Proof. Let \(M \) and \(N \) be \(RG \)-modules. By using the anti-automorphism \(g \to g^{-1} \) of \(G \), we can set \(mg = g^{-1}m \) for any \(g \in G \) and \(m \in M \). Note that \(M \otimes_R N \) is obtained from \(M \otimes_R N \) by introducing the relations \(g^{-1}m \otimes n = mg \otimes n = m \otimes gn \). Then, we replace \(m \) by \(gm \) and obtain \(m \otimes n = gm \otimes gn \). Hence, we see that \(M \otimes_R N = (M \otimes_R N)_G \), where \(G \) acts diagonally on \(M \otimes_R N \), and the group of co-invariants \((M \otimes_R N)_G \) is defined to be the largest quotient of \(M \otimes_R N \) on which \(G \) acts trivially.

3
Let \(F \) be any flat left \(RG \)-module, which can be restricted to be a flat \(R \)-module. By considering \(S \) as an \(SG \)-\(R \)-bimodule, we have an induced \(SG \)-module \(S \otimes_R F \), where the \(G \)-action on \(S \) is trivial. Let \(M \) be any right \(SG \)-module, which has a natural \(RG \)-module structure by the ring extension \(RG \to SG \). We have

\[
M \otimes_S (S \otimes_R F) = (M \otimes_S (S \otimes_R F))_G \cong (M \otimes_R F)_G = M \otimes_{RG} F.
\]

This implies that the functor \(- \otimes_S (S \otimes_R F) \) is exact since the \(RG \)-module \(F \) is flat and the functor \(- \otimes_{RG} F \) is exact. Hence, the induced \(SG \)-module \(S \otimes_R F \) is flat.

Now assume that \(M \) is a Gorenstein flat \(RG \)-module. Then \(M \) admits a totally acyclic complex of flat \(RG \)-modules \(F = \cdots \to F_1 \to F_0 \to F_{-1} \to \cdots \) such that \(M \cong \text{Ker}(F_0 \to F_{-1}) \). Since \(S \) is a flat \(R \)-module, we obtain an acyclic complex of flat \(SG \)-modules

\[
S \otimes_R F = \cdots \to S \otimes_R F_1 \to S \otimes_R F_0 \to S \otimes_R F_{-1} \to \cdots
\]

by applying the functor \(S \otimes_R - \).

For any injective right \(SG \)-module \(I \), we have an isomorphism \(I \otimes_S (S \otimes_R F) \cong I \otimes_{RG} F \). We claim that \(I \) is restricted to be an injective right \(RG \)-module. There are natural equivalences of functors

\[
\text{Hom}_{RG}(-, I) \cong \text{Hom}_{RG}(-, \text{Hom}_{SG}(SG, I)) \cong \text{Hom}_{SG}(- \otimes_{RG} SG, I),
\]

where the second one is from the standard adjunction. Since \(R \to S \) is assumed to be a flat extension, it follows from Lemma \([2, \text{Lemma 2.3}]\) that \(SG \) is a flat \(RG \)-module. Moreover, by noting \(I \) is an injective right \(SG \)-module, we infer that the functor \(\text{Hom}_{SG}(- \otimes_{RG} SG, I) \) is exact. Hence, \(\text{Hom}_{RG}(-, I) \) is an exact functor and \(I \) is an injective right \(RG \)-module, as desired.

Then, for the totally acyclic complex of flat \(RG \)-modules \(F \), the complex \(I \otimes_{RG} F \) remains acyclic. Consequently, the complex \(I \otimes_S (S \otimes_R F) \) is acyclic, i.e. \(S \otimes_R F \) is a totally acyclic complex of flat \(SG \)-modules, and moreover, \(S \otimes_R M \cong \text{Ker}(S \otimes_R F_0 \to S \otimes_R F_{-1}) \) is a Gorenstein flat \(SG \)-module. This completes the proof.

\[\square\]

Now, we are in a position to state the following.

Theorem 2.6. Let \(R \to S \) be a flat extension of commutative rings. For any group \(G \), we have

\[
\text{Ghd}_S G \leq \text{Ghd}_R G.
\]

Proof. There is nothing to prove if \(\text{Ghd}_R G = \infty \). Then, it only suffices to consider the case where \(\text{Ghd}_R G = n \) is finite. By \([15, \text{Theorem 3.17}]\), there exists an exact sequence of \(RG \)-modules \(0 \to K \to M \to R \to 0 \), where \(M \) is Gorenstein flat, \(\text{id}_{RG} K = n - 1 \). By applying the functor \(S \otimes_R - \), we obtain an exact sequence of induced \(SG \)-modules

\[
0 \to S \otimes_R K \to S \otimes_R M \to S \to 0.
\]
By Lemma 2.5, $S \otimes_R M$ is a Gorenstein flat SG-module. Remark that for any flat RG-module F, the induced SG-module $S \otimes_R F$ is also flat. Then, $\text{fd}_{SG}(S \otimes_R K) = n - 1$, and we infer from the above exact sequence that $Ghd_S G = \text{Gfd}_{SG} S \leq n$. This completes the proof. □

The following is immediate, which implies that under a quite mild condition, the Gorenstein homological dimension $Ghd_R G$ of a group G over any commutative ring R is a refinement of $Ghd_\mathbb{Z} G$, the one introduced in [2] over the ring of integers \mathbb{Z}.

Corollary 2.7. Let R be a commutative ring, G a group. If R is a \mathbb{Z}-flat module (\mathbb{Z}-torsion-free), then $Ghd_R G \leq Ghd_{\mathbb{Z}} G$. In particular, $Ghd_R G \leq Ghd_{\mathbb{Z}} G$.

Proposition 2.8. Let R be a commutative ring, G be a countable group. Let $S = R[x]/(x^n)$ be the quotient of the polynomial ring, where $n > 1$ is an integer, and x is a variable which is supposed to commute with all the elements of G. Then we have $Ghd_R G = Ghd_S G$.

Proof. Note that $R \to S$ is a flat extension, and then $Ghd_S G \leq Ghd_R G$ follows by Theorem 2.6. We consider R and S as RG-modules with trivial G-actions, then R is a direct summand of $S = R[x]/(x^n)$, and $Ghd_R G = \text{Gfd}_{RG} R \leq \text{Gfd}_{RG} S$. It remains to prove the inequality $\text{Gfd}_{RG} S \leq Ghd_S G = \text{Gfd}_{SG} S$.

Observe that $SG = RG[x]/(x^n)$, which is easily seen from the equation

$$\sum_{j=0}^{n-1} \sum_{i \in \mathbb{N}} r_{ij} g_i x^j = \sum_{i \in \mathbb{N}} \left(\sum_{j=0}^{n-1} r_{ij} x^j \right) g_i, \forall r_{ij} \in R, g_i \in G.$$

Let M be a Gorenstein flat SG-module and $\mathbb{F} = \cdots \to F_1 \to F_0 \to F_{-1} \to \cdots$ be a totally acyclic complex of flat SG-modules such that $M \cong \text{Ker}(F_0 \to F_{-1})$. Let I be any injective right RG-module. There are isomorphisms $I \otimes_{RG} SG \cong \text{Hom}_{RG}(SG, I)$ and $I \otimes_{RG} \mathbb{F} \cong I \otimes_{RG} SG \otimes_{SG} \mathbb{F}$. We imply that the induced right SG-module $I \otimes_{RG} SG$ is injective, and the complex $I \otimes_{RG} \mathbb{F}$ is acyclic. That is, by restriction we can obtain a totally acyclic complex \mathbb{F} of flat RG-modules, and hence M is restricted to be a Gorenstein flat RG-module.

The inequality $\text{Gfd}_{RG} S \leq Ghd_S G$ is obviously true if $Ghd_S G = \infty$. Now we assume that $Ghd_S G = n$ is finite. There is an exact sequence of SG-modules

$$0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to M_0 \to S \to 0,$$

where all M_i are Gorenstein flat. By the above argument, we may consider M_i as Gorenstein flat RG-modules, and hence, $\text{Gfd}_{RG} S \leq n$. This completes the proof. □

3. A version of Serre’s theorem

In this section, we consider the behavior of Gorenstein homological dimension of subgroups. Let H be a subgroup of G with finite index. Recall that there is an inequality $Ghd_\mathbb{Z} H \leq Ghd_\mathbb{Z} G$, and moreover, the equality $Ghd_\mathbb{Z} H = Ghd_\mathbb{Z} G$ holds provided the supremum of injective length
(dimension) of flat $\mathbb{Z}G$-modules, denoted by $\text{sif}(\mathbb{Z}G)$, is finite; see [2, Proposition 4.11] and [2, Theorem 4.18] respectively.

We have the following result, where the finiteness of “sif” is not necessarily needed; see Theorem 3.2. Hence, it strengthens and extends [2, Proposition 4.11] and [2, Theorem 4.18]. By Serre’s Theorem, there is an equality between cohomology dimensions of any torsion-free group and its subgroup of finite index; see details in [3, Theorem VIII 3.1]. In this sense, the result can also be regarded as a Gorenstein homological version of Serre’s Theorem.

Let H be any subgroup of G. There exist simultaneously an induction functor $\text{Ind}_H^G = RG \otimes_{RH} -$ and a coinduction functor $\text{Coind}_H^G = \text{Hom}_{RH}(RG, -)$ from the category of RH-modules $\text{Mod}(RH)$ to the category of RG-modules $\text{Mod}(RG)$. We denote by Res_H^G the standard restriction functor, which sends every RG-module to be an RH-module.

We have the following observations.

Lemma 3.1. Let G be a group, and H be any subgroup of G with finite index. For any RG-module M, the following hold.

1. If M is a Gorenstein flat module, then the restricted RH-module $\text{Res}_H^G M$ is also Gorenstein flat.

2. The RH-module $\text{Res}_H^G M$ is Gorenstein flat, if and only if the induced RG-module $\text{Ind}_H^G \text{Res}_H^G M$ is also Gorenstein flat.

Proof. (1) For the Gorenstein flat RG-module M, let $F = \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F_{-1} \rightarrow \cdots$ be a totally acyclic complex of flat RG-modules such that $M \cong \text{Ker}(F_0 \rightarrow F_{-1})$. By restriction, we obtain an acyclic complex $\text{Res}_H^G F$ of flat RH-modules. Since the index $[G : H]$ is finite, there is an equivalence of functors $\text{Ind}_H^G \cong \text{Coind}_H^G$; see for example [4, Proposition III 5.9]. For any injective right RH-module I, the RG-module $\text{Ind}_H^G I \cong \text{Coind}_H^G I$ is injective, and then the complex $\text{Ind}_H^G I \otimes_{RG} F$ is acyclic. We infer from the isomorphism $I \otimes_{RH} \text{Res}_H^G F \cong \text{Ind}_H^G I \otimes_{RG} F$ that the complex $I \otimes_{RH} \text{Res}_H^G F$ is acyclic, and then $\text{Res}_H^G F$ is a totally acyclic complex of flat RH-modules. Consequently, M is restricted to be a Gorenstein flat RH-module, as claimed.

(2) For the “only if” part, note that RG is a projective RH-module. For the Gorenstein flat RH-module $\text{Res}_H^G M$, there is a totally acyclic complex of flat RH-modules F. Then, we obtain an induced complex $\text{Ind}_H^G F$, which is acyclic with each item being flat RG-module. Let E be any injective right RG-module. The restricted RH-module $\text{Res}_H^G E$ is injective, and we infer from the isomorphism $E \otimes_{RG} \text{Ind}_H^G F \cong \text{Res}_H^G E \otimes_{RH} F$ that the complex $\text{Ind}_H^G F$ is totally acyclic. Hence, the induced module $\text{Ind}_H^G \text{Res}_H^G M$ is a Gorenstein flat RG-module. Here, we do not need to assume that the index $[G : H]$ is finite.

For any RG-module M, there is a canonical RG-map

$$\text{Ind}_H^G \text{Res}_H^G M = RG \otimes_{RH} \text{Res}_H^G M \rightarrow M$$

given by $g \otimes m \mapsto gm$. This map is surjective; moreover, as an RH-map it is a split surjective. If the RG-module $\text{Ind}_H^G \text{Res}_H^G M$ is Gorenstein flat, we infer from (1) that $\text{Res}_H^G \text{Ind}_H^G \text{Res}_H^G M$ is
a Gorenstein flat RH-module. Consequently, by Lemma 2.1 its direct summand $\text{Res}_H^G M$ is a Gorenstein flat RH-module. This proves the “if” part. □

Theorem 3.2. Let G be a group, H be a subgroup of G with finite index. There is an equality $\text{Ghd}_R G = \text{Ghd}_R H$.

Proof. To simplify the burden of notations, for any RG-module M, the restricted RH-module $\text{Res}_H^G M$ will be denoted by M as well. It follows immediately from the first assertion of Lemma 3.1 that for any RG-module N, one has an inequality $\text{Gfd}_R H N \leq \text{Gfd}_R G N$. In particular, for the trivial RG-module R, we have $\text{Ghd}_R H \leq \text{Ghd}_R G$.

It remains to prove $\text{Ghd}_R G \leq \text{Ghd}_R H$. Since the inequality is trivial if $\text{Ghd}_R H = \infty$, it suffices to assume $\text{Ghd}_R H = n$ is finite. Take an exact sequence $0 \to N \to F_{n-1} \to \cdots \to F_0 \to R \to 0$ of RG-modules with each F_i being flat. Since F_i are restricted to be flat RH-modules, it follows from $\text{Ghd}_R H = n$ that as a restricted RH-module, N is Gorenstein flat. For the required inequality, it suffices to show that N is a Gorenstein flat RG-module.

Let I be any injective right RG-module. There is a canonical map of RG-modules

$$I \to \text{Hom}_{RH}(RG, I) = \text{Coind}_H^G I$$

given by $x \mapsto (g \mapsto gx)$ for any $x \in I$ and any $g \in G$. This map is injective, and then I is a direct summand of $\text{Coind}_H^G I$. For any $i > 0$, we have $\text{Tor}_i^{RG}(I, N) = 0$ since by restriction N is a Gorenstein flat RH-module, and I is an injective RH-module. Then, we infer from the isomorphism

$$\text{Tor}_i^{RG}(\text{Coind}_H^G I, N) \cong \text{Tor}_i^{RG}(\text{Ind}_H^G I, N) \cong \text{Tor}_i^{RH}(I, N)$$

that $\text{Tor}_i^{RG}(I, N) = 0$.

Let $\alpha : N \to \text{Ind}_H^G N$ be a composition of the canonical RG-map $N \to \text{Coind}_H^G N$, followed by the isomorphism $\text{Coind}_H^G N \to \text{Ind}_H^G N$. Then α is an RG-monic and is split as an RH-map.

Since N is a Gorenstein flat RH-module, it follows from Lemma 3.1 that the induced module $\text{Ind}_H^G N$ is a Gorenstein flat RG-module. Hence, there is an exact sequence of RG-modules

$$0 \to \text{Ind}_H^G N \xrightarrow{\beta} F_0 \to \text{Coker} \beta \to 0$$

for which F_0 is flat and $\text{Coker} \beta$ is Gorenstein flat.

Consider the following diagram

$$\begin{array}{ccc}
0 & \rightarrow & N \\
\downarrow & & \downarrow \\
0 & \rightarrow & \text{Ind}_H^G N
\end{array} \xrightarrow{\gamma} \begin{array}{ccc}
F_0 & \rightarrow & \text{Coker} \gamma \\
\rightarrow & & \rightarrow \\
\rightarrow & & \rightarrow \\
F_0 & \rightarrow & \text{Coker} \beta \rightarrow 0
\end{array}$$

Since $\alpha : N \to \text{Ind}_H^G N$ is a split RH-monic, the map $I \otimes_{RH} \alpha$ is injective. Since $\text{Coker} \beta$ is restricted to be a Gorenstein flat RH-module and I is restricted to be an injective RH-module, we have $\text{Tor}_1^{RH}(I, \text{Coker} \beta) = 0$, which implies that the map $I \otimes_{RH} \beta$ is injective. Hence, the map
$I \otimes_{RH} \gamma$ is injective, as well. We infer from the exact sequence

$$0 \to \text{Tor}^1_{RH}(I, \text{Coker} \gamma) \to I \otimes_{RH} N \to I \otimes_{RH} F_0 \to I \otimes_{RH} \text{Coker} \gamma \to 0$$

that $\text{Tor}^1_{RH}(I, \text{Coker} \gamma) = 0$, and moreover, it yields by [15, Proposition 3.8] and [24, Corollary 4.12] that the restricted RH-module $\text{Coker} \gamma$ is Gorenstein flat. Analogous to the above argument, we have $\text{Tor}^1_{RG}(\text{Coind}^G_H I, \text{Coker} \gamma) \cong \text{Tor}^1_{RH}(I, \text{Coker} \gamma)$, and I is a direct summand of $\text{Coind}^G_H I$ as RG-modules. Hence $\text{Tor}^1_{RG}(I, \text{Coker} \gamma) = 0$, and furthermore, the sequence

$$0 \to N \to F_0 \to \text{Coker} \gamma \to 0$$

remains exact after applying $I \otimes_{RG} -$.

Then, repeat the above argument for $\text{Coker} \gamma$, we will obtain inductively an acyclic complex

$$0 \to N \to F_0 \to F_{-1} \to F_{-2} \to \cdots$$

with each F_i a flat RG-module, which remains acyclic after applying $I \otimes_{RG} -$ for any injective right RG-module I. By pasting this sequence with the flat resolution of N, we will obtain a totally acyclic complex of flat RG-modules for N, and then N is a Gorenstein flat RG-module, as expected. This completes the proof.

We have the following immediately, which extends [2, Proposition 4.12].

Corollary 3.3. Let G be a group. The following conditions are equivalent:

1. G is a finite group.
2. For any commutative ring R, $\text{Ghd}_R G = 0$.
3. $\text{Ghd}_Z G = 0$.

Proof. (1)\implies(2). Let $H = \{e\}$ be the subgroup of G, which only contains the identity element of G. Since G is a finite group, the index $[G : H]$ is finite. Hence, $\text{Ghd}_R G = \text{Ghd}_R H = 0$ follows immediately from Theorem 3.2.

(2)\implies(3) is trivial, and (3)\iff(1) is precisely [2, Proposition 4.12].

Remark 3.4. If H is a subgroup of G with finite index, then both $(\text{Ind}^G_H, \text{Res}^G_H)$ and $(\text{Res}^G_H, \text{Ind}^G_H)$ are adjoint pairs of functors. For any associative ring R, $RH \to RG$ is a Frobenius extension of group rings, and the pair of functors $(\text{Ind}^G_H, \text{Res}^G_H)$ is called a strongly adjoint pair by Morita [20], or a Frobenius pair by [8, Definition 1.1]. The Gorenstein homological properties of modules under Frobenius extension of rings and Frobenius pairs of functors were studied in [9, 16, 21–23, 24].

Funding. The second author is supported by the National Natural Science Foundation of China (No. 11871125) and Natural Science Foundation of Chongqing, China (No. cstc2018jcyjAX0541).
References

[1] Asadollahi, J., Bahlekeh, A., Salarian, S. (2009). On the hierarchy of cohomological dimensions of groups. *J. Pure Appl. Algebra* **213**(9):1795-1803.

[2] Asadollahi, J., Bahlekeh, A., Hajizamani, A., Salarian, S. (2011). On certain homological invariants of groups. *J. Algebra* **335**:18–35.

[3] Auslander, M., Bridge, M. (1969). *Stable Module Theory*, Mem. Amer. Math. Soc., vol.94, Amer. Math. Soc., Providence, RI.

[4] Bahlekeh, A., Dembegioti, F., Talelli, O. (2009). Gorenstein dimension and proper actions. *Bull. London. Math. Soc.* **41**:859–871.

[5] Bennis, D. (2009). Rings over which the class of Gorenstein flat modules is closed under extensions. *Commun. Algebra* **37**:855–868.

[6] Biswas, R. (2021). On some cohomological invariants for large families of infinite groups. *New York J. Math.* **27**:818–839.

[7] Brown, K.S. (1982). *Cohomology of Groups*. Graduate Texts in Mathematics 87, Springer, Berlin-Heidelberg-New York.

[8] Castaño Iglesias, F., Gómez Torrecillas, J., Năstăsescu, C. (1999). Frobenius functors: Applications, *Commun. Algebra* **27**(10):4879-4900.

[9] Chen, X.-W., Ren, W. (2022). Frobenius functors and Gorenstein homological properties. *J. Algebra* **610**:18-37.

[10] Emmanouil, I. (2012). On the finiteness of Gorenstein homological dimensions. *J. Algebra* **372**:376–396.

[11] Emmanouil, I., Talell, O. (2018). Gorenstein dimension and group cohomology with group ring coefficients. *J. London Math. Soc.* **97**(2):306-324.

[12] Enochs, E.E., Jenda, O.M.G. (2000). *Relative Homological Algebra*. De Gruyter Expositions in Mathematics no. 30, New York: Walter De Gruyter.

[13] Enochs, E.E., Jenda, O.M.G., Torrecillas, B. (1993). Gorenstein flat modules. *Nanjing Daxue Xuebao Shuxue Bannian Kan* **10**:1–9.

[14] Gedrich, T.V., Gruenberg, K.W. (1987). Complete cohomological functors of groups. *Topology Appl.* **25**:203–223.

[15] Holm, H. (2004). Gorenstein homological dimensions. *J. Pure Appl. Algebra* **189**:167-193.

[16] Hu, J., Li, H., Geng, Y., Zhang, D. (2020). Frobenius functors and Gorenstein flat dimensions. *Commun. Algebra* **48**(3):1257–1265.

[17] John-Green, S.St. (2014). On the Gorenstein and \mathcal{F}-cohomological dimensions. Bull. London Math. Soc. **46**:747—760.

[18] Kadison, L. (1999). *New Examples of Frobenius Extensions*, Univ. Lecture Ser., vol. 14, Amer. Math. Soc., Providence, RI.

[19] Kasch, F. (1960/1961). Projektive Frobenius-Erweiterungen, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 87-109.
[20] Morita, K. (1965). Adjoint pairs of functors and Frobenius extensions. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 9:40-71.

[21] Ren, W. (2018). Gorenstein projective modules and Frobenius extensions. Sci. China Math. 61(7):1175–1186.

[22] Ren, W. (2018). Gorenstein projective and injective dimensions over Frobenius extensions. Commun. Algebra 46(12):5348–5354.

[23] Ren, W. (2019). Gorenstein flat modules and Frobenius extensions. Acta Math. Sinica, Chinese Series 62(4):647–652.

[24] Šaroch, J., Štovíček, J. (2020). Singular compactness and definability for Σ-cotorsion and Gorenstein modules. Sel. Math. New Ser. 26(23) doi:10.1007/s00029-020-0543-2.

[25] Talelli, O. (2014). On the Gorenstein and cohomological dimension of groups. Proc. Amer. Math. Soc. 142(4):1175-1180.

[26] Yang G., Liu Z. (2012). Gorenstein flat covers over GF-closed rings. Commun. Algebra 40(5):1632–1640.

[27] Zhao, Z.B. (2019). Gorenstein homological invariant properties under Frobenius extensions. Sci. China Math. 62:2487–2496.