Talk Background Linear temporal logic (LTL) has long been a standard for writing property specifications in computer-aided verification. The language can express a variety of real-world phenomena while supporting good decision procedures [16]. It is also a small language, thereby presumably making it easy to learn and understand.

In recent years, LTL has been increasingly used for much more than verification. The old dream of temporal-logic synthesis [12, 14] has seen a revival [1, 2, 6]; LTL has enabled property-based testing for interactive web applications [13]; and roboticists have found intimate connections between LTL and robot planning [3, 11, 7], as a result of which numerous robotics systems now use LTL, e.g., [5, 17, 10, 15, 9, 4, 8].

All these efforts are predicated on a central belief: that users of the logic actually understand it. The quality of verification, synthesis, or planning is only as good as the property statement and its relation to the system being modeled. In particular, if a user misunderstands what the property is saying, there are no safeguards: an LTL-powered tool will blindly apply this property and check or generate the requested behavior, whether or not it was the desired one. It is therefore critical to know whether users accurately understand LTL, and if not, in what ways, and what can we do about it?

We have been studying LTL misconceptions over an 2-year span with multiple populations. Across them, there is considerable evidence of misconceptions. These include, but are not limited to, the following: implicitly wrapping terms in an “always” or “eventually” quantifier, assuming that the left-hand term of an “until” must be false when the right-hand term holds, and misunderstanding the state(s) that a term applies to. Based on these findings, we propose measurement instruments for educators and actionable advice for experts who build LTL tools and/or design temporal logics.

Talk Proposal We propose a remote talk aimed at researchers who use LTL and educators who teach LTL. Our talk will be interactive. It will assume basic familiarity with LTL (not at the Vardi level ☮) and focus on demonstrating misconceptions and expert blind spots.

The talk will begin with a very brief introduction that explains our focus on LTL misconceptions and states that we have conducted studies with multiple populations.

After the introduction, the talk will shift to an interactive style in which we will present several questions from our surveys and ask the audience to label answers to these questions as correct or incorrect. Each set of answers will contain one incorrect answer from our study populations that demonstrates a significant misconception. If our listeners are fooled by the incorrect answer, then we will have shown them a concrete example of LTL being tricky even for experts. If our listeners get all the answers correct, then arguably there is an expert blind spot at play. Either way, we can illustrate the value of rigorous user studies.

The talk will conclude by summarizing what we have done so far, outlining the road ahead, and showing where to find the study instruments that we have made available.
References

[1] Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A framework for transforming specifications in reinforcement learning. CoRR, abs/2111.00272, 2021.

[2] Gal Amram, Suguman Bansal, Dror Fried, Lucas Martinelli Tabajara, Moshe Y. Vardi, and Gera Weiss. Adapting behaviors via reactive synthesis. In CAV, pages 870–893, 2021.

[3] Marco Antoniotti and Bud Mishra. Discrete events models + temporal logic = supervisory controller: Automatic synthesis of locomotion controllers. In ICRA, pages 1441–1446, 1995.

[4] Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan A. DeCastro, Micah J. Fry, and Daniela Rus. The logical options framework. In ICML, volume 139, pages 307–317, 2021.

[5] Amit Bhatia, Lydia E. Kavraki, and Moshe Y. Vardi. Sampling-based motion planning with temporal goals. In ICRA, pages 2689–2696, 2010.

[6] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. Journal of Computer and System Sciences, 78(3):911–938, 2012.

[7] Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion planning for mobile robots. In ICRA, pages 2020–2025. IEEE, 2005.

[8] David Gundana and Hadas Kress-Gazit. Event-based signal temporal logic synthesis for single and multi-robot tasks. IEEE Robotics Autom. Lett., 6(2):3687–3694, 2021.

[9] Yiannis Kantaros and Michael M. Zavlanos. Stylus*: A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems. Int. J. Robotics Res., 39(7):812–836, 2020.

[10] Morteza Lahijanian, Shaull Almagor, Dror Fried, Lydia Kavraki, and Moshe Vardi. This time the robot settles for a cost: A quantitative approach to temporal logic planning with partial satisfaction. In AAAI, pages 3664–3671, 2015.

[11] S.G. Loizou and K.J. Kyriakopoulos. Automatic synthesis of multi-agent motion tasks based on ltl specifications. In CDC, volume 1, pages 153–158, 2004.

[12] Zohar Manna and Pierre Wolper. Synthesis of communicating processes from temporal logic specifications. TOPLAS, 6(1):68–93, 1984.

[13] Liam O’Connor and Oscar Wickström. Quickstrom: Property-based acceptance testing with LTL specifications. In PLDI, page To appear, 2022.

[14] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages 179–190, 1989.

[15] Ankit Shah, Pritish Kamath, Julie A. Shah, and Shen Li. Bayesian inference of temporal task specifications from demonstrations. In NeurIPS, pages 3808–3817, 2018.

[16] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program verification (preliminary report). In LICS, pages 332–344, 1986.

[17] Tichakorn Wongpiromsarn, Alphan Ulusoy, Calin Bela, Emilio Frazzoli, and Daniela Rus. Incremental temporal logic synthesis of control policies for robots interacting with dynamic agents. In IROS, pages 229–236. IEEE, 2012.