ERRATA

STOCHASTIC CALCULUS OVER SYMMETRIC MARKOV PROCESSES WITHOUT TIME REVERSAL

Ann. Probab. 38 (2010) 1532–1569

BY KAZUHIRO KUWAE
Kumamoto University

1. Errata. The sentence “In view of Theorem 2.2 in [22], . . . for q.e. x ∈ E.” at page 1538 should be eliminated. The definitions of \(\hat{M}_d \), \(\hat{M}_j \) and \(\hat{M}_\kappa \) are corrected to be like \(\hat{M}_d := \{ M \in \hat{M} \mid \langle M, N \rangle \equiv 0 \text{ for } N \in \hat{M}^c \} \).

The statements of Theorem 2.1 and Corollary 2.3 in [3] are incorrect, which come from the error in [1] (see [2]). The corrected statement of Theorem 2.1 in [3] can be found below. Its proof can be obtained in the same way as in [3]. The class \(\hat{J} \) introduced in [3] is unnecessary for the corrected statement.

THEOREM 1.1 (Corrected statement of Theorem 2.1 in [3]). There exists a one-to-one correspondence between \(\hat{J}/\sim \) and \(\mathcal{M}_{\text{loc}}^{d,\llbracket0,\xi\rrbracket} \) which is characterized by the relation that for \(\phi \in \hat{J} \) (resp., \(M \in \mathcal{M}_{\text{loc}}^{d,\llbracket0,\xi\rrbracket} \)), there exists \(M \in \mathcal{M}_{\text{loc}}^{d,\llbracket0,\xi\rrbracket} \) (resp., \(\phi \in \hat{J} \)) such that \(\Delta M_t = \phi(X_t - x, X_t) \), \(t \in [0, \xi[, \mathbb{P}_x \)-a.s. for q.e. \(x \in E \). Moreover, we have \(\langle M \rangle_t = \int_0^t \int_E \phi^2(x, y)N(X_s, dy) dH_s \) for all \(t \in [0, \infty[\) \(\mathbb{P}_x \)-a.s. for q.e. \(x \in E \).

We define subclasses of \(\mathcal{M}_{\text{loc}}^{d,\llbracket0,\xi\rrbracket} \) as follows:

\[
\mathcal{M}_{\text{loc}}^{j,\llbracket0,\xi\rrbracket} := \{ M \in \mathcal{M}_{\text{loc}}^{d,\llbracket0,\xi\rrbracket} \mid \phi(\cdot, \partial) = 0, \kappa\text{-a.e. on } E \},
\]

\[
\mathcal{M}_{\text{loc}}^{k,\llbracket0,\xi\rrbracket} := \{ M \in \mathcal{M}_{\text{loc}}^{d,\llbracket0,\xi\rrbracket} \mid \phi = 0, J\text{-a.e. on } E \times E \}.
\]

Then we have that \(M \in \mathcal{M}_{\text{loc}}^{j,\llbracket0,\xi\rrbracket} \), \(N \in \mathcal{M}_{\text{loc}}^{k,\llbracket0,\xi\rrbracket} \) imply \(\langle M, N \rangle \equiv 0 \mathbb{P}_x\)-a.s. for q.e. \(x \in E \), and every \(M \in \mathcal{M}_{\text{loc}}^{\llbracket0,\xi\rrbracket} \) is decomposed to \(M = M^c + M^j + M^k \), where \(M^c \in \mathcal{M}_{\text{loc}}^{c,\llbracket0,\xi\rrbracket} \), \(M^j \in \mathcal{M}_{\text{loc}}^{j,\llbracket0,\xi\rrbracket} \), \(M^k \in \mathcal{M}_{\text{loc}}^{k,\llbracket0,\xi\rrbracket} \) have the properties \(\langle M^c, M^j \rangle \equiv 0 \mathbb{P}_x\)-a.s. for q.e. \(x \in E \).

Received July 2011; revised August 2011.

MSC2010 subject classifications. Primary 31C25; secondary 60J25, 60J45, 60J75.

Key words and phrases. Symmetric Markov process, Dirichlet form, Revuz measure, martingale additive functional of finite energy, continuous additive functional of zero energy, Nakao’s CAF of zero energy, Fukushima decomposition, semi-martingale, Dirichlet processes, stochastic integral, Itô integral, Fisk–Stratonovich integral, time reversal operator, dual predictable projection.

2705
\[\langle M^j, M^\kappa \rangle \equiv \langle M^\kappa, M^c \rangle \equiv 0 \] in view of Theorem 1.1. The statement of Remark 2.3 in [3] is changed to be the following:

Remark 1.1. For each \(i = c, d, j, \kappa \), we let

\[\mathcal{M}^{i,+}_{\text{loc}} := \{ M \mid \text{there exists } \{ G_n \} \in \Theta \text{ and } M^{(n)} \in \mathcal{M}^i \text{ such that} \]

\[M_t = M_t^{(n)} \text{ for all } t \leq \tau_{G_n} \text{ and } n \in \mathbb{N}, \mathbb{P}_x \text{-a.s. for q.e. } x \in E \}. \]

Then \(\mathcal{M}^{i,\lfloor 0, \zeta \rfloor}_{\text{loc}} = \mathcal{M}^{i,+}_{\text{loc}} (i = c, d, j, \kappa) \). More strongly, we have \(\mathcal{M}^{c,\lfloor 0, \zeta \rfloor}_{\text{loc}} = \mathcal{M}^c_{\text{loc}} \).

All the statements of Corollary 4.1 and 4.3, Definition 4.3 and Theorem 4.1 in [3], the generalized Fukushima decomposition (Theorem 4.2 in [3]), the generalized Itô formula (Theorem 4.3 in [3]) and their corollaries (Corollaries 4.4 and 4.5 in [3]) hold only for \(t \in [0, \zeta] \mathbb{P}_x \text{-a.s. for q.e. } x \in E \). The proofs of them can be done in the same way as in [3]. The classes \(\mathcal{F}^\dagger_{\text{loc}} \) and \(\mathcal{F}^\flat_{\text{loc}} \) introduced in [3] are unnecessary for the corrected statements. We only expose the corrected statement of generalized Fukushima decomposition below for completeness.

Theorem 1.2 (Corrected statement of Theorem 4.2 in [3]). For \(u \in \mathcal{F}^\dagger_{\text{loc}} \), the additive functional \(A^u \) defined by \(A^u_t := u(X_t) - u(X_0) \) can be decomposed as

\[A^u = M^u + N^u, \quad M^u \in \mathcal{M}^{\lfloor 0, \zeta \rfloor}_{\text{loc}}, \quad N^u \in \mathcal{N}_{c,\text{loc}} \]

in the sense that \(A^u_t = M^u_t + N^u_t, t \in [0, \zeta], \mathbb{P}_x \text{-a.s. for q.e. } x \in E \). Such a decomposition is unique up to the equivalence of additive functionals on \(\lfloor 0, \zeta \rfloor \) (or of local additive functionals).

References

[1] **Chen, Z. Q., Fitzsimmons, P. J., Kuwae, K. and Zhang, T. S.** (2008). Stochastic calculus for symmetric Markov processes. *Ann. Probab.* 36 931–970. MR2408579

[2] **Chen, Z. Q., Fitzsimmons, P. J., Kuwae, K. and Zhang, T. S.** (2012). Errata for “Stochastic calculus for symmetric Markov processes.” *Ann. Probab.* 36 (2008) 931–970] *Ann. Probab.* 40 1375–1376.

[3] **Kuwae, K.** (2010). Stochastic calculus over symmetric Markov processes without time reversal. *Ann. Probab.* 38 1532–1569. MR2663636