An Improved Urethral Catheterization in Female Pigs: A Pilot Study

Da-Peng Li1,2,3,4, Wen-Hao Zhang1,2,3,4, Ming-Liang Yang1,2,3,4, Chang-Bin Liu1,2,3,4, Xin Zhang1,2,3,4, Chang Cai1,2,3,4, Jian-Jun Li1,2,3,4

1School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
2Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
3Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068, China
4Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China

Key words: Bladder Colostomy or Centesis; Female Miniature Pig; Urethral Catheterization

With the popularity of urine flow dynamic monitoring and indwelling catheter technologies in animal experiments, the urethral catheterization has become a common technique in scientific research. The miniature pig is considered as one of the major animal species used in scientific research and is increasingly being used as an alternative to a dog or monkey as the nonrodent species of choice in the preclinical toxicological testing of pharmaceuticals.[1] Since there are three acute angles bending in the urethra of the male miniature pig, and the end of the penis head is corkscrew shaped, it is difficult to implement routine urethral catheterization in male miniature pigs. Currently, researchers usually implement bladder colostomies or dissections in male miniature pigs, while transurethral urethral catheterization can be implemented in female miniature pigs. According to the existing reports, implementing transurethral catheterization in female miniature pigs is seldom seen.[2] We chose 3-month-old female Bama miniature pigs in our experiments and employ the following methods:

1. Use a “V”-shaped platform with an angle of about 30° to the horizontal plane; second, utilize a pediatric laryngoscope for deep lighting; third, bend the lower limbs and press down the horizontal plane; second, utilize a pediatric laryngoscope

Specific pathogen-free level Bama miniature pigs (female; n = 10; body weight = 7.0 ± 0.5 kg) were sourced commercially (Beijing Strong Century Minipigs Breeding Base) and cultured with a single cage, normal diet and drink in the Laboratory Animal Research Center of Capital Medical University. Before anesthesia, food was withheld for 12–24 h.

All the experimental programs were supported by the Laboratory Animal Research Center of Capital Medical University. This study followed the provisions of the Animal Experimental Ethics Committee (Both projects were approved by the Animal Experimental Ethics Committees at the Capital Medical University and in accordance with the Chinese code for the care and use of animals for scientific purposes [Ethical code: AEEI - 2015-159]).

The apparatus comprises one urethral catheterization plate, one piece of whole towel, one pair of sterile gloves, one sterile silicone catheter with double gasbag cavity (8Fr, Zhanjiang Star Enterprise Co., Ltd.), three curved pliers (20 cm), one set of pediatric laryngoscopes (E - MAC1 number: 93 mm × 11 mm, handle: rough handle, Beijing Delta Science & Technology Development Co., Ltd.), one syringe (20 ml), 5 ml aseptic paraffin oil (Suzhou Saipahan special oil limited company).

Ketamine (0.2 mg/kg, China National Pharmaceutical Group) and sumianxin (0.1 ml/kg, Dunhua Shengda Animal Pharmaceutical Co., Ltd) were given for general anesthesia. The miniature pigs were supine and fixed on the “V”-shaped platform with an angle of about 30° to the horizontal plane, and the lower limbs were bent and pressed down to the ventral side. Satisfactory results through transurethral urethral catheterization were achieved in the end.
ventral side. The labial, vestibular, and urethral orifices should be sterilized with a 0.5% iodine-volt tampon to prevent infection. Wearing the gloves and laying a sterile whole towel on the operation field, an assistant clamps the edge of the vulva to the vaginal vestibule with two curlers and lifts it softly to open the catheter channel. The operator inserts a pediatric laryngoscope into the vaginal vestibule, pressing the rear with the left hand to light the surgery field to see the vaginal orifice clearly. The urethra is hidden in the vertical folds above the vaginal orifice [Figure 1]. Firstly, sterile paraffin oil was used to lubricate the catheter, which was then clamped by a vascular clamp at the front end, inserted into the urethra and extended about 5-6 cm before urine came out. After that, the catheter was pushed forward an additional 1 cm to complete the catheterization.

All female Bama miniature pigs (n = 10) were successfully implemented with transurethral catheterization; the average duration for transurethral catheterization was 15 min. Vulva and urethras were not damaged or bleeding during the urethral catheterization, and we could implement urine testing, urine flow dynamic monitoring, and dynamic observation of the urine weight, proportion, or color at any time according to our needs. No complications, such as infection, were observed after surgery, and we could choose the time for keeping the catheters after surgery as required.

The urethral catheterization of miniature pig has become a common technique in scientific research. Since there are three acute angles bending in the urethra of the male miniature pigs, and the end of the penis head is corkscrew shaped, it is difficult to implement routine urethral catheterization. The perineum structure of female miniature pig is special, but it is difficult to expose the urethra, so researchers usually abandon routine urethral catheterization as they cannot locate the urethra and further implement invasive bladder colostomy or cætcheris. However, these two methods can damage the continuity of the bladder and cannot simulate the clinical use of the urethral intubation effectively, which may influence the result of the experiment.

To solve this problem, we used 3-month-old female Bama miniature pigs to explore the effect of the method using a “V”-shaped platform with an angle of about 30° to the horizontal plane, pediatric laryngoscope deep lighting, and the double lower limbs which were bent and pressed down to the ventral side. This posture made the vulva fully exposed, which can shorten the relative operating distance of the vaginal vestibule, and eventually made the operation easier.

We have successfully completed the transurethral catheterization in female miniature pig through the following operation technology: “V”-shaped platform with an angle of about 30° to the horizontal plane, pediatric laryngoscope deep lighting, and bending lower limbs and pressing down to the ventral side. The method is noninvasive and repeatable, and it will be helpful to carry out experimental research on miniature pig in the future.

Figures and captions

Figure 1: The urethra is hidden in the vertical folds above the vaginal orifice. White arrow refers to the urethral orifice fissure. i. The direction of the black arrow is shrinking round vaginal orifice.