A SINGULAR LIMIT PROBLEM
FOR CONSERVATION LAWS RELATED TO
THE KAWAHARA-KORTEWEG-DE VRIES EQUATION

GIUSEPPE MARIA Coclite
Department of Mathematics, University of Bari
via E. Orabona 4, 70125 Bari, Italy

LORENZO di RUVO
Department of Science and Methods for Engineering, University of Modena and Reggio Emilia
via G. Amendola 2, 42122 Reggio Emilia, Italy

Abstract. We consider the Kawahara-Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the dispersion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L^p setting.

1. Introduction. Nonlinear evolution equations have been used to model many physical phenomena in various fields such as fluid mechanics, solid state physics, plasma physics, chemical physics, optical fiber and geochemistry. An example is given by the Kawahara-Korteweg-de Vries equation:

$$\partial_t u + au \partial_x u + b \partial^{3}_{xxx} u + c \partial^{5}_{xxxxx} u = 0,$$

(1)

where $u = u(t, x)$ is a real function, and $a, b, c \in \mathbb{R}$ are constants.

It is a model for water waves in the long wave regime for moderate values of surface tension (see [16]), or for the propagation of the magnet-acoustic waves in a cold collision free plasma (see [17]).

To obtain the exact solutions for (1), a number of methods has been proposed in the literature, some of them include solitary wave ansatz method, inverse scattering, Hirota bilinear method, homogeneous balance method, Lie group analysis, etc. Among the above mentioned, the Lie group analysis method, which is also called the symmetry method, is one of the most effective to determine solutions of nonlinear partial differential equations [18].

In [1], the authors use Lie group analysis to obtain some exact solutions for (1), the Kawahara equation

$$\partial_t u + au \partial_x u + c \partial^{5}_{xxxxx} u = 0,$$

(2)

2010 Mathematics Subject Classification. Primary: 35G25, 35L65; Secondary: 35L05.

Key words and phrases. Singular limit, compensated compactness, Kawahara-Korteweg-de Vries equation, entropy condition.

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).
the modified Kawahara equation
\[\partial_t u + au^2 \partial_x u + c \partial^5_{xxxxx} u = 0, \]
the modified Kawahara-Korteweg-de Vries equation
\[\partial_t u + au^2 \partial_x u + b \partial^3_{xxx} u + c \partial^5_{xxxxx} u = 0, \]
and, the Rosenau-Kawahara equation
\[\partial_t u + au \partial_x u + b \partial^3_{xxx} u + c \partial^5_{xxxxx} u + d \partial^5_{txxxx} u = 0. \]
(3)
The Kawahara equation (2) describes small-amplitude gravity capillary waves in water of finite depth when the Weber number is close to \(\frac{1}{3} \) (see [23]). In [16], the author deduced (2) and (1) describing one-dimensional propagation of small-amplitude long waves in various problems of fluid dynamics and plasma physics. (1) is also known as the fifth-order Korteweg-de Vries equation, or a special version of the Benney-Lin equation (see [2]). In [20], the author used the exp-function method to find some exact solution for (3). In [21], the authors proved that the solution of (2) converges to the solution of the Korteweg-de Vries equation
\[\partial_t u + \partial_x u^2 + \beta \partial^3_{xxx} u = 0 \]
(4)
We consider (4), and observe that, if we send \(\beta \to 0 \) in (4), we pass from (4) to the Burgers equation
\[\partial_t u + \partial_x u^2 = 0. \]
(5)
In [19, 25], the convergence of the solution of
\[\partial_t u + \partial_x u^2 + \beta \partial^3_{xxx} u = \varepsilon \partial^2_{xx} u \]
to the unique entropy solution of (5) is proven, under the assumption
\[u_0 \in L^2(\mathbb{R}) \cap L^4(\mathbb{R}), \quad \beta = o(\varepsilon^2). \]
(6)
[7, Appendices A and B] show that it is possible to obtain the same result of convergence, under the following assumptions
\[u_0 \in L^2(\mathbb{R}), \quad -\infty < \int_{\mathbb{R}} u_0(x) dx < \infty, \quad \beta = o(\varepsilon^3), \]
\[u_0 \in L^2(\mathbb{R}), \quad \beta = o(\varepsilon^4). \]
Several of the ideas used in this paper were inspired by the analysis of the following generalization of (4)
\[\partial_x (\partial_t u + \partial_x u^2 - \beta \partial^3_{xx} u) = \gamma u, \quad \beta, \gamma \in \mathbb{R}, \]
(7)
that is the Ostrovsky equation (see [24]). Equation (7) describes small-amplitude long waves in a rotating fluid of a finite depth by the additional term induced by the Coriolis force. If we send \(\beta \to 0 \) in (7), we pass from (7) to the Ostrovsky-Hunter equation (see [3])
\[\partial_x (\partial_t u + \partial_x u^2) = \gamma u, \quad t > 0, \quad x \in \mathbb{R}. \]
(8)
In [9, 12, 15], the wellposedness of the entropy solutions of (8) is proven, in the sense of the following definition:

Definition 1.1. We say that \(u \in L^\infty((0, T) \times \mathbb{R}) \), \(T > 0 \), is an entropy solution of (8) if
i) \(u \) is a distributional solution of (8):
ii) for every convex function \(\eta \in C^2(\mathbb{R}) \) the entropy inequality
\[
\partial_t \eta(u) + \partial_x q(u) - \gamma \eta'(u) P \leq 0, \quad q(u) = 2 \int_0^u \xi \eta'(\xi) \, d\xi,
\]
holds in the sense of distributions in \((0, \infty) \times \mathbb{R}\), where \(\partial_x P = u \).

Under the assumption (6), in [10], the convergence of the solutions of (7) to the unique entropy solution of (8) is proven.

Consider (3). Choosing \(a = 2, b = d = 1, c = 0 \), we have the Rosenau-Korteweg-de Vries equation
\[
\partial_t u + \partial_x u^2 + \partial^3_{xxx} u + \partial^5_{xxxxx} u = 0. \tag{9}
\]
Arguing as in [11], we re-scale the equation as follows
\[
\partial_t u + \partial_x u^2 + \beta \partial^3_{xxx} u + \beta^2 \partial^5_{xxxxx} u = 0, \tag{10}
\]
where \(\beta \) is the dispersion parameter. In [5], the authors proved that the solution of
\[
\partial_t u + \partial_x u^2 + \beta \partial^3_{xxx} u + \beta^2 \partial^5_{xxxxx} u = \varepsilon \partial^2_{xx} u, \tag{11}
\]
converge to the unique entropy solution of (5), choosing the initial datum in two different ways. The first one is:
\[
u_0 \in L^2(\mathbb{R}), \quad \beta = o(\varepsilon^4). \tag{12}\]
The second choice is:
\[
u_0 \in L^2(\mathbb{R}) \cap L^4(\mathbb{R}), \quad \beta \leq \text{const} \left(\| u_0 \|_{L^2(\mathbb{R})}, \| u_0 \|_{L^4(\mathbb{R})} \right) (\varepsilon^4). \tag{13}\]
Consider (2) with \(a = 2, c = 1 \). Arguing as in [11], we re-scale the equation as follows
\[
\partial_t u + \partial_x u^2 + \beta^2 \partial^5_{xxxxx} u = 0, \tag{14}\]
where \(\beta \) is the dispersion parameter. Assuming (12), or (13), in [4], the authors proved that the solution of
\[
\partial_t u + \partial_x u^2 + \beta^2 \partial^5_{xxxxx} u = \varepsilon \partial^2_{xx} u, \tag{15}\]
converge to the unique entropy solution of (5).

[4, Appendices A and B] show that, using the approximation introduced in [6], we have the same result of convergence, under the following assumptions
\[
u_0 \in L^2(\mathbb{R}), \quad \beta = o(\varepsilon^8). \tag{16}\]
\[
u_0 \in L^2(\mathbb{R}) \cap L^4(\mathbb{R}), \quad \beta \leq \text{const} \left(\| u_0 \|_{L^2(\mathbb{R})}, \| u_0 \|_{L^4(\mathbb{R})} \right) (\varepsilon^8). \tag{17}\]
In this paper, we consider (1) with \(a = 2, b = c = 1 \). Arguing as in [11], we re-scale the equations as follows
\[
\partial_t u + \partial_x u^2 + \beta \partial^3_{xxx} u + \beta^2 \partial^5_{xxxxx} u = 0, \tag{18}\]
where \(\beta \) is the dispersion parameter.

We are interested in the dispersion-diffusion limit, we send \(\beta \to 0 \) in (18). In this way, we pass from (18) to (5). We prove that, as \(\beta, \varepsilon \to 0 \), the solution of (18) converge to the unique entropy solution of (5). In other to do this, using the following approximation (see (21) below)
\[
\partial_t u + \partial_x u^2 + \beta \partial^3_{xxx} u + \beta^2 \partial^5_{xxxxx} u = \varepsilon \partial^2_{xx} u - \beta \varepsilon \partial^2_{xxxxx} u, \tag{19}\]
where \(\varepsilon, \beta \) are two small numbers. The form of the right hand side of (19) has been chosen for mathematical reason and there is no deep physical meaning behind it. The two terms are designed to preserve the \(\| \cdot \|_{L^1} \).
We can choose the initial datum and \(\beta \) in two different ways. Following [14, Theorem 7.1], the first choice is given by (12) (see Theorem 2.2). Since \(\| \cdot \|_{L^4} \) is a conserved quantity for (19), the second choice is given by (13) (see Theorem 3.1).

It is interesting to observe that, while the summability on the initial datum in (13) is greater than the one of (12), the assumption on \(\beta \) in (13) is weaker than the one in (12). From the mathematical point of view, the two assumptions require two different arguments for the \(L^\infty \)-estimate (see Lemmas 2.3 and 3.2). Indeed, the proof of Lemma 2.3, under the assumption (12), is more technical than the one of Lemma 3.2. Moreover, due to the presence of the third order term, Lemma 3.3 is finer than [4, Lemmas 3.2]. Indeed, in Lemma 3.3 we need to prove the existence of two positive constants, that is not the case in [4, Lemma 3.2].

Alternatively we can consider the approximation introduced in [6]

\[
\partial_t u + \partial_x u^2 + \beta \partial_{xxx}^3 u + \beta^2 \partial_{xxxxx}^5 u = \varepsilon \partial_{xx}^2 u - \beta^2 \varepsilon \partial_{xxxx}^4 u.
\]

(20)

We consider (19), in lieu of (20), because it gives us sharper estimates. Indeed if we work with (20), we have to replace (12) and (13) with (16) and (17), respectively. To better show that (19) works better than (20) we give the details on (19) in the main part of the paper and the ones on (20) are briefly discussed in the final appendices.

The paper is organized in five sections. In Section 2, we prove the convergence of (18) to (5) in the \(L^p \) setting, with \(1 \leq p < 2 \). In Section 3, we prove the convergence of the solutions of (18) to the ones of (5) in the \(L^p \) setting, with \(1 \leq p < 4 \). Sections A and B are the appendices where, using the approximation (20), we prove the convergence of the solutions of (18) to the ones of (5) in the \(L^p \) setting, with \(1 \leq p < 2 \), and in the \(L^p \) setting with \(1 \leq p < 4 \), respectively.

2. The Kawahara-KDV-equation: \(u_0 \in L^2(\mathbb{R}), \beta = o(\varepsilon^4) \). In this section, we consider (18), and assume (12) on the initial datum.

We study the dispersion-diffusion limit for (18). Therefore, we fix two small numbers \(\varepsilon, \beta \) and consider the following fifth order approximation

\[
\begin{align*}
\partial_t u_{\varepsilon, \beta} + \partial_x u_{\varepsilon, \beta}^2 + \beta \partial_{xxx}^3 u_{\varepsilon, \beta} + \beta^2 \partial_{xxxxx}^5 u_{\varepsilon, \beta} &= \varepsilon \partial_{xx}^2 u_{\varepsilon, \beta} - \beta^2 \varepsilon \partial_{xxxx}^4 u_{\varepsilon, \beta}, \\
u_{\varepsilon, \beta}(0, x) &= u_{\varepsilon, \beta, 0}(x),
\end{align*}
\]

(21)

where \(u_{\varepsilon, \beta, 0} \) is a \(C^\infty \) approximation of \(u_0 \) such that

\[
\begin{align*}
u_{\varepsilon, \beta, 0} &\rightarrow u_0 & \text{ in } L^p_{\text{loc}}(\mathbb{R}), 1 \leq p < 2, & \text{as } \varepsilon, \beta \rightarrow 0, \\
\| u_{\varepsilon, \beta, 0} \|_{L^2(\mathbb{R})}^2 + \beta^2 \| \partial_{xx} u_{\varepsilon, \beta, 0} \|_{L^2(\mathbb{R})}^2 + \beta \varepsilon^2 \| \partial_{xxxx}^2 u_{\varepsilon, \beta, 0} \|_{L^2(\mathbb{R})}^2 &\leq C_0, & \varepsilon, \beta > 0,
\end{align*}
\]

(22)

and \(C_0 \) is a constant independent on \(\varepsilon \) and \(\beta \). Such sequence \(\{ u_{\varepsilon, \beta, 0} \} \) can be constructed using standard mollifiers and (12). The well-posedness of the smooth solutions \(u_{\varepsilon, \beta} \in C^\infty \) can be proven following the same argument of [25].

We consider the following definition.

Definition 2.1. A pair of functions \((\eta, q) \) is called an entropy–entropy flux pair if \(\eta : \mathbb{R} \rightarrow \mathbb{R} \) is a \(C^2 \) function and \(q : \mathbb{R} \rightarrow \mathbb{R} \) is defined by

\[
q(u) = 2 \int_0^u \xi \eta'(\xi) d\xi.
\]

An entropy–entropy flux pair \((\eta, q) \) is called convex/compactly supported if, in addition, \(\eta \) is convex/compactly supported.
The main result of this section is the following theorem.

Theorem 2.2. Assume that (12) and (22) hold. Fix $T > 0$, if

$$\beta = o(\varepsilon^4),$$

then, there exist two sequences $\{\varepsilon_n\}_{n \in \mathbb{N}}, \{\beta_n\}_{n \in \mathbb{N}}$, with $\varepsilon_n, \beta_n \to 0$, and a limit function

$$u \in L^\infty((0, T); L^2(\mathbb{R})), \quad (24)$$

such that

$$u_{\varepsilon_n, \beta_n} \to u \quad \text{strongly in } L^p_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R}), \quad \text{for each } 1 \leq p < 2, \quad (25)$$

$$u \quad \text{is the unique entropy solution of } (5), \quad (26)$$

where $u_{\varepsilon, \beta}$ solves (21).

Let us prove some a priori estimates on $u_{\varepsilon, \beta}$, denoting with C_0 the constants which depend only on the initial data.

Lemma 2.3. For each $t > 0$,

$$\|u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 + 2\varepsilon \int_0^t \|\partial_x u_{\varepsilon, \beta}(s, \cdot)\|_{L^2(\mathbb{R})}^2 ds + 2\beta \varepsilon \int_0^t \|\partial_{xx} u_{\varepsilon, \beta}(s, \cdot)\|_{L^2(\mathbb{R})}^2 ds \leq C_0. \quad (27)$$

For every $T > 0$, we have

$$\|u_{\varepsilon, \beta}\|_{L^2((0, T) \times \mathbb{R})} \leq C_0 \sqrt{T}, \quad (28)$$

$$\|u_{\varepsilon, \beta}\|_{L^\infty((0, T) \times \mathbb{R})} \leq C_0 \beta^{-\frac{4}{5}}. \quad (29)$$

Moreover

$$\beta \|\partial_x u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 + \beta \varepsilon \|\partial_{xx} u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 \quad (30)$$

$$+ \int_0^t \|\partial_{xxx} u_{\varepsilon, \beta}(s, \cdot)\|_{L^2(\mathbb{R})}^2 ds + 2\beta \varepsilon \int_0^t \|\partial_{xxx} u_{\varepsilon, \beta}(s, \cdot)\|_{L^2(\mathbb{R})}^2 ds \leq C_0.$$

Proof. Let $0 < t < T$. We begin by proving that (27), and (28) hold. Multiplying (21) by $2u_{\varepsilon, \beta}$, since

$$2\beta \int u_{\varepsilon, \beta} \partial_{xxx} u_{\varepsilon, \beta} dx = 0,$$

arguing as in [4, Lemmas 2.1], we have (27), and (28).
Finally, we prove (29), and (30). Multiplying (21) by $-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}$, we have

\[
\begin{align*}
&\left(-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}\right)\partial_t u_{\varepsilon,\beta} \\
&+ 2\left(-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}\right)u_{\varepsilon,\beta}\partial_x u_{\varepsilon,\beta} \\
&+ \beta \left(-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}\right)\partial^3_{xxx}u_{\varepsilon,\beta}, \\
&+ \beta^2 \left(-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}\right)\partial^5_{xxxx}u_{\varepsilon,\beta} \\
&= \varepsilon \left(-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}\right)\partial^2_{xx}u_{\varepsilon,\beta} \\
&- \beta\varepsilon \left(-2\beta^2\partial^2_{xx}u_{\varepsilon,\beta} + 2\beta\varepsilon^2 \partial^4_{xxxx}u_{\varepsilon,\beta}\right)\partial^4_{xxxx}u_{\varepsilon,\beta}.
\end{align*}
\]

Since

\[
-2\beta^2 \int_R \partial^2_{xx}u_{\varepsilon,\beta}\partial^3_{xxx}u_{\varepsilon,\beta}dx = 0,
\]

\[
2\beta^2\varepsilon^2 \int_R \partial^4_{xxxx}u_{\varepsilon,\beta}\partial^3_{xxx}u_{\varepsilon,\beta}dx = 0,
\]

arguing as in [4, Lemmas 2.2], we have (27), (28), (29) and (30). \[
\]

To prove Theorem 2.2, the Murat Lemma is needed [22]. Following [19], we prove Theorem 2.2.

Proof Theorem 2.2. Let us consider a compactly supported entropy-entropy flux pair (η, q). Multiplying (21) by $\eta'(u_{\varepsilon,\beta})$, we have

\[
\partial_t \eta(u_{\varepsilon,\beta}) + \partial_x q(u_{\varepsilon,\beta}) = \varepsilon \eta'(u_{\varepsilon,\beta})\partial^2_{xx}u_{\varepsilon,\beta} - \beta\varepsilon \eta'(u_{\varepsilon,\beta})\partial^4_{xxxx}u_{\varepsilon,\beta} \\
- \beta^2 \eta'(u_{\varepsilon,\beta})\partial^2_{xxxx}u_{\varepsilon,\beta} - \beta\eta'(u_{\varepsilon,\beta})\partial^3_{xxx}u_{\varepsilon,\beta} \\
= I_{1, \varepsilon, \beta} + I_{2, \varepsilon, \beta} + I_{3, \varepsilon, \beta} + I_{4, \varepsilon, \beta} + I_{5, \varepsilon, \beta} + I_{6, \varepsilon, \beta} + I_{7, \varepsilon, \beta} + I_{8, \varepsilon, \beta},
\]

where

\[
\begin{align*}
I_{1, \varepsilon, \beta} &= \partial_x (\varepsilon \eta'(u_{\varepsilon,\beta})\partial_x u_{\varepsilon,\beta}), \\
I_{2, \varepsilon, \beta} &= -\varepsilon \eta''(u_{\varepsilon,\beta})(\partial_x u_{\varepsilon,\beta})^2, \\
I_{3, \varepsilon, \beta} &= -\partial_x (\beta\varepsilon \eta'(u_{\varepsilon,\beta})\partial^3_{xxx}u_{\varepsilon,\beta}), \\
I_{4, \varepsilon, \beta} &= \beta\varepsilon \eta''(u_{\varepsilon,\beta})\partial_x u_{\varepsilon,\beta}\partial^2_{xx}u_{\varepsilon,\beta}, \\
I_{5, \varepsilon, \beta} &= -\partial_x (\beta^2\eta'(u_{\varepsilon,\beta})\partial^4_{xxxx}u_{\varepsilon,\beta}), \\
I_{6, \varepsilon, \beta} &= \beta^2 \eta''(u_{\varepsilon,\beta})\partial_x u_{\varepsilon,\beta}\partial^4_{xxxx}u_{\varepsilon,\beta}, \\
I_{7, \varepsilon, \beta} &= -\partial_x (\beta \eta'(u_{\varepsilon,\beta})\partial^2_{xx}u_{\varepsilon,\beta}), \\
I_{8, \varepsilon, \beta} &= \beta \eta''(u_{\varepsilon,\beta})\partial_x u_{\varepsilon,\beta}\partial^2_{xx}u_{\varepsilon,\beta}.
\end{align*}
\]

Fix $T > 0$. Arguing as in [4, Theorem 2.1], we have that $I_{1, \varepsilon, \beta} \to 0$ in $H^{-1}((0,T) \times \mathbb{R})$, $\{I_{2, \varepsilon, \beta}\}_{\varepsilon, \beta > 0}$ is bounded in $L^1((0,T) \times \mathbb{R})$, $I_{3, \varepsilon, \beta} \to 0$ in $H^{-1}((0,T) \times \mathbb{R})$, $I_{4, \varepsilon, \beta} \to 0$ in $L^1((0,T) \times \mathbb{R})$, $I_{5, \varepsilon, \beta} \to 0$ in $H^{-1}((0,T) \times \mathbb{R})$, and $I_{6, \varepsilon, \beta} \to 0$ in $L^1((0,T) \times \mathbb{R})$. Due to (23), Lemma 2.3, and the Hölder inequality, we have that $I_{7, \varepsilon, \beta} \to 0$ in $H^{-1}((0,T) \times \mathbb{R})$, and $I_{8, \varepsilon, \beta} \to 0$ in $L^1((0,T) \times \mathbb{R})$. \[
\]
Theorem 3.1.

Arguing as in [4, Theorem 2.1] and using (22), we can prove that for every convex entropy-entropy flux \((\eta, q)\) we have
\[
\partial_t \eta(u) + \partial_x q(u) \leq 0
\]
in the sense of distributions. Therefore (26) is proved.

Finally, arguing as in [14, Theorem 7.1], we get (24).

\[
\square
\]

3. The Kawahara-KDV equation: \(u_0 \in L^2(\mathbb{R}) \cap L^4(\mathbb{R}), \beta = O(\varepsilon^4)\). In this section, we consider (18), and assume (13) on the initial datum.

We study the dispersion-diffusion limit for (18). Therefore, we fix two small numbers \(\varepsilon, \beta\), and consider the approximation (21), where \(u_{\varepsilon, \beta, 0}\) is a \(C^\infty\) approximation of \(u_0\) such that
\[
u_{\varepsilon, \beta, 0} \to u_0 \quad \text{in} \quad L^p_{\text{loc}}(\mathbb{R}), \quad 1 \leq p < 4, \quad \text{as} \quad \varepsilon, \beta \to 0,
\]
\[
\|u_{\varepsilon, \beta, 0}\|_{L^4(\mathbb{R})}^4 + \|u_{\varepsilon, \beta, 0}\|_{L^2(\mathbb{R})}^2 \leq C_0, \quad \varepsilon, \beta > 0,
\]
\[
\left(\beta^2 + \varepsilon^2\right)\|\partial_x u_{\varepsilon, \beta, 0}\|_{L^4(\mathbb{R})}^2 + \beta \varepsilon^2 \|\partial_{xx} u_{\varepsilon, \beta, 0}\|_{L^2(\mathbb{R})}^2 \leq C_0, \quad \varepsilon, \beta > 0,
\]
and \(C_0\) is a constant independent on \(\varepsilon\) and \(\beta\).

The main result of this section is the following theorem.

Theorem 3.1. Assume that (13) and (32) hold. Fix \(T > 0\), if
\[
\beta \leq \frac{25}{32C_0}\varepsilon^4,
\]
then, there exist two sequences \(\{\varepsilon_n\}_{n \in \mathbb{N}}, \{\beta_n\}_{n \in \mathbb{N}}\), with \(\varepsilon_n, \beta_n \to 0\), and a limit function
\[
u \in L^\infty((0, T); L^2(\mathbb{R}) \cap L^4(\mathbb{R})),
\]
such that
\[
u_{\varepsilon_n, \beta_n} \to \nu, \quad \text{strongly in} \quad L^p_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R}), \quad \text{for each} \quad 1 \leq p < 4,
\]
\[
u \quad \text{the unique entropy solution of (5)},
\]
where \(u_{\varepsilon, \beta}\) solves (21).

Let us prove some a priori estimates on \(u_{\varepsilon, \beta}\), denoting with \(C_0\) the constants which depend only on the initial data.

Lemma 3.2. Fix \(T > 0\). Assume (33) holds. There exists \(C_0 > 0\) such that (29) holds. Moreover,
\[
\beta^2 \|\partial_x u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 + \frac{3\beta^2 \varepsilon}{2} \int_{0}^{t} \left\|\partial_{xx}^2 u_{\varepsilon, \beta}(s, \cdot)\right\|_{L^2(\mathbb{R})}^2 ds + 2\beta^2 \varepsilon \int_{0}^{t} \left\|\partial_{xxx} u_{\varepsilon, \beta}(s, \cdot)\right\|_{L^1(\mathbb{R})} ds \leq C_0 \beta^{-\frac{1}{2}}.
\]

Proof of Lemma 3.2. Let \(0 < t < T\). Multiplying (18) by \(-2\beta^2 \partial_{xx}^2 u_{\varepsilon, \beta}\), we have
\[
-2\beta^2 \partial_{xx}^2 u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} - 4\beta^2 u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} - 2\beta^2 \partial_{xx} u_{\varepsilon, \beta} \partial_{xxx} u_{\varepsilon, \beta} - 2\beta^2 \partial_{xx} u_{\varepsilon, \beta} \partial_{xxxx} u_{\varepsilon, \beta} = -2\beta^2 \varepsilon (\partial_{xx}^2 u_{\varepsilon, \beta})^2 + 2\beta^2 \varepsilon \partial_{xx}^2 u_{\varepsilon, \beta} \partial_{xxxx} u_{\varepsilon, \beta}.
\]
Since,
\[-2\beta^3 \int_{\mathbb{R}} \partial_{xx}^2 u_{\varepsilon, \beta} \partial_{xxx}^3 u_{\varepsilon, \beta} dx = 0,
\]
arguing as in [4, Lemma 3.1], we have (29) and (36).

Following [13, Lemma 4.2], or [8, Lemma 2.2], we prove the following result.

Lemma 3.3. Fix $T > 0$. Assume (32) and (33) hold. Then:

i) the family $\{u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$ is bounded in $L^\infty((0, T); L^4(\mathbb{R}))$;

ii) the families $\{\varepsilon \partial_x u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$, $\{\beta \varepsilon \partial_x^2 u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$, $\{\beta \varepsilon \partial_x^3 u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$, $\{\beta \varepsilon \partial_x^4 u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$, $\{\varepsilon \partial_{xx} u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$, $\{\varepsilon \partial_{xxx} u_{\varepsilon, \beta}\}_{\varepsilon, \beta}$ are bounded in $L^2((0, T) \times \mathbb{R})$.

Proof. Let $0 < t < T$. Let A, B be some positive constants which be specified later. Multiplying (18) by
\[u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta},\]
we have
\[
\begin{aligned}
&u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta}) \partial_t u_{\varepsilon, \beta} \\
&+ 2 \left(u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta} \right) \partial_t u_{\varepsilon, \beta} \\
&+ \beta \left(u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta} \right) \partial_{xx} u_{\varepsilon, \beta} \\
&+ \beta^2 \left(u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta} \right) \partial_{xxx} u_{\varepsilon, \beta} \\
&= \varepsilon \left(u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta} \right) \partial_{xx}^3 u_{\varepsilon, \beta} \\
&- \beta \varepsilon \left(u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta} \right) \partial_{xxx}^3 u_{\varepsilon, \beta}.
\end{aligned}
\] (37)

Since
\[\beta \int_{\mathbb{R}} \left(u_{\varepsilon, \beta}^3 - A \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + B \beta \varepsilon^2 \partial_{xxx}^4 u_{\varepsilon, \beta}) \partial_{xxx}^3 u_{\varepsilon, \beta} \right) \partial_{xxx} u_{\varepsilon, \beta} dx
\]
\[= -3\beta \int_{\mathbb{R}} u_{\varepsilon, \beta}^2 \partial_{xx} u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} dx,
\]
argument as in [4, Lemma 3.2], an integration on \mathbb{R} of (37) gives
\[
d\frac{d}{dt} \left(\frac{1}{4} \|u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 + \frac{A \varepsilon^2}{2} \|\partial_x u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 + \frac{B \beta \varepsilon^2}{2} \|\partial_{xx} u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 \right)
\]
\[+ 3\varepsilon \|u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 \|\partial_x u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2 + A \varepsilon^3 \|\partial_{xx}^3 u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2
\]
\[+ B \beta \varepsilon^3 \|\partial_{xxx}^4 u_{\varepsilon, \beta}(t, \cdot)\|_{L^2(\mathbb{R})}^2
\]
\[= 2A \varepsilon^2 \int_{\mathbb{R}} u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} dx - 2B \beta \varepsilon^2 \int_{\mathbb{R}} u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} \partial_{xxx}^4 u_{\varepsilon, \beta} dx
\]
\[+ 3\beta \int_{\mathbb{R}} u_{\varepsilon, \beta}^2 \partial_x u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} dx + 3\beta \varepsilon \int_{\mathbb{R}} u_{\varepsilon, \beta}^2 \partial_x u_{\varepsilon, \beta} \partial_{xxx}^4 u_{\varepsilon, \beta} dx
\]
\[+ 3\beta \varepsilon \int_{\mathbb{R}} u_{\varepsilon, \beta}^2 \partial_x u_{\varepsilon, \beta} \partial_{xxx}^3 u_{\varepsilon, \beta} dx.
\]

Due the Young inequality,
\[2A \varepsilon^2 \int_{\mathbb{R}} |u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta}| \partial_{xx}^2 u_{\varepsilon, \beta} dx = 2 \int_{\mathbb{R}} |\varepsilon \partial_x u_{\varepsilon, \beta}| \left| A \varepsilon \partial_{xx}^2 u_{\varepsilon, \beta} \right| dx
\]
\[
\frac{d}{dt} \left(\frac{1}{2} \| u_{\varepsilon, \beta}(t, \cdot) \|_{L^4(\mathbb{R})}^4 + \frac{A_2 \varepsilon^3}{2} \| \partial_x u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \right) + \beta \varepsilon^2 \int_{\mathbb{R}} \left(2 \varepsilon^{\frac{3}{2}} \| \partial_x u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} \right) + \left((A - A^2) \varepsilon^3 \right) \| \partial_{xx} u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} + \beta \varepsilon^3 \| \partial^3 u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})}
\]
\[
+ A \beta \varepsilon^2 \| \partial_{xxx} u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} + \frac{B \beta^2 \varepsilon^3}{2} \| \partial^4 u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})}
\]
\[
\leq 3 \beta \int_{\mathbb{R}} u_{\varepsilon, \beta}^2 \| \partial_x u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} \int_{\mathbb{R}} \partial_x u_{\varepsilon, \beta} \| \partial_{xx} u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} dx
\]

By (33),
\[
\beta \leq D \varepsilon^4,
\]
where \(D \) is a positive constant which will be specified later. Thanks to (29), (39), and the Young inequality,
\[
\frac{d}{dt} \left(\frac{1}{2} \| u_{\varepsilon, \beta}(t, \cdot) \|_{L^4(\mathbb{R})}^4 \right) + B \varepsilon^3 \| \partial_x u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^4
\]
\[
\leq C_0 \beta \varepsilon^2 \| \partial_x u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})}^2 + \frac{A_2 \varepsilon^3}{2} \| \partial^2 u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})}^2
\]

Therefore, we have
\[
\frac{d}{dt} \left(\frac{1}{2} \| u_{\varepsilon, \beta}(t, \cdot) \|_{L^4(\mathbb{R})}^4 + \frac{A_2 \varepsilon^3}{2} \| \partial_x u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \right)
\]
\[
+ \frac{B \beta \varepsilon^2}{2} \| \partial^2 u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + (A - A^2) \varepsilon^3 \| \partial^2 u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + B \beta \varepsilon^3 \| \partial^3 u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2
\]
\[
+ A_2 \beta \varepsilon^2 \| \partial^3 u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + \frac{B \beta^2 \varepsilon^3}{2} \| \partial^4 u_{\varepsilon, \beta}(t, \cdot) \|_{L^2(\mathbb{R})}^2
\]
\[
\leq 3 \beta \int_{\mathbb{R}} u_{\varepsilon, \beta}^2 \| \partial_x u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} \int_{\mathbb{R}} \partial_x u_{\varepsilon, \beta} \| \partial_{xx} u_{\varepsilon, \beta} \|_{L^2(\mathbb{R})} dx
\]

By (33),
\[
\beta \leq D \varepsilon^4,
\]
where \(D \) is a positive constant which will be specified later. Thanks to (29), (39), and the Young inequality,
3\beta \varepsilon \int_{\mathbb{R}} u_{x, \beta}^2 |\partial_x u_{x, \beta}| |\partial_{xxx} u_{x, \beta}| \, dx \\
= \beta \varepsilon \int_{\mathbb{R}} \frac{3u_{x, \beta}^2 |\partial_x u_{x, \beta}|}{\sqrt{B\varepsilon}} \left| \sqrt{B\varepsilon} \partial_{xxx} u_{x, \beta} \right| \, dx \\
\leq \frac{9\beta}{2B\varepsilon} \int_{\mathbb{R}} u_{x, \beta}^4 (\partial_x u_{x, \beta})^2 \, dx + \frac{B\beta \varepsilon^3}{2} \left\| \partial_{xxx} u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \\
\leq \frac{9\beta}{2B\varepsilon} \left\| u_{x, \beta} \right\|_{L^\infty((0,T) \times \mathbb{R})}^2 \left\| u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \\
+ \frac{B\beta \varepsilon^3}{2} \left\| \partial_{xxx} u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \\
\leq \frac{C_0 \beta^2}{B} \left\| u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \\
+ \frac{B\beta \varepsilon^3}{2} \left\| \partial_{xxx} u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \\
\leq C_0 \varepsilon \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2.

As a consequence (38) gives

\[\frac{d}{dt} \left(\frac{1}{4} \left\| u_{x, \beta}(t, \cdot) \right\|_{L^4(\mathbb{R})}^4 + \frac{A\varepsilon^2}{2} \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \right) \]
\[+ \left(3 - 2B - \frac{C_0 D^2}{B} \right) \varepsilon \left\| u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \]
\[+ \left(A - \frac{3A^2}{2} \right) \varepsilon^3 \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 + \frac{B\beta \varepsilon^3}{2} \left\| \partial_{xxx} u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \]
\[+ \frac{A\beta \varepsilon^2}{6} \left\| \partial_{xxx} u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \]
\[\leq C_0 \varepsilon \left\| \partial_x u_{x, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2. \]

We search \(A, B \) such that

\[\begin{cases} \quad A - \frac{3A^2}{2} > 0, \\ \quad 3 - 2B - \frac{C_0 D^2}{B} > 0, \end{cases} \]

that is

\[\begin{cases} \quad A > \frac{2}{3}, \\ \quad 2B^2 - 3B + C_0 D^2 < 0. \end{cases} \]

We choose

\[A = \frac{1}{3}. \]

The second equation of (41) admits solution if

\[D < \frac{6\sqrt{2}}{8\sqrt{C_0}}. \]

Choosing

\[D = \frac{5\sqrt{2}}{8\sqrt{C_0}}, \]
it follows from (41) and (43) that there exist 0 < B₁ < B₂, such that for every

\[B₁ < B < B₂, \]

(41) holds. Hence, from (40), (42) and (44), we get

\[
\frac{d}{dt} \left(\frac{1}{4} \| u_{ε,β}(t, \cdot) \|_{L^4(\mathbb{R})}^4 + \frac{ε^2}{6} \| \partial_x u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + \frac{Bβε^2}{2} \| \partial_{xx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \right) \\
+ Kε \| u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + \frac{ε^3}{6} \| \partial_{xx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \\
+ \frac{Bβε^3}{2} \| \partial_{xxx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + \frac{βε^2}{3} \| \partial_{xxx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \\
+ \frac{βε^3}{6} \| \partial_{xxxx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + \frac{Bβ^2ε^3}{6} \| \partial_{xxxx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \\
\leq C₀ε \| \partial_{xx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2,
\]

where \(K \) is a positive constant.

(32), (27), an integration on \((0, t)\) give

\[
\frac{1}{4} \| u_{ε,β}(t, \cdot) \|_{L^4(\mathbb{R})}^4 + \frac{ε^2}{6} \| \partial_x u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 + \frac{Bβε^2}{2} \| \partial_{xx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})}^2 \\
+ \frac{βε^3}{2} \int_0^t \| \partial_{xxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds + \frac{ε^3}{6} \int_0^t \| \partial_{xx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \\
+ \frac{βε^2}{3} \int_0^t \| \partial_{xx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds + \frac{βε^3}{6} \int_0^t \| \partial_{xxxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \\
+ \frac{βε^3}{6} \int_0^t \| \partial_{xxxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds + \frac{Bβ^2ε^3}{6} \int_0^t \| \partial_{xxxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \\
\leq C₀ + C₀ε \int_0^t \| \partial_x u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \leq C₀.
\]

Therefore,

\[
\| u_{ε,β}(t, \cdot) \|_{L^4(\mathbb{R})} \leq C₀, \\
\varepsilon \| \partial_x u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})} \leq C₀, \\
β^2ε \| \partial_{xx} u_{ε,β}(t, \cdot) \|_{L^2(\mathbb{R})} \leq C₀, \\
\varepsilon \int_0^t \| u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \leq C₀, \\
\varepsilon^2 \int_0^t \| \partial_{xx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \leq C₀, \\
βε^2 \int_0^t \| \partial_{xxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \leq C₀, \\
βε^3 \int_0^t \| \partial_{xxxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \leq C₀, \\
β^2ε^3 \int_0^t \| \partial_{xxxx} u_{ε,β}(s, \cdot) \|_{L^2(\mathbb{R})}^2 \, ds \leq C₀,
\]

for every \(0 < t < T \).

\[\square \]

We are ready for the proof of Theorem 3.1.
Proof of Theorem 3.1. Let us consider a compactly supported entropy-entropy flux pair \((\eta, \varphi)\). Multiplying (21) by \(\eta'(u_{\varepsilon,\beta})\), we have
\[
\partial_t \eta(u_{\varepsilon,\beta}) + \partial_x q(u_{\varepsilon,\beta}) = \varepsilon \eta'(u_{\varepsilon,\beta}) \partial^2_{xx} u_{\varepsilon,\beta} - \beta \varepsilon \eta'(u_{\varepsilon,\beta}) \partial^4_{xxxx} u_{\varepsilon,\beta}
- \beta^2 \eta'(u_{\varepsilon,\beta}) \partial^3_{xxx} u_{\varepsilon,\beta} - \beta^2 \eta'(u_{\varepsilon,\beta}) \partial^5_{xxxxx} u_{\varepsilon,\beta}
= I_1 + I_2 + I_3 + I_4 + I_5 + I_6,
\]
where \(I_1, I_2, I_3, I_4, I_5, I_6\) are defined in (31).

Fix \(T > 0\). Arguing as in [4, Theorem 3.1], we have that \(I_1, I_2, I_3, I_4, I_5, I_6, I_7, I_8\) are bounded in \(H^{-1}((0,T) \times \mathbb{R})\), \(I_3, I_5, I_6, I_7, I_8\) are defined in (31).

Due to (33), Lemmas 2.3 and 3.3, and the Hölder inequality,
\[
\|\beta \eta' u_{\varepsilon,\beta} \partial^2_{xx} u_{\varepsilon,\beta}\|_{L^2((0,T) \times \mathbb{R})}^2
\leq \beta^2 \|\eta'\|_{L^2(\mathbb{R})} \|\partial^2_{xx} u_{\varepsilon,\beta}\|_{L^2((0,T) \times \mathbb{R})}^2
= \frac{\beta^2 \varepsilon^3}{\varepsilon^3} \|\eta'\|_{L^2(\mathbb{R})} \|\partial^2_{xx} u_{\varepsilon,\beta}\|_{L^2((0,T) \times \mathbb{R})}^2
\leq C_0 \|\eta'\|_{L^2(\mathbb{R})} \varepsilon^5 \to 0.
\]
We have that
\[
I_6 \to 0 \quad \text{in } L^1((0,T) \times \mathbb{R}), \quad T > 0, \quad \varepsilon \to 0.
\]
Thanks to (33), Lemmas 2.3 and 3.3, and the Hölder inequality,
\[
\|\beta \eta'' u_{\varepsilon,\beta} \partial_x u_{\varepsilon,\beta} \partial^3_{xxx} u_{\varepsilon,\beta}\|_{L^1((0,T) \times \mathbb{R})}
\leq \beta \|\eta''\|_{L^1(\mathbb{R})} \int_0^T \int_{\mathbb{R}} |\partial_x u_{\varepsilon,\beta}| \|\partial^3_{xxx} u_{\varepsilon,\beta}| dt dx
= \frac{\varepsilon^2 \beta}{\varepsilon^4} \|\eta''\|_{L^1(\mathbb{R})} \varepsilon^{\frac{3}{2}} \|\partial_x u_{\varepsilon,\beta}\|_{L^2((0,T) \times \mathbb{R})} \varepsilon^{\frac{1}{2}} \|\partial^3_{xxx} u_{\varepsilon,\beta}\|_{L^2((0,T) \times \mathbb{R})}
\leq C_0 \|\eta''\|_{L^1(\mathbb{R})} \varepsilon^2 \to 0.
\]
Therefore, (34) follows from Lemmas 2.3, 3.3, and the \(L^p\) compensated compactness of [25]. Arguing as in [4, Theorem 3.1], we have (35).

Appendix A. The Kawahara-KdV equation: \(u_0 \in L^2(\mathbb{R}), \beta = o(\varepsilon^\delta)\). In this appendix, we consider (10), and assume
\[
u_0 \in L^2(\mathbb{R}),
\]
on the initial datum. We study the dispersion-diffusion limit for (10). Therefore, we fix two small numbers \(0 < \varepsilon, \beta < 1\), and, following [6], consider the following fifth order problem
\[
\begin{aligned}
\partial_t u_{\varepsilon,\beta} + \partial_x u_{\varepsilon,\beta}^2 + \beta \partial^3_{xxx} u_{\varepsilon,\beta}
+ \beta^2 \partial^5_{xxxxx} u_{\varepsilon,\beta} = \epsilon^2 \partial^2_{xx} u_{\varepsilon,\beta} - \beta \varepsilon \partial^4_{xxxx} u_{\varepsilon,\beta},
\quad t > 0, \ x \in \mathbb{R},
\end{aligned}
\]
\[
u_{\varepsilon,\beta}(0, x) = u_{\varepsilon,\beta,0}(x),
\quad x \in \mathbb{R},
\]
Proof. We begin by observing that

\[u_{\varepsilon, \beta, 0} \to u_0 \quad \text{in} \ L^p_{\text{loc}}(\mathbb{R}), \ 1 \leq p < 4, \ \text{as} \ \varepsilon, \ \beta \to 0, \]

\[\left\| u_{\varepsilon, \beta, 0} \right\|_{L^2(\mathbb{R})}^2 + \beta^2 \left\| \partial_x u_{\varepsilon, \beta, 0} \right\|_{L^2(\mathbb{R})}^2 + \beta^2 \varepsilon^2 \left\| \partial_{xx}^2 u_{\varepsilon, \beta, 0} \right\|_{L^2(\mathbb{R})}^2 \leq C_0, \ \varepsilon, \beta > 0, \tag{47} \]

and \(C_0 \) is a constant independent on \(\varepsilon \) and \(\beta \).

The main result of this section is the following theorem.

Theorem A.1. Assume that (45), and (47) hold. Fix \(T > 0 \), if

\[\beta = o \left(\varepsilon^8 \right), \tag{48} \]

then, there exist two sequences \(\{ \varepsilon_n \}_{n \in \mathbb{N}}, \ \{ \beta_n \}_{n \in \mathbb{N}}, \ \text{with} \ \varepsilon_n, \beta_n \to 0, \ \text{and a limit function} \]

\[u \in L^\infty \left((0, T); L^2(\mathbb{R}) \right), \]

such that

i) \(u_{\varepsilon_n, \beta_n} \to u \) strongly in \(L^p_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R}), \) for each \(1 \leq p < 2, \)

ii) \(u \) is the unique entropy solution of (5).

where \(u_{\varepsilon, \beta} \) solves (46).

Let us prove some a priori estimates on \(u_{\varepsilon, \beta} \), denoting with \(C_0 \) the constants which depend only on the initial data.

Lemma A.2. For each \(t > 0, \)

\[\left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 + 2\varepsilon \int_0^t \left\| \partial_x u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 \, ds + 2\beta^2 \varepsilon \int_0^t \left\| \partial_{xx}^2 u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 \, ds \leq C_0. \tag{49} \]

Proof. We begin by observing that

\[\beta \int_\mathbb{R} u_{\varepsilon, \beta} \partial_{xxx}^3 u_{\varepsilon, \beta} \, dx = -\beta \int_\mathbb{R} \partial_x u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} \, dx = 0. \]

Therefore, arguing as in [4, Lemma A.1], we have (49). \(\square \)

Lemma A.3. Fix \(T > 0. \) Assume (48) holds. There exists \(C_0 > 0, \) independent on \(\varepsilon, \beta \) such that (29) holds. Moreover

\[\beta \left\| \partial_{xx}^2 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 + \beta^2 \varepsilon^2 \left\| \partial_{xx}^2 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \]

\[+ \frac{3\beta \varepsilon}{2} \int_0^t \left\| \partial_{xx}^2 u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 \, ds \]

\[+ 2\beta^2 \varepsilon^3 \int_0^t \left\| \partial_{xxx}^3 u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 \, ds \]

\[+ 2\beta^2 \varepsilon \int_0^t \left\| \partial_{xxx}^3 u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 \, ds \]

\[+ \frac{3\beta \varepsilon^3}{2} \int_0^t \left\| \partial_{xxxx}^4 u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 \, ds \leq C_0. \tag{50} \]

Proof. Let \(0 < t < T. \) Multiplying (46) by \(-2\beta^2 \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + 2\beta^2 \varepsilon^2 \partial_{xxxx}^4 u_{\varepsilon, \beta}, \) we have

\[\left(-2\beta^2 \varepsilon^2 \partial_{xx}^2 u_{\varepsilon, \beta} + 2\beta^2 \varepsilon^2 \partial_{xxxx}^4 u_{\varepsilon, \beta} \right) \partial_t u_{\varepsilon, \beta} \]
In this appendix, we consider (18), and assume

\[\text{Proof of Theorem A.1.} \]

Let us consider a compactly supported entropy–entropy flux pair \((\eta, q)\). Multiplying (21) by \(\eta'(u_{\varepsilon, \beta})\), we have

\[
\begin{align*}
\partial_t \eta(u_{\varepsilon, \beta}) + \partial_x q(u_{\varepsilon, \beta}) &= \varepsilon \eta'(u_{\varepsilon, \beta}) \partial_x^2 u_{\varepsilon, \beta} - \beta^2 \varepsilon^2 \eta'(u_{\varepsilon, \beta}) \partial_x^4 u_{\varepsilon, \beta} \\
&\quad - \beta^2 \varepsilon^2 (\partial_x^3 u_{\varepsilon, \beta} - \beta \varepsilon \eta'(u_{\varepsilon, \beta}) \partial_x^3 u_{\varepsilon, \beta} \\
&= I_1, \varepsilon, \beta + I_2, \varepsilon, \beta + I_3, \varepsilon, \beta + I_4, \varepsilon, \beta + I_5, \varepsilon, \beta + I_6, \varepsilon, \beta \\
&\quad + I_7, \varepsilon, \beta + I_8, \varepsilon, \beta,
\end{align*}
\]

where

\[
\begin{align*}
I_1, \varepsilon, \beta &= \partial_x (\varepsilon \eta'(u_{\varepsilon, \beta}) \partial_x u_{\varepsilon, \beta}) , \\
I_2, \varepsilon, \beta &= -\varepsilon \eta''(u_{\varepsilon, \beta}) (\partial_x u_{\varepsilon, \beta})^2 , \\
I_3, \varepsilon, \beta &= -\partial_x (\beta^2 \varepsilon \eta'(u_{\varepsilon, \beta}) \partial_x^3 u_{\varepsilon, \beta}) , \\
I_4, \varepsilon, \beta &= \beta^2 \varepsilon \eta''(u_{\varepsilon, \beta}) \partial_x^4 u_{\varepsilon, \beta} , \\
I_5, \varepsilon, \beta &= -\partial_x (\beta \eta'(u_{\varepsilon, \beta}) \partial_x^4 u_{\varepsilon, \beta}) , \\
I_6, \varepsilon, \beta &= \beta^2 \eta''(u_{\varepsilon, \beta}) \partial_x^3 u_{\varepsilon, \beta} , \\
I_7, \varepsilon, \beta &= -\partial_x (\beta \eta'(u_{\varepsilon, \beta}) \partial_x^3 u_{\varepsilon, \beta}) , \\
I_8, \varepsilon, \beta &= \beta \eta''(u_{\varepsilon, \beta}) \partial_x^2 u_{\varepsilon, \beta}.
\end{align*}
\]

Fix \(T > 0\). Arguing as in [4, Theorem A.1], we have \(I_1, \varepsilon, \beta \to 0 \) in \(H^{-1}((0, T) \times \mathbb{R})\), \(I_2, \varepsilon, \beta \rightarrow 0 \) in \(L^1((0, T) \times \mathbb{R})\), \(I_3, \varepsilon, \beta \rightarrow 0 \) in \(H^{-1}((0, T) \times \mathbb{R})\), \(I_4, \varepsilon, \beta \rightarrow 0 \) in \(H^{-1}((0, T) \times \mathbb{R})\), and \(I_6, \varepsilon, \beta \rightarrow 0 \) in \(L^1((0, T) \times \mathbb{R})\). Using (48), Lemmas A.2, A.3, and the Hölder inequality, we have \(I_7, \varepsilon, \beta \rightarrow 0 \) in \(H^{-1}((0, T) \times \mathbb{R})\), and \(I_8, \varepsilon, \beta \rightarrow 0 \) in \(L^1((0, T) \times \mathbb{R})\). Arguing as in [4, Theorem A.1], the proof is concluded.

\[
\text{Appendix B. The Kawahara-KdV equation: } u_0 \in L^2(\mathbb{R}) \cap L^4(\mathbb{R}), \beta = O(\varepsilon^8) .
\]

In this appendix, we consider (18), and assume

\[
u_0 \in L^2(\mathbb{R}) \cap L^4(\mathbb{R})
\]

(51)
on the initial datum. We study the dispersion-diffusion limit for \((18)\). Therefore, we fix two small numbers \(0 < \varepsilon, \beta < 1\) and, consider the approximation \((46)\), where \(u_{\varepsilon,\beta,0}\) is a \(C^\infty\) approximation of \(u_0\) such that
\[
u_{\varepsilon,\beta,0} \rightarrow u_0 \quad \text{in } L^p_{\text{loc}}(\mathbb{R}), \quad 1 \leq p < 4, \quad \text{as } \varepsilon, \beta \rightarrow 0,
\]
and \(C_0\) is a constant independent on \(\varepsilon\) and \(\beta\).

The main result of this section is the following theorem.

Theorem B.1. Assume that \((51)\), and \((52)\) hold. Fix \(T > 0\), if
\[
\beta \leq \frac{\varepsilon^8}{64C_0},
\]
then, there exist two sequences \(\{\varepsilon_n\}_{n \in \mathbb{N}}, \{\beta_n\}_{n \in \mathbb{N}}\), with \(\varepsilon_n, \beta_n \rightarrow 0\), and a limit function
\[
u \in L^\infty((0,T); L^2(\mathbb{R}) \cap L^4(\mathbb{R})),
\]
such that

i) \(\nu_{\varepsilon_n,\beta_n} \rightarrow \nu\) strongly in \(L^p_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R})\), for each \(1 \leq p < 4\),

ii) \(\nu\) is the unique entropy solution of \((5)\),

where \(\nu_{\varepsilon,\beta}\) solves \((46)\).

Let us prove some a priori estimates on \(u_{\varepsilon,\beta}\), denoting with \(C_0\) the constants which depend only on the initial data.

Lemma B.2. Fix \(T > 0\). Assume \((53)\) holds. There exists \(C_0 > 0\), independent on \(\varepsilon, \beta\) such that \((29)\) holds.

Moreover
\[
\beta^\frac{3}{2} \|\partial_x u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(\mathbb{R})}^2 + \frac{3\beta^\frac{1}{2}\varepsilon}{2} \int_0^t \|\partial_x^2 u_{\varepsilon,\beta}(s,\cdot)\|_{L^2(\mathbb{R})}^2 ds \leq C_0\beta^\frac{3}{2}.
\]

Remark 1. Observe that the proof of Lemma B.2 is simpler than the one of Lemma A.3. Indeed, here we only need to prove \((29)\).

Proof of Lemma B.2. Let \(0 < t < T\). Multiplying \((46)\) by \(-2\beta^\frac{1}{2}u_{\varepsilon,\beta}\), we have
\[
-2\beta^\frac{1}{2}\partial_x^2 u_{\varepsilon,\beta}(t,\cdot) + 4\beta^\frac{1}{2}u_{\varepsilon,\beta}\partial_x u_{\varepsilon,\beta}\partial_x^2 u_{\varepsilon,\beta} - \beta^\frac{3}{2}\partial_x^2 u_{\varepsilon,\beta}\partial_x^3 u_{\varepsilon,\beta} + 2\beta^\frac{3}{2}\partial_x^2 u_{\varepsilon,\beta}\partial_x^4 u_{\varepsilon,\beta} - 2\beta^\frac{3}{2}\varepsilon(\partial_x^2 u_{\varepsilon,\beta})^2 + 2\beta^\frac{3}{2}\varepsilon\partial_x^4 u_{\varepsilon,\beta}\partial_x^4 u_{\varepsilon,\beta}.
\]
Since
\[
-\beta^\frac{3}{2}\int_\mathbb{R}\partial_x^2 u_{\varepsilon,\beta}\partial_x^4 u_{\varepsilon,\beta}dx = 0,
\]
arguing as in \([4, \text{Lemma B.1}]\), we have \((29)\) and \((54)\).

Lemma B.3. Fix \(T > 0\). Assume \((52)\) and \((53)\) hold. Then:

i) the family \(\{u_{\varepsilon,\beta}\}_{\varepsilon,\beta}\) is bounded in \(L^\infty((0,T); L^4(\mathbb{R}))\);

ii) the families \(\{\varepsilon \partial_x u_{\varepsilon,\beta}\}_{\varepsilon,\beta}, \{\beta^\frac{3}{2}\varepsilon^3 \partial_x^3 u_{\varepsilon,\beta}\}_{\varepsilon,\beta}\) are bounded in \(L^\infty((0,T); L^2(\mathbb{R}))\);

iii) the families \(\{\beta^\frac{3}{2}\varepsilon^3 \partial_x^3 u_{\varepsilon,\beta}\}_{\varepsilon,\beta}, \{\beta^\frac{3}{2}\varepsilon^5 \partial_x^5 u_{\varepsilon,\beta}\}_{\varepsilon,\beta}, \{\varepsilon^3 \partial_x^2 u_{\varepsilon,\beta}\}_{\varepsilon,\beta}, \{\varepsilon^5 \partial_x^4 u_{\varepsilon,\beta}\}_{\varepsilon,\beta}\) are bounded in \(L^2((0,T) \times \mathbb{R})\).
Proof. Let $0 < t < T$. Let A, B be two positive constant which be specified later. Multiplying (46) by

$$u_{\varepsilon, \beta}^3 - A\varepsilon^2\partial_{xx}^2 u_{\varepsilon, \beta} - B\beta^2\varepsilon^2\partial_{xxxx}^2 u_{\varepsilon, \beta}$$

we have

$$\left(u_{\varepsilon, \beta}^3 - A\varepsilon^2\partial_{xx}^2 u_{\varepsilon, \beta} - B\beta^2\varepsilon^2\partial_{xxxx}^2 u_{\varepsilon, \beta} \right) \partial_t u_{\varepsilon, \beta}$$

$$+ 2 \left(u_{\varepsilon, \beta}^3 - A\varepsilon^2\partial_{xx}^2 u_{\varepsilon, \beta} - B\beta^2\varepsilon^2\partial_{xxxx}^2 u_{\varepsilon, \beta} \right) \partial_{xx} u_{\varepsilon, \beta}$$

$$+ \beta \left(u_{\varepsilon, \beta}^3 - A\varepsilon^2\partial_{xx}^2 u_{\varepsilon, \beta} - B\beta^2\varepsilon^2\partial_{xxxx}^2 u_{\varepsilon, \beta} \right) \partial_{xxxx}^3 u_{\varepsilon, \beta}$$

$$+ \beta^2 \left(u_{\varepsilon, \beta}^3 - A\varepsilon^2\partial_{xx}^2 u_{\varepsilon, \beta} - B\beta^2\varepsilon^2\partial_{xxxx}^2 u_{\varepsilon, \beta} \right) \partial_{xxxxxx}^4 u_{\varepsilon, \beta}.$$

Since

$$\beta \int_R \left(u_{\varepsilon, \beta}^3 - A\varepsilon^2\partial_{xx}^2 u_{\varepsilon, \beta} - B\beta^2\varepsilon^2\partial_{xxxx}^2 u_{\varepsilon, \beta} \right) \partial_{xx}^2 u_{\varepsilon, \beta} dx$$

$$= -3\beta \int_R u_{\varepsilon, \beta}^2 \partial_{xx} u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} dx,$$

arguing as in [4, Lemma B.2], we get

$$\frac{d}{dt} \left(\frac{1}{4} \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^4(R)}^4 + \frac{A\varepsilon^2}{2} \left\| \partial_x u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2 \right)$$

$$+ \frac{B\beta^2\varepsilon^2}{2} \frac{d}{dt} \left\| \partial_{xx} u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2 + 3\varepsilon \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^4(R)}^4 \partial_{xx} u_{\varepsilon, \beta}(t, \cdot)$$

$$+ A\varepsilon^3 \left\| \partial_{xx}^2 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2 + (A + B) \beta^2\varepsilon^3 \left\| \partial_{xxxx}^3 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2$$

$$+ B\beta^3\varepsilon^3 \left\| \partial_{xxxxxx}^4 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2$$

$$= -2A\varepsilon^2 \int_R u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} dx - 2B\beta^2\varepsilon^2 \int_R u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} \partial_{xxxx}^2 u_{\varepsilon, \beta} dx$$

$$+ 3\beta \int_R u_{\varepsilon, \beta}^2 \partial_{xx} u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} dx + 3\beta^2 \int_R u_{\varepsilon, \beta}^2 \partial_{xx} u_{\varepsilon, \beta} \partial_{xxxx}^4 u_{\varepsilon, \beta} dx$$

$$+ 3\beta^2 \frac{d}{dt} \left(\frac{1}{4} \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^4(R)}^4 \right)$$

$$\leq 2\varepsilon \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^4(R)}^4 \partial_{xx} u_{\varepsilon, \beta}(t, \cdot) + \frac{A\varepsilon^3}{2} \left\| \partial_{xx}^2 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2,$$

$$2B\beta^2\varepsilon^2 \int_R u_{\varepsilon, \beta} \partial_x u_{\varepsilon, \beta} \partial_{xxxx}^2 u_{\varepsilon, \beta} dx = B \int_R \left(2\varepsilon \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^4(R)}^4 \partial_{xx} u_{\varepsilon, \beta} \partial_{xx}^2 u_{\varepsilon, \beta} \right) \partial_{xxxx}^2 u_{\varepsilon, \beta} dx$$

$$\leq 2B\varepsilon \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^4(R)}^4 + \frac{B\beta^3\varepsilon^3}{2} \left\| \partial_{xxxx}^4 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(R)}^2.$$
From (53),

\[
\beta \leq D^2\varepsilon^8,
\]

(56)

where \(D\) is a positive constant which will be specified later. Since \(0 < \varepsilon < 1\), (29), (56), and the Young inequality,

\[
3\beta \int_R u_{\varepsilon,\beta}^2 |\partial_x u_{\varepsilon,\beta}| |\partial^2_{xx} u_{\varepsilon,\beta}| dx \leq 3\beta \|u_{\varepsilon,\beta}\|_{L^\infty((0,T)\times R)}^2 \int_R |\partial_x u_{\varepsilon,\beta}| |\partial^2_{xx} u_{\varepsilon,\beta}| dx
\]

\[
\leq C_0 \beta^2 \int_R |\partial_x u_{\varepsilon,\beta}|^2 |\partial^2_{xx} u_{\varepsilon,\beta}| dx \leq C_0 D \epsilon^4 \int_R |\partial_x u_{\varepsilon,\beta}| |\partial^2_{xx} u_{\varepsilon,\beta}| dx
\]

\[
\leq C_0 D \epsilon \|\partial_x u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2 + C_0 D \epsilon^3 \|\partial^2_{xx} u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2,
\]

\[
3\beta^2 \int_R u_{\varepsilon,\beta}^2 |\partial_x u_{\varepsilon,\beta}| |\partial^3_{xxx} u_{\varepsilon,\beta}| dx = \beta^2 \epsilon \int_R \frac{3\sqrt{2} \beta^{5/2} u_{\varepsilon,\beta}^2 \partial_x u_{\varepsilon,\beta}}{\varepsilon^{3/2} \sqrt{B}} \left| \frac{\sqrt{B} \beta^{3/2} \partial^3_{xxx} u_{\varepsilon,\beta}}{\varepsilon^{3/2}} \right| dx
\]

\[
\leq \frac{9 \beta^2}{2B \epsilon} \|u_{\varepsilon,\beta}\|_{L^\infty((0,T)\times R)}^2 \|u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2 + \frac{B \beta^2 \epsilon^3}{2} \|\partial^3_{xxx} u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2
\]

Therefore, from (55), we gain

\[
\frac{d}{dt} \left(\frac{1}{4} \|u_{\varepsilon,\beta}(t,\cdot)\|_{L^4(R)}^4 + \frac{A \epsilon^3}{2} \|\partial_x u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2 \right)
\]

\[
+ \frac{B \beta^2 \epsilon^3}{2} \frac{d}{dt} \|\partial^2_{xx} u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2 + \frac{B \beta^2 \epsilon^3}{4} \|\partial^3_{xxx} u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2
\]

\[
+ \left(A + \frac{B}{2} \right) \beta^2 \epsilon^3 \|\partial^3_{xxx} u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2
\]

\[
+ \left(1 - 2B - \frac{C_0 D}{B} \right) \epsilon \|u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2
\]

\[
+ \left(A - \frac{A^2}{2} - C_0 D \right) \epsilon^3 \|\partial^2_{xx} u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2
\]

\[
\leq C_0 \epsilon \|\partial_x u_{\varepsilon,\beta}(t,\cdot)\|_{L^2(R)}^2.
\]
We search A, B such that
\[
\begin{cases}
A^2 - 2A + 2C_0 D < 0, \\
2B^2 - B + C_0 D < 0.
\end{cases}
\tag{58}
\]
The first inequality of (58) admits solution if
\[
D < \frac{1}{2C_0}.
\tag{59}
\]
The second inequality of (58) admits solution if
\[
D < \frac{1}{8C_0}.
\tag{60}
\]

It follows from (59) and (60) that
\[
D < \min\{\frac{1}{2C_0}, \frac{1}{8C_0}\} = \frac{1}{8C_0}.
\tag{61}
\]

Then, from (58) and (61), there exist $0 < A_1 < A_2$, $0 < B_1 < B_2$ such that for every $A_1 < A < A_2$, $B_1 < B < B_2$, (58) holds. By (49), (52), (62), and an integration on $(0, t)$ of (57), we get
\[
\begin{align*}
&\int_0^t \left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^1(\mathbb{R})}^4 + \frac{A\varepsilon^2}{2} \left\| \partial_x u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 + \frac{B\beta^2 \varepsilon^2}{2} \left\| \partial_x^2 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})}^2 \\
&\quad + \frac{B\beta^3 \varepsilon^3}{4} \int_0^t \left\| \partial_{xxxxx} u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds
\end{align*}
\]
\[
+ K_1 \beta^2 \varepsilon^3 \int_0^t \left\| \partial_{xxxx} u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds + K_2 \varepsilon \int_0^t \left\| u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds
\]
\[
\leq C_0,
\]
for some $K_1, K_2, K_3 > 0$. Hence,
\[
\begin{align*}
\left\| u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^1(\mathbb{R})} &\leq C_0, \\
\varepsilon \left\| \partial_x u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})} &\leq C_0, \\
\beta^2 \varepsilon \left\| \partial_x^2 u_{\varepsilon, \beta}(t, \cdot) \right\|_{L^2(\mathbb{R})} &\leq C_0, \\
\beta^3 \varepsilon^3 \int_0^t \left\| \partial_{xxxx} u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds &\leq C_0, \\
\beta^2 \varepsilon^3 \int_0^t \left\| \partial_{xxx} u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds &\leq C_0, \\
\varepsilon \int_0^t \left\| u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds &\leq C_0, \\
\varepsilon^3 \int_0^t \left\| \partial_x^2 u_{\varepsilon, \beta}(s, \cdot) \right\|_{L^2(\mathbb{R})}^2 ds &\leq C_0,
\end{align*}
\]
for every $0 < t < T$.

We are ready for the proof of Theorem B.1

Proof of Theorem B.1. Let us consider a compactly supported entropy–entropy flux pair (η, q). Multiplying (21) by $\eta'(u_{\varepsilon, \beta})$, we have
\[
\begin{align*}
\partial_t \eta(u_{\varepsilon, \beta}) + \partial_x q(u_{\varepsilon, \beta}) = &\varepsilon \eta'(u_{\varepsilon, \beta}) \partial_{xx}^2 u_{\varepsilon, \beta} - \beta^2 \varepsilon \eta'(u_{\varepsilon, \beta}) \partial_{xxxx} u_{\varepsilon, \beta} \\
&- \beta^2 \eta'(u_{\varepsilon, \beta}) \partial_{xxxxx}^2 u_{\varepsilon, \beta} - \beta \eta'(u_{\varepsilon, \beta}) \partial_{xx}^4 u_{\varepsilon, \beta}
\end{align*}
\]
\[=I_{1, \varepsilon, \beta} + I_{2, \varepsilon, \beta} + I_{3, \varepsilon, \beta} + I_{4, \varepsilon, \beta} + I_{5, \varepsilon, \beta} + I_{6, \varepsilon, \beta} + I_{7, \varepsilon, \beta} + I_{8, \varepsilon, \beta},\]

where \(I_{1, \varepsilon, \beta}, I_{2, \varepsilon, \beta}, I_{3, \varepsilon, \beta}, I_{4, \varepsilon, \beta}, I_{5, \varepsilon, \beta}, I_{6, \varepsilon, \beta}, I_{7, \varepsilon, \beta}, I_{8, \varepsilon, \beta}\) are defined in Theorem A.1.

Fix \(T > 0\). Arguing as in [4, Theorem B.1], we have \(I_{1, \varepsilon, \beta} \to 0\) in \(H^{-1}((0, T) \times \mathbb{R})\), \(\{I_{1, \varepsilon, \beta}\}_{\varepsilon, \beta > 0}\) is bounded in \(L^1((0, T) \times \mathbb{R})\), \(I_{3, \varepsilon, \beta} \to 0\) in \(H^{-1}((0, T) \times \mathbb{R})\), \(I_{4, \varepsilon, \beta} \to 0\) in \(L^1((0, T) \times \mathbb{R})\), \(I_{5, \varepsilon, \beta} \to 0\) in \(H^{-1}((0, T) \times \mathbb{R})\), \(I_{6, \varepsilon, \beta} \to 0\) in \(L^1((0, T) \times \mathbb{R})\). Due to (53), Lemmas 49, B.3, and the Hölder inequality, \(I_{7, \varepsilon, \beta} \to 0\) in \(H^{-1}((0, T) \times \mathbb{R})\), and \(I_{8, \varepsilon, \beta} \to 0\) in \(L^1((0, T) \times \mathbb{R})\). Arguing as in [4, Theorem B.1], the proof is concluded. \(\square\)

REFERENCES

[1] A. H. Badali, M. S. Hashemi and M. Ghahremani, Lie symmetry analysis for Kawahara-KdV equations, Computational Methods for Differential Equations, 1 (2013), 135–145.
[2] D. J. Benney, Long waves on liquid films, J. Math. and Phys., 45 (1966), 150–155.
[3] J. Boyd, Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves), Euro. Jnl. of Appl. Math., 16 (2005), 65–81.
[4] G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Kawahara equation, Bull. Sci. Math., to appear.
[5] G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Rosenau-Korteweg-de Vries equation, submitted.
[6] G. M. Coclite and L. di Ruvo, Convergence of the generalized Kudryashov-Sinelshchikov equation to the Burgers one, submitted.
[7] G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Rosenau equation, submitted.
[8] G. M. Coclite and L. di Ruvo, A singular limit problem for conservation laws related to the Kudryashov-Sinelshchikov equation, ZAMM Z. Angew. Math. Mech., to appear.
[9] G. M. Coclite and L. di Ruvo, Oleinik type estimate for the Ostrovsky-Hunter equation, J. Math. Anal. Appl., 423 (2015), 162–190.
[10] G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differential Equations, 256 (2014), 3245–3277.
[11] G. M. Coclite, L. di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes, Netw. Heterog. Media, 8 (2013), 969–984.
[12] G. M. Coclite, L. di Ruvo and K. H. Karlsen, Some wellposedness results for the Ostrovsky-Hunter Equation, in Hyperbolic conservation laws and related analysis with applications, Springer Proc. Math. Stat., Springer, Heidelberg, 49 (2014), 143–159.
[13] G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253–1272.
[14] A. Corli, C. Rohde and V. Schleper, Parabolic approximations of diffusive-dispersive equations, J. Math. Anal. Appl., 414 (2014), 773–798.
[15] L. di Ruvo, Discontinuous Solutions for the Ostrovsky–Hunter Equation and Two Phase Flows, Ph.D. thesis, University of Bari, 2013.
[16] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260–264.
[17] T. Kakutani and H. Ono, Weak non–linear hydromagnetic waves in a cold collision free plasma, J. Phys. Soc. Japan, 26 (1969), 1305–1318.
[18] C. M. Khalique and K. R. Adem, Exact solution of the \((2 + 1)\)--dimensional Zakharov–Kuznetsov modified Equal width equation using Lie group analysis, Computer modelling, 54 (2011), 184–189.
[19] P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, *Nonlinear Anal. Ser. A: Theory Methods*, 36 (1992), 212–230.

[20] E. Mahdavi, Exp-function method for finding some exact solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries equations, *International Journal of Mathematical, Computational, Physical and Quantum Engineering*, 8 (2014), 993–999.

[21] L. Molinet and Y. Wang, Dispersive limit from the Kawahara to the KdV equation, *J. Differential Equations*, 255 (2013), 2196–2219.

[22] F. Murat, L’injection du cône positif de H^{-1} dans $W^{-1,q}$ est compacte pour tout $q < 2$, *J. Math. Pures Appl. (9)*, 60 (1981), 309–322.

[23] F. Natali, A Note on the Stability for Kawahara-KdV Type Equations, *Appl. Math. Lett.*, 23 (2010), 591–596.

[24] L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, *Okeanologia*, 18 (1978), 181–191.

[25] M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, *Comm. Partial Differential Equations*, 7 (1982), 959–1000.

Received April 2015; revised October 2015.

E-mail address: giuseppemaria.coclite@uniba.it
E-mail address: lorenzo.diruvo@unimore.it