INTRODUCTION

Cold snare polypectomy (CSP) is a safe and effective method to remove small colorectal polyps (5–9 mm) due to the lack of diathermy-related complications, including postpolypectomy syndrome, delayed bleeding, and perforation. Several studies have reported that complete resection rate for CSP is significantly higher than that for cold forceps polypectomy in diminutive and small colorectal polyps. A randomized controlled trial reported that complete resection rate for CSP was not lower than that for hot snare polypectomy (HSP) in 4–9 mm colorectal polyps. Another meta-analysis showed that CSP had a shorter procedure time and tended to result in less delayed bleeding than HSP. Recent studies have reported that cold snare polypectomy with submucosal injection (cold snare endoscopic mucosal resection [CS-EMR]) can be used to remove even larger polyps (≥ 10 mm). A prospective, randomized controlled study in China showed that CS-EMR was safe and effective for the treatment of 6–20 mm colorectal polyps. Another study reported that the efficacy of CS-EMR was comparable to that of EMR for small colon polyps.

However, data on the effect of submucosal injection in CS-EMR have been limited for small polyps by comparing CS-EMR and CSP. Therefore, this study aimed to compare the
efficacy and safety of CS-EMR and CSP and to evaluate risk factors for immediate bleeding during the small polyp resection.

PATIENTS AND METHODS

Patients
Patients who underwent CSP or CS-EMR by a single endoscopist (SF) at Palo Alto Veterans Administration Hospital between September 2018 and April 2019 were included in this study. All patients consented to undergo the procedure, and data collection was performed with institutional review board approval (Stanford #15766). In accordance with guidelines, patients continued to take aspirin for cardiovascular problems throughout the perioperative period; clopidogrel and warfarin were discontinued for 5 days and resumed immediately after the procedure, whereas direct-acting oral anticoagulants (DOACs) (dabigatran, apixaban, rivaroxaban) were discontinued for 24–48 hr before the procedure and resumed immediately after.10 During the first half of the study period, the routine practice of endoscopists was to perform submucosal injection with saline-containing indigo carmine for all cold snare polypectomies. In an attempt to decrease procedure time and reduce costs, an endoscopist changed the routine practice and stopped performing submucosal injection prior to cold snare polypectomy at the midpoint of the study period. Between September 2018 and April 2019, 100 consecutive small colorectal polyps (5–10 mm) were identified in 58 patients. The first 50 consecutive polyps were removed by CS-EMR (CS-EMR group), and the remaining 50 polyps were removed by CSP (CSP group). Demographic data, clinical data, endoscopic findings, procedure times were collected.

Endoscopic procedure
All patients underwent the standard bowel preparation before colonoscopy examination. Colonoscopies were performed under moderate sedation with intravenous midazolam and fentanyl. One expert endoscopist (SF) with an experience of > 10,000 colonoscopies performed all procedures using a high-definition video colonoscope (Olympus PCF-H190AL or CF-H190AL; Olympus, Center Valley, PA, USA) with a high-definition processor (Evis Exera II CV-190; Olympus). The polyp size was estimated through visual comparison with the size of the snare catheter or diameter (9 mm). Polyp morphology was described according to the Paris classification.11 Pedunculated (Ip), semi-pedunculated (Isp), and sessile (Is) polyps were classified as the protruded type, and slightly elevated (Ila) polyps were classified as the flat elevated type.

Polyps from the cecum to the splenic flexure were classified as right colon polyps, and those from the descending colon to the rectum were classified as left colon polyps.

Bowel preparation was assessed using the Boston bowel preparation scale (BBPS),12 and the value of the segment where the polyp was located was recorded.

Polyps were resected using an Exacto® cold snare (US endoscopy, Mentor, OH, USA). In the CS-EMR group, saline solution mixed with a few drops of indigo carmine for staining was used for submucosal injection.

After the polyp removal, the polypectomy site was rinsed with water and carefully inspected for residual polyps. If a residual polyp was observed at the polypectomy site, it was resected again using a cold snare. Complete resection was determined by carefully observing the polypectomy site. If the margin was not clearly observed, complete resection cannot be considered. Immediate bleeding was defined as intra-procedural bleeding requiring endoscopic hemostasis due to spurring or oozing for > 2 min. Delayed bleeding was defined as post-procedural bleeding (within 14 days) that required hospital admission, repeat colonoscopy, or blood transfusion.13

Statistical analysis
Continuous data are presented as means with standard deviations, and categorical data are presented as rates and proportions. Statistical differences were established according to the Pearson chi square test or Fisher’s exact test for qualitative variables and the Mann–Whitney U test for quantitative variables.

Associations among risk factors for bleeding were evaluated using logistic regression analysis in terms of odds ratio (OR) and its corresponding 95% confidence interval (95% CI). Factors with a p-value of < 0.1 in univariate analyses were included in multivariate analyses. Results were considered significant if the two-sided p-value was < 0.05, or if 95% CI did not include unity. All statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS) version 25.0 software (IBM Co., Armonk, NY, USA).

RESULTS
A total of 100 small colorectal polyps were identified in 58 patients. Table 1 shows the patient characteristics. The average age of patients was 67.5 years, predominantly comprised of men, as expected based on the majority-male demographics of the Veterans Administration Hospital. Nearly half of patients (46.6%) were taking antiplatelet agents, mostly aspirin. Two patients received dual antiplatelet therapy (aspirin and clopidogrel). Ten patients (17.2%) were taking anticoagulants: three with warfarin, six with DOACs, and one with low-molecu-
lar-weight heparin. One patient was taking both antiplatelets and anticoagulants (ticagrelor and apixaban). A total of 36 patients (62%) had one or more comorbidities, 20 (35%) had diabetes, 14 (24%) had coronary artery disease, 7 (12%) had atrial fibrillation, and 4 (7%) had chronic obstructive pulmonary disease.

Table 2 shows the characteristics of colon polyps along with the comparison of CSP and CS-EMR groups. The mean size of all polyps was 6.39 mm. A total of 60 polyps were classified as the protruded type (Is, Isp, and Ip), and 40 polyps were classified as the flat elevated type (Iia). Two patients had pedunculated polyps, all removed by CS-EMR. Fifty-four polyps were located in the right colon. In majority of patients, bowel preparation was good (segmental BBPS was 2 or 3). The complete resection rate was 92% and 96% in the CSP and CS-EMR groups, respectively, but without statistically significant difference. The total procedure time was significantly longer in the CS-EMR than that in the CSP group (78.76 sec vs. 23.14 sec, \(p < 0.001 \)). Resection and bleeding times were not significantly different between the two groups. According to the histological diagnosis, 79 polyps were adenomas, 9 were hyperplastic polyps, and 4 were serrated adenomas. The proportion of patients taking antiplatelet agents was higher in the CS-EMR group (54% vs. 30%, \(p = 0.025 \)). After polypectomy, 8 patients showed immediate bleeding and 2 showed delayed bleeding. One of them showed both immediate and delayed bleeding, and a total of 9 patients had post-polypectomy bleeding (PPB). No differences in the PPB rate were observed between the CSP and CS-EMR groups. No patients had perforation.

Results of univariate analyses on risk factors for PPB are summarized in Table 3. DOAC (OR, 24.688; 95% CI, 4.106–148.432) and polyp size (OR, 1.740; 95% CI, 1.060–2.858) were associated with an increased risk of PPB.

In multivariate analysis (Table 4), warfarin (OR, 42.334; 95% CI, 1.006–1,781.758) and DOACs (OR = 35.244; 95% CI, 3.853–322.397) showed a higher risk of PPB.

Table 1. Clinical Characteristics of the Patients

	Patients (n=58)
Age, mean±SD	67.50±7.38
Sex, n (%)	
Female	3 (5.2)
Male	55 (94.8)
Endoscopic procedure, n (%)	
CSP	31 (53.4)
CS-EMR	27 (46.6)
Antiplatelet, n (%)	
No	31 (53.4)
Aspirin	24 (41.4)
Others	3 (5.2)
Anticoagulant, n (%)	
No	48 (82.8)
Warfarin	3 (5.2)
DOAC	6 (10.3)
Heparin	1 (1.7)
Comorbidities\(^a\), n (%)	
No	22 (37.9)
Diabetes mellitus	20 (34.5)
Coronary artery disease	14 (24.1)
Atrial fibrillation	7 (12.1)
Chronic obstructive pulmonary disease	4 (6.9)
Others	6 (10.3)

CS-EMR, cold snare endoscopic mucosal resection; CSP, cold snare polypectomy; DOAC, direct-acting oral anticoagulants; SD, standard deviation.

\(^a\)Some patients have more than one disease.
| Table 2. Comparison between Cold Snare Polypectomy and Cold Snare Endoscopic Mucosal Resection Group |
|---|---|---|---------------------------------|
| Total (n=100) | CSP (n=50) | CS-EMR (n=50) | P-value |
| Polyp size (mm) | 6.39±1.29 | 6.28±1.21 | 6.50±1.36 | 0.395 |
| Polyp type | | | 1.000 |
| Protruded | 60 | 30 (60.0%) | 30 (60.0%) |
| Flat elevated | 40 | 20 (40.0%) | 20 (40.0%) |
| Location | | | 0.316 |
| Right colon | 54 | 30 (60.0%) | 24 (48.0%) |
| Left colon | 46 | 20 (40.0%) | 26 (52.0%) |
| Segment bowel preparation | | | 0.360 |
| 1 | 1 | 0 (0.0%) | 1 (2.0%) |
| 2 | 31 | 18 (36.0%) | 13 (26.0%) |
| 3 | 68 | 32 (64.0%) | 36 (72.0%) |
| Resection | | | 0.495 |
| Piecemeal | 2 | 0 (0.0%) | 2 (4.0%) |
| En bloc | 98 | 50 (100.0%) | 48 (96.0%) |
| Grossly complete resection | | | 0.678 |
| Not clear | 6 | 4 (8.0%) | 2 (4.0%) |
| Yes | 94 | 46 (92.0%) | 48 (96.0%) |
| Total procedure time (sec) | 50.95±36.70 | 23.14±19.05 | 78.76±27.94 | <0.001 |
| Resection time (sec) | 23.40±18.54 | 23.14±19.05 | 23.66±18.21 | 0.889 |
| Bleeding time (sec) | 38.73±33.00 | 36.94±29.18 | 40.52±36.64 | 0.590 |
| Pathologic diagnosis | | | 0.204 |
| Hyperplastic polyp | 9 | 7 (14.0%) | 2 (4.0%) |
| Serrated adenoma | 4 | 1 (2.0%) | 3 (6.0%) |
| Tubular adenoma | 79 | 37 (74.0%) | 42 (84.0%) |
| Others | 8 | 5 (10.0%) | 3 (6.0%) |
| Antiplatelet agent | | | 0.025 |
| No | 58 | 35 (70.0%) | 23 (46.0%) |
| Yes | 42 | 15 (30.0%) | 27 (54.0%) |
| Anticoagulant | | | 0.393 |
| None | 81 | 39 (78.0%) | 42 (84.0%) |
| Wafarin | 5 | 4 (8.0%) | 1 (2.0%) |
| DOAC | 13 | 6 (12.0%) | 7 (14.0%) |
| Heparin | 1 | 1 (2.0%) | 0 (0.0%) |
| Immediate bleeding | | | 0.269 |
| No or minor | 92 | 48 (96.0%) | 44 (88.0%) |
| Need hemostasis | 8 | 2 (4.0%) | 6 (12.0%) |
| Delayed bleeding | | | 1.000 |
| No | 98 | 49 (98.0%) | 49 (98.0%) |
| Yes | 2 | 1 (2.0%) | 1 (2.0%) |
| Perforation | | | |
| No | 100 | 50 (100.0%) | 50 (100.0%) |

CS-EMR, cold snare endoscopic mucosal resection; CSP, cold snare polypectomy; DOAC, direct-acting oral anti-coagulants.
DISCUSSION

Colonoscopic polypectomy can decrease the incidence of and mortality from colorectal cancer.14,15 Conventional polypectomy uses an electrosurgical current that increases the risk of complications, including bleeding, perforation, and post-polypectomy syndrome.16,17 Recently, the introduction of CSP, the mechanical resection of colorectal polyps without electrocautery, has attracted attention as a possible alternative.18 In a recent prospective cohort study, CSP was performed on 1,198 small colorectal polyps, and no patients had delayed bleeding or perforation.19 Another retrospective cohort study reported that the incidence of delayed PPB was significantly lower in the CSP than that in the HSP group.20 According to a histological study comparing CSP and HSP specimens, HSP damaged the deep layers of the colon wall involving larger vessels, whereas CSP was limited to the shallow submucosa, which would be the reason for decreased incidence of delayed bleeding after CSP.21 The European Society of Gastrointestinal Endoscopy (ESGE) clinical guidelines also recommend CSP as a resection.
technique for sessile or flat small colorectal polyps.22

Submucosal injection before HSP provides a thermal safety cushion and makes defining the lesion margin easy.16 Although injection for thermal safety is not required with CSP, submucosal injection may be helpful to resect polyps by sharply delineating the polyp margin and “loosening up” the submucosa. Submucosal injection before CSP, also known as CS-EMR, has been reported in several studies. Recent studies reported that large colon polyps with an average size of 2 cm were successfully resected using CS-EMR without major adverse events.6,22 The rate of residual or recurrent adenoma was reported as 0.6%–9.7% on follow-up colonoscopy within 1 year after CS-EMR, which is comparable to results of HSP.7,24 However, most of these reports were studies on CS-EMR for large colorectal polyps measuring > 1 cm. To the best of our knowledge, this is the first study to evaluate the effectiveness of submucosal injection in CSP for small polyps by comparing CSP and CS-EMR. In this study, no difference in the complete resection rate or the incidence of complications was observed between the CSP and CS-EMR groups, and the total procedure time was significantly increased with CS-EMR. These results suggest that submucosal injection is not helpful in CSP for small colorectal polyps.

In this study, the rate of immediate bleeding was 8% (8 cases), which is similar to that of previous studies.19 Two patients (2.0%) had delayed bleeding; one of whom developed both immediate and delayed bleeding. He had been taking aspirin and warfarin for coronary artery disease and switched to heparin bridge therapy after the warfarin discontinuation because surgery was scheduled a week later. After the procedure, hemostasis was performed with clips for immediate bleeding. Delayed bleeding occurred at 3 days post-procedure. Colonoscopy showed an ulcer at the clip site with an adherent clot; therefore, additional clips were placed. Another patient with delayed bleeding was also safely treated with a hemoclip without transfusion. No patient had massive bleeding requiring surgery or transfusion, and all patients with bleeding were treatable with endoscopic procedures. No patients had colonic perforation.

This study analyzed the risk factors for PPB, including both immediate and delayed bleeding because only a small number (2) of patients developed delayed bleeding. Results showed that the risk of PPB increased with both warfarin (OR, 42.334; 95% CI, 1.006–1,781.758) and DOACs (OR, 35.244; 95% CI, 3.853–322.397). Warfarin is well known for increasing risk of procedure-related bleeding.25,26 DOACs have been reported to be relatively safe compared to warfarin in terms of postpolypectomy bleeding.27,28 Conversely, based on our results, a recent study reported that PPB risk was similar between patients taking warfarin and those taking DOACs.29 Longer duration of anticoagulant use interruption prior to colonoscopy would possibly reduce bleeding risks associated with residual anticoagulant activity; however, this may expose patients to a higher risk of cardiovascular complications. Large-scale prospective studies will be needed to definitively answer remaining questions on the effects of DOACs on colonoscopy outcomes.

Polyp size was suspected to be a risk factor for PPB in univariate analysis (OR, 1.740; 95% CI, 1.060–2.858) but did not show statistically significant results in multivariate analysis. In previous studies, larger polyps (> 1 cm) have been reported as risk factors for immediate and delayed PPB.30,31

This study has several limitations. First because of the small number of study patients, the incidence of complications was insufficient to show a statistically significant difference. In addition, only two patients had delayed bleeding; therefore, risk factors for immediate and delayed bleeding could not be analyzed separately. If a study is conducted with a larger number of polyps in the future, whether submucosal injection will be clinically helpful in CSP for small colorectal polyps may be clarified.

Second, the evaluation of complete resection was confirmed only based on endoscopic gross findings. The muscularis mucosae (MM) is known to be only partially removed in cold snare polypectomy. If prior injection (CS-EMR) enables removal of the entire MM beneath the lesion and enables a negative vertical margin, the remnant/recurrence would be less frequent. If a histological examination was performed, more accurate results could be achieved. We washed the resection site after polypectomy with water and observed resection margins in detail. Only patients with clearly evident resection margin without remnant lesions were judged as complete resection, and the complete resection rate was 94%. A recent study reported a pathologic complete resection rate of 93.2% after CSP, which is similar to the results of our study.3

Third, in patients taking antithrombotic agents, whether to discontinue or maintain the drugs was determined by evaluating the cardiovascular risk of each patient according to higher-risk endoscopic procedures. Patients who discontinued antithrombotics for several days before the procedure were also classified as taking antithrombotics. Therefore, the risk of bleeding from antithrombotic agents might have been evaluated as lower than the actual risk.

Patients were not randomized and those receiving submucosal injection had their procedures performed earlier than those who did not receive submucosal injection. Although no obvious statistical differences in the demographics were observed in the two groups and no other known technical changes in procedures occurred during the study period, we cannot exclude the effect of unknown biases.

Finally, the study was conducted at a Veteran’s hospital;
therefore, majority of patients were men, and only 5% were women.

In conclusion, the effect of submucosal injection in cold snare polypectomy was not significant for small colorectal polyps. Anticoagulants such as warfarin and DOACs are risk factors for postpolypectomy bleeding, and patients taking these medications should be treated carefully to prevent postpolypectomy bleeding.

Conflicts of Interest
The authors have no potential conflicts of interest.

Funding
None.

Author Contributions
Conceptualization: Ji Hyun Song, Shai Friedland
Data curation: JHS, SF
Writing-original draft: JHS
Writing-review&editing: SF

ORCID
Ji Hyun Song: https://orcid.org/0000-0001-9459-9250
Shai Friedland: https://orcid.org/0000-0002-9782-000X

REFERENCES
1. Schett B, Wallner J, Weingart V, et al. Efficacy and safety of cold snare resection in preventive screening colonoscopy. Endosc Int Open 2017;5:E580-E586.
2. Kim JS, Lee BI, Choi H, et al. Cold snare polypectomy versus cold forceps polypectomy for diminutive and small colorectal polyps: a randomised controlled trial. Gastrointest Endosc 2015;81:741-747.
3. Lee CK, Shim JI, Jang JY. Cold snare polypectomy vs. cold forceps polypectomy using double-biopsy technique for removal of diminutive colorectal polyps: a prospective randomised study. Am J Gastroenterol 2013;108:1593-1600.
4. Kawamura T, Takeuchi Y, Asai S, et al. A comparison of the resection rate for cold and hot snare polypectomy for 4-9 mm colorectal polyps: a multicentre randomised controlled trial (CRESCENT study). Gut 2018;67:1950-1957.
5. Shinozaki S, Kobayashi Y, Hayashi Y, Sakamoto H, Lefor AK, Yamamoto H. Efficacy and safety of cold versus hot snare polypectomy for resecting small colorectal polyps: systematic review and meta-analysis. Dig Endosc 2018;30:592-599.
6. Choksi N, Elmunzer BJ, Stidham RW, Shuster D, Piraka C. Cold snare piecemeal resection of colon and duodenal polyps ≥1cm. Endosc Int Open 2015;3:E508-E513.
7. Tutticci NJ, Hewett DG. Cold EMR of large sessile serrated polyps at colonoscopy (with video). Gastrointest Endosc 2018;87:837-842.
8. Li D, Wang W, Xie J, et al. Efficacy and safety of three different endoscopic methods in treatment of 6-20 mm colorectal polyps. Scand J Gastroenterol 2020;55:362-370.
9. Papastergiou V, Paraskeva KD, Fragaki M, et al. Cold versus hot endoscopic mucosal resection for nonpedunculated colorectal polyps sized 6-10 mm: a randomized trial. Endoscopy 2018;50:403-411.
10. Abraham NS. Antiplatelets, anticoagulants, and colonoscopic polypectomy. Gastrointest Endosc 2020;91:257-265.
11. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon. November 30 to December 1, 2002. Gastrointest Endosc 2003;58(Suppl):S3-S43.
12. Lai EJ, Calderwood AH, Doros G, Fix OK, Jacobson BC. The Boston bowel preparation scale: a valid and reliable instrument for colonscopic-oriented research. Gastrointest Endosc 2009;69:620-625.
13. Horiiuchi A, Nakayama Y, Kajiyama M, Tanaka N, Sano K, Graham DY. Removal of small colorectal polyps in anticoagulated patients: a prospective randomized comparison of cold snare and conventional polypectomy. Gastrointest Endosc 2014;79:417-423.
14. Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1993;329:1977-1981.
15. Zauber AG, Winawer SJ, O’Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 2012;366:687-696.
16. Wallace MB. New strategies to improve polypectomy during colonoscopy. Gastroenterol Hepatol (N Y) 2017;13(10 Suppl 3):1-12.
17. Dumoulin FL, Hildenbrand R. Endoscopic resection techniques for colorectal neoplasia: current developments. World J Gastroenterol 2019;25:300-307.
18. Keswani RN. Cold snare polypectomy: techniques and applications. Clin Gastroenterol Hepatol 2020;18:42-44.
19. Shimodate Y, Mizuno M, Takezawa R, et al. Safety of cold polypectomy for small colorectal neoplastic lesions: a prospective cohort study in Japan. Int J Colorectal Dis 2017;32:1261-1266.
20. Yamashina T, Fukuhara M, Maruo T, et al. Cold snare polypectomy reduced delayed postpolypectomy bleeding compared with conventional hot polypectomy: a propensity score-matching analysis. Endosc Int Open 2017;5:E587-E594.
21. Takayanagi D, Nemoto D, Iiohata N, et al. Histological comparison of cold versus hot snare resections of the colorectal mucosa. Dis Colon Rectum 2018;61:964-970.
22. Feletitsch M, Moss A, Hassan C, et al. Colorectal polypectomy and endoscopic mucosal resection (EMR): European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline. Endoscopy 2017;49:270-297.
23. Muniraj T, Sahakian A, Ciarellogio MM, Deng Y, Aslanian HR. Cold snare polypectomy for large sessile colorectal polyps: a single-center experience. Gastroenterol Rep Pract 2015;2015:1579599.
24. Piraka C, Saeed A, Waljee AK, Pillai A, Stidham R, Elmunzer BJ. Cold snare polypectomy for non-pedunculated colon polyps greater than 1cm. Endosc Int Open 2017;5:E184-E189.
25. Witt DM, Delate T, McCool KH, et al. Incidence and predictors of bleeding or thrombosis after polypectomy in patients receiving and not receiving anticoagulation therapy. J Thromb Haemost 2009;7:1982-1988.
26. Hui AJ, Wong RM, Ching JY, Hung LC, Chung SC, Sung JJ. Risk of colonoscopic polypectomy bleeding with anticoagulants and antplatelet agents: analysis of 1657 cases. Gastrointest Endosc 2004;59:44-48.
27. Yu JX, Oliver M, Lin J, et al. Patients prescribed direct-acting oral anticoagulants have low risk of postpolypectomy complications. Clin Gastroenterol Hepatol 2019;17:2000-2007.e3.
28. Nagata N, Yasunaga H, Matsui H, et al. Therapeutic endoscopy-related GI bleeding and thromboembolic events in patients using warfarin or direct oral anticoagulants: results from a large nationwide database analysis. Gastrointest Endosc 2017;85:E644-E653.
29. Yanagisawa N, Nagata N, Watanabe K, et al. Post-polypectomy bleeding and thromboembolism risks associated with warfarin vs direct oral anticoagulants. World J Gastroenterol 2018;24:1540-1549.
30. Kim HS, Kim TI, Kim WH, et al. Risk factors for immediate postpolypectomy bleeding of the colon: a multicenter study. Am J Gastroenterol 2006;101:1333-1341.
31. Watabe H, Yamai Y, Okamoto M, et al. Risk assessment for delayed hemorrhagic complication of colonoscopic polypectomy: polyp-related factors and patient-related factors. Gastrointest Endosc 2006;64:73-78.