DIFFERENTIAL TRANSFORM TECHNIQUE FOR SOLVING FIFTH-ORDER BOUNDARY VALUE PROBLEMS

Vedat Suat Ertürk
Department of Mathematics,
Faculty of Arts and Sciences,
Ondokuz Mayis University, 55139,
Kurupelit, Samsun, Turkey
vserturk@omu.edu.tr

Shaher Momani
Department of Mathematics and Physics,
Faculty of Arts and Sciences,
Qatar University, Qatar
shahermm@yahoo.com

Abstract- In this paper we apply the differential transform method for solving fifth-order boundary value problems. The analytical and numerical results of the equations have been obtained in terms of convergent series with easily computable components. Three examples are given to illustrate the efficiency and implementation of the present method. Comparisons are made to confirm the reliability of the method. Differential transform technique may be considered as alternative and efficient for finding the approximate solutions of the boundary values problems.

Keywords- Fifth-order boundary value problems; Differential transform method; Numerical solution

1. INTRODUCTION

In this paper, we consider the general fifth-order boundary value problems of the type

\[y^{(5)}(x) = f(x, y), \quad a < x < b, \]

(1.1)

with boundary conditions

\[y(a) = A_1, \quad y'(a) = A_2, \quad y''(a) = A_3, \quad y(b) = B_1, \quad y'(b) = B_2, \]

(1.2)

where, \(f = f(x, y) \) is a given continuous, linear or non-linear function of \(y = y(x) \), \(A_i (i = 1, 2, 3) \) and \(B_i (i = 1, 2) \) are real finite constants [10].

Agarwal's book [19] contains theorems which detail the conditions for existence and uniqueness of solutions of such boundary value problems. This type of boundary value problems arises in the mathematical modeling of the viscoelastic flows and other branches of mathematical, physical and engineering sciences, see [2,4,6,8,19] and the references therein.

In [2,4], two numerical algorithms, namely, spectral Galerkin method and spectral collocation methods, were applied independently to address the numerical
issues related to this type of problem. Moreover, a fifth-order boundary value problem was investigated by Khan [17] by using finite-difference methods. In [10], the sixth-degree B-spline functions were used and produced results which were improvements over other work. In [3], the Adomain decomposition method and a modified form of the Adomain decomposition method were used to investigate the fifth-order boundary value problem by Wazwaz. Also, the homotopy perturbation method has been used by Noor and Mohyud-Din [14] for solving fifth-order boundary value problems.

In this paper, we employ differential transform method [13] to solve Eq. (1.1) with boundary conditions (1.2). The concept of differential transform was first introduced by Zhou [13], in a study about electric circuit analysis. It is a semi-numerical-analytic technique that formulizes Taylor series in a totally different manner. With this technique, the given differential equation and related boundary conditions are transformed into a recurrence equation that finally leads to the solution of a system of algebraic equations as coefficients of a power series solution. This method is useful to obtain exact and approximate solutions of linear and nonlinear differential equations. No need to linearization or discretization, large computational work and round-off errors are avoided. It has been used to solve effectively, easily and accurately a large class of linear and nonlinear problems with approximations. The method is well addressed in [1,7,9,11,18,20].

2. DIFFERENTIAL TRANSFORM METHOD

As in [5,12,15,16], the basic definitions of differential transformation are introduced as follows:

Definition 2.1 If $f(t)$ is analytic in the time domain T, then let it will be differentiated continously with respect to time t

$$\varphi(t_i, k) = \frac{d^k f(t)}{dt^k}, \forall t \in T. \quad (2.1)$$

For $t = t_i$, then $\varphi(t, k) = \varphi(t_i, k)$, where k belongs to the set of non-negative integer, denoted as the K-domain. Therefore, Eq. (2.1) can be rewritten as

$$F(k) = \varphi(t_i, k) = \left[\frac{d^k f(t)}{dt^k} \right]_{t=t_i}, \forall k \in K, \quad (2.2)$$

where $F(k)$ is called the spectrum of $f(t)$ at $t = t_i$ in the K-domain.

Definition 2.1 If $f(t)$ can be represented by Taylor’s series, then it can be represented as

$$f(t) = \sum_{k=0}^{\infty} \left[(t - t_i)^k / k! \right] F(k). \quad (2.3)$$

Eq. (2.3) is called the inverse transform of $F(k)$. With the symbol D denoting differential transform process, and upon combining Eqs. (2.2) and (2.3), we obtain

$$f(t) = \sum_{k=0}^{\infty} \left[(t - t_i)^k / k! \right] F(k) \equiv D^{-1}\{F(k)\}. \quad (2.4)$$
Using the differential transform, a differential equation in the domain of interest can be transformed to an algebraic equation in the \(K \)-domain and then \(f(t) \) can be obtained by finite-term Taylor series expansion plus a remainder, as

\[
f(t) = \sum_{k=0}^{N} \left[(t - t_i)^k / k! \right] F(k) + R_{N+1}(t).
\]

(2.5)

The fundamental mathematical operations performed by differential transform method are listed in Table 1.

Time function	Transformed function
\(w(t) = \alpha u(t) \pm \beta v(t) \)	\(W(k) = \alpha U(k) \pm \beta V(k) \)
\(w(t) = \frac{d^n u(t)}{dt^n} \)	\(W(k) = \frac{(k + m)!}{k!} U(k + m) \)
\(w(t) = u(t)v(t) \)	\(W(k) = \sum_{l=0}^{k} U(l)V(k-l) \)
\(w(t) = t^m \)	\(W(k) = \delta(k - m) = \begin{cases} 1, & \text{if } k = m, \\ 0, & \text{if } k \neq m. \end{cases} \)
\(w(t) = \exp(t) \)	\(W(k) = \frac{1}{k!} \)
\(w(t) = \sin(\omega t + \alpha) \)	\(W(k) = \frac{\omega^k}{k!} \sin \left(\frac{k\pi}{2} + \alpha \right) \)
\(w(t) = \cos(\omega t + \alpha) \)	\(W(k) = \frac{\omega^k}{k!} \cos \left(\frac{k\pi}{2} + \alpha \right) \)

3. NUMERICAL RESULTS

Example 1 Consider the following linear boundary value problem

\[
y^{(5)}(x) = y(x) - 15e^x - 10xe^x, \quad 0 < x < 1,
\]

(3.1)

with boundary conditions

\[
y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0, \quad y(1) = 0, \quad y'(1) = -e.
\]

(3.2)

The exact solution of the problem is:

\[
y(x) = x(1 - x)e^x.
\]

(3.3)

Taking the differential transform of both sides of Eq. (3.1), we obtain

\[
Y(k + 5) = \frac{1}{(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)} \left[Y(k) - \frac{15}{k!} - 10 \sum_{l=0}^{k} \delta(l - 1) \right].
\]

(3.4)

By using Eqs.(2.2) and (3.2), the following transformed boundary conditions at \(x_0 = 0 \) can be obtained:
\[Y(0) = 0, \quad Y(1) = 1, \quad Y(2) = 0, \quad \sum_{k=0}^{n} Y(k) = 0, \quad \sum_{k=0}^{n} kY(k) = -e. \] (3.5)

Utilizing the recurrence relation in Eq. (3.4) and the transformed boundary conditions in Eq.(3.5), the following series solution up to \(O(x^{13}) \) is obtained:

\[
y(x) = x + ax^3 + bx^4 - \frac{x^5}{8} - \frac{x^6}{30} + \frac{x^7}{144} + \left(\frac{a}{6720} - \frac{1}{896} \right)x^8 + \left(\frac{b}{15120} - \frac{11}{72576} \right)x^9 \nonumber - \frac{x^{10}}{45360} - \frac{x^{11}}{403200} - \frac{x^{12}}{3991680} + O(x^{13}),
\]

where, according to Eq.(2.2),

\[
a = \frac{y^{(3)}(0)}{3!} = Y(3), \quad b = \frac{y^{(4)}(0)}{4!} = Y(4). \] (3.7)

By taking \(n = 12 \), the following system of equations can be obtained from Eq. (3.5):

\[
\begin{align*}
6721a + 15121b &= 33267851 \\
6720 + 15120 &= 39916800,
\end{align*}
\]

\[
\begin{align*}
2521a + 6721b &= 4624181 \\
840 + 1680 &= 39916800
\end{align*}
\] (3.8)

From Eq. (3.8), \(a \) and \(b \) are evaluated numerically as

\[
a = -0.499999772, \quad b = -0.333333586. \] (3.9)

Then Eq. (3.6) becomes

\[
y(x) = x - 0.499999772x^3 - 0.333333586x^4 - 0.125x^5 - 0.03333333x^6 - 0.006944444x^7 - 0.001190476x^8 - 0.000173611x^9 - 0.000022046x^{10} - 0.000002480x^{11} - 0.0000000251x^{12} + O(x^{13}).
\] (3.10)

Table 2 exhibits a comparison between the errors obtained by using the differential transform method (DTM) and the sixth-degree B-spline method in [10]. From the table, it is clear that the present method is more efficient and easy to implement as compared with B-spline technique.

Table 2

\(x \)	Analytical solution	Errors(DTM)	Errors(B-splines)
0.0	0.00000000000	0.0000000000	0.000000000000
0.1	0.099465383	0.0000000000	-8.0E-3
0.2	0.195424441	0.0000000000	-12.0E-3
0.3	0.383470350	0.0000000000	-5.0E-3
0.4	0.58037927	0.0000000000	3.0E-3
0.5	0.412180318	0.0000000000	8.0E-3
0.6	0.437308512	0.0000000000	6.0E-3
0.7	0.422888069	0.0000000000	-0.000
0.8	0.356086549	0.0000000000	9.0E-3
0.9	0.221364280	0.0000000000	-9.0E-3
1.0	0.00000000000	0.0000000000	0.000000000000
Example 2 Consider the following nonlinear fifth-order boundary value problem

\[y^{(5)}(x) = e^{-x} y^2(x), \quad 0 < x < 1, \]

(3.11)

with boundary conditions

\[y(0) = 1, \quad y'(0) = 1, \quad y''(0) = 1, \quad y(1) = y'(1) = e. \]

(3.12)

The theoretical solution for this problem is:

\[y(x) = e^x. \]

(3.13)

Taking the differential transform of (3.11), we obtain the following recurrence relation:

\[Y(k + 5) = \frac{1}{(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)} \left(\sum_{k_1=0}^{k} \sum_{k_2=0}^{k} \frac{(-1)^{(k-k_1)} Y(k_1) Y(k_2 - k_1)}{(k_1)! (k_2 - k_1)!} \right) \]

(3.14)

The boundary conditions in Eq.(3.12) can be transformed at \(x_0 = 0 \) as follows:

\[Y(0) = 1, \quad Y(1) = 1, \quad Y(2) = 1/2, \quad \sum_{k=0}^{n} Y(k) = e, \quad \sum_{k=0}^{n} kY(k) = e. \]

(3.15)

Utilizing the recurrence relation in Eq. (3.14) and the transformed boundary conditions in Eq.(3.15), the following series solution up to \(O(x^9) \) is obtained:

\[y(x) = 1 + x + \frac{x^2}{2} + ax^3 + bx^4 + \frac{x^5}{120} + \frac{x^6}{720} + \frac{x^7}{5040} + \left(\frac{a}{3360} - \frac{1}{40320} \right) x^8 + O(x^9). \]

(3.16)

By taking \(n = 8 \) and using Eqs. (3.14) and (3.15), we can obtain the following system of equations:

\[
\begin{align*}
\frac{3361a}{3360} + b &= e - \frac{4819}{1920}, \\
\frac{1261a}{420} + 4b &= e - \frac{1723}{840}.
\end{align*}
\]

(3.17)

We get from the above system:

\[a = 0.166651022, \quad b = 0.041685374. \]

(3.18)

Substituting (3.18) into (3.16) yields the series solution

\[y(x) = 1 + x + 0.5x^2 + 0.166651022x^3 + 0.041685374x^4 + 0.008333333x^5 + 0.001388889x^6 + 0.000198413x^7 + 0.000024797x^8 + O(x^9). \]

(3.19)

Table 3 shows that the exact values and errors obtained by using the differential transform method and the sixth degree B-spline method [10]. From the numerical results in Table 3, it is clear that the differential transform method is more efficient and easy to implement as compared with B-spline technique.
Table 3

x	Analytical solution	Errors(DTM)	Errors (B-splines)
0.0	1.0000000000	1.0000000000	0.0000
0.1	1.105170918	1.4E-8	7.0E-4
0.2	1.221402758	9.5E-8	-7.2E-4
0.3	1.349858808	2.71E-7	4.1E-4
0.4	1.491824698	5.23E-7	4.6E-4
0.5	1.648721271	7.92E-7	4.7E-4
0.6	1.822118800	9.84E-7	4.8E-4
0.7	2.013752707	9.94E-7	3.9E-4
0.8	2.225540928	7.49E-7	3.1E-4
0.9	2.459603111	3.05E-7	1.6E-4
1.0	2.718281828	0.0000	0.0000

Example 3

For \(x \in [-1,1] \), let us consider the following boundary value problem

\[
y^{(5)}(x) = 19x \cos(x) + 2x^3 \cos(x) + 41 \sin(x) - 2x^2 \sin(x) - xy(x),
\]

with the boundary conditions

\[
y(-1) = y(1) = \cos(1),
\]

\[
y'(-1) = -y'(1) = -4 \cos(1) + \sin(1),
\]

\[
y''(-1) = 3 \cos(1) - 8 \sin(1).
\]

The analytical solution of the above problem is:

\[
y(x) = (2x^2 - 1) \cos(x).
\]

By applying the fundamental mathematical operations performed by differential transform, the differential transform of Eq. (3.20) is obtained as

\[
Y(k + 5) = \frac{1}{(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)} \times
\]

\[
\left\{ 19 \sum_{k_1=0}^{k} \delta(k_1 - 1)c(k - k_1) + 41s(k) + 2 \sum_{k_1=0}^{k} \delta(k_1 - 3)c(k - k_1) - 2 \sum_{k_1=0}^{k} \delta(k_1 - 2)s(k - k_1) \right\}
\]

\[
- \sum_{l=0}^{k} \delta(l - 1)Y(k - l)
\]

where \(s(k) \) and \(c(k) \) correspond to the differential transformation of \(\sin(x) \) and \(\cos(x) \) at \(x_0 = 0 \), respectively, which can be easily obtained from the definition of differential transform in Eq. (2.2) as follows:

\[
S(k) = \begin{cases}
(-1)^{(k-1)/2}, & \text{if } k \text{ odd} \\
0, & \text{if } k \text{ even}
\end{cases} \quad C(k) = \begin{cases}
(-1)^{k/2}, & \text{if } k \text{ even} \\
0, & \text{if } k \text{ odd}
\end{cases}
\]

The boundary conditions in Eq. (3.21) can be transformed at \(x_0 = 0 \) as
Differential Transform Technique for Fifth-Order Boundary Value Problems

\[
\sum_{k=0}^{n} Y(k)(-1)^k = \cos(1), \quad \sum_{k=0}^{n} Y(k) = \cos(1),
\]

\[
\sum_{k=0}^{n} kY(k)(-1)^{k-1} = -4 \cos(1) + \sin(1),
\]

\[
\sum_{k=0}^{n} kY(k) = 4 \cos(1) - \sin(1),
\]

\[
\sum_{k=0}^{n} k(k-1)Y(k)(-1)^{k-2} = 3 \cos(1) - 8 \sin(1),
\]

where, \(n \) is a sufficiently large integer. By using the inverse transformation rule in Eq.(2.3), for \(n = 6 \), we get

\[
y(x) = a_0 + xa_1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + \left(\frac{1}{12} - \frac{a_0}{720} \right) x^6 + O(x^7). \tag{3.26}
\]

where,

\[
a_0 = y(0) = Y(0), \quad a_1 = y'(0) = Y(1), \quad a_2 = y''(0)/2! = Y(2), \quad a_3 = y'''(0)/3! = Y(3) \text{ and } a_4 = y^{(4)}(0)/4! = Y(4).
\]

Also, by taking \(n = 6 \), the following system of equations can be obtained from Eq.(3.25):

\[
\begin{align*}
\frac{719}{720} a_0 - a_1 + a_2 - a_3 + a_4 &= \cos(1) - \frac{1}{12}, \\
\frac{719}{720} a_0 + a_1 + a_2 + a_3 + a_4 &= \cos(1) - \frac{1}{12}, \\
\frac{a_0}{120} + a_1 - 2a_2 + 3a_3 - 4a_4 &= -4 \cos(1) + \sin(1) + \frac{1}{2}, \\
-\frac{a_0}{120} + a_1 + 2a_2 + 3a_3 + 4a_4 &= 4 \cos(1) - \sin(1) - \frac{1}{2}, \\
-\frac{a_0}{24} + 2a_2 - 6a_3 + 12a_4 &= 3 \cos(1) - 8 \sin(1) - \frac{5}{2},
\end{align*}
\tag{3.27}
\]

We get from the equation system (3.27):

\[
a_0 = -1.008125221, a_1 = 0, a_2 = 2.521719441, a_3 = 0, a_4 = -1.058025422. \tag{3.28}
\]

Then, by using the inverse transformation rule in Eq. (2.3), we get the following series solution

\[
y(x) = -1.008125221 + 2.521719441 x^2 - 1.058025422 x^4 + 0.084733507 x^6 - O(x^8). \tag{3.29}
\]

By continuing the same procedure for \(n = 12 \), we get the following series solution:
\[y(x) = -0.999999938 + 2.499999854x^2 - 1.041666579x^4
+ 0.084722222x^6 - 0.002802579x^8 + 0.000049879x^{10}
- 0.000000553x^{12} + O(x^{14}). \]

Numerical results for \(n = 6 \) and \(n = 12 \) with comparison to the exact solution (3.22) are given in Table 4.

\(x \)	\(n = 6 \)	\(n = 12 \)	Exact
-1.0	0.540302306	0.540302306	0.540302306
-0.8	0.194620389	0.195077883	0.195077879
-0.6	-0.233472990	-0.231093951	-0.231093972
-0.4	-0.631388492	-0.626321435	-0.626321476
-0.2	-0.908943861	-0.901661195	-0.901661252
0.0	-1.000000000	-1.000000000	-1.000000000
0.2	-0.908943861	-0.901661195	-0.901661252
0.4	-0.631388492	-0.626321435	-0.626321476
0.6	-0.233472990	-0.231093951	-0.231093972
0.8	0.194620389	0.195077883	0.195077879
1.0	0.540302306	0.540302306	0.540302306

As the number of terms involved increase, one can observe that the series solution obtained by differential transform method converges to the series expansion of the exact solution (3.22).

4. CONCLUSION

In this paper, we have shown that the differential transform method can be used successfully for finding the solution of linear and nonlinear boundary value problems of fifth-order. It may be concluded that this technique is very powerful and efficient in finding semi analytical and numerical solutions for these types of boundary value problems.

5. REFERENCES

1. A. Arıkoğlu, I. Özkol, Solution of boundary value problems for integro-differential equations by using differential transform method, Applied Mathematics and Computation 168, 1145-1158, 2005.
2. A. Karageoghis, T.N. Philips and A.R. Davies, Spectral collocation methods for the primary two-point boundary-value problems in modeling viscoelastic flows, International Journal for Numerical Methods in Engineering 26, 805-813, 1998.
3. A.M. Wazwaz, The numerical solution of fifth-order boundary value problems by the decomposition method, Journal of Computational and Applied Mathematics 136, 259–270, 2001.
4. A.R. Davies, A. Karageoghis and T.N. Phillips, Spectral Galerkin methods for the primary two-point boundary-value problems in modeling viscoelastic flows, International Journal for Numerical Methods in Engineering 26, 647-662, 1998.
5. M. J. Jang, C.L. Chen, Analysis of the response of a strongly nonlinear damped system using a differential transformation technique, *Applied Mathematics and Computation* **88**, 137-151, 1997.

6. D.J. Fyfe, Linear dependence relations connecting equal interval Nth degree splines and their derivatives, *Journal of the Institute of Mathematics and its Applications* **7**, 398–406, 1971.

7. F. Ayaz, Solutions of the system of differential equations by differential transform method, *Applied Mathematics and Computation* **147**, 547-567, 2004.

8. G.L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, *Proceeding of the Conference of the 7th Modern Mathematics and Mechanics*, Shanghai, 1997.

9. H. Liu, Y. Song, Differential transform method applied to high index, *Applied Mathematics and Computation* **184**, 748-753, 2007.

10. H.N. Çaglar, S.H. Çaglar and E.H. Twizell, The numerical solution of fifth-order boundary value problems with sixth-degree B-spline functions, *Applied Mathematics Letters* **12**, 25–30, 1999.

11. I. H. A. H. Hassan, Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, *Chaos Solitons and Fractals*, (2006), doi:10.1016/j.chaos.2006.06.040.

12. I. H. A. H. Hassan, Differential transformation technique for solving higher-order initial value problems, *Applied Mathematics and Computation* **154**, 299–311, 2004.

13. J. K. Zhou, *Differential Transformation and Its Applications for Electrical Circuits* (in Chinese), Huazhong Univ. Press, Wuhan. China, 1986.

14. M. A. Noor, S. T. Mohyud-Din, An efficient algorithm for solving fifth-order boundary value problems, *Mathematical and computer modelling* **45**, 954–964, 2007.

15. M. J. Jang, C. L. Chen and Y. C. Liy, On solving the initial-value problems using the differential transformation method, *Applied Mathematics and Computation* **115**, 45–160, 2000.

16. M. J. Jang, C. L. Chen and Y. C. Liy, Two-dimensional differential transform for partial differential equations, *Applied Mathematics and Computation* **121**, 261–270, 2001.

17. M.S. Khan, *Finite-difference solutions of fifth-order boundary value problems*, Ph.D. thesis, Brunel University, England, 1994.

18. N. Bildik, A. Konuralp, F. Bek and S. Kuçükarslan, Solution of different type of the partial differential equation by differential transform method and Adomian’s decomposition method, *Applied Mathematics and Computation* **172**, 551-567, 2006.

19. R.P. Agarwal, *Boundary-value problems for higher order differential equations*, World Scientific, Singapore, 1986.

20. V.S. Ertürk, S. Momani, Comparing numerical methods for solving fourth-order boundary value problems, *Applied Mathematics and Computation* **188**, 1963-1968, 2007.