Incidence of HIV-Associated Tuberculosis among Individuals Taking Combination Antiretroviral Therapy: A Systematic Review and Meta-Analysis

Tendesayi Kufa, Tonderai Mabuto*, Evans Muchiri, Salome Charalambous, Dominique Rosillon, Gavin Churchyard, Rebecca C. Harris

1 The Aurum Institute, Johannesburg, South Africa, 2 The School of Public Health, University of the Witwatersrand, Johannesburg, South Africa, 3 GlaxoSmithKline Vaccines, Wavre, Belgium, 4 CROMSOURCE on behalf of GlaxoSmithKline Vaccines, Wavre, Belgium

Abstract

Background: Knowledge of tuberculosis incidence and associated factors is required for the development and evaluation of strategies to reduce the burden of HIV-associated tuberculosis.

Methods: Systematic literature review and meta-analysis of tuberculosis incidence rates among HIV-infected individuals taking combination antiretroviral therapy.

Results: From PubMed, EMBASE and Global Index Medicus databases, 42 papers describing 43 cohorts (32 from high/intermediate and 11 from low tuberculosis burden settings) were included in the qualitative review and 33 in the quantitative review. Cohorts from high/intermediate burden settings were smaller in size, had lower median CD4 cell counts at study entry and fewer person-years of follow up. Tuberculosis incidence rates were higher in studies from Sub-Saharan Africa and from World Bank low/middle income countries. Tuberculosis incidence rates decreased with increasing CD4 count at study entry and duration on combination antiretroviral therapy. Summary estimates of tuberculosis incidence among individuals on combination antiretroviral therapy were higher for cohorts from high/intermediate burden settings compared to those from the low tuberculosis burden settings (4.17 per 100 person-years [95% Confidence Interval (CI) 3.39–5.14 per 100 person-years] vs. 0.4 per 100 person-years [95% CI 0.23–0.69 per 100 person-years]) with significant heterogeneity observed between the studies.

Conclusions: Tuberculosis incidence rates were high among individuals on combination antiretroviral therapy in high/intermediate burden settings. Interventions to prevent tuberculosis in this population should address geographical, socioeconomic and individual factors such as low CD4 counts and prior history of tuberculosis.

Introduction

Human immune deficiency virus (HIV)-associated tuberculosis (TB) is an important public health problem particularly in high HIV prevalence settings. In 2012, the World Health Organisation (WHO) estimated that up to 1.1 million reported TB cases and 320 000 deaths from TB occurred in people living with HIV [1]. In the same year, up to 75% of all HIV-associated TB cases occurred in Sub-Saharan Africa [1]. Combination antiretroviral therapy (cART) or highly active antiretroviral therapy (HAART) reduces the risk of TB by 67% (95% CI 61–73%) among people living with HIV [2]. The risk of TB declines in proportion to the increases in CD4 counts after cART initiation [3]. In the high burden setting of Cape Town, South Africa, the risk of TB while on cART with a CD4 count of >700 cells/ml remained four fold higher than in HIV-uninfected persons from the same community [4]. Because cART alone is not sufficient to prevent HIV-associated TB, additional strategies are required. In order to develop additional strategies for preventing HIV-associated TB in people taking cART such as novel TB vaccines, an understanding of the incidence of and risk factors for HIV-associated TB in high/intermediate and low TB burden settings is required. We conducted a systematic review and meta-analysis to summarise and describe trends in the incidence of TB among adults taking...
cART in high/intermediate and low TB burden settings, stratified by geographical region, CD4 count, previous history of TB and duration on cART. We highlight the disparities in TB incidence rates between high and low TB burden settings and discuss the implications for interventions to further reduce the risk of HIV-associated TB among individuals on cART.

Methods

Search strategy and selection of papers

PubMed, EMBASE and Global Index Medicus databases were searched in parallel using search strings adapted to the requirements of each database (Table S1). For the PubMed search we conducted two separate searches using MeSH terms i) “tuberculosis” AND “incidence” ii) “tuberculosis” AND “HAART” with all the available qualifiers. Both PubMed searches were limited to papers describing studies in humans, published in English between 1st January 2000 and 31st March 2012. For the EMBASE search we used EMTREE terms “tuberculosis” AND “incidence” OR “HAART” with all the available qualifiers and limited the search to papers describing studies in humans, published in English between 1st January 2000 and 31st March 2012. For the Global Index Medicus search, we searched all indexes and all sources (which include AIM, LILACS, IMEMR, IMSEAR, WPRIM, WHOLIS and Medline) using the keywords “tuberculosis” “incidence” “HAART” and limited the search to studies written in the English language. No other limits applied.

The search outputs were imported into a combined file in reference management software and duplicates removed. Two independent reviewers (TM and TK) screened all titles and abstracts to identify papers for full text review. Full texts were then screened by the same reviewers and eligibility criteria applied. Eligibility for inclusion required reporting a TB incidence rate for a cohort of individuals on cART and more than 100 participants included in the cohort. Review papers, papers exclusively reporting multi-drug or extensively drug resistant (MDR/XDR) TB as outcomes, and papers reporting exclusively on children younger than 15 years of age were not eligible. Where discordance occurred in the independent review of papers, the papers were discussed and consensus achieved. References lists included in the eligible papers were hand searched in order to identify additional eligible papers. The search criteria and other methods used in the review were included in a protocol outline agreed upon by the authors before data collection commenced. This protocol outline can be found in the supplementary information (Table S2).

Abstraction of data from eligible papers

Data on study characteristics (including but not limited to: author, date of publication, location, sample size, cohort characteristics and TB incidence rates) were abstracted using a
Assessment of study quality

Meeting the criteria for inclusion in the review.

If a study described two or more distinct cohorts, data was abstracted for each of the cohorts using a standardized form (Table S3). If a study described two or more distinct cohorts, data was abstracted for each of the cohorts meeting the criteria for inclusion in the review.

Estimates of national TB incidence rates, national adult HIV prevalence rates and World Bank income classification for the country and year each study was published were obtained from the WHO database of TB burden [5], UNAIDS Global HIV estimates [6,7] and the World Bank classifications respectively [8]. We used the estimates of national HIV prevalence rates last updated in 2010, and the estimates of national TB incidence rates last updated in 2009. Therefore, the HIV estimates from 2009 were used for studies published after 2009 and, the 2010 estimates of national TB incidence were used for studies published after 2010. For multi-country studies, the data on national TB incidence and HIV prevalence rates were not abstracted but were assigned to low or high burden depending on the average national TB incidence rate in the countries the cohorts were from. Cohorts described in the studies were classified as high/intermediate burden if the estimated national TB incidence rate for the country and year were ≥25 per 100,000 population per year, and as low burden if the TB incidence rates were below this threshold. Cohorts were also classified as being from low, middle or high income settings according to the World Bank income classification.

Assessment of study quality

Study quality was assessed using a standardized tool (see Table S4) adapted from the Newcastle-Ottawa Scale (NOS) for cohort studies [9]. The tool was used to assess the following study characteristics: sampling methods, presence of sampling bias, exclusion of TB at cohort entry, outcomes ascertainment during follow up, duration of follow up and loss to follow up rates. Each of these criteria was assigned a score as shown in Box 1 (Table S4). The highest possible score was 6 and studies with scores ≥4 were considered to be of good quality. No studies were excluded from the reviews on the basis of their quality scores.

Data analysis and presentation

In the qualitative part of the review, all eligible cohorts reporting a TB incidence rate among individuals on cART were classified into high/intermediate and low burden settings and described with respect to cohort characteristics. TB incidence rates were summarized according to CD4 cell count strata, duration on cART and by prior history of TB. Where studies only reported number of TB cases and person-years of follow up for the different strata in the cohort, the incidence rates and confidence intervals were computed in Stata 12 (Stata Corporation, College Station, Texas, USA).

Meta-analysis

Meta-analyses (quantitative reviews) were conducted to determine summary estimates of the TB incidence rates among HIV-infected individuals on cART overall and point estimates across different categories or strata of study quality, study designs, national HIV prevalence rates, national TB incidence rates, CD4 count, durations on cART and prior history of TB. To be eligible for inclusion in meta-analyses, studies were required to report both the number of TB cases and person-years of follow up by the different categories listed. These fields were required to enable estimation of incidence rates of TB and associated standard errors using the random effects model. These data were recorded onto the abstraction forms and entered into an Excel 2007 sheet (Microsoft Corporation, Washington, USA) and exported into...
Stata 12 for analysis. I-squared estimates were used to determine heterogeneity between studies.

Results

Summary of studies

From 2945 unique study titles retrieved, 121 titles were eligible for abstract review and 77 for full text review. From the full texts reviewed, 42 studies [4,10–50] describing 43 cohorts were eligible for inclusion in the qualitative review and a subset of 33 cohorts for inclusion in the quantitative review (meta-analysis - Figure 1). Of the 43 cohorts, 32 (74%) were from high/intermediate burden settings with national TB incidence rates ranging from 46 to 981 per 100 000 and national HIV prevalence rate ranging from 0.3% to 18.2%. Eleven cohorts (26%) were from low burden settings with national TB incidence rates ranging from 4.1 to 17 per 100 000 population per year and national HIV prevalence rate of 0.2% to 0.6%. The full list and characteristics of papers included in the review are presented in Table S5.

Characteristics of cohorts from high/intermediate and low burden settings are presented in Table 1. When compared to cohorts from low burden settings, cohorts from high/intermediate burden were smaller in size, had lower median CD4 cell counts at study entry and had fewer person-years follow up. TST positivity was reported for a few cohorts in both settings (five cohorts (15.6%) from high/intermediate burden settings and five (45.5%) cohorts from low burden settings).

Study quality

Table 2 describes the findings of the study quality assessment. The overall quality scores ranged from 2–6 with the majority of the papers (27 of 42 studies, 64%) being considered to be of acceptable quality (score ≥4).

Table 2. Summary of study quality.

Criteria	high burden (N = 32)	low burden (N = 11)		
	n (%)	studies	n (%)	studies
1. Sampling method				
Reported sampling method used	32 (100)	all studies	11 (100)	all studies
2. Sampling bias				
Assessed and reported on sampling bias	18 (56.3)	4,11, 14, 17, 19, 20, 22, 24, 30, 31, 33, 34, 36, 37, 38, 39, 43, 47		
3. Screening of TB at study commencement				
Reported screening/exclusion of TB at cohort entry	32 (100)	all studies	11 (100)	all studies
4. Ascertainment of outcomes				
Smear + culture + clinical + chest radiograph	21 (62.5)	4, 14, 17, 19, 20, 21, 24, 27, 28, 30, 31, 33, 34, 35, 36, 37, 42, 43, 46, 47, 49		
Smear + clinical + chest radiograph (no culture)	7 (21.2)	10, 11, 25, 38, 39, 41, 50		
Clinical + chest radiograph (no smear or culture)	1 (3.0)	30	0 (0)	
Treatment initiation records only	2 (6.1)	22, 23, 24, 25		
Not specified	2 (6.1)	40, 45	3 (27.2)	16, 29, 44
5. Median duration of follow up				
Median follow-up <9 months	1 (3)	41	0 (0)	
Median follow-up ≥9 months	23 (72.7)	4, 14, 17, 19, 20, 21, 24, 27, 28, 30, 31, 33, 34, 36, 37, 39, 42, 43, 45, 46, 47, 49		
Median follow up not reported	8 (24.2)	10, 11, 27, 35, 38, 40, 49, 50	6 (55.5)	12, 13, 16, 26, 48, 49
6. Loss to follow up				
<20% of participants lost to follow-up	15 (45.5)	11, 14, 17, 19, 20, 21, 22, 23, 24, 27	1 (9.1)	29
>20% of participants lost to follow-up	1 (3.0)	4	0	
Loss to follow up not reported	16 (48.5)	10, 25, 30, 33, 34, 35, 37, 38, 41, 42, 43, 45, 46, 47, 49, 50	10 (90.9)	12, 13, 15, 16, 18, 26, 32, 44, 48, 49
Overall study quality score (median, range)	5 (2–6)	3 (2–5)		
Studies with quality score ≥4	24 (72.7)	4, 11, 14, 17, 19, 20, 21, 22, 23, 24, 3 (27.3)	15, 29, 32, 37, 38, 39, 42, 43, 46, 47	

n = number of studies with characteristic.
doi:10.1371/journal.pone.0111209.t002
Table 3. TB cases characteristics and incidence rates reported in high burden cohorts and in low burden cohorts.

Cohort characteristics	High/intermediate TB burden (N = 32)	Low TB burden (N = 11)
Number of cohorts reporting	43–81	44–65
Proportion (%) of TB cases with pulmonary TB (range)	16	6
Proportion (%) of TB cases who are male (range)	5	33.2–67.6
Median CD4 count of TB cases at study entry, cells/μl (range)	8	75–197
TB incidence rate among those on cART, cases/100person-years, (range)	32	0.6–10.5

TB incidences across baseline CD4 count strata cases/100person-years, (range)				
<100	6	0.6–6.8	1	0.84
101–200	2	1.7–4.8	0	.
201–350	3	1.7–3.7	1	0.47
351–500	3	1.8–3	1	0.19
>500	1	2	1	0.17

TB incidences across current CD4 count strata, cases/100person-years,(range)				
<100	4	8.9–25.5	3	0.11–0.83
101–200	4	3.6–11.2	1	0.09
201–350	3	1.8–7.8	2	0.08–0.26
351–500	3	0.7–5.0	3	0.04–0.21
>500	2	1.5–4.1	2	0.06–0.1

TB incidences with increasing duration on cART cases/100person-years,(range)				
0–3months	14	3.4–23	5	0.22–17
3–6months	10	2.2–10.7	4	0.15–1
6–12months	10	1.2–7.0	5	0.07–0.62
12–24 months	13	1.3–6.7	3	0.07–0.33
24–36 months	7	1.4–7.4	3	0.09–0.18
>36 months	4	0.4–5.8	1	0.05

TB incidence among those with prior history of TB, cases/100person-years, (range)			
6	1.9–11.9	1	1.19

TB incidence among those with no prior history of TB cases/100person-years, (range)			
6	1.8–8.1	1	1.83

N is total number of cohorts, n is number of cohorts with the characteristic, IQR – interquartile range, cART- combination antiretroviral therapy.
doi:10.1371/journal.pone.0111209.t003

Qualitative review of TB incidence rates

Table 3 summarises the characteristics of TB cases and the TB incidence rates reported across different CD4 count and duration on cART strata, for both high/intermediate and low burden cohorts. The proportion of TB cases with pulmonary TB was higher in cohorts from high/intermediate burden settings compared to those from low burden settings. The median CD4 counts at study entry among individuals who subsequently developed TB were similar between high/intermediate and low burden cohorts. The TB incidence rates reported among individuals on cART were seven to 30 times higher in cohorts from high/intermediate burden settings compared to those from low TB burden settings.

In cohorts from high/intermediate and low burden settings, TB incidence rates generally increased with decreasing current CD4 counts and CD4 count at cART initiation, more so with CD4 counts less than 200 cells/μl (Table 3). TB incidence rates also increased with durations on cART less than six months. In six cohorts from high/intermediate burden settings, TB incidence rates were higher among those with prior history of TB compared to those with no prior history of TB (1.9–11.9 per 100 person-years compared to 1.8–8.1 per 100 person-years).

TB incidence rates among individuals on cART also varied with geographical location with highest incidence rates found in cohorts from Sub-Saharan Africa (range 0.9–7.82 per 100 person-years, n = 23), followed by those in Asia (range 1.32–2.83 per 100 person-years, n = 2), in South America (0.2–2.6 per 100 person-years, n = 4), and in Europe and North America (range 0.02–1.9 per 100 person-years, n = 9). Rates were much higher among cohorts from low income countries (range 0.9–8.6 per 100 person-years, n = 16) and middle income countries (0.6–10.5 per 100 person-years, n = 15).
n = 16); compared to those from high income countries (0.02–1.9 per 100 person-years, n = 9).

Meta-analysis of TB incidence among HIV-infected adults on cART

Thirty-three cohorts were eligible for inclusion in the meta-analysis. (See Figure 2). Heterogeneity was computed separately for high/intermediate (I^2 = 98%, p-value < 0.001) and low (I^2 = 99.1%, p-value < 0.001) burden settings and was large in both settings. As expected, the summary estimate of TB incidence among those on cART was higher for cohorts from high/intermediate burden settings compared to those from the low burden settings—4.17 per 100 person-years (95% CI 3.39–5.14 per 100 person-years) vs. 0.4 per 100 person-years (95% CI 0.23–0.69 per 100 person-years), (Figure 2). In the analyses stratifying summary estimates of TB incidence rates by study quality, study design (retrospective or prospective studies), national TB incidence rates and national HIV prevalence rates (see Table 4), heterogeneity remained high. This implied that these variables did not explain most of the heterogeneity observed in the TB incidence rates.

Meta-analysis of TB incidence among HIV-infected adults on cART stratified by CD4 counts, duration on cART and prior history of TB

Summary estimates of TB incidence rates stratified by CD4 counts at entry, duration on cART and prior history of TB are shown in Table 5. The summary estimates of the TB incidence rates were higher in cohorts from high/intermediate burden settings compared to those from low burden settings across all baseline CD4 count strata, duration on cART and prior history of TB strata, although inference was limited by number of cohorts. Among cohorts from high/intermediate burden settings, TB incidence rates were higher in the baseline CD4 count <200 cells/µl stratum compared to those in 200–350 cells/µl or >350 cells/µl strata. There was significant heterogeneity in the TB incidence rates across the different strata in the meta-analysis.

Discussion

This review summarises and describes trends in TB incidence rates among HIV-infected adults on cART, comparing cohorts from high/intermediate burden settings with those from low burden settings. In the qualitative review, the incidence rates in cohorts from high/intermediate burden settings were seven to 30
Variable	High/intermediate burden	Low burden	Study quality	study level	High/intermediate burden	Low burden	Study quality	study level
	N Studies	Summary estimate (per 100 person-years)	I^2	p^*	N studies	Summary estimate (per 100 person-years)	I^2	p^*
Study quality								
low	10	3.7 (2.3–5.6)	98.8%	< 0.001	6	0.37 (0.18–0.77)	93.3%	< 0.001
high	14	4.5 (3.6–5.5)	95.5%	< 0.001	2	0.50 (0.19–1.31)	98.4%	< 0.001
Study Design								
Retrospective	13	3.7 (2.7–5.3)	98.7%	< 0.001	6	0.40 (0.16–1.04)	99.3%	< 0.01
Prospective	12	4.6 (3.6–6.0)	95.2%	< 0.001	2	0.39 (0.28–0.55)	94.3%	< 0.01
National TB incidence rates								
(per 100 000 population)								
<25	6	0.34 (0.18–0.64)	99%	< 0.001				
25–200	7	2.8 (2.1–3.6)	83.7%	< 0.001				
201–800	6	3.7 (2.1–6.4)	98%	< 0.001				
>800	8	5.6 (4.2–7.4)	96.7%	< 0.001				
National HIV prevalence rates								
<1%	4	2.3 (1.8–3.0)	88.8%	< 0.001	6	0.34 (0.18–0.64)	99%	< 0.001
1–4.9%	3	3.7 (2.7–4.9)	0	0.735				
5–10%	5	4.3 (2.3–8.1)	98.1%	< 0.001				
>10%	9	5.2 (3.9–6.9)	96.3%	< 0.001				

I^2: Amount of heterogeneity not explained by the variable, p^*: p-value for heterogeneity not explained by the variable, N – number of cohorts.

doi:10.1371/journal.pone.0111209.t004
Table 5. Summary estimates from meta-analysis of TB incidence rates stratified by baseline CD4 count, duration on cART and previous history of TB.

Variable	High/intermediate burden	Low burden						
	N	Summary estimate	I²	p*	N	Summary estimate	I²	p*
	Studies	(per 100 person-years)	p*		Studies	(per 100 person-years)		
Baseline CD4 count								
<200	5	4.47 (3.55–5.63)	89.6%	<0.001	1	0.84 (0.31–1.62)	-	-
200–350	3	2.32 (1.54–3.51)	42.3%	0.177	1	0.46 (0.35–0.60)	-	-
>350	3	2.34 (1.78–3.08)	0.00%	0.877	1	0.23 (0.16–0.34)	-	-
Duration on cART								
<3 months	6	13.67 (10.62–17.60)	86.9%	<0.001	3	0.73 (0.27–1.99)	96.3%	<0.01
3–6 months	6	6.11 (4.62–8.09)	76.4%	0.001	3	0.46 (0.18–1.19)	93.6%	<0.01
6–12 months	6	3.14 (2.20–4.48)	83.9%	<0.001	3	0.29 (0.12–0.74)	94.5%	<0.01
12–24 months	4	3.94 (1.97–7.88)	94.5%	<0.001	3	0.19 (0.08–0.47)	94.8%	<0.01
>24 months	1	5.87 (5.15–6.68)	-	-	2	0.09 (0.03–0.23)	91.3%	<0.01
Previous History TB								
Yes	4	4.74 (2.10–10.73)	93.1%	<0.001	1	1.20 (0.39–3.71)	-	-
No	4	2.78 (1.36–5.68)	97.1%	<0.001	1	1.83 (1.30–2.59)	-	-

* I²: Amount of heterogeneity not explained by the variable, *p-value for heterogeneity not explained by the variable, N = number of cohorts.

doi:10.1371/journal.pone.0111209.t005
Implications for further research

The findings of this review can inform the development of additional tools - such as new TB vaccines and drug regimens for TB preventive therapy - to prevent TB in HIV-infected populations. Should a vaccine candidate or preventive therapy regimen progress to phase IIb or III trials including HIV-infected subjects and measuring TB disease as an endpoint, large numbers of subjects will be needed to obtain a sufficient number of endpoints in the trials. High/intermediate burden settings should be priority locations for the conduct of such trials to help minimise the required sample size. However, with cART initiation occurring at increasingly higher CD4 count thresholds and use of isoniazid preventive therapy (IPT) being scaled up in most settings, the expected number of endpoints in such HIV-infected populations may be smaller and such trials may become infeasible even in high/intermediate burden settings. Prioritising enrolments of participants with prior history of TB may increase the number of endpoints in such trials.

Strengths and limitations

Summarising the TB incidence rates among individuals taking cART emphasises the magnitude of the TB burden especially in high TB and HIV burden settings. Such data highlight the limitations of cART as a tool for TB prevention in such settings, with challenges remaining due to ongoing transmission, late presentation into care or sub-optimal immune restoration in cART care. This review included 42 studies, the majority of which were of good quality. However this review also had some important limitations. We restricted our search to literature published in English as we did not have resources for translation. We did not search conference abstracts as these were likely to have incomplete follow up data. Twenty-three percent of the cohorts included in the qualitative review were not eligible for inclusion in the meta-analysis because they did not report number of TB cases, or the person – years of follow up stratified by use of cART. There was limited duration of follow up of participants especially in studies from high/intermediate burden settings. The association of longer duration of follow up in the cohort with reduction in TB incidence was evident in the reported rates and from the meta-analysis. This may have contributed to higher rates of TB observed in the cohorts from high/intermediate TB burden settings. There was large heterogeneity in the TB incidence rates in both high/intermediate burden and low TB burden settings which was not fully explained by study variables in stratified analyses. Conducting univariable or multivariable meta-regression analyses would have allowed us to better the determine factors accounting for the heterogeneity observed but the limited number of studies particularly from low TB burden settings precluded this. TB incidence rates in individuals on cART are likely influenced by local TB transmission and the rates of reactivation of latent infection. Data on TST positivity were not available for most studies and any heterogeneity as a result of these two variables could not be accounted for. Another limitation was that the review and meta-analysis included data collected at the individual level in the studies which were then aggregated to give study level variables. This made the review prone to aggregation bias.

Despite these limitations, the study provides valuable information for the evaluation, planning and implementation of preventive strategies for HIV-associated TB. Strategies to further reduce the risk of TB among individuals on cART such as the use of TB preventive therapy regimens, early initiation of cART, better TB screening at initiation of and during cART, and TB infection control can be appropriately targeted based on these data.

Supporting Information

Table S1 Summary of searches. (DOCX)
Table S2 Protocol outline. (DOCX)
Table S3 Data abstraction form. (DOCX)
Table S4 Modified Ottawa Scale. (DOC)
Table S5 List of studies included. (XLS)
Checklist S1 PRISMA checklist. (DOC)
Author Contributions
Conceived and designed the experiments: TK SG GC RCH. Performed the experiments: TK TM. Analyzed the data: TK TM EM SG DR GC RCH. Contributed reagents/materials/analysis tools: TK TM EM SG DR GC. Wrote the paper: TK. Reviewed iterative versions of the manuscript: TM EM SG DR GC. RCH. Conducted the literature search and came up with a list of studies of inclusion in the review: TK TM.

References
1. World Health Organisation (2013) Global Tuberculosis Report 2013. Geneva, Switzerland. Available: http://apps.who.int/iris/bitstream/10665/103535/1/9789241565666_eng.pdf. Accessed 2014 Jan 16.
2. Lawn SD, Wood R, De Cock KM, Kranzler K, Lewis JJ, et al. (2010) Antiretrovirals and isoniazid preventive therapy in the prevention of HIV-associated tuberculosis: a cohort with limited health-care resources. Lancet Infect Dis 10: 489–498.
3. Suthar AB, Lawn SD, De Almeida J, Getahun H, Iy CE, et al. (2012) Antiretroviral Therapy for Prevention of Tuberculosis in Adults with HIV: A Systematic Review. PLoS One 7: e41556.
4. Gupta A, Wood R, Kaplan R, Bekker LG, Lawn SD (2012) Tuberculosis incidence rates during 8 years of follow-up of an antiretroviral treatment cohort in South Africa: Comparison with rates in the community. PLoS One 7: e41556.
5. World Health Organisation(2010) Tuberculosis Country Profiles. Available: http://www.who.int/tb/country/data/download/en/index.html. Accessed 2012 May 10.
6. UNAIDS (2010) HIV estimates with uncertainty bounds 2009. Available: http://www.unaids.org/globalreport/documents/HIV_Estimates_GR2010_2009_en.xl. Accessed 2012 May 10.
7. UNAIDS (2012) Adult (15–49) HIV prevalence percent by country, 1990–2007. Available: data.unaids.org/pubs/.../20000011_gr01_prev1549_1990-2007. Accessed 2012 May 10.
8. World Bank (2012) World Bank Analytical Classifications 1987–2010. Available: http://data.worldbank.org/about/country-classifications. Accessed 2012 Jul 1.
9. Wells GA SB, O’Connell D, Peterson J, Welch V, Losos M, et al. (n.d.) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute. Available: http://www.medicine.mcgill.ca/rtamblyn/Readings/The%20Newcastle-%20%20 Scale%20for%20assessing%20the%20quality%20of%20nonrandomised%20 studies%20in%20meta-analyses.pdf. Accessed 2012 May 11.
10. Hermans S, van Leth F, Manabe Y, Hoepelman A, Lange J, et al. (2012) Earlier initiation of antiretroviral therapy, increased tuberculous case finding and reduced mortality in a setting of improved HIV care: a retrospective cohort study. Public Health Med.
11. Worodria W, Massinga-Laemhe M, Mayanja-Kizza H, Namaganda J, Kambugu A, et al. (2011) Antiretroviral treatment-associated tuberculosis in a prospective cohort of HIV-infected patients starting ART. Clin Dev Immunol 2011: 758359.
12. Taarning JG, Engvig FN, Ravn P, Johansen IS, Larsen GS, et al. (2011) Incidence, risk factors and mortality of tuberculosis in Danish HIV patients 1995–2007. BMC Pulm Med 11: 26.
13. Paulino AC, Jenkins CA, Cao PN, Ntimette SK, Rebeiro PF, Blackwell RB, et al. (2011) Comparison of isoniazid protective therapy and survival in HIV-infected, TST-positive adults in Tanzania. Int J Tuberc Lung Dis 15: 1513–1521.
14. Sterling TR, Lau B, Zhang J, Freeman A, Busch RJ, et al. (2011) Risk factors for tuberculosis after highly active antiretroviral therapy initiation in the United States and Canada: implications for tuberculosis screening. J Infect Dis 204: 893–901.

Author Contributions
Conceived and designed the experiments: TK SG GC RCH. Performed the experiments: TK TM. Analyzed the data: TK TM EM SG DR GC RCH. Contributed reagents/materials/analysis tools: TK TM EM SG DR GC. Wrote the paper: TK. Reviewed iterative versions of the manuscript: TM EM SG DR GC. RCH. Conducted the literature search and came up with a list of studies of inclusion in the review: TK TM.

Acknowledgments
The authors thank Edith Roset-Balhanyar for her contribution to the design of the systematic literature review, and Sofia Dos Santos Mendes (XPE, Pharm&Science on behalf of GlaxoSmithKline Vaccines) for editorial assistance.
43. Lawn SD, Badri M, Wood R (2005) Tuberculosis among HIV-infected patients receiving HAART: long term incidence and risk factors in a South African cohort. AIDS 19: 2109–2116.
44. Girardi E, Sabin CA, d’Arminio Monforte A, Hogg B, Phillips AN, et al. (2005) Incidence of Tuberculosis among HIV-infected patients receiving highly active antiretroviral therapy in Europe and North America. Clin Infect Dis 41: 1772–1782.
45. Seyler C, Anglaret X, Dakeury-Dogbo N, Messou E, Toure S, et al. (2003) Medium-term survival, morbidity and immunovirological evolution in HIV-infected adults receiving antiretroviral therapy, Abidjan, Cote d’Ivoire. Antivir Ther 8: 385–393.
46. Hung CC, Hsiao CF (2003) Recurrence of tuberculosis in HIV-1-infected adults treated after rifamycin-based treatment and highly active antiretroviral therapy. J Acquir Immune Defic Syndr 34: 437–439.
47. Badri M, Wilson D, Wood R (2002) Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study. Lancet 359: 2059–2064.
48. Jones JL, Hanson DL, Dowerkin MS, DeCock KM (2000) HIV-associated tuberculosis in the era of highly active antiretroviral therapy. The Adult/Adolescent Spectrum of HIV Disease Group. Int J Tuberc Lung Dis 4: 1026–1031.
49. Brinkhof MW, Egger M, Boulle A, May M, Hosseinipour M, et al. (2007) Tuberculosis after initiation of antiretroviral therapy in low-income and high-income countries. Clin Infect Dis 45: 1518–1521.
50. Rajasekaran S, Raja K, Jayaseelan L, Vijja S, Priya K, et al. (2009) Post-HAART tuberculosis in adults and adolescents with HIV in India: incidence, clinical and immunological profile. Indian Journal of Tuberculosis 69–76.
51. Dye C, Lounroth K, Jaramillo E, Williams BG, Raviglione M (2009) Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ 87: 683–691.
52. Lawn SD, Wood R (2011) Tuberculosis in antiretroviral treatment services in resource-limited settings: addressing the challenges of screening and diagnosis. J Infect Dis 204 Suppl 4: S1159–1167.
53. Laureillard D, Marcy O, Madec Y, Chea S, Chan S, et al. (2013) Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome after early initiation of antiretroviral therapy in a randomized clinical trial. AIDS 27: 2577–2586.
54. Manabe YC, Breen R, Pertti T, Girardi E, Sterling TR (2009) Unmasked tuberculosis and tuberculosis immune reconstitution inflammatory disease: a disease spectrum after initiation of antiretroviral therapy. J Infect Dis 199: 437–444.
55. Middelkoop K, Bekker LG, Shashkina E, Kreiswirth B, Wood R (2012) Retreatment tuberculosis in a South African community: the role of re-infection, HIV and antiretroviral treatment. Int J Tuberc Lung Dis 16: 1510–1516.