Review article

Vitamin D in COVID-19: Dousing the fire or averting the storm? – A perspective from the Asia-Pacific

Manju Chandran a,*, 1, Aye Chan Maung b,1, Ambrish Mithal c, Rajeev Parameswaran d

a Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore
b Department of Endocrinology, Singapore General Hospital, Singapore
c Department of Endocrinology and Diabetes, Max HealthCare, Saket, New Delhi, India
d Division of Endocrine Surgery, National University Hospital System, Singapore

Abstract

COVID-19, the acute respiratory tract infection (RTI) caused by the Coronavirus, Sars-CoV-2, has swept around the world. No country has been spared from its onslaught. Treatments that can reduce the risk of infection and mortality from the disease are desperately needed. Though high quality randomized controlled trials are lacking, some observational and interventional studies that explore the link between vitamin D and RTIs exist. Vitamin D modulates both innate as well as adaptive immunity and may potentially prevent or mitigate the complications associated with RTIs. Evidence linking vitamin D to COVID-19 include that the outbreak occurred in winter in the northern hemisphere at a time when vitamin D levels are lowest in resident populations, that blacks and minority ethnic individuals who are known to have lower levels of vitamin D appear to be disproportionately affected and have more severe complications from the disease, that vitamin D deficiency has been shown to contribute to acute respiratory distress syndrome and that case fatality rates increase with age and in populations with comorbid conditions such as diabetes, hypertension, and cardiovascular disease, all of which are associated with lower vitamin D levels. This narrative review summarizes the current knowledge about the epidemiology and pathophysiology of COVID-19, the evidence linking vitamin D and RTIs, especially COVID-19, the mechanistic reasons behind the possible protective effect of vitamin D in COVID-19, and the evidence with regard to vitamin D supplementation in RTIs. It concludes with some recommendations regarding supplementation of vitamin D in patients with COVID-19.

Keywords: COVID-19, Coronavirus, Vitamin D, Vitamin D supplementation, SARS-CoV-2

1. Introduction

Many infectious diseases have contributed to shaping human evolution, and multiple pandemics have swept through the world over the last several centuries. Related to Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), COVID-19 is caused by the coronavirus, SARS-CoV-2. It affects the respiratory tract and manifests as pneumonia in humans. The causative agent was identified in January 2020 from throat swab samples conducted on infected patients by the Chinese Center for Disease Control and Prevention (CCDC). The disease was named COVID-19 by the World Health Organization (WHO) (https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020) and was subsequently declared as a pandemic in March 2020. Since the first cases were reported in Wuhan, China, at the end of 2019, the disease has raged across the world with more than 11.2 million cases and 529,601 deaths recorded to date worldwide (as of July 18, 2020). Whilst the highest incidence has been recorded in the United States, Brazil, and India in descending order (www.worldometers.info – accessed July 18, 2020), countries in the most densely populated region of the world, namely the Asia-Pacific have also been severely affected, with no country being spared from its ravages (Table 1).

A possible protective role for vitamin D; the so called “Sunshine vitamin” in COVID-19 has been brought up in discussions that pertain to prevention and management of severe outcomes from
the disease, and the mainstream media has been deluged with reports speculating on the matter. This article reviews the current knowledge about COVID-19, the epidemiological evidence that links vitamin D and respiratory infections such as COVID-19, discusses the mechanisms behind a possible protective effect of vitamin D on the disease, and provides a perspective on whether and how vitamin D supplementation can be employed to mitigate the risks associated with this highly infectious disease.

2. Pathophysiology of COVID-19 respiratory infection

The pathophysiologic basis of the clinical manifestations of COVID-19 is believed to be secondary to an uncontrolled and complex immune response of the human body to the virus. It is believed that angiotensin-converting enzyme 2 (ACE2) is the host cell receptor responsible for mediating infection by SARS-CoV-2. ACE2 is predominantly expressed by epithelial cells of the lung, intestine, kidney, heart, and blood vessels. ACE2 was identified as a key receptor for SARS (severe acute respiratory syndrome) coronavirus infections [1]. SARS-CoV-2 binds to ACE2 receptors to gain access into host cells. Once the virus attaches to ACE2 receptors, it downregulates activity and expression of ACE2 [2]. Both ACE and ACE2 belong to the ACE family of dipeptidyl carboxydipeptidases. However, they exert distinct physiological functions. ACE cleaves angiotensin I to angiotensin II. Angiotensin II activates angiotensin II receptor type 1. This activation leads to vasocostrictive, proinflammatory, and pro-oxidative effects [3]. ACE2 on the other hand, degrades angiotensin II to angiotensin 1-7 and angiotensin I to angiotensin 1-9. Binding of angiotensin 1-9 to the Mas receptor leads to anti-inflammatory, antioxidative, and vasodilatory effects. It is postulated that SARS-CoV-2 binding to ACE2 may attenuate ACE2 activity, skewing the ACE/ACE2 balance to a state of heightened angiotensin II activity leading to acute lung injury. Enhanced production of pro-inflammatory cytokines and chemokines including granulocyte colony stimulating factor (GCSF), interferon gamma inducible protein 10 (IP10), macrophage chemotactic protein-1, macrophage chemotactic protein –1 (MCP1), macrophage inflammatory protein (MIP)1A, and tumour necrosis factor (TNF) alpha, by immune effector cells, leading to a cytokine storm is thought to be the cause of multiple systemic and respiratory symptoms in COVID-19 as it is in SARS-CoV [4] and MERS CoV infections [5]. The binding affinity of the SARS-CoV-2 spike protein and ACE2 determines viral multiplication and severity of COVID-19.

Higher levels of ACE2 are associated with better outcomes for coronavirus disease and it has been shown that in the lung, ACE2 protects against acute lung injury [1]. ACE2 expression in lungs has been shown to decrease by 67% in older female rats and even more, by 78% in older male rats, as compared to younger groups in an animal model study [6]. Though difficult to draw conclusions given that this was a rodent study, and though it is likely there are other reasons such as co-morbid illnesses and other gender specific factors, this decrease of ACE2 with age and gender appears to parallel the increase in COVID-19 mortality noted in older males in worldwide case fatality rate estimates.

COVID -19 has differentially impacted populations around the world. Analyses of confirmed, severely affected, and deceased cases have revealed certain environmental and demographic patterns. It is now becoming increasingly evident that the mortality rates of COVID-19 vary significantly among countries and even amongst populations indigenous to or residing within a particular country. The causes of these disparities are not clearly understood. Postulations include differences in COVID-19 testing strategies and policies, quality of health care services, demographic characteristics including the prevalence of elderly within a given population [7], and even the possible emergence of mutated strains of the virus in different parts of the world [8].

Another postulate explaining differences in mortality and severity in COVID-19, that is gaining increasing traction is the role of Vitamin D in the infectious process.

3. Vitamin D - the sunshine vitamin

Vitamin D, a fat-soluble vitamin, plays a major role in calcium homeostasis. The human body obtains it either through exogenous intake of food rich in vitamin D or from endogenous synthesis from a thermal reaction that converts 7-dehydrocholesterol in the skin to vitamin D3 (cholecalciferol) following exposure to Ultraviolet B (UVB)–radiation. Vitamin D3 is also found in animal food sources eg,
Vitamin D2 (ergocalciferol) is found in vegetable sources such as fatty fish such as salmon, mackerel and tuna, cod liver oil, milk, etc. Vitamin D3 (cholecalciferol) is present in bacteria or viruses but are generally absent in host cells, though subject to debate, another possible indirect link between lower levels of vitamin D and increased severity and higher mortality from COVID-19 stems from the observation that black and minority ethnic populations that include Asians who have lower levels of vitamin D appear to be disproportionately affected with COVID-19 [22].

Fatality rates that may be as high as 20%, are seen in the elderly and in those with pre-existing comorbidities such as diabetes, hypertension, obesity and cardiovascular disease [23,24].

Case fatality rates (CFR) from COVID-19 clearly increase in elderly individuals. Though several reasons including the incidence of increasing comorbidities with age may account for this, it also appears to parallel the decrease in serum 25(OH)D levels (and its ultimate hydroxylation product 1,25(OH)2D) with age. One of the reasons for this decrease is the less efficient production of vitamin D in the skin due to lower levels of 7-dehydrocholesterol [25].

Medical conditions affecting endogenous vitamin D synthesis such as chronic kidney disease and other disorders associated with lower levels of vitamin D such as diabetes [26], hypertension [27], and cardiovascular diseases [28] are also more common in elderly individuals. Though it is unlikely that these observations alone are sufficient to completely explain why CFR from COVID-19 is higher in the elderly and in people with underlying comorbidities, it raises some interesting questions that deserve to be explored further.

4. Extra skeletal role of vitamin D

The actions of vitamin D in the human body are diverse [29]. Besides its classical role in the regulation of calcium and phosphorous homeostasis and bone metabolism, it has other important clinical functions including modulation of immune and cardiovascular function and cell proliferation. These extra-skeletal actions are made possible by ligation of the biologically active form of vitamin D – 1,25(OH)2D, with its ubiquitously distributed nuclear vitamin D receptor (VDR) and subsequent transcription of vitamin D-dependent genes. The presence of 1-alpha-hydroxylase enzyme in other extra renal sites such as brain, prostate, uterus, pancreas and immune cells provide additional sources of active vitamin D for extra skeletal physiologic functions [30].

5. Vitamin D as an immunomodulator

The body’s defence against any viral infection involves both innate (cellular) immunity and adaptive immunity. While innate immunity utilizes receptors that recognize broad structural motifs present in bacteria or viruses but are generally absent in host cells,
adaptive immunity relies on antibodies and T-cells that can recognize viral antigens with high degrees of specificity.

Vitamin D has modulatory effects on both the innate and adaptive immune system and thus has an important role in fighting against invading pathogens. Vitamin D can simultaneously boost the innate immune system by suppressing cytokine production and thus reduce invading pathogen load and, at the same time decrease the overactivation of the adaptive immune system that occurs in infections and thereby help the body to respond adequately to the pathogen load. VDR are present in many immune reactive cells such as monocytes, macrophages, dendritic cells, and T- and B-lymphocytes [31]. The expression of the VDR on these cells is activated by contact with viral and bacterial ligands.

5.1. Innate immune system

Vitamin D supports host immunity by enhancing local synthesis of anti-microbial peptides including cathelicidins, IL-37 and defensins [32,33]. These host-derived peptides induce microbial killing by perturbing their cell membranes as well as by neutralizing endotoxin biological activity [34]. Critical to the innate immune response are the toll-like receptors (TLR) that recognize pathogenic molecules, and when activated, release cytokines and induce reactive oxygen species and antimicrobial peptides. Several of the toll-like receptors affect or are affected by vitamin D receptor induction [35]. Supplementation of vitamin D to levels 40 ng/ml or more has been shown to result in a marked reduction in the induced cytokine profile, specifically IL-6, TNF and IFN-alpha in peripheral blood mononuclear cells of vitamin D deficient subjects [36].

5.2. Adaptive immune system

Vitamin D has shown to be a key modulator of the adaptive immune system. It suppresses the release of inflammatory cytokines and chemokines such as IL-2, tumor necrosis factor-α and interferon-γ, and thus suppresses responses mediated by T helper cell type 1 (Th1) [37,38]. This may help to reduce the cytokine storm that is noted in Covid-19 patients [39] and which is the pathophysiologic driver behind systemic inflammatory response syndrome and acute respiratory distress syndrome [40,41]. TLRs are also instrumental in activating adaptive immunity. TLR2 senses lipopeptides from bacteria and leads to activation of NF-κB and induction of cytokine production and release [42]. Optimal vitamin D levels after supplementation has been shown to improve the expression of TLR2 and hence the body’s ability to fight infections [36].

6. Vitamin D and respiratory tract infections

As early as in the 19th century, cod liver oil (a rich source of vitamin D) was used for treating tuberculosis (TB). In 1903, Finsen received the Nobel Prize for demonstrating that Lupus vulgaris, the epidermal form of TB, could be cured using light from an electric arc lamp. In the early 1900s, increasing awareness of the benefits of “heliotherapy” or sun exposure, in the treatment of infectious diseases led to the development of sanatoriums in “sun-rich areas”. These sanatoriums enabled regimented sun exposure, diet, and exercise. These sanatoriums primarily hosted TB patients [43].

Studies that have been conducted exploring the correlation between vitamin D levels and the incidence of respiratory tract infections (RTI) have produced heterogenous and inconsistent results. Most have been observational, and most have reported statistically significant associations between low vitamin D levels and increased risk of both upper and lower RTIs. A negative correlation between vitamin D levels and upper respiratory infections was demonstrated in a large population-based nutrition survey [44]. The effect was stronger in patients with underlying obstructive
to have not only increased incidence of pneumonia but also higher asthma. Patients with severe vitamin D deficiency appear to exhibit anti-inflammatory effects in acute lung injury and ARDS [24,52]. Vitamin D deficiency appears to contribute to the pathogenesis of ARDS in animal and human experimental models of the disorder, and pharmacological repletion of vitamin D has been shown to reduce alveolar capillary damage in deficient patients [53]. Detectable serum SARS-COV-2 RNA (RNAemia) in patients with COVID-19 has been found to be associated with elevated IL-6 concentrations and poor prognosis. IL-6 elevations are possibly part of the cytokine storm that can worsen outcomes in COVID-19 infected patients [54].

As mentioned earlier, SARS-CoV-2 utilizes Angiotensin converting enzyme (ACE2) as an entry receptor into the lung cells and downregulates its expression [1,2]. Calcitriol (1,25-dihydroxyvitamin D3), an activated analogue of vitamin D3 has been shown to exhibit anti-inflammatory effects in acute lung injury and ARDS through modulating expression of ACE enzymes in lungs [53]. Pre-clinical studies suggest that administration of calcitriol has a pronounced impact on ACE2/Ang(1–7)/MasR axis with enhanced expression of ACE2, MasR and Ang(1–7) generation [56].

Another salient virulence factor in COVID-19 infection could be the ability of the S1 domain of the COVID-19 spike glycoprotein to bind airway disease such as chronic obstructive pulmonary disease or asthma. Patients with severe vitamin D deficiency have been found to have not only increased incidence of pneumonia but also higher rates of admission to intensive care units and mortalities [45–47].

On the other hand, sufficient vitamin D levels, have shown to be positively associated with better outcomes in certain respiratory infections such as mycobacterium tuberculosis and influenza virus infections [48,49]. A serum 25(OH)D concentration above 38 ng/ml was found to be inversely associated with risk of viral respiratory tract infections in a prospective study of nearly 200 adults [50]. The risk of nosocomial infections decreased by a third with each 10 ng/ml rise in serum vitamin D levels in an observational study conducted in Spain [51].

Table 2

Name of Trial	Design	Start Date	End Date	Sample Size	Intervention	Outcome
Vitamin D on Prevention and Treatment of COVID-19 (COVIDTID-19)	Randomized, double-blind	April 10 2020	June 30 2020	200	Single dose of 25,000 IU of oral calcitriol	Composite of cumulative death for all causes and for specific causes
Low-risk, Early Aspirin and Vitamin D to Reduce COVID-19 Hospitalizations (LEAD COVID-19)	Randomized open label parallel assignment	May 2020	December 2020	1080	Aspirin 81 mg orally daily for 14 days plus a dietary supplement of 50,000 IU of vitamin D orally once weekly for 2 weeks	Hospitalization for COVID-19 symptoms
Open Label Phase II Pilot Study of Hydroxychloroquine, Vitamin C, Vitamin D, and Zinc for the Prevention of COVID-19 Infection (HELP-COVID-19)	Randomized Double-Blind, Placebo-Controlled	April 2020	July 2020	600	Hydroxychloroquine for 1 day and a dietary supplement of vitamin C, vitamin D and Zinc for 12 weeks	Prevention of COVID-19 symptoms in medical workers who are at elevated risk of COVID-19 due to exposure to positive patients in the Emergency department or Intensive Care Unit
Impact of Zinc and Vitamin D3 Supplementation on the Survival of Aged Patients Infected with COVID-19 (ZnD3-Covic)	Randomized open label parallel assignment	April 2020	July 2020	3140	Zinc Glucenolate orally 15 mg X 2 per day, 25-OH-calcitriol drinkable solution 10 drops (2000 IU) per day for 2 months	Survival rate in subjects asymptomatic at inclusion time
COVID-19 and Vitamin D Supplementation in a Multi-center Randomized Controlled Trial of High Dose Versus Standard Dose Vitamin D3 in High-Risk COVID-19 Patients (CoViT3 Trial)	Randomized open label parallel assignment	April 2020	July 2020	260	Either a single dose of calcitriol 400,000 IU compared to single dose of 50,000 IU	Number of deaths from any cause during the 14 days following inclusion and intervention
Prevention and treatment with Calcifediol of Coronavirus induced acute respiratory syndrome (SARS) COVID-19 (COVIDIOL)	Multi-center, randomized, open label parallel assignment	April 29 2020	August 28 2020	1008	Best available therapy plus Calcifediol 332 mcg orally on the day of admission and 266 mcg orally on day 3, 7, 14, 21 and 28 or Best available therapy only	Proportion of patients admitted to Intensive Care Unit or died at day 28
Preventive and Therapeutic Effects of Oral 25-hydroxyvitamin D3 on Coronavirus (COVID-19) in Adults (Oral 25-hydroxyvitamin D3 and COVID-19) (NCT04386850)	Multi-center, randomized, double-blinded, placebo-controlled clinical trial with parallel groups and allocation 1:1	April 14 2020	November 15 2020	1500	25 mcg of 25 OHD3 orally daily to case group and placebo to control group for 2 months. One arm of the study is adults with the use of 25-hydroxyvitamin D3 [25(OH)D3] for reducing the risk of acquiring the SARS-COV-2 (COVID-19) viral infection and mitigating morbidity and mortality associated with COVID-19.	Therapeutic efficacy of rapidly correcting vitamin D deficiency in patients testing positive for COVID-19. Another arm is to evaluate the preventive potential of 25 mcg of 250HD3 in health care providers and hospital workers with a negative test result for COVID-19. Subjects randomized to high-dose therapy will take 50,000 IU two times in the first week and once weekly over 2nd and 3rd weeks. Subjects in low-dose arm will take vitamin D 1000 IU daily for 3 weeks
Improving Vitamin D status in the Management of COVID-19	Randomized parallel assignment with quadruple masking	June 2020	December 2020	64	Subjects randomized to high-dose therapy will take 50,000 IU two times in the first week and once weekly over 2nd and 3rd weeks. Subjects in low-dose arm will take vitamin D 1000 IU daily for 3 weeks	To determine the relationship between baseline vitamin D deficiency and clinical characteristic and to assess patient response to vitamin D supplementation in week 3 and determine its association with disease progression and recovery
However, there is insufficient evidence to elucidate the effect, if any, of sustained DPP-4 inhibition (as can be achieved through the correction of vitamin D insufficiency or through the use of DPP-4 inhibitors used in the treatment of diabetes) on coronavirus infections.

Vitamin D can modulate the body’s reaction to an invading organism through other mechanisms also. Mice studies have shown that vitamin D deficiency can impair the ability of macrophages to mature, to produce macrophage-specific surface antigens, to produce the lysosomal enzyme acid phosphatase, and to secrete hydrogen peroxide (H$_2$O$_2$), a function integral to their antimicrobial function [57,60,61].

It can be thus surmised that there are mechanistic explanations for the observed consequence of vitamin D deficiency on respiratory infectious processes in that it does modulate expression of various cytokines and chemokines involved in the immune reactive process, and, in the setting of COVID-19, vitamin D may help to blunt or dampen the immune system reaction to the virus. However, it has to be noted that neither vitamin D nor its metabolites have been consistently shown to influence replication or clearance of respiratory viruses from human respiratory epithelial cell cultures in pre-clinical studies [58] and more studies are needed to clarify the effects of the vitamin on viral entry and adhesion to the respiratory epithelium. The most promising avenue of research appears to be further exploration of the ACE2/Ang(1–7)/MasR axis and its modulation by vitamin D.

8. Clinical studies on vitamin D supplementation in RTIs

There is no consensus as to what the optimal 25(OH)D level needed for skeletal and extraskeletal benefits is. Baseline vitamin D status determines whether a meaningful impact from vitamin D supplementation will be obtained. The potential benefit of vitamin D supplementation for RTI was found to be the greatest when the pre-operative 25(OH)D was less than 10 ng/ml [53].

Clinical trials of vitamin D supplementation for the prevention and treatment of acute RTIs, however, have reported heterogenous results. A meta-analysis of 11 randomized controlled trials revealed a significant 64% reduction in the risk of RTIs (95% CI 0.49–0.84; P = 0.0014) after vitamin D supplementation [64].
systematic review and meta-analysis of 25 RCTs that included 11,321 participants showed that vitamin D supplementation helped protect against RTIs. Subgroup analysis further revealed that the protection was most beneficial in groups with vitamin D deficiency (<10 ng/ml) and individuals taking daily or weekly vitamin D3 or D2 supplementation without receiving additional bolus doses [62].

Interventional studies with high dose vitamin D in critically ill patients have failed to show marked positive ICU related end points. Supplementation with high doses of vitamin D3 (25,000 IU or 50,000 IU) daily for five days reduced hospital length of stay in mechanically ventilated patients, but did not improve other ICU outcomes such as mortality, time on ventilator, and nosocomial infection [65]. A randomized, double-blind, placebo-controlled, phase 3 trial of vitamin D3 (single enteral dose of 540,000 international units orally or through a nasogastric tube) administered within 12 h of ICU admission to vitamin D deficient patients (mean vitamin D level of 11 ng/ml) did not show any difference in 90-day mortality or in other clinically important secondary end points [66].

The disparate doses and differences in frequency of administration might explain why the therapeutic outcomes differed considerably in the intervention studies with vitamin D that have been conducted so far. Quarterly bolus supplementation of oral cholecalciferol 100,000 IU was not found to reduce the incidence of pneumonia in infants in a RCT done in Kabul, Afghanistan [67]. Large bolus doses of vitamin D, especially given within a short period of time, can potentially lead to an immune suppressive effect with negative impact on clinical outcomes. This was evidenced in a trial where cholecalciferol intake of 10,000 IU/day that resulted in achieving a mean value of 25(OH)D of 72 ng/ml showed reduced proliferative responses of peripheral blood monocytes in patients with multiple sclerosis [68]. Administration of supraphysiologic doses of cholecalciferol can result in elevated phosphate and FGF23, both of which are known to inhibit activation of vitamin D at renal as well as extrarenal sites [9]. This may explain, in part, why many of these studies with bolus cholecalciferol supplementation lead to poorer or nil outcomes compared to daily dosing schedules.

In view of conflicting reviews and the heterogeneous evidence, it is difficult to draw firm conclusions and to generalize the results of studies exploring the role of vitamin D supplementation for RTIs at a population level. Some plausible explanations for inconsistent results include variation in doses and intervals of vitamin D supplementation, vitamin D status of the population studied, hereditary variation in VDR and vitamin D binding protein, possible pathogen specific beneficial effect, and perhaps interindividual variability in conversion to active vitamin D due to genetic polymorphisms in hydroxylase enzymes.

9. To supplement or not to supplement?

Do we adhere to the tenet of Primum Non Nocere (First do no harm) or, whether as physicians grappling with a new and virulent enemy, do we follow the contrary principle of Melius Anceps Remedium Quam Nullum (It is better to do something than do nothing)?

The US Institute of Medicine (IOM) issued vitamin D and calcium supplementation guidelines in 2011 [69]. The institute recognized that no study has reported adverse effects including hypercalcuria or nephrocalcinosis with supplementation at doses of vitamin D less than 10,000 IU/day. However, the IOM still set the upper intake level at 4000 IU/day. This was partly out of concerns originating from observational studies that suggested deleterious reverse J-shaped relationships between serum 25(OH)D concentrations and health outcomes including mortality and cardiovascular events [70]. Intermittent high bolus dosing of vitamin D has also been associated with an increased risk of falls and fractures [71].

To date, no published data examining the effectiveness of vitamin D supplementation in patients infected with COVID-19 exist. However, several randomized open-label and blinded trials of supplementation are currently in progress (Table 2) and limited published data regarding the correlation of vitamin D levels with COVID-19 severity and mortality rates associated with it exist. A recent National Institute for Health and Care Excellence (NICE) Rapid Evidence Review [72] that included 5 studies; a study with an observational retrospective cohort design [73], a study that was a case-control survey [74], an observational prognostic study using unvariable and multivariable regression [75], and 2 studies [16,76] that were observational prognostic ones using correlation, concluded that all 5 of the studies (Table 3) had high risk of bias with very low quality of evidence, and that there was no evidence at the current time to support taking vitamin D supplements to specifically prevent or treat COVID-19 [72]. None of the studies included in the rapid evidence review were intervention studies of vitamin D supplementation, so no information on appropriate doses or adverse events was provided. It was acknowledged, however, in the NICE review that a systematic review and randomized controlled trials on vitamin D and COVID-19 were underway and that new evidence would be considered once it became available.

Given the possible detrimental effects of very high bolus doses of vitamin D, the absence of clear positive effects on mortality or prevention of nosocomial infections in critically ill patients with it, and, with no evidence to show that it reduces the incidence of RTI, we do not advocate the use of bolus doses of vitamin D in the setting of COVID-19. However, with circumstantial evidence suggesting that populations at risk for vitamin D deficiency have higher mortality rates from COVID-19 appear to be more susceptible to severe infections, and that doses less than 4000 IU/day are unlikely to be of harm, it seems prudent to recommend optimizing vitamin D status in accordance with recommendations made by national and international public health agencies. On extrapolating the studies that have been conducted in patients hospitalized for other reasons, it appears that measuring serum 25(OH)D levels in patients admitted with Covid-19 infections would be useful to determine baseline sufficiency status. Supplementing those whose levels are clearly below 10 ng/ml, to reach a concentration of 30 ng/ml or above, with daily doses not exceeding 4000 IU should be a reasonably safe option. In countries where resource constraints make testing for baseline levels of 25(OH)D in all patients difficult, and, it is known that vitamin D deficiency is prevalent in the population, supplementing with 1000–2000 IU daily is a pragmatic compromise and can be considered. At present, there is no evidence to support recommending additional intake of vitamin D to prevent COVID-19. General measures such as adequate exposure to sunlight and ensuring that at-risk individuals such as the elderly are getting adequate vitamin D either via diet or supplements (400–800 IU/day) also are recommended.

10. Future research

Randomized controlled trials of vitamin D supplementation in patients with COVID-19 infections with regards to mitigating the risk and improving clinical outcomes for different degrees of disease severity in COVID-19 infections are currently lacking. Given the absence of current effective antiviral therapy and expected delays to develop an effective vaccine, such trials are warranted.

11. Conclusions

Though epidemiological and circumstantial data linking vitamin D to the novel coronavirus disease COVID-19 exist, conclusive
evidence regarding the role of vitamin D in protecting against or mitigating the severe respiratory complications of COVID-19 is lacking. However, in the context of a global crisis that demands rapid solutions, supplementation with daily or weekly modest doses of vitamin D in patients infected with COVID-19 in whom vitamin D levels are deficient may afford some benefit without causing harm. At a population level, it may be advisable to have adequate intake of vitamin D to meet national and international recommendations. Well conducted randomized controlled trials of vitamin D supplementation in patients with varying degrees of severity of COVID-19 infection are urgently warranted.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

CRediT author statement

Manju Chandran: Conceptualization, Data curation, Writing — original draft, review and editing.

Aye Chan Maung: Data curation, Writing — original draft.

Ambrish Mithal: Writing — review and editing.

Rajeev Parameswaran: Conceptualization.

Acknowledgments

The authors would like to gratefully acknowledge Dr. Dominique Pierroz, Science Manager and Mr. David Oldani, Operational Communication Coordinator at International Osteoporosis Foundation (IOF), Nyon, Switzerland for their help in procuring the IOF Global Vitamin D Map. ORCID Manju Chandran: 0000-0001-9119-8443. Aye Chan Maung: 0000-0001-8004-4422. Ambrish Mithal: 0000-0002-0822-3212. Rajeev Parameswaran: 0000-0002-3318-0357.

References

[1] Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 2006;6:271–6.
[2] Baissho C, Maddox TM, Messerli FH. Coronavirus disease 2019 (COVID-19): infection and remdesivir. Angiogenesys system blockers. JAMA Cardiol 2020. https://doi.org/10.1001/jamacardio.2020.1282.
[3] Dijkman R, Jellbin MF, Dejs M, Milewska A, Pyrc K, Ruevel E, et al. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol 2012;93(Pt 9): 1924–9.
[4] Wong CK, Lam CWK, Wu AKL, Ip WK, Lee NLS, Chan IHS, et al. Plasma intestinal vitamin D and renin angiotensin system blockers. JAMA Cardiol 2020. https://doi.org/10.1001/jamacardio.2020.1282.
[5] Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection and mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther 2020;51:1434–7.
[6] Grant WB, Fahlhoury HMA, Karra SN, Al Anouti F, Bhattoa HP, et al. The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Arch Dis Child 2007;87:111–3.
[7] Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. Emerging roles of vitamin D in the control of the COVID-19 pandemic. J Intern Med 2020 Jul 2. https://doi.org/10.1111/joam.13149.
[8] Henauw S, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 2016;103:1031–44.
[9] Cashman KD, Dowling KG, Skrabakova Z, Gonzalez-Gross M, Voltueva J, De Henauw S, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 2016;103:1031–44.
[10] O’Gu, Yu Y, Zhang M. Spatiotemporal trends of PM2.5 concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data. Environ Pollut 2020;257:113710.
[11] Agarwal KS, Mughal MZ, Udday Shah P, Berry JL, Mawer EB, Pujile M, et al. The impact of atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Arch Dis Child 2007;87:111–3.
[12] Pature M, Bangash MN, Fureek N, Pan D, Sze S, Minhas JS, et al. Ethnicity and COVID-19: an urgent public health research priority. Lancet 2020;395: 1421–2.
[13] Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 2020. https://doi.org/10.1001/jama.2020.2648.
[14] Zhou F, Yu T, Du R, Fan G, Liu Y, Lu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.
[15] MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to supports vitamin D as a factor determining severity. Aliment Pharmacol Ther 2020;51:1434–7.
[16] Lucau D, Solim M, Makao B, Bambaco A, Gao T, streetman C, et al. Low vitamin D levels indicate the risk of type 2 diabetes in older adults: a systematic review and meta-analysis. Maturitas 2017;100:8–15.
[17] Q D, Nie XL, Wu S, Cai J. Vitamin D and hypertension: prospective study and meta-analysis. PLoS One 2017;12:e0174286.
[18] Gholami F, Moradi G, Zareei B, Rasouli MA, Nikkhoosh B, Roshani D, et al. The association between circulating 25-hydroxyvitamin D and cardiovascular diseases: a meta-analysis of prospective cohort studies. BMC Cardiovasc Disord 2019;19:248.
[19] Khammissa RAG, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L, et al. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, immunology and health. BioMed Res Int 2018;2018:9276380.
[20] Bilek DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27B1: case report and review. Bone Rep 2018;8:255–67.
[21] Di Rosa M, Malaguarnera M, Nicolaetti F, Malaguarnera L. Vitamin D3: a helpful orthomolecular-modulator. Immunology 2011;134:123–35.
[22] Subramanian K, Bergman P, Henriques-Norman B. Vitamin D promotes pneumococcal killing and modulates inflammatory responses in primary human neutrophils. J Innate Immun 2017;9:375–86.
[23] Adams JS, Ren L, Xu PT, Chun RF, Laghiyetti V, Gombart AF, et al. Vitamin D directed rheostatic regulation of monocyte antimicrobial responses. J Innmunol 2009 Apr 1;182:4289–95.
[24] Aus J, Elenberger M, Brzezinska-Baszczczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol 2015;40:225–35.
[25] Bilek D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab 2019;94:26–34.
[26] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
[27] Gu Meudri, Annane D, Chrousos G, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy. Chest 2009;136:1631–43.
[28] Olszewicz-Chlebna M, Konarzek-Manecka A, Brzozowska A, Blasz A, Rychlik B, Stelmach I. Vitamin D inhibits pro-inflammatory cytokines in the airways of cystic fibrosis patients infected by Pseudomonas aeruginosa—pilot
Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H, et al. Ran- Laviano E, Sanchez Rubio M, González-Nicolás MT, Palacian MP, López J, Gilaberte Y, et al. Association between serum concentration of 25-hydroxyvitamin D and community-acquired pneumonia: a case-control study. Int J Gen Med 2017;10:423–9.

Remmelts HHF, van de Garde EMW, Meijvis SCA, Peelen ELGCA, Damoiseaux JGMC, Grutters JC, et al. Addition of vitamin D status to prognostic scores improves the prediction of outcome in community-acquired pneumonia. Clin Infect Dis 2012;55:1488–94.

Nursyam EW, Amin Z, Rumende CM. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones 2006;38:3–5.

Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 2010;91:1255–60.

Sabetta JR, DePetriello P, Cipriani RJ, Smardin J, Burns LA, Landry ML, et al. Serum 25-hydroxyvitamin D and the incidence of acute viral respiratory tract infections in healthy children. PLoS One 2010;5:e11088.

Laviano E, Sanchez Rubio M, Gonzalez-Nicolás MT, Palacian MP, López J, Gilaberte Y, et al. Association between preproreproductive levels of 25-hydroxyvitamin D and hospital-acquired infections after hemodialysis surgery: a prospective study in a three-level hospital. PLoS One 2020;15:e0230336.

Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunol 2015;194:855–60.

Dancer RCA, Parekh D, Lac S, D’Souza V, Zheng S, Bassford CR, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015;70:617–24.

Chirathaworn C, et al. Correction of vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015;70:617–24.

Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep 2017;16:7432–8.

Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep 2017;16:7432–8.

Cui C, Xu P, Li G, Qiao Y, Han W, Geng C, et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: role of renin-angiotensin system. Redox Biol 2019;26:101295.

Vankadani Naveen, Wilce Jacqueline A, Emerging Wuhan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microb Infect 2020;9:601–4.

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020;63:457–60.

Komolmit P, Charoensuk K, Thanapirom K, Sukswatthanawat S, Thainapi P, Chirathaworn C, et al. Correction of vitamin D deficiency facilitated suppression of IP-10 and DPP IV levels in patients with chronic hepatitis C: a randomised double-blinded, placebo-control trial. PLoS One 2017;12: e0174608.

Alu-Amer Y, Bar-Shavit Z. Impaired bone marrow-derived macrophage differentiation in vitamin D deficiency. Cell Immunol 1993;151:356–68.

Greilier CL, Martinez AR. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015;7:4240–70.

Martinez AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 2017;356:i6583.

Aygenel G, Turkoglu M, Tuncel AF, Candir BA, Bildaci YD, Pasaoğlu H. Is vitamin D insufficiency associated with mortality of critically ill patients? Crit Care Res Pract 2013;2013:856747.

Bergman P, Lindh AL, Bjorkhem-Bergman L, Lindh JD. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2013;8:e65835.

Han J, Jones JL, Tangpricha V, Brown MA, Brown LAS, Hao L, et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. Version 2. J Clin Transl Endocrinol 2016;4:39–55.

National Heart Lung., Blood Institute PETAL Clinical Trials Network, Ginde AA, Brower RG, Caterine JM, Finck L, Banner-Goodspeed VM, Grissoon CK, et al. Early high-dose vitamin D3 for critically ill, vitamin D-deficient patients. N Engl J Med 2019;381:2529–40.

Manaseki-Holland S, Maroof Z, Bruce J, Mughal MZ, Masher MI, Bhutta ZA, et al. Effect on the incidence of pneumonia of vitamin D supplementation by quarterly bolus dose to infants in Kabul: a randomised controlled superiority trial. Lancet 2012;379:1419–27.

Kimball S, Vrieth R, Dosch HM, Bar-Orr A, Cheung R, Gagne D, et al. Cholecalciferol plus calcium suppresses abnormal PBMC reactivity in patients with multiple sclerosis. J Clin Endocrinol Metab 2011;96:2826–34.

Ross AC, Mansie JF, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 2011;96:53–8.

Durup D, Jørgensen HL, Christensen J, Tjønneland A, Olsen A, Halkjær J, et al. A reverse J-shaped association between serum 25-hydroxyvitamin D and cardiovascular disease mortality: the CopD Study. J Clin Endocrinol Metab 2015;100:2339–46.

Sanders KM, Seibel MJ. Therapy: new findings on vitamin D3 supplementation and falls - when more is perhaps not better. Nat Rev Endocrinol 2016;12:190–1.

NICE National Institute for Health and Care Excellence. Evidence review. Vitamin D for COVID-19. https://www.nice.org.uk/advice/es28.evidence. [Accessed 20 June 2020].

D’Avolio A, Avataneo V, Manca A, Cusato J, De Nicola A, Lucchini R, et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 2020;12:1359.

Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 2020;12:1359.

Hastie CE, Mackay DF, Ho F, Celis-Morales CA, Katikireddi SV, Niedzwiedz CL, et al. NICE National Institute for Health and Care Excellence. Evidence review. Vitamin D3 supplementation for severity of COVID-19. Ir Med J 2020;113.e41.