HORN CONDITIONS FOR SCHUBERT POSITIONS OF GENERAL QUIVER SUBREPRESENTATIONS

V. BALDONI, M. VERGNE, AND M. WALTER

Abstract. We give inductive conditions that characterize the Schubert positions of subrepresentations of a general quiver representation. Our results generalize Horn’s criterion for the intersection of Schubert varieties in Grassmannians and refine Schofield’s characterization of the dimension vectors of general subrepresentations. Our proofs are inspired by Schofield’s argument as well as Belkale’s geometric proof of the saturation conjecture.

1. Introduction

Let \(Q = (Q_0, Q_1) \) be a quiver, where \(Q_0 \) is the finite set of vertices and \(Q_1 \) the finite set of arrows. We use the notation \(a : x \to y \) for an arrow \(a \in Q_1 \) from \(x \in Q_0 \) to \(y \in Q_0 \). We allow \(Q \) to have cycles and multiple arrows between two vertices. A dimension vector for \(Q \) is a vector \(n = (n_x)_{x \in Q_0} \) of nonnegative integers.

To every family of vector spaces \(\mathcal{V} = (V_x)_{x \in Q_0} \), we associate the dimension vector \(\text{dim} \mathcal{V} \) with components \((\text{dim} V_x) = \dim V_x \). The space of representations of the quiver \(Q \) on \(\mathcal{V} \) is given by

\[
\mathcal{H}_Q(\mathcal{V}) := \bigoplus_{a : x \to y \in Q_1} \text{Hom}(V_x, V_y),
\]

whose elements are families \(v = (v_a)_{a \in Q_1} \) of linear maps \(v_a : V_x \to V_y \), one for each arrow \(a : x \to y \) in \(Q_1 \). The Lie group \(\text{GL}_Q(\mathcal{V}) = \prod_{x \in Q_0} \text{GL}(V_x) \) and its Lie algebra \(\text{gl}_Q(\mathcal{V}) = \bigoplus_{x \in Q_0} \text{gl}(V_x) \) act naturally on \(\mathcal{H}_Q(\mathcal{V}) \). We will denote these actions by \(g \cdot v \) and \(X v - v X \), respectively, where \(g \in \text{GL}_Q(\mathcal{V}) \), \(X \in \text{gl}_Q(\mathcal{V}) \), and \(v \in \mathcal{H}_Q(\mathcal{V}) \).

We write \(\mathcal{S} \subseteq \mathcal{V} \) if \(\mathcal{S} = (S_x)_{x \in Q_0} \) is a family of subspaces \(S_x \subseteq V_x \); its dimension vector is called a subdimension vector for \(\mathcal{V} \), i.e., satisfies \(\dim S_x \leq \dim V_x \). The family \(\mathcal{S} \) is called a subrepresentation of \(v \in \mathcal{H}_Q(\mathcal{V}) \) if \(v_a S_x \subseteq S_y \) for every arrow \(a : x \to y \) in \(Q_1 \); we abbreviate this condition by \(v \mathcal{S} \subseteq \mathcal{S} \). Schofield [17] determined (by induction) the subdimension vectors \(\alpha \) such that, for every \(v \in \mathcal{H}_Q(\mathcal{V}) \), there exists a subrepresentation \(\mathcal{S} \) with \(\dim \mathcal{S} = \alpha \). We call such dimension vectors Schofield subdimension vectors for \(\mathcal{V} \). Consider

\[
\text{Gr}_Q(\alpha, \mathcal{V}) := \prod_{x \in Q_0} \text{Gr}(\alpha_x, V_x),
\]
where \(\text{Gr}(\alpha_x, V_x) \) denotes the Grassmanian of subspaces of \(V_x \) of dimension \(\alpha_x \). Given a representation \(v \in \mathcal{H}_Q(V) \) and a dimension vector \(\alpha \), we define the corresponding quiver Grassmannian by

\[
\text{Gr}_Q(\alpha, V)_v := \{ s \in \text{Gr}_Q(\alpha) : v s \subseteq s \}.
\]

In this language, a Schofield subdimension vector is a subdimension vector \(\alpha \) such that \(\text{Gr}_Q(\alpha, V)_v \neq \emptyset \) for every representation \(v \in \mathcal{H}_Q(V) \). In this case, the dimension of each irreducible component of the quiver Grassmannian \(\text{Gr}_Q(\alpha, V)_v \) is, for generic \(v \in \mathcal{H}_Q(V) \), given by

\[
\langle \alpha, \beta \rangle := \sum_{x \in Q_0} \alpha_x \beta_x - \sum_{a : x \rightarrow y \in Q_1} \alpha_x \beta_y,
\]

where \(\beta_x = \dim V_x - \alpha_x \). Thus, the codimension of \(\text{Gr}_Q(\alpha, V)_v \) in \(\text{Gr}_Q(\alpha, V) \) is \(\sum_{a : x \rightarrow y \in Q_1} \alpha_x \beta_y \).

1.1. Schubert varieties and Q-intersection. It is natural to study the possible Schubert positions of quiver subrepresentations. Fix a family \(\mathcal{F} = (F_x)_{x \in Q_0} \) of filtrations \(F_x \) on \(V_x \) (Definition 2.1). We call \((\mathcal{V}, \mathcal{F}) \) a filtered dimension vector. Let \(B_Q(V, \mathcal{F}) = (B_x)_{x \in Q_0} \) denote the corresponding family of Borel subgroups \(B_x \subseteq GL(V_x) \). Let \(\Omega = (\Omega_x)_{x \in Q_0} \) be a family of Schubert varieties in \(\text{Gr}_Q(\alpha, V) \). Then, we say that \(\Omega \) is \(Q \)-intersecting in \(V \) if the intersection variety

\[
\Omega_v := \Omega \cap \text{Gr}_Q(\alpha, V)_v
\]

is nonempty for every \(v \in \mathcal{H}_Q(V) \). That is, for every quiver representation on \(V \), there exists a subrepresentation in the Schubert variety \(\Omega \). The main result of this article is an inductive family of necessary and sufficient conditions for \(\Omega \) to be \(Q \)-intersecting (Theorem 1.1 below).

We note that if \(\Omega \) is \(Q \)-intersecting then, clearly, \(\alpha \) is a Schofield subdimension vector. Conversely, if \(\alpha \) is a Schofield subdimension vector then \(\Omega = \text{Gr}_Q(\alpha, V) \) is \(Q \)-intersecting in \(V \). Thus, \(Q \)-intersection is a more refined notion.

An important example is the Horn quiver \(H_s \), which has \(s + 1 \) vertices and \(s \) arrows:

\[
\begin{array}{c}
1 \\
\vdots \\
s \\
\end{array}
\begin{array}{c}
s + 1 \\
\end{array}
\]

Let \(0 \leq r \leq n \), \(V_x = \mathbb{C}^n \), and \(\alpha_x = r \) for \(x = 1, \ldots, s + 1 \). Then, a Schubert variety \(\Omega \subseteq \text{Gr}_Q(\alpha, V) \) is an \((s+1)\)-tuple of Schubert varieties \(\Omega_1, \ldots, \Omega_s, \Omega_{s+1} \) in \(\text{Gr}(r, n) \). The condition that \(\Omega \) is \(Q \)-intersecting is equivalent to the condition that the Schubert homology classes \([\Omega_s]_{s+1} \) are intersecting (Example 2.5). Horn [9] suggested necessary and sufficient conditions for Schubert varieties to intersect. The validity of the Horn criterion was established by Knutson-Tao [10] using a combinatorial approach, and later by Belkale [2] using a geometric approach.
As in [2], our inductive criterion for \(\Omega \) to be Q-intersecting is based on a numerical quantity: the expected dimension of the intersection variety \(\Omega_v \) defined in (1.3). Since the codimension of \(\text{Gr}_Q(\alpha, V)_v \) in \(\text{Gr}_Q(\alpha, V) \) is generically equal to \(\sum_{a : x \to y \in Q_1} \alpha_x \beta_y \), as mentioned above, the ‘expected dimension’ of the intersection is given by

\[
edim_{Q, F}(\Omega, V) := \dim \Omega - \sum_{q : x \to y \in Q_1} \alpha_x \beta_y.
\]

It is easy to prove that, indeed, if \(\Omega \) is Q-intersecting then, for generic \(v \), the dimension of the intersection variety \(\Omega_v \) is equal to the expected dimension \(\text{edim}_{Q, F}(\Omega, V) \). Thus, a necessary condition for \(\Omega \) to be Q-intersecting in \(V \) is that \(\text{edim}_{Q, F}(\Omega, V) \geq 0 \). However, this necessary condition is not sufficient (a simple example is given below in Section 1.2), so we need additional inductive conditions.

For \(S \subseteq V \), denote by \(\Omega(S, F) \) the Schubert variety determined by \(S \), that is, the closure of the \(B_Q(V, F) \)-orbit through \(S \), and abbreviate\n
\[
edim_{Q, F}(S, V) = \text{edim}_{Q, F}(\Omega(S, F), V).
\]

We say that \(S \) is Q-intersecting in \(V \) if \(\Omega(S, F) \) is Q-intersecting in \(V \). Equivalently, for generic \(v \in \mathcal{H}_Q(V) \), there exists \(\tilde{v} \) in the \(B_Q(V, F) \)-orbit of \(v \) such that \(S \) is a subrepresentation of \(\tilde{v} \). We denote this condition by \(S \subseteq_Q V \), and write \(S \subset_Q V \) if at least one \(S_x \) is a proper subspace of \(V_x \).

As explained above, a necessary condition for \(S \) to be Q-intersecting in \(V \) is that \(\text{edim}_{Q, F}(S, V) \geq 0 \). It is also easy to see that, as the notation suggests, the relation \(\subseteq_Q \) is transitive (Lemma 3.9): if \(T \subseteq_Q S \) and \(S \subseteq_Q V \), then \(T \subseteq_Q V \). Our main result is that these two conditions are not only necessary but also sufficient:

Theorem 1.1. Let \(V \) be a family of vector spaces, \(F \) a family of filtrations, and \(S \) a family of subspaces of \(V \). Then, \(S \subseteq_Q V \) if and only if

(A) \(\text{edim}_{Q, F}(S, V) \geq 0 \),

(B) \(T \subseteq_Q V \) for every \(T \subseteq_Q S \).

Theorem 1.1 generalizes Horn’s criterion for the intersection of Schubert varieties in Grassmannians, and we believe that working in this general context elucidates the arguments. Our proof follows closely (but does not rely on) Schofield’s argument for determining the dimension vectors of general subrepresentations [17]. The main ingredient of our proof is a numerical computation of the dimension of certain Ext-groups that arise in the study of filtered dimension vectors (Theorem 5.1). In fact, adapting an argument of Belkale, we obtain a stronger result than Theorem 1.1 in condition (B): we merely need to consider those \(T \subseteq_Q S \) such that the generic intersection variety is a point (Theorem 6.1). In specific situations, we explain how to add further restrictions on the families \(T \) that need to be considered (Remark 6.8). By the same method, one obtains a refinement of Schofield’s result (Theorem 6.9). Our inductive criterion for \(S \) to
be Q-intersecting can be easily turned into a recursive algorithm. We explain this in Section 7. In particular, we recover Belkale’s conditions for intersections of Schubert classes in the Grassmannian by specializing the general methods of this article to the Horn quiver. In turn, our general methods were inspired by Belkale’s approach and its simplification by Sherman (see [2,4,19,20]). In Section 8, we discuss applications to representation theory (see also below) and we conclude with a comprehensive example in Section 9.

1.2. Example. To illustrate Theorem 1.1, consider the following quiver:

$$
1 \quad 2
\quad |
3 \quad 4
$$

(1.5)

Let (V,F) be the filtered dimension vector with $V_1 = V_4 = \mathbb{C}^2$ and $V_2 = V_3 = \mathbb{C}^3$, and where F_x is the standard filtration for every vertex x. Then there are 172 Q-intersecting Schubert varieties, corresponding to 46 Schofield subdimension vectors.

For example, $S = (C e_1, C e_2 \oplus C e_3, C e_2 \oplus C e_3, \mathbb{C}^2)$ is Q-intersecting, while $\hat{S} = (C e_1, C e_2 \oplus C e_3, C e_1 \oplus C e_2, \mathbb{C}^2)$ is not. This is easy to see directly, since the associated Schubert varieties are

$$\Omega = ([C e_1], \text{Gr}(2,3), \text{Gr}(2,3), \{\mathbb{C}^2\}),$$

$$\hat{\Omega} = ([C e_1], \text{Gr}(2,3), [C e_1 \oplus C e_2], \{\mathbb{C}^2\}),$$

respectively, and for a generic representation $v \in \mathcal{H}_Q(V)$ the component $v_{1 \rightarrow 3}$ does not map e_1 into $C e_1 \oplus C e_2$. Now, note that

$$\text{edim}_{Q,F}(S, V) = \dim \Omega - (1 + 1) = (0 + 2 + 2 + 0) - (1 + 1) = 0,$$

$$\text{edim}_{Q,F}(\hat{S}, V) = \dim \hat{\Omega} - (1 + 1) = (0 + 2 + 0 + 0) - (1 + 1) > 0,$$

so condition (A) of Theorem 1.1 is satisfied for both S and \hat{S}. Thus, condition (B) must be violated for \hat{S}. This means that there exists a family T of proper subspaces which is Q-intersecting in \hat{S}, but not in V. Indeed, $T = (C e_1, C e_3, C e_2, \mathbb{C}^2)$ is a family with this property.

In Section 9, we discuss a more involved example involving Collins’ ‘sun quiver’ [6].

1.3. Relation to augmented quivers. Derksen-Weyman [7] deduced the Horn inequalities for tensor products using an ‘augmented’ quiver \hat{Q} associated to Q. Our notion of filtered dimension vectors was partly inspired by their construction. Indeed, if (V,F) is a filtered dimension vector, then $\hat{n}_{x,i} = \dim F_x(i)$ defines an ordinary dimension vector \hat{n} on an augmented quiver \hat{Q} with vertices (x,i) for $x \in Q_0$ and $i = 1, \ldots, \ell_x$, where ℓ_x denotes the length of the
filtration \(F_x\). However, the natural recursive conditions given in Theorem 1.1 do not seem to be an obvious consequence of Schofield’s inductive conditions for ordinary subdimension vectors on the augmented quiver \(\tilde{Q}\). In contrast, our Theorem 1.1 arises naturally from the perspective of the action of the Borel subgroup on the space of representations of the original quiver. We comment on the relation between the two sets of conditions in Section 7.2. Moreover, we explain how a refined version of Schofield’s theorem for ordinary dimension vectors yields an alternative proof of Theorem 1.1.

1.4. Applications to representation theory. We now indicate an additional motivation for studying \(Q\)-intersections. Consider the space \(\text{Sym}^*(\mathcal{H}_Q(V))\) of polynomial functions on the space \(\mathcal{H}_Q(V)\). Assuming that \(Q\) has no cycles, the natural action of \(\text{GL}_Q(V)\) decomposes with finite multiplicities. Generalizing classical invariant theory, Derksen-Weyman \[7\], and Schofield-van den Bergh \[18\] have determined generators for the ring of polynomials on \(\mathcal{H}_Q(V)\) that are semi-invariant under the action of \(\text{GL}_Q(V)\), that is, transform by a character \(\prod x \det(g_x)^{\omega_x}\) for \(g = (g_x)\) in \(\text{GL}_Q(V)\). They show that the cone \(\Sigma_Q(V)\) generated by the weights \(\omega = (\omega_x)_{x \in Q_0}\) of all semi-invariants is determined by inequalities associated to Schofield subdimension vectors.

It is more generally of interest to determine the ring generated by semi-invariant polynomials under a Borel subgroup of \(\text{GL}_Q(V)\) or, equivalently, to determine when an irreducible representation \(V_\lambda = \bigotimes x \in Q_0 V_{\lambda_x}\) of \(\text{GL}_Q(V)\) with highest weight \(\lambda = (\lambda_x)_{x \in Q_0}\) occurs with nonzero multiplicity in \(\text{Sym}^*(\mathcal{H}_Q(V))\). Let \(C_Q(V)\) denote the cone generated by the corresponding highest weights.

In the case of the Horn quiver \(H_2\) and \(V_x = \mathbb{C}^n\) for \(x = 1, 2, 3\), the multiplicity of an irreducible \(\text{GL}(n)^3\)-representation \(V_\lambda\) in the space \(\text{Sym}^*(\mathcal{H}_Q(V))\) is given by the dimension of the space of \(\text{GL}(n)\)-invariants in \(V_\lambda\). Furthermore, \(\lambda_1, \lambda_2,\) and \(\lambda_3^* = (-\lambda_3(n), \ldots, -\lambda_3(1))\) are polynomial representations of \(\text{GL}(n)\). The multiplicities \(c_{\lambda}\) are known as the Littlewood-Richardson coefficients associated with \(\lambda_1, \lambda_2,\) and \(\lambda_3^*.\) Necessary and sufficient conditions for \(c_{\lambda} > 0\) are given by the Horn inequalities \[10\]. Using Mumford’s description of \(C_Q(V)\) as a moment cone, the Horn inequalities also characterize the eigenvalues of Hermitian matrices that sum to zero, as in the original Horn conjecture \[9\] (see, e.g., \[4\]).

For a general quiver \(Q\), the cone \(C_Q(V)\) is similarly determined by \(Q\)-intersecting Schubert varieties. More precisely, recall that, for \(V = (\mathbb{C}^{n_x})_{x \in Q_0}\), the Schubert varieties can be parameterized by families \(K = (K_x)_{x \in Q_0}\) of subsets \(K_x \subseteq \{1, \ldots, n_x\}\). Let \(\Omega(K)\) denote the corresponding Schubert variety and let \(\lambda = (\lambda_x)_{x \in Q_0}\) be a dominant weight for \(\text{GL}_Q(V)\). In Section 8, we show that for \(V_\lambda\) to
occur with nonzero multiplicity in \(\text{Sym}^*(\mathcal{H}_Q(\mathcal{V})) \), it is necessary that
\[
\sum_{x \in Q_0} n_x \sum_{j=1}^{n_x} \lambda_x(j) = 0
\]
and, moreover,
\[
\sum_{x \in Q_0} \sum_{k \in \mathcal{K}_x} \lambda_x(k) \leq 0
\]
for every \(\mathcal{K} \) such that \(\mathcal{K}(\mathcal{K}) \) is \(Q \)-intersecting.

These conditions are particular instances of inequalities associated to Ressayre’s dominant pairs and they characterize the cone \(C_Q(\mathcal{V}) \) completely [14] (see also [21]). Thus, our main theorem, which characterizes the \(Q \)-intersecting \(\mathcal{K} \), also implies a complete description of the cones \(C_Q(\mathcal{V}) \).

In Section 8, following an argument of Ressayre [16], we compare \(C_Q(\mathcal{V}) \) with the cone \(\Sigma_Q(\tilde{\mathcal{V}}) \), where \(\tilde{\mathcal{V}} = (C^n_{x,i}) \), associated to the augmented quiver \(\tilde{Q} \) described in Section 1.3 above. In particular, the saturation theorem of Derksen-Weyman [7] implies that the conditions above are also sufficient for \(\mathcal{V}_\lambda \) to appear in \(\text{Sym}^*(\mathcal{H}_Q(\mathcal{V})) \), in other words, that the semigroup of highest weights is saturated. In Section 9 we give as a simple application a minimal complete description of the cone \(C_Q(\mathcal{V}) \) in the case of the sun quiver [6].

We announced the applications of our \(Q \)-intersection methods to moment maps and representation theory in [1].

1.5. Notation and conventions. All vector spaces will be finite-dimensional complex vector spaces. Given a vector space \(\mathcal{V} \), we write \(\dim \mathcal{V} \) for its (complex) dimension and we denote by \(Gr(r, \mathcal{V}) \) the Grassmannian of subspaces of dimension \(r \) of \(\mathcal{V} \), where \(0 \leq r \leq \dim \mathcal{V} \).

We use calligraphic and bold letters to denote families of objects labeled by the vertex set \(Q_0 \) of a quiver. For example, \(\mathcal{V} = (V_x)_{x \in Q_0} \) will be a family of vector spaces indexed by \(Q_0 \), \(J = (J_x)_{x \in Q_0} \) a family of subsets \(J_x \) of \(\mathbb{N} = \{1, 2, \ldots\} \), and \(\alpha = (\alpha_x)_{x \in Q_0} \) will be a family of natural numbers. We write \(Gr_Q(\alpha, \mathcal{V}) \) for the product of Grassmannians \(Gr(\alpha_x, V_x) \), \(\dim \mathcal{V} \) for the vector of dimensions \(\dim V_x \), etc. The total dimension of \(\mathcal{V} \) is denoted by \(d(\mathcal{V}) = \sum_{x \in Q_0} \dim V_x \).

Such families of objects naturally inherit operations and relations. Thus, given \(\alpha \) and \(\beta \), we write \(\alpha \leq \beta \) if \(\alpha_x \leq \beta_x \) for every \(x \in Q_0 \), and we define the maps \(\alpha \pm \beta \) by \((\alpha \pm \beta)_x = \alpha_x \pm \beta_x \). Similarly, if \(S \) and \(\mathcal{V} \) are families of vector spaces then we write \(S \subseteq \mathcal{V} \) if \(S_x \subseteq V_x \) for every \(x \in Q_0 \). We write \(S \subset \mathcal{V} \) if \(S \subseteq \mathcal{V} \) and \(S_x \) is a proper subspace of \(V_x \) for at least one \(x \in Q_0 \).
We will now consider the analogue definitions for families of vector spaces.

Definition 2.1 (Filtered vector space). A (complete) filtration \(F \) on a vector space \(V \) is a chain of subspaces

\[
\{0\} = F(0) \subseteq F(1) \subseteq \cdots \subseteq F(i) \subseteq F(i + 1) \subseteq \cdots \subseteq F(\ell) = V,
\]
such that \(\dim F(i + 1) \leq \dim F(i) + 1 \) for all \(i = 0, \ldots, \ell - 1 \) (i.e., the dimensions increase by at most one in each step). We call the pair \((V, F)\) a filtered vector space.

The distinct subspaces in a filtration determine a flag. However, note that the subspaces \(F(i) \) need not be strictly increasing. If \(S \) is a subspace of \(V \), then \(S \) inherits the filtration \(F_S(i) := F(i) \cap S \), and the quotient space \(V/S \) inherits the filtration \(F_{V/S}(i) := (F(i) + S)/S \).

We will now consider the analogue definitions for families of vector spaces and filtrations.

Definition 2.2 (Filtered dimension vector). Let \(\mathcal{V} = (V_x)_{x \in Q_0} \) be a family of vector spaces. A filtration on \(\mathcal{V} \) is a family \(\mathcal{F} = (F_x)_{x \in Q_0} \) where each \(F_x \) is a filtration on \(V_x \). We say that the pair \((\mathcal{V}, \mathcal{F})\) is a filtered dimension vector.

Let \(S \subseteq \mathcal{V} \), i.e., \(S_x \subseteq V_x \) for every \(x \in Q_0 \). We denote by \(\mathcal{V}/S \) the family of vector spaces \((V_x/S_x)_{x \in Q_0}\). If \(\mathcal{F} \) is a filtration on \(\mathcal{V} \) then we obtain a filtration \(\mathcal{F}_S \) on \(S \) and a filtration \(\mathcal{F}_{\mathcal{V}/S} \) on the quotient \(\mathcal{V}/S \).

Every filtered dimension vector \((\mathcal{V}, \mathcal{F})\) determines a Borel subgroup of \(GL_Q(\mathcal{V}) \), namely \(B_Q(\mathcal{V}, \mathcal{F}) = \prod_{x \in Q_0} B_{V_x} \), where \(B_{V_x} \) is the Borel subgroup of \(GL(V_x) \) determined by the filtration \(F_x \). By definition, a Schubert cell \(\Omega^0 = (\Omega^0_x)_{x \in Q_0} \) is a \(B_Q(\mathcal{V}, \mathcal{F}) \) -orbit in \(Gr_Q(\alpha, \mathcal{V}) \). Its closure \(\Omega = (\Omega_x)_{x \in Q_0} \) is called a Schubert variety. In other words, each \(\Omega^0 \) \((\Omega_x) \) is a Schubert cell (variety) in \(Gr(\alpha_x, V_x) \).

We can describe the Schubert varieties more concretely: Let \(\mathbf{n} = (n_x)_{x \in Q_0} \) be a dimension vector. For \(x \in Q_0 \), let \(V_x = \mathbb{C}^{n_x} \), with standard basis \((e_j)_{1 \leq j \leq n_x}\), and consider the standard filtration \(F_x \) corresponding to the Borel subgroup \(B_x \) that consists of the upper-triangular matrices in \(GL(n_x) \). Let \(\alpha \) be a dimension vector such that \(\alpha \leq \mathbf{n} \). Let \(J = (J_x)_{x \in Q_0} \) be a family of subsets, where each \(J_x \) is a subset of \(\{1, \ldots, n_x\} \) of cardinality \(\alpha_x \). Then, \(S_{J_x} := \bigoplus_{j \in J_x} \mathbb{C} e_j \) is a subspace of \(V_x \) of dimension \(\alpha_x \). Let \(\Omega^0(J_x) \) denote the orbit of \(S_{J_x} \) under the action of \(B_x \), and \(\Omega(J_x) \) its closure. It is easy to see that

\[
\Omega(J_x) = \{ S \in Gr(\alpha_x, V_x) : \dim (S \cap F_x(J_x(a))) \geq a \text{ for } 1 \leq a \leq \alpha_x \},
\]
where \(J_x(1) < \cdots < J_x(\alpha_x) \) are the elements of \(J_x \). Then, \(\Omega(J) = (\Omega(J_x))_{x \in Q_0} \) is a Schubert variety. Moreover, every Schubert variety in \(Gr(Q, \alpha, V) \) is of this form. It is easy to verify that

\[
\dim \Omega(J) = \sum_{x \in Q_0} \dim \Omega(J_x), \quad \dim \Omega(J_x) = \sum_{a=1}^{\alpha_x} (J_x(a) - a). \tag{2.1}
\]
Definition 2.3. Let $\mathcal{V} = (V_x)_{x \in Q}$ be a family of vector spaces, $\alpha \leq \dim \mathcal{V}$ a dimension vector, and $v \in \mathcal{H}_Q(\mathcal{V})$ a representation. Define the corresponding quiver Grassmannian as

$$\text{Gr}_Q(\alpha, \mathcal{V})_v := \{S \in \text{Gr}_Q(\alpha, \mathcal{V}) : vS \subseteq S\}.$$ We say that α is Schofield subdimension vector for \mathcal{V} if $\text{Gr}_Q(\alpha, \mathcal{V})_v \neq \emptyset$ for every $v \in \mathcal{H}_Q(\mathcal{V})$.

Quiver Grassmannians have been the subject of intensive research. We only mention the striking result that, in fact, every projective variety is a quiver Grassmannian \cite{12}. For particular representations v,

$$\text{Example 2.5 (Horn quiver).}$$ For every Ω in $\text{Gr}_Q(\alpha, \mathcal{V})$ a Schubert variety. Given a representation $\nu \in \mathcal{H}_Q(\mathcal{V})$, define

$$\Omega_\nu := \text{Gr}_Q(\alpha, \mathcal{V})_\nu \cap \Omega = \{S \in \Omega : vS \subseteq S\}.$$ We say that Ω is Q-intersecting in \mathcal{V} if $\Omega_\nu \neq \emptyset$ for every $v \in \mathcal{H}_Q(\mathcal{V})$.

In other words, Ω is Q-intersecting if, for every $v \in \mathcal{H}_Q(\mathcal{V})$, the Schubert variety Ω contains a subrepresentation of v. In this case, we call the variety Ω_ν for generic v the generic intersection variety.

Clearly, a necessary condition for Ω to be Q-intersecting is that α is a Schofield subdimension vector. As we will see in Lemma 3.4, Ω is Q-intersecting if and only if $\Omega_\nu \neq \emptyset$ for generic $v \in \mathcal{H}_Q(\mathcal{V})$.

Example 2.5 (Horn quiver). For the Horn quiver (1.4) and the constant dimension vector $\alpha = (r, \ldots, r)$, the problem of determining the Q-intersection of Schubert varieties in $\text{Gr}_Q(\alpha, \mathcal{V})$ is equivalent to the problem of determining the intersection of Schubert classes in $\text{Gr}(r, n)$.

Indeed, let $\Omega_1, \ldots, \Omega_{s+1}$ be Schubert varieties in $\text{Gr}(r, n)$. By Kleiman’s moving lemma, the homology classes $[\Omega_x]_{x=1}^{s+1}$ are intersecting in $\text{Gr}(r, n)$ if and only if, for every $g_1, \ldots, g_{s+1} \in \text{GL}(n)$ there exists a point $S \in \bigcap_{x=1}^{s+1} g_x \Omega_x$. Define $v_{x \rightarrow s+1} := g_{s+1}^{-1} g_x$ for $x = 1, \ldots, s$. Then $v = (v_{x \rightarrow s+1})_{x=1}^s$ is a representation of H_s. Now consider $\Omega = (\Omega_1, \ldots, \Omega_{s+1})$, which is a Schubert variety in $\text{Gr}_Q(\alpha, \mathcal{V})$. Define $S_x := g_x^{-1} S \in \Omega_x$. Then, $S = (S_x)_{x=1}^{s+1} \in \Omega$. Moreover, $v_{x \rightarrow s+1} S_x = S_{s+1}$ for $x = 1, \ldots, s$. This means that $S \in \Omega_\nu$. The set of v so obtained is dense in $\mathcal{H}_Q(\mathcal{V})$, since each $v_{x \rightarrow s+1}$ can be an arbitrary invertible map $V_x \rightarrow V_{s+1}$. We conclude that Ω is H_s-intersecting if and only if the homology classes $[\Omega_x]_{x=1}^{s+1}$ are intersecting in $\text{Gr}(r, n)$.

Belkale \cite{2} has determined an inductive criterium for Schubert classes in $\text{Gr}(r, n)$ to intersect. Our aim in this article is to obtain a
similar inductive criterion for when a Schubert variety $\Omega = (\Omega_x)_{x \in Q_0}$ is Q-intersecting.

3. Expected dimensions

In this section, we define the expected dimension of the generic intersection variety (Definition 3.5).

Given two families of vector spaces $\mathcal{V} = (V_x)_{x \in Q_0}$ and $\mathcal{W} = (W_x)_{x \in Q_0}$, define

$\mathcal{H}_Q(\mathcal{V}, \mathcal{W}) := \bigoplus_{a : x \to y \in Q_1} \text{Hom}(V_x, W_y)$,

$g_Q(\mathcal{V}, \mathcal{W}) := \bigoplus_{x \in Q_0} \text{Hom}(V_x, W_x)$.

If $\mathcal{V} = \mathcal{W}$, the space $\mathcal{H}_Q(\mathcal{V}, \mathcal{V})$ is simply $\mathcal{H}_Q(\mathcal{V})$, introduced previously in Eq. (1.1), and $g_Q(\mathcal{V}, \mathcal{V})$ is the Lie algebra $\mathfrak{gl}_Q(\mathcal{V})$ of $\text{GL}_Q(\mathcal{V})$.

If $\dim \mathcal{V} = \alpha$ and $\dim \mathcal{W} = \beta$ then the dimension of $\mathcal{H}_Q(\mathcal{V}, \mathcal{W})$ is given by $\sum_{a : x \to y \in Q_1} \alpha_x \beta_y$. As it depends only on Q, α, and β, we also denote this expression by $\dim \mathcal{H}_Q(\alpha, \beta)$. Similarly, the dimension of $g_Q(\mathcal{V}, \mathcal{W})$ is $\sum_{x \in Q_0} \alpha_x \beta_x$. Thus,

$\langle \alpha, \beta \rangle = \dim g_Q(\mathcal{V}, \mathcal{W}) - \dim \mathcal{H}_Q(\mathcal{V}, \mathcal{W})$,

where $\langle \alpha, \beta \rangle$ is the Euler form defined in Eq. (1.2).

The following proposition is well known. We give a proof since we will below generalize it to compute the generic dimension of Ω_v.

Proposition 3.1. Let \mathcal{V} be a family of vector spaces and α a Schofield subdimension vector for \mathcal{V}. Then, for generic $v \in \mathcal{H}_Q(\mathcal{V})$, the dimension of each irreducible component of $\text{Gr}_Q(\alpha, \mathcal{V})_v$ is given by $\dim \text{Gr}_Q(\alpha, \mathcal{V}) - \dim \mathcal{H}_Q(\alpha, \beta) = \langle \alpha, \beta \rangle$, where $\beta = \dim \mathcal{V} - \alpha$.

Proof. Define the variety

$X := \{(\mathcal{T}, v) \in \text{Gr}_Q(\alpha, \mathcal{V}) \times \mathcal{H}_Q(\mathcal{V}) : v \mathcal{T} \subseteq \mathcal{T}\}$.

The map

$p : X \to \text{Gr}_Q(\alpha, \mathcal{V}), \quad (\mathcal{T}, v) \mapsto \mathcal{T}$

equips X with the structure of a vector bundle over $\text{Gr}_Q(\alpha, \mathcal{V})$. Indeed, let $\mathcal{T} \in \text{Gr}_Q(\alpha, \mathcal{V})$. We can write $\mathcal{V} = \mathcal{T} \oplus \mathcal{U}$, choosing for each $x \in Q_0$ a complement U_x of S_x in V_x. Thus, $\dim(\mathcal{U}) = \beta$. The fiber $p^{-1}(\mathcal{T})$ can be identified with

$X(\mathcal{T}) = \{v \in \mathcal{H}_Q(\mathcal{V}) : v \mathcal{T} \subseteq \mathcal{T}\}$. \hspace{1cm} (3.1)

The right-hand side condition means that v is of the form

$v = \begin{pmatrix} v_{00} & v_{01} \\ 0 & v_{11} \end{pmatrix}$,
where \(v_{00} \in H_Q(\mathcal{J}), v_{01} \in H_Q(\mathcal{U}, \mathcal{J}), \) and \(v_{11} \in H_Q(\mathcal{U}). \) Thus, \(\mathcal{X}(\mathcal{J}) \) is a vector subspace of \(H_Q(\mathcal{V}) \) of codimension \(\dim H_Q(\mathcal{J}, \mathcal{U}) = \dim H_Q(\alpha, \beta). \) It follows that \(\mathcal{X} \) is irreducible and of dimension

\[
\dim \mathcal{X} = \dim Gr_Q(\alpha, \mathcal{V}) + \dim H_Q(\mathcal{V}) - \dim H_Q(\alpha, \beta). \tag{3.2}
\]

We also have a map

\[
q: \mathcal{X} \to H_Q(\mathcal{V}), \quad (\mathcal{J}, \nu) \mapsto \nu,
\]

whose fibers can be identified with \(Gr_Q(\alpha, \mathcal{V}). \) If \(\alpha \) is a Schofield subdimension vector then the map \(q \) is surjective. By the version of Sard’s theorem for dominant maps between irreducible varieties, it follows that the image of \(q \) contains a nonempty Zariski-open subset \(Z \subseteq H_Q(\mathcal{V}) \) such that, for \(\nu \in Z, \) each irreducible component of the fiber \(Gr_Q(\alpha, \mathcal{V})_\nu \) is of dimension equal to \(\dim \mathcal{X} - \dim H_Q(\mathcal{V}). \)

Comparing with Eq. \((3.2), \) we obtain that, for generic \(\nu, \) each irreducible component of \(Gr_Q(\alpha, \mathcal{V})_\nu \) is of dimension

\[
\dim \mathcal{X} - \dim H_Q(\mathcal{V}) = \dim Gr_Q(\alpha, \mathcal{V}) - \dim H_Q(\alpha, \beta) = \langle \alpha, \beta \rangle.
\]

In the last step, we used that \(\dim Gr(\alpha_x, V_x) = \alpha_x \beta_x \) for \(x \in Q_0. \) \(\square \)

In particular, we see that a necessary condition for \(\alpha \) to be a Schofield subdimension vector is that \(\langle \alpha, \beta \rangle \geq 0, \) where \(\beta = \dim \mathcal{V} - \alpha. \) We now prove an analog of Proposition \((3.1) \) for generic intersection varieties.

Proposition 3.2. Let \((\mathcal{V}, \mathcal{J})\) be a filtered dimension vector, \(\alpha \leq \dim \mathcal{V} \) a dimension vector, and \(\Omega \subseteq Gr_Q(\alpha, \mathcal{V}) \) a Q-intersecting Schubert variety. Then, for generic \(\nu \in H_Q(\mathcal{V}), \) the dimension of each irreducible component of \(\Omega_\nu \) is given by \(\dim \Omega - \dim H_Q(\alpha, \beta), \) where \(\beta = \dim \mathcal{V} - \alpha. \)

Proof. The proof is entirely similar. This time, we consider

\[
\mathcal{X} := \{(\mathcal{J}, \nu) \in \Omega \times H_Q(\mathcal{V}) : \nu \mathcal{J} \subseteq \mathcal{J}\}, \tag{3.3}
\]

which has now the structure of a vector bundle over \(\Omega, \) with fibers as in Eq. \((3.1). \) Similarly to Eq. \((3.2), \) it follows that \(\mathcal{X} \) is an irreducible variety of dimension

\[
\dim \mathcal{X} = \dim \Omega + \dim H_Q(\mathcal{V}) - \dim H_Q(\alpha, \beta).
\]

If \(\Omega \) is Q-intersecting, the map

\[
q: \mathcal{X} \to H_Q(\mathcal{V}), \quad (\mathcal{J}, \nu) \mapsto \nu, \tag{3.4}
\]

is surjective. As its fibers can be identified with \(\Omega_\nu, \) we conclude as before that the dimension of each irreducible component is, for generic \(\nu, \) given by \(\dim \Omega - \dim H_Q(\alpha, \beta). \) \(\square \)

Thus, we find that a necessary condition for \(\Omega \subseteq Gr_Q(\alpha, \mathcal{V}) \) to be Q-intersecting is that \(\dim \Omega - \dim H_Q(\alpha, \beta) \geq 0, \) where \(\beta = \dim \mathcal{V} - \alpha. \)
Using Eq. (2.1), the latter condition is easy to evaluate for a Schubert variety $\Omega(\mathcal{J})$. It amounts to

$$\sum_{x \in Q_0} \alpha_x (J_x(a) - a) - \sum_{a: x \rightarrow y} \alpha_x (n_y - \alpha_y) \geq 0.$$

Next, we study Schubert cells and varieties determined by families of subspaces.

Definition 3.3 (Q-intersecting families of subspaces). Let (V, F) be a filtered dimension vector, $\alpha \leq \dim V$ a dimension vector, and $S \in \text{Gr}_Q(\alpha, V)$. We define $\Omega^0(S, F)$ as the $B_Q(V, F)$-orbit of S, and denote by $\Omega(S, F)$ its closure, which is a Schubert variety.

We say that S is Q-intersecting in V if $\Omega(S, F)$ is Q-intersecting in the sense of Definition 2.4 and denote this condition by $S \subseteq Q V$. We write $S \subset Q V$ if in addition at least one subspace is a proper subspace.

The following lemma is similar to [4, Lemma 4.2.4].

Lemma 3.4. Let (V, F) be a filtered dimension vector and $S \subseteq V$ a family of subspaces. If S is Q-intersecting in V, there exists a nonempty Zariski-open set of $v \in H_Q(V)$ such that $\Omega^0(S, F)$ contains a subrepresentation of v.

Conversely, if $\Omega^0(S, F)$ contains a subrepresentation of v for generic $v \in H_Q(V)$, then S is Q-intersecting in V.

Proof. Abbreviate $\Omega = \Omega(S, F)$ and $\Omega^0 = \Omega^0(S, F)$. Consider the manifold

$$X^0 := \{(T, v) \in \Omega^0 \times \mathcal{H}_Q(V) : vT \subseteq T\}, \quad (3.5)$$

which is a nonempty Zariski-open subset of the irreducible variety X defined in Eq. (3.3). If Ω is Q-intersecting, the map q defined in Eq. (3.4) is surjective. Thus, it is also dominant on any nonempty Zariski-open subset of X, hence in particular on X^0. It follows that the image of Eq. (3.4) contains a nonempty Zariski-open subset of representations $v \in \mathcal{H}_Q(V)$ with the property that Ω^0 contains a subrepresentation of v.

Conversely, suppose that Ω^0 contains a subrepresentation of v for generic $v \in \mathcal{H}_Q(V)$. Then, since the closure Ω of Ω^0 is compact, it follows that Ω contains subrepresentations of all $v \in \mathcal{H}_Q(V)$. \square

We now define the expected dimension as the expression in Proposition 3.2.

Definition 3.5 (Expected dimension). Let (V, F) be a filtered dimension vector and $S \subseteq V$ a family of subspaces. We define

$$\text{edim}_{Q,F}(S, V) := \dim \Omega(S, F) - \dim \mathcal{H}_Q(S, V/S)$$

and call it the expected dimension of the intersection variety $\Omega(S, F)_v$.

Thus, the following lemma is clear.
Lemma 3.6. Let \((V, F)\) be a filtered dimension vector and \(S \subseteq V\) a family of subspaces. If \(S\) is Q-intersecting in \(V\), then \(\text{edim}_{Q,F}(S, V) \geq 0\).

The converse of Lemma 3.6 is not in general true, i.e., we can have \(\text{edim}_{Q,F}(S, V) \geq 0\) but \(S\) is not Q-intersecting. We already saw an example of this when discussing the quiver (1.5) in Section 1.

If \(S\) is Q-intersecting and \(\text{edim}_{Q,F}(S, V) = 0\), this means that the generic intersection variety \(\Omega(S, F)_v\) is a finite set of points. We now consider the important special case when it is a single point.

Definition 3.7. Let \((V, F)\) be a filtered dimension vector. We define \(P_Q(V, F)\) as the set of subspaces \(S \subseteq V\) such that, for generic \(v \in \mathcal{H}_Q(V)\), the intersection variety \(\Omega(S, F)_v\) is equal to a point.

If \(S \in P_Q(V, F)\) then \(S\) is Q-intersecting in \(V\) and \(\text{edim}_{Q,F}(S, V) = 0\). But the converse is not usually true, as the following example shows.

Example 3.8. Let \(W_2\) be the following quiver:

\[
\begin{array}{c}
\bullet \quad x_1 \\
\downarrow \quad a_1 \\
\bullet \quad x_2 \\
\downarrow \quad a_2
\end{array}
\]

Let \(V = (\mathbb{C}^2, \mathbb{C}^2)\), \(F\) the standard filtration, and consider \(S = (Ce_2, Ce_2)\). Then, \(\Omega(S, F) = \text{Gr}(1, 2) \times \text{Gr}(1, 2)\) has dimension 2, and

\[
\text{edim}_{Q,F}(S, V) = 2 - (1 + 1) = 0.
\]

Now let \(v = (v_1, v_2) \in \mathcal{H}_{W_2}(V) = \text{Hom}(\mathbb{C}^2, \mathbb{C}^2) \oplus \text{Hom}(\mathbb{C}^2, \mathbb{C}^2)\). For generic \(v\), both \(v_1\) and \(v_2\) are invertible. If \(L\) is an eigenvector of \(v_2^{-1} v_1\), then we have \(v_1(\text{CL}) = v_2(\text{CL})\), which implies that \((\text{CL}, v_1(\text{CL}))\) is a subrepresentation of \(v\), and trivially contained in \(\Omega(S, F)\). Thus, \(S\) is also Q-intersecting. However, \(v_2^{-1} v_1\) is generically diagonalizable, in which case there are two such subrepresentations of \(v\). Thus, \(S\) is not in \(P_{W_2}(V, F)\).

Derksen-Schofield-Weyman \([8]\) have determined the number of subrepresentations of a general quiver representation in terms of certain multiplicities.

The following lemma shows that the notion of Q-intersection is transitive.

Lemma 3.9. Let \((V, F)\) be a filtered dimension vector and \(T \subseteq S \subseteq V\) families of subspaces. Assume that \(S \subseteq_Q V\) and \(T \subseteq_Q S\), where \(S\) is equipped with the filtration \(F_S\). Then, \(T \subseteq_Q V\).

Proof. Let \(v \in \mathcal{H}_Q(V)\) be generic. Since \(S \subseteq_Q V\), Lemma 3.4 shows that there exists \(b \in B_Q(V, F)\) such that \(\tilde{v} = b \cdot v\) satisfies \(\tilde{v}S \subseteq S\).

Since \(T \subseteq_Q S\), there exists \(N \in \Omega(T, F_S)\) such that \(\tilde{v}N \subseteq N\). Every element \(g \in B_Q(S, F_S)\) is the restriction of an element \(h \in B_Q(V, F)\) with \(h \cdot S = S\). It follows that \(\Omega(T, F_S)\) is contained in \(\Omega(T, F)\),
hence \(N \in \Omega(T, F) \). It follows that \(v(b^{-1} \cdot N) \subseteq b^{-1} \cdot N \). Since \(b^{-1} \cdot N \) still belongs to \(\Omega(T, F) \), we see that \(\mathcal{T} \subseteq Q \).

\[
\begin{align*}
\text{Lemma 3.6 and 3.9 show that the two conditions (A) and (B) in} & \\
\text{Theorem 1.1 are necessary for} & \\
\text{Theorem 6.1, we will show that in condition (B) it suffices to consider} & \\
\text{only those} & \\
\text{in} & \\
\text{In the case of} & \\
\text{Horn quivers, these conditions can be readily reduced to Belkale’s} & \\
\text{This emblematic example suggested to us the statement of the more general theorem.} & \\
\end{align*}
\]

4. Ext groups and Schofield Criterion

The proof of Theorem 1.1 will be based on computing the dimension of an Ext group. We first state some easy lemmas about filtered vector spaces with proofs left to the reader. Given two filtered vector spaces \((V, F)\) and \((W, G)\), a homomorphism \(\Phi: V \rightarrow W \) is a linear map that respect the two filtrations, i.e., \(\Phi(F(i)) \subseteq G(i) \) for all \(i \) (we assume that both filtrations have the same length). We denote the space of morphisms by \(g_{F, G}(V, W) \).

\[
\begin{align*}
\text{Lemma 4.1.} & \\
\text{Let} & \\
\text{Let} & \\
\text{Then, the exact sequence} & \\
\text{Lemma 4.2.} & \\
\text{Let} & \\
\text{Let} & \\
\text{Let} & \\
\text{We now record the following lemma:} & \\
\text{Lemma 4.4.} & \\
\text{Let} & \\
\end{align*}
\]

Finally, we record the following lemma:

\[
\begin{align*}
\text{Lemma 4.3.} & \\
\text{The map} & \\
\text{We now consider families of filtered vector spaces, i.e., filtered} & \\
\text{Given two filtered dimension vectors} & \\
\text{We denote the space of homomorphisms}
\end{align*}
\]
by \(g_{Q,\mathcal{F},g}(\mathcal{V}, W) \). As above, \(b_Q(\mathcal{F}, \mathcal{V}) = g_{Q,\mathcal{F},g}(\mathcal{V}, \mathcal{V}) \subseteq g_I(\mathcal{V}) \) is the Lie algebra of a Borel subgroup of \(GL_Q(\mathcal{V}) \). The following definition is the filtered analog of Eq. (1.2).

Definition 4.5 (Filtered Euler number). Let \((\mathcal{V}, \mathcal{F}) \) and \((\mathcal{W}, g) \) be two filtered dimension vectors. We define the filtered Euler number by

\[
eul_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) = \dim g_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) - \dim \mathcal{H}_Q(\mathcal{V},\mathcal{W}).
\]

For families of subspaces \(S \subseteq \mathcal{V} \) and \(T \subseteq \mathcal{W} \), Lemma 4.4 implies that

\[
eul_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) = \eul_{Q,\mathcal{F},s}(S,\mathcal{W}) + \eul_{Q,\mathcal{F},v/s}(\mathcal{V}/S,\mathcal{W}),
\]

\[
eul_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) = \eul_{Q,\mathcal{F},s}(\mathcal{V},T) + \eul_{Q,\mathcal{F},w/r}(\mathcal{W},\mathcal{W}/T).
\]

Filtered Euler numbers can be computed in the following way. For families of subspaces \(\mathcal{S} \subseteq \mathcal{V} \) and \(\mathcal{T} \subseteq \mathcal{W} \), consider the map

\[
\delta_{v,w} : g_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) \to \mathcal{H}_Q(\mathcal{V},\mathcal{W}), \quad \Phi \mapsto \Phi v - w\Phi,
\]

where the right-hand side denotes the element of \(\mathcal{H}_Q(\mathcal{V},\mathcal{W}) \) with components \(\Phi_y v_a - w_a \Phi_x \) for each arrow \(a : x \to y \) in \(Q_1 \). Define

\[
\text{Hom}_{Q,\mathcal{F},g}(v, w) := \ker(\delta_{v,w}),
\]

\[
\text{Ext}_{Q,\mathcal{F},g}(v, w) := \text{coker}(\delta_{v,w}),
\]

so that we have a short exact sequence

\[
0 \to \text{Hom}_{Q,\mathcal{F},g}(v, w) \to g_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) \to \mathcal{H}_Q(\mathcal{V},\mathcal{W}) \to \text{Ext}_{Q,\mathcal{F},g}(v, w) \to 0,
\]

By exactness, the Euler number of this complex is zero, hence

\[
eul_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) = \dim \text{Hom}_{Q,\mathcal{F},g}(v, w) - \dim \text{Ext}_{Q,\mathcal{F},g}(v, w)
\]

for any \(v \in \mathcal{H}_Q(\mathcal{V}) \) and \(w \in \mathcal{H}_Q(\mathcal{W}) \). Now define

\[
\text{hom}_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) := \min_{v,w} \dim \text{Hom}_{Q,\mathcal{F},g}(v, w),
\]

\[
\text{ext}_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) := \min_{v,w} \dim \text{Ext}_{Q,\mathcal{F},g}(v, w),
\]

where the minimizations are over all \(v \in \mathcal{H}_Q(\mathcal{V}) \) and \(w \in \mathcal{H}_Q(\mathcal{W}) \). There exists a Zariski-open subset where both minima are simultaneously attained, hence

\[
eul_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) = \text{hom}_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}) - \text{ext}_{Q,\mathcal{F},g}(\mathcal{V},\mathcal{W}).
\]

If \(S \subseteq \mathcal{V} \) is a family of subspaces then the tangent space at \(S \) of the Schubert cell \(\Omega^g(S,\mathcal{F}) \) can be identified with \(g_{Q,\mathcal{F},s;\mathcal{F},v/s}(S,\mathcal{V}/S) \). Thus:

\[
\dim \Omega(S,\mathcal{F}) = \dim g_{Q,\mathcal{F},s;\mathcal{F},v/s}(S,\mathcal{V}/S),
\]

hence, using Definitions 3.5 and 4.5

\[
eul_{Q,\mathcal{F},s;\mathcal{F},v/s}(S,\mathcal{V}/S) = \dim \Omega(S,\mathcal{F}) - \dim \mathcal{H}_Q(S,\mathcal{V}/S)
\]

\[= \text{edim}_{Q,\mathcal{F}}(S,\mathcal{V}).
\]
Our next theorem is the analog of Schofield’s theorem \cite{17} in the context of filtered dimension vectors:

Theorem 4.6. Let \((\mathcal{V}, \mathcal{F})\) be a filtered dimension vector and \(S \subseteq \mathcal{V}\) a family of subspaces. Then \(S \subseteq Q\) \(\mathcal{V}\) if and only if \(\text{ext}_{Q, \mathcal{F}, \mathcal{F}}(S, \mathcal{V}/S) = 0\).

Proof. Abbreviate \(\Omega^0 = \Omega^0(\mathcal{V}, \mathcal{F})\). Consider again the smooth variety from Eq. (3.5),

\[
X^0 = \{(\mathcal{F}, v) \in \Omega^0 \times \mathcal{H}(\mathcal{V}) : \forall \mathcal{F} \subseteq \mathcal{F}\},
\]

which is a \(B_Q(\mathcal{V}, \mathcal{F})\)-equivariant vector bundle over the homogeneous space \(\Omega^0\). Recall from Eq. (3.1) that the fiber \(X(S)\) is the vector space consisting of all elements

\[
v = \begin{pmatrix} v_{00} & v_{01} \\ 0 & v_{11} \end{pmatrix}
\]

with \(v_{00} \in \mathcal{H}(S), v_{01} \in \mathcal{H}(U, S),\) and \(v_{11} \in \mathcal{H}(U)\), where \(U\) is a complement of \(S\) in \(\mathcal{V}\). Now consider the map

\[
m : B_Q(\mathcal{V}, \mathcal{F}) \times X(S) \to \mathcal{H}(\mathcal{V}), \quad (b, v) \mapsto b \cdot v.
\]

Then, \(S \subseteq Q\) \(\mathcal{V}\) if and only if the map \(m\) is dominant. Since \(m\) is a map between smooth irreducible varieties, it is dominant if and only if there exists a point \((b, v)\) where the differential is surjective. By equivariance, we can assume that \(b = 1\). Thus, \(S \subseteq Q\) \(\mathcal{V}\) if and only if the differential of \(m\) at \((1, v)\) is surjective for some \(v\).

This differential can be written as

\[
b_Q(\mathcal{V}, \mathcal{F}) \oplus X(S) \to \mathcal{H}(\mathcal{V}), \quad (X, w) \mapsto (Xv - vX) + w,
\]

where \(X \in b_Q(\mathcal{V}, \mathcal{F})\) and \(w \in X(S)\). In view of Eq. (4.6), this map is surjective if and only if its ‘component’ \(b_Q(\mathcal{V}, \mathcal{F}) \to \mathcal{H}(S, U) \cong \mathcal{H}(S, \mathcal{V}/S)\) is surjective. Since \(b_Q(\mathcal{V}, \mathcal{F})\) surjects onto \(g_Q, \mathcal{F}, \mathcal{F}\) \((S, \mathcal{V}/S)\) by Lemma 4.3, it even suffices to determine when

\[
g_Q, \mathcal{F}, \mathcal{F}\)((S, \mathcal{V}/S) \to \mathcal{H}(S, \mathcal{V}/S), \quad \Phi \mapsto \Phi v_{00} - v_{11}\Phi
\]

is surjective. But this is exactly the map \(\delta_{v_{00}, v_{11}}\) from Eq. (4.3). Thus, we conclude that \(S \subseteq Q\) \(\mathcal{V}\) if and only if \(\text{ext}_{Q, \mathcal{F}, \mathcal{F}}(S, \mathcal{V}/S) = 0\). \(\square\)

5. Calculation of \(\text{ext}\)

Let \((\mathcal{V}, \mathcal{F})\) and \((\mathcal{W}, \mathcal{G})\) be filtered dimension vectors. In this section, we compute the quantity \(\text{ext}_{Q, \mathcal{F}, \mathcal{G}}(\mathcal{V}, \mathcal{W})\) in terms of a minimization over filtered Euler numbers (Definition 5.1). Using Theorem 4.6, this reduces the problem of determining \(Q\)-intersection to an easy numerical criterion.

Theorem 5.1. Let \((\mathcal{V}, \mathcal{F})\) and \((\mathcal{W}, \mathcal{G})\) be filtered dimension vectors. Then,

\[
\text{ext}_{Q, \mathcal{F}, \mathcal{G}}(\mathcal{V}, \mathcal{W}) = -\min_{S \subseteq Q\mathcal{V}} \text{eul}_{Q, \mathcal{F}, \mathcal{G}}(S, \mathcal{W}),
\]
where we minimize over all $S \subseteq V$ including $S = \{0\}$ and $S = V$.

The minimization is well-defined, since $\text{eul}_{Q,\mathcal{F},g}(S, W)$ only depends on the $B_Q(V, \mathcal{F})$-orbit of S (i.e., the Schubert cell determined by S) and there are only finitely many such orbits. The remainder of this section will be concerned with the proof of Theorem 5.1.

Let $v \in \mathcal{H}_Q(V)$, $w \in \mathcal{H}_Q(W)$, and $S \subseteq V$ a subrepresentation of v. Consider the surjective map

$$\mathcal{H}_Q(V, W) \rightarrow \mathcal{H}_Q(S, W) \rightarrow \text{Ext}_{Q,\mathcal{F},g}(v|_S, w) \quad (5.1)$$

where the first arrow is componentwise restriction and the second the canonical quotient map. The proof of the following lemma is left to the reader.

Lemma 5.2. The map (5.1) descends to a surjection

$$\text{Ext}_{Q,\mathcal{F},g}(v, w) \rightarrow \text{Ext}_{Q,\mathcal{F},g}(v|_S, w).$$

In particular, for any two representations $v \in \mathcal{H}_Q(V)$ and $w \in \mathcal{H}_Q(W)$ we have that $\dim \text{Ext}_{Q,\mathcal{F},g}(v, w) \geq \dim \text{Ext}_{Q,\mathcal{F},g}(v|_S, w)$.

Lemma 5.3. Let $S \subseteq V$. Then, $\text{ext}_{Q,\mathcal{F},g}(V, W) \geq \text{ext}_{Q,\mathcal{F},g}(S, W)$.

Proof. For generic $v \in \mathcal{H}_Q(V)$ and $w \in \mathcal{H}_Q(W)$,

$$\dim \text{Ext}_{Q,\mathcal{F},g}(v, w) = \text{ext}_{Q,\mathcal{F},g}(V, W)$$

and v has a subrepresentation \mathcal{F} in the $B_Q(V, \mathcal{F})$-orbit of S (since S is Q-intersecting). Thus:

$$\text{ext}_{Q,\mathcal{F},g}(V, W) = \dim \text{Ext}_{Q,\mathcal{F},g}(v, w) \geq \dim \text{Ext}_{Q,\mathcal{F},g}(v|_S, w) \geq \text{ext}_{Q,\mathcal{F},g}(\mathcal{F}, W) = \text{ext}_{Q,\mathcal{F},g}(S, W).$$

The first inequality is Lemma 5.2 and the equality at the end follows from $B_Q(V, \mathcal{F})$-invariance. \qed

Proof of Theorem 5.1 It follows from Lemma 5.3 and Eq. (4.4) that, for every $S \subseteq Q V$,

$$\text{ext}_{Q,\mathcal{F},g}(V, W) \geq -\text{eul}_{Q,\mathcal{F},g}(S, W). \quad (5.2)$$

We will prove by induction over the dimension of V that there always exists $S \subseteq Q V$ that saturates the inequality. If $\text{hom}_{Q,\mathcal{F},g}(V, W) = 0$ then Eq. (4.4) shows that equality holds for $S = V$. This also covers the base case of the induction (i.e., the case that $d(V) = 0$). We can therefore assume that $\text{hom}_{Q,\mathcal{F},g}(V, W) > 0$. Consider:

$$\mathcal{Y} := \{(\Phi, v, w) : \Phi \in \text{Hom}_{Q,\mathcal{F},g}(v, w), v \in \mathcal{H}_Q(V), w \in \mathcal{H}_Q(W)\}$$

(Example 5.6 below shows that \mathcal{Y} need not be irreducible.) Consider the projection

$$q: \mathcal{Y} \rightarrow \mathcal{H}_Q(V) \times \mathcal{H}_Q(W), \quad (\Phi, v, w) \mapsto (v, w).$$
Let Z denote the nonempty Zariski-open subset of $(v, w) \in \mathcal{H}_Q(V) \times \mathcal{H}_Q(W)$ where $\dim \text{Hom}_{Q, \mathcal{J}, \mathcal{G}}(v, w) = \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W)$. Then, $\mathcal{H}_q := q^{-1}(Z)$ is a vector bundle over Z with fiber of dimension $\text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W)$. Since Z is Zariski-open, it follows that \mathcal{H}_q is a smooth irreducible variety of dimension $\dim \mathcal{H}_q = \dim Z + \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W)$

$$= \dim \mathcal{H}_Q(V) + \dim \mathcal{H}_Q(W) + \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W). \tag{5.3}$$

For each $x \in Q_0$, let δ_x denote the minimal dimension of $\ker(\Phi_x)$ as we vary $(\Phi, v, w) \in \mathcal{H}_q$. There exists a nonempty Zariski-open subset of \mathcal{H}_q where the minimum is obtained for every $x \in Q_0$. It follows that $\delta = (\delta_x)_{x \in Q_0}$ is the dimension vector of a family of subspaces $\ker(\Phi) \subseteq \mathcal{V}$.

In fact, δ is a Schofield subdimension vector. Indeed, by construction, for generic v there exists (w, Φ) such that $(v, w) \in Z$, $\Phi \in \text{Hom}_{Q, \mathcal{J}, \mathcal{G}}(v, w)$, and $\dim \ker \Phi = \delta$. The condition $\Phi v = w\Phi$ implies that $\ker(\Phi)$ is a subrepresentation of v. Moreover, $\delta \neq \dim \mathcal{V}$, since $\text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W) > 0$ by assumption.

We can further consider the subspaces $\ker(\Phi_x) \cap F_x(i)$ for each $x \in Q_0$ and similarly minimize their dimensions. We thus obtain a Zariski-open subset of \mathcal{H}_q such that $\ker(\Phi)$ belongs to a fixed Schubert cell $\Omega^0(\mathcal{S}, \mathcal{F})$ of $\text{Gr}_Q(\delta, \mathcal{V})$. We call δ a generic kernel subrepresentation. Note that $\delta \subset Q \mathcal{V}$, arguing as before.

Claim 5.4. $\text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W) = \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(S, V/S) + \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(V/S, W)$.

Claim 5.5. $\text{hom}_{Q, \mathcal{J}, \mathcal{G}}(S, W) \geq \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(S, V/S)$.

We will prove these two claims below. As a consequence,

$$\text{ext}_{Q, \mathcal{J}, \mathcal{G}}(V, W) - \text{ext}_{Q, \mathcal{J}, \mathcal{G}}(S, W)$$

$$= \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W) - \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(V, W) - \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(S, W) + \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(S, W)$$

$$= \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(V, W) - \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(V/S, W) - \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(S, W)$$

$$= \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(S, V/S) - \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(S, W)$$

$$\leq \text{eul}_{Q, \mathcal{J}, \mathcal{G}}(S, V/S) - \text{hom}_{Q, \mathcal{J}, \mathcal{G}}(S, V/S)$$

$$= - \text{ext}_{Q, \mathcal{J}, \mathcal{G}}(S, V/S) \leq 0$$

Here we used Eq. (4.4), Eq. (4.1). Claim 5.4, Claim 5.5 and again Eq. (4.4) (in this order). Thus, we obtain that $\text{ext}_{Q, \mathcal{J}, \mathcal{G}}(V, W) \leq \text{ext}_{Q, \mathcal{J}, \mathcal{G}}(S, W)$. Since the reverse inequality also holds by Lemma 5.3, we obtain the following fundamental formula:

$$\text{ext}_{Q, \mathcal{J}, \mathcal{G}}(V, W) = \text{ext}_{Q, \mathcal{J}, \mathcal{G}}(S, W). \tag{5.4}$$
This readily allows us to conclude the proof of the theorem. Since \(S \subset Q \), by induction, there exists \(\mathcal{T} \subseteq Q \) such that \[^1\]
\[
\text{ext}_{Q, \mathcal{F}, \mathcal{S}, g}(S, W) = -\text{eul}_{Q, \mathcal{F}, \mathcal{S}, g}(\mathcal{T}, W).
\]
By Eq. (5.4), it follows that
\[
\text{ext}_{Q, \mathcal{F}, \mathcal{S}}(V, W) = -\text{eul}_{Q, \mathcal{F}, \mathcal{S}, g}(\mathcal{T}, W).
\]
Thus, Eq. (5.2) is saturated for \(\mathcal{T} \). Since also \(\mathcal{T} \subseteq Q \) by Lemma 3.9 this concludes the proof.

Proof of Claim 5.4

Abbreviate \(\Omega^0 = \Omega^0(S, \mathcal{F}) \). Consider the variety
\[
\mathbb{V}_p = \{(\Phi, v, w) \in \mathbb{V} : \ker \Phi \in \Omega^0 \}.
\]
Here we do not assume that \((v, w)\) belong to \(Z \), so it does not follow that \(\mathbb{V}_p \) is contained in \(\mathbb{V}_q \). However, \(\mathbb{V}_p \cap \mathbb{V}_q \) is a nonempty Zariski-open subset of both varieties. Consider
\[
\mathbb{V} = \{ \Phi \in g_{Q, \mathcal{F}, \mathcal{S}}(V, W) : \ker \Phi \in \Omega^0 \}.
\]
This is a \(B_Q(\mathcal{V}, \mathcal{F}) \)-equivariant bundle over the homogeneous space \(\Omega^0 \).

The fibers can be identified with the injective maps in \(g_{Q, \mathcal{F}, \mathcal{S}}(V/\mathcal{S}, W) \) (by construction, this is a nonempty open subset). Thus, \(\mathbb{V} \) is a smooth irreducible variety of dimension
\[
\dim \mathbb{V} = \dim \Omega^0 + \dim g_{Q, \mathcal{F}, \mathcal{S}}(V/\mathcal{S}, W). \tag{5.5}
\]

We claim that the projection
\[
p : \mathbb{V}_p \to \mathbb{V}, \quad (\Phi, v, w) \mapsto \Phi
\]
defines a vector bundle. To see this, consider the fiber at some \(\Phi \) with \(\ker \Phi = S \) (by equivariance, this is without loss of generality), which consists of the \((v, w)\) such that \(w\Phi = \Phi v \). To implement this condition, choose a complement \(\mathcal{T} \) of \(S \) in \(V \) and denote \(M = v(\mathcal{T}) \). Then we have \(v(S) \subseteq S \), while on \(\mathcal{T} \), \(\Phi \) is an isomorphism onto \(M \), so we find that \(w(m) = \Phi(v(\Phi^{-1}(m))) \) for all \(m \in M \). If we also choose a complement \(N \) of \(M \) in \(W \) then we can write
\[
v = \begin{pmatrix} v_{00} & v_{01} \\ 0 & v_{11} \end{pmatrix}, \quad w = \begin{pmatrix} w_{00} & w_{01} \\ 0 & w_{11} \end{pmatrix},
\]
with respect to \(V = S \oplus \mathcal{T} \) and \(W = M \oplus N \), where \(w_{00} \) is determined by \(v_{00} \) (and \(\Phi \)); all other entries are completely arbitrary. Thus, the fibers of \(p \) are vector spaces of dimension
\[
\dim \mathcal{H}_Q(V) - \dim \mathcal{H}_Q(S, V/\mathcal{S})
+ \dim \mathcal{H}_Q(W) - \dim \mathcal{H}_Q(V/\mathcal{S}, W), \tag{5.6}
\]

[^1]: In fact, we may construct such a \(\mathcal{T} \) via a cascade of generic kernel subrepresentations. If \(\text{hom}_{Q, \mathcal{F}, \mathcal{S}}(S, W) = 0 \) then \(\text{ext}_{Q, \mathcal{F}, \mathcal{S}, g}(S, W) = -\text{eul}_{Q, \mathcal{F}, \mathcal{S}, g}(\mathcal{T}, W) \), so we can choose \(\mathcal{T} = S \). Otherwise, we continue recursively with a generic kernel subrepresentation for the pair \((S, W)\).
and we obtain that \mathcal{Y}_p is a vector bundle over the smooth irreducible variety \mathcal{V}, hence itself smooth and irreducible. Combining Eqs. (5.5) and (5.6), we find that
\[
\dim \mathcal{Y}_p = \dim \Omega^0 + \dim \mathfrak{g}_{Q,\mathcal{F}_{\mathcal{V}/S},G}(\mathcal{V}/S, \mathcal{W}) + \dim \mathcal{H}_Q(\mathcal{V})
- \dim \mathcal{H}_Q(S, \mathcal{V}/S) + \dim \mathcal{H}_Q(\mathcal{W}) - \dim \mathcal{H}_Q(\mathcal{V}/S, \mathcal{W}).
\]
Since $\mathcal{Y}_p \cap \mathcal{Y}_q$ is a nonempty Zariski-open subset of both irreducible varieties, this is also the dimension of \mathcal{Y}_q. Comparing with Eq. (5.3),
\[
\text{hom}_{Q,\mathcal{F},G}(\mathcal{V}, \mathcal{W}) = \dim \Omega^0 + \dim \mathfrak{g}_{Q,\mathcal{F}_{\mathcal{V}/S},G}(\mathcal{V}/S, \mathcal{W})
- \dim \mathcal{H}_Q(S, \mathcal{V}/S) - \dim \mathcal{H}_Q(\mathcal{V}/S, \mathcal{W})
\]
and using Definition 4.5 and Eq. (4.5) we obtain Claim 5.4.

Proof of Claim 5.5. Let $s \in \mathcal{H}_Q(S)$ and $w \in \mathcal{H}_Q(\mathcal{W})$ such that
\[
\dim \text{Hom}_{Q,\mathcal{F}_s,G}(s, w) = \text{hom}_{Q,\mathcal{F}_s,G}(s, w).
\]
Here, w can vary in an open subset of $\mathcal{H}_Q(\mathcal{W})$. Thus, by definition of the generic kernel subrepresentation S, there exists $v \in \mathcal{H}_Q(\mathcal{V})$ and $\Phi \in \text{Hom}_{Q,\mathcal{F},G}(v, w)$ such that $(v, w) \in \mathcal{Z}$ and $\ker \Phi \in \Omega^0(S, \mathcal{F})$. By $B_Q(\mathcal{V}, \mathcal{F})$-equivariance, we may assume that $\ker \Phi = S$.

Since S is a subrepresentation of \mathcal{V}, we can consider the quotient maps $\bar{v} : \mathcal{V}/S \to \mathcal{V}/S$ and $\bar{\Phi} \in \text{Hom}_{Q,\mathcal{F}_{\mathcal{V}/S},G}(\bar{v}, w)$. The latter is injective, so composition with $\bar{\Phi}$ defines an injective map
\[
\text{Hom}_{Q,\mathcal{F}_S,\mathcal{F}_{\mathcal{V}/S}}(s, \bar{v}) \hookrightarrow \text{Hom}_{Q,\mathcal{F}_S,\mathcal{F}_{\mathcal{V}/S}}(s, w).
\]
Thus:
\[
\dim \text{Hom}_{Q,\mathcal{F}_S,\mathcal{F}_{\mathcal{V}/S}}(s, w) \geq \dim \text{Hom}_{Q,\mathcal{F}_S,\mathcal{F}_{\mathcal{V}/S}}(s, \bar{v})
\geq \text{hom}_{Q,\mathcal{F}_S,\mathcal{F}_{\mathcal{V}/S}}(S, \mathcal{V}/S),
\]
which concludes the proof.

Example 5.6. Consider the quiver W_2 from Example 3.8 and choose \mathcal{F} to be the standard filtration. Then we can identify $\mathcal{H}_Q(\mathcal{V}) = \mathbb{C}^2$ and $\mathfrak{g}_{Q,\mathcal{F},S} = \mathbb{C}^2$. Given $(\nu_1, \nu_2), (\nu_1, \nu_2) \in \mathcal{H}_Q(\mathcal{V})$ and $(\Phi_1, \Phi_2) \in \mathfrak{g}_{Q,\mathcal{F},S}$, the condition that $\Phi \in \text{Hom}_{Q,\mathcal{F},G}(\mathcal{V}, \mathcal{W})$ means that
\[
\Phi_2 \nu_1 = \nu_1 \Phi_1 \quad \text{and} \quad \Phi_2 \nu_2 = \nu_2 \Phi_1.
\]
Thus, the variety \mathcal{Y} in the proof of Theorem 5.1 is
\[
\mathcal{Y} = \{ \Phi_1 = \Phi_2 = 0 \} \cup \{ \nu_1 \omega_2 - \nu_2 \omega_1 = 0, \ \Phi_2 \nu_1 = \nu_1 \Phi_1 \}
\]
so \mathcal{Y} has two irreducible components, each of dimension 4.

Remark 5.7. In the minimization of Theorem 5.1, we only need to consider families of subspaces S that can arise as generic kernel subrepresentations, as well as possibly $S = ((0))$ and $S = \mathcal{V}$. In many examples, this allows to a priori restrict the minimization to families with particular properties.
For example, suppose that \(\dim V_x = \dim V_y \) and \(\dim W_x = \dim W_y \) for one or more arrows \(a : x \to y \in A \). Then, for generic \(v \in \mathcal{H}_Q(V) \) and \(w \in \mathcal{H}_Q(W) \), the corresponding components \(v_a \) and \(w_a \) are isomorphisms, so \(\Phi_y = w_a \Phi_x v_a^{-1} \) and \(\dim \ker \Phi_x = \dim \ker \Phi_y \). Thus, in this case we can restrict the minimization to subspaces \(S \) that satisfy \(\dim S_x = \dim S_y \) for each such arrow.

6. Proof of the main theorem

In this section, we will establish Theorem 1.1. In fact, we will prove a refined version, which asserts that we only need to consider subspaces for which the generic intersection variety consists of a single point:

Theorem 6.1. Let \((V, F)\) be a filtered dimension vector and \(S \) a family of subspaces as above. Then, \(S \subseteq_Q V \) if and only if

(A) \(\dim_{Q,F}(S, V) \geq 0 \),

(B) \(T \subset_Q V \) for every \(T \in \mathcal{P}_Q(S, F_{\mathcal{S}}) \), \(T \neq S \).

We will need some intermediate results to prove Theorem 6.1. To test if some \(S \) is \(Q \)-intersecting, we need to in principle consider generic representations in \(\mathcal{H}_Q(V) \). We first show that there exists a universal representation that tests \(Q \)-intersection.

Lemma 6.2. There exists a nonempty Zariski-open set of \(v^* \in \mathcal{H}_Q(V) \) with the following property: For every \(S \subseteq V \), we have that \(S \subseteq_Q V \) if and only if there exists \(T \in \Omega^0(S, F) \) such that \(v^*(T) \subseteq T \).

We say that \(v^* \) is detecting \(Q \)-intersection in \(V \).

Proof. Consider the finitely many Schubert cells of the Grassmannians \(\text{Gr}_Q(\alpha, V) \), where \(\alpha \) ranges over all dimension vectors \(\alpha \leq \dim V \). For each Schubert cell \(\Omega^0 \), denote by \(\Omega \) its closure and define

\[
\mathcal{H}_Q^{\Omega_0} = \{ v \in \mathcal{H}_Q(V) : \exists T \in \Omega^0 \text{ such that } vT \subseteq T \}.
\]

By Lemma 3.4 if \(\Omega \) is \(Q \)-intersecting then \(\mathcal{H}_Q^{\Omega_0} \) contains a nonempty Zariski-open set, while it is otherwise not Zariski-dense. Thus,

\[
\mathcal{H}_Q^* = \bigcap_{\Omega \subseteq_Q V} \mathcal{H}_Q^{\Omega_0} \bigcap_{\Omega \subseteq_Q V} \mathcal{H}_Q^{\Omega_0}
\]

contains a nonempty Zariski-open set. By construction, every \(v^* \in \mathcal{H}_Q^* \) is detecting \(Q \)-intersection in \(V \). \(\square \)

Next, we show that we can by an optimization procedure construct Schubert cells for which the generic intersection variety consists of a single point only. Recall that \(d(N) = \sum_{x \in Q_0} \dim N_x \) denotes the total dimension of a family of vector spaces.
Definition 6.3 (Slope). Let \((V, \mathcal{F})\) and \((W, \mathcal{G})\) be filtered dimension vectors. We define the slope of a nonzero subquotient \(N\) of \(V\) by

\[
\sigma(N) := \frac{1}{d(N)} \text{eul}_{Q, \mathcal{F}_N}(N, W),
\]

where \(\mathcal{F}_N\) denotes the filtration induced by \(\mathcal{F}\) on \(N\).

For fixed \(v \in \mathcal{H}_Q(V)\), consider the set of subrepresentations of arbitrary dimension,

\[
\mathbb{S}(v) := \{S \subseteq V : vS \subseteq S\}.
\]

Note that \(\mathbb{S}(v)\) is closer under vector space sum and intersection.

Proposition 6.4. Let \((V, \mathcal{F})\) and \((W, \mathcal{G})\) be filtered dimension vectors and let \(v^* \in \mathcal{H}_Q(V)\) be an element detecting \(Q\)-intersection in \(V\). Define \(\sigma^* = \min_{1 \neq S \subseteq W} \sigma(S)\) and \(d^* = \max_{1 \neq S \subseteq W} d(S)\). Then there exists a unique family \(S^* \in \mathbb{S}(v^*)\) such that \(\sigma(S) = \sigma^*\) and \(d(S) = d^*\).

We call \(S^*\) the **maximin subrepresentation** for \(v^*\); it is \(Q\)-intersecting in \(V\).

Proof. Existence is clear, so we only argue for uniqueness. Suppose for sake of finding a contradiction that \(S_1\) and \(S_2\) are two distinct families of subspaces with the desired maximin property. Consider the short exact sequence

\[
0 \to S_1 \cap S_2 \to S_1 \to S_1/(S_1 \cap S_2) \to 0.
\]

If \(S_1 \cap S_2 \neq \{\{0\}\}\) then

\[
\sigma(S_1) = \frac{d(S_1 \cap S_2)}{d(S_1)} \sigma(S_1 \cap S_2) + \frac{d(S_1/(S_1 \cap S_2))}{d(S_1)} \sigma(S_1/(S_1 \cap S_2))
\]

as follows from Eq. (4.1). Thus, \(\sigma(S_1)\) is a convex combination of slopes. By minimality, \(\sigma(S_1) \leq \sigma(S_1 \cap S_2)\), hence we find that

\[
\sigma(S_1) \geq \sigma(S_1/(S_1 \cap S_2)). \tag{6.1}
\]

This inequality also holds when \(S_1 \cap S_2 = \{\{0\}\}\). Next, consider

\[
0 \to S_2 \to S_1 + S_2 \to (S_1 + S_2)/S_2 \to 0.
\]

Since \(S_1 \neq S_2\), \(d(S_1 + S_2) > d(S_2)\), so \(\sigma(S_1 + S_2) > \sigma(S_2)\) by extremality. Thus, by the same argument,

\[
\sigma((S_1 + S_2)/S_2) > \sigma(S_2) = \sigma(S_1).
\]

Together with Eq. (6.1), we obtain

\[
\sigma((S_1 + S_2)/S_2) > \sigma(S_1/(S_1 \cap S_2)).
\]

As vector spaces, both quotients are isomorphic and hence have the same dimension vector and total dimension. Thus, it follows from the definition of the slope and filtered Euler number that

\[
\dim g_{Q, \mathcal{F}_1, \mathcal{G}}((S_1 + S_2)/S_2, W) > \dim g_{Q, \mathcal{F}_2, \mathcal{G}}(S_1/(S_1 \cap S_2), W),
\]
where we abbreviate the induced filtrations by \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \). However, the natural isomorphism that interprets each \(\Phi : (S_1 + S_2)/S_2 \to \mathcal{W} \) as a map \(S_1/(S_1 \cap S_2) \to \mathcal{W} \) restricts to an injection
\[
\mathfrak{g}_{Q, \mathcal{F}_1, S}(S_1 + S_2)/S_2, \mathcal{W}) \hookrightarrow \mathfrak{g}_{Q, \mathcal{F}_2, S}(S_1/(S_1 \cap S_2), \mathcal{W}),
\]
since if \(\Phi : S_1 + S_2 \to \mathcal{W} \) is a representative of some \(\Phi \) then \(\Phi((S_1 + S_2) \cap \mathcal{F}(i)) \subseteq \mathcal{S}(i) \) implies that \(\Phi(S_1 \cap \mathcal{F}(i)) \subseteq \mathcal{S}(i) \) for all \(i \). This is the desired contradiction.

Lemma 6.5. In the situation of Proposition 6.4, the slope \(\sigma^* \) and dimension \(d^* \) of the maximin subrepresentation do not depend on the choice of \(\nu^* \). Moreover, the maximin subrepresentations obtained by varying \(\nu^* \) are all in the same Schubert cell.

Proof. Consider another \(\nu^* \in \mathcal{H}_Q(\mathcal{V}) \) that detects \(\mathcal{Q} \)-intersection and let \(S^* \) denote the corresponding maximin subrepresentation. Since \(S^* \) is \(\mathcal{Q} \)-intersecting, there exists some \(T \in \Omega_0(S^*, \mathcal{F}) \) such that \(\nu^*(\mathcal{T}) \subseteq \mathcal{T} \). Then \(\sigma(\mathcal{T}) = \sigma(S^*) \), since the Euler number only depends on the Schubert cell, and hence \(\sigma(S^*) \geq \sigma(S^*) \). Running the argument in reverse, we obtain that \(\sigma(S^*) = \sigma(S^*) \). We similarly find that \(d(S^*) = d(S^*) \), so \(S^* \cap \mathcal{F}(i) \subseteq \mathcal{S}(i) \) for all \(i \). This confirms the last statement.

Proposition 6.6. In the situation of Proposition 6.4, the maximin subrepresentation \(S^* \) is in \(\mathcal{P}_Q(\mathcal{V}, \mathcal{F}) \).

Proof. We abbreviate \(\Omega = \Omega(S^*, \mathcal{F}) \). It suffices to argue that \(\Omega_{v^*, \mathcal{F}} \) is a single point for every \(v^* \in \mathcal{H}_Q(\mathcal{V}) \) that is detecting \(\mathcal{Q} \)-intersection (a nonempty Zariski-open set according to Lemma 6.2). We will show that \(\Omega_{v^*, \mathcal{F}} = \{S^*\} \), where \(S^* \) denotes the maximin subrepresentation.

Indeed, \(S^* \) is a subrepresentation of \(v^* \) and, by Lemma 6.5, belongs to the same Schubert cell as \(S^* \), so \(S^* \in \Omega_{v^*, \mathcal{F}} \). Conversely, suppose that \(T \in \Omega_{v^*, \mathcal{F}} \). Since it is in the same Grassmannian as \(S^* \), we have that \(d(T) = d(S^*) \) and \(\dim \mathcal{H}_Q(T, \mathcal{W}) = \dim \mathcal{H}_Q(S^*, \mathcal{W}) \). Moreover,
\[
\dim \mathfrak{g}_{Q, \mathcal{F}_1, S}(T, \mathcal{W}) \leq \dim \mathfrak{g}_{Q, \mathcal{F}_2, S}(S^*, \mathcal{W}).
\]

Indeed, since \(T \) is in the closure of the \(B_{\mathcal{Q}}(\mathcal{V}, \mathcal{F}) \)-orbit of \(S^* \), it is clear that, for each \(x \in Q_0 \) and \(i \), \(\dim T_x \cap \mathcal{F}_x(i) \geq \dim S^*_x \cap \mathcal{F}_x(i) \), so Eq. (6.2) follows from Lemma 4.2. Thus, \(\sigma(T) \leq \sigma(S^*) \) and \(d(T) = d(S^*) \). As a consequence, \(T = S^* \) by the uniqueness of the maximin subrepresentation. We conclude that \(\Omega_{v^*, \mathcal{F}} = \{S^*\} \), as we set out to prove.

We thus obtain the following result, which strengthens the main conclusion of Theorem 5.1.

Corollary 6.7. Let \((\mathcal{V}, \mathcal{F}) \) and \((\mathcal{W}, \mathcal{G}) \) be filtered dimension vectors such that \(\text{ext}_{Q, \mathcal{F}_1, S}(\mathcal{V}, \mathcal{W}) > 0 \). Then there exists a family \(\mathcal{T}^* \in \mathcal{P}_Q(\mathcal{V}, \mathcal{F}) \) such that \(\text{eul}_{Q, \mathcal{F}_1, S}(\mathcal{T}^*, \mathcal{W}) < 0 \).
Proof. Let \(v^* \in \mathcal{H}_Q(\mathcal{V}) \) be an element detecting \(Q \)-intersection. By Theorem 5.1, there exists \(\mathcal{T} \subseteq_Q \mathcal{V} \) such that \(\text{edim}_{Q,\mathcal{T}}(\mathcal{V}/\mathcal{T}) < 0 \). Thus, \(S(v^*) \) contains an element of negative slope. As a consequence, the maximin subrepresentation \(\mathcal{T}^* \) also has negative slope, hence negative Euler number. By Proposition 6.6, it belongs to \(P_Q(\mathcal{V}, \mathcal{T}) \). □

We now prove the main result of this article.

Proof of Theorem 6.1. As discussed before, Lemmas 3.6 and 3.9 show that if \(S \) is \(Q \)-intersecting in \(\mathcal{V} \) then (A) and (B) are necessarily satisfied.

We now prove the converse. Suppose that \(S \) is not \(Q \)-intersecting in \(\mathcal{V} \). By Theorem 4.6, this means that \(\text{ext}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(S, \mathcal{V}/S) > 0 \). Therefore, Corollary 6.7 shows that there exists \(\mathcal{T} \in P_Q(S, \mathcal{F}_S) \) such that

\[
\text{eul}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(\mathcal{T}, \mathcal{V}/S) < 0. \tag{6.3}
\]

If \(\mathcal{T} = S \), this filtered Euler number equals \(\text{edim}_{Q,\mathcal{T}}(S, \mathcal{V}) \) (Eq. (4.5)), so (A) is violated. We will therefore assume that \(\mathcal{T} \subset S \). In this case,

\[
\text{edim}_{Q,\mathcal{T}}(\mathcal{T}, \mathcal{V}) = \text{edim}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(\mathcal{T}, \mathcal{V}/\mathcal{T}) = \text{edim}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(\mathcal{T}, \mathcal{V}/\mathcal{T}) - \text{edim}_{Q,\mathcal{T}}(\mathcal{T}, S) = \text{edim}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(\mathcal{T}, \mathcal{V}/\mathcal{T}) - \text{edim}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{S}/\mathcal{T}}}(\mathcal{S}/S) = \text{eul}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(\mathcal{T}, \mathcal{V}/S) < 0,
\]

where the first equality is Eq. (4.5), the second equality holds because \(\mathcal{T} \in P_Q(S, \mathcal{F}_S) \) and so \(\text{edim}_{Q,\mathcal{T}}(\mathcal{T}, S) = 0 \) (see discussion below Definition 3.7), the next steps are Eq. (4.5) and Eq. (4.2), and we finally used Eq. (6.3). Thus, \(\text{edim}_{Q,\mathcal{T}}(\mathcal{T}, \mathcal{V}) < 0 \), which by Lemma 3.6 implies that \(\mathcal{T} \) is not intersecting in \(\mathcal{V} \). This shows that (B) is violated. □

Remark 6.8. One can in specific cases further constrain the families \(\mathcal{T} \) that need to be considered in condition (B) of Theorem 6.1 by careful inspection of the maximin construction and using Remark 5.7. For example, we may always restrict to \(\mathcal{T} \) that satisfy \(\dim \mathcal{T}_x = \dim \mathcal{T}_y \) for every arrow \(\alpha : x \to y \in Q_1 \) such that \(\dim S_x = \dim S_y \) and \(\dim \mathcal{V}_x = \dim \mathcal{V}_y \).

To see this, recall that the subspaces \(\mathcal{T} \) were produced by applying Corollary 6.7 to \(S \) and \(\mathcal{V}/S \). In the proof of Corollary 6.7, we first invoked Theorem 5.1 to obtain an element \(\mathcal{T} \subseteq_Q S \) with \(\text{eul}_{Q,\mathcal{T},\mathcal{F}_{\mathcal{V}/\mathcal{T}}}(\mathcal{T}, \mathcal{V}/S) < 0 \) and then used the maximin construction of Proposition 6.4 to find an element in \(P_Q(S, \mathcal{F}_S) \) with negative Euler number. Since \(\dim \mathcal{V}_x/\mathcal{S}_x = \dim \mathcal{V}_y/\mathcal{V}_y \), we may by Remark 5.7 assume that \(\dim \mathcal{T}_x = \dim \mathcal{T}_y \) for each arrow as above. We would like to restrict the maximin construction to the subset \(S' \subseteq S(v^*) \) consisting of families that satisfy this dimension condition. For generic \(v^* \) that detect \(Q \)-intersection in \(S \), \(S' \) is closed under vector space sum and intersection, as follows by a similar argument as given in Remark 5.7. Thus, the same proofs as given above allow us to conclude that there exists a unique maximin subrepresentation \(\mathcal{T}^* \) (with possibly different \(\sigma^* < 0 \) and \(d^* > 0 \))
which is an element of $P_Q(S, F_S)$ and moreover satisfies $\dim T^*_x = \dim T^*_y$ for each arrow as above.

In the case of the Horn quiver, this optimization recovers Belkale’s conditions for intersections of Schubert classes of the Grassmannian (Section 7).

By the same reasoning, but working with families of subspaces without filtrations, one can prove a refined version of Schofield’s theorem [17]. To state the result, write $\alpha \leq_Q n$ if α is a Schofield subdimension vector of n, and define $P_Q(\alpha)$ as the set of subdimension vectors $\beta \leq \alpha$ such that $Gr_Q(\beta, \alpha)$ is a point for generic $v \in \mathcal{H}_Q(\alpha)$.

Theorem 6.9. Let α be a subdimension vector of some dimension vector n. Then, $\alpha \leq_Q n$ if and only if

- (A) $\langle \alpha, n - \alpha \rangle \geq 0$,
- (B) $\beta \leq_Q n$ for every $\beta \in P_Q(\alpha)$, $\beta \neq \alpha$.

7. Horn conditions for Q-intersection

Theorem 6.1 can readily be translated into a recursive algorithm for deciding Q-intersection that only involves the easily computable expected dimensions (Definition 3.5).

Definition 7.1 (Horn set). Let (V, F) be a filtered dimension vector. We define $\text{Horn}_Q(V, F)$ inductively as the set of $S \subseteq V$ such that, if $S \neq V$,

- (A) $\text{edim}_Q(S, V) \geq 0$,
- (B) $\text{edim}_Q(T, V) \geq 0$ for every $T \in \text{Horn}_Q(S, F_S)$ such that $T \neq S$ and $\text{edim}_Q(F_S(T, S)) = 0$.

Theorem 7.2 (Horn conditions). Let (V, F) be a filtered dimension vector and $S \subseteq V$ a family of subspaces. Then, $S \subseteq_Q V$ if and only if $S \in \text{Horn}_Q(V, F)$.

Proof. This follows by induction over the total dimension of S. Indeed, suppose that we have proved the result for any $T \subset S$. Then the ‘if’ follows from Theorem 6.1, while the ‘only if’ is a consequence of Lemmas 3.6 and 3.9.

It is clear that in condition (B) of Definition 7.1 we only need to consider subspaces T that belong to $P_Q(S, F_S)$. However, it is much harder to check membership in $P_Q(S, F_S)$ (i.e., whether the generic intersection variety is a point) than to compute the expected dimension and check that $\text{edim}_Q(F_S(T, S)) = 0$ (i.e., whether the generic intersection variety is a finite set of points).

7.1. Combinatorial Horn conditions. Since the property of being Q-intersecting only depends on the Schubert cell, we can also give a combinatorial version of the above characterization. We will work in the following setup: For every finite subset $J = \{i_1 < \cdots < i_\ell\} \subseteq \mathbb{N}$, define the vector space $V(J) = \bigoplus_{j \in J} \mathbb{C}e_j$ and the filtration $F(J)$.
with elements \(F(J)(a) = \bigoplus_{k=1}^{a} \mathbb{C} e_{J_k} \) for \(a = 1, \ldots, \ell \). Thus, every collection \(J = (J_x)_{x \in Q_0} \) of finite subsets \(J_x \subseteq \mathbb{N} \) defines a family of vector spaces \(V(J) \) and a family of filtrations \(F(J) \), i.e., a filtered dimension vector.

We will write \(\mathcal{K} \subseteq J \) if \(\mathcal{K} = (K_x)_{x \in Q_0} \) is a family of subsets \(K_x \subseteq J_x \) for every \(x \in Q_0 \). In this case, \(V(\mathcal{K}) \) is a family of subspaces of \(V(J) \). As discussed on p. 7, every Schubert cell in a Grassmannian of \(V(J) \) is the Borel orbit of some family of the form \(V(\mathcal{K}) \). Let us also write \(\Omega(\mathcal{K}) \) for the corresponding Schubert variety defined by \(V(\mathcal{K}) \).

We write \(\mathcal{K} \subseteq Q \) if \(V(\mathcal{K}) \) is \(Q \)-intersecting in \(V(J) \), and we abbreviate the expected dimension by \(\text{edim}_Q(\mathcal{K}, J) = \text{edim}_Q,\mathcal{J}(V(\mathcal{K}), V(J)) \).

Using Eq. (2.1), the expected dimension can be computed as follows:

\[
\text{edim}_Q(\mathcal{K}, J) = \sum_{x \in Q_0} \sum_{j \in K_x} (p_j(J_x) - p_j(K_x)) - \sum_{a : x \to y \in Q_1} |K_x|(|J_y| - |K_y|),
\]

where we write \(p(x, S) \) for the position of an element \(x \) in a set \(S \) (in increasing order, i.e., \(p(x, S) = 1 \) for the smallest element \(x \in S \), etc.).

We obtain a simple practical criterion for deciding \(Q \)-intersection:

Definition 7.3 (Combinatorial Horn set). Let \(J = (J_x)_{x \in Q_0} \) be a family of finite subsets of \(\mathbb{N} \). We define \(\text{Horn}_Q(J) \) as the set of \(\mathcal{K} \subseteq J \) such that, if \(\mathcal{K} \neq J \),

(A) \(\text{edim}_Q(\mathcal{K}, J) \geq 0 \),

(B) \(\text{edim}_Q(\mathcal{L}, J) \geq 0 \) for every \(\mathcal{L} \in \text{Horn}_Q(\mathcal{K}) \) that satisfies \(\mathcal{L} \neq \mathcal{K} \) and \(\text{edim}_Q(\mathcal{L}, \mathcal{K}) = 0 \).

Theorem 7.4 (Combinatorial Horn conditions). Let \(J = (J_x)_{x \in Q_0} \) be a family of finite subsets of \(\mathbb{N} \) and \(\mathcal{K} \subseteq J \) a family of subsets. Then, \(\mathcal{K} \subseteq Q J \) if and only if \(\mathcal{K} \in \text{Horn}_Q(J) \). Moreover, if \(\mathcal{K} \subseteq Q J \) then the generic intersection variety is of dimension \(\text{edim}_Q(\mathcal{K}, J) \).

It is straightforward to incorporate the optimizations discussed in Remarks 5.7 and 6.8 into this criterion. Given a family \(J \) that satisfies \(|J_x| = |J_y| \) for every arrow \(x \to y \) in some subset \(A \subseteq Q_1 \), define \(\text{Horn}_{Q,A}(J) \) inductively as the set of \(\mathcal{K} \subseteq J \) satisfying the same dimension condition (i.e., \(|K_x| = |K_y| \) for every arrow \(x \to y \in A \) and, if \(\mathcal{K} \neq J \),

(A) \(\text{edim}_Q(\mathcal{K}, J) \geq 0 \),

(B) \(\text{edim}_Q(\mathcal{L}, J) \geq 0 \) for every \(\mathcal{L} \in \text{Horn}_{Q,A}(\mathcal{K}) \) with \(\mathcal{L} \neq \mathcal{K} \) and \(\text{edim}_Q(\mathcal{L}, \mathcal{K}) = 0 \).

Then, the elements of \(\text{Horn}_{Q,A}(J) \) are precisely the \(Q \)-intersecting subfamilies of \(J \) that satisfy the dimension condition.

We now specialize our result to the Horn quiver \(H_s \) from (1.4) and constant dimension vectors (corresponding to the choice where \(A \)
contains all arrows of H_x). Thus, let \mathcal{J} denote a family of $s + 1$ subsets of \mathbb{N}, each of cardinality n, and $\mathcal{K} \subseteq \mathcal{J}$ a collection of subsets, each of cardinality $0 \leq r \leq n$. If we identify each $V(J_x) \cong \mathbb{C}^n$, each $V(K_x)$ determines a Schubert variety $\Omega(K_x)$ in $Gr(r, n)$. As explained in Example 2.5, the Schubert classes $[\Omega(K_x)]_{x=1,\ldots,s+1}$ are intersecting if and only if $\mathcal{K} \subseteq H_x \mathcal{J}$. Thus, we obtain the following necessary and sufficient condition for Schubert varieties in $Gr(r, n)$ to intersect:

Definition 7.5 (Belkale’s Horn set). Let \mathcal{J} denote a family of $s + 1$ subsets of \mathbb{N}, each of cardinality n, and $1 \leq r \leq n$. We define $Belkale_s(r, \mathcal{J})$ as the set of $\mathcal{K} \subseteq \mathcal{J}$ such that each K_x has cardinality r and,

(A) $\text{edim}_{H_x}(\mathcal{K}, \mathcal{J}) \geq 0$,

(B) $\text{edim}_{H_x}(\mathcal{L}, \mathcal{J}) \geq 0$ for every $\mathcal{L} \in Belkale_s(d, \mathcal{K})$ where $1 \leq d < r$ and $\text{edim}_{H_x}(\mathcal{L}, \mathcal{K}) = 0$.

Note that for the quiver H_x, $\mathcal{J} = (J_x)$ with $J_x = \{1, \ldots, n\}$ for all x, and $\mathcal{K} \subseteq \mathcal{J}$ such that each K_x has cardinality r, Eq. (7.1) simplifies to

$$\text{edim}_{H_x}(\mathcal{K}, \mathcal{J}) = \left(\sum_{x=1}^{s+1} \sum_{a=1}^r (K_x(a) - a) \right) - sr(n - r),$$

where $K_x(1) < \cdots < K_x(r)$ denote the elements of K_x. This coincides with Belkale’s definition of the expected dimension [2].

Theorem 7.6 (Belkale). Let $1 \leq r \leq n$, \mathcal{J} a family of $s + 1$ subsets of \mathbb{N}, each of cardinality n, and $\mathcal{K} \subseteq \mathcal{J}$ a family of subsets, each of cardinality r. Then, $\mathcal{K} \subseteq H_x \mathcal{J}$ if and only if $\mathcal{K} \in Belkale_s(r, \mathcal{J})$.

In his original proof [2], Belkale constructs an element $T \subset Q$ with constant dim T, by a ‘cascade construction’ of generic kernels (a priori different from the one we used) such that T fails to satisfy the Horn conditions if the Schubert classes are not intersecting. Belkale’s proof has been simplified by Sherman [19], as explained in [4].

7.2. Relation to augmented quivers

We now discuss the relation between our criterion and the construction of Derksen-Weyman in more detail (cf. Section 1.3).

Consider a quiver Q and a dimension vector n, and define $\mathcal{J} = (J_x)_{x \in Q_0}$ by $J_x = \{1, \ldots, n_x\}$. Inspired by Derksen-Weyman [7], define an augmented quiver Q in the following way. For each vertex $x \in Q_0$, introduce additional vertices (x, i) for $i = 1, \ldots, n_x - 1$, and add arrows

$$(x, 1) \longrightarrow \cdots \longrightarrow (x, n_x - 1) \longrightarrow (x, n_x) = x.$$

Define the dimension vector \mathbf{n} with components $\mathbf{n}_{x,i} = i$. Note that \mathbf{n} coincides with n on Q. Given a family of subsets $\mathcal{K} \subseteq \mathcal{J}$, we can similarly associate a subdimension vector $\mathbf{\alpha}$ by $\mathbf{\alpha}_{x,i} = |K_x \cap \{1, \ldots, i\}|$.
Then the correspondence between our picture and the augmented quiver picture is as follows: $\mathcal{K} \subseteq Q$ if and only if $\tilde{\alpha} \leq Q \tilde{n}$, that is, if and only if $\tilde{\alpha}$ is a Schofield subdimension vector of \tilde{n}.

Thus, one can also determine if $\mathcal{K} \subseteq Q$ by using Schofield’s inductive criterion for subdimension vectors of the augmented quiver Q. This is not obviously equivalent to our Theorems 1.1 and 6.1 which apply to Q directly. Indeed, even using our refinement of Schofield’s criterion (Theorem 6.9), one would a priori need to test Schofield subdimension vectors in $P_{Q}(\tilde{\alpha})$, which in general is a much larger set than $P_{Q}(\mathcal{V}(\mathcal{K}), F(\mathcal{K}))$.

As an easy example, consider the quiver Q with a single arrow, $a \to b$. For $\mathcal{K} = ([1, 2], [1, 2])$, the set $P_{Q}(\mathcal{V}(\mathcal{K}), F(\mathcal{K}))$ has 7 elements, namely the following subfamilies of \mathcal{K}:

$$(0, \emptyset), \ (0, 1), \ (0, 12), \ (1, 2), \ (1, 12), \ (2, 1), \ (12, 12),$$

where we write 12 instead of $\{1, 2\}$ etc. to improve readability. In contrast, for the extended quiver $(a, 1) \to (a, 2) \to (b, 2) \leftarrow (b, 1)$ and the dimension vector $\tilde{\alpha} = (1, 2, 1, 1)$ corresponding to \mathcal{K}, there are 12 Schofield subdimension vectors in $P_{Q}(\tilde{\alpha})$:

$$(0, 0, 0, 0), \ (0, 0, 1, 1), \ (0, 0, 2, 0), \ (0, 0, 2, 1), \ (0, 1, 1, 1), \ (0, 2, 2, 0), \ (0, 2, 2, 1), \ (1, 1, 1, 0), \ (1, 1, 2, 0), \ (1, 1, 2, 0), \ (1, 2, 2, 0), \ (1, 2, 2, 1).$$

Indeed, while every $\mathcal{L} \in P_{Q}(\mathcal{V}(\mathcal{K}), F(\mathcal{K}))$ produces an element $\tilde{\beta} \in P_{Q}(\tilde{\alpha})$ by $\tilde{\beta}_{x,i} = |L_{x} \cap \{1, \ldots, i\}|$, it is clear that only elements with

$$\tilde{\beta}_{x,i} \leq \tilde{\beta}_{x,i+1} \leq \tilde{\beta}_{x,i} + 1 \quad (7.2)$$

can arise in this way.

While Theorem 6.1 is not a consequence of Schofield’s theorem, it is possible to give an alternative proof using the augmented quiver construction, staying purely in the realm of ordinary dimension vectors. Indeed, using similar arguments as in Remarks 5.7 and 6.8 one can prove a refined version of Schofield’s theorem (or Theorem 6.9) for dimension vectors of the form $\tilde{\alpha}$ and \tilde{n}, stating that in order to determine whether $\tilde{\alpha} \leq Q \tilde{n}$, it suffices to consider $\tilde{\beta} \in P_{Q}(\tilde{\alpha})$ that satisfy Eq. (7.2) and hence arise from some family $\mathcal{L} \in P_{Q}(\mathcal{V}(\mathcal{K}), F(\mathcal{K}))$.

8. Applications to Representation Theory

In this section, we recall that the Q-intersecting Schubert varieties determine a complete set of inequalities characterizing the cone $C_{Q}(\mathcal{V})$ generated by the highest weights of irreducible $GL_{Q}(\mathcal{V})$-representations that appear in the space of polynomial functions on $\mathcal{H}_{Q}(\mathcal{V})$, as mentioned previously in Section 1.4. Applying an
argument of Ressayre, we also show that the semigroup of highest weights is saturated.

We largely follow the notation of Section 7.1. Consider a quiver Q and a dimension vector n, and define $J = (J_x)_{x \in Q_0}$ by $J_x = \{1, \ldots, n_x\}$. Let $\mathcal{V} = \mathcal{V}(J)$. It is easy to see that, if the quiver Q has no cycles, then the action of $GL_Q(\mathcal{V})$ on the space $\text{Sym}^*(\mathcal{H}_Q(\mathcal{V}))$ of polynomial functions on $\mathcal{H}_Q(\mathcal{V})$ decomposes with finite multiplicities. A basis for the Cartan subalgebra of $gl(V_x)$ is given by the diagonal matrices $h_{x,i}$ for $i = 1, \ldots, n_x$ such that $h_{x,i} e_j = \delta_{i,j} e_j$ for $j = 1, \ldots, n_x$. Consider $z_x = \sum_{i=1}^{n_x} h_{x,i}$. Then, $z = (z_x)_{x \in Q_0}$ is in $J = \bigoplus_{x \in Q_0} \mathbb{R} z_x$, the center of $gl(\mathcal{V})$, and acts by zero in the infinitesimal action of $gl_Q(\mathcal{V})$ on $\mathcal{H}_Q(\mathcal{X})$. We label the dominant weights for $GL_Q(\mathcal{V})$ by a collection $\lambda = (\lambda_x)_{x \in Q_0}$, where each λ_x is a function $\{1, \ldots, n_x\} \to \mathbb{Z}$ such that $\lambda_x(i) \geq \lambda_x(j)$ for all $1 \leq i \leq j \leq n_x$. Let V_λ denote the irreducible representation of $GL_Q(\mathcal{V})$ with highest weight λ. We decompose:

$$ \text{Sym}^*(\mathcal{H}_Q(\mathcal{V})) = \bigoplus_\lambda m(\lambda) V_\lambda. $$

Note that V_λ occurs with nonzero multiplicity (i.e., $m(\lambda) > 0$) if and only if there exists a nonzero homogeneous polynomial P on $\mathcal{H}_Q(\mathcal{V})$ which is semi-invariant by $B_Q(\mathcal{V}, \mathcal{F})$ with weight λ. The cone $C_Q(\mathcal{V})$ is, by definition, the cone generated by the dominant weights λ such that $m(\lambda) > 0$. Mumford’s theorem gives a geometric description of $C_Q(\mathcal{V})$ as the image of the moment map (see, e.g., [21]).

The following result can be proved in more general situations using Ressayre’s dominant pairs [14] (see also [21]). We give a short proof in our context.

Proposition 8.1. Let $J = (J_x)_{x \in Q_0}$, where $J_x = \{1, \ldots, n_x\}$, and $\mathcal{V} = \mathcal{V}(J)$. Let λ such that V_λ occurs with nonzero multiplicity in $\text{Sym}^*(\mathcal{H}_Q(\mathcal{V}))$. Then,

$$ \sum_{x \in Q_0} \sum_{j=1}^{n_x} \lambda_x(j) = 0, \quad (8.1) $$

and for every Q-intersecting family of subsets $K \subseteq Q J$ we have that

$$ \sum_{x \in K_0} \sum_{k \in K_x} \lambda_x(k) \leq 0. \quad (8.2) $$

Proof. The first claim follows immediately from the fact that the element $z \in gl_Q(\mathcal{V})$ acts trivially on $\text{Sym}^*(\mathcal{H}_Q(\mathcal{V}))$.

For the second claim, let K be a Q-intersecting family of subsets as above and let P be an arbitrary nonzero homogeneous polynomial that is semi-invariant by $B_Q(\mathcal{V}, \mathcal{F})$ with weight λ. Let $S = \mathcal{V}(K)$ and $\mathcal{F} = \mathcal{V}(K^c)$, where each $(K^c)_x = K_x^c$, the complement of K_x in $J_x = \{1, \ldots, n_x\}$. Consider the vector space from Eq. (3.1).

$$ X(S) = \{ v \in \mathcal{H}_Q(\mathcal{V}) : v S \subseteq S \}. $$
We conclude that weights for written in this form for some saturated. For the Horn quiver, this was proved first by where v. This inequality is exactly Eq. (8.2). □

The condition on v means that it is of the form

$$v = \begin{pmatrix} v_{00} & v_{01} \\ 0 & v_{11} \end{pmatrix},$$

where $v_{00} \in \mathcal{H}_Q(\delta)$, $v_{01} \in \mathcal{H}_Q(\tau, \delta)$, and $v_{11} \in \mathcal{H}_Q(\tau)$. Since δ is Q-intersecting, the $B_Q(\mathcal{V}, \tau)$-orbit is dense in $\mathcal{H}_Q(\mathcal{V})$. Thus, since P is nonzero and semi-invariant by $B_Q(\mathcal{V}, \tau)$, there must exist $v \in X(\delta)$ such that $P(v) \neq 0$.

Consider now $H = \langle H_x \rangle_{x \in Q_0} \in \mathfrak{g}l_Q(\mathcal{V})$, where each $H_x = \sum_{j \in K_x} h_{x,j}$ is an element in the Cartan subalgebra of $\mathfrak{g}l(\mathcal{V}_x)$. Let $v_t = \exp(-tH) \cdot v$. It is easy to see that

$$\lim_{t \to \infty} v_t = \begin{pmatrix} v_{00} & 0 \\ 0 & v_{11} \end{pmatrix}.$$

On the other hand, P has weight λ, so

$$P(v_t) = e^{(\lambda, H)t}P(v).$$

We conclude that $\langle \lambda, H \rangle \leq 0$, for otherwise the limit would not exist. This inequality is exactly Eq. (8.2).

Conversely, geometric invariant theory [15] implies that if λ satisfies the conditions in Eqs. (8.1) and (8.2) then it is an element of $C_Q(\mathcal{V})$ (see also [21]). Equivalently, in this case there exists a positive integer $N \geq 1$ such that $m(\lambda N) > 0$.

In fact, we can choose $N = 1$, meaning that the semigroup of highest weights is saturated. For the Horn quiver, this was proved first by Knutson-Tao [10] and then by Derksen-Weyman [7]. A geometric proof was given by Belkale [2] (see also [4]). We thank Ressayre for explaining to us that, for a general quiver, this also follows from the Derksen-Weyman saturation theorem [7], which asserts that, for a quiver Q without cycles, the semigroup of weights of semi-invariants is saturated (i.e., whenever there exists a semi-invariant of weight $N\omega$ for some weight ω and integer $N \geq 1$, then there also exists a semi-invariant of weight ω).

Indeed, augment the quiver Q to a quiver \tilde{Q} and consider the family $\tilde{\mathcal{V}} = (\mathbb{C}^{n_x,i})$ of vector spaces with dimension vector \tilde{n}, as in Section 7.2. To every family $\tilde{\omega} = (\tilde{\omega}_{x,i})$ of integers, we can associate a weight $\lambda(\tilde{\omega}) = (\lambda_x)$ for $\text{GL}_Q(\mathcal{V})$ by $\lambda_x(i) = \sum_{j=1}^{n_x} \tilde{\omega}(x,j)$. Using the Cauchy formula for the decomposition of $\bigotimes_{i=1}^{n_x-1} \text{Sym}^*(\text{Hom}(\mathbb{C}^i, \mathbb{C}^{i+1}))$ under the action of $\prod_{i=1}^{n_x} \text{GL}(i)$, it is easy to see that if there exists a semi-invariant of weight $\tilde{\omega}$ for $\mathcal{H}_Q(\tilde{\mathcal{V}})$, then necessarily $\tilde{\omega}_{x,i} \geq 0$ for $i = 1, \ldots, n_x-1$ and every $x \in Q_0$. Thus, the corresponding $\lambda(\tilde{\omega})$ is a dominant weight. Conversely, any dominant weight λ can be written in this form for some $\tilde{\omega}$. Furthermore, $\lambda(\omega)$ is in $C_Q(\mathcal{V})$ if and only if $\omega \in \Sigma_Q(\tilde{\mathcal{V}})$. Consequently, the semigroup of highest weights for $\mathcal{H}_Q(\mathcal{V})$ is saturated, since the semigroup of weights of
semi-invariants for $\mathcal{H}_Q(\check{V})$ is saturated. The proof sketched above is similar to the Derksen-Weyman proof of the Horn inequalities [7].

Let us discuss which among the inequalities in Eq. (8.2) are irredundant. In a general setting, geometric conditions for irredundancy are given in [14] and, in more detail for the particular case of quivers, in [13]. For \mathcal{K} to define an irredundant inequality, it must satisfy two conditions:

1. $\mathcal{V}(\mathcal{K})$ belongs to $P_Q(\mathcal{V}, \mathcal{F})$, i.e., the intersection variety $\Omega(\mathcal{K})_\mathcal{V}$ is generically reduced to a point,
2. $\dim C_Q(\mathcal{V}(\mathcal{K})) + \dim C_Q(\mathcal{V}(\mathcal{K}^c)) = \dim C_Q(\mathcal{V}) - 1$, where \mathcal{K}^c denotes the family of complements K_x^c of K_x in $J_x = \{1, \ldots, n_x\}$.

For the Horn quiver H_s, condition (2) is a consequence of (1), but not in general (see end of Section 9).

In practice, it can be difficult to determine when conditions (1) and (2) are satisfied. It is often easier to use accelerated Fourier-Motzkin elimination on the complete (but, in general, redundant) set of inequalities associated to Q-intersecting $\Omega(\mathcal{K})$ with $\text{edim}_Q(\mathcal{K}, \partial) = 0$ to obtain a complete set of irredundant inequalities characterizing the cone $C_Q(\mathcal{V})$ (see also [21]).

The cone $\Sigma_Q(\mathcal{V})$ is, by definition, the intersection of $C_Q(\mathcal{V})$ with \mathfrak{z}^*. Here, we embed \mathfrak{z}^* into the dual of the Lie algebra of the maximal torus of $\text{GL}_Q(\mathcal{V})$ via $\mathbf{\omega} \mapsto \lambda$, where $\lambda_x(1) = \cdots = \lambda_x(n_x) = \omega_x$. We note that, for a general quiver Q, this intersection can be reduced to $\{0\}$. We can characterize $\Sigma_Q(\mathcal{V})$ by restricting a complete set of defining inequalities of the cone $C_Q(\mathcal{V})$ to \mathfrak{z}^*, such as our Eqs. (8.1) and (8.2). If $\mathcal{K} = (K_x)$ is a family of subsets $K_x \subseteq \{1, \ldots, n_x\}$ and λ as above, then $\sum_{k \in K_x} \lambda_x(k) = |K_x| \omega_x$. Moreover, if \mathcal{K} is Q-intersecting, then $\alpha_x = |K_x|$ defines a Schofield subdimension vector α, and any Schofield subdimension vector of n can be obtained in this way. It follows that the cone $\Sigma_Q(\mathcal{V})$ is determined by the inequalities

$$\sum_{x \in Q_o} \alpha_x \omega_x \leq 0,$$

where α ranges over all Schofield subdimension vectors of n, together with the equation

$$\sum_{x \in Q_o} n_x \omega_x = 0.$$

In this way, we recover the description of $\Sigma_Q(\mathcal{V})$ due to Derksen-Weyman [7] and Schofield-van den Bergh [18]. Irredundant inequalities are described in [7] when n is a Schur root.

9. Sun Quiver

We now discuss the ‘sun quiver’ introduced in [6]:
The sun quiver has a discrete rotation symmetry \((x \mapsto x + 2) \) and a reflection symmetry that interchanges \(2 \leftrightarrow 6 \) and \(3 \leftrightarrow 5 \).

The family \(\mathcal{J} = \{(1, 2), \ldots, (1, 2)\} \) and its dimension vector \((2, \ldots, 2)\) respect both symmetries. We use Theorem 7.4 to compute the \(Q \)-intersecting subfamilies \(\mathcal{K} \subseteq Q \mathcal{J} \). Up to symmetry, there are 113 subfamilies, corresponding to 39 Schofield subdimension vectors. The latter are given by the following list:

\[
(0, 0, 0, 0, 0, 0), \quad (0, 0, 0, 0, 0, 1), \quad (0, 0, 0, 0, 0, 2), \quad (0, 0, 0, 1, 0, 1), \\
(0, 0, 0, 1, 0, 2), \quad (0, 0, 0, 1, 1, 1), \quad (0, 0, 0, 1, 1, 2), \quad (0, 0, 0, 2, 0, 2), \\
(0, 0, 0, 2, 1, 2), \quad (0, 0, 0, 2, 2, 2), \quad (0, 1, 0, 1, 0, 1), \quad (0, 1, 0, 1, 0, 2), \\
(0, 1, 0, 1, 1, 1), \quad (0, 1, 0, 1, 1, 2), \quad (0, 1, 0, 2, 0, 2), \quad (0, 1, 0, 2, 1, 2), \\
(0, 1, 0, 2, 2, 2), \quad (0, 1, 1, 1, 0, 2), \quad (0, 1, 1, 1, 1, 1), \quad (0, 1, 1, 1, 1, 2), \\
(0, 1, 1, 2, 0, 2), \quad (0, 1, 2, 1, 1), \quad (0, 1, 2, 2, 1, 2), \quad (0, 1, 2, 2, 2, 2), \\
(0, 2, 0, 0, 2, 0, 2), \quad (0, 2, 0, 2, 1, 2), \quad (0, 2, 0, 2, 2, 2), \quad (0, 2, 1, 1, 1, 1), \\
(0, 2, 1, 2, 1, 2), \quad (0, 2, 1, 2, 2, 2), \quad (0, 2, 2, 2, 2, 2), \quad (1, 1, 1, 1, 1, 1), \\
(1, 1, 1, 1, 1, 2), \quad (1, 1, 1, 1, 2, 2), \quad (1, 1, 2, 1, 1), \quad (2, 1, 2, 2, 2), \\
(1, 2, 1, 2, 2, 2), \quad (2, 2, 2, 2, 2, 2).
\]

Up to symmetry, there are 59 \(Q \)-intersecting subfamilies \(\mathcal{K} \) that satisfy the condition \(\text{edim}_Q(\mathcal{K}, \mathcal{J}) = 0 \). They are given by

\[
(0, 0, 0, 0, 0, 0), \quad (0, 0, 0, 0, 0, 1), \quad (0, 0, 0, 0, 1, 0), \quad (0, 0, 0, 0, 1, 1), \\
(0, 0, 0, 1, 0, 1), \quad (0, 0, 0, 1, 0, 2), \quad (0, 0, 0, 1, 1, 1), \quad (0, 0, 0, 1, 1, 2), \\
(0, 0, 0, 2, 0, 2), \quad (0, 0, 0, 2, 1, 2), \quad (0, 0, 0, 2, 2, 2), \quad (0, 0, 1, 0, 1), \\
(0, 0, 1, 0, 2), \quad (0, 0, 1, 1, 1), \quad (0, 0, 1, 1, 2), \quad (0, 0, 1, 2, 1), \\
(0, 0, 1, 2, 2), \quad (0, 0, 2, 0, 2), \quad (0, 0, 2, 1, 2), \quad (0, 0, 2, 2, 2), \\
(0, 1, 0, 1, 0, 1), \quad (0, 1, 0, 1, 0, 2), \quad (0, 1, 0, 1, 1, 1), \quad (0, 1, 0, 1, 1, 2), \\
(0, 1, 0, 1, 2, 1), \quad (0, 1, 0, 1, 2, 2), \quad (0, 1, 0, 2, 1, 2), \quad (0, 1, 0, 2, 2, 2), \\
(0, 1, 1, 0, 1, 0), \quad (0, 1, 1, 0, 1, 1), \quad (0, 1, 1, 0, 1, 2), \quad (0, 1, 1, 0, 2, 1), \\
(0, 1, 1, 0, 2, 2), \quad (0, 1, 1, 1, 0, 1), \quad (0, 1, 1, 1, 0, 2), \quad (0, 1, 1, 1, 1, 1), \\
(1, 0, 1, 0, 1, 0), \quad (1, 0, 1, 0, 1, 1), \quad (1, 0, 1, 0, 1, 2), \quad (1, 0, 1, 0, 2, 1), \\
(1, 0, 1, 0, 2, 2), \quad (1, 0, 1, 1, 0, 1), \quad (1, 0, 1, 1, 0, 2), \quad (1, 0, 1, 1, 1, 1), \\
(1, 0, 1, 1, 1, 0, 1), \quad (1, 0, 1, 1, 1, 1, 1), \quad (1, 0, 1, 1, 1, 1, 2), \quad (1, 0, 1, 1, 1, 2, 1), \\
(1, 0, 1, 1, 2, 0, 1), \quad (1, 0, 1, 1, 2, 1, 0), \quad (1, 0, 1, 1, 2, 1, 1), \quad (1, 0, 1, 1, 2, 1, 2), \\
(1, 0, 1, 1, 2, 2, 0), \quad (1, 0, 1, 1, 2, 2, 1), \quad (1, 0, 1, 1, 2, 2, 2), \quad (1, 0, 1, 1, 2, 3, 0), \\
(1, 0, 1, 1, 2, 3, 1), \quad (1, 0, 1, 1, 2, 3, 2), \quad (1, 0, 1, 1, 3, 0, 1), \quad (1, 0, 1, 1, 3, 0, 2), \\
(1, 0, 1, 1, 3, 1, 0), \quad (1, 0, 1, 1, 3, 1, 1), \quad (1, 0, 1, 1, 3, 1, 2), \quad (1, 0, 1, 1, 3, 2, 0), \\
(1, 0, 1, 1, 3, 2, 1), \quad (1, 0, 1, 1, 3, 2, 2), \quad (1, 0, 1, 1, 3, 3, 0), \quad (1, 0, 1, 1, 3, 3, 1), \\
(1, 0, 1, 1, 3, 3, 2), \quad (1, 0, 1, 1, 3, 3, 3), \quad (1, 0, 1, 1, 4, 0, 1), \quad (1, 0, 1, 1, 4, 0, 2), \\
(1, 0, 1, 1, 4, 1, 0), \quad (1, 0, 1, 1, 4, 1, 1), \quad (1, 0, 1, 1, 4, 1, 2), \quad (1, 0, 1, 1, 4, 2, 0), \\
(1, 0, 1, 1, 4, 2, 1), \quad (1, 0, 1, 1, 4, 2, 2), \quad (1, 0, 1, 1, 4, 3, 0), \quad (1, 0, 1, 1, 4, 3, 1), \\
(1, 0, 1, 1, 4, 3, 2), \quad (1, 0, 1, 1, 4, 3, 3), \quad (1, 0, 1, 1, 4, 4, 0), \quad (1, 0, 1, 1, 4, 4, 1), \\
(1, 0, 1, 1, 4, 4, 2), \quad (1, 0, 1, 1, 4, 4, 3), \quad (1, 0, 1, 1, 4, 4, 4).\]
with expected dimension zero and the Weyl chamber inequalities. The weights where we again write vector the isomorphism between abovelist coincides with Collins’ updated result \[6\], obtained by using the conditions in Proposition 8.1 for \(\{1, 2\}\) and the Weyl chamber inequalities using Fourier-Motzkin elimination starting together with \(K\) intersecting families \(X\) defined by the constraints in Proposition 8.1 and the Weyl chamber subfamilies that both correspond to the Schofield subdimension example.

We now compute the polyhedral cone characterizing the highest weights \(\lambda\) that appear in Sym\(^k(Q(V))\), where \(V = (\mathbb{C}^2, \ldots, \mathbb{C}^2)\). It is defined by the constraints in Proposition 8.1 and the Weyl chamber inequalities \(\lambda_x(1) \geq \lambda_x(2)\) for each vertex \(x\). The resulting cone has 36 extreme rays and 75 faces. In addition to the Weyl chamber inequalities and the constraint \(\sum_{x=1}^6 \sum_{a=1}^2 \lambda_x(a) = 0\), a minimal complete set of defining inequalities is (up to symmetry) given by the following list

\[
\begin{align*}
\lambda_1(1) + \lambda_2(2) + \lambda_6(2) & \leq 0, \\
\lambda_1(2) + \lambda_2(1) + \lambda_6(2) & \leq 0, \\
\lambda_1(1) + \lambda_2(2) + \lambda_3(2) + \lambda_4(2) + \lambda_6(2) & \leq 0, \\
\lambda_1(2) + \lambda_2(1) + \lambda_3(2) + \lambda_4(2) + \lambda_6(2) & \leq 0, \\
\lambda_1(2) + \lambda_2(1) + \lambda_4(2) + \lambda_5(2) + \lambda_6(2) & \leq 0, \\
|\lambda_1| + |\lambda_2| + |\lambda_6| & \leq 0, \\
\lambda_1(1) + |\lambda_2| + \lambda_3(1) + \lambda_4(2) + \lambda_6(2) & \leq 0, \\
\lambda_1(1) + |\lambda_2| + \lambda_3(2) + \lambda_4(1) + \lambda_6(2) & \leq 0, \\
\lambda_1(2) + |\lambda_2| + \lambda_3(2) + \lambda_4(1) + \lambda_6(1) & \leq 0, \\
\lambda_1(1) + |\lambda_2| + \lambda_3(2) + \lambda_4(2) + \lambda_5(2) + \lambda_6(2) & \leq 0, \\
\lambda_1(1) + \lambda_2(2) + \lambda_3(2) + \lambda_4(1) + \lambda_5(2) + \lambda_6(2) & \leq 0, \\
\lambda_1(2) + |\lambda_2| + \lambda_3(2) + \lambda_4(1) + \lambda_5(2) + \lambda_6(2) & \leq 0, \\
|\lambda_1| + |\lambda_2| + \lambda_3(1) + \lambda_4(2) + \lambda_5(2) + \lambda_6(2) & \leq 0, \\
|\lambda_1| + |\lambda_2| + \lambda_3(2) + \lambda_4(1) + \lambda_5(2) + \lambda_6(2) & \leq 0,
\end{align*}
\]

together with \(\lambda_x(2) \geq 0\) for odd \(x\) and \(\lambda_x(1) \leq 0\) for even \(x\). We computed these inequalities using Fourier-Motzkin elimination starting from the conditions in Proposition 8.1 for \(Q\)-intersecting families \(X\) with expected dimension zero and the Weyl chamber inequalities. The above list coincides with Collins’ updated result \[6\], obtained by using the isomorphism between \(C_Q(V)\) and \(\Sigma_Q(\hat{V})\) described in Section 8.
and the Derksen-Weyman description of irredundant inequalities for $\Sigma_{\tilde{Q}}(\tilde{V})$ in terms of decompositions into Schur roots.

In this simple case, it is also feasible to apply (and verify) Ressayre’s criterion for irredundancy. All families \mathcal{K} listed above satisfy Ressayre’s condition (1) on p.30, except for the family $\mathcal{K} = ((2), (2), (2), (2), (2))$, which leads to a variety $\Omega(\mathcal{K})_v$ which generically consists of two points. (Generically, the composition $v_1 \to v_2 v_3 v_4 v_5 \to v_6 v_5^{-1} v_4^{-1} v_3^{-1} v_2 v_1^{-1}$ has two one-dimensional eigenspaces S_1, each of which gives rise to a point $S \in \Omega(\mathcal{K})_v$.) The corresponding inequality $\sum \lambda_x(2) \leq 0$ indeed follows by adding the Weyl chamber inequalities $\lambda_x(2) - \lambda_x(1) \leq 0$ to the equation $\sum \lambda_x(1) + \lambda_x(2) = 0$.

It is also not hard to see that if \mathcal{K} is a family for which the undirected subgraph of the sun quiver obtained by erasing the vertices corresponding to empty sets (i.e., $K_x = \emptyset$) is a disconnected graph, then \mathcal{K} (and also \mathcal{K}^c) do not satisfy Ressayre’s condition (2) for irredundancy. For example, the inequalities $\lambda_4(1) \leq 0$ and $\lambda_6(1) \leq 0$ are irredundant inequalities associated to $((0, 0, 0, 1), 0, 0)$ and $((0, 0, 0, 0, 1), 1)$, respectively. In contrast, the family $\mathcal{K} = ((0, 0, 0, 1), 0, 1)$ satisfies condition (1) but not condition (2) and the corresponding inequality $\lambda_4(1) + \lambda_6(1) \leq 0$ is redundant.

In general, a priori conditions for irredundancy such as given by Belkale-Kumar [3], Derksen-Weyman [7], Knutson-Tao-Woodward [11], and Ressayre [14] are given in terms of Schubert calculus (for $\text{GL}(n)$, equivalently, in terms of Littlewood-Richardson coefficients) and are hard to test in practice.

Acknowledgements

It is a pleasure to acknowledge discussions with Bernhard Keller, Giovanni Cerulli Irelli, Evgeny Feigin, Shrawan Kumar, and Nicolas Ressayre. V. Baldoni acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006 and the partial support of a PRIN2015 grant. M. Walter acknowledges financial support by the NWO through Veni grant no. 680-47-459.

References

[1] Velleda Baldoni, Michèle Vergne, and Michael Walter, Horn inequalities and quivers, arXiv:1804.00431.
[2] Prakash Belkale, Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom. 15 (2006), 133–173.
[3] Prakash Belkale and Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), 185–228.
[4] Nicole Berline, Michèle Vergne, and Michael Walter, The Horn inequalities from a geometric point of view, Enseign. Math. 63 (2017), 403–470.
[5] Giovanni Cerulli Irelli, Evgeny Feigin, and Markus Reineke, Quiver Grassmannians and degenerate flag varieties, Algebra Number Theory 6 (2012), 165–194.
[6] Bernhard Keller, Giovanni Cerulli Irelli, Evgeny Feigin, Nicolas Ressayre, Horn inequalities and quivers, arXiv:1804.00431.
[6] Brett Collins, *Generalized Littlewood-Richardson coefficients for branching rules of $GL(n)$ and extremal weight crystals*, arXiv:1801.09170v3.

[7] Harm Derksen and Jerzy Weyman, *Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients*, J. Amer. Math. Soc. 13 (2000), 467–479.

[8] Harm Derksen, Aidan Schofield, and Jerzy Weyman, *On the number of sub-representations of a general quiver representation*, J. London Math. Soc. 76 (2007), 135–147.

[9] Alfred Horn, *Eigenvalues of sums of Hermitian matrices*, Pacific J. Math. 12 (1962), 225–241.

[10] Allen Knutson and Terence Tao, *The honeycomb model of $GL_n(\mathbb{C})$ tensor products. I. Proof of the saturation conjecture*, J. Amer. Math. Soc. 12 (1999), 1055–1090.

[11] Allen Knutson, Terence Tao, and Chris Woodward, *The honeycomb model of $GL_n(\mathbb{C})$ tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone*, J. Amer. Math. Soc. 17 (2004), 19–48.

[12] Markus Reineke, *Every projective variety is a quiver Grassmannian*, Algebr. Represent. Theory (2013), 1–2.

[13] Nicolas Ressayre, *GIT-cones and quivers*, Math. Z. 270 (2012), 263–275.

[14] , *Geometric invariant theory and the generalized eigenvalue problem*, Invent. Math. 180 (2010), 389–441.

[15] , *Geometric invariant theory and generalized eigenvalue problem II*, Ann. Inst. Fourier 61 (2011), 1467–1491.

[16] , *private communication*, 2018.

[17] Aidan Schofield, *General representations of quivers*, Proc. London Math. Soc. (3) 65 (1992), 46–64.

[18] Aidan Schofield and Michel van den Bergh, *Semi-invariants of quivers for arbitrary dimension vectors*, Indag. Math. (N.S.) 12 (2001), 125–138.

[19] Cass Sherman, *Geometric Proof of a Conjecture of King, Tollu, and Toumazet*, arXiv:1505.06551

[20] , *Quiver generalization of a conjecture of King, Tollu, and Toumazet*, J. Algebra 480 (2017), 487–504.

[21] Michèle Vergne and Michael Walter, *Inequalities for Moment Cones of Finite-Dimensional Representations*, J. Symplectic Geom. 15 (2017), 1209–1250.