Information universal non-contact transducers of control and management systems

Anatoly Plakhtiev¹, Aktam Denmukhammadiev¹ and Gayrat Gaziev²

¹Tashkent institute of irrigation and agricultural mechanization engineers, Tashkent city, 39, Qori Niyaziy str., 100000, Republic of Uzbekistan
²Scientific research institute for standardization, certification and technical regulation, Tashkent city, 9B, Chuponota str., 100059, Republic of Uzbekistan

Abstract. In contact and communication devices, power equipment, relay protection and automation terminals, and in the electric power industry of smart cities and houses, microprocessor-based devices for relay protection and automation, distributed generation installations, including renewable energy sources, and energy storage devices, as well as “smart” ones, are beginning to be used automated information-measuring systems. They widely use non-contact transducers of direct and alternating currents of control and management systems. Their disadvantages are a narrow range of controlled currents, large dimensions and weight. Therefore, their elimination is important. The paper considers the general principles of building information non-contact transducers of large direct currents, the basic requirements for them. The paper shows the results of the development of one of the options proposed by us, universal non-contact magnetomodulating transducers of large direct currents with an extended range for various monitoring and control systems in the electric power industry of solar power plants, renewable energy sources, laser and solar installations, in industry, science and technology, in rural and water management, as well as in farming and in everyday life. The developed non-contact transducer can be widely used in industry, in agriculture, as well as in the electric power industry of smart cities.

1. Introduction
In Uzbekistan, as well as around the world, the urgent task of involving autonomous, decentralized energy sources in the energy balance, especially using the energy of the sun, wind, small streams, etc., which also contributes to the replacement of traditional energy sources (oil, coal, gas) and solves environmental and social problems.

One of the ways to solve socio-economic problems related to one degree or another with energy is to more actively develop local energy resources (small reserves of coal, gas, oil in areas with developed infrastructure), as well as the large-scale use of environmentally friendly renewable energy sources available on the territory of Uzbekistan [1].

The assessment of potential reserves of renewable energy sources in the republic is quite high. It should be noted here that the gross potential of solar radiation, small rivers, wind flows and other sources of energy annually entering the territory of the republic is several times higher than the annual demand of Uzbekistan for fuel and energy resources, estimated at 55-60 million tons of standard fuel, and many times exceeds proven hydrocarbon reserves.

It is tedious to say that among renewable energy sources in terms of gross resource or, in other words, theoretical reserves, geothermal energy is the undisputed leader. However, relatively low
temperatures (up to 70-800°C), high salinity and depth of artesian waters make it difficult from a technical point of view to use them to generate electricity. Therefore, if we consider technically feasible potentials, then solar energy becomes the leader. The integrated use of solar energy will solve the problem of energy supply to remote consumers of low-power in absolute value of energy consumption, but very efficient in terms of production. This applies, first of all, to settlements and small producers, piedmont regions, distant pastures, etc. In centralized energy supply areas, the use of local autonomous energy sources contributes to the creation of a competitive environment for the energy market. Along with the energy of small and medium-sized watercourses, non-traditional energy sources (wind, solar, biogas) can also participate in such competition. According to preliminary calculations, the potential of small and medium-sized watercourses, local and non-traditional energy sources in absolute value is from 1 to 1.5% of the total primary energy consumption. The economic and social effect of its use is immeasurably higher due to the creation of an environment for small and medium-sized businesses, increasing the comfort of living conditions in remote areas of the republic.

Moreover, in all these energy sources and, in particular, in the electric power industry of solar installations, solar power plants, during direct conversion of solar energy into electrical energy using photo and thermoelectric transformations, renewable energy sources, laser systems, in the power supply systems of focusing and rotary electromagnets of elementary accelerators particles, in many domestic enterprises, as well as in control and management systems in irrigation and land reclamation, there is a problem of non-destructive quality control industrial production and the functioning of technological processes [2]. All these processes for the production of industrial products and the functioning of technological processes are characterized by the fact that their main quality control parameter is a large direct current (LDC), the value of which is used to judge the quality of industrial products and the functioning of technological processes. Its value is controlled by a number of measuring transducers (MT).

Important is the problem of improving the accuracy, reliability and cost-effectiveness of monitoring these technological processes, which together will improve the quality and quantity of industrial products and the stability of technological processes [3]. It is shown that the instability of the current control systems, the presence of additional resistance due to oxidation of the contacts lead to a decrease in the productivity of industrial facilities and devices, as well as powerful pumps in agriculture and water management, to their downtime, and large voltage drops on the shunts lead to unjustified losses capacities [4]. Moreover, the existing transducer have a narrow range of controlled currents, large dimensions and mass [5-14].

When analyzing the locations of non-destructive non-contact control of the (LDC), the main requirements for (MT) were identified. These include: high accuracy, reliability, sensitivity, low weight, dimensions, material consumption and cost, technological design, the absence of errors from the influence of external magnetic fields, a return bus with current from the center of the integrating circuit, ferromagnetic masses, residual magnetization and the presence of a variable component in controlled direct current, as well as the lack of galvanic connection between the measured direct current and the measuring circuit and the possibility in some cases of being fixed (MT) sensitivity regulation in a wide range of large direct currents converted and flexibility of the integrating circuit, and the implementation of (MT) as a portable or stationary [15].

2. Research Methodology
In this regard, it is very important to develop and study such (MT) that would have increased efficiency (an expanded range of convertible (LDC) with small dimensions and weight and increased accuracy, a simplified and technologically advanced design with low material consumption and cost) and expanded functionality (this is the possibility of conversion both constant and variable high currents).

As a result of the analysis of the studies, an urgent need was found at many facilities and enterprises, as well as in agriculture and water management of the Republic of Uzbekistan, for non-destructive non-contact testing (LDC) of power supply units from 30 A to 30 kA with the help of both
portable and stationary (MT) with an error of 1-3 %, applying in many cases multi-limit, as well as with a flexible integrating circuit (MT) non-destructive quality control. In addition, the calibration of electric meters at the place of their installation is an important necessity.

It has been established that none of the known and considered non-destructive quality control (MT) meets the requirements in full [16 - 37], which only the galvanomagnetic and magnetomodulating non-destructive quality control (MT) meet the above requirements, and that the main role in creating the optimal design of non-destructive (MT) non-destructive quality control belongs to the non-contact ferromagnetic transducer of non-destructive quality control of industrial products and functioning technological processes.

Therefore, the problem of increasing the efficiency and expanding the functionality of non-contact ferromagnetic transducers with distributed magnetic parameters for non-destructive quality control of industrial products and the functioning of technological processes for monitoring and control systems is relevant and promising.

The development of information universal non-contact transducers with advanced functionality UTAF for various monitoring and control systems can help to solve this problem.

We have developed a number of UTAF. Such UTAF allow converting direct and alternating currents in current conductors of any configuration, i.e. possess advanced functionality [38].

The figure (in Figure 1) shows the design of the developed magnetomodulation UTAF with advanced functionality (MUTAF). MUTAF with longitudinal modulation has a detachable closed magnetic circuit assembled from a charged U-shaped 1 and 2 longitudinal ferromagnetic elements. Through the through holes on the transverse rods 3 are wound in series connected modulation windings 4 connected to an AC source. Between the through holes on the transverse rods are measuring windings 5, connected in series in pairs and opposite. The detachable magnetic circuit is located in the insulating casing 6.

Figure 1. MUTAF with longitudinal modulation and transversely distributed magnetic parameters.

The location of the measuring windings 5 on the transverse rods of the U-shaped ferromagnetic elements 1 of the detachable magnetic circuit and their successive pairwise-on switching enable to significantly reduce the error from the influence of external magnetic fields due to the mutual compensation of the opposite directional EMF induced by external magnetic fields in the measuring
circuit, as well as the error from the influence of neighboring busbars with currents, which in general leads to an increase in the accuracy of control of large constant currents without breaking the circuit.

The consistent connection between each of two modulation windings 4 and their location on each transverse rod 3 made it possible to longitudinally modulate the magnetic resistance of the magnetic circuit in the path of the working magnetic flux Φ created by controlled direct current, and, therefore, have an increased MUTAF sensitivity.

The magnetic system in MUTAF ensures the passage of the working magnetic flux through the ferromagnetic elements and through the longitudinal gaps and allows you to convert large direct currents with a relatively high sensitivity converter and its small mass into the output signal. The implementation of the magnetic circuit in this form allows you to increase the total length of the magnetic flux in steel and thereby expand the current range of MUTAF. When converting large alternating currents, the modulation winding in MUTAF is turned off. The following is a technical description of the developed MUTAF.

MUTAF technical characteristic: range of controlled constant m alternating currents - (0–5000) A; sensitivity - 0.1 mV / A; the magnitude of the reduced error is 1.5%; the diameter of the inner window of the detachable magnetic circuit - 140 mm; weight - 0.45 kg.

To calculate the MUTAF design, a mathematical model of the flow distribution in the MUTAF magnetic system was obtained, which represents the distribution law along the x coordinate of the magnetic flux Φ_x in the form:

$$\Phi_x = \frac{1}{K_1} I A_1 y^3 \cdot ch \frac{\gamma(2x-x_M)}{2} - \frac{K_2}{K_1} I^3 A_1^3 y^3 \cdot ch \frac{\gamma(2x-x_M)}{2},$$

(1)

Where A_1 – design parameter equal to

$$A_1 = \left[\left(2n + gX_MZ_{con} \right) \cdot \left(2r_{mid} th \frac{\gamma X_M}{2} + Z_0 y \right) + Z_{con} y \right] \left(ch \frac{\gamma X_M}{2} \right)^{-1}.$$

(2)

Here

Z_0 – magnetic resistance of a longitudinal ferromagnetic rod;

Z_{con} - magnetic resistance of the flow converter to the subsequent signal in the path of the working magnetic flux;

n - the number of air gaps in the corrugated magnetic circuit on one side;

$$K_1 = \frac{4gd}{S_{cm}}, \quad K_1 = \frac{4gq}{S_{cm}},$$

where in turn q and d – approximation coefficients.

In Figure 2 the calculated (solid line) and experimental (dashed line) magnetic flux distribution curves are shown Φ_x at direct current $I = 1000$ A for a transducer having the following geometric dimensions: $h_1 = 4 \cdot 10^{-3}$ m; $h = 4 \cdot 10^{-3}$ m; $b = 1.5 \cdot 10^{-3}$ m; $X_w = 50.5 \cdot 10^{-3}$ m; $n = 13$; $\rho_{min} = 920$ m / Gn; $\rho_{max} = 4200$ m / Gn; $d = 920$ m / Gn; $q = 2100$ m5 / (Vb·Gn); $g = 1.1 \cdot 10^6$ Gn / m; $Z_{con} = 9.275 \cdot 10^3 l / Gn$.

The material of the magnetic circuit was electrical steel of the ARMCO type.

The error in calculating the magnetic flux of a mathematical model does not exceed 5-6%. This mathematical model can be widely used in the calculation of UTAF and various transducers with transversely distributed magnetic parameters.
3. Discussion
The developed MUTAF has a wide controllable range, low weight and high sensitivity. This is ensured by a significant increase in magnetic resistance due to an increase in the length of the working magnetic flux over steel and the inclusion of longitudinally spaced gaps and transverse gaps along its path and the use of longitudinal modulation along the integration office around the perimeter of the detachable magnetic circuit. Below is the technical description of one of the developed and farms, as well as the electric power industry of "smart" cities and houses, and for checking electricity meters at the place of their installation [39].

The transducer has a simple and technological design at low material consumption and cost and can control large direct currents, as well as alternating currents without contact. The work shows the flow distribution in the transducer, taking into account the magnetization curve and distributed parameters, and gives the main technical characteristics and parameters of one of the developed transducers.

MUTAF technical characteristic: range of controlled constant alternating currents - (0–5000) A; sensitivity - 0.1 mV / A; the magnitude of the reduced error is 1.5%; insulation voltage - 2 kV; the diameter of the inner window of the detachable magnetic circuit - 140 mm; weight - 0.45 kg.

The developed MUTAF can be widely implemented in various monitoring and control systems in the electric power industry for solar installations, solar power plants, renewable energy sources, with direct conversion of solar energy into electrical energy using photo and thermoelectric transformations, renewable energy sources, laser systems, in industry, as well as in control and automation systems in agriculture, water and farms, as well as in the electric power industry of smart cities and houses, and for checking electric electricity meters at the place of their installation, located even in remote geographic zones of Uzbekistan.
4. Conclusions
The information universal magnetomodulating non-contact transducers of large direct and alternating currents have been developed for modern monitoring and control systems in solar and laser technology, renewable energy sources, industry, agriculture, as well as for checking electric meters at the installation site, characterized by an extended controlled range of transformed direct and alternating currents with small dimensions and mass, increased accuracy and sensitivity, simplicity and technical the environmental friendliness of the design at its low material consumption and cost and the possibility of noncontact monitoring of currents with an error of 1.5%, as well as for monitoring electricity and checking electricity meters at the place of installation.

Acknowledgements
The study was supported by TIIAME.

References
[1] Zakhidov R A 1999 Status and prospects of using renewable energy sources in Uzbekistan. Tr. International Business and Investment in the Field of Renewable Energy in Russia. M; Research Institute "Engineer"
[2] Kadyrov Sh M and Mukhitdinov M M 1994 Modeling and quality management of industrial products. Tashkent: Fan, p 126
[3] Mukhamedkhano T U 2008 Concepts and methods for constructing quality control systems for technological environments of industrial production, Abstract of thesis ... doc. those. Sciences, Tashkent
[4] Spector S A 1988 Measurement of large constant currents. Leningrad: Energy, p 136
[5] Bolotin O, Portnoy G and Razumovsky K 2012 Primary sensors for energy enterprises, Energy Security and Energy Saving, No. 5, pp 28 – 32
[6] Danilov A 2004 Modern Industrial Current Sensors, Modern Electronics, No. 10, pp 38 – 43
[7] Bolotin O, Portnoy G and Razumovsky K 2016 Modern sensors for measuring current and voltage, ISUP, No. 1 (61), pp 18 – 25
[8] Gilardi M 2013 New Horizons of Hall Effect Current Sensor Technology, Power Electronics, No. 3, pp 48-52
[9] Kazansky V Ye 1988 Measuring current transducers in relay protection. Moscow: Energoatomizdat, p 240
[10] Gurtovtsev A L 2010 Optical transformers and current transducers. Principles of operation, device, characteristics? Electrical Engineering News, No. 5, pp 48-52
[11] Khushbokov B Kh 2010 Multidimensional current transformers for control systems of power supply devices of railway transport, Dis. ... can. those. Sciences, Tashkent State Technical University, Tashkent
[12] Amirov S F, Safarov A M, Rustamov D Sh and Ataullaev N O 2019 High-current electromagnetic transducers for traction power supply systems, Tashkent: Fan, p 279
[13] Kazakov M K 1998 Methods and means of measuring high voltages and high currents in electric power, Abstract. dis. ... doc. those. Sciences, Ulyanovsk
[14] Safarov A M 2006 The use of current transducers in systems of technical diagnostics of electrical equipment – Proc. Int. scientific and technical conf. “Current status and prospects for the development of energy”. - Tashkent, Tashkent State Technical University- pp 173 – 175
[15] Plakhthev A M 2017 Effective information non-contact transducers for modern control systems in the agricultural sector – Int. scientific and practical conf. “Agricultural science - to agriculture” - Collection of scientific articles. Barnaul, pp 37-39
[16] Lush M I 1996 Instr. and Control Syst., No. 5
[17] Borkman D 1997 Hochstrommessung mit Hallgeneratoren. - Elektr. Bd. 18, No. 2, pp 46-50
[18] Krämer W 1996 Gleichstrom - Wandlerschaltung hoher Genauigkeit für pp. 65 - 71 wellige Gleichstrom. - ETZ-A, No 18, pp 28 – 33
[19] Lappe F 1998 *Ein neues Meßgerät für hohe Gleichströme - Chemi-Ingenieur-Technik*, Bd. 42, No 19, pp 1228 – 1229
[20] Yuki T N 2016 *Electromagnetic noncontacting measuring apparatus*, US Patent No. 5234844, ICI G01R 27/04, NCI 324-58 of 11/18
[21] Bardahl N 2016 *Einrichtung zur Erfassung des Belastungstromes in Hochstromanlagen*, German Patent No. 3148654, Cl. 21e36 / 01 of 11.28
[22] Eadie E M 2015 *Complete specification improvements in multi-range hook-on electrical indication instrument*, UK Patent No. 3966443, NCI G1U of 12/21
[23] Standard Telephones & Cables LTD 2016 *Current monitoring circuits including hall effect devices*, UK Patent No. 4575111, ICI G01R 19/125, NCI GIU of September 17, No. 4773
[24] Tokyo Sh 2017 *Transducers*. UK patent No. 3036984, ICI G01R 19/22, NCI GIU dated 02.07, No. 4968
[25] Meierovich E A and Andreevskaia L I 2017 *Dispositif pour la mesure de l’intensité du courant*. French patent No. 4347944, ICI G01R of 02.24. No. 2
[26] Bernard G A 2000 *Transducteur électrique comportant un moyen de codage et un paramètre du transducteur*, French Patent No. 3955731, ICI G01D 18/00, 3/04; G01F 25/00 from 02/01/No. 1
[27] Reich E 2018 *Elektricky měřicí přístroj*, Czech Patent No. 2145015, ICI 21e3601 dated 04/15
[28] Zoltan L 2015 *Aramlökest merö müszer*, Hungarian Patent No. 2146340, ICI 21e 29-36 of 11/30
[29] Hitachi, Ltd., Chiyoda-ku Tokyo 100 (JP) 2017 *Magnetoelectrical transducer*. Japan Patent No. 3257766, ICI G01D 5/16 of 08/18/No. 33
[30] [30] Brodovsky V N and Korzhanov B M 2017 *Current transformer*. A.C. 3592239, MPK21e3601. - 5.01. Bull. 4.
[31] Yoshihiro K and Masaru S 2009 *Electric current measure apparatus*. Japan Patent ICI G01R 1 dated 05.21. CN204154795U
[32] Chjan Li 2015 *Stripping electrical measuring one meter*. ICI G01R 19 dated 02.11. CN204154795U(China)
[33] Michel L and John Sh 2019 *Power amplifier saturation detection*. ICI G01R from 03/05/ US10224917B2(Korea)
[34] Andreas J 1995 *Method of measuring current in a conductor in an ac transmission network*. ICI G01R from 03/08/WO19945020765A1(Italy)
[35] Horst K and Frank K 2019 *Highly accurate current measurement*. ICI G01R 02/13/ EP2821799A1(European patent office)
[36] Rudolf G and Markus A 2008 *Configuration of magnetoresistive sensors for current measurement*. ICI G01R dated July 22, ES2591283T3 (Spain)
[37] Wolfgang G and Jean-Pierre D 2011 *Method of opening a bypass switch of a high voltage direct current network*. ICI G01 09/21/CA2848930C(Canada)
[38] Plakhtiyev A M and Akhmedov S U 2014 *Condition of application and development of non-contact ferromagnetic transducers in electrochemistry and metallurgy - Eighth Int. Conf. on Intelligent Systems for Industrial Automation. WCIS. ISBN: 3-933609-8. Tashkent, - pp 326 – 329
[39] Plakhtiyev A M and Gaziev G A. 2019 *A study on Electrical Energy Measuring Device in installation place*. –J.:CHEMICAL TECHNOLOGY.CONTROL AND MANAGEMENT. ISBN: 1815-4840. Tashkent, No6 (90) - pp 25-29