Nutritional value of *Acacia amentacea* and *Parkinsonia texana* grown in semiarid conditions

Tilo G. Domínguez-Gómez,¹ Arturo S. Juárez-Reyes,¹ María A. Cerrillo-Soto,¹ Maribel Guerrero-Cervantes,¹ Humberto González-Rodríguez,² Emilio Olivaes-Sáenz,³ Roque G. Ramírez-Lozano,⁴ María Del Socorro Alvarado¹

¹Facultad de Medicina Veterinaria y Zootecnia, Universidad Juárez del Estado de Durango, Mexico
²Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Mexico
³Centro de Agricultura Protegida, Universidad Autónoma de Nuevo León, Mexico
⁴Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Mexico

Abstract

In order to evaluate the nutritional value of *Parkinsonia texana* and *Acacia amentacea*, two leguminosae species of the Tamaulipan scrubland, Northeastern Mexico, two experiments were carried out: the first tested the effects of season and browse species on chemical composition as nutritional variable to small ruminants; the second tested the effect of the addition of PEG as individually they were significantly different (P<0.001) fermentation parameters and while purines and PF decreased. Results indicate that chemical composition and fermentation parameters vary according to seasons and species. PEG addition increases the fermentation parameters, which indicates that PEG counteracts the detrimental effects of secondary components of samples. Data suggest that using both species combined could supply necessary nutritional requirements to small ruminants in the Tamaulipan scrubland.

Introduction

Native species are characterised by a wide range of growth patterns, diversity in leaf longevity, dynamics and contrasting phenological development (Reid et al., 1990). Rangeland owners frequently use foliage from native trees and shrubs species during dry periods as green forage to livestock, in addition to fruit and litter fall (González et al., 2010). The knowledge of native vegetation allows the establishment of management programmes for increasing biodiversity, higher biomass production, to improve nutritional quality and promote sustainability (Rosaees and Gill, 1997). The cattle’s ranching was practiced for 350 years in some areas of Tamaulipan scrubland from Northeastern Mexico. Long-term consequences of grazing were quality and quantity losses in forage species (Forthoubakheh et al., 2009). Currently, shrub species of the Fabaceae family, particularly *A. amentacea* and *P. texana*, are part of the dominant species of this area in Northeastern Mexico (Estrada and Jurado, 2005). These species have foliage throughout the year, with enough contents of crude protein (CP) and dry matter (DM) for facing the demands of small ruminants grazing in different physiological conditions (Ramirez and Gonzalez, 2010). Those tannins-rich species have an agronomic advantage of adaptation to biotic and environmental stresses (Getachew et al., 2000) over the non tannin-containing plants; therefore, the use of these species for livestock could ensure animal production. However, shrubs quality can be affected by the maturity of plant, soil management and secondary metabolites, such as condensed tannins, which form different complexes with plant compounds including protein and decreasing digestibility (Waghorn, 2008). When foliage of shrubby species combines, high organic matter (OM) digestibility and low CH₄ production are potentially able to reduce the enteric CH₄ and increase ruminant productivity. The knowledge of the CH₄ levels produced by the two native shrubby species should allow producers to adapt their production systems in order to reduce the emissions of this compound; for this reason, decreasing losses of CH₄ have become a research priority (Alexander et al., 2008). The main sources of metabolisable protein are undegraded protein and microbial protein reaching the duodenum, being the microbial protein the most important part. Thereby, purine content represents the net microbial protein synthesis which reflects the efficiency of microbes to transform carbon and nitrogen into microbial mass (Getachew et al., 2000). Studies performed with gas production (GP) technique are of special interest as they provide kinetic information with small amount of samples. Moreover, in vitro gas technique is more efficient than other procedures in the evaluation of the effects of tan-
nins and other anti-nutritive factors (Makkar, 2003). The addition of binders such as polyethylene glycol (PEG) has been used in order to decrease the tannin activity in plants, as an alternative to improve the quality of fodder; then, an increase of in vitro GP indicates the effect on the activity of tannins in feeds (Getachew et al., 2000). Despite the diversity of floristic, ecological, biological and physiologic studies developed about native plants in arid and semi-arid regions, only sparse information exists about the nutritive value of shrubby species grown in the Tamaulipan scrubland (López et al., 2014). Thus, the objectives of this paper were: i) to know the chemical composition and fermentation kinetics of A. amentacea and P. texana. Fifty-four samples per season were collected from three experimental plots (50x50 m) which were established randomly at each site. Leaves were separated from twigs, kept in paper bags and air-dried prior to oven-drying at 60°C for 48 h (Pardo et al., 2007), then ground in a Willey mill (Model 3383; Thomas Scientific, Swedensboro, NJ, USA) using a N° 60 (1×1 mm) mesh and stored in labeled plastic containers, until the analyses were performed.

Chemical composition

Samples by triplicate of each plant species were subjected to chemical analyses. The DM (934.01), OM (942.05), CP (#954.01) and ether extract (EE; #929.29) contents were determined as described by AOAC (1997). The neutral detergent fibre (NDFom) was completed following Van Soest et al. (1991). The condensed tannins (CT) were determined using butanol/HCl (95:5 v/v) and ferric ammonium sulfate (20 g/L HCl) as reagents and leuco-cyanidin (1 mg/mL aqueous acetone, 700 mL/L) as standard. Absorbance was measured against a blank at 550 nm (Makkar, 2003).

In vitro fermentation

Inoculum was obtained from three criollo fistulated sheep (60±3.7 kg live weight) fed with (750:250) alfalfa hay [CP=18% DM; NDF=50%; metabolizable energy (ME)=2.1 Mcal/kg DM] and a concentrate [CP=18% DM; NDF=18%; ME=2.3 Mcal/kg DM]. The rumen fluid was flushed with CO2 and filtered through three layers of cheese cloth and mixed (1:2, v/v) with mineral buffer solution under anaerobic condition (Makkar, 2003). Approval of the procedures was gained from The Animal Care and Use Committee of the Universidad Juárez del Estado de Durango, Mexico.

Mineral buffer solution used to measure tannins effects with PEG was prepared according to Menke and Steingass (1988), and it contained per L: NaHCO3, 35.0 g; NH4HCO3, 4.00 g; Na2HPO4, 5.7 g; KH2PO4, 6.2 g; MgSO4•7H2O, 0.6 g; CaCl2•H2O, 13.2 g; MnCl2•H2O, 10.00 g; CoCl2•6H2O, 1.00 g; FeCl2•6H2O, 0.8 g; O2, 0.1 g; and 49 mL of freshly prepared reduction solution containing 580 mg Na2S•9H2O and 3.7 mL NNaOH solution. The mixture was kept stirred, under CO2 flushing at 39°C, using a magnetic stirrer fitted on a water bath at 39°C.

To estimate kinetic parameters of GP, results (mL/g DM) were fitted to the PROC NLIN procedure according to France et al. (2000) as:

\[A = b \times (1 - e^{-ct}) \]

where \(A \) is the total volume of GP (mL/g DM) at time \(t \) (h); \(b \) is the asymptotic GP (mL/g DM); \(c \) is the rate of GP (h); and \(L \) (h) is the discrete lag time prior to GP.

The ME was calculated from in vitro GP in accordance with the equation:

\[\text{ME (Mcal/kg DM)} = 2.20 + 0.136 \times \text{GP}_{24h} + 0.057 \times \text{CP} + 0.0029 \times \text{EE} \]

where GP is the GP after 24 h of incubation, CP is the crude protein (g/kg DM), EE is the ether extract (g/kg DM) (Menke and Steingass, 1988).

In vitro true organic matter digestibility

To estimate the in vitro true organic matter digestibility (IVTOMD), samples (250 mg DM) in triplicate from each shrub species were weighted and placed in Ankrom F57 filter bags and incubated during 48 h in a Daisy® incubator (Ankrom Technology, Macedon, NY, USA). This method offers more precise predictions than conventionally determined digestibility estimates (Adesogan, 2005). To complete the analysis of 216 samples for IVTOMD, three runs of incubations were performed according to procedures described by Anassori et al. (2012). A salivary buffer solution was prepared according to the procedure recommended by Ankrom Technology. The A solution was made by dissolving, in distilled water, 10 g/L of KH2PO4, 0.5 g MgSO4•7H2O, 0.5 NaCl, 0.1 g CaCl2•2H2O, and 0.5 urea. B solution was prepared by dissolving in distilled water, 15 g/L of...
Na$_2$CO$_3$ and 1.0 Na$_2$S 9H$_2$O. After that, a combined buffer solution was prepared by combining ~266 mL of B solution and 1330 mL of A solution (1.5 ratio). Finally, before starting to incubate samples, 400 mL of rumen fluid were added to each jar containing the 1600 mL of combined A/B mixture, pre-warmed up to 39°C, and purged with CO$_2$ gas for 30 sec (1 filter bag per jar was used as blank). Rumen fluid was obtained as before. Samples were then treated with neutral detergent solution, washed, dried overnight at 55°C, burned and weighed to determine OM losses. The partitioning factor (PF) was calculated as the ratio between truly degraded OM (%):

$$
\text{PF} = \frac{\text{OMD} - \text{OM}}{\text{OM}}
$$

where, OMD is the fraction of gross energy of the substrates that is transformed into methane (%), and x is dE (%).

Statistical analyses

Experiment 1 considered two factors: seasons (4) and shrub species (2) with 27 replications. Data were analysed using the computer statistical software for Windows SPSS (2009) with the statistical model:

$$
Y_{ijkl} = \mu + \tau_i + \rho_j + (\rho\tau)_{ij} + \epsilon_{ijkl}
$$

where: Y$_{ijkl}$ is the measured parameter of the ijk experimental unit, μ is the overall mean, τ_i is the effect of species, ρ_j is the experimental error to evaluate species, ρ_j is the effect of season, ϵ_{ijkl} is the experimental error to evaluate interaction effects. Data from experiment 2 were evaluated using the statistical model:

$$
Y_{ijkl} = \mu + \tau_i + \psi_j + (\tau\psi)_{ij} + (\psi\tau)_{ij} + (\tau\psi\tau)_{ijkl} + \epsilon_{ijkl}
$$

where: Y$_{ijkl}$ is the measured parameter of the ijk experimental unit; μ is the overall mean; τ_i is the effect of species; ψ_j is the effect of PEG; ϵ_{ijkl} is the experimental error to evaluate PEG; $\tau\psi$ is the interaction of species×PEG; and ψ is the experimental error to evaluate interaction effects. Pearson correlation coefficients between the chemical composition of shrub foliage and the rumen fermentation parameters were also performed (Table 1).

Results

Effect of season and plant species on chemical composition of substrates (experiment 1)

The effect of seasons and plant species on DM, OM, NDF, CT, CP, IVTOMD and gross energy losses (GEL) are shown in Table 2. The interaction season×species affected (P<0.001) DM, CT, CP, IVTOMD and GEL, but there was no effect of this interaction on OM and NDF (P>0.05). Seasons affected the entire chemical components (P<0.001), while species did not affect the OM content (P>0.05). The content of OM and NDF decreased in the studied species from spring to summer and increased their content through autumn and winter. The CT content did not change across the spring to summer, although decreased from summer to autumn; after that, only slightly variations were observed from autumn to winter. In both species, the CP increased throughout spring to winter, mainly in *P. texana*. The IVTOMD progressively increased in *P. texana* from spring to winter, whereas *A. amantacea* had similar

Table 1. Pearson correlation coefficients among chemical composition, in vitro fermentation parameters, digestibility and gross energy losses of leaves of two native shrub species in Northeastern Nuevo Leon, Mexico.

| | OM | NDF | CT | CP | NSC | ME | IVTOMD | GEL | A | c | L | P | PF |
|--------|------------|------------|-------------|--------------|------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| DM | -0.147* | 0.105 | -0.132 | -0.294** | 0.213** | 0.141* | 0.197** | -0.217** | 0.173* | 0.189** | 0.099 | 0.055 | -0.116 |
| OM | 0.073 | 0.022 | 0.006 | -0.098 | -0.210** | -0.089 | 0.053 | -0.103 | -0.096 | -0.001 | -0.131 | 0.075 | |
| NDF | 0.139* | 0.112 | -0.606** | 0.016 | 0.093 | -0.088 | 0.040 | -0.062 | 0.002 | 0.084 | -0.104 | -0.145* | |
| CT | -0.092 | -0.342** | -0.359** | -0.702** | -0.707** | -0.731** | -0.630** | -0.308** | 0.151* | 0.065 | | | |
| CP | -0.224** | 0.055 | 0.025 | 0.004 | -0.017 | -0.046 | 0.045 | -0.013 | 0.078 | | | | |
| NSC | 0.199* | 0.478** | -0.477** | 0.443** | 0.347 | -0.022 | -0.050 | -0.056 | | | | | |
| ME | 0.575** | 0.548** | 0.361** | 0.328 | 0.366** | 0.228** | 0.356** | | | | | | |
| IVTOMD | 0.923** | 0.818** | 0.868** | | 0.068 | 0.246** | -0.054 | -0.217** | | | | | |
| GEL | -0.868** | 0.751** | 0.235** | -0.135** | -0.194** | | | | | | | | |
| A | 0.420** | -0.140** | -0.137* | | | | | | | | | | |
| c | -0.233** | | | | | | | | | | | | |
| L | 0.091 | -0.028 | | | | | | | | | | | |
| P | | | | | | | | | | | | | |
| PF | | | | | | | | | | | | | |

OM, organic matter (%DM); NDF, neutral detergent fibre (%DM); CT, condensed tannins (%DM); CP, crude protein (%DM); NSC, non-structural carbohydrates (%DM); ME, metabolisable energy (Mcal ME/100g DM); IVTOMD, in vitro true organic matter digestibility (%); GEL, gross energy losses (% as methane production); A, total gas production (mL g DM$^{-1}$); c, the rate of gas production (h$^{-1}$); L, the initial delay before gas production begins (h); P, purines (µmol); PF, partitioning factor; DM, dry matter (%). *P<0.05; **P<0.01.
digestibility throughout summer to winter. The GEL decreased for both species throughout the seasons. Higher CP content and IVTOMD were registered in *P. texana*, while the higher values of NDF, CT content and GEL were observed in *A. amentacea*.

Effect of polyethylene glycol addition on fermentation parameters (experiment 2)

The effect of PEG on total GP (A), fractional rate of GP (c), lag phase (L), PF and ME throughout the seasons is shown in Table 3. The interaction species*PEG*season affected (P<0.001) the A, L, PF and ME values in all seasons, but no effect (P>0.05) was observed on c values and purine content. The studied species are significantly different (P<0.001) with respect to their fermentability. *P. texana* have higher values of total GP, fractional rate of GP and metabolisable energy. The interaction species*PEG*season affected (P<0.001) the values of purines, PF and ME; contrarily, the A, c and L parameters were not affected (P>0.05). The interaction season*PEG affected significantly (P<0.001) total gas produced, lag phase, PF and ME. The interaction species*season affected (P<0.001) overall fermentation parameters, except the lag phase. Season also affected (P<0.001) the fermentation parameters, except total GP (P>0.05).

Discussion

Chemical composition of substrates (experiment 1)

Significant differences in chemical composition among seasons in native browse plants have been reported by others (Lovett et al., 2006). Environmental changes alter the nutritional quality of plants; in this way, high temperatures and the development of its water transport system (xylem) increased the NDF content (Hoffman et al., 2007). Wide variations of NDF content in the studied species throughout the seasons (33 to 49%) could result from chemical modifications of leaf tissue due to foliage advancing in phenological stage (Ramírez-Lozano, 2004).

Slight variations in CT content in *A. amentacea* were registered through seasons (18 to 20%); conversely, CT content in *P. texana* was clearly affected by the seasons, decreasing from 12.4% in spring when the regrowth of shrubs to 6.6% in autumn and winter in the presence of rain (Figure 1). Content of CT is also affected by the phenological stage. This

![Figure 1. Air temperature mean and monthly rainfall recorded during the course of the study. The arrows indicate the drought (D) and rainfall (R) periods at the study sites.](image)

Table 2. Effect of seasons and plant species on chemical composition, *in vitro* true organic matter digestibility and gross energy losses of leaves of two native shrub species in Northeastern Nuevo León, Mexico.

Species	DM, %	OM, % DM	NDF, % DM	CT, % DM	CP, % DM	EE, % DM	IVTOMD, %	GEL, % (as methane production)
A. amentacea								
Spring	95.9	85.9	52.8	18.5	15.0	0.6	42.6	7.1
Summer	96.9	80.1	45.4	20.3	13.6	1.0	46.8	6.9
Autumn	95.2	80.7	49.6	18.4	15.4	0.8	53.2	6.5
Winter	92.9	81.6	48.0	18.8	15.2	1.6	58.7	6.2
Mean	95.2	82.1	49.0	19.0	14.8	1.0	50.3	6.7
P. texana								
Spring	94.7	84.2	36.8	12.4	19.2	1.7	76.7	4.1
Summer	96.1	80.4	28.8	12.3	20.1	1.5	84.2	2.3
Autumn	93.6	81.9	32.8	6.6	22.2	1.5	84.2	2.3
Winter	91.6	84.2	32.6	7.4	21.6	1.6	82.5	2.7
Mean	94.0	82.7	32.8	9.7	20.8	1.6	81.9	2.9

Probability								
---------------	--------	----------	-----------	----------	---------	---------	----------	
A	***	ns	***	***	***	***	***	
B	***	***	***	***	***	***	***	
A*B	***	ns	ns	***	***	***	***	

SEM								
---------------	--------	----------	-----------	----------	---------	---------	----------	
A	0.14	0.90	0.16	0.19	0.19	0.03	0.21	0.06
B	0.27	1.13	0.80	0.41	0.25	0.06	0.14	0.18
A*B	0.32	1.39	0.61	0.50	0.39	0.06	1.14	0.16

DM, dry matter; OM, organic matter; NDF, neutral detergent fibre; CT, condensed tannins; CP, crude protein; EE, ether extract; IVTOMD, *in vitro* true organic matter digestibility; GEL, gross energy losses; A, species; B, season. ***P<0.001; ns, not significant.
effect is a well-known phenomenon previously described by Verdecia et al. (2013). High concentrations of CT are considered as one of the main factors of low nutritional value of native legumes, as it occurred with values of CT in this work because they cause a reduction of ME (r=−0.359; P<0.01) and IVTOMD (r=−0.702; P<0.01). These findings are in accordance with those reported by Ramírez-Lozano (2004), for different types of forages. The suppressing effect of CT on nutrients utilisation probably resulted from a reduction in microbial attachment to feed particles, as well as on their effects on the microbial population and on its enzymatic activity (Calabró et al., 2012).

Wide variations in CP content throughout seasons, as observed in this study (13 to 22%), are in accordance with other studies (Safari et al., 2011). Content of CP in A. amentacea and P. texana was lower at the beginning of spring (higher by almost 30% in P. texana), when the initial leaf growth is accompanied by a strong demand for nutrients, particularly N (Bahamonde, 2011). On the contrary, CP content increased from summer to winter when there is a new regrowth.

The IVTOMD progressively increased from spring to autumn in A. amentacea (43 to 59%), whereas P. texana had similar digestibility throughout spring to winter (76 to 84%). Wide differences in IVTOMD between species were identified, being P. texana higher in digestibility (mean=82%) as compared to A. amentacea (mean=50%). Seasonal differences in IVTOMD are closely related to NDF and CP content (Basha et al., 2014). Our results are at odds with this statement because these variables had non-significant (P>0.05) relationships with IVTOMD (NDF: r=−0.088 and CP: r=0.025). McSweeney et al. (1999) also observed that anti-nutritional factors were poorly correlated with DM digestibility; conversely, the IVTOMD was positively associated with the content of non-structural carbohydrates (NSC) and the A fraction (r=0.478; r=0.818; P<0.01) and negatively associated with the CT content (r=−0.702; P<0.01).

Gross energy losses as methane production decreased for both species throughout seasons, while the NSC contents increased (r=−0.477; P<0.01). The GEL remained in narrow limits through seasons in A. amentacea, whereas in P. texana varied within a range of 2.3 to 4.1%. For both species, higher values were found in spring when the CT is higher, which contribute to the high positive relationship between these variables (r=0.707). The GEL varies from 2 to 12%, depending on the IVTOMD of forages (Cambra-López et al., 2008), therefore a negative correlation is usually established between forage digestibility and CH4 emission, as in this study (r=−0.923; P<0.01). It is often claimed that forage-based diets generally result in higher enteric CH4 (Klevenhusen et al., 2011); nevertheless, a negative correlation albeit no significant (r=−0.932; P=0.068) was found between the tannin content and CH4 production (Guglielmetti et al., 2011), indicating that CH4 production consistently declined as the structural compounds content increased. Nevertheless, in this study GEL values were not related to the NDF (r=0.040; P>0.01), whereas the relationship with the NSC (data not shown) was negative (r=−0.477; P<0.01) as also found by Lovett et al. (2006).

Nutritional implications

The NDF contents of the species A. amentacea and P. texana (annual mean=40%) indicate high availability of nutrients. High concentrations of CT, such as 19% in A. amentacea, are one of the main factors of low nutritional value of forage legumes; however, CT has also has favourable effects such as increasing the by-pass protein. Results of Juárez et al. (2004) indicate that 60% of the metabolizable protein in the range goat’s diets comes from by-pass protein. Although CT content as high as 13% can reduce the population of substrate degrading bacteria, the effect on rumen microbial metabolism could be insufficient to alter the efficiency of microbial protein synthesis. Additionally, the antiparasitic

| Table 3. Effect of polyethylene glycol on fermentation characteristics, purines, partitioning factor and metabolisable energy of leaves of two native shrub species in northeastern Nuevo León, Mexico. |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | | | | | | |
| | PEG | A, mL/g DM | c, /h | L, h | P, μmol | PF, ME, Mcal kg DM |
| | | | | | | |
| A. amentacea | | | | | | |
| Spring | | | | | | |
| | 109 | 0.04 | 0.42 | 6.1 | 4.9 | 1.2 |
| + | 164 | 0.06 | 0.14 | 6.9 | 2.8 | 1.6 |
| Summer | | | | | | |
| | 97 | 0.02 | 0.40 | 7.1 | 5.9 | 1.9 |
| + | 163 | 0.06 | 0.59 | 5.5 | 3.0 | 2.0 |
| Autumn | | | | | | |
| | 89 | 0.04 | 1.03 | 15.2 | 7.2 | 2.2 |
| + | 157 | 0.06 | 0.93 | 13.2 | 3.7 | 2.1 |
| Winter | | | | | | |
| | 105 | 0.04 | 0.66 | 7.0 | 6.5 | 1.5 |
| + | 147 | 0.06 | 0.36 | 6.9 | 4.3 | 1.8 |
| Mean | 129 | 0.05 | 0.56 | 8.5 | 4.8 | 1.8 |
| P. texana | | | | | | |
| Spring | | | | | | |
| | 171 | 0.07 | 0.52 | 5.7 | 4.8 | 1.7 |
| + | 193 | 0.08 | 1.13 | 4.2 | 4.1 | 1.9 |
| Summer | | | | | | |
| | 186 | 0.06 | 0.49 | 7.3 | 4.8 | 2.2 |
| + | 208 | 0.08 | 1.28 | 6.4 | 4.1 | 2.2 |
| Autumn | | | | | | |
| | 188 | 0.07 | 1.45 | 9.6 | 4.7 | 2.4 |
| + | 202 | 0.08 | 1.88 | 11.5 | 4.3 | 2.4 |
| Winter | | | | | | |
| | 187 | 0.08 | 1.01 | 4.9 | 4.7 | 2.0 |
| + | 195 | 0.09 | 1.03 | 5.3 | 4.4 | 2.2 |
| Mean | 190 | 0.08 | 1.10 | 6.9 | 4.5 | 2.1 |
| Probability | | | | | | |
| A | *** | *** | *** | *** | *** | *** |
| PEG | *** | *** | *** | ns | *** | *** |
| A*PEG | *** | *** | *** | ns | *** | *** |
| B | ns | ns | ns | *** | *** | *** |
| A*B | *** | *** | *** | ns | *** | *** |
| A*PEG+B | *** | *** | ns | *** | *** | *** |
| A*PEG*B | ns | ns | ns | *** | *** | *** |
| SEM | | | | | | |
| A | 1.08 | 0.0008 | 0.042 | 0.218 | 0.048 | 0.011 |
| PEG | 1.08 | 0.0008 | 0.042 | 0.218 | 0.048 | 0.011 |
| A*PEG | 1.53 | 0.0011 | 0.060 | 0.308 | 0.069 | 0.016 |
| B | 2.42 | 0.0018 | 0.063 | 0.780 | 0.107 | 0.056 |
| A*B | 2.43 | 0.0018 | 0.073 | 0.384 | 0.128 | 0.022 |
| B*PEG | 2.43 | 0.0018 | 0.073 | 0.384 | 0.128 | 0.022 |
| A*PEG*B | 3.44 | 0.0025 | 0.104 | 0.544 | 0.182 | 0.032 |

PEG, polyethylene glycol; A, total gas production; c, the rate of gas production; L, the initial delay before gas production begins; P, purines; PF, partitioning factor; ME, metabolizable energy; A, species; B, season. ***P<0.001; ns, not significant.
Effect of tannins is far from being negligible, as demonstrated by Sandoval-Castro et al. (2012). Evaluated leguminosae species supply enough CP to meet the maintenance requirements (7 to 9%) and body weight gain (17%) for adult range small ruminants (National Research Council, 2007). Levels of 15% of CP in diets consumed by small ruminants provide 74 g/d of metabolisable protein, which ensure an adequate supply of N for maintenance of an adult range goat (Juárez et al., 2004). The values of IVTOMD of studied species were of medium quality in spring and summer (60%), whereas in autumn and winter (70%) they might be considered to be forages of good quality. A value of 1.2 Mcal/kg of ME in shrub species is low, whereas the ME requirement of maintenance for free ranging small ruminants is 2.1 Mcal/kg (National Research Council, 2007). Accordingly, the ME of studied species (mean value=1.9) would appear to be sufficient to satisfy the small ruminants maintenance requirements in late summer and autumn, whereas ME content of *A. amentacea* could not satisfy these requirements in winter and spring.

Plants with high PF values, as observed in this study, have a higher efficiency in microbial protein synthesis. This has positive implications in ruminant nutrition since it suggests that feedstuffs with high PF values can be used more efficiently. Nevertheless, high values of PF that are biologically deviated from conventional values (2.1 to 4.4) cannot be, by themselves, a sufficient measurement to evaluate the nutritive value of forages (Makkar et al., 2002). Levels of 15% of CP are similar to those obtained in *A. amentacea*. (Mbugua et al., 2012). This could be the case of *P. texana*, whose L increased (from 0.868 to 1.2 h) in presence of PEG. Plants having high values of lag phase would reflect the presence of chemical or structural constraints of the substrates (Menke and Steingass, 1988), as in this study (r=0.308; P<0.01).

Purine values, a measure of microbial protein synthesis in the rumen, showed an increase from 5.7 to 12.3 µmol in all four seasons of the year, after the addition of PEG. Purine content was higher in autumn (12.3 µmol), whereas the lower value was noted in spring, summer and winter (mean=6.3 µmol).

Addition of PEG to fermentations of tannin-containing legumes significantly improves the amount and rate of GP (Mbugua et al., 2008). An increase (mean=+11%) of rate of GP was observed throughout the seasons in studied samples. As expected, the rate of gas production c was faster after the addition of PEG (P<0.001) throughout the seasons in *P. texana* (0.088 h; increase of 42%) as compared to *A. amentacea* (0.069 h; increase of 21%). As expected, increase in the rate of GP after the addition of PEG is probably due to an increase in cellulolytic activity of microbial enzymes, by reducing negative effects of secondary compounds. The low values of c in *A. amentacea* may indicate that the substrate structure exhibits physical barriers that prevent its hydrolysis (Mbugua et al., 2008). In fact, values of this fraction are positively related to the amount of NSC (r=0.347; P<0.01) Guerrero et al. (2012) found values of 0.05% in shrub species consumed by small ruminants, which are similar to those obtained in *A. amentacea*.

Values of the initial delay before GP begins (L, h) were lower in spring and summer (0.05 h), intermediate in winter (0.083 h), and higher in autumn (1.2 h). In all four seasons, the addition of PEG decreased the L fraction by 20% for *A. amentacea*, while *P. texana* showed an increase of 52%. A lower value of L suggests an increase in the energy density of the substrates, which favours microbial growth and rapid colonization of the insoluble but potentially degradable fraction. However, this is not always the case, e.g., when the capacity of microorganisms that metabolise excess soluble material is at its maximum (mean of both species=23%), the onset of degradation of the insoluble fraction could take longer and the value of L would be higher (Dijkstra et al., 2002). This could be the case of *P. texana*, whose L increased (from 0.868 to 1.2 h) in presence of PEG. Plants having high values of lag phase would reflect the presence of chemical or structural constraints of the substrates (Menke and Steingass, 1988), as in this study (r=0.308; P<0.01).

The CH₄ production means a waste of the energy provided by forages. In grazing animals consuming low quality forage, the GEL can range from 7.7 to 8.4%, while in those consuming high digestibility forages, the GEL is reduced to 1.9 to 2.2% (Cambra-López et al., 2008). In this study, GEL in *P. texana* (IVTOMD=82%) was calculated as 2.9%, whereas in *A. amentacea* (IVTOMD=54%) it was 6.7%, which represents a value about 2.3 times higher. Thus, values of GEL in this study indicate that chemical composition of *A. amentacea* leads to higher losses of gross energy as compared to *P. texana*.
are largely insoluble in neutral detergent and may contribute to the undegradable fraction (Makkar et al., 1995). The calculated IVTOMD:gas production ratio (PF) indicate that when feed is metabolised by rumen microbes, the degraded component is either incorporated into microbial biomass production or fermented (Mbugua et al., 2008). In this way, the increase in GP after PEG addition in both species could simply result in lower partitioning of nutrients to microbial protein synthesis and reduced PF values (Sallam et al., 2010). High values of PF that are biologically deviated from conventional values (2.1 to 4.4) cannot be, by itself, a sufficient measurement to evaluate the nutritive value of forages (Makkar et al., 1998).

Metabolizable energy content (Mcal/kg DM) was influenced by seasons and species. According to all seasons of the year, the ME increased from 1.5 to 2.3 after the addition of PEG. Concerning the studied species, ME content increased by 13% in A. amentacea, after the addition of PEG, whilst the increased percentage in P. texana was not evident. Data indicate that there was an overall increase in ME content for A. amentacea and P. texana from the summer to fall. Differences in ME among feeds might reflect the variation in NSC (r=0.199; P<0.01) as reported by Anassori, E., Dalir-Naghadeh, B., Pirmohammad, R., Taghizadeh, A., Arzieraei, S., Farahmand-Azar, S., Besharati, M., Tahmoozi, M., 2012. In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil and monensin. Vet. Res. Forum 3:5-11.

Andrieu, J., Demarquilly, C., 1987. Valeur nutritive de fourrages: tables et prévision. Bull Tech CRZV Theix INRA 70:61-73.

AOAC, 1997. Official methods of analysis. 16th ed., Association of Official Analytical Chemists, Gaithersburg, MD, USA.

Bahamonde, H., 2011. Efecto de variables ambientales sobre la Productividad Primaria Neta Aérea y la concentración de proteína bruta de gramíneas en Sistemas Silvopastoriles de álamo (Nothofagus antarctica). Degree Diss. Universidad de Buenos Aires, Argentina.

Basá, N.A.D., Peter, S.F., Ahmed, M.A., Nsahlai, V., 2014. Effects of season, browse species and polyethylene glycol addition on in vitro degradability of forages in the sub-humid subtropical savannah, South Africa. J. Sci. Food Agr. 6:153-161.

Calabrò, S., Guglielmelli, A., Iannaccone, F., Danielli, P.P., Tudisco, R., Ruggiero, C., Piccolo, C., Cutrigelli, M.I., Infascelli, F., 2012. Fermentation kinetics of sainfoin hay with and without PEG. J. Anim. Physiol. An. N. 95:842-849.

Cambra-López, M., García-Rebollar, P., Estellés, F., Torres, A., 2008. Estimación de las emisiones de los rumiantes en España: el factor de conversión de metano. Arch. Zootec. 57:89-101.

Carmona, J.C., Bolivar, D.M., Giraldo, L.A., 2005. El gas metano en la producción ganadera y alternativas para medir sus emisiones y aminorar su impacto a nivel ambiental y productivo. Rev. Colomb. Cienc. Pec. 18:49-63.

Cone, J.W., Van Gelder, A.H., Soliman, I.A., De Visser, H., Van Vuuren, A.M., 1999. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage. J. Dairy Sci. 82:957-966.

Dijkstra, J., Mills, J.A.N., France, J., 2002. The role of dynamic modeling in understanding the microbial contribution to rumen function. Nutr. Res. Rev. 15:67-90.

Estrella, A.E., Jurado, E., 2005. Leguminosas del norte del estado de Nuevo León, México. Acta Bot. Mex. 73:1-18.

Foroughbakch, R., Hernández, P.J.L., Alvarado, V.M.A., Céspedes, C.E., Rocha, E.A., Cárdenas, A.M.L., 2009. Leaf biomass determination on woody shrub species in semiarid zones. Agroforest. Syst. 77:181-192.

France, J., Theodorou, M.K., Lowman, R.S., Beever, D.E., 2000. Feed evaluation for animal production. In: M.K. Theodorou and J. France. (eds.) Feeding systems and feed evaluation models. CAB International, Wallingford, UK, pp 1-9.

Getachew, G., Makkar, H.P.S., Becker, K., 2000. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Brit. J. Nutr. 84:73-83.

González, R.H., Ramírez, L.R.G., Cantú, S.I., Gómez, M.M.V., Uvalle, S.J.L., 2010. Composición y estructura de la vegetación en tres municipios del estado de Nuevo León. Polibotánica 29:91-106.

Guerrero, M., Cerrillo, S.M.A., Ramírez, R.G., Salem, A.Z.M., González, H., Juárez, R.A.S., 2012. Influence of polyethylene glycol on in vitro gas production profiles and microbial protein synthesis of some shrub species. Anim. Feed Sci. Tech. 176:32-39.

Guglielmelli, A., Calabrò, S., Primi, R., Carone, F., Cutrigelli, M.I., Tudisco, R., Piccolo, G., Ronchi, B., Danielli, P.P., 2011. In vitro fermentation patterns and methane production of sainfoin (Onobrychis vicifolia Scop.) hay with different condensed tannin contents. J. Brit. Grassland Soc. 1-13.

Hoffman, P.C., Lundberg, K.M., Bauman, L.M., Shaver, D.R., Contreras, G.F.E., 2007. The effect of maturity on NDF (neutral detergent fibre) digestibility. Focus on forage. University of Wisconsin ed., Madison, WI, USA.

INEGI, 2002. Uso actual del suelo en los núcleos...
os agrarios. Aspectos geográficos de Nuevo León. Instituto Nacional de Estadística, Geografía e Informática ed., Aguascalientes, Mexico.

Juárez, R.A.S., Cerrillo, S.M.A., Meza-Herrera, C.A., Nevarez, C.G., 2004. Diet composition, intake, plasma metabolites, reproductive and metabolic hormones during pregnancy in goats under semiarid grazing conditions. J. Agr. Sci. 142:697-704.

Khanum, S.A., Yaqoob, T., Sadaf, S., Hussain, M., Jabbar, M.A., Hussain, H.N., Kausar, R., Rehman, S., 2007. Nutritional evaluation of various feedstuffs for livestock production using in vitro methods. Pak. Vet. J. 27:129-133.

Klevenhusen, F., Kreuzer, M., Soliva, C.R., Makkar, H.P.S., Blümmel, M., Becker, K., 1995. In vitro fermentation patterns and methane production as influenced by tree and shrub foliage. A laboratory manual. Kluwer Academic Publ., Vienna, Austria.

Makkar, H.P.S., Blümmel, M., Becker, K., 1998. Formulation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in vitro techniques. Brit. J. Nutr. 73:897-913.

Makkar, H.P.S., Blümmel, M., Becker, K., 1999. Application of an in vitro gas method to understand the effects of natural plant products on availability and partitioning of nutrients. In: E.R. Deaville, E. Owen, A.T. Adesogan, C. Rymer, J.A. Huntington and T.L.J. Lawrence (eds.) In vitro techniques for measuring nutrient supply to ruminants. BSAS, Edinburgh, UK, pp 147-150.

Mbugua, D.M., Kiruiro, E.M., Pell, A.N., 2008. In vitro fermentation of intact and fractionated tropical herbageous and tree legumes containing tannins and alkaloids. Anim. Feed Sci. Tech. 146:1-20.

McSweeney, C.S., Palmer, B., Bunch, R., Krause, D.O., 1999. In vitro quality assessment of tannin-containing tropical shrub legumes: protein and fibre digestion. Anim. Feed Sci. Tech. 82:227-241.

Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55.

May, P.S., Perka, A., Phiri, E.C., Balthazary, S., Igusti, J., Hvelplund, T., Weisbjerg, M.R., Madsen, J., 2006. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arb 6:53-63.

Montgomery, D.C., 2004. Diseño y análisis de experimentos. Limusa Wiley, Mexico City, Mexico.

National Research Council, 2007. Nutrient requirements of small ruminants. Sheep, goats, cervids and new world camelds. National Academies Press, Washington, DC, USA.

Pardo, L.H., McNulty, S.G., Boggs, J.L., Duke, S., 2007. Regional patterns in foliar 15N across a gradient of nitrogen deposition in the northeastern US. Environ. Pollut. 149:293-302.

Ramirez, L.R.G., González, R.H., 2010. Forrajeras del noreste de México. In: V.M.A. Alvarado, E.A. Rocha and L.S. Moreno (eds.) De la lechuguilla a las bio- películas vegetales las plantas útiles de Nuevo León. Universidad Autónoma de Nuevo León, Monterrey, Mexico, pp 517-538.

Ramírez-Lozano, R.G., 2004. Nutrición del venado cola blanca. Universidad Autónoma de Nuevo León ed., Monterrey, Mexico.

Reid, N., Marroquín, J., Beyer, M.P., 1990. Utilization of shrubs and trees for browse, fuelwood and timber in the Tamaulipan thornscrub, northeastern Mexico. Forest Ecol. Manag. 36:61-79.

Rosales, M., Gill, M., 1997. Tree mixtures within integrated farming systems. Available from: http://www.fao.org/ag/aga/ agap/fg/irdr/irdr94/mauno94tl.htm

Rzedowski, J., 2006. Vegetación de México. Conabio, Villa de Talpan, Mexico.

Safari, J., Mushii, D.E., Kifaro, G.C., Mtenga, L.A., Eik, L.O., 2011. Seasonal variation in chemical composition of native forages, grazing behaviour and some blood metabolites of Small East African goats in a semi-arid area of Tanzania. Anim. Feed Sci. Tech. 164:62-70.

Sallam, S.M.A., Bueno, I.C.S., Godoy, P.B., Nozella, E.F., Vitti, D.M.S.S., Abdalla, A.L., 2010. Ruminal fermentation of tannins bioactivity of some browse using a semi-automated gas production technique. Trop. Subtrop. Agrocosyst. 12:1-10.

Sandoval-Castro, C.A., Torres-Acosta, J.F.J., Hoste, H., Salem, A.Z.M., Chan-Pérez, J.I., 2012. Using plant bioactive materials to control gastrointestinal tract helminths in livestock. Anim. Feed Sci. Tech. 176:192-201.

Singh, S., Kushwaha, B.P., Naga, S.K., Mishra, A.K., Singh, A., Anelec, U.Y., 2012. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Tech. 178:2-11.

SPSS, 2009. Statistical package for the social science, ver. 17. SPSS Inc., Chicago, IL, USA.

Thirumalesh, T., Krishnamoorthy, U., 2013. Rumen microbial biomass synthesis and its importance in ruminant production. Int. J. Livest. Res. 3:5-26.

Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary, neutral detergent fibre, and non-starch polysaccharides in relation to animal nutrition. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 74:3583-3597.

Verdecia, D.M., Herrera, R.S., Ramírez, J.L., Leonardi, I., Bodas, R., Andrés, S., Giráldez, F.J., González, J.S., Arceo, Y., Álvarez, Y., López, S., 2013. Efecto de la edad de rebrota en la calidad nutritiva de la Neonotonia wightii en el Valle del Cauto, Cuba. Available from: http://ediciones.ica.edu.cu/index.php/RCCA/article/view/278/260

Waghrorn, G., 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production: progress and challenges. Anim. Feed Sci. Tech. 147:116-122.

Forrajeras del noreste de México. In: E.R. Deaville, E. Owen, A.T. Adesogan, C. Rymer, J.A. Huntington and T.L.J. Lawrence (eds.) In vitro techniques for measuring nutrient supply to ruminants. BSAS, Edinburgh, UK, pp 147-150.