Rapid discovery of chemical constituents and absorbed components in rat serum after oral administration of Fuzi-Lizhong pill based on high-throughput HPLC-Q-TOF/MS analysis

Zhen Zhang1†, Maoyuan Jiang1†, Xinyi Wei1, Jinfeng Shi1, Zhao Geng2, Shasha Yang1, Chaomei Fu1* and Li Guo1*

Abstract

Background: Fuzi-Lizhong pill (FZLZP), which was first recorded in the Classic—“Taiping Huimin Heji Ju Fang” of the Song Dynasty, has been widely used to treat gastrointestinal disease in clinic for thousands of years in China. However, an in-depth understanding of the chemical constituents of FZLZP and its potential bioactive constituents is lacking.

Methods: A simple, sensitive and selective method of high-performance liquid chromatography coupled with quadrupole-time-of-flight high-definition mass spectrometry (HPLC-Q-TOF/MS) and automated data analysis (Agilent MassHunter Qualitative Analysis B.06.00 Workstation Software) was developed to simultaneously identify the chemical constituents of FZLZP and the absorbed prototypes as well as the metabolites in rat serum after the oral administration of FZLZP.

Results: Sixty-seven compounds, including alkaloids, flavonoids, triterpenes, gingerols, phenylpropanoids and volatile oil, in the FZLZP extract were tentatively characterized by comparing the retention time and mass spectrometry data and retrieving the reference literatures. Additionally, 23 prototype compounds and 3 metabolites in the rat serum samples were identified after oral administration of FZLZP, which might be the potential active components in vivo. In addition, the absorption of alkaloids decreased when Aconitum carmichaeli Debx. was in the form of combined application as a prescription compared to when it was in the form of herb powder.

Conclusions: Herein, the chemical constituent in vitro and the absorbed compounds in the serum of a traditional Chinese formula, Fuzi-Lizhong pill, were fully characterized using a rapid and comprehensive analysis approach based on high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry coupled to MassHunter Qualitative Analysis software data processing approach. The results provide helpful chemical information on FZLZP for further pharmacology and active mechanism research. In view of the bioactive constitutes that basically were derived from these absorbed compounds in vivo, this work could provide a useful strategy to explore the bioactive substances of traditional Chinese medicine.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Fuzi-Lizhong pill (FZLZP) is a popular Traditional Chinese medicine pill that was originally described in the Classic “Taiping Huimin Heji Ju Fang” of the Song Dynasty (year 1102 by the Western calendar). It is composed of five herbal medicines, including Aconitum carmichaeli Debx. (Fuzi), Codonopsis pilosula (Franch.) Nannf. (Dangshen), Atractylodes macrocephala Koidz. (Baizhu), Glycyrrhiza uralensis Fisch. (Gancao) and Zingiber officinale Rosc. (Ganjiang). FZLZP is famous for warming the middle-jiao and tonifying the spleen and is used to treat spleen yang deficiency syndrome including enteritis, chronic diarrhoea, irritable bowel syndrome, abdominal pain, vomiting and spasm, peripheral chill, etc. [1–7]. Modern pharmacological research shows that FZLZP possesses a variety of pharmacological activities, including an increase in adaptive thermogenesis, pain relief, anti-inflammation, and spasmolytic benefits [8–15]. Although pharmacological activities of FZLZP have been extensively studied, very little is known about its systematic chemical constituents, and the bioactive compounds that account for its therapeutic effects remain unclear.

In our previous research, we focused on the dissolution behaviour of FZLZP in vitro and the results showed that some constituents in Aconitum carmichaeli Debx. and Glycyrrhiza uralensis Fisch., such as benzoylaconine, liquiritin and glycyrrhizic acid, were dissolved well in vitro [16–18]. While FZLZP has the so-called active ingredients, there are no empirical data to prove their effectiveness as bioactive compounds. According to the theory of serum pharmacochemistry, while there are multiple components in herbs, only compounds that are absorbed into the blood have the possibility of showing pharmacological bioactivities [19–24]. Therefore, simultaneous identification of systematic chemical constituents in vitro and potential active components in the blood of FZLZP are indispensable.

In our previous research, we focused on the dissolution behaviour of FZLZP in vitro and the results showed that some constituents in Aconitum carmichaeli Debx. and Glycyrrhiza uralensis Fisch., such as benzoylaconine, liquiritin and glycyrrhizic acid, were dissolved well in vitro [16–18]. While FZLZP has the so-called active ingredients, there are no empirical data to prove their effectiveness as bioactive compounds. According to the theory of serum pharmacochemistry, while there are multiple components in herbs, only compounds that are absorbed into the blood have the possibility of showing pharmacological bioactivities [19–24]. Therefore, simultaneous identification of systematic chemical constituents in vitro and potential active components in the blood of FZLZP are indispensable.

In our previous research, we focused on the dissolution behaviour of FZLZP in vitro and the results showed that some constituents in Aconitum carmichaeli Debx. and Glycyrrhiza uralensis Fisch., such as benzoylaconine, liquiritin and glycyrrhizic acid, were dissolved well in vitro [16–18]. While FZLZP has the so-called active ingredients, there are no empirical data to prove their effectiveness as bioactive compounds. According to the theory of serum pharmacochemistry, while there are multiple components in herbs, only compounds that are absorbed into the blood have the possibility of showing pharmacological bioactivities [19–24]. Therefore, simultaneous identification of systematic chemical constituents in vitro and potential active components in the blood of FZLZP are indispensable.

In our previous research, we focused on the dissolution behaviour of FZLZP in vitro and the results showed that some constituents in Aconitum carmichaeli Debx. and Glycyrrhiza uralensis Fisch., such as benzoylaconine, liquiritin and glycyrrhizic acid, were dissolved well in vitro [16–18]. While FZLZP has the so-called active ingredients, there are no empirical data to prove their effectiveness as bioactive compounds. According to the theory of serum pharmacochemistry, while there are multiple components in herbs, only compounds that are absorbed into the blood have the possibility of showing pharmacological bioactivities [19–24]. Therefore, simultaneous identification of systematic chemical constituents in vitro and potential active components in the blood of FZLZP are indispensable.

In our previous research, we focused on the dissolution behaviour of FZLZP in vitro and the results showed that some constituents in Aconitum carmichaeli Debx. and Glycyrrhiza uralensis Fisch., such as benzoylaconine, liquiritin and glycyrrhizic acid, were dissolved well in vitro [16–18]. While FZLZP has the so-called active ingredients, there are no empirical data to prove their effectiveness as bioactive compounds. According to the theory of serum pharmacochemistry, while there are multiple components in herbs, only compounds that are absorbed into the blood have the possibility of showing pharmacological bioactivities [19–24]. Therefore, simultaneous identification of systematic chemical constituents in vitro and potential active components in the blood of FZLZP are indispensable.

In our previous research, we focused on the dissolution behaviour of FZLZP in vitro and the results showed that some constituents in Aconitum carmichaeli Debx. and Glycyrrhiza uralensis Fisch., such as benzoylaconine, liquiritin and glycyrrhizic acid, were dissolved well in vitro [16–18]. While FZLZP has the so-called active ingredients, there are no empirical data to prove their effectiveness as bioactive compounds. According to the theory of serum pharmacochemistry, while there are multiple components in herbs, only compounds that are absorbed into the blood have the possibility of showing pharmacological bioactivities [19–24]. Therefore, simultaneous identification of systematic chemical constituents in vitro and potential active components in the blood of FZLZP are indispensable.

Methods

The Minimum Standards of Reporting Checklist contains details of the experimental design, and statistics, and resources used in this study (Additional file 1).

Chemicals and materials

Nine reference compounds were obtained from Sichuan Victor Biological Technology Co. Ltd. (Chengdu China). HPLC grade Ethanol, formic acid and methanol were obtained from Fisher (ThermoFisher Scientific Inc, Waltham, MA, USA). Deionised water (18 MΩ) was prepared by distilled water through a Milli-Q system (Millipore, Milford, MA, USA). Fuzi (No. 1703003), Dangshen (No. 1705003), Baizhu (No. 1704088), Ganjiang (No. 1703060) and Gancao (No. 1703034) were purchased from Sichuan Neautus Traditional Chinese Medicine Co., Ltd. (Chengdu China) and were authenticated by Prof. Jin Pei, Department of Pharmacognosy of Chengdu University of Chinese Medicine.

Preparation of FZLZP

Fuzi, Ganjiang, Dangshen, Baizhu and Gancao were ground into fine powers and weighed according to the instructions recorded in Chinese Pharmacopoeia (2015 edition) and mixed well. Honey was heated at 116–118 °C until bright yellow uniform bubbles appeared on the surface and the honey became sticky. Mixed power and thermal refined honey were mixed at a ratio of 1:0.8 and were made into FZLZP (there is 0.153 kg crude aconite for every 1 kg FZLZP).
Preparation of FZLZP extract samples for LC/MS analysis
FZLZP (1.5 g) was weighed and reflux-extracted with 50 mL 70% ethanol for 1 h. Then, the filtered supernatant sample was rotary evaporated at 40 °C to a concentration of 15 mL, and was centrifuged at 5000 revolutions/min (rpm) for 5 min. The solution was filtered through a 0.22-μm membrane for further analysis.

Animal handling and serum sample preparation
Eighteen male Sprague–Dawley rats (200 ± 20 g) were obtained from the Sichuan Dashuo Biotechnology Co., Ltd. and were randomly divided into three groups of 6 rats each (group A, FZLZP group for dosed rat serum; group B, Fuzi powder (FZP) group for dosed rat serum; group C, control group for blank rat serum). The animals and protocols conformed to the Care and Use of Laboratory Animals published by the National Institutes of Health. The experiment was approved by the ethical committee of Chengdu University of TCM (No.20161105). The rats were housed in an animal room with a controlled environment (20–25 °C, 65–69% relative humidity, 12 h dark–light cycle), and were given water and fed normal food for 1 week before the experiment. All animals were fasted overnight before the experiments and had free access to water.

The FZLZP was dissolved in 0.5% CMC-Na and were grinded to prepare the FZLZP suspension (150 mg crude drug/mL). Fuzi powder was dissolved in 0.5% CMC-Na to prepare the FZPsuspension (23 mg crude drug/mL, the concentration of FuZi was calculated by the ratio in FZLZP). Group A was intragastric administration 1.5 g/kg body weight of FZLZP suspension for 3 days. Group B was intragastric administration 0.23 g/kg body weight of FZP suspension for 3 days. Group C was intragastric administration with an equivalent volume of 0.5% CMC-Na. Blood samples were collected from the abdominal aorta 45 min after oral administration on the 3rd day and were placed at room temperature for 1 h until solidification. Then, samples were centrifuged at 3000 rpm for 10 min at 4 °C. All samples were stored at −80 °C until analysis. Three times methanol was added to the 2 mL serum samples, vortexed and then, centrifuged at 12,000 rpm for 20 min. The supernatant was dried with nitrogen gas. The residue was redisolved in 50 μL methanol, vortexed and then, centrifuged at 12,000 rpm for 20 min, and the filtrate was used as the LC/MS sample. 10 μL aliquot was injected for HPLC/MS analysis.

HPLC-QTOF–MS analysis condition
Chromatographic analysis was performed in an Agilent 1290 HPLC system controlled with MassHunter Workstation Software (V B.05.00, Agilent Technologies Inc., Santa Clara, CA, USA). Samples were separated on an Agilent HC-C18 column (4.6 × 250 mm, 5.0 μm, Agilent Technologies Inc.) held at 35 °C and the flow rate was 1.0 mL/min with the injection volume of 10 μL. The mobile phase consisted of 0.1% formic acid–water (v/v, A) and methanol (B). The optimal gradient elution programme was as follows: 0–15 min, 95–70% A; 15–30 min, 70–48% A; 30–45 min, 48–25% A; 45–48 min, 25–15% A; 48–55 min, 15–2% A; and 55–65 min, 2–2% A.

Mass spectrometry conditions
Mass spectrometry was performed using an Agilent 6540 QTOF–MS (Agilent Corp., USA) equipped with a Dual AJS electrospray ionization (ESI) source, and the following operating parameters were used: positive mode, drying gas (nitrogen, N2); flow rate, 8.0 L/min; gas temperature, 325 °C; nebulizer, 40 psig; sheath gas temperature, 350 °C; sheath gas flow, 11 L/min; capillary voltage, 4000 V; skimmer, 65 V; OCT 1 RF Vpp, 750 V; fragmentor, 110 V. The sample collision energy was set at 10, 30 and 40 V. All the operations, acquisition, and analyses of data were controlled by Agilent LCMS-QTOF Mass Hunter Acquisition Software Ver. B.06.00 (Agilent Technologies Inc.) and operated under Mass Hunter Workstation Software Version B.06.00 (Agilent Technologies Inc.).

Establishment of FZLZP database
By searching databases, such as PubMed of the US National Library Medicine and the National Institutes of Health, SciFinder Scholar of American Chemical Society and the Chinese National Knowledge Infrastructure (CNKI) of Tsinghua University, all components reported in the literature on Aconitum carmichaeli Debx., Codonopsis pilosula (Franch.) Nannf., Atractylodes macrocephala Koidz., Glycyrrhiza uralensis Fisch. and Zingiber officinale Rosc. were summarized in an Agilent PCDL software Ver. B.06.00 (Agilent Technologies Inc.) to establish a database, which includes the name, molecular formula, chemical structure and literatures of each published known compound.

Results
Characterization of chemical constituents from FZLZP
Using the optimal conditions described above, all information on the MS data that was obtained from the robust HPLC-TOF-MS analysis, indicated the retention time and precise molecular mass and provided the MS/MS data. The protonated molecular weights of all target compounds were calculated within an error of 5 ppm. The base peak chromatogram (BPC) of the FZLZP extract sample in positive and negative ion modes are shown in Fig. 1A, and the data were processed by
Fig. 1 The HPLC-ESI/QTOF/MS BPC chromatograms (A FZLZP extract samples: a in positive mode, b in negative mode; B Serum samples: c controlled serum in positive mode, d dosed FZLZP serum in positive mode, e dosed FZP serum in positive mode.)
the Agilent MassHunter Qualitative Analysis B.06.00 Workstation Software with the “find compounds by molecular formula” tool. A total of 73 peaks were obtained, and 67 compounds were identified or tentatively characterized by comparing the \(t_R \) values and the MS fragment characteristics of the compounds.

The reference standards are summarized in Table 1 and their fragmentation mechanism are proposed in Fig. 2. The compounds in FZLZP which are identified by the reference standards are summarized and marked in Table 2. For example, reference standards (RS) 1 liquiritigenin in Table 1 were detected in the positive ion mode at the \(t_R \) in 24.843 min with the \(m/z \) of 257.0809 (C₁₅H₁₂O₄). Its

Table 1 Retention time, \(m/z \) values of ions of reference standards

Peak no.	Rt (min)	Systematic name	Molecular formula	\([\text{M} + \text{H}]^+\)	\([\text{M} + \text{Na}]^+\)	Fragmentations (m/z)	
			Measured mass (m/z)	Error (ppm)	Measured mass (m/z)	Error (ppm)	
1	24.843	Liquiritigenin	C₁₅H₁₂O₄	257.0809	0.3890		257.0809[\text{M} + \text{H}]^+, 239.0698[\text{M} + \text{H} − \text{H}_2\text{O}]^+, 137.0234[\text{C}_7\text{H}_4\text{O}_3 + \text{H}]^+, 120.0293[\text{C}_7\text{H}_4\text{O}_3 + \text{H} − \text{OH}]^+
2	27.507	Benzoylmesaconine	C₃₁H₴₃NO₁₀	590.2952	−1.3553	−−	590.2952[\text{M} + \text{H}]^+, 572.2832[\text{M} + \text{H} − \text{H}_2\text{O}]^+, 558.2683[\text{M} + \text{H} − \text{CH}_3\text{OH}]^+, 540.2580[\text{M} + \text{H} − \text{CH}_3\text{OH} − \text{H}_2\text{O}]^+
3	28.228	Benzoylaconine	C₃₂H₴₅NO₁₀	604.3130	2.3167	−−	604.3130[\text{M} + \text{H}]^+, 586.2995[\text{M} + \text{H} − \text{H}_2\text{O}]^+, 572.2852[\text{M} + \text{H} − \text{CH}_3\text{OH}]^+, 554.2735[\text{M} + \text{H} − 2\text{H}_2\text{O}]^+, 540.2577[\text{M} + \text{H} − \text{CH}_3\text{OH}]^+, 522.2475[\text{M} + \text{H} − 2\text{CH}_3\text{OH} − \text{H}_2\text{O}]^+
4	29.152	Benzylyhypoconine	C₃₁H₴₃NO₉	574.3003	−1.3930	−−	574.3003[\text{M} + \text{H}]^+, 542.2741[\text{M} + \text{H} − \text{CH}_3\text{OH}]^+, 524.2615[\text{M} + \text{H} − \text{CH}_3\text{OH} − \text{H}_2\text{O}]^+, 510.2477[\text{M} + \text{H} − 2\text{CH}_3\text{OH}]^+
5	31.663	Mesaconitine	C₃₃H₴₅NO₁₁	632.3064	−0.1582	−−	632.3064[\text{M} + \text{H}]^+, 600.2787[\text{M} + \text{H} − \text{CH}_3\text{OH}]^+, 572.2833[\text{M} + \text{H} − \text{AcOH}]^+, 540.2594[\text{M} + \text{H} − \text{AcOH} − \text{CH}_3\text{OH}]^+, 512.2637[\text{M} + \text{H} − \text{AcOH} − \text{CH}_3\text{OH} − \text{CO}]^+
6	39.648	Isoliquiritigenin	C₁₅H₁₂O₄	257.0809	0.3890		257.0809[\text{M} + \text{H}]^+, 239.0692[\text{M} + \text{H} − \text{H}_2\text{O}]^+, 137.0233[\text{C}_7\text{H}_4\text{O}_3 + \text{H}]^+, 120.0287[\text{C}_7\text{H}_4\text{O}_3 + \text{H} − \text{OH}]^+
7	48.854	Atractylenolide II	C₁₃H₂₀O₂	233.1538	0.8578		233.1538[\text{M} + \text{Na}]^+, 215.1440[\text{M} + \text{Na} − \text{H}_2\text{O}]^+, 187.1484[\text{M} + \text{Na} − \text{CH}_3\text{OH}]^+, 159.1165[\text{M} + \text{Na} − \text{CH}_3\text{OH} − \text{C}_2\text{H}_4\text{H}_2]^+, 145.101[\text{M} + \text{Na} − \text{CH}_3\text{OH} − \text{C}_2\text{H}_4\text{H}_2]^+
8	49.134	Glycyrrhizic acid	C₄₂H₆₂O₁₆	845.3947	2.0109		845.3947[\text{M} + \text{Na}]^+, 669.3614[\text{M} + \text{Na} − (\text{GluA} − \text{H}_2\text{O})]^+
9	55.125	Glycyrrhetinic acid	C₄₂H₆₂O₁₆	471.3458	−2.3337		471.3458[\text{M} + \text{H}]^+, 453.3349[\text{M} + \text{H} − \text{H}_2\text{O}]^+, 435.3244[\text{M} + \text{H} − 2\text{H}_2\text{O}]^+
Fig. 2 The mass fragment and fragmentation pathway of a Liquiritigenin, b Benzoylmesaconine, c Benzoylaconine, d Benzoylhypaconine, e mesaconitine, f Isoliquiritigenin, g Atractylenolide II, h Glycyrrhizic acid, i Glycyrrhetinic acid							
Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	[M + H]^+	Error (ppm)	Measured mass (m/z)
---------	----------	-----------------------------	-------------------	------------------	-----------	-------------	---------------------
1	5.091	L-Pyroglutamic acid	C_5H_7NO_3	129.0426	130.0505	4.6136	130.0505[\text{M+H}^+]
2	8.051	Codonopsine	C_{14}H_{21}NO_4	267.1471	268.1543	0	268.1543[\text{M+H}^+]
3	9.229	5-hydroxymethylfurural	C_5H_6O_3	126.0317	127.0394	3.1486	127.0394[\text{M+H}^+]
4	9.398	Karakolidine	C_{22}H_{35}NO_5	393.2515	394.2590	0.5072	394.2590[\text{M+H}^+]
5	10.142	Phenylalanine	C_9H_11NO_2	165.0790	166.0872	5.4188	166.0872[\text{M+H}^+]
6	11.288	Senbusine A	C_{23}H_{37}NO_6	423.2621	424.2696	0.4713	424.2696[\text{M+H}^+]
7	11.407	9-OH-senbusine A	C_{23}H_{37}NO_7	439.2570	440.2635	0.5490	440.2635[\text{M+H}^+]
8	12.042	16-β-hydroxycardiopetaline	C_{21}H_{33}NO_4	363.2410	364.2480	0.5490	364.2480[\text{M+H}^+]
9	12.389	Mesaconine	C_{24}H_{39}NO_9	485.2625	486.2697	0.2056	486.2697[\text{M+H}^+]
10	12.578	Songorine	C_{22}H_{31}NO_3	357.2304	358.2382	1.3957	358.2382[\text{M+H}^+]
11	12.908	Karakoline	C_{22}H_{35}NO_4	377.2566	378.2639	0	378.2639[\text{M+H}^+]
12	13.081	Isotalatizidine	C_{23}H_{37}NO_5	407.2672	408.2743	0.2449	408.2743[\text{M+H}^+]
13	13.109	Senbusine B	C_{23}H_{37}NO_6	423.2621	424.2707	3.0640	424.2707[\text{M+H}^+]
14	13.937	14-Acetylkarakoline	C_{24}H_{39}NO_5	419.2672	420.2750	1.4276	420.2750[\text{M+H}^+]
Table 2 (continued)

Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	[M + H]$^+$	[M + Na]$^+$	Fragmentations (m/z)	Source
15	14.091	Aconine	C$_{20}$H$_{41}$NO$_9$	499.2781	500.2850		500.2850[M + H]$^+$, 482.2741[M + H–H$_2$O]$^+$, 468.2564[M + H–CH$_3$OH]$^+$, 450.2478[M + H–H$_2$O–CH$_3$OH]$^+$, 436.2309[M + H–2CH$_3$OH]$^+$, 418.2209[M + H–H$_2$O–2CH$_3$OH]$^+$	Fuzi
16	14.380	Hetisine	C$_{30}$H$_{47}$NO$_3$	329.1991	330.2064		330.2064[M + H]$^+$, 312.1951[M + H–H$_2$O]$^+$	Fuzi
17	15.319	Hypaconine	C$_{24}$H$_{39}$NO$_8$	469.2676	470.2744		470.2744[M + H]$^+$, 453.2301[M + H–OH]$^+$, 438.2474[M + H–CH$_3$OH]$^+$, 406.2212[M + H–2CH$_3$OH]$^+$, 374.1941[M + H–3CH$_3$OH]$^+$	Fuzi
18	15.810	Fuzitine	C$_{25}$H$_{47}$NO$_4$	341.1627	342.1697		342.1697[M + H]$^+$, 324.1026[M + H–H$_2$O]$^+$	Fuzi
19	16.070	Fuziline	C$_{24}$H$_{39}$NO$_7$	453.2727	454.2800		454.2800[M + H]$^+$, 436.2677[M + H–H$_2$O]$^+$, 418.2583[M + H–2H$_2$O]$^+$, 404.2443[M + H–H$_2$O–CH$_3$OH]$^+$, 386.2295[M + H–2H$_2$O–CH$_3$OH]$^+$, 354.2069[M + H–2H$_2$O–2CH$_3$OH]$^+$	Fuzi
20	16.248	Tau-cadinol	C$_{15}$H$_{26}$O	222.1984	245.1852		245.1852[M + H]$^+$, 213.0195[M + H–CH$_3$OH]$^+$, 199.0125[M + H–CH$_3$OH–CH$_3$]$^+$, 184.9885[M + H–CH$_3$OH–2CH$_3$]$^+$, 169.0035[M + H–CH$_3$OH–3CH$_3$]$^+$	Ganjiang
21	16.573	Neoline	C$_{24}$H$_{39}$NO$_6$	437.2777	438.2848		438.2848[M + H]$^+$, 420.2756[M + H–H$_2$O]$^+$, 388.2478[M + H–H$_2$O–CH$_3$OH]$^+$, 370.2365[M + H–2H$_2$O–CH$_3$OH]$^+$, 356.2213[M + H–H$_2$O–2CH$_3$OH]$^+$	Fuzi
Table 2 (continued)

Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	[M + H]+ Measured mass (m/z)	Error (ppm)	[M + Na]+ Measured mass (m/z)	Error (ppm)	Fragmentations (m/z)	Source
22	16.743	Talatisamine	C_{24}H_{39}NO_5	421.2828	422.2899	0.4736	422.2899		422.2899[M + H]+, 390.2621[M + H–CH_{3}OH]+, 358.2349[M + H–2CH_{3}OH]+	Fuzi
23	18.651	Chasmanine	C_{25}H_{41}NO_6	451.2934	452.3008	0.4736	452.3008		420.2737[M + H]+, 135.1162[M + H–CH_{3}OH]+, 125.0940[M + H–CO]+	Fuzi
24	19.739	Geranial	C_{10}H_{16}O	152.1201	153.1275	0.6530	153.1275		135.1162[M + H]+, 125.0940[M + H–CO]+	Ganjiang
25	20.390	14-Acetyltalatizamine	C_{26}H_{41}NO_6	463.2934	464.3014	0.4736	464.3014		432.2753[M + H]+, 414.2645[M + H–CH_{3}OH]+, 400.2486[M + H–2CH_{3}OH]+	Fuzi
26	21.828	7-hydroxycoumarin	C_{7}H_{4}O_{3}	162.0317	163.0395	3.0667	163.0395		145.0627[M + H]+, 145.0627[M + H–H_{2}O]+	Baizhu
27	23.891	Schaftoside	C_{30}H_{28}O_{14}	564.1479	565.1542	0.1694	565.1542		547.1343[M + H]+, 529.1301[M + H–H_{2}O]+, 511.1220[M + H–2H_{2}O]+	Gancao
28	24.041	Scopoletin	C_{10}H_{6}O_{4}	192.0423	193.0500	1.3812	193.0500		137.0235[C_{7}H_{4}O_{3}]+, 120.0525[C_{7}H_{4}O_{3}–OH]+	Baizhu
29	24.785	Liquiritigenin	C_{15}H_{2}O_{4}	256.0736	257.0819	1.3812	257.0819		212.0208[C_{7}H_{4}O_{3}–OH]^+	Gancao
30	27.065	Benzoylmesaconine	C_{31}H_{2}NO_{10}	589.2887	590.2959	0.1694	590.2959		572.2828[M + H]+, 558.2663[M + H–CH_{3}OH]+, 540.2573[M + H–CH_{3}OH–H_{2}O]+	Fuzi
31	27.325	Isoviolanthin	C_{27}H_{10}O_{14}	578.1636	579.1700	0.1694	579.1700		543.1485[M + H]+, 525.1382[M + H–2H_{2}O]+, 517.1332[M + H–3H_{2}O]+	Gancao
32	27.614	Benzoylaconine	C_{32}H_{1}NO_{10}	603.3043	604.3114	0.3309	604.3114		587.2801[M + H–H_{2}O]+, 554.2711[M + H–2CH_{3}OH]+	Fuzi
Table 2 (continued)

Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	**M+H**⁺ Measured mass (m/z)	Error (ppm)	**M+Na**⁺ Measured mass (m/z)	Error (ppm)	Fragmentations (m/z)	Source	
33^a	28.595	Benzoylhypaconine	C₃₁H₄₃NO₉	573.2938	574.3011	0			574.3011[M+H]⁺, 542.2745[M+H–CH(OH)]⁺, 510.2457[M+H–2CH(OH)]⁺	Fuzi	
34	28.748	Lobetyolinin	C₂₆H₃₈O₁₃	558.2312	581.2203	−0.3441		581.2203[M+Na]⁺, 419.1709[M+Na–C₆H₁₀O₅]⁺	Dangshen		
35	31.019	Liquiritin apioside or Isoliquiritin apioside	C₂₆H₃₀O₁₃	550.1686	551.1751	−1.4514			551.1751[M+H]⁺, 419.1333[M+H–(Apiose–H₂O)]⁺, 257.0830[M+H–(Apiose–H₂O)–Glc–H₂O]⁺	Gancao	
36^a	31.163	Mesaconitine	C₃₃H₄₅NO₁₁	631.2993	632.3067	0.3163				632.3067[M+H]⁺, 614.1110[M+H–CH₂O]⁺, 600.2748[M+H–CH(OH)]⁺, 572.2834[M+H–AcO]⁺	Fuzi
37	31.423	7-methoxy-liquiritin	C₃₂H₂₂O₉	430.1264	431.1332	−1.1597			431.1332[M+H]⁺, 269.0811[M+H–(Glc–H₂O)]⁺	Gancao	
38	31.646	14-Benzoyleneoline	C₃₁H₄₁NO₇	541.3040	542.3135	4.2411				542.3135[M+H]⁺, 524.3010[M+H–CH(OH)]⁺, 510.2731[M+H–CH₂O]⁺, 492.2733[M+H–2H₂O–CH₂O]⁺	Fuzi
39	31.659	Dehydrated benzoylhypaconine	C₃₁H₄₁NO₈	555.2832	556.2906	0.1798				556.2906[M+H]⁺, 524.2647[M+H–CH(OH)]⁺, 492.2381[M+H–2CH(OH)]⁺	Fuzi
40	31.683	Liquiritin or Isoliquiritin	C₂₁H₂₂O₉	418.1264	419.1335	0.4771			419.1335[M+H]⁺, 257.0811[M+H–(Glc–H₂O)]⁺	Gancao	
41	31.921	Aconitine	C₃₄H₄₇NO₁₂	661.3098	662.3172	0.1509				662.3172[M+H]⁺, 644.3095[M+H–CH(OH)]⁺, 626.1346[M+H–2H₂O]⁺	Fuzi
42	32.100	Hypaconitine	C₃₃H₄₅NO₁₀	615.3043	616.3116	0				616.3116[M+H]⁺, 584.2843[M+H–CH(OH)]⁺, 556.2899[M+H–C₆H₁₀O₅]⁺, 524.2533[M+H–C₆H₁₀O–CH(OH)]⁺, 496.2678[M+H–C₆H₁₀O–CH(OH)–CO]⁺	Fuzi
Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	[M + H]⁺	Error (ppm)	Measured mass (m/z)	Error (ppm)	Fragmentations (m/z)	Source	
---------	----------	-----------------	-------------------	-----------------	---------	------------	---------------------	------------	----------------------	--------	
43	32.245	Formononetin	C₁₆H₁₂O₄	268.0736	269.0814	2.2298	269.0814		269.0814[M+H]⁺, 254.0580[M+H–CH₃]⁺, 237.0536[M+H–CH₃OH]⁺, 225.0554[M+H–CH₃–CO]⁺, 213.0908[M+H–C₂O₂]⁺, 181.0665[M+H–C₂O₂–CH₃OH]⁺	Gancao	
44	32.528	Aconitine	C₃₄H₄₇NO₁₁	645.3149	646.3216	0.9283	646.3216		646.3216[M+H]⁺, 628.3140[M+H–H₂O]⁺, 596.2849[M+H–H₂O–CH₃OH]⁺	Fuzi	
45	33.241	Deoxyaconitine	C₃₄H₄₇NO₁₀	629.3200	630.3273	0	630.3273		630.3273[M+H]⁺, 598.3070[M+H–H₂O]⁺	Fuzi	
46	36.853	Echinatin	C₁₆H₁₄O₄	270.0892	271.0963	0.7377	271.0963		271.0963[M+H]⁺, 253.0850[M+H–H₂O]⁺	Gancao	
47	38.085	Benzoic acid	C₇H₆O₂	122.0368	123.0447	0.7377	123.0447		123.0447[M+H]⁺, 77.0379[M+H–HCOOH]⁺	Baizhu	
48	39.763	Isoliquiritigenin	C₁₅H₁₂O₄	256.0736	257.0814	2.334	257.0814		257.0814[M+H]⁺, 239.0704[M+H–H₂O]⁺, 137.0235[C₇H₄O₃+H]⁺, 121.0277[C₇H₄O₃+H–OH]⁺, 120.0527[C₇H₄O₃+H–OH–CH₃OH]⁺	Gancao	
49	40.720	Glycycoumarin	C₂₁H₁₄O₆	368.1260	369.1345	2.508	369.1345		369.1345[M+H]⁺, 333.2235[M+H–2H₂O]⁺, 313.1057[M+H–C₆H₅]⁺	Gancao	
50	41.513	6-gingerdione	C₁₇H₂₀O₄	292.1675	293.1736	2.7520	293.1736		293.1736[M+H]⁺, 275.1650[M+H–H₂O]⁺, 257.1517[M+H–2H₂O]⁺	Ganjiang	
51	42.593	Kumatakenin	C₁₇H₁₄O₆	314.0790	315.0859	1.2694	315.0859		315.0859[M+H]⁺, 298.2165[M+H–OH]⁺, 279.0782[M+H–2H₂O]⁺	Ganjiang	
52	43.486	6-gingerol	C₁₇H₂₀O₄	294.1831	317.1737	4.4140	317.1737		317.1737[M+Na]⁺, 299.2546[M+Na–H₂O]⁺	Ganjiang	
53	43.507	Gingerenone-A	C₂₁H₁₄O₅	356.1624	357.1710	3.6397	357.1710		357.1710[M+H]⁺, 339.2718[M+H–H₂O]⁺, 321.2612[M+H–2H₂O]⁺	Ganjiang	
54	43.544	6-shogaol	C₁₇H₂₄O₄	276.1725	277.1795	0.823	277.1795		277.1795[M+H]⁺, 259.1694[M+Na–H₂O]⁺, 339.1239[M+H]⁺	Ganjiang	
55	45.779	Lupiwighteone	C₂₀H₁₈O₅	338.1154	339.1239	3.5385	339.1239		339.1239[M+H]⁺, 321.2818[M+H–H₂O]⁺	Gancao	
Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	[M + H]⁺ Measured mass (m/z)	Error (ppm)	[M + Na]⁺ Measured mass (m/z)	Error (ppm)	Fragmentations (m/z) Source		
---------	----------	---------------------	-------------------	------------------	-------------------------------	-------------	-------------------------------	-------------	-----------------------------		
56	46.339	Atractylenolide III	C₁₅H₂₀O₃	248.1412	245.1485	0			249.1485[M + H]⁺, 231.1389[M + H–H₂O]⁺, 175.0751[M + H–H₂O–2CO]⁺, 163.0756[M + H–H₂O–C₅H₈]⁺ Baizhu		
57	48.364	Gancaonin L	C₂₀H₁₂O₆	354.1103	355.1189	3.6607			355.1189[M + H]⁺, 337.2536[M + H–H₂O]⁺ Gancao		
58	48.398	Licoriesaponin G2	C₄₂H₆₂O₁₇	838.3987	839.4076	1.9061			839.4076[M + H]⁺, 663.3722[M + H–(GluA–H₂O)]⁺, 469.3308[M + H–2(GluA–H₂O–H₂O)]⁺ Gancao		
59	48.887	Atractylenolide II	C₁₅H₂₀O₂	232.1463	233.1541	2.1445			233.1541[M + Na]⁺, 187.1485[M + Na–CH₂O₂–C₅H₈]⁺, 145.1013[M + Na–CH₂O₂–C₅H₈–C₅H₈]⁺, 131.0857[M + Na–CH₂O₂–C₅H₈–C₅H₈–H₂O]⁺, 105.0703[M + Na–CH₂O₂–C₅H₈–C₅H₈–C₅H₈–H₂O]⁺ Baizhu		
60	49.296	Glycyrrhizic acid	C₄₂H₆₂O₁₆	822.4038	823.4130	2.3075			823.4130[M + H]⁺, 647.3793[M + H–(GluA–H₂O)]⁺ Gancao		
61	49.667	Farnesal	C₁₅H₂₄O	220.1827	221.1907	3.1647			221.1907[M + H]⁺, 192.9740[M + H–CO]⁺ Ganjiang		
62	49.841	Glycyrrhetinic acid	C₃₂H₄₄O₄	470.3396	471.3488	4.031			471.3488[M + H]⁺, 453.3354[M + H–H₂O]⁺, 435.3224[M + H–2H₂O]⁺, 425.3378[M + H–HCOOH]⁺ Gancao		
63	50.671	Licorice saponin B2	C₄₀H₆₄O₁₅	808.4245	831.4151	1.6838			831.4151[M + Na]⁺, 655.3825[M + Na–(GluA–H₂O)]⁺, 479.3547[M + Na–2(GluA–H₂O)]⁺ Gancao		
64	51.232	Licoricone	C₂₂H₂₂O₆	382.1416	383.1502	3.3929			383.1502[M + H]⁺, 355.1587[M + H–CH₂O₂]⁺ Gancao		
65	51.390	Atractylenolide I	C₁₅H₁₈O₂	230.1307	231.1383	1.2979			231.1383[M + H]⁺, 185.1326[M + H–HCOOH]⁺, 157.1012[M + H–HCOOH–C₅H₈]⁺, 105.0701[M + H–HCOOH–2C₅H₈–2C₂]⁺ Baizhu		
Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight	[M + H]$^+$ Measured mass (m/z)	Error (ppm)	[M + Na]$^+$ Measured mass (m/z)	Error (ppm)	Fragmentations (m/z)	Source	
---------	----------	-------------------	-------------------	------------------	-----------------------------	-------------	-------------------------------	-------------	----------------------	--------	
66	52.950	Neoglycyrol	C$_{21}$H$_{18}$O$_6$	366.1103	367.1165	−0.5447			367.1165[M + H]$^+$, 349.2239[M + H–H$_2$O]$^+$, 335.2389[M + H–CH$_3$OH]$^+$, 317.2239[M + H–H$_2$O–CH$_3$OH]$^+$	Gancao	
67	54.310	Licorice-saponin J2	C$_{42}$H$_{65}$O$_{16}$	824.4194	825.4286	2.3018			825.4286[M + H]$^+$, 649.3906 [M + H–(GluA–H$_2$O)]$^+$, 455.357[M + H–2 (GluA–H$_2$O–H$_2$O)]$^+$, 437.3435 [M + H–2 (GluA–H$_2$O–2H$_2$O)]$^+$	Gancao	
MS/MS data were shown as m/z of 239.0698\([M+H−H_2O]^+\)], 137.0234 \([C_6H_9O_3+H]^+\), 121.0293 \([C_6H_9O_3+H]^+\) and 120.0721 \([C_6H_9O_3+H−H_2O]^+\). And the compound 29 in Table 2 were detected in the positive ion mode at the Rt in 24.785 min with the m/z of 257.0819 \((C_{15}H_{13}O_4)^+\), 239.0707 \([M+H−H_2O]^+\) and 137.0235 \([C_6H_9O_3+H]^+\). Then compound 29 were characterized as liquiritigenin. Similar to the identification process above, among 67 compounds, 9 compounds were identified as benzoylecgonine, benzoylemesaconine, benzoylhycapnone, mesaconitine, liquiritigenin, isoliquiritigenin, glycyrrhetic acid, glycyrrhetinic acid and atracylenolide II. The MS data of the (+) ESI–MS spectra are shown in Table 2.

The remaining 58 compounds were tentatively characterized based on their chromatographic and spectrometric data, referring to previous literature [25, 30–33]. For example, MS² spectra of compound 4 (molecular ion at m/z \([M+H]^+\) 394.2590) in Table 2 gave characteristic fragment ions of \([M+H−H_2O]^+\) at m/z 376.2489 and \([M+H−2H_2O]^+\) at m/z 358.2371. Thus, it corresponded to Karakolidine by comparison with literature data [30]. Moreover, MS² spectra of compound 12 (molecular ion at m/z \([M+H]^+\) 408.2743) in Table 2 gave characteristic fragment ions of \([M+H−H_2O]^+\) at m/z 390.2630, 372.2517 \([M+H−2H_2O]^+\) and \([M+H−CH_3OH]^+\) at m/z 358.2374. Then it was identified as isosaltalatizidine. All the MS data of the (+) ESI–MS spectra are shown in Table 2. Besides, all the structures of the compounds identified are shown in Figs. 3 and 4. The deriving herb for each compound was also assigned. The majority of constituents are identified as alkaloids, flavonoids, triterpenes, gingerols, phenylpropanoids and volatile oil.

Characterization of the absorbed chemical constituents in rat serum

Identification of the bioactive chemical prototype constituents in rat serum

As the results of constituents in rat serum show in Table 3, by comparing the \(t_g\) values and MS fragment characteristics between compounds in serum and compounds in FZLZP extract, 10 alkaloid components sourced from Aconitum carmichaeli Debx. were identified, including benzoylecgonine, benzoylemesaconine, benzoylhycapnone, mesaconitine, Hypeaconitine, fuziline, neoline, talatisamine, chasmanine, and 14-acetyltalatizamine. These constituents have been reported as parts of the main constituents with significant effects of slashesia, anti-inflammation, thermogenesis and increasing blood oxygen in Fuzi [34, 35]. The MS data of the (+) ESI–MS spectra are shown in Table 3. For example, MS² spectra of compound 19 in Table 2 was detected at the Rt in 16.070 min with the molecular ion at m/z 454.2800 \([M+H]^+\) and gave characteristic fragment ions of \([M+H−H_2O]^+\) at m/z 436.2677. Similarly, MS² spectra of compound 2 in Table 3 was detected at the Rt in 16.615 min with the molecular ion at m/z 454.2808 \([M+H]^+\) and gave characteristic fragment ions of \([M+H−H_2O]^+\) at m/z 436.2043. Thus, compound 2 in Table 3 was identified as the absorbed prototype of Fuziline in rat serum. The other alkaloid components were identified in a similar way.

Six compounds sourced from Glycyrrhiza uralensis Fisch. were identified, including 3 flavonoids, namely, liquiritigenin, isoliquiritigenin, glycyrrhetic acid and atracylenolide. The MS data of the (+)ESI–MS spectra are shown in Table 3. For example, MS² spectra of compound 48 in Table 2 was detected at the Rt in 39.763 min with the molecular ion at m/z 257.0814 \([M+H]^+\) and gave characteristic fragment ions of 239.0704 \([M+H−H_2O]^+\), 137.0235 \([C_6H_9O_3+H]^+\), 121.0277 \([C_6H_9O_3+H]^+\), 120.0527 \([C_6H_9O_3+H−H_2O]^+\). Similarly, MS² spectra of compound 14 in Table 3 was detected at the Rt in 40.710 min with the molecular ion at m/z 257.0807 \([M+H]^+\) and gave characteristic fragment ions of \([M+H−H_2O]^+\) at m/z 239.1624. Thus, compound 14 in Table 3 was identified as the absorbed prototype of Isoliquiritigenin in rat serum. Furthermore, liquiritin or isoliquiritin may also have been found, but further comparison with reference compounds is needed to identify these isomers. The flavonoids and triterpenes in Glycyrrhiza uralensis Fisch. have been reported as having significant anti-inflammatory, abirritation and immunoregulation effects [36–38].

7-Hydroxycoumarin, atracylenolide I and atracylenolide II have been identified as bioactive chemical constituents sourced from Atractylodes macrocephala Koidz. (Baizhu) and were found as the main institutes with the effect of anti-inflammatory, antitumor and gastrointestinal regulation in Baizhu [39–42]. The MS data of the (+) ESI–MS spectra are shown in Table 3. For example, MS² spectra of compound 26 in Table 2 was detected with the molecular ion at m/z 163.0395 \([M+H]^+\) and gave characteristic fragment ions of 145.0627 \([M+H−H_2O]^+\). Similarly, MS² spectra of compound 25 in Table 3 was detected with the molecular ion at m/z 163.0396 \([M+H]^+\) and gave characteristic fragment ions of \([M+H−H_2O]^+\) at m/z 145.5012. Thus, compound 25 in Table 3 was identified as the absorbed prototype of 7-hydroxyconarin in rat serum.

6-Gingerdione, 6-gingerol and 6-shogaol sourced from Zingiber officinale Rosc (Ganjiang) were identified and were reported as having obvious antioxidant, anti-inflammatory, gastrointestinal protective and antitumor effects [43, 44]. The MS data of the (+) ESI–MS spectra are shown in Table 3. For example, MS² spectra of compound
Fig. 3 Structures of compounds identified in the extract of Fuzi Lizhong Pill

(1) L-Pyroglutamic acid
(2) Codonopsine
(3) 5-Hydroxymethylfurfural
(4) Phenylalanine
(5) 16-b-hydroxycardiopetaline
(6) Songorine
(7) Karakoline
(8) 14-Acetylkarakoline
(9) Hetisine
(10) Fuzitine
(11) Fuziline $R_1=\text{OH}$
(12) Neoline $R_1=\text{H}$
(13) Tau-cadinol
(14) Talaconsaine
(15) Chasmanine
(16) Geranial
(17) 14-Acetyltauramine
(18) 7-hydroxycoumarin
(19) Schaftoside $R_1=\text{glu}, R_2=\text{ara}$
(20) Scopoletin
(21) Isoviologanthin
(22) Lobetolinin
(23) 14-Benzoylnoline
(24) Aconitine
Fig. 4 Structures of compounds identified in the extract of Fuzi Lizhong Pill
Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight (Da)	[M + H]⁺ Measured value (Da)	[M + H]⁺ Error (ppm)	[M + Na]⁺ Measured value (Da)	[M + Na]⁺ Error (ppm)	Fragmentations (m/z)	Source/prototype
1	4.841	l-Pyroglutamic acid	C₈H₁₂NO₃	129.0426	130.0498	0.7689			130.0498[H⁺], 112.9741[H⁺–H₂O]	Dangshen
2	16.615	Fuziline	C₂₄H₃₂NO₇	453.2727	454.2808	1.981			454.2808[H⁺], 436.0243[H⁺–H₂O]	Fuzi
3	17.021	Talatisamine	C₂₄H₃₉NO₅	421.2828	422.2905	0.9472			422.2905[H⁺], 390.2651[H⁺–CH₃OH]	Fuzi
4*	24.357	Glucuronide conjugation metabolite	C₂₁H₁₀O₁₀	432.1056	433.1132	0.6927			433.1132[H⁺], 257.0843[H⁺–H₂O]	Liquiritigenin
5	25.811	Liquiritigenin	C₁₅H₁₂O₄	256.0736	257.0819	3.978			257.0819[H⁺], 239.0713[H⁺–H₂O]	Gancao
6	27.236	Benzoylmesaconine	C₃₁H₄₃NO₁₀	589.2887	590.2948	0.58			590.2948[H⁺], 558.2657[H⁺–CH₃OH]	Fuzi
7	27.520	Benzoylaconine	C₃₂H₄₅NO₁₀	603.3043	604.3134	0.98			604.3134[H⁺], 540.6158[H⁺–2CH₃OH]	Fuzi
8	28.379	Liquiritin or Isoliquiritin	C₂₁H₁₂O₅	418.1264	441.1144	2.72			441.1144[H⁺], 424.0979[H⁺–H₂O]	Gancao
9	28.595	Benzoylhypericin	C₃₁H₄₃NO₉	573.2938	574.3025	0			574.3025[H⁺], 443.8613[H⁺–H₂O–HO⁻]	Fuzi
10	31.405	Mesaconitine	C₃₃H₄₅NO₁₁	631.2993	632.3079	2.98			632.3079[H⁺], 599.9372[H⁺–CH₃OH]	Fuzi
11	32.453	Hypericin	C₃₂H₄₅NO₁₀	615.3043	616.3089	0.68			616.3089[H⁺], 597.8211[H⁺–CH₃OH]	Fuzi
12*	33.299	Glucuronide conjugation metabolite	C₃₀H₄⁷NO₁₃	629.3047	630.3295	0.78			630.3295[H⁺], 454.8397[H⁺–Glucose]	Fuzil
13*	33.165	Glucuronide conjugation metabolite	C₂₇H₃₇O₁₀	432.1056	433.1145	3.94			433.1145[H⁺], 257.0829[H⁺–H₂O]	Isoliquiritigenin
14	40.710	Isoliquiritigenin	C₁₅H₁₀O₄	256.0736	257.0807	0.62			257.0807[H⁺], 239.1624[H⁺–H₂O]	Gancao
15	42.275	6-gingerdione	C₁₇H₁₄O₄	292.1675	293.1734	4.43			293.1734[H⁺], 275.1586[H⁺–H₂O]	Ganjiang
Table 3 (continued)

Peak no.	Rt (min)	Systematic name	Molecular formula	Molecular weight (Da)	[M + H]+ Measured value (Da)	Error (ppm)	[M + Na]+ Measured value (Da)	Error (ppm)	Fragmentations (m/z)	Source/prototype
16	42.514	Formononetin	C_{16}H_{12}O_{4}	268.0736	269.0799	−3.3447			269.0799[M + H]+, 181.0511[M + H–C_{2}O_{2}–CH_{3}OH]	Gancao
17	44.584	14-Acetylalatizamine	C_{30}H_{41}NO_{6}	463.2934	464.3015	1.7230			464.3015[M + H]+, 446.2652[M + H–H_{2}O]	Fuzi
18	46.555	6-gingerol	C_{17}H_{20}O_{4}	294.1831	295.1905	0.3388			295.1905[M + H]+, 263.1618[M + H–CH_{3}OH], 179.1028[M + H–C_{2}H_{5}O]	Ganjiang
19	46.980	6-shogaol	C_{17}H_{24}O_{3}	276.1725	277.1781	−6.1332			277.1794[M + H]+, 260.1816[M + Na–OH]	Ganjiang
20	47.690	Atractylenolide II	C_{15}H_{20}O_{2}	232.1463	233.1533	−1.2867			233.1533[M + Na]+, 187.1487[M + Na–CH_{2}O], 159.1179[M + Na–CH_{2}O–C_{2}H_{5}O], 145.1005[M + Na–CH_{2}O–C_{2}H_{4}O]	Baizhu
21	48.102	Chasmanine	C_{25}H_{41}NO_{6}	451.2934	474.2841	3.1627			474.2841[M + H]+, 442.0836[M + H–CH_{3}OH]	Fuzi
22	49.895	Glycyrrhizic acid	C_{42}H_{62}O_{16}	822.4038	823.4094	−2.0646			823.4094[M + H]+, 647.3792[M + H–(GluA–H_{2}O)]	Gancao
23	50.826	Atractylenolide I	C_{15}H_{18}O_{2}	230.1307	231.1382	0.8653			231.1382[M + H]+, 105.9823[M + H–HCOOH–2CH_{2}–2C]	Baizhu
24	51.095	Neoline	C_{24}H_{39}NO_{6}	437.2777	460.2669	−0.2173			460.2669[M + Na]+, 442.2666[M + Na–H_{2}O]	Fuzi
25	54.144	7-hydroxycoumarin	C_{3}H_{4}O_{3}	162.0317	163.0396	3.6801			163.0396[M + H]+, 145.5012[M + H–H_{2}O]	Baizhu
26	56.004	Glycyrrhetinic acid	C_{32}H_{49}O_{4}	470.3396	471.3479	−2.122			471.3479[M + H]+, 453.4285[M + H–H_{2}O]	Gancao

* Indicates metabolites
50 in Table 2 was detected with the molecular ion at m/z 293.1736\([M + H]^+\) and gave characteristic fragment ions of 275.1650\([M + H - \text{H}_2\text{O}]^+\), 257.1517\([M + H - 2\text{H}_2\text{O}]^+\). Similarly, MS2 spectra of compound 15 in Table 3 was detected with the molecular ion at m/z 293.1734\([M + H]^+\) and gave characteristic fragment ions of \([M + H - \text{H}_2\text{O}]^+\) at m/z 257.1586. Thus, compound 15 in Table 3 was identified as the absorbed prototype of 6-gingerdione in rat serum.

One compound was sourced from *Codonopsis pilosula* (Franch.) Nannf. (Dangshen) and was identified as l-pyroglutamic acid. MS2 spectra of compound 1 in Table 2 was detected with the molecular ion at m/z 130.0505\([M + H]^+\) and gave characteristic fragment ions of 112.0123\([M + H - \text{H}_2\text{O}]^+\), 84.0449\([M + H - \text{HCOOH}]^+\). Similarly, MS2 spectra of compound 1 in Table 3 was detected with the molecular ion at m/z 130.0498\([M + H]^+\) and gave characteristic fragment ions of \([M + H - \text{H}_2\text{O}]^+\) at m/z 112.9741. Thus, compound 1 in Table 3 was identified as the absorbed prototype of l-pyroglutamic acid in rat serum.

Identification of the bioactive metabolites in rat serum

Based on a comparison of the information for ions, 8 peaks were detected only in dosed serum and were assigned to metabolites. Detailed information about the elemental compositions, retention times, and the characteristic fragment ions of metabolites are shown in Table 3. Alkaloid-, phenylpropanoids- and gingerols-related metabolites are the main metabolic constituents of FZPLP absorbed in vivo, and the main metabolic pathways in vivo were glucuronide conjugation and glucuronidation. Identification of the corresponding fragment ions was obvious. For example, compound 4 (24.357 min) in Table 3 produced \([M + H]^+\) at m/z 433 and MS2 yielded a major ion at m/z 257 (−176, Da with the loss of C6H8O6) in the positive ion mode, combined with the retention time of the reference standard 1 in Table 1 and compound 29 in Table 2. Therefore, the peak was identified tentatively as a glucuronide conjugation metabolite of liquiritigenin. Similarly, compound 13 (the \(t_R\) 33.165 min) in Table 3 has the similar retention time compared with the reference standard 6 in Table 1 and compound 48 in Table 2. And it produced \([M + H]^+\) at m/z 433 and MS2 yielded a major ion at m/z 257 (−176, Da with the loss of C6H8O6) in the positive ion mode. Therefore, the peak was identified tentatively as a glucuronide conjugation metabolite of isoliquiritigenin. The possible structures of metabolites were elucidated as described above. All of the structures of metabolites were identified, and the MS data of the (±) ESI–MS spectra are shown in Table 3. This article reports these metabolites of FZLZP for the first time. The bioactivities are the subject of ongoing research.

Alkaloids difference between Group A and Group B

As the result shows in Fig. 5a, 10 kinds of alkaloids were detected in Group A. Most of them were trace amounts in vivo, which indicated the alkaloids’ poor absorption in the prescription. Conversely, unlike Group A, the amount of the alkaloids in vivo increased obviously in Group B (Fig. 5b). The difference indicated that the absorption amount of alkaloids in the prescription can be decreased compared to the absorption amount of alkaloids in the herb powder.

Discussion

To obtain LC chromatograms of lower pressure, greater baseline stability, better resolution and higher ionization efficiency, methanol and acetonitrile and series of concentrations of aqueous formic acid solution were prepared for analysis. The best result was achieved when the mobile phase consisted of 0.1% formic acid aqueous solution and methanol. Both positive and negative modes were investigated, and the results showed that the positive ion mode was more sensitive and could provide more information for both extract samples and serum samples analyses.

FZLZP is a formula composed under the guidance of traditional Chinese medicine theory. According to TCM theory, *Aconitum carmichaeli* Debx. is the “monarch drug” and the main herb in FZLZP recipe to warm middle jiao and eliminate cold. This was confirmed in this research with 10 constituents among 23 prototype components sourced from *Aconitum carmichaeli* Debx., which maintains the maximum bioactive compounds. *Glycyrrhiza uralensis* Fisch. is frequently prescribed in combination with other herbs to decrease toxicity and to increase efficacy. In this recipe, it is the “envoy drug” and is considered to be the paramount assistant herb, which can detoxify the toxicity of aconitum. In this study, we found that *Glycyrrhiza uralensis* Fisch. was the second most-absorbed herb. The results that some compounds absorbed well in vivo derived from *Aconitum carmichaeli* Debx. and *Glycyrrhiza uralensis* Fisch. are consistent with our previous studies that they were dissolved very well in vitro [16].

Alkaloids in Fuzi herb are the toxicity as well as the efficacy compounds. The prescriptions which contains Fuzi herb should be highly concerned. In our study, the results on the differences in alkaloids between Group A and Group B show that the amount of absorption of bioactive constituents in Fuzi can be significantly reduced when this herb is used as part of a prescription rather than used alone. We think there are two reasons.
Firstly, according to the TCM theory, the toxicity of Fuzi can be reduced in combination with Gancao [25]. This should be further confirmed by researching the relationship and differences in the chemistry constituents between Fuzi-Gancao herb pairs in FZLZP. Secondly, the pill form is the embryonic form of sustained-release preparations. As a TCM classic says: only pill among all dosage forms can reduce the toxicity of toxic drugs. The toxic herb was usually made into a pill form to reduce the toxicity in TCM [17]. And it can be further confirmed by researching differences in the chemistry constituents between FZLZP and the Fuzi pill that made from Aconitum carmichaeli Debx. powder.

Conclusions
This study describes a simple, sensitive and selective HPLC-QTOF-MS method for structural characterization of chemical constituents in FZLZP and bioactive components in rat serum following oral administration of FZLZP. As a result, in vitro, a total of 67 compounds were successfully identified, and 23 prototype compounds that were absorbed in vivo were identified for the first time. In addition, 3 metabolites of the bioactive compounds were tentatively identified. In this prescription, the majority of compounds absorbed in vivo derived from Fuzi and Gancao. The results provide helpful chemical information for FZLZP for further pharmacological and active mechanism research. In addition, it helped to classify the material basis responsible for the therapeutic effects of FZLZP. Furthermore, the HPLC-QTOF-MS was a potentially powerful strategy for simultaneously achieving screening and analysis of multiple bioactive compounds in FZLZP.
References

1. Yang XF. Investigation and analysis of clinical use of fu zi lizhong pills. Chin J Clin. 2018;11(10):98–100.

2. Liu HL, Huang LX. Treating IBS with the Fuzi Lizhong wan plus bifico, heavy moxibustion. Guid J Tradit Chin Med Pharm. 2012;18(1):33–4.

3. Hu LQ, Zhang LX, Zhang LF. Observation and analysis of the curative effect of the treatment of chronic terminal ileus of spleen and kidney Yang deficiency by the combined treatment of Fuzi-Lizhong Pill and moxibustion. GuiJ Tradit Chin Med Pharm. 2012;18(1):33–4.

4. Hu XL, Zhou H, Ning QY, Zhao ZX, Xu XS. Observation on the curative effect of the treatment of chronic terminal ileus of spleen and kidney Yang deficiency by the combined treatment of FuZi-Lizhong Pill and heavy moxibustion. Guid J Tradit Chin Med Pharm. 2012;18(1):33–4.

5. Liu HL, Huang LX. Treating IBS with the Fuzi Lizhong wan plus bifico, heavy moxibustion. Guid J Tradit Chin Med Pharm. 2012;18(1):33–4.

6. Hu LQ, Zhang LX, Zhang LF. Observation and analysis of the curative effect of fu zi lizhong pill combined with wuxueita oral solution in the treatment of chronic ulcerative colitis. Med Innov Chin J. 2012;9(3):123–4.

7. Ye SH. The treatment of 62 cases of diarrhea irritable bowel syndrome by sishen pill combine with fu zi lizhong pill. SD J Tradit Chin Med. 2010;29(3):310–1.

8. Zhao X, Yang SJ, Zhang WT, Ou CZ, Tang BH, Zhang BC, et al. Fuzi-Lizhong pill compensates hypothyroid-hypothyymia via ghrelin release. J Ethnopharmacol. 2013;149:707–12.

9. Dong LY, Cheng BF, Luo Y, Zhang N, Duan HQ, Jiang M, et al. Identification of nuclear factor-κB inhibitors and β2 adrenergic receptor agonists in Chinese medicinal preparation FuZiLizhong Pills using UPLC with quadrupole time-of-flight MS. Phytochem Anal. 2014;25:113–21.

10. Zhao X, Wang Y, Yang SJ, Zhang WT, Ou CZ, Zhang TT, et al. Underlying mechanism of Aconitum Lizhong acting on experimental hypothermia with indigestin in rats: role of ghrelin. Evid Based Complement Alternat Med. 2012;2012:524261.

11. Zhang WT, Tang HQ, Wang Y, Ou YH, Lu AN, Chen XF, et al. Aconitum Lizhong Pill strethening adaptive thermogenesis in rats with spleen yang deficient syndrome. Chin J Tradit Chin Med Pharm. 2011;26(3):490–4.

12. Tang HQ, Zhang WT, Lu A, Wang Y, Wang XY, Yang Y, et al. Effects of Aconitum Lizhong Pills on energy charge in skeletal muscle of rats with spleen yang deficient syndrome. Chin Pharm. 2010;13(7):918–21.

13. Zhang WT, Tang HQ, Lu AN, Zhao X, Song M, et al. Aconitum Lizhong Pill strengthening adaptive thermogenesis in rats with spleen yang deficient syndrome. Chin Pharm. 2010;13(12):1691–4.

14. Zhang WT, Tang HQ, Lu AN, Zhao X, Li GZ, Jiang YF, et al. Treatment with Aconitum Lizhong Pill down-regulates liver energy charge in rats with spleen yang deficient syndrome. World Chin J Digest. 2010;18(5):3782–6.

15. Lu L, Tang HQ, Li XH, Zhu XY. Effects of Fu Zi Lzhhong Decoction on content of AMP Expression of pGC mRNA and gastrointenstinal dynamics in rats with spleen yang deficiency syndrome. Chin Exp Tradit Med Form. 2013;19(24):264–6.

16. Jiang MY, Zhang Z, Shi JF, Zhang JM, Fu CM, Lin X, et al. Dissolution behavior of Fu Zi Lzhhong pill based on simultaneous determination of two components in Glycyrrhiza Radix et Rhizoma. Chin J Chin Mater Med. 2018;43(12):955–62.

17. Zhang G, Gao TH, Fu CM, Zhang JM, Shi JF, He Y, et al. Analysis on dosage form theory and current application situation of traditional Chinese medicine pill. Chin J Chin Mater Med. 2017;42(12):2048.
37. Kim KR, Jeong CK, Park KK, Choi JH, Park JHY, Lim SS, et al. Anti-inflammatory effects of Licorice and roasted Licorice extracts on TPA-induced acute inflammation and collagen-induced arthritis in mice. J Biomed Biotechnol. 2010;2010:799378.
38. Ryoko S, Maiko O, Hiroko T, Kenzo O. Inhibitory effect of glycyrrhizin on the phosphorylation and DNA-binding abilities of high mobility group proteins 1 and 2. Biol Pharm Bull. 2001;24(8):906–11.
39. Li CQ, He LC, Dong HY, Jin JQ. Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala koidz. J Ethnopharmacol. 2007;114(2):212–7.
40. Wang CH, Duan HJ, He LC. Inhibitory effect of atractylenolide I on angiogenesis in chronic inflammation in vivo and in vitro. Eur J Pharmacol. 2009;612(1):143–52.
41. Li CQ, He LC, Jin JQ. Atractylenolide I and Atractylenolide III inhibit lipopolysaccharide-induced TNF-α and no production in macrophages. Phytother Res. 2010;21(4):347–53.
42. Yang E, Zhong YM, Feng HF. Advance on the chemical constituents and pharmacological effects of Atractylodes macrocephala Koidz. J Guangdong Pharm Univ. 2012;28(2):219–21.
43. Yuki M, Hiroe K, Masashi H, Nobuji N. Antioxidant properties of gingerol related compounds from ginger. BioFactors. 2004;21:293–6.
44. Chrubasika S, Pittler MH, Roufogalis BD. Zingiberis rhizome: a comprehensive review on the ginger effect and efficacy profiles. Phytotherapy. 2005;12(9):684–701.