Treatment of Dye Waste Water using Moving Bed Biofilm Reactor and Granular Activated Carbon with Neem Leaf Powder

B. Sasivarman1*, S. Dharani2, A. Jothika2, D. Mohana Priya2

1Assistant Professor, Department of Civil Engineering, Adhi College of Engineering and Technology, Kanchipuram, Tamilnadu, India.
2Department of Civil Engineering, Adhi College of Engineering and Technology, Kanchipuram, Tamilnadu, India.

*Corresponding author Email: sasivarman0204@gmail.com

Abstract. In recent days, the waste productions from industries are increased and direct discharge of wastes causes various pollution to the environment. Wastewater treatment in textile and dye industry mainly involves treatment of highly colored wastewater containing variety of dyes in different concentrations. The dyeing industries using different types of pigments and dyes of various concentration during their several production steps. These industries discharge a wastewater which contains organic substance, high colour with high COD and low concentration of BOD. This dye waste water are directly discharge in to the streams and thus contaminate the groundwater. To treat the wastewater, which is discharge from the dyeing industries a simple physio-chemical treatment is not sufficient for the removal of pollutants. So that a biological treatment followed with a physio-chemical treatment have been required. In this study, the experiment was carried out to reduce the organic substance, high colour, COD, BOD, and Heavy metals from dye wastewater using the laboratory scale Moving Bed Biofilm Reactor followed with Granular activated Carbon bed (GAC with NLP-MBBR) with Neem leaf powder. A various thick granular activated carbon bed was used for adsorption technique and for biological treatment of wastewater. The GAC with 8cm thick is layered followed by Ennore sand with 3 grades with 4cm thick equally. Then the MBBR was operated continuously with various retention times. The polypropylene type bio balls were used for microorganism attachment in MBBR. The outlet water from the MBBR are treated using membrane process. Membrane process using moving membranes reduces the pH, organic contents, heavy metals, COD, BOD, turbidity etc., The final effluent water is suitable for Irrigation.

Keywords: MBBR (Membrane Bed Biofilm Reactor), GAC (Granular Activated Carbon), COD (Chemical Oxygen Demand), BOD (Biological Oxygen Demand), DO (Dissolved Oxygen), EC (Electro Chemistry), NLP (Neem Leaf Powder)

1. Introduction

Water pollution means a deviation from pure condition, partially or completely by human activity. Major industries like pulp and paper, chemical, petrochemical, refining, metal working, food processing, textile industries etc. are the major contributors of water pollution. Textile industry generates one of the most polluting effluent compared to other industrial effluents. Due to changes in the consumer’s demand, effluent contents have a rapid change. Synthetic reactive dyes are used in
great amounts now a day. The production processes in textile industry not only utilizes large quantity of water and energy but also generate large amount of waste products. MBBR innovation is one the propelled strategy for the treatment of waste water. The microscopic organisms in the biofilms will devour the organics and supplements introduce in the waste water. It is hard to encourage the water straightforwardly to the MBBR tank. So a pre-treatment of waste water is required. So what we have picked granular actuated carbon. This GAC will diminish the COD level; hence the microscopic organisms connected in the biofilms won't be bothered. The GAC have high retaining power. It expels the shade of the waste water at first. The primary favorable position of the MBBR tank is they diminish the aggregate broke up solids viably. As the microscopic organisms expend its nourishment from the waste the broke up solids can be evacuated effectively. Aside from that, it additionally diminishes pH, COD, BOD, TSS, Alkalinity, Hardness, turbidity, and so forth. The powder of these leaves can replace the chlorine used as a sterilizer. The results of this study indicated that the powder and the leaves of the Neem tree may be used as an alternative to chemicals that have environmental side effects and that the wastewater can be re-used safely.

2. Sample collection and preparation

In our adventure we have used the GAC- Neem and Sand filter tank as primary process and MBBR tank as secondary process. The raw dye waste water was collected at the quantity of 200litres. In GAC Filtration tank, the granular activated carbon made as a layer of bed with the stratum of up to 25cms. The GAC also remove the organics substances, heavy metals, etc. The second process is MBBR tank. The MBBR tank comprises of aerators and biofilms. The biofilms are the polypropylene materials where the bacterium can be growth effectively. Initially the biofilms are soaked in dairy animals excrement in a container. It is then blended with the activated sludge gathered from the air circulation tank of STP. This seed slime will start the development of microorganisms in the biofilms. Initially the waste water is poured in the GAC filtration tank and permitted to dormant for 12 hours. The outlet of GAC filtration tank is connected with MBBR tank. The capacity of tank is 25 litres the quantity of biofilms taken as 100. By using the aerators the tank is fully aerated. This helps to lift the biofilms and make them to turn without making them static. The best possible maintenance time is noted. The maintenance time are taken as 2hours, 4hours, 6 hours, 8 hours.

3. Experimental study

3.1. Initial characteristics of waste water

The textile effluent is to be collected and that effluent initial characteristics are completed. The chemical characteristics were completed. There is pH, Turbidity, Total Solids, Total Dissolved Solids, Ammonia, Conductivity, Calcium, Hardness, Total Suspended Solids, BOD, COD, and DO. The obtained results are shown in the Table1.

S. No	Initial characteristics	W. W	Unit
1	Ph	8.76	-
2	Ec	2.65	Mhos/cm
3	Cl	349	mg/l
4	Cod	1830.8	mg/l
5	Bod	359	mg/l
6	Do	50	mg/l
7	Alkalinity	1000	mg/l

Table 1. Initial characteristics of tannery waste water and activated sludge.
3.2. GAC
Granular activated carbon (GAC) is a hybrid mixture of a wide variety of graphite platelets that are interconnected by non-graphitic carbon bonding. The adsorptive capacity of GAC makes it ideal for removing a variety of contaminants from water, air, liquids and gases. GAC is also an environmentally responsible product that can be reactivated through thermal oxidation and used multiple times for the same application. Figure 1 shows Granular Activated Carbon.

![Granular Activated Carbon](image)

Figure 1. Granular Activated Carbon

4. GAC-Neem filter process
The capacity of tank is up to 6 liters and 25cm height. The various layers of GAC-NEEM and sand are prepared. The 3 grades of ENNUR sands are layered continuously each up to 3cm. Then the NEEM powder and GAC is layered up to 8cm. The surface loading rate of activated carbon is low. Lower SLR and longer in adsorbent limit will increase adsorption process. The higher volume of the contact bed increase yield. In connection to the qualities of GAC, it might create a superior expulsion of color, odour, heavy metals etc. The expulsion of adsorption treatment was discovered utilizing 8 cm of GAC with 90% evacuation of COD, 60% evacuation of smelling salts and 58% expulsion of shading. The GAC treated water is directly discharged in to the MBBR tank. The final effluent is to be meet the water system norms. Figure 2. shows the GAC-Neem filter tank.

![GAC-Neem filter tank](image)

Figure 2. GAC-Neem filter tank
5. MBBR tank
The MBBR system consists of an aeration tank (similar to an activated sludge tank) with special plastic carriers that provide a surface where a biofilm can grow. The carriers are made of a material with a density close to the density of water (1 g/cm3). An example is high-density polyethylene (HDPE) which has a density close to 1 g/cm3. The carriers will be mixed in the tank by the aeration system and thus will have good contact between the substrate in the influent wastewater and the biomass on the carriers. To prevent the plastic carriers from escaping the aeration it is necessary to have a sieve on the outlet of the tank. To getting away from air circulated biofilms it is important to have a strainer on the outlet of the tank. Figure 3. shows MBBR tank.

![MBBR tank](image)

Figure 3. Membrane Bed Biofilm Reactor tank

6. Treatment in MBBR tank
In this biological treatment, Poly Vinyl Chloride (PVC) transporter materials were used as a part of MBBR. Carrier media’s of MBBR are nutrient with (Micro bacterium Marnilacus), dairy animals discrete.

6.1. Biocarriers
A biofilm used to gather of microorganisms in which cells adhere to each other and frequently additionally to a surface. These follower cells end up inserted inside a foul extracellular network that is made out of extracellular polymeric substances (EPS). Total of microorganisms in which cells that are much of the time installed inside a self-created grid of extracellular polymeric substances (EPSs) stick to each other and additionally to a surface. Figure 4. shows MBBR Treatment Setup

![MBBR Treatment Setup](image)

Figure 4. MBBR Treatment Setup
7. Reuse of Dye waste water in Agriculture
Using treated dye waste water effluents and sludge on agricultural land provides an alternative to disposal by utilizing the recyclable constituents in sludge and waste water in the production of crops. Figure 5. shows Planting Spinach Using Dye Waste Water.

![Figure 5. Planting Using Dye Water](image)

Figure 6. shows planting of spinach using GAC treated water.

![Figure 6. planting using GAC treated water](image)

Figure 7. shows planting of spinach using MBBR treated water.

![Figure 7. planting using MBBR treated water](image)

8. Results and discussion
The wastes associated are decreased and evacuated according to the natural standards. The treated water can be utilized for the water system. The table 2 shows Result of GAC & 3 shows Result of MBBR treated value figure 8,9,10 &11 shows the results of pH, Chloride, COD & BOD. The BOD, COD of water also decreased 88%. A biofilm was used to gather of microorganisms and surface loading rate of activated carbon is low. Lower SLR and longer in adsorbent limit will increase adsorption process. The expulsion of adsorption treatment was discovered utilizing of GAC with 90% evacuation of COD. The NEEEM and GAC play the vital role for reducing a BOD and COD. In most of the paper almost they had used whether carbon or neem powder but in our project we introduced
both GAC and NEEM powder to get a better result. The total solids evacuated are almost 80%. The treated water meets future water demand. The treated water is to be safe for irrigational purpose.

Table 2. Results of GAC treatment

S.No	Parameter	GAC Outlet	Unit
1.	pH	7.75	-
2.	EC	2.32	Mhos/cm
3.	Cl	134.9 mg/l	mg/l
4.	COD	570.4 mg/l	mg/l
5.	BOD	30.30 mg/l	mg/l
6.	DO	25 mg/l	mg/l
7.	Alkalinity	750 mg/l	mg/l
8.	Hardness	54 mg/l	mg/l
9.	Ca Hardness	30 mg/l	mg/l
10.	Mg Hardness	24 mg/l	mg/l
11.	Sulphate	926.1 mg/l	mg/l
12.	Acidity	420 mg/l	mg/l
13.	Turbidity	35 mg/l	mg/l
14.	TS	800 mg/l	Gms

Table 3 shows the Results of MBBR treatment

Table 3. Results of MBBR treatment

S.No	Parameter	MBBR outlet			
		2hr	4hr	6hr	8hr
1.	pH	6.2	6.7	7.2	7.5
2.	EC	1.5	1.52	1.7	1.73
3.	Cl	89.9	90.7	92.9	96.3
4.	COD	138	128.8	165.6	174.8
5.	BOD	9.09	6.06	3.03	3.51
6.	DO	15	13.5	12	12
7.	Alkalinity	475	525	550	575
8.	Hardness	55	57.5	60	62.5
9.	Ca Hardness	18	18	20	20
10.	Mg Hardness	37	39.5	40	42.5
11.	Sulphate	643	660	687	690
12. Acidity	125	122	124	132	
-------------	-----	-----	-----	-----	
13. Turbidity	48	51	56	58	
14. TS	318	331.5	342	345	

Figure 8. Values of pH

Figure 9. Values of Chlorides

Figure 10. Values of COD
Figure 11. Values of BOD

9. Conclusion

- This experiment has demonstrated that the Moving Bed Biofilm process alongside Granular Activated Carbon can be utilized as a perfect and effective choice for the organics and supplement expulsion from color squander water.
- The physical and compound attributes of the wastewater from the coloring business are especially decreased and it can be utilized for water system reason.
- The estimation of pH is almost 7.5 at ideal maintenance time.
- The COD evacuated about 88%. The BOD and DO is to be evacuated about 30.3& 50% at primary process itself. The shade of the wastewater is totally evacuated.
- The solids which lessened almost 80% at the primary procedure itself.
- The chlorides removal is done almost 93%.
- The alkalinity of water removed 82%.
- The hardness present in the water is removed up to 42%.
- The turbidity of water is evacuated almost 60%.
- Our MBBR-GAC can evacuate the physical and compound attributes of the wastewater from the coloring effectively. In this manner it can be utilized for water system.

10. References

1. Ramesh Babu, R., Parande A.K. and Raghu, S. Textile innovation: Cotton Textile Processing: Wastewater Generation and Effluent Treatment. Diary of Cotton Science 2 (2001) 141-153.
2. John Brinkley, Chantler H. Johnson, Robert Souza, Moving Bed Biofilm Reactor Technology–A Full-scale establishment for treatment of Pharmaceutical wastewater 223 (2002) 152–161.
3. K.Hunger, et.al, Industrial dyes: chemistry, properties, applications, Wiley-VCH, Weinheim, Cambridge, 151 (2003) 316–322.
4. Surreyameric et.al, Reactive dyes removal from wastewater by combined advanced treatment Journal of industrial and engineering chemistry. 147 (2005) 297–306.
5. Churtie. R.M, et.al, Environmental aspects of textile dyeing, wood head, bocaraton, Cambridge 136 (2007) 800–808.
6. Ramesh babu.R, et.al, Adsorption and kinetic studies of methylene blue on zeolite synthesized from fly ash, Desal. Wat. Treat. 99 (2007) 5368–5373.
7. Gupta.V.K, et.al, Application of low cost absorbents for dye removal, Environmental management. 69 (2009) 196–203.
8. Sivamani, S., et al., Wastewater treatment with activated carbon, Achieves of environmental protection. 78 (2009) 307–311.
9. C.I.Pearce, J.R.Lloyd, J.T.Guthrie and et.al, The removal of color from textile wastewater using whole bacteria cells. 135 (2010) 174–184.
10. Bae, W., Han, D., Cui, F. and Kim, M. Microbial evaluation for biodegradability of recalcitrant organic in textile wastewater using an immobilized-cell activated sludge process. KSCE Journal of Civil Engineering. 201 (2010) 191–199.
11. Wessman, F.G. and Siljudalen, J.G. Rusten, B., Yuegen, E.Y., Qiaogeng, Z., Guanghui, H., Expanding the limit with respect to treatment of substance plant wastewater by supplanting existing suspended bearer media with Kaldnes Moving BedTM Media. Control Board (Ministry of Environment and Forests, Govt. of India), Water Environment Federation, 116 (2010) 211–217.
12. T.Robinson, G.Mcmullan, R.Marchant, P.Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternatives, Bioresour, Technology. 41 (2010) 487–495.
13. Dash, B., et al, Competitive adsorption of dyes on activated carbon, B.Tech thesis 113 (2010) 81–88.
14. S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, et al., Equilibrium and kinetics studies of methyl orange and methyl violet adsorption on activated carbon derived from phragmitesaustralis, Desalination 27 (2011) 1129–113
15. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Biosour, Technol. 97 (2011) 1061–1085.
16. Mittal, A, Malviya, A, Kaur, D, Mittal, J, Kurup, L, Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials 69 (2011) 1151–1158
17. Desai, P.A. and Kore, V.S. Performance evaluation of effluent treatment plant for textile industry in Kolhapur of Maharashatra. Universal Journal of Environmental Research and Technology 1 (4) (2011) 560-565.
18. Schneider, E., et al., MBBR assessment for oil refinery wastewater treatment with post ozonation and BAC for wastewater reuse, Water science and technology 39 (2011) 1347–1353
19. Syafalni, S., Abustan, I., Dahlan, I., Wah, C.K. and Umar, G. Treatment of dye wastewater using granular activated carbon and zeolite filter. Modern Applied Science 6 (2) (2012).
20. Vikasdnikar, crosavi,F, et al, Textile wastewater treatment by chemical coagulation treatment, Textile wastewater treatment by chemical coagulation technology 158 (2013) 142–150.
21. Abdul, A., Farhana, T. and Mohd, A. Essential Design of a Fluidized Bed Reactor for Waste water Treatment utilizing Fenton Oxidation. International. Diary of Innovation Management and Technology 5 (2) (2014) 187-200.
22. Mona, A, Sherief, F, et al., Treatment and characterization of wastewater from various dyeing industries using different adsorbents, Journal of water resource engineering 171 (2015) 54–60
23. Gayathri, K., Viji,R., et al., Use the neem leaves for colour removal from wastewater, Journal of Engineering and Applied Science 175 (2016) 1–11.
24. Deepika Patel and et.al Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Manage. 77 (2017) 247–255.
25. Mohamed, A, Ahmed,E, and et al., Cationic and anionic dye adsorption by agricultural solid waste, Journal of scientific research 98 (2017) 2369–2385.
26. Vaidhegi, S, Ajithselvam, A, and et al., Treatment of dye wastewater using MBBR reactor, Journal of Advanced in Dynamical and Control Systems 9 (2018) 105–111.
27. Anupama ranjini, K., et al., Characterisation of grey water and treatment using MBBR reactor, Environmental Management Journal 11 (2019) 288–293.
28. IS 10500:1999, water Standards for drinking and various purposes.