Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations

Songchuan Guo, Merly Contratto, George Miller, Lawrence Leichman, Jennifer Wu

Author contributions: Wu J provided the concept, the outline, the structure, and the major references for this manuscript, provided critical revisions for this manuscript; Guo S drafted the majority of the manuscript, incorporated several revisions based on feedback from Wu J, Leichman L and Miller G; Contratto M incorporated essential components into the manuscript and performed critical revisions of this manuscript; Miller G and Lawrence L provided critical feedback and offered major ideas to optimize the manuscript; all authors approved the final manuscript.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Conflict of Interest: The author(s) declare(s) no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Key words: Immunotherapy; Pancreatic cancer; Anti-programmed cell death protein-1; Anti-programmed cell death protein-ligand 1; Anti-cytotoxic T lymphocyte antigen-4; Single therapy; Combination therapies; Radiation therapy; GVAX; CRS-207; CD40 agonist

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Pancreatic cancer is the third leading cause of cancer mortality in both men and women in the United States. Pancreatic cancer is one of nonimmunogenic...
Guo S et al. Immunotherapy in pancreatic cancer

INTRODUCTION
Pancreatic cancer is the third leading cause of cancer mortality in both men and women in the United States. The vast majority of patients with pancreatic cancer are diagnosed with advanced disease, and there has been a lack of optimal treatment option as the cancer is highly refractory to standard chemotherapy. Recently, two chemotherapy regimens, FOLFIRINOX and gemcitabine plus albumin-bound paclitaxel (nab-paclitaxel), have emerged as the standard of care for metastatic pancreatic cancer. These two regimens showed improved overall and progression-free survival (PFS) compared to gemcitabine alone in two phase III randomized controlled trials. Nevertheless, only up to 30% of patients showed response to either of these two regimens. The median PFS and overall survival (OS) remain poor, under 6 and 12 mo, respectively. Thus, there is still an urgent need to develop therapies that deliver more effective and durable clinical responses.

RELEVANCE OF IMMUNITY TO PANCREATIC CANCER
Observations in human disease and murine modeling has suggested that pancreatic cancer is almost invariably associated with a robust inflammatory infiltrate which can have divergent influences on disease progression by either combating cancer growth via antigen-restricted tumoricidal immune responses or by promoting tumor progression via induction of immune suppression (Figure 1). For example, cluster of differentiation 8 (CD8+) T-cells mediate antitumor effects in murine models of pancreatic cancer and are associated with increased survival in patients with pancreatic cancer. Conversely, we recently reported that T-helper type 2 (Th2)-polarized CD4+ T-cells promote pancreatic cancer progression in mice and intra-tumoral CD4+ Th2 cells infiltrates correlate with reduced survival in human disease. Similarly, Foxp3+ T-regulatory cells (Tregs) facilitate tumor immune escape in pancreatic cancer. Myeloid cells can influence T cells differentiation and cytotoxicity in pancreatic cancer. We reported that tumor-infiltrating myeloid-derived suppressor cells (MDSCs) negate cytotoxic CD8+ T cells anti-tumor responses, accelerates pancreatic cancer growth and metastasis. Similar to T cells, macrophages also have cell types with different properties such as classically activated (M1) macrophages induce immunogenic responses, whereas alternatively activated (M2) macrophages have permissive influences on tumor growth by recruiting Tregs and Th2 cells. However, the drivers of immunosuppressive cell differentiation in pancreatic cancer are based on comprehensive understanding of regulation of the balance between immunogenic and immune-suppressive T cell populations.

THE EMERGENCE OF CHECKPOINT IMMUNOTHERAPY
The last few years witnessed a paradigm shift in cancer treatment strategy incorporating immunotherapy. Unprecedented clinical success has been observed for therapies targeting two major checkpoints of T cell response (Figure 2): Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1). Both checkpoints are expressed on activated T cells, but they act in distinct pathways. CTLA-4 blocks the essential cluster differentiation 28 (CD28) costimulation by competing and depleting the ligand of CD28 (B7-1 and B7-2) on antigen presenting cells (APCs). On the other hand, PD-1 interferes with the signaling pathways mediated by the T cell receptor and serves as a more distal block of T cell response by binding to its ligands (programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2) which are present on many cell types including tumors cells.

Monoclonal antibodies targeting CTLA-4 or PD-1 have shown durable clinical responses and prolonged OS in patients with melanoma, a highly immunogenic cancer. While single agent PD-1/PD-L1 inhibitors demonstrate impressive clinical benefits in many cancers such as non small cell lung cancer (NSCLC), renal cell carcinoma, bladder cancer, and Hodgkin’s lymphomas. These results have led to FDA approval of Ipdilimumab (anti-CTLA-4) in 2011 in melanoma. PD-1 inhibitors such as pembrolizumab and nivolumab were approved later in melanoma as well. PD-1 inhibitors (nivolumab and pembrolizumab), along with PD-L1 inhibitors such as atezolizumab have been approved in NSCLC, another example of immunogenic cancer. The activity of CTLA-4 and PD-L1 inhibitors are being explored in pancreatic cancer as well.

EVIDENCE OF MINIMAL ACTIVITY OF SINGLE AGENT CHECKPOINT IMMUNOTHERAPY IN PANCREATIC CANCER
In early clinical trials single agent therapy with anti-CTLA-4
or anti-PD-1/anti-PD-1 pathway (anti-PD-L1) alone were largely ineffective in pancreatic cancer[32-34,35]. In a single-arm phase II study, Ipilimumab failed to induce tumor response in patients with advanced pancreatic cancer[32]. Similarly, single agent BMS-936559, an anti-PD-L1 monoclonal antibody, did not show any activity in 14 patients with advanced pancreatic cancer in a phase I study[22].

EVIDENCE OF T CELL IMMUNITY

On the other hand, there is still evidence of T cell-mediated immunity in pancreatic cancer. An analysis of resected surgical samples of pancreatic cancer patients has shown that higher levels of CD4+ and CD8+ tumor infiltrating T cells are associated with better prognosis[10]. In addition, since immunosuppression occurs early during tumorigenesis as shown in Pdx1^{Cre};Kras^{G12D};Tp53^{R172H} (KPC) mouse model, the tumor cells may have been shielded from immune pressure, thus preserving their sensitivity to T cell attack[38].

In addition, downstream signals are also critical in the T cell immune responses. Interferon-gamma (IFN-γ) promotes inhibition of melanoma cell growth and induces apoptosis of tumor cells by regulating T-cells responses[39-44]. Immune checkpoint inhibitors increase production of IFN-γ from T-cell[45-50]. However its effect will be suboptimal if there is a defect in the IFN-γ pathway[51]. Studies in patients with melanoma showed that a defect in the IFN-γ pathway can lead to resistance to anti-CTLA4 and anti-PD-1 therapies[51,52]. Several genomic biomarkers of IFN-γ pathways such as interferon gamma receptor 1, janus kinase 1 (JAK1), and JAK2 have been identified in melanoma patients with good response to immune checkpoint therapies[41,43,51,52]. On the other hand, genes such as suppressor of cytokine signaling 1 (SOCS1) and protein inhibitor of activated signal transducer and activator of transcription 4 (PIAS4) have
demonstrated the opposite effects by inhibiting IFN-γ signaling pathway[51,53,54].

STRATEGIES OF TURNING ON THE ACTIVITY OF IMMUNOTHERAPY

Thus, the incorporation of additional therapies that can turn a "cold" tumor microenvironment into a "hot" one presents an important strategy to elicit clinical activity of immune checkpoint therapies. These additional therapies mainly fall into three categories (Figure 3): First, therapies that enhance tumor antigen presentation to help T cell priming/activation; second, therapies that modulate tumor microenvironment to relieve immunosuppression. Third, therapies which breakdown the desmoplastic barrier surrounding pancreatic cancer to bring infiltrating T cells. Below we will summarize the combination therapies that have already been assessed clinically and provide future directions of new combinations that may hold promise.

FIRST (ENHANCE T CELL ACTIVATION)

Immune checkpoint therapy + chemotherapy

Gemcitabine is one of the backbone chemotherapy agents for the treatment of pancreatic cancer. It has been suggested that gemcitabine is not immunosuppressive in pancreatic cancer patients and may be able to enhance naïve T cells activation[55]. Combination of gemcitabine and immune checkpoint blockade has been evaluated for their potential synergistic activity.

Gemcitabine plus CTLA-4 blockade: A phase I clinical study evaluated the combination of gemcitabine and an anti-CTLA-4 antibody (tremelimumab) in treatment naïve patients with metastatic pancreatic cancer. This combination showed a tolerable side effect. Among 28 out of 34 evaluable patients, 2 achieved partial response (PR) and 7 showed stable disease (SD) for >10 wk[49]. In another ongoing phase Ib study of unresectable pancreatic cancer, preliminary results showed that, among 11 evaluable patients (out of 13 enrolled), ipilimumab and gemcitabine resulted in 2 PR and 5 SD[56,57].

Gemcitabine plus PD-1/PD-L1 blockade: An immunohistochemistry analysis has shown that positive PD-L1 expression in resected pancreatic cancer was correlated with worse OS[58]. In a mouse model of pancreatic cancer, combining gemcitabine with either anti-PD-1 or anti-PD-L1 antibody enhanced tumor infiltration of CD8$^+$ T cells and resulted in complete responses in treated mice[58]. A clinical pilot study of combination of gemcitabine and anti-PD-1 antibody has closed to enrollment (NCT01313416).

Immune checkpoint therapy + cancer vaccines

The most extensively studied pancreatic cancer vaccine is GVAX. GVAX is a whole cell vaccine composed of irradiated, allogeneic pancreatic tumor cells genetically engineered to secret granulocyte macrophage-colony stimulating factor (GM-CSF), a cytokine that stimulates dendritic cell activation and T cell priming. When used as part of adjuvant therapy in the post-resection setting, GVAX was able to induce pancreatic cancer specific CD8$^+$ T cell expansion as shown in a phase II study[59]. Also, when used as neoadjuvant and adjuvant therapy, GVAX and low dose cyclophosphamide (an alkylating agent with an ability to deplete Tregs) resulted in formation of intratumoral tertiary lymphoid aggregates and T cell infiltration, suggesting the ability of GVAX in the conversion of pancreatic cancer from a "non-immunogenic" into an "immunogenic" state[60].

GVAX plus CTLA-4 blockade: In a small phase Ib
Guo S et al. Immunotherapy in pancreatic cancer

study, GVAX in combination with anti-CTLA-4 antibody ipilimumab was evaluated in 30 patients with advanced, refractory pancreatic cancer that were previously treated with gemcitabine-based chemotherapy. Compared to ipilimumab alone, the combination therapy resulted in improved survival (27% vs 7% at 1 year). Also, a longer survival was associated with an increase in peak mesothelin-specific T cells and a larger T cell repertoire (the percentage of mesothelin peptides for which enhanced T-cell responses were measured), indicating a positive role of T cell response.

GVAX plus PD-1/PD-L1 blockade: Detailed analysis of lymphoid aggregates formed after GVAX therapy revealed elevated expression of PD-L1 on monocytes/macrophages, suggesting the potential benefit of targeting PD-1/PD-L1 checkpoint. This concept was supported by experiments in a pancreatic cancer mouse model, where the combination of GVAX and an anti-PD-1 antibody resulted in better survival than anti-PD-1 antibody alone, and this activity was correlated with increased CD8+ T cells and elevated IFN-γ production in the tumor microenvironment. Currently, a randomized clinical study (NCT02451982) is ongoing to evaluating GVAX with or without anti-PD-1 antibody (nivolumab) as neoadjuvant and adjuvant treatment in patients with resectable pancreatic cancer.

GVAX and CRS-207 plus PD-1/PD-L1 blockade: CRS-207 is a bacterial vaccine composed of live-attenuated, double deleted Listeria monocytogenes expressing human mesothelin, an antigen commonly overexpressed in pancreatic cancer cells. CRS-207 can induce robust innate as well as mesothelin-specific adaptive immune response, therefore allowing for a "boost" to the immune response initiated by GVAX. In a randomized, phase II study, GVAX prime followed by CRS-207 boost resulted in prolonged OS compared to GVAX alone in patients with metastatic, refractory pancreatic cancer. This study also showed that mesothelin-specific CD8+ T cell response was correlated with better survival. On the basis of these findings, a randomized phase II study (NCT02243371) was to evaluate whether adding anti-PD-1 therapy (nivolumab) will further enhance the activity of this prime-boost strategy. This study has closed to enrollment.

In a phase IIB study (NCT02004262) in refractory and metastatic pancreatic cancer; 303 patients were randomized between GVAX and CRS-207 (arm A), only CRS-207 (arm B), and single agent chemotherapy (arm C). No OS advantage was seen in arm A when compared to arm C. A large number of patient drop out prior to treatment was observed in both arm A and C (40% versus 60%, respectively), indicating the challenge of therapeutic benefit in refractory pancreatic cancer. It also hints that these patients in the refractory setting may be too sick to benefit from immunotherapy due to rapid deterioration of disease.

Immune checkpoint therapy + agents enhancing T cell immunity

CD40 agonist: CD40 is a member of the tumor necrosis factor receptor family. Ligation of CD40 can occur on dendritic or B cells, or on CD40 ligand (CD154) on activated T cells, such effect can enhance T cell immunity. In a 22 patients series with unresectable pancreatic cancer, a CD40 agonist (CP-870, 893) and gemcitabine led to an encouraging clinical response. Rather unexpectedly, it showed that tumor infiltration by macrophages played a larger role for depletion of tumor stroma and killing of tumor cells. In a more recent study in the KPC mouse model, however, the use of CD40 agonist monoclonal antibody (mAb) with gemcitabine and nab-paclitaxel induced macrophage-independent T cell immunity. This study also found that CD40 agonist in addition to chemotherapy was able to sensitize the tumors to anti-CTLA-4 and/or anti-PD-1 therapies, leading to tumor regression and improved survival. A recent study using an orthotopic pancreatic cancer mouse model also demonstrated tumor regression and enhanced immune response with the combination of CD40 agonist antibody with gemcitabine/Nab-paclitaxel. It is yet to be seen whether these pre-clinical results can translate into clinical benefits.

CAR T cells: Autologous T cells genetically engineered to express a chimeric antigen receptor (CAR) have been developed to trigger cancer-specific T cell immunity and have shown impressive activity in acute lymphoblastic leukemia. For the treatment of pancreatic cancer, the CARs are engineered to recognize mesothelin, a specific membrane protein antigen overexpressed on pancreatic cancer cells. Mesothelin-specific CAR T cells are currently under phase I clinical evaluation, with preliminary results suggesting acceptable safety profiles and potential clinical activity against advanced pancreatic cancer. This study demonstrated that 2 out of 6 patients achieved SD and one patient with liver metastasis at baseline showed no fluorodeoxyglucose (FDG) uptake within 1 mo of treatment. Therefore, CAR T cells represent another treatment modality to combine with immune checkpoint therapies.

Immune checkpoint therapy + radiotherapy

The effects of radiotherapy (RT) on the immunology of pancreatic cancer have not been intensively studied. However, work in other cancers has suggested that RT should be considered an immune adjuvant as evidenced by radiotherapy (RT) induced enhancement of both innate and adaptive immunity. For example, the immunogenicity of dendritic cells (DCs) is reportedly improved by RT-induced necrotic tumor cell release of high mobility group box 1 protein (HMGB1) which ligates toll-like receptor 4 (TLR4) and toll-like receptor 9 (TLR9) on DCs. Such events promote DCs’ cellular maturation and enhance their antigen processing capabilities. Another consequence of RT-induced necrotic cell death is the translocation of calreticulin from the endoplasmic reticulum to the
plasma membrane which facilitates assembly of major histocompatibility-1 (MHC I)-peptide complexes. Calreticulin also enhances DCs cross presentation of antigens to cytotoxic T lymphocytes. In addition to upregulating the antigen-presentation machinery in DCs, RT can reportedly enhance immunogenicity by inducing the release of tumor antigens, upregulating the expression of T-cell co-activating ligands, and sensitizing tumor cells to antigen-independent cell death via the Fas receptor. RT is further thought to augment diverse aspects of T cell immunity via adenosine triphosphate release from apoptotic cells which induces secretion of Interleukin-1-beta (IL-1β). A consequence of this cascade is T helper 1 (Th1) polarization of antigen-restricted CD4+ T cell responses and activation of cytotoxic T cells. Additionally, activation of cytotoxic T cells can be further activated by irradiation, via natural killer group 2 member D (NKG2D) receptor on cytotoxic T cells. NKG2D receptor can be induced in a stress event such as DNA damage which can be achieved by RT. Therefore, ionizing radiation can result in "immunogenic cell death", in which the dying tumor cells trigger "danger signals" (a signal of releasing HMGB1 and binding to TLR4 and TLR9 on DCs to process the antigen) to boost T cell activation.

SECOND (TARGETING IMMUNO-SUPPRESSIVE MICROENVIRONMENT)

As described earlier, an important barrier to the success of immunotherapy in pancreatic cancer is an immunosuppressive tumor microenvironment, enriched with immunosuppressive cells such as tumor associated macrophages (TAMs) and MDSCs. In animal models of pancreatic cancer, blockade of immunosuppressive MDSCs could promote antitumor T-cell responses and block protumor macrophage responses. Therefore, drugs that block these immunosuppressive cells in the tumor microenvironment represent attractive strategies to sensitize pancreatic cancer to immune checkpoint therapies.

Immune checkpoint therapy + radiotherapy

RT’s theoretical potential ability to convert the tumor microenvironment from a “cold” to a “hot” state suggests the opportunity of RT combination with immune checkpoint therapy. In the KPC pancreatic mouse model, any combination of immune checkpoint inhibitor with RT substantially increased OS, when compared to anti-CTLA-4 antibody or anti-PD-L1 antibody alone without RT. In particular, the triple therapy (RT + CTLA-4 antibody + PD-L1 antibody) resulted in the highest response rate and longest OS among any of the immunotherapy group as single therapy or in combinations. However, our recent preclinical studies on RT in pancreatic cancer suggest caution as we found that RT induced the programming and recruitment of immunosuppressive M2-like macrophages which lead to the expansion of tumor promoting Th2-polarized CD4+ T cells and Tregs. We also found that combining RT with either macrophage neutralization or M-CSF blockade resulted in synergistic efficacy in mice model, suggesting another treatment strategy for pancreatic cancer utilizing RT combining with colony stimulating factor-1 receptor inhibitor.

So far there have been no published clinical results on RT plus checkpoint blockade for the treatment of pancreatic cancer. Currently, an open-label, three-cohort, multi-institutional phase Ib study is ongoing at New York University (NCT02868632) to assess stereotactic body radiation therapy (SBRT) in combination with either MEDI4736 (an anti-PD-L1 antibody) alone, tremelimumab (an anti-CTLA4 antibody) alone, or the combination of MEDI4736 and tremelimumab in patients with unresectable/locally advanced previously untreated pancreatic cancer. A study with similar design that tests the combination of radiation with checkpoint blockade in second line setting is also ongoing (NCT02311361).

Immune checkpoint therapy + therapies targeting immunosuppressive microenvironment

JAK inhibitors: The Janus kinase (JAK) and its downstream factor signal transducer and activator of transcription (STAT) are important mediators of signaling pathways initiated from cytokine and growth factor receptors. Excessive JAK/STAT signaling can lead to production and release of inflammatory cytokines, promote recruitment, expansion of MDSCs and Tregs which induce an immunosuppressive tumor microenvironment. Also, JAK/STAT pathway has been shown to induce the expression of PD-L1 on cells in the tumor microenvironment. In preclinical studies, JAK inhibitors led to decreased numbers of Tregs, TAMs and MDSCs, with enhanced number of activity of CD4+ and CD8+ T cells. The study of JAK inhibitor Ruxolitinib and cabiciptabine for the treatment of advanced pancreatic cancer has closed to enrollment (JANUS study; NCT02117479).

PI3K inhibitors: Phosphoinositide-3-kinase (PI3K) is a family of lipid kinases that catalyze the production of second messenger phosphatidylinositol-3,4,5-triphosphate (PIP3), which leads to activation of downstream kinases. PI3K was known to play an important role in signaling pathways in B cells, which were found to contribute to an immunosuppressive microenvironment that dampens T cell immunity. Inactivation of PI3K was associated with a decrease in Tregs and MDSCs and an increase in CD8+ cytotoxic T cell activity, indicating a role of PI3K in regulating tumor microenvironment. PI3K inhibitors could shift immunosuppressive microenvironment in pancreatic cancer into a more immunogenic one. Therefore PI3K inhibitors could help potentiate the activity of immune checkpoint inhibitors.

BTK inhibitors: BTK is a cytoplasmic, Tec family tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. In pancreatic cancer, the BTK...
inhibitor (ibrutinib) was shown to inhibit mast cells, and as a result, to reduce fibrosis in the tumor microenvironment both in a KPC mouse model and patient-derived xenograft[83]. Ibrutinib was also known to inhibit interleukin-2-inducible T-cell kinase (ITK), an important enzyme for the survival of Th2 cells; thus ibrutinib may be able to shift the balance away from the Th2 cells protumor response and toward the Th1 cells antitumor immune responses. A phase I/II clinical study assessing ibrutinib in combination with anti-PD-L1 antibody MEDI4736 in relapsed or refractory solid tumors, including pancreatic cancer has closed to enrollment (NCT02403271)[84].

THIRD APPROACH (BREAKDOWN DESMOPLASTIC BARRIER)

Strategy that targets the desmoplastic stroma PEGPH20: In pancreatic cancer, high levels of hyaluronan in the extracellular matrix contribute to a high interstitial pressure in the tumor stroma, leading to vascular compression and hypoperfusion. Pegylated hyaluronidase PEGPH20 is an enzyme that can degrade hyaluronan, and has been shown in a KPC mouse model to deplete hyaluronan in the tumor stroma and enhance the activity of gemcitabine[85]. In a phase I (28 patients) and a phase II (135 patients) studies, patients with previously untreated advanced pancreatic cancer, PEGPH20 along with chemotherapy (gemcitabine, or gemcitabine/nab-paclitaxel) resulted in good tumor response and PFS, but only in patients with high levels of hyaluronan[15,86]. Therefore, in pancreatic cancers with high levels of hyaluronan, PEGPH20 therapy may allow more effective T cell infiltration and enhance the activity of immune checkpoint therapies.

CONCLUSION

Both challenges and opportunities exist for the development of effective immunotherapy for pancreatic cancer. Given that single agent therapies against CTLA-4 or PD-1 or PD-L1 immune checkpoint were largely ineffective in pancreatic cancer, ongoing investigations and future directions lie in the field of combination therapies, where additional treatment modalities may unleash durable antitumor immune responses by enhancing tumor-specific T cell activation and antagonizing the immunosuppressive microenvironment in pancreatic cancer.

REFERENCES

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7-30 [PMID: 26742998 DOI: 10.3322/caac.21332]
2 Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn A, Deniezet-Laprévote L, Dufour H, Endo H, Falissard B, Fournier P, Gourin Mintz S, Haussecker H, Inamdar A, Installe D, Isella M, Jugnet D, Juteau M, Lagorce P, Lantuejoul S, Le Boulch F, Le Coz X, Le Lannou C, Lelesperance L, Leport C, Louis M, Lyrer P, Moine P, Sawadogo T, Schmitt F, Stoppa-Ramirez P, Trastek FV, Tuffreau A, Turandot M, Walker D, Wanezec C, Bianchi S, Costa F, Aaltonen L, Vermeulen A, Willemze R, Wozniak A, Lebbe C, Rougier P, Nickoloff B, Gown AM, ribas A, Koi A, Power C, Wilson L. Overall survival with nivolumab in patients with advanced non-small-cell lung cancer (CheckMate 017): a pooled analysis of pooled analysis of phase I/II trials. Lancet Oncol. 2015; 16(3): 234-244. [PMID: 25677730 DOI: 10.1016/S1470-2045(15)00020-4]
3 Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tuljandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramakrishnan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369: 1691-1703 [PMID: 23411300 DOI: 10.1056/NEJMoa1304369]
4 Aglietta M, Barone C, Sawyer MB, Moore MJ, Miller WH, Bagalá C, Colombi F, Cagnazzo C, Gioeni L, Wang E, Huang B, Fly KD, Leone F. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 2014; 25: 1750-1755 [PMID: 24097653 DOI: 10.1093/annonc/mdu205]
5 Ali K, Soond DR, Pilheiro R, Hagemann T, Pearce W, Lim EL, Bousabé H, Scudamore CL, Hancock T, Maeccker H, Friedman L, Turner M, Okkenhaug K, Vanhaesebroeck B. Inactivation of P6(3)K p110 breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 2014; 510: 407-411 [PMID: 24919154 DOI: 10.1038/nature13444]
6 Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vanderheide RH. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012; 21: 822-835 [PMID: 22968406 DOI: 10.1016/j.ccr.2012.04.025]
7 Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torrigian DA, O’ Dewy PJ, Vanderheide RH. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331: 1612-1616 [PMID: 21436454 DOI: 10.1126/science.1198443]
8 Daley D, Zambrinis CP, Seifert L, Akkad N, Mohan N, Werba G, Barilla R, Torres-Hernandez A, Hundein M, Mani VR, Avanzi A, Tippens D, Narayanan R, Jang JE, Newman E, Pillarsetty VG, Dustin ML, Bar-Sagi D, Hajdu C, Miller G. 6 T Cells Support Pancreatic Oncogenesis by Restraining 0 T Cell Activation. Cell. 2016; 166: 1485-1499.e15 [PMID: 27569912 DOI: 10.1016/j.cell.2016.07.046]
9 De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoiesis production and reduced survival in pancreatic cancer. J Exp Med 2011; 208: 469-478 [PMID: 21339327 DOI: 10.1084/jem.20101876]
10 Fukunaga A, Miyamoto M, Cho Y, Murakami S, Kawarada Y, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR. In a phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. Ann Oncol 2014; 25: 1750-1755 [PMID: 24097653 DOI: 10.1093/annonc/mdu205]
11 Beatty GL, Torrigian DA, Chiorean EG, Saboury B, Brothers A, Alavi A, Troxel AB, Sun W, Teitelbaum UR, Vanderheide RH, O’Dwyer PJ. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res 2013; 19: 6286-6295 [PMID: 23983255 DOI: 10.1158/1078-0432.CCR-13-1320]
12 Beatty GL, O’Hara MH, Nelson AM, McGarvey M, Torrigian DA, Lacey SF, Melenhorst JJ, Levine B, Plesa G, June CH. Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer. 2015 ASCO Annual Meeting. J Clin Oncol 2015; Abstracts 33: 3007
13 Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, Zambrinis CP, Fallon NC, Rehman A, Pylayeva-Gupta Y, Badar S, Hajdu C, Frey AB, Bar-Sagi D, Miller G. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis. J Exp Med 2010; 209: 23983255 DOI: 10.1158/1078-0432.CCR-10-2388
14 Bellucci R, Zambirinis CP, Fallon NC, Rehman A, Pylayeva-Gupta Y, Barilla R, Zambirinis CP, Fallon NC, Rehman A, Pylayeva-Gupta Y, Barilla R, Torres-Hernandez A, Hundein M, Mani VR, Avanzi A, Tippens D, Narayanan R, Jang JE, Newman E, Pillarsetty VG, Dustin ML, Bar-Sagi D, Hajdu C, Miller G. 6 T Cells Support Pancreatic Oncogenesis by Restraining 0 T Cell Activation. Cell. 2016; 166: 1485-1499.e15 [PMID: 27569912 DOI: 10.1016/j.cell.2016.07.046]
15 Hingorani SR, Harris WP, Hendifar AE, Bullock AJ, Wu XW, Huang

WJCO | www.wjgnet.com 236 June 10, 2017 | Volume 8 | Issue 3 |
High response rate and PFS with PEIPEG20 added to nab-paclitaxel/gemcitabine in stage IV previously untreated pancreatic cancer patients with high-HA tumors: Interim results of a randomized phase II study. 2015 ASCO Annual Meeting. J Clin Oncol 2015;33:3066-3066.

Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akery W, van den Ewght DJ, Lutzky J, Lorigan P, Vauel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quir I, Clark J, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoa A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711-723 [DOI: 20525992 DOI: 10.1056/NEJMoa1003466]

Palyavaca-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21: 836-847 [PMID: 22698407 DOI: 10.1016/j.ccr.2012.04.024]

Koblish HK, Hansbury M, Wang LCS, Yang G, Huang T, Xue CB, Li YL, Yue E, Combs A, Yao W, Reid H, Scherle P. Novel immunotherapeutic activity of Jak and PI3Kδ inhibitors in a model of pancreatic cancer. Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA: AACR; Cancer Res 2015; 75: Abstract nr 1336 [DOI: 10.1158/1535-7440.AM2015-1336]

Sharma P, Allison JP. The future of immune checkpoint therapy. Science; 2015; 348: 56-61 [PMID: 25838373 DOI: 10.1126/science.aaa8172]

Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez MC, Schuster SJ, Millennon MM, Cattrey D, Freeman GJ, Rodig SJ, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Koblish HK. Immunotherapeutic activity of JAK and PI3K δ inhibitors in a model of pancreatic cancer reversed with neoantigen. Cancer immunolres 2015; 4: 2455-2465 [PMID: 25482239 DOI: 10.1172/jci.insight.88328]

Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pittot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Koblish HK. Immunotherapeutic activity of JAK and PI3K δ inhibitors in a model of pancreatic cancer reversed with neoantigen. Cancer Immunolres 2015; 4: 2455-2465 [PMID: 25482239 DOI: 10.1172/jci.insight.88328]

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Keeford R, Wolchok JD, Hersey P, Joseph RB, Weber JS, Dronca R, Gandaghar TC, Patnaik A, Zorou H, Joshua AM, Gergich K, Ellassa-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbringhaus SW, Li XN, Kang SP, Ribas A, Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 2015; 373: 1627-1639 [PMID: 26412456 DOI: 10.1056/NEJMoa1507643]

Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pittot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso P, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in patients with advanced cancer. N Engl J Med 2015; 373: 1627-1639 [PMID: 26412456 DOI: 10.1056/NEJMoa1507643]

Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kamrnula US, Sherry RM, Topalian SL, Yang JC, Lowy I, Rosenberg SA. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced and metastatic pancreatic adenocarcinoma. J Immunotheer 2010; 33: 828-833 [PMID: 20842054 DOI: 10.1097/CJCI.0b013e3181eec14c]

Gubin MM, Schreiber RD. CANCER. The odds of immunotherapy success. Science; 2015; 350: 158-159 [PMID: 26450194 DOI: 10.1126/science.aad4140]

Räviö NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasi M, Zapposodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2013; 340: 124-128 [PMID: 25765070 DOI: 10.1126/science.1236047]

Evans RA, Diamond MS, Rech AJ, Chao T, Richardson MW, Lin JH, Bajor DL, Byrne KT, Stanger BZ, Feurth EE, Wherry EJ, Vonendere RH. Induction of a discernible tumor infiltrate in melanoma patients who receive combination immunotherapy. Science 2013; 340: 124-128 [PMID: 25765070 DOI: 10.1126/science.1236047]
Guo S et al. Immunotherapy in pancreatic cancer

B, Illicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhanl SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanu E, Paradiso A, Pearson JN, Puente Xs, Raine K, Ramakrishna M, Richardson AJ, Richter J, Romisch P, Schluener M, Schmutz TN, Spahn PN, Teague JW, Tomoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van ‘t Vleer L, Vincent-Salomon A, Waddell N, Yates LR, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmmond SM, Siebert R, Campo E, Shibata T, Pilsmer ST, Campbell PJ, Stratton R. Signatures of mutational processes in human cancer. Nature 2013; 500: 415-421 [PMID: 23945592 DOI: 10.1038 nature12477]

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kieran A, Hamerman PS, McKenna A, Drier Y, Zou L, Yang Y, Yagita H, Overwijk WW, Liakou CI, Logothetis C, Sharma P. CTLA-4 blockade increases IFN-gamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. JCI 2013; 2: 382-389 [PMID: 23924790 DOI: 10.1073.jci.806075105]
A, Bigelow E, Lutz E, Liu S, Anders RA, Laheru D, Wolfgang CL, Edid BH, Schulick RD, Jaffee EM, Zheng L. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother Cancer 2015; 3: 1-11 [PMID: 25412582 DOI: 10.1007/s12282-015-0096-2]

62 Le DT, Wang-Gillam A, Picozzi V Jr, Greten TF, Crocenzi TS, Springett GM, Morse M, Zeh H, Cohen DJ, Fine RJ, Olner M, B, Urman JN, Laheru D, Murphy A, Skobie J, Lemmens E, Grous JJ, Dubensky T, Brockstedt DG, Jaffee EM. A phase 2 randomized trial of GVAX pancreas and CRS-107 immunotherapy versus GVAX alone in patients with metastatic pancreatic adenocarcinoma. 2014 Gastrointestinal Cancers Symposium. J Clin Oncol 2014; 32: 177

63 Le DT, Crocenzi TS, Urman JN, Lutz ER, Laheru D, Sugar EA, Vanderveerer RH, Fisher GA, Ko AH, Murphy AL, McDougall K, Ferber S, Brockstedt DG, Jaffee EM. Randomized phase II study of the safety, efficacy, and immune response of GVAX pancreas (with cyclophosphamide) and CRS-207 with or without nivolumab in patients with previously treated metastatic pancreatic adenocarcinoma (STELLAR). 2015 ASCO Annual Meeting. J Clin Oncol 2015; 33: TPS4148

64 Le DT, Ko AH, Wainberg ZA, Picozzi VJ, Kindler HL, Wang-Gillam A, Obersteiner PE, Morse M, Zeh H, Weekes CD, Reid TR, Murphy A, McDougall K, Whiting CC, Nair N, Enstrom A, Ferber S, Dubensky TW, Brockstedt DG, Jaffee EM. Results from a phase 2b, randomized, multicenter study of GVAX pancreas and CRS-207 compared to chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). 2017 Gastrointestinal Cancers Symposium. J Clin Oncol 2017; 35: 345

65 Vanderveerer RH, Phlaethty KT, Khalil M, Stumachen MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagger M, Krammer A, Greer SJ, Dwyer PJ, Running KL, Huhn RD, Antonia SJ. Clinical activity and immune modulation in cancer patients treated with CP-870,893, an novel CD40 agonist monoclonal antibody. J Clin Oncol 2007; 25: 876-883 [PMID: 17327609 DOI: 10.1200/JCO.2006.08.3311]

66 Siolas D, Cullis J, Avanzi A, Byrne K, Leichman LP, Vanderveerer RH, Bar-Sagi D. Antitumor activity and immune response in CD40 immunotherapy with gemcitabine and nax-paclitaxel in an orthotopic pancreatic cancer mouse model. 2016 Gastrointestinal Cancers Symposium. J Clin Oncol 2016; 34: 273

67 Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Benci JL, Concha-Benavente F, Massó-Vallés D, Macarulla TM, Sahai V, Sama AR, Greeno E, Yu KH, Verslype C, Jerniguen R, Hingorani SR. Ibrutinib durvalumab squamous carcinomas. J Immunother Cancer 2017; 5: 162 [PMID: 28667674 DOI: 10.1158/2040-6207.CAN-16-8251]

68 Park B, Y, Jaffee EM, Lutz ER, Urman JN, West BL, Luo J, Wang-Gillam A, Langanreper AP, Linehan DC, DeNardo DG. CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 2014; 74: 5057-5069 [PMID: 25082815 DOI: 10.1111/13-0847.CAN-13-1732]

69 Twymann-Victor C, Rech AJ, Maity A, Ruan KE, Stieklie E, Bence J, Xu B, Dada H, Okotokzi PM, Herati RS, Manfield SD, Pasch D, Amuakwah RD, Schuchter LM, Ishwara H, Rick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vanderveerer RH, Min AJ. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520: 373-377 [PMID: 25753429 DOI: 10.1016/nature14129]

70 Seifert L, Werba G, Tiwari S, Gao Ly NN, Ngoy S, Aloothan H, Alqunabi H, Avanzi A, Daley B, Barilla R, Tiffenps D, Torres-Hernandez A, Hundeyin M, Coni VR, Haju C, Felliuciotta I, Oh P, Du K, Miller G. Radiation Therapy Initiates Macrophages to Supress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology 2016; 150: 1659-1672.e5 [PMID: 26946344 DOI: 10.1053/j.gastro.2016.02.070]

71 Yu H, Pardoll D, Jove R. STMs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798-809 [PMID: 19851315 DOI: 10.1038/nrc2734]

72 Concha-Benavente F, Srivastama RM, Trivedi S, Li Y, Chandran U, Seethala RR, Freeman GJ, Ferris RL. Identification of the Cell-Intrinsict and -Extrinsict Pathways Downstream of EGFR and IFN That Induce PD-L1 Expression in Head and Neck Carcinoma. Cancer Res 2016; 76: 1031-1043 [PMID: 26667769 DOI: 10.1158/0008-5472.CAN-15-2001]

73 Hurwitz H, Cutsem EV, Bendell JC, Hidalgo M, Li CP, Garrido M, Macarulla TM, Sahai V, Sama AR, Greeno E, Yu KH, Verslype C, Dawkins FW, Walker C, Clark J, O'Reilly EM. Two randomized, placebo-controlled phase 3 study of ruxolitinib (Rux) capecitabine failure/intolerance of first-line chemotherapy: JANUS 1 (J1) and JANUS 2 (J2). 2017 Gastrointestinal Cancers Symposium. J Clin Oncol 2017; 35: 343

74 Afarfa NI, Ruffell B, Medlar TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, Ma Y, Wiesen JF, Wong MH, Kulesz-Martin M, Irving B, Coussens LM. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 2014; 25: 809-821 [PMID: 24909885 DOI: 10.1016/j.ccr.2014.04.026]

75 Massé-Vallés D, Jaquet T, Serrano E, Pedersen K, Affara NI, Whiting CC, Alothman S, Donahue RE, Leith J, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012; 21: 418-429 [PMID: 22493997 DOI: 10.1016/j.ccr.2012.01.007]

76 Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA,
Pshevlotsky EM, Tjulandin SA, Gladkov OA, Holcombe RF, Korn R, Raghunand N, Dychter S, Jiang P, Shepard HM, Devoe CE. Phase Ib Study of PEGylated Recombinant Human Hyaluronidase and Gemcitabine in Patients with Advanced Pancreatic Cancer. *Clin Cancer Res* 2016; 22: 2848-2854 [PMID: 26813359 DOI: 10.1158/1078-0432.CCR-15-2010]

P-Reviewer: Aung W, Avci E, Takao S
S-Editor: Ji FF
L-Editor: A
E-Editor: Lu YJ
