Research Article

On Hopf-Cyclic Cohomology and Cuntz Algebra

Andrzej Sitarz1,2

1 Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
2 Mathematical Institute, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warsaw, Poland

Correspondence should be addressed to Andrzej Sitarz; andrzej.sitarz@uj.edu.pl

Received 30 April 2013; Accepted 30 May 2013

Copyright © 2013 Andrzej Sitarz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We demonstrate that Hopf cyclic cocycles, that is, cyclic cocycles with coefficients in stable anti-Yetter-Drinfeld modules, arise from invariant traces on certain ideals of Cuntz-type extension of the algebra.

1. Introduction

Let k be a field of characteristic zero and A an algebra over k. In [1] the construction of cyclic cocycles over A was related to the construction of traces over some ideals in the Cuntz algebra extension qA. Let us briefly remind the basic construction.

Definition 1. Let qA be an algebra generated by A and symbols $q(a)$ subject to the relation

$$q(ab) = q(a) b + a q(b) - q(a) q(b),$$

for all $a, b \in A$. Equivalently one may identify qA with an ideal with in a free product algebra $A \ast A$.

Further, define J^n as an ideal of qA generated by $a_0 q(a_1) \cdots q(a_m)$ and $q(a_1) \cdots q(a_m)$ $m \geq n$. The main result of Connes and Cuntz [1] states as following.

Theorem 2 (see [1, Proposition 3]). If T is a trace on J^n, n even, that is a linear functional such that

$$T(xy) = T(yx), \quad \forall x \in J^k, y \in J^l, k + l = n + 1,$$

then

$$\tau(a_0, a_1, \ldots, a_n) = T(q(a_0) q(a_1) \cdots q(a_n))$$

defines an even cyclic cocycle on A.

Odd cocycles arise from graded ρ-traces on J^{n+1}:

$$T(xy) = T(y \rho (x)), \quad \forall x \in J^k, y \in J^l, k + l = n + 1,$$

where ρ is a \mathbb{Z}_2 action on qA:

$$\rho(q(a_0) \cdots q(a_m)) = (-1)^m (a_0 - q(a_0)) q(a_1) \cdots q(a_m),$$

$$\rho(q(a_1) \cdots q(a_m)) = (-1)^m q(a_1) \cdots q(a_m).$$

In the paper we will extend this result to a version of Hopf-cyclic cohomology (see [2–4]) for review and details) with coefficients in a stable anti-Yetter-Drinfeld module and present, as a particular example, the case of a twisted cyclic cohomology. The latter was already studied in [5], with the view to geometric construction of modular Fredholm modules.

2. H-Module and Comodule Algebras and Hopf-Cyclic Cohomology

Let H be a Hopf algebra with an invertible antipode and A a left H-module algebra. Throughout the paper we use the Sweedler notation for coproduct:

$$\Delta(h) = h_{(1)} \otimes h_{(2)},$$

and coaction. The action of $h \in H$ on $a \in A$ (from the left) we denote simply by ha.
We begin with the basic lemma, which follows directly from the definition of \(qA \).

Lemma 3. If \(A \) is a left \(H \)-module algebra then so is \(qA \), with the action of \(H \) extended through:
\[
hq(a) = q(ha).
\]
(7)

Similarly, if \(B \) is a left \(H \)-comodule algebra then so is \(qB \), with the coaction of \(H \) extended through:
\[
\Delta_L q(b) = b_{(-1)} \otimes q(b_{(0)}).
\]
(8)

Let us recall the following.

Definition 4. A left-right stable anti-Yetter-Drinfeld module \(M \), over \(H \), is a right \(H \)-module and left \(H \)-comodule, such that
\[
m_{(0)}m_{(-1)} = m, \quad \forall m \in M,
\]
\[
mh_{(-1)} \otimes mh_{(0)} = (Sh_{(3)})m_{(-1)}h_{(1)} \otimes m_{(0)}h_{(2)},
\]
(9)
\[
\forall m \in M, h \in H.
\]

Let \(\Omega(A) \) be a differential graded algebra with an injective map \(i : A \rightarrow \Omega^0(A) \). Let us assume that the \(\Omega(A) \) has an \(H \)-module structure compatible with that of \(A \) and with the exterior derivative \(d \):
\[
h(i(a)) = i(ha), \quad hd(\omega) = d(h\omega),
\]
\[
\forall a \in A, \omega \in \Omega^i(A), h \in H.
\]
(10)

Now we are ready to define the following.

Definition 5. We say that \(\int_M \) is an \(H \)-invariant twisted closed graded trace on \(M \otimes \Omega^n(A) \) if
\[
\int_M (mh_{(-1)} \otimes S(h_{(2)}) \omega) = e(h) \int_M (m \otimes \omega),
\]
\[
\forall m \in M, \omega \in \Omega^n(A), h \in H,
\]
\[
\int_M (m \otimes \omega a) = \int_M (m_{(0)} \otimes S^{-1}(m_{(-1)}) a \omega),
\]
\[
\forall m \in M, \omega \in \Omega^n(A), a \in A, h \in H,
\]
\[
\int_M (m \otimes da) = 0, \quad \forall m \in M, \omega \in \Omega^{n-1}(A).
\]
(11)

Then the following is true.

Proposition 6. If \(\Omega(A) \) is a differential graded algebra over \(A \), with an action of \(H \), and \(\int_M \) is an \(H \)-invariant closed graded trace as defined above, then the following map:
\[
\phi(m,a_0,a_1,\ldots,a_n) = \int_M (m \otimes a_0 \, da_1 \, da_2 \cdots da_n),
\]
(12)
defines a Hopf cyclic-cocycle.

Proof. First, let us check the cyclicity:
\[
\phi(m,a_0,a_1,\ldots,a_n) = \int_M (m \otimes a_0 \, da_1 \, da_2 \cdots da_n),
\]
\[
= (-1)^n \int_M (m \otimes d(a_0 \, da_1 \, da_2 \cdots da_{n-1} \, a_n)
\]
\[
- m \otimes da_0 \, da_1 \, da_2 \cdots da_n)
\]
\[
= \int_M (m \otimes da_0 \, da_1 \, da_2 \cdots da_n)
\]
\[
= \int_M (m_{(0)} \, (S^{-1}m_{(-1)} a_n) \, da_0 \, da_1 \, da_2 \cdots da_{n-1})
\]
\[
= (-1)^n \phi(m_{(0)}, (S^{-1}m_{(-1)} a_n), a_0, a_1, \ldots, a_{n-1}).
\]
(13)

Similarly, one proves that the Hochschild coboundary of \(\phi \) vanishes:
\[
b\phi(m,a_0,a_1,\ldots,a_{n+1})
\]
\[
:= \sum_{i=0}^{n} (-1)^i \phi(m,a_0,\ldots,a_{a_i},\ldots,a_{n+1})
\]
\[
+ (-1)^{n+1} \phi(m_{(0)}, S^{-1}(m_{(-1)}) a_{n+1} a_0, a_1, \ldots, a_n)
\]
\[
= \int_M (m \otimes a_0 a_1 \, da_2 \cdots da_{n+1}),
\]
\[
+ \sum_{i=1}^{n} (-1)^i \int_M (m \otimes a_0 \, da_1 \cdots d(a_{a_i+1}) \cdots da_{n+1}),
\]
\[
+ (-1)^{n+1} \int_M (m_{(0)} \, S^{-1}(m_{(-1)}) a_{n+1} a_0 \, da_1 \cdots da_n)
\]
\[
= (-1)^n \int_M (m \otimes a_0 a_1 \, da_2 \cdots da_{n+1} a_{n+1})
\]
\[
+ (-1)^{n+1} \int_M (m_{(0)} \, S^{-1}(m_{(-1)}) a_{n+1} a_0 \, da_1 \cdots da_n)
\]
\[
= 0.
\]
(14)

In a trivial way we can also prove the inverse of that theorem, by taking as \(\Omega(A) \) the universal differential graded algebra over \(A \) and setting the \(H \)-invariant trace on the bimodule of \(n \)-forms as the given cocycle on all elements \(m \otimes a_0 \, da_1 \cdots da_n \), and as \(0 \) on all elements \(m \otimes da_1 \cdots da_n \).

In the following, we define an \(H \)-invariant trace on \(M \otimes A \).

Definition 7. An \(H \)-invariant trace on \(M \otimes A \) is a bilinear functional \(\phi : M \otimes A \rightarrow k \), which satisfies
\[
\phi(mh_{(0)} \otimes Sh_{(2)}a) = e(h) \phi(m,a),
\]
(15)
\[
(b\phi)(m,a,b) = \phi(m,ab) - \phi(m_{(0)}, (S^{-1}m_{(-1)} b)a) = 0.
\]
(16)
The main result is as follows.

Proposition 8. If ϕ is an H-invariant trace on $M \otimes J^n \subset M \otimes qA$, n even, then

$$
\xi (m, a_0, a_1, \ldots, a_k) = \phi (m, q (a_0) q (a_1) \cdots q (a_k))
$$

defines a Hopf-cyclic cocycle on $M \otimes A$.

Proof. Clearly, since ϕ is H-invariant, so is ξ. What remains to be checked is the cyclicity and the condition that ξ is a Hochschild cycle. This, however, will be taken care of by the extension of the map η from $[1]$.

Using the result of $[1]$ we know that the maps

$$
\eta(a) = \begin{pmatrix} a & 0 \\ 0 & q(a) \end{pmatrix}, \quad \eta(da) = \begin{pmatrix} 0 & -q(a) \\ q(a) & 0 \end{pmatrix}
$$

(18)

define a morphism of differential graded algebras from $\Omega_k(A)$ to $M_2(qA)$. Hence, the image is a differential graded algebra, which we will call $\Omega(A)$. Observe that the bimodule of n-forms is contained in $M_2(J^{n+1})$.

If τ is an H-invariant trace on $M \otimes J^n$ as defined in Definition 7, then the following defines a closed, graded H-invariant trace on $M \otimes \Omega^n(A)$:

$$
\int_M (m \otimes \omega) = \tau (m \otimes \eta(\omega)_{11}) - \tau (m \otimes \eta(\omega)_{22}) .
$$

(19)

That \int_M is closed follows immediately from the fact that a product of even number of elements $\eta(da)$ is proportional to identity matrix in $M_2(qA)$. It is clear that the map η is H-linear. Therefore it remains only to check the H-cyclicity of \int_M. But again, since $\eta(\omega)$ is diagonal for any even n-form ω this follows directly from the fact that $\eta(a)$ is diagonal and τ is an H-twisted trace.

In a similar way, odd Hopf-cyclic cocycles can be associated with ρ-twisted H-invariant traces on $M \otimes J^n$. Consider now the space of H-invariant (15) linear functionals on $M \otimes J^n$ and let us split them into odd and even, with respect to the action of ρ. For any $k \geq n$ and any such functional we define

$$
T^{(k)}_+ (m, a_0, a_1, \ldots, a_k, b_0) = T (m \otimes a_0 q (a_1) \cdots q (a_k) b_0) .
$$

We have the following

Proposition 9. An even H-invariant functional T_+ is a trace if and only if $bT^{(k)}_+ = T^{(k+1)}_+$ and

$$
T^{(k)}_+ (m, a_0, a_1, \ldots, a_k) = -T^{(k)}_+ (m_{(0)}, S^{-1} m (-1)_a a_0, a_1, \ldots, a_k) .
$$

(20)

of all odd $k \geq n$.

An odd H-invariant functional T_- is a trace if and only if $T_-(m \otimes a_0 q (a_1) \cdots q (a_k))$ is a Hopf-cyclic cocycle and $bT^{(k)}_- = T^{(k+1)}_-$ and

$$
T^{(k)}_- (m, a_0, a_1, \ldots, a_k) = T^{(k)}_- (m_{(0)}, S^{-1} m (-1)_a a_0, a_1, \ldots, a_k) + 2T^{(k+1)}_- (m_{(0)}, S^{-1} m (-1)_a a_0, a_1, \ldots, a_k) .
$$

(22)

Since the proof is purely algebraic and follows $[1, Proposition 5]$, the only difference being in the application of cyclicity and H-invariance, we skip it. In the conclusion we have the following.

Corollary 10. For any even n the Hopf-cyclic cohomology $HC^n_H (M \otimes A)$ is isomorphic to the quotient

$$
\frac{Traces \ on \ J^{n-1}}{Traces \ on \ J^n} \ \text{such that} \ T^{(n-2)} = 0 .
$$

(23)

The full quotient

$$
\frac{Traces \ on \ J^{n-1}}{Traces \ on \ J^n}
$$

(24)

is isomorphic with the quotient of the Hopf-cyclic cohomology group $HC^n_H (M \otimes A)$ by the image of $HC^{n-1}_H (M \otimes A)$ through the periodicity operator S.

Similar statement for ρ-traces gives the correspondence to odd Hopf-cyclic cohomology.

3. Example: Twisted Cyclic Cocycles

Twisted cyclic cocycles appeared first in a context of quantum deformations $[6]$, where they appeared to be a good replacement of the usual cyclic cocycles. In particular, for the quantum $SU_q(2)$ and the family of quantum spheres, certain automorphisms lead to a similar behavior of twisted cyclic theory as in the classical nondeformed case, without the dimension drop, that appears in the standard cyclic homology $[7]$. A detailed study of the twisted case, including the geometric realization through modular Fredholm modules, was presented in $[5]$; here we recall the basic facts to illustrate the above general case.

The notation used in this section is as follows: again A is an algebra (not necessarily unital) over k and σ is an automorphism of A. Consider $H = CZ$, group algebra of Z with the action on A through the automorphism σ. As an easy corollary of Lemma 3 we have the following.

Corollary 11. The automorphism σ extends naturally as an automorphism on qA through

$$
\sigma (q(a)) = q (\sigma(a)) .
$$

(25)

Moreover, the ideals J^n are σ-invariant, $\sigma (J^n) \subset J^n$.

Consider now stable anti-Yetter-Drinfeld modules over H. The simplest example comes from one-dimensional vector space M_1 with the right action and left coaction given by
\begin{equation}
\Delta v = e \otimes v, \quad v \triangleleft e = v,
\end{equation}
where e denotes the generator of Z and v a vector from M_1.

We have the following.

Lemma 12. Let A, σ be an algebra and its automorphism. Then, any Z-invariant, cyclic trace on $M \otimes A$ corresponds to a σ-twisted trace T on A:
\begin{equation}
T(xy) = T(y\sigma(x)), \quad \forall x \in j^k, \; y \in j^l, \; k + l = n + 1
\end{equation}

We skip the proof as it follows directly from the properties of Hopf-cyclic traces applied to this particular example. As a corollary, we obtain the following.

Proposition 13. If T is a σ-twisted trace on qA then the functional
\begin{equation}
\tau_r(a_0, a_1, \ldots, a_n) = T(q(a_0)q(a_1)\cdots q(a_n))
\end{equation}
defines a σ-twisted n-cyclic cocycle on A for even n.

Similarly, by composing σ with the map ρ (5), we obtain another automorphism of qA:
\begin{equation}
\bar{\sigma} = \sigma \circ \rho = \rho \circ \sigma.
\end{equation}

Then, we can define odd σ-traces on f^n, which satisfy
\begin{equation}
T(xy) = T(y\bar{\sigma}(x)), \quad \forall x \in f^k, \; y \in f^l, \; k + l = n + 1.
\end{equation}

The respective functionals, which arise from $\bar{\sigma}$-traces, give σ-twisted odd cyclic cocycles.

The detailed presentation of the construction of twisted cyclic cocycles from finitely summable modular Fredholm modules is in [5].

4. Example: Hopf Algebras

A different set of examples of Hopf-cyclic cohomology originated from studies of Hopf algebras. Let us begin with an example of the Hopf-cyclic homology of an H-comodule algebra. In this section, A is a right H-comodule algebra and M is a right-right stable anti-Yetter-Drinfeld module.

First, we observe the following.

Remark 14. The coaction of H extends to qA through
\begin{equation}
\Delta q(a) = q(a_0) \otimes q(a_1), \quad \forall a \in A.
\end{equation}

An n Hopf-cyclic cocycle with values in M is a multilinear map ψ from A^{n+1} to M, which is cyclic:
\begin{equation}
\psi(a_0, a_1, \ldots, a_n) = (-1)^n\psi(a_{n(0)}, a_0, \ldots, a_{n-1})a_{n(1)},
\end{equation}

H-colinear:
\begin{equation}
\Delta \psi(a_0, a_1, \ldots, a_n)
= \psi(a_0(0), a_1(0), \ldots, a_n(0)) \otimes a_0(1) a_1(1) \cdots a_n(1),
\end{equation}
and that its coboundary vanishes:
\begin{equation}
\begin{aligned}
& b\psi(a_0, a_1, \ldots, a_n, a_{n+1}) \\
& = \sum_{i=0}^{n} (-1)^i \psi(a_0, \ldots, a_{i+1}, \ldots, a_{n+1}) \\
& \quad + (-1)^{n+1} \psi(a_0(0)a_0(1), \ldots, a_{n-1})a_{n(1)},
\end{aligned}
\end{equation}
The proof follows exactly the same lines as in the previous section and therefore we skip it. What is interesting, however, is the application, which was discussed in [8].

Lemma 16. If $A = H$ and one takes the coproduct as the coalgebra structure, and the anti-Yetter-Drinfeld module $M = k$ is determined through a modular pair in involution: γ is a grouplike element, χ is a character of A, such that $\chi(\gamma) = 1$ and the right coaction and action are
\begin{equation}
\Delta(v) = v \otimes \gamma, \quad v \triangleleft h = v\chi(h),
\end{equation}
for any $v \in k$ (for details see [9]).

The compatibility condition γ and χ is
\begin{equation}
S_{\gamma, \chi}(h) = \chi(h_{(1)}) S(h_{(2)}), \quad S_{\gamma, \chi}^2 = \text{id}.
\end{equation}

Then, since qA is a comodule algebra over A and k remains an anti-Yetter-Drinfeld module, one can construct even Hopf-cyclic cocycles over A with values in k from k-valued linear maps on f^n, n-even, that satisfy
\begin{equation}
\begin{aligned}
T(x) \otimes y = T(x_{(0)}) \otimes x_{(1)}, \\
T(xy) = T(y_{(0)}) \chi(y_{(1)}),
\end{aligned}
\end{equation}
for each $x \in f^n$, $xy \in f^n$.

Again, the proof is a direct consequence of Proposition 9 and Corollary 10.

5. Conclusions

We have shown that the results of [1] extend to the case of Hopf-cyclic cohomology with coefficients. This is, in itself, an anticipated result. Its value, however, is that such presentation offers a possibility for a geometric presentation of Hopf-cyclic cocycles thus opening a new insight in the theory. Similarly as in the standard or twisted case it is conceivable that Hopf-cyclic cocycles might be constructed from certain type of objects like Fredholm modules. While the general theory is still not available yet, the above construction shows a path, which could be followed, at least in some particular cases, like for the modular pair in involution. The work in this direction is already in progress.
References

[1] A. Connes and J. Cuntz, “Quasi homomorphismes, cohomologie cyclique et positivité,” *Communications in Mathematical Physics*, vol. 114, no. 3, pp. 515–526, 1988.

[2] A. Kaygun, “A survey on Hopf-cyclic cohomology and Connes-Moscovici characteristic map,” in *Noncommutative Geometry and Global Analysis*, vol. 546 of *Contemporary Mathematics*, pp. 171–179, 2011.

[3] A. Pourkia, *Hopf cyclic cohomology in braided monoidal categories [Ph.D. thesis]*, The University of Western Ontario, Ontario, Canada, 2009.

[4] I. M. Nikonov and G. I. Sharygin, “On the Hopf-type cyclic cohomology with coefficients,” in *C-Algebras and Elliptic Theory*, Trends in Mathematics, pp. 203–212, Springer, 2006.

[5] A. Rennie, A. Sitarz, and M. Yamashita, “Twisted cyclic cohomology and modular Fredholm modules,” *Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)*. In press, http://arxiv.org/abs/1111.6328.

[6] J. Kustermans, G. Murphy, and L. Tuset, “Differential calculi over quantum groups and twisted cyclic cocycles,” *Journal of Geometry and Physics*, vol. 44, no. 4, pp. 570–594, 2003.

[7] T. Masuda, Y. Nakagami, and J. Watanabe, “Noncommutative differential geometry on the quantum SU(2), I: an algebraic viewpoint,” *K-Theory*, vol. 4, no. 2, pp. 157–180, 1990.

[8] M. Khalkhali and B. Rangipour, “A new cyclic module for Hopf algebras,” *K-Theory*, vol. 27, no. 2, pp. 111–131, 2002.

[9] M. Khalkhali and B. Rangipour, “Introduction to Hopf-cyclic cohomology,” in *Noncommutative Geometry and Number Theory*, Aspects of Mathematics, E37, pp. 155–178, 2006.
