P2 purinergic receptor modulation of cytokine production

Christopher A. Gabel

Abstract Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, misregulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y6 receptor mediated impact on interleukin (IL)-8 production, (2) P2Y11 receptor-mediated affects on IL-12/23 output, and (3) P2X7 receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases.

Key words cytokines · dendritic cells · interleukin-1 · interleukin-8 · interleukin-12 · monocytes · nucleotides · purinergic receptors · tumor necrosis factor

Introduction

Cytokines comprise a heterogeneous group of polypeptides that mediate a variety of biological responses following their binding to specific receptors on target cells and tissues. Historically, cytokines (including lymphokines) were identified as leukocyte-derived soluble mediators that, when added to other leukocytes and/or to non-leukocyte targets, altered cellular behavior. Today, however, we realize that individual cytokines can be generated by cells of immune as well as non-immune origin, and that these polypeptides orchestrate a complex system of checks and balances controlling host immune and inflammatory processes. Our understanding of the importance that cytokines and cytokine signaling mechanisms serve in host defense mechanisms has been bolstered by the identification of genetic mutations within cytokine and/or cytokine receptor signaling complex genes that profoundly affect pathogen susceptibility [1, 2]. Likewise, genetically engineered mice that lack individual cytokines and/or cytokine receptors have provided a greater understanding of the capabilities
possessed by these signaling molecules for promoting inflammatory and autoimmune states [3]. Moreover, the critical importance served by cytokines in mediating inflammation and autoimmunity has been underscored by the recent success of anti-cytokine biologics in the treatment of inflammatory diseases such as rheumatoid arthritis (RA) and Crohn’s disease. For example, agents that neutralize tumor necrosis factor (TNF) α (Enbrel, Remicade and Humira) have dramatically improved the treatment of RA [4–6]. In addition, the natural interleukin (IL)-1 receptor antagonist (Kineret) provides therapeutic benefit to RA patients and is reported to yield remarkable clinical outcomes when administered to patients suffering from a group of rare hereditary autoinflammatory disorders such as Muckle-Wells syndrome [7–9]. Ongoing clinical trials with agents that target IL-12 likewise are showing encouraging efficacy in the treatment of psoriasis and Crohn’s disease [10, 11], and the list of anti-cytokine therapies entering clinical trials grows regularly [6]. Thus, cytokines and the signaling pathways engaged after they bind to receptors on cells represent attractive therapeutic targets for intervention of human autoimmune and inflammatory diseases. Studies over the past decade have suggested that purinergic receptor function, involving both P2Y and P2X family members, can modulate cytokine production and/or activity. This review focuses on several cellular systems where purinergic modulation of cytokine production has been demonstrated and mechanistic explanations have been sought. The cited studies signify that nucleotide receptor-mediated signaling can affect output of several important cytokines. In this context, pharmacological modulation of P2 receptors may represent a new therapeutic modality for treatment of cytokine-mediated disease processes in the future.

Leukocyte expression of nucleotide receptors

Essentially all leukocyte populations express members of the P2 purinergic receptor superfamily; several recent reviews have detailed receptor expression patterns and the reader is directed to these for a more complete description [12, 13]. Human monocytes, for example, express mRNA encoding P2Y1, P2Y2, P2Y4, P2Y6, P2X1 and P2X7 receptors [14–16]. Human lymphocytes similarly express mRNAs encoding P2Y1, P2Y2, P2Y4, P2Y6 receptors and members of the P2X family, including P2X7, are detected in both B and T-lymphocyte populations [15, 17–21]. Circulating human neutrophils express P2Y4 and P2Y6 mRNAs, and the P2X, receptor is reported to be present in these cells [22]. Human eosinophils and murine mast cells also are reported to contain the P2X7 receptor [23, 24] as are rodent peritoneal macrophages [25, 26]; historically, many ATP-dependent responses observed using murine macrophages were associated with activation of the P2Z receptor [27, 28]. Cloning and characterization of the P2X7 receptor revealed that this polypeptide possessed functional attributes previously ascribed to the P2Z receptor [29, 30]. Thus, reference to the P2Z receptor was discontinued in favor of the P2X7 receptor designation. Murine spleen macrophages, as well as the macrophage-like cell line J774, express multiple P2X and P2Y subtypes [31]. Murine and rat microglial cells, the brain’s macrophage, also abundantly express P2X7 receptors [32, 33].

A functional consequence often attendant to activation of the P2X7 receptor is the opening of a nonselective pore that is permeable to large fluorescent molecules such as YoPro Yellow. Interestingly, the ability of monocytes and monocyte-like cells to demonstrate this pore activity is influenced by conditions under which these cells are cultured, suggesting that functional output of the P2X7 receptor can be regulated [34–36]. Human monocytes demonstrate a change in receptor functionality without a corresponding change in the level of receptor mRNA expression, suggesting that receptor function can be regulated via posttranslational mechanisms [16].

Dendritic cells, which specialize in antigen presentation and are key producers of cytokines involved in maintenance of acquired immunity, also express members of the P2 receptor superfamily. Human monocyte-derived dendritic cells are reported to express mRNA for P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y10, P2Y11, and P2Y13 from the P2Y receptor side of the family and P2X1, P2X4, P2X5, and P2X7 from the P2X receptor lineage [37–39]. Murine dendritic cell lines also express the P2X7 receptor [40].

P2Y receptor-dependent regulation of cytokine production

P2Y6 receptor-mediated effects The P2Y6 receptor is selectively activated via UDP [41], and effects observed with this nucleotide often are attributed to activation of this receptor. Several studies have linked P2Y6 function to IL-8 expression, a cytokine originally isolated as a neutrophil chemotactic factor and now designated as a member of the CXC family of chemokines [42]. IL-8 functions to promote influx of neutrophils to sites of injury and/or infection, and overproduction of IL-8 may contribute to several pathophysiological conditions including chronic lung inflammation and cancer [43]. When human monocyctic THP-1 cells are treated with UDP, IL-8 output is enhanced and prior treatment of the cells with a P2Y6 antisense oligonucleotide attenuates the magnitude of the cytokine response [44]. Likewise, P2Y6 receptor transfected 1321N cells secrete greater levels of IL-8 in response to UDP challenge than do
their non-transfected counterparts [44]. Similarly, human promonocytic U937 cells stably transfected with human P2Y6 receptor secrete IL-8 when stimulated with UDP [45]. P2Y6 receptor-transfected U937 cells also generate TNFα and the chemokines MCP-1 and IP-10 in response to UDP activation. In contrast, UDP-challenged P2Y6 receptor 1321N cell transfectants produce IL-8 but not other cytokine products [45]. The distinct response patterns displayed by the two transfected cell lines suggest that the cellular context in which the P2Y6 receptor is placed impacts the pattern of cytokines/chemokines expressed. Interestingly, output of IL-8 from LPS stimulated THP-1 cells is decreased when apyrase is included in the cell culture medium [44], suggesting that nucleotides are released in response to LPS activation and these, in turn, activate purinergic receptors in an autocrine type of mechanism.

The mechanism by which the P2Y6 receptor activates cytokine output has received limited investigation. The P2Y6 receptor is a Gq-coupled receptor [13, 46, 47] and thus is expected to promote activation of phospholipase C leading to the generation of inositol-1,4,5-triphosphate and thus is expected to promote activation of phospholipase C

P2Y6 receptor secrete IL-8 when stimulated with UDP [45]. The related cytokine, IL-23, is composed of the same p40 subunit covalently bound to a unique p19 subunit [53, 54]. IL-12 and IL-23 are produced in abundance by activated antigen presenting cells such as monocytes and dendritic cells. When bound to target receptors on T-lymphocytes and natural killer (NK) cells, IL-12 activates interferon (IFN)γ output, alters T-cell development, and affects NK cell killer activity [55]. IL-23 also activates T-cells and promotes IFNγ output, but in this case the responding lymphocytes appear to represent a unique subpopulation of memory T-cells specializing in the production of the proinflammatory cytokine IL-17 [56, 57]. Together, IL-12 and IL-23 cooperate to shift the immune system toward a T helper (Th)1 state that is characteristic of inflammatory diseases such as RA and inflammatory bowel disease [58].

Application of ATP to human monocyte-derived dendritic cells (i.e., monocytes cultured for 6 days in the presence of granulocyte macrophage colony stimulating factor and IL-4) originally was reported to enhance expression of several cell surface molecules and to increase output of IL-12; this ATP effect was augmented by co-stimulation with TNFα [59]. Likewise, ATP but not UTP was reported to enhance expression of CXC chemokine receptor 4 by dendritic cells [60]. In these studies, the nature of the specific P2 receptor subtype(s) responsible for the dendritic cell cytokine response was not addressed.

While the above studies suggested that nucleotides may directly regulate cytokine output, more recent studies conducted with dendritic cells have focused on the role of extracellular nucleotides as modulators of cytokine output induced by other stimuli. For example, treatment of human monocyte-derived dendritic cells with either LPS or CD40 ligand promotes secretion of IL-1α, IL-1β, TNFα, IL-6, and IL-12 (p70), and co-addition of ATP (250 μM) along with the activation stimulus inhibits cytokine output [61]. In this same dendritic cell system, ATP does not inhibit output of IL-10 or IL-1 receptor antagonist, two cytokines possessing anti-inflammatory properties. The dendritic cell purinergic receptor responsible for the cytokine modulatory effects was not identified in this system, but the effect of ATP was mimicked by ADP but not by UTP.

In contrast to the simple pattern of cytokine inhibition noted above, other studies conducted with monocyte-derived dendritic cells suggest that the response elicited by extracellular nucleotides is complex in nature and dependent on the quantity of cytokine produced. For example, monocyte-derived dendritic cells treated with

P2Y11 receptor-mediated effects impact dendritic cell function The P2Y11 receptor prefers ATP as it’s ligand, and the non-hydrolyzable ATP analog ATPγS often is employed in vitro as a surrogate ligand; the latter is not, however, a selective agonist of the P2Y11 receptor [41, 47].
TNFα or LPS generate greater quantities of IL-12 when simultaneously challenged with ATP (the ELISA kit employed in this study measured both IL-12p40 and IL-12p70). Comparison of the effectiveness of several ATP analogs suggests that the P2Y11 receptor is responsible for enhancing cytokine expression [62]. In an extension of these findings, monocyte-derived macrophages were activated with a panel of different agonists (TNFα, LPS, or soluble CD40 ligand) in the absence or presence of ATPγS [63]. At agonist concentrations yielding low levels of IL-12p40 and TNFα output, ATPγS (200 μM) increases secreted levels of these two polypeptides. However, at agonist concentrations yielding higher levels of IL-12p40 and TNFα output, ATPγS inhibits their output. Notably, LPS (but not TNFα or CD40) stimulates secretion of the bioactive, heterodimeric form of IL-12 (i.e., IL-12p70) and ATPγS antagonizes IL-12p70 output at all tested LPS concentrations. It is known from other studies that the p40 and p35 subunits of IL-12 can be regulated independently [64]; lack of coordinated synthesis may help to explain why ATPγS can enhance IL-12p40 but inhibit IL-12p70 output in response to LPS challenge.

The ATP response observed in the dendritic cell system assumes an even greater complexity when the output of IL-12 and IL-23 are compared. Human monocyte-derived dendritic cells activated with intact E. coli produce both IL-12 and IL-23. In response to this challenge, IL-12p40, IL-12p35, and IL-23p19 message levels increase and levels of IL-12 and IL-23 released extracellularly increase accordingly [65]. Addition of ATP (250 μM) to the medium during bacterial challenge decreases IL-12p40 and IL-12p35 message levels but increases IL-23 message levels. Likewise, whereas E. coli-induced secretion of IL-12p70 and IL-12p40 from dendritic cells is inhibited by ATP, secretion of bioactive IL-23 is enhanced. Since both IL-12 and IL-23 share the IL-12p40 subunit, the opposite effects achieved by ATP with respect to output of these two cytokines is somewhat surprising. However, this may reflect that synthesis of the p40 subunit can exceed that of the p19 subunit and secretion of the bioactive IL-23 heterodimer requires simultaneous expression of both subunits [66]. ATPγS and AR-C67085 (a synthetic nucleotide analog) are more potent than ATP at inhibiting E. coli-induced output of IL-12p70 and IL-12p40. In contrast, these two nucleotides are ineffective as enhancers of IL-23; ADP, however, is as effective as ATP at enhancing E. coli-induced IL-23 output. On this basis, it was concluded that the P2Y11 receptor is responsible for the nucleotide-mediated antagonism of IL-12 production whereas a separate, ADP-sensitive P2 receptor subtype is responsible for promoting IL-23 production [65].

Sorting out the identity of P2 receptors that mediate the aforementioned effects of nucleotides on dendritic cell cytokine output is complicated by the existence of cell surface nucleotidases such as CD39 [37]. These enzymes can act on exogenously added nucleotides to generate metabolites that may possess altered selectivity for P2 receptors relative to the parent nucleotide originally added to the culture medium. In this light, it is interesting to note that ADP and several related nucleotides also are reported to inhibit IL-12p70, IL-12p40, and TNFα output from LPS-activated dendritic cells [67]. Based on the inability of ADP to act as an agonist of the P2Y11 receptor and the nature of the signaling response induced by this nucleotide, the cytokine modulatory effects induced by ADP in this system may reflect activation of a novel dendritic cell P2 receptor subtype [67].

Mechanistic features attendant to P2Y11 receptor activation have been investigated and changes to intracellular cAMP concentrations appear important to the cytokine modulatory response. The P2Y11 receptor employs both Gαq- and Gαs-type G-proteins in mediating signaling [47]; the P2Y11 receptor is unique amongst P2 receptors in its ability to employ Gαs and, in turn, to activate adenylate cyclase. Activation of adenylate cyclase and the associated rise in cAMP levels appear to be responsible for both the ATP-induced rise in IL-23 and decline in IL-12 from E. coli-induced human dendritic cells. This conclusion is based on several observations. First, substitution of prostaglandin E2 (PGE2) for ATP in the dendritic cell system produces a similar outcome with respect to inhibition of IL-12 and augmentation of IL-23 output [63, 65]. PGE2 signals via G-protein-coupled prostaglandin receptors, and two of these receptors, EP2 and EP4, transmit signals via Gαs [68]. Studies conducted in genetically altered mice support the involvement of the EP4 receptor in mediating the inhibitory effect on IL-12 production; LPS-activated bone marrow-derived macrophages derived from wild-type mice but not from EP4 receptor-deficient animals produce less IL-12 in the presence of PGE2 [69]. Second, activation of other G protein coupled receptors (GPCRs) that engage adenylate cyclase, such as histamine (H2) and adenosine A2a receptors, inhibit IL-12 output [70]. Third, the ability of ATP analogs to alter IL-12 output correlates with their impact on intracellular cAMP levels [62]. Finally, treatment of E. coli-activated dendritic cells with forskolin, an agent that activates adenylate cyclase independently of GPCR activation, also inhibits IL-12 (protein) output while enhancing IL-23p19 (message) expression [65]. In view of the ability of the aforementioned agents to elevate cAMP and to produce reciprocal effects on IL-12 and IL-23 output from dendritic cells, it is surprising that ATPγS and AR-C67085, two effective agonists of the P2Y11 receptor, cause inhibition of IL-12 output without enhancing IL-23 expression [65]. Notably, ADP is able to enhance IL-23p19 message expression by E. coli-activated dendritic cells [65].
The reciprocal effects observed with respect to production of IL-12 and IL-23 in the presence of ATP, therefore, may reflect activation of the P2Y11 receptor by ATP and, as a result of hydrolysis of the added ATP via ecto-nucleotidases, simultaneous activation of a novel type of P2 receptor that is activated via ADP and coupled to Gs.

Although dendritic cell cytokine output is well documented to be subject to regulation via nucleotides in vitro, there is little information to suggest that this type of regulation takes place in vivo. A recent report noted, however, that intradermal injection of ATPγS into mice results in an enhanced contact hypersensitivity response, and this effect may be achieved as a result of activation of Langerhans cells, a subclass of dendritic cells [71]. Murine Langerhans cells, like other dendritic cells, express the ecto-nucleotidase CD39, and CD39-deficient mice display an exacerbated skin inflammatory response when irritant chemicals such as croton oil are applied topically [72].

P2X receptor-dependent regulation of cytokine production

With the exception of the P2X7 receptor, functional responses attendant to activation of P2X receptor family members are not generally associated with cytokine modulation. Members of this family certainly can impact inflammatory processes as evidenced by the attenuated pain responses observed following administration of selective P2X3 receptor antagonists to rodents [73]. These effects, however, are not directly linked to cytokine output but, rather, to effects associated with modulation of sensory afferent neurons. Therefore, a discussion of how P2X receptors affect cytokine output is limited in scope to the role of the P2X7 receptor. Although selective agonists and/or antagonists of the P2X7 receptor have to this point not been available, the P2X7 receptor possesses atypical features that often allow its function to be implicated during in vitro studies. Most notable amongst these features is the requirement that high ATP concentrations, often in excess of 500 μM, be employed to achieve receptor activation when cells are maintained in physiological media. Benzoylbenzoyl-ATP (BZATP) often is employed as an agonist of the P2X7 receptor. Although this agent is reported to be a more effective agonist than ATP [74], it is not specific for the P2X7 receptor [75]. Likewise, oxidized ATP often is employed as an antagonist of the P2X7 receptor [76], but this agent also acts in a P2 receptor-independent manner [77].

P2X7 receptor-mediated effects As noted earlier, the P2X7 receptor is present on a number of leukocyte populations including monocytes and tissue macrophages. When challenged appropriately, cells of monocyte/macrophage lineage are abundant producers of proinflammatory cytokines including IL-1 and TNFα. With respect to TNFα output, both enhancing and inhibitory responses have been associated with P2X7 receptor activation. Cultured rat microglia treated with 1 mM ATP, for example, increase expression of TNFα mRNA and secrete this proinflammatory cytokine [78]. In this cellular system, the TNFα-enhancing effect of ATP is dependent on an influx of extracellular calcium, and is suppressed by inhibitors of ERK (PD098059) and p38 (SB203580) mitogen activated kinases. Likewise, ATP is reported to enhance TNFα output from murine RAW 264.7 macrophages both in the absence and presence of LPS [79]; the purinergic receptor responsible for this effect in RAW cells is unknown. On the other hand, ATP is reported to inhibit TNFα release from LPS-activated murine peritoneal macrophages [80]; this antagonism does not appear to result from activation of the P2X7 receptor as UTP and UDP mimic the action of ATP but are not P2X7 receptor agonists. Similarly, ATP inhibits LPS-induced release of TNFα from rat cortical astrocytes [81]. In this cellular system mM concentrations of ATP are required for the biological response, and the effect of ATP is mimicked by BZATP, properties consistent with involvement of the P2X7 receptor. Thus, the net effect observed with respect to ATP’s ability to modulate TNFα output is dependent on the cellular context.

The most extensively studied cytokine modulatory role involving the P2X7 receptor relates to its ability to promote IL-1β posttranslational processing. IL-1β is a multifaceted proinflammatory cytokine produced predominantly by cells of the monocyte/macrophage lineage [82]. Resting monocytes and macrophages do not constitutively produce IL-1β, but following challenge with an activating stimulus such as LPS, these cells rapidly engage in the production of large quantities of proIL-1β. This precursor polypeptide (31 to 35 kDa in mass) must be proteolytically processed by caspase-1 to generate the mature biologically active 17 kDa cytokine species [83–85]. Importantly, proIL-1β lacks a leader sequence and, as a result, the newly synthesized polypeptides accumulate intracellularly within the cytosol of LPS-activated cells. In contrast to IL-1β, caspase-1 is constitutively expressed by monocytes and macrophages; this cysteine protease also resides in the cytoplasm as an inactive zymogen [86]. In the absence of additional stimulation, only a very low percentage of the newly synthesized proIL-1β polypeptides produced by LPS-treated cells is processed by caspase-1 and released extracellularly [87]. However, in the presence of an appropriate activation stimulus, procaspase-1 is converted to its catalytically active form, proIL-1β subsequently is cleaved to its mature 17 kDa species, and the mature
cytokine is released extracellularly where it can engage receptors on target cells; a number of agents have been reported to facilitate this posttranslational processing in vitro including various toxins [88–92], defensin-like peptides [93, 94], and K+ ionophores [95–97].

David Chaplin and his group first demonstrated that ATP can act as a trigger to promote IL-1β posttranslational processing from LPS-activated murine peritoneal macrophages [98]. When incubated in the absence of ATP, LPS-activated macrophages labeled with [35S]methionine were shown to possess abundant quantities of the 35 kDa proIL-1β polypeptide, but radiolabeled cytokine products were not released extracellularly. Following addition of ATP to the medium, however, the LPS-activated/[35S]methionine-labeled cells released IL-1β to the medium and the majority of the externalized cytokine was efficiently converted to the mature 17 kDa species. The ATP-treated macrophages also released the cytoplasmic enzyme lactate dehydrogenase (LDH) and possessed a DNA fragmentation profile that was characteristic of an apoptotic cellular response. Although the identity of the receptor responsible for mediating these effects was not addressed, the high concentration of ATP employed (5 mM) suggested P2X7 receptor involvement. The ability of ATP to promote IL-1β posttranslational processing by murine peritoneal macrophages is not limited to in vitro cultures. Mice primed with LPS in vivo contain peritoneal macrophages that are laden with proIL-1β, but lavage of the peritoneal cavities of these mice yields minimal quantities of the mature cytokine species. Following a subsequent intraperitoneal injection of ATP into the LPS-primed animals, however, large quantities of mature IL-1β are recovered in the lavage fluids [99]. Thus, ATP acts as an effective agonist of IL-1β posttranslational processing both in vitro and in vivo.

Subsequent studies demonstrated that ATP is an effective stimulus for promoting IL-1β posttranslational processing by a number of different cell types including human monocytes/macrophages [100–102] and human and mouse microglial cells [103–105]. In all cases, the cytokine response requires concentrations of ATP >1 mM, a requirement consistent with activation of the P2X7 receptor. Involvement of the P2X7 receptor is further supported by the observation that KN62 inhibits ATP-induced IL-1β posttranslational processing by LPS-activated human monocytes [102]; this agent is a potent inhibitor of P2X7 receptor-mediated functions [106, 107]. Furthermore, an antibody generated against the P2X7 receptor blocks ATP-induced IL-1β release from LPS-activated human monocytes [108]. Analysis of peritoneal macrophages obtained from mice genetically engineered to lack the P2X7 receptor provided the final piece of evidence that P2X7 receptor function is necessary for ATP-induced IL-1β posttranslational processing [26]. Macrophages obtained from both wild type and P2X7-deficient mice generate equivalent quantities of newly synthesized proIL-1β in response to LPS challenge. However, in the absence of a secondary stimulus neither macrophage population releases mature IL-1β to the medium. Following treatment with 5 mM ATP, wild type but not P2X7 receptor-deficient macrophages externalize large quantities of mature IL-1β. In contrast, both macrophage populations release mature IL-1β when treated with the potassium ionophore nigericin, indicating that the P2X7 receptor-deficient macrophages are competent to process proIL-1β but absence of the P2X7 receptor prevents them from doing so when challenged with ATP [26].

Signaling pathways associated with P2X7 receptor activation

Mechanistic elements engaged as a result of P2X7 receptor activation that are responsible for initiating IL-1β posttranslational processing are not completely understood, but studies to date have provided insight into this atypical secretory process. ATP acting via the P2X7 receptor activates a number of intracellular kinases including members of the MAP kinase family ERK and JNK [23, 109–112], Rho effector kinases [113, 114], and the protein tyrosine kinase p56lck [115]. Correspondingly, increased phosphorylation of various intracellular polypeptides including the receptor itself are observed post-ATP activation [116–118]. P2X7 receptor operation also is associated with activation of various transcription factors [119, 120], enhanced production of reactive oxygen species [121], mitochondrial membrane depolarization [122], and activation of phospholipase D [123]. It remains to be established whether any of these changes are required for IL-1β posttranslational processing, although a Ca2+-independent phospholipase inhibitor (brefeldin lactone) and a tyrosine kinase inhibitor (AG-126) are reported to inhibit ATP-induced IL-1β output [124, 125]. As a ligand-gated ion channel, the P2X7 receptor also promotes rapid changes in ionic homeostasis following its activation [126]. Prolonged ligation of the receptor can result in complete membrane depolarization, a process that is likely to involve opening of the P2X7 receptor operated pore [126]. In several cellular systems, a rise in intracellular Ca2+ promoted by the P2X7 receptor is necessary for IL-1β posttranslational processing [127, 128]. Similarly, K+ efflux mediated via P2X7 receptor activation in LPS-stimulated monocytes and macrophages is necessary for efficient IL-1β posttranslational processing [96, 97, 100, 101, 125, 127]. Simply increasing the medium K+ ion concentration can completely inhibit ATP-induced IL-1β output [96, 100, 101, 129]; as such, K+ efflux appears to serve a key role in the cellular process.

How these changes to intracellular K+ and Ca2+ ion levels regulate IL-1β posttranslational processing remains to be established. In the case of K+, the P2X7 receptor-induced changes may facilitate activation of caspase-1. As
noted earlier, procaspase-1 is expressed constitutively by monocytes and macrophages and resides in the cytoplasmic compartment as a latent zymogen. Ligation of the P2X7 receptor leads to rapid activation of caspase-1 and, like mature IL-1β, the activated protease is released to the medium [130]. Recent studies have indicated that activation of procaspase-1 requires assembly of a large protein scaffold termed the inflammasome [131, 132]. Components of the inflammasome may include a NALP (NALP1, 2 or 3), the speck like protein ASC, and procaspase-5 [132–135]. The importance of ASC in ATP-induced IL-1β posttranslational processing is highlighted by the demonstration that LPS-activated peritoneal macrophages isolated from ASC-deficient mice fail to generate mature IL-1β in response to ATP challenge [136]. In a resting cell, the NALP polypeptide appears to exist in an inactive monomeric conformation, but this polypeptide may undergo a conformational change in response to an appropriate effector leading to its association with ASC and procaspases [135]. This association involves several protein-protein interaction domains including PYRIN and caspase recruitment domains (CARDs). The resulting protein ensemble positions the procaspases in close proximity leading to their proteolytic activation [135]. Studies of inflammasome assembly using broken cell preparations have demonstrated that extracts prepared from cells briefly treated with mM concentrations of ATP are more effective at generating mature caspase-1 and mature IL-1β than are comparable extracts prepared from non-ATP treated cells. Moreover, when the ATP treatment is performed in the presence of high extracellular K+ (thus limiting K+ efflux from the ATP-treated cells), the resultant inflammasome activity in the cell-free extract is reduced [125]. These findings, therefore, suggest that K+ efflux may facilitate inflammasome assembly and/or its activation.

As noted above, changes in intracellular Ca2+ levels also contribute to IL-1β posttranslational processing. ATP-induced changes in intracellular Ca2+ may result from Ca2+ entry via P2X7 receptors as well as from Ca2+ release from intracellular stores mediated via P2Y receptors. In LPS-activated mouse peritoneal macrophages, Ca2+ release from intracellular stores is required for ATP-induced IL-1β maturation and release, but in this system the cytokine response does not require Ca2+ influx from the medium [127]. Likewise, ATP-induced IL-1β output from LPS-activated human monocytes is unaffected by removal of extracellular Ca2+ [129]. However, LPS-activated human THP-1 cells [137] and HEK293 engineered to express both the P2X7 receptor and mature IL-1β [128] require influx of extracellular Ca2+ for optimal cytokine output. Therefore, the nature of the Ca2+ requirement is dependent on the type of cell being analyzed. Interestingly, a recent study concluded that opening of the P2X7 receptor-activated pore is dependent on Ca2+ [138]. Although a role for the pore in IL-1β posttranslational processing has not been established, perhaps the Ca2+ requirement for IL-1 maturation and release relates to this activity. Moreover, Ca2+ influx via the P2X7 receptor recently was linked to a pseudoapoptotic state characterized by phosphatidylserine movements within the plasma membrane and to cytoskeletal disruption and necrotic membrane distortions [139].

Externalization of mature IL-1β following P2X7 receptor activation A number of different mechanisms have been proposed to explain how mature IL-1β is released to the extracellular environment following ATP stimulation. LPS-activated murine peritoneal macrophages and human monocytes exposed to mM concentrations of ATP in vitro release mature IL-1β via a process that is accompanied by release of the cytoplasmic marker enzyme LDH [98, 140]. Although the kinetics of appearance of LDH within the medium of ATP-treated mouse peritoneal macrophages lags behind the appearance of mature IL-1β [140], release of the former to the medium suggests that plasma membrane latency is lost during the ATP-induced process. Thus, one mechanism proposed for the release of mature IL-1β is that the producing cell dies, possibly via an apoptotic-like process, and intracellular components are released passively from the cell following disruption of the plasma membrane [98]. On the other hand, evidence exists to suggest that release of mature IL-1β is a facilitated process. For example, release of mature IL-1β from LPS-activated murine macrophages in response to ATP challenge is blocked by non-selective agents that are known to antagonize transport function of ABC1, a membrane-bound protein that functions in cholesterol transport [141]. On this basis, ABC1 was proposed to facilitate transport of mature IL-1β [141]. Moreover, when LPS-activated THP-1 cells are treated with 300 μM BZATP, microvesicles which contain bioactive IL-1β are rapidly shed from the cell surface [137]. A similar process has been reported to occur in mixed cultures of rat primary astrocytes and microglia [142]. In this case, ATP released from astrocytes appears to promote shedding of microvesicles from neighboring microglia containing IL-1β. Details of how the shed microvesicles subsequently release their content of cytokine have yet to be defined. An even more elaborate system for externalization of mature IL-1β has been proposed based on immunohistochemical observations that co-localized proIL-1β and lysosomal enzymes within cytoplasmic vesicles [143, 144]. In response to ATP, these vesicles appear to fuse with the plasma membrane via a process that is triggered by K+ depletion and dependent on phospholipase activation [144]. To what extent each of these different mechanisms contributes to the release of IL-1β in vivo remains to be established.
ATP's ability to promote IL-1β posttranslational processing \textit{in vitro} via the P2X7 receptor is well documented, but evidence demonstrating that the P2X7 receptor functions in this capacity \textit{in vivo} is limited. Moreover, no evidence has thus far been presented to suggest that P2X7 receptor levels and/or activity are altered in human inflammatory disorders. A number of single nucleotide polymorphisms have been identified in the human P2X7 receptor gene [145–151] and these can lead to impaired ATP-induced IL-1β (and IL-18) posttranslational processing \textit{in vitro} [152, 153]. Thus, it will be of great interest to determine whether individuals possessing these functionally impaired P2X7 receptor phenotypes are less susceptible to inflammatory disorders. Two independent P2X7 receptor-deficient mouse lines have been generated [26, 154]. Although these receptor-deficient mice are overtly normal, when subjected to various challenges they display attenuated inflammatory responses. For example, after treatment with a panel of anticollagen antibodies to induce an RA-like disease state, joints recovered from wild type mice display a more pronounced inflammatory cell infiltrate and greater cartilage destruction than do joints recovered from P2X7 receptor-deficient mice [26]. In similar murine models of arthritis, administration of neutralizing anti-IL-1 antibodies are known to suppress the inflammatory response [155–157]. Therefore, the protection afforded by deletion of the P2X7 receptor is consistent with the knockout mice possessing a diminished capacity to generate mature IL-1β. Indeed, following intraplantar injection of Freund's complete adjuvant, extracts of the injected paws obtained from wild type mice contain greater levels of IL-1β than do comparable extracts obtained from P2X7 receptor-deficient mice [154]. Moreover, P2X7 receptor-deficient mice display less hypersensitivity to the adjuvant challenge than do their wild type counterparts. These \textit{in vivo} disease model studies, therefore, suggest that antagonism of the P2X7 receptor may offer a novel therapeutic approach for the treatment of inflammatory disorders. As several pharmaceutical companies appear to be engaged in a search for antagonists of the P2X7 receptor [158–160], the ability to selectively modulate this receptor pharmacologically in animal models and man may soon be possible.

References

1. Fischer A (2001) Primary immunodeficiency diseases: an experimental model for molecular medicine. Lancet 357:1863–1869
2. Casanova J-L, Abel L (2004) The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol 4:55–66
3. Billiau A, Heremans H, Matthis P (2003) The use of cytokine knockouts in animal models of autoimmune disease. In: Fantuzzi G (ed) Cytokine knockouts, 2nd edn. Humana, Totowa, NJ, pp 33–55
4. Bathon JM, Martin RW, Fleischman RM et al (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343:1586–1593
5. Lipsky PE, van der Heijde DM, St. Clair EW et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med 343:1594–1602
6. Doan T, Massarotti E (2005) Rheumatoid arthritis: an overview of new and emerging therapies. J Clin Pharmacol 45:751–762
7. Cohen S, Hurd E, Cush J et al (2002) Treatment of rheumatoid arthritis with Anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate. Arthritis Rheum 46:614–624
8. Hawkins PN, Lachmann HJ, Aganna E et al (2004) Spectrum of clinical features in Muckle-Wells syndrome and response to Anakinra. Arthritis Rheum 50:607–612
9. Lovell DJ, Bowyer SL, Solinger AM (2005) Interleukin-1 blockade by Anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum 52:1283–1286
10. Kauffman CL, Aria N, Toichi E et al (2004) A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol 123:1037–1044
11. Mannon PJ, Fuss JJ, Mayer L et al (2004) Anti-interleukin-12 antibody for active Crohn's disease. N Engl J Med 351:2069–2079
12. Di Virgilio F, Chiozzi P, Ferrari D et al (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97:587–600
13. Di Virgilio F, Baricordi OR, Romagnoli R et al (2005) Leukocyte P2 receptors: a novel target for anti-inflammatory and anti-tumor therapy. Curr Drug Targets: Cardiovasc Hematol Disord 5:85–99
14. Dubyak GR, Cliffor EE, Humphreys BD et al (1996) Expression of multiple ATP receptor subtypes during the differentiation and inflammatory activation of myeloid leukocytes. Drug Dev Res 39:269–278
15. Jin J, Dasari VR, Sistare FD et al (1998) Distribution of P2Y2 receptor subtypes on haematopoietic cells. Br J Pharmacol 123:789–794
16. Gudipaty L, Humphreys BD, Buell G et al (2001) Regulation of P2X7 nucleotide receptor function in human monocytes by extracellular ions and receptor density. Am J Physiol Cell Physiol 280:C943–C953
17. Wiley JS, Dubyak GR (1989) Extracellular adenosine triphosphate increases cation permeability of chronic lymphocytic leukemic lymphocytes. Blood 73:1316–1323
18. Gu B, Bendall LJ, Wiley JS (1998) Adenosine triphosphate-induced shedding of CD23 and L-selectin (CD62L) from lymphocytes is mediated by the same receptor but different metalloproteases. Blood 92:946–951
19. Gu BJ, Zhug N, Bendall LJ et al (2000) Expression of P2X7 purinoceptors on human lymphocytes and monocytes: evidence for non-functional P2X7 receptors. Am J Physiol Cell Physiol 279:C1189–C1197
20. Sluyter R, Barden JA, Wiley JS (2001) Detection of P2X purinergic receptors on human B lymphocytes. Cell Tissue Res 304:231–236
21. Adinolfi E, Melchiorri L, Falzoni S et al (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–708
22. Suh B-C, Kim J-S, Namgung U et al (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide
23. Bulanova E, Budagian V, Orinska Z et al (2005) Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol 174:3880–3890
24. Idzko M, Panther E, Bremer HC et al (2003) Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br J Pharmacol 118:1244–1250
25. Chen Y-W, Donnelly-Roberts DL, Namovic MT et al (2005) Pharmacological characterization of P2X7 receptors in rat peritoneal macrophages. Inflamm Res 54:119–126
26. Solle M, Labasi J, Perregaux DG et al (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276:125–132
27. Sung S-SJ, Young JD-E, Origlio AM et al (1985) Extracellular ATP perturbs transmembrane ion fluxes, elevates cytosolic [Ca2+], and inhibits phagocytosis in mouse macrophages. J Biol Chem 260:13442–13449
28. Steinberg TH, Newman AS, Swanson JA et al (1987) ATP4-adenosine triphosphate receptor activity in cultured human monocytes and their mobilization into the plasma. J Biol Chem 262:8884–8888
29. Surprenant A, Rassendren F, Kawashima E et al (1996) The cytolitic P2X receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738
30. Chessell IP, Simon J, Hibell AD et al (1998) Cloning and characterization of a novel G protein-coupled receptor (P2X7). Science 272:735
31. Coutinho-Silva R, Ojcius DM, Gorecki DC et al (2004) Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochim Pharmacol 69:641–655
32. Ferrari D, Chiozzi P, Falzoni S et al (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301
33. Cogli, Neidhart S, Kawashima E et al (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1283
34. Hickman SE, El Khoury J, Greenberg S et al (1994) P2X adenosine triphosphate receptor activity in cultured human monocyte-derived macrophages. Blood 84:2452–2456
35. Falzoni S, Munerati M, Ferrari D et al (1995) The purinergic P2X receptor of human macrophage cells. Clin Invest 95:1207–1216
36. Humphreys BD, Dubyak GR (1996) Induction of the P2X/P2Y nucleotide receptor and associated phospholipase activity by lipopolysaccharide and IFN-γ in the human THP-1 monocytic cell line. J Immunol 157:5627–5637
37. Berchtold S, Ogilvie ALJ, Bogdan C et al (1999) Human monocyte derived dendritic cells express functional P2X2 and P2Y2 receptors as well as ecto-nucleotidases. FEBS Lett 458:424–428
38. Ferrari D, La Sala A, Chiozzi P et al (2000) The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J 14:2466–2476
39. Zhang FL, Luo L, Gustafson E et al (2002) P2Y11; identification and characterization of a novel Gxi-coupled ADP receptor from human and mouse. J Pharmacol Exp Ther 301:705–713
40. Mutini C, Falzoni S, Ferrari D et al (1999) Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 157:5627–5637
41. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492
42. Luster AD (1998) Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–455
43. Mukaida N (2003) Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 284:L566–L577
44. Warmy M, Aboudola S, Robson SC et al (2001) P2Y6 nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 276:26051–26056
45. Cox MA, Gomes B, Plamer K et al (2005) The pyrimidinergic P2Y6 receptor mediates a novel release of proinflammatory cytokines and chemokines in monocytes cells stimulated with UDP. Biochem Biophys Res Commun 330:467–473
46. Dubyak GR, el-Moattassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606
47. Boeynaems J-M, Communi D, Gonzalez NS et al (2005) Overview of the P2 receptors. Semin Thromb Hemost 31:139–149
48. Koreck J, Raimundo LN, Du X et al (2005) P2Y6 nucleotide receptors activate NF-κB and increase survival of osteoclasts. J Biol Chem 280:16909–16915
49. Baeuerle PA, Henkel T (1994) Function and activation of NF-κB in the immune system. Annu Rev Immunol 12:141–179
50. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936
51. Somers GR, Hammett FMA, Trute L et al (1998) Expression of the P2Y6 nucleotide receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest 78:1375–1383
52. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146
53. Trinchieri G, Pillanz S, Kastelein RA (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19:641–644
54. Langrish CL, McKenzie BS, Wilson NJ et al (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105
55. Watford WT, Hissong BD, Bream JH et al (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–156
56. Aggarwal S, Ghiardi N, Xie M-H et al (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914
57. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240
58. Moss RB, Moll T, El-Kalay M et al (2005) Th1/Th2 cells in inflammatory disease states: therapeutic implications. Expert Opin Biol Ther 4:1896–1896
59. Schnurr M, Then F, Galambos P et al (2000) Extracellular ATP and TNF-α synergise in the activation and maturation of human dendritic cells. J Immunol 165:4704–4709
60. la Salla A, Sebastiano S, Ferrari D et al (2002) Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99:1715–1722
61. la Sala A, Ferrari D, Corinti S et al (2001) Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol 166:1611–1617
62. Wilkin F, Duhan X, Bruyns C et al (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–7177
63. Wilkin F, Storzeur P, Goldman M et al (2002) Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dendritic cells: dual effect on IL-12 and stimulation of IL-10. Eur J Immunol 32:2409–2417
64. D’Andrea A, Rengarajan M, Valiante NM et al (1992) Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 176:1387–1398
65. Schnurr M, Toy T, Shin A et al (2005) Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23
expression in human dendritic cells: a novel role for the cAMP pathway. Blood 105:1582–1589
66. Oppmann B, Lesrey R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological properties similar as well as distinct from IL-12. Immunity 13:715–725
67. Marteau F, Communi D, Boezaarens J-M et al (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenosine nucleotide diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796–803
68. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1225
69. Nataraj C, Thomas DW, Tilley SL et al (2001) Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. J Clin Invest 108:1229–1235
70. Braun MC, Kelsall BL (2001) Regulation of interleukin-12 production by G-protein-coupled receptors. Microbes Infect 3:99–107
71. Granstein RD, Ding W, Huang J et al (2005) Augmentation of cutaneous immune responses by ATPyS: purinergic agonists define a novel class of immunologic adjuvants. J Immunol 174:7725–7731
72. Mizumoto N, Kumanoto T, Robson SC et al (2002) CD39 is the dominant Langehans cell-associated ecto-CD3′Dase: modulatory roles in inflammation and immune responsiveness. Nat Med 8:358–365
73. Jarvis MF, Burgard EC, McGaragthy S et al (2002) A-317491, a potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Nat Acad Sci 99:17179–17184
74. Gargett CE, Comish JE, Wiley JS (1997) ATP, a partial agonist for the P2Z receptor of human lymphocytes. Br J Pharmacol 122:911–917
75. Bianchi BR, Lynch KJ, Touma E et al (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376:1741–1748
76. Murgia M, Hanau S, Pizzo P et al (1993) Oxidized ATP; an irreversible inhibitor of the macrophage purinergic P2X2 receptor. J Biol Chem 268:8199–8203
77. Beigi RD, Kertesy SB, Aquilina G et al (2003) Oxidized ATP triggers IL-1β release from rat microglia. J Neuroscience 23:5695–5705
78. Hide I, Tanaka M, Inoue A et al (2000) Extracellular ATP induces biphasic interleukin-1β secretion and membrane blebbing in murine macrophages. Mol Pharmacol 66:909–920
79. Cordoba-Rodriguez R, Fang H, Lankford CSR et al (2004) Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1β and IL-18. J Biol Chem 279:20563–20566
80. Kelk P, Claesson R, Hanstrom L et al (2005) Abundant secretion of bioactive interleukin-1β by human monocytes induced by Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun 73:453–458
81. Perregaux D, Bhasvar K, Contillo L et al (2002) Antimicrobial peptides initiate IL-1β posttranslational processing: a novel role beyond innate immunity. J Immunol 168:3024–3032
82. Ellsner A, Duncan M, Gavrlin M et al (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release. J Immunol 172:4987–4994
83. Perregaux D, Barberia J, Lanzetti AJ et al (1992) IL-1β maturation: evidence that mature cytokine formation can be induced specifically by nigericin. J Immunol 149:1294–1303
84. Waley I, Reske K, Palmer M et al (1995) Potassium-inhibited processing of IL-1β in human monocytes. EMBO J 14:1607–1614
85. Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267:2000–2002
86. Ayala JM, Yamin TT, Egger LA et al (1994) IL-1β-converting enzyme is present in monocytic cells as an inactive 45 kDa precursor. J Immunol 153:2592–2599
87. Hoggquist KA, Unanue ER, Chaplin DD (1991) Release of IL-1 from mononuclear phagocytes. J Immunol 147:2181–2186
88. Bhakdi S, Muhly M, Korom S et al (1990) Effects of Escherichia coli hemolysin on human monocytes. J Clin Invest 85:1746–1753
89. Tovey I, Wellar U, Strauch S et al (1996) Selective killing of human monocytes and cytokine release provoked by sphingomyelinase (beta-toxin) of Staphylococcus aureus. Infect Immun 64:2974–2979
90. Verhoef PA, Kertesy SB, Estacion M et al (2004) Maitoxtin induces biphasic interleukin-1β secretion and membrane blebbing in murine macrophages. Mol Pharmacol 66:8485–8489
91. Griffiths RJ, Stam EJ, Downs J et al (1995) ATP induces the release of IL-1 from LPS primed cells in vivo. J Immunol 154:2821–2828
92. Perregaux D, Gabel CA (1994) Interleukin1-β maturation and release in response to ATP and nigericin. J Biol Chem 269:15195–15203
93. Ferrari D, Villalba M, Chiozzi P et al (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539
94. Ferrari D, Chiozzi P, Falzoni S et al (1997) Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor on human macrophages. J Immunol 159:1451–1458
95. Grahame CBA, Michel AD, Chessell IP et al (1999) Pharmacological characterization of ATP- and LPS-induced IL-1β release in human monocytes. Br J Pharmacol 127:1915–1921
96. Ferrari D, Villaalba M, Chiozzi P et al (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539
97. Ferrari D, Chiozzi P, Falzoni S et al (1997) Purinergic modulation of interleukin-1β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:1–4
98. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of β-amyloid- and LPS-induced cytokine secretion
107. Humphreys BD, Virginio C, Surprenant A et al (1998) Isoquinoline derivative KN-62: a potent antagonist of the P2X-receptor of human lymphocytes. Br J Pharmacol 122:911–917
108. Buelg G, Chessel IP, Michel AD et al (1998) Blockade of human P2X$_7$ receptor function with a monoclonal antibody. Blood 92:3521–3528
109. Bradford MD, Soltoff SP (2002) P2X$_7$ receptors activate protein kinase (MAPK) downstream of protein kinase C. Biochem J 366:745–755
110. Amstrup J, Novak I (2003) P2X$_7$ receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca$^{2+}$ influx. Biochem J 374:51–61
111. Auger R, Motta I, Benihoud K et al (2005) A role for mitogen-activated protein kinase (MAPK) activation and non-selective pore formation in P2X$_7$ receptor-mediated thymocyte death. J Biol Chem 280:28142–28151
112. Humphreys BD, Rice J, Kertesy SB et al (2000) Stress-activated P2X$_7$ receptor activates extracellular signal-regulated kinases (ERK) and NF-κB independently of Ca$^{2+}$ influx. Biochem J 347:51–61
113. Auger R, Motta I, Benihoud K et al (2005) A role for mitogen-activated protein kinase (MAPK) activation and non-selective pore formation in P2X$_7$ receptor-mediated thymocyte death. J Biol Chem 280:28142–28151
145. Wiley JS, Dao-Ung LP, Gu BJ et al (2002) A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukemia: a molecular study. Lancet 359:1114–1119

146. Li CM, Campbell SJ, Kumararatne DS et al (2002) Response heterogeneity of human macrophages to ATP is associated with P2X7 receptor expression but not to polymorphisms in the P2RX7 promoter. FEBS Lett 531:127–131

147. Zhang LY, Ibbotson RE, Orchard JA et al (2003) P2X7 polymorphism and chronic lymphocytic leukaemia: lack of correlation with incidence, survival and abnormalities of chromosome 12. Leukemia 17:2097–2100

148. Le Stunff H, Auger R, Kanellopoulos J et al (2004) The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 279:16918–16926

149. Skarratt KK, Fuller SJ, Slyuter R et al (2005) A 5′ intronic splice site polymorphism leads to a null allele of the P2X7 gene in 1–2% of the Caucasian population. FEBS Lett 579:2675–2678

150. Cabrini G, Falzoni S, Forchap SL et al (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175:82–89

151. Gu BJM, Slyuter R, Skarratt KK et al (2004) An Arg to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279:31287–31295

152. Slyuter R, Shemon AN, Wiley JS (2004) Glu to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1β release from human monocytes. J Immunol 172:3399–3405

153. Slyuter R, Dalitz JG, Wiley JS (2004) P2X7 receptor polymorphism impairs extracellular adenosine 5′-triphosphate-induced interleukin-18 release from human monocytes. Genes Immun 5:588–591

154. Chessell IP, Hatcher JP, Bountra C et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

155. Joosten LA, Helsen MM, Saxne T et al (1999) IL-1α/β blockade prevents cartilage and bond destruction in murine type II collagen-induced arthritis, whereas TNFα blockade only ameliorates joint inflammation. J Immunol 163:5049–5055

156. Williams RO, Marinova-Mutafchieva L, Feldmann M et al (2000) Evaluation of TNFα and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNFα/anti-CD4 therapy. J Immunol 165:7240–7245

157. Kagari T, Doi H, Shimozato T (2002) The importance of IL-1β and TNFα, and the noninvolvement of IL-6, in the development of monoclonal antibody-induced arthritis. J Immunol 169:1459–1466

158. Baxter A, Bent J, Bowers K et al (2003) Hit-to-lead studies: the discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4047–4050

159. Merriman GH, Ma L, Shum P et al (2005) Synthesis and SAR of novel 4,5-diarylimidazolines as potent P2X7 receptor antagonists. Bioorg Med Chem Lett 15:435–438

160. Romagnoli R, Baraldi PG, Di Virgilio F (2005) Recent progress in the discovery of antagonists acting at P2X7 receptor. Expert Opin Ther Pat 15:271–287