Assessment of The Incidence of Insomnia In The Group of Poles Aged 18-25 Years During The Covid-19 Pandemic

Weronika Wolińska (weronika.wolinska@pum.edu.pl)
Pomeranian Medical University

Agata Gebel
Pomeranian Medical University

Bożena Mroczek
Pomeranian Medical University

Research Article

Keywords: insomnia, depression, 18-25 year olds, Covid-19

Posted Date: January 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1146042/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Insomnia is the most recognized sleep disorder. The time of the COVID-19 pandemic brings with it new challenges. During the COVID-19 pandemic, maintaining sleep hygiene is highly recommended as it helps to strengthen the immune system, and people infected with COVID-19 may be more prone to sleep problems. The aim of this study was to determine the incidence of insomnia among people aged 18-25 during the COVID-19 pandemic.

Methods: The study involved 302 individuals. It was conducted using Google Forms. The mean age of the respondents was 23 ± 1.84 years. The research instruments used in the study were the Athenian Insomnia Scale (AIS), the Beck Depression Inventory (BDI), and the author’s questionnaire concerning sociodemographic data.

Results: Insomnia was found in 29.5% (n = 89) of the respondents. Higher mean values (8 ± 4.19) in the AIS were noted in the group of people with higher education and those currently studying. Moderate depression was demonstrated in 12.6% (n = 38) of the subjects. One third (30.1%; n = 91) of the respondents indicated greater sleep problems during the COVID-19 pandemic than before.

Conclusions: Insomnia and depression are significant problems in the study group of 18-25 year olds. Therefore, psychological and psychiatric care should be extended to this group of young people.

Background

Insomnia is the most recognized sleep disorder [1]. It affects approximately 30% of adults [2]. In the study conducted in Poland in 2016, 50.5% of the respondents reported insomnia, and 70% of these people showed impaired daytime functioning [3]. Studies show that sleep disorders are more common in women, who suffer from it up to 1.5 times more often than men [4, 5]. The risk of insomnia in women increases with age. In young women aged 15-30 years, the risk of developing insomnia was 1.28 times higher than in young men [6].

The time of the COVID-19 pandemic brings with it new challenges. During the COVID-19 pandemic, maintaining sleep hygiene is highly recommended as it helps to strengthen the immune system, and people infected with COVID-19 may be more prone to sleep problems [7]. Based on a meta-analysis from studies conducted in 2020 and 2021, 34% of patients with COVID-19 experienced sleep disorders of varying severity [8]. A similar study of 582 students in Saudi Arabia found that 22% of them had problems falling asleep, 17.9% woke up in the night, 8.8% woke up early in the morning, 25.9% had poor sleep quality, 22.7% felt tired during the day, and about 10% had nightmares [9]. The results of multicenter studies demonstrated that insomnia was found in 36.7% of the subjects, and these findings were about twice as high during the first wave of the pandemic as the prevalence rates typically reported in nonpandemic times [10].
The quality of sleep depends on the lifestyle. The circadian rhythm and the use of stimulants are of significant importance in the pandemic era. Caffeine in large doses, consumed late in the day, causes agitation and thus adversely affects sleep. Nicotine, similarly to caffeine, causes stimulation and promotes wakefulness. It extends the time needed to fall asleep, reduces total sleep time, and promotes premature awakenings. On the other hand, consuming large amounts of alcohol before going to bed reduces latency, but increases arousal in the second half of the night [11].

Research shows that using the media in the evening hours has a negative impact on sleep, reducing its quality, causing irregular sleep-wake cycles and worsening functioning during the day [12–15]. There are three reasons for this. First, exposure to blue light emitted by televisions, computer monitors or smartphone screens ultimately stops the release of melatonin [16, 17]. The second reason is over-stimulation caused by moving, violent or sexual content, which may make it difficult to fall asleep or cause a decrease in sleep quality [18]. A study conducted among young people (18-40 years old) by Exelmans et al. (2016) showed that the longer the time of using a smartphone in the bedroom, the shorter the sleep time, the greater the fatigue, and the later the hour to get up [19].

According to Pigeon et al. (2017) and Hertenstein et al. (2019), the consequence of sleep disorders in adults is depression [20, 21].

Depression is believed to be the third most common cause of disability in the world and its incidence is increasing [22]. Depression may begin in childhood and usually peaks in the age of 20 years [23–25]. In adolescents, sleep disorders and depression are often found in the results of various studies, with prevalence rates varying significantly depending on the methodology adopted [26, 27]. In a systematic review summarizing research on the association between insomnia and depression, carried out from 2014 to 2017, Pigeon et al. (2017) found that in three out of four children and adolescents insomnia was significantly related to depression [24].

**Aim Of The Study**

The aim of this study was to determine the incidence of insomnia among people aged 18-25 during the COVID-19 pandemic.

We searched for an answer to the question: what is the incidence of insomnia among people aged 18-25?

**Methods**

**Study design**

This was a cross-sectional retrospective study.

**Setting And Ethical Considerations**
The survey was carried out from January 20 to February 27, 2021. The criteria for inclusion in the study were the age of respondents between 18 and 25 years, residence in the city of Szczecin, and consent to participate in the study. The selection of the study group was based on quota sampling, with quotas defined by age, sex, and place of residence.

The study was approved by the Bioethics Committee of the Pomeranian Medical University, Szczecin (KB-0012/63/20).

**Participants**

The survey was conducted using Google Forms and the link to the survey was sent via email, Facebook, and other social media. The form was compiled in such a way that responses were anonymous, and no identifying emails or contacts were given. A total of 302 people participated in the survey. The questionnaire was completed by 383 people. Eighty-one questionnaires were not eligible for the study due to failure to meet the inclusion criteria: age and place of residence. The mean age of the respondents was 23 ± 1.84 years. The fewest respondents were aged 18 (2%, n = 7), and the most numerous were aged 23 (28%, n = 86).

The majority of the study sample were women (73.5%, 222), men constituted 26.5% (80). The mean age was 22.3 ± 1.84, the median was 23. 89.4% (270) of the respondents were studying or had completed higher education, 48.3% (146) were in school or university (Table 1).
Table 1  
Characteristics of the respondents

| Variable                        | n    | %    |
|---------------------------------|------|------|
| **Sex**                         |      |      |
| Woman                           | 222  | 73.5 |
| Man                             | 80   | 26.5 |
| Age                             | 22.3 ± 1.84. (median—23) |      |
| **Level of education**          |      |      |
| Lower secondary                 | 6    | 2    |
| Secondary                       | 26   | 8.6  |
| Third-level or in the process of studying | 270  | 89.4 |
| **Type of education**           |      |      |
| Medical                         | 198  | 65.6 |
| Natural sciences and sciences   | 14   | 4.6  |
| The humanities and social sciences | 31  | 10.3 |
| Economy and business            | 13   | 4.3  |
| Computer science                | 7    | 2.3  |
| Technical                       | 26   | 8.6  |
| Art                             | 6    | 2.0  |
| General                         | 6    | 2.0  |
| Other                           | 1    | 0.3  |
| **Employment status**           |      |      |
| I'm a pupil/student. I don't work. | 146  | 48.3 |
| I'm a pupil/student. I work off and on. | 111  | 36.8 |
| I work                          | 43   | 14.2 |
| I'm unemployed.                 | 2    | 0.7  |
| **Economic situation**          |      |      |
| I support myself                | 47   | 15.6 |
| I support myself partly on my own | 85  | 28.1 |
| I am supported by my parents or by social benefits | 169  | 56.0 |
BMI was calculated for 96% of the respondents (n = 291). Most of them (72.5%, n = 211) had BMI within the normal range. Overweight was found in 17.5% (n = 51) of the subjects.

### Data Sources

The research instruments used in the study were the Athenian Insomnia Scale (AIS), the Beck Depression Inventory (BDI), and the author’s questionnaire concerning sociodemographic data.

*The Athenian Insomnia Scale (AIS)* consists of eight questions, including five concerning night sleep, and three—the assessment of daily functioning over the past month. Responses are scored from 0 (no difficulty) to 3 (severe difficulty). The score is the sum of the points obtained and ranges from 0-24, where 0-5 points indicates no insomnia, 6-10 points is the cut-off value, and a score higher than 10 points indicates insomnia [28].

*The Beck Depression Inventory (BDI)* comprises 21 questions about the past month. Each response is assigned a value from 0 to 3. The score is the sum of all points and ranges from 0 to 63. It was assumed that 0-11 points means no depression, 12-26 points—mild depression, 27-49 points—moderate depression, and 50-63 points—major depression [29].

### Statistical analysis

The R program was used for statistical calculations. The Anderson-Darling test was employed to evaluate the data distribution. The Mann-Whitney U Test for nonparametric distribution data and the Kruskal-Wallis test were used. The significance level was set as $p \leq 0.05$.

### Results

Insomnia was found in 29.5% (n = 89) of the respondents (Table 2). The relationship between insomnia and the age of the respondents was analyzed—the result was not statistically significant ($p > 0.19$). Fewer than one third of the respondents (30.1%, 115) reported a reduction in the quality of sleep.
Table 2
The AIS results

|                              | n  | %   | X ± SD  | M  | Min-max |
|------------------------------|----|-----|---------|----|---------|
| No insomnia (0-5 points)     | 177| 58.6| 8.1 ± 4.2| 8  | 0-23    |
| Cut-off value (6-10 points)  | 36 | 11.9|         |    |         |
| Insomnia (> 10 points)       | 89 | 29.5|         |    |         |
| Total                        | 302| 100 |         |    |         |

n—number of respondents; X—arithmetic mean; M—median; SD—standard deviation; min—minimum value; max—maximum value

Women indicated the presence of insomnia significantly more often than men \( p = 0.0007 \) (Table 3).

Table 3
The incidence of insomnia by sex

| Sex    | n   | %   | X ± SD     | M  | Min-Max | p    |
|--------|-----|-----|------------|----|---------|------|
| Women  | 222 | 73.5| 8.57 ± 4.22| 8  | 1-18    | 0.0007|
| Men    | 80  | 26.5| 6.72 ± 3.77| 6  | 0-23    |      |
| Total  | 302 | 100 |           |    |         |      |

n—number of respondents; X—arithmetic mean; M—median; SD—standard deviation; min—minimum value; max—maximum value

There was no statistically significant relationship between the adopted socioeconomic variables and insomnia. Higher average values \( 8 ± 4.19 \) in the AIS scale were recorded in the group of people with higher education and currently studying—23 points, in people studying and working at the same time, and in the group of people working in shifts—23 points (Table 4).
Table 4
The influence of socioeconomic data on the occurrence of insomnia

| Variable                  | n    | %    | X ± SD | M   | Min-max | p     |
|---------------------------|------|------|--------|-----|---------|-------|
| **Education**             |      |      |        |     |         |       |
| Third-level or in the process of studying | 270  | 89.4 | 8 ± 4.19 | 7   | 0-23    | 0.44  |
| Secondary                 | 26   | 8.6  | 8.73 ± 4.29 | 8   | 2-16    |       |
| Lower secondary           | 6    | 2    | 9 ± 2.96 | 9   | 4-12    |       |
| **Employment status**     |      |      |        |     |         |       |
| Study                     | 146  | 48.3 | 8 ± 4.07 | 7.5 | 1-18    | 0.39  |
| Study and work            | 111  | 36.8 | 8.36 ± 4.47 | 8   | 0-23    |       |
| Work                      | 43   | 14.2 | 7.16 ± 3.49 | 6   | 2-16    |       |
| Unemployment              | 2    | 0.7  | 15 ± 1.41 | 15  | 14-16   |       |
| **Shift or night work**   |      |      |        |     |         |       |
| Yes                       | 72   | 23.8 | 8.38 ± 4.28 | 8   | 0-23    | 0.49  |
| No                        | 230  | 76.2 | 7.98 ± 4.15 | 7.5 | 1-18    |       |

n—number of respondents; X—arithmetic mean; M—median; SD—standard deviation; min—minimum value; max—maximum value

Moderate depression was demonstrated in 12.6% (n = 38) of the subjects, mild depression in 32.5% (n = 98) (Table 5).

Table 5
The BDI results

|                | n   | %   | X ± SD       | Min-Max |
|----------------|-----|-----|--------------|---------|
| No depression (≤ 11 points) | 166 | 55.0 | 12.58 ± 10.01 | 0-46    |
| Mild depression (12-26 points) | 98  | 32.5 |  |         |
| Moderate depression (27-49 points) | 38  | 12.6 |  |         |
| Major depression (> 50 points) | 0   | 0   | 0            |         |
| Total          | 302 | 100 | 0            |         |

n—number of respondents; X—arithmetic mean; M—median; SD—standard deviation; min—minimum value; max—maximum value

A strong positive correlation was observed between the AIS and the BDI results—the more severe the insomnia, the higher the level of depression (p < 0.05)(Figure 1).
Fewer than one-third (30.1%; 91) of the respondents indicated greater sleep problems during the COVID-19 pandemic than before. 123 (40.72%) people experienced sleep problems during the pandemic in 2020 (Tabela 6).

Table 6
Change in subjective assessment of sleep quality during the COVID-19 pandemic

| Comparison of sleep quality during the COVID-19 pandemic (2020-2021) | n   | %   |
|---------------------------------------------------------------------|-----|-----|
| I experience more sleep problems during the pandemic               | 91  | 30.1|
| I experience less sleep problems during the pandemic                | 32  | 10.6|
| I experience no change in the quality of my sleep during the pandemic | 179 | 59.3|
| Total                                                               | 302 | 100 |

In the study group, almost 45% of the respondents (n = 135) spent five to eight hours in front of the screen of an electronic device every day, and over 27% of the respondents (n = 82) more than eight hours a day. Over 50% of the respondents (n = 161) used a blue light filter in their electronic devices.

Discussion

The COVID-19 pandemic has changed social and work life. It forced everyone to make changes to previous habits, and these changes had a big impact on sleep and mental well-being. In Poland, the lockdown began with the closure of schools and universities in the first half of March 2020. This was followed by restrictions on meetings outside the family circle to two people, and a ban on traveling for purposes other than higher necessity. Such a sudden change in social functioning was associated with stress and anxiety. The primary sources of stress were isolation, restrictions on movement and traveling, the requirement to wear face masks, frequent hand washing and disinfection, avoiding social contacts and meetings, closed restaurants, pubs, and fitness clubs, limiting physical activity even outdoors, as well as remote learning and online work [30]. Young people are more vulnerable to the effects of lockdown. It was particularly difficult for them due to the limitation of social contacts, which contributed to the deterioration of their mental health [31].

Studies by other authors indicate that sleep problems in adolescence may be caused by lifestyle, especially intensive learning and consumption of energy drinks and coffee [32-34]. The cause of insomnia may be the rhythm of the day imposed by school duties. A 2010 New England study of 357 students showed that even a half-hour shift in the start time of school (from 8:00 a.m. to 8:30 a.m.) helped reduce the feeling of sleepiness and fatigue during the day and increased motivation to learn. Moreover, the authors proved that the number of students exhibiting depressive symptoms and experiencing anxiety and irritability decreased by one-fifth. The results of this study support the potential benefits of adjusting school schedules to adolescents’ sleep needs, circadian rhythms, and developmental stage [35].
Our study found that nearly one-third of the subjects experienced increased sleep problems. A similar study was conducted by Marelli et al. (2021), who examined the association of the COVID-19 pandemic with sleep disturbances in a group of 400 Italians. They observed a significant increase in insomnia compared to the pre-pandemic state in both the student and university employee groups. What’s more, in this study, the authors showed that women felt the impact of the pandemic on sleep disorders more strongly than men, with over 30% of the subjects reporting depressive and anxiety symptoms for this reason [36].

Similarly, the presented studies showed a relationship between sex and insomnia—women reported insomnia and sleep disorders more often than men. Our results corresponded with those of Hasan et al. (2021) [37], who studied insomnia in young adults in Bangladesh and with a study by Taufig et al. (2021) who examined students during the Covid-19 pandemic [38].

Silva et al. (2020) showed that sleep disturbances during the pandemic, caused by mental strain and changes in the circadian rhythm, worsen the body’s immunity [39].

Based on the DSM-V criteria used in this study, insomnia was found in 29.5% of respondents aged 18-25, and the proportion of people reporting subjective sleep problems was 30.1%. In the AIS based study conducted by Nowak et al. (2015) in a group of 133 female public health students, 51% of the respondents had insomnia [40].

One of the factors that significantly influences sleep is shift work and studying, as pointed out by Ohayon (2001), who indicates that people working in shifts or night modes are more likely to struggle with sleep disorders [41]. A study by Wolinska (2020) comparing employed and unemployed individuals did not show any correlation between shift work and insomnia, but, interestingly, proved that insomnia was more common in unemployed ones (p ≤ 0.001) [42].

Our study revealed a statistically significant relationship between the presence of insomnia and depression in a group of 18-25 year olds. Similarly, based on their meta-analysis, Hertenstein et al. (2019) demonstrated that insomnia is a predictor of depression and anxiety disorders [21]. Similar results were reported by Benbir et al. (2015). They found that 13% of the subjects suffering from insomnia exhibited symptoms of depression or other mental disorders [43]. In turn, Levenson et al. (2015) observed a marked worsening of insomnia in patients with depression [44].

Our study showed no relationship between insomnia and the time spent in front of the screen of electronic devices and exposure to blue light emitted from these media. A different conclusion was reached by Exelmans et al. (2016), who proved a significant impact of using smartphones in the evening on the occurrence of insomnia. The effects of this in the case of older individuals were different from those in younger ones, but in both groups, using such devices at bedtime resulted in insomnia and the feeling of fatigue during the day [19]. This problem was noted by Chellappa et al. (2013), who provided evidence that exposure to blue-saturated light in a not very brightly lit room has a significantly negative effect on sleep. Hence, care should be taken to ensure that working in front of electronic devices during
evening and night time is done with the light on [17]. On the other hand, Benbir et al. (2015) confirmed a relationship between insomnia and watching TV for 6-8 hours a day in 18.4% of the respondents [43].

Limitations

The limitations of the study were the size of the group, which meant that the results could not be generalized, and the way the questionnaire was distributed, which was chosen due to the pandemic restrictions.

Conclusions

Insomnia and depression are significant problems in the study group of 18-25 year olds. Therefore, psychological and psychiatric care should be extended to this group of young people.

List Of Abbreviations

**BMI** - Body Mass Index

**AIS** - Athenian Insomnia Scale

**BDI** - Beck Depression Inventory

**DSM-V** - Diagnostic and Statistical Manual of Mental Disorders

Declarations

Ethics approval and consent to participate

The study was approved by the Bioethics Committee of the Pomeranian Medical University, Szczecin (KB-0012/63/20). All methods were carried out in accordance with relevant guidelines and regulations. All participants gave written informed consent before recruited into the study.

Consent for publication

Not applicable.

Availability of data and materials

Readers who wish to gain access to the data can write to the corresponding author.

Competing interests

The authors declare that they have no competing interest.

Funding
Not applicable.

**Authors’ contributions**

W.W. and A.G. – study design; A.G. – data collection; W.W., A.G. and B.M. – statistical analysis; W.W., A.G. and B.M. – data interpretation; W.W. and B.M. – manuscript preparation; W.W. and A.G.- literature search. All authors read and approved the final manuscript.

**Acknowledgements**

Not applicable.

**References**

1. Bollu PC, Kaur H. Sleep Medicine: Insomnia and Sleep. Mo Med. 2019;116(1):68–75.
2. Amaral AP, Soares MJ, Pinto AM, Pereira AT, Madeira N, Bos SC, et al. Sleep difficulties in college students: The role of stress, affect and cognitive processes. Psychiatry Res. 2018;260:331–337. doi: 10.1016/j.psychres.2017.11.072.
3. Nowicki Z, Grabowski K, Cubala WJ, Nowicka-Sauer K, Zdrojewski T, Rutkowski M. Rozpowszechnienie subiektywnej bezsenności w populacji polskiej. Psychiatr Pol. 2016;50(1):165–173.
4. Suh S, Cho N, Zhang J. Sex Differences in Insomnia: from Epidemiology and Etiology to Intervention. Curr Psychiatry Rep. 2018;20(9):69. doi: 10.1007/s11920-018-0940-9.
5. Nowakowski S, Meers J, Heimbach E. Sleep and Women’s Health. Sleep Med Res. 2013;4(1):1–22. doi: 10.17241/smr.2013.4.1.1.
6. Substance Abuse and Mental Health Services Administration (SAMHSA): Addressing Suicidal Thoughts and Behaviors in Substance Abuse Treatment (TIP 50). Treatment Improvement Protocol Series. U.S. Department of Health and Human Services 2005. https://store.samhsa.gov/sites/default/files/d7/priv/sma15-4381.pdf. Accessed 6 Nov 2021.
7. Gupta R, Pandi-Perumal SR. SARS-CoV-2 Infection: Paving Way for Sleep Disorders in Long Term!. Sleep Vigilance. 2021;5:1–2. doi: 10.1007/s41782-021-00145-5.
8. Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021;1486(1):90–111. doi: 10.1111/nyas.14506.
9. Alyoubi A, Halstead EJ, Zambelli Z, Dimitriou D. The Impact of the COVID-19 Pandemic on Students’ Mental Health and Sleep in Saudi Arabia. Int J Environ Res Public Health. 2021;18(17):9344. doi: 10.3390/ijerph18179344.
10. Morin CM, Bjorvatn B, Chung F, Holzinger B, Partinen M, Penzel T, et al. Insomnia, anxiety, and depression during the COVID-19 pandemic: an international collaborative study. Sleep Med. 2021;87:38–45. doi: 10.1016/j.sleep.2021.07.035.
11. Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep Med Rev. 2015;22:23–36. doi: 10.1016/j.smrv.2014.10.001.

12. Bartel KA, Gradisar M, Williamson P. Protective and risk factors for adolescent sleep: a meta-analytic review. Sleep Med Rev. 2015;21:72–85. doi: 10.1016/j.smrv.2014.08.002.

13. Kubiszewski V, Fontaine R, Rusch E, Hazouard E. Association between electronic media use and sleep habits: an eight-day follow-up study. Int J Adolesc Youth. 2013;19(3):395–407. doi:10.1080/02673843.2012.751039.

14. Owens J, Adolescent Sleep Working Group, Committee on Adolescence. Insufficient sleep in adolescents and young adults: an update on causes and consequences. Pediatrics 2014;134(3):e921-932. doi: 10.1542/peds.2014-1696.

15. Leonard H, Khurana A, Hammond M. Bedtime media use and sleep: evidence for bidirectional effects and associations with attention control in adolescents. Sleep Health. 2021;7(4):491–499. doi: 10.1016/j.sleh.2021.05.003.

16. Cajochen C, Frey S, Anders D, Späti J, Bues M, Pross A, et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol. (1985). 2011;110(5):1432-8. doi: 10.1152/japplphysiol.00165.2011.

17. Chellappa SL, Steiner R, Oelhafen P, Lang D, Götz T, Krebs J. Acute exposure to evening blue-enriched light impacts on human sleep. J Sleep Res. 2013;22(5):573–80. doi: 10.1111/jsr.12050.

18. Brown JD, L'Engle KL, Pardun CJ, Guo G, Keneavey K, Jackson C. Sexy media matter: exposure to sexual content in music, movies, television, and magazines predicts black and white adolescents' sexual behavior. Pediatrics 2006;117(4):1018–27. doi: 10.1542/peds.2005-1406.

19. Exelmans L, Van den Bulck J. Bedtime mobile phone use and sleep in adults. Soc Sci Med. 2016;148:93–101. doi: 10.1016/j.socscimed.2015.11.037.

20. Pigeon WR, Bishop TM, Krueger KM. Insomnia as a Precipitating Factor in New Onset Mental Illness: a Systematic Review of Recent Findings. Curr Psychiatry Rep. 2017;19(8):44. doi: 10.1007/s11920-017-0802-x.

21. Hertenstein E, Feige B, Gmeiner T, Kienzler C, Spiegelhalder K, Johann A, et al. Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Med Rev. 2019;43:96–105. doi: 10.1016/j.smrv.2018.10.006.

22. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;16;390(10100):1211–1259. doi: 10.1016/S0140-6736(17)32154-2.

23. Avenevoli S, Swendsen J, He JP, Burstein M, Merikangas KR. Major depression in the national comorbidity survey-adolescent supplement: prevalence, correlates, and treatment. J Am Acad Child Adolesc Psychiatry. 2015;54(1):37-44.e2. doi: 10.1016/j.jaac.2014.10.010.

24. Pigeon WR, Bishop TM, Krueger KM. Insomnia as a Precipitating Factor in New Onset Mental Illness: a Systematic Review of Recent Findings. Curr Psychiatry Rep. 2017;19(8):44. doi: 10.1007/s11920-
25. Hertenstein E, Feige B, Gmeiner T, Kienzler C, Spiegelhalder K, Johann A, et al. Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Med Rev. 2019;43:96–105. doi: 10.1016/j.smrv.2018.10.006.

26. Lovato N, Short MA, Micic G, Hiller RM, Gradisar M. An investigation of the longitudinal relationship between sleep and depressed mood in developing teens. Nat Sci Sleep. 2017;9:3–10 doi: 10.2147/NSS.S111521.

27. Marino C, Andrade B, Campisi SC, Wong M, Zhao H, Jing X, et al. Association Between Disturbed Sleep and Depression in Children and Youths: A Systematic Review and Meta-analysis of Cohort Studies. JAMA Netw Open. 2021;1:4(3):e212373. doi: 10.1001/jamanetworkopen.2021.2373.

28. Fornal-Pawlowska M, Wołyńczyk-Gmaj D, Szelenberger W. Walidacja Ateńskiej Skali Bezsenności. Psychiatr Pol. 2011;45(2): 211–22.

29. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–57.

30. Rogowska AM, Kuśnierz C, Ochnik D. Changes in Stress, Coping Styles, and Life Satisfaction between the First and Second Waves of the COVID-19 Pandemic: A Longitudinal Cross-Lagged Study in a Sample of University Students. J Clin Med. 2021 Sep 6;10(17):4025. doi: 10.3390/jcm10174025.

31. Glowacz F, Schmits E. Psychological distress during the COVID-19 lockdown: The young adults most at risk. Psychiatry Res. 2020;293:113486. doi: 10.1016/j.psychres.2020.113486.

32. Januszewska E. Zaburzenia snu u dzieci i młodzieży - diagnoza i wybrane formy terapii. In: Maciąg K, Maciąg M, editors. Zadania i wyzwania medycyny - charakterystyka problemów i postępowanie terapeutyczne. Lublin: Wydaw. Naukowe TYGIEL; 2018. p. 151–166.

33. Urban M. Zaburzenia snu u dzieci i młodzieży. Post Psychiatr i Neurol. 2007;16(3):257–262.

34. Nunes ML, Bruni O. Insomnia in childhood and adolescence: clinical aspects, diagnosis, and therapeutic approach. J Pediatr (Rio J). 2015;91(6 Suppl 1):S26-35. doi: 10.1016/j.jped.2015.08.006.

35. Reid KJ, Zee PC. Circadian rhythm disorders. Semin Neurol. 2009;29(4):393–405. doi: 10.1055/s-0029-1237120.

36. Marelli S, Castelnuovo A, Somma A, Castronovo V, Mombelli S, Bottoni D, et al. Impact of COVID-19 lockdown on sleep quality in university students and administration staff. J Neurol. 2021;268(1):8–15. doi: 10.1007/s00415-020-10056-6.

37. Hasan M, Maliha Z, Rahman A, Mamun MA. Insomnia in Bangladeshi Young Adults During the COVID-19 Pandemic: The Role of Behavioral Factors, COVID-19 Risk and Fear, and Mental Health Issues. Sleep Vigil. 2021;16:1–8. doi: 10.1007/s41782-021-00161-5.

38. Shovo TEA, Ahammed B, Khan B, Jahan N, Shohel TA, Hossain T, et al. Determinants of generalized anxiety, depression, and subjective sleep quality among university students during COVID-19 pandemic in Bangladesh. Dr Sulaiman Al Habib Med J. 2021;3:27–35. doi: 10.2991/dsahmj.k.210108.001.
39. Silva ESME, Ono BHVS, Souza JC. Sleep and immunity in times of COVID-19. Rev Assoc Med Bras (1992). 2020;21;66Suppl 2(Suppl 2):143-147. doi: 10.1590/1806-9282.66.S2.143.

40. Nowak G, Żelazko A, Nowak D, Waliczek M, Pawlas K. Zależność między zachowaniami zdrowotnymi a poziomem stresu i występowaniem bezsenności oraz depresji u studentów zdrowia publicznego. Piel Zdr Publ. 2015;5(3):231–238.

41. Ohayon MM, Roth T. What are the contributing factors for insomnia in the general population? J Psychosom Res. 2001;51(6):745–55. doi: 10.1016/s0022-3999(01)00285-9.

42. Wolińska W. The incidence of insomnia among employed and unemployed individuals. Pomeranian J Life Sci. 2020;66(1):70–78. doi: 10.21164/pomjlifesci.676

43. Benbir G, Demir AU, Aksu M, Ardic S, Firat H, Itil O, et al. Prevalence of insomnia and its clinical correlates in a general population in Turkey. Psychiatry Clin Neurosci. 2015;69(9):543–52. doi: 10.1111/pcn.12252.

44. Levenson JC, Benca RM, Rumble ME. Sleep Related Cognitions in Individuals with Symptoms of Insomnia and Depression. J Clin Sleep Med. 2015;15;11(8):847–54. doi: 10.5664/jcsm.4930.

**Figures**

![Figure 1](image)

**Figure 1**

Correlation between insomnia and depression