Comparison of nutrients and fatty acid of wild and hatchery fingerlings of *Clarias gariepinus* fed five formulated feeds and cultured in recirculating aquaculture system

Elsadig A Hagar, Zuheir N Mahmoud and Abdelrahman I Elhag

Abstract

Wild and hatchery fingerlings of *Clarias gariepinus* were cultured in recirculated aquaculture system. They were fed five diets composed of fish meal: poultry by-product meal at a ratio of 100:0%, 75:25%, 50:50%, 25:75% and 0:100%, respectively. The gross chemical composition showed no significant differences in the flesh of wild and hatchery fingerlings in composition, except that the fat content of 25:75% diet was significantly higher (p<0.01) in the wild fingerlings. The highest caloric values was shown by wild fingerlings given 25:75% diet. The lowest fat to protein ratio was obtained by fingerlings fed 75:25% diet. The 29 fatty acid obtained from the oil of *C. gariepinus* included 15 saturated fatty acids, 7 monounsaturated and 7 polyunsaturated fatty acids.

Keywords: *Clarias gariepinus*, body composition, fatty acid, RAS

1. **Introduction**

Fish is an important source of nutritious animal proteins locally, regionally and worldwide. They are rich in minerals, vitamins, amino and fatty acids with high protein digestibility (Mahmoud) [1]. Fish oil is valuable oil, due to its high level of polyunsaturated fatty acids required by human body to maintain good health (Kolanowski and Laufenberg, [2]; Jabeen and Caudhry) [3]. Fish oils mainly fatty acids play an important role in the development and function of brain and reproductive system, immune system, preventing cardiovascular disorder, reduce risk of cancers, and treatment of inflammatory diseases (Mahmoud) [1]. The gross chemical composition of fish vary considerably in response to abiotic and biotic factors (Silva and Chamul,) [4] and cultural systems (Rahman *et al.*; Ashraf *et al.*; Anyanwu *et al.*) [5, 6, 7].

The culture of African catfish *C. gariepinus* is profitable due to its fast growth, high fecundity, fleshy and palatable meat, tolerance and resistance to intensive and supper intensive culture and high economic value (Offem *et al.*; Hagar) [8, 9].

In Sudan, the chemical composition of captured *C. gariepinus* was assessed from different perspectives. It was tackled in relation to fish grading and quality (Mahmoud; Babiker; Karrar; Obany *et al.*) [10, 11, 12, 13]; as an indicator of fish raising in treated sewage effluent (Ahmed, and Ahmed,) [14, 15]; in relation to changes associated with post-harvest treatment (Khalifa) [16] and biological contamination of the on shelf dry commodity (Ahmed *et al.* [17]).

With respect to aquaculture of *C. gariepinus* the growth performance was studied by Hagar, [9] in recirculating aquaculture system and by El Hassan, [18] in ponds, both [9, 18] studied the fatty acids as well.

Comparative studies of the flesh quality of *C. gariepinus* captured and cultured was given attention in West Africa, reference can be made to the work of Ayinla *et al.* [19]; Osibona [20]; Olapade *et al.* [21]; Onyia *et al.* [22]; Solomon and Oluchi [23]; Michael and Adedayo [24]; Mmanu and Clement [25].

The objective of this study was to compare the proximate composition and fatty acid content of wild and hatchery fingerlings of *C. gariepinus* cultured in recirculating aquaculture system.
(RAS), fed partial replacement of fish meal with poultry by-product meal.

Materials and Methods

Source of fish

Fingerlings of *C. gariepinus* (average weight 10.6g) from wild and hatchery sources were collected and cultured under intensive condition system. The experimental work was conducted in a private farm (18.06, 28°N and 45.63, 28°E). Fingerlings were reared in 15 plastic tank each of 100L capacity. Five treatments and 3 replicates were set up. The experiments were conducted in a semi closed recirculated aquaculture system (RAS).

Experimental diets

Five experimental diets were formulated. The main protein source was fish meal with poultry by-product, carbohydrates, plant oil and vitamin preix substituted at a rate of 0% (T1), 25% (T2), 50% (T3), 75% (T4) and 100% (T5), respectively. The physical composition and proximate compositions of the diet Table 1. Proximate analysis followed AOAC [26].

The gross chemical composition and fatty acids of fish:

The gross chemical composition followed AOAC [26]. The fatty acids were identified and quantified by gas chromatography with a flame ionization detector following D3-fatty acid analysis gc, method and attached to an integrator (Shimadzu- Japan GC 2010). For calorific value calculation followed Babiker, [11].

Calorific value (CV) Kcal/g:

CV = 4.1xprotein+9.3xfat+4.1 Carbohydrate

Digestibility:

Fat: Protein ratio.

| Table 2: The proximate composition of wild and hatchery fingerlings of *C. gariepinus* farmed under different protein sources in RAS. |
%	Treatment	Wild fingerlings	Hatchery fingerlings	t-value	p-value
Moisture					
T1	78.38±0.09	77.72±0.55	1.171	0.307	
T2	77.27±0.03	78.46±0.76	1.569	0.192	
T3	78.13±0.01	78.23±0.35	0.294	0.783	
T4	77.90±0.04	79.25±0.14	9.388	0.001	
T5	78.44±0.07	79.24±0.95	0.839	0.499	
Protein					
T1	19.21±0.01	19.83±0.40	1.546	0.197	
T2	20.31±0.01	20.86±0.34	1.618	0.181	
T3	20.18±0.03	19.35±0.74	1.122	0.325	
T4	19.92±0.02	20.71±0.64	1.236	0.284	
T5	20.08±0.04	19.15±0.43	2.171	0.096	
Fat					
T1	4.92±0.01	4.01±0.40	1.840	0.140	
T2	4.91±0.01	3.66±0.42	2.961	0.042	
T3	5.08±0.02	5.39±0.29	1.067	0.436	
T4	5.44±0.01	4.86±0.10	5.663	0.005	
T5	5.78±0.02	5.98±0.01	24.495	1.560	
Ash					
T1	2.68±0.01	2.69±0.26	0.323	0.763	
T2	2.13±0.03	2.44±0.49	0.650	0.563	
T3	3.37±0.21	3.72±0.18	1.239	0.283	
T4	2.78±0.01	2.98±0.11	1.877	0.134	
T5	2.92±0.02	2.08±0.44	1.907	0.129	
Calorific values

The results of proximate chemical composition (Table 3) showed that *C. gariepinus* have an appreciable level of calorific values. Wild and hatchery fingerlings yield fed diet T1 recorded high level of calorific values (136.08±0.18) and (134.12±1.74) and fat to protein ratio (0.288:1) and (0.312:1) while the lowest levels were obtained by feed T5 in both wild and hatchery fingerlings yield (124.52±0.07) and (118.61±2.95) with significantly differences (p<0.05). The order of calorific value was T5>T4>T3>T2>T1 and ranged from 124 to 136 for wild fingerlings yield and T5>T4>T3>T2>T1 and ranged from 118 to 134 for hatchery fingerlings yield. While the order of fat to protein ratio was T5>T4>T3>T2>T1 and it ranged from 0.242:1 to 0.288:1 for wild fingerlings yield and T5>T4>T3>T2>T1 and it ranged from 0.202:1 to 0.312:1.

Table 3: The Calorific value and fat to protein ratio of wild and hatchery fingerlings of *C. gariepinus* farmed under different protein sources in RAS.

Parameter	Treatment	Wild fingerlings	Hatchery fingerlings	t-value	p-value
Calorific value					
T1	124.52±0.07	118.61±2.95	1.998	0.116	
T2	128.91±0.08	119.55±4.99	1.876	0.134	
T3	129.99±0.03	129.53±3.38	1.247	0.281	
T4	132.25±0.12	130.09±3.48	0.619	0.570	
T5	136.08±0.18	134.12±1.74	1.121	0.325	
Fat : Protein	T1	0.256:1.0	0.202:1.0	-	-
T2	0.242:1.0	0.175:1.0	-	-	-
T3	0.252:1.0	0.279:1.0	-	-	-
T4	0.273:1.0	0.235:1.0	-	-	-
T5	0.288:1.0	0.312:1.0	-	-	-

Fatty acids composition

The fatty acid compositions of *C. gariepinus* wild and hatchery fingerlings cultured under different diets showed the presence of 29 fatty acid.

Table 4: Fatty acid profile of wild and hatchery catfish fingerlings fed with five formulated diets in RAS.

Fatty acid	Wild fingerlings	Hatchery fingerlings									
Saturated fatty acids (SFA)	T1	T2	T3	T4	T5	T1	T2	T3	T4	T5	
Myristic acid (C14:0)	+	+	+	+	+	+	+	+	+	+	
Tricosenoic acid (C23:0)	+	+	+	+	+	+	+	+	+	+	
Henecosenoic acid (C21:0)	+	+	+	-	+	+	+	+	+	+	
Stearic acid (C18:0)	+	+	+	+	+	+	+	+	+	+	
Palmitic acid (C16:0)	+	+	+	+	+	+	+	+	+	+	
Lauric acid (C12:0)	+	+	+	+	+	+	+	+	+	+	
Pentadecenoic acid (C15:0)	+	+	+	+	+	+	+	+	+	+	
Lignoceric acid (C24:0)	+	+	+	+	+	+	+	+	+	+	
Behenic acid (C22:0)	+	+	+	+	+	+	+	+	+	+	
Tricosanoic acid (C23:0)	+	+	+	+	+	+	+	+	+	+	
Arachidic acid (C20:0)	+	+	+	+	+	+	+	+	+	+	
caprylic acid (C8:0)	+	+	+	+	+	+	+	+	+	+	
Capric acid (C10:0)	+	+	+	+	+	+	+	+	+	+	
Undecanoic acid (C11:0)	+	+	+	+	+	+	+	+	+	+	
Dodecanoic acid (C12:0)	+	+	+	+	+	+	+	+	+	+	
Monounsaturated fatty acids (MUFA)	T1	T2	T3	T4	T5	T1	T2	T3	T4	T5	
Palmitoleic acid (C16:1)	+	+	+	+	+	+	+	+	+	+	
Eicosenoic acid (C20:1)	+	+	+	+	+	+	+	+	+	+	
Nervonic acid (C24:1n9)	+	+	+	+	+	+	+	+	+	+	
heptadecenoic acid (C17:1)	+	+	+	+	+	+	+	+	+	+	
Erucic acid (C22:1)	+	+	+	+	+	+	+	+	+	+	
Elaidic acid (C18:1n9)	+	+	+	+	+	+	+	+	+	+	
Myristoleic acid (C14:1)	+	+	+	+	+	+	+	+	+	+	
Polyunsaturated fatty acids (PUFA)											
Linolelaic acid (C18:2n6)	+	+	+	+	+	+	+	+	+	+	
L- γ-Linolenic acid (GLA, C18:3n6)	+	+	+	+	+	+	+	+	+	+	
Eicosapentaenoic acid (EPA, C20:5n3)	+	+	+	+	+	+	+	+	+	+	
Docosahexaenoic acid (DHA; C22:6n3)	+	+	+	+	+	+	+	+	+	+	
Docosadienoic acid (DDA, C22:2n6)	+	+	+	+	+	+	+	+	+	+	
Eicosadienoic acid (C20:2)	+	+	+	+	+	+	+	+	+	+	
Arachidonic acid (AA,C20:4n6)	+	+	+	+	+	+	+	+	+	+	
Total	18	19	21	19	21	22	21	22	19	19	20

Discussion

In the present study, five formulated feeds were fed to wild and hatchery *C. gariepinus* fingerlings. The gross chemical body composition of fish were significantly affected (p<0.05) by the different diets. Ahmed [15] studied the gross chemical composition of *Clarias (lazera) gariepinus* from sewage ponds and White Nile (at Jebel Aulia). He found no significant difference in moisture content but significantly
high (p<0.01) protein in fish from the White Nile. The fat, ash, calorific value and fat: protein ratio were significantly high (p<0.01) in fish from the sewage ponds Ahmed [15]. The highest fat 5.98% was observed in the hatchery fingerlings fish fed T3 and the lowest was 3.66% was in hatchery fingerlings fed T2. This confirmed the findings of Solomon and Oluuchi [23] in C. gariepinus. Olapade et al. [20] and Onyia et al. [21] worked on wild and farm raised C. gariepinus and reported that the proximate composition values were higher in wild fingerlings reared in earthen pond. In the present study wild and hatchery fingerlings had ash of 3.37±0.21% and 3.72±0.18% in T3, with a minimum of 2.13±0.03% and 2.08±0.44 in T2 and T1 respectively. Giri et al. [27] found Clarias batrachus fingerlings from the wild sources had high ash content, and linked this to the minerals content of the water body and/or the feed.

The study showed comparable protein content in wild and hatchery fingerlings and related variation in lipid content to variation of its level in the diets. This is in line with Goda et al. [28] in C. gariepinus; Giri et al. [27] and Sugumaran and Radhakrishnan [29] in C. batrachus, who reported that replacement of fish meal by poultry meal in diets did not affect the body protein content, but increased fish body lipid content. In C. gariepinus fat content increased due to water removal, but its polyunsaturated fatty acids are reduced by salting (Chukwu and Shaba) [30]. Ahmed et al. [37] reported 50.96% moisture, 42.88% protein, 12.75% fat, 6.00% ash, 396.91calorific value and 0.297:1.0 fat to protein ratio from shade dried Clarias spp.

The present study showed an appreciable level of calorific values and fat to protein ratio. The highest calorific values was shown by wild fingerlings given diet T3. The lowest fat to protein ratio was obtained when by fingerlings fed T2. Similar findings were obtained by Nwali et al. [31] in C gariepinus. Ahmed [15] in C gariepinus recorded on weight basis fat:protein of 0.337:1.0 and 0.319:1.0 from sewage ponds and White Nile, respectively. Nwali et al. [31] reported that C gariepinus wild and hatchery fingerlings cultured at earthen ponds yielded 89.38 and 102.18 caliberic value, respectively. Ahmed [15] recorded on weight basis calorific value of 456.48±5.54 and 451.51±5.41from sewage ponds and White Nile, respectively. According to Babiker [31] low calorific value is advantageous to those who want to keep low calories in their diet, and the low fat to protein ratio is indicative of high digestibility.

Twenty nine fatty acids were obtained from the oil of C. gariepinus in the present study. Thirteen fatty acids were identified from the skin of C. gariepinus oil by Sayem et al. [32] and 20 fatty acids from its viscera by Effiong and Fakunle [33] obtained twenty. The fatty acids reported in the three studies were Lauric acid (C12:0), Pentadecanoic acid (C15:0), Capric acid (C10:0), Undecanoic (C11:0), Dodecanoic acid (C12:0), Palmitoleic acid. It was found that Linoleic acid (Effiong and Fakunle) [33] and Oleic acid (Goyens et al.) [34] are highly required by human body to maintain good health status Both acids are not produced by the human body and can be assimilated from fish as food (Kolanowski and Laufenberg [2]; Sayem et al. [32] found that the total proportions of polyunsaturated fatty acids were higher in pure cultured catfish than wild ones.

Conclusions

The chemical composition of C gariepinus indicated that it has low calorific value and high digestibility. Wild and hatchery fingerlings grown in and fed five different diets showed no significant differences in protein content. The study showed that C. gariepinus exhibited 15 SFA, 7 MUF and 7 PUFA.

Ethics. Ethics approval and consent to participate, human and animal rights, consent for publication, availability of data and materials are not applicable.

Funding. The Ministry of Higher Education and Scientific Research funded this work.

Conflict of Interest. The authors declare no conflict of interest, financial or otherwise.

Acknowledgement

Thanks are due to Mr. Mony for allowing use of his private farm to set the RAS.

References

1. Mahmoud HHY. On the Quality of Clarias gariepinus from Turdat El Rahad, North Kordofan State. M. Sc. Thesis. Department of Zoology, Faculty of Science, University of Khartoum 2018.
2. Kolanowski W, Laufenberg G. Enrichment of food products with polyunsaturated fatty acids by fish oil addition. European Food Research Technology 2008. 222(3-4):472-477. https://doi.org/10.1007/s00217-005-0089-8
3. Jabeen F, Caudhry AS. Chemical composition and fatty acid profiles of three freshwater fish species. Food Chemistry 2011;125(3):991-996. https://doi.org/10.1016/j.foodchem.2010.09.103
4. Silva JJ, Chamul RS. Composition of marine and fresh water finfish and Shellfish species and their products. In: Martin RE, EP Carter, EJ Flick, LM Davis (Eds.), Marine and fresh water products handbook, Lancaster Pennsylvania, USA: Technomic Publishing Company, 2000, 31-46.
5. Rahman SA, Huah TS, Nassan O, Daud NM. Fatty acid composition of some Malaysian freshwater fish. Food Chemistry 1995;54(1):45-49.
6. Ashraf MA, Zafar A, Rauf SM, Qureshi NA. Nutritional values of wild and cultivated silver carp (Hypophthalmichthys molitrix) and grass carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology 2011;13:210-214
7. Anyanwu DC, Offor JI, Onogu B, Mbachu M. Carcass Composition and Product Quality of Clarias gariepinus Fed 5% Dietary Levels of Leaf Meals. American Research Journal of Bio-Sciences 2015;1(2). ISSN-2379-7959.
8. Offem BO, Akegbejo-Samsons Y, Omoniyi IT. Aspects of ecology of Clarias anguillaris (Teleostei: Clariidae) in the Cross River, Nigeria, 2010. Turkish Journal of Fisheries and Aquatic Sciences 2010;10:101-110.
9. Hagar EA. Growth and quality of the catfish Clarias gariepinus Cultured in Backyard. Ph. D. Thesis, Department of Zoology, Faculty of Science, University of Khartoum 2017.
10. Mahmoud ZN. Meat Quality of Some Common Nile Fishes. M. Sc. Thesis Department of Zoology, Faculty of Science, University of Khartoum, Sudan 1977.
11. Babiker MM. Dietary Nile fishes are classification a
12. Karrar AMH. Studies on the biological composition of fish and current grading. M. Sc. Thesis, Department of Zoology, Faculty of Science, University of Khartoum 1977.

13. Obany OD, Asaad H, Agib MA, Elfaki FE, Ali ME. Comparative studies on nutritive value of wild and farmed African catfish Clarias gariepinus. International Journal of Fisheries and Aquatic Studies 2016;4(3):327-329.

14. Ahmed MMEA. Chemical composition of Clarias lazera as an indicator of fish raised in treated sewage effluent. M. Sc. Thesis. Department of Zoology, Faculty of Science, University of Khartoum 1998.

15. Ahmed SAE. Studies on Clarias lazera (Garmout fish) from Sewage ponds and the White Nile (Jebel Aulia) in relation to some Metals. M. Sc. Thesis. Department of Zoology, Faculty of Science, University of Khartoum 2008.

16. Khalifia GEA. On Post-harvest treatment of Clarias spp. B. Sc. (Honours) Dissertation. Department of Zoology, Faculty of Science, University of Khartoum 2006.

17. Ahmed RAM, Mahmoud ZN, Hammad NM. The gross chemical composition of some traditionally processed Nile fishes from Sudan. International Journal of Fisheries and Aquatic Studies 2020;8:196-199.

18. El Hassan MAI. Studies on the gross chemical composition, fatty acids, breeding and fecundity of Clarias gariepinus farmed fish. Ph. D. Thesis. Sudan Academy of Sciences 2016.

19. Ayinla OS, Idoniboye T, Langholz H, Omuaru V, Vehlow U. Fatty acid composition of the developmental stage of some pond reared freshwater in the oil palm belt of Nigeria. NIOMP. Technical Report 1993, 87, ISBN: 987-2345-09

20. Osibona AO, Kusemiju KI, Akande GR. Fatty acid composition and amino acid profile of two freshwater species, African catfish (Clarias gariepinus) and tilapia (Tilapia zillii). African Journal of Food, Agriculture, Nutrition and Development, 2009;9(1):608-621. ISSN: 1684-5374 EISSN:1684-5374.

21. Olapade OA, Sanwo SK, Oyekola AB. Comparative studies on the proximate composition of nutrients in Clarias gariepinus wild and farm raised. Internet Journal of Food Safety 2011;13:130-133.

22. Onyia LU, Michael KS, Manu JM, Sabo M. Comparison of nutrient values of wild and farm raised Heterobranchus bidorsalis and Clarias gariepinus. Nigerian Journal of Fisheries and Aquaculture 2013;1(1):7-12.

23. Solomon RJ, Oluchi AR. Proximate analysis and nutritional value of African catfish (Clarias gariepinus) fed with local (Telferia occidentalis and Moringa oleifera) and industrial feed (Coppens). Journal of Fisheries and Livestock Production 2018;6(2):265-267. DOI: 10.4172/2332-2608.1000267

24. Michael PO, Adedayo FE. Comparative Study of the Flesh Quality of Clarias gariepinus in Farm-raised and Wild Populations. Asian Journal of Fisheries and Aquatic Research 2019;4(4):1-9.

25. Mmandu UE, Clement AY. Fatty Acid Composition of Fillets of African Catfish, Clarias gariepinus Fed with Various Oil-Based Diets. Aquaculture Studies 2020;(1):29-35.