THE DYNAMICS–AEROSOL–CHEMISTRY–CLOUD INTERACTIONS IN WEST AFRICA FIELD CAMPAIGN
Overview and Research Highlights

C. Flamant, P. Knippertz, A. H. Fink, A. Akpo, B. Brooks, C. J. Chiu, H. Coe, S. Danuor, M. Evans, O. Jegede, N. Kalthoff, A. Konaré, C. Lioussè, F. Lohou, C. Mari, H. Schlager, A. Schwarzenboeck, B. Adler, L. Amekudzi, J. Aryee, M. Ayoola, A. M. Batenburg, G. Bessardon, S. Borrmann, J. Brito, K. Bower, F. Burnet, V. Catoire, A. Colomb, C. Denjean, K. Fosu-Amankwah, P. G. Hill, J. Lee, M. Lothon, M. Maranan, J. Marsham, R. Meynadier, J.-B. Ngamini, P. Rosenberg, D. Sauer, V. Smith, G. Stratmann, J. W. Taylor, C. Voigt, and V. Yoboué

This document is a supplement to “The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights,” by C. Flamant, P. Knippertz, A. H. Fink, A. Akpo, B. Brooks, C. J. Chiu, H. Coe, S. Danuor, M. Evans, O. Jegede, N. Kalthoff, A. Konaré, C. Lioussè, F. Lohou, C. Mari, H. Schlager, A. Schwarzenboeck, B. Adler, L. Amekudzi, J. Aryee, M. Ayoola, A. M. Batenburg, G. Bessardon, S. Borrmann, J. Brito, K. Bower, F. Burnet, V. Catoire, A. Colomb, C. Denjean, K. Fosu-Amankwah, P. G. Hill, J. Lee, M. Lothon, M. Maranan, J. Marsham, R. Meynadier, J.-B. Ngamini, P. Rosenberg, D. Sauer, V. Smith, G. Stratmann, J. W. Taylor, C. Voigt, and V. Yoboué (Bull. Amer. Meteor. Soc., 99, 83–104) • ©2018 American Meteorological Society • Corresponding author: Cyrille Flamant, cyrille.flamant@latmos.ipsl.fr • DOI: 10.1175/BAMS-D-16-0256.2

PARTICIPANTS IN THE DACCIWA FIELD CAMPAIGNS. Many colleagues from European and African institutions participated in the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) field campaigns. As not all of them could be included as coauthors to the BAMS paper describing the field campaign, we have decided to list them in a dedicated table (Table ES1), thereby acknowledging their precious contributions to the overall conduct of operations during the field phase of the project.

The Service des Avions Français Instrumentés pour la Recherche en Environnement [SAFIRE, a joint entity of Centre National de la Recherche Scientifique (CNRS), Météo-France, and Centre National d’Etudes Spatiales (CNES) and operator of the ATR 42] is thanked for its support with the logistics of the aircraft campaign and for liaising with air traffic control of French-speaking countries on behalf of all aircraft operators. The British Antarctic Survey (BAS, operator of the Twin Otter) is thanked for liaising with air traffic control of English-speaking countries on behalf of all aircraft operators.

Other institutions involved and listed in the tables below are Centre National de la Recherche Scientifique, Laboratoire d’Aérologie (LA), Laboratoire de Météorologie Physique (LaMP), Laboratoire des Sciences du Climat et de l’Environnement (LSCE), University of Leeds (UNIVLEEDS), and Université Félix Houphouët-Boigny (UFHB).
Affiliation/company	Name
Université Félix-Houphouët-Boigny and Lamto Geophysical Observatory	Prof. A. Diawara, M. P. Zouzoua, M. L. Yap, Assamo, S. Keita, J. Adon, J. Bahinp, G. Ossohou, É. Touré, I. Tidiane, and M. Coulibali
Institut Pasteur, Ivory Coast	K. Kouamé
Université d’Abomey-Calavi, Cotonou	B. Fayomi, J. Djossou, M. Bodjrenou, and M. Abbey
Institut Régional de Santé Publique, Ouidah, Benin	M. Kedote
Ghana Met Services	C. York, S. Y. Komla, M. Baidu, and M. Addi
AeroEquipe and station heads at Abidjan, Cotonou, and Parakou	A. Solete, P. Sossa Minou, G. N’Zi, and J. Bente
Deutscher Wetterdienst	B. Richter
Direction Météo National du Togo	L. Issaou and A. Affo-Dogo
Kwame Nkrumah University of Science and Technology	W. A. Atiah, F. Caule-Aelhelhard, and S. Francis
Obafemi Awolowo University and Nigerian Met Services	O. Abiye, A. Ajao, D. Akpootu, D. Babatunde, I. Boboye, S. Francis, O. Imansogie, D. Obisesan, A. Ogunwale, O. Omokungbe, F. Soneye, and L. Sunmonu
Karlsruhe Institute of Technology	A. Kniffka, G. Pante, P. Vogel, A. Schlüter, L. Leufen, Th. Kociok, K. Leydecker, M. Buchholz, A. Wieser, M. Kohler, B. Deny, S. Kraut, J. Seringer, N. Kunka, M. Haid, S. Scheer, J. Handwerker, T. Gamer, S. Haas, and N. Tan
Universität Paul Sabatier (UPS)	C. Dione, C. Jambert, F. Tocquier, F. Brosse, Y. Bezombes, C. Chiron, C. Delon, S. Derrien, P. Durand, O. Gabella de la Fuente, C. Galy-Lacaux, E. Gardrat, J. Leclercq, J.-F. Léon, P. Medina, F. Pacifico, I. Reinares Martinez, C. Chiron, H.M. Xu, É. Touré, L. Roblou, G. Bret, P.-E. Brilouet, and B. Diallo
Pole AERIS/SEDOO	N. Belmahfoud, G. Brissebrat, H. Ferre, L. Fleury, and A. Fontaine
Université Blaise Pascal (UBP)	R. Dupuy, K. Sellegri, J. Duplessi, and P. Dominutti
Université Pierre et Marie Curie (UPMC)	A. Deroubaix, M. Gaetani, C. Lavaysse, R. Guebsi, and I. Annesi-Maesano
Université Paris Diderot	A. Baeza and M. L. Tran
Max Planck Institute for Chemistry (MPI-C)	C. Schulz and J. Schneider
Centre National de la Recherches Météorologiques (CNRM)	T. Bourrianne and E. Bourgeois
Laboratoire de Physique et Chime de l’Environnement et de l’Espace (LPC2E)	S. Chevrier, V. Brocchi, and G. Krysztofiak
Commissariat à L’Energie Atomique et aux Énergies Alternatives	P. Chazette and J. Totems
Deutsches Zentrum für Luft- und Raumfahrt (DLR)	Y. Ren, S. Kaufmann, M. Moser, M. Zaki, J. Kleine, V. Hahn, N. Hannemann, S. Hempe, F. Gebhardt, V. Dreiling, P. Weber, R. Welser, and D. Woudsma
Service des Avions Français Instrumentés pour la Recherche en Environnement	T. Perrin, C. Lamorthe, L. Guiraud, F. Plouvesle, M. Laurens, G. Vergez, J.-P. Desbios, C. Lainard, L. Cluzeau, H. Bellec, F. Loiseaux, G. Seurat, D. Duchanoy, J.-F. Bourdinot, P. Vitupier, K. Salaun, T. Charoy, and A. Bourdon
British Antarctic Survey	M. Beasley, O. Smith, V. Auld, J. Slatcher, J. Johnson, and R. Ladkin
University of York (UoY)	J. Hopkins, A. Vaughan, S. Garroway, E. Morris, and S. Young
University of Manchester (UNIMAN)	S. Haslett, M. Flynn, J. Dorsey, and I. Crawford
Wageningen University and Research	X. Pedruzo-Bagazgoitia
Technische Universität Braunschweig	K. Bärfuss, L. Bretschneider, and K. Endres
Royal Holloway, University of London	R. Fisher
Fig. ESI. SAFIRE ATR42 flight tracks.	
Instrument	Parameter
------------	-----------
Rosemount T	Temperature T
Rosemount 120 and 1221	Pressure P (static and dynamic)
Five-port turbulence probe	Momentum fluxes, heat fluxes
GE krypton hygrometer (dewpoint) (KH20)	Humidity: dewpoint; ultraviolet (UV) absorption
Inertial navigation system and global positioning system	Wind component, position
Adjustable (flow, orientation) aerosol community inlet	Particle aerosol sampling
Aircraft dual condensation particle counter (CPC) MARIE	Particle number concentrations for diameters $D > 4$ and $D > 15$ nm (variable)
CPC3788	Total counter (water CPC) (>3 nm)
CPCboot	Turbulent mixing CPC (>3 nm)
Scanning mobility particle sizer (SMPS) and V-SMPS	Ambient and desorbed (T selectable) particle size distribution 0.02–0.5 µm; 90-s time resolution
Optical particle counter (OPC) 1.129, V-OPC 1.129	Ambient and desorbed particle size distribution 0.25–2 µm; 1-s time resolution
Grimm 1.109	Ambient particle size distribution 0.25–2 µm; 1-s time resolution
Ultrahigh sensitivity aerosol spectrometer (UHSAS-A)	Aerosol size distribution 0.06–1 µm; 1-s time resolution
Passive cavity aerosol spectrometer probes (PCASP)	Aerosol (and cloud) particle size distribution 0.1–3 µm; 1-s time resolution
Particle and soot absorption photometer (PSAP) (3λ)	Absorption coefficient, black carbon content Blue: 470 nm; green: 522 nm; red: 660 nm
Aurora 3000	Lightsscatter coefficient (sigma), backscatter coefficient 450, 525, and 635 nm; 0–20,000 Mm$^{-1}$, 5 L min$^{-1}$
Cavity attenuate phase shift (CAPS) extinction monitor	Extinction Mm$^{-1}$ 630 nm
Atmospheric pressure interface time of flight (API-TOF) mass spectrometer	Ion clusters
Compact time of flight aerosol mass spectrometer (cToF-AMS)	Size-resolved condensation nucleus (CN) chemical composition (volatile and semivolatile components) 0.05–0.6 µm
Dual-stage impactor	Sub- and supermicronic elementary particle analysis: transmission electron microscope/scanning electron microscope equipped with an energy dispersive X-ray (TEM/SEM-EDX) Two stages: sub- and supermicron particles
Single particle soot photometer (SP2)	Measurement of black carbon (soot) mass in individual aerosol particles and particle optical size using light scattering Black carbon mixing state at the single-particle level
Instrument	Parameter
------------	-----------
Cloud condensation nucleus counter [CCNC (mini CCNC)]	CCN concentration
	Supersaturation to be chosen
Proton transfer reaction mass spectrometry (PTR-MS)	Primary and secondary volatile organic compounds (VOCs)
	Real-time monitoring of VOCs (mass) like acetone, acetaldehyde, methanol, ethanol, benzene, toluene, xylene, and others
Mozart	CO, O$_3$ measured every second, then averaged over 30 s
	O$_3$: 1 ppbv; CO: 5 ppbv
Thermo Environmental Instruments, Inc. model 42C trace level (TEI 42C TL) NO$_x$ analyzer	NO$_x$: measured every 1 s, then averaged over $n \times 10$ s; 50-ppt integration over 120 s
SO$_2$ analyzer	SO$_2$
Aerolaser HCHO	HCHO (formaldehyde) (ppbv)
Picarro sensors	CO$_2$, CH$_4$, CO cavity ring down spectroscopy
	Carbon dioxide (CO$_2$) every 5 s with precision to 150 ppb, methane (CH$_4$) to 1 ppb, and CO to 30 ppb
Meteo Consult photoelectric detectors	Upwelling and downwelling photolysis frequency J(NO$_2$)
	300–380 nm
Ultraviolet Lidar for Canopy Experiment (ULICE) aerosol/cloud lidar	Aerosol backscatter at 355 nm
Conveyable low-noise infrared (IR) radiometer for measurements of atmosphere and ground surface targets (CLIMAT)	Brightness temperature in the IR (8.7, 10.8, and 12 μm)
Kipp and Zonen CMP22 (two)	Upwelling and downwelling visible radiances and fluxes 0.2–3.6 μm; 5-s response time
Kipp and Zonen CGR4 (two)	Upwelling and downwelling IR radiances and fluxes 4.2–42 μm 0–700 W m$^{-2}$
Fast forward-scattering spectrometer probe (Fast-FSSP) and backscatter cloud probe with polarization detection (BCPD)	Droplet spectrum (2–50 μm)
Particle volume monitor (PVM)	Cloud liquid water content (LWC), effective diameter Deff
Cloud droplet probe (CDP-2)	Cloud droplet spectrum (2–50 μm), LWC, Deff
CDP-1	Cloud droplet spectrum (2–50 μm), LWC, Deff
Signal processing package (SPP-100) extended range (ER)	Extended-range cloud droplet spectrum (3–95 μm)
Two-dimensional stereo (2D-S) probe	Imaging probe for large drizzle droplets 10–1,280 μm
Fig. ES2. DLR Falcon 20 flight tracks.	
Instrument	Parameter
------------	-----------
UV absorption (TE49c)	O$_3$
Quantum cascade laser (QCL) on board Spectromètre Infrarouge In Situ Toute Altitude (SPIRIT)]	CO, NO$_2$, CH$_4$
Fluorescence (TE43 TL)	SO$_2$
Tube sampler + thermal desorption gas chromatography mass spectrometry (TD-GC-MS)	VOCs, perfluorocarbons (PFC)
Tedlar bag sampler	CH$_4$ isotopes
CPC (TSI 3010)	CN (>14 nm)
OPC (Grimm) × 2	Particle size and number (0.2–2 μm)
C-ToF-AMS	Aerosol chemical composition
UHSAS-A	Particle size and concentration (60 nm–1 μm)
Cloud and aerosol spectrometer with depolarization (CAS-DPOL)	Particle size and number concentration, depolarization (0.5–50 μm), LWC
2D-S	Particle size and number concentration (10–1,280 μm), imaging probe for large drizzle droplets
P, T probes	Pressure, temperature
Five-hole probe	Horizontal and vertical wind
Ly alpha	Relative humidity
Tunable diode laser hygrometer (TDL) (WARRAN-TDL, Spectra Sensors), dewpoint meter (DPM) hygrometer (Buck CR-2)	Total H$_2$O, Gas-phase H$_2$O, dewpoint
Fig. ES3. BAS Twin Otter flight tracks.	
Instrument	Parameter
------------	-----------
Rosemount 102	Temperature
Vaisala humicap	Temperature, pressure, humidity
Buck 1011C cooled-mirror hygrometer	Dewpoint
National Oceanic and Atmospheric Administration/Airborne Research Australia (NOAA/ARA) nine-hole turbulence probe and thermocouple temperature sensors	Momentum and sensible fluxes Operating at 50 Hz coupled with Oxford Technical Solutions (OxTS) Inertial and Inertial Measurement Unit (IMU) coupled with Trimble GPS
NOAA/ARA nine-hole turbulence probe and Licor LI-7000 IR gas sensor	Latent heat and CO₂ fluxes Operating at 50 Hz
GPS, inertial central	Wind component, position
Radar altimeter	Altitude, range ~900 m above ground level (AGL)
Brechtel model 1200 isokinetic inlet	Particle aerosol sampling D95 = 6 µm; D65 = 10 µm Inlet temperature – instruments below
Brechtel mixing CPC	Turbulent mixing CPC (>3 nm)
SMPS	Ambient and desorbed (T selectable) particle size distribution 20–350 nm; 60-s time resolution Using TSI 3772 CPC
Grimm 1.109 OPC	Ambient and desorbed particle size distribution 0.25–2 µm; 1-s time resolution
UHSAS-A	Aerosol size distribution 0.06–1 µm; 1-s time resolution
Droplet Measurement Technologies (DMT) PCASP or Stratton Park Engineering Company (SPEC) 2D-S cloud probe (one or the other at any one time)	Aerosol (and cloud) particle size distribution 0.5–40 µm; 1-s time resolution Imaging probe for large drizzle droplets 10–1,280 µm
Filters	Collection of particles for offline environmental scanning electron microscope (ESEM) analysis
Aerodyne CAPS particulate matter single-scattering albedo (PMssa) monitor	Scattering and extinction 630 nm
Brechtel PSAP (λl)	Aerosol optical absorption
Aerodyne AMS	Size-resolved CN chemical composition (volatile and semivolatile components) 0.05–0.6 µm
DMT SP2 photometer	Black carbon mass and mixing state 0.15–0.6 µm
CCNC (mini CCNC)	CCN concentration Supersaturation to be chosen
Whole air samples	Primary and secondary VOCs
Gas chromatography with flame ionization detector (GC-FID)	30 samples per flight
2B Technologies model 205, TEI49i	O₃
Air-quality design	NO, NO₂
TEI 43i	SO₂
Table ES4. Continued.

Instrument	Parameter	Responsible institution/ DACCIWA partner
Aerolaser AL5002	CO	UoY
Los Gatos Research microportable greenhouse gas analyzer (Micro-GGA), CO$_2$, CH$_4$	UoY and BAS/ UNIVMAN, UNIVLEEDS, UoY	
Video cameras	720p, forward and downward looking	BAS
Eppley Laboratories precession spectral pyranometer (PSP) (two)	Upwelling and downwelling visible radiances and fluxes 0.285–2.8 µm	BAS
Eppley Laboratories precision infrared pyrgeometer (PIR)	Upwelling and downwelling IR radiances and fluxes 3.5–50 µm 0–700 W m$^{-2}$	BAS
DMT CDP	Cloud droplet spectrum (2–50 µm), LWC, Deff	UNIVMAN
DMT CAPS cloud probe	Combined cloud probe	BAS/UNIVMAN, UNIVLEEDS

Fig. ES4. DACCIWA radiosonde network and deployed radiosonde types during Jun and Jul 2016. Blue: operational or reactivated AMMA stations with four-times-daily sounding frequencies; black: DACCIWA supersites performing 0600 UTC plus additional 1200, 1800, and 0000 UTC launches on IOP days; red: DACCIWA stations operated by KIT, GMet, UFHB, and the LAMTO Geophysical Observatory with up to five soundings per day; and yellow: operational upper-air station in Nigeria with 1200 UTC soundings. The shape of the marker indicates radiosonde type.
Date	Flight No.	Time (UTC)	From/to	Locations	Objectives				
29 Jun 2016	F20_20160629a	1311–1520	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé				
	ATR_as17	1359–1649	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé, Cotonou; biogenic emissions				
30 Jun 2016	F20_20160630a	1118–1453	Lomé/Lomé	Ghana	Cloud–aerosol interactions; city emissions: Accra, Kumasi, Takoradi				
	ATR_as18	1236–1609	Lomé/Lomé	Togo	Cloud–aerosol interactions; city emissions: Lomé; biogenic emissions				
1 Jul 2016	F20_20160701a	1111–1431	Lomé/Lomé	Ghana	Cloud–aerosol interactions; city emissions: Accra, Kumasi; biogenic emissions				
	ATR_as20	0940–1304	Lomé/Lomé	Benin	Radiation calibration; dust aerosols				
	ATR_as21	1445–1807	Lomé/Lomé	Ocean	Air–sea interactions [European Facility for Airborne Research (EUFAR) Observing the Low-Level...][OLACTA]); biomass burning plume				
3 Jul 2016	ATR_as22	0942–1313	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé; land–sea breeze				
	TO02	1101–1400	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions				
4 Jul 2016	TO03	1155–1515	Lomé/Lomé	Ghana	City emissions: Accra				
5 Jul 2016	F20_20160705a	1124–1458	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé				
	ATR_as23	0802–1056	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé				
	TO04	1124–1245	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions; radiation closure				
	TO05	1600–1750	Lomé/Lomé	Togo, Benin	Cloud–aerosol interactions				
6 Jul 2016	F20_20160706a	0941–1313	Lomé/Lomé	Ghana, Ivory Coast	Cloud–aerosol interactions; city emissions: Abidjan linking with urban campaign; biomass burning plume				
	ATR_as24	0709–1049	Lomé/Abidjan	Ghana, Ivory Coast	Cloud–aerosol interactions; city emissions: Accra, Abidjan linking with urban campaign; biogenic emissions; biomass burning plume				
	ATR_as25	1247–1502	Abidjan/Lomé	Ghana, Ivory Coast	City emissions: Accra, Abidjan linking with urban campaign; biogenic emissions; biomass burning plume				
	TO06	0942–1140	Lomé/Lomé	Togo, Benin	Radiation closure				
	TO07	1355–1637	Lomé/Lomé	Ghana	City emissions: Accra				
7 Jul 2016	F20_20160707a	1101–1335	Lomé/Lomé	Ocean	Flaring and shipping [EUFAR Air Pollution from Shipping and Oil Platforms of West Africa (APSOWA)]				
	ATR_as26	1317–1650	Lomé/Lomé	Ocean	Air–sea interactions (EUFAR OLACTA)				
	TO08	0946–1241	Lomé/Lomé	Togo	Cloud–aerosol interactions				
Date	Flight No.	Time (UTC)	From/to Locations	Objectives					
------------	------------	------------	----------------------------	---					
8 Jul 2016	F20_20160708a	0833–1206	Lomé/Lomé Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé; tracer experiment					
	ATR_as27	0544–0917	Lomé/Lomé Ghana	Cloud–aerosol interactions; city emissions: Accra; biogenic emissions					
	ATR_as28	1040–1604	Lomé/Lomé Benin	Midlevel clouds [EUFAR Mid-Level Clouds over West Africa (MICWA)]; dust aerosols; radiation closure dust					
	TO09	0836–1127	Lomé/Lomé Togo	Cloud–aerosol interactions; radiation closure					
	TO10	1330–1635	Lomé/Lomé Togo, Benin	City emissions: Cotonou					
10 Jul 2016	F20_20160710a	1106–1438	Lomé/Lomé Ocean, Ghana	Flaring and shipping (EUFAR APSOWA); biomass burning					
	ATR_as29	1019–1356	Lomé/Lomé Benin	Midlevel clouds (EUFAR MICWA); dust aerosols					
	TO11	0854–1133	Lomé/Lomé Togo, Benin	Cloud–aerosol interactions					
	TO12	1418–1615	Lomé/Lomé Benin	Radiation closure					
11 Jul 2016	F20_20160711a	1030–1426	Lomé/Lomé Ocean, Ivory Coast	Flaring and shipping (EUFAR APSOWA); city emissions: Abidjan; biomass burning aerosols					
	ATR_as30	0710–1048	Lomé/Abidjan Ghana, Ivory Coast	Cloud–aerosol interactions; city emissions: Abidjan; biogenic emissions; biomass burning plume from central Africa					
	ATR_as31	1331–1622	Abidjan/Lomé Ghana, Ivory Coast	City emissions: Abidjan					
	TO13	0817–1024	Lomé/Lomé Togo, Benin	Cloud–aerosol interactions; city emissions: Accra, Lomé					
	TO14	1215–1445	Lomé/Lomé Togo	City emissions: Lomé					
12 Jul 2016	F20_20160712a	0831–1218	Lomé/Lomé Togo	Cloud–aerosol interactions; city emissions: Lomé; biomass burning aerosols; tracer experiment					
	ATR_as32	1339–1658	Lomé/Lomé Ghana	Cloud–aerosol interactions; city emissions: Accra; biomass burning aerosols					
13 Jul 2016	F20_20160713a	0918–1242	Lomé/Lomé Togo	Cloud–aerosol interactions; city emissions: Lomé; biomass burning aerosols; tracer experiment					
	ATR_as33	1225–1551	Lomé/Lomé Benin	Midlevel clouds (EUFAR MICWA); biomass burning aerosols					
	TO15	0859–1205	Lomé/Lomé Ghana	City emissions: Accra					
14 Jul 2016	F20_20160714a	0855–1233	Lomé/Lomé Ocean; Ghana, Ivory Coast	Flaring and shipping (EUFAR APSOWA); city emissions: Accra					
	ATR_as34	1138–1446	Lomé/Lomé Ocean	Air–sea interactions (EUFAR OLACTA); biomass burning aerosols					
	TO16	0655–0925	Lomé/Lomé Togo	Cloud–aerosol interactions; city emissions: Lomé					
15 Jul 2016	ATR_as35	0921–1244	Lomé/Lomé Togo, Benin	Cloud–aerosol interactions; city emissions: Lomé; radiation closure clouds					
	TO17	0930–1205	Lomé/Lomé Togo, Benin	Radiation calibration					
	TO18	1340–1645	Lomé/Lomé Ghana	City emissions: Accra					
16 Jul 2016	ATR_as36	1134–1453	Lomé/Lomé Ghana	City emissions: Accra					
Flights	Abidjan	Accra	Kumasi	Takoradi	Lomé	Cotonou	Benin	Ghana	Togo
--------------	---------------	---------------	---------------	---------------	----------------	----------------	------------	------------	-----------
F20_20160706a	F20_20160630a	F20_20160630a	F20_20160630a	F20_20160629a	ATR_as17	TO10	ATR_as17	ATR_as19	ATR_as18
ATR_as24	F20_20160701a	F20_20160701a	F20_20160701a	ATR_as17	ATR_as17	TO10	ATR_as17	ATR_as24	ATR_as27
ATR_as25	ATR_as19	ATR_as19	ATR_as19	ATR_as18		TO01	ATR_as25	ATR_as27	ATR_as30
F20_20160711a	TO03								
ATR_as30	F20_20160706a								
ATR_as31	TO07								
	ATR_as27								
	TO13								
	ATR_as32								
	TO15								
	F20_20160714a								
	TO18								
	ATR_as36								

| | | | | | | | | | |
| Total | 6 | 13 | 3 | 3 | 15 | 2 | 1 | 5 | 1 |

Table ES6. Aircraft flight objectives for city and biogenic emission flights.
Table ES7. Aircraft flight objectives for dust and biomass burning aerosol flights.

Flights	Biomass burning aerosols	Dust aerosols
ATR_as21	ATR_as20	
F20_20160706a	ATR_as28	
ATR_as24	ATR_as29	
ATR_as25		
F20_20160709a		
F20_20160711a		
ATR_as30		
F20_20160712a		
ATR_as32		
F20_20160713a		
ATR_as33		
ATR_as34		
Total	**12**	**3**

Table ES8. Aircraft flight objectives for cloud–aerosol interaction flights.

Flights	Lomé–Savè	Accra–Kumasi	Lomé–Abidjan	Others
F20_20160629a	ATR_as17	F20_20160630a	ATR_as24	F20_20160708a
ATR_as20	ATR_as19	ATR_as27	ATR_as30	F20_20160712a
ATR_as22	TO02			F20_20160713a
F20_20160705a	ATR_as23			TO16
TO05	TO08			
Total	**10**	**3**	**3**	**6**

Table ES9. Aircraft flight objectives for radiation flights.

Flights	Calibration	Closure
ATR_as20	TO04	
TO17	TO06	
	TO09	
	ATR_as28	
	TO12	
Total	**2**	**5**
Table ES10. Instruments, sites, and parameters measured: Q: net radiation; H: sensible heat flux; E: latent heat flux; B: soil heat flux; SW: shortwave radiation components; LW: longwave radiation components; SM: soil moisture; ST: soil temperature; T: air temperature; RH: relative humidity; P: pressure; WS: wind speed; WD: wind direction; precip: precipitation; BF: biogenic fluxes (isoprene turbulent fluxes); SF: soil flux by chamber method (NO, NO₂, NH₃); CCC: chemical compound concentration of O₃, NO, NO₂, CO, and isoprene; AH: absolute humidity; IWV: integrated water vapor; and LWP: liquid water path. Maximum measurement ranges are given in parentheses.

Instrument	Site	Measured parameters
Energy balance station	Ile-Ife, Kumasi, Savè	Q, H, E, B, SW, LW, SM, ST, T, P, WS, WD, precip
Chemistry measurements	Savè	BF, SF, CCC

Near-surface measurements (ground based)

Instrument	Site	Measured parameters	
Sodar	Ile-Ife, Kumasi, Savè	Horizontal wind profiles (0–600 m AGL)	
UHF wind profiler	Savè	Horizontal wind profiles (200–4,000 m AGL)	
Wind lidars	Savè	Lidar 1: radial velocity profiles, scanning or vertical stare (400–10,000 m AGL)	Lidar 2: vertical velocity profiles (40–600 m AGL)
Microwave radiometer	Kumasi, Savè	T and AH profiles (0–10,000 m AGL), IWV, LWP	
Radiosondes	Kumasi, Savè	T, RH, P, WS, and WD profiles (0–20,000 m AGL)	
Tethered radiosonde	Ile-Ife, Savè	T and RH profiles (every 3 h) (0–600 m AGL)	
Frequent radiosonde	Kumasi, Savè	T, RH, P, WS, and WD profiles (0–1,600 m AGL)	

Measurements of dynamics and thermodynamics in the boundary layer and above

Instrument	Site	Measured parameters
Cloud radar	Savè	Radial velocity and reflectivity profiles (150–15,000 m AGL)
Ceilometer	Kumasi, Savè	Aerosol backscatter profiles (15–15,000 m AGL)
X-band radar	Savè	Precip distribution (horizontal range: 100 km)
MRR, distrometer	Kumasi, Savè	Precip, drop size distribution
Infrared radiometer	Kumasi, Savè	Cloud-base T
Hand-held infrared radiometer	Ile-Ife, Savè	Cloud-base T
Cloud camera	Kumasi, Savè	Visible and infrared sky image
Sun photometer	Kumasi, Savè	Aerosol optical depth
Hand-held sun photometer	Ile-Ife, Savè	Aerosol optical depth

RPASs at Savè site

RPAS	Site	Measured parameters
Aladina	Savè airfield	T, RH, P, WS, WD
Ovli	Savè site	T, RH, P, WS, WD
Fig. ESS. Launching frequencies at the seven DACCIWA radiosonde stations in Jun 2016. Green dots: operational data; blue dots: DACCIWA radiosondes, with red markers indicating that the radiosonde was lost before reaching 500 hPa. Data are available at high vertical resolutions of 5–10 m.
July

	DACCIWA	Operational	NIMET Hi-Res	NIMET Non-Hi-Res	Did not reach 500 hPa
Abidjan					
Accra					
Cotonou					
Kumasi					
Lamto					
Parakou					
Save					
Lagos					
Abuja					
Calabar					
Enugu					
Kano					

Fig. ES6. As in Fig. ES5, but for Jul 2016.
Table ES. II. Instruments in Jul 2016 at the four sites for urban campaigns.
Passive samplers (NO_x, NH_3, HNO_3, SO_2, O_3): bimonthly sampling
PM2.5 aerosol (mass, black carbon, organic carbon, ions, etc.): weekly sampling
Aerosol optical depth measurements (UFHB Abidjan, Cotonou University)
Epidemiological survey
Three impactors in parallel during 3 h: ultrafine, fine, and coarse particles
Carbonaceous aerosols, water soluble organic carbon, redox capacity
Aerosol mass, ions
In vitro biological analysis: cytotoxicity assays, oxidative stress, proinflammatory response
Personal exposure: PM2.5 and aerosol chemistry measurements on the following:
Two kids living near the waste burning site at Abidjan
Two women living near the domestic fire site at Abidjan
Two zem drivers at Cotonou
Emission factor measurements from Jul 2015 to Jul 2016: wood and charcoal burning, charcoal making, waste burning, different specific vehicles (old and new, two wheels, buses, taxis, personal vehicles, etc.)