Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery

Liliana Wroblewska1,4, Tasuku Kitada1,5, Kei Endo2,4,5, Velia Siciliano1, Breanna Stillo1, Hirohide Saito2,3 & Ron Weiss1

Synthetic regulatory circuits encoded in RNA rather than DNA could provide a means to control cell behavior while avoiding potentially harmful genomic integration in therapeutic applications. We create post-transcriptional circuits using RNA-binding proteins, which can be wired in a plug-and-play fashion to create networks of higher complexity. We show that the circuits function in mammalian cells when encoded in modified mRNA or self-replicating RNA.

Gene delivery using mRNA rather than plasmid DNA (pDNA) may be safer owing to a reduced risk of genomic integration1. Advances in chemical mRNA modification technology have made it possible to use stable mRNA synthesized in vitro, which has low immunogenicity, for gene therapy2. Self-replicating RNAs that couple RNA-only delivery with prolonged gene expression are of interest for biomedical applications including vaccination and stem cell reprogramming2. Synthetic biology, however, has so far relied exclusively or partially on transcriptional regulation, which requires introduction of foreign DNA3,4, RNA-based regulatory parts, such as aptamers or riboswitches5–7, cannot currently be interconnected to build complex RNA-encoded circuits. RNA strand displacement reactions, used, to date, only in bacteria8,9, could potentially be combined into multilayered logic circuits as done in vitro with DNA10. However, such RNA circuits have not yet been successfully implemented. We propose that RNA-binding proteins (RBPs)11 can function as both the input and the output of RNA regulatory devices and be wired to regulate production of each other toward the construction of complex circuits. Reports of synthetic circuits containing RBPs have not shown that one RBP can regulate another and have depended on both translational and transcriptional regulation, requiring the use of pDNA for circuit delivery12. Additionally, general mechanisms to regulate expression from synthetic mRNA or RNA replicons have not yet been implemented. In this article we report that RBP regulatory devices can be wired together and interconnected with cellular and synthetic signaling pathways to build complex circuits that can be delivered to mammalian cells as RNA. We characterize and optimize a set of RBP devices and then use them to engineer diverse regulatory circuits including a multi-input cell type classifier, a cascade and a switch (Supplementary Fig. 1). These circuits carry out signal processing operations that detect intracellular biomarker levels, transmit information between cascaded regulatory devices and conserve circuit state through feedback regulation. We also show that the classifier can be used for selective induction of apoptosis in a targeted cell type (HeLa cancer cells) using RNA-only delivery.

As a first step toward creating RNA-encoded circuits, we optimized and characterized a set of RNA repressor devices comprising RBPs and their binding motifs (Supplementary Figs. 2 and 3 and Supplementary Note 1). Of the tested devices, L7Ae-K-turn system11 and MS2-CNOT7:MS2 binding motif13 were the most potent and were used for further circuit construction.

To show that these RBP-based repressors can be used as a platform for composite RNA-encoded circuits, we engineered a multi-input microRNA sensing circuit that is a simplified post-transcriptional-only version of our previously reported HeLa cell classifier14. The circuit recognizes whether the cell has a microRNA expression profile indicative of HeLa cells (high miR-21, low miR-141, miR-142(3p) and miR-146a) and triggers a response only if the profile is matched (Fig. 1 and Supplementary Fig. 1a). The circuit topology consists of two basic sensory modules, one for specific microRNAs that are highly expressed in the cancer phenotype (HeLa-high) and one for the microRNAs that are expressed at low levels (HeLa-low). HeLa-high microRNAs affect circuit output through double inversion by repressing L7Ae, which allows expression of an output protein. HeLa-low microRNAs directly repress translation of the output. The L7Ae-based classifier is able to distinguish HeLa cells from HEK293 and MCF7 cells in a fluorescence assay (Fig. 1b and Supplementary Fig. 4). Although single microRNAs are often sufficient to differentiate between two cell types (Supplementary Fig. 5), a multi-input circuit is needed to distinguish HeLa cells from many other cell types simultaneously14. When the pro-apoptotic gene BAX is incorporated as circuit output, the classifier selectively kills HeLa cells and does not strongly affect the viability of HEK293 cells (Fig. 1c,d and Supplementary Figs. 6 and 7). Specific induction of apoptosis was achieved using both pDNA and modified mRNA (modRNA) to deliver circuits. Furthermore, the modRNA circuit specifically killed HeLa cells in a mixed HeLa-HEK293 cell population (Fig. 1e and Supplementary Fig. 8). The performance of our new classifier coupled with the RNA-only delivery provides a safer means for using such a classifier synthetic network for a range of applications, including selective stem cell reprogramming or vaccination.

We next connected RBP devices to produce a scalable RNA-only circuit design platform. To generate a one-way information transmitter,
we designed a post-transcriptional cascade with three repression stages (Fig. 2a–d and Supplementary Fig. 1b). The input to the cascade (Fig. 2a) is a synthetic short interfering RNA (siRNA)-FF4, which modulates expression of L7Ae through four repeats of the FF4 target site in the 3′ UTR. L7Ae then binds the K-turn motifs in the 5′ UTR of RNA that encodes a second repressor, MS2-CNOT7, which regulates expression of output EGFP containing eight repeats of the MS2 binding site in its 3′ UTR. We tested the behavior of the circuit with pDNA and modRNA transfections (Fig. 2b and Supplementary Fig. 9a,b) and quantified cascade operation for a range of input concentrations and times (Supplementary Figs. 10–12).

A two-stage version of the cascade was encoded in self-replicating RNA derived from Sindbis virus\(^\text{15}\) (Fig. 2c–d and Supplementary Fig. 9c). Replication is mediated by the viral RNA-dependent RNA polymerase (comprising nonstructural proteins nsP1–nsP4) and enabled long-term gene expression (Supplementary Note 2 and Supplementary Figs. 13–16). Production of exogenous genes was driven by a subgenomic promoter of the replicon. In our replicon-encoded cascade circuit, siRNA-FF4 (input) regulated expression of L7Ae. The repressor was under the control of the replicon subgenomic promoter and additionally contained four repeats of the FF4 target site in its 3′ UTR. A separate co-transfected replicon encoded output EGFP with two repeats of the K-turn motif in the 5′ UTR. L7Ae expression resulted in 29-fold repression of EGFP (stage 1), and knockdown of L7Ae by synthetic siRNA-FF4 fully restored the output (stage 2) (Fig. 2d and Supplementary Fig. 17). The cascade also functioned with combined replicon/pDNA electroporation, albeit with reduced repression efficiency (Supplementary Fig. 18).

Finally, we created an RNA-based switch circuit in which two RBPs cross-repress each other to demonstrate two-way signal transmission and feedback regulation (Fig. 2e–h and Supplementary Figs. 1c and 19). The general topology of our switch is similar to previously described bacterial and mammalian transcriptional toggle switches\(^\text{16,17}\). The switch components include MS2-CNOT7 with two 5′ UTR K-turn motifs and L7Ae with eight repeats of the MS2 binding site in the 3′ UTR. To monitor switch behavior we additionally

---

**Figure 1** RNA-only multi-input microRNA classifier circuit differentiates between HeLa, HEK293 and MCF7 cells. (a) An L7Ae-based multi-input microRNA classifier specifically recognizes HeLa cells based on a unique microRNA profile (highly expressed miR-21 and low levels of miR-141, miR-142(3p) and miR-146a). (b) Differential expression of output protein EGFP in HeLa, HEK293 and MCF7 cells with transient pDNA transfection. EGFP expression from the classifier circuit results in 18-fold and 25-fold higher output in HeLa cells in comparison to HEK293 and MCF7 cells, respectively (HEK293 fluorescence was normalized to 1, and circuit-regulated EGFP fluorescence was normalized to mKate (red fluorescent protein) expressed constitutively from the same promoter, to account for different expression levels across cell types). r.u., relative units. (c,d) Specific induction of apoptosis in HeLa cells by expression of circuit-controlled hBax protein compared with constitutive hBax expression: Annexin V positive cells in stages (Fig. 2a). We designed a post-transcriptional cascade with three repression stages (Fig. 2a–d and Supplementary Fig. 1b). The input to the cascade (Fig. 2a) is a synthetic short interfering RNA (siRNA)-FF4, which modulates expression of L7Ae through four repeats of the FF4 target site in the 3′ UTR. L7Ae then binds the K-turn motifs in the 5′ UTR of RNA that encodes a second repressor, MS2-CNOT7, which regulates expression of output EGFP containing eight repeats of the MS2 binding site in its 3′ UTR. We tested the behavior of the circuit with pDNA and modRNA transfections (Fig. 2b and Supplementary Fig. 9a,b) and quantified cascade operation for a range of input concentrations and times (Supplementary Figs. 10–12).

A two-stage version of the cascade was encoded in self-replicating RNA derived from Sindbis virus\(^\text{15}\) (Fig. 2c–d and Supplementary Fig. 9c). Replication is mediated by the viral RNA-dependent RNA polymerase (comprising nonstructural proteins nsP1–nsP4) and enabled long-term gene expression (Supplementary Note 2 and Supplementary Figs. 13–16). Production of exogenous genes was driven by a subgenomic promoter of the replicon. In our replicon-encoded cascade circuit, siRNA-FF4 (input) regulated expression of L7Ae. The repressor was under the control of the replicon subgenomic promoter and additionally contained four repeats of the FF4 target site in its 3′ UTR. A separate co-transfected replicon encoded output EGFP with two repeats of the K-turn motif in the 5′ UTR. L7Ae expression resulted in 29-fold repression of EGFP (stage 1), and knockdown of L7Ae by synthetic siRNA-FF4 fully restored the output (stage 2) (Fig. 2d and Supplementary Fig. 17). The cascade also functioned with combined replicon/pDNA electroporation, albeit with reduced repression efficiency (Supplementary Fig. 18).

Finally, we created an RNA-based switch circuit in which two RBPs cross-repress each other to demonstrate two-way signal transmission and feedback regulation (Fig. 2e–h and Supplementary Figs. 1c and 19). The general topology of our switch is similar to previously described bacterial and mammalian transcriptional toggle switches\(^\text{16,17}\). The switch components include MS2-CNOT7 with two 5′ UTR K-turn motifs and L7Ae with eight repeats of the MS2 binding site in the 3′ UTR. To monitor switch behavior we additionally

---

**Figure 2** Post-transcriptional cascades and two-state switch. (a) Cascade design for the pDNA and modRNA experiments. (b) Normalized mean EGFP fluorescence for the indicated cascade stages encoded either on pDNA or modRNA. Each stage \(n\) involves co-transfection of constructs 0 to \(n\). (c) Replicon-encoded two-stage cascade. L7Ae was fused to mKate. Each replicon additionally encodes four nonstructural proteins (nsP1-4) and a subgenomic promoter (SGP) driving expression of circuit components. (d) Normalized mean EGFP and mKate fluorescence for cascade encoded in self-replicating RNA. (e) Switch design. Shaded: replicon components that include nsP1-4 and SGP. (f) Corresponding representative two-dimensional flow cytometry plots for pDNA and replicon transfections. (g,h) Normalized mean fluorescence of the two reporters in the different states of the switch encoded in pDNA (g) or replicon (h). Fluorescence was normalized to the lowest level in each chart. r.u., relative units; error bars represent s.d.
co-expressed (through 2A tags) a blue fluorescent protein (EBFP2) with MS2-CNOT7 and EYFP with L7Ae. The state of the system can be set with transient introduction of exogenous siRNA, or alternatively, endogenously expressed miRNA. We use two artificial and orthogonal siRNAs (FF4 and FF5). For pDNA transfection, when no specific siRNA was present, both repressors and associated reporters remained at intermediate levels after 48 h (Fig. 2f,g and Supplementary Fig. 20). siRNA-FF4 set the state to high MS2-CNOT7 (blue) and low L7Ae (yellow), whereas siRNA-FF5 transfection resulted in the opposite state. The on/off ratio between the two states was 56-fold for EBFP2 and 59-fold for EYFP. As many potential applications of the switch will require longer-term expression, we also encoded the circuit on self-replicating RNA (Fig. 2f,h and Supplementary Figs. 20–22). Similar to pDNA, siRNA-FF4 and siRNA-FF5 set the state effectively, with on/off ratios of 93-fold for EBFP2 and 1,718-fold for EYFP. In the absence of specific siRNA, the replicon-encoded circuit had stronger bimodality than pDNA. We further explored this observation using a computational model of the pDNA and replicon-encoded switch circuits (Supplementary Note 3 and Supplementary Figs. 23–27). Based on literature18 and our computational model, we hypothesize that in the absence of specific siRNA, initial pDNA expression of the two switch branches (each encoding an RBP) is simultaneous (multiple plasmids delivered to the nucleus at the same time) and results in production of stable proteins. These remain in the cell at relatively high levels for the duration of the transfection experiment. In contrast, initial replicon RNA and replicon-encoded RBP production is more stochastic as single replicon species are rapidly amplified, typically leading to one of the two possible states.

To our knowledge no previous study has shown that complex cellular logic can be encoded exclusively at the post-transcriptional level in mammalian cells, offering potentially great benefits for in vivo applications. This is made possible through the use of RBPs, which can act as both the input and the output of a regulatory device, and are promising candidates for creating scalable and modular computational and information-processing circuits. Our engineered circuits provide further potential for circuit design. Finally, the application of modular logic can be encoded exclusively at the post-transcriptional level typically leading to one of the two possible states.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. Addgene: 71270.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank K. Hayashi and N. Nishimura (Kyoto University) for supporting modified mRNA experiments. We also thank A.C. Goldstrohm and C. Weidmann (University of Michigan Medical School) for sharing Drosophila constructs containing MS2-fused repressors and the corresponding reporter, X. Zhang (MIT) and O. Andries (Ghent University) for assisting in VEE replicon construction, T.E. Wagner, D. DENsmore (Boston University) and S. Payne (MIT) for communicating results before publication, W.M. Gelbart, C.M. Knobler, A. Berk, O. Azigolshanl and J.M. Parker (University of California, Los Angeles) for sharing replicon constructs and expertise, as well as A. Graziano (MIT) for supporting pDNA experiments and H. Chung (Harvard University) for designing the intronic mKate construct. This work was supported by Defense Advanced Research Projects Agency DARPA RAA-11-12-23, US National Institutes of Health grants no. P50-GM098792, 5-R01-CA155320-03, National Science Foundation GRFP grant no. 1122374 (R.W.) and JSPS KAKENHI grant numbers 23681042, 24104002, and Research Center Network for Realization of Regenerative Medicine from the Japan Science and Technology Agency (H.S.).

AUTHOR CONTRIBUTIONS

I.W. and R.W. conceived the ideas, I.W. designed and performed pDNA experiments, K.E. designed and performed modRNA experiments, T.K. designed and performed replicon experiments, V.S. designed and performed pDNA apoptotic assay and 3′ UTR repressor test in HeLa cells. B.S. created computational model of pDNA and replicon-based switch. I.W., R.W., K.E. and H.S. wrote the manuscript with input from all other authors.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Tavernier, G. et al. J. Control. Release 150, 238–247 (2011).
2. Sahin, U., Kariók, K. & Türeci, Ö. Nat. Rev. Drug Discov. 13, 759–780 (2014).
3. Khalil, A.S. & Collins, J.J. Nat. Rev. Genet. 11, 367–379 (2010).
4. Aubel, D. & Fussenegger, M. BioEssays 32, 332–345 (2010).
5. An, C.I. RNA 12, 710–716 (2006).
6. Culler, S.J., Hoff, K.G. & Smolke, C.D. Science 330, 1251–1255 (2010).
7. Ausländer, S. et al. Nat. Methods 11, 1154–1160 (2014).
8. Rodrigo, G., Landrain, T.E. & Jaramillo, A. Proc. Natl. Acad. Sci. USA 109, 15271–15276 (2012).
9. Green, A.A., Silver, P.A., Collins, J.J. & Yin, P. Cell 159, 925–939 (2014).
10. Gian, L. & Winfree, E. Science 332, 1196–1201 (2011).
11. Saito, H. et al. Nat. Chem. Biol. 6, 71–78 (2010).
12. Ausländer, S., Ausländer, D., Müller, M., Wieland, M. & Fussenegger, M. Nature 487, 123–127 (2012).
13. Van Etten, J. et al. J. Biol. Chem. 287, 36370–36383 (2012).
14. Xie, Z., Wróblewska, L., Prochaza, L., Weiss, R. & Benenson, Y. Science 333, 1307–1311 (2011).
15. Strauss, J.H. & Strauss, E.G. Microbiol. Rev. 58, 491–562 (1994).
16. Gardner, T.S., Cantor, C.R. & Collins, J.J. Nature 403, 339–342 (2000).
17. Kramer, B.P. et al. Nature Biotechnol. 22, 867–870 (2004).
18. Mottier, I. et al. Gene Ther. 6, 403–411 (1999).
ONLINE METHODS

Cell culture. HEK293FT and HEK293 (293-H) cell lines were purchased from Invitrogen. HeLa (CCL-2) and MCF7 (HTB-22) cell lines were originally obtained from ATCC. The performance of DNA-encoded miRNA sensors in these cell lines has been characterized previously. HEK293FT were freshly purchased from the supplier, HeLa, MCF7 and BHK21, although not recently authenticated, were tested for mycoplasma. All cell lines used in this study were maintained in Dulbecco’s modified Eagle medium (DMEM, Cellgro) supplemented with 10% FBS (Atlanta BIO), 1% penicillin/streptomycin and 1-glutamine (Sigma-Aldrich) and 1% nonessential amino acids (HyClone) at 37 °C and 5% CO2. In the case of MCF7 cells, DMEM without phenol red was used. BHK21 cells were maintained in Eagle’s Minimum Essential Medium (EMEM, ATCC) supplemented with 10% FBS.

DNA preparation and transfection. All transfections were carried out in 24-well format. Parallel transfections in HEK293, HeLa and MCF7 cells (4-input sensor; Fig. 1b and Supplementary Figs. 3–6) were performed with Lipofectamine LTX (Life Technologies) according to the manufacturer’s protocol. Lipofectamine LTX was used as it provides the best transfection efficiencies across the three cell lines among tested reagents. A total of 400 ng DNA was mixed with Opti-MEM I reduced serum medium (Life Technologies) to a final volume of 100 µl followed by addition of 0.5 µl PLUS reagent. After 5 min 1.5 µl Lipofectamine LTX was added, the samples were briefly vortexed and incubated for 30 min at room temperature. During the incubation time, cells were harvested by trypsinization and seeded in 500 µl of complete culture medium in a 24-well plate (HEK: 2 × 105; HeLa: 1.2 × 105 and MCF7: 1.5 × 105 cells per well). Transfection complexes were added dropwise to the freshly seeded cells followed by gentle mixing. Cells were supplemented with 1 ml of fresh growth medium 5 h after transfection and analyzed by flow cytometry after 48 h (after 24 h for apoptosis assay). Plasmid DNA and siRNA co-transfections (cascade and switch circuits; Fig. 2b,g and Supplementary Figs. 9a,10,19 and 20) were carried out with Lipofectamine 2000 according to the manufacturer’s protocol. Lipofectamine 2000 was used as it provides the best DNA and siRNA co-transfection efficiencies among tested reagents. A total of up to 300 ng DNA and 1–5 pmol siRNA were mixed with Opti-MEM I reduced serum medium (Life Technologies) to a final volume of 30 µl. Separately, 2 µl of Lipofectamine 2000 was mixed with 50 µl of Opti-MEM. After 5 min incubation, lipofectamine and DNA/siRNA dilutions were combined and briefly vortexed. Cells were prepared, transfected and analyzed as described above. All the remaining transfections (repressor optimization in Supplementary Fig. 2 and time lapse in Supplementary Fig. 11) were carried out with attractante (Qiagen). Up to 300 ng total DNA was mixed with DMEM base medium (Cellgro) without supplements to a final volume of 60 µl. 1.5 µl attractante was added to the dilutions and the samples were promptly vortexed to mix. The complexes were incubated for 10–15 min and subsequently added to cells prepared as described above. 500 µl of fresh medium was added to each well the next day (media change was not necessary in the case of attractante transfections). Transfection details for each experiment are shown in Supplementary Table 1. The list of all plasmids used in this study is shown in Supplementary Table 2. DNA sequences can be obtained from Addgene (accession code 71270).

Modified RNA preparation and mRNA transfection. A template DNA for in vitro transcription was generated by PCR, using a forward primer containing T7 promoter and a reverse primer containing 120-nucleotide-long Poly(T) tract transcribed into a Poly(A) tail. PCR products amplified from plasmids were subjected to digestion by DpnI restriction enzyme and purified. Reactions of in vitro transcription were performed using MegaScript T7 kit (Life Technologies) under a modified condition, in which GTP, CTP and UTP was replaced by GTP mixed with Anti Reverse Cap Analog (New England Biolabs) at the ratio of 1 to 4, 5-methylcytosine-triphosphate and pseudouridine-triphosphate (TriLink BioTechnologies), respectively. Transcripts were treated with Turbo DNase (Life Technologies) for 30 min at 37 °C and purified using RNeasy MiniElute Cleanup Kit (QiAGEN). Resulting RNAs were incubated with Antarctic Phosphatase (New England BioLabs) for 30 min at 37 °C and purified again. Modified mRNAs were transfected into the cells using TransIT-mRNA transfection kit (Mirus Bio) according to manufacturer's protocol. StemFect (Stemgent) was used to perform co-transfections of modified mRNAs with siRNAs, according to manufacturer's instruction. The medium was exchanged 4 h after the transfection, and transfected cells were subjected to the analysis after 24 h. Transfection details for each experiment are shown in Supplementary Table 1. Detailed configurations for modified RNA and sequences of mRNA used in this study are shown in Supplementary Tables 3 and 4.

Self-replicating RNA preparation and electroporation. All replicon experiments were performed in BHK21 cells (a kind gift from O. Azigolshahi19) using an alphaviral replicon derived from the genome of the Sindbis virus TE12 strain20 containing a P7265 mutation in nsP2 (ref. 21) as described previously22 or an alphaviral replicon derived from the Venezuelan equine encephalitis (VEE) TC-83 strain containing an A3G mutation in the 5′ UTR and a Q739L mutation in nsP2 (ref. 22) constructed in this study. Briefly, BHK21 cells cultured at 37 °C and 5% CO2 in EMEM (ATCC) medium containing 10% FBS (PAA) were electroporated using the Neon Transfection System (Life Technologies) per the manufacturer's instructions with ~1–6 µg of replicon RNA per ~100,000 cells and plated in 24-well plates (Corning). Transfection details for all experiments are provided in Supplementary Table 1. Sindbis replicon RNA was produced by run-off in vitro transcription (IVT) of SacI-HF (NEB)-digested replicon plasmid DNA using the mMESSAGE mMACHINE SP6 Kit (Life Technologies) and purified using the RNeasy Mini Kit (Qiagen). VEE replicon RNA was produced by run-off in vitro transcription (IVT) of I-SceI (NEB-digested replicon plasmid DNA), using the MEGAscript T7 Transcription Kit, followed by purification using the RNeasy Mini Kit (Qiagen), denaturation of the RNA at 65 °C, enzymatic (cap1) capping of the RNA using the ScriptCap 2′-O-methyltransf erase Kit (Cellscript) and ScriptCap m7G Capping System (Cellscript), and a final purification using the RNeasy Mini kit (Qiagen) following the manufacturers’ protocols. siRNAs (IDT) were co-electroporated (0–10 nM final concentration) along with replicon RNA. Cells were analyzed by flow cytometry 24 h after electroporation. Replicon encoding plasmids used as templates for IVT are listed in Supplementary Table 5. Plasmids used for replicon RNA synthesis can be obtained from Addgene (deposit number 71270).

qRT-PCR. In the case of pDNA and modRNA, total RNA was reverse transcribed with the High-Capacity cDNA Reverse Transcription Kit (Life Technologies). Resulting cDNA was subjected to qPCR on StepOnePlus (Life Technologies) for modRNA using Power SYBR Green PCR Master Mix (Life Technologies). The same Master Mix and Mastercycler ep Realplex (Eppendorf) was used for pDNA experiments. For qRT-PCR of mRNA replicas, total RNA was purified from BHK21 cells using the RNeasy Mini kit (Qiagen). qPCR RNA was reverse transcribed using the Quantitect Reverse Transcription Kit (Qiagen) and qPCR was performed on a Mastercycler ep Realplex (Eppendorf) using the KAPA SYBR FAST Universal 2x qPCR Master Mix (Kapa Biosystems) or the KAPA PROBE FAST Universal 2x qPCR Master Mix (Kapa Biosystems) following the manufacturer’s recommended protocol. Primers unique to the genomic RNA regions were used to calculate the absolute copy number of genomic and antigenomic RNA using a standard curve of synthetic DNA. Subgenomic RNA copy numbers were calculated by subtracting the copy numbers of genomic and antigenomic RNA from the absolute copy numbers of all replicon RNA (i.e., genomic, antigenomic and subgenomic RNA) using primers spanning the regions downstream of the subgenomic promoter. Genomic and subgenomic RNA quantities were then normalized to 18S rRNA (internal control) levels quantified using QuantumRNA Universal 18S Internal Standard (Life Technologies) or Eu karyotic 18S rRNA Endogenous Control (FAM/MGB probe, non-primer limited; Life Technologies).

Primer sequences:
- EGFp-qPCR-F: AAGGGGCTAGCCTGTTCAAGGG
- EGFp-qPCR-R: TGGCTTTGCGCCATGATAATAG
- VEE-nSP1-qPCR-F: CTGACCTGAAAACCTGAACATATG
- VEE-nSP1-qPCR-R: GGCGACTCTAACTCCCTTATTG
- VEE-nSP4-qPCR-F: CCTGATAACTTCTACCGCTAAC
- VEE-nSP4-qPCR-R: AGAAATGCTGTGCTGTTCA
- SIN-nSP4-L7Ae-qPCR-F: GGCCCCTGTGTATAGATGTTAATT
- SIN-nSP4-L7Ae-qPCR-R: TGGCTCTCGTTGGTACCTTT
Flow cytometry and data analysis. Cells were analyzed with LSR Fortessa or FACS Aria flow cytometer, equipped with 405, 488 and 561 nm lasers (BD Biosciences). We collected 30,000–100,000 events per sample, and fluorescence data were acquired with the following cytometer settings: 488 nm laser and 530/30 nm bandpass filter for EYFP/EGFP, 561 nm laser and 610/20 nm filter for mKate, and 405 nm laser, 450/50 filter for EBFP. In detecting mKate by FACS Aria, a 780/60 nm bandpass filter was used. Data analysis was performed with FACSDiva software (BD Biosciences) and FlowJo. For all fluorescence assays, populations containing live, single cells were first determined based on forward and side scatter. Red fluorescent protein (mKate) was used in all pDNA experiments as a transfection marker. Reported fluorescence values of pDNA experiments present normalized mean output fluorescence (EYFP, EGFP or EBFP) for all mKate-positive cells. Nontransfected cells were used to set the gate determining mKate-positive cells. For replicon electroporations and modRNA transfections the efficiency of nucleic acid delivery usually exceeds 90% and therefore all live, single cells were taken into account for calculating mean output fluorescence.

In Figure 1b, output (EGFP) fluorescence level may depend both on circuit function and overall expression in a particular cell line (different promoter activities and transfection efficiencies). To account for cell type-specific expression, we therefore applied here normalization to mKate. Mean EGFP fluorescence for each sample was divided by mean mKate fluorescence and the ratio was normalized to the HEK293 level (HEK293 relative fluorescence set to 1).

Microscope measurements and image processing. Fluorescence microscopy images of live cells were taken in 24-well plates using Zeiss Axiovert 200 microscope and Plan-Neofluar 10×/0.30 Ph1 objective. The filters used were 390/22 (excitation) and 460/50 (emission) for EBFP2, 500/20 (excitation) and 535/50 (emission) for EYFP and 565/30 (excitation) and 620/60 (emission) for mKate. Data collection and processing were performed using AxioVision software (Zeiss).

Apoptosis and cell death assays. Sample cells including those in supernatant were collected 24 h after transfection, washed with PBS and stained with Pacific Blue conjugated 1 µl of Annexin V (Life Technologies) and/or 0.5 µl of SYTOX AADvanced (Life Technologies) in 50 µl of binding buffer for 30 min at room temperature. The cells were analyzed by flow cytometry. Percentage of apoptosis induction was defined as the percentage of Annexin V positive cells. In the case of HEK/HeLa co-culture assay, HeLa cells were labeled with stable expression of EBFP2 fluorescent protein (excitation/emission maxima of 383 nm and 448 nm) and therefore SYTOX AADvanced (excitation/emission maxima of 546 nm and 647 nm) was used instead Pacific Blue Annexin V (excitation/emission maxima of 415 nm and 455 nm). HEK293 and HeLa-EBFP2 cells were mixed in 1:1 ratio, cultured together and the cell mixture was transfected with modRNA-encoded circuit or controls. Cells were stained with SYTOX AADvanced and analyzed by flow cytometry 24 h after transfection. Percentage of cell death was calculated as follows: (number of HEK293 (or HeLa) AAdvanced positive cells/total number of HEK293 (or HeLa) cells) × 100%.

Generation of HeLa-EBFP2 cells for co-culture cell death assay. HeLa-EBFP2 cells were generated through lentiviral infection and antibiotic selection. First, HEK293FT packaging cells (Invitrogen) were used for virus production. 2 × 10^6 cells were seeded in a 60-mm dish (to ~80% confluency), 3 h later supplemented with 3 ml of fresh complete medium and co-transfected with the following plasmids:

0.5 µg pLV-hEF1a-EBFP2-P2A-Bla (hEF1a—human elongation factor 1alpha promoter, P2A—ribosomal skipping 2A sequence from porcine teschner-virus-1 (ref. 24), Bla—blasticidin resistance gene)

1.1 µg pCMV-dR8.2 dvpr helper plasmid23 (Addgene plasmid 8455)

0.35 µg pCMV-VSV-G helper plasmid23 (Addgene plasmid 8454)

For transfections we used attractene (Qiagen) and followed standard manufacturer’s protocol. Transfection complexes were added dropwise to the adhered cells without additional media change. 2 d later, media from virus-producing cells were collected into 3-ml syringe and pressed through a low sterile filter. 1 ml of the filtered virus-containing media was mixed with 4 × 10^7 HeLa cells in 0.5 ml fresh culture media and placed in a 12-well dish. Cells were supplemented with fresh media the next day and 10 µg/ml blasticidin (Invivogen) was added to the media on days 3–8 after infection. Selected cells were over 99% BFP positive throughout the course of experiments as determined by flow cytometry. We additionally performed a fluorescent assay using our classifier circuit (as described in Fig. 1b) with HEK293, HeLa and HeLa-EBFP2 cells, and we verified that the HeLa-EBFP2 cells behave as the parent cell line (data not shown).

Computational model. Stochastic simulations using the Gillespie Algorithm were performed in MATLAB26 using HTCondor queued computer cluster at MIT Computer Science and Artificial Intelligence Laboratory. Parameter values used are listed in Supplementary Table 6 and the model is described in detail in Supplementary Note 3.

19. Azigzolhani, O., Garmann, R.F., Cadena-Nava, R., Knobler, C.M. & Gelbart, W.M. Virology 441, 12–17 (2013).
20. Lustig, S. et al. J. Virol. 62, 2329–2336 (1988).
21. Frolow, I. et al. J. Virol. 73, 3854–3865 (1999).
22. Beal, J. et al. ACS Synth. Biol. 4, 48–56 (2015).
23. Petrakova, O. et al. J. Virol. 79, 7597–7608 (2005).
24. Szymczak, A.L. et al. Nat. Biotechnol. 22, 589–594 (2004).
25. Stewart, S.A. et al. RNA 9, 493–501 (2003).
26. MATLAB and Statistics Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, USA.

doi:10.1038/nbt.3301