Conditions for excellence in teaching in medical education: The Frankfurt Model to ensure quality in teaching and learning

Abstract

Background: There is general consensus that the organizational and administrative aspects of academic study programs exert an important influence on teaching and learning. Despite this, no comprehensive framework currently exists to describe the conditions that affect the quality of teaching and learning in medical education. The aim of this paper is to systematically and comprehensively identify these factors to offer academic administrators and decision makers interested in improving teaching a theory-based and, to an extent, empirically founded framework on the basis of which improvements in teaching quality can be identified and implemented.

Method: Primarily, the issue was addressed by combining a theory-driven deductive approach with an experience based, “best evidence” one during the course of two workshops held by the GMA Committee on Personnel and Organizational Development in Academic Teaching (POiL) in Munich (2013) and Frankfurt (2014). Two models describing the conditions relevant to teaching and learning (Euler/Hahn and Rindermann) were critically appraised and synthesized into a new third model. Practical examples of teaching strategies that promote or hinder learning were compiled and added to the categories of this model and, to the extent possible, supported with empirical evidence. Based on this, a checklist with recommendations for optimizing general academic conditions was formulated.

Results: The Frankfurt Model of conditions to ensure Quality in Teaching and Learning covers six categories: organizational structure/medical school culture, regulatory frameworks, curricular requirements, time constraints, material and personnel resources, and qualification of teaching staff. These categories have been supplemented by the interests, motives and abilities of the actual teachers and students in this particular setting. The categories of this model provide the structure for a checklist in which recommendations for optimizing teaching are given.

Conclusions: The checklist derived from the Frankfurt Model for ensuring quality in teaching and learning can be used for quality assurance and to improve the conditions under which teaching and learning take place in medical schools.

Keywords: Evaluation, Quality of Teaching and Learning, Teaching and Learning conditions

Background

Curriculum designers, department heads and policy makers have many options regarding medical education, some of which they are very possible unaware. Knowledge of general organizational and administrative aspects could help in the selection of targeted and effective interventions. Accordingly, the German Council of Science and Humanities lists numerous aspects pertaining to teaching in its 2012 guideline for evaluating university medical schools and institutions [1]. The main categories are structure and organization of the academic study program, professionalism of the teaching, quality assurance of the teaching, and teaching infrastructure. The World Federation for Medical Education (WFME) [2] views the learning environment as significant for the evaluation of medical programs. In the Charta guter Lehre [https://www.stifterverband.org/charta-guter-lehre], drafted under the encouragement of the Stifterverband für die Deutsche Wissenschaft, there are extensive recommendations to...
create conditions for excellence in higher education. This document contains many best-practice examples, but provides no concrete references to medical education. Such connections are of great importance when meeting the challenges faced in university medicine, for instance, the rivalry between academic teaching and providing medical care, the high financial costs associated with the studies of medicine, the necessity for strictly structured curricula, and the great demands placed by society on medical graduates (reliability, patient safety, etc.). For all of the works cited above there is no comprehensive system that shows how these organizational aspects work or can be controlled. It appears particularly important to consider the different degrees to which conditions can be shaped or influenced to optimally use any potential flexibility.

Two models are of help when classifying quality-influencing conditions: Euler and Hahn’s [3] model describing the conditions for teaching and the quality assurance model proposed by Donabedian [4], which was originally developed for the healthcare sector. The first model identifies six categories of university-relevant conditions, described below. Donabedian’s model encompasses the quality dimensions of structure, process, and outcome, and has the advantage of describing variables that are relatively concrete and verifiable. Its disadvantage is that the correlations between structure, process, and outcome are not considered. Furthermore, it is without question that in educational settings the interactions between those directly involved in the teaching and learning processes must be included. These participants include students with their different interests, motives and varying degrees of prior knowledge, as well as instructors with their varying methods and teaching abilities. The complex interaction between them and the setting can be captured well by situativity theory [5] and other similar approaches [6], [7], [8] since relevant complex (nonlinear and multiphase) interactions in a situation are emphasized. Of importance for higher education is the multidimensional model of successful teaching put forth by Rindermann [9] whose elements can be assigned to the dimensions identified by Donabedian and even show the relationships and interactions between these elements.

Curriculum designers, department heads and key policy makers carry a social responsibility for educational programs [10], [11]. This circle of people should therefore be familiar with the basic conditions that promote teaching and learning, primarily given that in the case of medicine there is, in addition to the classic academic rivalry between teaching and research, serious competition with the provision of medial care [12]. The aim of this paper is to develop a model for medical education with which the relevant organizational and administrative conditions related to teaching and learning can be described within the context of increasing healthcare demands. Based on this model, recommendations are intended for effective and efficient creation of conditions conducive to teaching and learning.

Methods

A Working Group of the German Association for Medical Education’s Committee on Personnel and Organizational Development [https://gesellschaft-medicinische-ausbildung.org/aktivitaeten/ausschuesse/personal-und-organisationsentwicklung/mitglieder.html] held two workshops in 2013 and 2014 in Munich and Frankfurt to address the issue of favorable and unfavorable conditions for teaching and learning. The workshops were conducted in the form of moderated discussions. To provide structure following intensive debate, only the two models best suited to medical education were drawn upon and applied.

All of the participants had many years of experience in medical education and had completed either advanced post-licensure training in psychology, or medical education and medicine. Prior to the first workshop the participants filled out a matrix regarding the organizational aspects and general conditions at their own medical schools which foster or impede learning. This matrix was based on the model by Euler and Hahn [3] and covered six categories of general conditions relevant to higher education (see below). The positive and negative conditions based on experience were compiled in the first workshop and discussed. Potential problems and solutions were then identified. Since it became clear during the first workshop that Euler and Hahn’s model did not establish connections to teaching, Rindermann’s multidimensional model for teaching outcomes [9] was integrated into Euler and Hahn’s model during the second workshop. As a result, the interactions of the people participating in the teaching and learning processes and their relationship to the outcome were taken into account. Subsequently, empirically-based approaches were sought for the positive and negative conditions. The results of this paper form the basis for a checklist to facilitate quality assurance and the optimization of teaching at medical schools.

The Frankfurt Model of conditions to ensure the quality of teaching and learning

The Frankfurt Model of conditions to ensure the quality of teaching and learning (see figure 1) synthesizes two already established models. The categories in the model described by Euler und Hahn [3] can be described as follows:

1. Organizational structure/medical school culture: regulations, rules and measures can, among other things, steer department procedures (e.g. general philosophy, organigrams) [13]. This also applies to the commonly shared unwritten assumptions, values and expectations (culture) of those on the faculty and staff. Based on this, many different interventional measures to optimize teaching can present themselves.
2. Regulatory frameworks: Here it must be ascertained whether there is room to maneuver within the existing framework and how this flexibility can be used most meaningfully. For example, the use of pilot study...

Criteria for good teachers
- analytic, critical, academic attitude toward teaching
- focus on participants
- wide range of methods for appropriate use in specific situations
- use of innovative teaching and learning formats
- Ongoing revision of course content
- Regular use of self-reflection and peer feedback

Personal characteristics
- Student motivation
- Self-initiative
- Engagement in learning
- Learning behavior, learning motivation, etc.

Teaching/Learning Outcome
- Learning progress (e.g. acquisition of competencies)
- Quality of courses and instruction (teacher and course evaluations)
- Professional development
- Self-efficacy in relation to practicing medicine
- Length of study/drop-out rate
- Professional qualification

according to the position paper by the GMA Committee: Personal und Organisationsentwicklung in der Lehre (POIL)
program clauses and the introduction of controls to stop any additional applicants from suing for admission fall under this category.

3. With curricular requirements curriculum designers have the greatest opportunity to set a course of direction or initiate a change. They can, for instance, ensure that the curricular content in natural sciences and the clinical subjects is vertically integrated. Further opportunities exist in that a specific educational philosophy (e.g. POL) becomes anchored in the medical school or that focus is placed on a specific area (e.g. general practice).

4. Qualification of teaching staff: the quality of teaching is a critical factor in an educational setting [14], [15]. Since the balance between teaching and other responsibilities can vary dramatically among instructors, medical schools have the challenge of pragmatically “dosing out” qualification measures as they are needed.

5. The category material and personnel resources encompasses classroom spaces and teaching materials (e.g. devices for practical tutorials and simulators), audio/visuals for the various teaching and learning methods, and the availability of sufficiently qualified staff for planning, organization and implementation. In terms of materials, the critical question must be asked if new acquisitions always lead to better educational outcomes [16], [17].

6. The final category of Euler and Hahn’s model describes time constraints. This includes not only the time instructors spend in the classroom, but also the time available to prepare and evaluate class sessions and to develop teaching. For students this means the time needed to prepare for and follow-up on class sessions and the time spent traveling to and from class.

In order to include the actors and the teaching/learning process and the outcome of this process, a second model, Rindermann’s multidimensional model of successful teaching [9], was selected and integrated into the first model. According to this model an optimal outcome is the goal of academic teaching – despite all the difficulties of quantifying it. Measurable outcomes, such as exam scores, do not automatically allow for conclusions to be drawn about teaching quality in a particular subject [18], [19], [20], [21]. Other indicators of good teaching such as raising interest in the learning material, strengthening self-efficacy, and a professionalization of the student are also not simple to measure or analyze. For instance, at the beginning of their studies students already possess knowledge about different areas of interest that influence their learning behavior [22]. In addition, their skills, motivation and attitudes toward the program and its organizational and administrative aspects can be influenced [23], [24], [25]. Note must also be taken of conditions that are not connected with the teaching/learning process at hand or that are not within the instructor’s control (e.g. fairness variables, such as heat, overfull classes, acoustics [9], [26]).

Checklist of conditions conducive to teaching and learning

Recommendations for medical schools were articulated by the Working Group based on the Frankfurt Model (above) detailing the conditions conducive to teaching and learning. These recommendations are supported by the empirical evidence available at this time and are listed in the form of a checklist in attachment 1.

The recommendations contained in the checklist are not based on systematic literature research. This checklist should therefore be gradually expanded and updated.

Conclusion

The organizational and administrative aspects of academic study programs exert significant influence on teaching and learning. For this reason decision makers at medical schools need to know which conditions are relevant and how they can be optimally shaped or influenced to improve teaching. With the Frankfurt Model’s ability to identify program aspects that foster quality in teaching and learning, a model has been developed that captures important university-relevant conditions [1], [2], [3], [4] and also incorporates the complexity of the teaching and learning process [5], [8]. Based on this model a checklist of recommendations for good practice has been drafted to enable medical schools to analyze and optimize, where needed, the conditions under which teaching and learning take place at their institutions.

This paper also offers a theoretical foundation for recommendations to ensure quality in teaching and learning at medical schools.

Notes

‘One of the two workshops, along with a subsequent meeting, took place in Frankfurt under wonderfully hospitable circumstances making this designation seem appropriate to us.

Competing interests

The authors declare that they have no competing interests.

Attachments

Available from http://www.egms.de/en/journals/zma/2017-34/zma001123.shtml
1. Attachment 1.pdf (136 KB)
References

1. Wissenschaftsrat. Leitfaden der Evaluation universitätsmedizinischer Einrichtungen. Dtsch. Med. Wochenschr. 2012.
2. Federation for Medical Education. International Standards in medical education: assessment and accreditation of medical schools/programmes: A WFME position paper. Med Educ. 1998;32(5):549-558. DOI: 10.1046/j.1365-2923.1998.00302.x
3. Johansen K. Einsteigerhandbuch Hochschullehre. Aus der Praxis für die Praxis (2. Aufl.). Darmstadt: Wiss. Buchges.; 2010.
4. Donabedian A. Evaluating the Quality of Medical Care. Milbank Q. 2005;89(4):691-729. DOI: 10.1111/j.1468-0009.2005.00397.x
5. Endler NS, Edwards JM. Interactionism in personality in the twentieth century. Person Individ Diff. 1986;7(3):379-384. DOI: 10.1016/0191-8669(86)90013-9
6. Frederiksen N. Toward a taxonomy of situations. Am Psychol. 1972;27:114-123. DOI: 10.1037/0003-066X.72.2.114
7. Lantermann ED. Interaktionen: person, Situation und Handlung. München: Urban & Schwarzenberg; 1980.
8. Durning SJ, Artino AR. Situativity theory: A perspective on how participants and the environment can interact: AMEE Guide no. 52. Med Teach. 2011;33(3):188-199. DOI: 10.3109/0142159X.2011.550965
9. Rindermann H. Lehrevaluationen - Einführung und Überblick zu Praxis der Lehrveranstaltungsevaluation an Hochschulen. Mit einem Beitrag zur Evaluation computerbasierten Unterrichts. Landau: Empirische Pädagogik; 2001.
10. Schmidt U. Die Governance-Perspektive: Analytisches Potenzial und anstehende konzeptionelle Fragen. In: Attrichter H, Brüsemeister T, Wissinger J (Hrsg). Educational Governance – Handlungskoordination und Steuerung im Bildungssystem. Wiesbaden: VS Verlag für Sozialwissenschaften; 2007. S.231-260. DOI: 10.1007/978-3-531-90498-6_9
11. Becker FG. Governance of Hochschulen: Einfluss von organisatorischen Rahmenbedingungen auf "gute Lehre". In: Becker FG, Krücken G, Wild E (Hrsg). Gute Lehre in der Hochschule: Wirkungen von Anreizen, Konstellationsbedingungen und Reformen. Bielefeld: Bertelsmann; 2012.
12. Albanese M, Mejicano G, Gruppen L. Competency-based medical education: a defense against the four horsemen of the medical education apocalypse. Acad Med. 2008;83(12):1132-1139. DOI: 10.1097/00001888-200812000-00008
13. Weinert AB. Organisationspsychologie. Weinheim: Psychologie Verlags Union; 1998.
14. Steinert Y, Mann K, Centeno A, Dolmans D, Spencer J, Gelula M, Prodeaus D. A systematic review of faculty development initiatives designed to improve teaching effectiveness in medical education: BEME guide No. 8. Med Teach. 2000;22(6):497-526. DOI: 10.1080/0142159000902976
15. Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge; 2009.
16. Issenberg SB, McGaghie WC, Petrusa ER, Gordon DL, Scalese RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10-28. DOI: 10.1080/01421590500046924
17. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003-2009. Med Educ. 2010;44(1):50-63. DOI: 10.1111/j.1365-2923.2009.03547.x
18. Biller S, Boeker M, Fabry F, Giesler M. Impact of the Medical Faculty on Study Success in Freiburg: Results from Graduate Surveys. GMS Z Med Ausbild. 2015;32(4):Doc44. DOI: 10.3205/zma000986
19. Greb AE, Brennan S, McParlane L, Page R, Bridge PD. Retention of medical genetics knowledge and skills by medical students. Genet Med. 2009;11(5):365-370. DOI: 10.1097/GIM.0b013e31819e6b2d
20. Ramchandani D. Grading medical students in a psychiatry clerkship: correlation with the NBME subject examination scores and its implications. Acad Psych. 2011; 35(5):322-324. DOI: 10.1176/appi.ap.35.5.322
21. Haney H, Prasad K, Anderson MB, Scherpberl A, Williams R, Zwierstra R, Cuddihy H. BEME systematic review: predictive values of measurements obtained in medical schools and future performance in medical practice. Med Teach. 2006;28(2):103-116. DOI: 10.1080/0142159060022723
22. Krapp A. Individuelle Interessen als Bedingung lebenslangen Lernens. In: Achtenhagen F, Lempert W. (Hrsg). Lebenslanges Lernen im Beruf - seine Grundlegung im Kindes- und Jugendalter. Band 3: Psychologische Theorie, Empirie und Therapie. Berlin: Springer Verlag 2000.S.54-75. DOI: 10.1007/978-3-663-11200-6_5
23. Fabry G, Giesler M. Hochmotiviert am Start: Zur Studienmotivation von Medizinstudenten während des ersten Studienjahres. Z Med Psychol. 2007;16: 115-125.
24. Metzger C, Schulmeister R, Martins T. Motivation und Lehrorganisation als Elemente von Lernkultur. Z Hochschulentwicklung. 2012;7(3):36-50. DOI: 10.3217/zhe-7-03/05
25. Winteler A, Forster P. Lern-Engagement der Studierenden – Indikator für die Qualität und Effektivität von Lehre und Studium. Hochschulwes. 2008;56(6):162-170.
26. Rindermann H. Untersuchungen zur Brauchbarkeit studenterischer Lehrveranstaltungen. Landau: Verlag Empirische Pädagogik; 1996.
27. Hafer JP, Ownty AR, Thompson BM, Fasser CE, Grigsby K, Haidet P, Kahn MJ, Hefferty FW. Decoding the Learning Environment of Medical Education: A Hidden Curriculum Perspective for Faculty Development. Acad Med. 2011;86(4):440-444. DOI: 10.1097/ACM.0b013e31820df8e2
28. Genn JM. AMEE Medical Education Guide No. 23 (Part 1): Curriculum, environment, climate, quality and change in medical education—a unifying perspective. Med Teach. 2001;23(4):337-444. DOI: 10.1080/01421590120063330
29. Genn JM. AMEE Medical Education Guide No. 23 (Part 2): Curriculum, environment, climate, quality and change in medical education – a unifying perspective. Med Teach. 2001;23(5):445-454. DOI: 10.1080/01421590120075661
30. Reich, K. Was ist eine gute Lernumgebung? In: Konstruktivistische Didaktik. Lehr- und Studienbuch mit Methodenpool. 3. Aufl. Weinheim: Beltz-Verlag; 2006. S.62ff
31. Bland CJ, Starnaman S, Wersal L, Moorhead-Rosenberg L, Zonia S, Henry R. Curricular Change in Medical Schools: How to Succeed. Acad Med. 2000;75(6):574-594. DOI: 10.1097/00001888-200006000-00006
32. Becker FG. Motivation and Anreize "zu guter Lehre" von Neuberufenen. Schlussbericht der deutschlandweiten Befragung von Neuberufenen Professor(inn)en im Rahmen des BMBF-geförderten MogLi-Projekts. Bielefeld: Universität Bielefeld; 2012.
64. Westermann J, Brauner A. Medizinstudium: "Gefühlte" Belastung als Parameter für die Organisation eines erfolgreichen Curriculums. Dtsch Med Wochenschr. 2011;132(48):2590-2593. DOI: 10.1055/s-2007-993102

65. Schmidt HG, Cohen-Schotanus J, van der Molen HT, Splinter TA, Bulte J, Holdrinet R, van Rossum HJ. Learning more by being taught less: a "time-for-self-study" theory explaining curricular effects on graduation rate and study duration. High Educ. 2010;60(3):287-300. DOI: 10.1007/s10734-009-9300-3

Corresponding author:
Dr. phil. Marianne Giesler
Albert-Ludwigs-Universität Freiburg, Med. Fakultät, Studiendekanat, Kompetenzzentrum Evaluation in der Medizin Baden-Württemberg, Breisacher Str. 153, D-79110 Freiburg, Germany
marianne.giesler@uniklinik-freiburg.de

Please cite as
Giesler M, Karsten G, Ochsendorf F, Breckwoldt J. Conditions for excellence in teaching in medical education: The Frankfurt Model to ensure quality in teaching and learning. GMS J Med Educ. 2017;34(4):Doc46. DOI: 10.3205/zma001123, URN: urn:nbn:de:0183-zma0011237

This article is freely available from
http://www.egms.de/en/journals/zma/2017-34/zma001123.shtml

Received: 2016-04-29
Revised: 2017-04-07
Accepted: 2017-06-07
Published: 2017-10-16

Copyright
©2017 Giesler et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Rahmenbedingungen für exzellente Lehre in der Medizin: Das Frankfurter Modell der Rahmenbedingungen zur Sicherung der Lehr- und Lernqualität

Zusammenfassung

Hintergrund: Es gilt allgemein als akzeptiert, dass Rahmenbedingungen einen wichtigen Einfluss auf Lehren und Lernen ausüben. Trotzdem existiert für das Studium der Medizin bislang kein umfassendes Rahmenwerk zur Beschreibung von Bedingungen, die Einfluss auf die Lehr-/Lernqualität haben. Ziel der vorliegenden Arbeit war es daher, diese Faktoren systematisch und umfassend zusammenzustellen, um Faktorstrukturals und allen an der Verbesserung der Lehre interessierten Entscheidungsträgern ein theoriegeleitetes und - in Ansätzen - empirisch fundiertes Rahmenwerk anzubieten, mit dessen Hilfe Maßnahmen zur Optimierung der Lehrqualität begründet und umgesetzt werden können.

Vorgehen: In zwei Workshops des GMA-Ausschusses Personal und Organisationsentwicklung in der Lehre (POI) in München (2013) und Frankfurt (2014) wurde die Thematik zunächst theoretisch, dann erfahrungsgestützt bearbeitet. Zwei Modelle zur Beschreibung von Lehr-/lernrelevanten Rahmenbedingungen (von Euler/Hahn und Rindermann) wurden kritisch diskutiert und zu einem neuen Modell zusammengeführt. Zu den Kategorien dieses Modells wurden lernförderliche und -hindernde Praxisbeispiele zusammengetragen und – soweit möglich – mit empirischen Belegen gestützt. Basierend auf dieser Arbeit wurde eine Checkliste mit Empfehlungen zur Optimierung der Rahmenbedingungen formuliert.

Ergebnisse: Das Frankfurter Modell der Rahmenbedingungen zur Sicherung der Lehr- und Lernqualität umfasst die sechs Kategorien: Organisationsstruktur/Kultur der Fakultät, rechtliche Bedingungen, curriculare Vorgaben, zeitliche Bedingungen, materielle und Personalausstattung sowie Qualifizierung des Lehrpersonals. Ergänzt werden diese Kategorien durch die in diesem Kontext agierenden Lehrenden und Studierenden mit ihren Interessen, Motiven und Fähigkeiten. Die Kategorien dieses Modells bilden die Struktur für eine Checkliste, in der Empfehlungen zur Optimierung der Lehre aufgeführt werden.

Schlussfolgerungen: Die vom Frankfurter Modell der Rahmenbedingungen zur Sicherung der Lehr- und Lernqualität abgeleitete Checkliste kann zur Qualitätssicherung und Optimierung der Lehr-/Lernbedingung an medizinischen Fakultäten eingesetzt werden.

Schlüsselwörter: Evaluation, Qualitätssicherung der Lehre, Rahmenbedingungen der Lehre

Hintergrund

Curriculumplaner, Faktorstrukturals sowie politische Entscheidungsträger haben zahlreiche Gestaltungsmöglichkeiten in Bezug auf die medizinische Lehre, die ihnen möglicherweise nicht immer bewusst sind. Hier könnten Kenntnisse über Rahmenbedingungen helfen, gezielte und wirksame Interventionen zu wählen. Dementsprechend führt der Wissenschaftsrat im Leitfaden der Evaluation universitätsmedizinischer Einrichtungen aus dem Jahr 2012 [1] für den Prüfbereich Lehre zahlreiche zu evaluierende Rahmenbedingungen auf. Die Hauptkategorien dieser Liste lauten Aufbau und Organisation des Studiums, Professionalität der Lehre, Qualitätssicherung der Lehre und Infrastruktur für die Lehre. Auch von der World Federation for Medical Education (WFME) [2] wird das Lernumfeld als bedeutsam für die Evaluation von Angeboten in der Medizinischen Ausbildung angesehen. In der „Charta guter Lehre“ [https://www.stifterverband.org/charta-guter-lehre], die unter der
Förderung des Stifterverbandes für die Deutsche Wissenchaft entstanden ist, wurden umfangreiche Empfehlungen für exzellente Bedingungen in der Hochschullehre erarbeitet. In diesem Papier finden sich viele best-practice-Beispiele, allerdings werden keine konkreten Bezüge zur medizinischen Ausbildung hergestellt. Diese Bezüge sind von großer Bedeutung, um den Bedingungen der Hochschulmedizin gerecht zu werden. Beispielsweise seien die Konkurrenz von Forschung und Lehre zur Krankenversorgung, die hohen Studienkosten, die Notwendigkeit der starken Sequenzierung der Curricula sowie der hohe gesellschaftliche Anspruch an die Absolventen (Zuverlässigkeit, Patientensicherheit etc.) genannt.

In allen oben zitierten Werken fehlt eine zusammenfassende Systematik, mit der Wirkweisen und Steuerbarkeit von Rahmenbedingungen aufgezeigt werden können. Insbesondere erscheint es wichtig, die unterschiedliche Steuerbarkeit der Rahmenbedingungen in den Blick zu nehmen, um den vorhandenen Spielraum optimal nutzen zu können. Hilfreich für die Systematisierung von qualitätsbeeinflussenden Rahmenbedingungen sind u.a. das Modell Rahmenbedingungen für das didaktische Handeln von Euler und Hahn [3] und das Qualitätssicherungs-Modell von Donabedian [4], das ursprünglich für den Gesundheitssektor entwickelt wurde. Mit dem erstgenannten Modell werden sechs Kategorien hochschulrelevanter Rahmenbedingungen aufgezeigt. Diese werden aus Gründen der Übersichtlichkeit weiter unten beschrieben. Das Modell von Donabedian umfasst die Qualitätsdimensionen Struktur, Prozess und Ergebnis und hat den Vorteil, relativ konkrete und überprüfbare Variablen zu beschreiben. Von Nachteil ist, dass die Beziehungen zwischen den Dimensionen Struktur, Prozess und Ergebnis nicht berücksichtigt werden. Weiterhin ist in einem pädagogischen Setting unbedingt die Interaktion der am Lehr-Lernprozess beteiligten Personen sowie die Beziehungen zwischen diesen und anderen Personen zu berücksichtigen. Dies sind die Studierenden mit ihren unterschiedlichen Interessen, Motiven und ihrem heterogenen Vorwissen, sowie die Lehrenden mit ihren unterschiedlich ausgeprägten methodischen und didaktischen Fähigkeiten. Das komplexe Zusammenspiel der interagierenden Personen und des Umfeldes kann mit der Situativity Theory [5] und anderen ähnlichen Ansätzen [6], [7], [8] gut nachvollzogen werden. In dieselben die entsprechenden komplexen (nonlinearen und mehrstufigen) Wechselbeziehungen in einer Situation betont werden. Bedeutsam für den Hochschulbereich ist in diesem Sinne das Multidimensionale Bedingungsmodell des Lehrerfolgs von Rindermann [9], dessen Elemente sich den von Donabedian beschriebenen Dimensionen zuordnen lassen und darüber hinaus die Beziehungen und Wechselbeziehungen zwischen diesen aufzeigen.

Curriculumplaner, Faktualitätsleitungen sowie der Gesellschaft für die medizinische Ausbildung zu entwickeln, mit dem lehr- und lernrelevanten Rahmenbedingungen im Kontext der zu nehmenden Anforderungen in der Gesundheitsversorgung beschrieben werden. Von diesem Modell ausgehend, sollen Empfehlungen für eine effektive und effiziente Gestaltung der Lehr-/Lernbedingungen abgeleitet werden.

Vorgehen

Eine Arbeitsgruppe des Ausschusses Personal- und Organisationsentwicklung in der Lehre der Gesellschaft für Medizinische Ausbildung (GMA) [https://gesellschaft-medizinische-ausbildung.org/auschuesse/personal-und-organisationsentwicklung/mitglieder.html] veranstaltete in den Jahren 2013 und 2014 in München und Frankfurt zwei Workshops zur Bearbeitung der Frage nach lernförderlichen und -hemmenden Rahmenbedingungen. Sie wurden als moderierte Diskussionsrunden durchgeführt. Die Strukturierung wurde nach intensiver Diskussion letztlich die zwei für die medizinische Lehre am besten geeigneten Modelle herangezogen. Alle Teilnehmerinnen und Teilnehmer waren langjährig in der medizinischen Lehre tätig und wiesen Aus- und Weiterbildungshintergründe in der Psychologie, der Medizin, Medizinik und der Medizin auf. Im Vorfeld des ersten Workshops füllten die Teilnehmer eine Matrix zu den lernförderlichen und -hemmenden Maßnahmen an der eigenen Fakultät aus. Die Matrix orientierte sich an dem Modell von Euler und Hahn [3] und umfasste sechs Kategorien hochschulrelevanter Rahmenbedingungen, die weiter unten beschrieben sind. Die erfahrungsbasierten förderlichen und hemmenden Bedingungen wurden im ersten Workshop zusammengestellt und diskutiert. Anschließend wurden mögliche Problemfelder und Lösungsansätze abgeleitet. Da auch im ersten Workshop erkannt wurde, dass das Modell von Euler und Hahn keine Bezüge zum Lehr-Lernprozess herstellt, wurde im zweiten Workshop das Multidimensionale Bedingungsmodell des Lehrerfolgs von Rindermann [9] in das Modell von Euler und Hahn integriert. Somit werden die Interaktionen der am Lehr-Lernprozess beteiligten Personen sowie die Beziehung zum Lehrerfolg berücksichtigt. Anschließend wurden für die im ersten Workshop identifizierten förderlichen und hemmenden Rahmenbedingungen empirisch fundierte Lösungsansätze gesucht. Die Ergebnisse dieser Arbeit bildeten die Grundlage für eine Checkliste zur Qualitätssicherung und Optimierung der Lehre an medizinischen Fakultäten.

Literatur
Das Frankfurter Modell der Rahmenbedingungen zur Sicherung der Lehr- und Lernqualität

Das Frankfurter Modell der Rahmenbedingungen zur Sicherung der Lehr- und Lernqualität (siehe Abbildung 1) integriert zwei bereits etablierte Modelle. Die im Modell von Euler und Hahn [3] dargestellten Kategorien lassen sich wie folgt beschreiben:

1. Organisationsstruktur/Kultur der Fakultät: Vorgaben, Regeln und Maßnahmen können u.a. die Handlungsabläufe in einer Fakultät steuern (z.B. Leitbilder, Organigramme) [13]. Dies trifft auch auf die von allen Beschäftigten geteilten ungeschriebenen Annahmen, Werte, Überzeugungen und Erwartungen (Kultur) zu. Ausgehend von diesen Bedingungen lassen sich vielfältige Interventionsmaßnahmen zur Optimierung der Lehre ableiten.

2. Rechtliche Bedingungen: Hier gilt es auszuloten, ob Freiräume in einem vorgegebenen Rahmenwerk bestehen und wie sie sinnvoll genutzt werden können. Die Anwendung von Modellstudiengang-Klauseln oder die Einführung von Kontrollmöglichkeiten, die dafür sorgen, dass sich keine zusätzlichen Studienbewerber einklagen können, sind Beispiele für diesen Bereich.

3. Mit Curriculare Vorgaben haben Curriculamplaner den größten Gestaltungsräum für grundlegende Weichenstellungen. Sie können beispielsweise dafür sorgen, dass die Inhalte aus den naturwissenschaftlichen Grundlagenfächer und den klinischen Fächern miteinander verzahnt werden (vertikale Integration). Weitere Möglichkeiten bestehen darin, dass eine bestimmte Lehr-/Lern-Philosophie (z.B. POL) an der Fakultät verankert wird oder dass inhaltliche Schwerpunkte gesetzt werden (z.B. Allgemeinmedizin).

4. Qualifizierung des Lehrpersonals: Die Lehrqualität ist ein wichtiger Faktor in einem pädagogischen Setting [14], [15]. Da an medizinischen Fakultäten die zeitliche Einbindung in die Lehre und das Aufgabenspektrum (z.B. Unterricht, Prüfung) von Lehrperson zu Lehrperson stark variieren kann, sind die Fakultäten gefordert, Qualifikationsmaßnahmen bedarfsgerecht bzw. pragmatisch zu „dosieren“.

5. Die Kategorie Materielle und Personalausstattung umfasst die Räumlichkeiten und Hilfsmittel für den Unterricht (z.B. Geräte für Praktika und Simulatoren), die Medienausstattung für die eingesetzten Lehr-Lernformen und die Ausstattung mit genügend qualifiziertem Personal für Planung, Organisation und Durchführung von Lehre. Für den materiellen Bereich sollte kritisch hinterfragt werden, ob Anschaffungen immer zu besseren Ausbildungsergebnissen führen [16], [17].

6. Die letzte Kategorie des Modells von Euler und Hahn beschreibt die zeitlichen Bedingungen. Hierzu zählt neben der tatsächlichen Unterrichtszeit auch die Zeit, die den Lehrenden für die Vor- und Nachbereitung sowie für die Weiterentwicklung ihrer Lehre zur Verfügung steht. Seitens der Studentinnen und Studenten sind auch der zeitliche Rahmen für die Vor- und Nachbereitung der Lehrveranstaltungen und die Fahrtzeiten zu berücksichtigen.

Um auch die Akteure sowie den Prozess des Lehr-Lerngeschens und die Ergebnisse dieses Prozesses mit einzubeziehen, wurde als zweites Modell das Multidimensionale Bedingungsmodell des Lehrerfolgs von Rindermann [9] ausgewählt und in das vorhandene Modell integriert. Nach diesem Modell ist ein optimaler Lernerfolg (Outcome) Ziel der akademischen Lehre – mit allen Schwierigkeiten der Messbarkeit, Quantifizierbare Resultate, wie Examenergebnisse, erlauben nicht zwangsläufig Rückschlüsse auf die Lehrqualität in einem Fach [18], [19], [20], [21]. Weitere Indikatoren einer guten Lehre wie das Wecken von Interesse am Lernstoff, die Stärkung der Selbstwirksamkeit oder eine Professionalisierung der Lernenden sind ebenfalls nicht einfach in der Erfassung und Analyse. Studierende verfügen beispielsweise bereits zu Beginn ihres Studiums über unterschiedlich ausgeprägte Interessen, die ihr Lernverhalten beeinflussen [22]. Zudem können ihre Fähigkeiten, Motivation und Einstellungen über die Lehre und deren Rahmenbedingungen beeinflusst werden [23], [24], [25]. Zu beachten sind jedoch auch die Rahmenbedingungen, die weder mit dem eigentlichen Lehr-Lernprozess einen Zusammenhang aufweisen noch unter der Kontrolle der Lehrpersonen stehen (sog. Fairnessvariablen, wie beispielsweise Hitze, Überfüllung, Akustik [9], [26]).

Checkliste der lehr-/lernförderlichen Rahmenbedingungen

Ausgehend von dem oben dargestellten Frankfurter Modell der lehr-/lernförderlichen Rahmenbedingungen wurden von der Arbeitsgruppe Empfehlungen zur Gestaltung von Rahmenbedingungen an medizinische Fakultäten abgeleitet. Diese Empfehlungen wurden mit den zurzeit bekannten empirischen Belegen untermauert und sind in Anhang 1 als Checkliste dargestellt. Die in der Checkliste beschriebenen Empfehlungen basieren nicht auf einer systematischen Literaturrecherche. Von daher sollte die hier vorgestellte Checkliste sukzessive mit entsprechenden Arbeiten ergänzt und aktualisiert werden.

Zusammenfassung/Fazit

Rahmenbedingungen in pädagogischen Settings haben einen großen Einfluss auf das Lehren und Lernen. Von daher ist es für die Stakeholder an den medizinischen Fakultäten wichtig zu wissen, welche Rahmenbedingungen relevant sind und wie diese zur Verbesserung der Lehre optimal gestaltet werden können. Mit dem Frankfurter Modell der Rahmenbedingungen zur Sicherung der
Lehr- und Lernqualität wurde ein Modell entwickelt, das wichtige hochschulrelevante Rahmenbedingungen beschreibt [1], [2], [3], [4] und darüber hinaus die Komplexität des Lehr-Lern-Geschehens einbezieht [5], [8]. Aus-
gehend von diesem Modell wurde eine Checkliste mit Empfehlungen für die Praxis abgeleitet. Mit Hilfe dieser Checkliste können Fakultätsvertreter die Lehr-Lernbedingungen an ihren Fakultäten analysieren und bei Bedarf optimieren. Die vorliegende Arbeit bietet damit zugleich eine theoriegeleitete Grundlage für Empfehlungen zur Sicherung der Lehr-Lernqualität an medizinischen Fakultäten.

Anmerkung

1 Einer der beiden Workshops sowie ein späteres Treffen fanden in bester Gastfreundschaft in Frankfurt am Main statt. Diese Modellbezeichnung schien uns daher passend.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter http://www.egms.de/en/journals/zma/2017-34/zma001123.shtml

1. Anhang 1.pdf (153 KB)

Checkliste: Empfehlungen für die Gestaltung von Rahmenbedingungen für exzellente Lehre in der Medizin

Literatur

1. Wissenschaftsrat. Leitfaden der Evaluation universitätsmedizinischer Einrichtungen. Drs. 2390-12, Berlin: Wissenschaftsrat; 2012.
2. Federation for Medical Education. International Standards in medical education: assessment and accreditation of medical schools/programmes: A WFME position paper. Med Educ. 1998;32(5):549-558. DOI: 10.1046/j.1365-2923.1998.00302.x
3. Johansen K. Einsteigerhandbuch Hochschullehre. Aus der Praxis für die Praxis (2. Aufl.). Darmstadt: Wiss. Buchges.; 2010.
4. Donabedian A. Evaluating the Quality of Medical Care. Milbank Q. 2005;83(4):691-729. DOI: 10.1111/j.1468-0009.2005.00397.x
5. Endler NS, Edwards JM. Interactionism in personality in the twentieth century. Person Individ Diff. 1986;7(3):379-384. DOI: 10.1016/0191-8869(86)90013-9
6. Frederiksen N. Toward a taxonomy of situations. Am Psychol. 1972;27:114-123. DOI: 10.1037/h0032705
7. Lantermann ED. Interaktionen: person, Situation und Handlung. München: Urban & Schwarzenberg; 1980.
8. Durning SJ, Artino AR. Situativity theory: A perspective on how participants and the environment can interact: AMEE Guide no. 52. Med Teach. 2011;33(3):188-199. DOI: 10.3109/0142159X.2011.550965
9. Rindermann H. Lehrevaluationen - Einführung und Überblick zu Forschung und Praxis der Lehrveranstaltungsevaluation an Hochschulen. Mit einem Beitrag zur Evaluation computerbasierter Unterrichts. Landau: Empirische Pädagogik; 2001.
10. Schimank U. Die Governance-Perspektive: Analytisches Potenzial und anstehende konzeptionelle Fragen. In: Atrichter H, Brüsemeister T, Wissinger J (Hrsg). Educational Governance – Handlungskoordination und Steuerung im Bildungssystem. Wiesbaden: VS Verlag für Sozialwissenschaften; 2007. S.231-260. DOI: 10.1097/978-3-531-90498-6_9
11. Becker FG. Governance von Hochschulen: Einfluss von organisatorischen Rahmenbedingungen auf “gute Lehrer”. In: Becker FG, Krücken G, Wild E (Hrsg). Gute Lehre in der Hochschule: Wirkungen von Anreizen, Kontextbedingungen und Reformen. Bielefeld: Bertelsmann; 2012.
12. Albanese M, Mejicano G, Gruppen L. Competency-based medical education: A defense against the four horsemen of the medical education Apocalypse. Acad Med. 2008;83(12):1132-1139. DOI: 10.1097/ACM.0b013e3181863f68
13. Weinert AB. Organisationpsychologie. Weinheim: Psychologie Verlags Union; 1998.
14. Steiner Y. Personal Interests as Condition for Lifelong Learning. A systematic review of faculty development initiatives designed to improve teaching effectiveness in medical education: BEME guide No. 8. Med Teach. 2006;28(6):497-526. DOI: 10.1080/01421590600902976
15. Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge; 2009.
16. Issenberg SB, McGaghie WC, Petrusa ER, Gordon DL, Scalesse RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10-28. DOI: 10.1080/0142159050046924
17. McGaghie WC, Issenberg SB, Petrusa ER, Scalesse RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44(1):50-63. DOI: 10.1111/j.1365-2923.2009.03547.x
18. Biller S, Boeker M, Fabry F, Giesler M. Impact of the Medical Faculty on Study Success in Freiburg: Results from Graduate Surveys. GMS Z Med Ausbild. 2015;32(4):Doc044. DOI: 10.3205/zma000986
19. Greb AE, Brennan S, McPartlane L, Page R, Bridge PD. Retention of medical genetics knowledge and skills by medical students. Genet Med. 2009;11(5):365-370. DOI: 10.1097/GIM.0b013e31818c6638
20. Ramchandani D. Graduating medical students in a psychiatry clerkship: correlation with the NBME subject examination scores and its implications. Acad Psych. 2011;35(5):322-324. DOI: 10.1176/appi.ap.35.5.322
21. Hamdy H, Prasad K, Anderson MB, Scherpbier A, Williams R, Zwierstra R, Cuddyhil H. BEME systematic review; predictive values of measurements obtained in medical schools and future performance in medical practice. Med Teach. 2006;28(2):103-116. DOI: 10.1080/01421590600622723
22. Krapp A. Individuelle Interessen als Bedingung lebenslangen Lernens. In: Achtenhagen F, Lempert W. (Hrsg). Lebenslanges Lernen im Beruf - seine Grundlegung im Kindes- und Jugendalter. Band 3: Psychologische Theorie, Empirie und Therapie. Berlin: Springer Verlag 2000.S.54-75.DOI: 10.1016/0191-8869(86)90013-9
23. Fabry G, Giesler M. Hochmotiviert am Start: Zur Studienmotivation von Medizinstudenten während des ersten Studienjahres. Z Med Psychol. 2007;16:118-125.
24. Metzger C, Schulmeister R, Martens T. Motivation und Lehreorganisation als Elemente von Lernkultur. Z Hochschulentw. 2012;7(3):36-50. DOI: 10.3217/zfhe-7/03-05

25. Winteler A, Forster P. Lern-Engagement der Studierenden – Indikator für die Qualität und Effektivität von Lehre und Studium. Hochschulwes. 2008;56(6):162-170.

26. Rindermann H. Untersuchungen zur Brauchbarkeit studentischer Lehrveranstaltungen. Landau: Verlag Empirische Pädagogik; 1996.

27. Hafler JP, Ownby AR, Thompson BM, Fasser CE, Grigsby K, Haidet von Neuberufenen Professor(inn)en im Rahmen des BMBF-Neuberufenen. Schlussbericht der deutschlandweiten Befragung 200006000-00006

28. Metzger C, Schulmeister R, Martens T. Motivation und Lehreorganisation als Elemente von Lernkultur. Z Hochschulentw. 2012;7(3):36-50. DOI: 10.3217/zfhe-7/03-05

29. Giesler et al.: Rahmenbedingungen für exzellente Lehre in der Medizin: ...
57. Breckwoldt J, Svensson J, Lingemann C, Gruber H. Does clinical teacher training always improve teaching effectiveness as opposed to no teacher training? A randomized controlled study. BMC Med Educ. 2014;14(1):6. DOI: 10.1186/1472-6920-14-6

58. Lammerding-Köppel M, Fabry G, Hofer M, Ochsendorf F, Schirlo C. Hochschuldidaktische Qualifizierung in der Medizin: I. Bestandsaufnahme. GMS Z Med Ausbild. 2006;23(4):Doc73. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2006-23/zma000292.shtml

59. Lammerding-Köppel M, Fabry G, Hofer M, Ochsendorf F, Schirlo C. Hochschuldidaktische Qualifizierung in der Medizin: II. Anforderungsprofil der Qualifizierungsangebote. GMS Z Med Ausbild. 2006;23(4):Doc72. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2006-23/zma000291.shtml

60. Steinert Y, Mann K, Centeno A, Dolmans D, Spencer J, Gelula M, Prodeaus D. A systematic review of faculty development initiatives designed to improve teaching effectiveness in medical education: BEME guide No. 8. Med Teach. 2006;28:497-526. DOI: 10.1080/01421590600902976

61. Steinert Y, Macdonald ME, Boillat M, Elizov M, Meterissian S, Razack S, Ouellet MN, McLeod PJ. Faculty development: if you build it, they will come. Med Educ. 2010;44(9):900-907. DOI: 10.1111/j.1365-2923.2010.03746.x

62. Nordquist J, Sundberg K, Laing A. Aligning physical learning spaces with the curriculum: AMEE Guide No. 107. Med Teach. 2016;1-14. DOI: 10.3109/0142159X.2016.1147541

63. Nelson C, Hartling L, Campbell S, Oswald AE. The effects of audience response systems on learning outcomes in health professions education. A BEME systematic review: BEME Guide No. 21. Med Teach. 2012;34(6):e386-405. DOI: 10.3109/0142159X.2012.680938

64. Westermann J, Brauner A. Medizinstudium: “Gefühlte” Belastung als Parameter für die Organisation eines erfolgreichen Curriculums. Dtsch Med Wochenschr. 2011;136(48):2590-2593. DOI: 10.1055/s-2007-993102

65. Schmidt HG, Cohen-Schotanus J, van der Molen HT, Splinter TA, Buite J, Holdrinet R, van Rossum HJ. Learning more by being taught less: a "time-for-self-study" theory explaining curricular effects on graduation rate and study duration. High Educ. 2010;60(3):287-300. DOI: 10.1007/s10734-009-9300-3

Korrespondenzadresse:
Dr. phil. Marianne Giesler
Albert-Ludwigs-Universität Freiburg, Med. Fakultät, Studiendekanat, Kompetenzzentrum Evaluation in der Medizin Baden-Württemberg, Breisacher Str. 153, D-79110 Freiburg, Germany
marianne.giesler@uniklinik-freiburg.de

Bitte zitieren als
Giesler M, Karsten G, Ochsendorf F, Breckwoldt J. Conditions for excellence in teaching in medical education: The Frankfurt Model to ensure quality in teaching and learning. GMS J Med Educ. 2017;34(4):Doc46. DOI: 10.3205/zma001123, URN: urn:nbn:de:0183-zma0011237

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2017-34/zma001123.shtml

Eingereicht: 29.04.2016
Überarbeitet: 07.04.2017
Angenommen: 07.06.2017
Veröffentlicht: 16.10.2017

Copyright
©2017 Giesler et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.