A Novel Ambisense Densovirus, *Acheta domesticus* Mini Ambidensovirus, from Crickets

Hanh T. Pham, Qian Yu, Max Bergoin, Peter Tijssen

INRS-Institut Armand-Frappier, Laval, QC, Canada

The genome structure of *Acheta domesticus* mini ambidensovirus, isolated from crickets, resembled that of ambisense densovirus from *Lepidoptera* but was 20% smaller. It had the highest (<25%) protein sequence identity with the nonstructural protein 1 (NS1) of *Iteravirus* and VP of *Densovirus* members (both with 25% coverage) and smaller (0.2–versus 0.55-kb) Y-shaped inverted terminal repeats.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada to P.T.; H.T.P. and Q.Y. acknowledge tuition fee waivers at INRS and scholarships from INRS and the People’s Republic of China.

REFERENCES

1. Liu K, Li Y, Jousset FX, Zadori Z, Szelei J, Yu Q, Pham HT, Lépine F, Bergoin M, Tijssen P. 2011. The *Acheta domesticus* densovirus, isolated from the European house cricket, has evolved an expression strategy unique among paroviruses. J. Virol. 85:10069–10078.

2. Szelei J, Woodring J, Goettel MS, Duke G, Jousset FX, Liu KY, Zadori Z, Li Y, Styer E, Boucias DG, Kleespies RG, Bergoin M, Tijssen P. 2011. Susceptibility of North-American and European crickets to *Acheta domesticus* densovirus (AdDNV) and associated epizootics. J. Invertebr. Pathol. 106:394–399.

3. Weissman DB, Gray DA, Pham HT, Tijssen P. 2012. Billions and billions
sold: pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make a potential disaster. Zootaxa 3504: 67–88.

4. Pham HT, Iwao H, Szelei J, Li Y, Liu K, Bergoin M, Tijssen P. 2013. Comparative genomic analysis of Acheta domesticus densoviruses from different outbreaks in Europe, North America, and Japan. Genome Announc. 1(4):e00629-13. doi:10.1128/genomeA.00629-13.

5. Pham HT, Bergoin M, Tijssen P. 2013. Acheta domestici Volvovirus, a novel single-stranded circular DNA virus of the house cricket. Genome Announc. 1(2):e00079-13. doi:10.1128/genomeA.00079-13.

6. Tijssen P, Agbandje-McKenna M, Almendral JM, Bergoin M, Flegel TW, Hedman K, Kleinschmidt JA, Li Y, Pintel DJ, Tattersall P. 2011. Paroviridae, p 375–395. In King AMQ, Adams MJ, Carstens E, Lefkowitz EJ (ed), Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, CA.

7. Pham HT, Nguyen OT, Jousset FX, Bergoin M, Tijssen P. 2013. Junonia coenia densovirus (JcDNV) genome structure. Genome Announc. 1(2):e00591-13. doi:10.1128/genomeA.00591-13.

8. El-Far M, Szelei J, Yu Q, Fédière G, Bergoin M, Tijssen P. 2012. Organization of the ambisense genome of the Helicoverpa armigera densovirus. J. Virol. 86:7024. doi:10.1128/JVI.00865-12.

9. Huynh OT, Pham HT, Yu Q, Tijssen P. 2012. Pseudoplusia includens densovirus genome organization and expression strategy. J. Virol. 86:13127–13128.

10. Fédière G, El-Far M, Li Y, Bergoin M, Tijssen P. 2004. Expression strategy of densovirus from Mythimna loreyi. Virology 320:181–189.

11. Tijssen P, Li Y, El-Far M, Szelei J, Letarte M, Zádori Z. 2003. Organization and expression strategy of the ambisense genome of densovirus of Galleria mellonella. J. Virol. 77:10357–10365.

12. Yu Q, Hajek AE, Bergoin M, Tijssen P. 2012. Papilio polyxenes densovirus has an iteravirus-like genome organization. J. Virol. 86:9534–9535.

13. Yu Q, Fédière G, Abd-Alla A, Bergoin M, Tijssen P. 2012. Iteravirus-like genome organization of a densovirus from Sibine fusca Stoll. J. Virol. 86:8897–8898.

14. Fédière G, Li Y, Zádori Z, Szelei J, Tijssen P. 2002. Genome organization of Caspalia extranea densovirus, a new iteravirus. Virology 292:299–308.

15. Li Y, Zádori Z, Bando H, Dubuc R, Fédière G, Szelei J, Tijssen P. 2001. Genome organization of the densovirus from Bombyx mori (BmDNV-1) and enzyme activity of its capsid. J. Gen. Virol. 82:2821–2825.

16. Huang X, Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9:868–877.

17. Zádori Z, Szelei J, Lacoste MC, Li Y, Gariépy S, Raymond P, Allaire M, Nabi IR, Tijssen P. 2001. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell 1:291–302.