Chasing cardiac physiology and pathology down the CaMKII cascade

Alicia Mattiazzi,1 Rosana A. Bassani,2 Ariel L. Escobar,3 Julieta Palomeque,1 Carlos A. Valverde,1 Martín Vila Petroff,1 and Donald M. Bers4

1Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina; 2Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil; 3Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and 4Department of Pharmacology, University of California Davis, Davis, California

Submitted 7 January 2015; accepted in final form 16 February 2015

Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 308: H1177–H1191, 2015. First published March 4, 2015; doi:10.1152/ajpheart.00007.2015.—Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca2+ in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca2+ signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca2+ influx and SR Ca2+ release and uptake. The multifunctional Ca2+-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca2+ levels. This activity can be sustained, creating molecular memory after the decline in Ca2+ concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca2+ regulation and dysregulation in cardiac health and disease.

Ca2+, CaMKII; ischemia/reperfusion; cell death; arrhythmias; hypertrophy

Overview of Intracellular Ca2+ Dynamics

Calcium is a remarkably ubiquitous and versatile intracellular signal, since not only does it trigger and regulate a number of physiological processes but also may play an important role in regulation of its own fluxes among cell organelle and plasma membranes. The primary function attributed to Ca2+ in muscle...
cells is to control mechanical activity developed by the myofibrillar contractile apparatus. In the cardiac muscle, membrane depolarization during the action potential (AP) triggers a transient rise in cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{cyt}\)) that leads to a phasic contraction. Thus Ca\(^{2+}\) dynamics in the cytosol is the most critical event in the ECC process.

In the mature mammalian ventricular myocardium, most of the Ca\(^{2+}\) that contributes to an AP-triggered Ca\(^{2+}\) transient is released from the sarcoplasmic reticulum (SR) (27), upon binding of Ca\(^{2+}\) to RyR2 (Fig. 1), a mechanism identified as Ca\(^{2+}\)-induced Ca\(^{2+}\) release (38). These channels are homotramers and are assembled in a macromolecular complex that includes RyR2 regulatory molecules, such as calmodulin (CaM), FK-506 binding proteins (FKBP12/12.6), and protein phosphatases and kinases, including CaMKII (64, 135, 144). Thus Ca\(^{2+}\) can regulate the channels by both, direct binding to them and via CaM and CaMKII. During the AP, Ca\(^{2+}\) influx through voltage-dependent L-type Ca\(^{2+}\) channels (LTCC) causes a rapid and large increase in subsarcolemmal [Ca\(^{2+}\)], which results in the synchronized opening of RyR2 clusters and massive Ca\(^{2+}\) release to the dyadic space, from which Ca\(^{2+}\) diffuses to the bulk cytosol and reaches the myofilaments (Fig. 1). It is accepted that SR Ca\(^{2+}\) release during ECC is terminated by closure of the RyR2, attributed to regulation of the channels by intra-SR local free [Ca\(^{2+}\)] and proteins directly or indirectly associated with RyR2, such as calsequestrin, triadin, and junctin (47, 59, 158). Because the release is not sustained, the cytosolic Ca\(^{2+}\) transient is self-limiting, since the rise in [Ca\(^{2+}\)]\(_{cyt}\) not only activates contraction but also increases the transport rate of mechanisms that remove Ca\(^{2+}\) from the cytosol, thus causing [Ca\(^{2+}\)]\(_{cyt}\) to fall and mechanical relaxation to occur. Among these transporters, the most prominent is the SR Ca\(^{2+}\)-ATPase (SERCA2a), located in the extra-dyadic SR, which allows refilling the SR Ca\(^{2+}\) store (8, 89). SERCA2a is negatively regulated by phospholamban (PLN; Fig. 1). However, this inhibition may be relieved by PLN phosphorylation, which decreases the PLN-SERCA interaction (29, 61). Moreover, the effects of PLN on cardiac function are subjected to additional regulation by its interacting partners (61). The most important Ca\(^{2+}\) efflux mechanism is the Na\(^+\)-Ca\(^{2+}\) exchanger (NCX), which, at steady-state cyclic activity, removes most of the Ca\(^{2+}\) that enters the cell during the AP (27, 33), whereas slower mechanisms (the sarcolemmal Ca\(^{2+}\)-ATPase and mitochondrial Ca\(^{2+}\) influx pathways) do not seem to play a significant role in the decline of electrically triggered Ca\(^{2+}\) transients in the mature myocardium (7, 19).

Because the SR is the major Ca\(^{2+}\) source for ECC, it is plausible to consider that contraction amplitude largely depends on how much Ca\(^{2+}\) is released from it. During a twitch, this organelle releases only a fraction (50 – 70%) of its total content (6, 10, 117, 118). Several factors seem to determine the fractional SR Ca\(^{2+}\) release: 1) the amplitude of the release trigger, i.e., typically L-type Ca\(^{2+}\) current (I\(_{CaL}\)) (6); 2) the SR Ca\(^{2+}\) content, especially the free [Ca\(^{2+}\)] in the SR lumen (6, 117), since evidence indicates that the RyR2 activity is regulated not only by cytosolic but also by intra-SR Ca\(^{2+}\) (26, 47, 60, 65); and 3) the RyR2 functional state, which can be altered by interaction with proteins (e.g., FKBP12.6, CaM, luminal proteins), divalent cations, ATP and other compounds, by phosphorylation, and by post-translational modifications by reactive oxygen species (ROS) and reactive nitrogen species (30, 47, 64, 91, 144).

The SR Ca\(^{2+}\) content available for release during ECC basically depends on the balance between uptake and release rates during the decline of the Ca\(^{2+}\) transient and diastole. The rate of diastolic SR Ca\(^{2+}\) release (SR Ca\(^{2+}\) leak) is low in myocardial cells (9, 14, 74, 157). Diastolic SR Ca\(^{2+}\) leak may be augmented by an increase in SR Ca\(^{2+}\) load and by other factors that increase the RyR2 activity state, e.g., phosphorylation (14).

SR Ca\(^{2+}\) release is not only involved in determining cardiac contractility, but it also can modify the sarcolemmal electrical

Fig. 1. Ca\(^{2+}\) fluxes associated with excitation-contraction coupling in mammalian cardiac myocytes. During the action potential, Ca\(^{2+}\) influx via L-type Ca\(^{2+}\) channels (LTCC) triggers Ca\(^{2+}\) release from the sarcoplasmic reticulum (SR) by Ca\(^{2+}\) binding to the ryanodine receptors (RyR2) in the SR membrane. In addition to interacting with the myofilaments (MF), Ca\(^{2+}\) is removed from the cytosol mainly by the SR Ca\(^{2+}\)-ATPase (SERCA2a), which is regulated by phospholamban (PLN), and by the electrogenic sarcolemmal Na\(^+\)/Ca\(^{2+}\) exchanger (NCX1), which is driven by the Na\(^+\) electrochemical gradient across the membrane. This gradient is maintained by the Na\(^+\)-K\(^+\)-ATPase (NKA). Intracellular [Na\(^+\)] may also be affected by the operation of the Na\(^+\)-H\(^+\) exchanger (NHE).
properties, affecting the AP shape. One obvious mechanism involves \(\text{Ca}^{2+} \)-dependent inactivation of the LTCC (37, 124): a large \(\text{Ca}^{2+} \) release will reduce sarcosomal \(\text{Ca}^{2+} \) influx, shortening the AP. However, mechanisms involved in activation of Cl\(^-\) (66) and/or K\(^+\) (68, 131) channels by \(\text{Ca}^{2+} \) have also been postulated to modify the AP repolarization phase. Schouten and ter Keurs (115) first showed that the late and relatively negative AP plateau seen in rat ventricular myocytes is driven by \(\text{Ca}^{2+} \)-dependent inward NCX current. Shattuck and Bers (119) detected NCX-dependent \(\text{Ca}^{2+} \) extrusion by measuring transient interstitial [\(\text{Ca}^{2+} \)]\(_e\) elevation during the \([\text{Ca}^{2+}]_e\) transient. More recently, Ferreiro et al. (39) demonstrated that in the intact mouse heart under physiological conditions, \(\text{Ca}^{2+} \) release from the SR can cause an AP phase 2 that is more positive than that traditionally reported in rat or mouse ventricular myocytes, but that is still mediated by inward NCX current that is driven by SR \(\text{Ca}^{2+} \) release. Moreover, this more prominent AP plateau in mouse ventricle resembles that observed in both human atrial myocytes and the ventricular epicardium of other mammals (i.e., dog, cat, pig, etc.).

CaMKII Structure, Function, and Targets

Molecular physiology and localization. CaMKII is a multimeric holoenzyme complex consisting of a pair of hexameric assembled rings (Fig. 2A). There are four CaMKII gene products: \(\alpha, \beta, \gamma, \delta \) (52). These genes show differential tissue expression, with CaMKII\(\beta \) being the predominant isoform in the heart (32), although CaMKII\(\gamma \) is also present (120). In the adult myocardium, two major splice variants of CaMKII\(\beta \) are expressed: CaMKII\(\beta_A \) and CaMKII\(\beta_C \) (32). CaMKII\(\beta_B \) possesses an 11-amino acid nuclear localization signal that is responsible for its preferential nuclear localization, whereas the splice variant \(\delta_C \) (lacking only this 11-amino acid nuclear localization signal) is preferentially localized in the cytosol (122). It is also well known that most CaMKII isoforms readily form stable hetero-oligomers, such that the ratio of \(\delta \) to \(\delta_C \) in a multimer could regulate the localization of the holoenzyme (100, 122). However, even when only one splice variant (CaMKII\(\beta_B \) or CaMKII\(\delta_C \)) is expressed, CaMKII\(\beta_B \) is not exclusively nuclear and CaMKII\(\delta_C \) is not exclusively cytosolic. Interestingly, the relative expression of CaMKII\(\delta_B \) can be altered in vitro by phosphorylation/dephosphorylation processes and has been shown to be modified under different physiological and pathological conditions, suggesting that CaMKII\(\delta \) splicing is a highly regulated dynamic process (44). Indeed, recent experimental evidence suggests that CaMKII\(\delta \) splice variants are selectively susceptible to autophosphorylation/oxidation, providing CaMKII with a mechanism for target signaling specificity (12).

Mechanisms of CaMKII activation and regulation. As shown in Fig. 2A, each CaMKII monomer that composes the holoenzyme consists of three domains: an NH\(_2\)-terminus catalytic domain, a COOH-terminus association domain, and a core regulatory domain. Under basal conditions, the catalytic domain is restrained by the pseudo substrate region within the regulatory domain, which hampers the CaMKII catalytic activity. The regulatory domain binds CaM with a \(K_D \) of 10–70 nM (41), when intracellular \(\text{Ca}^{2+} \) concentration is elevated (102). CaM binding to CaMKII generates a conformational shift that releases the association between the catalytic and regulatory domains, exposing the catalytic domain for substrate binding and phosphorylation. If a sustained increase in \(\text{Ca}^{2+} \)/CaM interaction occurs, the already active CaMKII monomers catalyze the autophosphorylation of the kinase at Thr\(^{286} \) (or Thr\(^{287} \), depending on isoform). CaMKII phosphorylation increases the binding affinity of the enzyme for \(\text{Ca}^{2+} \)/CaM (79), preventing the re-association of the catalytic and regulatory domains (63) and retaining residual \(\text{Ca}^{2+} \)/CaM-independent or autonomous activity (52). CaMKII\(\delta \) can be also oxidized at Met\(^{281/282} \) (Cys\(^{280/281} \) in CaMKII\(\delta \)), which induces a similar \(\text{Ca}^{2+} \)/CaM-independent form of CaMKII (35). Interestingly, oxidation of CaMKII resets its \(\text{Ca}^{2+} \) sensitivity in such a way that activation of the kinase may occur at very low levels of intracellular \(\text{Ca}^{2+} \) (93). Indeed, activation of the renin-angiotensin-aldosterone signaling pathway, which promotes enhanced oxidative stress in the heart (87), induces CaMKII-dependent apoptosis of cardiac myocytes in the absence of significant increases in cytosolic \(\text{Ca}^{2+} \) in vitro (93) and in vivo (136). Moreover, apoptosis induced by the hormone is prevented in isolated neonatal mouse myocytes expressing the oxidation-resistant mutant CaMKII (35). Similarly, in the prediabetic stage induced in a model of impaired glucose tolerance, it has been described that the increase in oxidative stress contributed to CaMKII activation, SR \(\text{Ca}^{2+} \) leak, and the generation of arrhythmias and apoptosis (94, 121). These findings suggest that conditions of high ROS production may lead to increased CaMKII activity, even in the absence of changes in the basal levels of \(\text{Ca}^{2+} \)/CaM. Interestingly, recent experiments have described that ROS production may also occur downstream CaMKII activation (92, 116). These experiments suggest that under conditions of high oxidative stress, a vicious cycle of CaMKII activation and ROS production may occur. Further experimental evidence is required to confirm this possibility.

Two additional posttranslational modifications of CaMKII have been recently reported. Erickson et al. (36) described, using overt diabetes cellular and animal models, a novel mechanism for CaMKII activation during hyperglycemia, different from that produced by the oxidation of CaMKII, typical of diabetic patients (71). This mechanism occurs through the addition of an O-linked N-acetylglucosamine (O-GlcNAc) at the Ser\(^{280} \) site, which similarly to oxidation and phosphorylation, creates molecular memory after the decline in \(\text{Ca}^{2+} \) concentration. It has also been shown that nitric oxide production by \(\beta \)-adrenergic stimulation is sufficient, by itself, to activate CaMKII and increase SR \(\text{Ca}^{2+} \) leak, leading to arrhythmogenic spontaneous \(\text{Ca}^{2+} \) waves (22, 46, 56). Zhang et al. (153) further showed that nitric oxide–PKG signaling augmented CaMKII activity in rabbit ventricular myocytes. Moreover, in vitro studies showed that CaMKII contains S-nitrosylated cysteine residues, and computational prediction of S-nitrosylation sites on CaMKII indicates different potential target sites, including the Cys\(^{280} \) site in the CaMKII regulatory domain (46). Coultrap and Bayer (21) recently demonstrated that nitrosylation of CaMKII\(\delta \) at the analogous Cys\(^{289} \) and also Cys\(^{280} \) (Met\(^{281} \) in CaMKII\(\delta \)) sites was critical to autonomous CaMKII activation by nitric oxide donors. The cluster of the different regulatory sites at the regulatory/auto-inhibitory CaMKII-domain suggests that these sites are part of a hotspot region for post-translational regulation of the kinase.
CaMKII targets in the heart. CaMKII regulates different ion channels and transport proteins involved in cardiac ECC (Fig. 2B). CaMKII-dependent phosphorylation of LTCC potentiates \(I_{Ca,L} \) and slows its inactivation (152). Experimental evidence indicates that, in the long term, both \(\delta_B \) and \(\delta_C \) CaMKII isoforms decrease the expression of LTCC pore-forming \(\alpha_1c \)-subunit (101). CaMKII-dependent phosphorylation of PLN increases SR Ca\(^{2+} \) uptake, whereas phosphorylation of RyR2 increases diastolic SR Ca\(^{2+} \) leak and systolic SR Ca\(^{2+} \) release (25, 40, 43, 45, 108, 134, 145). CaMKII also catalyzes phosphorylation of the Na\(^{+}\)-H\(^{+} \) exchanger (NHE-1) (139), and of the voltage-gated ion channels responsible for Na\(^{+} \) current (\(I_{Na} \)), transient outward K\(^{+} \) current (\(I_{to} \)), and inward rectifier K\(^{+} \) current (\(I_{K1} \)) (67, 142, 143). Persistent (late) inward Na\(^{+} \) current (\(I_{Na,L} \)) is enhanced (gain-of-function effect). In contrast, Na\(^{+} \) channel availability is reduced, intermediate inactivation...
is enhanced, and recovery from inactivation of rapid I_{Na} is slowed by CaMKII-dependent phosphorylation (loss-of-function effects) (142). The effects of CaMKII on I_{to} and I_{K1} are complex (67, 143). Acute and chronic CaMKII overexpression increases $I_{to,slow}$ amplitude and expression of the underlying channel protein $K_{V1.4}$. On the other hand, chronic but not acute CaMKII overexpression causes downregulation of $I_{to,fast}$, as well as of $K_{V4.2}$ and KChIP2. Interestingly, these amplitude changes were not reversed by acute CaMKII inhibition, consistent with CaMKII-dependent regulation of channel expression and/or trafficking (143).

It has also been shown that the overexpression of CaMKIIα led to an increase in NCX abundance and disruption of the NCX/SERCA2 expression balance via class IIa histone deacetylase (HDACs)/myocyte enhancer factor-2 (MEF2)-dependent signaling (70). Moreover, available data indicates that NCX upregulation induced by β-adrenoceptor stimulation is dependent on CaMKII activation in the adult heart (72).

Further work demonstrated that CaMKII interacts with the mitochondrial Ca$^{2+}$ uniporter (MCU) and promotes Ca$^{2+}$ entry into the mitochondria, probably by catalyzing phosphorylation of serine residues 57 and 92 (57). Finally, two cardiac myofilament proteins are known to be phosphorylated by CaMKII. Cardiac myosin binding protein C can be phosphorylated at Ser282 and Ser302 [which are also protein kinase A (PKA) targets], although the functional effects of this phosphorylation remain to be resolved (82, 105). The spring region of the giant sarcomeric protein titin, a main determinant of diastolic stiffness, is also a target of CaMKIIα. Interestingly, it has been shown that phosphorylation of this protein (possibly at the N2B element) increased during ischemia/reperfusion (49). As we further discuss next, it is now known that alterations in the phosphorylation of most of these proteins and transporters are crucially involved in the genesis of myocardial injury and arrhythmias.

Ca$^{2+}$ and CaMKII in I/R

Ca$^{2+}$ dysregulation in I/R. Ischemic heart disease, a leading cause of mortality worldwide, is invariably characterized by impaired cardiac function and disturbed Ca$^{2+}$ homeostasis. Earlier experiments revealed an increase in diastolic [Ca$^{2+}$]$_{i}$ during ischemia (73, 80, 103, 132). This increase has been related to a diversity of concurrently altered Na$^{+}$-dependent (55, 85, 99, 128, 129) and independent mechanisms (88, 123, 125). The core of these changes essentially lies on the oxygen deprivation produced by blood flow reduction and the consequent shift from aerobic to anaerobic metabolism (86). Fluorescent detection of cytosolic and SR Ca$^{2+}$ transients at the epicardial layer of the intact beating heart (78) demonstrated

![Fig. 3.](http://ajpheart.physiology.org/)

A: increase in diastolic [Ca$^{2+}$]$_{i}$ at the onset of reperfusion. At the onset of reperfusion, there is an abrupt increase in diastolic [Ca$^{2+}$]$_{i}$ (Ca$^{2+}$ bump) associated with a mirror-like image of the decrease in SR Ca$^{2+}$ content. Mean values are from individual signals recorded at the epicardial layer of intact hearts loaded with Rhod-2 and Mag-Fluo-4, respectively [modified from Valverde et al. (132)]. **B:** typical records showing the decrease in SR Ca$^{2+}$ content associated with a diminished Ca$^{2+}$ transient amplitude, after the Ca$^{2+}$ bump. AU, arbitrary units.
that the increase in cytosolic $[\text{Ca}^{2+}]$ during ischemia is associated with an enhancement of SR Ca^{2+} load (132). The increased SR Ca^{2+} content was released at the onset of reperfusion, producing an abrupt rise in cytosolic $[\text{Ca}^{2+}]$ (Ca^{2+} bump) (Fig. 3A), and the subsequent decrease in SR Ca^{2+} content was associated with a diminished Ca^{2+} transient amplitude (132) (Fig. 3B). More recent experiments further showed that a major mechanism for the increase in diastolic $[\text{Ca}^{2+}]$, during ischemia is an increase in the frequency of Ca^{2+} sparks. Notably, the increase in Ca^{2+} sparks during ischemia switched to an increase in arrhythmogenic Ca^{2+} waves during reperfusion (74) (Fig. 4).

Activation of CaMKII in I/R. Previous studies showed the time course of phosphorylation of Thr17 of PLN, used as a marker of CaMKII activation, during I/R. This initial work showed a significant increase in Thr17 phosphorylation at the beginning of ischemia and at the onset of reflow (141). Experimental evidence reveals that Ca^{2+} influx through LTCC and phosphatase inhibition, due to the ischemia-induced intracellular acidosis, play a central role in the activation of CaMKII at the beginning of ischemia (83, 84).

The increase in Thr17 phosphorylation at the onset of reperfusion may be produced by the transient increase in cytosolic $[\text{Ca}^{2+}]$ that occurs at this time (86). This $[\text{Ca}^{2+}]$, increase has been usually attributed to the influx of Ca^{2+} through the reverse mode of the NCX (54, 86, 95). However, the abrupt Ca^{2+} release from the SR recently described at the onset of reperfusion (132) may also be greatly involved in the increase in CaMKII activation and PLN Thr17 phosphorylation at this moment.

Reperfusion is also associated with ROS generation (15). As described earlier in this review, both Ca^{2+} mishandling and ROS production set an ideal intracellular milieu for activation of CaMKII. Further studies have shown that other CaMKII substrates are also phosphorylated at the beginning of reperfusion, e.g., the Ser2814 site of RyR2, which have been shown to play a significant role in reperfusion injury (28, 108), as it will be discussed next.

![Fig. 4. A–C: Ca^{2+} sparks increase during ischemia and turn into Ca^{2+} waves during reperfusion. Typical examples and overall results are shown](modified from Mattiazi et al. (74)).
Dual role of CaMKII in I/R. In the last few years, a dual effect of CaMKII-dependent protein phosphorylation (beneficial and detrimental) has been described in the scenario of I/R in the intact heart. The beneficial effect of CaMKII refers to the recovery of intracellular Ca\(^{2+}\) and contractile function that occurs during stunning (109, 133), a fully reversible postischemic dysfunction (20). It has been shown that phosphorylation of PLN-Thr\(^{17}\) is essential for the recovery of Ca\(^{2+}\) transients and contractility in the stunned heart (109, 133), offering a mechanism that helps to limit cytosolic Ca\(^{2+}\) overload, by accelerating SR Ca\(^{2+}\) reuptake and ameliorating intracellular Ca\(^{2+}\) handling.

The detrimental effect of CaMKII refers to the role of CaMKII in reperfusion arrhythmias, which occur even after a short ischemic period (11, 108), and to the necrosis and apoptosis typical of the irreversible I/R injury (28, 110, 140). Targeted inhibition of CaMKII at the level of cardiac SR-membranes in mice (SR-AIP) clearly indicated that most of reperfusion arrhythmias are triggered by CaMKII-dependent mechanisms (108). Moreover, prevention of CaMKII-dependent phosphorylation of RyR2 was able to significantly reduce reperfusion arrhythmias (108), but failed to completely prevent them. These findings indicate that other CaMKII targets may be involved in reperfusion arrhythmias. A possible candidate is Thr\(^{17}\) of PLN, which is phosphorylated at the beginning of reperfusion in association with the increase in CaMKII phosphorylation of Ser\(^{2814}\) of RyR2 (108). Phosphorylation of Thr\(^{17}\) and the consequent increase in SR Ca\(^{2+}\) reuptake could produce two opposite effects, which are actually inherent to the characteristics of SR Ca\(^{2+}\) uptake itself. On one hand, increasing SERCA2a activity would increase the rate of reserequestration of the Ca\(^{2+}\) released through RyR2. This would reduce cytosolic Ca\(^{2+}\) levels, increasing the availability of free cytosolic buffer sites able to bind Ca\(^{2+}\) (increase in dynamic cytosolic buffer capacity). This may limit Ca\(^{2+}\) wave propagation and reperfusion arrhythmia (4, 53). On the other hand, increasing Ca\(^{2+}\) sequestration would necessarily increase SR Ca\(^{2+}\) content, favoring diastolic Ca\(^{2+}\) leak. This situation would be exacerbated if the increase in SR Ca\(^{2+}\) uptake coexists with an increase in the open probability of RyR2, as that produced by CaMKII-dependent phosphorylation (134), and may contribute to favor a futile circle of increased SR Ca\(^{2+}\) uptake and leak with an additional metabolic cost. Thus the beneficial effects of the increase in SR Ca\(^{2+}\) uptake in I/R may turn to be deleterious under conditions in which the balance between SR Ca\(^{2+}\) uptake and leak is lost. Finally, although in the experiments in SR-AIP mice with inhibition of CaMKII targeted to the SR, reperfusion arrhythmias virtually disappeared, phosphorylation of LTCC by CaMKII was also inhibited in these mice (98). Thus the contribution of CaMKII-dependent LTCC phosphorylation to reperfusion arrhythmias cannot be excluded.

After a prolonged ischemic period, reperfusion evokes irreversible cardiac injury. Under these conditions, myocytes die by apoptosis, autophagy, and necrosis. Experimental evidence indicates that CaMKII inhibition is protective in the irreversible I/R injury (28, 110, 140, 154). Although the mechanisms of this protection are still unclear, it has been established that CaMKII is clearly involved in the intrinsic (mitochondrial) cell death pathway (110). This signaling pathway involves CaMKII-dependent phosphorylation of SR protein(s), mitochondrial Ca\(^{2+}\) overload, cytochrome c release, and caspase-3 activation (28, 110, 140). Notably, this cascade of events mediates not only the programmed cell death known as apoptosis but also a CaMKII-dependent programmed necrosis (110). These deleterious effects appear to be associated with both RyR2 phosphorylation and caspase-mediated degradation of this protein, which in turn would favor an increase in SR Ca\(^{2+}\) leak. Supporting and extending the signaling cascade described, Joiner et al. (57) showed that CaMKII-dependent phosphorylation of MCU increases Ca\(^{2+}\) entry through it and favors cell death.

Phosphorylation of Thr\(^{17}\), the CaMKII site of PLN, was also transiently enhanced at the onset of reperfusion (110, 140). However, the functional consequences of PLN phosphorylation and of the increase in SR Ca\(^{2+}\) uptake after prolonged ischemia are controversial and remain uncertain (90, 126, 127, 151). As discussed for reperfusion arrhythmias, the inconsistent results may reflect the opposite effects of accelerating SR Ca\(^{2+}\) reuptake, which diminishes the diastolic [Ca\(^{2+}\)], elevation produced by increased SR Ca\(^{2+}\) leak, but simultaneously increases SR Ca\(^{2+}\) load, favoring SR Ca\(^{2+}\) leak.

Recent experiments by Di Carlo et al. (28) addressed this puzzle by using mice expressing nonphosphorylatable PLN (i.e., Ser\(^{16}\) and Thr\(^{17}\) mutated to Ala), submitted to I/R. In these mice, cardiac damage was significantly enhanced, suggesting that increasing Thr\(^{17}\) phosphorylation to the level observed at the onset of reperfusion (when phosphorylation of Ser\(^{16}\) did not occur) has protective effects. However, when CaMKII-dependent RyR2 phosphorylation was selectively precluded, prevention of PLN phosphorylation failed to increase cardiac injury. Thus the results from Di Carlo et al. (28) strongly suggest that CaMKII-dependent inhibition of RyR2 phosphorylation is necessary and sufficient to prevent CaMKII-dependent cardiac damage that originates at the SR level in I/R. Taken together, these findings indicate that the progression toward a beneficial or detrimental effect of CaMKII activation and PLN phosphorylation in I/R would critically depend on the balance between the extent of SR Ca\(^{2+}\) reuptake and the SR Ca\(^{2+}\) leak, largely given by the status/characteristics of other proteins also involved in SR Ca\(^{2+}\) handling, such as RyR2.

CaMKII, Ryanodine Receptors, and Arrhythmias

CaMKII has been shown to contribute to arrhythmogenesis in cardiac pathologies of different etiology. Although CaMKII-dependent arrhythmogenesis was originally attributed to its impact on sarclemmal LTCC and the development of early afterdepolarizations, which may indeed occur (1), intense ongoing investigation has provided evidence of multiple additional targets through which CaMKII may exert its arrhythmogenic action. Among these, RyR2 seem to be one of particular functional importance. A CaMKII-dependent increase in RyR2 open probability has been shown to increase SR Ca\(^{2+}\) leak, which would enhance Ca\(^{2+}\) extrusion via the electrogenic NCX. This electrogenic transport generates a depolarizing current (I\(_{\text{on}}\) or transient inward current) (34, 114), which, when sufficiently large, leads to delayed afterdepolarizations (DADs), that may reach the threshold and trigger spontaneous AP, resulting in extra-systoles and ventricular arrhythmias (146) (Fig. 5). Indeed, extensive experimental evidence demonstrates that CaMKII-induced SR Ca\(^{2+}\) leak is associated
with cardiac arrhythmias. Elegant studies from Wehrens’ laboratory showed that genetic inhibition of CaMKII-dependent RyR2 phosphorylation could prevent atrial fibrillation and lethal ventricular arrhythmias (25, 76). In addition, several studies have suggested that CaMKII-dependent SR Ca2+ leak also mediates reperfusion arrhythmias, as already discussed in the context of I/R (13, 108), heart failure-induced arrhythmias (106), digitalis-induced arrhythmias (43, 50), and even arrhythmias of genetic origin, such as catecholaminergic polymorphic tachycardia (69) and those associated with Duchenne muscular dystrophy (2).

Mechanisms underlying CaMKII-dependent regulation of SR Ca2+ leak. The magnitude of SR Ca2+ leak depends on two main factors: 1) SR Ca2+ load and 2) RyR2 open probability. CaMKII can modulate SR Ca2+ load through the phosphorylation of PLN at site Thr17, which relieves the inhibition of PLN on SERCA2a and increases SR Ca2+ uptake (58). CaMKII can also phosphorylate the RyR2 and activate the channel. Indeed, CaMKII was originally shown to phosphorylate the Ca2+ release channel at the site Ser2809 (148), and more recent studies revealed another phosphorylation site at Ser2814 (40, 145). Although the impact of CaMKII phosphorylation on RyR2 function is still a matter of debate, the general consensus indicates that CaMKII increases RyR2 open probability. Whether an independent increase in SR Ca2+ load or in RyR2 open probability is able to produce sufficient SR Ca2+ leak to induce arrhythmogenic diastolic Ca2+ release, is controversial. Ca2+ overload of the SR has been reported to trigger spontaneous Ca2+ release, at least in part, via the activation of the RyR2 luminal Ca2+ sensor (26). However, several lines of evidence suggest that increased SR Ca2+ load by itself, is not sufficient to promote arrhythmogenic SR Ca2+ release. For example, PLN knock-out mice, which have a fully loaded SR, have not proven to be prone to arrhythmias under basal conditions (111, 155). In addition, Venetucci et al. (138) showed that increasing RyR2 open probability alone does not produce arrhythmogenic diastolic Ca2+ release because of the intrinsically accompanying decrease of SR Ca2+ content. Thus, although CaMKII-dependent RyR2 phosphorylation may sensitize the RyR2, at basal conditions this can be roughly offset by the lower SR Ca2+ content. However, when SR Ca2+ content is driven up (e.g., by heart rate, sympathetic activation, or post-ischemic Ca2+ overload), the propensity for triggering SR Ca2+ sparks and waves leading to DADs and arrhythmias can be dramatically increased.

In addition to phosphorylation, RyR2 function may be enhanced by oxidation at the level of specific methionine residues (16, 130). RyR2 contains multiple thiols (150) that can be affected by redox modification. RyR2 thiol oxidation increases the sensitivity of the channel to luminal Ca2+, thus lowering the critical SR Ca2+ content at which spontaneous Ca2+ release occurs (130). As mentioned above, CaMKII can also be activated by oxidation. In addition, recent data suggests that CaMKII can enhance ROS production (116). Thus CaMKII may promote arrhythmogenic RyR2 Ca2+ leak not only by enhancing RyR2 phosphorylation but also by promoting its oxidation. Consistent with this, Ho et al. (51) showed that arrhythmogenic adverse effects of cardiac glycosides involve alterations in RyR2 function caused by oxidative changes in the channel structure. More recently, Gonano and Vila Petroff (42) demonstrated that cardiac glycoside-induced arrhythmias require CaMKII activation, suggesting that CaMKII-dependent RyR2 oxidation could also participate in the development of the arrhythmogenic substrate. Although the relevance of CaMKII-dependent oxidation of RyR2 remains to be further explored, experiments in knock-in mice in which the site Ser2814 of the RyR2 could not be phosphorylated (S2814A mice) provided unequivocal evidence of the importance of phosphorylation of this site in cardiac glycoside-induced arrhythmias (50). Myocytes isolated from S2814A mice did not show enhanced SR Ca2+ leak when exposed to digitoxin, compared with myocytes from wild-type mice. These experiments demonstrate that phosphorylation, rather than oxidation of RyR2, is required for the increase in channel spontaneous activity and arrhythmogenesis in the context of digitalis toxicity.

CaMKII has also been shown to be involved in cardiac arrhythmias associated with acidosis. This is important in the clinical setting since substantial changes in pH may occur in...
disorders of different origin, such as sleep apnea/hypopnea syndrome, diabetic ketoacidosis, or during episodes of myocardial ischemia. Said et al. (107) showed that ectopic activity produced upon returning to normal pH after acidosis could be prevented by pharmacologic inhibition of CaMKII and did not occur in a transgenic mouse model with the inhibition of CaMKII targeted to the SR. The authors concluded that CaMKII activation during acidosis favors an increase in SR Ca\(^{2+}\) load by phosphorylation of PLN Thr\(^{17}\), which, on the one hand, is responsible for the mechanical recovery observed with sustained acidosis, but may also increase spontaneous SR Ca\(^{2+}\) leak and produce arrhythmias during the return to normal pH. This effect was attributed to the increase in the opening probability of RyR2 due to the pH increase after acidosis and the acidosis-induced increase in SR Ca\(^{2+}\) content, still present at the beginning of post-acidosis period. The return to normal pH also leads to recovery of the acidosis-induced inhibition of NCX (97), favoring Ca\(^{2+}\) extrusion and Na\(^{+}\) gain into the cell, membrane depolarization, and eventually triggered arrhythmias. Together, these results indicate that post-acidosis CaMKII-dependent DADs are triggered by two concurrent factors: 1) acidosis-induced increase in SR Ca\(^{2+}\) content and 2) relief of acidosis-induced inhibition of RyR2 and NCX.

The evidence provided herein demonstrates the critical role played by CaMKII and RyR2 in arrhythmogenesis and suggests the potential therapeutic benefit of CaMKII inhibition for the treatment of arrhythmias. However, the ubiquitous nature of CaMKII and its effects on different protein targets challenge the use of CaMKII inhibitors as a therapeutic tool. Moreover, pharmacological CaMKII inhibition would probably require compounds selective toward cardiac-specific CaMKII isoforms, which are not currently available. In addition, a target-specific therapy would be desirable, taking into account the existence of multiple targets for CaMKII activity. For example, the phosphorylation of the PLN site Thr\(^{17}\) plays a key role in the β-adrenergic inotropic response and mediates the recovery of contractility after cardiac acidosis (107).

The demonstration of RyR2 as a crucial player in the development of CaMKII-induced arrhythmias allows us to postulate an alternative therapeutic approach, which involves the concept of RyR2 stabilization. The term “stabilization” refers to the possibility to reduce RyR2 spontaneous diastolic opening without affecting systolic release. Thus compounds that are able to stabilize the RyR2 could be used to prevent arrhythmias without the undesirable effects of global CaMKII inhibition. Indeed, using the multi-channel blocker JTV-519 (K201), which has been shown to stabilize the RyR2, Sacherer et al. (104) showed, in mouse myocytes and in nonfailing human myocardium treated with the cardiac glycoside ouabain, that JTV-519 was able to reduce the ouabain-induced SR Ca\(^{2+}\) leak. Similarly, additional reports showed that alternative RyR2 stabilizers such as VKII86 or tetracaine could reduce DAD-triggered arrhythmias (137, 156). Further work is warranted to find the ideal RyR2 stabilizer, which should reduce spontaneous RyR2 openings during diastole without inhibition of the normal Ca\(^{2+}\)-induced Ca\(^{2+}\) release that triggers contraction. This is the case for dantrolene (75), although dantrolene is now only used for acute treatment of malignant hyperthermia. Nevertheless, novel RyR2 stabilizers could be a promising approach for the treatment of arrhythmias of different etiology.

CaMKII in cardiac transcriptional regulation. The foregoing discussion has focused on acute modulatory effects of CaMKII on ion channels, transporters, and myofilaments, but activation of CaMKII can also have major effects on gene transcription. This should be considered as a slower response to certain stress-related signals in which the acute regulatory CaMKII-dependent effects may not be sufficient. This type of transcriptional regulation can be beneficial but can also contribute to maladaptive signals in hypertrophy and HF. Indeed, when myocytes CaMKII is chronically activated, as in all of the above autonomous states (autophosphorylation, oxidation, O-GlcNAcylation, nitrosylation), it appears to be largely maladaptive by worsening arrhythmogenic diastolic SR Ca\(^{2+}\) leak and altering expression and gating of ion channels in ways that contribute to arrhythmogenesis. Moreover, this situation seems to occur in HF or upon CaMKII overexpression (either genetically induced or as an intrinsic part of the hypertrophy/HF phenotype). Thus both acute and transcriptional actions of CaMKII can contribute to acute dysfunctions of the type discussed above.

Ca\(^{2+}\)-dependent signaling can lead to transcriptional regulation, and we call this process excitation-transcription-coupling (ETC), by analogy to ECC. One ETC pathway that is known to directly involve CaMKII is the CaMKII-dependent phosphorylation of class II histone deacetylases, HDACs, of which HDAC4 and HDAC5 have been the best studied (3, 77, 96, 149). As illustrated in Fig. 6, at baseline when these HDACs are dephosphorylated, they bind to and repress hypertrophic transcription factors, such as myocyte enhancer factor 2 (MEF2). Although these particular HDACs have weak histone deacetylase activity, their presence at MEF2 also prevents histone acetyl transferase localization, resulting in more condensed de-acetylated chromatin structure in this situation. When these HDACs are phosphorylated by CaMKII or protein kinase D (PKD), translocation out of the nucleus via binding to 14-3-3 chaperone proteins is induced. This translocation relieves MEF2 repression, allows histone acetyl transferase binding, and favors transcriptional activation (Fig. 6). We focus here on the upstream side of these ETC pathways.

Calcineurin (CaN) is an additional Ca\(^{2+}\)-dependent ETC pathway that works in parallel with the CaMKII-HDAC pathway (Fig. 6) (62, 81, 147). When the phosphatase CaN is activated by Ca-CaM, it dephosphorylates nuclear factor of activated T cells (NFAT), and dephosphorylated NFAT is translocated to the nucleus where it interacts with transcription factors (e.g., GATA4) and activates the transcription of genes involved in hypertrophic signaling and HF. So, two questions that come up are whether CaN and CaMKII are localized with respect to ETC and whether the same types of Ca-CaM signals are likely to drive these two Ca-CaM-dependent ETC pathways.

Regarding subcellular localization, at baseline in adult ventricular myocytes, both CaN and CaMKII seem to be preferentially concentrated at the Z-line, at or near the SR T-tubule junctions involved in ECC (but also exist elsewhere). This localization has four important implications. First, if one measures global CaN or CaMKII activation state, it may be biased by the quantitatively large amount of CaN and CaMKII at these sites. Second, the local [Ca\(^{2+}\)] in this junctional cleft domain is very different from the global or nuclear [Ca\(^{2+}\)], because of the close proximity to both L-type Ca\(^{2+}\) channels and RyR2
channels (i.e., peak and even diastolic \([Ca^{2+}]_i\), here can be much higher than anywhere else in the myocyte). Third, there may be significant translocation of CaN or CaMKII or their downstream targets (e.g., NFAT or HDAC), that could allow \([Ca^{2+}]_i\)-dependent signaling in this ECC domain to have longer distance effects on ETC. Fourth, CaN and CaMKII in different subcellular domains (cleft, perinuclear, intranuclear) may have more selective and locally dictated signaling to the ETC machinery. This will be discussed further below.

CaN and CaMKII have very different Ca-CaM affinities, which may be very important functionally. CaMKII has a relatively low Ca-CaM affinity (K_d = 10–50 nM), whereas CaN has a very high Ca-CaM affinity (K_d \(\ll\) 1 nM) (112, 113). CaMKII activation requires relatively high local \([Ca^{2+}]_i\), and will tend to de-activate more rapidly when \([Ca^{2+}]_i\) declines. Thus CaMKII activation works especially well in environments where large local \([Ca^{2+}]_i\) transients occur, such as near the mouths of \([Ca^{2+}]_i\) channels. One place that this occurs is in the ECC cleft near L-type \([Ca^{2+}]_i\) channels and RyR2, and this environment is expected to be more sensitive to CaMKII activation (31). A second location is at the nuclear envelope, where the 1,4,5-inositol-trisphosphate (InsP_3) receptor (InsP_3R) type 2 (the main isoform in adult ventricular myocytes) is concentrated. Both CaM and CaMKII appear to directly associate with the InsP_3R (5). Thus Ca_2^{2+} released by the nuclear envelope InsP_3R can cause a high local \([Ca^{2+}]_i\), that is sufficient to activate CaMKII. That activated nuclear CaMKII can then phosphorylate the InsP_3R and inhibit channel gating, constituting a local negative feedback loop that may limit the duration of local InsP_3R \([Ca^{2+}]_i\) release. However, this local CaMKII activation may also be critical for CaMKII-dependent nuclear signaling to HDACs in ETC (149). Note also that CaMKII activation has memory in the form of autonomous activation; that is, if local \([Ca^{2+}]_i\), is sufficiently high for a long enough time, there is much greater likelihood for a neighboring CaMKII monomer in the dodecameric structure to become autophosphorylated, oxidized, O-GlcNAcylated, or nitrosylated, all of which would prolong the active autonomous state. The other side of this issue is that bulk cytosolic CaMKII (e.g., near PLN or myofilament sites) may not be substantially activated during beat to beat \([Ca^{2+}]_i\) transients (112). So it is less clear how CaMKII that is not near \([Ca^{2+}]_i\) channels is normally activated.

CaN activation is very different from that of CaMKII, because of its very high Ca-CaM affinity and slow off-rate (112). CaN that is very near \([Ca^{2+}]_i\) channels that open at each beat (e.g., SR-T-tubule clefts) could be nearly fully activated at each beat, and the slow deactivation could result in nearly fully activated local CaN at all relevant heart rates. In contrast, cytosolic CaN that is far away from \([Ca^{2+}]_i\) channels could still be activated in a way that is intrinsically integrating because of the slow off-rate of Ca-CaM; that is, each \([Ca^{2+}]_i\) transient would slightly increase the CaM-CaN level, but the slow off-rate would mean that it does not relax back before the next \([Ca^{2+}]_i\) pulse drives a bit more CaM onto CaN. So both CaN and CaMKII have very different Ca-CaM affinities, which may be very important functionally. CaMKII has a relatively low Ca-CaM affinity (K_d = 10–50 nM), whereas CaN has a very high Ca-CaM affinity (K_d \(\ll\) 1 nM) (112, 113). CaMKII activation requires relatively high local \([Ca^{2+}]_i\), and will tend to de-activate more rapidly when \([Ca^{2+}]_i\) declines. Thus CaMKII activation works especially well in environments where large local \([Ca^{2+}]_i\) transients occur, such as near the mouths of \([Ca^{2+}]_i\) channels. One place that this occurs is in the ECC cleft near L-type \([Ca^{2+}]_i\) channels and RyR2, and this environment is expected to be more sensitive to CaMKII activation (31). A second location is at the nuclear envelope, where the 1,4,5-inositol-trisphosphate (InsP_3) receptor (InsP_3R) type 2 (the main isoform in adult ventricular myocytes) is concentrated. Both CaM and CaMKII appear to directly associate with the InsP_3R (5). Thus Ca_2^{2+} released by the nuclear envelope InsP_3R can cause a high local \([Ca^{2+}]_i\), that is sufficient to activate CaMKII. That activated nuclear CaMKII can then phosphorylate the InsP_3R and inhibit channel gating, constituting a local negative feedback loop that may limit the duration of local InsP_3R \([Ca^{2+}]_i\) release. However, this local CaMKII activation may also be critical for CaMKII-dependent nuclear signaling to HDACs in ETC (149). Note also that CaMKII activation has memory in the form of autonomous activation; that is, if local \([Ca^{2+}]_i\), is sufficiently high for a long enough time, there is much greater likelihood for a neighboring CaMKII monomer in the dodecameric structure to become autophosphorylated, oxidized, O-GlcNAcylated, or nitrosylated, all of which would prolong the active autonomous state. The other side of this issue is that bulk cytosolic CaMKII (e.g., near PLN or myofilament sites) may not be substantially activated during beat to beat \([Ca^{2+}]_i\) transients (112). So it is less clear how CaMKII that is not near \([Ca^{2+}]_i\) channels is normally activated.

CaN activation is very different from that of CaMKII, because of its very high Ca-CaM affinity and slow off-rate (112). CaN that is very near \([Ca^{2+}]_i\) channels that open at each beat (e.g., SR-T-tubule clefts) could be nearly fully activated at each beat, and the slow deactivation could result in nearly fully activated local CaN at all relevant heart rates. In contrast, cytosolic CaN that is far away from \([Ca^{2+}]_i\) channels could still be activated in a way that is intrinsically integrating because of the slow off-rate of Ca-CaM; that is, each \([Ca^{2+}]_i\) transient would slightly increase the CaM-CaN level, but the slow off-rate would mean that it does not relax back before the next \([Ca^{2+}]_i\) pulse drives a bit more CaM onto CaN. So both CaN and CaMKII have very different Ca-CaM affinities, which may be very important functionally. CaMKII has a relatively low Ca-CaM affinity (K_d = 10–50 nM), whereas CaN has a very high Ca-CaM affinity (K_d \(\ll\) 1 nM) (112, 113). CaMKII activation requires relatively high local \([Ca^{2+}]_i\), and will tend to de-activate more rapidly when \([Ca^{2+}]_i\) declines. Thus CaMKII activation works especially well in environments where large local \([Ca^{2+}]_i\) transients occur, such as near the mouths of \([Ca^{2+}]_i\) channels. One place that this occurs is in the ECC cleft near L-type \([Ca^{2+}]_i\) channels and RyR2, and this environment is expected to be more sensitive to CaMKII activation (31). A second location is at the nuclear envelope, where the 1,4,5-inositol-trisphosphate (InsP_3) receptor (InsP_3R) type 2 (the main isoform in adult ventricular myocytes) is concentrated. Both CaM and CaMKII appear to directly associate with the InsP_3R (5). Thus Ca_2^{2+} released by the nuclear envelope InsP_3R can cause a high local \([Ca^{2+}]_i\), that is sufficient to activate CaMKII. That activated nuclear CaMKII can then phosphorylate the InsP_3R and inhibit channel gating, constituting a local negative feedback loop that may limit the duration of local InsP_3R \([Ca^{2+}]_i\) release. However, this local CaMKII activation may also be critical for CaMKII-dependent nuclear signaling to HDACs in ETC (149). Note also that CaMKII activation has memory in the form of autonomous activation; that is, if local \([Ca^{2+}]_i\), is sufficiently high for a long enough time, there is much greater likelihood for a neighboring CaMKII monomer in the dodecameric structure to become autophosphorylated, oxidized, O-GlcNAcylated, or nitrosylated, all of which would prolong the active autonomous state. The other side of this issue is that bulk cytosolic CaMKII (e.g., near PLN or myofilament sites) may not be substantially activated during beat to beat \([Ca^{2+}]_i\) transients (112). So it is less clear how CaMKII that is not near \([Ca^{2+}]_i\) channels is normally activated.
CaMKII exhibit molecular memory, but the molecular basis differs considerably.

Olson’s laboratory was the first to demonstrate both the important role of class II HDACs in cardiac ETC, as well as the fact that CaMKII can be an HDAC kinase (3, 96). Indeed, both HDAC4 and 5 in cardiac myocytes are phosphorylated by CaMKII and PKD (which is another member of the CaMK kinome family). That HDAC phosphorylation induced HDAC nuclear export, and that could be induced by neurohumoral stimuli [e.g., by endothelin-1 (ET-1) and α-adrenergic activation by phenylephrine (PE)], that are known to be parts of the hypertrophic signaling pathway, and also the neurohumoral storm associated with the vicious cycle of HF. The HDAC4 protein contains a specific CaMKII docking, since that CaMKII activation is very tightly linked to HDAC4 nuclear export.

HDAC5 knockout mice exhibit baseline cardiac hypertrophy and have an exaggerated hypertrophic response to pressure overload or cardiac CaN activation (24), suggesting that HDAC5 might be a particularly important ETC pathway in mammalian heart. HDAC5 does not have the CaMKII docking site as in HDAC4, and in HEK cells or cultured neonatal myocytes, HDAC5 nuclear export is controlled by PKD rather than CaMKII. However, in adult ventricular myocytes, where PKD expression is dramatically lower than in the neonate (48), and where CaMKII expression is higher, CaMKII and PKD appear to be equal partners in HDAC5 phosphorylation, nuclear export, and MEF2 driven transcription in response to ET-1 (149). Moreover, ET-1-induced HDAC5 nuclear export was entirely dependent on Ca2+ release through InsP3R type 2 at the nuclear envelope, since it was abolished in InsP3R2 knockout mice or by InsP3R inhibitors, and could be quantitatively mimicked by selective InsP3R activation in adult ventricular myocytes (149). HDAC5 translocation driven by the α-adrenergic agonist PE is like that induced by ET-1 at the endothelin receptor in that it is mediated by the G-protein Gαq (17). Surprisingly, PE-induced HDAC5 nuclear export was completely independent of Ca2+, InsP3R, or CaMKII activity and instead was completely dependent on PKC- and PKD-dependent signaling (note that PKD did not seem to be important in ET-1-induced HDAC5 nuclear export). Bossuyt et al. (17) used confocal, targeted fluorescence resonance energy transfer (FRET)-based reporters and total internal reflectance fluorescence (TIRF) microscopy to elucidate the mechanism for this ET-1 versus PE difference. For PE activation, PKD was rapidly recruited and activated at the sarcolemma, but then it rapidly shuttled to the nucleus. So although PKD can powerfully drive HDAC5 nuclear export, it depends on how PKD is activated. For ET-1, which activates CaMKII via an InsP3- and CaMKII-dependent nuclear pathway but activates PKD preferentially at the sarcolemma, nuclear HDAC5 is substantially CaMKII dependent.

During stress, there is often co-activation of the Gαq-coupled receptors (ET-1 and α-adrenergic) with β-adrenergic receptors (β-AR). Chang et al. (23) evaluated this cross-talk in adult ventricular myocytes. β-AR activation caused an acute PKA-dependent HDAC5 nuclear import that was mediated by PKA-dependent phosphorylation of HDAC5 at Ser279, between the two PKD/CaMKII sites (Ser259 and Ser498), which are responsible for driving ET-1 and PE-induced HDAC5 nuclear export. This effect could be mimicked by pseudo-phosphorylation of HDAC5 (S279D) and prevented by a nonphosphorylatable S279A mutant HDAC5. Moreover, this β-AR effect was dominant over the Gαq-coupled receptor effect in that the ET-1 or PE-induced nuclear export was blocked in the S279D HDAC5 mutant or after pretreatment of myocytes with isoproterenol or forskolin. However, chronic β-AR activation (over 24 h) allowed the usual ET-1 and PE effects to occur. Thus acute β-AR activation may suppress genetic reprogramming driven by this HDAC5 system during the acute fight-or-flight response. However, in chronic activation, as in HF, this β-AR-induced suppression may be overcome, such that the Gαq-coupled signaling drives chronic HDAC5 nuclear export and activation of transcription, which reinforce the genetic HF phenotype (18).

In conclusion, CaMKII signaling in ETC is complex, and much additional work will be needed to fully understand the overall integrated Ca-CaM dependent signaling, even by just the CaMKII-HDAC and CaN-NFAT pathways discussed here. But these longer term ETC effects, which can change the expression levels of numerous ion channels and transporters as well as modulate their acute functional behavior in ECC, have to be integrated in the long run.

GRANTS

This work was supported by PIP 0890 (The National Scientific and Technical Research Council) (to A. Mattiazzii), PICT 0588 (Fondo para la Investigación Científica y Tecnológica) (to M. Vila Petroff), and NIH P01-HL080101 and NIH R37-HL050077 (to D. Bers).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: A.M. conception and design of research; A.M., J.P., M.V.P., and D.M.B. drafted manuscript; A.M., R.A.B., C.A.V., M.V.P., and D.M.B. edited and revised manuscript; A.M., R.A.B., A.L.E., J.P., M.V.P., and D.M.B. approved final version of manuscript.

REFERENCES

1. Anderson ME. Multiple downstream proarhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus. Cardiovasc Res 73: 657–666, 2007.
2. Ather S, Wang W, Wang Q, Li N, Anderson ME, Wehrens XH. Inhibition of CaMKII phosphorylation of RyR2 prevents inducible ventricular arrhythmias in mice with Duchenne muscular dystrophy. Heart Rhythm 10: 592–599, 2013.
3. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98: 15–24, 2006.
4. Bai Y, Jones PP, Guo J, Zhong X, Clark RB, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Semeniuk L, Guo A, Song LS, Duff HJ, Chen SR. Phospholamban knockout breaks arrhythmic Ca2+ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice. Circ Res 113: 517–526, 2013.
5. Bare DJ, Kettunen CS, Liang M, Bers DM, Mignery GA. Cardiac type 2 isozyme 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280: 15912–15920, 2005.
6. Bassani JW, Yuan W, Bers DM. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol Cell Physiol 268: C1313–C1319, 1995.
7. Bassani RA, Bassani JW. Contribution of Ca2+ transporters to relaxation in intact ventricular myocytes from developing rats. Am J Physiol Heart Circ Physiol 282: H2406–H2413, 2002.
8. Bassani RA, Bassani JW, Bers DM. Mitochondrial and sarcoplasmal Ca$^{2+}$ transport reduce [Ca$^{2+}$], during caffeine contractures in rabbit cardiac myocytes. J Physiol 453: 591–608, 1992.

9. Bassani RA, Bers DM. Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophys J 68: 2015–2022, 1995.

10. Bassani RA, Ricardo RA, Bassani JW. Estimation of the fractional sarcoplasmic reticulum Ca$^{2+}$ release in intact cardiomyocytes using integrated Ca$^{2+}$ fluxes. Gen Physiol Biophys 31: 401–408, 2012.

11. Bell JR, Curl CL, Ip WT, Delbridge LM. Ca$^{2+}$/calmodulin-dependent protein kinase inhibition suppresses post-ischemic arrhythmogenesis and mediates sinus bradycardic recovery in reperfusion. Int J Cardiol 159: 112–118, 2012.

12. Bell JR, Raaijmakers AJ, Curl CL, Reichelt ME, Harding TW, Bei A, Ng DC, Erickson JR, Vila Petroff M, Harrap SB, Delbridge LM. Cardiac CaMKII delta splice variants exhibit target signaling specificity and confer sex-selective arrhythmogenic actions in the ischemic-reperfusion heart. Int J Cardiol 181C: 288–296, 2014.

13. Bell JR, Vila-Petroff M, Delbridge LM. CaMKII-dependent responses to ischemia and reperfusion challenges in the heart. Front Pharmacol 5: 96, 2014.

14. Bers DM. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76: 107–127, 2014.

15. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Phys Rev 79: 609–634, 1999.

16. Borsa A, Williams AJ. Modification of the gating of the cardiac sarcoplasmic reticulum Ca$^{2+}$-release channel by H$_2$O$_2$ and diithiothreitol. Am J Physiol Heart Circ Physiol 267: H1010–H1016, 1994.

17. Bossuyt J, Chang CW, Helmstadter K, Kunkel MT, Newton AC, Bell JR, Curl CL, Ip WT, Delbridge LM. Space-time distinct protein kinase D activation in adult cardiomyocytes in response to phenylephrine and endothelin. J Biol Chem 286: 33390–33400, 2011.

18. Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, Martin JL, Pogwizd SM, Bers DM. Ca$^{2+}$/calmodulin-dependent protein kinase Idelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res 119: 1940–1951, 2016.

19. Buhl JR, Chikando AC, Williams GS, Khairallah RJ, Kettlewell S, Boyman L, Martin JL, Pogwizd SM, Bers DM. Ca$^{2+}$/calmodulin-dependent protein kinase D-mediated sarcoplasmic reticulum calcium release in cardiac myocytes. Biophys J 94: 973–983, 2008.

20. Chen W, Wang R, Chen B, Zhong X, Kong H, Bai Y, Zhou Q, Xie C, Zang J, Guo A, Tian X, Jones PP, O’Marra ML, Liu Y, MT, Zhang L, Bostad J, Semenkic L, Cheng H, Chen J, Tiedemann DP, Gillis AM, Duff HJ, Fill M, Song LS, Chen SR. The ryanodine receptor store-sensing gate controls Ca$^{2+}$ waves and Ca$^{2+}$-triggered arrhythmias. Nat Med 20: 184–192, 2014.

21. Delbridge LM, Bassani JW, Bers DM. Steady-state twitch Ca$^{2+}$ fluxes and cytosolic Ca$^{2+}$ buffering in rabbit ventricular myocytes. Am J Physiol Cell Physiol 270: C192–C199, 1996.

22. Di Carlo MN, Said M, Ling H, Valverde CA, De Giusti VC, Sommese L, Palomeque J, Aiello EA, Skapura DG, Rinaldi G, Resps JL, Brown JH, Wehrens XH, Salas MA, Mattiazi A. CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 74: 274–283, 2014.

23. Dong X, Thomas DD. Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation. Biochem Biophys Res Commun 449: 201–206, 2014.

24. Donoso P, Sanchez G, Bull R, Hidalgo C. Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Ed) 16: 553–567, 2011.

25. Dries E, Bito V, Lenzaits A, Antoons G, Sipido KR, Macquaide N. Selective modulation of coupled ryanodine receptors during microdomain activation of calcium/calmodulin-dependent kinase II in the dyadic cleft. Circ Res 113: 1242–1252, 2013.

26. Edman CF, Schuman H. Identification and characterization of delta B-CaM kinase and delta C-CaM kinase from rat heart, two new multifunctional Ca$^{2+}$/calmodulin-dependent protein kinase isoforms. Biochim Biophys Acta 1221: 89–101, 1994.

27. Eisner D, Bode E, Venetucci L, Traftord A. Calcium flux balance in the heart. J Mol Cell Cardiol 58: 110–117, 2013.

28. Eisner DA, Kashimura T, Venetucci LA, Traftord AW. From the ryanodine receptor to cardiac arrhythmias. Circ J 73: 1561–1567, 2009.

29. Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Phys Rev 891: 889–915, 2011.

30. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, Bers DM. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502: 372–376, 2013.

31. Faber GM, Silva J, Livshitz L, Rudy Y. Kinetic properties of the cardiac L-type Ca$^{2+}$ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J 92: 1522–1543, 2007.

32. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol Cell Physiol 245: C1–C14, 1983.

33. Ferreiro M, Petrosky AD, Escobar AL. Intracellular Ca$^{2+}$ release underlies the development of phase 2 in mouse ventricular action potential. Am J Physiol Heart Circ Physiol 302: H1160–H1172, 2012.

34. Ferrero P, Said M, Sanchez G, Vittone L, Valercole C, Donoso P, Mattiazi A, Mundina-Weilmann C. Ca$^{2+}$/calmodulin kinase II increases ryanodine binding and Ca$^{2+}$-induced sarcoplasmic reticulum Ca$^{2+}$ release kinetics during beta-adrenergic stimulation. J Mol Cell Cardiol 43: 281–291, 2007.

35. Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koome J, Stoops JK, Wakhzin MN. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca$^{2+}$/calmodulin-dependent protein kinase II. J Biol Chem 279: 12484–12494, 2004.

36. Gonano LA, Vila Petroff M. Subcellular mechanisms underlying digitalis-induced arrhythmias: role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect. Heart Lung Circ 23: 1118–1124, 2014.

37. Gonano LA, Sepulveda M, Rico Y, Kaetzel M, Valverde CA, Deman J, Mattiazi A, Vila Petroff M. Cardiac calcium kinase II mediates digitals-induced arrhythmias. Circ Arrhythm Electrophysiol 4: 947–957, 2011.

38. Gray CB, Heller Brown J. CaMKII delta subtypes: localization and function. Front Pharmacol 5: 15, 2014.

39. Guo T, Zhang T, Mestril R, Bers DM. Ca$^{2+}$/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res 99: 396–406, 2006.

40. Gutierrez DA, Fernandez-Tenorio M, Ogrodnik J, Niggli E. Non-dependent CaMKII activation during beta-adrenergic stimulation of cardiac muscle. Cardiovasc Res 100: 392–401, 2013.

41. Gyorke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77: 245–255, 2008.

42. Haworth RS, Goss MW, Rovengurt E, Avkiran M. Expression and activity of protein kinase D/Protein kinase C mu in myocardium: evidence for alpha-adrenergic receptor- and protein kinase C-mediated regulation. J Mol Cell Cardiol 32: 1013–1023, 2000.
53. Hidalggo CG, Chung CS, Saripalli C, Methawasin M, Hutchinson KR, Tsaprailis G, Labeit S, Mattiazzi A, Grenzler HL. The multifunctional Ca\(^{2+}\)/calmodulin-dependent protein kinase II delta (CaMKII-delta) phosphorylates cardiac titin’s spring elements. J Mol Cell Cardiol 54: 90–97, 2013.

50. Ho HT, Liu B, Snyder JS, Lou Q, Brundage EA, Velez-Cortes F, Wang H, Ziolo MT, Anderson ME, Sen CK, Wehrens HR, Fedorov VV, Biesiadecki BJ, Hund TJ, Gyorke S. Rymodine receptor phosphorylation by oxidized CaMKII contributes to the cardiotoxic effects of cardiac glycides. Cardiovasc Res 101: 165–174, 2014.

52. Hudmon A, Schulman H. Neuronal Ca\(^{2+}\)/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71: 473–510, 2002.

54. Huser J, Bers DM, Blatter LA. Subcellular properties of [Ca\(^{2+}\)]\(_i\), transients in phospholamban-deficient mouse ventricular cells. Am J Physiol Heart Circ Physiol 274: H1180–H1181, 1998.

55. Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Takemoto M, Liao JK. Calcium-activated chloride channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 589: 4697–4708, 2011.

56. Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak KS, Chen-Izu Y. Cardiac MyBP-C regulates the calcium-calmodulin-dependent protein kinase II and life-threatening arrhythmia. J Cardiovasc Res 81: 116–122, 2009.

57. Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Blatter LA. Dantrolene prevents arrhythmogenic Ca\(^{2+}\) release in heart. Am J Physiol Heart Circ Physiol 308: H2153–H2163, 2010.

58. Kaczewski P, Kusche M, Baltas LG, Bartel S, Krause EG. Site-specific phosphorylation of a phospholamban peptide by cyclic nucleotide-dependent protein kinases of cardiac sarcoplasmic reticulum. Basic Res Cardiol 92, Suppl 1: 37–43, 1997.

59. Kaczewski P, Kusche M, Bartke AD, Fink BD, Chen B, Yang J, Moore SA, Scholz TD, Mundina-Weilenmann C, Said M, Vittone L, Ferrero P, Mattiazzi A, Knollmann B, Escobar AL. Calcium-induced mitochondrial stress responses in heart. Nature 491: 269–273, 2012.

60. Karczewska P, Kusche M, Baltas LG, Bartel S, Krause EG. Site-specific phosphorylation of a phospholamban peptide by cyclic nucleotide- and Ca\(^{2+}\)/calmodulin-dependent protein kinases of cardiac sarcoplasmic reticulum. Basic Res Cardiol 92, Suppl 1: 37–43, 1997.

61. Korniyeyev D, Reyes M, Escobar AL. Rymodine receptor phosphorylation, calcium/calmodulin-dependent protein kinase II, and life-threatening arrhythmias. Trends Cardiovasc Med 21: 48–51, 2011.

62. Kunkeva BY, Zhang CL, Olson EN. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27: 40–47, 2002.

63. Mejia-Alvarez R, Manno C, Villabala-Galea CA, del Valle Fernandez L, Costa RR, Fill M, Gharbi T, Escobar AL. Pulsed local-field fluorescence microscopy: a new approach for measuring cellular signals in the beating heart. Pfluegers Arch 475: 747–758, 2003.

64. Meyer T, Hanson PI, Stryer L, Schulman H. Calmodulin trapping by calcium/calmodulin-dependent protein kinase. Science 256: 1199–1202, 1992.

65. Miyamae M, Camacho SA, Weiner MW, Figueredo VM. Attenuation of postischemic reperfusion injury is related to prevention of [Ca\(^{2+}\)]\(_i\) overload in rat hearts. Am J Physiol Heart Circ Physiol 281: H2138–H2153, 2006.

66. Morgan RI, Fitzsimons P, Piazza RC, Olson EN. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circ Res 116: 183–192, 2015.

67. Mundina-Weilenmann C, Said M, Uttone L, Ferrero P, Mattiazzi A. Phospholamban phosphorylation in ischemia-reperfusion heart. Effect of pacing during ischemia and response to a beta-adrenergic challenge. Mol Cell Biochem 252: 239–246, 2003.

68. Mundina-Weilenmann C, Uttone L, Cingolani HE, Orchard CH. Effects of acidosis on phosphorylation of phospholamban and troponin I in rat cardiac muscle. Am J Physiol Cell Physiol 270: C726–C737, 1996.

69. Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68: 1250–1258, 1991.

70. Nakagami H, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35: 851–859, 2003.

71. Neely JR, Rovetto MJ, Whitmer JT, Morgan HE. Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225: 651–658, 1973.

72. Negretti N, Neill SC, Esiner DA. The relative contributions of different intracellular and sarcocellular systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27: 1826–1830, 1993.

73. Nicolaou P, Rodriguez P, Ren X, Zhou X, Qian J, Sadayappan S, Mitton B, Pathak A, Robbins J, Hajjar RJ, Jones K, Kranias EG. Inducible expression of active protein phosphatase-1 inhibitor-1 en
hances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res 104: 1012–1020, 2009.

91. Niggli E, Ullrich ND, Gutierrez D, Kyrchenko S, Polakova E, Shirokova N. Posttranslational modifications of cardiac ryanodine receptors: Ca\(^{2+}\) signaling and EC-coupling. Biochim Biophys Acta 1833: 866–875, 2013.

92. Nishio S, Teshima Y, Takahashi N, Nuch LC, Saito S, Fukui A, Kume O, Fukunaga N, Hara M, Nakagawa M, Saikawa T. Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol 52: 1103–1111, 2012.

93. Palomeque J, Rueda OV, Sapia L, Valverde CA, Salas M, Petroff MV, Mattiazzi A. Angiotensin II-induced oxidative stress resets the Ca\(^{2+}\)/calmodulin-dependent protein kinase II and promotes a death pathway conserved across different species. Circ Res 105: 1204–1212, 2009.

94. Palomeque J, Sommese L, Blanco P, Velez Rueda JO, Zanuzzi C, Pike MM, Kitakaze M, Marban E. Increased intracellular Na\(^{+}\) and pH in rat heart during ischemia: role of Na\(^{-}/\)H\(^{+}\) exchange. Am J Physiol Heart Circ Physiol 287: H1581–H1590, 2009.

95. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Philipson KD, Bersohn MM, Nishimoto AY. Changes in intracellular Na\(^{+}\) and pHi in cardiac myocytes. Am J Physiol Heart Circ Physiol 294: H1426–H1434, 2008.

96. Rautio S, Zorni P, Ruokonen A, Salonen J, Voutilainen M, Jousilahti P. Preconditioning with calcium channel blockers prevents ischemic Na\(^{+}\)/H\(^{+}\) exchange virtually completely. Biochim Biophys Acta 1428: 266–274, 1999.

97. Ramirez MT, Zhao XL, Schulman H, Brown JH. Calcium sparks and excitation-contraction coupling in phospholamban-deficient mouse ventricular myocytes. J Physiol 503: 21–29, 1997.

98. Ramon JF, Kranias EG, Lederer WJ. Calcium sparks, excitation-contraction coupling, and pH in cardiac myocytes. J Mol Cell Cardiol 52: 135–145, 2013.

99. Rostas JA, Dunkley PR. Delayed protection against arrhythmias after acidosis in rat heart. Role of Ca\(^{2+}\)/calmodulin-dependent protein kinase II. Am J Physiol Heart Circ Physiol 295: H1669–H1683, 2008.

100. Said M, Becerra R, Velez Rueda JO, Valverde CA, Kaetzel MA, Dedman JR, Mundina-Weilenmann C, Wadhwa PK, Mattiazzi A. Calcium-calmodulin dependent protein kinase II (CaMKII): a main signal responsible for early reperfusion arrhythmias. J Mol Cell Cardiol 51: 936–944, 2011.

101. Said M, Vittone L, Mundina-Weilenmann C, Ferrero P, Kranias EG, Mattiazzi A. Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol 285: H1198–H1205, 2003.

102. Salas MA, Valverde CA, Sanchez G, Said M, Rodriguez JS, Portiansky EL, Kaetzel MA, Dedman JR, Donoso P, Kranias EG, Mattiazzi A. The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol 48: 1298–1306, 2010.

103. Santana LF, Kranias EG, Lederer WJ. Calcium sparks and excitation-contraction coupling in smooth muscular-deficient mouse ventricular myocytes. J Physiol 503: 21–29, 1997.

104. Schlauchtauer K, Bers DM. Calmodulin binding proteins provide domains of local Ca\(^{2+}\) signaling in cardiac myocytes. J Mol Cell Cardiol 52: 312–316, 2012.

105. Sepulveda M, Gonzano LA, Back TG, Chen SR, Vila Petroff M. Role of CaMKII and ROS in rapid pacing-induced apoptosis. J Mol Cell Cardiol 63: 135–145, 2013.

106. Shannon TR, Ginsburg KS, Bers DM. Potentiation of fractional sarcolplasmatic reticulum calcium release by total and free intra-sarcloplasmic reticulum calcium concentration. Biochem J 178: 334–343, 2000.

107. Shannon TR, Guo T, Bers DM. Ca\(^{2+}\) sparks: local deletions of free [Ca\(^{2+}\)] in cardiac sarcoplasmic reticulum during contractions leave substantial Ca\(^{2+}\) reserve. Circ Res 95: 40–45, 2005.

108. Shuttok MJ, Bers DM. Rat vs. rabbit ventricle: Ca flux and intracellular Na assessed by ion-selective microelectrodes. Am J Physiol Cell Physiol 256: C813–C822, 1989.

109. Singer HA, Benschoter HA, Schranner CM. Novel Ca\(^{2+}\)/calmodulin-dependent protein kinase II gamma-subunit variants expressed in vascular smooth muscle, brain, and cardiomocytes. J Biol Chem 272: 31203–31208, 1997.

110. Ronkainen JJ, Hänninen SL, Korhonen T, Koivumaki JT, Skoumal DM, Molkentin JD, James J, Robbins J. Calcium signalling in the nucleus. J Mol Cell Cardiol 31: 273–280, 1999.

111. Rautio S, Zorni P, Ruokonen A, Salonen J, Voutilainen M, Jousilahti P. Preconditioning with calcium channel blockers prevents ischemic Na\(^{+}\)/H\(^{+}\) exchange virtually completely. Biochim Biophys Acta 1428: 266–274, 1999.

112. Rostas JA, Dunkley PR. Multiple functions of calcium/calmodulin-stimulated protein kinase II in brain. J Neurochem 59: 1192–1202, 1992.

113. Ruiz-Meana M, Garcia-Dorado D, Julia M, Inzana E, Sastre D, Luque FJ. Protection of rat cardiac myocytes against Ca\(^{2+}\) overload by 10.220.33.5 on April 19, 2017
http://ajpheart.physiology.org/Downloaded from
CALCIUM AND CaMKII IN THE HEART

129. Ten Hove M, Nederhoff MG, Van Echteld CJ. Relative contributions of Na+/H+ exchange and Na+/HCO3− cotransport to ischemic Na+ overload in isolated rat hearts. Am J Physiol Heart Circ Physiol 288: H287–H292, 2005.

130. Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, Nishijima Y, de Blanco EC, Khanna S, Sen CK, Cardouelle AJ, Carnes CA, Gyorke S. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103: 1466–1472, 2008.

131. Terentyev D, Rochira J, Terentyeva R, Roder K, Koren G, Li W. Sarcoplasmic reticulum Ca2+ release is both necessary and sufficient for SK channel activation in ventricular myocytes. Am J Physiol Heart Circ Physiol 306: H738–H746, 2014.

132. Valverde CA, Kornynn eve D, Ferreiro M, Petrosky AD, Mattiazzi A, Escobar AL. Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion. Cardiovasc Res 85: 671–680, 2010.

133. Valverde CA, Mundina-Weillenmann C, Reyes M, Eschobar AL, Mattiazzi A. Phospholamban phosphorylation sites enhance the recovery of intracellular Ca2+ after perfusion arrest in isolated, perfused mouse heart. Cardiovasc Res 70: 335–345, 2006.

134. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Van Petegem F. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak during ischemia-reperfusion injury. Biochem Biophys Res Commun 322: 1178–1191, 2004.

135. Voris DR, Kovacs RJ, Schulman H, Cofali DC, Jones LR. Unique phosphorylation site on the cardiac ryanodine receptor regulates cardiac channel activity. J Biol Chem 286: 11144–11152, 1991.

136. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Demdan JR, Olson EN, Chen J, Brown JH, Bers DM. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116: 675–682, 2006.

137. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279: 234–237, 1998.

138. Yang Y, Zhu WZ, Joiner ML, Zhang R, Oddis CV, Hou Y, Yang J, Price EE, Gleave S, Eren M, Gi G, Vaughan DE, Xiao RP, Anderson ME. Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am J Physiol Heart Circ Physiol 291: H5065–H5075, 2006.

139. Yuan W, Bers DM. Ca2+-dependent facilitation of cardiac Ca current is due to Ca2+-calmodulin-dependent protein kinase. Am J Physiol Heart Circ Physiol 267: H982–H993, 1994.

140. Zhang DM, Chai Y, Erickson JR, Brown JH, Bers DM, Lin YF. Intracellular signalling mechanism responsible for modulation of sarcoplasmic ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes. J Physiol 592: 971–990, 2014.

141. Zhang R, Khoos MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, Madu EC, Shah AN, Vishnivetskaya TA, Atkinson JB, Gurevich VV, Salama G, Lederer WJ, Colbran RJ, Anderson ME. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11: 409–417, 2005.

142. Zhang T, Guo T, Mishra S, Dalton ND, Kranias EG, Peterson KL, Bers DM, Brown JH. Phospholamban ablation rescues sarcoplasmic reticulum Ca2+ handling but exacerbates cardiac dysfunction in CaMKIIdelta(C) transgenic mice. Circ Res 106: 354–362, 2010.

143. Zhou Q, Xiao J, Jiang D, Wang R, Vembayian K, Wang A, Smith CD, Xie C, Chen W, Zhang J, Tian X, Jones PP, Zhong X, Guo A, Chen H, Zhang L, Zhu W, Yang D, Li X, Chen J, Gillis AM, Duff HJ, Cheng H, Feldman AM, Song LS, Fill M, Buck TG, Chen SR, Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med 17: 1003–1009, 2011.

144. Zima AV, Bovo E, Bers DM, Blatter LA. Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. J Physiol 588: 4743–4757, 2010.

145. Zima AV, Picht E, Bers DM, Blatter LA. Termination of cardiac Ca2+ sparks: role of intrasR [Ca2+]i, release flux, and intrasR Ca2+ diffusion. Circ Res 103: e105–e115, 2008.