Heterocyclization of polarized system: synthesis, antioxidant and anti-inflammatory 4-(pyridin-3-yl)-6-(thiophen-2-yl) pyrimidine-2-thiol derivatives

Wesam S. Shehab1*, Magda H. Abdellatif2 and Samar M. Mouneir3

Abstract

Background: Chalcones are intent in the daily diet as a favorable chemotherapeutic compound; on the other hand thiophene moiety is present in a large number of bioactive molecules having diverse biological efficiency.

Results: Our current goal is the synthesis of (E)-1-(pyridin-3-yl)-3-(thiophen-2-yl) prop-2-en-1-one 3 that’s used as a starting compound to synthesize the novel pyrimidine-2-thiol, pyrazole, pyran derivatives. Chalcones 3 was prepared by condensation of 3-acetylpyridine with thiophene 2-carboxaldehyde which reacted with thiourea to obtain pyrimidinethiol derivative 4. Compound 4 was allowed to react with hydrazine hydrate to afford 2-hydrazinylpyrimidine derivative 5. Compound 5 was used as a key intermediate for a facile synthesis of the targets 6 and 7. In contrast, pyranone 8 was obtained by transformation of compound 5. Using as a precursor for the synthesis of new pyrazolo pyrimidine derivatives 9–10. The major incentive behind the preparation of these compounds was the immense biological activities associated to these heterocyclic derivatives.

Conclusions: The newly synthesized compounds (1–4) showed potent anti-inflammatory activities both in vitro and in vivo. They also exhibited promising antioxidant vitalities against α, α-diphenyl-β-picrylhydrazyl scavenging activity and lipid peroxidation. In conclusion, compound 1 showed a hopefully anti-inflammatory and antioxidant activities.

Keywords: Pyrazolopyrimidine, Thiophene, Chalcone, Pyrazol, Pyranone, Anti-inflammatory-antioxidant-cycloxygenase-S-LOX-DPPH

Introduction

Chalcones are distinguished by their easy synthesis from Claisen-Schmidt condensation. The chemical structure of chalcones formed of two aromatic rings joined by a three carbon, α, β-unsaturated carbonyl system (1,3-diphenylprop-2-en-1-one) [1, 2]. They have been authenticated with diverse biological efficiency including antibacterial [3–8], anti-inflammatory [9–12], antioxidant [13–16], anti-tumor effects [17–22]. Also, pyridine derivatives of different heterocyclic nucleus have shown potent pharmacological properties like cytotoxic activity [23, 24]. Recent studies have demonstrated that chalcones are target in the daily diet as a favorable chemotherapeutic compounds [25] and anti-proliferative activity [26]. On the other hand thiophene moiety is present in a large number of bioactive molecules having diverse biological activities such as anti-inflammatory [27], anticonvulsant [26], antimicrobial [27] and antitumor [28]. Moreover, thiophene moiety is a well-known isostere for benzene; for example, the replacement of benzene ring of the antidepressant drug, Viloaxine led to a prolongation of the half-life [29]. Recently we were concerned with the synthesis of polyfunctional heterocyclic compounds, where the (E)-1-(pyridin-3-yl)-3-(thiophen-2-yl) prop-2-en-1-one 3 was used as a starting compound. The remarkable
biological activity of the polycyclic heterocyclic compounds encouraged us to continue our previous work on the synthesis of fused pyrimidine [30–33] and their applications, by designing a polycyclic heterocyclic compounds containing five and/or six rings fused with each other to develop a superior biological activity.

Results and discussion
Chemistry
Aldol condensation reaction of 3-thiophenecarboxaldehyde 1 with 3-acetylpyridine 2 in ethanolic NaOH solution afforded chalcone 3. The structure of compound 3 was elucidated by its IR, 1H NMR and 13C NMR. Its IR spectrum showed a characteristic peak for a conjugated carbonyl group at 1633 cm\(^{-1}\), and by its 1H NMR which gave signals at \(\delta = 7.53\) (d, 1H, \(J = 12.9\) Hz, (CH\(=\)C–C\(=\)O)), and 7.92 (d, 1H, \(J = 12.9\) Hz (CH\(=\)C–C\(=\)O) and two doublet signals at \(\delta = 7.28\) and 7.94 due to thiophenyl-\(C_4\)H and thiophenyl-\(C_3\)H and another at 8.11 owing to thiophenyl-\(C_5\)H whereas, the 13C NMR spectrum showed a signal at (δ in ppm) 123 caused by ethylene group and 125, 126, 135, 149 and a signal due to C=O groups at 193. [3+3] base induced cycloaddition of chalcone 3 with thiourea gave 4-(pyridin-3-yl)-6-(thiophen-2-yl) pyrimidine-2(1H)-thione 4. IR spectra of compounds 4 showed the presence of a C=S band at 1270 cm\(^{-1}\) and an absorption band in the range 3433–3490 cm\(^{-1}\) attributed to the amine (NH). The 1H NMR spectrum of compound 4 two doublet signals at \(\delta = 7.28\) and 7.94 due to thiophenyl-\(C_4\)H and thiophenyl-\(C_3\)H and another at 8.11 as a result of thiophenyl-\(C_5\)H. The spectra displayed a singlet at 8.82 for NH, respectively.

The hydrazinopyrimidine derivative 5 was synthesized by condensation of the thiopyrimidinone 4 with hydrazine hydrate in refluxing alcohol, the structure of compound 5 was confirmed by the IR, 1H NMR and elemental analysis, where its IR revealed the absorption bands at \(\nu_{\text{max}} = 3212\) for the NH and 3184 cm\(^{-1}\) for the NH group. \(^1\)H NMR spectrum gave the signals at \(\delta = 8.93–8.95\) as a broad singlet for NH, hydrazine NH, respectively (Scheme 1).

Cyclocondensation of chalcone 3 and ethyl cyanoacetate in the presence of sodium ethoxide under the reflux conditions [33] gave pyranone derivative 6. Condensation with hydrazinehydrate [34, 35] in refluxing ethanol leads to ring transformation producing corresponding pyridinones 7. The structure of the target 7 was confirmed from its spectral data, where is IR spectra showed absorption bands in the region 2222 and 1688 cm\(^{-1}\) characteristic for C≡N and carbonyl group, respectively (Scheme 2).

The hydrazinopyrimidine derivative 5 was used as a precursor for the synthesis of some heterocyclic compounds. The hydrazinopyrimidine derivative 5 reacted with ethyl acetoacetate in excess manner to afford compound 8. The formation of 8 may be proceeds via the formation of pyrazolone derivative 9 followed by the attack of methylene anion of pyrazolone to ketonic function of ethyl acetoacetate followed by pyran cyclization. IR spectrum of compound 8 revealed the absorption peaks at 1715 cm\(^{-1}\) characteristic of C=O groups respectively, \(^1\)H NMR exhibited the two singlets at \(\delta = 2.25\) and 2.32 for 2 CH\(_3\) protons and a singlet at \(\delta = 5.60\) ppm for pyranone H. Furthermore, the pyrimidine pyrazolone compound
9 was obtained as a result of attack of hydrazinofunction of 5 to ethyl acetoacetate. The pyrazolo pyrimidine 10 was synthesized by heating an alcoholic solution of compound 5 (10.0 mmol.) with acetylacetone (10.0 mmol.) at reflux temperature for 5 h. The IR spectra of 9 and 10 showed the disappearance of the hydrazine group where the 1H NMR spectrum showed singlet pyrimidine H at $\delta=8.95$ ppm and two singlets for the two CH$_3$ protons, respectively (Scheme 3).

Scheme 2 Synthesis of pyranone and pyridinones derivatives

Scheme 3 Synthesis of isolated and fused pyrimidine derivatives

Biological activity studies

In vitro anti-inflammatory activity

In vitro COX-1 and COX-2 inhibition Compounds (3–6) were calorimetrically evaluated for their anti-inflammatory activities in vitro for COX-1 and COX-2 at 590 nm using ovine COX-1/COX-2 inhibitor screening assay kit [36]. Celecoxib was used as a standard reference drug.

In vitro 5-LOX inhibition A bnova 5 lipoxygenase inhibitor screening assay was used [37]. Meclofenamate sodium was used as a standard reference drug. Results were expressed in Table 1 as IC$_{50}$ as means of three determinations the selectivity index was calculated also as IC$_{50}$ (COX-1)/IC$_{50}$ (COX-2).

In vivo anti-inflammatory activity

Carrageenan induced rat paw edema in rats: Fifty rats were divided into ten groups (i.e., each group, five rats). The first group (control), received carboxymethyl cellulose. The second group was given diclofenac sodium as a standard anti-inflammatory drug. Groups (3–10) were
orally given the newly synthesized compounds (3–6) in two dosages (5 and 10 mg/kg). Results were expressed as rat paw edema percent. One hour later after administration of tested doses, carrageenan was injected sub planter in the left hind footpad of each rat as 0.05 ml of 1% solution in sterile distilled water. Plethysmometer was used to measure paw edema volume from 0 to 4 h after carrageenan injection. Paw edema volume was compared with vehicle control group and reduction percent was calculated as the following.

\[
\% \text{ reduction in edema} = \left(1 - \frac{Vt}{Vc}\right) \times 100
\]

Where Vt and Vc are the edema volume in the group treated with drug and control, respectively [38]. Results were expressed as mean ± standard deviation (SD). Differences between means were tested for significance using a one-way analysis of variance (ANOVA) followed by Duncan’s test (Table 2).

Antioxidant screening

a. DPPH free radical scavenging assay was determined (4). Results were presented in Table 3 as IC_{50} (µg/ml). Ascorbic acid was used as reference standard antioxidant.
b. Lipid peroxidation assay (5 and 6) was calculated as IC_{50} and recorded in Table 3.

The newly synthesized compounds exhibited a remarkable in vivo and in vitro anti-inflammatory activity. These results are in agreement with those obtained by other researchers [39]. They reported that some novel pyrimidine-pyridine hybrids inhibited cyclooxygenase enzyme and had a significant anti-inflammatory activity comparable to celecoxib as a standard drug. In this concern, other authors [40] reported an investigation of the efficacy of pyridine and pyrimidine analog of acetaminophen as peroxyl radical trapping antioxidants and inhibitors of enzyme catalyzed lipid peroxidation by cyclooxygenase and lipoxygenase. Compounds 3 and 4 exhibited antioxidant activity screening higher scavenging activity towards the DPPH radicals than that of ascorbic acid. Similar results were reported for new pyridine and triazolopyridine derivatives [41–45].

Table 2 Inhibition percent of rat paw edema after administration of newly synthesized compounds

Groups	0 h	1 h	2 h	3 h	4 h
Diclofenac sodium	0.49 ± 0.03²	30.22 ± 1.27²	33.85 ± 1.19²	36.21 ± 0.93²	41.10 ± 3.98²
Compound 3 5 mg/kg.b.wt	0.48 ± 0.027ab	21.72 ± 0.79²	22.79 ± 1.07²	24.79 ± 0.49³	28.41 ± 1.30³
Compound 3 10 mg/kg.b.wt	0.47 ± 0.04ab	31.98 ± 9.35³	29.93 ± 1.43³	34.16 ± 0.61³	41.15 ± 0.750³
Compound 4 5 mg/kg.b.wt	0.46 ± 0.03³	18.91 ± 1.19³	20.07 ± 1.43³	21.96 ± 1.25³	27.38 ± 1.68³
Compound 4 10 mg/kg.b.wt	0.49 ± 0.01ab	21.43 ± 0.96⁴	26.27 ± 49⁹	33.13 ± 2.64⁹	37.15 ± 0.69⁹
Compound 5 5 mg/kg.b.wt	0.49 ± 0.01³	11.62 ± 1.24⁴	14.61 ± 1.81⁹	18.41 ± 1³	19.48 ± 0.89³
Compound 5 10 mg/kg.b.wt	0.48 ± 0.01ab	15.41 ± 0.83³	18.83 ± 0.75²	24.19 ± 1.59³	28.59 ± 2.26³
Compound 6 5 mg/kg.b.wt	0.50 ± 0.02³	9.61 ± 1.12³	12.28 ± 1.38³	17.19 ± 1.26³	18.51 ± 2.26³
Compound 6 10 mg/kg.b.wt	0.49 ± 0.01³	13.75 ± 1.15³	17.52 ± 1.1³	20.43 ± 0.65³	22.39 ± 1.16³

Values are expressed as mean ± SD
Different superscript letters are significantly different at P ≤ 0.05
Table 3 Showing antioxidant activities of the newly synthesized compounds

Groups	IC50 (μg/ml) for DPPH Scavenging	IC50 (μg/ml) for anti-lipid peroxidation
Compound 3	10.72 ± 0.54	16.81 ± 2.71
Compound 4	12.64 ± 0.41	22.53 ± 3.25
Compound 5	14.61 ± 0.72	23.62 ± 2.31
Compound 6	15.26 ± 0.44	22.67 ± 3.51
Ascorbic acid	13.71 ± 0.75	25.72 ± 1.23

Experimental
Chemistry
Melting points were measured using an Electrothermal IA 9100 equipment with open capillary tube and were kept uncorrected. All experiments were done using dry solvents. TLC was performed on Merck Silica Gel 60F254 with detection by way of UV Light. The formed compound has been purified using recrystallization.

1-(4-pyridin-3-yl)-6-(thiophen-2-yl)pyrimidin-2-yl)hydrazine (5)
The reaction of thiopyrimidinone 4 (10.0 mmol) with hydrazine hydrate (10.0 mmol) catalyzed by acetic acid (5 drops) in refluxing ethanol for 6 h. Evaporation of alcohol and recrystallization with ethanol gave compound 5 as pale brown crystals mp 180–182 °C, yield 85%. IR: νmax/cm⁻¹: 3212 (NH₂), 3184 (NH). ¹H NMR (DMSO-d₆, 100 MHz) δ: 110.2, 123.9, 127.1, 128.1, 130.5, 136.6, 137.2, 151.5, 152.0, 157.164.6, 180.4. Anal. Calcld for C₁₁H₇N₂S₂ (268.32): C, 57.97; H, 3.92; N, 26.03%.

2-oxo-6-(pyridin-3-yl)-4-(thiophen-2-yl)-2H-pyran-3-carbonitrile (6)
To a stirred solution of chalcone 3 (10 mmol) and ethyl cyanocacetate (10 mmol) in 50 ml absolute ethanol, a sodium ethoxide solution prepared from sodium metal (0.23 g, 10 mmol) and 50 ml of absolute ethanol then thiourea (10 mmol) was added. The reaction mixture was refluxed for 16 h, left to cool and poured into crushed ice and neutralized with diluted hydrochloric acid, filtration, washed with ethanol and dried. Crystallization from EtOH afforded the pyrimidine derivatives 4. Yellow powder, yield 74%, mp 220–225 °C; IR (KBr): 3433 (NH), 1270 (C=O); ¹H NMR (300 MHz, DMSO-d₆): δ = 6.93–6.96 (t, 1H, H5'-pyridine), 7.47–7.51 (dd, 1H, H3'-pyridine), 7.30–7.37 (t, 1H, H4'-pyridine), 7.28 (d, 1H, J = 3.6 Hz, thienyl-C3'H), 7.94 (dd, 1H, thiényl-C4'H), 8.11 (d, 1H, J = 5.2 Hz, thienyl-C5'H), 8.82 (s, D₂O-exchangeable, 1H, pyrimidin NH). ¹³CNMR (DMSO-d₆, 100 MHz) δ: 112.0, 123.9, 127.1, 128.2, 130.5, 136.6, 137.2, 151.5, 152.0, 157.164.6, 180.4. Anal. Calcld for C₁₃H₁₃N₆S₃ (297.32): C, 57.54; H, 3.34; N, 15.48; S, 23.63; Found: C, 57.49; H, 3.32; N, 15.49; S, 23.59%.

4-(pyridin-3-yl)-6-(thiophen-2-yl)pyrimidin-2(1H)-thione (4)
Chalcone 3 (10 mmol) was added to sodium ethoxide solution [prepared from sodium metal (0.23 g, 10 mmol) and 50 ml of absolute ethanol] then thiourea (10 mmol) was added. The reaction mixture was refluxed for 16 h, left to cool and poured into crushed ice and neutralized with diluted hydrochloric acid, filtration, washed with ethanol and dried. Crystallization from EtOH afforded the pyrimidine derivatives 4. Yellow powder, yield 74%, mp 220–225 °C; IR (KBr): 3433 (NH), 1270 (C=O); ¹H NMR (300 MHz, DMSO-d₆): δ = 6.93–6.96 (t, 1H, H5'-pyridine), 7.47–7.51 (dd, 1H, H3'-pyridine), 7.30–7.37 (t, 1H, H4'-pyridine), 7.28 (d, 1H, J = 3.6 Hz, thienyl-C3'H), 7.94 (dd, 1H, thiényl-C4'H), 8.11 (d, 1H, J = 5.2 Hz, thienyl-C5'H), 8.82 (s, D₂O-exchangeable, 1H, pyrimidin NH). ¹³CNMR (DMSO-d₆, 100 MHz) δ: 112.0, 123.9, 127.1, 128.2, 130.5, 136.6, 137.2, 151.5, 152.0, 157.164.6, 180.4. Anal. Calcld for C₁₃H₁₃N₆S₃ (297.32): C, 57.54; H, 3.34; N, 15.48; S, 23.63; Found: C, 57.49; H, 3.32; N, 15.49; S, 23.59%.

(E)-1-(pyridin-3-yl)-3-(thiophen-2-yl)prop-2-en-1-one (3)
To a stirred mixture of thiophene-2-carbaldehyde 1 (100 mmol) and 3-acetylpyridine 2 (100 mmol) in 200 ml ethanol at room temperature, 40% NaOH aqueous solution was added portion-wise while stirring 2 h. The pale yellow precipitate formed was filtered and washed using 4% aqueous HCl, and crystallized from ethanol to give chalcone 3 in 82% yield, mp 256–258 °C, IR (KBr) cm⁻¹: 3336, 3255, 1678, 1645; ¹H NMR (300 MHz, DMSO-d₆): δ: 7.47–7.51 (dd, 1H, H3'-pyridine), 7.30–7.327 (t, 1H, H4'-pyridine), 7.53 (d, 1H, J = 12.9 Hz, (C=O)(CH=C), 7.92 (d, 1H, J = 12.9 Hz, C=CH), δ = 7.28(d, 1H, J = 3.6 Hz, thienyl-C3'H), 7.94 (dd, 1H, thienyl-C4'H), 8.11 (d, 1H, J = 5.2 Hz, thienyl-C5'H). ¹³CNMR (DMSO-d₆, 150 MHz) δ: 200.18 (C=O);153.3 (C4'-pyridine); 149.2 (C2'-pyridine); 147.4 (C3'), 135.2 (C4''), 134.9 (C6'-pyridine); 133.2 (C7'-pyridine); 132.8 (C8''), 127.1(C2'); 126.8 (C5'-pyridine);125.4 (C3'');123.6(C1''). Anal. Calcld for C₁₃H₁₁O₂S (235.27): C, 66.95; H, 4.21; N, 6.51; S, 14.90; Found C, 66.89; H, 4.19; N, 6.50; S, 14.79%.
cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ = 7.32 (s, 1H, C5), 6.93–6.96 (t, 1H, H₅’-pyridine), 7.47–7.51 (dd, 1H, H₃’-pyridine), 7.30–7.327 (t, 1H, H₄’-pyridine), 7.28(d, 1H, J = 3.6 Hz, thienyl-C₃’H), 7.94 (dd, 1H, thienyl-C₄’H), 8.11 (d, 1H, J = 5.2 Hz, thienyl-C₅’H). ¹³C-NMR (DMSO-d₆, 100 MHz): δ: 110.8, 115.9, 121.3, 123.8, 127.1, 128.2, 130.5, 131.6, 136.8, 149.6, 150.0, 150.5, 169.4. Anal. Calcd. For C₁₅H₁₀N₄OS (294.33): C, 61.21; H, 3.42; N, 19.04; S, 7.99. Found: C, 62.79; H, 3.79; N, 19.03; S, 8.10.

1-amino-6-oxo-4-(thiophen-2-yl)-1,6-dihydro-[2,3'-bipyridine e]-5-cabanonitrile (7)

To a solution of the pyranone (6 mmol) in 30 ml of ethanol, hydrazine hydrate (2 mmol) was added. The mixture was refluxed for 6 h. Left to cool, the formed solid product was filtered off, dried, and then crystallized from ethanol to give compounds 7. Yellow powder, yield 78%, mp 250–252 °C; IR (KBr): 3320, 3190 (NH₂, NH), 2219 (C≡N), 1670 (C=O) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ = 2.51(s, D₂O-exchangeable, 2H, NH₂), 6.93–6.96 (t, 1H, H₅’-pyridine), 7.30–7.327 (t, 1H, H₄’-pyridine), 7.28(d, 1H, J = 3.6 Hz, thienyl-C₃’H), 7.94 (dd, 1H, thienyl-C₄’H), 8.11 (d, 1H, J = 5.2 Hz, thienyl-C₅’H). ¹³C-NMR (DMSO-d₆, 100 MHz): δ: 110.8, 115.9, 121.3, 123.8, 127.1, 128.2, 130.5, 131.6, 136.8, 149.6, 150.0, 150.5, 169.4. Anal. Calcd. For C₁₅H₁₀N₄OS (294.33): C, 61.21; H, 3.42; N, 19.04; S, 7.99. Found: C, 62.79; H, 3.79; N, 19.03; S, 8.10.

3-methyl-1-[(4-(pyridin-3-yl)-6-(thiophen-2-yl) pyrimidin-2-yl)-1H-pyrrozol-5(4H)-one (9)

Compound 5 (10 mmol) and ethyl acetoacetate (10 mmol) in acetic acid (30 ml) was heated at reflux temperature for 6 h. The mixture was poured into ice cold water and the obtained product washed with ice cold water, dried and recrystallized from ethanol to afford pale brown crystals of 9 mp 225–227 °C, yield 76% IR: vmax/cm⁻¹: 3216 (NH), 1718 (C=O). ¹H NMR (DMSO-d₆): δ 1.20 (s, 3H, CH₃), 2.25 (s, 2H, CH₂, pyrazol), 6.93–6.96 (t, 1H, H₅’-pyridine), 7.47–7.51 (dd, 1H, H₃’-pyridine), 7.30–7.327 (t, 1H, H₄’-pyridine), 7.28(d, 1H, J = 3.6 Hz, thienyl-C₃’H), 7.94 (dd, 1H, thienyl-C₄’H), 8.11 (d, 1H, J = 5.2 Hz, thienyl-C₅’H). ¹³C-NMR (DMSO-d₆, 100 MHz): δ: 24.6, 42.4, 99.9, 124.0, 125.5, 127.6, 133.1, 134.1, 140, 148.0, 149.1, 156.1, 160.2, 163.1, 159.5, 172.8. Anal. Calcd. For C₁₇H₁₃N₅O₂S (401.44): C, 64.25; H, 2.84; N, 9.96; S, 11.42%.

Conclusions

We have reported the synthesis of (E)-1-(pyridin-3-yl)-3-(thiophen-2-yl) prop-2-en-1-one 3 and using to designing a polycyclic heterocyclic compounds containing five and/or six rings fused. Moreover, we concluded that compounds 3 and 4 showed a significant antioxidant activity regarding cyclooxygenase inhibitory activity, compound 3 presented the highest inhibitory activity in comparison to the standard reference drug [IC₅₀ as 3.7 and 0.39 µM for COX-1 and COX-2, respectively compared to 5.47 and 0.86 for the standard celecoxib]. Compound 4 also
showed a potent inhibitory activity for COX-2 with IC$_{50}$ 0.44. Compounds 5 and 6 showed inhibitory activity against COX-1 and COX-2 nearly like that of the standard drug. Compound 3 showed the highest inhibitory potential for 5-lipoxygenase with IC$_{50}$ (4.71 µM) compared to (6.15 µM) of the standard anti-inflammatory drug meclofenamato sodium.

References

1. Firoozpour L, Edraki N, Nakhjiri M, Emami S, Safavi M, Ardestani SK, Kho

2. Baviskar BA, Baviskar B, Shiradkar MR, Deokate UA, Khadabadi SS (2009) Synthesis and antimicrobial activity of some quinolinylpyrimidine derivatives. J Chin Soc 29:1125–1130

3. Babashehab PB, Sachin AF, Rajesh NG (2010) Synthesis and biological evaluation of nitrogencontaining chalcones as possible anti-inflamma
tory and antioxidant agents. Bioorg Med Chem Lett 20:730–733

4. Vogel S, Barbic M, Jürgenliemk G, Heilmann J (2010) Synthesis, cytotoxic
ity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45:2206–2213

5. Tran T-D, Park H, Kim HP, Ecker GF, Thai K-M (2009) Inhibitory activity of prostaglandin E2 production by the synthetic 21-hydroxychalcone ana
logues: synthesis and SAR study. Bioorg Med Chem Lett 19:1650–1653

6. Kim BT, Kwang-joong O, Chun JC, Hwang KJ (2008) Synthesis of dihy
droxylated chalcone derivatives with diverse substitution patterns and their radical scavenging ability toward DPPH free radicals. Bull Korean Chem Soc 29:1125–1130

7. Do TH, Nguyen DM, Truong VD, Do THT, Le MT, Pham TQ, Thai KM, Tran TD (2016) Synthesis and selective cytotoxic activities on rhabdomyosar
coma and noncancerous cells of some heterocyclic chalcones. Molecules 21(3):329. https://doi.org/10.3390/molecules21030329

8. Do TH, Nguyen DM, Truong VD, Do THT, Le MT, Pham TQ, Thai KM, Tran TD (2016) Synthesis and selective cytotoxic activities on rhabdomyosar
coma and noncancerous cells of some heterocyclic chalcones. Molecule 21:329. https://doi.org/10.3390/molecules21030329

9. Neves MP, Lima RT, Choang K, Pakkong P, de São José Nascimento M, Vasconcelos MH, Pinto M, Silva AM, Cidade H (2012) Synthesis and natural chalcones and dihydrochalcones in vitro. Toxicology 25:394–400

10. Babashehab PB, Sachin AF, Rajesh NG (2010) Synthesis and biological evaluation of nitrogencontaining chalcones as possible anti-inflamma
tory and antioxidant agents. Bioorg Med Chem Lett 20:730–733

11. Vogel S, Barbic M, Jürgenliemk G, Heilmann J (2010) Synthesis, cytotoxic
ity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45:2206–2213

12. Tran T-D, Park H, Kim HP, Ecker GF, Thai K-M (2009) Inhibitory activity of prostaglandin E2 production by the synthetic 21-hydroxychalcone ana
logues: synthesis and SAR study. Bioorg Med Chem Lett 19:1650–1653

13. Kim BT, Kwang-joong O, Chun JC, Hwang KJ (2008) Synthesis of dihy
droxylated chalcone derivatives with diverse substitution patterns and their radical scavenging ability toward DPPH free radicals. Bull Korean Chem Soc 29:1125–1130

14. Do TH, Nguyen DM, Truong VD, Do THT, Le MT, Pham TQ, Thai KM, Tran TD (2016) Synthesis and selective cytotoxic activities on rhabdomyosar
coma and noncancerous cells of some heterocyclic chalcones. Molecules 21(3):329. https://doi.org/10.3390/molecules21030329

15. Neves MP, Lima RT, Choang K, Pakkong P, de São José Nascimento M, Vasconcelos MH, Pinto M, Silva AM, Cidade H (2012) Synthesis and natural chalcones and dihydrochalcones in vitro. Toxicology 25:394–400

16. Babashehab PB, Sachin AF, Rajesh NG (2010) Synthesis and biological evaluation of nitrogencontaining chalcones as possible anti-inflamma
tory and antioxidant agents. Bioorg Med Chem Lett 20:730–733

17. Vogel S, Barbic M, Jürgenliemk G, Heilmann J (2010) Synthesis, cytotoxic
ity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45:2206–2213

18. Tran T-D, Park H, Kim HP, Ecker GF, Thai K-M (2009) Inhibitory activity of prostaglandin E2 production by the synthetic 21-hydroxychalcone ana
logues: synthesis and SAR study. Bioorg Med Chem Lett 19:1650–1653

19. Kim BT, Kwang-joong O, Chun JC, Hwang KJ (2008) Synthesis of dihy
droxylated chalcone derivatives with diverse substitution patterns and their radical scavenging ability toward DPPH free radicals. Bull Korean Chem Soc 29:1125–1130

20. Do TH, Nguyen DM, Truong VD, Do THT, Le MT, Pham TQ, Thai KM, Tran TD (2016) Synthesis and selective cytotoxic activities on rhabdomyosar
coma and noncancerous cells of some heterocyclic chalcones. Molecules 21(3):329. https://doi.org/10.3390/molecules21030329

21. Neves MP, Lima RT, Choang K, Pakkong P, de São José Nascimento M, Vasconcelos MH, Pinto M, Silva AM, Cidade H (2012) Synthesis and natural chalcones and dihydrochalcones in vitro. Toxicology 25:394–400

22. Babashehab PB, Sachin AF, Rajesh NG (2010) Synthesis and biological evaluation of nitrogencontaining chalcones as possible anti-inflamma
tory and antioxidant agents. Bioorg Med Chem Lett 20:730–733

23. Vogel S, Barbic M, Jürgenliemk G, Heilmann J (2010) Synthesis, cytotoxic
ity, anti-oxidative and anti-inflammatory activity of chalcones and influence of A-ring modifications on the pharmacological effect. Eur J Med Chem 45:2206–2213

24. Tran T-D, Park H, Kim HP, Ecker GF, Thai K-M (2009) Inhibitory activity of prostaglandin E2 production by the synthetic 21-hydroxychalcone ana
logues: synthesis and SAR study. Bioorg Med Chem Lett 19:1650–1653

25. Kim BT, Kwang-joong O, Chun JC, Hwang KJ (2008) Synthesis of dihy
droxylated chalcone derivatives with diverse substitution patterns and their radical scavenging ability toward DPPH free radicals. Bull Korean Chem Soc 29:1125–1130

26. Do TH, Nguyen DM, Truong VD, Do THT, Le MT, Pham TQ, Thai KM, Tran TD (2016) Synthesis and selective cytotoxic activities on rhabdomyosar
coma and noncancerous cells of some heterocyclic chalcones. Molecules 21(3):329. https://doi.org/10.3390/molecules21030329

27. Neves MP, Lima RT, Choang K, Pakkong P, de São José Nascimento M, Vasconcelos MH, Pinto M, Silva AM, Cidade H (2012) Synthesis and natural chalcones and dihydrochalcones in vitro. Toxicology 25:394–400

28. Babashehab PB, Sachin AF, Rajesh NG (2010) Synthesis and biological evaluation of nitrogencontaining chalcones as possible anti-inflamma
tory and antioxidant agents. Bioorg Med Chem Lett 20:730–733
Pyrimidin-2-yl)hydrazine and its pyrazolo pyrimidine derivatives. Medicinal chemistry. Med chem 6:4. https://doi.org/10.4172/2161-0444.1000350
26. Murakami N, Takase H, Saito T, Iwata K, Miura H, Naruse T (1998) Effects of a novel non-steroidal anti-inflammatory drug (M-5011) on bone metabolism in rats with collagen-induced arthritis. Eur J Pharmacol 352(1):81–90
27. Kuldasamay R, Adhikari AV, Stables JP (2009) A new class of anticonvulsants possessing 6Hz activity: 3,4-dialkylkoxothiophene bishydrazones. Eur J Med Chem 44(11):4376–4384
28. Lu X, Wan B, Franzblau SG, You Q (2011) Design, synthesis and antitubercular evaluation of new 2-acetylated and 2-alkylated amino-5-(4-(benzyloxy)phenyl)thiophene-3-carboxylic acid derivatives. Part 1. Eur J Med Chem 46(9):3551–3563
29. Kaushik NK, Kim HS, Chae YJ et al (2012) Synthesis and antitumor activity of di(3-thienyl)methanol and di(3-thienyl)methane. Molecules 17(10):11456–11468
30. Shehab WS, Saad HA, Mouneir SM (2017) Synthesis and antitumor/antiviral evaluation of new 6-thienyl-5-cyano-2-thiouracil derivatives and their thiogalactosides analogs. Curr Org Synth 14:291–298
31. Shehab WS, Mouneir SM (2015) Design, synthesis, antimicrobial activity and anticancer screening of some new 1,3-thiazolidin-4-ones derivatives. Eur J Chem 6:157
32. Shehab WS (2009) Synthesis of tetrahydropyrimidine derivatives and its glycosides. Curr Org Chem 13:14
33. Corral C, Lissavetzky J, Manzanares I et al (1999) Synthesis and preliminary pharmacological evaluation of thiophene analogues of vioxx as potentialantiinflammatory drugs. Bioorg Med Chem 7(1):349–1359
34. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM (2009) Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 44:2632–2635
35. Kulmacz RJ, Lands WEM (1983) Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins 25:531–540
36. Jacob J, Prakash Kumar B (2015) Dual COX/LOX inhibition: screening and evaluation of effect of medicinal plants of Kerala as Antiinflammatory agents Pharmacogn. Phytochemistry 3:62–66
37. Kuroda T, Suzuki F, Tamura T, Ohmori K, Hosoe H (1992) A novel synthesis and potent antiinflammatory activity of 4-hydroxy-2(1H)-oxo-1-phenyl-1,8-naphthyridine-3-carboxamides. J Med Chem 36:1130–1136
38. Simone RD, Chini MG, Bruno L, Riccio R (2011) Benzimidazole-1,2,3-triazole hybrid molecules: synthesis and evaluation for antibacterial/antifungal activity. J Med Chem 54:1565–1575
39. Khalil NA, Ahmed EM, Mohamed KO, Nissan YM (2014) Synthesis and biological evaluation of new pyrazolone–pyrimidine conjugates as antiinflammatory and analgesic agents. Bioorg Med Chem 22:2080–2089
40. Lokwani D, Azad R, Sarkate A, Reddanna P, Shinde D (2015) Structure based library design (SBLD) for new 1, 4-dihydropyrimidine scaffold as simultaneous COX-1/COX-2 and 5-LOX inhibitors. Bioorg Med Chem 23:4533–4543
41. Abdelgawad MA, Baki RB, Aouzou AA (2018) Novel pyrimidine-pyridine hybrids: synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg Chem 77:339–348
42. Nam TG, Nara SJ, Zagol-Hapipite I, Cooper T, Valgimigli L, Oates JA, Porter NA, Boutaud O, Pratt DA (2009) Pyridine and pyrimidine analogs of acetaminophen as inhibitors of lipid peroxidation and cyclooxygenase and lipoxygenase catalysis. Org Biomol Chem 7(24):5103–5112
43. Kotb ER, Soliman HA, Morsy EMH, Abdelwahed NAM (2017) New pyridine and triazolopyridine derivatives: synthesis, antimicrobial and antioxidant evaluation. Acta Pol Pharm 74(3):861–872
44. Mojarrab M, Soltani R, Alabadi A (2013) Pyridine based chalcones: synthesis and evaluation of antioxidant activity of 1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one derivatives. Jundishapur J Nat Pharm Prod 8(3):125–130
45. Ranj J, Saini M, Kumar S, Verma PK (2017) Design, synthesis and biological potentials of novel tetrahydroimidazo[1,2-a]pyrimidine derivatives. Chem Cent J 11:116

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com