On moderate deviations in Poisson approximation

Aihua Xia (夏爱华)

School of Mathematics and Statistics
The University of Melbourne, VIC 3010

24 June, 2019

Charles Stein’s Influence on Probability

(Based on a joint work with Qingwei Liu)
Why?

• Distributional approximation pays little attention to the tail probabilities.

• In statistical inference, the tail probabilities matter!

• The error estimates of distributional approximation are useless because the tail probabilities are often significantly smaller than the error estimates.
What’s the moderate deviation?

Petrov (1975), p. 228: let $X_i, 1 \leq i \leq n$, be independent and identically distributed (i.i.d.) random variables with $\mathbb{E}(X_1) = 0$ and $\text{Var}(X_1) = 1$, if for some $t_0 > 0$,

$$\mathbb{E}e^{t_0 |X_1|} \leq c_0 < \infty,$$

then there exist positive constants c_1 and c_2 depending on c_0 and t_0 such that

$$\mathbb{P} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i \geq z \right) \frac{1}{1 - \Phi(z)} = 1 + O(1) \frac{1 + z^3}{\sqrt{n}}, \quad 0 \leq z \leq c_1 n^{1/6},$$

where $\Phi(z)$ is the distribution function of the standard normal, $|O(1)| \leq c_2$.

- c_1 and c_2?
- The range of values of n?

[Slide 2-1]
Why do we need Poisson?

• Since the pioneering work Chen (1975), it has been shown that, for the counts of rare events, Poisson distribution and its “relatives” provide a better approximation in terms of stronger metrics.

• BUT for the tail probabilities, we don’t need the stronger metrics, can’t we use normal?
Example

- Let \(\{X_i : 1 \leq i \leq n\} \) be iid with a continuous cumulative distribution function, we are interested in the distribution of records in \(\{X_i\} \).

- \(X_1 \) is always a record: ignore it.

- For \(2 \leq i \leq n \), \(X_i \) is a record if \(X_i > \max_{1 \leq j \leq i-1} X_j \).

- \(I_i := 1[X_i > \max_{1 \leq j \leq i-1} X_j] \).

- \(S_n := \sum_{i=2}^{n} I_i \).
Approximations of S_n

- $\mathbb{E}I_i = 1/i$ and $\{I_i : 2 \leq i \leq n\}$ are independent.

- $\lambda_n := \mathbb{E}S_n = \sum_{i=2}^{n} \frac{1}{i}; \quad \sigma^2_n = \text{Var}(S_n) = \sum_{i=2}^{n} \frac{1}{i} \left(1 - \frac{1}{i}\right)$.

- $\lambda_n - \sigma_n \in (0, 1)$.

- Under the Kolmogorov distance, the error of
 - normal approximation is $O(\log^{-1/2} n)$,
 - Poisson approximation is $O(\log^{-1} n)$.

[Slide 5]
How about the tail probabilities?

We consider the tail probabilities $\mathbb{P}(S_n \geq v_n)$ with $v_n := \lambda_n + 3 \cdot \sigma_n$ and compare $\mathbb{P}(S_n \geq v_n)$ with moderate deviations based on $\mathbb{P}(\lambda_n), \mathbb{P}(\sigma_n^2), N_n \sim N(\lambda_n, \sigma_n^2)$.

[Slide 6]
$\frac{\Pr(S_n \geq v_n)}{\Pr(N_n \geq v_n)}$
\[P(S_n \geq v_n)/P(N_n \geq v_n) \text{ with 0.5 correction} \]
\[\frac{\mathbb{P}(S_n \geq v_n)}{P_n(\lambda_n)([v_n, \infty))} \]
\[\frac{\mathbb{P}(S_n \geq v_n)}{\mathbb{P}_n(\sigma^2_n)([v_n, \infty))} \]
The winner is $P_n(\lambda_n)$
Literature?

- Chen, L. H. Y. & Choi, K. P. (1992). Some asymptotic and large deviation results in Poisson approximation.
- Barbour, A. D., Chen, L. H. Y. & Choi, K. P. (1995). Poisson approximation for unbounded functions, I: Independent summands.
- Chen, L. H. Y., Fang, X. & Shao, Q.-M. (2013). Moderate deviations in Poisson approximation: a first attempt.
- Čekanavičius, V. & Vellaisamy, P. (2019). On large deviations for sums of discrete m-dependent random variables.
Pn(1) tails vs Normal tails (with and without .5 correction)
One std to four std away from the mean

![Graphs showing ratio Pn/N for different datasets](image)
One std to six std away from the mean

Graphs:
- **Pn(4)/N(4,4)**
- **Pn(16)/N(16,16)**
- **Pn(100)/N(100,100)**
- **Pn(10000)/N(10000,10000)**
Conclusions

Poisson(\(\lambda\)) vs \(N(\lambda, \lambda)\):

- Poisson has a heavier tail than normal tail;
- there is an acceleration of the ratio of the tail probabilities beyond a few standard deviations when \(\lambda\) is not large enough;
- unlike normal, looking at the \# of standard deviations away does not work for Pn when \(\lambda\) is not large enough;
- a small change of the value of \(\lambda\) has significant impact on its moderate deviations.
Pn: mean or var?

- \(W_n \sim \text{Bi}(n, p) \) with \(0 < p < 1 \), \(Y_n \sim \text{Pn}(np) \) and \(Z \sim N(0, 1) \), then for a fixed \(x > 0 \), as \(n \to \infty \),

\[
\frac{\mathbb{P}(W_n \geq np + x\sqrt{np(1-p)})}{\mathbb{P}(Y_n \geq np + x\sqrt{np(1-p)})} \sim \frac{\mathbb{P}(Z \geq x)}{\mathbb{P}(Z \geq x\sqrt{1-p})}.
\]

- The error systematically deviates from 1 as \(x \) moves away from 0.
• Introducing an adjustment into the approximate models: for a fixed \(x > 0 \), as \(n \to \infty \),

\[
\frac{\mathbb{P}(W_n \geq np + x\sqrt{np(1-p)})}{\mathbb{P}(Y_n \geq np + x\sqrt{np})} \sim 1
\]

or equivalently, with \(Y'_n \sim \text{Pn}(np(1-p)) \),

\[
\frac{\mathbb{P}(W_n \geq np + x\sqrt{np(1-p)})}{\mathbb{P}(Y'_n \geq np(1-p) + x\sqrt{np(1-p)})} \sim 1.
\]

• Conclusion:

– the variance of the \text{Pn} matters and it must be large to have good moderate deviation approximation;

– either we have to shift the mean of the \text{Pn} or twist \(K \) in \(\mathbb{P}(\text{Pn} \geq K) \) to remove the systematic bias.
Pn vs Bi(n, 0.1)

\[\sigma_n^2 = 0.09n, \text{ the plot of } \left(\frac{\text{Bi}(n,0.1)([0.1n+3\sigma_n,\infty))}{\text{Pn}(\sigma_n^2)([\sigma_n^2+3\sigma_n,\infty))} - 1 \right) \times \sqrt{n} : \]
Zoom in

Mod Dev Error

(Bin tail/Pn tail-1)*root(n)
$P_n \text{ vs } Bi(n, 0.01)$

$\sigma_n^2 = 0.0099n, \left(\frac{Bi(n, 0.01)([0.01n+3\sigma_n, \infty])}{P_n(\sigma_n^2)([\sigma_n^2+3\sigma_n, \infty])} - 1 \right) \times \sqrt{n}$:
Poisson moderate deviation
– Chen, Fang & Shao (2013)

• For a non-negative random variable W with mean $\lambda > 0$, rv W^s is said to have W-size biased distribution if

$$\mathbb{E}[W f(W)] = \lambda \mathbb{E} f(W^s)$$

for all suitable functions f.

• If W and W^s are defined on the same probability space, then

$$d_{TV}(\mathcal{L}(W), \text{Pn}(\lambda)) \leq (1 - e^{-\lambda}) \mathbb{E}|W + 1 - W^s|.$$
• Assume that $\Delta := W + 1 - W^s \in \{-1, 0, 1\}$ and there are non-negative constants δ_1, δ_2 such that

$$P(\Delta = -1|W) \leq \delta_1, \quad P(\Delta = 1|W) \leq \delta_2 W.$$

For integers $k \geq \lambda$, let $\xi = (k - \lambda)/\sqrt{\lambda}$, there exists positive constants c and C, such that for $(\delta_1 + \delta_2 \lambda)(1 + \xi^2) \leq c$, we have

$$\left| \frac{P(W \geq k)}{P_n(\lambda)([k, \infty))} - 1 \right| \leq C \underbrace{(\delta_1 + \delta_2 \lambda)(1 + \xi^2)}_{\leq c}.$$
A toy example

• Let X_i’s be Bernoulli rvs with $\mathbb{P}(X_i = 1) = p_i$, $1 \leq i \leq n$.

• $W = \sum_{i=1}^{n} X_i$.

• For the size-biased distribution, we let $W_i = W - X_i$, $\mu = \mathbb{E}(W)$, then

$$\mathbb{E}[W f(W)] = \sum_{i=1}^{n} \mathbb{E}[X_i f(W)] = \mu \sum_{i=1}^{n} \frac{p_i}{\mu} \mathbb{E} f(W_i + 1).$$

• Let I be a $\{1, \ldots, n\}$-valued rv independent of $\{X_i\}$ and having $\mathbb{P}(I = i) = \frac{p_i}{\mu}$, then $W^s := W_I + 1$.

[Slide 25]
\[\Delta = W + 1 - W^s = X_I, \text{ so } P(\Delta = -1|W) = 0, \]
\[P(\Delta = 1|W) = E(X_I|W) = \sum_{i=1}^{n} \left(\frac{p_i}{\mu} \right) P(X_i = 1|W) \]
\[\leq \left(\max p_i \right) / \mu \sum_{i=1}^{n} P(X_i = 1|W) \]
\[= \left(\max p_i \right) / \mu E(W|W) = \left[\left(\max p_i \right) / \mu \right] W, \]
so \(\delta_2 = \left(\max p_i \right) / \mu. \)

- The moderate deviation bound is
\[\left| \frac{P(W \geq k)}{P_n(\mu)([k, \infty))} - 1 \right| \leq C(\max p_i)(1 + \xi^2). \]

- What is \(C? \)
Matching: similar

- \(n \): fixed;
- \(\pi \): a uniform random permutation of \(\{1, \ldots, n\} \);
- \(X_i = 1_{\{i=\pi(i)\}} \);
- \(W = \sum_{i=1}^{n} X_i \): \# fixed points in the permutation.
- \(\mathbb{P}(\{i = \pi(i)\}) = 1/n \) so \(\mu = 1 \).
- For \(j \neq i \), \(\mathbb{E}(X_j \mid X_i = 1) = 1/(n - 1) \), so \(\sum_{j \neq i} \mathbb{E}(X_j \mid X_i = 1) = 1 \), \(\mathbb{E}(W^2) = 2/n \) and \(\text{Var}(W) = 1 \).
- For the size-biased distribution, let \(W_i = W - X_i \), then

\[
\mathbb{E}[Wf(W)] = \sum_{i=1}^{n} \mathbb{E}[X_if(W)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[f(W_i+1) \mid i = \pi(i)].
\]
• W^s: equally likely, pick and fix an i, randomly permute the others.

• Chatterjee, Diaconis, and Meckes (2005): using π, we let I be uniformly distributed on $\{1, \ldots, n\}$ and independent of π, when $I = i$:

 - if $i = \pi(i)$, do nothing and let $\pi^s = \pi$;
- if $i \neq \pi(i)$, move i in π back to i, $\pi^{-1}(i)$ to $\pi(i)$.

```
\[ \pi^{-1}(i) \]
```

```
\[ \pi \]
```

```
\[ \pi_s \]
```
• We can write

\[
\pi^s(j) = \begin{cases}
I & \text{for } j = I, \\
\pi(I) & \text{for } j = \pi^{-1}(I), \\
\pi(j) & \text{else.}
\end{cases}
\]

• Using this coupling, for all \(k \) with \(k^2/n \leq c \),

\[
\left| \frac{\mathbb{P}(W \geq k)}{\text{Pn}(1)([k, \infty))} - 1 \right| \leq C \frac{k^2}{n}. \leq_c
\]
We do both!

- \(W \): a non-negative integer-valued random variable with mean \(\mu \) and variance \(\sigma^2 \).

- We consider a \(\text{Pn} \) approximation of \(W - a \) for an \(a < \mu \).

- Let \(\lambda = \mu - a \), \(Y \sim \text{Pn}(\lambda) \). Then for fixed integer \(k \) with \(x := \frac{k - \lambda}{\sqrt{\lambda}} \geq 1 \), we have

\[
\left| \frac{\mathbb{P}(W - a \geq k)}{\mathbb{P}(Y \geq k)} - 1 \right|
\leq 3\lambda^{-1} xe^{x^2+1} \left\{ \mu \mathbb{E} |W + 1 - W^s| + |\mu - \lambda| \right\}
+ \mathbb{P}(W - a < -1).
\]
When \(a = 0 \)

The bound is reduced to

\[
\left| \frac{\mathbb{P}(W \geq k)}{\mathbb{P}(Y \geq k)} - 1 \right| \leq 3xe^{x^2+1}E|W + 1 - W^s|.
\]

vs Chen, Fang & Shao (2013):

\[
\left| \frac{\mathbb{P}(W \geq k)}{\mathbb{P}(Y \geq k)} - 1 \right| \leq C(\delta_1 + \delta_2 \lambda)(1 + x^2).
\]

- Our bound is easy to compute.
- It contains no unspecified constants.
Can we do better?

- \{X_i : i \in \mathcal{I}\}: a class of non-negative integer valued random variables.

- Chen and Shao (2004): the class satisfies

 (LD2) For each \(i \in \mathcal{I}\), there exists an \(A_i \subset B_i \subset \mathcal{I}\) such that \(X_i\) is independent of

 \(\{X_j : j \in A_i^c\}\) and \(\{X_i : i \in A_i\}\) is independent of \(\{X_j : j \in B_i^c\}\).

- We set \(W = \sum_{i \in \mathcal{I}} X_i\), \(\mu = \mathbb{E}W\), \(\sigma^2 = \text{Var}W\);
 \(X_A = \{X_i : i \in A\}\).

- Let \(\theta_i := \text{ess sup} \max_j \mathbb{P}(W = j|X_{A_i}) \approx \max_j \mathbb{P}(W = j)\).
• Let $\mu_i = \mathbb{E}X_i$, $\lambda = \mu - a$, $Y \sim \text{Pn}(\lambda)$. For fixed integer k with $x := \frac{k-\lambda}{\sqrt{\lambda}} \geq 1$, we have

$$\left| \frac{\mathbb{P}(W - a \geq k)}{\mathbb{P}(Y \geq k)} - 1 \right| \leq \lambda^{-1} \left[4xe^{x^2+1} + 1 \right] \sum_{i \in \mathcal{I}} \theta_i \left\{ \mathbb{E}(X_i - \mu_i) \mathbb{E}(Z_i) | \mathbb{E}(Z_i') \right\}$$

$$+ \mathbb{E} \left[|X_i - \mu_i| Z_i (Z_i' - Z_i/2 - 1/2) \right] \right\}$$

$$+ 3|\lambda - \sigma^2| \lambda^{-1} xe^{x^2+1} + \mathbb{P}(W - a < -1).$$
Do we need MGF condition?

- In normal approximation: \(\mathbb{E} e^{t_0 |X_1|} \leq c_0 < \infty \).
- In \(\text{Pn} \): we don’t need it because the \(\text{Pn} \) tails are fatter.
 - In special cases, it is possible to prove that they meet the condition.
The Stein-Chen method: a key lemma

For $h = 1_{[k, \infty)}$, the solution of

$$\lambda f(j + 1) - j f(j) = h(j) - \text{Pn}(\lambda)\{h\}, \quad j \geq 0,$$

satisfies

(i) $\|f\| := \sup_{i \in \mathbb{Z}_+} |f(i)| \leq \lambda^{-1/2} e^{x^2+1} \text{Pn}(\lambda)\{h\}$;

(ii) $\Delta f(i)$ is negative and decreasing in $i \leq k - 1$; and positive and decreasing in $i \geq k$;

(iii) $\sup_{i \leq k-1} |\Delta f(i)| \leq \lambda^{-1} \left(1 + xe^{x^2+1}\right) \text{Pn}(\lambda)\{h\}$ and

$\sup_{i \geq k} |\Delta f(i)| \leq 3\lambda^{-1} xe^{x^2+1} \text{Pn}(\lambda)\{h\}$;

(iv) $\|\Delta f\| := \sup_{i \in \mathbb{Z}_+} |\Delta f(i)| \leq 3\lambda^{-1} xe^{x^2+1} \text{Pn}(\lambda)\{h\}$ and

$\|\Delta^2 f\| := \sup_{i \in \mathbb{Z}_+} |\Delta^2 f(i)| \leq \lambda^{-1} \left[4xe^{x^2+1} + 1\right] \text{Pn}(\lambda)\{h\}$.

[Slide 36]
Example

- \{X_i, 1 \leq i \leq n\}: independent Bernoulli random variables with \(\mathbb{P}(X_i = 1) = p_i \in (0, 1) \), \(W = \sum_{i=1}^{n} X_i \).

- \(\lambda = \mathbb{E} W - a > 0 \), \(\sigma^2 = \text{Var}(W) \), \(Y \sim \text{Pn}(\lambda) \) and \(x := \frac{k - \lambda}{\sqrt{\lambda}} \geq 1 \),

\[
\left| \frac{\mathbb{P}(W - a \geq k)}{\mathbb{P}(Y \geq k)} - 1 \right| \leq \left[4xe^{x^2+1} + 1 \right] \text{ something like } \max_i p_i/\sigma \\
+ 3|\lambda - \sigma^2|x\lambda^{-1}e^{x^2+1} + \exp \left\{ -\frac{(\mu - a + 2)^2}{2\mu} \right\}.
\]
Matching problem

For a fixed n, let π be a uniform random permutation of $\{1, \ldots, n\}$, $W = \sum_{i=1}^{n} 1\{i=\pi(i)\}$ be the number of fixed points in the permutation, then

$$\left| \frac{\mathbb{P}(W \geq k)}{\mathbb{P}(1)([k, \infty))} - 1 \right| \leq \frac{6}{n} x e^{x^2+1},$$

where $x := k - 1 \geq 1$.
2-runs

- \{\xi_1, \ldots, \xi_n\}: i.i.d. Bernoulli(p) random variables with
 \(n \geq 9, \ p < 2/3, \ \xi_{j+n} = \xi_j \) for \(-3 \leq j \leq n\).

- \(X_i = \xi_i \xi_{i+1}, \ W = \sum_{i=1}^{n} X_i \).

- \(\mu = np^2 \) and \(\sigma^2 = np^2(1 - p)(3p + 1) \).

- \(a := \lfloor np^3(3p - 2) \rfloor, \ \lambda = \mu - a, \ Y \sim \text{Pn}(\lambda), \) then

\[
\left| \frac{\mathbb{P}(W_n - a \geq k)}{\mathbb{P}(Y \geq k)} - 1 \right| \leq \frac{9.2(4xe^{x^2+1} + 1)(1 + 5p)}{(1 + 2p - 3p^2)\sqrt{(n - 8)(1 - p)^3}} + \frac{3xe^{x^2+1}}{1 \lor [np^2(1 + 2p - 3p^2)]}.
\]
Take home messages

- For the counts of rare events, the tail probabilities can be approximated by the moderate deviations of P_n with twists of the parameters.

- The robustness of the tail behaviour of the P_n for large λ has not been incorporated into the bound.

- We conjecture that bound can be sharpened by a factor possibly as much as $1/3$.

- We don’t have any idea about the lower bound.
Thank you!