Jordan domains with a rectifiable arc in their boundary

V. Liontou and V. Nestoridis

To the memory of Professor Alain Dufresnoy.

Abstract

We show that if an open arc J of the boundary of a Jordan domain Ω is rectifiable, then the derivative Φ' of the Riemann map $\Phi : D \to \Omega$ from the open unit disk D onto Ω behaves as an H^1 function when we approach the arc $\Phi^{-1}(J')$, where J' is any compact subarc of J.

AMS Classification number:30H10.
Key words and phrases: Riemann map, rectifiable curve, Jordan domain, Hardy class H^1, reflection principle.

1 Introduction

In [6] the Reflection principle has been used in order to prove that if a conformal collar, bounded by a Jordan arc δ has some nice properties, then any other conformal collar of δ on the same side has the same nice properties. We use the same method in order to generalize a well-known theorem about rectifiable Jordan curves, [3].

Theorem 1.1. Let τ be a Jordan curve and $\Phi : D \to \Omega$ be a Riemann map from the open unit disc D onto the interior Ω of τ. Then 1 and 2 below are equivalent:

1) τ is rectifiable.
2) The derivative Φ' belongs to the Hardy class H^1.

1
The generalization we obtain is that if \(\tau \) is not rectifiable, but an open arc \(J \) of it has finite length, then the derivative \(\Phi' \) behaves as an \(H^1 \) function when we approach the compact subsets of the arc \(\Phi^{-1}(J) \subset \{ z \in \mathbb{C} : |z| = 1 \} \).

In the proof we combine the statement of Theorem 1.1 with the Reflection principle, [1].

The above suggests that the Hardy spaces \(H^p \) on the disc can be generalized to larger spaces containing exactly all holomorphic functions \(f \) on the open unit disc \(D \), such that \(\sup_{0 < r < 1} \int_a^b |f(re^{it})|^p dt < +\infty \) for some fixed \(a, b \) with \(a < b < a + 2\pi \). One can investigate what is the natural topology on that new space, if it is complete and Baire’s theorem can be applied to yield some generic results as non-extendability results, and study properties of the functions, belonging to these spaces. What can be said for their zeros? All these will be investigated in future papers.

2 prelemmaries

In order to state our main result we will need some already known results and the lemma 2.2 below.

Definition 2.1. Let \(0 < p < \infty \). A function \(f(z) \) analytic in the unit disk \(|z| < 1 \) is said to be of class \(H^p \) if

\[
\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta
\]

remains bounded as \(r \to 1 \).
The functions of the H^p class share some useful properties such as:

(a) If U is a Jordan domain with rectifiable boundary and $\Phi : D \to U$ is a Riemann map, then $\Phi' \in H^1(D)$.

(b) Let $f \in H^p$; then
\[
\int_0^{2\pi} \log|f(re^{i\theta})|d\theta \geq \log|f(0)|
\]
and \[
\int_0^{2\pi} \log|f(re^{i\theta})|d\theta > -\infty,
\]
provided that $f \neq 0$.

(c) Let $f \in H^p$. Then $f(re^{i\theta})$ has non-tangential limits almost everywhere, on the unit circle, as $r \to 1^-$.

Lemma 2.2. Let γ be a Jordan curve and $J \subseteq \gamma$ a rectifiable, open arc and $J' \subseteq J$ a compact arc. Then, J' can be extended to a rectifiable Jordan curve γ' and the interior of γ' is a subset of the interior of γ.

Proof. Let I be a closed interval such that $\gamma(I)$ is a Jordan curve. Let (A,B) be an open interval such that $J := \gamma((A,B))$ and let $[a,b]$ be a compact subset of (A,B) such that $J' = \gamma([a,b])$. There exists a t_1 in (A,B) and $\delta > 0$ such that $A < t_1 - \delta < t_1 + \delta < a$; thus, $\gamma([t_1 - \delta, t_1 + \delta]) \cap J' = \emptyset$ and
\[
\{\gamma(t_1)\} \cap \gamma(I/(t_1 - \delta, t_1 + \delta)) = \emptyset.
\]
Therefore, there exists $\eta > 0$ such that
\[
\text{dist}(\gamma(t_1), \gamma(I/(t_1 - \delta, t_1 + \delta))) = \eta > 0
\]
since $I/(t_1 - \delta, t_1 + \delta)$ is compact and γ is continuous.

From the Jordan theorem there exists a sequence $(z_n)_{n \in \mathbb{N}}$ in the interior of the Jordan curve γ such that $z_n \to \gamma(t_1)$. Therefore, there exists a z_0 in the interior of γ and in the disc $B(\gamma(t_1), \eta/100)$ with center $\gamma(t_1)$ and radius $\eta/100$ and there also exists a t'_1 in I : $|z_0 - \gamma(t'_1)| = \min(\text{dist}(z_0, \gamma(I)))$.

We claim that, $\gamma(t'_1) \in \gamma([t_1 - \delta, t_1 + \delta])$.

Now we will prove that claim.

Let us suppose that $\gamma(t_1) \notin \gamma([t_1 - \delta, t_1 + \delta])$ to arrive to a contradiction. Then we have $|z_0 - \gamma(t'_1)| < \eta/100$ and $|\gamma(t_1) - z_0| < \eta/100$.

Therefore, $|\gamma(t'_1) - \gamma(t_1)| < 2\eta/100 < \eta$ which contradicts the fact that
\[\text{dist}(\gamma(t_1), \gamma(I/(t_1 - \delta, t_1 + \delta))) = \eta > 0. \]

Thus, \(t'_1 \in [t_1 - \delta, t_1 + \delta] \) and \([z_0, \gamma(t'_1)] \cap \gamma(I) = \{ \gamma(t'_1) \}\). Therefore, there exists an open segment inside the interior of \(\gamma \), which joins \(z_0 \) with \(\gamma(t'_1) \). We repeat the procedure for \(b < t_1 - \delta < t_1 + \delta < B \) and will find \(\gamma(t'_2) \) and \(z_1 \) in the interior of \(G \) of \(\gamma \), such that the open segment \((z_1, \gamma(t'_2)) \) is included in \(G \).

Therefore, there exists a polygonal line \(W \) that connects \(z_1 \) and \(z_0 \) in \(G \). It can easily be proven that this polygonal line can be chosen to be simple. The Jordan curve

\[\gamma[t'_1, t'_2] \cup [\gamma(t'_1), z_0] \cup W \cup [z_1, \gamma(t'_2)] \]

has the desired properties.

This completes the proof of the lemma.

\[\square \]

3 Main Result

According to a well known theorem of Osgood - Caratheodory, \([5]\), every Riemann map, from the open unit disc to the interior of the Jordan curve, extends to a homeomorphism between the closed unit disc and the closure of the Jordan domain. Our main result is the following.

Theorem 3.1. Let \(\gamma \) be a Jordan curve and \(J \subseteq \gamma \) a rectifiable open arc. Let also \(J' \subseteq J \) be a compact arc. Let \(G \) be the interior of \(\gamma \). Let \(\Phi : D \to G \) be a conformal mapping from the open unit disk \(D \) onto \(G \) and let \(J' = \{ \Phi(e^{it}) : a \leq t \leq b \} \). Then

\[\int_a^b |\Phi'(r_1 e^{it}) - \Phi'(r_2 e^{it})| dt \to 0, \]

as \(r_1, r_2 \to 1^- \).

Proof. According to Lemma 2.2 the compact arc \(J' \) can be extended to a rectifiable Jordan curve \(\gamma' \) defining a Jordan domain \(G' \subset G \).

Let \(f : D \to G' \) be a Riemann map. Thus, \(f' \) is of class \(H^1 \) on \(D \). We consider the function \(h : D \to D \) where \(h = \Phi^{-1} \circ f \), maps the arc \(f^{-1}(J') \subseteq \mathbb{T} \) onto the arc \(\{ e^{it} : a \leq t \leq b \} \), where \(\mathbb{T} \) is the unit circle. According to the Reflection Principle the function \(h \) is injective and holomorphic on a compact neighbourhood \(\mathbb{V} \) of the compact arc \(f^{-1}(J') \). Therefore, on \(\mathbb{V} \) the derivative \(h' \) satisfy \(0 < \delta < |h'(z)| < M < +\infty \) and \(h \) (and all its derivatives) are uniformly continuous. We have \(\Phi = f \circ h^{-1} = f \circ g \), where \(g = h^{-1} \) maps a
compact neighbourhood \overline{W} of $\{e^{it} : a \leq t \leq b\}$ biholomorphically on V and $0 < \delta < \|g'(z)\| < \overline{M} < +\infty$ on \overline{W} and g (as well as all its derivatives) are uniformly continuous.

Therefore, $\Phi' = f' \circ g \cdot g'$.

There exists $r_0 < 1$ so that for every $t \in [a, b]$ and every $r \in [r_0, 1]$ it holds $re^{it} \in \overline{W}$. Let $r_1, r_2 \in [r_0, 1]$. Then

$$|\Phi'(re^{it}) - \Phi'(2e^{it})| = |f'(g(re^{it})) \cdot g'(re^{it}) - f'(g(2e^{it}))g'(2e^{it})|$$

$$= |f'(g(re^{it}))g'(re^{it}) - f'(g(2e^{it}))(g'(re^{it}) + f'(g(2e^{it}))g'(re^{it}) - f'(g(2e^{it}))g'(2e^{it})|$$

$$\leq |f'(g(re^{it})) - f'(g(2e^{it}))||g'(re^{it})| + |f'(g(2e^{it}))||g'(re^{it}) - g'(2e^{it})|.$$
Convergence theorem.
Let \(u \) denote the non-tangential maximal function \(u(t) = \sup \{|f'(z)| : z \in \Gamma_{t/2}, |g(e^{it}) - z| < 1/2\} \). Since \(f' \) belongs to the Hardy class \(H^1 \), according to \(3 \), it follows that \(u \) is integrable on \([a, a + 2\pi] \supset [a, b] \). We also have \(|f'(g(r_1 e^{it})) - f'(g(r_2 e^{it}))| \leq 2u(t) \). Therefore, \(\lim_{r_1, r_2 \to 1^-} I(r_1, r_2) = 0 \). Now we prove the claim.

We have \(g(e^{i\theta}) = e^{iw(\theta)}, w(\theta) \in \mathbb{R} \). In order to prove that \(g(r e^{i\theta}) \in \Gamma_{\theta, \pi/2} \) it suffices to prove that \(|Arg[1 - g(r e^{i\theta})/g(e^{i\theta})]| < \pi/4 \). But

\[
1 - \frac{g(re^{i\theta})}{g(e^{i\theta})} = \frac{g(e^{i\theta}) - g(re^{i\theta})}{g(e^{i\theta})} = \int_{re^{i\theta}}^{e^{i\theta}} \frac{g'(y)}{g(e^{i\theta})} dy = \int_r^1 \frac{g'(te^{i\theta})e^{i\theta}}{g(e^{i\theta})} dt
\]

Since \(g(e^{i\theta}) = e^{iw(\theta)}, w(\theta) \in \mathbb{R} \) it follows that \(\frac{d}{d\theta} g(e^{i\theta}) = g'(e^{i\theta})ie^{i\theta} = e^{iw(\theta)}iw'(\theta) = g(e^{i\theta})iw'(\theta) \). Thus,

\[
\frac{g'(e^{i\theta})e^{i\theta}}{g(e^{i\theta})} = w'(\theta) \in \mathbb{R} - \{0\}
\]

By continuity of \(w' \) with respect to \(\theta \), we have \(w'(\theta) \in [c, k] \), for every \(\theta \in [a, b] \) or \(w'(\theta) \in [-k, -c] \) for every \(\theta \in [a, b] \), where \(0 < c < k < +\infty \). The later case is excluded because of the following reason: the function \(g \) is a conformal equivalence between two Jordan domains \(G' \) and \(G'' \) included in \(D \) and the boundary of \(G' \) contains the arc \(\{e^{i\theta} : t \in [a, b]\} \) and \(g(e^{i\theta}) = e^{iw(\theta)}, w(\theta) \in \mathbb{R} \) for all \(\theta \in [a, b] \). Let \(z_0 \in G' \); then \(g(z_0) \in G'' \subset D \) and according to the argument principle \(Ind(g|_{G''}, g(z_0)) = 1 \). If \(w'(\theta) < 0 \) then, the homeomorphism \(g|_{G''} : \partial G' \to \partial G'' \) turns in such a sense so we should have \(Ind(g|_{G''}, g(z_0)) = -1 \neq 1 \) impossible. Therefore, \(w'(\theta) \in [c, k] \) for every \(\theta \in [a, b] \) with \(0 < c < k < +\infty \). Thus,

\[
Arg[1 - \frac{g(re^{i\theta})}{g(e^{i\theta})}] = Arg \int_r^1 \frac{g'(te^{i\theta})e^{i\theta}}{g(e^{i\theta})} dt = Arg \frac{1}{1-r} \int_r^1 \frac{g'(te^{i\theta})e^{i\theta}}{g(e^{i\theta})} dt
\]

But \(\lim_{r \to 1^-} \frac{g'(re^{i\theta})e^{i\theta}}{g(e^{i\theta})} = \frac{g'(e^{i\theta})e^{i\theta}}{g(e^{i\theta})} = w'(\theta) \in [c, k] \) for \(0 < c < k < +\infty \) and the limit is uniform for \(\theta \in [a, b] \). Thus, there exists \(\delta \in [r_0, 1) \) so
that for every \(r \in [\delta, 1) \) the quantity \(\frac{g'(re^{i\theta})e^{i\theta}}{g(e^{i\theta})} \) belongs to the convex angle \(\{x+iy : 0 < x, |y| \leq x\} \) which has vertex 0 and opening \(\pi/2 \) and is symmetric to the positive x-axis. Its average \(\frac{1}{1-r} \int_r^1 \frac{g'(re^{i\theta})e^{i\theta}}{g(e^{i\theta})} \) \(dr \) will belong to the same convex angle; therefore,

\[
|\text{Arg}[1 - \frac{g(re^{i\theta})}{g(e^{i\theta})}]| = |\text{Arg}\frac{1}{1-r} \int_r^1 \frac{g'(re^{i\theta})e^{i\theta}}{g(e^{i\theta})} dr| < \pi/4
\]

and the claim is verified. This completes the proof.

\[\square \]

Corollary 3.1.1. For the conformal mapping \(\Phi : D \to G \) in the theorem 3.1 it holds that:

1. \(\int_a^b |\Phi'(re^{it})|dt \) is bounded for \(0 < r < 1 \).

2. \(\Phi' \) has non-tangential limits almost everywhere on \(\{e^{it} : a < t < b\} \) which are denoted as \(\Phi'(e^{it}) \) and \(\Phi'(e^{it}) \neq 0 \) almost everywhere.

3. \(\Phi'(e^{it})|_{(a,b)} \) is integrable and \(\int_a^b |\Phi'(re^{it}) - \Phi'(e^{it})|dt \to 0 \) as \(r \to 1^- \).

4. Length of \(J' = \int_a^b |\Phi'(e^{it})|dt = \lim_{r \to 1^-} \int_a^b |\Phi'(re^{it})|dt = \lim_{r \to 1^-} \text{length of } \Phi\{re^{iu} : a \leq u \leq b\} \).

Proof. 1. From Theorem 3.1, the family \(t \to \Phi'(re^{it}) \) is Cauchy \(L'(a,b) \), as \(r \to 1^- \). Therefore, there exists the limit \(g \) in \(L'(a,b) \) such that

\[
\int_a^b |\Phi'(re^{it}) - g(e^{it})|dt \to 0.
\]

We have

\[
\int_a^b |\Phi'(re^{it}) - g(e^{it})|dt \geq \int_a^b |\Phi'(re^{it})|dt - \int_a^b |g(e^{it})|dt.
\]

Therefore, for every \(\epsilon > 0 \) there exists a \(r_0 > 0 \), such that for every \(r > r_0 \) it holds that

\[
|\int_a^b |\Phi'(re^{it})|dt - \int_a^b |g(e^{it})|dt| < \epsilon.
\]
Since $\int_a^b |g(e^{it})|dt < +\infty$, it follows that $\int_a^b |\Phi'(re^{it})|dt$ is bounded as $r \to 1$.
This completes the proof of 1.

2. We use the notation of Theorem 1. Then $\Phi' = f'(h)h'$, where $h : D \to D$. Since $f' \in H^1(D)$ there exists the non-tangential limit a.e. on ∂D and therefore on J'.
On the other hand, the function h is holomorphic on D and can be extended holomorphically on a neighbourhood of J'. Therefore, h and h' have non-tangential limits a.e. on $\{e^{i\theta} : a < \theta < b\}$. Thus, $\Phi' = f'(h)h'$ has non-tangential limits a.e. on $\{e^{i\theta}, a < \theta < b\}$.

Now, f' is in H^1 and $f' \neq 0$. Thus, $f'(h(e^{i\theta})) \neq 0$ a.e. on (a,b). Also $h'(e^{it}) \neq 0$ for all $t \in (a,b)$ because h is injective and holomorphic on a compact neighbourhood of J'. Thus, $\Phi'(e^{it}) \neq 0$ almost everywhere on (a,b). This completes the proof of 2.

3. Since $\Phi'(re^{it})$ is Cauchy in L_1 as $r \to 1^-$, there exists $g(e^{it}) := \lim_{r \to 1^-} \Phi'(re^{it})$ in L_1. There exists a sequence r_n, such that $\Phi'(r_ne^{it}) \to g(e^{it})$ a.e. But $\Phi'(re^{it}) \to \Phi'(e^{it})$ a.e. on $\{e^{it}, a < t < b\}$ non-tangentially. Therefore $g = \Phi'(e^{it})$ a.e.
Since $g \in L_1$ and $g = \Phi'(e^{it})$ a.e., it follows that $\Phi' \in L_1$.
This completes the proof of 3.

4. Let A, B be such that $J' = \{f(e^{it}) : A \leq t \leq B\}$. Since $f' \in H^1(D)$ we have length of $J' = \int_A^B |f'(e^{it})|dt$, [3]. But $f = \Phi \circ h$, therefore $f' = \Phi' \circ h \cdot h'$. Thus, length $J' = \int_A^B |\Phi'(h(e^{it}))|h'(e^{it})|dt$.
We do the diffeomorphic change of variable $h(e^{it}) = e^{iu}$ that is
\[e^{it} = h^{-1}(e^{iu}) \]
which implies
\[ie^{it}dt = (h^{-1})'(ie^{iu}) \cdot ie^{iu}du \]
and
\[dt = |(h^{-1})'(e^{iu})|du = \frac{1}{|h'(e^{it})|}du. \]
According to [4], for this change of variable for integrable functions we find length $J' = \int_a^b |\Phi'(e^{iu})|du$.

8
Using part 3, we take
\[\int_{a}^{b} |\Phi'(e^{iu})|du = \]
\[= \lim_{r \to 1^-} \int_{a}^{b} |\Phi'(re^{iu})|du = \]
\[= \lim_{r \to 1^-} \text{length}\{\Phi(re^{iu}) : a \leq u \leq b\}. \]
The result easily follows. This completes the proof of part 4 and of the whole Corollary.

However, we will give a second alternative proof for part 4. Since \(\Phi(e^{it}) \) is of bounded variation on \([a, b]\), the arc measure on \(J' \) is \(|\Phi'(e^{iu})|du + dv \), where \(dv \) is a singular non negative measure; it follows that, \(^{[4]}\),
\[\text{length} J' \geq \int_{a}^{b} |\Phi'(e^{iu})|du. \]
We notice that, combining the relation \(\Phi' = f' \circ h \cdot h' \) with the fact that \(f' \in H^1 \), we easily conclude that the non-tangential limits of \(\Phi' \) on \(\{ e^{iu} : a \leq u \leq b \} \) coincide almost everywhere with the derivative \(\frac{d\Phi(e^{iu})}{de^{iu}} \) computed for the restriction of \(\Phi \) on \(\{ e^{iu} : a \leq u \leq b \} \), which exists almost everywhere on \(\{ e^{iu} : a \leq u \leq b \} \), because \(J' \) is rectifiable and \(\Phi(e^{iu}) \) is of bounded variation on \([a, b]\). According to part 3, we have
\[\int_{a}^{b} |\Phi'(e^{iu})|du = \]
\[= \lim_{r \to 1^-} \int_{a}^{b} |\Phi'(re^{iu})|du = \]
\[= \lim_{r \to 1^-} \text{length}\{\Phi(re^{iu}) : a \leq u \leq b\} \]
Since \(\Phi(re^{iu}) \to \Phi(e^{iu}) \) as \(r \to 1^- \) we have
\[\text{length} J' = \text{length}\{\Phi(e^{iu}) : a \leq u \leq b\} \leq \]
\[\leq \lim \inf_{r \to 1^-} \text{length}\{\Phi(e^{iu}) : a \leq u \leq b\} \]
(see Prop. 4.1 below). Now the result easily follows. The proof is complete.
4 Further results

We have seen that \(\lim_{r \to 1^-} \text{length } \Phi \{ e^{it} : a \leq t \leq b \} = \text{length of } \Phi \{ e^{it} : a \leq t \leq b \} \) provided that for some \(a', b' : a' < a < b < b' \) the length of \(\Phi \{ e^{it} : a' \leq t \leq b' \} \) is finite. Composing \(\Phi \) with an automorphism of the open unit disc \(w(z) = \frac{z - \gamma}{1 - \overline{\gamma}z}, |c| = 1, |\gamma| < 1 \) we can obtain similar results of other families of curves converging to \(\Phi \{ e^{it} : a \leq t \leq b \} \). We will not insist towards this direction. For any arc \(\{ e^{it} : A \leq t \leq B \}, A < B < A + 2\pi \), we have the following:

Proposition 4.1. Under the above assumptions and notation we have the following inequality.

\[
\text{length of } \Phi \{ e^{it} : A \leq t \leq B \} \leq \liminf_{r \to 1^-} \text{ of length } \Phi \{ re^{it} : A \leq t \leq B \}.
\]

Proof. Let \(r_n < 1, r_n \to 1 \) and \(M \) be such that length of \(\Phi \{ r_n e^{it} : A \leq t \leq B \} \leq M \) for all \(n \). Then we will show that length of \(\Phi \{ e^{it} : A \leq t \leq B \} \leq M \). It suffices to prove that

\[
\sum_{y=0}^{N-1} |\Phi(e^{iy+1}) - \Phi(e^{iy})| \leq M
\]

for any partition \(t_0 = A < t_1 < \ldots < t_{N-1} < t_N = B \).

But \(\sum_{y=0}^{N-1} |\Phi(r_n e^{iy+1}) - \Phi(r_n e^{iy})| \leq \text{length } \Phi \{ r_n e^{it} : A \leq t \leq B \} \leq M \). Since \(\Phi(r_n e^{it}) \to \Phi(e^{it}), n \to +\infty \), passing to the limit we obtain \(\sum_{y=0}^{N-1} |\Phi(e^{iy+1}) - \Phi(e^{iy})| \leq M \). The result easily follows. \(\square \)

Corollary 4.1.1. Under the above assumptions and notations we have the following:

1. If length of \(\Phi(\{ e^{it} : A \leq t \leq B \}) = +\infty \), then length of \(\Phi(\{ e^{it} : A \leq t \leq B \}) = \lim_{r \to 1^-} \text{length of } \Phi(\{ re^{it} : A \leq t \leq B \}) \).

2. If there exists \(A', B', A' < A < B < B' \) such that length of \(\Phi \{ e^{it} : A' \leq t \leq B' \} < +\infty \), then length of \(\Phi \{ e^{it} : A \leq t \leq B \} = \lim_{r \to 1^-} \text{length } \Phi \{ re^{it} : A \leq t \leq B \} \).
The proof of the corollary 4.1.1 follows easily from the previous results.

We believe that it is possible to have:

\[
\text{length of } \Phi \{e^{it} : A \leq t \leq B \} < +\infty
\]

and

\[
\text{length of } \Phi \{e^{it} : A \leq t \leq B \} < \liminf_{r \to 1^-} \text{length of } \Phi \{re^{it} : A \leq t \leq B \} < \limsup_{r \to 1^-} \text{length of } \Phi \{re^{it} : A \leq t \leq B \}
\]

but we do not have an example. A candidate for such an example is the Jordan domain

\[
\Omega = \{x+iy : -5 < y < x \cos(1/x); 0 < x < 1 \} \cup \{x+iy : -5 < y < 0, -1 < x \leq 0 \}.
\]

Although \(\int_0^{2\pi} |f'(re^{it})|dt \) is increasing with respect to \(r \in (0, 1) \), we believe that this is no longer true for \(\int_a^b |\Phi'(re^{it})|dt \) and a candidate for a counter example is any convex polygonal domain \(\Omega \).

Finally, we have the following:

Theorem 4.2. Let \(\Omega \) be a Jordan domain and \(\Phi : D \to \Omega \) a Riemann map from the open unit disc \(D \) onto \(\Omega \). Let \(A < B < A + 2\pi \), then the following are equivalent.

1. For every \(a, b \) such that \(A < a < b < B \) the arc \(\{ \Phi(e^{it}) : a \leq t \leq b \} \) is rectifiable.

2. For every \(a, b \) such that \(A < a < b < B \) we have

\[
\sup_{0 < r < 1} \int_a^b |\Phi'(re^{it})|dt = M_{a,b} < \infty
\]

3. For every \(a, b \) such that \(A < a < b < B \) there exist curves \(\gamma_r : [a, b] \to \mathbb{C}, 0 < r < 1 \) such that \(\lim_{r \to 1^-} \gamma_r(t) = \Phi(e^{it}) \) for all \(t \in [a, b] \) and such
that the lengths of γ_r are uniformly bounded as $r \to 1^-$, by a constant $C_{a,b} < \infty$.

Proof. We have already seen that 1. \Rightarrow 2. In order to see that 2. \Rightarrow 3. it suffices to set $\gamma_r(t) = \Phi(re^{it})$. Finally, to prove that 3. \Rightarrow 1., it suffices to prove that

$$\sum_{j=0}^{n-1} |\Phi(e^{it_{j+1}}) - \Phi(e^{it_j})| \leq C_{a,b}$$

for all partitions $a = t_0 < t_1 < \ldots < t_{n-1} < t_n = b$. But

$$\sum_{j=0}^{n-1} |\gamma_r(t_{j+1}) - \gamma_r(t_j)| \leq \leq \text{length} \gamma_r \leq C_{a,b}$$

and $\lim_{r \to 1^-} \sum_{j=0}^{n-1} |\gamma_r(t_{j+1}) - \gamma_r(t_j)| = \sum_{j=0}^{n-1} |\Phi(e^{it_{j+1}}) - \Phi(e^{it_j})|$ and the proof is completed.

Acknowledgement: We would like to thank professor E.Katsoprinakis for his interest in this work.
References

[1] Ahlfors, Complex analysis, Second edition, McGraw-Hill, New York, 1966

[2] D.L. Burkholder, R.F. Gundy, M.L. Silverstein, A maximal function, characterization of the class H^p. Transactions of AMS, Volume 157, June 1971, pages 137-153

[3] P.L. Duren, Theory of H^p spaces, Academic Press, New York and London 1970

[4] G.B. Foland, Real Analysis, Modern techniques and their Applications, 2nd edition, Wiley 1999

[5] Koosis P., An introduction to H_p spaces, Cambridge University Press, 1998V.

[6] Liontou, V. Nestoridis, One sided conformal collars and the reflection principle, arxiv: 1612.00177

[7] W. Rudin, Real and Complex Analysis, Mc-Graw- Hill, New York, 1966.

National and Kapodistrian University of Athens,
Department of Mathematics
15784
Panepistemiopolis
Athens GREECE
e-mail: lvda20@hotmail.com
e-mail: vnestor@math.uoa.gr