Novel agents for anti-platelet therapy

Xuebin Ji and Ming Hou*

Abstract

Anti-platelet therapy plays an important role in the treatment of patients with thrombotic diseases. The most commonly used anti-platelet drugs, namely, aspirin, ticlopidine, and clopidogrel, are effective in the prevention and treatment of cardio-cerebrovascular diseases. Glycoprotein IIb/IIIa antagonists (e.g., abciximab, eptifibatide and tirofiban) have demonstrated good clinical benefits and safety profiles in decreasing ischemic events in acute coronary syndrome. However, adverse events related to thrombosis or bleeding have been reported in cases of therapy with glycoprotein IIb/IIIa antagonists. Cilostazol is an anti-platelet agent used in the treatment of patients with peripheral ischemia, such as intermittent claudication. Presently, platelet adenosine diphosphate P2Y(12) receptor antagonists (e.g., clopidogrel, prasugrel, cangrelor, and ticagrelor) are being used in clinical settings for their pronounced protective effects. The new protease-activated receptor antagonists, vorapaxar and atopaxar, potentially decrease the risk of ischemic events without significantly increasing the rate of bleeding. Some other new anti-platelet drugs undergoing clinical trials have also been introduced. Indeed, the number of new anti-platelet drugs is increasing. Consequently, the efficacy of these anti-platelet agents in actual patients warrants scrutiny, especially in terms of the hemorrhagic risks. Hopefully, new selective platelet inhibitors with high anti-thrombotic efficiencies and low hemorrhagic side effects can be developed.

Keywords: anti-platelet, agent, therapy, antagonist, thrombotic disease

Introduction

Thrombotic diseases and their complications may have severe consequences. Platelets play a key role in thrombosis, and anti-platelet therapies may prevent as well as treat thrombotic diseases. Therefore, anti-platelet drugs that can inhibit platelet adhesion, aggregation, release, and activation need to be developed (Figure 1). The most commonly used anti-platelet drugs, namely, aspirin, clopidogrel, and ticlopidine are effective in preventing thrombotic diseases. With the developments in medicine and pharmacy, the number of anti-platelet agents is continuously increasing.

Platelet glycoprotein (GP) IIb/IIIa receptor antagonists (Table 1)

The adhesion, aggregation, release, and activation of platelets can induce platelet thrombosis, which is important in physiological hemostasis and pathological thrombosis. Once platelets are activated, GP IIb/IIIa receptors on the surfaces of platelets transform into their active states, which can combine with fibrinogen and the von Willebrand factor (vWF). The GP IIb/IIIa receptor operates in the final common pathway of platelet aggregation. Blocking the GP IIb/IIIa receptor can inhibit platelet aggregation induced by activating factors. Once platelet aggregation is inhibited, platelet thrombi cannot form.

The development of GP IIb/IIIa antagonists, such as the recently approved abciximab, eptifibatide, and tirofiban, is pivotal in anti-platelet therapy. Pharmacodynamic studies on these three agents have revealed their capabilities of establishing and maintaining a > 80% inhibition of platelet aggregation [1]. The first GP IIb/IIIa receptor antagonist used in clinical settings is abciximab. This drug is the fragment of recombinant human-mouse chimeric monoclonal antibody, which can inhibit GP IIb/IIIa receptors in a dose-dependent manner. Abciximab also inhibits αIIb/β3 receptors (for vWF) on platelets, thereby inhibiting platelet aggregation via fibrinogen. However, abciximab have the disadvantages of potential immunogenicity, drug effect irreversibility, and high cost [2]. Hence, micromolecular GP IIb/IIIa receptor antagonists (e.g., eptifibatide and tirofiban) have been developed. These
micromolecular GP IIb/IIIa receptor antagonists contain the Arg-Gly-Asp (RGD) sequence. In the RGD sequence of eptifibatide, an arginine residue is replaced by the lysine residue. On the other hand, tirofiban is the micromolecular GP IIb/IIIa receptor antagonist synthesized according to the RGD module. These micromolecular agents, unlike abciximab, specifically act on GP IIb/IIIa receptors and do not combine with any other integrin. Eptifibatide and tirofiban also cannot induce immune response given their small molecular weights and low affinities to GP IIb/IIIa receptors.

Figure 1 Different targets for anti-platelet therapy. According to the different targets, novel anti-platelet agents with different mechanism of action can be developed, including GP IIb/IIIa antagonists, P2Y(12) receptor antagonists and Protease-activated receptor antagonists, etc.

Table 1 Glycoprotein IIb/IIIa antagonists

Agents	Mechanism of action	Administration	Main side effects	State
Abciximab	inhibit GPIIb/IIIa receptor and GP αIIb/β3 receptor	IV	allergy, bleeding, thrombocytopenia	Approved
Eptifibatide	inhibit GPIIb/IIIa receptor	IV	bleeding, thrombocytopenia	Approved
Tirofiban	inhibit GP IIb/IIIa receptor	IV	bleeding, thrombocytopenia	approved

Abbreviations: GP: glycoprotein; IV: intravenous.
mortality in ACS cases [6]. Therefore, the development of GP IIb/IIIa antagonists needs further functional testing methods to assess the anti-platelet efficacy of these drugs in actual patients.

Agents that selectively increase cyclic adenosine 3’-5’-monophosphate (cAMP) in platelets

Platelet aggregation can be inhibited either by the blocking of membrane receptors or interaction with intracellular signaling pathways. cAMP and cyclic guanosine 3’-5-monophosphate (cGMP) are two important intracellular second messengers for platelet function. Phosphodiesterase (PDE), which is obtained by catalyzing the hydrolysis of cAMP and cGMP, limits the intracellular levels of cyclic nucleotides to regulate platelet function. Therefore, the inhibition of PDEs may confer a strong inhibitory effect on platelets.

Cilostazol is an anti-platelet agent used in the treatment of peripheral ischemia, such as intermittent claudication. This drug is a kind of selective inhibitor of cAMP-PDE that can dilate blood vessels and hinder platelet aggregation induced by adenosine diphosphate (ADP), collagens and arachidonic acid. Unlike aspirin, cilostazol is a reversible platelet inhibitor that prevents both primary and secondary aggregation. In terms of pharmacokinetics, cilostazol is metabolized in the liver and excreted by the kidney.

Overall, cilostazol is a good drug of choice given its high tolerance, small number of side effects, high safety, and potential use with other anti-platelet drugs [7-9]. Cilostazol may also be a more safer and effective alternative to aspirin in the patients with ischemic stroke [10]. Presently, there is a trend towards enhanced anti-platelet effects when cilostazol is added to aspirin in the ischemic stroke patients. A combination of aspirin and cilostazol may be a good treatment option for these patients [11,12].

P2Y(12) receptor antagonists

P2Y(12) receptor antagonists are anti-thrombotic agents that inhibit platelet function by blocking the ADP at P2Y(12) receptor sites. Adenine nucleotides act on platelets via three distinct P2 receptors, namely, two G protein-coupled ADP receptors, P2Y(1) and P2Y(12), as well as a P2X(1) receptor ligand-gated cation channel activated by adenosine triphosphate (ATP). The P2Y(1) receptor initiates platelet aggregation, but is not sufficient in response to ADP. On the other hand, the P2Y (12) receptor is responsible for the completion of aggregation in response to ADP. The P2Y(12) receptor is the molecular target of anti-thrombotic drugs such as clopidogrel, prasugrel, cangrelor, and ticagrelor. This receptor is responsible for most of the potentiating effects of ADP when platelets are activated by agonists such as collagen, thrombin [13,14]. These platelet antagonists blocking the ADP-receptor P2Y(12) decrease myocardial infarction, stroke, thrombosis and mortality in the patients with cardiovascular diseases. The P2Y(12) antagonists (e.g., clopidogrel, prasugrel, and ticagrelor) are now being used in clinical settings given their more protective effects [15].

Presently, the P2Y(12) receptor antagonists being developed are clopidogrel and prasugrel, which are thienopyridines, as well as cangrelor and ticagrelor, which are nonthienopyridines. Hence, these antagonists are potential anti-thrombotic drugs.

Clopidogrel is a thienopyridine with proven anti-thrombotic efficacy. However, it has the disadvantages of high inter-individual variability in pharmacological response, delayed onset and offset of action, as well as requiring to be metabolized to its active metabolite form [16].

Prasugrel has received its priority right of approval in 2008. It is a new kind of thienopyridine P2Y12 receptor antagonist that works by blocking the P2Y12 ADP receptor on the surfaces of platelets. Nevertheless, the clinical benefits of prasugrel are countered by increased bleeding risk compared with the conventional thienopyridine treatment using clopidogrel. In the clinical trial of prasugrel versus clopidogrel in patients with acute coronary syndromes (ClinicalTrials.gov number, NCT00097591), the rates of myocardial infarction in the prasugrel group were significantly reduced (9.7% for clopidogrel vs. 7.4% for prasugrel; P < 0.001). There were also significant reductions in the urgent target-vessel revascularization (3.7% vs. 2.5%; P < 0.001), and stent thrombosis (2.4% vs. 1.1%; P < 0.001). However, there

Table 2 P2Y(12) receptor antagonists
Agents

Clopidogrel
Prasugrel
Cangrelor
Ticagrelor

Abbreviations: IV: intravenous; ADP: adenosine diphosphate.
Vorapaxar is a non-peptide competitive PAR1 thrombin receptor antagonist with a high affinity and low molecular weight. It belongs to the first agent in a new type of compounds that inhibit thrombin-mediated platelet aggregation without affecting the enzymatic activity of thrombin on fibrinogen. Preclinical and initial clinical studies have demonstrated the high potential of vorapaxar in inhibiting thrombin-induced platelet activation, as well as its excellent oral bioavailability and safety [26]. Vorapaxar inhibits thrombin-mediated platelet aggregation mediated, and does not influence hemostasis as well as bleeding time. Hence, this drug potentially decreases the risk for ischemic events without significantly increasing the rate of bleeding. Vorapaxar, which is orally administered, is rapidly absorbed and has a long biological half-life [27,28].

Atopaxar is another powerful oral PAR1 antagonist. Preclinical studies have indicated that atopaxar inhibits thrombin-mediated platelet aggregation mediated without increasing the rate of bleeding. The selective blocking of platelet receptors by atopaxar suggests its therapeutic potential in thrombotic disease [29-31].

Protease-activated receptor (PAR) antagonists (Table 3)

PARs include PARA1, PARA2, PARA3, and PARA4. Similar with thrombin receptors, PAR1, PAR3, and PAR4 mediate platelet activation induced by thrombin.

Agents	Mechanism of action	Administration	Main side effects	State
Vorapaxar	a non-peptide competitivePAR1 thrombin receptor antagonist with a high affinity and low molecular weight	oral	bleeding	unapproved
Atopaxar	PAR1 antagonist inhibiting thrombin-mediated platelet aggregation	oral	bleeding	unapproved

Novel anti-platelet drugs

The interaction between platelets and collagen is the motivator of platelet adhesion, aggregation, and activation. This interaction has become the target for developing new anti-platelet agents. On the surfaces of platelets, there exist at least three kinds of receptors that can combine with collagen, including GP Ib/IX (functions...
with the vWF), GP Ia-IIa (the main receptor in platelet adhesion), and GPVI (mediates platelet activation). Platelets adhesion to the damaged blood vessel is the initial trigger for arterial hemostasis and thrombosis. Platelets adhere to the sub-endothelium via their interaction with the vWF, which forms a bridge between collagens within the damaged vessel wall [32-34]. The development of monoclonal antibodies that inhibit platelet adhesion or aggregation targets collagen-vWF-GPIb and collagen-GPVI [35-37].

The 6B4-antigen-binding fragment (Fab) is a murine monoclonal antibody that targets the human platelet GPIb alpha (201-268aa) and blocks the binding of the vWF. It has been proved as a powerful anti-thrombotic agent without the side effects of bleeding or thrombocytopenia. The anti-thrombotic effects of 6B4-Fab on acute platelet-mediated thrombosis have been studied in baboons. Minimal effects on the bleeding time, absence of spontaneous bleeding, and absence of thrombocytopenia are observed. Hence, H6B4-Fab can be further developed [38]. There are some other promising preclinical agents targeting GP Ib. Such agents include GPG-290, a recombinant chimeric protein containing aminoterminal 290 amino acids of alpha linked to the human IgG1 crystallizable fragment, and Shuzhou2 (SZ2), an anti-GP Ib monoclonal antibody [39].

The vWF plays an important role in both hemostasis and thrombosis. Platelets adhere to damaged arteries by the interactions between the vWF A1-domain and glycoprotein Ib receptors under conditions of high shear. This initial platelet binding event stimulates platelet activation, recruitment, and activation of the clotting cascade, thereby promoting thrombus formation. Therefore, the monoclonal antibody against the functional domains (A1 and A3) of the vWF can effectively inhibit thrombosis. The genetically engineered antibody AJW200 is a humanized anti-vWF-A1 chimeric Fab antibody that can block the combination of the vWF and GP Ib. Consequently, platelet adhesion and aggregation are inhibited without remarkably prolonging the bleeding time. The recombinant chimeric monoclonal antibody 82D6A3 against the vWF-A3 region can block the combination of the A3 region and collagen to inhibit platelet adhesion. ARC1779, which has a high binding affinity with the vWF A1-domain, has been proven to inhibit botrocetin-induced and shear force-induced platelet aggregation. Besides, ARC15105 is a chemically advanced follower with a potential higher affinity to the vWF [40,41].

GPVI, which is a major receptor of collagen on platelet surfaces, mediates the initial platelet contacting with collagen, which can cause platelet adhesion, aggregation, and thrombosis [42,43]. GPVI may be considered as an interesting and prospective target in the development of anti-platelet agents [44-46]. Anti-GPVI antibodies, such as the monoclonal antibody JAQ1, can significantly prevent thrombosis with a little prolonged bleeding time [47].

Conclusions and future directions
Given the increasing incidence of and mortality from thrombotic diseases, anti-platelet agents have been extensively researched and developed [48,49]. The combined use of anti-platelet drugs with different mechanisms may be important in anti-thrombotic treatments. Further research on platelet functions may give rise to numerous new anti-platelet agents. Pharmacodynamic platelet function assays and pharmacokinetic tests for individualizing and optimizing anti-platelet therapy may find their way into clinical use. However, more studies are needed. Hopefully, new selective platelet inhibitors with high anti-thrombotic efficiencies and low adverse hemorrhagic side affects can be developed.

List of abbreviations used
GP: glycoprotein; vWF: von Willebrand factor; PCI: percutaneous coronary intervention; ACS: acute coronary syndrome; RGD: Arg-Gly-Asp; ADP: adenosine diphosphate; ATP: adenosine triphosphate; cAMP: cyclic adenosine 3’-5’-monophosphate; cGMP: cyclic guanosine 3’-5’-monophosphate; PDE: phosphodiesterase; PAR: protease-activated receptor; TXA2: thromboxane A2; Fab: antigen-binding fragment; SZ2: shuzhou2

Acknowledgements
The present study was partially supported by the National Natural Science Foundation (81100336, 81070396, 81070411, 81070408, and 30971278), the National Science Foundation of Shandong Province (ZR2010CQ040), the Research Fund for the Doctoral Program of Higher Education of China (20100131120058), and the Doctor Foundation of Shandong Province (2008BS03009). Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (NO704030), Taishan Scholar Foundation, and the SRF for ROCS, SEM.

Authors’ contributions
The present manuscript was drafted by XJ and revised by MHL. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 22 August 2011 Accepted: 4 November 2011 Published: 4 November 2011

References
1. Proimos G: Platelet aggregation inhibition with glycoprotein Iib-llla inhibitors. J Thromb Thrombolysis 2001, 11:99-110.
2. Vergara-Jimenez J, Tricoso P: Safety and efficacy of abciximab as an adjunct to percutaneous coronary intervention. Vasc Health Risk Manag 2010, 6:99-105.
3. Gross PL, Weitz JI: New antithrombotic drugs. Clin Pharmacol Ther 2009, 86:139-146.
4. Lippi G, Montagnana M, Danese E, Favaloro EJ, Franchini M: Glycoprotein Iib/llla inhibitors: an update on the mechanism of action and use of functional testing methods to assess anti-platelet efficacy. Biomark Med 2011, 5:63-70.
5. Winchester DE, Wen X, Brereley WD, Park KE, Anderson RD, Bavry AA: Efficacy and safety of glycoprotein Iib/llla inhibitors during elective coronary revascularization: a meta-analysis of randomized trials
performed in the era of stents and thienopyridines. *J Am Coll Cardiol* 2011, 57:1190-1199.

6. Chew DP, Bhatt DL, Sapp S, Topol EJ. Increased mortality with oral platelet glycoprotein Ib/IIia antagonists: A metaanalysis of phase III multicenter randomized trials. *Circulation* 2001, 103:201-206.

7. Shinohara Y, Katayama Y, Uchiiyama Y, Yamaguchi T, Handa S, Matsuoka K, Ohashi Y, Tanahashi N, Yamamoto H, Genka C, Kitagawa Y, Kusouka H, Nishimaru K, Tsuchima M, Koresutne Y, Sawada T, Hamada C. *CPS2* group: Cilostazol for prevention of secondary stroke (CPS2): an aspirin-controlled, double-blind, randomised non-inferiority trial. *Lancet Neurol* 2010, 9:151-159.

8. Jeong HY, Hwang JY, Kim IS, Park Y, Hwang SJ, Lee SW, Kwak CH, Park SW. Adding cilostazol to dual anti-platelet therapy achieves greater platelet inhibition than high maintenance dose clopidogrel in patients with acute myocardial infarction: Results of the adjunctive cilostazol versus high maintenance dose clopidogrel in patients with AMI (ACCEL-AMI) study. *Circ Cardiovasc Interv* 2010, 3:17-26.

9. Kim JY, Lee K, Shin M, Ahn M, Choe H, Yoo BS, Yoon J, Choe KH, Lee SH. Cilostazol could ameliorate platelet responsiveness to clopidogrel in patients undergoing primary percutaneous coronary intervention. *Lancet Neurol* 2008, 7:494-499.

10. Huang Y, Cheng W, Yu L, Li Y, Xu E, Hong Z, Li Z, Zhang W, Ding M, Gao X, Fan D, Zeng L, Lin K, Lu C, Xiao J, Yao C. Cilostazol versus Aspirin for Secondary Ischaemic Stroke Prevention cooperation investigators: Cilostazol as an option for aspirin after ischaemic stroke: a randomised, double-blind, pilot study. *Lancet Neurol* 2008, 7:494-499.

11. Lee JH, Cha JK, Lee SJ, Ha SW, Kwon SU. *N Engl J Med* Prasugrel versus clopidogrel in patients with acute coronary syndromes. Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Hamberger M, Wiener S, Hansson G, Wolf G, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Hamberger M, Wiener S, Hansson G, Wolf G. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. *N Engl J Med* 2009, 361:1045-1057.

12. White HD. Oral anti-platelet therapy for atherothrombotic disease: current evidence and new directions. *Am Heart J* 2011, 161:450-461.

13. Chinmala M, Shimizu K, Ogawa M, Yamaguchi H, Doi M, Jensen P. Basic and translational research on proteinase-activated receptors: antagonism of the proteinase-activated receptor 1 for thrombin, a novel approach to anti-platelet therapy for atherothrombotic disease. *J Pharmacol Sci* 2008, 108:433-438.

14. Bonaca MP, Morrow DA. *JCH* S530348: a novel oral thrombin receptor antagonist. *Future Cardiol* 2009, 5:435-442.

15. Hildemann SK, Bode C. Improving anti-platelet therapy for atherothrombotic disease: preclinical results with S530348, the first oral thrombin receptor antagonist selective for PAR-1. *Hamostaseologie* 2009, 29:349-355.

16. Oestreich J. S5CH-S30348, a thrombin receptor (PAR-1) antagonist for the prevention and treatment of atherothrombosis. *Curr Opin Investig Drugs* 2009, 10:986-996.

17. Kogushi M, Matsuoka T, Kawata T, Kuramochi H, Kawaguchi S, Murakami K, Hyoshi H, Suzuki S, Kawaihara T, Kajiwara A, Hishinuma I. The novel and orally active thrombin receptor antagonist E5555 (Atopaxar) inhibits arterial thrombosis without affecting bleeding time in guinea pigs. *Eur J Pharmacol* 2011, 657:131-137.

18. Kogushi M, Matsuoka T, Kuramochi H, Murakami K, Kawata T, Kimura A, Chiba K, Musha T, Suzuki S, Kawaihara T, Kajiwara A, Hishinuma I. Oral administration of the thrombin receptor antagonist E5555 (atopaxar) attenuates intimal thickening following balloon injury in rats. *Eur J Pharmacol* 2011, 666:158-164.

19. Serebruany VL, Kogushi M, Dastros-Pitei D, Flather M, Bhatt DL. The in-vitro effects of E5555, a protease-activated receptor (PAR)-1 antagonist, on platelet biomarkers in healthy volunteers and patients with coronary artery disease. *Thromb Haemost* 2009, 102:111-119.

20. Vanhoorelbeke K, Ulrichs H, Schoolmeester A, Deckmyn H. Inhibition of platelet adhesion to collagen as a new target for anti-thrombotic drugs. *Curr Drug Targets Cardiovasc Hematol Disord* 2003, 3:125-140.

21. Namuth F, Mazouz AV. Von Willebrand factor can support platelet aggregation and prevention of exercise-induced platelet activation. *Eur J Vasc Endovasc Surg* 2009, 37:604-610.

22. Hechler B, Cattaneo M, Gachet C: The P2 receptors in platelet function. *Semin Thromb Hemost* 2005, 31:150-161.

23. Iyig D, Gokon JR, White AE, Foo SC, van Giesen H, Nylander S, Heptinstall S. Mode of action of P2Y12 antagonists as inhibitors of platelet function. *Thromb Haemost* 2011, 105:96-106.

24. Erlinge D. P2Y receptors in health and disease. *Adv Pharmacol* 2011, 61:417-439.

25. Cattaneo M, Podda GM: State of the art of new P2Y12 antagonists. *Intem Emerg Med* 2010, 5:385-391.

26. Wielovit SD, Braunwald E, McCabe CH, Montalescot G, Ruyzulo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Weerakody G, Gibson CM, Antman EM, TRITON-TWII 38 Investigators: Prasugrel versus clopidogrel in patients with acute coronary syndromes. *N Engl J Med* 2007, 357:2001-2015.

27. Moussa SA, Jerske WP, Fained J, Prusgrael: a novel platelet ADP P2Y12 receptor antagonist. *Methods Mol Biol* 2010, 663:221-228.

28. Ueno M, Ferreiro JL, Angiolillo DJ: Update on the clinical development of canreogre, *Expert Rev Cardiovasc Ther* 2010, 8:1069-1077.

29. Bilen KP, Tantry US, Storey RF, Jeong HY, Geisheff M, Wei C, Gurbel PA: The effect of ticagrelor versus clopidogrel on high on-treatment platelet reactivity: Combined analysis of the ONSET/OFFSET and RESPOND studies. *Am Heart J* 2011, 162:160-165.

30. Mahaffey KW, Wojdyla DM, Carroll K, Becker RC, Storey RF, Angiolillo DJ, Held C, Cannon CP, James S, Pieper KS, Horro R, Harrington RA, Wallentin L, on behalf of the PLATO Investigators: Ticagrelor Compared With Clopidogrel by Geographic Region in the Platelet Inhibition and Patient Outcomes (PLATO) Trial. *Circulation* 2011, 124:544-554.

31. James S, Budaj A, Aylward P, Buck KK, Cannon CP, Cornell JH, Harrington RA, Horro R, Jans R, Keltai M, Lewis B, Parikh K, Storey RF, Szumier K, Wojdyla D, Wallentin L: Ticagrelor versus clopidogrel in acute coronary syndromes in relation to renal function: results from the Platelet Inhibition and Patient Outcomes (PLATO) trial. *Circulation* 2010, 122:1066-1075.

32. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horro R, Husted S, James S, Katus H, Mahaffey KW, Scrrica BM, Skene A, Steg PG, Storey RF, Harrington RA, PLATO Investigators, Freij A, Thorsin M. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. *N Engl J Med* 2009, 361:1045-1057.
glycoprotein V binds to collagen and participates in platelet adhesion and aggregation. Blood 2001, 98:1038-1046.

44. Li H, Lockyer S, Concepcion A, Gong X, Takizawa H, Guertin M, Matsumoto Y, Kambayashi J, Tandon NN, Liu Y: The Fab fragment of a novel anti-GPVI monoclonal antibody, OM4, reduces in vivo thrombosis without bleeding risk in rats. Arterioscler Thromb Vasc Biol 2007, 27:1199-1205.

45. Qian MD, Villeval JL, Xiong X, Jandrot-Perrus M, Nagashima K, Tonna J, McDonald K, Goodearl A, Gill D: Anti GPVI human antibodies neutralizing collagen induced platelet aggregation isolated from a combinatorial phage display library. Hum Antibodies 2002, 11:97-105.

46. Smethurst PA, Joutsi-Korhonen L, O’Connor MN, Wilson E, Jennings NS, Garner SF, Zhang Y, Knight CG, Dafforn TR, Buckle A, Usseldijk MJ, De Groot PG, Watkins NA, Fandale RW, Ouwehand WH: Identification of the primary collagen binding surface on human glycoprotein by site directed mutagenesis and by a blocking phage antibody. Blood 2004, 103:903-911.

47. Grüner S, Prostredna M, Akkas B, Moers A, Schulte V, Krieg T, Offermanns S, Eckes B, Niesswandt B: Anti-glycoprotein VI treatment severely compromises hemostasis in mice with reduced alpha2beta1 levels or concomitant aspirin therapy. Circulation 2004, 110:2946-2951.

48. Robert F: The potential benefits of low-molecular-weight heparins in cancer patients. J Hematol Oncol 2010, 3:3.

49. Budhu A, Ji J, Wang XW: The clinical potential of microRNAs. J Hematol Oncol 2010, 3:37.

doi:10.1186/1756-8722-4-44

Cite this article as: Ji and Hou: Novel agents for anti-platelet therapy. Journal of Hematology & Oncology 2011, 4:44.