Composition-Diamond Lemma for Non-associative Algebras over a Commutative Algebra

Yuqun Chen, Jing Li and Mingjun Zeng
School of Mathematical Sciences, South China Normal University
Guangzhou 510631, P. R. China
yqchen@scnu.edu.cn
yulin_jj@yahoo.com.cn
darmj@126.com

Abstract: We establish the Composition-Diamond lemma for non-associative algebras over a free commutative algebra. As an application, we prove that every countably generated non-associative algebra over an arbitrary commutative algebra K can be embedded into a two-generated non-associative algebra over K.

Key words: Gröbner-Shirshov basis; non-associative algebra; commutative algebra.

AMS Mathematics Subject Classification(2000): 16S15, 13P10, 17Dxx, 13Axx

1 Introduction

Gröbner bases and Gröbner-Shirshov bases theories were invented independently by A.I. Shirshov [23] for non-associative algebras and commutative (anti-commutative) non-associative algebras [21], for Lie algebras (explicitly) and associative algebras (implicitly) [22], for infinite series algebras (both formal and convergent) by H. Hironaka [19] and for polynomial algebras by B. Buchberger (first publication in [13]). Gröbner bases and Gröbner-Shirshov bases theories have been proved to be very useful in different branches of mathematics, including commutative algebra and combinatorial algebra, see, for example, the books [11, 12, 14, 15, 17, 18], the papers [2, 3, 4, 5, 16], and the surveys [6, 9, 10, 11].

It is well known that every countably generated non-associative algebra over a field k can be embedded into a two-generated non-associative algebra over k. This result follows from Gröbner-Shirshov bases theory for non-associative algebras by A.I. Shirshov [21].

Composition-Diamond lemmas for associative algebras over a polynomial algebra is established by A.A. Mikhalev and A.A. Zolotykh [20], for associative algebras over an associative algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [17], for Lie algebras over a polynomial algebra by L.A. Bokut, Yuqun Chen and Yongshan Chen [8]. In this paper, we establish the Composition-Diamond lemma for non-associative algebras over

*Supported by the NNSF of China (No.10771077, 1091120389) and the NSF of Guangdong Province (No. 06025062).
a polynomial algebra. As an application, we prove that every countably generated non-associative algebra over an arbitrary commutative algebra K can be embedded into a two-generated non-associative algebra over K, in particular, this result holds if K is a free commutative algebra.

2 Composition-Diamond lemma for non-associative algebras over a commutative algebra

Let k be a field, K a commutative associative k-algebra with unit, X a set and $K(X)$ the free non-associative algebra over K generated by X.

Let K denote the free abelian monoid generated by Y, X^* the free monoid generated by X and X^{**} the set of all non-associative words in X. Denote by

$N = [Y]X^{**} = \{u = u^Y u^X | u^Y \in [Y], u^X \in X^{**}\}.$

Let kN be a k-linear space spanned by N. For any $u = u^Y u^X, v = v^Y v^X \in N$, we define the multiplication of the words as follows

$uv = u^Y v^Y u^X v^X \in N.$

It is clear that kN is the free non-associative $k[Y]$-algebra generated by X. Such an algebra is denoted by $k[Y](X)$, i.e., $kN = k[Y](X)$. Clearly,

$k[Y](X) = k[Y] \otimes k(X).$

Now, we order the set $N = [Y]X^{**}$.

Let $>$ be a total ordering on X^{**}. Then $>$ is called monomial if

$(\forall u, v, w \in X^{**}) \ u > v \Rightarrow uw > wv \text{ and } uv > vw.$

For example, the deg-lex ordering on X^{**} is monomial: $uv > u_1 v_1$, if $\text{deg}(uv) > \text{deg}(u_1 v_1)$, otherwise $u > u_1$ or $u = u_1, v > v_1$. Similarly, we define the monomial ordering on $[Y]$.

Suppose that both $>_X$ and $>_Y$ are monomial orderings on X^{**} and $[Y]$, respectively. For any $u = u^Y u^X, v = v^Y v^X \in N$, define

$u > v \iff u^X >_X v^X \text{ or } (u^X = v^X \text{ and } u^Y >_Y v^Y).$

It is obvious that $>$ is a monomial ordering on N in the sense of

$(\forall u, v, w \in [Y]X^{**}) \ u > v \Rightarrow uw > wv, \ uv > vw \text{ and } w^Y u > w^Y v.$

We will use this ordering in this paper.

For any polynomial $f \in k[Y](X)$, f has a unique presentation of the form

$f = \alpha_f \tilde{f} + \sum \alpha_i u_i,$

where $\tilde{f}, u_i \in [Y]X^{**}, \tilde{f} > u_i, \alpha_f, \alpha_i \in k$. \tilde{f} is called the leading term of f. f is monic if the coefficient of \tilde{f} is 1.
Let \(* \notin X\). By a \(*\)-word we mean any expression in \([Y](X \cup \{\ast\})^{**}\) with only one occurrence of \(*\). Let \(u\) be a \(*\)-word and \(s \in k[Y](X)\). Then we call \(u|_s = u|_{\ast \rightarrow s}\) an \(s\)-word.

It is clear that for \(s\)-word \(u|_s\), we can express \(u|_s = u^Y(asb)\) for some \(a, b \in X^*\).

Since \(>\) is monomial on \([Y]X^{**}\), we have following lemma.

Lemma 2.1 Let \(s \in k[Y](X)\) be a non-zero polynomial. Then for any \(s\)-word \(u|_s = u^Y(asb)\), \(u^Y(asb) = u^Y(asb)\).

Now, we give the definition of compositions.

Definition 2.2 Let \(f\) and \(g\) be monic polynomials of \(k[Y](X)\), \(w = w^Yw^X \in [Y]X^{**}\) and \(a, b, c \in X^*\), where \(w^Y = L(f^Y, g^Y) \triangleq L\) and \(L(f^Y, g^Y)\) is the least common multiple of \(f^Y\) and \(g^Y\) in \(k[Y]\). Then we have the following compositions.

1. **X-inclusion**

 If \(w^X = \bar{f}^X = (a(\bar{g}^X)b)\), then

 \[
 (f, g)_w = \frac{L}{L_Yf}f - \frac{L}{L_Yg}(a(g)b)
 \]

 is called the composition of \(X\)-inclusion.

2. **Y-intersection only**

 If \(|\bar{f}^Y| + |\bar{g}^Y| > |w^Y|\) and \(w^X = (a(\bar{f}^X)b(\bar{g}^X)c)\), then

 \[
 (f, g)_w = \frac{L}{L_Yf}(a(f)b(\bar{g}^X)c) - \frac{L}{L_Yg}(a(\bar{f}^X)b(g)c)
 \]

 is called the composition of \(Y\)-intersection only, where for \(u \in [Y]\), \(|u|\) means the degree of \(u\).

 \(w\) is called the ambiguity of the composition \((f, g)_w\).

Remark 1. In the case of \(Y\)-intersection only in Definition 2.2, \(\bar{f}^X\) and \(\bar{g}^X\) are disjoint.

Remark 2. By Lemma 2.1, we have \(w > (f, g)_w\).

Remark 3. In Definition 2.2, the compositions of \(f, g\) are the same as the ones in \(k(X)\), if \(Y = \emptyset\). If this is the case, we have only composition of \(X\)-inclusion.

Definition 2.3 Let \(S\) be a monic subset of \(k[Y](X)\) and \(f, g \in S\). A composition \((f, g)_w\) is said to be trivial modulo \((S, w)\), denoted by \((f, g)_w \equiv 0 \mod(S, w)\), if

\[
(f, g)_w = \sum_i \alpha_i u_i|_{s_i},
\]

where each \(s_i \in S\), \(\alpha_i \in k\), \(u_i|_{s_i}\), \(s_i\)-word and \(w > u_i|_{\bar{s}_i}\).

Generally, for any \(p, q \in k[Y](X)\), \(p \equiv q \mod(S, w)\) if and only if \(p - q \equiv 0 \mod(S, w)\).

\(S\) is called a Gröbner-Shirshov basis in \(k[Y](X)\) if all compositions of elements in \(S\) are trivial modulo \(S\).
Lemma 2.4 Let \(S \) be a Gröbner-Shirshov basis in \(k[Y](X) \) and \(s_1, s_2 \in S \). Let \(u_1|s_1, u_2|s_2 \) be \(s_1, s_2 \)-words respectively. If \(w = u_1|s_1 = u_2|s_2 \), then \(u_1|s_1 \equiv u_2|s_2 \mod(S, w) \).

Proof: Clearly, \(w^Y = L(\bar{s}_1^Y, \bar{s}_2^Y) \cdot t = L \cdot t \) for some \(t \in [Y] \).

There are three cases to consider.

Case 1. \(X \)-inclusion.

We may assume that \(\bar{s}_1^X = (c\bar{s}_2^X)d \) for some \(c, d \in X^* \) and \(w^X = (a\bar{s}_1^X)b = (a(c\bar{s}_2^X)d)b \) for some \(a, b \in X^* \). Thus,

\[
\frac{L \cdot t}{\bar{s}_1^Y}(a(s_1)b) - \frac{L \cdot t}{\bar{s}_2^Y}(a(c(s_2)d)b) = t \cdot (a(\frac{L}{\bar{s}_1^Y}s_1 - \frac{L}{\bar{s}_2^Y}(c(s_2)d))b) = t \cdot (a(s_1, s_2)w, b) \equiv 0 \mod(S, w)
\]

where \(w_1 = L\bar{s}_1^X \).

Case 2. \(Y \)-intersection only.

In this case, \(w^X = (a\bar{s}_1^X)b(\bar{s}_2^X)c \), \(a, b, c \in X^* \) and then

\[
\frac{L \cdot t}{\bar{s}_1^Y}(a(s_1)b(\bar{s}_2^X)c) - \frac{L \cdot t}{\bar{s}_2^Y}(a(\bar{s}_1^X)b(s_2)c) = t \cdot (s_1, s_2)w_1 \equiv 0 \mod(S, w)
\]

where \(w_1 = Lw^X \).

Case 3. \(Y \)-disjoint and \(X \)-disjoint.

In this case, \(L = \bar{s}_1^Y \bar{s}_2^Y \) and \(w^X = (a\bar{s}_1^X)b(\bar{s}_2^X)c \), \(a, b, c \in X^* \). We have

\[
\frac{L \cdot t}{\bar{s}_1^Y}(a(s_1)b(\bar{s}_2^X)c) - \frac{L \cdot t}{\bar{s}_2^Y}(a(\bar{s}_1^X)b(s_2)c) = t \cdot (\frac{L}{\bar{s}_1^Y}(a(s_1)b(\bar{s}_2^X)c) - \frac{L}{\bar{s}_2^Y}(a(\bar{s}_1^X)b(s_2)c)) = t \cdot ((a(s_1)b(\bar{s}_2)c) - (a(s_1)b(s_2)c) + (a(s_1)b(s_2)c) - (a(\bar{s}_1)b(s_2)c)) = t \cdot ((a(s_1 - \bar{s}_1)b(s_2)c) - (a(s_1)b(s_2 - \bar{s}_2)c)) \equiv 0 \mod(S, w)
\]

since \(w = (a\bar{s}_1)b(s_2)c > (a(s_1 - \bar{s}_1)b(s_2)c) \) and \(w = (a\bar{s}_1)b(s_2)c > (a(s_1)b(s_2 - \bar{s}_2)c) \).

This completes the proof. \(\square \)
Lemma 2.5 Let $S \subseteq k[Y](X)$ with each $s \in S$ monic and $\text{Irr}(S) = \{w \in [Y].X^{**}|w \neq u|_s, u|_s \text{ is an s-word, } s \in S\}$. Then for any $f \in k[Y](X)$,

$$f = \sum_{u_i|_s \leq f} \alpha_i u_i|_{s_i} + \sum v_j \beta_j,$$

where $\alpha_i, \beta_j \in k$, $u_i|_{s_i}$, s_i-word, $s_i \in S$ and $v_j \in \text{Irr}(S)$.

Proof. Let $f = \sum \alpha_i u_i \in k[Y](X)$, where $0 \neq \alpha_i \in k$ and $u_1 > u_2 > \cdots$. If $u_1 \in \text{Irr}(S)$, then let $f_1 = f - \alpha_1 u_1$. If $u_1 \notin \text{Irr}(S)$, then there exists an s-word $u|_s$ such that $\bar{f} = u|_s$. Let $f_1 = f - \alpha_1 u|_s$. In both cases, we have $\bar{f} > \bar{f}_1$. Then the result follows from the induction on \bar{f}. □

From the above lemmas, we reach the following theorem:

Theorem 2.6 (Composition-Diamond lemma for $k[Y](X)$) Let $S \subseteq k[Y](X)$ with each $s \in S$ monic, $>$ the ordering on $[Y].X^{**}$ defined as before and $\text{Id}(S)$ the ideal of $k[Y](X)$ generated by S as $k[Y]$-algebra. Then the following statements are equivalent:

(i) S is a Gröbner-Shirshov basis in $k[Y](X)$.

(ii) If $0 \neq f \in \text{Id}(S)$, then $\bar{f} = u|_s$ for some s-word $u|_s$, $s \in S$.

(iii) $\text{Irr}(S) = \{w \in [Y].X^{**}|w \neq u|_s, u|_s \text{ is an s-word, } s \in S\}$ is a k-linear basis for the factor algebra $k[Y](X)/\text{Id}(S)$.

Proof: (i) \Rightarrow (ii). Suppose $0 \neq f \in \text{Id}(S)$. Then $f = \sum \alpha_i u_i|_{s_i}$ for some $\alpha_i \in k$, s_i-word $u_i|_{s_i}$, $s_i \in S$. Let $w_i = u_i|_s$ and $w_1 = w_2 = \cdots = w_l > w_{l+1} \geq \cdots$. We will prove the result by using induction on l and w_1.

If $l = 1$, then the result is clear. If $l > 1$, then $w_1 = u_1|_s = u_2|_s$. Now, by (i) and Lemma 2.4, $u_1|_{s_1} \equiv u_2|_{s_2} \mod(S, w_1)$. Thus,

$$\alpha_1 u_1|_{s_1} + \alpha_2 u_2|_{s_2} = (\alpha_1 + \alpha_2) u_1|_{s_1} + \alpha_2 (u_2|_{s_2} - u_1|_{s_1}) \equiv (\alpha_1 + \alpha_2) u_1|_{s_1} \mod(S, w_1).$$

Therefore, if $\alpha_1 + \alpha_2 \neq 0$ or $l > 2$, then the result follows from the induction on l. For the case $\alpha_1 + \alpha_2 = 0$ and $l = 2$, we use the induction on w_1. Now the result follows.

(ii) \Rightarrow (iii). By Lemma 2.5, $\text{Irr}(S)$ generates the factor algebra. Moreover, if $0 \neq h = \sum \beta_j u_j \in \text{Id}(S)$, $u_j \in \text{Irr}(S)$, $u_1 > u_2 > \cdots$ and $\beta_1 \neq 0$, then $u_1 = \bar{h} = u|_s$, a contradiction. This shows that $\text{Irr}(S)$ is a k-linear basis of the factor algebra.

(iii) \Rightarrow (i). For any f, $g \in S$, since $k[Y]|S \subseteq \text{Id}(S)$, we have $h = (f, g)|_w \in \text{Id}(S)$. The result is trivial if $(f, g)|_w = 0$. Assume that $(f, g)|_w \neq 0$. Then, by Lemma 2.5, (iii) and by noting that $w > (f, g)|_w = \bar{h}$, we have $(f, g)|_w \equiv 0 \mod(S, w)$.

This shows (i). □

Remark: Theorem 2.6 is the Composition-Diamond lemma for non-associative algebras when $Y = 0$.

5
3 Applications

Let \(A \) be an arbitrary \(K \)-algebra and \(A \) be presented by generators \(X \) and defining relations \(S \)

\[
A = K(X|S).
\]

Let \(K \) have a presentation by generators \(Y \) and defining relations \(R \)

\[
K = k[Y|R]
\]
as a quotient algebra of the polynomial algebra \(k \).

Then with a natural way, as \(k[Y]-\)algebras, we have an isomorphism

\[
k[Y|R](X|S) \rightarrow k[Y](X|S', Rx, x \in X), \sum (f_i + Id(R))u_i + Id(S) \mapsto \sum f_iu_i + Id(S'),
\]

where \(f_i \in k[Y], u_i \in X^*, S' = S' \cup \{gx|g \in R, x \in X\}, S^l = \{\sum f_iu_i \in k[Y](X)|\sum(f_i + Id(R))u_i \in S\}. \) Then \(A \) has an expression

\[
A = k[Y|R](X|S) = k[Y](X|S', gx, g \in R, x \in X).
\]

Theorem 3.1 Each countably generated non-associative algebra over an arbitrary commutative algebra \(K \) can be embedded into a two-generated non-associative algebra over \(K \).

Proof. Let the notation be as before. Let \(A \) be the non-associative algebra over \(K = k[Y|R] \) generated by \(X = \{x_i|i = 1,2,\ldots\} \). We may assume that \(A = k[Y|R](X|S) \) is defined as above. Then \(A \) can be presented as \(A = k[Y](X|S', gx, g \in R, i = 1,2,\ldots) \). By Shirshov algorithm, we can assume that, with the deg-lex ordering \(>_Y \) on \([Y], R \) is a Gröbner-Shirshov basis in the free commutative algebra \(k[Y] \). Let \(>_X \) be the deg-lex ordering on \(X^* \), where \(x_1 > x_2 > \ldots \). We can also assume, by Shirshov algorithm, that with the ordering on \([Y]X^* \) defined as before, \(S' = S^l \cup \{gx|g \in R, x \in X\} \) is a Gröbner-Shirshov basis in \(k[Y](X) \).

Let \(B = k[Y](X,a,b|S_1) \) where \(S_1 \) consists of

\[
\begin{align*}
 f_1 &= S^l, \\
 f_2 &= \{gx|g \in R, x \in X\}, \\
 f_3 &= \{a(b^i) - x_i|i = 1,2,\ldots\}, \\
 f_4 &= \{ga|g \in R\}, \\
 f_5 &= \{gb|g \in R\}.
\end{align*}
\]

Clearly, \(B \) is a \(K \)-algebra generated by \(a,b \). Thus, to prove the theorem, by using our Theorem 2.6, it suffices to show that with the ordering on \([Y](X \cup \{a,b\})^* \) as before, where \(a > b > x_i, i = 1,2,\ldots, S_1 \) is a Gröbner-Shirshov basis in \(k[Y](X,a,b) \).

Denote by \((i \wedge j)_{wij} \) the composition of the type \(f_i \) and type \(f_j \) with respect to the ambiguity \(w_{ij} \). Since \(S' \) is a Gröbner-Shirshov basis in \(k[Y](X) \), we need only to check all compositions related to the following ambiguities \(w_{ij} \):

\[
1 \wedge 4, \quad w_{14} = L(\tilde{f}Y, \tilde{g})(z_1(\tilde{f}X)z_2az_3);
\]
1 ∧ 5, \ w_{15} = L(\bar{f}'Y, \bar{g})(z_1(\bar{f}'X)z_2b_3);
2 ∧ 4, \ w_{24} = L(g', \bar{g})(z_1x_2a_3);
2 ∧ 5, \ w_{25} = L(g', \bar{g})(z_1x_2a_2b_3);
3 ∧ 4, \ w_{34} = g\alpha(b);
3 ∧ 5, \ w_{35} = g\alpha(b);
4 ∧ 1, \ w_{41} = L(g, \bar{f}'Y)(z_1a_2z_2(\bar{f}'X)z_3);
4 ∧ 2, \ w_{42} = L(g, \bar{g}')(z_1a_2x_3);
4 ∧ 4, \ w_{44} = L(\bar{g}_1, \bar{g}_2)a;
4 ∧ 5, \ w_{45} = L(g, \bar{g}')(z_1a_2b_2);
5 ∧ 1, \ w_{51} = L(\bar{g}, \bar{f}'Y)(z_1b_2z_2(\bar{f}'X)z_3);
5 ∧ 2, \ w_{52} = L(\bar{g}, \bar{g}')(z_1b_2x_3);
5 ∧ 4, \ w_{54} = L(\bar{g}, \bar{g}')(z_1b_2a_3);
5 ∧ 5, \ w_{55} = L(\bar{g}_1, \bar{g}_2)b;

where \(g, g', g_1, g_2 \in R, f \in S^t, z_1, z_2, z_3 \in (X \cup \{a, b\})^* \) and \((z_1v_1z_2v_2z_3) \) is some bracketing.
Now, we prove that all the compositions are trivial.
1 ∧ 4, \ w_{14} = L(\bar{f}'Y, \bar{g})(z_1(\bar{f}'X)z_2a_3), \ \text{where} \ f \in S^t, \ g \in R.
We can write \(\bar{f}'X = (uvx) \), where \(u, v \in X^* \). Since \(S' = \{ S^t, Rx, x \in X \} \) is a Gröbner-Shirshov basis in \(k[Y](X) \), we have \((f, gx)_w = \sum \alpha_i u_i | s_i \), where \(w = L(\bar{f}'Y, \bar{g})\bar{f}'X \), each \(\alpha_i \in k \), \(s_i \in S' \), \(u_i \in [Y]X^* \) and \(w > u_i | s_i \). Then

\[
(1, 4)_{w_{14}} = \frac{L}{f'}(z_1f z_2a_3) - \frac{L}{g}(z_1(\bar{f}'X)z_2g a_3)
= \frac{L}{f'}(z_1f z_2a_3) - \frac{L}{g}(z_1(ug xv)z_2a_3) + \frac{L}{g}(z_1(ug xv)z_2a_3) - \frac{L}{g}(z_1(\bar{f}'X)z_2g a_3)
= (z_1(\frac{L}{f'}f - \frac{L}{g}(ug xv))z_2a_3) + \frac{L}{g}((z_1(ug xv)z_2a_3) - (z_1(\bar{f}'X)z_2a_3))
= \sum \alpha_i (z_1u_i | s_i z_2a_3)
\equiv 0 \mod(S_1, w_{14}).
\]

Similarly, \((1, 5)_{w_{15}} \equiv 0 \), \((4, 1)_{w_{41}} \equiv 0 \), \((5, 1)_{w_{51}} \equiv 0 \).

2 ∧ 4, \ w_{24} = L(g', \bar{g})(z_1x_2a_3), \ \text{where} \ g, g' \in R.
If \(|g'| + |\bar{g}| > |L| \), then since \(R \) is a Gröbner-Shirshov basis in \(k[Y] \), \((g', g)_w = (\frac{L}{g'}g' - \frac{L}{g}g) = \sum \alpha_i u_i h_i \), where \(w = L(\bar{g}', \bar{g}), \) each \(\alpha_i \in k, u_i \in [Y], \ h_i \in R \) and \(w > u_i | h_i \). Thus

\[
(2, 4)_{w_{24}} = \frac{L}{g'}(z_1g'x_2a_3) - \frac{L}{g}(z_1x_2g a_3)
= (\frac{L}{g'}g' - \frac{L}{g}g)(z_1x_2a_3)
= \sum \alpha_i u_i h_i (z_1x_2a_3)
= \sum \alpha_i u_i (z_1x_2h_i a_3)
\equiv 0 \mod(S_1, w_{24}).
\]

Similarly, \((2, 5)_{w_{25}} \equiv 0\), \((4, 2)_{w_{42}} \equiv 0\), \((4, 5)_{w_{45}} \equiv 0\), \((5, 2)_{w_{52}} \equiv 0\) and \((5, 4)_{w_{54}} \equiv 0\).

\[3 \land 4, \quad w_{34} = \bar{g}a(b^i), \text{ where } g \in R.\]

Let \(g = \bar{g} + r \in R\). Then

\[(3, 4)_{w_{34}} = -\bar{g}x_i - ra(b^i) \equiv -\bar{g}x_i - rx_i \equiv gx_i \equiv 0 \mod(S_1, w_{34}).\]

Similarly, \((3, 5)_{w_{35}} \equiv 0\).

\[4 \land 4, \quad w_{44} = L(\bar{g}_1, \bar{g}_2)a, \text{ where } g_1, g_2 \in R.\]

If \(|\bar{g}_1| + |\bar{g}_2| > |L|\), then since \(R\) is a Gröbner-Shirshov basis in \(k[Y]\), \((g_1, g_2)_w = (\frac{L}{g_1}g_1 - \frac{L}{g_2}g_2) = \sum \alpha_i u_i h_i\), where \(w = L(\bar{g}_1, \bar{g}_2)\), each \(\alpha_i \in k, u_i \in [Y], h_i \in R\) and \(w > u_i h_i\). Thus

\[(4, 4)_{w_{44}} = \frac{L}{g_1}(g_1a) - \frac{L}{g_2}(g_2a) = \frac{L}{g_1}g_1 - \frac{L}{g_2}g_2 = \sum \alpha_i u_i h_i a \equiv 0 \mod(S_1, w_{44}).\]

If \(|\bar{g}_1| + |\bar{g}_2| = |L|\), then

\[(4, 4)_{w_{44}} = \frac{L}{g_1}(g_1a) - \frac{L}{g_2}(g_2a) = (\bar{g}_2g_1 - \bar{g}_1g_2)a \equiv ((g_1 - \bar{g}_1)g_2 - (g_2 - \bar{g}_2)g_1)a \equiv 0 \mod(S_1, w_{44}).\]

Similarly, \((5, 5)_{w_{55}} \equiv 0\).

Now we have proved that \(S_1\) is a Gröbner-Shirshov basis in \(k[Y](X, a, b)\).

The proof is complete. □

A special case of Theorem 3.1 is the following corollary.

Corollary 3.2 Every countably generated non-associative algebra over a free commutative algebra can be embedded into a two-generated non-associative algebra over a free commutative algebra.

Acknowledgement. The authors would like to express their deepest gratitude to Professor L.A. Bokut for his kind guidance, useful discussions and enthusiastic encouragement.
References

[1] William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, Vol. 3, American Mathematical Society (AMS), 1994.

[2] G.M. Bergman, The diamond lemma for ring theory, *Adv. Math.*, 29(1978), 178-218.

[3] L.A. Bokut, Insolvability of the word problem for Lie algebras, and subalgebras of finitely presented Lie algebras, *Izvestija AN USSR (mathem.)*, 36(6)(1972), 1173-1219.

[4] L.A. Bokut, Imbeddings into simple associative algebras, *Algebra i Logika*, 15(1976), 117-142.

[5] L.A. Bokut and Yuqun Chen, Gröbner-Shirshov basis for free Lie algebras: after A.I. Shirshov, *Southeast Asian Bull. Math.*, 31(2007), 1057-1076.

[6] L.A. Bokut and Yuqun Chen, Gröbner-Shirshov bases: Some new results, Proceedings of the Second International Congress in Algebra and Combinatorics, World Scientific, 2008, 35-56.

[7] L.A. Bokut, Yuqun Chen and Yongshan Chen, Composition-Diamond lemma for tensor product of free algebras, *Journal of Algebra*, 323(2010), 2520-2537.

[8] L.A. Bokut, Yuqun Chen and Yongshan Chen, Gröbner-Shirshov bases for Lie algebras over a commutative algebra, [arXiv:1005.7682](http://arxiv.org/abs/1005.7682).

[9] L.A. Bokut, Y. Fong, W.-F. Ke and P.S. Kolesnikov, Gröbner and Gröbner-Shirshov bases in algebra and conformal algebras, *Fundamental and Applied Mathematics*, 6(3)(2000), 669-706.

[10] L.A. Bokut and P.S. Kolesnikov, Gröbner-Shirshov bases: from their incipiency to the present, *Journal of Mathematical Sciences*, 116(1)(2003), 2894-2916.

[11] L.A. Bokut and P.S. Kolesnikov, Gröbner-Shirshov bases, conformal algebras and pseudo-algebras, *Journal of Mathematical Sciences*, 131(5)(2005), 5962–6003.

[12] L.A. Bokut and G. Kukin, Algorithmic and Combinatorial algebra, Kluwer Academic Publ., Dordrecht, 1994.

[13] B. Buchberger, An algorithmical criteria for the solvability of algebraic systems of equations [in German], *Aequationes Math.*, 4, 374-383(1970).

[14] B. Buchberger, G.E. Collins, R. Loos and R. Albrecht, Computer algebra, symbolic and algebraic computation, Computing Supplementum, Vol.4, New York: Springer-Verlag, 1982.

[15] Bruno Buchberger and Franz Winkler, Gröbner bases and applications, London Mathematical Society Lecture Note Series, Vol.251, Cambridge: Cambridge University Press, 1998.
[16] Yuqun Chen and Qiuhui Mo, Artin-Markov normal form for Braid group, *Southeast Asian Bull. Math.*, **33**(2009), 403-419.

[17] David A. Cox, John Little and Donal O’Shea, Ideals, varieties and algorithms: An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, New York: Spring-Verlag, 1992.

[18] David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math., Vol.150, Berlin and New York: Springer-Verlag, 1995.

[19] H. Hironaka, Resolution of singularities of an algebraic variety over a field if characteristic zero, I, II, *Ann. Math.*, **79**(1964), 109-203, 205-326.

[20] A. A. Mikhalev and A. A. Zolotykh, Standard Gröbner-Shirshov bases of free algebras over rings, I. Free associative algebras, International Journal of Algebra and Computation, 8(6)(1998), 689-726.

[21] A.I. Shirshov, Some algorithmic problem for ε-algebras, *Sibirsk. Mat. Z.*, **3**(1962), 132-137. (in Russian)

[22] A.I. Shirshov, Some algorithmic problem for Lie algebras, *Sibirsk. Mat. Z.*, **3**(2)(1962), 292-296 (in Russian); English translation in SIGSAM Bull., **33**(2)(1999), 3-6.

[23] Selected works of A.I. Shirshov, Eds Leonid A. Bokut, V. Latyshev, I. Shestakov, E. Zelmanov, Trs M. Bremner, M. Kochetov, Birkhäuser, Basel, Boston, Berlin, 2009.