Two new accreting, pulsating white dwarfs: SDSS J1457+51 and BW Sculptoris

Helena Uthas,1* Joseph Patterson,1 Jonathan Kemp,2 Christian Knigge,3 Berto Monard,4 Robert Rea,5 Greg Bolt,6 Jennie McCormick,7 Grant Christie,8 Alon Retter9 and Alex Liu10

1Department of Astronomy, Columbia University, 550 W 120th Street, New York, NY 10027, USA
2Gemini Observatory, Northern Operations Center, 670 North A’ohoku Place, Hilo, HI 96720, USA
3Department of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ
4Center for Backyard Astrophysics (Pretoria), PO Box 11426, Tiewepoort 0056, South Africa
5Center for Backyard Astrophysics (Nelson), 8 Regent Lane, Richmond, Nelson, New Zealand
6Center for Backyard Astrophysics (Perth), 295 Camberwarra Drive, Craigie, Western Australia 6025, Australia
7Center for Backyard Astrophysics (Pakuranga), Farm Cove Observatory, Pakuranga, New Zealand
8Center for Backyard Astrophysics (Auckland), New Zealand
9Center for Backyard Astrophysics (Shoham), 86a/6 Hamaccabim St., PO Box 4264, Shoham 60850, Israel
10Center for Backyard Astrophysics (Exmouth), Norcape Observatory, PO Box 300, Exmouth 6707, Australia

Accepted 2011 October 20. Received 2011 October 19; in original form 2011 March 7

ABSTRACT

We report the discovery of rapid periodic signals in the light curves of two cataclysmic variables with prominent white dwarf components in their spectra, SDSS J1457+51 and BW Sculptoris. These stars therefore appear to be new members of the GW Librae class of variable stars, in which the fast periodic (and non-commensurate with the orbital period) signals are believed to arise from non-radial pulsations in the underlying white dwarf. The power spectra of both stars show complex signals with primary periods near 10 and 20 min, respectively. These signals change in frequency by a few per cent on a time-scale of weeks or less, and probably contain an internal fine structure unresolved by our observations. We also detect double-humped waves signifying the underlying orbital periods, near 78 min for both stars. In addition, BW Sculptoris shows a transient but powerful signal with a period near 87 min, a quiescent superhump. The ∼11 per cent excess over the orbital period is difficult to understand, and may arise from an eccentric instability near the 2:1 resonance in the accretion disc.

Key words: stars: individual: SDSS J1457+51 – stars: individual: BW Sculptoris – novae, cataclysmic variables – stars: oscillations – white dwarfs.

1 INTRODUCTION

Non-radial pulsations (NRPs) are commonly found in isolated white dwarfs (WDs) of DA type, so called ZZ Ceti stars. These stars have hydrogen-rich atmospheres, and pulsations occur as the WD cools and passes through a phase of pulsational instability, detected mainly as g modes (Gianninas, Bergeron & Fontaine 2006).

During the last decennium, similar signals, generally interpreted as non-radial WD pulsations, have also been detected in faint cataclysmic variables (CVs). A CV is a close binary system where a late-type main-sequence star loses mass to a primary WD. The first CV proposed to harbour a pulsating WD was GW Librae (hereinafter GW Lib). Warner & van Zyl (1998) found rapid, periodic and non-commensurate signals in its light curve, suggesting NRPs of the underlying WD. In most CVs, the accretion energy tends to dominate the luminosity, and the WD itself, shining with $M_V \sim 10–13$, is seldom seen. However, for some of the most intrinsically faint CVs, spectroscopy and time-series photometry can reveal signatures of the underlying WD, such as broad absorption features in the spectrum, sharp eclipses, and sometimes NRPs in the light curve. These signals have now been detected in about a dozen CVs, all quiescent systems of low luminosity. Here, we call these systems GW Lib stars, after the first discovery. Szkody et al. (2010) and Mukadam et al. (2009) present recent reviews of this group of stars.

Accreting WDs are different from isolated ones since they are being exposed to mass transfer, giving them atmospheres of solar composition. The WDs in CVs are therefore hotter and are also found to be spinning faster compared to isolated ones (Szkody et al. 2010).
2009). Studying these systems will provide important information of how the process of accretion is affecting the evolution of the WD. In isolated WDs, pulsations are only observed in stars with temperatures located within a so-called instability strip in the log g–T eff plane, spanning the temperature range T eff = 10 900–12 200 K (see fig. 3 of Giammaria et al. 2006). However, there is no clear instability strip for the GW Lib stars (see fig. 13 of Szkody et al. 2010), and pulsations are found in systems with WD effective temperatures up to at least 15 000 K.

Our theoretical understanding of the mechanism for exciting NRPs in CVs is still limited. The observed pulse amplitudes are quite variable, and in some ZZ Ceti stars this is known to be the result of the beating of two signals closely spaced in frequency, a classic and highly informative signature of NRPs. However, the GW Lib stars have not yet clearly revealed this kind of behaviour (although a hint of it emerged in the V386 Ser campaign reported by Mukadam et al. 2010).

We here present time-series photometry of two more CVs which are probably members of the GW Lib class. Both systems have very low accretion luminosity, and show signatures from the WD in their optical spectra. Also, both systems show double-humped orbital signals, and non-commensurate periodic signals, suggesting NRPs. One is SDSS J1457+51 (hereinafter J1457) which has a photometric wave suggesting an orbital period of 77.885 ± 0.007 min. The other is BW Sculptoris (hereafter BW Scl), with P orb = 78.226 39 ± 0.0003 min. Both stars show main pulsations near 10 and 20 min, respectively. These rapid signals drift slightly in frequency, and may consist of several, finely spaced components. BW Scl also shows a remarkable photometric variation at 87 min, which could be explained as a quiescent superhump, possibly arising from a 2:1 orbital resonance in the accretion disc.

2 SDSS J1457+51

J1457 was first identified in the Sloan Digital Sky Survey by Szkody et al. (2005). They obtained spectroscopy that showed the broad absorption characteristics of a WD, indicating a system of low accretion rate. The source was found to be faint (g ≈ 19.5). Due to the double-peaked nature of the emission lines, they suggested the system to be of high inclination.

2.1 Observations, data reduction and analysis

Time-resolved photometry of J1457 was obtained with the 1.3- and 2.4-m MDM telescopes at the Kitt Peak National Observatory, Arizona, during 2010 April and May. The star was observed during 14 nights in total, spread over 47 d. With all data coming from the same terrestrial longitude, we were not immune from aliasing problems and therefore strove to obtain the longest possible nightly time-series (generally ~4–7 h). Weather conditions such as clouds, snow and full moon prevented us from obtaining time-series over more than four consecutive nights at a time. The time-resolution was in the range 20–30 s. Table 1 presents a log of the observations. A clear filter with a blue cut-off was used to minimize differential-extinction effects and allow for a good throughput.

The data reduction was done in real time during the observations, using standard IRAF routines. The data consisted of differential photometry with respect to the field star USNO A2.0:1350–08528847. The search for periodic signals was initially done for single nights separately, and Lomb–Scargle periodograms (Scargle 1982) were constructed. Formal flux errors were rescaled so that \(\chi^2 \approx 1 \). This was done by fitting a fake light curve to the original data, composed of multiple sine waves with periods corresponding to the strongest signals found in the single-night power spectrum. Monte Carlo simulations were performed on every peak of interest in the power spectrum to find the period and its error. In this method, the peak errors are found by randomly redistributing the points in the light curve within their errors, a repeated number of times, and constructing a Lomb–Scargle periodogram each time. The 1 σ error is then found by fitting a Gaussian to the output distribution of the peaks found in the periodograms. Data from several nights were then combined to allow the search for signals with lower amplitude, and also to improve the frequency resolution. Bootstrap analysis was performed to distinguish between the most likely aliases, and was also used to find errors on the peaks. In this method, the sampling pattern of the data is changed by creating a mock data set where every point from the original data set is randomized. This is done to efficiently destroy or weaken the alias pattern.

2.2 Light curve and average power spectrum

The mean power spectrum, averaged over the six best nights, is shown in Fig. 1(a). The 18.48 cycles d\(^{-1}\) (77.9 min) and 36.97 cycles d\(^{-1}\) (38.9 min) signals are almost certainly the orbital frequency \(\nu_{\text{orb}} \) and its first harmonic \(2 \nu_{\text{orb}} \). This kind of variation at \(\nu_{\text{orb}} \) is commonly seen in the orbital light curves of CVs with low accretion rates (for instance, in WZ Sge; see Patterson et al. 2002b). We find that the signals in the range 142–148 cycles d\(^{-1}\) (≈10 min) are non-commensurate with the orbital frequency. These peaks vary slightly in period and amplitude, when present at all in the nightly power spectrum. The complex structure around them indicates either an unresolved fine structure or periods varying from night to night, and is discussed in detail below. Also, during a few nights, peaks were found at 135 cycles d\(^{-1}\) (10.7 min) and 72 cycles d\(^{-1}\) (20 min), which are also non-commensurate with the orbital frequency. The lower region of the power spectrum shows strong peaks at 4–6 cycles d\(^{-1}\) (4–6 h), corresponding to the typical length of a nightly observing run. The unit cycles d\(^{-1}\) is used throughout this paper since it is the natural unit for the sampling pattern of the multi-day light curves. Also, it clearly shows the natural daily alias pattern.

The average power spectrum in Fig. 1(a) has low resolution since each night is less than 8 hours long. The power spectrum of a spliced light curve spanning several nights (a coherent power spectrum) would be expected to be much higher-resolution.
Two new pulsating CVs: J1457 and BW Scl

Figure 1. Panel (a): the mean Lomb–Scargle periodogram for J1457, from the six nights of best quality. The orbital period at 18.48 cycles d$^{-1}$ (ω_o, 77.9 min) and its first harmonic ($2\omega_o$) are plotted as the solid lines. Panel (b): normalized and smoothed light curve of J1547 from one sample night. A model light curve constructed from the four strongest periods (including ω_o and $2\omega_o$) found in panel (a) is plotted together with the data.

is in principle better, since the resolution is always near $0.1N^{-1}$ cycles d$^{-1}$, where N is the duration in days. It does, however, make the assumption that a candidate periodic signal is constant in period, phase and amplitude over the duration of the observation. Power spectra will be difficult or impossible to interpret correctly when this assumption is grossly violated.

Fig. 1(b) shows the normalized and smoothed light curve for a sample night. A model light curve constructed from the four strongest peaks found in the power spectrum that night (including both ω_o and $2\omega_o$) is plotted on top of the smoothed light curve. Peaks found at higher frequencies than 40 cycles d$^{-1}$ are not represented in the model light curve. During one of the observing nights, we obtained multicolour data and found the brightness of the star to be $V = 19.2 \pm 0.2$. The mean brightness on each night was constant within the measurement error of 0.03 mag. Flickering, an essentially universal feature of CV light curves, was very low. This together with the fact that absorption lines are seen in the optical spectrum implies that the total light, 4000–7000 Å, is dominated by the WD. Measurements of the absorption line depth of the hydrogen lines indicate that probably no more than half of the total light comes from accretion processes.

2.3 The orbital signal

A dominant, stable feature at ≈ 37 cycles d$^{-1}$ (38 min) is always present in the nightly power spectra. In four of the nights, a weaker but stable signal is also present at half that frequency, ≈ 18.5 cycles d$^{-1}$ (78 min). We interpret these two signals as the orbital frequency and its first harmonic, ω_o and $2\omega_o$. As mentioned above, double-humped orbital waves are quite common among CVs, especially those of very low luminosity (for instance, in WZ Sge and AL Com). A power spectrum composed of 11 nights, spanning 45 d, yields $\omega_o = 18.4888 \pm 0.0017$ cycles d$^{-1}$ and $2\omega_o = 36.9740 \pm 0.0005$ cycles d$^{-1}$. Errors are calculated from bootstrap simulations as described in Section 2.1.

Fig. 2(a) shows the low-frequency portion of the full 11-night power spectrum. A zoomed-in view of the region around the orbital frequency is shown in the inset. A model power spectrum

Figure 2. Panel (a): the power spectrum of J1457 from 11 nights, showing the orbital signal ω_o and its first harmonic $2\omega_o$. A zoomed-in view of the region around ω_o is shown in the inset. Panel (b): a model power spectrum of J1457 constructed from two sine waves at ω_o and $2\omega_o$, using the same sampling pattern as used in panel (a).
constructed from two artificial sinusoids at ω_0 and $2\omega_0$, using the exact same sampling as for the original data set, is shown in Fig. 2(b). When comparing model versus data, we find the surrounding picket-fence pattern similar in structure and height. This implies that the orbital signal indeed maintains an essentially constant amplitude and phase. In Fig. 3, data from all 11 nights are folded on to the orbital frequency, showing the double-humped orbital wave at ω_0 and $2\omega_0$.

The lower frequency range of the power spectrum was further investigated to rule out the possibility of signals hiding in the noise (see Section 3.6 for the case of BW ScI). The power spectrum was cleaned from the strongest signals at ω_0 and $2\omega_0$ and also from the high-amplitude peaks between 4 and 6 cycles d$^{-1}$. However, no additional peak was found in this region, or in the vicinity of the orbital period.

2.4 High-frequency power excess

The complex range of signals spanning 142–148 cycles d$^{-1}$ (\approx10 min) moves slightly in frequency and is non-commensurate with the orbital frequency. In addition, during five of the observing nights, a broad, low-amplitude peak appeared at 135 cycles d$^{-1}$ (10.7 min) along with a signal at 72 cycles d$^{-1}$ (20.0 min), neither of which is of orbital origin.

With the aim to study these signals in more detail, a coherent power spectrum was constructed from adding consecutive nights together. However, this did not produce clean signals, even though the nightly power spectrum windows were always clean. The broadness and complexity of the signals indicate a slight shift in amplitude and frequency on the time-scale of a few nights, and/or an internal fine structure unresolved by our observations. Therefore, analysis was performed on power spectra from separate nights in comparison with the overall mean power spectrum.

When combining our sparse data collected over 43 nights, there is a broad power excess around the frequencies 135, 144 and 148 cycles d$^{-1}$. This splitting is also evident in the mean spectrum shown in Fig. 1(a), and is always seen when combining nights from the start and the end of the campaign. When studying the nightly power spectrum in this range, there was (in general) only one peak present at the time. However, during one observing night, three peaks were seen simultaneously at approximately these frequencies (Fig. 4). The nightly mean error for any peak appearing at 135–148 cycles d$^{-1}$ is about 0.8 cycles d$^{-1}$.

The upper two panels in Fig. 5 show the combined power spectra of the six nights of best quality. The bottom two panels show model power spectra constructed from sine waves at the peak frequencies found in the combined six-night data set, at 18.48 (ω_0), 36.97 ($2\omega_0$), 71.9, 135.2, 144.3 and 147.9 cycles d$^{-1}$, using the same sampling pattern as the data. The model is able to reconstruct the overall appearance and widths of the signals seen in the data reasonably well, indicating that there is power excess at these frequencies. If excluding any of the frequencies from the model, the data power spectrum cannot be reproduced. We note that 71.9 cycles d$^{-1}$ is about half of 144.3 cycles d$^{-1}$, but not exactly in a 2:1 ratio, indicating that the signals are not constant in amplitude and phase (see Section 3.4 for the case of BW ScI). For a complete summary of the frequency analysis, see Table 2.

3 BW SCULPTORIS

BW ScI is a 16th-magnitude blue star which was found to coincide with RX J2353.0–3852 in the ROSAT bright-source catalogue, and...
then identified as a CV by Abbott, Fleming & Pasquini (1997), Augusteijn & Wisotzki (1997) independently discovered the star as a blue object in the Hamburg/ESO survey for bright quasars. These two studies established the very short orbital period of 78 min. In addition to broad and doubled H and He emission lines, BW Scl also shows very broad Balmer and Lyman absorptions, signifying the presence of a WD of modest temperature (~15 000 K; Gänsicke et al. 2005). If roughly half of the visual light comes from such a WD, then the WD has \(V = 17.3 \) and \(M_V \sim 12 \), implying a distance of 420, 2011 The Authors, MNRAS © 2011 RAS (confirmed by spectroscopy). The middle panel shows the 1999 campaign. The general appearance is typical of all nights, as well as seen in previously published light curves (Abbott et al. 2009; Augusteijn & Wisotzki 1997). As those papers demonstrated, a 39-min wave is always present, with a small even–odd asymmetry suggesting that the fundamental period is actually the double, 78 min (confirmed by spectroscopy). The middle panel shows the 1999 double-humped orbital light curve, similar to that of J1457 (see Fig. 3 above). Study of the seasonal timings yielded a 1995–2009 ephemeris:

\[
\text{Orbital maximum } = \text{HJD } 245 0032.182(3) + 0.054 \times 3239.2(2) E.
\]

The average nightly power spectrum, the incoherent sum of the 11 nights of best quality, is shown in the bottom panel of Fig. 6. Power

Table 2. Summary of frequencies found in J1457 and BW Scl.

Star	Frequency (cycles d\(^{-1}\))	Period (min)	Amplitude (mmag)	Comments
J1457	18.4888 ± 0.0017	77.92	12.0	Orbital period (\(\omega_0\))
	36.9740 ± 0.0005	38.95	23.9	2\(\omega_0\)
	71.9 (nightly mean error: 0.5)	20.0	12.0	NRP, low amplitude, non-stable
	135.2/144.3/147.9 (nightly mean error: 0.8)	10.7/9.9/7.6	3.9/12.7/7.6	NRP, non-stable
BW Scl	~16.5	87.27	~50	Quiescent superhump, non-stable
	18.408 ± 0.03	78.23	~15	Harmonic of quiescent superhump
	32.98 ± 0.01	43.66	20.0	2\(\omega_0\)
	36.8162 ± 0.03	39.11	55	NRP, \(\omega_0\), non-stable (amplitude from 2009)
	69.55 ± 0.03	20.70	~25	NRP, \(\omega_0\), non-stable (amplitude from 2009)
	103.55 ± 0.03	13.90	~20	\(\omega_0 - 2\omega_0\), non-stable (amplitude from 2009)
	140.37 ± 0.03	10.26	~26	\(\omega_0 - 2\omega_0\), non-stable (amplitude from 2009)
	121.99 ± 0.03	11.80	~23.5	\(\omega_0 - 2\omega_0\), non-stable (amplitude from 2009)
	153.0 ± 0.5	9.4	9.5	Periodic signal (amplitude from 2001)
	307.0 ± 0.5	4.7	8.5	Harmonic of signal at 153 cycles d\(^{-1}\), transient

Table 3. Summary observing log for BW Scl.

Year	Spanned (d)	Observer	Telescope	Nights (h)
1999	13	Kemp	CTIO 91 cm	12/61
2000	38	McCormick	Farm Cove 25 cm	7/35
2001	77	Kemp	CTIO 91 cm	14/84
2002	0	Kemp	SAAO 76 cm	1/4
2004	7	Monard	Pretoria 25 cm	7/38
2005	55	Rea	Nelson 35 cm	16/66
2006	90	Christie	Auckland 35 cm	12/48
2007	21	Rea	Nelson 35 cm	7/28
2008	71	Richards	Melbourne 35 cm	1/3
2009	50	Rea	Nelson 35 cm	13/90
		Monard	Pretoria 35 cm	11/62

3.1 Observations

In total, BW Scl was observed for about 1000 hours spread over about 200 nights, mainly using the globally distributed telescopes of the Center for Backyard Astrophysics (Skillman & Patterson 1993; Patterson 1998). A summary observing log is presented in Table 3. To maximize the signal and optimize the search for periodic features, usually no filter or a very broad filter, 4000–7000 Å, was used. Occasional runs were obtained in the \(V \) and \(I \) bandpasses to provide a rough calibration, and to verify that the periodic features in the light curve are indeed broad-band signals. The smaller (25–35 cm) telescopes generally used the star GSC 8015–671 as a comparison, while the larger (91-cm) telescopes used USNO 0450–40780391, a nearby 16th-magnitude star. These comparison stars can be considered to be constant. The clear and broad-band filters permit only a rough calibration, but BW Scl remained within ~0.3 mag of \(V = 16.6 \) throughout the campaign. In terms of instrumental magnitude, limits on night-to-night variability within each season are more stringent: typically <0.05 mag, and always <0.1 mag. This degree of constancy is remarkable for a CV, and is probably due to the WD’s large contribution to the light in the optical.

In order to study the periodic behaviour, we always tried to obtain photometry densely distributed in time, preferably with contribution from telescopes widely spaced in longitude (in order to solve problems associated with daily aliases). Most of the analysis below is based on long time-series from stations in New Zealand, South Africa and Chile, and hence not afflicted by aliasing problems.

3.2 The 1999 campaign

The upper panel of Fig. 6 shows the light curve from one night during the 1999 campaign. The general appearance is typical of all nights, as well as seen in previously published light curves (Abbott et al. 1997; Augusteijn & Wisotzki 1997). As those papers demonstrated, a 39-min wave is always present, with a small even–odd asymmetry suggesting that the fundamental period is actually the double, 78 min (confirmed by spectroscopy). The middle panel shows the 1999 double-humped orbital light curve, similar to that of J1457 (see Fig. 3 above). Study of the seasonal timings yielded a 1995–2009 ephemeris:

\[
\text{Orbital maximum } = \text{HJD } 245 0032.182(3) + 0.054 \times 3239.2(2) E.
\]

The average nightly power spectrum, the incoherent sum of the 11 nights of best quality, is shown in the bottom panel of Fig. 6. Power
excesses near 72 cycles d$^{-1}$ (20 min) and 143 cycles d$^{-1}$ (10 min) are evident. In order to study these higher frequency signals in more detail, adjacent nights were added together, and the coherent power spectrum was constructed. However, even though the 72 and 143 cycles d$^{-1}$ signals were always present, they were always broad, complex and slightly variable in frequency (similar to J1457). This is usually a sign that the actual signals violate the assumptions of Fourier analysis: constancy in period, amplitude and phase.

3.3 The 2001 campaign

During the 2001 campaign, observatories at three longitudes in Chile, New Zealand and South Africa contributed with good nightly coverage of BW Scl. A very low flickering background is seen in the light curves of BW Scl, enabling detection of periodic signals as weak as ~ 0.002 mag.

The upper panel of Fig. 7 shows the nightly mean power spectrum, with significant signals marked to an accuracy of 0.5 cycles d$^{-1}$. Both the orbital period and the signal at 72 cycles d$^{-1}$ (20 min) were present, along with two other signals at low frequency: a powerful signal at 16.6 cycles d$^{-1}$ (86.7 min), and a weak signal at 50.5 cycles d$^{-1}$ (28.5 min). At higher frequency, signals are detected at 153 cycles d$^{-1}$ (9.4 min), 307 cycles d$^{-1}$ (4.7 min) and 724 cycles d$^{-1}$ (2 min), though the latter is likely to be caused by instrumental effects. Many telescopes have worm gears which turn with a period of exactly 120 sidereal seconds, and this period was reported in research on many types of stars during 1960–1990, that is, during the photoelectric–photometer era. CCDs are much less prone to this error. However, since 724 \pm 2 cycles d$^{-1}$ corresponds to 120 sidereal seconds (to within the measurement error), we interpret the signal to be caused by this instrumental effect.

We interpret the signal at 153 cycles d$^{-1}$ as a pulsation frequency, with a significant first harmonic. Examination of individual nights showed this signal to be somewhat transient, at least in amplitude. This behaviour was seen during 7 out of the 15 good-quality nights. Since the orbital frequency is known precisely, and since its photometric signature is powerful and constant, we subtracted its first harmonic (and also the second harmonic when detected) from the central 12-night time series, prior to analysis. The resultant power spectrum at low frequency is seen in the bottom panel of Fig. 7. A weak signal appears at the orbital frequency, and stronger signals at 16.34/16.64 and 32.98 cycles d$^{-1}$ (with an accuracy of ± 0.01 cycles d$^{-1}$). It seems likely that these are superhump signals in the quiescent light curve. Specifically, we interpret the 16.34/16.64 pair as signifying an underlying frequency of ~ 16.5 cycles d$^{-1}$, as such splitting can be produced by amplitude and/or phase changes. The precession frequency Ω can be expressed as $16.50 = \omega_o - \Omega$, where ω_o is the orbital frequency [implying that
3.5 Power spectrum window

Finally, in Fig. 9, we show the power spectrum in the vicinity of $2\omega_0$, for each season. The $2\omega_0$ signal maintains constancy in phase and amplitude, and therefore acts effectively like a test signal whose power spectrum should be reproduced in structure by any coherent signal (constant in phase and amplitude). The central peak at exactly 36.816 cycles d$^{-1}$ (39.113 min) always dominates over its neighbours in the picket-fence pattern because of very long runs, and/or observations at several longitudes. This demonstrates that these campaigns are free from aliasing. Also, it is worth noting that peaks at frequencies greater than $2\omega_0$ are always slightly wider (for the single-night time-series) than expected for a truly periodic signal, and always more complex (for the multiple-night time-series). This is true for all our data. The underlying ω_1 and ω_2 signals either have an intrinsic complex structure, or vary strongly in amplitude and/or phase on short time-scales (or both). In addition, the entire complex of signals near ω_1 and ω_2 moves in frequency by a few per cent on time-scales as short as \sim10 d.

3.6 Superhumps in BW Scl?

The obvious signal at 87 min in BW Scl, displaced by \sim11 per cent from P_{orb} seen in the 2001 power spectrum (Fig. 7), is a transient but visible in the 2001 power spectrum (Fig. 7), is a transient but

Figure 8. BW Scl in 2009. The top panel shows the mean nightly power spectrum, averaged over the 19 best nights. Features are labelled with their frequencies in cycles d$^{-1}$ (±0.6). Other panels show power spectra of \sim5 d intervals with particularly dense coverage, with significant features labelled (±0.03). The most interesting features are the trio of weak satellites of $\omega_2 = 140.37$ cycles d$^{-1}$ (103.55 and 121.99 cycles d$^{-1}$ are displaced by exactly $\omega_2 - 2\omega_0$ and $\omega_2 - \omega_0$, respectively).

$32.98 = 2(\omega_0 - \Omega)$. The precession frequency Ω is then equal to 1.9 cycles d$^{-1}$.

The primary signal near 16.5 cycles d$^{-1}$ has been seen before. It was the dominant signal reported by Abbott et al. (1997), but was then discounted by Augusteijn & Wisotzki (1997) as probably the result of cycle-count error. The data presented here certainly have no ambiguity in cycle count, and reveal this signal very clearly.

3.4 The 2009 campaign

The year 2009 witnessed another intensive observing campaign on BW Scl. The upper panel of Fig. 8 shows the nightly power spectrum, averaged over the 19 nights of coverage. Signals near 70 cycles d$^{-1}$ (20.6 min) and 140 cycles d$^{-1}$ (10.3 min) are evident, with weaker signals near 104 cycles d$^{-1}$ (13.9 min) and 122 cycles d$^{-1}$ (11.8 min). In the three lower frames, we show intervals of particularly dense coverage, each with a nominal frequency resolution of ± 0.04 cycles d$^{-1}$. In these frames, the 70 and 140 cycles d$^{-1}$ signals show their variability in frequency and amplitude (similar to J1457). Such variability is characteristic of all our data. The second frame (JD 245 5068–245 5074) illustrates the following:

(1) Although the 70 and 140 cycles d$^{-1}$ signals are related (when one moves to slightly lower frequency, so does the other), the frequencies do not appear to be exactly in a ratio 2:1. Here, these frequencies are described as ω_1 and ω_2 with $\omega_2 \sim 2\omega_1$.

(2) The weaker signals flanking the 140 cycles d$^{-1}$ feature are displaced by exact integer multiples of the orbital frequency. Thus, the signals seen in JD 245 5068–245 5074 are ω_1, ω_2, $(\omega_2 - \omega_0)$ and $(\omega_2 - 2\omega_0)$. These orbital sidebands of ω_2 are also visible in Fig. 6; however, such orbital sidebands were never seen of ω_1. This reproduces the properties of the pulsations seen in SDSS J1507+52 (Patterson, Thorstensen & Knigge 2008).

The 2009 campaign

Two new pulsating CVs: J1457 and BW Scl

The obvious signal at 87 min in BW Scl, displaced by \sim11 per cent from P_{orb} seen in the 2001 power spectrum (Fig. 7), is a transient but repeating feature in the light curve. In our 10 years of coverage, six campaigns were sufficiently extensive to reveal such a signal. This feature was always strong when it was detected, and moved slightly in frequency, even on time-scales of a few days. This qualitatively describes a common superhump, which is a well-known feature in CV light curves. However, there are three substantial differences:

(1) Common superhumps are found in outburst states, typically near $M_V \sim 5$, not at quiescence when $M_V \sim 12$.

(2) Common superhumps occur with fractional period excesses, $(P_{\text{sh}} - P_{\text{orb}})/P_{\text{orb}}$, near 3 per cent, not 11 per cent.

(3) Common superhumps are more stable, wandering from a constant-period ephemeris on a time-scale of 100–200 cycles. The power spectrum signal in BW Scl appears complex and broad, suggesting much lower coherence.

A system with quiescent superhumps is a rare beast in the CV kingdom, but it is not unprecedented. In AL Com, a nearly-identical signal was reported and extensively discussed by Patterson et al. (1996). Something similar has also been reported in V455 And (Araujo-Betancor et al. 2005), SDSS J0745+45 (Szkody et al. 2010) and possibly SDSS J1238–03 (Aviles et al. 2010). All these stars...
Figure 9. BW Scl. Power spectra in the vicinity of $2\omega_0$ for the lowest panel in Fig. 7, and the three lower panels in Fig. 8. Since the $2\omega_0$ signal is essentially constant in frequency and amplitude, this is effectively the power spectrum window for each observation. This implies that the nightly length of run and span of longitude is sufficient to exclude confusion by aliases.

are period-bouncer candidates (systems that have already passed the minimum period; see tables 3 and 5 of Patterson 2011). These candidates were chosen due to their low donor-star mass (or low $q = M_2/M_1$). A possible account of how stars of very low q might be able to manufacture quiescent superhumps has been given in Patterson et al. (1996), and includes the idea that a low donor mass implies a larger Roche lobe surrounding the disc. Weak tidal torques could then allow the quiescent disc to extend to the 2:1 orbital resonance, where an eccentric instability could drive a fast prograde precession (viz. at $\Omega = 1.9$ cycles d$^{-1}$), resulting in a superhump with $\omega = \omega_0 - \Omega$.

4 INTERPRETATIONS AS NON-RADIAL PULSATIONS

Both BW Scl and J1457 are quiescent CVs of very low accretion luminosity. Their spectra show evidence of the primary WD, as do their light curves which contain rapid, non-commensurate signals. This is the general signature of the GW Lib stars, where the periodic signals are believed to represent the NRPs of the underlying WD. However, no proof of this has ever been found, not for GW Lib or any other of the 10–15 members of the class. In order to explain these signals, two other hypotheses deserve consideration: first, quasi-periodic oscillations (QPOs) arising from the accretion disc, and secondly, the spin frequency of a magnetic WD (intermediate-polar model).

QPOs were first discovered, and named, for a broad excess of power seen during a dwarf nova eruption of RU Pegasi (Patterson et al. 1977). Since then, they have been commonly found with periods of 10–20 min in the high-state light curves of many nova-like variables (reviewed by Warner 2004). QPOs are typically seen as very broad peaks in the power spectrum ($\delta v/v \sim 0.5$; see, for instance, figs 11 and 12 in Patterson et al. 2002a), and typically have modulations of 1–3 per cent of an accretion disc in full outburst (for a light source with $M_V \sim 4$). The most famous example is the 20-min signal in TT Arietis (which belongs to the class of VY Sculptoris stars). However, VY Sculptoris stars appear to be the among the most luminous CVs. This can be compared to the faint BW Scl, where the 70/140 cycles d$^{-1}$ signals have $\delta v/v \sim 0.01$ and are ~ 1 per cent modulations of a light source with $M_V \sim 12$. The peaks in J1457 have slightly higher $\delta v/v$, but on both counts, the QPO hypothesis earns no applause. It would have to be an essentially new kind of accretion-disc QPOs.

A WD spinning with a period of 20 min could explain the features of the signal seen at $\sim 70/140$ cycles d$^{-1}$ in both objects, the common appearance of the first harmonic, the occasional switch to a pure first harmonic (two-pole accretion), and the orbital sidebands seen in BW Scl (from amplitude modulations, and/or reprocessing from structures fixed in the orbital frame). However, this hypothesis fails to account for the shifts in frequency exhibited by the ω_1 and ω_2 signals (the ~ 5 per cent wandering, e.g. in the ranges 68–73 and 135–153 cycles d$^{-1}$), the fact that ω_2 is not exactly $2\omega_1$, and the intrinsic breadth (or fine structure) of both signals. These are profound inconsistencies.

Such considerations drive us back to the GW Lib model. Actually, we have studied all of the 10–15 known class members with time-series photometry, and the resemblances to BW Scl and J1457 are substantial:

(1) Low-amplitude and non-commensurate periodic signals in low-M CVs.

(2) Signals roughly constant over a few days, but somewhat transient in frequency and amplitude on longer time-scales.

(3) Signals frequently with strong first harmonics or quasi-harmonics.

(4) Signals sometimes with known or suspected fine structure.

These resemblances, and the difficulties with alternative models, seem sufficient to accept both BW Scl and J1457 as new members of the GW Lib class.

5 SUMMARY

(1) Two more CVs of very low accretion rate have shown rapid non-commensurate signals in quiescence, which makes them likely...
new members of the GW Lib class. Both J1457 and BW Scl show a complex spectrum with the main signals near 10 and 20 min.

(2) The pulsation frequencies in both stars wander by a few per cent on a time-scale of days. In addition, the power spectrum constructed from multiple-night light curves shows broad peaks, which might be due to the frequency wandering, or from intrinsic fine structure not resolved by our data (or due to a strong amplitude modulation).

(3) BW Scl shows several peaks displaced from the main pulsation frequency ω_2 by $\omega_2 \pm \omega_0$ and $\omega_2 \pm 2\omega_0$. Similar behaviour is evident in other GW Lib stars (SDSS J1507+52, V386 Ser and SDSS J1339+48). The origin of this phenomenon is still unknown. The rich pulsation spectrum makes BW Scl a good candidate for an intensive round-the-world time-series campaign with larger telescopes.

(4) The orbital light curves of both stars show double-humped waves. From these waves, precise periods are found at $P_{\text{orb}} = 78.22639 \pm 0.00003$ min for BW Scl and 77.885 ± 0.007 min for J1457. Similar systems displaying NRPs, such as SDSS J1339+4847, SDSS J0131−0901 and SDSS J0919+0857, all have orbital periods right at the same orbital period about 80 mins (Gänsicke et al. 2009).

(5) BW Scl sometimes shows a transient wave with a period, $P_{\text{sh}} = 87.27$ min, which is interpreted as a quiescent superhump. It thereby joins a small group of stars that manage a superhump at quiescence, all of which are likely to have very low mass ratios. This might arise from an eccentric instability at the 2:1 resonance in the disc.

(6) The WD domination of the spectra in these stars suggests great faintness of the accretion light. This signifies a very low accretion rate, and both stars are likely to be very old CVs.

ACKNOWLEDGMENT

JP would like to acknowledge the support from NASA grant GO11621.03A, the Mt Cuba Astronomical Foundation and the NSF grant AST 0908363.

REFERENCES

Abbott T. M. C., Fleming T. A., Pasquini L., 1997, A&A, 318, 134
Araujo-Betancor S. et al., 2005, A&A, 430, 629
Augusteijn T., Wisotzki L., 1997, A&A, 324, L57
Aviles A. et al., 2010, ApJ, 711, 389
Gänsicke B. T., Szkoły P., Howell S. B., Sion E. M., 2005, ApJ, 629, 451
Gänsicke et al., 2009, MNRAS, 397, 2170
Gianninas A., Bergeron P., Fontaine G., 2006, AJ, 132, 831
Girard T. M., Dinescu D. I., van Altena W. F., Platais I., Monet D. G., López C. E., 2004, AJ, 127, 3060
Mukadam A. S., Szkody P., Gänsicke B. T., Nitta A., 2009, J. Phys.: Conf. Ser., 172, 012069
Mukadam A. S. et al., 2010, ApJ, 714, 1702
Patterson J., 1998, Sky Telescope, 496, 77
Patterson J., 2011, MNRAS, 27
Patterson J., Robinson E. L., Nather R. E., 1977, ApJ, 214, 144
Patterson J., Augusteijn T., Harvey D. A., Skillman D. R., Abbott T. M. C., Thorstensen J., 1996, PASP, 108, 748
Patterson J. et al., 2002a, PASP, 114, 1364
Patterson J. et al., 2002b, PASP, 114, 721
Patterson J., Thorstensen J. R., Knigge C., 2008, PASP, 120, 510
Scargle J. D., 1982, ApJ, 263, 835
Skillman D. R., Patterson J., 1993, ApJ, 417, 298
Szkody P. et al., 2005, AJ, 129, 2386
Szkody P. et al., 2009, in Soonthornthum B., Komornjinda S., Cheng K. S., Leung K. C., ed., ASP Conf. Ser. Vol. 404, The Eighth Pacific Rim Conference on Stellar Astrophysics: A Tribute to Kam-Ching Leung, Astron. Soc. Pac., San Francisco, p. 229
Szkody P. et al., 2010, ApJ, 710, 64
Warner B., 2004, PASP, 116, 115
Warner B., van Zyl L., 1998, in Deubner F.-L., Christensen-Dalsgaard J., Kurtz D., eds, Proc. IAU Symp. 185, New Eyes to See Inside the Sun and Stars, Kluwer, Dordrecht, p. 321

This paper has been typeset from a TeX/LaTeX file prepared by the author.