Reduction of Error-Trellises for Tail-Biting Convolutional Codes Using Shifted Error-Subsequences

Masato Tajima
Graduate School of Sci. and Eng.
University of Toyama
3190 Gofuku, Toyama 930-8555, Japan
Email: tajima@eng.u-toyama.ac.jp

Koji Okino
Information Technology Center
University of Toyama
3190 Gofuku, Toyama 930-8555, Japan
Email: okino@itc.u-toyama.ac.jp

Tatsuto Murayama
Graduate School of Sci. and Eng.
University of Toyama
3190 Gofuku, Toyama 930-8555, Japan
Email: murayama@eng.u-toyama.ac.jp

Abstract—In this paper, we discuss the reduction of error-trellises for tail-biting convolutional codes. In the case where some column of a parity-check matrix has a monomial factor D^l, we show that the associated tail-biting error-trellis can be reduced by cyclically shifting the corresponding error-subsequence by l (i.e., the power of D) time units. We see that the resulting reduced error-trellis is again tail-biting. Moreover, we show that reduction is also possible using backward-shifted error-subsequences.

I. INTRODUCTION

Tail-biting is a technique by which a convolutional code can be used to construct a block code without any loss of rate [4], [6], [14]. Let C_{tb} be a tail-biting convolutional code with an N-section code-trellis $T_{tb}^{(c)}$. The fundamental idea behind tail-biting is that the encoder starts and ends in the same state, i.e., $\beta_0 = \beta_N$ (β_k is the encoder state at time k). Suppose that $T_{tb}^{(c)}$ has Σ_0 initial (or final) states, then it is composed of Σ_0 subtrellises, each having the same initial and final states. We call these subtrellises tail-biting code subtrellises. For example, a tail-biting code-trellis of length $N = 4$ based on the generator matrix

$$G_1(D) = (D + D^2, D^2, 1 + D)$$

(1)

is shown in Fig.1. Since $\Sigma_0 = 4$, this tail-biting code-trellis is composed of 4 code subtrellises. In Fig.1, bold lines correspond to the code subtrellis with $\beta_0 = \beta_4 = (1, 1)$. On the other hand, it is reasonable to think that an error-trellis $T_{tb}^{(e)}$ for the tail-biting convolutional code C_{tb} can equally be constructed. In this case, each error subtrellis should have the same initial and final states like a code subtrellis. In our previous works [11], [12], taking this property into consideration, we have presented an error-trellis construction for tail-biting convolutional codes. For example, consider the above case. The parity-check matrix $H_1(D)$ associated with $G_1(D)$ is given by

$$H_1(D) = \begin{pmatrix} 1 & 0 & D \\ D & 1 + D & 0 \end{pmatrix}.$$

(2)

Let $z = z_1 z_2 z_3 z_4 = 110 101 101 011$ be the received data. In this case, using the method in [11], the tail-biting error-trellis corresponding to the code-trellis in Fig.1 can be constructed as is shown in Fig.2, where bold lines correspond to the error subtrellis with $\sigma_0 = \sigma_4 = (1, 0)$.

On the other hand [9], note that the third column of $H_1(D)$ has the monomial factor D. Let $e_k = (e_k^{(1)}, e_k^{(2)}, e_k^{(3)})$
and \(\zeta_k = (\zeta^{(1)}_k, \zeta^{(2)}_k) \) be the time-\(k \) error and syndrome, respectively. We have the following modification (\(T \) means transpose):

\[
\zeta_k = e_k H^T(D)
\]

\[
= (e^{(1)}_k, e^{(2)}_k, e^{(3)}_k)
\]

\[
= (e^{(1)}_k, e^{(2)}_k, e^{(3)}_k)
\]

\[
= (e^{(1)}_k, e^{(2)}_k, D e^{(3)}_k)
\]

where \(\tilde{e}_k = (e^{(1)}_k, e^{(2)}_k, e^{(3)}_k) \) and \(e^{(3)}_k \) is defined as \(D e^{(3)}_k = e^{(3)}_{k-1} \). Since the overall constraint length \(\tilde{\nu} \) of

\[
\tilde{H}_1(D) = \begin{pmatrix} 1 & 0 & 0 \\ D & 1 + D & 0 \end{pmatrix}
\]

is one, the above equation implies that the tail-biting error-trellis in Fig.2 can be reduced by shifting the subsequence \{\(e^{(3)}_k \)\} by the unit time.

In this paper, taking the above example into account, we discuss the reduction of error-trellises for tail-biting convolutional codes. It is assumed that some (\(j \)th) column of a parity-check matrix \(H(D) \) has a monomial factor \(D^j \). In this case, we show that the associated tail-biting error-trellis can be reduced by cyclically shifting the \(j \)th component \(e^{(2)}_k \) by \(l_j \) time units. We also show that the resulting reduced error-trellis is again tail-biting. We see that a kind of “periodicity” inherent in tail-biting trellises plays a key role in our discussion.

II. PRELIMINARIES

In this paper, we always assume that the underlying field is \(F = GF(2) \). Let \(G(D) \) be a generator matrix of an \((n, n-m)\) convolutional code \(C \). Let \(H(D) \) be a corresponding \(m \times n \) parity-check matrix of \(C \). Both \(G(D) \) and \(H(D) \) are assumed to be canonical [1], [5]. Denote by \(\nu \) the overall constraint length of \(H(D) \) and by \(M \) the memory length of \(H(D) \) (i.e., the maximum degree among the polynomials of \(H(D) \)). Then \(H(D) \) is expressed as

\[
H(D) = H_0 + H_1D + \cdots + H_mD^M.
\]

A. Adjoint-Obvious Realization of a Syndrome Former

Consider the adjoint-obvious realization (observer canonical form [2], [3]) of the syndrome former \(H^T(D) \). Let \(e_k = (e^{(1)}_k, e^{(2)}_k, \cdots, e^{(n)}_k) \) and \(\zeta_k = (\zeta^{(1)}_k, \zeta^{(2)}_k, \cdots, \zeta^{(m)}_k) \) be the input error and the corresponding output syndrome at time \(k \), respectively. Denote by \(e^{(q)}_{kp} \) the contents of the memory elements in the above realization. (If a memory element is missing, the corresponding \(e^{(q)}_{kp} \) is set to zero.) Using \(e^{(q)}_{kp} \), the syndrome-former state at time \(k \) is defined as

\[
\sigma_k \triangleq (\sigma^{(1)}_{k1}, \cdots, \sigma^{(m)}_{k1}, \cdots, \sigma^{(1)}_{km}, \cdots, \sigma^{(m)}_{km}).
\]

(Remark: The effective size of \(\sigma_k \) is equal to \(\nu \).)

For example, Fig.3 illustrates the adjoint-obvious realization of the syndrome former \(H^T_2(D) \) [1], where

\[
H_2(D) = \begin{pmatrix} D^2 + D^3 & D & 1 + D & D^2 & D^2 \\ D^2 & 1 + D + D^2 & D^2 & 1 & D \end{pmatrix}.
\]

Hence, we have

\[
\sigma_k = (\sigma^{(1)}_{k1}, \sigma^{(2)}_{k1}, \sigma^{(1)}_{k2}, \sigma^{(2)}_{k2}, \sigma^{(1)}_{k3}, 0).
\]

Note that the effective size of \(\sigma_k \) is \(\nu = 5 \).

Under the above conditions [7], [8], we have

\[
\sigma_k = (\sigma^{(2)}_{k-1}, \cdots, \sigma^{(M)}_{k-1}, 0) + e_k (H^T_1, H^T_2, \cdots, H^T_M). \]

Similarly, \(\zeta_k \) is expressed as

\[
\zeta_k = e_{k-M}H^T_M + e_{k-M+1}H^T_M + e_kH^T_0.
\]

B. Dual States

The encoder states can be labeled by the syndrome-former states (i.e., dual states [2]). The dual state \(\beta^*_k \) corresponding to an encoder state \(\beta_k \) is obtained by replacing \(e_k \) in \(\sigma_k \) by \(y_k = u_k G(D) \) (\(y_k \) is the code symbol at time \(k \) corresponding to the information symbol \(u_k \)). We have

\[
\beta^*_k = (y_{k-M+1}, \cdots, y_{k-1}, y_k)
\]

\[
\times \begin{pmatrix} H^T_M & 0 & 0 \\ H^T_2 & H^T_M & 0 \\ H^T_1 & H^T_{M-1} & H^T_M \end{pmatrix}.
\]

Example 1: Consider the parity-check matrix \(H_1(D) \). We have

\[
H_1(D) = \begin{pmatrix} 1 & 0 & 0 \\ D & 1 + D & 0 \end{pmatrix}
\]

\[
= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} D
\]

\[
\triangleq H_0 + H_1D.
\]
Then the dual state corresponding to an encoder state $\beta_k = (u_{k-1}, u_k)$ is obtained as follows.

$$\beta_k' = y_k H_1^T$$
$$= (y_k^{(1)}, y_k^{(2)}, y_k^{(3)}) \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= (y_k^{(3)}, y_k^{(1)} + y_k^{(2)})$$
$$= (u_{k-1} + u_k, u_{k-1}). \quad (16)$$

C. Error-Trellises for Tail-Biting Convolutional Codes

Suppose that a tail-biting code-trellis based on $G(D)$ is defined in $[0, N]$, where $N \geq M$. In this case, the corresponding tail-biting error-trellis based on $H_T(D)$ is constructed as follows [11].

Step 1: Let $z = \{z_k\}_{k=1}^N$ be a received data. Denote by σ_0 the initial state of the syndrome former $H_T(D)$. Let $\sigma_{fin} (= \sigma_N)$ be the final syndrome-former state corresponding to the input z. Note that σ_{fin} is independent of σ_0 and is uniquely determined only by z.

Step 2: Set σ_0 (i.e., the initial state of the syndrome former) to σ_{fin} and input z to the syndrome former again. Here, suppose that the syndrome sequence $\zeta = \{\zeta_k\}_{k=1}^N$ is obtained.

(Remark: ζ_k ($k \geq M + 1$) has been obtained in Step 1.)

Step 3: Concatenate the error-trellis modules corresponding to the syndromes ζ_k. Then we have the tail-biting error-trellis.

Example 2: Consider the parity-check matrix $H_1(D)$. Let

$$z = z_1 \ z_2 \ z_3 \ z_4 = 110 \ 101 \ 101 \ 011 \quad (17)$$

be the received data. According to Step 1, let us input z to the syndrome former $H_T^T(D)$. Then we have $\sigma_{fin} = (1, 1)$. Next, set σ_0 to $\sigma_{fin} = (1, 1)$ and input z to the syndrome former again. In this case, the syndrome sequence

$$\zeta = \zeta_1 \ \zeta_2 \ \zeta_3 \ \zeta_4 = 00 \ 10 \ 01 \ 10 \quad (18)$$

is obtained. The tail-biting error-trellis is constructed by concatenating the error-trellis modules corresponding to ζ_k. The resulting tail-biting error-trellis is shown in Fig.2.

With respect to the correspondence between tail-biting code subtrellises and tail-biting error subtrellises, we have the following [11], [12].

Proposition 1: Let $\beta_0 (= \beta_N) = \beta$ be the initial (final) state of a tail-biting code-trellis. Then the initial (final) state of the corresponding tail-biting error subtrellis is given by $\sigma_{fin} + \beta^*$. Example 2 (Continued): Consider the tail-biting error-trellis in Fig.2. In this example, we have $\sigma_{fin} = (1, 1)$. The corresponding tail-biting code-trellis based on $G_1(D)$ is shown in Fig.1. In Fig.1, take notice of the code subtrellis with initial (final) state $\beta = (1, 1)$ (bold lines). The dual state of $\beta = (1, 1)$ is calculated as $\beta^* = (u_{-1} + u_0, u_{-1}) = (1 + 1, 1) = (0, 1)$. Hence, the initial (final) state of the corresponding error subtrellis is given by $\sigma_{fin} + \beta^* = (1, 1) + (0, 1) = (1, 0)$ (bold lines in Fig.2).

III. REDUCTION OF TAIL-BITING ERROR-TRELLISES

A. Error-Trellis Reduction Using Shifted Error-Subsequences

Consider the example in Section I. Noting the relation $\beta_k^{(3)} = \alpha_k^{(3)}$, we cyclically shift the third component of each z_k to the right by the unit time. Then we have the modified received data

$$z = \tilde{z}_1 \ \tilde{z}_2 \ \tilde{z}_3 \ \tilde{z}_4 = 111 \ 100 \ 101 \ 011. \quad (19)$$

Applying the method in Section II-C, we can construct a reduced tail-biting error-trellis. According to Step 1, let us input \tilde{z} to the syndrome former $\tilde{H}_T^T(D)$. Then we have $\tilde{\sigma}_{fin} = (1)$. Next, set $\tilde{\sigma}_0$ to $\tilde{\sigma}_{fin} = (1)$ and input \tilde{z} to the syndrome former again. In this case, the same syndrome sequence as the original one (i.e., $\zeta = 00 \ 10 \ 01 \ 10$) is obtained. The reduced tail-biting error-trellis is constructed by concatenating the reduced error-trellis modules corresponding to $\tilde{\zeta}_k$. The resulting tail-biting error-trellis is shown in Fig.4. Here let us examine how a tail-biting error subtrellis is embedded in the corresponding reduced error-trellis. For the purpose, take notice of the subtrellis with initial (final) state $(1, 0)$ (bold lines in Fig.2). First, consider where the state $(1, 0)$ is mapped to. In the original error-trellis, the final state σ_N is expressed as

$$\sigma_N = e_N H_1^T = (e_N^{(3)}, e_N^{(1)} + e_N^{(2)}). \quad (20)$$

Using the relation $e_N^{(3)} = e_N^{(3)} + e_N^{(1)} + e_N^{(2)}$ is modified as $e_N^{(3)} + e_N^{(1)} + e_N^{(2)}$. Since the subscript $N+1$ is inappropriate for the state at time N, we have

$$\tilde{\sigma}_N = e_N^{(1)} + e_N^{(2)} = (e_N H_1^T). \quad (21)$$

(Remark: We have $\tilde{e}_N H_1^T = (0, e_N^{(1)} + e_N^{(2)})$. Hence, the first component can be deleted.) That is, state $\sigma_N = (1, 0)$ is mapped to $\tilde{\sigma}_N = (0)$. Next, consider an arbitrary error-path $e_p = e_1 \ e_2 \ e_3 \ e_4$ in the subtrellis with initial (final) state $(1, 0)$. Here, take notice of two sections from $t = 0$ to $t = 1$ and from $t = 3$ to $t = 4$. Note that these are adjacent sections in the circular error-trellis. From $\sigma_4 = (e_4^{(3)}, e_4^{(1)} + e_4^{(2)}) = (1, 0)$, we have $e_4^{(3)} = 1$. Since the third component of each e_k is cyclically shifted to the right by the unit time, $e_4^{(3)}$ is replaced by $e_4^{(1)} = 1$. That is, the third label on the first branch of the error-path in the reduced trellis must be 1. By taking account of these conditions, we have four admissible error-paths:

$$\tilde{e}_{p_1} = 101 110 010 110$$
$$\tilde{e}_{p_2} = 101 110 111 001$$
$$\tilde{e}_{p_3} = 101 011 000 001$$
$$\tilde{e}_{p_4} = 101 011 101 110.$$
reduced tail-biting error subtrellis. The original error-paths are restored by noting the relation $e_k^{(3)} = e_{k+1}^{(3)}$. That is, we only need to cyclically shift the third component of each $\tilde{e}_k = (e_k^{(1)}, e_k^{(2)}, e_k^{(3)})$ to the left by the unit time. As a result, four error-paths

$$
\begin{align*}
\tilde{e}_{q_1} & = 100 \quad 110 \quad 010 \quad 111 \\
\tilde{e}_{q_2} & = 100 \quad 111 \quad 111 \quad 001 \\
\tilde{e}_{q_3} & = 101 \quad 010 \quad 001 \quad 001 \\
\tilde{e}_{q_4} & = 101 \quad 011 \quad 100 \quad 111 \\
\end{align*}
$$

are obtained. We see that these paths completely coincide with those in Fig. 2.

B. General Cases

The argument in the previous subsection, though it was presented in terms of a specific example, is entirely general. Hence, it can be directly extended to general cases. Suppose that a specific (j)th column of $H(D)$ has the form

$$
\begin{pmatrix}
D^{l_j} \hat{h}_{1j}(D) & D^{l_j} \hat{h}_{2j}(D) & \ldots & D^{l_j} \hat{h}_{mj}(D)
\end{pmatrix}^T,
$$

where $1 \leq l_j \leq M$. (Remark: A more general case where each column has the above form can also be treated.) Let $\hat{H}(D)$ be the modified version of $H(D)$ with the jth column being replaced by

$$
\begin{pmatrix}
\hat{h}_{1j}(D) & \hat{h}_{2j}(D) & \ldots & \hat{h}_{mj}(D)
\end{pmatrix}^T.
$$

$\hat{H}(D)$ is assumed to be canonical. In this case, the reduction of a tail-biting error-trellis is accomplished as follows.

(i) **Fundamental relation:** Denote by $e_k = (e_k^{(1)}, \ldots, e_k^{(n)})$ and $\zeta_k = (\zeta_k^{(1)}, \ldots, \zeta_k^{(m)})$ the time-k error and syndrome, respectively. Also, let $\tilde{e}_k = (e_k^{(1)}, \ldots, e_k^{(n)}\sigma_k^{(m)})$, where $< t >$ denotes $t \mod N$. Then we have

$$
\zeta_k = \tilde{e}_k \hat{H}^T(D).
$$

(ii) **Construction of reduced tail-biting error-trellises:** Let

$$
z = \{z_k\}_{k=1}^N = \{(z_k^{(1)}, \ldots, z_k^{(j)}, \ldots, z_k^{(n)})\}_{k=1}^N
$$

be a received data. We construct the modified received data

$$
\tilde{z} = \{\tilde{z}_k\}_{k=1}^N = \{(z_k^{(1)}, \ldots, z_k^{(j)}, \ldots, z_k^{(n)})\}_{k=1}^N
$$

by cyclically shifting the jth component of each z_k to the right by l_j time units. By applying the method in Section II-C to the modified syndrome former $\hat{H}^T(D)$ and the modified received data \tilde{z}, a reduced tail-biting error-trellis is constructed. Note that the same syndrome sequence $\{\zeta_k\}$ as for the tail-biting error-trellis based on $H^T(D)$ is obtained.

(iii) **Reduced tail-biting error subtrellises:** Let $ST_{tb}^{(c)}(\sigma_N)$ be a tail-biting error subtrellis with initial (final) state σ_N. σ_N can be expressed using $\{e_t\}_{t=0}^{N-M+1}$ (cf. (10)). Here replace each $e_t^{(j)} \quad (N - M + 1 \leq t \leq N)$ by $\sigma_t^{(j)}$ and delete those terms $e_t^{(j)}$ with subscript t greater than N. Denote by σ_N the resulting state expression. In this case, state σ_N is mapped to state $\tilde{\sigma}_N$ in the reduced tail-biting error-trellis.

Consider the two trellis-sections from $t = 0$ to $t = l_j$ and from $t = N - l_j$ to $t = N$. Note that these form a continuous section of length $2l_j$ in the circular error-trellis. Now we can solve Eq. (10) ($k = \overline{N}$) given σ_N. (Remark: $\{e_t^{(j)}\}_{t=0}^{N-M+1}$ is uniquely determined under a moderate condition on $H(D)$.) Since the jth component of each e_k is cyclically shifted to the right by l_j time units, $e_t^{(j)} \quad (1 \leq t \leq l_j)$ is replaced by $e_{N-l_j+t}^{(j)}$. That is, the jth component $\sigma_t^{(j)}$ of the reduced path-segment $\tilde{e}_t \quad (1 \leq t \leq l_j)$ must be $e_{N-l_j+t}^{(j)}$. We call these segments “admissible”. Then $ST_{tb}^{(c)}$ is embedded in the reduced tail-biting error subtrellis with initial (final) state $\tilde{\sigma}_N$, where the path-segments in the first l_j sections are restricted to admissible ones.

(iv) **Restoration of the original error-paths:** The original error-paths are restored by noting the relation $e_k^{(j)} = \sigma_k^{(j)}$. That is, for an error-path

$$
\tilde{e} = \{\tilde{e}_k\}_{k=1}^N = \{(e_k^{(1)}, \ldots, e_k^{(j)}, \ldots, e_k^{(n)})\}_{k=1}^N,
$$

we only need to cyclically shift the jth component of each \tilde{e}_k to the left by l_j time units.

We remark that z has been periodically extended in both directions and this periodicity is fully used for tail-biting error-trellis construction. Now the relation $\zeta_k = e_k \hat{H}^T(D)$ is equivalently modified as $\zeta_k = \tilde{e}_k \hat{H}^T(D)$. Note that the correspondence between $\{e_k\}$ and $\{\tilde{e}_k\}$ is one-to-one $(\{e_k^{(j)}\}$ is cyclically shifted). Hence, the original error-path $e = \{e_k\}$ is indirectly represented using the reduced tail-biting error-trellis based on $\hat{H}(D)$. (Accordingly, the restoration in (iv) is required.) Notice that the overall constraint length σ^\perp of $\hat{H}(D)$ is not more than ν^\perp. Thus we have shown the following.

Proposition 2: Let $T_{tb}^{(c)}$ be a tail-biting error-trellis based on $H^T(D)$, where the jth column of $H(D)$ has a monomial factor D^{l_j}. Also, suppose that $\nu^\perp < \nu^\perp$. Then $T_{tb}^{(c)}$ can be reduced by cyclically shifting the jth subsequence of $\{e_k\}$ by l_j time units. In this case, the reduced error-trellis $\tilde{T}_{tb}^{(c)}$ is again tail-biting.

C. Error-Trellis Reduction Using Backward-Shifted Error-Subsequences

A reduced tail-biting error-trellis can be constructed not only using forward-shifted error-subsequences but also using “backward-shifted” error-subsequences [9]. For example, con-
Simultaneous code/error-trellis reduction for convolutional codes.

Consider the parity-check matrix in (8):

$$H_2(D) = \begin{pmatrix} D^2 + D^3 & 1 + D & 1 \\ D^2 & 1 + D + D^2 & 1 \end{pmatrix}. $$

Since, the first column has the monomial factor D^2, $H_2(D)$ can be reduced to

$$\tilde{H}_2(D) = \begin{pmatrix} 1 + D & D \\ 1 & 1 + D + D^2 \end{pmatrix} \begin{pmatrix} D^2 \\ D \end{pmatrix} \begin{pmatrix} 1 \\ D \end{pmatrix}. $$

This matrix can be reduced to an equivalent canonical parity-check matrix $\tilde{H}_2(D)$. (Note that the first and second rows of $H_2(D)$ are just delayed versions of the first and second rows of $\tilde{H}_2(D)$.)

IV. REDUCTION OF TAIL-BITING CODE-TRELLIS

A code-trellis for a tail-biting convolutional code and the corresponding error-trellis are dual to each other. Hence, the reduction of tail-biting code-trellises is also possible. For example, consider the generator matrix $G_1(D)$ in (1). Observe that the first and second columns of $G_1(D)$ have the monomial factor D. This fact enables reduction of the original tail-bitting code-trellis. Let u_k and $y_k = (y_k^{(1)}, y_k^{(2)}, y_k^{(3)})$ be the information and code symbol at time k, respectively. Then the relation $y_k = u_k \tilde{G}_1(D)$ is equivalently modified as $\tilde{y}_k = u_k \tilde{G}_1(D)$. Here,

$$\tilde{y}_k = (\tilde{y}_k^{(1)}, \tilde{y}_k^{(2)}, \tilde{y}_k^{(3)}) = \begin{pmatrix} y_k^{(1)} \\ y_k^{(2)} \\ y_k^{(3)} \end{pmatrix}. $$

and $\tilde{G}_1(D)$ is defined as

$$\tilde{G}_1(D) = (1 + D, D, 1 + D). $$

Using a similar argument as that in Section III-A, a reduced tail-biting code-trellis associated with the one in Fig.1 is constructed. The resulting reduced code-trellis is shown in Fig.5, where bold lines correspond to the original code subtrellis with $\beta_0 = \beta_4 = (1, 1)$. Note that the first two labels on each branch of the error-path are shifted to the left (i.e., backward-shifted) by the unit time. Accordingly, the path-segment from $t = 3$ to $t = 4$ is restricted to 010. We see that this specific example can be directly extended to general cases. We also remark that the reduction of a tail-biting code-trellis and that of the corresponding tail-biting error-trellis can be accomplished simultaneously, if reduction is possible (cf. [10]).

V. CONCLUSION

In this paper, we have discussed the reduction of error-trellises for tail-biting convolutional codes. In the case where a given parity-check matrix $H(D)$ has a monomial factor D^j in some column, we have shown that the associated tail-biting error-trellis can be reduced by cyclically shifting the corresponding error-subsequence by l time units. We have also shown that the obtained reduced error-trellis is again tail-biting. Moreover, we have shown that trellis-reduction is also accomplished using backward-shifted error-subsequences. The proposed method has been applied to concrete examples and it has been confirmed that each subtrellis is successfully embedded in the reduced tail-biting error-trellis. Finally, we have shown that the associated tail-biting code-trellis can equally be reduced using shifted code-subsequences. We remark that the convolutional code specified by a parity-check matrix $H(D)$ with the form discussed in the paper has a relatively poor distance property. We also remark that such parity-check matrices appear, for example, in [13].

REFERENCES

[1] M. Ariel and J. Snyders, “Error-trellises for convolutional codes—Part I: Construction,” IEEE Trans. Commun., vol. 46, no. 12, pp. 1592–1601, Dec. 1998.
[2] G. D. Forney, Jr., “Structural analysis of convolutional codes via dual syndromes,” IEEE Trans. Inform. Theory, vol. IT-19, no. 4, pp. 512–518, July 1973.
[3] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding. New York: IEEE Press, 1999.
[4] H. H. Ma and J. K. Wolf, “On tail biting convolutional codes,” IEEE Trans. Commun., vol. COM-34, no. 2, pp. 104–111, Feb. 1986.
[5] R. J. McEliece and W. Lin, “The trellis complexity of convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1855–1864, Nov. 1996.
[6] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two decoding algorithms for tailbiting codes,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1658–1665, Oct. 2003.
[7] V. Sidorenko and V. Zyablov, “Decoding of convolutional codes using a syndrome trellis,” IEEE Trans. Inform. Theory, vol. 40, no. 5, pp. 1663–1666, Sept. 1994.
[8] M. Tajima, K. Okino, and T. Miyagoshi, “Minimal code(error)-trellis module construction for rate-k/n convolutional codes: Extension of Yamada-Harashima-Miyakawa’s construction,” IEICE Trans. Fundamentals, vol. E90-A, no. 11, pp. 2629–2634, Nov. 2007.
[9] M. Tajima, K. Okino, and T. Miyagoshi, “Minimal code(error)-trellis module construction for rate-k/n convolutional codes: Extension of Yamada-Harashima-Miyakawa’s construction,” IEICE Trans. Fundamentals, vol. E90-A, no. 11, pp. 2629–2634, Nov. 2007.
[10] M. Tajima, K. Okino, “Simultaneous code/error-trellis reduction for convolutional codes using shifted code/error-subsequences,” in Proc. 2011 IEEE Int. Symp. Inf. Theory, pp. 648–652, Oct. 2011.
[11] M. Tajima and K. Okino, “Error-trellis construction for tailbiting convolutional codes,” IEICE Technical Report, IT2011-59, pp. 85–90, March 2012.
[12] M. Tajima and K. Okino, “Error-trellises for tailbiting convolutional codes,” in Proc. ISITA2012, pp. 648–652, Oct. 2012.
[13] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, Jr., “LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.
[14] M. B. S. Tavare, K. S. Zigangirov, and G. P. Fettweis, “Tail-biting LDPC convolutional codes,” in Proc. 2007 IEEE Int. Symp. Inf. Theory, pp. 2341–2345, June 2007.