Nilpotent Lie Groups
in Clifford Analysis and Mathematical Physics

Five Directions for Research

Vladimir V. Kisil

September 10, 2000

Abstract

The aim of the paper is to popularise nilpotent Lie groups (notably the Heisenberg group and alike) in the context of Clifford analysis and related models of mathematical physics. It is argued that these groups are underinvestigated in comparison with other classical branches of analysis. We list five general directions which seem to be promising for further research.

1 Introduction

One simpleton can ask more questions than a hundred of wise men find answers.

The purpose of this short note is to advertise nilpotent Lie groups among researchers in Clifford analysis. It is the author’s feeling that this interesting subject is a fertile area still waiting for an appreciation.

The rôle of symmetries in mathematics and physics is widely acknowledged: the Erlangen program for geometries of F. Klein and the theory of relativity of A. Einstein are probably the most famous examples became common places already. The field of Clifford analysis is not an exception in this sense: the rôle of symmetries was appreciated from the very beginning, see e.g. [4, 30] (to mention only very few papers). Moreover reach groups
of symmetries are among corner stones which distinguish analytic function theories from the rest of real analysis [19, 21, 24]. This seems to be widely accepted today: in the proceedings of the recent conference in Ixtapa [31] seven out of total seventeen contributions explicitly investigate symmetries in Clifford analysis. But all of these paper concerned with the semisimple group of Möbius (conformal) transformations of Euclidean spaces. This group generalises the $SL_2(\mathbb{R})$—the group of overwhelming importance in mathematics in general [13, 23] and complex analysis in particular [20, 24].

On the other hand the Möbius group is not the only group which may be interesting in Clifford analysis. It was argued [11, 12] that the Heisenberg group is relevant in many diverse areas of mathematics and physics. The simplest confirmations are that for example

- Differentiation $\frac{\partial}{\partial x}$ and multiplication by x—two basic operation of not only analysis but also of umbral calculus in combinatorics [3, 29], for example—generate a representation of the Lie algebra of the Heisenberg group.

- Any quantum mechanical model gives a representation of the Heisenberg group.

Impressive continuation of the list can be found in [11, 12].

Clifford analysis is not only a subfield of analysis but also has reach and fertile connections with other branches: real harmonic analysis [26], several complex variables [10, 27], operator theory [14, 17], quantum theory [8], etc. Therefore it is naturally to ask about (cf. [11])

the rôle of the Heisenberg group in Clifford analysis.

Unfortunately it was not written enough on the subject. The early paper [10] just initiated the topic and the recent joint paper [5] only hinted about richness of a possible theory. Thus the whole field seems to be unexplored till now. In order to bring researchers’ attention to the above question we list in the next Section five (rather wide) directions for future advances.

2 Five Directions for Research

In the joint paper [5] with Jan Cnops we constructed two examples of spaces of monogenic functions generated by nilpotent Lie groups. The first example is based on the Heisenberg group and gives a monogenic space which is isometrically isomorphic to the classic Segal-Bargmann space $F_2(\mathbb{C}^n, e^{-|z|^2}dz)$
of holomorphic functions in \mathbb{C}^n square integrable with respect to the Gaussian measure $e^{-|z|^2}dz$. The second example gives monogenic space of Segal-Bargmann type generated by a Heisenberg-like group with n dimensional centre. The following propositions are motivated by these examples.

1. **Representation Theory**
 Representation theory of nilpotent Lie group by unitary operators in linear spaces over the field of complex numbers is completely described by the Kirillov theory of induced representations [15]. Particularly all irreducible unitary representations are induced by a character (one dimensional representation) of the centre of the group. Therefore the image of the centre is always one-dimensional. Representations in linear spaces with Clifford coefficients open a new possibility: unitary irreducible (in an appropriate sense) representations can have a multidimensional image of the groups centre [5]. Various aspects of such representations should be investigated.

2. **Harmonic Analysis**
 Clifford analysis technique is useful [26] for investigation of classic real harmonic analysis questions about singular integral operators [32]. Classical real analytical tools are closely related to the harmonic analysis on the Heisenberg and other nilpotent Lie groups [9, 12, 32]. A combination of both—the Heisenberg group and Clifford algebras—could combine the power of two approaches in a single device.

3. **Operator Theory**
 The Segal-Bargmann space F_2 and associated orthogonal projection $P : F_2 \to F_2$ produce an important class of Toeplitz operators $T_a = Pa(z, \bar{z})I$ [6] which is a base for the Berezin quantisation [2]. Connections between properties of an operator P_a and its symbol $a(z, \bar{z})$ are the subject of important theory [7]. Moreover translations of Toeplitz operators to the Schrödinger representation gives interesting information on pseudodifferential operators and their symbolic calculus [12]. Monogenic space of the Segal-Bargmann type [5] could provide additional insights in these important relations.

4. **Functional Calculus and Spectrum**
 Functions of several operators can be defined by means of Weyl calculus [1], i.e. essentially using the Fourier transform and its connections with representations with the Heisenberg group [22]. Another opportunity of a functional calculus from Segal-Bargmann type spaces is also based on this group [22]. On the other hand a functional calculus can
be defined by the Cauchy formula for monogenic functions \[14, 17\]. Simultaneous usage of monogenic functions and nilpotent groups could give a fuller picture for functional calculus of operators and associated notions of joint spectrums.

5. Quantum Mechanics
Observables of coordinates and momentums satisfy to the Heisenberg commutation relations \([p, q] = i\hbar I\), thus generated algebra of observables representing the Heisenberg group. Even better: the representation theory of Heisenberg and other nilpotent Lie groups provides us with both non-relativistic classic and quantum description of the world and a correspondence between them \[18, 23, 28\]. On the other hand Clifford modules provide a natural description for spinor degrees of freedom of particles or fields. Therefore a mixture of these two objects provides a natural model for quantum particles with spin. Yet such models and their advantages should be worked out.

It should not be difficult to extend the list of open problems (see the epigraph).

3 Acknowledgements

This paper was prepared during authors research visit to University of Aveiro, Portugal (August-September 2000) supported by the INTAS grant 93-0322-Ext. I am grateful to the Prof. Helmuth Malonek for his hospitality and many useful discussions. Dr. B. Veytsman and O. Pilipenko gave me useful advises.

Any bibliography for a paper with a small size and a wide scope is necessarily grossly incomplete. I appreciate an understanding of readers who will not be disappointed if their relevant papers are not listed among (almost random) references as well as an excuse for the extensive self-citing.

References

[1] Robert F.V. Anderson. The Weyl functional calculus. *J. Funct. Anal.*, 4:240–267, 1969.

[2] Felix A. Berezin. *Method of Second Quantization*. “Nauka”, Moscow, 1988.

[3] J. Cigler. Some remarks on Rota’s umbral calculus. *Nederl. Akad. Wetensch. Proc. Ser. A*, 81:27–42, 1978.
[4] Jan Cnops. *Hurwitz Pairs and Applications of Möbius Transformations*. Habilitation dissertation, Universiteit Gent, Faculteit van de Wetenschappen, 1994. E-print: ftp://cage.rug.ac.be/pub/clifford/jc9401.tex.

[5] Jan Cnops and Vladimir V. Kisil. Monogenic functions and representations of nilpotent Lie groups in quantum mechanics. *Mathematical Methods in the Applied Sciences*, 22(4):353–373, 1998. E-print: math/9806150.

[6] Lewis A. Coburn. Berezin-Toeplitz quantization. In *Algebraic Methods in Operator Theory*, pages 101–108. Birkhäuser Verlag, New York, 1994.

[7] Lewis A. Coburn and Jingbo Xia. Toeplitz algebras and Rieffel deformation. *Comm. Math. Phys.*, 168(1):23–38, 1995.

[8] P.A.M. Dirac. *Lectures on Quantum Field Theory*. Yeshiva University, New York, 1967.

[9] G.B. Folland and E.M. Stein. *Hardy Spaces on Homogeneous Group*. Princeton University Press, Princeton, New Jersey, 1982.

[10] K. Gürlebeck and Helmuth R. Malonek. A hypercomplex derivative of monogenic functions in \(\mathbb{R}^{n+1} \) and its applications. *Complex Variables Theory Appl.*, 39(3):199–228, 1999.

[11] Roger Howe. On the role of the Heisenberg group in harmonic analysis. *Bull. Amer. Math. Soc. (N.S.)*, 3(2):821–843, 1980.

[12] Roger Howe. Quantum mechanics and partial differential equations. *J. Funct. Anal.*, 38:188–254, 1980.

[13] Roger Howe and Eng Chye Tan. *Non-Abelian Harmonic Analysis: Applications of \(SL(2, \mathbb{R}) \)*. Universitext. Springer-Verlag, New York, 1992.

[14] Brian Jefferies and Alan McIntosh. The Weyl calculus and Clifford analysis. *Bull. Austral. Math. Soc.*, 57(2):329–341, 1998.

[15] Alexander A. Kirillov. Unitary representations of nilpotent Lie groups. *Russian Math. Surveys*, 17:53–104, 1962.

[16] Vladimir V. Kisil. Clifford valued convolution operator algebras on the Heisenberg group. A quantum field theory model. In F. Brackx, R. Delanghe, and H. Serras, editors, *Proceedings of the Third International Conference held in Deinze, 1993*, volume 55 of *Fundamental Theories of Physics*, pages 287–294. Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1266878.

[17] Vladimir V. Kisil. Möbius transformations and monogenic functional calculus. *Electron. Res. Announc. Amer. Math. Soc.*, 2(1):26–33, 1996. (electronic) MR 98a:47018.
Vladimir V. Kisil. Plain mechanics: Classical and quantum. *J. Natur. Geom.*, 9(1):1–14, 1996. MR 96m:81112. E-print: funct-an/9405002.

Vladimir V. Kisil. How many essentially different function theories exist? In Volker Dietrich, Klaus Habetha, and Gerhard Jank, editors, *Clifford Algebras and Applications in Mathematical Physics. Aachen 1996*, pages 175–184. Kluwer Academic Publishers, Netherlands, 1998. E-print: clf-alg/kisi9602.

Vladimir V. Kisil. Analysis in $\mathbb{R}^{1,1}$ or the principal function theory. *Complex Variables Theory Appl.*, 40(2):93–118, 1999. E-print: funct-an/9712003.

Vladimir V. Kisil. Two approaches to non-commutative geometry. In H. Begehr, O. Celebi, and W. Tutschke, editors, *Complex Methods for Partial Differential Equations*, chapter 14, pages 219–248. Kluwer Academic Publishers, Netherlands, 1999. E-print: funct-an/9703001.

Vladimir V. Kisil. Wavelets in Banach spaces. *Acta Appl. Math.*, 59(1):79–109, 1999. E-print: math/9807141.

Vladimir V. Kisil. Quantum and classic brackets. page 19, 2000. (Submitted) E-print: arXiv:math-ph/0007030.

Vladimir V. Kisil. Groups, wavelets, and spaces of analytic functions. page 89, 2000–2001. lecture notes, preliminary draft available on E-print: http://www.amsta.leeds.ac.uk/~kisilv/coimbraf.html.

Serge Lang. *$SL_2(\mathbb{R})$*, volume 105 of *Graduate Text in Mathematics*. Springer-Verlag, New York, 1985.

Alan McIntosh. Clifford algebras, Fourier theory, singular integral operators, and partial differential equations on Lipschitz domains. In John Ryan, editor, *Clifford Algebras in Analysis and Related Topics*, pages 33–88. CRC Press, Boca Raton, 1995.

Igor M. Mitelman and Michael V. Shapiro. Differentiation of the Martinelli-Bochner integrals and the notion of hyperderivability. *Math. Nachr.*, 172:211–238, 1995.

Oleg V. Prezhdo and Vladimir V. Kisil. Mixing quantum and classical mechanics. *Phys. Rev. A (3)*, 56(1):162–175, 1997. MR 99j:81010. E-print: quant-ph/9610016.

S. Roman and Gian-Carlo Rota. The umbral calculus. *Adv. in Math.*, 27:95–188, 1978.

John Ryan. Conformally covariant operators in Clifford analysis. *Z. Anal. Anwendungen*, 14(4):677–704, 1995. MR 97a:30062.
[31] John Ryan and Wolfgang Sprößig, editors. *Clifford algebras and their applications in mathematical physics. Proceedings of the 5th conference, Ixtapa-Zihuatanejo, Mexico, June 27–July 4, 1999. vol. 2: Clifford Analysis*, volume 19 of *Progress in Physics*. Birkhaeuser, Boston, MA, 2000. xxv, 461 p. $ 69.95 (2000). [ISBN 0-8176-4183-1].

[32] Elias M. Stein. *Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals*. Princeton University Press, Princeton, New Jersey, 1993.

School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Email: kisilv@amsta.leeds.ac.uk

URL: http://amsta.leeds.ac.uk/~kisilv/