Synergic Effect of Decoration of Nickel Oxide Nanoparticles on Silicon for Enhanced Electrochemical Performance in LIBs

Ujjwala V Kawade,a Sunil R Kadam,b Milind V Kulkarni,a Bharat B Kale*a

a Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY), Panchavati, Pune 411008,

b Ben-Gurion University of the Negev, Department of Chemistry, Beer-Sheva, Israel

E-mail: bbkale@cmet.gov.in, milind@cmet.gov.in

Figure S1. FESEM images of (a, b) Pristine Si, (c, d) SNO1 and (e, f) SNO3
Figure S2. BJH pore size distribution plots of (a) pristine Si (b) SNO1 (c) SNO2 (d) SNO3

Figure S3: cycling performance of Pristine Si, SNO1 and SNO3 between 0.01 and 3V.
Figure S4 FESEM-EDS spectrum of pristine (a, b, c) Si, (d, e, f) SNO1 and (g, h, i) SNO3 electrodes after cycling

Table S1. Comparison of the silicon composites for their electrochemical performance

No	Current density (mAg\(^{-1}\)/C rate)	Capacity mAhg\(^{-1}\)	Material	Reference
1	50	842.59	NiO@Si	ACS Appl. Mater. Interfaces \(^1\)
2	100	1200	SiO\(_2\)@NiO	RSC Adv\(^2\)
3	0.1C	2849	Ni-Li\(_2\)O@Si	RSC Adv\(^3\)
4	100	700	Ni/SiO\(_2\)	Adv. Funct. Mater\(^4\)
5	750	1911	Fe\(_2\)O\(_3\)-Si	JMCA
6	100	985	Si/Ti\(_2\)O\(_3\)/rGO	ACS Appl. Mater. Interfaces\(^5\)
7	50	1681	Si-G	ACS Appl. Mater. Interfaces\(^6\)
8	1/10 C	1074	Silicon@C	AngewandteChemie\(^7\)
9	100	828	Si/C Yolk/Shell	JMCA \(^8\)
10	200	832	Si @ Graphite/carbon	Sustainable Energy & Fuels\(^9\)
11	1C	1565	Si@void@C	ChemElectroChem\(^10\)
12	100	774.1	Tin-Oxide/Silicon	Chemistry select\(^11\)
13	20	2162	Si@NiO	Present work

[^1]: AC.S Appl. Mater. Interfaces
[^2]: RSC Adv
[^3]: RSC Adv
[^4]: Adv. Funct. Mater
[^5]: ACS Appl. Mater. Interfaces
[^6]: ACS Appl. Mater. Interfaces
[^7]: AngewandteChemie
[^8]: JMCA
[^9]: Sustainable Energy & Fuels
[^10]: ChemElectroChem
[^11]: Chemistry select
References

1. M. C. Qiu, L. W. Yang, X. Qi, J. Li and J. X. Zhong, ACS Applied Materials & Interfaces, 2010, 2, 3614-3618.
2. Y. Wang, W. Zhou, L. Zhang, G. Song and S. Cheng, RSC Advances, 2015, 5, 63012-63016.
3. S. Wu, N. Du, H. Wu, C. Xiao, W. Zhao and D. Yang, RSC Advances, 2016, 6, 109649-109656.
4. C. Tang, Y. Liu, C. Xu, J. Zhu, X. Wei, L. Zhou, L. He, W. Yang and L. Mai, Advanced Functional Materials, 2018, 28, 1704561.
5. A. R. Park, D.-Y. Son, J. S. Kim, J. Y. Lee, N.-G. Park, J. Park, J. K. Lee and P. J. Yoo, ACS Applied Materials & Interfaces, 2015, 7, 18483-18490.
6. S. Huang, L.-Z. Cheong, D. Wang and C. Shen, ACS Applied Materials & Interfaces, 2017, 9, 23672-23678.
7. H. Su, A. A. Barragan, L. Geng, D. Long, L. Ling, K. N. Bozhilov, L. Mangolini and J. Guo, Angewandte Chemie International Edition, 2017, 56, 10780-10785.
8. X. Huang, X. Sui, H. Yang, R. Ren, Y. Wu, X. Guo and J. Chen, Journal of Materials Chemistry A, 2018, 6, 2593-2599.
9. W. Liu, Y. Zhong, S. Yang, S. Zhang, X. Yu, H. Wang, Q. Li, J. Li, X. Cai and Y. Fang, Sustainable Energy & Fuels, 2018, 2, 679-687.
10. X. Ma, Y. Gao, M. Chen and L. Wu, ChemElectroChem, 2017, 4, 1463-1469.
11. D. Jia, X. Li and J. Huang, ChemistrySelect, 2017, 2, 5667-5676.