New Limits on Low-Mass WIMP Dark Matter with sub-keV Germanium Detector

Henry T. Wong
Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.
E-mail: htwong@phys.sinica.edu.tw

Abstract.
The current goals of the TEXONO research program are on the development of germanium detectors with sub-keV sensitivities to realize experiments on neutrino magnetic moments, neutrino-nucleus coherent scattering, as well as WIMP dark matter searches. A threshold of 220 eV was achieved with prototype detectors at the Kuo-Sheng Neutrino Laboratory. New limits were placed for the couplings of low-mass WIMPs with matter. Data are being taken with a 500 g Point Contact Germanium detector, where a threshold of ~350 eV was demonstrated. The dark matter program will evolve into a dedicated experiment at an underground laboratory under construction in Sichuan, China.

1. Introduction and Overview
A research program on low energy neutrino and dark matter physics is pursued at the Kuo-Sheng Neutrino Laboratory (KSNL) by the TEXONO Collaboration[1]. The laboratory is located at a distance of 28 m from a 2.9 GW reactor core and has an overburden of about 30 meter-water-equivalent. Results on neutrino magnetic moments[2] and neutrino-electron scattering cross-section have been obtained[3]. The present goals are to develop advanced detectors with kg-size target mass, 100 eV-range threshold and low-background specifications[4] for the searches of Weakly Interacting Massive Particles (WIMPs)[5] as well as the studies of neutrino-nucleus coherent scattering[6] and neutrino magnetic moments.

2. Results on Dark Matter Searches
A four-channel Ultra-Low-Energy Germanium (ULEGe) prototype detector with a total active mass of 20 g has collected low-background data at KSNL[5]. The trigger and analysis efficiencies are shown in Figure 1. An energy threshold of (220±10) eV was achieved at an efficiency of 50%. The background spectrum with 0.338 kg-day of exposure is displayed in Figure 2. Constraints on WIMP-nucleon spin-independent \(\sigma_{SI}^{\chi N}\) and spin-dependent \(\sigma_{SD}^{\chi N}(n)\) couplings as functions of WIMP-mass \(m_\chi\) were derived, as depicted in Figures 3&4, respectively. Overlaid on the plots are results from experiments which define the current exclusion boundaries, the DAMA-allowed regions and that favored by SUSY models[5, 7]. The KSNL limits improve over previous results at \(m_\chi \sim 3 - 6\) GeV. Sensitivities for full-scale experiments at 1 cpd background level are projected as dotted lines. The observable nuclear recoils at \(m_\chi=5\) GeV and \(\sigma_{SI}^{\chi N}=0.5 \times 10^{-39}\) cm\(^2\)(allowed) and \(1.5 \times 10^{-39}\) cm\(^2\)(excluded) are superimposed with the measured spectrum in the inset of Figure 2 for illustrations.
Figure 1. The trigger and analysis efficiencies of the 20 g ULEGe prototype detector, as derived by the test pulser and in situ background events, respectively.

Figure 2. The measured spectrum of ULEGe with 0.338 kg-day of data, after various background suppression procedures. Background spectra of the CRESST-I experiment[7] and the HPGe[2] are overlaid for comparison.

Figure 3. Exclusion plot of the spin-independent χN cross-section versus WIMP-mass.

Figure 4. Exclusion plot of the spin-dependent χ-neutron cross-section versus WIMP-mass.

3. Performance of Point-Contact Germanium Detectors
The design of Point-Contact Germanium (PCGe) detectors was first proposed in the 1980’s [8], offering the potential merits of sub-keV sensitivities with kg-scale target mass. There are intense recent interest triggered by successful realization and demonstration of the detector technique [9]. A PCGe of target mass 500 g was constructed and has been collecting data in KSNL since early 2009.

Similar procedures to those developed for the ULEGe were adopted to study the efficiency factors below the electronic noise edge. The results, analogous to those of Figure 1, are displayed
in Figure 5. The trigger efficiencies were measured with two methods. The fractions of calibrated pulser events above the discriminator threshold provided the first measurement, while the studies on the amplitude distributions of in situ data contributed to the other. The relative timing between the PCGe and anti-Compton (ACV) NaI(Tl) detectors is shown in Figure 6, for “sub-noise edge” events at 200–400 eV before and after the pulse shape discrimination (PSD) selection processes. Events in coincidence with ACV at the “50–200 ns” window are due to multiple Compton scatterings, which are actual physical processes having similar pulse shapes as the neutrino and WIMP signals. It can be seen that only these events have substantial probabilities of surviving the cuts, and the fractions constitute to the PSD efficiencies. The threshold at \(\sim 50\%\) combined efficiencies is \(\sim 350\) eV. Intensive background and optimization studies with the PCGe at KSNL are underway.

4. Status and Plans

An excellent candidate site for a deep underground laboratory was recently identified in Sichuan, China where the China Jin-Ping Laboratory (CJPL) is being constructed [10]. The laboratory has more than 2500 m of rock overburden, is accessible by a road tunnel built for public traffic, and is supported by excellent infrastructures already available near the entrance. The first cavern of size 6 m(height)X6 m(width)X40 m(depth) is scheduled for completion in early 2010.

The low energy neutrino physics program will continue at KSNL, where a 900 g PCGe detector will be installed in 2010. Dedicated dark matter search with both 20 g ULEGe and 500 g PCGe detectors will be the first experimental program conducted at CJPL commencing 2010.

References
[1] Wong H T 2004 Mod. Phys. Lett. A 19 1207
[2] Li H B et al. 2003 Phys. Rev. Lett. 90 131802 ; Wong H T et al. 2007 Phys. Rev. D 75 012001
[3] Li H B et al. 2001 Nucl. Instrum. Methods A 459 93 ; Deniz M and Wong H T 2008 arXiv:0810.0809 ; Deniz M 2009 these Proceedings
[4] Wong H T 2008 Mod. Phys. Lett. A 23 1431
[5] Lin S T et al. 2009 Phys. Rev. D 76 061101(R), and references therein.
[6] Wong H T et al. 2006 J. Phys. Conf. Ser. 39 266
[7] Drees M and Gerbier G 2008 Phys. Lett. B 667 241, and references therein.
[8] Luke P N et al. 1989 IEEE Trans. Nucl. Sci. 36 926
[9] Barbeau P A, Collar J I and Tench O 2007 JCAP 09 009
[10] Normile D 2009 Science 324 1246 ; Yue Q 2009 these Proceedings