Abstract

Assuming we are in a Word-RAM model with word size w, we show that we can construct in $o(w)$ time an error correcting code with a constant relative positive distance that maps numbers of w bits into $\Theta(w)$-bit numbers, and such that the application of the error-correcting code on any given number $x \in [0, 2^w - 1]$ takes constant time. Our result improves on a previously proposed error-correcting code with the same properties whose construction time was exponential in w.

1 Introduction

We work in the word-RAM model with word-size w. We assume that standard operations including multiplications (but not divisions) are supported in constant time. We present a way to construct an error correction over $O(w)$-bit strings with the following features:

- The code has some positive relative distance $\delta > 0$.
- The evaluation of the code over any word takes constant time.
- The code can be constructed in time $o(w)$.

Previously Miltersen [5] presented a code with similar features except for the construction time which was exponential in w. In the following, we denote by $H(x,y)$, the hamming distance between the two bitstrings x and y. In what follows, we use the notation $[t]$ to denote the set $[0..t-1]$. We will often represent an integer y of length b as bitstring of length b that consists in the concatenation of the b bits of the number starting from most significant bit and ending in the least significant. We assume that w is bigger than a sufficiently large constant.
2 The method

Our method relies on code concatenation, a well known strategy in the design of error correcting codes. We will use the same error correcting code used by Miltersen [5] Combined with a Reed-Solomon code [6].

Our strategy is to cut the original key into pieces of \(B = \lceil \log w \rceil \) bits each. We view a key \(x \) of length \(w \) as the concatenation of \(\lceil w/B \rceil \) keys of length \(B \) bits each. That is \(w = b_1 b_2 \ldots b_r \) with \(r = \lceil w/B \rceil \). We will form 5 different numbers \(x_1, x_2 \ldots x_5 \) as follows: \(x_i = b_i 0^{4B} b_{i+5} 0^{4B} \ldots \) for all \(i \in [1..5] \). The numbers can easily be formed through bit shifts and masking.

We then multiply every \(x_i \) by a suitably chosen number \(z_r \) that will in fact represent the generator polynomial of a Reed Solomon code of block length \(P \), where \(P \) is a prime number between \(2^B \) and \(2^{B+1} - 1 \). Such a prime can easily be determined in time \(O(w^{0.525} \cdot \text{polylog}(w)) \) as follows. By the result of [7], it is well known that for sufficiently large \(x \), there exists at least one prime between \(x \) and \(x + O(w^{0.525}) \). One can thus find a prime between \(2^B \) and \(2^B + 2^{0.525} B \) in \(O(2^{0.525} B \cdot \text{polylog}(B)) = O(w^{0.525} \cdot \text{polylog}(w)) \) time, by using the deterministic primality test of [9].

The generator polynomial is \(g(\gamma) = (\gamma - \alpha)(\gamma - \alpha^2) \ldots (\gamma - \alpha^r) \), where \(\alpha \) is a generator for the finite field modulo \(P \). \(r = \lceil w/P \rceil \) and the numbers \(\alpha^i \) are taken modulo \(P \). More precisely \(\alpha \) is a primitive root of order \(P - 1 \). That is \(\alpha \) such that \(\alpha^{P-1} \equiv 1 \pmod{P} \) and \(\alpha^r \not\equiv 1 \pmod{P} \) for all \(r \in [1, P - 2] \). Such an \(\alpha \) can be found in time \(O(w^{1/4+\epsilon}) \) [8]. The final representation of the polynomial will be a word \(z = c_1 0^{4B-1} c_2 0^{4B-1} \ldots \), where \(c_0, c_1 \ldots \) are the coefficients of the polynomial. The construction can easily be done in \(O(w/\log w) \) time as follows. We start with the word \(z_1 = c_1 0^{4B-1} c_2 0^{4B-1} \ldots \), where every \(c_i \) are numbers of \(B + 1 \) bits and \(c_1 = -\alpha, c_2 = 1 \) and \(c_i = 0 \) for all \(i > 2 \). This is the representation of the monomial \((\gamma - \alpha) \). We then can induce the representation of the polynomial \((\gamma - \alpha)(\gamma - \alpha^2) \), by multiplying \(z_1 \) by the number \(c_1 0^{4B-1} c_2 0^{4B-1} \ldots \), where \(c_1 \equiv -\alpha^2 \pmod{P} \) and \(c_2 = 1 \). This results in a number \(z_2 \) that contains \(c'_1 0^{4B-2} c'_2 0^{4B-2} \ldots \). We then need to execute the modulo \(P \) operation on each of \(c'_1, c'_2 \) and \(c'_3 \). This can easily be done if we had the division operation available. It is well known that division by a constant can be simulated by one multiplication by a constant and bit shifts [4]. The constant used in the multiplication can easily be computed in \(O(\log w) \) time. Now we execute the operations in parallel on the word \(z_2' \), resulting in a word \(z_2 \) that contains \(c_1 0^{4B-1} c_2 0^{4B-1} \ldots \), where \(c_i = c'_i \pmod{P} \). We continue in the same way by multiplying by the representations of the monomials \((\gamma - \alpha^i) \), for all \(i \in [3, r] \), until we get the number \(z_r \), the representation of the polynomial \(g(\gamma) \). Note we can deduce the numbers \(\alpha^i, \alpha^2 \ldots \alpha^r \) in total \(O(r) \) time, by simulating the modulo operation in constant time.

We denote the result of the multiplication of the \(z_r \) by a number \(x_i \) followed by the parallel modulo \(P \) operation by \(f_i(x_i) \).

2.1 Inner code

Our inner code is constructed following the strategy of Miltersen [5]. We will use an exhaustive search to find a good multiplier \(m \) that gives a good error correcting code for numbers from \([2^B+1] \) into \([2^{4(B+1)}] \). We will have to test at most
\(O(w^3) = w^{O(1)} \) different multipliers. Testing every multiplier will take time
\(O(w^2) \) (it can be improved to \(O(w \log w) \) time by using bit-parallelism). Basically, we need to check for every pair of numbers \(a, b \) whether \(H(f(a), f(b)) \geq \delta B \) for some suitably chosen \(\delta \). Thus the total time will be \(w^4 \log w = w^{O(1)} \) in the worst case. We now define the function \(f_2(x) \) as the multiplication of \(x \) by the number \(m \). It is clear that if \(x = c_10^{4B-1}c_20^{4B-2}\ldots \), then the result will be the number \(y = c'_10^{B-2}c'_20^{B-2}\ldots \), with \(c'_i = c_i \cdot m \).

2.2 Final result

Given a word \(x \), we first build the 5 words \(x_i \) for \(i \in [1, 5] \). We then apply the Reed Solomon code on each of them, resulting in 5 numbers \(y'_i = f_1(x_i) \) for \(i \in [1, 5] \), where each number is of length \(2w \) bits. We then compute the numbers \(y_i = f_2(y'_i) \). The final result will be the concatenation of the numbers \(y_1, \ldots y_5 \) which is of length 10 words.

2.3 Analysis

It can easily be seen that the resulting code has a positive relative distance \(\delta' > 0 \). Assume we have two numbers \(a \) and \(y \), decomposed as \(x_1 \ldots x_5 \) and \(y_1 \ldots y_5 \). Then if \(x_i \neq y_i \) for any \(i \), we will be sure that \(f_1(x_i) \) will differ from \(f_1(y_i) \) in at least \(r + 1 = \lceil \frac{w}{2B} \rceil + 1 \) fields. Further \(f_2(f_1(x)) \) and \(f_2(f_1(y)) \) will differ in at least \((r + 1)(\delta B) = (\lceil \frac{w}{2B} \rceil + 1)\delta B \) bits which is at least \(\delta' w = (\delta w/5) \).

2.4 Further reduction

We can further improve the total preprocessing time to \(o(w) \), recursing once more. That is, first finding a concatenation of two Reed-Solomon-codes, one over \(\Theta(w) \) bits and the other on \(\log w \) bits and concatenate the result with a good multiplier code over \(\log w \) bit-numbers that can be found in time \(O(\log^4 w \log \log w) = o(w) \). The total construction time will be dominated by the time to construct the Reed-Solomon code over \(w \)-bit numbers which will take \(O(w/\log w) \) time.

The end result is an ECC whose final output is doubled compared to the one shown in previous section. The final output will be of length 20 words.

We thus have proved the following theorem.

Theorem 1 Assuming we are in a Word-RAM model with word size \(w \), we can construct in \(o(w) \) time, an error correcting code with some relative positive distance \(\delta > 0 \) and that maps numbers of \(w \) bits into number of \(20w \) bits and such that the application of the error-correcting code on any given number \(x \in [2^w] \) can be done in time constant time. The description of the error correcting code occupies \(O(w) \) bits of space.

3 Applications

In [3] it is shown how given a set \(S \subset [2^w] \) with \(|S| = n \), one can construct a hash function \(f \) from \([2^w] \) into \([n^c] \) bits for some constant \(c > 2 \) such that:

1. The hash function is injective on the set \(S \). That is \(|f(S)| = n \).
2. The hash function can be constructed in time $O(n \log n)$ assuming the availability of some constants that depend only on w and that can be computed in time exponential in w.

The algorithm uses as a component a unit-cost error correcting code from w bits into $4w$ bits with positive relative distance. The error correcting code consisted in a single multiplication by a constant of length $3w$ bits. In the Word-RAM model, an algorithm is said to be weakly non uniform if it uses some precomputed constants that depend only on w. In the construction of [3], there are two sources of weak non uniformity. The first one is due to the use of a constant needed for the error correcting code and the other one due to constants used in a procedure that computes the most significant bit in words in constant time. It turns out that the computation of the constants needed for the last operation can be done in $O(w)$ time. The computation of the constant needed for the error correcting code was the bottleneck, since it was not known how to compute the constants in better than time $2^O(w)$. With our construction, this is no longer a bottleneck, since we have shown that we can construct a suitable error correcting code in time $O(w)$. By plugging our error correcting code in place of the previous one, the signature hash function can now be built in time $O(n \log n)$ whenever $w \leq n$, even when the time to compute the constants it taken into account. We thus have the following corollary:

Corollary 2 Assuming we work in the Word-RAM model with word length w, given a set $S \subset [2^w]$ with $|S| = n \geq w$, we can in $O(n \log n)$ time build a function that maps S into the set $[n^{O(1)}]$. The function can be described in $O(w)$ bits of space.

There exists an alternative signature function [7] that does not need precomputed constants that are costly to compute and that runs in time $\omega(n \log n)$ for certain word sizes (more precisely, in time $O(n + n^{\frac{\log^2 n}{w}}(\log \frac{w}{\log n})^3))$. Choosing $w = \log^{1+\epsilon} n$ for some $\epsilon > 0$, implies construction time $\Omega(n \log^{2-\epsilon} n)$. Thus the signature functions of [3] have the fastest construction time depending only on n.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. *Annals of mathematics*, pages 781–793, 2004.

[2] Roger C Baker, Glyn Harman, and János Pintz. The difference between consecutive primes, ii. *Proceedings of the London Mathematical Society*, 83(03):532–562, 2001.

[3] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries. *Journal of Algorithms*, 41(1):69–85, 2001.

[4] Donald E Knuth. *The Art of Computer Programming (Volume 3)*. Addison–Wesley, 1973.

[5] Peter Bro Miltersen. Error correcting codes, perfect hashing circuits, and deterministic dynamic dictionaries. In *Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms*, pages 556–563. Society for Industrial and Applied Mathematics, 1998.
[6] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. *Journal of the Society for Industrial & Applied Mathematics*, 8(2):300–304, 1960.

[7] Milan Ružič. Making deterministic signatures quickly. *ACM Transactions on Algorithms (TALG)*, 5(3):26, 2009.

[8] Igor Shparlinski. On finding primitive roots in finite fields. *Theoretical computer science*, 157(2):273–275, 1996.