Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring

Weilin Huang1,2, Runqiu Wang1, Huijian Li3 & Yangkang Chen4,5

Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.

It has been shown that microseismic monitoring has a significant potential to characterize physical processes related to fluid injections and extractions in hydrocarbon and geothermal reservoirs1,2. In general the microseismicity is recorded by downhole or shallow surface geophone arrays, which offers the significant advantages of being sufficiently close to the fracture and being unaffected by the free surface3. There are two main physical processes involved in hydraulic fracturing: 1) penetration of the injected fluid into the pre-existing cracks and pore spaces when the injection pressure is lower than the minimum compressive stress, and 2) opening of new fractures when the injection pressure is high enough. The events generated during injection and also after injection can occur over hours4. Localization of the associated microseismic events enables imaging of the fracture network. This technique has been widely studied and applied in petroleum and gas exploration1,5–11, and mining engineering12–15. However, an inevitable problem existing in the microseismic monitoring is that the energy stimulated from the hydraulic fracturing is extremely weak, compared with the background noise16. The weak signal is easily masked, resulting in loss of microseismic events. A poor signal-to-noise ratio (S/N) can lead to unauthentic arrival time-picks17 and localization of microseismic events18. All of these will negatively affect the performance of microseismic monitoring and resulted fracture imaging19, as well as solving source mechanisms20. Improving the S/N will ultimately improve the microseismic event detection. In microseismic monitoring, the most commonly used method for attenuating background noise and detecting weak signal is frequency filtering21. However, frequency filtering typically fails in separating noise and signal when they share the same frequency band. Researchers put a lot of effort into the noise suppression problem22, and developed different

1State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing, 102249, China. 2Modeling and Imaging Laboratory, Earth and Planetary Sciences, University of California at Santa Cruz, Santa Cruz, 95064, California, USA. 3SINOPEC Exploration and Production Research Institute, Beijing, 100083, China. 4Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, TX, 78713-8924, USA. 5Present address: National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6008, USA. Correspondence and requests for materials should be addressed to Y.C. (email: chenyk2016@gmail.com)
techniques using different approaches such as: median filtering, various kinds of mathematical transform based approaches, and matrix completion based approaches. In addition, Kong et al. develop a nonlinear signal detector, which passes only signals showing spatial coherence and having slowness within an allowed range. Schimmel and Paulissen use an instantaneous phase based amplitude-unbiased coherency measure, weighting the samples of an ordinary, linear stack, to detect weak signals in global seismology. Gibbons and Ringdal illustrated the power of an array-based waveform correlation approach by detecting the low magnitude seismic events in the 1997 August 16 Kara Sea event. Mousavi et al. proposed a simultaneous microseismic denoising and onset detection technique based on the synchrosqueezed continuous wavelet transform and custom thresholding of single-channel data. Mousavi and Langston designed fast algorithm for noise level estimation and noise reduction of micro-seismic data, using minimally controlled recursive averaging and neighborhood shrinkage estimators.

The denoising approach of this paper is based on mathematical morphological decomposition and reconstruction. Mathematical morphology is a nonlinear methodology for the analysis and processing of geometrical structures. Matheron described the random set integral geometry theory and topological logic theories thoroughly and set up a consistent foundation for mathematical morphology. Later on, Serra suggested the theory and method of mathematical morphology which was widely applied in two-value image processing. Then, Koskinen et al. introduced the soft mathematical operations, which can maintain most of the properties of standard morphological operations. Sinha and Dougherty developed a generalization of binary mathematical morphology based on fuzzy set theory, in which images are modeled as fuzzy subsets of the Euclidean plane or Cartesian grid, and the morphological operations are defined in terms of a fuzzy index function. The mathematical morphological filtering (MMF) was first introduced into seismic data processing by Wang et al. Unlike traditional methods in seismic data processing, the basis of MMF are logical operation and set theory, which can provide us a tool to process signal over the complete frequency bandwidth, improving the S/N and maintaining the resolution. Later, this method rapidly developed and was widely applied in seismic data processing. For example, Li et al. proposed a compound top-hat filter (CTF) extracting the large-scale information by combining opening and closing operations, and subsequently subtracting it from the microseismic data.

In this paper, we further develop a seismic application of the mathematical morphology and propose a multi-scale morphological decomposition based method to unveil weak signal in microseismic monitoring. In order to unveil weak signal, an orthogonalization operator is proposed and introduced into the process of multi-scale morphological reconstruction. The mathematical nature of the proposed orthogonalization operator is a projection operator that projects the input signal on a sub-space spanned by several selected morphological basis vectors. The assumption for this approach is that the weak signal is orthogonal to the background noise. Unlike the traditional morphological reconstruction approaches, the orthogonalized morphological reconstruction transforms the reconstruction problem into an inversion problem. However, like most of the inversion problems in geophysics, this inversion problem is ill-posed. A regularization (or a penalty) term is necessary to optimally stabilize the objective function. In this study we use the shaping regularization approach that is more convenient for solving the inversion problem in orthogonalized morphological reconstruction compared to other regularization technique such as Tikhonov’s method. In the following sections, after explaining the methodology we first conducts synthetic data experiments to test the performance of the proposed orthogonalized morphological reconstruction approach. Then the proposed approach is applied to a real 3-C microseismic data set. Compared with the state-of-the-art algorithms, the proposed approach demonstrates a superior performance.

Morphological Decomposition

Mathematical morphology is a well known nonlinear image processing method, which was originally motivated from the research of the relation between the penetrability of a porous medium and its lamination. It starts as a set theoretical approach for the analysis of geometrical structures but can also deal with both function and set in the Euclidean space. A morphological operation is the interaction of an objective set or function with another set or function called structuring element (SE). The morphological scale of the SE determines the scale information of the signal that is extracted under such an operation. The morphological scale can be conceptually understood as the relative structure. Let \(d \) be a seismic trace and \(f \subseteq \mathbb{R} \) be a set of amplitude values. The value of a sample \(t \) in \(d \) is represented by \(d(t) \in f \). The morphological dilation \(\phi_d^b(d) \) and erosion \(\psi_d^b(d) \) are the morphological operations that process \(d \) with the SE \(b(\tau) \) as:

\[
\phi_d^b(d) = \bigvee_{\tau} b(\tau) + d(t - \tau),
\]

(1)

\[
\psi_d^b(d) = \bigwedge_{\tau} b(\tau) - d(t - \tau),
\]

(2)

where \(\bigvee \) denotes supremum, and \(\bigwedge \) denotes infimum. Both \(t \) and \(\tau \) are samples. It can be seen that the morphological dilation is an operation that “grows” or “thickens” the object, while the morphological erosion is an operation that “shrinks” or “thins” the object. The sequential combination of the morphological erosion (or dilation) and morphological dilation (or erosion) creates the morphological opening \(\chi_d^b(d) \) (or closing \(\psi_d^b(d) \)) as:

\[
\chi_d^b(d) = \phi_d^b(\psi_d^b(d)),
\]

(3)

\[
\psi_d^b(d) = \phi_d^b(\chi_d^b(d)).
\]

(4)
We now use morphological opening and closing to represent data \(d \). Consider \(\chi_{b_k}(d), k \in [1, K] \) and \(\psi_{b_k}(d) \), \(k \in [1, K] \), two indexed families of morphological opening and closing, respectively. Typically, the index \(k \) denotes the morphological scale. Whereupon, \(d \) can be represented as:

\[
\begin{align*}
 d &= \sum_{k=1}^{K} \left[\chi_{b_{k-1}}(\psi_{b_{k-1}}(d)) - \chi_{b_k}(\psi_{b_{k}}(d)) \right] + \chi_{b_{k}}(\psi_{b_{k}}(d)), \\
 &\quad \text{or} \\
 d &= \sum_{k=1}^{K} \left[\psi_{b_{k-1}}(\chi_{b_{k-1}}(d)) - \psi_{b_k}(\chi_{b_{k}}(d)) \right] + \psi_{b_{k}}(\chi_{b_{k}}(d)).
\end{align*}
\]

Equations (5) and (6) can also be written as:

\[
\begin{align*}
 d &= \frac{1}{2} (d + d) \\
 &\quad = \frac{1}{2} \left\{ \psi_{b_{k}}(\chi_{b_{k}}(d)) + \chi_{b_{k}}(\psi_{b_{k}}(d)) \right\} \\
 &\quad + \sum_{k=1}^{K} \left[\chi_{b_{k-1}}(\psi_{b_{k-1}}(d)) - \chi_{b_k}(\psi_{b_{k}}(d)) \right] + \psi_{b_{k}}(\chi_{b_{k}}(d)) - \psi_{b_{k-1}}(\chi_{b_{k-1}}(d)) \right\}.
\end{align*}
\]

Equations (5) and (6) can also be written as:

\[
\begin{align*}
 d &= \sum_{k=1}^{K+1} \left[\chi_{b_{k-1}}(\psi_{b_{k-1}}(d)) - \chi_{b_k}(\psi_{b_{k}}(d)) \right] + \chi_{b_{k}}(\psi_{b_{k}}(d)), \\
 &\quad \text{or} \\
 d &= \sum_{k=1}^{K+1} \left[\psi_{b_{k-1}}(\chi_{b_{k-1}}(d)) - \psi_{b_k}(\chi_{b_{k}}(d)) \right] + \psi_{b_{k}}(\chi_{b_{k}}(d)).
\end{align*}
\]

So far, the initial data \(d \) is represented by an additive decomposition with \(K + 1 \) scales. Figure 1 gives an example of the morphological decomposition of a Ricker wavelet with 7 scales. The 1st trace (scale 0) is the initial wavelet. The 2nd–8th traces are the 7 scale components.

Traditional morphological reconstruction

For convenience, let:

\[
\begin{align*}
 c_k &= \begin{cases}
 \frac{1}{2} \left[\chi_{b_{k-1}}(\psi_{b_{k-1}}(d)) - \chi_{b_k}(\psi_{b_{k}}(d)) \right] + \psi_{b_{k}}(\chi_{b_{k}}(d)), & k \in [1, K], \\
 \frac{1}{2} \left[\psi_{b_{k}}(\chi_{b_{k}}(d)) + \chi_{b_{k}}(\psi_{b_{k}}(d)) \right], & k = K + 1,
 \end{cases}
\end{align*}
\]

where \(c_k, k \in [1, K + 1] \), are the morphological multi-scale components. The value of a sample \(t \) in \(c_k \) is represented by \(c_k(t) \in f \). The nature of the multi-scale morphological decomposition is to decompose the discrete data set \(d \) into a series of primary subsets \(c_k \), which satisfies that:

\[
\begin{align*}
 d &= \bigcup_{k=1}^{K+1} c_k, \\
 \emptyset &= \bigcap_{k=1}^{K+1} c_k,
\end{align*}
\]

where \(\emptyset \) denotes empty set. The reconstruction of data by \(c_k \) can be represented as:
where E is a subset of $\{c_k\}_{k \in [1, K]}$, that $E \subseteq \{c_k\}_{k \in [1, K]}$. Constant $\sigma_k \in [0, 1]$ is the weighting coefficient that controls energy from different scale components. This decomposition allows for full reconstruction of the original data, when $E = \{c_k\}_{k \in [1, K]}$ and $\sigma_k \equiv 1$.

Orthogonalized morphological reconstruction

In traditional morphological reconstruction, the weighting coefficient σ_k is chosen manually, which makes the reconstruction subjective. In addition, it is difficult to choose an appropriate weighting coefficient, and the choosing process costs a lot of time and manual endeavor. For weak signal detection, we define the orthogonalized morphological reconstruction, by changing σ_k from simple constant to a more flexible operator, in other words, allowing σ_k to change with t:

$$\sum_{c_k} \sigma_k c_k = d,$$

(11)

where \cdot^2 represents the squared Frobenius norm of a function. Equation (12) can be also represented as:

$$\arg\min_{\Sigma_k \in E} \sum_{c_k} \| \Sigma_k c_k - d \|^2_F,$$

(13)

where Σ_k is a diagonal matrix composed by $\sigma_k(t): \Sigma_k = \text{diag}(\sigma_k(t))$. Thus, the orthogonalized morphological reconstruction holds as:

$$\sum_{c_k} \Sigma_k c_k = d.$$

(14)

The geometrical nature behind equation (13) is a projection of the higher-dimensional vector, i.e., the initial data d, on a lower-dimensional space spanned by several selected morphological basis vectors. Figure 2 gives a diagrammatic drawing. Vector \vec{c} is on the line l. Operation Σ is a stretching transformation acting on vector \vec{c}. Equation (13) is actually to find the projection of vector \vec{d} on line l in the least-squares sense. Thus, an orthogonal decomposition of \vec{d} holds as:

$$\vec{d} = \Sigma \vec{c} + (\vec{d} - \Sigma \vec{c}),$$

(15)

$$0 = \Sigma \vec{c} \cdot (\vec{d} - \Sigma \vec{c}),$$

(16)

where \cdot denotes Hadamard (or Schur) product. Hence, we name Σ orthogonolization operator. If we consider $\Sigma \vec{c}$ as signal \vec{s}, and accordingly $\vec{d} - \Sigma \vec{c}$ as background noise \vec{n}, equations (15) and (16) become the classical models used in $42-45$:

$$\vec{d} = \vec{s} + \vec{n},$$

(17)

$$\vec{0} = \vec{s} \cdot \vec{n}.$$

(18)

Therefore, if we assume the weak signal is orthogonal to the background noise in microseismic monitoring, $\Sigma \vec{c}$ is an estimation of the weak signal.

Solution of orthogonalization operator

The inversion problem in equation (13), however, is ill-posed. To stabilize the optimization, an extra regularization term is necessary to solve equation (13):

![Figure 2. A geometrical interpretation of the orthogonalization operator.](image-url)
\[
\text{argmin}_{\Sigma_k} \sum_{c \in E} \| \Sigma_k c_k - d \|^2_F + \mathcal{R}(\Sigma_k),
\]
where \(\mathcal{R} \) represents the regularizer operator. For convenience, we rewrite equation (19) as:

\[
\text{argmin}_{\Sigma_k} \sum_{c \in E} \| C_k \sigma_k - d \|^2_F + \mathcal{R}(\sigma_k),
\]

where \(C_k \) is a diagonal matrix composed by \(c_k(t) \); \(C_k = \text{diag}(c_k(t)) \). \(\sigma_k \) is a column vector composed by \(\sigma_k(t) \); \(\sigma_k = [\sigma_k(t)]^T \). Note that \(\Sigma_k C_k = C_k \sigma_k = \sigma_k
\cdot C_k \).

One of the most commonly used regularization approaches is Tikhonov’s regularization \(^4^0\), in which one additionally attempts to minimize the norm of \(T \sigma_k \), where \(T \) is the regularization operator \(^3^9\). The regularized problem can be expressed as:

\[
\text{argmin}_{\sigma_k} \sum_{c \in E} \| C_k \sigma_k - d \|^2_F + \varepsilon^2 \| T \sigma_k \|^2_F,
\]

where \(\varepsilon \) is a scalar scaling parameter. The formal solution has the well-known form,

\[
\sigma_k = (C_k^T C_k + \varepsilon^2 T^T T)^{-1} C_k^T d.
\]

Combining equation (22) and (23), we have:

\[
\sigma_k = \left[I + \Gamma (C_k^T C_k - I) \right]^{-1} \Gamma C_k^T d.
\]

By introducing scaling of \(\lambda \) by \(1/\lambda \) in equation (24), we can rewrite it as:

\[
\sigma_k = [\lambda^2 I + \Gamma (C_k^T C_k - \lambda^2 I)]^{-1} \Gamma C_k^T d.
\]

where \(\lambda \) is an introduced parameter controlling the physical dimensionality and enabling fast convergence when inversion is implemented iteratively\(^3^9\).

Implementation of the orthogonalized morphological reconstruction

The SE plays an important role in the morphological decomposition and reconstruction. The SE has three parameters: shape, height (the amplitude of SE), and width (the width of definitional domain of SE). Generally speaking, the shape of SE can be a semicircle, a triangle, or a straightline. The SEs with different parameters has different scales. When the shape of a SE is fixed, its scale increases as the height decreases (or as the width increases). A SE with a large (or small) scale indicates that it has a fat (or slim) structure (i.e., its shape is close to the shape of a constant (or \(\delta \) function). The comparison of scale among the three shapes is as follow:

\[
\text{Scale(straightline)} > \text{Scale(semicircle)} > \text{Scale(triangle)}.
\]

In the morphological decomposition, we need a series of SE with different scales to obtain the different morphological information of the input data. For a specific morphological decomposition, a commonly used strategy to produce the SE family \(b_k \) is that we fix the shape of the SE and gradually increase both its height and width to produce different SEs. The rate of increase determines the performance of decomposition. Another more convenient strategy is that the \(i \) th SE \(b_i \) can be produced by \(i - 1 \) times self morphological dilation:

\[
b_i = \vec{\phi}_h(\ldots \vec{\phi}_h(\phi_h(b_0)))
\]

An iterative optimization can greatly improve efficiency in solving an inverse problem when the computational scale is large. We choose the classical conjugate gradient method \(^4^5\) to iteratively implement the orthogonalized morphological reconstruction approach. The conjugate gradient algorithm requires symmetric positive definite operators. So the shaping operator splits into two matrices, \(\Gamma = HH^T \). Equation (25) can then be written as:

\[
\sigma_k = H[I^2 + H^T (C_k^T C_k - I^2) H]^{-1} H^T C_k^T d.
\]

The estimated weak signal \(s \) by the orthogonalized morphological reconstruction can be represented as:
Efficiency and effectiveness analysis of the orthogonalized morphological reconstruction

The proposed technique first decomposes the input data into a series of components with different morphological features, and then reconstructs the signal by several selected components with an orthogonalization operator. Decomposition with a higher order can obtain a more careful multi-scale morphology analysis of the input data, and accordingly is easier to separate signal and noise. Unfortunately, a large number of decompositions will pose a very expensive computational cost. Our experience shows that 4–10 decomposed components are appropriate for most seismic data sets, taking the compromise between efficiency and effectiveness into consideration. Figure 3 demonstrates an experimental analysis of the proposed orthogonalized morphological reconstruction method. Figure 3(a,b) show the computing time costs and denoising performance analysis varying with different numbers of decomposition of the input data. We can observe that, as the decomposition number increases, the computational time increases. The denoising performance of the proposed technique is reinforced as the decomposition number increases within a relatively small value (2–6), but maintains relatively stable when the decomposition number is greater than 6. Figure 3(c) shows the denoising performance varying with different input S/Ns.

Test of the orthogonalized morphological reconstruction

A synthetic signal is used to test our proposed method in this section. The first experiment is shown in Fig. 4. The synthetic signal is a Ricker wavelet with 100 Hz dominant frequency and $\pi/2$ initial phase, as shown by the 1st trace. The synthetic noise is broadband Gaussian noise as shown in the 2nd trace. The 1st trace is added with the

Figure 3. Efficiency and effectiveness analysis of the orthogonalized morphological reconstruction.

Figure 4. The first synthetic example. From left to right: the 1st trace: signal, the 2nd trace: Gaussian noise, the 3rd trace: signal + Gaussian noise (input data), the 4th–10th traces: seven multi-scale components, the 11th trace: orthogonalized morphological reconstruction, the 12th trace: conventional morphological reconstruction, the 13th trace: result using band-pass filtering with trapezoidal band 10–20–180–190 Hz, the 14th trace: result using band-pass filtering with trapezoidal band 70–80–120–130 Hz, the 15th trace: result using band-pass filtering with trapezoidal band 60–70–170–180 Hz, the 16th–20th traces: errors of two reconstructions and three filtered results.

$$s \approx \sum_{c_i \in \mathbb{R}} [c_i \sigma_i].$$ (29)
Figure 5. Comparison of time-frequency spectrums of (a) clean data, (b) noisy data, (c) orthogonalized morphological reconstruction, (d) conventional morphological reconstruction, (e) filtered data (10–20–180–190 Hz), (f) filtered data (70–80–120–130 Hz), (g) filtered data (60–70–170–180 Hz) of the first synthetic example.
Figure 6. The second synthetic example. From left to right: the 1st trace: signal, the 2nd trace: Gaussian noise, the 3rd trace: limited band random noise, the 4th trace: signal + Gaussian noise + limited band random noise (input data), the 5th–11th traces: seven multi-scale components, the 12th trace: orthogonalized morphological reconstruction, the 13th trace: conventional morphological reconstruction, the 14th trace: result using band-pass filtering with trapezoidal band 10–20–180–190 Hz, the 15th trace: result using band-pass filtering with trapezoidal band 70–80–120–130 Hz, the 16th trace: result using band-pass filtering with trapezoidal band 60–70–170–180 Hz, the 17th–21th traces: errors of two reconstructions and three filtered results.

removed but the mixed parts in the same frequency band still exist. The starting time of the detected signals in Fig. 5(d,e,f), are not as clear as that shown in Fig. 5(c), indicating that the time-picking would be better performed on the record processed by the proposed orthogonalized morphological reconstruction technique.

The second example is demonstrated in Fig. 6. The synthetic signal (the 1st trace) is same to that in the first experiment. The added background noise consists of Gaussian noise (the 2nd trace) and limited band (40–160 Hz) random noise (the 3rd trace). The input data is the sum of the 1st, 2nd and 3rd traces as shown in the 4th trace. The S/N of the input data is −12.5386 dB. Similarly, the input data is decomposed into seven multi-scale morphological components as shown in the 5th–11th traces. In this experiment, we choose the 3 th–6th multi-scale components (the 7th–10th traces) to reconstruct the signal, taking the compromise between signal preservation and noise removal into consideration. The proposed and conventional reconstructions are plotted in the 12th and 13th traces. The weighting coefficients in conventional approach are chosen manually as (1, 1, 1, 1) associated to the 7th–10th traces. It can be seen that, both approaches improve the detectability of the signal, but the proposed approach gives a better result. The three filtered data using band-pass filtering, with trapezoidal bands 10–20–180–190 Hz, 70–80–120–130 Hz and 60–70–170–180 Hz, are shown in the 14th, 15th and 16th traces. The results are unacceptable. We still hardly detect the signal in the filtered data. The S/Ns of the processed results using proposed and conventional morphological reconstruction approaches and three band-pass filterings are 4.9067, −2.8560, −6.2078, −3.0327, and −5.6471 dB, respectively. The cross-correlation coefficients between original signal and the five denoised signals are 0.8254, 0.4392, 0.3944, 0.4095, and 0.3838, respectively. Similarly, the time-frequency spectr a of clean data, noisy data, two reconstructions and two filtered results are shown in Fig. 7. The manually added limited-band random noise increases the difficulty of detecting the weak signal. As we can observe from Fig. 7(b), the time-frequency spectrum is extremely noisy and particularly several energy clusters in the area of 0.17–0.3 ms and 0–200 Hz can seriously obstruct the detection of the true signal. Denoising by using the orthogonalized morphological reconstruction technique leads to the results depicted in Fig. 7(c). The noise is clearly suppressed. By comparing the true signal and reconstructed signal, we can see that the two signals are very similar except for a slight amplitude damage. However, the signal would be easier to pick than before, and the slight amplitude damage is not significant, considering the totally removed noise and the observable useful signal s. The conventional morphological reconstruction approach also remove some noise, but the noise energy clusters are still noticeable. Figure 7(e,f,g) demonstrate the three filtered results. As expected, by using band-pass filtering, noise that shares the same frequency band with signal cannot be separated.

Application to a real data set

The proposed orthogonalized morphological reconstruction is applied to a real microseismic monitoring dataset recorded in the west of China. There are twelve downhole 3-C geophones to monitor seismic activity. There are eight injection stages in this project. The magnitude of microseismic events ranges from −3.86 to −0.135 Mw. The data used in this study is produced in the last stage, in which the recording time is the longest in the whole project. Section “Supplementary material” gives the detailed information for this dataset. In this dataset, the signal induced from hydraulic fracturing is very weak when the signal reach the receivers. A lot of useful signal s cannot be detected immediately, which leads to many neglected microseismic events. Thus detection of weak signal is a vital step in this stage. A typical 1.5 s record (8631–8632.5 s after the beginning of fracturing) with horizontal components H1 and H2, vertical component V is shown in Fig. 8. As we can see from the initial data, the microseismic record is very noisy and the background noise masks the useful signals. The relative strong S wave is visible in the V component record. However, the events are difficult to follow in both H1 and H2 components. The
frequency band of the perforation signal ranges from 0 Hz to 500 Hz. The frequency band of the observed micro-
seismic signals and background noise ranges from 0 Hz to 350 Hz and from 0 Hz to 900 Hz, respectively. Due to
the impact of industrial electricity, there are low-frequency interferences in several traces. The S/N of the initial
dataset is approximately -14.5942 dB.

We then decompose the initial data into five morphological scale components. Fig. 9 shows the results after
the proposed orthogonalized morphological reconstruction approach. It can be observed that the events are
much more clear than that in the raw data. We can easily follow the coherent energy in all H1 (Fig. 9(a)), H2

Figure 7. Comparison of time-frequency spectrums of (a) clean data, (b) noisy data, (c) orthogonalized
morphological reconstruction, (d) conventional morphological reconstruction, (e) filtered data (10–20–180–
190 Hz), (f) filtered data (70–80–120–130 Hz), (g) filtered data (60–70–170–180 Hz) of the second synthetic
example.

Figure 8. 3-C microseismic data. (a) Horizontal components (H1). (b) Horizontal components (H2). (c)
Vertical component (V).
(Fig. 9(b)), and V (Fig. 9(c)) component records. The S/N of the denoised result is approximately 4.0927 dB. As a comparison, the traditional morphological reconstruction approach is applied to this example. Similarly, the 2nd–4th scale components are used to reconstruct both H1 and H2 components, and the 2nd–5th scale components are used to reconstruct V components. The weighting coefficients are chosen manually as (1,1,0.5) and (1,1,1,1), respectively.

The results using the traditional morphological reconstruction approach are shown in Fig. 10. The events are more visible than the initial data, but the proposed approach performs better. The S/N of the denoised result is approximately -3.1015 dB. In order to avoid manually choosing the weighting coefficient σ_k, a varimax norm based morphological reconstruction approach can be used, in which the σ_k is defined as:

$$\sigma_k = 1/\text{norm}_v(c_k),$$

where norm$_v(\cdot)$ is the varimax norm50. The results are shown in Fig. 11. The reconstructions of the H1 (Fig. 11(a)) and V (Fig. 11(c)) components are acceptable, but the reconstruction of H2 (Fig. 11(a)) component is unsatisfied. The event is still hardly detected in the H2 component. The S/N of the denoised result is approximately -5.1291 dB.

Event location is an important step in the processing of microseismic data. For further evaluation of denoising performance by our proposed and other competitive approaches, we pick the events in each processed results. An accurate time-picking corresponds to a good weak signal detecting performance. The automatic events detection algorithm is chosen as the well-known STA/LTA filter51. In this test, the energy is used as characteristic function (CF) in STA/LTA filter. In the following figures the time picks are represented with red asterisks. Figure 12 shows the picked arrival times for the noisy 3-C records. Figures 13–15 show the results using the proposed method, median filtering and singular spectrum analysis (SSA) method, respectively. As we can see from this test, because of the strong background noise, the microseismic events are hard to pick. We can observe from Fig. 12 that STA/LTA filter is triggered at incorrect time for many traces. It is obvious that after using the proposed orthogonalized morphological reconstruction approach, the events become much more clear and easier to pick than others, which indicates the superior performance of our proposed approach.

We apply the STA/LTA algorithm to a longer duration of recorded data and denoised data. The experimental results as presented in Table 1 show that more events have been detected after using the proposed denoising approach than using other methods. We use the detected events in the denoised data by the proposed approach to locate the sources. We use Geiger’s approach52 to obtain the location. One can find the details of this approach in53. The calculation of travel-time is based on the principle of ray tracing. The results of locating is shown in Fig. 16. The black curve line denotes the trajectory of the fracturing well. The blue circle denotes the position of perforation. The green asterisks denote the locations of the microseismic events.
Conclusion

We have proposed a novel denoising method based on mathematical morphological decomposition. We introduce an orthogonalization operator into the process of reconstruction, which can impel the reconstruction

Figure 10. Traditional morphological reconstruction results of (a) horizontal components (H1) by 2nd–4th scales components, (b) horizontal components (H2) by 2nd–4th scales components, and (c) vertical component (V) by 2nd–5th scales components.

Figure 11. Varimax norm based morphological reconstruction results of (a) horizontal components (H1) by 2nd–4th scales components, (b) horizontal components (H2) by 2nd–4th scales components, and (c) vertical component (V) by 2nd–5th scales components.
of weak signal. We give detailed mathematical introduction of the new method and connect it with several well-known methods and mathematical models. The most striking difference between the proposed and traditional methods is that the core calculations in the proposed method are based on logical operation and set theory. Synthetic and real data examples demonstrate its superior performance compared with the competing alternative approaches. The detected weak signals make the microseismic monitoring feasible in severe environment where

Figure 12. Arrival picking of the initial data. (a) Horizontal component (H1). (b) horizontal component (H2). (c) Vertical component (V).

Figure 13. Arrival picking of orthogonalized morphological reconstructions. (a) Horizontal component (H1). (b) horizontal component (H2). (c) Vertical component (V).
Figure 14. Arrival picking results using median filtering. (a) Horizontal component (H1). (b) Horizontal component (H2). (c) Vertical component (V).

Figure 15. Arrival picking results using SSA. (a) Horizontal component (H1). (b) Horizontal component (H2). (c) Vertical component (V).

Recorded	Proposed	Median filtering	SSA
15	37	23	18

Table 1. Comparison of events detection in recorded data and denoised data after using different denoising approaches.
the recorded data is extremely noisy and microseismic signals are very weak. The proposed orthogonalized morphological reconstruction method belongs to a class of single-channel techniques and does not require array data. It can be used not only in microseismic monitoring, but also in other type of seismic data (active source or earthquake data), and in other real world applications, e.g., image processing and signal processing, large-scale earthquake data processing and inversion. The proposed method is promising for a wide research community and industrial applications.

References

1. Shapiro, S., Dinske, C. & Rothert, E. Hydraulic-fracturing controlled dynamics of microseismic clouds. Geophysical Research Letters 33 (2006).
2. Grigoli, F. et al. Automated microseismic event location using master-event waveform stacking. Scientific Reports 6, 1–13 (2016).
3. Warpinski, N. R. Analytic crack solutions for tilt fields around hydraulic fractures. Journal of Geophysical Research: Solid Earth 105, 23463–23478 (2000).
4. Parotidis, M., Shapiro, S. & Rothert, E. Back front of seismicity induced after termination of borehole fluid injection. Geophysical Research Letters 31 (2004).
5. House, L. Locating microearthquakes induced by hydraulic fracturing in crystalline rock. Geophysical Research Letters 14, 919–921 (1987).
6. Phillips, W., Fairbanks, T., Rutledge, J. & Anderson, D. Induced microearthquake patterns and oil-producing fracture systems in the austin chalk. Tectonophysics 289, 153–169 (1998).
7. Rutledge, J. T., Phillips, W. S. & Schuessler, B. K. Reservoir characterization using oil-production-induced microseismicity, clinton county, kentucky. Tectonophysics 289, 129–152 (1998).
8. Rutledge, J. T., Phillips, W. S. & Mayerhofer, M. Faulting induced by forced fluid injection and fluid flow forced by faulting: An interpretation of hydraulic-fracture microseismicity, carthage cotton valley gas field, texas. Bulletin of the Seismological Society of America 94, 1817–1830 (2004).
9. Fischer, T., Hainzl, S., Eisner, L. & Shapiro, S. & Le Calvez, J. Non–double-couple mechanisms of microearthquakes induced by hydraulic fracturing. Journal of Geophysical Research: Solid Earth 114 (2009).
10. Flewelling, S. A., Tymchak, M. P. & Warpinski, N. Hydraulic fracture height limits and fault interactions in tight oil and gas formations. Geophysical Research Letters 40, 3602–3606 (2013).
11. Dong, L.-J., Wesseloo, J., Potvin, Y. & Li, X.-B. Discriminant models of blasts and seismic events in mine seismology. International Journal of Rock Mechanics and Mining Sciences 282–291 (2016).
12. Dong, L. & Li, X. A microseismic/acoustic emission source location method using arrival times of ps waves for unknown velocity system. International Journal of Distributed Sensor Networks 9, 307489 (2013).
13. Dong, L., Li, X. & Xie, G. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive bayes classification. In Abstract and Applied Analysis, vol. 2014 (Hindawi Publishing Corporation, 2014).
14. Dong, L.-J., Wesseloo, J., Potvin, Y. & Li, X.-B. Discriminant models of blasts and seismic events in mine seismology. International Journal of Rock Mechanics and Mining Sciences 282–291 (2016).
15. Maxwell, S., Rutledge, J., Jones, R. & Fehler, M. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75, 75A129–75A137 (2010).
16. Bolton, H. & Masters, G. Travel times of p and s from the global digital seismic networks: Implications for the relative variation of p and s velocity in the mantle. Journal of Geophysical Research: Solid Earth 106, 13527–13540 (2001).
17. Reyes-Montes, J., Rietbrock, A., Collins, D. & Young, R. Relative location of excavation induced microseismicity at the underground research laboratory (saci, canada) using surveyed reference events. Geophysical research letters 32 (2005).
19. Michelet, S. & Toksöz, M. N. Fracture mapping in the soultz-sous-forêts geothermal field using microearthquake locations. *Journal of Geophysical Research: Solid Earth* **112** (2007).
20. Chouet, B. et al. Source mechanisms of explosions at stromboli volcano, Italy, determined from moment-tensor inversions of very-long-period data. *Journal of Geophysical Research: Solid Earth* **108** (2003).
21. Li, H., Wang, R., Cao, S., Chen, Y. & Huang, W. A method for low-frequency noise suppression based on mathematical morphology in microseismic monitoring. *Geophysics* **81**, V159–V167 (2016).
22. Chen, Y. & Ma, J. Random noise attenuation by f-x empirical mode decomposition predictive filtering. *Geophysics* **79**, V81–V91 (2014).
23. Justusson, B. Median filtering: Statistical properties. In Two-Dimensional Digital Signal Processing II, 161–196 (Springer, 1981).
24. Neelamani, R., Baumstein, A. I., Gillard, D. G., Hadidi, M. T. & Soroka, W. L. Coherent and random noise attenuation using the curvelet transform. *The Leading Edge* **27**, 240–248 (2008).
25. Chen, Y., Fomel, S. & Hu, J. Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization. *Geophysics* **79**, V179–V189 (2014).
26. Mousavi, S. M. & Langston, C. A. Hybrid seismic denoising using higher-order statistics and improved wavelet block thresholding. *Bulletin of the Seismological Society of America* (2016).
27. Chen, Y. et al. Simultaneous denoising and reconstruction of 5-D seismic data via ramped rank-reduction method. *Geophysical Journal International* **206**, 1695–1717 (2016).
28. Huang, W., Wang, R., Yuan, Y., Gan, S. & Chen, Y. Signal extraction using randomized-order multichannel singular spectrum analysis. *Geophysics* **82**, V69–V84 (2016).
29. Kong, S., Phinney, R. A. & Roy-Chowdhury, K. A nonlinear signal detector for enhancement of noisy seismic record sections. *Geophysics* **50**, 539–550 (1985).
30. Schimmel, M. & Paulsen, H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. *Geophysical Journal International* **130**, 497–505 (1997).
31. Gibbons, S. J. & Ringdal, F. The detection of low magnitude seismic events using array-based waveform correlation. *Geophysical Journal International* **165**, 149–166 (2006).
32. Mousavi, S. M., Langston, C. A. & Horton, S. P. Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. *Geophysics* **81**, V341–V355 (2016).
33. Mousavi, S. M. & Langston, C. A. Adaptive noise estimation and suppression for improving microseismic event detection. *Journal of Applied Geophysics* **132**, 116–124 (2016).
34. Matheron, G. *Random sets and integral geometry* (John Wiley & Sons, 1975).
35. Serra, J. *Image analysis and mathematical morphology*, v. 1 (Academic press, 1982).
36. Koskinen, L., Astola, J. T. & Neuvo, Y. A. Soft morphological filters. In *Two-Dimensional Digital Signal Processing II*, 161–196 (Springer, 1981).
37. Sinha, D. & Dougherty, E. R. *Fuzzy mathematical morphology*. *IEEE Transactions on Image Processing* **13**, 286–302 (1994).
38. Wang, R., Li, Q. & Zhang, M. Application of multi-scaled morphology in denoising seismic data. *Applied Geophysics* **5**, 197–203 (2008).
39. Fomel, S. Shaping regularization in geophysical-estimation problems. *Geophysics* **72**, R29–R36 (2007).
40. Tikhonov, A. Solution of incorrectly formulated problems and the regularization method. *Soviet Math. Dokl. 5*, 1035–1038 (1963).
41. Maragos, P. Morphological systems: slope transforms and max-min difference and differential equations. *Signal Processing* **38**, 57–77 (1994).
42. Van Huffel, S. Enhanced resolution based on minimum variance estimation and exponential data modeling. *Signal processing* **33**, 333–355 (1993).
43. Chen, Y. & Fomel, S. Random noise attenuation using local signal-and-noise orthogonalization. *Geophysics* **80**, WD1–WD9 (2015).
44. Huang, W., Wang, R., Chen, Y., Li, H. & Gan, S. Damped multichannel singular spectrum analysis for 3D random noise attenuation. *Geophysics* **81**, V261–V270 (2016).
45. Huang, W., Wang, R., Chen, X. & Chen, Y. Double least-squares projections method for signal estimation. *IEEE Transactions on Geoscience & Remote Sensing* **55**, 4111–4129 (2017).
46. Fomel, S. Adaptive multiple subtraction using regularized nonstationary regression. *Geophysics* **74**, V25–V33 (2008).
47. Heitnereus, M. R. & Stiefel, E. Methods of conjugate gradients for solving linear systems, vol. 49 (NBS, 1952).
48. Chen, Y. et al. Empirical low-rank approximation for seismic noise attenuation. *IEEE Transactions on Geoscience and Remote Sensing* (2017).
49. Stockwell, R. G., Mansinha, L. & Lowe, R. Localization of the complex spectrum: the s transform. *IEEE transactions on signal processing* **44**, 998–1001 (1996).
50. Wiggins, R. A. Minimum entropy deconvolution. *Geocexploration* **16**, 21–35 (1978).
51. Allen, R. V. Automatic earthquake recognition and timing from single traces. *Bulletin of the Seismological Society of America* **68**, 1521–1532 (1978).
52. Geiger, L. Probability method for the determination of earthquake epicenters from the arrival time only. *Bull. St. Louis Univ* **8**, 56–71 (1912).
53. Ge, M. Analysis of source location algorithms part ii: iterative methods. *Journal of Acoustic Emission* **21**, 29–51 (2003).

Acknowledgements

The authors would like to thank Yimin Yuan and Sergey Fomel for the constructive discussions. This work is supported by the National Basic Research Program of China (973 Program), grant NO: 2013CB228602. W.H. would like to thank the China Scholarship Council for the financial support.

Author Contributions

W.H. conducted the numerical experiments. R.W. supervised the work. W.H. and H.L. processed the field data. W.H. and Y.C. analyzed the results. W.H., R.W., and Y.C. wrote the manuscript. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-09711-2.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
