Reversible Cerebral Vasoconstriction Syndrome, Part 1: Epidemiology, Pathogenesis, and Clinical Course

T.R. Miller, R. Shivashankar, M. Mossa-Basha and D. Gandhi

AJNR Am J Neuroradiol published online 15 January 2015
http://www.ajnr.org/content/early/2015/01/15/ajnr.A4214
Reversible cerebral vasoconstriction syndrome (RCVS) is a clinical and radiologic syndrome whose primary features include the hyperacute onset of severe headache and segmental vasoconstriction of cerebral arteries that resolves by 3 months. RCVS is not a single disease entity but should be considered a common presentation of multiple disorders characterized by reversible vasoconstriction of the cerebral vasculature. The term “RCVS” now encompasses what was previously thought to be a group of distinct clinical entities, including Call-Fleming syndrome, thunderclap headache, and postpartum angiopathy.

Timely and accurate diagnosis of RCVS is essential to ensuring appropriate patient care and avoiding unnecessary diagnostic tests. However, the diagnosis can be challenging because its signs and symptoms can overlap those of better known disorders of the central nervous system, including aneurysmal subarachnoid hemorrhage and primary angiitis of the CNS. Furthermore, a key feature of RCVS, segmental arterial vasoconstriction, may be absent early in the course of the disease. Consequently, both the clinician and radiologist must maintain a high level of suspicion for this entity in patients presenting with characteristic features.

The first part of this article will review the history of RCVS, including the previously described clinical entities that it is now thought to include. We will then discuss the epidemiology, diagnostic criteria, and clinical presentations of this disorder and explore the association of RCVS with posterior reversible encephalopathy syndrome (PRES). In the second part, we will review the imaging features of RCVS, including more recent work exploring associated imaging changes in the cerebral arterial vasculature beyond segmental vasoconstriction.

Historical Background

Reversible segmental cerebral vasoconstriction has been described in the medical literature in a diverse array of clinical settings dating back to the 1960s. The earliest clinical reports associated this finding with the postpartum state, migraine headaches, unruptured cerebral aneurysms, and the use of vasoactive medication such as ergot derivatives. Initially, patients presenting with cerebral vasoconstriction were thought to have unique disease entities, depending on the given clinical scenario and specialist treating the patient (Table 1). The common features of these cases, including clinical presentation with severe headache, reversibility of angiographic findings, and lack of histologic abnormalities on arterial biopsy, were not well appreciated or understood.

In 1988, Gregory Call and Marie Fleming described a unique clinical and radiographic syndrome in a small case series of 4 patients presenting with acute headache and reversible cerebral artery vasoconstriction. When the authors included 12 previ
mon end point of numerous disease processes, as opposed to a countered, strongly suggests that the syndrome represents a com-

the heterogeneity of clinical and radiologic manifestations of primary angiitis of the CNS continues to be a challenge. Finally, community, the overlap of its features with other conditions such as good deal remains unknown about the syndrome. Although and the clinical course of RCVS has greatly improved. However, a years, our understanding of possible triggers, imaging findings, and proposed specific diagnostic criteria (Table 2). In recent

RCVS can occur spontaneously, without an obvious underly-
ing cause, or can be secondary to an identifiable trigger (roughly 25%–60% of cases). The delay in exposure to an exogenous trigger and the development of RCVS can be anywhere between a few days and several months. In cases in which medications act as the exogenous trigger for the syndrome, patients may be taking the drug on a regular basis or infrequently, either at recom-

Table 1: Prior terms for RCVS

Prior Terms
Migrainous vasospasm
Benign angiopathy of the central nervous system
Postpartum angiopathy
Thunderclap headache with reversible vasospasm
Sexual headache
Drug-induced angiopathy
Call-Fleming syndrome

Table 2: Diagnostic criteria for RCVS

Criteria
Severe, acute headaches, with or without additional neurologic signs or symptoms
Uniphasic disease course with no new symptoms after 1 month of onset
No evidence for aneurysmal SAH
Normal or near-normal findings on CSF analysis (protein level, <80 mg/dL; leukocyte level, <10/mm³; normal glucose level)
Multifocal segmental cerebral artery vasoconstriction demonstrated on either catheter angiography or indirectly on CTA/MRA
Reversibility of angiographic abnormalities within 12 weeks after onset
If death occurs before the follow-up studies are completed, postmortem rules out such conditions as vasculitis, intracranial atherosclerosis, and aneurysmal SAH, which can also manifest with headache and stroke

A diverse group of possible exogenous triggers for secondary RCVS have been proposed, though the potential delay between exposure and development of the syndrome (in some cases weeks to months) and the ubiquity of some triggers (coughing, laughing, and so forth) raise the possibility that some of these associations may be coincidental (Table 1). However, the association of RCVS with the most commonly reported triggers is more compelling, including the use of vasoactive drugs and the postpartum state, which together account for more than half of cases in most published series (approximately 50% and 9%–10% of cases respectively). Sympathomimetic drugs commonly taken over the counter for upper respiratory tract infections, including phenylpropanolamine and pseudoephedrine, as well as antimigrainous medications, have historically been associated with subarachnoid hemorrhage and ischemic stroke in rare cases, which in retrospect likely reflects the sequelae of drug-induced RCVS. The association between RCVS and the postpartum state is thought to possibly reflect increased levels of both pro- and antiangiogenic factors, some of which have also been associated in any prospective study, they have proved very useful clinically to diagnose RCVS and to increase physician awareness of the disease.

Epidemiology and Potential Triggers

Although the true incidence of RCVS remains uncertain, the syndrome does not appear rare on the basis of the rates of patient recruitment or presentation into prospective and retrospective studies. Furthermore, recent reports have suggested that the incidence of RCVS may be increasing, though it is unclear whether this reflects a true increase in the incidence of the syndrome versus a consequence of improved imaging techniques and physician awareness. Nevertheless, RCVS likely remains underdiagnosed and should be included in the differential diagnosis of young patients presenting with severe headache or cryptogenic stroke. RCVS commonly affects patients 20–50 years of age (mean, 42–45 years), though other age groups, including children and adolescents, can be affected. Most interesting, the mean age of men presenting with RCVS tends to be a decade younger than that of female patients (fourth decade). There is a female predominance, with an average female/male ratio from 3 large series of patients of approximately 2:1. RCVS does not appear to be limited to any single ethnic or racial group. As Ducros highlighted in her review of RCVS, differences in patient characteristics in large published series could reflect either intrinsic differences in RCVS among various patient populations and/or differences in patient recruitment criteria.

Diagnostic Criteria

The key diagnostic criteria for RCVS proposed by Calabrese et al have since been slightly modified by the International Headache Society (Table 2). Although these criteria have not been validated

Prior Terms	Criteria
Migrainous vasospasm	Severe, acute headaches, with or without additional neurologic signs or symptoms
Benign angiopathy of the central nervous system	Uniphasic disease course with no new symptoms after 1 month of onset
Postpartum angiopathy	No evidence for aneurysmal SAH
Thunderclap headache with reversible vasospasm	Normal or near-normal findings on CSF analysis (protein level, <80 mg/dL; leukocyte level, <10/mm³; normal glucose level)
Sexual headache	Multifocal segmental cerebral artery vasoconstriction demonstrated on either catheter angiography or indirectly on CTA/MRA
Drug-induced angiopathy	Reversibility of angiographic abnormalities within 12 weeks after onset
Call-Fleming syndrome	If death occurs before the follow-up studies are completed, postmortem rules out such conditions as vasculitis, intracranial atherosclerosis, and aneurysmal SAH, which can also manifest with headache and stroke
with eclampsia, such as placental growth factor. RCVS encountered in the postpartum period typically is encountered anywhere from 1 to 3 weeks following an uncomplicated pregnancy, though presentation as late as 6 weeks has been reported.42,43

RCVS is commonly associated with a history of migraine headaches (20%–40% of cases), which may, in part, be due to the known role of migraine medications as a trigger for the syndrome.1,5,17 Cervical arterial dissection has also been associated with RCVS, though it remains uncertain whether this represents a potential etiology or complication of the syndrome.7,9,44-47 In a prospective study identifying patients with RCVS or cervical arterial dissection, Mawet et al45 found that 12% of patients in the RCVS cohort (n = 173) had or developed cervical arterial dissection, while 7% of patients in the cervical dissection cohort (n = 285) developed RCVS. In rare cases, multiple cervical arterial dissections may be present.47 Finally, some published series have noted a significant association between RCVS and cannabis use.22

Pathogenesis
The pathophysiology of RCVS remains unknown. However, alterations in cerebral vascular tone leading to vasoconstriction are thought to be a key pathophysiologic mechanism underlying the development of RCVS.1,2,6,9,43 This hypothesis is supported by the lack of histologic changes noted in and around the cerebral vasculature in patients with RCVS who have undergone brain biopsy.1,44 Specifically, histologic and electron-microscopic analyses have failed to demonstrate evidence of active inflammation or vasculitis.1 Deregulation of cerebral vascular tone in RCVS may be induced by sympathetic overactivity, endothelial dysfunction, and oxidative stress.3,5,11,12,23,48,49 The association of RCVS with blood pressure surges, ingestion of sympathomimetic vasoactive substances, and pheochromocytoma support the role of sympathetic overactivity in its pathogenesis. On the other hand, a significant overlap between RCVS and PRES supports the importance of endothelial dysfunction, which is known to play an important pathophysiologic role in the latter. Because RCVS likely represents a common end point of a diverse group of disease processes, it is possible that the contribution of sympathetic overactivity and endothelial dysfunction to the onset of the syndrome varies depending on the incitant event in a given patient.

Various hormonal and biochemical factors have been suggested to play a role in the deregulation of cerebral vascular tone in RCVS, including estrogen, endothelin-1, serotonin, nitric oxide, and prostaglandins, some of which have been also associated with vasoconstriction following aneurysmal subarachnoid hemorrhage.5,6,11,48 For example, urine levels of 8-iso-prostaglandin F₂α, a marker of oxidative stress and a potent vasoconstrictor, were found to correlate with disease severity in patients with RCVS.48 This finding suggests that oxidative stress may play a role in the pathogenesis of RCVS. It is unclear whether the vasoconstrictive properties of 8-iso-prostaglandin F₂α contribute to the regional vasoconstriction found in RCVS.48 Other factors, including placental growth factor, soluble placental growth factor receptor (soluble fms-like tyrosine kinase-1), and soluble endoglin, play a role in angiogenesis and have been implicated in the development of RCVS in the postpartum period.8

Genetic factors may influence an individual’s susceptibility to developing RCVS and the severity of its subsequent clinical course. A specific genetic polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor, which is important for neuronal survival, neurogenesis, and synaptic plasticity, has been associated with more severe vasoconstriction in patients with RCVS.50 Most interesting, brain-derived neurotrophic factor can also affect vascular function and has been associated with disorders of abnormal vascular tone and unstable angina.

Thunderclap Headache
The thunderclap headache is a defining clinical feature of RCVS and is defined as a severe, throbbing headache that reaches peak intensity within 60 seconds of onset (Fig 1). In RCVS, the pain is often bilateral and diffuse, though it can originate in the occipital region.1,2,6,9,14 Thunderclap headache has been reported in 94%–100% of patients with RCVS and may be the sole presenting symptom in 70%–76% of cases.2,6,9,51,52 Often, there is significant delay between the onset of headache and patient presentation for medical care (average, 7 days).9 The thunderclap headache can be associated with other symptoms, including nausea, emesis, diplopia, elevations in blood pressure, and photosensitivity.1,2,6,9,42,44 In patients with RCVS who have migraines, the thunderclap headache is typically described as differing in location, degree, and quality from their usual migraines.1,5 A minority of patients with RCVS may present with a more mild or subacute headache, though the complete absence of headache is rare.2,3,19

Thunderclap headache is not specific for RCVS and can be associated with various other medical conditions, including aneurysmal subarachnoid hemorrhage, primary headache disorder, pituitary apoplexy, cerebral venous sinus thrombosis, unruptured cerebral aneurysm, cervical arterial dissection, and third ventricle colloid cyst, among others.11 In fact, prior reports suggest that RCVS will ultimately be diagnosed in less than half (45%) of patients presenting with a thunderclap headache.14,51 For example, Grooters et al14 found that only 8.8% of patients presenting to a single center with thunderclap headache and no evidence of aneurysmal subarachnoid hemorrhage were ultimately diagnosed with RCVS.

However, some characteristics of the thunderclap headache associated with RCVS may be more specific for the syndrome. For example, in contradistinction to patients with aneurysmal subarachnoid hemorrhage, the thunderclap headache associated with RCVS typically demonstrates a waxing and waning course, often completely resolving within 3 hours (range, minutes to days), only to recur repeatedly during 1–3 weeks.1,2,9,14,19,23,44 On average, the last episode occurs 7–8 days after symptom onset.19 In RCVS, the number of exacerbations may vary between 1 and 20 episodes and often are triggered by bathing, stress, sexual intercourse, change in position, exertion, and coughing.1,2,6,7,16,42,54,55 A more moderate headache may persist between the acute episodes.2,3,19

The exact etiology of the thunderclap headache encountered in CVS remains uncertain. Some authors have postulated that cerebral vasoconstriction may be the cause because the cerebral
vasculature receives innervation from the first division of the trigeminal nerve and the dorsal ganglion of the second cervical nerve. However, the time course of patient symptoms such as headache and cerebral vasoconstriction argues against a causal relationship. For example, although patients typically present acutely with thunderclap headache, cerebral vasoconstriction often does not become evident for a week or more following symptom onset. Furthermore, resolution of vasoconstriction may take weeks to months in some individuals, persisting long after the resolution of patient symptomatology.

Other Clinical Presentations and Sequelae of RCVS
Other clinical presentations, or sequelae, of RCVS include generalized seizures, encephalopathy, focal neurologic deficits, altered mental status, transient ischemic attacks, ischemic stroke, intracranial hemorrhage, cerebral edema, and PRES (Table 3). In her meta-analysis of 3 large case series of patients with RCVS, Ducros found that focal neurologic deficits were present in 8%–43% of patients, seizures in 1%–17%, cortical subarachnoid hemorrhage in 30%–34% (1 study had hemorrhage as an exclusion criterion and was not included), cerebral infarction in 6%–39%, and concomitant PRES

Table 3: Potential triggers of RCVS
Triggers of Secondary RCVS
Vasoactive medications
Sympathomimetic drugs, bromocriptine, ergotamine, pseudoephedrine, selective serotonin-uptake inhibitors, interferon, triptans, diet pills, nonsteroidal anti-inflammatory drugs
Vasoactive recreational drugs
Alcohol, amphetamines, cannabis, cocaine, ecstasy, nicotine
Pregnancy and postpartum states
Blood products
Blood transfusions, erythropoietin, intravenous immunoglobulin
Headache disorders
Migraines
Tumors
Pheochromocytoma
Paraganglioma
Trauma
Carotid dissection, unruptured cerebral aneurysm
Head and neck surgery
Various medical conditions
Hemolysis, elevated liver enzymes, low platelets
Antiphospholipid antibody syndrome
Thrombotic thrombocytopenic purpura

FIG 1. A 47-year-old woman with the sudden onset of severe headache. Initial noncontrast head CT (A) demonstrates trace sulcal subarachnoid hemorrhage (white arrow) near the vertex. CT angiography performed at the same time (B) is interpreted as having unremarkable findings. Conventional angiography (C) demonstrates mild diffuse irregularity with multifocal narrowings throughout the cerebral vasculature with a beaded appearance, most pronounced in distal right middle cerebral artery cortical branches (black arrow). Findings are most consistent with RCVS. Follow-up catheter angiogram performed 1 month later (D) demonstrates complete resolution of cerebral vasoconstriction (black arrow).
ties.1,5,8,11-13 Given this distribution, subarachnoid hemorrhage, a hemorrhagic complication of RCVS, is most often focal and located in the occipital and posterior parietal lobes.2,62,64-65 Note subtle irregularity and multifocal narrowings involving distal cortical branches of the bilateral middle and anterior cerebral arteries (black arrows) on cerebral angiography (B), suggestive of RCVS. The patient made a full recovery, with complete resolution of cerebral areas of abnormal FLAIR hyperintensity (C) and cerebral vasoconstriction (not shown).

Although patients with RCVS may initially present with generalized seizure, seizures rarely persist and long-term antiepileptic therapy is generally not indicated.1,42 Hypertension is commonly encountered in patients with RCVS in the acute period; however, it is unclear whether high blood pressure is from pain associated with headache, a response to cerebral vasoconstriction, or some other manifestation of the syndrome.5,11 As previously described, cervical arterial dissections may be encountered in patients with RCVS and should be excluded in patients who present with neck pain and/or territorial cerebral infarct.1,2,5,19,45,46

Focal neurologic deficits encountered with RCVS include visual deficits, hemiplegia, dysarthria, aphasia, numbness, cortical blindness, or ataxia.6,42,59 Focal deficits of vision, sensory, sensation, and motor function are encountered in decreasing frequency.1,5 Focal neurologic deficits may be transient or permanent, often reflecting the sequelae of TIA or ischemic infarct resulting from severe segmental cerebral vasoconstriction, though some transient deficits may be due to a migraine-type aura phenomenon.1,2,6 Neurologic deficits lasting >24 hours are unlikely to improve and likely reflect the sequelae of ischemic infarct, which typically occur in bilateral watershed zones of the cerebral hemispheres.1,19 Cerebellar infarcts are also possible.19

Risk factors for the development of intracranial hemorrhage in patients with RCVS include a history of migraine, older age, and female sex.13,61 Subarachnoid hemorrhage, the most common hemorrhagic complication of RCVS, is most often focal and localized in superficial cerebral sulci near the cerebral convexities.1,5,8,11-13 Given this distribution, subarachnoid hemorrhage associated with RCVS may be missed on imaging and CSF analysis, and its incidence in the syndrome consequently is underestimated.11 It has been postulated that vasoconstriction of small arterioles early in the course of RCVS, along with hypertension and breakdown of autoregulatory mechanisms, may precipitate the rupture of small pial vessels with resulting subarachnoid hemorrhage.17,59,62 Other patterns of intracranial hemorrhage encountered in RCVS include intraparenchymal hemorrhage and subdural hematomas.1,8,57,59,61 Intraparenchymal hemorrhage can be seen in up to 6%-20% of patients and most often is unifocal and lobar in location.1,8,19,52

The various sequelae of RCVS tend to occur at different times during the course of the syndrome.3 Hemorrhagic complications, such as subarachnoid and intraparenchymal hemorrhage and concomitant PRES and seizures, most often occur during the first week of illness.1,8,9,56 In contradistinction, ischemic events and their resulting focal neurologic deficits often arise later in RCVS, peaking between 1 and 2 weeks following patient presentation.3 Ischemic stroke can occur even later in the course of the syndrome, occasionally after resolution of symptoms such as headache, and presumably reflects the well-documented delay in resolution of cerebral vasoconstriction.44 Overall, Ducros et al9 found that ischemic events such as TIA and stroke occurred on average approximately 8 days later than hemorrhagic complications.9

Association with PRES

RCVS and PRES overlap significantly in their clinical and radiographic features, and the 2 entities are frequently encountered concurrently (Fig 2).1,5,58,62,64,65 PRES is a clinical and radiographic syndrome characterized by headache, visual changes, seizure, and imaging findings, including cerebral edema affecting the cerebral cortex and underlying white matter, manifesting as areas of hyperintensity on T2 and FLAIR imaging, most often involving the occipital and posterior parietal lobes.2,62,64 However, other distribution patterns can be encountered with PRES, including involvement of the frontal and temporal lobes, basal ganglia, deep white matter, and brain stem.2,64 While the areas of cerebral edema encountered in PRES are
activities that are associated with the onset of symptoms/headache as much as possible. Calcium channel blockers, including nimodipine, have been administered to patients with RCVS via oral and intravenous routes and have been shown in prospective and retrospective studies to provide symptom relief, including headache. However, calcium channel blockers have not been shown to influence the evolution of cerebral vasocostriction or the possible complications of RCVS, including intracranial hemorrhage and ischemic stroke.

Other vasodilators, such as phosphodiesterase inhibitors, have also been used with anecdotal success in case reports.73 However, vasodilators, including calcium channel blockers, must be used with caution because drops in systolic blood pressure may impair cerebral perfusion in patients with RCVS with severe cerebral vasocostriction.74 Intravenous administration of vasodilators and balloon angioplasty have been performed in cases of severe RCVS-related vasocostriction, though the indications and efficacy of these treatments remain unclear (Fig 3).69,74,75 Although RCVS vasocostriction has been shown to improve following intra-arterial vasodilator therapy, recurrence of arterial narrowing has been reported, sometimes necessitating multiple treatment sessions.69,76 Glucocorticoid steroids have been administered to patients with RCVS, without improvement in either patient symptoms or sequelae of the disease. Some case series have even suggested that steroid therapy may be associated with worse outcomes in RCVS.3,17,76

Prognosis and Clinical Course

Fortunately, the prognosis for most patients with RCVS is very good. The syndrome typically follows a self-limiting, monophasic course, with resolution of symptoms by 3 weeks, and no new symptoms after 1 month.1,13,17,23,39,57,77 By definition, resolution of vasocostriction should occur by 3 months. However, a minority of patients will demonstrate delayed clinical worsening in the first few weeks following symptoms onset, most often due to the development of an ischemic infarct.39,42,43,77 A more fulminant course of RCVS leading to permanent disability or death can be encountered in 5%–10% of patients.1,2,6,12,43,60,77 Recurrence of RCVS appears to be rare, though some patients may have chronic mild headaches and fatigue on follow-up.2,42,43,78

RCVS encountered in the postpartum period deserves special attention because it has been reported to be more likely to follow a fulminant course, with multifocal infarct, intracranial hemorrhage, extensive vasogenic edema, and death.1,39,60 When Fugate et al53 evaluated patients with postpartum angiopathy in a small retrospective series (n = 18), they found focal neurologic deficits in 50%, visual disturbances in 44%, encephalopathy in 33%, sci-
zure in 28%, intracranial hemorrhage in 39%, vasogenic edema in 35%, and infarction in 35%. Somewhat unusual for RCVS, only slightly less than half of patients in this small series achieved a complete recovery, while the remaining patients either died or were left with significant neurologic deficits.33

CONCLUSIONS

RCVS is characterized by a thunderclap headache and reversible cerebral artery vasoconstriction on imaging. Alterations in cerebral vascular tone likely underlie development of the syndrome. Most patients with RCVS have a good outcome with no permanent sequelae, while a small minority will experience a more fulminant course culminating in permanent disability or death.

REFERENCES

1. Ducros A. L37: reversible cerebral vasoconstriction syndrome—distinction from CNS vasculitis. Presse Med 2013;42(4 pt 2):602–04
2. Ducros A, Bousser MG. Reversible cerebral vasoconstriction syndrome. Pract Neurol 2009;9:256–67
3. Gupta S, Zivadinov R, Ramasamy D, et al. Reversible cerebral vasoconstriction syndrome (RCVS) in antiphospholipid antibody syndrome (APLA): the role of centrally acting vasodilators—case series and review of literature. Clin Rheumatol 2014;33:1829–33
4. Marder CP, Donohue MM, Weinstein JR, et al. A pediatric case of reversible segmental cerebral vasoconstriction. A A M J Neurol 2012;33:403–10
5. Sheikh HU, Mathew PG. Reversible cerebral vasoconstriction syndrome: updates and new perspectives. Curr Pain Headache Rep 2014;18:414
6. Calabrese LH, Dodick DW, Schwedt TJ, et al. Narrative review: reversible cerebral vasoconstriction syndromes. Ann Intern Med 2007;146:34–44
7. Chen SP, Fuh JL, Wang SJ. Reversible cerebral vasoconstriction syndrome: current and future perspectives. Expert Rev Neurother 2011;11:1:1265–76
8. Stary JM, Wang BH, Moon SJ, et al. Dramatic intracerebral hemorrhagic presentations of reversible cerebral vasoconstriction syndrome: three cases and a literature review. Case Rep Neurol Med 2014;2014:782028
9. Ducros A, Boukobza M, Porcher R, et al. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome: a prospective series of 67 patients. Brain 2007;130(pt 12):3091–101
10. Alvaro LC, Iriondo J, Villaverde FJ. Sexual headache and stroke in a heavy cannabis smoker. Headache 2002;42:224–26
11. Ansari SA, Rath TJ, Gandhi D. Reversible cerebral vasoconstriction syndromes presenting with subarachnoid hemorrhage: a case series. J Neurolnterv Surg 2011;3:272–78
12. Calic Z, Choong H, Schlaphoff G, et al. Reversible cerebral vasoconstriction syndrome following indomethacin. Cephalalgia 2014;34:1181–86
13. Eddow BL, Kasner SE, Hurst RW, et al. Reversible cerebral vasoconstriction syndrome associated with subarachnoid hemorrhage. Neurocrit Care 2007;7:203–10
14. Grooters GS, Sluzewski M, Tijssen CC. How often is thunderclap headache caused by the reversible cerebral vasoconstriction syndrome? Headache 2014;54:732–35
15. Hajj-Ali RA, Singhal AB, Benseler S, et al. Primary angiitis of the CNS. Lancet Neurol 2011;10:561–72
16. Hammad TA, Hajj-Ali RA. Primary angiitis of the central nervous system and reversible cerebral vasoconstriction syndrome. Curr Atheroscler Rep 2013;15:346
17. Singhal AB, Hajj-Ali RA, Topcuoglu MA, et al. Reversible cerebral vasoconstriction syndromes: analysis of 139 cases. Arch Neurol 2011;68:1005–12
18. Call GK, Fleming MC, Sealfon S, et al. Reversible cerebral segmental vasoconstriction. Stroke 1988;19:1159–70
19. Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol 2012;11:906–17
20. Calic Z, Choong H, Schlaphoff G, et al. Pitfalls in the diagnosis of reversible cerebral vasoconstriction syndrome and primary angiitis of the central nervous system. Cephalalgia 2014;34:1038–39
21. Koopman K, Vytenboogaart M, Luijckx GJ, et al. Pitfalls in the diagnosis of reversible cerebral vasoconstriction syndrome and primary angiitis of the central nervous system. Cephalalgia 2007;1:1085–87
22. Wolff V, Lauer V, Rouyer O, et al. Cannabis use, ischemic stroke, and multifocal intracranial vasoconstriction: a prospective study in 48 consecutive young patients. Stroke 2011;42:1778–80
23. Baint J, Segal D, Amin R, et al. Call-Fleming syndrome: headache in a 16-year-old girl. Pediatr Neurol 2013;49:130–35.e1
24. Hajj-Ali RA, Furlan A, Abou-Chebel A, et al. Benign angiopathy of the central nervous system: cohort of 16 patients with clinical course and long-term followup. Arthritis Rheum 2002;47:662–69
25. Kirton A, Diggle J, Hu W, et al. A pediatric case of reversible segmental cerebral vasoconstriction. Can J Neurol Sci 2006;33:250–53
26. Liu HY, Fuh JL, Lirng JF, et al. Three paediatric patients with reversible cerebral vasoconstriction syndromes. Cephalalgia 2010;30:354–59
27. Probert R, Saunders DE, Ganesan V. Reversible cerebral vasoconstriction syndrome: rare or underrecognized in children? Dev Med Child Neurol 2013;55:385–89
28. Bayer-Karpinska A, Patzig M, Adamczyk C, et al. Reversible cerebral vasoconstriction syndrome with concurrent bilateral carotid artery dissection. Cephalalgia 2013;33:491–95
29. Boughmounou A, Touze E, Oppenheim C, et al. Reversible angiopathy and encephalopathy after blood transfusion. J Neurol 2013;250:116–18
30. Comabella M, Alvarez-Sabin J, Rovira A, et al. Bromocriptine and postpartum cerebral angiopathy: a causal relationship? Neurology 1996;46:1754–56
31. Cvetanovich GL, Ramakrishnan P, Klein JP, et al. Reversible cerebral vasoconstriction syndrome in a patient taking cilostazol and Hydroxyut: a case report. J Med Case Rep 2011;5:348
32. Dou YH, Fuh JL, Chen SP, et al. Reversible cerebral vasoconstriction syndrome after blood transfusion. Headache 2014;54:736–44
33. Fugate JE, Amerisofo SF, Ortiz G, et al. Variable presentations of postpartum angiopathy. Stroke 2013;43:670–76
34. Granier I, Garcia E, Geissler A, et al. Postpartum cerebral angiopathy associated with the administration of sumatriptan and dehydroergotamine: a case report. Intensive Care Med 1999;25:532–34
35. Lopez-Valdes E, Chang HM, Pessin MS, et al. Cerebral vasoconstriction after carotid surgery. Neurology 1997;49:303–04
36. Moussavi M, Korya D, Panzea S, et al. Reversible cerebral vasoconstriction syndrome in a 35-year-old woman following hysterectomy and bilateral salpingo-oophorectomy. J Neurolnterv Surg 2012;4:e35
37. Paliwal PR, Teoh HL, Sharma VK. Association between reversible cerebral vasoconstriction syndrome and thrombotic thrombocytopenic purpura. J Neurol Sci 2014;338:223–25
38. Verillard B, Ducros A, Massiou H, et al. Reversible cerebral vasoconstriction syndrome in two patients with a carotid glomus tumour. Cephalalgia 2010;30:1271–75
39. Katz BS, Fugate JE, Amerisofo SF, et al. Clinical worsening in reversible cerebral vasoconstriction syndrome. JAMA Neurol 2014;71:68–73
40. Cantu C, Arauz A, Murillo-Bonilla LM, et al. Stroke associated with sympathomimetics contained in over-the-counter cough and cold drugs. Stroke 2003;34:1667–72
41. Nighoghossian N, Drexel L, Trouillas P. Multiple intracerebral hemorrhages and vasospasm following antimigrainous drug abuse. Headache 1998;38:478–80
42. Singhal AB, Bernstein RA. Postpartum angiopathy and other cerebral vasoconstriction syndromes. Neurocrit Care 2005;3:91–97
Neurology stricture syndrome and cervical artery dissection in 20 patients. Neurology 2013;81:821–24

Mitchell LA, Santarelli JG, Singh IP, et al. Reversible cerebral vasocostriction syndrome and cervical artery dissection in 20 patients. J Neurointerv Surg 2014;6:5

Nouh A, Ruland S, Schneck MJ, et al. Reversible cerebral vasocostriction syndrome with multivessel cervical artery dissections and a double aortic arch. J Stroke Cerebrovasc Dis 2014;23:e141–43

Chen SP, Chung YT, Liu TY, et al. Oxidative stress and increased formation of vasocostricting F2-isoprostanes in patients with reversible cerebral vasocostriction syndrome. Free Radic Biol Med 2013;61:243–48

Marra A, Vargas M, Striano P, et al. Posterior reversible encephalopathy syndrome: the endothelial hypotheses. Med Hypotheses 2014;82:619–22

Chen SP, Fuh JL, Wang SJ, et al. Brain-derived neurotrophic factor gene Val66Met polymorphism modulates reversible cerebral vasocostriction syndromes. PLoS One 2011;6:e18024

Cheng YC, Kuo KH, Lai TH. A common cause of sudden and thunderclap headaches: reversible cerebral vasocostriction syndrome. Headache Pain 2014;15:13

Koopman K, Teune K, ter Laan M, et al. An often unrecognized cause of thunderclap headache: reversible cerebral vasocostriction syndrome. J Headache Pain 2008;9:389–91

Schwedt TJ, Matharu MS, Dodick DW. Thunderclap headache. Lancet Neurol 2006;5:621–31

Dodick DW, Eross EJ, Drazkowski JF, et al. Thunderclap headache associated with reversible vasospasm and posterior leukoencephalopathy syndrome. Cephalalgia 2003;23:994–97

Wang SJ, Fuh JL, Wu ZA, et al. Bath-related thunderclap headache: a study of 21 consecutive patients. Cephalalgia 2008;28:524–30

Chen SP, Fuh JL, Chang FC, et al. Transcranial color Doppler study for reversible cerebral vasocostriction syndrome. Ann Neurol 2008;63:751–57

Geocadin RG, Razumovsky AY, Wityak RJ, et al. Intracerebral hemorrhage and postpartum cerebral vasulopathy. J Neurol Sci 2002;205:29–34

Noda K, Fukae J, Fujishima K, et al. Reversible cerebral vasocostriction syndrome presenting as subarachnoid hemorrhage, reversible posterior leukoencephalopathy, and cerebral infarction. Intern Med 2011;50:1227–33

Santos E, Zhang Y, Wilkins A, et al. Reversible cerebral vasocostriction syndrome presenting with haemorrhage. J Neurol Sci 2009;276:189–92

Fugate JE, Wijdicks E, Parisi JE, et al. Fulminant postpartum cerebral vasocostriction syndrome. Arch Neurol 2012;69:111–17

Ducros A, Fiedler U, Porcher R, et al. Hemorrhagic manifestations of reversible cerebral vasocostriction syndrome: frequency, features, and risk factors. Stroke 2010;41:2505–11

Singhal AB. Postpartum angiopathy with reversible posterior leukoencephalopathy. Arch Neurol 2004;61:411–16

Moskowitz SL, Cabrelese LH, Weil RJ. Benign angiopathy of the central nervous system presenting with intracerebral hemorrhage. Surg Neurol 2007;67:522–27; discussion 527–28

Sadeg AR, Waters RJ, Sparrow OC. Posterior reversible encephalopathy syndrome: a case following reversible cerebral vasocostitution syndrome masquerading as subarachnoid haemorrhage. Acta Neurochir (Wien) 2012;154:413–16

Soo Y, Singhal AB, Leung T, et al. Reversible cerebral vasocostriction syndrome with posterior leucoencephalopathy after oral contraceptive pills. Cephalalgia 2010;30:42–45

Agarwal R, Davis C, Altmik D, et al. Posterior reversible encephalopathy and cerebral vasocostriction in a patient with hemolytic uremic syndrome. Pediatr Neurol 2014;50:518–21

Imataki O, Uemura M, Shintani T, et al. Reversible cerebral vasocostriction syndrome resulted in cerebral infarction after allogeneic stem cell transplantation: a case report. Ann Hematol 2014;93:895–96

Meschia JF, Makkoff MD, Biller J. Reversible segmental cerebral arterial vasospasm and cerebral infarction: possible association with excessive use of sumatriptan and Midrin. Arch Neurol 1998;55:712–14

Elstner M, Linn J, Muller-Schunc S, et al. Reversible cerebral vasocostriction syndrome: a complicated clinical course treated with intraarterial application of nimodipine. Cephalalgia 2009;29:677–82

Grande PO, Lundgren A, Bjartmarz H, et al. Segmental cerebral vasocostriction: successful treatment of secondary cerebral ischaemia with intravenous prostacyclin. Cephalalgia 2010;30:890–95

Lu SR, Liao YC, Fuh JL, et al. Nimodipine for treatment of primary thunderclap headache. Neurology 2004;62:1414–16

Zuber M, Touze E, Domigo V, et al. Reversible cerebral angiopathy: efficacy of nimodipine. J Neurol 2006;253:1585–88

Bouchard M, Verreault S, Gariepy JL, et al. Intra-arterial milrinone for reversible cerebral vasocostriction syndrome. Headache 2009;49:142–45

John S, Donnelly M, Uchino K. Catastrophic reversible cerebral vasocostriction syndrome associated with serotonin syndrome. Headache 2013;53:1482–87

Song JK, Fisher S, Seiffert TD, et al. Postpartum cerebral angiopathy: atypical features and treatment with intracranial balloon angioplasty. Neuororadiology 2004;46:1022–26

French KF, Hoesch RE, Allred J, et al. Repetitive use of intra-arterial verapamil in the treatment of reversible cerebral vasocostriction syndrome. J Clin Neurosci 2012;19:747–76

Robert T, Kawakami Marchini A, Oumaoro G, et al. Reversible cerebral vasocostriction syndrome identification of prognostic factors. Clin Neurol Neurosurg 2013;115:2351–57

Urseil M, Carras CL, Farb R, et al. Recurrent intracranial hemorrhage due to postpartum cerebral angiopathy: implications for management. Stroke 1998;29:1995–98