Jézéquel, Malo
Transfer operators for ultradifferentiable expanding maps of the circle. (English)
Ergodic Theory Dyn. Syst. 41, No. 7, 2049-2068 (2021).

Summary: Given a \(C^\infty \) expanding map \(T \) of the circle, we construct a Hilbert space \(\mathcal{H} \) of smooth functions on which the transfer operator \(L \) associated to \(T \) acts as a compact operator. This result is made quantitative (in terms of singular values of the operator \(L \) acting on \(\mathcal{H} \)) using the language of Denjoy-Carleman classes. Moreover, the nuclear power decomposition of V. Baladi and M. Tsujii, [Contemp. Math. 469, 29–68 (2008; Zbl 1154.37320)] can be performed on the space \(\mathcal{H} \), providing a bound on the growth of the dynamical determinant associated to \(L \).

MSC:
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37E10 Dynamical systems involving maps of the circle
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)

Keywords: transfer operator; dynamical determinant; Ruelle resonances; Denjoy-Carleman classes

Full Text: DOI arXiv

References:
[1] Baladi, V.. Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps. Springer, Berlin, 2018. - Zbl 1405.37001
[2] Baladi, V. and Tsujii, M.. Dynamical determinants and spectrum for hyperbolic diffeomorphisms. Geometric and Probabilistic Structures in Dynamics. American Mathematical Society, Providence, RI, 2008, pp. 29-68. - Zbl 1154.37320
[3] Bandtlow, O. F.. Resolvent estimates for operators belonging to exponential classes. Integral Equations Operator Theory61(1) (2008), 21-43. - Zbl 1155.47003
[4] Bandtlow, O. F. and Jenkinson, O.. Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions. Adv. Math.218(3) (2008), 902-925. - Zbl 1145.37016
[5] Bandtlow, O. F., Just, W. and Slijanderschuk, J.. Spectral structure of transfer operators for expanding circle maps. Ann. Inst. H. Poincaré Anal. Non Linéaire34(1) (2017), 31-43. - Zbl 1377.37035
[6] Bandtlow, O. F. and Naund, F.. Lower bounds for the Ruelle spectrum of analytic expanding circle maps. Ergod. Th. & Dynam. Sys.39(1) (2019), 289-310. - Zbl 1442.37047
[7] Boas, R.. Entire Functions. Academic Press, New York, 1954. - Zbl 0058.30201
[8] Führ, S., Nenning, D. N., Rainer, A. and Schindl, G.. Almost analytic extensions of ultradifferentiable functions with applications to microlocal analysis. J. Math. Anal. Appl.481(1) (2020),123451. - Zbl 1427.32009
[9] Golberg, I., Goldberg, S. and Krupnik, N.. Traces and Determinants of Linear Operators. Birkhäuser, Basel, 2000. - Zbl 0946.47013
[10] Gouëzel, S. and Liverani, C.. Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom.79(3) (2008), 433-477. - Zbl 1166.37010
[11] Grothendieck, A.. Produits tensoriels topologiques et espaces nucléaires. American Mathematical Society, Providence, RI, 1955. - Zbl 0064.35501
[12] Jézéquel, M.. Global trace formula for ultra-differentiable Anosov flows. Preprint, 2019, arXiv:1901.09576 [math].
[13] Jézéquel, M.. Local and global trace formulae for smooth hyperbolic diffeomorphisms. J. Spectr. Theory10(1) (2020), 185-249. - Zbl 1442.37038
[14] Kato, T.. Perturbation Theory for Linear Operators. Springer, Berlin, 1966. - Zbl 0148.12601
[15] Krüger, A., Michor, P. W. and Rainer, A.. The convenient setting for non-quasianalytic Denjoy-Carleman differentiable mappings. J. Funct. Anal.256(11) (2009), 3510-3544. - Zbl 1178.46039
[16] Kuroda, S. T.. On a generalization of the Weinstein-Aronszajn formula and the infinite determinant. Sci. Papers College Gen. Ed. Univ. Tokyo11 (1961), 1-12. - Zbl 0099.10003
[17] Naud, F.. The Ruelle spectrum of generic transfer operators. Discrete Contin. Dyn. Syst. Ser. A32(7) (2012), 2521-2531. · Zbl 1271.37029

[18] Ruelle, D.. Zeta-functions for expanding maps and Anosov flows. Invent. Math.34 (1976), 231-242. · Zbl 0329.58014

[19] Slipantschuk, J., Bandtlow, O. F. and Just, W.. Analytic expanding circle maps with explicit spectra. Nonlinearity26(12) (2013), 3231-3245. · Zbl 1287.37029

[20] Slipantschuk, J., Bandtlow, O. F. and Just, W.. Complete spectral data for analytic Anosov maps of the torus. Nonlinearity30(7) (2017), 2667-2686. · Zbl 1379.37068

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.