Figure S1: Examples of CRISPR-generated alleles using single nucleotide substitutions in the guide-binding region. (A) Partial alignment of the ssODN repair template used to mutate mir-1 compared to the wild-type mir-1 genomic sequence (Top). The resulting strain (UY477) carries a single nucleotide change of the 8th nucleotide from the 3’ end of the guide sequence. (Bottom) Comparison of the wild-type mir-1 duplex and the UY477 mutated mir-1 duplex. (B) Partial alignment of the ssODN repair template used to mutate mir-84 compared to the wild-type mir-84 genomic sequence (Top). The resulting strain (UY459) contains a single nucleotide change at the 2nd nucleotide from the 3’ end of the guide sequence. (Bottom) Comparison of the wild-type mir-84 duplex and the UY459 mutated mir-84 duplex. (A-B) Changes to the wild-type sequence are indicated by red text. The PAM sequence is double underlined, and the guide sequence is highlighted by a gray box. Asterisk indicates the 5' nucleotide of the mature microRNA guide strand. Duplexes were derived from www.mirbase.org.
Strain	Genotype	Information
FX30240	*tmc24* [F23D12.4(tmIs1240)] X	Dejima et al., 2018
N2	wild-type	From CGC
UY352	*tra-2(zen142) II*	PAM + Rsa
UY356	*tra-2(zen145) II*	Rsa only, no blocking
UY362	*tra-2(zen151) II*	P2 + Rsa
UY364	*tra-2(zen153) II*	P11 + Rsa
UY370	*tra-2(zen157) II*	P20 + Rsa
UY386	*let-7(zen162)/tmc24 X*	PAM
UY389	*let-7(zen165)/tmc24 X*	No blocking
UY392	*let-7(zen168)/tmc24 X*	*let-7*(n2853-equivalent)
UY440	*ndf51 V; let-7(zen171) mir-84(n4037)/tmc24 X*	*let-7* family mutant
UY459	*mir-84(zen194) X*	P2, see Figure S1
UY477	*mir-1(zen208) I*	P8, see Figure S1
VT1066	*ndf51 V; mir-84(n4037) X*	Abbott et al., 2005
Oligonucleotide	Sequence (5’-3’)	
-----------------------	---	
tra-2 crRNA	AUUUUACUAACAGAUAUAA	
tra-2 P8 ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTTTACGATATTATTT
TACTAACA_CATAATAATGG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

tra-2 P11 ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTACGATATTATTTT
TACTA_CAGATAATAATGG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

tra-2 P11+PAM ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTACGATATTATTTT
TACTA_CAGATAATAATCG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

tra-2 P14 ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTACGATATTATTTT
TAGTAACAGATAATAATGG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

tra-2 P17 ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTACGATATTATTTT
A_TACTAACAGATAATAATGG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

tra-2 P20 ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTACGATATTATTTT
TACTAACAGATAATAATGG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

tra-2 P20+PAM ssODN
CCTACAAATTATTTTGAGTAATATTTTTTATTACGATATTATTTT
TACTAACAGATAATAATCG_TACAATGAAATTGAAATACAATA
AACTTCTCGTTTCGGGTG

let-7 PAM ssODN
GATTGGTGGACGGTCTACACTGTTGATCCCGGTGAGGTAGT
ACGTGTATAGTTTTGGAATATTACACCACGGTGAACATGCA
	DNA Sequence
let-7 no-Block	GATTGGTGACGGTCTACACTGTGGATCCGGTGAGGTA CGT
ssODN	AGGTTCTATAGGGGAATATTACCACCGGTGTAAGT
let-7(n2853) ssODN	GATTGTGGACGGTCTACACTGTGGATCGGTAGT
	AGGTTGTATAGGGGAATATTACCACCGGTGTAAGT
tra-2 RsaI Reversion	CCTACAAATTATTTTGAAGTAATATATTTTTTTTACTGATATTATTT
ssODN	TACTAAGAGATAATAATGGGAACAAATGGAATATGAAAAATA
	ACTTCTCGTTTCTGGGTGG
dpy-10(cn64) ssODN	CACTTGAACTTCAATACCGCAAGATGAGAATGACTGGAAAC
	CGTACCACCATGCCGATGTAGGCTATGGTAGGGAGGCTACATGA
	GCTTCAGACCAACAGCCTAT
Table S3 (Related to Figure 2). Editing Rates of *tra-2* in F2 Generation Dumpy (top) and Non-dumpy (bottom) Animals.

Genotypes of F2 Dumpy	No-blocking	PAM	P2	P2+PAM	P5	P8	P11	P11+PAM	P14	P17	P20	P20+PAM
HDR Edited (%)	19 (21.8)	42 (95.4)	40 (80.0)	45 (93.8)	50 (75.8)	22 (67.6)	28 (75.7)	31 (88.6)	39 (59.1)	23 (54.8)	28 (66.6)	34 (89.5)
Indel (%)	8 (9.2)	1 (2.3)	1 (2.0)	0 (0.0)	1 (1.5)	4 (11.8)	3 (8.1)	2 (5.7)	8 (12.1)	5 (11.8)	4 (9.6)	0 (0.0)
Not Edited (%)	60 (69.0)	1 (2.3)	9 (18.0)	3 (6.2)	15 (22.7)	7 (20.6)	6 (16.2)	2 (5.7)	19 (28.8)	14 (33.4)	10 (23.8)	4 (10.5)

Genotypes of F2 non-Dumpy	No-blocking	PAM	P2	P2+PAM	P5	P8
HDR Edited (%)	2 (2.3)	3 (6.8)	7 (14.0)	5 (10.4)	4 (6.1)	2 (5.9)
Indel (%)	6 (6.9)	6 (13.6)	9 (18.0)	5 (10.4)	5 (7.6)	2 (5.9)
Not Edited (%)	79 (90.8)	35 (79.6)	34 (68.0)	38 (79.2)	57 (86.3)	30 (86.4)
-----	-------	-------	-------			
P11	5 (13.5)	1 (2.7)	31 (83.8)			
P11+PAM	5 (14.3)	4 (11.4)	26 (74.3)			
P14	1 (1.5%)	7 (10.6)	58 (87.9)			
P17	3 (7.2%)	7 (16.6)	32 (76.2)			
P20	6 (14.3)	6 (14.3)	30 (71.4)			
P20+PAM	6 (15.8)	6 (15.8)	26 (68.4)			
Table S4 (Related to Figure 2D). Paired Genotype Analysis of F2 Dumpy and Non-Dumpy Animals from Single F1 Rollers.

Genotype Block	Dpy	No-Dpy	P2	P2+PAM	P14	P17	P20	P20+PAM
HDR Editted	0 (0.0)	3 (7.0)	3 (5.4)	3 (5.7)	2 (3.0)	1 (2.8)	1 (1.5)	4 (10.3)
HDR Not Editted	16 (19.0)	33 (76.7)	32 (57.1)	40 (75.5)	42 (63.6)	22 (61.1)	28 (56.1)	4 (15.4)

Indel Editted:

| HDR Editted | 0 (0.0) | 1 (2.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.8) | 0 (0.0) | 1 (2.3) |
| HDR Not Editted | 1 (1.2) | 4 (9.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (2.8) | 0 (0.0) | 1 (1.5) |

Block Editted:

| HDR Editted | 0 (0.0) | 1 (1.8) | 5 (10.4) | 4 (10.3) |
| HDR Not Editted | 1 (1.8) | 5 (7.6) | 1 (1.5) | 4 (10.3) |
	7.7	16.7	38.2	26.3	16.3	22.2	22.7	3.8	12.5	3.3	61.9
3	52	7	15	8	17	21	8	3	1	1	4
2	0.0	4.2	1.5	2.8	0.0	1.5	3.6	1	2	2	1
0	0	1	1	0	1	1	2	1	1	1	1

	2.8	3.6	15.2	22.7	3.8	1.5	0.0	0.0	1.5	3.6	2.8
2	1	2	2	0	0	1	1	1	1	1	1

	6.0	0.0	8.3	9.1	10.6	2.3	5.6	1.5	3.8	0.0	5.0
0	5	0	4	7	1	2	1	2	0	0	0

HDR	Not Edited	Indel	Edited	Not Edited
2	0	2	0	0

Not Edited
Table S5 (Related to Figure 4A). HDR Incorporation Rates of Blocking Mutations and Non-blocking RsaI Restriction Site Among HDR-edited Chromosomes

Blocking Mutation	Rsa Only (%)	Blocking Only (%)	Blocking + Rsa (%)
No-blocking	21 (100.0)	0 (0.0)	0 (0.0)
PAM	1 (2.2)	0 (0.0)	44 (97.8)
P2	15 (31.9)	15 (31.9)	17 (36.2)
P2+PAM	0 (0.0)	0 (0.0)	52 (100.0)
P5	1 (1.8)	40 (74.1)	13 (24.1)
P8	2 (8.0)	13 (56.0)	8 (36.0)
P11	0 (0.0)	21 (63.6)	12 (36.4)
P11+PAM	0 (0.0)	10 (27.8)	26 (72.2)
P14	8 (20.5)	22 (56.4)	9 (23.1)
P17	4 (15.4)	16 (61.6)	6 (23.0)
P20	4 (12.5)	17 (53.1)	11 (34.4)
P20+PAM	0 (0.0)	11 (28.2)	28 (71.8)
Table S6 (Related to Figure 3B). Effect of Distance to Cut Site on Incorporation of Single Nucleotide Guide Substitutions.

Blocking Mutation	PAM Only (%)	Blocking Only (%)	Blocking + Rsal (%)
PAM	45 (100.0)	0 (0.0)	0 (0.0)
P2+PAM	0 (0.0)	0 (0.0)	52 (100.0)
P11+PAM	26 (72.2)	4 (11.2)	6 (16.6)
P20+PAM	28 (71.8)	0 (0.0)	11 (28.2)
Table S7 (Related to Figure 4). Blocking Efficacy of Single Nucleotide Substitutions

Blocking Mutation	Both Reverted (%)	Heterozygous (%)	Not Reverted (%)
F1 Rol			
No-blocking	0 (0.0)	25 (50.0)	25 (50.0)
PAM	0 (0.0)	0 (0.0)	56 (100.0)
P2	0 (0.0)	1 (1.8)	56 (97.2)
P11	0 (0.0)	3 (5.4)	53 (94.6)
P20	0 (0.0)	7 (12.7)	48 (87.3)
F1 Dpy			
No-blocking	5 (10.0)	22 (44.0)	23 (46.0)
PAM	0 (0.0)	0 (0.0)	50 (100.0)
P2	0 (0.0)	3 (5.3)	53 (94.7)
P11	0 (0.0)	3 (5.3)	53 (94.7)
P20	1 (1.8)	12 (21.8)	42 (76.4)
Table S8 (Related to Figure 6). Editing Rates of let-7 in F2 Generation non-Venus Animals.

Blocking Mutation	HDR Edited (%)	Indel (%)	Not Edited (%)
No-blocking	1 (3.7)	11 (40.7)	15 (55.6)
PAM	17 (60.7)	3 (10.7)	8 (28.6)
n2853 [P6]	17 (56.7)	7 (23.3)	6 (20.0)