Comorbidity as a predictor of racial and ethnic disparities in cancer in the United States population

Maxwell Akonde a,*, Rajat Das Gupta a, Ottovon Bismark Dakurah b, Reston Hartsell a

a Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
b African Cancer Institute, Stellenbosch University, South Africa

ARTICLE INFO

Keywords:
Comorbidity
Racial/ethnic
Cancer
Adult
Disparity

ABSTRACT

Aims: This study aims to examine the racial and ethnic disparity in cancer prevalence and determine if comorbidities can explain this disparity.

Study design: This was a cross-sectional study.

Methods: The study examined cancer prevalence among adults who self-identified as White, Black, and Other races in the US population according to data from the 2017 National Health Interview Survey.

Results: Cancer was 58.5% [OR = 0.415; 95% CI: 0.346-0.496] and 57.5% [OR = 0.425; 95%CI: 0.346-0.522] more likely to be found in the White compared to the Black adults and White compared to Other race adults, respectively. After adjusting for the comorbidities, the odds of cancer in White adults increased marginally compared to Black adults [OR = 0.407; 95% CI: 0.338-0.490] and decreased marginally compared to Other race adults [OR = 0.462; 95%CI: 0.374-0.569] even though the odds remained significant. Ever smoking, age of 50 years or more, Former and current alcohol consumption, overweight and obesity, being female and physical inactivity were found to be significantly associated with higher odds of cancer.

Conclusions: This study did identify a racial and ethnic disparity in cancer prevalence between White and Black adults and White and Other adult races. However, this racial and ethnic disparity could not be explained by comorbidities.

1. Introduction

Cancer is a leading cause of mortality and morbidity globally with an estimated 1,806,590 new cases and 606,520 deaths occurring in 2020 in the United States (US) [1]. This translates into about 4950 cases diagnosed each day. While the etiology of most cancers is not well understood, multifactorial causes including lifestyle, infections and socioeconomic factors, are said to play a role [2,3]. Hence, cancer prevalence and mortality are affected by these multifactorial causes as well. There is a racial inequality in the prevalence and mortality of cancer cases [4,5]. Although in the last 20 years, there is a declining trend in cancer incidence and mortality, and the incidence in most types of cancers in women are lower in Black women compared to White woman, cancer mortality remains higher in Black compared to White populations[1,6,7]. Because of lower death rates in White populations, the prevalence of cancer appears higher in this race compared to Black populations. While evidence exists on this health disparity, there is insufficient data to adequately explain this variability by race and ethnicity. Race or ethnicity alone cannot sufficiently explain this disparity either. Race surrogated cancer pathway factors such as socioeconomic factors, access to healthcare, cigarette smoking, alcohol consumption and genetic factors were found to be some explanatory factors for cancer disparities [8–10].

The racial or ethnic disparity in cancer prevalence may also be due to the racial or ethnic distribution of comorbidities. Reducing racial and ethnic disparity in cancer prevalence and mortality entails reducing the race surrogate pathway factors. This involves reducing risk factors including comorbidities. To the best of our knowledge, there is little data from population-based studies examining the role of comorbidities on the racial/ethnic disparity in cancer prevalence in the US population. Therefore, this study was designed to evaluate the relationship between cancer and race and ethnicity using the National Health Interview Survey (NHIS) adult sample data, and to examine if the racial and ethnic disparity in cancer prevalence could be explained or predicted by comorbidities. Establishing this, will help in the realignment of policies on cancer interventions and the appropriate allocation of essential resources.

* Corresponding author.
E-mail address: makonde@email.sc.edu (M. Akonde).

https://doi.org/10.1016/j.phip.2021.100175
Received 5 September 2020; Received in revised form 15 July 2021; Accepted 30 July 2021
Available online 26 August 2021
2666-5352/© 2021 The Authors. Published by Elsevier Ltd on behalf of The Royal Society for Public Health. This is an open access article under the CC
resources for cancer programs. We hypothesized that the presence of comorbidities may be a predictor of the racial and ethnic disparity in cancer prevalence, hence controlling for known comorbidities would eliminate this disparity.

2. Methods

2.1. Data

This study utilized cross-sectional data of the 2017 National Health Interview Survey (NHIS) to examine the relationship between cancer and race and ethnicity in the US population and how the racial and ethnic cancer disparity is influenced by the distribution of comorbidities among different races. The NHIS is a household survey which aims to monitor and update the health of the US population and has been conducted since 1957. The 2017 NHIS included 32,617 households with 66.5% household response rate. A face-to-face interview was conducted from one sample adult from each participating family, and 26,617 of the 33,143 eligible adults were interviewed representing 80.7% response rate. Details of the survey instrument, sampling methodology, and study protocols are published elsewhere [11]. In summary, the 2017 NHIS household survey was designed to consist of a sample of 319 primary sampling units (PSUs) drawn from about 1700 geographically defined PSUs in each of the 50 states and the District of Columbia. A PSU consisted of a county, small group of contiguous counties, or a metropolitan statistical area. The PSUs are stratified by state and subdivided into four separate panels such that each panel is representative of the US civilian noninstitutionalized population. This design is advantageous as it allows flexibility. Each household selected is mailed a letter prior to the visit of a trained interviewer who conducts face-to-face interview. The study utilized a complete case analysis protocol and a weighted sample size of 22,842 was included in the final analysis.

The 2017 NHIS was approved by the Research Ethics Review Board of the National Center for Health Statistics (NCHS) and the US Office of Management and Budget. Additionally, each participant provided an informed consent.

2.2. Study variables

The dependent variable was cancer and was measured as self-reported and dichotomized as “yes” or “no”. Participants in the NHIS were asked if they were ever told by a doctor, they had cancer. The independent variables included the following race and ethnicity, comorbidities, and other covariates:

2.3. Independent variables

Race and Ethnicity – Race and ethnicity was the primary predictor variable for this study. Race and ethnicity were self-reported and categorized into (a) White only, (b) Black/African American only, (c) American Indian and Alaskan Native (AIAN) only, (d) Asian only and (e) multiple race. This variable was recoded and categorized into White, Black and Others.

Comorbidities – Comorbidities were the secondary predictor variables which were measured by the presence of other health or disease conditions. The health or disease conditions examined in this study included hypertension, heart attack, stroke, diabetes, weak or failing kidneys, liver conditions, hepatitis, asthma, ulcer, Chronic Obstructive Pulmonary Disease (COPD), sinusitis, angina, other heart conditions, bronchitis, coronary heart disease and hypercholesterolemia. These were self-reported and dichotomized as “yes” or “no”. They were treated individually and entered into the model after examining their individual association with the dependent variable.

2.4. Covariates

Sociodemographic variables examined included age, sex, marital status, and employment. Age was measured as a continuous variable but dichotomized as “< 50 years” or “≥50 years” given the risk of cancer in older age [12,13]. Sex was reported as either “Male” or “Female” and both were included in the study. Marital status which was initially reported as “Married (spouse in household)”, “married (spouse not in the household)”, “married (spouse in household unknown)”, “widowed”, “divorced”, “separated”, “Never married” or “Living with partner” was dichotomized as “Married” and “Not married”. The employment status was also recoded to examine the impact of employment and unemployment in different races on cancer.

The Body Mass Index (BMI) was determined from the weight and height information that were collected as continuous variables. This was recoded into four categories as Underweight (<18.5 kg/m²), Normal weight (18.5 kg/m² – 24.9 kg/m²), Overweight (25 kg/m² – 29.9 kg/m²) and Obese (≥30 kg/m²) using the Centers for Disease Control and Prevention cut-off points for BMI [14].

Alcohol consumption was measured by the number of drinks within a defined time period and was recoded as “Current drinker”, “Former drinker” or “Never drinker”. The smoking status was elicited with the question “Ever smoked 100 cigarettes” with “Yes” or “No” response included in the analysis. The responses “refused”, “not ascertained” and “do not know” were excluded. Physical activity which was categorized into ten groups was recoded into “Ever exercised” and “Never exercised”.

2.5. Statistical analysis

Weighted analysis was performed using SAS version 9.4. Frequencies and percentages were used to describe categorical variables. Chi-square statistic was used to compare the racial differences in the distribution of sociodemographic characteristics such as sex, age, BMI, marital status, physical exercise, smoking status, alcohol drinking status, and employment status. The prevalence of cancer and other comorbidities were also examined across the different races and chi-square comparative analyses were conducted to find out any differences among the racial groups.

Bivariate logistic regression was performed to examine the associations between cancer and the main predictor variable as well as other known risk factors such as smoking status, alcohol status, BMI, physical exercise, age, sex and marital status as crude odds ratios (COR). Similar analyses were performed between cancer and each of the comorbidities. Any covariate yielding a p-value < 0.05 in the crude analyses was used in the multivariable analyses. This strategy was followed for each interaction term; however no significant association was identified. All analyses were two-sided, with a p-value < 0.05 or included confidence intervals not containing the null value of 1 with respect to odd ratios considered statistically significant.

3. Results

The characteristics of the participants are presented in Table 1. A weighted total of 22,842 participants was included with 78.40% being White, 12.29% Black and 9.31% Other races. There were more females (55.01%) than males (47.99%) with most of the participants being <50 years of age (55.07%). Overall, 34.55% of the participants were obese and 32.91% were overweight. There was a higher proportion of Black adults who were obese (44.40%) compared to the Other race adults. Only 33.35% of White adults participated in some form of physical activity. The prevalence of ever smoking and current alcohol drinking was 36.14% and 67.31% respectively. 70.06% of White adults were current drinkers compared to 56.79% of Black adults and 58.01% of Other race adults. More White adults (38.83%) were ever smokers compared to Black adults (26.76%) and Other race adults (25.88%). Unemployment was 5.04% among all participants with White adults (4.38%) having the
The prevalence of cancer and other comorbidities in the population stratified by race or ethnicity.

Condition	White	Black	Other	X [2] (df)	p-value
Cancer					
Yes	2110	1879	130	101	0.0001
No	20732	16029	2678	2025	
Hypercholesterolemia					
Yes	6685	5188	650	547	0.0001
No	16457	12720	2158	1579	
Hypertension					
Yes	6767	5255	982	530	0.0001
No	16075	12653	1826	1596	
Heart attack					
Yes	658	539	77	42	0.0243
No	22184	17369	2731	2084	
Stroke					
Yes	696	548	107	42	0.0009
No	22146	17360	2701	2084	
Diabetes					
Yes	2184	1663	312	209	0.0080
No	20658	16245	2496	1917	
Renal condition					
Yes	459	369	65	25	0.0120
No	22383	17539	2744	2101	
Liver condition					
Yes	397	314	36	48	0.0402
No	20658	16245	2496	1917	
Hepatitis					
Yes	613	482	64	68	0.1595
No	22229	17426	2744	2084	
Asthma					
Yes	3030	2407	400	223	0.0002
No	19812	15501	2408	1903	
Ulcer					
Yes	1379	11300	149	101	0.0030
No	21663	16778	2659	2078	
COPD					
Yes	729	615	71	43	0.0002
No	22113	17293	2737	2083	
Sinusitis					
Yes	2824	2253	306	165	0.0002
No	20018	15555	2502	1961	
Angina					
Yes	375	308	40	28	0.1975
No	22667	17600	2768	2098	
Other Heart Conditions					
Yes	60	2900	0.0001		
(continued on next page)					
diabetes, renal failure, asthma and Bronchitis were more prevalent among the Black adults (3.81%, 11.12%, 2.30%, 14.23% and 3.58%) compared to the White adults (3.06%, 9.29%, 2.06%, 13.44% and 3.32%) and Other race adults (1.96%, 9.80%, 1.18%, 10.48% and 2.01%). Hepatitis and liver conditions were the only two comorbidities more prevalent among Other race adults (hepatitis and liver conditions: 3.18% and 2.23%, respectively) compared to the Black adults (hepatitis and liver conditions: 2.29% and 1.28%, respectively) and White adults (hepatitis and liver conditions: 2.69% and 1.75%, respectively). Apart from angina (p-value = 0.1975) and hepatitis (p-value = 0.1595), significant differences in prevalence were observed among racial and ethnic groups.

From Table 3, hypertension was the most prevalent comorbidity among the cancer subjects with 52.11% of all cancer subjects reported having hypertension. This was followed by hypercholesterolemia with 48.68% of cancer subjects reporting to have high cholesterol. 3.62% and 4.58% of the subjects with cancer compared to only 1.15% and 1.75% in the subjects with no cancer reported some liver and renal conditions, respectively. Diabetes was 15.74% prevalent in the cancer subjects compared to 8.93% in those without cancer whilst CHD was 11.43% among the cancer compared to 3.39% among those without cancer. All comorbidities were significantly higher among those with cancer compared to those without cancer.

Participants who were overweight and obese were 17.8% [OR = 1.178; 95% CI: 1.052–1.319] and 30.0% [OR = 1.30; 95% CI: 1.010–1.265] more likely to have cancer compared to participants with normal weight. Also, participants who smoked and drank alcohol were 79.9% [OR = 1.799; 95% CI: 1.644–1.969] and 23.6% [OR = 1.236; 95% CI: 1.091–1.401] more likely to have cancer compared to participant who did not smoke and drink. Being ≥50 years (p-value < 0.0001), a female (p-value = 0.0058) and married (p-value < 0.0001) were significantly associated with cancer prevalence as presented in Table 4.

Cancer was 58.5% [OR = 0.415; 95% CI: 0.346–0.498] and 57.5% [OR = 0.425; 95% CI: 0.346–0.522] more likely to be prevalent in the White adults compared to Black and Other race adults, respectively. After adjusting for all comorbidities the odds of cancer in White adults increased marginally compared to Black adults [OR = 0.407; 95% CI: 0.338–0.490] and decreased marginally compared to Other races [OR = 0.462; 95% CI: 0.374–0.569] even though the odds remained significant as seen in Table 5.

4. Discussion

Cancer remains a significant cause of disability and death globally. Multiple risk factors have been found to be associated with cancer. Race and ethnicity have long been established as a risk factor. However, race and ethnicity have not sufficiently explained the racial disparity in the
enough evidence indicating that comorbidities were a significant pre
physical activity on cancer risk. While some of these mechanisms may be
age of 50 years or more, former, and current alcohol consumption,
etnic disparity in cancer using prevalence odds ratios. Ever smoking,
pecific to some particular cancers, one unifying mechanism suggest that
risk of some cancers and physical activity have been reported [15
Table 4
Risk factors for cancer in the participants.
Covariate	Odd ratio	95% Cl	p-value
Smoke	1		
No			
Yes	1.799	1.644–1.969	<0.0001
Alcohol			
Never	1		
Current	1.236	1.091–1.401	0.0009
Former	2.023	1.736–2.358	<0.0001
BMI			
Normal	1		
Underweight	0.951	0.620–1.457	0.8165
Overweight	1.178	1.052–1.319	0.0045
Obese	1.130	1.010–1.265	0.0327
Physical Activity			
Never	1		
Ever	1.335	1.208–1.475	<0.0001
Age			
<50 years	1		
>50 years	8.420	7.440–9.528	<0.0001
Sex			
Male	1		
Female	1.135	1.037–1.242	0.0058
Marital Status			
Nonmarried	1		
Married	1.564	1.426–1.715	<0.0001

CI = Confidence Interval.

Table 5
Racial or ethnic disparity in cancer prevalence adjusting for comorbidities.
Race	Unadjusted	Adjusted	Unadjusted	Adjusted
	OR	95% CI	OR	95% CI
White	1.0	Referent	1.0	Referent
Black	0.415	0.346–0.498	0.407	0.338–0.490
Other	0.425	0.346–0.522	0.462	0.374–0.569

OR = Odd ratio; CI = Confidence Interval.

prevalence, incidence, and mortality of cancer. This study reevaluated
some traditional cancer risk factors such as cigarette smoking, age,
physical activity, alcohol consumption and body mass index and
examined comorbidity as an explanatory variable for the racial and
ethnic disparity in cancer using prevalence odds ratios. Ever smoking,
age of 50 years or more, former, and current alcohol consumption,
overweight and obesity, being female and physical inactivity were found
to be significantly associated with higher odds of cancer. There was not
enough evidence indicating that comorbidities were a significant pre-
dictor of the racial/ethnic disparity in cancer prevalence.

Physical inactivity resulted in 33.5% more cancer cases compared to
people who never exercised. Similar positive associations between the
risk of some cancers and physical activity have been reported [15–17].
There are several known mechanisms that establish the impact of
physical activity on cancer risk. While some of these mechanisms may be
specific to some particular cancers, one unifying mechanism suggest that
physical inactivity reduces the sensitivity to insulin thereby leading to a
growth promotion environment and hence facilitating neoplasia [17].
Again, physical activity may improve the non-specific immune system
which can offer protection against uncontrolled cellular growth. While
being overweight was observed to be protective against cancer compared to
normal weight, overweight and obese were associated with increased cancer risk. Wang et al., observed 0.65% of cancer cases in the
Chinese population was attributable to overweight and obesity com-
combined [18]. Physical activity levels are associated with overweight and
obesity outcomes. Physical inactivity leads to gain in weight and

subsequently overweight and/or obesity [19].

People who were 50 years or older were 7.42 times more likely to
have cancer compared to those younger than 50 years. Aging comes with
a lot of biological and physiological changes including a decline in organ
function. Mechanisms involved include telomere attrition, loss of pro-
teostasis, altered metabolism, stem cell function and cellular senescence
[20]. Cancer is therefore, considered an aging disease even though the
mechanisms remain unclear. Other traditional factors such as ever
smoking, alcohol status and sex remained significantly associated with
cancer prevalence as observed in previous studies [21–24]. People who
ever smoked were 80% more likely to have or have had cancer compared
to those who have never. Smoking affects nearly every organ and system
of the body thereby reducing the overall health of the person. The car-
cinogens in the cigarette cause a wearing of the tissues lining the lungs
where the cells eventually are forced to act abnormally after a series of
repairs. Smoking also leads to inflammation and a reduction in the
immune function. Alcohol also causes damage to the body. It can be
converted to acetaldehyde, a chemical substance which has the potential
to damage the human DNA which can lead to cancer. Thus, this study
found that adults who currently drank alcohol were 23.6% more likely
to have or have had cancer compared to those who have never consumed
any alcohol. Further, former alcohol consumers were 2.023 times as
likely to be a cancer case compared to adults who never consumed
alcohol.

Comorbidities have long been acknowledged as risk for cancer
occurrence and mortality. All comorbidities included in this study were
significantly more prevalent in the cancer subjects compared to the no
cancer subjects. Hypertension was the most common comorbidity in
either group, followed by hypercholesterolemia. Some drugs used in
the treatment of cancer, especially angiogenesis inhibitors, have been found
to significantly increase the risk of hypertension[25–27]. Even though
the mechanism is not well understood, the drugs used in cancer treat-
ment have anti-vascular endothelial growth factor (VEGF) antibody and
certain tyrosine kinase inhibitors associated with endothelial dysfunc-
tion due to reduced nitric oxide bioavailability. This can lead to
increased vascular and renal endothelin production. Endothelin causes
increased vascular tone; decreased density of micro-vessels; and renal
thrombotic microangiopathy with secondary glomerular structural and
functional changes that lead to proteinuria and hypertension [26].

Cancer was 58.5% and 57.5% more likely in White adults compared
to the Black adults and Other race adults, respectively. Cancer preva-
cence is highest in the White adults because of higher cancer survival
rates. Cancer survival in Black adults are lower and mostly attributed to
socioeconomic factors including access to healthcare [28,29]. After
adjusting for comorbidities, the prevalence odds did not change much
and remained significantly different across the different racial and
ethnic groups with cancer being 59.3% and 53.8% more likely in White
adults compared to Black adults and Other race adults, respectively. This
is likely due to the variation in the distribution of different comorbid
conditions. For instance, while hypercholesterolemia, heart attack, liver
conditions, COPD, hepatitis, ulcer and CHD were significantly higher in
White adults compared to the Black adults, hypertension, stroke, dia-
betes, asthma and renal conditions were significantly higher in the Black
adults compared to the White adults.

This study examined the possibility of comorbidity being a predictor
of the racial and ethnic disparity in cancer prevalence in the United
States. The findings indicate that comorbidities could not explain or
predict the reasons for the higher cancer prevalence in the White adults
compared to the Black and Other race adults. Again, this study identified
traditional cancer risk factors, such as smoking, alcohol consumption,
physical inactivity, and age, were significantly associated with cancer
prevalence.

While this study has several strengths including the large sample
size, the randomization in the data collection and the generalizability of
the findings to US populations, there are some limitations. First, the data
from the cross-sectional study design limits the ability to know when the

COPD – Chronic Obstructive Pulmonary Disease; CHD – Coronary Heart Disease; X^2 – Chi square value; df = degree of freedom.
development of cancer disparities occurred in the population. Furthermore, the lack of a temporal relationship complicates the interpretation of whether comorbidities such as hypertension, hypercholesterolemia and diabetes occurred before the cancer or vice versa. Again, the race and ethnicity data collected could not be separated into specific races such as African Americans, Caucasians, Hispanics and American Indian and Alaskan Native. Thus, the analyses were limited to the use of Black, White and Other races. As mentioned previously, the cancer and comorbid data were based on self-reporting and hence could have suffered some misclassification reporting and recall biases especially for the comorbidities. These biases might be non-differential misclassification and therefore are unlikely to influence this study’s outcome substantially. Finally, even though the analyses adjusted for all comorbidities that were reported, the list of possible comorbid conditions is inexhaustible and hence residual confounding remained. However, it is unlikely that the study findings are driven solely by residual confounding.

In summary, this study found a racial disparity in cancer prevalence; however, this disparity could not be explained by the presence of comorbidities. Therefore, there is a need to examine other risk factors along with comorbidities to better understand the racial disparity in cancer prevalence in the US.

Funding

None.

Ethical approval

The study did not require any ethical approval since the data was taken from a secondary source which was coded anonymously and not linked to individuals that could be traced.

Financial disclosure

No financial disclosures were reported by the authors of this article.

Declaration of competing interest

None declared.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.puhip.2021.100175.

References

[1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics , 2020, CA A Cancer J. Clin. 70 (1) (2020) 7–30, https://doi.org/10.3322/caac.21590.

[2] K.H. Sharpe, A.D. McMahon, G.M. Razz, D.H. Brewster, D.I. Conway, Association between socioeconomic factors and cancer risk: a population cohort study in Scotland (1991-2006), PloS One 9 (2) (2014), https://doi.org/10.1371/journal.pone.0089512.

[3] J. Zabeta, Multifactorial Etiology of Gastric Cancer, Chapter 10, 2012, https://doi.org/10.1097/978-1-61779-612-8.

[4] C.E. Desantis, R.L. Siegel, A.G. Sauer, et al., Cancer statistics for african Americans 2016: progress and opportunities in reducing racial disparities, CA A Cancer J. Clin. (66) (2016) 290–308, https://doi.org/10.3322/caac.21349.

[5] C.E. Desantis, K.D. Miller, A.G. Sauer, R.L. Siegel, Cancer statistics for african Americans , 2019, CA Canc. J. Clin. 69 (3) (2019) 211–233, https://doi.org/10.3322/cacncr.21555.

[6] J.O.L. DeLaney, M.J. Thun, A. Jemal, E.M. Ward, Recent trends in black-white disparities in cancer mortality, Canc. Epidemiol. Biomark. Prev. 17 (11) (2008) 2908–2913, https://doi.org/10.1158/1055-9966.EPI-08-0131.

[7] A.A. Aizer, T.J. Wilhite, M. Chen, et al., Lack of reduction in racial disparities in cancer-specific mortality over a 20-year period, Cancer (May) 15 (2014) 1532–1539, https://doi.org/10.1002/cncr.22826.

[8] X.L. Du, S. Fang, S.W. Vernon, et al., Racial disparities and socioeconomic status in association with survival in a large population-based cohort of elderly patients with colon cancer, Cancer 110 (3) (2007) 660–669, https://doi.org/10.1002/cncr.22826.

[9] N.G. Zaoresky, T.M. Churilla, B.L. Egleston, et al., Causes of death among cancer patients, Ann. Oncol. 28 (November 2016) (2017) 400–407, https://doi.org/10.1093/annonc/mdw604.

[10] A.S. Oncol, L.A. Newman, Breast cancer Disparities : socioeconomic factors versus biology, Ann. Surg Oncol. (May) (2017), https://doi.org/10.1245/s10434-017-5977-7.

[11] National Center for Health Statistics National Health Interview Survey, Public-use data and documentation. 2016, https://www.cdc.gov/nchs/nhis/dat questionnaires-documentation.htm, 2017, 1-107.

[12] K. Smetana, L. Lacina, P. Szabo, B. Dvořáková, P. Brož, A. Sedo, Ageing as an important risk factor for cancer, Anticancer Res. 36 (10) (2016) 5009–5017, https://doi.org/10.21873/anticanres.11069.

[13] M.C. White, D.M. Holman, J.E. Boehm, L.A. Peipins, M. Grossman, S. Jane Henley, Age and cancer risk: a potentially modifiable relationship, Am. J. Prev. Med. 46 (3 SUPPL. 1) (2014) S7–S15, https://doi.org/10.1016/j.amepre.2013.10.029.

[14] Centers for Disease Control and Prevention, Healthy Weight! about adult BMI, Published online, https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi /index.html, 2020, 1-6.

[15] R. Cannioto, J.L. Etter, M.J. Lamont, et al., Lifetime physical inactivity is associated with lung cancer risk and mortality, Canc. Treat Res. Commun. 14 (2018) 37–45, https://doi.org/10.1016/j.jcartc.2018.01.001.

[16] T. International, C. Epidemiology, R. Cannioto, et al., The association of lifetime physical inactivity with bladder and renal cancer risk : a hospital-based case-control analysis, Canc. Epidemiol. 49 (2017) 24–29, https://doi.org/10.1016/j. cancerc.2017.04.017.

[17] A.E. Hardman, Physical activity and cancer risk, Proc. Nutr. Soc. 60 (2001) 107–113, https://doi.org/10.1079/PNS200097.

[18] D. Wang, W. Zheng, S. Wang, et al., HHS public access, Nutr. Canc. 108, (2016) 2016: progress and opportunities in reducing racial disparities, CA A Cancer J. Clin. 70 (12) (2020) 2016: progress and opportunities in reducing racial disparities, CA A Cancer J. Clin. 70 (12) (2020) 290–308, https://doi.org/10.3322/caac.21340.

[19] A.A. Aizer, T.J. Wilhite, M. Chen, et al., Lack of reduction in racial disparities in cancer mortality, Canc. Epidemiol. Biomark. Prev. 17 (11) (2008) 2908–2913, https://doi.org/10.1158/1055-9966.EPI-08-0131.

[20] J.R. Aunan, W.C. Cho, K. Se, The biology of aging and Cancer : a brief overview of shared and divergent molecular hallmarks, Age Dis. 8 (5) (2017) 628–642, https://doi.org/10.14336/2FAD.2017.0103.

[21] J.I. Watters, Y. Park, A. Holloween, A. Schatzkin, D. Albanes, Cigarette smoking and prostate cancer in a prospective US cohort study, Canc. Epidemiol. Biomark. Prev. 18 (9) (2009) 2427–2436, https://doi.org/10.1158/1055-9965.EPI-09-0252.

[22] N.D. Freedman, C.C. Abnet, N.E. Caporaso, et al., Impact of changing US cigarette smoking patterns on incident cancer : risks of 20 smoking-related cancers among the women and men of the NIH-AARP cohort, Int. J. Epidemiol. 45 (3) (2016) 846–856, https://doi.org/10.1093/ije/dyw175.

[23] N.D. Freedman, D.T. Silverman, A.R. Holloween, A. Schatzkin, C.C. Abnet, Association between smoking and risk of bladder cancer among men and women, J. Am. Med. Assoc. 306 (7) (2011) 727–745.

[24] A. Mhashberg, P. Bobbetta, R. Winkelmann, L. Garfinikel, Tobacco smoking , alcohol drinking , and cancer of the oral cavity and oropharynx among U S . Veterans, Cancer 72 (4) (1993) 1369–1375.

[25] V.B. Bened, M. Watson, M. Saraiya, et al., Cervical cancer survival in the United States by race and stage (2001-2009); findings from the CONCORD-2 study, Cancer 123 (2017) 5119–5137, https://doi.org/10.1002/canc.30906.