Magnetic susceptibility and saturation magnetic field in the t-J_2-J_3-K model: 3He on graphite

K Seki and Y Ohta
Department of Physics, Chiba University, Chiba 263-8522, Japan
E-mail: SEKI-Kazuhiro@graduate.chiba-u.jp

Abstract. We consider dynamics of zero-point vacancies introduced in the two-dimensional (2D) solid 3He adsorbed on a graphite surface. In our previous paper, we calculated the temperature dependence of the heat capacity, single-particle spectra and effective mass, as well as the spin and density excitation spectra of the t-J-K model, and discussed their experimental implications. As an extension of this model, we here propose an improved model, i.e., the t-J_2-J_3-K model, which takes into account the proper cut of the ring-exchange paths by the zero-point vacancies, and we discuss doping dependence of the magnetic susceptibility and saturation magnetic field in the 2D 3He. We thus show that the improved model is essential in particular for considering the magnetic field dependence of the system.

1. Introduction
A system of 3He atoms adsorbed on a graphite surface is known to be an ideal two-dimensional correlated spin-1/2 fermion system [1]. A solidified commensurate phase of 3He atoms is stabilized at a 4/7 density of the underlying layer of 4He atoms, i.e., at the density $\rho = \rho_{4/7}$, and a triangular lattice of 3He is formed. Multiple-spin exchange (MSE) interactions become important in this system due to the hard-core repulsion between 3He atoms [2, 3]. Theoretically, the 4/7 phase has been studied using the triangular-lattice MSE model and the $uuud$ magnetisation plateau at half of the saturation magnetisation $M = M_s/2$ has been predicted by use of this model [4, 5], where the four-spin exchange interactions are taken into account. Recently, the $M = M_s/2$ plateau has been observed experimentally [6], which indicates however that the plateau is narrower than a theoretical prediction. Then, introduction of the higher-order exchange interactions may be required to reproduce the experimental result more quantitatively within the framework of the MSE model [7].

The doped Mott region of the monolayer 3He also shows interesting phenomena such as the double-peak structure in the temperature dependence of the heat capacity, which has been considered to be an experimental evidence of the presence of zero-point vacancies [8]. Recently, the triangular-lattice t-J-K model has been proposed as a natural extension of the MSE model under the introduction of zero-point vacancies and the ground-state phase diagram in the parameter space is obtained [9]. Then, we have demonstrated [10] that the double-peak structure of the heat capacity is actually reproduced by the t-J-K model in a parameter space where the spin degrees of freedom are highly frustrated. This is an indication of the clear separation in the energy scales between spin and density excitations [10]. Formation and stability of the 4/7 phase have also been discussed using an extended Hubbard model [11]. However, theoretical
models that explain the experimental results for the monolayer 3He in the doped Mott region consistently have not yet been established.

In this paper, we will propose the triangular-lattice t-J_2-J_3-K model for the doped Mott region of the monolayer 3He. We will then calculate the uniform magnetic susceptibility and magnetisation curve and show that the introduction of this model is essential in particular for considering the magnetic properties of the monolayer 3He.

2. Model and method

The triangular-lattice t-J_2-J_3-K model we propose is defined by the Hamiltonian

$$
\mathcal{H} = -t \sum_{\langle ij \rangle} (\hat{c}_{i \sigma}^\dagger \hat{c}_{j \sigma} + \text{H.c.}) + J_2 \sum_{\langle ij \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{4} \right) + J_3 \sum_{\langle ijk \rangle} (P_3 + P_3^{-1}) + K \sum_{\langle ijkl \rangle} (P_4 + P_4^{-1}) - h \sum_i S_i^z
$$

(1)

where $\hat{c}_{i \sigma} = c_{i \sigma}(1 - n_{i,-\sigma})$ is the projected annihilation operator of a fermionic particle (3He atom) at i-site and spin $\sigma(=\uparrow, \downarrow)$ allowing no doubly occupied sites, which reflects the hard-core repulsion between 3He atoms. \mathbf{S}_i is the spin-1/2 operator. P_3 (P_4) is the cyclic permutation operator of particles on i, j, k (i, j, k, l) sites. These operators are defined as $P_3 = P_{ik} P_{ij}$ and $P_4 = P_{ik} P_{kj} P_{ij}$, where $P_{ij} = P_{ij} = \frac{1}{2}(\sigma_i \sigma_j + 1)$ is the two-particle permutation operator with the Pauli-spin matrix σ_i. The signs of the exchange parameters are $J_2 > 0, J_3 < 0$ and $K > 0$, as are determined from the number of permutations of fermions [2]. The summation $\sum_{\langle ij \rangle}$ ($\sum_{\langle ijk \rangle}$, $\sum_{\langle ijkl \rangle}$) in the second (third, fourth) term of Eq. (1) is done when all of i, j (i, j, k, i, j, k, l) sites are occupied by particles. The last term $-h \sum_i S_i^z$ is the Zeeman energy under the uniform magnetic field h. We define the filling n of particles as $n = N/L$, where N is the total number of particles and L is the total number of the lattice sites of the system.

Here, let us refer to the relation between the t-J_2-J_3-K and MSE models. The second term of Eq. (1) can be written as $J_2 \sum_{\langle ij \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{4} \right) = \frac{J_2}{2} \sum_{\langle ij \rangle} P_2$. So, our definition of J_2 is twice as large as that of the MSE model. In the absence of vacancies, the t-J_2-J_3-K model is identical, apart from a constant term, with the MSE model defined by the Hamiltonian $\mathcal{H} = \frac{J_2}{2} \sum_{\langle ij \rangle} P_2 + K \sum_{\langle ijkl \rangle} (P_4 + P_4^{-1})$ with the relation $J = J_2 + 4J_3$.

The reason we treat J_3 term independently is the following (also see Fig. 1). At half filling, the t-J-K and t-J_2-J_3-K models are both reduced to the MSE model with the relation $J = J_2 + 4J_3$ as mentioned above. When a vacancy is introduced into a triangle, the t-J-K model gives the ferromagnetic interaction between two spins. However, since the three-spin ferromagnetic interaction no longer exists, the interaction between the two spins must be antiferromagnetic. Thus, we should treat the J_3 term independently.

We use the Lanczos exact-diagonalization technique on small clusters to study the magnetic properties of this model. In particular, we calculate the magnetisation curve $M(h)$, the temperature dependence of the zero-field magnetic susceptibility $\chi(T) \mid_{h=0}$ and the saturation magnetic field $h_s = h \mid_{M=M_s}$, where M_s is the saturation magnetisation. Throughout the paper, we use $t = 1$ as the unit of energy and show the results on a parameter region $J = J_2 + 4J_3 = -0.3$, $K \leq 0.1$, where the spin degrees of freedom are highly frustrated.

3. Results of calculation

Calculated results for the temperature dependence of the magnetic susceptibility $\chi(T)$ are shown in Fig. 2. We assume $|J_3/J_2| = 1.5$ [12] for the t-J_2-J_3-K model. One may confirm in Fig. 2 that, when vacancies are introduced into the MSE model, the magnetic susceptibility of the t-J-K model is larger than that of the t-J_2-J_3-K model. This behaviour can be understood as follows:
Figure 1. Schematic image of the difference between the t-J-K and t-J2-J3-K models. On one hand, the J_3 term is easily cut by the introduction of the vacancies than the J_2 term is, so that the t-J2-J3-K model shows more antiferromagnetic behaviour. The t-J-K model, on the other hand, shows more ferromagnetic behaviour because the K term is easily cut by the vacancies rather than the J term is. Although finite-size scaling analysis is not possible in the present method, we believe that the behaviours observed by our small-cluster studies should be retained in the infinite-size systems.

Calculated results for the magnetisation curve $M(h)$ are shown in Fig. 3. We assume

Figure 3. Calculated magnetisation curves $M(h)$ for the t-J-K (dotted line) and t-J2-J3-K (solid line) models. We use the $L = 20$ cluster with two vacancies ($n = 0.9$).

Figure 2. Calculated temperature dependence of the magnetic susceptibility $\chi(T)$ where C is the Curie constant. We use the $L = 12$ cluster without vacancies ($n = 1.0$) and with two vacancies ($n = 0.83$). The straight dotted line indicates the Curie’s law.

Figure 4. Four-spin exchange parameter K dependence of the saturation magnetic field h_s for the t-J-K and t-J2-J3-K models. For the t-J2-J3-K model, four curves are almost indistinguishable. We use the $L = 20$ cluster without vacancies ($n = 1.0$) and with two vacancies ($n = 0.9$).
$|J_3/J_2| = 1.5$. The shapes of magnetisation curves are not very different between the t-J-K and t-J_2-J_3-K models. In other words, independent treatment of the J_3 term simply shifts these curves upward but will not drastically change the structure of energy levels near half filling.

Calculated results for the saturation magnetic field h_s are shown in Fig. 4. Some sets of the parameter values of J_2 and J_3 that satisfy the relation $J_2 + 4J_3 = -0.3$ with $1 \leq |J_3/J_2| \leq 2$ are used for calculations of the t-J_2-J_3-K model. We find that, in contrast to the t-J-K model, the t-J_2-J_3-K model is rather hard to be spin-polarized because the effective ferromagnetic two-spin interactions $J = J_2 + 4J_3$ are cut around the vacancies in the t-J_2-J_3-K model. However, the results of the t-J_2-J_3-K model with $J = J_2 + 4J_3 = -0.3$ little depend on the ratio $|J_3/J_2|$. This is because the effective two-spin interaction J works on most of the exchange bonds distant from the vacancies, as long as the doping rate of vacancies is small. Thus, the ratio $|J_3/J_2|$ only slightly affect the results. One may also confirm that the four-spin interaction (K) dependence of h_s for the t-J-K and t-J_2-J_3-K models are weaker than that of the MSE model. This is because the four-spin exchange interactions are suppressed by vacancies.

4. Summary
We have considered the dynamics of zero-point vacancies introducing into the 2D solid 3He adsorbed on a graphite surface. We have pointed out that the J_3 term should be treated independently to take into account the proper cut of the ring-exchange interactions, whereby we have proposed the t-J_2-J_3-K model for the doped monolayer 3He system. We have used the exact-diagonalization technique on small clusters and studied the magnetic properties of the t-J_2-J_3-K model in order to consider the density dependence of the magnetic properties of the monolayer 3He. We have shown that the calculated results for the magnetic susceptibility, saturation magnetic field and magnetisation curve of the t-J_2-J_3-K model are consistently indicative of the enhancement of the antiferromagnetic interactions, which are, in contrast to those for the t-J-K model, qualitatively consistent with the experimental results [13]. Thus, the suppression of the ring-exchange interactions caused by the vacancies is an essential ingredient in the explanation of the experimental magnetic properties of the monolayer 3He.

Acknowledgments
Enlightening discussions with Professor Hiroshi Fukuyama are gratefully acknowledged. This work was supported in part by a Grant-in-Aid for Scientific Research (Grant No. 18540338) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. A part of the computations was carried out at the Research Center for Computational Science, Okazaki Research Facilities, and the Institute for Solid State Physics, University of Tokyo.

References
[1] Fukuyama H 2008 J. Phys. Soc. Jpn. 77 111013
[2] Thouless D J 1965 Proc. Phys. Soc. 86 893
[3] Roger M 1984 Phys. Rev. B 30 6432
[4] Misguich G, Bernu B, Lhuillier C and Waldtmann C 1998 Phys. Rev. Lett. 81 1098
[5] Momoi T, Sakamoto H and Kubo K 1999 Phys. Rev. B 59 9491
[6] Nema H, Yamaguchi A, Hayakawa T and Ishimoto H 2009 Phys. Rev. Lett. 102 075301
[7] Kubo K 2009 unpublished
[8] Matsumoto Y, Tsuji D, Murakawa S, Bäuerle C, Kambara H and Fukuyama H 2005 J. Low Temp. Phys. 138 271
[9] Fuseya Y and Ogata M 2009 J. Phys. Soc. Jpn. 78 013601
[10] Seki K, Shirakawa T and Ohta Y 2009 Phys. Rev. B 79 024303
[11] Watanabe S and Imada M 2007 J. Phys. Soc. Jpn. 76 113603
[12] Bernu B, Ceperley D and Lhuillier C 1992 J. Low Temp. Phys. 89 589
[13] Murakawa S, Aksisato H, Matsumoto Y, Tsuji D, Mukai K, Kambara H and Fukuyama H 2006 AIP Conf. Proc. 850 311