Pharmacognostical studies of *Hymenodictyon orixence* (Roxb.) Mabb. leaf

Mallesh Reddy, Alka A. Chaturvedi

Department of Botany, Rashtrasanth Santh Tukadoji Maharashtra Nagpur University (RTMNU), Nagpur, India

ABSTRACT

Hymenodictyon orixence is medicinally important plant found in India, Malaysia and Africa. Due to overexploitation the population of this species has decreased very rapidly. The present study includes pharmacognostical examination of this species. It includes morphological, anatomical, chemical and chromo-fingerprinting characters of *Hymenodictyon orixence* leaf.

Key words: Chromo fingerprinting, pharmacognostical characters, Rubiaceae

INTRODUCTION

Standardization of natural products is a complex task due to their heterogeneous composition, which is in the form of whole plant, plant part/extracts obtained thereof. To ensure reproducible quality of herbal products, proper identification of starting material is essential.

Hymenodictyon orixence is a Rubiaceae member commonly known as ‘Bhorsal’ and is mainly known for its wound healing property. It has been reported to have antimicrobial,[1,2] anticoagulant, antiinflammatory and sun screening activity.[3] The present study was carried out to establish methods to facilitate proper identification of *Hymenodictyon orixence* leaf and its powdered form on the basis of morphological, anatomical, chemical and chromo-fingerprinting characters.

MATERIALS AND METHODS

Plant material

Leaves of *Hymenodictyon orixence* (Roxb.) Mabb. were collected from Chunala (Manikgad) forest of Chandrapur district (Maharashtra), and properly identified with the help of floras[4-6] at Post Graduate Teaching Department of Botany, Rashtrasanth Santh Tukadoji Maharashatra Nagpur University (RTMNU), Nagpur.

RESULTS AND DISCUSSION

The leaves of *Hymenodictyon orixence* are simple, opposite decussate, stipulate and petiolate. The leaf measures about 12–30 cm in length and 8–15 cm in width, elliptic in shape, with an abruptly acute apex. The margin is entire, with the base narrowed into a petiole, which is about 2.5–7 cm long and hairy. Dark green above and pale below, the young leaves are silvery and clustered at the end of branches. The stipule is interpetiolar, triangular or broadly ovate, obtuse recurved and deciduous.

The midrib is elevated on both the surfaces, with the upper being conical and lower semicircular in outline. Inner to the epidermis there is a few layered collenchyma followed by large parenchyma. Vascular bundle shallow is ‘U’ shaped with incurved margins. The xylem strands are few and embedded in phloem [Figure 1].

Upper epidermal cells are larger than the lower ones. Both the
surfaces have multicellular, uniseriate trichomes measuring up to 250–400 μ, stomata are paracytic [Figures 2 and 3] and restricted to the lower side only. Other important characters are given in the table [Table 1].

Behavior of leaf powder with different chemical reagents was studied to detect the presence of phytoconstituents with colour changes under day light and the results were presented in the table [Table 2].

The colour of the plant extract is mainly due to its chemical composition. The same extract may appear different in different wavelength of light. Kokashi et al.[9] studied the behavior of different vegetable drugs under UV radiation and found that different drugs exhibit different colours and those colours were characteristic for the particular drug. In our study we found a specific colour pattern which is characteristic for *Hymenodictyon orixence*, and hence can be used as a fingerprint for crude drug identification [Figure 4].

Table 1: Micro and macroscopic characters

Character	Value
Shape of epidermal cells	Highly irregular
Size of epidermal cells	
Upper surface	$2.4 \times 10^3 - 5.8 \times 10^3 \mu$
Lower surface	$2.3 \times 10^0 - 3.3 \times 10^3 \mu$
Total number of cells/sq mm	
Upper surface	95
Lower surface	145
Stomatal complex length	22–27 μ
Stomatal index	25
Vein termination number	7
Vein islet number	6

Table 2: Phytochemical tests

Reagent	Colour/precipitate	Constituent
Conc. H₂SO₄	Reddish brown	Steroids/Triterpenoids present
Aq. FeCl₃	Greenish black	Tannins, flavonoids present
Ammonia solution	No change	Anthracene glycosides absent
Dragendraffs	Orange precipitate	Alkaloids present
Mg–HCl	Red	Flavonoids present
Alcohol	Mucilaginous precipitate	Gums and mucilage present
Lead acetate	White precipitate	Tannins present
Libermann- Burchard	Violet	Triterpenoids present
Trim Hill*	Red	Iridoids present

*performed with fresh material

REFERENCES

1. Kariba RM. Antimicrobial activity of Hymenodictyon parvifolium. Fitoterapia 2002;73:523-5.
2. Chea A, Jonville MC, Bun SS, Laget M, Elias R, Duménil G, et al. In vitro antimicrobial activity of plants used in Cambodian traditional medicine. Am J Chin Med 2007;35:867-73.
3. Jagdishprasad D, Subba Rao N. Anti-coagulant and anti-inflammatory and sun screening effects of Hymenodictyon excelsum. Indian J Pharmacol 1988;20:221-2.
4. Cooke T. Flora of the presidency of Bombay. Vol. 2. Calcutta: Botanical Survey of India; 1905.
5. Ugemuge NR. Flora of Nagpur Distr. Nagpur: Shree Prakashan; 1986.
6. Singh NP, Lakshminarsimhan P, Kartikeyan S and Prasanna PV, editors. Flora of Maharashtra State (Dicotyledones), Vol. 2. Calcutta: Botanical Survey of India; 2000.
7. Kokate CK. Practical Pharmacognosy. 4th ed. Delhi: Vallabh Prakashan; 2005.
8. Metcalfe CR, Chalk L. Anatomy of the Dicotyledons. Oxford Clarendon Press; 1950.
9. Kokashi CJ, Kokashi RJ, Sharma M. Fluorescence of powdered vegetable drugs in ultra-violet radiation. J Am Pharm Assoc 1958;47:715-7.

Source of Support: Nil, Conflict of Interest: None declared.