Research Article

Chemical Constituents and Anti-Inflammatory Effect of Incense Smoke from Agarwood Determined by GC-MS

De-Qian Peng,1,2 Zhang-Xin Yu,1 Can-Hong Wang,1 Bao Gong,1 Yang-Yang Liu,1 and Jian-He Wei1,3

1Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
2School of Pharmacy, Hainan Medical University, Haikou 571199, China
3National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China

Correspondence should be addressed to Jian-He Wei; wjianh@263.net

De-Qian Peng and Zhang-Xin Yu contributed equally to this work.

Received 7 February 2020; Revised 29 June 2020; Accepted 30 June 2020; Published 1 August 2020

Academic Editor: Kevin Honeychurch

Copyright © 2020 De-Qian Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Agarwood is generally used to make incense sticks in China and Southeast Asia. It emits smoke with a pleasant odor when burned. There are few reports on the chemical components of smoke generated by burning or heating agarwood. The agarwoods were produced by the whole-tree agarwood-inducing technique (AWIT), agarwood induced by axe wounds (AAW), burning-chisel-drilling agarwood (BCDA), wood of Aquilaria sinensis trees (AS), respectively. Herein, we used GC-MS to analyze the chemical constituents of incense smoke generated from AWIT, AAW, BCDA, and the extracts of sticks from agarwood produced by the whole-tree agarwood-inducing technique (EAWT), and 484 compounds were identified. A total of 61 chemical constituents were shared among AWIT, AAW, and BCDA. The experimental data showed that aromatic compounds were the main chemical constituents in agarwood smoke and that some chromone derivatives could be cracked into low-molecular-weight aromatic compounds (LACs) at high temperature. Furthermore, agarwood incense smoke showed anti-inflammatory activities by inhibiting lipopolysaccharide- (LPS-) induced TNF-α and IL-1α release in RAW264.7 cells.

1. Introduction

Agarwood, called chen-xiang in China, is a valuable resinous wood from Aquilaria spp. or Gyrinops spp. trees [1–3]. It has been applied in medicine and shown obvious medicinal effects, such as sedative, carminative, and antiemetic effects [4, 5]. Agarwood does not form until a tree has been affected by factors such as lightning strike, animal grazing, insect attack, and fungi [6, 7]. Moreover, it takes a long time (years or even decades) to form in the wild. Natural agarwood is considered to be the finest source of incense and has been applied in cultural, religious, and medicinal uses for centuries. The market demand for agarwood is increasing daily. As a result, the supply of wild agarwood is not enough to meet the market demand. Many Aquilaria plantations have been established in some Southeast Asian countries, such as Indonesia, Cambodia, Laos, Thailand, Vietnam, and Malaysia. Aquilaria trees have been planted in South China, for example, in Hainan, Guangdong, and Yunnan provinces [8]. Some artificial technologies designed to rapidly induce agarwood formation have been demonstrated to make A. sinensis (AS) trees produce agarwood [7, 9–11]. In 2009, Blanchette and Heuveling developed cultivated agarwood kits (CA-Kits) [12]. In 2013, Liu et al. developed a whole-tree agarwood-inducing technique (Agar-Wit) [11]. Recently, Peng et al. also developed a similar technology to induce
agarwood formation [13]. The above methods induce agarwood formation simply and effectively.

Presently, agarwood and its volatile components are seen as important and efficient natural substances that can be used to produce valuable products such as perfumes and incense because of their fragrance characteristics. Many teams have researched the chemical constituents of agarwood [1, 14–16]. The chemical constituents of agarwood essential oil or solvent extracts have been studied by column chromatography, spectroscopic techniques, gas chromatography (GC), and multidimensional GC analysis. Many studies have reported the use of GC-MS to analyze the volatile components in agarwood smoke obtained by heating. For example, in 1993, Ishihara et al. analyzed the volatile constituents in agarwood smoke and identified 53 chemical compounds from Vietnamese agarwood [17]. Nurlaila et al. identified 8 significant compounds from agarwood smoke by Z-score analysis [18]. Recently, Zhou et al. used glass fiber pads to absorb volatile constituents of agarwood smoke from different kinds of agarwood from different countries and extracted the samples with dichloromethane (CH₂Cl₂) for GC-MS analysis [19, 20]. Kao et al. analyzed agarwood smoke from Kynam agarwood by headspace (HS) preheating with gas chromatography-mass spectrometry (HS GC-MS) and identified 40 compounds [21]. However, there are no reports on agarwood smoke produced by Agar-Wit and identified 484 compounds.

2. Experimental Setup

2.1. Chemicals and Reagents. All chemicals were purchased from J&K Scientific (Beijing, China), unless otherwise indicated.

The agarwood samples were identified by Prof. Jianhe Wei (Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China). Incense sticks of AWIT, AAW, BCDA, and AS were made by Bao Gong (Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China).

2.2. Sample Preparation. Each stick was placed in a gas washing bottle (250 mL) fitted with an air inlet/outlet tube. The smoke components were collected by bubbling through a 30 mL amount dichloromethane during the 10 min burn time. In addition, sticks made from AWIT (3.0 g) were pulvérized and extracted with CH₂Cl₂ (30 mL).

2.3. Sample Analysis. Chromatographic separation of the resulting mixture (1.0 μL) was undertaken on an Agilent 7890 A GC coupled to a 5975C quadrupole mass spectrometer and an automated 7683B sample injector system (Agilent Technologies, Santa Clara, California, USA). Chromatography was performed on a HP-5MS capillary column (30 m × 250 μm ID, 0.25 μm film thickness, 5% diphenyl methyl siloxane (Agilent Technologies, USA). Helium was used as carrier gas at a constant flow rate of 1.0 mL/min. The injections (1.0 μL) were performed in splitless injection mode (10:1) at 240°C. The operating parameters included the following temperature program: 40°C for 3 min, increase from 40°C to 140°C at a rate of 2.5°C/min, hold at 140°C for 5 min, increase from 140°C to 170°C at a rate of 1.5°C/min, hold at 170°C for 5 min, and increase to 280°C at a rate of 4°C/min. The total run time was 100.5 min as shown in Figure 1. The mass selective detector was operated with electron energy of 70 eV in electron ionization mode. The ion source and quadrupole temperatures were 230°C and 150°C, respectively. The scan range was 40–500 amu in full scan mode. Peak identification was completed by comparing mass spectra with those stored in the NIST 11 database and MSD ChemStation, or by comparing fragmentation patterns with those published by the Dai group [22]. Table 1 shows the representative data.

2.4. LPS-Stimulated TNF-α and IL-1α Release in RAW264.7 Cells

2.4.1. Isolation and Culture of RAW264.7 Cells. RAW264.7 cells in logarithmic growth phase were washed twice with phosphate-buffered saline (PBS) and inoculated in 96-well plates at a density of 1 × 10⁴ cells per well, and 100 μL of cell suspension was added to each well. Three compound wells were set in each group and cultured at 37°C in 5% CO₂ for 24 h.

2.4.2. Measurement of TNF-α and IL-1α Production. The cells were incubated with 1 ng/mL LPS in the presence of indomethacin, AAW, BCDA, and AWIT (20, 40 and 80 μg/mL) and cultured at 37°C and 5% CO₂ for 24 h. Then, the levels of TNF-α and IL-1α in the cell-free culture supernatant were determined by ELISA kits.
Table 1: Chemical constituents and relative amounts of AAW, BCDA, AWIT, AS, and EAWIT.

No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
1	Ethylbenzene	6.774	6.215 (B)	3.296 (B)	6.384 (B)	1.313 (B)	—
2	Furfuryl alcohol	6.872	—	—	—	—	2.212
3	1,4-Xylene	7.080	3.709 (B)	—	—	1.765 (B)	—
4	1,3-Xylene	7.086	—	2.354 (B)	—	—	—
5	1,2-Xylene	7.098	—	1.326 (B)	—	0.778 (B)	—
6	Phenylacetylene	7.392	1.387 (B)	0.698 (B)	1.612 (B)	1.013 (B)	—
7	Phenyl carbamate	7.646	—	—	—	0.308 (B)	—
8	Phenylethylene	7.901	8.596 (B)	3.413 (B)	7.973 (B)	5.132 (B)	—
9	2-Methyl-2-cyclopent-1-one	8.680	—	—	—	0.400	
10	4,4-Dimethyl-2-cyclopent-1-one	8.952	—	—	—	0.302	
11	2,5-Dimethyl-2,4-hexadiene	9.056	—	—	0.778 (B)	0.408	
12	Anisole	9.096	0.239 (B)	0.21 (B)	—	—	—
13	2(5H)-Furanone	9.200	0.202	0.132	0.299	0.981	
14	3,4-Dihydro-3-pyran	9.356	0.202	0.202	—	0.381	
15	Methyl-2-oxo-1-pyrrolidinacetate	9.605	—	0.222	—	—	—
16	Tetrahydro-22-desoxy-tomatillidine	9.610	—	—	—	0.211	
17	1-Methylene-2-vinylcyclopentane	10.962	—	—	—	0.113	
18	Benzaldehyde	11.118	0.671 (B)	0.28 (B)	1.008	1.146	
19	5-Methyl-furfural	11.407	—	—	—	0.508	
20	2,3-Dihydroxystearic acid	11.875	—	—	—	0.209	
21	2-Chloro-2,2-difluoro-acetonitrile	11.950	—	—	—	0.157	
22	2-Methyl-2-pentenal	12.192	—	—	—	0.104	
23	Benzonitrile	12.308	—	—	—	0.359	
24	2,2,4,6,6-Pentamethyloctane	12.510	0.902	0.753	1.152	0.126	
25	Benzoferan	12.793	—	—	—	0.541	
26	Phenol	12.839	1.225	0.558	0.592	0.852	
27	2,2-Diethyl-3-methyl-oxazolidine	13.105	0.751	0.785	0.808	—	
28	(2S, 3S)-2,3-Dimethoxy-N,N,N,N,N,N,N,7-tetramethyl-1,4-butanediamine	13.111	—	—	—	0.846	
29	5-Norbornene-2-carboxaldehyde	13.654	0.169	—	0.189	—	
30	4-Methylanisole	14.185	0.305	0.102	0.135	0.159	
31	2-Azido-2,4,4,6,6-pentamethyloctane	14.445	0.255	0.187	0.220	—	
32	2,3-Dioxabicyclo[2.2.2]oct-5-ene	14.671	0.424	0.189	0.175	—	
33	3-Methyl-1,2-cyclopentanedione	14.717	—	—	—	0.369	
34	2-Methyl-3-furanthiol	15.918	0.106	0.201	—	—	
35	3-Methyl-phenol	16.635	0.219	0.176	0.12 (B)	—	
36	2-Methyl-phenol	16.669	—	—	—	0.226 (B)	—
37	3-Methyl-bicyclo[3.3.0]oct-2-en-8-one	16.918	—	—	—	0.129	
38	2,2,2-Bicyclo-2-octene	16.935	0.496	0.183 (B)	0.453 (B)	—	
39	p-Cresol	17.801	0.73 (B)	0.473 (B)	0.321 (B)	0.205 (B)	—
40	Guaiacol	17.998	0.877 (B)	0.51 (B)	0.608 (B)	1.362 (B)	—
41	2-t-Butylamino-acrylonitrile	18.165	0.421	0.224	0.240	—	—
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	---	----------	-----	-------	-------	-----	-------
42	3,5-Dimethyl-4H-pyran-4-one	18.182	—	—	—	0.107	—
43	3-Hydroxy-2-methyl-4-pyrene	19.338	0.129	—	—	0.147	—
44	2,5-Dimethylphenol	21.677	0.223	—	—	0.165	—
45	2,3-Dihydroxybenzaldehyde	22.064	—	—	—	0.148	—
46	5-Ethyl-3-(3-methyl-5-phenylpyrazol-1-yl)-1,2,4-triazol-4-amine	22.215	0.152	—	—	—	—
47	Ethyl disulfide	22.220	—	0.094	—	—	—
48	1-Methylene-1H-indene,	22.740	0.166	—	—	—	—
49	2-Ethylphenol	22.913	0.129	—	—	—	—
50	Trehalose	22.914	0.324	—	—	—	—
51	2-Isopropyl-5-methyl-1-heptanol	23.197	—	0.059	—	—	—
52	3-Methyl-2-butene-1-thiol	23.208	0.120	—	—	—	—
53	2-Methylbutyl pentaenoic acid est	23.225	0.251	—	—	—	—
54	4-Methoxy-1,3-benzenediamine	23.300	—	—	—	0.216	—
55	2-Methoxy-3-methyl-phenol	23.306	0.236	—	—	—	—
56	2-Methoxy-4-methylphenol	23.676	0.444	0.283	0.271	0.309	—
57	2-Methoxy-5-methylphenol	23.688	—	0.327	—	—	—
58	3,6-Dimethyl-2,6-octadiene-4,5-diol	24.144	—	—	—	0.129	—
59	1,4:3,6-Dianhydro-a-d-glucopyranose	24.600	0.148	0.158	0.172	0.120	—
60	trans-Cinnamaldehyde	24.866	—	—	—	0.821	—
61	(1α, 2β, 5β, 6α)-Tricyclo[4.2.1.1(2,5)]deca-3,7-diene-9,10-dione	24.883	0.446	0.325	—	—	—
62	α-Methylene-benzenecetaldehyde	24.895	—	—	0.247	—	—
63	2,4-Cyclopentadiene-1-ethanamine	25.045	0.128	—	0.230	—	—
64	1,11-Dibromo-undecane	25.062	0.101	—	—	—	—
65	Pyrocatechol	25.357	0.125	0.398	0.287	0.93(B)	—
66	2,3-Anhydro-d-galactosan	25.357	—	0.204	—	—	—
67	2,3-Dihydrobenzofuran	25.727	0.369	0.382	0.299	0.255	—
68	1-Methyl-1H-pyrole-2(SH)-one	26.131	—	0.203	—	—	—
69	2-Isopropoxyphenol	26.183	—	—	0.226	—	—
70	3-Methoxyphenol	26.206	0.263	—	—	—	—
71	5-Hydroxymethylfurfural	26.229	0.252	—	0.389	—	—
72	4-Phenyl-2-butanal	26.339	0.77(B)	1.13(B)	1.06(B)	0.177	—
73	1-Methyl-4-amino-4,5(1H)-dihydro-1,2,4-triazole-5-one	26.847	—	—	—	0.259	—
74	Anisic aldehyde	26.905	0.306	0.301	0.389	—	—
75	2-Oxohexamethyleneamine	27.032	—	0.185	—	—	—
76	3-Methoxy-2-benzenediol	27.454	0.401	0.365	0.251	0.582	—
77	3-Methoxybenzenethiol	27.731	0.131	—	—	—	—
78	1-Indanone	28.043	0.279	—	0.148	—	—
79	2-Isopropyl-3-methoxypyrazine	28.291	—	—	0.177	—	—
No.	Name	RT (min)	AAW	BCD A	AWIT	AS	EAWIT
-----	--	----------	-------	-------	-------	-------	-------
79	4-Ethyl-2-methoxyphenol	28.291	0.292	0.104	0.071	—	—
81	3-(4-Methylphenyl)-2-propenal	28.441	—	—	—	0.206	(B)
82	2,3-Dihydro-2-methyl-1H-inden-1-one	28.447	0.223	—	0.056	(B)	—
83	α-Methylcinnamaldehyde	28.557	—	—	—	0.127	(B)
84	2-Methylnaphthalene	28.621	0.285	(B)	—	—	—
85	1-Azabicyclo[2.2.2]octane-4-methanol (E)-2,4,4,7-Tetramethyl-5,7-octadien-3-ol	29.527	—	0.158	—	—	—
86	4-Hydroxy-3-methoxystyrene	30.099	2.343	1.799	1.512	2.254	(B)
87	α-tert-Butyl phenol	30.417	—	—	—	0.131	(B)
88	3-Hydroxybenzaldehyde	30.844	—	—	—	0.252	(B)
89	2-Methoxybenzyl alcohol	31.081	—	—	—	0.106	(B)
90	trans-3-Hexenedioic acid-bis(trimethylsilyl) ester	31.411	0.127	—	—	—	—
91	2-exo-Chlorobicyclo[2.2.1]heptane-1-carbonyl chloride (2H)-1,4-benzodioxin	31.942	0.282	—	0.285	—	—
92	2-Ethyl-1H-pyrrolo[2,3-b]pyridine	32.000	—	—	—	0.157	—
93	2,6-Dimethoxyphenol	32.115	3.013	2.939	2.178	—	—
94	cis-4,5-Diethyl-1,2-dimethyl-cyclohexene	32.190	—	—	—	4.085	—
95	Eugenol	32.358	0.517	0.303	0.262	—	—
96	3-Allyl-6-methoxyphenol	32.375	—	—	—	0.413	(B)
97	3,4-Dimethoxyphenol	32.566	—	0.112	—	0.219	(B)
98	3-Ethenyl-4-methyl-1H-pyrole-2,5-dione	32.849	0.205	—	—	0.149	—
99	3-Cyclohexene-1-acetaldehyde	33.247	0.191	—	0.136	—	—
100	11-Methylene-tricyclo[4.3.1.1(2,5)]undecane	33.247	—	—	—	—	—
101	2-Propyl-phenoxy	33.848	—	—	—	0.1	(B)
102	4-Hydroxybenzaldehyde	33.975	—	—	—	0.225	(B)
103	Dichlorophenylsilane	34.010	0.406	0.143	0.321	—	—
104	Phenylboronic acid	34.016	0.185	0.148	0.708	1.842	(B)
105	Vanillin	34.408	0.8 (B)	0.83 (B)	0.708 (B)	1.842 (B)	—
106	4-(Methythio)-benzaldehyde	34.593	0.254	(B)	—	—	—
107	(E)-isoeugenol	34.899	0.341	0.18 (B)	0.133 (B)	0.31 (B)	—
108	o-Methoxy-benzenethiol	35.084	0.125	(B)	—	0.197	(B)
109	2-Methoxy-1,4-benzenediol	35.217	—	—	—	0.209	(B)
110	2-Benzylidenemalonaldehyde	35.217	0.204	(B)	—	—	—
111	2-Vinylnaphthalene	35.442	0.115	(B)	—	—	—
112	3-Hydroxy-2-methyl-5-(1-methylethyl)-2,5-cyclohexadiene-1,4-dione	36.083	—	—	0.237	—	—
113	Biphenylene	36.234	0.105	(B)	—	—	—
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	------	----------	-----	------	------	----	-------
115	2-Methoxy-4-(1-propen-1-yl)-phenol	36.892	2.962	2.126	2.379	3.254	—
116	4-Hydroxy-2-methoxybenzaldehyde	37.227	0.243	0.142	—	0.135	—
117	2-Methoxy-4-propyl-phenol	37.429	0.268	0.242	0.257	0.454	—
118	1,7-Dimethylpentacyclo[5.5.0(4,11).0(5,9).0(8,12)]dodecane-2,6-dione	37.689	—	—	0.126	—	—
119	2-Methoxy-6-[(4H-1,2,4-triazol-4-ylamino)methyl]-phenol	37.689	0.107	—	—	—	—
120	4-Hydroxybenzyldiene acetone	37.707	—	0.101	—	—	—
121	N-Phenylthioformamide	37.712	—	—	—	0.126	—
122	7-Ethylbenzo[b]thiophene	38.053	—	—	—	0.153	—
123	5,6-Dimethyl-2-benzimidazolinone	38.382	—	—	—	0.164	—
124	Cyclohexylmethylbenzene	38.440	0.145	—	0.161	—	—
125	3,4-Dimethoxy-benzaldehyde	38.573	—	—	—	0.712	—
126	4′-(Methylthio)acetophenone	38.660	0.370	0.298	0.256	—	—
127	4-(4-Methoxyphenyl)-2-butanone	39.232	1.067	1.161	1.124	0.137	—
128	Pentadecane	39.434	—	—	0.168	—	—
129	Dibenzofuran	39.451	0.186	0.145	—	—	—
130	2′,6′-Dihydroxyacetophenone, bis(trimethylsilyl) ether	39.850	0.207	—	—	—	—
131	1-Methyl-1-phenylmethoxy-1-silacyclohexane	39.873	—	0.104	0.111	—	—
132	1,3,3-Trimethyl-2-(1-methylbut-1-en-3-on-1-yl)-1-cyclohexene	40.173	0.273	—	—	—	—
133	1,2-Dimethoxy-4-(methoxyethyl)benzene	40.196	—	0.178	—	—	—
134	2,4-Di-tet-tert-butylphenol	40.202	—	—	0.287	—	—
135	2-(2-Hydroxyhex-1-enyl)-3-methyl-5,6-dihydropropyrazine	40.260	0.138	—	—	—	—
136	5-(1,1-Dimethylethyl)-1,2,3-benzenetriol	40.653	0.578	0.34 (B)	0.212	0.684	—
137	Homovanillyl alcohol	40.780	0.594	0.507	0.417	1.119	—
138	[4-(1,1-Dimethylethyl)phenoxy]-acetate-methanol	41.912	—	—	—	0.159	—
139	(S)-4,5,6,7,8,8a-Hexahydro-8a-methylazulen-2(1H)-one	42.137	0.109	—	—	—	—
140	Acetic acid-2-propylphenyl ester	42.160	—	0.114	—	—	—
141	3-Nitrobenzaldehyde-(O-methyl oxime)	42.420	—	—	—	—	—
142	2,3,5,6-Tetrafluoroanisole	42.443	4.532	3.741	4.13 (B)	—	—
143	3-tert-Butyl-4-hydroxyanisole	42.547	—	—	—	5.641	—
144	2,5-Dihydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one	42.819	—	—	0.329	—	—
145	α-Santalol	42.848	—	—	—	0.511 (S)	—
146	2,3-Dihydro-2,2-dimethyl-3,7-benzofuranidol	42.888	0.359 (B)	0.39 (B)	0.394 (B)	—	—
147	7-(1,1-Dimethylethyl)-3,4-dihydro-1(2H)-naphtalenone	43.119	—	—	—	0.105 (B)	—
148	3-Ethoxy-4-methoxybenzaldehyde	43.183	0.324 (B)	0.221 (B)	—	—	—
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	--	----------	-----	------	------	----	-------
149	3-Hydroxy-4-methoxybenzoic acid-methyl ester	43.200		0.318(B)			
150	Ethyl vanillate	43.211				0.279(B)	
151	α-Amino-3′-hydroxy-4′-methoxyacetophenone	43.443	0.126(B)	0.143(B)			
152	(3S, 4R, 5R, 6R)-4,5-Bis(hydroxymethyl)-3,6-dimethylcyclohexene	43.610		0.202			
153	Carbonic acid-2,3-dimethylphenyl methyl ester	43.628	0.41(B)				
154	3-(4-Methoxymethyl)propionic Acid	43.656	0.431(B)		0.143(B)		
155	Hexadecane	44.078	0.329(B)	0.351(B)	0.321(B)	0.127(B)	
156	2,6-Dimethoxy-4-(2-propen-1-yl)-phenol	44.274	0.785(B)	0.619(B)	0.521(B)	1.029(B)	
157	2,6-Dimethyl-4-nitrophenol	44.586	0.256(B)				
158	[1S-(1α, 4α, 7α)]-1,2,3,4,5,6,7,8-Octahydro-1,4,9,9-tetramethyl-4,7- methanoazulene	44.592				0.406(S)	
159	2-Ethyl-4-methyl-4,6-bis(1-methylethyl)-4H-1,3,2-dioxaborin	44.592				0.139	
160	8-Epi-γ-eudesmol	44.633	0.261(S)	0.219(S)			
161	Methyl-2,6,6-trimethyl-3-oxo-1-cyclohexene-1-acrylate	44.737		0.155			
162	2′,6′-Dimethylacetanilide	44.771	0.187				
163	[1S-(1α, 4αβ, 8αa)]-1,2,4a,5,8,8a-Hexahydro-4,7-dimethyl-1-(1- methylethyl)-naphthalene	45.152				0.141(S)	
164	[1R-(1α, 3αα, 7αa)]-1,2,3,6,7,7a-Hexahydro-2,2,4,7α-tetramethyl-1,3a- ethano-3αH-indene	45.326	0.241(B)			0.149(S)	
165	Agarosirol	45.551	0.238(S)	0.195(S)		0.413(S)	
166	Methyl 3-(bicyclo[2.2.1]hept-1-yl)-propenoate	45.586				0.116	
167	Hinesol	45.719	0.126(S)			0.251(S)	
168	(1α, 6α, 7α)-1,5,5-Trimethyl-2-methylene-bicyclo[4.1.0]heptane-7- methanol	45.736	0.121(S)				
169	(1R, 3aR, 4R, 7R)-1,2,3,3a,4,5,6,7-Octahydro-1,4-dimethyl-7-(1- methylethyl)-azulene	45.748		0.191(S)			
170	[1S-(1α, 4α, 7α)]-1,2,3,4,5,6,7,8-Octahydro-1,4-dimethyl-7-(1- methylethyl)-azule	45.776	0.222(B)				
171	Longifolene	45.990				0.565(S)	
172	10S,11S-Himachala-3(12),4-diene	46.007	0.155(S)				
173	Neoisolongifolene	46.042	0.262(S)	0.248(S)			
174	Ledol	46.279		0.219(S)		0.519(S)	
175	β-Eudesmol	46.325	0.343(S)				
176	Guaiol	46.498		0.939(S)			
177	γ-Selinene	46.504	0.589(S)	1.164(S)		1.868(S)	
178	1-Bromooctadecane	46.712					
179	7,9-Dimethyl-hexadecane	46.729	0.169		0.219		
180	(4-Methoxypentyl)glycolic acid	46.752				0.212	
181	3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid	46.880	0.629(B)	0.509(B)	0.517(B)	0.814(B)	
182	Dehydroaromadendrene	47.301				0.442(S)	
183	3,5-Dimethoxy-4-hydroxybenzaldehyde	47.353	1.599(B)	1.78(B)	1.891(B)	2.92(B)	
No.	Name	RT (min)	Relative content (%)				
-----	--	----------	-----------------------				
184	2,4,6-Trimethyl-pyridine	47.428	—				
185	Camphene	47.561	—				
186	Ethyl (3-pyridyl)carbamate N-oxide	47.608	0.753				
187	Hexamethyl-benzene	47.654	0.503				
188	1-(1,3a,4,5,6,7-Hexahydro-4-hydroxy-3,8-dimethyl-5-azulenyl)-ethanone	47.896	—				
189	2-Allyl-1,4-dimethoxy-3-methyl-benzene	48.029	0.249 (B)				
190	2,5-Dibutyl-furan	48.150	0.600 (B)				
191	Vanillylacetone	48.208	0.717 (S)				
192	[1S-(1α, 7α, 8αβ)]-1,2,3,5,6,7,8,8a-Octahydro-1,4-dimethyl-7-(1- methylbenzyl)-azulene	48.480	—				
193	Dehydro-cycloplongifolene oxide	48.509	—				
194	4-Methoxymethyl-6-methyl-1H-pyrazolo[3,4-b]pyridin-3-ylamine	48.572	—				
195	1-Cyclohexyl-2-methoxy-benzene	48.601	0.384 (B)				
196	N,N-Diethyl-2-benzoxazolamine	48.613	0.781 (B)				
197	Octahydro-2-(1-methylethylidene)-4,7-methano-1H-indene	49.161	—				
198	4,6,6-Trimethyl-2-(3-methylbuta-1,3-dienyl)-3-oxatricyclo[5.1.0(2,4)] octane	49.167	0.172				
199	4-Methylene-1-methyl-2-(2-methyl-1-propen-1-yl)-1-vinyl-4- methylene-1-methyl-2-(2-methyl-1-propen-1-yl)-1-vinyl-cycloheptane	49.219	0.121				
200	3-Phenoxy-phenol	49.467	0.154 (B)				
201	(Z)-3,7-Dimethyl-1,3,6-octatriene	49.537	0.192 (S)				
202	1,7-Dimethyl-7-(4-methyl-3-pentenyl)-tricyclo[2.2.1.0(2,6)]heptane	49.612	—				
203	2-Acetate-1,3-dimethoxy-5-(1-propenyl)-benzene	50.057	2.309 (B)				
204	2,5-Dimethoxysterephalthic acid	50.178	2.516 (B)				
205	2-(2-Furanyl)methylene-6-methyl-cyclohexane	50.270	—				
206	4-Propylbiphenyl	50.380	0.704 (B)				
207	1-Ethyl-3-phenylmethanol-benzene	50.386	0.745 (B)				
208	N,N,S-Trimethyl-3-aminothiophenol	50.415	—				
209	Neocuridine	50.438	—				
210	endo-Borneol	50.566	—				
211	9-Fluorenone	51.073	0.205 (B)				
212	[1S-(1α, 3αβ, 4α, 8αβ, 9αR*)]-Decahydro-4,8,8-trimethyl-1,4- methanoazulene-9-methanol	51.108	0.488 (S)				
213	Methyl α-hydroxy-4-methoxy-benzeneacetate	51.108	0.488 (S)				
214	2,2'-Methylenebis[5-methyl-furan]	51.743	0.897 (B)				
215	4-Hydroxy-2-methoxyxicmaldehyde	51.882	0.937 (B)				
216	3-(4-Hydroxy-3-methoxyphenyl)-2-propenal	52.072	—				
217	Acetosyringone	52.096	0.967 (B)				
218	syn-3,3,5,6,8,8-Hexamethyl-tricyclo[3.1.0.0(2,4)]oct-5-ene,	52.333	1.530 (B)				
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	--	----------	-----	------	------	----	-------
219	2-Phenylethyl-1,1,2,2-d4-amine	52.541	—	—	1.184(B)	—	—
220	2-Methyl-5-(1-methylphenyl)phenol	52.552	—	—	—	1.377(B)	—
221	2'-Hydroxy-3,3-dimethyl-3-phenylpropanal	52.558	0.762(B)	—	—	—	—
222	2-[3-Methoxyphenyl]-propionic acid	52.581	—	1.048(B)	—	—	—
223	3-(2-Pentenyl)-1,2,4-cyclopentanetrione	52.679	—	—	6.688(B)	—	—
224	7-(1,3-Dimethylbuta-1,3-dienyl)-1,6,6-trimethyl-3,8-dioxatricyclo[5.1.0(2,4)]octane	52.951	0.340(B)	0.621(B)	0.732(B)	—	0.491(B)
225	o-Mentha-1(7),8-dien-3-ol	53.262	—	—	—	—	0.206(B)
226	1,10b(2H)-Dihydropyran[3,4,5-jk]fluorene	53.488	0.153(B)	—	—	—	—
227	Anthracene	53.499	—	—	—	0.124(B)	—
228	(1S, 6R, 9S)-5,5,9,10-Tetramethyltricyclo[7.3.0.0(1,6)]dodec-10(11)-ene	53.609	0.121(B)	0.457(B)	0.414(B)	—	—
229	(Z)-3-Methyl-2-(2,4-pentadienyl)-2-cyclopenten-1-one	53.632	—	—	—	—	0.559(B)
230	1-Methoxy-4-methyl-2-(1-methylphenyl)-benzene	54.019	—	—	—	—	0.565(B)
231	3-(Phenylmethoxy)-1-propanol	54.089	0.466(B)	0.773(B)	0.531(B)	—	—
232	3-(Phenylmethoxy)-1-propanol	54.233	—	—	—	—	0.238(B)
233	trans-1,10-Dimethyl-2-methylenedecalin	54.510	—	—	—	—	0.113(B)
234	3,5-Dimethoxy-4-hydroxyphenylacetico acid	54.649	1.383(B)	1.359(B)	1.391(B)	2.15(B)	—
235	(1aR, 4S, 4aR, 7S, 7aR, 7bS)-Decahydro-1,1,4,7-tetramethyl-1H-cycloprop[4a]azulene	54.672	—	—	—	—	0.177(S)
236	2,7-Dimethyl-5-(1-methylethenyl)-1,8-nonadiene	55.036	—	—	—	—	0.126(B)
237	Longifolalenaldehyde	55.261	0.12(S)	—	—	—	—
238	(2R-cis)-1,2,3,4,4a,5,6,7-Octahydro-a,a,4a,8-tetramethyl-2-naphthalenemethanol	55.377	—	—	—	—	0.409(B)
239	(4aR, 5S)-4,4a,5,6,7,8-Hexahydro-4a,5-dimethyl-3-(1-methyl-4H-1H)-naphthalenone	55.850	0.459(S)	0.535(S)	0.609(S)	0.611(S)	—
240	1,2,4-Triethyl-benzene	56.130	—	—	—	—	0.301(B)
241	Isoaromadendrene epoxide	56.145	0.114(S)	—	0.143(S)	—	—
242	2,3,4,5-Tetramethyl-tricyclo[3.2.1.02,7]oct-3-ene	56.405	—	—	—	—	0.569(S)
243	Globulol	56.584	—	—	—	—	0.344(S)
244	Octadecane	56.624	0.285(B)	0.331(B)	0.393(B)	0.179(B)	—
245	2,3-Dihydro-2,2-dimethyl-7-benzofuranol	56.803	—	—	—	—	0.258(B)
246	1β, 2α-Dimethyl-3α, 5β-bis(1-methylethenyl)cyclohexane	56.844	—	—	0.285(B)	—	—
247	4,6-Dimethoxy-1-naphthaldehyde	56.896	0.214(B)	—	—	—	—
248	2-Bromo-1,3-dimethoxy-benzene	56.919	—	0.305(B)	—	—	—
249	1,3,5-Triethyl-benzene	57.040	—	—	—	—	0.252(B)
250	7-Methyl-pentadecane	57.144	—	0.189(B)	—	—	—
251	2-Methyl-dodecane	57.150	0.154(B)	—	—	—	—
252	Corymbolone	57.225	—	—	—	—	0.164(S)
253	2,6,10,14-tetramethyl-Hexadecane	57.225	0.130(B)	0.285(B)	0.151(B)	0.298(B)	—
254	1-(2-Thieryl)-1-heptanone	57.520	—	0.500(B)	—	—	—
255	1-(2-Thieryl)-1-hexanone	57.543	0.391(B)	—	—	—	—
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	--	----------	-----	------	------	----	-------
256	2,4-Dimethylcyclopentane-1,3-dione	57.601	—	0.475	—	—	1.207
257	1-(2-Thienyl)-ethane	57.612	—	—	—	—	—
258	1-(2,6-Dihydroxy-4-methoxyphenyl)-ethane	57.716	—	—	0.162	(B)	—
259	5-(2-Thienyl)-4-pyrimidinamine	57.832	1.086	1.513	2.402	—	—
260	1,3-Benzenedicarboxylic acid-4-methyl-1,3-dimethyl ester	57.941	—	—	—	—	5.197
261	3,4-Dimethoxy-benzaldehyde oxime	58.051	—	—	—	—	—
262	1,2-Dimethoxy-4-(1,2-dimethoxy)benzene	58.063	0.295	0.233	—	—	—
263	5-Methoxy-[1,2,4]triazolo[4,3-a]pyridine-3-thiol	58.149	—	—	0.335	—	—
264	Methyl-3-amino-4-methoxybenzoate	58.248	0.192	0.304	0.029	(B)	—
265	3,4-Dimethoxy-benzaldehyde oxime	58.271	—	—	—	—	0.623
266	9-Methyl-9-azabicyclo[4.2.1]nona-2,4-diene	58.396	0.295	0.304	0.233	(B)	—
267	Chlordimeform	58.791	—	—	—	—	0.309
268	Nootkatone	59.248	0.192	0.304	0.029	(B)	—
269	4-(3-Methyl-2-butenyl)-phenol	59.541	—	—	0.162	—	0.18(S)
270	[2R-(2α, 4aα, 8aβ)]-1,2,3,4,4aα,5,6,8a-Octahydro-4a,8-dimethyl-2-(1- methylthethyl)-napthalene	59.663	0.125	—	—	—	0.772
271	[1R-(1R*, 4Z, 9S*)]-4,11,11-trimethyl-8-methylene-bicyclo[7.2.0]undec- 4-ene	59.952	—	—	—	—	0.193
272	2,3,4,5,6-Pentamethylbenzoic acid	60.200	0.221	0.151	—	—	—
273	[1aR-(1αα, 7αα, 7βα)]-1a,2,3,5,6,7,7a,7b-Octahydro-1,1,7α-tetramethyl-1H-cycloprop[a]naphthalene	60.206	—	—	—	—	0.167
274	4,5-Dihydro-6-(4-fluorophenyl)-pyridazin-3(2H)-one	60.235	—	—	—	—	—
275	N(1)-[(3-Methoxyphenyl)methyl]-1H-1,2,3,4-tetrazole-1,5-diamine	60.367	—	0.175	(B)	—	—
276	1-Ethenyl-1-methyl-2-(1-methylethylidene)-4-(1-methylethylidene)- cyclohexane	60.396	—	—	—	—	0.601
277	(E,E)-1,5-Dimethyl-8-(1-methylthylidene)-1,5-cycloaddiene	60.443	0.165	—	(S)	—	—
278	6,7-Dimethyl-8-(1-methylthyl)-2,4(1H,3H)-peterindione	60.708	0.105	—	—	—	0.42(S)
279	trans-Z-a-Bisabolene epoxide	60.737	—	—	—	—	—
280	Aromadendrene oxide-(1)	61.066	0.814	—	(S)	—	—
281	Cedrol	61.072	0.376	—	—	—	—
282	1-Hydroxy-6-(3-isopropenyl-cycloprop-1-nyl)-6-methyl-heptan-2-one	61.153	1.008	—	—	—	—
283	(1R, 7R, 8aS)-1,2,3,5,6,7,8,8a-Octahydro-1,8a-dimethyl-7-(1- methylthethyl)-napthalene	61.170	—	—	—	—	2.925
284	a-Farnesene	61.546	—	—	—	—	0.429
285	2-Methylene-6,8,8-trimethyl-tricyclo[5.2.0.1,6]undecan-3-ol	61.592	0.156	—	—	—	—
286	Thiocyanic acid-4-(dimethylamino)phenyl ester	61.702	—	—	—	—	—
287	[4αR-(4aa, 7a, 8aa)]-Decahydro-4a-methyl-1-methylenyl-7-(1- methylthethyl)-napthalene	61.892	—	—	—	—	0.198
288	Decahydro-2,2,4,8-tetramethyl-4,8-methanoazulen-9-ol stereoisomer	62.060	—	—	—	—	0.306
289	Diphenylmethane	62.551	—	0.27(B)	—	—	—
290	[1αR-(1αα, 4β, 4αβ, 7aα, 7bα)]-Decahydro-1,1,4,7-tetramethyl-1H-cycloprop[a]azulen-4-ol	62.568	—	—	—	—	0.205
291	Spirotricyclo[6.2.1.0(2,7)]undeca-2,4,6,9-tetraene-11,1'-cyclopropane	62.568	0.198	(B)	—	—	—
292	4-Methyl-1-[2,6,6-trimethyl-2-cyclohexen-1-yl]-1-penten-3-one,	62.603	0.149	—	—	—	—
293	[1S-(1α, 7α, 8αα)]-1,2,3,5,6,7,8,8a-Octahydro-1,8a-dimethyl-7-(1- methylthethyl)-napthalene	62.788	—	—	—	—	0.248
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	--	----------	-----	------	------	----	-------
294	Caryophyllene	63.007	—	—	—	—	0.172
295	Nonadecane	63.059	0.129	0.134	0.125	0.145	—
296	7-Methoxy-3,4-dihydro-2[1H]-quinoxalinone	63.233	—	0.27	0.367	—	—
297	2-Allyl-1,4-dimethoxybenzene	63.296	—	—	—	—	1.347
298	Dehydroxy-isocalamendiol	63.493	0.129	0.134	0.125	0.145	—
299	3,4,5,6-Tetramethyl-2,5-octadiene	63.504	0.133	—	—	—	—
300	Megastigmatrienone	63.539	—	—	0.241	—	0.367
301	6-(1-Hydroxymethylvinyl)-4,8a-dimethyl-3,5,6,7,8,8a-hexahydro-1H-naphthalen-2-one	63.573	—	0.286	—	—	—
302	α-Ethyl-benzeneaacetamide	63.729	—	—	—	—	0.442
303	8-Ethenyl-3,4,4a,5,6,7,8,8a-octahydro-5-methylene-2-naphthalencarboxylic acid	63.747	—	—	0.175	—	—
304	[1S-(1α, 2β, 4β)]-1-Ethenyl-1-methyl-2,4-bis(1-methylethenyl)-cyclohexane	63.989	—	—	0.217	—	—
305	1-Methylphenazine 5-oxide	63.995	—	0.217	—	—	—
306	3-Phenyl bicyclo(3.2.2)nona-3,6-dien-2-one	63.995	—	0.217	—	—	—
307	1-(1-Hydroxybutyl)-2,5-dimethoxybenzene	64.035	0.423	—	0.49	—	—
308	Methylene genol	64.538	0.123	—	0.315	0.23	—
309	2-Ethyl-3,4-dihydro-2H-1-benzothiopyran	64.630	—	—	—	—	1.177
310	Acetic acid-cyano-hydroxyimino-methyl ester	65.006	—	—	—	—	0.484
311	N-Dimethylaminomethylene-anthranilic acid	65.012	0.252	0.26	0.165	—	—
312	2-Methyl-9-(prop-1-en-3-ol-2-yl)-bicyclo[4.4.0]dec-2-ene-4-ol(1aR, 4aR, 7R, 7aR, 7bS)-Decahydro-1,1,7-trimethyl-4-methylene-1H-cycloprop[e]azulene	65.243	—	1.25	—	—	—
313	[4aR-(4aa, 5a, 8αa)]-4a,5,6,7,8,8a-Hexahydro-3,4a,5-trimethyl-naphtho[2,3-b]furan-9(4H)-one	65.254	0.514	1.064	—	—	—
314	7,7,8,8-Tetracyanoquinodimethane	65.716	0.137	—	—	—	—
315	4-(1,3,3-Trimethyl-bicyclo[4.1.0]hept-2-yl)-but-3-en-2-one	65.780	—	0.233	—	—	—
316	Alloaromadendrene oxide	65.820	—	—	—	—	0.543
317	γ-Elemene	66.207	—	—	—	—	0.835
318	1-(2,4,6-Trimethylphenyl)-3-(2-propynyl)-thiourea	66.698	0.68	1.52	1.68	—	5.466
319	3,4-Dimethylphenyl trifluoro-acetate	66.883	—	—	0.209	—	—
320	12-Azabicyclo[9.2.2]pentadeca-1(13),11,14-trien-13-ylamine	66.901	0.205	0.276	—	—	1.177
321	1-Butyl-1H-pyrole	67.062	0.213	0.288	0.174	—	—
322	(3aa, 8β, 8αa)-5,6-1,2,3,3a,8,8a-Hexahydro-2,2,8-trimethyl-azulenedimethanol	67.259	—	—	—	—	0.631
323	(2R, 5S, 10R)-6,10-Dimethyl-2(1-methylethenyl)-spiro[4.5]dec-6-en-8-one	67.386	0.326	—	—	—	—
324	N-Salicylidene-N'-salicyloylhydrazine	67.496	0.597	—	—	—	—
325	3,5-Dimethyl-benzenamine	67.507	—	—	—	—	0.633
326	298 6-Hydroxy-2,2,8-trimethyl-azulenedimethanol	67.507	—	—	—	—	0.633

Table 1: Continued.
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
327	2-Allyl-3-ethoxy-4-methoxyphenol	67.709			1.709		
328	1,2-Dimethoxy-4-(3-methoxy-1-propenyl)benzene	67.732		1.572			
329	Levomenol	67.777			0.305		
330	n-Hexadecanoic acid	67.807			1.701		
331	2,2,8,8-Tetramethyl-3,6-nonadien-5-one	67.958			0.428		
332	3,5-Dimethoxy-4-hydroxycinnamaldehyde	68.119	0.123		3.472		
333	1-Hydroxy-6-methylphenazine	68.529	1.19		1.897		
334	Desaspidinol	68.847			3.559		
335	2-Chloro-4-cyclohexyl-phenol	68.882	0.177		0.302		
336	5-Ethyl-1,2,3,4-tetrahydro-naphthalene	68.899			0.779		
337	Heptadecane	69.361			0.195		
338	Humulane-1,6-dien-3-ol	69.384			0.784		
339	8,8-Dimethyl-9-methylene-1,5-cycloundecadiene	69.777			0.465		
340	2,4-Dichloro-1-nitrobenzene	70.083			0.429		
341	1-(2-Benzoxyl)ethene-cyclohexene	70.453		0.369			
342	Caryophyllene oxide	70.476			2.082		
343	Aromadendrene oxide-(2)	70.476	0.272				
344	Diepicedrene-1-oxide	70.545	0.368				
345	3,4-Dihydro-3,3,6,8-tetramethylnaphthalen-1(2H)-one	70.580			0.115		
346	1-Methyl-2,4-bis(1-methylethenyl)-cyclohexane	71.031			0.248		
347	[1aR-(1aα, 4α, 7β, 7αβ, 7βα)]-Decahydro-1,1,7-trimethyl-4-methylene-1H-cyclop[ε]azulen-7-ol	71.140			0.512		
348	3-Hydroxy-2-methyl-4-[4-f-butyl]-butanal	72.481	0.242				
349	1-(1-Hydroxy-3-methoxy-2-naphthyl)ethanone	72.498			1.586		
350	2-(Butenyl)-5-(1,1-dimethylethyl)-1,3-dimethyl-benzene	72.544		0.346			
351	(1R, 2R, 6S, 7S, 8S)-1-Methyl-8-(1-methylethyl)-tricyclo[4.4.0.02,7][dec-3-ene-3-methanol	72.885		0.359			
352	4-Hydroxy-4a,5-dimethyl-3-methene-3a,4a,5,6,7,9a-octahydro-3H-naphtho[2,3-b]furan-2-one	72.896		0.194			
353	1,2,3,4-Tetrahydro-6-nitronaphthalene	72.931			0.888		
354	1-(3,3-Dimethyl-1-yl)-2,2-dimethylcyclopropane-3-carboxylic acid	72.960		0.324			
355	N-(p-Methoxy-trans-styril)-formamide	73.272			0.546		
356	8,9-Dehydro-9-formyl-cyclosolongifolene	73.705	0.548		0.691		
357	2-tert-Butyl-quinoxaalone 4-oxide	73.745	0.803				
358	β-Vatirenene	73.763					
No.	Name	RT (min)	AAW	BCD	WIT	AS	EAWIT
------	--	----------	-----	-----	-----	----	-------
359	Octadecanal	73.919	—	—	—	0.144	0.368
360	[1S-(1α, 3αβ, 4α, 7αβ)]-Octahydro-1,7a-dimethyl-4-(1-methylethenyl)-1,4-methano-1H-indene	74.872	—	—	—	—	(S)
361	1-(1-Hydroxyethyl)-1-(diethylphosphonyl)-2-methylene-cyclopropane	74.878	0.109	—	—	—	
362	1-Nonadecene	75.265	—	—	0.149	—	
363	(E,E)-3,7-Dimethyl-10-(1-methylethylidene)-3,7-cyclodeca-1-one	75.692	—	—	—	—	0.232
364	Alloaromadendrene	76.195	—	—	—	—	0.488
365	Heneicosane	76.235	0.148	0.177	0.127	—	
366	2,3-Dihydro-7-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one	76.859	—	—	—	—	0.277
367	2-Butyl-5-hexyloctahydro-1H-indene	77.344	—	—	—	—	0.253
368	2,2':5',2''-Terthiophene	77.777	—	—	—	—	0.228
369	1-Methyl-4-(2-methyloxiranyl)-7-oxabicyclo[4.1.0]heptane	78.355	—	—	—	—	0.248
370	4,4-Dimethyl-1-phenyl-1-penten-3-one	78.563	—	—	—	—	0.199
371	1,5-Diphenyl-1-pentane-3-one	78.603	0.16(B)	0.354(B)	0.139(B)	—	—
372	(1-Methylbutyl)-benzene	79.424	—	—	—	—	0.266
373	Stearic acid	79.504	—	—	0.198	—	—
374	[1S-(1α, 2α, 3αβ, 4α, 8αβ, 9R')]-Decahydro-1,5,5,8a-tetramethyl-1,2,4-methenoazulene	79.666	—	—	—	0.186(S)	
375	Z-8-Methyl-9-tetradecenoic acid	79.799	0.105	—	—	—	
376	1,2,3,4-Tetrahydro-1,5,7-trimethylnaphthalene	79.903	—	—	—	—	0.426(B)
377	N-Phenyl-2-naphthyramine	80.746	0.121(B)	0.186(B)	—	—	
378	Z-5-Nonadecene	81.024	0.196	—	0.181	0.230	—
379	Cyclopentadecane	81.047	0.188	—	—	—	
380	Diaveridine	81.105	—	—	—	—	0.108(B)
381	(Z)-3-Tridecen-1-yne	81.428	—	—	—	—	0.322
382	Ambrosin	82.277	—	—	—	—	0.102(S)
383	2-Decanone O-methyl oxime	82.329	0.104	0.115	0.092	—	
384	N,N-Dimethyldecanamide	82.352	—	—	—	0.140	—
385	[1αR-(1aa, 4αβ, 8aa*)]-1,1a,5,6,7,8-Hexahydro-4a,8,8-trimethyl-cyclopropa[d]naphthalen-2(4aH)-one	82.710	—	—	—	0.124(S)	
386	Murolan-3,9(11)-diene-10-peroxy	83.248	—	—	—	—	0.267(S)
387	Chromone derivative	85.396	0.109	—	0.08	(C)	—
388	Chromone derivative	85.818	0.132(C)	0.217(C)	0.151(C)	—	—
389	Chromone derivative	86.783	2.245(C)	1.812(C)	1.697(C)	3.633(C)	—
390	Chromone derivative	87.187	0.104	—	—	0.112	—
391	Chromone derivative	87.539	—	—	—	—	0.331(C)
392	Chromone derivative	88.724	0.159	—	—	—	—
393	Chromone derivative	88.880	0.118	—	0.123	—	—
394	Chromone derivative	88.891	—	—	—	—	—
395	Chromone derivative	88.897	—	0.152(C)	—	0.175	—
396	Chromone derivative	89.209	0.14(C)	0.662(C)	0.345(C)	—	0.334(C)
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	-------------------	----------	-----	------	------	-----	-------
397	Chromone derivative	89.515	—	—	0.064 (C)	0.14 (C)	—
398	Chromone derivative	89.769	—	—	0.125 (B)	—	—
399	Chromone derivative	89.787	—	—	0.221 (C)	—	—
400	Chromone derivative	89.844	0.286	—	—	—	—
401	Chromone derivative	89.867	—	0.108 (B)	—	—	—
402	Chromone derivative	90.595	—	—	3.447 (C)	—	—
403	Chromone derivative	90.601	1.127 (C)	—	—	0.179 (C)	—
404	Chromone derivative	90.641	—	3.239 (C)	—	—	—
405	Chromone derivative	90.676	—	—	—	7.398 (C)	—
406	Chromone derivative	91.000	0.121 (C)	—	0.197 (C)	—	—
407	Chromone derivative	91.000	—	—	—	—	—
408	Chromone derivative	91.017	0.148 (C)	—	—	—	—
409	Chromone derivative	91.485	—	3.502 (C)	—	—	—
410	Chromone derivative	91.485	1.32 (C)	—	—	—	—
411	Chromone derivative	91.571	—	—	—	—	0.542 (C)
412	Chromone derivative	91.571	4.593 (C)	—	—	—	—
413	Chromone derivative	91.629	—	—	—	0.105 (C)	—
414	Chromone derivative	91.710	—	—	0.649 (C)	—	—
415	Chromone derivative	91.716	0.132 (C)	—	—	—	—
416	Chromone derivative	91.727	—	—	—	—	1.405 (C)
417	Chromone derivative	91.745	0.561 (C)	—	—	—	—
418	Chromone derivative	91.803	—	—	0.592 (C)	—	—
419	Chromone derivative	91.808	0.481 (C)	—	—	—	—
420	Chromone derivative	91.837	—	—	0.411	—	—
421	Chromone derivative	91.837	0.539 (C)	—	—	—	—
422	Chromone derivative	91.953	—	—	0.88 (C)	—	—
423	Chromone derivative	91.953	0.434 (C)	—	—	—	—
424	Chromone derivative	91.987	0.796 (C)	—	—	—	—
425	Chromone derivative	92.571	—	—	0.143 (C)	—	—
No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
-----	--------------------------	----------	-----	------	------	----	-------
427	Chromone derivative	92.894	—	—	—	—	—
428	Chromone derivative	92.935	—	—	—	—	1.293
429	Chromone derivative	92.958	—	—	0.221	—	—
430	Chromone derivative	92.969	—	0.485	—	—	—
431	Chromone derivative	93.339	—	—	—	—	0.388
432	Chromone derivative	93.784	—	—	—	—	0.6
433	Chromone derivative	94.136	—	—	—	—	0.14
434	Chromone derivative	94.356	—	—	0.731	—	—
435	Chromone derivative	94.361	0.596	—	—	—	—
436	Chromone derivative	94.390	—	0.832	—	—	—
437	Chromone derivative	94.795	—	—	0.323	—	—
438	Chromone derivative	94.800	0.187	—	—	—	—
439	Chromone derivative	94.812	—	0.371	—	—	—
440	Chromone derivative	95.228	—	—	—	—	1.254
441	Chromone derivative	95.228	—	—	0.596	—	—
442	Chromone derivative	95.257	—	0.614	—	—	—
443	Chromone derivative	95.268	0.165	—	—	—	—
444	Chromone derivative	95.609	—	—	—	—	0.217
445	Chromone derivative	95.748	0.243	—	—	—	—
446	Chromone derivative	95.754	—	—	0.237	—	—
447	Chromone derivative	95.765	—	—	—	0.478	—
448	Chromone derivative	95.771	—	0.206	—	—	—
449	Chromone derivative	95.834	—	—	—	—	0.414
450	Chromone derivative	95.904	0.291	—	—	—	—
451	Chromone derivative	95.921	—	—	—	0.678	—
452	Chromone derivative	95.967	0.713	—	—	—	—
453	Chromone derivative	95.973	—	—	3.243	—	—
454	Chromone derivative	96.019	—	2.703	—	—	—
455	Chromone derivative	96.088	—	—	—	—	7.2
456	Chromone derivative	96.308	—	0.178	—	—	—
457	Chromone derivative	96.310	—	—	—	—	—
Briefly, 10 μL of supernatant was mixed with an equal volume of reagents A and B [1 : 1 (v/v)] in a 96-well flat-bottom plate. The absorbance at 540 nm was measured after 10 min using an ELISA reader. The amounts of TNF-α and IL-1α were calculated using a standard curve created using known concentrations of standards.

3. Results and Discussion

3.1. GC-MS Analysis

n-Hexane, methanol, DMSO, and CH₂Cl₂ were used to collect the chemical constituents of incense smoke from agarwood. The GC-MS peaks of incense smoke samples collected using CH₂Cl₂ were the most abundant.

No.	Name	RT (min)	AAW	BCDA	AWIT	AS	EAWIT
458	Chromone derivative	96.308	0.192 (C)	—	—	—	—
459	Chromone derivative	96.319	—	—	—	0.177 (B)	—
460	Chromone derivative	96.343	—	0.281 (C)	—	—	—
461	Chromone derivative	96.372	—	—	—	—	0.498 (C)
462	Chromone derivative	96.395	—	—	0.267 (C)	—	—
463	Chromone derivative	96.400	0.313 (C)	—	—	—	—
464	Chromone derivative	96.412	—	0.43 (B)	—	0.381	—
465	Chromone derivative	96.418	—	0.138 (B)	—	—	—
466	Chromone derivative	96.556	—	—	—	—	—
467	Chromone derivative	96.632	—	—	0.058 (C)	—	—
468	Chromone derivative	96.637	0.312 (C)	—	—	—	—
469	Chromone derivative	96.649	—	—	—	0.236 (B)	—
470	Chromone derivative	96.655	—	0.16 (B)	—	—	—
471	Chromone derivative	96.718	—	—	—	—	0.332 (C)
472	Chromone derivative	96.753	—	0.206	—	—	—
473	Chromone derivative	97.088	—	—	—	—	0.464 (C)
474	Chromone derivative	97.319	—	—	—	—	0.176 (C)
475	Chromone derivative	97.469	—	—	—	—	0.171 (C)
476	Chromone derivative	97.700	—	—	—	—	0.469 (C)
477	Chromone derivative	98.341	—	—	—	—	0.863 (C)
478	Chromone derivative	98.399	—	0.103	—	—	—
479	Chromone derivative	98.982	—	—	—	—	0.104 (C)
480	Chromone derivative	99.242	—	—	—	—	0.374 (C)
481	Chromone derivative	99.566	—	—	—	—	0.264 (C)
482	Chromone derivative	99.751	—	—	—	—	0.192 (C)
483	Chromone derivative	100.034	—	—	—	—	0.281 (C)
484	Chromone derivative	100.346	—	—	—	—	0.577 (C)

Total: 97.620 97.164 99.859 97.040 96.079

B: aromatic compound; C: chromone derivative; S: sesquiterpenes; —: not detected.
intense among the peaks obtained using the above solvents. Therefore, CH₂Cl₂ was selected to dissolve the chemical constituents of smoke samples (agarwood and AS). Finally, 484 compounds in total (Table 1 and Figure 1) were identified from the incense smoke samples (AAW, BCDA, AWIT, and AS) and the samples obtained by CH₂Cl₂ extraction of sticks from AWIT. The numbers of compounds identified in incense smoke from AAW, BCDA, AWIT, and EAWIT were 167, 158, 141, 127, and 131, respectively. Aromatics and chrome derivatives were the main chemical constituents in AAW, BCDA, and AWIT; among all chemical constituents, aromatics represented 69.617%, 55.038%, and 60.483%, and chromosome derivatives represented 9.252%, 17.725%, and 16.946%, respectively.

The chemical constituents of incense smoke may be quantifiable. Therefore, the chemical constituents of incense smoke from agarwood produced by AWIT were compared with the corresponding constituents from agarwood produced by AAW and BCDA. A total of 61 compounds in the AWIT sample, representing 54.837%, were also found in the AAW and BCDA samples. The major compounds (relative content >1%) were phenylethylene (7.973%); ethylbenzene (6.384%); 2,3,5,6-tetrafluorobenzene (4.130%); 5-(2-thienyl)-4-pyrimidinamine (2.402%); 2-methoxy-4-(1-propen-1-yl)-phenol (2.379%); 2,6-dimethoxyphenol (2.178%); o-nitroanisole (2.178%); and benzylacetone (1.018%). These components may be responsible for pharmacodynamic effects [23–25]. In this experiment, 21 compounds, representing 16.946%, were identified as chromosome derivatives according to the peaks at m/z 91, 121, 137, 107, 160, 176, 190, 220, 250, 266, 280, 282, 296, 310, 312, 326, 328, and 342 [22], and 16 compounds were identified as sesqui- terpenes, representing 6.768%. In short, aromatic compounds were the main chemical constituents of incense smoke from agarwood, including AWIT, AAW, and BCDA samples.

To identify whether agarwood (AAW, AWIT, and BCDA) contained chemical constituents of AS, incense smoke produced from AS was tested by the same method. No sesqui-terpenes were detected among the chemical constituents of the smoke, and chromones only represented 4.569%, which was less than the contents in AWIT (16.946%), AAW (9.252%), and BCDA (17.725%). Finally, 29 compounds, representing 32.627%, were also found in AWIT, AAW, and BCDA. The main compounds (relative amount >1%) were phenylethylene (5.132%); 2-methoxy-4-(1-propen-1-yl)-phenol (3.254%); 3,5-dimethoxy-4-hydroxybenzaldehyde (2.920%); 4-hydroxy-3-methoxy-styrene (2.254%); 3,5-dimethoxy-4-hydroxyphenylacetic acid (2.150%); and acetyltyronine (1.499%); guaiacol (1.362%); ethylbenzene (1.313%); benzaldehyde (1.146%); homovanillyl alcohol (1.119%); 2,6-dimethoxy-4-(2-propen-1-yl)-phenol (1.029%); and phenylacetylene (1.013%). These components may be from the residue of A. sinensis, a sticky powder, making agarwood powder bind, used in the preparation of sticks of AS (making sticks from pure AS alone is difficult, so the addition of a sticky powder is necessary) or agarwood in A. sinensis (AS can form agarwood in the process of storage).

The data for incense smoke from agarwood (AAW, AWIT, and BCDA) showed that low-molecular-weight aromatic compounds (LACs) represented more than 55% of the total constituents. Michiho Ito et al. reported that chromosome derivatives could be converted and produce the pleasant smell of agarwood through the generation of LACs in the process of heating [26,27] (Scheme 1). Chromone derivatives are among the main chemical constituents of agarwood. They can generate unique and different LACs at high temperature (when burned). As a result, many LACs were detected in the agarwood smoke. To verify the results, an extraction experiment of sticks from AWIT was carried out at room temperature (to avoid high temperature). The results showed that chromosome derivatives, sesqui-terpenes, and aromatics were the main chemical constituents, representing 26.547, 26.767, and 26.941% of the total constituents, respectively. Few chemical constituents of EAWIT were observed before 40 min (t₀), as shown in Figure 1, while there was far higher number of peaks after 58 min (tᵣ), which is indicative of chromosome derivatives and sesqui-terpenes. Interestingly, the chemical constituents of incense smoke showed the opposite trend in Figure 1. The results indicated that high-molecular-weight compounds might be cracked into low-molecular-weight compounds at high temperature. In other words, some chromosome derivatives and sesqui-terpenes might be converted into low-molecular-weight compounds, which is consistent with the reported literature [26, 27]. Therefore, low-molecular-weight compounds accounted for a high percentage of the incense smoke obtained from agarwood during burning. Moreover, some studies suggested that the inhalation of some LACs had a sedative or hypnotic effect on mice and that benzylacetone in particular reduces mouse locomotor activity [28–30]. Hence, inhalation of the pleasant aroma generated by agarwood during heating could lead to pharmacological effects.

3.2. Effect of Chemical Constituents on TNF-α and IL-1α Release in LPS-Stimulated RAW264.7 Cells. As shown in Tables 2 and 3, normal inactivated RAW264.7 cells produced low amounts of TNF-α and IL-1α after 24 h of incubation at 37°C, and exposure to LPS induced higher amounts of TNF-α and IL-1α. In contrast, under indomethacin treatment, AAW, BCDA, and AWIT produced a concentration-dependent decrease at concentrations of 20, 40, and 80 µg/mL. The TNF-α and IL-1α levels of model group were significantly higher than those of the normal
P < 0.05 or P < 0.01. The incense components of AAW, BCDA, AWIT, and indomethacin significantly reduced TNF-α and IL-1α levels (P < 0.05, P < 0.01, or P < 0.001), showing better anti-inflammatory effects. These results showed that the anti-inflammatory activities of AAW, AWIT, and indomethacin were comparable and superior to that of BCDA.

4. Conclusions

The chemical constituents of incense smoke from AAW, BCDA, AWIT, AS, and EAWIT were analyzed by GC-MS, and 484 compounds were identified. Aromatic compounds were the main chemical constituents of incense smoke from AAW, BCDA, and AWIT. A total of 61 aromatic compounds from AWIT, representing 54.837%, were also found in AAW and BCDA. All experimental data suggested that aromatic compounds were the main chemical constituents in agarwood smoke and that some chromone derivatives could be cracked into LACs at high temperature. Furthermore, agarwood incense smoke showed anti-inflammatory activities by inhibiting lipopolysaccharide- (LPS-) induced TNF-α and IL-1α release in RAW264.7 cells.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest in any form.

Authors’ Contributions

De-Qian Peng, Zhang-Xin Yu contributed equally to this work.

Acknowledgments

This research work was financially supported by the Natural Science Foundation of Hainan Province (no. 217291), the Science and Technology Programs from Hainan Province of China (no. ZDKJ2016004), and the Major Science and Technology Innovation Project of the Chinese Academy of Medical Sciences (no. 2016-I2M-2-003). The authors are grateful to Hai-Yan Wang (an English teacher) of Qiqihar University and Ass. Prof. Lu-Jia Mao of Hainan Medical University for revising the manuscript.

References

[1] S. Wang, Z. Yu, C. Wang, C. Wu, P. Guo, and J. Wei, “Chemical constituents and pharmacological activity of agarwood and Aquilaria plants,” *Molecules*, vol. 23, no. 2, p. 342, 2018.
[2] T. Miyoshi, M. Ito, T. Kitayama, S. Isomori, and F. Yamashita, “Sedative effects of inhaled benzylacetone and structural features contributing to its activity,” Biological and Pharmaceutical Bulletin, vol. 36, no. 9, pp. 1474–1481, 2013.

[3] H. Tian, H. Wang, L. Yang et al., “Two new sesquiterpenoids from agarwood originated from Aquilaria sp.,” Journal of Natural Products Research, vol. 22, no. 7, pp. 626–631, 2019.

[4] Y. Z. H.-Y. Hashim, P. G. Kerr, P. Abbas, and H. Mohd Salleh, “Aquilaria spp. (agarwood) as source of health beneficial compounds: a review of traditional use, phytochemistry and pharmacology,” Journal of Ethnopharmacology, vol. 189, pp. 331–360, 2016.

[5] Y.-Y. Liu, J.-H. Wei, Z. H. Gao, Z. Zhang, and J.-C. Lyu, “A review of quality assessment and grading for agarwood,” Chinese Herbal Medicines, vol. 9, no. 1, pp. 22–30, 2017.

[6] S. L. Wang, Y. C. Tsai, S. L. Fu, M. J. Cheng, M. I. Chung, and J. J. Chen, “2-(2-Phenylethyl)-4H-chromen-4-one derivatives from the resinous wood of Aquilaria sinensis with anti-inflammatory effects in LPS-induced macrophages,” Molecules, vol. 23, no. 2, p. 2909, 2018.

[7] H. Chhipa, K. Chowdhary, and N. Kaushik, “Artificial production of agarwood oil in Aquilaria sp. by fungi: a review,” Phytochemistry Reviews, vol. 16, no. 5, pp. 835–860, 2017.

[8] Z. Gao, W. Zhao, P. Sun, and J. Wei, “Species and conservation status of the endangered agarwood-producing genus Aquilaria,” Modern Chinese Medicine, vol. 19, p. 1057, 2017.

[9] X. Chen, Y. Liu, Y. Yang et al., “Trunk surface agarwood-inducing technique with Rigidoporus vinctus: An efficient novel method for agarwood production,” PLoS One, vol. 13, no. 6, 2018.

[10] X. Gao, M. Xie, S. Liu et al., “Chromatographic fingerprint analysis of metabolites in natural and artificial agarwood using gas chromatography-mass spectrometry combined with chemometric methods,” Journal of Chromatography B, vol. 967, pp. 264–273, 2014.

[11] Y. Liu, H. Chen, Y. Yang et al., “Whole-tree agarwood-inducing technique: an efficient novel method for producing high-quality agarwood in cultivated Aquilaria sinensis trees,” Molecules, vol. 18, no. 3, pp. 3086–3106, 2013.

[12] R. Blanchette, and V. B. H. Heuveling, US7638145B2, (2009).

[13] C. S. Peng, M. F. Osman, N. Bahari, R. Zakaria, and K. A. Rahim, “Agarwood inducement technology: a method for producing high-quality agarwood in cultivated Aquilaria sinensis trees,” Processing & Its Applications, p. 203, 2015.

[14] H. Chen, J. Wei, J. Yang et al., “Chemical constituents of agarwood originating from the endemic genus Aquilaria plants,” Chemistry & Biodiversity, vol. 9, no. 2, pp. 236–250, 2012.

[15] J. Sperry, Z. E. Wilson, D. C. K. Rathwell, and M. A. Brimble, “Isolation, biological activity and synthesis of benzannulated spirolekal natural products,” Natural Product Reports, vol. 27, no. 8, p. 1117, 2010.

[16] R. Kalra and N. Kaushik, “A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.),” Phytochemistry Reviews, vol. 16, no. 5, pp. 1045–1079, 2017.

[17] M. Ishihara, T. Tsuneya, and K. Uneyama, “Components of the agarwood smoke on heating,” Journal of Essential Oil Research, vol. 5, no. 4, pp. 419–423, 1993.

[18] I. Nurlaila, H. F. R. Mohd, N. T. Mohd, I. Mastura, Z. Seema, and N. T. Saiful, IEEE International Colloquium on Signal Processing & Its Applications, p. 203, 2015.