Leonard pairs having LB-TD form

Kazumasa Nomura

Abstract
Fix an algebraically closed field F and an integer $d \geq 3$. Let $\text{Mat}_{d+1}(F)$ denote the F-algebra consisting of the $(d+1) \times (d+1)$ matrices that have all entries in F. We consider a pair of diagonalizable matrices A, A^* in $\text{Mat}_{d+1}(F)$, each acts in an irreducible tridiagonal fashion on an eigenbasis for the other one. Such a pair is called a Leonard pair in $\text{Mat}_{d+1}(F)$. For a Leonard pair A, A^* there is a nonzero scalar q that is used to describe the eigenvalues of A and A^*. In the present paper we find all Leonard pairs A, A^* in $\text{Mat}_{d+1}(F)$ such that A is lower bidiagonal with subdiagonal entries all 1 and A^* is irreducible tridiagonal, under the assumption that q is not a root of unity. This gives a partial solution of a problem given by Paul Terwilliger.

1 Introduction
Throughout the paper F denotes an algebraically closed field. All scalars will be taken from F. Fix an integer $d \geq 0$ and a vector space V over F with dimension $d+1$. Let F^{d+1} denote the F-vector space consisting of the column vectors of length $d+1$ and $\text{Mat}_{d+1}(F)$ denote the F-algebra consisting of the $(d+1) \times (d+1)$ matrices. The algebra $\text{Mat}_{d+1}(F)$ acts on F^{d+1} by left multiplication.

We begin by recalling the notion of a Leonard pair. We use the following terms. A square matrix is said to be tridiagonal whenever each nonzero entry lies on either the diagonal, the subdiagonal, or the superdiagonal. A tridiagonal matrix is said to be irreducible whenever each entry on the subdiagonal is nonzero and each entry on the superdiagonal is nonzero.

Definition 1.1 [7, Definition 1.1] By a Leonard pair on V we mean an ordered pair of linear transformations $A: V \to V$ and $A^*: V \to V$ that satisfy (i) and (ii) below:

(i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A^* is diagonal.

(ii) There exists a basis for V with respect to which the matrix representing A^* is irreducible tridiagonal and the matrix representing A is diagonal.

By a Leonard pair in $\text{Mat}_{d+1}(F)$ we mean an ordered pair A, A^* in $\text{Mat}_{d+1}(F)$ that acts on F^{d+1} as a Leonard pair.

Note 1.2 According to a common notational convention, A^* denotes the conjugate transpose of A. We are not using this convention. In a Leonard pair A, A^* the matrices A and A^* are arbitrary subject to the conditions (i) and (ii) above.

We refer the reader to [5][11] for background on Leonard pairs.
A square matrix is said to be lower bidiagonal whenever each nonzero entry lies on either the diagonal or the subdiagonal. Paul Terwilliger gave the following problem:

Problem 1.3 [10] Problem 36.14 Find all Leonard pairs A, A^* in $\text{Mat}_{d+1}(\mathbb{F})$ that satisfy the following conditions: (i) A is lower bidiagonal with subdiagonal entries all 1; (ii) A^* is irreducible tridiagonal.

The above problem is related to “Leonard triples” [13], “adjacent Leonard pairs” [2], and “q-tetrahedron algebras” [4]. In the present paper we give a partial solution of Problem 1.3 We use the following terms:

Definition 1.4 An ordered pair of matrices A, A^* in $\text{Mat}_{d+1}(\mathbb{F})$ is said to be LB-TD whenever A is lower bidiagonal with subdiagonal entries all 1 and A^* is irreducible tridiagonal.

Definition 1.5 A Leonard pair A, A^* on V is said to have LB-TD form whenever there exists a basis for V with respect to which the matrices representing A, A^* form an LB-TD pair in $\text{Mat}_{d+1}(\mathbb{F})$.

Note 1.6 Let A, A^* be a Leonard pair on V. For scalars α, α^*, the pair $A + \alpha I, A^* + \alpha^* I$ is also a Leonard pair on V, which is called a translation of A, A^*. Here I denotes the identity. If A, A^* has LB-TD form, then any translation of A, A^* has LB-TD form.

Below we display a family of LB-TD Leonard pairs in $\text{Mat}_{d+1}(\mathbb{F})$. Consider the following LB-TD pair in $\text{Mat}_{d+1}(\mathbb{F})$:

$$A = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \cdots & \ddots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}, \quad A^* = \begin{pmatrix} x_0 & y_1 & \cdots & \cdots & \cdots & 0 \\ z_1 & x_1 & y_2 & \cdots & \cdots & \vdots \\ z_2 & z_1 & x_2 & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \ddots & \cdots & \vdots \\ 0 & \cdots & \cdots & \cdots & z_d & x_d \end{pmatrix}. \quad (1)$$

Proposition 1.7 Fix a nonzero scalar q that is not a root of unity. Let $\alpha, \alpha^*, a, a', b, b'$, c be scalars with $c \neq 0$. Define scalars $\{\theta_i\}_{i=0}^d$, $\{x_i\}_{i=0}^d$, $\{y_i\}_{i=1}^d$, $\{z_i\}_{i=1}^d$ by

$$\theta_i = \alpha + aq^{2i-d} + a'q^{d-2i}, \quad (2)$$

$$x_i = \alpha^* + (b + b')q^{d-2i} + a'cq^{d-2i}(q^{d+1} + q^{-d-1} - q^{-2i-1} - q^{-d-2i+1}), \quad (3)$$

$$y_i = (q^i - q^{-i})(q^{d+i+1} - q^{-d-i})((b - a'cq^{d-2i+1})(b' - a'cq^{d-2i+1})c^{-1}, \quad (4)$$

$$z_i = -cq^{d-2i+1}. \quad (5)$$

Then the matrices A, A^* form a LB-TD Leonard pair in $\text{Mat}_{d+1}(\mathbb{F})$ if and only if the scalars a, a', b, b', c satisfy the following inequalities:

$$a \notin \{a'q^{2d-2}, a'q^{2d-4}, \ldots, a'q^{2-d}\}, \quad (6)$$

$$b \notin \{b'q^{2d-2}, b'q^{2d-4}, \ldots, b'q^{2-d}\}, \quad (7)$$

$$bc^{-1}, b'c^{-1} \notin \{aq^{d-1}, aq^{d-3}, \ldots, aq^{1-d} \} \cup \{a'q^{d-1}, a'q^{d-3}, \ldots, a'q^{1-d}\}. \quad (8)$$

To state our further results, we recall some materials concerning Leonard pairs. Consider a Leonard pair A, A^* on V. We first recall some facts concerning the eigenvalues of
A, A*. By [7, Lemma 1.3] each of A, A* has mutually distinct $d + 1$ eigenvalues. Let $\{\theta_i\}_{i=0}^d$ be an ordering of the eigenvalues of A. For $0 \leq i \leq d$ pick an eigenvector $v_i \in V$ of A associated with θ_i. Then the ordering $\{\theta_i\}_{i=0}^d$ is said to be standard whenever the basis $\{v_i\}_{i=0}^d$ satisfies Definition 1.1(ii). A standard ordering of A^* is similarly defined. For a standard ordering $\{\theta_i\}_{i=0}^d$ of the eigenvalues of A, the ordering $\{\theta_{d-i}\}_{i=0}^d$ is also standard and no further ordering is standard. A similar result applies to A^*. Let $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) be a standard ordering of the eigenvalues of A (resp. A^*). By [7, Theorem 1.9] the expressions
\[
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \quad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}
\]
are equal and independent of i for $2 \leq i \leq d - 1$. Next we recall the notion of a parameter array of A, A*.

Lemma 1.8 [7, Theorem 3.2] For a Leonard pair A, A^* on V and a standard ordering $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) of the eigenvalues of A (resp. A^*), there exists a basis $\{u_i\}_{i=0}^d$ for V and there exist scalars $\{\phi_i\}_{i=1}^d$ such that the matrices representing A, A^* with respect to $\{u_i\}_{i=0}^d$ are
\[
A: \begin{pmatrix} \theta_0 & \theta_1 & \theta_2 & \cdots & \theta_d \\ 1 & \theta_1 & \theta_2 & \cdots & \theta_d \\ \theta_1 & 1 & \theta_2 & \cdots & \theta_d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \theta_1 & \theta_2 & \cdots & 1 \end{pmatrix}, \quad A^*: \begin{pmatrix} \theta_0^* & \phi_1 & \phi_2 & \cdots & \phi_d \\ \theta_1^* & \theta_2^* & \theta_3^* & \cdots & \theta_d^* \\ \phi_1 & \theta_2^* & \theta_3^* & \cdots & \theta_d^* \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \phi_1 & \phi_2 & \cdots & \theta_2^* \end{pmatrix}.
\]

The sequence $\{\phi_i\}_{i=0}^d$ is uniquely determined by the ordering $\{(\theta_i)_{i=0}^d, (\theta_i^*)_{i=0}^d\}$. Moreover $\phi_i \neq 0$ for $1 \leq i \leq d$.

With reference to Lemma 1.8 we refer to $\{\phi_i\}_{i=1}^d$ as the first split sequence of A, A^* associated with the ordering $\{(\theta_i)_{i=0}^d, (\theta_i^*)_{i=0}^d\}$. By the second split sequence of A, A^* associated with the ordering $\{(\theta_i)_{i=0}^d, (\theta_i^*)_{i=0}^d\}$ we mean the first split sequence of A, A^* associate with the ordering $\{(\theta_{d-i})_{i=0}^d, (\theta_i^*)_{i=0}^d\}$. By a parameter array of A, A^* we mean the sequence
\[
\{(\theta_i)_{i=0}^d, (\theta_i^*)_{i=0}^d, (\phi_i)_{i=1}^d, (\phi_i^*)_{i=1}^d\},
\]
where $\{\theta_i\}_{i=0}^d$ is a standard ordering of the eigenvalues of A, $\{\theta_i^*\}_{i=0}^d$ is a standard ordering of the eigenvalues of A^*, and $\{\phi_i\}_{i=0}^d$ (resp. $\phi_i^*\}_{i=0}^d$) is the first split sequence (resp. second split sequence) of A, A^* associated with the ordering $\{(\theta_i)_{i=0}^d, (\theta_i^*)_{i=0}^d\}$.

For the Leonard pair given in Propositions 1.7, the corresponding parameter array is as follows:
Proposition 1.9. With reference to Proposition 1.7, assume A, A^* is an LB-TD Leonard pair in $\text{Mat}_{d+1}(\mathbb{F})$. Define scalars $\{\theta_i^*\}_{i=0}^d$, $\{\varphi_i\}_{i=1}^d$, $\{\phi_i\}_{i=1}^d$ by

$$\theta_i^* = \alpha^* + bq^{2i-d} + b'q^{d-2i}, \quad \varphi_i = (q^i-q^{-i})(q^{d-i+1}-q^{i-d-1})(b - a'cq^{d-2i+1})(b' - acq^{2i-d-1})c^{-1}, \quad \phi_i = (q^i-q^{-i})(q^{d-i+1}-q^{i-d-1})(b - acq^{d-2i+1})(b' - a'cq^{2i-d-1})c^{-1}.$$

Then (11) is a parameter array of A, A^*.

For the rest of this section, we assume $d \geq 3$. Let A, A^* be a Leonard pair on V, and let $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) be a standard ordering of the eigenvalues of A (resp. A^*). Let β be one less the common value of (9). We call β the fundamental parameter of A, A^*. Let q be a nonzero scalar such that $\beta = q^2 + q^{-2}$. We call q a quantum parameter of A, A^*. We now give a solution of Problem 1.3 for the case that q is not a root of unity:

Theorem 1.10. Consider sequences of scalars $\{\theta_i\}_{i=0}^d$, $\{x_i\}_{i=0}^d$, $\{y_i\}_{i=1}^d$, $\{z_i\}_{i=1}^d$ such that $y_iz_i \neq 0$ for $1 \leq i \leq d$, and consider the matrices A, A^* in (11). Assume A, A^* is a Leonard pair in $\text{Mat}_{d+1}(\mathbb{F})$ with quantum parameter q that is not a root of unity. Then, after replacing q with q^{-1} if necessary, there exist scalars α, α^*, α', β, β', c with $c \neq 0$ that satisfy (2)–(8).

Let A, A^* be a Leonard pair on V with parameter array (11). Our next result gives a necessary and sufficient condition on the parameter array for that A, A^* has LB-TD form. To state this result, we use the following notation. Let q be a quantum parameter of A, A^*, and assume q is not a root of unity. By [7, Lemma 9.2] there exist scalars α, α^*, α', β, β' such that

$$\theta_i = \alpha + aq^{2i-d} + a'q^{d-2i} \quad (0 \leq i \leq d),$$

$$\theta_i^* = \alpha^* + bq^{2i-d} + b'q^{d-2i} \quad (0 \leq i \leq d).$$

By [6, Lemma 13.1] there exists a scalar ξ such that

$$\varphi_i = (q^i-q^{-i})(q^{d-i+1}-q^{i-d-1})(\xi + abq^{2i-d-1} + a'b'q^{d-2i+1}) \quad (1 \leq i \leq d),$$

$$\phi_i = (q^i-q^{-i})(q^{d-i+1}-q^{i-d-1})(\xi + a'bq^{2i-d-1} + ab'q^{d-2i+1}) \quad (1 \leq i \leq d).$$

Theorem 1.11. With the above notation, the following (i) and (ii) are equivalent:

(i) A, A^* has LB-TD form.

(ii) At least two of $\alpha \alpha'$, $\beta \beta'$, ξ are nonzero.

This paper is organized as follows. In Sections 2 and 3 we recall some materials concerning Leonard pairs. In Section 4 we prove Propositions 1.7 and 1.9. In Section 5 we recall the Askey-Wilson relations. In Section 6 we use Askey-Wilson relations to obtain the entries of A^* in (1). In Section 8 we prove Theorem 1.11. In Section 9 we prove Theorem 1.10. Leonard pairs have been classified in [10, Section 35]: there are 7 types for the case that q is not a root of unity. In Section 10 we explain about which types of Leonard pairs have LB-TD form.
2 Recurrent sequences

In this section we recall the notion of a recurrent sequence. We also mention some lemmas for later use. Assume $d \geq 3$ and consider a sequence \(\{\theta_i\}_{i=0}^d \) consisting of mutually distinct scalars. We say \(\{\theta_i\}_{i=0}^d \) is recurrent whenever the expression
\[
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}
\]
(19)
is independent of \(i \) for \(2 \leq i \leq d - 1 \). For a scalar \(\beta \), we say \(\{\theta_i\}_{i=0}^d \) is \(\beta \)-recurrent whenever
\[
\theta_{i-2} - (\beta + 1)\theta_{i-1} + (\beta + 1)\theta_i - \theta_{i+1} = 0 \quad (2 \leq i \leq d - 1).
\]
Observe that \(\{\theta_i\}_{i=0}^d \) is recurrent if and only if it is \(\beta \)-recurrent for some \(\beta \). In this case, the value of (19) is equal to \(\beta + 1 \).

Lemma 2.1 [7, Lemmas 8.4, 8.5] Assume \(\{\theta_i\}_{i=0}^d \) is \(\beta \)-recurrent for some scalar \(\beta \). Then the following hold:

(i) There exists a scalar \(\gamma \) such that
\[
\gamma = \theta_{i-1} - \beta \theta_i + \theta_{i+1} \quad (1 \leq i \leq d - 1).
\]
(20)

(ii) Let \(\gamma \) be from (i). Then there exists a scalar \(\varrho \) such that
\[
\varrho = \theta_{i-1}^2 - \beta \theta_{i-1} \theta_i + \theta_i^2 - \gamma (\theta_{i-1} + \theta_i) \quad (1 \leq i \leq d).
\]
(21)

Lemma 2.2 [7, Lemma 8.4] Assume \(\{\theta_i\}_{i=0}^d \) satisfies (20) for some scalars \(\beta \) and \(\gamma \). Then \(\{\theta_i\}_{i=0}^d \) is \(\beta \)-recurrent.

Assume \(\{\theta_i\}_{i=0}^d \) is \(\beta \)-recurrent, and take a nonzero scalar \(q \) such that \(\beta = q^2 + q^{-2} \). Assume \(q \) is not a root of unity. By [7, Lemma 9.2] there exist scalars \(\alpha, a, a' \) such that
\[
\theta_i = \alpha + a q^{2i-d} + a' q^{d-2i} \quad (0 \leq i \leq d).
\]
(22)

Lemma 2.3 Let the scalars \(\gamma, \varrho \) be from Lemma 2.1. Then
\[
\gamma = -\alpha(q - q^{-1})^2,
\]
(23)
\[
\varrho = \alpha^2(q - q^{-1})^2 - aa'(q^2 - q^{-2})^2.
\]
(24)

Proof. Routine verification. \(\square \)
Lemma 2.4 Let the scalars γ, ϱ be from Lemma 2.1 and let $\{\tilde{\theta}_i\}_{i=0}^d$ be a reordering of $\{\theta_i\}_{i=0}^d$ that satisfies both
\[
\gamma = \tilde{\theta}_{i-1} - \beta \tilde{\theta}_i + \tilde{\theta}_{i+1} \quad (1 \leq i \leq d - 1),
\]
\[
\varrho = \tilde{\theta}_0^2 - \beta \tilde{\theta}_0 \tilde{\theta}_1 + \tilde{\theta}_1^2 - \gamma(\tilde{\theta}_0 + \tilde{\theta}_1).
\]
Then the sequence $\{\tilde{\theta}_i\}_{i=0}^d$ coincides with either $\{\theta_i\}_{i=0}^d$ or $\{\theta_{d-i}\}_{i=0}^d$.

Proof. Note that the sequence $\{\tilde{\theta}_i\}_{i=0}^d$ is β-recurrent by (25) and Lemma 2.2. By this and [7, Lemma 9.2] there exist scalars $\tilde{\alpha}, \tilde{\alpha}'$ such that
\[
\tilde{\theta}_i = \tilde{\alpha} + \tilde{\alpha}' q^{2i-d} + \tilde{\alpha}' q^{d-2i} \quad (0 \leq i \leq d).
\]
By (23) and (25) for $i = 1$ one finds $\tilde{\alpha} = \alpha$. By this and (23), (24), (26), one finds $a\tilde{\alpha}' = a\tilde{\alpha}'$. Using these comments and the assumption that $\{\tilde{\theta}_i\}_{i=0}^d$ is a permutation of $\{\theta_i\}_{i=0}^d$, one routinely finds that either (i) $\tilde{\alpha} = \alpha$, $\tilde{\alpha}' = \alpha'$ or (ii) $\tilde{\alpha} = \alpha'$, $\tilde{\alpha}' = \alpha$. The result follows.

\[\square\]

3 Parameter arrays

In this section we recall some materials concerning Leonard pairs.

We first recall the notion of an isomorphism of Leonard pairs. Consider a vector space V' over \mathbb{F} that has dimension $d + 1$. For a Leonard pairs A, A^* on V and a Leonard pair B, B^* on V', by an isomorphism of Leonard pairs from A, A^* to B, B^* we mean a linear bijection $\sigma : V \to V'$ such that both $\sigma A = B \sigma$ and $\sigma A^* = B^* \sigma$. We say that the Leonard pairs A, A^* and B, B^* are isomorphic whenever there exists an isomorphism of Leonard pairs from A, A^* to B, B^*.

Next we recall some facts concerning a parameter array of a Leonard pair.

Definition 3.1 By a parameter array over \mathbb{F} we mean a sequence (11) consisting of scalars in \mathbb{F} that satisfy (i)–(v) below:

(i) $\theta_i \neq \theta_j$, $\theta_i^* \neq \theta_j^*$ if $i \neq j$ $(0 \leq i, j \leq d)$.

(ii) $\varphi_i \neq 0$, $\phi_i \neq 0$ $(1 \leq i \leq d)$.

(iii) $\varphi_i = \varphi_1 \sum_{h=0}^{i-1} \frac{\theta_h - \theta_{d-h}}{\theta_0 - \theta_d} + (\theta_i^* - \theta_0^*) (\theta_{i-1} - \theta_d)$ $(1 \leq i \leq d)$.

(iv) $\phi_i = \phi_1 \sum_{h=0}^{i-1} \frac{\theta_h - \theta_{d-h}}{\theta_0 - \theta_d} + (\theta_i^* - \theta_0^*) (\theta_{d-i+1} - \theta_0)$ $(1 \leq i \leq d)$.

(v) The expressions
\[
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \quad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}
\]
are equal and independent of i for $2 \leq i \leq d - 1$.

6
Lemma 3.2 \[7\] Theorem 1.9] Consider sequences of scalars \(\{\theta_i\}_{i=0}^d\), \(\{\varphi_i\}_{i=0}^d\), \(\{\phi_i\}_{i=1}^d\). Let \(A : V \to V\) and \(A^* : V \to V\) be linear transformations that are represented as in (10) with respect to some basis for \(V\). Then the following (i) and (ii) are equivalent:

(i) The pair \(A, A^*\) is a Leonard pair with parameter array (11).

(ii) The sequence (11) is a parameter array over \(\mathbb{F}\).

Suppose (i) and (ii) hold above. Then \(A, A^*\) is unique up to isomorphism of Leonard pairs.

Lemma 3.3 Let \(A, A^*\) be a Leonard pair on \(V\) with parameter array (11). Assume \(d \geq 3\), and let \(q\) be a quantum parameter of \(A, A^*\). Let \(a, a^*, a', b, b', \xi\) be scalars that satisfy (15)–(18). Assume at least two of \(aa', bb', \xi\) are nonzero. Then there exists a nonzero scalar \(c\) such that \(\xi = -aa'c - bb'c^{-1}\). Moreover, this scalar satisfies

\[
\begin{align*}
\varphi_i &= (q^i - q^{-i})(q^{d-i+1} - q^{-d-i})(b - acq^{d-2i+1})(b' - acq^{2i-d-1})c^{-1} \\
\phi_i &= (q^i - q^{-i})(q^{d-i+1} - q^{-d-i})(b - acq^{d-2i+1})(b' - acq^{2i-d-1})c^{-1}
\end{align*}
\]

\((1 \leq i \leq d)\). (29) (30)

Proof. Such a scalar \(c\) exists since \(\mathbb{F}\) is algebraically closed. To get (29) and (30), set \(\xi = -aa'c - bb'c^{-1}\) in (17) and (18). \(\square\)

4 Proof of Propositions [1.7] and [1.9]

Proof of Propositions [1.7] and [1.9]. Fix a nonzero scalar \(q\) that is not a root of unity. Let \(a, a^*, a', b, b', c\) be scalars with \(c \neq 0\). Define scalars \(\{\theta_i\}_{i=0}^d\), \(\{x_i\}_{i=0}^d\), \(\{y_i\}_{i=1}^d\), \(\{z_i\}_{i=1}^d\) by (2)–(3), and define scalars \(\{\theta_i^d\}_{i=0}^d\), \(\{\varphi_i^d\}_{i=1}^d\), \(\{\phi_i^d\}_{i=1}^d\) by (12)–(14). One checks that the conditions Definition 3.1(i), (ii) are satisfied if and only if (6)–(8) hold. In this case, the conditions Definition 3.1(iii)–(v) are satisfied. Therefore (11) is a parameter array over \(\mathbb{F}\) if and only if (5)–(8) hold. Let the matrices \(A, A^*\) be from (11). For \(0 \leq r \leq d\) define \(u_r \in \mathbb{F}^{d+1}\) that has \(i\)th entry

\[
(u_r)_i = (-1)^{r+i}c^{d-r}q^{(d+r-i)(d-r+i-1)/2} \prod_{h=0}^{d+r-i-1} (q^{d-h} - q^{h-d}) \prod_{h=0}^{r-1} (b' - acq^{2h-d+1}) \prod_{h=0}^{d-i-1} (b' - acq^{2h-d+1})
\]

for \(0 \leq i \leq d\). One routine verifies that

\[
\begin{align*}
Au_r &= \theta_r u_r + u_{r+1} \\
&= (0 \leq r \leq d - 1),
\end{align*}
\]

\[
\begin{align*}
Au_d &= \theta_d u_d, \\
&= (0 \leq r \leq d - 1),
\end{align*}
\]

Therefore the matrices representing \(A, A^*\) with respect to \(\{u_r\}_{r=0}^d\) are as in (10). By these comments and Lemma 3.2, \(A, A^*\) is a Leonard pair with parameter array (11) if and only if (5)–(8) hold. In this case, observe that \(y_i z_i \neq 0\) for \(1 \leq i \leq d\). The results follow. \(\square\)
5 The Askey-Wilson relations

For the rest of the paper we assume \(d \geq 3 \). In this section we recall the Askey-Wilson relations for a Leonard pair. Consider a Leonard pair \(A, A^* \) on \(V \) with parameter array \((11)\) and fundamental parameter \(\beta \). Note that \(\beta \) is well-defined by our assumption \(d \geq 3 \).

By Lemma \((2.1)\) there exist scalars \(\gamma, \gamma^*, \varrho, \varrho^* \) such that
\[
\gamma = \theta_{i-1} - \beta \theta_i + \theta_{i+1} \quad (1 \leq i \leq d-1), \tag{31}
\]
\[
\gamma^* = \theta_{i-1}^* - \beta \theta_i^* + \theta_{i+1}^* \quad (1 \leq i \leq d-1), \tag{32}
\]
\[
\varrho = \theta_{i-1}^2 - \beta \theta_{i-1} \theta_i + \theta_i^2 - \gamma(\theta_{i-1} + \theta_i) \quad (1 \leq i \leq d), \tag{33}
\]
\[
\varrho^* = \theta_{i-1}^{*2} - \beta \theta_{i-1}^* \theta_i^* + \theta_i^{*2} - \gamma^*(\theta_{i-1}^* + \theta_i^*) \quad (1 \leq i \leq d). \tag{34}
\]

Lemma 5.1 \((11)\) Theorem 1.5] \(\) There exist scalars \(\omega, \eta, \eta^* \) such that both
\[
A^2 A^* - \beta AA^* A + A^* A^2 - \gamma(AA^* + A^* A) - \varrho A^* = \gamma^* A^2 + \omega A + \eta I, \quad (35)
\]
\[
A^{*2} A - \beta A^* AA^* + AA^{*2} - \gamma^*(AA^* + AA^*) - \varrho^* A = \gamma A^{*2} + \omega A^* + \eta^* I. \quad (36)
\]

The scalars \(\omega, \eta, \eta^* \) are uniquely determined by \(A, A^* \).

The relations \((35)\) and \((36)\) are known as the Askey-Wilson relations. Below we describe the scalars \(\omega, \eta, \eta^* \). Define scalars \(\{a_i\}_{i=0}^d \) and \(\{a_i^*\}_{i=0}^d \) by
\[
a_i = \theta_i + \frac{\varphi_i}{\theta_i^* - \theta_i} + \frac{\varphi_{i+1}}{\theta_i^* - \theta_{i+1}} \quad (1 \leq i \leq d-1),
\]
\[
a_0 = \theta_0 + \frac{\varphi_1}{\theta_0^* - \theta_1}, \quad a_d = \theta_d + \frac{\varphi_d}{\theta_d^* - \theta_{d-1}},
\]
\[
a_i^* = \theta_i^* + \frac{\varphi_i}{\theta_i - \theta_{i-1}} + \frac{\varphi_{i+1}}{\theta_i - \theta_{i+1}} \quad (1 \leq i \leq d-1),
\]
\[
a_0^* = \theta_0^* + \frac{\varphi_1}{\theta_0 - \theta_1}, \quad a_d^* = \theta_d^* + \frac{\varphi_d}{\theta_d - \theta_{d-1}}.
\]

For notational convenience, define \(\theta_{-1}, \theta_{d+1} \) (resp. \(\theta_{-1}^*, \theta_{d+1}^* \)) so that \((31)\) (resp. \((32)\)) holds for \(i = 0 \) and \(i = d \). Let the scalars \(\omega, \eta, \eta^* \) be from Lemma 5.1.

Lemma 5.2 \((11)\) Theorem 5.3] \(\) With the above notation,
\[
\omega = a_i^*(\theta_i - \theta_{i+1}) + a_{i-1}^*(\theta_{i-1} - \theta_{i-2}) - \gamma^*(\theta_{i-1} + \theta_i) \quad (1 \leq i \leq d), \tag{37}
\]
\[
\eta = a_i^*(\theta_i - \theta_{i-1})(\theta_i - \theta_{i+1}) - \gamma^* \theta_i^2 - \omega \theta_i \quad (0 \leq i \leq d), \tag{38}
\]
\[
\eta^* = a_i(\theta_i^* - \theta_{i-1}^*)(\theta_i^* - \theta_{i+1}^*) - \gamma \theta_i^{*2} - \omega \theta_i^* \quad (0 \leq i \leq d). \tag{39}
\]

Let \(q \) be a quantum parameter of \(A, A^* \), and assume \(q \) is not a root of unity. Let \(a, a^*, a', b, b', \xi \) be scalars that satisfy \((15)-(18)\).
Lemma 5.3 With the above notation, assume $\alpha = 0$ and $\alpha^* = 0$. Then

$$
\begin{align*}
\gamma &= 0, & \gamma^* &= 0, \\
\varrho &= -aa'(q^2 - q^{-2})^2, \\
\varrho^* &= -bb'(q^2 - q^{-2})^2, \\
\omega &= (q - q^{-1})^2 ((q^{d+1} + q^{-d-1})\xi - (a + a')(b + b')), \\
\eta &= -(q - q^{-1})(q^2 - q^{-2}) ((a + a')\xi - ad'(b + b')(q^{d+1} + q^{-d-1})), \\
\eta^* &= -(q - q^{-1})(q^2 - q^{-2}) ((b + b')\xi - bb'(a + a')(q^{d+1} + q^{-d-1})).
\end{align*}
$$

Proof. The lines (30)–(32) follows from Lemma 2.3. The lines (33)–(35) are routinely verified.

\[\square\]

6 Evaluating the Askey-Wilson relations

Let $\{\theta_i\}_{i=0}^d$, $\{x_i\}_{i=0}^d$, $\{y_i\}_{i=0}^d$, $\{z_i\}_{i=0}^d$ be scalars such that $y_i z_i \neq 0$ for $1 \leq i \leq d$. Consider the matrices A, A^* from (1), and assume A, A^* is a Leonard pair in $\text{Mat}_{d+1}(\mathbb{F})$ with fundamental parameter β and quantum parameter q that is not a root of unity. In this section we evaluate the Askey-Wilson relations to obtain some relations between the entries of A and A^*. For each matrix in $\text{Mat}_{d+1}(\mathbb{F})$ we index the rows and columns by $0, 1, \ldots, d$.

Lemma 6.1 With the above notation, $\{\theta_i\}_{i=0}^d$ is a standard ordering of the eigenvalues of A.

Proof. Clearly $\{\theta_i\}_{i=0}^d$ is an ordering of the eigenvalues of A. Compute the $(i-1, i+1)$-entry of (36) for $1 \leq i \leq d - 1$ to find

$$y_i y_{i+1}(\theta_{i-1} - \beta \theta_i + \theta_{i+1}) = y_i y_{i+1} \gamma.$$

So $\gamma = \theta_{i-1} - \beta \theta_i + \theta_{i+1}$ for $1 \leq i \leq d - 1$. Compute the $(0, 1)$-entry of (36) to find

$$y_0(\theta_0^2 - \beta \theta_0 \theta_1 + \theta_1^2 - \gamma(\theta_0 + \theta_1)) = y_0 \varrho.$$

So $\varrho = \theta_0^2 - \beta \theta_0 \theta_1 + \theta_1^2 - \gamma(\theta_0 + \theta_1)$. By these comments and Lemma 2.4 we find the result. \[\square\]

Let $\{\theta_i^*\}_{i=0}^d$ be a standard ordering of the eigenvalues of A^*. Let α, a, a' (resp. α^*, b, b') be scalars that satisfy (15) (resp. (16)). We assume $\alpha = 0$ and $\alpha^* = 0$. Let the scalars γ, γ^*, ϱ, ϱ^* be from (31)–(34). Let $\{\varphi_i\}_{i=1}^d$ (resp. $\{\phi_i\}_{i=1}^d$) be the first split sequence (resp. second split sequence) of A, A^* associated with the ordering $\{\theta_i\}_{i=0}^d$, $\{\theta_i^*\}_{i=0}^d$. Let ξ be a scalar that satisfies (17) and (18). Let the scalars ω, η, η^* be from Lemma 5.1. Note that the scalars γ, γ^*, ϱ, ϱ^*, ω, η, η^* are written as in (36)–(45).
Lemma 6.2 With the above notation, after replacing q with q^{-1} if necessary,

$$z_i = z_1 q^{2-2i} \quad (1 \leq i \leq d). \quad (46)$$

Proof. Compute the $(i+1, i-2)$-entry of (35) to find

$$z_{i-1} - \beta z_i + z_{i+1} = 0 \quad (2 \leq i \leq d-1). \quad (47)$$

By (47) for $i = 2$

$$z_3 = \beta z_2 - z_1. \quad (48)$$

Compute the $(3, 0)$-entry of (36) to find

$$z_1 z_2 - \beta z_1 z_3 + z_2 z_3 = 0.$$

In this equation, eliminate z_3 using (48), and simplify the result using $\beta = q^2 + q^{-2}$ to find

$$(z_2 - q^2 z_1)(z_2 - q^{-2} z_1) = 0.$$

So either $z_2 = z_1 q^2$ or $z_2 = z_1 q^{-2}$. After replacing q with q^{-1} if necessary, we may assume $z_2 = z_1 q^{-2}$. Now the result follows from this and (47). \square

For the rest of this section, we choose q that satisfies (46).

Lemma 6.3 With the above notation, for $1 \leq i \leq d-1$

$$q^{-3} x_{i-1} - (q + q^{-1}) x_i + q^3 x_{i+1} = 0. \quad (49)$$

Proof. Compute the $(i+1, i-1)$-entry of (36) to find

$$z_i z_{i+1} (\theta_{i-1} - \beta \theta_i + \theta_{i+1}) + x_i (z_i + z_{i+1}) + x_{i-1} (z_i - \beta z_{i+1}) + x_{i+1} (z_{i+1} - \beta z_i) = 0.$$

In this equation, the first term is zero by (31). Simplify the remaining terms using (46) to find

$$(50)$$

Lemma 6.4 With the above notation, for $1 \leq i \leq d-1$

$$x_{i-1} - \beta x_i + x_{i+1} = a' q^{d-2i-1}(q^2 - q^{-2})(q^3 - q^{-3}) z_i. \quad (50)$$

Proof. Compute $(i+1, i-1)$-entry of (35) to find

$$x_{i-1} - \beta x_i + x_{i+1} + \theta_{i-1} (z_{i+1} - \beta z_i) + \theta_i (z_i + z_{i+1}) + \theta_{i+1} (z_i - \beta z_{i+1}) = 0.$$

In this line, eliminate z_{i+1} using (46), and simplify the result using (15) to find (50). \square

For notational convenience, define $y_0 = 0$ and $y_{d+1} = 0$.

10
Lemma 6.5 With the above notation, for $1 \leq i \leq d$

\[y_{i-1} - \beta y_i + y_{i+1} = (\theta_{i-2} - \theta_{i-1})x_{i-1} + (\theta_{i+1} - \theta_i)x_i + \omega. \]

(51)

Proof. Compute the $(i, i-1)$-entry of (35) to find

\[z_i(\theta_{i-1}^2 - \beta\theta_{i-1}\theta_i + \theta_i^2 - \theta) + y_{i-1} - \beta y_i + y_{i+1} = (\beta\theta_{i-1} - \theta_{i-1} - \theta_i)x_{i-1} + (\beta\theta_i - \theta_{i-1} - \theta_i)x_i + \omega. \]

Simplify this using (31) and (33) to get (51).

Lemma 6.6 With the above notation, for $1 \leq i \leq d$

\[x_{i-1}^2 - \beta x_{i-1}x_i + x_i^2 - \theta^* = (q + q^{-1})(q^{-1}y_{i-1} - (q + q^{-1})y_i + qy_{i+1})z_i. \]

(52)

Proof. Compute the $(i, i-1)$-entry of (36), and simplify the result using (46) to find that the left-hand side of (52) is equal to z_i times

\[q^{-2}y_{i-1} - 2y_i + q^2y_{i+1} + (\beta\theta_{i-1} - \theta_{i-1} - \theta_i)x_{i-1} + (\beta\theta_i - \theta_{i-1} - \theta_i)x_i + \omega. \]

Using (31) one finds that the above expression is equal to

\[q^{-2}y_{i-1} - 2y_i + q^2y_{i+1} + (\beta\theta_{i-2} - \theta_{i-2} - \theta_i)x_{i-1} + (\beta\theta_{i+1} - \theta_i)x_i + \omega. \]

Using Lemma 6.5 one finds that z_i times the above expression is equal to the right-hand side of (52).

Lemma 6.7 With the above notation,

\[(\theta_0 - \beta\theta_0 + \theta_1)y_1 = ((\beta - 2)\theta_0^2 + \theta)x_0 + \omega\theta_0 + \eta, \]

(53)

\[(\theta_{d-1} + \theta_d - \beta\theta_d)y_d = ((\beta - 2)\theta_d^2 + \theta)x_d + \omega\theta_d + \eta. \]

(54)

Proof. Compute the $(0, 0)$-entry and the (d, d)-entry of (35).

Lemma 6.8 With the above notation,

\[((1 - \beta)x_0 + x_1 + (\theta_0 - \theta_2)z_1)y_1 = (\beta - 2)\theta_0 x_0^2 + \omega x_0 + \theta^* \theta_0 + \eta^*. \]

(55)

Proof. Compute the $(0, 0)$-entry of (36) to find

\[(2 - \beta)\theta_0 x_0^2 + (1 - \beta)x_0 y_1 + x_1 y_1 + (2\theta_0 - \beta\theta_1)y_1 z_1 - \omega x_0 - \theta^* \theta_0 - \eta^* = 0. \]

By (31) $2\theta_0 - \beta\theta_1 = \theta_0 - \theta_2$. By these comments we find (55).

\[\Box \]
7 Obtaining the entries of \(A^* \)

Let \(\{\theta_i\}_{i=0}^d, \{x_i\}_{i=0}^d, \{y_i\}_{i=1}^d, \{z_i\}_{i=1}^d \) be scalars such that \(y_i z_i \neq 0 \) for \(1 \leq i \leq d \). Consider the matrices \(A, A^* \) from (1), and assume \(A, A^* \) is a Leonard pair in \(\text{Mat}_{d+1}(\mathbb{F}) \). In this section we obtain the entries of \(A^* \).

By Lemma 6.1 \(\{\theta_i\}_{i=0}^d \) is a standard ordering of the eigenvalues of \(A \). Let \(\{\theta_i^*\}_{i=0}^d \) be a standard ordering of the eigenvalues of \(A^* \). Let \(\beta \) (resp. \(q \)) be the fundamental parameter (resp. quantum parameter) of \(A, A^* \), and assume \(q \) is not a root of unity. Let \(\alpha, a, a' \) (resp. \(\alpha^*, b, b' \)) be scalars that satisfy (15) (resp. (16)). We assume \(\alpha = 0 \) and \(\alpha^* = 0 \). Let \(\{\phi_i\}_{i=1}^d \) (resp. \(\{\phi_i^*\}_{i=1}^d \)) be the first split sequence (resp. second split sequence) of \(A, A^* \) associated with the ordering \(\{\theta_i\}_{i=0}^d, \{\theta_i^*\}_{i=0}^d \). Let \(\xi \) be a scalar that satisfies (17) and (18). Let \(\gamma, \gamma^*, q, \eta \) be from (31)–(34), and the scalars \(\omega, \eta, \eta^* \) be from Lemma 5.1. Note that these scalars are written as in Lemma 5.3.

Lemma 7.1 With the above notation,

\[
x_i = q^{-2i}x_0 - a'z_1q^{d-3i+1}(q + q^{-1})(q^i - q^{-i}) \quad (0 \leq i \leq d).
\]

Proof. Routinely obtained from (50) for \(i = 1 \) and (59) for \(i = 1, 2, \ldots, d - 1 \). \(\Box \)

Lemma 7.2 With the above notation, for \(1 \leq i \leq d \), \(y_i \) is equal to \(q^{-i}(q^i - q^{-i}) \) times

\[
\begin{align*}
& a^2 q^{2d-i+3}(q^{i-1} - q^{-1}) z_1 + aa' q(q + q^{-1}) z_1 + bb' q^{-2}(q^i + q^{-i}) z_1^{-1} \\
& - q^{-i}(aq^{i-d-1} + a' q^{d-i+1}) x_0 - (q^{d+1} + q^{-d-1}) \xi + (a + a')(b + b').
\end{align*}
\]

Proof. Obtained from (52) for \(i = 1 \) and (53) for \(i = 1, 2, \ldots, d - 1 \) using Lemma 7.1. \(\Box \)

We first consider the case that \(a \neq a' q^{2d+2} \) and \(a' \neq a q^{2d+2} \).

Lemma 7.3 With the above notation, assume \(a \neq a' q^{2d+2} \). Then

\[
\xi = q^d(aa' q z_1 + bb' q^{-1} z_1^{-1}) - aqx_0 + a(b + b') q^{d+1}.
\]

Proof. In (53), eliminate \(y_1 \) using Lemma 7.2 and simplify the result to find

\[
q^{-d-1}(q - q^{-1})(q^2 - q^{-2})(aq^{-d-1} - a'q^{d+1}) \\
\times (\xi - q^d(aa' q z_1 + bb' q^{-1} z_1^{-1}) + aqx_0 - a(b + b') q^{d+1}) = 0.
\]

By this and \(aq^{-d-1} \neq a'q^{d+1} \) we find (57). \(\Box \)
Lemma 7.4 With the above notation, assume \(a \neq a' q^{2d+2} \) and \(a' \neq a q^{2d+2} \). Then
\[
x_0 = a'(q^d - q^{-d})z_1 + (b + b')q^d,
\]
\[
\xi = aa'q^{1-d}z_1 + bb'q^{d-1}z_1^{-1}.
\]

Proof. In (57), eliminate \(x_d \) and \(y_d \) using Lemmas 7.1 and 7.2. Then eliminate \(\xi \) using (57). Simplify the result using (15) and Lemma 5.3 to find
\[
x_0 - a'(q^d - q^{-d})z_1 - (b + b')q^d = 0.
\]
We have \(a' \neq a q^{2d+2} \); otherwise \(\theta_{d-1} = \theta_d \). By our assumption \(a' \neq a q^{2d+2} \). By these comments we get (58). Line (59) follows from (57) and (58).

Lemma 7.5 With the above notation, assume \(a \neq a' q^{2d+2} \) and \(a' \neq a q^{2d+2} \). Then
\[
x_i = (b + b')q^{d-2i} - a'q^{1-2i}(q^{i+1} + q^{d-i} - q^{d-2i-1})z_1 \quad (0 \leq i \leq d),
\]
\[
y_i = q^{d-i}(q^i - q^{-i})(q^{d-i+1} - q^{-d+i})z_1 \quad (0 \leq i \leq d),
\]
\[
z_i = q^{2-2i}z_1 \quad (1 \leq i \leq d).
\]

Proof. The values of \(x_i \) and \(y_i \) are obtained from Lemmas 7.1, 7.2 and (58). The value of \(z_i \) is given in Lemma 6.2.

Next consider the case \(a = a' q^{2d+2} \). Note that \(a \neq 0 \) in this case; otherwise \(\theta_i = 0 \) for \(0 \leq i \leq d \).

Lemma 7.6 With the above notation, assume \(a = a' q^{2d+2} \). Then
\[
x_0 = aq^{-d-2}(1 + q^2 - q^{-2d})z_1 + a^{-1}bb'q^{3d}z_1^{-1} - a^{-1}q^{2d+1}z_1^{-1} + (b + b')q^d.
\]

Proof. In (51) for \(i = d \), eliminate \(y_{d-1}, y_d, x_{d-1}, x_d \) using Lemmas 7.1 and 7.2. Then simplify the result to find that
\[
-ax_0 + a^2q^{-d-2}(1 + q^2 - q^{-2d})z_1 + bb'q^{3d}z_1^{-1} - q^{2d+1}z_1^{-1} + (b + b')q^d
\]
is zero. The result follows.

Lemma 7.7 With the above notation, assume \(a = a' q^{2d+2} \). Then at least one of the following (i)–(iii) holds:
(i) \(z_1 = -a^{-1}bq^{2d} \).
(ii) \(z_1 = -a^{-1}b'q^{2d} \).
(iii) \(\xi = a^2q^{-3d-1}z_1 + bb'q^{d-1}z_1^{-1} \).

Proof. In (55), eliminate \(x_1 \) and \(y_1 \) using Lemmas 7.1 and 7.2. Then eliminate \(x_0 \) using Lemma 7.3 to find that \(z_1^{-1}q^{-d-1}(q - q^{-1})(q^2 - q^{-2}) \) times
\[
(b + az_1q^{-2d})(b' + az_1q^{-2d})(aq^{-2d}z_1 + a^{-1}bb'q^{2d}z_1^{-1} - a^{-1}q^{d+1}z_1^{-1}
\]
is zero. The result follows.
Lemma 7.8 With reference to Lemma 7.7, assume (i) holds. Then
\[x_i = -a^{-1}q^{2d-2i+1}\xi + bq^{-2i-1}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1}) \quad (0 \leq i \leq d), \]
\[y_i = q^{d-2i-1}(q^i - q^{i-1})(q^{d-i+1} - q^{d-i-1})(q^{d+1}\xi + abq^{-2i} + ab'q^{2i}) \quad (1 \leq i \leq d), \]
\[z_i = -a^{-1}bq^{2d-2i+2} \quad (1 \leq i \leq d). \]

Proof. The values of \(x_i \) and \(y_i \) are obtained from Lemmas 7.1, 7.2, 7.6. The value of \(z_i \) is given in Lemma 6.2.

Lemma 7.9 With reference to Lemma 7.7, assume (ii) holds. Then
\[x_i = -a^{-1}q^{2d-2i+1}\xi + b'q^{-2i-1}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1}) \quad (0 \leq i \leq d), \]
\[y_i = q^{d-2i-1}(q^i - q^{i-1})(q^{d-i+1} - q^{d-i-1})(q^{d+1}\xi + abq^{2i} + ab'q^{-2i}) \quad (1 \leq i \leq d), \]
\[z_i = -a^{-1}b'q^{2d-2i+2} \quad (1 \leq i \leq d). \]

Proof. Similar to the proof of Lemma 7.8.

Lemma 7.10 With reference to Lemma 7.7, assume (iii) holds. Then
\[x_i = (b + b')q^{d-2i} - aq^{-2d-2i-1}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1})z_1 \quad (0 \leq i \leq d), \]
\[y_i = q^{d-1}(q^i - q^{i-1})(q^{-d-1} - q^{d-i+1})(b + aq^{-2d-2i}z_1)(b' + aq^{-2d-2i}z_1)z_1^{-1} \quad (1 \leq i \leq d), \]
\[z_i = q^{2-2i}z_1 \quad (1 \leq i \leq d). \]

Proof. Similar to the proof of Lemma 7.8.

Next consider the case \(a' = aq^{2d+2} \). The following lemmas can be shown in a similar way as Lemmas 7.6, 7.10.

Lemma 7.11 With the above notation, assume \(a' = aq^{2d+2} \). Then
\[x_0 = aq^{d+2}z_1 + a^{-1}bb'q^{d-2}z_1^{-1} - a^{-1}q^{d-1}\xi + (b + b')q^d. \]

Lemma 7.12 With the above notation, assume \(a' = aq^{2d+2} \). Then at least one of the following (i)–(iii) holds:
(i) \(z_1 = -a^{-1}bq^{-2} \).
(ii) \(z_1 = -a^{-1}b'q^{-2} \).
(iii) \(\xi = a^2q^{d+3}z_1 + bb'q^{d-1}z_1^{-1} \).

Lemma 7.13 With reference to Lemma 7.12, assume (i) holds. Then
\[x_i = -a^{-1}q^{-2i-1}\xi + bq^{2d-2i+1}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1}) \quad (0 \leq i \leq d), \]
\[y_i = q^{3d-2i-3}(q^i - q^{i-1})(q^{d-i+1} - q^{d-i-1})(q^{d-1}\xi + abq^{2d-2i+2} + ab'q^{2i-2d-2}) \quad (1 \leq i \leq d), \]
\[z_i = -a^{-1}bq^{-2i} \quad (1 \leq i \leq d). \]
Lemma 7.14 With reference to Lemma 7.12, assume (ii) holds. Then
\[
x_i = -a^{-1}q^{-2i-1}\xi + b'q^{2d-2i+1}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1}) \quad (0 \leq i \leq d),
\]
\[
y_i = q^{3d-2i+3}(q^{i} - q^{-i})(q^{i+1} - q^{-d-1})(q^{d-1}\xi + abq^{2i-2d-2} + ab'q^{2d-2i+2}) \quad (1 \leq i \leq d),
\]
\[
z_i = -a^{-1}b'q^{-2i} \quad (1 \leq i \leq d).
\]

Lemma 7.15 With reference to Lemma 7.12, assume (iii) holds. Then
\[
x_i = (b + b')q^{d-2i} - aq^{2d-2i+3}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1})z_1 \quad (0 \leq i \leq d),
\]
\[
y_i = q^{d-1}(q^{i} - q^{-i})(q^{i-d-1} - q^{-d-1})(q^{d-1}\xi + abq^{2d-2i+4}z_1)(b' + aq^{2d-2i+4}z_1)z_1^{-1} \quad (1 \leq i \leq d),
\]
\[
z_i = q^{2-2i}z_1 \quad (1 \leq i \leq d).
\]

8 Proof of Theorem 1.11

Let A, A^* be a Leonard pair on V with parameter array (11). Let q be a quantum parameter of A, A^*, and assume q is not a root of unity. Let α, α^*, a, a', b, b', ξ be scalars that satisfy (15)–(18).

Proposition 8.1 With the above notation, assume at least two of aa', bb', ξ are nonzero. Then A, A^* is isomorphic to the Leonard pair given in Proposition 1.7 for some nonzero scalar c.

Proof. Without loss of generality, we assume $\alpha = 0$ and $\alpha^* = 0$. By Lemma 3.3 there exists a nonzero scalar c that satisfies (29) and (30). Using conditions (i) and (ii) in Definition 3.4, one checks that the scalars a, a', b, b', c satisfy the inequalities (3–8). By Proposition 1.9 the Leonard pair from Proposition 1.7 has the same parameter array as A, A^*. By this and Lemma 3.2 A, A^* is isomorphic to the Leonard pair given in Proposition 1.7.

Lemma 8.2 With the above notation, assume A, A^* has LB-TD form. Then at least one of aa', bb' is nonzero.

Proof. Without loss of generality, we may assume A, A^* is an LB-TD pair in Mat$_{d+1}(\mathbb{F})$. In view of Lemma 6.11 we may assume that A is the matrix from (1) after replacing $\{\theta_i\}_{i=0}^d$ with $\{\theta_{d-i}\}_{i=0}^d$ if necessary. Write A^* as in (11), and note that $y_iz_i \neq 0$ for $1 \leq i \leq d$. In view of Note 1.6 we may assume $\alpha = 0$ and $\alpha^* = 0$. We show that at least one of aa', bb' is nonzero. By way of contradiction, we assume $aa' = 0$ and $bb' = 0$. Note that $a' \neq a'q^{2d+2}$ and $a' \neq aq^{2d+2}$; otherwise both $a = 0$ and $a' = 0$ by $aa' = 0$. Let $\{\phi_i\}_{i=1}^d$ (resp. $\{\phi_i\}_{i=1}^d$) be the first split sequence (resp. second split sequence) of A, A^* associated with the ordering $\{\theta_i\}_{i=0}^d, \{\theta_i\}_{i=0}^d$. Let ξ be a scalar that satisfies (17) and (18). By (59) $\xi = 0$. By this and (17), (18)
\[
\varphi_1 = (q - q^{-1})(q^{d} - q^{-d})(abq^{1-d} + a'b'q^{d-1}),
\]
\[
\phi_1 = (q - q^{-1})(q^{d} - q^{-d})(a'bq^{1-d} + ab'q^{d-1}).
\]
Note that $\varphi_1 \neq 0$ and $\phi_1 \neq 0$ by Lemma 3.2(ii). So
\[abq^{1-d} + a'b'q^{d-1} \neq 0, \quad a'bk^{1-d} + ab'q^{d-1} \neq 0. \]
Therefore, if $a = 0$ then both $b' \neq 0$ and $b \neq 0$, and if $a' = 0$ then both $b \neq 0$ and $b' \neq 0$. This contradicts $bb' = 0$. The result follows.

Lemma 8.3 With the above notation, assume A, A^* has LB-TD form. Assume either $a = a'q^{2d+2}$ or $a' = aq^{2d+2}$. Then at least one of bb', ξ is nonzero.

Proof. Without loss of generality, we may assume A, A^* is an LB-TD pair in $\text{Mat}_{d+1}(F)$. In view of Lemma 5.1 we may assume that A is the matrix from (1) after replacing $\{\theta_i\}_{i=0}^d$ with $\{\theta_{d-i}\}_{i=0}^d$ if necessary. Write A^* as in (1), and note that $y_i z_i \neq 0$ for $1 \leq i \leq d$. In view of Note 1.6 we may assume $\alpha = 0$ and $\alpha^* = 0$. First consider the case $a = a'q^{2d+2}$. Note that $aa' \neq 0$; otherwise $\theta_0 = \theta_1$. By Lemma 7.7 at least one of (i)–(iii) holds. First assume (iii) holds. Then at least one of bb', ξ is nonzero; otherwise $a_z = 0$. Next assume (i) holds. By way of contradiction, assume both $bb' = 0$ and $\xi = 0$. We must have $b' = 0$ since $b \neq 0$ by $0 \neq z_1 = -a^{-1}bk^{2d}$. By these comments and Lemma 7.8
\[
x_i = bq^{2i-1}(q^{d+1} + q^{-d-1} - q^{d-2i-1} - q^{d-2i+1}) \quad (0 \leq i \leq d),
y_i = abq^{-d-4i-1}(q^i - q^{-i})(q^{d-i+1} - q^{-d-i}) \quad (1 \leq i \leq d),
z_i = -a^{-1}bk^{2d-2i+2} \quad (1 \leq i \leq d).
\]
We claim that $\det A^* = 0$. To see the claim, for $0 \leq k \leq d$ we define $(k+1) \times (k+1)$ matrix M_k that consists of the rows $0, 1, \ldots, k$ and columns $0, 1, \ldots, k$ of A^*. So
\[
M_0 = (x_0), \quad M_1 = \begin{pmatrix} x_0 & y_1 \\ z_1 & x_1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} x_0 & y_1 & 0 \\ z_1 & x_1 & y_2 \\ 0 & z_2 & x_2 \end{pmatrix}, \quad \ldots \quad M_d = A^*.
\]
Using induction on $k = 0, 1, \ldots, d$ one routinely finds that
\[
\det M_k = b^{k+1}q^{-(k+1)(d+k+2)} \prod_{\ell=0}^k (1 - q^{2d-2\ell}) \quad (0 \leq k \leq d).
\]
Thus $\det M_d = 0$ and the claim is proved. By elementary linear algebra, $\det A^* = \theta_0^* \theta_1^* \cdots \theta_d^*$. So $A^* \neq 0$ since $\theta_i^* = bq^{2i-d}$ for $0 \leq i \leq d$. This contradicts the claim. We have shown that at least one of ξ, bb' is nonzero for the case of (i). Next assume (ii) holds in Lemma 7.7. We can show the assertion in a similar way as above. We have shown the assertion for the case of $a = a'q^{2d+2}$. The proof is similar for the case of $a' = aq^{2d+2}$.

Proof of Theorem 1.11 (i)⇒(ii): By Lemma 8.2 at least one of aa', bb' is nonzero. First assume $a \neq a'q^{2d+2}$ and $a' \neq aq^{2d+2}$. By Lemma 7.4 $\xi = aa'q^{1-d}z_1 + bb'q^{d-1}z_1^{-1}$. If one of aa', bb' is zero, then $\xi \neq 0$. Thus at least two of aa', bb', ξ are nonzero. Next assume $a = a'q^{2d+2}$ or $a' = aq^{2d+2}$. In this case $aa' \neq 0$; otherwise $\theta_0 = \theta_1$. Moreover, at least one of bb', ξ is nonzero by Lemma 8.3. Thus at least two of aa', bb', ξ are nonzero.

(ii)⇒(i): Follows from Proposition 8.1.
9 Proof of Theorem 1.10

Proof of Theorem 1.10. Consider sequences of scalars \(\{ \theta_i \}_{i=0}^d, \{ y_i \}_{i=1}^d, \{ z_i \}_{i=1}^d \) such that \(y_i z_i \neq 0 \) for \(1 \leq i \leq d \), and consider the matrices \(A, A^* \) from (1). Assume \(A, A^* \) is an LB-TD Leonard pair in \(\text{Mat}_{d+1}(F) \) with quantum parameter \(q \) that is not a root of unity. By Lemma 6.1 \(\{ \theta_i \}_{i=0}^d \) is a standard ordering of the eigenvalues of \(A \). Let \(\{ \theta_i^* \}_{i=0}^d \) be a standard ordering of the eigenvalues of \(A^* \). Let \(\beta \) (resp. \(q \)) be the fundamental parameter (resp. quantum parameter) of \(A, A^* \), and assume \(q \) is not a root of unity. Let \(\alpha, a, a^* \) (resp. \(\alpha^*, b, b^* \)) be scalars that satisfy (15) (resp. (16)). We may assume \(\alpha = 0 \) and \(\alpha^* = 0 \).

Let \(\{ \varphi_i \}_{i=1}^d \) (resp. \(\{ \phi_i \}_{i=1}^d \)) be the first split sequence (resp. second split sequence) of \(A, A^* \) associated with the ordering \(\{ \theta_i \}_{i=0}^d, \{ \theta_i^* \}_{i=0}^d \). Let \(\xi \) be a scalar that satisfies (17) and (18). Note that at least two of \(aa^*, bb^*, \xi \) are nonzero by Theorem 1.11 and so Lemma 3.3 applies.

First consider the case that \(a \neq a'q^{2d+2} \) and \(a' \neq aq^{2d+2} \). By Lemma 7.7 the scalars \(\{ x_i \}_{i=0}^d, \{ y_i \}_{i=1}^d, \{ z_i \}_{i=1}^d \) are written as in Lemma 7.9. Setting \(z_1 = -cq^{d-1} \) in these expressions, we obtain (3)–(5).

Next consider the case \(a = a'q^{2d+2} \). By Lemma 7.7 at least one of (i)–(iii) holds in that lemma. First assume (i) holds. By Lemma 7.13 the scalars \(\{ x_i \}_{i=0}^d, \{ y_i \}_{i=1}^d, \{ z_i \}_{i=1}^d \) are written as in Lemma 7.8. Setting \(\xi = -aa'c - bb'c^{-1} \) in these expressions, and replacing \(b, b', c \) with \((acq^{d-1}, a^{-1}bb'c^{-1}q^{d-1}, a^{-1}bq^{d-1}) \), we obtain (3)–(5). Next assume (ii) holds. Observe the expressions in Lemma 7.9 are obtained from the expressions in Lemma 7.8 by exchanging \(b \) and \(b' \). Now proceed as above after exchanging \(b \) and \(b' \). Next assume (iii) holds. By Lemma 7.10 the scalars \(\{ x_i \}_{i=0}^d, \{ y_i \}_{i=1}^d, \{ z_i \}_{i=1}^d \) are written as in Lemma 7.10. Setting \(z_1 = -cq^{d-1} \) in these expressions, we obtain (3)–(5).

Next consider the case \(a' = aq^{2d+2} \). By Lemma 7.12 at least one of (i)–(iii) holds in that lemma. First assume Lemma 7.12(i) holds. By Lemma 7.13 the scalars \(\{ x_i \}_{i=0}^d, \{ y_i \}_{i=1}^d, \{ z_i \}_{i=1}^d \) are written as in Lemma 7.13. Setting \(\xi = -aa'c - bb'c^{-1} \) in these expressions, and replacing \(b, b', c \) with \((acq^{d+1}, a^{-1}bb'c^{-1}q^{-d-1}, a^{-1}bq^{-d-1}) \), we obtain (3)–(5). Next assume Lemma 7.12(ii) holds. Observe the expressions in Lemma 7.14 are obtained from the expressions in Lemma 7.13. Now proceed as above after exchanging \(b \) and \(b' \). Next assume Lemma 7.12(iii) holds. By Lemma 7.15 the scalars \(\{ x_i \}_{i=0}^d, \{ y_i \}_{i=1}^d, \{ z_i \}_{i=1}^d \) are written as in Lemma 7.15. Setting \(z_1 = -cq^{d-1} \) in these expressions, we obtain (3)–(5).

We have shown that there exist scalars \(\alpha, \alpha^*, a, a', b, b', c \) with \(c \neq 0 \) that satisfy (3)–(5). By the construction, (2) holds. By Proposition 1.7 these scalars satisfy the inequalities (6)–(8).

\[
(\{ \theta_i \}_{i=0}^d, \{ \theta_i^* \}_{i=0}^d, \{ \varphi_i \}_{i=1}^d, \{ \phi_i \}_{i=1}^d)
\]

10 Types of Leonard pairs

Let \(A, A^* \) be a Leonard pair on \(V \) with quantum parameter \(q \) that is not a root of unity. Let

\[
(\{ \theta_i \}_{i=0}^d, \{ \theta_i^* \}_{i=0}^d, \{ \varphi_i \}_{i=1}^d, \{ \phi_i \}_{i=1}^d)
\]
be a parameter array of A, A^*. By \[7, \text{Lemma 9.2}\] there exist scalars $\alpha, \alpha^*, a, a', b, b'$ such that

$$
\theta_i = \alpha + aq^{2i-d} + a'q^{d-2i} \quad (0 \leq i \leq d),
$$

$$
\theta_i^* = \alpha^* + bq^{2i-d} + b'q^{d-2i} \quad (0 \leq i \leq d).
$$

By \[6, \text{Lemma 13.1}\] there exists a scalar ξ such that

$$
\varphi_i = (q^i - q^{-1})(q^{i-d-1} - q^{d-i+1})(\xi + abq^{2i-d-1} + a'b'q^{d-2i+1}) \quad (1 \leq i \leq d),
$$

$$
\phi_i = (q^i - q^{-1})(q^{i-d-1} - q^{d-i+1})(\xi + a'qb^{2i-d-1} + ab'q^{d-2i+1}) \quad (1 \leq i \leq d).
$$

By \[10, \text{Section 35}\], according to the values of a, a', b, b', ξ, the Leonard pair A, A^* has one of the following types:

a	a'	b	b'	ξ	Name
$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$	any	q-Racah
0	$\neq 0$	$\neq 0$	$\neq 0$	$\neq 0$	q-Hahn
$\neq 0$	0	$\neq 0$	$\neq 0$	$\neq 0$	dual q-Hahn
$\neq 0$	$\neq 0$	$\neq 0$	0	$\neq 0$	quantum q-Krawtchouk
0	$\neq 0$	$\neq 0$	0	$\neq 0$	q-Krawtchouk
$\neq 0$	0	$\neq 0$	$\neq 0$	$\neq 0$	affine q-Krawtchouk
$\neq 0$	$\neq 0$	0	$\neq 0$	$\neq 0$	dual q-Krawtchouk
$\neq 0$	$\neq 0$	0	$\neq 0$	$\neq 0$	dual q-Krawtchouk

By Theorem [11] A, A^* has LB-TD form if and only if at least two of aa', bb', ξ are nonzero. Therefore we obtain:

Corollary 10.1 Let A, A^* be a Leonard pair on V with quantum parameter q that is not a root of unity. Then the following (i) and (ii) are equivalent:

(i) A, A^* has LB-TD form.

(ii) A, A^* has one of the types: q-Racah, q-Hahn, dual q-Hahn.

11 Acknowledgments

The author thanks the referee for many insightful comments that lead to great improvements in the paper.
References

[1] B. Curtin, Modular Leonard triples, Linear algebra Appl. 424 (2007) 510-539.

[2] B. Hartwig, Three mutually adjacent Leonard pairs, Linear Algebra Appl. 408 (2005) 19–39; arXiv:math.AC/0508415

[3] H. Huang, The classification of Leonard triples of QRacah type, Linear Algebra Appl. 439 (2013) 1834–1861; arXiv:1108.0548

[4] T. Ito, H. Rosengren, P. Terwilliger, Evaluation modules for the q-tetrahedron algebra, Linear Algebra Appl. 451 (2014) 107–166; arXiv:1308.3480

[5] K. Nomura and P. Terwilliger, Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair, Linear Algebra Appl. 420 (2007) 198–207; arXiv:math.RA/0605316

[6] K. Nomura, P. Terwilliger, Affine transformations of a Leonard pair, Electron. J. of Linear Algebra 16 (2007) 389-418; arXiv:math/0611783

[7] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl. 330 (2001) 149–203; arXiv:math/0406555

[8] P. Terwilliger, Two relations that generalize the q-Serre relations and the Dolan-Grady relations, in: Physics and Combinatorics 1999 (Nagoya) 377-398. World Scientific Publishing, River Edge, NJ, 2001; arXiv:math/0307016

[9] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the $TD-D$ canonical form and the $LB-UB$ canonical form, J. Algebra 291 (2005) 1–45; arXiv:math/0304077

[10] P. Terwilliger, An algebraic approach to the Askey scheme of orthogonal polynomials, Orthogonal polynomials and special functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, pp. 255–330; arXiv:math/0408390.

[11] P. Terwilliger, R. Vidunas, Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004) 411–426; arXiv:math/0305356.

Kazumasa Nomura
Professor Emeritus
Tokyo Medical and Dental University
Kohnodai, Ichikawa, 272-0827 Japan
email: knomura@pop11.odn.ne.jp

Keywords. Leonard pair, tridiagonal pair, Askey-Wilson relation, orthogonal polynomial

2010 Mathematics Subject Classification. 05E35, 05E30, 33C45, 33D45