Reflexiones sobre la ingeniería genética: a propósito del nacimiento de gemelas sometidas a edición génica

Patricio Santillán-Doherty,1* Patricia Grether-González,2 María de Jesús Medina-Arellano,3 Sarah Chan,4 Ricardo Tapia-Ibargüengoitía,5 Ingrid Brenes-Sesma,3 Raymundo Canales-De la Fuente,2 Jorge Linares-Salgado,6 Héctor Mendoza-Cárdenas,7 Luis Muñoz-Fernández8 y Rafaella Schiavon9; Colegio de Bioética

1Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México; 2Laboratorio Diagen SC, Ciudad de México, México; 3Universidad Nacional Autónoma de México, Instituto de Investigaciones Jurídicas, Ciudad de México, México; 4Universidad de Edimburgo, Edimburgo, Reino Unido; 5Universidad Nacional Autónoma de México, Instituto de Fisiología Celular, Ciudad de México, México; 6Universidad Nacional Autónoma de México, Facultad de Filosofía y Letras, Ciudad de México, México; 7Universidad Autónoma de Nuevo León, Nuevo León, México; 8Centenario Hospital Miguel Hidalgo, Aguascalientes, México; 9Ipas México, Ciudad de México, México

Resumen

En este ensayo se analizan las implicaciones bioéticas de la reciente manipulación genética en embriones humanos con CRISPR-Cas9 para eliminar el gen CCR5 y el nacimiento de dos gemelas discordantes. El experimento se divulgó en medios sociales. Los principales problemas bioéticos identificados son la justificación del modelo, el proceso de consentimiento informado y la falta de declaración de evidentes conflictos de interés. No se evaluaron apropiadamente las consecuencias del experimento sobre la vida de las gemelas nacidas como la afectación a su autonomía, los supuestos beneficios por recibir y los riesgos futuros de daño durante su vida. Habiendo manipulado la línea celular germinal, no se consideraron los efectos sobre su descendencia futura. Éste tipo de acciones tiene un impacto negativo en la forma como la sociedad concibe la ciencia. La ingeniería genética debe reservarse al contexto experimental básico o bien como investigación clínica para la corrección de enfermedades conocidas graves de origen genético, bajo estricta supervisión regulatoria y bioética y de manera gradualista de acuerdo con el progreso de las técnicas de edición genética.

PALABRAS CLAVE: Edición genética. CRISPR-Cas9. Bioética.

Considerations on genetic engineering: regarding the birth of twins subjected to gene edition

Abstract

In this essay, the bioethical implications of the recent genetic manipulation in human embryos with CRISPR-Cas9 to eliminate the CCR5 gene and the birth of a pair of discordant twin girls are analyzed. The experiment was disseminated via social media. The main bioethical flaws identified include the justification of the model, the informed consent process and the lack of disclosure of evident conflicts of interest. The consequences of the experiment on the life of the twins that were born were not properly evaluated, such as the impact on their autonomy, the alleged benefits to be received and the future risks of harm during their lifetime. Having manipulated the germ cell line, the effects on their future offspring were not considered. This type of actions negatively affects the way society conceives science. Genetic engineering should be reserved to the basic experimental context or as clinical research for the correction of known serious diseases of genetic origin under strict regulatory and bioethical supervision and using a gradualist approach in accordance with the advances of gene editing techniques.

KEY WORDS: Gene editing. CRISPR-Cas9. Bioethics.
Introducción

A fines de noviembre de 2018 se dio a conocer una noticia en la cual se declaraba que un par de gemelas nacidas unas semanas antes habían sido sometidas a ingeniería genética (cirugía genética, según el promotor) mediante la aplicación de la técnica CRISPR-Cas9, cuando se encontraban en etapa embrionaria y con el supuesto de protegerlas en contra del virus de la inmunodeficiencia humana (VIH) que portaba su padre.

En México, en el Colegio de Bioética hemos establecido una discusión reflexiva y analítica sobre el caso en particular y, más ampliamente, sobre la ingeniería genética en el ámbito biomédico. En este escrito presentamos los principales argumentos y reflexiones derivadas de dicha discusión.

Los seres humanos hemos aprendido a manipular las características genéticas de los seres vivos desde hace miles de años, aún sin saber cómo y por qué se dan dichos cambios. La agricultura y la domesticación de algunas especies de animales no humanos son ejemplos claros (el teocintle es poco reconocible como planta originaria del maíz actual). El conocimiento científico ha permitido entender los mecanismos mediante los cuales se dan estos fenómenos evolutivos.

La ingeniería genética reúne diversas herramientas y técnicas que sirven para hacer, de forma muy precisa, adiciones, delecciones y alteraciones al ADN; uno de sus objetivos es modificar genes específicos responsables de alteraciones funcionales en los seres vivos, incluidos los humanos. Si bien estas técnicas se practican en cualquier célula viva (vegetal o animal), en este documento se comenta exclusivamente la edición genómica en células humanas.

Actualmente es factible modificar algunos genes responsables de alteraciones que resultan en enfermedades, lo que se conoce como terapia génica. Sin embargo, se reconoce que la factibilidad de algo siempre debe ser sometida a revisión reflexiva que permita justificar el “porqué”, “para qué” y “cuándo” de algo de lo que únicamente sabemos el “cómo” (y a medias). Poder hacer algo no implica necesariamente deber hacerlo.

Documentos internacionales y nacionales relativos al genoma humano

Hace más de 20 años se establecieron el Convenio para la Protección de los Derechos Humanos y la Dignidad del Ser Humano con Respecto a las Aplicaciones de la Biología y la Medicina (Convenio de Oviedo, 4 de abril de 1997) y la Declaración Universal sobre Genoma y Derechos Humanos de la United Nations Educational, Scientific and Cultural Organization (UNESCO, 11 de noviembre de 1997). Ambos documentos establecen el respeto de la dignidad humana por encima de las aplicaciones que pudieran generarse al respecto y restringen la modificación del genoma humano únicamente por razones diagnósticas o terapéuticas “...y solo cuando no tengan por finalidad la introducción a una modificación en el genoma de la descendencia” (artículo 13 del Convenio).

En la Ley General de Salud de México se considera que el estudio, investigación y desarrollo del genoma humano es materia de salubridad general y la Secretaría de Salud será la encargada de establecer los casos en los que se requiera control en la materia, asegurándose de no limitar la libertad en la investigación (título quinto bis). Por otra parte, en el Código Penal para el Distrito Federal se establece la sanción de quienes, con finalidad distinta a la eliminación o disminución de enfermedades graves o taras, manipulen genes humanos de manera que alteren el genotipo (artículo 154).

Clasificación del uso de la ingeniería genética

En la actualidad, el uso potencial de las técnicas de ingeniería genética se da en cuatro contextos que ameritan consideraciones ético-regulatorias diferenciadas.2

1. **Investigación básica**: uso de la edición genómica para esclarecer el mecanismo de los procesos biológicos en la enfermedad humana y su tratamiento. Existen provisiones éticas y regulatorias establecidas para vigilar la edición genómica humana mediante modelos in vitro en laboratorio (v. g.: registro de protocolos de investigación, evaluación y aprobación por comités ad hoc sobre el proceso de investigación, vigilancia de resultados, presentación de datos ante pares, publicación de reportes finales, etcétera).

2. **Aplicación clínica en células somáticas**: uso de la modificación genómica con objeto de tratar o prevenir enfermedades o discapacidad (v. g.: “corregir” células de distintos tejidos humanos, exceptuando células germinales). Además de las provisiones mencionadas en el punto anterior, el uso en células somáticas debe realizarse en el...
contexto de ensayos clínicos limitados al tratamiento y la prevención de enfermedad o discapacidad, con evaluación continua de la seguridad y la eficacia, en un contexto de valoración de los riesgos/beneficios esperados y dentro de un marco de transparencia.

3. **Aplicación clínica en células germinales**: este uso genera mayor preocupación por el hecho de estar modificando el genoma de células cuyos cambios pueden ser heredados, en otras palabras, que se induzcan modificaciones integradas al genoma humano y distribuidas en la población sin conocer adecuadamente los efectos que puedan tener. Exige mayor cuidado en cuanto a seguridad y efectos no anticipados, ya que puede impactar importantemente en los seres humanos desde un punto de vista individual, pero también como especie. Desde el punto de vista bioético, la modificación genómica de células germinales puede afectar principios como el de autonomía (en la medida en que los herederos de la modificación no deciden sobre dicha inclusión en su genoma), de beneficencia/no-maleficencia (la ponderación de los potenciales beneficios con los daños o riesgos que representa) y, finalmente, la justicia (distribución inequitativa de los beneficios, riesgos y daños de la población, afectando o beneficiando a partes de la sociedad inequitativamente). En este sentido, el consenso internacional recomienda su uso exclusivamente en situaciones cuyo propósito solo sea el tratamiento o prevención de enfermedad o discapacidad seria (sobre todo en situaciones en las que no se conozca otra alternativa), bajo supervisión estricta y siguiendo criterios muy específicos.

4. **Mejoramiento humano**: se refiere al uso de estas tecnologías para provocar cambios celulares en situaciones donde no existe enfermedad y las capacidades funcionales de la persona son normales, mediante el “mejoramiento humano” (por ejemplo, incremento de la masa muscular para tener más fuerza, incremento de las capacidades de cognición, modificaciones estéticas). El uso de estas tecnologías fuera del contexto del tratamiento de enfermedades o discapacidades se considera impropio en la actualidad, en tanto no se tenga más información sobre los riesgos y efectos secundarios potenciales y no se pueda evaluar el impacto sobre los principios de autonomía, beneficencia/no-maleficencia y justicia.

El sistema CRISPR-CAS9

Un avance importante en las técnicas de ingeniería genética deriva de la descripción de las secuencias del ADN con “repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas” (CRISPR, clustered regularly interspaced short palindromic repeats), encontradas originalmente en bacterias.\(^3\) El ARN producido con estas secuencias, en conjunto con una enzima llamada Cas (cellular apoptosis susceptibility), como el Cas-9\(^4\), actúan como una “tijera” para cortar el ADN en sitios específicamente determinados y constituyen lo que se conoce como el sistema CRISPR-Cas9, más eficiente, barato y fácil de utilizar que otras estrategias de edición genética.

Por otro lado, la técnica del CRISPR-Cas9 ha sido ampliamente utilizada en la modificación de genes en organismos unicelulares, plantas, animales no humanos, células humanas somáticas e, incluso, embriones humanos (sin fines reproductivos). El interés que suscita el CRISPR-Cas9 en la medicina humana deriva de la posibilidad de modificar células inmunológicas para atacar células cancerosas y desarrollar tratamientos para curar enfermedades genéticas como la anemia falciforme, enfermedad de Huntington, distrofia muscular, fibrosis quística, cardiomiopatía hipertrófica congénita, entre otras, así como crear células más resistentes a distintas infecciones (por ejemplo, las que se desencadenan por el virus de la inmunodeficiencia humana, VIH).

El experimento chino y su problemática científico ética

El 25 de noviembre de 2018 en las redes sociales fue publicado un video donde el investigador He Jiankui (Universidad del Sur de Ciencia y Tecnología en Shenzhen, China) anunció el nacimiento “unas semanas antes” de dos gemelas que en etapa embrionaria fueron sometidas a edición genética mediante tecnología de CRISPR-Cas9 para inactivar el gen CCR5.\(^5\)

Este gen CCR5 codifica para la proteína membranal CCR5, la cual es necesaria para que el VIH se introduzca al linfocito CD4 y lo infecte. El padre de las gemelas es positivo para el VIH, mientras que la madre no lo es y ambos deseaban procrear pero temían la posibilidad de transmisión del VIH a su descendencia. Por esta razón acudieron a evaluar la posibilidad de usar la técnica de fertilización *in vitro* (FIV) con inyección intracitoplásmica de espermas...
lavados (ICSI), para generar un embrión que después fuera transferido al útero de la madre para su gestación.

El doctor He, sin embargo, en lugar de seguir los procedimientos recomendados para obtener embriones libres del virus, los manipuló vía CRISPR-Cas9 para lograr la modificación del gen CCR5. Ninguno de los procedimientos utilizados por He son técnicamente novedosos. Desde luego, las técnicas de reproducción asistida como la FIV con ICSI son utilizadas clínicamente en todo el mundo desde hace años; asimismo, el procedimiento de lavado seminal se usa ampliamente para separar y obtener espermatozoides móviles libres del virus de VIH. Existen experiencias con la técnica de CRISPR-Cas9 en embriones de diversas especies, incluso en embriones humanos. Estas técnicas apenas se están evaluando en cuanto a sus potenciales repercusiones y riesgos a corto y largo plazo, por lo que la discusión bioética gira en torno a la transferencia intrauterina de los embriones genéticamente modificados. Los principales problemas bioéticos identificables en el “experimento” descrito por He son los siguientes:

a) Diseño experimental problemático. Uno de los problemas es que el doctor He experimentó en humanos (desde su etapa embrionaria), es decir, transfirió embriones humanos manipulados con la técnica de CRISPR-Cas9, al útero de mujeres para ser gestados. Este experimento ya técnicamente se inscribe dentro de la categoría de aplicación clínica con fines reproductivos en células embrionarias y contraviene las recomendaciones de consenso publicadas desde 2015 por un grupo de expertos en edición genética. El doctor He informó de otras gestaciones, pero se desconocen los datos. Las gemelas deben ser consideradas como un experimento en sí mismas y no solo como producto de un experimento. Los efectos de la manipulación genética a la que fueron sometidas aún deben pasar la prueba del tiempo en cuanto a los supuestos efectos benéficos esperados en las bebés y en su futura descendencia, lo que solo el seguimiento en el tiempo podrá identificar. Los beneficios teóricos (v. g.: protección contra infección por VIH) solo pueden ser confirmados mediante la exposición no protegida a la infección con VIH, lo que a su vez sería bioéticamente inaceptable.

b) No se hizo lo que se dijo que iba a hacer. El experimento de He tiene el problema de que no corrigió un defecto genético, sino que eliminó un gen; las gemelas resultaron discordantes (una sin los dos alelos del gen [knock-out completo] y la otra con un alelo [knock-out parcial]). Se sabe que personas con mutaciones del gen CCR5 existen naturalmente en la población y que presentan resistencia a la infección por el VIH, lo cual fue el fundamento teórico de la manipulación realizada por He. Sin embargo, estas mutaciones pueden predisponer a otras infecciones o incrementar su gravedad (por ejemplo, virus del oeste del Nilo o la influenza). Además, en el experimento de las gemelas se desconoce si la “edición genética” (o cirugía genética como eufemísticamente le llaman los investigadores involucrados) se logró en todas las células del embrión o solo en cierto número de ellas (mosaicismo) y si el efecto del CRISPR-Cas9 en dichas células se dio solamente en la posición del gen CCR5 o si hubo otros sitios del ADN sometidos al mismo efecto (efecto off-target o “fuera de objetivo”, que solo puede determinarse mediante una secuenciación del genoma completo de las bebés, cosa que no se realizó).

c) Justificación médica inválida. No hay justificación médica sobre las razones para realizar el experimento. La razón expuesta a los padres fue “hacer inmune a sus hijas a la infección por VIH”, lo cual es engañoso ya que el bloqueo o ausencia del CCR5 no provee inmunidad, sino que hace al huésped no susceptible a la infección (el virus no puede introducirse a las células). Además, los padres no requerían lo que les ofrecieron, ya que existen recomendaciones establecidas y altamente efectivas para generar hijos o hijas libres de VIH de padres infectados (lavado de esperma, profilaxis preexposición [highly active antiretroviral treatment]).

d) Presentación de hechos publicitariamente. El conocimiento científico adquiere un valor progresivo cuando los datos que sustentan las investigaciones son sometidos al escrutinio por sus pares, son sometidos a prueba y los resultados pueden obtenerse de nuevo en las mismas condiciones. Esto generalmente se realiza mediante comunicaciones cortas en congresos y reuniones científicas o mediante la publicación en revistas científicas, previa revisión y aprobación por pares. En este caso se desconocen los datos experimentales específicos y no se ha generado comunicación científica al respecto. He prefirió el
Santillán-Doherty P, et al.: Edición genética en células embrionarias

uso de medios sociales cibernéticos (YouTube) en un formato sensacionalista y engañoso.

e) Proceso de consentimiento informado inadecuado. El proceso de consentimiento informado es primordial para la participación de sujetos humanos en proyectos experimentales y se arraiga en el respeto a la autonomía y dignidad de las personas. El proceso de consentimiento pareciera estar sesgado hacia los intereses del investigador y ser engañoso, al ofrecer a los padres algo más allá de sus posibilidades demostradas y ocultar información sobre los riesgos y la incertidumbre de los beneficios potenciales. Se desconoce si a los padres se les aclaró que en realidad estaban tomando una decisión sustituta por sus hijas, si se percataron que esta era para toda la vida y que incluye a su descendencia potencial. En otras palabras, se trasgredieron los intereses futuros de las bebés sin un consentimiento realmente informado de sus padres, quienes supuestamente aceptaron el experimento.

f) Faltas ético-regulatorias graves. El proceso de registro del protocolo parece haber sido muy blando, con poca información sobre lo que realmente se pretendía hacer (gestar embriones manipulados genéticamente) y con lenguaje de carácter triunfalista (según escribieron en el registro del protocolo: “la investigación será más significativa que la técnica de FIV, la cual obtuvo el Premio Nobel 2010”). El hospital donde se realizó el procedimiento clínico de transferencia e implantación embrionaria y donde finalmente se supone nacieron las bebés, publicó una declaración negando su participación y mencionando que “las firmas de aprobación del protocolo por su Comité de Ética Médica fueron falsificadas”. Todo lo anterior contraviene los principios de transparencia, apertura y revisión por pares a los que se compromete el proceso científico en la actualidad, y genera la percepción en la sociedad de que el proceso científico es poco serio e, incluso, fraudulento debido a laxitud en la regulación y que solo se busca la ganancia económica o mediática.

g) Conflictos de interés serios no declarados. Finalmente, el investigador He presenta serios conflictos de interés que no declaró, al ser accionista de siete compañías de alta tecnología en genética y representante legal en seis más, posiblemente involucradas en el experimento.

Impacto del “caso HE” en la ingeniería genética y las tecnologías de edición genómica

La edición genómica mediante las técnicas del CRISPR-Cas9 y otras similares es una herramienta muy prometedora con alto potencial para eliminar, controlar o mitigar enfermedades diversas. Poder curar enfermedades monogenéticas como la enfermedad de Huntington, la enfermedad de Tay-Sachs o la fibrosis quística, es no solo permisible sino deseable. Ya existen ensayos clínicos para utilizar esta tecnología en la desactivación del gen de la proteína PD-1 para tratar pacientes con cáncer de pulmón, próstata, vejiga y riñón. Se está explorando la edición del gen ApoE para controlar la enfermedad de Alzheimer y se pretende manipular el mismo gen CCR5 para mejorar el control del VIH (en células somáticas de pacientes con VIH, no en células embrionarias). Recientemente se publicó que este gen CCR5 es un blanco terapéutico para la regeneración nerviosa y la recuperación funcional después de accidente vascular cerebral y de lesión cerebral traumática.

Conclusiones

Satanizar la investigación científica (básica y clínica) por casos como el referido es un efecto negativo que se debe evitar. El análisis de la problemática coincide con otros publicados y es un llamado de atención al medio científico a reconocer la importancia de los aspectos bioéticos en la realización de proyectos de esta índole. En virtud de lo anterior y considerando que se trata de un tema relevante que afecta a la ciencia en México, se proponen las siguientes consideraciones finales:

1. La edición genómica debe aplicarse de manera gradual, de tal forma que responda al estado de la evidencia científica existente. Su uso en investigación básica y su empleo terapéutico en células somáticas debe permitirse y estimularse siguiendo lineamientos éticos existentes, en forma transparente ante estructuras de revisión establecidas y debidamente registradas (comités de investigación, comités de ética en investigación, Comisión Nacional de Bioética, etcétera).

2. El uso en células germinales solo debe permitirse en el contexto de la resolución de enfermedades o discapacidad grave, bajo registro y supervisión especial, así como con el consentimiento.
ampliamente informado de los padres, en tanto los potenciales riesgos y efectos secundarios a corto y largo plazo y con alcance transgeneracional (modificación genómica heredable) no sean determinados por otros medios (postura similar a otras publicadas15-18).

3. La aplicación de estas tecnologías a la medicina humana debe efectuarse en instituciones académicas con capacidad probada (recursos humanos y de equipamiento), con líneas claras de investigación y fuera de posibles conflictos de interés. El uso de la edición genética debe responder a un interés científico y médico genuino y sus investigadores deben estar libres de potenciales conflictos de interés, sean estos de carácter económico, industrial, político o de notoriedad mediática.

4. La comunidad científica tiene una obligación ética de ser transparente ante la sociedad y dar a conocer los hechos y datos que constata, así como explicar las metodologías que utiliza con el objeto de elevar la cultura científica y hacer notar a la sociedad en general, y a los tomadores de decisiones en particular, la diferencia que dicho conocimiento científico tiene con respecto de otros conocimientos derivados de dogmas, supersticiones, tradiciones y costumbres.

5. Debe evitarse la introducción de políticas públicas y normas regulatorias que inhiban o sean contrarias a la actividad científica y médica en el ámbito de la edición genómica en humanos, bajo los lineamientos expuestos anteriormente.

Bibliografía

1. Chari R, Church GM. Beyond editing to writing large genomes. Nat Rev Genet. 2017;18:749-760.
2. Committee on Human Gene Editing. Human genome editing. Science, ethics and governance. EE. UU.: National Academy of Sciences/National Academy of Medicine; 2017.
3. Mojica FJ, Diez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of archaеa, bacteria and mitochondria. Mol Microbiol. 2000;36:244-246.
4. Jinek M, Chylinski K, Fontara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816-821.
5. He Jiankui. About Lulu and Nana: twin girls born healthy after gene surgery as single-cell embryos [video en línea]. YouTube; 2018.
6. Baltimore D, Berg P, Botchan M, Carroll D, Chao A, Church G, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348:36-38.
7. Lim JK, McDermott DH, Lisco A, Foster GA, Krzyztof D, Follmann D, et al. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection, but not for viral transmission. J Infect Dis. 2010;201:178-185.
8. Falcon A, Cuevas MT, Rodriguez-Frandsen A, Reyes N, Pozo F, Moreno S, et al. CCR5 deficiency predisposes to fatal outcome in influenza virus infection. J Gen Virol. 2015;96:2074-2078.
9. Kawwass JE, Smith DK, Kissin DM, Haddad LB, Border SL, Sunderam S, Jameson DJ. Strategies for preventing HIV infection among HIV-uninfected women attempting conception with HIV-infected men. MMWR Mortal Wkly Rep. 2017;66:554-557.
10. Nie JB. He Jiankui’s genetic misadventure: why him? why China? [en línea]. EE. UU.: The Hastings Center Bioethics Forum; 2018.
11. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;539:479.
12. Lu Y, Xue J, Deng T, Zhou X, Yu K, Huang M, et al. A phase I trial of PD-1 deficient engineered T cells with CRISPR-Cas9 in patients with advanced non-small cell lung cancer. J Clin Oncol. 2018;36:3050.
13. Joy MT, Ben-Assayag E, Shabashov-Stone D, Liraz-Zaltman S, Mazzi-telli J, Arenas M, et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell. 2019;176:1143-1157.
14. Savulescu J, Singer P. An ethical pathway for gene editing. Bioethics. 2019;33:221-222.
15. Lander E, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al. Adopt a moratorium on heritable genome editing. Nature. 2019;567:165-168.
16. Dzau VJ, McNutt M, Ramakrishnan V. Academies’ action plan for germline editing. Nature. 2019;567:175.
17. Wolinetz CD, Collins FS. NIH pro germline editing moratorium. Nature. 2019;567:175.
18. Santaló J, Casado M (coordinadores). Documento sobre bioética y edición genómica en humanos. España: Observatorio de Bioética y Derecho/Universidad de Barcelona; 2016.
Anexo. Miembros del Colegio de Bioética

1. Asunción Álvarez Del Río, Universidad Nacional Autónoma de México (UNAM), Ciudad de México.
2. Gerardo Barroso Villa, Instituto Nacional de Perinatología, Ciudad de México.
3. Roberto Blancarte Pimentel, Colegio de México, Ciudad de México.
4. Alma Luz Beltrán y Puga, Universidad de los Andes, Bogotá, Colombia.
5. Ingrid Brena Sesma, Instituto de Investigaciones Jurídicas, UNAM, Ciudad de México.
6. Raymundo Canales De la Fuente, Instituto Nacional de Perinatología, Ciudad de México.
7. Pauline Capdevielle, Instituto de Investigaciones Jurídicas, UNAM, Ciudad de México.
8. Sarah Chan. Universidad de Edimburgo, Reino Unido.
9. Juan Antonio Cruz Parcero, Instituto de Investigaciones Filosóficas, UNAM, Ciudad de México.
10. Amelia Gascón Cervantes, Universidad Autónoma de Nayarit, Nayarit.
11. Patricia Grether González, Instituto Nacional de Perinatología, Ciudad de México.
12. Robert T. Hall, Universidad Autónoma de Querétaro, Querétaro, México
13. Arnoldo Kraus Weissman, Facultad de Medicina, UNAM, Ciudad de México.
14. Jorge Linares Salgado, Facultad de Filosofía y Letras, UNAM, Ciudad de México.
15. María de Jesús Medina Arellano, Instituto de Investigaciones Jurídicas, UNAM, Ciudad de México.
16. Héctor Mendoza Cárdenas, Universidad Autónoma de Nuevo León, Nuevo León.
17. Pedro Morales Aché, Medilex, Ciudad de México.
18. Luis Muñoz Fernández, Centenario Hospital Miguel Hidalgo, Aguascalientes, Aguascalientes
19. Gustavo Ortiz Millán, Instituto de Investigaciones Filosóficas, UNAM, Ciudad de México.
20. Alberto Palacios Boix, Hospital Ángeles Pedregal, Ciudad de México.
21. César Palacios González, Universidad de Oxford, Reino Unido
22. Ruy Pérez Tamayo, Facultad de Medicina, UNAM, Ciudad de México.
23. Mina Piekarewicz Sigal, Universidad de Barcelona, España
24. Samuel Ponce de León Rosales, Facultad de Medicina, UNAM
25. Sergio Ponce de León Rosales, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Ciudad de México.
26. Eunice Rendón Cárdenas, Colegio de Bioética, Ciudad de México.
27. Paulina Rivero Weber, Programa Universitario de Bioética, UNAM, Ciudad de México.
28. Angelina Rodríguez Torres, Universidad Autónoma de Querétaro, Querétaro.
29. Beatriz Salazar Vázquez, Universidad Juárez del Estado de Durango, Durango.
30. Patricio Santillán Doherty, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México.
31. Rafaela Schiavon, Colegio de Bioética, Ciudad de México.
32. Ricardo Tapia Ibargüengoitía, Instituto de Fisiología Celular (Neurociencias), UNAM, Ciudad de México.
33. Beatriz Vanda Cantón, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México.
34. Rodolfo Vázquez Cardozo, Instituto Tecnológico Autónomo de México, Ciudad de México.