Is the Rush to Machine Learning Jeopardizing Safety?
Results of a Survey

Mehrhoosh Askarpour, Alan Wassyng, Mark Lawford, Richard Paige, and Zinovy Diskin
McMaster University, Hamilton, Canada
{askarpom,diskinz,lawford,paigeri,wassyng}@mcmaster.ca

Abstract. Machine learning (ML) is finding its way into safety-critical systems (SCS). Current safety standards and practice were not designed to cope with ML techniques, and it is difficult to be confident that SCSs that contain ML components are safe. Our hypothesis was that there has been a rush to deploy ML techniques at the expense of a thorough examination as to whether the use of ML techniques introduces safety problems that we are not yet adequately able to detect and mitigate against. We thus conducted a targeted literature survey to determine the research effort that has been expended in applying ML to SCSs compared with that spent on evaluating the safety of SCSs that deploy ML components. This paper presents the (surprising) results of the survey.

Keywords: Literature Survey · Safety-critical · Machine learning · Safety.

1 Introduction

Machine learning (ML) is rapidly being incorporated in the design of safety-critical systems (SCS) for many different purposes such as object recognition, computer vision, and navigation. The ability to solve complex problems while improving performance is a primary reason for the prevalent and ever-growing use of ML.

Working in the safety domain, we have an uneasy feeling about this rapid shift, since the current practices and regulations in various domains (such as ISO 26262 for road vehicles and ISO 10218 for robotic systems) are not adequate to tackle the complexities and data-driven nature of ML based systems, as they are not developed based on requirements, design trace-ability or functional needs. We started by exploring the existing literature on safety and ML. Our initial findings escalated our uneasiness, because we inferred that more research was done on integrating ML in safety-critical systems (SCS) compared with assessing the safety of those integrated components. Thus, we decided to perform a targeted literature review to determine whether or not this is true. This paper reports the results of our literature review.

Our evaluation of the current state of the art suggests three main research directions in the domain of ML and SCSs: (C1) ML for the design of SCSs, (C2) the safety of systems that contain ML components, and (C3) using ML techniques to analyse the safety of SCSs that may or may not embed ML components. The three classes are not
strictly separable and overlap in different ways. In particular, C1 and C3 are similar in that they both discuss the application of ML in SCSs, while C2 is about coping with ML components that are already embedded in SCSs. In our analysis we found papers that, regardless of the super/sub class relationships of the three classes, tackle the issues that are covered in more than one of them (see Table 3.)

We provide statistical analysis on the current research directions and compare the dedicated attention to C1, C2, and C3. In particular – and this may be seen as a limitation of this research – we chose a set of relevant venues as a statistical population and investigated the number of publications in each of them (see Table 1). We hoped to see, despite our intuition, that the same amount of effort applied to all of them.

Acronym	Venue Name	Safety	Software Engineering and Model-Driven Engineering	Machine Learning	Transportation
SAFECOMP	Int. Conference on Computer Safety, Reliability, and Security	SAFECOMP Int. Conference on Computer Safety, Reliability, and Security	MODELS Int. Conference on Model Driven Engineering Languages and Systems	ICML Int. Conference on Machine Learning	IV IEEE Intelligent Vehicles Symposium
ISSRE	IEEE Int. Symposium on Software Reliability Engineering	ISSRE IEEE Int. Symposium on Software Reliability Engineering	JSS Journal of Systems and Software	ICMLA Int. Conference on Machine Learning and Applications	ITSC Int. Conference on Intelligent Transportation Systems
RESS	Reliability Engineering & System Safety Journal	RESS Reliability Engineering & System Safety Journal	ASE Automated Software Engineering	IJCAI Int. Joint Conference on Artificial Intelligence	
ICVES	Int. Conference on Vehicular Electronics and Safety	ICVES Int. Conference on Vehicular Electronics and Safety	TSE IEEE Transactions on Software Engineering	NeurIPS Neural Information Processing Systems	
SS	Journal of Safety Science	SS Journal of Safety Science	ICSE - SEAMS Int. Symp. on Software Engineering for Adaptive and Self-Managing Systems	ICLR Int. Conference on Learning Representations	

Table 1. Targeting publication venues. We evaluated ECMFA, other ICSE tracks, and EASE but did not find relevant papers. ICMLA 2020 proceedings are not available as up to Feb. 2020.
2 Research Method

We first precisely defined our research questions, then we defined a methodology to explore the state of the art with a predefined paper inclusion criteria.

Research Questions: Our main research questions are: (RQ1) How many papers discuss C1, C2, and C3 respectively? (RQ2) Is there a large gap between the answers to RQ1? and (RQ3) How have each of the three directions grown or shrunk over the years, and is a larger gap between them plausible in the near future?

Paper Selection and Criteria: Typically, systemic literature reviews conduct a query with certain keywords over one of the reliable academic research databases such as Google Scholar or Scopus. However, we saw one big issue in proceeding as such, and that was choosing a comprehensive enough set of keywords; We could have searched for combinations of “safety” and “machine learning” in titles and abstracts of papers, however the ML domain has several sub-domains (e.g., NN, DL,...) and simply searching for ML could lead to missing out on papers that directly discuss those sub-domains. Besides, listing all the keywords that reflect the sub-domains of ML might be a challenge. So, we decided to select a collection of high quality venues in ML, safety and software engineering domains and to inspect their published papers in the last six years (2015 - 2020). We manually examined the proceedings and volumes of the selected venues listed in Table 1 and analyzed the abstract and introduction section of any paper with a title that contained one of the following keywords:

(“Safety” OR “Certification” OR “Assurance” OR “Risk”) AND (Any ML Keyword including “Bayesian Networks”, “Deep learning”, “Supervised learning”, “Markov Process”)

We suspected that there might be relevant work that does not contain ML keywords in their title, abstract or keywords, so we added those we knew of to the set of our search results, even if they were not a result of our query. Note that we chose venues of Table 1 such that our results would not reflect a single domain. The last two venues were not included in our first round of exploration. Later, in Section 3, we explain why we added two domain specific venues and what we obtained by doing that.

Data Extraction and Analysis: We manually analyzed the proceedings and volumes of the venues listed in Table 1 by searching our query in DBLP and journal homepages. After pruning them based on title and abstraction, we further pruned them by reading their introduction sections. We then fully scanned the remaining papers to confirm their relevance. Figure 2 shows our process steps, and the number of papers analysed in each step, excluding key-notes, posters, invited talks, oral presentations, and reviews.

Ontology: We visualize the ontology of the domain in Figure 1 we envision using this as part of a road-map for possible future research directions. The yellow boxes depict ML used in SCS design. ML algorithms use the execution log histories, accident documentation, performance reports, etc., as the training dataset to create models of the system or components within the system, and to extract uncertainty parameters or draw safety constraints. The red boxes, inspired by Faria et. al., [34], reflect the challenges of ML that potentially affect the safety and reliability of ML systems. Qualifications of the training dataset (i.e., its size, validity, distribution and distributional shift) and how feature selection is performed on it, notoriously affect the driven model and constraints, and might cause over-fitting. Moreover, any mismatch between the generalization and the reality could lead to safety cracks directly or indirectly (i.e., generalizing inadequate
policies or inefficient safety values for safe exploration). The orange boxes show which safety analysis processes could be implemented via ML techniques [132].

![Fig. 1. The ontology of the interdisciplinary area of ML and Safety.](image)

3 Search Results

After applying the methodology explained in Section 2, we found a total of 140 relevant papers (Figure 2), created Table 3 and found the following answers to our questions:

![Fig. 2. The number of papers filtered out during different phases of the adopted research method. The numbers exclude venues IV and ITCS.](image)

Community	Order of focus
Safety	C3(51) > C2(15) > C1(14)
Software Eng.	C3(14) > C2(7) > C1(4)
ML	C1(23) > C2(19) > C3(11)

RQ1: There were 38, 36, and 74 papers for C1, C2, and C3 respectively.

RQ2: The results show a large focus on C3. Note that the number of papers for C3 is almost twice that of C1 or C2 (see Table 3), which means that ML is more often used as an external tool to analyze safety rather than as a safety-critical component. Despite the possible relationship between C2 and C3, there is not a single work that treats them both. Surprisingly, we do not see a large gap between C1 and C2. This is good news – however too good to be true. We suspected that the reason that we did not find more
C1 papers with our query is that many papers discuss the use of ML in a system that is potentially safety critical, or part of a safety critical system, but the main focus of the paper is not safety. Hence, they do not even use “safety-critical” to describe their system of interest. To verify this theory, we decided to pick a couple of venues that are particular to safety critical systems and search only for ML keywords in them with the justification that the importance of “safety” is inherent in those works. We chose IEEE Intelligent Vehicles Symposium (IV) and International Conference on Intelligent Transportation Systems (ITSC) for this purpose. This time, we were not surprised to see that there is a large gap between C1 and C2. In fact, we did not even find one instance of C2 in the last six years of IV, and detected only a couple in proceedings of ITSC. We provided the numbers of papers found in IV and ITSC in Figure 4 and Figure 3 respectively but could not include all the citations due to the space limit.

In the light of this observation and also the results shown in Table 2, we can conclude that: i) there is a large gap between C1 and C2 at least in transportation and autonomous vehicles domains; ii) the same gap might exist in several other safety critical domains which requires a different research scope from the one we chose (i.e., more concentrated on one single domain); iii) ML and software engineering research communities tend to ignore the impact of ML on safety; and iv) the safety community tends to be more cautious about the safety of ML systems, yet focuses more on C3 rather than C2.

RQ3: Figure 5 shows the number of papers about each research direction per year. It is evident that the focus on C3 has been increasing, while the number of C1 and C2 papers has fluctuated over the last six years. Figure 5 shows that there is still a gap between C1 and C2, but it is decreasing over time, indicating that the importance of C2 is being recognized by the community. In particular, in 2020 there was a rise in publications discussing C2. Section 3 also shows that C2 is the second focus of the three communities and has been the focus of more papers than C1. However, as discussed for RQ2, Figure 4 and Figure 3 which are domain specific venues, draw a different picture of the situation where C2 hardly appears. As a further observation, the prevalence of the targeted application domains impacted the most by ML are shown in Figure 6.
Fig. 5. Numbers of papers regarding C1 (blue), C2 (red), and C3 (yellow) per year.

Fig. 6. Distribution of results of our search over various application domains.

Safety	SAFECOMP	C3	[74, 24], [144, 39]
	C2	[18, 40], [15, 83], [97, 66], [12, 100], [129, 127]	
	C1	[101, 88], [16]	
	ISSRE	C2	[15]
	C3	[2]	
	RESS	C3	[31, 4, 140], [149, 39], [107, 33, 131, 56, 72, 143, 26, 748, 133, 31, 141, 145, 50, 45, 43, 40, 72]
	C2	[130]	
	C1	[89], [138]	
	C1 & C3	[54]	
	ICVES	C3	[56]
	C1	[20]	
	SS	C3	[85], [42], [86], [13], [25], [28], [36], [136], [134], [84]
	C1	[33], [19], [39]	

Software Engineering	MODELS	C3	[99]
	C1	[42]	
	C2	[42], [15]	
	C3	[137], [61]	
	C1 & C3	[60]	
	JSS	C3	[3]
	C2	[8], [42]	
	C3 & C1	[52]	
	ASE	C3	[3]
	C2	[22]	
	C1	[122]	
	C3 & C1	[55]	
	TSE	C3	[112], [113], [103]
	[106]		
	SEAMS	C2	[69, 83]
	C3	[93]	

Machine Learning	ICML	C3	[109, 13], [110, 47], [43], [78]
	C1	[4]	
	ICMLA	C3 & C1	[4], [98]
	JICAI	C3	[130], [78], [17], [79], [45]
	C2	[140], [40], [28]	
	C1	[92], [108]	
	C3 & C1	[92]	
	NeurIPS	C2 & C1	[81], [119], [26], [24], [149], [14]
	[111]		
	ICLR	C2	[102]
	C1	[104], [9]	
	C3 & C1	[30]	
	LOD	C3	[20]
	C1	[20]	
	C2	[9], [116], [105]	
	C3 & C1	[20]	

Table 3. The list of venues and 140 papers found over 2015-20, excluding IV and ITSC.
4 Conclusions

This paper provides a targeted literature survey and an analysis of the past six years of published research related to ML and SCS. We targeted highly regarded and relevant conferences and journals to reduce the scope of the survey, but also to be able to make statements about how various research communities have fared regarding ML and SCS. Our original idea was to draw attention to the lack of research on the safety of SCSs that rely on ML components. An interesting outcome of the survey is that our original hypothesis would have been true prior to 2020. It is encouraging that in many application domains, research related to safety of SCSs with embedded ML components is now getting the attention it should. A disconcerting result is that in the automotive domain, if our selected publication venues are representative, almost all the effort is going into ML usage in design of SCSs or in evaluation of safety using ML technology.

References

1. 35th IEEE/ACM Int. Conf. on Automated Software Eng., ASE. IEEE (2020)
2. Proc. of the 37th Int. Conf. on Machine Learning, ICML. Proc. of Machine Learning Research, vol. 119. PMLR (2020)
3. Abdelkader, H.: Towards robust production machine learning systems: Managing dataset shift. In: 35th IEEE/ACM Int. Conf. on Automated Software Eng., ASE [1], pp. 1164–1166
4. Alagoz, I., Hoiss, T., German, R.: Modeling a classifier for solving safety-critical binary classification tasks. In: IEEE Int. Conf. on Machine Learning and Applications (ICMLA). pp. 914–919 (2017)
5. An, D., Liu, J., Zhang, M., Chen, X., Chen, M., Sun, H.: Uncertainty modeling and runtime verification for autonomous vehicles driving control: A machine learning-based approach. J. Syst. Softw. 167, 110617 (2020)
6. Andersen, P., Goodwin, M., Granmo, O.: Safer reinforcement learning for agents in industrial grid-warehousing. In: Nicosia, G., Ojha, V.K., Malfia, E.L., Jansen, G., Sciacca, V., Pardalos, P.M., Giuffrida, G., Umeton, R. (eds.) Machine Learning, Optimization, and Data Science - 6th Int. Conf., Revised Selected Papers, Part II. LNCS, vol. 12566, pp. 169–180. Springer (2020)
7. Arteaga, C., Paz, A., Park, J.: Injury severity on traffic crashes: A text mining with an interpretable machine-learning approach. Saf. Sci. 132, 104988 (2020)
8. Atamtürk, A., Gomez, A.: Safe screening rules for l0-regression from perspective relaxations. In: Proc. of the 37th Int. Conf. on Machine Learning, ICML [2], pp. 421–430
9. Bao, R., Gu, B., Huang, H.: Fast OSCAR and OWL regression via safe screening rules. In: Proc. of the 37th Int. Conf. on Machine Learning, ICML [2], pp. 653–663
10. Barbez, A., Khomh, F., Guéhéneuc, Y.: A machine-learning based ensemble method for anti-patterns detection. J. Syst. Softw. 161 (2020)
11. Berkenkamp, F., Turchetta, M., Schoellig, A.P., Krause, A.: Safe model-based reinforcement learning with stability guarantees. In: Advances in Neural Info. Processing Syst. 30: Annu. Conf. on Neural Info. Processing Syst. pp. 908–918 (2017)
12. Beyene, T.A., Sahu, A.: Rule-based safety evidence for neural networks. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) Computer Safety, Reliability, and Security. SAFECOMP Workshops. pp. 328–335. Springer (2020)
13. Bi, X., Shi, X., Zhang, Z.: Cognitive machine learning model for network information safety. Sfty. Sci. 118, 435 – 441 (2019)
14. Bou-Ammar, H., Tutunov, R., Eaton, E.: Safe policy search for lifelong reinforcement learning with sublinear regret. In: Proc. of the 32nd ICML. pp. 2361–2369 (2015)
15. Bragg, J., Habli, I.: What is acceptably safe for reinforcement learning? In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 418–430. Springer (2018)
16. Braiek, H.B., Khomh, F.: On testing machine learning programs. J. Syst. Softw. 164, 110542 (2020)
17. Brown, D.S., Coleman, R., Srinivasan, R., Niekum, S.: Safe imitation learning via fast bayesian reward inference from preferences. In: Proc. of the 37th Int. Conf. on Machine Learning, ICML [2], pp. 1165–1177
18. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine learning in highly automated driving. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 5–16. Springer (2017)
19. Burton, S., Gauerhof, L., Sethy, B.B., Habli, I., Hawkins, R.: Confidence arguments for evidence of performance in machine learning for highly automated driving functions. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 365–377. Springer (2019)
20. Chandak, Y., Jordan, S.M., Theocarous, G., White, M., Thomas, P.S.: Towards safe policy improvement for non-stationary mdps. In: Larochelle et al. [3]
21. Chaulwar, A., Botsch, M., Utschick, W.: A hybrid machine learning approach for planning safe trajectories in complex traffic-scenarios. In: IEEE Int. Conf. on Machine Learning and Applications (ICMLA), pp. 540–546 (2016)
22. Chen, W., Liu, T., Tang, Y., Xu, D.: Multi-level adaptive coupled method for industrial control networks safety based on machine learning. Sfty. Sci. 120, 268 – 275 (2019)
23. Chow, Y., Nachum, O., Duénez-Guzmán, E.A., Ghavamzadeh, M.: A lyapunov-based approach to safe reinforcement learning. In: Advances in Neural Info. Processing Syst. 31: Annu. Conf. on Neural Info. Processing Syst. pp. 8103–8112 (2018)
24. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty for safe automated driving. In: Gallina et al. [38], pp. 439–445
25. Dai, Y., Tian, J., Rong, H., Zhao, T.: Hybrid safety analysis method based on svm and rst: An application to carrier landing of aircraft. Sfty. Sci. 80, 56 – 65 (2015)
26. Dhib, N., Ghazzai, H., Besbes, H., Massoud, Y.: Extreme gradient boosting machine learning algorithm for safe auto insurance operations. In: IEEE ICVES, pp. 1–5 (2019)
27. Dhulipala, S.L., Flint, M.M.: Series of semi-markov processes to model infrastructure resilience under multihazards. Reliab. Eng. Syst. Saf. 193, 106659 (2020)
28. Dindar, S., Kaewunruen, S., An, M., Sussman, J.M.: Bayesian network-based probability analysis of train derailments caused by various extreme weather patterns on railway turnouts. Sfty. Sci. 110, 20 – 30 (2018), railway Sfty.
29. Duan, C., Makis, V., Deng, C.: A two-level bayesian early fault detection for mechanical equipment subject to dependent failure modes. Reliab. Eng. Syst. Saf. 193, 106676 (2020)
30. Eysenbach, B., Gu, S., Deng, J., Levine, S.: Leave no trace: Learning to reset for safe and autonomous reinforcement learning. In: ICLR, Proc. (2018)
31. Fan, S., Blanco-Davis, E., Yang, Z., Zhang, J., Yan, X.: Incorporation of human factors into maritime accident analysis using a data-driven bayesian network. Reliab. Eng. Syst. Saf. 203, 107070 (2020)
32. Fan, Z., Liu, C., Cai, D., Yue, S.: Research on black spot identification of safety in urban traffic accidents based on machine learning method. Sfty. Sci. 118, 607 – 616 (2019)
33. Fang, W., Tan, X., Wilbur, D.: Application of intrusion detection technology in network safety based on machine learning. Saf. Sci 124, 104604 (2020)
34. Faria, J.M.: Machine learning safety: An overview. In: Proc. of Safety-Critical Sys. Symp. (2018)
35. Ferreira, R.S.: Towards safety monitoring of ml-based perception tasks of autonomous systems. In: IEEE ISSREW. pp. 135–138 (2020)
36. Feth, P., Akram, M.N., Schuster, R., Wasenmüller, O.: Dynamic risk assessment for vehicles of higher automation levels by deep learning. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 535–547. Springer (2018)
37. Freed, M., Burns, B., Heller, A., Sánchez, D., Beaumont-Bowman, S.: A virtual assistant to help dysphagia patients eat safely at home. In: Proc. of Int. Joint Conf. on Info., IJCAI. pp. 4244–4245 (2016)
38. Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.): Computer Sfty., Reliab., and Sec. - SAFECOMP Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and W AISec, Västerås, Proc., LNCS, vol. 11094. Springer (2018)
39. Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli, I.: Assuring the safety of machine learning for pedestrian detection at crossings. In: Casimiro, A., Ortmeyer, F., Bitsch, F., Ferreira, P. (eds.) Computer Sfty., Reliab., and Sec. pp. 197–212. Springer (2020)
40. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine learning function applied to automated driving. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 45–58. Springer (2018)
41. Gharib, M., Bondavalli, A.: On the evaluation measures for machine learning algorithms for safety-critical systems. In: European Dependable Computing Conf. pp. 141–144 (2019)
42. Godoy, J., Karamouzas, I., Guy, S.J., Gini, M.L.: Moving in a crowd: Safe and efficient navigation among heterogeneous agents. In: Proc. of IJCAI 2016, 2016. pp. 294–300 (2016)
43. Guo, L., Zhang, Z., Jiang, Y., Li, Y., Zhou, Z.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: Proc. of the 37th Int. Conf. on Machine Learning, ICML [2], pp. 3897–3906
44. Hartmann, T., Moawad, A., Fouquet, F., Traon, Y.L.: The next evolution of MDE: a seamless integration of machine learning into domain modeling. Softw. Syst. Model. 18(2), 1285–1304 (2019)
45. Heinzmann, L., Shafaei, S., Osman, M.H., Segler, C., Knoll, A.C.: A framework for safety violation identification and assessment in autonomous driving. In: Proc. of the Workshop on Info. Sfty, co-located w. Int. Joint Conf. on AI, AISafety@IJCAI (2019)
46. Honiden, S., Nitto, E.D., Calinescu, R. (eds.): SEAMS '20: IEEE/ACM 15th Int. Symp. on Software Eng. for Adaptive and Self-Managing Systems, Seoul, Republic of Korea, 29 June - 3 July, 2020. ACM (2020)
47. Huang, J., Wu, F., Precup, D., Cai, Y.: Learning safe policies with expert guidance. In: Advances in Neural Info. Processing Syst. 31: Annu. Conf. on Neural Info. Processing Syst. pp. 9123–9132 (2018)
48. Huang, W., Zhang, Y., Kou, X., Yin, D., Mi, R., Li, L.: Railway dangerous goods transportation system risk analysis: An interpretive structural modeling and bayesian network combining approach. Reliab. Eng. Syst. Saf. 204, 107220 (2020)
49. Iamsumang, C., Mosleh, A., Modarres, M.: Monitoring and learning algorithms for dynamic hybrid bayesian network in on-line system health management applications. Reliab. Eng. Syst. Saf. 178, 118 – 129 (2018)
50. Ishikawa, F., Matsuno, Y.: Continuous argument engineering: Tackling uncertainty in machine learning based systems. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 14–21. Springer (2018)
51. Jenn, E., Albore, A., Mamalet, F., Flandin, G., Gabreau, C., Delseney, H., Gaufrin, A., Bonnin, H., Alecu, L., Pirard, J., et al.: Identifying challenges to the certification of machine learning for safety critical systems. In: Proc. of ERTS, Toulouse, France. pp. 29–31 (2020)
52. Jitwasinkul, B., Hadikusumo, B.H., Memon, A.Q.: A bayesian belief network model of organizational factors for improving safe work behaviors in thai construction industry. Safety Sci. 82, 264 – 273 (2016)
53. Kalinina, A., Spada, M., Burgherr, P.: Application of a bayesian hierarchical modeling for risk assessment of accidents at hydropower dams. Safety Sci. 110, 164 – 177 (2018)
54. Khan, B., Khan, F., Veitch, B.: A dynamic bayesian network model for ship-ice collision risk in the arctic waters. Safety Sci. 130, 104858 (2020)
55. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous systems using spatial and temporal requirements. In: Proc. of the 1st Int. Workshop on Machine Learning and SW Eng. in Symbiosis. p. 6–15. MASES 2018, ACM (2018)
56. Kim, J., Shah, A.U.A., Kang, H.G.: Dynamic risk assessment with bayesian network and clustering analysis. Reliab. Eng. Syst. Saf. 201, 106959 (2020)
57. Kirschner, J., Mutny, M., Hiller, N., Ischebeck, R., Krause, A.: Adaptive and safe bayesian optimization in high dimensions via one-dimensional subspaces. In: Proc. of the 36th ICML. pp. 3429–3438 (2019)
58. Klüs, M., Vollmer, A.M.: Uncertainty in machine learning applications: A practice-driven classification of uncertainty. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) Computer Safety, Reliability, and Sec. pp. 431–438. Springer (2018)
59. Kondo, M.C., Morrison, C., Guerra, E., Kaufman, E.J., Wiebe, D.J.: Where do bike lanes work best? a bayesian spatial model of bicycle lanes and bicycle crashes. Safety Sci. 103, 225 – 233 (2018)
60. Krakovna, V., Orseau, L., Martic, M., Legg, S.: Penalizing side effects using stepwise relative reachability. In: Proc. of the Workshop on Info. Sft. co-located w. Int. Joint Conf. on AI, AlSafety@IJCAI (2019)
61. Kumar, L., Sripada, S.K., Sureka, A., Rath, S.K.: Effective fault prediction model developed using least square support vector machine (lssvm). J. of Syst. and SW 137, 686 – 712 (2018)
62. Kurian, D., Sattari, F., Lefsrud, L., Ma, Y.: Using machine learning and keyword analysis to analyze incidents and reduce risk in oil sands operations. Safety Sci. 130, 104873 (2020)
63. Kwiatkowska, M.: Safety and robustness for deep learning with provable guarantees. In: 35th IEEE/ACM Int. Conf. on Automated Software Eng., ASE [1], pp. 1–3
64. Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.): Advances in Neural Information Processing Systems 33: Annu. Conf. on Neural Information Processing Systems, NeurIPS (2020)
65. Lazzерини, B., Pistolesi, F.: Artificial bee colony optimization to reallocate personnel to tasks improving workplace safety. In: Machine Learning, Optimization, and Big Data - Third Int. Conf., MOD, Revised Selected Papers. pp. 210–221 (2017)
66. Li, F., Chen, C.H., Zheng, P., Feng, S., Xu, G., Khoo, L.P.: An explorative context-aware machine learning approach to reducing human fatigue risk of traffic control operators. Safety Sci. 125, 104655 (2020)
67. Li, G., Li, Y., Jha, S., Tsai, T., Sullivan, M., Hari, S., Kalbarczyk, Z., Iyer, R.: Av-fuzzer: Finding safety violations in autonomous driving systems. In: Vieira, M., Madeira, H., Antunes, N., Zheng, Z. (eds.) Proceedings - IEEE 31st Int. Symp. on Software Reliab. Eng., ISSRE. pp. 25–36. Proceedings - Int. Symp. on Software Reliab. Eng., ISSRE, IEEE Computer Society (Oct 2020)
68. Liang, X., He, H., Zhang, Y.: Optimization design of micro-piles in landslide safety protection based on machine learning. Safety Sci. 118, 861 – 867 (2019)
69. Liu, H., Tian, G.: Building engineering safety risk assessment and early warning mechanism construction based on distributed machine learning algorithm. Safety Sci. 120, 764 – 771 (2019)
70. Luo, W., Sun, W., Kapoor, A.: Multi-robot collision avoidance under uncertainty with probabilistic safety barrier certificates. In: Larochelle et al. [54]
71. Mancuso, J., Kisielewski, T., Lindner, D., Singh, A.: Detecting spiky corruption in markov decision processes. In: Proc. of the Workshop on Info. Sfty. co-located w. Int. Joint Conf. on AI, AISafety@IJCAI (2019)
72. Mansouri, M., Lacerda, B., Hawes, N., Pecora, F.: Multi-robot planning under uncertain travel times and safety constraints. In: Proc. of IJCAI. pp. 478–484 (2019)
73. Martín, C.L., Villuendas-Rey, Y., Azzeh, M., Nassif, A.B., Banitaan, S.: Transformed k-nearest neighborhood output distance minimization for predicting the defect density of software projects. J. Syst. Softw. 167, 110592 (2020)
74. Martinelli, F., Mercaldo, F., Nardone, V., Santone, A., Vaglini, G.: Real-time driver behaviour characterization through rule-based machine learning. In: Gallina et al. [38], pp. 374–386
75. Masalimov, K.A.: A machine learning based approach to autogenerate diagnostic models for CNC machines. In: 35th IEEE/ACM Int. Conf. on Automated Software Eng., ASE [1], pp. 1358–1360
76. Matsuno, Y., Ishikawa, F., Tokumoto, S.: Tackling uncertainty in safety assurance for machine learning: Continuous argument engineering with attributed tests. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 398–404. Springer (2019)
77. Maurya, S.K., Choudhary, A.: Deep learning based vulnerable road user detection and collision avoidance. In: IEEE ICVES. pp. 1–6 (2018)
78. McAllister, R., Gal, Y., Kendall, A., van der Wilk, M., Shah, A., Cipolla, R., Weller, A.: Concrete problems for autonomous vehicle safety: Advantages of bayesian deep learning. In: Proc. of IJCAI. pp. 4745–4753 (2017)
79. McDermid, J., Jia, Y., Habli, I.: Towards a framework for safety assurance of autonomous systems. In: Proc. of the Workshop on Info. Sfty. co-located w. Int. Joint Conf. on AI, AISafety@IJCAI (2019)
80. Meango, T.J.M., Ouali, M.S.: Failure interaction model based on extreme shock and markov processes. Reliab. Eng. Syst. Saf. 197, 106827 (2020)
81. Mhamdi, E.M.E., Guerraoui, R., Hendrikx, H., Maurer, A.: Dynamic safe interruptibility for decentralized multi-agent reinforcement learning. In: Advances in Neural Info. Processing Syst. 30: Annu. Conf. on Neural Info. Processing Syst. pp. 130–140 (2017)
82. Mostaeen, G., Roy, B., Roy, C.K., Schneider, K.A., Svajlenko, J.: A machine learning based framework for code clone validation. J. Syst. Softw. 169, 110686 (2020)
83. Oehling, J., Barry, D.J.: Using machine learning methods in airline flight data monitoring to generate new operational safety knowledge from existing data. Sfty. Sci. 114, 89 – 104 (2019)
84. Paltrinieri, N., Comfort, L., Reniers, G.: Learning about risk: Machine learning for risk assessment. Sfty. Sci. 118, 475 – 486 (2019)
85. Pasareanu, C.S., Converse, H., Filieri, A., Gopinath, D.: On the probabilistic analysis of neural networks. In: Honiden et al. [46], pp. 5–8
86. Patriarca, R., Di Gravio, G., Costantino, F.: A monte carlo evolution of the functional resonance analysis method (fram) to assess performance variability in complex systems. Sfty. Sci. 91, 49 – 60 (2017)
87. Peng, T., Li, C., Zhou, X.: Application of machine learning to laboratory safety management assessment. Sfty. Sci. 120, 263 – 267 (2019)
88. Picardi, C., Hawkins, R., Paterson, C., Habli, I.: A pattern for arguing the assurance of machine learning in medical diagnosis systems. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 165–179. Springer (2019)
89. Piriou, P., Faure, J., Lesage, J.: Generalized boolean logic driven markov processes: A powerful modeling framework for model-based safety analysis of dynamic repairable and re-configurable systems. Reliab. Eng. Syst. Sfty. 163, 57–68 (2017)
90. Pop, D.O., Rogozan, A., Nashashibi, F., Bensrhair, A.: Pedestrian recognition through different cross-modality deep learning methods. In: IEEE ICVES. pp. 133–138 (2017)
91. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial examples. In: ICLR. Proc. (2018)
92. Rahman, M.S., Khan, F., Shaikh, A., Ahmed, S., Imtiaz, S.: A conditional dependence-based marine logistics support risk model. Reliab. Eng. Syst. Saf. 193, 106623 (2020)
93. Rodrigues, A., Caldas, R.D., Rodrigues, G.N., Vogel, T., Pellccione, P.: A learning approach to enhance assurances for real-time self-adaptive systems. In: Proc. of Int. Conf. on SW Eng. for Adaptive and Self-Managing Systems. p. 206–216. SEAMS, ACM (2018)
94. Ruiz-Castro, J.E.: A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units. Reliab. Eng. Syst. Saf. 197, 106797 (2020)
95. Salay, R., Angus, M., Czarnecki, K.: A safety analysis method for perceptual components in automated driving. In: IEEE Int. Symp. on SW Reliab. Eng. (ISSRE). pp. 24–34 (2019)
96. Sarkar, S., Maity, J.: Machine learning in occupational accident analysis: A review using science mapping approach with citation network analysis. Saf. Sci 131, 104900 (2020)
97. Sarkar, S., Pramanik, A., Maity, J., Reniers, G.: Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data. Saf. Sci 125, 104616 (2020)
98. Scheerer, M., Klamroth, J., Reussner, R.H., Beckert, B.: Towards classes of architectural dependability assurance for machine-learning-based systems. In: Honiden et al. pp. 31–37
99. Schöne, R., Mey, J., Ren, B., Aßmann, U.: Bridging the gap between smart home platforms and machine learning using relational reference attribute grammars. In: Burgueño, L., Pretschner, A., Voss, S., Chaudron, M., Kienzle, J., Völter, M., Gérard, S., Zahedi, M., Bousse, E., Rensink, A., Polack, F., Englert, G., Kappel, G. (eds.) 22nd ACM/IEEE Int. Conf. on Model Driven Eng. Languages and Systems Companion, MODELS Companion. pp. 533–542. IEEE (2019)
100. Schwalbe, G., Knie, B., Sämann, T., Dobberpohl, T., Gauerhof, L., Raafatnia, S., Rocco, V.: Structuring the safety argumentation for deep neural network based perception in automotive applications. In: Casimiro, A., Oertmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) Computer Safety, Reliability, and Security. SAFECOMP Workshops. pp. 383–394. Springer (2020)
101. Shafaei, S., Kugele, S., Osman, M.H., Knoll, A.: Uncertainty in machine learning: A safety perspective on autonomous driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.) Computer Sfty., Reliab., and Sec. pp. 458–464. Springer (2018)
102. Shepperd, M., Hall, T., Bowes, D.: Authors’ reply to “comments on ‘researcher bias: The use of machine learning in software defect prediction’”. IEEE Trans. on SW Eng. 44(11), 1129–1131 (2018)
103. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification of neural networks. In: ICLR (2019)
104. Sinha, A., Namkoong, H., Duchi, J.C.: Certifying some distributional robustness with principled adversarial training. In: ICLR. Proc. (2018)
105. Sinha, A., O’Kelly, M., Tedrake, R., Duchi, J.C.: Neural bridge sampling for evaluating safety-critical autonomous systems. In: Larochelle et al. (2020)
106. Song, Q., Guo, Y., Shepperd, M.: A comprehensive investigation of the role of imbalanced learning for software defect prediction. IEEE Trans. on SW Eng. 45(12), 1253–1269 (2019)
107. Steijn, W., Van Kampen, J., Van der Beek, D., Groeneweg, J., Van Gelder, P.: An integration of human factors into quantitative risk analysis using bayesian belief networks towards developing a ‘qra+’. Saf. Sci 122, 104514 (2020)
108. Stern, R., Juba, B.: Efficient, safe, and probably approximately complete learning of action models. In: Proc. of IJCAI. pp. 4405–4411 (2017)
109. Sui, Y., Gotovos, A., Burdick, J.W., Krause, A.: Safe exploration for optimization with gaussian processes. In: Proc. of the 32nd ICML. pp. 997–1005 (2015)
110. Sun, W., Dey, D., Kapoor, A.: Safety-aware algorithms for adversarial contextual bandit. In: Proc. of ICML. pp. 3280–3288 (2017)
111. Taleb-Berrouane, M., Khan, F., Amyotte, P.: Bayesian stochastic petri nets (bspn) - a new modelling tool for dynamic safety and reliability analysis. Reliab. Eng. Syst. Saf. 193, 106587 (2020)
112. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Comments on “researcher bias: The use of machine learning in software defect prediction”. IEEE Trans. on SW Eng. 42(11), 1092–1094 (2016)
113. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: Comments on “researcher bias: The use of machine learning in software defect prediction”. IEEE Trans. SW Eng. 42(11), 1092–1094 (2016)
114. Tsuzuku, Y., Sato, I., Sugiyama, M.: Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks. In: Advances in Neural Info. Processing Syst. 31: Annu. Conf. on Neural Info. Processing Syst., NeurIPS. pp. 6542–6551 (2018)
115. Turchetta, M., Berkenkamp, F., Krause, A.: Safe exploration in finite markov decision processes with gaussian processes. In: Advances in Neural Info. Processing Syst. 29: Annu. Conf. on Neural Info. Processing Syst. pp. 4305–4313 (2016)
116. Turchetta, M., Kolobov, A., Shah, S., Krause, A., Agarwal, A.: Safe reinforcement learning via curriculum induction. In: Larochelle et al. [64]
117. Turner, A.M., Hadfield-Menell, D., Tadepalli, P.: Conservative agency. In: Proc. of the Workshop on Info. Sfty. co-located w. Int. Joint Conf. on AI, AISafety@IJCAI (2019)
118. Utne, I.B., Rokseth, B., Sørensen, A.J., Vinnem, J.E.: Towards supervisory risk control of autonomous ships. Reliab. Eng. Syst. Saf. 196, 106757 (2020)
119. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: Advances in Neural Info. Processing Syst. 31: Annu. Conf. on Neural Info. Processing Syst. pp. 6369–6379 (2018)
120. Wang, T., Zhang, Z., Jing, X., Zhang, L.: Multiple kernel ensemble learning for software defect prediction. Autom. Softw. Eng. 23(4), 569–590 (2016)
121. qiu Wang, X., Yin, J.: Application of machine learning in safety evaluation of athletes training based on physiological index monitoring. Sfty. Sci. 120, 833 – 837 (2019)
122. Wang, X., Zhao, X., Wang, S., Sun, L.: Reliability and maintenance for performance-balanced systems operating in a shock environment. Reliab. Eng. Syst. Saf. 195, 106705 (2020)
123. Wang, Z., Li, S.: Data-driven risk assessment on urban pipeline network based on a cluster model. Reliab. Eng. Syst. Saf. 196, 106781 (2020)
124. Ward, F.R., Habli, I.: An assurance case pattern for the interpretability of machine learning in safety-critical systems. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) Computer Safety, Reliability, and Security. SAFECOMP Workshops. pp. 395–407. Springer (2020)
125. Washington, A., Clothier, R., Neogi, N., Silva, J., Hayhurst, K., Williams, B.: Adoption of a bayesian belief network for the system safety assessment of remotely piloted aircraft systems. Sfty. Sci. 118, 654 – 673 (2019)
126. Wen, M., Topcu, U.: Constrained cross-entropy method for safe reinforcement learning. In: Advances in Neural Info. Processing Syst. 31: Annu. Conf. on Neural Info. Processing Syst. pp. 7461–7471 (2018)
127. Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety concerns and mitigation approaches regarding the use of deep learning in safety-critical perception tasks. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) Computer Safety, Reliability, and Security. SAFECOMP Workshops. pp. 336–350. Springer (2020)
128. Wotawa, F.: On the importance of system testing for assuring safety of AI systems. In: Proc. of the Workshop on Info. Sfty. co-located w. Int. Joint Conf. on AI, AISAfety@IJCAI (2019)

129. Wozniak, E., Cărlan, C., Acar-Celik, E., Putzer, H.J.: A safety case pattern for systems with machine learning components. In: Casimiro, A., Ortmeier, F., Schotsch, E., Bitsch, F., Ferreira, P. (eds.) Computer Safety, Reliability, and Security. SAFECOMP Workshops. pp. 370–382. Springer (2020)

130. Wu, B., Cui, L.: Reliability evaluation of markov renewal shock models with multiple failure mechanisms. Reliab. Eng. Syst. Saf. 202, 107051 (2020)

131. Wu, X., Liu, H., Zhang, L., Skibniewski, M.J., Deng, Q., Teng, J.: A dynamic bayesian network based approach to safety decision support in tunnel construction. Reliab. Eng. Syst. Saf. 134, 157 – 168 (2015)

132. Xu, Z., Saleh, J.H.: Machine learning for reliability eng. and safety applications: Review of current status and future opportunities. CoRR abs/2008.08221 (2020)

133. Xu, Z., Saleh, J.H., Subagia, R.: Machine learning for helicopter accident analysis using supervised classification: Inference, prediction, and implications. Reliab. Eng. Syst. Saf. 204, 107210 (2020)

134. Yang, B.: Dynamic risk identification safety model based on fuzzy support vector machine and immune optimization algorithm. Sfty. Sci. 118, 205 – 211 (2019)

135. Yang, B.: Construction of logistics financial security risk ontology model based on risk association and machine learning. Saf. Sci 123, 104437 (2020)

136. Yu, Q., Zhou, Y.: Traffic safety analysis on mixed traffic flows at signalized intersection based on haar-adaboost algorithm and machine learning. Sfty. Sci. 120, 248 – 253 (2019)

137. Yu, X., Liu, J., Yang, Z., Liu, X.: The bayesian network based program dependence graph and its application to fault localization. J. of Syst. and SW 134, 44 – 53 (2017)

138. Zhang, N., Si, W.: Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks. Reliab. Eng. Syst. Saf. 203, 107094 (2020)

139. Zhang, R., Yu, Y., Chamie, M.E., Açıkmeze, B., Ballard, D.H.: Decision-making policies for heterogeneous autonomous multi-agent systems with safety constraints. In: Proc. IJCAI. pp. 546–553 (2016)

140. Zhang, S., Durfee, E.H., Singh, S.P.: Minimax-regret querying on side effects for safe optimality in factored markov decision processes. In: Proc. of IJCAI. pp. 4867–4873 (2018)

141. Zhang, Y., Weng, W.: Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference. Reliab. Eng. Syst. Saf. 203, 107089 (2020)

142. Zhao, D., Wang, Z., Song, Z., Guo, P., Cao, X.: Assessment of domino effects in the coal gasification process using Fuzzy Analytic Hierarchy Process and Bayesian Network. Saf. Sci 130, 104888 (2020)

143. Zhao, Z., Bin Liang, Wang, X., Lu, W.: Remaining useful life prediction of aircraft engine based on degradation pattern learning. Reliab. Eng. Syst. Saf. 164, 74 – 83 (2017)

144. Zhou, T., Peng, Y.: Adaptive bayesian quadrature based statistical moments estimation for structural reliability analysis. Reliab. Eng. Syst. Saf. 198, 106902 (2020)
148. Zhou, Y., Li, C., Zhou, C., Luo, H.: Using bayesian network for safety risk analysis of diaphragm wall deflection based on field data. Reliab. Eng. Syst. Saf. 180, 152 – 167 (2018)

149. Zimmer, C., Meister, M., Nguyen-Tuong, D.: Safe active learning for time-series modeling with gaussian processes. In: Advances in Neural Info. Processing Syst. 31: Annu. Conf. on Neural Info. Processing Syst. pp. 2735–2744 (2018)