Spatial Structure and Collisionless Electron Heating in Balmer-dominated Shocks

Matthew van Adelsberg, 1 Kevin Heng, 2 Richard McCray, 1 and John C. Raymond 3

Received 2008 March 18; accepted 2008 July 20

Abstract

Balmer-dominated shocks in supernova remnants (SNRs) produce strong hydrogen lines with a two-component profile composed of a narrow contribution from cold upstream hydrogen atoms and a broad contribution from hydrogen atoms that have undergone charge transfer reactions with hot protons. Observations of emission lines from edge-wise shocks in SNRs can constrain the gas velocity and collisionless electron heating at the shock front. Downstream hydrogen atoms engage in charge transfer, excitation, and ionization reactions, defining an interaction region called the shock transition zone. The properties of hot hydrogen atoms produced by charge transfers (called broad neutrals) are critical for accurately calculating the structure and radiation from the shock transition zone. This paper is the third in a series describing the kinetic, fluid, and emission properties of Balmer-dominated shocks, and it is the first to properly treat the effect of broad neutral kinetics on the shock transition zone structure. We use our models to extract shock parameters from observations of Balmer-dominated SNRs. We find that the inferred shock velocities and electron temperatures are lower than those of previous calculations by <10% for \(v_s < 1500 \text{ km s}^{-1} \) and by 10%–30% for \(v_s > 1500 \text{ km s}^{-1} \). This effect is primarily due to the fact that excitation by proton collisions and charge transfer to excited levels favor the high-speed part of the neutral hydrogen velocity distribution. Our results have a strong dependence on the ratio of the electron to proton temperatures, \(\beta = T_e/T_p \), which allows us to construct a relation \(\beta(v_s) \) between the temperature ratio and the shock velocity. We compare our calculations to previous results by Ghavamian and coworkers.

Subject headings: shock waves — supernova remnants

Online material: color figures

1. Introduction

Balmer-dominated shocks in supernova remnants (SNRs) encounter upstream gas containing a substantial fraction of neutral hydrogen atoms. Emission from the shock is characterized by strong Balmer and Lyman lines with two-component profiles, which consist of a narrow contribution from direct excitation of the hydrogen atoms entering the shock and a broad contribution from the excitation of “broad neutrals,” hydrogen atoms that have been produced by charge transfer reactions with protons in the downstream gas (Chevalier & Raymond 1978; Chevalier et al. 1980). Such shocks are seen in many SNRs, including parts of the Cygnus Loop (Ghavamian et al. 2001, hereafter G01), Tycho and Kepler’s remnants (Kirshner et al. 1987, hereafter KWC87; Smith et al. 1991, hereafter S91; Fesen et al. 1989, hereafter F89), RCW 86 (G01; Ghavamian et al. 2007b, hereafter G07b), SN 1006 (KWC87; S91; Ghavamian et al. 2002, hereafter G02), and several remnants located in the LMC (Tuohy et al. 1982, hereafter T82; S91; Ghavamian et al. 2003, hereafter G03; Ghavamian et al. 2007a, hereafter G07a).

Profiles of broad emission lines from edgewise observations of shocks in SNRs can be used to infer shock velocities. These calculations can be compared to analyses of the shock front proper motion to compute distances to the objects (Chevalier et al. 1980; KWC87). Observations that resolve the spatial profile of the combined Hα emission can constrain the neutral fraction and density of the upstream gas (Raymond et al. 2007). In addition to their use in diagnosing parameters of SNRs, Balmer-dominated shocks provide an important probe into the plasma physics of collisionless, nonrelativistic shocks. Models of the broad component width and integrated broad-to-narrow intensity ratio can be used to derive the ratio of the electron to proton temperatures as a function of the shock velocity. Such a relation can provide insight into the physical mechanisms at work in the collisionless plasma.

This is the third in a series of papers investigating the hydrodynamics, kinetics, and line emission from Balmer-dominated shocks. In Heng & McCray (2007, hereafter Paper I), we calculated velocity distribution functions for the broad neutrals and computed the ratio of the broad-to-narrow line emission as a function of the shock velocity. In Heng et al. (2007, hereafter Paper II) we calculated the density structure of the shock transition zone, where hydrogen atoms passing through the shock front undergo charge transfer reactions, emit radiation, and become fully ionized.

The approximations employed in Paper II limit the validity of the results to shocks entering the upstream gas with velocities of \(<3000 \text{ km s}^{-1} \), due to our treatment of the broad neutrals as a single fluid with the same bulk velocity as the ions (the “restricted three-component model” from §3 of Paper II). In fact, the broad neutrals in the shock transition zone are not a fluid, but have distinct anisotropic distribution functions that depend on the number of charge transfer reactions they engage in (Paper I). In the present paper, we treat charged species in the shocked gas as fluids and describe the hydrogen atoms with appropriate kinetic distribution functions. In addition, we provide an improved calculation of the broad-line velocity profile for \(v_s \approx 2000 \text{ km s}^{-1} \). Using this methodology, we calculate the structure of the shock transition zone more accurately than in Paper II, and we characterize hydrogen line emission from shocks with \(300 < v_s < 10,000 \text{ km s}^{-1} \).

We find that we can self-consistently determine the shock parameters for most Balmer-dominated SNRs. Our results yield lower values of the inferred shock velocity and the proton-electron collisionless electron heating.
temperature equilibration than those derived using previous models. We compute the dependence of the electron temperature on the shock velocity and compare it to the results of G07b. We note that our calculations are unable to fit the observations for several SNRs; in these cases, our basic model must be augmented by new physics to account for the data.

In § 2 of this paper, we describe our physical model. In § 3, we display the equations employed to calculate the structure of the shock transition zone and describe our numerical solution. In § 4, we compute the spatial emission profile and hydrogen line spectra from the shock transition zone. In § 5, we analyze our results and describe how observations of Balmer-dominated SNRs should be interpreted in light of our new calculations. Finally, in § 6, we discuss the implications of our results for collisionless electron heating, explore the limitations of our model, and identify areas for future research.

2. PHYSICAL MODEL

We consider a shock with a velocity of $300 < v_s < 10,000$ km s$^{-1}$ traveling through the ISM, which consists of cold, partially neutral hydrogen and neutral helium. The preshock fraction of helium, relative to hydrogen, is denoted f_{He}. If the total upstream density of protons and hydrogen atoms is n_0, then the fraction of preshock protons is defined to be $f_p = n_p/n_0$.

In the frame of the shock, the cold upstream neutrals and charged particles flow downstream with a uniform velocity of v_s. At the shock, we assume that the protons are heated in a thermal distribution to $T_p \sim 3m_p v_s^2/16k_B \sim 10^7$ K for $v_s \sim 10^8$ cm s$^{-1}$, where m_p is the proton mass, and k_B is Boltzmann’s constant. At the high postshock temperatures in Balmer-dominated remnants, the emission from hydrogen excitation is much stronger than that from the forbidden transitions in metals seen in radiative shocks (e.g., Shull & McKee 1979). The length scale for the thermalization of protons is set by the proton cyclotron gyroradius, $l_{\text{gym}} \sim 10^6$ cm at magnetic field strength $B \sim 10^{-4}$ G, which is much less than the length scale for the shock transition zone, $l_{\text{zone}} \gtrsim 1/(n_0 \sigma) = 10^{14}$ cm (set by the cross sections σ for the excitation, charge transfer, and ionization reactions, as well as the total upstream density).

Without any energy transfer between the shocked protons and electrons, the electron temperature is expected to be a factor of m_p/m_e less than that of the protons. Since the collisional timescale for the temperature equilibration between the electrons and protons is in some cases longer than the age of the remnant (e.g., Spitzer 1962), we assume that the electrons remain at a fixed temperature with respect to the protons in the downstream material (note, however, that inraspecies and inter-ion collisional timescales can be much shorter).4 However, several authors have argued that electrostatic instabilities at the shock front can increase the electron temperature, with estimates ranging from $T_e \sim 0.1T_p$ to $T_e = T_p$ (see Cargill & Papadopoulos 1988; G07b and references therein). Since the physics of nonrelativistic, collisionless shocks is still poorly understood, we parameterize the ratio of the electron to proton temperatures using the definition

$$\beta \equiv \frac{T_e}{T_p}. \quad (1)$$

One of the goals of our work is to use observations of Balmer-dominated remnants to constrain the value of β in the shock transition zone as a function of the shock velocity.

In the uniform-velocity upstream gas, we assume that negligible interactions take place between the neutral and charged species. The cold neutral hydrogen atoms passing through the shock are not affected by the discontinuity. In contrast, the bulk velocities of the downstream thermal protons and electrons become approximately $v_s/4$, at which point the ionization and charge transfer reactions between cold atoms and hot protons occur (see § 5.1). However, if a significant amount of the energy dissipated in the shock is used to produce cosmic rays, the ion compression ratio increases, and the ion bulk velocity decreases. Furthermore, the presence of a cosmic-ray precursor can broaden the distribution of the upstream neutrals. We discuss the implications of these physical effects in § 6.

Downstream charge transfer reactions between cold neutrals and hot protons produce a new population of hot atoms, referred to as broad neutrals. Initially, such an interaction will produce a cold proton, which is reenergized through gyromotion around the magnetic field and inraspecies Coulomb collisions with the hot proton population. We assume that such protons rapidly equilibrate back into the thermal pool. However, recent calculations by Raymond et al. (2008) indicate that interactions within the shock front may produce a distinct “pickup” ion population analogous to that in the solar wind.

H_α emission is produced by excitation reactions and charge transfers to excited states in the shock transition zone. The narrow and broad components of the line are emitted by the cold hydrogen and the broad neutrals, respectively. The spatial and velocity distributions of the broad neutrals are critical for calculating the correct structure and emission from the transition zone. In Paper II, we assume that the broad neutrals could be characterized as a single fluid, with a velocity and temperature equal to that of the ions. This treatment is flawed because, unlike the ionic species, the broad neutrals have negligible interactions among themselves. Therefore, each time a neutral engages in a charge exchange, it becomes part of a new distribution with a distinct velocity and temperature (see Paper I) and is not subsumed into the original population. This fact has not, until now, been properly taken into account in the literature.

The detailed kinetic properties of the particle distributions and their reaction rates were calculated in Paper I. We use these methods, with updated values for the atomic cross sections (see Appendix A), in our fluid calculation of the shock transition zone structure. In this picture, the broad neutrals form an infinite set of atomic populations with distinct reaction rates. In practice, as noted in Paper I, the velocity distribution function of atoms experiencing many charge transfers rapidly converges to that of the protons, usually after only three or more interactions. Thus, only three distinct broad components interact with the other species. The bulk velocities and temperatures of the broad components are written as

$$v_k = F_{\text{ik}} v_p, \quad (2)$$
$$T_k = F_{\text{ik}} T_p. \quad (3)$$

where v_k and T_k are the velocity and temperature of the broad neutral population after k charge transfers. The coefficients $F_{\text{ik}}(v_p, \beta, f_p, f_{\text{He}})$ and $F_{\text{ik}}(v_p, \beta, f_p, f_{\text{He}})$ are calculated using the methods described in Paper I and, in principle, are also functions of n_0 and T_p. However, we show in § 5.1 that the proton velocity and temperature do not vary significantly enough in the shock transition zone to affect the values of these coefficients. For values of $k \geq 3$, F_{ik} and F_{ik} are taken to be unity.

Ionization of helium in the shock transition zone produces singly ionized He$^+$ and alpha particles. We assume that the helium ions

4 Some collisional heating of electrons by protons will occur. We estimate that such an effect can lower the derived value of β (see eq. [1]) by 1%–2%.
and protons are coupled through rapid inter-ion Coulomb collisions. In this case, all of the ions share the same bulk velocity (v_\parallel) and temperature (T_i). Figure 1 schematically displays the density variation of the different particle species in the shock transition zone.

3. SPATIAL STRUCTURE OF THE TRANSITION ZONE

3.1. Basic Equations

We employ a plane-parallel coordinate system in the frame of the shock, in which the shock front is at $z = 0$. The density structure of the transition zone is determined by the conservation of mass flux:

$$
\frac{d}{dz} (n_1 v_1) = -n_1 \sum_{x=E}^{\alpha} n_x \tilde{R}_{i1,x} - n_1 n_p \tilde{R}_{i1,p},
$$

(4)

$$
\frac{d}{dz} (n_1 v_1) = n_1 n_p \tilde{R}_{i1,p} - n_1 \sum_{x=E}^{\alpha} n_x \tilde{R}_{i1,s} - n_1 n_p \tilde{R}_{i1,p},
$$

(5)

$$
\frac{d}{dz} (n_2 v_2) = n_1 n_p \tilde{R}_{i2,p} - n_2 \sum_{x=E}^{\alpha} n_x \tilde{R}_{i2,s} - n_2 n_p \tilde{R}_{i2,p},
$$

(6)

$$
\frac{d}{dz} (n_k v_k) = n_{k-1} n_p \tilde{R}_{i1,p} - n_k \sum_{x=E}^{\alpha} n_x \tilde{R}_{i1,s} - n_k n_p \tilde{R}_{i1,p},
$$

(7)

where the rate coefficients \tilde{R} for the atomic interactions (in units of cm3 s$^{-1}$) are defined in Appendix A. Charge conservation requires the electron density to obey the relation $n_e = n_p + n_{1He} + 2n_\alpha$. The subscripts I, IHe, and IHe^+ denote the ionization of hydrogen, helium, and singly ionized helium, respectively, while the index s runs over the charged particles participating in the reactions, $s = \{e, p, He^+, \alpha\}$ (electrons, protons, singly ionized helium, and alpha particles). The subscript T_i indicates the charge transfer of cold hydrogen atoms with protons. As discussed in §2, the subscript k denotes the neutral hydrogen population that has engaged in k charge transfers, where the index runs from $k = 1$ to $k = \infty$. While each broad population will have a separate rate coefficient for every atomic interaction, the values are not sensitive to the details of the broad distribution functions. Therefore, we use one rate coefficient to describe the interactions of all the broad populations: the subscripts IB and T denote the ionization and the charge transfer, respectively. We list the references for our interaction cross sections and rate coefficients in Appendix A.

The system of differential equations is completed by expressions for the conservation of momentum and energy flux:

$$
\frac{d}{dz} \left[m_p n_1 v_1^2 + \sum_{k=1}^{\infty} (P_k + m_p n_k v_k^2) \right] + 4m_p n_{1He} v_1^2 + \sum_{k=1}^{\infty} (P_k + m_p n_k v_k^2) = 0,
$$

(12)

$$
\frac{d}{dz} \left[\frac{1}{2} m_p n_1 v_1^3 + \sum_{k=1}^{\infty} (P_k + U_k + \frac{1}{2} m_p n_k v_k^2) v_k \right] + 2m_p v_1^2 + \sum_{k=1}^{\infty} (P_k + U_k + \frac{1}{2} m_p n_k v_k^2) v_k = 0,
$$

(13)

where $P = n k_B T$ is the pressure and $U = (3/2) n k_B T$ is the energy density. The ratios P_k/n_k and U_k/n_k are set by the kinetic calculation of the broad neutral distribution functions through equation (3), which assumes that $T_i = 3m_p v_1^2/(16(1 + \beta) T_i)$. Although the ion temperature varies by as much as 10% in the shock transition zone, this produces a negligible effect on the rate coefficients. Thus, the value of T_i is proportional to the local ion temperature. Furthermore, our steady-state fluid calculation neglects the kinetic evolution of the broad neutral distributions, which we expect to be a modest effect.

We define a natural length scale for the transition zone, according to the formula

$$
L_i \equiv \frac{v_1}{n_1 \tilde{R}_i},
$$

(14)

where \tilde{R}_i is a typical value for the interaction rate coefficients, here taken to be 10^{-8} cm3 s$^{-1}$. We also define a set of dimensionless variables with $\chi \equiv z/L_i$, $n \equiv n/n_0$, $u \equiv v/v_1$, and $\epsilon \equiv k_B T/(n_e v_1^2)$. As discussed above, broad neutrals that have engaged in three or more charge transfers can be described with the thermal proton distribution function. We therefore define $n_k = \sum_{k=3}^{\infty} n_k$. Summing over equations (7) with $k \geq 3$ and using these definitions, the formulas for the shock transition zone structure can be written as

$$
\frac{d}{d\chi} \eta_H = -\eta_H \sum_{k=1}^{\alpha} n_k \tilde{R}_{1H,s} - \eta_H n_p \tilde{R}_{1,p},
$$

(15)

$$
\frac{d}{d\chi} (\eta_H u_1) = \eta_H n_p \tilde{R}_{1,p} - \eta_H \sum_{k=1}^{\alpha} n_k \tilde{R}_{1,s} - \eta_H n_p \tilde{R}_{1,p},
$$

(16)
We compute equations (15) directly in terms of the number density flux, denoted \(\eta \). The ion velocity and temperature, \(u_i \) and \(\epsilon_i \), determine the broad velocity \(u_b \) and the temperature \(\epsilon_b \) through the relations (2) and (3). Once \(y \) and \(u \) are known, the dimensionless number density \(\eta \) can be substituted into the right-hand side of the conservation equations.

We solve equations (23) and (24) subject to the boundary conditions \(\eta_y(0,0,0) = 1 - f_p \), \(\eta_y(0,0,0) = (1 - f_p) f_{he}, \) \(y_p(0,0,0) = f_p, \) and \(y_s(0,0,0) = 0 \). The upstream neutral temperature is taken to be zero, while the protons and electrons are in thermal distributions with temperatures of \(T_u \ll T_p \). Integrating these equations, substituting the initial conditions, and using the definition for \(y \) yields

\[
\begin{align*}
\frac{d}{d\chi} \left(\eta y \right) &= \frac{\eta}{\eta_y} R_{\tau, p} - \frac{\eta y}{\eta_y} \sum_{s=p}^{N} \frac{m_s}{m_p} y_s \eta_{s, i} R_{i, b, s} - \frac{\eta y}{\eta_y} \frac{R_{i, b, p}}{R_{i, b, p} - R_{i, b, s}}, \\
\frac{d}{d\chi} \left(\eta y \right) &= \frac{\eta}{\eta_y} R_{\tau, p} - \frac{\eta y}{\eta_y} \sum_{s=p}^{N} \frac{m_s}{m_p} y_s \eta_{s, i} R_{i, b, s}, \\
\frac{d}{d\chi} \left(\eta y \right) &= -\frac{\eta y}{\eta_y} \sum_{s=p}^{N} \frac{m_s}{m_p} y_s \eta_{s, i} R_{i, b, s}, \\
\frac{d}{d\chi} \left(\eta y \right) &= \eta_{y} \sum_{s=p}^{N} \frac{m_s}{m_p} y_s \eta_{s, i} R_{i, b, s}.
\end{align*}
\]

where \(R = \tilde{R}/\tilde{R} \).

3.2. Solution Method

Equations (15)–(24) are a set of 10 coupled, nonlinear ordinary differential equations, which are solved with the constraint of charge conservation. We compute equations (15)–(22) directly in terms of the number density flux, denoted \(\eta \). The ion velocity and temperature, \(u_i \) and \(\epsilon_i \), determine the broad velocity \(u_b \) and the temperature \(\epsilon_b \) through the relations (2) and (3). Once \(y \) and \(u \) are known, the dimensionless number density \(\eta \) can be substituted into the right-hand side of the conservation equations.

We solve equations (23) and (24) subject to the boundary conditions \(\eta_y(0,0,0) = 1 - f_p \), \(\eta_y(0,0,0) = (1 - f_p) f_{he}, \) \(y_p(0,0,0) = f_p, \) and \(y_s(0,0,0) = 0 \). The upstream neutral temperature is taken to be zero, while the protons and electrons are in thermal distributions with temperatures of \(T_u \ll T_p \). Integrating these equations, substituting the initial conditions, and using the definition for \(y \) yields

\[
\begin{align*}
\sum_{k=1}^{N} \left(f_{k,b} y_k + \frac{m_s}{m_p} y_s \eta y \right) u_i^2 + (1 + \beta f) f_{he} - 4(1 - f_p) f_{he} = 0, \\
+ \sum_{k=1}^{N} F_{k, b} y_k + \beta \epsilon_c + \frac{m_s}{m_p} y_s \eta y = 0, \\
\sum_{k=1}^{N} F_{k, b}^2 y_k + \frac{m_s}{m_p} y_s \eta y = 0, \\
+ (5 \sum_{k=1}^{N} F_{k, b} y_k + 5 \beta \epsilon_c + \frac{m_s}{m_p} y_s \eta y) \epsilon_i + 4(1 + \beta f) f_{he} - 4(1 - f_p) f_{he} = 0.
\end{align*}
\]

Note that the sums over charged species run from protons to alpha particles and do not include electrons, which appear separately in the equations (we neglect terms proportional to \(m_e/m_p \)). The system of equations (25) and (26) can be solved simultaneously to yield a quadratic equation in \(u_i \) with coefficients that are functions of \(\chi \). The solution to the quadratic has two positive roots. Only one of the roots is less than unity; it represents the physical solution for the bulk ion velocity, which must be less than the shock velocity. We use a standard Runge-Kutta method to solve equations (15)–(24), at each integration step using equations (25) and (26) to compute the ion velocity, which determines the particle densities.

Figure 2 shows the density structure of the shock transition zone for \(v_s = 1000 \) km \(s^{-1} \), \(f_p = 0.5 \), and \(\beta = 1 \). Using equation (14), the spatial coordinate has been converted from \(\chi \) to the physical distance \(z \) behind the shock front. We use an external density of \(n_0 = 1 \) cm\(^{-3} \) and a helium fraction of \(f_{he} = 0.1 \) for all calculations in this paper. The left and right panels of Figure 2 show the dimensionless densities for the neutral and charged species, respectively. The electron and proton densities have been scaled by a factor of 1/18. In the left panel, the solid curve shows a monotonic decrease in the density of the cold hydrogen atoms, which are removed by both the charge transfer and ionization reactions. Charge transfer produces three populations of broad neutrals. At low velocities, charge transfer dominates over ionization, and many broad neutrals with \(k > 3 \) are produced. The dash-dotted curve shows the density of neutral helium, which is ionized farther downstream than hydrogen due to its smaller ionization rate coefficients. In the right panel, the solid curve shows singly ionized helium, which is produced downstream from the neutral atoms and is then ionized to yield a monotonically increasing population of alpha particles, shown by the dotted curve. The proton and electron densities are depicted by the short-dashed and long-dashed curves, respectively, which saturate when all of the neutral species have been depleted. The final electron density is slightly higher than that of the protons due to the presence of the alpha particles.

4. LINE EMISSION

Once the density structure of the transition zone is determined, we can compute the hydrogen line emission, including the spatial distribution and line profiles for the broad and narrow components. We neglect collisional deexcitation and assume that every atom is excited from the ground state. \(\text{H}_\alpha \) photons are produced by transitions from atomic levels \(3s \) and \(3d \) to \(2p \), as well as from \(3p \) to \(2s \). In the latter case, the atomic physics is complicated by a possible transition from \(3p \) directly to \(1s \), which results in a \(\text{Ly}_\beta \) photon. If the medium is optically thin to \(\text{Ly}_\beta \) photons (Case A conditions), this possibility can be taken into account by proper weighting of the distinct angular momentum states in constructing the excitation and change transfer cross sections for \(\text{H}_\alpha \) emission:

\[
\sigma_{\text{He}\alpha} = \sigma_{3s} + \sigma_{3d} + B_{3p, 2s} \sigma_{3p},
\]

where the factor \(B_{3p, 2s} \approx 0.12 \) is the fraction of transitions from \(3p \) to \(2s \). If the medium is optically thick to \(\text{H}_\alpha \) emission (Case B conditions), reabsorption by ground-state hydrogen effectively traps \(\text{Ly}_\beta \) photons until they are reemitted as \(\text{H}_\alpha \) photons. In this case, all of the transitions eventually result in \(\text{H}_\alpha \) emission, and we set \(B_{3p, 2s} \approx 1 \).

Case A and B conditions represent the two extremes of media that are optically thin and thick to \(\text{Ly}_\beta \) scattering. For the stationary atoms (i.e., cold hydrogen) that produce the narrow line, the
optical depth to the scattering of Lyman-β photons is, at the line center, \(\tau_L \sim n_n \sigma l_{\text{zone}} \gtrsim 1 \), with \(n_n \sim 0.5 \) cm\(^{-3} \), \(\sigma \sim 10^{-14} \) cm\(^2\), and \(l_{\text{zone}} \sim 2 \times 10^{14} \) cm (see, e.g., Rybicki & Lightman 1979; Cox 2000). The column of the upstream neutrals will also line-scatter Lyman-β emission, increasing the effective value of \(\tau_L \). Thus, in conditions appropriate for many Balmer-dominated SNRs, partial scattering of Lyman photons will occur, producing results intermediate between Cases A and B for the narrow line (G01).

The conversion efficiency of the narrow-component Lyman-β to H\(\alpha \) was first computed by Chevalier et al. (1980). Subsequent Monte Carlo calculations were performed by Laming et al. (1996) and G01. Briefly, models of the neutral hydrogen density and the narrow-component excitation rate are computed as a function of the distance behind the shock. These are used to calculate the profile of excitations to the \(3p \) level. Photons are emitted at frequencies distributed according to the preshock temperature in random directions. They are followed as they are absorbed and reemitted between Cases A and B for the narrow line (G01).

To determine the emission, we employ the excitation rate coefficients calculated using the methods of Paper I (see also Appendix A). An emission-line photon is produced when a cold hydrogen atom or a broad neutral is excited by a charged particle or undergoes charge transfer to an excited state. In the former case, the rates must be weighted by the probability of repeated excitation. We use the following equations to calculate the spatial emissivity profiles for the narrow (\(\xi_n \)) and broad (\(\xi_b \)) components:

\[
\xi_n(z) = \frac{n_n}{1 - P_{E0}} \sum_{s = e}^N n_p \tilde{R}_{\Delta n,E,ns},
\]

\[
\xi_b(z) = \frac{n_n n_p \tilde{R}_{\Delta n,T^*}}{1 - P_{E}} \sum_{s = e}^N \left(n_p \tilde{R}_{\Delta n,T^*,p} + \frac{1}{1 - P_E} \sum_{s = e}^N n_s \tilde{R}_{\Delta n,E,s} \right),
\]

where the rate coefficients are labeled by the transition \(\Delta n = \Delta n_{0} \) or \(\Delta n_{E} \); the atomic interaction; and the particle type. The symbols \(E_0 \) and \(T^* \) denote excitation and charge transfer to an excited state for cold hydrogen, while \(E \) and \(T \) denote these interactions for broad neutrals. The probabilities \(P_{E0} = R_{E0}/(R_{E0} + R_0 + R_T) \) and \(P_E = R_E/(R_E + R_T + R_T) \) are calculated using the total reaction rates per atom or broad neutral for ionization, excitation, and charge transfer. These are calculated using the weighted sum of the rate coefficients; for example, \(R_t = \sum_{s = e}^N n_k \sum_{s = e}^N \tilde{R}_{\Delta n,E,s} \).

Figure 3 shows the spatial emissivity profiles for the narrow and broad components as a function of the distance \(z \) behind the shock front. The thin vertical lines indicate the centroids \(z_{n,b} \) of the emission components, calculated according to the formula

\[
\int_0^{z_{n,b}} dz \xi_{n,b}(z) - \int_{z_{n,b}}^\infty dz \xi_{n,b}(z) = 0.
\]
the narrow emission and engage in charge transfers to produce broad neutrals. Therefore, the intensity peaks for both components are shifted downstream from the shock front, and the centroid of the broad-line emission is shifted farther downstream than that of the narrow line.

4.2. Line Profiles

The full width at half-maximum (FWHM) of the broad line can be related to the velocity and temperature equilibration of the shock. The line profile is a convolution of the broad neutral and exciting species distribution functions with the cross sections for excitation and charge transfer to an excited state, projected along the line of sight to the observer. In a cylindrical coordinate system (r, θ, z), where the z-axis is along the shock velocity direction, it is straightforward to project the line profiles for observers oriented both edgewise (along the r-axis) and face-on (along the z-axis) with respect to the shock front. Due to limb brightening, most observations will be selected for shocks viewed edgewise or nearly so.

We calculate the face-on (ϕ_{FO}) and edgewise (ϕ_{EW}) hydrogen line profiles according to the formulas

$$
\phi_{FO}(v_\perp) = \frac{m_1 n_p}{\mu_p v_\perp} \int d^3 v' \left[\sum_{\alpha \beta} n_{\alpha \beta} f_\alpha(v') \frac{\Delta \sigma_{\alpha \beta}}{\Delta v} \right]$$

$$+ \int d^3 v' \left[\sum_{\alpha \beta} n_{\alpha \beta} f_\alpha(v') \frac{\Delta \sigma_{\alpha \beta}}{\Delta v} \right]$$

$$+ n_p f_p(v') F_{X,p}(v_\perp, v')$$

(32)

$$
\phi_{EW}(v_\parallel, z) = \frac{m_1 n_p}{\mu_p v_\parallel} \int d^3 v' \left[\sum_{\alpha \beta} n_{\alpha \beta} f_\alpha(v') \frac{\Delta \sigma_{\alpha \beta}}{\Delta v} \right]$$

$$+ \int d^3 v' \left[\sum_{\alpha \beta} n_{\alpha \beta} f_\alpha(v') \frac{\Delta \sigma_{\alpha \beta}}{\Delta v} \right]$$

$$+ n_p f_p(v') F_{X,p}(v_\parallel, v')$$

(33)

where $\Delta v \equiv |v - v'|$ and the cross sections $\sigma_{\alpha \beta}$ denote the excitation and charge transfer reactions for Hα emission to appropriately weighted angular momentum states, using equations (27) and (28). It should be noted that in equations (32)–(35), the quantities denoted by f are kinetic distribution functions and should not be confused with the preshock ionization fraction f_p.

The edgewise profile can be calculated as a function of the position behind the shock. In practice, however, the observed lines are not spatially resolved. We therefore calculate the profiles as a function of v_\parallel and β, spatially averaged over the shock transition zone. Figure 4 shows examples of symmetric, edgewise broad neutral velocity distributions, which are inputs to equation (33). Results are depicted in a reference frame in which the average ion velocity is zero, for $\beta = 0.01, 0.1, 0.5,$ and $1,$ with $v_\parallel = 1000$ km s$^{-1}$ (left) and 7000 km s$^{-1}$ (right). For all cases, the preshock ionization fraction is set to $f_p = 0.5$.

For $v_\parallel \lesssim 1500$ km s$^{-1}$, excitation by electrons dominates over that by protons (including charge transfer into excited states). Even at moderate values of the electron temperature, $\beta \lesssim 0.1$, the thermal width of the electron distribution function is much larger than that of the broad neutral distribution, and the electrons typically have much higher velocities. Thus, for the majority of the range of integration, $\Delta v \approx v'$, and the electron contribution to equations (32) and (33) is approximately equal to the projected velocity distribution of the broad neutrals, multiplied by the rate coefficient for excitation by electrons. This approximation has been used in previous studies of the line profile (e.g., Chevalier et al. 1980; G01; Paper I). Nevertheless, for shock velocities of $v_\parallel \sim 2000$ km s$^{-1}$, the excitation rates by electrons and protons are comparable, with the proton contribution increasing for faster shocks. The cross sections for excitation by protons increase with the relative speed of the colliding particles. Since the broad neutrals and the ions have comparable speeds, high-speed neutrals are more likely to produce Hα photons. The effect on the line profile is somewhat mitigated by the integration over velocity space, but the observed line width is larger than the velocity width of the broad neutral distribution. This effect is relatively small at low velocity (<10%) but is significant for high-velocity shocks (see § 6).

Figure 5 displays the FWHM of the broad, edgewise Hα line profile as a function of v_\parallel, at several values of $\beta = 0.01, 0.1, 0.5,$ and 1. The preshock ionization is set at $f_p = 0.5$. The FWHM increases monotonically with v_\parallel due to the increased temperature of the postshock ion distributions (and hence the broad neutral distributions) behind the faster moving shocks. As β is increased, energy is transferred from the protons to heat the electrons, leading to lower proton temperatures and a smaller FWHM for the broad component.

For fast shocks, in which proton excitation contributes substantially to equations (32) and (33), we expect different transitions (e.g., Hα and Lyα) to have different FWHM relations, since they employ distinct reaction cross sections in the calculation of ϕ. This is a unique prediction made by our calculation, and it may have consequences for studies of Lyα emission from shocks with $v_\parallel \gtrsim 4000$ km s$^{-1}$, in which the FWHM of

\[
F_{X_p} = \int_0^{2\pi} d\theta \int_0^\infty dv_r v_r \sum_{k=1}^N n_k f_k(v) \Delta \sigma_{X_p}(\Delta v), \\
F_{X_s} = v_r \int_0^{2\pi} d\theta \int_0^\infty dv_r \sum_{k=1}^N n_k f_k(v) \Delta \sigma_{X_s}(\Delta v),
\]
the Lyα line increases from 10% to 60% over that of the Hα line.

5. DEPENDENCE ON SHOCK PARAMETERS

Here we describe how the structure and emission from the transition zone of Balmer-dominated SNRs depend on the shock velocities (ranging from $v_s = 300$ to $10,000$ km s$^{-1}$), the pre-shock ionization fractions (ranging from $f_p = 0.1$ to 0.9), and the temperature equilibration ratios (ranging from $\beta = 0.1$ to 1), as well as the Case A and Case B conditions for the narrow line.

5.1. Spatial Structure of the Shock Transition Zone

The basic features of the shock transition zone density structure were shown in Figure 2. The details of broad neutral production are highly sensitive to the values of v_s, f_p, and β. We can see the effect of increasing the shock velocity by comparing Figure 6 to Figure 2. At high values of v_s, the ionization rate is greater than the charge transfer rate, so relatively few broad neutrals are produced. The densities of the broad neutral populations decrease rapidly with each subsequent charge transfer reaction. The helium ionization rates decrease, causing the He$^+$ and alpha particle production to peak further downstream.

In Paper II, we explored variations in the ion velocity throughout the shock transition zone and found that, for $v_s \geq 300$ km s$^{-1}$, $v_i \approx v_s / 4$ with negligible deviation. We confirm this conclusion with our multicomponent models. Figure 7 shows the dimensionless ion velocity and temperature as a function of the distance from the shock front. Results are shown for $v_s = 1000$ and 4000 km s$^{-1}$, with $f_p = 0.5$ and $\beta = 1$. In the left panel, we display the percent deviation of the ion velocity from $v_s / 4$ for the two shock velocities. At $v_s < 1600$ km s$^{-1}$, broad neutrals are produced with a smaller momentum density than that of the original ion population, leading to an increase in the ion velocity by the conservation of momentum (solid curve). For $v_s \geq 1600$ km s$^{-1}$, the opposite occurs, and the ion velocity decreases as the broad neutrals are produced (dotted curve). The deviation of the ion velocity from $v_s / 4$ is less than 1% and has a negligible effect on calculations of the reaction rate coefficients. In the right panel, we plot the ion temperature profile. In this case, the broad neutrals are produced with slightly lower temperatures than the ions, leading to a slight heating of the ions. At large distances downstream, the presence
of alpha particles increases the mean atomic mass in the gas
to $1.27m_p$ (under the assumption of a 10% helium abundance),
leading to a final ion temperature that is slightly higher than $T_i \approx 3/[16(1 + \beta)]$. The maximum deviation of ϵ_i from its expected value is of order 10%, which in practice has a negligible effect on the values of the reaction rate coefficients.

5.2. Hα Emissivity

In Figure 3, we show a typical emissivity profile at a relatively
low shock velocity and ionization fraction. In the left panel of
Figure 8, we show the effect of increasing the initial ionization
fraction to $f_i = 0.9$. We see that the neutral density decreases
rapidly and the narrow-line emission peaks at the shock front
(left). Many charge transfer reactions occur close to the shock,
pushing the centroid of the broad emission farther upstream
compared to the $f_i = 0.1$ case. Comparing the right panel of Fig-
ure 8 to Figure 3, we can see the effect of increasing the shock
velocity. For the high-velocity case, both the ionization and charge
transfer rates are decreased, shifting the centroids of both line com-
ponents farther downstream in the transition zone.

As discussed by Raymond et al. (2007) and Paper II, the spa-
tial shift between the broad- and narrow-line centroids potentially

Fig. 6.— Same as Fig. 2, but for $v_s = 4000$ km s$^{-1}$. The density of the cold neutral hydrogen is scaled by 1/4. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 7.— Percent deviation of the ion velocity from $v_i/4$ (left) and the ion temperature (right) as functions of the position behind the shock front for two values of the
shock velocity: $v_s = 1000$ km s$^{-1}$ (solid curves) and $v_s = 4000$ km s$^{-1}$ (dotted curves). Results are shown for $f_p = 0.5, \beta = 1,$ and $f_{He} = 0.1.$ [See the electronic edition
of the Journal for a color version of this figure.]
provides a constraint on the preshock ionization fraction, f_p, and the external density, n_0. In Figure 9, we plot the spatial shift $z_{sh} = z_{cb} - z_{cn}$ as a function of the shock velocity v_s, with $n_0 = 1 \text{ cm}^{-3}$. Note that the spatial shift scales as $z \propto 1/n_0$. In the left panel, we show how z_{sh} depends on f_p, holding $\beta = 1$. As the velocity increases, the charge transfer rate decreases relative to the ionization rate, delaying the production of broad neutrals. Consequently, the centroid of ξ_b shifts downstream and the value of z_{sh} increases. For small values of f_p, few protons initially exist to engage in charge exchange. Consequently, z_{cb} shifts downstream from the shock front. In the right panel, we show how the results depend on the temperature equilibration parameter, β, for a fixed value of $f_p = 0.5$. At shock velocities of $v_s \gtrsim 1000 \text{ km s}^{-1}$, increasing β reduces the proton ionization rate for cold hydrogen. This effect causes the peak of broad production to shift downstream from the shock front. At high velocities, increasing β
tends to increase the charge transfer rate for broad neutrals over that for cold hydrogen. This effect causes the peak of broad production to shift closer to the shock front and decreases the value of \(z_{\text{sh}} \). For more discussion on the observational significance of the spatial emissivity profile and the shift, see § 6.2.

Another important observational diagnostic for Balmer-dominated SNRs is the ratio of the integrated broad-to-narrow line strengths, defined as

\[
I_b/I_n = \frac{\int_0^\infty dz \xi_b(z)}{\int_0^\infty dz \xi_n(z)}
\]

This ratio has a strong dependence on both \(v_s \) and \(\beta \). Figure 10 shows \(I_b/I_n \) versus the shock velocity at a fixed value of \(f_p = 0.5 \), for several values of the temperature equilibration \(\beta = 0.1, 0.5, \) and 1, using Case A (left) and Case B (right) conditions for the narrow line. For a given \(\beta \), the variation of the intensity ratio with velocity is the result of competition between charge transfers and ionizations, which contribute equally at \(v_s \sim 2000 \text{ km s}^{-1} \). At very low values of \(v_s \), the ionization rate begins to decrease precipitously while the charge transfer rate stays roughly constant, leading to the spike in \(I_b/I_n \). At a fixed shock velocity, increasing \(\beta \) causes a decrease in the proton ionization rate for broad neutrals compared to cold hydrogen, leading to an increase in the intensity ratio. In Case B conditions (right), additional narrow emission due to the absorption of trapped Ly\(\beta \) photons decreases the values of \(I_b/I_n \) relative to those of Case A. As noted in § 4, for most Balmer-dominated SNRs, partial line-scattering of Ly\(\beta \) photons yields emission intermediate between Cases A and B.

According to the picture in Paper I, the dependence of \(I_b/I_n \) on \(f_p \) is expected to be weak, since the number of broad neutrals produced in each population per cold hydrogen atom is fixed. This intuition is confirmed by our multicomponent calculation. When \(f_p \) is increased, we expect to see more charge transfers in the shock transition zone. However, this effect is balanced by higher ionization rates for both the broad and cold neutral populations. The net result is a negligible change in the \(I_b/I_n \) ratio.

The presence of neutral helium introduces a weak dependence of \(I_b/I_n \) on \(f_p \). In Figure 11, we show \(I_b/I_n \) as a function of \(v_s \) for a fixed value of \(\beta = 1 \) in Case A (left) and Case B (right) conditions. As \(f_p \) decreases, fewer protons engage in charge transfer and ionization reactions close to the shock front, shifting the peak of the broad neutral production downstream. In this case, the broad neutrals persist far enough downstream to interact with the charged helium species produced there, altering the ratio \(I_b/I_n \). This effect is of order \(\leq 1\% \) for \(f_{\text{He}} = 0.1 \) and remains small for larger helium fractions. However, it should be noted that when the effects of partial Ly\(\beta \) scattering are included, variations in optical depth with \(f_p \) can introduce a dependence of \(I_b/I_n \) on the preshock ionization fraction (G01). While we have roughly treated Ly\(\beta \) scattering using the prescription of § 4, a full calculation of line-scattering in the shock transition zone is needed to properly account for these effects and incorporate the dependence of the integrated line ratio on the preshock ionization fraction. This is a source of systematic error in our calculation.

Neglecting the \(f_p \) dependence, we can write the broad-to-narrow intensity ratio as

\[
I_b/I_n = L_{\text{bn}}(v_s, \beta),
\]

where \(I_b/I_n \) and \(L_{\text{bn}} \) represent the measured and theoretical values of the intensity ratio, respectively.

5.3. Broad-Line Profiles and Observational Interpretations

Equations (32) and (33) allow us to model the FWHM of the broad line as a function of \(v_s \) and \(\beta \), as shown in Figure 5. In the extreme scenarios of the Case A and Case B conditions, the FWHM has a weak (\(\leq 1\% \)) dependence on the preshock ionization after a spatial average is taken over the shock transition zone. Figure 12 shows examples of broad neutral velocity distributions (which are inputs to eq. [32]) for the case of the face-on orientation of the shock as a function of the line-of-sight velocity \(v_s \), in a frame of reference in which the ion velocity is zero. Results are shown for a fixed value of \(f_p = 0.5 \) at several values of
Fig. 11.— Broad-to-narrow intensity ratio I_b/I_n as a function of the shock velocity v_s, with $\beta = 1$ and $f_{\text{He}} = 0.1$, for Case A (left) and Case B (right) conditions. From bottom to top, the curves show results for preshock ionization fractions of $f_p = 0.1, 0.5, \text{and } 0.9$. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 12.— Face-on broad neutral velocity distributions as a function of the line-of-sight velocity v_z, in a reference frame in which the proton velocity is zero. Results are shown for a fixed value of $f_p = 0.5$ and several values of $\beta = 0.01, 0.1, 0.5, \text{and } 1$, at shock velocities of $v_s = 1000 \text{ km s}^{-1}$ (left) and $v_s = 7000 \text{ km s}^{-1}$ (right). At low shock velocities, charge transfer is extremely efficient, and the broad neutral distributions are very close to the thermal proton distribution, with the broad neutrals moving slightly slower than the ions (left). At high shock velocities, the broad neutral distribution function is skewed and offset from that of the protons, leading to asymmetric velocity profiles with the broad neutrals moving considerably faster than the ions (right).
than the ions. At high shock velocities, the broad neutral distributions are skewed and offset from the proton distribution, leading to the asymmetric profiles depicted in the right panel, with the broad neutrals moving considerably faster than the ions.

We write the FWHM as a function of v_s and β:

$$W_{\text{FWHM}} = W(v_s, \beta),$$

(38)

where W_{FWHM} and W represent the measured and theoretical values of the line FWHM, respectively. For SNRs with measured values of W_{FWHM} and I_b/I_n, combining equations (37) and (38) self-consistently constrains v_s and β. This is accomplished by inverting $W(v_s, \beta)$ to yield $v_s = W^{-1}(W_{\text{FWHM}}, \beta)$ and calculating the root of the expression

$$L_{bn}(W^{-1}(W_{\text{FWHM}}, \beta), \beta) - I_b/I_n = 0.$$

(39)

This procedure produces a pair of values (v_s, β) for which the theoretical calculations L_{bn} and W equal the measured I_b/I_n and W_{FWHM}.

We emphasize that a self-consistent calculation is critical for accurately determining the values of v_s and β. In the previous literature, two bracketing values for the temperature equilibration are sometimes chosen (e.g., $\beta = 0.1$ and 1), and the FWHM relation is employed to give a range of possible values for the shock velocity (e.g., Paper I). However, this procedure has a major flaw. In practice, the self-consistent quantity $L_{bn}(W^{-1}(W_{\text{FWHM}}, \beta), \beta)$ will have a minimum value over the range $\beta \in (m_I/m_p, 1)$. If the value of I_b/I_n for a particular observed shock is less than this minimum value, then no pair (v_s, β) will yield the observed values I_b/I_n and W_{FWHM}. In such a case, the model breaks down, and quoting a range of possible shock velocities for two bracketing values of β is inappropriate. Additional physics must be invoked in order to account for the observations. Moreover, when no measurement of I_b/I_n exists, the bracketing procedure may or may not yield an accurate estimate of the range of the shock velocities.

We use the methodology described above to self-consistently extract shock parameters from observations of Balmer-dominated SNRs. We summarize our results in Table 1, which lists, from left to right, the object name, the reference, the values of the Hα W_{FWHM} and I_b/I_n, calculated values for v_s and β from Hα, the LyβW_{FWHM}, and calculated values for v_s from Lyβ. If our models do not yield a fit to the observations, we do not list values for the shock velocity and the temperature equilibration ratio. Our calculations show a characteristic range of β between 0.01 and 0.1 for $v_s > 1000$ km s$^{-1}$. Therefore, in the case of Lyβ observations for which no measurement of I_b/I_n exists, we report the derived shock velocities for the range of $\beta = 0.01–0.1$; further observations are required in order to confirm the accuracy of these estimates. For SNR 0519–69.0, observations exist in both Hα and Lyβ. To calculate the shock velocities from the Lyβ observations, we use the derived value of β from the Hα diagnostics.

Our models successfully fit 14 measurements from seven Balmer-dominated SNRs, within the observational uncertainties. In the cases of the Cygnus Loop (G01) and one measurement from SNR 0519–69.0 by T82, the observed ratio I_b/I_n is too low to be accounted for by our calculations. In addition, we are unable to fit the majority of measurements from the object DEM L71/SNR 0505–67.9, which we have omitted from the table. Below, we discuss a possible explanation for these discrepancies in our model.

We note that our inferred shock velocities and temperature equilibration ratios are systematically lower than those in previous
studies and show an increased sensitivity to β compared to those of Papers I and II. The ability to sensitively probe both the shock velocity and the temperature equilibration is of interest for studies of collisionless electron heating in shocks, as described below. Typically, inferred values for v_s are $\sim$$10\%-30\%$ smaller than those quoted in Paper I, primarily because of the contribution of broad neutral velocities to the relative speeds in fast neutral-ion interactions. The shock speeds in Tycho’s SNR and SN 1006 are smaller by about 15% and 27%, respectively, than those reported previously. One implication is that the distances to these SNRs derived from the shock speeds and proper motions are correspondingly smaller. The inferred distance to SN 1006 is reduced from 2.18 kpc (Winkler et al. 2003) to 1.6 kpc. The corresponding brightness of the SN is squarely in the middle of the Type I SN distribution at 2.18 kpc, but is 0.7 mag fainter at 1.6 kpc. The smaller distance is more comfortable in comparison with that of the Schweizer-Middleditch star, which lies between 1.05 and 2.1 kpc and whose spectrum shows absorption by SN 1006 ejecta (Burleigh et al. 2000). On the other hand, the ejecta are observed to expand at 7026 km s$^{-1}$ (Hamilton et al. 2007), and the requirement that this material lie within the remnant places a conservative lower limit to the distance of 1.6 kpc, which is just consistent with that derived here.

6. DISCUSSION

6.1. Collisionless Shock Heating

One of the motivations for studying Balmer-dominated SNRs is to probe the physics of collisionless shocks. While various mechanisms for transferring energy from proton to electron populations have been proposed in the literature, there is no consensus on how to predict the value of β for a given set of shock parameters in astrophysical contexts. In a recent paper, G07b attempted to address this problem by deriving a relation for the temperature equilibration ratio versus shock velocity from observations of shocks in SNRs. They reported that their results could be fitted by a curve of $\beta(v_s) \propto v_s^{-2}$, with $\beta = 1$ for $v_s \leq 400$ km s$^{-1}$. Given that the proton temperature scales roughly as $T_p \propto v_s^2$, this conclusion implies that the electrons are heated to a constant temperature, independently of the shock velocity. While G07b discussed a possible mechanism for this dependence, it has not yet been established that theoretical models can produce such an effect.

Using our new model for emission from Balmer-dominated shocks, we have calculated an updated $\beta(v_s)$ relation, which is displayed in Figure 13. The solid curve depicts the proposed v_s^{-2} dependence, with $\beta = 1$ for $v_s < 400$ km s$^{-1}$. For all the points shown in the plot, we have self-consistently fitted measurements of both W_{FWHM} and I_b/I_α. We fix the preshock ionization at $f_p = 0.5$, and we exclude the majority of measurements from DEM L71/SNR 0505–67.9, as well as one measurement each from Cygnus and SNR 0519–69.0 that we are unable to account for with our models. We find from our calculations that the data are not well fitted by a power-law relation $\beta(v_s) \propto v_s^{-2}$ if, as we set $\alpha = 2$, the fit to the β curve yields a reduced χ^2 of $\chi^2 = 62.8/12 = 5.2$. For shock velocities of $v_s \approx 1500$ km s$^{-1}$, our results are fairly close to those of previous models. At higher velocities, $v_s > 2000$ km s$^{-1}$, the deviations are more significant. The minimum value of the temperature equilibration ratio is $\beta \sim 0.03$ at velocities of $v_s \approx 1500$ km s$^{-1}$. This value is greater than the theoretical minimum $\beta = m_e/m_p$ by several orders of magnitude, but it is smaller than the value predicted by some 5

As demonstrated by SNR 0505–67.9, the Cygnus Loop, and SNR 0519–69.0, an additional physical mechanism is needed to account for the observed Hα emission seen in some SNRs. One possibility is that a significant amount of the dissipated energy in the shock is transferred to cosmic rays, producing a precursor that can heat and accelerate the upstream gas, altering the shock jump conditions (S91; Hester et al. 1994; Sollerman et al. 2003). In addition, the precursor can “push” on the upstream protons, leading to a velocity differential between the neutrals and charged species (e.g., Berezhko & Ellison 1999). Furthermore, all previous models have assumed that the kinetic distribution functions for protons and electrons in the shock transition zone are Maxwellian. However, recent calculations have shown that the proton distribution can significantly depart from Maxwellian behavior, forming a distinct “pickup” ion population (Raymond et al. 2008). This effect will change the structure of the transition zone, the broad neutral distributions, and the kinetic reaction rates.

The inclusion of a cosmic-ray precursor will affect the predicted broad-to-narrow line strength in several ways. Broadening of the cold neutral distribution function effectively reduces the optical depth to Lyβ scattering, which will decrease the conversion efficiency of narrow Lyβ to Hα and increase L_{broad}. In contrast, additional excitation of cold neutral hydrogen atoms in the precursor will increase narrow-line emission and decrease L_{broad}. While it is not obvious which effect is dominant, evidence for such precursor effects exists in the anomalously large widths of Hα lines in most Balmer-dominated SNRs (Sollerman et al. 2003). In addition, Hα emission from a spatially resolved precursor in Tycho’s SNR has recently been reported by Lee et al. (2007).

The spatial structure of the shock transition zone provides a way to infer the external density n_0 and the preshock ionization fraction f_p. As noted in § 5.2, the spatial emissivity profile and the centroid shift between the narrow and broad components have a strong dependence on f_p and n_0. Raymond et al. (2007) were able to spatially resolve the total Hα emission from SN 1006 using the Advanced Camera for Surveys (ACS) instrument on the
The biggest systematic uncertainties in our current model are:

1. proper treatment of Lyman line scattering in the shock transition zone,
2. effect of a cosmic-ray precursor on $L_{\text{sh}, \alpha}$, and
3. inclusion of a nonthermal population of protons in calculating the reaction kinetics. The incorporation of these physical effects will be important for future models. Our new results yield substantial differences in the derived shock speed (and hence the inferred distances) for measurements of Balmer-dominated SNRs compared to those of previous models. While our results are not consistent with a power-law relation between the shock velocity and the electron temperature, future work is needed to resolve the remaining approximations in our model and to make a more definitive statement about the shock heating of electrons.

We thank Carles Badenes, Anatoly Spitkovsky, and Eliot Quataert for useful conversations, and Parviz Ghavamian for helping to clarify several points in the observational literature. K. H. thanks the Institute for Advanced Study for their generous support.

APPENDIX A

SHOCK KINETICS

Here we summarize the important details of our calculations of the rate coefficients, broad neutral velocity distributions, and broad-line profiles. For a more detailed description of our methods, see Paper I. In this work, we treat the n^ℓ atomic sublevels separately instead of considering a single, summed n level as in Paper I. We treat charge transfers, excitation, and ionization events between electrons, protons, alpha particles, and hydrogen atoms using the cross sections of Barnett et al. (1990), Belkić et al. (1992), Janev & Smith (1993), Balança et al. (1998), and Harel et al. (1998). Fitting functions for some of these cross sections are provided in Heng & Sunyaev (2008).

We also consider the ionization of helium atoms and singly ionized helium by electrons and protons, using the cross sections of Peart et al. (1969), Angel et al. (1978), Rudd et al. (1983), Shah & Gilbody (1985), Rinn et al. (1986), and Shah et al. (1988). Following Barnett et al. (1990), we fit the cross sections to the function

$$F(x; A) = \exp \left[\frac{A_0}{2} x^2 + \sum_{i=1}^{8} A_i C_i(x) \right],$$

where the components of $A = (A_0, A_2, \ldots, A_8)$ are the fitting parameters and the quantities C_i are the Chebyshev polynomials:

$$C_0(x) = 1,$$
$$C_1(x) = x,$$
$$C_i(x) = 2x C_{i-1} - C_{i-2}.$$

We define the fitting variable x as

$$x = \ln \left[\frac{E^2 / (E_{\text{max}} E_{\text{min}})}{\ln (E_{\text{max}} / E_{\text{min}})} \right].$$
where E is the relative energy between the interacting particles and E_{min} and E_{max} are the minimum and maximum energies for which data are available. We assume a fiducial error of 10% for the data. The cross sections and corresponding fits are displayed in Figure 15, and the fitting parameters are presented in Table 2.

We neglect the charge transfer reactions of neutral and singly ionized helium with protons due to the scarcity of cross sections for these processes in our velocity range of interest. While such interactions may affect helium line emission, we do not expect them to strongly couple to the Balmer radiation. In addition, for ease of computation, we approximate the excitation and ionization of hydrogen by He$^+$, using relevant proton rate coefficients. However, cross sections for this process do exist in the literature and should be used in future calculations (Barnett et al. 1990). Nevertheless, we expect corrections to these cross sections to have a small quantitative effect on our results.

We make several approximations in order to speed up our computations. For temperature ratios of 0.01 $\leq \beta \leq$ 0.1, the velocity width of the electron distribution is generally broader than that of the broad neutrals (the characteristic electron velocities are greater than the proton velocities by a factor of 4–14), implying that the rate coefficients for interactions involving electrons are insensitive to changes in the broad neutral velocity distribution. We therefore approximate the electron rate coefficients to be the same for reactions involving cold protons and broad neutrals. Calculations of the FWHM for line profiles should include excitations by electrons, protons, singly ionized helium, and alpha particles. However, alpha particles contribute $\approx1\%$ due to the relatively smaller density n_{α} and can typically be omitted.

The reaction rate coefficients used in equations (4)–(11) are defined as

$$\bar{R}_{X,s} = \int d^3v \int d^3v' f_s(v) f_a(v') \Delta v \sigma_{X,s}(\Delta v),$$

where X denotes the interaction (ionization or charge transfer), a denotes the atomic species (broad or cold neutrals), and s denotes the interacting charged particle (electrons, protons, singly ionized helium, or alpha particles). In contrast to equations (33)–(35), the interaction cross sections $\sigma_{X,s}$ used here represent the sum of the reactions to all nl levels for which atomic data are available (cf. eq. [27]). Using the definition of equation (A6), the quantity $n_{\alpha} n_{\epsilon} \bar{R}_{X,s}$ gives the number of interactions X between the species a and s per unit volume.

Our assumption is based on the Weizsacker-Williams approximation, in which scattering dynamics are dominated by the charge of the impacting particle, as opposed to its mass (e.g., Jackson 1998). This approximation is valid when the relative velocity of the collision is greater than that of an electron orbiting the hydrogen atom. At low velocities, $v_\epsilon \leq 300$ km s$^{-1}$, this assumption breaks down.

TABLE 2

Parameter	He$^+$ + e$^-$	He$^+$ + e$^-$	He + p	He$^+$ + p
A_0	-78.4712	-82.6155	-77.0261	-80.7740
A_1	-0.832236	-0.535745	0.596233	1.50686
A_2	-1.00452	-1.15893	-1.37165	-2.04982
A_3	0.482606	0.644513	0.205854	0.384422
A_4	-0.244927	-0.419765	0.123038	0.353731
A_5	0.121965	0.299795	-0.067124	-0.268015
A_6	-0.0795100	-0.204216	-0.0135306	-0.0107265
A_7	0.0537985	0.133238	0.0163305	0.0101069
A_8	-0.0521662	-0.0716388	-0.00556328	-0.011770
E_{min} (eV)	26.6	54.5	5.0 \times 103	2.98 \times 103
E_{max} (eV)	10^4	10^4	2.38×10^6	1.03×10^6

Fig. 15.—Cross sections for the ionization of neutral and singly ionized helium by electrons and protons. For references to the atomic data, see Appendix A.
APPENDIX B

TYPOGRAPHICAL ERRORS IN PAPERS I AND II

We point out several minor typographical errors in Heng & McCray (2007) and Heng et al. (2007). In \S 5.1 of Heng & McCray (2007), $R_{bn}(H/H/C_{11}) = I_{bn}(H/H/C_{11})/I_{bn}(H/H/C_{11})$ should be $R_{bn}(H/H/C_{11}) = I_{bn}(H/H/C_{11})/I_{bn}(H/H/C_{11})$. In \S 5 of Heng et al. (2007), $R_{H/C_{11}/b_{0}}$ should be $R_{H/C_{11}/b_{0}}$, $R_{H/C_{11}/b_{0}/C_{3}}$ should be $R_{H/C_{11}/b_{0}/C_{3}}$, and $R_{H/C_{11}/n}$ should be $R_{H/C_{11}/n}$. In \S 6.2, paragraph 2 of Heng et al. (2007), the sentence that begins “Before CKR80 and HM07, …” should be changed to “Before (CKR80 and HM07), …”.

REFERENCES

Angel, G. C., Dunn, K. F., Sewell, E. C., & Gilbody, H. B. 1978, J. Phys. B, 11, L49
Balança, C., Lin, C. D., & Feautrier, N. 1998, J. Phys. B, 31, 2321
Barnett, C. F., Hunter, H. T., Fitzpatrick, M. I., Alvarez, I., Cisneros, C., & Phaneuf, R. A. 1990, NASA STI/Recon Technical Report N, 91, 13238
Belkić, D., Gayet, R., & Satin, A. 1992, At. Data Nucl. Data Tables, 51, 59
Berezhko, E. G., & Ellison, D. C. 1999,ApJ, 526, 385
Burleigh, M. R., Heber, U., O’Donoghue, D., & Barstow, M. A. 2000, A&A, 356, 585
Cargill, P. J., & Papadopoulos, K. 1988, ApJ, 329, L29
Chevalier, R. A., Kirshner, R. P., & Raymond, J. C. 1980, ApJ, 235, 186
Chevalier, R. A., & Raymond, J. C. 1978, ApJ, 225, L27
Cox, A., ed. 2000, Allen’s Astrophysical Quantities (4th ed.; New York: AIP)
Fesen, R. A., Becker, R. H., Blair, W. P., & Long, K. S. 1989, ApJ, 338, L13 (F89)
Ghavamian, P., Blair, W. P., Sankrit, R., Raymond, J. C., & Hughes, J. P. 2007a, ApJ, 664, 304 (G07a)
Ghavamian, P., Laming, J. M., & Rakowski, C. E. 2007b, ApJ, 654, L69 (G07b)
Ghavamian, P., Rakowski, C. E., Hughes, J. P., & Williams, T. B. 2003, ApJ, 590, 833 (G03)
Ghavamian, P., Raymond, J., Smith, R. C., & Hartigan, P. 2001, ApJ, 547, 995 (G01)
Ghavamian, P., Winkler, P. F., Raymond, J. C., & Long, K. S. 2002, ApJ, 572, 888 (G02)
Hamilton, A. J. S., Feenen, R. A., & Blair, W. P. 2007, MNRAS, 381, 771
Harel, C., Jouin, H., & Pons, B. 1998, At. Data Nucl. Data Tables, 68, 279
Heng, K., & McCray, R. 2007, ApJ, 654, 923 (Paper I)
Heng, K., & Sunyaev, R. A. 2008, A&A, 481, 117
Heng, K., van Adelsberg, M., McCray, R., & Raymond, J. C. 2007, ApJ, 668, 275 (Paper II)
Hester, J. J., Raymond, J. C., & Blair, W. P. 1994, ApJ, 420, 721
Jackson, J. D. 1998, Classical Electrodynamics (3rd ed.; New York: Wiley)
Janev, R. K., & Smith, J. J. 1993, Cross Sections for Collision Processes of Hydrogen Atoms with Electrons, Protons and Multiply Charged Ions (Vienna: Int. Atomic Energy Agency)
Kirshner, R., Winkler, P. F., & Chevalier, R. A. 1987, ApJ, 315, L135 (KWC87)
Laming, J. M., Raymond, J. C., McLaughlin, B. M., & Blair, W. P. 1996, ApJ, 472, 267
Lee, J.-J., Koo, B.-C., Raymond, J., Ghavamian, P., Pyo, T.-S., Tajitsu, A., & Hayashi, M. 2007, ApJ, 659, L133
Peart, B., Walton, D. S., & Dolder, K. T. 1969, J. Phys. B, 2, 1347
Raymond, J. C., Isenberg, P. A., & Laming, J. M. 2008, ApJ, 682, 408
Raymond, J. C., Korreck, K. E., Sedlacek, Q. C., Blair, W. P., Ghavamian, P., & Sankrit, R. 2007, ApJ, 659, 1257
Rinn, K., Melchert, F., Rink, K., & Salzborn, E. 1986, J. Phys. B, 19, 3717
Rudd, M. E., Goffe, T. V., Dubois, R. D., Toburen, L. H., & Ratcliffe, C. N. 1983, Phys. Rev. A, 28, 3244
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley)
Shah, M. B., Elliott, D. S., McCallion, P., & Gilbody, H. B. 1988, J. Phys. B, 21, 2751
Shah, M. B., & Gilbody, H. B. 1985, J. Phys. B, 18, 899
Shull, J. M., & McKee, C. F. 1979, ApJ, 227, 131
Smith, R. C., Kirshner, R. P., Blair, W. P., & Winkler, P. F. 1991, ApJ, 375, 652 (S91)
Sollerman, J., Ghavamian, P., Lundqvist, P., & Smith, R. C. 2003, A&A, 407, 249
Spitzer, L. 1962, Physics of Fully Ionized Gases (2nd rev. ed.; New York: Wiley)
Tuohy, I. R., Dopita, M. A., Mathewson, D. S., Long, K. S., & Helfand, D. J. 1982, ApJ, 261, 473 (T82)
Winkler, P. F., Gupta, G., & Long, K. S. 2003, ApJ, 585, 324