ANATOMICAL STUDY

Subserosal localization of myenteric ganglia in normal human appendix: immunostaining with neuronal and glial markers

Kubikova E, Sivakova I, El Falougy H, Perzelova A

Department of Anatomy, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
anna.perzelova@fmed.uniba.sk

ABSTRACT

OBJECTIVES: Visualization of unexpected distribution of myenteric ganglia in normal human appendiceal wall by immunofluorescence.

BACKGROUND: The myenteric plexus is located between the longitudinal and circular muscle layers of the GIT. However, recently the irregular distribution of myenteric ganglia was revealed in human appendix.

METHODS: The cryosections prepared from normal human appendices were examined by immunofluorescence methods using antibodies to neurofilaments (NF) and glial fibrillary acidic protein (GFAP).

RESULTS: Indirect immunofluorescence revealed the positive staining of myenteric ganglia with both neuronal and glial marker antibodies. Double labeling for NF/GFAP staining showed close association between glia and neurons inside ganglia. GFAP-positive cells were often observed as the cells surrounding myenteric ganglia. The staining confirmed the irregular distribution of myenteric ganglia in human appendiceal wall and revealed the small ganglia in the subserosal area.

CONCLUSION: Our results showed that localization of myenteric ganglia in human appendix differs from other parts of GIT. GFAP immunostaining is available for visualization of smaller myenteric ganglia located mainly in the subserosal area. Our studies may find application in current HIV research focused on enteric neuropathogenesis and in diagnostic laparoscopy for chronic abdominal pain: to detect the irritation of subserosal ganglia (Fig. 2, Ref. 26).

KEY WORDS: human appendix, myenteric ganglia, intermediate filaments, GFAP, NF.

Introduction

Gastrointestinal tissues are innervated by the enteric nervous system (ENS), composed of enteric neurons and enteric glia. The neurons of the ENS are organized into ganglia which together with nerve fibres form myenteric (Auerbach’s) and submucosal (Meissner’s) plexi. The submucous plexus is located in the submucosa and controls epithelial and vascular functions of the mucosa. The myenteric plexus localization is described between the longitudinal and circular muscle layers in the gastrointestinal tract and together with intestinal cells of Cajal is responsible mainly for intestinal motility (1, 2).

The myenteric plexus in human appendix is poorly examined. It could be because for a long time appendix was considered as a vestigial organ. The greatest attention was paid on well-developed rabbit appendix that when compared with humans support the hypothesis of the appendix vestigiality (3). The most important question about the human appendix is its pathology and poorly understood etiology of appendicitis in children and young adults. In animals, appendicitis was described only in anthropoid apes (4). However, the morphological similarities of narrow worm-shaped appendix are restricted to humans and apes. On the other hand, easy emptying of large open appendix present in many primates and mammals is probably protective against appendicitis.

Previously, it was believed that appendicitis is caused by obstruction of the lumen (5). However, several studies revealed that the obstruction is not a causative factor of acute appendicitis (6, 7). Recently, we described the atypical myenteric ganglia distribution in relation to appendix pathology (8). Here, we examined the co-expression of neuronal and glial markers in normal human appendiceal wall.

Material and methods

Biopotic samples

Fresh tissue samples of normal and inflamed human appendices were kindly provided by the Children’s Faculty Hospital Bratislava. Experiments with human biopotic samples were approved by the Ethical Committee of UNB Bratislava. For this study we chose appendices from five patients of similar age (12–14 years) which...
were found to be normal after appendectomy. The appendices were cut along their longitudinal axes. Specimens for cryosections were embedded with OCT and cut into 10 um thick sections.

Immunofluorescence

Indirect immunofluorescence staining was performed using antibodies to neurofilament (1:100 dilution, clone NF-01, Exbio, Prague) and polyclonal sera to GFAP (1:100 dilution, DAKO). Cryosections were fixed in methanol-acetone (1:1) solution for 15 min at (-15 °C). temperature. They were incubated for 1 hour with primary and for 30 minutes with 1:50 diluted secondary antibodies (Sigma). Double labeling for NF/GFAP was performed with primary, and afterwards with appropriate mixtures of secondary antibodies for 1 hour and 30 minutes, respectively. Nu-

Fig. 1. Indirect immunofluorescence of human appendix, longitudinal cryosections. The irregular distribution of myenteric ganglia positively stained for NF (A, B) and GFAP (C). Nuclei stained with Hoechst. Scale bar: 50 μm.

Fig. 2. Double labeling for NF and GFAP of human appendix, longitudinal cryosections. The staining showed close association between glia and neurons within myenteric ganglia (A–F). GFAP-positive cells were also observed as myenteric ganglia surrounding cells (G–I). Nuclei stained with Hoechst. Scale bars: 50 μm.
clei were stained with Hoechst 33342 (5 μg/ml in PBS, Sigma) for 1 minute.

Results

IF are usually considered as cell type specific proteins. NF are the major component of the neuronal cytoskeleton. The three component proteins (NF-L, NF-M and NF-H) are referred as the neurofilament triplet. We used monoclonal antibodies which recognize an epitope on NF-H (9). GFAP is specific for cells of astroglial origin and also is marker protein for enteric glia (10). To avoid the cross-reactivity of IF antibodies we used separately the staining for NF and GFAP. Myenteric ganglia were detected by indirect immunofluorescence using antibodies to NF and GFAP. Immunofluorescence showed a strong staining of ganglia with both marker antibodies. They were of different size and shape (Fig. 1 A–C). Irregular distribution of myenteric ganglia was present in all examined samples. The layer of myenteric ganglia never appeared only between longitudinal and circular muscles layers as is described in the large and small intestines. They were distributed mainly in the circular layer (Fig. 1 A) or within both muscle layers (Fig. 1 B, C).

Double labeling was performed with monoclonal antibodies to NF and polyclonal sera against GFAP. The staining showed close association between glia and neurons inside myenteric ganglia (Fig. 2A–F). GFAP-positive cells were also present outside ganglia as myenteric ganglia surrounding cells (Fig. 2C–I). Single GFAP-positive cells were not identified within both muscular layers. The small subserosal ganglia were found unequally distributed under a thin layer of serosa. They were revealed mainly with GFAP immunostaining. It is because ganglia surrounding GFAP-positive cells increased the size of small ganglia created by several neurons (Fig. 2 A–C).

Discussion

In this report we demonstrate the immunostaining of myenteric ganglia with neuronal (NF) and glial (GFAP) marker antibodies. Indirect immunofluorescence on cryosection prepared from normal human appendices revealed the positive staining of myenteric ganglia with both marker antibodies. Double labeling NF/GFAP showed close association between glia and neurons inside ganglia. In addition, GFAP-positive cells were observed as myenteric ganglia surrounding cells. Immunofluorescence staining showed the irregular distribution of myenteric ganglia in human appendical wall which were often concentrated in the circular muscle layer. Small ganglia appeared in the subserosal area. For the visualization of smaller myenteric ganglia antibodies to GFAP are more suitable, because GFAP-positive cells surround the neurons and enlarge these ganglia. Enteric glia are peripheral glial cells which share morphological similarities with astrocytes. They are present in the myenteric and submucosal plexuses, within the circular muscle and in the lamina propria of the mucosa (11). However, we did not observe single enteric glial cells with astrocyte-like morphology in longitudinal or circular muscle layers. However, similarly as in appendix enteric glial cells surrounding myenteric ganglia were described in colon (10, 12).

Numerous studies revealed that myenteric ganglia in gastrointestinal tract are located between longitudinal and circular muscle layer. On the other hand, only several reports with conflicting results are dealing with myenteric ganglia in human appendix. Recently we described the irregular distribution of myenteric ganglia in human appendix (13) and the presence of myenteric ganglia in the subserosal area which occurred more frequently in appendices with diagnosis of chronic appendicitis (8). Irregular distribution of myenteric ganglia was described in some studies (14, 15). However, Hanani (16) revealed that in most cases, the innervation of human appendix consisted of three concentric networks of ganglia located between the circular and longitudinal muscle layers as well as within them.

New findings and new questions.

We suppose that different degree of irregular distribution, mainly ganglia concentrated in the circular muscle layer, may cause altered appendix motility leading to inflammatory appendix pathology. On the other hand, subserosal localization of myenteric ganglia may be a reason of chronic abdominal pain in the right lower quadrant, caused by direct irritation of surrounding abdominal organs. The appendix can be a rare cause for chronic abdominal pain in this quadrant, however, a significant reduction of pain was achieved after an appendectomy (17). Increase interest of human appendix function, revealed the role of appendix in Crohn’s disease or colitis ulcerosa (18, 19), appendix as a source of mesenchymal stem cells (20) or appendix as reservoir of good bacteria (21). Based on these new findings, appendectomy for chronic abdominal pain, similarly prophylactic appendectomy of a normal-appearing appendix during laparoscopic surgery remains disputable (22, 23, 24). New question arises: what is the benefit for patients? It could be useful to consider the new methods, how to save apparently normal appendix in patients with diagnosis of chronic right lower quadrant abdominal pain, how to protect and cover the irritated subserosal myenteric ganglia in human appendical wall.

Abdominal pain and gastrointestinal disorders are major clinical features in patients with AIDS. However, it is still not clear why acute appendicitis occurs at a 4-fold higher prevalence among HIV-infected patients compared with the general population (25). In addition, acute appendicitis was described as the initial clinical presentation of primary HIV-1 infection (26). The study of myenteric ganglia in human appendix may contribute to an understanding of neuroinflammatory processes reported in HIV patients.

References

1. Thuneberg L. Interstitial cells of Cajal: Intestinal pacemaker cells? Adv Anat Embryol Cell Biol 1982; 71: 1–130.
2. Camborova P, Hubka P, Sulkova I, Hulin I. The pacemaker activity of interstitial cells of Cajal and electrical activity. Physiol Res 2003; 52: 275–28.
3. Dasso JF, Obiakor H, Bach H, Anderson AO, Mage RG. A morphological and immunohistological study of the human and rabbit appendix for comparison with the avian bursa. Dev Comp Immunol 2000; 24: 797–814.

4. Scott GBD. The primate caecum and appendix vermiformis a comparative study. J Anat 1980; 131 (3): 549–563.

5. Pieper R, Kager L, Tiefefeld U. Obstruction of appendix vermiformis causing acute appendicitis. Acta Chir Scand 1982; 148: 63–72.

6. Arnbjörnsson E, Bengmark S. Role of obstruction in the pathogenesis of acute appendicitis. Am J Surg 1984; 147 (3): 390–2.

7. Ramdass MJ, Sing QY, Milne D, Mooteeram J, Barrow S. Association between the appendix and the fecalit in adults. J Can Chir 2015; 58 (1): 10–14.

8. Kubikova E, Sivakova I, Perzelova A, El Falougy H. Biological aspects of appendix pathology irregular distribution of myenteric ganglia in human appendiceal wall. Bratisl Med J 2015; 116 (12): 726–728.

9. Lukas Z, Draber P, Bucek J, Draberova E, Viklicky V, Dolezel S. Expression of phosphorylated high molecular weight neurofilament protein (NF-H) and vimentin in human developing dorsal root ganglia and spinal cord. Histochemistry 1993; 100: 495–502.

10. Boesmans W, Lasrado R, Berghe PV, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 2015; 63 (2): 229–241.

11. Gulbrasen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2012; 9 (11): 625–632.

12. Boesmans W, Martens MA, Weltens N, Hao MM, Tack J, Cirillo C, Berghe PV. Imaging neuron-glia interactions in the enteric nervous system. Front Cell Neurosci 2013; 7: 183. Doi: org/10.3389/fncel.2013.00183.

13. Kubikova E, Sivakova I, Perzelova A. Atypical localization of myenteric ganglia in the human appendiceal wall: a comparative study with animal appendix. Biologia 2014; 69: 931–935.

14. Emery JL, Underwood J. The neurological junction between the appendix and ascending colon. Gut 1970; 11: 18–120.

15. Rajeswara RN, Kommuru H, Anuradha S, Swayam JS. Ganglion cells of the myenteric plexus in human vermiciform appendix. J Med Sci Tech 2013; 3 (1).

16. Hanani M. Multiple myenteric networks in the human appendix. Auton Neurosci Basic 2004; 110: 49–54.

17. van Rossem CC, Treskes K, Loez DL, van Geloven AA. Laparoscopic appendectomy for chronic right lower quadrant abdominal pain. Int J Colorectal Dis 2014; 29 (10): 1199–202.

18. Andersson RE, Olaison G, Tysk C, Ekblom A. Appendectomy is followed by increased risk of Crohn’s disease Gastroenterology 2003; 124 (1): 40–46. Doi: org/10.1053/gast.2003.50021.

19. Matsushita M, Uchida K, Okazaki K. Role of appendix in the pathogenesis of ulcerative colitis. Inflammopharmacol 2007; 15: 154–157.

20. Coppi P, Pozzobon M, Piccoli M, Gazzola MV, Boldrin L, Slanzi E, Destro R, Zanesco L, Zanon GF, Gamba P. Isolation of mesenchymal stem cells from human vermiciform appendix. J Surg Res 2006; 135: 85–91.

21. Bollinger RR, Barbas AS, Bush EL, Lin SS, Parker W. Biofilms in the large bowel suggest an apparent function of the human vermiciform appendix. J Theor Biol 2007; 249: 826–831.

22. Stevenson RJ. Chronic Right-Lower-Quadrant abdominal pain: Is there a role for elective appendectomy? J Pediatr Surg 1999; 34 (6): 950–954.

23. Dilek ON, Güler O, Güler AA, Demirtis I, Altindis M, Dilek FH, Ozgören E. Prophylactic appendectomy: is it worth to be done? Acta Chir Belg 2001; 101 (2): 65–67.

24. Davis CR, Trevatt AEJ, Dixit A, Datta V. Systematic review of clinical outcomes after prophylactic surgery. Ann R Coll Surg Engl 2016; 98: 353–357.

25. Crum-Cianflone N, Weekes J, Bavaro M. Appendicitis in HIV-infected patients during the era of highly active antiretroviral therapy. HIV Medicine 2008; 9 (6):421–426.

26. Schleimann MH, Leth S, Krarup AR, Mortensen J, Barstad B, Zaccarin M, Denton PW, Mohey R. Acute appendicitis as the initial clinical presentation of primary HIV-1 infection. Open Forum Infect Dis 2018; 5 Article ofy006.

Received July 11, 2018.
Accepted September 7, 2018.