Structural bioinformatics

PISA-SPARKY: an interactive SPARKY plugin to analyze oriented solid-state NMR spectra of helical membrane proteins

Daniel K. Weber¹, Songlin Wang¹, John L. Markley ², Gianluigi Veglia¹,³,* and Woonghee Lee ²,*

¹Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA, ²National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA and ³Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

*To whom correspondence should be addressed.

Published by Oxford University Press.

Abstract

Motivation: Two-dimensional [¹⁵N-¹H] separated local field solid-state nuclear magnetic resonance (NMR) experiments of membrane proteins aligned in lipid bilayers provide tilt and rotation angles for α-helical segments using Polar Index Slant Angle (PISA)-wheel models. No integrated software has been made available for data analysis and visualization.

Results: We have developed the **PISA-SPARKY** plugin to seamlessly integrate PISA-wheel modeling into the **NMRFAM-SPARKY** platform. The plugin performs basic simulations, exhaustive fitting against experimental spectra, error analysis and dipolar and chemical shift wave plotting. The plugin also supports **PyMOL** integration and handling of parameters that describe variable alignment and dynamic scaling encountered with magnetically aligned media, ensuring optimal fitting and generation of restraints for structure calculation.

Availability and implementation: **PISA-SPARKY** is freely available in the latest version of **NMRFAM-SPARKY** from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRBox Project (https://nmrbox.org) and to subscribers of the SBGrid (https://sbgrid.org). The **pisa.py** script is available and documented on GitHub (https://github.com/weberdak/pisa.py) along with a tutorial video and sample data.

Contact: veglia001@umn.edu or wlee44@wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Oriented sample solid-state nuclear magnetic resonance (OSS-NMR) spectroscopy enables the acquisition of highly resolved spectra of membrane proteins aligned in lipid bilayers (Opella and Marassi, 2004). In contrast to solution NMR and magic-angle spinning ssNMR, anisotropic contributions dominate chemical shifts and dipolar couplings of OS-ssNMR spectra, leading to enhanced spectral dispersion, especially for α-helices. These parameters provide invaluable topological restraints for structure determination and potentially provide highly sensitive probes that capture subtle signal transduction mechanisms that conventional structural techniques miss (Matthews et al., 2006).

Two-dimensional [¹⁵N-¹H] separated local field (SLF) experiments (Hester et al., 1976) of uniformly ¹⁵N-labeled samples, such as PISEMA (Wu et al., 1994) and SAMP14 (Nevzorov and Opella, 2007), provide residue-specific orientational restraints by correlating amide ¹⁵N chemical shifts and ¹⁵N-¹H dipolar couplings. The introduction of magnetically aligned media, such as bicelles (Sanders and Landis, 1995) and macrodiscs (Park et al., 2011), has substantially improved the quality of these experiments. These lipid-mimetic systems provide high hydration levels and high lipid-protein ratios, which help stabilize membrane proteins structure and function (Dürr et al., 2012). These improvements yield resolution sufficient for studies of larger multi-spanning systems (Weber and Veglia, 2019). For α-helical proteins, SLF spectra produce circular patterns of the resonances, reflecting the periodic nature of secondary structures, described accurately by the Polar Index Slant Angle (PISA)-wheel model (Marassi and Opella, 2000; Wang et al., 2000). These phenotypical models predict cross-peak positions for each residue as a function of the tilt (or slant) and rotational angles of the overall helical segment (Denny et al., 2001), and they are commonly used in conjunction with selective labeling and unlabeling schemes for resonance assignments; while simultaneously determining...
3 Results

The plugin is demonstrated in the Supplementary Data using an hcSe-SAMPI spectrum of sarcoplasmic reconstituted into an unflipped bicelle (Wang et al., 2019). Examples describe usage of assignment-free fitting against manually specified spectral boundaries (Supplementary Fig. S3), exhaustive fitting to assignments selected within NMRFAM-SPARKY (Supplementary Fig. S2), basic PSA-wheel simulation (Supplementary Fig. S4A), error analysis (Supplementary Fig. S4B) and PyMOL integration (Supplementary Fig. S5).

Acknowledgements

The authors thank Dimitri Mazziuk for maintenance of the NMRFAM computing server, which hosts the PISA webserver.

Funding

This work has been supported the National Science Foundation [DBI 1902076 to J.L.M. and W.L.], and partially by the National Institutes of Health [R01 GM 64742 and HL 144130 to G.V.; P41 GM 103399 to J.L.M.] and the American Heart Association [19POST3420009 to D.K.W.]. Part of this work was carried out using hardware provided by the University of Minnesota Supercomputing Institute.

Conflict of Interest: none declared.

References

Denny, J.K. et al. (2001) PISEMA powder patterns and PISA wheels. *J. Magn. Reson.*, 152, 217–226.
Dürr, U.H.N. et al. (2012) The magic of bicelles lights up membrane protein structure. *Chem. Rev.*, 112, 6034–6074.
Hester, R.K. et al. (1976) Separated local field spectra in NMR: determination of structure of solids. *Phys. Rev. Lett.*, 36, 1081–1083.
Lee, W. et al. (2014) Integrative NMR for biomolecular research. *J. Biomol. NMR*, 60, 73–75.
Lee, W. et al. (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. *Bioinformatics*, 31, 1325–1327.
Lee, W. et al. (2016) Integrative NMR for biomolecular research. *J. Biomol. NMR*, 64, 307–332.
Marassi, F.M. and Opella, S.J. (2000) A solid-state NMR index of helical membrane protein structure and topology. *J. Magn. Reson.*, 144, 150–155.
Matthews, E.E. et al. (2006) Dynamic helix interactions in transmembrane signaling. *Cell*, 127, 447–450.
Nevzorov, A.A. and Opella, S.J. (2009) Dynamic averaging for high-resolution solid-state NMR spectroscopy of aligned samples. *J. Magn. Reson.*, 185, 59–70.
Opella, S.J. and Marassi, F.M. (2004) Structure determination of membrane proteins by NMR spectroscopy. *Chem. Rev.*, 104, 3587–3606.
Park, S.H. et al. (2011) Nanodiscs versus macrodiscs for NMR of membrane proteins. *Biochemistry*, 50, 8983–8985.
Sanders, C.R. and Landis, G.C. (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. *Biochemistry*, 34, 4030–4040.
Wang, J. et al. (2000) Imaging membrane protein helical wheels. *J. Magn. Reson.*, 144, 162–167.
Wang, S. et al. (2019) Improving the quality of oriented membrane protein spectra using heat-compensated separated local field experiments. *J. Biomol. NMR*, 73, 617–624.
Weber, D.K. and Vегля, G. (2019) A theoretical assessment of the structure determination of multi-span membrane proteins by oriented sample solid-state NMR spectroscopy. *Anat. J. Chem.*, doi: 10.1071/CH19307.
Wu, C.H. et al. (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. *J. Magn. Reson.*, 109, 270–272.