Title: Divergent thermal challenges elicit convergent stress signatures in aposymbiotic *Astrangia puchulata*

Running head: Thermal challenges in a temperate coral

Authors:
1. Wuitchik DM (1) *Corresponding author* (wuitchik@bu.edu)
2. Almanzar A (1)
3. Benson BE (1)
4. Brennan SA (1)
5. Chavez JD (1)
6. Liesegang MB (1, 2)
7. Reavis JL (1)
8. Reyes CL (1)
9. Schniedewind MK (1)
10. Trumble IF (1)
11. Davies SW (1)

Affiliations:
(1) Department of Biology, Boston University, Boston, MA
(2) Scripps Institution of Oceanography, University of California San Diego, San Diego, CA
Abstract

Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths are rarely explored. In addition, it is difficult to disentangle the role of symbiosis on the stress response of obligately symbiotic coral hosts. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbiont, to examine how broad thermal challenges influence coral hosts. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioral responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, five times as many genes were differentially expressed under cold challenge compared to heat challenge. Despite more genes responding to cold challenge, there was significant overlap in which genes were differentially expressed across thermal challenges. These convergently responding genes (CRGs) were associated with downregulation of motor functions and nematocysts while others were consistent with stress responses previously identified in tropical corals. The fact that these responses were observed in aposymbiotic colonies highlights that many genes previously implicated in stress responses in symbiotic species may simply represent the coral’s stress response in or out of symbiosis.

Introduction

Temperature is an important factor in determining species distribution patterns in ectothermic organisms (Angilleta 2009). As sea surface temperatures continue to rise, understanding how these changes will affect species distributions demands a broad understanding of organisms’ physiological sensitivities to temperature across their native range. There is overwhelming evidence that temperature increases associated with anthropogenic climate change are having widespread ecological consequences on marine species distributions (Hoegh-Guldberg et al. 2008; Pinsky et al. 2019). Coral reefs are particularly sensitive to these thermal changes, which have been implicated in widespread reef declines (Hughes et al. 2017). Temperature anomalies are the primary driver of the breakdown in the obligate symbiotic relationship between tropical corals and their endosymbiotic algae (family Symbiodiniaceae; LaJeunesse et al. 2018). This breakdown results in the expulsion of algae from coral host tissue in a process known as coral bleaching (Gates
et al. 1992; Venn et al. 2008). Because symbiotic algae translocate carbon sugars to the coral host, losing these symbionts results in significant energy loss and many corals are unable to survive extended periods in a bleached state (Weis 2008).

The majority of research on coral bleaching has focused on responses to elevated temperatures in tropical reef-building corals (Cziesielski et al. 2019). However, tropical corals can bleach in response to a variety of stressors, including high nutrients (Wiedenmann et al. 2013), ocean acidification (Anthony et al. 2008), pathogens (Ben-Haim & Rosenberg 2002), low salinity (Goreau 1964), chemical exposures (Cervino et al. 2003), and cold stress (Saxby et al. 2003).

Coral responses to cold stress remain understudied, even though these events can have substantial impacts on reefs. For example, a cold-water bleaching event in 2010 decimated inshore coral populations along the Florida reef tract (Lirman et al. 2011), and cold water has caused bleaching on the Great Barrier Reef (Hoegh-Guldberg & Fine 2004). While the main effect of climate change on marine systems is a net increase in mean global sea surface temperatures, these cold thermal challenges may be exacerbated by the pace of Arctic warming (twice as fast as the global average), which may influence upper-level atmospheric activity and storm tracks resulting in more frequent extreme cold outbreaks at northern mid-latitudes (Cohen et al. 2014). These cold extremes are therefore relevant thermal challenges to subtropical and temperate coral species.

One way to monitor responses to stress is to characterize changes in gene expression profiles, which provides a snapshot into the physiological state of an organism and offers insights into the biological processes, molecular functions, and cellular components that corals engage to tolerate various stressors. Modern transcriptomics have demonstrated that corals mount dynamic responses to pollutants (Gust et al. 2014; Ruiz-Ramos et al. 2017), pH (Moya et al. 2012; Davies et al. 2016) and bacterial challenges (Fuess et al. 2017; Wright et al. 2017) and considerable efforts
have been made to understand how corals respond to heat challenges (for review see Cziesielski et al. 2019). Interestingly, similar patterns of gene expression emerge from these different stressors. Barshis et al. (2013) demonstrates that corals exhibit a widespread stress response across thousands of genes, and this environmental stress response (ESR) is consistent with the conserved response to diverse environmental stressors in yeast (Gasch et al. 2000). A meta-analysis comparing the transcriptomic responses of coral from the genus *Acropora* to various stressors found these coral exhibit a stereotyped ESR (Dixon et al. 2020). There, it was found that there is consistent upregulation of genes involved in cell death, response to reactive oxygen species, NF-kB signaling, immune response, protein folding, and protein degradation to a variety of acute stress exposures. This research highlights that testing a single stressor cannot elucidate whether genes being expressed are unique to the stressor or emerge from a more generalized ESR.

Most work exploring the stress responses of corals have focused on tropical reef-building corals that live in oligotrophic waters and cannot survive long-term without their algal symbionts. Because energy deprivation in coral hosts results from any mechanism of symbiont loss (Baena-González & Sheen 2008), uncoupling a thermal stress response from an energy deprivation response is challenging. Furthermore, given that many tropical corals exhibit an obligate symbiotic relationship, it is difficult to disentangle the host’s stress response to extreme temperatures from the host’s response to stress-induced algal by-products (i.e. reactive oxygen species (ROS); McGinty et al. 2012) and the resulting energy deprivation from dysbiosis. However, there are several species of subtropical and temperate reef-building corals that exhibit facultative symbioses and offer promising avenues to better understand stress responses.

The Northern Star Coral (*Astrangia poculata*) exhibits a facultatively symbiotic relationship with *Breviolum psygmophilum* (LaJeunesse et al. 2012) and can be found in sympatry
in varying symbiotic states that are visually distinguishable by colour. Symbiotic colonies appear brown due to high densities of \textit{B. psygmophilum}, and much like a bleached coral, some \textit{A. poculata} appear white (Figure 1C) due to very low algal densities (Dimond & Carrington 2007). This white phenotype is commonly referred to as “aposymbiotic” (Grace 2017; Sharp \textit{et al.} 2017; Burmester \textit{et al.} 2018) due to the paucity of algal symbionts. Unlike obligate symbiotic corals, \textit{A. poculata} can thrive in its aposymbiotic state relying only on heterotrophy (Dimond & Carrington 2007). Additionally, \textit{A. poculata} experiences large seasonal variation in temperature at its northern range, making these populations ideal models for investigating how corals might withstand wide thermal challenges. Taken together, aposymbiotic \textit{A. poculata} provide a unique opportunity to disentangle how broad thermal challenges influence the coral host in isolation from its algal symbiont. Here, we present two thermal challenge experiments that independently assess the behavioural and molecular responses of aposymbiotic \textit{A. poculata} to divergent thermal challenges.

\textit{Methods}

\textit{Thermal challenge common garden experiments}

Eighteen unique aposymbiotic colonies of \textit{Astrangia poculata} were collected in Woods Hole, Massachusetts (41.54\degree N, 70.64\degree W; Figure 1A) in October, 2017 and transported to the Marine Invertebrate Research Facility at Boston University. Colonies were acclimated at 16\degree C for three weeks. On November 17, 2017, colonies were fragmented, each coral nubbin was assigned a unique ID and glued to a labelled dish (Figure 1C). Nubbins were allowed to recover from fragmentation and further acclimated at 16\degree C under a 12 L:12 D photoperiod with light levels ranging from 6-12 \(\mu\text{mol m}^{-2}\text{s}^{-1}\) and fed \textit{Artemia spp.} nauplii daily for 24 days.
Thermal challenge I: cold challenge experiment

Nine unique aposymbiotic colonies were assigned to the cold challenge experiment (Table 1). At least one nubbin from each colony was represented in one of three replicate tanks assigned to control conditions (maintained at 22°C) and one of three replicate tanks assigned to the cold challenge treatment (incrementally lowered from 23°C by approximately 1°C/day to a final temperature of 6°C; Figure 2A). When additional fragments remained from a colony, they were randomly stratified into different tanks (n=43 nubbins total). Several aspects of this experimental design are noteworthy. The first is that our control treatment (22°C) was 6°C higher than the coral acclimation temperature, which may have caused an initial stress response in the first few days. The second aspect is that 6°C is warmer than the minimum temperature *A. poculata* experience within their seasonal averages (Figure 1B); however, achieving lower temperatures was limited by the capacity of our aquarium chillers. In addition, these colonies were collected in October so this thermal minimum and the rate at which this minimum was achieved likely represents a considerable thermal challenge for these corals.

Thermal challenge II: heat challenge experiment

An independent set of nine unique aposymbiotic *A. poculata* colonies were fragmented and at least one nubbin from each colony was assigned to each treatment. There were three tank replicates for control conditions (maintained at 16°C) and three replicate tanks for the heat challenge treatment. At least one nubbin of each colony was assigned to each treatment, and when additional colony fragments remained, they were randomly stratified into different tanks (Table 1). At the beginning of the 16 day heat challenge experiment, all tanks were maintained at 16°C. Heat challenge tanks were ramped from 16°C to 23°C over 6 days (approximately 1°C/day) but no phenotypic data were
recorded during this time. Phenotype observations were conducted on days 7-16 during which heat challenge tanks were incrementally ramped 2-3°C in one day followed by a 2-day recovery period. This ramping protocol continued until 31°C was achieved (Figure 2A). It is worth noting several aspects of this experimental design: the final heat challenge temperature was well above the maximum temperature these corals experience at their source location (Figure 1B) and the heat challenge experiment was conducted independently from the cold challenge experiment described above (Figure 2A).

Coral polyp behaviour in response to food stimulus

In the cold challenge experiment, corals were fed daily and feeding behaviours were recorded 30 minutes after feeding. In contrast, in the heat challenge experiment, phenotypic measurements were not conducted in the first 6 days. Heat challenge phenotypic measurements began on day 7 and continued after corals were offered food every third day for the duration of the experiment (16 days). Coral polyp behaviour in response to food stimulus was quantified by the total coral surface area that had observable polyp extension relative to retracted polyps. This score was on a scale of 1 to 5 based on the estimated percentage of active polyps within a fragment (1 = 0%, 2 = 25%, 3 = 50%, 4 = 75%, 5 = 100%, similar to Burmester et al. 2018) and the same researcher conducted all behavioural assays within each thermal challenge experiment to limit observer biases. An ordered logistic regression was performed to establish if temperature influenced polyp extension rates using the polr function as part of the MASS package (version 7.3-51.1; Venables & Ripley 2002) in R.

Global gene expression profiling
Upon reaching maximum thermal differences between challenge and control treatments in both experiments (Day 16), several white polyps from all colonies were sampled using sterilized bone cutters, immediately placed in 200 proof ethanol and stored at -80°C. Total RNA was extracted using an RNAqueous kit (Ambion by LifeTechnologies) following the manufacturer’s recommendations. An additional step was implemented using 0.5 mm glass beads (BioSpec), which were added to the vial of lysis buffer and samples were homogenized using a bead beater for 1 min. RNA quantity and integrity were determined using a DeNovix DS-11+ spectrophotometer and ribosomal RNA bands were confirmed on 1% agarose gels. Trace DNA contamination was removed using a DNase I (Ambion) digestion at 37°C for 45 minutes. Libraries were created from 1500 ng of total RNA (following Meyer et al. 2011) and adapted for Illumina Hi-Seq sequencing (Dixon et al. 2015; Lohman et al. 2016). In brief, RNA was heat-sheared and transcribed into first-strand cDNA using a template-switching oligo and SMARTScribe reverse transcriptase (Clontech). cDNA was then PCR-amplified, individual libraries were normalized, and Illumina barcodes were incorporated using a secondary PCR. Samples were pooled and size-selected prior to sequencing on Illumina Hiseq 2500 single-end (SE) 50 basepair (bp) at Tufts University Core Facility (TUCF). Due to insufficient RNA yield, some samples were not successfully represented in library preparations. Of the 42 samples within each of the cold and heat challenge experiments, 26 and 22 libraries were prepared, respectively (Table 1).

Transcriptome assembly and gene expression analyses

Illumina TruSeq adapters and poly-A tails were first removed using the FASTX-Toolkit (v 0.0.14, Hannon, G.J. (2010) FASTX-Toolkit. http://hannonlab.cshl.edu/fastx_toolkit.) and resulting sequences that were less than 20 bp in length were removed. In addition, only those sequences with > 90% of bases having a quality score > 20 were retained. PCR duplicates were removed and
resulting quality-filtered reads were concatenated and used to assemble a novel transcriptome using Trinity (Grabherr et al. 2013). Contigs were then annotated using BLAST (Altschul et al. 1990) searches against UniProt and Swiss-Prot NCBI NR protein databases. This newly assembled transcriptome along with its annotation files are included as Supplementary Files 1-4 (1: transcriptome fasta file, 2: seq2iso file, 3: iso2gene, 4: iso2GO and are also available at http://sites.bu.edu/davieslab/data-code/).

Quality-filtered reads were then mapped to the newly assembled transcriptome using Bowtie2 (Langmead & Salzberg 2012). There were an average 520,662 mapped reads across both experiments with mapping efficiencies ranging from 36%-57% (Supplementary File 5). Raw count files for each experiment are available in Supplemental Files 6 (cold challenge) and 7 (heat challenge). Data from each challenge experiment were analyzed independently. First, data were tested for outliers using arrayQualityMetrics as part of DESeq (Anders & Huber 2010) and no outliers were detected for either experiment. DESeq2 (Love et al. 2014) was then used to identify differentially expressed genes (DEGs, Supplemental Files 8-9) associated with cold and heat thermal challenge relative to their respective controls using a Wald’s test. P-values were adjusted for multiple testing using the Benjamini and Hochberg method (FDR < 0.05; Benjamini & Hochberg 1995). Lastly, expression data for each experiment were \(r-log \) transformed and these data were used as input for a principal component analysis. A permutational multivariate analysis of variance was then used to determine if overall gene expression patterns between thermal challenge treatments differed significantly from their controls using the adonis function in vegan v2.5-4 (Oksanen et al. 2019).

Gene ontology (GO) enrichment analyses were performed using adaptive clustering of GO categories and Mann–Whitney U tests (GO-MWU) based on the ranking of signed log p-values.
(Voolstra et al. 2011), which is particularly suitable for non-model organisms (Dixon et al. 2015).

Results were visualized in dendrograms tracing the level of gene sharing between significant categories and direction of change in treatment temperatures compared to their respective controls.

Testing for a convergent response to thermal challenge

Lists of DEGs (FDR < 0.05) between the two thermal challenge experiments were compared and visualized using a Venn Diagram; and, significant enrichment of genes at the intersection between experiments was tested for using a hypergeometric test. The DEGs at the intersection between experiments (common DEGs) were visualized based on log$_2$ fold change for each experiment; and, the most highly up- and downregulated genes were highlighted and defined as convergently responding genes (CRGs). GO categories that were independently identified as enriched (FDR < 0.05) in both experiments were visualized by their respective delta-ranks of enrichment to demonstrate the conservation of GO function across the thermal challenges (for details, see Dixon et al. 2015).

Results

Astrangia poculata response to cold challenge

Although behavioural responses of *A. poculata* to a food stimulus under control conditions varied, nearly all colonies exhibited some polyp extension (Figure 2B). This contrasts with behaviours observed under cold challenge, where rapid declines in polyp activity were observed by day eight (12°C) and most polyps remained inactive as cooler temperatures were reached (10°C - 6°C, Figure 2B). Overall, *A. poculata* polyp activity was significantly reduced under cold challenge (p < 0.01).

A. poculata gene expression was also significantly influenced by cold challenge: a strong treatment effect on overall gene expression was observed (*Adonis* $p_{\text{treatment}} < 0.001$, Figure 2C), with cold
challenge resulting in 5318 (40%) DEGs (FDR < 0.05; 2244 (17%) upregulated; 1,3074 (23%) downregulated). Many GO terms were also enriched between cold challenge and control conditions (FDR < 0.10; CC = 77, MF = 50, BP = 78; Figure 3). Of these, notable GO terms include: myosin complex (GO:0016459), proteasome core complex (GO:0005839), translation regulator activity, nucleic acid binding (GO:0008135; GO:0090079), extracellular matrix structural constituent (GO:0005201), muscle system process (GO:0006936; GO:0003012) and proteolysis (GO:0006508).

Astrangia poculata response to heat challenge

Behavioural responses of *A. poculata* to a food stimulus under control conditions were stable and coral polyps remained fully extended throughout the experiment (Day 7 - 14; Figure 2B). This contrasts with behavioural responses under heat challenge, where corals exhibited less polyp activity in response to food stimulus as temperatures increased. By the end of the experiment (day 16), only one colony under heat challenge was observed to have 100% polyp extension and half of the colonies had less than 25% of their polyps extended (Figure 2B). Overall, *A. poculata* polyp activity was significantly reduced under heat challenge (p < 0.01). *A. poculata* gene expression was also significantly influenced by heat challenge: a significant effect of treatment on overall gene expression was observed (*Adonis treatment* < 0.001, Figure 2C) with 1,054 (7.9%) DEGs (FDR < 0.05; 410 (3.1%) upregulated; 644 (4.9%) downregulated. Many GO terms were significantly enriched under heat challenge relative to control conditions (FDR < 0.10; CC = 34, MF = 47, BP = 22; Figure 3). Notable GO terms include: nematocyst (GO:0042151), proteasome core complex (GO:0005839), threonine-type endopeptidase activity (GO:004298; GO:0070003), unfolded protein binding (GO:0051082), protein folding (GO:0006457) and response to cold (GO:0009409).
Convergent response repertoires to heat and cold challenge in Astrangia poculata

Both cold and heat thermal challenges induced a reduction in polyp activity in response to food stimulus (Figure 2B). However, this reduction was more pronounced under cold challenge where nearly all polyps were retracted by day 16. In addition, five times as many genes were differentially expressed under cold challenge compared to heat challenge (Figure 4A). More than half (657 out of 1054) of DEGs in the heat challenge experiment were also differentially expressed under cold challenge, which is significantly more genes shared between experiments than would be expected by chance (hypergeometric test, p < 0.01). Genes that were highly upregulated under both thermal challenges include: tumour necrosis receptor 3 (TRAF3), Lon protease 2, peroxisomal (LONP2), and increased sodium tolerance 1 (ITS1). Genes that were highly downregulated under both thermal challenge treatments include: DELTA-thalatoxin-AVL2a (AVL2A), myosin regulatory light polypeptide 9 (MYL9), and Protein-glucosylgalactosylhydroxylysine glucosidase (PGGHG).

GO terms consistently enriched in both experiments were also visualized using experimental delta-ranks of enrichment for each thermal challenge (FDR < 0.10; MF = 11, BP = 4, CC = 14, Figure 5A-C). These terms included response to mechanical stimulus (GO:0009612) and locomotion (GO:0040011) as well as GO terms associated with the proteasome (GO:0004298, GO:0006515, GO:0008540, GO:0022624, and GO:0005839).

Discussion

Modulation of genes associated with motor function and stress response in Astrangia poculata under cold challenge

Astrangia poculata from Woods Hole represent the most northern range for this species with corals experiencing a wide range of temperatures throughout the year (Figure 1B). Given this temperature
range, it was surprising that such strong behavioural and transcriptomic responses were observed under cold challenge (Figure 2B; 2C). This reduction in polyp activity under cold temperatures is consistent with field observations during winter months, when corals fail to respond to stimuli (e.g. quiescence, Grace 2017). The dormant polyp behaviour observed here might be interpreted as quiescence. However, very little is known about coral quiescence.

In mammalian cells, quiescent cells increase expression of certain myosin genes, notably myosin heavy chain 10 (MYH10; Hong et al. 2015), which is the opposite pattern observed here under cold challenge (MYOH10 downregulated; Figure 3A). However, cold challenge did cause downregulation of other muscle responses, including muscle system process (MSP; GO:0006936; GO:0003012) and myosin complex (GO:0016459; Figure 3C), which corresponds with decreased A. poculata polyp activity under cold challenge. In contrast, myosin-le (MYO1E), which is an important gene for clathrin-mediated endocytosis and immunity was significantly upregulated under cold challenge. This result is consistent with previous work exploring how mice respond to cold stress (Wenzel et al. 2015) and myosins as a whole are often upregulated in bleached corals under heat stress (Desalvo et al. 2008) so it is possible that regulation of this gene is more likely related to immunity rather than muscle movement directly. The transcriptional responses match behavioral data under cold challenge, putting forth the hypothesis that reduced polyp activity under cold challenge may be regulated by downregulation of key MSP genes.

Ultimately, stress may reorganize the actin cytoskeleton in A. poculata under cold challenge, given the downregulation of extracellular matrix structural constituent (EMSC; GO:0005201). Many collagen genes are categorized within the EMSC GO category and collagen plays an integral role in forming the structure of the extracellular matrix (Kielty & Grant 2003).
Collagen genes have been previously shown to be highly reactive to a variety of stressors in corals (Traylor-Knowles 2019), which, in conjunction with these data, suggests that cold challenges lead to decreases in muscular movement and overall motor processes in aposymbiotic *A. poculata*, and potentially other corals.

Genes associated with *translation regulator activity nucleic acid binding* (GO:0008135; GO:0090079) were upregulated in *A. poculata* under cold challenge. Genes in this category are mostly composed of *eukaryotic translation initiation factor 4 gamma* (EIF4G) genes, which are consistently upregulated under a wide range of stressors, including temperature, osmotic stress and nutrient deprivation (Jones *et al.* 2013). Interestingly, EIF4G genes may play important roles for higher latitude species, like *A. poculata* here, as only northern populations of the porcelain crab *Petrolisthes cinctipes* upregulated EIF4G genes in response to cold stress (Stillman & Tagmount 2009). Given that it has already been shown that different *A. poculata* populations exhibit broadly different thermal responses (Aichelman *et al.* 2019), future work contrasting gene expression responses to stress across populations would be worthwhile.

Another GO category that demonstrated strong upregulation in *A. poculata* under cold challenge was *proteasome core complex* (PCC; GO:0005839). PCC upregulation has been previously observed in tropical corals under heat stress (Seneca & Palumbi 2015), however, this is the first to associate PCC upregulation in response to cold challenge. The majority of PCC genes are involved in the functioning of the 20S core proteasome, which is responsible for degradation of oxidized proteins (Davies 2001). Additionally, proteasomes are required for internal proteolysis of p105 into p50 to activate nuclear factor-κB (NF-κB) (Rape & Jentsch 2002). NF-κB is a key pathway in coral innate immunity and is upregulated during stress-induced bleaching in sea anemones (Mansfield *et al.* 2017).
Overall, cold challenge elicited strong effects on both behavior and transcriptomic profiles of *A. poculata* (Figure 2C); however, these patterns do not align with quiescence. Instead, these signatures are consistent with stress responses described in previous cnidarian studies and emphasize that consistent results between obligate tropical corals and aposymbiotic corals serve to highlight the host’s response to thermal challenges even in the absence of symbionts.

Modulation of genes associated with heterotrophy and stress response in Astrangia poculata under heat challenge

Even though summer temperatures at Woods Hole over the last 10 years were much lower than temperatures achieved during the experimental heat challenge here (Figure 1B), we observed that *A. poculata* exhibited more muted behavioural and transcriptomic responses when compared to responses to cold challenge (Figure 2B; 2C). While *A. poculata* significantly reduced polyp activity in response to food stimulus under heat challenge, the majority of corals maintained some extension even at warm extremes. Unlike naturally observed polyp inactivity during winter months (Grace 2017), this is the first observation of decreased polyp activity due to warm temperatures in *A. poculata*.

Interestingly, we observed downregulation of genes associated with nematocyst (GO:0042151) under heat challenge, which are cnidarian stinging cells used to capture food (Holstein & Tardent 1984). Tropical corals have also been observed to reduce feeding rates under heat stress (Ferrier-Pagès *et al.* 2010). Taken together, the decreased polyp extension and downregulation of genes associated with nematocysts (Fig. 2B, 3A), suggest reduced opportunity for heterotrophy in *A. poculata*. Given that heterotrophy has been shown to mitigate coral bleaching in another facultatively symbiotic coral (*Oculina arbuscula*; Aichelman *et al.* 2016),
this reduction in heterotrophy, in addition to stress associated with increased temperatures, would be interesting to explore in aposymbiotic and symbiotic colonies.

Consistent with previous work in heat challenged cnidarians, we observed upregulation of many mitochondria-related GO terms in heat challenged *A. poculata* (Figure 3). Mitochondria are fundamental in the regulation of cellular stress and have a dedicated unfolded protein response, which influences free radical detoxification and innate immunity in tropical corals (Dimos *et al.* 2019). We observed enrichment in both *protein folding* (GO:0006457) and *unfolded protein binding* (GO:0051082) under heat challenge, which is consistent with a variety of coral stress studies (i.e. Dixon *et al.* 2020). Genes within these GO categories are largely associated with heat shock protein production, which have been consistently implicated in coral gene expression studies (reviewed in Cziesielski *et al.* 2019) and heat stress experiments across a wide range of taxa (reviewed in Chen *et al.* 2018). Unexpectedly, we observed upregulation of *response to cold* (GO:0009409), which is a salient example of how expression of some genes are often associated with a specific stressor, when in reality their expression is more likely a universal environmental stress response (ESR).

Cold challenge elicits a much stronger response than heat challenge in *A. poculata*

Our data demonstrate that *A. poculata* exhibit greater behavioural and transcriptomic responses to the cold challenge applied here when compared to heat challenge, which is surprising considering that cold challenge temperatures were within *A. poculata*’s thermal range, while heat challenge temperatures were not (Figure 1B). In fact, the heat challenge exceeded any temperature experienced within their native environment over the last decade. Few studies have directly contrasted a coral’s response to thermal extremes in parallel, and studies that have demonstrated mixed results. In a tropical coral (*Acropora millepora*), Nielsen *et al.* (2020) observed improved
coral condition under cold temperatures relative to ambient or heated conditions. In contrast to our
results, heat stress causes a larger bleaching response than cold stress in *Aiptasia* (Bellis & Denver
2017). Conversely, Roth & Deheyn (2013) found that acute cold stress was more detrimental to
the tropical coral *Acropora yongei* than heat stress, but did suggest that heat stress may be more
detrimental over longer temporal scales. In a study investigating the responses of oysters
(*Crassostrea gigas*) to heat and cold stress, Zhu et al. (2016) observed similar transcriptional
responses to both stressors. While there is no clear consensus among studies, it is widely accepted
that the specific temperatures reached in each stress treatment and the rate at which those
temperatures are reached are both important factors (McLachlan et al. 2020). Heat challenge in
our study may have elicited a more muted response, because *A. poculata* were collected in the
summer, so these colonies were likely acclimated to warmer conditions, which would have made
the cold challenge more stressful.

Astrangia poculata *exhibits a convergent stress response repertoire to cold and heat challenge*

Despite highly divergent temperatures reached between temperature challenge
experiments, we observed convergent behavioral and transcriptomic responses in *Astrangia
poculata*. First, we observed reductions in feeding behaviour under both thermal challenges
(Figure 2B), which were corroborated with convergent downregulation of genes associated with
locomotion (GO: 0040011) and *response to mechanical stimulus* (GO: 0009612). DELTA-
thalatoxin-*Avl2a* (*AVL2A*) was downregulated under both challenges; thalatoxin and other toxins
are used while feeding in cnidarians (Schmidt et al. 2019) and are categorized under the *nematocyst*
(GO:0042151) GO category. Furthermore, *myosin regulatory light polypeptide 9* (*MYL9*) was
downregulated under both thermal challenges (Figure 4B) and this gene plays an important role in
cell contractile activity via phosphorylation (Kumar et al. 1989) and may be instrumental for coral heterotrophy. Reduced polyp activity under thermal challenges may be due to temperatures exceeding local high and low temperatures or corals could be entering quiescent states, where lowered metabolic activity acts as an adaptation to extreme temperatures (Stuart & Brown 2006). Our transcriptomic results do not support quiescence and instead suggest large scale protein catabolism, which often occurs during starvation after an organism has metabolized most of its carbohydrate and lipid stores (Kaur & Debnath 2015; Davies et al. 2016). Increases in catabolic-related pathways point instead to high energetic demands associated with stress-related cell functions at both thermal extremes (Kültz 2005).

The other major convergent response observed under both thermal challenges was a generalized stress response. For example, glutathione transferase activity (GO: 0004364) was upregulated under both temperature extremes and this GO term is associated with detoxification of environmental pollutants and oxidative stress response in tropical corals (Downs et al. 2005). In addition, most enriched GO categories observed in both thermally-challenged A. poculata were involved in maintenance of the proteasome (Figure 5A-C). The role of the proteasome (discussed above) is integral to degradation and catabolism of oxidized proteins (Davies 2001) and may be important for the activation of NF-kB under stress (Rape & Jentsch 2002). These enriched GO terms across wide thermal challenges highlight conserved ESR pathways under both heat and cold thermal challenges.

In addition to convergently enriched GO terms, a number of individual genes were differentially expressed under both challenges. Lon protease homolog 2, peroxisomal (LONP2) was highly up-regulated in both experiments and this gene is involved in degradation of oxidatively damaged mitochondrial genes (Yang et al. 2018). LONP2 has been shown to be
upregulated under high temperatures and under heavy metal stress in oysters (Sanni et al. 2008). Additionally, *protein-glucosylgalactosylhydroxylsine glucosidase* (PGGHG) was downregulated under both thermal challenges (Figure 4B). PGGHG is a catalyst for the hydrolysis of glucose in hydroxylsine-linked residues of collagen (and collagen-like) proteins (Hamazaki & Hamazaki 2016). It is also a major component of isolated collagens from other marine invertebrates (e.g. sea anemones, Katzman et al. 1972), which are very reactive to a range of stressors (Traylor-Knowles 2019). Taken together, LONP2 and PGGHG play important roles in aposymbiotic *A. poculata*'s stress response.

The mitogen-activated protein kinase (MAPK) signaling pathway is key for mediating cell differentiation and apoptosis (Whitmarsh 2010) and has been previously implicated in a coral’s response to environmental stimuli (Sun et al. 2013). *A. poculata* consistently upregulated *increased sodium tolerance 1* (IST1) under both thermal challenges, which is also known as *putative MAPK-activating protein* (PM28; Figure 4B). In addition to IST1, *Tumour necrosis factor receptor 3* (TRAF3) was also highly upregulated under both thermal stressors (Figure 4B). TRAF3 is an intracellular signaling molecule that regulates MAPK activity and nuclear factor-κB (Nf-κB) signaling (Häcker 2011), which has been shown to be upregulated during stress-induced bleaching in *Aiptasia* (Mansfield et al. 2017). TRAF3 is constitutively upregulated or “front-loaded” in corals that are tolerant to heat stress (DeSalvo et al. 2010; Barshis et al. 2013; Seneca & Palumbi 2015) and is upregulated under low magnesium (Yuyama & Higuchi 2019), white band disease (Libro et al. 2013), and high carbon dioxide treatments (Kaniewska et al. 2012) in various coral species. Our results provide supporting evidence that TRAF3, along with IST1 and LONP2, may be part of the coral ESR and demonstrate consistent upregulation in response to various stressors, not just high temperatures.
Conclusions

While stress response repertoires of tropical reef-building corals have been widely studied, especially in response to upper thermal extremes, this study represents the first to characterize the stress response of a naturally aposymbiotic coral to divergent thermal challenges. Our results demonstrate a strong response to cold challenge and a comparatively muted response to heat challenge. In addition, we provide evidence for a convergent stress response to divergent thermal challenges in *A. poculata* that is consistent with responses observed for tropical obligate coral species, which is surprising given the absence of symbiont-associated reactive oxygen species. The repertoire of convergent responses to thermal challenges highlighted here will provide the foundation for future research to investigate how symbiosis influences the coral stress response. We identified a number of genes that are differentially regulated under both thermal challenges, suggesting a universal stress response in a core set of CRGs. This work highlights the benefits to studying facultatively symbiotic corals to disentangle stress responses of the coral host from their algal symbionts, and future work leveraging this facultative relationship may lead to a stronger mechanistic understanding of why coral dysbiosis is increasing in frequency in corals worldwide.

Acknowledgements

This work was made possible through the Boston University Marine Program with special thanks to Justin Scace for husbandry of *A. poculata*. The authors extend appreciation to K. Sharp, R. Rotjan, S. Grace and the annual Astrangia Workshop hosted by Roger Williams University and Southern Connecticut State University for fostering creative conversations and collaborations.
leading to this work. Also, we thank SJS Wuitchik and HE Aichelman for helpful edits and insights on this manuscript.

Funding

This work was funded by Boston University’s start-up package to S.W.D and the Boston University Marine Program (BUMP).

Data Availability

All sequences are available from the NCBI SRI under accession PRJNA595158. Code for all analyses are attached in supplementary materials, and are also available at https://github.com/wuitchik along with transcriptome files.

Author Contributions

S.W.D designed the experiment. A.A., S.A.B., J.D.C., M.B.L., J.L.R., M.K.S., and I.F.T. conducted the experiment. B.E.B. and C.L.R. completed all molecular work and TagSeq library preparations. D.M.W. performed all statistical and bioinformatic analyses and drafted the manuscript. S.W.D. supervised the experiment, analyses and co-authored the manuscript. All authors edited and approved the manuscript.

Literature Cited

Aichelman HE, Townsend JE, Courtney TA et al. (2016) Heterotrophy mitigates the response of the temperate coral Oculina arbuscula to temperature stress. Ecology and Evolution, 6, 6758–6769.
Aichelman HE, Zimmerman RC, Barshis DJ (2019) Adaptive signatures in thermal performance of the temperate coral Astrangia poculata. *Journal of Experimental Biology, 222*, 1–13.

Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic Local Alignment Search Tool. *Journal of Molecular Biology, 215*, 403–410.

Anders S, Huber W (2010) Differential expression analysis for sequence count data. *Genome biology, 11*, R106.

Angilleta MJ (2009) *Thermal adaptation: a theoretical and empirical synthesis*. Oxford University Press.

Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. *Proceedings of the National Academy of Sciences of the United States of America, 105*, 17442–17446.

Baena-González E, Sheen J (2008) Convergent energy and stress signaling. *Trends in Plant Science, 13*, 474–482.

Barshis DJ, Ladner JT, Oliver T a et al. (2013) Genomic basis for coral resilience to climate change. *Proceedings of the National Academy of Sciences of the United States of America, 110*, 1387–92.

Bellis ES, Denver DR (2017) Natural variation in responses to acute heat and cold stress in a sea anemone model system for coral bleaching. *Biological Bulletin, 233*, 168–181.

Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. *Marine Biology, 141*, 47–55.

Burmester EM, Breef-Pilz A, Lawrence NF et al. (2018) The impact of autotrophic versus heterotrophic nutritional pathways on colony health and wound recovery in corals. *Ecology and Evolution, 1–12.*
Cervino JM, Hayes RL, Honovich M et al. (2003) Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide. *Marine Pollution Bulletin, 46*, 573–586.

Chen B, Feder ME, Kang L (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. *Molecular Ecology, 27*, 3040–3054.

Cohen J, Screen JA, Furtado JC et al. (2014) Recent Arctic amplification and extreme mid-latitude weather. *Nature Geoscience, 7*, 627–637.

Cziesielski MJ, Schmidt-Roach S, Aranda M (2019) The past, present, and future of coral heat stress studies. *Ecology and Evolution, 1–12*.

Davies K (2001) Degradation of oxidized proteins by the 20S proteasome. *Biochimie, 83*, 301–310.

Davies SW, Marchetti A, Ries JB, Castillo KD (2016) Thermal and p CO 2 Stress Elicit Divergent Transcriptomic Responses in a Resilient Coral. *Frontiers in Marine Science, 3*, 1–15.

DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010) Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. *Marine Ecology Progress Series, 402*, 97–113.

Desalvo MK, Voolstra CR, Sunagawa S et al. (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. *Molecular Ecology, 17*, 3952–3971.

Dimond J, Carrington E (2007) Temporal variation in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. *Marine Ecology Progress Series, 348*, 161–172.

Dimos BA, Mahmud SA, Fuess LE, Mydlarz LD, Pellegrino MW (2019) Uncovering a
mitochondrial unfolded protein response in corals and its role in adapting to a changing world. *Proceedings of the Royal Society B: Biological Sciences*, **286**, 1–8.

Dixon G, Abbott E, Matz M (2020) Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. *Molecular Ecology*, **29**, 2855–2870.

Dixon GB, Davies SW, Aglyamova GV et al. (2015) Genomic determinants of coral heat tolerance across latitudes. *Science*, **348**, 1460–1462.

Downs CA, Fauth JE, Robinson CE et al. (2005) Cellular diagnostics and coral health: Declining coral health in the Florida Keys. *Marine Pollution Bulletin*, **51**, 558–569.

Ferrier-Pagès C, Rottier C, Beraud E, Levy O (2010) Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: Effect on the rates of photosynthesis. *Journal of Experimental Marine Biology and Ecology*, **390**, 118–124.

Fuess LE, Pinzón C JH, Weil E, Grinshpon RD, Mydlarz LD (2017) Life or death: Disease-tolerant coral species activate autophagy following immune challenge. *Proceedings of the Royal Society B: Biological Sciences*, **284**.

Gasch A, Spellman P, Kao C et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. *The Journal of Chemical Physics*, **11**, 4241–4257.

Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. *Biological Bulletin*, **182**, 324–332.

Goreau TF (1964) Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane flora. *Science*, **145**, 383–386.

Grace S (2017) Winter Quiescence, Growth Rate, and the Release from Competition in the Temperate Scleractinian Coral Astrangia pociulata (Ellis & Solander 1786). *Northeastern*
Gust K a, Najar FZ, Habib T et al. (2014) Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress. *BMC genomics*, 15, 591.

Hamazaki H, Hamazaki MH (2016) Catalytic site of human protein-glucosylgalactosylhydroxylsine glucosidase: Three crucial carboxyl residues were determined by cloning and site-directed mutagenesis. *Biochemical and Biophysical Research Communications*, 469, 357–362.

Hoegh-Guldberg O, Fine M (2004) Low temperatures cause coral bleaching. *Coral Reefs*, 23, 444–444.

Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al. (2008) Change and Ocean Acidification. *Science*, 318, 1737–1742.

Holstein T, Tardent P (1984) An ultrahigh-speed analysis of exocytosis: Nematocyst discharge. *Science*, 223, 830–833.

Hong H, Kiim J, Kim J (2015) Myosin heavy chain 10 (MYH10) is required for centriole migration during the biogenesis of primary cilia. *Biochemical and Biophysical Research Communications*, 461, 180–185.

Hughes TP, Kerry JT, Álvarez-Noriega M et al. (2017) Global warming and recurrent mass bleaching of corals. *Nature*, 543.

Jones BL, VanLoozen J, Kim MH et al. (2013) Stress granules form in Brachionus manjavacas (Rotifera) in response to a variety of stressors. *Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology*, 166, 375–384.

Kaniewska P, Campbell PR, Kline DI et al. (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. *PLoS ONE*, 7.
Katzman RL, Halford MH, Reinhold VN, Jeanloz RW (1972) Isolation and Structure Determination of Glucosylgalactosylhydroxylysine from Sponge and Sea Anemone Collagen. Biochemistry, 11, 1161–1167.

Kaur J, Debnath J (2015) Autophagy at the crossroads of catabolism and anabolism. Nature Reviews Molecular Cell Biology, 16, 461–472.

Kielty C, Grant M (2003) The Collagen Family: Structure, Assembly, and Organization in the Extracellular Matrix. In: In Connective Tissue and Its Heritable Disorders (eds Royce P, Steinmann B)

Kültz D (2005) Molecular and Evolutionary Basis of the Cellular Stress Response. Annual Review of Physiology, 67, 225–257.

Kumar CC, Mohan SR, Zavodny PJ, Narula SK, Leibowitz PJ (1989) Characterization and differential expression of human vascular smooth muscle myosin light chain 2 isoform in nonmuscle cells. Biochemistry, 28, 4027–4035.

LaJeunesse TC, Parkinson JE, Gabrielson PW et al. (2018) Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts Article Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Current Biology, 28, 2570-2580.e6.

LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. Journal of Phycology, 48, 1380–1391.

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.

Libro S, Kaluziak ST, Vollmer S V. (2013) RNA-seq profiles of immune related genes in the
611 staghorn coral Acropora cervicornis Infected with white band disease. *PLoS ONE*, 8, 1–11.

612 Lirman D, Schopmeyer S, Manzello D *et al.* (2011) Severe 2010 cold-water event caused
613 unprecedented mortality to corals of the Florida reef tract and reversed previous
614 survivorship patterns. *PLoS ONE*, 6, 1–10.

615 Lohman B, Weber J, Bolnick D (2016) Evaluation of TagSeq, a reliable low-cost alternative for
616 RNAseq. *Molecular Ecology Resources*, 1–16.

617 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for
618 RNA-Seq data with DESeq2. *Genome Biology*, 15, 550.

619 Mansfield KM, Carter NM, Nguyen L *et al.* (2017) Transcription factor NF-κB is modulated by
620 symbiotic status in a sea anemone model of cnidarian bleaching. *Scientific Reports*, 7, 1–14.

621 McGinty ES, Pieczonka J, Mydlarz LD (2012) Variations in Reactive Oxygen Release and
622 Antioxidant Activity in Multiple Symbiodinium Types in Response to Elevated
623 Temperature. *Microbial Ecology*, 1000–1007.

624 McLachlan RH, Price JT, Solomon SL, Grottoli AG (2020) Thirty years of coral heat-stress
625 experiments: a review of methods. *Coral Reefs*, 1–18.

626 Meyer E, Aglyamova G V., Matz M V. (2011) Profiling gene expression responses of coral
627 larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel
628 RNA-Seq procedure. *Molecular Ecology*, 20, 3599–3616.

629 Moya A, Huisman L, Ball EE *et al.* (2012) Whole Transcriptome Analysis of the Coral Acropora
630 millepora Reveals Complex Responses to CO 2-driven Acidification during the Initiation of
631 Calcification. *Molecular Ecology*, 21, 2440–2454.

632 Nielsen JJV, Kenkel CD, Bourne DG *et al.* (2020) Physiological effects of heat and cold
633 exposure in the common reef coral Acropora millepora. *Coral Reefs*, 39, 259–269.
Oksanen J, Blanchet G, Friendly M et al. (2019) vegan: community ecology package.

Pinsky ML, Eikeset AM, Mccauley DJ, Payne JL, Sunday JM (2019) Greater vulnerability to warming of marine versus terrestrial ectotherms. *Nature*.

Rape M, Jentsch S (2002) Taking a bite: Proteasomal protein processing. *Nature Cell Biology*, 4, 113–116.

Roth MS, Deheyn DD (2013) Effects of cold stress and heat stress on coral fluorescence in reef-building corals. *Scientific Reports*, 3, 1–8.

Ruiz-Ramos D V, Fisher CR, Baums IB (2017) Stress response of the black coral *Leiopathes glaberrima* when exposed to sub-lethal amounts of crude oil and dispersant. *Elementa Science of the Anthropocene*, 77, 1–16.

Saxby T, Dennison WC, Hoegh-Guldberg O (2003) Photosynthetic responses of the coral *Montipora digitata* to cold temperature stress. *Marine Ecology Progress Series*, 248, 85–97.

Schmidt CA, Daly NL, Wilson DT (2019) Coral venom toxins. *Frontiers in Ecology and Evolution*, 7, 1–7.

Seneca FO, Palumbi SR (2015) The role of transcriptome resilience in resistance of corals to bleaching. *Molecular Ecology*, 1–18.

Sharp KH, PratteZA, Kerwin AH, Rotjan RD, Stewart FJ (2017) Season, but not symbiont state, drives microbiome structure in the temperate coral *Astrangia pociulata*. *Microbiome*, 5, 120.

Stillman JH, Tagmount A (2009) Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, *Petrolisthes cinctipes*. *Molecular Ecology*, 18, 4206–4226.

Stuart JA, Brown MF (2006) Energy, quiescence and the cellular basis of animal life spans. *Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology*, 143,
Sun J, Chen Q, Lun JCY, Xu J, Qiu JW (2013) PcarnBase: Development of a Transcriptomic Database for the Brain Coral Platgyra carnosus. Marine Biotechnology, 15, 244–251.

Traylor-Knowles N (2019) Heat stress compromises epithelial integrity in the coral, Acropora hyacinthus. PeerJ, 7:e6510.

Venables W, Ripley B (2002) Modern Applied Statistics with S. Springer, New York.

Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. Journal of Experimental Botany, 59, 1069–1080.

Voolstra CR, Sunagawa S, Matz M V. et al. (2011) Rapid evolution of coral proteins responsible for interaction with the environment. PLoS ONE, 6, 1–11.

Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: Stress causes the collapse of symbiosis. Journal of Experimental Biology, 211, 3059–3066.

Wenzel J, Ouderkirk JL, Krendel M, Lang R (2015) Class I myosin Myo1e regulates TLR4-triggered macrophage spreading, chemokine release, and antigen presentation via MHC class II. European Journal of Immunology, 45, 225–237.

Whitmarsh AJ (2010) A central role for p38 MAPK in the early transcriptional response to stress. BMC Biology, 8, 8–10.

Wiedenmann J, D’Angelo C, Smith EG et al. (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3, 160–164.

Wright RM, Kenkel CD, Dunn CE, Shilling EN, Bay LK (2017) Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Scientific Reports, 1–13.

Yang J, Chen W, Zhang B et al. (2018) Lon in maintaining mitochondrial and endoplasmic
reticulum homeostasis. *Archives of Toxicology*, **92**, 1913–1923.

Yuyama I, Higuchi T (2019) Differential gene expression in skeletal organic matrix proteins of scleractinian corals associated with mixed aragonite/calcite skeletons under low m Mg/Ca conditions. *PeerJ*, **7**, 1–13.

Zhu Q, Zhang L, Li L, Que H, Zhang G (2016) Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, *Crassostrea gigas*. *Marine Biotechnology*, **18**, 176–188.

Figure 1 | **A)** Map of the eastern seaboard of the United States with the *Astrangia poculata* range in green. Inset shows the Woods Hole collection site denoted with a yellow star (distributions
based on Thornhill et al. 2008). B) Seasonal temperature profile at Woods Hole averaged over ten
years (2008-2018). The black solid line indicates mean monthly temperatures with mean monthly
maximum and minimum temperatures in grey. Temperatures (°C) of thermal challenge
experimental controls (dashed lines) and treatments (solid lines) are superimposed with cold
challenge treatments in blue and heat challenge treatments in red. Seasonal temperatures were
obtained from the National Oceanic and Atmospheric Administration weather buoy #BZBM3. C)
Picture of an aposymbiotic A. pocosolata colony fragment.
Figure 2 | Thermal challenge experiments on *Astrangia poculata*. Left: cold challenge, Right: heat challenge. A) 16-day temperature ramp. B) Polyp activity scored based on the proportion of polyps extended per fragment (1 = 0%, 2 = 25%, 3 = 50%, 4 = 75%, 5 = 100%) in response to food stimuli across the 16-day experiments. Note that behavioral data collection in the heat challenge experiment did not commence until day 7. C) Principal component analysis of overall gene expression of samples under control and thermal challenge at day 16. Percentages represent the
total variance explained by each axis and shaded areas are 95% confidence ellipses. P-value indicates significance of treatment using a permutational multivariate analysis of variance.
Figure 3 | Gene ontology (GO) enrichment under thermal challenges: Left: cold challenge, Right: heat challenge. Enriched GO terms of A) Cellular Components B) Molecular Functions, and C) Biological Processes were determined via Mann-Whitney U tests. Font size and boldness of text corresponds to p-values with colour designating directionality of enrichment (blue: cold challenge, red: heat challenge, black: controls). GO terms are clustered based on the number of shared genes between categories. Hierarchical clustered heatmaps were generated from annotated DEGs with a highlighted GO term (black box) and each row was labelled with its gene symbol. Colors denote magnitude of response (blue: upregulated in cold challenge, red: upregulated in heat challenge) through z-score of the difference in expression levels from that of mean expression for each gene.

Figure 4 | Convergent transcriptomic response of *Astrangia poculata* to thermal challenges. A) Venn diagram of differentially expressed genes shared (intersection) between cold (blue) and heat (red) challenge experiments. B) Of these 657 shared DEGs, those with annotations are visualized.
by their respective Log₂-fold change (LFC) in each experiment. Genes with consistent direction in their respective LFC are designated as convergently responsive genes (CRGs) depicted as black circles and key CRGs are highlighted in purple and labeled by gene symbol. Grey circles are divergent in response to thermal challenges.
Figure 5 | Correlation of GO delta-ranks which is the difference between mean rank of genes belonging to the GO category A) Molecular Function B) Biological Process, and C) Cellular Component, and mean rank of all other genes. Positive values indicate enrichment with up-regulated genes.

Table 1 | Summary of distribution of coral genotypes among treatments for the A) cold challenge and B) heat challenge experiment. Numbers in cells represent the number of fragments of each genotype in each treatment; numbers in parentheses represent the number of fragments that were successfully sequenced via TagSeq.

Genotype	A) Cold Challenge Experiment	B) Heat Challenge Experiment			
	Control (TagSeq)	Challenge (TagSeq)	Genotype	Control (TagSeq)	Challenge (TagSeq)
D	1 (1)	1 (0)	A	1 (1)	3 (1)
E	3 (2)	3 (1)	B	3 (2)	3 (2)
F	3 (2)	3 (2)	C	3 (2)	3 (0)
G	2 (0)	2 (1)	D	3 (2)	3 (1)
H	3 (2)	1 (1)	F	1 (1)	1 (0)
I	2 (2)	2 (0)	K	2 (0)	2 (1)
J	3 (2)	3 (2)	N	3 (0)	1 (1)
P	1 (1)	3 (2)	O	2 (1)	2 (2)
T	3 (2)	3 (3)	Q	3 (3)	3 (2)

| Total | 21 (14) | 21 (12) | 21 (12) | 21 (10) |