ABSTRACT

Robotic gastrectomy for gastric cancer relies on innovative technology to provide advanced surgical care for gastric cancer patients. The da Vinci® Surgical system equips surgeons with articulated instruments with tremor elimination and 3-dimensional magnified visualization with which to achieve short-term surgical outcomes for robotic gastrectomy that appear to be comparable to or slightly better than those of laparoscopic gastrectomy. However, limitations of higher costs and longer operation times have yet to be resolved. While the long-term oncologic outcomes of robotic gastrectomy remain inconclusive, they are expected to be similar to those for other approaches. Meanwhile, researchers have continued to explore the real advantages and the applicability of the robotic system for more technically challenging procedures for gastric cancer treatment. To address unsolved issues, well-designed randomized clinical trials and further development of surgical robotic systems are required. In this review, we summarize the current state of robotic gastrectomy for gastric cancer and future perspectives.

Keywords: Stomach neoplasms; Gastrectomy; Robotic surgical procedure

INTRODUCTION

Now 25 years after the first laparoscopic gastrectomy with lymph node dissection was reported [1], laparoscopic surgery for gastrectomy has become an alternative treatment for early gastric cancer [2]. Meanwhile, the recently published Korean Laparoendoscopic Gastrointestinal Surgery Study Group (KLASS)-02 trial demonstrated that laparoscopic distal gastrectomy with D2 lymph node dissection is also beneficial in terms of short-term outcomes for advanced gastric cancer [3], and ongoing randomized clinical trials designed to assess the long-term oncologic outcomes of laparoscopic gastrectomy are anticipated to expand the indications of minimally invasive surgery for gastric cancer.

Since the first report of robotic surgery with the da Vinci® Surgical system [4], there have been 5270 systems installed worldwide, as of June 30, 2019 [5]. An increasing number of studies on robotic gastrectomy and related procedures has also been performed and reported after the first report of robotic gastrectomy in 2003 [6]. To help overcome the limitations of conventional minimally invasive surgery, the da Vinci® Surgical system provides...
surgeons with tremor-filtered, articulated wrist movement with 7 degrees of freedom and with 3-dimensional visualization within the robotic console for performing technically-demanding, minimally invasive surgeries comfortably and accurately. However, robotic gastrectomy has not yet been shown to be cost effective or to offer oncologic safety over laparoscopic or open gastrectomy. In this review, we summarize current evidence and discuss future perspectives of robotic gastrectomy for gastric cancer.

METHODS

We searched and reviewed articles evaluating robotic gastrectomy in comparison to laparoscopic gastrectomy in terms of short- and long-term oncologic outcomes. All of the reviewed articles were written in English and published between December 2003 and September 2019. Articles with data or subgroup analyses duplicated from previously reviewed data were excluded.

SURGICAL PROCEDURE

In the literature, the da Vinci Si® and Xi® systems have primarily been used for robotic gastrectomy, following the standard surgical procedure for conventional laparoscopic gastrectomy. Song et al. [7] described the first 100 consecutive cases of both robotic distal and total gastrectomy for gastric cancer in detail. Therein, 5-ports were used to employ wristed instruments, such as Cardiere and Maryland forceps, and ultrasonic shears for all procedures (Fig. 1). Kim et al. [8] from the same study group reported on a video-guided surgical procedure for radical gastrectomy with D2 lymph node dissection. The authors attempted to standardize the utility of robotic surgical instruments and the surgical procedure for radical gastrectomy. Although the more recent da Vinci Xi® system provides surgeons with several additional technologies, including a unique overhead architecture, rotating boom-mounted arms that are...
slimmer than the previous ones, extended instrument reach, and guided targeting, researchers have failed to show any exclusive differences in surgical outcomes after gastrectomy, compared to those after gastrectomy with the Si system [9]. So far, no reports have been published on the usage of the latest da Vinci SP® system for gastric cancer surgery.

Building on these initial experiences, a few expert surgeons have sought to implement new procedures for gastric cancer, for example, reduced-port robotic surgery. Lee et al. [10] described the initial 20 cases of reduced-port robotic distal gastrectomy with a Single-Site® port and 2 curved instruments, finding it to be both feasible and safe (Fig. 2). In their reduced-port procedure, a 12-mm assistant port can be omitted, with access for an assistant granted via the Single-Site® port; thus, the procedure can be performed with just 2 incisions (Single-Site® and one other port). Seo and his colleagues [11] reported another reduced-port totally robotic distal gastrectomy procedure with an overturned Single-Site® port and 2 additional ports (Fig. 3). In this procedure, only one curved instrument and 2 rigid robotic instruments were utilized. This technique was also found to provide sound operative outcomes and to facilitate the performance of technically-demanding intracorporeal anastomosis [12].

SHORT-TERM SURGICAL OUTCOMES

Operation time

Reports have consistently indicated that operation times for robotic gastrectomy are longer than those for laparoscopic gastrectomy. The operation times of robotic gastrectomy range from 202 to 439 minutes in the literature [13-34], while those for laparoscopic gastrectomy range from 140 to 361 minutes. The longer operation times for robotic gastrectomy are largely in part due to docking times: after insertion of abdominal ports, the robotic surgical cart is delivered to the patient the robotic arms were aligned. Then, the robotic arms are docked to the abdominal ports, and the surgical instruments are inserted. During surgery,
the surgical instruments are often interchanged, and it takes a few seconds for the console to recognize them. Newer robotic operating systems are expected to show reduced preparation times, including docking time, making the time truly spent on the procedures in robotic gastrectomy comparable or shorter than those for laparoscopic surgery (Table 1).

Learning curve

Robotic gastrectomy shows a shorter learning curve than laparoscopic surgery of about 20 cases [35-37]. As robotic surgical systems do not show the same limitations of conventional surgery, it can be easily adopted by experienced surgeons who already have extensive experience in laparoscopic surgery. However, the learning curve for novice surgeons or surgeons who only have experience in open gastrectomy is not well-known. Well-designed prospective studies might be needed to better document learning curves for robotic gastrectomy.

Blood loss and retrieved lymph nodes

Generally, robotic gastrectomy has been performed with relatively less blood loss than laparoscopic gastrectomy. According to the literature, blood loss ranges from 26 to 134.5 mL during robotic gastrectomy and from 33 to 152.8 mL during laparoscopic gastrectomy [13-20, 22, 27-29, 32-34]. However, 4 studies showed inconsistent results thereon [13-16], which might be attributable to the usage of different energy devices during lymph node dissection. One study from Japan used Maryland bipolar forceps for lymph node dissection during robotic gastrectomy, but ultrasonic shears during laparoscopic surgery [13]. Another 2 studies reported no significant difference between robotic and laparoscopic groups [14,15]. The remaining study only reported overall P-values for comparisons of robotic, laparoscopic, and open gastrectomy without post hoc analysis [16].

Regarding retrieved lymph nodes, robotic gastrectomy has been found to retrieve a greater number of lymph nodes, ranging from 25 to 44 lymph nodes, than laparoscopic gastrectomy, ranging from 22 to 40 lymph nodes [13-20, 22-34]. Nevertheless, the number
of retrieved lymph nodes can be affected by the extent of lymph node dissection, which varies among studies, and by surgical extent, pathologic examination, and patient factors. Thus, through this review, we could not conclude that robotic gastrectomy is superior to laparoscopic gastrectomy in terms of radicality presented as the number of retrieved lymph nodes. Nonetheless, some experienced surgeons expect that robotic gastrectomy may prove beneficial to performing difficult surgical procedures, such as supra-pancreatic and splenic hilar lymph node dissection, which targets lymph nodes around small, deep-seated, complicated vessels [38]. In a comparative study of splenic hilar lymph node dissection performed in robotic vs. laparoscopic gastrectomy, a robotic procedure yielded a larger number of retrieved lymph nodes in the splenic hilar and supra-pancreatic area.

Table 1. Short-term surgical outcomes of robotic versus laparoscopic gastrectomy for gastric cancer

Author	Year	Country	Type of approach (No. of patients)	Type of surgery (TG/STG)	D2 LND	Operation time (min)	Blood loss (mL)	Retrieved LN	Hospital stay	Morbidity (%)	Mortality (%)
Pugliese et al. [19]	2010	Italy	Robot (16)	Laparoscopy (48)	0/16	0.18	344	90	25	10	6
Kim et al. [20]	2010	Korea	Robot (16)	Laparoscopy (11)	0/11	3/8	203.9	44.7	37.4	6.5	9
Yoon et al. [21]	2012	Korea	Robot (16)	Laparoscopy (65)	0/16	2/14	259.2	30.3	41.1	8.8	16.7
Kang et al. [22]	2012	Korea	Robot (100)	Laparoscopy (282)	16/84	32/68	202	93.2	-	9.8	14
Kim et al. [23]	2012	Korea	Robot (346)	Laparoscopy (861)	109/37	-	226	40.2	7.5	9.6	0.4
Park et al. [24]	2012	Korea	Robot (30)	Laparoscopy (120)	0/30	-	218	60	35	7	17
Hyun et al. [15]	2013	Korea	Robot (38)	Laparoscopy (83)	9/29	24/14	234.4	131.3	32.8	10.5	47.3
Huang et al. [25]	2014	Taiwan	Robot (72)	Laparoscopy (73)	8/64	5/67	357.9	79.6	30.6	11	12.5
Junfeng et al. [26]	2014	China	Robot (120)	Laparoscopy (394)	26/32/2(PG)	118/361/15(PG)	221.3	137.6	32.7	7.9	4.3
Noshiro et al. [27]	2014	Japan	Robot (21)	Laparoscopy (160)	0/160	79/61	439	96	44	8	9.5
Han et al. [28]	2015	Korea	Robot (68)	Laparoscopy (68)	68(PGG)	-	258.3	-	33.4	-	19.1
Seo et al. [29]	2015	Korea	Robot (40)	Laparoscopy (40)	0/40	22/18	243	76	40.4	6.7	27.5
Yoon et al. [30]	2015	Korea	Robot (16)	Laparoscopy (20)	0/20	11/9	271.9	-	44.3	11.4	12.5
Kim et al. [18]	2016	Korea	Robot (223)	Laparoscopy (211)	42/160/1(PG)/20(PGG)	30/167/1(PG)/2(PGG)	226	50	33	6	30
Kim et al. [31]	2016	Korea	Robot (87)	Laparoscopy (288)	0/87	8/79	248.4	-	37.1	6.7	5.7
Nakauchi et al. [13]	2016	Japan	Robot (84)	Laparoscopy (437)	27/57	35/49	378	44	40	14	2.4
Cianchi et al. [17]	2016	Italy	Robot (30)	Laparoscopy (41)	0/30	5/28	312.6	99.5	39.1	9.5	13.2
Parisi et al. [16]	2017	International	Robot (151)	Laparoscopy (131)	40/111	8/143	365.4	117.9	27.8	8.9	17.9
Lu et al. [32]	2018	China	Robot (101)	Laparoscopy (101)	66/35	1/100	226.6	26	38	11.9	3
Liu et al. [33]	2018	China	Robot (100)	Laparoscopy (303)	40/58	3/47	240	100	40.9	11	5
Gao et al. [14]	2019	China	Robot (163)	Laparoscopy (163)	60/72/30(PG)	60/103	232.2	109.5	29.3	7.6	1.8
Ye et al. [34]	2019	China	Robot (99)	Laparoscopy (106)	99/0	0/99	203.9	134.5	25.8	8	7.5

TG/STG, total gastrectomy/subtotal gastrectomy; LND, lymph node dissection; LN, lymph node; PG, proximal gastrectomy; PPG, pylorus preserving gastrectomy.
Less blood loss and a larger number of retrieved lymph nodes suggest that robotic gastrectomy may be technically easier and oncologically safer than conventional laparoscopic gastrectomy. However, the true role of robotic surgery for gastric cancer still remains an unexplored area, and whether the advantages above transfer to improved long-term oncologic outcomes should be addressed in future studies. The potential benefits of robotic gastrectomy should be investigated in various conditions under well-designed clinical trials in order to justify wider application of robotic gastrectomy.

Morbidity

Due to considerable heterogeneity in the designs of studies published in the literature, it is difficult to conclude the impact of robotic gastrectomy on surgery-related morbidity and mortality. Generally, robotic gastrectomy has been reported to show a morbidity rate similar to that for laparoscopic gastrectomy (0% to 47.3%, robotic, vs. 1.3% to 38.5%, laparoscopic) [13-34]. Nevertheless, a single-center study in Japan reported that robotic gastrectomy was a protective factor in terms of postoperative complications [39]. Although most studies have reported no mortality cases with robotic or laparoscopic gastrectomy, mortality rates of 3.3% for robotic gastrectomy and 4.9% for laparoscopic gastrectomy were reported by an Italian group comparing robotic with laparoscopic gastrectomy for D2 lymph node dissection [17]. Based on the results of these studies, we suggest that robotic gastrectomy does not show results superior to laparoscopic gastrectomy in terms of morbidity and mortality.

Cost

Robotic gastrectomy, until now, has only been conducted with the da Vinci® system, and issues related to cost are a problem. Two studies have documented comparative results of the cost between robotic and laparoscopic gastrectomy: one multicenter prospective study in Korea indicated that the difference in cost was about 4,500 USD [18]; the difference in the other retrospective study in China was 5,300 USD [14]. Investigations into the impact of robotic gastrectomy on the costs associated with post-discharge events, encompassing complication-related readmission and quicker return to work after recovery, may support the cost effectiveness of robotic gastrectomy.

LONG-TERM OUTCOMES

Evidence of the oncologic safety of robotic gastrectomy for gastric cancer is limited, and only retrospective data have been published for long-term oncologic outcomes after robotic gastrectomy (Table 2). Among available results, 3-year overall survivals were reported to range from 76.1% to 86% for robotic gastrectomy and from 79.8% to 88.8% for laparoscopic

Author	Year	Country	Type of approach/ No. of patients	Stage (I/II/III)	3YDFS	3YOS	5YDFS	5YOS
Pugliese et al. [19]	2010	Italy	Robot (16) / Laparoscopy (48)	- / -	78	-	-	-
Nakauchi et al. [13]	2016	Japan	Robot (84) / Laparoscopy (437)	49/19/16 / 280/80/71	86.9	86.9	-	-
Obama et al. [40]	2017	Korea	Robot (311) / Laparoscopy (311)	252/29/30 / 267/25/19	-	90.7	93.2	-
Gao et al. [14]	2019	China	Robot (163) / Laparoscopy (163)	0/57/106 / 0/63/100	73	76.1	-	-

YDFS, year disease free survival; YOS, year overall survival.

https://e-aris.org
https://doi.org/10.37007/aris.2020.1.1.5
gastrectomy. In one study, 5-year overall survival rates were 93.2% for robotic gastrectomy and 94.2% for laparoscopic gastrectomy [13,14,19,40]. Making any conclusions on these data is difficult due to the various pathologic stages included in these studies. While we presume that the oncologic outcomes of robotic gastrectomy will not prove inferior to laparoscopic gastrectomy, more long-term results are required, particularly those for the oncological safety of robotic gastrectomy and those associated with the benefits of superior lymph node dissection.

FUTURE PERSPECTIVES

Recent studies have sought to document additional benefits for robotic gastrectomy in cases in which laparoscopic gastrectomy can be challenging, for instance, advanced gastric cancer, upper third or esophagogastric junction cancer, obese patients, and remnant stomach cancer. Reduced-port gastrectomy is an example thereof and has been implemented by experienced surgeons seeking to overcome the technical limitations of reduced-port laparoscopic gastrectomy [41-44].

Initial experiences with reduced-port robotic gastrectomy have been described [10,11]. Therein, the Single-Site® system was used to relocate multiple instruments, including the camera, into a 2.5-cm periumbilical incision. In these initial reports, intra-corporeal gastroduodenostomy was able to be readily performed with acceptable short-term surgical outcomes [11,12]. Showing a better postoperative clinical course, reduced-port gastrectomy using a robotic surgical system is expected to improve upon reduced-port laparoscopic gastrectomy.

Fluorescent image-guided robotic surgery with indocyanine green has been introduced for cancer surgery and has been used to visualize lymphatics in the surgical field. Recently, image-guided robotic gastrectomy was reported [45]. In this study, the surgeons were able to retrieve more lymph nodes by using fluorescent lymphography than by not, and the noncompliance rate of D2 lymph node dissection was low. More meticulous lymph node dissection with robotic fluorescent lymphography may improve long-term oncologic survival. Although lymphography is also available and is being used in laparoscopic surgery, surgeons can change images readily via the robotic console during a robotic procedure, and the finer movements of the robotic instruments can enhance lymph node dissection.

CONCLUSION

Robotic gastrectomy for gastric cancer shows similar surgical outcomes to laparoscopic gastrectomy. Higher cost and longer operation times have yet to be resolved. More competition and cheaper robotic surgical systems may help to achieve advanced surgical care at a justifiable cost for more patients.

ACKNOWLEDGMENTS

The authors thank Mr. Dante An for his work on the illustrations of this article.
REFERENCES

1. Kitano S, Iso Y, Moriyama M, Sugimachi K. Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc 1994;4:146-8.
 PUBMED

2. Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 2017;20:1-19.
 PUBMED | CROSSREF

3. Lee HI, Hyung WJ, Yang HK, et al. Short-term outcomes of a multicenter randomized controlled trial comparing laparoscopic distal gastrectomy with D2 lymphadenectomy to open distal gastrectomy for locally advanced gastric cancer (KLASS-02-RCT). Ann Surg 2019;270:983-91.
 PUBMED | CROSSREF

4. Hashizume M, Shimada M, Tomikawa M, et al. Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 2002;16:1187-91.
 PUBMED | CROSSREF

5. Intuitive Surgical, Inc. Investors overview: featured documents; investor presentation Q3 2019. Sunnyvale (CA): Intuitive Surgical, Inc.; 2019 [cited 2019 Sep 30]. Available from: https://isrg.gcs-web.com/static-files/880bf027-e866-4c32-b910-5332467cd8dc.

6. Hashizume M, Sugimachi K. Robot-assisted gastric surgery. Surg Clin North Am 2003;83:1429-44.
 PUBMED | CROSSREF

7. Song J, Oh SJ, Kang WH, Hyung WJ, Choi SH, Noh SH. Robot-assisted gastrectomy with lymph node dissection for gastric cancer: lessons learned from an initial 100 consecutive procedures. Ann Surg 2009;249:927-32.
 PUBMED | CROSSREF

8. Kim YM, Son T, Kim HI, Noh SH, Hyung WJ. Robotic D2 lymph node dissection during distal subtotal gastrectomy for gastric cancer: toward procedural standardization. Ann Surg Oncol 2016;23:2409-10.
 PUBMED | CROSSREF

9. Alhossaini RM, Altamran AA, Choi S, et al. Similar operative outcomes between the da Vinci Xi® and da Vinci Si® systems in robotic gastrectomy for gastric cancer. J Gastric Cancer 2019;19:165-72.
 PUBMED | CROSSREF

10. Lee S, Kim JK, Kim YN, et al. Safety and feasibility of reduced-port robotic distal gastrectomy for gastric cancer: a phase I/II clinical trial. Surg Endosc 2017;31:4002-9.
 PUBMED | CROSSREF

11. Seo WJ, Son T, Roh CK, Cho M, Kim HI, Hyung WJ. Reduced-port totally robotic distal subtotal gastrectomy with lymph node dissection for gastric cancer: a modified technique using Single-Site® and two additional ports. Surg Endosc 2018;32:3713-9.
 PUBMED | CROSSREF

12. Lee IH, Son T, Kim J, et al. Intracorporeal delta-shaped gastroduodenostomy in reduced-port robotic distal subtotal gastrectomy: technical aspects and short-term outcomes. Surg Endosc 2018;32:4344-50.
 PUBMED | CROSSREF

13. Nakauchi M, Suda K, Susumu S, et al. Comparison of the long-term outcomes of robotic radical gastrectomy for gastric cancer and conventional laparoscopic approach: a single institutional retrospective cohort study. Surg Endosc 2016;30:5444-52.
 PUBMED | CROSSREF

14. Gao Y, Xi H, Qiao Z, et al. Comparison of robotic- and laparoscopic-assisted gastrectomy in advanced gastric cancer: updated short- and long-term results. Surg Endosc 2019;33:528-34.
 PUBMED | CROSSREF

15. Hyun MH, Lee CH, Kwon YJ, et al. Robot versus laparoscopic gastrectomy for cancer by an experienced surgeon: comparisons of surgery, complications, and surgical stress. Ann Surg Oncol 2013;20:1258-65.
 PUBMED | CROSSREF

16. Parisi A, Reim D, Borghi F, et al. Minimally invasive surgery for gastric cancer: A comparison between robotic, laparoscopic and open surgery. World J Gastroenterol 2017;23:2376-84.
 PUBMED | CROSSREF

17. Cianchi F, Indennitate G, Trallori G, et al. Robotic vs laparoscopic distal gastrectomy with D2 lymphadenectomy for gastric cancer: a retrospective comparative mono-institutional study. BMC Surg 2016;16:65.
 PUBMED | CROSSREF

18. Kim HI, Han SU, Yang HK, et al. Multicenter prospective comparative study of robotic versus laparoscopic gastrectomy for gastric adenocarcinoma. Ann Surg 2016;263:103-9.
 PUBMED | CROSSREF

https://e-aris.org
https://doi.org/10.37007/aris.2020.1.1.5

12
19. Pugliese R, Maggioni D, Sansonna F, et al. Subtotal gastrectomy with D2 dissection by minimally invasive surgery for distal adenocarcinoma of the stomach: results and 5-year survival. Surg Endosc 2010;24:2594-602.

20. Kim MC, Heo GU, Jung GI. Robotic gastrectomy for gastric cancer: surgical techniques and clinical merits. Surg Endosc 2010;24:610-5.

21. Yoon HM, Kim YW, Lee JH, et al. Robot-assisted total gastrectomy is comparable with laparoscopically assisted total gastrectomy for early gastric cancer. Surg Endosc 2012;26:1377-81.

22. Kang BH, Xuan Y, Hur H, Ahn CW, Cho YK, Han SU. Comparison of surgical outcomes between robotic and laparoscopic gastrectomy for gastric cancer: the learning curve of robotic surgery. J Gastric Cancer 2012;12:156-63.

23. Kim KM, An JY, Kim HI, Cheong JH, Hyung WJ, Noh SH. Major early complications following open, laparoscopic and robotic gastrectomy. Br J Surg 2012;99:1681-7.

24. Park JY, Jo MJ, Nam BH, et al. Surgical stress after robot-assisted distal gastrectomy and its economic implications. Br J Surg 2012;99:1554-61.

25. Huang KH, Lan YT, Fang WL, et al. Comparison of the operative outcomes and learning curves between laparoscopic and robotic gastrectomy for gastric cancer. PLoS One 2014;9:e111499.

26. Junfeng Z, Yan S, Bo T, et al. Robotic gastrectomy versus laparoscopic gastrectomy for gastric cancer: comparison of surgical performance and short-term outcomes. Surg Endosc 2014;28:1779-87.

27. Noshiro H, Ikeda O, Urata M. Robotically-enhanced surgical anatomy enables surgeons to perform distal gastrectomy for gastric cancer using electric cautery devices alone. Surg Endosc 2014;28:1180-7.

28. Han DS, Suh YS, Ahn HS, et al. Comparison of surgical outcomes of robot-assisted and laparoscopy-assisted pylorus-preserving gastrectomy for gastric cancer: a propensity score matching analysis. Ann Surg Oncol 2015;22:2323-8.

29. Seo HS, Shim JH, Jeon HM, Park CH, Song KY. Postoperative pancreatic fistula after robot distal gastrectomy. J Surg Res 2015;194:361-6.

30. You YH, Kim YM, Ahn DH. Beginner surgeon’s initial experience with distal subtotal gastrectomy for gastric cancer using a minimally invasive approach. J Gastric Cancer 2015;15:270-7.

31. Kim YW, Reim D, Park JY, et al. Role of robot-assisted distal gastrectomy compared to laparoscopy-assisted distal gastrectomy in suprapancreatic nodal dissection for gastric cancer. Surg Endosc 2016;30:1547-52.

32. Lu J, Zheng HL, Li P, et al. A propensity score-matched comparison of robotic versus laparoscopic gastrectomy for gastric cancer: oncological, cost, and surgical stress analysis. J Gastrointest Surg 2018;22:1152-62.

33. Liu HB, Wang WJ, Li HT, et al. Robotic versus conventional laparoscopic gastrectomy for gastric cancer: a retrospective cohort study. Int J Surg 2018;55:15-23.

34. Ye SP, Shi J, Liu DN, et al. Robotic-assisted versus conventional laparoscopic-assisted total gastrectomy with D2 lymphadenectomy for advanced gastric cancer: short-term outcomes at a mono-institution. BMC Surg 2019;19:86.

35. Park SS, Kim MC, Park MS, Hyung WJ. Rapid adaptation of robotic gastrectomy for gastric cancer by experienced laparoscopic surgeons. Surg Endosc 2012;26:607-10.

36. Zhou J, Shi Y, Qian F, et al. Cumulative summation analysis of learning curve for robot-assisted gastrectomy in gastric cancer. J Surg Oncol 2015;111:760-7.
37. An IY, Kim SM, Ahn S, et al. Successful robotic gastrectomy does not require extensive laparoscopic experience. J Gastric Cancer 2018;18:90-8.

38. Son T, Lee JH, Kim YM, Kim HI, Noh SH, Hyung WJ. Robotic spleen-preserving total gastrectomy for gastric cancer: comparison with conventional laparoscopic procedure. Surg Endosc 2014;28:2606-15.

39. Suda K, Man-I M, Ishida Y, Kawamura Y, Satoh S, Uyama I. Potential advantages of robotic radical gastrectomy for gastric adenocarcinoma in comparison with conventional laparoscopic approach: a single institutional retrospective comparative cohort study. Surg Endosc 2015;29:673-85.

40. Obama K, Kim YM, Kang DR, et al. Long-term oncologic outcomes of robotic gastrectomy for gastric cancer compared with laparoscopic gastrectomy. Gastric Cancer 2018;21:285-95.

41. Omori T, Oyama T, Akamatsu H, Tori M, Ueshima S, Nishida T. Transumbilical single-incision laparoscopic distal gastrectomy for early gastric cancer. Surg Endosc 2011;25:2400-4.

42. Kawamura H, Tanioka T, Shibuya K, Tahara M, Takahashi M. Comparison of the invasiveness between reduced-port laparoscopy-assisted distal gastrectomy and conventional laparoscopy-assisted distal gastrectomy. Int Surg 2013;98:247-53.

43. Kim SM, Ha MH, Seo JE, et al. Comparison of single-port and reduced-port totally laparoscopic distal gastrectomy for patients with early gastric cancer. Surg Endosc 2016;30:3950-7.

44. Kunisaki C, Miyamoto H, Sato S, et al. Surgical outcomes of reduced-port laparoscopic gastrectomy versus conventional laparoscopic gastrectomy for gastric cancer: a propensity-matched retrospective cohort study. Ann Surg Oncol 2018;25:3604-12.

45. Kwon IG, Son T, Kim HI, Hyung WJ. Fluorescent lymphography-guided lymphadenectomy during robotic radical gastrectomy for gastric cancer. JAMA Surg 2019;154:150-8.