Physical Activity Does Not Reduce Aortic Valve Stenosis Incidence

Philip Sarajlic, MD; Alicja Wolk; Magnus Bäck, MD, PhD; Susanna C. Larsson, PhD

Background: Physical activity is associated with lower risk of coronary and cerebrovascular disease but its potential role in prevention of aortic valve stenosis (AVS) is unclear.

Methods and Results: We investigated whether physical activity influences AVS risk in a cohort of 69,288 adults. During a mean follow-up of 15.3 years, 1,238 AVS cases were diagnosed. No associations were observed between AVS and walking/bicycling (≥1 h/day vs. almost never: hazard ratio 0.92, 95% CI 0.74–1.15) or exercise (≥4 hs/week vs. <1 h/week: hazard ratio 1.18, 95% CI 0.97–1.43).

Conclusions: Physical activity did not reduce the incidence of AVS.

Key Words: Aortic valve stenosis; Physical activity; Prospective studies
Walking/bicycling and exercise were mutually adjusted by inclusion of both variables in the same multivariable model. We had 80% and 100% power to detect hazard ratios of 0.8 and 0.7, respectively, for the highest vs. lowest categories.

Results

Participants reporting more dedication towards physical activity were more likely to have a postsecondary education, had lower BMI and drank less alcohol, and were less likely to smoke and to have a history of comorbidities compared with inactive individuals (Table S1).

During a mean follow-up of 15.3 years (1,059,122 person-years), 1,238 AVS cases were diagnosed. No significant associations were observed across categories of walking/bicycling and exercise and AVS incidence (Table). In the most fully adjusted model, the hazard ratios (95% confidence interval) comparing the highest and lowest categories of physical activity were 0.92 (0.74–1.15) for walking/bicycling and 1.18 (0.97–1.43) for exercise. There was a small, but significant increase in AVS risk in the group exercising 1 h/week. Results were similar for AVS requiring aortic valve replacement (Table) and in both cohorts.

Discussion

In this study, we found that physical activity defined as either walking/bicycling or leisure-time exercise did not decrease the risk of AVS overall or of AVS requiring aortic valve replacement. Our finding was consistent with results from a cohort study of 3,273 Norwegian adults followed up by echocardiography showing no significant association between physical activity (assessed by questionnaire) and AVS risk. We observed a barely significant increase in AVS risk among participants who exercised ≥1 h/day, which should be interpreted as a statistical anomaly as there were no significant differences in AVS incidence in the other categories.

The protective effects of physical activity on other cardiovascular outcomes may relate to modest reductions in inflammation and blood pressure and enhanced endothelial function, all of which have been implicated in AVS. Improvements in those factors would thus be expected to be beneficial also in AVS. Although exercise has also been associated with a positive effect on blood lipids, potential differences in lipid-attributable risk between, for example, atherosclerosis and AVS have been suggested.

In addition, there are no intervention studies showing that exercise influences inflammatory markers, blood pressure or endothelial function in AVS patients. Finally, because obesity and diabetes are risk factors for AVS, additional benefit would be expected if physical activity leads to weight loss and reduced risk of diabetes. Nevertheless, we observed no association between physical activity and risk of AVS in the model that was not adjusted for potential intermediates, including BMI and history of diabetes, hypertension, and hypercholesterolemia.

A strength of this study is the large number of AVS events, ensuring sufficient statistical power to draw meaningful conclusions. Moreover, we could assess associations of both less strenuous and more strenuous physical activity.
with AVS incidence and adjust for other potential risk factors. Physical activity was assessed before the diagnosis of AVS, thereby reducing reverse causation bias. The questionnaire has been validated and showed adequate validity. The inverse association between moderate physical activity and risk of other cardiovascular diseases in this population indicates that the questionnaire can capture potential causal associations between physical activity and disease.

A limitation is the possibility of recall bias because participants were asked to report their level of physical activity by themselves. Another shortcoming is that we might have missed asymptomatic cases not diagnosed with AVS. It can therefore not be excluded that physically active individuals were more prone to experience symptoms from AVS and therefore seek medical care detecting AVS.

In conclusion, findings from this large cohort study provided no support that physical activity may reduce AVS incidence.

Acknowledgment
We acknowledge the Swedish Infrastructure for Medical Population-based Life-course Environmental Research (SIMPLER) for providing facilities and database. SIMPLER receives funding through the Swedish Research Council under grant no. 2017-00644.

Funding
This work was supported by research grants from the Swedish Research Council (grant no. 2016-01042). The funder had no role in the design, collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to submit this work for publication.

Declaration of Conflict of Interest
The authors have no conflicts of interest to declare.

References
1. Eveborn GW, Schirmer H, Lunde P, Hegelund G, Hansen JB, Rasmussen K. Assessment of risk factors for developing incident aortic stenosis: The Tromso Study. Eur J Epidemiol 2014; 29: 567–575.
2. Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: A meta-analysis. Circulation 2011; 124: 789–795.
3. Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose–response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016; 354: i3857.
4. Åkesson A, Weismayer C, Newby PK, Wolk A. Combined effect of low-risk dietary and lifestyle behaviors in primary prevention of myocardial infarction in women. Arch Intern Med 2007; 167: 2122–2127.
5. Larsson SC, Tektonidis TG, Gigante B, Åkesson A, Wolk A. Healthy lifestyle and risk of heart failure: Results from 2 prospective cohort studies. Circ Heart Fail 2016; 9: e002855.
6. Larsson SC, Dreca N, Jensen-Urstad M, Wolk A. Combined impact of healthy lifestyle factors on risk of atrial fibrillation: Prospective study in men and women. Int J Cardiol 2016; 203: 46–49.
7. Sarajlic P, Friden C, Lund LH, Manouras A, Venkateshvaran A, Larsson SC, et al. Enhanced ventricular-arterial coupling during a 2-year physical activity programme in patients with rheumatoid arthritis: A prospective substudy of the physical activity in rheumatoid arthritis 2010 trial. J Intern Med, doi:10.1111/joim.12715.
8. Larsson SC, Wolk A, Bäck M. Alcohol consumption, cigarette smoking and incidence of aortic valve stenosis. J Intern Med 2017; 282: 332–339.
9. Larsson SC, Wolk A, Häkansson N, Bäck M. Overall and abdominal obesity and incident aortic valve stenosis: Two prospective cohort studies. Eur Heart J 2017; 38: 2192–2197.
10. Norman A, Bellocco R, Bergström A, Wolk A. Validity and reproducibility of self-reported total physical activity: Differences by relative weight. Int J Obes Relat Metab Disord 2001; 25: 682–688.
11. Orsini N, Bellocco R, Bottai M, Hagstromer M, Sjostrom M, Pagano M, et al. Validity of self-reported total physical activity questionnaire among older women. Eur J Epidemiol 2008; 23: 661–667.
12. Hamer M, Stamatakis E. Physical activity and risk of cardiovascular disease events: Inflammatory and metabolic mechanisms. Med Sci Sports Exerc 2009; 41: 1206–1211.
13. Yan AT, Koh M, Chan KK, Guo H, Alter DA, Austin PC, et al. Association between cardiovascular risk factors and aortic stenosis: The CANHEART aortic stenosis study. J Am Coll Cardiol 2017; 69: 1523–1532.
14. Di Minno MN, Di Minno A, Songia P, Ambrosino P, Gripari P, Ravani A, et al. Markers of subclinical atherosclerosis in patients with aortic valve sclerosis: A meta-analysis of literature studies. Int J Cardiol 2016; 223: 364–370.
15. Bäck M, Larsson SC. Bioactive lipids in aortic valve stenosis: A 2-year physical activity programme in patients with rheumatoid arthritis 2010 trial. J Intern Med, doi:10.1111/joim.12715.

Supplementary Files
Supplementary File 1

Figure S1. Flow chart of study participants.
Table S1. Baseline characteristics of participants by categories of walking/bicycling and exercise.

Please find supplementary file(s):
http://dx.doi.org/10.1253/cirj.CJ-18-0598