Research Paper

Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy

Marisa C. Gaspar a,b,⇑, João J.S. Sousa a,b, Alberto A.C.C. Pais c, Olga Cardoso d, Dina Murtinho c, M. Elisa S. Serra c, Frédéric Tewes e,f, Jean-Christophe Olivier e,f

a Center for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
b Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
c Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal
d Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
e INSERM, U 1070, Pôle Biologie Santé, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
f Laboratory of Microbiology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal

© 2015 Elsevier B.V. All rights reserved.

 Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy

Abstract

The aim of this work was the development of innovative levofloxacin-loaded swellable microspheres (MS) for the dry aerosol therapy of pulmonary chronic Pseudomonas aeruginosa infections in Cystic Fibrosis patients. In a first step, a factorial design was applied to optimize formulations of chitosan-based MS with glutaraldehyde as crosslinker. After optimization, other crosslinkers (genipin, glutaric acid and glyceraldehyde) were tested. Analyses of MS included aerodynamic and swelling properties, morphology, drug loading, thermal and chemical characteristics, in vitro antibacterial activity and drug release studies. The prepared MS presented a drug content ranging from 39.8% to 50.8% of levofloxacin in an amorphous or dispersed state, antibacterial activity and fast release profiles. The highest degree of swelling was obtained for MS crosslinked with glutaric acid and genipin. These formulations also presented satisfactory aerodynamic properties, making them a promising alternative, in dry-powder inhalers, to levofloxacin solution for inhalation.

1. Introduction

Cystic Fibrosis (CF) is an inherited autosomal recessive disease caused by various mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, resulting in the malfunction of chloride channels and consequently multiple organ failure. In the lungs, the consequence is a viscid mucus which is responsible for the dysfunction of the lung microorganism clearance system and for the clinical symptoms, i.e. chronic inflammation and bacterial infection that eventually leads to respiratory failure [1].

Abstract

The aim of this work was the development of innovative levofloxacin-loaded swellable microspheres (MS) for the dry aerosol therapy of pulmonary chronic Pseudomonas aeruginosa infections in Cystic Fibrosis patients. In a first step, a factorial design was applied to optimize formulations of chitosan-based MS with glutaraldehyde as crosslinker. After optimization, other crosslinkers (genipin, glutaric acid and glyceraldehyde) were tested. Analyses of MS included aerodynamic and swelling properties, morphology, drug loading, thermal and chemical characteristics, in vitro antibacterial activity and drug release studies. The prepared MS presented a drug content ranging from 39.8% to 50.8% of levofloxacin in an amorphous or dispersed state, antibacterial activity and fast release profiles. The highest degree of swelling was obtained for MS crosslinked with glutaric acid and genipin. These formulations also presented satisfactory aerodynamic properties, making them a promising alternative, in dry-powder inhalers, to levofloxacin solution for inhalation.

1. Introduction

Cystic Fibrosis (CF) is an inherited autosomal recessive disease caused by various mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, resulting in the malfunction of chloride channels and consequently multiple organ failure. In the lungs, the consequence is a viscid mucus which is responsible for the dysfunction of the lung microorganism clearance system and for the clinical symptoms, i.e. chronic inflammation and bacterial infection that eventually leads to respiratory failure [1].

Abbreviations: CF, Cystic Fibrosis; CFTR, Cystic Fibrosis Transmembrane Conductance Regulator; DL, drug loading; ED, emitted dose; EE, entrapment efficiency; FPF, fine particle fraction; GA, glutaric acid; GL, glutaraldehyde; GLY, u-Glyceraldehyde; GNP, genipin; LVX, levofloxacin; MMAD, mass median aerodynamic diameter; MS, microspheres; NGI, Next Generation Impactor.

⇑ Corresponding author at: Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal. Tel.: +351 239 488 400.

E-mail address: mgaspar@ff.uc.pt (M.C. Gaspar).

http://dx.doi.org/10.1016/j.ejpb.2015.07.010
0939-6411/ © 2015 Elsevier B.V. All rights reserved.
Table 1
Coding of independent variables x for MS preparation.

Description of variables and coding	Coded levels of independent variables x			
	x_1	x_2	x_3	x_4
Presence of LVXa	–1	–1	–1	–1
Chitosan concentration	–1	–1	–1	–1
GL amount	–1	–1	–1	–1
Inlet temperature	–1	–1	–1	–1
+1 (Yes)	+1	+1	+1	+1
+1 (0.5% (w/v))	+1	+1	+1	+1
+1 (10 mmol per g chitosan)	+1	+1	+1	+1
+1 (120 °C)	+1	+1	+1	+1
+1 (175 °C)	+1	+1	+1	+1

Formulations
- F1: +1
- F2: +1
- F3: +1
- F4: +1
- F5: +1
- F6: +1
- F7: +1
- F8: +1
- F9: +1
- F10: +1
- F11: +1
- F12: +1
- F13: +1
- F14: +1
- F15: +1
- F16: +1

Table 1: Coding of independent variables x for MS preparation.

2. Materials and methods

2.1. Materials

Chitosan low molecular weight (20,000 cps, 75–85% deacetylated), glutaraldehyde (GL) 50% (w/w) aqueous solution, Phosphate buffered saline (PBS) tablets, Whatman® qualitative filter paper, Grade 1 (11-μm pore size), and α-glyceraldehyde (≥90% by GC) were obtained from Sigma–Aldrich® (France). Glacial acetic acid was obtained from Panreac® (Spain). Levofloxacin hemihydrate was kindly provided by Tecnimed S.A. (Portugal). PIC B7 was obtained from Waters® (France). Formic acid 99–100% AnalR (Normapur) was obtained from VWR® (France) and acetophenone of HPLC grade was purchased from Carlo Erba reagents (France). Genipin (98% purity) was obtained from Challenge Bioproducts Co., Ltd. (Taiwan). Glutaric acid (99% purity) was purchased from Merck® (Portugal). All other chemicals were of analytical grade or equivalent. Purified water was produced using a MilliQ gradient® Plus Millipore system.

2.2. Preparation of chitosan MS

The formulations and operational parameters were first optimized using GL as a standard crosslinker and resorting to a factorial design approach (see Table 1). For the MS preparation, chitosan was dissolved under magnetic stirring (300 rpm) in 150 mL of 1% (w/v) acetic acid solution (3 h at 50 °C), then overnight at room temperature) and solutions were paper-filtered. LVX was added according to the specified weight ratios and solutions were stirred for 30 min. After addition of GL, crosslinking reaction was performed under stirring for 15 min [19]. The mixtures were then spray dried using a Büchi® Mini Spray Dryer B-290 (Switzerland) setup in blowing mode and equipped with a 0.7 mm nozzle. Constant settings were as follows: 10 mL/min pump rate, 473 L/h air flow rate and aspiration rate of 100%.

Analyses of the obtained MS included aerodynamic size, morphology, swelling properties, drug loading, thermal and chemical characteristics, in vitro antibacterial and drug release studies.
chemical reactivity, based on literature's reports. For GNP (0.2 mmol per g chitosan), crosslinking reaction was carried out at 50 °C for 3 h under magnetic stirring (300 rpm) (adapted from [16]). For GLY (1 mmol/g), crosslinking was carried out at RT for 30 min (same stirring conditions) [28] and for GA (1 mmol/g) crosslinking was carried out at 60 °C for 2 h (same stirring conditions) [27,26,31]. MS were collected and stored at 5 ± 3 °C in vacuum desiccators on silica gel.

2.3. Optimization

2.3.1. Factorial design

The factorial approach was performed for MS crosslinked with GL in order to optimize geometric size, for which determination is faster than aerodynamic size in the formulation development stage. This experimental design included four independent variables (x1 to x4) and two coded levels (–1, +1) (Table 1). The values at each level were chosen considering acceptable domains for each variable and according to therapeutic approach and published works [19,20,32,33]. Programs developed by the authors with GNU Octave software [34] were used to solve the polynomial multilinear model:

\[D = \beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_3 + \beta_4x_4 + \beta_{12}x_1x_2 + \beta_{13}x_1x_3 + \beta_{14}x_1x_4 + \beta_{23}x_2x_3 + \beta_{24}x_2x_4 + \beta_{34}x_3x_4, \]

where \(\beta_0 \) was the arithmetic mean response, \(\beta_{ij} \) the coefficients of the respective independent variables and \(\beta_{ij} \) the interaction between variables. The response \(D \) (dependent variable) corresponded to the mean diameter of the MS from the volume distribution. This model was applied to evaluate the effects and interactions of the variables. For the statistical analysis, Student's t-test was performed with a significance level of 95%.

2.3.2. Particle size analysis

MS were dispersed in purified water, sonicated for 10 min and analyzed using laser light diffraction (MicrométroX X100 particle size analyzer) as previously described [35]. Three measurements were carried out for each sample and particle size expressed as the mean diameter ± SD of the volume distribution \((D_v) \) was calculated using the Micrométro Particle Size Analyzer application program (version 9.0 g).

2.4. MS characterization

2.4.1. Scanning electron microscopy (SEM)

Samples were dispersed on double-sided adhesive carbon tapes that were fixed on aluminum stubs. They were then sputter coated with a gold film making them conducting. SEM images were taken using a Jeol JSM 6010 LV electron microscope (Tokyo, Japan) with a working distance of 11 mm.

2.4.2. Powder X-ray Diffraction (XRD)

Samples were placed in a low background silicon holder in Bragg-Brentano configuration, with a copper tube powered at 45 kV and 40 mA. They were scanned in the range 5° < 2θ < 145° at a step of 0.066° and time/step of 10 s in an Empyrean PANalytical (The Netherlands) diffractometer with the detector Xcelerator in scanning mode and opened at 2°. A nickel filter was installed in a secondary optic in order to eliminate the Kβ component.

2.4.3. Differential Thermal Analysis/Thermal Gravimetric Analysis (DTA/TGA)

MS were analyzed by combined DTA/TGA that were performed on a SDT Q600 Instrument (TA, USA) from 30 °C to 300 °C with a 10 °C/min heating rate and under a 100 mL/min air flow rate. The calibration procedure was performed with sapphire, using empty platinum pans as reference.

2.4.4. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR)

ATR infrared spectra were recorded using a FT-IR 6700 spectrometer (Thermo Scientific Nicolet™, USA) equipped with an ATR accessory. Samples were placed in the ATR device and measurements were made by using 16 scans between 4000 and 650 cm\(^{-1}\) for each spectrum with a resolution of 4 cm\(^{-1}\).

2.4.5. Swelling properties

Studies concerning the swelling behavior of MS were also conducted. A known amount (20 mg ± 1 mg) of MS was added to 1 mL of PBS (pH 7.4). After dispersion with a vortex, the MS suspensions were mixed at 350 rpm and 37 ± 0.5 °C by using a Thermomixer (Thermomixer® Comfort, Eppendorf AG., Hamburg, Germany). At predetermined points, samples were centrifuged at 10,000 rpm for 5 min (Eppendorf® Centrifuge 5418R, Germany) and supernatants were removed. Weight of swollen MS was determined. The percentage of swelling was calculated as follows:\[\text{Swelling} = \left(\frac{W_t}{W_i} \right) \times 100, \]
where \(W_t \) corresponds to the weight of swollen MS at time \(t \) and \(W_i \) to the initial weight [13]. Experiments were done in triplicate and results were expressed as mean ± SD.

2.4.6. Drug loading and entrapment efficiency

LVX-loaded MS (10 ± 1 mg) were submitted to an extraction process with 20 mL of 0.1 M hydrochloric acid [36] for 3 h at room temperature, under magnetic stirring (300 rpm) and protected from light. An aliquot (1 mL) of each suspension was collected and centrifuged at 3500 rpm for 5 min (Hettich® Zentrifugen Universal 320R, Germany). Supernatants were collected and appropriately diluted in PBS prior to HPLC quantification. Drug loadings (DL) (%) were expressed as the amount of LVX (mg) per mg of MS (including entrapped LVX). Entrapment efficiencies (EE) (%) were calculated as the percent ratios of the determined contents to the theoretical contents calculated considering a 100% EE [9]. All the experiments were done in triplicate.

2.4.7. LVX HPLC determination

The chromatographic system consisted of an L-2200 autosampler unit (Lachrom Elite®, Hitachi), an L-2130 pump (Lachrom Elite®, Hitachi) and an Intelligent Fluorescence Detector JASCO FP-920. It was equipped with a C18 X-Bridge™ HPLC column (5 μm, 2.1 × 100 mm, Waters). The mobile phase was run at 0.25 mL/min flow rate and was composed of a 20:80 (v/v) acetonitrile:water mixture supplemented with 0.1% (v/v) formic acid and 0.2% (v/v) PIC B7. The injection volume was 10 μL and the run time was 8 min. LVX was detected by fluorometry (\(\lambda_{ex} = 290 \text{ nm} \); \(\lambda_{em} = 460 \text{ nm} \)). The calibration curve was constructed by linear regression of the peak areas versus the added concentrations (0.156–5 μg/mL in PBS (pH 7.4)) with a weighting factor of 1/\(x^2 \) (\(R^2 = 0.999 \)). Appropriate quality controls (QCs) were also included to monitor the performance of the method.

2.5. In vitro studies

2.5.1. In vitro deposition studies using Next Generation Impactor (NGI)

The aerodynamic diameter was measured using a Next Generation Impactor (NGI, Copley Ltd., Nottingham, UK), equipped with a TPK 2000 critical flow controller and a HCP 5 vacuum pump (Copley HCP5, Nottingham, UK). For each measurement, a size-three hard gelatin capsule was filled with 20 ± 1 mg of LVX-loaded MS powder, inserted in a dry-powder inhaler Handihaler® (Boehringer-Ingelheim, Germany) and pierced. The inhaler was tightly connected to the NGI induction port via a
silicone adapter. The pump was turned on, allowing a constant air flow of 60 ± 5% L/min for 4 s (twice) in order to obtain 4 L of air from the adapter and through the NGI. The powder remaining in the capsule and deposited in the inhaler, the adapter, the induction port, all the stages and the filter was collected with 0.1 M hydrochloric acid solution allowing extraction for LVX determination. The emitted dose (ED), i.e. the mass of LVX deposited in the induction port, the stages and the filter, was expressed as the percentage (ED%) of the total recovered LVX mass (i.e. from the induction port, the stages and the filter NGI plus from the adapter, the inhaler and capsule). The fine particle dose (FPD), i.e. the fraction of LVX in particles with aerodynamic diameters below 5.0 µm, was calculated by interpolation, from the inverse of the standard normal cumulative mass percentage distribution, and considering stages 1 to 3. The mass median aerodynamic diameter (MMAD) of the particles was calculated from a similar plot (considering stages 1 to 6) as the particle aerodynamic diameter at which the line crosses the 50% mark [37–39]. The fine particle fraction (FPF) was calculated by converting the FPD mass as the percentage of the ED.

2.5.2. In vitro LVX release studies

Release studies were performed at 37 ± 0.5 °C in PBS (pH 7.4) under sink conditions. The LVX-loaded MS powder (15 ± 1 mg) was dispersed in 150 mL PBS and the release medium was maintained under a uniform shaking of 250 rpm using a VWR® incubating mini shaker. At pre-determined time points 1 mL aliquots were taken and centrifuged at 3500 rpm for 5 min (Hettich® Zentrifugen Universal 320R, Germany). Then, 50 µL of supernatant was collected for LVX HPLC determination. The remaining 950 µL were vortex-mixed and added back to the flasks. Experiments were conducted in triplicate.

2.5.3. In vitro antibacterial activity

Antibacterial activity of free LVX was compared with chitosan and LVX-loaded chitosan MS by measuring the minimal inhibitory concentrations (MICs). Two *P. aeruginosa* strains (CF2_2004 and CF7_2005) isolated from sputum of two CF patients (Pediatric Unit, Coimbra Hospital Centre, CHC, Portugal) were used. Identification was made by both MicroScan WalkAway® (Dade Behring, West Sacramento, CA) and API® 20NE (Biomerieux, Vitex, Inc. Hazelwood, Mo., USA) systems. The bacteria were incubated on Trypticase soy agar for 24 h at 37 °C. Few colonies were transferred to physiological saline in order to obtain a 0.5 McFarland standard (1.5 × 10⁸ CFU/ml) inoculum, as described for the broth microdilution method [40,41]. In 96-well plates, Mueller–Hinton broth (100 µL) and LVX solution or MS/chitosan suspensions in a 40% (v/v) ethanol–water mixture (100 µL) were added per well. These solutions/suspensions were then sequentially diluted (from 5 to 0.078 mg/L LVX). Then, 100 µL of inoculum was added. Negative controls with MS suspensions (in all the concentrations) and growth controls were also included. After 24 h of incubation at 37 °C and under 100 rpm, optical density was measured at 600 nm in a Synergy™ HT microplate reader (BioTek Instruments®, Inc., Winooski, VT, USA). Values lower than 0.1 were considered as zero bacterial growth and the lowest concentration that yields an optical density value <0.1 indicated the MIC [42]. As a complementary study, the bacterial susceptibility was also evaluated by the disk diffusion test in Mueller–Hinton agar, measuring the diameter of the inhibition zone (mm) [41]. Experiments were done in three different occasions.

3. Results and discussion

3.1. Optimization

The first step of the process optimization was carried out with GL as crosslinker using factorial design. Some formulation parameters (presence of drug, x₁, chitosan concentration % (w/v), x₂ and GL concentration (mmol/g), x₃) and one operating condition (inlet temperature (°C), x₄) were investigated as their effect on the geometric diameter of MS, a crucial parameter for lung delivery using solid particles. Actually, the geometric size was useful in the screening step to foresee the aerodynamic properties and it is much quicker to perform than the impactor measurements. The response function obtained from the factorial planning was as follows: \(D = 7.78 + 1.43x_1 + 0.26x_2 - 0.33x_3 + 0.63x_4 + 0.27x_1x_2 - 0.01x_1x_3 + 0.55x_1x_4 + 0.09x_3x_4 + 0.09x_2x_4 - 0.11x_4x_4 \). The \(\beta \) coefficient with the higher value corresponds to the higher effect on the particle size. A positive coefficient means an increasing effect in particle size and a negative one the opposite. In this case, the presence of drug (\(\beta_1 = 1.43 \)) and the inlet temperature (\(\beta_4 = 0.63 \)) were the main factors affecting the MS size, both in an increasing way with an increasing level of the variable. This result can be explained by the higher temperature that leads to a faster droplet evaporation and to polymer precipitation at the liquid–air interface, resulting in larger microspheres [43]. The presence of drug represents an amount of material that the chitosan matrix has to incorporate resulting also in larger particles, which is in accordance with some results already published that state that a higher amount of solute leads to larger particles [44–46,43]. In addition, the \(\beta_{14} \) coefficient of interaction between these two factors shows a synergistic effect for particle growth (Fig. 1). The coefficients for the other variables corresponded to lower values and were not statistically significant (see \(t \)-values, Table 2). However, higher chitosan concentrations tend to be associated with larger particles (\(\beta_2 = 0.26 \)). Similar results have already been observed and were attributed to larger droplets formed when higher concentrations of the polymer increase the viscosity of the nebulized phase [37]. A slight decrease of size was also observed for MS crosslinked with a higher concentration of GL (\(\beta_3 = -0.33 \)), which can be attributed to the tightly covalently bonded structure [47].

The geometric size of the MS prepared according to the experimental design ranged from 4.70 ± 0.45 µm to 12.65 ± 2.82 µm, as indicated in Table 3. The results from the factorial planning allowed the selection of parameters for MS with a suitable geometric size, also allowing a rapid preparation and good yield (Table 3), i.e. 0.5% (w/v) chitosan, 120 °C inlet temperature, and 5 mmol/g GL concentration. Although 10 mmol/g concentration tends to reduce the size of MS by intermolecular tightening, it was observed that some powder adhered to the cyclone during the preparation.
process (leading to lower yield), and it was difficult to spray dry those formulations owing to their high viscosity. Therefore, the formulation that was selected was F13 (Table 1). After the optimization step, MS were prepared with alternative crosslinking agents, i.e. GNP, GA or GLY, using the same operating conditions as for F13, but adapting their concentrations to their reactivity. These formulations and F13 were further analyzed by different techniques, whose results are described below. For clarity purposes, F13 is also referred to as MS_LVX_GL in the text that follows. For unloaded MS, crosslinked with GL, MS_GL, the change in intensity of the crosslinking agent reacts with the amine groups of chitosan, which is accompanied by a change in color to dark blue. This is due to the formation of the imine, resulting from the reaction of a heterocyclic amine by the nucleophilic substitution by the amine group of chitosan on the C-3 carbon atom of GNP, followed by a ring opening [49,23]. GNP showed two intense bands at 1680 \(\text{cm}^{-1}\) and 1618 (C–O carbonyl) and 1289 cm\(^{-1}\) (C–O acid) [52,53]. These bands are characteristic of the amorphous state of GNP. The GA boiling point was observed at 265 °C [27]. Concerning unloaded and unloaded chitosan MS (MS_uncross), the endothermic peak near 60 °C corresponds to the absorbed water loss [22]. An exothermic peak was observed above 225 °C, which was attributed to the chemical degradation of chitosan [16,51]. Independently of the crosslinking agent, these two previously mentioned thermal events were observed for LVX-loaded MS with some differences in the shape of peaks and different values of weight loss (TGA, Fig. 4B). Therefore, the dispersion of LVX in the MS was confirmed by the absence of the respective melting peak, being in accordance with the results from XRD [22,16]. With respect to the gravimetric analysis, non-crosslinked MS tend to lose ca. 60% of the mass up to 300 °C. If the MS are crosslinked, the weight loss is slightly lower. Upon addition of the drug, the percentage weight loss drops to values close to 40%. However, this value indicates a total weight loss somewhat exceeding what would be predictable from the separate components of the MS (ca. 33%) [49].

3.2.3. DTA/TGA

DTA/TGA (Fig. 4) were performed to further characterize the MS formulated with different crosslinking agents. On the LVX thermogram, an endothermic event was observed at 78 °C corresponding to a weight loss of 2.35% (w/w) measured by TGA, that agrees with the theoretical water content (2.43%) from the LVX hemihydrate. The endothermic peak at 225 °C corresponds to the anhydrate LVX melting [48]. For GNP, GA and GLY, the melting temperatures were observed at 125 °C [49,50], 100 °C and 140 °C, respectively. The GA boiling point was observed at 265 °C [27]. Concerning unloaded and unloaded chitosan MS (MS_uncross), the endothermic peak near 60 °C corresponds to the absorbed water loss [22]. An exothermic peak was observed above 225 °C, which was attributed to the chemical degradation of chitosan [16,51]. Independently of the crosslinking agent, these two previously mentioned thermal events were observed for LVX-loaded MS with some differences in the shape of peaks and different values of weight loss (TGA, Fig. 4B). Therefore, the dispersion of LVX in the MS was confirmed by the absence of the respective melting peak, being in accordance with the results from XRD [22,16]. With respect to the gravimetric analysis, non-crosslinked MS tend to lose ca. 60% of the mass up to 300 °C. If the MS are crosslinked, the weight loss is slightly lower. Upon addition of the drug, the percentage weight loss drops to values close to 40%. However, this value indicates a total weight loss somewhat exceeding what would be predictable from the separate components of the MS (ca. 33%) [49].

3.2.4. ATR-FTIR

ATR-FTIR studies were conducted in order to analyze the potential LVX chemical modification in the MS and to evaluate the chemical interactions developed by the crosslinking agents. The LVX spectrum presented the characteristic peaks at 1724 (C=O acid), 1618 (C=O carbonyl) and 1289 cm\(^{-1}\) (C–O acid) [52,53]. These three peaks were present in all the LVX-loaded MS, confirming there was no change in the functional groups of LVX after its incorporation, suggesting that no chemical reactions occurred between LVX and other components of the MS (Fig. 5). Concerning unloaded and unloaded chitosan MS (MS_uncross), characteristic bands of chitosan were present in the region 3000–3500 cm\(^{-1}\) for amino and hydroxyl groups. Other characteristic absorption peaks were found at 1633 cm\(^{-1}\) corresponding to amide I (C=O) and 1547 cm\(^{-1}\) to amide II (NH) [49,54]. The band observed at 1400 cm\(^{-1}\) may be attributed to the C–N or C–OH stretch. The two bands at 1064 and 1018 cm\(^{-1}\) correspond to C–O–C, C–O and C–N stretchings. For unloaded MS, crosslinked with GL, MS_GL, the change in intensity of the band at 1633 cm\(^{-1}\) may be due to the presence of the C=C group (Fig. 5) that confirmed the crosslinking reaction, responsible for the formation of the imine, resulting from the reaction of the amine group of chitosan with GL [27]. With respect to the MS crosslinked with GNP (MS_GNP, Fig. 5), this crosslinking agent reacts with the amine groups of chitosan, which is accompanied by a change in color to dark blue. This is due to the formation of a heterocyclic amine by the nucleophilic substitution by the amine group of chitosan on the C-3 carbon atom of GNP, followed by a ring opening [49,23]. GNP showed two intense bands at 1680 and 1620 cm\(^{-1}\) corresponding to the C=O and C=C stretchings. The
Fig. 2. SEM images of LVX crystals (A), of unloaded uncrosslinked MS (B) and of LVX-loaded MS crosslinked with GL (C, D) (=F13), GLY (E, F), GA (G, H) or GNP (I, J).
change in the profile in this region in the MS crosslinked with GNP is an indication that the crosslinking actually took place. For MS crosslinked with GA (Fig. 5) no significant changes were observed when comparing uncrosslinked MS (MS_uncross) with MS crosslinked with GA, MS_GA. However, the band at 1696 cm\(^{-1}\) in the GA IR spectrum is no longer present in the MS crosslinked with GA, which could be an indication that a transformation occurred. It has been reported in the literature that ionic interactions between chitosan and GA as well as the hydrogen bond between the carboxylic group of GA and amino group of chitosan are possible [27]. There is paucity of data with respect to the crosslinking reaction of GLY with polymers such as chitosan. Only the interpretation from swelling behavior and release studies have been used to demonstrate its efficacy as a crosslinking agent [28,29]. In this case, no significant information can be obtained by comparing the IR spectra (Fig. 5).

3.2.5. Swelling properties

LVX-loaded MS crosslinked with GL presented the lowest swelling value, which was constant over time (Table 4). MS crosslinked with the other crosslinkers swelled to a larger extent. With GLY the swelling value was close to 500%. With GNP or GA, swelling values were the highest (around 1000%) and a dark blue solid-like gel and a slight yellow weak gel were observed, respectively. The higher swelling of GNP- or GA-crosslinked MS compared to GL-crosslinked MS was attributed to lower degrees of crosslinking [55]. El Sherbiny et al. studied the relationship between the swelling properties of MS and their phagocytosis by macrophages.

![Image of XRD patterns](image1)

Fig. 3. XRD patterns of raw materials (LVX, GLY, GNP, GA), of unloaded uncrosslinked MS (MS_uncross), of unloaded MS crosslinked with GL (MS_GL = F5), and of LVX-loaded MS crosslinked with GL (MS_LVX_GL = F13), GNP (MS_LVX_GNP), GA (MS_LVX_GA) or GLY (MS_LVX_GLY).

![Image of DTA and TGA thermograms](image2)

Fig. 4. DTA (A) and TGA (B) thermograms of raw materials (LVX, GLY, GNP, GA), of unloaded uncrosslinked MS (MS_uncross), of unloaded MS crosslinked with GL (MS_GL = F5), and of LVX-loaded MS crosslinked with GL (MS_LVX_GL = F13), GNP (MS_LVX_GNP), GA (MS_LVX_GA) or GLY (MS_LVX_GLY). Total weight loss (%) is indicated on TGA curves.
and showed that MS of swelling values \(\geq 1000\% \) were dramatically less phagocytosed than nonswellable particles [13]. Therefore, the GNP- and GA-crosslinked MS have a great potential to escape from macrophages once deposited in the lungs.

3.2.6. DL (%) and EE (%)

EE values were around 110% and 120%, respectively for MS crosslinked with 5 mmol or 10 mmol GL per g of chitosan (Table 3). Taking into account that the GL boiling point is 101 °C in aqueous solution [56], we hypothesized that a fraction of GL did not react and evaporated during the spray-drying process, which can explain the high values of the EE (%). Using GNP, GA and GLY as crosslinkers, the EE were around 100% (Table 5). Such high EE values allow also concluding that LVX did not appreciably react with the crosslinkers in the preparation process. In what pertains to the DL (%), the aim was to maximize the content of LVX in order to minimize the amount of powder material to be administered into the lungs. DL ranged from 40.7 to 55.8% (w/w) (Tables 4 and 6). An efficient dose with inhaled LVX solution, MP-376, (Aeroquin™) was shown to range from 120 to 240 mg (once or twice a day) [57, 7]. With the present MS, the amount of material to administer such a dose would range from 250 to 500 mg a day, considering a therapeutic efficiency equivalent to the aerosolized LVX solution. This deserves to be evaluated in terms of safety. Alternatively, the present LVX-loaded MS may be used as a short-term therapeutic option for out-of-home patients, as an alternative to fastidious and demanding aerosol therapy with liquid formulations [58].

3.3. In vitro studies

3.3.1. In vitro deposition studies using NGI

The experimental conditions for aerodynamic determinations were selected to ensure high aerosol performance. The 60 L/min flow rate was higher than that considered to be attainable by patients using a Handihaler® device, but it provided a high pressure drop through the inhaler (around 8 kPa) [59], thus a high energy input to disperse efficiently the microsphere powder [60]. In addition, the pump was turned on twice to ensure complete emptying of the capsules. Results of the selected formulations are presented in Table 6. All the formulations showed a high dispersibility with ED values around 90%, indicating that the microsphere powder was efficiently emitted from the DPI. MMAD values were dependent on the crosslinker used. For MS crosslinked with GNP and GA, MMAD

![ATR-FTIR spectra](image)

Fig. 5. ATR-FTIR spectra of raw materials (LVX, GLY, GNP, GA, GL), of unloaded uncrosslinked MS (MS_uncross), of unloaded MS crosslinked with GL (MS_GL = F5), GNP (MS_GNP), GA (MS_GA) or GLY (MS/GLY), and of LVX-loaded MS crosslinked with GL (MS_LVX_GL = F13), GNP (MS_LVX_GNP), GA (MS_LVX_GA) or GLY (MS_LVX_GLY).

Table 4

Formulations	Crosslinkers and concentrations (mmol/g chitosan)	Swelling (%)		
		30 min	16 h	
MS_LVX_GL (=F13)	Glutaraldehyde	5	243 ± 23	247 ± 51
MS_LVX_GNP	Genipin	0.2	935 ± 14	1154 ± 47
MS_LVX_GA	Glutaric acid	1	991 ± 67	1097 ± 113
MS_LVX_GLY	α-Glyceraldehyde	1	458 ± 24	535 ± 9

Table 5

Formulations	Yield (%)	DL (%)	EE (%)
MS_LVX_GL	89	48.4 ± 5.8	99 ± 12
MS_LVX_GNP	91	50.5 ± 0.3	107 ± 1
MS_LVX_GA	88	50.8 ± 0.9	106 ± 2

Table 6

Formulations	ED (%)	FPF (%)	FPD (mg)	MMAD (µm)
MS_LVX_GL (=F13)	89.8 ± 1.1	23.7 ± 5.3	1.2 ± 0.2	8.4 ± 2.3
MS_LVX_GNP	89.5 ± 0.7	31.8 ± 1.2	2.2 ± 0.5	5.4 ± 0.2
MS_LVX_GA	91.9 ± 1.9	32.3 ± 4.0	2.3 ± 0.3	5.9 ± 1.2
MS_LVX_GLY	88.0 ± 3.2	27.3 ± 1.1	1.6 ± 0.1	7.4 ± 1.1

![In vitro release profiles](image)

Fig. 6. In vitro release profiles of LVX-loaded MS. MS_LVX_GL corresponds to F13.
values were found around 5 μm, a value satisfactory for delivery to the conductive zone of the lungs (trachea, bronchi and terminal bronchioles) where the \textit{P. aeruginosa} infection is mainly present [2]. These results were consistent with SEM analyses (Fig. 2). However, for MS crosslinked with GL and GLY, MMAD values were close to 8 μm. For MS prepared with GL, MMAD mean values exceeding the range of the higher aerodynamic cutoff plate consist of extrapolated values established from the cumulated mass percentage distribution. Since SEM images revealed an MS diameter close to 5 μm (Fig. 2C and D, and E and F respectively), the MS may not fully de-aggregate in the inhaler despite the high pressure drop applied [61]. For MS crosslinked with GNP, GA and GLY, FPF was high (around 30%), i.e. in the upper values reported for marketed powder formulations for inhalation [62]. For MS crosslinked with GL, FPF was slightly lower. Thus, in general, the MS obtained in the present work should be efficient to deliver LVX into the lungs.

3.3.2. LVX release from MS

All the formulations resulted in an almost immediate release of LVX (Fig. 6). This allows concluding that chitosan crosslinking has no impact upon LVX release. This was attributed to the high solubility in water of LVX associated with the high drug loading and with the large surface area developed by the micrometric-sized particles, which allowed the rapid diffusion of the drug from the MS matrix. In addition, the amorphous state of LVX, evidenced by XRD and DTA analyses, is usually associated with higher dissolution rate compared to crystalline state [38]. Similar results were obtained by Corrigan et al. by the preparation of salbutamol sulfate loaded in formaldehyde-crosslinked chitosan MS [63] with no difference between crosslinked and non-crosslinked systems. Despite some authors having reported drug controlled release with crosslinked chitosan matrices, it is usually observed for drugs with low hydropilicity and/or at low drug content values [16,22]. In this work, we found that with a hydrophilic high soluble drug as LVX, and with high values of drug content it is not possible to obtain a controlled release profile using a crosslinked chitosan.

3.3.3. Antibacterial activity of MS

Antibacterial activity of free LVX, chitosan and selected LVX-loaded MS was evaluated for two bacterial isolates of \textit{P. aeruginosa} (CF2_2004 and CF7_2005) by the broth microdilution method. The aim was to investigate whether the LVX activity is altered by encapsulation in MS, and to understand whether there is some antibacterial synergistic effect due to chitosan and LVX in loaded MS. The MIC value for LVX was 0.625 mg/L for both bacterial isolates. Regarding the MS, the MIC value of 0.625 mg/L was observed for CF2_2004, regardless of the crosslinking agent that was used. Very similar results were obtained from CF7_2005, but MS crosslinked with GNP demonstrated a lower MIC value (0.312 mg/L), see Table 7. This effect may be due to the presence of some uncrosslinked GNP, taking into consideration that this crosslinker has already been reported as an antimicrobial and anti-inflammatory agent [50,64]. Chitosan alone did not exhibit any antibacterial activity against the two isolates that were used (bacterial growth was observed for all the concentrations in the range 0.078–5 mg/L). Actually, some antibacterial activity has been recently reported for chitosan, but it was observed only at higher concentrations such as 0.0125% (w/v) [65] and 0.05% (w/v) [14] for \textit{P. aeruginosa}. The similarity between the results from LVX and loaded MS is in accordance with the fast drug release that was already explored and it is apparent that LVX can be safely encapsulated in MS without losing its antibacterial activity. Concerning the results from the disk diffusion test, which was used to evaluate bacterial susceptibility, very similar diameters of the inhibition zone were obtained for free LVX and all the MS. In fact, all the values were in excess of 17 mm (Table 7), meaning that the bacterial isolates CF2_2004 and CF7_2005 may be classified as “sensitive” to LVX [41]. No inhibition zone was observed for chitosan.

4. Conclusions

MS crosslinked with GL were prepared by spray drying and according to a factorial design for the size optimization. After this step, MS with high LVX loading and using less toxic crosslinking agents (GNP, GA and GLY) were successfully prepared to control swelling properties. Entrapped LVX was shown to be in an amorphous or well dispersed state within the polymeric matrix. All the MS formulations gave similar immediate release profiles \textit{in vitro}. Their antibacterial activities against bacterial isolates of \textit{P. aeruginosa} were equivalent to free LVX. The highest degree of swelling was obtained with MS crosslinked with GNP and GA, which make these MS the best candidates to escape from phagocytosis. In addition, these MS possess satisfactory aerodynamic properties for lung delivery as dry powder. They therefore may offer an easy-to-use alternative to LVX solution for inhalation.

Conflict of interest

The authors report no conflict of interests.

Acknowledgments

The authors thank FCT (Fundação para a Ciência e a Tecnologia, Portugal) for the financial support through the grant SFRH/BD/80307/2011. DTA/TGA, XR and ATR-FITR analyses were performed at the University of Poitiers, Pôle Commun de Mesures Physico-chimiques platform. Spray-drying experiments were carried out in Biocydex, Poitiers. The authors thank Patrice Gobin and Christophe Adier for their technical assistance in HPLC measurements.

References

[1] M.Y. Ng, W. Flight, E. Smith, Pulmonary complications of cystic fibrosis, Clin. Radiol. 69 (3) (2014) e153–e162, http://dx.doi.org/10.1111/j.1365-2281.2013.10023.

[2] N. Høiby, Recent advances in the treatment of \textit{Pseudomonas aeruginosa} infections in cystic fibrosis, BMC Med. 9 (1) (2011) 32–38, http://dx.doi.org/10.1186/1741-7015-9-32.

[3] C. Stockmann, C.M.T. Sherwin, K. Amfofo, M.G. Spigarelli, Development of levofloxacin inhalation solution to treat \textit{Pseudomonas aeruginosa} infections in patients with cystic fibrosis, Ther. Adv. Respir. Dis. 8 (1) (2014) 32–38, http://dx.doi.org/10.1177/1753468113508445.

[4] D.E. Geller, Aerosol antibiotics in cystic fibrosis, Respir. Care 54 (5) (2009) 658–670.

[5] S. Kirkby, K. Nowak, K. McCoy, Aztreonam (for inhalation solution) for the treatment of chronic lung infections in patients with cystic fibrosis: an evidence-based review, Core Evidence 6 (2011) 59–66.

[6] G.S. Sawicki, J.E. Signorovitch, J. Zhang, D. Latemouille-Viau, M. von Wartburg, E.Q. Wu, L. Shi, Reduced mortality in cystic fibrosis patients treated with...
M.C. Gaspar et al. / European Journal of Pharmaceutics and Biopharmaceutics 96 (2015) 65–75

[7] Foundation CF, Drug Development Pipeline, 2012. <http://www.cff.org/
ResearchDrugDevelopmentPipeline> [accessed 07.01.15].

[8] X.M. Zeng, G.P. Martin, C. Marriott, The controlled delivery of drugs to the lung, Int. J. Pharm. 124 (2) (1995) 149–164, http://dx.doi.org/10.1016/S0378-
5173(95)00100-4.

[9] A. Siagil, W.K. Ng, R.B.H. Tan, S.Y. Chan, Development of controlled release inhalable polymeric microspheres for treatment of pulmonary hypertension, Int. J. Pharm. 450 (1–2) (2013) 114–122, http://dx.doi.org/10.1016/j.
ijpharm.2013.06.040.

[10] M.C. Gaspar, W. Couet, J.C. Olivier, A.A.C.C. Pais, J.S.S. Sousa, Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review, Eur. J. Clin. Microbiol. Infect. Dis. 32 (10) (2013) 1231–1239, http://dx.doi.org/10.1007/s10096-013-1915-z.

[11] C. Loia-Pastoriza, J. Todoroff, R. Vanbever, Delivery strategies for sustained drug release in the lungs, Adv. Drug Deliv. Rev. 75 (2014) 81–91, http://dx.doi.org/10.1016/j.addr.2014.05.017.

[12] J. Du, L. El-Sherbiny, H. Smyth, Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery, AAPS PharmSciTech 15 (6) (2014) 1535–1544, http://dx.doi.org/10.1208/s12249-014-0176-x.

[13] I.M. El-Sherbiny, S. McGill, H.D. Smyth, Swellable microcarriers as carriers for sustained pulmonary drug delivery, J. Pharm. Sci. 99 (5) (2010) 2343–2356.

[14] M.S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M.F.A. Goosen, N. Mameri, I.M. El-Sherbiny, S. McGill, H.D. Smyth, Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery, AAPS PharmSciTech 15 (6) (2014) 1535–1544, http://dx.doi.org/10.1208/s12249-014-0176-x.

[15] J. Du, L. El-Sherbiny, H. Smyth, Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery, AAPS PharmSciTech 15 (6) (2014) 1535–1544, http://dx.doi.org/10.1208/s12249-014-0176-x.

[16] D. Raafat, K. von Bargen, A. Haas, H.-G. Sahl, Insights into the mode of action of glutaraldehyde, a naturally occurring cross-linking reagent for biological tissue fixation, J. Biomed. Mater. Res. 53 (10) (2000) 938–946, http://dx.doi.org/10.1002/1097-0134(200010)53:10<938::AID-(9037)3.0.CO;2-D.

[17] J. Du, L. El-Sherbiny, H. Smyth, Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery, AAPS PharmSciTech 15 (6) (2014) 1535–1544, http://dx.doi.org/10.1208/s12249-014-0176-x.

[18] D. Raafat, K. von Bargen, A. Haas, H.-G. Sahl, Insights into the mode of action of glutaraldehyde, a naturally occurring cross-linking reagent for biological tissue fixation, J. Biomed. Mater. Res. 53 (10) (2000) 938–946, http://dx.doi.org/10.1002/1097-0134(200010)53:10<938::AID-(9037)3.0.CO;2-D.

[19] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, N. Roveri, Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde cross-linkin, Biomaterials 22 (8) (2001) 763–768, http://dx.doi.org/10.1016/S0142-9612(00)00236-2.

[20] A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, N. Roveri, Preparation and characterization of different crosslinked gelatin films for controlled release systems, Braz. J. Chem. Eng. 22 (2005) 353–360.

[21] C. Fransson, J. Fager, K. Söderberg, J. Strömblad, S. Ehn, Biodegradable microparticles for controlled release of siRNA, Pharm. Res. 26 (12) (2009) 2992–2999, http://dx.doi.org/10.1007/s11095-009-9523-6.

[22] D. Raafat, K. von Bargen, A. Haas, H.-G. Sahl, Insights into the mode of action of glutaraldehyde, a naturally occurring cross-linking reagent for biological tissue fixation, J. Biomed. Mater. Res. 53 (10) (2000) 938–946, http://dx.doi.org/10.1002/1097-0134(200010)53:10<938::AID-(9037)3.0.CO;2-D.

[23] J. Du, L. El-Sherbiny, H. Smyth, Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery, AAPS PharmSciTech 15 (6) (2014) 1535–1544, http://dx.doi.org/10.1208/s12249-014-0176-x.

[24] J. Du, L. El-Sherbiny, H. Smyth, Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery, AAPS PharmSciTech 15 (6) (2014) 1535–1544, http://dx.doi.org/10.1208/s12249-014-0176-x.
