DED or alive: assembly and regulation of the death effector domain complexes.

Riley, JS., Malik, A., Holohan, C., & Longley, DB. (2015). DED or alive: assembly and regulation of the death effector domain complexes. Cell, Death & Disease, 6(e1866), [e1866]. https://doi.org/10.1038/cddis.2015.213

Published in:
Cell, Death & Disease

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal
Review

DED or alive: assembly and regulation of the death effector domain complexes

JS Riley¹, A Malik¹, C Holohan¹ and DB Longley*¹

Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.

Cell Death and Disease (2015) 6, e1866; doi:10.1038/cddis.2015.213; published online 27 August 2015

Facts

- FADD, FLIP, procaspase-8 and procaspase-10 all contain death effector domains (DEDs).
- The DED is a conserved protein sub-domain that mediates important protein–protein interactions.
- DED-containing proteins form a variety of complexes that regulate key cellular processes, most notably apoptosis, necroptosis and autophagy.
- Recent reports also highlight the critical role of DED proteins in other key processes linked to development and inflammation.

Open Questions

- Does caspase-10 (absent in mice) have overlapping functions with caspase-8, or is it functionally distinct?
- Under what physiologically relevant conditions does necroptosis occur rather than apoptosis?
- In which cellular contexts are FADD, FLIP, (pro)caspase-8 and (pro)caspase-10 critical for regulating autophagy?
- What are the best ways of targeting DED-containing proteins to therapeutically activate cell death (e.g., in cancers) or prevent cell death (e.g., in neurodegenerative diseases)?

- Are DED-containing proteins potential therapeutic targets for inflammatory diseases?

Cell death is critical for maintaining homeostasis in multicellular organisms; too much can result in pathologies such as neurodegeneration, whereas too little can lead to the accumulation of malignant cancerous cells. Cell death can be either active, where the cell participates in its own destruction or passive, for example, when a cell undergoes irreparable physical damage. The most biochemically well-characterised form of cell death is apoptosis, an active process in which cysteine-dependent aspartate-directed proteases (caspases) are activated in response to extracellular stimuli or internal damage culminating in a form of cell death defined by distinct molecular events and characteristic changes in the morphology of the dying cell. Recently, a number of actively regulated non-apoptotic mechanisms of cell death have emerged, including necroptosis, pyroptosis and ferroptosis, which have been comprehensively reviewed elsewhere. Here, we focus on those mechanisms of cell death arising following stimulation of death receptors, broadly termed the ‘extrinsic pathway’. For authoritative reviews on mitochondrial-mediated ‘intrinsic’ cell death, we direct the Reader elsewhere.

Central to receptor-mediated cell death...
pathways are proteins containing ‘death-fold superfamily’ interaction motifs such as the death domain (DD), caspase activation and recruitment domain (CARD), pyrin domain and the death effector domain (DED).

The DED-containing proteins, which are key decision makers in determining the life and death of cells, are the primary focus of this review. We will first introduce the main members of the DED protein family and discuss advances in the understanding of the assembly and stoichiometry of death receptor complexes. We will then summarise the recent literature surrounding the regulation of these complexes and consider the role of these proteins in disease.

The DED Proteins

The death-fold motif is characterised by its globular structure containing six amphipathic α-helices that run anti-parallel in α-helical bundles. When folded, a conserved hydrophobic core forms, although differences in helical length and residue distribution give rise to significant variations between the different sub-families. The DED death-fold sub-family consists of procaspases-8 and -10, FLIP, FADD, DEDD, DEDD2, and PEA-15 (Figure 1). FADD, DEDD, DEDD2 and PEA-15 contain a single DED, whereas FLIP, procaspase-8 and procaspase-10 each have tandem DEDs. Procaspases-8 and -10 have catalytically active domains in the regions C-terminal to their tandem DEDs; whereas the long splice form of FLIP, FLIPL, has a pseudo-caspase domain C-terminal to its tandem DEDs, in which the cysteine residue critical for enzymatic activity is absent. Shorter splice forms of FLIP (FLIP short, FLIPS, and FLIP Raji, FLIPR) arising through alternative mRNA splicing lack the pseudo-caspase domain, but contain the tandem DEDs.

Procaspase-8 is a highly conserved protease, displaying ~20% sequence similarity to its Caenorhabditis elegans homolog CED-3. Eight splice forms of procaspase-8 have been identified at the mRNA level, although only two of these, procaspases-8A and 8B are expressed as functional proteases. Additionally, a long splice form (procaspase-8L), which contains a 136-bp insert between exons 8 and 9 encoding an early stop codon, contains both DEDs but lacks a functional catalytic domain; it is found in undifferentiated cells and neoplasms and has been reported to act in a dominant negative manner to inhibit apoptosis.

Procaspase-10 is also expressed as multiple splice forms: procaspases-10A, B, D and G. All contain tandem DEDs and proteolytic domains except G, which is truncated and only consists of the DEDs. In vitro studies have shown that procaspase-10 is activated by induced proximity in a manner similar to procaspase-8. Despite the similarity between procaspase-10 and procaspase-8, whether procaspase-10 can initiate death receptor-mediated apoptosis in the absence of procaspase-8 remains controversial, although they share common substrates, notably BID and RIPK1. However, no ortholog of the gene encoding procaspase-10 (Casp10) is present in the mouse genome, suggesting that procaspase-10 is not required for activation of the extrinsic apoptotic pathway. Despite this, expression of both

Figure 1 Schematic representations of the structures of DED proteins (ribbon format with transparent solvent-accessible surface area) along with their complete linear domain organisation. Protein structures: (a) Homology model of human FLIP DEDs (b) NMR solution structure of FADD DED (PDB ID: 2GF5) (c) NMR solution structure of PEA-15 DED (PDB ID: 2LS7) (d) Homology model of procaspase-8 DEDs (e) Homology model of procaspase-10 DEDs generated using the i-TASSER web server.
procasapase-8 and procasapase-10 is frequently downregulated in cancer.26–28 Interestingly, the genes encoding procasapase-8 (Casp8), procasapase-10 and FLIP (CFLAR) are present at the same loci (2q33-q34) and clearly evolved via gene duplication events. Evolutionary studies have identified the predecessors of Casp8, Casp10 and CFLAR in fish.29

FADD is an adaptor protein containing a DD which it associates with the DDs of TRAIL-R1, TRAIL-R2, CD95 and TRADD, and a DED, which enables it to recruit other DED-containing proteins, namely procasapase-8, procasapase-10 or FLIP. As with most other components of the extracellular apoptosis signalling pathways, FADD is highly evolutionarily conserved.30 As a protein linking death receptors to death initiators, it is not only a key player in cell death, but also has reported roles in non-apoptotic processes. For example, FADD has been identified in the nucleus and has been postulated to have functions in regulating cell cycle progression,31,32 NF-κB activity,33 autophagy,34 cytokine signalling35,36 and T-cell activation.37 Indeed, roles beyond core apoptosis signalling have also been identified for FLIP, procasapase-8 and procasapase-10, and frequently these roles involve complex interactions between these proteins and FADD.

Assembly of the Death-inducing Signalling Complex (DISC)

The death receptors TRAIL-R1 (DR4), TRAIL-R2 (DR5) and CD95 (Fas) are specialised members of the TNF receptor superfamily and are key mediators of apoptosis triggered by ligands expressed by cells of the immune system, namely TRAIL (TNF-related apoptosis-inducing ligand), which activates TRAIL-R1 and TRAIL-R2, and CD95L (FasL), which activates CD95. Following extracellular ligand binding, pre-associated TRAIL-R1, TRAIL-R2 and CD95 trimeric clusters through interactions between their intracellular DDs.38,39 The DD of FADD can then interact with the cytoplasmic DDs of the death receptors, after which its DED becomes available for protein–protein interactions with other DED proteins, thereby creating a platform for assembly of the DISC.

Death domain interactions. The interactions between the CD95 and FADD DDs have been described (Figure 2). Scott et al.40 reported a 2.7 Å resolution co-crystal structure, which suggests that CD95 and FADD bind in dimeric units, that is 2 × FADD-DD interacting with 2 × CD95-DD. These units are then proposed to further associate into tetrameric structures (4 × FADD-DD to 4 × CD95-DD), although in vivo, the dimeric form is favoured. They report that, following CD95 receptor activation, CD95 undergoes a conformational change, exposing its hydrophobic core and revealing a multitude of interaction surfaces capable of binding the DD of FADD. This represents a possible safety mechanism whereby the apoptotic cascade only proceeds when sufficient CD95 DDs cluster. However, the FADD interaction sites in the CD95 DD predicted by this model do not correlate with mutations observed in patients with autoimmune lymphoproliferative syndrome, a disease defined by mutations in CD95 which prevent DISC formation.41 In a different study, Wang et al.42 used electron microscopy to visualise CD95–FADD DD interactions and observed that they bore a striking resemblance to the PIDD–RAIDD DD complex, being principally composed of 5 × CD95 DDs and 5 × FADD DDs layered together. This stoichiometry is in agreement with data by Esposito et al.,43 who also reported a ratio of 5 × CD95:5 × FADD together with some 6 × CD95:5 × FADD and 7 × CD95:5:5 × FADD ratios, but not the 4 × CD95:5 × FADD suggested by Scott et al. Disparities between these models could be explained by the different conditions used for protein crystallisation; however, the models proposed by Wang et al. and Esposito et al. are supported by the fact that they account for mutations frequently seen in autoimmune lymphoproliferative syndrome. Most disease-causing mutations present in autoimmune lymphoproliferative syndrome patients reside in the DD of CD95,43 resulting in an inability to bind FADD and form a DISC. Mapping these mutated residues onto the structure proposed by Wang et al. reveals that they reside on the exposed surface of the DD and would be likely to prevent the binding of FADD.42

DED interactions. In addition to death receptor:FADD DD interactions, FADD has been reported to self-associate through its DED, which stabilises its association with the death receptor. Sandu et al.44 identified a ‘hydrophobic patch’ (F25, L28 and K33) as the critical surface for FADD-FADD interactions and not an RxDL motif as had previously been reported. Such interactions between FADD molecules generate higher order complexes of FADD and death receptors that may be the basis of the SPOTS (signalling protein oligomerisation transduction structures), which have been reported to form soon after CD95 receptor activation.45 The RxDL motif is found in both DEDs of viral FLIP MC159 and is critical for its ability to be recruited to the DISC and inhibit apoptosis.9,46,47 However, this appears not to be the case for murine FLIP, for which the hydrophobic patch was instead found to be dispensable for DISC recruitment and apoptosis inhibition.47 MC159 was also reported to interact with the
RxDL motif of FADD, blocking FADD self-association and preventing the formation of a competent caspase-recruiting platform. The role of the RxDL motif may differ for cellular and viral forms of FLIP. Our recent data suggest that this motif is important for human FLIP’s anti-apoptotic function; however, not because of its direct involvement in mediating inter- and intra-molecular interactions, but rather because it controls the spatial orientation of the hydrophobic patch defined by the α2 and α5 helices of FLIP’s DEDs (Figure 3); our data and those of others indicate that it is this hydrophobic patch that mediates intra-molecular interactions between FLIP’s tandem DEDs and inter-molecular interactions between FLIP and FADD and procaspase-8 (Figure 4).4,58

Emerging models of DISC assembly at the level of DED interactions. Two independent studies proposed a novel model of DISC assembly after finding that FADD is sub-stoichiometric at the DISC compared with death receptors and caspase-8, with three to five receptors and as many as nine caspase-8 molecules for every FADD molecule recruited to the complex.49,50 DED-containing proteins interact with themselves and one another in a homotypic manner through their DEDs, so both groups proposed that one FADD molecule could recruit multiple DED-only proteins (procaspase-8, procaspase-10 or FLIP) as ‘chains’. In support of this model, formation of caspase-8 chains was observed in single cell studies using fluorescently tagged caspase-8. Such DED ‘filaments’ have been described before for caspase-8 and FADD, however, their physiological relevance is questionable as they are generated in cells expressing supra-physiological levels of each DED protein.

By creating models of FLIP and procaspase-8 DEDs based on the published structure of vFLIP MC159, we used the NMR structure of FADD to perform docking experiments between the DEDs of the three proteins. These modelling experiments suggested that each protein pair could potentially interact in two distinct orientations, which involved mainly hydrophobic interactions between the α2/α5 surface (the aforementioned hydrophobic patch) in one DED and α1/α4 surface of the adjacent DED.4,58 Subsequent mutagenesis studies revealed that FLIP and procaspase-8 have differential affinities for the two available interaction surfaces of the FADD DED. FLIP preferentially binds to the α1/α4 surface of FADD’s DED, whereas procaspase-8 binds to FADD’s α2/α5 surface (Figure 4). Our analysis of the stoichiometry of the TRAIL-R2 DISC was not in agreement with the caspase chain models...
described above: in our study, sub-apoptotic DISC stimulation resulted in an approximate 1:1:1 ratio of FADD:procaspase-8:FLIP; while at higher levels of DISC stimulation, there was more procaspase-8 than FADD or FLIP, although there remained approximately one FADD molecule for every two molecules of FLIP/procaspase-8.

Activation of caspase-8. The current model of procaspase-8 activation is that 53/55 kDa procaspase-8 zymogens are recruited to FADD as monomers via their DEDs leading to dimerisation of the procaspases, initially via their DEDs (Figure 5). Dimerisation of the caspase domains then occurs and results in conformational changes that reveal the enzymatic activity necessary for intra-molecular cleavage of the C-terminal portion of the caspase, liberating a p12 subunit (subsequently processed to the small p10 catalytic subunit) and simultaneously stabilising the dimer. Next, the 41/43 kDa caspase-8 intermediates in the dimer cleave one another in a trans-catalytic manner in the region between their DEDs and the large p18 catalytic subunit. The two molecules of p18-procaspase-8 that are subsequently released associate with the two p10 subunits to form the active protease. These two caspase-8 intermediates in the dimer cleave one another in a trans-catalytic manner, while procaspase-8 can be cleaved in an inter-dimeric manner (i.e., dimers acting in a trans manner). To define the relative contributions of each of these modes of caspase-8 activation, Kallenberger et al. used single cell analysis and mathematical modelling. They suggest a model in which the cleavage of procaspase-8 between the enzymatic p18 and p10 domains occurs in an inter-dimeric manner, while cleavage between the pro-domain and p18 domains occurs in an intra-dimeric manner. This model implies that only formation of adjacent procaspase-8 dimers will result in full procaspase-8 processing in each dimer; thus, a FLIP: caspase-8 heterodimer may also inhibit full activation of an adjacent caspase-8:caspase-8 homodimer.

TNFR1 complexes I and II. Seminal work by Micheau and Tschopp showed that following TNFα engagement, TNF receptor 1 (TNFR1) trimerises and recruits the adaptor protein TRADD in a DD-dependent manner. TRAF2, a RING domain-containing E3 ligase, is recruited to TRADD and forms a platform for the recruitment of cIAP1 and cIAP2. The cIAP proteins then conjugate K11- and K63-linked polyubiquitin chains to RIPK1 enabling its interaction with the IKK complex and activation of the NFκB signalling pathway; this in turn results in transcription of genes, which predominantly encode pro-survival (including FLIP and cIAP) and pro-inflammatory proteins (Figure 6). In 2009, Tokunaga et al. found that mice deficient in components of the linear ubiquitin chain assembly complex (LUBAC), specifically HOIL-1, are defective in TNFα-induced NFκB activation. Utilising a modified tandem affinity purification technique, Haas et al. showed that the LUBAC is recruited to the TNFR1 signalling complex through cIAP-generated ubiquitin chains. Subsequent studies identified NEMO and RIPK1 as substrates of linear ubiquitination by LUBAC. The LUBAC appears to stabilise the TNFR1 signalling complex, prolonging recruitment and retention of cIAP1, cIAP2, TRAF2, RIPK1 and TAK1. The central importance of cIAP1/2 in preventing
TNFα-induced NF-κB activation is supported by evidence from cIAP1/2-null genetic models which die following exposure to TNFα to a much greater extent than loss of RIPK1 or LUBAC alone. Deubiquitination of RIPK1 by CYLD stimulates the dissociation of Complex I into a secondary cytoplasmic Complex IIa where RIPK1 and/or TRADD recruit FADD via their DDs. FADD in turn recruits procaspase-8 and FLIP into this complex in a manner analogous to that described above for the DISC. As FLIP is an NF-κB target gene, prior activation of Complex I upregulates its expression, resulting in its recruitment to Complex II and regulation of procaspase-8 processing in the manner described above. Importantly, the formation of a caspase-8/FLIPp55 heterodimeric enzyme at Complex IIa cleaves RIPK1, which otherwise auto-phosphorylates and interacts with RIPK3 to form the necrosome. The necrosome in turn initiates programmed necrosis (termed necroptosis) by triggering oligomerisation of MLKL (mixed lineage kinase domain-like), which then localises to the plasma membrane and disrupts its integrity. Thus, formation of the caspase-8/FLIPp55 heterodimer in Complex IIa blocks both apoptosis by preventing procaspase-8 homodimerisation and necroptosis by blocking RIPK1/RIPK3-mediated necroptosis. As is the case for other DED protein-containing complexes, caspase-8/FLIPp55 heterodimers in Complex IIa lack catalytic activity, and although their formation inhibits caspase-8-mediated apoptosis, they have been reported to actually promote RIPK-mediated necroptosis by inhibiting caspase-8-mediated cleavage of RIPK1. A general view is that compared with apoptosis, necroptosis is highly pro-inflammatory owing to the release of pro-inflammatory cytokines and damage-associated molecular patterns. However, recent findings show that necroptosis can actually reduce certain pro-inflammatory responses, while CD95-mediated apoptosis has been shown to stimulate release of immuno-stimulatory cytokines.

Figure 5 Processing of procaspase-8. When two procaspase-8 molecules are co-recruited to the DISC via their DEDs, their caspase domains undergo conformational changes that exposes the enzymatic activity necessary for cleavage of the C-terminal portion of the caspase, liberating a p12 subunit, which is subsequently processed to the small p10 catalytic subunit. This initial processing step may occur in an inter-dimer manner between adjacent procaspase-8 dimers rather than the intra-dimer manner depicted. The 41/43 kDa caspase-8 intermediates cleave one another in a trans-catalytic manner in the region between their DEDs and the large p18 catalytic subunit. The two molecules of pro-caspase-8 that are subsequently released associate with the two p10 subunits to form the active protease.63 At lower levels of DISC stimulation or when FLIP is highly expressed, FLIP/caspase-8 heterodimers assemble at the DISC via interactions between their DEDs and those of FADD. The pseudo-caspase domain of FLIPp55 is able to induce the conformational change in procaspase-8's caspase domain that is necessary to create its active site. The FLIPp55/caspase-8 heterodimer is processed between the p18 and p12 subunits of both proteins, but is unable to be further processed owing to FLIPp55's lack of enzymatic activity, and this heterodimer is unable to activate apoptosis. In the case of FLIPp55 heterodimerisation fails to activate procaspase-8 as the initial conformational change cannot take place in procaspase-8's caspase domain.
The Ripoptosome. In the last few years, a new cytosolic DED-containing complex has been described, termed the ‘Ripoptosome’ (Figure 6). During normal cellular homeostasis, RIPK1 exists in a closed configuration and cannot bind FADD via its DDs.86,92 In its open configuration, RIPK1 is usually ubiquitinated by cIAP1/2 and degraded in a proteasome-dependent manner. However, cIAPs can themselves be degraded in response to genotoxic stress (e.g., in response to DNA-damaging chemotherapeutics) or more specifically in response to IAP antagonists (also known as SMAC mimetics as they mimic the activity of the endogenous IAP inhibitor, SMAC). In the absence of cIAPs, RIPK1 is phosphorylated and transitions into an open configuration, allowing it to more readily bind FADD, procaspase-8, FLIP and potentially RIPK3.93 This complex has been termed the Ripoptosome, and it can initiate apoptosis or necroptosis in a manner similar to that described above for TNFR1 Complex IIa depending on its composition.86,92

DED proteins in embryonic development. This pro-survival role of caspase-8 in suppressing necroptosis explains the results of several genetic experiments that stemmed from older observations that caspase-8-null, FADD-null and FLIP-null mice die at E10.5 with similar phenotypes.94–96 This has now been attributed to the loss of FADD or caspase-8 leading to unrestrained RIPK1/3-mediated necroptosis during mid-gestation, whereas loss of FLIP results in unrestrained caspase-8-mediated apoptosis at this time. Thus, combined deletion of FADD or caspase-8 with RIPK3 can prevent necroptosis and rescue the embryonic lethal phenotype of the FADD-null and caspase-8-null genotypes.85,97 However, to rescue the embryonic...
lethality of FLIP-null animals, loss of FADD and RIPK1 or RIPK3 is required, as in this case, both FADD-mediated apoptosis and RIPK3-mediated necroptosis must be blocked. In related observations, tissue-specific deletion of caspase-8 in skin\(^98\) or the gut\(^99,100\) (but not in liver,\(^101\) myeloid cells\(^101\) or the heart\(^105\)) resulted in severe inflammation owing to unrestrained inflammatory signalling. RIPK3 ablation in Casp8\(^{-/-}\) gut safeguards these tissues from the inflammation observed with Casp8\(^{-/-}\) deletion alone, but FLIP deletion cannot be rescued by simultaneous RIPK3 deletion, implying that the cell death in FLIP\(^{-/-}\) gut is most likely apoptotic, not necroptotic.\(^100\) Interestingly, in both Casp8-deleted and FLIP-deleted skin, elevated levels of TNF\(\alpha\) were produced, and co-administration of a TNF\(\alpha\)-neutralising antibody prevented inflammation and death, implying that this phenotype is TNF\(\alpha\)-driven.\(^100\)

Role for DED protein complexes in autophagy. Evidence is now emerging that DED proteins can also regulate autophagy. Young and colleagues\(^103\) provide compelling evidence that FADD co-localises with LC3-positive autophagosomes capable of recruiting procaspase-8 and forming an intracellular DISC.\(^104\) Depending on the cellular context, autophagy can promote survival or death (reviewed by White\(^105\)). There is strong evidence that autophagy can promote caspase-dependent and -independent cell death;\(^106\) the intracellular DISC provides one potential complex through which this can occur. Proteasome inhibition has been shown to activate caspase-8 in a manner that requires the induction of autophagy and the presence of Atg5 and FADD.\(^107\) Another study reported that a FADD/caspase-8/Atg5:12/RIPK1 complex forms on autophagosomal membranes in T cells and cleaves RIPK1, limiting autophagy and necroptosis and ultimately initiating apoptosis.\(^108–110\)

Cellular and viral forms of FLIP can also attenuate autophagy through inhibitory binding to Atg3, a key component of the LC3 conjugation system.\(^111\) Inhibition of Atg3 by FLIP can be relieved by peptides from either its DED1 a2-helix or the DED2 a4-helix, suggestive of a more promiscuous, non-discriminatory mode of binding than that between FLIP and FADD.\(^48\) Through an RNAi library screening approach, Lamy et al.\(^112\) identified caspase-10 as critical for survival of multiple myeloma cells; the authors found that caspase-10 forms a proteolytically active complex with FLIP\(_L\), which constitutively cleaves and inactivates BCLAF1. As BCLAF1 displaces Beclin-1 from BCL-2 to promote autophagic cell death,\(^113\) this caspase-10/FLIP\(_L\) complex blocks this mode of cell death. These results suggest that pharmacological inhibition of caspase-10 may afford therapeutic benefit to multiple myeloma patients by inducing autophagic cell death. Interestingly, despite their similarities, this effect was not observed when caspase-8 was depleted.\(^112\) The upstream mechanism that triggers formation of this caspase-10/FLIP\(_L\) heterodimer and the identities of other members and substrates of this complex are currently unknown.

Posttranslational Regulation of DED Proteins

Ubiquitination events at the DISC. Given the swiftness of a cell’s response to apoptotic stimuli, it is unsurprising that cells have numerous mechanisms to tightly regulate the expression and function of the key decision makers. In a series of studies, work from the Ashkenazi laboratory has revealed the critical role of ubiquitination in the activation of caspase-8 at the DISC. Firstly, they showed that caspase-8 is polyubiquitinated with K63-linked chains by cullin 3 (CUL3) at the DISC in response to either TRAIL-R1 or TRAIL-R2 stimulation.\(^114\) Moreover, silencing CUL3 inhibited caspase-8 processing at the DISC, suggesting a role for CUL3-mediated ubiquitination in regulating caspase-8 activation. In mapping studies, the C-terminus of caspase-8 was identified as the region of ubiquitination. Furthermore, aggregation and activation of polyubiquitinated caspase-8 is facilitated by p62,\(^115\) a protein known to bind to ubiquitin, that moves caspase-8 into ubiquitin-rich foci.\(^114\) However, it is unknown whether translocation into these foci is necessary for caspase-8’s activation, and the implications this has for the observation that caspase-8 and p62 are both found in intracellular DISCs and autophagosomal membranes is unclear.\(^103,104\) In subsequent work, the same group found that cytosolic p43 and p18 fragments of caspase-8 are degraded in a proteasome-dependent manner. In this latter study, caspase-8 was reported to be conjugated by degradative K48-linked ubiquitin chains on its p18 fragment by another E3 ligase, TRAF2.\(^116\) Rather than increasing its activation as is the case for CUL3-mediated K63-ubiquitination, TRAF2 acts to degrade the pool of activated caspase-8, decreasing the propensity of the cell to commit to apoptosis. Caspase-8-processed FLIP\(_L\) has also been reported to interact with TRAF2, promoting activation of the NF-\(\kappa\)B transcriptional pathway, but it is not yet clear whether these observations are related.\(^117\)

Regulation of FLIP by the UPS. An additional layer of control of death receptor-mediated apoptosis is achieved by the ubiquitination of FLIP. Similar to the anti-apoptotic BCL-2 family member MCL-1, FLIP\(_S\) is an extremely short-lived protein that is rapidly turned over through the ubiquitin-proteasome system.\(^118\) FLIP\(_S\) is ubiquitinated on K192 and K195 in DED2 and, between these two lysine residues at position 193 is a serine residue which, when phosphorylated, inhibits the ubiquitination of the adjacent lysines.\(^118,119\) Notably, mutational studies showed that ubiquitin-deficient mutants of FLIP\(_S\) had increased half-lives (as expected) but were still recruited to the DISC, retaining their anti-apoptotic ability. In further work, the same lab identified PKC\(\alpha/\beta\) as the key mediators of FLIP\(_S\) phosphorylation on S193.\(^119\) FLIP\(_S\) is less labile than FLIP\(_L\), although it too is turned over relatively rapidly, with a typical half-life of 2–3 h.\(^118\) A similar interplay between phosphorylation and ubiquitination is true for FLIP\(_L\), where ROS production induces the phosphorylation and subsequent ubiquitination and degradation of FLIP\(_L\).\(^120\) Moreover, K195 is a site of ubiquitin conjugation on FLIP\(_L\) in response to hyperthermia.\(^121\) Our group has identified a role for the DNA repair protein Ku70 in regulation of FLIP ubiquitination. Ku70 forms a complex with FLIP protecting it from ubiquitination and subsequent degradation.
This complex is regulated by the acetylation of Ku70 and thus can be manipulated pharmacologically by histone deacetylase inhibitors leading to rapid degradation of FLIP. Chang et al. reported that following TNFα stimulation, JNK is activated which in turn activates the E3 Ubiquitin ligase Itch, resulting in FLIPL ubiquitination and subsequent proteasomal degradation. This apparent link between FLIP and Itch was partly confirmed by other studies, including Panner et al., who identified a PTEN-Akt-Itch pathway controlling FLIPS stability and degradation.

DED Complexes in Mammalian Host Defence

Antiviral immunity. DED-containing protein complexes are critical for innate immune reactions and can assemble to induce apoptosis in response to viral infection, generally in a mitochondrial antiviral signalling adaptor (MAVS)-dependent manner. Typically, cytosolic viral RNA is recognised by CARD-containing RIG-1-like receptors, for example, RIG-1 and MDA5. RIG-1 binds the dsRNA, exposing its normally hidden CARD domains. K63 ubiquitin chains are conjugated to the CARDs, facilitating the assembly of a complex composed of four polyubiquitin chains and four RIG-1 molecules (not shown). This in turn induces the formation of prion-like aggregates of MAVS, which strongly activate IRF3. These MAVS aggregates form a platform which can recruit TRAF2, TRAF3 and TRAF6. TRADD also binds MAVS followed by TANK and TBK2, activating antiviral IRF3. However, TRADD can also recruit RIPK1, FADD and caspase-8, a complex dubbed the ‘TRADDosome’. Caspase-8 cleaves RIPK1 and the resulting RIPK1 fragment can inhibit IRF3, ceasing the antiviral response. RIPK1 is conjugated by K63 ubiquitin chains inducing two distinct signaling pathways from the TRADDosome: firstly, NF-κB signaling through NEMO, IKKα and IKKβ, and secondly NEMO can interact with NAP1, TBK1 and IkKc to activate IRF3 or IRF7. In addition to caspase-8, the TRADDosome can also recruit FLIP and may under certain conditions, trigger cell death.

Figure 7 DED proteins in MAVS signaling. Following viral infection of cells, viral RNA is detected by CARD-containing RIG-1-like receptors, for example, RIG-1 and MDA5. K63 ubiquitin chains are conjugated to the CARDs, facilitating the assembly of a complex composed of four polyubiquitin chains and four RIG-1 molecules (not shown). This in turn induces the formation of prion-like aggregates of MAVS, which strongly activate IRF3. These MAVS aggregates form a platform which can recruit TRAF2, TRAF3 and TRAF6. TRADD also binds MAVS followed by TANK and TBK2, activating antiviral IRF3. However, TRADD can also recruit RIPK1, FADD and caspase-8, a complex dubbed the ‘TRADDosome’. Caspase-8 cleaves RIPK1 and the resulting RIPK1 fragment can inhibit IRF3, ceasing the antiviral response. RIPK1 is conjugated by K63 ubiquitin chains inducing two distinct signaling pathways from the TRADDosome: firstly, NF-κB signaling through NEMO, IKKα and IKKβ, and secondly NEMO can interact with NAP1, TBK1 and IkKc to activate IRF3 or IRF7. In addition to caspase-8, the TRADDosome can also recruit FLIP and may under certain conditions, trigger cell death.
membrane via MAVS. In this MAVS-located TRADDosome, RIPK1 can be K63 ubiquitinated by TRAF2/3 and recruit NEMO resulting in activation of IKK\(\alpha\) and IKK\(\beta\) and subsequent phosphorylation and degradation of I\(\kappa\)B leading to NF-\(\kappa\)B activation. Finally, via FADD, the TRADDosome can recruit procaspases-8 and -10 and FLIP, potentially inducing cell death.\(^{129}\)

DED proteins and the inflammasome. The inflammasome is a multi-protein oligomeric structure formed in macrophages and monocytes in response to inflammatory stimuli (Figure 8).\(^{130}\) Inflammasomes are comprised of a stimulus-specific sensor protein belonging to either the NLR, AIM2 or ALR family, the adaptor protein ASC and the inactivezymogen procaspase-1.\(^{131}\) Formation of the inflammasome leads to activation of caspase-1, which processes pro-IL-1\(\beta\) (and IL-18) to its mature form.\(^{132,133}\) Different inflammasomes assemble in response to distinct stimuli, for example, the NLRP3 inflammasome forms in response to a plethora of pathogens, including influenza A,\(^{134,135}\) *Klebsiella pneumoniae* and *Staphylococcus aureus*, in addition to endogenous danger signals such as ATP, uric acid crystals, nigericin and hyaluronan.\(^{131}\) The NLRC4 inflammasome reacts to bacterial flagellin and PrgJ, and the AIM2 inflammasome detects foreign dsDNA.\(^{136,137}\) RIG-1 senses RNA viruses and forms a signaling complex with ASC, activating an inflammasome.\(^{138}\) Toll-like receptors (TLRs) detect pathogens by recognising pathogen membrane proteins (TLR4) or cytoplasmic nucleotides (TLR3). Full activation of inflammasomes requires two distinct stages: a ‘priming’ signal 1, for example, from either a
TLR agonist or a pro-inflammatory cytokine, that activates NF-κB and upregulates pro-IL-1β expression, followed by stimulus-specific inflammasome activation and processing of pro-IL-1β.

DED-containing proteins are emerging as players in inflammasome signalling. Caspase-8-dependent TLR4 signalling is critical for inflammasome assembly and IL-1β processing in glaucoma, and engagement of TLR3 or TLR4 can result in processing of IL-1β by caspase-8, independent of NLRP3 and caspase-1.

Studies by Kanneganti and colleagues revealed that FADD and caspase-8 are obligatory for the correct priming and activation of both the canonical and non-canonical NLRP3 inflammasome, and that CD95 can induce IL-1β and IL-18 maturation in a caspase-8-dependent, but RIPK3-independent manner. However, work from other groups contest this; Allam et al. and Weng et al. show that caspase-8 is required only for TLR-induced inflammasome priming. A number of other studies show normal canonical NLRP3 inflammasome activation in caspase-8-deficient cells, refuting an essential role for caspase-8 in NLRP3 inflammasome activation.

Together, these data suggest that caspase-8 may promote caspase-1 activity under certain conditions, but is not absolutely required for NLRP3 inflammasome activation.

FLIPβ has been shown to be involved in activation of the NLRP3 and AIM2 inflammasome and directly interacts with NLRP3, AIM2 and procaspase-1. In contrast, FLIP decreased IL-1β generation in response to SMAC mimetics and CD95 receptor activation, indicating that its role in regulating the inflammasome is context-dependent.

DED proteins and the adaptive immune system. It has long been known that caspase-8- or FADD-deficient T cells do not proliferate in response to T-cell receptor activation; it had previously been thought that this was due to a defective ability to activate NF-κB, but recent work has shown that it is due to induction of necroptosis. Rescue of T cells deficient in either caspase-8 or FADD can be achieved by simultaneously deleting RIPK1 or by inhibiting RIPK1 pharmacologically with necrostatin-1. Furthermore, FADD–/–RIPK1–/– and Casp8–/–RIPK3–/– T cells undergo normal rates of clonal expansion following viral stimulation. Stimulation of the T-cell receptor by antibodies induces the formation of the CARMA1-BCL10-MALT1 complex which activates NF-κB. Downstream of this, a complex composed of FADD, caspase-8 and FLIPL forms, which presumably prevents aberrant activation of RIPK1, blocking necroptosis and promoting cell survival and proliferation.

TIE2 (tumor necrosis factor-α-induced protein-8, TNFAIP8) is the newest member of the DED-containing protein family, identified as highly expressed in a murine model of spine inflammation. Upon infection or immunisation, TIE2–/– mice develop spontaneous fatal inflammatory disease with concomitant elevated production of pro-inflammatory cytokines, suggesting a role for TIE2 in the immune system and, more specifically, T cells. Upon infection or immunisation, TIE2–/– mice exhibit increased levels of CD8+ T cells and inflammatory cytokine production, implying that TIE2 is a negative regulator of T-cell-mediated immunity by impeding the NF-κB and AP1 transcriptional pathways and TLR signalling in macrophages. Interestingly, Sun et al. also found that TIE2 interacts with caspase-8, but not FLIP, in macrophages, and blockade of caspase-8 function in TIE2–/– cells rescues the hypersensitive phenotype; however, subsequent papers have disputed this.

Therapeutically Exploiting DED Complexes

Evasion of apoptosis is a hallmark of cancer, but aberrant cell death is also a feature of other human pathologies such as inflammation and neurodegenerative diseases. The DED family of proteins constitute key decision makers in these processes, with the ability to switch outcomes from life to death, or to different modes of death. As such, they represent an attractive set of proteins to target therapeutically.

Death receptors such as TRAIL-R1 and TRAIL-R2 are overexpressed in many types of cancer and there has been much effort to develop agents (recombinant forms of TRAIL and antibodies) that activate these receptors, particularly as they appear to selectively target malignant tissue while sparing normal cells. Although pre-clinical data for TRAIL receptor-targeted therapies were promising and these agents were well tolerated in phase I trials, they showed limited anti-cancer effects in patients when used alone or in combination with chemotherapy or proteasome inhibition (reviewed in Lemke et al.). However, a major shortcoming of these clinical studies was that they failed to learn from the experiences with other molecularly targeted agents and were conducted in unsellected patient populations. Another limitation of first generation TRAIL receptor agonists may have been insufficient levels of receptor super-clustering; a number of second generation TRAIL agonists are now in development with novel mechanisms of action that overcome this limitation, for example, MedImmune’s multivalent ‘superagonist’, which efficiently engages and clusters TRAIL-R2. However, increased valency may increase the toxicity of second generation TRAIL-R agonists, and a recent phase I clinical trial with a tetravalent agonistic Nanobody targeting TRAIL-R2, TAS266, had to be halted at the lowest dose owing to hepatotoxicity. The opposite approach is required for the TNFα pathway, where biologics have been developed to block TNFα itself or TNFR1, preventing downstream activation of the NF-κB pathway and/or apoptosis induction and providing effective treatment for a number of inflammatory diseases, including SLE, rheumatoid arthritis and septic shock. TNFα-induced necroptosis has been implicated in a number of pathophysiological conditions such as Crohn’s disease (reviewed by Linkermann and Green); thus, TNFα blockade may prove to be therapeutically beneficial in these situations.

A number of IAP antagonists (SMAC mimetics) are currently in clinical development and have shown potential as anti-cancer agents (reviewed by Fuld). They promote caspase activation and elicit an apoptotic response by binding to and inhibiting IAPs, which are overexpressed in many types of cancer. Additionally, they activate the non-canonical NF-κB pathway through the accumulation of NIK, which is normally degraded by cIAP1. This results in upregulation of NF-κB target genes, including TNFα. TNFα can signal in an autocrine or paracrine manner, stimulating the...
assembly of TNFR1 Complex II (Figure 6) and activation of cell death via apoptosis and/or necroptosis.86-92

As it is a potent anti-apoptotic molecule, lowering FLIP expression in malignancies could lower the threshold for cell death. We and others have reported that histone deacetylase inhibitors such as vorinostat trigger the rapid ubiquitination and degradation of FLIP, thus sensitising cells to TRAIL or chemotherapeutic agents.122,170 Additionally, a number of chemotherapeutic and other anti-cancer agents downregulate FLIP expression via multiple mechanisms (reviewed by Safa183). As previously mentioned, the gene encoding caspase-8 (Casp8) is silenced by methylation in several cancers, such as small cell lung cancer and neuroblastomas;184 treatment with another class of epigenetic drugs, the demethylating agents such as 5-azacytidine can reverse this effect, thereby enhancing the potential for caspase-8-mediated apoptosis.27

Conclusion and Perspective

As a result of their key roles in determining life and death outcomes, much work has focussed on the complexes formed by DED proteins. From this work, FLIP in particular has emerged as a master regulator of the signalling outputs from DED-containing complexes. It is probably for this reason that FLIP expression is regulated at multiple levels: by numerous transcription factors (such as NF-kB,185 NFAT,186 AP-1187 and c-Myc188); alternative splicing,189 mRNA translation190 and by posttranslational modifications, including its rapid turnover via the ubiquitin-proteasome system.118,119 This exquisite level of regulation may have evolved to allow swift responses to various cellular stresses, for example, to safeguard against inappropriate activation of cell death or enhance cell death, depending on the cellular context. Biochemical and structural studies have demonstrated that DED-containing complexes are highly intricate with ubiquitination playing a key role. These complexes are also more numerous than previously appreciated, with the discovery of complexes such as the intracellular DISC and Ripoptosome and involvement of DED proteins in complexes such as the inflammasome. It is anticipated that future studies will reveal novel ways of therapeutically targeting DED protein complexes that could find clinical applications in cancers, inflammatory diseases and neurodegenerative diseases.

Conflict of Interest

The authors declare no conflict of interest.

8. Yang JK, Wang L, Zhang L, Wan F, Ahmed M, Lenardo MJ et al. Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 2005; 20: 939–949.
9. Li F-Y, Jeffrey PD, Yu JW, Shi Y. Crystal structure of a viral FLIP: insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 2006; 281: 2860–2868.
10. Golks A, Brenner D, Frisch T, Krammer PH, Linker IN. cFLIP, a new regulator of death receptor-induced apoptosis. J Biol Chem 2005; 280: 14507–14513.
11. Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003; 22: 8543–8567.
12. Scaffidi C, Medema JP, Krammer PH, Peter ME. FLICE is predominantly expressed as two functionally active isoforms, caspase-8a and caspase-8b. J Biol Chem 1997; 272: 26853–26868.
13. Horuchi T, Himeji D, Tsukamoto H, Harashima S, Hashimura C, Hayashi K. Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes. Biochem Biophys Res Commun 2000, 272: 877–881.
14. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA 2001; 98: 13884–13888.
15. Milner MA, Karacay B, Zhu X, O’Dorrios MS, Sandler AD. Caspase 8 L, a novel inhibitor isoform of caspase 8, is associated with undifferentiated neuroblastoma. Apoptosis 2006; 11: 237–241.
16. Vincenc C, D’Elia VM. Fas-associated death domain protein intercellulin-beta-converting enzyme 2 (FLICE), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J Biol Chem 1997; 272: 6578–6583.
17. Ng PW, Porter AG, Janicke RU. Central roles of apoptotic proteins in mitochondrial function. J Cell Sci 2012; 125: 381–387.
18. Wang H, Wang P, Sun X, Luo Y, Wang X, Ma D et al. Cloning and characterization of a novel caspase-10 isoform that activates NF-kappaB activity. Biochim Biophys Acta 2007; 1770: 1528–1537.
19. Wachmann K, Pop C, van Rasm BJ, Drag M, Mace PO, Srinivas SJ et al. Activation and specificity of human caspase-10. Biochemistry 2010; 49: 8307–8315.
20. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA 2001; 98: 13884–13888.
21. Kischkel FC, Lawrence DA, Tinel A, LebanH, Virmann A, Schow P et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001; 276: 6693–6686.
22. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. FEBS Lett 2002; 521: 4305–4310.
23. Fischer U, Stroh C, Schulte-Osthoff K, and overlapping substrates specific properties of caspase-8 and caspase-10. Oncogene 2006; 25: 152–159.
24. Bae S, Ha TS, Yoon Y, Lee J, Cha HJ, Yoo H et al. Genome-wide screening and identification of novel protective cleavage targets of caspase-8 and -10 in vitro. Int J Mol Med 2008; 21: 381–386.
25. Reed JC, Doctor K, Rosas JA, Zapata JM, Strehl C, Fiorentino L et al. Comparative analysis of apoptosis and inflammation genes of mice and humans. Genome Res 2003; 13: 1376–1388.
26. Teitz T, Wei T, Valentine MB, Varin EF, Grenet J, Valentine VA et al. Caspase 8 is deleted in silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2001; 6: 529–536.
27. Hopkins-Donaldson S, Bodmer JL, Bouroul CB, Tschopp J, Gross N. Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2000; 60: 4315–4319.
28. Mühlethaler-Mottet A, Fishault M, Bouroud K, Naudou K, Coulon A, Liberman J et al. Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated cell death. Cell Death D 2011; 2: e125.
29. Sakamaki K, Shimizu K, Iwata H, Imo K, Sato Y, Furumaya N et al. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution. Mol Biol Evol 2014; 31: 3282–3301.
30. Quistad GD, Stolzand A, Barott KL, Smurthwaite CA, Hilton BJ, Grasis JA et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc Natl Acad Sci USA 2014; 111: 9675–9672.
31. Scaffidi C, Volondi J, Blomberg I, Hoffmann I, Krammer PH, Peter ME. Phosphorylation of FADD/MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J Immunol 2000; 164: 1236–1242.
32. Zhang J, Kabra NB, Cado D, Kang C, Winoto A. FADD-deficient T cells exhibit a disaccord in regulation of the cell cycle machinery. J Biol Chem 2001; 276: 29815–29818.
33. Chen G, Bhojani MS, Heasht AF, Chang DC, Laxman B, Thomas DG et al. Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA 2005; 102: 12507–12512.
34. Pyo JO, Jang MH, Kwon YK, Lee HY, Jun JI, Woo HN et al. Essential roles of AEG and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005; 280: 20722–20729.
35. Balachandran S, Thomas E, Barber GN. A FADD-dependent innate immune mechanism in mammalian cells. Nature 2004; 432: 401–405.
55. Keller N, Mares J, Zerbe O, Grütter MG. Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Structure 2011; 19: 1243–1252.

56. Micalizzi S, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Cell 2008; 133: 689–700.

57. Voge JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed A et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

58. Varfolomeev EE, Goncharov T, Fedorova AV, Dynkova IJ, Zobel K, Deshayes K et al. cIAP1 and cIAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 2008; 283: 24295–24299.

59. Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tyman GA et al. Casp9-induced chemokines can serve as Find-Me signals for apoptotic cells. Mol Cell 2013; 49: 1034–1048.
91. Keamy CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC et al. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production. Cell Death Differ 2015; 22: 1313–1327.

92. Tenev T, Bianchi K, Darding M, Broemer M, Langais C, Wallberg F et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 442–454.

93. Degterev A, Hitomi J, Germscheid M, Chien IL, Korkina O, Teng X et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4: 313–321.

94. Fadok VE, Schuchmann M, Luria V, Chinnakilian N, Beckmann JS, Mest L et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunology 1998; 96: 267–276.

95. Yeh WC, Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A et al. TRAF2 Sets a threshold for survival during necroptosis. J Exp Med 2015; 2015; 2161: 1–19.

96. White E. Deconvoluting the context-dependent role for autophagy in cancer. Cell Death Differ 2012; 19: 1317–1327.

97. Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 2009; 462: 2161–2171.

98. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between programmed cell death by caspase-10 in multiple myeloma. J Immunol 2012; 189: 27345–27355.

99. Günther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H et al. Death effector domain complexes of caspase-1 promote inflammatory caspase-12-mediated inflammatory responses. Cell Death Differ 2014; 21: 1967–1973.

100. Song X, Kim SY, Zhou Z, Lagasse E, Kwon YT, Lee YJ. Hyperthermia enhances matupatumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP (c-FLIP) in human colon cancer cells. Cell Death Dis 2013; 4: e577.

101. Kerr E, Hoischt C, Mitsui-Ka KM, Maju-L, Dolan S, Redmond K et al. Identification of an acetylation-dependent KU70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death Differ 2012; 19: 1317–1327.

102. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. The E3 ubiquitin ligase Itch couples JNK activation to TNF-alpha-induced cell death by inducing c-FLIP (L). J Am Coll Cardiol 2006; 48: 651–653.

103. Panner A, Crane CA, Weng C, Feletti A, Parsa AT, Pieper RO A novel PTEN-dependent link to ubiquitination controls FLIPS stability and TRAIL sensitivity in gigatoblastoma multiforme. Cancer Res 2009; 69: 7911–7916.

104. Huang S, Okamoto K, Yu C, Sinicrope FA. p62/sequestosome-1 up-regulation promotes NF-kappaB, c-Jun, and HIF-1alpha stabilization. Cell Death Differ 2009; 16; 12455–12468.

105. White E. Deconvoluting the context-dependent role for autophagy in cancer. Cell Death Differ 2012; 19: 1317–1327.

106. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R et al. FCN2 interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway. J Biol Chem 2012; 287: 15050–15058.

107. Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 2009; 462: 2161–2171.

108. Malec M, Kucey JF, Sotomayor M, Sekulovic M, Wei H, Phan S et al. Recognition of RNA by TLR3 via the regulation of caspase-1. Cell 2009; 136: 1839–1850.

109. Kerr E, Holohan C, Mclaughlin KM, Majkut J, Dolan S, Redmond K et al. Identification of an acetylation-dependent KU70/FLIP complex that regulates FLIP expression and HDAC inhibitor-induced apoptosis. Cell Death Differ 2012; 19: 1317–1327.

110. Panner A, Crane CA, Weng C, Feletti A, Parsa AT, Pieper RO A novel PTEN-dependent link to ubiquitination controls FLIPS stability and TRAIL sensitivity in gigatoblastoma multiforme. Cancer Res 2009; 69: 7911–7916.

111. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nat Rev Mol Cell Biol 2012; 13: 556–567.

112. Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 2011; 18: 1594–1597.

113. Pocek H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M et al. Recognition of RNA by TLR3 via the regulation of caspase-1. Cell 2009; 136: 1839–1850.

114. Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 2011; 18: 1594–1597.

115. Fadok VE, Schuchmann M, Luria V, Chinnakilian N, Beckmann JS, Mest L et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunology 1998; 96: 267–276.

116. Laussmann MA, Passante E, Düssmann H, Rauen JA, Würstle ML, Delgado ME et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ 2011; 18: 1594–1597.

117. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12: 401–410.

118. Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (DISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 2012; 287: 12455–12468.

119. Huang S, Okamoto K, Yu C, Sincrope FA. p62/sequestosome-1 up-regulation promotes ABT-263-induced caspase-8 aggregation/activation on the autophagosome. J Biol Chem 2013; 288: 33654–33666.

120.atti H, Mimori K, Kondo S, Urayama Y, Hatanaka N, Horinouchi K et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through the regulation of caspase-1. Immunology 2009; 28: 651–661.

121. Rutnison F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-caspase-11. Mol Cell 2002; 9: 417–426.

122. Kerr E, Holohan C, Mclaughlin KM, Majkut J, Dolan S, Redmond K et al. Identification of an acetylation-dependent KU70/FLIP complex. Cell Death Differ 2011; 18: 1594–1597.

123. Thomas PG, Dash P, Asridge JR, Elebedy AH, Reynolds C, Funk AJ et al. The NLRP3 inflammasome mediates innate responses to influenza A virus via the regulation of caspase-1. J Immunol 2009; 232: 95–106.

124. Strigow T, Henao-Mejia J, Elina J, Flavell R. Inflammasomes in health and disease. Nature 2012; 481: 278–286.

125. Kovalenko A, Kim JC, Kang TB, Rabut A, Bogdanov K, Dittrich-Breihob L et al. Caspase-8 deficiency in epithelial keratinocytes triggers an inflammatory skin disease. J Exp Med 2009; 206: 2161–2171.

126. Huh SJ, Cho SH, Kim DS, Yang YJ, Kang JS, Park JS et al. TRADD-mediated caspase-8 activation with or without TRAF2 influences apoptosis and inflammation. Cell Death Differ 2012; 19: 1317–1327.
Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. J Immunol 2014; 193: 2519–2530.

Lawlor KE, Khan M, Nishimura A, Gerlic M, Croker BA, D'Cruz AA et al. RIPK3 promotes cell death and NLPR3 inflammasome activation in the absence of MLKL. Nat Commun 2014; 5: 6822.

Philp NH, Dillon CP, Snyder AG, Fitzgerald P, Wynchok-Dolli MA, Zawack EE et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc Natl Acad Sci USA 2014; 111: 7385–7390.

Wu YH, Kuo WC, Wu YJ, Yang KT, Chen ST, Jiang ST et al. Participation of c-FLIP in NLPR3 and AIM2 inflammasome activation. Cell Death Differ 2014; 21: 451–461.

Salmena L, Hakem R. Caspase-8 deficiency in T cells leads to a lethal lymphoepithelial immune disorder. J Exp Med 2005; 202: 727–732.

Lu J, West BM, van Raam BJ, Marro BS, Nguyen LV, Srinivas P et al. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc Natl Acad Sci USA 2011; 108: 15312–15317.

Chen IL, Tsai JS, Mokhtari JD, Kimatsu M, Hedrick SM. Mechanisms of necroptosis in T cells. J Exp Med 2011; 208: 633–641.

Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J. Functional complementation with monoclona monoclonal antibodies prevent septic shock during lethal bacteraemia. Proc Natl Acad Sci USA 2014; 111: 7931–7936.
201. Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. *Immunity* 2012; 36: 959–973.

202. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. *Cell* 2011; 146: 448–461.

203. Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. *eLife* 2011; 3: e01489.

204. Rajput A, Kovalenko A, Bogdanov K, Yang SH, Kang TB, Kim J-C et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. *Immunity* 2011; 34: 340–351.

205. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. *Nat Immunol* 2003; 4: 491–496.

206. Sharma S, ten Oever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. *Science* 2003; 300: 1148–1151.

207. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T, Sanjo H et al. The roles of two IKappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. *J Exp Med* 2004; 199: 1641–1650.

208. Perry AK, Chow EK, Goodnough JB, Yeh WC, Cheng G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. *J Exp Med* 2004; 199: 1651–1668.

209. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. *J Biol Chem* 2012; 287: 35617–35622.

210. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. *J Immunol* 2013; 191: 3985–3999.

211. Perreault D, Gabel CA. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. *J Biol Chem* 1994; 269: 15195–15203.

212. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR et al. Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. *J Immunol* 1997; 159: 1451–1458.

213. Kahlenberg JM, Lundberg KC, Kersey SB, Qu Y, Dubyk GR. Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. *J Immunol* 2005; 175: 7611–7622.

214. Muñoz-Planillo R, Kufla P, Martinez-Colón G, Smith BL, Rajendiran TM, Nuñez G. K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. *Immunity* 2013; 38: 1142–1153.

215. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schultz O, Schweighoffer E et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. *Immunology* 2005; 22: 507–517.

216. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. *Nat Immunol* 2012; 13: 246–254.

217. Moriwaki K, Berlin J, Gough PJ, Chan FK. A RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. *J Immunol* 2015; 194: 1938–1944.