Bayesian sample size determination in basket trials borrowing information between subsets

HAIYAN ZHENG
MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK and Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
haiyan.zheng@mrc-bsu.cam.ac.uk

MICHAEL J. GRAYLING
Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK

PAVEL MOZGUNOV
MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK

THOMAS JAKI
MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK and University of Regensburg, 93040 Regensburg, Germany

JAMES M. S. WASON
Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK

Summary
Basket trials are increasingly used for the simultaneous evaluation of a new treatment in various patient subgroups under one overarching protocol. We propose a Bayesian approach to sample size determination in basket trials that permit borrowing of information between commensurate subsets. Specifically, we consider a randomized basket trial design where patients are randomly assigned to the new treatment or control within each trial subset ("subtrial" for short). Closed-form sample size formulae are derived to ensure that each subtrial has a specified chance of correctly deciding whether the new treatment is superior to or not better than the control by some clinically relevant difference. Given prespecified levels of pairwise (in)commensurability, the subtrial sample sizes are solved simultaneously. The proposed Bayesian approach resembles the frequentist formulation of the problem in yielding comparable sample sizes for circumstances of no borrowing. When borrowing is enabled between commensurate subtrials, a considerably smaller trial sample size is required compared to the widely implemented approach of no borrowing. We illustrate the use of our sample size formulae with two examples based on real basket trials. A comprehensive simulation study further shows that the proposed methodology can maintain the true positive and false positive rates at desired levels.

Keywords: Bayesian sample size determination; Borrowing strength; Master protocol; Mixture prior; Phase II.

*To whom correspondence should be addressed.
1. INTRODUCTION

Clinical research in precision medicine (Mirnezami and others, 2012; Schork, 2015) continues to thrive as a consequence of the rapid technological advances for identifying possible prognostic and predictive disease factors at the genetic level (Aronson and Rehm, 2015; Morganti and others, 2019). Because of this, an increasing number of biomarker-driven therapies have been formulated. In oncology, for example, much attention has been paid to therapies targeting one or multiple genomic aberrations (Kim and others, 2011; Hyman and others, 2018; Redman and others, 2020). In contrast to conventional chemotherapy devised for treating histology-defined populations, such targeted therapies can potentially be beneficial to patients of various cancer (sub)types. Immune-mediated inflammatory diseases (IMIDs) (McInnes and Gravallese, 2021) are another area where targeted therapies can be useful (Grayling and others, 2021). IMIDs generally involve a clinically diverse group of conditions that share common underlying pathogenetic features, calling for the development of effective immune-targeted therapeutics (Pitzalis and others, 2020). This paradigm shift towards precision medicine has challenged the use of traditional one-size-fits-all approaches to trial design, which aim to estimate the population average treatment effect. Master protocols (Woodcock and LaVange, 2017) comprise a class of innovative trial designs that address multiple investigational hypotheses. Newly emerging types include basket trials that can simultaneously evaluate a new treatment in stratified patient subgroups displaying a common disease trait (Renfro and Sargent, 2017; Tao and others, 2018). An implication of the stratification is that patients may respond very differently to the same treatment due to their distinct disease subtypes, stages, or status. Fully acknowledging the heterogeneity could lead to the use of stand-alone analyses that regard the stratified subgroups in isolation. Such an analysis strategy, though adopted in early basket trials, may not be ideal for realizing the promise of basket trials. This is mainly because it (i) fails to treat the combined (sub)trial components as a single study and (ii) often yields low-powered tests of the treatment effect, due to the small sample sizes.

Sophisticated analysis models, which feature borrowing of information between subgroups (ideally between those with commensurate treatment effects only), have been proposed in the statistical literature. One pivotal strategy is to fit a Bayesian hierarchical random-effects model (Thall and others, 2003; Berry and others, 2013), assuming that the subgroup-specific treatment effects are exchangeable, that is, as random samples drawn from a common normal distribution with unknown mean and variance. This methodology has been extended to involve (i) a finite mixture of exchangeability distributions (see, e.g., Liu and others, 2017; Chu and Yuan, 2018; Jin and others, 2020); as well as (ii) nonexchangeability distributions such that subgroups with an extreme treatment effect would not be over-represented (Neuenschwander and others, 2016). The former reflects the concern that some subsets of trial may be more commensurate between themselves than with others. A highly relevant proposal is to further cluster the subgroups so that the corresponding treatment effects are assumed to be exchangeable within the same cluster. Chen and Lee (2020) present a two-step procedure, by which subgroups are clustered using a Bayesian nonparametric model, before fitting an adjusted Bayesian hierarchical random-effects model.

A few authors have further recommended to discuss the exchangeability or commensurability of any two or more subgroups. These proposals are for better characterization of the complex trial data structure, which could involve mixtures of exchangeable or nonexchangeable patient subgroups. Psioda and others (2021) apply a Bayesian model averaging technique (Hoeting and others, 1999) to accommodate the possibility that any configuration of subgroups may have the same or disparate response rate. Hobbs and Landin (2018) construct a matrix containing elements with a value of 0 or 1, indicating that any pair of subgroups can be exchangeable or nonexchangeable. Alternatively, Zheng and Wason (2022) propose measuring the pairwise (in)commensurability by distributional discrepancy to enable an appropriate degree of borrowing from each complementary subgroup, which yields a largest weight allocated to the most commensurate one(s).
Development of methods to choose an appropriate sample size for basket trials, however, appears to fall behind. A widely implemented approach is to sum up the sample sizes, calculated as if these trial subsets are to be carried out as separate studies. Whilst this could impair the efficiency of decision-making, alternative approaches to sample size determination that permits borrowing of information are lacking. In this article, we propose formal sample size planning for the design of basket trials. It strikes a balance between the sample size saving and the need of enrolling a sufficient number of patients to assure inferences about the subgroup-specific treatment effects. As the importance of randomized controlled trials has been increasingly emphasized in oncology (Ratain and Sargent, 2009; Grayling and others, 2019), IMIDs (Grayling and others, 2021) and rare-disease (Prasad and Oseran, 2015) research, this article will focus on randomized basket trial designs with a primary objective of simultaneously comparing the new treatment against control in various patient subgroups. We will thus develop our sample size formulae, presuming that the analysis is performed using a model adapted from Zheng and Wason (2022).

The remainder of this article is organized as follows. In Section 2, we introduce a Bayesian model that estimates the treatment effect specific to subgroups using the entire trial data, as well as the derivation of sample size formulae appropriate for basket trials. Two data examples are presented in Section 3 to illustrate the use of our formulae for the design of randomized basket trials. In Section 4, we describe a simulation study that evaluates the operating characteristics of randomized basket trials. Finally, we conclude with a brief discussion and highlight several areas that deserve future research in Section 5.

2. Methods

2.1. Leveraging complementary subtrial data into commensurate priors

Let us consider the design of a basket trial where patients can be classified into K subgroups. These patients nonetheless share a common feature (e.g., a genetic aberration, clinical symptom, or mechanism of drug action), on which a new targeted therapy may potentially improve patient outcomes. Each component study in a distinct patient subgroup will hereafter be referred to as a trial subset (i.e., “subtrial” for short). Within each subtrial k, patients are randomized to receive either the experimental treatment (labeled E) with probability $R_k \in (0, 1)$, or a control (labeled C) with probability $(1-R_k)$, for $k = 1, \ldots, K$. We further assume that the measured responses are normally distributed with their own subtrial-specific parameters:

$$X_{ijk} \sim N(\mu_{jk}, \sigma^2_k)$$

with i indexing patients, for $j = E, C; k = 1, \ldots, K$. Letting n_k denote the subtrial sample size, the difference in means is $\bar{X}_{Ek} - \bar{X}_{Ck} \sim N\left(\mu_{Ek} - \mu_{Ck}, \frac{\sigma^2_k}{n_k R_k (1-R_k)}\right)$. For the ease of notation, we let $\theta_k = \mu_{Ek} - \mu_{Ck}$ denote the treatment effect for subtrial k. It is important to clarify at the outset that this design aims to estimate the subtrial-specific treatment effects, that is, $\theta_1, \ldots, \theta_K$, instead of an overall treatment effect averaged over all subtrials. If permitting borrowing of information across subtrials, these treatment effects are to be estimated using the entire trial data (with $\sum_{k=1}^K n_k$ patients) rather than in isolation (with n_1, \ldots, n_K patients, respectively).

We follow Zheng and Wason (2022) in specifying commensurate priors for each θ_k, using information from the $(K-1)$ complementary subtrials indexed by $q \neq k, \forall k = 1, \ldots, K$. This methodology regards any θ_q as a biased representation of θ_k, yet the direction and the size of such bias are unknown (Hobbs and others, 2011). More specifically, these commensurate priors are formulated as conditional normal distributions that are centered at θ_q's, respectively; whilst the precisions (i.e., reciprocal of variances), denoted by v_{qk}, accommodate the heterogeneity between two subtrials k and q. Our commensurate prior models for the continuous location parameter θ_k can thus be given by

$$\theta_k \mid \theta_q, v_{qk} \sim N(\theta_q, v_{qk}^{-1}), \quad \forall k = 1, \ldots, K,$$

$$v_{qk} \sim w_{qk} \text{Gamma}(a_1, b_1) + (1 - w_{qk}) \text{Gamma}(a_2, b_2),$$

(2.1)
where a two-component Gamma mixture prior (with a_1/b_1 and a_2/b_2 being the respective means of the component distributions), instead of a spike-and-slab prior in the original proposal, is placed on each ν_{qk} for the convenience of analytic tractability (Zheng and others, 2022). In particular, these two Gamma mixture components correspond to extreme cases of substantial or limited discounting of information from a complementary subtrial q. For illustration, we suppose that the first Gamma mixture component has its density massively on small values, and the second component on large values. The prior mixture weight $w_{qk} \in [0, 1]$, which plays a role of balancing between the extreme cases, can thus reflect one’s preliminary skepticism about the degree of commensurability between θ_k and θ_q. That is, when subtrials k and q are thought of as incommensurate (commensurate), w_{qk} can be set close to 1 (0), thus forcing the conditional prior variance ν_{qk}^{-1} towards large (small) values for substantial (limited) discounting.

By integrating out ν_{qk}, the conditional prior for θ_k given θ_q only follows a shifted and scaled t mixture distribution, with its two components both centered at θ_q. This unimodal t mixture distribution can further be approximated by matching the first two moments to give

$$
\theta_k \mid \theta_q \sim N \left(\theta_q, \frac{w_{qk} b_1}{a_1 - 1} + \frac{(1 - w_{qk}) b_2}{a_2 - 1} \right), \quad \text{with } a_1, a_2 > 1,
$$

(2.2)

which incorporates the respective variances of the t component distributions. As has been shown by Zheng and others (2022), this normal approximation provides good properties for the coverage of credible intervals of interest. Note that the location of each commensurate prior, θ_q, is an unknown parameter. It captures the information from a complementary subtrial q, of which the required sample size n_q as well as the allocation proportion R_q is yet to be determined.

Let $x_q = \{x_{1E_q}, \ldots, x_{n_qE_q}; x_{1C_q}, \ldots, x_{n_qC_q}\}$ denote the data of a complementary subtrial q. We consider the difference of sample means, $\bar{X}_{qE} - \bar{X}_{qC}$, as the random variable to draw the Bayesian inference. With an “uninformative” operational prior $\theta_q \sim N(m_{0q}, s_{0q}^2)$, we derive the posterior as

$$
\theta_q \mid x_q \sim N \left(\lambda_q, \left(\frac{1}{\lambda_q} + \frac{n_q R_q (1 - R_q)}{\sigma_q^2} \right)^{-1} \right),$$

(2.3)

with

$$
\lambda_q = \frac{m_{0q}}{1 + \frac{n_q R_q (1 - R_q)}{\sigma_q^2}}, \quad \text{and} \quad \frac{\bar{X}_{E_q} - \bar{X}_{C_q}}{1 + \frac{n_q R_q (1 - R_q)}{\sigma_q^2}} = \frac{\bar{X}_{E_q} - \bar{X}_{C_q}}{1 + \frac{n_q R_q (1 - R_q)}{\sigma_q^2}}.
$$

where \bar{x}_{jq} denotes the average response of samples by treatment group $j = E, C$, within subtrial q. Combining (2.2) and (2.3), we obtain a commensurate prior for θ_k that leverages data of a complementary subtrial $q \neq k$:

$$
\theta_k \mid x_q \sim N \left(\lambda_q, \xi_{qk}^2 \right), \quad \forall k = 1, \ldots, K,
$$

(2.4)

with

$$
\xi_{qk}^2 = \left(\frac{1}{\lambda_q} + \frac{n_q R_q (1 - R_q)}{\sigma_q^2} \right)^{-1} + \frac{w_{qk} b_1}{a_1 - 1} + \frac{(1 - w_{qk}) b_2}{a_2 - 1}.
$$

Consider now borrowing information from all complementary subtrials, with $K \geq 3$. Let $x_{(\cdot k)}$ denote the data from all subtrials excluding k, that is, all the $(K - 1)$ sets of complementary data for subtrial k. By the convolution operator (Grinstead and Snell, 1997), we stipulate a collective, commensurate prior
for leveraging all complementary subtrial data:

\[
\theta_k \mid x_{(-k)} \sim N \left(\sum_{q \neq k} p_{qk} \lambda_q, \sum_{q \neq k} p_{qk}^2 \xi_{qk}^2 \right), \quad \forall k = 1, \ldots, K,
\]
(2.5)

where \(p_{qk} \) are the synthesis weights, with \(\sum_q p_{qk} = 1 \), assigned to the respective commensurate priors specified using \(x_q \). These synthesis weights can be transformed from the chosen values for \(w_{qk} \) in the commensurate prior models, following an objective-directed approach (Zheng and Wason, 2022). More specifically, we expect the largest synthesis weight, \(p_{qk} \), is assigned to the most commensurate prior \(N(\lambda_q, \xi_{qk}^2) \), specified based on a subtrial \(q \neq k \) that manifests the smallest discrepancy with subtrial \(k \) out of all the \((K - 1)\) complementary subtrials. Recall each \(w_{qk} \) as one key parameter to determine \(N(\lambda_q, \xi_{qk}^2) \), would have been chosen to appropriately reflect the pairwise discrepancy (i.e., incommensurability). One may apply a decreasing function of \(w_{qk} \) to compute \(p_{qk} \). A \(K \times K \) matrix can be constructed to contain all \(w_{qk} \) in column \(k \) and row \(q \):

\[
\begin{pmatrix}
0 & w_{12} & \cdots & w_{1K} \\
w_{21} & 0 & \cdots & w_{2K} \\
\vdots & \vdots & \ddots & \vdots \\
w_{K1} & w_{K2} & \cdots & 0
\end{pmatrix}
\]

We note that this matrix should be symmetric with \(w_{qk} = w_{kq} \), since each is intended to reflect the level of pairwise incommensurability. That is, the magnitude of incommensurability between subtrials \(k \) and \(q \) is the same as that between \(q \) and \(k \). If stratifying the matrix by column, the off-diagonal elements in column \(k \) represent the postulated levels of discounting with respect to the complementary subtrial data. Recall that the latter has been used to specify the respective commensurate priors in the form of (2.4), with \(q \neq k \). The decreasing function given by

\[
p_{qk} = \frac{\exp(-w_{qk}^2/c_0)}{\sum_q \exp(-w_{qk}^2/c_0)}, \quad \forall k = 1, \ldots, K,
\]

has been illustrated to have satisfactory properties (Zheng and Wason, 2022; Zheng and others, 2022). The concentration parameter \(c_0 \), if set equal to a value close to \(0^+ \), appropriately discerns the \((K - 1)\) values of \(w_{qk} \); thus, a \(p_{qk} \to 1 \) would be assigned to the corresponding commensurate prior for \(\theta_k \) based on \(x_q \), in which the smallest \(w_{qk} \) has been used. Otherwise, a value of \(c_0 \gg w_{qk} \) yields nearly all \(p_{qk} \) to equal \(1/(K - 1) \) irrespective of the values of \(w_{qk} \). Moreover, this transformation yields equal \(p_{qk} \) when all \(w_{qk} \) are equal. We generally recommend setting \(c_0 \) to a value that is substantially smaller than the magnitude of \(w_{qk} \); for a thorough evaluation of performance by varying \(c_0 \), we refer the reader to Zheng and Wason (2022).

By using Bayes’ Theorem, the collective commensurate prior in the form of (2.5) will be updated by the contemporary subtrial data \(x_k \) to give the posterior distribution as

\[
\theta_k \mid x_k, x_{(-k)} \sim N \left(d_{\theta_k}, \left(\frac{1}{\sum_q p_{qk}^2 \xi_{qk}^2} + \frac{n_k R_k (1 - R_k)}{\sigma_k^2} \right)^{-1} \right).
\]
(2.6)

The posterior mean is a convex combination of the prior mean \(\sum p_{qk} \lambda_q (q \neq k) \) and the data likelihood. We will give the exact expression of \(d_{\theta_k} \) in Section 4 to carry out the decision-making for simulated trials.
2.2. Sample size formulae for basket trials comparing two normal means

The frequentist approach to sample size determination makes use of hypothesis testing, with \(H_{0k} : \theta_k \leq 0 \) against \(H_{1k} : \theta_k > 0 \), if assuming that greater values of \(X_{ijk} \) indicate better effect. In this traditional framework, a study sample size is computed such that the treatment effect, \(\theta_k \), will be found significant at a level \(\alpha \) with probability \(1 - \beta \), given a certain magnitude of the treatment effect considered clinically meaningful.

We follow the Bayesian decision-making framework, presented by Whitehead and others (2008), to compute two interval probabilities from our posterior distribution as derived in (2.6), so that the subtrial sample sizes, \(n_1, \ldots, n_K \), are sought for providing compelling evidence of \(E \) being either superior to or not better than \(C \) by some magnitude \(\delta \) in each subtrial \(k = 1, \ldots, K \). The posterior distribution of \(\theta_k \) specific to each subtrial \(k = 1, \ldots, K \) will thus be evaluated to declare that \(E \) is

\[
\text{(i) efficacious, if } \mathbb{P}(\theta_k > 0 \mid x_k, x_{(-k)}) \geq \eta, \quad (2.7)
\]

\[
\text{(ii) futile, if } \mathbb{P}(\theta_k \leq \delta \mid x_k, x_{(-k)}) \geq \zeta, \quad (2.8)
\]

where \(\eta \) and \(\zeta \) are probability thresholds for the success and futility criteria, respectively. By using this decision rule, the two posterior tail probabilities of \(\theta_k \) are controlled. Specifically, we desire the area under the density from \(-\infty \) to the left of \(0 \) to be limited below \(1 - \eta \), with the area under the density from \(\infty \) to the right of \(\delta \) to be below \(1 - \zeta \). The sample size therefore needs to be sufficiently large for a decisive declaration of the treatment effectiveness or futility per subtrial \(k \). That is, \(d_{\theta_k}/\sigma_{\theta_k} \geq z_\eta \) or \((\delta - d_{\theta_k})/\sigma_{\theta_k} \geq z_\zeta \) should be guaranteed. Here, \(z_\eta \) satisfies \(\Phi(z_\eta) = \eta \), where \(\Phi(\cdot) \) denotes the standard normal distribution function, with \(z_\zeta \) defined similarly. We thus require \(\delta/\sigma_{\theta_k} \geq z_\zeta + z_\eta \), which leads to

\[
\frac{1}{\sigma_{\theta_k}^2} \geq \left(\frac{z_\eta + z_\zeta}{\delta} \right)^2. \quad (2.9)
\]

The left-hand side of (2.9) is precisely the posterior precision for \(\theta_k \).

When borrowing of information is not permitted, \(\mathbb{P}(\theta_k > 0 \mid x_k) \) and \(\mathbb{P}(\theta_k \leq \delta \mid x_k) \) are computed instead. Thus, \(\frac{1}{\sigma_{\theta_k}^2} = \frac{1}{s_{\theta_k}^2} + \frac{n_k R_k (1 - R_k)}{\sigma_k^2} \), which can be rearranged to give

\[
n_k^0 \geq \frac{\sigma_k^2}{R_k (1 - R_k)} \left[\left(\frac{z_\eta + z_\zeta}{\delta} \right)^2 - \frac{1}{s_{\theta_k}^2} \right], \quad \forall k = 1, \ldots, K. \quad (2.10)
\]

By contrast, based on the proposed Bayesian model for borrowing of information, \(\sigma_{\theta_k}^2 \) comes from the closed-form expression in (2.6). This leads to

\[
n_k \geq \frac{\sigma_k^2}{R_k (1 - R_k)} \left[\left(\frac{z_\eta + z_\zeta}{\delta} \right)^2 - \frac{1}{\sum_q P_{qk} \xi_{\theta_k}^2} \right], \quad \forall k = 1, \ldots, K, \ q \neq k, \quad (2.11)
\]

which looks similar to (2.10), but involves the commensurate prior variances \(\xi_{\theta_k}^2 \) in the form of (2.4). The latter leverages the complementary subtrial information. Thus, a smaller integer for \(n_k \) could be expected if the complementary subtrials, labeled \(q \neq k \), are to collect rich information and, further,
The randomized, placebo-controlled Obeticholic acid for the Amelioration of Cognitive Symptoms trial originally. However, the resulting sample sizes are consistent with own. As specified in the trial protocol, these were not computed based on hypothesis testing considerations for OACS-2, 25 (15 on endpoint. We assume the magnitude of such reduction can be adequately depicted by values ranging from score from the baseline, after 26 weeks of treatment, will be analyzed as a normally distributed primary outcome is a composite cognitive test score obtained from the CANTAB platform (Goldberg, 2013), which is an extensively used tool in clinical practice. The reduction in the composite CANTAB (Dennis and Schnabel, 1983)t ofi n d...
Bayesian sample size determination in basket trials

\[
\begin{pmatrix}
 w_{11} & w_{12} & w_{13} \\
 w_{21} & w_{22} & w_{23} \\
 w_{31} & w_{32} & w_{33}
\end{pmatrix} = \begin{pmatrix}
 0 & 0.239 & 0.417 \\
 0.239 & 0 & 0.145 \\
 0.417 & 0.145 & 0
\end{pmatrix},
\]

and \(c_0 = 0.05\) to compute the synthesis weights \(p_{qk}\), following the objective-directed approach outlined in Section 2.1. The subtrial sample sizes are found to be \(n_k = 33.3, 11.8, 18.2\), fixing \(\eta = 0.95\) and \(\zeta = 0.90\) for subtrial 1 or 0.80 for subtrial 2 maintaining the same treatment allocation ratios \(R_k = 0.5, 0.6, 0.6\). These are considerably smaller than the subtrial sample sizes assuming no borrowing or the frequentist counterparts.

3.2. Simultaneous evaluation of a new inhibitor in seven cancer subtypes

The ongoing SUMMIT basket trial (NCT01953926) adopted a single-arm design to evaluate a new pan-HER kinase inhibitor neratinib in 141 patients with HER2-mutant or HER3-mutant tumors (Hyman and others, 2018). A binary outcome (i.e., responder or no responder, corresponding to a tumor shrinkage \(\geq 30\%\) or below) was used in line with the RECIST criteria (Eisenhauer and others, 2009). The SUMMIT trial additionally reported the analysis on secondary outcomes, which include the change in tumor volume on a continuous scale of \(-100\%\) to \(100\%\). We assume a new randomized basket trial would follow, wherein the change in tumor volume from \(-100\%\) to \(100\%\) is the primary outcome. A negative sign indicates clinical benefit since it is hoped that the tumor shrinks from the baseline measurement due to the treatment. With \(\delta < 0\), the trial decision criterion expressed by (2.7) and (2.8) should be altered as (i) efficacious, if \(P(\theta_k < 0 | x_k, x_{(k)}) \geq \eta\) and (ii) futile, if \(P(\theta_k \geq \delta | x_k, x_{(k)}) \geq \zeta\).

We narrow the focus on seven of the originally investigated 21 cancer subtypes only, of which the mean responses for patients receiving neratinib \((E)\) were approximately \(\mu_{Ek} = -0.489, 0.226, -0.181, 0.293, 0.329, -0.275, -0.136\). We further assume that the mean responses on a control treatment embedded in the newly planned basket trial are \(\mu_{Ck} = 0\), and that patients within each subtrial have equal probability to receive \(E\) or \(C\); that is, \(R_k = 0.5\) for \(k = 1, \ldots, 7\).

Based on the published SUMMIT trial results (Hyman and others, 2018), we assume that the subtrial-specific variances are \(\sigma_k^2 = 0.587^2, 0.345^2, 0.380^2, 0.347^2, 0.344^2, 0.392^2, 0.392^2\). The pairwise discrepancy between the assumed outcome distributions, \(N(\mu_{Ek}, \sigma_k^2)\), can be quantified using, for example, the Hellinger distance (Dey and Birmiwal, 1994),

\[
w_{qk} = \left[1 - \sqrt{\frac{2\sigma_q \sigma_k}{\sigma_q^2 + \sigma_k^2}} \exp\left(-\frac{(\mu_{Eq} - \mu_{Ek})^2}{4(\sigma_q^2 + \sigma_k^2)}\right)\right]^{1/2}.
\]

By targeting \(\delta = -0.40\) and retaining the specification of other parameters from Section 3.1, \(n_k = 52.0, 17.3, 20.5, 17.0, 17.1, 22.5, 22.0\). If no borrowing is permitted, \(n_k = 53.3, 18.4, 22.3, 18.6, 18.3, 23.8, 23.8\). Only a small reduction in the sample sizes has been observed, largely because most of the values of \(w_{qk}\) are above 0.30.

4. Simulation study

4.1. Basic setting

Motivated by the SUMMIT trial, we consider the sample size planning of basket trials following the same data structure. That is, the basket trial would enroll \(n_1, \ldots, n_7\) patients to the respective subtrials, with \(R_k = 0.5\) in all \(K = 7\) subgroups, under six possible scenarios. Figure 1 visualizes the six simulation scenarios, where the location and length of lines suggest the distributions of \(X_{jk}, j = E, C\), while a larger...
bubble corresponds to a larger value of w_{qk}. Here, we have followed the specification of w_{qk} given in Section 3.2 to compute the pairwise Hellinger distance to characterize (in)commensurability and obtain w_{qk} for the levels of borrowing/discounting strength. Scenarios 4 and 6 correspond to two special cases of the treatment being consistently effective (alternative hypotheses) and consistently futile (null hypotheses), respectively. Both scenarios feature perfect commensurability; that is, the outcomes X_{iE_k} and X_{iC_k} have their respective, same distribution across subtrials, so all $w_{qk} = 0$. Scenario 5 represents a mixed null situation, where $\theta_k = 0$ holds for four of the subtrials only. The other scenarios are constructed to reflect various levels of data incommensurability. Exact configurations of these simulation scenarios, that is, values of μ_{E_k} along with all $\mu_{C_k} = 0$ as well as the subtrial-specific variances σ^2_k, are listed in Table S1 of the Supplementary material available at Biostatistics online.

We retain the prior specification and the probability thresholds unchanged from Section 3. Table 1 thus gives the subtrial sample sizes required to reach a decisive conclusion of either E is superior to or not better than C by $\delta = -0.4$ using the respective sample size formulae. Because no w_{qk} has been set to 1 in any scenario, the sample sizes n_k computed from the approach of borrowing are generally smaller than n^0_k from the approach of no borrowing. Scenario 1 was constructed from the illustrative data example in
Bayesian sample size determination in basket trials

Table 1. The required subtrial sample sizes, computed using the proposed methodology or the approach of no borrowing, to detect a difference of $\delta = -0.4$, when setting $\eta = 0.95$, $\zeta = 0.80$

Scenario	$k = 1$	$k = 2$	$k = 3$	$k = 4$	$k = 5$	$k = 6$	$k = 7$	Total	
1	n^0_k (No borrowing)	53.2	18.4	22.3	18.6	18.3	23.7	23.7	178.2
	n_k (Proposed)	52.0	17.3	20.5	17.0	17.1	22.5	22.0	168.4
2	n^0_k (No borrowing)	53.2	18.4	22.3	18.6	18.3	23.7	23.7	178.2
	n_k (Proposed)	50.6	15.7	17.4	15.1	15.6	18.9	19.6	152.9
3	n^0_k (No borrowing)	46.4	46.4	46.4	46.4	46.4	46.4	46.4	324.8
	n_k (Proposed)	23.3	32.0	22.6	24.4	32.9	23.3	30.2	188.7
4	n^0_k (No borrowing)	46.4	46.4	46.4	46.4	46.4	46.4	46.4	324.8
	n_k (Proposed)	8.9	8.9	8.9	8.9	8.9	8.9	8.9	62.3
5	n^0_k (No borrowing)	53.2	18.4	22.3	18.6	18.3	23.7	23.7	178.2
	n_k (Proposed)	50.8	14.3	20.4	14.5	14.2	22.1	20.7	157.0
6	n^0_k (No borrowing)	46.4	46.4	46.4	46.4	46.4	46.4	46.4	324.8
	n_k (Proposed)	8.9	8.9	8.9	8.9	8.9	8.9	8.9	62.3

Section 3.2. Since relatively large values have been chosen for w_{qk}, only a slight decrease in sample sizes is observed. Unlike Scenario 1 that displays divergent effects, Scenario 2 is featured with a higher degree of commensurability that E has an enhanced benefit over C in all subtrials. A smaller trial sample size is then sufficient. Scenario 3 has all the variances $\sigma^2_k = 0.3$. Consequently, n^0_k, based on the approach of no borrowing, are solved to be equal to 46.4 for all subtrials. Whereas, using the proposed methodology, the sample sizes for subtrials 1, 3, 4, and 6 are smaller, as these are recognized to be more commensurate between themselves than with the other three. A similar explanation can be given to Scenario 5: subtrials 2, 4, and 5 have greater sample size savings because the corresponding w_{qk} takes smaller values. Scenarios 4 and 6 represent the situations of perfect commensurability. With all $w_{qk} = 0$, a substantial reduction in the subtrial sample sizes is observed.

In the numerical evaluation below, we simulate the outcomes $X_{ijk}, j = E, C$, from $N(\mu_{Ek}, \sigma^2_k)$ and $N(\mu_{Ck}, \sigma^2_k)$ for patient $i = 1, \ldots, n_k$, within subtrial $k = 1, \ldots, 7$. For each scenario, 100 000 replicates of the basket trials are simulated to fit:

- the proposed Bayesian model, which yields the posterior distributions for θ_k in the form of (2.6), with

$$d_{\theta_k} = \frac{\sigma^2_k}{(n_k R_k (1 - R_k))} \cdot \sum_q p_{qk} \lambda_q + (\bar{x}_{Ek} - \bar{x}_{Ck}) \cdot \sum_q p_{qk} \xi^2_{qk} \sum_q p_{qk} \xi^2_{qk} + \frac{\sigma^2_k}{(n_k R_k (1 - R_k))},$$

- a Bayesian stand-alone analysis model for no borrowing of information. Operational priors, that is, $N(m_{0k}, s^2_{0k})$, are placed on each θ_k. This leads to the posterior distributions for θ_k based on x_k alone, which has the same form as (2.3), with the subscript q replaced by k. We set all $m_{0k} = 0$ in the simulations.
We summarize the frequency of simulated trials concluding that E is either efficacious or futile, based on the 100 000 replicates per scenario and model. Figure 2 depicts the percentages of (sub)trials declaring effectiveness of E and those declaring futility. Wherever the lengths of bars sum up to 100%, this means the study is planned with an adequate sample size for decisive decision-making. As we can observe, collecting data from n_1, \ldots, n_7 patients to fit the proposed analysis model ensures 100% of the (sub)trials to conclude that E is either superior to or not better than C by δ. Whereas, it is not the case (i.e., all below 100%) if implementing the Bayesian model for no borrowing, since larger sample sizes (i.e., n^0_k in Table 1) would be required to ensure the same level of posterior distribution informativeness for the trial decision.

In Scenarios 1 and 2 where n_k and n^0_k are comparable, these two Bayesian models yield comparable proportions of (sub)trials with a decisive trial decision. Yet in Scenarios 4 and 6, where substantial sample size savings are made, a disparity is observed, because the posterior distributions for θ_k based on x_k alone are far less informative than those based on x_1, \ldots, x_K.

In Scenarios 2 and 3, E is potentially superior to C yet the magnitude tends to be smaller than desired on average. Only subtrial 1 has a mean treatment effect greater than δ, so about 91.2% of the simulated (sub)trials have declared E being effective. By contrast, subtrials 2 and 5 have mean treatment effects closest to 0 and δ, respectively. Therefore, subtrial 2 has higher chance to declare futility than the effectiveness of E, but subtrial 5 is on the contrary. Scenario 4 mimics the borderline case where the mean treatment effect just has the size of δ. Using the proposed methodology, about 82.1% of the simulated (sub)trials have favored E for effectiveness in all seven subtrials. These subtrialwise true positive rates are about equal to our chosen threshold $\zeta = 0.80$. Scenario 5 assumes a mixture of subtrial-specific treatment effects with $\theta_k = 0$ or $\geq \delta$. Referring to subtrials 2, 4, 5, and 7, less than 5% of the simulated trials conclude effectiveness erroneously. The two Bayesian models yield similar operating characteristics in this scenario, as the computed n_k and n^0_k were close. In Scenario 6, the proportion of incorrect decision of effectiveness is maintained below 5% for all subtrials using the proposed methodology. Unsurprisingly, using the approach of no borrowing to analyze the basket trial from only 62.3 patients has a much lower chance of obtaining a definitive conclusion. The overall false positive rate (i.e., probability of incorrectly rejecting at least one subtrial that has true $\theta_k = 0$), based on the proposed methodology, is 0.150 for Scenario 5 and 0.054 for Scenario 6. These increase to 0.192 and 0.346, respectively, if the approach of no borrowing is implemented instead. This is unsurprising because the sample sizes have been computed to control the error rate at the subtrial level. For strong control of the overall error rate, multiplicity adjustment such as the Bonferroni procedure is required. After the correction, one can still expect a benefit from borrowing information.

Focusing on Scenarios 4–6 for the true positive and false positive rates at the subtrial levels, the proportions are not exactly 80% or 5% because of the simulation randomness. Additional simulations have been carried out for homoscedastic scenarios by varying the value of σ^2_k. Figure 3 shows (i) the subtrialwise sample sizes, n_k, determined based on our sample size formula in (2.11), and correspondingly, (ii) the subtrialwise true positive and false positive rates based on the simulated 100 000 replicates of basket trials. Each set of the additional simulations yield seven points (for $K = 7$ subtrials), which congregate at the levels around $\zeta = 0.80$ or $1 - \eta = 0.05$. In summary, the proposed methodology can lead to the control of error rates.

We have also performed a sensitivity analysis to understand the effect of misspecified values of w_{qk}. Table S2 of the Supplementary material available at Biostatistics online reveals that the proposed methodology is reasonably robust to the misspecification of w_{qk}. Nonetheless, care is needed when the value of w_{qk} in the analysis deviates too far from that used in the design. When w_{qk} is set to a larger value in the analysis than in the design (i.e., less borrowing is implemented than planned), a smaller percentage of trials conclude with a decisive decision. Whereas, a smaller value of w_{qk} would yield a more
Bayesian sample size determination in basket trials

Scenario 1

Subtrial	Effectiveness (%)	Futility (%)
	100	50

Futility (%)	100

Scenario 2

Subtrial	Effectiveness (%)	Futility (%)
	100	50

Futility (%)	100

Scenario 3

Subtrial	Effectiveness (%)	Futility (%)
	100	50

Futility (%)	100

Scenario 4

Subtrial	Effectiveness (%)	Futility (%)
	100	50

Futility (%)	100

Scenario 5

Subtrial	Effectiveness (%)	Futility (%)
	100	50

Futility (%)	100

Scenario 6

Subtrial	Effectiveness (%)	Futility (%)
	100	50

Futility (%)	100

Fig. 2. Percentage of (sub)trials that conclude E is efficacious (the left half of each plot) or not better than C by $\delta = -0.4$, that is, observing a shrinkage of 40% in the tumor volume (the right half of each plot). True subtrial-specific treatment effects, $\theta_k = \mu_{Ek} - \mu_{Ck}$, have been indicated in a second y-axis.

Informative posterior distribution, but this sometimes produces ambiguous conclusion of effectiveness or futility.

5. Discussion

The importance of choosing an appropriate sample size can never be overemphasized (Senn, 2007). Whilst basket trials have major infrastructural and logistical advantages, sophisticated statistical models are needed for the sample size planning to preserve the added efficiency. The most widely used approach to date is based on a Bayesian stand-alone analysis model, which does not support information sharing.
across subtrials with commensurate treatment effects. Consequently, the majority of basket trials recruit a higher sample size than required. This not only causes a waste of resources but could sometimes be unethical for exposing more patients than is necessary to a treatment that is yet to be fully approved (Altman, 1980). To realize the promise of basket trials, this article establishes a closed-form solution to the simultaneous determination of subtrial sample sizes. The simulation study shows that the proposed methodology allows for a smaller trial sample size wherever $0 \leq w_{qk} < 1$, without undermining the chance of detecting if there exists a clinically relevant difference between the experimental treatment and the control.

For deriving our sample size formulae, we adopted the Bayesian decision-making scheme elaborated by Whitehead and others (2008). Specifically, it involves two probability thresholds η and ζ for reaching a decisive statement on the treatment’s effectiveness or futility. In our numerical illustration, we set $\eta = 0.95$ and $\zeta = 0.80$ because these probability quantities yield n^0_k, obtained based on the approach of no borrowing, comparable to the frequentist solution of sample sizes with $\alpha = 0.05$ and $\beta = 0.20$. Other choices may certainly be feasible: there is no conventional level to set these probability thresholds. In practice, these quantities might be difficult to justify: fixing η to, for example, 0.95 might mean a considerable increase in sample size compared to 0.90. Since the sample sizes also depend on other parameters, we recommend the user generates plots for their cases following the pattern of our Figure S2 of the Supplementary material available at *Biostatistics* online.

Two sets of key parameters to implement the proposed methodology are the variances σ_k^2 and the levels of pairwise discounting w_{qk}. Similar to the widely used frequentist formulae (Chow and others, 2007), an increase in σ_k^2 would mean that larger sample sizes are needed to maintain the same level of precision in data. We have restricted our focus on known variances throughout since this is common in conducting clinical trials for most circumstances. Appropriate values for σ_k^2 to compute the subtrial sample sizes can be informed by pilot data or information from relevant investigations. If retaining σ_k^2 as unknown parameters,
Bayesian sample size determination in basket trials

Priors about their magnitude would be required. Subtrial sample sizes would then be sought by controlling the average property of posterior interval probabilities of θ_k with respect to 0 and δ, since these nuisance parameters need to be integrated out from the posterior. Zheng and others (2022) derived sample size formulae with unknown σ^2_k for a relevant context. Although different decision criteria were considered, one could follow their methodology to obtain the marginal posterior distributions, for which external information on σ^2_k may further be incorporated. For wider applications, we have extended the proposed methodology for basket trials using a binary (in both the randomized controlled and single-arm settings) or time-to-event outcome; see Sections C–E of the Supplementary material available at Biostatistics online for the corresponding sample size formulae. In the meanwhile, we note there are limitations; for example, the censoring assumptions for time-to-event data are greatly simplified. We hope this work will stimulate further research within this Bayesian decision framework.

In the present work, data are supposed to be analyzed after the completion of all subtrials. However, in practice, certain subtrials may take much longer to complete recruitment due to low prevalence. One could (i) adopt a “first (subtrials) complete, first analyzed” principle, or (ii) alter the constraint for simultaneously solving n_1, \ldots, n_K, for example, by making them proportional to the prevalence of respective target subpopulations, whilst maintaining an overall statistical power or decision accuracy. For strategy (i), more borrowing would be possible from subtrials that complete faster to those that complete slower. With strategy (ii), all subtrials may finish about the same time to yield a joint data analysis. We should note that it is not obvious if either strategy leads to a substantial increase in the total sample size.

When borrowing of information is permitted, a reduced sample size can be expected by setting $w_{qk} < 1$. The smaller the values of w_{qk}, the more borrowing is possible. The present methodology requires that these values be specified to reflect the pairwise (in)commensurability of subtrial data. This is especially feasible when a pilot study has been conducted. More details about the practical implementation, particularly the specification of parameters, are available in Section F of the Supplementary material available at Biostatistics online. Throughout, we have elaborated the methodology concerning a prespecified magnitude relating to the effect size, δ, to find subtrial sample sizes. Extending the calculation to consider subtrial-specific effective sizes, say, δ_k, is straightforward. A smaller value of δ_k would indicate that a larger n_k is needed, if all other parameters are held fixed. For practical implementation, the user may substitute the corresponding argument (currently as a single value) by a vector in the openly available software.

Our sensitivity analysis in Section G of the Supplementary material available at Biostatistics online suggests the proposed methodology is reasonably robust against misspecification of w_{qk}. Nevertheless, when the values deviate too far from the truth, the resulting sample sizes would not reflect what is needed to achieve the trial’s objectives. One avenue for future research would therefore be developing methodology for sample size reassessment in basket trials. Practitioners may start with rather conservative choices of w_{qk} assuming limited borrowing and re-estimate w_{qk} using accumulating data from the ongoing trial at interims. This, however, bears the risk of inflated error rates, since the observed early-stage data are used to reassess the appropriate levels for borrowing. As rightly noted by the Associate Editor, one could incorporate the uncertainty in w_{qk} for such updates within a Bayesian framework. Our subsequent work will investigate sample size reassessment in basket trials whilst avoiding the inflation of error rates. The proposed methodology may also be extended to enable mid-course adaptations. For instance, the basket trial will begin with a few subsets of interest and then restrict enrollment to the ones wherein patients benefit satisfactorily from the treatment based on an interim analysis. Boundaries for the early stopping of certain subsets must be carefully defined to protect the overall error rates. With a reduction in the number of subsets, the synthesis weights p_{qk} should be updated to satisfy the constraint of $\sum_q p_{qk} = 1$ for the late stage(s).
SOFTWARE

All statistical computing and analyses were performed using the software environment R version 4.0.3. Programming code for implementing the sample size formulae and reproducing the numerical results is available at https://github.com/haiyanzheng/BasketTrialsSSD.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGMENTS

The authors are thankful to the Associate Editor and three anonymous reviewers for carefully reading the manuscript and giving very constructive comments.

Conflict of Interest: None declared.

FUNDING

This work was supported by Cancer Research UK through Dr Zheng’s Population Research Postdoctoral Fellowship (RCCPDF\100008). T.J. and P.M. received funding from the UK Medical Research Council (MC_UU_00002/14). This report is independent research supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC-1215-20014) and the NIHR Advanced Fellowship (NIHR300576 to P.M.). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care (DHSC).

REFERENCES

ALTMAN, D. G. (1980). Statistics and ethics in medical research: III How large a sample? BMJ 281, 1336–1338.
ARONSON, S. AND REHM, H. (2015). Building the foundation for genomics in precision medicine. Nature 526, 336–342.
BERRY, S. M., BROGLO, K. R., GROSHEN, S. AND BERRY, D. A. (2013). Bayesian hierarchical modeling of patient subpopulations: efficient designs of phase II oncology clinical trials. Clinical Trials 10, 720–734.
CHEN, N. AND LEE, J. J. (2020). Bayesian cluster hierarchical model for subgroup borrowing in the design and analysis of basket trials with binary endpoints. Statistical Methods in Medical Research 29, 2717–2732.
CHOW, S. C., WANG, H. AND SHAO, J. (2007). Sample Size Calculations in Clinical Research, 2nd edition. Chapman & Hall/CRC Biostatistics Series. New York, NY: Taylor & Francis.
CHU, Y. AND YUAN, Y. (2018). BLAST: Bayesian latent subgroup design for basket trials accounting for patient heterogeneity. Journal of the Royal Statistical Society Series C 67, 723–740.
DENNIS, J. E. AND SCHNABEL, R. B. (1983). Newton’s method for nonlinear equations and unconstrained minimization. In: Dennis, J. E. and Schnabel R. B. (editors), Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics, Chapter 5. Englewood Cliffs, NJ: Prentice-Hall.
DEY, D. K. AND BIRMIWAL, L. R. (1994). Robust Bayesian analysis using divergence measures. Statistics & Probability Letters 20, 287–294.
EISENHAUER, E. A., THERASSE, P., BOGAERTS, J., SCHWARTZ, L. H., SARGENT, D., FORD, R., DANCEY, J., ARBUCK, S., GWYTHHER, S., MOONEY, M. and others (2009). New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). European Journal of Cancer 45, 228–247.
GOLDBERG, M. C. (2013). Cantab. In: Volkmar, F. R. (editor), Encyclopedia of Autism Spectrum Disorders. New York, NY: Springer, pp. 519–522.
Bayesian sample size determination in basket trials

GRAYLING, M. J., BIGIRUMURAME, T., CHERLIN, S., OUMA, L., ZHENG, H. AND WASON, J. M. S. (2021). Innovative trial approaches in immune-mediated inflammatory diseases: current use and future potential. *BMC Rheumatology* **5**, 21.

GRAYLING, M. J., DIMAIRO, M., MANDEKAR, S. J. AND JAKI, T. F. (2019). A review of perspectives on the use of randomization in Phase II Oncology Trials. *JNCI: Journal of the National Cancer Institute* **111**, 1255–1262.

GRINSTstead, C. M. AND SNELL, J. L. (1997). *Introduction to Probability*, Minneapolis, MN: Open Textbook Library. American Mathematical Society.

HOBBS, B. P., CARLIN, B. P., MANDREKAR, S. J. AND SARGENT, D. J. (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. *Biometrics* **67**, 1047–1056.

HOBBS, B. P. AND LANDIN, R. (2018). Bayesian basket trial design with exchangeability monitoring. *Statistics in Medicine* **37**, 3557–3572.

HOETING, J. A., MADIGAN, D., RAFTERY, A. E. AND VOLINSKY, C. T. (1999). Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors. *Statistical Science* **14**, 382–417.

HYMAN, D. M., PIHA-PAUL, S. A., WON, H., RODON, J., SAURA, C., SHAPIRO, G. I., JURIC, D., QUINN, D. I., MORENO, V., DOGER, B. and others. (2018). HER kinase inhibition in patients with HER2-and HER3-mutant cancers. *Nature* **554**, 189–194.

JIN, J., LIU, Q., ZHENG, W., LIN, T., GAO, L. AND DONG, Y. (2020). A Bayesian method for the detection of proof of concept in early phase oncology studies with a basket design. *Statistics in Biosciences* **12**, 167–179.

KIM, E. S., HERBST, R. S., WISTUBA, I. I., LEE, J. J., BLUMENSCHEIN, G. R., TSAO, A., STEWART, D. J., HICKS, M. E., ERASMUS, J., GUPTA, S. and others. (2011). The BATTLE trial: personalizing therapy for lung cancer. *Cancer Discovery* **1**, 44–53.

LIU, R., LIU, Z., GHADESSI, M. AND VONK, R. (2017). Increasing the efficiency of oncology basket trials using a Bayesian approach. *Contemporary Clinical Trials* **63**, 67–72.

MCINNES, I. B. AND GRAVALLESE, E. M. (2021). Immune-mediated inflammatory disease therapeutics: past, present and future. *Nature Reviews Immunology* **21**, 680–686.

MIRNEZAMI, R., NICHOLSON, J. AND DARZI, A. (2012). Preparing for precision medicine. *New England Journal of Medicine* **366**, 489–491.

MORGANTI, S., TARANTINO, P., FERRARO, E., D’AMICO, P., DUSO, B. A. AND CURIGLIANO, G. (2019). Next generation sequencing (NGS): a revolutionary technology in pharmacogenomics and personalized medicine in cancer. In: Ruiz-Garcia, E. and Astudillo-de la Vega, H. (editors), *Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics*. Cham: Springer International Publishing, pp. 9–30.

NEUENSCHWANDER, B., WANDEL, S., ROYCHOUDHURY, S. AND BAILEY, S. (2016). Robust exchangeability designs for early phase clinical trials with multiple strata. *Pharmaceutical Statistics* **15**, 123–134.

PITZALIS, C., CHOE, E. H. S. AND BUCH, M. H. (2020). Transforming clinical trials in rheumatology: towards patient-centric precision medicine. *Nature Reviews. Rheumatology* **16**, 590–599.

PRASAD, V. AND OSERAN, A. (2015). Do we need randomised trials for rare cancers? *European Journal of Cancer* **51**, 1355–1357.

PSIODA, M. A., XU, J., JIANG, Q., KE, C., YANG, Z. AND IBRAHIM, J. G. (2021). Bayesian adaptive basket trial design using model averaging. *Biostatistics* **22**, 19–34.

RATAIN, M. J. AND SARGENT, D. J. (2009). Optimising the design of phase II oncology trials: the importance of randomisation. *European Journal of Cancer* **45**, 275–280.
REDMAN, M. W., PAPADIMITRAKOPOULOU, V. A., MINICHIELLO, K. and others. (2020). Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): a biomarker-driven master protocol. *The Lancet Oncology* **21**, 1589–1601.

RENFRO, L. A. AND SARGENT, D. J. (2017). Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. *Annals of Oncology* **28**, 34–43.

SCHORK, N. J. (2015). Personalized medicine: time for one-person trials. *Nature* **520**, 609–611.

SENN, S. (2007). Determining the sample size. In: Senn, S. and Barnett, V. (editors), *Statistical Issues in Drug Development*, 2nd edition. West Sussex, England: Wiley, pp. 195–212.

TAO, J. J., SCHRAM, A. M. AND HYMAN, D. M. (2018). Basket studies: redefining clinical trials in the era of genome-driven oncology. *Annual Review of Medicine* **69**, 319–331.

THALL, P. F., WATHEN, J. K., BEKELE, B. N., CHAMPLIN, R. E., BAKER, L. H. AND BENJAMIN, R. S. (2003). Hierarchical Bayesian approaches to phase II trials in diseases with multiple subtypes. *Statistics in Medicine* **22**, 763–780.

WHITEHEAD, J., VALDÉS-MÁRQUEZ, E., JOHNSON, P. AND GRAHAM, G. (2008). Bayesian sample size for exploratory clinical trials incorporating historical data. *Statistics in Medicine* **27**, 2307–2327.

WOODCOCK, J. AND LAVANGE, L. M. (2017). Master protocols to study multiple therapies, multiple diseases, or both. *New England Journal of Medicine* **377**, 62–70.

ZHENG, H., JAKI, T. AND WASON, J. M. S. (2022). Bayesian sample size determination using commensurate priors to leverage preexperimental data. *Biometrics*, 1–15. https://doi.org/10.1111/biom.13649.

ZHENG, H. AND WASON, J. M. S. (2022). Borrowing of information across patient subgroups in a basket trial based on distributional discrepancy. *Biostatistics* **23**, 120–135.

[Received October 27, 2021; revised July 22, 2022; accepted for publication July 29, 2022]