Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mini-symposium: COVID 19: The second year

Vaccines for COVID-19: Where do we stand in 2021?

Ketaki Sharma a,b, Archana Koirala a,b,c, Katrina Nicolopoulos a, Clayton Chiu a,b, Nicholas Wood a,b, Philip N. Britton b,d,*

a National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
b Sydney Medical School, The University of Sydney, NSW, Australia
c Department of Infectious Diseases, Nepean Hospital, Penrith, NSW, Australia
d Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, NSW, Australia

Educational aims

The reader will come to appreciate:

- Which COVID-19 vaccines are currently in use globally, how they have been distributed, and what is known about their effectiveness.
- The barriers to achieving global herd immunity against SARS-CoV-2, including inequitable access to vaccines and the emergence of variant strains.
- Current priorities for COVID-19 vaccine development and research, including variant-specific vaccines, age extension trials and mixed schedules.

ARTICLE INFO

Keywords:
COVID-19
SARS-CoV-2
Vaccines
COVID-19 vaccines

ABSTRACT

As of July 2021, over 3 billion doses of a COVID-19 vaccines have been administered globally, and there are now 19 COVID-19 vaccines approved for use in at least one country. Several of these have been shown to be highly effective both in clinical trials and real-world observational studies, some of which have included special populations of interest. A small number of countries have approved a COVID-19 vaccine for use in adolescents or children. These are laudable achievements, but the global vaccination effort has been challenged by inequitable distribution of vaccines predominantly to high income countries, with only 0.9% of people in low-income countries having received at least one dose of a COVID-19 vaccine. Addressing this inequity is of critical importance and will result in better control of SARS-CoV-2 globally. Other challenges include: the reduced protection from COVID-19 vaccines against some strains of SARS-CoV-2, necessitating the development of variant specific vaccines; and uncertainties around the duration of protection from vaccine-induced immunity.

Crown Copyright © 2021 Published by Elsevier Ltd. All rights reserved.

INTRODUCTION

As of early July 2021, over 181 million cases of COVID-19 and over 3.9 million deaths have been reported globally [1]. The impacts of the pandemic have been felt unequally around the world, with varying public health strategies leading to different epidemic trajectories [2]. Many countries are struggling with successive waves of COVID-19, and the goal of global elimination of SARS-CoV-2 has been abandoned and replaced with that of transition to endemicity.

A year ago, over 100 COVID-19 vaccines were under development, but none were approved for use [3]. Within 12 months several highly effective COVID-19 vaccines have achieved widespread use with over 3.04 billion doses administered, although unfortunately not equitably distributed. Of the global population, 23.4% have received at least one dose of a COVID-19 vaccine while only 0.9% of people in low-income countries have done so [4].

Other factors that will influence the success of the global COVID-19 vaccination effort include the duration of immunity provided by vaccination, vaccine effectiveness against variant strains...
of SARS-CoV-2, and the impact of vaccines on transmission. Additionally, rare but serious adverse events associated with specific COVID-19 vaccines have been identified since their widespread use, in one case resulting in limitations to use in several countries.

Vaccine Development

There are currently 105 COVID-19 vaccines in clinical trials, and 184 in pre-clinical development [5]. The majority of candidate vaccines target part or all of the SARS-CoV-2 spike protein. A variety of platform technologies are being studied, including protein subunit (32 candidates), viral vector (21 candidates), RNA (17 candidates), inactivated (16 candidates) and DNA (10 candidates). Only two live attenuated COVID-19 vaccines are in clinical trials, both in phase I.

mRNA nucleic acid vaccines and viral vector vaccines are newer technologies, and have been relatively fast to develop and manufacture, in part because developers required access only to the genome sequence of SARS-CoV-2 rather than physical samples of the virus. A programmatic limitation with mRNA vaccines has been their requirement for ultra-cold storage, making distribution logistically challenging. However, progress is being made; a phase I trial of a fridge-stable mRNA vaccine (mRNA-1283, Moderna) is now underway, and it is possible that lyophilised formulations will be available in the future [6,7].

Vaccines in Use

As of June 2021, 19 unique COVID-19 vaccines have regulatory approval in at least one country, as shown in Table 1. Most of these have provisional or emergency authorisation only, often on the basis of interim phase III trial results, and in some cases without any available published clinical trial results.

Six unique vaccines have received Emergency Use Listing (EUL) by the World Health Organization (WHO), and several others are currently under review [8]. WHO Emergency Use Listing is a prerequisite for COVAX Facility vaccine supply, COVAX being an initiative of the Coalition of Epidemic Preparedness Innovations (CEPI), the Global Vaccine Alliance (Gavi) and the WHO, focussed on accelerating the development and manufacture of COVID-19 vaccines and ensuring equitable access globally through a shared procurement mechanism.

Vaccine Efficacy and Effectiveness

Vaccine efficacy measures the proportionate reduction (relative risk reduction) of specific outcomes of interest among vaccinated persons compared to unvaccinated persons in “ideal” conditions, as in a phase III randomised controlled clinical trial. Vaccine effectiveness refers to the relative risk reduction of the same outcomes but in populations under real-world conditions, as in observational studies (phase IV studies). For several currently used COVID-19 vaccines, efficacy or effectiveness data are only available from interim analyses of phase III trials, or preprint publications.

Phase III results have been published or announced for 13 of the COVID-19 vaccines currently in use, with reported efficacy ranging from 50% to 95% for those with published data. Table 1 presents a summary of efficacy and effectiveness for the vaccines currently in use, including preprint or announced results, where published data are not available. Many COVID-19 vaccines show excellent efficacy against severe illness, even if efficacy against symptomatic illness is less impressive. Emerging evidence suggests that some COVID-19 vaccines also reduce the risk of asymptomatic illness, and therefore may reduce transmission of SARS-CoV-2.

The available phase IV effectiveness data generally correlate well with clinical trial findings, as shown in Table 1. This is reassuring since many countries are prioritising vaccinating population groups who are excluded or under-represented in clinical trials, such as older adults and people with medical co-morbidities, who may have reduced immune responses to vaccines.

In the absence of direct head-to-head studies, efficacy cannot yet be directly compared between different COVID-19 vaccines for a multitude of reasons, including differing settings, inclusion criteria and outcome definitions within the trials, and varying rates and dominant strains of SARS-CoV-2 in the countries where the trials were undertaken.

It is too early to know the duration of protection afforded by the currently available vaccines (or indeed by natural immunity). A correlate of protection (CoP) would facilitate more rapid evaluation of newer vaccines (including those focussed on variants, and in special populations), and of the need for and timing of vaccine booster doses. No CoP has yet been established, although neutralising antibody titres appear to be highly predictive of vaccine efficacy [9].

COVID-19 Vaccines in Children

The majority of children with COVID-19 have mild or asymptomatic illness, though severe illness has been described, and is more likely in children with co-morbidities or in infants aged under 3 months [10]. COVID-19 is also associated with a rare post-infectious syndrome called multisystem inflammatory syndrome (MIS-C) or Paediatric Multisystem Inflammatory Syndrome – Temporally Associated with SARS-CoV-2 (PIM-TS), which exclusively affects children and leads to intensive care admission in the majority of cases [11]. In addition to protection against these severe outcomes, vaccination of children will be a critical step in achieving herd immunity against SARS-CoV-2.

BNT162b2 (Pfizer; BioNTech) was the first COVID-19 to be approved in children (aged 12–15), initially in Canada and now in several other countries [12]. In an ongoing phase III trial of 2260 adolescents aged 12 to 15 years, BNT162b2 was shown to be safe and high effective (efficacy 100% (95% CI, 75.3 to 100)) [13]. A trial of this vaccine in children aged 6 months to 11 years has commenced [14]. More recently, Sinovac’s mRNA vaccine CoronaVac has been approved for use in children aged ≥3 years in China, on the basis of a phase I/II trial showing acceptable safety and strong immune responses in 100% of participants in the higher dose group [15,16].

Vaccine efficacy of 100% has been announced for Moderna’s mRNA-1273 in adolescents aged 12–17 years, and its approval in this age group is anticipated [17]. Moderna have also announced a trial in children aged 6 months to 12 years is planned [17].

VARIANTS

Multiple mutant strains of SARS-CoV-2 are circulating globally, some of which have been designated by the World Health Organization as ‘variants of interest’ or ‘variants of concern’ [18]. The latter (currently 4 identified) are associated with significant features such as increased transmissibility, increased virulence or decrease in effectiveness of public health measures or vaccines [18].

Table 2 summarises available data on the immunogenicity, efficacy or effectiveness of COVID-19 vaccines against the four variants of concern of SARS-CoV-2. Protection may be lower against some strains e.g. Beta, or B.1.351, first identified in South Africa. Few studies have reported on protection against severe illness or hospitalisation, however it is promising to note that AZD1222 (University of Oxford; AstraZeneca) and BNT162b2 both appear to provide excellent protection against hospitalisation due to the delta strain [19].
Vaccine	Use/Access*	Vaccine efficacy (95% CI)	Vaccine effectiveness (95% CI)	Special populations (95% CI)
mRNA VACCINES				
BNT162b2	WHO EUL	Symptomatic illness: 95% (90.3–97.6) [35]	Symptomatic illness: Israel – 94% (87–98) [36]	Adults ≥ 65 years: effectiveness 96.4% (95–97.0) [37] Children 12–15 years: efficacy 100% (75.3–100) [18]
Nucleoside modified mRNA encoding full length spike protein (stabilised in prefusion conformation)	COVAX	Israel – 97% (96–97.2) – [37] Israel – 93.0% (95%CI 92.6–93.4) [38] UK – 80% (95%CI 73 to 85%) [39] Severe illness: Qatar – 97.4% (92.2–99.5) [40] Israel – 92% (55–100) [36] Effectiveness in people with immunocompromise: Israel – 84% (19–100) [42] Israel – 71% (95%CI 37–87) [43] Immuneogenicity similar in pregnant vs non-pregnant women [44]		
Other names: Comirnaty, Tozinameran	Approved in 90 countries			
Developers: Pfizer, BioNTech, Fosun Pharma				
mRNA-1273	WHO EUL	Symptomatic illness: 94.1% (89.3–96.8) [45]	Symptomatic illness: USA (healthcare workers) – 90% (68–97) [46]	Adults ≥ 65 years: efficacy 86.4% (95% CI: 61.4–95.2%) [45] Children 12–17 years: efficacy 100% (press release) [17]
mRNA				
Other names: Spikevax, Elasomeran, COVID-19 Vaccine Moderna; TAK-919	COVAX	Severe illness: 100% (non-estimable) [45]		
Developer: Moderna	Approved in 54 countries			
VIRAL VECTOR VACCINES				
AZD1222	WHO	Symptomatic illness: 70.4% (54.8–80.6) [47];	Symptomatic illness: 79% (95% CI 65 to 88%) Hospitalisation: 85% (75–94) [41]	Adults ≥ 65 years: efficacy against symptomatic infection 100% (press release) [49]
Recombinant replication deficient ChAdOx1 adenoviral vector vaccine encoding full length spike protein	EUL	Symptomatic illness, with dose interval ≥ 12 weeks: 81.3% (68.3–91.2) [48]		
Other names: ChAdOx1_nCoV-19, COVID-19 Vaccine AstraZeneca, Vaxzevria, Covishield	Approved in 161 countries	Severe illness: 100% (press release) [49]		Adults ≥ 80 years: effectiveness against symptomatic infection after a single dose 80.4% (95% CI 36.4–94.5) [51]
Developers: University of Oxford, AstraZeneca Serum Institute of India (for Covishield)				
Ad26.COV2.S	WHO EUL	Symptomatic infection: 66.9% (59.1–73.4) at ≥ 14 days and 66.5 (55.5–75.1) at ≥ 28 days after single dose [52]	Symptomatic illness ≥ 14 days after single dose: 76.7% (30.3–95.3) [54]	Adults ≥ 65 years: efficacy against moderate-severe infection 68.6% (38.6–85.1) [55]
Recombinant replication deficient adenovirus type 26 vector encoding the full length spike protein	COVAX	Severe-critical illness: 85.4% (54.2 to 96.9) [52]		
Other names: Ad26COVS1, JNJ-78435735	Approved in 52 countries	Asymptomatic infection: 74.2 (47.13–88.57) (not published) [53]		
Developer: Janssen Pharmaceutical Companies				
Vaccine	Use/Access*	Vaccine efficacy (95% CI)	Vaccine effectiveness (95% CI)	Special populations (95% CI)
---------	-------------	---------------------------	-----------------------------	-------------------------------
Johnson & Johnson	Africa Regulatory Taskforce Endorsed			
Ad5-nCoV	Approved in 8 countries	Symptomatic illness 65–69% (press release) [56]	Not published or announced	
Replication deficient adenovirus type 5 vector encoding full length spike protein				
Trade names: Convidencia Developer: CanSinoBIO		Severe illness: 90–95% (press release) [56]		
Sputnik V	Approved in 69 countries	Symptomatic illness: 91.6% (85.6–95.2) [57]	Symptomatic illness: Russia – 97.6% (press release) [58]	Adults > 60 years: efficacy 91.8% (67.1–98.3) [57]
Non-replicating adenovirus types 5 and 26 vectors (heterologous)			UAE – 97.8% (press release) [59]	
Other names: Gam-COVID-Vac, rAd26-S + rAd5-S Developer: The Gamaleya National Center		Severe illness: 100% (94.4–100) [57]	Bahrain – 94.3% (press release) [60]	
Sputnik Light	Approved in 10 countries			Symptomatic illness: 78.6–83.7% (press release – Argentina) [61]
Non-replicating adenovirus vector type 26				
Other names: Gam-COVID-Vac Developer: The Gamaleya National Center				
INACTIVATED VACCINES	WHO EUL	Symptomatic illness: 78.1% (64.8–86.3%) [62]	Not published or announced	
BBIBP-CorV	COVAX			
Inactivated whole virus with aluminium hydroxide adjuvant	Approved in 55 countries	Severe illness: 100% (non-estimable)		
Other names: SARS-CoV-2 Vaccine (Vero Cell) Developers/Manufacturers Sinopharm, Beijing Institute of Biological Products				
COVID	Approved in 1 country, in use in 2 countries	Symptomatic illness: 72.8% (95% CI: 58.1–82.4)	Not published or announced	
Inactivated whole virus with aluminium hydroxide adjuvant				
Other names: Inactivated (Vero cell) Developer: Sinopharm, Wuhan Institute of Biological Products				
CoronaVac	WHO EUL	Symptomatic illness:		
Inactivated whole virus Developer: Sinovac Biotech	Approved in 33 countries			
Brazil – 50.7% (36.0–62.0) [63]	50.7% (95% CI: 33.3–62.5%) [63]			
Indonesia – 65.3% (20.0–85.1) [64] Turkey – 83.5% (65.4–92.1) [64]	Symptomatic infection (not published): 87% (65–90) [64]			
Severe illness: 100% (16.9–100.0) [63]	Hospitalisation (not published): 85% (83–87) [64]			
The next phase of COVID-19 vaccine development involves variant-specific and multi-valent COVID-19 vaccines, which may be utilised as booster doses to those already vaccinated or for primary vaccination courses. Candidate vaccines targeting the Beta (B.1.351) strain include BNT162b2 (Pfizer; BioNTech), currently in phase III trial, mRNA-1273 (Moderna) and the bivalent mRNA-1273.211 (Moderna), both registered to enter phase III trials this year.

HETEROLOGOUS (MIXED) SCHEDULES

Heterologous schedules involving different vaccines for the initial and booster doses have been required for a variety of reasons, including global supply constraints and safety issues relating to the vaccine used for the first dose.

Table 1 (continued)

Vaccine	Use/Access*	Vaccine efficacy (95% CI)	Vaccine effectiveness (95% CI)	Special populations (95% CI)
Covaxin	Approved in 9 countries	Symptomatic illness: 78% (95%CI: 61–88%) (press release) [66,67] Severe illness: 100% (95%CI: 60–100%) (press release) Asymptomatic infection: 70% (no confidence intervals provided) (press release)	COVID-19 related death: 80% (95%CI: 73–86%) (not published) [64]	Not published or announced
Other names: BBV152				
Developer: Bharat Biotech				
QazVac	Approved in 1 country	Not published or announced		Not published or announced
Other names: QazCovid-in				
Developer: Kazakhstan RBSP				
KoviVac	Approved in 1 country	Not published or announced		Not published or announced
Developer: Chumakov Center				
SARS-CoV-2 Vaccine (Vero Cells)	Approved in 1 country	Not published or announced		Not published or announced
Other names: Keweike Developer:				
Mindai Biotechnology CO				
COVIran Barakat	Approved in 1 country	Not published or announced		Not published or announced
Developer: Shila Pharmed Industrial Co.				
PROTEIN SUBUNIT				
Zifivax	Approved in 2 countries	Not published or announced		Not published or announced
Other names: RBD-Dimer/ZE2001				
Developer: Anhui Zhifei Longcom				
EpiVacCorona	Approved in 2 countries	Not published or announced		Not published or announced
Developer: FBRI				
Soberana 02/Soberana Plus	In use in 1 country	Symptomatic illness after 2 of 3 doses: 62% (press release) [68]		Not published or announced
Protein subunit of SARS-CoV-2				
spike RBD chemically conjugated				
to tetanus toxoid				
Other names: FINLAY-FR-2				
Developer: Institudo Finlay de				
Vacunas				
Abdala	In use in 1 country	Symptomatic illness: 92.28% (press release) [69]		Not published or announced
Protein subunit adjuvanted with				
aluminium hydroxide				
Other names: CIGB-66				
Developer: Center for Genetic				
Engineering and Biotechnology				
Source: Nicole E. Basta & Erica E.M. Moodie on behalf of the McGill University COVID19 Vaccine Tracker Team. Available at covid19.trackvaccines.org.				

Early safety and immunogenicity data of such schedules are emerging. A study involving 363 participants aged ≥ 50 years in the UK showed an increase in systemic reactogenicity (i.e. fever, chills, fatigue, headache, joint pain, malaise, and muscle ache) after the second dose in participants receiving a dose each of AZD1222 and BNT162b2 4 weeks apart, compared to homologous schedules, and regardless of which vaccine was given first. Reassuringly, these symptoms were short lived [20]. In a follow up preprint paper, the authors reported that regardless of which vaccine was given first, a mixed schedule resulted in a higher geometric mean concentration (GMC) of anti-spike IgG at 28 days post-boost, compared to a homologous schedule of AZD1222 [21]. A German preprint study reported no difference in reactogenicity and equal/improved immunogenicity in 26 individuals aged 25–46 given AZD1222 followed by BNT162b2 8 weeks apart compared to two doses of BNT162b2 [22]. These early data suggest that mixed schedules...
Table 2
COVID-19 vaccine immunogenicity, efficacy and effectiveness against variant strains of SARS-CoV-2.

VACCINE	Alpha (B.1.1.7) First identified in UK	Beta (B.1.351) First identified in South Africa	Gamma (P.1) First identified in Brazil	Delta (B.1.617.2) First identified in India
mRNA VACCINES	Effectiveness against symptomatic infection 89.3% (95% CI 85.9–92.3) [40]	Effectiveness against symptomatic infection 75% (95% CI 70.5–78.9) [40]	In ≥ 70 years old single dose: Effectiveness against symptomatic illness: 61% (95% CI 45–72) [Study included both BNT162b2 and mRNA-1273; 85% received BNT162b2] [71] Neutralising antibody reduced 2.6-fold vs an early isolate (p < 0.0001) [74]	Effectiveness against symptomatic infection 87.9% (95% CI 78.2–93.2) [70] Effectiveness against PCR-confirmed infection: 79% (95% CI 75–82) [76] Effectiveness against hospitalisation: 90% (86–99) [77] Neutralising antibody reduced 4.9-fold compared to wild-type (95% CI 5.0–6.9) [72] Neutralising antibody titres reduced 2.5-fold compared to early strain [78]
BNT162b2 Developer: Pfizer/BioNTech	Effectiveness against symptomatic infection 93.4% (95% CI 90.4–95.5) [70] In ≥ 70 years old single dose: Effectiveness against symptomatic illness: 67% (95% CI 57–75) [71] Neutralising antibody 2.6-fold reduced vs wild-type (95% CI 2.2–3.1) [72]	Neutralising antibody reduced 6.4-fold vs wild-type [79]	Neutralising antibody reduced 3.5-fold vs wild type [79] Neutralising antibody reduced 4.8-fold compared to early strain [75]	
mRNA-1273 Developer: Moderna	Neutralising antibody reduced 1.2-fold vs wild-type [79]	Neutralising antibody reduced 6.4-fold vs wild-type [79]	Neutralising antibody reduced 3.5-fold vs wild type [79] Neutralising antibody reduced 4.8-fold compared to early strain [75]	
VIRAL VECTOR VACCINES	Efficacy against symptomatic infection with B.1.1.7: 70.4% (95% CI 43.6–84.5) [50] Efficacy against asymptomatic infection: 28.9% (95% CI: −77.1–71.4) [50] Efficacy against moderate-to-severe infection: 64.0% (41.2–78.7) [52] Efficacy against severe infection: 81.7% (46.2–95.4) [52] Neutralising antibody 5-fold reduced vs wild-type [81]	Efficacy against symptomatic infection 10.4% (95% CI, 76.8 to 54.8) [80] Neutralising antibody reduced 9-fold vs an early isolate (p < 0.0001) [73]	Neutralising antibody reduced 2.9-fold vs an early isolate (p < 0.0001) [74]	Effectiveness against symptomatic infection 59.8% (95% CI 28.9–77.3) [70] Effectiveness against PCR-confirmed infection: 60% (95% CI 53–66) [76] Effectiveness against hospitalisation: 92% (75–97) [77] Neutralising antibody titres reduced 4.3-fold compared to early strain [78]
AZD1222 Developers: University of Oxford, AstraZeneca	Neutralising activity decreased 9-fold vs an early isolate (p < 0.0001) [74]	Neutralising activity decreased 6.4-fold compared to wild-type [79]	Neutralising antibody reduced 3.3-fold reduced vs wild-type [81]	
Ad26.COV2.S Developer: Janssen Pharmaceutical Companies (Johnson & Johnson)	Neutralising activity compared to wild-type strain [82]	Neutralising activity reduced by median 6.8-fold compared to wild-type [82]	Neutralising activity reduced by a factor of 5 [84]	
Ad5-nCoV Developer: CanSino	No significant difference in neutralising activity compared to wild-type strain [82]	Neutalising activity reduced by a factor of 0.5 [84]	Neutralising antibodies decreased 1.6-fold compared to wild-type strain [85]	
Sputnik V Developer: The Gamaleya National Center	Neutralising activity decreased 1.21-fold compared to wild-type [86] Neutralising activity reduced by a factor of 0.5 [84]	Neutralising activity decreased 5.27-fold compared to wild-type [86] Neutralising activity decreased by a factor of 0.3 [84]	Neutralising activity decreased 3.92-fold compared to wild-type [86] Effectiveness against symptomatic illness 49.6% (95% CI 11.3–71.4) and In ≥ 70 years old: Effectiveness against symptomatic illness: 41.6% (26.9–53.3) [88]	
INACTIVATED VACCINES	Neutralising activity decreased 1.21-fold compared to wild-type [86] Neutralising activity reduced by a factor of 0.5 [84]	Neutralising antibodies decreased 1.6-fold compared to wild-type strain [85]	Neutralising activity decreased 3.92-fold compared to wild-type [86] Effectiveness against symptomatic illness 49.6% (95% CI 11.3–71.4) and In ≥ 70 years old: Effectiveness against symptomatic illness: 41.6% (26.9–53.3) [88]	
SARS-CoV-2 Vaccine (Vero Cell) Developer: Sinopharm/BIBP	No significant difference in neutralising activity compared to wild-type [84]	Neutralising antibodies decreased 1.6-fold compared to wild-type strain [85]	Neutralising activity decreased 3.92-fold compared to wild-type [86] Effectiveness against symptomatic illness 49.6% (95% CI 11.3–71.4) and In ≥ 70 years old: Effectiveness against symptomatic illness: 41.6% (26.9–53.3) [88]	
CoronaVac Developer: Sinovac	Neutralising activity decreased 1.21-fold compared to wild-type [86] Neutralising activity reduced by a factor of 0.5 [84]	Neutralising activity decreased 5.27-fold compared to wild-type [86] Neutralising activity decreased by a factor of 0.3 [84]	Neutralising activity decreased 3.92-fold compared to wild-type [86] Effectiveness against symptomatic illness 49.6% (95% CI 11.3–71.4) and In ≥ 70 years old: Effectiveness against symptomatic illness: 41.6% (26.9–53.3) [88]	

(continued on next page)
are likely to be acceptable, and may even be superior, compared to homologous schedules.

VACCINE SAFETY

Given the speed and scale of the COVID-19 vaccine rollout, vaccine safety has been closely monitored by regulators and has been the subject of intense media scrutiny. Although safety outcomes are a major focus of clinical trials, these trials are underpowered to detect extremely rare adverse events, which instead are typically detected in post-licensure safety surveillance. It is therefore unsurprising that some COVID-19 vaccines have been found to be associated with very rare but in some cases serious adverse events, some of which have had programmatic implications.

A rare, newly identified syndrome now called thrombosis with thrombocytopenia syndrome (TTS) has been reported in association with two viral vector vaccines, AZD1222 and Ad26.COV2.S (Janssen; Johnson & Johnson), suggesting a potential class effect [23–25]. This rare immune-mediated disorder involves thrombosis in varying locations, accompanied by thrombocytopenia. To date TTS has not been reported in association with any other viral vector vaccine. TTS appears to be more common in younger adults, leading several countries to restrict its use to older age groups with varying age cut-offs, and in some cases leading to the use of heterologous schedules to complete vaccination courses following a first dose of AZD1222 [26].

More recently, myocarditis has been reported at higher than expected rates in adults and adolescents who have received an

Table 2 (continued)

VACCINE	Alpha (B.1.1.7)	Beta (B.1.351)	Gamma (P.1)	Delta (B.1.617.2)
BBV152/Covaxin Developer: Bharat Biotech	Neutralising activity was comparable to a heterologous (unclassified) strain [89]	Neutralisation activity was reduced 3.0-fold compared to early B.1 strain [90]		Neutralisation activity was reduced 2.7-fold compared to early B.1 strain [90]
PROTEIN SUBUNIT Trade name: Zifivax Developer: Anhui Zhifei Longcom	Neutralising activity was comparable to a heterologous (unclassified) strain [89]	Neutralisation activity was reduced 3.0-fold compared to early B.1 strain [90]	Neutralisation activity was reduced 2.7-fold compared to early B.1 strain [90]	Neutralisation activity was reduced 2.7-fold compared to early B.1 strain [90]

[Fig. 1. COVID-19 vaccine doses administered per 100 people, June 29, 2021 [31].]
mRNA COVID-19 vaccine (BNT162b2 or mRNA-1273) in the United States and Israel [27,28]. This safety signal continues to be investigated by regulators and to date has not led to any restrictions on the use of mRNA vaccines.

GLOBAL VACCINE DISTRIBUTION

Investments by several high-income countries accelerated the vaccine development process, and enabled these countries to secure their own vaccine supply. The largest of these is Operation Warp Speed, a US public–private partnership which invested US $18 billion into a portfolio of 8 vaccine candidates, all obliged to enter into product delivery commitments with the USA [29].

Equitable global vaccine distribution would provide the best chance of suppressing new variants, generating herd immunity, and eventually bringing the pandemic to an end. COVAX aimed to provide a central negotiating system between countries and vaccine developers, and to distribute the vaccines globally in an equitable manner, starting with enough doses for 20% of each participating country’s population. Further distribution would be based on measures of need (burden of disease, universal health coverage service index, health system saturation, high risk groups for COVID-19).

High income countries invested in COVAX while maintaining their direct bilateral deals, often securing enough doses to vaccinate their population several times over. This parallel investment and acquisition process has enabled vaccine access and roll-out to occur most rapidly in the USA and European countries, but with the consequence of making fewer doses available for COVAX and for low middle income countries (LMIC) [30]. This has demonstrably reinforced global inequalities, as demonstrated in Fig. 1.

So far 10 countries have administered 75% of all COVID-19 vaccines and COVAX has been responsible for less than 4% [30]. The People’s Vaccine Alliance has estimated that, at the current rate, low-income countries could take 57 years to fully vaccinate their populations, whereas G7 countries might reach that milestone in the next 6 months [30]. Promisingly, G7 countries have recently pledged the donation of 870 million doses of COVID-19 vaccines and reaffirmed their support for COVAX as “the primary route for providing vaccines to the poorest countries”, though these donations are yet to be enacted [32].

LMIC countries have consequently entered their own unilateral contracts with countries such as India, China or Russia. Serum Institute of India (SII), India’s largest vaccine manufacturer has provided vaccines to 95 countries, while China is now the largest global exporter of COVID-19 vaccines to countries across Asia, Africa and Latin America [33]. Interestingly, Cuba decided against joining COVAX, and independently developed their vaccine candidates, two of which are now in Phase 3 clinical trials [34].

CONCLUSION

The past 18 months have seen extraordinary scientific achievements that have yielded a growing global portfolio of effective vaccines against COVID-19. Several vaccines are confirmed to be safe and effective both in healthy individuals and in special populations (such as older adults or adolescents), particularly against severe illness. These findings have been replicated in real-world studies in various countries. Protection appears to be reduced against some variant strains, and variant-specific vaccines are already under development.

Unfortunately, despite the proactive efforts of the COVAX facility and other bodies to ensure equitable vaccine distribution, the supply of COVID-19 vaccines has been predominantly to high income countries, resulting in very low vaccination rates in low- and middle-income countries Addressing this inequity will benefit all by eventually leading to better control of SARS-CoV-2. All countries should be reminded that COVID-19 anywhere is a risk of COVID-19 everywhere.

DIRECTIONS FOR FUTURE RESEARCH

• Phase IV effectiveness studies of COVID-19 vaccine performance in low and middle income countries.
• Further clinical trials in special populations of interest including children.
• Determination of standardised immune correlates of protection against SARS-CoV-2 to be used in future clinical trials of new and re-designed COVID-19 vaccines.
• Continued, integrated international surveillance of SARS-CoV-2 molecular epidemiology to monitor and detect variants.

CONFLICTS OF INTEREST

None of the authors have any conflicts of interest to declare.

References

[1] Johns Hopkins University. COVID-19 Dashboard [Internet]. COVID-19 Dashboard. Available from: https://coronavirus.jhu.edu/map.html.
[2] Oliu-Barton M, Pradelski BS, Aghion P, Artus P, Kickbusch I, Lazarus JV, et al. SARS-CoV-2 elimination, not mitigation, creates best outcomes for health, the economy, and civil liberties. Lancet 2021.
[3] Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: the current state of play. Paediatr Respir Rev 2020;35:43–9.
[4] Our World in Data Coronavirus (COVID-19) Vaccinations – statistics and research. 2020. Oxford Martin School, The University of Oxford, Global Change Data Lab. Available from: ourworldindata.org/covid-vaccinations.
[5] World Health Organization. COVID-19 vaccine tracker and landscape [Internet]. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
[6] A Study to Evaluate Safety, Reactogenicity, and Immunogenicity of mRNA-1283 and mRNA-1273 Vaccines in Healthy Adults Between 18 Years and 55 Years of Age to Prevent COVID-19. 2021 March 24 In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. 2000 - . Available from: https://clinicaltrials.gov/ct2/show/NCT04813796.
[7] Crommelin DIA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci 2021;110 (3):997–1001.
[8] [Internet]. Available from: https://extranet.who.int/pqweb/sites/default/files/documents/Status_of_COVID-19_Vaccines_within_WHO_EUL-PQ_evaluation_process-16June2021_Final.pdf.
[9] Khoury DS, Cromer D, Reymann A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med 2021;1–7.
[10] Graff K, Smith C, Silvera L, Jung S, Curran-Hays S, Jarjour J, et al. Risk factors for severe COVID-19 in children. Pediatr Infect Dis J 2021;40(4):e137.
[11] Radia T, Williams N, Agraval P, Harman K, Weale J, Cook J, et al. Multi-system inflammatory syndrome in children & adolescents (MIS-C): a systematic review of clinical features and presentation. Paediatr Respir Rev 2021;38:51–7.
[12] Kou X, Cao B. COVID-19 vaccines for children younger than 12 years: are we ready? Lancet Infect Dis [Internet]. 2021 Jun 28 [cited 2021 Jun 30];0(0). Available from: https://www.thelancet.com/journals/lancinf/article/PIIS1473-3099(21)00384-4/abstract.
[13] Frenck Jr RW, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, et al. Safety, immunogenicity, and efficacy of the BNT162b2 covid-19 vaccine in adolescents. N Engl J Med 2021.
[14] BioNTech. Pfizer-BioNTech Announce Positive Topline Results of Pivotal COVID-19 Vaccine Study in Adolescents [Press release] [Internet]. 2021. Available from: https://investors.biontech.de/news-releases/news-release-details/pfizer-biontech-announce-positive-topline-results-pivotal-covid.
[15] Willy K. Sinovac’s COVID-19 vaccine gains China nod for emergency use in kids, adolescents. Reuters [Internet]. 2021 Jun 5; Available from: https://www.reuters.com/world/china/sinovacs-covid-19-vaccine-gains-china-approval-emergency-use-children-2021-06-05/.
[16] Han R, Song Y, Li C, Yang W, Ma Q, Jiang Z, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis [Internet]. 2021 Jun 28 [cited 2021 Jun 30];0(0). Available from: https://www.thelancet.com/journals/lancinf/article/PIIS1473-3099(21)00319-4/abstract.
[17] Moderna Announces TeensCOVE Study of its COVID-19 Vaccine in Adolescents Meets Primary Endpoint and Plans to Submit Data to Regulators in Early June
Effects of COVID-19 vaccines against hospital admission with the Delta (B.1.617.2) variant PHE (preprint). Retrieved from https://www.ebi.ac.uk/view/epi/2021/jun/29/1821525334.

21. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 in United States. Lancet 2021;397(10285):1351–62.

22. Grobusch MP, Hauer J, Widmer AF, Meier C, Steffen K, Stasfeld G, et al. Efficacy of the Sputnik V vaccine against SARS-CoV-2 infections and COVID-19 hospitalisations. Lancet 2021;397(10277):881–91.

23. Gray KJ, Borda EA, Atieyou C, Deriso E, Akinwunmi Y, Young N, et al. AstraZeneca vaccine responses in pregnant and lactating women: a cohort study. Am J Obstet Gynecol 2021;300:2937821001873.

24. Kucharski AJ, Edmunds WJ, Melonka MT, Scalia A, Edmunds WJ, Melonka MT, et al. The effects of COVID-19 on household transmission: household-level evidence from New Zealand. PLoS Biol 2021;19(7):e2008718.

25. Kucharski AJ, Edmunds WJ, Melonka MT, Scalia A, Edmunds WJ, Melonka MT, et al. The effects of COVID-19 on household transmission: household-level evidence from New Zealand. PLoS Biol 2021;19(7):e2008718.

26. Kucharski AJ, Edmunds WJ, Melonka MT, Scalia A, Edmunds WJ, Melonka MT, et al. The effects of COVID-19 on household transmission: household-level evidence from New Zealand. PLoS Biol 2021;19(7):e2008718.

27. Kucharski AJ, Edmunds WJ, Melonka MT, Scalia A, Edmunds WJ, Melonka MT, et al. The effects of COVID-19 on household transmission: household-level evidence from New Zealand. PLoS Biol 2021;19(7):e2008718.
