VECTOR INVARIANTS OF PERMUTATION GROUPS IN CHARACTERISTIC ZERO

FABIAN REIMERS AND MÜFİT SEZER

Abstract. We consider a finite permutation group acting naturally on a vector space V over a field k. A well known theorem of Göbel asserts that the corresponding ring of invariants $k[V]^G$ is generated by invariants of degree at most $\binom{\dim V}{2}$. In this note we show that if the characteristic of k is zero then the top degree of vector coinvariants $k[V^m]_G$ is also bounded above by $\binom{\dim V}{2}$, which implies the degree bound $\binom{\dim V}{2} + 1$ for the ring of vector invariants $k[V^m]^G$. So Göbel’s bound almost holds for vector invariants in characteristic zero as well.

1. Introduction

Let G be a finite group, k a field and V a finite dimensional vector space over k on which G acts. The action of G on V induces an action on the symmetric algebra $k[V]$ on V^* given by $gf(v) = f(g^{-1}v)$ for $g \in G$, $f \in k[V]$ and $v \in V$. Let $k[V]^G$ denote the ring of invariant polynomials in $k[V]$. This is a finitely generated graded subalgebra of $k[V]$ and a central goal in invariant theory is to determine $k[V]$ by computing generators and relations. We let $\beta(G, V)$ denote the maximal degree of a polynomial in a minimal homogeneous generating set for $k[V]^G$. It is well known by [5, 1, 2] that $\beta(G, V) \leq |G|$ if $|G| \in k^*$. If the characteristic of k divides $|G|$, then the invariant ring is more complicated and there is no bound that applies to all V. But it is possible to bound $\beta(G, V)$ using both $|G|$ and dimension of V (see [6]). The Hilbert ideal $I(G, V)$ is the ideal $k[V]^G \cap k[V]$ in $k[V]$ generated by all invariants of positive degree. The algebra of coinvariants $k[V]_G$ is the quotient ring $k[V]/I(G, V)$. Both Hilbert ideal and the algebra coinvariants are subjects of interest as it is possible to extract information about the invariant ring from them. Since G is finite, $k[V]_G$ is finite dimensional as a vector space and the highest degree in which $k[V]_G$ is non-zero is called the top degree of coinvariants. This degree plays an important role in computing the invariant ring and is closely related to $\beta(G, V)$ when $|G| \in k^*$ (see [4]).

In this paper we study the case where G is a permutation group acting naturally on V by permuting a fixed basis of V. By a well known theorem of Göbel [3], $\beta(G, V) \leq \binom{n}{2}$, where n is the dimension of V. This bound applies in all characteristics and it is known to be sharp as for the alternating group A_n, we have $\beta(A_n, V) = \binom{n}{2}$. Now we consider m direct copies $V^m = V \oplus V \oplus \ldots \oplus V$ of V with the action of G extended diagonally. We show that, if k has characteristic zero, the top degree of the coinvariant ring $k[V^m]^G$ is also bounded above by $\binom{n}{2}$. Our method relies on polarizing polynomials in the Hilbert ideal $I(G, V)$ and obtaining enough monomials in $I(G, V^m)$ to bound the top degree of $k[V^m]^G$. This implies that $\beta(G, V^m) \leq \binom{n}{2} + 1$. If polarization of a generating set for $k[V]^G$ gives a generating set for $k[V^m]^G$, then a generating set for $I(G, V^m)$ can be obtained by

Date: November 22, 2022.

2010 Mathematics Subject Classification. 13A50.

Key words and phrases. Invariant theory, permutation groups, vector invariants.

1
polarizing any generating set for \(I(G, V) \). But in general, one should not expect to get a Gröbner basis for \(I(G, V^m) \) from a Gröbner basis for \(I(G, V) \) by polarization.

2. Polarization and the Hilbert ideal

In this section we prove that to compute the leading monomial of a polarization of a polynomial it is sufficient to polarize the leading monomial of this polynomial. We identify \(\mathbb{k}[V] \) with \(\mathbb{k}[x_1, \ldots, x_n] \) and \(\mathbb{k}[V^m] \) with \(\mathbb{k}[x_i^{(j)} \mid i = 1, \ldots, n, j = 1, \ldots, m] \). We use lexicographic order on \(\mathbb{k}[V^m] \) with

\[
x_1^{(1)} > x_1^{(2)} > \cdots > x_1^{(m)} > x_2^{(1)} > x_2^{(2)} > \cdots > x_2^{(m)} > \cdots > x_n^{(m)}
\]

and the order on \(\mathbb{k}[V] \) is obtained by setting \(m = 1 \). For an ideal \(I \) we denote the lead term ideal of \(I \) with \(L(I) \) and the leading monomial of a polynomial \(f \) is denoted by \(\text{LM}(f) \). We introduce extra variables \(t_1, \ldots, t_m \) and define the algebra homomorphism

\[
\Phi : \mathbb{k}[V] \to \mathbb{k}[V^m][t_1, \ldots, t_m], \quad x_i \mapsto \sum_{j=1}^{m} x_i^{(j)} t_j.
\]

For any \(f \in \mathbb{k}[V] \), we write

\[
\Phi(f) = \sum_{(k_1, \ldots, k_m) \in \mathbb{N}^m} f_{k_1, \ldots, k_m} t_1^{k_1} \cdots t_m^{k_m},
\]

with polynomials \(f_{k_1, \ldots, k_m} \in \mathbb{k}[V^m] \). This process is known as polarization and for an \(m \)-tuple \(\underline{k} = (k_1, \ldots, k_m) \) let \(\text{Pol}_{\underline{k}}(f) \) denote the coefficient \(f_{k_1, \ldots, k_m} \). We set

\[
\text{Pol}(f) = \{ \text{Pol}_{\underline{k}}(f) \mid \underline{k} \in \mathbb{N}^m, f_{\underline{k}} \neq 0 \}.
\]

The importance of polarization for invariant theory comes from the fact that if \(f \in \mathbb{k}[V]^G \) implies \(\text{Pol}(f) \subseteq \mathbb{k}[V^m]^G \). In addition, Kohls-Sezer \cite{4} observed that for every polynomial \(f \in I(G, V) \) in the Hilbert ideal we have \(\text{Pol}(f) \subseteq I(G, V^m) \).

Lemma 1. Assume that \(\text{char}(\mathbb{k}) = 0 \). Let \(M, M' \) be monomials in \(\mathbb{k}[V] \) with \(M' < M \). Then for any \(\underline{k} \in \mathbb{N}^m \) we have

\[
\text{LM}(\text{Pol}_{\underline{k}}(M')) < \text{LM}(\text{Pol}_{\underline{k}}(M))
\]

with respect to the lexicographic order fixed above.

Proof. Fix \(\underline{k} = (k_1, \ldots, k_m) \in \mathbb{N}^m \) and let \(M = x_1^{a_1} \cdots x_n^{a_n} \in \mathbb{k}[V] \). We have

\[
\Phi(M) = (x_1^{(1)} t_1 + \cdots + x_1^{(m)} t_m)^{a_1} \cdots (x_n^{(1)} t_1 + \cdots + x_n^{(m)} t_m)^{a_n}.
\]

Let \(h = \text{LM}(\text{Pol}_{\underline{k}}(M)) \) and write \(h = \prod_{1 \leq i \leq n, 1 \leq j \leq m} (x_i^{(j)})^{b_{i,j}} \). Note that \(h \) contains with multiplicities \(k_1 \) variables from the first summand of variables \(\{x_1^{(1)}, \ldots, x_n^{(1)}\} \). Since \(x_1^{(1)} \) is the highest ranked variable among them we have \(b_{1,1} = \min\{k_1, a_1\} \).

More generally, \(h \) contains with multiplicities \(k_j \) variables from the set \(\{x_1^{(j)}, \ldots, x_n^{(j)}\} \). Inductively, multiplicity of the \(x_i^{(j)} \) is \(b_{i,j} \) for \(1 \leq l < i \). Moreover, out of \(a_l \) factors \((x_i^{(l)} t_1 + \cdots + x_i^{(m)} t_m)^{a_l} \), \(b_{i,l} \) of them contribute \(a_l \) to \(h \) for \(1 \leq l < j \). Since \(x_i^{(j)} \) is the highest rank monomial in \(\{x_1^{(j)}, \ldots, x_n^{(j)}\} \), we get a recursive relation

\[
b_{i,j} = \min\{k_j - \sum_{l=1}^{i-1} b_{l,j}, \ a_i - \sum_{l=1}^{j-1} b_{l,j}\}.
\]
Note that the coefficient of \(h \) in \(\text{Pol}_k(M) \) is

\[
\prod_{1 \leq i \leq n} \frac{a_i!}{b_{i,1}! \cdots b_{i,m}!}
\]

which is non-zero because \(\text{char}(k) = 0 \). We may take \(M' = x_1^{a_1} \cdots x_k^{a_{k-1}} x_k^{a_k} \cdots x_n^{a_n} \) with \(a_k < a_1 \). Set \(h' = \text{LM}(\text{Pol}_k(M')) \) and write \(h = \prod_{1 \leq i \leq n, 1 \leq j \leq m} (x_i^{(j)})^{b_{i,j}} \).

As in the case for \(b_{i,j} \), \(b_{i,j}' \) depends only on \(k_l \) for \(1 \leq l \leq j \) and \(a_l \) for \(1 \leq l \leq i \).

Since the multiplicities of the variables \(x_1, \ldots, x_{k-1} \) in \(M \) and \(M' \) are the same, we get that \(b_{i,j} = b_{i,j}' \) for \(i < k \). On the other hand since \(\sum_{1 \leq l \leq m} b_{k,l} = a_k > a_{k'} = \sum_{1 \leq l \leq m} b_{k',l} \), the equality \(b_{k,l} = b_{k,l}' \) fails for some \(1 \leq l \leq m \). Let \(j \) denote the smallest index such that \(b_{k,j} \neq b_{k,j}' \). Then we have

\[
b_{k,j}' = \min\{k_j - \sum_{l=1}^{k-1} b_{l,j}', a_k' - \sum_{l=1}^{j-1} b_{k,l}'\} \\
= \min\{k_j - \sum_{l=1}^{k-1} b_{l,j}, a_k - \sum_{l=1}^{j-1} b_{k,l}\} \\
\leq \min\{k_j - \sum_{l=1}^{k-1} b_{l,j}, a_k - \sum_{l=1}^{j-1} b_{k,l}\} \\
= b_{k,j}
\]

So we get that \(h' < h \).

\[\square\]

Remark 2. The coefficient of the highest ranked monomial \(h \) which is given by Equation (2) is non-zero over all fields \(k \) with \(a_i! \in k^* \) for all \(i \). So the assertion of the previous lemma is true for all pairs of monomials \(M', M \) with \(M = x_1^{a_1} \cdots x_n^{a_n} \) satisfying \(a_i < \text{char}(k) \) for all \(i \).

Remark 3. Consider the lexicographic monomial order with a slightly different ordering of the variables

\[
x_1^{(1)} > x_2^{(1)} > \ldots > x_1^{(1)} > x_2^{(2)} > \ldots > x_n^{(2)} > \ldots > x_n^{(m)}.
\]

For a fixed \(1 \leq i \leq n \) and \(1 \leq j \leq m \), the set of variables in \(\{x_1^{(j)}, \ldots, x_i^{(j)}\} \) and in \(\{x_1^{(1)}, \ldots, x_1^{(m)}\} \) that is smaller than \(x_i^{(j)} \) remains unchanged. So the recursive description of the \(\text{LM}(\text{Pol}_k(M)) \) in Equation (2) and consequently the assertion of the lemma carry over to this ordering as well.

Since \(\text{Pol}(f) \subseteq I(G, V^m) \) for all \(f \in I(G, V) \) by [3], Lemma 12], the previous lemma immediately implies the following.

Proposition 4. Assume that \(\text{char}(k) = 0 \). Let \(f \in I(G, V) \). Then we have

\[
\text{LM}(\text{Pol}_k(\text{LM}(f))) \in L(I(G, V^m))
\]

for all \(k \in \mathbb{N}^m \).

We now prove our main result.

Theorem 5. Let \(G \leq S_n \) be a permutation group acting naturally on \(V = k^n \). Assume that \(\text{char}(k) = 0 \) or \(\text{char}(k) > n \). Then we have

\[
\beta(G, V^m) \leq \binom{n}{2} + 1.
\]
Therefore, the top degree of the coinvariants well. This implies that
I contains the set of monomials we write $Φ(x_i) = (x_i^{(1)} t_1 + \cdots + x_i^{(m)} t_m)^i$. So we get
\[
\text{Pol}_k(x_i) = \frac{i!}{k_1! \cdots k_m!} \prod_{j=1}^m \left(\left(x_i^{(j)} \right)^{k_j} \right).
\]
Note that since $i \leq n$, the coefficient is non-zero. It follows that $L(I(G, V^m))$ contains the set of monomials
\[
\left\{ \prod_{j=1}^m \left(x_i^{(j)} \right)^{k_j} \mid 1 \leq i \leq n, \sum_{j=1}^m k_j = i \right\}.
\]
Therefore, the top degree of the coinvariants $k[V^m]_G$ bounded above by \(\binom{n}{2} \) as well. This implies that $I(G, V^m)$ is generated by polynomials of degree at most \(\binom{n}{2} + 1 \). Now we apply a standard argument to get a bound for $β(G, V^m)$ as follows. Let f_1, \ldots, f_s be generators for $I(G, V^m)$ of degree at most \(\binom{n}{2} + 1 \). We may assume these generators lie in $k[V^m]_G$. Let $f \in k[V^m]_G$ with degree $> \binom{n}{2} + 1$. Write $f = \sum_{i=1}^s q_i f_i$ with $q_i \in [V^m]_G$. Let $Tr : k[V^m] \to k[V^m]_G$ denote the transfer map defined by $Tr(h) = \sum_{\sigma \in G} \sigma(h)$ for $h \in k[V^m]$. Then we have $Tr(f) = [G]f = \sum_{i=1}^s Tr(q_i) f_i$. Therefore f is in the algebra generated by invariants of strictly smaller degree. So we get $β(G, V^m) \leq \binom{n}{2} + 1$ as desired.

References

[1] Peter Fleischmann. The Noether bound in invariant theory of finite groups. Adv. Math., 156(1):33–32, 2000.
[2] John Fogarty. On Noether’s bound for polynomial invariants of a finite group. Electron. Res. Announc. Amer. Math. Soc., 7:5–7, 2001.
[3] Manfred Gobeli. Computing bases for rings of permutation-invariant polynomials. J. Symbolic Comput., 19(4):285–291, 1995.
[4] Martin Kohls and Mufti Sezer. On the top degree of coinvariants. Int. Math. Res. Not. IMRN, (22):6079–6093, 2014.
[5] Emmy Noether. Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann., 77(1):89–92, 1915.
[6] Peter Symonds. On the Castelnuovo-Mumford irregularity of rings of polynomial invariants. Ann. of Math. (2), 174(1):499–517, 2011.
[7] Takashi Wada and Hidefumi Ohsugi. Gröbner bases of Hilbert ideals of alternating groups. J. Symbolic Comput., 41(8):905–908, 2006.

Technische Universität München, Zentrum Mathematik - M11, Boltzmannstr. 3, 85748 Garching, Germany

Email address: reimers@ma.tum.de

Bilkent University, Department of Mathematics, Cankaya, Ankara, 06800 Turkey
Email address: sezer@fen.bilkent.edu.tr