Synthesis and Applications of Copper Nanopowder – A Review

S Wahyudi1,2, S Soepriyanto1, M Z Mubarok1, Sutarno3

1 Department of Metallurgical Engineering-Faculty of Mining and Petroleum
Bandung Institute of Technology, Bandung, Indonesia
2 Department of Material & Metallurgical Engineering-Faculty of Engineering
Bandung Institute of Science & Technology, Bekasi, Indonesia
3 Department of Metallurgical Engineering- Faculty of Engineering,
University of Jenderal Achmad Yani, Bandung, Indonesia

Email: solehwahyudi@students.itb.ac.id

Abstract. Copper nanopowder demonstrates excellent conductivity, catalytic behaviour, excellent compatibility and antibacterial properties. Copper nanopowder has been used as an essential component in the future nano-devices, a wide range of industrial applications and used as a replacement for more expensive metals. Copper nanopowder properties are strongly influenced by shape, size and size distribution which are often varied by varying the synthetic methods. Accordingly, this review presents different of synthetic methods of copper nanopowder and applications of this nanopowder in different fields.

1. Introduction
The copper nanopowder is a copper powder that has particle sizes below 100 nm and considered as an alternative material other than precious metals such as gold and silver that are more economical wherein pure form has good electrical and heat conductivity properties and are antibacterial. In addition, the advantages possessed by nano-sized powder particles are the value of the ratio of surface area to high volume. These considerations cause copper nanopowder widely used for electronics, magnetic, optical, catalysts, and pigments [1].

The potential needs of nanomaterial show an increasing trend [2]. The constraints faced during the execution of the production of copper nanopowder are the sensitivity of the copper nanopowder to the aqueous environment and the air, which will aggregate and oxidize. The steps taken to overcome these constraints are the conditioning of inert environments using argon and nitrogen gas when packaging or providing a protective layer of polymer or surfactant before packaging [1]. Another obstacle is hazard [2].

Nanoparticles are synthesized by three different methods: chemical, physical, and biological [3]. Each synthesis method has advantages and disadvantages in producing copper nanopowder. The synthesis method was chosen to be applied consider several things including morphology, size distribution, cost, the scale of production and hazard [3]. In this review will be presented about the method of synthesis according to its classification by displaying its advantages and disadvantages along with the characteristics of copper nanopowder produced. Similarly, about the application of copper nanopowder. This review complements the previous review of copper nanopowder by displaying information about copper nanopowder that has been produced by industry and the methods...
used. Specifications of copper nanopowder that has been produced from several industries will also be delivered.

2. Methods of synthesis
The synthesis methods of copper nanopowder can be done by chemical reduction, microemulsion reduction, sonochemical and sonoelectrochemical, microwave, photochemical, electrochemical, sonoelectrochemical, thermal decomposition, laser ablation, mechanical / ball mill, wire discharge, the electric explosion of wire, and the biological method that used bacteria, fungi, and plants. Table 1 listed the copper nanopowder synthesis methods into the chemical, physical, and biological categories.

Table 1. Copper nanopowder synthesis methods.

| Chemical methods                        | Physical methods                        | Biological methods |
|-----------------------------------------|-----------------------------------------|--------------------|
| Chemical reduction [38, 39]              | Laser ablation [24]                     | Bacteria [34]      |
| Microemulsion reduction [40, 41]         | Mechanical mill [25]                    | Fungi [35]         |
| Sonochemical [42] & Sonochemical [43]   | Pulsed Wire Discharge [27]              | Plants [37]        |
| Microwave [15]                          | Electric Explosion of Wire [29]         |                    |
| Photochemical [17]                      | Gas evaporation [31]                    |                    |
| Electrochemical [44]                    |                                        |                    |
| Thermal decomposition [22]              |                                        |                    |

The characteristics of copper nanopowder such as size, morphology, and particle size distribution depending on the applied synthesis method. Table 2 listed the characteristics of copper nanopowder in each method.

2.1. Chemical reduction
The chemical reduction method for the synthesis of copper nanopowder is the easiest, simplest and most commonly used [1]. It is generally carried out in aqueous media using copper salts as a source of copper and reducing agents such as sodium borohydride [4], hydrazine [5], ascorbic acid [6], polyol [7], isopropyl alcohol with Cetyl Trimethyl Ammonium Bromide (CTAB) [8] & glucose [9]. Reverberi et al. in his study used a vanadium reducing agent (+2) salt [10]. In addition to being in aqueous media, other media in the form of the organic solvent was once used in the synthesis of copper nanopowder [11]. The morphology and size of the resulting nanopowder particles can be controlled by selecting the reducing agent and regulating the reaction conditions. The disadvantage of this method is its toxic and flammable chemicals. In addition, the surface of the nanoparticles is easily oxidized, so it is necessary to use inert environmental conditions (nitrogen or argon atmospheres) or surface-active agents to protect the surface of nanoparticles such as surfactants, dissolved polymers, weak acids, etc. known as capping agent [1].

2.2. Microemulsion reduction (colloidal)
The synthesis of copper nanopowder applies a chemical reduction method in an organic compound solvent in the form of microemulsion water in oil (W / O) such as Water / Isooctane / Cyclohexane [12] or water oil (O / W) or water in supercritical carbon dioxide (W / Sc. CO₂). Compared with the chemical reduction method above, the application of microemulsion method can produce copper nanopowder with morphology and size distribution more evenly, but its operation is more expensive and needs to separate the solvent from product [1].

2.3. Sonochemical & Sonoelectrochemical
Synthesis of copper nanopowder can be done by applying sonochemical & sonoelectrochemical method. The working principle is to use ultrasound radiation (frequency 20 kHz to 10 MHz) in the copper salt electrolyte solution. The chemical and physical effects of ultrasound arising from the species, growth, and implosive collapse of bubbles [13]. The sonoelectrochemical is the use of
ultrasound radiation on the electrochemical method. Some different arrangements of equipment have been used for the introduction of the ultrasound irradiation into the electrochemical systems [14].

2.4. Microwave
A microwave method is a form of electromagnetic energy in the frequency range between 300 MHz to 300 GHz, in the synthesis of copper nanopowder, can accelerate volumetric heating and kinetics, rapid volumetric heating and kinetics, short reaction periods and increasing yields of products compared to conventional heating methods [1]. The size of the resulting nanoparticles can reach 10 nm [15].

2.5. Photochemical
The photochemical method for synthesis of copper nanopowder utilizes light intensity. Photochemical techniques provide several advantages over conventional chemical means, such as (a) the reduction of metal ions can be carried out without using reducing agents and so avoiding undesired by-products of the reductant, (b) through the choice of suitable wavelength and concentration the rate of reaction can be controlled, (c) the light, which works as a reducing agent, is uniformly distributed in the solution, (d) irradiation can be performed at room temperature [16]. Kapoor and Mukherjee [17] using photochemical (UV light) method with poly (N-vinylpyrrolidone) (PVP) as a stabilizer can produce copper nanopowder with an average size of 15 to 20 nm.

2.6. Electrochemical
Copper nanopowder is produced by an electrochemical method by applying an electric current between the anode and cathode electrodes in the electrolyte solution. The reduction process occurs on the surface of the cathode. The deposition of copper powder on the cathode surface can be obtained at higher overpotentials corresponding to the limiting diffusion current density. The reaction of hydrogen evolution also occurs on the surface of the cathode [18]. The electrochemical method is a simple method. The process is fast and more economical to synthesize copper nanopowder. This method offers a relatively clean, non-toxic, process flow process that can be done at room temperature and environmentally friendly [19]. Kadam [19] used copper sulfate as an electrolytic solution and supplied 2 V of voltage and 1.5 A of current for 30 minutes and successfully synthesized copper nanoparticles with the size around of 24 nm and spherical. The problem that still exists in synthesis with electrochemistry is the presence of ionic interactions and inhomogeneous divisions in particle size grains.

2.7. Thermal decomposition
The synthesis of copper nanopowder is carried out in pressurized containers and controlled temperatures such as autoclaves, where the solvent reaches a temperature above its boiling point. Following the type of solvent, called hydrothermal [20, 21] and solvothermal. Karthik et al. [22] used this method for the synthesis of 50 to 100 nm copper nanoparticles. They use copper (II) succinate precursor and oleylamine as a capping agent.

2.8. Laser ablation
The method consists of ablation of a target by intense laser radiation in a liquid, yielding to an ejection of its constituents and the formation of nanoclusters and nanostructures. Variety of liquids can be used in which the particles remain as a suspension [23]. Moniri et al. [24] produce nanoparticles of average 5 nm copper in a 1.2 J/cm² laser fluence.

2.9. Mechanical mill
Milling is a solid-state processing technique for nanoparticle synthesis. The micron-sized material is fed into the milling machine. The types of milling machines commonly used for the synthesis of copper nanoparticles are planetary, vibratory, uniball, and the attritor. This method has ease of operation and low production cost but has a long time for nanoparticle production. The important factors affecting the quality of the final product are the type of mill, milling speed, container, time, temperature, atmosphere, size, and size distribution of the grinding medium, process control agent, the
weight ratio of the ball to powder and extent of filling the vial [1]. Yadav et al. [25] produce a 21 nm copper nanopowder with a planetary ball mill.

2.10. Pulsed Wire discharge (PWD)
When a high-pulsed current is driven through a thin metallic wire, the Joule heating causes electrical energy deposition that can turn the whole wire into plasma. By cooling this plasma with ambient gas, we can obtain a large number of very fine solid particles. This method is not usually used in industry due to the high cost and possible inefficiency for some metals. This method is suitable for metals with high electrical conductivity, which can easily be formed into thin wires [26]. Murai et al. [27] using the PWD method with the energy of 68 J successfully synthesized 0.25 mm diameter copper wire into a copper nanopowder with an average size of 25 nm. He also examined the effect of giving coating oleic acid, and the result was 10 nm smaller than uncoiled and unoxidized for several months (over two months) after the preparation.

2.11. The Electric explosion of wire (EEW)
It is a process of explosive destruction of a metal wire under the action of high current density (more than $10^6$ A/cm$^2$) [28]. The following peculiarities characterize EEW: time of explosion is $10^{-5}$ to $10^{-8}$ s; the temperature at the moment of explosion can reach the value more than 104 K; pressure up to 109 Pa; velocity of product recession is from 1 to 5 km/s. The material of the wire transmutes into particles of nano-sized range (10 to 100 nm) following specific conditions. Extremely non-equilibrium conditions of EEW cause some unusual properties of nanopowder [28]. Electro-explosive nanopowder has, as a rule, the spherical form of particles, they are steady against oxidation and sintering at room temperature and characterized by high diffusion activity at the heating [28]. EEW in an inert gas or hydrogen is applied to produce metal powders, alloys, and intermetallic compounds. Whereas EEW in an active chemical environment is applied to produce nanopowder of metal chemical compounds: oxides, nitrides, carbides, etc. [28]. Dash et al. [29] using the EEW method successfully synthesized 0.5 mm copper wire into a copper nanopowder with an average size of 36.34 nm and a spherical shape. The experimental conditions are 3 $\mu$F of capacitance, 22 kV of charging voltage, 0.1 MPa of Argon gas ambiance pressure.

2.12. Gas evaporation
Synthesis of metal nanopowder by the gas evaporation method is evaporation with the subsequent condensation of metal using high-intensity electron beams in an atmosphere of inert gas. The simple scalability to the industrial conditions, the possibility of evaporating any material and the high-purity of the product are advantages of particles synthesized from the gas phase [30]. Zavjalov et al. [31] obtain copper nanopowder by substance evaporation with the help of a powerful electron beam with the sizes of particles are limited in range from about 15 to 700 nm.

2.13. Biological method
It has been found that living organisms such as bacteria, fungi, and plants have great potential for the synthesis of metal nanoparticles. This method is easier to control the size of the distribution of nanoparticles synthesized than others and no toxic impact on the environment [32, 33]. Metal compounds usually reduce into their respective nanoparticles because of microbial enzymes or the plant phytochemicals with antioxidant or reducing properties [1]. Varshney et al. [34] used Pseudomonas stutzeri to synthesize copper nanoparticles from wastewater generated from electroplating. They have a cubic shape, and the size of nanoparticles produced by this method is 50-150 nm [3, 34]. Pavani et al. [35] used the Aspergillus fungus species to synthesize copper nanoparticles. Plants can be used for the synthesis of copper nanopowder through inactivated plant tissue, plant extracts, exudates, gums, and other parts of plants [36]. Lee et al. [37] have been biologically researching for the synthesis of copper nanopowder with a size of 40-100 nm using Mangolia plant leaf extract as a reducing agent.
### Table 2. Resume research of each copper nanopowder synthesis method.

| Method                  | Material                        | Conditions                        | Morphology  | Size          | Ref. |
|-------------------------|---------------------------------|-----------------------------------|-------------|---------------|------|
| Chemical reduction      | Solvent: DI Water               |                                    |             |               |      |
|                         | Precursor: CuCl₂·2H₂O          |                                    |             |               |      |
|                         | Reducing agent: Ascorbic acid   |                                    |             | < 2 nm        | [38] |
| Chemical reduction      | Solvent: DI Water               |                                    |             |               |      |
|                         | Precursor: CuSO₄·5H₂O          |                                    |             |               |      |
|                         | Reducing agent: Ascorbic acid   |                                    |             |               |      |
|                         | Capping agent: Starch           |                                    |             |               |      |
|                         |                                    | 80°C, 14 h                         | Spherical   |               |      |
| Microemulsion reduction | Solvent: Water in n-hexanol/cyclohexane |                        |             |               |      |
|                         | Precursor: CuCl₂               |                                    |             |               |      |
|                         | Reducing agent: NaBH₄           |                                    |             | 5-15 nm       | [40] |
| Microemulsion reduction | Solvent: Water in n-heptane, alcohol |                        |             |               |      |
|                         | Precursor: CuCl₂               |                                    |             |               |      |
|                         | Reducing agent: NaBH₄           |                                    |             |               |      |
|                         | Stabilizer: Bis(ethylhexyl)hydrogen phosphate | 25°C, 12 h                        | Spherical   | 60 nm         | [41] |
| Sonochemical            | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄                |                                    |             |               |      |
|                         | Reducing agent: Hydrazine monohydrate |                    |             |               |      |
|                         | Stabilizer: Ethylene glycol    |                                    |             | 108 nm        | [42] |
| Sonoelectrochemical     | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄·5H₂O          |                                    |             |               |      |
|                         | Stabilizer: poly(N-vinylpyrrolidone) |              |             | 25-60 nm      | [43] |
| Microwave               | Solvent: Ethylene glycol        |                                    |             |               |      |
|                         | Precursor: CuSO₄·5H₂O          |                                    |             |               |      |
|                         | Reducing agent: NaH₂PO₄·H₂O     |                                    |             |               |      |
|                         | Stabilizer: poly(N-vinylpyrrolidone) |                  |             | 10 nm         | [15] |
| Photochemical           | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄                |                                    |             |               |      |
|                         | Stabilizer: poly(N-vinylpyrrolidone) |          |             | 15-20 nm      | [17] |
| Electrochemical         | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄                |                                    |             |               |      |
|                         | Stabilizer: poly(N-vinylpyrrolidone) |                 |             | 24 nm         | [44] |
| Thermal decomposition   | Solvent: Oleylamine             |                                    |             |               |      |
|                         | Precursor: Copper (II) succinate |                        |             |               |      |
|                         | Stabilizer: Oleylamine          |                                    |             | 50-100 nm     | [22] |
| Laser abrasion          | Copper metal plate              |                                    |             |               |      |
|                         | Stabatly: Oleic acid            |                                    |             | 5 and 16 nm   | [24] |
| Mechanical ball         | Copper powder                   |                                    |             |               |      |
|                         | Wet milling medium: Toluene Rectified |              |             | 40 h          | [25] |
| Pulsed wire discharge   | Copper wire                     |                                    |             |               |      |
|                         | Coating: Oleic acid            |                                    |             | 5 MW/cm²      |      |
|                         |                                    | 473 K, 10 μF, 5.2 kV, 68 J         | Spherical   | 25 nm         | [27] |
| Electric explosion of wire | Copper wire                |                                    |             |               |      |
|                         | Coating: Oleic acid            |                                    |             | 36.34 nm      | [29] |
| Gas evaporation         | Cylindrical copper ingot        |                                    |             |               |      |
|                         | Flux: Argon                     |                                    |             |               |      |
|                         |                                    | 5 MW/cm²                          | Spherical   | 15-700 nm     | [31] |
| Biological              | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄·5H₂O          |                                    |             |               |      |
|                         | Biological entity: Bacteria *pseudomonas stutzeri* from electroplating waste |              |             | 150 nm        | [34] |
| Biological              | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄·5H₂O          |                                    |             |               |      |
|                         | Biological entity: Fungi *aspergillus fungus* |                   |             | 50-150 nm     | [35] |
| Biological              | Solvent: Water                  |                                    |             |               |      |
|                         | Precursor: CuSO₄·5H₂O          |                                    |             |               |      |
|                         | Biological entity: *Mangolia* plant leaf extract |         |             | 40-100 nm     | [37] |
3. Copper nanopowder characteristics

Copper nanopowder synthesis methods that have been applied in the industry are electrochemical, electrical explosion and laser ablation. Table 3 shows the copper nanopowder specifications that produced in the industry as well as the methods used.

Table 3. The copper nanopowder product specification and methods in industry.

| Method  | Purity Cu (% Metal basis) | Color       | APS (nm) | SSA (m²/g) | Morphology | Density (g/cm³) | Other | Ref. |
|---------|---------------------------|-------------|----------|------------|------------|----------------|-------|------|
| EEM     | 99.9                      | Saddle brown| 40       | 10-14      | Spherical  | 0.21           | 10-14 | [45] |
| ECM     | 99                        | Black brown | 30       | 35         | Spherical  | 0.15-0.35      | 35    | PP   | [46] |
| LSM     | 99.8                      | Black       | 25       | 30-50      | Spherical  | 0.15-0.35      | 8.94  | CC   | [47] |

US Research Nano Materials, Inc.

EEM=Electrical Explosion Method; ECM= Electrochemical Method; LSM= Laser Synthesized Method; APS= Average Particle Size; SSA=Specific Surface Area; PP= Partially Passivated Cu₂O; CC= Carbon Coated.

A common characteristic of copper is a ductile metal that has high thermal and electrical conductivity. Pure copper has a soft and orange-reddish color. The characteristics of the above copper nanopowder product specifications can be determined using a test apparatus to determine the purity level of copper nanopowder, particle size, particle size distribution, morphology and specific gravity.

4. Commercial applications using copper nanopowder

Copper is an alternative metal substitute of precious metals that have high electrical conductivity and heat properties making it ideal for reducing production costs and used in industrial applications for high strength metals and alloys, high thermally conductive materials and capacitor materials. As a nanopowder, the main characteristic is to have a high SSA (Specific Surface Area) so that copper nanopowder can be used in a variety of industrial applications, including anti-biotic, antimicrobial, anti-fungal agent, conductive ink, & conductive paste for printed electronics, sintering additives, lubricant additives, and catalysts. [1, 3]

5. Conclusions

Several methods of synthesis of copper nanopowder have been delivered. Chemical methods are the most commonly used method for the preparation of nanoparticles but still involves toxic materials. Physical methods can produce faster results and do not involve toxic materials but are still costly. While biological methods known as nanoparticle synthesis are environmentally friendly but require a very long time synthesis.

Copper nanopowder has very high electrical and heat conduction, excellent physicochemical properties; good biocompatibility and high surface activity, and therefore is very promising for magnetic nano-devices and some electronic and medical applications as well as the incorporation of materials and medicines.

Research is still ongoing in search of the latest methods that offer the lowest and least expensive environmental damage to continue. Similarly, research to discover new properties of copper nanoparticles and new products.

6. References

[1] U. Asim, N. Shahid and R. Naveed 2012 World Scientific Publishing Company 7(5) 1230005
[2] J. A. Darr, J. Zhang, N. M. Makwana and X. Weng 2017 Chem. Rev. 117 11125
[3] B. Khodashenas and H. R. Ghorbani 2014 Korean J. Chem. Eng. 31 1105
[4] X. Y. Song, S. X. Sun, W. M. Zhang and Z. L. Yin 2004 J. Colloid Interface Sci. 273 463
[5] X. D. Su, J. Z. Zhao, H. Bala, Y.C. Zhu, Y. Gao, S. S. Ma and Z. C. Wang 2007 J. Phys. Chem. C. 111 14689
[6] C.W. Wu, B. P. Mosher and T. F. Zeng 2006 J. Nanopart. Res. 8 965
[7] B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim 2007 J. Colloid Interface Sci. 311 417
[8] A. A. Athawale, P. Prachi, M. Kumar and M. B. Majumdar 2005 Mater. Chem. Phys. 91 507
[9] S. Panigrah, S. Kundu, S. K. Ghosh, S. Nath, S. Praharaj, B. Soumen and T. Pal 2006 Polyhedron 25 1263
[10] A. P. Reverberi, M. Salerno, S. Lauciello and B. Fabiano 2016 Materials 9 809
[11] P. Kanninen, C. Johans, J. Merta and K. Kontturi 2008 J. Colloid Interface Sci. 318, 88
[12] M. P. Pileni 1993 J Phys. Chem 97 6961
[13] H. Xu, B. W. Zeiger and K. S. Suslick, 2012 Chem. Soc. Rev. 26th, DOI: 10.1039/c2cs35282f
[14] V. Sáez and T. J. Mason 2009 Molecules 14 4284
[15] H. T. Zhu, C. Y. Zhang and Y. S. Yin 2004 J. Cryst. Growth 270 722
[16] S. Giuffrida, L. L. Costanzo, G. Ventimiglia and C. Bongiorno 2008 J. Nanopart Res. 10 1183
[17] S. Kapoor and T. Mukherjee 2003 Chem. Phys. Lett. 370 83
[18] Q. B. Zhang and Y. X. Hua 2014 Phys. Chem. Chem. Phys., DOI: 10.1039/c4cp03041a
[19] S. L. Kadam 2016 IJSER, 7 1067
[20] S. H. Yu 2001 J. Ceram. Soc. Jpn. 109 65
[21] M. Rajamathi and R. Seshadri 2002 Curr. Opin. Solid State Mater. Sci. 6 337
[22] A. Dinesh Karthik and K. Geetha 2014 Int. J. Nano Dimens. 5 321
[23] N. Ahmad and N. Haram 2017 Production and characterization of Cu nanoparticles by laser ablation of solid Cu Target in Double Distilled Water, www.ncp.edu.pk/docs/iss/talks/Group_I/G1_D1_%20Dr_Nisar_Ahmad.pdf
[24] S. Monirir, M. Ghorangeviss, M. R. Hantehzadeh and M. A. Asadabad 2017 Bull. Mater. Sci. 40 37
[25] S. K. Yadav and V. Vasu 2016 IJETST 03 3795
[26] W. Jiang and K. Yatsus 1998 IEEE Trans. Plasma Sci. 26 1498
[27] K. Muraira, Y. Watanabe, Y. Saitoa, T. Nakayamaa, H. Suematsua, W. Jiang, K. Yatsuia, K.B. Shimib and K. Nihirarab 2007 J. Ceram. Process Res. 8 114
[28] O. B. Nazarenkob, A. P. Ilyin 2008 Proceedings of the 3rd Environmental Physics Conference, 135
[29] P.K. Dash and Y. Balto 2011 Res. J. Nanosci. Nanotechnol. 1 25
[30] I. V. Chepkasovab, Yu. Ya. Gafnera, S. L. Gafnera, and S. P. Bardahanov 2016 Phys Metals Metallogr. 117 1003
[31] A. P. Zavjalov, K. V. Zobov, I. K. Chakina, V. V. Syzzrantsev, and S. P. Bardakhanov 2014 Nanotechnol. Rus. 9 660
[32] V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad and M. Sastry 2005 J. Mater. Chem. 15 2583
[33] R. Varshney, S. Bhadauria and M. S. Gaur 2012 Nano Biomed. Eng. 4 99
[34] R. Varshney, S. Bhadauria, M. S. Gaur and R. Pasricha 2011 Nano Biomed. Eng. 3 115
[35] K.V. Pavani, N. Srujana, G. Preethi and T. Swati 2013 Lett. App. Nanobiosci. 2 110
[36] G. Shobhab, V. Moses and S. Ananda 2014 IIPSI 3 28
[37] H. J. Lee, G. Lee, N. R. Jang, J. M. Yun, J. Y. Song and B. S. Kim 2011 Nanotech. 1 371
[38] A. Khan, A. Rashid, R. Younas and R. Chong 2016 Int. Nano Lett. 6 21
[39] J. Xiong, Y. Wang, Q. Xue and X. Wu 2011 Green Chem. 13 900
[40] L. M. Qi, J. M. Ma and J. L. Shen 1977 J. Colloid Interface Sci. 186 498
[41] X. Y. Song, S. X. Sun, W. M. Zhang and Z. L. Yin 2004 J. Colloid Interface Sci. 273 463
[42] J. Moghimi-Rad, F. Zabihi, I. Hadi, S. Ebrahimi, T. D. Isfahani and J. Sabbaghzadeh 2010 J. Mater. Sci. 45 3804
[43] I. Haas, S. Shanmugam and A. Gedanken 2006 J. Phys. Chem. B 110 16947
[44] S. L. Kadam 2016 International Journal of Scientific & Engineering Research 7 1067
[45] TDS Copper (Cu) nanopowder/nanoparticle (Cu, 99.9%, 40 nm, metal basis) US. Research Nanomaterials, Inc.
[46] TDS Copper (Cu) nanopowder/nanoparticle (Cu Nanoparticles with 5.2 wt% Cu2O coated, 30 nm) US. Research Nanomaterials, Inc.
[47] TDS Copper (Cu) nanopowder/nanoparticle (Cu-Carbon Coated, 99.8%, 25 nm) US. Research Nanomaterials, Inc.

Acknowledgements
Our participation in NNS 2017 is supported by the Bandung Institute of Science Technology (ITSB), Bekasi, Indonesia. We are grateful to the Ministry of Research, Technology and Higher Education of the Republic of Indonesia, and LPDP, for the doctoral scholarship program BUDI-DN 2016 (Grant number: 20161141011049).