Optical and dielectric properties of CuInP$_2$S$_6$ layered crystals at high hydrostatic pressure

P.P. Guranich, A.G. Slivka, V.S. Shusta, O.O. Gomonnai, I.P. Prits
Uzhhorod National University, Pidhirna Str. 46, Uzhhorod 88000, Ukraine

e-mail: optics@univ.uzhgorod.ua

Abstract. Effect of hydrostatic pressure on the birefringence and dielectric properties of CuInP$_2$S$_6$ crystals is studied. The pressure behaviour of the phase transition temperature confirms that the phase transition in these crystals belongs to the order/disorder type. An additional line of birefringence anomalies in the ferrielectric phase is revealed. Based on the studies of the optical and dielectric properties of CuInP$_2$S$_6$ crystals their (p, T) diagram was constructed.

1. Introduction

CuInP$_2$S$_6$ crystals belong to layered ferrielectrics, where ferrielectric polarization arises normally to the layers and results from anticollinear contributions due to copper ion ordering and indium ion displacement [1]. A first-order phase transition in these crystals at atmospheric pressure occurs at $T_s = 315$ K. In the paraelectric phase the crystal structure belongs to monoclinic syngony: – C2/c, in the ferrielectric phase – Cc [1]. The spontaneous polarization value is $P_s = 2.55$ μC/cm2 [2]. Observation of a high-pressure induced first-order phase transition in CuInP$_2$S$_6$ crystals at $p = 4.0$ GPa and room temperature from the monoclinic to a trigonal phase is reported, based on Raman scattering measurements [3].

Here we report on the studies of dielectric permeability and birefringence of CuInP$_2$S$_6$ crystals at hydrostatic pressure $p_{atm} < p < 250$ MPa in the temperature interval 77 K $< T < 400$ K.

2. Experimental

CuInP$_2$S$_6$ crystals were grown by Bridgman technique. They were shaped in 0.2–2-mm thick plates, with silver paste or aquadag electrodes applied to the largest faces. Complex dielectric permeability was measured at the measuring field frequencies of 1 kHz and 1 MHz.

Birefringence was studied by Senarmont technique at laser wavelength 0.63 μm. The light beam propagated along the normal to the layer. The measurements were performed in a three-window optical high-pressure chamber, benzene being used as a pressure medium.

3. Results and discussion

Figure 1, 2 shows temperature dependences of CuInP$_2$S$_6$ dielectric permeability, obtained at measuring field frequencies of 1 kHz and 1 MHz. At atmospheric pressure the dielectric permeability maximum, corresponding to the phase transition temperature in the crystals under investigation, is achieved at the temperature $T_s = 315$ K. The increase of the dielectric permeability value at 1 kHz (curve 1 in Fig. 1) in the range $T > 330$ K results from the ionic conductivity of Cu ions [1]. It should be noted that for the samples under study a temperature hysteresis of the phase transition is observed, $\Delta T_s = 1.7$ K. This value is essentially below that observed for the same crystals in [1] and coincides with the results of [4].

The performed studies of the dielectric properties of the CuInP$_2$S$_6$ crystals at atmospheric pressure have shown a considerable dependence of the dielectric permeability value on the sample thickness. This, in our opinion, can be responsible for a considerable data spread for the maximal dielectric permeability values ($140 < \varepsilon_{\text{max}} < 900$), obtained by different authors [1, 4].
Temperature dependences of the dielectric permeability of CuInP$_2$S$_6$ crystals at the measuring field frequency f=1 kHz are shown in Fig. 1. With the hydrostatic pressure increase the curves shift towards higher temperatures. As seen from Fig. 1, the pressure increase practically does not affect the character of the ionic conductivity in the paraelectric phase. The pressure increase is accompanied with the increase of the step of ε at the phase transition. This results from the lack of contribution of ionic conductivity into the dielectric permeability in the ferrielectric phase. According to our calculations, in the pressure range near $p=400$ MPa the anomaly of the dielectric permeability will be completely masked by Cu ion conductivity.

The results of hydrostatic pressure effect on the temperature dependences of the dielectric permeability for CuInP$_2$S$_6$ crystals, obtained at the measuring field frequency f=1 MHz, are presented in Fig. 2.

The shift of the ε anomalies is accompanied by a decrease of its maximal values at the constant temperature hysteresis of the phase transition, what is the evidence for the character of the phase transition remaining unchanged. The Curie-Weiss constant value which in the paraelectric phase at atmospheric pressure is C_W=7.5\cdot103 K, decreases with pressure. The coefficient $\frac{dC_W}{dp}$=−2.8K/MPa.

The phase transition is accompanied by a maximum of the tanδ value, coinciding with the temperature of the dielectric permeability maximum. The increase of loss in the high-temperature range is due to the ionic conductivity of the Cu atoms.

Temperature dependences of the CuInP$_2$S$_6$ crystal birefringence at different values of hydrostatic pressure are shown in Figs. 3 and 4. The pressure increase results in a slight change of the birefringence in the high-temperature range and to its essential increase in the ferrielectric phase. At the temperature dependences of the anomalous part of the birefringence a step and a temperature hysteresis of ~2K are observed, what is the evidence for the phase transition in this material being of the first order. For proper ferroelectrics the anomalous part of birefringence is known to be proportional to the squared spontaneous polarization P_s^2: $\Delta n=M P_s^2$.

Figure 1. Temperature dependences of the dielectric permeability of CuInP$_2$S$_6$ crystals at the measuring field frequency 1 kHz at different values of hydrostatic pressure p: $p=p_{atm}$ (1), 128 MPa (2), 248 MPa (3).

Figure 2. Temperature dependences of the dielectric permeability (open circles – heating, dark circles – cooling) at the measuring field frequency 1 MHz for CuInP$_2$S$_6$ crystals at different values of hydrostatic pressure p: $p=p_{atm}$ (1), 152 MPa (2), 249 MPa (3).
Figure 3. Temperature dependences of birefringence of CuInP$_2$S$_6$ crystals at different values of hydrostatic pressure p: $p=p_{am}$ (1), 40 MPa (2), 120 MPa (3).

Figure 4. Temperature dependences of the anomalous part of the CuInP$_2$S$_6$ crystal birefringence at different values of hydrostatic pressure p: $p=p_{am}$ (1), 40 MPa (2), 120 MPa (3). The insert shows the pressure dependence of the anomalous part of the CuInP$_2$S$_6$ crystal birefringence at constant temperature $T=290$ K.

Figure 5. (p,T) phase diagram for CuInP$_2$S$_6$ crystals: 1 is the ferrielectric phase transition line, open circles being the birefringence data, dark symbols – dielectric data at the frequency $f=1$ kHz (circles) and $f=1$ MHz (squares), 2 is the line of birefringence anomalies in the ferrielectric phase.
Taking the spontaneous polarization value at normal conditions for CuInP$_2$S$_6$ crystals as $P_s = 2.55 \mu$C/cm2, one can estimate the proportionality coefficient $M = 0.587$ m4/C2. In the range of the ferroelectric phase the studies of isothermal dependences of birefringence have revealed an additional anomaly in the form of a smeared jump (See the inset to Fig. 4). The position of this anomaly in the (p,T) space is extrapolated to the temperatures $T \approx 335$ K at atmospheric pressure. In this temperature range the authors of [1,2] observed the anomalies of the lattice parameters.

Based on the studies of the temperature and pressure dependences of the dielectric properties and birefringence of CuInP$_2$S$_6$ crystals, their (p,T) phase diagram was built, shown in Fig. 5. In the pressure range under investigation the increase of p results in a linear increase of the ferroelectric phase transition temperature at a rate $dT_c/dp = 210$K/GPa. This coefficient value is positive what is typical for order/disorder phase transitions and is high enough in comparison with other materials with such phase transition type [5]. Additional studies are required to elucidate the nature of the observed birefringence anomalies in the ferroelectric phase at high pressures.

4. Conclusions
Dielectric properties and birefringence of CuInP$_2$S$_6$ crystals at high hydrostatic pressures are studied. The pressure behaviour of the phase transition temperature confirms that the phase transition in these crystals belongs to the order/disorder type. An additional line of birefringence anomalies in the ferrielectric phase is revealed. The (p,T) phase diagram of CuInP$_2$S$_6$ crystals is built.

References
[1] A.Simon., J.Ravez, V.Maisonneive, C.Payen, V.Cajipe, "Paraelectric – ferroelectric transitions in the lamellar thiophosphate CuInP$_2$S$_6$", Chem.Mater.6,1575(1994).
[2] V.Maisonneuve, V.Cajipe, A.Simon, V.Muhll, J.Ravez, "Ferrielectric ordering in lamellar CuInP$_2$S$_6$",Phys. Rev. B. 56, 10860(1997).
[3] A.Grzechnik, V.Cajipe, C.Payen, P.McMillan, "Pressure-induced phase transition in ferrielectric CuInP$_2$S$_6$", Solid State Commun. 108, 43(1998).
[4] Yu.M.Vysochanskii., A.A.Molnar., M.I Gurzan, V. Cajipe , "Phase transitions in CuInP$_2$(Se$_x$S$_{1-x}$)$_6$ layered crystals", Ferroelectrics. 257, 147 (2001)
[5] R.Blinc and B.Žekš, Ferroelectrics and Antiferroelectrics, North-Holland Press, 1974.