Complementariedade do escore NUTRIC modificado com ou sem proteína C-reativa e avaliação subjetiva global na predição de mortalidade em pacientes críticos

Complementarity of modified NUTRIC score with or without C-reactive protein and subjective global assessment in predicting mortality in critically ill patients

Objetivo: Avaliar a concordância entre o escore NUTRIC modificado e o escore NUTRIC com proteína C-reativa na identificação de pacientes em risco nutricional e na predição da mortalidade entre pacientes críticos. Avaliou-se também o risco de óbito com agrupamento dos pacientes segundo o risco nutricional e a desnutrição detectada pela avaliação subjetiva global.

Métodos: Estudo de coorte em pacientes admitidos em uma unidade de terapia intensiva. O risco nutricional foi avaliado por meio do escore NUTRIC modificado e uma versão do escore NUTRIC com proteína C-reativa. Aplicou-se avaliação subjetiva global para diagnóstico de desnutrição. Calculou-se a estatística de Kappa e construiu-se uma curva ROC considerando o NUTRIC modificado como referência. A validade preditiva foi avaliada considerando a mortalidade em 28 dias (na unidade de terapia intensiva e após a alta) como desfecho.

Resultados: Estudaram-se 130 pacientes (63,05 ± 16,46 anos, 53,8% do sexo masculino). Segundo o NUTRIC modificado, 34,4% foram classificados como escore alto, enquanto 28,5% dos pacientes tiveram esta classificação com utilização do NUTRIC com proteína C-reativa. O risco de óbito em 28 dias estava aumentado nos pacientes com escores elevados pelo NUTRIC modificado (HR = 1,827; IC95% 1,029 - 3,244; p = 0,040) e pelo NUTRIC com proteína C-reativa (HR = 2,685; IC95% 1,423 - 5,064; p = 0,002). Observou-se elevado risco de óbito nos pacientes com alto risco nutricional e desnutrição, independentemente da versão do NUTRIC aplicada.

Conclusão: A concordância entre o escore NUTRIC modificado e o NUTRIC com proteína C-reativa foi excelente. Além disso, a combinação da avaliação com um escore NUTRIC mais avaliação subjetiva global pode aumentar a precisão para predição de mortalidade em pacientes críticos.

Descritores: Avaliação nutricional; Nutrição; Rastreamento; Cuidados críticos; Inflamação; Mortalidade; Unidades de terapia intensiva

Conflitos de interesse: Nenhum.
INTRODUÇÃO

A prevalência de desnutrição é alta em pacientes hospitalizados e ainda mais elevada em pacientes críticos admitidos em uma unidade de terapia intensiva (UTI), resultando em maior mortalidade, diminuição da qualidade de vida, aumento do tempo de permanência no hospital e custos hospitalares maiores altos. A doença crónica tem, geralmente, um estado catabólico que se manifesta com uma resposta inflamatória por complicações relacionadas a infecções, disfunção de múltiplos órgãos e tempo prolongado de hospitalização. A proteína C-reativa (PCR) é frequentemente medida em uma UTI para avaliar a condição inflamatória e pode ter importante significado, tanto diagnóstico quanto prognóstico, em pacientes com ou sem infecção. Contudo, há limitações relativas ao uso da PCR para monitorar pacientes críticos, já que seus valores podem ser baixos ou normais nas primeiras 12 horas após o início de uma doença febril.

A triagem e a avaliação nutricional do paciente crítico são complexas, em razão do fato de que muitos pacientes se encontram sob ventilação mecânica (VM) ou apresentam alterações neurológicas, tornando difícil colher informações essenciais, como dados antropométricos atualizados, histórico ponderal, alterações gastrintestinais e ingestão alimentar. Por esta razão, Heyland et al. desenvolveram uma ferramenta para identificação de pacientes que teriam maior benefício com a otimização do tratamento nutricional, o escore Nutrition Risk in the Critical Ill (NUTRIC). Na versão original desta ferramenta, utilizavam-se os valores da dosagem de interleucina 6 (IL-6) como marcador inflamatório associado ao risco nutricional. Entretanto, devido à dificuldade para obtenção na prática clínica, o escore NUTRIC foi, mais tarde, valorado sem a dosagem de IL-6, tornando-se conhecido como o NUTRIC modificado (mNUTRIC). Com relação às ferramentas disponíveis para avaliação nutricional em uma UTI, a validade da avaliação subjetiva global (ASG) para pacientes críticos foi confirmada por estudos recentes.

O uso da PCR para substituir a dosagem de IL-6 seria uma alternativa mais viável para avaliação do risco segundo o NUTRIC. Um grupo de pesquisa estudou duas variantes desta ferramenta em pacientes com VM assistida: mNUTRIC sem IL-6 e NUTRIC com PCR como marcador inflamatório (NUTRIC-PCR). Neste ensaio clínico em único centro realizado na Argentina, ambas as variantes do NUTRIC demonstraram resultados similares ao NUTRIC original, e a inclusão da dosagem de PCR melhorou o desempenho do escore na predição de mortalidade. Contudo, no estudo original para desenvolvimento do NUTRIC, Heyland et al. não demonstraram incremento de valor pela adição da PCR em vez de IL-6 para o NUTRIC original.

O uso da PCR como marcador inflamatório do NUTRIC foi muito pouco investigado até o momento. Em recente estudo, pacientes classificados com risco nutricional (NUTRIC ≥ 4) e desnutrição severa segundo a ASG demonstraram risco de mortalidade em 28 dias sete vezes superior quando se comparados com um NUTRIC < 4, independentemente da classificação na ASG.

O objetivo do presente estudo foi avaliar a concordância entre o mNUTRIC e o NUTRIC-PCR na identificação do risco nutricional em pacientes críticos e na predição de desfechos clínicos. Avaliaram também o risco de óbito em grupos de pacientes, segundo o risco nutricional, em combinação com diagnóstico de desnutrição pela ASG.

MÉTODOS

Estudo longitudinal, conduzido em uma UTI geral mista (cirúrgica, clínica e não traumática) com 20 leitos em hospital terciário em Porto Alegre (RS), entre maio de 2015 e agosto de 2016. O estudo incluiu pacientes com idade superior a 18 anos, coleta de dados dentro de 48 horas após admissão à UTI e com informações necessárias para calcular os escores NUTRIC disponíveis nos prontuários clínicos eletrônicos. Excluíram-se do estudo pacientes em risco iminente de morrer, que permaneceram na UTI por menos de 24 horas, e foram admitidos para cirurgias eletivas ou por overdose de drogas ilícitas.

A partir do prontuário clínico eletrônico, coletaram-se informações referentes a idade, sexo, diagnóstico primário na admissão ao hospital, comorbidades, dieta prescrita na unidade de internação e por ocasião da admissão à UTI, dias de hospitalização antes da admissão à UTI, escores segundo o Sequential Organ Failure Assessment (SOFA) e o Acute Physiology Health Disease Classification System II (APACHE II), e níveis de PCR (mg/dL; ADVIA® Chemistry Wide Range C-Reactive Protein - WircRPR, Siemens Healthcare Diagnostics, Inc) no momento da admissão à UTI. Utilizaram-se os protocolos da instituição para progressão da dieta com base nas diretrizes da American Society of Parenteral and Enteral Nutrition (ASPEN).

Para categorização do risco nutricional, utilizaram-se duas variações da ferramenta NUTRIC: o mNUTRIC, sem marcador inflamatório, e um segundo, adaptado de Moretti et al., com inclusão dos valores de PCR (NUTRIC-PCR). Para os escores do NUTRIC-PCR, utilizou-se categorização da PCR diferente da utilizada por Moretti et al., uma vez que os valores de PCR em...
Oliveira ML, Heyland DK, Silva FM, Rabito EI, Rosa M, Tarnowski MS, et al.

Rev Bras Ter Intensiva. 2019;31(4):490-496

nosso estudo variaram de 3,5 - 402,7mg/dL. Assim, classificamos a PCR em tercis para condução de nossa análise, e nossos pontos de corte foram < 68, 68 a 167 e ≥ 167mg/dL. A tabela 1 apresenta as variáveis e os intervalos para calcular o mNUTRIC e o NUTRIC-PCR, assim como a classificação do risco nutricional segundo os escores finais.

Tabela 1 - Variáveis para as escalas Nutrition Risk in the Critically Ill e Nutrition Risk in the Critically Ill modificada com proteína C-reativa e classificação das categorias de risco nutricional
Variáveis

Idade (anos)
APACHE II (pontos)
SOFA (pontos)
Número de comorbidades
Dias de hospitalização antes da admissão à UTI
PCR (mg/dL)

mNUTRIC (sem PCR)

- Escore baixo: 0 - 4 pontos
- Escore alto: 5 - 9 pontos

NUTRIC-PCR (com PCR)

- Escore baixo: 0 - 5 pontos
- Escore alto: 6 - 11 pontos

Análise estatística

A análise estatística foi conduzida com utilização do pacote Statistical Package for Social Science (SPSS), versão 17.0 para Windows. As variáveis categóricas foram descritas em percentagens; as variáveis contínuas, como média ± desvio padrão - para variáveis paramétricas, ou medianas (variações interquartis) - para variáveis não paramétricas. Conduziram-se comparações entre pacientes com alto e baixo risco nutricional segundo os escores NUTRIC-PCR/mNUTRIC por meio do teste t de Student, do teste de Wilcoxon-Mann Whitney ou teste do qui-quadrado de Pearson. A concordância entre os instrumentos mNUTRIC e NUTRIC-PCR foi identificada pelo teste Kappa. A sensibilidade, a especificidade, e os valores preditivos positivo e negativo foram calculados conforme as fórmulas matemáticas habituais, assim como a área sob a curva (AUC) Receiver Operating Characteristic (ROC).

Os pacientes foram agrupados segundo o risco nutricional (mNUTRIC) e desnutrição (ASG) em quatro categorias: baixo risco nutricional e bem nutrido, baixo risco nutricional e desnutrido, alto risco nutricional e bem nutrido e alto risco nutricional e desnutrido. As associações entre estas ferramentas e óbito em 28 dias (análise exploratória) foram avaliadas com utilização de regressão de Cox ajustada quanto ao sexo. Considerou-se nível de significância de 5%.

Este projeto foi considerado alinhado com a resolução do Conselho Nacional de Saúde 466/12, aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal de Ciências da Saúde de Porto Alegre sob o número de registro 1.073.256 e pelo Comitê de Ética da Irmandade da Santa Casa de Porto Alegre sob o número de registro 1.030.523. Este estudo também estava em conformidade com a Declaração de Helsinque.

RESULTADOS

Incluíram-se neste estudo 130 pacientes, cujas características estão descritas na tabela 2. Com relação à principal razão para admissão ao hospital, antes da admissão à UTI, 35,4% estavam relacionadas a enfermidades gastrintestinais; 20,8% a enfermidades pneumológicas, neurológicas ou oncológicas; 15,4% a enfermidades cardíacas, nefrológicas ou endocrinológicas; e 3,8% foram por sepse, choque ou complicações pós-operatórias. O tempo mediano de permanência no hospital antes da admissão à UTI foi de 5,0 (1.0 - 18,0) dias.
As causas principais de admissão à UTI foram: 33,1% por complicações pós-operatórias, 21,5% por choque séptico ou piora das condições gerais, 12,3% por infecções ou sepse, 11,5% por problemas cardíacos e 10% por complicações gastrintestinais ou pneumológicas. Dentre as complicações pós-operatórias, 51,2% foram admitidos ao hospital por doenças gastrintestinais, 11,6% por doenças pneumológicas, neurológicas ou oncológicas, 18,6% por doenças cardíacas, nefrológicas ou endocrinológicas, e 2,3% por complicações pós-operatórias após a alta. Do segundo maior grupo, 27,6% foram admitidos ao hospital por doenças gastrintestinais, 31% por doenças pneumológicas, neurológicas ou oncológicas, 17,2% por doenças cardíacas, nefrológicas ou endocrinológicas, e 6,9% por sepsis, choque ou complicações pós-operatórias após a alta.

Segundo a prescrição de dieta na UTI, 44,6% receberam dieta oral, 53,8% dieta enteral e 10% dieta parenteral. Com relação a múltiplas vias de alimentação, cinco pacientes receberam dieta oral mais enteral, um paciente recebeu dieta enteral mais parenteral, e dois receberam alimentação pelas três vias simultaneamente. O tempo mediano de permanência na UTI foi de 8,0 (3,0 - 16,8) dias. No total, 60,8% dos pacientes necessitaram de VM. A taxa de mortalidade na população avaliada foi de 39,2%.

Com relação à avaliação do risco segundo o mNUTRIC, 71,5% dos pacientes foram classificados com escore baixo (≤ 4 pontos) e 28,5% como escore alto (≥ 5 pontos). Para a análise segundo o NUTRIC-PCR, utilizaram-se os dados 90 pacientes cujos valores de PCR na admissão à UTI estavam disponíveis no prontuário clínico eletrônico. Deste, 65,6% tinham escore baixo (≤ 5 pontos) e 34,4% foram classificados com escore alto (≥ 6 pontos). Segundo a ASG, 48,1% dos pacientes foram classificados como desnutridos (categorias B e C).

A concordância entre os instrumentos mNUTRIC e NUTRIC-PCR foi considerada excelente (n = 90; Kappa = 0,88; p < 0,001). A sensibilidade do NUTRIC-PCR (considerando o mNUTRIC como método de referência) foi igual a 90,3%, enquanto sua especificidade foi de 96,6%. O valor preditivo positivo foi igual a 93,3% e o valor preditivo negativo foi de 96,6%, sendo que a ASC foi de 0,942 (0,881 - 1,000).

A tabela 2 mostra a caracterização da amostra segundo a classificação do risco pelo mNUTRIC e pelo NUTRIC-PCR (escore baixo e escore alto). Os pacientes com escore alto de risco nutricional eram mais velhos, tinham níveis mais elevados de PCR, APACHE e SOFA, e apresentaram maior incidência de óbitos em comparação aos pacientes com escore baixo de risco nutricional, independente de qual a versão do NUTRIC. A frequência de desnutrição foi mais alta nos pacientes com alto risco nutricional do que entre aqueles com baixo risco nutricional apenas quando se aplicou o mNUTRIC.
Segundo a regressão de Cox ajustada para sexo, os pacientes com alto risco nutricional apresentaram risco de óbito em 28 dias, que foi 2,685 (intervalo de confiança de 95% - IC95% 1,423 - 5,064; p = 0,002) vezes mais alto do que para os pacientes com baixo risco nutricional segundo o NUTRIC-PCR. O mNUTRIC também se associou de forma significativa com a incidência de óbito em 28 dias (hazard ratio - HR = 1,827; IC95% 1,029 - 3,244; p = 0,040).

O risco de óbito nas categorias que consideraram o risco nutricional e o diagnóstico de desnutrição pela ASG combinados foi significante apenas em pacientes com alto escore pelo mNUTRIC e desnutridos, conforme demonstra a tabela 3. Com relação ao NUTRIC-PCR, o risco de óbito foi também significativamente maior nos pacientes com escore alto e desnutridos (HR 4,112; 1,738 - 9,727).

Tabela 3 - Complementariedade entre o escore Nutrition Risk in the Critically III modificado e a avaliação subjetiva global para prever a mortalidade em 28 dias entre pacientes críticos - regressão de Cox ajustada quanto ao sexo

Categoria	HR (IC95%)
Baixo escore mNUTRIC e bem nutrido (ASG A)	Referência
Baixo escore mNUTRIC e desnutrido (ASG B ou C)	1,429 (0,643 - 3,178)
Alto escore mNUTRIC e bem nutrido (ASG A)	1,750 (0,727 - 4,215)
Alto escore mNUTRIC e desnutrido (ASG B ou C)	2,167 (1,029 - 4,563)

HR - hazard ratio; IC95% - intervalo de confiança de 95%; mNUTRIC - Nutrition Risk in the Critically III modificado; ASG - análise subjetiva global.

DISCUSSÃO

Em nosso estudo, avaliamos a concordância entre os escores mNUTRIC e NUTRIC-PCR. Segundo os resultados, sugerimos que o uso de um marcador de inflamação para avaliação/estratificação do risco nutricional na UTI pode não ser necessário. Ambos os escores demonstraram excelente concordância e foram associados positivamente com mortalidade quando combinados com desnutrição avaliada pela ASG.

Observou-se prevalência similar de risco nutricional no presente estudo quando se aplicaram o mNUTRIC e o NUTRIC-PCR: 28,5% e 34,4%, respectivamente. Diversos estudos compararam o risco nutricional com uso do NUTRIC em pacientes críticos, e a prevalência de escores altos variou de 22,4% (21) a 67,9% (22). A menor prevalência de risco nutricional em nosso estudo pode ser explicada pelo grau de severidade dos pacientes: os escores APACHE II e SOFA foram relativamente baixos, e apenas 60% dos pacientes estavam sob VM.

Moretti et al. (16) também compararam o mNUTRIC (sem os valores de IL-6) e o NUTRIC-PCR e demonstraram menor prevalência de risco nutricional segundo o NUTRIC-PCR do que com o mNUTRIC (25% e 34%, respectivamente), enquanto no presente estudo observou-se o oposto. Isto pode estar relacionado aos pontos de corte de PCR adotados para estratificação do risco nutricional no primeiro estudo (< ou ≥ 10 mg/dL). Decidimos categorizar os valores de PCR em tercis, porque esta variável teve distribuição não normal. Além disto, pacientes críticos naturalmente apresentam valores mais elevados de PCR.

No presente estudo, ambos os escores tiveram capacidade satisfatória de prever a mortalidade, apesar de ser uma análise exploratória. Na verdade, há dados consistentes na literatura a respeito da associação positiva entre NUTRIC alto e óbito (11,12,21,25). Observou-se, no estudo de validação do NUTRIC, que cada ponto de incremento no NUTRIC resultava em aumento significante na taxa de mortalidade (11). Isto foi demonstrado também em estudo conduzido por Rahman et al., que validaram o mNUTRIC (12). Em outro estudo realizado com 482 pacientes com sepse, na predição da mortalidade em 28 dias, as AUC para o mNUTRIC e o NUTRIC original foram, respectivamente, de 0,762 e 0,757 (25).

Nossos resultados sugerem que o risco de óbito é significativamente mais alto nos pacientes com elevado escore de risco nutricional acrescido do diagnóstico de desnutrição. Estudo prospectivo que incluiu 439 pacientes críticos demonstrou que o valor discriminatório para mortalidade hospitalar foi similar para elevado escore mNUTRIC (estatística C = 0,66) e desnutrição (estatística C = 0,60), enquanto a combinação de ambos teve capacidade discriminatória significantemente melhor do que qualquer uma destas ferramentas isoladamente (estatística C = 0,70). Neste estudo, o risco de mortalidade foi igual a 14,45 (IC95% 5,38 - 38,78) em pacientes que eram tanto desnutridos quanto tinham elevado mNUTRIC (23). A validade preditiva da ASG em pacientes críticos foi demonstrada em estudos prévios (23-25). O NUTRIC é importante ferramenta para avaliação do risco nutricional, com a finalidade de orientar a intervenção nutricional em pacientes críticos. Diversos estudos demonstraram que os efeitos benéficos do suporte nutricional são mais evidentes em pacientes em alto risco (11,12,26). As diretrizes de sociedades internacionais sugerem o uso do NUTRIC para identificar os pacientes críticos em risco nutricional e recomendam...
que os alvos nutricionais sejam alcançados nos pacientes com NUTRIC elevado.(18,27)

Este foi um pequeno estudo, conduzido em um único centro, com avaliação de amostra pequena, o que pode ser considerado uma limitação. Entretanto, conduziu-se uma avaliação do tamanho da amostra para avaliar o desfecho primário (concordância entre ambos os escores NUTRIC) com resultado positivo. É digno de nota o fato de que o escore NUTRIC já tinha sido previamente traduzido e adaptado para o idioma português.(28)

CONCLUSÃO

Foi excelente a concordância entre o mNUTRIC e o NUTRIC-PCR, sugerindo que pode não ser necessário o uso de um marcador inflamatório para estratificação do risco nutricional na unidade de terapia intensiva. Ambos os escores tiveram associação positiva com mortalidade, e o risco de óbito foi particularmente mais elevado nos pacientes com NUTRIC elevado e desnutridos. Portanto, reforçamos que o uso do NUTRIC sem marcadores inflamatórios é viável para utilização na prática clínica em pacientes críticos e deve ser complementado pelo diagnóstico de desnutrição aplicando-se a análise subjetiva global, com a finalidade de melhorar a precisão para prever desfechos.

Contribuição dos autores

Manoela Oliveira, Mariane Rosa e Micheli Tarnowski foram responsáveis pela coleta dos dados; Flávia Moraes Silva e Aline Marcadenti analisaram os dados; Flávia Moraes Silva, Manoela Oliveira e Aline Marcadenti redigiram o manuscrito; Daeni Fernandes, Daren Heyland e Estela Rabito revisaram o manuscrito. Todas as autoras leram e aprovaram a versão final do artigo.

ABSTRACT

Objective: To evaluate the concordance between the modified NUTRIC and NUTRIC with C-reactive protein instruments in identifying nutritional risk patients and predicting mortality in critically ill patients. The risk of death in patient groups was also investigated according to nutritional risk and malnutrition detected by subjective global assessment.

Methods: A cohort study of patients admitted to an intensive care unit. Nutritional risk was assessed by modified NUTRIC and a version of NUTRIC with C-reactive protein. Subjective global assessment was applied to diagnose malnutrition. Kappa statistics were calculated, and an ROC curve was constructed considering modified NUTRIC as a reference. The predictive validity was assessed considering mortality in 28 days (whether in the intensive care unit or after discharge) as the outcome.

Results: A total of 130 patients were studied (63.05 ± 16.46 years, 53.8% males). According to NUTRIC with C-reactive protein, 34.4% were classified as having a high score, while 28.5% of patients had this classification with modified NUTRIC. According to SGA 48.1% of patients were malnourished. There was excellent agreement between modified NUTRIC and NUTRIC with C-reactive protein (Kappa = 0.88, p < 0.001). The area under the ROC curve was equal to 0.942 (0.881 - 1.000) for NUTRIC with C-reactive protein. The risk of death within 28 days was increased in patients with high modified NUTRIC (HR = 1.827; 95%CI 1.029 - 3.244; p = 0.040) and NUTRIC with C-reactive protein (HR = 2.685; 95%CI 1.423 - 5.064; p = 0.002) scores. A high risk of death was observed in patients with high nutritional risk and malnutrition, independent of the version of the NUTRIC score applied.

Conclusion: An excellent agreement between modified NUTRIC and NUTRIC with C-reactive protein was observed. In addition, combining NUTRIC and subjective global assessment may increase the accuracy of predicting mortality in critically ill patients.

Keywords: Nutritional assessment; Nutrition; Screening; Critical care; Inflammation; Mortality; Intensive care units
REFERÊNCIAS

1. Lew CC, Yandell R, Fraser RJ, Chua AP, Chong MF, Miller M. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review [Formula: see text]. JPEN J Parenter Enteral Nutr. 2017;41(5):744-58.

2. Jensen GL, Bistrian B, Roubenoff R, Heimburger DC. Malnutrition syndromes: a conundrum vs continuum. JPEN J Parenter Enteral Nutr. 2009;33(6):710-6.

3. Jensen GL. Inflammation as the key interface of the medical and nutrition universes: a provocative examination of the future of clinical nutrition and medicine. JPEN J Parenter Enteral Nutr. 2006;30(5):453-63.

4. National Alliance for Infusion Therapy and the American Society for Parenteral and Enteral Nutrition Public Policy Committee and Board of Directors. Disease-related malnutrition and enteral nutrition therapy: a significant problem with a cost-effective solution. Nutr Clin Pract. 2010;25(5):548-54.

5. Bharadwaj S, Ginoya S, Tandon P, Gohel TD, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C. Society of Critical Care Medicine, American Society for Parenteral and Enteral Nutrition. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211.

6. Jensen GL, Mirtallo J, Compher C, Dhaliwal R, Forbes A, Grijalba RF, Hardy G, Kondrup J, Labadarios D, Nyulasi I, Castillo Pineda JC, Waetzberg D; International Consensus Guideline Committee. Adult starvation and disease-related malnutrition: a proposal for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. Clin Nutr. 2010;29(2):151-3.

7. Cui N, Zhang H, Chen Z, Yu Z. Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: retrospective analysis of 59 cases. J Int Med Res. 2019;47(4):1573-9.

8. Ügarte H, Silva E, Mercan D, De Mendonça A, Vincent JL. Procalcitonin CRP evaluation for adult ICU patients with sepsis and septic shock: retrospective analysis of 59 cases. J Int Med Res. 2019;47(4):1573-9.

9. Coltman A, Peterson S, Roehl K, Roosevelt H, Sowa D. Use of 3 tools to assess nutrition risk in the intensive care unit. JPEN J Parenter Enteral Nutr. 2015;39(1):28-33.

10. Lambell K, King S, Ridley E. Identification of Malnutrition in Critically Ill Patients via the Subjective Global Assessment Tool: More Consideration Needed? J Intensive Care Med. 2017;32(1):95.

11. Heyland DK, Dhaliwal R, Jiang X, Day AG. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15(6):R268.

12. Rahman A, Hasan RM, Agarwala R, Martin C, Day AG, Heyland DK. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr. 2016;35(1):158-62.

13. Fonseca D, Generoso Sde V, Toulson Davisson Correia ML. Subjective global assessment: a reliable nutritional assessment tool to predict outcomes in critically ill patients. Clin Nutr. 2014;33(2):291-5.

14. Gattermann Pereira T, da Silva Fink J, Tosatti JA, Silva FM. Subjective Global Assessment Can Be Performed in Critically Ill Surgical Patients as a Predictor of Poor Clinical Outcomes. Nutr Clin Pract. 2019;34(1):131-6.

15. Atalay BG, Yagmur C, Nursal TZ, Atalay H, Noyan T. Use of subjective global assessment and clinical outcomes in critically ill geriatric patients receiving nutrition support. JPEN J Parenter Enteral Nutr. 2008;32(4):454-9.

16. Moretti D, Bagilet DH, Buncuga M, Settecase CJ, Daquaglio MB, Quintana R. Estudio de dos variantes de la puntuación de riesgo nutricional “NUTRIC” en pacientes críticos ventilados. Nutr Hosp. 2014;29:166-72.

17. Gonzalez MC, Santos PP, Bielemann R, Orlandi SP, Barbosa-Silva TG. Complementarity of NUTRIC score and subjective global assessment for predicting 28-days mortality in critically ill patients. Clin Nutr. 2018;37 Suppl 1:S9.

18. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C; Society of Critical Care Medicine, American Society for Parenteral and Enteral Nutrition. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211.

19. Detsky AS, McLaughlin JR, Baker JP, Johnston N, Whittaker S, Mendelson RA, et al. What is subjective global assessment of nutritional status? JPEN J Parenter Enteral Nutr. 1987;11(1):8-13.

20. Özbilgin Ş, Vince V, Özbilgin M, Tosun M, Yurtlu S, et al. Morbidity and mortality predictivity of nutritional assessment tools in the postoperative care unit. Medicine (Baltimore). 2016;95(40):e5038.

21. de Vries MC, Koekkoek WK, Opdam MH, van Blokland D, van Zanten AR. Nutritional assessment of critically ill patients: validation of the modified NUTRIC score. Eur J Clin Nutr. 2018;72(3):428-35.

22. Mendes R, Palcaro S, Fortuna F, Alves M, Virella D, Heyland DK; Portuguese NUTRIC Study Group. Nutritional risk assessment and cultural validation of the modified NUTRIC score in critically ill patients: A multicenter prospective cohort study. J Crit Care. 2017;37:45-9.

23. Lew CC, Cheung KP, Chong MF, Chua AP, Fraser RJ, Miller M. Combining 2 Commonly Adopted Nutrition Instruments in the Critical Care Setting Is Superior to Administering Either One Alone. JPEN J Parenter Enteral Nutr. 2017;41(1):272-80.

24. Canales C, Elsayes A, Yeh DD, Belcher D, Nakayama A, McCarthy CM, et al. Nutrition Risk in Critically Ill Versus the Nutritional Risk Screening 2002: Are They Comparable for Assessing Risk of Malnutrition in Critically Ill Patients? JPEN J Parenteral Enteral Nutr. 2019;43(1):81-87.

25. Jeong DH, Hong SB, Lim CM, Koh Y, Seo J, Kim Y, et al. Comparison of Accuracy of NUTRIC and Modified NUTRIC Scores in Predicting 28-Day Mortality in Patients with Sepsis: A Single Center Retrospective Study. Nutrients. 2018;10(7). pii: E911.

26. Mukhopadhyay A, Henry J, Öng V, Leong CS, Teh AL, van Dam RM, et al. Association of modified NUTRIC score with 28-day mortality in critically ill patients. Clin Nutr. 2017;36(4):1143-8.

27. Fontes D, Generoso Sde V, Toulson Davisson Correia ML. Subjective global assessment and clinical outcomes in critically ill geriatric patients receiving nutrition support. JPEN J Parenter Enteral Nutr. 2008;32(4):454-9.