SUPPLEMENTARY MATERIAL

Active sesquiterpene lactones against *Leishmania amazonensis* and *Leishmania braziliensis*

Andrea M. Sosa\(^a\), Susana Amaya\(^{a,b}\), Efrain Salamanca Capusiri\(^c\), Miguel Gilabert\(^{a,d}\), Nancy R. Vera\(^a\), Alicia Bardón\(^{a,d}\), Alberto Giménez\(^c\) and Susana A. Borkosky\(^{a,b}*)

\(^{a}\)Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán, Argentina
\(^{b}\)Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, Catamarca, Argentina
\(^{c}\)Instituto de Investigaciones Fármaco Bioquímicas, Universidad Mayor de San Andrés, Av. B. Saavedra 2224, La Paz, Bolivia
\(^{d}\)INQUINOA-CONICET. Ayacucho 471, 4000, Tucumán, Argentina

Abstract

Seventeen sesquiterpene lactones (SLs) isolated from five species of the tribe Vernonieae were evaluated for their *in vitro* activity against promastigotes of *Leishmania amazonensis* and *L. braziliensis*. Additionally, a quantitative structure activity relationship has been made, since all these natural compounds were found to have potent to mild antileishmanial properties. The most active compounds against *L. braziliensis* were 16 and 17 (IC\(_{50}\) values 1.45 and 1.34 μM respectively), followed by compound 15 with IC\(_{50}\) value of 1.60 μM against *L. amazonensis*. The three glaucolide type SLs (4–6) were the least active against both parasites. The computational study allowed us to establish that lipophilicity and polarizability play an important role in the antiparasitic activity. This is the first report of the known germacradiendiolides 16 and 17 from *Elephantopus mollis*. The activity data of the compounds 1–17 assayed against *Leishmania* parasites is reported here for the first time.

Keywords: Vernonieae; sesquiterpene lactones; antileishmanial activity; *Leishmania amazonensis*; *Leishmania braziliensis*
Experimental

Plant material and isolation of compounds

All compounds tested in this study were isolated from five plant species belonging to the tribe Vernoniae. Vouchers are on deposit in the Herbarium of the Fundación Miguel Lillo, Tucumán, Argentina. Plant parts (stem, flowers and leaves) were air-dried at room temperature and afterwards powdered in preparation for analysis. Extraction of the plant material was done using solvents as ethyl acetate, chloroform and methanol. Different extracts obtained were processed using column chromatography and reverse phase HPLC following protocols previously reported (Borkosky, Alvarez Valdez et al. 1996; Borkosky, Bardon et al. 1997; Pollora et al. 2003). Pure compounds isolated were assessed by UV, IR, NMR mono- and bidimensional and MS analyses and identified by their spectroscopy features in comparison with previously reported literature data (Kurosawa et al. 1970; Lee et al. 1975; Borkosky, Alvarez Valdez et al. 1996; Borkosky, Bardon et al. 1997; Pollora et al. 2003). Compounds 1–4 and 6 came from a Bolivian collection of Vernonanthura pinguis; compound 5 was present on a Bolivian collection of Eirmocephala megaphylla; 7–10 came from an Argentine collection of Vernonanthura nebularum; the isogoyazensolides 11–13 and the goyazensolides 14 and 15, from an Argentine collection of Centratherum punctatum spp. punctatum. Compounds 16 and 17 were obtained from the Argentine herb Elephantopus mollis.

Compounds assayed

(1) 1-hidroxy-1,4-epoxy-8-methacryloyloxy-13-acetoxy-5E, 7(11) germacradien-6,12-olide. Molecular weight: 404.
(2) 1-hidroxy-1,4-epoxy-8-senecioyloxy-13-acetoxy-5E, 7(11) germacradien-6,12-olide. Molecular weight: 420.
(3) 1-hidroxy-1,4-epoxy-8-tigloyloxy-13-acetoxy-5E, 7(11) germacradien-6,12-olide. Molecular weight: 420.
(4) 13-acetyloxy-4,5-10,1- diepoxy-8-methacryloyloxy-germaca-7(11)-en-6,12-olide; common name: Vernonataloide. Molecular weight: 406.
(5) 10,13-diacetyloxy-4,5- epoxy-8-methacryloyloxy-1-oxogermacra-7(11)-en-6,12-olide; common name: Glaucolide A. Molecular weight: 462.
(6) 8, 10, 13-triacetyloxy-4,5-epoxy-1-oxogermacr-7(11)-en-6,12-olide; common name: Glaucolide B. Molecular weight: 438.

(7) 2-Hidroxy-2,5-epoxy-8-methacryloyoxygermacra-3Z,11(13)-dien-6,12-olide. Molecular weight: 348.

(8) 2-Methoxy-2,5-epoxy-8-methacryloyxygermacra-3Z,11(13)-dien-6,12-olide. Molecular weight: 362.

(9) 2-Methoxy-2,5-epoxy-8-angeloxygermacra-3Z,11(13)-dien-6,12-olide. Molecular weight: 376.

(10) 2-Hydroxy-2,5-epoxy-8-angeloxygermacra-3Z,11(13)-dien-6,12-olide. Molecular weight: 362.

(11) 1-Oxo-3,10-epoxy-5-hidroxy-8-metacryloyloxy-germacra-2,4(15),11(13)-trien 6,12-olide. Common name: Isolychnophorolide B. Molecular weight: 360.

(12) 1-Oxo-3,10-epoxy-5-hidroxy-8-angeloyloxy-germacra-2,4(15),11(13)-trien-6,12-olide; common name: Isocentratherin. Molecular weight: 374.

(13) 1-Oxo-3,10-epoxy-5-hidroxy-8-tigloyloxy-germacra-2,4(15),11(13)-trien-6,12-olide. Molecular weight: 374.

(14) 1-Oxo-3,10-epoxy-8-epoxymethacryloyloxy-15-hydroxygermacra-2,4,11(13)-trien-6,12-olide. Molecular weight: 376.

(15) 1-Oxo-3,10-epoxy-8-angeloyloxy-15-hydroxygermacra-2,4,11(13)-trien-6,12-olide; common name: Centratherin. Molecular weight: 374.

(16) 8-(2-Methylpropenoyl)-1(10),4,11(13)-germacatriene-12,6;14,2-diolide. (2α,4E,6α,8α)-form; common name: Isodeoxyelephantopin. Molecular weight: 344.

(17) 8-(2-Methylpropenoyl)-1(10),4,11(13)-germacatriene-12,6;14,2-diolide. (2β,4E,6α,8α)-form; common name: Deoxyelephantopin. Molecular weight: 344.

Parasites growth

Promastigotes form of *L. amazonensis* complex (clon 1: Lma, MHOM/BR/76/LTB-012) and *L. braziliensis* complex (strand M2904 C192 RJA) obtained from *in vitro* cultures of Instituto de Investigaciones Farmaco Bioquímicas (IIFB), were cultivated at 26 °C in Schneider’s Insect Medium, pH 6.8, supplemented with 10% calf bovine serum inactivated at 56 °C for 30 min. Promastigotes were fixed with glutaraldehyde (5%, 180 μL) and
counted in a Neubauer chamber.

Leishmanicidal assay

Parasites in logarithmic phase of growth, at a concentration of 1×10^6 parasites/mL, were seeded on a 96-well flat bottom microtiter plate and different concentration of the test substances (0.75 – 100 µg/mL) dissolved in DMSO were added. The micro well plates were incubated for 72 h at 26 °C. After incubation, a solution of XTT (1mg/mL) in PBS, phosphate buffer saline (pH 7.0 at 37 °C) with PMS, phenazine methosulphate (Sigma-Aldrich, 0.06mg/mL), was added (50 µl/well), and incubated again for 4 h at 26 °C. DMSO (1%) and Amphotericin B Sigma-A2411 (0.5 µg/mL) were used as negative and positive controls during the evaluations (Salamanca Capusiri et al. 2008). Optical density of each well was obtained on a Synergy HT Microplate Reader (Biotec) at λ 450 nm.

Data analysis

The IC$_{50}$ values (the concentration of a substance needed to reduce 50% parasites viability) were calculated using Microsoft Excel 2007 and expressed as mean value ± standard error (Table S1). All assays were carried out in triplicate.

Computational methods

Structures of compounds 1 – 17 were drawn in Avogadro 1.0.1 software and further minimized to their lowest energy conformation using the semi empirical PM3 method in MOPAC 2009 software. Different chemical descriptors such as heat of formation, dipole moment, and HOMO and LUMO energies were obtained as a result of the geometry optimization. In addition, the extended topochemical atom indices (ETA descriptors) were calculated by using the freely-available PaDel-Descriptor software. The ETA descriptors provide precise information regarding the molecular topology and their electronic environment. The logarithm of partition coefficient between n-octanol and water (LogP) using Chem3D Ultra 8.0 software was also calculated.

In order to build a QSAR model, the wide variety of molecular descriptors calculated for each molecule was collected (X) and it was assumed that biologic activity (y) is a function of some of the calculated molecular descriptors; $y = f(X)$. Statistical regression analysis of data was undertaken using the LINEST curve fitting routine provided by Microsoft Office Excel 2007 and different plots of the calculated descriptors vs. experimental IC$_{50}$ values.
were obtained. The coefficient of determination (R^2) was calculated in all cases and it has been used as a measure of the total variance of the response explained by the regression model. Descriptors that best fitted (higher R^2) were selected.

References

Alvarez Valdes D, Bardon A, Catalan CAN, Gedris TE, Herz W. 1998. Goyazensolides and isogoyazensolides from Argentine *Centratherum punctatum* ssp. *punctatum*. Biochem Syst Ecol. 26: 805–808.

Borkosky S, Alvarez Valdez D, Bardon A, Diaz J, Herz W. 1996. Sequiterpene lactones and other constituents of *Eirmocephala megaphylla* and *Cyrtocymura cincta*. Phytochemistry. 42:1637–1639.

Borkosky S, Bardon A, Catalan CAN, Diaz J, Herz W. 1997. Glaucolides, hirsutinolides and other sequiterpene lactones from *Vernonanthura pinguis*. Phytochemistry. 44:465–470.

Cambridge Soft Corporation. 2007. ChemDraw® Ultra V. 11.0. Chemical Structure Drawing Standard 1986-2003, Cambridge, MA 02140, USA.

Lee KH, Cowherd CM, Wolo MT. 1975. Antitumor agents. XV: Deoxyelephantopin, an antitumor principle from *Elephantopus carolinianus* Willd. J Pharm Sci 64:1572–1573.

Pollora GC, Bardon A, Catalan CAN, Gedris TE, Herz W. 2003. Elephantopus-type sesquiterpene lactones from a *Vernonanthura* species: *Vernonanthura nebularum*. Biochem Syst Ecol. 31: 397–405.

Salamanca Capusiri E, Ruiz Pinell G, Ticona Huallpara JC, Gimenez Turba A. 2008. [Colorimetric method - XTT: as a tool for high performance evaluation of substances with leishmanicidal activity]. Biofarbo. 16: 21–27. Spanish.

Stewart JJP. 2008. MOPAC2009. Stewart Computational Chemistry, Colorado Springs, CO, USA. HTTP:// Open Mopac.net.

Yap CW. 2011. PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem. 32: 1466–1474.
Figure S1. Correlation between molecular descriptors and leishmanicidal activity expressed as IC$_{50}$ (µM) against *L. amazonensis* (*Lam*) and *L. braziliensis* (*Lbr*). (a) CLogP; (b) ALogP; (c) bpol descriptor. R2 values are presented in Table S2.
Compound	IC₅₀^a - *L. amazonensis*	IC₅₀^a - *L. braziliensis*
1	2.60 ± 0.10 [µg/ml] 6.44 ± 0.25 [µM]	2.40 ± 0.05 [µg/ml] 5.94 ± 0.13 [µM]
2	5.80 ± 0.15 [µg/ml] 13.8 ± 0.36 [µM]	5.90 ± 0.30 [µg/ml] 14.1 ± 0.71 [µM]
3	2.60 ± 0.15 [µg/ml] 6.19 ± 0.36 [µM]	2.40 ± 0.60 [µg/ml] 5.71 ± 1.40 [µM]
4	19.4 ± 1.00 [µg/ml] 47.8 ± 2.46 [µM]	12.9 ± 2.30 [µg/ml] 31.8 ± 6.40 [µM]
5	16.2 ± 0.14 [µg/ml] 35.1 ± 0.30 [µM]	10.8 ± 0.46 [µg/ml] 23.4 ± 1.00 [µM]
6	20.2 ± 0.20 [µg/ml] 46.1 ± 0.46 [µM]	12.2 ± 0.80 [µg/ml] 27.9 ± 1.82 [µM]
7	2.55 ± 0.07 [µg/ml] 7.33 ± 0.20 [µM]	1.06 ± 0.09 [µg/ml] 3.05 ± 0.26 [µM]
8	1.20 ± 0.05 [µg/ml] 3.31 ± 0.01 [µM]	1.00 ± 0.10 [µg/ml] 2.76 ± 0.27 [µM]
9	2.50 ± 0.20 [µg/ml] 6.65 ± 0.53 [µM]	1.30 ± 0.10 [µg/ml] 3.46 ± 0.27 [µM]
10	1.05 ± 0.05 [µg/ml] 2.90 ± 0.13 [µM]	1.10 ± 0.10 [µg/ml] 3.04 ± 0.28 [µM]
11	1.40 ± 0.01 [µg/ml] 3.89 ± 0.03 [µM]	3.00 ± 0.15 [µg/ml] 8.33 ± 0.42 [µM]
12	1.30 ± 0.01 [µg/ml] 3.48 ± 0.03 [µM]	1.86 ± 0.60 [µg/ml] 4.97 ± 1.60 [µM]
13	3.30 ± 0.18 [µg/ml] 8.82 ± 0.48 [µM]	3.70 ± 0.05 [µg/ml] 9.89 ± 0.13 [µM]
14	3.90 ± 0.35 [µg/ml] 10.4 ± 0.93 [µM]	4.70 ± 0.20 [µg/ml] 12.5 ± 0.53 [µM]
15	0.60 ± 0.10 [µg/ml] 1.60 ± 0.26 [µM]	1.10 ± 0.01 [µg/ml] 2.94 ± 0.03 [µM]
16	1.13 ± 0.05 [µg/ml] 3.28 ± 0.03 [µM]	0.50 ± 0.10 [µg/ml] 1.45 ± 0.29 [µM]
17	1.00 ± 0.01 [µg/ml] 2.90 ± 0.03 [µM]	0.46 ± 0.05 [µg/ml] 1.34 ± 0.15 [µM]
Amphotericin B^b	0.25 ± 0.05 [µg/ml] 0.27 ± 0.05 [µM]	0.07 ± 0.01 [µg/ml] 0.08 ± 0.01 [µM]

^a IC₅₀ values express as mean ± standard deviation of three determinations.

^b Positive control.
Table S2. Values for the correlation between experimental activities and molecular parameters: CLogP, ALogP and bpol.

	L. amazonensis clon 1		L. braziliensis	
	R²	**Equation**	**R²**	**Equation**
CLogP	0.82	\(y = 7.26X^2 - 32.6X + 36.2 \)	0.77	\(y = 4.06X^2 - 19.1X + 23.7 \)
ALogP	0.81	\(y = 8.98X^2 - 34.2X + 34.9 \)	0.77	\(y = 4.04X^2 - 18.4X + 23.1 \)
bpol	0.83	\(y = 0.50X^2 - 35.3X + 618 \)	0.80	\(y = 0.35X^2 - 24.4X + 433 \)

Biological activity is expressed as function of calculated molecular descriptors; \(y=f(X) \).