Cross-Reactivity, Epitope Spreading, and *De Novo* Immune Stimulation Are Possible Mechanisms of Cross-Protection of Nonvaccine Human Papillomavirus (HPV) Types in Recipients of HPV Therapeutic Vaccines

Mayumi Nakagawa,* William Greenfield,* Andrea Moerman-Herzog,* Hannah N. Coleman*
Departments of Pathology* and Obstetrics & Gynecology,* College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

Numerous versions of human papillomavirus (HPV) therapeutic vaccines designed to treat individuals with established HPV infection, including those with cervical intraepithelial neoplasia (CIN), are in development because approved prophylactic vaccines are not effective once HPV infection is established. As human papillomavirus 16 (HPV-16) is the most commonly detected type worldwide, all versions of HPV therapeutic vaccines contain HPV-16, and some also contain HPV-18. While these two HPV types are responsible for approximately 70% of cervical cancer cases, there are other high-risk HPV types known to cause malignancy. Therefore, it would be of interest to assess whether these HPV therapeutic vaccines may confer cross-protection against other high-risk HPV types. Data available from a few clinical trials that enrolled subjects with CINs regardless of the HPV type(s) present demonstrated clinical responses, as measured by CIN regression, in subjects with both vaccine-matched and nonvaccine HPV types. The currently available evidence demonstrating cross-reactivity, epitope spreading, and *de novo* immune stimulation as possible mechanisms of cross-protection conferred by investigational HPV therapeutic vaccines is discussed.

Human papillomavirus (HPV) is best known as the causative agent of cervical cancer, the fourth most common cancer among women globally. This is the case despite advances in screening techniques and the availability of approved prophylactic vaccines. Every year in the United States, there are 12,360 new cases of cervical cancer and 4,020 deaths (1). High-risk HPV types associated with the development of malignancies have been linked to 90 to 93% of anal cancers, 12 to 63% of oropharyngeal cancers, 36 to 40% of penile cancers, 40 to 64% of vaginal cancers, and 40 to 51% of vulvar cancers (2). Overall, HPV is estimated to be responsible for 5.2% of the worldwide cancer burden (3). Of note, the incidence of HPV-associated anal and oropharyngeal cancers is increasing in the United States (4).

The designation of papillomaviruses as the family *Papillomaviridae* was created in the seventh report of the International Committee for the Taxonomy of Viruses (5). The papillomaviruses were further divided into genera by assigning Greek letters and into species by Roman numerals (6). For example, HPV-16, -31, -33, -35, -52, -58, and -67 belong to genus alpha, species 9 (α9) (6). The circular double-stranded-DNA genomes of papillomaviruses are approximately 8 kb in size and commonly encode 8 proteins (6). The L1 gene encodes a major capsid protein, while the L2 gene encodes a minor capsid protein. A more traditional designation of HPV types was based on the nucleotide sequence of the L1 gene. A designation of a new type was created whenever a full-length papillomavirus clone was described which was at least 10% dissimilar from any other known papillomavirus type (6).

Currently, three effective HPV prophylactic vaccines are commercially available, all of which contain HPV L1 proteins that are capable of forming viruslike particles (VLPs). Gardasil (Merck, Whitehouse Station, NJ, USA), a quadrivalent HPV VLP prophylactic vaccine containing the L1 proteins of HPV-16, -18, -6, and -11, was the first to be approved by the U.S. Food and Drug Administration (FDA), in 2006. Cervarix (GalaxoSmithKline Biologicals, Rixensart, Belgium), a bivalent version containing the L1 proteins of HPV-16 and -18, was approved 3 years later in the United States. Gardasil 9 (Merck), which includes L1 VLPs from HPV-16, -18, -31, -33, -45, -52, -59, -6, and -11, was approved by the FDA in late 2014. Gardasil and Cervarix were designed to prevent 70% of cervical, vulvar, vaginal, and anal cancer cases caused by HPV-16 and -18, while Gardasil 9 was designed to prevent approximately 90% of such cases. HPV types associated with the development of malignancy are regarded as high risk. On the other hand, HPV-6 and -11, which are included in Gardasil and Gardasil 9, are considered low risk and are associated with the development of genital warts. While Gardasil and Gardasil 9 include aluminum-containing adjuvant (amorphous aluminum hydroxysphate sulfate), Cervarix uses AS04, which is made of 3-O-desacyl-4'-monophosphoryl lipid A adsorbed onto aluminum hydroxide salt. These three vaccines are called prophylactic vaccines, as they are designed to prevent HPV infection from occurring. In contrast, HPV therapeutic vaccines for individuals who have already acquired HPV are in development, and none are currently available on the market.

A common belief has been that HPV vaccines, both prophylactic and therapeutic, confer mostly HPV type-specific protection.
However, some level of cross-protection against nonvaccine HPV types has been demonstrated for the prophylactic vaccines Gardasil and Cervarix (7–14). In the phase III randomized, double-blinded clinical trial examining the efficacy of Cervarix, Paavonen et al. observed vaccine efficacy not only against cervical intraepithelial neoplasias of grade 2 and worse (CIN2+) associated with HPV-16 and -18 but also against CIN2+ associated with HPV-31, -33, and -45 (11). In the study examining the effect of Gardasil on oncogenic nonvaccine HPV types, significant reduction of CIN2+ associated with 10 nonvaccine high-risk HPV types (HPV-31, -33, -35, -39, -45, -51, -52, -56, -58, and -59), most notably HPV-31, was observed (7). It is generally accepted that the bivalent prophylactic vaccine confers additional protection against HPV-31, -33, and -45, while the quadrivalent vaccine protects against HPV-31 (14). Furthermore, cross-neutralizing antibodies against HPV-31 and -45 have been demonstrated in vaccine recipients (15).

In order to gain insights into the mechanisms of cross-protection against nonvaccine HPV types, two groups studied serum samples from vaccine recipients using different approaches in vitro (16, 17). Serum samples from Cervarix recipients were incubated with HPV-16 or HPV-18 VLPs prior to a VLP-based multiplex immunoassay for antibodies against HPV-16, -18, -31, -33, -45, -52, and -58 L1 VLPs. The vaccine-derived antibodies were type specific and cross-reacted to a lesser degree with other HPV types within the species. For example, serum incubated with HPV-16 VLPs showed decreased antibody concentrations binding to HPV-16, -31, -33, -52, and -58 (α9 species) but not HPV-18. On the other hand, serum incubated with HPV-18 VLPs showed decreased antibody concentrations binding to HPV-18 and -45 (α7 species) but not HPV-16, -31, -33, -52, and -58 (17). Bislett and colleagues used L1 VLPs of nonvaccine HPV types (HPV-31, -33, -35, or -58) coupled to magnetic Sepharose beads to isolate antibodies from serum samples from Cervarix recipients (16). These purified antibodies were then tested for their ability to neutralize L1L2 pseudoviruses. The neutralization titers of HPV-16 L1L2 pseudoviruses, nonvaccine-HPV-type L1L2 pseudoviruses used for isolation, and other nonvaccine-HPV-type L1L2 pseudoviruses were compared. The titer against HPV-16 was greatly reduced after antibody depletion with nonvaccine VLPs. Increased neutralization of L1L2 pseudoviruses of nonvaccine HPV types not used for antibody isolation was not observed. The data appear to support the notion that cross-neutralization is due to a small fraction of antibodies exhibiting different but overlapping specificities rather than weak cross-recognition of nonvaccine types by vaccine-type-HPV-specific antibodies (16). Both of these studies examined a small number of subjects, and further work is needed to clarify exactly how prophylactic vaccines confer cross-protection. However, it is safe to conclude that some types of cross-reactivity are responsible for the observed cross-protection. The most recently FDA-approved HPV prophylactic vaccine, Gardasil 9, contains all the HPV types for which cross-protection by Gardasil and Cervarix has been shown. Therefore, further investigation in this area would be of academic interest.

Many clinical trials testing putative HPV therapeutic vaccines have selectively vaccinated subjects known to be positive for HPV-16 DNA (18–27) or for HPV-16 and/or -18 DNA (28–30). However, in some clinical trials, subjects with cervical intraepithelial lesions of grade 2 or 3 (CIN2/3) were enrolled regardless of the HPV type(s) detected (31–33). Therefore, cross-protection against nonvaccine HPV types could be assessed in these studies. An example is our phase I clinical trial of an HPV-16 E6 peptide-based HPV therapeutic vaccine (PepCan), which used a Candida skin test reagent (Candin; Nielsen Biosciences, San Diego, CA) as a novel vaccine adjuvant (33). Forty-four percent (4 of 9) of subjects with HPV-16 at entry and 57% (8 of 14) of subjects with nonvaccine HPV types showed histological regression. Nieminen and colleagues reported a regression rate of 20% (11 of 56) in vaccine (modified Vaccinia Ankara with modified HPV-16 E6 and E7 and human interleukin 2) recipients with HPV-16 mono inoculation at entry, while the regression rate of all vaccine recipients was 31% (40 of 129) (32). In recipients of ZYCN101a [plasmid DNA encoding regions of HPV-16 and -18 E6 and E7 proteins, encapsulated in biodegradable poly(D,L-lactide-co-glycolide) microparticles] who were less than 25 years old, the regression rate was 64% in those with HPV-16 or -18 at entry, 73% in subjects with other HPV types, and 23% in the placebo group (31). These data suggest that the cross-protection for CIN2/3 associated with nonvaccine HPV types is at least equal to that of CIN2/3 associated with vaccine HPV types. An obvious possible mechanism of cross-protection is cross-reactivity of T cells induced by the vaccines. Alternative possible mechanisms are epitope spreading and de novo immune stimulation.

CROSS-REACTIVITY

Cross-protection and cross-reactivity of HPV prophylactic vaccine-induced antibodies have been demonstrated for HPV types closely phylogenetically related to the vaccine HPV types. Likewise, cross-reactivity of T cells induced by HPV therapeutic vaccines is expected to target epitopes of HPV types with high amino acid sequence homology. In Fig. 1, the amino acid sequences of HPV-16 E6 and E7 proteins (Papillomavirus Episteme, http://pave.niaid.nih.gov/#home), divided into overlapping 15-mer peptides, are compared (NCBI BLAST, http://blast.ncbi.nlm.nih .gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch &LINK_LOC=blasthome) with those of other high-risk and low-risk HPV types (34). Based on homology, peptides containing potentially cross-reactive T-cell epitopes are found most frequently in HPV-16-related types and to a lesser extent in other high-risk HPV types. In low-risk HPV types, such potentially cross-reactive peptides are only present in the E7 protein, not the E6 protein. Whether or not high amino acid homology results in cross-recognition has been addressed for a select number of T-cell epitopes described within the HPV-16 E6 and E7 proteins. Tables 1 and 2 list CD4 and CD8 HPV-16 T-cell epitopes described to date to our knowledge for which the amino acid sequences and the restricting HLA molecules have been identified. The homologous peptides used to study each of the marked epitopes in Tables 1 and 2 are listed in Tables 3 to 7.

Our group approached this question by isolating T-cell clones positive for an HPV-16 epitope and examining the recognition of homologous sequences from other high-risk HPV types using a gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISPOT) (35–37). If the number of spot-forming units for cross-recognition has been addressed for a select number of T-cell epitopes described within the HPV-16 E6 and E7 proteins. Tables 1 and 2 list CD4 and CD8 HPV-16 T-cell epitopes described to date to our knowledge for which the amino acid sequences and the restricting HLA molecules have been identified. The homologous peptides used to study each of the marked epitopes in Tables 1 and 2 are listed in Tables 3 to 7.
tides (≥70% amino acid homology) from HPV-31, -33, -58, and -73 were not recognized. Therefore, cross-recognition with HPV-45, which belongs to the HPV-18 related species (HPV-18 related), was observed, while cross-recognition with other HPV-16-related types (HPV-31, -33, and -58) was not.

A similar conclusion can be drawn regarding cross-recognition of homologous CD8 HPV T-cell epitopes. A CD8 T-cell clone specific for the HPV-16 E6 aa-52-to-61 epitope restricted by the HLA class I B57 molecule has been shown to cross-recognize HPV-35 (79), -39 (77), -45 (77), -51 (55), and -73 (11) (Table 4), while another CD8 T-cell clone specific for the same peptide but restricted by another HLA class I molecule, B58, has been shown to cross-recognize HPV-31 (9), -33 (9), -35 (9), -39 (α7), -45 (α7), -51 (α5), -58 (α9), and -73 (α11) (36) (Table 5). On the other hand, a CD8 T-cell clone recognizing the HPV-16 E6 aa-75-to-83 epitope restricted by the HLA class I B62 molecule (Table 6) and another clone recognizing the E6 aa-133-to-142 epitope restricted by the HLA class I A6801 molecule (Table 7) did not recognize any homologous peptides tested (37). Therefore, the presence of amino acid homology does not automatically lead to cross-recognition and it is not species specific when present. Whether or not such cross-recognition is present in natural infec-

FIG 1 Amino acid sequence homologies between peptides (15 amino acids in length) of HPV-16 and other HPV types. The peptides with ≥70% homology are highlighted in yellow. *, amino acid insertion(s) is present.
tion is not known, since the generation of homologous epitopes from native protein by endogenous antigen processing has not been investigated. On the other hand, the possibility of cross-recognition can be ruled out in the absence of peptide recognition. Another group has taken the investigation of cross-recognition of HPV-16 CD4 T-cell epitopes one step further. van den Hende and colleagues investigated the cross-recognition of five closely related members of the \(\text{H9251/H925} \) species (HPV-31, -33, -35, -52, and -58).

TABLE 1

Epitope (length)	Sequence	HLA	Reference
E6 11–32 (22)	DPQERPRKLPQLCTELQTTIHD	DP17	59
E6 11–32 (22)	DPQERPRKLPQLCTELQTTIHD	DP1401	59
E6 37–68 (32)	CVYCKQQLRRREVYFAFRDLCIYVRGDNPYA	DP0201	59
E6 52–62 (11)	FAFRDLICIVY	DR11	38
E6 52–61 (10)	FAFRDLICIVY	DP0201	59
E6 61–82 (22)	YRDGNPYAVCDKCLKFYSKISE	DP0101	59
E6 61–82 (22)	YRDGNPYAVCDKCLKFYSKISE	DP1401	59
E6 71–92 (22)	DKCLFYSKISEYRHICYSLYG	DP0101	59
E6 73–105 (33)	CLKFYSKISEYRHICYSLYGTTLEQQYNKPLCD	DP0401	59
E6 74–83 (10)	LKFSKISEY	DP	39
E6 91–112 (22)	YGTTLSEQYKPLCDLLIRCIN	DR15 or DQ05	59
E6 101–122 (22)	KPLCDLLIRCINCQKPLCPEEK	DQ06	59
E6 121–142 (22)	EKQRHDJKKQRFHNRGRWTGR	DP0201 or DQ05	59
E6 127–141 (15)	DKKQRFHNRGRWTG	DR01	60
E6 129–138 (10)	KQRFHNRGR	DR7	59
E7 21–42 (22)	DLYCQEIQNDSSEEDDEIDGPA	DR4	59
E7 35–50 (16)	EDEIDGPAQAEIDPRA	DQ2	61
E7 43–77 (35)	GQAEPDRAHYNIVTFCCDKDSTLRLCVQSTHVDIR	DR3	61
E7 50–60 (13)	AHYNIVTFCCDKDSTLRLCVQST	DR15	61
E7 51–72 (22)	HYNIVTFCCDKDSTLRLCVQST	DP1901	59
E7 58–68 (11)	CCKDSTLRLC	DR17	62
E7 61–80 (20)	CSDKSTLRLCVQSTHVDI	DR0901	63
E7 71–85 (15)	STHYDRTLEDLMG	DQ2001	64
E7 76–86 (11)	IRTLEDLMGT	DR12	59

* Cross-reactivity to homologous sequences from other HPV types has been tested and demonstrated (Table 3).

* Cross-recognition of homologous peptides from HPV types 31 and 35 has been demonstrated (39).

TABLE 2

Epitope (length)	Sequence	HLA	Reference(s)
E6 13–22 (10)	QERPRKLPQL	B7	59
E6 29–37 (9)	TIIHDELE	B48	65
E6 29–38 (10)	TIIHDELEC	A02, A0201	59, 65, 66
E6 31–38 (8)	HDIILECV	B4002	65
E6 52–61 (10)	FAFRDLICIVY	B57	35, 59, 67
E6 52–61 (10)	FAFRDLICIVY	B35	65
E6 52–61 (10)	FAFRDLICIVY	B58	36
E6 75–83 (9)	KFYSKISEY	B62	37
E6 80–88 (9)	ISEYRHRCY	B18	68
E6 133–142 (10)	HNRGRTWGR	A6801	37
E6 137–146 (10)	GRWTGRCMSC	B27	59
E6 149–158 (10)	SSRTRRETQL	B14	59
E7 7–15 (9)	TLHEYMLDL	B8	69
E7 7–15 (9)	TLHEYMLDL	B48	67
E7 11–19 (9)	YMLDLQPET	A02, A0201	59, 70
E7 11–20 (10)	YMLDLQPETT	A0201	66
E7 44–52 (9)	QAEPDRAHY	B18	68
E7 61–69 (9)	CDSTLRLCV	A2402	71
E7 67–76 (10)	LCVQSTHVDI	A2402	71
E7 79–87 (9)	LEDLIMGLT	B60	67
E7 82–90 (9)	LLMGTLGIV	A0201	66
E7 86–93 (8)	TLGIVCPI	A0201	66

* Cross-reactivity to homologous sequences from other HPV types has been tested and demonstrated (Table 4).

* Cross-reactivity to homologous sequences from other HPV types has been tested and demonstrated (Table 5).

* Cross-reactivity to homologous sequences from other HPV types has been tested but not demonstrated (Table 6).

* Cross-reactivity to homologous sequences from other HPV types has been tested but not demonstrated (Table 7).
they recipients of HPV therapeutic vaccines. Likely to be the main mechanism of cross-protection seen in the can be demonstrated, but rarely. Thus, cross-recognition is un-against other highly related HPV types. Overall, cross-recognition sponding homologous peptides of other HPV types (Table 1). Therefore, HPV-16-specific CD4 T-cell clone capable of cross-recognizing rived from whole proteins demonstrated only one example of an clonal T-cell populations and naturally processed epitopes de- common. However, further investigation using enriched and non-cross-reactive with an inducing epitope become additional targets of an ongoing immune response (40). It can be from and non-cross-reactive with an inducing epitope become Epitope spreading is a process in which antigenic epitopes distinct from and non-cross-reactive with an inducing epitope become additional targets of an ongoing immune response (40). It can be beneficial to the host by resulting in protection from other pathogens, or it can be harmful to the host in the setting of autoimmunity (41). In our phase I clinical trial of a peptide-based HPV therapeutic vaccine, statistically significant increases in CD8 T-cell responses to HPV-16 E7 protein, which was not included in the vaccine, were demonstrated in two vaccine recipients (33).

TABLE 3 Peptides from high-risk HPV types homologous to HPV-16 E6 aa-51-to-65 epitope for assessment of cross-reactive CD4 epitopes

HPV type	Species	Epitope (length)	Sequence
16	α9	E6 51–65 (15)	DFAFRLCIVYRDN
31	α9	E6 44–58 (15)	DFAF1TLTVYRDST
33	α9	E6 44–58 (15)	DFAFADTVVVYREGN
45	α7	E6 46–60 (15)	QFAF1KLDIVYRDCL
58	α9	E6 44–58 (15)	DFFAD1RLIVYRDN
73	α11	E6 45–59 (15)	DFAF5DLCIVYRDKP

* Amino acids different from those of HPV-16 are shown in bold, and peptides recognized in ELISPOTs are highlighted in gray.

(39). Using overlapping peptides, approximately half of the re- sponding subjects displayed recognition of more than two other HPV types, suggesting that cross-recognition may be relatively common. However, further investigation using enriched and clonal T-cell populations and naturally processed epitopes de- derived from whole proteins demonstrated only one example of an HPV-16-specific CD4 T-cell clone capable of cross-recognizing homologous peptides of other HPV types (Table 1). Therefore, they concluded that the HPV-16 E6-specific CD4 T-cell responses are unlikely to cross-recognize and so unlikely to cross-protect against other highly related HPV types. Overall, cross-recognition can be demonstrated, but rarely. Thus, cross-recognition is un-likely to be the main mechanism of cross-protection seen in the recipients of HPV therapeutic vaccines.

EPITOPE SPREADING

Epitope spreading is a process in which antigenic epitopes distinct from and non-cross-reactive with an inducing epitope become additional targets of an ongoing immune response (40). It can be beneficial to the host by resulting in protection from other pathogens, or it can be harmful to the host in the setting of autoimmunity (41). In our phase I clinical trial of a peptide-based HPV therapeutic vaccine, statistically significant increases in CD8 T-cell responses to HPV-16 E7 protein, which was not included in the vaccine, were demonstrated in two vaccine recipients (33).

TABLE 4 Peptides from high-risk HPV types homologous to HPV-16 E6 aa-52-to-61 (HLA B58 restricted) epitope for assessment of cross-reactive CD8 epitopes

HPV type	Species	Epitope (length)	Sequence
16	α9	52–61 (10)	FAFRDLCIVY
18	α7	47–56 (10)	FAFKDLFVVY
31	α9	45–54 (10)	FAFKDLTVY
33	α9	45–54 (10)	FAFADTLTVY
35	α9	45–54 (10)	FACD1LCIVY
39	α7	47–56 (10)	FA5FSLYVVY
45	α7	47–56 (10)	FAFKDLICVY
51	α5	45–54 (10)	VAFTEKIVY
52	α9	45–54 (10)	FIFTDLICVY
56	α6	48–57 (10)	FACTKLKIVY
58	α9	45–54 (10)	FVFAD1LICVY
59	α7	47–56 (10)	FAFNLDFVVY
68	α7	47–56 (10)	FA5GDLNVVY
73	α11	45–54 (10)	FAFS1LCIVY

* Amino acids different from those in HPV 16 are shown in bold, and peptides recognized in ELISPOTs are highlighted in gray.

Both subjects also had significantly increased responses to the E6 protein, which is included in the vaccine. One subject had HPV-16 DNA detected before and after vaccination, while the other subject had HPV-45 detected prior to and after vaccination. These may be the first examples of epitope spreading in recipients of an HPV therapeutic vaccine (33). For the subject with HPV-45, cross-recognition would be unlikely, as the HPV-45 E7 aa-1–to-15 region only has 33% amino acid homology with the HPV-16 se-quences of the same region (Fig. 1). The presence of latent HPV-16 infection no longer detectable with the current method of HPV detection may be more likely. Epitope spreading has been shown to correlate with tumor regression in peptide-based cancer immunotherapy (42–47) and may be quite beneficial in enhancing the therapeutic effects of the treatment. Therefore, future inves-tigations to uncover additional evidence of epitope spreading and to elucidate underlying mechanisms should be pursued.

DE NOVO IMMUNE STIMULATION

The idea of using Candida skin testing reagent as a novel vaccine adjuvant came about from observations that intralesional injections of recall antigens result in common wart regression (48–54). Traditionally, recall antigens, which typically include a panel de- rived from Candida, mumps virus, and Trichophyton, were used as a control to indicate intact cell-mediated immunity in patients.

TABLE 5 Peptides from high-risk HPV types homologous to HPV-16 E6 aa-52-to-61 (HLA B58 restricted) epitope for assessment of cross-reactive CD8 epitopes

HPV type	Species	Epitope (length)	Sequence
16	α9	52–61 (10)	FAFRDLCIVY
18	α7	47–56 (10)	FAFKDLFVVY
31	α9	45–54 (10)	FAFKDLTVY
33	α9	45–54 (10)	FAFADTLTVY
35	α9	45–54 (10)	FACD1LCIVY
39	α7	47–56 (10)	FA5FSLYVV
45	α7	47–56 (10)	FAFKDLICVY
51	α5	45–54 (10)	VAFTEKIVY
52	α9	45–54 (10)	FIFTDLICVY
56	α6	48–57 (10)	FACTKLKIVY
58	α9	45–54 (10)	FVFAD1LICVY
59	α7	47–56 (10)	FAFNLDFVVY
68	α7	47–56 (10)	FA5GDLNVVY
73	α11	45–54 (10)	FAFS1LCIVY

* Amino acids different from those in HPV-16 are shown in bold, and peptides recognized in ELISPOTs are highlighted in gray.

TABLE 6 Peptides from high-risk HPV types homologous to HPV-16 E6 aa-75-to-83 (HLA B62 restricted) epitope for assessment of cross-reactive CD8 epitopes

HPV type	Species	Epitope (length)	Sequence
16	α9	75–83 (9)	KFYS1KEY
33	α9	68–76 (9)	RFLSK1KEY
45	α9	68–76 (9)	LFLSK1KEY
56	α6	71–79 (9)	LFYSKVRK
73	α11	69–77 (9)	KFYSK1REY

* Amino acids different from those in HPV-16 are shown in bold, and peptides recognized in ELISPOTs are highlighted in gray.
being tested for tuberculosis by placing purified protein derivative (PPD; an extract of Mycobacterium tuberculosis); T-cell-mediated inflammation would emerge within 24 to 48 h (55). Many studies have shown that recall antigens were effective not only in regressing injected warts, but also in regressing untreated distant warts (48–52, 54). These studies suggested that T-cell responses may have a role in wart regression. In a recently completed phase I investigational new drug study in which the largest wart was treated with Candin, our group reported complete resolution of the treated warts in 82% (9 of 11) of the subjects and complete resolution of distant untreated warts in 75% (6 of 8) of the subjects (52). Furthermore, T-cell responses to the HPV-57 L1 peptide were detected in 67% (6 of 9) of the complete responders. Therefore, intraläsional injection of Candida may have resulted in de novo generation of anti-HPV T-cell responses. In vitro experiments have demonstrated that Candida has a proliferative effect on T-cells and that the cytokine most frequently produced by Langerhans cells exposed to Candida was interleukin 12, which promotes T-cell response (56, 57). Intriguingly, injecting the wart, which is the site of active infection, may not be necessary to induce T-cell responses, as one group reported that weekly intradermal injections of PPD in the forearms was effective in treating anogenital warts in pregnant women (58).

Additional evidence of de novo immune stimulation was demonstrated in our clinical trial of the HPV therapeutic vaccine mentioned above (33). HPV-DNA testing was performed prior to vaccination and 20 weeks after initiation of vaccination. The rate of HPV clearance was higher for low-risk HPV types (62%) than for HPV-16 (33%), HPV-16-related types (33%), and other high-risk types (25%) (Table 8), although the vaccine only contained HPV-16 E6 peptides. Since there is no amino acid sequence homology to or greater than 70% between the E6 protein of HPV-16 and the E6 proteins of low-risk HPV types (Fig. 1), de novo immune stimulation is likely responsible for the low-risk HPV types becoming undetectable. One should keep in mind that the subjects’ own immunity may account for some degree of HPV clearance. Nevertheless, it is possible that our HPV therapeutic vaccine, which consists of HPV-16 E6 peptides and Candida skin test reagent, may work through a nonspecific immune stimulatory effect of the Candida skin test reagent in addition to the HPV-specific effects induced by the HPV-16 E6 peptides (33).

The three potential mechanisms discussed here, cross-recognition, epitope spreading, and de novo immune stimulation, need not be mutually exclusive. Further investigation of the mechanisms of cross-protection conferred by HPV therapeutic vaccines should yield interesting findings, and they may be quite different from the mechanisms of cross-protection conferred by the HPV prophylactic vaccines.

ACKNOWLEDGMENTS
This work was supported by National Institutes of Health grants R01CA143130 and U1LTR000039. M.N. is one of the inventors named in patents and patent applications describing an HPV therapeutic vaccine named PepCan.

REFERENCES
1. American Cancer Society. 2014. Cancer Facts & Figures 2014. American Cancer Society, Atlanta, Georgia.
2. Chaturvedi AK. 2010. Beyond cervical cancer: burden of other HPV-related cancers among men and women. J Adolesc Health 46(Suppl):S20–S26. http://dx.doi.org/10.1016/j.jadohealth.2010.01.016.
3. Tota JE, Chevarie-Davis M, Richardson LA, Devries M, Franco EL. 2011. Epidemiology and burden of HPV infection and related diseases: implications for prevention strategies. Prev Med 53(Suppl 1):S12–S21. http://dx.doi.org/10.1016/j.ypmed.2011.08.017.
4. Jemal A, Simard EP, Dorell C, Noone AM, Markowitz LE, Kohler B, Ehemann C, Saraiya M, Bandi P, Saslow D, Cronin KA, Watson M, Schifferman M, Henley SJ, Schymura MJ, Anderson RN, Yankey D, Edwards BK. 2013. Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst 105:175–201. http://dx.doi.org/10.1093/jnci/djs491.
5. Van Regenmortel MHV, Fauquet CM, Bishop DHL, Catheys CH, Carsten EB, Estes MK, Lemon SM, Maniipp J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. 2002. Virus taxonomy. Seventh report of the International Committee for the Taxonomy of Viruses. Academic Press, New York, New York.
6. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. 2010. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79. http://dx.doi.org/10.1016/j.virol.2010.02.002.
7. Brown DR, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G, Koutsyky LA, Tay EH, Garcia P, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Steben M, Bosch FX, Dillner J, Joura EA, Kirmaj MJ, Majewska S, Munoz N, Myers ER, Villa LI, Taddo FJ, Roberts C, Tadesse A, Bryan J, Lupinacci LC, Giacoletti KE, Sings HL, James M, Hesley TM, Barr E. 2009. The impact of quadrivalent human papillomavirus (HPV) types 6, 11, 16, and 18 L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16–26 years. J Infect Dis 199:926–935. http://dx.doi.org/10.1086/597307.
8. Harper DM, Franco EL, Wheeler CM, Moscicki AB, Romanowski B, Roteli-Martins CM, Jenkins D, Schuind A, Costa Clemens SA, Dubin G, Sings HL, James M, Hesley TM, Barr E. 2006. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367:1247–1255. http://dx.doi.org/10.1016/S0140-6736(06)68439-0.
9. Kavanagh K, Pollock RG, Potts A, Love J, Cuschieri K, Cubie H, Robertson C, Donaghy M. 2014. Introduction and sustained high cov-
The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) infection and vaccination: cross-reactivity, neutralizing activity, avidity and IgG subclasses. PLoS One 8(10):e79739. http://dx.doi.org/10.1371/journal.pone.0079739.

Draper E, Bissett SL, Draper E, Myers RE, Godi A, Beddows S. 2011. Neutralization of non-bivalent human papillomavirus pseudoviruses from the A7 and A9 species groups by bivalent HPV vaccine sera. Vaccine 29:8585–8590. http://dx.doi.org/10.1016/j.vaccine.2011.09.021.

Bissett SL, Draper E, Myers RE, Godi A, Beddows S. 2014. Cross-neutralizing antibodies elicited by the Cervarix(R) human papillomavirus vaccine display a range of alpha-9 inter-type specificities. Vaccine 32:1139–1146. http://dx.doi.org/10.1016/j.vaccine.2014.01.008.

Scherpenisse M, Schep RM, Mollers M, Meijer CJ, Benders GA, van der Klis FR. 2013. Characteristics of HPV-specific antibody responses induced by infection and vaccination: cross-reactivity, neutralizing activity, avidity and IgG subclass responses. PLoS One 8:e7479. http://dx.doi.org/10.1371/journal.pone.0074799.

Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Bourne ML, Rutherford E, Hickling JK, Inglis SC. 1996. A recombinant vaccine virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523–1527. http://dx.doi.org/10.1016/S0140-6736(96)90540-3.

Brun JL, Dalstein V, Leveque J, Mathevet P, Raulet P, Baluda JF, Scholl S, Huynh B, Duvrier S, Riethmuller D, Clavel C, Birembaut P, Calenda J, Castellsague X, Skinner SR, Hedrick J, Santin AD, Bellone S, Palmieri A, Ravaggi A, Siegel ER, Roman JJ, Pecorelli S, Cannon MJ. 2008. Human papillomavirus type 16 E6 52-61-specific CD8 T cell clone. Vaccine 26:271–280. http://dx.doi.org/10.1016/j.vaccine.2007.06.074-1.

Bissell SJ, Draper E, Myers RE, Godi A, Beddows S. 2014. Cross-neutralizing antibodies elicited by the Cervarix(R) human papillomavirus vaccine display a range of alpha-9 inter-type specificities. Vaccine 32:1139–1146. http://dx.doi.org/10.1016/j.vaccine.2014.01.008.

Bissell SJ, Draper E, Myers RE, Godi A, Beddows S. 2014. Cross-neutralizing antibodies elicited by the Cervarix(R) human papillomavirus vaccine display a range of alpha-9 inter-type specificities. Vaccine 32:1139–1146. http://dx.doi.org/10.1016/j.vaccine.2014.01.008.
ize novel T-cell epitopes of human papillomavirus. J Virol Exp 2012:3657.
37. Wang X, Moscicki AB, Tsang I, Brockman A, Nakagawa M. 2008. Memory T cells specific for novel human papillomavirus type 16 (HPV16) E6 epitopes in women whose HPV16 infection has become undetectable. Clin Vaccine Immunol 15:937–945. http://dx.doi.org/10.1128/CVI.00404-07.
38. Coleman HA, Wang X, Greenfield WW, Nakagawa M. 2014. A human papillomavirus type 16 E6 52-62 CD4 T-cell epitope restricted by the HLA-DR11 molecule described in an epitope hotspot. MOI Immunology 1:00018. http://dx.doi.org/10.15406/moji.2014.01.00018.
39. van den Hende M, Redeker A, Kwappenberg KM, Franken KL, Drijfhout JW, Oostendorp J, Valentinj AR, Fathers LM, Welters MJ, Melief CJ, Kenter GJ, van der Burg SH, Offringa R. 2010. Evaluation of immunological cross-reactivity between clade A9 high-risk human papillomavirus types on the basis of E6-specific CD4+ memory T cell responses. J Infect Dis 202:1200–1211. http://dx.doi.org/10.1086/653676.
40. Ribas A, Timmerman JM, Butterfield LH, Economou JS. 2003. Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24:58–61. http://dx.doi.org/10.1016/S1471-4906(02)00029-7.
41. Getts DR, Chastain EM, Terry RL, Miller SD. 2013. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev 255:197–209. http://dx.doi.org/10.1111/imr.12091.
42. Brossart P, Wirths S, Uhrigter G, Reichardt VI, Kanz L, Brugger W. 2000. Induction of cytotoxic T-lymphocyte responses in vivo after vaccination with peptide-pulsed dendritic cells. Blood 96:3102–3108.
43. Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside TL, Johnson SM, Roberson PK, Horn TD. 2005. Intralesional injection of mumps or Candida antigens. Pediatr Dermatol 22:268–271. http://dx.doi.org/10.1176/jid.01276-06.
44. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ, Kast WM. 1995. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-restricted peptides. J Immunol 154:5934–5943.
45. Peng S, Trimble C, Wu L, Pardoll D, Roden R, Hung CF, Wu TC. 2007. "HLA-DQB1*02-restricted HPV 16 Epitopes Recognized by MHC-I E6*01-positive T Cells". J Immunol 179:612–618. http://dx.doi.org/10.1111/j.1521-4141.2007.02949.x.
46. Nakagawa M, Kim KH, Gillam TM, Moscicki AB. 2007. "HLA class I binding promiscuity of the CD8+ T-cell epitopes of human papillomavirus type 16 E6 protein". J Virol 81:1412–1423. http://dx.doi.org/10.1128/JVI.01768-06.
47. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ, Kast WM. 1995. "Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-restricted peptides". J Immunol 154:5934–5943.
48. Bourgault Villada I, Benetor N, Bony C, Connan F, Monsonego J, Bianchi A, Saag P, Levy JP, Guillet JG, Choppin JP. 2000. "Identification of HLA-A02B7-restricted human papillomavirus type 16 E6 epitopes recognized by cytolytic T lymphocytes in association with HLA-B18 and determination of the HLA-B18-specific binding motif". Eur J Immunol 30:2281–2289. http://dx.doi.org/10.1002/1521-4447(2000)030:2281:AID-IUM258-1.0.CO;2-N.
49. Oerke S, Hohn H, Zehbe I, Pilch H, Schicketanz KH, Hitzler WE,
Neukirch C, Freitag K, Maeurer MJ. 2005. Naturally processed and HLA-B8-presented HPV16 E7 epitope recognized by T cells from patients with cervical cancer. Int J Cancer 114:766–778. http://dx.doi.org/10.1002/ijc.20794.

Keskin DB, Reinhold B, Lee SY, Zhang G, Lank S, O’Connor DH, Berkowitz RS, Brusic V, Kim SJ, Reinherz EL. 2011. Direct identification of an HPV-16 tumor antigen from cervical cancer biopsy specimens. Front Immunol 2:75. http://dx.doi.org/10.3389/fimmu.2011.00075.

Jang S, Kim YT, Chung HW, Lee KR, Lim JB, Lee K. 2012. Identification of novel immunogenic human leukocyte antigen-A 2402-binding epitopes of human papillomavirus type 16 E7 for immunotherapy against human cervical cancer. Cancer 118:2173–2183. http://dx.doi.org/10.1002/cncr.26468.