From 1D to 2D Cd(II) and Zn(II) Coordination Networks by Replacing Monocarboxylate with Dicarboxylates in Partnership with Azine Ligands: Synthesis, Crystal Structures, Inclusion, and Emission Properties

Victor Ch. KRAVTSOV, Vasile LOZOVAN, Nikita SIMINEL, Eduard B. COROPCEANU, Olga V. KULIKOVA, Natalia V. COSTRIUCOVA, Marina S. FONARI

Institute of Applied Physics, Academiei 5, MD2028, Chisinau, Republic of Moldova
E-mails: kravtsov@phys.asm.md; siminel.n@gmail.com; olga.kulikova@phys.asm.md; costriucova@phys.asm.md; fonari.xray@phys.asm.md

Institute of Chemistry, Academiei 3, MD2028, Chisinau, Republic of Moldova

Tiraspol State University, Chemistry Department, Iablocikin 5, MD2069, Chisinau, Republic of Moldova
E-mails: lozovanvasile90@gmail.com; coropceanu.eduard@ust.md;

Table S1. Bond lengths [Å] and angles [°] for 1-8

Cd(1)-N(5)#1	Cd(1)-O(2)	Cd(1)-N(6)
Cd(1)-N(2)	2.340(3)	2.391(3)
Cd(1)-O(1)	2.348(3)	2.398(3)
Cd(1)-N(6)#1	2.316(6)	2.332(6)
Cd(1)-O(1)	2.316(5)	2.332(6)
Cd(1)-N(3)	2.303(6)	2.322(5)
Cd(1)-N(6)#1	2.316(6)	2.332(6)
Cd(1)-O(1)	2.316(5)	2.336(5)

Symmetry transformations used to generate equivalent atoms: #1 x, y, z-1
Bond	Length	Bond	Length
Cd(1)-O(3)	2.323(5)	Cd(2)-N(10)	2.354(6)
Cd(1)-O(4)#2	2.378(5)	Cd(2)-O(6)#3	2.416(6)
Cd(1)-O(2)	2.465(6)	Cd(2)-O(7)	2.448(7)
Cd(1)-O(4)	2.580(5)	Cd(2)-O(6)	2.542(6)
N(3)-Cd(1)-N(6)#1	174.4(2)	N(9)-Cd(2)-O(8)	97.3(2)
N(3)-Cd(1)-O(1)	93.5(2)	N(9)-Cd(2)-O(5)	92.8(2)
N(6)#1-Cd(1)-O(1)	89.9(2)	O(8)-Cd(2)-O(5)	140.3(2)
N(3)-Cd(1)-O(3)	90.2(2)	N(9)-Cd(2)-N(10)	173.5(2)
N(6)#1-Cd(1)-O(3)	90.1(2)	O(8)-Cd(2)-N(10)	83.6(2)
O(1)-Cd(1)-O(3)	139.5(2)	O(5)-Cd(2)-N(10)	90.5(2)
N(3)-Cd(1)-O(4)#2	85.4(2)	N(9)-Cd(2)-O(6)#3	84.9(2)
N(6)#1-Cd(1)-O(4)#2	90.1(2)	O(8)-Cd(2)-O(6)#3	89.4(2)
O(1)-Cd(1)-O(4)#2	91.62(19)	O(5)-Cd(2)-O(6)#3	129.8(2)
O(3)-Cd(1)-O(4)#2	128.88(19)	N(10)-Cd(2)-O(6)#3	88.7(2)
O(2)-Cd(1)-O(4)	137.41(18)	N(9)-Cd(2)-O(7)	94.0(2)
N(3)-Cd(1)-O(2)	91.7(2)	O(8)-Cd(2)-O(7)	54.0(2)
N(6)#1-Cd(1)-O(2)	93.9(2)	O(5)-Cd(2)-O(7)	87.2(2)
O(1)-Cd(1)-O(2)	53.86(19)	N(10)-Cd(2)-O(7)	91.7(2)
O(3)-Cd(1)-O(2)	85.75(19)	O(6)#3-Cd(2)-O(7)	143.0(2)
O(4)#2-Cd(1)-O(2)	145.17(19)	N(9)-Cd(2)-O(6)	86.58(19)
N(3)-Cd(1)-O(4)	81.45(19)	O(8)-Cd(2)-O(6)	165.2(2)
N(6)#1-Cd(1)-O(4)	94.33(19)	O(5)-Cd(2)-O(6)	53.12(19)
O(1)-Cd(1)-O(4)	167.37(19)	N(10)-Cd(2)-O(6)	91.0(2)
O(3)-Cd(1)-O(4)	52.54(18)	O(6)#3-Cd(2)-O(6)	76.70(19)
O(4)#2-Cd(1)-O(4)	76.49(18)	O(7)-Cd(2)-O(6)	140.3(2)

Symmetry transformations used to generate equivalent atoms: #1 x, y-1, z; #2 2-x, -y, 1-z; #3 1-x, 1-y, 2-z

Bond	Length	Bond	Length
Cd(1)-O(3)#1	2.331(4)	Cd(1)-O(1)	2.384(4)
Cd(1)-N(4)#2	2.336(4)	Cd(1)-O(4)#3	2.416(3)
Cd(1)-N(1)	2.348(4)	Cd(1)-O(3)#3	2.466(4)
Cd(1)-O(2)	2.361(4)		
O(3)#1-Cd(1)-N(4)#2	89.57(13)	O(2)-Cd(1)-O(1)	54.84(13)
O(3)#1-Cd(1)-N(1)	89.92(13)	O(3)#1-Cd(1)-O(4)#3	126.27(14)
N(4)#2-Cd(1)-N(1)	178.45(14)	N(4)#2-Cd(1)-O(4)#3	90.22(12)
O(3)#1-Cd(1)-O(2)	144.94(13)	N(1)-Cd(1)-O(4)#3	88.89(12)
N(4)#2-Cd(1)-O(2)	96.75(14)	O(2)-Cd(1)-O(4)#3	88.29(14)
N(1)-Cd(1)-O(2)	84.50(14)	O(1)-Cd(1)-O(4)#3	142.98(15)
O(3)#1-Cd(1)-O(1)	90.74(14)	O(3)#1-Cd(1)-O(3)#3	73.76(13)
N(4)#2-Cd(1)-O(1)	90.98(13)	N(4)#2-Cd(1)-O(3)#3	89.40(13)
N(1)-Cd(1)-O(1)	90.49(13)	N(1)-Cd(1)-O(3)#3	89.05(13)
O(2)-Cd(1)-O(3)#3	140.42(12)	O(1)-Cd(1)-O(3)#3	164.50(13)
Bond	Distance (Å)		
------	-------------		
O(4)#3-Cd(1)-O(3)#3	2.344(2)		

Symmetry transformations used to generate equivalent atoms: #1 2-x, 1-y, 1-z; #2 x+1, y, z+1; #3 x, y, z+1

Bond	Distance (Å)
Cd(1)-O(3)#3	2.310(2)
Cd(1)-N(4)#2	2.390(19)
Cd(1)-N(1)	2.456(2)

Symmetry transformations used to generate equivalent atoms: #1 x, y, z+1; #2 x+1, y, z+1; #3 x, y, 2-z

Bond	Distance (Å)
Cd(1)-O(3)#1	2.232(2)
Cd(1)-N(4)#3	2.322(3)

Symmetry transformations used to generate equivalent atoms: #1 x, y, z+1; #2 x+1, y, z+1; #3 1-x, 1-y, 2-z

Bond	Distance (Å)
Zn(1)-O(3)#1	2.0246(16)
Zn(1)-N(1)	2.163(2)

Symmetry transformations used to generate equivalent atoms: #1 1-x, -y, 2-z; #2 x+1, y, z; #3 x+1, y, z+1

Bond	Distance (Å)
Zn(1)-N(4)#2	2.0538(16)
Zn(1)-O(2)	2.1446(17)

Symmetry transformations used to generate equivalent atoms: #1 1-x, -y, 2-z; #2 x+1, y, z; #3 x+1, y, z+1

Bond	Distance (Å)
O(3)#1-Zn(1)-O(4)#2	117.42(7)
O(3)#1-Zn(1)-O(2)	152.02(7)

Symmetry transformations used to generate equivalent atoms: #1 1-x, -y, 2-z; #2 x+1, y, z; #3 x+1, y, z+1

Bond	Distance (Å)
O(4)#2-Zn(1)-O(2)	90.32(7)

Symmetry transformations used to generate equivalent atoms: #1 1-x, -y, 2-z; #2 x+1, y, z; #3 x+1, y, z+1
Bond	Distance (Å)	Bond	Distance (Å)
O(3)#1-Zn(1)-N(1)	89.79(8)	O(4)#2-Zn(1)-O(1)	148.43(7)
O(4)#2-Zn(1)-N(1)	86.59(8)	O(2)-Zn(1)-O(1)	58.11(6)
O(2)-Zn(1)-N(1)	88.26(8)	N(1)-Zn(1)-O(1)	91.49(8)
O(3)#1-Zn(1)-N(4)#3	91.75(8)	N(4)#3-Zn(1)-O(1)	91.24(8)
O(4)#2-Zn(1)-N(4)#3	90.17(8)		
Symmetry transformations used to generate equivalent atoms: #1 x, y+1, z; #2 -x, 2-y, 2-z; #3 x, y+1, z+1			

Bond	Distance (Å)	Bond	Distance (Å)
Cd(1)-O(2)#1	2.225(3)	Cd(1)-N(4)#3	2.33(3)
Cd(1)-O(1)#2	2.278(4)	Cd(1)-O(4)	2.380(4)
Cd(1)-N(1)	2.307(5)	Cd(1)-O(3)	2.390(13)
O(2)#1-Cd(1)-O(1)#2	122.27(14)	O(2)#1-Cd(1)-O(4)	91.86(13)
O(2)#1-Cd(1)-N(1)	89.7(2)	O(1)#2-Cd(1)-O(4)	144.95(13)
O(1)#2-Cd(1)-N(1)	86.5(2)	N(1)-Cd(1)-O(4)	102.7(2)
O(2)#1-Cd(1)-N(4)#3	84(2)	N(4)#3-Cd(1)-O(4)	87(2)
O(1)#2-Cd(1)-N(4)#3	88(2)	O(2)#1-Cd(1)-O(3)	141.7(3)
N(1)-Cd(1)-N(4)#3	168(2)	O(1)#2-Cd(1)-O(3)	93.5(3)
N(1)-Cd(1)-O(3)	107.2(3)	N(4)#3-Cd(1)-O(3)	84(2)
O(4)-Cd(1)-O(3)	51.4(3)		
Symmetry transformations used to generate equivalent atoms: #1 x, y-1, z; #2 1-x, 1-y, 1-z; #3 x-1, y, z+1			

Bond	Distance (Å)	Bond	Distance (Å)
Cd(1)-N(1)	2.337(2)	Cd(1)-O(1)	2.326(4)
Cd(1)-N(3)	2.363(2)		
N(1)-Cd(1)-N(3)	93.94(8)	N(1)#1-Cd(1)-O(1)	90.36(13)
N(1)#1-Cd(1)-N(3)	86.06(8)	N(3)#1-Cd(1)-O(1)	100.58(15)
N(1)-Cd(1)-O(1)	89.64(13)	N(3)-Cd(1)-O(1)	79.42(15)
Symmetry transformations used to generate equivalent atoms: #1 2-x, 2-y, 1-z			
Figure S1. Infrared spectra of compounds 1-8
Figure S2. XRPD patterns for compound 2: (a) simulated; (b) as-synthesized; (c) desolvated product; (d) product after keeping the crystals in MeOH solvent; (e) product after keeping the crystals in EtOH solvent; (f) product after keeping the crystals in H$_2$O solvent.

Figure S3. XRPD patterns of compound 7: (a) simulated; (b) as-synthesized; (c) desolvated product.
Figure S4. N\textsubscript{2} adsorption-desorption isotherms for desolvated compounds 2d and 7d at 77K.
Compound	1	2	3	4	5	6	7	8
CCDC number	2022947	2022948	2022949	2022950	2022951	2022952	2022953	2022954
Empirical formula	CsH8CaN6O6							
Formula weight	697.98	649.72	540.88	568.93	500.78	499.81	546.84	841.13
Crystal system	Triclinic							
Space group	P-1							
a, Å	10.200(7)	15.089(8)	10.076(8)	10.012(6)	7.9286(5)	9.1741(5)	9.8636(6)	9.5960(7)
b, Å	10.538(4)	15.885(7)	10.1625(7)	11.3491(7)	10.2530(7)	10.0959(6)	10.3856(5)	10.0623(8)
c, Å	15.937(10)	15.8843(7)	12.7653(7)	12.8116(8)	13.8228(7)	12.7739(6)	11.9413(8)	10.2938(8)
α, °	77.209(5)	60.650(5)	106.911(5)	97.992(5)	94.035(5)	103.514(5)	101.408(5)	66.957(8)
β, °	88.096(5)	65.928(5)	91.992(5)	97.620(5)	100.886(5)	95.606(4)	92.074(5)	88.604(7)
γ, °	84.390(5)	65.649(5)	109.708(7)	114.365(6)	111.823(6)	104.631(5)	104.721(5)	87.270(7)
Volume, Å³	1631.03(17)	2915.2(3)	1164.57(15)	1283.84(15)	1012.12(12)	1097.52(11)	1154.90(13)	913.58(14)
Z	4	4	2	2	2	2	2	1
D(calcd) Mg/m³	1.421	1.479	1.542	1.472	1.643	1.512	1.573	1.529
μ, mm⁻¹	0.717	0.797	0.977	0.891	1.114	1.162	0.987	0.662
F(000)	708	1318	552	584	500	516	552	428
Reflections collected	10,619	18,829	6319	8185	5443	7355	7156	4900
Independent reflections	5723	10,524	4061	4767	3563	4062	4281	3196
	R(int) = 0.0378	R(int) = 0.0354	R(int) = 0.0326	R(int) = 0.0296	R(int) = 0.0230	R(int) = 0.0263	R(int) = 0.0319	R(int) = 0.0215
Reflections with	4776	7264	3182	4057	3126	3428	3619	2927
	I > 2σ(I)							
Data/restraints/parameters	5723/72/431	10,521/320/833	4061/3/322	4767/30/310	3563/0/271	4062/38/323	4281/97/436	3196/24/287
Goodness-of-fit on F²	0.991	1.002	1.009	1.039	1.008	1.077	1.000	1.030
Final R indices	0.0404, 0.0852	0.0612, 0.1640	0.0646, 0.0813	0.0340, 0.0669	0.0322, 0.0575	0.0370, 0.0839	0.0446, 0.0161	0.0338, 0.0721
	R(int) = 0.0378	R(int) = 0.0354	R(int) = 0.0326	R(int) = 0.0296	R(int) = 0.0230	R(int) = 0.0263	R(int) = 0.0319	R(int) = 0.0215
R indices (all data)	0.0506, 0.0915	0.0958, 0.1857	0.0649, 0.0907	0.0438, 0.0708	0.0397, 0.0615	0.0480, 0.0898	0.0562, 0.1141	0.0395, 0.0756
Largest diff. peak and hole e. Å⁻³	0.735 and −0.476	0.843 and −0.670	0.789 and −0.496	0.489 and −0.460	0.441 and −0.483	0.330 and −0.255	0.710 and −0.501	0.396 and −0.431