Optimal indication of single-incision laparoscopic cholecystectomy using Konyang Standard Method in benign gallbladder diseases

Seung Jae Lee, In Seok Choi, Ju Ik Moon, Dae Sung Yoon, Won Jun Choi, Sang Eok Lee, Nak Song Sung, Seong Uk Kwon, In Eui Bae, Seung Jae Roh, Sung Gon Kim

Department of Surgery, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea

Purpose: The optimal indications for single-incision laparoscopic cholecystectomy (SILC) have not yet been established.

Methods: This single-center retrospective study included consecutive patients who underwent SILC between April 2010 and June 2020. Difficult surgery (DS) (conversion to multiport or open cholecystectomy, adjacent organ injury, operation time of ≥90 minutes, or estimated blood loss of ≥100 mL) and poor postoperative outcome (PPO) (postoperative hospital stay ≥ 7 days or Clavien-Dindo grade ≥ II postoperative complications) were defined to comprehensively evaluate surgical difficulty and postoperative outcomes, respectively.

Results: Of 1,405 patients (mean age, 51.2 years; 802 female [57.1%]), 427 (grade I, n = 358; grade II/III, n = 69) underwent SILC for acute cholecystitis (AC), 34 (2.4%) needed conversion to multiport (n = 33) or open cholecystectomy (n = 1), 7 (0.5%) had adjacent organ injury during surgery, and 49 (3.5%) developed postoperative complications. Of the patients, 89 and 52 had DS and PPO, respectively. In the multivariate analysis, grade I AC, grade II/III AC, and body mass index of ≥30 kg/m² were significant predictors of DS. Age of ≥70 years and DS were significant predictors of PPO. In a subgroup analysis of patients with AC, DS (9.5% vs. 27.5%, \(p < 0.001 \)) and PPO (5.0% vs. 15.9%, \(p = 0.001 \)) were more frequent in patients with grade II/III AC than in those with grade I AC.

Conclusion: SILC is not recommended in patients with grade II/III AC and should be carefully performed by experienced and well-trained surgeons.

Keywords: Laparoscopy, Cholecystectomy, Acute cholecystitis

INTRODUCTION

Laparoscopic procedures are considered a standardized approach for the treatment of benign gallbladder diseases [1]. With the development of surgical techniques and instruments and the accumulating experience in laparoscopic surgery, many surgeons have attempted to reduce the number of incisions. Single-incision laparoscopic cholecystectomy (SILC), which emerged as a result of these efforts, has been widely accepted since it was first introduced in 1997 [2]. Initially, SILC was performed only in highly selected patients; however, the indications were gradually expanded as the surgeons’ experience accumulated. Nevertheless, no definite indications for SILC have been established thus far. Although previous studies have reported the safety and feasibil-
ity of SILC in patients with acute cholecystitis (AC) [3–5], some controversies remain about the safety of SILC for AC. Several systematic reviews have cautioned that attention should be paid to the application of SILC in patients with AC, obesity (body mass index [BMI] of ≥30 kg/m²), and advanced age [6–8].

At our institution, SILC has been performed for benign gallbladder diseases since 2010. We have reported the evolution of our surgical method for SILC [9,10], as well as the risk factors for conversion to conventional multipor laparoscopic cholecystectomy (CMLC) [11] and prolonged operation time [12]. The current study aimed to identify the optimal indications for SILC by analyzing the difficulty of surgery and postoperative outcomes from our experience of >10 years.

MATERIALS AND METHODS

Patients and indications for single-incision laparoscopic cholecystectomy

We evaluated patients with benign gallbladder diseases who underwent SILC performed by three hepatobiliary surgeons at Konyang University Hospital between April 2010 and June 2020. A total of 1,405 patients were included in this study. Initially, when we selected candidates for SILC, we excluded patients aged ≥70 years and those with systemic disease, variation of bile duct, or complications of AC. After 50 cases, SILC was applied to all patients with benign gallbladder diseases except when malignancy was suspected. After reporting the risk factors for conversion and prolonged operation time [11,12], we carefully performed SILC in patients with complicated AC.

Surgical technique of single-incision laparoscopic cholecystectomy

Our surgical methods have evolved over time and cautiously expanded indications. In the first period, SILC was performed with a handmade three-channel port using surgical gloves. We named this the Konyang Standard Method (KSM). In the second period, SILC was performed using a handmade four-channel port with a snake liver retractor to expose the Calot triangle. We referred to this method as the modified KSM. In the third period, SILC was performed using a commercial four-channel port (Glove port; Nelis, Bucheon, Korea), which is the final version of our standardized SILC method. We referred to this method as the commercially modified KSM. For the commercially modified KSM, a 20-mm transumbilical incision was made and a glove port was inserted. The flexible laparoscope was inserted into the left lower channel, the snake retractor into the right lower channel below the laparoscope, and the grasper into the left upper channel located on the right side of the laparoscope. Meanwhile, the dissector, scissors, and electrocautery suction–irrigation device were inserted into the right upper channel below the grasper. The detailed surgical technique has been described in our previous study [10].

Definitions of demographics and treatment outcomes

The diagnosis of AC was based on the 2018 Tokyo Guidelines (TG18) [13]. Imaging findings were confirmed using abdominal ultrasonography, computed tomography, or magnetic resonance cholangiopancreatography. The severity of AC was classified according to TG18 [13]. The general condition and physical fitness of each patient were evaluated using the American Society of Anesthesiologists physical status (ASA PS) classification [14]. Postoperative complications were graded according to the Clavien-Dindo classification [15]. The length of hospital stay after surgery was defined as the number of days of hospital stay after the SILC procedure. Operation time was calculated as the time from skin incision to skin closure. Blood loss estimates were obtained from surgical records. Bile duct injury was defined as damage to the biliary tract, excluding the cystic duct and gallbladder, and was classified according to the timing of recognition. Adjacent organ injury recognized during surgery was defined as damage to adjacent organs, such as the duodenum, colon, and hepatic artery, excluding the bile duct. Bile duct injury and adjacent organ injury recognized during surgery were not included as postoperative complications.

An incisional hernia was defined as a hernia at the umbilical incision site that was postoperatively confirmed with physical examination and imaging studies.

Definitions of difficult surgery and poor postoperative outcome

We evaluated the surgical difficulty and postoperative outcomes to confirm the safety and feasibility of SILC. We defined difficult surgery (DS) as the occurrence of the following intraoperative outcomes: conversion to multiport or open cholecystectomy, adjacent organ injury during surgery, operation time of ≥90 minutes, or estimated blood loss of ≥100 mL. We defined poor postoperative outcome (PPO) as postoperative hospital stay of ≥7 days or postoperative complications of Clavien-Dindo grade ≥II. Operation time of ≥90 minutes, estimated blood loss of ≥100 mL, and postoperative hospital stay of ≥7 days, which are the criteria for DS and PPOs, were all determined based on 95% of the study population.

Statistical analysis

Categorical variables are presented as counts and percentages
and were compared using the chi-square test. Continuous variables are summarized as means and standard deviations and were compared using Student t test. Multivariate analyses of the significant factors identified in the univariate analyses were performed using a logistic regression model. All tests were two-sided, and statistical significance was set at $p < 0.05$. Analyses were performed using IBM SPSS version 24 (IBM Corp., Armonk, NY, USA).

RESULTS

Study population

The patient demographics, disease characteristics, and surgical outcomes are listed in Table 1. The mean age at surgery was 51.2 years, and 802 patients (57.1%) were female. Of the 1,405 patients, 338 (24.1%) underwent SILC for gallbladder stones, 121 (8.6%) for gallbladder polyps, 474 (33.7%) for chronic cholecystitis, and 427 (30.4%) for AC. According to the TG18 classification of AC sever-

Table 1. Demographics, disease characteristics, and surgical outcomes in the study population	Variable	Data
No. of patients	1,405	
Sex		
Male	603 (42.9)	
Female	802 (57.1)	
Age (yr)	51.2 ± 14.4	
Body mass index (kg/m2)		
<30	1,300 (92.5)	
≥30	105 (7.5)	
Preoperative diagnosis		
Gallbladder stone	338 (24.1)	
Gallbladder polyp	121 (8.6)	
Acute cholecystitis, TG18 grade		
I	358 (25.5)	
II/III	69 (4.9)	
Chronic cholecystitis	474 (33.7)	
Others	45 (3.2)	
Prior abdominal surgery		
Yes	324 (23.1)	
No	1,081 (76.9)	
ASA PS classification		
<III	1,308 (93.1)	
≥III	97 (6.9)	
Preoperative laboratory finding		
White blood cell ($\times 10^3$/mm3)	8.2 ± 3.6	
Hemoglobin (g/dL)	13.6 ± 1.6	
Platelets ($\times 10^3$/mm3)	245.5 ± 96.2	
PT (INR)	1.03 ± 0.09	
Creatinine (mg/dL)	0.81 ± 0.23	
AST (IU/L)	81.0 ± 207.1	
ALT (IU/L)	76.0 ± 167.3	
Total bilirubin (mg/dL)	1.13 ± 1.38	
Preoperative EST	132 (9.4)	
Preoperative PTGBD	137 (9.8)	

Table 1, Continued

Variable	Data
Operation time (min)	51.8 ± 17.9
Estimated blood loss (mL)	14.8 ± 34.2
Intraoperative transfusion	0 (0)
Bile duct injury	
Recognized during surgery	3 (0.2)
Recognized during the postoperative period	2 (0.1)
Adjacent organ injury recognized during surgery	1 (0.1)
Conversion	34 (2.4)
Insertion of one additional port	6 (0.4)
Insertion of two additional ports	27 (1.9)
Open conversion	1 (0.1)
Postoperative complication, CD grade	
I	49 (3.5)
II	21 (1.5)
IIIa	6 (0.4)
IIIb	3 (0.2)
Postoperative hospital stay (day)	2.5 ± 1.7
Pathology	
Chronic cholecystitis	1,128 (80.3)
Acute cholecystitis or empyema	188 (13.4)
Polyp and adenoma	81 (5.8)
Cancer	5 (0.4)
Others	3 (0.2)
Incisional hernia	5 (0.4)
30-Day mortality	0 (0)

Values are presented as number only, number (%), or mean ± standard deviation.

TG18, 2018 Tokyo Guidelines; ASA PS, American Society of Anesthesiologists physical status; PT, prothrombin time; INR, international normalized ratio; AST, aspartate transaminase; ALT, alanine transaminase; EST, endoscopic sphincterotomy; PTGBD, percutaneous transhepatic gallbladder drainage; CD, Clavien-Dindo classification.
ity, 358 patients (83.8%) had grade I AC and 69 patients (16.2%) had grade II/III AC. A total of 105 patients (7.5%) had a BMI of ≥30 kg/m², and 97 patients (6.9%) had an ASA PS classification of ≥III. In addition, 324 patients (23.1%) had a history of prior abdominal surgery. Preoperative percutaneous transhepatic gallbladder drainage (PTGBD) was performed in 137 patients (9.8%). Preoperative endoscopic sphincterotomy for common bile duct stones was performed in 132 patients (9.4%).

The mean operation time was 51.8 minutes, and the mean estimated blood loss was 14.8 mL. One additional port was inserted in six of the 1,405 patients (0.4%), two additional ports were inserted in 27 patients (1.9%), and open conversion was performed in only one patient (0.1%). Bile duct injury occurred in three patients, which was recognized during surgery in two patients and during the postoperative period in one patient. Four adjacent organ injuries (0.3%) were recognized during surgery, two in the duodenum and two in the hepatic arteries (one in the left hepatic artery and one in the right hepatic artery). No intraoperative transfusions were performed. Postoperative complications occurred in 49 patients (3.5%). The mean length of postoperative hospital stay was 2.5 days. Pathologic examination revealed that 1,128 (80.3%) patients had chronic cholecystitis, 188 (13.4%) had AC (emphysematous or gangrenous cholecystitis), and five (0.4%) had gallbladder cancer. Postoperative incisional hernia at the umbilical site was observed in five patients (0.4%). No postoperative 30-day mortality occurred.

Difficult surgery

According to the definition of DS, the study population was divided into two groups: non-DS (NDS) and DS. Table 2 shows a comparison of patient demographics between the two groups. No significant sex differences were observed between the two groups (p = 0.084). The DS group included more patients aged ≥70 years (10.0% vs. 20.2%, p = 0.002), patients with BMI of ≥30 kg/m² (7.1% vs. 14.6%, p = 0.009), and patients with an ASA PS classification of ≥III (6.2% vs. 16.9%, p < 0.001) than the NDS group. The proportion of patients with AC was also higher in the DS group than in the NDS group (28.4% vs. 59.6%, p < 0.001). Preoperative PTGBD was performed more frequently (8.5% vs. 28.1%, p < 0.001) in the

| Table 2. Comparison of patient characteristics according to surgical difficulty and postoperative outcomes |
|---|---|---|---|---|
| Characteristic | Surgical difficulty | Postoperative outcomes |
| | Non-DS (n = 1,316) | DS (n = 89) | p value | Non-PPO (n = 1,353) | PPO (n = 52) | p value |
| Female sex | | | | | | |
| Age, ≥70 yr | 759 (57.7) | 43 (48.3) | 0.084 | 774 (57.2) | 28 (53.8) | 0.631 |
| Body mass index (kg/m²) | | | | | | |
| ≥30 | 93 (7.1) | 13 (14.6) | 0.009 | 101 (7.5) | 5 (9.6) | 0.564 |
| <20 | 100 (7.6) | 3 (3.4) | 0.139 | 99 (7.3) | 4 (7.7) | 0.919 |
| Preoperatively diagnosed AC | | | | | | |
| Grade I | 374 (28.4) | 53 (59.6) | <0.001 | 398 (29.4) | 29 (55.8) | <0.001 |
| Grade II/III | 324 (24.6) | 34 (38.2) | 0.034 | 340 (25.1) | 18 (34.6) | 0.017 |
| Prior abdominal surgery, + | 50 (3.8) | 19 (21.3) | 0.001 | 58 (4.3) | 11 (21.2) | 0.631 |
| ASA PS classification ≥III | 82 (6.2) | 15 (16.9) | <0.001 | 87 (6.4) | 10 (19.2) | <0.001 |
| Preoperative laboratory findings | | | | | | |
| WBC (×10³/mm³), >10.4 or <4.0 | 239 (18.2) | 39 (43.8) | <0.001 | 261 (19.3) | 17 (32.7) | 0.017 |
| AST (IU/L), >36 | 345 (26.2) | 34 (38.2) | 0.014 | 359 (26.5) | 20 (38.5) | 0.057 |
| ALT (IU/L), >38 | 373 (28.3) | 33 (37.1) | 0.078 | 387 (28.6) | 19 (36.5) | 0.215 |
| Total bilirubin (mg/dL), >1.3 | 220 (16.7) | 26 (29.2) | 0.003 | 231 (17.1) | 15 (28.8) | 0.028 |
| Preoperative EST, + | 119 (9.0) | 13 (14.6) | 0.082 | 121 (8.9) | 11 (21.2) | 0.003 |
| Preoperative PTGBD, + | 112 (8.5) | 25 (28.1) | <0.001 | 121 (8.9) | 16 (30.8) | <0.001 |
| DS | NA | NA | NA | 73 (5.4) | 16 (30.8) | <0.001 |

Values are presented as number (%).

DS, difficult surgery; PPO, poor postoperative outcome; AC, acute cholecystitis; ASA PS, American Society of Anesthesiologists physical status; WBC, white blood cell; AST, aspartate transaminase; ALT, alanine transaminase; EST, endoscopic sphincterotomy; PTGBD, percutaneous transhepatic gallbladder drainage; NA, not applicable.
DS group than in the NDS group. With respect to preoperative laboratory findings, leukocytosis or leukopenia (18.2% vs. 43.8%, \(p < 0.001\)), elevated aspartate transaminase level (26.2% vs. 38.2%, \(p = 0.014\)), and hyperbilirubinemia (16.7% vs. 29.2%, \(p = 0.003\)) were more common in the DS group than in the NDS group.

In the multivariate logistic regression model that included the significant factors identified in the univariate analysis, grade I AC (odds ratio [OR], 2.157), grade II/III AC (OR, 5.108), and BMI of \(\geq 30\) kg/m\(^2\) (OR, 2.163) were significant predictors of DS (Table 3).

Poor postoperative outcome

According to the definition of PPO, the study population was divided into two groups: non-PPO and PPO. Table 2 shows a comparison of patient demographics between the two groups. No significant sex differences were found between the two groups (\(p = 0.631\)). The PPO group included more patients aged \(\geq 70\) years (9.6% vs. 36.5%, \(p < 0.001\)) and patients with an ASA PS classification of \(\geq III\) (6.4% vs. 19.2%, \(p < 0.001\)) than the non-PPO group. The proportion of patients with AC was also higher in the PPO group than in the non-PPO group (29.4% vs. 55.8%, \(p < 0.001\)). Preoperative PTGBD (8.9% vs. 30.8%, \(p < 0.001\)) and endoscopic sphincterotomy (8.9% vs. 21.2%, \(p = 0.003\)) were performed more frequently in the PPO group than in the non-PPO group. With respect to preoperative laboratory findings, leukocytosis or leukopenia (19.3% vs. 32.7%, \(p = 0.017\)) and hyperbilirubinemia (17.1% vs. 28%, \(p = 0.028\)) were more common in the PPO group than in the NDS group.

Factor	Multivariate analysis	\(OR\) (95% CI)	\(p\) value	
Age (yr)	<70	1 (Reference)		
	\(\geq 70\)	1.044 (0.524–2.080)	0.903	
BMI (kg/m\(^2\))	<30	1 (Reference)		
	\(\geq 30\)	2.163 (1.119–4.181)	0.022	
ASA PS classification	<III	1 (Reference)		
	\(\geq III\)	1.452 (0.691–3.050)	0.325	
WBC (\(\times 10^3/\)mm\(^3\))	\(\geq 4.0\) or \(\leq 10.8\)	1 (Reference)		
	\(<4.0\) or \(>10.8\)	1.635 (0.935–2.860)	0.085	
AST (IU/L)	\(\leq 36\)	1 (Reference)		
	\(>36\)	1.211 (0.703–2.085)	0.491	
Total bilirubin (mg/dL)	\(\leq 1.3\)	1 (Reference)		
	\(>1.3\)	1.112 (0.606–2.041)	0.731	
Preoperative PTGBD	No	1 (Reference)		
	Yes	1.137 (0.563–2.294)	0.720	
Acute cholecystitis	No	1 (Reference)		
	Grade I	2.157 (1.247–3.733)	0.006	
	Grade II/III	5.108 (2.063–12.648)	<0.001	

Table 4. Multivariate analysis of predictors of poor postoperative outcome in single-incision laparoscopic cholecystectomy

Factor	Multivariate analysis	\(OR\) (95% CI)	\(p\) value	
Age (yr)	<70	1 (Reference)		
	\(\geq 70\)	3.496 (1.692–7.226)	0.001	
ASA PS classification	<III	1 (Reference)		
	\(\geq III\)	0.927 (0.367–2.339)	0.873	
WBC (\(\times 10^3/\)mm\(^3\))	\(\geq 4.0\) or \(\leq 10.8\)	1 (Reference)		
	\(<4.0\) or \(>10.8\)	0.592 (0.256–1.371)	0.221	
Total bilirubin (mg/dL)	\(\leq 1.3\)	1 (Reference)		
	\(>1.3\)	0.929 (0.433–1.993)	0.849	
Preoperative EST	No	1 (Reference)		
	Yes	1.916 (0.820–4.479)	0.133	
Preoperative PTGBD	No	1 (Reference)		
	Yes	2.230 (0.874–5.689)	0.093	
Acute cholecystitis	No	1 (Reference)		
	Grade I	1.282 (0.597–2.752)	0.525	
	Grade II/III	2.208 (0.643–7.581)	0.208	
Difficult surgery	No	1 (Reference)		
	Yes	5.681 (2.820–11.444)	<0.001	

OR, odds ratio; CI, confidence interval; BMI, body mass index; ASA PS, American Society of Anesthesiologists physical status; WBC, white blood cell; AST, aspartate transaminase; PTGBD, percutaneous transhepatic gallbladder drainage.
the non-PPO group. Furthermore, DS was more common in the PPO group than in the non-PPO group (5.4% vs. 30.8%, \(p < 0.001 \)).

In multivariate analysis, age of \(\geq 70 \) years (OR, 3.496) and DS (OR, 5.681) were statistically significant predictors of PPO, and the severity of AC was not statistically related to PPO (Table 4).

Patients with acute cholecystitis

A subgroup analysis of patients with AC was conducted according to the TG18 classification of AC severity; grade I AC group vs. grade II/III AC group. Table 5 shows the comparison of patient demographics, disease characteristics, and surgical outcomes between the two groups. The patients in the grade II/III AC group were older than those in the grade I AC group (53.1 years vs. 63.5 years, \(p < 0.001 \)). More patients with an ASA PS classification of \(\geq III \) were included in the grade II/III AC group than in the grade I AC group (8.9% vs. 31.9%, \(p < 0.001 \)). Preoperative PTGBD was performed more frequently (23.2% vs. 78.3%, \(p < 0.001 \)) in the grade II/III AC group than in the grade I AC group. DS (9.5% vs. 27.5%, \(p < 0.001 \)) and PPO (5.0% vs. 15.9%, \(p = 0.001 \)) were more common in the grade II/III AC group than in the grade I AC group. The grade II/III AC group showed poorer outcomes than the grade I AC group in terms of operation time (57.1 minutes vs. 67.4 minutes, \(p < 0.001 \)), conversion to multiport or open cho-

Variables	Acute cholecystitis (n = 427)	TG18 grade I (n = 358)	TG18 grade II/III (n = 69)	\(p \) value
Sex				
Male	212 (49.6)	172 (48.0)	40 (58.0)	0.131
Female	215 (50.4)	186 (52.0)	29 (42.0)	
Age (yr)	54.7 ± 15.5	53.1 ± 15.0	63.5 ± 15.3	<0.001
Body mass index (kg/m\(^2\))	24.7 ± 3.5	24.8 ± 3.3	24.6 ± 4.0	0.802
Prior abdominal surgery				
Yes	73 (17.1)	64 (17.9)	9 (13.0)	
No	354 (82.9)	294 (82.1)	60 (87.0)	
ASA PS classification				<0.001
\(<III\)	373 (87.4)	326 (91.1)	47 (68.1)	
\(\geq III\)	54 (12.6)	32 (8.9)	22 (31.9)	
Preoperative laboratory findings				
WBC \((x10^3/mm^3)\)	10.7 ± 4.5	9.7 ± 3.4	16.4 ± 5.3	<0.001
Hemoglobin (g/dL)	13.7 ± 1.6	13.7 ± 1.6	13.5 ± 1.7	0.355
Platelets \((x10^3/mm^3)\)	234.3 ± 74.6	236.8 ± 72.6	221.4 ± 83.6	0.157
PT (INR)	1.06 ± 0.11	1.04 ± 0.09	1.13 ± 0.15	<0.001
Creatinine (mg/dL)	0.86 ± 0.29	0.84 ± 0.26	0.98 ± 0.39	<0.001
AST (IU/L)	138.4 ± 313.6	143.5 ± 329.3	111.6 ± 214.5	0.307
ALT (IU/L)	116.2 ± 226.9	122.4 ± 238.7	84.0 ± 148.0	0.198
Total bilirubin (mg/dL)	1.63 ± 1.89	1.56 ± 1.75	2.00 ± 2.47	0.160
Preoperative EST	80 (18.7)	69 (19.3)	11 (15.9)	0.516
Preoperative PTGBD	137 (32.1)	83 (23.2)	54 (78.3)	<0.001
Operation time (min)	58.8 ± 21.5	57.1 ± 20.4	67.4 ± 25.0	<0.001
Estimated blood loss (mL)	22.6 ± 55.3	21.6 ± 58.9	27.8 ± 29.6	0.194
Drain insertion	17 (4.0)	8 (2.2)	9 (13.0)	<0.001
Bile duct injury	2 (0.5)	2 (0.6)	0 (0)	
Adjacent organ injury recognized during surgery	1 (0.2)	0 (0)	1 (1.4)	
Conversion	25 (5.9)	14 (3.9)	11 (15.9)	<0.001
Insertion of one additional port	4 (0.9)	3 (0.8)	1 (1.4)	
Insertion of two additional ports	20 (4.7)	11 (3.1)	9 (13.0)	
Open conversion	1 (0.2)	0 (0)	1 (1.4)	
Single-incision laparoscopic cholecystectomy

Table 5. Continued

Variables	Acute cholecystitis (n = 427)	TG18 grade I (n = 358)	TG18 grade II/III (n = 69)	p value
Difficult surgery	53 (12.4)	34 (9.5)	19 (27.5)	<0.001
Postoperative complication, CD grade				
I	27 (6.3)	16 (4.5)	11 (15.9)	<0.001
II	6 (1.4)	5 (1.4)	1 (1.4)	
Ill	13 (3.0)	6 (1.7)	7 (10.1)	
Illa	6 (1.4)	3 (0.8)	3 (4.3)	
IIb	2 (0.5)	2 (0.6)	0 (0)	
Postoperative hospital stay (day)	2.8 ± 2.2	2.7 ± 2.1	3.7 ± 2.9	0.001
Poor postoperative outcome	29 (6.8)	18 (5.0)	11 (15.9)	0.001
Pathology				0.017
Acute cholecystitis	174 (40.7)	137 (38.3)	37 (53.6)	
Chronic cholecystitis and others	253 (59.3)	221 (61.7)	32 (46.4)	
Incisional hernia	3 (0.7)	2 (0.6)	1 (1.4)	0.417

Values are presented as number (%) or mean ± standard deviation.

TG18, 2018 Tokyo Guidelines; ASA PS, American Society of Anesthesiologists physical status; WBC, white blood cell; PT, prothrombin time; INR, international normalized ratio; AST, aspartate transaminase; ALT, alanine transaminase; PTGBD, percutaneous transhepatic gallbladder drainage; EST, endoscopic sphincterotomy; CD, Clavien-Dindo classification.

dectomy (3.9% vs. 15.9%, p < 0.001), postoperative complications (4.5% vs. 15.9%, p < 0.001), and postoperative hospital stay (2.7 vs. 3.7 days, p = 0.001).

DISCUSSION

Although minimally invasive surgery has been widely accepted in many surgical fields, it remains highly technically challenging in the field of hepatobiliary surgery. Nevertheless, laparoscopic cholecystectomy is performed in 1.2 million patients per year worldwide [16] and is considered the treatment of choice for benign gallbladder diseases. To improve the attendant benefits of minimally invasive surgery with CMLC using three to four ports, SILC was developed, which is recently increasing in popularity. As SILC cannot yet be considered a standard treatment, careful decision making is required when selecting patients suitable for SILC. However, few studies have investigated the optimal indications for SILC. The present study is meaningful because it analyzed a large number of patients who underwent SILC at a single institution and suggested the optimal indications for SILC.

To determine the optimal indications for SILC, both the difficulty of surgery and postoperative surgical outcomes need to be evaluated. Various factors including operation time, estimated blood loss, adjacent organ injury, postoperative complications, and length of hospital stay should also be considered. Evaluating each of the various factors in one study to determine the optimal indications for a procedure is challenging, and the factors need to be evaluated in an integrated manner. Therefore, we defined DS and PPO for a comprehensive evaluation of surgical difficulty and outcomes. In addition, since the decision of the surgical method whether to apply SILC or CMLC is made before surgery, this study evaluated the optimal indication for preoperative factors rather than intraoperative factors.

Although the safety of SILC in patients with AC remains controversial, its application in clinical practice is gradually expanding [17]. Patients with AC may have severe inflammation in the porta hepatitis, which greatly distorts the anatomy. In addition, the gallbladder is often distended, friable, and difficult to grasp, and persistent oozing of blood often obscures the surgical field. All of these factors may impede the safety of SILC. Several previous case-controlled studies on SILC in patients with AC reported a 3.6% to 18.3% rate of postoperative complications, 2.7% to 60.0% rate of additional port insertion, 0.4% to 18.3% rate of open conversion, and 5.7 to 9.4 days of postoperative hospital stay [3,4,18,19]. Despite a large number of patients with AC compared with previous studies, the surgical outcomes in the present study were relatively acceptable. However, no studies have investigated the safety of SILC in patients with AC according to disease severity as done in the present study. Our results revealed that most surgical outcomes were worse in patients with grade II/III AC than in those with grade I AC in terms of conversion rate, operation time, postoperative hospital stay, and complication rate. Careful patient selection for safe surgery is more important than expanding the indications for SILC. Therefore, in patients with AC, the indications for SILC should be established according to disease severity.

SILC is an easy-to-perform and safe procedure for experienced laparoscopic and hepatobiliary surgeons. Previous studies have
reported that the learning curve for the successful completion of SILC seems to be 8 to 25 cases [20–22]. However, in those studies, patients with AC were either excluded or only partly included. SILC should only be applied after overcoming the learning curve in patients with AC or other factors increasing surgical difficulties.

In the present study, age of ≥70 years (OR, 3.496) and DS (OR, 5.681) were statistically significant predictors of PPO. Old age is a predictor of PPO in most surgical procedures. Similar results were observed in the present study. SILC should be applied with caution in elderly patients to improve the postoperative outcomes. Importantly, DS was the most significant predictor of PPO, and the severity of AC was not statistically related to PPO. In SILC, reducing the difficulty of surgery is the most important way to achieve better surgical outcomes. Therefore, SILC should be carefully applied in patients with risk factors for DS, such as AC and high BMI, and should be avoided in patients with grade II/III AC, which is the most important cause of surgical difficulty.

This study had several limitations. First, this was a retrospective, single-center study, and some bias may exist in the results. As SILC is performed using various surgical methods across different institutions, the results may vary depending on the surgical method. In addition, although checking “critical view of safety” is considered the gold standard for securing the safety of cholecystectomy, this study was a retrospective study and could not confirm whether “critical view of safety” was checked during surgery. Second, this is the first study to recommend the optimal indications for SILC by defining DS and PPO for a comprehensive evaluation of surgical difficulty and postoperative outcomes. The disadvantages of this study are that the effectiveness of the integrated analysis has not been confirmed and a detailed analysis of each factor was not performed. Third, this study included only patients who underwent SILC. A comparison of perioperative outcomes according to AC severity is not sufficient to confirm the safety of SILC for AC. Therefore, we plan to compare the perioperative outcomes between SILC and CMLC in patients with AC using a propensity score-matched analysis.

In conclusion, owing to surgical difficulty and poor surgical outcomes, SILC is not recommended in patients with grade II/III AC and should be carefully performed by experienced and well-trained surgeons. Further studies comparing SILC with CMLC are needed to confirm the safety and effectiveness of SILC in patients with AC, high BMI, or advanced age.

NOTES

Ethics statements

This study was approved by the Institutional Review Board of Konyang University Hospital, and the requirement for informed consent was waived owing to the retrospective study design (No. 2021-02-004).

Authors’ contributions

Conceptualization, Formal analysis, Methodology, Visualization: SJL, ISC, JIM
Data curation, Investigation: All authors
Writing-original draft: SJL
Writing-review & editing: SJL, ISC, JIM
All authors read and approved the final manuscript.

Conflict of interest

All authors have no conflicts of interest to declare.

Funding/support

None.

ORCID

Seung Jae Lee, https://orcid.org/0000-0002-3302-6624
In Seok Choi, https://orcid.org/0000-0002-9656-3697
Ju Ik Moon, https://orcid.org/0000-0002-8120-5854
Dae Sung Yoon, https://orcid.org/0000-0002-6447-2862
Won Jun Choi, https://orcid.org/0000-0003-0278-4024
Sang Eok Lee, https://orcid.org/0000-0002-9956-7693
Nak Song Sung, https://orcid.org/0000-0002-7549-3829
Seoung Uk Kwon, https://orcid.org/0000-0003-3167-7527
In Eui Bae, https://orcid.org/0000-0002-9220-8815
Seung Jae Roh, https://orcid.org/0000-0002-3232-2798
Sung Gon Kim, https://orcid.org/0000-0002-8837-073X

REFERENCES

1. Begos DG, Modlin IM. Laparoscopic cholecystectomy: from gimmick to gold standard. J Clin Gastroenterol 1994;19:325-330.
2. Navarra G, Pozza E, Occhionorelli S, Carcoforo P, Donini I. One-wound laparoscopic cholecystectomy. Br J Surg 1997;84:695.
3. Ikumoto T, Yamagishi H, Iwatate M, Sano Y, Kotaka M, Imai Y. Feasibility of single-incision laparoscopic cholecystectomy for acute cholecystitis. World J Gastrointest Endosc 2015;7:1327-1333.
4. Byun GY, Lee SR, Koo BH. Safety of single-incision laparoscopic cholecystectomy for acute cholecystitis. ANZ J Surg 2018;88:755-759.
5. Chuang SH, Chen PH, Chang CM, Lin CS. Single-incision vs three-incision laparoscopic cholecystectomy for complicated and uncomplicated acute cholecystitis. World J Gastroenterol 2013;19:7743-7750.
6. Antoniou SA, Pointner R, Granderath FA. Single-incision laparoscop-
ic cholecystectomy: a systematic review. Surg Endosc 2011;25:367-377.
7. Joseph M, Phillips MR, Farrell TM, Rupp CC. Single incision laparoscopic cholecystectomy is associated with a higher bile duct injury rate: a review and a word of caution. Ann Surg 2012;256:1-6.
8. Lirici MM, Tierno SM, Ponzano C. Single-incision laparoscopic cholecystectomy: does it work?: a systematic review. Surg Endosc 2016;30:4389-4399.
9. Kim MK, Choi IS, Moon JI, et al. Evolution of the Konyang Standard Method for single incision laparoscopic cholecystectomy: the result from a thousand case of a single center experience. Ann Surg Treat Res 2018;95:80-86.
10. Um MH, Lee SJ, Choi IS, et al. Completion of single-incision laparoscopic cholecystectomy using the modified Konyang standard method. Surg Endosc 2022;36:4992-5001.
11. Kim SG, Moon JI, Choi IS, et al. Risk factors for conversion to conventional laparoscopic cholecystectomy in single incision laparoscopic cholecystectomy. Ann Surg Treat Res 2016;90:303-308.
12. Cheon SU, Moon JI, Choi IS. Risk factors for prolonged operative time in single-incision laparoscopic cholecystectomy. Ann Surg Treat Res 2015;89:247-253.
13. Yokoe M, Hata J, Takada T, et al. Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos). J Hepatobiliary Pancreat Sci 2018;25:41-54.
14. Mayhew D, Mendonca V, Murthy BV. A review of ASA physical status: historical perspectives and modern developments. Anaesthesia 2019;74:373-379.
15. Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 2009;250:187-196.
16. BIS Research. Global laparoscopy and endoscopy devices market: focus on surgical procedures (cholecystectomy and hysterectomy) and product types (arthroscopes, neuroendoscopes, cystoscope, and bronchoscopes); analysis and forecast, 2018-2025. Dublin, Ireland: Research and Markets; 2018.
17. Lee W, Roh YH, Kang SH, et al. The chronological change of indications and outcomes for single-incision laparoscopic cholecystectomy: a Korean multicenter study. Surg Endosc 2021;35:3025-3032.
18. Sato N, Kohi S, Tamura T, Minagawa N, Shibao K, Higure A. Single-incision laparoscopic cholecystectomy for acute cholecystitis: a retrospective cohort study of 52 consecutive patients. Int J Surg 2015;17:48-53.
19. Koizumi N, Kobayashi H, Takagi T, Fukumoto K. Is single-incision laparoscopic cholecystectomy feasible for acute cholecystitis?: a consecutive study of 60 cases. Surg Laparosc Endosc Percutan Tech 2017;27:379-383.
20. Feinberg EJ, Agaba E, Feinberg ML, Camacho D, Vemulapalli P. Single-incision laparoscopic cholecystectomy learning curve experience seen in a single institution. Surg Laparosc Endosc Percutan Tech 2012;22:114-117.
21. Pan MX, Liang ZW, Cheng Y, et al. Learning curve of transumbilical suture-suspension single-incision laparoscopic cholecystectomy. World J Gastroenterol 2013;19:4786-4790.
22. Han HJ, Choi SB, Park MS, et al. Learning curve of single port laparoscopic cholecystectomy determined using the non-linear ordinary least squares method based on a non-linear regression model: an analysis of 150 consecutive patients. J Hepatobiliary Pancreat Sci 2011;18:510-515.