Influence of occult hepatitis B virus infection in chronic hepatitis C outcomes

Conrado M Fernandez-Rodriguez, Maria Luisa Gutierrez, José Luis Lledó, Maria Luisa Casas

CONTRIBUTIONS: Fernandez-Rodriguez CM and Gutierrez ML contributed towards the conception and design of the review; Lledó JL and Casas ML contributed equally to the supportive work and supervision.

Correspondence to: Conrado M Fernandez-Rodriguez, MD, PhD, Associated Professor of Medicine, Service of Gastroenterology, Hospital Universitario Fundación Alcorcón, University King Juan Carlos, Av Budapest-1, 28922 Alcorcón, Madrid, Spain.
cfernandez@fhalcorcon.es

Telephone: +34-91-6219705 Fax: +34-91-6219975
Received: August 6, 2010 Revised: October 26, 2010
Accepted: November 2, 2010
Published online: March 28, 2011

ABSTRACT

Persistence of hepatitis B virus-DNA in the sera, peripheral blood mononuclear cells or in the liver of hepatitis B surface antigen (HBsAg)-negative patients with or without serological markers of previous exposure (antibodies to HBsAg and/or to HB-core antigen) defines the entity called occult hepatitis B infection (OBI). Co-infection with hepatitis B and hepatitis C viruses is frequent in high endemic areas. While this co-infection increases the risk of developing hepatocellular carcinoma (HCC), the effect of occult hepatitis B infection (OBI) on the natural history of chronic hepatitis C infection remains elusive.

© 2011 Baishideng. All rights reserved.
potential effect on liver histology, on clinical outcomes such as the risk of developing HCC or disease decompensation in these patients.

LITERATURE SEARCH

Electronic searches of the National Library of Medicine’s (PubMed and OVID Technologies), EMBASE (OVID Technologies), Current Contents (Institute for Scientific Information) and manual of selected specialty journals were made to select all relevant literature. The key words “Occult hepatitis B virus AND hepatitis C virus”, “Impact of occult hepatitis B virus on chronic hepatitis C”, were used. All articles were identified by a search from June 1999 to May 2010. Eligibility and exclusion criteria were previously specified. Case reports and human immunodeficiency virus co-infection articles were excluded while case-series, cross sectional, retrospective and prospective studies of occult hepatitis B and chronic hepatitis C were included.

DO HEPATITIS B AND HEPATITIS C VIRUSES INTERACT IN THE HOST?

Some in vitro studies have shown that the HCV “core” protein suppresses HBV replication[13-15]. However, these results have not been confirmed by more recent studies which have demonstrated little or null interaction between HCV and HBV in a Huh7 cells culture[16,17]. Nonetheless, in vitro experiments cannot be extrapolated to the host viral infection scenario as a host active immunological and cytokine response to the human infection is lacking in ex vivo experiments. This immunological response may determine both the liver damage and the clinical outcome. In the clinical setting, Jardi et al[18] found that HCV displayed strong inhibitory action in the reciprocal viral inhibition seen in HBV/HCV coinfected individuals. An inhibition of HCV replication by HBV-DNA was also observed in hepatitis B surface antigen (HBsAg)-negative Austrian patients[19]. However, Alberti et al[20] studied 30 patients with symptomatic acute hepatitis and markers of active HBV and HCV coinfection; all patients underwent long-term follow-up and their chronic infection rates were similar to those patients with single HBV and HCV infection. Nevertheless, the risk of fulminant/subfulminant hepatitis is increased in cases of acute HCV superinfection in chronic hepatitis B[21-23] and causes a higher cumulative risk of cirrhosis and HCC than HDV superinfection does[24].

OBI AND CHRONIC HEPATITIS C: EFFECT ON HISTOLOGY AND CLINICAL OUTCOMES

Cacciola et al[25] found that patients with chronic hepatitis C and OBI more frequently had cirrhosis than patients with chronic hepatitis C alone. Likewise, Mrani et al[26] found that 47 of a cohort of 203 HCV positive French patients (23%) had occult HBV infection with a low HBV load (10^2-10^4 copies/mL). The serum HCV-RNA titer, the liver inflammatory activity and the stage of fibrosis were significantly higher in HBV-DNA positive than in HBV-DNA negative patients. However, these findings have not been confirmed by other studies. Sagnelli et al[27] found occult HBV infection by using PCR as defined by two different positive results of HBV-DNA in plasma, peripheral blood mononuclear cells (PBMCs) and liver compartments in 37 of 89 patients with biopsy proven chronic hepatitis C (41.6%) and found no association between occult HBV infection and the degree of liver necro-inflammation and fibrosis. Fabris et al[28] studied a cohort of 51 HBsAg-negative patients with chronic hepatitis C, and studied liver fibrosis progression by using paired liver biopsies. HBV-DNA was found by nested PCR in 1.9% of sera and 29.4% of liver tissue samples. The authors found no significant differences in mean serum aminotransferase values, baseline HCV viral load, HCV genotypes, or grading and staging in patients with or without HBV-DNA. Hui et al[29] retrospectively compared fibrosis progression and progression to severe fibrosis (fibrosis stage 3 or 4) in 74 HCV patients with at least two consecutive biopsies, and found occult HBV infection in 31 (41.9%). Patients with occult HBV co-infection did not progress more than patients without occult HBV infection. Kannangai et al[30] reported liver flares that were associated with serum HBV-DNA detection in a small group of patients with OBI and hepatitis C; the authors proposed that flares might be the pathogenetic mechanism underlying liver disease progression in patients with OBI and chronic hepatitis C[31]. By contrast, no effect on liver biochemistry was observed in other studies[32,33]. In summary, results of the combined effect of OBI and chronic hepatitis C on liver disease progression have yielded controversial results and no firm conclusion can be reached on this issue.

EFFECT OF OBI ON THE RISK FOR DEVELOPMENT OF HCC IN CHRONIC HEPATITIS C

Pollicino et al[34] found a significant association between OBI and HCC, and provided persuasive evidence that OBI maintains several of the oncogenic mechanisms of HBV such as the capacity to be integrated in the host’s genome and production of transforming proteins. Therefore, it is conceivable that OBI might increase the risk for developing HCC in patients with chronic hepatitis C in the same way as HBV infection does. Adachi et al[35] found that positive HBeAb, which indicates a previous HBV infection, but not positive HBV-DNA patients, was associated with an increased risk for developing HCC. Independent risk factors for development of HCC were male gender, α-fetoprotein ≥ 20 ng/mL, serum ALT ≥ 80 IU/L and the presence of anti-HBc. Likewise, Ikeda et al[36] prospec-
tively studied a large multicenter cohort of patients with chronic HCV infection and occult HBV infection (negative results for HBsAg and HBV-DNA but positive for anti-HBc on serologic testing). Patients with HCV-related cirrhosis and positive anti-HBc were at higher risk for HCC. Anti-HBc positivity was associated with increased risk for HCC, even in patients with a prior virological response to interferon therapy. Shetty et al.[31] prospectively examined the rate of HCC in 44 explanted livers from patients with HCV-associated cirrhosis and found that those patients with occult HBV infection had a significantly higher rate of explant-proven HCC (59%) compared to patients without OBI (36%); OR: 3.1 (2.1-5.4). In another large prospective study, Matsuoka et al.[30] investigated the influence of occult HBV infection on the histopathological features and clinical outcomes of 468 HBsAg-negative patients with chronic hepatitis C. These authors determined the HBV-DNA in serum and the hepatitis B core (HBc) particles in hepatocytes by immunohistochemistry and electron microscopy. The authors found a significant increase in the degree of inflammatory cell infiltration, higher irregular regeneration of hepatocytes and a higher probability of developing HCC in patients with OBI. Tamori et al.[34] found that patients with chronic hepatitis C who achieved sustained viremia and developed HCC had a higher rate of OBI than a control group of 50 patients with chronic hepatitis C without OBI. Miura et al.[33] found that occult HBV infection, high ALT levels (≥ 80 IU/L) and the staging of liver fibrosis after interferon (IFN) therapy were important independent factors affecting the appearance of HCC. By contrast, Toyoda et al.[37] found that circulating low-level HBV does not appear to play an important role in hepatocarcinogenesis in HBsAg-negative HCC. Overall, these results suggest that OBI may increase the likelihood of developing HCC in patients with chronic hepatitis C.

Table 1 Studies assessing the effect of occult hepatitis B infection on liver histology, clinical outcomes and effect on the sustained virological response rate in patients with chronic hepatitis C

Author and references	Type of study	Population of HCV infected	OBI	Method of HBV-DNA detection	Geographic area	Effect on histology and/or clinical outcomes	Effect on CHC SVR
Cacciola et al.[2]	Cross-sectional	n = 200	33.0%	Nested PCR	Italy	Increased cirrhosis	Less sustained virological response rate
Sagnelli et al.[7]	Cross-sectional	n = 89	41.6%	PCR	Italy	No effect on histology	Not reported
Chen et al.[8]	Cross-sectional	n = 126	4.8%	bDNA assay	Taiwan	No effect on histology	Not reported
Mrani et al.[9]	Cross-sectional	n = 203	23.0%	Real-time PCR	France	Increased proportion of patients with inflammatory activity and liver fibrosis	Less sustained virological response rate
Adachi et al.[10]	Longitudinal	n = 123	11.4%	Real-time PCR	Japan	Increased risk of HCC in patients with HBcAb (+) but not in patients with DNA-+HBV	Not reported
Fabris et al.[11]	Cross-sectional	n = 51	1.9% of HBV-DNA in sera and 29.4% in liver	Nested PCR	Italy	No effect on aminotransferases, HCV-RNA titre or liver histology	No effect on sustained virological response
Hui et al.[12]	Retrospective	n = 74	41.9%	Real-time PCR	USA	No effect on fibrosis progression	Not reported
Kannangai et al.[13]	Cross-sectional	n = 15	12% IgM HBc	Real-time PCR	USA	Increased proportion of flares in patients with OBI	Not reported
Shetty et al.[14]	Prospective	n = 50	50% in explant livers and 29.4% in serum	Real-time PCR	USA	Increased prevalence of HCC	Not reported
Ikeda et al.[15]	Multicenter prospective-observational	n = 872 F-U 846	46.3% HBcAb (+)	DNA probe assay	Japan	Increased risk of HCC in HBcAb (+)	Less sustained virological response rate
Matsuoka et al.[16]	Prospective	n = 468	43.6% in serum	Nested-PCR	Japan	Increased inflammation and increased risk of HCC	Not reported
Tamori et al.[17]	Retrospective	n = 16 and a control group; n = 50	50% in liver	Nested-PCR in liver	Japan	Increased rate of OBI in chronic hepatitis C patients with SVR who subsequently developed HCC	Not reported
Hasegawa et al.[18]	Retrospective	n = 140	7.9%	Real-time PCR	Japan	No effect on HCC risk	No effect on sustained virological response
Levast et al.[19]	Retrospective	n = 140	0% in sera and 4.4% in liver tissue	Real-time PCR	France	No effect on histology	No effect on sustained virological response

OBI: Occult hepatitis B infection; HBV: Hepatitis B virus; HCV: Hepatitis C virus; PCR: Polymerase chain reaction; SVR: Sustained virological response; CHC: Chronic hepatitis C; HCC: Hepatocellular carcinoma; F-U: Follow up.
DOES OCCULT HBV INFECTION IMPAIR SUSTAINED ANTIVIRAL RESPONSE RATE IN CHRONIC HEPATITIS C INFECTED PATIENTS?

Cacciola et al. found that the sustained virological response (SVR) rate to alfa IFN monotherapy was lower in patients with chronic hepatitis C and OBI. By contrast, Fabris et al. studied twenty-five patients who were treated with alfa IFN and ribavirin and followed for at least 18 mo; there was no significant difference in the SVR among patients with and without OBI. Mrani et al. reported that sustained response to IFN and Ribavirin was achieved in 11 (28%) of 40 HBV-DNA positive cases with chronic hepatitis C, compared with 65 (45%) of the 144 HBV-DNA negative cases (P < 0.05). Hasegawa et al. analyzed 140 HCV patients without HBSAg and found that 7.9% of the cohort patients were positive for serum HBV-DNA; 4 of these 11 patients achieved SVR with IFN compared with 39 of 129 without HBV-DNA (NS). However this small group of patients precluded drawing firm conclusions regarding the SVR. Levast et al. retrospectively studied a cohort of 140 HCV patients in France and found no effect on the SVR. Overall, these results do not support the concept that OBI impairs SVR in patients with chronic hepatitis C. Table 1 summarizes the main results analyzing the effect of OBI on liver damage, on clinical outcomes, risk of developing HCC and on response to antiviral treatment in patients with chronic hepatitis C.

CONCLUSION

Prospective studies using standardized laboratory techniques and well-designed large prospective studies with homogeneous cohorts and uniform selection criteria of patients are needed to elucidate the effect of OBI on individuals with chronic hepatitis C. Currently available data do not support a conclusive role of OBI in accelerating liver disease progression in patients with chronic hepatitis C or a potential negative effect of OBI on the SVR in patients with chronic hepatitis C. However, populations studied were small and heterogeneous and most of them included patients prior to the current standard of treatment, i.e. peginterferon-alpha plus ribavirin. By contrast, most studies including those with a longitudinal design that incorporated large cohorts strongly suggest that the risk of HCC is increased in OBI/HCV co-infection.

REFERENCES

1 Raimondo G, Pollicino T, Cacciola I, Squadrato G. Occult hepatitis B virus infection. J Hepatol 2007; 46: 160-170
2 Cacciola I, Pollicino T, Squadrato G, Cerenza G, Orlando ME, Raimondo G. Occult hepatitis B virus infection in patients with chronic hepatitis C liver disease. N Engl J Med 1999; 341: 22-26
3 Chemin I, Trépo C. Clinical impact of occult HBV infections.
4 J Clin Virol 2005; 34 Suppl 1: S15-S21
5 Torbenson M, Thomas DL. Occult hepatitis B. Lancet Infect Dis 2002; 2: 479-486
6 Hu KQ. Occult hepatitis B virus infection and its clinical implications. J Viral Hepat 2002; 9: 243-257
7 Donato F, Boffetta P, Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer 1998; 75: 347-354
8 Sagnelli E, Imparato M, Coppola N, Papisia R, Sagnelli C, Messina V, Flai G, Stanzione M, Bruno M, Moggio G, Caprio N, Pasquale G, Del Vecchio Blanco C. Diagnosis and clinical impact of occult hepatitis B infection in patients with biopsy proven chronic hepatitis C: a multicenter study. J Med Virol 2008; 80: 1547-1553
9 Anbazhagan GKN, Krishnamoorthyst, Thiayagarajan T. Seroprevalence of HCV and its co-infection with HBV and HIV among liver disease patients of South Tamil Nadu. World J Hepatol 2010; 2: 42-48
10 Chen LW, Chien RN, Yen CL, Chang JJ, Liu CJ, Lin CL. Therapeutic effects of pegylated interferon plus ribavirin in chronic hepatitis C patients with occult hepatitis B virus infection. J Gastroenterol Hepatol 2010; 25: 259-263
11 Mrani S, Chemin I, Menouar K, Guillaud O, Pradat P, Borghi G, Traubaud MA, Chevallier P, Chevallier M, Zoulim F, Trépo C. Occult HBV infection may represent a major risk factor of non-response to antiviral therapy of chronic hepatitis C. J Med Virol 2007; 79: 1075-1081
12 Adachi S, Shibuya A, Miura Y, Takeuchi A, Nakazawa T, Saigenji K. Impact of occult hepatitis B virus infection and primary hepatitis B virus infection on development of hepatocellular carcinoma in patients with liver cirrhosis due to hepatitis C virus. Scand J Gastroenterol 2008; 43: 849-856
13 Fabris P, Brown D, Tosetti G, Bozzola L, Giordani MT, Bevilacqua P, De Lalla F, Webster GJ, Dusheiko G. Occult hepatitis B virus infection does not affect liver histology or response to therapy with interferon alpha and ribavirin in intravenous drug users with chronic hepatitis C. J Clin Virol 2004; 29: 160-166
14 Shih CM, Lo SJ, Miyamura T, Chen SY, Lee YH. Suppression of hepatitis B virus expression and replication by hepatitis C virus core protein in HuH-7 cells. J Virol 1993; 67: 5823-5832
15 Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR, Lee YH. Mechanisms for inhibition of hepatitis B virus gene expression and replication by hepatitis C virus core protein. J Biol Chem 2003; 278: 5946-5957
16 Schüttler CG, Fiedler N, Schmidt K, Repp R, Gerlich WH, Schaefer S. Suppression of hepatitis B virus enhancer 1 and 2 by hepatitis C virus core protein. J Hepatol 2002; 37: 855-862
17 Eyre NS, Phillips RJ, Bowden S, Yip E, Dewar B, Locarnini SA, Beard MR. Hepatitis B virus and hepatitis C virus interaction in Huh-7 cells. J Hepatol 2009; 51: 446-457
18 Bellecave P, Gouttenoire J, Gaijer M, Brass V, Koutsoudakakis G, Blum HE, Bartenschlager R, Nassal M, Moradpour D. Hepatitis B and C virus coinfection: a novel model system reveals the absence of direct viral interference. Hepatology 2009; 50: 46-55
19 Jardi R, Rodriguez F, Buti M, Costa X, Cotrina M, Galimany R, Esteban R, Guardia J. Role of hepatitis B, C, and D viruses in dual and triple infection: influence of viral genotypes and hepatitis B precore and basal core promoter mutations on viral replicative interference. Hepatology 2001; 34: 404-410
20 Kazemi-Shirazi L, Petermann D, Müller C. Hepatitis B virus DNA in sera and liver tissue of HBsAg negative patients with chronic hepatitis C. J Hepatol 2000; 33: 785-790
21 Alberti A, Pontisso P, Chemello L, Fattovich G, Benvegnù L, Belussi F, De Mitri MS. The interaction between hepatitis B virus and hepatitis C virus in acute and chronic liver disease. J Hepatol 1995; 22: 38-41
22 Wu JC, Chen CL, Hou MC, Chen TZ, Lee SD, Lo KJ. Multiple
viral infection as the most common cause of fulminant and subfulminant viral hepatitis in an area endemic for hepatitis B: application and limitations of the polymerase chain reaction. *Hepatology* 1994; 19: 836-840

22 Chu CM, Sheen IS, Liaw YF. The role of hepatitis C virus in fulminant viral hepatitis in an area with endemic hepatitis A and B. *Gastroenterology* 1994; 107: 189-195

23 Chu CM, Yeh CT, Liaw YF. Fulminant hepatic failure in acute hepatitis C: increased risk in chronic carriers of hepatitis B virus. *Gut* 2004; 45: 613-617

24 Liaw YF, Chen YC, Sheen IS, Chien RN, Yeh CT, Chu CM. Impact of acute hepatitis C virus superinfection in patients with chronic hepatitis B virus infection. *Gastroenterology* 2004; 126: 1024-1029

25 Hui CK, Lau E, Wu H, Monto A, Kim M, Satoh T, Lai CT, Lau GK, Wright TL. Fibrosis progression in chronic hepatitis C patients with occult hepatitis B co-infection. *J Clin Virol* 2006; 35: 185-192

26 Kannangai R, Vivekanandan P, Netski D, Mehta S, Kirk GD, Thomas DL, Torbenson M. Liver enzyme flares and occult hepatitis B in persons with chronic hepatitis C infection. *J Clin Virol* 2007; 39: 101-105

27 Nirei K, Kaneko M, Moriyama M, Arakawa Y. The clinical features of chronic hepatitis C are not affected by the coexistence of hepatitis B virus DNA in patients negative for hepatitis B surface antigen. *Intervironology* 2000; 43: 95-101

28 Matsuoka S, Nirei K, Tamura A, Nakamura H, Matsumura H, Oshiro T, Arakawa Y, Yamagami H, Tanaka N, Moriyama M. Influence of occult hepatitis B virus coinfection on the incidence of fibrosis and hepatocellular carcinoma in chronic hepatitis C. *Intervironology* 2008; 51: 352-361

29 Pollicino T, Squadrito G, Cerenza G, Cacciola L, Raffa G, Craxi A, Farinati F, Missale G, Smedile A, Tiribelli C, Villa E, Raimondo G. Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. *Gastroenterology* 2004; 126: 102-110

30 Ikeda K, Marusawa H, Osaki Y, Nakamura T, Kitajima N, Yamashita Y, Kudo M, Sato T, Chiba T. Antibody to hepatitis B core antigen and risk for hepatitis C-related hepatocellular carcinoma: a prospective study. *Ann Intern Med* 2007; 146: 649-656

31 Shetty K, Hussain M, Nei L, Reddy KR, Lok AS. Prevalence and significance of occult hepatitis B in a liver transplant population with chronic hepatitis C. *Liver Transpl* 2008; 14: 534-540

32 Tamori A, Hayashi T, Shinzaki M, Kobayashi S, Iwai S, Enomoto M, Morikawa H, Sakaguchi H, Shiomi S, Takeamura S, Kubo S, Kawada N. Frequent detection of hepatitis B virus DNA in hepatocellular carcinoma of patients with sustained virologic response for hepatitis C virus. *J Med Virol* 2009; 81: 1009-1014

33 Miura Y, Shibuya A, Adachi S, Takeuchi A, Tsuchihashi T, Nakazawa T, Saigenji K. Occult hepatitis B virus infection as a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C in whom viral eradication fails. *Hepatol Res* 2008; 38: 546-556

34 Toyoda H, Kumada T, Kiriyama S, Sone Y, Tanikawa M, Hisanaga Y, Kanamori A. Prevalence of low-level hepatitis B viremia in patients with HBV surface antigen-negative hepatocellular carcinoma with and without hepatitis C virus infection in Japan: analysis by COBAS TaqMan real-time PCR. *Intervironology* 2007; 50: 241-244

35 Hasegawa I, Orito E, Tanaka Y, Hirashima N, Sakakibara K, Sakurai M, Suzuki S, Sugauchi F, Ohno T, Ueda R, Mizokami M. Impact of occult hepatitis B virus infection on efficacy and prognosis of interferon-alpha therapy for patients with chronic hepatitis C. *Liver Int* 2005; 25: 247-253

36 Levast M, Larret S, Thelu MA, Nicod S, Plages A, Cheveau A, Zarski JP, Seigneurin JM, Morand P, Leroy V. Prevalence and impact of occult hepatitis B infection in chronic hepatitis C patients treated with pegylated interferon and ribavirin. *J Med Virol* 2010; 82: 747-754