A CONVEX SET WITH A RICH DIFFERENCE

O. ROCHE-NEWTON and A. WARREN

Institute for Algebra, Johannes Kepler Universität, Linz, Austria
E-mail: o.rochenewton@gmail.com

Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria
E-mail: audie.warren@oeaw.ac.at

(Received September 9, 2022; accepted September 26, 2022)

Abstract. We construct a convex set A with cardinality 2n and with the property that an element of the difference set A − A can be represented in n different ways. We also show that this construction is optimal by proving that for any convex set A, the maximum possible number of representations an element of A − A can have is ⌊|A|/2⌋.

1. Introduction

A finite set A ⊂ R is said to be convex if the consecutive differences are strictly increasing. That is, if we write A = {a1 < a2 < ⋯ < an}, A is convex if

\[a_i - a_{i-1} < a_{i+1} - a_i \]

holds for all 2 ≤ i ≤ n − 1. One can also use the equivalent formulation that a set A is convex if we can write A = f({1, 2, ⋯, n}) for some strictly convex function f. The convexity of f disrupts the additive structure of the pre-image \{1, 2, ⋯, n\}, and this leads us to expect that a convex set cannot have much additive structure.

This principle can be quantified in different ways, and one such way is to prove that the difference set

\[A - A := \{a - b : a, b \in A\} \]

*Corresponding author.
The authors were supported by the Austrian Science Fund FWF Project P 34180.
Key words and phrases: arithmetic combinatorics, Sidon, construction.
Mathematics Subject Classification: 11B30, 11B13.

0236-5294/$20.00 © 2022 Akadémiiai Kiadó, Budapest, Hungary
is large. The current state of the art for this problem is a result of Schoen and Shkredov [6], proving that the bound
\[|A - A| \gg |A|^{8/5 - o(1)} \]
holds for any convex set \(A \).

Another approach is to consider the additive energy
\[E(A) := \left| \{(a, b, c, d) \in A^4 : a - b = c - d\} \right|, \]
which can also be expressed as
\[E(A) = \sum_x r^2_{A-A} \]
where \(r_{A-A}(x) := \left| \{(a, b) \in A \times A : a - b = x\} \right| \). The bound
\[E(A) \ll |A|^{5/2} \tag{1} \]
was proven using incidence theory by Konyagin [3] and using elementary methods by Garaev [2]. See also [4] for an alternative presentation of a proof of (1). A further improvement was later given by Shkredov [7], using additional higher energy tools from additive combinatorics.

One might even expect that a qualitatively stronger statement than (1) holds; namely that \(r_{A-A}(x) \) is guaranteed to be small for all \(x \neq 0 \). Indeed, if one knew, for instance, that \(r_{A-A}(x) \leq |A|^{1-c} \) holds for all \(x \neq 0 \), this immediately implies the non-trivial bound \(E(A) \ll |A|^{3-c} \), which in turn implies the non-trivial bound \(|A - A| \gg |A|^{1+c} \).

However, a construction of Schoen [5] shows that such a uniform upper bound for the representation function \(r_{A-A}(x) \) is not possible. Schoen constructed a convex set with \(n \) elements and some \(x \neq 0 \) with \(r_{A-A}(x) \geq n/4 \).

The main purpose of this note is to give a construction of a convex set with a rich difference which improves the construction of Schoen. We prove the following result.

Theorem 1. For every \(m \in \mathbb{N} \), there exists a convex set \(A \subseteq \mathbb{R} \) of size \(2m \) and a non-zero element \(d \in A - A \) such that \(r_{A-A}(d) \geq m \).

We also show that this construction is optimal, proving that, for any convex set with cardinality \(n \) and any \(d \neq 0 \),
\[r_{A-A}(d) \leq \left\lfloor \frac{n}{2} \right\rfloor. \]

\[^1 \] Throughout this note, the notation \(X \gg Y \) and \(Y \ll X \), are equivalent and mean that \(X \geq cY \) for some absolute constant \(c > 0 \).

Acta Mathematica Hungarica 168, 2022
2. The construction

Proof of Theorem 1. We give a concrete construction of the set

\[A = \{a_1 < a_2 < \cdots < a_{2m}\}, \]

which is made up of two halves. The set \(A \) begins with 0, and then has gaps \(1 + (i-1)\delta \), for some very small \(\delta > 0 \) which will be specified later. The first half of \(A \) is filled like this. That is, for \(1 \leq k \leq m+1 \), we define

\[a_k := (k-1) + \delta \frac{(k-2)(k-1)}{2}, \]

and so the first \(m+1 \) elements of \(A \) are the elements of the set

\[A_1 := \{0, 1, 2 + \delta, 3 + 3\delta, \ldots, m + \delta \frac{m(m-1)}{2}\}. \]

Fix

\[d := m + \delta \frac{m(m-1)}{2} = a_{m+1}. \]

The rest of \(A \) is defined iteratively. For \(1 \leq i \leq m-1 \), we set

\[a_{m+1+i} := a_{1+2i} + d. \]

This immediately gives rise to the system of equations

\[d = a_{m+1} - a_1 = a_{m+2} - a_3 = \cdots = a_{2m} - a_{2m-1}. \]

We therefore have \(r_{A-A}(d) \geq m \).

It remains to check that this set is convex. Note that the first part of \(A \), namely \(A_1 = \{a_1, \ldots, a_{m+1}\} \), is convex, since the consecutive difference increase by \(\delta \) at each step.

We will prove by induction on \(i \) that the set

\[\{a_1, a_2, \ldots, a_{m+2+i}\} \]

is convex for \(0 \leq i \leq m-2 \).

We first check the base case \(i = 0 \). We need to verify that the difference \(a_{m+2} - a_{m+1} \) is sufficiently large, which will give a condition on \(\delta \). We must have

\[a_{m+2} - a_{m+1} > a_{m+1} - a_m, \]

which upon plugging in the definitions yields

\[2 + \delta > 1 + \frac{\delta m(m-1)}{2} - \frac{\delta(m-2)(m-1)}{2}. \]

After simplification, this gives the condition \(\delta < \frac{1}{m-2} \).
Now let $1 \leq i \leq m - 2$. We must verify that
\[\{a_1, a_2, \ldots, a_{m+2+i}\} \]
is convex, given the induction hypothesis that $\{a_1, a_2, \ldots, a_{m+1+i}\}$ is convex.
All that remains is to check that
\[a_{m+2+i} - a_{m+1+i} > a_{m+1+i} - a_{m+i}. \]
We use equations (2) to rewrite each side, as
\begin{align*}
a_{m+2+i} - a_{m+1+i} &= a_{1+2(i+1)} - a_{1+2i}, \\
a_{m+1+i} - a_{m+i} &= a_{1+2i} - a_{1+2(i-1)}.
\end{align*}
Note that, since the differences on the right hand side above are then consecutive differences of length two within a convex set, we have
\begin{align*}
a_{m+2+i} - a_{m+1+i} &= a_{1+2(i+1)} - a_{1+2i} \\
&> a_{1+2i} - a_{1+2(i-1)} = a_{m+1+i} - a_{m+i}
\end{align*}
as needed. Here we used the inductive hypothesis that $\{a_1, a_2, \ldots, a_{m+1+i}\}$ is convex as well as the fact that $1 + 2(i + 1) \leq m + 1 + i$. The latter inequality follows from the condition that $i \leq m - 2$. \(\square\)

Note that by taking δ to be a sufficiently small rational number, and dilating the set A through by common denominators, we can find $A \subseteq \mathbb{Z}$ satisfying Theorem 1.

3. A matching upper bound for the representation function

The next result shows that the construction of Theorem 1 is optimal.

Theorem 2. For a convex set $A \subset \mathbb{R}$ and any $d \in \mathbb{R} \setminus \{0\}$,
\[r_{A-A}(d) \leq \left\lfloor \frac{|A|}{2} \right\rfloor. \]

Proof. Write the elements of A in increasing order so that $A = \{a_1 < a_2 < \cdots < a_n\}$. Suppose that d can be represented in t different ways as an element of $A - A$. We can write
\begin{equation}
\begin{align*}
d &= a_{j_1+k_1} - a_{j_1} = a_{j_2+k_2} - a_{j_2} \cdots = a_{j_t+k_t} - a_{j_t},
\end{align*}
\end{equation}
such that the k indices satisfy
\begin{equation}
\begin{align*}
k_1 > k_2 > \cdots > k_t.
\end{align*}
\end{equation}

Acta Mathematica Hungarica 168, 2022
Indeed, because A is convex, we cannot have two of the k indices repeating in the list (3). This follows from the fact that, for fixed k, the sequence

\[(a_{j+k} - a_j)_{j \in \mathbb{N}}\]

is strictly increasing. Note also that, for fixed j, the sequence

\[(a_{j+k} - a_j)_{k \in \mathbb{N}}\]

is strictly increasing. This follows immediately from the fact that the a_i are increasing.

Claim 1. For all $1 \leq i \leq t-1$, $j_{i+1} \geq j_i + 2$.

Proof. Suppose for a contradiction that $j_{i+1} \leq j_i + 1$. We also have $k_{i+1} \leq k_i - 1$, and so $j_{i+1} + k_{i+1} \leq j_i + k_i$. Therefore $a_{j_{i+1}+k_{i+1}} \leq a_{j_i+k_i}$. But then it follows from (3) that $0 \leq a_{j_i+k_i} - a_{j_{i+1}+k_{i+1}} = a_j - a_{j_i}$, and so

\[j_i \geq j_{i+1}.\]

However, since the sequences (5) and (6) are strictly increasing, it follows that

\[a_{j_{i+1}+k_{i+1}} - a_{j_{i+1}} \leq a_{j_i+k_i} - a_j < a_{j_i+k_i} - a_{j_i}.\]

This contradicts (3). \(\square\)

Applying the claim iteratively yields

\[j_t \geq j_{t-1} + 2 \geq j_{t-2} + 4 \geq \cdots \geq j_1 + 2(t-1) \geq 1 + 2(t-1) = 2t - 1.\]

We also know that $j_t + k_t \leq n$ and $k_t \geq 1$. Therefore, $j_t \leq n - 1$. Combining this with (8) gives $t \leq n/2$.

Finally, since t is an integer, this is equivalent to the bound $t \leq \lfloor n/2 \rfloor$. \(\square\)

4. Concluding remarks

Interestingly, the construction cannot be modified to give a rich sum in a convex set. For $x \in \mathbb{R}$, we use the notation

\[r_{A+A}(x) := \left| \{(a, b) \in A \times A : a + b = x\} \right|.\]

In sharp contrast with Theorem 1, the bound

\[r_{A+A}(C) \ll |A|^{2/3}.\]

holds for any convex set A and $C \in \mathbb{R}$. The inequality (9) was also observed by Schoen [5], and can be proved using the Szemerédi-Trotter Theorem.
Another interesting direction is to determine how many k-rich representations can occur. A well-known application of the Szemerédi–Trotter Theorem (see for instance [4]) gives the bound

$$|\{d : r_{A-A}(d) \geq t\}| \ll \frac{n^3}{t^3}$$

for any convex set A with cardinality n. On the other hand, one can glue together n/t copies of the construction in Theorem 1 with t elements in order to obtain a convex set A with n elements and

$$|\{d : r_{A-A}(d) \geq t\}| \gg \frac{n}{t}.$$

There is a considerable gap between the upper and lower bounds of (10) and (11) respectively, although the bounds converge as t gets close to n.

Acknowledgements. We are grateful to Brandon Hanson, Misha Rudnev and Dmitrii Zhelezov for helpfully sharing their insights. We are particularly grateful to Ilya Shkredov for informing us about the reference [5].

References

[1] G. Elekes, M. Nathanson and I. Ruzsa, Convexity and sumsets, *J. Number Theory*, 83 (1999), 194–201.

[2] M. Z. Garaev, On lower bounds for the L_1-norm of some exponential sums, *Mat. Zametki*, 68 (2000), 842–850 (in Russian); translation in *Math. Notes*, 68 (2000), 713–720.

[3] S. V. Konyagin, An estimate for the L_1-norm of an exponential sums, in: *Theory of Approximations of Functions and Operators*, Abstracts of Papers of the International Conference, Dedicated to Stechkin’s 80th Anniversary (Ekaterinbourg, 2000), pp. 88–89 (in Russian).

[4] O. Raz, O. Roche-Newton and M. Sharir, Sets with few distinct distances do not have heavy lines, *Discrete Math.* 338 (2015), 1484–1492.

[5] T. Schoen, On convolutions of convex sets and related problems, *Canad. Math. Bull.*, 57 (2014), 877–883.

[6] T. Schoen and I. Shkredov, On sumsets of convex sets, *Combin. Probab. Comput.*, 20 (2011), 793–798.

[7] I. Shkredov, ‘Some new results on higher energies’, *Trans. Moscow Math. Soc.* 2013, 31–63.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.