Chondroblastoma of the Temporal Bone: A Case Series, Review, and Suggested Management Strategy

Luke B. Reid, M.B.B.S. (Hons), Dip.Surg.Anat.,1 David S. Wong, M.B.B.S.,2 and Bernard Lyons, F.R.A.C.S.2

ABSTRACT

Chondroblastoma of the temporal bone is a rare condition. Chondroblastomas account for less than 1% of primary bone tumors, and those involving the temporal bone represent a tiny fraction of these tumors with most arising from the knee, rib, and pelvis. We present a case series of two patients who presented with chondroblastomas of the temporal bone over a period of 8 years to the St. Vincent’s Hospital in Melbourne, Victoria, Australia. In particular, we outline the presenting complaint, diagnostic imaging undertaken, and the importance of preoperative histopathology in coming to the diagnosis and subsequent resection undertaken. A review of the current literature is presented with a suggested management strategy for these tumors.

KEYWORDS: Chondroblastoma, temporal bone, multidisciplinary, team, management

CASE REPORTS

Case 1
A 27-year-old woman with no previous medical history presented with several weeks’ history of tinnitus and decreased hearing in the right ear. Physical examination revealed an external auditory canal mass as well as a slight swelling over the right squamous temporal bone region. There were no cranial nerve abnormalities. No formal audiovestibular testing was performed preoperatively.

The computed tomography (CT) and magnetic resonance imaging (MRI) scans demonstrated an aggressive looking destructive mass involving the right petrous temporal bone and temporomandibular joint, centered at the junction between the squamous and petrous temporal bones (Fig. 1A–C). A positron emission tomography (PET) scan revealed the lesion to be intensely metabolically active, in keeping with a malignancy. There was no evidence of metastatic disease on the CT brain/chest/abdomen/pelvis. Based on the biopsy result of a giant cell-rich lesion with pericellular calcification in keeping with a chondroblastoma, the patient underwent a partial tem...
temporal bone resection, parotidectomy, and mastoid meato-plasty with neurosurgical resection of the middle cranial fossa component. The tumor appeared to be entirely extradural. Of note, the facial nerve was dehiscent in the anterior epitympanum but not involved with tumor. The tumor was dissected free from this area. The patient made a good postoperative recovery.

A complete right facial nerve palsy (House-Brackmann equivalent 6 [HBe6]) evolved while an inpatient (immediately postoperatively the patient had an HBe2). This complete palsy was present on discharge, but subsequently completely resolved 3 months postoperatively. Definitive histopathology on the resected specimen confirmed a chondroblastoma. Review at 18 months showed no evidence of tumor recurrence and normal facial nerve function.

Case 2
A 59-year-old woman with a history of type two diabetes mellitus complained of a right pre-auricular swelling that had slowly grown in size over the previous few months. This was associated with localized swelling in the right external auditory meatus, a right-sided facial weakness (HBe2), and mild hearing loss. No formal audiovestibular testing was performed preoperatively; however, free field whisper testing and tuning forks showed only a very small amount of conductive deafness.

The CT and MRI scans showed a lobulated mass in the subcutaneous tissues immediately lateral to the temporomandibular joint, involving the joint and partially encasing the head of the mandible. There was further infiltration into the right external ear canal with a larger soft tissue component in the dorsal aspect of the right zygomatic region (Fig. 2A, B). The bone scan highlighted scintigraphic uptake within the anteroinferior aspect of the base of the right petrous temporal bone (Fig. 3). A biopsy was consistent with a giant cell tumor of the right temporal bone.

The patient underwent a right infratemporal fossa resection of tumor with partial parotidectomy and temporalis muscle rotation flap and reconstruction of the
right ear canal. The superior division of the facial nerve was found to be associated with the tumor. These branches were dissected free of the tumor and reflected anteriorly. The facial nerve trunk was intact and the inferior division was not involved.

Postoperatively the patient made a good recovery and there was no facial nerve palsy present on discharge. The tumor diagnosis was revised to chondroblastoma on definitive histopathology. Review at 7 years showed no evidence of tumor recurrence.

DISCUSSION

Chondroblastoma was first described in 1931 by Codman who originally described an “epiphyseal chondromatous giant cell tumor of the proximal humerus,” with the diagnosis corrected to chondroblastoma of bone by Jaffe and Lichtenstein in 1942.3

The following terms were used in the keywords search tool to do an Ovid Medline literature search with the date parameter 1950 to present:

- Chondroblastoma + skull base
- Chondroblastoma + temporal bone
- Chondroblastoma + diagnosis + temporal bone
- Chondroblastoma + temporal bone + skull base

Only English language journal articles or those translated into English were reviewed. These search strings plus review of the reference lists in the returned articles yielded 41 original articles reporting on a total of 79 cases of chondroblastoma of the temporal bone. Including this current case series, there are total of 81 reported cases worldwide of chondroblastoma of the temporal bone in the English Literature. Table 1 details a summary of those cases presented in the literature. A review of these 81 cases was performed, and an analysis was performed when complete datasets were available.

Of the 73 patients with complete datasets there were 33 females and 40 males affected, giving a slight male predilection with a 1:1.2 female to male ratio.

Average age at presentation for females was 41 years (range, 3 to 85 years, standard deviation of 15.4 years; n = 33) with that for males 41 years (range, 8 to 70 years, standard deviation 15 years; n = 40). There was no right to left predilection (right = 30/left = 36/unknown = 15)

There was considerable variation in the presenting symptoms of chondroblastoma of the temporal bone. Table 2 lists the range of presenting symptoms of chondroblastoma of the temporal bone. The most common presenting symptoms are hearing loss (49% of reported cases), cranial nerve involvement (43.2%), facial swelling (22.2%), and otalgia (19.8%). A subgroup analysis was performed, but did not yield any useful
Article	Date Published	Age	Sex	Presenting Symptom	Side	Preop biopsy	Preop CT/MR	Operation	Radiotherapy	Chemotherapy	Follow-up (months)	Recurrence
Anim et al\(^1\)	1986	45	M	Facial swelling, otorrhea, hearing loss	Left	Yes	CT	Radical resection	No	No	12	No
Ben Salem et al\(^2\)	2002	31	F	Otolgia, hearing loss, TMJ pain	Right		CT, MR	Zygomatic extended middle fossa approach with resection of the involved squamous temporal bone and zygomatic arch	No	No	12	No
Bertoni et al\(^3\)	1987	53	M	?	?	?	?	?	?	?	?	?
56	M	Right	?	?	??	Curettage	?	No	108	No		
61	F	?	?	?	??	Curettage	?	No	?	?		
35	M	Left	Yes	?	??	Resection	No	No	12	No		
46	M	Blocked ear	Left	?	?	?		No	?	?		
63	M	Blocked ear	?	Yes	??	Curettage	No	No	28	No		
40	M	Trismus	?		??	Curettage	Yes	No	48	No		
39	F	TMJ pain	Left	?	??	Excision	No	No	17	No		
3	F	Otorrhea	?		??	Curettage	No	No	48	No		
70	F	Otolgia	Left	?	??	Curettage	No	No	?	?		
36	F	Trismus, hearing loss	Left	Yes	??	Curettage	No	No	48	No		
Bian et al\(^4\)	2005	38	M	Facial swelling, hearing loss	Left		CT, MR	Zygomatic extended middle fossa approach with resection of the involved squamous temporal bone and zygomatic arch	No	No	12	No
Blauuw et al\(^5\)	1988	16	M	Facial swelling	Right	Yes	CT	Intracapsular removal	Yes	No	6	Yes
Cabrera et al\(^6\)	2006	31	F	Facial swelling, otorrhea	Left	Yes	CT, MR	Excision	No	No	12	No
Cares et al\(^7\)	1971	30	F	Facial swelling, blocked ear	Left		Curettage	No	No	24	No	
Article	Date Published	Age	Sex	Presenting Symptom	Side	Preop biopsy	Preop CT/MR	Operation	Radiotherapy	Chemotherapy	Follow-up (months)	Recurrence
---------------------------------	----------------	-----	-----	-----------------------------	------	--------------	-------------	--	--------------	---------------	-------------------	------------
Dahlin and Ivins	1972	?	?		?	??	Subtotal resection	Yes	No	7	No	
Denko et al	1955	53	M	Facial swelling	Right	??	Subtotal resection	Yes	No	7	No	
Dran et al	2007	12	F	Hearing loss	Left	CT, MR	Initially subtemporal and subdural approach with intercapsular removal. Second procedure—translabyrinthine combined with subtemporal way	Yes	No	1.5	Yes	
Fares et al	1997	?	?		?	??	Subtotal resection	?	?	?	?	
Feely and Keohane	1984	42	F	Otalgia	Left	CT	Mastoidectomy with en bloc resection	No	No	36	No	
Flowers et al	1995	8	M	Facial swelling	Right	Yes	En bloc resection	No	No	?	?	
Gaudet et al	2004	28	F	Otalgia, hearing loss, blocked ear, TMJ pain	Right	Yes	En bloc resection	No	No	48	No	
Harner et al	1979	56	M	Hearing loss, blocked ear	Left	Yes	Mastoidectomy	Yes	No	35	No	
57	M	Yes	Mastoidectomy	Yes	No	94	No					
39	M	Yes	Mastoidectomy	Yes	No	48	No					
59	M	Yes	Mastoidectomy	Yes	No	?	?					
Hirth et al	1972	?	?		?	??	Subtotal resection	?	?	?	?	
Hong et al	1999	41	F	TMJ pain	Right	CT, MR	Curettage	Yes	Yes	27	No	
58	F	Yes	Mastoidectomy	Yes	No	37	No					
57	F	Yes	Mastoidectomy	Yes	No	27	Yes					
60	M	Yes	Mastoidectomy	Yes	No	37	No					
52	F	Yes	Mastoidectomy	Yes	No	29	No					
Horn et al	1980	39	F	Tinntus, hearing loss	Left	Yes	Mastoidectomy and mastoidectomy	No	No	12	No	
34	M	Yes	Mastoidectomy	Yes	No	12	No					
Ishikawa et al	2002	24	M	Facial swelling, trismus, TMJ pain	Right	CT, MR	Curettage	No	No	24	Yes	
Kobayashi et al	2001	60	F	Facial swelling, trismus, TMJ pain	Left	CT, MR	Curettage	No	No	18	No	

CHONDROBLASTOMA OF THE TEMPORAL BONE
Article	Date Published	Age	Sex	Presenting Symptom	Side	Preop biopsy	Preop CT/MR	Operation	Radiotherapy	Chemotherapy	Follow-up (months)	Recurrence
Koerbel et al28	2007	27	F	Headache, hearing loss	Right	??	?	?	?	No	?	?
Kurokawa et al7	2005	49	M	Right ?	Yes	No	No	No	No	No	84	No
		27	M	Tinnitus, hearing loss, TMJ pain	Right	??	?	?	?	No	196	No
		29	M	Hearing loss	Right	??	?	?	?	No	132	No
Kutz et al1	2007	39	F	Headache, otalgia	Left	Yes	CT, MR	Preauricular infratemporal approach with all involved tumor removed resulting in gross resection	No	No	48	No
		39	F	Hearing loss	Left	Yes	CT, MR	Initially underwent a mastoidectomy for presumed cholesterol granuloma. Subsequently underwent a transmastoid-subtemporal approach with R/O zygoma and supra-auricular temporal bone	No	No	36	No
		70	M	Tinnitus, hearing loss	Right	Yes	CT	Middle cranial fossa approach	No	No	216	No
		62	F	Otaigia, blocked ear	Left	Yes	CT, MR	Cranietomy with en bloc resection	No	No	6	No
Leong et al29	1994	23	M	Blocked ear	Left	Yes	CT	Cortical Mastoidectomy	No	No	11	No
		31	M	Otaigia, Tinnitus, otorhea, hearing loss	Left	Yes	CT, MR	Subtotal petrosectomy/en bloc resection	Yes	No	8	No
Mizumatsu et al30	2008	52	F	Otaigia	Right	Yes	CT, MR	Previous surgical resection	Yes	No	48	No
Article	Date Published	Age	Sex	Presenting Symptom	Side	Preop biopsy	Preop CT/MR	Operation	Radiotherapy	Chemotherapy	Follow-up (months)	Recurrence
--------------------------	----------------	-----	-----	--	------	--------------	-------------	---	--------------	--------------	-------------------	------------
Moon et al31	2008	22	F	Facial swelling, blocked ear	Left	CT, MR	Middle cranial fossa approach	No	No	34	No	
	48	F	Facial swelling, trismus, hearing loss, TMJ pain	Right	CT, MR	Mastoidectomy, parotidectomy and ITF approach type C	No	No	78	No		
Moothy et al22	2002	31	M	Otalgia, otorhea, hearing loss	Right	CT, MR	Lateral temporal bone resection	No	No	70	No	
Muntane et al33	1993	58	F	Headache, hearing loss	Right	CT, MR	Mastoidectomy	No	No	58	No	
Narita et al34	1992	34	F	Hearing loss	Left	CT, MR	En bloc resection	No	No	78	No	
Rodríguez, Paramás et al35	2006	31	M	Otalgia	Left	Yes	Craniofacial approach with complete removal	No	No	No	No	
Piepgras et al36	1972	26	M	Headache	Right	CT, En bloc resection	No	No	12	No		
Politi et al37	1991	53	M	Facial swelling	Left	Yes	Local excision and curettage	No	No	36	No	
Pontius et al38	2003	38	M	Facial swelling, otalgia, otorhea, hearing loss	Left	Yes	Craniofacial and mastoidectomy	No	No	12	No	
Selesnick et al6	1999	30	F	Otalgia, trismus, TMJ pain	Right	CT, MR	Temporal craniectomy with resection of the condyle of the mandible	No	No	36	No	
		38	M	Tinnitus, blocked ear	Right	CT, MR	Subtemporal craniectomy and dissection of the middle fossa floor	No	No	36	No	
Shimizu et al39	1997	30	M	Hearing loss	Left	CT, MR	Subtotal resection	No	No	No	No	
Sput et al40	1971	?	?	?	?	?	?	?	?	No	No	
Tanohata et al41	1986	55	F	Headache, otalgia, trismus, hearing loss	Left	CT, MR	En bloc resection	No	No	No	No	
Vandenberg and Coley42	1950	39	M	Hearing loss, trismus, hearing loss	Left	Yes	No	Yes	No	102	No	
Varvares et al43	1992	33	M	Headache, facial swelling, otalgia, hearing loss, TMJ pain	Right	CT, MR	En bloc resection	No	No	24	No	
Velizarov et al44	1971	?	?	?	?	?	?	?	?	No	No	
Watanabe et al45	1999	43	F	Hearing loss, blocked ear	Left	CT, MR	Mastoidectomy	No	No	48	No	

CHONDROBLASTOMA OF THE TEMPORAL BONE/REID ET AL

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
guide regarding a constellation of symptoms typical of this pathology.

The surgical resection of these tumors again showed great heterogeneity in surgical approach. Earlier reports advocated "curettage" for the removal of these tumors, whereas subsequent contemporary articles took a more aggressive approach. Such approaches included "wide local excision," "mastoidectomy with complete/en-bloc resection," "craniotomy with en-bloc resection," etc.

Fifteen patients received postoperative radiotherapy, who had had a variety of surgical approaches, with no consistent approach noted. Table 3 lists for those patients who received postoperative radiotherapy the surgical approach undertaken for resection of the chondroblastoma and the number of patients who were treated such. Only one patient received chemoradiotherapy who had undergone "curettage" as the primary procedure.

Average overall follow-up was 52 months with the average time to recurrence being 12.9 months. (Note: This was based on 5 of the 61 cases [8.2%] with follow-up data.) Table 4 details the cases of recurrence of chondroblastoma. All had undergone sub-total resection of their tumors and three of five had had postoperative radiotherapy.

Radiographic features of chondroblastoma in long bones are characterized by well-defined osteolytic lesions involving the epiphysis or secondary calcification centers. The diagnosis of chondroblastoma of the temporal bone is aided by imaging using the complementary modalities of CT and MRI. Plain skull X-ray is not helpful in the work-up. (Note: However, the typical findings are of a destructive lytic lesion of the temporal bone.) CT imaging typically shows an expansile intraosseous soft tissue mass with internal calcification and occasional enhancement with intravenous contrast. Often there is a lytic nature to its growth. Further, CT imaging aids in the surgical planning for definitive resection of the tumor as well as defines the underlying bony anatomy. Lastly, it alerts the surgeon to possible intracranial involvement necessitating neurosurgical opinion/involvement in any potential surgical removal.

MRI typically shows a hypo- to intermediate signal on T-1 imaging and high signal on T-2 depending on the chronicity of potential hemorrhages into the mass. The appearance is that of a heterogeneous mass on T-2 likely due to highly vascular fibrous tissue and intense cellularity. Postgadolinium enhancement on T-2 imaging there is heterogeneity with components of marked hyperintensity. Lastly, MRI better delineates than CT the extent of intracranial/other soft tissue involvement, importantly that of dura and brain.

The three key diagnostic histopathological findings are the presence of chondroblasts, osteoclastic-like giant cells, and chondromyxoid stroma surrounding neoplastic cells. Fine needle aspiration (FNA) smears are moderately to markedly cellular and composed of...
osteoclast-type giant cells and mononucleated round to polygonal cells occurring individually or in loose aggregates.9

Microscopically chondroblastomas are cellular tumors with sheets of mononuclear polyhedral cells admixed with giant cells.7 A distinctive microscopic finding is the presence of zones of lacy calcification; “chicken wire” calcification. These tumors express s-100 and vimentin and this s-100 expression differentiates it from a giant cell tumor.7 Fig. 4A–F with associated captions further illustrates the histopathological findings. (Fig. 4A–C is from Case 1 and Fig. 4D–F is from Case 2.)

SUGGESTED APPROACH

Due to the rarity of this tumor there was initially some doubt surrounding the definitive diagnosis. Preoperative imaging with both CT and MRI of the brain and petrous temporal bones with an open biopsy allowed a definitive or a reasonable differential diagnosis before surgery. Multidisciplinary expertise (particularly, confident histopathology input) via multidisciplinary clinics was and is vital in coming to definitive/reasonable diagnoses.

Of the 81 cases reported in the literature, 46 patients underwent a CT of the temporal bone and 35 underwent an MRI; all those undergoing MRI also underwent CT. (Note: 27 of the 81 cases had no mention of either preoperative imaging modality.) All cases after 1999, (31 in total) underwent a CT scan as part of their work-up. The same does not hold true for MRI, with reports up to 2007 not imaging their patients with this modality. It is our opinion that the contemporary work-up should include both CT and MRI of the primary site for reasons previously stated.

In the current review, 7 cases underwent FNA and 19 cases underwent open biopsy before definitive surgery and this allowed either a definitive or a reasonably certain diagnosis to be made before surgery. In our current series, the diagnosis of this relative low grade tumor preoperatively (using an open biopsy technique which we recommend) allowed the planning and execution of a more conservative surgical approach than would have been required for a malignant tumor, and thus less morbidity for the patient.

A work-up for metastatic disease, we believe, should be undertaken preoperatively. There is often no mention let alone a standard approach advocated regarding this part of the patient work-up in the current

Table 2 Presenting Symptoms of Chondroblastoma of the Temporal Bone

Symptom	Percentage of Patients
Hearing loss	49.4
Cranial nerve involvement	43.2
Facial swelling	22.2
Otalgia	19.8
Tinnitus	16.0
Temporomandibular joint pain	13.6
Blocked ear/aural fullness	14.8
Pain	12.3
Headache	8.6
Otorrhea	8.6
Trismus	4.9

Table 4 Details of Those Cases of Chondroblastoma in the Literature That Had Recurred

Initial Surgery	Radiotherapy	Time to Recurrence	Follow-Up Treatment
Craniotomy with attempted en bloc resection13	No	24	Further surgery—3 y follow-up post second surgery—no recurrence
Intracapsular removal12	Yes	6	Mx with curettage and RTx Follow-up 1 y postrecurrence—no abnormality detected
Excision46	No	6	Persistence
Curettage46	Yes	27	No
Initially subtemporal and subdural approach with intracapsular removal	Yes	1.5	Yes—at 1.5 mo; second procedure attended + RTx—disease-free 36 mo later

Table 3 Patients Treated with Postoperative Radiotherapy by Surgical Approach

Surgical Approach	Number of Patients
Curettage29,46	3
En bloc resection33	2
Excision46	1
Initially subtemporal and subdural approach with intracapsular removal	1
Second procedure—translabyrinthine combined with subtemporal way14	
Intracapsular removal12	1
Mastoidectomy23	2
No surgery39	1
Previous surgical resection16	1
Subtotal petrosectomy/en bloc resection25	1
Subtotal resection11	2
literature. Given that pelvic chondroblastoma tumors are known to metastatic to both lung and abdomen,\(^\text{10}\) (sometimes nondefinitive nature of the preoperative diagnosis) imaging should include, in our opinion, CT chest, abdomen, and pelvis. (Note: There are no cases of metastatic disease reported to date.)

Complete but conservative multispecialty surgical excision is the preferred therapeutic option and given that there have been no reported cases of metastatic disease, no adjuvant therapy is warranted.

In this review, heterogeneity of surgical approaches and resections was identified. As mentioned previously, given the low grade nature of this tumor we would advocate a complete but conservative multispecialty surgical resection. In our two cases, we employed either a partial temporal bone resection or an infratemporal fossa resection of tumor with both undergoing partial parotidectomy and facial nerve identification and preservation as part of the approach/resection. Other approaches have been advocated and if they too achieve complete resection of the tumor with a minimum of morbidity then they too can be pursued.

The option of radiotherapy has been described in the literature; however, this was reserved for recurrent
tumors.11 In this current review, the role of radiotherapy is not able to be clearly defined. There is no role for chemotherapy.

Recurrence of these tumors is a possibility, particularly with subtotal resection therefore, long-term follow-up is required. In our series (18 and 78 months postoperative, respectively) no recurrence has occurred.

Lastly, baseline formal audiovestibular function testing should be performed preoperatively in all cases, based on presenting complaint.

CONCLUSION

Chondroblastoma of the temporal bone is an exceedingly rare tumor with diagnosis based on detailed multimodality imaging techniques, biopsy, and multidisciplinary clinic case review. The tumor is best managed with complete surgical excision. The use of radiotherapy is likely best reserved for recurrent/persistent tumor and long-term follow-up for recurrence is required.

REFERENCES

1. Kutz JW Jr, Verma S, Tan HT, Lo WW, Slattery WH III, Friedman RA. Surgical management of skull base chondroblastoma. Laryngoscope 2007;117(5):848–853
2. Cotran R, Kumar V, Robbins S. Robbins: Pathological Basis of Disease. 5th ed. Pennsylvania: WB Saunders Company; 1994
3. Spahr J, Elzay RP, Kay S, Frable WJ. Chondroblastoma of the temporomandibular joint arising from articular cartilage: a previously unreported presentation of an uncommon neoplasm. Spahr JElzay RPFrable WJ. Oral Surg Oral Med Oral Path 1982;54(4):430–435
4. Flowers CH, Rodríguez J, Naseem M, Reyes MM, Verano AS. MR of benign chondroblastoma of the temporal bone. AJNR Am J Neuroradiol 1995;16(2):414–416
5. Dran G, Niezar E, Vandenbos F, Noel G, Paquis P, Lonjon M. Chondroblastoma of the apex portion of petrous bone. Childs Nerv Syst 2007;23(2):231–235
6. Selesnicks IH, Levine JM. Chondroblastoma of the temporal bone: consistent middle fossa involvement. Skull Base Surg 1999;9(4):301–305
7. Kurokawa R, Uchida K, Kawase T. Surgical treatment of temporal bone chondroblastoma. Surg Neurol 2005;63(3):265–268; discussion 268
8. Granados R, Martín-Hita A, Rodríguez-Barbero JM, Murillo N. Fine-needle aspiration cytology of chondroblastoma of soft parts: case report and differential diagnosis with other soft tissue tumors. Diagn Cytopathol 2003;28(2):76–81
9. Cabrera RA, Almeida M, Mendonça ME, Frable WJ. Diagnostic pitfalls in fine-needle aspiration cytology of temporomandibular chondroblastoma: report of two cases. Diagn Cytopathol 2006;34(6):424–429
10. Lin PP, Thenappan A, Deavers MT, Lewis VO, Yasko AW. Treatment and prognosis of chondroblastoma. Clin Orthop Relat Res 2005;438:103–109
11. Harner SG, Cody DT, Dahlin DC. Benign chondroblastoma of the temporal bone. Otolaryngol Head Neck Surg 1979;87(2):229–236
12. Anim JT, Baraka ME. Chondroblastoma of temporal bone: unusual histologic features. Ann Otol Rhinol Laryngol 1986;95(3 Pt 1):260–263
13. Ben Salem D, Allalou D, Dumousset E, et al. Chondroblastoma of the temporal bone associated with a persistent hypoglossal artery. Acta Neurochir (Wien) 2002;144(12):1315–1318
14. Bertoni F, Unni KK, Beabout JW, Harner SG, Dahlin DC. Chondroblastoma of the skull and facial bones. Am J Clin Pathol 1987;88(1):1–9
15. Bian LG, Sun QF, Zhao WG, Shen JK, Tirakotai W, Bertalanffy H. Temporal bone chondroblastoma: a review. Neuropathology 2005;25(2):159–164
16. Blauw G, Prick J, Versteeg C. Chondroblastoma of the temporal bone. Neurosurgery 1988;22(6 Pt 1):1102–1107
17. Cares HL, Terplan K. Chondroblastoma of the skull. Case report. J Neurosurg 1971;35(5):614–618
18. Dahlin DC, Ivins JC. Benign chondroblastoma. A study of 125 cases. Cancer 1972;30(2):401–413
19. Denko JV, Krauel LH. Benign chondroblastoma of bone; an unusual localization in temporal bone. AMA Arch Pathol 1955;59(6):710–711
20. Fares G, Aıη P, Bouccara D, Molas G, Gomulinski L, Sterkers O. [Chondroblastoma of the temporal bone. Apropos of a case]. Ann Otolaryngol Chir Cervicofac 1997;114(4):130–133
21. Feely M, Keohane C. Chondroblastoma of the temporal bone case report and literature review. Ann Otol Rhinol Laryngol 1992;101:764–769
22. Gaudet EL Jr, Nuss DW, Johnson DH Jr, Miranne LS Jr. Chondroblastoma of the temporal bone involving the temporomandibular joint, mandibular condyle, and middle cranial fossa: case report and review of the literature. Cranio 2004;22(2):160–168
23. Hirth R, Städter T, Piepgras U. [An intracranial chondroblastoma]. Arch Psychiatr Nervenkr 1972;216(4):359–369
24. Hong SM, Park YK, Ro JY. Chondroblastoma of the temporal bone: a clinicopathologic study of five cases. J Korean Med Sci 1999;14(5):559–564
25. Horn KL, Hankinson H, Nagel B, Erasmus M. Surgical management of chondroblastoma of the temporal bone. Otolaryngol Head Neck Surg 1990;102(3):264–269
26. Ishikawa E, Tsuboi K, Onizawa K, et al. Chondroblastoma of the temporal base with high mitotic activity. Neurol Med Chir (Tokyo) 2002;42(11):516–520
27. Kobayashi Y, Murakami R, Toba M, et al. Chondroblastoma of the temporal base: a clinicopathologic study of five cases. J Korean Med Sci 1999;14(5):559–564
28. Koerbel A, Loewenheim H, Beschorner R, et al. Surgical treatment and outcomes of temporal bone chondroblastoma. Eur Arch Otorhinolaryngol 2008;265:1447–1454
29. Leong HK, Chong PY, Sinniah R. Temporal bone chondroblastoma: big and small. J Laryngol Otol 1994;108(12):1115–1119
30. Mizumatsu S, Sakai K, Nishimura T, et al. [Gamma knife radiosurgery for temporal bone chondroblastoma: case report]. No Shinkei Geka 2008;36(11):1115–1119
31. Mizumatsu S, Sakai K, Nishimura T, et al. [Gamma knife radiosurgery for temporal bone chondroblastoma: case report]. No Shinkei Geka 2008;36(11):1115–1119
32. Moon IS, Kim J, Lee HK, Lee WS. Surgical treatment and outcomes of temporal bone chondroblastoma. Eur Arch Otorhinolaryngol 2008;265(12):1447–1454
33. Mouorthy RK, Daniel RT, Rajeshkhar V, Chacko G. Skull base chondroblastoma: a case report. Neurol India 2002;50(4):534–536
33. Muntané A, Valls C, Angeles de Miquel MA, Pons LC. Chondroblastoma of the temporal bone: CT and MR appearance. AJNR Am J Neuroradiol 1993;14(1):70–71
34. Narita Y, Morimoto T, Nishikawa R, et al. Chondroblastoma of the temporal bone—report of a case and a review of the literature of 54 cases. No To Shinkei 1992;44(2):143–148
35. Rodríguez Paramás A, Lendoiro Otero C, González García JA, Souviron Encabo R, Scola Yurrita B. Temporal bone chondroblastoma. A clinical case and literature review. Acta Otorrinolaringol Esp 2006;57(7):336–338
36. Piepgras U, Hirth R, Städtler F, Kammerer V. Chondroblastoma of the temporal bone, an unusual cause of increasing intracranial pressure. Neuroradiology 1972;4(1):25–29
37. Politi M, Consolo U, Panzieri G, Capelli P, Bonetti F. Chondroblastoma of the temporal bone. Case report. J Craniomaxillofac Surg 1991;19(7):319–322
38. Pontius A, Reder P, Ducic Y. Diagnostic pitfalls in fine needle aspiration cytology of temporomandibular chondroblastoma: report of two cases. Diagn Cytopathol 2006;34(6):424–429
39. Shimizu J, Kaito N, Akiba Y, et al. Chondroblastoma of the temporal bone: a case report. No Shinkei Geka 1997;25(6):555–559
40. Spjut HJ, Dorfmen HD, Fechner RE, Ackerman LV. Gamma Knife radiosurgery for temporal bone chondroblastoma: case report. No Shinkei Geka 2008;36(1):65–69
41. Tano K, Noda M, Katoh H, et al. Chondroblastoma of temporal bone. Neuroradiology 1986;28(4):367–370
42. Venkberg HJ, Coley BL. Chondroblastoma of the temporal bone: a case report. No Shinkei Geka 1950;25(6):555–559
43. Varvares MA, Cheney ML, Goodman ML, Ceisler E, Montgomery WW. Chondroblastoma of the temporal bone. Case report and literature review. Ann Otol Rhinol Laryngol 1992;101(9):763–769
44. Velizarov A, Loloa I, Hristov V. Rare localization of chondroblastoma. Nauchni Tr Vissh Med Inst Sofia 1971;50(2):39–46
45. Watanabe N, Yoshida K, Shigemi H, Kurono Y, Mogi G. Temporal bone chondroblastoma. Otolaryngol Head Neck Surg 1999;121(3):327–330
46. Hong SM, Park YK, Ro YJ. Primary tumors of the cranial bones, surgery. Gynecol Obstet (Paris) 1950;90:602–612