Metasurface waves in digital optics

Xiangang Luo

State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, People's Republic of China
E-mail: bg@ioe.ac.cn

Keywords: digital optics, digital meta-surface-waves, digital optical field, digital optical materials

Abstract
Digital optics is a new discipline that aims to replace traditional curved and bulky optical elements with flat and thin ones that can be intelligently designed by a computer and be compatible with the mature semiconductor fabrication industry. Metasurface-based digital optics is characterized by enhanced or multifunctional performances, a compact footprint, and most importantly the ability to break the limitations of conventional refractive, reflective and diffractive optics. The structural inclusions on the subwavelength scale can tremendously change the light fields and give rise to novel electromagnetic modes. In particular, the coupled evanescent fields within the subwavelength structures form a special kind of wave, termed a metasurface wave (M-wave), possessing many interesting properties. This article provides a short perspective of M-waves in digital optics, with particular emphasis on the representative applications in metalenses, photolithography, and optical phased array, etc. Finally, an outlook on the generalized diffraction limit and intelligent digital optics is presented.

1. Introduction

It is often stated that the 21st century is the century of optics. However, restricted by Fermat’s principle, refractive and reflective optics have to rely on curved surfaces to control light propagation [1]. With the development of microelectronics and computer technologies, some advances in the planarization of optical devices have occurred since the 1970s [2], including computer-generated holography, optical discs, diffractive optical elements, charge-coupled devices, liquid crystal displays and digital micromirror devices. These flat optical devices enable the digitalization of optics. Nevertheless, the pixel size of these devices is generally about tens of light wavelengths, leading to limited optical performances.

Recently, the emergence of the optical metasurface, a kind of digitally structured material composed of subwavelength-spaced thin elements, greatly advances the developments of ‘digital optics’ by downscaling the pixel sizes of the structural inclusions to the subwavelength scale, which enables us to overcome the bottlenecks of conventional optics (e.g. the Abbe–Rayleigh diffraction limit, classical refractive and reflective laws, as well as the limitations on absorption and radiation) [3]. Besides, metasurfaces enable planar optics or flat optics that can be easily accessed by the standard processes of the semiconductor industry, i.e. digital (binary) microlithography fabrication techniques [4]. Since the structural inclusions can implement independent phase, amplitude, and polarization modulation, enhanced, multifunctional or even totally new functionalities can be realized by designing digital meta-atoms and optimizing their layout [5–13]. These efforts push engineering optics into a new era: Engineering Optics 2.0 [3, 14, 15]. Related concepts such as ‘digital metamaterials’ in the optical band [16] and ‘coding metamaterials’ in the microwave and terahertz bands [17] have been proposed over the past few years.

Considering the rapid development of optical metasurfaces and flat optics, we envision that digital optics will gain more power in the future. In this perspective, we would like to focus on a special surface wave in digital optics: the metasurface wave (M-wave) [18–20]. In principle, M-waves may be simply defined as slow waves in metasurfaces, which can be considered as a generalization of surface waves [18–20]. In the optical band, one of the simplest M-waves is the coupled surface plasmon polariton (SPP) in a thin metallic slit [21] or nanofilm [22, 23]. Unlike SPPs, however, M-waves can be excited at lower frequency bands by using
Structured subwavelength metallic structures [18, 24]. M-waves also provide a microscopic view of the complex wave interactions in metasurfaces. Combining the catenary field distribution and dispersion model, one can obtain more accurate numerical results [18, 25, 26]. These unique properties allow M-waves to find widespread applications in digital optics.

2. Principle and applications of digital M-waves

2.1. Digital M-waves for gradient phase modulation

In the optical band, the M-wave was first observed in the extraordinary Young’s double slits interference (EYI) at the surface of the penetrated metallic film [21]. The period of the interference fringes through the thin metallic film was smaller than one-quarter of the incidence wavelength, half than the classical prediction of one-half. This EYI phenomenon fundamentally unveils the extremely short wavelength property of M-waves. In the far field, when the widths of double metallic slits are unequal, the original bright stripe appeared at the center of the interference pattern counter-intuitively became a dark stripe [27]. This exotic phenomenon indicates that M-waves transmitted through unequal metallic slits pick different phase shifts, which is fundamentally attributed to the width-independent propagation constant β. For a subwavelength slit width, β may be several times large than k_0. By changing the slit width w on the subwavelength scale, an arbitrary phase shift within the full range of 2π can be realized.

As shown in figure 1, an efficient method to construct a gradient metasurface is by arranging variable-width metallic slits in an array [28, 29]. When a continuous plane wave is projected on such a metasurface, it is discretized by the subwavelength-spaced slits as M-waves and each isolated component can be squeezed into the metallic slits. By engineering the widths of the slits, the phase shifts of the M-waves are quantized into several discrete values, forming a digital near field. When M-waves emanate from the metasurfaces, the digital near field restores to the continuous field in the far field. According to the Huygens’ principle, the output wavefront is fundamentally determined by the gradient phase of the digital near fields. It should be noted that one-dimensional (1D) metallic slits are polarization selective. Alternatively, rectangular or circular metallic holes should be adopted in polarization-independent optical metasurfaces [30–33].

Inspired by the unique properties of coupled SPPs in the optical band, it is highly desirable to obtain similar characteristics in the lower frequency band, e.g. microwave and terahertz bands. Instead of adopting the concept of spoof SPP [34], we found that when the thickness of the metallic layer decreases to an extent that is much smaller than the wavelength M-waves with rather large effective propagation constants would occur at the edges. The electric field within the metallic slit can be described by a hyperbolic cosine function due to the evanescent coupling between the two edges of the metallic slits [18], as shown in the inset of figure 1.
For ultrathin metallic layers, one may take them as effective impedance sheets [18, 26, 35]. According to the conformal transformation theory, the dispersion of the effective impedance follows a catenary of equal strength [25]. In conjunction with the generalized Fresnel’s equations [19], the complex transmittance and reflectance coefficient can be easily calculated. Considering a single layer of metallic slits, the metasurface is not sufficient to generate a considerable phase shift, so multi-layered metallic slits are usually utilized in practice [18, 24, 25, 36]. With the catenary dispersion theory, the design efficiency of digital M-waves can be greatly improved since time-consuming full-wave simulations and parameter sweeps can be avoided.

The digital M-waves with abrupt phase shift levels can be utilized to realize flat lenses, which have greatly reduced device thickness and minimized spherical aberration compared with their traditional counterparts [37], albeit that the chromatic and off-axis aberration still exists. Although some innovative methods have already been devoted to broadband achromatic metasurfaces [38–40], they still suffer from a low numerical aperture (NA, generally smaller than 0.2) or limited bandwidth. Considering that the digital M-waves supported by structured metallic metasurfaces possess large β and tunable dispersion, the above limitation can be alleviated to a certain extent. For instance, Li et al. proposed a high NA (\sim0.74) achromatic metalens and beam deflector (figures 2(a)–(d)) composed of gradient metallic slits, where the structural dispersions of M-waves are utilized to compensate for the chromatic dispersion in a broadband wavelength range of 1–2 μm [41].

By replacing 1D metallic slits with two-dimensional (2D) counterparts, polarization-independent devices are possible. With the help of a particle swarm optimization algorithm, a polarization-independent achromatic lens across the X band and Ku band has been reported [36] with focal shift deviation ratios less than 2%. The low profile and broadband achromatic performance may find promising applications in satellite communications. Similar achromatic metalenses have also been reported in the visible band [11, 42, 43].

Besides the chromatic aberration, the field-of-view (FOV) of a metalens is limited due to the off-axis aberration. In order to correct the off-axis aberration, metalens doublets were widely adopted, with a FOV beyond 50° [7, 44]. It was also found that a quadratic phase modulation could lead to wide-angle lenses with only a single metalens [45], owing to the perfect symmetry transformation from rotational symmetry to a transversal one. With an elaborately designed catenary ordered metasurface, the FOV was extended to $\pm 80^\circ$ in the visible band [45] and thus enabled a wide-angle Fourier lens [46]. Based on the same principle, a wide-angle metalens with a 170° FOV was built at around 30GHz based on spoof M-waves confined at 2D variable-width metallic slits [24]. Differing from conventional spoof plasmon waveguides with a high metal filling ratio (typically>90%) [47, 48], the metallic layer was quite thin (~3.4%) to excite M-waves. By exploiting a multilayer configuration with a subwavelength thickness (0.15λ), high transmittance and an arbitrary phase shift within the full range of 2π could be obtained. More interestingly, the spoof M-waves exhibit an angle-insensitive phase shift property, which is helpful in constructing wide-angle metalenses.

In accordance with the reciprocity of the symmetry transformation principle, if a microwave feeding source is located in the focal plane and transversally moved, the radiated beam through the metalens will be highly directional and the far-field steering angle is determined by the transversal shift. With this method, a wide-angle beam-steering antenna beyond $\pm 60^\circ$ was demonstrated [49].

Another interesting application of digital M-waves is the optical cloak, where the gradient phase levels generated by a geometric metasurface are utilized to compensate for the phase retardation caused by the physical profile of the object. Recently, all-metallic reflective gratings with strong anisotropy were utilized as the building blocks of geometric metasurfaces to excite digital M-waves at the groove edge of gratings [50]. By optimizing the inherent catenary dispersion induced by an all-metallic grating, broadband and high-efficiency spin–orbit interaction was obtained. In addition, the all-metallic materials lead to two extra benefits: high temperature operation and microwave-infrared-compatible invisibility due to the intrinsic low thermal emittance.

2.2. Digital M-waves for near-field and far-field super-resolution imaging

The extremely short wavelength property of the M-wave in the near field may be utilized in super-resolution imaging, which offers a low-cost alternative to current expensive and complex ultraviolet lithography, electronic beam lithography (EBL), and focused ion beam (FIB) [21, 51–53]. Recently, many complex meta-holograms composed of spatially rotating nano-apertures or nano-antennas have been fabricated by recording the digital M-waves generated in rotating slit arrays [54], as indicated in figures 2(a) and (b). Also, a kind of maskless fabrication method was proposed based on homogenously structured metal-photoresist-metal cavities [22]. As depicted in figure 2(c), the top metallic film was patterned as periodic metallic disks, which coupled with the bottom metallic film to localize M-waves within the cavities. Owing to the polarization-dependent property, M-waves can record the space-variant linear polarizations generated by the interference of inclined, circularly polarized lights with opposite spins. Benefiting from the
Figure 2. (a) Light field distributions at the photoresist (PR) layer in a metal-insulator-metal cavity lens. (b) A zoom view of the green dashed line region in (a) and corresponding light intensity distributions in x–z plane. Reproduced from [54] with permission, © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Electric field map in the x-z plane as well as along the white dashed line. (d) Intensity patterns in the PR layer. Adapted with permission from [22], © 2018 American Chemical Society.

short-wavelength property of M-waves, the resolution of this nanolithography is much smaller than the diffraction limit. As a result, geometric metasurfaces composed of rotating elements for orbit angular momentum generation [55, 56] and colorful holography [57–59] can be fabricated with ease.

M-waves may also be utilized for far-field super-resolution telescopic imaging [60–62]. By elaborately engineering the phase levels on a phase mask, some local Fourier components beyond the cut-off frequency of the telescope can be restored in the farfield, resulting in a sub-diffraction focusing spot accompanied by high sidelobes. Such a phenomenon provides evidence counter to the common knowledge that the primary diffraction-limited images of an objective lens would not be observed in more detail by the following relayoptics, as stated in the Principles of Optics [63]. Benefiting from the dispersionless geometric phases of rotating metallic slits, super-resolution imaging with a resolving ability of about 0.64 times that of the Rayleigh criterion was obtained in the whole visible band [64].

2.3. Dynamic digital M-waves
All the digital M-waves mentioned above are fixed once the structures are fabricated and the wavefront cannot be flexibly tuned. An effective method to realize tunable digital M-waves is to fill the variable-width metallic slits with nonlinear media [65]. Each slit supports an M-wave with specific phase retardation, controlled by both the slit width and the intensity of incident light. Owing to the nonlinear response of digital M-waves localized in the nonlinear media, the deflection angle and the focal length of the output beam will be tunable. In particular, this dynamic beam-steering property may find potential applications in the optical phased array (OPA). Thanks to the subwavelength pixel size of digital M-waves, the side lobes of far-field radiation can be effectively reduced and a rather large FOV may be obtained [66–68].

Besides the light-pumped, nonlinear metasurfaces, gate-tunable metasurfaces based on conducting oxide, graphene, and transition metal dichalcogenides have also been proposed for dynamic M-wave modulation [69–73]. As shown in figures 3(a) and (b), the upper metallic patterns were simultaneously used for M-wave excitation and as electrodes to create electrical gates. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements (figure 3(c)) [69]. Since only a 180° phase change was realized, a 2-bit OPA was demonstrated. By electrical control over subgroups of metasurface elements, the equivalent period of the radiation antenna varies between 3.2µm, 2.4µm, and 1.6µm, resulting in three different steering angles, as indicated in figure 3(d). In order to further extend the phase shift range, a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability was subsequently proposed [71].

Alternatively, one can replace the active media by phase-change material, whose crystallization level can be actively varied by applying heat, photon, or electric energy to the phase-change material [73–75]. Owing to the dramatic difference in optical characteristics between its crystalline and amorphous states, abrupt phase shift levels are induced among different states. By filling a series of metallic slits with specific crystallization levels of Ge2Sb2Te5 (GST), tunable digital M-waves that enable various far-field focusing patterns have been demonstrated [76]. Also, an active OPA that could realize beam steering within ±60° was
Figure 3. (a) Schematic of dynamic M-waves in digital metasurfaces. (b) Steering diffracted beam angles via electrical gating of different numbers of antennas. (c) Spatial distribution of the z component of the electric field E_z. (d) The far-field intensity of the light beam reflected from the metasurface as a function of the diffraction angles for different periodicities. Reproduced from [69] with permission, © 2016 American Chemical Society.

Figure 4. Generalized diffraction limit in the focusing process: Resolution limit, Energy density limit, Achromatic bandwidth limit, and Depth of focus limit (READ).

3. Trends and challenges

Over the decades, M-waves have proven to be vital in the transformation of classical optics to digital optics. Many fundamental breakthroughs, such as the breaking of the diffraction limit and dynamic modulation, have been reported. However, it is realized that these achievements may be only the tip of the iceberg in digital optics. More efforts must be made to meet the following two challenges.

3.1. Generalized diffraction limit: READ

Traditionally speaking, the diffraction limit refers to the smallest resolution of imaging optics, which was discovered by Abbe and Rayleigh in the 1870s. But as this field, many other important parameters have been found that are fundamentally limited by the diffractive nature of light. Most importantly, there are four limits that are directly related to the future development and applications of Engineering Optics 2.0 [15]. These are the Resolution limit, Energy density, Achromatic bandwidth of the diffractive lens, and Depth of focus limits (here we refer to them as READ). As illustrated in figure 4, these values are termed the generalized diffraction limit, which is normally determined by parameters such as the wavelength, aperture size, and focal length. It is highly desirable to break these diffraction limits simultaneously. However, current technologies often fail to accomplish this objective. For instance, while the superoscillation focusing reduced the effective Airy disk radius, the energy density was actually reduced as a result of the strong side lobes.

In digital optics, it is possible to break these generalized diffraction limits, forming a potential road to super-READ. Nevertheless, more systematic investigations are required to realize it and lead us to the new world hidden by the 'diffraction limit'.

proposed [77]. Unlike a discrete beam-steering metadevice realizing three states at most [69, 74, 78], such an OPA can achieve continuous beam scanning due to the continuous permittivity change of GST.
3.2. Intelligent digital optics

Along with the development of dynamic M-wave devices, intelligent digital optics may be possible in the near future. To construct intelligent digital optical systems, the sensors, field-programmable gate array and artificial intelligence (AI) chips as well as active actuators must be integrated into a single platform. It is foreseeable that more exotic properties and flexible engineering of M-waves will be found with the emergence of 2D materials [79], van der Waals materials [80], and other active materials, resulting in greater performance enhancement and more promising applications.

As an important infrastructure, we must also build the data center for intelligent digital optics, which should encompass enormous digital optical designs and corresponding optical functionalities. Also, electronic design automation (EDA)-like optical design flow, termed photonic design automation (PDA), is highly desirable.

4. Conclusions

In this perspective, we summarized the recent advances of digital M-waves in subwavelength metallic slits or similar structures. Owing to their unique properties, a series of interesting applications have been found. Although this article mainly focuses on the M-waves in subwavelength metallic structures, it should be mentioned that M-waves can also be supported by dielectric counterparts. To eliminate the cross talk between adjacent elements, supercells consisting of several identical single resonators or high-index dielectric waveguiding modes are often adopted to realize isolated and local phase response [81–83].

We envision digital optics will continue to gain momentum in the upcoming years as technology evolves and new advancements will be introduced including fifth and sixth generation mobile communication systems (5G and 6G) [84, 85], digital optical phased array LIDAR [68, 77], integrated optical communication [86–89], highly dense optical storage [90], hybrid optical and electronic computation [91, 92], virtual reality, augmented reality, and naked eye three-dimensional display [9, 57, 93]. Also, the seamless integration between digital optics and digital electronics, enabled by compatible semiconductor manufacturing as well as the advances of AI, will form novel functionalities and architectures for digital optics.

ORCID iD

Xiangang Luo https://orcid.org/0000-0002-1401-1670

References

[1] Capasso F 2018 The future and promise of flat optics: a personal perspective Nanophotonics 7 953
[2] Kress B C and Meyrueis P 2009 Applied Digital Optics (New York: Wiley)
[3] Luo X 2019 Subwavelength artificial structures: opening a new era for engineering optics Adv. Mater. 31 1804680
[4] She A, Zhang S, Shian S, Clarke D R and Capasso F 2018 Large area metasurfaces: design, characterization, and mass manufacturing Opt. Express 26 1573–85
[5] Rubin N A, D’Aversa G, Chevalier P, Shi Z, Chen W T and Capasso F 2019 Matrix Fourier optics enables a compact full-stokes polarization camera Science 365 eaax1839
[6] Faraji-Dana M, Arbabi E, Kwon H, Kamali S M, Arbabi A, Bartholomew J G and Faraon A 2019 Hyperspectral imager with folded metasurface optics ACS Photon. 6 2161–7
[7] Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S and Faraon A 2016 Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations Nat. Commun. 7 13682
[8] Faraji-Dana M, Arbabi E, Arbabi A, Kamali S M, Kwon H and Faraon A 2018 Compact folded metasurface spectrometer Nat. Commun. 9 4196
[9] Lee G-Y, Hong J-Y, Hwang S, Moon S, Kang H, Jeon S, Kim H, Jeong J-H and Lee B 2018 Metasurface eyepiece for augmented reality Nat. Commun. 9 4562
[10] Pahlevanizhad H et al 2018 Nano-optic endoscope for high-resolution optical coherence tomography in vivo Nat. Photon. 12 540–7
[11] Lin R J et al 2019 Achromatic metasurfaces array for full-colour light-field imaging Nanotechnol. 14 227–31
[12] Yang Z et al 2018 Generalized Hartmann-Shack array of dielectric metasurfaces sub-arrays for polarimetric beam profiling Nat. Commun. 9 4607
[13] Zhou Y, Zheng H, Kravchenko I I and Valentine J 2020 Flat optics for image differentiation Nat. Photon. 14 316–23
[14] Luo X 2018 Engineering optics 2.0: a revolution in optical theories, materials, devices and systems ACS Photon. 5 4724–38
[15] Luo X 2019 Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems (Singapore: Springer)
[16] Giovampaola C D and Engheta N 2014 Digital metamaterials Nat. Mater. 13 115–121
[17] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Coding metamaterials, digital metamaterials and programmable metamaterials Light Sci. Appl. 3 e1218
[18] Pu M, Ma X, Guo Y, Li X and Luo X 2018 Theory of microscopic meta-surface waves based on catenary optical fields and dispersion Opt. Express 26 19555–62
[19] Luo X 2015 Principles of electromagnetic waves in metasurfaces Sci. China 58 594201
[20] Luo X 2018 Subwavelength optical engineering with metasurface waves Adv. Opt. Mater. 6 1701201
[21] Luo X and Ishihara T 2004 Surface plasmon resonant interference nanolithography technique Appl. Phys. Lett. 84 4780–2
[22] Pu M, Guo Y, Li X, Ma X and Luo X 2018 Revisitation of extraordinary Young's interference: from catenary optical fields to spin-orbit interaction in metasurfaces ACS Photon. 5 3198–204

[23] Luo X and Ishihara T 2004 Subwavelength photolithography based on surface-plasmon polariton resonance Opt. Express 12 3055–65

[24] Guo Y, Zhang Z, Pu M, Huang Y, Li X, Ma X, Xu M and Luo X 2019Spoof plasmonic metasurfaces with catenary dispersion for two-dimensional wide-angle focusing and imaging iScience 21 145–56

[25] Huang Y, Luo J, Pu M, Guo Y, Zhao Z, Ma X, Li X and Luo X 2019 Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas Adv. Sci. 6 1801691

[26] Luo X 2019 Catenary Optics (Berlin: Springer)

[27] Shi H, Luo X and Du C 2007 Young's interference of double metallic nanoslit with different widths Opt. Express 15 13121–7

[28] Shi H, Wang C, Du C, Luo X, Dong X and Gao H 2005 Beam manipulating by metallic nano-slits with variant widths Opt. Express 13 6815–20

[29] Xu T, Wang C, Du C and Luo X 2008 Plasmonic beam deflector Opt. Express 16 4753–9

[30] Chen Y, Zhou C, Luo X and Du C 2008Structured lenses formed by a 2D square hole array in a metallic film Opt. Lett. 33 753–5

[31] Yin S, Zhou C, Luo X and Du C 2008 Imaging by a sub-wavelength metallic lens with large field of view Opt. Express 16 2578–83

[32] Sun J, Wang X, Xu T, Kudyshev Z A, Cartwright A N and Litchinitser N M 2014 Spinning light on the nanoscale Nano Lett. 14 2726–9

[33] Ishii S, Shalaev V M and Kildishev A V 2013 Holey-metal lenses: sieving single modes with proper phases NANO Lett. 13 159–63

[34] Pendry J B, Martin-Moreno L and Garcia-Vidal F J 2004 Mimicking surface plasmons with structured surfaces Science 305 847–8

[35] MacFarlane G G 1946 Quasi-stationary field theory and its application to diaphragms and junctions in transmission lines and wave guides Proc. Inst. Electr. Eng. 93 703–19

[36] Huang Y, Pu M, Zhang F, Luo J, Li X, Ma X and Luo X 2019 Broadband functional metasurfaces: achieving nonlinear phase generation toward achromatic surface cloaking and lensing Adv. Opt. Mater. 7 1801480

[37] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging Science 352 1190

[38] Wang S et al 2017 Broadband optical achromatic metasurface devices Nat. Commun. 8 187

[39] Wang S et al 2018 A broadband achromatic metalens in the visible Nat. Nanotechnol. 13 227–32

[40] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E and Capasso F 2018 A broadband achromatic metalens for focusing and imaging in the visible Nat. Nanotechnol. 13 220–6

[41] Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y and Luo X 2016 Achromatic flat optical components via compensation between structure and material dispersions Sci. Rep. 6 19885

[42] Shrestha S, Overvig A C, Lu M, Stein A and Yu N 2018 Broadband achromatic dielectric metalenses Light Sci. Appl. 7 85

[43] Khorasaninejad M, Shi Z, Zhu A Y, Chen W T, Sanjeev V, Zaidi A and Capasso F 2017 Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion Nano Lett. 17 1819–24

[44] Groeber B, Chen W T and Capasso F 2017 Meta-lens doublet in the visible region Nano Lett. 17 4902–7

[45] Pu M, Li X, Guo Y, Ma X and Luo X 2017 Nanoparticles with ordered rotations: symmetry transformation and wide-angle flat lensing Opt. Express 25 31471–7

[46] Liu W, Li Z, Cheng H, Tang C, Li J, Zhang S, Chen S and Tian J 2018 Metasurface enabled wide-angle fourier Lens Adv. Mater. 30 170634

[47] Kats M A, Woolf D, Blanchard R, Yu N and Capasso F 2011 Spoof plasmon analogue of metal-insulator-metal waveguides Opt. Express 19 14860–70

[48] He P H, Zhang H C, Gao X, Niu L Y, Tang W X, Lu J, Zhang L P and Cui T J 2019 A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements Opto-Electron. Adv. 2 190001

[49] Guo Y, Ma X, Pu M, Li X, Zhao Z and Luo X 2018 High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens Adv. Opt. Mater. 6 1800592

[50] Xie X, Pu M, Huang Y, Ma X, Li X, Guo Y and Luo X 2019 Heat resisting metalic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field Adv. Mater. Technol. 4 1800612

[51] Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C and Luo X 2015 Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens Appl. Phys. Lett. 106 093110

[52] Luo X 2018 Plasmonic metasurfaces for nanofabrication Nat. Sci. Rev. 5 137–151

[53] Gao P, Pu M, Ma X, Li X, Guo Y, Wang C, Zhao Z and Luo X 2020 Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm Nano尺度 12 4215–21

[54] Liu L, Zhang X, Zhao Z, Pu M, Gao P, Luo Y, Jin J, Wang C and Luo X 2017 Batch fabrication of metasurface holograms enabled by plasmonic cavity lithography Adv. Opt. Mater. 5 1700049

[55] Jin J, Pu M, Wang Y, Li X, Ma X, Luo J, Zhao Z, Gao P and Luo X 2017 Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metasystem Adv. Mater. Technol. 2 1600201

[56] Li Y, Li X, Chen L, Pu M, Jin J, Hong M and Luo X 2017 Orbital angular momentum multiplexing and demultiplexing by a single metasurface Adv. Opt. Mater. 5 1600302

[57] Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M and Luo X 2016 Multicolor 3D meta-holography by broadband plasmonic modulation Sci. Adv. 2 e1601102

[58] Wan W, Gao J and Yang X 2016 Full-color plasmonic metasurface holograms ACS Nano 10 10671–80

[59] Zhang X, Pu M, Gao Y, Jin J, Li X, Ma X, Luo J, Wang C and Luo X 2019 Colorful metahologram with independently controlled images in transmission and reflection spaces Adv. Funct. Mater. 29 1809145

[60] Huang K, Ye H, Teng J, Yeo S P, Lu’x’yan ch B S and Qiu C 2014 Optimization-free superoscillatory lens using phase and amplitude masks Laser Photon. Rev. 8 152–7

[61] Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P and Luo X 2015 Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing Laser Photon. Rev. 9 713–9

[62] Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P and Luo X 2015 Super-resolution optical telescopes with local light diffraction shrinkage Sci. Rep. 5 18485

[63] Born M and Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)

[64] Li Z, Zhang T, Wang Y, Kong W, Zhang J, Huang Y, Wang C, Li X, Pu M and Luo X 2018 Achromatic broadband super-resolution imaging by super-oscillatory metasurface Laser Photon. Rev. 12 1800064
Min C, Wang P, Jiao X, Deng Y and Ming H 2007 Beam manipulating by metallic nano-optic lens containing nonlinear media Opt. Express 15 9541–6

Sun J, Timurdogan E, Yacobi A, Hosseini E S and Watts M R 2013 Large-scale nanophotonic phased array Nature 493 195–9

Poultou C V, Byrd M J, Raval M, Su Z, Li N, Timurdogan E, Coolbaugh D, Vermeulen D and Watts M R 2017 Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths Opt. Lett. 42 21–24

Poultou C V, Yacobi A, Cole D B, Byrd M J, Raval M, Vermeulen D and Watts M R 2017 Coherent solid-state LIDAR with silicon photonic optical phased arrays Opt. Lett. 42 4091–4

Huang Y-W, Lee H W H, Sokhoyan K, Pala R A, Bhuyan A K, Tsai D P and Atwater H A 2016 Gate-tunable conducting oxide metasurfaces Nano Lett. 16 5319–25

Sherrott M C, Hon P W C, Fontaine K T, Garcia J C, Ponti S M, Brav V W, Sweatlock L A and Atwater H A 2017 Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces Nano Lett. 17 3027–34

Kafae Shirmamesh A, Sokhoyan R, Pala R A and Atwater H A 2018 Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability Nano Lett. 18 2957–63

Ni P, De Luna Bugallo A, Arelano Arreola V M, Salazar M F, Strupiechonski E, Brändi V, Sawant R, Alloing B and Genevet P 2019 Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS$_2$–gap-mode metasurfaces ACS Photon. 6 1394–401

Nemati A, Wang Q, Hong M and Teng J 2018 Tunable and reconfigurable metasurfaces and metadevices Opto-Electron. Adv. 1 1800009

de Galanretea C R, Alexeev A M, Au - Y-Y, Lopez-Garcia M, Klemm M, Cryan M, Bertolotti J and Wright C D 2018 Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared Adv. Funct. Mater. 28 1704993

Zhang M, Pu M, Zhang F, Guo Y, He Q, Ma X, Huang Y, Li X, Yu H and Luo X 2018 Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials Adv. Sci. 5 1800835

Chen Y, Li X, Sonnefraud Y, Fernández-Domínguez A I, Luo X, Hong M and Maier S A 2015 Engineering the phase front of light with phase-change material based planar lenses Sci. Rep. 5 8660

Ha Y, Guo Y, Pu M, Li X, Ma X and Luo X 2019 A tunable metasurface deflector based on MIM waveguide filled with phase-change material Plasmonics 14 1735–41

Chu C H et al 2016 Active dielectric metasurface based on phase-change medium Laser Photon. Rev. 10 986–94

Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z 2020 Recent developments in emerging two-dimensional materials and their applications J. Mater. Chem. C 8 387–440

Zhang Q, Zhen Z, Yang Y, Gan G, Jariwala D and Cui X 2019 Negative refraction inspired polariton lens in van der Waals lateral heterojunctions Appl. Phys. Lett. 114 221101

Lalanne P and Chavel P 2017 Metaslenses at visible wavelengths: an historical fresco Proc. SPIE 10113 101130F

Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Nat. Nanotechnol. 10 937

Vo S, Fattal D, Sorin W V, Peng Z, Tran T, Fiorentino M and Beausoleil R G 2014 Sub-wavelength grating lenses with a twist IEEE Photon. Technol. Lett. 26 1375–8

Pan W, Huang C, Chen P, Pu M, Ma X and Luo X 2013 A beam steering horn antenna using adaptive frequency selective surface IEEE Trans. Antennas Propag. 61 6218–23

Zhu X, Zhang S, Shi H, Zheng M, Wang Y, Xue S, Quan J, Zhang J and Duan H 2020 Huge field enhancement and high transmittance enabled by terahertz bow-tie aperture arrays: a simulation study Opt. Express 28 5851–9

Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G and Yu S 2012 Integrated compact optical vortex beam emitters Science 338 363–6

Guo R et al 2017 High–bit rate ultra–compact light routing with mode–selective on-chip nanoantennas Sci. Adv. 3 e1700007

Li Z et al 2017 Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces Nat. Nanotechnol. 12 675–83

Kullock R, Ochs M, Grimm P, Emmerling M and Hecht B 2020 Electrically-driven Yagi-Uda antennas for light Nat. Commun. 11 115

Gu M, Li X and Cao Y 2014 Optical storage arrays: a perspective for future big data storage Light Sci. Appl. 3 e177

Chang J, Sitzmann V, Dun X, Heidrich W and Wetzstein G 2018 Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification Sci. Rep. 8 12324

Hamersley R, Bernstein L, Sludskis A, Soljacic M and Englund D 2019 Large-scale optical neural networks based on photoelectric multiplication Phys. Rev. X 9 021032

Wan W, Qiao W, Pu D, Li R, Wang C, Hu Y, Duan H, Guo L J and Chen L 2019 Holographic sampling display based on metagratings iScience 23 100773

[90] Guo R, Nemati A, Wang Q, Hong M and Teng J 2018 Tunable and reconfigurable metasurfaces and metadevices Opto-Electron. Adv. 1 1800009

[91] de Galanretea C R, Alexeev A M, Au - Y-Y, Lopez-Garcia M, Klemm M, Cryan M, Bertolotti J and Wright C D 2018 Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared Adv. Funct. Mater. 28 1704993

[92] Zhang Q, Zhen Z, Yang Y, Gan G, Jariwala D and Cui X 2019 Negative refraction inspired polariton lens in van der Waals lateral heterojunctions Appl. Phys. Lett. 114 221101

[93] Lalanne P and Chavel P 2017 Metaslenses at visible wavelengths: an historical fresco Proc. SPIE 10113 101130F

[94] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Nat. Nanotechnol. 10 937

[95] Vo S, Fattal D, Sorin W V, Peng Z, Tran T, Fiorentino M and Beausoleil R G 2014 Sub-wavelength grating lenses with a twist IEEE Photon. Technol. Lett. 26 1375–8

[96] Pan W, Huang C, Chen P, Pu M, Ma X and Luo X 2013 A beam steering horn antenna using adaptive frequency selective surface IEEE Trans. Antennas Propag. 61 6218–23

[97] Zhu X, Zhang S, Shi H, Zheng M, Wang Y, Xue S, Quan J, Zhang J and Duan H 2020 Huge field enhancement and high transmittance enabled by terahertz bow-tie aperture arrays: a simulation study Opt. Express 28 5851–9

[98] Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O’Brien J L, Thompson M G and Yu S 2012 Integrated compact optical vortex beam emitters Science 338 363–6

[99] Guo R et al 2017 High–bit rate ultra–compact light routing with mode–selective on-chip nanoantennas Sci. Adv. 3 e1700007

[100] Li Z et al 2017 Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces Nat. Nanotechnol. 12 675–83

[101] Kullock R, Ochs M, Grimm P, Emmerling M and Hecht B 2020 Electrically-driven Yagi-Uda antennas for light Nat. Commun. 11 115

[102] Gu M, Li X and Cao Y 2014 Optical storage arrays: a perspective for future big data storage Light Sci. Appl. 3 e177

[103] Chang J, Sitzmann V, Dun X, Heidrich W and Wetzstein G 2018 Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification Sci. Rep. 8 12324

[104] Hamersley R, Bernstein L, Sludskis A, Soljacic M and Englund D 2019 Large-scale optical neural networks based on photoelectric multiplication Phys. Rev. X 9 021032

[105] Wan W, Qiao W, Pu D, Li R, Wang C, Hu Y, Duan H, Guo L J and Chen L 2019 Holographic sampling display based on metagratings iScience 23 100773