Forbidden patterns and shift systems
José María Amigóa, Sergi Elizaldeb, Matthew B. Kennelc

aCentro de Investigación Operativa, Universidad Miguel Hernández
03202 Elche, Spain
bDepartment of Mathematics, Dartmouth College
Hanover, NH 03755-3551, USA
cInstitute for Nonlinear Science, University of California, San Diego
La Jolla, CA 92093-0402, USA

Abstract. The scope of this paper is two-fold. First, to present to the researchers in combinatorics an interesting implementation of permutations avoiding generalized patterns in the framework of discrete-time dynamical systems. Indeed, the orbits generated by piecewise monotone maps on one-dimensional intervals have forbidden order patterns, i.e., order patterns that do not occur in any orbit. The allowed patterns are then those patterns avoiding the so-called forbidden root patterns and their shifted patterns. The second scope is to study forbidden patterns in shift systems, which are universal models in information theory, dynamical systems and stochastic processes. Due to its simple structure, shift systems are accessible to a more detailed analysis and, at the same time, exhibit all important properties of low-dimensional chaotic dynamical systems (e.g., sensitivity to initial conditions, strong mixing and a dense set of periodic points), allowing to export the results to other dynamical systems via order-isomorphisms.

Keywords: Order patterns. Deterministic and random sequences. Permutations avoiding consecutive patterns. Time series analysis. Dynamical systems. Shift maps.

1 Introduction

Order has some interesting consequences in discrete-time dynamical systems. Just as one can derive sequences of symbol patterns from such a dynamic via coarse-graining of the phase space, so it is also straightforward to obtain sequences of order patterns if the phase space is linearly ordered. It turns out that, under some mild mathematical assumptions, not all order patterns can be materialized by the orbits of a given, one-dimensional dynamic. Furthermore, if an order pattern of a given length is ‘forbidden’, i.e., cannot occur, its absence pervades all longer patterns in form of more missing order patterns. This cascade of outgrowth forbidden patterns grows super-exponentially (in fact, factorially) with the length, all its patterns sharing a common structure. Of course, forbidden and allowed order patterns can be viewed as permutations; allowed patterns are then those permutations avoiding the so-called forbidden root patterns and their shifted patterns (see Sect. 4 for an exact formulation). Let us mention at this point that permutations avoiding generalized and consecutive patterns is a popular
topic in combinatorics (see, e.g., [4, 8, 9]). It is in this light that we approach order patterns in the present paper. In fact, the measure-theoretical aspects of the underlying dynamical system play no role in the combinatorial properties of the order patterns defined by its orbits and hence will be only considered when necessary. Also for this reason we will not dwell on the dynamical properties of shift systems and their role as prototypes of chaotic maps once endowed with appropriate invariant measures; see [5, 7] for readable accounts.

Order relations belong rather to algebra than to continuous mathematics because of their discrete nature. Only in the standard real line, order and metric are coupled, leading to such interesting results as Sarkovskii’s theorem [11, 10]. But even in this special though important framework, order fails to be preserved by isomorphisms, that consistently only address dynamical properties such as invariant measures, periodicity, mixing properties, etc., and this reduces its applicability. Yet, order relations have been successfully applied in discrete dynamical systems and information theory, e.g., to evaluate the measure-theoretic and topological entropies [6, 1]. This paper is an extension of those investigations. Isomorphisms that preserve the possibly existing order relations of the dynamical systems they identify, are called order-isomorphisms. The order isomorphy in one-dimensional dynamical systems is the subject of Kneading Theory [10]. In this paper, we will go beyond the framework of Kneading Theory in two respects: (i) the maps need not be continuous (but piecewise continuous) and (ii) we will also consider more general phase spaces (like finite-alphabet sequence spaces and two dimensional intervals).

Forbidden order patterns, the only ones we will consider in this paper, should not be mistaken for other sorts of forbidden patterns that may occur in dynamics with constraints. Forbidden patterns in symbol sequences occur, e.g., in Markov subshifts of finite type and, more generally, in random walks on oriented graphs. On the contrary, the existence of forbidden order patterns does not entail necessarily any restriction on the patterns of the corresponding symbolic dynamic: the variability of symbol patterns is given by the statistical properties of the dynamic. As a matter of fact, the symbolic dynamic of one-dimensional chaotic maps are used to generate pseudo-random sequences, although all such maps used in practice have forbidden order patterns. In general it is very difficult to work out the specifics of the forbidden patterns of a given map, but we will see that shifts on finite-symbol sequence spaces are an important exception: the detailed analysis of the forbidden patterns of this transformations is precisely the topic of this paper.

The existence of forbidden patterns is a hallmark of deterministic orbit generation and thus it can be used to discriminate deterministic from random time series. Indeed, thanks to the super-exponentially growing trail of outgrowth forbidden patterns, the probability of a false forbidden pattern in a truly stochastic process vanishes very fast with the pattern length and, consequently, a time series with missing order patterns of moderate length can be promoted to deterministic with virtually absolute confidence. The quantitative details depend, of course, on the specificities of the process (probability distribution, correlations, etc.). Only those chaotic maps with all forbidden patterns of exceedingly long length seem to be intractable from the practical point of view. Besides, applications need to address some key issues, such as the robustness of
the forbidden patterns against observational noise, and the existence of false forbidden patterns in finite, random time series. We refer to [3] for these issues.

This paper is organized as follows. In Sect. 2 we briefly recall the basics of shift systems and symbolic dynamics. The concepts and notation introduced in this section (including the examples) will be used throughout. Order patterns and forbidden root patterns, together with the outgrowth forbidden patterns, are presented in Sect. 3. The structure of the outgrowth forbidden patterns and their asymptotic growth with the length are discussed in Sect. 4. Finally, Sect. 5 and 6 are devoted to the structure of allowed patterns and the existence of root forbidden patterns in one-sided and two-sided shift systems, respectively. In the examples we present some interesting by-products of the theoretical results.

2 Shift systems and symbolic dynamics

Let us start by recalling some basics of shift systems and symbolic dynamics. We set $\mathbb{N}_0 = \{0\} \cup \mathbb{N} = \{0, 1, 2, \ldots\}$.

Fix $N \geq 2$ and consider the measurable space $(\Omega, \mathcal{P}(\Omega))$, where $\Omega = \{0, 1, \ldots, N-1\}$ and $\mathcal{P}(\Omega) = \text{the family of all subsets of } \Omega$. Let $(\Omega^{\mathbb{N}_0}, \mathcal{B})$ denote the product space $\Pi^{\mathbb{N}_0}(\Omega, \mathcal{P}(\Omega))$, i.e., $\Omega^{\mathbb{N}_0}$ is the space of \textit{(one-sided) sequences} taking values on the ‘alphabet’ Ω, $\Omega^{\mathbb{N}_0} = \{\omega = (\omega_n)_{n \in \mathbb{N}_0} : \omega_n \in \Omega\}$, and \mathcal{B} is the sigma-algebra generated by the \textit{cylinder sets} $C_{a_0, \ldots, a_n} = \{\omega \in \Omega^{\mathbb{N}_0} : \omega_k = a_k, 0 \leq k \leq n\}$.

The topology generated by the cylinder sets makes $\Omega^{\mathbb{N}_0}$ compact, perfect (i.e., it is closed and all its points are accumulation points) and totally disconnected. Such topological spaces are sometimes called Cantor sets. The elements of Ω are called \textit{symbols} or \textit{letters}. Segments of symbols of length L, like $\omega_k\omega_{k+1} \ldots \omega_{k+L-1}$, will be sometimes shortened ω_k^{L-1}.

Furthermore, let $\Sigma : \Omega^{\mathbb{N}_0} \to \Omega^{\mathbb{N}_0}$ denote the (one-sided) \textit{shift transformation} defined as

$$\Sigma : (\omega_0, \omega_1, \omega_2, \ldots) \mapsto (\omega_1, \omega_2, \omega_3, \ldots).$$

(1)

All probability measures on $(\Omega^{\mathbb{N}_0}, \mathcal{B})$ which make Σ a measure-preserving transformation are obtained in the following way [12]. For any $n \geq 0$ and $a_i \in \Omega$, $0 \leq i \leq n$, let a real number $p_n(a_0, \ldots, a_n)$ be given such that (i) $p_n(a_0, \ldots, a_n) \geq 0$, (ii) $\sum_{a_0 \in \Omega} p_0(a_0) = 1$, and (iii) $p_n(a_0, \ldots, a_n) = \sum_{a_{n+1} \in \Omega} p_{n+1}(a_0, \ldots, a_n, a_{n+1})$. If we define now

$$m(C_{a_0, \ldots, a_n}) = p_n(a_0, \ldots, a_n),$$

then m can be extended to a probability measure on $(\Omega^{\mathbb{N}_0}, \mathcal{B})$. The resulting dynamical system, $(\Omega^{\mathbb{N}_0}, \mathcal{B}, m, \Sigma)$ is called the \textit{one-sided shift space}.

Example 1. (a) Let $p = (p_0, p_1, \ldots, p_{N-1})$, $N \geq 2$, be a probability vector with non-zero entries (i.e., $p_i > 0$ and $\sum_{i=0}^{N-1} p_i = 1$). Set $p_n(a_0, a_1, \ldots, a_n) = p_{a_0}p_{a_1} \ldots p_{a_n}$. The
resulting measure-preserving shift transformation is called the one-sided \(\textbf{p-Bernoulli shift} \).

(b) Let \(\textbf{p} = (p_0, p_1, \ldots, p_{N-1}) \) be a probability vector as in (a) and \(P = (p_{ij})_{0 \leq i,j \leq N-1} \) an \(N \times N \) stochastic matrix (i.e., \(p_{ij} \geq 0 \) and \(\sum_{i,j=0}^{N-1} p_{ij} = 1 \)) such that \(\sum_{i=0}^{N-1} p_i p_{ij} = p_j \). Set then \(p_n(a_0, a_1, \ldots, a_n) = p_{0a_0} \cdot p_{a_0a_1} \cdot \ldots \cdot p_{a_{n-1}a_n} \). The resulting measure-preserving shift transformation is called the one-sided \((\textbf{p}, P) \)-Markov shift.

(c) Let \(\textbf{S} = (S_n)_{n=0}^{\infty} \) be a discrete-time stochastic process on a probability space \((X, \mathcal{F}, \mu) \) started at time \(n = 0 \) with finitely many outcomes \(\{0, 1, \ldots, N - 1\} = \Omega \). The realizations (or “sample paths”) \(\textbf{S}(x) = (S_0(x), \ldots, S_n(x), \ldots) \) are viewed as elements of \(\Omega^\mathbb{N} \) endowed with the induced measure \(p_n(a_0, \ldots, a_n) = \mu(\{ x \in X : S_0(x) = a_0, \ldots, S_n(x) = a_n \}) \equiv \Pr\{ S_0 = a_0, \ldots, S_n = a_n \} \), the probability of the event \(S_0 = a_0, \ldots, S_n = a_n \). The resulting measure on \(\Omega^\mathbb{N} \) is shift invariant if the stochastic process \(\textbf{S} \) is stationary. □

There are several metrics compatible with the topology of \(\Omega^\mathbb{N} \), the most popular being

\[
d_K(\omega, \omega') = \sum_{n=0}^{\infty} \frac{\delta(\omega_n, \omega'_n)}{K^n},
\]

where \(\delta(\omega_n, \omega'_n) = 1 \) if \(\omega_n \neq \omega'_n \), \(\delta(\omega_n, \omega_n) = 0 \) and \(K > 2 \). Observe that given \(\omega \in C_{a_0, \ldots, a_n} \), then \(d_K(\omega, \omega') < \frac{1}{K^n} \) if \(\omega' \in C_{a_0, \ldots, a_n} \) and \(d_K(\omega, \omega') \geq \frac{1}{K^n} \) if \(\omega' \notin C_{a_0, \ldots, a_n} \), so that \(C_{a_0, \ldots, a_n} = B_{d_K}(\omega; \frac{1}{K^n}) \), the open ball of radius \(K^{-n} \) and center \(\omega \) in the metric space \((\Omega^\mathbb{N}, d_K) \). Since the base of the measurable sets are open balls, we conclude that \(\mathcal{B} \) is the Borel sigma-algebra in the topology defined by the metric \((2) \). Observe furthermore that every point in \(B_{d_K}(\omega; \frac{1}{K^n}) \) is a center, a property known from non-Archimedean normed spaces (e.g., the rational numbers with \(p \)-adic norms).

Continuity will play a role below. Since \(\Sigma^{-1}C_{a_0, \ldots, a_n} = \bigcup_{\omega \in \Omega} C_{a_0, a_{0n}, \ldots, a_n} \), \(\Sigma \) is continuous in \((\Omega^\mathbb{N}, d_K)\), each point \(\omega \in \Omega^\mathbb{N} \) having exactly \(N \) preimages under \(\Sigma \). Regarding the forward dynamic, \(\Sigma \) has \(N \) fixed points: \(\omega = (\bar{n}), 0 \leq n \leq N - 1 \), where the overbar denotes indefinite repetition throughout.

The corresponding (invertible) two-sided shift transformation on the two-sided sequence (or bisequence) space

\[
\Omega^\mathbb{Z} = \{ \omega = (\omega_n)_{n \in \mathbb{Z}} : \omega_n \in \Omega \},
\]
is defined as \(\Sigma : \omega \mapsto \omega' \) with \(\omega'_n = \omega_{n+1}, n \in \mathbb{Z} \). The cylinder sets are given now as \(\{ \omega \in \Omega^\mathbb{Z} : \omega_k = a_k, |k| \leq n \} \) and

\[
d_K(\omega, \omega') = \sum_{n \in \mathbb{Z}} \frac{\delta(\omega_n, \omega'_n)}{K^{|n|}},
\]

with \(K > 3 \).

Let \(T \) be a measure preserving map on a probability space \((X, \mathcal{F}, \mu) \) and \(\alpha = \{ A_0, \ldots, A_{N-1} \} \) be a generating partition of the sigma-algebra \(\mathcal{F} \) with respect to \(T \), i.e., the subsets of the form \(A_{a_0} \cap T^{-1}A_{a_1} \cap \ldots \cap T^{-n}A_{a_n} \) generate \(\mathcal{F} \). Assume moreover that for every sequence \((A_{a_n})_{n \in \mathbb{N}^0} \), the set \(\bigcap_{n=0}^{\infty} T^{-n}A_{a_n} \) contains at most one point of \(X \); this assumption is fulfilled by any positively expansive continuous map or expansive
homeomorphism on compact metric spaces (in particular, by the one-sided and two-sided transformations we considered above) and implies that the coding map \(\Phi \) to be defined in (3)-(4) is one-to-one. Define now on the cylinder sets of \(\Omega^\mathbb{N}_0 \) the measure

\[
m_T(C_{a_0,\ldots,a_n}) = \mu(A_{a_0} \cap T^{-1}A_{a_1} \cap \ldots \cap T^{-n}A_{a_n}).
\]

For \(\omega \in \Omega^\mathbb{N}_0 \) define the coding map \(\Phi : X \to \Omega^\mathbb{N}_0 \) by

\[
\Phi(x) = (\omega_0, \ldots, \omega_n, \ldots),
\]

where

\[
\omega_n = a_n \in \Omega \text{ if } T^n(x) \in A_{a_n}, n \geq 0.
\]

Then \(\Phi : (X, \mathcal{F}, \mu) \to (\Omega^\mathbb{N}_0, \mathcal{B}, m_T) \) is measure-preserving (since, by definition, \(\Phi^{-1}(C_{a_0,\ldots,a_n}) = A_{a_0} \cap T^{-1}A_{a_1} \cap \ldots \cap T^{-n}A_{a_n} \)) and, moreover,

\[
\Phi \circ T = \Sigma \circ \Phi,
\]

i.e., \(T \) and \(\Sigma \) are isomorphic and, hence, \((X, \mathcal{F}, \mu, T) \) and \((\Omega^\mathbb{N}_0, \mathcal{B}, m_T, \Sigma) \) are dynamically equivalent.

One interesting consequence of this construction is that the coded orbits of \(T \) contain any arbitrary pattern. Indeed, given any \(N \)-symbol pattern of length \(L \geq 1 \), \(a_0^{L-1} := a_0a_1\ldots a_{L-1} \) with symbols \(a_n \in \{0, 1, \ldots, N-1\} \), choose

\[
x_0 \in \bigcap_{n=0}^{L-1} T^{-n}A_{a_n}.
\]

Then \(\Phi(x_0) \in C_{a_0,\ldots,a_{L-1}} \) and this for any \(L \geq 1 \). Letting \(L \to \infty \), we conclude that the coding map \(\Phi \) associates to each orbit \(orb(x) = \{T^n(x) : n \geq 0\} \) a unique, infinitely long pattern of symbols from \(\{0, 1, \ldots, N-1\} \), namely, \(\Phi(x) \), for almost all \(x \in X \).

In the special case of invertible maps \(T : X \to X \), both \(T \) and \(T^{-1} \) are measurable and all the above generalizes to two-sided sequences.

Example 2. As a standard example (that it is going to be our workhorse), take \(X = [0, 1] \), \(\mathcal{F} \) the Borel sigma-algebra restricted to \([0, 1]\), \(d\mu = \frac{1}{\pi \sqrt{x(1-x)}} dx \), \(f(x) = 4x(1-x) \), the logistic map, and \(\alpha = \{A_0 = [0, \frac{1}{2}), A_1 = [\frac{1}{2}, 1]\} \) (it is irrelevant whether the midpoint \(\frac{1}{2} \) belongs to the left or to the right partition element). Then \(\Phi(\frac{1}{4}) = (0, 1) \), \(\Phi(\frac{1}{2}) = (1, 1, 0) \) and \(\Phi(\frac{3}{4}) = (\bar{1}) \). Observe for further reference that \(\Phi(\frac{1}{4}) < \Phi(\frac{1}{2}) < \Phi(\frac{3}{4}) \), where \(< \) stands for the lexicographical order of \(\{0, 1\}^\mathbb{N}_0 \), but, e.g., \(\Phi(\frac{1}{2}) > \Phi(1) = (1, 0) \), hence the coding map \(\Phi : [0, 1] \to [0, 1]^\mathbb{N}_0 \) does not preserve the order structure. The fixed points of \(f \) are \(0 = \Phi^{-1}((\bar{0})) \) and \(\frac{3}{4} = \Phi^{-1}((\bar{1})) \). \(\square \)

3 Forbidden order patterns

In the previous Section, we saw that the symbolic dynamics of maps defines any symbol pattern of any length, under rather general assumptions. In this Section we will see that the situation is not quite the same when considering order patterns.
Let \((X, <)\) be a totally ordered set and \(T : X \to X\) a map. Given \(x \in X\), the orbit of \(x\) is the set \(\{T^n(x) : n \in \mathbb{N}_0\}\), where \(T^0(x) = x\) and \(T^n(x) = T(T^{n-1}(x))\). If \(x\) is not a periodic point of period less than \(L \geq 2\), we can then associate with \(x\) an order pattern of length \(L\), as follows. We say that \(x\) defines the order pattern \(\pi = \pi(x) = [\pi_0, ..., \pi_{L-1}]\), where \(\{\pi_0, ..., \pi_{L-1}\}\) is a permutation of \(\{0, 1, ..., L - 1\}\), if

\[
T^\pi_0(x) < T^\pi_1(x) < ... < T^\pi_{L-1}(x).
\]

Alternatively, we say that \(x\) is of type \(\pi\) or that \(\pi\) is realized by \(x\). Thus, \(\pi\) is just a permutation on \(\{0, 1, ..., L - 1\}\), given by \(0 \mapsto \pi_0, ..., L - 1 \mapsto \pi_{L-1}\), that encapsulates the order of the points \(x_n = T^n(x)\), \(0 \leq n \leq L - 1\). The set of order patterns of length \(L\) or, equivalently, the set of permutations on \(\{0, 1, ..., L - 1\}\) will be denoted by \(\mathcal{S}_L\). Furthermore set

\[
P_\pi = \{x \in X : x \text{ defines } \pi \in \mathcal{S}_L\}.
\]

A plain difference between symbol patterns and order patterns of length \(L\) is their cardinality: the former grow exponentially with \(L\) (exactly as \(N^L\), where \(N\) is the number of symbols) while the latter do super-exponentially. Specifically, from (6) and (7) we conclude:

\[
|\mathcal{S}_L| = L! \propto e^{L/(\ln L - 1) + (1/2) \ln 2\pi L}
\]

(Stirling’s formula), where, as usual, \(|\cdot|\) denotes cardinality and \(\propto\) means “asymptotically”. Although one can construct functions whose orbits realize any possible order pattern (see below), numerical simulations support the conjecture that order patterns, like symbol patterns, grow only exponentially for ‘well-behaved’ functions [6]. In fact, if \(I\) is a closed interval of \(\mathbb{R}\) and \(f : I \to I\) is piecewise monotone (i.e., there is a finite partition of \(I\) into intervals such that \(f\) is continuous and strictly monotone on each of those intervals), then one can prove [6] that

\[
|\{\pi \in \mathcal{S}_L : P_\pi \neq \emptyset\}| \propto e^{L h_{\text{top}}(f)},
\]

where \(h_{\text{top}}(f)\) is the topological entropy of \(f\). From (6) and (7) we conclude:

Proposition 1. If \(f\) is a piecewise monotone map on a closed interval \(I \subset \mathbb{R}\), then there are \(\pi \in \mathcal{S}_L, L \geq 2\), such that \(P_\pi = \emptyset\).

Order patterns that do not appear in any orbit of \(f\) are called forbidden patterns, at variance with the allowed patterns, for which there are intervals of points that realize them.

Example 3. As a simple illustration borrowed from [2], consider again the logistic map. For \(L = 2\) we have

\[
P_{[0,1]} = \left(0, \frac{3}{4}\right), \quad P_{[1,0]} = \left(\frac{3}{4}, 1\right).
\]

Observe that the endpoints of \(P_\pi\) are period-1 (i.e., fixed) points \((0, 1/2)\) or preimages of them \((f(1) = 0)\). But already for \(L = 3\) \((f^2(x) = -64x^4 + 128x^3 - 80x^2 + 16x)\) there are permutations that are not realized (see Figure 11):

\[
P_{[0,1,2]} = \left(0, \frac{1}{2}\right), \quad P_{[0,2,1]} = \left(\frac{1}{4}, \frac{5-\sqrt{5}}{8}\right), \quad P_{[2,0,1]} = \left(\frac{5-\sqrt{5}}{8}, \frac{3}{4}\right),
\]

\[
P_{[1,0,2]} = \left(\frac{3}{4}, \frac{5+\sqrt{5}}{8}\right), \quad P_{[1,2,0]} = \left(\frac{5+\sqrt{5}}{8}, 1\right), \quad P_{[2,1,0]} = \emptyset.
\]
Figure 1: The sets P_π, $\pi \in \sigma_3$, are graphically obtained by raising vertical lines at the crossing points of the curves $y = x$, $y = f(x)$, and $y = f^2(x)$. The three digits on the top are shorthand for order patterns (e.g., 012 stands for $[0, 1, 2]$). We see that $P_{[2,1,0]} = \emptyset$.

In going from $\pi \in \mathcal{S}_2$ to $\pi \in \mathcal{S}_3$, we see that $P_{[0,1]}$ splits into the subintervals $P_{[0,1,2]}$, $P_{[0,2,1]}$ and $P_{[2,0,1]}$ at the eventually periodic point $\frac{1}{4}$ (preimage of $\frac{3}{4}$) and at the period-2 point $\frac{5-\sqrt{5}}{8}$. Likewise, $P_{[1,0]}$ splits into $P_{[1,0,2]}$ and $P_{[1,2,0]}$ at the period-2 point $\frac{5+\sqrt{5}}{8}$.

From a different perspective, as we move rightward in Figure 1 from the neighborhood of 0, where $x < f(x) < f^2(x)$, the curves $y = f(x)$ and $y = f^2(x)$ cross at $x = \frac{1}{4}$, what causes the first swap: $[0, 1, 2]$ transforms to $[0, 2, 1]$. In general, the crossings at $x = \frac{1}{4}$, $\frac{5-\sqrt{5}}{8}$ and $\frac{5+\sqrt{5}}{8}$ between $f^{\pi(i)}$ and $f^{\pi(i+1)}$ causes the exchange of $\pi(i)$ and $\pi(i+1)$ in the pre-crossing pattern. At $x = \frac{3}{4}$ all three curves cross and $[2, 0, 1]$ goes over to $[1, 0, 2]$.

The absence of $\pi = [2, 1, 0]$ triggers, in turn, an avalanche of longer missing patterns. To begin with, the pattern $[*, 2, *, 1, *, 0, *]$ (where the wildcard * stands eventually for
any other entries of the pattern) cannot be realized by any \(x \in [0, 1] \) since the inequality

\[
f^2(x) < f(x) < x
\]

(8)
cannot occur. By the same token, the patterns \([*, 3, *, 2, *, 1, *], [*, 4, *, 3, *, 2, *], \) and, more generally, \([*, n + 2, *, n + 1, *, n, *] \in \mathcal{S}_L, 0 \leq n \leq L - 3, \) cannot be realized either for the same reason (substitute \(x \) by \(f^n(x) \) in (8)). □

The same follows for the tent map \(\Lambda : [0, 1] \to [0, 1], \)

\[
\Lambda(x) = \begin{cases}
2x & 0 \leq x \leq \frac{1}{2} \\
2 - 2x & \frac{1}{2} \leq x \leq 1
\end{cases}
\]

(9)

In fact, if \(\lambda \) is the Lebesgue measure, \(d\mu = \frac{1}{\pi x (1-x)} dx \) is (as in Example 2) the invariant measure of the logistic map \(f(x) = 4x(1 - x) \), and \(\phi : ([0, 1], \lambda) \to ([0, 1], \mu) \) is the measure preserving isomorphism given by

\[
\phi(x) = \sin^2\left(\frac{\pi}{2}x\right),
\]

(10)

then the dynamical systems \(([0, 1], \mathcal{B}, \lambda, \Lambda) \) and \(([0, 1], \mathcal{B}, \mu, f) \), where \(\mathcal{B} \) is the Borel sigma-algebra restricted to the interval \([0, 1] \), are isomorphic (or conjugate) by means of \(\phi \), i.e., \(f \circ \phi = \phi \circ \Lambda \). Since, moreover, \(\phi \) is strictly increasing, forbidden patterns for \(f \) correspond to forbidden patterns for \(\Lambda \) in a one-to-one way.

From the last paragraph it should be clear that isomorphic dynamical systems need not have the same forbidden patterns: the isomorphism \((\phi \) above) must also preserve the linear order of both spaces (supposing both spaces are linearly ordered), and this will be in general not the case. For example, the \(\lambda \)-preserving shift map \(S_2 : x \mapsto 2x \pmod{1}, \) \(0 \leq x \leq 1 \), has no forbidden patterns of length 3, although it is isomorphic to the logistic and tent maps (the isomorphism with \(f \) is proved via the semi-conjugacy \(\varphi : ([0, 1], \lambda) \to ([0, 1], \mu) \), \(\varphi(x) = \sin^2 \pi x \), which does not preserve order on account of being increasing on \((0, \frac{1}{2})\) and decreasing on \((\frac{1}{2}, 1)\). The same happens with the logistic map and the \((\frac{1}{2}, \frac{1}{2})\)-Bernoulli shift, a model for tossing of a fair coin, because, as we saw in Example 2, the corresponding isomorphism (actually, the coding map) \(\Phi : [0, 1] \to \{0, 1\}^{\mathbb{N}} \) is not order-preserving.

Two isomorphic dynamical systems, whose phase spaces are linearly ordered, are called order-isomorphic if the isomorphism between them is also an order-isomorphism (i.e., it also preserves the order structure). It is obvious that two order-isomorphic systems (like those defined by the logistic and the tent map) have the same order patterns.

Proposition 2. Given \(X_1, X_2 \subset \mathbb{R} \) endowed with the standard Borel sigma-algebra \(\mathcal{B} \), suppose that the dynamical systems \((X_1, \mathcal{B}, \mu_1, f_1) \) and \((X_2, \mathcal{B}, \mu_2, f_2) \) are isomorphic via a continuous map \(\phi : X_1 \to X_2 \). If \(f_1 \) is topologically transitive and, for all \(x \in X_1 \), both \(x \) and \(\phi(x) \) define the same order patterns, then \(\phi \) is order-preserving.

Proof. We want to prove that if \(x, x' \in X_1 \) and \(x < x' \), then \(\phi(x) < \phi(x') \). Because of continuity, for all \(\varepsilon > 0 \) there exists \(0 < \delta < \frac{x' - x}{2} \) such that \(|y - x| < \delta \Rightarrow \)
Choose now y for forbidden patterns of length x. Transitivity implies that, given x, x' and δ as above, there exists $x_0 \in X_1$, $N = N(x, \delta)$ and $N' = N'(x', \delta)$ such that $|f_1^N(x_0) - x| < \delta$ and $|f_1^N(x_0) - x'| < \delta$. Thus $f_1^{N'}(x_0) < f_1^{N'}(x_0)$ and, by assumption, $\phi \circ f_1^N(x_0) = f_1^N(\phi(x_0)) < f_2^N(\phi(x_0)) = \phi \circ f_1^N(x_0)$ holds. Choose now $y = f_1^N(x_0)$, $y' = f_1^{N'}(x_0)$ to deduce

$$\phi(y) < \phi(y') \leq \phi(x') + |\phi(y') - \phi(x')| \leq \phi(x') + \frac{\varepsilon}{2},$$

where ε is arbitrary. If we choose now $\varepsilon < \frac{|\phi(x) - \phi(x')|}{2}$, then it follows $\phi(x) < \phi(x')$, since $|\phi(y) - \phi(x)| < \frac{\varepsilon}{2}$. \square

Finally, observe that the setting we are considering is more general than the setting of Kneading Theory since our functions need not be continuous (but only piecewise-continuous). Under some assumptions [10], the kneading invariants completely characterize the order-isomorphy of continuous maps.

4 Outgrowth forbidden patterns

According to Proposition 1, for every piecewise monotone interval map on \mathbb{R}, $f : I \to I$, there exist $\pi \in S_L$, $L \geq 2$, which cannot occur in any orbit. We call them forbidden patterns for f and recall how their absence pervades all longer patterns in form of outgrowth forbidden patterns (see Example 3). Since $\pi = [\pi_0, \ldots, \pi_{L-1}]$ is forbidden for f, then the $2(L+1)$ patterns of length $L + 1$,

$$[L, \pi_0, \ldots, \pi_{L-1}], [\pi_0, L, \pi_1, \ldots, \pi_{L-1}], \ldots, [\pi_0, \ldots, \pi_{L-1}, L],$$

$$[0, \pi_0 + 1, \ldots, \pi_{L-1} + 1], [\pi_0 + 1, 0, \pi_1 + 1, \ldots, \pi_{L-1} + 1], \ldots, [\pi_0 + 1, \ldots, \pi_{L-1} + 1, 0],$$

are also forbidden for f. Assume for the time being that all these forbidden patterns belonging to the “first generation” are all different. Then, proceeding similarly as before, we would find

$$2(L + 1) \times 2(L + 2) = 2^{2}(L + 1)(L + 2)$$

forbidden patterns of length $L + 2$ in the second generation and, in general,

$$2^{m}(L + 1)…(L + m) = 2^{n}(L + m)! \over L!$$

forbidden patterns of length $L + m$ in the mth generation, provided that all forbidden patterns up to (and including) the mth generation are different. Observe that all these forbidden patterns generated by π have the form

$$[*, \pi_0 + n, *, \pi_1 + n, *, \ldots, *, \pi_{L-1} + n, *] \in S_N$$

(11)

with $n = 0, 1, \ldots, N - L$, where $N - L \geq 1$ is the number of wildcards $* \in \{0, 1, \ldots, n - 1, L + n, \ldots, N - 1\}$ (with $* \in \{L, \ldots, N - 1\}$ if $n = 0$ and $* \in \{0, \ldots, N - L - 1\}$ if $n = N - L$).
A better upper bound on the number of outgrowth forbidden patterns of length N of π is obtained using the following reasoning. For fixed n, the number of outgrowth patterns of π of the form (11) is $\frac{N!}{(N - L)!}$. This is because out of all possible permutations of the numbers $\{0, 1, \ldots, N - 1\}$, we only count those that have the entries $\{\pi_0 + n, \pi_1 + n, \ldots, \pi_{L - 1} + n\}$ in the required order. Next, note that we have $N - L + 1$ choices for the value of n. Each choice generates a set of $\frac{N!}{(N - L)!}$ outgrowth patterns. These sets are not necessarily disjoint, but an upper bound on the size of their union, i.e., the set of all outgrowth forbidden patterns of length N of π, is given by

$$\frac{(N - L + 1)N!}{(N - L)!}.$$

A weak form of the converse holds also true: if $[L, \pi_0, \ldots, \pi_{L-1}], [\pi_0, L, \ldots, \pi_{L-1}], \ldots, [\pi_0, \ldots, \pi_{L_0-1}, L] \in S_{L+1}$ are forbidden, then $[\pi_0, \ldots, \pi_{L-1}] \in S_L$ is also forbidden.

Forbidden patterns that are not outgrowth patterns of other forbidden patterns of shorter length are called forbidden root patterns since they can be viewed as the root of the tree of forbidden patterns spanned by the outgrowth patterns they generate, branching taking place when going from one length (or generation) to the next.

![Figure 2: The twelve allowed order patterns of length 4 for the logistic map. Note the two components of $P_{[0,3,1,2]}$, $P_{[2,0,3,1]}$ and $P_{[1,2,3,0]}$.](image-url)

10
Example 4. If f is the logistic map, then
\[
\begin{align*}
f^3(x) &= -16 384 x^8 + 65 536 x^7 - 106 496 x^6 + 90 112 x^5 - 42 240 x^4 + 10 752 x^3 - 1344 x^2 + 64 x.
\end{align*}
\]

In Figure 2, which is Figure 1 with the curve $y = f^3(x)$ superimposed, we can see the 12 allowed patterns of length 4 of the logistic map. Since there are 24 possible patterns of length 4, we conclude that 12 of them are forbidden. The outgrowth patterns of $[2, 1, 0]$, the only forbidden pattern of length 3, are (see (11)):
\[
(n = 0) \quad [3, 2, 1, 0], [2, 3, 1, 0], [2, 1, 3, 0], [2, 1, 0, 3]
\]
\[
(n = 1) \quad [0, 3, 2, 1], [3, 0, 2, 1], [3, 2, 0, 1], [3, 2, 1, 0].
\]

Observe that the pattern $[3, 2, 1, 0]$ is repeated. Therefore, the remaining five forbidden patterns of length 4 are root patterns.

In Figure 2 one can also follow the first two splittings of the intervals P_π:
\[
P_{[0,1]} \rightarrow \begin{cases}
P_{[0,1,2]} \rightarrow P_{[0,1,2,3]}, P_{[0,1,3,2]}, P_{[0,3,1,2]}, P_{[3,0,1,2]} \\
P_{[0,2,1]} \rightarrow P_{[0,2,1,3]}, P_{[2,0,1,3]}, P_{[2,0,3,1]}, P_{[2,3,0,1]}
\end{cases}
\]
\[
P_{[1,0]} \rightarrow \begin{cases}
P_{[1,0,2]} \rightarrow P_{[3,1,0,2]} \\
P_{[1,2,0]} \rightarrow P_{[1,2,0,3]}, P_{[1,2,3,0]}, P_{[1,3,2,0]}
\end{cases}
\]

The splitting of the intervals P_π can be understood in terms of periodic points and their preimages. Thus, the splitting of $P_{[0,1]}$ is due to the points $\frac{1}{4}$ (first preimage of the period-1 point $\frac{3}{4}$) and $\frac{5-\sqrt{5}}{8}$ (a period-2 point); the second period-2 point, $\frac{5+\sqrt{5}}{8}$, is responsible for the splitting of $P_{[1,0]}$. On the contrary, $P_{[0,2,1]}$ and $P_{[1,0,2]}$ do not split because they contain neither period-3 point nor first preimages of period-2 points nor second preimages of fixed points. \(\Box\)

Given the permutation $\sigma \in S_N$, we say that σ contains the consecutive pattern $\tau = [\tau_0, \tau_1, \ldots, \tau_{L-1}] \in S_L$, $L < N$, if it contains a consecutive subsequence order-isomorphic to τ. Alternatively, we say that σ avoids the consecutive pattern τ if it contains no consecutive subsequence order-isomorphic to τ [8].

Suppose now $\sigma \in S_N$, $\pi \in S_L$, $L < N$, and
\[
\begin{align*}
\pi(p_0) &= 0, \quad \pi(p_1) = 1, \quad \ldots, \quad \pi(p_{L-1}) = L - 1, \\
\sigma(s_0) &= n, \quad \sigma(s_1) = 1 + n, \quad \ldots, \quad \sigma(s_{L-1}) = L - 1 + n,
\end{align*}
\]
with $n \in \{0, 1, \ldots, N - L\}$. Then, the sequences $p_0, p_1, \ldots, p_{L-1}$ and $s_0, s_1, \ldots, s_{L-1}$ are consecutive subsequences of π^{-1} and σ^{-1} (starting at positions 0 and n), respectively. If, moreover, σ is an outgrowth pattern of π (see (11)), then $s_0, s_1, \ldots, s_{L-1}$ is order-isomorphic to $p_0, p_1, \ldots, p_{L-1}$. It follows that $\sigma \in S_N$ is an outgrowth pattern of $\pi = [\pi_0, \ldots, \pi_{L-1}]$ if σ^{-1} contains π^{-1} as a consecutive subsequence. Hence, the allowed patterns for f are the permutations that avoid all such consecutive subsequences for every forbidden root pattern of f.

Example 5. Take $\pi = [2, 0, 1]$ to be a forbidden pattern for a certain function f. Then $\sigma = [4, 2, 1, 5, 3, 0]$ is an outgrowth pattern of π because it contains the subsequence...
4, 2, 3 \((n = 2)\). Equivalently, \(\sigma^{-1} = [5, 2, 1, 4, 0, 3]\) contains the consecutive pattern 1, 4, 0 (starting at location \(\sigma^{-1}_2\)), which is order-isomorphic to \(\pi^{-1} = [1, 2, 0]\). □

Let \(\text{out}(\pi)\) denote the family of outgrowth patterns of the forbidden pattern \(\pi\),

\[
\text{out}_N(\pi) = \text{out}(\pi) \cap S_N = \{\sigma \in S_N : \sigma^{-1} \text{ contains } \pi^{-1} \text{ as a consecutive pattern}\},
\]

and

\[
\text{avoid}_N(\pi) = S_N \setminus \text{out}_N(\pi) = \{\sigma \in S_N : \sigma^{-1} \text{ avoids } \pi^{-1} \text{ as a consecutive pattern}\}.
\]

where \(\setminus\) stands for set difference. The fact that some of the outgrowth patterns of a given length will be the same and that this depends on \(\pi\), makes the analytical calculation of \(|\text{out}_N(\pi)|\) extremely complicated. Yet, from [8] we know that there are constants \(0 < c, d < 1\) such that

\[
c^N N! < |\text{avoid}_N(\pi)| < d^N N!
\]

(for the first inequality, \(L \geq 3\) is needed). This implies that

\[
(1 - d^N) N! < |\text{out}_N(\pi)| < (1 - c^N) N!.
\]

This factorial growth with \(N\) can be exploited in practical applications to tell random from deterministic time series with, in principle, arbitrarily high probability. As said in the Introduction, these practical aspects are beyond the scope of this paper, but let us bring up here the following, related point. In the case of real (hence, finite) randomly generated sequences, a given order pattern \(\pi \in S_L\) can be missing with non-vanishing probability. We call false forbidden patterns such missing order patterns in finite random sequences without constraints, to distinguish them from the ‘true’ forbidden patterns of deterministic (finite or infinite) sequences. True and false forbidden patterns of self maps on one-dimensional intervals have been studied in [3].

5 Order patterns and one-sided shifts

The general study of order patterns and forbidden patterns is quite difficult. Analytical results seem to be only feasible for particular maps. In this and next sections we will consider the one- and two-sided shifts since, owing to their simple structure, they can be analyzed with greater detail. As we saw in Sect. 2, shifts are continuous maps (automorphisms if two-sided) on compact metric spaces \((\{0, 1, ..., N - 1\}^\mathbb{N}_0, d_K)\) (resp., \((\{0, 1, ..., N - 1\}^\mathbb{Z}, d_K)\)) that can be lexicographically ordered:

\[
\omega < \omega' \iff \left\{ \begin{array}{l}
\omega_0 < \omega'_0 \\
\text{or} \\
\omega_0 = \omega'_0, ..., \omega_{n-1} = \omega'_{n-1} \text{ and } \omega_n < \omega'_n \ (n \geq 1) \end{array} \right.,
\]

If \(\overline{\omega}\) denotes the countable, dense and \(\Sigma\)-invariant set of \(\omega\) eventually terminating in an infinite string of \((N - 1)\)s except the sequence \((\overline{N - 1})\), then the map \(\psi : \{0, 1, ..., N - 1\}^\mathbb{N}_0 \setminus \overline{\omega} \rightarrow [0, 1]\) defined by
\[
\psi \colon (\omega_n)_{n \in \mathbb{N}_0} \mapsto \sum_{n=0}^{\infty} \omega_n N^{-(n+1)},
\]
(13)

is one-to-one and order-preserving; moreover, \(\psi^{-1}\) is also order-preserving. As a matter of fact, the lexicographical order in \(\{0, 1, \ldots, N-1\}^{\mathbb{N}_0} \cong \mathbb{N}\) corresponds via \(\psi\) to the standard order (induced by the positive numbers) in the interval \([0, 1]\). Although not important for our purposes, let us point out that \(\psi\) is continuous, but \(\psi^{-1}\) is not. Since the map

\[
S_N = \psi \circ \Sigma \circ \psi^{-1} : [0, 1] \to [0, 1],
\]
(14)

where \(\Sigma\) is the shift on \(N\) symbols, is piecewise linear and \(\mathbb{N}\) is dense, it follows (Proposition 1) that \(\Sigma\) will have forbidden order patterns (although \(\Sigma\) has no forbidden symbol pattern, see Sect. 2). In particular, if \(\Sigma\) is the \((\frac{1}{N}, \ldots, \frac{1}{N})\)-Bernoulli shift, then \(S_N\) is the Lebesgue-measure preserving sawtooth map \(S_N : x \mapsto Nx \pmod{1}\). Observe that only sequences that are not eventually periodic define order patterns of any length.

What is the structure of the allowed order patterns? It is easy to convince oneself (see Example 6 below) that, given \(\omega = (\omega_0, \ldots, \omega_{L-1}) \in \{0, 1, \ldots, N-1\}^{\mathbb{N}_0}\) of type \(\pi \in S_L, \pi\) can be decomposed into, in general, \(N\) blocks,

\[
[p_0, \ldots, p_{k_0-1}; p_{k_0}, \ldots, p_{k_0+k_1-1}; \ldots; p_{k_0+\ldots+k_{N-2}}, \ldots, p_{k_0+\ldots+k_{N-2}+k_{N-1}-1}],
\]
(15)

the semicolons separating the different blocks, where \(k_n \geq 0, 0 \leq n \leq N-1\), is the number of symbols \(n \in \{0, 1, \ldots, N-1\}\) in \(\omega_0^{L-1}\) \((k_n = 0\) if none, with the corresponding block missing\) and \(k_0 + \ldots + k_{N-1} = L\). Moreover:

(R1) The first (leftmost) block, \(\pi_{0, \ldots, \pi_{k_{-1}}-1}\), contains the locations of the 0s in \(\omega_0^{L-1}\). Each 0-run (i.e., a segment of two or more consecutive 0s contained in or intersected by \(\omega_0^{L-1}\)), if any, contributes an increasing subsequence \(\pi_i, \pi_i+1, \pi_i+2, \ldots\) (as long as the 0-run), which is possibly intertwined with other entries of this block.

(R2) The last (rightmost) block, \(\pi_{k_0+\ldots+k_{N-2}}, \ldots, \pi_{k_0+\ldots+k_{N-2}+k_{N-1}-1}\), contains the locations of the \((N-1)s\) in \(\omega_0^{L-1}\). Each \((N-1)\)-run contained in or intersected by \(\omega_0^{L-1}\), if any, contributes a decreasing subsequence \(\pi_{k_0+\ldots+k_{N-2}+i}, \pi_{k_0+\ldots+k_{N-2}+i-1}, \ldots\) (as long as the \((N-1)\)-run), which is possibly intertwined with other entries of this block.

(R3) Every intermediate block, \(\pi_{k_0+\ldots+k_{j-1}+1}, \ldots, \pi_{k_0+\ldots+k_{j-1}+k_{j-1}+1}, 1 \leq j \leq N-2\), contains the locations of the \(j\)s in \(\omega_0^{L-1}\). Each \(j\)-run contained in or intersected by \(\omega_0^{L-1}\), if any, contributes a subsequence of the same length as the run, that is increasing \((\pi_{k_0+\ldots+k_{j-1}+i}, \pi_{k_0+\ldots+k_{j-1}+i+1}, \ldots)\) if the run is followed by a symbol \(> j\), or decreasing \((\pi_{k_0+\ldots+k_{j-1}+i}, \pi_{k_0+\ldots+k_{j-1}+i-1}, \ldots)\) if the run is followed by a symbol \(< j\). This subsequences may be intertwined with other entries of the same block.

(R4) If the entries \(\pi_a \leq L-2\) and \(\pi_b \leq L-2\) belong to the same block of \(\pi \in S_L\), and \(\pi_a\) appears on the left of \(\pi_b\) (i.e., \(0 \leq a < b \leq L-1\)), then \(\pi_a + 1\) appears also on the left of \(\pi_b + 1\) (i.e., \(\pi_a + 1 = \pi_a', \pi_b + 1 = \pi_b'\) and \(0 \leq a' < b' \leq L-1\)).

In (R4), \(\pi_a + 1\) and \(\pi_b + 1\) may appear in the same block or in different blocks. Let us mention at this point that (R4) implies some simple consequences for the relative locations of increasing and decreasing subsequences within the same block and their
Example 6. Take in \(\{0, 1, 2\}^N \) the sequence
\[
\omega = (|0| 2|1| 2|1| 3|1| 4|2|5|2|6|0|7|0|8|1|9|0|10|0|11|0|12|2|2|1| \ldots),
\]
where \(|k|b \) indicates that the entry \(b \in \{0, 1, 2\} \) is at place \(k \). Then \(\omega \) defines the order pattern
\[
\pi = [6, 10, 7, 11; 9, 8, 1, 2, 3; 5, 0, 4, 13, 12] \in S_4,
\]
where the first block, \(\pi_0^3 = 6, 10, 7, 11 \), is set by the \(k_0 = 4 \) symbols 0 in \(\omega_0^{13} \), which appear grouped in two runs, \(\omega_0^7 \) and \(\omega_0^{11} \) (note the two increasing subsequences 6, 7 and 10, 11 in this block); the intermediate block, \(\pi_4^3 = 9, 8, 1, 2, 3 \), comes from the \(k_1 = 5 \) symbols 1 in \(\omega_0^{13} \), grouped also in two runs, \(\omega_1^3 \), followed by the symbol \(2 > 1 \), and \(\omega_8^2 \), followed by the symbol \(0 < 1 \) (note the corresponding increasing subsequence 1, 2, 3, and decreasing subsequence 9, 8, in this block); finally, the last block \(\pi_9^3 = 5, 0, 4, 13, 12 \) accounts for the \(k_2 = 5 \) appearances of the symbol 2 in \(\omega_0^{13} \) (the decreasing subsequences 5, 4 and 13, 12 come from the runs \(\omega_4^5 \) and \(\omega_4^{13} \), respectively, where \(\omega_4^{13} \) is the intersection within \(\omega_0^{13} \) of a longer 2-run). □

Observe that two sequences \(\omega, \omega' \) with \(\omega_0^{L-1} \neq \omega'_0^{L-1} \) may define the same order pattern of length \(L \), while two sequences \(\omega, \omega' \) with \(\omega_0^{L-1} = \omega'_0^{L-1} \) may define different order patterns of length \(L \) (depending on \(\omega_{L-1}, \ldots, \omega'_{L-1}, \ldots \)).

Proposition 3. The one-sided shift on \(N \geq 2 \) symbols has no forbidden patterns of length \(L \leq N + 1 \).

Proof. First of all, note that if \(\omega = (\omega_0, \omega_1, \omega_2, \ldots) \) is of type \(\pi = [\pi_0, \pi_1, \ldots, \pi_N] \), then the point \(\bar{\omega} = (N - 1 - \omega_0, N - 1 - \omega_1, N - 1 - \omega_2, \ldots) \) is of type \(\pi_{\text{mirrored}} = [\pi_N, \pi_{N-1}, \ldots, \pi_1, \pi_0] \).

Given \(\pi = [\pi_0, \pi_1, \ldots, \pi_N] \), we can therefore assume, without loss of generality, that \(\pi_0 < \pi_N \). Consider two cases.

- If \(\pi_N \neq N \), then there is some \(l \in \{1, 2, \ldots, N - 1\} \) such that \(\pi_l = N \). In this case, the point \(\omega = (\omega_0, \omega_1, \ldots) \in \{0, 1, \ldots, N - 1\}^N \), where
\[
\begin{align*}
\omega_{\pi_0} &= 0, \quad \omega_{\pi_1} = 1, \quad \ldots, \quad \omega_{\pi_l-1} = l - 1, \quad \omega_{\pi_l} = l - 1, \quad \omega_{\pi_{l+1}} = l, \quad \ldots, \\
\omega_{\pi_N-1} &= N - 2, \quad \omega_{\pi_N} = N - 1, \quad \omega_{N+1} = \omega_{N+2} = N - 1,
\end{align*}
\]
is of type \(\pi \). Indeed, it is enough to note that
\[
\Sigma^{\pi_{l-1}}(\omega) = (l - 1, \omega_{\pi_{l-1}+1}, \ldots) < (l - 1, N - 1, N - 1, \ldots) = \Sigma^N(\omega) = \Sigma^{\pi_l}(\omega).
\]

- If \(\pi_N = N \), let us first assume that \(\pi_0 \neq 0 \). Then there is \(k \in \{1, 2, \ldots, N - 1\} \) such that \(\pi_k + 1 = \pi_0 \). In this case, the point \(\omega = (\omega_0, \omega_1, \ldots) \in \{0, 1, \ldots, N - 1\}^N \), where
\[
\begin{align*}
\omega_{\pi_0} &= 0, \quad \omega_{\pi_1} = 1, \quad \ldots, \quad \omega_{\pi_k} = k - 1, \quad \omega_{\pi_k} = k, \quad \omega_{\pi_{k+1}} = k, \quad \omega_{\pi_{k+2}} = k + 1, \quad \ldots, \\
\omega_{\pi_N-1} &= N - 2, \quad \omega_{\pi_N} = N - 1, \quad \omega_{N+1} = N - 1,
\end{align*}
\]
is of type π. This is clear because

$$\Sigma^{\pi_k}(\omega) = (k, 0, \ldots) < (k, \omega_{\pi_{k+1}+1}, \ldots) = \Sigma^{\pi_{k+1}}(\omega).$$

In the case that $\pi_0 = 0$, then there is $l \in \{1, 2, \ldots, N - 1\}$ such that $\pi_l = N - 1$. Now the point $\omega = (\omega_0, \omega_1, \ldots) \in \{0, 1, \ldots, N - 1\}^{\mathbb{N}_0}$, where

$$\omega_{\pi_0} = 0, \omega_{\pi_1} = 1, \ldots, \omega_{\pi_{l-1}} = l - 1, \omega_{\pi_l} = l - 1, \omega_{\pi_{l+1}} = l, \ldots,$$

$$\omega_{\pi_{N-1}} = N - 2, \omega_{\pi_N} = N - 1,$$

is of type π, since

$$\Sigma^{\pi_{l-1}}(\omega) = (l - 1, \omega_{\pi_{l-1}+1}, \ldots) < (l - 1, N - 1, \ldots) = \Sigma^N(\omega) = \Sigma^l(\omega). \square$$

Proposition 4. The shift on N symbols has forbidden patterns of length $L \geq N + 2$.

Proof. We need only to prove the existence of forbidden patterns of length $L = N + 2$, since then their outgrowth patterns will provide forbidden patterns of arbitrary length $L > N + 2$.

Consider first the case of an *even* number of symbols $\{0, 1, \ldots, N - 1\}$, $N = 2l + 1$, $l \geq 1$. We claim that the ‘spiralling’ pattern

$$\pi = [2l + 1, 2l - 1, \ldots, 3, 1, 0, 2, \ldots, 2l, 2l + 2] \in S_{2l+3} = S_{N+2}$$

(17)

is forbidden. Indeed, the central components $\pi_l = 1$ and $\pi_{l+1} = 0$ may not be in the same block, otherwise the restriction (R4) would be violated (2 should be on the left of 1). Thus we separate them with a semicolon:

$$\pi = [2l + 1, 2l - 1, \ldots, 3, 1; 0, 2, \ldots, 2l, 2l + 2].$$

Likewise, $\pi_{l+1} = 0$ and $\pi_{l+2} = 2$ may not be in the same block (otherwise, according to (R4) 1 should be on the left of 3), hence we separate them with a second semicolon:

$$\pi = [2l + 1, 2l - 1, \ldots, 3, 1; 0; 2, \ldots, 2l, 2l + 2].$$

The procedure continues along alternating, outgoing directions, considering each time pairs of consecutive components of π in an exhaustive way: $\pi_{l-1} = 3$ and $\pi_l = 1$ in the 3rd step, $\pi_{l+2} = 2$ and $\pi_{l+3} = 4$ in the fourth step, etc.. In the kth step we pick up (a) $\pi_{l+\nu} = k - 2$ and $\pi_{l+\nu+1} = k$ if $k = 2\nu$, $\nu \geq 1$, or (b) $\pi_{l-\nu} = k$ and $\pi_{l-\nu+1} = k - 2$ if $k = 2\nu + 1$, $\nu \geq 1$, and conclude as before that we need to separate the corresponding pair with a kth semicolon (to put them in different blocks) in order not to violate (R4), since $k - 1$ and $k + 1$ appear always in the wrong order. By the time that, after completing the $(N - 1)$th step, we arrive at the leftmost pair $\pi_0 = 2l + 1, \pi_1 = 2l - 1$, we have already used up all the $N - 1$ semicolons we have. However, this leftmost pair also violates (R4) because $2l + 2 = \pi_{N+1}$ appears on the right of $2l = \pi_N$. This proves that π is forbidden.
Suppose now that the number of symbols is odd: \(N = 2l, \ l \geq 1 \). In this case we claim that
\[
\tau = [2l + 1, 2l - 1, ...3, 1, 0, 2, ..., 2l - 2, 2l] \in S_{2l+2} = S_{N+2} \tag{18}
\]
is forbidden. We start again considering the central components \(\tau_l = 1 \) and \(\tau_{l+1} = 0 \), to conclude that they may not be in the same block because 2 is on the right of 1, violating otherwise the restriction (R4). Thus we separate them with a semicolon:
\[
\tau = [2l + 1, 2l - 1, ...3, 1; 0, 2, ..., 2l - 2, 2l].
\]
The proof continues exactly as before, except that now, after completing the \((N-1)\)th step and thus having already used up \(N-1 \) semicolons, we arrive at the rightmost pair \(\tau_N = 2l - 2, \ \tau_{N+1} = 2l \). But this pair violates (R4) because \(2l - 1 = \tau_1 \) appears on the right of \(2l + 1 = \tau_0 \). This proves that \(\tau \) is forbidden and completes the proof. \(\square \)

From Proposition 3 and the proof of Proposition 4 it follows that the order pattern (17) if \(N \) is even, or (18) if \(N \) is odd, is a forbidden root pattern of the shift on \(N \) symbols. We turn next to the question, whether there exist also forbidden root patterns of lengths \(L > N + 2 \).

Consider a partition of the sequence \(0, 1, ..., L - 1 \) of the form
\[
p_1 < p_2 < ... < p_d < ... < p_D, \tag{19}
\]
where
\[
p_d = e_d, e_d + 1, ..., e_d + h_d - 1, \tag{20}
\]
\(1 \leq d \leq D, \ D \geq 2 \), with (i) \(h_d \geq 1, \ h_1 + ... + h_D = L \), and (ii) \(e_d + h_d = e_{d+1} \) for \(1 \leq d \leq D - 1 \), i.e., the follower of \(p_d, \ e_d + h_d \), is the first element of \(p_{d+1, \ e_{d+1}} \). We call (19) a partition of \(0, 1, ..., L - 1 \) in \(D \) segments, (20) an increasing segment and denote by \(\vec{p_d} \) the decreasing or reversed segment
\[
\vec{p}_n = e_d + h_d - 1, ..., e_n + 1, e_n.
\]
We also call \(e_n \) the first element of \(\vec{p}_n \) and \(e_{n+1} \) the follower of \(\vec{p}_n \).

In the proof of the existence of forbidden root patterns below (Lema 1 and Proposition 5) we are going to use the following straightforward consequence of restriction (R4) (that we will hence also refer to as (R4)): \textit{The follower (if any) of an increasing segment }\(p_n \) (correspondingly, decreasing segment \(\vec{p}_n \)) \textit{in an allowed pattern }\(\pi \) \textit{appears always to the right of }\(p_n \) (correspondingly, to the left of }\(\vec{p}_n \).

Definition. Given a partition (19) of \(0, 1, ..., L - 1 \) in segments, we call an order pattern of the form
\[
\pi = [..., \vec{p}_3, \vec{p}_1, p_2, p_4, ...], \tag{21}
\]
or its mirrored pattern
\[
\pi_{\text{mirrored}} = [..., \vec{p}_4, \vec{p}_2, p_1, p_3, ...], \tag{22}
\]
a spiralling pattern of length \(L \).
Lemma 1. If $N \geq 2$ is the number of symbols and π is a spiralling pattern with D segments and $h_1 \geq 2$ (i.e., $p_1 = 0, 1, \ldots$), then π is forbidden if (a) $D \geq N$ and $h_D \geq 2$ or (b) $D \geq N + 1$ and $h_D = 1$; otherwise it is allowed.

The first part of this proposition generalizes Proposition 4. Indeed, the order patterns (17) and (18) correspond to the ‘minimal’ spiralling pattern in case (b): $p_1 = 0, 1$ and $p_d = d$ for $2 \leq d \leq N + 1$.

Proof. Consider the spiralling pattern (21). The proof that such π is forbidden proceeds formally as in Proposition 4, starting again with the central segment $p = e_1 + h_1 - 1, \ldots, e_2$, (first semicolon). From here on, three possibilities can occur that we illustrate in a general step of even order. (i) If $p_2\nu$ consists of more than one element (i.e., $h_2\nu \geq 2$), then we apply (R4) to $p_2\nu$ to conclude that we need a semicolon between $e_2\nu + h_2\nu - 2$ and $e_2\nu + h_2 - 1$ (since the follower of $p_2\nu$, i.e., the first entry of $p_2\nu+1$, is on the wrong side). (ii) If $p_2\nu$ consists of one element ($h_2\nu = 1$) and $p_2\nu-2$ consists of more than one element ($h_2\nu-2 \geq 2$), then we apply (R4) to the pair $p_2\nu = e_2\nu$ and $e_2\nu-2 + h_2\nu-2 - 1$, the last element of $p_2\nu-2$, which has been separated with a semicolon from the rest of elements in $p_2\nu-2$ two steps earlier. (iii) If both $p_2\nu$ and $p_2\nu-2$ consist of a single element ($h_2\nu = h_2\nu-2 = 1$), apply (R4) to the pair $p_2\nu-2 = e_2\nu-2 < p_2\nu = e_2\nu$ to infer the need for a semicolon separating them (since $e_2\nu-2 + 1 = e_2\nu-1$, the first element of $p_2\nu-1$, is on the right of $e_2\nu + 1 = e_2\nu+1$, the first element of $p_2\nu+1$). As a general rule, we need one semicolon per segment $p_2\nu$ or $p_2\nu+1$, as long as there are still a posterior segment $p_2\nu+1$ or $p_2\nu+2$, respectively, on the ‘wrong’ side.

Following in this way, we run out of semicolons ($N - 1$ at most) after having considered the segment p_{N-1}. If $D \geq N$ and $h_N \geq 2$, then p_N will violate (R1) if N is odd or (R2) if N is even. If $h_N = 1$ but $D \geq N + 1$, then the segment p_{N+1} will be on the wrong side of p_N and the pattern will not comply with (R4).

The proof for π_{mirrored}, Eq. (22), is completely analogue.

Also, the procedure above shows how to decompose any spiralling pattern into well-formed (i.e., complying with (R1)-(R4)) blocks. The central block (in the case (21)) is of the form $e_1 + h_1 - 2, \ldots, 1, 0$ if $h_2 = 1$, or $e_1 + h_1 - 2, \ldots, 1, 0, 2, \ldots, e_2 + h_2 - 2$ if $h_2 \geq 2$. Each block on the right side of the central block is of the form $e_{2\nu} + h_{2\nu} - 1$ if $h_{2\nu+2} = 1$ or $2\nu = D$ (rightmost block), or it has the form $e_{2\nu} + h_{2\nu} - 1, e_{2\nu+2}, \ldots, e_{2\nu+2} + h_{2\nu+2} - 2$ if $h_{2\nu+2} \geq 2$. Each block on the left side of the central block is of the form $e_{2\nu-1} + h_{2\nu-1} - 1$ if $h_{2\nu+1} = 1$ or $2\nu - 1 = D$ (leftmost block), or it has the form $e_{2\nu+1} + h_{2\nu+1} - 2, \ldots, e_{2\nu+1}, e_{2\nu-1} + h_{2\nu-1} - 1$ if $h_{2\nu+1} \geq 2$. If N, the number of symbols, is equal to or greater than the number of resulting blocks ($D + 1$ if $h_D \geq 2$, and D if $h_D = 1$), one can readily write down sequences $\omega \in \{0, 1, \ldots, N - 1\}^{30}$ of type π. □

Example 7. As illustration of the procedure used in the proof of Proposition 5, consider the spiralling pattern

$$\pi = [9, 8, 7, 5, 2, 1, 0, 3, 4, 6, 10, 11] \in S_{12}.$$
Here \(p_1 = 0, 1, 2, p_2 = 3, 4, p_3 = 5, p_4 = 6, p_5 = 7, 8, 9 \) and \(p_6 = 10, 11 \). The following scheme summarizes the steps of the decomposition of \(\pi \) into well-formed blocks:

\[
\begin{align*}
\overrightarrow{p_1} &= 2, 1, 0 \rightarrow 2; 1, 0 \quad p_2 &= 3, 4 \quad \rightarrow 3; 4 \\
\overrightarrow{p_3}, 2 &= 5, 2 \rightarrow 5; 2 \quad 4, p_4 &= 4, 6 \quad \rightarrow 4; 6 \\
\overrightarrow{p_5} &= 9, 8, 7 \rightarrow 9; 8, 7 \quad p_6 &= 10, 11 \quad \rightarrow 10; 11
\end{align*}
\]

Hence,

\[\pi = [9; 8, 7, 5; 2; 1, 0, 3; 4; 6, 10; 11] \]

Since the decomposition consists of 7 blocks, \(\pi \) is allowed if \(N \geq 7 \), in compliance with Lemma 1 (a) with \(D = 6 \) and \(h_6 = 2 \). For instance, any sequence \(\omega \in \{0, 1, ..., 6\}^{N_0} \) such that

\[\omega_{11}^{11} \equiv \omega_0, ..., \omega_{11} = 3, 3, 2, 3, 4, 1, 5, 1, 1, 0, 5, 6 \]

is of type \(\pi \).

Proposition 5. For every \(L \geq N + 2 \), the one-sided shift on \(N \) symbols has forbidden root patterns of length \(L \).

Proof. If \(L = N + 2 \), we know already (Proposition 3 and 4) that the spiralling pattern \((17) \) if \(N \) is even, or \((18) \) if \(N \) is odd, is a forbidden root pattern. Thus, assume \(L > N + 2 \) and consider the following partition of \(0, 1, ..., L - 1 \) in \(N \) segments:

\[0, 1 < p_2 < ... < p_{N-1} < L - 2, L - 1. \]

(i.e., \(h_1 = h_N = 2 \)). We claim that the spiralling pattern

\[\pi^* = [\overrightarrow{p_{N-1}}, ..., \overrightarrow{p_3}, 1, 0, p_2, ..., p_{N-2}, L - 2, L - 1] \] (23)

if \(N \) is even, or

\[\tau^* = [L - 1, L - 2, \overrightarrow{p_{N-2}}, ..., \overrightarrow{p_3}, 1, 0, p_2, ..., p_{N-1}], \] (24)

if \(N \) is odd, and their corresponding mirrored patterns, are forbidden root patterns. Only the first case will be analyzed here, the proof being completely analogue in the second case and for the mirrored patterns.

That (23) is forbidden follows readily from Lemma 1 (a). To prove next that \(\pi^* \) is a forbidden root pattern, we need to show that it is not the outgrowth pattern of any forbidden pattern of shorter length. Remember that given a forbidden pattern

\[[\pi_0, ..., \pi_{L-2}] \in \mathcal{S}_{L-1}, \]

its outgrowth patterns of length \(L \) have the form \((Group \ A) \)

\[[L - 1, \pi_0, ..., \pi_{L-2}], [\pi_0, L - 1, ..., \pi_{L-2}], ..., [\pi_0, ..., \pi_{L-2}, L - 1], \]

or the form \((Group \ B) \)

\[[0, \pi_0 + 1, ..., \pi_{L-2} + 1], [\pi_0 + 1, 0, ..., \pi_{L-2} + 1], ..., [\pi_0 + 1, ..., \pi_{L-2} + 1, 0]. \]
There are two possibilities. Suppose first that π^* is an outgrowth forbidden pattern of Group A. Then deleting the entry $L - 1$ yields the spiralling pattern

$$[\tilde{p}_{N-1}, ..., \tilde{p}_3, 1, 0, p_2, ..., p_{N-2}, L - 2],$$

which is allowed on account of having N segments, $h_1 = 2$, and a last segment of length 1 (Lemma 1 (b)).

Thus, suppose that π^* is an outgrowth forbidden pattern of Group B. Then deleting the entry 0 and subtracting 1 from the remaining entries, we get the pattern

$$[\tilde{p}_{N-1}', ..., \tilde{p}_3', 0, p_2', ..., p_{N-2}', L - 3, L - 2],$$

where $p_d' = e_d - 1, ..., e_d + h_d - 2, 1 \leq d \leq N + 1$. Since $p_1' = 0$ ($h_1' = h_1 - 1 = 1$) and $p_2' = 1, ...$ ($h_2' = h_2 \geq 1$), we can merge p_1' and p_2' into the new segment $p_1'' \equiv 0, 1, ..., L = h_1'' \geq 2$ and the following $N - 1$ segments: $p_1'', p_3', ..., p_{N-1}'$ and $p_N' = L - 3, L - 2$. According to Lemma 1 (a), the order pattern (25) is allowed. □

Remark. Spiralling patterns of the particular form (23) or (24) (and the corresponding mirrored patterns) are not, of course, the only forbidden root patterns for the shift on N symbols. For instance, it can be easily checked that all patterns of length $L \geq 2N$ the form

$$[1; 0, 3; 2, 5; 4..., 2N - 3; 2N - 4, L - 2, L - 3, ..., 2N - 2, L - 1] \in S_L$$

and their mirrored patterns, are forbidden root patterns as well.

Corollary 1. For every $K \geq 2$ there are maps on $[0, 1]$ without forbidden patterns of length $\leq K$.

Proof. Let $S_N = \psi \circ \Sigma \circ \psi^{-1} : [0, 1] \to [0, 1]$ be the map (14). Since ψ is an order-isomorphy, S_N and Σ, the shift on N symbols, have the same forbidden patterns. Therefore, if $N + 1 \leq K$, then S_N has no forbidden patterns of length $L \leq K$ because of Proposition 3. □

It follows that there are interval maps on \mathbb{R}^n without forbidden patterns. For example, one can decompose $[0, 1]$ in infinite many half-open intervals (of vanishing length), $[0, 1] = \cup_{N=2}^{\infty} I_N$ and define on each I_N a properly scaled version of S_N, $\tilde{S}_N : I_N \to I_N$. In \mathbb{R}^2 one can perform the said decomposition along the 1-axis and define on $I_N \times [0, 1]$ the function (\tilde{S}_N, Id). Now, Eq. (17) shows that adding some natural assumption, like piecewise monotony, can make all the difference.

6 Order patterns and two-sided shifts

Consider now the bisequence space, $\{0, 1, ..., N-1\}^\mathbb{Z}$, endowed with the lexicographical (or product) order. With the notation ω_- for the left sequence $(\omega_-)_n \in \mathbb{N}$ of $\omega \in \{0, 1,$
\[\ldots, N - 1\}^\mathbb{Z}\) and \(\omega_+\) for the right sequence \((\omega_n)_{n \in \mathbb{N}_0}\), we have\[
\omega < \omega' \iff \begin{cases}
\omega_+ < \omega'_+ \\
\text{or} \\
\omega_- < \omega'_- \text{ if } \omega_+ = \omega'_+,
\end{cases}
\]
where < between right (resp. left) sequences denotes lexicographical order in \(\{0, 1, \ldots, N - 1\}^\mathbb{N}_0\) (resp. \(\{0, 1, \ldots, N - 1\}^\mathbb{N}\)). Thus, the lexicographical order for bisequences is defined most of the time by the right sequences of the points being compared, except when they coincide, in which case the order is defined by their left sequences. If we map \(\{0, 1, \ldots, N - 1\}^\mathbb{Z}\) onto \([0, 1] \times [0, 1] \equiv [0, 1]^2\) via\[
(\omega_-, \omega_+) \mapsto \left(\sum_{n=1}^{\infty} \omega_{-n} N^{-n}, \sum_{n=0}^{\infty} \omega_{n} N^{-(n+1)}\right),
\]
we find that lexicographical order in \(\{0, 1, \ldots, N - 1\}^\mathbb{Z}\) corresponds to lexicographical order in \([0, 1]^2\), which results thereby foliated into a continuum of copies of \((N - 1)s\) in either direction.

In order for this map to be one-to-one, we have to exclude the countable set \(\mathbb{N}\) of all bisequences terminating in an infinite string of \((N - 1)s\) in either direction.

In relation with the order patterns defined by the orbits of two-sided sequences,

\[\Sigma^i(\omega) < \Sigma^j(\omega) \iff \begin{cases}
(\omega_i, \omega_{i+1}, \ldots) < (\omega_j, \omega_{j+1}, \ldots) \\
\text{or} \\
(\omega_{i-1}, \omega_{i-2}, \ldots) < (\omega_{j-1}, \omega_{j-2}, \ldots) \text{ if } (\omega_i, \omega_{i+1}, \ldots) = (\omega_j, \omega_{j+1}, \ldots),
\end{cases}\]

where \(i, j \geq 0, i \neq j\). It follows that the ‘exceptional’ condition \((\omega_i,\omega_{i+1},\ldots) = (\omega_j,\omega_{j+1},\ldots)\) occurs if and only if \(\Sigma^{i-j}(\omega_+) = \omega_+\), i.e., when the right sequence \(\omega_+\) of \(\omega \in \{0, 1, \ldots, N - 1\}^\mathbb{Z}\) is periodic from the entry \(\min\{i, j\}\) on with period \(p = |i - j|\).

Proposition 6. The two-sided shift on \(N \geq 2\) symbols has no forbidden patterns of length \(L \leq N - 1\) and has forbidden patterns for \(L \geq N + 2\).

Proof. The one-sided sequence \(\omega_+ \in \{0, 1, \ldots, N - 1\}^\mathbb{N}_0\) defines an order pattern \(\pi\) of length \(L\),

\[\Sigma^{\pi_0}(\omega_+) < \Sigma^{\pi_1}(\omega_+) < \ldots < \Sigma^{\pi_{L-1}}(\omega_+),\]

if and only if the two-sided sequences \(\omega = (\omega_-, \omega_+)\), with \(\omega_- \in \{0, 1, \ldots, N - 1\}^\mathbb{N}\) arbitrary, define the same order pattern. \(\square\)

Example 8. Let \(I^2 = [0, 1] \times [0, 1]\) endowed with the induced Lebesgue measure \(\lambda\) and \(B : I^2 \to I^2\) the \(\lambda\)-invariant *baker’s map*,

\[B(x, y) = \begin{cases}
(2x, \frac{1}{2}y), & 0 \leq x < \frac{1}{2}, \\
(2x - 1, \frac{1}{2}y + \frac{1}{2}), & \frac{1}{2} \leq x \leq 1.
\end{cases}\]

A generating partition of \((I^2, \lambda, B)\): \(A_0 = [0, \frac{1}{2}] \times [0, 1]\) and \(A_1 = [\frac{1}{2}, 1] \times [0, 1]\). For \(\Sigma\) take the two-sided \((\frac{1}{2}, \frac{1}{2})\)-Bernoulli shift. Then \(B\) and \(\Sigma\) are isomorphic via the \(\lambda\)-invariant coding map \(\Phi : I^2 \to \{0, 2\}^\mathbb{Z} \setminus \mathbb{N}\), given by

\[\Phi(x) = (\ldots, \omega_{-1}, \omega_0, \omega_1, \ldots),\]
where \(\omega_n = a_n \) if \(B^n(x) \in A_{a_n}, \ n \in \mathbb{Z} \). Since \(\Phi \) preserves order (in fact, \(\Phi \) is the inverse of the order-preserving map \((\omega_-, \omega_+) \mapsto (\sum_{n=0}^{\infty} \omega_{-n} 2^{-(n+1)}, \sum_{n=1}^{\infty} \omega_n 2^{-n}) \)), sequences ending with \(\bar{1} \) excluded), we conclude that the baker’s transformation has no forbidden patterns of length \(\leq 3 \). □

ACKNOWLEDGEMENTS. We are very thankful to the referees for their valuable comments. J.M.A. was financially supported by the Spanish Ministry of Education and Science (Grant MTM2005-04948).

References

[1] J.M. Amigó, M.B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D 210 (2005), 77-95.

[2] J.M. Amigó, L. Kocarev and J. Szczepanski, Order patterns and chaos, Phys. Lett. A 355 (2006), 27-31.

[3] J.M. Amigó, S. Zambrano and M.A.F. Sanjuán, True and false forbidden patterns in deterministic and random dynamics, Europhys. Lett. 79 (2007), 50001-p1, -p5.

[4] E. Babson and E. Steingrímsdóttir, Generalized permutation patterns and a classification of the Mahonian statistics, Séminaire Lotharingien de Combinatoire 44 (2000), Article B44b, 18.

[5] G.L. Baker and J.P. Gollub, Chaotic Dynamics: An Introduction. Cambridge University Press, Cambridge, 1996.

[6] C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, Nonlinearity 15 (2002), 1595-1602.

[7] M.F. Doherty and J.M. Ottino, Chaos in deterministic systems: Strange attractors, turbulence and applications in chemical engineering, in Chem. Engin. Sci. Vol 43, pp. 130-183.

[8] S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125.

[9] S. Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006), 138-155.

[10] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993.

[11] A.N. Sarkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukrainian Mathematical Journal 16 (1964), 61-71.

[12] P. Walters, An Introduction to Ergodic Theory. Springer Verlag, New York, 1982.