Heavy flavor dynamics across system size at the LHC

Roland Katz
SUBATECH, Université de Nantes, EMN, IN2P3/CNRS, 44307 Nantes, France

Caio A. G. Prado
Institute of Particle Physics, Central China Normal University (CCNU), Wuhan, Hubei 430079, China

Jacquelyn Noronha-Hostler
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
E-mail: jnorhos@illinois.edu

Alexandre A. P. Suaide
Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil

Abstract. One of the fundamental signatures of the Quark Gluon Plasma has been the suppression of heavy flavor (specifically D mesons), which has been measured via the nuclear modification factor, R_{AA} and azimuthal anisotropies, v_n, in large systems. However, multiple competing models can reproduce the same data for R_{AA} to v_n. In this talk we break down the competing effects that conspire together to successfully reproduce R_{AA} and v_n in experimental data using Trento+v-USPhydro+DAB-MOD. Then using our best fit model we make predictions for R_{AA} and v_n across system size for 208PbPb, 129XeXe, 40ArAr, and 16O collisions. We find that 0–10% centrality has a non-trivial interplay between the system size and eccentricities such that system size effects are masked in v_2 whereas in 30–50% centrality the eccentricities are approximately constant across system size and, therefore, is a better centrality class to study D meson dynamics across system size.

1. Introduction

The suppression of heavy probes has been a fundamental signature used to constrain the microscopic properties of the Quark Gluon Plasma (QGP). The soft sector of the QGP consists of a nearly perfect fluid composed of light quarks (up, down, and strange) and gluons. The collective flow observables in the soft sector are well described through event-by-event relativistic viscous hydrodynamics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Due to the much larger mass of charm quarks, they are created at very short time scales and are very unlikely to be fully thermalized within the soft sector of the QGP. Therefore, open heavy flavor mesons, like D mesons, can provide orthogonal information to that gathered in the soft sector. Studying the nuclear modification factor, R_{AA}, which is approximately 1 when no suppression occurs and much less than 1 in large AA collisions where heavy flavor quarks lose energy by being bumped around by the strongly interacting QGP, can provide insight into the microscopic dynamics of...
the QGP. Additionally, due to the path length dependence of the heavy quarks passing through the azimuthally anisotropic medium, a large v_2 is measured for D mesons. In more recent years it has been shown that there is a strong correlation between the soft and hard/heavy sectors when it comes to azimuthal anisotropies [19, 20, 21, 22, 23, 24, 25].

In light of the recent small system results from the LHC and RHIC wherein collective flow and strangeness enhancement [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] have been measured in small systems that can be reasonably well described by theoretical hydrodynamic models [48, 49, 50, 4, 51, 52, 53, 54, 15, 53], physicists have been trying to reconcile these results with the lack of hard or heavy flavor suppression (i.e. $R_{pA} \sim 1$ [55, 56]). For an overview and discussion on future measurements see [57]. A further piece in the puzzle is that a large v_2 has now been measured for D mesons in pPb collisions at the LHC [58]. Currently, there are no theoretical models that can simultaneously reproduce $R_{pA} \sim 1$ with a large v_2 prediction, rather $R_{pA} \sim 0.8$ [59] or no v_2 calculations have been attempted [60, 61]. In order to shed light on this mystery we study the system size dependence of R_{AA} and v_2 in the potential upcoming system size run of symmetric AA collisions (first proposed at the LHC in [62]) using our best fit models in PbPb collisions: trento+v-USPhydro+DAB-MOD.

2. Model

For our heavy flavor description we have created the modular D and B meson Monte Carlo simulation package DAB-MOD [22, 63, 25] that can run both Langevin and energy loss models (and easily incorporate different components of the modeling such as energy loss fluctuations, coalescence, varying the diffusion transport coefficient, and path length dependence of the energy loss). The initial heavy flavor quarks are sampled from pQCD FONLL calculations [64, 65] distribution. After they are evolved dynamically on top of an event-by-event viscous hydrodynamical evolving medium (Trento [66]+v-USPhydro [67, 68, 69]) using either a Langevin description or energy loss, they are hadronized at the decoupling temperature T_d via a hybrid fragmentation/coalescence model from which the final nuclear modification factor can be reconstructed. Here we use our “best fit” model tuned at PbPb 5.02 TeV collisions [63] where the purely collisional spatial diffusion coefficient model [70] $D_s(2\pi T) = 2.23$ reasonably reproduces experimental data at low $p_T \lesssim 5–6$ GeV, while an energy loss model (with the same best fit description as in [71]) works best for for the high $p_T \gtrsim 5–6$ GeV. While a number of lessons can be learned from PbPb collisions, it is not clear across system size in what p_T range Langevin versus energy loss descriptions will dominate. Therefore, in the plots shown here we include both in an overlapping region.

Because we also plot the azimuthal anisotropies, we point out that this is inherently a soft hard correlation (between one soft particle and one hard particle, see [20, 21, 22, 23, 24] for further details on the implications). Therefore, we pay special attention to a reasonable hydrodynamic description of the soft sector. Here we used Trento initial conditions with the parameters $p = 0$, $k = 1.6$, and $\sigma = 0.51$ fm determined from a Bayesian analysis [8] and that works reasonably well compared to multiparticle cumulants [72, 73]. The hydrodynamical description fixed the parameters $\tau_0 = 0.6$ fm, $\eta/s = 0.047$, $T_{FO} = 150$ MeV by comparing to experimental data from the LHC [11, 13, 74] and uses the state-of-the-art Lattice QCD equation of state [75, 11] matched to the particle data list PDG16+ [76, 77]. Additionally, due to the sensitivity of the soft sector to a deformed 129Xe nucleus [13] we also compare a spherical versus prolate xenon nucleus.

Finally, we would be remiss not to point out that there is a tuning parameter for R_{AA} that adjusts its overall magnitude (generally tuned in most central collisions). Because these are predictions for XeXe, ArAr, and OO i.e. there is no experimental data available for R_{AA} in these collisional systems, there is inherently an amount of uncertainty due to this parameter. Furthermore, our hydrodynamic calculations have a similar parameter that is typically tuned to the dN/dy in central collisions. Here we assume in both cases that these constants do not vary
with system size.

3. Results
Within the heavy flavor sector there are many competing models that can reasonably well reproduce experimental data (see for these comparisons in [78]). However, in [79] it was found that once all models are required to use the same hydrodynamical background that these similarities no longer hold. In this work, we constrain our background to fit multiple observables in the soft sector and then study what contributes to produce a reasonable R_{AA} and v_2.

In Fig. 1 we compare the R_{AA} for PbPb collisions at 5.02 TeV for our two different “best fit” models: the Langevin description and energy loss (see [63] for further comparisons of energy loss fluctuations, initial state models, diffusion coefficients, and energy loss parameterizations). Furthermore, we compare both models with and without coalescence. It is clear that at low p_T the need for coalescence is much more obvious whereas above $p_T > 5$ GeV, the need for coalescence is minimal.

When it comes to $v_2\{2\}$ the influence of coalescence appears to play a role even in the energy loss results up to roughly $p_T \sim 10$ GeV. For both Langevin and energy loss the effect of coalescence shifts the peak in the v_2 curve to the right (higher p_T). Additionally, the v_2 results make it quite clear that energy loss is needed above $p_T > 5$ GeV because the Langevin results significantly under-predict the data whereas the energy loss model can reproduce the experimental data perfectly.

Using then our best fit models (always including coalescence) we then make predictions across system size in Fig. 3 for the nuclear modification factor. We find that the smaller systems, indeed, bring R_{AA} closer to 1 but still have rather significant deviations from 1 at $p_T \sim 10$ GeV where a minimum is seen. Generally 30–50% centrality class can get an $R_{AA} \sim 0.8$ at its minimum whereas 0–10% centrality class has a minimum closer to 0.5 for our smallest system size of OO collisions. We note that OO collisions are about double the radius of pPb collisions. Finally, we see that Langevin and energy loss descriptions are nearly identical in R_{AA} at high p_T but between $p_T \sim 5–10$ GeV the energy loss model predicts significantly more heavy flavor suppression than the Langevin model. This point specifically is interesting because it may be that in smaller systems a Langevin description, which predicts less suppression, is preferred in contrast to large systems where Langevin matches data only at low p_T.

Because we study v_2, it is important to study the shape of the initial state through the eccentricities. It has been shown that the initial eccentricities are very strongly correlated...
with the final v_2 in both the soft [80, 81, 82, 83, 84, 85] and the hard/heavy sector [20, 21, 22, 23, 24, 63, 25]. Thus, studying the eccentricities across system size can shed light on the anticipated final v_2 of D mesons. In Fig. 4 we perform precisely this comparison and find quite different results depending on the centrality class. In centrality collisions of 0 – 10% there is a strong system size dependence in ε_2 such that as the system size decreases, the eccentricities increase. In contrast, in midcentral collisions of 30 – 50% we find that the eccentricities are nearly constant and only the system size changes. Thus, 30 – 50% is the best centrality class to actually observe system size effects (to reduce the competing effect of variation in eccentricities).

Figure 3. Plot of R_{AA} across different collisional systems (i.e. system sizes), comparing two different centrality classes: 0 – 10% and 30 – 50%.

Figure 4. Plot of elliptical eccentricities versus average radius for different collisional systems, comparing two different centrality classes: 0 – 10% and 30 – 50%.

Then in Fig. 5 we make the full comparison of the v_2 calculations. We find that as anticipated from the eccentricities that 0 – 10% paints a complicated picture where there is very little system size dependence. This is because the increase in ε_2 in small systems would have the effect of increasing v_2 whereas the system size decrease (demonstrated through the average radius, R) would suppress v_2. Overall, these two competing effects lead to a nearly identical v_2 across system size. In contrast, the 30 – 50% centrality class sees a very clear suppression of v_2 as one decrease the system size.

Additionally, in Fig. 5 we see that a prolate nucleus leads to a larger v_2 for D mesons. This is somewhat surprising because typically the effect of a deformation only shows up in very central...
collisions. Additionally, one would likely expect that D mesons are less sensitive to such small deformation, however, it appears that they indeed can see these differences.

\[\frac{d\psi}{dx} = -\alpha \Gamma_{\text{flow}} \text{ (dashed), frag & coll., } T_d = 160 \text{ MeV, Trento} \]

Figure 5. Plot of \(v_2 \{2\} \) across different collisional systems (i.e. system sizes), comparing two different centrality classes: 0 – 10% and 30 – 50%.

4. Conclusions

Similar to what was found in the soft sector in [74], different behaviors can appear when scaling either by multiplicity (see also [86]) or centrality. In this talk, we argue that when scaling by centrality the \(v_2 \) results have a complex interplay between eccentricities and shrinking system size such that the D meson \(v_2 \) is nearly identical across system size in most central collisions. However, we argue that comparing 30 – 50% centrality allows a focus only on system size effects while keeping the eccentricities nearly identical. In this case we predict that D meson \(v_2 \) will be significantly suppressed in smaller systems in 30 – 50% centrality, this result occurs both in Langevin and energy loss descriptions.

One surprising feature is that we do find a sensitive of D meson \(v_2 \) to a deformed \(^{129}\text{Xe} \) nucleus in 0 – 10% collisions in the range of \(p_T = 3 – 5 \text{ GeV} \), in light of these results it would be quite interesting to revisit RHIC UU results in central collisions in order to study D meson \(v_2 \) or to also explore effects of deformed nuclei in the future sPHENIX experiment.

Finally, we study the system size dependence of a heavy flavor Langevin description versus energy loss description. While the average magnitude shifts somewhat between the two descriptions, we find that they are both influenced by system size in roughly equivalent manners. In the case of \(R_{AA} \) they both approach 1 as the system size is decreased (however, a Langevin description is slightly closer to 1 compared to the energy loss description). However, both still are quite a bit farther away from the \(R_{pPb} \sim 1 \) result. The \(v_2 \) results for energy loss tend to produce more \(v_2 \) for \(p_T > 5 \text{ GeV} \) (bringing it closer to experimental data in PbPb collisions than the Langevin models at high \(p_T \)). In future work we hope to extent our model to even smaller systems such as pPb and pp to compare to recent results from ATLAS and CMS. Additionally, we expect a similar effect to occur at RHIC (as discussed in [87]). Furthermore, it will be interesting to explore further soft-heavy correlations such as [88] or study the initialization time of heavy flavor dynamics more carefully [24]. Furthermore, it would be interesting to explore these ideas further in proposed measurements such as polarized beams [89] and ultracentral deformed ion-ion collisions [90].
5. Acknowledgments.
The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for support. R.K. is
supported by the Region Pays de la Loire (France) under contract No. 2015-08473. C.A.G.P.
is supported by the NSFC under grant No. 11521064, MOST of China under Project No.
2014CB845404. J.N.H. acknowledges the support of the Alfred P. Sloan Foundation; support
from the US-DOE Nuclear Science Grant No. DE-SC0019175; the Illinois Campus Cluster,
a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in
conjunction with the National Center for Supercomputing Applications (NCSA) and which
is supported by funds from the University of Illinois at Urbana-Champaign; and the Office of
Advanced Research Computing (OARC) at Rutgers, The State University of New Jersey for
providing access to the Amlarel cluster and associated research computing resources that have
contributed to the results reported here.

References
[1] Song H, Bass S A, Heinz U, Hirano T and Shen C 2011 Phys. Rev. Lett. 106 192301 [Erratum: Phys.Rev.Lett. 109, 139904 (2012)] (Preprint 1011.2783)
[2] Bozek P and Wyskiel-Piekarska I 2012 Phys. Rev. C 85 064915 (Preprint 1203.6513)
[3] Gardim F G, Grassi F, Luzum M and Ollitrault J Y 2012 Phys. Rev. Lett. 109 202302 (Preprint 1203.2882)
[4] Bozek P and Broniowski W 2013 Phys. Rev. C88 014903 (Preprint 1304.3044)
[5] Niemi H, Eskola K J and Paatelainen R 2016 Phys. Rev. C93 024907 (Preprint 1505.02677)
[6] Ryu S, Paquet J F, Shen C, Denicol G S, Schenke B, Jeon S and Gale C 2015 Phys. Rev. Lett. 115 132301 (Preprint 1502.01675)
[7] McDonald S, Shen C, Fillion-Gourdeau F, Jeon S and Gale C 2017 Phys. Rev. C95 064913 (Preprint 1609.02958)
[8] Bernhard J E, Moreland J S, Bass S A, Liu J and Heinz U 2016 Phys. Rev. C94 024907 (Preprint 1605.03954)
[9] Gardim F G, Grassi F, Luzum M and Noronha-Hostler J 2017 Phys. Rev. C95 034901 (Preprint 1608.02982)
[10] Giacalone G, Yan L, Noronha-Hostler J and Ollitrault J Y 2016 Phys. Rev. C 94 014906 (Preprint 1605.08303)
[11] Alba P, Mantovani Sarti V, Noronha J, Noronha-Hostler J, Parotto P, Portillo Vazquez I and Ratti C 2018
Phys. Rev. C98 034909 (Preprint 1711.05207)
[12] Gardim F G, Grassi F, Ishida P, Luzum M, Magalhães P S and Noronha-Hostler J 2018 Phys. Rev. C97 064919 (Preprint 1712.03912)
[13] Giacalone G, Noronha-Hostler J, Luzum M and Ollitrault J Y 2018 Phys. Rev. C97 034904 (Preprint 1711.08499)
[14] Eskola K J, Niemi H, Paatelainen R and Tuominen K 2018 Phys. Rev. C97 034911 (Preprint 1711.09803)
[15] Weller R D and Romatschke P 2017 Phys. Lett. B774 351–356 (Preprint 1701.07145)
[16] Schenke B, Shen C and Tribedy P 2019 (Preprint 1901.04378)
[17] Giacalone G, Gardim F G, Noronha-Hostler J and Ollitrault J Y 2020 (Preprint 2004.09799)
[18] Giacalone G, Gardim F G, Noronha-Hostler J and Ollitrault J Y 2020 (Preprint 2004.01765)
[19] Nahrgang M, Aichelin J, Bass S, Gossiaux P B and Werner K 2015 Phys. Rev. C91 014904 (Preprint 1410.5396)
[20] Betz B, Gyulassy M, Luzum M, Noronha-Hostler J, Portillo I and Ratti C 2017 Phys. Rev. C95 044901 (Preprint 1609.05171)
[21] Noronha-Hostler J, Betz B, Noronha J and Gyulassy M 2016 Phys. Rev. Lett. 116 252301 (Preprint 1602.03788)
[22] Prado C A G, Noronha-Hostler J, Katz R, Suaide A A P, Noronha J, Munhoz M G and Cosentino M R 2017
Phys. Rev. C96 064903 (Preprint 1611.02965)
[23] Sirunyan A M et al. (CMS) 2018 Phys. Lett. B776 195–216 (Preprint 1702.00630)
[24] Andres C, Armesto N, Niemi H, Paatelainen R and Salgado C A 2019 (Preprint 1902.03231)
[25] Katz R, Prado C A, Noronha-Hostler J and Suaide A A 2019 (Preprint 1907.03308)
[26] Chatrchyan S et al. (CMS) 2013 Phys. Lett. B724 213–240 (Preprint 1305.0609)
[27] Aaboud M et al. (ATLAS) 2017 Eur. Phys. J. C77 428 (Preprint 1705.04176)
[28] Aaboud M et al. (ATLAS) 2018 Phys. Rev. C97 024904 (Preprint 1708.03559)
[29] Aad G et al. (ATLAS) 2013 Phys. Lett. B725 60–78 (Preprint 1303.2084)
[30] Sirunyan A M et al. (CMS) 2018 Phys. Rev. Lett. 121 082301 (Preprint 1804.09767)
[85] Gardim F G, Noronha-Hostler J, Luzum M and Grassi F 2015 Phys. Rev. C91 034902 (Preprint 1411.2574)
[86] Acharya S et al. (ALICE) 2019 Phys. Rev. Lett. 123 142301 (Preprint 1903.01790)
[87] Huang S, Chen Z, Jia J and Li W 2019 (Preprint 1904.10415)
[88] Plumari S, Coci G, Das S K, Minissale V and Greco V 2019 Nucl. Phys. A982 655–658 (Preprint 1901.07815)
[89] Bozek P and Broniowski W 2018 Phys. Rev. Lett. 121 202301 (Preprint 1808.09840)
[90] Noronha-Hostler J, Paladino N, Rao S, Sievert M D and Wertepny D E 2019 (Preprint 1905.13323)