Towards a geometrical interpretation of quantum information compression

Graeme Mitchison§ and Richard Jozsa†

§MRC Laboratory of Molecular Biology,
Hills Road, Cambridge, CB2 2QH, U.K.

†Department of Computer Science, University of Bristol,
Merchant Venturers Building, Bristol BS8 1UB U.K.

Abstract

Let S be the von Neumann entropy of a finite ensemble E of pure quantum states. We show that S may be naturally viewed as a function of a set of geometrical volumes in Hilbert space defined by the states and that S is monotonically increasing in each of these variables. Since S is the Schumacher compression limit of E, this monotonicity property suggests a geometrical interpretation of the quantum redundancy involved in the compression process. It provides clarification of previous work in which it was shown that S may be increased while increasing the overlap of each pair of states in the ensemble. As a byproduct, our mathematical techniques also provide a new interpretation of the subentropy of E.

1 Introduction

One of the most satisfying results of quantum information theory is Schumacher’s source coding theorem [1, 2, 3, 4, 5], which says that a message of length K from a source of pure quantum states with density matrix ρ can be compressed to $KS(\rho)$ qubits (asymptotically for large K), where $S(\rho)$ is the von Neumann entropy

$$S(\rho) = -\text{Tr}(\rho \log \rho).$$

Conceptually we can associate the possibility of compression with the presence of a degree of redundancy in the source. Suppose ρ_1, ρ_2 are the density matrices of two sources and

$$S(\rho_1) \leq S(\rho_2).$$

Then the first source can be compressed further than the second, so it has greater redundancy. If the two sources both have k states, $|\psi_i\rangle$ and $|\phi_i\rangle$, say, with the same probabilities p_i, then this increased redundancy does not lie in the classical probabilities p_i of emitting the states but in the properties of the states themselves: it is true “quantum redundancy”. Intuitively, one expects that, if the states $|\psi_i\rangle$ are more similar than the states $|\phi_i\rangle$, then the quantum redundancy will be greater. So if the pairwise overlaps of the $|\psi_i\rangle$ are larger than those of the $|\phi_i\rangle$, i.e.

$$|\langle \psi_i | \psi_j \rangle| \geq |\langle \phi_i | \phi_j \rangle| \text{ for all } i, j,$$

then ρ_1 should have more quantum redundancy than ρ_2, and consequently (1) should hold. Jozsa and Schlienz [6] showed this is indeed true for a source with two states. However,
they produced a counter-example consisting of a set of three states, $|\phi_i\rangle$, in three dimensions and a slight perturbation of them, $|\psi_i\rangle$, that has greater overlaps but larger entropy. This phenomenon raises the question of whether compression and quantum redundancy can be understood in geometrical terms, i.e. in terms of the geometry of the source’s states in Hilbert space. This question has also been recently raised in [7]. In this paper we will establish a connection between quantum redundancy and the volumes in Hilbert space defined by the source states.

One reason the above example appears paradoxical is that, in real three-dimensional geometry, the pairwise inner products of three unit vectors determine the figure the vectors make, up to an orthogonal transformation, and they also determine the entropy in this real-valued setting. An analogous result holds in complex geometry if the complex inner product is specified, but not if only its absolute value, the overlap, is given. In fact, taking into account the freedom in specifying phase for a quantum mechanical state, it turns out that there are four real-valued degrees of freedom in specifying three states in three dimensions up to a unitary transformation (as will be shown shortly). Specifying the three pairwise overlaps $|\langle \psi_1 | \psi_2 \rangle|$, $|\langle \psi_1 | \psi_3 \rangle|$ and $|\langle \psi_2 | \psi_3 \rangle|$ therefore leaves a further degree of freedom that can be used to adjust the entropy.

What is this extra degree of freedom for three states in three (complex) dimensions? Here it is useful to introduce the Gram matrix G, with entries $G_{ij} = \sqrt{p_ip_j} \langle \psi_i | \psi_j \rangle$ and the matrix A with entries $a_{ij} = \langle \psi_i | \psi_j \rangle$. G has the same eigenvalues as the density matrix $\rho = \sum p_i |\psi_i\rangle \langle \psi_i|$ (see [6]) so the von Neumann entropy

$$S(\rho) = -\sum x_i \log x_i$$

(3)

can be computed from the eigenvalues x_i of the Gram matrix $G = \left(\begin{array}{ccc} p_1a_{11} & \sqrt{p_1p_2}a_{12} & \sqrt{p_1p_3}a_{13} \\ \sqrt{p_2p_1}a_{21} & p_2a_{22} & \sqrt{p_2p_3}a_{23} \\ \sqrt{p_3p_1}a_{31} & \sqrt{p_3p_2}a_{32} & p_3a_{33} \end{array} \right)$.

G has the characteristic equation

$$x^3 - s_1x^2 + s_2x - s_3 = 0,$$

(4)

where the s_i are the symmetric polynomial functions of the eigenvalues, with $s_1 = \sum x_i = 1$, $s_2 = \sum_{i<j} x_ix_j$ and $s_3 = x_1x_2x_3$. Expanding $\det(G - Ix)$ one finds that

$$s_2 = \sum_{i<j} p_ip_j (1 - |a_{ij}|^2) \quad \text{and} \quad s_3 = p_1p_2p_3 \det A.$$

(5)

Since A can be written as $A = BB^\dagger$, where B is the matrix

$$\begin{pmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{pmatrix}$$

of coordinates ψ_{ij} of the states $|\psi_i\rangle$ in any orthonormal basis, it follows that $\det A = |\det B|^2$, and we can regard $\det A$ as the squared modulus of the complex volume spanned by the $|\psi_i\rangle$.

2
Note also that \((1 - |a_{ij}|^2) = \det A_{i,j}\), where \(A_{i,j}\) is the submatrix of \(A\) obtained by striking out rows and columns having labels not in the set \(\{i, j\}\). Thus we can likewise regard \(1 - |a_{ij}|^2\) as the squared modulus of the complex volume spanned by \(|\psi_i\rangle\) and \(|\psi_j\rangle\). We can write the terms of eq (5) that depend on the states as

\[
\alpha_{12} = \det A_{1,2}, \quad \alpha_{13} = \det A_{1,3}, \quad \alpha_{23} = \det A_{2,3} \quad \text{and} \quad \alpha_{123} = \det A
\]

and \(s_2\) and \(s_3\) then appear as positive linear combinations of these volume variables. Thus \(S(\rho)\) is determined by the probabilities \(p_i\) and the four squared volumes in (6). If the states are perturbed in such a way that three of these four parameters are fixed but one of them varies, then the entropy changes as intuition would dictate: increasing \(A_{12}\) (i.e. decreasing the overlap between states 1 and 2) increases the entropy (decreases the redundancy), and increasing the volume (i.e. spreading the states apart) also increases the entropy. In this sense we can regard the four parameters \(\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{123}\), as measures of quantum redundancy for the set of states. This behaviour of the entropy follows from a theorem proved later, which tells us that \(\partial S/\partial s_i > 0\) for \(i \geq 2\). Consequently when none of the \(p_i\) is zero (which we shall assume throughout), \(\partial S/\partial \alpha_{ij} = p_ip_j\partial S/\partial s_2 > 0\) and \(\partial S/\partial \alpha_{123} = p_1p_2p_3\partial S/\partial s_3 > 0\).

2 k states in n dimensions

We now investigate the situation for any number \(k\) of states which span a space of \(n\) dimensions (so \(k \geq n\)). We can try to imitate in \(n\) dimensions the procedure that gave the variables in (1). Let the states be \(|\psi_i\rangle\) with probabilities \(p_i\) for \(i = 1, \ldots, k\). As above we introduce the Gram matrix with entries \(G_{ij} = \sqrt{p_ip_j} \langle \psi_i | \psi_j \rangle\) and the \(A\)-matrix with entries \(a_{ij} = \langle \psi_i | \psi_j \rangle\), both being \(k \times k\) matrices. The eigenvalues of the Gram matrix are those of the \(n \times n\) density matrix \(\rho\) padded out with \(k - n\) zeros (8). Thus the characteristic equation \(\det(G - xI) = 0\) for the Gram matrix for \(k\) states in \(n\) dimensions has the form

\[
(-1)^{k-n} x^{k-n} \sum_{i=0}^{n} (-1)^i s_{n-i} x^i = 0, \quad \text{(7)}
\]

where \(s_i\) is the \(i\)-th elementary symmetric polynomial of the eigenvalues \(x_1, \ldots, x_n\) of the density matrix, defined by

\[
s_0 = 1, \quad s_i = \sum_{u_1 \prec \ldots \prec u_i} x_{u_1} \ldots x_{u_i} \quad \text{for} \quad i = 1, \ldots, n. \quad \text{(8)}
\]

The \(i\)th symmetric polynomial may be expressed as

\[
s_i = \sum_{u_1 \prec \ldots \prec u_i} p_{u_1} \ldots p_{u_i} \alpha_{u_1, \ldots, u_i}, \quad \text{(9)}
\]

where \(\alpha_{u_1, \ldots, u_i} = \det A_{u_1, \ldots, u_i}\), and \(A_{u_1, \ldots, u_i}\) is the sub-matrix of the matrix \(A\) obtained by striking out all rows and columns with labels not in the set \(\{u_1, \ldots, u_i\}\); i.e. \(A_{u_1, \ldots, u_i}\) is the \(i \times i\) \(A\)-matrix constructed from the subset \(\{\psi_{u_1}, \ldots, |\psi_{u_i}\rangle\}\) of the states. This follows because \(s_i\) is the coefficient of \((-x)^{k-i}\) in \(\det(G - xI)\), which is obtained by picking \(k - i\) elements on the
diagonal, corresponding to rows v_1, \ldots, v_{k-1} say, and for each such choice of v’s, constructing the determinant of the sub-matrix G_{u_1, \ldots, u_i} of G where u_1, \ldots, u_i is the complementary set to the v’s. Since the Gram matrix G is related to the corresponding A-matrix by $G = QAQ$, where $Q = \text{diag}(\sqrt{p_1}, \ldots, \sqrt{p_k})$, we get $\det G_{u_1, \ldots, u_i} = p_{u_1} \cdots p_{u_i} \det A_{u_1, \ldots, u_i}$. Eq (9) is then obtained by summing over all sets of u’s.

Note that, though the individual entries in A_{u_1, \ldots, u_i} are dependent on a choice of phase for the states $|\psi_i\rangle$, $\alpha_{u_1, \ldots, u_i}$ is invariant under phase choices. Furthermore, $\alpha_{u_1, \ldots, u_i}$ is real, since A_{u_1, \ldots, u_i} is Hermitian. Thus $\alpha_{u_1, \ldots, u_i}$ is a real-valued unitary invariant, and the complete set of all $\alpha_{u_1, \ldots, u_i}$ for all sets u_1, \ldots, u_i can be regarded as the analogues of the invariants in the case $k = n = 3$. Also, as in the case of $k = n = 3$, $A_{u_1, \ldots, u_i} = B_{u_1, \ldots, u_i}B^*_{u_1, \ldots, u_i}$, where B_{u_1, \ldots, u_i} is the $i \times i$ matrix whose rows are the components of the i states $|\psi_{u_1}\rangle, \ldots, |\psi_{u_i}\rangle$ (expanded in any choice of orthonormal basis in the span of these i states). Thus $\alpha_{u_1, \ldots, u_i}$ may be identified as the squared modulus of the complex volume determined by $|\psi_{u_1}\rangle, \ldots, |\psi_{u_i}\rangle$.

Let x_1, \ldots, x_n be any probability distribution and let $s_i = s_i(x_1, \ldots, x_n)$ for $i = 1, \ldots, n$ be the corresponding symmetric polynomials. For any function $f(x_1, \ldots, x_n)$ (e.g. the entropy S) we consider a change of variables from the x_i’s to the s_j’s. Note that the probability condition $\sum x_i = 1$ corresponds to $s_1 = 1$, and lifting this condition we get n variables in each case. Then the Jacobian is readily seen to be $\prod_{i<j}(x_i - x_j)$, so the change of variables is valid if the x_i’s are all different. For simplicity we will work within this restriction but expect that our results will have suitable (finite) limiting behaviour for coincident values $x_i \to x_j$. Furthermore we will be interested primarily in partial derivatives $\partial f/\partial s_i$ for $i \geq 2$ (which have s_1 held constant), so our results will also remain valid if we impose the probability constraint $s_1 = 1 = constant$ at the start.

We have the following fundamental property of the entropy:

Theorem 1 If $S = -\sum x_i \log x_i$ is viewed as a function of the symmetric polynomials s_1, \ldots, s_n then $\partial S/\partial s_q > 0$ for $q = 2, \ldots, n$.

Two proofs of this theorem are given in the appendix.

3 Geometrical interpretation of quantum redundancy

Eq (9) gives an expression for the symmetric polynomials s_i that is canonically determined by the state set $\{|\psi_1\rangle, \ldots, |\psi_k\rangle\}$ and probabilities p_1, \ldots, p_k. Thus from $S = S(s_1, \ldots, s_n)$ (with $s_1 = 1$) we can view the von Neumann entropy of the source in a natural way as being a function of the probabilities and all the squared volumes $\alpha_{i_1i_2}, \ldots, \alpha_{i_1i_2\ldots i_k}$. By theorem 1 $\partial S/\partial s_q > 0$ for $q \geq 2$ and by eq (9), each s_q is a positive linear combination of the α-variables, so we conclude that $\partial S/\partial \alpha > 0$ for each squared volume variable α.

This suggests a geometrical interpretation of the quantum redundancy in the ensemble of quantum states. If the probabilities are held fixed and the states are deformed then the change in entropy can be seen as an accumulation of monotonic effects arising from the changes induced in each of the squared volumes α. Since $\partial S/\partial \alpha > 0$ the set of these squared volumes can be regarded as a geometric measure of the quantum redundancy associated to a set of states alone.
Note however that, for $k > 3$, there are more α’s than degrees of freedom needed to fix k states up to overall unitary equivalence. Indeed, let $\nu(k,n)$ denote the number of degrees of freedom in specifying k states in n dimensions up to unitary transformation. To specify k states requires $k(2n-2)$ real parameters (as each state is defined only up to overall phase). The unitary group $U(n)$ has n^2 parameters, but because of the overall phase freedom in each state, U and $e^{ix}U$ have the same action for any x. Thus, unitary action on the states eliminates $n^2 - 1$ parameters from the $k(2n-2)$, giving $\nu(k,n) = k(2n-2) - (n^2 - 1)$.

The following table shows $\nu(k,n)$ for small values of k and n and $k \geq n$. The bracketed numbers are the total number $\tau(k,n)$ of terms α_{u_1,\ldots,u_i}, ignoring those with $i > n$, which are zero since more than n states must be linearly dependent and therefore have zero determinant. The numbers in brackets are therefore $\tau(k,n) = \sum_{i=2}^{n} \binom{k}{i}$.

k	n = 2	3	4	5
2	1 (1)			
3	3 (3)	4 (4)		
4	5 (6)	8 (10)	9 (11)	
5	7 (10)	12 (20)	15 (25)	16 (26)

For $k \leq 3$ the two sets of numbers agree, so the α’s can be used to parametrize the sets of states. For $k > 3$ there are always too many α’s. Thus viewing the entropy S as a function of the $\tau(k,n)$ α’s (for fixed probabilities) amounts to a non-trivial extension of S to a larger space of variables: not every $\tau(k,n)$-tuple of α-values is geometrically realisable by an ensemble of k states in n dimensions, and when an actual ensemble is deformed, the α-variables are constrained to lie on a surface of dimension $\nu(k,n)$ in the ambient space of dimension $\tau(k,n)$. But the virtue of this non-physical extension of the number of parameters is that we are able to attribute compressibility of the source to geometrical constructs, viz. the α’s. In any deformation of actual states, each α varies positively or negatively and the compressibility varies by a corresponding accumulation of monotonic positive and negative effects.

4 Minimal sets of monotonic parameters?

Since $\tau(k,n) > \nu(k,n)$ for $k > 3$, it is interesting to ask whether we can find some alternative set of parameters, $\beta_1, \ldots, \beta_{\nu(k,n)}$ which is in 1-1 correspondence with the set of k states and has some of the desirable properties possessed by the α’s in the case $k \leq 3$. In particular, to make a connection with the phenomenon of compression, we would like the monotonicity property $\partial S/\partial \beta_i > 0$ to hold for any choice of probabilities p_i. Intuitively, this means that we can regard the β’s as measures of quantum entropy.

Consider the case $k = n = 4$. Here the set of states is 9 dimensional, whereas there are 11 α’s. Can we perhaps keep some of the α’s, taking, say, the overlap-related terms α_{ij} as β_1, \ldots, β_6, and adding a further 3 β’s? (For instance, one might consider adding the 3 distances between subspaces generated by disjoint pairs of the four states, i.e. $d(12,34)$, $d(13,24)$ and $d(14,23)$, where $d(ij,kl)$ is some measure of the distance between the subspace spanned by
$|\psi_i\rangle$, $|\psi_j\rangle$ and that spanned by $|\psi_k\rangle$, $|\psi_l\rangle$). However, it turns out that any set of parameters that includes the 6 terms α_{ij} cannot have the desired monotonicity property. To see this, write $r_{ij} = |a_{ij}|$ and define $u = \arg(a_{12}a_{23}a_{31})$, $v = \arg(a_{14}a_{21}a_{42})$, and $w = \arg(a_{13}a_{34}a_{41})$. Then we can write all the α’s in terms of the 6 r_{ij}’s and u, v and w, giving 9 parameters in all. For instance, $\alpha_{123} = 1 - r_{12}^2 - r_{23}^2 - r_{31}^2 + 2r_{12}r_{23}r_{31}\cos u$.

Now pick one of the β_i for $i > 6$, and call it x. Taking the partial derivative with respect to x, the fact that β_1, \ldots, β_6 are constant implies $\partial s_2/\partial x = 0$ (since by eq [9] s_2 is a function only of β_1, \ldots, β_6). Furthermore, if we choose a set of states with $r_{ij} > 0$ for all i, j and $u = v = w = \pi/2$ we find

$$\partial s_3/\partial x = -2(p_{11}p_{23})(r_{12}r_{23}r_{31})u_x - 2(p_{11}p_{24})(r_{14}r_{21}r_{42})v_x$$

$$-2(p_{13}p_{41})(r_{13}r_{34}r_{41})w_x + 2(p_{23}p_{44})(r_{23}r_{34}r_{42})(u_x + v_x + w_x).$$

Suppose the first three terms in the above expression for $\partial s_3/\partial x$ are positive. Since β_1, \ldots, β_6 are real and positive, this means $u_x < 0$, $v_x < 0$, $w_x < 0$. So the fourth term is negative. By taking p_1 small enough, we can ensure that $\partial s_3/\partial x < 0$ and also that $\partial s_4/\partial x$ is sufficiently small to ensure that the term with $q = 3$ dominates the sum $\partial S/\partial x = \sum(\partial S/\partial s_q)(\partial s_q/\partial x)$. So $\partial S/\partial x < 0$ and monotonicity fails. Suppose on the other hand that at least one of the first three terms is negative, the term with u_x say, so $u_x > 0$. Then taking p_4 small enough leads to the same conclusion.

This result suggests that it may be difficult to construct a minimal set of $\nu(k, n)$ monotonic parameters which also has a simple geometrical interpretation, thus further underlining the benefits of considering the non-minimal parameter set in section 3.

5 A remark on subentropy

It is curious that our proof of the theorem that the entropy is an increasing function of the symmetric functions s_q (Appendix) depends upon an algebraic expression closely related to a quantity called the subentropy. Given any density matrix ρ, the subentropy $Q(\rho)$ is the greatest lower bound on the accessible information of any ensemble of pure states $|\phi_1\rangle, \ldots, |\phi_m\rangle$ with probabilities p_1, \ldots, p_m, for which $\rho = \sum p_i |\phi_i\rangle \langle \phi_i|$. In terms of the eigenvalues x_1, \ldots, x_n of ρ (or indeed for any classical probability distribution) the subentropy can be written

$$Q(\rho) = -\sum_k \frac{x_k^n \log x_k}{\prod_{i \neq k}(x_k - x_i)}$$

which is closely related to our eq [10]; i.e. we would wish to put $q = 0$ in that formula!

Looking at the derivation of eq [10] (c.f. especially eq [12]) we see that the value $q = 0$ would correspond to a coefficient, c_0 say, of x^n in the characteristic equation and then $\partial S/\partial c_0$ would be essentially the subentropy. Thus let us divide through eq [11] by s_1, introducing new variables

$$t_1 = \frac{1}{s_1}, \quad t_2 = \frac{s_2}{s_1}, \quad \ldots, \quad t_n = \frac{s_n}{s_1}$$
and look at
\[
\tilde{p}(x) = \frac{1}{s_1} p(x) = t_1 x^n - x^{n-1} + \ldots + (-1)^q t_q x^{n-q} + \ldots + (-1)^n t_n = \frac{1}{s_1} (x - x_1) \ldots (x - x_n).
\]
(10)

Viewing this equation as defining \(x_i = x_i(t_1, \ldots, t_n) \) and carrying out an implicit differentiation with respect to \(t_1 \) we get
\[
\frac{\partial x_k}{\partial t_1} = -\frac{x^n_k s_1}{\prod_{k \neq i} (x_k - x_i)}
\]
and
\[
\frac{\partial S}{\partial t_1} = s_1 \sum_k \frac{(1 + \log x_k) x^n_k}{\prod_{k \neq i} (x_k - x_i)}.
\]

Finally using the identity (valid for any \(x_1, \ldots, x_n \))
\[
\sum_{k=1}^n \frac{x^n_k}{\prod_{k \neq i} (x_k - x_i)} = x_1 + \ldots + x_n = s_1
\]
we get
\[
\frac{\partial S}{\partial t_1} = s_1 (s_1 - Q).
\]

If \(x_1, \ldots, x_n \) is a probability distribution, so \(s_1 = 1 \), then we get \(\partial S/\partial t_1 = 1 - Q \). Thus we have proved:

Theorem 2 Let \(S = -\sum x_i \log x_i \) be the Shannon entropy function defined on \(\{(x_1, \ldots, x_n) : x_i > 0 \ \text{all } i\} \) (i.e. we lift the probability condition \(\sum x_i = 1 \)). If \(S \) is viewed as a function of \(t_1 = 1/s_1, t_2 = s_2/s_1, \ldots, t_n = s_n/s_1 \) then at points with \(s_1 = \sum x_i = 1 \) the subentropy is given by \(Q(x_1, \ldots, x_n) = 1 - \partial S/\partial t_1 \).

Note that the above mathematical characterisation of subentropy applies equally well within classical information theory (as it is a derivative property of the Shannon entropy function), in contrast to all previous work on subentropy [8, 9] where it relates only to quantum mechanical considerations (especially the theory of information gain from quantum measurements).

Finally we also note that there are other possible ways of getting a nontrivial coefficient of \(x^n \) in eq (11). For example instead of dividing through by \(s_1 \) we could divide through by \(s_n \) and introduce the variables
\[
r_q = \frac{s_{n-q}}{s_n} = q^{th} \text{ symmetric polynomial of } 1/x_1, \ldots, 1/x_n.
\]

We then get the equation
\[
\frac{1}{s_n} p(x) = r_n x^n + \ldots + (-1)^q r_{n-q} x^{n-q} + \ldots + (-1)^n
\]
\[
= (x/x_1 - 1) \ldots (x/x_n - 1) = 0
\]
leading to an alternative characterisation of subentropy \(Q \) as
\[
\frac{\partial S}{\partial r_n} = s_n (s_1 - Q)
\]
and the condition for \(x_1, \ldots, x_n \) to be a probability distribution is now \(s_1 = r_{n-1}/r_n = 1 \), i.e. \(r_n = r_{n-1} \).
6 Discussion

The problem we have addressed in this paper is whether there are real-valued functions α_q of k states in n dimensions that together characterize those states up to a unitary transformation and are also “measures of quantum redundancy” in the sense that $\partial S/\partial \alpha_q > 0$ for each α_q. In other words, increasing one α while holding the others fixed increases the entropy S and hence reduces the redundancy of the set of states. We would also like the α_q to have an interpretation in terms of the Hilbert space geometry of the states.

We use the term “quantum redundancy” here because we require that $\partial S/\partial \alpha_q > 0$ holds for any choice of probabilities p_i of the states $|\psi_i\rangle$, and the p_i can be thought of as embodying the classical aspect of redundancy. Of course, one might ask whether there are joint functions of the states and their probabilities that characterize the entropy, and one example of this is the “perimeter” considered recently by Hartley and Vedral [11]. The question then is why one such function should be preferred to another; after all, the symmetric functions s_q trivially determine the entropy via the characteristic equation (7). The functions in [11] are motivated by the possibility of experimental measurement whereas our considerations are motivated by a desire to geometrically characterize a notion of quantum redundancy in quantum information compression.

Our main conclusion is that there is a natural set of measures (in our sense) for sets of two or three states, but for four or more states the corresponding parameters – the determinants of square submatrices of the matrix $\langle \psi_i | \psi_j \rangle$ – outnumber the degrees of freedom in the sets of states, and the more obvious ways of carrying over the results from two or three states fail. Nevertheless the simple geometrical interpretation of these parameters, in terms of Hilbert space volumes defined by the states, makes it appealing to consider an extension of the entropy function to the full space of these variables, and the entropy of any physical ensemble of states then appears as a special case satisfying some extra algebraic constraint equations.

Acknowledgements
RJ is supported by the UK Engineering and Physical Sciences Research Council.

7 Appendix: proof of theorem [11]

We give here two proof of the theorem that $\partial S/\partial s_q > 0$ for $2 \leq q \leq n$.

First proof
We will prove a slightly stronger result, giving a positive lower bound for $\partial S/\partial s_q$ (see eq [19]).

Recall that

$$S = -\sum_{i=1}^{n} x_i \log x_i,$$
where the \(x_i \) are roots of the characteristic equation

\[
p(x) = \sum_{i=0}^{n} (-1)^{n-i} s_{n-i} x^i = 0. \quad (11)
\]

Viewing this equation as implicitly defining \(x_i = x_i(s_1, \ldots, s_n) \) and differentiating it with respect to \(s_q \), we get

\[
\frac{\partial x_k}{\partial s_q} \left[\sum_{i=0}^{n} (-1)^{n-i} s_{n-i} x^i \right] + (-1)^q x_k^{n-q} = 0. \quad (12)
\]

Since the expression in square brackets is the derivative of \(\prod (x - x_i) \) with \(x \) set to \(x_k \), we have

\[
\frac{\partial x_k}{\partial s_q} = (-1)^{q+1} \frac{x_k^{n-q}}{\prod_{i \neq k} (x_k - x_i)}. \quad (13)
\]

\[\text{From the chain rule, for any function } f \text{ of the } s_q, \]

\[
\frac{\partial f}{\partial s_q} = \sum_{k=1}^{n} \frac{\partial f}{\partial x_k} \frac{\partial x_k}{\partial s_q}. \quad (14)
\]

Taking \(f = s_1 \) we get

\[
\sum_{k=1}^{n} x_k^{n-q} \prod_{i \neq k} (x_k - x_i) = 0 \text{ if } 2 \leq q \leq n. \quad (15)
\]

Then, taking \(f = S = -\sum x_k \log x_k \) gives

\[
\frac{\partial S}{\partial s_q} = (-1)^q \sum_{k=1}^{n} \frac{x_k^{n-q}(1 + \log x_k)}{\prod_{i \neq k} (x_k - x_i)}. \quad (16)
\]

which in view of eq (13) implies

\[
\frac{\partial S}{\partial s_q} = (-1)^q \sum_{k} \frac{x_k^{n-q} \log x_k}{\prod_{i \neq k} (x_k - x_i)}, \text{ for } 2 \leq q \leq n. \quad (17)
\]

Define

\[
W_q(a) = (-1)^q \sum_{k} \frac{(x_k + a)^{n-q} \log(x_k + a)}{\prod_{i \neq k} (x_k - x_i)}
\]

so \(W_q(0) = \partial S/\partial s_q \). Rewriting \(W_q(a) \) as

\[
W_q(a) = (-1)^q a^{n-q} \sum_{k} \frac{(1 + x_k/a)^{n-q} \log(1 + x_k/a)}{\prod_{i \neq k} (x_k - x_i)},
\]

eq (14) allows us to approximate \(W_q(a) \) for large \(a \) by the term in \(x_k^{n-1} \) in the expansion of \((1 + x_k/a)^{n-q} \log(1 + x_k/a) \), giving

\[
W_q(a) \approx (-1)^q a^{1-q} \times \left[\text{coefficient of } x^{n-1} \text{ in } (1 + x)^{n-q} \log(1 + x) \right]
\]

\[
= a^{1-q} \int_0^1 y^{q-2} (1 - y)^{n-q} dy
\]

\[
\to 0 \text{ as } a \to \infty \text{ for } 2 \leq q \leq n.
\]
Using eq (14) again we find
\[
\frac{\partial W_q(a)}{\partial a} = -(n-q)W_{q+1}(a),
\]
for \(2 \leq q < n\), and applying eq (14) to the set \(a, x_1, \ldots, x_n\)
\[
\frac{\partial W_n(a)}{\partial a} = -\frac{1}{\prod (a + x_k)}.
\]

Using \(\prod_{k=1}^n (a + x_k) \leq (a + 1/n)^n\) in the preceding equation,
\[
W_n(x) \geq \int_{-\infty}^{\infty} \frac{da}{(a + 1/n)^n} = \frac{1}{(x + 1/n)^{n-1}(n-1)}
\]
so \(\partial S/\partial s_n = W_n(0) \geq n^{n-1}/(n-1)\).

Eq (17) for \(q = n - 1\) then implies
\[
W_{n-1}(x) = \int_{-\infty}^{\infty} W_n(a) da \geq \int_{-\infty}^{\infty} \frac{da}{(n-1)(a + 1/n)^{n-1}}
\]
\[
= \frac{1}{(x + 1/n)^n(n-1)(n-2)}.
\]
so \(\partial S/\partial s_{n-1} = W_n(0) \geq n^{n-2}/(n-1)(n-2)\). And continuing this way we find
\[
\partial S/\partial s_{n-q+1} \geq \frac{n^{n-q}}{q(n-1)}.
\]

So all the partial derivatives are bounded away from zero, which proves the theorem.

Second proof

A second proof involves using a theorem from numerical analysis – the so-called Hermite-Gennochi theorem [10] – to replace the explicit derivation above from eq (16) onwards. (This theorem was also used in [8], end of appendix A). Thus we begin as above, deriving the expression in eq (16) for \(\partial S/\partial s_q\).

Now if \(f(x)\) is any function whose values are known only at \(n\) points \(x_1, \ldots, x_n\) then there is a unique polynomial of degree \(n-1\), the Lagrange interpolating polynomial, that agrees with the function at these points. The coefficient of \(x^{n-1}\) is called the Newton divided difference of \(f\) and has standard explicit formula \(\sum_i f(x_i)/\prod_{k \neq i}(x_k - x_i)\). Thus eq (16) states that \(\partial S/\partial s_q\) is the Newton divided difference for the function \(f(x) = (-1)^q x^{n-q} \log x\). Now the Hermite-Gennochi theorem asserts that the Newton divided difference is also given by the integral over the probability simplex \(\{(p_1, \ldots, p_n) : p_i \geq 0, \sum_i p_i = 1\}\) of \(f^{(n-1)}(p_1 x_1 + \ldots p_n x_n)\) where \(f^{(n-1)}\) is the \((n-1)\)th derivative of \(f\). Taking \(f\) to be \((-1)^q x^{n-q} \log x\) it is straightforward to check that \(f^{(n-1)}(x) > 0\) for all \(0 < x < 1\). Hence the integral over the probability simplex is positive and we get \(\partial S/\partial s_q > 0\).
References

[1] Schumacher, B. (1995) Quantum coding. Phys. Rev. A, 51, 2738-2747.

[2] Jozsa, R. & Schumacher, B. (1994) A new proof of the quantum noiseless coding theorem, J. Mod. Opt. 41, 2343-9.

[3] Horodecki, M. (1998) Limits for compression of quantum information carried by ensembles of mixed states, Phys. Rev. A 57, 3364.

[4] Barnum, H., Fuchs, C., Jozsa, R. and Schumacher, B. (1996) General fidelity limit for quantum channels, Phys. Rev. A 54, 4707.

[5] Winter, A. (1999) Coding theorems of quantum information theory. PhD thesis, ch. 1, University of Bielefeld, Fakultät für Mathematik. (Available at http://xxx.lanl.gov/abs/quant-ph/9907077)

[6] Jozsa, R. and Schlienz, J. (1999) Distinguishability of states and von Neumann entropy, Phys Rev A 62, 012301-1. to 01203-11.

[7] Jozsa, R. (2003) Illustrating the concept of quantum information, IBM J. Res. Dev. (to appear). Available at http://xxx.lanl.gov/abs/quant-ph/0305114

[8] Jozsa, R., Robb, D. and Wootters, W.K. (1994) Lower bound for accessible information in quantum mechanics. Phys Rev A 49, 668-677.

[9] Nichols, S. and Wootters, W.K. (2003) Between entropy and subentropy, Quant. Inform. and Comp. 3, 1-14.

[10] Atkinson, K.E. (1978) An introduction to numerical analysis, (Wiley, New York) pp. 107-123.

[11] Hartley, J. and Vedral, V. (2003) Entropy as a function of geometric phase. Preprint available at http://xxx.lanl.gov/abs/quant-ph/0309088