Determination of Beta Decay Ground State Feeding of Nuclei of Importance for Reactor Applications

V. Guadilla, J. L. Tain, A. Algora, J. Agramunt, D. Jordan, M. Monserrate, A. Montaner-Pizá, S. E. A. Orrigo, B. Rubio, and E. Valencia

Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071, Valencia, Spain

J. A. Briz, A. Cucoanes, M. Estienne, M. Fallot, L. Le Meur, A. Porta, T. Shiba, and A. Zakari-Issoufou
Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307, Nantes, France

J. Åystö, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, V. S. Kolhinen, J. Koponen, I. D. Moore, H. Penttilä, I. Pohjalainen, J. Reikikainen, M. Reponen, S. Rinta-Antila, K. Rytkönen, V. Sonnenschein, and A. Voss
University of Jyväskylä, FIN-40014, Jyväskylä, Finland

L. M. Fraile and V. Vedia
Universidad Complutense, Grupo de Física Nuclear, CEI Moncloa, E-28040, Madrid, Spain

E. Ganoğlu
Department of Physics, Istanbul University, 34134, Istanbul, Turkey

W. Gelletly
Department of Physics, University of Surrey, GU2 7XH, Guildford, UK

M. Lebois and J. N. Wilson
Institut de Physique Nucléaire d’Orsay, 91406, Orsay, France

T. Martínez
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040, Madrid, Spain

E. Nácher
Instituto de Estructura de la Materia, CSIC, E-28006, Madrid, Spain

A. A. Sonzogni
NNDC, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

(Dated: May 19, 2020)

In β-decay studies the determination of the decay probability to the ground state of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed γ-ray emission. In this work we revisit the $4\pi\gamma-\beta$ method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the β-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large ground state branches. The method is relevant for nuclear structure studies as well. Pertinent formulae are revised and extended to the special case of β-delayed neutron emitters, and the robustness of the method is demonstrated with synthetic data. We apply it to a number of measured decays that serve as test cases and discuss the features of the method. Finally, we obtain ground state feeding intensities with reduced uncertainty for four relevant decays that will allow future improvements in antineutrino spectrum and decay heat calculations using the summation method.

* Present address: Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
† Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen H-4026, Hungary
‡ Present address: Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
§ Present address: Faculty of Engineering, Nagoya University, Nagoya 464-8603, Japan
I. INTRODUCTION

The measurement of ground state (g.s.) β-decay feeding probabilities is hampered by the absence of associated γ radiation. In β^- decays the energy released is shared between the electron and the antineutrino leading to continuous energy distributions, extending from zero to the maximum decay energy Q_β. This makes it difficult to determine precisely the number of β particles. The problem arises because of the difficulty of disentangling the featureless continuum associated with all of the decays to excited states from that to the g.s. through β-spectrum deconvolution. In addition, electrons are easily absorbed or scattered by any material surrounding the β detector, and this effect must be properly taken into account in the response function of the β detector. This explains why β-decay probabilities to the g.s. are often obtained indirectly.

The most common approach is to determine both the total number of decays and the number of decays proceeding to excited states, since the difference is due to decays to the g.s.. Usually the total number of decays is measured using a β detector and the decays to excited states are obtained from high-resolution (HR) γ-ray spectroscopy and conversion electron spectroscopy to build the decay level scheme. Assigning the correct intensity for the decay to the g.s. is equivalent to determining absolute γ intensities. The limited efficiency of HPGe detectors results in many weak transitions from levels at high-excitation energy remaining undetected, the so-called Pandemonium effect [1]. This shifts the apparent β intensity, obtained from the intensity balance at each level, to levels at low-excitation energies. This in itself is not the real problem for g.s. feeding determination but the fact that part of the missed transitions can feed the g.s. directly, thus introducing a systematic error [2]. This shifts the apparent β intensity, obtained from the intensity balance at each level, to levels at low-excitation energies. This in itself is not the real problem for g.s. feeding determination but the fact that part of the missed transitions can feed the g.s. directly, thus introducing a systematic error [2]. This shifts the apparent β intensity, obtained from the intensity balance at each level, to levels at low-excitation energies. This in itself is not the real problem for g.s. feeding determination but the fact that part of the missed transitions can feed the g.s. directly, thus introducing a systematic error [2]. This shifts the apparent β intensity, obtained from the intensity balance at each level, to levels at low-excitation energies. This in itself is not the real problem for g.s. feeding determination but the fact that part of the missed transitions can feed the g.s. directly, thus introducing a systematic error [2]. This shifts the apparent β intensity, obtained from the intensity balance at each level, to levels at low-excitation energies. This in itself is not the real problem for g.s. feeding determination but the fact that part of the missed transitions can feed the g.s. directly, thus introducing a systematic error [2]. This shifts the apparent β intensity, obtained from the intensity balance at each level, to levels at low-excitation energies. This in itself is not the real problem for g.s. feeding determination but the fact that part of the missed transitions can feed the g.s. directly, thus introducing a systematic error [2].

Greenwood and collaborators [2] proposed the use of the Pandemonium-free total absorption γ-ray spectroscopy (TAGS) technique [3] in combination with a β detector to determine accurately the β intensity to the g.s., in a way that will be explained later. The method, termed the $4\pi\gamma - \beta$ method, was applied subsequently to determine the g.s. feeding probabilities for 34 fission products (FP) [4, 5].

The TAGS technique aimed initially at the determination of (relative) β intensities to excited states. It relies on the use of large close-to-4π γ calorimeters made with scintillation material to detect the full de-excitation γ cascade rather than the individual transitions. An ideal total absorption spectrometer would have 100% γ-cascade detection efficiency and should be insensitive to β particles. It turns out that the TAGS technique can be used to extract the g.s. β intensity directly as is explained below.

The first spectrometer designs emphasized the condition of insensitivity to β particles, either by placing a β detector outside the spectrometer [6] or placing a low-Z absorber material behind the β detector [7, 8] to minimize the penetration of the electrons or their bremsstrahlung radiation (in short β penetration) in the scintillation volume. This had the undesirable effect of reducing the γ-peak detection efficiency. However, the total detection efficiency for γ cascades of multiplicity 2 or higher remains close to 100% if the solid angle coverage is reasonably close to 4π. The rationale behind these initial designs is that β penetration distorts the spectrometer γ response by introducing a high energy tail. The spectrometer response to decays is needed in the TAGS analysis of real spectrometers to deconvolute the measured spectrum [9]. The response must be obtained by Monte Carlo (MC) simulations [10] and the consensus at that time was that an accurate simulation of β-particle interactions is more difficult than the simulation of γ interactions. Modern MC simulation codes like Geant4 [12], have greatly improved the description of low-energy electron interactions and provide a variety of tracking parameters to optimize the simulation and improve the accuracy (see for example [13]). Thus the newest spectrometer designs [14, 15, 16] do not make any special effort to minimize β penetration and have a sizable response to g.s. decays. In this way the deconvolution of TAGS spectra provides, in a natural manner, the intensity of decays to the g.s. The first example of this was the decay of 102Tc for which the TAGS analysis [17, 18] confirmed the value of 92.9(6)% quoted in ENSDF [19] coming from HR spectroscopy. In the last years, many other examples have shown the potential of the TAGS technique to obtain g.s. feeding probabilities [20–27]. However, the TAGS deconvolution method has some limitations: 1) the difficulties in validating the shape of the MC simulations of the β penetration in the spectrometer (see discussion in Ref. [21]) 2) the indeterminacy that can arise for particular decay intensity distributions, as will be shown later for the case of 100Tc, 3) the loss of sensitivity with decreasing g.s. β intensity, 4) the difficulty of separating transitions to states at very low excitation energy, due to the limited energy resolution, and 5) the proper quantification of the systematic uncertainties.

In the present work we revisit the $4\pi\gamma - \beta$ method, which, as will be seen, is essentially free from problems 1) and 2) listed before and has different systematic uncertainties from the TAGS analysis. These differences mainly arise from the integral character of the $4\pi\gamma - \beta$ method (that uses the total number of counts in the spectra) that contrasts with the TAGS deconvolution, sensitive to the features of the shape of the experimental spectrum. As will be shown later, this minimizes the effect of the lack of knowledge on the precise de-excitation paths (a relevant source of systematic uncertainty in the TAGS analyses) in the results of the $4\pi\gamma - \beta$ method.

Our interest in this topic arises from the importance of g.s. feeding probabilities for nuclear structure studies and reactor applications. In particular, it was re-
cently renewed by the need to obtain accurate antineutrino energy spectra emitted by fission products (FP) using the β-intensity distributions $I_\beta(E_{\nu})$ to weight the individual $\bar{\nu}_e$ spectra for each β end-point $Q_\beta - E_\gamma$. This is the basis of the summation method to obtain the spectrum of antineutrinos emitted by a nuclear reactor [28], which is calculated by weighting the spectrum for each FP by the cumulative (or evolved individual) fission yield and the contribution of each fissile isotope. As it happens a number of fission products of significance in forming the reactor antineutrino spectrum have a strong or very strong g.s. decay branch [29]. Some of them are 92Rb (95.2(7)%), 96Y (95.5(5)%), 142Cs (56(5)%), 100Sn (50(7)%), 140Cs (35.9(17)%), or 93Rb (35.3%). Here the quoted g.s. feeding probability in brackets is as a result of a new measurement of γ-ray intensities [32]. From the deconvolution of the measured TAGS spectrum we obtained a value of 87(3)% [32] as a result of a new measurement of γ-ray intensities [32]. The importance of direct measurements of the g.s. feeding and the impact on antineutrino spectrum calculations can be illustrated with the example of 92Rb, the top contributor above $E_{\bar{\nu}_e} = 5$ MeV [22, 29], with $Q_\beta = 8.095(6)$ MeV [31]. The evaluated g.s feeding probability in the ENSDF database, based on HR spectroscopy, was 51(18)% [32] until 2012 when it changed to 95.2(7)% [32] as a result of a new measurement of γ-ray intensities [32]. The accurate determination of the decay heat is thus constrained by the availability of reliable g.s. feeding probability values.

This paper is organized as follows. The $4\pi\gamma-\beta$ method is presented in Section II, including a correction of the original formulae in Ref. [2]. In addition a modification of the formulae for the case of β-delayed neutron emitters is introduced. In the Appendix we provide a demonstration of the method using synthetic data generated by realistic MC simulations. The $4\pi\gamma-\beta$ method is applied to TAGS data taken at the Accelerator Laboratory of the University of Jyväskylä (JYFL-ACCLAB) in Section III. It gives a summary of relevant experimental details and presents the results obtained, first for a number of relevant test cases and then for a number of isotopes contributing significantly to reactor antineutrino spectra and decay heat. The g.s. intensities obtained are compared with the TAGS deconvolution results and the literature. The last Section summarizes the conclusions.

II. THE $4\pi\gamma-\beta$ METHOD

The method is based on a comparison of the number of counts detected in the β detector N_β and the number of counts registered in coincidence in both the β detector and the total absorption spectrometer $N_{\beta\gamma}$. These can be written in terms of the number of decays f_i feeding level i, with $i = 0$ representing the ground state, and they are related to the β intensity I_β^i and the total number of decays N_d:

$$N_\beta = \sum_{i>0} \varepsilon_\beta^i f_i + \varepsilon_\beta^0 f_0$$
$$\varepsilon_\beta^0 f_0 + \sum_{i>0} \sum_{i>0} \varepsilon_\beta^i N_d$$
$$N_{\beta\gamma} = \sum_{i>0} \varepsilon_{\beta\gamma}^i f_i$$

$$\sum_{i>0} \sum_{i>0} \varepsilon_{\beta\gamma}^i N_d$$

(1)
\(\varepsilon_\beta^i \) is the probability of detecting a signal in the \(\beta \) detector for decays to level \(i \) and \(\varepsilon_\gamma^i \), the probability of registering simultaneously signals in the \(\beta \) detector and the total absorption \(\gamma \)-ray spectrometer. As seen in Eq. 1 we have separated explicitly the g.s. contribution. Let us define average \(\beta \) efficiencies for decays to excited states only, both in singles \(\varepsilon_\beta^* \) and in coincidence with the total absorption \(\gamma \)-ray spectrometer \(\varepsilon_\beta^* \),

\[
\varepsilon_\beta^* = \frac{\sum_{i>0} \varepsilon_\beta^i f_i}{\sum_{i>0} f_i} = \frac{\sum_{i>0} \varepsilon_\beta^i I_\beta^i}{1 - I_\beta^0}
\]

\[
\varepsilon_\beta^* = \frac{\sum_{i>0} \varepsilon_\beta^i f_i}{\sum_{i>0} f_i} = \frac{\sum_{i>0} \varepsilon_\beta^i I_\beta^0}{1 - I_\beta^0}
\] (2)

The reason for this somewhat artificial definition is that they are well determined from a TAGS analysis even in the specific cases when the spectrometer is insensitive to g.s. \(\beta \) penetration as will be shown later. Using these average efficiencies Eq. 1 can be rewritten as:

\[
\frac{N_\beta}{N_d} = \varepsilon_\beta^0 I_\beta^0 + \varepsilon_\beta^* (1 - I_\beta^0)
\]

\[
\frac{N_\gamma}{N_d} = \varepsilon_\gamma^* I_\beta^0 + \varepsilon_\gamma^0 (1 - I_\beta^0)
\] (3)

from which \(I_\beta^0 \) can be determined:

\[
I_\beta^0 = \frac{1 - \frac{N_\gamma}{N_d} \varepsilon_\gamma^*}{\frac{N_\beta}{N_d} \varepsilon_\beta^* - \varepsilon_\gamma^*}
\] (4)

This Eq. 3 can be compared with the equivalent one (Eq. 13) in the original publication of Greenwood et al. 2 that can be rewritten using our nomenclature as:

\[
I_\beta^0 = \frac{1 - \frac{N_\gamma}{N_d} \varepsilon_\gamma^*}{\frac{N_\beta}{N_d} \varepsilon_\beta^* - \varepsilon_\gamma^*}
\] (5)

In the conversion we have used the following equivalence to the notation of Greenwood et al.: \(\varepsilon_\gamma^* = 1 - L \), \(\varepsilon_\beta^0 = f_{\beta\gamma} \omega_\beta \), and \(\varepsilon_\beta^* = f_{\beta\gamma} \omega_\beta \). Even assuming that the factorization \(\varepsilon_\beta^* = \varepsilon_\beta^0 \varepsilon_\gamma^* \) is valid, there are differences between this expression and Eq. 4. A correction term is missing in the denominator and \(N_\beta^* \) represents \(N_\beta \) corrected by the \(\beta \) penetration for g.s. decays (with probability \(\varepsilon_\beta^0 \)) and for decays to excited states where the \(\gamma \) cascade is not detected in the spectrometer (with probability \(\varepsilon_\gamma^i \)) \(N_\beta^* = N_\beta - \varepsilon_\beta^0 f_0 - \sum_{i>0} \varepsilon_\beta^i f_i \). We show in the Appendix, using synthetic data, that Eq. 5 produces inconsistent results.

The application of the \(4\pi \gamma - \beta \) method requires the determination of the experimental ratio \(R = N_\beta/N_\beta \) and the estimation of three correction factors, \(a, b \) and \(c \), that are ratios of \(\beta \) efficiencies

\[
I_\beta^0 = \frac{1 - aR}{1 + bR - c}
\] (6)

From its expression (compare Eq. 6 with Eq. 4) one can see that correction factor \(a \) is close to (but larger than) one, correction factor \(b \) is a small number and correction factor \(c \) is a relative measure of \(\beta \) penetration for decays to the g.s. To estimate accurately the correction factors we need to know the dependency of \(\beta \) efficiency with endpoint energy and the \(\beta \)-intensity distribution with excitation energy (see Eq. 2). Notice that only the relative \(\beta \) intensity to excited states is required. We also need to know the \(\beta \)-penetration probability in the total absorption \(\gamma \)-ray spectrometer. Since \(\gamma \) rays interact also in the \(\beta \) detector we must take this effect into account, which implies that we must have a knowledge of decay \(\gamma \) cascades. These are also needed to obtain the \(\beta - \gamma \) detection efficiency. Conversion electrons are readily detected in the \(\beta \) detector affecting both the \(\beta \) counts and the decay detection efficiency, and this is another effect that must be considered. As a matter of fact all of this information is required for the analysis of TAGS data or is the result of such analysis (see Section III). The accuracy of the \(4\pi \gamma - \beta \) method depends on the accuracy of the ratio of counts \(R \) and on the accuracy with which we can determine the correction factors. The integrated counts \(N_\beta \) and \(N_\gamma \) can be obtained from the measured \(\beta \) and \(\beta - \gamma \) spectra but corrections for contaminants should be applied. The identification and quantification of contaminants is an important ingredient of the TAGS analysis, therefore providing the necessary information for the evaluation of this correction. In summary the \(4\pi \gamma - \beta \) method relies on the deconvolution of TAGS data and becomes a natural extension of it.

The decay of \(\beta \)-delayed neutron emitters requires special consideration. In this case the \(\beta \)-intensity distribution is the sum of two contributions \(I_\beta^0(E_\gamma^x) = I_\beta(E_\gamma^x) + I_\beta(E_\gamma^x) \). The first one \(I_\beta(E_\gamma^x) \) refers to decays that populate levels in the daughter nucleus that then de-excite by emission of \(\gamma \) rays. This is the one determined by the TAGS analysis. The second one \(I_\beta(E_\gamma^x) \) refers to decays that populate levels above the neutron separation energy \(S_n \) which is then followed by the emission of one or more neutrons and eventually \(\gamma \) rays in the de-excitation of the final nucleus. This component can be obtained from the measured \(\beta \)-delayed neutron spectrum and a knowledge of the branching probability to the different levels in the final nucleus (see [21] for further details). By separating the two components in the second row of Eq. 1 we obtain:
\[N_{\beta\gamma} = \varepsilon^{0}_{\beta\gamma} I_{\beta}^{0} N_d + \sum_{i>0} \varepsilon^{i}_{\beta\gamma} I_{\beta}^{i} N_d + \sum_{i>0} \varepsilon^{i}_{\beta\gamma} I_{\beta\gamma}^{i} N_d \] \quad (7)

The last term represents the counts coming from the interaction of the β-delayed neutrons with the total absorption γ-ray spectrometer which is another source of contamination in the TAGS analysis that must be corrected for as explained later. After eliminating this contribution the second row in Eq. (1) becomes

\[N_{\beta\gamma} = \varepsilon^{0}_{\beta\gamma} I_{\beta}^{0} N_d + \sum_{i>0} \varepsilon^{i}_{\beta\gamma} I_{\beta}^{i} N_d \]

With a re-definition of the coincidence detection efficiency averaged over excited levels (second row of Eq. (2)).

\[\varepsilon^{*}_{\beta\gamma} = \frac{\sum_{i>0} \varepsilon^{i}_{\beta\gamma} I_{\beta\gamma}^{i}}{1 - I_{\beta}^{0}} \] \quad (8)

we arrive formally to the same formula Eq. (4) to calculate I_{β}^{0}. Notice however that now ε^{*}_{β} is calculated with the total β-intensity distribution I_{β} while $\varepsilon^{*}_{\beta\gamma}$ is calculated with the partial intensity distribution $I_{\beta\gamma}^{i}$. The latter is normalized to $1 - P_{\gamma}$ instead of 1. The extension of the formulae for β-delayed neutron emitters was not discussed in the work of Greenwood et al.

The validation of the method with synthetic data is left for the Appendix. In the next section we apply the method to experimental data for a number of selected isotopes that either show some particularities in the use of the method or are important in determining the reactor antineutrino spectrum and/or the reactor decay heat.

III. EXPERIMENTAL RESULTS

A campaign of TAGS measurements was carried out in 2014 at the upgraded Ion Guide Isotope Separator On-Line IGISOL IV facility [46] at the University of Jyväskylä. One of the motivations for these measurements was to improve both reactor decay heat and antineutrino spectrum summation calculations, by providing data free from the Pandemonium effect for some nuclei having significant g.s. feeding values. In the experiment we employed the 18-fold segmented NaI(Tl) Decay Total Absorption γ-ray Spectrometer (DTAS) [13] in coincidence with a 3 mm-thick plastic scintillation detector. This β detector was located at the centre of DTAS and in front of a movable tape for the implantation of the nuclei of interest and the removal of the daughter activity (see [47] for more details about the experiment). The mean efficiency of the β detector is around 30% for endpoint energies above 2 MeV (see Fig. 8 in the Appendix for a similar detector), while the efficiency of DTAS for β-particles ranges from 8% at 3 MeV β end-point energy to 44% at 8 MeV [48].

We provide in the following a brief description of TAGS data analysis for the reader’s better understanding. The β-gated total energy deposited in DTAS was reconstructed off-line from the signals of the individual detector modules as described in [48], with threshold values of 90 keV for DTAS modules and 70 keV for the β detector. The coincidence between DTAS and the β detector allowed us to get rid of the environmental background. Other sources of contamination need to be accounted for. These include in general the activity of the descendants. For each descendant that contributes significantly we measure the shape of its energy spectra or, in the case of well known decays, we obtain it through MC simulations using the available decay data. If possible the normalization of these spectra is obtained by adjustment to salient features on the measured parent decay spectra that can be identified as due to the descendant activity, otherwise from the relation of parent-descendant half-lives. In the case of β-delayed neutron emitters, as was mentioned above, the β-delayed neutron branch introduces an additional contamination that includes the interaction of neutrons with DTAS. The shape of the contaminant spectrum is obtained by MC simulation following a special procedure detailed in [21] and the normalization is obtained by adjustment to the measured spectra, if possible, otherwise it is given by the P_{γ} value. We also take into account the electronic pulse summing-pileup effect that contributes to the distortion of the spectra. The need to consider two components (summing and pileup) is particular to multi-detector systems. The pileup originates in the superposition of different event signals in the same detector module within the analog-to-digital converter (ADC) time gate. The summing is due to the sum of signals corresponding to different events that are detected in different modules within the same ADC gate. The summing-pileup contribution is calculated by means of a MC sampling method [48] specifically developed for segmented spectrometers. The calculated spectrum is normalized from the detection rate and the length of the ADC gate [48].

In order to determine the β intensities from TAGS experimental spectra, we followed the method developed by the Valencia group [11, 11, 49]. For this, one has to solve the inverse problem $d_{i} = \sum_{j} R_{ij}(B)f_{j} + C_{i}$, where d_{i} represents the number of counts in channel i of the spectrum, f_{j} is the number of events that feed level j in the daughter nucleus, R_{ij} is the response function of the spectrometer, which depends on the branching ratios (B) for the different de-excitation paths of the states populated in the decay, and C_{i} is the sum of all contaminants at channel i.

To build the spectrometer response to decays we need the response to individual γ rays and β particles [11]. These are obtained from MC simulations using a very detailed description of the measurement setup (including electronic thresholds), carefully benchmarked with laboratory sources. We also need the branching ratio matrix describing the de-excitation pattern as a func-
tion of level excitation energy, including the conversion electron process. This is obtained from the HR spectroscopy level scheme at low excitation energies supplemented with the predictions of the Hauser-Feshbach nuclear statistical model above a given excitation energy where the levels are treated as a binned continuum [19]. The statistical model provides a realistic description of the electromagnetic cascade energy and multiplicity distribution, that in modern segmented spectrometers can be tested as well [24, 27, 50] and eventually modified.

Finally the TAGS spectrum deconvolution is carried out by applying a suitable algorithm, which in the present case is the expectation maximization (EM) algorithm, to extract the β-feeding distribution [10].

In order to apply the $4\pi \gamma - \beta$ method to obtain I_0^β we must determine the experimental number of counts $N_{\beta\gamma}$ and N_β. $N_{\beta\gamma}$ is obtained from the number of counts in the β-gated DTAS spectrum after correction for the counts due to the contaminants. As we mentioned in Section II this correction follows closely the one applied to TAGS spectra for deconvolution since the contamination counts are determined by integration of the corresponding TAGS contamination spectra that we just described. In this line, the counts due to the activity of the descendants and, if needed, the β-delayed neutron branch contribution are subtracted. In the case of the summing-pileup contribution the counts are added since each count in the summing-pileup spectra represents the loss of two events. The uncertainty of $N_{\beta\gamma}$ is estimated by considering the uncertainties in the normalization factors of the different components, taken from the TAGS analysis. Note that in all cases we integrate the full β-gated DTAS spectra, since experimental thresholds are already taken into account when requiring the β-gating condition, as mentioned above. The experimental thresholds are also taken into account in the MC efficiencies employed for the determination of coefficients a, b and c of Eq. 9.

N_β is calculated as the number of counts in the spectrum of the β plastic detector above the threshold without any coincidence condition. In addition to the counts due to descendants, which are estimated from the TAGS analysis, in this case we also need to subtract environmental background counts, although this is a small amount. They are obtained from measurements without beam and normalized by the relative measurement times. The counts lost by electronic pulse pileup are added to the result. In this case, since we are dealing with a single detector, the calculation and normalization of the pileup contribution is performed as in Ref. [11]. The uncertainty on N_β comes from the uncertainties in the normalization factors of the contaminants. For the environmental background we take a 20% uncertainty, which is the maximum deviation observed in tests with laboratory sources, while for the rest of the contaminants we take the same uncertainties used for the TAGS analysis.

Finally we should mention that in general the ratio $N_{\beta\gamma}/N_\beta$ needs to be corrected for differences in the data acquisition dead-times. In the present case this is not necessary because of the way our acquisition system works: every acquisition channel is gated with a common gate signal which is an OR of all individual detector triggers.

The results of the application of the $4\pi \gamma - \beta$ method to the data obtained in the 2014 measurement campaign are presented below. Firstly cases of particular interest showing how the method works (sections III A and III B) and secondly (section III C) cases that are of relevance for reactor antineutrino summation calculations. They are summarized in Table I.

A. The case of 103Tc

One of the cases studied is the decay of the $5/2^+$ g.s. of 103Tc into 103Ru with a Q_β value of 2663(10) keV [31]. This TAGS measurement was assigned first priority for the prediction of the reactor decay heat with U/Pu fuel and second priority for Th/U fuel by the IAEA [52]. In addition to the $3/2^+$ g.s. of the daughter nucleus, the decay also populates a $5/2^+$ state at only 2.81(5) keV excitation energy, as observed in a previous HR spectroscopy experiment [53]. Since we are not able to separate the two close-lying states we refer to their summed decay intensity as the g.s. intensity I_0^β. The DTAS and β-detector spectra for this measurement are shown in Fig. 1 and Fig. 2 respectively, together with the spectra of the contaminants. Since 103Ru is very long lived ($T_{1/2} = 39.2$ days) these are limited to the summing-pileup in the first case and the pileup and environmental background in the second case.

It turns out that 103Tc is a special case. In the TAGS analysis presented in [54], we found that the reproduction of the measured DTAS spectrum is almost insensitive to the value of the g.s. feeding intensity, which is an unusual situation. To illustrate this in Fig. 3 we show the relative β intensities to excited states of 103Ru when the g.s. β intensity is fixed in the TAGS analysis to values between 0% and 90% in steps of 10%. As can be observed they

Isotope	I_0^β [%]		
95Rb	≤ 0.1	0.03$^{+0.11}_{-0.02}$	-0.2(42)
100Mo	50(7)	46$^{+16}_{-15}$	40(6)
102mNb	-	42.5$^{+9.3}_{-10.0}$	44.3(28)
100Tc	93.3(1)	93.9(5)	92.8(5)
103Tc	34(8)	-	45.6$^{+1.5}_{-0.9}$
137I	45.2(5)	50.8$^{+2.7}_{-1.3}$	45.8(13)
140Cs	35.9(17)	39.0$^{+2.4}_{-6.3}$	36.0(15)

TABLE I. Ground state feeding intensities for a few decays of interest. The values obtained by the $4\pi \gamma - \beta$ method are compared with results from the TAGS analysis and from evaluations in the ENSDF database [30].
are almost unchanged in the range 0% to 80%. For a value of 90% there is a sizable effect on the β intensity to states below 300 keV. The different I_0^β values introduce a change of around 15% in the χ^2 of the TAGS analysis (see Fig. 4), with a minimum at 70 – 80%. In other words, in this particular case one should not trust the TAGS analysis to obtain the g.s. feeding probability. The reason for this insensitivity is to be found in the shape of the response for the g.s. to g.s. transition. As shown in Fig. 1 the energy dependence of the MC simulated response for this transition happens to be similar to the overall shape of the total absorption experimental spectrum, thus the deconvolution algorithm is not very sensitive to the g.s. contribution.

We turn now to the $4\pi\gamma - \beta$ method. We obtain a ratio of counts R for the decay of 103Tc of 0.495(5). We use Eq. 4 to obtain I_0^β using correction factors calculated with the β-intensity distributions shown in Fig. 3. As in the case of the synthetic data (see Appendix), we obtain very stable results with the $4\pi\gamma - \beta$ method. In Fig. 4 the I_0^β values obtained with this method for each fixed I_0^β in the TAGS analysis are presented, showing very small variations when the values vary between 0% and 90%. The uncertainties for each I_0^β determined with the $4\pi\gamma - \beta$ method are obtained from the uncertainty in the ratio of the number of counts R, which combines statistical uncertainties and uncertainties in the correction for contaminations, and the uncertainties in the correction factors. We use a set of β-intensity distributions, a total of 17 solutions of the TAGS analysis compatible with the experimental data, to obtain different correction factors and evaluate the dispersion of I_0^β values determined with the $4\pi\gamma - \beta$ method. It was found to be very small, which is related to the fact that the uncertainties in the average efficiencies defined in Eq. 2 are small, as discussed in the Appendix. As explained in detail in [21] each of these β-intensity distributions obtained in the TAGS analysis takes into account the effect of several systematic uncertainties related to the branching ratio matrix used to build the spectrometer response, to the accuracy of MC simulations, to the normalization of contaminants and even to the deconvolution method. We would like to note that errors quoted in Table I for the $4\pi\gamma - \beta$ values are the quadratic sum of the uncertainty in the calculation of the ratio of counts R (the dominant one) and the small contribution coming from the application of the method with all solutions used to estimate the error budget of the TAGS analyses.

The mean of all results in Fig. 4 gives a value of $45.6^{+1.5}_{-0.5} \%$. The uncertainty is a conservative estimate.
based on the lowest and highest uncertainty deviations. This result is compatible with the value 41(10)% obtained in the HR spectroscopy work of Niizeki et al.[53]. However, it is larger than the 34(8)% value reported in the ENSDF evaluation[55] based also on HR spectroscopy studies. The difference between both is related to the adopted intensity of the 346.4 keV γ ray used for normalization: Niizeki et al. uses an intensity of 16% for this γ ray, whereas the ENSDF evaluation uses a value of 18.4% obtained in a fission yield measurement[56]. This example shows one of the difficulties faced when assigning g.s. feeding probabilities in HR spectroscopy.

FIG. 4. (Color online) I^0_β values obtained with the $4\pi\gamma - \beta$ method for different TAGS analyses performed with I^0_β fixed to values between 0 and 90% (solid black). The χ^2 of each TAGS analysis is shown in dotted red. The horizontal dashed blue line shows the mean I^0_β value. The upper and lower limits considered for the uncertainty are represented by horizontal dotted gray lines.

We also use the decay of 103Tc to perform an illustrative exercise showing the dependence of the uncertainty of I^0_β in the $4\pi\gamma - \beta$ method with I^0_β for a fixed value of the uncertainty in R. The β-intensity distributions obtained in the TAGS analysis with fixed I^0_β values between 10% and 90% (shown in Fig. 3) have been used as input to MC simulations of DTAS and plastic scintillation spectra (see also the Appendix). The $4\pi\gamma - \beta$ method was then applied to these spectra. The uncertainty in the ratio of counts R was fixed to 1%, the value of the current measurement. As shown in Fig. 3, the relative error in the determination of the g.s. feeding probability with the $4\pi\gamma - \beta$ method varies between 10% at $I^0_\beta = 10\%$ and 1% at $I^0_\beta = 90\%$. Thus the precision of the method is severely limited by statistics at low values of the g.s. feeding intensity.

FIG. 5. Relative uncertainty of the I^0_β values obtained with the $4\pi\gamma - \beta$ method applied to MC simulations. The TAGS results obtained with I^0_β fixed to different values from 10 to 90% in the analysis of the decay of 103Tc have been used as input for the event generator employed in the simulations. The uncertainty in the ratio of counts R was kept fixed at the experimental 1% value.

B. Cases with extreme values of the g.s. feeding intensity

The $4\pi\gamma - \beta$ method has been applied to other test cases measured in the same DTAS experimental campaign. In those cases the TAGS analyses did show a sensitivity to the g.s. to g.s. transition, thus allowing us to compare the I^0_β determined from the deconvolution with the value obtained by means of the $4\pi\gamma - \beta$ counting method presented here. In particular two cases are included here due to the extreme character of their g.s. feeding probability and importance: the decay of 95Rb, a β-delayed neutron emitter where the first forbidden $5/2^- \rightarrow 1/2^+$ g.s. to g.s. transition is hindered, and the decay of 100Tc, dominated by the large Gamow-Teller $1^+ \rightarrow 0^+$ g.s. to g.s. branch.

In the first case, the decay of 95Rb, we obtain an almost zero g.s. to g.s. feeding from TAGS analysis, in agreement with previous HR spectroscopy measurements[27] (see Table I). Nevertheless, our TAGS analysis shows that the HR data is affected by a strong Pandemonium effect[27]. The $4\pi\gamma - \beta$ method determines also a I^0_β value that is almost zero, though the relative uncertainty is large, as can be expected from the discussion in the previous Section. In fact (see Table I) in this case the uncertainty is much larger than that determined by TAGS spectrum deconvolution. Due to the relatively small fission yield of 95Rb, the impact of our TAGS results in reactor antineutrino spectrum calculation is less than 1% between 7 and 9 MeV. For the same reason, in spite of being assigned first priority for the U/Pu fuel decay heat[52], the impact of these TAGS results is also subpercent on the electromagnetic component of the reactor decay heat of
 TABLE II. Contribution in % of the selected cases to the reactor antineutrino spectra of 235U and 239Pu at different energy ranges (based on the Nantes summation method [21]).

Isotope	3-4 MeV [%]	4-5 MeV [%]	5-6 MeV [%]			
235U	239Pu	235U	239Pu			
100Nb	3.5	4.5	5.3	7.6	5.8	9.0
102Nb	0.7	1.5	0.7	1.7	0.4	1.0
137I	1.7	1.6	2.2	2.3	2.0	2.3
140Cs	2.8	2.9	3.3	3.7	2.5	3.0

In the second case, the decay of 100Tc, of interest for nuclear structure, a large I_0^β value of 93.9(5)\% is determined from the TAGS spectrum deconvolution. As described in [27], a different β detector was employed in this measurement, which consists of a vase-shaped thin plastic scintillator with close-to-4π solid angle coverage. The value of I_0^β obtained with the TAGS technique is compatible with the previous value from HR measurements (see Ref. [24] for a detailed discussion). The $4\pi\gamma-\beta$ method gives a value of 92.8(5)\% in agreement within uncertainties with both methods. However, observing all the values in the Table I, one could also claim that the $4\pi\gamma-\beta$ method tends to produce results systematically smaller than TAGS spectrum deconvolution, with the exception of 102Nb. Whether this is true and could be related to some systematic error in one of the two methods should be studied further.

IV. SUMMARY AND CONCLUSIONS

In this work we have addressed the determination of the β-decay intensity to the g.s. of the daughter nucleus I_0^β by means of a $\beta-\gamma$ counting method. This approach, initially proposed by Greenwood et al. [2], relies on the use of a high-efficiency γ calorimeter in coincidence with a β detector. The original $4\pi\gamma-\beta$ method has been revised and some inconsistencies in the formulae were found and corrected. Furthermore we extended the formulae to the particular case of β-delayed neutron emitters, to take into account the fraction of decays proceeding by neutron emission. We have shown that the method becomes an extension of and relies on the total absorption γ-ray spectroscopy technique. The analysis performed using this technique provides the information needed to calculate the quantities required by the $4\pi\gamma-\beta$ method as well as the accurate determination of contaminant contributions, which results in an improved overall accuracy. The robustness of the method is demonstrated using synthetic decay data obtained from MC simulations. It was shown that statistics becomes a limiting factor for determining with precision the decay probability to the g.s. as this probability becomes smaller.

As can be seen in Table II, an overall good agreement is found between the g.s. feeding probabilities obtained with the $4\pi\gamma-\beta$ method and those determined in the TAGS analyses. The $4\pi\gamma-\beta$ method, however, produces results with much smaller relative uncertainties compared to the TAGS analysis for the two Nb cases: 15% and 6% respectively. Smaller uncertainties are also obtained for 137I and 140Cs. The central values are in agreement within uncertainties for both methods. However, observing all the values in the Table I, one could also claim that the $4\pi\gamma-\beta$ method tends to produce results systematically smaller than TAGS spectrum deconvolution, with the exception of 102Nb. Whether this is true and could be related to some systematic error in one of the two methods should be studied further.

We have applied the $4\pi\gamma-\beta$ method to a number of cases measured in our last experimental campaign with the DTAS spectrometer at the IGISOL IV facility. The main goal of the campaign was to measure accurately the β-intensity distribution in the decay of FP of importance in determining the antineutrino spectrum and the decay
heat from reactors, several of which have a large decay to the g.s. The TAGS analysis of one case, 103Tc, turned out to be insensitive to the value of the g.s. feeding probability, and the $4\pi\gamma - \beta$ counting method was the only way to determine its rather large value of about 45%. Even though 103Tc is a special case, this shows one of the potential issues when determining the g.s. β-decay intensity from the deconvolution method. For the remaining cases, with P^0_β values ranging from 0 to more than 90%, good agreement between the g.s. feeding probabilities determined in the TAGS analysis and those obtained with the $4\pi\gamma - \beta$ method was observed. This provides a confirmation of previous g.s. feeding probabilities obtained by the TAGS deconvolution method and in particular confirms the accuracy of the simulation of the shape of the β penetration, to which the $4\pi\gamma - \beta$ counting method was the only way to determine its rather large value of about 45%.

For the cases studied we found that, with the exception of the negligible intensity of 95Rb, the uncertainties in the $4\pi\gamma - \beta$ method are smaller. Besides case-specific reasons this is related to the small effect of our lack of knowledge of level de-excitations in the daughter nucleus on this method, whilst it represents a significant fraction of the error budget in the TAGS analysis. In particular the uncertainties for the important contributors to the reactor antineutrino spectrum 103SbγNb and 102Sbγ are reduced by factors 2.5 and 4, respectively, resulting in more precise antineutrino spectra for these nuclei with a corresponding improvement in future summation calculations.

In conclusion, the $4\pi\gamma - \beta$ method represents an alternative, generally superior, approach to the TAGS spectrum deconvolution to determine g.s. feeding probabilities. The potential of this tool to provide accurate and precise P^0_β values, which is hampered by the lack of associated γ-ray emission, was demonstrated in this work. Ground state feeding probabilities are needed to determine the absolute value of the decay intensity to excited states and carry important information on the nuclear structure. In addition, due to the significant influence of the β-decay branches to the g.s. on the reactor antineutrino spectrum and decay heat, our capacity to better determine such transitions will help us understand the challenging puzzle of reactor antineutrinos, while improving decay heat predictions.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. AIC-A-2011-0696, No. FPA2014-52823-C2-1-P, No. FPA2015-65035-P, No. FPI/BES-2014-068222, No. FPA2017-83946-C2-1-P, No. RTI2018-098868-B-100 and the program Severo Ochoa (SEV-2014-0398), by the Spanish Ministerio de Educación under the FPU12/05127 Grant, by the European Commission under the FP7/ EURATOM contract 605203, the FP7/ENSAR contract 262010, the SANDA project funded under H2020-EURATOM-1.1 contract 847552, the Horizon 2020 research and innovation programme under grant agreement No. 771036 (ERC CoG MAIDEN), by the Generalitat Valenciana regional funds PROMETEO/2019/007/, and by the Junta para la Ampliación de Estudios Programme (CSIC JAE-Doc contract) co-financed by ESF. We acknowledge the support of the UK Science and Technology Facilities Council (STFC) Grant No. ST/P005314/1 and of the Polish National Agency for Academic Exchange (NAWA) under Grant No. PPN/ULM/2019/1/00220. This work was also supported by the Academy of Finland under the Finnish Centre of Excellence Programme (Project No. 213503, Nuclear and Accelerator-Based Physics Research at JYFL), A.K. and T.E. acknowledge support from the Academy of Finland under Projects No. 275389 and No. 295207, respectively. This work has also been supported by the CNRS challenge NEEDS and the associated NACRE project, the CNRS/in2p3 PICS TAGS between Subatech and IFIC, and the CNRS/in2p3 Master projects Jyvaskyla and OPALE.

APPENDIX

Application to synthetic data

The synthetic data emulate the decay of 87Br, 88Br, and 84Rb, that we have previously investigated with the TAGS technique [21]. From the deconvolution of TAGS spectra we obtained ground state feeding intensities of 10.10$^{+1.19}_{-0.94}$% and 4.72$^{+1.03}_{-2.19}$% for 87Br and 88Br respectively. By comparison, ENSDF assigns a decay intensity to the g.s. of 12.0(19)% in the first case [58] and an upper limit of 11% in the second case [59]. The g.s. \rightarrow g.s. decay in 84Rb corresponds to a third forbidden transition with negligible intensity. These three nuclei are β-delayed neutron emitters with neutron emission probabilities of 2.43(14)%, 6.75(18)% and 10.24(21)%, respectively [60]. For simplicity we have not included this decay channel in the simulation since we are interested here in testing the performance of the method. Accordingly only one β-intensity distribution (normalized to 1) is used to calculate the correction factors in Eq. 4 (Section II) and we need to scale by 1$- P_\gamma$ the P^0_β obtained in order to compare with the true value, defined as the input value for the simulation.

The measurement was performed using a compact 12-fold segmented BaF$_2$ total absorption spectrometer with cylindrical shape and a thin Si detector placed close to the source position subtending a solid angle fraction of ≈ 30% as described in [21]. Spectra were simulated with the Geant4 Simulation Toolkit [12] implementing the detailed description of the setup and using decay cascades produced by the DECAYGEN event generator [49]. The inputs to the event generator are the branching ratio matrix used in the TAGS analysis and the resulting β-intensity distribution that was adopted as the final solu-
This provides a very realistic simulation of the decay and its detection. In the simulation, as well as in the analysis, we assume that all β-energy distributions have an allowed shape. The reconstruction of the energy deposited in the event mimics that of the experiment. The experimental low energy threshold of 65 keV, is applied to the Si detector before gating on the spectrometer signals. Similarly a threshold (in both MC and experiment) of 105 keV is applied to obtain the total energy deposited. Without (black line) gating on Si signals for the decay of ^87Br, the instrumental resolution is not included in these spectra to show more clearly their features. One million decay events were simulated. The total number of counts in the ungated TAGS spectrum is 0.288×10^6. The lower panel of Fig. 6 shows the simulated detection efficiency of the Si detector as a function of excitation energy together with the simulated probability of registering a signal simultaneously in the Si detector and the γ spectrometer. The pronounced efficiency drop above $E_x = 5 \text{ MeV}$ is due to the low energy threshold in the Si detector and the continuum nature of β spectra. The decrease of the spectrometer-gated Si detector efficiency below 5 MeV in comparison with the ungated efficiency is due to the importance in this decay of de-excitations proceeding by a single γ transition to the g.s., which have a greater probability of escaping detection in the spectrometer. Using these efficiency distributions and Eq. 2 we can calculate the correction factors for each decay and apply Eq. 6 to obtain I_0^β.

The results of the calculation for the three isotopes are presented in Table III. As can be observed the value obtained for the g.s. feeding probability (10.12%, 4.79%, 0.11% for ^87Br, ^88Br, ^{94}Rb respectively) is very close to the true value (i.e. the input values for the simulation) in all cases (10.10%, 4.72%, 0%). If the original formula from Greenwood et al. (Eq. 5) is used, with N_{γ} corrected for the β penetration, we obtain 8.08%, 3.69% and 0.28%, respectively, which deviate clearly from the true values for the bromine isotopes. From the values of the correction factor c we can see that in this setup the γ spectrometer is rather sensitive to β penetration for decays to the g.s., between 48% and 66% of the average probability of detecting a decay to an excited state. The increase in c with isotope follows the increase in Q_β.

Another important check that can be performed with the synthetic data is to test the stability of the result against uncertainties in the deconvolution procedure. As explained in [21] the β-intensity distribution obtained in the TAGS analysis is affected by several systematic uncertainties related to the branching ratio matrix used to build the spectrometer response, the accuracy of the MC simulations, the normalization of contaminants and even the deconvolution method. This results in a spread of I_0^β extracted from the deconvolution method which varied between 9.16% and 11.29% (14 intensity distributions) for ^87Br, and between 2.60% and 5.82% (13 intensity distributions) for ^{88}Br. Actually this spread determines the size of the systematic uncertainty of the g.s. feed obtained from the deconvolution method quoted above. In com-

Isotope	R	a	b	c	I_0^β [%]
^87Br	0.8846	1.064	4.91×10^{-2}	0.477	10.12
^88Br	0.9444	1.038	-1.67×10^{-3}	0.608	4.79
^{94}Rb	0.9913	1.008	-9.83×10^{-3}	0.656	0.11

TABLE III. Ratio of counts R, correction factors a, b and c and calculated β intensity to the g.s for synthetic data. See text for further details.
We tested the effect in the deconvolution of fixing the g.s. feeding probability to 11%, which is the upper limit given by ENSDF. In this case the fit to the data was rather poor (44% increase in χ^2) as expected. In spite of that, when we use the resulting β-intensity distribution to calculate the g.s. feeding probability in the $4\pi\gamma - \beta$ method it gives 4.78%, close to the true value. This simply reflects the fact that the TAGS technique determines rather accurately the relative β intensity to excited states that proceed by γ-ray emission, on which the correction factors are based. In other words, the $4\pi\gamma - \beta$ method is much less sensitive to the systematic uncertainties in the deconvolution of TAGS data. An extreme example is presented in Section IIIA.

1. J. C. Hardy et al., Phys. Lett. B 71, 307 (1977).
2. R. C. Greenwood et al., Nucl. Instrum. Meth. A 317, 175 (1992).
3. B. Rubio et al., J. Phys. G 31, S1477 (2005).
4. R. C. Greenwood et al., Nucl. Instrum. Meth. A 356, 385 (1995).
5. R. C. Greenwood et al., Nucl. Instrum. Meth. A 378, 312 (1996).
6. C. L. Duke et al., Nucl. Phys. A 151, 609 (1979).
7. A. Bykov et al., Izv. Akad. Nauk. SSSR, Ser. Fiz. 44, 918 (1980).
8. R. C. Greenwood et al., Nucl. Instrum. Meth. A 314, 512 (1993).
9. M. Karny et al., Nucl. Instrum. Meth. B 126, 411 (1997).
10. J. L. Tain and D. Cano-Ott, Nucl. Instrum. Meth. A 571, 728 (2007).
11. D. Cano-Ott et al., Nucl. Instrum. Meth. A 430, 333 (1999).
12. S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003).
13. F. Wauters et al., Nucl. Instrum. Meth. A 609, 156 (2009).
14. J. L. Tain et al., J. Kor. Phys. Soc. 59, 1499 (2011).
15. J. L. Tain et al., Nucl. Instrum. and Methods A 803, 36 (2015).
16. M. Karny et al., Nucl. Instrum. Meth. A 836, 83 (2016).
17. A. Algora et al., Phys. Rev. Lett. 105, 202501 (2010).
18. D. Jordan et al., Phys. Rev. C 87, 044318 (2013).
19. D. Frenne et al., Nucl. Data Sheets 110, 1745 (2009).
20. A.-A. Zakari-Issoufou et al., Phys. Rev. Lett. 115, 102503 (2015).
21. E. Valencia et al., Phys. Rev. C 95, 024320 (2017).
22. B. C. Rasco et al., Phys. Rev. Lett. 117, 092501 (2016).
23. A. Fijalkowska et al., Phys. Rev. Lett. 119, 052503 (2017).
24. V. Guadilla et al., Phys. Rev. C 96, 014319 (2017).
25. S. Rice et al., Phys. Rev. C 96, 014320 (2017).
26. V. Guadilla et al., Phys. Rev. C 100, 044311 (2019).
27. V. Guadilla et al., Phys. Rev. C 100, 044305 (2019).
28. R. W. King and J. F. Perkins, Phys. Rev. 112, 963 (1958).
29. A. A. Sonzogni et al., Phys. Rev. C 91, 011301(R) (2015).
30. “ENSDF database,” http://www.nndc.bnl.gov/ensdf
0599 (2011).