Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered Embeddings

Marco Toldo, Umberto Michieli, Pietro Zanuttigh

January 5-9th, 2021
Semantic Segmentation

Task → Assign each pixel of an image with a semantic label

- Deep learning as enabling factor
- Fully convolutional auto-encoders [1]

[1] J. Long et al., “Fully convolutional networks for semantic segmentations”, CVPR, 2015.
Unsupervised Domain Adaptation

Issues of FCNs:
1. Tons of training samples to avoid overfitting
2. Low generalization capability

Domain Adaptation \(\rightarrow\) from a *label-abundant source* to a *label-scarce target* domain

- Unsupervised \(\Rightarrow\) Source supervision only
- Distribution alignment across domains (e.g. adversarial learning)
- Multiple adaptation levels [2]

[2] M. Toldo et al., "Unsupervised domain adaptation in semantic segmentation: a review", Technologies, 2020.
Class-conditional domain alignment of feature distribution

Clustering: group together features of similar semantics

Orthogonality: different active channels for distinct semantic classes

Sparsity: suppress weak activations

Entropy minimization (EM): push away features from decision boundaries
Clustering loss:

\[\mathcal{L}_{cl} = \frac{1}{|\mathbf{F}_n^s, t|} \sum_{\mathbf{f}_i \in \mathbf{F}_n^s, t} \sum_{\mathbf{c}_{\mathbf{y}_i} \in \mathbf{S}_n^s, t} d(\mathbf{f}_i, \mathbf{c}_{\mathbf{y}_i}) - \frac{1}{|\mathcal{C}|(|\mathcal{C}|-1)} \sum_{j \in \mathcal{C}} \sum_{k \in \mathcal{C}} d(\mathbf{c}_j, \mathbf{c}_k) \]

Intra-class contraction

Inter-class spacing

Class centroid:

\[\mathbf{c}_j = \frac{\sum_{\mathbf{f}_i} \sum_{\mathbf{y}_i} \delta_{\mathbf{y}_i} \delta_{\mathbf{y}_i} \mathbf{f}_i}{\sum_{\mathbf{y}_i} \delta_{\mathbf{y}_i} \delta_{\mathbf{y}_i}}, \quad j \in \mathcal{C} \]

L2 norm

\[\Rightarrow \text{Group together features of same class from both domains} \]
Model Architecture - Orthogonality & Sparsity

- **Orthogonality loss:** \(\mathcal{L}_{or} = - \sum_{f_i \in F(X_n^{\mu})} \sum_{j \in \mathcal{C}} p_j(f_i) \log p_j(f_i) \)

 → Orthogonality on distinct classes, similarity within same class

- **Sparsity loss:** \(\mathcal{L}_{sp} = - \sum_{i \in \mathcal{C}} \| \bar{c}_i - \rho \|_2^2 \)

 → Lower volume of active feature channels

Similarity based distribution:

\[p_j(f_i) = \frac{e^{\langle f_i, c_j \rangle}}{\sum_{k \in \mathcal{C}} e^{\langle f_i, c_k \rangle}}, \quad j \in \mathcal{C} \]
Experiments: GTA → Cityscapes

Source domain: *synthetic* GTA dataset
Target domain: *real-world* Cityscapes dataset

Method	mIoU
Source Only	37.0
Tsai et al. [3] (feat)	39.3
MinEnt [4]	42.3
MaxSquare IW [5]	45.2
$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp}$	45.3
$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp} + \text{EM}$	**45.9**

Results for 19 classes, DeepLab-v2 with ResNet-101 backbone

[3] Y. Tsai et al., “Learning to adapt structured output space for semantic segmentation”, In *CVPR*, 2018.
[4] T. Vu et al., “ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation”, In *CVPR*, 2019.
[5] M. Chen et al., "Domain adaptation for semantic segmentation with maximum squares loss", In *ICCV*, 2019.
Experiments: SYTHTHIA \rightarrow Cityscapes

Source domain: *synthetic* SYNTTHIA dataset

Target domain: *real-world* Cityscapes dataset

Method	mIoU
Source Only	40.5
Tsai et al. [3] (feat)	40.8
MinEnt [4]	44.2
MaxSquare IW [5]	46.9
$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp}$	44.2
$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp} + \text{EM}$	**48.2**

Results for 13 classes, DeepLab-v2 with ResNet-101 backbone

[3] Y. Tsai et al., “Learning to adapt structured output space for semantic segmentation”, In CVPR, 2018.
[4] T. Vu et al., “ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation”, In CVPR, 2019.
[5] M. Chen et al., "Domain adaptation for semantic segmentation with maximum squares loss", In ICCV, 2019.
Conclusion

Feature space regularization in UDA for Semantic Segmentation

Our main contributions:

- **Feature clustering** for semantic segmentation
- **Orthogonality** and **sparsity** objectives to force a regular structure of the embedding space
- State-of-the-art results on feature-level non adversarial adaptation on two widely used benchmarks
Thank you for the attention!

Paper website: https://lttm.dei.unipd.it/paper_data/UDAclustering/

Arxiv: https://arxiv.org/abs/2011.12616

Code: https://github.com/LTTM/UDAclustering

Contact: toldomarco@dei.unipd.it