Extreme BAL Quasars from the Sloan Digital Sky Survey

Patrick B. Hall, J. E. Gunn, G. R. Knapp, V. K. Narayanan, M. A. Strauss
Princeton University Observatory, Princeton NJ 08544-1001

S. F. Anderson
University of Washington

D. E. Vanden Berk
Fermi National Accelerator Laboratory

T. M. Heckman, J. H. Kriek, Z. I. Tsvetanov, W. Zheng
The Johns Hopkins University

G. T. Richards, D. P. Schneider
The Pennsylvania State University

X. Fan
Institute for Advanced Study

D. G. York
The University of Chicago

T. R. Geballe
Gemini Observatory

M. Davis
University of California at Berkeley

R. H. Becker
Lawrence Livermore National Laboratory

R. J. Brunner
California Institute of Technology

Abstract. The Sloan Digital Sky Survey has discovered a population of broad absorption line quasars with various extreme properties. Many show absorption from metastable states of Fe II with varying excitations; several objects are almost completely absorbed bluewards of Mg II; at
least one shows stronger absorption from Fe^{III} than Fe^{II}, indicating temperatures $T > 35000$ K in the absorbing region; and one object even seems to have broad Hβ absorption. Many of these extreme BALs are also heavily reddened, though ‘normal’ BALs (particularly LoBALs) from SDSS also show evidence for internal reddening.

1. Introduction

The Sloan Digital Sky Survey (York et al. 2000) is using dedicated instruments on a 2.5m telescope (Gunn et al. 1998) to image 10^4 deg2 of sky to $\sim 23''$ in five bands (Fukugita et al. 1996) and obtain spectra of $\sim 10^5$ galaxies and $\sim 10^5$ quasars selected primarily as outliers from the stellar locus. Its area, depth, and selection criteria make SDSS effective at finding unusual quasars. The first data release (Stoughton et al. 2001, in prep.), contains ~ 4500 spectroscopically confirmed quasars, including ~ 200 BALs, a few percent of which have extreme properties of one sort or another. All these extreme BALs are LoBALs, which show absorption from both low- and high-ionization transitions, instead of the more common HiBALs with only high-ionization absorption. Full analysis is underway (Hall et al. 2001, in prep.), but already these objects confirm the existence of a population of extreme BALs, as suspected from previous discoveries of individual extreme BALs (Becker et al. 1997, Djorgowski et al. 2001).

2. BAL Quasars With Fe^{II}^* Absorption

The rare LoBAL quasars with absorption from metastable excited states of Fe^{II} ($\text{Fe}^{\text{II}*}$) have been dubbed FeLoBALs (Becker et al. 2000; Hazard et al. 1987; Menou et al. 2001). They are valuable because photoionization modelling of them can constrain n_e in the BAL clouds (e.g. de Kool et al. 2001). Fig. 1a shows a spectacular example, SDSS 1723+5553, with absorption
Extreme SDSS BAL Quasars

3. BAL Quasars With FeIII Absorption

Fig. 3 shows SDSS 2215–0045, a LoBAL at z=1.47548 (measured from associated MgII absorption, as with SDSS 0300+0048). Its absorption troughs are unusual for a LoBAL: they are very broad, detached, and strongest near the high velocity end rather than at low velocity. By comparison to SDSS 1723+5553 (Fig. 1), we initially identified the strong trough at $\lambda_{\text{abs}} \sim 4900\text{Å}$ as CaII. However, the implied abundance of Cr relative to Mg is implausible, and the expected corresponding ZnII is missing. We now believe this absorption is due to FeIII (multiplet UV 48), with additional FeIII (UV 34) absorption at $\lambda_{\text{abs}} \sim 4500\text{Å}$, redward of AlIII. Since FeII absorption is weak or absent, the large FeIII/FeII ratio suggests that the BAL clouds in this object have $T > 35000\text{ K}$, sufficient to collisionally ionize FeII to FeIII. FeIII absorption is seen in several other SDSS LoBALs (e.g. Fig. 4) and in a few previously known LoBALs, but nowhere as strongly (alone or relative to FeII) as in SDSS 2215–0045. Note the different
spectral slopes blueward & redward of ~2400Å, indicating reddening which must occur outside the BAL region since dust cannot survive long at $T>35000$ K.

4. A LoBAL With Broad Hβ Absorption

Fig. 4 shows an optical (Keck) plus NIR (UKIRT) spectrum of SDSS 0437-0045 which reveals a strongly absorbed quasar with $z=2.74389$ from [O III]. The absorption extends 2900 km s$^{-1}$ redward of this z (cf. Fig. 2b). Even more remarkable is the probable presence of Hβ absorption near 104 km s$^{-1}$ wide and of REW~100 Å. Hβ absorption in AGN has previously been seen only in NGC 4151 (Anderson & Kraft 1969; Sergeev et al. 1999), but with ≤1000 km s$^{-1}$ width and ≤3 Å REW. This object is also unusual because the Fe II trough at ~2070Å has been seen to vary with nearly unprecedented amplitude and speed.

5. Heavily Reddened BAL Quasars

SDSS has found evidence for a population of red quasars (Richards et al. 2001), and BALs in general are redder than the typical quasar (Menou et al. 2001), but for the most extreme objects the reddening is unambiguous. Fig. 5 shows SDSS 1456+0114, an extremely reddened LoBAL (and FIRST source) at $z=2.367$ (measured from weak C IV, the only broad line visible). Several other similar objects have been found by SDSS, but with even weaker broad emission. Since
Figure 4. Optical-NIR spectra of SDSS J0437-0045 at $z=2.74389$. Strong lines are labelled at the expected wavelengths for emission (top) and absorption (bottom). Note the nearly complete absorption near the expected wavelength of C iv, and the probable broad Hβ absorption.

Figure 5. SDSS J1456+0114, an extremely reddened LoBAL at $z=2.367$.
reddening does not affect equivalent widths, this may indicate that in these objects the broad line region is even more heavily reddened than the continuum. This would be quite plausible if most of the continuum light in those objects is scattered light, a hypothesis which can easily be tested with polarization data.

6. Discussion

‘Well, that was disturbing.’ —Fred Hamann, after this talk at the meeting.

We prefer to view these objects as invigorating. The area and depth of SDSS, plus its simple selection of quasar candidates as outliers from the stellar locus, makes it efficient at finding quasars with unusual properties. Moreover, the discovery of typically several examples of each type of extreme LoBAL quasar presented here means that a population of extreme LoBAL quasars exists and that only now, with SDSS, are we beginning to sample the full range of properties that exist in BAL outflows, and thus around quasars on the whole.

Acknowledgments. The Sloan Digital Sky Survey (SDSS) is a joint project of The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Max-Planck-Institute for Astronomy (MPA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Princeton University, the United States Naval Observatory, and the University of Washington. Apache Point Observatory, site of the SDSS telescopes, is operated by the Astrophysical Research Consortium (ARC). Funding for the project has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/

References

Anderson, K., & Kraft, R. 1969, ApJ, 158, 859
Becker, R., Gregg, M., Hook, I., McMahon, R., White, R., & Helfand, D. 1997, ApJ, 479, L93
Becker, R., et al. 2000, ApJ, 538, 72
de Kool, M., et al. 2001, ApJ, 548, 609
Djorgovski, S. G., et al. 2001, to appear in Mining the Sky, eds. A. Bandel et al. (Berlin: Springer-Verlag) (astro-ph/0012489)
Fukugita, M., Ichikawa, T., Gunn, J., Doi, M., Shimasaku, K., & Schneider, D. 1996, AJ, 111, 1748
Gunn, J. E., & The SDSS Collaboration 1998, AJ, 116, 3040
Hazard, C., McMahon, R., Webb, J., and Morton, D. 1987, ApJ, 323, 263
Menou, K., & The SDSS Collaboration 2001, ApJ, in press (astro-ph/0102411)
Richards, G. T., & The SDSS Collaboration 2001, AJ, 121, 2308
Sergeev, S., Pronik, V., Sergeeva, E., & Malkov, Y. 1999, A&A 341, 740
York, D. G., & The SDSS Collaboration 2000, AJ, 120, 1579