Corrigendum: Genome Reduction for Niche Association in Campylobacter Hepaticus, A Cause of Spotty Liver Disease in Poultry

Liljana Petrovska1*, Yue Tang1†, Melissa J. Jansen van Rensburg2,3†, Shaun Cawthraw1†, Javier Nunez4, Samuel K. Sheppard5, Richard J. Ellis1†, Adrian M. Whatmore1†, Tim R. Crawshaw1 and Richard M. Irvine1†

1 Bacteriology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom, 2 Department of Zoology, University of Oxford, Oxford, United Kingdom, 3 NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom, 4 Veterinary Surveillance, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom, 5 Department of Biology and Biotechnology, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom

Keywords: Campylobacter hepaticus, spotty liver disease, poultry, genome reduction, niche adaptation

A corrigendum on

Genome Reduction for Niche Association in Campylobacter Hepaticus, A Cause of Spotty Liver Disease in Poultry

by Petrovska, L., Tang, Y., Jansen van Rensburg, M. J., Cawthraw, S., Nunez, J., Sheppard, S. K., et al. (2017). Front. Cell. Infect. Microbiol. 7:354. doi: 10.3389/fcimb.2017.00354

In the original article, there was a mistake in Table 3 as published. Table 3 had additional genes inserted for isolates S11-0036, S11-0038, S11-0069, and S12-0071. Isolate S12-002 should not be included in Table 3.

Additionally, there was an incorrect sentence. Incorrect sentence describing the number of RNA coding sequences and the GC content. A correction has been made to Results, C. hepaticus Isolates Have Reduced Genomes, Paragraph Number One and appears below.

The C. hepaticus isolates had a lower number (average of 44) of RNA coding sequences and a lower GC content (average of 28.4%) in comparison to the C. jejuni reference genomes (average of 52.4 and 30.5%, respectively).

Similarly, there was an incorrect sentence. Incorrect sentence describing the genes related to pathogenicity of C. hepaticus. A correction has been made to Results, genes related to the Pathogenicity of C. hepaticus, Paragraph Number One and appears below.

The UK C. hepaticus isolates contained relatively few genes linked to pathogenesis: 5 were identified in the genomes of S11-0036, S11-0038, S11-0069, and (from farms 2, and 4); 6 in S11-0038 (farm 2); 15 in S10-0209, S12-1018, S11-5013, and S11-010, (farm 1); and 7 in isolate S12-0322 (farm 5; Table 3). The cpp and cmgB3/4 genes, both components of the pTet plasmid (Batchelor et al., 2004), and a complete pTet plasmid (Batchelor et al., 2004) sequences were identified in isolates S11-010, and S12-0322 (Table 3).

Finally, in incorrect spelling of metabolism was used, we omitted “the” and misspelled “rich.” A correction has been made to Discussion, Paragraph Number Four and appears below.
TABLE 3 | Presence of pathogenicity-related genes in C. hepaticus.

Protein (name)	Protein ID
MCP	EAQ73158
TrkA	ABS44147
Chp1	EAQ72353
Chp2	EAQ72298
Hp1	EAQ71971
HAD-supersfamily phosphatase, subfamily IIIC	EAQ72583
Putative 3-oxoacyl-synthase	ABS43995
Methyltransferase	CAL35414
DNA adenine methylase	AAW34814
Hp2	EAQ72552
Hp3	Hp3
Putative DNA-binding protein	AAW34848
Putative acyl carrier protein	CAL35413
Putative acyl carrier protein	AAW35934
Chp3	EAQ71755
Putative SAM domain containing methyltransferase	CAL35414
Chp4	EAQ72353
Cpp14	AAR29498.1
Cpp17	AAR29501.1
Cpp22	AAR29505.1
Cpp18	AAR29502.1
Cpp47	AAR29528.1
Cpp45	AAR29512.1
Cpp13	AAR29497.1
Ptet	AY714214.1
cmgB3/4	AAR29514.1

Purple, present; blank, absent; orange, plasmid pTet related proteins, dark blue, proteins not present in C. jejuni 11168. Farms 1, 2, 4, and 5 are indicated (F1, F2, F4, and F5).

Furthermore, Stahl and co-workers found that the ability to metabolize L-fucose in vivo provided C. jejuni with competitive advantage during colonization of the piglet infection model. Similar was not observed in the chick commensal model (Stahl et al., 2011), suggesting potential niche specific advantage for colonization in the L-fucose rich environment in the pig small intestine and cecum.

The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Petrovska, Tang, Jansen van Rensburg, Cawthraw, Nunez, Sheppard, Ellis, Whatmore, Crawshaw and Irvine. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.