Chromium-rich vanadio-oxy-dravite from the Tzarevskoye uranium–vanadium deposit, Karelia, Russia: a second world-occurrence of Al–Cr–V–oxy-tourmaline

Ferdinando Bosi1*, Alessandra Altieri1, Fernando Cámara2,3 and Marco E. Ciriotti4,5
1Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy; 2Department of Earth Sciences “Ardito Desio”, University of Milan, via Luigi Mangiagalli 34, 20133 Milan, Italy; 3CristD, Interdepartmental Centre for the Research and Development of Crystallography, via Pietro Giuria 5, I-10125, Turin, Italy; 4Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Cirié, Italy; and 5Dipartimento di Scienze della Terra, Università di Torino, via Tommaso Valperga Caluso 35, I-10125 Torino, Italy

Abstract

A green tourmaline sample from the Tzarevskoye uranium–vanadium deposit, close to the Srednaya Padma deposit, Lake Onega, Karelia Republic, Russia, has been found to be the second world-occurrence of Cr-rich vanadio-oxy-dravite in addition to the Pereval marble quarry, Studyanka crystalline complex, Lake Baikal, Russia. From the crystal-structure refinement and chemical analysis, the following empirical formula is proposed:

\[X(Na_{0.96}K_{0.02})_2[Al_{19.36}Cr_{13.6}V_{0.03}Mg_{0.03}Li_{0.07}]_2(Si_{0.15}O_{18})(BO_3)_3V_{0.03}W_{0.05}OH_{2.3}O_{17.2}F_{0.1}F_{0.02}Zn_{0.01}Th_{0.01}F_{0.01} \]

Together with the data from the literature, a compositional overview of Al–V–Cr–Fe3+-tourmalines is provided by using \[[6]Al–V–Cr–Fe^{3+} \] diagrams for tourmaline classification. These diagrams further simplify the tourmaline nomenclature as they merge the chemical information over the octahedrally-coordinated sites (Y and Z) by removing the issues of uncertainty associated with cation order–disorder across Y and Z. Results show the direct identification of tourmalines by using the chemical data alone.

Keywords: tourmaline, crystal-structure refinement, electron microprobe, nomenclature

Introduction

The tourmaline-supergroup minerals are chemically complex borosilicates that are widespread in the Earth’s crust, occurring in sedimentary rocks, granites and granitic pegmatites and in low-grade to ultrahigh-pressure metamorphic rocks (e.g. Dutrow and Henry, 2011). In common with Henry et al. (2011), the general formula of tourmaline can be written as

\[XY_3Z_6T_6O_{18}(BO_3)_3V_3W\]

where X = Na+, K+ , Ca2+ and \[Y = Al^3+, Fe^3+, Cr^3+, V^3+, Mg^2+, Fe^2+, Mn^{2+}, Li^+ \]; Z = Al^3+, Fe^3+, Cr^3+, V^3+, Mg^2+, Fe^2+, Mn^2+, Mg^2+, Fe^2+, and T = Si^4+, Al^3+, B^3+, B = B^3+, V = OH^2-, and O^2- and W = OH^2-, F^− and O^2-. The (non-italicised) letters X, Y, Z, T and B represent groups of cations accommodated at the \([9]X\), \([6]Y\), \([6]Z\), \([3]T\) and \([3]B\) crystallographic sites (identified with italicised letters); the letters V and W represent groups of anions accommodated at the \([3]O(3)\) and \([3]O(1)\) crystallographic sites, respectively. The H atoms occupy the \(H(3)\) and \(H(1)\) sites, which are related to O(3) and O(1), respectively (e.g. Bosi, 2013; Gatta et al., 2014).

Due to their highly variable chemical composition and refractory behaviour, tourmaline is considered a very useful indicator of geological processes in igneous, hydrothermal and metamorphosed systems (Dutrow and Henry, 2011; van Hinsberg et al., 2011; Ahmadi et al., 2019; Sipahi, 2019) and able to record and preserve the chemical composition of their host rocks.

Vanadum and Cr-bearing hydroxyl- and oxy-tourmaline species have been described widely in the literature (Cossa and Arzruni, 1883; Badalov, 1951; Bassett, 1953; Snetsinger, 1966; Peltola et al., 1968; Jan et al., 1972; Dunn, 1977; Nuber and Schmetzer, 1979; Foit and Rosenberg, 1979; Rumyantseva, 1983; Gorskaya et al., 1984, 1987; Reznitskii et al., 1988; Hammarstrom, 1989; Kazachenko et al., 1993; Reznitskii and Sklyarov, 1996; Erli et al., 2008; Arif et al., 2010; Lupulescu and Rowe, 2011; Rozhdestvenskaya et al., 2011; Cempirek et al., 2013; Vereshchagin et al., 2014). Currently, they are known from several localities: Studyanka (Slyudyanka) crystalline complex, Lake Baikal, Russia; Onega region, Central Karelia, Russia; Primorye, Far eastern Russia; Balmat, St. Lawrence County, New York, USA; Silver Knob deposit, Mariposa County, California, USA; Nausahi deposit, Orissa, India; Outokumpu deposit, Finnish North Karelia, Finland; Mininga and Gujar Kili mines, Swat, Pakistan; Alpurai, Pakistan; Shabrovskoe ore deposit, Middle Ural, Russia; Syyserdax Dach, Ural Mountains, Russia; Umba Valley, Tanga Province, Tanzania; Kwal District, Kenya;
Amstall, Lower Austria, Austria; and Bitovánky, Czech Republic. Also, fluor-rich tourmalines characterised by V and Cr have been reported in the literature with a strong positive relation between F and Cr, but with F contents less than 0.5 atoms for formula unit (Bosi et al., 2017b).

Oxy-tourmalines rich in both V and Cr are unusual minerals and occur almost exclusively in metamorphosed V- and Cr-enriched host rocks such as sulfide-rich black shales, graphite quartzites and calcareous metasediments (Snetsinger, 1966; Kazachenko et al., 1993; Bačík et al., 2011; Cempírek et al., 2013). Most oxy-tourmalines with dominant V and/or Cr (V₂O₅ or Cr₂O₃ > 9 wt.%) were found in the Studyanka crystalline complex, Lake Baikal, Russia (Bosi et al., 2004, 2012, 2013a,b; Reznitskii et al., 2014; Bosi et al., 2014a,b, 2017a,b). Among these is a vanadio-oxy-dravite, ideally NaV₄(Al₆Mg₄)(Si₆O₁₈) (BO₃)₃(OH)₃O, a rare tourmaline recently described by Bosi et al. (2014a). The sample studied was found in the Tzarevskoye uranium–vanadium deposit, close to the Srednyaya Padma deposit, Zaonezhye Peninsula, Lake Onega, Karelia Republic, Northern Region, Russia. It is the first occurrence of V-dominant, Cr-rich oxy-tourmaline in Karelia and the second world-occurrence in addition to the Pervel marble quarry (Studyanka) type-locality. In this work, we describe this tourmaline and provide a compositional overview of Al–V–Cr–Fe³⁺-tourmalines.

Geological setting
The Srednyaya Padma mine is the largest of the deposits from vanadium, uranium and precious metals of the Onega region and has abnormally high concentrations of gold, palladium, platinum, copper and molybdenum. It is concentrated in the Onega epicratonic trough, which is filled with volcano–sedimentary rocks of Lower Proterozoic age (organic carbon-rich shists, sandstones, dolomites and tuffites prevail) (Boitsov, 1997). The ore mineralisation is located in the albite–mica–carbonate metasomatites upon the Proterozoic aleorolites and schists (Boitsov, 1997). The distribution of these ore-bearing metasomatites is controlled by axial faults and shear zones. In fact the Srednyaya Padma deposit is located in zones of fold-fracture dislocations, which are represented by systems of N–W oriented anticlines with interior portions of the anticlines composed of dolomites and exterior portions composed of schists. The orebodies are situated in steeply-dipping fracture zones in siltstones and in some wedge-shaped zones at the contact with the schungite schists.

The Srednyaya Padma deposit is 3 km long and consists of two orebodies with different amounts of V and U (Boitsov, 1997): the first orebody has a length of 1060 m, thickness 40–50 m, with an average V₂O₅ and UO₂ content of ~3 wt.% and 0.13 wt.%, respectively, whereas the second has a length of 1840 m, vertical size of 100–450 m and an average content of V₂O₅ and UO₂ of ~2.4 wt.% and 0.11 wt.%, respectively.

In accordance with Borozdin et al. (2014), the main minerals of the ore metasomatites are V- and Cr-micas (roscoelite, chromceladonite and Cr-bearing micas of the phengite series), which make up ~26% of all ores, carbonate marbles (dolomite and calcite), with ~21%, feldspars (albite, which usually prevails over other minerals with a mean content of ~37%), minor V–Cr alkaline pyroxenes (nabylite and Cr-bearing aegirine) and Cr-rich tourmalines.

The tourmaline studied was found in the Tzarevskoye uranium–vanadium deposit, ~14 km from the well-known Srednyaya Padma deposit. The Tzarevskoye deposit is situated in the anticline zone with cores of metamorphosed terrigenous–carbonate rocks in the cores and intensely brecciated, mylonitised and foliated metamorphosed siltstones at the margins of the folds. The tectonic activity was accompanied by hydrothermal–metasomatic and hypogene processes (Boitsov, 1997). The tourmaline sample occurs in micaceous metasomatites, associated with rosoelite, Cr-bearing phengite micas, quartz and dolomite. It forms dark-green to black pyramidal crystals up to 0.1 mm. A similar mineralogical association was observed for the chromium-dravite from the Velikaya Guba gold–copper–uranium occurrence (see below).

Experimental Methods

Electron-microprobe analysis
Electron-microprobe analyses of the present sample were obtained by a wavelength-dispersive spectrometer (WDS mode) using a CAMECA SX50 instrument at the Istituto di Geologia Ambientale e Geingegneria (CNR of Rome, Italy), operating at an accelerating potential of 15 kV and a sample current of 15 nA, with a 10 μm beam diameter. Minerals and synthetic compounds were used as standards as follows: wollastonite (Si and Ca), magnetite (Fe), rutile (Ti), corundum (Al), karelianite (V), fluorphlogopite (F), periclase (Mg), jadeite (Na), orthoclase (K), rhodonite (Mn), metallic Cr, Ni, Cu and Zn. Vanadium and Cr concentrations were corrected for interference from the TiKα and VKβ peaks, respectively. The PAP matrix correction procedure (Pouchou and Pichoir 1991) was applied to reduce the raw data. The results, which are summarised in Table 1, represent mean values of 4 spot analyses. In accordance with Pesquera et al. (2016), the Li₂O content was assumed to be insignificant as MgO > 2 wt.% is contained in the sample studied. Calcium, Mn, Fe and Ni were below the detection limits (0.03 wt.%).

Single-crystal structural refinement (SREF)
A pale green crystal fragment (0.037 mm × 0.042 mm × 0.052 mm) of the sample was mounted on an Oxford Gemini R Ultra diffractometer equipped with a Ruby CCD area detector at CrisDi (Interdepartmental Centre for the Research and Development of Crystallography, Turin, Italy) with graphite-monochromatised MoKα radiation from a fine-focus sealed X-ray tube. The sample-to-detector distance was 5.3 cm. A total of 222 exposures (step = 1°, time/step = 48–478 s) with an average redundancy of ~6 was used. Data were integrated and corrected for Lorentz and polarisation background effects, using CrysAlisPro (Agilent Technologies, Version 1.171.36.20, release 27-06-2012 CrysAlisPro1.171.36.24). Refinement of the unit-cell parameters was based on 2304 measured reflections. The data were corrected for absorption using the multi-scan method (Scale3 ABSPACK). No violations of R3m symmetry were noted.

Structural refinement was done with the SHELXL-2013 program (Sheldrick, 2013). Starting coordinates were taken from Bosi et al. (2014a). Variable parameters were: scale factor, atomic coordinates, site scattering values and atomic-displacement factors. Attempts to refine the extinction coefficient yielded values within its standard uncertainty, thus it has not been refined. Neutral scattering factors were used for the cations and a fully
Table 1. Chemical composition for Cr-rich vanadio-oxy-dravite from the Tzarevskoye deposit, Russia.

Element	wt.%	apfu	
SiO₂	34.58(39)	Si	6.00
TiO₂	0.11(6)	Ti³⁺	0.01
B₂O₃*	10.02	B	3.00
Al₂O₃	18.89(56)	Al	3.86
Cr₂O₃	9.93(68)	Cr³⁺	1.36
V₂O₅	9.87(33)	V³⁺	1.37
MgO	9.10(64)	Mg	2.35
CuO	0.18(13)	Cu²⁺	0.02
ZnO	0.09(4)	Zn	0.01
Na₂O	2.85(5)	Na	0.96
K₂O	0.10(3)	K	0.02
F	0.31(14)	F	0.17
H₂O*	2.79	OH	3.23
Total	98.66		

Notes: Errors for oxides are standard deviations (in parentheses) of 4 spot analyses; apfu = atoms per formula unit.

*Calculated by stoichiometry.

Results

Determination of atomic fractions

In agreement with the SREF results, the B content was assumed to be stoichiometric in the sample studied (B³⁺ = 3.00 atoms per formula unit, apfu). In fact, both the site-scattering results and the bond lengths of B and T are consistent with the B site fully occupied by B³⁺ and no amount of B³⁺ at the T site. The (OH) content can then be calculated by charge balance with the assumption (T + Y + Z) = 15.00 apfu and 31 anions. The atomic fractions were calculated on these assumptions (Table 1). The excellent match between the number of electrons per formula unit (epfu) derived from chemical and structural analysis supports this procedure: 268.90 and 267.95 epfu, respectively.

Determination of site populations and mineral formula

The anion site populations in the sample studied follow the general preference suggested for tourmaline (e.g. Henry et al., 2011): the O(3) site (Y position in the general formula) is occupied by (OH), while the O(1) site (W position in the general formula) can be occupied by O²⁻, (OH) and F. The T site is fully occupied by Si. The cation distribution at the Y and Z sites can be optimised according the procedure of Bosi et al. (2017b) and the ionic radii of Bosi (2018). In detail, the site distribution of Mg, Al, V³⁺ and Cr³⁺ was obtained by minimising the residuals between calculated and observed structural data (such as mean bond distance, site scattering expressed in terms of mean atomic number) by using a least-square approach. The minor amounts of Ti, Cu²⁺ and Zn were assumed fixed at the Y site. The resulting empirical crystal-chemical formula is

\[
X(N_0.96K_0.02) S_1.00 (V_{1.34Al_0.68Mg_0.09Cu_0.02Zn_0.01Ti_0.01})_S 23.00
\]

\[
Z(Al_{1.19}Cr_{1.36}V_{0.03}Mg_{0.12})_V S 5.60 (Si_{0.56}O_{1.39})_Y (BO_3)_3 V (OH)_3
\]

\[
W(O_{0.60}(OH)_{0.23}F_{0.17})_W S 1.00
\]

The observed mean atomic number and mean bond length values and those calculated from the optimised site-populations are in excellent agreement (Table 5). This cation distribution is consistent with the studies of Bosi et al. (2017b) and Bosi (2018), which showed that the preference of Al³⁺, V³⁺ and Cr³⁺ for the Y and Z sites is controlled mainly by the cation size according to the sequence: \(X_{Y3+} > X_{Cr3+} > Al^{3+}\) and \(X_{Al3+} > Cr_{3+} > V_{3+}\). Because \(<Y-O>\) is always greater than \(<Z-O>\) in tourmaline, the Y site will in fact tend to incorporate relatively large cations, whereas the Z site will tend to incorporate relatively small cations. This trend is documented by the preference of V³⁺ over Cr³⁺ to dominate the Y site in the vanadio-oxy-chromium-dravite compositions. Compared to Al³⁺, V³⁺ prefers the Y site (and Al³⁺ the Z site) as observed in the vanadio-ox- oxy-dravite samples.

The optimised empirical formula can be recast in its ordered form for classification purposes (Henry et al., 2011) by ordering...
Table 3. Displacement parameters (Å²), fractional atom coordinates and site occupancy for Cr-rich vanadio-oxy-dravite from the Tzarevskoye deposit, Russia.

Site	x	y	z	Site occupancy	U¹¹	U¹²	U¹³	U¹⁴	U¹⁵	U¹⁶	U¹⁷/U¹⁶	x	y	z
X	0	0	0.2365(6)	Na⁹,bc,Mg³⁺⁰⁺	0.0921(26)	0.0921(26)	0.0226(2)	0.0145(8)	0.0281(14)					
Y	0.1249(7)	0.0624(8)	0.6370(19)	M⁹,bc,Mg₂⁺⁺	0.0066(5)	0.0058(4)	0.0108(6)	-0.00061(18)	-0.0012(4)	0.0033(2)	0.0077(3)			
Z	0.2383(5)	0.2617(5)	0.6113(18)	Al⁹,bc,Mg²⁺⁺	0.0055(3)	0.0062(4)	0.0073(4)	0.0007(3)	-0.0001(3)	0.0029(3)	0.0063(2)			
B	0.1093(18)	0.2184(6)	0.4562(7)	O	0.0052(13)	0.0084(14)	0.0032(19)	0.0017(15)	0.0008(8)	0.0042(7)	0.0052(8)			
T	0.1309(5)	0.1982(5)	0.0724(8)	Si	0.0060(10)	0.1220(12)	0.4903(5)	0.0085(10)	0.0142(13)	0.1036(16)	0.0051(1)			
O(1)	0.1728(5)	0.2216(6)	0.0724(8)	O	0.0060(10)	0.1220(12)	0.4903(5)	0.0085(10)	0.0142(13)	0.1036(16)	0.0051(1)			
O(2)	0.1099(10)	0.2681(14)	0.4903(5)	O	0.0060(10)	0.1220(12)	0.4903(5)	0.0085(10)	0.0142(13)	0.1036(16)	0.0051(1)			
O(3)	0.2599(2)	0.1920(3)	0.1120(3)	H	0.0060(10)	0.1220(12)	0.4903(5)	0.0085(10)	0.0142(13)	0.1036(16)	0.0051(1)			

*Equivalent (Ueq) and isotropic (Uiso) displacement parameters; H-atom was constrained to have a Uiso 1.2 times the Uiso value of the O(3) oxygen.

Discussion

Similar to other tourmaline groups, tourmaline from the Sludyanka crystalline complex (Lake Baikal), the vanadio-oxy-dravite sample studied is also strongly enriched in Cr. Karelia appears to be of major importance of the world in hosting tourmalines highly enriched in both Cr and V. In particular, the first description of chromium-dravite, ideally NaMg₃Cr₆(Si₆O₁₈)(BO₃)₃(OH)₃OH is from Karelia (Rumyantseva, 1983). More precisely, the holotype chromium-dravite specimen occurs in micaceous metasomatic clay-carbonate rocks from the Velikaya Guba gold–copper–uranium occurrence, Zaonezhye peninsula, Lake Onega, Karelia Republic, Northern Region, Russia. The Velikaya Guba occurrence is close to (~18 km) the Tzarevskoye deposit where the sample studied was found. The empirical formula of chromium-dravite (Rumyantseva, 1983) recast in its ordered form is as follows:

\[
\begin{align*}
X(Na⁹,bc,Mg³⁺⁰⁺) & \geq 0.03 \sum_{0.02}^{0.03} \times Y(Mg²⁺⁺,Ca²⁺,Zn⁰⁺⁺,Ti⁰⁺⁺) & \sum_{0.00}^{0.10} \\
Z(Al⁴⁺⁺₅⁺⁺,Cr⁴⁺⁺₅⁺⁺) & \geq 0.03 \sum_{0.00}^{0.03} \times Z(BO₃) & \sum_{0.00}^{0.03} \\
W(\text{O}⁺⁺,\text{OH}) & \geq 0.03 \sum_{0.01}^{0.03} \times F(\text{OH}) & \sum_{0.00}^{0.01}
\end{align*}
\]

Both the empirical and ordered formulae are consistent with an oxy-tourmaline species belonging to the alkali group, subgroup 3 (Henry et al., 2011): Na-dominant at the X position of the tourmaline general formula and oxygen-dominant at the W position with O³⁺ > (OH⁺⁺). As V³⁺ is the dominant cation at Y and Al³⁺ is the dominant cation at Z along with relatively small amounts of Mg for formula electroneutrality (valency-imposed double-site occupancy; Bosi et al., 2019a), its end-member composition is NaV₅(SiAl₅O₁₈)(BO₃)₃(OH)₃O. As a result, the sample studied can be classified as Cr-rich vanadio-oxy-dravite.
(hydroxy-species) belonging to alkali subgroup 1. Compared to the sample studied, significant chemical differences at the octahedrally coordinated sites can be noted between the tourmalines from Karelia: the studied oxy-species \((\text{WO} = 0.60 \text{ apfu}) \) has \(\text{Mg} = 2.05 \text{ apfu}, \text{Al} = 3.86 \text{ apfu}, \text{V} = 1.37 \text{ apfu} \) and \(\text{Cr} = 1.38 \text{ apfu} \), whereas the chromium-dravite hydroxy-species \((\text{WOH} = 0.77 \text{ apfu}) \) has \(\text{Mg} = 2.57 \text{ apfu}, \text{Al} = 0.37 \text{ apfu}, \text{V} = 0.22 \text{ apfu}, \text{Cr} = 4.71 \text{ apfu} \) and \(\text{Fe}^{3+} = 1.18 \text{ apfu} \). These differences lead to the following \((Y + Z) \) charge arrangements following Bosi et al. (2019b), \(Y^+Z(R^2^+_2R^3^+_7) \) for the oxy-species and \(Y^+Z(R^2^+_3R^3^+_6) \) for the hydroxy-species, which should be reflected in two different compositional diagrams for their classification. Recently, Henry and Dutrow (2018) proposed two ternary diagrams for the [6]Al–V–Cr subsystem and [6]Al–Cr–Fe\(^{3+}\) subsystem of the [6]Al–V–Cr–Fe\(^{3+}\) quaternary system to classify oxy-tourmalines \((\text{WO}_{2} > 0.5 \text{ apfu}) \). It is worth noting that this diagram includes trivalent cations at both the \(Y \) and \(Z \) sites to remove issues of uncertainty associated with order–disorder across these sites.

In order to better show the chemical variability of oxy-tourmalines in the [6]Al–V–Cr–Fe\(^{3+}\) quaternary system, we have merged the diagrams [6]Al–Cr–V and [6]Al–Cr–Fe\(^{3+}\) through the edge [6]Al–Cr (Fig. 1). We made these ternaries because no tourmaline rich in both V and Fe\(^{3+}\) has been found so far.

With regard to the classification of hydroxy/fluor-tourmalines \((\text{OH} + \text{F} > 0.5 \text{ apfu} \text{ at W}) \), the ternary diagram for the Al–Fe\(^{3+}\)–Cr subsystem (Fig. 2) of the Al–V–Cr–Fe\(^{3+}\) quaternary system is used (Henry et al., 2011). This diagram is based on occupancy of the Z site obtained from the tourmaline ordered formula, which also removes issues of uncertainty associated with order–disorder across the \(Y \) and \(Z \) sites as may occur for example between Fe\(^{2+}\)–Al in schorl (Andreozzi et al., 2020). In other words, the use of the diagrams in Figs 1 and 2 is equivalent to classifying tourmalines using only the chemical information of the \(Y \) and \(Z \) sites.

The plotted data in these diagrams (for a total 109 data sets) are from: Peltola et al. (1968); Foit and Rosenberg (1979); Nuber and Schmetzer (1979); Rumyantseva (1983); Gorskaya et al. (1987, 1989); Cavarretta and Puxeddu (1990); Grice et al. (1993); Grice and Ercit (1993); Žáček et al. 2000; Bosi et al. (2004, 2012, 2013a, b, 2014a, b, 2017a, b); Ertl et al. (2008, 2016); Arif et al. (2010), in which Fe was considered +3 as suggested by the authors; Baksheev et al. (2011); Lupulescu and Rowe (2011); Rozhdestvenskaya et al. (2011); Cempírek et al. (2013); Reznitskii et al. (2014) and Vereshchagin et al. (2014).

The position of Cr-rich vanadio-oxy-dravite from the Tzarëvskoye uranium–vanadium deposit close to the chromo-alumino-povondraite boundary is shown in Fig. 1.
Moreover, the complete chemical variability of the \([6]Al–Cr–V\) oxy-tourmalines can be compared to the only chemical variability of \(Fe^3+\) occurring along the oxy-dravite–bosite–povondraite series. From a nomenclature viewpoint, the range of the oxy-tourmaline compositions is valid for most of the oxy-tourmalines classified by considering the actual cation distributions over the \(Y\) and \(Z\) sites as overriding information for the definition of a tourmaline species (Henry et al., 2013). The only exception regards one of the two samples described by Bosi et al. (2012) as oxy-chromium-dravite, which falls in the chromo–alumino–povondraite field. Also note that the \(V\)-bearing tourmaline from Silver Knob, California, USA (Foit and Rosenberg, 1979) is classified as \(V\)-rich oxy-dravite (Fig. 1).

The position of the chromium-dravite from the Velikaya Guba gold–copper–uranium occurrence (Rumyantseva, 1983) with respect to the other \(Cr-Fe^{3+}\) hydroxy-tourmalines from the literature is shown in Fig. 2. This figure shows the occurrence of a complete chemical variability along the dravite–chromium–dravite series and a partial variability from dravite to the hypothetical end-member \(NaMg_3Fe_3^+(Si_6O_{18})(BO_3)_3(OH)_2OH\) of the samples from Larderello geothermal field, Italy (Cavarretta and Puxeddu, 1990). However, it should be noted that in all the oxy- and hydroxy-tourmalines plotted in Figs 1 and 2 the oxidation state of Fe has always been assumed to be +3 by the various authors, except for the \(Fe^2+\)–chromo–alumino–povondraite from the Studyanka crystalline complex, Russia (Bosi et al., 2013b). The latter was characterised by Mössbauer spectroscopy resulting in \(Fe^2+/Fe^{3+} = 2.49\) wt.% and \(FeO = 1.05\) wt.%. To date, this is the only experimental information confirming the presence of \(Fe^{3+}\) in \(Cr\)-tourmalines (at least the 80% of the \(Fe^{3+}/\Sigma Fe_{tot}\)).

Conclusions

A classification scheme that disregards details of ion ordering, which typically require techniques that are uncommonly realised in the geosciences community (e.g. crystal structure refinements) is desirable. In this regard, the tourmaline ordered formula would best assist mineralogists and petrologists in identifying tourmaline species. The tourmaline nomenclature can be simplified further by merging the chemical information over the \(Y\) and \(Z\) sites that results in \([6]Al–Cr–Fe^{3+}\) diagrams.

This study describes the second world-occurrence of the rare vanadio-oxy-dravite from the Tzarevskoye uranium–vanadium deposit, Lake Onega, Karelia Republic, Russia, along with the first world-occurrence of chromium-dravite from the relatively close Velikaya Guba gold–copper–uranium occurrence. These provided an excellent opportunity to use the new \([6]Al–V–Cr–Fe^{3+}\) diagrams for the tourmaline classification. This approach has also been successfully applied to other oxy- and hydroxy-Al-tourmalines rich in \(V–Cr–Fe^{3+}\) from the literature. Results show the robust classification of tourmalines by using only the chemical data.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1180/mgm.2020.77

Acknowledgements. We are grateful to M. Serracino who assisted with chemical analyses. Funding by Sapienza University of Rome (Prog. Università 2018 to F. Bosi) is gratefully acknowledged. Comments and suggestions by D. Henry, A. Ertl and the Associate Editor, were much appreciated.

References

Ahmadi S., Tahmasbi Z., Khalaji A.A. and Zal F. (2019) Chemical variations and origin of tourmalines in Laleh Zar granite of Kerman (Southeast Iran). *Periodico di Mineralogia*, 88, 117–129.
Andreeozzi G.B., Bosi F., Celata B., Capizzi L.S., Stagno V. and Beckett-Brown C.E. (2020) Crystal-chemical behaviour of Fe\(^{2+}\) in tourmaline dictated by structural stability: insights from a schorl with formula Na\(^3\)(Fe\(^{2+}\)Al\(^3+\))(Al\(^3+\)Fe\(^{3+}\))(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\). From Seagull batholith (Yukon Territory, Canada). *Physics and Chemistry of Minerals*, **47**, 25.

Arif M., Henry D.J. and Moon C.J. (2010) Cr-bearing tourmaline associated with emerald deposits from SWAT, NW Pakistan: Genesis and its exploration significance. *American Mineralogist*, **95**, 799–809.

Badalov S.T. (1951) A new variety of tourmaline. *Records of the Geological Survey of Tanganyika*, **39**, 93–96.

Boitsov A.V. (1997) The mineral composition and the ore types of the uranium-vanadium deposit Srednaya Padma (Onega region, Russian Federation). Pp. 259–269 in: *Changes and Events in Uranium Deposit Development, Exploration, Resources, Production and the World Supply-Demand Relationship* (IAEA editor), Vienna, Austria.

Bosco A.P., Potekhyn Yu. S., Buzarmin S.A., Glebovitskii V.A., Beljatkii B.V. and Savva V.E. (2014) Age of metasomatism and ore formation in the Srednaya Padma vanadium precious metals uranium deposit (Karelia, Baltic Shield). *Doklady Earth Sciences*, **458**, 68–71.

Bosi F. (2013) Bond-valence constraints around the O\(_1\) site of tourmaline. *Mineralogical Magazine*, **77**, 343–351.

Bosi F. (2018) Tourmaline crystal chemistry. *American Mineralogist*, **103**, 298–306.

Bosi F., Lucchesi S. and Reznitskii L. (2004) Crystal chemistry of the dravite-chromdavite series. *European Journal of Mineralogy*, **16**, 345–352.

Bosi F., Reznitskii L. and Skogby H. (2012) Oxy-chromium-dravite, Na\(_2\)(Cr\(_3\)Mg\(_2\))(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\), a new mineral species of the tourmaline supergroup. *American Mineralogist*, **97**, 2024–2030.

Bosi F., Reznitskii L. and Skyarov E.V. (2013a) Oxy-vanadinite-dravite, Na\(_2\)(V\(_3\)Mg\(_2\))(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\), crystal structure and redefinition of the "vanadium-dravite" tourmaline. *American Mineralogist*, **98**, 501–505.

Bosi F., Skogby H., Hålenius U. and Reznitskii L. (2013b) Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relations with oxy-chrom-dravite and oxy-vanadinite. *American Mineralogist*, **98**, 1557–1564.

Bosi F., Skogby H., Reznitskii L. and Hålenius U. (2014a) Vanadio-oxo-dravite, Na\(_2\)Al\(_2\)(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\), a new mineral species of the tourmaline supergroup. *American Mineralogist*, **99**, 218–224.

Bosi F., Reznitskii L., Skogby H. and Hålenius U. (2014b) Vanadio-oxo-chrom-dravite, Na\(_2\)(Cr\(_3\)Mg\(_2\))(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\), a new mineral species of the tourmaline supergroup. *American Mineralogist*, **99**, 1155–1162.

Bosi F., Cámara F., Ciriotti M.E., Reznitskii L. and Stagno V. (2017a) Crystal-chemical relations and classification problems in tourmaline-group minerals. *Mineralogical Magazine*, **81**, 501–505.

Bosi F., Skogby H., Hålenius U. and Reznitskii L. (2013b) Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relations with oxy-chrom-dravite and oxy-vanadinite. *American Mineralogist*, **98**, 1557–1564.

Bosi F., Skogby H., Reznitskii L. and Hålenius U. (2014a) Vanadio-oxo-dravite, Na\(_2\)Al\(_2\)(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\), a new mineral species of the tourmaline supergroup. *American Mineralogist*, **99**, 218–224.

Bosi F., Reznitskii L., Skogby H. and Hålenius U. (2014b) Vanadio-oxo-chrom-dravite, Na\(_2\)(Cr\(_3\)Mg\(_2\))(Si\(_6\)O\(_{18}\))(BO\(_3\))\(_3\)(OH)\(_2\), a new mineral species of the tourmaline supergroup. *American Mineralogist*, **99**, 1155–1162.

Bosi F., Cámara F., Ciriotti M.E., Reznitskii L. and Stagno V. (2017a) Crystal-chemical relations and classification problems in tourmaline-group minerals. *Mineralogical Magazine*, **81**, 501–505.

Grice J.D. and Erciti T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. *Neues Jahrbuch für Mineralogie, Abhandlungen*, **165**, 245–266.

Grice J.D., Erciti T.S. and Hawthorne F.C. (1993) Povondraite, a redefinition of the tourmaline ferridravide. *American Mineralogist*, **78**, 433–436.

Hammarstrom J.M. (1989) Mineral chemistry of emeralds and some associated minerals from Pakistan and Afghanistan: an electron microprobe study. Pp. 125–150 in: *Emerals of Pakistan: Geology, Gemology and Genesis* (A.H. Kazmi and L.W. Snee, editors). Geological Survey of Pakistan and Van Nostrand Reinhold Co., New York.

Henry D.J. and Dutor B.L. (2018) Tourmaline studies through time: contributions to scientific advancements. *Journal of Geosciences*, **63**, 77–98.

Henry D.J., Novak M., Hawthorne F.C., Ertl A., Dutor B., Uher P. and Pezzotta F. (2011) Nomenclature of the tourmaline supergroup minerals. *American Mineralogist*, **96**, 895–913.

Henry D.J., Novak M., Hawthorne F.C., Ertl A., Dutor B., Uher P. and Pezzotta F. (2013) Erratum. *American Mineralogist*, **98**, 524.

Jan M.Q., Kempe D.R.C. and Symes R.E. (1972) A chromian tourmaline from SWAT, West Pakistan. *Mineralogical Magazine*, **36**, 756–759.

Kazachenko V.T., Butsik L.A., Sapin V.I., Kitaii L.V., Barinov N.N. and Narnov G.A. (1993) Vanadian–chromian tourmaline and vanadian muscovite in contact-metamorphosed carbonaceous rock, Primorye, Russia. *The Canadian Mineralogist*, **31**, 347–356.

Lupulescu M. and Rowe R. (2011) Al-rich chromium-dravite from #1 mine, Balmat, St. Lawrence Country, New York. *The Canadian Mineralogist*, **49**, 1189–1198.

Nuber B. and Schmetzer K. (1979) Die Gitterposition des Cr\(^{3+}\) in Turmalin: Strukturverfeinerung eines Cr-reichen Mg-Al-Turmalin. *Neues Jahrbuch für Mineralogie, Abhandlungen*, **137**, 184–197 [in German].

Pelto E., Vuorelainen Y. and Halki T.A. (1968) A chromian tourmaline from Outokumpu, Finland. *Bulletin of the Geological Society of Finland*, **40**, 35–38.
Pesquera A., Gil-Crespo P.P., Torres-Ruiz F., Torres-Ruiz J. and Roda-Robles E. (2016) A multiple regression method for estimating Li in tourmaline from electron microprobe analyses. Mineralogical Magazine, 80, 1129–1133.

Pouchou J.L. and Pichoir F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 31–75 in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum, New York.

Reznitskii L.Z. and Sklyarov E.V. (1996) Unique Cr-V mineral association in metacarbonate rocks of the Studyanka, Russia. P. 446 in: Proceedings 30th International Geological Congress, Beijing, China.

Reznitskii L.Z., Sklyarov E.V. and Ushapovskaya Z.F. (1988) Minerals of chromium and vanadium in Studyanka crystalline complex (southern Pribaikalia). Pp. 64–74 in: Metamorphic formations of Pre-Cambrian of Eastern Siberia (V.G. Belichenko, editor). Nauka, Novosibirsk, Russia.

Reznitskii L., Clark C.M., Hawthorne F.C., Grice J.D., Skogby H., Hälenius U. and Bosi F. (2014) Chromo-alumino-povondraite, NaCr₃(Al₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 1767–1773.

Rozhdestvenskaya I.V., Vereshchagin O.S., Frank-Kamenetskaya O.V., Zolotarev A.A. and Pekov I.V. (2011) About crystallochemical formula of chromadravite – mineral species of tourmaline. Proceedings of the Russian Mineralogical Society, 3, 93–99.

Rumyantseva E.V. (1983) Chromadravite, a new mineral from Karelia. Proceedings of the Russian Mineralogical Society, 112, 222–225.

Sheldrick G.M. (2013) SHELXL2013. University of Göttingen, Germany.

Sipahi F. (2019) Nature of tourmaline formation in quartz porphyry in the E Sakarya zone (NE Turkey): Geochemistry and isotopic approach. Periodico di Mineralogia, 88, 333–351.

Snetsinger G.K. (1966) Barium–vanadium muscovite and vanadium tourmaline from Mariposa County, California. American Mineralogist, 51, 1623–1639.

van Hinsberg V.J., Henry D.J. and Dutrow B.L. (2011) Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7, 327–332.

Vereshchagin O.S., Rozhdestvenskaya I.V., Frank-Kamenetskaya O.V. and Zolotarev A.A. (2014) Ion substitutions and structural adjustment in Cr-bearing tourmalines. European Journal of Mineralogy, 26, 309–321.

Začek V., Frýda J., Petrov A. and Hyršl J. (2000) Tourmalines of the povondraite-(oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia. Journal of the Czech Geological Society, 45, 1–2.