Bacteriocins: Potential for Human Health

Fuqing Huang, Kunling Teng, Yayong Liu, Yanhong Cao, Tianwei Wang, Cui Ma, Jie Zhang, and Jin Zhong

1State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2University of Chinese Academy of Sciences, Beijing 100008, China
3The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China

Correspondence should be addressed to Jin Zhong; zhongj@im.ac.cn

Received 13 January 2021; Revised 25 March 2021; Accepted 30 March 2021; Published 12 April 2021

Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.

1. Introduction

Many human diseases are associated with bacterial infections. While antibiotics have played an instrumental role in the fight against them, the widespread misuse of antibiotics has led to the emergence of a serious worldwide drug resistance problem; the discovery of new antimicrobial drugs is therefore urgent [1]. Bacteriocins are peptides with antibacterial activity synthesized by bacterial ribosomes, and they are usually inhibitory to proximate bacteria. [2] Bacteriocins are typically classified into Class I (heat-stable posttranslationally modified peptides below 10 kDa) including lanthipeptide, lasso peptide, head-to-tail cyclized peptides, thiopetide, glycosylated bacteriocin, and sactipeptide; Class II (heat-stable unmodified small peptides below 10 kDa) including IIa/b/c/d; and Class III (thermally unstable peptides larger than 10 kDa) [3]. Due to its unique mechanism of action, such as modification of the pyrophosphate moiety of lipid-II, bacteriocins have a relatively narrower spectrum of inhibition against bacteria and are less likely to develop widespread drug resistance than antibiotics [4, 5].

Bacteriocins can inhibit many disease-causing bacteria, including some antibiotic-resistant strains, suggesting the potential application of bacteriocins in antagonizing pathogenic infections. The human body (e.g., in gastrointestinal tract, respiratory tract, and skin and reproductive tract) has a large number of microorganisms, and the host microbiota is constantly interacting with the host cells. Many human microorganisms can produce bacteriocins which are reported to be closely related to human health, such as promoting the balance of the gut microbiota and inhibiting the invasion of foreign pathogenic bacteria [6]. In addition to inhibiting pathogenic bacteria, bacteriocins have shown inhibitory effects on a wide range of cancer cells as well as modulating effects on inflammation and immunity, suggesting that they also show anticancer and anti-inflammatory activities. Therefore, bacteriocins have a great potential for application in human health.

In recent years, there have been some reports on bacteriocins and human health, but there is still a lack of systematic reviews in this field of research. Therefore, it is necessary to summarize the bacteriocins produced by different bacteria.
and their beneficial effects on human health, so as to provide a theoretical basis for the research and development of bacteriocins. In this review, we summarized the antibacterial, anticancer, anti-inflammatory, and immune-modulatory activities of bacteriocins and concluded their mechanisms of action.

2. Functional Properties and Mechanisms of Bacteriocins

Pathogenic microorganisms pose a major threat to human health and may even endanger human lives. It is predicted that millions of people will die from bacterial infections in the coming decades, because of the emergence of multidrug-resistant (MDR) bacteria [7, 8]. Despite the important contribution of antibiotics in the fight against pathogenic infections, the widespread use and misuse of antibiotics have led to some serious adverse consequences, such as the emergence of superbugs. [9] New compounds for inhibiting the multiresistant pathogens and limiting the spread of antibiotic resistance are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides. Some bacteriocins need to be modified by a posttranslational modified enzyme system and transported by a special transport system to outside of the cell to exert their biological activities (e.g., lantibiotics) [10]. In contrast to antibiotics, the unique mechanism of action (binds the pyrophosphate moiety of Lipid-2 [11]) prevents bacteriocins from developing resistance, and treating pathogenic infections with bacteriocins or bacteriocins in combination with antibiotics instead of antibiotics can reduce the overuse of antibiotics, thereby reducing the spread of antibiotic resistance. [5, 12] Moreover, some strains that are resistant to antibiotics appear to have a higher susceptibility to antimicrobial peptides. [13] Leon et al. points out that the mechanism of antimicrobial activities of bacteriocins is completely different from that of antibiotics, which indicated that bacteriocins will be possible as “new age infection fighters” [14]. Some bacteriocins show inhibitory activities against pathogenic microorganisms and can effectively inhibit infections of the human body by pathogenic microorganisms. This suggests that bacteriocin is an effective alternative for the treatment of pathogenic microbial infections. The anti-infection effects of bacteriocins and mechanisms are summarized in Table 1 and Figure 1. Many bacteriocins (e.g., lanthipeptides) demonstrate inhibitory activity against the pathogens. In addition, some bacteriocins have demonstrated inhibitory effects on viruses and parasites.

2.1. Inhibiting Bacterial Infections. Many bacteriocins typically exhibit antibacterial activity against the critical pathogenic bacteria, including some antibiotic-resistant Gram-positive (G+) bacteria including Mycobacterium tuberculosis, methicillin-resistant Staphylococcus aureus (MRSA), Listeria monocytogenes, vancomycin-resistant enterococci (VRE), Clostridium difficile, and Gram-negative (G-) bacteria including Escherichia coli and Salmonella enterica. Bacteriocins exert their antimicrobial action through inhibiting the bacteria cell wall biosynthesis by complexing the lipid II and forming the pore in cell membrane, disrupting bacterial population sensing as a signaling molecule, or targeting the ATP-dependent protease, or binding to a site on 23S rRNA and inhibits elongation factor-dependent reactions (Table 1).

Nisin, produced by Lactococcus lactis, is the most researched and developed bacteriocin. Since nisin was found in 1928, it has been used for decades as a safe, natural food biopreservative that significantly inhibits the growth of a wide range of pathogenic microorganisms [15]. For example, nisin can inhibit the growth of Streptococcus pneumonia [16] which could cause the disease of pneumonia, meningitis, and sepsis. In addition, nisin has an inhibitory effect on many pathogenic bacteria and ameliorates infections caused by these pathogens, such as respiratory tract infections caused by S. aureus [17] and gastrointestinal infections by VRE in mice [18].

In addition, many diseases associated with pathogenic bacterial infections can be treated by bacteriocin interventions. M. tuberculosis is the pathogen that causes tuberculosis, which affects a quarter of the world’s population. Some bacteriocins have been reported to inhibit M. tuberculosis in vitro. For example, griselimycin, a cyclic bacteriocin, is effective in curing mice infected with tuberculosis in vivo. [19] S. aureus infections can lead to diseases such as mastitis and bacteraemia. Laterosporulin10, microbisporicin, NVB333, and mersacidin can inhibit S. aureus in vitro and/or in vivo, thereby treating respiratory tract, foot, abdominal cavity, and nasal cavity of S. aureus infection. [20–22] L. monocytogenes is the pathogen of listeriosis. It mainly uses food as a vector and is one of the deadliest foodborne pathogens, causing 20 to 30% of the infected deaths [23]. Moreover, it also has the ability to cross the intestinal barrier to reach the blood and extraintestinal organs. Some studies have reported that certain bacteriocins, such as pediocin PA-1, lactocin AL705, and enterocin CRL35, inhibit the growth of L. monocytogenes and also reduce the number of their passage through the intestinal barrier [24, 25]. E. coli and Salmonella infections usually cause diarrhea and intestinal inflammation and lead to the disorder of the intestinal flora and the destruction of the intestinal barrier. They cross the intestinal barrier into the blood and reach other extraintestinal organs and cause the aggravation of the symptoms of the infection. Some studies have shown that bacteriocins (e.g., microcin and colicin) have an inhibitory effect on E. coli and Salmonella in vitro and can effectively reduce the numbers of E. coli (e.g., O157:H7) and Salmonella in the infected mice, improving the adverse effects caused by these pathogens [26–28]. In addition, some bacteriocins (e.g., subtilosin and gassericin E) have a significant inhibitory effect on the pathogens (e.g., Gardnerella vaginalis) which can cause the bacterial vaginal diseases [29, 30].

Interestingly, some studies have shown that bacteriocin alone or in combination with antibiotics can not only broaden the antibacterial spectrum (even effective against antibiotic-resistant bacteria) but also significantly reduce the MIC value [20, 31–34]. For example, Singh et al. reported that the combinations of nisin-ceftriaxone and nisincefotaxime were found to be highly synergistic against S. enterica serovar typhimurium than in those treated with drugs alone, specifically manifested in lower MIC value and
Table 1: Antimicrobial effects of bacteriocins.

Bacteriocins - classification	Producing bacteria	Target organism	Mode of action	Model	Security
Nisin - lanthipeptide [17, 103–105]	*L. lactis*	*S. aureus, C. difficile*	Lipid II binding and pore formation	*In vitro*, mice and rats (intraperitoneal injection and nasal administration)	FDA approved and generally regarded as safe
NAI-107 - lanthipeptide [106, 107]	*Microbispora sp.*	*S. aureus*	Inhibits the synthesis of peptidoglycan	*In vitro* and mice (intravenous and subcutaneous administration)	Low acute toxicity
Mutacin B-Ny266 - lanthipeptide [108, 109]	*S. mutans*	*Neisseria Helicobacter*	Unknown	*In vitro* and mice (intraperitoneal injection)	Not evaluated
OG716 - lanthipeptide [110]	*S. mutans* [H1140]	*C. difficile*	Binding the pyrophosphate moiety of lipid-II	*In vitro* and hamster	Low toxicity
Mersacidin - lanthipeptide [22, 111–113]	*Bacillus* sp HIL-Y85/54728	*MRSA*	Inhibits bacterial cell wall biosynthesis by complexing lipid II	*In vitro* and mice (nasal administration and subcutaneously administered)	Not evaluated
Actagardine A - lanthipeptide [114]	*A. garbadinensis* ATCC 31047	*C. difficile, VRE MRSA*	Inhibits cell wall biosynthesis by binding to lipid II and blocking transglycosylation	*In vitro*	Not evaluated
NVB302 - lanthipeptide [115, 116]	Derivative of deoxyactagardine B from *A. liguriae*	*C. difficile*	Binding to lipid II	*In vitro* and hamsters (oral gavage) and *ex vivo* gut model	Nontoxic
NVB333 - lanthipeptide [117]	*Lactis DPC3147*	*C. difficile, L. monocytogenes*	Binding to lipid II and lytic	*In vitro* and mice (i.v. injection)	No signs of any drug-related adverse effects
Lactocin 3147 - lanthipeptide [118]	*L. lactis*	*S. aureus*	Target the ATP-dependent protease	*In vitro*	Not evaluated
Lassomycin class I - lasso peptide [119]	*Lentze kentuckyensis*	*M. tuberculosis*	Inhibiting RNA polymerase and increasing superoxide production	*In vitro*	No cytotoxicity
Microcin J25 - lasso peptide [26, 80, 120, 121]	*E. coli*	*Salmonella, E. coli*	Accumulating a positive charge on the membrane surface and disrupts the membrane potential	*In vitro* and macrophages	No cytotoxicity
Enterocin AS-48 - head-to-tail cyclized peptides [122–125]	*E. faecalis*	*M. tuberculosis*	Binding to a site on 23S rRNA and inhibits elongation factor-dependent reactions	*In vitro*, zebrafish and macrophages	US FDA-approved drug
Thioestrepton - thiopipeptide [126, 127]	*Streptomyces sp.*	*M. abscessus*	Targeting the bacterial membrane	*In vitro* and mice	Not hemolytic
Durancin 61A - glycosylated bacteriocin [128, 129]	*E. durans* 61A	*C. difficile, VRE, MRSA, L. innocua*	Permeabilize and depolarize the membrane	*In vitro* and mice	Not evaluated
Turhicin CD - sactipeptide [87, 130, 131]	*B. thuringiensis* DPC 6431	*C. difficile, L. monocytogenes*	Permeabilize and depolarize the membrane	*In vitro* and mice	Not toxic to eukaryotic cells
Ruminococcin C - sactipeptide [132, 133]	*R. gnavus* E1	Pathogenic clostridia and MDR strains	Inhibiting nucleic acid synthesis in a metronidazole-like manner	*In vitro* and macrophages	Not evaluated
Gassericin E - head-to-tail cyclized peptides [30]	*L. gasseri* EV1461	*Multiple pathogens associated with bacterial vaginosis*	Unknown	*In vitro*	Not evaluated
Microcin H47 [134]	*E. coli Nissle 1917*	*E. coli*	Targeting the F0 proton channel of ATP synthase	*In vitro*	Not evaluated
Microcin E492 [135]	*K. pneumoniae* RYC492	*K. Enterobacter E. coli*	Permeabilize the inner membrane with the mannose permease	*In vitro*	Induces apoptosis in some human cell lines
Bacteriocins - classification	Producing bacteria	Target organism	Mode of action	Model	Security
------------------------------	-------------------	----------------	---------------	-------	----------
Microcin M [136]	E. coli Nissle 1917	E. coli Salmonella sp.	Compete against other enterobacteria that utilize catecholate siderophores	In vitro	Not evaluated
Lactocin 160 [137, 138]	L. Rhamnosus	G. Vaginalis Bacillus pertussis	Causing the efflux of ATP molecules and dissipative the proton motive force	In epivaginal	Minimal irritation
Enterocin CRL35 class Ila [25, 139]	E. mundtii	L. monocytogenes	Forming holes in the cell wall and cell membrane	In vitro	Not evaluated
Lactocin AL705 class Ila [140, 141]	L. curvatus	L. monocytogenes	Disrupting quorum sensing through a signal molecule inactivation	In vitro	Not evaluated
Pediocin PA-1 class Ila [24, 142, 143]	P. acidilactici	L. monocytogenes	Forms hydrophilic pores in the cytoplasmic membrane	Intra-gastric administration	Commercial applications with no adverse effect
Laterosporulin10 class IId [21]	B. laterosporus SKDU10	S. aureus, M. smegmatis	Membrane permeabilization	In vitro and macrophages	No hemolytic activity
Subtilosin class II [29, 144, 145]	B. subtilis	G. vaginalis, L. monocytogenes, S. agalactiae	Binding to lipid bilayers, results in membrane permeabilization	In epivaginal	Human cells remained viable after prolonged exposures to subtilosin
Colicin Z class III [27]	E. coli B1356	E. coli Shigella	Via cjc receptor recognition and cjr- and exb-b- and exb-d-mediated colicin translocation	In vitro	Not evaluated
Colicin F Y class III [28, 146]	E. coli	Y. enterocolitica	Yig-mediated reception, tonb import, and cell membrane pore formation	In mice	Not evaluated
Diflicin class III [102, 147]	C. difficile CD4	C. difficile	Dissipating the membrane potential	In vitro and mice	Not evaluated
ELS5 [148]	E. faecalis SL-5	P. acnes	Unknown	In vitro and human	Not evaluated
Bacteriocin OR-7 [149]	L. salivarius NRRL B-30514	C. jejuni	Unknown	In chicken	Not evaluated
Bacteriocin E 50-52 class Ila [150]	E. faecium NRRL B-30746	S. enteritidis	Unknown	In chicken	Not evaluated
Subtilosin class II [37]	B. subtilis	HSV-1 and HSV-2	Inhibiting virus multiplication	In vitro	Human cells remained viable after prolonged exposures to subtilosin
Labyrinthopeptin Al lanthipeptide [40, 41, 151]	A. namibiensis DSM 6313	HSV, HIV, zika virus, and dengue virus	Acting as an entry inhibitor possibly by targeting the HSV glycoproteins	In vitro	Does not harm the vaginal epithelium or the normal vaginal lactic acid flora
Enterocin CRL35 class Ila [38, 39]	E. mundtii	HSV-1 and HSV-2	Affecting a late step of virus multiplication	In vitro	Low cytotoxicity for eukaryotic cells
Mundticin ST4SA class Ila [42]	E. mundtii ST4V	HSV-1, HSV-2, poliovirus and measles virus	Unknown	In vitro	Not evaluated
Enterocin AS-48 class I-head-to-tail cyclized peptides [48, 125, 152]	E. faecalis	Trypanosoma cruzi	Mitochondrial membrane depolarization and reactive oxygen species production	In vitro and mice	No cytotoxicity
Addlp class II [49]	A. dehaegeanus	Plasmodium falciparum	Unknown	In vitro	Nontoxic to mammalian cells
less organ cell load [31]. This suggests that bacteriocins could be considered an effective way to reduce the spread of antibiotic resistance.

2.2. Inhibiting Virus Infections. Viral infections can attack and destroy the immune system, leading to the formation of malignant tumors. Current treatments for viral infections are mainly chemical drugs, such as inhibitors of DNA polymerase activity that inhibit the replication of the virus [35]. However, the virus is prone to mutate and easily leads to resistance to these drugs. Therefore, the search for new antiviral drugs is imminent. It has been reported that certain bacteriocins are demonstrated to show antiviral activities to a variety of viruses. Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are human viral pathogens that can cause serious clinical conditions including genital ulcers, corneal blindness, and encephalitis, and over 530 million people worldwide are infected with HSV-2 [36]. Studies reported that several bacteriocins show inhibitory effects against HSV. For example, subtilosin targets intracellular transport of viral glycoproteins in the late stages of the viral replication cycle to exert antiviral or virucidal effects [37]. Similarly, enterocin CRL35 affects the late steps of virus multiplication [38, 39] and labyrinthopeptin A1 targets the glycoproteins, exerting an antiviral effect [40, 41]. In addition, bacteriocins have been reported to have antiviral or...
virucidal effects against a variety of other viruses, such as human immunodeficiency virus (HIV), zika virus, and dengue virus [37, 42]. Compared to be antibacterial agents, bacteriocins have been much less studies as antiviral agents, and the mechanisms of bacteriocins involved are less well understood and need further research.

2.3. Inhibiting Parasite Infection. There are 342 species of helminth parasites and 70 species of protozoan parasites in humans [43]. The relationship between the parasite and the host is complex, as it may either promote host health or cause diseases [44, 45]. Protozoa such as Plasmodium, Trypanosoma, and Entamoeba can cause serious diseases (e.g., malaria, sleeping sickness, and amoebic dysentery) in humans [46, 47]. Several bacteriocins have been reported to have an inhibitory effect on some parasites and can ameliorate diseases caused by parasites. For example, AS-48 is a head-to-tail cyclized peptide, synthesized by Enterococcus faeacalis. It not only has bactericidal effect on many G+ bacteria and several G- bacteria but also effectively reduces the number of Trypanosoma cruzi by mitochondrial membrane depolarization and reactive oxygen species production, improving the symptoms of Chagas’ disease [48]. AdDLP is the first bacterial defensin-like peptide identified in the G- bacterium Anaeromyxobacter dehalogenans. 10 μM AdDLP can kill 100% of Plasmodium falciparum without harming mammalian red blood cells [49]. Although the research about bacteriocins inhibiting parasites are still limiting, bacteriocins are potential to be an effective drug to fight against parasite infection.

Table 2: Anticancer effects of bacteriocins.

Bacteriocins	Classification	Source	Target cancer cells (mechanism) or effects in vivo
Nisin	Lanthipeptide	L. lactis	SW1088 [57]; HNSCC (arresting the cell cycles) [53]; SW480 (increasing the apoptosis index of bax/bcl-2) [54]; LS180, HT29, and Caco2 (decreasing the expression of genes related to proliferation and migration) [55]. IMR-32 (enhancing cell membrane fluidity) [59]. Combining with doxorubicin can reduce the tumor volume of skin cancer in mice [60]. Decreasing the IC50 of 5-FU on A431 cells and promote the elimination of tumors in mice [61, 153]
Nisin Z	Lanthipeptide	L. lactis	A375 (inducing cell membrane damage, increasing ROS accumulation, inhibiting mitochondrial respiration and glycolytic metabolism) [58]; HNSCC (induces apoptosis and reduces proliferation and clone formation). Reduces the occurrence of tumors in mice and prolongs survival [154]
Bovicin HC5	Lanthipeptide	S. bovis HC5	MCF-7 and HepG2 [155]
Duramycin	Lanthipeptide	S. griseoverticillatum	MCA-RH 7777 (enhancing the sensitization) [67]
Chaxapeptin	Lasso peptide	S. leeuwenhoekii C58	A549 [66]
Thiostrepton	Thiopeptide	S. aureus	MCF-7 (inhibiting FOXM1expression) [68, 69]. Inhibiting endometriosis lesions and reducing the levels of MMP9 and bcl-2 in rats [70]
Microcin E492	Microcin	K. pneumoniae	HeLa, Jurkat, and Ramos (forming ion channels) [63]. Tumor inhibition in SW480 and SW620 zebrafish xenograft models [156]
Pediocin CP2	Class IIA	P. acidilactici CP2	MCF-7, HepG2, Sp2/0-Ag14 and HeLa (affecting cell division and DNA synthesis) [64]
Pediocin PA-1	Class IIA	P. acidilactici K2a2-3	HT29 and HeLa [24]
Plantaricin A	Class IId	L. Plantarum	Jurka (disrupting cell membrane structure) [65]
Laterosporulin	10	B. laterosporus SKDU10	MCF-7, HEK293T, HT1080, HeLa and H1299 (disrupting cell membrane structure) [62]

3. Anticancer Activities

Cancer is a major public health problem worldwide and is the leading cause of death in the global [50]. Although there have been new breakthroughs in cancer research in recent years, there are still many challenges that need to be addressed, and the prevention and treatment of cancer need to be further explored continuously. Cancer occurs when the cells that line the tissue become abnormal and grow out of control. With the enhancement of migration ability, some cancers might even be present without any signs or symptoms [51, 52]. Inhibiting the proliferation and migration of cancer cells is an effective measure to prevent and treat cancer.

In recent years, researches on the anticancer effect of peptide have gradually become the focus of attention. Bacteriocins have shown anticancer activities such as killing and inhibiting invasion of some cancer cells. Table 2 and Figure 2 summarize the anticancer effects of bacteriocins and the mechanisms reported so far, including induction of cell apoptosis, blocking of cell cycle, inhibition of cell migration, and destruction of cell membrane structure.

Nisin can induce the apoptosis of a wide range of cancer cells (e.g., HNSCC, SW480, LS180, HT29, Caco2, SW1088, A375, and IMR-32) [53–59] through multiple mechanisms. After treatment with different concentrations of nisin, the apoptosis index (i.e., bax/bcl-2) of cancer cells was increased, the cell cycle was arrested, and the expression of genes related to proliferation and migration (e.g., cea, cca1b, b, and mmp2f) were suppressed. In addition, nisin also induces the cell membrane damage, promotes the release of lactate dehydrogenase (LDH), increases the accumulation of reactive oxygen
species (ROS), and inhibits the mitochondrial respiration and glycolytic metabolism (lead to cancer cells running out of energy). Interestingly, nisin can also be used in combination with anticancer drugs to significantly enhance their anticancer effects in vivo. Preet et al. [60] reported that nisin as an adjunct can promote the effects of doxorubicin against DMBA-induced skin carcinogenesis by improving histopathological features, promote cell apoptosis of tumor, and increase superoxide dismutase (SOD) levels, thereby reducing the average load and volume of the tumor. Similarly, Rana et al. [61] demonstrated that nisin and 5-FU combination be synergistic against DMBA-induced skin cancer and could promote the rapid removal of tumors in vivo. These results point towards the possible use of bacteriocins as an adjunct to anticancer drug to prevent local tumor invasion, metastasis, and recurrence and develop alternate strategies to combat currently and developing drug resistance in cancer cells.

Apart from nisin, laterosporulin10 (LS10), a class IId bacteriocin produced by Brevibacillus laterosporus SKDU10, not only effectively inhibits pathogens [21] (i.e., M. tuberculosis and S. aureus) but also kills a variety of cancer cells (e.g., MCF-7, HEK293T, HT1080, HeLa, and H1299 cell lines) at 10 μM by destroying the membrane structure. Interestingly, it shows low toxicity towards normal prostate epithelium cells (RWPE-1) [62]. Microrn E492 produced by K. pneumoniae can trigger cancer cells to form ion channels, resulting in cell shrinkage, DNA fragmentation, extracellular exposure of phosphatidylserine, caspase activation, and loss of mitochondrial membrane potential, inhibiting the growth of HeLa, Jurkat R 2.25, and Ramos cell lines at the concentration more than 5 μg/mL. Like LS10, microcin E492 also had no effect on normal cells (KG-1 and a primary culture of human tonsil endothelial cell) [63]. Pediocin CP2, a class Iia bacteriocin from Pediococcus acidilactici MTCC 5101, can affect cell division and DNA synthesis and induce programmed cell death of multiple cancer cells (MCF-7, HepG2, and HeLa) at 25 μg/mL without selective cytotoxicity. [56, 64] In addition, plantaricin A [65] from Lactobacillus plantarum, pediocin PA-1 [56] from P. acidilactici K2a2-3, chakapetin [66] from Streptomyces leuwnenhoekii C58, and duramycin [67] from Streptovorticillium griseovorticillatum have been reported to inhibit Jurkat, HeLa, A549, and MCA-RH 7777 cell lines, respectively. Thiostrptone, produced by Streptomyces, is an exciting bacteriocin that was reported to have in vivo anticancer properties as of nisin.
Table 3: Anti-inflammation and immunomodulation effects of bacteriocins.

Bacteriocins	Classification	Resource	Highlights
Nisin A	Lanthipeptide	L. lactis	Decreasing the levels of IL-6, IL-8, and TNF-α and reduce the growth of bacteria in the wound [73]
Nisin Z	Lanthipeptide	L. lactis	Inhibiting S. agalactiae and S. aureus, alleviating mastitis in cows [74]
Nisin	Lanthipeptide	L. lactis	Increasing the level of IL-12 in macrophages [82], adjust the levels of inflammatory factors in both directions and promote immune balance [83]. Decrease the levels of TNF-α, TNF-β, NF-xB, IL-1, and ROS in mice [153]
Nisin P	Lanthipeptide	S. lactis SMN003	Regulating cytokine concentration to reduce uterine inflammation in rats [75]
Thioestrepton	Thiopeptide	Streptomyces sp.	Inhibiting psoriasis-like inflammation induced by TLR7, TLR8, and TLR9 [86]
Microcin M	Microcin	E. coli MCH100	Inhibiting intestinal pathogenic bacteria and reducing intestinal inflammation [77]
Microcin J25	Lasso peptide	E. coli	Improving intestinal inflammation of broiler and mouse caused by Salmonella and ETEC [78, 79]
Sublancin	Glycocin	B. subtilis 800	Enhancing macrophage function, increase CD 4+ and CD 8+ cells, thereby enhancing immune response [84, 85]. Inhibiting NF-xB, relieving intestinal inflammation [157]
Gassericin A	Circular	L. gasseri LA39	Binding to KRT19 thus promote fluid absorption and decrease secretion early-weaned piglets [158]
Salivaricin LHM	Class II	L. salivarius	Inhibiting inflammation caused by P. aeruginosa, with immune regulation in mice [81]
Plantaricin EF	Class IIB	L. plantarum	Reducing obesity and fat inflammation [76]
Lmo2776	Class IId	L. monocytogenes	Targeting the commensal P. copri and modulate intestinal infection in mice [159]

Thioestrepton not only forms a tight complex with the forkhead box M1 (FOXO1), a key regulator of the cell cycle) binding domain and inhibits FOXO1 expression, inhibiting MCF7 cell in vitro at 10 μM, but also decreases FOXO1 expression and acts as a proapoptotic factor, thereby inhibiting endometriosis and reducing MMP9 and bcl-2 levels in vivo at 150 mg/kg [68–70]. Therefore, many bacteriocins have the potential to be used as antitumor agents by interfering with some aspect of cancer progression. They have a significant potential for developing as antitumor drugs.

4. Anti-Inflammation and Immunomodulation Activities

The immune system is a complex network of cells, tissues, and organs that work together to protect the body from harmful substances and defend against disease, which plays an important role in maintaining the health of human [71]. Many diseases are linked to disturbances in the immune system, such as inflammation and immune deficiency [72]. Bacteriocins also have anti-inflammatory and immune-modulatory effects as detailed in Table 3 and Figure 3. Bacteriocins can inhibit the inflammatory effects caused by pathogen-associated molecular patterns (PAMPs) or other irritants by modulating cytokine levels. This is characterized by an increase in anti-inflammatory cytokines and a decrease in proinflammatory cytokines by regulating the activation of certain pathways, such as Toll-like receptor (TLR), nuclear factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. Bacteriocins also promote the secretion of antimicrobial substances from epithelial cells to kill proinflammatory bacteria. And they inhibit the infection-induced inflammation and migration of pathogens by increasing the expression of tight junction proteins (TJP), strengthening the intestinal barrier, and reducing the invasion of proinflammatory pathogens into the bloodstream and extraintestinal organs.

Nisin has been reported to have a significant anti-inflammatory effect in vitro and in vivo. Nisin A can increase the activity of human keratinocytes HaCaT, inhibit LPS-induced proinflammatory cytokine levels (TNF-α), and reduce bacterial growth, promoting wound healing [73]. Nisin Z inhibits S. agalactiae and S. aureus and leads to a significantly decreased milk somatic cell count in cows with mastitis, thus effectively relieving the symptoms of mastitis [74]. Nisin P from Streptococcus lactis SMN003 reduces uterine inflammation in rats by regulating the concentration of proinflammatory and anti-inflammatory cytokines (regulate the levels of B7-2, IFN-γ, IL-2, and IL-8) and normalized uterine neutrophils thus restoring endometrial architecture [75].

Plantaricin EF, class IIB bacteriocins which are produced by L. plantarum, can promote the expression of TJP in obese mice, increase the integrity of intestinal barrier, reduce the weight of obese mice, and reduce the inflammation of fat [76]. Microcin M produced by E. coli MC4100 mediates the competition of Enterobacter in inflammatory bowel, reduces the colonization of intestinal pathogenic bacteria, and reduces intestinal inflammation [77]. A lasso peptide of microcin J25 from E. coli can reduce the levels of IL-6, IL-8, and TNF-α to prevent intestinal damage and inflammation caused by ETEC K88. Microcin J25 also can effectively improve the production performance of salmonella-infected broilers, systemic inflammation, and the composition of fecal microflora [32, 78–80]. This is inconsistent with the commonly held view that bacteriocins have little effect on the structure of intestinal flora. It might be due to the special structure of microcin J25 (a lasso peptide), which makes it insensitive to proteases and thus affects intestinal microorganisms. Besides, microcin J25 also improves the fecal microbiota of weaned piglets, thereby promoting piglet growth,
apparent total digestibility, and intestinal barrier function [32]. Salivaricin LHM from Lactobacillus salivarius inhibits the growth and biofilm formation of Pseudomonas aeruginosa (often cause nosocomial infection) and can also reduce the inflammation and prevent injury caused by P. aeruginosa infection. So, the salivaricin LHM has anti-inflammatory effect in vivo and in vitro [81].

In fact, whether it is an anti-infective, antitumor, or anti-inflammatory effect, this is inseparable from immune regulation. Nisin can not only reduce the level of proinflammatory factors to play an anti-inflammatory function but also promote the secretion of proinflammatory factors under certain conditions. For example, nanoparticles synthesized by nisin and Ag (nisin-Ag) increased the level of the proinflammatory cytokine IL-12 in macrophages [82]. Interestingly, nisin promotes the proliferation of peripheral blood mononuclear cells (PBMC), stimulate the production of IL-1 and IL-6, and increase the proportion of CD4+ CD8+ T cells. Contrary, when PBMC is stimulated by LPS, nisin reduces the production of LPS-induced proinflammatory cytokine IL-6 [83]. It indicates that nisin has strong immune-modulatory activity. Sublancin (1.0 mg/kg) can enhance macrophage function, increase CD 4+ and CD 8+ cells, and protect mice from MRSA infection [84]. It also prevents cyclophosphamide-induced immunosuppression in mice and inhibits NF-κB activation to balance the immune response during infection, alleviating intestinal inflammation [85]. Thiostrepton is a kind of thiopeptide, which can inhibit the psoriatic inflammation, which induced by TLR7, TLR8, and TLR9 in vivo [86].

As mentioned above, bacteriocins have a wide range of biological activities, suggesting that they may be used as anti-infective compounds and effective therapeutic agents in the treatment of a number of immune-related diseases,
and they may even have promising applications in cancer therapy.

5. Opportunities of the Application of Bacteriocins in Human Health

5.1. Delivery Systems for Bacteriocins. Bacteriocins are an essential class of polypeptide substance. They are reported to be involved in improving gut health, such as reducing pathogenic bacteria colonization, improving the intestinal barrier, and alleviating intestinal inflammation. Besides, bacteriocins are not easy to cause drug resistance and have little influence on commensal flora. For example, thuricin CD, a posttranslationally modified bacteriocin produced by B. thuringiensis DPC 6431 with an activity against C. difficile, has potential as a targeted therapy in the treatment of C. difficile-associated infection while also reducing collateral impact on the commensal flora [87]. Some bacteriocins, such as lasso peptide microcin J25, have stable structures to avoid degradation by proteases in digestive tract [80]; however, most bacteriocins are susceptible to be degraded by proteases when administered orally, leading to the loss of antimicrobial activity. As a result, only a small fraction of bacteriocins has been tested in vivo by intraperitoneal injection, nasal feeding, or applying to skin. Therefore, effective delivery methods are necessary to ensure that they are not degraded when they reach the intestine.

Nanoparticles (i.e., metal nanoparticles, organic nanoparticles, nanospheres, and nanofibers), probiotics, and gels may be used as bacteriocin delivery systems [88]. For example, nisin nanoparticles have sustained release effect compared with nisin alone, prolonging the action time for the recurrent vaginal candidiasis treatment [89], and slow release contributes to prolonging the duration of the effect. In addition, some delivery modes enhance the activity of bacteriocins. For example, compared with enterocin alone, enterocin-capped silver nanoparticles (En-SNPs) synthesized by enterocin and nanosilver have stronger antibacterial activity against multiple foodborne pathogens (i.e., E. coli ATCC 25922, B. cereus, K. pneumoniae, L. monocytogenes, M. luteus, P. acidilactici LB42, S. flexneri, and S. aureus) [90]. Mohid et al. described five bacteriocins which are effective against M. tuberculosis. After being embedded in liposomes (phosphatidylcholine: cardiolipin = 3:1), four of them are better than rifampicin (traditionally used to treat M. tuberculosis infection) in vivo [91]. However, as the best of our knowledge, those delivery systems have only little effect to solve the protease degradation problem.

Many probiotics have been reported to tolerate the gastrointestinal environment and successfully colonize the intestine. Consequently, bacteriocin-producing probiotics act as vehicles to transport the bacteriocins to the intestinal tract for their beneficial effects. Malvisi et al. found that nisin-producing strains show stronger antimicrobial activity against mastitis-causing bacteria than nonnisin-producing strains [92]. Similarly, Yin et al. demonstrated greater anti-inflammatory activity in mice fed L. plantarum compared to the mutant strain lacking the bacteriocin plantaricin [93]. In turn, the production of bacteriocins promotes the colonization of probiotic bacteria, facilitating their occupation of ecological niches and reducing the colonization of pathogenic bacteria [94]. Thus, bacteriocin-producing strains can be used as vehicles to help bacteriocins colonize and function in gastrointestinal research.

5.2. Increasing Bacteriocins Production and Activity by Genetic Engineering. The production of bacteriocins in the original strains is usually low, and some bacteriocins are encoded by plasmids and are not produced in stable yields. Increasing the yield of bacteriocins is of great importance for the research and application of bacteriocins. In addition, the activity of some bacteriocins has to be improved in practice, which can also reduce the amount of bacteriocins used and thus indirectly solve the problem of insufficient bacteriocin production. Genetic engineering is a good solution to both of these problems. For the increase of bacteriocin production, Ni et al. used the shuttle expression vector pMG36e with the strong constitutive promoter p32 to further enhance the production of nisin by overexpressing the genes nisA, nisRK and nisFEG in L. lactis LS01 [95]. Kong et al. obtained the 14.5 kb complete gene cluster of nisin from L. lactis K29 nisin-producing bacteria, transferred it into L. lactis MG1363 with pCCAM81 plasmid, and overexpressed the core peptide gene nisA, thereby increasing the yield of nisin [96]. For the enhancement of the bacteriocins activity, Zhou et al. attached the tail (PRPPHPRL) of apidaecin 1b to nisin, and the activity of nisin against E. coli CECT101 was increased by more than twofold [97]. Recently, Steven et al. have improved the activity of antimicrobial peptides against pathogenic bacteria and broadened the spectrum of inhibition by combinatorially shuffling the peptide modules of 12 lanthipeptides. [98] Overall, genetic engineering is an effective approach to increase bacteriocin production and enhance bacteriocin activity.

5.3. Bacteriocins as Narrow-Spectrum Antimicrobials to Be Needed for Healthy Human Microbiota. The human microbiota is composed of a diverse community of bacteria, and the microbial composition and abundance changes are related to a range of human diseases. Broad-spectrum antibiotic administration could dramatically reduce gut microbiota diversity and cause many side effects. For example, antibiotic-associated diarrhea occurs when the balance of “good and bad bacteria” in the gastrointestinal is disrupted after taking antibiotics.

Many bacteriocins have a relatively narrower spectrum and targeted against a little specific bacteria compared to antibiotics which have a broad-spectrum activity. As bacteriocins usually inhibit closely related bacteria, some bacteriocins produced by pathogens showed specific antimicrobial activity to the related pathogenic bacteria. For example, lantibiotic sucin from S. suis has an inhibitory effect against S. gordonii which can cause human sepsis [99]. Klebocin from clinical isolates of K. pneumoniae show antimicrobial activity to pathogenic species from enterobacteriaceae [100]. Aureocins produced by S. aureus has a strong inhibitory effect on S. aureus and S. agalactiae [101]. In addition, bacteriocins have no impact on normal microbial flora due to their narrow spectrum. For instance, diffocin is produced by C. difficile.
CD4 and can specifically kill other *C. difficile* strains. The modified diffocins completely prevented the intestinal settlement of *C. difficile* without infecting gut flora by oral administration in mice [102]. Similarity, thuricin CD produced by *B. thuringiensis* DPC 6431 showed elimination of *C. difficile* and has little impact on normal genera in gut [87]. Microcin J25 intervention in a diarrhea model reduces pathogenic *E. coli* colonization while improving intestinal microbiology [32]. Therefore, bacteriocins have a great potential to be used as a narrow-spectrum bacterial inhibitor for the treatment of infection-related diseases in human.

In practice, the safety of some bacteriocins is of concern as their producing bacteria are pathogenic. Therefore, for these bacteriocins, using purified bacteriocins or heterogeneous probiotic bacteria expressing the bacteriocin rather than the producing strains is applicable. It is worth mentioning that a rigorous safety assessment of bacteriocins in *vivo* is necessary before practical application, regardless of whether the source is probiotic or pathogenic.

6. Conclusion and Prospect

This review highlights the potential of bacteriocins as novel therapeutic treatments in microbe infection, cancer, and immune system in human body. There is an abundance of knowledge on the bacteriocins applied in food industry, agriculture, and veterinary fields. However, there is limiting available in *vitro* and in *vivo* data regarding human health. Due to the sensitivity of some bacteriocins to protease, many studies on the activity of bacteriocins are confined to *vitro* experiments and have not been deeply studied in the model of animals. Some posttranslationally modified bacteriocins show higher stabilities in the digestive tract, while less is known about their impact in an in *vivo* environment. The bacteriocin delivery system might be an important path to solve the degradation of bacteriocin in the digestive tract. Besides, more and more bacteriocin biosynthesis clusters are predicted using bioinformatic approaches; however, the bacteriocin-producing strain is not easy to obtain. The combination of high-throughput sequencing and culture omics may provide ideas for the discovery of new bacteriocins and their producing strains. More research related to the cytotoxicity, hemolytic activity, distribution, and metabolism of bacteriocins is needed to explore their contribution to human health. The unique antibacterial mechanism of bacteriocins compared to conventional antibiotics makes them a potential alternative to antibiotics. Further studies on the function and mechanism of action of bacteriocins will help advance their practical application in anti-infection, anticancer, and anti-inflammation or immunomodulation.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Fuqing Huang provided the ideas and wrote this manuscript. Kunling Teng wrote and revised this manuscript. Yayong Liu, Yanhong Cao, Tianwei Wang, Cui Ma, and Jie Zhang have performed the literature search. Jin Zhong gave guidance and revised this manuscript. All authors read and approved the final manuscript. Fuqing Huang and Kunling Teng have contributed equally to this work and should be considered co-first authors.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31972049, U20A2066, and 31900025), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA26040201), grants from the Guangxi Major Science and Technology Project (AA18118041), and Jilin Province and the Chinese Academy of Sciences cooperation in science and technology high-tech industrialization special funds project (2019SYHZ0033).

References

[1] C. L. Ventola, “The antibiotic resistance crisis: part 1: causes and threats,” *Pharmacy & Therapeutics*, vol. 40, no. 4, pp. 277–283, 2015.

[2] Y. Qin, Y. Wang, Y. He et al., “Characterization of subtilin LQ11, a novel class J bacteriocin synthesized by *Bacillus subtilis* LQ11 isolated from orchard soil,” *Frontiers in Microbiology*, vol. 10, p. 484, 2019.

[3] P. Alvarez-Sieiro, M. Montalbán-López, D. Mu, and O. P. Kuipers, “Bacteriocins of lactic acid bacteria: extending the family,” *Applied Microbiology and Biotechnology*, vol. 100, no. 7, pp. 2939–2951, 2016.

[4] J. Stangier, “Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate,” *Clinical Pharmacokinetics*, vol. 47, no. 5, pp. 285–295, 2008.

[5] J. A. Kers, R. E. Sharp, A. W. Defusco et al., “Mutacin 1140 lantibiotic variants are efficacious against *Clostridium difficile* infection,” *Frontiers in Microbiology*, vol. 9, p. 415, 2018.

[6] S. Altves, H. K. Yildiz, and H. C. Vural, “Interaction of the microbiota with the human body in health and diseases,” *Bioscience of Microbiota, Food and Health*, vol. 39, no. 2, pp. 23–32, 2020.

[7] P. R. Shankar, “Book review: tackling drug-resistant infections globally,” *Archives of Pharmacy Practice*, vol. 7, no. 3, pp. 110–111, 2016.

[8] A. J. O’Neill, “New antibacterial agents for treating infections caused by multi-drug resistant gram-negative bacteria,” *Expert Opinion on Investigational Drugs*, vol. 17, no. 3, pp. 297–302, 2008.

[9] S. F. Nadeem, U. F. Gohar, S. F. Tahir et al., “Antimicrobial resistance: more than 70 years of war between humans and bacteria,” *Critical Reviews in Microbiology*, vol. 46, no. 5, pp. 578–599, 2020.

[10] O. McAuliffe, R. P. Ross, and C. Hill, “Lantibiotics: structure, biosynthesis and mode of action,” *FEMS Microbiology Reviews*, vol. 25, no. 3, pp. 285–308, 2001.

[11] S. T. Hsu, E. Breukink, E. Tischenko et al., “The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics,” *Nature Structural & Molecular Biology*, vol. 11, no. 10, pp. 963–967, 2004.

[12] T. J. Krieger, R. Taylor, D. Erlele, J. R. Fraser, M. H. P. West, and P. J. Mcnichol, “Compositions and methods for treating
infections using cationic peptides alone or in combination with antibiotics: U.S. Patent 6,503,881," 2003.

[13] V. Lázár, A. Martins, R. Spohn et al., "Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides," *Nature Microbiology*, vol. 3, no. 6, pp. 718–731, 2018.

[14] L. M. T. Dicks, L. Dreyer, C. Smith, and A. D. van Staden, "A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier?", *Frontiers in Microbiology*, vol. 9, 2018.

[15] E. Severina, A. Severin, and A. Tomasz, "Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens," *The Journal of Antimicrobial Chemotherapy*, vol. 41, no. 3, pp. 341–347, 1998.

[16] M. Millette, G. Cornut, C. Dupont, F. A. Kling, P. Lukat, D. V. Almeida et al., "The bacteriocin nisin, an effective agent for the treatment of staphylococcal mastitis during lactation," *Journal of Human Lactation*, vol. 24, no. 3, pp. 311–316, 2008.

[17] M. Kruszewska, H. G. Sahl, G. Bierbaum, U. Pag, S. O. Hynes, and A. Ljungh, "Mersacidin eradicates methicillin-resistant *Staphylococcus aureus* (MRSA) in a mouse rhinitis model," *Journal of Antimicrobial Chemotherapy*, vol. 54, no. 3, pp. 648–653, 2004.

[18] V. Ramaswamy, V. M. Crescence, J. S. Rejitha et al., "Listeria-review of epidemiology and pathogenesis," *Journal of Microbiology, Immunology and Infection*, vol. 40, no. 1, pp. 4–13, 2007.

[19] N. Dabour, A. Zihler, E. Kheadr, C. Lacroix, and I. Fliss, "In vivo study on the effectiveness of pediocin PA-1 and *Pedococcus acidocaldarius* UL5 at inhibiting *Listeria monocytogenes*," *International Journal of Food Microbiology*, vol. 133, no. 3, pp. 225–233, 2009.

[20] E. Salvucci, L. Saavedra, E. M. Hebert, C. Haro, and F. Sesma, "Enterocin CRL35 inhibits *Listeria monocytogenes* in a murine model," *Foodborne Pathogens and Disease*, vol. 9, no. 1, pp. 68–74, 2012.

[21] F. E. Lopez, P. A. Vincent, A. M. Zenoff, R. A. Salomón, and R. N. Farias, "Efficacy of microcin J25 in biomatrices and in a mouse model of *Salmonella* infection," *Journal of Antimicrobial Chemotherapy*, vol. 59, no. 4, pp. 676–680, 2007.

[22] V. Ramaswamy, V. M. Crescence, J. S. Rejitha et al., "Colicin Z, a structurally and functionally novel colicin type that selectively kills enteroinvasive *Escherichia coli* and *Shigella* strains," *Scientific Reports*, vol. 9, no. 1, article 11127, 2019.

[23] J. Bosák, L. Micenková, M. Hralla et al., "Colicin F3 inhibits pathogenic *Yersinia enterocolitica* in mice," *Scientific Reports*, vol. 8, no. 1, article 12242, 2018.

[24] K. E. Sutyak, R. A. Anderson, S. E. Dover et al., "Spermicidal activity of the safe natural antimicrobial peptide subtilosin," *Infectious Diseases in Obstetrics and Gynecology*, vol. 2008, Article ID 540758, 6 pages, 2008.

[25] A. Maldonado-Barragán, B. Caballero-Guerrero, V. Martín, J. L. Ruiz-Barba, and J. M. Rodríguez, "Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from *Lactobacillus gasseri* EV1461 isolated from the vagina of a healthy woman," *BMC Microbiology*, vol. 16, no. 1, p. 37, 2016.

[26] A. P. Singh, V. Prabha, and P. Rishi, "Value addition in the efficacy of conventional antibiotics by nisin against *Salmonella*," *PLoS One*, vol. 8, no. 10, article e76844, 2013.

[27] H. T. Yu, X. L. Ding, N. Li et al., "Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs," *Journal of Animal Science*, vol. 95, no. 11, pp. 5064–5076, 2017.

[28] A. J. Minahk, F. Dupuy, and R. D. Morero, "Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35," *Journal of Antimicrobial Chemotherapy*, vol. 53, no. 2, pp. 240–246, 2004.

[29] J. C. Ellis, R. P. Ross, and C. Hill, "Nisin Z and lacticin 3147 improve efficacy of antibiotics against clinically significant bacteria," *Future Microbiology*, vol. 14, no. 18, pp. 1573–1587, 2019.

[30] R. R. Razonable, "Antiviral drugs for viruses other than human immunodeficiency virus," *Mayo Clinic Proceedings*, vol. 86, no. 10, pp. 1009–1026, 2011.

[31] A. A. Chentoufi and L. BenMohamed, "Mucosal herpes immunity and immunopathology to ocular and genital herpes simplex virus infections," *Clinical and Developmental Immunology*, vol. 2012, Article ID 149135, 22 pages, 2012.

[32] V. M. Quintana, N. I. Torres, M. B. Wachsman, P. J. Sinko, and A. Chikindas, "Antiherpetic simplex virus type 2 evasion of the antimicrobial peptide subtilosin," *Journal of Applied Microbiology*, vol. 117, no. 5, pp. 1253–1259, 2014.

[33] M. B. Wachsman, M. E. Farias, E. Takeda et al., "Antiviral activity of enterocin CRL35 against herpesviruses," *International Journal of Antimicrobial Agents*, vol. 12, no. 4, pp. 293–299, 1999.

[34] M. B. Wachsman, V. Castillo, A. P. d. H. Rolgado, R. A. Torres, F. Sesma, and C. E. Coto, "Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro," *Antiviral Research*, vol. 58, no. 1, pp. 17–24, 2003.

[35] G. Férir, M. I. Petrova, G. Andrei et al., "Dual anti-HSV and anti-HIV activity of the lantibiotic lactinhippeptin A1," *BMC Infectious Diseases*, vol. 14, article P79, Supplement 2, 2014.

[36] S. Gordts, G. Férir, C. Sandra, R. Süssmuth, and M. Brönstrup, "Lactinhippeptins, a novel class of lantibiotics, exhibit broad and potent anti-dengue virus activity," in
S. D. Todorov, M. B. Wachsman, H. Knoetze, M. Meincken, and L. M. T. Dick, “An antibacterial and antiviral peptide produced by Enterococcus munditii ST4V isolated from soya beans,” International Journal of Antimicrobial Agents, vol. 25, no. 6, pp. 508–513, 2005.

M. V. K. Sukhdeo, “Where are the parasites in food webs?,” Parasites & Vectors, vol. 5, no. 1, p. 239, 2012.

G. A. W. Rook, “The hygiene hypothesis and the increasing prevalence of chronic inflammatory disorders,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 101, no. 11, pp. 1072–1074, 2007.

R. C. Massey, A. Buckling, and R. firen–Constant, “Interference competition and parasite virulence,” Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 271, no. 1541, pp. 785–788, 2004.

K. J. Esch and C. A. Petersen, “Transmission and epidemiology of zoonotic protozoal diseases of companion animals,” Clinical Microbiology Reviews, vol. 26, no. 1, pp. 58–85, 2013.

L. C. Pollitt, P. MacGregor, K. Matthews, and S. E. Reece, “Malaria and trypanosomiasis: different parasites, same rules?,” Trends in Parasitology, vol. 27, no. 5, pp. 197–203, 2011.

R. Martin-Escolano, R. Cebrían, M. Maqueda et al., “Assessing the effectiveness of AS-48 in experimental mice models of Chagas’ disease,” Journal of Antimicrobial Chemotherapy, vol. 75, no. 6, pp. 1537–1545, 2020.

B. Gao, M. d. C. Rodriguez, H. Lanz-Mendoza, and S. Zhu, “Laterosporulin10, a channel-forming bacteriocin from Streptomyces lividans E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines,” Proceedings of the National Academy of Sciences, vol. 99, no. 5, pp. 2696–2701, 2002.

B. Kumar, P. P. Balgir, B. Kaur, B. Mittu, and A. Chauhan, “In vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study,” Pharmacutical Analytica Acta, vol. 3, no. 8, article 1000183, 2012.

H. Zhao, R. Sood, A. Jutla et al., “Interaction of the antimicrobial peptide phenome Plantaricin A with model membranes: implications for a novel mechanism of action,” Biochimica et biophysica acta (BBA)-biomembranes, vol. 1758, no. 9, pp. 1461–1474, 2006.

S. S. Elsayed, F. Trusch, H. Deng et al., “Chaxapetin, a lasso peptide from extremotolerant Streptomyces lievenwoehkii strain C58 from the hyperarid Atacama desert,” The Journal of Organic Chemistry, vol. 80, no. 20, pp. 10252–10260, 2015.

B. Yang, X. Huang, W. Li, S. Mouli, R. J. Lewandowski, and A. C. Larson, “Duramycin radiosensitization of MCA-RH 7777 hepatoma cells through the elevation of reactive oxygen species,” Journal of Cancer Research and Therapeutics, 2019.

J. M. M. Kwok, S. S. Myatt, C. M. Marson, R. C. Coombes, D. Constantinidou, and E. W. F. Lam, “Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 2022–2032, 2008.

M. Kongsema, S. Wongkhrueo, M. Khongkow et al., “Molecular mechanism of forkhead box M1 inhibition by thiostrepton in breast cancer cells,” Oncology Reports, vol. 42, no. 3, pp. 953–962, 2019.

P. Jin, X. Chen, G. Yu, Z. Li, Q. Zhang, and J. V. Zhang, “The clinical and experimental research on the treatment of endometriosis with thiostrepton,” Anti-Cancer Agents in Medicinal Chemistry, vol. 19, no. 3, pp. 323–329, 2019.
[71] L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interaction between the microbiota and the immune system,” Science, vol. 336, no. 6086, pp. 1268–1273, 2012.

[72] J. Varadé, S. Magadán, and Á. González-Fernández, “Human immunology and immunotherapy: main achievements and challenges,” Cellular & Molecular Immunology, vol. 18, no. 4, pp. 805–828, 2021.

[73] M. V. Mouritzen, A. Andrea, K. Qvist, S. S. Poulsen, and J. Varadé, S. Magadán, and Á. González-Fernández, “L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interaction between the microbiota and the immune system,” Science, vol. 336, no. 6086, pp. 1268–1273, 2012.

[74] J. Wu, S. Hu, and L. Cao, “Therapeutic effect of nisin Z on subclinical mastitis in lactating cows,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3131–3135, 2007.

[75] Z. Jia, M. He, C. Wang et al., “Nisin reduces uterine inflammation in rats by modulating concentrations of pro- and anti-inflammatory cytokines,” American Journal of Reproductive Immunology, vol. 81, no. 5, article e13096, 2019.

[76] D. D. Heeney, Z. Zhai, Z. Bendiks et al., “Lactobacillus plantarum bacteriocin is associated with intestinal and systemic improvements in diet-induced obese mice and maintains epithelial barrier integrity in vitro,” Gut Microbes, vol. 10, no. 3, pp. 382–397, 2019.

[77] M. Sassone-Corsi, S. P. Nuccio, H. Liu et al., “Microcins mediate competition among Enterobacteriaceae in the inflamed gut,” Nature, vol. 540, no. 7632, pp. 280–283, 2016.

[78] H. Yu, X. Ding, L. Shang et al., “Protective ability of biogenic antimicrobial peptide microcin J25 against enterotoxigenic Escherichia coli-induced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 cells,” Frontiers in Cellular and Infection Microbiology, vol. 8, p. 242, 2018.

[79] G. Wang, Q. Song, S. Huang et al., “Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella,” Animals, vol. 10, no. 2, p. 345, 2020.

[80] H. Yu, Y. Wang, X. Zeng et al., “Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic Escherichia coli infection,” The FASEB Journal, vol. 34, no. 1, pp. 1018–1037, 2020.

[81] L. H. Mahdi, H. S. Jabbar, and I. G. Auda, “Antibacterial immunomodulatory and antibiofilm triple effect of Salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model,” International Journal of Biological Macromolecules, vol. 134, pp. 1132–1144, 2019.

[82] M. Moein, A. A. Imani Fooladi, and H. Mahmoodzadeh Hosseini, “Determining the effects of green chemistry synthesized Ag-nisin nanoparticle on macrophage cells,” Microbial Pathogenesis, vol. 114, pp. 414–419, 2018.

[83] J. Malaczewska, E. Kaczorek-Lukowska, R. Wójcik, W. Rękawek, and A. K. Siwicki, “In vitro immunomodulatory effect of nisin on porcine leukocytes,” Journal of Animal Physiology and Animal Nutrition, vol. 103, no. 3, pp. 882–893, 2019.

[84] S. Wang, Q. Ye, K. Wang et al., “Enhancement of macrophage function by the antimicrobial peptide sublancin protects mice from methicillin-resistant Staphylococcus aureus,” Journal of Immunology Research, vol. 2019, Article ID 3979352, 13 pages, 2019.

[85] S. Wang, S. Huang, Q. Ye et al., “Prevention of cyclophosphamide-induced immunosuppression in mice with the antimicrobial peptide sublancin,” Journal of Immunology Research, vol. 2018, Article ID 4353580, 11 pages, 2018.

[86] C. Y. Lai, D. W. Yeh, C. H. Lu et al., “Thiostrepton inhibits psoriasi-like inflammation induced by TLR7, TLR8, and TLR9,” The Journal of Immunology, vol. 196, 1 Supplement, p. 124.41, 2016.

[87] M. C. Rea, C. S. Sit, E. Clayton et al., “Thuricin CD, a post-translationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile,” Proceedings of the National Academy of Sciences, vol. 107, no. 20, pp. 9352–9357, 2010.

[88] T. D. Arthur, V. L. Caver, and M. L. Chikindas, “On bacteriocin delivery systems and potential applications,” Future Microbiology, vol. 9, no. 2, pp. 235–248, 2014.

[89] L. C. L. de Abreu, V. Todaro, P. C. Sathler et al., “Development and characterization of nisin nanoparticles as potential alternative for the recurrent vaginal candidiasis treatment,” AAPS PharmSciTech, vol. 17, no. 6, pp. 1421–1427, 2016.

[90] T. K. Sharma, M. Sapra, A. Chopra et al., “Interaction of bacteriocin-capped silver nanoparticles with food pathogens and their antibacterial effect,” International Journal of Green Nanotechnology, vol. 4, no. 2, pp. 93–110, 2012.

[91] S. A. Mohid and A. Bhunia, “Combining antimicrobial peptides with nanotechnology: an emerging field in theranostics,” Current Protein and Peptide Science, vol. 21, no. 4, pp. 413–428, 2020.

[92] M. Malvisi, M. Stuknytė, G. Magro et al., “Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains,” Journal of Dairy Science, vol. 99, no. 3, pp. 2288–2296, 2016.

[93] X. Yin, D. Heeney, Y. Srisengfa, B. Golomb, S. Griffin, and M. Marco, “Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum,” Beneficial Microbes, vol. 9, no. 2, pp. 333–344, 2018.

[94] S. Kommineni, D. J. Brelt, V. Lam et al., “Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract,” Nature, vol. 526, no. 7575, pp. 719–722, 2015.

[95] Z. J. Ni, X. Zhang, F. Liu et al., “Effect of co-overexpression of nisin key genes on nisin production improvement in Lactococcus lactis LS01,” Probiotics and Antimicrobial Proteins, vol. 9, no. 2, pp. 204–212, 2017.

[96] W. Kong and T. Lu, “Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest,” ACS Synthetic Biology, vol. 3, no. 7, pp. 439–445, 2014.

[97] L. Zhou, A. J. van Heel, M. Montalban-Lopez, and O. P. Kuijpers, “Potentiating the activity of nisin against Escherichia coli,” Frontiers in Cell and Developmental Biology, vol. 4, p. 7, 2016.

[98] S. Schmitt, M. Montalbán-López, D. Peterhoff et al., “Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale,” Nature Chemical Biology, vol. 15, no. 5, pp. 437–443, 2019.

[99] J. Wang, Y. Gao, K. Teng, J. Zhang, S. Sun, and J. Zhong, “Restoration of bioactive lantibiotic suicin from a remnant lan locus of pathogenic Streptococcus suis serotype 2,” Applied Microbiology and Biotechnology, vol. 103, no. 21, pp. 9095–9107, 2019.
and Environmental Microbiology, vol. 80, no. 3, pp. 1062–1071, 2014.

[100] Z. Z. Khalaf and A. R. Hussein, "Antibiofilm activity of klebocin crude extract against some species of Enterobacteriaceae," Iraqi Journal of Science, vol. 59, no. 4A, pp. 1826–1835, 2018.

[101] M. L. Varella Coelho, J. d. Santos Nascimento, P. C. Fagundes, R. Santos, D. Ruza, E. Cunha, L. Tavares, and M. Oliveira, "The lantibiotic mersacidin inhibits peptidoglycan synthesis via a novel mechanism?," Antimicrobial Agents and Chemotherapy, vol. 60, no. 1, pp. 168–176, 2013.

[102] D. Gebhart, S. Lok, S. Clare et al., "A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity," MBio, vol. 6, no. 2, p. e02368, 2015.

[103] A. M. Brand, M. De Kwaadsteniet, and L. M. T. Dicks, "The ability of nisin F to control Staphylococcus aureus in the peritoneal cavity, as studied in mice," Letters in Applied Microbiology, vol. 51, no. 6, pp. 643–649, 2010.

[104] R. Santos, D. Ruza, E. Cunha, L. Tavares, and M. Oliveira, "Diabetic foot infections: application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms," PLoS One, vol. 14, no. 7, article e0220000, 2019.

[105] C. Le Lay, L. Dridi, M. G. Bergeron, M. Ouelllette, and I. Fliss, "Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination," Journal of Medical Microbiology, vol. 65, no. 2, pp. 169–175, 2016.

[106] A. J. Lepak, K. Marchillo, W. A. Craig, and D. R. Andes, "In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model," Antimicrobial Agents and Chemotherapy, vol. 59, no. 2, pp. 1258–1264, 2015.

[107] F. Castiglione, A. Lazzarini, L. Carrano et al., "Determining the structure and mode of action of microhisporicin, a potent lantibiotic active against multiresistant pathogens," Chemistry & Biology, vol. 15, no. 1, pp. 22–31, 2008.

[108] M. Mota-Meira, H. Morency, and M. C. Lavoie, "In vivo activity of mutacin B-Ny266," Journal of Antimicrobial Chemistry, vol. 56, no. 5, pp. 869–871, 2005.

[109] M. Mota-Meira, G. Lapointe, C. Lacroix, and M. C. Lavoie, "MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens," Antimicrobial Agents and Chemotherapy, vol. 44, no. 1, pp. 24–29, 2000.

[110] J. A. Kers, A. W. De Fusco, J. H. Park et al., "OG716: designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections," PLoS One, vol. 13, no. 6, article e0197467, 2018.

[111] W. W. Niu and H. C. Neu, "Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin," Antimicrobial Agents and Chemotherapy, vol. 35, no. 5, pp. 998–1000, 1991.

[112] H. Brötz, G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahi, "The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II," Antimicrobial Agents and Chemistry, vol. 42, no. 1, pp. 154–160, 1998.

[113] H. Brötz, G. Bierbaum, A. Markus, E. Molitor, and H. G. Sahi, "Mode of action of the lantibiotic mersacidin: inhibition of peptidoglycan biosynthesis via a novel mechanism?," Antimicrobial Agents and Chemotherapy, vol. 39, no. 3, pp. 714–719, 1995.

[114] S. Boakes, T. Ayala, M. Herman, A. N. Appleyard, M. J. Dawson, and J. Cortés, "Generation of an actagardine A variant library through saturation mutagenesis," Applied Microbiology and Biotechnology, vol. 95, no. 6, pp. 1509–1517, 2012.

[115] G. S. Crowther, S. D. Barnes, S. L. Todhunter, J. Freeman, C. H. Chilton, and M. H. Wilcox, "Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection," Journal of Antimicrobial Chemotherapy, vol. 68, no. 1, pp. 168–176, 2013.

[116] S. Boakes, A. N. Appleyard, J. Cortés, and M. J. Dawson, "Organization of the biosynthetic genes encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes ligeriae NCIMB41362," The Journal of Antibiotics, vol. 63, no. 7, pp. 351–358, 2010.

[117] S. Boakes, W. J. Weiss, M. Vinson, S. Wadam, and M. J. Dawson, "Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models," The Journal of Antibiotics, vol. 69, no. 12, pp. 850–857, 2016.

[118] M. C. Rea, E. Clayton, P. M. O’Connor et al., "Antimicrobial activity of lactacin 3147 against clinical Clostridium difficile strains," Journal of Medical Microbiology, vol. 56, no. 7, pp. 940–946, 2007.

[119] E. Gavrish, C. S. Sit, S. Cao et al., "Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpP1P2P2.," Chemistry & Biology, vol. 21, no. 4, pp. 509–518, 2014.

[120] S. Sable, A. M. Pons, S. Gendron-Gaillard, and G. Cottenceau, "Antibacterial activity evaluation of microcin J25 against diarrheagenic Escherichia coli," Applied and Environmental Microbiology, vol. 66, no. 10, pp. 4595–4597, 2000.

[121] A. Bellomio, P. A. Vincent, B. F. de Arcuri, R. N. Farias, and R. D. Morero, "Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production," Journal of Bacteriology, vol. 189, no. 11, pp. 4180–4186, 2007.

[122] C. Aguilar-Pérez, B. Gracia, L. Rodrigues et al., "Synergy between circular bacteriocin AS-48 and ethambutol against Mycobacterium tuberculosis," Antimicrobial Agents and Chemotherapy, vol. 62, no. 9, article e00359, 2018.

[123] M. Sánchez-Hidalgo, M. Montalbán-López, R. Cebrián, E. Valdivia, M. Martínez-Bueno, and M. Maqueda, "AS-48 bacteriocin: close to perfection," Cellular and Molecular Life Sciences, vol. 68, no. 17, pp. 2845–2857, 2011.

[124] M. J. Sánchez-Barrena, M. Martinez-Ripoll, A. Gálvez et al., "Structure of bacteriocin AS-48: from soluble state to membrane bound state," Journal of Molecular Biology, vol. 334, no. 3, pp. 541–549, 2003.

[125] R. Cebrián, M. E. Rodríguez-Cabezas, R. Martín-Escalano et al., "Preclinical studies of toxicity and safety of the AS-48 bacteriocin," Journal of Advanced Research, vol. 20, pp. 129–139, 2019.

[126] T. H. Kim, B. T. B. Hanh, G. Kim et al., "Thiotrepton: a novel therapeutic drug candidate for Mycobacterium abscessus infection," Molecules, vol. 24, no. 24, p. 4511, 2019.

[127] M. V. Rodnina, A. Savelsergh, N. B. Matassova, V. I. Katunin, Y. P. Semenkov, and W. Wintermeyer, "Thiotrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome," Proceedings of the National Academy of Sciences, vol. 96, no. 17, pp. 9586–9590, 1999.
formylated and nonformylated enterocins L50A and L50B as well as 61A, a new glycosylated duracinc, by Enterococcus durans 61A, a strain isolated from artisanal fermented milk in Tunisia,” Journal of Agricultural and Food Chemistry, vol. 64, no. 18, pp. 3584–3590, 2016.

[129] H. Hanchi, R. Hammami, H. Gingras et al., “Inhibition of MRSA and of Clostridium difficile by duracinc 61A: synergy with bacteriocins and antibiotics,” Future Microbiology, vol. 12, no. 3, pp. 205–212, 2017.

[130] H. Mathur, V. Fallico, P. M. O’Connor et al., “InsightsintothemodeofactionofthesactibioticthuricinCD,”FrontiersinMicrobiology,vol.8,p.696,2016.

[131] M. C. Rea, D. Alemayehu, P. G. Casey et al., “Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract,” Microbiology, vol. 160, no. 2, pp. 439–445, 2014.

[132] S. Chiumento, C. Roblin, S. Kiefer-Jaquino et al., “Ruminococcinc C, a promising antibiotic produced by a human gut symbiont,” Science Advances, vol. 5, no. 9, article eaaw9969, 2019.

[133] C. Balty, A. Guillot, L. Fradale et al., “Ruminococcinc C, an anti-clostridial sapitpecid produced by a prominent member of the human microbiota Ruminococcus gravis,” Journal of Biological Chemistry, vol. 294, no. 40, pp. 14512–14525, 2019.

[134] J. D. Palmer, B. M. Mortfeld, E. Piattelli, M. W. Silby, B. A. McCormick, and V. Bucci, “Microcin H47: a class IIb microcin with potent activity against multidrug resistant Enterobacteriaceae,” ACS Infectious Diseases, vol. 6, no. 4, pp. 672–679, 2020.

[135] S. Bieler, F. Silva, C. Soto, and D. Belin, “Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease,” Journal of Bacteriology, vol. 188, no. 20, pp. 7049–7061, 2006.

[136] G. Vassiliadis, D. Destounieux-Garzón, C. Lombard, S. Rebuffat, and J. Peduzzi, “Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 1, pp. 288–297, 2010.

[137] Y. Turovskiy, R. D. Ludesch, A. A. Aroucheva, S. Faro, and M. L. Chikindas, “Lactocin 160, a bacteriocin produced by vaginal Lactobacillus rhamnosus, targets cytoplasmic mem-

[138] N. J. Stern, E. A. Svetoch, B. V. Eruslanov et al., “Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 9, pp. 3111–3116, 2006.

[139] E. A. Svetoch, B. V. Eruslanov, V. V. Perelygin et al., “Diverse antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propioni-
bacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect,” The Journal of Microbiology, vol. 47, no. 1, pp. 101–109, 2009.

[140] M. Brönstrup, H. P. Prochnow, N. V. S. Birudukota, N. V. S. Birudukota, T. Schulz et al., “Labyrinthinepeptins as anti-viral agents: U.S. Patent application,” 2019.

[141] R. Martín-Escolano, R. Cebrián, J. Martín-Escolano et al., “Insights into Chagas treatment based on the potential of bacteriocin AS-48,” International Journal for Parasitology: Drugs and Drug Resistance, vol. 10, pp. 1–8, 2019.

[142] S. Preet, S. K. Pandey, K. Kaur, S. Chauhan, and A. Saini, “Gold nanoparticles assisted co-delivery of nisin and doxoru-
bin against murine skin cancer,” Journal of Drug Delivery Science and Technology, vol. 53, article 101147, 2019.

[143] P. Kaur and V. Kumar, “Microorganisms improving food quality and safety,” Microbial diversity, interventions and scope, pp. 75–83, 2020.

[144] S. Thennarasu, D. K. Lee, A. Poon, K. E. Kavulka, J. C. Vederas, and A. Ramamoorthy, “Membrane perme-
abiﬁcation, orientation, and antimicrobial mechanism of sub-
tilin A,” Chemistry and Physics of Lipids, vol. 137, no. 1-2, pp. 38–51, 2005.

[145] K. E. Sutyak, R. E. Wirawan, A. A. Aroucheva, and M. L. Chikindas, “Isolation of the Bacillus subtilis antimicrobial peptide subtilisin from the dairy product-derived Bacillus amyloliquefaciens,” Journal of Applied Microbiology, vol. 104, no. 4, pp. 1067–1074, 2008.

[146] J. Bosak, P. Laiblova, J. Smarda, D. Dedivova, and D. Smajs, “Novel colicin FY of Yersinia frederiksenii inhibits patho-
genic Yersinia strains via YuR-mediated reception, TonB import, and cell membrane pore formation,” Journal of Bac-
teriology, vol. 194, no. 8, pp. 1950–1959, 2012.

[147] C. T. Kährström, “Targeting of C. difficile made easy,” Nature Reviews Microbiology, vol. 13, no. 5, p. 251, 2015.

[148] B. S. Kang, J. G. Seo, G. S. Lee et al., “Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propioni-
bacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect,” The Journal of Microbiology, vol. 47, no. 1, pp. 101–109, 2009.

[149] M. Brönstrup, H. P. Prochnow, N. V. S. Birudukota, N. V. S. Birudukota, T. Schulz et al., “Labyrinthinepeptins as anti-viral agents: U.S. Patent application,” 2019.
[156] M. A. Varas, C. Muñoz-Montecinos, V. Kallens et al., “Exploiting zebrafish xenografts for testing the in vivo antitu-morigenic activity of microcin E492 against human colorectal cancer cells,” *Frontiers in Microbiology*, vol. 11, p. 405, 2020.

[157] S. Wang, Q. Wang, X. Zeng et al., ”Use of the antimicrobial peptide sublancin with combined antibacterial and immuno-modulatory activities to protect against methicillin-resistant *Staphylococcus aureus* infection in mice,” *Journal of Agricultural and Food Chemistry*, vol. 65, no. 39, pp. 8595–8605, 2017.

[158] J. Hu, L. Ma, Y. Nie et al., ”A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets,” *Cell Host & Microbe*, vol. 24, no. 6, pp. 817–832.e8, 2018.

[159] N. Rolhion, B. Chassaing, M. A. Nahori et al., ”A *Listeria monocytogenes* Bacteriocin Can Target the Commensal *Prevotella copri* and Modulate Intestinal Infection,” *Cell Host & Microbe*, vol. 26, no. 5, pp. 691–701.e5, 2019.