SIVERS FUNCTION: SIDIS DATA, FITS AND PREDICTIONS*

M. ANSELMINO¹, M. BOGLIONE¹, U. D’ALESIO², A. KOTZINIAN³, F. MURGIA², A. PROKUDIN¹

¹Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
²INFN, Sezione di Cagliari and Dipartimento di Fisica, Università di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy
³Dipartimento di Fisica Generale, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

The most recent data on the weighted transverse single spin asymmetry \(A_{UT}^{\sin(\phi_h - \phi_S)}\) from HERMES and COMPASS collaborations are analysed within LO parton model; all transverse motions are taken into account. Extraction of the Sivers function for \(u\) and \(d\) quarks is performed. Based on the extracted Sivers functions, predictions for \(A_{UT}^{\sin(\phi_h - \phi_S)}\) asymmetries at JLab are given; suggestions for further measurements at COMPASS, with a transversely polarized hydrogen target and selecting favourable kinematical ranges, are discussed. Predictions are also presented for Single Spin Asymmetries (SSA) in Drell-Yan processes at RHIC and GSI.

1. Introduction

In recent papers¹,² we have discussed the role of intrinsic motions in inclusive and Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes, both in unpolarized and polarized \(\ell p \rightarrow \ell h X\) reactions. The LO QCD parton model computations have been compared with data on Cahn effect³; this allows an estimate of the average values of the transverse momenta of quarks inside a proton, \(k_\perp\), and of final hadrons inside the fragmenting quark jet, \(p_\perp\), with the best fit results: \(\langle k_\perp^2 \rangle = 0.25\, \text{(GeV/c)}^2\), \(\langle p_\perp^2 \rangle = 0.20\, \text{(GeV/c)}^2\).
More detail, both about the kinematical configurations and conventions and the fitting procedure can be found in Ref. [1].

Equipped with such estimates, we have studied transverse single spin asymmetries $A_{UT}^\sin(\phi_+ - \phi_S)$ observed by HERMES collaboration6 and COMPASS collaboration7; that allowed extraction of the Sivers function5

$$\Delta^N f_{q/p}(x, k_\perp) = -\frac{2}{m_p} k_\perp J_{1T}(x, k_\perp),$$ \hspace{1cm} (1)

defined by

$$f_{q/p}(x, k_\perp) = f_{q/p}(x, k_\perp) + \frac{1}{2} \Delta^N f_{q/p}(x, k_\perp) S \cdot (\hat{P} \times \hat{k}_\perp),$$ \hspace{1cm} (2)

where $f_{q/p}(x, k_\perp)$ is the unpolarized x and k_\perp dependent parton distribution ($k_\perp = |k_\perp|$); m_p, P and S are respectively the proton mass, momentum and transverse polarization vector (\hat{P} and \hat{k}_\perp denote unit vectors).

We consider here these whole new sets of HERMES6 and COMPASS7 data and perform a novel fit2 of the Sivers functions. It turns out that the data well constrain the parameters, thus offering the first direct significant estimate of the Sivers functions – for u and d quarks – active in SIDIS processes. The sea quark contributions are found to be negligible, at least in the kinematical region of the available data. Finally, we exploit the QCD prediction8 $f_{q/p}(x, k_\perp)|_{D-Y} = -f_{q/p}(x, k_\perp)|_{DIS}$ and compute a single spin asymmetry, which can only originate from the Sivers mechanism10, for Drell-Yan processes at RHIC and GSI. The issue of QCD factorization of SIDIS and Drell-Yan processes was studied in Ref.[9].

2. Extracting the Sivers functions

Following Ref.[1], the inclusive ($\ell p \to \ell X$) unpolarized DIS cross section in non collinear LO parton model is given by

$$\frac{d^2 \sigma_{\ell p \to \ell X}}{dx_a dQ^2} = \sum_q \int d^2 k_\perp f_q(x, k_\perp) \frac{d\hat{\sigma}_{\ell q \to \ell q}}{dQ^2} J(x_a, Q^2, k_\perp),$$ \hspace{1cm} (3)

and the semi-inclusive one ($\ell p \to \ell h X$) by

$$\frac{d^3 \sigma_{\ell p \to \ell h X}}{dx_a dQ^2 dz_h d^2 P_T} = \sum_q \int d^2 k_\perp f_q(x, k_\perp) \frac{d\hat{\sigma}_{\ell q \to \ell q}}{dQ^2} J \frac{z}{z_h} D_h(z, p_\perp),$$ \hspace{1cm} (4)

where

$$J = \frac{s^2}{x_a^2 x^2} \frac{x_0}{x} \left(1 + \frac{x_0 k_\perp^2}{x^2 Q^2}\right)^{-1}, \frac{d\hat{\sigma}_{\ell q \to \ell q}}{dQ^2} = e_q \frac{2\pi\alpha^2}{s^2} \frac{s^2 + u^2}{Q^4}. \hspace{1cm} (5)$$
\(Q^2, x_0 \) and \(y = Q^2/(x_0 s) \) are the usual leptonic DIS variables and
\(z_h, P_T \) the usual hadronic SIDIS ones, in the \(\gamma^* - p \) c.m. frame; \(x \) and \(z \)
are light-cone momentum fractions, with (see Ref.\[1\] for exact relationships
and further detail):
\[
x = x_0 + \mathcal{O} \left(\frac{k_0^2}{Q^2} \right), \quad z = z_h + \mathcal{O} \left(\frac{k_0^2}{Q^2} \right), \quad p_\perp = P_T - z_h k_\perp + \mathcal{O} \left(\frac{k_0^2}{Q^2} \right).
\]

The \(\sin(\phi_h - \phi_S) \) weighted transverse single spin asymmetry, measured
by HERMES and COMPASS, which singles out the contribution of the
Sivers function (1), is given by:
\[
A_{UT}^{\sin(\phi_h - \phi_S)} = \left[\sum_q \int d\phi_S d\phi_h d^2 k_\perp \Delta f_{q/p^\uparrow}^N(x, k_\perp) \sin(\varphi - \phi_S) \cdot \right.
\frac{d\sigma^{\ell q\rightarrow\ell q}}{dQ^2} J \frac{z}{z_h} D_q^h(z, p_\perp) \sin(\phi_h - \phi_S) \bigg] / \\
\left[\sum_q \int d\phi_S d\phi_h \cdot d^2 k_\perp f_{q/p}(x, k_\perp) \frac{d\sigma^{\ell q\rightarrow\ell q}}{dQ^2} J \frac{z}{z_h} D_q^h(z, p_\perp) \bigg],
\]
where \(\varphi \) is the azimuthal angle of the quark transverse momentum, \(\phi_h \) and
\(\phi_S \) are the azimuthal angles of produced hadron and polarization vector
correspondingly. We shall use Eq. (6), in which we insert a parameterization
for the Sivers functions, to fit the experimental data.

The \(k_\perp \) integrated parton distribution and fragmentation functions
\(f_q(x) \) and \(D_q^h(z) \) are taken from the literature, at the appropriate \(Q^2 \) values
of the experimental data \[11,12\].

We parameterize, for each light quark flavour \(q = u, d \), the Sivers function
in the following factorized form:
\[
\Delta f_{q/p^\uparrow}^N(x, k_\perp) = 2 N_q(x) h(k_\perp) f_{q/p}(x, k_\perp),
\]
where
\[
N_q(x) = N_q x^{a_q}(1 - x)^{b_q} \frac{(a_q + b_q)(a_q + b_q)}{a_q b_q}, \quad h(k_\perp) = \frac{2k_\perp M_0}{k_\perp^2 + M_0^2}.
\]
\(N_q, a_q, b_q \) and \(M_0 \) (GeV/c) are free parameters. \(f_{q/p}(x, k_\perp) \) is the unpolarized
distribution function. Since \(h(k_\perp) \leq 1 \) and since we allow the constant
parameter \(N_q \) to vary only inside the range \([-1,1]\] so that \(|N_q(x)| \leq 1 \) for
any \(x \), the positivity bound for the Sivers function is automatically fulfilled:
\[
\left| \frac{\Delta f_{q/p^\uparrow}^N(x, k_\perp)}{2 f_{q/p}(x, k_\perp)} \right| \leq 1.
\]
We neglect the contributions of sea quark functions and consider only the contributions of $\Delta N f_{u/p}$ and $\Delta N f_{d/p}$, for a total of 7 free parameters:

$$N_u \ a_u \ N_d \ a_d \ b_d \ M_0.$$ \hspace{1cm} (10)

The results of our fits are shown in Figs. 1 and 2.

In Fig.1 we also show predictions, obtained using the extracted Sivers functions (see Table 1), for π^0 and K production; data on these asymmetries might be available soon from HERMES collaboration.

Table 1. Best fit values of the parameters of the Sivers functions.

Parameter	Value
N_u	0.32 ± 0.11
a_u	0.29 ± 0.35
N_d	-1.00 ± 0.12
a_d	1.16 ± 0.47
b_d	3.77 ± 2.59
M_0	0.32 ± 0.25 (GeV/c)2
χ^2/d.o.f.	1.06

Figure 1. HERMES data on $A_{UT}^{\sin(\phi_T - \phi_S)}$ for scattering off a transversely polarized proton target and charged pion production. The curves are the results of our fit. The shaded area spans a region corresponding to one-sigma deviation at 90% CL. Predictions for π^0 (upper-left panel) and kaon (right panels) asymmetries are also shown.

3. $A_{UT}^{\sin(\phi_T - \phi_S)}$ at COMPASS with polarized hydrogen target

By inspection of Eq. (6) it is easy to understand our numerical results for the u and d Sivers functions. In fact one can see that for scattering off a
Figure 2. COMPASS data on $A_{UT}^{\sin(\phi_h-\phi_S)}$ for scattering off a transversely polarized deuteron target and the production of positively (h^+) and negatively (h^-) charged hadrons. The curves are the results of our fit. The shaded area spans a region corresponding to one-sigma deviation at 90% CL.

While, for scattering off a deuterium target (COMPASS),

$$\left(A_{UT}^{\sin(\phi_h-\phi_S)}\right)_{\text{deuterium}} \sim \left(\Delta^N f_{u/p}\right) \left(4 D_u^h + D_d^h\right).$$

Opposite u and d Sivers contributions suppress COMPASS asymmetries for any hadron h.

However, the COMPASS collaboration will soon be taking data with a transversely polarized hydrogen target. Adopting the same experimental cuts which were used for the deuterium target, the asymmetry is found to be around 5% (see Fig. 3). These expected values can be further increased by properly selecting the experimental data. For example, selecting events with

$$0.4 \leq z_h \leq 1 \quad 0.2 \leq P_T \leq 1 \text{ GeV/c} \quad 0.02 \leq x_B \leq 1,$$

yields the predictions shown in the right panel of Fig. 3. The asymmetry for positively charged hadrons becomes larger, and one expects a clear observation of a sizeable azimuthal asymmetry also for the COMPASS experiment.
Figure 3. Predictions for $A_{U_T}^{\sin(\phi_h - \phi_S)}$ at COMPASS for scattering off a transversely polarized proton target and the production of positively (h^+) and negatively (h^-) charged hadrons. The plots in the left panel have been obtained by performing the integrations over the unobserved variables according to the standard COMPASS kinematical cuts; results with suggested new cuts, Eq. (13), are presented in the right panel.

4. $A_{U_T}^{\sin(\phi_h - \phi_S)}$ at JLab with polarized hydrogen target

Also JLab experiments are supposed to measure the SIDIS azimuthal asymmetry for the production of pions on a transversely polarised hydrogen target, at incident beam energies of 6 and 12 GeV. The kinematical region of this experiment is very interesting, as it will supply information on the behaviour of the Sivers functions in the large-x_B domain, up to $x_B \simeq 0.6$.

Imposing the experimental cuts of JLab we obtain the predictions shown in Fig. 4. A large and healthy azimuthal asymmetry for π^+ production should be observed. Similar results have been obtained also in an approach based on a Monte Carlo event generator 13.

5. Transverse SSA in Drell-Yan processes

Let us now consider the transverse single spin asymmetry,

$$A_N = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-},$$

for Drell-Yan processes, $p^+ p \to \ell^+ \ell^- X$, $p^+ \bar{p} \to \ell^+ \ell^- X$ and $\bar{p}^+ p \to \ell^+ \ell^- X$, where $d\sigma$ stands for $d^4\sigma/dy\,dM^2\,d^2q_T$ and y, M^2 and q_T are respectively the rapidity, the squared invariant mass and the transverse momentum of the lepton pair in the initial nucleon c.m. system.

In such a case the SSA (14) can only originate from the Sivers function...
and is given (selecting the region with $q_T^2 \ll M^2$, $q_T \simeq k_\perp$) by\(^{10}\)

$$A_N = \left[\sum_q e_q^2 \int d^2 k_{\perp q} d^2 k_{\perp \bar{q}} \delta^2(k_{\perp q} + k_{\perp \bar{q}} - q_T) \Delta N f_{q/p}(x_q, k_{\perp q}) \right] / \left[2 \sum_q e_q^2 \int d^2 k_{\perp q} d^2 k_{\perp \bar{q}} \delta^2(k_{\perp q} + k_{\perp \bar{q}} - q_T) \cdot f_{\bar{q}/p}(x_{\bar{q}}, k_{\perp \bar{q}}) f_{q/p}(x_q, k_{\perp q}) \right],$$

where $q = u, \bar{u}, d, \bar{d}, s, \bar{s}$ and $x_q = \frac{M}{\sqrt{s}} e^y$, $x_{\bar{q}} = \frac{M}{\sqrt{s}} e^{-y}$. Eq. (15) explicitely refers to $p^+ p$ processes, with obvious modifications for $p^1 \bar{p}$ and $\bar{p}^+ p$ ones.

Inserting into Eq. (15) the Sivers functions extracted from our fit to SIDIS data and reversed in sign\(^8\), we obtain the predictions (shown in Fig. 5) for RHIC (left panel) and PAX (right panel) experiment\(^{14}\) planned at the proposed asymmetric $p \bar{p}$ collider at GSI.

Figure 4. Predictions for $A^{\sin(\phi_{\pi^+} - \phi_{\pi^-})}_{UT}$ at JLab for the production of π^+ and π^- from scattering off a transversely polarized proton target.

Figure 5. Predictions for single spin asymmetries in Drell-Yan, $p^+ p \rightarrow \ell^+ \ell^- X$, processes at RHIC (left panel) and GSI (right panel), according to Eq. (15) of the text.
6. Comments and conclusions

The Sivers functions $\Delta^N f_{u/p^+}(x, k_T)$ and $\Delta^N f_{d/p^+}(x, k_T)$ have been extracted using recent HERMES 6 and COMPASS 7 collaborations data on $A_{UT}^{\sin(\phi_h - \phi_S)}$.

A sizeable h^+ asymmetry should be measured by COMPASS collaboration once they switch, as planned, to a transversely polarized hydrogen target.

Large values of $A_{UT}^{\sin(\phi_h - \phi_S)}$ are expected at JLab, both in the 6 and 12 GeV operational modes, for π^+ inclusive production.

We have then used basic QCD relations and computed the single spin asymmetries in Drell-Yan processes. We have used the same Sivers functions as extracted from SIDIS data, with opposite signs. The predicted A_N could be measured at RHIC in pp collisions and, in the long range, at the proposed PAX experiment at GSI 14, in $p\bar{p}$ interactions. It would provide a clear and stringent test of basic QCD properties.

References

1. M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D71 (2005) 074006
2. M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin, Phys. Rev. D72 (2005) 094007
3. R.N. Cahn, Phys. Lett. B78 (1978) 269; Phys. Rev. D40 (1989) 3107
4. A. Bacchetta, U. D’Alesio, M. Diehl and C.A. Miller, Phys. Rev. D70 (2004) 117504
5. D. Sivers, Phys. Rev. D41 (1990) 83; D43 (1991) 261
6. HERMES Collaboration, M. Diefenthaler, talk delivered at DIS 2005, Madison, Wisconsin (USA), April 27 – May 1, e-Print Archive: hep-ex/0507013
7. COMPASS Collaboration, V.Yu. Alexakhin et al., Phys. Rev. Lett. 94 (2005) 202002
8. J.C. Collins, Phys. Lett. B536 (2002) 43
9. X.D. Ji, J. P. Ma and F. Yuan, Phys. Rev. D 71, 034005 (2005); Phys. Lett. B 597. 299 (2004).
10. M. Anselmino, U. D’Alesio and F. Murgia, Phys. Rev. D67 (2003) 074010
11. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Phys. Lett. B531 (2002) 216
12. S. Kretzer, Phys. Rev. D62 (2000) 054001
13. A. Kotzinian, e-Print Archive: hep-ph/0504081
14. PAX Collaboration, e-Print Archive: hep-ex/0505054