The impact of inspired oxygen levels on calibrated fMRI measurements of M, OEF and resting CMRO$_2$ using combined hypercapnia and hyperoxia

Isabelle Lajoie1,2,*, Felipe B. Tancredi3, Richard D. Hoge2

1 Département de physiologie moléculaire et intégrative, Institut de génie biomédical, Université de Montréal, Montreal, Quebec, Canada, 2 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, 3 Departamento de Radiologia, Centro de Pesquisa em Imagem, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil

* isabelle.lajoie@mail.mcgill.ca

Abstract

Recent calibrated fMRI techniques using combined hypercapnia and hyperoxia allow the mapping of resting cerebral metabolic rate of oxygen (CMRO$_2$) in absolute units, oxygen extraction fraction (OEF) and calibration parameter M (maximum BOLD). The adoption of such technique necessitates knowledge about the precision and accuracy of the model-derived parameters. One of the factors that may impact the precision and accuracy is the level of oxygen provided during periods of hyperoxia (HO). A high level of oxygen may bring the BOLD responses closer to the maximum M value, and hence reduce the error associated with the M interpolation. However, an increased concentration of paramagnetic oxygen in the inhaled air may result in a larger susceptibility area around the frontal sinuses and nasal cavity. Additionally, a higher O$_2$ level may generate a larger arterial blood T$_1$ shortening, which require a bigger cerebral blood flow (CBF) T$_1$ correction. To evaluate the impact of inspired oxygen levels on M, OEF and CMRO$_2$ estimates, a cohort of six healthy adults underwent two different protocols: one where 60% of O$_2$ was administered during HO (low HO or LHO) and one where 100% O$_2$ was administered (high HO or HHO). The QUantitative O$_2$ (QUO2) MRI approach was employed, where CBF and R2* are simultaneously acquired during periods of hypercapnia (HC) and hyperoxia, using a clinical 3 T scanner. Scan sessions were repeated to assess repeatability of results at the different O$_2$ levels. Our T$_1$ values during periods of hyperoxia were estimated based on an empirical ex-vivo relationship between T$_1$ and the arterial partial pressure of O$_2$. As expected, our T$_1$ estimates revealed a larger T$_1$ shortening in arterial blood when administering 100% O$_2$ relative to 60% O$_2$ ($T_{1LHO}=1.56\pm0.01$ sec vs. $T_{1HHO}=1.47\pm0.01$ sec, $P<4*10^{-13}$). In regard to the susceptibility artifacts, the patterns and number of affected voxels were comparable irrespective of the O$_2$ concentration. Finally, the model-derived estimates were consistent regardless of the HO levels, indicating that the different effects are adequately accounted for within the model.
Introduction

Recently, different groups have proposed that resting cerebral metabolic rate of O$_2$ consumption (CMRO$_2$) can be imaged using gas-based fMRI techniques [1–3]. Our team presented an approach, dubbed QUantitative O$_2$ (QUO2) based on respiratory calibration of the BOLD signal, using hypercapnia (HC), and hyperoxia (HO). During the gas manipulation, end-tidal O$_2$ (ETO$_2$) and CO$_2$ (ETCO$_2$) levels are constantly monitored and a dual-echo version of pseudo-continuous Arterial Spin Labeling (de-pCASL) is used to measure BOLD and cerebral blood flow (CBF) simultaneously. ETO$_2$, BOLD and CBF then serve as inputs to the generalized calibration model (GCM) described in Gauthier and Hoge [4], which yields a system of two equations with solutions for the BOLD calibration parameter M, i.e. the maximum BOLD signal increase when venous O$_2$ saturation approaches 100%, and resting oxygen extraction fraction (OEF). The multiplication of OEF by baseline CBF and arterial O$_2$ content (estimated from ETO$_2$ monitoring and, optionally, blood testing) gives the estimated resting CMRO$_2$ in micromoles of oxygen extracted from the cerebral vasculature per minute, per 100g of tissue.

While the initial proof-of-concept of the method produced reliable results when spatially averaged within the brain and over multiple subjects, it suffered from a single-subject instability characterized by large fluctuations in the modeled values and a considerable lack of solution in certain regions [1]. In order to be considered a reliable method for within-subject longitudinal studies, there was a need to improve the single-subject image quality. Additionally, prior to being able to draw conclusion about differences in resting oxidative metabolism between populations or between states of a disease, knowledge about the precision and accuracy of the model-derived estimates was crucial. The breathing circuit and image analysis strategy were updated in previous work [5–6]. The repeatability of the respiratory responses as well as CBF and BOLD responses within gray matter (GM) has also been assessed [7]. Finally, the question of methodological precision was evaluated by assessing the regional intra- and inter-subject variability of QUO2 derived estimates [6].

The choice of O$_2$ and CO$_2$ concentration during respective periods of HO and HC may also have an impact on the accuracy and precision of QUO2 derived estimates, which remains to be assessed. Higher CO$_2$ concentration would have the advantage of increasing the image contrast-to-noise ratio due to higher CBF responses, however it can lead to anxiety and potentially alter brain physiology in ways other than the intended vasodilatory effect [8,9]. In a preliminary phase, it was agreed that the commonly employed 5% CO$_2$ during HC blocks was low enough to preserve participant’s comfort, while high enough to yield significant cerebrovascular responses. As for the O$_2$ concentration, compared to slight HO levels (e.g. 50–60%), more extreme levels of HO may bring the BOLD responses closer to the maximum M value, therefore diminishing the measurement errors while increasing the SNR. However, due to the paramagnetic characteristic of oxygen molecule, the measured signal may be prone to more prominent susceptibility artifacts patterns in vulnerable regions such as the frontal sinuses and nasal cavity, thus yielding inaccurate or non-solution values in those regions. An additional potential impact of the O$_2$ concentration arises when changes in blood flow during HO are encompassed in the model, such as in the generalized calibrated model. Following a low HO level, CBF responses may be smaller than the inherent noise level of ASL acquisitions, making its measurement challenging. Furthermore, a decrease in CBF during periods of HO may reflect a combination of phenomena: a vasoconstrictive effect following a hyperventilation-induced decrease in ETCO$_2$ [10], a vasoconstriction due to increased O$_2$ per se, and an acceleration of arterial blood longitudinal relaxation (T_1 shortening) caused by the increase of dissolved molecular oxygen in blood plasma [11–14]. If not taken into account, this T_1 decay in arterial blood leads to an overestimation of CBF decrease during HO. As a consequence of

Competing interests: The authors have declared that no competing interests exist.
those complications, it is common to assume a fixed, pre-determined CBF decrease [2,15–17]. However, assuming a fixed CBF decrease contributes to the systematic errors and can affect the accuracy and repeatability of OEF and CMRO\textsubscript{2} estimates as reported in Lajoie et al [6]. Therefore, the application of a T\textsubscript{1}-correction on the measured CBF during HO is advocated.

Additionally, in theory, the QUO2-derived estimates should not depend on the level of hyperoxia induced, since the model is designed to account for this. In a previous study [6], the within-subject repeatability of the model-derived estimates was assessed based on very small variations of ETO\textsubscript{2} during periods of 60% O\textsubscript{2} hyperoxia. The effectiveness of the QUO2 model to obtain reproducible M, OEF and CMRO\textsubscript{2} despite considerable variations in hyperoxia ETO\textsubscript{2} is crucial and remains to be demonstrated.

The present study aims at exploring, in a small cohort of healthy individuals, the impact mentioned above, on QUO2 calibrated fMRI estimates, when providing 100% O\textsubscript{2} during periods of HO instead of the previously provided 60% O\textsubscript{2}, in addition to verifying the reproducibility of results regardless of the inspired oxygen levels.

Materials and methods

From the group of eight healthy adults that underwent the 24 hour QUO2 test-retest study mentioned previously [6], six of them repeated the experiment, but this time, instead of being given 60% O\textsubscript{2} during periods of HO (referred to as “lower HO levels protocol” (LHO)), the participants were given 100% O\textsubscript{2} (“higher HO levels protocol” (HHO)). Each HO protocol was repeated to assess repeatability of results at the different O\textsubscript{2} levels (referred to as “Test A” and “Test B”). To minimize effects of diurnal fluctuation in blood flow [18], all sessions were acquired between 2 PM and 6 PM. The participants were asked to abstain from caffeine 3 hours prior to scanning. All participants (3 females and 3 males, mean age: 30.5 ± 6.7 years) gave written informed consent and the project was approved by the Comité mixte d’éthique de la recherche du Regroupement Neuroimagerie/Québec.

Respiratory paradigm

A gas timing schedule previously described by Bulte et al [2], with a total duration of 18 minutes, was applied, as in [6]. This involves two 2-min periods of hypercapnia (HC) and two 3-min periods of hyperoxia (HO), induced by administering gas mixtures enriched with CO\textsubscript{2} and O\textsubscript{2} respectively. Hypercapnia was followed by a 1-min normocapnic period and then the 3-min hyperoxic stimulus. Hyperoxia was followed by a 3-min period of normoxia. Periods of normocapnia and normoxia were long enough to ensure a return to baseline as shown by the CBF and BOLD time course in Tancredi et al, figure 3 [7]. Participants inhaled the gas mixtures via a breathing circuit developed in-house [5]. During the first test-retest experiment [6], the hyperoxia periods were induced with the subjects breathing a mixture of 50% pure oxygen balanced with air, yielding a fix inspired O\textsubscript{2} concentration of 60% O\textsubscript{2}. During the second test-retest experiment, the participants were given 100% O\textsubscript{2} during periods of HO. Otherwise participants were given medical air to breath. Respiratory gases were continuously monitored using the CO\textsubscript{2}100C and O\textsubscript{2}100C modules of a BIOPAC MP150 system (BIOPAC Systems Inc., CA, USA). For additional details, see Lajoie et al. [6].

Image acquisition

Images were acquired on a clinical 3T MRI scanner (Siemens TIM TRIO, Siemens Medical Solutions, Erlangen, Germany) using the vendor’s 32-channel receive-only head coil. The scan session included a 5-minute anatomical acquisition (1 mm3 MPRAGE with TR/TE/flip angle = 2.3 seconds/3 msec/9°, 256x240 matrix, GRAPPA factor = 2), and an 18-minute
functional scan using dual-echo pseudo-continuous ASL sequence (de-pCASL) [19] in order to acquire simultaneous measures of BOLD and CBF. The de-pCASL parameters were: TR/TE1/TE2/\(\alpha\) = 4.12 seconds/8.4 msec/30 msec/90\(^\circ\), labeling duration = 2 seconds using Hanning window-shaped RF pulse with duration/space = 500 \(\mu\)sec/360 \(\mu\)sec, flip angle = 25\(^\circ\), peak gradient amplitude = 6 mT/m, mean gradient amplitude = 0.6 mT/m, label offset = 100 mm below the center of image slab, nominal and average post-labeling delay (PLD) = 0.9 and 1.44 seconds. The readout consisted of a GRE-EPI with GRAPPA factor = 2, partial sampling of k-space = 7/8, in-plane resolution of 4.5 \(x\) 4.5 mm\(^2\), 21 slices with 4.5 mm thickness and 0.45 mm gap.

Respiratory data analysis

Analysis of the respiratory data was carried out using an in-house program developed in Matlab (MathWorks, Natick, MA, USA), as in Lajoie et al [6]. An automatic extraction of the end-tidal (ET) and end-inspiratory points from the continuous \(\text{O}_2\) and \(\text{CO}_2\) traces was performed. Each ET point was corrected to account for the low-pass filtering effect of the filter placed in series and to account for an expired partial pressure of water of 47 mmHg [20]. More details about the respiratory data analysis can be found in Lajoie et al [6].

The average values of ET\(\text{O}_2\) at baseline and during both respiratory stimuli were used to compute arterial \(\text{O}_2\) content (ml \(\text{O}_2\)/ml blood) and change in the venous deoxygenated fraction ([dHb]/[dHb]\(_0\)) as in Chiarelli et al [14] and Gauthier et al [1]. The latter quantities are needed to obtain the BOLD calibrated value \(M\), resting OEF and CMRO\(_2\) as specified below.

Imaging data analysis

Preprocessing. Analysis of functional scans along with exclusion of artifact and non-paranuchymal voxels were performed using in-house software implemented in C, as in Lajoie et al [6].

During hyperoxic manipulation, the longitudinal relaxation time (\(T_1\)) of blood is altered due to an increase in plasma concentration of paramagnetic \(\text{O}_2\) [13]. To account for this change in blood \(T_1\), that would bias the measured CBF changes, a corrective factor using the approach described in Chalela et al [21] and Zaharchuk et al [22] was applied. First, estimates of the arterial blood \(T_1\) values during hyperoxic periods were obtained based on the individual ET\(\text{O}_2\) measurements, used as a surrogate for arterial partial pressure of \(\text{O}_2\) (\(\text{PaO}_2\)), along with the R1 (1/ \(T_1\)) and \(\text{PaO}_2\) relationship in rats’ blood reported in Pilkinton et al [13]. Depending on whether our ET\(\text{O}_2\) values were within or outside the range of values in Pilkinton et al’s study, the \(T_1\) values were either linearly interpolated or extrapolated. Then, the individual blood flow maps during HO were corrected by applying a slice-wise corrective factor based on the quantitative blood flow equation [23], the slice acquisition time and the adjusted \(T_1\) value.

Computation of CMRO\(_2\). MRI measures of BOLD and CBF acquired during the hypercapnic manipulation, along with the changes in the venous deoxygenated fraction were used as inputs to the generalized calibration model (GCM), described in Gauthier and Hoge [4], yielding a functional curve (the “HC curve”) of possible pairings of \(M\) and OEF. Repeating the procedure with the hyperoxia measurements yielded a second curve of possible \(M\) and OEF pairings (the “HO curve”). The intersection of these two curves provided the true values of \(M\) and OEF at each voxel. Finally, CMRO\(_2\) was determined by multiplying OEF by \(\text{O}_2\) delivery, computed as the product of resting CBF by arterial \(\text{O}_2\) content. Since the small regional CBF responses to hyperoxia are difficult to measure due to the low SNR of ASL, a uniform change of CBF was assumed throughout the brain, based on the cortical gray matter change after \(T_1\).

The impact of inspired oxygen levels on calibrated fMRI measurements of \(M\), OEF and resting CMRO\(_2\)
correction. Additional information about the computation of CMRO$_2$ can be found in Lajoie et al [6].

Tissue segmentation. Automated segmentation of GM from the anatomical scans was carried out using the FMRIB Software Library (FSL) [24]. Structural images were extracted from T_1-weighted scans using the brain extraction tool (FSL’s BET). Finally, a probability mask of GM was created employing the automated segmentation tool (FSL’s FAST), and was resampled to the resolution of the functional EPI scans.

Regions Of Interest (ROIs). The model-derived estimates were evaluated throughout cortical GM as well as within six ROIs selected from the ICBM OASIS-TRT-20 atlas [25] and presented in Lajoie et al [6], figure 1: the inferior parietal, superior parietal, precuneus, hippocampus, anterior (caudal and rostral) cingulate and posterior cingulate. Each ICBM three-dimensional ROI was registered to the resolution of the functional EPI scans before being conjoined with the individual’s GM probability mask excluding voxels with a GM probability lower than 50% as well as non-parenchymal voxels previously identified. Additionally, voxels where the QUO2 model could not be solved were excluded when performing the ROI analysis of M, OEF and CMRO$_2$. The resultant ROI probability masks were used to perform weighted averaging of the different measurements and estimates.

Registration. Individual ΔR^2_{HO}, M, OEF and CMRO$_2$ maps were non-linearly registered to the ICBM152 template using the CIVET software package [26] via the CBRAIN tool [27] with 12 degrees of freedom, as in Lajoie et al [6]. Test-averaged maps of ΔR^2_{HO} were computed as arithmetic means using in-house software. Averaged maps of M, OEF and CMRO$_2$ were obtained excluding any voxels where the QUO2 model could not be solved.

Analysis of sensitivity of model-derived QUO2 values to change in O_2 concentration

The end-tidal O_2, blood flow and R2* measurements during a hyperoxia manipulation depend on the employed O_2 concentration. It was discussed that hyperoxia may also perturb the metabolism [28], however, in our model, we consider HO as an isometabolism challenge as assumed in numerous previous calibrated BOLD studies [1–3]. In order to understand the impact of lower and higher levels of HO (respectively LHO and HHO) to QUO2, we performed an analysis of the sensitivity of its model-derived parameters, M, OEF and CMRO$_2$, to changes in ETO$_2$, CBF and ΔR^2*. Employing the GM group-average values in Test A during the LHO protocol, we kept constant the parameters not influenced by the O_2 concentration, while individually varying ETO$_2$ HO, CBF$_{HO}$ and ΔR^2_{HO} within their respective range delimited by GM group-average values in Test A under each HO protocol, to compute the resultant M, OEF and CMRO$_2$.

Statistical analysis

For each model-derived estimate (M, OEF and CMRO$_2$), we carried out a statistical analysis, using Matlab, on three different combinations of tests: 1) comparing Test A and Test B under the LHO protocol; 2) comparing Test A and Test B under the HHO protocol; 3) comparing tests A between both protocols. When needed, a two-tailed paired t-test was performed, considering a $P < 0.05$ level of significance, to detect any significant difference between tests and protocols. Within each protocol, we also investigated any difference across ROIs by pooling tests values and using family-wise error (FWE) correction for multiple comparisons, set at $P < 0.05$.

Prior to the analysis, statistical tests were performed on the data to ensure it satisfied the repeatability criteria: each distribution of difference between tests was evaluated for normality
using the Shapiro-Wilk W-test, while the independence between the magnitude of difference and mean of measurements was verified using a rank correlation coefficient (Kendall’s τ). If the difference distribution appeared to deviate from a normal distribution, or if the magnitude of difference increased with the mean of measurements, the data were transformed on the log\(_{10}\) scale and the verification was repeated. In cases where the log\(_{10}\) scaled data satisfied the criteria, the repeatability was assessed on these scaled values. Otherwise, assessment of repeatability was based on the original values, as done in previous studies [29–32].

The next metrics were evaluated:

1. dSD, the standard deviation of the difference between tests measurements.

2. wsSD, the within-subject standard deviation, equals dSD/\(\sqrt{2}\) considering two measurements.

3. wsCV, the within-subject (or intra-subject) coefficient of variation, as used in Floyd et al [30] and Chen et al [32]. wsCV = \(\sqrt{\text{mean of the (wsSD/subject mean)}^2}\). wsCV provides an unbiased measure of variability expressed as a percent of the mean with a low wsCV indicating a high reproducibility/repeatability. When data were on the log\(_{10}\) scale, wsCV was approximated by \(10^{\text{wsSD}}-1\) [33].

4. bsCV, the between-subject (or inter-subject) coefficient of variation as computed in Tjan-dra et al [34]. bsCV = \(\frac{\text{SD}_{\text{pooledData}}}{\text{mean}_{\text{pooledData}}} \times 100\).

Results

One participant reported a high level of anxiety during Test A of the LHO protocol, and the measured CBF response to CO\(_2\) was found to be twice the standard deviation of the group mean. Data from this participant has been excluded from the present analysis (as in the previous related work [6]).

Gas manipulation

The test-average and standard deviation of end-tidal O\(_2\) and CO\(_2\) at baseline and during periods of hyperoxia are presented in Fig 1. No difference was found within and between protocols resting ETO\(_2\) (within-protocol: TestA\(_{\text{LHO}}\) = 112±7 mmHg vs. TestB\(_{\text{LHO}}\) = 112±3 mmHg, \(P = 0.88\), TestA\(_{\text{HHO}}\) = 113±7 mmHg vs. TestB\(_{\text{HHO}}\) = 108±7 mmHg, \(P = 0.05\); between-protocol: LHO = 112±5 mmHg vs. HHO = 111±7 mmHg, \(P = 0.7\)). Within-protocol ETO\(_2\) were identical (TestA\(_{\text{LHO}}\) = 366±6 mmHg vs. TestB\(_{\text{LHO}}\) = 371±14 mmHg, \(P = 0.37\); TestA\(_{\text{HHO}}\) = 656±17 mmHg vs. TestB\(_{\text{HHO}}\) = 652±25 mmHg, \(P = 0.42\)), whereas, as expected, between-protocol ETO\(_2\) were found to be significantly different (LHO = 369±10 mmHg vs. HHO = 654±20 mmHg, \(P < 6 \times 10^{-12}\)). No difference was detected in between-protocol resting ETCO\(_2\) (LHO = 40±2 mmHg vs. HHO = 42±2 mmHg, \(P = 0.3\)), nor within the LHO protocol (TestA\(_{\text{LHO}}\) = 41±2 mmHg vs. TestB\(_{\text{LHO}}\) = 40±2 mmHg, \(P = 0.57\)). However a significant difference in resting ETCO\(_2\) was observed between Test A and Test B under the HHO protocol (TestA\(_{\text{HHO}}\) = 43±2 mmHg vs. TestB\(_{\text{HHO}}\) = 40±2 mmHg, \(P < 0.002\)). This difference in resting ETCO\(_2\) is in agreement with a lower respiratory rate during Test A compared to Test B (TestA\(_{\text{HHO}}\) = 62±2 breaths per minute vs. TestB\(_{\text{HHO}}\) = 8±1 breaths per minute, \(P = 0.03\)). The ETCO\(_2\) changes observed during periods of hyperoxia were found to be equivalent within protocol. For the LHO protocol, they were: TestA\(_{\text{LHO}}\) = -0.8±1.0 mmHg and TestB\(_{\text{LHO}}\) = -1.1±1.1 mmHg (\(P = 0.8\)), while for the HHO protocol they were: TestA\(_{\text{HHO}}\) = -2.5±0.7 mmHg and TestB\(_{\text{HHO}}\) = -2.4±0.7 mmHg (\(P = 0.5\)). The averaged decreases in ETCO\(_2\) were significantly (\(P < 0.005\)) larger in HHO compared to LHO protocol (LHO = -1.0±1.0 mmHg vs. HHO = -2.4±0.7 mmHg).
Susceptibility artifacts

Fig 2 shows a qualitative examination of R2' changes during periods of HO (ΔR2') through axial, sagittal and coronal views chosen in order to observe regions vulnerable to susceptibility artifacts. No masking, nor median filtering was performed on the functional maps prior to the non-linear registration to the ICBM template and maps average. The contrast window was chosen to facilitate the observation of increase in R2' characterized by orange and red colors. An overall R2' decrease (equivalent to a BOLD increase) in white and gray matter during HO is observed, which is more significant under the more extreme levels of HO. On the other hand, as a repercussion of the presence of paramagnetic oxygen molecules in inhaled air, both protocols presented comparable regions of susceptibility artifacts characterized by positive ΔR2' in voxels surrounding the nasal cavity. Percent of voxels in GM characterized by this increase were found to be the same in both protocols, with 12.8% under the LHO protocol and 11.7% under the HHO protocol (P = 0.25), although the positive values were generally higher under the HHO protocol (shown by darker red color). Any voxel affected by the susceptibility artifacts, later results in a non-solution voxel for M, OEF and CMRO\textsubscript{2}, and were therefore excluded from the analysis as mentioned in the methodology section.

T_1 shortening

A value of 1.65 sec was assumed for the normoxic arterial blood T_1 \cite{35}, whereas the estimated blood T_1 shortening was larger during the high O\textsubscript{2} hyperoxia state than during the low

![Fig 1. Gas manipulation.](https://doi.org/10.1371/journal.pone.0174932.g001)
hyperoxia challenge: \(T_{1\text{HHO}} = 1.47 \pm 0.01 \text{ sec} \) vs. \(T_{1\text{LHO}} = 1.56 \pm 0.01 \text{ sec} \), \(P < 4 \times 10^{-13} \). Fig 3 summarizes, in both protocols, the GM tests average and standard deviation of blood flow decrease during HO before and after correction of blood \(T_1 \). While uncorrected, CBF\text{HO} decrease was found to be significantly larger under the HHO protocol (LHO = -8.1 \pm 4.2 \text{ mmHg, HHO} = -17.5 \pm 6.6 \text{ mmHg, } P < 0.002). After \(T_1 \) correction, CBF\text{HO} decreases were less pronounced in both protocols, and were not found significantly different from each other (LHO = -1.9 \pm 4.3 \text{ mmHg, HHO} = -2.8 \pm 7.5 \text{ mmHg, } P = 0.7) nor from zero (\(P_{\text{LHO}} = 0.4, P_{\text{HHO}} = 0.3 \)).

Analysis of sensitivity of model-derived QUO2 values to change in \(O_2 \) concentration

The individual impacts of changes in ETO2\text{HO}, \(\Delta R^*_{\text{HO}} \) and \(\Delta \% \text{CBF}_{\text{HO}} \), on \(M \) and OEF, as a function of the HO levels are examined by numerical simulations. These changes in ETO2\text{HO}, \(\Delta R^*_{\text{HO}} \) and \(\Delta \% \text{CBF}_{\text{HO}} \) are dependent on one another and are examined in order to explain the combined impact on \(M \) and OEF. Results are summarized in Fig 4. Fig 4A shows the displacement in the HO curves caused by the respective variation of ETO2\text{HO}, \(\Delta R^*_{\text{HO}} \) and \(\Delta \% \text{CBF}_{\text{HO}} \), while Fig 4B shows the corresponding OEF and \(M \) solutions as a function of the individual (colored solid lines) and combined (dashed black lines) changes. Since the \(O_2 \) concentration solely modulates the HO curve, which is shifted on the nearly horizontal section of the HC curve, the changes in ETO2\text{HO}, \(\Delta R^*_{\text{HO}} \) and \(\Delta \% \text{CBF}_{\text{HO}} \), either individual or combined, have virtually no impact on the \(M \) estimates. With respect to OEF, the individual impacts

Fig 2. Susceptibility artifacts. For each protocol, the averaged maps of \(\Delta R^* \) during HO are shown in coronal, sagittal and axial views, overlaying the ICBM152 template. The chosen contrast window facilitates the localization of voxels where an increase in \(R^* \) is observed (in orange and red). These increases in the transverse relaxation rate are most likely the results of susceptibility artifacts attributable to the presence of paramagnetic \(O_2 \) in frontal sinuses and nasal cavity. https://doi.org/10.1371/journal.pone.0174932.g002
appear to cancel each other out, yielding a modest combined effect. The same conclusion stands for CMRO\textsubscript{2}, since it is the result of multiplying OEF by two measurements that are independent of the hyperoxic stimulus, i.e. the resting CBF and the resting arterial O\textsubscript{2} content. Therefore, in principle, one would expect M, OEF and CMRO\textsubscript{2} to remain stable, regardless of the O\textsubscript{2} concentration used to produce hyperoxia. The following sections explore this assumption using real values computed in different ROIs, but also on a voxel-wise basis.

Protocol-averaged estimates in ROIs

In Fig 5A are shown the ROI-averaged M, OEF and CMRO\textsubscript{2} in each protocol (red and blue bars) and over both protocols (green bars). For each combination of model-derived estimate
and ROI, we observe a good consistency between protocols with the lowest P values being: $P = 0.17$ in superior parietal for M, $P = 0.37$ in superior parietal for OEF and $P = 0.06$ in GM for CMRO$_2$. Additionally, no apparent divergence was found in variance within each protocol.

In Fig 5B are shown, for each estimate, the degree of difference between ROIs, when comparing the estimates averaged over both protocols and correcting for multiple comparisons (FWE set at $P < 0.05$). OEF estimates were found to be similar across ROIs, with the exception between hippocampus and anterior cingulate where a significant difference was detected ($P = 0.04$). Values of M and CMRO$_2$ in hippocampus were found to be the smallest compared with the other ROIs, with the exception of anterior cingulate (for M) and superior parietal (for CMRO$_2$).

Within-subject variability in ROIs

Fig 6 presents the within-subject coefficients of variation (wsCV) in every ROIs for M, OEF and CMRO$_2$. WsCVs were computed for three combinations of tests: 1) test A vs. B under the LHO protocol, 2) test A vs. B under the HHO protocol, 3) tests A between both HO protocols. Across all ROIs, M was found to have a lower within-subject variability under the LHO protocol.
protocol (mean wsCV_LHO = 16\%, mean wsCV_HHO = 25\%, \(P = 0.006 \)). On the other hand, within-subject variability of OEF and CMRO\(_2\) were found unchanged regardless of the HO protocol (OEF: mean wsCV_LHO = 15\%, mean wsCV_HHO = 16\%, \(P = 0.2 \); CMRO\(_2\): mean wsCV_LHO = 17\%, mean wsCV_HHO = 18\%, \(P = 0.6 \)).

Parametric maps

In Fig 7, we present, for each combination of tests (1: Test A vs. B under the LHO protocol, 2: Test A vs. B under the HHO protocol, 3: Tests A between both HO protocols), mean tests, between- and within-subject CV maps of \(M \), OEF and CMRO\(_2\). All functional maps were non-linearly registered (NLreg) to the ICBM space. In addition to intrinsic physiological changes, errors in measurements and head movements occurring between the anatomical and the
functional scans, a voxel-wise within-subject repeatability may be partly affected by random inaccuracies in registration. In order to evaluate any limitation on the voxel-wise repeatability caused by the registration to the ICBM space, we present the CVs maps for MPRAGE, and verify if any enhancement was possible thanks to the non-linearly registration of our maps (Fig 7A), compared to the linearly registered MPRAGE (Fig 7B). All CVs maps are shown using a window level of 0–200%. At these levels, the passage from 20% to 30% is characterized by the transition from purple to blue, with 30% being an approximate upper limit for what is considered as low variability. Compared to the linearly registered maps (Lreg), the non-linearly registered (NLreg) MPRAGE maps presented a better defined gray matter region, while whole-brain between- and within-subject variability were found to be lower. WsCV values in NLreg were generally found to be $<5\%$ in WM, $<10\%$ in GM and exceptionally $<20\%$ in few small regions, whereas in Lreg wsCV, values were $<10\%$ in WM and GM and $<20\%$ in with few small regions. Mean maps of M, OEF and CMRO$_2$ (Fig 7C, 7D and 7E) qualitatively exhibited an absence of dependency on the O$_2$ protocol employed. CVs maps of M presented slightly less variability under the LHO than the HHO. All three estimates were found to have low GM within-subject variability for the three combinations of tests ($<30\%$). M and CMRO$_2$ presented a clearer distinction between the population variance and the within-subject variability,
Fig 7. Parametric maps. For each combination of tests (1: Test A vs. B under the LHO protocol, 2: Test A vs. B under the HHO protocol, 3: Tests A between both HO protocols), mean tests, between-subject CV and within-subject CV maps for $M(C)$, OEF (D)
whereas OEF was found to have a lower voxel-wise between-subject variability, approaching the within-subject variability.

Discussion

Performing an analysis of individual impacts, on M and OEF, of variation in ETO_2HO, $\Delta R^2\text{HO}$ and $\Delta\%\text{CBF}_\text{HO}$, we have shown how little M is affected by the O_2 concentration in GM, and how the individual impacts on OEF were practically cancelling out, yielding a nearly nonexistent combined impact on OEF and therefore on CMRO$_2$. Exploring the within-subject reproducibility in different ROIs as well as on a voxel-wise basis, we observed an unchanged reproducibility for OEF and CMRO$_2$ regardless of differences in ETO_2HO, $\Delta R^2\text{HO}$ and $\Delta\%\text{CBF}_\text{HO}$ caused by a distinct O_2 concentration in inhaled gas. On the other hand, the M within-subject repeatability was found to be slightly enhanced under the LHO protocol. No significant difference was found between protocol-averaged values.

In certain situations, the differences between subjects’ brain anatomy are such that a linear transformation is insufficient to register their brain maps on to standard spaces. The local deformations produced by the non-linear registration improve the match. The comparison of linearly versus non-linearly registered individual MPRAGE images provides a qualitative example of the improvement brought by the non-linear registration. The method produced sharper group-averaged maps, characterized by more distinct sulci and more accentuated grey/white matter contrast. Quantitatively, the non-linear co-registration afforded lower CV values.

The presence of paramagnetic molecular oxygen in inhaled air produces susceptibility artifacts. We examined regions vulnerable to those artifacts such as the frontal sinuses and nasal cavity of our $\Delta R^2\text{HO}$ maps. However, no evidence of enlarged patterns of susceptibility artifacts under inhalation of 100% O_2 (HHO) compared to 60% (LHO) was found, thus yielding a comparable percent of non-solution voxels in GM for both protocols.

Rather than assuming a fixed value of CBF change during HO, the individual T_1-corrected $\Delta\%\text{CBF}_\text{HO}$ averaged in GM was used, therefore capturing any intra-subject variation between Test A and Test B in blood flow during HO. Our T_1 values were extrapolated from experimentally-determined values in animal model, which is a common practice in calibrated fMRI approaches. Human blood constitution is similar to that of bovine and rat blood and is likely to experience comparable T_1 shortening during the hyperoxia stimulus [13,36,37]. This is of course an assumption and represents a potential source of confounds in our blood flow changes calculations.

In CBF quantification, so long as the PLD is equal to or higher than the arterial transit time (ATT), the exact ATT value does not matter. In our 2D acquisition, the first and last slices are acquired after a delay of 900 msec and 1986 msec respectively, resulting in a brain-averaged PLD of 1443 msec. Donahue et al. [38] applied a pCASL in a cohort of healthy volunteers (mean age of 30 ± 4 years) and obtained a group-averaged ATT lower than 900 msec within each lobe, including within the occipital lobe with 834 ± 29 msec. We therefore believe that in the large majority of cases, the acquired ASL signal was accurately reflecting CBF and that an increase in our PLD would have resulted in a loss in SNR, especially during hypercapnic where the ATT is known to diminish [38]. Additionally, the ATT increase during HO should be minor as our data indicates that the CBF decreases induced by hyperoxia, even at high O_2 concentrations, are not substantial. When using a 2D acquisition in a population of elderly or
unhealthy patients, it would be recommended to increase the PLD slightly while also imaging a lower number of thicker slices, as in the study De Vis et al. (2015) where a nominal PLD of 1550 msec and 11 slices with 7 mm slice thickness were employed.

Small cohort sizes like that of the present study have been common in recent years, particularly for complex fMRI protocols with greater physiological specificity than the classic BOLD contrast. Despite the relatively small sample size, which limits confidence in the statistical significance of our findings, the present study provides new information on the impact of inspired oxygen levels on calibrated fMRI technique.

To conclude, it was revealed that the pattern of susceptibility artifacts under hyperoxia was comparable regardless of the HO levels. We also demonstrated that variations in ETO2\textsubscript{HO}, CBF\textsubscript{HO} and R2HO were accounted for within the QUO2 model, resulting in an unchanged ROI-averaged M, OEF and CMRO\textsubscript{2} estimates. We observed that the within-subject repeatability was either unchanged (for OEF and CMRO\textsubscript{2}) or slightly enhanced under the LHO protocol (for M). In summary, the use of a higher hyperoxic challenge revealed no beneficial impact on the calibrated fMRI measurements, while a reduced concentration of 60% O\textsubscript{2} was shown to maintain sufficient BOLD contrast and to produce consistent model-derived results.

Acknowledgments

The authors would like to thank Scott Nugent, Marius Tuznik, Bahare Sabouri, Carolyn Hurst and André Cyr for their excellent technical assistance and insightful discussions. Jiongjiiong Wang at UCLA is acknowledged for providing the pseudo-continuous arterial spin-labeling sequence.

Author Contributions

Conceptualization: IL FBT RDH.
Data curation: IL FBT RDH.
Formal analysis: IL.
Funding acquisition: RDH.
Investigation: IL FBT RDH.
Methodology: IL FBT RDH.
Project administration: RDH.
Resources: RDH.
Software: IL FBT RDH.
Supervision: RDH.
Validation: IL FBT RDH.
Visualization: IL.
Writing – original draft: IL.
Writing – review & editing: IL FBT RDH.

References

1. Gauthier CJ, Desjardins-Crépeau L, Madjar C, Bherer L, Hoge RD. Absolute quantification of resting oxygen metabolism and metabolic reactivity during functional activation using QUO2 MRI. Neuroimage. 2012; 63:1353–1363. https://doi.org/10.1016/j.neuroimage.2012.07.065 PMID: 22986357
2. Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW, et al. Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. NeuroImage. 2012; 60:582–591. https://doi.org/10.1016/j.neuroimage.2011.02.017 PMID: 2209811

3. Wise RG, Harris AD, Stone AJ, Murphy K. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. NeuroImage. 2013; 83:135–147. https://doi.org/10.1016/j.neuroimage.2013.06.008 PMID: 23769703

4. Gauthier CJ, Hoge RD. A generalized procedure for calibrated MRI incorporating hyperoxia and hypercapnia. Hum. Brain Mapp. 2012; 34:1053–1069. https://doi.org/10.1002/hbm.21495 PMID: 23015481

5. Tancredi FB, Lajoie I, Hoge RD. A simple breathing circuit that provides precise control of inspired gases for experimental respiratory manipulations. BMC Res Notes. 2014; 7:235. https://doi.org/10.1186/1756-0500-7-235 PMID: 24725848

6. Lajoie I, Tancredi FB, Hoge RD. Regional Reproducibility of BOLD Calibration Parameter M, OEF and Resting-State CMRO2 Measurements with QUO2 MRI. Hendrikse J, editor. PLoS ONE. 2016; 11(9): e0163071. https://doi.org/10.1371/journal.pone.0163071 PMID: 27649493

7. Tancredi FB, Lajoie I, Hoge RD. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J. Magn. Reson. Imaging. 2015; 42:1144–1157. https://doi.org/10.1002/jmri.24878 PMID: 25752936

8. Brannan S, Liotti M, Egan G, Shade R, Madden L, Robillard R, et al. Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air. Proc. Natl. Acad. Sci. U.S.A. 2001 Feb. 13; 98(4):2029–2034. https://doi.org/10.1073/pnas.98.4.2029 PMID: 11172070

9. Liotti M, Brannan S, Egan G, Shade R, Madden L, Abplanalp B, et al. Brain responses associated with consciousness of breathlessness (air hunger). Proc. Natl. Acad. Sci. U.S.A. 2001 Feb. 13; 98(4):2035–2040. https://doi.org/10.1073/pnas.98.4.2035 PMID: 11172071

10. Iscoe S, Fisher JA. Hyperoxia-induced hypocapnia: an underappreciated risk. Chest. 2005; 128:1009–1013. PMID: 16002967

11. Tamura E, Hatabu H, Li W, Prasad PV, Edelman RR. Effect of oxygen inhalation on relaxation times in various tissues. J. Magn. Reson. Imaging. 1997; 7:220–225. PMID: 9039619

12. Noseworthy MD, Kim JK, Stainsby JA, Stanisz GJ, Wright GA. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J. Magn. Reson. Imaging. 1999; 9:814–820. PMID: 10373029

13. Pilkinton DT, Hiraki T, Detre JA, Greenberg JH, Reddy R. Absolute cerebrovascular blood flow quantification with pulsed arterial spin labeling during hyperoxia corrected with the simultaneous measurement of the longitudinal relaxation time of arterial blood. Magn. Reson. Med. 2011; 67:1556–1565. https://doi.org/10.1002/mrm.23137 PMID: 22135087

14. Ma Y, Berman AJL, Pike GB. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD. Magn. Reson. Med. 2016; 76(6):1905–1911. https://doi.org/10.1002/mrm.26069 PMID: 26628286

15. Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jeazzard P. A calibration method for quantitative BOLD fMRI based on hyperoxia. NeuroImage. 2007; 37:808–820.

16. Goodwin JA, Vidyasagar R, Balanos GM, Bulte D, Parkes LM. Quantitative fMRI using hyperoxia calibration: Reproducibility during a cognitive Stroop task. NeuroImage. 2009; 47:573–580. https://doi.org/10.1016/j.neuroimage.2010.04.064 PMID: 19398018

17. Bulte DP, Chiarelli PA, Wise RG, Jeazzard P. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab. 2006; 26:79–85. https://doi.org/10.1038/sj.jcbfm.960319 PMID: 16670698

18. Parkes LM, Rashid W, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: Reproducibility, stability, and age and gender effects. Magn. Reson. Med. 2004; 51:736–743. https://doi.org/10.1002/mrm.20023 PMID: 15065246

19. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn. Reson. Med. 2008; 60:1488–1497. https://doi.org/10.1002/mrm.21790 PMID: 19025913

20. Severinghaus JW. Water vapor calibration errors in some capnometers: respiratory conventions misunderstood by manufacturers? Anesthesiology. 1989; 70:996–998. PMID: 2499226

21. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic Resonance Perfusion Imaging in Acute Ischemic Stroke Using Continuous Arterial Spin Labeling. Stroke. 2000; 31:680–687. PMID: 10700504

22. Zaharchuk G, Martin AJ, Dillon WP. Noninvasive Imaging of Quantitative Cerebral Blood Flow Changes during 100% Oxygen Inhalation Using Arterial Spin-Labeling MR Imaging. American Journal of Neuroradiology. 2008; 29:663–667. https://doi.org/10.3174/ajnr.A0896 PMID: 18397966
23. Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salucci AE, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn. Reson. Med. 2003; 50:599–607. https://doi.org/10.1002/mrm.10559 PMID: 12939768

24. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001; 5:143–156. PMID: 11516708

25. Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 2012; 6:171 https://doi.org/10.3389/fnins.2012.00171 PMID: 23227001

26. Collins DL, Holmes CJ, Peters TM, Evans AC. Automatic 3-D Model-Based Neuroanatomical Segmentation. Hum. Brain Mapp. 1995; 3:190–208.

27. Sherif T, Rioux P, Rousseau M-E, Kassis N, Beck N, Adalat R, et al. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research. Front. Integr. Neurosci. 2014; 8:54.

28. Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab. 2012; 32:1909–1918. https://doi.org/10.1038/jcbfm.2012.93 PMID: 22739621

29. Padhani AR, Hayes C, Landau S, Leach MO. Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed. 2002; 15:143–153. PMID: 11870910

30. Floyd TF, Ratcliffe SJ, Wang J, Resch B, Detre JA. Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J. Magn. Reson. Imaging. 2003; 18:649–655. https://doi.org/10.1002/jmri.10416 PMID: 14635149

31. Jain V, Duda J, Avants B, Giannetta M, Xie SX, Roberts T, et al. Longitudinal reproducibility and accuracy of pseudo-continuous arterial spin-labeled perfusion MR imaging in typically developing children. Radiology. 2012; 263:527–536. https://doi.org/10.1148/radiol.12111509 PMID: 22517961

32. Chen Y, Wang DJJ, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J. Magn. Reson. Imaging. 2011; 33:940–949. https://doi.org/10.1002/jmri.22345 PMID: 21448961

33. Bland JM, Altman DG. Measurement error proportional to the mean. BMJ. 1996; 313:106. PMID: 8688716

34. Tjandra T, Brooks JCW, Figueiredo P, Wise R, Matthews PM, Tracey I. Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: Implications for clinical trial design. Neuroimage. 2005; 27:393–401. https://doi.org/10.1016/j.neuroimage.2005.04.021 PMID: 15921936

35. Lu H, Clingman C, Golay X, van Zijl PCM. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn. Reson. Med. 2004; 52(3):679–682. https://doi.org/10.1002/mrm.20178 PMID: 15334591

36. Benga G, Borza T. Diffusional water permeability of mammalian red blood cells. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 1995; 112(4):653–659. PMID: 8590980

37. Lin A-L, Qin Q, Zhao X, Duong TQ. Blood longitudinal (T1) and transverse (T2) relaxation time constants at 11.7 Tesla. Magn Reson Mater Phy. 2011; 25(3):245–249.

38. Donahue MJ, Faraco CC, Strother MK, Chappell MA, Rane S, Dethrage LM, et al. Bolus arrival time and cerebral blood flow responses to hypercarbia. J Cereb Blood Flow Metab. 2014; 34(7):1243–1252. https://doi.org/10.1038/jcbfm.2014.81 PMID: 24780904