The Usefulness of Cystatin C as a Marker for Chronic Kidney Disease

Zati Iwani AK*, Ruziana Mona WZ, Nor Idayu R, Wan Nazaimoon WM

Cardiovascular, Diabetes and Nutrition Research Centre, Institute for Medical Research, Kuala Lumpur.

*Corresponding Author : iwani@imr.gov.my

Abstract

Background: Diagnostic marker to detect chronic kidney disease (CKD) at early stage is important as early intervention can slow the loss of kidney function. Plasma or serum Cystatin C (CysC) is said to be a superior marker for CKD compared to serum creatinine (SCr) to detect mild GFR reduction between 60 and 90 mL/min/1.73m². Methods: We analysed blood and urine samples from 418 normal subjects and 37 Type 2 diabetes patients (T2DM) with CKD. Estimation of glomerular filtration rate (eGFR) was determined using CKD-EPI. We compared the level CysC by CKD staging. Then, the correlation CysC and eGFR were compared between the normal subjects and the T2DM patients. Results: Plasma CysC level increase with the progression of CKD and was significantly elevated in CKD stage 2. CysC levels were highly correlated with eGFR in the T2DM patients. Conclusion: These results indicated that CysC have the potential of detecting early CKD especially in those with high risk such as the T2DM patients and also hypertension.

Keywords

Chronic Kidney Disease; Cystatin C; Estimated Glomerular Filtration Rate; Albumin - Creatinine Ratio; Diabetes; Hypertension

1. Introduction

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) in particular are major health problems worldwide with dramatically rising incidence and prevalence. Substudy of the National Health and Morbidity Survey 2011 showed that the prevalence of chronic kidney disease of the adult population (over 18 years old) in West Malaysia was 9.07% [1]. It is also a growing problem in other Asian countries, partly due to the rising prevalence of non-communicable diseases such as diabetes and hypertension [2].

CKD patients are often asymptomatic, and thus, a laboratory measurement of kidney function is required. In practice, serum and plasma creatinine are the most widely used endogenous markers of glomerular filtration (GFR). The sensitivity of serum creatinine in the detection of CKD is poor and it will fail to identify half of the patients with crucial stage 3 CKD (GFR of 30-59 mL/min/1.73m²) [3],[4],[5] as serum creatinine concentration may not change until approximately 50% of the kidney function has been lost [6]. Furthermore, creatinine production is also influenced by factors such as age, gender, muscle mass, physical activity and diet [7]. Due to the many problems encountered with measurements of creatinine and its use as a GFR estimate, cystatin C (CysC) has been proposed as an alternative marker of renal function.

Cystatin C is a 13-kDa, non-glycosylated basic protein belonging to the cystatin super-family of cysteine proteinase inhibitors. Studies have shown that CysC may be more sensitive in identifying mild reductions in kidney function than serum creatinine (SCr) [8],[9]. It is produced at a stable rate, which is unaffected by inflammatory processes, sex, age, diet, and nutritional status [10]. However, owing to its relatively recent introduction, there are only limited numbers of studies for CysC in the Asian general population. The aim of this study was to examine the usefulness of CysC as a marker for CKD.

2. Materials and Methods

This was a cross-sectional study involving sub-sample of the National Health and Morbidity Survey 2011 who consented to participate in the CKD study and Type 2 diabetes with CKD patients (T2DM) from the General Hospital Kuala Lumpur. For the NHMS, a stratified two-stage cluster sampling design was used to draw a sample of 9258 private dwellings [11]. For the CKD substudy, only respondents from West Malaysia were selected [12]. Subjects who agreed to participate were requested to fast for 10-12 hours prior to the study visit. Exclusion criteria were pregnant women or those menstruating during data collection. This study was approved by the Medical Research and Ethics Committee, Ministry of Health Malaysia.

Blood sampling for serum creatinine and early-morning urine sampling for urine ACR estimation were obtained by hemodialysis personnel from the nearest Ministry of Health
hemodialysis unit. Blood and urine samples were sent by express courier to Institute for Medical Research Kuala Lumpur (central laboratory) for analysis and storage. Blood samples were processed for plasma, and creatinine, CysC and other chemistry laboratory tests which coincided with creatinine clearance measurement were analyzed on Selectra XL Chemistry Analyzer (Vital Scientific, Dieren, The Netherlands) using reagents purchased from Randox Laboratories (Antrim, UK). The Jaffe method was used to measure creatinine, and has calibration traceable to an isotope dilution mass spectroscopy reference method. Interassay coefficient of variability (CV) for creatinine at 124 and 303 mmol/l was 6.2% and 4.7%, respectively, and for microalbumin at 32.2 and 159mg/l was 8.0% and 3.6%, respectively. Latex Enhanced Immunoturbidimetric method was used to measure CysC. Inter-assay CV for CysC at 0.78 mg/l and 3.37 mg/l was 3.1% and 1.3% respectively. A1C was determined by automatic reversed-phase cation exchange based chromatography method (Adams HA-8160). eGFR was derived for these subjects using the CKD-EPI equation as follows:

\[
141 \times \min \left(\frac{SCr}{k}, 1 \right)^{\alpha} \times \max \left(\frac{SCr}{k}, 1 \right)^{-1.209} \times 0.993^{\text{Age}} \times \left(1.1018 \text{ if female} \right)
\]

Where SCr is serum creatinine (in mg/dl), k is 0.7 for women and 0.9 for men, \(\alpha \) is -0.329 for women and -0.411 for men, min is the minimum of SCr/k or 1, and max is the maximum of SCr/k or 1.

2.1. Definitions

Microalbuminuria was defined as urine ACR 30–300mg/g. Macroalbuminuria was defined as urine ACR of ≥ 300mg/g [12]. CKD stages 1 and 2 were defined as eGFR ≥90ml/min per 1.73m² and 60–89ml/min per 1.73m², respectively, urine ACR ≥30mg/g. Stages 3, 4, and 5 were defined as eGFR 30–59, 15–29, and ≤ 15ml/min per 1.73m², respectively, regardless of kidney damage [13],[14]. Hypertension was defined as the average of two BP readings with systolic BP ≥ 140 and/or diastolic BP ≥90mmHg [15] and/or self reported hypertension previously diagnosed by medical personnel.

2.2. Statistical Method

Data analysis was done by exporting the raw data into SPSS (version 16, Chicago, IL). Data are presented as mean ± SD. The differences of the data among CKD stages were investigated by One Way ANOVA test. P < 0.01 was considered statistically significant. Correlations between CysC and eGFR were investigated using non-linear regression analysis and by calculating the coefficient of regression (R).

Table 1.	Baseline Characteristics of NHMS-CKD subjects and T2DM patients with CKD. Data are expressed as mean ± SD.	
NHMS-CKD Substudy	T2DM with CKD	
n	418	37
Gender		
Male	210	18
Female	218	19
Sociodemographic characteristics		
Age	43±15	54±11
Current Smokers (n)	91	-
Hypertension (n)	156	30
BMI (kg/m²)	25±5.6	27±4.3
Waist Circumference (cm)	87.4±14	102.2±12.6
HbA1c (mmol/mol)	40±15.5	70±16.5
Serum Creatinine (mg/dl)	0.7±0.2	1.5±0.8
Cystatin C (mg/l)	0.8±0.2	1.3±0.8

Table 2.	Proportion of subjects with CKD	
NHMS-CKD Substudy % (n)	T2DM with CKD % (n)	
Normal	78.9 (330)	-
Stage 1	14.4 (60)	8.1 (3)
Stage 2	5.5 (23)	27.0 (10)
Stage 3	1.2 (5)	43.2 (16)
Stage 4	-	21.6 (8)
3. Results

A total of 418 subjects from the NHMS-CKD and 37 T2DM patients with CKD participated in the study. The profiles of the subjects with mean age of 43.1±14.9 and 53.7±11.0 respectively are shown in Table 1. Of the NHMS-CKD subjects 78.9\% was normal, 14.4\% have CKD stage 1, 5.5\% CKD stage 2 and 1.2\% CKD stage 3 (Table 2). Subjects with CKD had higher SCr, CysC and HbA1c value, 0.77±0.1mg/dl, 0.88±0.28 mg/L and 50.18 ± 23.32 respectively (Table 3).

By ACR, 78.2\% subjects have normoalbuminuria, 14.8\% have microalbuminuria and 6.9\% have macroalbuminuria (Table 4). Plasma CysC levels increased with the progression of CKD staging. Comparison of CysC value in the three subgroups (CKD stage 1, 2 and 3) of CKD showed that CKD stage 2 and 3 subjects have higher CysC concentrations compared to the normal subjects and also showed statistically significant differences between the subgroups (Fig.1).

Of the T2DM patients, 8.1 \% have CKD stage 1, 27 \% have CKD stage 2, 43.2\% have CKD stage 3 and 21.6\% have CKD stage 4. By ACR, 47.4\% of the T2DM patients have microalbuminuria and 42.1\% macroalbuminuria while the rest were normoalbuminuria. The T2DM patients have significantly higher CysC value (1.3 ± 0.77 mg/l) in comparison to the NHMS-CKD subjects. Similar to the NHMS-CKD subjects, the T2DM patients CysC level showed statistically significant differences between the subgroups (Table 2) except for CKD stage 1.

![Figure 1. Plasma CysC levels in each stage of chronic kidney disease. The subjects classified to CKD staging as follow: CKD stages 1 and 2 were defined as eGFR ≥90 ml/min per 1.73 m² and 60–89 ml/min per 1.73 m², respectively, with urine ACR ≥ 30 mg/g. Stages 3, 4, and 5 were defined as eGFR=30–59, 15–29, and ≤ 15 ml/min per 1.73 m², respectively, regardless of kidney damage. Serum CysC increased with the progression CKD, and it was significantly higher in the subjects with mild to moderate eGFR (stages 2 and 3), but not significant in stage 1. Error bars indicate S.D. for statistical significance (One Way ANOVA test). * p<0.01]
The correlations of CysC to eGFR were compared between the NHMS-CKD subjects with CKD and the T2DM patients with CKD (Fig. 2). Both correlated significantly with eGFR but CysC was highly correlated with eGFR in the T2DM patients with CKD ($R^2 = 0.85$).

Out of 407 NHMS-CKD subjects, 33% (91) were hypertension (Table 1) and have significantly elevated CysC of 0.9 ± 0.2 mg/L as compared to those without hypertension (Fig.3). Similarly, the level of CysC was significantly elevated among smokers (Fig. 3).

4. Discussion

It is important to have reliable marker to detect early stage of CKD, that is stage 1 and stage 2 so that early treatment can be instituted. Late detection or untreated CKD can result in end-stage renal disease and necessitate dialysis or kidney transplantation. In this study we found that plasma CysC level become significantly elevated at CKD stage 2 among normal adults. The mean value of subjects with CKD stage 2 in the study has exceeded the upper limit of normal recommended for this technique [15]. The range of CysC of our normal subjects with CKD stage 2 and 3 was $0.7-1.7$ mg/l and was within the cut off value suggested to detect CKD stage 2 and 3 [17],[18]. These support the potential utility of CysC to detect early renal failure i.e at CKD stage 2 [19]. It was also shown that elderly subjects with elevated CysC (≥ 1.0 mg/l) had a fourfold risk of progressing to CKD after four years of follow up compared to those with normal CysC concentrations suggesting the potential of CysC to identify a “pre-clinical” state of kidney dysfunction [20].

The relationship between CysC and GFR differed across clinical presentations. Cystatin C has been demonstrated to be more accurate than serum creatinine in the detection of early renal impairment and in specific populations may allow for early detection of renal disease. Rule et al., [21] showed that the association between CysC and GFR was stronger among native kidney disease patients than in healthy persons. In this study, we found that CysC correlation with eGFR differ significantly between the normal subjects and the T2DM patients. T2DM showed better correlation with the eGFR compared to the normal subjects. This suggests the advantage of using CysC for CKD detection in T2DM patient over general population. Evidence is mounting that CKD screening should be implemented in certain high risk groups (e.g., older patients, patients with hypertension) in addition to patients with diabetes [22][23][24]. Similarly, National Kidney Foundation of USA and the not-for-profit organization KDIGO (Kidney Disease – Improving Global Outcomes) recommending ‘All countries should have a targeted screening programme for CKD’ – focusing on those people known to have diabetes, hypertension and cardiovascular disease[25][26]. Given the ease of identification of the high-risk groups, CysC may be useful to establish the presence of and the staging of CKD.

Mild to moderate reductions in kidney function are relatively common in hypertensive patients, and are also associated with increased risk for cardiovascular events[27]. The association of CysC and cardiovascular risk has been previously studied [28][29]. Elevated CysC was shown to be associated with classical cardiovascular risk factors such as diabetes, hypertension and chronic renal disease [28]. In our study, subject with hypertension showed significantly higher CysC level compared to those without hypertension. Also, in our general population CysC was significantly elevated among smokers than non-smokers. These results suggested that CysC would be not only practical in early recognition of CKD but may also relate to classical cardiovascular risk factor such as hypertension and smoking. Thus, confirmatory screening (e.g., a quantitative
measurement such as urine albumin-to-creatinine ratio) and follow-up in those with risk will improve the clinical outcome. In addition, CysC may provide new insights into the importance of the relationship between kidney disease and hypertension in subjects with presumably normal renal function. [27]

This study was performed in a normal subjects and T2DM patients with CKD. T2DM is well recognized as a risk factor for CKD [30]. Our result showed that CysC is a useful marker to recognise stage 2 CKD and it correlated well with eGFR in T2DM patients suggesting that CysC would work better in providing early recognition of CKD in individuals at high risk for CKD. This highlights the potential usefulness of screening for moderate or mild CKD in subjects with diabetes by measuring CysC levels. Although Knight et al.[9] found that serum cystatin C level alone was a better predictor of creatinine clearance than serum creatine level, however, when they incorporated clinical information such as age, weight, and gender into their models, serum cystatin C level did not perform better than serum creatine level for predicting creatinine clearance. Their data also showed that taking into account age, weight, and gender improved the predictive performance of serum cystatin C level, albeit to a smaller extent than serum creatine level. Thus, caution must be used when interpreting cystatin C levels alone. More studies are needed to determine the best equation to be used for the estimation of filtration rate by CysC.

Our limitation was not using iothalamate clearance as the gold standard of kidney function measurements of GFR as recommended [31][32], however early-morning spot urine ACR has also been shown to be sensitive and high specificity measure for detection of kidney damage [32].

5. Conclusion

Despite that both creatinine and CysC can be both easily and rapidly determined, CysC testing is more costly than creatinine but it has been shown to be a reliable marker in detecting early changes in GFR [33][34][35].

Acknowledgments

We thank the following: Director General of Health Malaysia, Deputy Director General of Health Malaysia and Director of Institute For Medical Research for permission to publish this paper. This study was funded by National Health Institute, Malaysia.

Zati Iwani AK and Ruziana Mona WZ were supported by the Fogarty International Centre, National Institutes of Health, under Award Number: D43TW008332 (ASCEND Research Network). The contents of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the ASCEND Research Network.

REFERENCES

[1] Hooi, Lai Seong, Loke Meng Ong, Ghazali Ahmad, Sunita Bavanandan, Noor Ani Ahmad A, Balkish M.Naidu, Wan Nazaimoon W.Mohamud and Muhammad Fadli M.Yusoff A Population-Based Study Measuring the Prevalence of Chronic Kidney Disease among Adults in West Malaysia. Kidney International (2013). doi:10.1038/ki.2013.220

[2] Stewart JH, McCredie MR, and Williams SM. Geographic, Ethnic, Age-Related and Temporal Variation in the Incidence of End-Stage Renal Disease in Europe, Canada and the Asia Pacific Region,1998-2002. Nephrology Dialysis Transplant (2006) Vol.21, No. 8, 2178-83

[3] Swedko PJ, Clark HD, Paramsothy K, and Akhari A. Serum Creatinine Is An Inadequate Screening Test for Renal Failure in Elderly Patients. Archive of Internal Medicine (2003) Vol. 163, No. 3, 356-360

[4] Boston AG, Kronenberg F and Ritz E, Predictive Performance of Renal Function Equations for Patients with Chronic Kidney Disease and Normal Serum Creatinine Levels Journal of The American Society of Nephrology (2002) Vol.13, No.8, 2140–2144

[5] Shemesh O, Golbetz H, Kriss JP, Myers BD Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney International (1985)Vol.28, No.5,830–838,

[6] Bennet MR and Devarajan P. Biomarkers For Kidney Diseases. Characteristics of an Ideal Biomarker of Kidney Diseases. (2010) Academic Press.

[7] Hsu CY, Chertow GM, Curhan GC. Methodological issues in studying the epidemiology of mild to moderate chronic renal insufficiency. Kidney International (2002) Vol.61, No. 5: 1567–76.

[8] Rule AD, Rodeheffer RJ, Larson TS, Bernet JC, Cosfo FG, Turner ST Limitations of Estimating Glomerular Filtration Rate from Serum Creatinine in the General Population. Mayo Clinic Proceedings (2006) Vol.81, No. 11, 1427-34

[9] Knight EL ,Verhave JC, Spiegelman D, Hillege HL, de Zeeum D, Curhan GC, de Jong PE Factors Influencing Serum Cystatin C Levels Other Than Renal Function and the Impact on Renal Function Measurement.Kidney International(2004) Vol.65, No.4, 1416-21

[10] Lee WB, Ihm SH, Choi MG, Yoo HJ. The comparison of cystatin C and creatinine as an accurate serum marker in the prediction of type 2 diabetic nephropathy Diabetes Research and Clinical Practice (2007) Vol 78, No. 3,428–434

[11] National Health Morbidity Survey 2011 Methodology And General Findings. Institute For Public Health(IPH) (2011) 1:258

[12] Wen CP, Cheng TY, Tsai MK, Chan HT, Tsai SP, Hsu CC, Sung PK,Hsu YH, Wen SFI All-Cause Mortality Attributable to Chronic Kidney Disease: A Prospective Cohort Based on 462 293 Adults in Taiwan. Lancet(2008) Vol.371, No.9631, 2173-82

[13] Imai E, Horio M, Watanabe T, Iseki K, Yamagata K,Hara S, Ura N,Kiyohara Y, Moriyama T,Ando Y, Fujimoto S, Konta T,Yokoyama H, Makino H, Hishida A, Matsu S
Prevalence of Chronic Kidney Disease in the Japanese General Population.Clinical and Experimental Nephrology (2009) Vol.13 No.6, 621-30

[14] Levey A, and Coresh J. Chronic Kidney Disease. Lancet(2012) Vol. 379 No. 9811, 165-180

[15] Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. JAMA(2003) 289:2560-71

[16] Uhlmann EJ, Hock KG, Issitt C, Sn eeringer MR, Cerrelli DR, Gorman RT, Scott MG. Reference Intervals for Plasma Cystatin C In Healthy Volunteers and Renal Patients, as Measured by the Dade Behring BN II System, and Correlation with Creatinine. Clinical Chemistry (2001) Vol.47, No.11, 2031-33.

[17] Kimura T, Ikeda H, Fujikawa J, Nomura K, Aoyama T, Wada Y, nabe K, Hamamoto Y, Honjo S, Koshiyama H. Usefulness of Serum Cystatin C in Japanese Patients with Type 2 Diabetes Mellitus and Nephropathy. Diabetes research and Clinical Practice (2009) Vol.83, No.2, 58-61.

[18] Ogawa Y, Goto T, Tamasawa N, Matsuji T, Yundo Y, Suijimoto K, Tomotsune K, Kiura M, Yasujima M, Suda T. Serum Cystatin C in Diabetic Patients Not Only an Indicator for Renal Dysfunction in Patients with Overt Nephropathy but Also a Predictor for Cardiovascular Events in Patients without Nephropathy. Diabetes Research and Clinical Practice(2008) Vol.79, No. 2, 357-361

[19] Chew JS , Saleem M, Florkowski CM, and George PM. Cystatin C – a Paradigm of Evidence Based Laboratory Medicine. Clinical Biochemist Review (2008) Vol. 29, No.2, 47-62

[20] Shipak MG, Katz R, Sarnak MJ, Fried LF, Newman AB, Stehman-Breen C, Sellenger SL, Kestenbaum B,P saty B, Tracy RB, Siscovick DS. Cystatin C and Prognosis for Cardiovascular and Kidney Outcomes in Elderly Persons without Chronic Kidney Disease. Annals of Internal Medicine (2006) Vol. 145 No.4, 237-46

[21] Rule AD, Bergstrahl EJ, Sleazak JM, Bergert J, Larson TS, Glomerular Filtration Rate Estimated by Cystatin C among Different Clinical Presentations. Kidney International (2006) Vol. 69, No. 2, 399-405

[22] Bang H, Vuppputuri S., Shoham, DA., Klemmer,PJ, Falk RJ, Mazumdar, M and Kshirsagar, AV. Screening for Occult Renal Disease (SCORED): a simple prediction model for chronic kidney disease. Archives of Internal Medicine.2007.Vol.167 No. 4: 374.

[23] Hallan, SI, Dahl K, Oien, CM, Grootendorst DC, Aasberg A, Holmen J and Dekker FW. Screening strategies for chronic kidney disease in the general population: follow-up of cross sectional health survey. British Medical Journal 2006 Vol. 333 No.7577, 1047.

[24] Boulware, LE, Jaar, BG, Tarver-Carr, ME, Brancati FL and Powe NR. Screening for proteinuria in US adults. JAMA: the journal of the American Medical Association, (2003) Vol 290 No.23: 3101-3114.

[25] Vassalotti JA, Stevens LA, Levey AS. Testing For CKD : A position statement from the National Kidney Foundation. American Journal Kidney of Kidney Disease.2007. Vol 50, No.2 : 169-80

[26] Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt K-U, Nahas ME, Jaber BL, Jadoul M, Levin A, Powe NR, Rossert J, Wheeler DC, Lameire N and Eknayan G. CKD as a global public health problem: Approaches and initiatives – a position statement from kidney disease improving global outcomes. Kidney International (2007) Vol. 72 No.3 247–59.

[27] Salgado, JV., França, AK., Cabral, NA., Lages J, Ribeiro VS, Santos, AM. and Salgado BJ. Cystatin C, kidney function, and cardiovascular risk factors in primary hypertension. Revista da Associação Médica Brasileira,2013 Vol.59 No.1: 21-27.

[28] Cepeda J,Tranche-Iparraguirre S, Marín-Iranzo R, Rodriguez EF, García AR, Casas JG, Rodriguez EH Cystatin C and Cardiovascular Risk in the General Population Revista Española Cardiología (2010) Vol. 63, No.4, 415-22

[29] Peralta CA, Katz R, SarnackMj, Ix J, Fried LF, De Boer I, Palmas W, Siscovick D, Levey AS, Shipak MG, Cystatin C Identifies Chronic Kidney Disease Patients at Higher Risk for Complications Journal of American Society of Nephrology Vol.22, No.1, 147-155, 2011

[30] Bethesda, MD. US. Renal Data System, USRDS 2002 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2002.

[31] Wilson DM, Bergert JH, Larson TS, Liedtke RR. GFR Determined By Non Radio labeled Iothalamate Using Capillary Electrophoresis. American Journal of Kidney Disease (1997) Vol.30, No. 6, 646-52

[32] Mathew T, and Corso O. Review Article : Early Detection of Chronic Kidney Disease in Australia : Which Way to Go. Nephrology (2009) Vol. 14, No.4, 367-73

[33] Finney H, Newman DJ, Price CP. Adult Reference Ranges For Serum Cystatin C, Creatinine And Predicted Creatinine Clearance Annals of Clinical Biochemistry (2000) Vol 37 Pt. 1, 49-59

[34] Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP Serum Cystatin C Measured By Automated Immunoassay; A More Sensitive Marker Of Changes In GFR Than Serum Creatinine. Kidney International (1995) Vol. 47 No.1, 312-8

[35] Roos JF, Doust J, Tett SE, Kilpatrick CM. Diagnostic Accuracy Of Cystatin C Compared To Serum Creatinine For The Estimation Of Renal Dysfunction In Adults And Children - A Meta-Analysis.Clinical Biochemistry (2007) Vol.40, No. 5-6 ,383-91