An arguable addition to the standard Deduction Theorems of first order theories

Bhupinder Singh Anand

We consider an arguable addition to the standard Deduction Theorems of first order theories.

Contents

1. Introduction

2. A standard Deduction Theorem
 2.1 A number-theoretic corollary
 2.2 An extended Deduction Theorem

3. An additional Deduction Theorem

4. Conclusion

Appendix 1: A model-theoretic proof of Corollary 2.1

Appendix 2: Gödel’s reasoning and Corollary 2.1

References

1 Updated: Monday 13th September 2004 3:31:36 AM IST by re@alixcomsi.com

2 The author is an independent scholar. E-mail: re@alixcomsi.com; anandb@vsnl.com.

3 Key words: Arithmetic, Church, classical, computable, constructive, deduction, effective, expressible, finite, formal, formula, function, Gödel, interpretation, meta-assertion, meta-theorem, natural number, number-theoretic, numeral, Peano, primitive, proof, recursive, relation, satisfiable, sequence, standard, truth, undecidable.
1. Introduction

We first review, in Meta-theorem 1, the proof of a standard Deduction Theorem - \(([T], [A]) \vdash_K [B] \) if, and only if, \([T] \vdash_K [A \Rightarrow B] \) (cf. [Me64], Corollary 2.6, p61) - of classical\(^4\), first-order, theories, where an explicit deduction of \([B]\) from \(([T], [A])\) is known.

We then show, in Corollary 1.2, that, assuming Church’s Thesis, Meta-theorem 1 can be constructively extended to cases where, \(([T], [A]) \vdash_K [B] \) is established meta-mathematically, assuming the consistency of \(([T], [A])\), but where an explicit deduction of \([B]\) from \(([T], [A])\) is not known.

We finally argue, in Meta-theorem 2, that:

\[([T], [A]) \vdash_K [B] \text{ holds if, and only if, } [T] \vdash_K [B] \text{ holds when we assume } [T] \vdash_K [A]. \]

(In other words, that \([B]\) is a deduction from \(([T], [A])\) in \(K\) if, and only if, whenever \([A]\) is a hypothetical deduction from \([T]\) in \(K\), \([B]\) is a deduction from \([T]\) in \(K\).)

2. A standard Deduction Theorem

The following is, essentially, Mendelson’s proof of a standard Deduction Theorem ([Me64], p61, Proposition 2.4 and Corollary 2.6) of an arbitrary first order theory \(K\):

\(^4\) We take Mendelson [Me64] as representative, in the area that it covers, of standard expositions of classical, first order, logic.

\(^5\) We use square brackets to differentiate between a formal expression \([F]\) and its interpretation “\(F\)”, where we follow Mendelson’s definition of an interpretation \(M\) of a formal theory \(K\), and of the interpretation of a formula of \(K\) under \(M\) ([Me64], p49, §2). For instance, we use \([n]\) to denote the numeral in \(K\) whose standard interpretation is the natural number \(n\).

\(^6\) For the purposes of this essay, we assume everywhere that \([T]\) is an abbreviation for a finite set of \(K\)-formulas \(\{[T_1], [T_2], ... [T_l]\}\), whereas \([A]\), \([B]\), ... are closed well-formed formulas of \(K\). We note, also, that “\([A \& B]\)” and “\([A \& B]\)” denote the same \(K\)-formula.
Meta-theorem 1: If \([T]\) is a set of well-formed formulas of an arbitrary first order theory \(K\), and if \([A]\) is a closed well-formed formula of \(K\), and if \((T, A)|_K [B]\), then \([T]|_K [A \Rightarrow B]^7\).

Proof: Let \(<[B_1], [B_2], ..., [B_n]>\) be a deduction of \([B]\) from \((T, A)\) in \(K\).

Then, by definition, \([B_n]\) is \([B]\) and, for each \(i\), either \([B_i]\) is an axiom of \(K\), or \([B_i]\) is in \([T]\), or \([B_i]\) is \([A]\), or \([B_i]\) is a direct consequence by some rules of inference of \(K\) of some of the preceding well-formed formulas in the sequence.

We now show, by induction, that \([T]|_K [A \Rightarrow B_i]\) for each \(i < n\). As inductive hypothesis, we assume that the proposition is true for all deductions of length less than \(n\).

(i) If \([B_i]\) is an axiom, or belongs to \([T]\), then \([T]|_K [A \Rightarrow B_i]\), since \([B_i \Rightarrow (A \Rightarrow B_i)]\) is an axiom of \(K\).

(ii) If \([B_i]\) is \([A]\), then \([T]|_K [A \Rightarrow B_i]\), since \([T]|_K [A \Rightarrow A]\).

(iii) If there exist \(j, k\) less than \(i\) such that \([B_k]\) is \([B_j \Rightarrow B_i]\), then, by the inductive hypothesis, \([T]|_K [A \Rightarrow B_j]\), and \([T]|_K [A \Rightarrow (B_j \Rightarrow B_i)]\). Hence, \([T]|_K [A \Rightarrow B_j]\).

(iv) Finally, suppose there is some \(j < i\) such that \([B_i]\) is \([(A\chi)B_j]\), where \(\chi\) is a variable in \(K\). By hypothesis, \([T]|_K [A \Rightarrow B_j]\). Since \(\chi\) is not a free variable of \([A]\), we have that \([(A\chi)(A \Rightarrow B_j) \Rightarrow (A \Rightarrow (A\chi)B_j)]\) is PA-provable. Since \([T]|_K [A \Rightarrow B_j]\), it follows by Generalisation that \([T]|_K [(A\chi)(A \Rightarrow B_j)]\), and so \([T]|_K [A \Rightarrow (A\chi)B_j]\), i.e. \([T]|_K [A \Rightarrow B_i]\).

\(^7\) The converse is trivially true (cf. [Sh67], p33).
This completes the induction, and Meta-theorem 1 follows as the special case where \(i = n \). ¶

2.1 A number-theoretic corollary

Now, Gödel has defined ([Go31], p22, Definition 45(6)) a primitive recursive number-theoretic relation \(xB_{(K, \{T\})}y \) that holds if, and only if, \(x \) is the Gödel-number of a deduction from \(T \) of the K-formula whose Gödel-number is \(y \).

We thus have:

Corollary 1.1: If the Gödel-number of the well-formed K-formula \([B]\) is \(b \), and that of the well-formed K-formula \([A \Rightarrow B]\) is \(c \), then Meta-theorem 1 holds if, and only if\(^{10}\):

\[
(\exists x)xB_{(K, \{T\}, \{A\})}b \Rightarrow (\exists z)zB_{(K, \{T\})}c
\]

2.2 An extended Deduction Theorem

We next consider the meta-proposition:

Corollary 1.2: If we assume Church’s Thesis\(^{11}\), then Meta-theorem 1 holds even if the premise \(([T], [A]) \vdash_{K} [B] \) is established meta-mathematically, assuming the consistency of \(([T], [A])\), but a deduction \(<[B_1], [B_2], ..., [B_n]>\) of \([B]\) from \(([T], [A])\) in K is not known explicitly.

\(^{8}\) We use the symbol “¶” as an end-of-proof marker.

\(^{9}\) We note that Corollary 1.1 and Corollary 2.2 may be essentially different number-theoretic assertions, which, in the absence of a formal proof, cannot be assumed to be equivalent.

\(^{10}\) We note that this symbolically expresses a meta-equivalence in a recursive arithmetic RA, based on a semantic interpretation of the definition of the primitive recursive relation \(xB_{(K, \{T\})} \); it is not a K-formula.

\(^{11}\) Church’s Thesis: A number-theoretic function is effectively computable if, and only if, it is recursive ([Me64], p147, footnote). We appeal explicitly to Church’s Thesis here to avoid implicitly assuming that every recursive relation is algorithmically decidable.
Proof: Since Gödel’s number-theoretic relation $\forall x B_{K, [T]} y$ is primitive recursive, it follows that, if we assume Church’s Thesis - which implies that a number-theoretic relation is decidable if, and only if, it is recursive - we can effectively determine some finite natural number n for which the assertion $n B_{K, [T], [A]} b$ holds, where the Gödel-number of the well-formed K-formula $[B]$ is b.

Since n would then, by definition, be the Gödel-number of a deduction $<[B_1], [B_2], ..., [B_n]>$ of $[B]$ from $([T], [A])$ in K, we may thus constructively conclude, from the meta-mathematically determined assertion $([T], [A]) \vdash_K [B]$, that some deduction $<[B_1], [B_2], ..., [B_n]>$ of $[B]$ from $([T], [A])$ in K can, indeed, be effectively determined. Meta-theorem 1 follows. \[\]

3. **An additional Deduction Theorem**

We, finally, argue that:

Meta-theorem 2: If K is an arbitrary first order theory, and if $[A]$ is a closed well-formed formula of K, then $([T], [A]) \vdash_K [B]$ holds if, and only if, $[T] \vdash_K [B]$ holds when we assume that $[T] \vdash_K [A]$ holds.

Proof: First, if there is a deduction $<[B_1], [B_2], ..., [B_n]>$ of $[B]$ from $([T], [A])$ in K, and there is a deduction, $<[A_1], [A_2], ..., [A_m]>$, of $[A]$ from $[T]$ in K, then $<[A_1], [A_2], ..., [A_m], [B_1], [B_2], ..., [B_n]>$ is a deduction of $[B]$ from $[T]$ in K. Hence, if $([T], [A]) \vdash_K [B]$ holds, then $[T] \vdash_K [B]$ holds when we assume $[T] \vdash_K [A]$.

Second, if there is a deduction $<[B_1], [B_2], ..., [B_n]>$ of $[B]$ from $[T]$ in K, then we have, trivially, that, if $[T] \vdash_K [B]$ holds when we assume $[T] \vdash_K [A]$, then $([T], [A]) \vdash_K [B]$ holds.

Last, we assume that there is no deduction, $<[B_1], [B_2], ..., [B_n]>$, of $[B]$ from $[T]$ in K. If, now, $[T] \vdash_K [B]$ holds when we assume that $[T] \vdash_K [A]$ holds in any extension K’ of K,
then, if we assume that there is a sequence \([A_1], [A_2], ..., [A_m]\) of well-formed \(K'\)-formulas such that \([A_m]\) is \([A]\) and, for each \(m \geq i \geq 1\), either \([A_i]\) is an axiom of \(K'\), or \([A_i]\) is in \([T]\), or \([A_i]\) is a direct consequence by some rules of inference of \(K'\) of some of the preceding well-formed formulas in the sequence, then it follows from our hypothesis\(^{12}\) that we can show, by induction on the deduction length \(n\), that there is a sequence \([B_1], [B_2], ..., [B_n]\) of well-formed \(K\)-formulas such that \([B_1]\) is \([A]\)\(^{13}\), \([B_n]\) is \([B]\) and, for each \(i > 1\), either \([B_i]\) is an axiom of \(K\), or \([B_i]\) is in \([T]\), or \([B_i]\) is a direct consequence by some rules of inference of \(K\) of some of the preceding well-formed formulas in the sequence.

In other words, if there is a deduction, \([A_1], [A_2], ..., [A_m]\) of \([A]\) from \([T]\) in \(K'\), then, by our hypothesis, \([A], [B_2], ..., [B_n]\) is a deduction of \([B]\) from \(([T], [A])\) in \(K'\). By definition, it follows that \([A], [B_2], ..., [B_n]\) is, then, a deduction of \([B]\) from \(([T], [A])\) in \(K\). We thus have that, if \([T]\mid\vdash_{K} [B]\) holds when we assume \([T]\mid\vdash_{K} [A]\), then \(([T], [A])\mid\vdash_{K} [B]\) holds. This completes the proof. \(\|\)

In view of Corollary 1.2, we thus have:

Corollary 2.1: If we assume Church’s Thesis, and if \([A]\) is a closed well-formed formula of \(K\), then we may conclude that \([T]\mid\vdash_{K} ([A] \Rightarrow [B])\) holds if \([T]\mid\vdash_{K} [B]\) holds when we assume \([T]\mid\vdash_{K} [A]\).\(^{14}\)

We note that, in the notation of Corollary 1.1, if the Gödel-number of the well-formed \(K\)-formula \([A]\) is \(a\), then Corollary 2.1 holds if, and only if\(^{15}\):

\(^{12}\) That \([T]\mid\vdash_{K} [A]\) holds.

\(^{13}\) \([A]\) is, thus, the hypothesis in the sequence; it is the only well-formed \(K\)-formula in the sequence that is not an axiom of \(K\), not in \([T]\), and not a direct consequence of the axioms of \(K\) by any rules of inference of \(K\).

\(^{14}\) We give a model-theoretic proof of Corollary 2.1 in the Appendix.

\(^{15}\) We note that this, too, is not a \(K\)-formula, but a semantic meta-equivalence, based on the definition of the primitive recursive relation \(x\langle B_{(K', [T])}\rangle y\).
Corollary 2.2: \(((\exists x)xB_{(K,[T])}a \Rightarrow (Ex)uB_{(K,[T])}b) \Rightarrow (Ez)zB_{(K,[T])}c\).

4. Conclusion

We have argued that Meta-theorem 2 is a valid Deduction Theorem of any first order theory. However, standard interpretations of Gödel’s reasoning and conclusions are inconsistent with the consequences of this Meta-theorem in an arbitrary first order theory\(^{16}\). Hence, in the absence of constructive, and intuitionistically unobjectionable, reasons for denying the applicability of the Meta-theorem, and of its Corollary 2.1, to a first order theory, such interpretations ought not to be considered as definitive.

Appendix 1: A model-theoretic proof of Corollary 2.1

We note that there is a model-theoretic proof of Corollary 2.1. The case \([T]\models_K [B] \models [A]\) is straightforward.

If \([T]\models_K [B]\) does not hold, then, as noted in Meta-theorem 2, if \([T]\models_K [B]\) holds when we assume \([T]\models_K [A]\), then there is a sequence \(<[B_1], [B_2], ..., [B_n]>\) of well-formed K-formulas such that \([B_1]\) is \([A]\), \([B_n]\) is \([B]\) and, for each \(i > 1\), either \([B_i]\) is an axiom of K, or \([B_i]\) is in \([T]\), or \([B_i]\) is a direct consequence by some rules of inference of K of some of the preceding well-formed formulas in the sequence.

(We note that if \([T]\) is the set of well-formed K-formulas \([T_1], [T_2], ..., [T_i]\) then \((T & [A])\) denotes the well-formed K-formula \([T_1 & T_2 & ..., T_i & A]\), and, \((T & A)\) denotes its interpretation in M, i.e., \(T_1 & T_2 & ..., T_i & A\).)

If, now, any well-formed formula in \(([T], [A])\) is false under an interpretation M of K, then \((T & A) \Rightarrow B\) is vacuously true in M.

\(^{16}\) See Appendix 2.
If, however, all the well-formed formulas in \((T, A)\) are true under interpretation in \(M\), then the sequence \(<[B_1], [B_2], ..., [B_n]\>\) interprets as a deduction in \(M\), since the interpretation preserves the axioms and rules of inference of \(K\) (cf. [Me64], p57). Thus \([B]\) is true in \(M\), and so is \((T \& A) \Rightarrow B\).

In other words, we cannot have \((T, A)\) true, and \([B]\) false, under interpretation in \(M\), as this would imply that there is some extension \(K'\) of \(K\) in which \([T]\models_K [A]\), but not \([T]\models_K [B]\); this would contradict our hypothesis, which implies that, in any extension \(K'\) of \(K\) in which we have \([T]\models_K [A]\), we also have \([T]\models_K [B]\).

Hence, \((T \& A) \Rightarrow B\) is true in all models of \(K\). By a consequence of Gödel’s Completeness Theorem for an arbitrary first order theory ([Me64], p68, Corollary 2.15(a)), it follows that \(\models_K ([T] \& [A]) \Rightarrow [B]\); and, ipso facto, that \([T]\models_K ([A] \Rightarrow [B])\).

Appendix 2: Gödel’s reasoning and Corollary 2.1

In his seminal 1931 paper [Go31], Gödel meta-mathematically argues that, assuming any formal system of Peano Arithmetic, \(PA\), is simply consistent, we can define an “undecidable” \(PA\)-proposition, \([(Ax)R(x)]\), such that (cf. [Go31], #1, p25):

If \([(Ax)R(x)]\) is \(PA\)-provable, then \(\neg(Ax)R(x)\) is \(PA\)-provable.\(^{17}\)

Now, by Corollary 2.1, it should follow that:

\([(Ax)R(x) \Rightarrow \neg(Ax)R(x)]\) is \(PA\)-provable,

and, therefore, that:

\(^{17}\)Gödel essentially argues, number-theoretically, that, if the Gödel-number of \([(Ax)R(x)]\) is 17Gen\(r\), and if this formula is \(PA\)-provable, then the \(PA\)-formula whose Gödel-number is Neg(17Gen\(r\)), i.e., \(\neg(Ax)R(x)\), is also \(PA\)-provable if \(PA\) is assumed simply consistent.
\((\neg (Ax)R(x))\) is PA-provable.

Since Gödel also proved that, if PA is assumed simply consistent, then \([R(n)]\) is PA-provable for any, given, natural number \(n\), Corollary 2.1 implies that PA is omega-inconsistent.

(We note that Gödel defined a first order theory K as omega-consistent if, and only if, for every well-formed formula \([F(x)]\) of K, if \(\vdash_K [F(n)]\) for every numeral \([n]\), then it is not the case that \(\vdash_K (Ex)F(x)\) (cf. [Me64], p142; see also [Go31], p23-24).

However, this conclusion is inconsistent with standard interpretations of Gödel’s reasoning, which, first, assert both \([(Ax)R(x)]\) and \((\neg (Ax)R(x))\) as PA-unprovable, and, second, assume that PA can be omega-consistent\(^{18}\). Such interpretations, therefore, implicitly deny that the PA-provability of \((\neg (Ax)R(x))\) can be inferred from the above meta-argument; ipso facto, they imply that Corollary 2.1 is false.

References

[Ch37] Church, A. 1937. Introduction to Mathematical Logic. Dover, New York.

[Go31] Gödel, Kurt. 1931. *On formally undecidable propositions of Principia Mathematica and related systems I*. Translated by Elliott Mendelson. In M. Davis (ed.). 1965. The Undecidable. Raven Press, New York.

[Me64] Mendelson, Elliott. 1964. Introduction to Mathematical Logic. Van Norstrand, Princeton.

[Sh67] Shoenfield, J. R. 1967. Mathematical Logic. Association for Symbolic Logic, Urbana.

\(^{18}\) We note that Gödel’s Incompleteness Theorems assume significance only if we presume that the arithmetic, in which they are derived, can be omega-consistent (cf. [Go31], p23-24)