Protein oxidation and aging

EARL R. STADTMAN

National Heart, Lung, and Blood Institute, National Institutes of Health, Biochemistry and Biophysics Center, Building 50, Room 2140, 50 South Drive, MSC-8012, Bethesda, MD 20892-8012, USA

Accepted by Dr T. Grune

(Received 29 June 2006)

Abstract
Organisms are constantly exposed to various forms of reactive oxygen species (ROS) that lead to oxidation of proteins, nucleic acids, and lipids. Protein oxidation can involve cleavage of the polypeptide chain, modification of amino acid side chains, and conversion of the protein to derivatives that are highly sensitive to proteolytic degradation. Unlike other types of modification (except cysteine oxidation), oxidation of methionine residues to methionine sulfoxide is reversible; thus, cyclic oxidation and reduction of methionine residues leads to consumption of ROS and thereby increases the resistance of proteins to oxidation. The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age. The age-related accumulation of oxidized proteins may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized proteins.

Oxidative stress
Organisms are constantly exposed to a multiplicity of systems that generate reactive oxygen species (ROS) that can oxidize intracellular proteins, lipids, and nucleic acids. These include various radical species (OH, O₂⁻, CO₂⁻ and NO⁻), a number of non-radical compounds (H₂O₂, ONO₂⁻, HOCl, O³, ONOCO₂⁻, CO, N₂O₂, NO₂ and O₂), and free radicals produced in the course of ROS interactions with proteins, nucleic acids, and lipids (C, RS, RSO, RSSR⁻, R⁻, RO and ROO⁻). Moreover, proteins can be modified by aldehydes and ketones produced during reactions of ROS with lipids [1–3] and glycated proteins [4,5]. For reviews, see Refs. [6,7].

Basic mechanisms involved in the oxidation of proteins were elucidated by the pioneering studies of Swallow [8], Garrison et al. [9,10], Garrison [11], Schuessler and Schilling [12], and Kopaldova and Liebster [13], who exposed proteins, peptides and amino acids to ionizing radiation under conditions where only OH and O₂⁻ were formed. Results of these studies showed that radical-mediated oxidation of proteins leads to fragmentation of the polypeptide chain, oxidation of amino acid side chains, and generation of protein–protein cross linkages. It was subsequently established that all of these protein modifications can also be mediated by metal-catalyzed oxidation (MCO) systems [14,15]. For reviews, see Refs. [16–18].

Oxidative cleavage of the polypeptide backbone
Based on the studies of Garrison et al. [9–11], the oxidative cleavage of the polypeptide occurs as illustrated in Figure 1. Oxidation is initiated by the OH-dependent abstraction of an α-hydrogen atom from the polypeptide chain to form H₂O and a carbon-centered radical derivative of the protein (reactions a, b) that undergoes rapid reaction with O₂ to form a peroxy-radical (reaction c). This derivative is readily converted to the protein peroxide...
by reactions with HO_2 or Fe^{2+} and H^+ (reactions d, e). This peroxide can react further with HO_2 or Fe^{2+} (reactions f, g) or by dismutation (reaction o) to form the alkoxyl derivative. The alkoxyl derivative can undergo peptide bond cleavage by either of two different mechanisms. One involves conversion to a hydroxy derivative (reactions i, j) followed by generation of an unsaturated derivative (reaction k) that undergoes peptide bond cleavage by the α-amidation pathway (reaction l) to form an amide derivative of the N-terminal portion of the protein (compound I) and an N-alkyl carbonyl derivative of the carboxyl end of the protein (compound II). Significantly, this provides a mechanism for the
generation of a peptide carbonyl derivative. Alternatively, the alkoxyl derivative may undergo cleavage by the diamide pathway (reactions h and m), which leads to formation of a diamide derivative of the N-terminal cleavage product (compound III) and an isocyanate derivative of the carboxyl end of the protein (compound IV). As shown in Figure 2, peptide bond cleavage can also occur by direct attack of a glutamyl [11] or prolyl residues [19] by OH.

β-Scission

Dean et al. [20–22] have shown that, in addition to the reactions summarized in Figures 1 and 2, exposure of proteins to ionizing radiation leads to β-scission of amino acid side chains. For example, β-scission of alanine, valine, leucine, and aspartic acid residues leads to the generation of free formaldehyde, acetone, isobutyraldehyde, and glyoxylic acid, respectively. In each case, cleavage of the side chain leads to the formation of a carbon-centered radical (\(\sim \) NH \(\sim \) CHCO \(\sim \)) in the polypeptide chain, as occurs when glycine residues undergo OH-dependent α-hydrogen abstraction.

Oxidation of amino acid residue side chains of proteins

Side chains of amino acid residues that are most susceptible to oxidation by ROS are shown in Table I, together with the products formed.

![Figure 2](image-url) Cleavage of the protein backbone by oxidation of proline and glutamic acid side chains.

Oxidation of methionine residues

Methionine (Met) residues of proteins are readily oxidized by ROS to a mixture of S- and R-stereoisomers of methionine sulfoxide (MetO) [31,32,61]. The S-isomer is often referred to as MetA and the R-isomer is sometimes referred to as MetB. However, unlike oxidation of other amino acid residues (except cysteine), oxidation of Met to MetO is reversible. MetO can be reduced back to Met by the action of reductases (MsrA and MsrB) that can catalyze the reduction of the S- and R-isomers of MetO, respectively, back to Met. Both enzymes utilize thioredoxin \(\{\text{Th(SH)}_2\} \) as a source of reducing equivalents (reaction 2). MsrA has a cysteine at the catalytic site and, in most organisms, MsrB has a selenocysteine at the catalytic site [62–66]. As shown in reaction 1, the ROS-mediated oxidation of Met residues leads to the formation of an inactive form of the ROS (IRS). Moreover, in the presence of NADPH, the oxidized form of thioredoxin (ThS-S) can be converted back to its reduced form by the enzyme thioredoxin reductase (reaction 3). As noted by Levine et al. [67], the coupling of reactions 1–3 leads to the overall reaction 4 and thus provides a mechanism for conversion of ROS to IRS, i.e., for the scavenging of ROS species.

\[
\text{Met} + \text{ROS} \rightarrow \text{MetO} + \text{IRS} \quad (1)
\]

\[
\text{MetO} + \text{Th(SH)}_2 \rightarrow \text{Met} + \text{ThS-S} \quad (2)
\]

\[
\text{ThS-S} + \text{NADPH} + \text{H}^+ \rightarrow \text{Th(SH)}_2 + \text{NADP}^+ \quad (3)
\]
ROS + NADPH + H⁺ → IRS + NADP⁺

This concept is supported by studies showing that mutations leading to a decrease in Msr activities are associated with a decrease in resistance to oxidative stress and to a shortening of the maximal lifespan, whereas mutations leading to overproduction of Msr activities lead to an increase in resistance to oxidative stress and large increases in lifespan [68–73].

Generation of protein carbonyl derivatives

Early studies by Garrison et al. [9] showed that oxidation of proteins can lead to the generation of carbonyl derivatives. Unaware of these earlier findings, Levine et al. [74,75] rediscovered the fact that carbonyl derivatives are products of protein oxidation. Subsequently, it was shown that MCO systems catalyze the conversion of lysine residues to α-aminoadipic semialdehyde and that arginine and proline residues are oxidized to glutamic semialdehyde [23,76], and that these oxidations account for 40–100% of the carbonyl derivatives formed by MCO oxidation of purified proteins [29]. In the meantime, a number of highly sensitive procedures have been developed for the measurement of protein carbonyl derivatives [77–79]. In view of the fact that the generation of carbonyl derivatives is orders of magnitude greater than other kinds of protein oxidation [20], the carbonyl content of proteins has become the most generally used method for estimation of oxidative-stress-mediated protein oxidation. For reviews, see Refs. [16–18, 80].

Table I. Oxidation of amino acid side chains.

Amino acid	Products	References
Arginine	Glutamic semialdehyde	[23]
Cysteine	CyS–SCy; CyS–SG; CySOH; CySOOH; CysO₂H	[8,11,24–26]
Glutamic acid	Oxalic acid; pyruvate adducts	[11]
Histidine	2-Oxohistidine; 4-OH-glutamate	[11,13,27]
Leucine	3-OH-leucine; 4-OH-leucine; 5-OH-leucine	[11]
Lysine	α-aminoacidoplasticsemialdehyde; N₆-(carboxymethyl)lysine	[23,28,29]
Methionine	Methionine sulfoxide; methionine sulfone	[9,30–32]
Phenylalanine	2-, 3-, and 4-Hydroxyphenylalanine; 2,3-dihydroxyphenylalanine	[33–39]
Proline	Glutamysemialdehyde; 2-pyrrolidone, 4- and 5-OH-proline; pyroglutamic acid	[9,19,23,40–42]
Threonine	2-Amino-3-keto-butyric acid	[43]
Tryptophan	2-, 4-, 5-, 6-, 7-Hydroxy tryptophan; formylkynurenine; 3-OH-kynurenine; nitrotryptophan	[44–48]
Tyrosine	3,4-Dihydroxyphenylalanine; tyr–tyr crosslinks; 3-nitrotyrosine; 3-chlorotyrosine; 3,5-dichlorotyroxine	[33,36,38,49–60]

Relationship between aging and protein oxidation

Historical note

The demonstration that oxidation of proteins is implicated in aging and age-related diseases was an outgrowth of studies designed to determine basic mechanisms involved in the turnover of proteins. Earlier studies showed that the rates of turnover of various enzymes was dictated by nutritional factors, but the mechanisms involved were not established [88–89]. This prompted studies to examine the effects of nitrogen or carbon starvation on the levels of...
of specific enzymes in bacteria. It was found that starvation led to a decrease in activities of a number of enzymes, the identity of which depended on the kind of starvation used [90]. Subsequently, it was found that addition of purified glutamine synthetase to cell-free extracts of starved cells led to its oxidation by a classical MCO system composed of Fe(II) or Cu(I) plus O₂ and an electron donor (NADH or NADPH) [90], or by incubation with ascorbate, Fe(III) or Cu(II), and H₂O₂ [75]. Further studies showed that oxidation of proteins by these MCO systems converted them to forms that are highly sensitive to degradation by proteases present in cell-free extracts of mammalian tissues and bacterial extracts [92–102]. Subsequently, it was noted that workers in the field of aging had demonstrated that aging is associated with a decrease in the activities of a number of enzymes and that some enzymes in old animals are more sensitive to heat denaturation than enzymes from young animals [103–108]. These observations prompted investigations to determine the effect of MCO of enzymes.

Figure 3. Generation of protein–protein cross-linkages. Reactions a, b, c, d and e refer to formation of cross-linked derivatives as described in the text. p¹ and p² refer to two different proteins. PUFA, polyunsaturated fatty acids.

Figure 4. Glycation/glycoxidation-mediated generation of protein–protein cross-linked derivatives. p¹-LysNH₂ and p²-LysNH₂ refer to epsilon amino groups of two different proteins (p¹ and p²).
on their heat stability patterns. Results summarized in Figure 5 show that prior to MCO treatment a purified preparation of glucose-6-phosphate dehydrogenase (G-6-PDH) undergoes a linear decrease in activity upon incubation at 51°C, as is characteristic of this enzyme from young animals [104,105]. However, treatment of the enzyme with the ascorbate/H2O2-/Fe(III) MFO system led to a 50% loss of activity, and the remaining activity exhibited a bi-phasic response pattern [79] as is characteristic of enzymes isolated from old cells [103,104]. This possibility was verified by the demonstration that the carbonyl content of cultured dermal fibroblasts from normal human individuals of different ages (10–80 years) increased exponentially as a function of the donor age (Figure 6) [99]. This was confirmed in subsequent studies showing that a similar age-related increase in carbonyl content occurred in the occipital lobe of human brain tissue [109], the human eye lens cortex [110], in rat liver hepatocytes [111], Mongolian gerbils [112], and house flies [113].

Why do oxidized proteins accumulate during aging?

It is well established that the level of oxidized proteins increases during aging in many animals. However, accumulation of oxidized proteins is a complex function of the rates and kinds of ROS formed, the levels of numerous antioxidant systems, and the rates of degradation of oxidized proteins by a multiplicity of proteases that have been shown to decline during aging. Because the cellular levels of oxidized proteins are dependent upon so many variables, the mechanisms responsible for accumulation of oxidatively modified proteins in one individual may be very different from those involved in another individual. Since these activities are subjects of other reviews in this series of articles, they will not be discussed here.

References

[1] Esterbauer H, Zollner H, Lang J. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by cytosolic fractions. Biochem J 1985;228: 363–365.
[2] Esterbauer H, Schaur RJ, Zolner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde, and related aldehydes. Free Radic Biol Med 1991;11:81–128.
[3] Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase: A possible involvement of intra- and inter-molecular cross-linking reaction. J Biol Chem 1993;268:6388–6393.
[4] Monnier V. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol 1990;45: B106–B111.
[5] Monnier V, Gerhardinger C, Marion MS, Tanaka S. Novel approaches toward inhibition of the Maillard reaction in vivo: Search, isolation and characterization of prokaryotic enzymes which degrade glycated substrates. In: Cutler RG, Packer L, Bertram J, Mori A., editors. Oxidative stress and aging. Basel: Berghauser Verlag; 1995. p 141–149.
[6] Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991;40:405–412.
[7] Kristal BS, Yu BP. An emerging hypothesis: Synergistic induction of aging by free radicals and Maillard reactions. J Gerontol 1992;47:B104–B107.
[8] Swallow AJ. Effect of ionizing radiation on proteins, RCO groups, peptide bond cleavage, inactivation, −SH oxidation. In: Swallow AJ, editor. Radiation chemistry of organic compounds. New York: Pergamon Press; 1960. p 211–224.
[9] Garrison WM, Jayko ME, Bennett W. Radiation-induced oxidation of protein in aqueous solution. Radiat Res 1962; 16:483–502.
[10] Garrison WM, Weeds BM. Radiation chemistry of compounds containing the peptide bond. Radiat Res 1962; 17:341–352.
[11] Garrison WM. Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins. Chem Rev 1987; 87: 381–398.
[12] Schuessler H, Schilling K. Oxygen effect in radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol 1984;45:267–281.
[13] Kopoldova J, Liesbier J. The mechanism of radiation chemical degradation of amino acids. V. Int J Appl Radiat Isot 1963;14:493–498.

[14] Garrison WM, Kland-English M, Sokol HA, Jayko ME. Radiation degradation of peptide main chain in dilute aqueous solution containing oxygen. J Physiol Chem 1970;74:4506–4509.

[15] Borg DC, Schait KM. Iron-derived radicals. In: Halliwell B, editor. Proceedings of an Upjohn symposium, Federation of American Societies for Experimental Biology. Bethesda, MD: 1988. p 20–26.

[16] Stadtman ER, Berlett BS. Free radical-mediated modification of proteins. In: Wallace DB, editor. Free radical toxicology. Washington: Taylor and Francis; 1997. p 71–78.

[17] Stadtman ER. Free radical-mediated oxidation of proteins. In: Ozben T, editor. Free radicals, oxidative stress, and antioxidants: Pathological and physiological significance. NATO ASI series, Series A: Life sciences. Vol. 296. New York: Plenum Press; 1998a. p 51–143.

[18] Butterfield DA, Stadtman ER. Protein oxidation processes in aging brain. In: Timiras PS, Bittar EE, editors. Advances in cell aging and gerontology. Vol. 2. Greenwich, CT: JAI Press; 1997. p 161–191.

[19] Uchida K, Kato Y, Kawakishi S. A novel mechanism for oxidative damage of prolyl peptides induced by hydroxyl radicals. Biochem Biophys Res Commun 1990;169:228–233.

[20] Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997;324:1–18.

[21] Headlam HA, Mortimer A, Easton CJ, Davies MJ. Betas-cission of C-3-(beta-carbon) alkoxyl radicals on peptides and proteins: A novel pathway which results in the formation of alpha-carbon radicals on peptides and proteins and the loss of side-chains. Chem Res Toxicol 2000;13:1087–1095.

[22] Headlam HA, Davies MJ. Beta-scission of side-chain alkoxyl radicals on peptides and proteins results in the loss of side-chains as aldehydes and ketones. Free Radic Biol Med 2002;32:1171–1184.

[23] Amici A, Levine RL, Tsai L, Stadtman ER. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed reactions. J Biol Chem 1989;264:3341–3346.

[24] Zhou JQ, Gafni A. Exposure of rat muscle phosphoglycerate kinase to a nonenzymatic MFO system generates the old form and products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci USA 1994;91:11173–11177.

[25] Brodie E, Reed DJ. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxide. Arch Biochem Biophys 1990;277:228–233.

[26] Takahashi R, Goto S. Alteration of aminoacyl-tRNA synthetase with age: Heat labilization of the enzyme by oxidative damage. Arch Biochem Biophys 1990;277:228–233.

[27] Uchida K, Kawakishi S. Oxidative fragmentation of proline residue to 2-pyrrolidone. J Biol Chem 1992;267:23646–23651.

[28] Armstrong RC, Swallow AJ. Pulse- and gamma-radiolysis of some amino acids. Chem Res Toxicol 2000;13:1087–1095.

[29] Vogt W. Oxidation of methionine residues in proteins: Tools, targets, and reversal. Free Radic Biol Med 1995;18:93–105.

[30] Prysor WA, Jen X, Squadrato GL. One and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA 1994;91:11173–11177.

[31] Moskovitz J, Weissbach H, Brot N. Cloning and expression of a mammalian gene that is involved in methionine sulfoxide reduction in proteins. Proc Natl Acad Sci USA 1996;93:2095–2099.

[32] Fletcher GL, Okada S. Radiation-induced formation of dihydroxy phenylalanine from tyrosine-containing peptides in aqueous solution. Radiat Res 1961;15:349–351.

[33] Davies KJA, Delsignore ME, Lin SW. Protein damage by oxygen radicals. II. Modification of amino acids. J Biol Chem 1987;262:9902–9907.

[34] Solar S. Reactions of OH with phenylalanine in neutral aqueous solution. Radiat Phys Chem 1985;26:103–108.

[35] Maskos Z, Rush JD, Koppenol WH. The hydroxylation of phenylalanine and tryosine: A comparison with salicylate and tryptophan. Arch Biochem Biophys 1992a;292:521–529.

[36] Maskos Z, Rush JD, Koppenol WH. The hydroxylation of tryptophan. Arch Biochem Biophys 1992b;296:514–520.

[37] Beckman JS, Ichihara S, Hsu L, van der Woerd M, Smith C, Chen J, Harrison J, Martin JC, Tsai M. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 1992;298:438–445.

[38] Gieseg SP, Simpson JA, Charlton TS, Duncan MW, Dean RT. Protein-bound 3,4-dihydroxyphenylalanine is a major product formed during hydroxyl radical damage to proteins. Biochemistry 1993;32:4780–4786.

[39] Creeth JM, Cooper B, Donald ASR, Clamp JR. Studies of the limited degradation of mucous glycoproteins. Biochem J 1983;211:323–332.

[40] Poston JM. Detection of oxidized amino acid residues using P-aminoenzoic acid adducts. Fed Proc (abstract) 1988;47:98779.

[41] Kato Y, Uchida K, Kawakishi S. Oxidative fragmentation of collagen and prolyl peptide by Cu(II)/H2O2 conversion of proline residue to 2-pyrrolidone. J Biol Chem 1992;267:26346–26351.

[42] Taborsky G. Oxidative modification of proteins in the presence of ferrous iron and air. Effect of ionic constituents of the reaction medium on the nature of the oxidation products. Biochemistry 1973;12:1341–1348.

[43] Armstrong RC, Swallow AJ. Pulse- and gamma-radiolysis of aqueous solutions of tryptophan. Radiat Res 1969;56:563–579.

[44] Winchester RV, Lynn KR. X- and gamma-radiolysis of some tryptophan dipeptides. Int J Radiat Biol 1970;17:541–549.

[45] Gupta P, Balasubramanian D, Matsuo S, Sito I. Hydroxyl radical-mediated damage to proteins, with special reference to the crystallines. Biochemistry 1992;31:4296–4302.

[46] Prysor WA, Uppu RM. A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles. J Biol Chem 1993;268:3120–3126.

[47] Kikutagawa K, Kato T, Okamoto Y. Damage of amino acids and proteins induced by nitrogen dioxide, free radical toxan in air. Free Radic Biol Med 1994;16:373–382.

[48] Guillillini C, Davies KJA. Dityrosine and tyrosine oxidation products are endogeneous markers for the selective proteinolysis of oxidatively modified red blood cell hemoglobin b the 19S proteosome. J Biol Chem 1993;268:8752–8759.

[49] Heinecke JW, Ly W, Daehnke HL, III, Goldstein A. Dityrosine, a specific marker of oxidation is synthesized by the myeloperoxidase-hydrogen peroxide system. J Biol Chem 1993;268:4069–4077.

[50] Dean RT, Gieseg S, Davies MJ. Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci 1993;18:437–441.
[52] Huggins TG, Wells-Knecht MC, Detorie NA, Baynes JW. Formation of O-tirosine and dihydrosy during radiolytic and metal-catalyzed oxidation. J Biol Chem 1993;268:12341–12347.

[53] Van der Vliet A, Eiserich JP, O’Neil CA, Halliwell B, Cross CE. Tyrosine modification by reactive oxygen species: A closer look. Arch Biochem Biophys 1995;319:341–349.

[54] Ischiropoulos H, Al-Medi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 1995;364:279–282.

[55] Domigan NM, Charlton TS, Duncan MW, Winterbourn CC. Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem 1995;270:16542–16548.

[56] Kettle AJ. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Lett 1996;379:103–106.

[57] Berlett BS, Levine RA, Stadtman ER. Comparison of the effect of ozone on the modification of amino acid residues in glutamine synthetase and bovine serum albumin. Biochim Biophys Acta 1996;271:4177–4182.

[58] Berlett BS, Levine RA, Stadtman ER. Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: Both modifications mimic effects of adenyllylation. Proc Natl Acad Sci USA 1998;95:2784–2789.

[59] Fu S, Wang H, Davies M, Dean R. Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosine residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. J Biol Chem 2000;275:10851–10858.

[60] Buss IH, Senthilmohan R, Darlow BA, Mogridge N, Kettle AJ, Winterbourn CC. 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: Association with adverse respiratory outcome. Pediatr Res 2003;53:455–462.

[61] Brot N, Weissbach H. Biochemistry and physiological role of methionine sulfoxide reductase in proteins. Arch Biochem Biophys Commun 1983;233:271–288.

[62] Moskovitz J, Poston JM, Berlett FS, Nosworthy NJ, Brot N, Weissbach H. Biochemistry and physiological role of the seleno-containing enzyme in bacteria against oxidative damage from reactive nitrogen intermediates. Proc Natl Acad Sci USA 2001;98:9901–9906.

[63] Ruan H, Iversion L, Wu C-F, Hoshi T. High quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 2002;99:2748–2753.

[64] Levine RL. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J Biol Chem 1983;258:11823–11827.

[65] Levine RL. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem 1983;258:11828–11833.

[66] Daneshvar B, Frandsen H, Atrup H, Drasged LO. Gamma-glutamyl semialdehyde and 2-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins. Biomarkers 1997;2:117–123.

[67] Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 1994;233:340–357.

[68] Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464–478.

[69] Oliver CN, Ahn B-W, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987;262:5488–5491.

[70] Stadtman ER. Free radical-mediated oxidation of proteins. In: Ozben T, editor. Free radicals, oxidative stress, and antioxidants: Pathological and physiological significance. NATO ASI series A: Life sciences. Vol. 296. New York: Plenum Press; 1988b. p. 161–191.

[71] Schuenstein E, Esterbauer H. Formation and properties of reactive aldehydes. CIBA Found Symp 1979;67:225–244.

[72] Uchida K, Stadtman ER. Covalent attachment of 4-hydroxynonenal to glyceroldehyde-3-phosphate dehydrogenase: A possible involvement of intra- and inter-molecular cross-linking. J Biol Chem 1993;268:6388–6393.

[73] Friguet B, Stadtman ER, Szwedka LI. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-ene-nal. J Biol Chem 1994;269:21639–21643.

[74] Burcham PC, Kuhar YT. Introduction of carbonyl groups into proteins by the lipid peroxidation product malondialdehyde. Biochem Biophys Res Commun 1996;220:996–1001.

[75] Wells-Knecht MC, Huggins TG, Dyer G, Thorpe SR, Baynes JW. Oxidized amino acids in lens protein with age. J Biol Chem 1993;268:1234–1252.

[76] Cerami A, Vlassara H, Brownlee M. Glucose and aging. Sci Am 1987;256:90–96.

[77] Wolf SP, Garner A, Dean RT. Free radicals, lipids and protein degradation. TIBS 1986;11:27–33.

[78] Schimke RT. On the roles of synthesis and degradation in regulation of enzyme levels in mammalian tissues. Curr Top Cell Regul 1969;1:77–124.
Goldberg AL, St John AC. Intracellular protein degradation in mammalian and bacterial cells. Ann Rev Biochem 1976; 45:747–803.

Oliver CN, Levine RL, Stadtman ER. Regulation of glutamine synthetase degradation. In: Holzer H, editor. Metabolic interconversion of enzymes. Berlin: Springer Verlag; 1981. p 259–268.

Rivett AJ. Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases. J Biol Chem 1985a;260:300–305.

Rivett AJ. Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase: Characterization as a high molecular weight cysteine proteinase. J Biol Chem 1985b;260:12600–12606.

Rivett AJ, Roseman JE, Oliver CN, Levine RL, Stadtman ER. Covalent modification of proteins by mixed-function oxidation: Recognition by intracellular proteases. In: Khairallah EA, Bond JS, Bird JWC, editors. Intracellular protein catabolism. New York: Alan R. Liss; 1985. p 317–328.

Roseman JE, Levine RL. Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase. J Biol Chem 1987;262:2101–2110.

Levine RL, Oliver CN, Fulks RM, Stadtman ER. Turnover of bacterial glutamine synthetase: Oxidative inactivation precedes proteolysis. Proc Natl Acad Sci USA 1981;271:2120–2140.

Grune T, Reinheckel T, Davies KJA. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 1996;271:15504–15600.

Grune T, Reinheckel T, Davies KJA. Degradation of oxidized proteins in mammalian cells. FASEB J 1997;11:526–534.

Grune T, Reinheckel T, Joshi M, Davies KJA. Protein degradation in cultured liver cells during oxidative stress. J Biol Chem 1995;270:2344–2351.

Davies KJA, Delignorie ME. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001;83:301–310.

Oliver CN, Levine RL, Stadtman ER. Regulation of glutamine synthetase degradation. In: Ornston LN, Slicher G, editors. Experiences in biochemical perception. New York: Academic Press; 1982. p 233–249.

Dreyfus J-C, Kahn A, Schapira F. Posttranslational modifications of enzymes. Curr Top Cell Regul 1978;24:243–297.

Rothstein M. Changes in enzymatic proteins during aging. In: Roy AK, Chatterjee B, editors. Molecular basis of aging. New York: Academic Press; 1984. p 209–234.

Sharma HK, Gupta SK, Rothstein M. Age-related alteration of enolase in the free-living nematode Turbatrix aceti. Arch Biochem Biophys 1976;74:324–332.

Gordillo E, Ayala A, Bautista J, Machado A. Implication of lysine residues in loss of enzymatic activity in rat liver 6-phosphogluconate dehydrogenase found in aging. J Biol Chem 1989;264:17024–17028.

Dovrat A, Gershon D. Studies on the fate of aldolase molecules in aging rat lens. Biochim Biophys Acta 1983; 757:164–167.

Gershon H, Gershon D. Inactive enzyme molecules in aging. Proc Natl Acad Sci USA 1973;70:909–913.

Rothstein M. The formation of altered enzymes in aging animals. Mech Ageing Dev 1979;9:197–202.

Rothstein M. Recent developments in the age-related alteration of enzymes: A review. Mech Aging Dev 1977; 6:241–257.

Smith CD, Carney JM, Stark-Reed PE, Oliver CN, Stadtman ER, Floyd RA. Excess brain protein oxidation and enzyme dysfunction in normal and Alzheimer’s disease. Proc Natl Acad Sci USA 1991;88:10540–10543.

Garland D, Russell P, Zigler JS. The oxidative modification of lens protein. In: Simic MG, Taylor KS, Ward JF, von Sonntag V, editors. Oxygen radicals in biology and medicine. New York: Plenum Press; 1988. p 347–353.

Stark-Reed PE, Oliver CN. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 1989;275:559–567.

Sohal RS, Agarwal S, Sohal BH. Oxidative stress and aging in Mongolian gerbil (Meriones unguiculatus). Mech Aging Dev 1995;87:15–25.

Agarwal S, Sohal RS. Aging and protein damage. Mech Aging Dev 1994;75:11–19.