Abstract. In this short note we relate some known properties of propositional calculus to purely algebraic considerations of a Boolean algebra. Classes of formulas of propositional calculus are considered as elements of a Boolean algebra. As such they can be represented by uniquely defined elements of this algebra which we call "logical primes". The algebraic notations appear useful because they make it possible to derive well known properties of propositional calculus by simple calculations or to substitute lengthy logical considerations by schematic algebraic manipulations.

Introduction

Introductions to the problem of satisfiability can be found in textbooks and reviews, some of them available in the net (see e.g. [1],[2]). One of the unsolved questions of the field is whether satisfiability can be determined in polynomial time ("P=NP ?"). Other questions center around efficient techniques to determine satisfying assignments (see [3,4] for new approaches), and to identify classes of "hard" problems which inherently seem to consume large computing time. I believe that some insight into the difficulties can be gained by using algebraic tools. I will outline
these tools in chapters "definitions" and "consequences". Contact with propositional calculus is made in chapter "propositional calculus". In particular I discuss the representation of formulas in terms of "logical primes" and introduce a group of transformations which leave the number of satisfying assignments invariant.

Definitions

We consider a finite algebra \(V \) with two operations \(+ \) and \(\times \), and denote by \(1 \) and \(0 \) their neutral elements, respectively, i.e.

\[
(1) \quad \forall a \in V \colon a \times 1 = a, \quad a + 0 = a
\]

Additionally, the operations are associative and commutative, and the distributive law

\[
(2) \quad \forall a, b, c \in V : a \times (b + c) = a \times b + a \times c
\]

is assumed to hold in \(V \).

Two more properties are required, namely:

\[
(3) \quad a + a = 0
\]

\[
(4) \quad a \times a = a
\]

It is clear from these definitions that \(V \) may be identified with the Boolean algebra of propositional calculus, where \(\times \) corresponds to the logical "AND" and \(+ \) to the logical "XOR" (exclusive OR).

To each element of \(V \) we introduce its "negation" by

\[
(5) \quad \sim a := a + 1
\]

From (2), (3) and (4) it is clear that \(\sim a \times a = 0 \) as is appropriate for a negation.
Consequences.

As a first consequence of equ.s (1) - (5) we can state the following theorem:

\[(TI) \quad \dim(V) = |V| = 2^N \quad \text{for some natural number } N\]

i.e. the number of elements of \(V\) is necessarily a power of 2.

This is not surprising, of course, if one has the close resemblance of \(V\) to propositional calculus in mind. But here it is to be deduced solely from the algebraic properties.

All proofs are given in the appendix.

In order to formulate a second consequence it is necessary to introduce the notion of "logical primes". We define \(p \in V\) as a (logical) prime, iff for any \(a \in V\) \(pxa=\emptyset\) implies \(a=0\) or \(a=\neg p\). If not clear by definition, the name "prime" will become clear by the following theorem

\[(TII) \quad \text{There are exactly } 1d|V|=N \text{ many primes in } V. \text{ And:} \]

\[(TIII) \quad \text{Each element of } V \text{ has a unique decomposition into primes:} \]

\[(6) \quad a = \Pi_j p_j \quad \text{where the product refers to } x, \text{ and } j \in \mathcal{I}_a, \text{ and } \mathcal{I}_a=\mathcal{I}_b \text{ iff } a=b\]

This property can be formulated alternatively with the negated primes \(\neg p_j\) via

\[(7) \quad a = \Sigma_j \neg p_j \quad \text{with } j \in \mathcal{I}_a^{\mathcal{I}_a} \quad (\mathcal{I}_a^{\mathcal{I}_a} \text{ is the complement of } \mathcal{I}_a \text{ in } \{0,1,\ldots, N-1\}) \]
The neutral elements 0 and 1 are special cases. 1 is expressed as the empty product according to (6), whereas the sum extends over all primes. For 0 the sum-representation is empty, but the product extends over all possible primes.

A property which is extremely helpful in calculations is

\[(8) \quad \neg p_j \cdot p_k = \neg p_k \delta_{jk} \quad (\delta_{jk} = 1 \text{ iff } j=k, \ 0 \text{ otherwise})\]

which with the aid of (5) can be written

\[p_j \cdot p_k = p_j + \neg p_k = \neg p_j + p_k \quad \text{for } k \neq j\]

Note, that no use has been made of the correspondence of \(\{V,+,\cdot,0,1\}\) to propositional calculus, up to now. We can even proceed further and define the analogue of truth assignments. Consider the set of maps \(T:V \rightarrow \{0,1\}\). We call \(T\) "allowed" iff there is a relationship between the image of a "sum" or a "product" and the image of the single summands or factors. In formula:

\[(9) \quad T(a+b) = f(T(a),T(b)) \quad \text{and} \quad T(axb) = g(T(a),T(b))\]

with some functions \(f\) and \(g\) and all \(a,b \in V\).

These relations suffice to show theorem IV

(TIV) There are exactly \(N\) different allowed maps \(T_j\), and they fulfill:

\[(10) \quad T_j(\neg p_k) = \delta_{jk}\]

Given functions \(f\) and \(g\) of (9) one can also use (10) as a definition and extend \(T_j\) to all elements of \(V\) via (7).

In one last step we assume \(N=2^n\) for some natural number \(n\). Then
n distinct elements a_k (different from 0, 1) can be found, such that

$$\sim p_s = (\Pi_j s_j a_j)(\Pi_k (1-s_k) \sim a_k)$$

where $s = \Sigma r^{-1}s_r$ is the binary representation of s.

In words: each element of V can be written as a "sum" of "products" of all a_k and $\sim a_k$. E.g. for $n=3$ one has $p_2 = a_2 \sim a_1 x a_3$ as one of the eight primes. The a_k are not necessarily unique. E.g., for $n=3$, given a_k, the set $a_1, a_3, a_1 x a_2 + \sim a_1 x a_2$ will serve the same purpose (with a different numbering convention in (11)).

Propositional calculus.

Propositional calculus (PC) consists of infinitely many formulas which can be constructed from basic variables a_k with logical functions (like "AND", "OR" and negation). Even for a finite set of n basic variables $B_n = \{a_1, a_2, \ldots, a_n\}$ there are infinitely many formulas arising from combinations of the basic variables. These formulas can be grouped into classes of logically equivalent formulas. That is, formulas F and F' belong to the same class iff their values under any truth assignment $\tau: B_n \rightarrow \{0,1\}$ are the same. Members of different classes are logically inequivalent, i.e. there is at least one truth assignment for which their values differ. This finite set of classes for fixed n can be identified with the algebra V of the foregoing section. Neutral elements of the operations \times and $+$, 0 and 1, are interpreted as complete truth and complete unsatisfiability.

In order to see how operations \times and \times correspond to logical operations "AND" and "OR" we define a new operation v in V via

$$a \circ b = a + b + axb$$
With this definition the defining relations (1) - (5) can be reformulated in terms of \(v \) and \(x \), and the algebraic structure of a Boolean algebra for formulas becomes obvious. \(v \) is the logical "OR", \(x \) the logical "AND".

Relation (12) reduces logical considerations to simple algebraic manipulations in which + and \(x \) can be used as in multiplication and addition of numbers, and additionally the simplifying relations \(a + a = 0 = \neg a x a \) and \(a x a = a, a + \neg a = 1 \) hold.

Consider for illustration the so called "resolution" method. It states that \(avb \) and \(\neg avc \) imply \(bvc \). A "calculational" proof of this statement might run as follows (we skip the \(x \)-symbol for multiplication in the following and use that in PC the implication \(a \implies b \) is identical to \(\neg a v b \)):

\[
(\neg avb)(\neg avc) \implies bvc = \neg((avb)(\neg avc))vbvc = \\
(1 + (a + \neg ab)(\neg a + ca)) + b + c + bc + (b + c + bc)(1 + (a + \neg ab)(\neg a + ca)) = 1 + ac + \neg ab + \\
(b + c + bc)(a + \neg ab)(\neg a + ca) = 1 + ac + \neg ab + abc + \neg ab + \neg bac = 1 + ac(1 + b + \neg b) = 1
\]

In other words: the implication is a tautology (true under all truth assignments) as claimed.

TIII and TV tell us that each formula \(F \) of PC has a unique decomposition into a "sum" of "products" of its independent variables \(a_k \). Because of (8) and (12) the sum in (7) may be written as a "\(v \)"-sum. Thus (8) takes the form of a disjunctive normal form (DNF) and it can as well be transformed into a conjunctive normal form (CNF) as given by (6). For the neutral element \(0 \) one has

\[
0 = (a_1 va_2 v ... va_n)x(\neg a_1 v ... a_n)x ... x(\neg a_1 v ... \neg a_n)
\]
with all possible primes. According to (6) each formula F has a similar representation, but with some prime factors missing. From the primes present one can immediately read off the truth assignments for which F evaluates to 0, thus the missing factors give the truth assignments for which F is satisfiable.

Note, however, that each factor in the prime representation of a formula involves all \(a_k \). So one way of determining satisfying assignments or test a formula for satisfiability consists of transforming a given CNF representation of the formula to its standard form (6). This can be done e.g. by "blowing up" each factor until all \(a_k \) are present. E.g. \(avbv\neg c = (avbv\neg cvd)(avbv\neg cv\neg d) \) from 3 to 4 variables. Since each new factor has to be treated in the same way, until \(n \) is reached, this is a \(O(2^n) \) process in principle, which makes the difficulty in finding a polynomial time algorithm for testing satisfiability understandable.

Also from (7) with (10) and (8) it follows that the satisfying assignments of a formula \(F=\Sigma_j \neg p_j \) are given by the negated primes which do not show up in the CNF representation. In particular, the number of satisfying assignments is equal to the number of summands in this equation. Furthermore, they can be read off immediately, since, according to (10) \(T_s(F) = 1 \) iff the corresponding \(\neg p_s \) shows up in the sum. Also the Ts must coincide with the \(2^n \) possible truth assignments \(x:B_n \rightarrow \{0,1\} \). One may choose the numbering such that the values of \(T_s \) on \(B_n \) are given by the binary representation \(s=\Sigma_r 2^{n-1} T_s(a_r) \).

As a last example for the usefulness of the algebraic approach we consider the number of satisfying assignments of a formula F of PC, \(\#(F) \) and show that this
number does not change if some (or all) of the variables \(a_k \) are "flipped", i.e.
substituted by their negation and vice versa:

\[
(14) \quad \#(F(a_1, \ldots, a_n)) = \#(F(a_1, \ldots, \neg a_i, \ldots, \neg a_j, \ldots))
\]

To prove this "conservation of satisfiability" we consider a group of transformations
\(\{R_0, \ldots, R_{N-1}\} \) which negate the \(a_k \) according to the following definition: \(R_s \) negates all \(a_r \)
(and \(\neg a_r \) likewise) for which \(s_r \) in the binary representation of \(s \) is non zero. In formula,
for any truth assignment \(T_j \)
\[
T_j(R_s(a_r)) = (1-s_r) T_j(a_r) + s_r(1-T_j(a_r)) \quad \text{and} \quad s = \sum_{r=1}^{2^n-1} s_r.
\]
It is easy to see that the \(R_s \) form a group with \(R_0 = \text{id} \), and each \(R_s \) induces a
permutation \(\pi_s \) of of the \(\neg p_j \) which is actually a transposition given by
\[
\pi_s(j) = s + j - 2\sum_{r=1}^{n-1} s_{jr}
\]
Thus \(R_s \) simply permutes the primes \(p_k \) and therefore in the representation of \(F \) in (6)
or (7) their number is not changed. The fact may also be stated as
\[
T_j(R_s(F)) = T_{\pi_s(j)}(F),
\]
and therefore \(\#(F) = \sum_j T_j(F) = \sum_j T_j(R_s(F)) = \#(R_s(F)) \) which proves (14).

Appendix

The proofs for theorems (TI) to (TV) are straightforward and only basic ideas will be
sketched here.

Proof of TI: For \(N=1 \) \(V \) consists only of the trivial elements \(\emptyset \) and \(1 \). Thus we assume
\(|V|>2 \). For some nontrivial \(s \) define \(K_s = \{ a | axs = \emptyset \} \). Obviously \(\neg s \) and \(\emptyset \in K_s \).
Analogously for K_s. It is easy to show that K_s and K_{-s} are subgroups of V with respect to $+$, and both have only 0 in common. Thus each $a \in V$ has a unique decomposition $a = u + v$ where $u \in K_s$ and $v \in K_{-s}$. Let $|K_s| = N_s$, and $|K_{-s}| = N_{-s}$. Next we count elements which do not belong to K_s or K_{-s}. Define:

$$E_{K_s}(u_0) = \{ u_0 + v \mid v \in K_{-s} \setminus 0 \} \text{ with } u_0 \in K_s. \quad |E_{K_s}(u_0)| = N_{-s} - 1 \text{ from the definition. Next one shows that } E_{K_s}(a) \text{ and } E_{K_s}(b) \text{ have no elements in common unless } a = b. \text{ Thus }$$

$$|V| = N_s - 1 + N_{-s} + |\sum_u E_{K_s}(u)| = N_s - 1 + N_{-s} + (N_s - 1)|E_{K_s}(u)| = (N_s - 1)(1 + N_{-s} - 1) + N_{-s} = N_s N_{-s}.$$

Since both K_s and K_{-s} are subfields of V (with neutral elements s and s with respect to x) one can apply the same line of argument to each of them until one reaches the trivial field $V_0 = \{0, 1\}$ which has $|V_0| = 2$. Thus both N_s and N_{-s}, and therefore $|V|$ is a power of 2.

Next the proof of (TII) can proceed via induction over $N = \log(|V|)$.

Again one considers the subfields K_s and K_{-s} of V with $|V| = 2^{N+1}$ and their sets of primes p_j and q_j which exist by assumption. Then one shows that all $p_j + s$ are primes in V, and $q_j + s$ to 0 one can apply the same line of argument to each of them until one reaches the trivial field $V_0 = \{0, 1\}$ which has $|V_0| = 2$. Thus both N_s and N_{-s}, and therefore $|V|$ is a power of 2.

The fact that different negated p_k are orthogonal, equ. (8), is proven as follows:

For $i \neq j$, $p_i x \sim p_i \in K_{p_i}$ by definition of K. But since p_i is prime, $K_{p_i} = \{0, \sim p_i\}$. Thus either $p_i x \sim p_i = 0$ which implies (because also p_i is prime) that $\sim p_i$ is either 0 or equal...
to \neg p_j \text{ both in contradiction to assumptions, therefore: or } p_j \neg p_i = \neg p_i. \text{ Which is equivalent to the claim.}

Along the same line of thought - considering K_s and K_{\neg s} for s=some prime element of V - it can be proven that each element of V has a unique decomposition into primes, equ. (7) or (6).

Proof of (TIV).

First note that both functions \(f(x,y) \) and \(g(x,y) \) in equ. (9) can take values 0 or 1 only, and they are symmetric because of the commutativity of the operations \(x \) and \(+ \). Then from (1) and (9) setting \(T(a)=0 \) or 1 respectively one gets

\[
0 = g(0, T(\mathcal{I})) = g(T(\mathcal{I}), 0) \quad \text{and} \quad 1 = g(1, T(\mathcal{I})) = g(T(\mathcal{I}), 1) \quad \text{and}
\]

\[
T(\emptyset) = g(1, T(\emptyset)) = g(0, T(\emptyset)) \quad \text{from ax } O = \emptyset.
\]

If one chooses \(T(\emptyset) = 0 \) then \(T(\mathcal{I}) = 0 \) leads to a contradiction, as well as setting both values equal to 1. One is left with the choice

(A) \(T(\emptyset) = 0 \) and \(T(\mathcal{I}) = 1 \)

(B) \(T(\emptyset) = 1 \) and \(T(\mathcal{I}) = 0 \)

We adopt choice (A) in the following. As a consequence

\[
0 = g(0,1) = g(1,0) = g(0,0) \quad \text{and} \quad 1 = g(1,1) \quad \text{and, from (1) for +}
\]

\[
0 = f(0,0) = f(1,1) \quad \text{and} \quad 1 = f(1,0) = f(0,1).
\]

Let \(T \) be fixed. Because of (8): \(0 = g(T(\neg p), T(\neg q)) \) for different \(p, q \). Thus either

\(T(\neg p) = T(\neg q) = 0 \) or the two assignments have different value. If \(T(\neg p_k) = 0 \) for all \(k \), one gets a contradiction to \(\mathcal{I} = \Sigma_k \neg p_k \) and \(0 = f(0,0) \). Thus at least for one \(k \) \(T(\neg p_k) = 1 \). But then for all other \(j \) \(T(\neg p_j) = 0 \) because of \(0 = g(0,1) \) and the orthogonality relation (8).
Thus for each T there is exactly one $\sim p_k$ with truth assignment 1, and all other $\sim p$ giving 0. Now consider two different maps T, T' with $T(\sim p_k)=1$ and $T'(\sim p_l)=1$. Then k and l must be different, otherwise the two maps would coincide. Repeating this argument with a third T'' and so on leads to the conclusion that there are exactly as many allowed maps as there are primes. We can label the maps as we would like to, so the most natural choice is equ. (10).

As for theorem V, the easiest way to prove the existence of $n=\text{ld}(N)\ a_k$ is to construct them from the uniquely defined primes:

$$a_i = \sum_i \sum_s \sum_l \sim p_i \delta(i, s+2^k)$$

where δ is the Kronecker δ and the s and l sums run from 2^{k-1} to 2^{k-1} and from 0 to 2^{n-k-1} respectively. Constructing them inductively is more instructive because one encounters choices which lead to different sets of a_k. The seemingly complicated formula above is obsolete once one uses the binary representation of all quantities which is given by the bijection $F \leftrightarrow T_{N-1}(F) \ldots T_i(F) \ldots T_0(F)$ for any F. In particular the a_i take the simple form:

$$a_1 = \ldots 10101010101010$$

$$a_2 = \ldots 1100110011001100$$

$$a_3 = \ldots 111100001111000$$

and so on.
References.

[1] Welzl, Emo: Boolean Satisfiability - Combinatorics and Algorithms. Lecture script, http://www.inf.ethz.ch/~emo/SmallPieces/SAT.ps

[2] Cook, S. A., and Mitchell, D. G.: Finding hard instances of the Satisfiability Problem: A Survey. IMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol 5, 1997.

[3] Schuh, B. R.: Testing Satisfiability in Polynomial Time, submitted for publication in International Journal of Unconventional Computing

[4] Schuh, B. R.: Mean Value Satisfiability, in preparation