1. The goal of this problem is to carefully prove a lower bound on testing whether a distribution is uniform.

(a) For a distribution \(p \) over \([n]\) and a permutation \(\pi \) on \([n]\), define \(\pi(p) \) to be the distribution such that for all \(i \), \(\pi(p)\pi(i) = p_i \).

Let \(A \) be an algorithm that takes samples from a black-box distribution over \([n]\) as input. We say that \(A \) is symmetric if, once the distribution is fixed, the output distribution of \(A \) is identical for any permutation of the distribution.

Show the following: let \(A \) be an arbitrary testing algorithm for uniformity (as defined in class, a testing algorithm passes distributions that are uniform with probability at least \(\frac{2}{3} \), and fails distributions that are \(\epsilon \)-far in \(L_1 \) distance from uniform with probability at least \(\frac{2}{3} \)). Suppose \(A \) has sample complexity at most \(s(n) \), where \(n \) is the domain size of the distributions. Then, there exists a symmetric algorithm that tests uniformity with sample complexity at most \(s(n) \).

(b) Define a fingerprint of a sample as follows: Let \(S \) be a multiset of at most \(s \) samples taken from a distribution \(p \) over \([n]\). Let the random variable \(C_i \), for \(0 \leq i \leq s \), denote the number of elements that appear exactly \(i \) times in \(S \). The collection of values that the random variables \(\{C_i\}_{0 \leq i \leq s} \) take is called the fingerprint of the sample.

For example, let \(D = \{1, 2, \ldots, 7\} \) and the sample set be \(S = \{5, 7, 3, 3, 4\} \). Then, \(C_0 = 3 \) (elements 1, 2 and 6), \(C_1 = 3 \) (elements 4, 5 and 7), \(C_2 = 1 \) (element 3), and \(C_i = 0 \) for all \(i > 2 \).

Show the following: if there exists a symmetric algorithm \(A \) for testing uniformity, then there exist an algorithm for testing uniformity that gets as input only the fingerprint of the sample that \(A \) takes.

(c) Show that any algorithm making \(o(\sqrt{n}) \) queries cannot have the following behavior when given error parameter \(\epsilon \) and access to samples of a distribution \(p \) over a domain \(D \) of size \(n \):

- if \(p = U_D \), then \(A \) outputs “pass” with probability at least \(\frac{2}{3} \).
- if \(|p - U_D|_1 > \epsilon \), then \(A \) outputs “fail” with probability at least \(\frac{2}{3} \)

2. Suppose an algorithm has the following behavior when given error parameter \(\epsilon \) and access to samples of a distribution \(p \) over a domain \(D = \{1, \ldots, n\} \):

- if \(p \) is monotone, then \(A \) outputs “pass” with probability at least \(\frac{2}{3} \).
- if for all monotone distributions \(q \) over \(D \), \(|p - q|_1 > \epsilon \), then \(A \) outputs “fail” with probability at least \(\frac{2}{3} \)

Show that this algorithm must make \(\Omega(\sqrt{n}) \) queries.

Hint: Reduce from the problem of testing uniformity.
3. This problem concerns testing closeness to a distribution that is entirely known to the
algorithm. Though you will give a tester that is less efficient than the one seen in lecture,
this method employs a useful bucketing scheme. In the following, assume that \(p \) and \(q \)
are distributions over \(D \). The algorithm is given access to samples of \(p \), and knows an
exact description of the distribution \(q \) in advance – the query complexity of the algorithm
is only the number of samples from \(p \). Assume that \(|D| = n \).

(a) Let \(p \) be a distribution over domain \(S \). Let \(S_1, S_2 \) be a partition of \(S \). Let
\[
 r_1 = \sum_{j \in S_1} p(j) \quad \text{and} \quad r_2 = \sum_{j \in S_2} p(j).
\]
Let the restrictions \(p_1, p_2 \) be the distribution \(p \) conditioned on falling in \(S_1 \) and \(S_2 \)
respectively – that is, for \(i \in S_1 \), let \(p_1(i) = p(i)/r_1 \) and for \(i \in S_2 \), let \(p_2(i) = p(i)/r_2 \).
For distribution \(q \) over domain \(S \), let
\[
 t_1 = \sum_{j \in S_1} q(j) \quad \text{and} \quad t_2 = \sum_{j \in S_2} q(j),
\]
and define \(q_1, q_2 \) analogously. Suppose that
\[
 |r_1 - t_1| + |r_2 - t_2| < \epsilon_1, \quad ||p_1 - q_1||_1 < \epsilon_2, \text{ and } ||p_2 - q_2||_1 < \epsilon_2.
\]
Show that \(||p - q||_1 \leq \epsilon_1 + \epsilon_2 \).

(b) Let \(k = \lceil \log(|D|/\epsilon)/(\log(1 + \epsilon)) \rceil \).
Define \(\text{Bucket}(q, D, \epsilon) \) as a partition \(\{D_0, D_1, \ldots, D_k\} \) of \(D \) with
\[
 D_0 = \{ i \mid q(i) < \epsilon/|D| \},
\]
and for all \(i \in [k] \),
\[
 D_i = \left\{ j \in D \mid \frac{\epsilon(1 + \epsilon)^{i-1}}{|D|} \leq q(j) < \frac{\epsilon(1 + \epsilon)^i}{|D|} \right\}.
\]
Show that if one considers the restriction of \(q \) to any of the buckets \(D_i \), then the
distribution is close to uniform. In other words, show that if \(q \) is a distribution over
\(D \) and \(\{D_0, \ldots, D_k\} = \text{Bucket}(q, D, \epsilon) \), then for any \(i \in [k] \) we have
\[
 |q_{D_i} - U_{D_i}|_1 \leq \epsilon, \quad \|q_{D_i} - U_{D_i}\|^2_2 \leq \epsilon^2/|D_i|, \quad \text{and} \quad q(D_0) \leq \epsilon.
\]
Hint: it may be helpful to remember that \(1/(1 + \epsilon) > 1 - \epsilon \).

(c) Let \((D_0, \ldots, D_k) = \text{Bucket}(q, [n], \epsilon) \). Prove that for each \(i \in [k] \), if
\[
 \|p_{\lfloor D_i \rfloor}\|^2_2 \leq (1 + \epsilon^2)/|D_i|
\]
then \(|p_{\lfloor D_i \rfloor} - U_{D_i}|_1 \leq \epsilon \) and \(|p_{\lfloor D_i \rfloor} - q_{\lfloor D_i \rfloor}|_1 \leq 2\epsilon \).
(d) Show that for any fixed q, there is an $\tilde{O}(\sqrt{n} \cdot \text{poly}(1/\epsilon))$ query algorithm A with the following behavior:

Given an error parameter ϵ and access to samples of a distribution p over domain D,

- if $p = q$, then A outputs “pass” with probability at least $2/3$.
- if $|p - q|_1 > \epsilon$, then A outputs “fail” with probability at least $2/3$.

(e) Note that the last problem part generalizes uniformity testing. As a sanity check, what does the algorithm do in the case that $q = U_D$?

4. Let p be a distribution over $[n] \times [m]$. We say that p is independent if the induced distributions $\pi_1 p$ and $\pi_2 p$ are independent, i.e., that $p = (\pi_1 p) \times (\pi_2 p)$.

Equivalently, p is independent if for all $i \in [n]$ and $j \in [m]$, $p(i, j) = (\pi_1 p)(i) \cdot (\pi_2 p)(j)$.

We say that p is ϵ-independent if there is a distribution q that is independent such that $|p - q|_1 \leq \epsilon$. Otherwise, we say p is not ϵ-independent or is ϵ-far from being independent.

Given access to independent samples of a distribution p over $[n] \times [m]$, an independence tester outputs “pass” if p is independent, and “fail” if p is ϵ-far from independent (with error probability at most 1/3).

(a) Prove the following: let A, B be distributions over $S \times T$. If $|A - B| \leq \epsilon/3$ and B is independent, then $|A - (\pi_1 A) \times (\pi_2 A)| \leq \epsilon$.

Hint: It may help to first prove the following. Let X_1, X_2 be distributions over S and Y_1, Y_2 be distributions over T. Then $|X_1 \times Y_1 - X_2 \times Y_2|_1 \leq |X_1 - X_2|_1 + |Y_1 - Y_2|_1$.

(b) Give an independence tester which makes $\tilde{O}((nm)^{2/3} \cdot \text{poly}(1/\epsilon))$ queries. (You may use the L_1 tester mentioned in class, which uses $\tilde{O}(n^{2/3} \cdot \text{poly}(1/\epsilon))$ samples, without proving its correctness.)

1For a distribution A over $[n] \times [m]$, and for $i \in \{1, 2\}$, we use $\pi_i A$ to denote the distribution you get from the procedure of choosing an element according to A and then outputting only the value of the the i-th coordinate.