A Trudinger-Moser inequality for conical metric in the unit ball

Yunyan Yang, Xiaobao Zhu
School of Mathematics, Renmin University of China, Beijing 100872, P. R. China

Abstract
In this note, we prove a Trudinger-Moser inequality for conical metric in the unit ball. Precisely, let B be the unit ball in \mathbb{R}^N ($N \geq 2$), $p > 1$, $g = |x|^{\frac{p}{N}}(dx_1^2 + \cdots + dx_N^2)$ be a conical metric on B, and

$$\lambda_p(B) = \inf \left\{ \int_B |\nabla u|^N : u \in W_0^{1,N}(B), \int_B |u|^p dx = 1 \right\}.$$

We prove that for any $\beta \geq 0$ and $\alpha < (1 + \frac{p}{N})\omega_{N-1}$, there exists a constant C such that for all radially symmetric functions $u \in W_0^{1,N}(B)$ with $\int_B |\nabla u|^N dx - \alpha (\int_B |u|g^{\frac{p}{N}} dx)^{\frac{N}{p}} \leq 1$, there holds

$$\int_B e^{\alpha |x|^{\frac{p}{N}} g^{\frac{p}{N}}} |u|^{\alpha N - 1} |x|^\beta dx \leq C,$$

where $|x| g^{\frac{p}{N}} dx = dv_g$, $\alpha_N = N\omega_{N-1}^{1/(N-1)}$, ω_{N-1} is the area of the unit sphere in \mathbb{R}^N; moreover, extremal functions for such inequalities exist. The case $p = N$, $-1 < \beta < 0$ and $\alpha = 0$ was considered by Adimurthi-Sandeep \[1\], while the case $p = 2$, $\beta \geq 0$ and $\alpha = 0$ was studied by de Figueiredo-do ´O-dos Santos \[8\].

Key words: Trudinger-Moser inequality, blow-up analysis, conical metric

2010 MSC: 35J15; 46E35.

1. Introduction
Let Ω be a smooth bounded domain in \mathbb{R}^N ($N \geq 2$), $W_0^{1,N}(\Omega)$ be the completion of $C_c^\infty(\Omega)$ under the Sobolev norm

$$\|u\|_{W_0^{1,N}(\Omega)} = \left(\int_\Omega |\nabla u|^N dx \right)^{1/N},$$

where ∇ denotes the gradient operator. Write $\alpha_N = N\omega_{N-1}^{1/(N-1)}$, where ω_{N-1} stands for the area of the unit sphere in \mathbb{R}^N. Then the classical Trudinger-Moser inequality \[39\,29\,28\,33\,24\] says

$$\sup_{u \in W_0^{1,N}(\Omega), \|u\|_{W_0^{1,N}} \leq 1} \int_\Omega e^{\alpha |x|^{\frac{p}{N}} g^{\frac{p}{N}}} dx < \infty, \quad \forall \alpha \leq \alpha_N. \quad (1)$$

This inequality is sharp in the sense that if $\alpha > \alpha_N$, all integrals in (1) are still finite, but the supremum is infinite. While the existence of extremal functions for it was solved by Carleson-Chang \[3\], Flucher \[22\] and Lin \[21\].
Using a symmetrization argument and a change of variables, Adimurthi-Sandeep \([1]\) generalized \(1\) to the following singular version:

\[
\sup_{u \in W^{1,\infty}_0(\Omega), \|u\|_{W^{1,\infty}_0(\Omega)} \leq 1} \int_{\Omega} e^{\alpha x \beta y} |x|^{-N\beta} \, dx \leq \infty, \quad \forall \, 0 \leq \beta < 1, \ 0 < \gamma \leq 1 - \beta.
\] (2)

Also, it is sharp in the sense that if \(\gamma > 1 - \beta\), integrals are still finite, but the above supremum is infinite. The inequality \(2\) was extended to the whole Euclidean space \(\mathbb{R}^N\) by Adimurthi-Yang \([2]\). The existence of extremal functions for \(2\) in the case \(N = 2\) was due to Casto-Roy \([6]\), Yang-Zhu \([38]\) and Iula-Mancini \([13]\). An interesting question is whether or not \(2\) still holds for \(\beta < 0\). Generally, the answer is negative. To see this, we choose \(x_0 \neq 0\), \(r_0 > 0\) such that \(B_{2r_0}(x_0) \subset \Omega \setminus \{0\}\). For any \(0 < \epsilon < r_0\), we write the Moser function

\[
m_\epsilon(x) = \begin{cases} \frac{1}{\omega_{N-1}} \left(\log \frac{x}{\epsilon} \right)^\frac{N-1}{N}, & \text{when } |x - x_0| \leq \epsilon \\ \frac{1}{\omega_{N-1}} \left(\log \frac{r_0}{\epsilon} \right)^\frac{N-1}{N}, & \text{when } \epsilon < |x - x_0| \leq r_0 \\ 0, & \text{when } |x - x_0| > r_0. \end{cases}
\]

An easy computation shows \(\|m_\epsilon\|_{W^{1,\infty}_0(\Omega)} = 1\). Since \(\beta < 0\), we have

\[
\int_{\Omega} e^{\alpha N (1 - \beta) m_\epsilon \frac{x}{\epsilon}} |x|^{-N\beta} \, dx \geq \int_{B_{r_0}(x_0)} e^{\alpha N (1 - \beta) m_\epsilon \frac{x}{\epsilon}} |x|^{-N\beta} \, dx \to \infty \quad \text{as } \epsilon \to 0.
\]

Even worse, the above estimate still holds if \(\alpha_N (1 - \beta)\) is replaced by any \(\alpha > \alpha_N\). In conclusion, the singular Trudinger-Moser inequality \(2\) does not hold for \(\beta < 0\).

Let us consider the unit ball \(B \subset \mathbb{R}^N\), which is centered at the origin. Let \(\mathcal{S}\) be a set of all radially symmetric functions. With a slight abuse of notations, we say that \(u\) is radially symmetric if \(u(x) = u(|x|)\) for almost every \(x \in B\). It was proved by Ni \([27]\) that \(W^{1,N}_0(\mathbb{B}) \cap \mathcal{S}\) can be imbedded in \(L^p(\mathbb{B}, |x|^n)\) with \(\alpha > 0\) and \(p = 2(N + \alpha)/(N - 2)\) greater than \(2^* = 2N/(N - 2)\). Motivated by results of Bonheure-Serra-Tarallo \([3]\), Calanchi-Terraneo \([4]\) and de Figueiredo-dos Santos-Miyagaki \([7]\), de Figueiredo-do Ó-dos Santos \([8]\) observed that in the case \(N = 2\), moreover, extremal function for the above supremum exists. Of course they discussed more general weight \(h(|x|)\) and fast growth \(F(u)\) instead of \(|x|^\gamma\) and \(e^{4\pi (1 + \alpha) u^2}\) respectively.

Our aim is to generalize \(3\) to higher dimensional case and to stronger versions. We first have the following:

Theorem 1. Let \(B\) be the unit ball in \(\mathbb{R}^N\) \((N \geq 2)\), \(W^{1,N}_0(\mathbb{B})\) and \(\mathcal{S}\) be as above. Then there holds for any \(\beta \geq 0\),

\[
\sup_{u \in W^{1,N}_0(\mathbb{B}) \cap \mathcal{S}, \|u\|_{W^{1,N}_0(\mathbb{B})} \leq 1} \int_{\mathbb{B}} e^{\gamma a(1 + \beta) u^2} |x|^{-N\beta} \, dx \leq \infty, \quad \forall \, \gamma \leq \alpha_N (1 + \beta).
\] (4)

Here \(\alpha_N (1 + \beta)\) is the best constant in the sense that if \(\gamma > \alpha_N (1 + \beta)\), all integrals are finite but the supremum is infinity. Moreover, for any \(\beta \geq 0\) and any \(\gamma \leq \alpha_N (1 + \beta)\), the supremum in \(4\) can be attained.
By a rearrangement argument, for any $\gamma \leq \alpha_N$, there holds
\[
\sup_{u \in W^{1,p}_0(\mathbb{B}), \|u\|_{W^{1,p}_0(\mathbb{B})} \leq 1} \int_{\mathbb{B}} e^{\gamma |u|^{p/N}} dx = \sup_{u \in W^{1,p}_0(\mathbb{B}) \setminus \{0\}, \|u\|_{W^{1,p}_0(\mathbb{B})} \leq 1} \int_{\mathbb{B}} e^{\gamma |u|^{p/N}} dx. \tag{5}
\]

Therefore, when $\Omega = \mathbb{B}$, Theorem 1 includes the classical Trudinger-Moser inequality [1] as a special case and complements Adimurthi-Sandeep’s inequality [2].

Motivated by [34, 41, 40], we would generalize Theorem 1 to a version involving eigenvalue of the N-Laplace. For $p > 1$, define
\[
\lambda_p(\mathbb{B}) = \inf_{u \in W^{1,p}_0(\mathbb{B}), \|u\|_{W^{1,p}_0(\mathbb{B})} \neq 0} \frac{\int_{\mathbb{B}} |\nabla u|^p dx}{\int_{\mathbb{B}} |u|^p dx}. \tag{6}
\]

For $\alpha < \lambda_p(\mathbb{B})$, we write for simplicity
\[
\|u\|_{1,\alpha} = \left(\int_{\mathbb{B}} |\nabla u|^\alpha dx - \alpha^{1/N} \right)^{1/N}. \tag{7}
\]

Theorem 2. Given $p > 1$. In addition to the assumptions of Theorem 1, let $\lambda_p(\mathbb{B})$ and $\| \cdot \|_{1,\alpha}$ be defined as in (6) and (7) respectively. Then if $\alpha < \lambda_p(\mathbb{B})$, there holds
\[
\sup_{u \in W^{1,p}_0(\mathbb{B}), \|u\|_{1,\alpha} \leq 1} \int_{\mathbb{B}} e^{\gamma \|u\|_{1,\alpha}^p} dx < \infty, \quad \forall \gamma \leq \alpha_N.
\]

Moreover, the above supremum can be attained.

When $p = N$, Theorem 2 was proved by Nguyen [23] for a smooth bounded domain. As a consequence of Theorem 2 we improve Theorem 1 as follows:

Theorem 3. Given $p > 1$. Under the same assumptions of Theorem 2 for any $\beta \geq 0$ and any $\alpha < (1 + \frac{p}{N}\beta)^{N-1} \lambda_p(\mathbb{B})$, there holds
\[
\sup_{u \in W^{1,p}_0(\mathbb{B}) \setminus \{0\}, \int_{\mathbb{B}} |\nabla u|^\beta dx \leq \alpha_N (1 + \frac{p}{N}\beta)} \int_{\mathbb{B}} e^{\gamma \|u\|_{1,\alpha}^p} dx < \infty, \quad \forall \gamma \leq \alpha_N (1 + \frac{p}{N}\beta), \tag{8}
\]

where $\alpha_N (1 + \frac{p}{N}\beta)$ is the best constant in the same sense as in Theorem 1. Furthermore, the supremum in (8) can be attained.

We now explain the geometric meaning of the term $|x|^{\beta} dx$. Let g_0 be the standard Euclidean metric, namely $g_0(x) = dx_1^2 + \cdots + dx_N^2$. Define a metric $g(x) = |x|^{2/\beta} g_0(x)$ for $x \in \mathbb{B}$. Then (\mathbb{B}, g) is a conical manifold with the volume element $dv_g = |x|^{\beta} dx$. Moreover, $|\nabla u|^N dx = |\nabla u|^N dv_g$.

The proof of Theorems 1 and 2 is based on a change of variables. While the proof of Theorem 2 is based on blow-up analysis. In the remaining part of this note, we shall prove Theorems 1 and 3 respectively.
2. Proof of Theorem 1

Let $\beta \geq 0$ and $\gamma \leq \alpha N/(1 + \beta)$. Write for simplicity $u(x) = u(r)$ with $r = |x|$. Following Smets-Willems-Su [31] and Adimurthi-Sandeep [1], we make a change of variables. Define a function

$$v(r) = (1 + \beta)^{1-1/N} u(r^{1/(1+\beta)}).$$

A straightforward calculation shows

$$\int_{B} |\nabla v|^N \, dx = \omega_N - \frac{\omega_{N-1}}{1 + \beta} \int_0^1 |u'(r^{1/(1+\beta)})| r^{N-1-\beta/(1+\beta)} \, dr$$

and

$$\int_{B} e^{\gamma |x|^\frac{N}{N-1}} |x|^N \, dx = \omega_N - \frac{\omega_{N-1}}{1 + \beta} \int_0^1 e^{\gamma |v(r)|^{\frac{N}{N-1}}} r^{N-1+\beta} \, dr$$

Then it follows from (9), (10) and (5) that

$$\sup_{u \in W^{1,N}_{0}(B)} \int_{B} e^{\gamma |x|^\frac{N}{N-1}} |x|^N \, dx = \frac{1}{1 + \beta} \sup_{v \in W^{1,N}_{0}(B)} \int_{B} e^{\gamma |v|^\frac{N}{N-1}} |x|^N \, dx.$$

According to Carleson-Chang [5], the supremum on the right-hand side of (11) can be attained, so does the supremum on the left-hand side. This concludes Theorem 1.

3. Proof of Theorem 2

In this section, we use the standard blow-up analysis to prove Theorem 2. This method was originally introduced by Ding-Jost-Li-Wang [9] and Li [17, 18], and extensively employed by Yang [42, 43, 44, 45], Lu-Yang [23], Li-Ruf [19], Zhu [41], do ´O-de Souza [10, 11], Li-Yang [16], Li [15], Nguyen [23, 26] and others. Comparing with the case $p \leq N$ [41, 26], we need more analysis to deal with the general case $p > 1$.

3.1. The existence of maximizers for subcritical functionals

Let $\alpha < \lambda_p(\mathbb{B})$. Denote

$$\Lambda_{\gamma,\alpha} = \sup_{u \in W^{1,p}_{0}(\mathbb{B}) \mid \|u\|_{p,\alpha} \leq 1} \int_{\mathbb{B}} e^{\gamma |u|^\frac{N}{N-1}} \, dx.$$
Lemma 4. For any positive integer k, there exists a decreasing radially symmetric function $u_k \in W^{1, N}_0(\mathbb{B}) \cap C^1(\mathbb{B})$ with $\|u_k\|_{1, \alpha} = 1$ such that $\int_{\mathbb{B}} e^{\gamma_k |u_k|^{p-1}} \, dx = \Lambda_{\gamma, \alpha}$, where $\gamma_k = \alpha N - 1/k$. Moreover, u_k satisfies the Euler-Lagrange equation

$$
\begin{cases}
 -\Delta u_k - \alpha \left(\int_{\mathbb{B}} u_k^p \, dx \right)^{N-1} u_k^{p-1} = \frac{1}{2} u_k^{N-1} e^{\gamma_k u_k^{1/N}} \\
u_k \geq 0 \quad \text{in} \quad \mathbb{B} \\
u_k = 0 \quad \text{on} \quad \partial \mathbb{B} \\
\lambda_k = \int_{\mathbb{B}} u_k^{-\frac{N}{p-1}} e^{\gamma_k u_k^{1/N}} \, dx,
\end{cases}
$$

(12)

where $\Delta u_k = \text{div}(\nabla u_k^{N-2} \nabla u_k)$.

Proof. Let k be a positive integer. By a rearrangement argument, there exists a sequence of decreasing radially symmetric functions $u_j \in W^{1, N}_0(\mathbb{B})$ with $\|u_j\|_{1, \alpha} \leq 1$ and $\int_{\mathbb{B}} e^{\gamma_j |u_j|^{p-1}} \, dx \to \Lambda_{\gamma, \alpha}$ as $j \to \infty$. Since $\alpha < \Lambda_{\gamma}(\mathbb{B})$, u_j is bounded in $W^{1, N}_0(\mathbb{B})$. Without loss of generality, we assume u_j converges to some function u_0 weakly in $W^{1, N}_0(\mathbb{B})$, strongly in $L^s(\mathbb{B})$ for any $s > 1$ and almost everywhere in \mathbb{B}. If $u_k \equiv 0$, then $\|u_k\|_{W^{1, N}_0(\mathbb{B})} \leq 1 + o(1)$. Thus $e^{\gamma_k u_k^{1/N-1}}$ is bounded in $L^q(\mathbb{B})$ for some $q > 1$. It follows that $e^{\gamma_k u_k^{1/N-1}}$ converges to 1 in $L^1(\mathbb{B})$. This implies that $\Lambda_{\gamma, \alpha} = |\mathbb{B}|$, the volume of \mathbb{B}, which is impossible. Therefore $u_k \not\equiv 0$. Clearly u_k is also decreasing radially symmetric and $\|u_k\|_{1, \alpha} \leq 1$. Define a function sequence

$$
v_j = \frac{u_j}{(1 + \alpha(\int_{\mathbb{B}} u_j^p \, dx)^{1/N})^{1/\alpha}}.
$$

It follows that $\|v_j\|_{W^{1, N}_0(\mathbb{B})} \leq 1$, v_j converges to $v_0 = u_0/(1 + \alpha(\int_{\mathbb{B}} u_0^p \, dx)^{1/N})$ weakly in $W^{1, N}_0(\mathbb{B})$. By a result of Lions (22), Theorem I.6), for any $q < 1/(1 - \|v_0\|_{W^{1, N}_0(\mathbb{B})}^{1/(N-1)})$, there holds

$$
\lim_{j \to \infty} \int_{\mathbb{B}} e^{\gamma_j v_j^{1/N}} \, dx < \infty.
$$

(13)

One can easily check that

$$
\left(1 + \alpha \left(\int_{\mathbb{B}} u_j^p \, dx \right)^{1/N} \right) \left(1 - \|v_0\|_{W^{1, N}_0(\mathbb{B})}^{1/(N-1)} \right) = 1 - \|u_k\|_{1, \alpha} < 1.
$$

(14)

It follows from (13) and (14) that $e^{\gamma_j v_j^{1/N-1}}$ is bounded in $L^r(\mathbb{B})$ for some $r > 1$, and thus $e^{\gamma_j v_j^{1/N-1}} \to e^{\gamma_k v_0^{1/N}}$ in $L^1(\mathbb{B})$ as $j \to \infty$. Hence $\int_{\mathbb{B}} e^{\gamma_k v_0^{1/N-1}} \, dx = \Lambda_{\gamma, \alpha}$ and u_0 is the desired extremal function. Clearly $\|u_0\|_{1, \alpha} = 1$. Moreover, the Euler-Lagrange equation of u_k is (12). According to the regularity theory for degenerate elliptic equations, see Serrin (30), Tolksdorf (32) and Lieberman (20), we have $u_k \in C^1(\mathbb{B})$.

It is indicated by Lemma 3 that for any $\gamma < \alpha N$ and $\alpha < \Lambda_{\gamma}(\mathbb{B})$, the supremum $\Lambda_{\gamma, \alpha}$ can be attained. In particular, for any $\gamma_k = \alpha N - 1/k$, there exists a maximizer $u_k \geq 0$ satisfies (12). It is not difficult to see that

$$
\lim_{k \to \infty} \int_{\mathbb{B}} e^{\gamma_k u_k^{1/N}} \, dx = \Lambda_{\gamma_k, \alpha} = \sup_{u \in W^{1, N}_0(\mathbb{B}), \|u\|_{1, \alpha} \leq 1} \int_{\mathbb{B}} e^{\alpha |u|^{p-1}} \, dx.
$$

(15)
Since \(\|u_k\|_{L^\alpha} = 1 \), without loss of generality, we can assume that \(u_k \) converges to \(u_0 \) weakly in \(W^{1,N}_0(\mathbb{B}) \), strongly in \(L^s(\mathbb{B}) \) for any \(s > 1 \), and almost everywhere in \(\mathbb{B} \). Let \(c_k = u_k(0) = \max_{\mathbb{B}} u_k \). If \(c_k \) is bounded, then applying the Lebesgue dominated convergence theorem to (15), we know that \(u_0 \) is the desired extremal function for the supremum \(\Lambda_{\alpha,N} \). Hereafter we assume

\[
c_k \to \infty \quad \text{as} \quad k \to \infty. \tag{16}
\]

Lemma 5. Let \(u_0 \) be the limit of \(u_k \) as above. Then \(u_0 \equiv 0 \) and \(|\nabla u_k|^N dx \to \delta_0 \) weakly in the sense of measure, where \(\delta_0 \) stands for the Dirac measure centered at the origin.

Proof. We first prove \(u_0 \equiv 0 \). Suppose not. It follows from Lions’ lemma that \(e^{\gamma |u_0|^{N/(N-1)}} \) is bounded in \(L^q(\mathbb{B}) \) for some \(q > 1 \). Then applying elliptic estimates to (12), we conclude \(u_k \) is uniformly bounded in \(\mathbb{B} \), which contradicts our assumption (16). Therefore \(u_0 \equiv 0 \).

Next we prove \(|\nabla u_k|^N dx \to \delta_0 \). Suppose not. Since \(\|u_k\|_{L^\alpha} = 1 \) and \(u_0 \equiv 0 \), there would hold \(\|u_k\|_{W^{1,N}_0(\mathbb{B})} = 1 + o_k(1) \). Thus there exists some \(0 < r_0 < 1 \) such that

\[
\limsup_{k \to \infty} \int_{|x| \leq r_0} |\nabla u_k|^N dx < 1.
\]

It follows from the classical Trudinger-Moser inequality (11) that \(e^{\gamma |u_k|^{N/(N-1)}} \) is bounded in \(L^q(B_{r_0}) \) for some \(q > 1 \). Since \(u_k \) is decreasing radially symmetric and \(\|u_k\|_{L^\alpha} = 1 \) with \(\alpha < \lambda_\alpha(\mathbb{B}) \), we have

\[
u_k^N(r_0) \leq \left(\frac{1}{|B_{r_0}|} \int_{|x| \leq r_0} u_k^p \, dx \right)^{N/p} \leq \frac{1}{(\lambda_p(\mathbb{B}) - \alpha)B_{r_0}^{N/p}}.
\]

Hence \(e^{\gamma u_k(r_0)^{N/(N-1)}} \) is also bounded in \(L^{q_1}(B_{r_0}) \) for some \(q_1 > 1 \). Then applying elliptic estimates to (12), we conclude that \(u_k \) is uniformly bounded in \(\mathbb{B} \). This contradicts (16) and ends the proof of the lemma. \(\square \)

3.2. Blow-up analysis

Let \(r_k = \lambda_k^{\frac{N}{N-1}} (u_k(r_k x) - c_k) \). Using the same argument as in the proof of (14), Lemma 4.3), one has by Lemma 5 and the classical Trudinger-Moser inequality (11) that

\[
r_k e^{\alpha N} \to 0 \quad \text{as} \quad k \to \infty, \quad \forall \alpha < \alpha_N/N. \tag{17}
\]

For \(x \in B_{r_1} \), we define \(\psi_k(x) = c_k^{-1} u_k(r_k x) \) and \(\varphi_k(x) = c_k^{1/(N-1)} (u_k(r_k x) - c_k) \).

Lemma 6. Up to a subsequence, there holds \(\psi_k \to 1 \) in \(C_{loc}^1(\mathbb{R}^N) \) and \(\varphi_k \to \varphi \) in \(C_{loc}^1(\mathbb{R}^N) \) as \(k \to \infty \), where

\[
\varphi(x) = -\frac{N - 1}{\alpha N} \log \left(1 + \frac{\alpha N}{N^{N/(N-1)} |x|^{N/(N-1)}} \right). \tag{18}
\]

Proof. A simple calculation gives

\[
-\Delta_N \psi_k = \alpha \lambda_k^{N-2} \|u_k\|_{L^\alpha}^N \psi_k^{p-1} + c_k^{N-1} e^{\gamma u_k(r_k x) - c_k} \psi_k^{1/(N-1)} \tag{19}
\]
and

\[- \Delta_N \psi_k = \alpha c_k^{p^N} \|u_k\|_p^{N-p} \psi_k^{p-1} + e^{\gamma_k (u_k^{N(N-1)} - c_k^{1/(N-1)})} \psi_k^{1/(N-1)}. \tag{20}\]

Since \(u_k\) is bounded in \(L^p(\mathbb{R})\), one has by (16) and (17) that

\[
\left(\int_{R_{k-1}} (c_k^{p-N} r_k^N \|u_k\|_p^{N-p} \psi_k^{p-1})^{p/(p-1)} \, dx \right)^{p/(p-1)} = c_k^{1-N/p} \|u_k\|_p^{N-1} \to 0 \quad \text{as } k \to \infty. \tag{21}\]

Since \(0 \leq \psi_k \leq 1\), there holds

\[
c_k^{-N} e^{\gamma_k (u_k^{N(N-1)} - c_k^{1/(N-1)})} \psi_k^{1/(N-1)} \to 0 \quad \text{as } k \to \infty. \tag{22}\]

It follows from (21) and (22) that \(\Delta_N \psi_k\) is bounded in \(L^{p/(p-1)}(B_{k-1})\). Applying the regularity theory to (19), one obtains

\[
\psi_k \to \psi \quad \text{in } C^0_\text{loc}(\mathbb{R}^N) \quad \text{as } k \to \infty, \tag{23}\]

where

\[
\psi(0) = 1, \quad 0 \leq \psi(x) \leq 1, \quad \forall x \in \mathbb{R}^N. \tag{24}\]

When \(1 < p \leq N\), one can easily see that

\[
c_k^{p-N} \|u_k\|_p^{N-p} \psi_k^{p-1} \to 0 \tag{25}\]

uniformly in \(x \in B_{k-1}\) as \(k \to \infty\). When \(p > N\), we have for any \(R > 0\) and sufficiently large \(k\)

\[
\|u_k\|_p^{N-p} = \left(\int_{\mathbb{R}^N} u_k^p \, dx \right)^{N/p-1} \leq \left(\int_{B_R} u_k^p \, dx \right)^{N/p-1} = c_k^{N-p} r_k^{N^2/p-N} \left(\int_{B_R} \psi_k^p \, dx \right)^{N/p-1}. \tag{26}\]

In view of (24), we conclude \(\int_{B_R} \psi^p \, dx > 0\), which together with (23) and (26) leads to

\[
\|u_k\|_p^{N-p} \leq 2 \left(\int_{B_R} \psi^p \, dx \right)^{N/p-1} c_k^{N-p} r_k^{N^2/p-N} \tag{27}\]

for sufficiently large \(k\). This together with (17) gives

\[
c_k^{p-N} \|u_k\|_p^{N-p} \psi_k^{p-1} \leq 2 \left(\int_{B_R} \psi^p \, dx \right)^{N/p-1} c_k^{N-p} r_k^{N^2/p-N} \to 0 \quad \text{as } k \to \infty. \tag{27}\]

It then follows from (25) and (22) that \(\Delta_N \psi_k\) is bounded in \(L^{\infty}(B_R)\). Applying again the regularity theory to (19), we conclude that \(\psi_k \to \psi \) in \(C^1(\mathbb{R}_{R/2})\). Since \(R\) is arbitrary, up to a subsequence, there holds

\[
\psi_k \to \psi \quad \text{in } C^1_\text{loc}(\mathbb{R}^N) \quad \text{as } k \to \infty,
\]

where \(\psi\) is a solution of

\[-\Delta_N \psi = 0 \quad \text{in } \mathbb{R}^N, \quad 0 \leq \psi \leq \psi(0) = 1. \tag{28}\]

The Liouville theorem implies that \(\psi \equiv 1\) in \(\mathbb{R}^N\).
Recalling (25) and (27), $c_k^{p^*N} \|u_k\|_{L^p}^{N-p} \phi_k^{p-1} \to 0$ in $L^1_{\text{loc}}(\mathbb{R}^N)$. Then using the same argument as in ([19], Section 3) or ([16], Lemma 17), we have by applying elliptic estimates to (20),
\[
\phi_k \to \phi \quad \text{in} \quad C^1_{\text{loc}}(\mathbb{R}^N) \quad \text{as} \quad k \to \infty,
\]
where ϕ satisfies
\[
\begin{cases}
-\Delta_N \phi = e^{a_N \frac{|x|}{k}} & \text{in} \quad \mathbb{R}^N \\
\sup_{\mathbb{R}^N} \phi = \phi(0) = 0.
\end{cases}
\]
Observing that ϕ is radially symmetric, one gets (18) by solving the corresponding ordinary differential equation.

Lemma 6 describes the asymptotic behavior of u_k near the blow-up point 0. To know u_k's behavior away from 0, by the same argument as in the proof of ([34], Lemma 4.11), we have that
\[
\begin{cases}
c_1^{1/(N-1)} u_k \to G \quad \text{weakly in} \quad W^{1,q}_0(B), \quad \forall \, 1 < q < N \\
c_1^{1/(N-1)} u_k \to G \quad \text{strongly in} \quad L^q(B), \quad \forall \, 1 < s \leq \frac{Nq}{N-q} \\
c_1^{1/(N-1)} u_k \to G \quad \text{in} \quad C^{1}_{\text{loc}}(B \setminus \{0\}),
\end{cases}
\]
where G is a distributional solution of
\[
-\Delta_N G - \alpha ||G||_{p}^{N-p} G^{p-1} = \delta_0 \quad \text{in} \quad B.
\]
(28)
According to Kichenassamy-Veron [14], G can be represented by
\[
G(x) = -\frac{N}{\alpha_N} \log |x| + A_0 + w(x),
\]
where A_0 is a constant, $w \in C^\nu(B)$ for some $0 < \nu < 1$ and $w(0) = 0$. In view of (15), we also have an analog of ([34], Proposition 5.2), namely
\[
\Lambda_{\alpha_N,x} \leq |B| + \frac{\omega N-1}{N} e^{\rho a_N + \sum_{j=1}^{N-1} \frac{1}{j}},
\]
(29)
For its proof, since no new idea comes out, we omit the details but refer the readers to [34] (see also [41, 15, 25]).

3.3. Test function computation
In this subsection, we construct a sequence of functions to show that
\[
\Lambda_{\alpha_N,x} > |B| + \frac{\omega N-1}{N} e^{\rho a_N + \sum_{j=1}^{N-1} \frac{1}{j}}.
\]
(30)
The contradiction between (30) and (29) indicates that c_k is a bounded sequence, and whence the desired extremal function exists. This completes the proof of Theorem 2.

For any positive integer k, we set
\[
\phi_k(x) = \begin{cases}
\frac{c + \alpha_N}{\alpha_N} \left(-\frac{N}{\alpha_N} \log(1 + c_N |x|^\omega) + b \right), & |x| < \frac{k}{c N} \\
G \left(\frac{x}{k} \right), & \frac{k}{c N} \leq |x| \leq 1,
\end{cases}
\]
(31)
where c and b are constants, depending only on k, to be determined later. To ensure $\phi_k \in W^{1,N}(\mathbb{B})$, we need
\[
c + \frac{1}{c^{1/(N-1)}} \left(-\frac{N-1}{\alpha_N} \log(1 + c_N \log k)^{\frac{N-1}{N}} + b \right) = \frac{G(\log k)}{c^{1/(N-1)}},
\]
which implies that
\[
c^{\frac{N}{N-1}} = G\left(\frac{\log k}{k}\right) + \frac{N-1}{\alpha_N} \log(1 + c_N (\log k)^{\frac{N}{N-1}}) - b. \quad (32)
\]
We now calculate the energy of ϕ_k. In view of (31), a straightforward calculation gives
\[
\int_{|\nabla \phi_k|^{N}} |\nabla \phi_k|^{N} dx \leq \frac{1}{c^{N/(N-1)}} \left(\frac{N-1}{\alpha_N} \sum_{j=1}^{N-1} \frac{1}{j} \log(1 + c_N (\log k)^{\frac{N}{N-1}}) + O((\log k)^{-\frac{N}{N-1}}) \right).
\]
By (28) and the divergence theorem
\[
\int_{|\nabla \phi_k|^{N}} |\nabla \phi_k|^{N} dx = \int_{|\nabla G|^{N-1}} |\nabla G|^{N-1} ds = \alpha \int_{\mathbb{B}} |\nabla G|^{N-1} ds = G\left(\frac{\log k}{k}\right) + \alpha \left(\int_{\mathbb{B}} G^{\frac{N}{N-1}} ds + O\left(\frac{(\log k)^{N-1}}{k}\right) \right).
\]
As a consequence
\[
\int_{\mathbb{B}} |\nabla \phi_k(x)|^{N} dx = \frac{1}{c^{N/(N-1)}} \left(\frac{N-1}{\alpha_N} \sum_{j=1}^{N-1} \frac{1}{j} \log(1 + c_N (\log k)^{\frac{N}{N-1}}) + O\left(\frac{\log k}{k}\right) \right)
\]
\[
+ O\left(\frac{(\log k)^{N-1}}{k}\right) \right) \right) = \frac{1}{c^{N/(N-1)}} \left(\int_{\mathbb{B}} G^{\frac{N}{N-1}} ds + O\left(\frac{(\log k)^{2N}}{k^N}\right) \right)^{N/p} \right),
\]
we obtain
\[
\|\phi_k\|^{N}_{1,p} = \frac{1}{c^{N/(N-1)}} \left(\frac{N-1}{\alpha_N} \sum_{j=1}^{N-1} \frac{1}{j} \log(1 + c_N (\log k)^{\frac{N}{N-1}}) + O\left(\frac{(\log k)^{N-1}}{k}\right) \right).
\]
Set $\|\phi_k\|_{1,p} = 1$. It then follows that
\[
c^{\frac{N}{N-1}} = \frac{N}{\alpha_N} \log k - \frac{N-1}{\alpha_N} \sum_{j=1}^{N-1} \frac{1}{j} \log c_N + \alpha_0 + O((\log k)^{-\frac{N}{N-1}}). \quad (33)
\]
This together with (32) leads to

\[b = \frac{N - 1}{\alpha_N} \sum_{j=1}^{\frac{N}{2} - 1} \frac{1}{j} + O((\log k)^{\frac{N}{2}}). \]

(34)

When \(|x| < \frac{\log k}{N} \), we calculate

\[a_N \phi_k^\frac{N}{2\pi} (x) = a_N c^{\frac{N}{2\pi}} \left(1 + \frac{1}{c_N/(N-1)} \left(\frac{N - 1}{\alpha_N} \log(1 + c_N |x|^{\frac{N}{2\pi}}) + b \right) \right)^{\frac{N}{2}} \]

\[\geq a_N c^{\frac{N}{2\pi}} \left(1 + \sum_{r=1}^{N-1} \frac{N - 1}{c_N/(N-1)} \left(\frac{N - 1}{\alpha_N} \log(1 + c_N |x|^{\frac{N}{2\pi}}) + b \right) \right) \]

\[= a_N c^{\frac{N}{2\pi}} + \frac{N a_N b}{N - 1} - N \log(1 + c_N |x|^{\frac{N}{2\pi}}). \]

(35)

In view of (33) and (34),

\[a_N c^{\frac{N}{2\pi}} + \frac{N a_N b}{N - 1} = N \log k + \sum_{j=1}^{\frac{N}{2} - 1} \frac{1}{j} + (N - 1) \log c_N + a_N A_0 + O((\log k)^{\frac{N}{2\pi}}). \]

(36)

Moreover, integration by parts leads to

\[\int_{|x| < \frac{\log k}{N}} e^{-N \log(1 + c_N |x|^{\frac{N}{2\pi}})} |x|^{\frac{N}{2\pi}} \, dx = k^{-N} \int_{|y| < \log k} \frac{dy}{(1 + c_N |y|^{\frac{N}{2\pi}})^N} \]

\[= k^{-N} \int_0^{(\log k)^{\frac{N}{2\pi}}} \frac{N - 1}{N} t^{N-2} dt \]

\[= k^{-N} (1 + O((\log k)^{\frac{N}{2\pi}})). \]

(37)

Combining (35), (36) and (37), we obtain

\[\int_{|x| < \frac{\log k}{N}} e^{a_N \phi_k^\frac{N}{2\pi} (x)} \, dx \geq \frac{\omega_{N-1}}{N} e^{a_N (\gamma + \log k)^{\frac{N}{2\pi}} / 2} + O((\log k)^{\frac{N}{2\pi}}). \]

(38)

Using an inequality \(e^t \geq 1 + t \), we have

\[\int_{|x| < \frac{\log k}{N}} e^{a_N \phi_k^\frac{N}{2\pi} (x)} \, dx \geq |\mathbb{B}| + \frac{\alpha_N}{c_N/(N-1)^2} \int_{\mathbb{B}} G \phi_k^\frac{N}{2\pi} \, dx + O((\log k)^{\frac{N}{2\pi}}). \]

(39)

Then (30) follows from (38) and (39) immediately.

4. Proof of Theorem 3

As in the proof of Theorem 1, we set \(v(r) = (1 + \frac{b r}{\beta})^{1-1/N} u(r^{1/(1+\beta)}) \). Note that

\[\int_{\mathbb{B}} |x|^{p} |x|^{p} \, dx = \omega_{N-1} \int_0^1 |u(r)|^{p} r^{N-1+p/2} \, dr \]

\[= \frac{\omega_{N-1}}{(1 + \frac{b \beta}{N})^{p-1+p/2}} \int_0^1 |v(r^{1+\beta})|^{p} r^{N-1+p/2} \, dr \]

\[= \frac{\omega_{N-1}}{(1 + \frac{b \beta}{N})^{p-1+p/2}} \int_0^1 |v(t)|^{p} t r^{N-1} \, dt = \frac{1}{(1 + \frac{b \beta}{N})^{p-1+p/2}} \int_{\mathbb{B}} |x|^p \, dx. \]
Similar calculations as in (9) and (10) tell us that
\[
\sup_{u \in W^{1,q}_0(B) \cap \mathcal{X}} \int_B |\nabla u|^{\beta} |u|^\alpha \, dx = \frac{1}{1 + \frac{\beta}{\alpha}} \sup_{v \in W^{1,q}_0(B) \cap \mathcal{X}} \left(\int_B |\nabla v|^{\beta} |v|^\alpha \, dx \right)^{1+\frac{\beta}{\alpha}} \int_B e^{\frac{\beta}{\alpha} |\nabla v|^{\beta} |v|^\alpha} \, dx. \tag{40}
\]
By a rearrangement argument, we have
\[
\sup_{v \in W^{1,q}_0(B) \cap \mathcal{X}} \left(\int_B |\nabla v|^{\beta} |v|^\alpha \, dx \right)^{1+\frac{\beta}{\alpha}} \int_B e^{\frac{\beta}{\alpha} |\nabla v|^{\beta} |v|^\alpha} \, dx \leq \sup_{v \in W^{1,q}_0(B)} \left(\int_B |\nabla v|^{\beta} |v|^\alpha \, dx \right)^{1+\frac{\beta}{\alpha}} \int_B e^{\frac{\beta}{\alpha} |\nabla v|^{\beta} |v|^\alpha} \, dx. \tag{41}
\]
Since \(\alpha < (1 + \frac{\beta}{\alpha})N-1+N/p_+p(B) \) and \(\gamma \leq \alpha N(1 + \frac{\beta}{\alpha}) \), in view of (40) and (41), Theorem 3 follows from Theorem 2 immediately.

Acknowledgements. This work is partly supported by the National Science Foundation of China (Grant Nos. 11471014, 11401575 and 11761131002).

References

1. Adimurthi, K. Sandeep, A singular Moser-Trudinger embedding and its applications, Nonlinear Differ. Equ. Appl. 13 (2007) 585-603.
2. Adimurthi, Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in \(\mathbb{R}^N \) and its applications, Int. Math. Res. Notices 13 (2010) 2394-2426.
3. D. Bonheure, E. Serra, M. Tarallo, Symmetry of extremal functions in Moser-Trudinger inequalities and a Hénon type problem in dimension two, Adv. Differential Equations 13 (2008) 105-138.
4. M. Calanchi, E. Terraneo, Non-radial maximizers for functionals with exponential non-linearity in \(\mathbb{R}^2 \), Adv. Nonlinear Stud. 5 (2005) 337-350.
5. L. Carleson, A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 110 (1986) 113-127.
6. G. Csato, P. Roy, Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions, Calc. Var. 54 (2015) 2341-2366.
7. D. G. de Figueiredo, E. M. dos Santos, O. H. Miyagaki, Sobolev spaces of symmetric functions and applications, J. Funct. Anal. 261 (2011) 3735-3770.
8. D. G. de Figueiredo, J. M. do Ó, E. M. dos Santos, Trudinger-Moser inequalities involving fast growth and weights with strong vanishing at zero, Proc. Amer. Math. Soc. 144 (2016) 3369-3380.
9. W. Ding, J. Jost, J. Li, G. Wang, The differential equation \(\Delta u = 8\pi - 8\pi e^u \) on a compact Riemann Surface, Asian J. Math. 1 (1997) 230-248.
10. J. M. do Ó, M. de Souza, A sharp inequality of Trudinger-Moser type and extremal functions in \(H^{1,p}(\mathbb{R}^n) \), J. Differential Equations 258 (2015) 4062-4101.
11. J. M. do Ó, M. de Souza, Trudinger-Moser inequality on the whole plane and extremal functions, Commun. Contemp. Math. 18 (2016) 1550054.
12. M. Flucher, Extremal functions for Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv. 67 (1992) 471-497.
13. S. Iula, G. Mancini, Extremal functions for singular Moser-Trudinger embeddings, Nonlinear Anal. 156 (2017) 215-248.
14. S. Kichenassamy, L. Veron, Singular solution of the \(p \)-Laplace equation, Math. Ann. 275 (1986) 599-615.
15. X. Li, An improved singular Trudinger-Moser inequality in \(\mathbb{R}^N \) and its extremal functions, J. Math. Anal. Appl. 462 (2018) 1109-1129.
[16] X. Li, Y. Yang, Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space, J. Differential Equations 264 (2018) 4901-4943.
[17] Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations 14 (2001) 163-192.
[18] Y. Li, The existence of the extremal function of Moser-Trudinger inequality on compact Riemannian manifolds, Sci. China A 48 (2005) 618-648.
[19] Y. Li, B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^N, Indiana Univ. Math. J. 57 (2008) 451-480.
[20] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis 12 (1988) 1203-1219.
[21] K. Lin, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc. 348 (1996) 2663-2671.
[22] P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, part I, Rev. Mat. Iberoamericana 1 (1985) 145-201.
[23] G. Lu, Y. Yang, The sharp constant and extremal functions for Moser-Trudinger inequalities involving L^p norms, Discrete and Continuous Dynamical Systems 25 (2009) 963-979.
[24] J. Moser, A sharp form of an inequality by N.Trudinger, Indian Univ. Math. J. 20 (1971) 1077-1091.
[25] V. Nguyen, Improved Moser-Trudinger inequality for functions with mean value zero in \mathbb{R}^n and its extremal functions, Nonlinear Anal. 163 (2017) 127-145.
[26] V. Nguyen, Improved Moser-Trudinger inequality of Tintarev type in dimension n and the existence of its extremal functions, Ann. Glob. Anal. Geom. (in press), DOI: https://doi.org/10.1007/s10455-018-9599-z.
[27] W. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J. 31 (1982) 801-807.
[28] J. Peetre, Espaces d’interpolation et theoreme de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966) 279-317.
[29] S. Pohozaev, The Sobolev embedding in the special case $p=n$, Proceedings of the technical scientific conference on advances of scientific researching 1964-1965, Mathematics sections, 158-170, Moscow. Energet. Inst., Moscow, 1965.
[30] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964) 247-302.
[31] D. Smets, M. Willem, J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math. 4 (2002) 467-480.
[32] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150.
[33] N. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473-484.
[34] Y. Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal. 239 (2006) 100-126.
[35] Y. Yang, Corrigendum to: “A sharp form of Moser-Trudinger inequality in high dimension” [J. Funct. Anal. 239 (2006) 100-126; MR2258218], J. Funct. Anal. 242 (2007) 669-671.
[36] Y. Yang, A sharp form of the Moser-Trudinger inequality on a compact Riemannian surface, Trans. Amer. Math. Soc. 359 (2007) 5761-5776.
[37] Y. Yang, Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two, J. Differential Equations 258 (2015) 3161-3193.
[38] Y. Yang, Y. Zhu, Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal. 272 (2017) 3347-3374.
[39] V.I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Sov. Math. Dokl. 2 (1961) 746-749.
[40] A. Yuan, X. Zhu, An improved singular Trudinger-Moser inequality in unit ball, J. Math. Anal. Appl. 435 (2016) 244-252.
[41] J. Zhu, Improved Moser-Trudinger inequality involving L^p norm in n dimensions, Advanced Nonlinear Study 14 (2014) 273-293.