Hochschild homology and cohomology for involutive A_∞-algebras

Ramsès Fernàndez-València

Abstract

We present a study of the homological algebra of bimodules over A_∞-algebras endowed with an involution. Furthermore we introduce a derived description of Hochschild homology and cohomology for involutive A_∞-algebras.

Contents

1 Introduction 1
2 Basic concepts 2
 2.1 Coalgebras and bicomodules .. 2
 2.2 A_∞-algebras and A_∞-quasi-isomorphisms 5
 2.3 A_∞-bimodules ... 7
3 The involutive tensor product 9
4 Involutive Hochschild homology and cohomology 11
 4.1 Hochschild homology for involutive A_∞-algebras 11
 4.2 Hochschild cohomology for involutive A_∞-algebras 12

1 Introduction

Hochschild homology and cohomology are homology and cohomology theories developed for associative algebras which appears naturally when one studies its deformation theory. Furthermore, Hochschild homology plays a central role in topological field theory in order to describe the closed states part of a topological field theory.

An involutive version of Hochschild homology and cohomology was developed by Braun in [Bra14] by considering associative and A_∞-algebras endowed with an involution and morphisms which commute with the involution.

5th January 2016
Email: ramses.fernandez.valencia@gmail.com
This paper pretends to take a step further with regards to [FVG15]. Whilst in the latter paper we develop the homological algebra required to give a derived version of Braun's involutive Hochschild homology and cohomology for involutive associative algebras, this research is devoted to develop the machinery required to give a derived description of involutive Hochschild homology and cohomology for A_∞-algebras endowed with an involution.

As in [FVG15], this research has been driven by the author’s research on Costello’s classification of topological conformal field theories [Cos07], where he proves that an open 2-dimensional theory is equivalent to a Calabi-Yau A_∞-category. In [FV15], the author extends the picture to unoriented topological conformal field theories, where open theories now correspond to involutive Calabi-Yau A_∞-categories, and the closed state space of the universal open-closed extension turns out to be the involutive Hochschild chain complex of the open state algebra.

2 Basic concepts

2.1 Coalgebras and bicomodules

An involutive graded coalgebra over a field K is a graded K-module C endowed with a coproduct $\Delta : C \to C \otimes_K C$ of degree zero together with an involution $\star : C \to C$ such that:

1. The map Δ makes the following diagram commute

$$
\begin{array}{ccc}
C & \xrightarrow{\Delta} & C \otimes_K C \\
\downarrow \Delta & & \downarrow \Delta \otimes \text{Id}_C \\
C \otimes_C C & \xrightarrow{\text{Id}_C \otimes \Delta} & C \otimes_K \tilde{C} \otimes_K C
\end{array}
$$

2. The involution and Δ are compatible: $\Delta(c^\star) = (\Delta(c))^\star$, for $c \in C$, where the involution on $C \otimes_K C$ is defined as: $(c_1 \otimes c_2)^\star = c_2^\star \otimes c_1^\star$, for $c_1, c_2 \in C$.

An involutive coderivation on an involutive coalgebra C is a map $L : C \to C$ preserving involutions and making the following diagram commutative:

$$
\begin{array}{ccc}
C & \xrightarrow{L} & C \\
\downarrow \Delta & & \downarrow \Delta \\
C \otimes_K C & \xrightarrow{L \otimes \text{Id}_C + \text{Id}_C \otimes L} & C \otimes_K C
\end{array}
$$

Denote with $\text{iCoder}(-)$ the spaces of coderivations of involutive coalgebras. Observe that $\text{iCoder}(-)$ are Lie subalgebras.

An involutive differential graded coalgebra is an involutive coalgebra C equipped with an involutive coderivation $b : C \to C$ of degree -1 such that $b^2 = b \circ b = 0$.

2
A morphism between two involutive coalgebras \(C \) and \(D \) is a graded map \(C \xrightarrow{f} D \) compatible with the involutions which makes the following diagram commutative:

\[
\begin{array}{ccc}
C & f & D \\
\Delta_C & \sim & \Delta_D \\
C \otimes_K C & \sim & D \otimes_K D
\end{array}
\]

Example 2.1. The cotensor coalgebra of an involutive graded \(K \)-bimodule \(A \) is defined as \(\hat{T}A = \bigoplus_{n \geq 0} A \otimes_K n \). We define an involution in \(A \otimes_K n \) by stating:

\[
(a_1 \otimes \cdots \otimes a_n)^* := (a_n^* \otimes \cdots \otimes a_1^*).
\]

The coproduct on \(\hat{T}A \) is given by:

\[
\Delta(a_1 \otimes \cdots \otimes a_n) = \sum_{i=0}^{n} (a_1 \otimes \cdots \otimes a_i) \otimes (a_{i+1} \otimes \cdots \otimes a_n).
\]

Observe that \(\Delta \) commutes with the involution.

Proposition 2.2. There is a canonical isomorphism of complexes:

\[
\text{iCoder}(TSA) \cong \text{Hom}_{A^{-} \text{\text{-}bimod}}(\text{Bar}(A), A).
\]

Proof. The proof follows the arguments in Proposition 4.1.1 [FVG15], where we show the result for the non-involutive setting in order to restrict to the involutive one.

Since \(\text{Bar}(A) = A \otimes_K TSA \otimes_K A \), the degree \(-n\) part of \(\text{Hom}_{A^{-} \text{\text{-}bimod}}(\text{Bar}(A), A) \) is the space of degree \(-n\) linear maps \(TSA \to A \), which is isomorphic to the space of degree \((-n - 1)\) linear maps \(TSA \to SA \). By the universal property of the tensor coalgebra, there is a bijection between degree \((-n - 1)\) linear maps \(TSA \to SA \) and degree \((-n - 1)\) coderivations on \(TSA \). Hence the degree \(n \) part of \(\text{Hom}_{A^{-} \text{\text{-}bimod}}(\text{Bar}(A), A) \) is isomorphic to the degree \(n \) part of \(\text{Coder}(TSA) \). One checks directly that this isomorphism restricts to an isomorphism of graded vector spaces

\[
\text{Hom}_{A^{-} \text{\text{-}bimod}}(\text{Bar}(A), A) \cong \text{iCoder}(TSA).
\]

Finally, one can check that the differentials coincide under the above isomorphism, cf. Section 12.2.4 [LV12].

Remark 2.3. Proposition 2.2 allows us to think of a coderivation as a map \(\hat{T}A \to A \). Such a map \(f : \hat{T}A \to A \) can be described as a collection of maps \(\{f_n : A \otimes^n \to A\} \) which will be called the components of \(f \).
If b is a coderivation of degree -1 on \widehat{TA} with $b_n : A^\otimes_k S^n \to A$, then b^2 becomes a linear map of degree -2 with

$$b_n^2 = \sum_{i+j=n+1}^{n-1} \sum_{k=0}^{n-1} b_i \circ \left(\text{Id}^\otimes_k \circ b_j \circ \text{Id}^\otimes_k \right).$$

The coderivation b will be a differential for \widehat{TA} if, and only if, all the components b_n^2 vanish.

Given a (involutive) graded \mathbb{K}-bimodule A, we denote the suspension of A by SA and define it as the graded (involutive) \mathbb{K}-bimodule with $SA_i = A_{i-1}$. Given such a bimodule A, we define the following morphism of degree -1 induced by the identity $s : A \to SA$ by $s(a) = a$.

Lemma 2.4 (cf. Lemma 1.3 [GJ90]). If $b_k : (SA)^\otimes_k \to SA$ is an involutive linear map of degree -1, we define $m_k : A^\otimes_k \to A$ as $m_k = s^{-1} \circ b_k \circ s^\otimes_k$. Under these conditions:

$$b_k(a_1 \otimes \cdots \otimes a_k) = \sigma m_k(a_1 \otimes \cdots \otimes a_k),$$

where $\sigma := (-1)^{\left(\sum_{i=1}^{n} \left|a_{1}\right| + \cdots + \left|a_{i} \right| - i \right)}$.

Proof. The proof follows the arguments of Lemma 1.3 [GJ90]. We only need to observe that the involutions are preserved as all the maps involved in the proof are assumed to be involutive. □

Let $\overline{m}_k := \sigma m_k$, then we have $b_k(a_1 \otimes \cdots \otimes a_k) = \overline{m}_k(a_1 \otimes \cdots \otimes a_k)$.

Proposition 2.5. Given an involutive graded \mathbb{K}-bimodule A, let $e_i = |a_1| + \cdots + |a_i| - i$ for $a_i \in A$ and $1 \leq i \leq n$. A boundary map b on \widehat{TA} is given in terms of the maps \overline{m}_k by the following formula:

$$b_n(a_1 \otimes \cdots \otimes a_n) = \sum_{k=0}^{n} \sum_{i=1}^{n-k+1} (-1)^{e_{i-1}} (a_1 \otimes \cdots \otimes a_{i-1} \otimes \overline{m}_k(a_i \otimes \cdots \otimes a_{i+k-1}) \otimes \cdots \otimes a_n).$$

Proof. This proof follows the arguments of Proposition 1.4 [GJ90]. The only detail that must be checked is that b_n preserves involutions:

$$b_n((a_1 \otimes \cdots \otimes a_n)^*) = \sum_{j,k} \pm (a_n^* \otimes \cdots \otimes a_j^* \otimes \overline{m}_k(a_{j-1}^* \otimes \cdots \otimes a_{k+1}^*) \otimes \cdots \otimes a_1^*))$$

$$= \sum_{j,k} \pm (a_1^* \otimes \cdots \otimes \overline{m}_k(a_{j-1}^* \otimes \cdots \otimes a_{j-1}^*) \otimes a_j \otimes \cdots \otimes a_n)^*$$

$$= (b_n(a_1 \otimes \cdots \otimes a_n))^*.$$ □

Given an involutive coalgebra C with coproduct ρ and counit ε, for an involutive graded vector space P, a left coaction is a linear map $\Delta^L : P \to C \otimes_k P$ such that

1. $(\text{Id} \otimes \rho) \circ \Delta^L = (\rho \otimes \text{Id}) \circ \Delta^L$;
2. $(\text{Id} \otimes \varepsilon) \circ \Delta^L = \text{Id}.$
Analagously we introduce the concept of right coaction.

Given an involutive coalgebra \((C, \rho, \varepsilon)\) with involution \(*\) we define an involutive \(C\)-bicomodule as an involutive graded vector space \(P\) with involution \(†\), a left coaction \(\Delta^L : P \to C \otimes \mathbb{K} P\) and a right coaction \(\Delta^R : P \to P \otimes \mathbb{K} C\) which are compatible with the involutions, that is the diagrams below commute:

\[
\begin{array}{c}
P \xrightarrow{(-)^*} P \\
\xrightarrow{\Delta^L} C \otimes \mathbb{K} P \\
\end{array} \quad \begin{array}{c}
P \xrightarrow{\Delta^R} C \otimes \mathbb{K} P \\
\xrightarrow{\Delta^L \otimes \text{Id}_C} C \otimes \mathbb{K} P \otimes \mathbb{K} C \\
\end{array}
\]

Where

\[
\begin{array}{c}
(-, -)^* : C \otimes \mathbb{K} P \to P \otimes \mathbb{K} C \\
c \otimes p \mapsto p^* \otimes c^* \\
\end{array}
\]

For two involutive \(C\)-bicomodules \((P_1, \Delta^L_1)\) and \((P_2, \Delta^L_2)\), a morphism \(P_1 \overset{f}{\to} P_2\) is defined as an involutive morphism making diagrams below commute:

\[
\begin{array}{c}
P_1 \overset{\Delta^L_1}{\to} C \otimes \mathbb{K} P_1 \\
\xrightarrow{\text{Id}_C \otimes f} C \otimes \mathbb{K} P_2 \\
\end{array} \quad \begin{array}{c}
P_1 \overset{\Delta^R_1}{\to} P_1 \otimes \mathbb{K} C \\
\xrightarrow{\text{Id}_C \otimes f} P_2 \otimes \mathbb{K} C \\
\end{array}
\]

\[
\begin{array}{c}
P_1 \overset{\Delta^L_1}{\to} C \otimes \mathbb{K} P_2 \\
\xrightarrow{\Delta^L_1 \otimes \text{Id}_C} C \otimes \mathbb{K} P_1 \otimes \mathbb{K} C \\
\end{array} \quad \begin{array}{c}
P_1 \overset{\Delta^R_1}{\to} C \otimes \mathbb{K} P_2 \otimes \mathbb{K} C \\
\xrightarrow{\Delta^L_1 \otimes \text{Id}_C} C \otimes \mathbb{K} P_1 \otimes \mathbb{K} C \\
\end{array}
\]

\[\text{(4)}\quad \text{(5)}\]

2.2 \(A_{\infty}\)-algebras and \(A_{\infty}\)-quasi-isomorphisms

An involutive \(\mathbb{K}\)-algebra is an algebra \(A\) over a field \(\mathbb{K}\) endowed with a \(\mathbb{K}\)-linear map (an involution) \(* : A \to A\) satisfying:

1. \(0^* = 0\) and \(1^* = 1\);
2. \((a^*)^* = a\) for each \(a \in A\);
3. \((a_1a_2)^* = a_2^*a_1^*\) for every \(a_1, a_2 \in A\).

Example 2.6.

1. Any commutative algebra \(A\) becomes an involutive algebra if we endow it with the identity as involution.

2. Let \(V\) an involutive vector space. The tensor algebra \(\bigoplus_n V^\otimes_n\) becomes an involutive algebra if we endow it with the following involution: \((v_1, \ldots, v_n)^* = (v_n^*, \ldots, v_1^*)\). This example is particularly important and we will come back to it later on.

3. For a discrete group \(G\), the group ring \(\mathbb{K}[G]\) is an involutive \(\mathbb{K}\)-algebra with involution given by inversion \(g^* = g^{-1}\).

Given an involutive algebra \(A\), an involutive \(A\)-bimodule \(M\) is an \(A\)-bimodule endowed with an involution satisfying \((a_1ma_2)^* = a_2^*m^*a_1^*\).
Given two involutive A-bimodules M and N, a *involutive morphism* between them is a morphism of A-bimodules $f : M \to N$ compatible with the involutions.

Lemma 2.7. The composition of involutive morphisms is an involutive morphism.

Proof. Given $f : M \to N$ and $g : N \to P$ two involutive morphisms:

$$(f \circ g)(m^*) = f((g(m))^*) = f((g(m))^*) = f(g(m))^* \quad \square$$

Involutive A-bimodules and involutive morphisms form the category $A\text{-}iBimod$.

Given a (involutive) graded \mathbb{K}-module A, we denote the suspension of A by SA and define it as the graded (involutive) \mathbb{K}-module with $SA_i = A_{i-1}$. An *involutive A_∞-algebra* is an involutive graded vector space A endowed with involutive morphisms $b_n : (SA)^{\otimes n} \to SA$, $n \geq 1$,

$$b_n : (SA)^{\otimes n} \to SA, \; n \geq 1, \quad (6)$$

of degree $n - 2$ such that the identity below holds:

$$\sum_{i+j+l=n} (-1)^{i+j+l+|b|} b_{i+1+j+1} \circ (\text{Id}^{\otimes j} \otimes b_j \otimes \text{Id}^{\otimes l}) = 0, \; \forall n \geq 1. \quad (7)$$

Remark 2.8. Condition (7) says, in particular, that $b_2^2 = 0$.

Example 2.9.

1. The concept A_∞-algebra is a generalization for that of a differential graded algebra. Indeed, if the maps $b_n = 0$ for $n \geq 3$ then A is a differential \mathbb{Z}-graded algebra and conversely an A_∞-algebra A yields a differential graded algebra if we require $b_n = 0$ for $n \geq 3$.

2. The definition of A_∞-algebra was introduced by Stasheff whose motivation was the study of the graded abelian group of singular chains on the based loop space of a topological space.

For an involutive A_∞-algebra (A, b_n), the involutive bar complex is the involutive differential graded coalgebra $\text{Bar}(A) = \hat{T}SA$, where we endow $\text{Bar}(A)$ with a coderivation defined by $b_i = s^{-1} \circ b_i \circ s^{\otimes i}$ (cf. Definition 1.2.2.3 [LH03]).

Given two involutive A_∞-algebras C and D, a *morphism* of A_∞-algebras $f : C \to D$ is an involutive morphism of degree 0 between the associated involutive differential graded coalgebras $\text{Bar}(C) \to \text{Bar}(D)$.

It follows from Proposition 2.2 that the definition of an involutive A_∞-algebra can be summarized by saying that it is an involutive graded \mathbb{K}-module A equipped with an involutive coderivation on $\text{Bar}(A)$ of degree -1.

Remark 2.10. From [Bra14, Definition 2.8], we have that a morphism of involutive A_∞-algebras $f : C \to D$ can be given by an involutive morphism of differential graded coalgebras $\text{Bar}(C) \to \text{Bar}(D)$, that is, a series of involutive homogeneous maps of degree zero

$$f_n : (SC)^{\otimes n} \to SD, \; n \geq 1,$$
such that
\[\sum_{i+j+k=n} f_{i+j+k} \otimes \left(\text{Id}_{SC} \otimes b_j \otimes \text{Id}_{SC} \right) = \sum_{i_1+\cdots+i_s=n} b_k \circ (f_{i_1} \otimes \cdots \otimes f_{i_s}). \] (8)

The composition \(f \circ g \) of two morphisms of involutive \(\mathcal{A}_{\infty} \)-algebras is given by
\[(f \circ g)_n = \sum_{i_1+\cdots+i_s=n} f_s \circ (g_{i_1} \otimes \cdots \otimes g_{i_s}); \]
the identity on \(SC \) is defined as \(f_1 = \text{Id}_{SC} \) and \(f_n = 0 \) for \(n \geq 2 \).

For an involutive \(\mathcal{A}_{\infty} \)-algebra \(A \), we define its associated homology algebra \(H_\bullet(A) \) as the homology of the differential \(b_1 \) on \(A \): \(H_\bullet(A) = H_\bullet(A, b_1) \).

Remark 2.11. Endowed with \(b_2 \) as multiplication, the homology of an \(\mathcal{A}_{\infty} \)-algebra \(A \) is an associative graded algebra, whereas \(A \) is not usually associative.

Let \(f : A_1 \to A_2 \) a morphism of involutive \(\mathcal{A}_{\infty} \)-algebras with components \(f_n \); for \(n = 1 \), \(f_1 \) induces a morphism of algebras \(H_\bullet(A_1) \to H_\bullet(A_2) \). We say that \(f : A_1 \to A_2 \) is an \(\mathcal{A}_{\infty} \)-quasi-isomorphism if \(f_1 \) is a quasi-isomorphism.

2.3 \(\mathcal{A}_{\infty} \)-bimodules

Let \((A, b^A) \) be an involutive \(\mathcal{A}_{\infty} \)-algebra. An **involutive \(\mathcal{A}_{\infty} \)-bimodule** is a pair \((M, b^M)\) where \(M \) is a graded involutive \(\mathbb{K} \)-module and \(b^M \) is an involutive differential on the Bar \((A)\)-bicomodule
\[
\text{Bar}(M) := \text{Bar}(A) \otimes_{\mathbb{K}} SM \otimes_{\mathbb{K}} \text{Bar}(A).
\]

Let \((M, b^M)\) and \((N, b^N)\) be two involutive \(\mathcal{A}_{\infty} \)-bimodules. We define a **morphism of involutive \(\mathcal{A}_{\infty} \)-bimodules** \(f : M \to N \) as a morphism of \(\text{Bar}(A) \)-bicomodules
\[
F : \text{Bar}(M) \to \text{Bar}(N)
\]
such that \(b^N \circ F = F \circ b^M \).

Proposition 2.12. If \(f : A_1 \to A_2 \) is a morphism of involutive \(\mathcal{A}_{\infty} \)-algebras, then \(A_2 \) becomes an involutive bimodule over \(A_1 \).

Proof. As we are assuming that both \(A_1 \) and \(A_2 \) are involutive \(\mathcal{A}_{\infty} \)-algebras and that \(f \) is involutive, we do not need to care about involutions. When it comes to the bimodule structure, this result holds as \(\text{Bar}(A_2) \) is made into a bicomodule of \(\text{Bar}(A_1) \) by the homomorphism of involutive coalgebras \(f : \text{Bar}(A_1) \to \text{Bar}(A_2) \), see Proposition 3.4 \cite{GJ90}.

Remark 2.13 (Section 5.1 \cite{KS09}). Let \(i\text{Vect} \) be the category of involutive \(\mathbb{Z} \)-graded vector spaces and involutive morphisms. For an involutive \(\mathcal{A}_{\infty} \)-algebra \(A \), involutive \(A \)-bimodules and their respective morphisms form a differential graded category. Indeed, following \cite{KS09}, Definition 5.1.5: let \(A \) be an
involutive A_∞-algebra and let us define the category $\text{A-\textit{iBimod}}$ whose class of objects are involutive A-bimodules and where $\text{Hom}_{\text{A-\textit{iBimod} }}(M, N)$ is:

$$\text{Hom}_{i\text{Vect}}^{\star}(\text{Bar}(A) \otimes_K SM \otimes_K \text{Bar}(A), \text{Bar}(A) \otimes_K SN \otimes_K \text{Bar}(A)),$$

Let us recall that

$$\text{Hom}_{i\text{Vect}}^{\star}(\text{Bar}(A) \otimes_K SM \otimes_K \text{Bar}(A), \text{Bar}(A) \otimes_K SN \otimes_K \text{Bar}(A))$$

is by definition

$$\prod_{i \in Z} \text{Hom}_{i\text{Vect}}((\text{Bar}(A) \otimes_K SM \otimes_K \text{Bar}(A))^i, (\text{Bar}(A) \otimes_K SN \otimes_K \text{Bar}(A))^{i+n}).$$

The morphism

$$\text{Hom}_{i\text{Vect}}^{n+1}(\text{Bar}(A) \otimes_K SM \otimes_K \text{Bar}(A), \text{Bar}(A) \otimes_K SN \otimes_K \text{Bar}(A)) \to \text{Hom}_{i\text{Vect}}^{n+1}(\text{Bar}(A) \otimes_K SM \otimes_K \text{Bar}(A), \text{Bar}(A) \otimes_K SN \otimes_K \text{Bar}(A))$$

sends a family $\{f_i\} \in Z$ to a family $\{b^N \circ f_i - (-1)^n f_{i+1} \circ b^M\} \in Z$. Observe that the zero cycles in $\text{Hom}_{i\text{Vect}}^{\star}(\text{Bar}(A) \otimes_K M \otimes_K \text{Bar}(A), \text{Bar}(A) \otimes_K N \otimes_K \text{Bar}(A))$ are precisely the morphisms of involutive A-bimodules. This morphism defines a differential, indeed: for fixed indices $i, n \in Z$ we have

$$d^2(f_i) = d(b^N f_i - (-1)^n f_{i+1} b^M)$$

$$= b^N (b^N f_i - (-1)^n f_{i+1} b^M) - (-1)^n (b^N f_i - (-1)^n f_{i+1} b^M) b^M$$

$$= (-1)^n b^N f_{i+1} b^M - (-1)^{n+1} b^N f_{i+1} b^M = 0,$$

where (!) points out the fact that $b^N \circ b^N = 0 = b^M \circ b^M$.

For a morphism $\phi \in \text{Hom}_{i\text{Vect}}^{\star}(\text{Bar}(A) \otimes_K M \otimes_K \text{Bar}(A), \text{Bar}(A) \otimes_K N \otimes_K \text{Bar}(A))$ and an element $x \in \text{Bar}(A) \otimes_K M \otimes_K \text{Bar}(A)$, $\text{Hom}_{\text{A-\textit{iBimod} }}(M, N)$ becomes an involutive complex if we endowed it with the involution $\phi^\ast(x) = \phi(x^\ast)$.

The functor $\text{Hom}_{\text{A-\textit{iBimod} }}(M, _)$ pairs an involutive A-bimodule F with the involutive K-vector space $\text{Hom}_{\text{A-\textit{iBimod} }}(M, F)$ of involutive homomorphisms. Given a homomorphism $f : F \to G$, for $F, G \in \text{Obj } (\text{A-\textit{iBimod})}$, $\text{Hom}_{\text{A-\textit{iBimod} }}(M, _)$ pairs f with the involutive map:

$$f_* : \text{Hom}_{\text{A-\textit{iBimod} }}(M, F) \to \text{Hom}_{\text{A-\textit{iBimod} }}(M, G).$$

We prove that f_* preserves involutions:

$$(f_* \phi^\ast)(x) = (f \circ \phi^\ast)(x) = f(\phi(x^\ast)) = f((\phi(x))^\ast) = ((f(\phi(x)))^\ast) = (f_* \phi)(x^\ast).$$

We define the functor $\text{Hom}_{\text{A-\textit{iBimod} }}(_, M)$, which sends an involutive homomorphism $f : F \to G$, for $F, G \in \text{Obj } (\text{A-\textit{iBimod})}$, to

$$\varphi : \text{Hom}_{\text{A-\textit{iBimod} }}(G, M) \to \text{Hom}_{\text{A-\textit{iBimod} }}(F, M).$$

We prove that φ preserves involutions:

$$(\varphi \phi^\ast)(x) = (\phi \circ \varphi^\ast)(x) = \phi((\varphi(x))^\ast) = \phi((\phi(x)))^\ast) = (\varphi \phi)(x^\ast).$$
Let us check that the involution is preserved:

\[\varphi(\phi^*)(x) = (\phi^* \circ f)(x) = \varphi(f(x)^*) = \varphi(f(x^*)) = \varphi(\phi)(x^*) = (\varphi(\phi))^*(x) \]

Let \(A \) be an involutive \(A_\infty \)-algebra and let \((M, b^M) \) and \((N, b^N) \) be involutive \(A \)-bimodules. For \(f, g : M \to N \) morphisms of \(A \)-bimodules, an \(A_\infty \)-homotopy between \(f \) and \(g \) is a morphism \(h : M \to N \) of \(A \)-bimodules satisfying

\[f - g = b^N \circ h + h \circ b^M. \]

We say that two morphisms \(u : M \to N \) and \(v : N \to M \) of involutive \(A \)-bimodules are homotopy equivalent if \(u \circ v \sim \text{Id}_N \) and \(v \circ u \sim \text{Id}_M \).

3 The involutive tensor product

For an involutive \(A_\infty \)-algebra \(A \) and involutive \(A \)-bimodules \(M \) and \(N \), the involutive tensor product \(M \widetilde{\otimes}_\infty N \) is the following object in \(i\text{Vect}_K \):

\[
M \widetilde{\otimes}_\infty N := \frac{M \otimes_K \text{Bar}(A) \otimes_K N}{(m^* \otimes a_1 \otimes \cdots \otimes a_k \otimes n - m \otimes a_1 \otimes \cdots \otimes a_k \otimes n^*)}
\]

Observe that, for an element of \(M \widetilde{\otimes}_\infty N \) of the form \(m \otimes a_1 \otimes \cdots \otimes a_k \otimes n \), we have: \((m \otimes a_1 \otimes \cdots \otimes a_k \otimes n)^* = m^* \otimes a_1 \otimes \cdots \otimes a_k \otimes n = m \otimes a_1 \otimes \cdots \otimes a_k \otimes n^*\).

Proposition 3.1. For an involutive \(A_\infty \)-algebra \(A \) and involutive \(A \)-bimodules \(M, N \) and \(L \), the following isomorphism holds:

\[
\tau : \text{Hom}_{i\text{Vect}} \left(M \widetilde{\otimes}_\infty N, L \right) \cong \text{Hom}_{i\text{Vect}} \left(\frac{M \otimes_K \text{Bar}(A)}{\sim}, \text{Hom}_{A^{-\text{bimod}}}(N, L) \right),
\]

where in \(M \otimes_K \text{Bar}(A) : (m \otimes a_1 \otimes \cdots \otimes a_k)^* = m^* \otimes a_1 \otimes \cdots \otimes a_k, \sim \) denotes the relation \(m \otimes a_1 \otimes \cdots \otimes a_k = m^* \otimes a_1 \otimes \cdots \otimes a_k \) and \(\frac{M \otimes_K \text{Bar}(A)}{\sim} \) has the identity map as involution.

Proof. Let \(f : M \widetilde{\otimes}_\infty N \to L \) be an involutive map. We define:

\[
\tau(f) := \tau_f \in \text{Hom}_{i\text{Vect}} \left(\frac{M \otimes_K \text{Bar}(A)}{\sim}, \text{Hom}_{A^{-\text{bimod}}}(N, L) \right),
\]

where \(\tau_f \) of \(M \otimes a_1 \otimes \cdots \otimes a_k \) := \(\tau_f [m \otimes a_1 \otimes \cdots \otimes a_k] \in \text{Hom}_{A^{-\text{bimod}}}(N, L) \). Finally, for \(n \in N \) we define:

\[
\tau_f [m \otimes a_1 \otimes \cdots \otimes a_k](n) := f(m \otimes a_1 \otimes \cdots \otimes a_k \otimes n).
\]

We need to check that \(\tau \) preserves the involutions, indeed:

\[
\tau_f^*[m \otimes a_1 \otimes \cdots \otimes a_k](n) = f^*(m \otimes a_1 \otimes \cdots \otimes a_k \otimes n) =
\]

\[
= (f(m \otimes a_1 \otimes \cdots \otimes a_k \otimes n))^* = (\tau_f)^*[m \otimes a_1 \otimes \cdots \otimes a_k](n).
\]

In order to see that \(\tau \) is an isomorphism, we build an inverse. Let us consider an involutive map

\[
g_1 : \frac{M \otimes_K \text{Bar}(A)}{\sim} \to \text{Hom}_{A^{-\text{bimod}}}(N, L)
\]

\[
m \otimes a_1 \otimes \cdots \otimes a_k \mapsto g_1[m \otimes a_1 \otimes \cdots \otimes a_k]
\]
and define a map
\[
g_2 : M \boxtimes_{\infty} N \to L
\]
\[
m \otimes a_1 \otimes \cdots \otimes a_k \otimes n \mapsto g_1[m \otimes a_1 \otimes \cdots \otimes a_k](n)
\]
We check that \(g_2\) is involutive:
\[
g_2((m \otimes a_1 \otimes \cdots \otimes a_k \otimes n)^*) = g_2(m^* \otimes a_1 \otimes \cdots \otimes a_k \otimes n) =
\]
\[
= g_1[m^* \otimes a_1 \otimes \cdots \otimes a_k](n) = (g_1[m \otimes a_1 \otimes \cdots \otimes a_k])^*(n)
\]
\[
= (g_1[m \otimes a_1 \otimes \cdots \otimes a_k](n))^* = (g_2(m \otimes a_1 \otimes \cdots \otimes a_k \otimes n))^*.
\]
The rest of the proof is standard and follows the steps of Theorem 2.75 [Rot09] or Proposition 2.6.3 [Wei94].

For an \(A\)-bimodule \(M\), let us define \((-)\boxtimes_{\infty} M\) as the covariant functor
\[
\begin{array}{c}
A-\text{iBimod} \\
B \xrightarrow{\sim} B\boxtimes_{\infty} M
\end{array}
\]
This functor sends a map \(B_1 \xrightarrow{f} B_2\) to \(B_1 \boxtimes_{\infty} M \xrightarrow{f \boxtimes_{\infty} \text{Id}_M} B_2 \boxtimes_{\infty} M\).

The functor \((-)\boxtimes_{\infty} M\) is involutive: let us consider an involutive map \(f : B_1 \to B_2\) and its image under the tensor product functor, \(g = f \boxtimes_{\infty} \text{Id}_M\). Hence:
\[
g((b,a)^*) = g(b^*,a) = (f(b^*),a) = (f(b),a)^* = (g(b,a))^*.
\]
Given an involutive \(A_{\infty}\)-algebra \(A\), we say that an involutive \(A\)-bimodule \(F\) is \textit{flat} if the tensor product functor \((-)\boxtimes_{\infty} F : A-\text{iBimod} \to A-\text{iBimod}\) is exact, that is: it takes quasi-isomorphisms to quasi-isomorphisms. From now on, we will assume that all the involutive \(A\)-bimodules are flat.

Lemma 3.2. If \(P\) and \(Q\) are homotopy equivalent as involutive \(A_{\infty}\)-bimodules then, for every involutive \(A_{\infty}\)-bimodule \(M\), the following quasi-isomorphism in the category of involutive \(A_{\infty}\)-bimodules holds:
\[
P \boxtimes_{\infty} M \simeq Q \boxtimes_{\infty} M.
\]
Proof. Let \(f : P \simeq Q : g\) be a homotopy equivalence. It is clear that
\[
h \sim k \Rightarrow h \boxtimes_{\infty} \text{Id}_M \sim k \boxtimes_{\infty} \text{Id}_M.
\]
Therefore, we have:
\[
P \boxtimes_{\infty} M \to Q \boxtimes_{\infty} M \to P \boxtimes_{\infty} M
\]
\[
p \boxtimes a \mapsto f(p) \boxtimes a \mapsto g(f(p)) \boxtimes a
\]
and
\[
Q \boxtimes_{\infty} M \to P \boxtimes_{\infty} M \to Q \boxtimes_{\infty} M
\]
\[
q \boxtimes a \mapsto g(q) \boxtimes a \mapsto f(g(q)) \boxtimes a
\]
the result follows since \(f \circ g \sim \text{Id}_Q\) and \(g \circ f \sim \text{Id}_P\).

Lemma 3.3. Let A be an involutive A_{∞}-algebra. If P and Q are homotopy equivalent as involutive A-bimodules then, for every involutive A-bimodule M, the following quasi-isomorphism holds:

$$\text{Hom}_{A_{\text{bimod}}} (P, M) \simeq \text{Hom}_{A_{\text{bimod}}} (Q, M).$$

Proof. Consider $f : P \to Q$ a homotopy equivalence and let $g : Q \to P$ be its homotopy inverse. If $[-,-]$ denotes the homotopy classes of morphisms, then both f and g induce the following maps:

$$f_* : [P, M] \to [Q, M], \quad \alpha \mapsto \alpha \circ g$$
$$g_* : [Q, M] \to [P, M], \quad \beta \mapsto \beta \circ f$$

Now we have:

$$f_* \circ g_* \circ \beta = f_* \circ \beta \circ f = \beta \circ g \circ f \sim \beta;$$
$$g_* \circ f_* \circ \alpha = g_* \circ \alpha \circ g = \alpha \circ f \circ g \sim \alpha. \quad \Box$$

4 Involutive Hochschild homology and cohomology

4.1 Hochschild homology for involutive A_{∞}-algebras

We define the involutive Hochschild chain complex of an involutive A_{∞}-algebra A with coefficients in an A-bimodule M as follows:

$$C^{\text{inv}}_\bullet (M, A) = M \check{\otimes} \infty \text{Bar}(A).$$

The differential is the same given in Section 7.2.4 [KS09]. The involutive Hochschild homology of A with coefficients in M is

$$\text{HH}_n (M, A) = H C^{\text{inv}}_n (M, A).$$

Lemma 4.1. For an involutive A_{∞}-algebra A and a flat A-bimodule M, the following quasi-isomorphism holds:

$$C^{\text{inv}}_\bullet (M, A) \simeq M \check{\otimes} \infty A.$$

Proof. The result follows from:

$$M \check{\otimes} \infty A \simeq M \check{\otimes} \infty \text{Bar}(A) = C^{\text{inv}}_\bullet (M, A).$$

Observe that we are using that M is flat and that there is a quasi-isomorphism between $\text{Bar}(A)$ and A (Proposition 2, Section 2.3.1 [Fer12]). \quad \Box
4.2 Hochschild cohomology for involutive A_{∞}-algebras

The involutive Hochschild cochain complex of an involutive A_{∞}-algebra A with coefficients on an A-bimodule M is defined as the \mathbb{K}-vector space

$$C^*_{inv}(A, M) := \text{Hom}_{A^{-}\text{Bimod}}(\text{Bar}(A), M),$$

with the differential defined in section 7.1 of [KS09].

Proposition 4.2. For an involutive A_{∞}-algebra A and an A-bimodule M, we have the following quasi-isomorphism: $C^*_{inv}(A, M) \simeq \text{Hom}_{A^{-}\text{Bimod}}(A, M)$.

Proof. The result follows from:

$$C^*_{inv}(A, M) = \text{Hom}_{A^{-}\text{Bimod}}(\text{Bar}(A), M) :=$$

$$\text{Hom}^{\text{inv}}_i(\text{Bar}(A) \otimes_\mathbb{K} S \text{Bar}(A) \otimes_\mathbb{K} \text{Bar}(A), \text{Bar}(A) \otimes_\mathbb{K} SM \otimes_\mathbb{K} \text{Bar}(A)) \simeq$$

$$\text{Hom}^{\text{inv}}_i(\text{Bar}(A) \otimes_\mathbb{K} SA \otimes_\mathbb{K} \text{Bar}(A), \text{Bar}(A) \otimes_\mathbb{K} SM \otimes_\mathbb{K} \text{Bar}(A)) =$$

$$\text{Hom}_{A^{-}\text{Bimod}}(A, M).$$

Here (!) points out the fact that $S \text{Bar}(A)$ is a projective resolution of SA in $i\text{Vect}$ and hence we have the quasi-isomorphism $S \text{Bar}(A) \simeq SA$. Observe that $S \text{Bar}(A)$ is projective in $i\text{Vect}$, therefore the involved functors in the proof are exact and preserve quasi-isomorphisms. \square

References

[Bra14] Christopher Braun, *Involutive A_{∞}-algebras and dihedral cohomology*, Journal of Homotopy and Related Structures 9 (2014), no. 2, 317–337. 1, 6

[Cos07] Kevin J. Costello, *Topological conformal field theories and Calabi-Yau categories*, Adv. Math. 210 (2007), no. 1, 165–214. MR 2298823 (2008f:14071) 2

[Fer12] Andrea Ferrario, *A_{∞}-bimodules in deformation quantization*, Ph.D. thesis, Eidgenössische Technische Hochschule Zürich, 2012. 11

[FV15] Ramsès Fernàndez-València, *On the structure of unoriented topological conformal field theories*, arXiv:1503.02465v1, 2015. 2

[FVG15] Ramsès Fernàndez-València and Jeffrey Giansiracusa, *On the Hochschild homology of involutive algebras*, arXiv:1505.02219v1, 2015. 2

[GJ90] Ezra Getzler and John D.S. Jones, *A_{∞}-algebras and the cyclic Bar complex*, Illinois Journal of Mathematics 34 (1990), no. 2, 256–283. 4, 7

[KS09] Maxim Kontsevich and Yan Soibelman, *Notes on A_{∞}-algebras, A_{∞}-categories and non-commutative geometry*, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 153–219. MR 2596638 (2011f:53183) 7, 11, 12
[LH03] Kenji Lefèvre-Hasegawa, *Sur les A_∞-catégories*, Ph.D. thesis, Université Paris 7 - Denis Diderot, 2003. 6

[LV12] Jean Louis Loday and Bruno Vallette, *Algebraic operads*, Grundlehren der mathematischen Wissenschaften, no. 346, Springer-Verlag, 2012. 3

[Rot09] Joseph Rotman, *An introduction to homological algebra*, second ed., Springer-Verlag, 2009. 10

[Wei94] Charles A. Weibel, *An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, no. 354, Cambridge University Press, 1994. 10