S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

Huii Zhang1*, Alian Zhang1, Changfa Guo2, Chunzhi Shi1, Yang Zhang1, Qing Liu1, Anna Sparatore3, Changqian Wang1*

1 Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China, 2Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China, 3Dipartimento di Scienze Farmaceutiche “Pietro Pratesi,” Università degli Studi di Milano, Milano, Italy

Abstract

Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 μmol/kg, i.p.), diclofenac (25 and 50 μmol/kg, i.p.), NaHS (50 μmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy.

Introduction

Doxorubicin is an anthracycline antibiotic widely used in the treatment of a variety of human neoplastic diseases and solid cancers, but its clinical application is hampered by progressive and doxorubicin-related cardiac dysfunction via inhibiting oxidative stress injury [7]. Therefore, application of H2S donors may be a promising therapeutic strategy to prevent doxorubicin cardiotoxicity. However, NaHS is a short-lasting H2S donor, and it releases H2S quickly, which may cause an acute alteration in hemodynamics. As a result, further studies are needed to develop novel and potent compounds that are capable of producing H2S slowly and stably.

S-diclofenac (2-[(2,6-dichlorophenyl) amino] benzene acetic acid 4-(3H-1,2,dithiol-3-thione-5-yl) phenyl ester) is a novel molecule comprising a H2S-releasing dithiol-thione moiety attached by an ester linkage to diclofenac. Unlike other H2S donors, S-diclofenac releases H2S slowly both in vitro and in vivo over a period of several hours [8,9]. Furthermore, S-diclofenac has comparable or even improved anti-inflammatory property while its gastrointestinal-damaging effect is considerably reduced as compared with the parent drug [8,9]. These findings suggest that S-diclofenac may be an attractive alternative to the available H2S donors. On the other hand, one recent study has shown that S-diclofenac could protect against ischemia–reperfusion injury in the isolated rabbit heart [10]. The experiment, which indicates the beneficial effect of S-diclofenac in ischemic heart diseases, prompted us to investigate the possible protective effect of S-
diclofenac against non-ischemic origin. We hypothesized that S-diclofenac might be able to block the progression of cardiomyopathy induced by doxorubicin, known for its late-onset acute and chronic cardiotoxicity. To test that idea, in the present study, we examined the cardioprotective effect of S-diclofenac in a murine model of doxorubicin-induced cardiomyopathy and investigated the specific mechanisms of its effect. Our data suggests that S-diclofenac may attenuate the cardiotoxicity of doxorubicin by reversing cardiac gap junction remodeling along with inhibiting oxidative injury and inflammation in hearts.

Results

Deficiencies of H2S formation in doxorubicin-induced cardiomyopathy

The model of dilated cardiomyopathy was induced in male 10-week-old C57BL/6j mice by a single intraperitoneal injection of doxorubicin at a dose of 15 mg/kg. The success of the model was confirmed by decreased LV function and enlarged left ventricle of the mice (by echocardiography). At necropsy, those mice exhibited ascites and lobulated enlarged livers, indicative of liver congestion, or foamy lungs indicative of lung edema, suggesting that they undergo congestive heart failure.

Administration of doxorubicin resulted in a significant down-regulation of CSE expression in heart. The mRNA and protein levels of CSE were significantly decreased in hearts 14 days after doxorubicin injection (n = 6–8 in each group, P<0.01, Figure 1A and 1B). As a result, a remarkable reduction in cardiac H2S synthesizing activity and plasma level of H2S was observed in doxorubicin injection group (n = 6–8 in each group, P<0.01, Figure 1C and 1D). Not surprisingly, consecutive administration with S-diclofenac for 14 days dose-dependently diminished the deficiencies of H2S formation induced by doxorubicin. As shown in Figure 1C and 1D, S-diclofenac, but not diclofenac dose-dependently abolished doxorubicin-induced reduction in cardiac H2S synthesizing activity and plasma H2S concentration.

Alterations of gap junction proteins in doxorubicin-induced cardiomyopathy

Gap junction channels are formed by the association of two connexons composed of six protein subunits termed connexins (Cxks) [11,12]. In mammalian hearts, gap junctions are principally composed of three major connexin isoforms, Cx43, Cx40 and Cx45. Therefore, we examined the cardiac expression levels of Cx43, Cx45 and Cx40 in doxorubicin-induced cardiomyopathy. As shown in Figure 2, the mRNA and proteins levels of Cx43 and Cx45 in animal hearts were drastically downregulated 14 days after doxorubicin injection (n = 6–8 in each group, P<0.01). However, no significant change in Cx40 mRNA and protein expression was observed in animals injected with doxorubicin (data not shown). It may be due to the fact that of most mammalian species, Cx40 is abundant in gap junctions of atrial myocytes but not of working ventricular myocytes [11,12].

Effect of S-diclofenac on doxorubicin-induced downregulation of gap junction proteins

S-diclofenac at doses of 25 or 50 μmol/kg significantly alleviated doxorubicin-induced downregulation of Cx43 and Cx45, as compared to a mole for mole equivalent dose of diclofenac (n = 6–8 in each group, P<0.05, Figure 2A–D). S-diclofenac at a higher dose was more potent than that at a lower dose to reverse the suppression of Cxks expression in doxorubicin-induced cardiomyopathy. Furthermore, the effect of S-diclofenac on gap junction proteins was in large part resembled by treatment with NaHS, a conventional H2S donor. As shown in Figure 2E and 2F, NaHS at a dose of 50 μmol/kg prominently provoked the mRNA and protein expressions of Cx43 and Cx45 in doxorubicin-injected mice (n=6–8 in each group, P<0.05).

Effect of S-diclofenac on doxorubicin-induced gap junction remodeling

Doxorubicin-associated gap junction remodeling in mouse heart was examined by transmission electron microscopy. Ultrastructural morphometry showed a significant reduction in gap junction density (number of gap junctions per unit intercalated disk length) 14 days after doxorubicin injection (Figure 3A and Table 1). Aggregate gap junction length per unit intercalated disk length was also declined in doxorubicin group. Treatment with S-diclofenac but not diclofenac led to a remarkable increase in both the number and length of cardiomyocyte gap junctions (Figure 3A and Table 1). A higher dose of S-diclofenac resulted in a more impressive rise in gap junction number and length as compared to a lower dose (Figure 3A and Table 1). Similarly, NaHS significantly reversed the doxorubicin-induced gap junction remodeling in heart (Figure 3B and Table 2).

Effect of S-diclofenac on doxorubicin-induced JNK activation in hearts

To get more insights into the intracellular mechanism by which S-diclofenac upregulated the cardiac expression of connexins in doxorubicin-induced cardiomyopathy, further experiments were performed to investigate the effect of S-diclofenac on JNK activation, known to play a part in modulating the connexin expression [13–16]. It was found that administration of doxorubicin significantly activated the phosphorylation of JNK in hearts (Figure 4, n=6 in each group). Treatment with S-diclofenac dose-dependently inhibited doxorubicin-induced activation of JNK (n=6 in each group, Figure 4A). NaHS at a dose of 50 μmol/kg also markedly blocked the phosphorylation of JNK in doxorubicin-injected mice (n=6 in each group, P<0.05, Figure 4B). In contrast, diclofenac had no effect on JNK activation (Figure 4A). In addition, we also examined the effect of H2S on ERK1/2 and p38 MAPK pathways in this animal model. Both S-diclofenac and NaHS failed to affect doxorubicin-evoked activation of ERK1/2 and p38 in hearts (data not shown).

Effect of S-diclofenac on doxorubicin-induced inflammation and oxidative stress

Overproduction and/or ineffective scavenging of reactive oxygen species (ROS) as well as inflammation play a crucial role in the pathogenesis of doxorubicin-induced cardiomyopathy [2,3]. Therefore, we examined the effect of S-diclofenac on lipid antioxidative mechanism (SOD and GSH activity), lipid peroxidation activity (MDA content), and neutrophil infiltration (MPO activity) in hearts. As compared to a mole for mole equivalent dose of diclofenac, S-diclofenac more potently alleviated doxorubicin-induced inflammation in hearts as evidenced by a distinct reduction in cardiac MPO activity (Table 3). Consistently, the severity of oxidative stress caused by doxorubicin was also significantly reduced by treatment with S-diclofenac. As shown in Table 3, S-diclofenac, but not its parent drug markedly elevated the cardiac activity of SOD and GSH-px and decreased the level of MDA in hearts. The anti-inflammatory and anti-oxidative effect of S-diclofenac was more potent at a higher dose. In addition, treatment with NaHS also significantly inhibited doxorubicin-associated inflammation and oxidative damage (Table 4).
Figure 1. Alterations in endogenous H2S synthesis 14 days after doxorubicin injection (A–D) and effect of S-diclofenac on the synthesis of H2S in doxorubicin-induced cardiomyopathy (C, D). Male 10-week-old C57BL/6J mice were randomly given doxorubicin (15 mg/kg, i.p.) or same volume of saline. Treatment with S-diclofenac (25 and 50 μmol/kg, i.p.) or diclofenac (25 and 50 μmol/kg, i.p.) started 2 hours after doxorubicin injection and continued every 24 hours. Fourteen days after doxorubicin injection, the expression level of CSE mRNA (A) and protein in hearts (B), H2S synthesizing activity in hearts (C) and plasma H2S concentration (D) were measured as described in Materials and Methods. Results shown are the mean ± SEM (n = 6–8 animals in each group). * P<0.01 vs saline group; † P<0.05 vs Dox+Diclo 25 μmol/kg group (animals treated with doxorubicin+diclofenac 25 μmol/kg); ‡ P<0.01 vs Dox+Diclo 50 μmol/kg group (animals treated with doxorubicin+diclofenac 50 μmol/kg).

doi:10.1371/journal.pone.0026441.g001
Figure 2. Effect of treatment with S-diclofenac (A–D) or NaHS (E, F) on Cx43 and Cx45 expression in hearts 14 days after doxorubicin injection. Male 10-week-old C57BL/6J mice were randomly given doxorubicin (15 mg/kg, i.p.) or same volume of saline. Treatment with S-diclofenac (25 and 50 μmol/kg, i.p.), diclofenac (25 and 50 μmol/kg, i.p.), NaHS (50 μmol/kg, i.p.) or vehicle started 2 hours after doxorubicin injection and continued every 24 hours. Fourteen days after doxorubicin injection, hearts were harvested and examined by RT-PCR and Western blot for the expression levels of Cx43 and Cx45. After analysis by densitometry, the data were expressed as ratios of Cxs to 18S or Cxs to β-actin (plotted as percentage over saline group). Results shown are the mean ± SEM (n = 6–8 animals in each group). * P < 0.05 vs saline group; † P < 0.05 vs Dox+Diclo 25 μmol/kg group; ‡ P < 0.05 vs Dox+Diclo 50 μmol/kg group; ** P < 0.05 vs. Dox+S-Dic 25 μmol/kg group (animals treated with doxorubicin and S-diclofenac 25 μmol/kg); ≠ P < 0.05 vs. Dox group.

doi:10.1371/journal.pone.0026441.g002
Effect of S-diclofenac on doxorubicin-induced cardiac injury and cardiac dysfunction

Evidence of cardiac injury induced by intraperitoneal administration of doxorubicin was indicated by an obvious increase in plasma levels of cardiac markers (LDH and CK) (Figure 5A), an evident depression in left ventricular systolic function (LVEF and LVFS) (Figure 5B) and an apparent dilation of left ventricles (Figure 5C). Treatment with S-diclofenac but not diclofenac protected mice against doxorubicin-induced cardiac injury. As shown in figure 5A, plasma activities of LDH and CK were significantly declined in mice treated with doxorubicin and S-diclofenac as compared to those treated with doxorubicin and diclofenac. The impairment of cardiac function caused by doxorubicin was also attenuated by treatment with S-diclofenac, as characterized by a significant elevation in LVEF and LVFS (n = 6–8 in each group, P<0.05, Figure 5B, 5D). S-diclofenac at a
S-diclofenac in Doxorubicin-Induced Cardiomyopathy

suggest that H₂S release (from S-diclofenac) protects animals against doxorubicin-associated cardiotoxicity and improves the outcome of animals with doxorubicin-induced cardiomyopathy. Although the pathogenesis of anthracycline cardiotoxicity has been under intensive investigation for many years, the underlying mechanisms are still not fully understood. Multiple explanations have been proposed for the doxorubicin cardiotoxicity, e.g. oxidative stress, inflammation, DNA damage, attenuation in protein synthesis, alterations in cellular energetics and cardiomyocyte apoptosis [1–5]. However, the present study is focused on three aspects of the action of doxorubicin with respect to gap junction remodeling, oxidative injury and inflammation.

Discussion

In the present study, we found that doxorubicin injection downregulated the cardiac expression of CSE along with reduced plasma H₂S level and cardiac H₂S synthesizing activity. Our findings are in accord with earlier observations and reinforce the significance of H₂S insufficiency in the development of doxorubicin-induced cardiotoxicity [7]. These results provide a solid basis for the use of H₂S donor drugs in the treatment of doxorubicin-induced cardiotoxicity. We showed here that S-diclofenac, an H₂S-releasing diclofenac derivative, provided marked cardioprotection in myocardial injury and cardiac dysfunction resulting from doxorubicin injection. The cardioprotective effect of S-diclofenac could be mimicked in large part by the mole for mole equivalent dose of NaHS, a conventional H₂S donor. Our findings suggest that H₂S release (from S-diclofenac) protects animals against doxorubicin-associated cardiotoxicity and improves the outcome of animals with doxorubicin-induced cardiomyopathy.

Table 1. Effect of S-diclofenac on gap junction remodeling induced by doxorubicin.

	Number of gap junctions (per 100 μm ID length)	Gap junction length (μm per 100 μm ID length)
Saline	19.33±4.63	17.67±4.40
Dox	4.57±2.69*	5.50±2.35*
Dox×Diclo 25 μmol/kg	4.85±2.79*	5.96±2.16*
Dox×Diclo 50 μmol/kg	5.14±1.57*	6.23±1.96*
Dox×S-Dic 25 μmol/kg	9.85±2.41†	10.81±2.04†
Dox×S-Dic 50 μmol/kg	14.57±2.63‡**	15.35±2.83‡**

*P<0.05 vs saline group; **P<0.05 vs mice treated with doxorubicin×diclofenac 25 μmol/kg; †P<0.05 vs mice treated with doxorubicin×diclofenac 50 μmol/kg; ‡P<0.05 vs mice treated with doxorubicin×S-diclofenac 25 μmol/kg; ID: intercalated disc.

doi:10.1371/journal.pone.0026441.t001

Table 2. Effect of NaHS on gap junction remodeling induced by doxorubicin.

	Number of gap junctions (per 100 μm ID length)	Gap junction length (μm per 100 μm ID length)
saline	18.17±7.41	15.57±3.65
Dox	5.29±2.87*	6.71±1.53*
Dox×NaHS 12.14±2.97*	10.26±2.06**	

*P<0.05 vs saline group; **P<0.05 vs mice treated doxorubicin.
doi:10.1371/journal.pone.0026441.t002

In addition, administration with doxorubicin in mice resulted in a high 14-day mortality rate. Treatment with S-diclofenac but not diclofenac significantly improved the survival rate of the mice with doxorubicin-induced cardiomyopathy. The 14-day survival rate of the mice with doxorubicin-induced cardiomyopathy was significantly elevated when treated with S-diclofenac at a dose of 50 μmol/kg (n = 20 in each group, P<0.05, Figure 6).

Discussion

In the present study, we found that doxorubicin injection downregulated the cardiac expression of CSE along with reduced plasma H₂S level and cardiac H₂S synthesizing activity. Our findings are in accord with earlier observations and reinforce the significance of H₂S insufficiency in the development of doxorubicin-induced cardiotoxicity [7]. These results provide a solid basis for the use of H₂S donor drugs in the treatment of doxorubicin-induced cardiotoxicity. We showed here that S-diclofenac, an H₂S-releasing diclofenac derivative, provided marked cardioprotection in myocardial injury and cardiac dysfunction resulting from doxorubicin injection. The cardioprotective effect of S-diclofenac could be mimicked in large part by the mole for mole equivalent dose of NaHS, a conventional H₂S donor. Our findings suggest that H₂S release (from S-diclofenac) protects animals against doxorubicin-associated cardiotoxicity and improves the outcome of animals with doxorubicin-induced cardiomyopathy.

Although the pathogenesis of anthracycline cardiotoxicity has been under intensive investigation for many years, the underlying mechanisms are still not fully understood. Multiple explanations have been proposed for the doxorubicin cardiotoxicity, e.g. oxidative stress, inflammation, DNA damage, attenuation in protein synthesis, alterations in cellular energetics and cardiomyocyte apoptosis [1–5]. However, the present study is focused on three aspects of the action of doxorubicin with respect to gap junction remodeling, oxidative injury and inflammation.

Gap junction channels are responsible for direct cell-to-cell communication and remodeling of gap junction organization is a conspicuous feature of heart diseases. In the present study, we have demonstrated for the first time that doxorubicin suppressed cardiac expression of Cx43 and Cx45, resulting in loss of Cx43/Cx45 junction channels and consequent spatial remodeling of gap junctions, and thereby leading to progressive cardiac dysfunction and left ventricular remodeling. Treatment with S-diclofenac, but not diclofenac, not only remarkably upregulated the cardiac expression of Cxs (Cx43 and Cx45) mRNA and proteins, but also raised the density and length of gap junctions in doxorubicin-induced cardiomyopathy. As a result, it considerably attenuated heart injury and left ventricular enlargement, and improved left ventricular ejection function and the survival rate of animals with doxorubicin-induced cardiomyopathy. Moreover, the protective effect of S-diclofenac could be mimicked by NaHS. Our data straightforwardly demonstrate that H₂S may exert its cardioprotective effect in doxorubicin-induced cardiomyopathy via regulating connexin expression.

JNK is a crucial regulator of AP-1 activation which has been shown to be necessary for activating Cx43 and Cx45 proximal promoter [13,14]. Activation of JNK induced significant loss of Cx43 expression and decreased the numbers of gap junctions in cultured cardiomyocytes and transgenic mouse ventricular myocardium [15,16]. Therefore, we further examined the relevance of JNK pathway to the protective effect of S-diclofenac. We found that doxorubicin induced an obvious activation of JNK in hearts, suggesting that doxorubicin-induced downregulation of Cx43 and Cx45 is possibly mediated by JNK pathway. Treatment with S-diclofenac or NaHS significantly inhibited the phosphorylation of JNK in hearts from doxorubicin-injected mice. Hence, it seems reasonable to assume that S-diclofenac derived H₂S may abolish doxorubicin-associated downregulation of Cxs by inhibiting the cardiac activity of JNK. However, the precise points of interaction...
Male 10-week-old C57BL/6J mice were randomly given doxorubicin (15 mg/kg, i.p.) or same volume of saline. Treatment with S-diclofenac (25 and 50 μmol/kg, i.p.) or NaHS (50 μmol/kg, i.p.) started 2 hours after doxorubicin injection and continued every 24 hours. Fourteen days after doxorubicin injection, hearts were harvested and examined by Western blot for total and phospho-JNK. After analysis by densitometry, the data were expressed as ratios of phosphorylated protein to total protein (plotted as fold increase over saline group, n = 6 animals in each group). * P < 0.05 vs saline group; † P < 0.05 vs Dox+Diclo 25 μmol/kg group; ‡ P < 0.05 vs Dox+Diclo 50 μmol/kg group; ** P < 0.05 vs. Dox+S-Dic 25 μmol/kg group; # P < 0.05 vs. Dox group.

Figure 4. Effect of treatment with S-diclofenac (A) or NaHS (B) on JNK activation in hearts 14 days after doxorubicin injection. Male 10-week-old C57BL/6J mice were randomly given doxorubicin (15 mg/kg, i.p.) or same volume of saline. Treatment with S-diclofenac (25 and 50 μmol/kg, i.p.), diclofenac (25 and 50 μmol/kg, i.p.) or NaHS (50 μmol/kg, i.p.) started 2 hours after doxorubicin injection and continued every 24 hours. Fourteen days after doxorubicin injection, hearts were harvested and examined by Western blot for total and phospho-JNK. After analysis by densitometry, the data were expressed as ratios of phosphorylated protein to total protein (plotted as fold increase over saline group, n = 6 animals in each group). * P < 0.05 vs saline group; † P < 0.05 vs Dox+Diclo 25 μmol/kg group; ‡ P < 0.05 vs Dox+Diclo 50 μmol/kg group; ** P < 0.05 vs. Dox+S-Dic 25 μmol/kg group; # P < 0.05 vs. Dox group.

doi:10.1371/journal.pone.0026441.g004

S-diclofenac in Doxorubicin-Induced Cardiomyopathy
between S-diclofenac and JNK pathway can not be determined in the present in vivo experiments and further work is needed most likely in an isolated cardiomyocyte system to probe the exact mechanisms involved. In addition to transcription, post-translational modifications such as phosphorylation are also important for connexin trafficking and assembly at gap junctions [17,18]. It has been shown that phosphorylation of connexins regulates many aspects of the gap junction life cycle including assembly, gating, internalization, and degradation [17]. Whether H2S could alter the biological functions of gap junctions via modulating the phosphorylation of Cxs in doxorubicin-induced cardiotoxicity will be the subject of our future study.

Moreover, latest studies have proposed that doxorubicin-induced cardiomyopathy is primarily a stem cell disease [19,20]. Cardiotoxicity of the anthracycline is not restricted to cardiomyocytes but affects resident cardiac progenitor cells (CPCs) even more dramatically. Andracycline not only inhibited the growth and survival of CPCs but also impaired global gene expression of CPCs. Reduction in the number of CPCs and defects in progenitor cell survival of CPCs but also impaired global gene expression of CPCs dramatically. Anthracycline not only inhibited the growth and survival of CPCs but also impaired global gene expression of CPCs. The biological functions of gap junctions via modulating the phosphorylation of Cxs in doxorubicin-induced cardiotoxicity will be the subject of our future study.

On the other hand, we found that doxorubicin suppressed the activities of antioxidant enzymes and caused overproduction and/or ineffective scavenging of ROS in hearts while S-diclofenac prevented these pathological processes. Similar antioxidative properties of H2S or H2S donor drugs were observed previously in neurons, vascular smooth muscle cells and neutrophils. H2S may suppress ROS generation and ameliorate oxidative insult by different mechanisms: 1) H2S may increase the activity of diverse antioxidant enzymes; 2) H2S may increase the levels of glutathione participating in regulating oxidative stress; 3) H2S, as a highly reactive molecule may easily react with ROS and/or reactive nitrogen species (NOS); 4) H2S may open ATP-dependent K+ and Cl- channels [21–23]. Additionally, S-diclofenac has been shown to exhibit greater anti-inflammatory activity (compared to diclofenac) in the present study. A superior anti-inflammatory effect of S-diclofenac (compared to diclofenac) was also observed in animal models of hindpaw edema, acute pancreatitis as well as endotoxemia [8,24,25]. The additional anti-inflammatory activity of S-diclofenac may be at least partially due to release of H2S. S-diclofenac derived H2S inhibited inflammatory response by downregulating the transcription of inflammation related genes via NF-κB pathway [8]. However, it is to be noted that H2S has been shown to play complex but poorly understood roles in inflammation with evidence for proinflammatory as well as anti-inflammatory properties. It was reported that H2S provoked the inflammatory response in sepsis, acute pancreatitis and endotoxemia [26,27,28]. In contrast, H2S inhibited leukocyte migration in animal models of paw edema, acute pancreatitis as well as endotoxemia [26,27,28]. Although the role of H2S in inflammation remains controversial, it raises the possibility that H2S may act as a double-edged sword in

Table 3. Effect of S-diclofenac on inflammatory response and oxidative stress in heart.

	MPO activity	MDA	SOD	GSH-Px
	(Fold increase over control)	(nmol/g protein)	(U/mg protein)	(U/mg protein)
Saline	1±0.20	73.99±3.64	137.46±10.38	34.09±2.68
Dox	2.89±0.69*	161.05±5.32*	70.51±6.94*	16.41±1.18*
Dox+S-Diclo 25 μmol/kg	2.31±0.35##	158.23±7.25*	68.46±5.97*	15.49±1.24*
Dox+S-Diclo 50 μmol/kg	2.08±0.20##	163.77±9.83*	65.94±4.38*	14.71±1.54*
Dox+S-Diclo 25 μmol/kg	1.70±0.31†	127.43±6.77†	97.85±3.41†	22.98±1.23†
Dox+S-Diclo 50 μmol/kg	1.15±0.24###	90.90±10.28###	124.63±7.09###	30.29±1.98###

*P<0.01 vs saline group; **P<0.05 vs mice treated with doxorubicin; ***P<0.05 vs mice treated with doxorubicin+diclofenac 25 μmol/kg; ****P<0.05 vs mice treated with doxorubicin+diclofenac 50 μmol/kg.

Table 4. Effect of NaHS on inflammatory response and oxidative stress in heart.

	MPO activity	MDA	SOD	GSH-Px
	(Fold increase over control)	(nmol/g protein)	(U/mg protein)	(U/mg protein)
Saline	1±0.16	82.26±4.36	147.45±11.16	36.11±1.89
Dox	2.46±0.46*	134.01±6.23*	78.26±4.89*	13.08±1.04*
Dox+NaHS	1.46±0.27**	102.36±9.55**	109.83±4.65**	19.08±1.81**

*P<0.05 vs saline group; **P<0.05 vs mice treated doxorubicin.

doi:10.1371/journal.pone.0026441.t003

doi:10.1371/journal.pone.0026441.t004
Figure 5. Effect of treatment with S-diclofenac or NaHS on plasma levels of cardiac marker enzymes and cardiac function 14 days after doxorubicin injection. Male 10-week-old C57Bl/6J mice were randomly given doxorubicin (15 mg/kg, i.p.) or same volume of saline. Treatment with S-diclofenac (25 and 50 μmol/kg, i.p.), diclofenac (25 and 50 μmol/kg, i.p.) or NaHS (50 μmol/kg, i.p.) started 2 hours after doxorubicin injection and continued every 24 hours. Fourteen days after doxorubicin injection, plasma activities of CK and LDH (A, E), left ventricular systolic function (B, F) as well as left ventricular dimensions (C, G) were measured as described in Materials and Methods (n = 6–8 animals in each group). (D) Representative M-mode echocardiographs from saline group (A), Dox group (B), Dox+Diclo 25 μmol/kg group (C), Dox+Diclo 50 μmol/kg group (D), Dox+S-Dic 25 μmol/kg group (E) and Dox+S-Dic 50 μmol/kg group (F). * P<0.05 vs saline group; † P<0.05 vs Dox+Diclo 25 μmol/kg group; ‡ P<0.05 vs Dox+Diclo 50 μmol/kg group; ** P<0.05 vs Dox+S-Dic 25 μmol/kg group; †† P<0.05 vs Dox+S-Dic 50 μmol/kg group; # P<0.05 vs Dox+S-Dic 25 μmol/kg group; ## P<0.05 vs Dox+S-Dic 50 μmol/kg group; †‡ P<0.05 vs Dox+S-Dic 25 μmol/kg group; †# P<0.05 vs Dox+S-Dic 50 μmol/kg group.

doi:10.1371/journal.pone.0026441.g005
inflammatory conditions. It may act as an anti-inflammatory mediator to a physiological concentration, but may contribute to inflammation in an already inflamed area when overproduced.

In addition, S-diclofenac has distinct advantages over NaHS in the treatment of doxorubicin-induced cardiomyopathy, although both of them protected animals against doxorubicin-induced myocardial injury. Firstly, H$_2$S release from S-diclofenac is a slow process probably mediated by plasma/tissue esterase, which split the ester linkage of the parent compound to form ADT-OH. This molecule thereafter releases H$_2$S either by spontaneous chemical degradation or by an as yet unidentified metabolic process. Hence, S-diclofenac has been considered as a slow-releasing H$_2$S donor. Administration of S-diclofenac had minimal effect on blood pressure [8]. In stark contrast, NaHS breaks down rapidly in aqueous solution to yield Na$^+$ and HS$^-$, the latter then reacting with H$^+$ to form H$_2$S. Administration of NaHS caused a pronounced but transient decrease in blood pressure [28,31].

Secondly, recent studies have demonstrated that S-diclofenac may have a potential usefulness in cancer treatment [32]. S-diclofenac has been found to inhibit the activity and expression of carcinogen activating enzymes and may serve as effective chemoprevention agents by balance the equation of carcinogen activation and detoxification mechanisms [32]. Therefore, we propose that in comparison to NaHS, S-diclofenac may be a better option to prevent cardiac complications from anthracyclines in cancer patients undergoing chemotherapy with doxorubicin.

In summary, S-diclofenac attenuated doxorubicin-induced cardiac gap junction remodeling, oxidative stress and inflammatory response. The pharmacological profiles of S-diclofenac, i.e. cardioprotective activity, suggest that this compound might constitute a potentially new therapeutic option to prevent doxorubicin-induced cardiotoxicity. However, further clinical studies will have to verify if this concept is valid in patients as well, and whether or not S-diclofenac treatment counteracts with the onco logical effect of doxorubicin.

Materials and Methods

Chemicals

Doxorubicin was obtained from Wanle Pharmaceutical Industry (Shenzhen, China) as a 10 mg/bottle lyophilized powder. The malondialdehyde (MDA, a marker of lipid peroxidation and free radical activity), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) assay kits were purchased from Nanjing Jiancheng Bio-engineering Institute (Nanjing, China). S-diclofenac was obtained from CTG Pharma, Milan, Italy.

Animals and experimental protocols

The study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Shanghai JiaoTong University School of Medicine. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Shanghai JiaoTong University School of Medicine (Permit Number: [2011]-22). Male 10-week-old C57BL/6J mice were randomly assigned to receive doxorubicin (15 mg/kg, i.p.) or same volume of saline (i.p.). Two hours after doxorubicin injection, diclofenac (25 and 50 µmol/kg, i.p.), S-diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.) or same volume of vehicle (0.5% w/v carboxymethylcellulose or saline, i.p.) were administered daily for 14 consecutive days. The dosage of S-diclofenac was determined based on previous study [8]. Fourteen days after doxorubicin injection, animals were sacrificed by an i.p. injection of a lethal dose of pentobarbitone (90 mg/kg). Samples of hearts and plasma were harvested and stored at −80°C for subsequent measurement.
Measurement of plasma H₂S

Aliquots (120 μl) of plasma were mixed with distilled water (100 μl), trichloroacetic acid (10% w/v, 120 μl), zinc acetate (1% w/v, 60 μl), N, N-dimethyl-p-phenylenediamine sulfide (20 μM; 40 μl) in 7.2 M HCl and FeCl₃ (30 μM; 40 μl) in 1.2 M HCl. The absorbance of the resulting solution (670 nm) was measured 10 min thereafter by spectrophotometry (Tecan Systems Inc.). H₂S was calculated against a calibration curve of sodium hydrosulfide (NaHS; 3.125–100 μM). Results were showed plasma H₂S concentration in μM.

Assay of H₂S synthesizing activity

H₂S synthesizing activity in heart homogenates was measured essentially as described elsewhere [26]. Briefly, the assay mixture contained 100 mM potassium phosphate buffer (pH 7.4), L-cysteine (20 μl, 20 mM), pyridoxal 5’-phosphate (20 μl, 2 mM), saline (30 μl) and 4.5% w/v tissue homogenate (430 μl). The reaction was performed in tightly sealed micro centrifuge tubes and initiated by transferring the tubes from ice to a water bath at 37°C. After incubation for 30 min, 1% w/v zinc acetate (250 μl) was added to trap evolved H₂S followed by 10% v/v trichloroacetic acid (250 μl) to denature the protein and stop the reaction. Subsequently, N, N-dimethyl-p-phenylenediamine sulfide (20 μM; 133 μl) in 7.2 M HCl was added, immediately followed by FeCl₃ (30 μM; 133 μl) in 1.2 M HCl. The absorbance of the resulting solution at 670 nm was measured by spectrophotometry (Tecan Systems Inc.). The H₂S concentration was calculated against a calibration curve of sodium hydrosulfide (NaHS). Results were showed plasma H₂S concentration in μM.

RT-PCR analysis

Total RNA from heart was extracted with Trizol® reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. The concentration of isolated nuclei acids was determined spectrophotometrically by measuring the absorbance at 260 nm and the integrity was verified by ethidium bromide staining of 18S and 28S rRNA bands on a denaturing agarose gel. All samples were thereafter stored at −80°C until required. 1 μg RNA was reversely transcribed using iScript™ cDNA Synthesis Kit (Biorad, Hercules, CA, USA) at 25°C for 5 minutes, 42°C for 30 minutes, followed by 85°C for 5 minutes. The cDNA was used as a template for PCR amplification by iQ™ Supermix (Biorad, Hercules, CA, USA). The primer sequences for detection of CSE, Cx43, Cx45, Cx40 and 18S, optimal cycles and product sizes were as shown in table 5. PCR amplification was carried out in MyCycler™ (Biorad, Hercules, CA, USA). The reaction mixture was first subjected to 95°C for 5 minutes, followed by an optimal cycle of amplifications, consisting of 95°C for 30 s, optimal annealing temperature for 45 s and 72°C for 1 minute. PCR products were analyzed on 1.5% w/v agarose gels containing 0.5 μg/ml ethidium bromide. Results were showed plasma H₂S concentration in μM.

Western immunoblot

Left ventricles were homogenized at 4°C in radiimmunoprecipitation assay lysis buffer supplemented with protease inhibitor cocktail (Roche, Switzerland). The tissue homogenates were centrifuged at 14,000 g for 10 min at 4°C. Protein concentration in the soluble fraction was determined by Bradford method. Protein samples (100 μg) were separated by 12% SDS-polyacrylamide gel and then transferred onto polyvinylidene difluoride membranes. Membranes were then washed, blocked, and probed overnight at 4°C with rabbit anti-Cx43 (1:1000, Chemicon, USA), Cx45 (1:1000, Chemicon, USA), Cx40 (1:1000, Chemicon, USA), JNK (1:2000, Cell Signaling Technology, USA), phospho-JNK (1:1000, Cell Signaling Technology, USA), β-actin (1:2000, Santa Cruz Biotechnology, USA) and mouse monoclonal anti-CSE antibody (1:1000, Abnova, Taiwan) respectively, followed by secondary antibody for 2 h with a 1:2000 dilution of HRP-conjugated, goat anti-rabbit IgG or goat anti-mouse IgG (Santa Cruz Biotechnology, USA). Membranes were washed and then incubated in SuperSignal™ West Pico chemiluminescent substrate (Pierce, USA) before exposure to X-ray films (Pierce, USA). The intensity of bands was quantified using LabWorks™ Image Analysis software (UVP).

Myeloperoxidase estimation (MPO)

Heart samples were thawed, homogenized in 20 mM phosphate buffer (pH 7.4), centrifuged (13,000 x g, 10 min, 4°C) and the resulting pellets were resuspended in 50 mM phosphate buffer (pH 6.0) containing 0.5% w/v hexadecyltrimethylammonium bromide (Sigma). The suspension was subjected to four cycles of freezing and thawing and further disrupted by sonication (40 seconds). The samples were then centrifuged (13,000 x g, 5 min, 4°C) and the supernatants were used for the MPO assay. The reaction mixture consisted of the supernatant (50 μl), 1.6 mM tetramethylbenzidine (Sigma), 80 mM sodium phosphate buffer (pH 5.4), and 0.3 mM hydrogen peroxide (reagent volume: 50 μl).

Table 5. PCR primer sequences, optimal conditions and product sizes.

Gene	Primer sequence	Optimal conditions	Size
CSE	Forward: 5'-GACCTCAATAGCGGCTTGTTT-3'	34 cycles	618 bp
	Reverse: 5'-CAGTTTGCGTATGCTGTAATG-3'	Annelling: 61°C	
Cx43	Forward: 5'-TACACGCGCCACCGGCCC-3'	30 cycles	293 bp
	Reverse: 5'-GGCATTTTGGCTGTCGTCAGGGAA-3'	Annelling: 60°C	
Cx45	Forward: 5'-CCCTCAGATTGCTACTAA-3'	35 cycles	250 bp
	Reverse: 5'-AATGCTAAGATTGGCTACA-3'	Annelling: 52°C	
Cx40	Forward: 5'-ATGGGTGACTGGAGCTTC-3'	36 cycles	255 bp
	Reverse: 5'-CACAAGAGATGATCTGACTACC-3'	Annelling: 52°C	
18S	Forward: 5'-CCATCCAATCGGTAGTACC-3'	22 cycles	150 bp
	Reverse: 5'-GTAACCCGTTAAGGCCCATT-3'	Annelling: 59°C	

doi:10.1371/journal.pone.0026441.t005
This mixture was incubated at 37°C for 110 sec. The reaction was terminated with 50 µl of 0.18 M H2SO4 and the absorbance was measured at 405 nm. This absorbance was then corrected for the DNA content of the tissue sample and the results were expressed as enzyme activity.

Assay of MDA content, activity of SOD and GSH-Px in heart
Cardiac tissue samples (25 mg) were homogenized in 0.5 ml of PBS at 4°C with a homogenizer. Homogenates were then centrifuged at 1300 rpm for 30 min and the supernatants were collected. MDA content as well as SOD and GSH-Px activity in supernatants were evaluated with MDA, SOD and GSH-Px assay kits according to the manufacturer’s protocol.

Assay of creatine kinase (CK) and lactate dehydrogenase (LDH) enzyme activities
Plasma CK and LDH enzyme activities were measured using an autoanalyzer (Model 7020, Hitachi Medico, Japan).

Transmission electron microscopy
In order to analyze gap junction remodeling, left ventricular tissues were immersion-fixed in phosphate-buffered 2.5% glutaraldehyde (pH 7.4), post-fixed with 1% osmium tetroxide, dehydrated through a graded ethanol series and embedded in Epon medium. Ultrathin sections were observed by electron microscopy (JEM1230; JEOL Transmission Electron Microscope, Tokyo, Japan). Five hearts from each group were examined. Ten pictures were taken from each heart and analyzed morphometrically using methods described previously [34,35]. At a magnification of 30,000, every intercalated disk profile identified within each test area was rephotographed and the total number and length of gap junctions and the total length of intercalated disks were measured.

References
1. Minotti G, Menina P, Salvatorrelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 183–229.
2. Hrdina R, Geerd V, Klimová I, Simíněk T, Macháčková J, et al. (2000) Anthracycline-induced cardiotoxicity. Acta Medica (Hradec Králové) 45: 75–82.
3. Jones RL, Swanton C, Ewer MS (2006) Anthracycline cardiotoxicity. Expert Opin Drug Saf 5: 791–809.
4. Wouters KA, Kremers LC, Miller TL, Herman EH, Lipschutz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131: 561–578.
5. Singal PK, Isakov N, Li T, Kumar D (1997) Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 11: 931–936.
6. Łowicka E, Bełtowski J (2007) Hydrogen sulfide (H2S) – the third gas of interest. Pol Heart J 9: 347–358.
7. Rosso G, Sparratore A, Lee LG, Del Soldato P, et al. (2007) Anti-inflammatory and gastrointestinal effects of a novel H2S-releasing diclofenac agent. Free Radical Biol Med 42: 706–719.
8. Wallace JL, Caliendo B, Santagada V, Cirino G, Fiorucci S (2007) Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 132: 261–271.
9. Rosso G, Sparratore A, Tazzari V, Mandre B, Del Soldato P, et al. (2008) The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br J Pharmacol 153: 100–109.
10. Kumar NM, Ghulam NB (1996) The gap junction communication channel. Cell Mol Biol 42: 301–308.
11. Desplanter T, Dupont E, Sevres NJ, Weingart R (2007) Gap junction channels and cardiac impulse propagation. J Membr Biol 218: 13–28.
12. Gimenez E, Jiang W, Ali M, Fishman GI, Garfield RE, et al. (1996) Activation of protein kinase C in human uterine smooth muscle induces connexin-43 gene transcription through an AP-1 site in the promoter sequence. J Biol Chem 271: 23667–23674.
13. Baldridge D, Lernando F, Shin CS, Stains J, Civitelli R (2001) Sequence and structure of the mouse connexin43 gene. Biosci Rep 21: 683–689.
14. Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, et al. (2002) c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res 91: 640–647.
15. Thomson BF, Bircher MF (2004) Transcriptional control of myocardial connexins. Cardiovasc Res 62: 246–255.
16. Toribue ME, Tadros PN, Laing JG, Beyer EC, et al. (2000) Diphosphophorylation and intracellular redistribution of ventricular connexin 43 during electrical uncoupling induced by ischemia. Circ Res 87: 656–662.
17. Schulz R, Gres P, Skyckchly A, Duschar A, Bélourov S, et al. (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17: 1355–1357.
18. Dr. Angelis A, Piegari E, Cappetta D, Marino L, Filippeli A, et al. (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121: 276–292.
19. Huang C, Zhang X, Ramil JM, Aikka S, Kim L, et al. (2010) Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 121: 673–683.
20. Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18: 1163–1167.
21. Whitteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, et al. (2004) The novel neurmomodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J Neurochem 90: 765–768.
22. Whitteman M, Li L, Kosteki J, Chu SH, Siau JL, et al. (2006) Evidence for the formation of a novel nitrosothiole from the gaseous mediators nitric oxide and hydrogen sulfide. Biochem Biophys Res Commun 343: 303–310.
23. Bhatia M, Sidharpawala JN, Sparratore A, Moore PK (2008) Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis associated lung injury. Shock 29: 84–88.
24. Sidharpawala JN, Li L, Sparratore A, Bhatia M, Moore PK (2007) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 569: 149–154.
25. Zhang H, Zhi L, Moochhala SM, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture induced sepsis.
in mice by up-regulating the production of cytokines and chemokines via NF-κB.
Am J Physiol Lung Cell Mol Physiol 292: L960–L971.
27. Bhatia M, Wong FL, Fu D, Law HY, Moochhala SM, et al. (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J 19: 623–625.
28. Ling L, Bhatia M, Yizhun Z, Yichun Z, Raina DR, et al. (2005) Hydrogen sulfide is a novel mediator of endotoxic shock. FASEB J 19: 1196–1198.
29. Zanardo RC, Brancalone V, Distrutti E, Fiorucci S, Cirino G, et al. (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20: 2118–2120.
30. Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, et al. (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129: 1210–1224.

31. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2Sa as a novel endogenous gaseous KATP channel opener. EMBO J 20: 6008–6016.
32. Bau SE, Sienkiewicz P, Macdonald CJ, Cheng RY, Sparatore A, et al. (2009) Novel dithiolethione-modified nonsteroidal anti-inflammatory drugs in human hepatoma HepG2 and colon LS180 cells. Clin Cancer Res 15: 1964–1972.
33. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102: 344–352.
34. Saffitz JE, Green KG, Kraft WJ, Schechtman KB, Yamada KA (2000) Effects of diminished expression of connexin43 on gap junction number and size in ventricular myocardium. Am J Physiol Heart Circ Physiol 278: H1662–H1670.
35. Luke RA, Saffitz JE (1991) Remodeling of ventricular conduction pathways in healed canine infarct border zones. J Clin Invest 87: 1594–1602.