An Alternative to Likert Scale: Emoji

Abdullah Faruk KILIÇ *, İbrahim UYSAL **, Bilal KALKAN ***

Abstract
In the twenty-first century, the wide use of emojis in communication platforms has emerged. As a result, emojis have started to be used in scales. However, there are a limited number of studies in the literature that focuses on the effect of using emojis instead of Likert-type response categories in scales. Therefore, the focus of this study is to examine the differences that may arise from using emoji and Likert-type response categories in scales. For this purpose, the 3, 5, and 7-point Likert-type and 3, 5, and 7 emoji response categories Psychological Well-Being Scale was applied to 341 students studying at two state universities located in different regions of Turkey. Exploratory and confirmatory factor analyses and reliability analyses were carried out on the data of the participants who answered the six forms with different response categories. As a result, it was determined that there were no significant differences in exploratory and confirmatory factor analyses and reliability analyses. However, when correlational analyses were examined, it was observed that as the number of reaction categories increased, the correlation scores of emoji and Likert-type scales decreased.

Key Words: Emoji, likert scale, scale development, response category, validity and reliability.

INTRODUCTION
Researchers frequently adopt scaling techniques such as Thurstone (1927), Guttman (1941), and Likert (1932) when developing self-report scales (Dwyer, 1993). The Thurstone scale has a structure that consists of many items, and the items are rated by experts. In this scale, participants indicate whether they agree or disagree with each item (Payne & Payne, 2004). On the other hand, Guttman scaling technique is a response-based technique, and people can respond to a large number of items. However, they are evaluated according to the answer they give to the strongest item in terms of the feature examined. Items are scaled according to the amount or importance of the feature being measured (Price, 2017). Guttman scales differ from Thurstone scales in their cumulative aspect. In Guttman scales, a positive response to one level of the scale demonstrates a positive response to all items below that level, and with this aspect, it differs from Thurstone scales. Thurstone and Guttman scales are prepared to represent all levels of the feature, but in Likert-type scales, the items are close to the endpoints of the measured feature (Anderson, 1988/1991). In a Likert-type scale, which is a person-oriented method, participants indicate their degree of agreement on many items. The rating can be made as strongly disagree, disagree, neutral, agree, and strongly agree (Price, 2017), and they can be formed as three, four, five, and seven categories. In the scale, there may be an indecision option to choose when there is no positive or negative emotion regarding the item. Likert-type scales do not need an expert view in the scoring process contrary to the Thurstone scale. This situation allows for eliminating errors caused by experts (Bayat, 2014). Likert-type scales are considered to be practical and reliable. However, in recent years, as a reflection of digitalization, it has been observed that emojis are used as reaction categories to the items in the scales. In emoji, e represents pictures, and moji represents characters. When we look at the history of emojis, we see that they were created in 1998 by a Japanese communicator, and the widespread use of them has been around since 2010. In 2015, an emoji (face with tears of joy [😂]) was chosen as the word of the year by the Oxford Dictionary, which

* Res. Assist. Dr., Adıyaman University, Faculty of Education, Adıyaman-Turkey, abdullahfarukkilic@gmail.com, ORCID ID: 0000-0003-3129-1763
** Res. Assist. Dr., Bolu Abant İzzet Baysal University, Faculty of Education, Bolu-Turkey, ibrahimuysal06@gmail.com, ORCID ID: 0000-0002-6767-0362
*** Assist. Prof. Dr., Adıyaman University, Faculty of Education, Adıyaman-Turkey, kalkanbilal@gmail.com, ORCID ID: 0000-0002-5010-4639

To cite this article:
Kiliç, A. F., Uysal, İ., & Kalkan, B. (2021). An alternative to Likert scale: Emoji. Journal of Measurement and Evaluation in Education and Psychology, 12(2), 182-191. doi: 10.21031/epod.864336

Received: 19.01.2021
Accepted: 11.05.2021
demonstrates that emojis have gained an important place in communication and personal expression. Hence, the increasing importance of emojis in social areas and communication has been acknowledged, and emojis have become a new spelling code (Danesi, 2017). The reflection of this trend in the digital world on scientific researches has been inevitable.

When the literature is examined, a limited number of studies were found on the use of emojis in scales. Alismail and Zhang (2018) examined the use of emoji in electronic user experience in their research. Deubler, Swaney-Stuwe, Jepsen, and Su-Fern (2020), in consumers’ emotional response to products, and Marengo, Giannotta, and Settanni (2017), on personality assessment, examined the effect of using emojis instead of verbal response categories. Alismail and Zhang (2018) made inferences on the advantages and difficulties of using emojis through semi-structured interviews. Marengo et al. (2017) obtained concurrent validity between emojis and a personality test consisting of verbal response categories. Deubler et al. (2020) made inferences about the validity of the data in which emojis are used as response categories. When the studies of Marengo et al. (2017) and Deubler et al. (2020) are considered, it can be understood that emojis can be used instead of verbal response categories. Even though there is evidence relating to the validity of the data obtained with the use of emojis in questionnaires, the studies are not sufficient. Besides, there is no study that compares verbal response categories with emojis. Considering that the use of emojis provides important results about the psychological states of individuals, it seems that more research is needed on the subject. For this reason, this study focuses on the validity and reliability of data obtained with emoji and verbal response categories. In this respect, it will provide inferences about the effects of using emojis. Also, using instruments with 3, 5, and 7 Likert type verbal categories, there is a tendency to choose the highest or lowest category, avoid choosing extreme categories, and respond similarly to items that have close meaning (Albaum, 1997). It is important to determine the occurrence of the same situation when using emojis. Seeing that there is no detailed research in the literature on this subject, this study aims to examine whether the data obtained from scales with emoji and Likert-type response categories differ from each other. Studies also stated that there was a difference between men’s and women’s emoji use (see Chen et al., 2017; Prada et al., 2018). Therefore, it is important to examine whether the use of emojis as a response category in the instruments makes a difference between men and women in terms of the structure of the scale. Hence, this paper examines the following research questions:

1. Do the factor loadings and proportions of explained variance in the result of the exploratory factor analysis (EFA) of the data obtained with 3-point, 5-point, and 7-point Likert-type verbal response categories and emojis differ?

2. Do the factor loadings and model-data fit indexes in the result of confirmatory factor analysis (CFA) of the data obtained with the 3-point, 5-point, and 7-point Likert-type verbal response categories and emojis differ?

3. How do the relationships between 3-point, 5-point, and 7-point Likert-type verbal response categories and, respectively, 3-point, 5-point, and 7-point emojis differ according to gender?

4. What are the reliabilities of the data sets obtained with 3-point, 5-point, and 7-point Likert-type verbal response categories and emojis?

METHOD
This study utilized a cross-sectional and non-experimental survey research design. In survey research, data are collected from the sample in a single session. The main way to collect data is to ask questions, and it is a method used to examine certain characteristics (belief, attitude, ability, etc.) (Fraenkel, Wallen, & Hyun, 2012). In this study, different response categories of the questions asked students about their psychological well-being were compared. Hence, the survey research method was adopted.
Population and Sample

The accessible population of the research consisted of undergraduate students studying at two state universities, one in the Southeastern Anatolia and the other in the Black Sea region. In the study, no inference was made about the feature examined; only the use of emoji and verbal expressions as a response category were compared. For this reason, the convenience sampling method was adopted. In convenient sampling, a non-random sampling method, researchers reach out to the most accessible participants in order to prevent excessive time and energy loss and to reduce study costs (Fraenkel et al., 2012). The sample group consisted of 341 students, and the demographic characteristics of the students were shown in Table 1.

Variable	f	%
Woman	252	73.9
Man		26.1
Faculty of Education		83.0
Faculty of Science and Literature		4.4
Faculty of fine arts		3.2
Vocational School of Social Sciences		5.6
Other		3.8
Sum	341	100.0

When Table 1 is examined, it is seen that 79.9% (n = 252) of the university students in the sample were female and 26.1% (n = 89) were male. The ages of the participants range between 18 and 41, with an average of 21.6 and a median of 21. Of all the participants, 83% (n = 283) studied at the faculty of education, 4.4% (n = 15) at the faculty of science and literature, 3.2% (n = 11) at the faculty of fine arts, and 3.9% (n = 13) at other faculties (dentistry, pharmacy, economics and administrative sciences, health sciences, tourism) and institutes (natural sciences). The sample consisted of 19.4% (n = 66) first year, 43.4% (n = 148) second year, 18.5% (n = 63) third year, 16.7% (n = 57) fourth year, and 2% (n = 6) other year (preparatory year and fifth year) students.

Data Collection Tools

The data collection tools consisted of a questionnaire inquiring the participants about their genders, universities, faculties, and years, as well as the Psychological Well-being Scale. The scale was developed by Diener et al. (2010) and adapted to Turkish culture by Telef (2013). When the psychometric properties of the Turkish form of the Psychological Well-Being Scale were examined, it was seen that the scale was unidimensional, and the explained variance was 42%. The factor loadings of the items varied between .54 and .76. The Cronbach Alpha reliability coefficient of the scale scores was .80, and the test-retest reliability coefficient was .86. In order to obtain evidence of criterion validity, the correlation of a different psychological well-being and a needs satisfaction scale was examined. As a result, correlation values of .56 and .73 were found with the psychological well-being and needs satisfaction scales, respectively. The Psychological Well-Being Scale consists of eight items, and the items are rated as 1 strongly disagree, 2 disagree, 3 slightly disagree, 4 neutral, 5 slightly agree, 6 agree, and 7 strongly agree.

Data Collection Procedure

The demographic information form and Psychological Well-Being Scale which was formed as 3-point (disagree, neutral, agree), 5-point (strongly disagree, disagree, neutral, agree, strongly agree), and 7-point (strongly disagree, disagree, slightly disagree, neutral, slightly agree, agree, absolutely agree) Likert-type response categories and 3-point (😊, 🙂, 😞), 5-point (😀, 🙂, 😞, 😂, 😣), and 7-
point (😭, 😢, 😏, 😃, 😇, 😍, 😘) emoji reaction categories were turned into online forms and applied to university students in a single session.

Data Analysis

Before the analysis, the data set was examined, and it was observed that there was no missing data. This study was carried out to compare the results of the exploratory (EFA) and confirmatory factor analysis (CFA) of the scales with Likert-type and emoji response categories. First, it was analyzed whether the data sets met the assumptions of the factor analysis. For that purpose, it was investigated whether there were multivariate extreme values in the data set obtained with both Likert-type and emoji response categories from 341 participants, and Mahalanobis distances were calculated. Among the obtained Mahalanobis distances, those giving significant results at \(\alpha = .001 \) were excluded from the data sets. Also, whether there is multicollinearity in the data sets was examined through tolerance value (TV), variance inflation factor (VIF), and condition index (CI) values. Whether the data sets provided multivariate normality was analyzed through Mardia’s coefficient of multivariate kurtosis.

The suitability of the data sets for EFA was investigated through the use of KMO and Bartlett test of sphericity. All values obtained according to the data sets regarding the assumptions were presented in Table 2.

Response Type	Number of Categories	Number of Multivariate Outlier	TV (min-max)	VIF (min-max)	CI (min-max)	Mardia’s Kurtosis Coefficient	KMO	Bartlett Test
Likert	3	0	.43 - .83	1.21 - 2.33	1 - 27.68	14.51*	.85	1229.6*
	5	10	.34 - .60	1.67 - 2.92	1 - 23.78	15.77*	.92	1940.3
	7	14	.27 - .44	2.25 - 3.71	1 - 25.47	20.56*	.93	2318.0*
Emoji	3	5	.43 - .83	1.21 - 2.33	1 - 27.68	14.51*	.85	1403.0*
	5	4	.37 - .58	1.74 - 2.72	1 - 24.36	17.48*	.91	1830.1*
	7	15	.26 - .55	1.81 - 3.88	1 - 26.41	21.21*	.91	2643.1*

*p < .05

In Table 2, it is seen that the number of multivariate extreme values in data sets varies between 0 and 15. These extreme values were extracted from the data sets of 341 people. It was observed that the tolerance values of all data sets were greater than .01, the variance inflation factor was less than 10, and the condition indexes were less than 30. Accordingly, it can be argued that there is no multicollinearity in data sets (Kline, 2011; Tabachnick & Fidell, 2013). When KMO values and Bartlett’s sphericity test results were examined, KMO values were between .85 and .93. The acceptable minimum KMO value for factor analysis is specified as .60 (Kaiser, 1974). Accordingly, the data sets have a sufficient sample size for EFA (Kaiser & Rice, 1974). Bartlett’s sphericity test results were significant in all data sets. So, it can be said that the correlation matrices obtained from the data sets were different from the identity matrix. Since the multivariate normal distribution assumption was not provided to perform EFA, the stronger unweighted least squares (ULS) factor extraction method was used against the violation of this assumption (Brown & Moore, 2012). In CFA, the mean and variance adjusted unweighted least squares (ULSMV) estimation method was used for the EFA, and Mplus (Muthén & Muthén, 2012) software was used for CFA.

Ethics Committee Approval

In this study, all rules stated to be followed within the scope of Higher Education Institutions Scientific Research and Publication Ethics Directive were followed. None of the actions stated under the title of Actions Against Scientific Research and Publication Ethics, were taken.
RESULTS

In this section, findings were given according to the order in the research questions.

Comparison of EFA Results of Data Obtained from Emoji and Likert Type Response Categories

EFA results of the data obtained from the scales with Likert-type and emoji response categories were compared in terms of the variance ratio explained and the factor loadings of the items. The results obtained were presented in Table 3.

Table 3. EFA Results of The Data Obtained from Emoji and Likert Type Rating Scales

Item	Likert Factor Loadings	Likert Explained Variance	Emoji Factor Loadings	Emoji Explained Variance	Likert Factor Loadings	Likert Explained Variance	Emoji Factor Loadings	Emoji Explained Variance
1	.86	.93	.90	.84	.89	.90	.87	.88
2	.66	.73	.81	.85	.87	.88	.78	.79
3	.64	.66	.81	.79	.87	.88	.78	.79
4	.58	.49	.74	.71	.78	.79	.84	.84
5	.58	.61	.68	.75	.78	.79	.78	.79
6	.80	.75	.86	.85	.88	.94	.88	.94
7	.65	.70	.73	.67	.79	.69	.79	.69
8	.73	.63	.80	.75	.83	.85	.83	.85

In Table 3, factor loadings of the items in scales rated in emoji and Likert type were presented. When EFA results of the data obtained from scales rated in Likert and emoji type were examined, it can be said that the factor loadings were very close to each other, and the explained variance rates were very similar. As the number of response categories increased, the explained variance rate increased. However, the EFA results of the data obtained from the scales rated in Likert and emoji type with the same number of categories were very similar.

The Wilcoxon signed-rank test was applied to examine whether the factor loadings of the data obtained from scales rated in Likert and emoji type differ significantly or not. As a result, no significant difference was found between the factor loadings of the data sets obtained with the Likert-type and emoji response categories of both 3-point (Z = -0.70, p = .94) and 5-point (Z = -0.84, p = .40) as well as 7-point scales (Z = -1.40, p = .16).

Comparison of CFA Results of Data Obtained from Emoji and Likert Type Response Categories

CFA results obtained from data sets whose response categories are Likert-type and emoji were compared with regard to factor loadings of the items. Accordingly, the results obtained were presented in Table 4.

When Table 4 is reviewed, the factor loadings of the scales with both Likert-type and emoji response categories obtained from CFA results can be seen. Findings showed that the factor loadings of the data obtained from the scales with the Likert-type and emoji response category with the same number of categories were very similar.
The Wilcoxon signed-rank test was applied to examine whether the factor loadings differed in the data obtained from scales rated in emoji and Likert type. As a result, it was found that Likert-type rating with emoji does not reveal a significant difference between factor loadings for both 3-category ($Z = .00, p = 1.00$) and 5-category ($Z = -.84, p = .40$) as well as 7-category scored scales ($Z = -1.40, p = .16$). Table 5 included the fit indices obtained from CFA.

When the scales rated with Likert and emoji had 3 categories, CFI values were obtained as .98 for Likert-type and .94 for emoji. It is stated that the CFI change is important when the difference between these two CFI values is greater than .01 (Cheung & Rensvold, 2002; Vandenberg & Lance, 2000). Hereunder, when examined in terms of the CFI index, a 3-point Likert-type rating fits the data better than a 3-point emoji rating. However, when the ΔCFI values are examined for the 5 and 7-point rating, it is observed that these values are less than .01.

When examined in terms of RMSEA, it is stated that the difference is important when the value of ΔRMSEA is greater than .01 (Chen, 2007). Accordingly, in terms of RMSEA, it can be concluded that the Likert-type 3-point rating fits the data better than the 3-point emoji rating. There are no similar comparisons for TLI and Chi-Square (Vandenberg & Lance, 2000). On the other hand, statistics obtained from Likert and emoji type scales are not at a level that will affect the model-data fit decision. In other words, if the model-data fit is provided in the data set obtained from Likert-type scales, it is also provided in the data set obtained from emoji type scales. Similarly, if the model-data fit is not provided in the Likert-type scale, it is not provided in the emoji-type scale, as well. For instance, when the results obtained from 3-point data sets are compared, while the CFI value for the emoji type scale is .94, for the Likert-type scale, it is .98. Since it is stated that CFI and TLI are greater than .90 indicates that model-data fit is achieved (Hair, Black, Babin, & Anderson, 2009; Vandenberg & Lance, 2000), it does not affect the decision about whether model-data fit is achieved in emoji or Likert type scales.

Table 4. CFA Factor Loading Results of Data Obtained From Emoji and Likert Type Rated Scales

Item No	Likert	Emoji	Likert	Emoji	Likert	Emoji
1	.86	.93	.90	.84	.89	.90
2	.66	.73	.81	.85	.87	.88
3	.64	.67	.81	.79	.87	.88
4	.58	.48	.74	.71	.78	.79
5	.58	.60	.68	.75	.78	.84
6	.80	.76	.86	.85	.88	.94
7	.65	.70	.73	.67	.79	.69
8	.73	.64	.80	.75	.83	.85

Table 5. Fit Indices in CFA of Data Sets Obtained from Emoji and Likert Type Rating Scales

Number of Categories	Response Type	CFI	ΔCFI	TLI	ΔTLI	RMSEA	ΔRMSEA	90% CI	RMSEA p-value	Chi-Square	Chi-Square p-value	
3	Likert	.98	.04	.97	.06	.05	-.03	.03	.08	.38	39.29	.164
3	Emoji	.94	.01	.96	.00	.09	-.03	.06	-.11	.00	69.39	.377
5	Likert	.97	.00	.96	.00	.13	-.00	.11	.00	137.24	6.86	.00
5	Emoji	.97	.00	.96	.00	.13	-.00	.11	.00	140.27	7.01	.00
7	Likert	.98	.01	.97	.01	.12	-.00	.10	.04	6716.71	305.84	.00
7	Emoji	.98	.01	.97	.01	.17	-.00	.15	.00	8834.76	441.74	.00
Investigation of The Relationships Between the Scores Obtained from Emoji and Likert Type Response Categories

The relationships between the scores obtained from the data sets, the reaction categories of which are Likert-type and emojis, were examined by gender. Results were presented in Table 6.

Table 6. Correlation Between Scores Obtained from Emoji and Likert Type Rated Scales According to Gender

Response Type	Women (n = 252)	Man (n = 89)				
	3 Categories	5 Categories	7 Categories	3 Categories	5 Categories	7 Categories
Emoji	Emoji	Emoji	Emoji	Emoji	Emoji	Emoji
3 Categories	.75**	-	-	.80**	-	-
Likert	-	.69**	-	-	.81**	-
5 Categories			.54**	-	-	.72
Likert						
7 Categories						
Likert						

p < .01

In Table 6, the correlations between the scores obtained from the emoji and Likert type rated scales varied between .54 and .75 for females and .72 and .80 for males. It can be stated that as the number of categories increases for both males and females, the correlations between the scores obtained from emoji and Likert type rating scales decrease.

Comparison of Reliability of Scores Obtained from Emoji and Likert Type Response Categories

The Cronbach Alpha coefficients obtained from the data sets whose response categories are Likert-type and emojis were presented in Table 7.

Table 7. Cronbach Alpha Coefficients of Data Obtained from Emoji and Likert Type Rated Scales

Response Type	Cronbach Alfa Coefficient
3 Categories	
Likert	.81
Emoji	.81
5 Categories	
Likert	.90
Emoji	.89
7 Categories	
Likert	.93
Emoji	.93

Table 7 shows the Cronbach Alpha coefficients of the data obtained from emoji and Likert-type rated scales. It can be stated that as the number of categories increases, the reliability coefficient increases, and this is already an expected result. It can also be indicated that the reliability of the scores obtained from the Emoji and Likert type rating scales is very close to each other.

DISCUSSION and CONCLUSION

The current study was conducted to examine the structures of scales consisting of Likert and emoji response categories. It was observed that the structures were similar as a result of EFA and CFA obtained from the data of scales with the same number of categories. As the number of categories increased as a result of EFA, the variance rate also increased. However, similar results were obtained from emoji and Likert type data. When EFA was conducted to see factor loads, there was not enough evidence that the factor loads were statistically significantly different from each other. Therefore, the construct validity of the scales consisting of Likert and emoji response categories in terms of EFA was found to be sufficient. Based on this result, it can be argued that emoji response categories can be used instead of Likert response categories.
When CFA was conducted, results showed that fit indices were sufficient for both emoji and Likert type scale data. However, the fit indices decreased as the number of categories increased. Moreover, the number of categories of fit indices has changed, but the differences between Likert and emoji type response categories were not significant. When CFA factor loadings were examined, results showed that the factor loads obtained from the emoji and Likert type data did not differ significantly. Therefore, the current study results showed that the construct validity of the data obtained from both scale types was sufficient.

When the correlations of emoji and Likert type scales were examined, it was seen that the correlation scores decreased with the increase in the number of categories. Results also showed that the highest correlation indicated a moderate relationship. Therefore, the same scale in Likert and emoji categories may not measure the same structure, or it may cause different reactions in participants. In particular, when female participants’ seven-category Likert and emoji scales data were examined, the correlation decreased to .54, suggesting that different characteristics are measured with the same items. Similar results were found by Setty, Srinivasan, Radhakrishna, Melwani, and Dr (2019) when they used 3 different scales (emoji scale, Venham picture test, and facial image scale) to measure dental anxiety in children aged 4-14. The correlation between the emoji scale and the Venham Picture test was .73, and the correlation with the facial image scale was .87. Unlike these findings, Swaney-Stueve, Jepsen and Deubler. (2018) compared liking and emotions and stated that the correlation between 9-point Likert and 7-point emoji scale was .99. This difference may have occurred since the comparison was made on different scales. Also, since the comparison was carried out with individuals in the 8-14 age group, the difference with the current study results may be occurred due to population and age differences. On the other hand, in a study conducted by Alismail, and Zhang (2018), it was stated that individuals interpreted the same emojis differently. For instance, some individuals rated the neutral facial expression (😊) as sad. The number of emoji used increases with the increase in the number of categories. Therefore, it can be stated that individuals do not perceive emojis in the same way as Likert-type verbal expressions. As a result, low correlation results were found.

According to the research findings, there is no obstacle to the use of emoji type response categories in scales. It was observed that scales with the same number of categories were very similar in terms of reliability coefficients of construct validity and internal consistency. Therefore, emoji type response categories can also be used in scale development studies. However, the relationships between the total scores were at a medium level. These differences may be because of differences in measured structures or because the reaction categories of emoji and Likert-type caused different reactions in individuals. In the current study, it is seen that 3-emoji reaction categories can be used instead of 3-Likert response categories. However, the correlation results of the 5 and 7 emoji and Likert response categories were different. Since the use of emoji response categories is still new, in order to contribute to the literature and practitioners, the similarities or differences of the results obtained from the present study should be compared with samples from different age groups and different scales. Based on the findings of the current study, it can be stated that the data obtained from university students with Likert type or emoji response categories have similar construct validity. However, it should be acknowledged that this study is limited to the instrument and the sample used.

According to the present study findings, when the results obtained from the scales consisting of 3, 5 and, 7 emoji and Likert response categories are examined, it was seen that women and men attribute different meanings to the same emoji. In future studies, research should be conducted to examine the reasons for those attributions. In addition, this differentiation can be examined in depth with different age groups and equal/close numbers of gender groups. However, it should be kept in mind that this study is limited to the data obtained from the Psychological Well-Being Scale.

Considering that the use of emoji response categories in scales is new, future studies need to be conducted to examine whether the situations of indecision, which can be experienced in scales with 7 or more Likert response categories (verbal and numerical), can be prevented. Moreover, preschool and primary school students’ literacy level and limitations need to be considered, and it should be investigated whether a more valid result can be obtained by using emoji reaction categories among these populations. Additionally, questions may also be read to illiterate individuals, and researchers
may ask them to indicate the answers by showing emojis to obtain first-hand data. This is because it is easier to collect data from these individuals and the validity and reliability of the collected data can be increased.

REFERENCES
Albaum, G. (1997). The Likert scale revisited: An alternate version. *Journal of the Market Research Society, 39*(2), 331-342. doi:10.1177/147078539703900202
Alismail, S., & Zhang, H. (2018, January). The use of emoji in electronic user experience questionnaire: An exploratory case study. Paper presented at 51st Hawaii International Conference on System Sciences, Hawaii. doi: 10.24251/hicss.2018.427
Anderson, L. W. (1991). Attitudes and their measurement (N. Çikrıncı, Trans.). *Ankara University Journal of Educational Sciences, 24*(1), 241-250. doi: 10.1501/Egifik_0000000734 (Original work published 1988).
Bayat, B. (2014). Scaling, scales and “Likert” scaling technique in applied social science researches. *Ankara Hacı Bayram Veli University, Journal of the Faculty of Economics and Administrative Sciences, 16*(3), 1-24. Retrieved from https://dergipark.org.tr/tr/pub/gaziuibi/issue/28309/300829
Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), *Handbook of structural equation modeling* (pp. 361-379). New York: Guilford.
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. *Structural Equation Modeling, 14*(3), 464-504. doi: 10.1080/10705510701301834
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. *Structural Equation Modeling: A Multidisciplinary Journal, 9*(2), 233-255. doi: 10.1207/S15328007SEM0902_5
Danesi, M. (2017). *The semiotics of emoji*. London: Bloomsbury Publishing.
Deubler, G., Swaney-Stueve, M., Jepsen, T., & Su-Fern, B. P. (2020). The k-state emoji scale. *Journal of Sensory Studies, 35*(1), 1-9. doi: 10.1111/joss.12545
Diener, E., Wirtz, D., Tov, W., Kim-Prieto, C., Choi, D., Oishi, S., & Biswas-Diener, R. (2010). New well-being measures: Short scales to assess flourishing and positive and negative feelings. *Social Indicators Research, 97*(2), 143-156. doi: 10.1007/s11205-009-9493-y
Dwyer, E. E. (1993). *Attitude scale construction: A review of the literature* (Report No. ED359201). Retrieved from https://eric.ed.gov/?id=ED359201
Fraenkel, J. R., Wallen, E. W., & Hyun, H. H. (2012). *How to design and evaluate research in education* (8th ed.). New York: McGraw-Hill.
Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In P. Horst (Ed.), *The prediction of personal adjustment* (pp. 321-348). New York: Social Science Research Council.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). *Multivariate data analysis* (7th ed.). Upper Saddle River: Prentice Hall.
Kaiser, H. (1974). An index of factor simplicity. *Psychometrika, 39*(1), 31-36. doi: 10.1007/BF02291575
Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. *Educational and Psychological Measurement, 34*(1), 111-117. doi: 10.1177/001316447403401115
Kline, R. B. (2011). *Principles and practise of structural equating modeling* (3rd ed.). New York: The Guilford Press.
Likert, R. (1932). A technique for the measurement of attitudes. *Archives of Psychology, 22*(140), 5-55. Retrieved from https://legacy.voterview.com/pdf/Likert_1932.pdf
Lorenzo-Seva, U., & Ferrando, P. J. (2020). *Factor* (Version 10.10.03) [Computer software]. Tarragona: Universitat Rovira i Virgili.
Marengo, D., Giannotta, F., & Settanni, M. (2017). Assessing personality using emoji: An exploratory study. *Personality and Individual Differences, 112*(1), 74-78. doi: 10.1016/j.paid.2017.02.037
Muthén, L. K., & Muthén, B. O. (2012). *Mplus statistical modeling software: Release 7.0.* Los Angeles, CA: Muthén & Muthén.
Payne, G., & Payne, J. (2004). *Key concepts in social research*. London: Sage Publications.
Prada, M., Rodrigues, D. L., Garrido, M. V., Lopes, D., Cavalheiro, B., & Guspar, R. (2018). Motives, frequency and attitudes toward emoji and emoticon use. *Telematics and Informatics, 35*(7), 1925-1934. doi: 10.1016/j.tele.2018.06.005
Price, L. R. (2017). *Psychometric methods*. New York: The Guilford Press.
Setty, J. V., Srinivasan, I., Radhakrishna, S., Melwani, A. M., & Dr, M. K. (2019). Use of an animated emoji scale as a novel tool for anxiety assessment in children. *Journal of Dental Anesthesia and Pain Medicine, 19*(4), 227-233. doi: 10.17245/jdapm.2019.19.4.227

Swaney-Stueve, M., Jepsen, T., & Deubler, G. (2018). The emoji scale: A facial scale for the 21st century. *Food Quality and Preference, 68*, 183-190. doi: 10.1016/j.foodqual.2018.03.002

Tabachnick, B. G., & Fidell, L. S. (2013). *Using multivariate statistics* (6th ed.). New Jersey: Pearson.

Telef, B. B. (2013). The adaptation of psychological well-being into Turkish: A validity and reliability study. *Hacettepe University Journal of Education, 28*(3), 374-384. Retrieved from https://dergipark.org.tr/tr/download/article-file/87222

Thurstone, L. L. (1927). Three psychophysical laws. *Psychological Review, 34*(6), 424-432. doi: 10.1037/h0073028

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. *Organizational Research Methods, 3*(1), 4-70. doi: 10.1177/109442810031002
Likert Ölçeklere Bir Alternatif: Emojı

Abdullah Faruk KILIÇ *, Ibrahim UYSAL **, Bilal KALKAN ***

Öz
Yirmi birinci yüzeyde emojilerin iletişim platformlarında geniş bir kullanım alanı olmuştur. Bunun bir sonucu olarak emojiler ölcçerleri kullanımlaraya başlanmıştır. Ancak ölççerlerde emojilerin Likert tipi tepki kategoriplerinin yerine kullanılmasını etkisi üzerine inceленen alanlarda kısıtlanışlı sayıda araştırma olduğu gözlenmiştir. Buradan hareketle gerçekleştirilen bu araştırmının odak noktası emojileri ve Likert tipi tepki kategoripleri kullanımlarının ortaya çıkardığı ozellikleri incelemektedir. Bu araçtırmada Türkiye’nin farklı bölgelerinde yer alan ikinci devlet üniversitesinde öğrenim gören 341 öğrenciyeEMBER
Bu makaleye ait tahta bulunanak için:
Kuç, A. F., Uysal, İ., & Kalkan, B. (2021). An alternative to Likert scale: Emoji. *Journal of Measurement and Evaluation in Education and Psychology, 12*(2), 182-191. doi: 10.21031/epod.864336

GİRİŞ
Araştırmacılar öz-bildirim ölççerlerini geliştiriken sıkılaşıkla Thurstone (1927), Guttman (1941) ve Likert (1932) gibi ölççemle tekniklerine başvururlar (Dwyer, 1993). Thurstone ölççeli çok sayıda maddenin ortalama formanın ve maddelerin uzmanlarından derecelendirildiği bir yapıya sahiptir. Bu ölççelerdeki katılmalar her bir maddeye katılma ve katılma durumlarını belirtirler (Payne & Payne, 2004). Guttman ölççemle teknikleri ise evsah temelli bir tekniktir. Kişiler çok sayıda maddeye cevap verebilir. Ancak incelenen özellik bakımından en güçlü maddeyi vereceklerini cevap üzerinden değerlendirebilirler. Maddeler ölçülen özelliğin miktarına ve öneme göre ölççemlenmiştir (Price, 2017). Guttman ölççeleri birikimli özellikliyle Thurstone ölççerlerinden farklılaşır. Guttman ölççerlerinde ölççenin bir seviyesine verilen olumlu bir tepki o seviyenin altında tüm maddelerin olumlu tepki verildiğini gösterir ve bu yönüyle Thurstone ölççerlerinden ayrırlar. Thurstone ve Guttman ölççeleri öncelikle temsil edilen hazırlarları ancak Likert tipi ölççelerde maddeler ölçülen özelliğin üç noktalarına yakındır (Anderson, 1988/1991). Kişilerin bir yöntem olan Likert tipi ölççelerde katılmalar çok sayıda maddeye katılma derecelerini belirtmektedirler. Derecelendirme işlemi kesinlikle katılmaların, katılmaların, kararsızlık, katılmaların ve kesinlikle katılmaların şekilde yapılabilir (Price, 2017). Derecelendirmeleş di, dört, beş ve yedi kategorili olarak yapılabilir. Ölçek的意见,ことが多い faaliyet pozitif ya da negatif bir deng uygunluğundaki seçilebilecek bir kararsızlık seçeneği bulunabilir. Likert tipi ölççeler Thurstone ölççüde olduğu gibi puanlama işleminde uzman kanllarına ihtiyaç duymaz. Bu durum umuzmanlardan kaynaklı hataları ortadan kaldırılmayi sağlar (Batay, 2014). Likert tipi ölççelerin pratik ve güvenilir olduğu düşünülmektedir. Ancak son yıllarda dijitalleşmenin bir yansıması ile ölçüllerdeki maddeler ölçülen özelliğin uç seviyelerine verilen olumlu bir tepki o seviyenin altındaki tüm maddelerin olumlu tepki verildiğini gösterir ve bu yönüyle Thurstone ölççerlerinden ayrırlar. Thurstone ve Guttman ölççeleri öncelikle temsil edilen hazırlarları ancak Likert tipi ölççelerde maddeler ölçülen özelliğin üç noktalarına yakındır (Anderson, 1988/1991). Kişilerin bir yöntem olan Likert tipi ölççelerde katılmalar çok sayıda maddeye katılma derecelerini belirtmektedirler. Derecelendirme işlemi kesinlikle katılmaların, katılmaların, kararsızlık, katılmaların ve kesinlikle katılmaların şeklinde yapılabilir (Price, 2017). Derecelendirmeleş di, dört, beş ve yedi kategorili olarak yapılabilir. Ölçek的意见,ことが多い faaliyet pozitif ya da negatif bir deng uygunluğundaki seçilebilecek bir kararsızlık seçeneği bulunabilir. Likert tipi ölççeler Thurstone ölççüde olduğu gibi puanlama işleminde uzman kanllarına ihtiyaç duymaz. Bu durum umuzmanlardan kaynaklı hataları ortadan kaldırılmayi sağlar (Batay, 2014). Likert tipi ölççelerin pratik ve güvenilir olduğu düşünülmektedir. Ancak son yıllarda dijitalleşmenin bir yansıması ile ölçüllerdeki maddeler ölçülen özelliğin uç seviyelerine verilen olumlu bir tepki o seviyenin altındaki tüm maddelerin olumlu tepki verildiğini gösterir ve bu yönüyle Thurstone ölççerlerinden ayrırlar. Thurstone ve Guttman ölççeleri öncelikle temsil edilen hazırlarları ancak Likert tipi ölççelerde maddeler ölçülen özelliğin üç noktalarına yakındır (Anderson, 1988/1991). Kişilerin bir yöntem olan Likert tipi ölççelerde katılmalar çok sayıda maddeye katılma derecelerini belirtmektedirler. Derecelendirme işlemi kesinlikle katılmaların, katılmaların, kararsızlık, katılmaların ve kesinlikle katılmaların şeklinde yapılabilir (Price, 2017). Derecelendirmeleş di, dört, beş ve yedi kategorili olarak yapılabilir. Ölçek的意见,ことが多い faaliyet pozitif ya da negatif bir deng uygunluğundaki seçilebilecek bir kararsızlık seçeneği bulunabilir. Likert tipi ölççeler Thurstone ölççüde olduğu gibi puanlama işleminde uzman kanllarına ihtiyaç duymaz. Bu durum umuzmanlardan kaynaklı hataları ortadan kaldırılmayi sağlar (Batay, 2014). Likert tipi ölççelerin pratik ve güvenilir olduğu düşünülmektedir. Ancak son yıllarda dijitalleşmenin bir yansıması ile ölçüllerdeki maddeler ölçülen özelliğin uç seviyelerine verilen olumlu bir tepki o seviyenin altındaki tüm maddelerin olumlu tepki verildiğini gösterir ve bu yönüyle Thurstone ölççerlerinden ayrırlar. Thurstone ve Guttman ölççeleri öncelikle temsil edilen hazırlarları ancak Likert tipi ölççelerde maddeler ölçülen özelliğin üç noktalarına yakındır (Anderson, 1988/1991). Kişilerin bir yöntem olan Likert tipi ölççelerde katilmalar çok sayıda maddeye katılma derecelerini belirtmektedirler. Derecelendirme işlemi kesinlikle katılmaların, katılmaların, kararsızlık, katılmaların ve kesinlikle katılmaların şeklinde yapılabilir (Price, 2017). Derecelendirmeleş di, dört, beş ve yedi kategorili olarak yapılabilir. Ölçek的意见,ことが多い faaliyet pozitif ya da negatif bir deng uygunluğundaki seçilebilecek bir kararsızlık seçeneği bulunabilir. Likert tipi ölççeler Thurstone ölççüde olduğu gibi puanlama işleminde uzman kanllarına ihtiyaç duymaz. Bu durum umuzmanlardan kaynaklı hataları ortadan kaldırılmayi sağlar (Batay, 2014). Likert tipi ölççelerin pratik ve güvenilir olduğu düşünülmektedir. Ancak son yıllarda dijitalleşmenin bir yansıması ile ölçüllerdeki maddeler ölçülen özelliğin uç seviyelerine verilen olumlu bir tepki o seviyenin altındaki tüm maddelerin olumlu tepki verildiğini gösterir ve bu yönüyle Thurstone ölççerlerinden ayrırlar. Thurstone ve Guttman ölççeleri öncelikle temsil edilen hazırlarları ancak Likert tipi ölççelerde maddeler ölçülen özelliğin üç noktalarına yakındır (Anderson, 1988/1991). Kişilerin bir yöntem olan Likert tipi ölççelerde katilmalar çok sayıda maddeye katılma derecelerini belirtmektedirler. Derecelendirme işlemi kesinlikle katılmaların, katılmaların, kararsızlık, katılmaların ve kesinlikle katılmaların şeklinde yapılabilir (Price, 2017). Derecelendirmeleş di, dört, beş ve yedi kategorili olarak yapılabilir. Ölçek的意见,ことが多い faaliyet pozitif ya da negatif bir deng uygunluğundaki seçilebilecek bir kararsızlık seçeneği bulunabilir. Likert tipi ölççeler Thurstone ölççüde olduğu gibi puanlama işleminde uzman kanllarına ihtiyaç duymaz. Bu durum umuzmanlardan kaynaklı hataları ortadan kaldırılmayi sağlar (Batay, 2014). Likert tipi ölççelerin pratik ve güvenilir olduğu düşünülmektedir. Ancak son yıllarda dijitalleşmenin bir yansıması ile ölçüllerdeki maddeler ölçülen özelliğin uç seviyelerine verilen olumlu bir tepki o seviyenin altındaki tüm maddelerin olumlu tepki verildiğini gösterir ve bu yönüyle Thurstone ölççerlerinden ayrırlar. Thurstone ve Guttman ölççeleri öncelikle temsil edilen hazırlarları ancak Likert tipi ölççelerde maddeler ölçülen özelliğin üç noktalarına yakındır (Anderson, 1988/1991). Kişilerin bir yöntem olan Likert tipi ölççelerde katilmalar çok sayıda maddeye katılma derecelerini belirtmektedirler. Derecelendirme işlemi kesinlikle katılmaların, katılmaların, kararsızlık, katılmaların ve kesinlikle katılmaların şeklinde yapılabilir (Price, 2017). Derecelendirmeleş di, dört, beş ve yedi kategorili olarak yapılabilir. Ölçek的意见,ことが多い faaliyet pozitif ya da negatif bir deng uygunluğundaki seçilebilecek bir kararsızlık seçeneği bulunabilir. Likert tipi ölççeler Thurstone ölççüde olduğu gibi puanlama işleminde uzman kanllarına ihtiyaç duymaz.
taraftan yılın kelimesi seçilmiştir. Bunun yanında emojilerin sosyal ve iletişim alanlarında artan önemi fark edilmiştir. Emojiler yeni bir yazım kodu haline gelmiştir (Danesi, 2017). Dijital dünyada.yangın çıkan bulgularının bilimsel araştırmalarla da yansıması kaoamlazdır.

Emojilerin ölçekte kullanılarak ilgili incelenen alanyazında kısıtlı sayıda araştırmanın rastlanmıştır. Alismail ve Zhang (2018) araçtırmlarlarında elektronik ortamda kullanıcı deneyimine yönelik anketlerde emoji kullanımını incelemiştir. Deubler Swaney-Stueve, Jepsen ve Su-Fern (2020) tüketicilerin ürünleri duygusal tepkilerinde emojilerin sözel tepki kategorileri yerine kullanımın etkisini inceleriştir. Alismail ve Zhang (2018) yıla yapılışlı hüníms çözümlerle emojilerin kullanımının avantajları ve zorlukları üzerine çıkarılar yapmıştır. Marengo ve diğerleri (2017) sosyal tepki kategorilerinde oluşan bir kişilik testi ile emojiler arasında eş zamanlı geçeri kantları elde etmiştir. Deubler ve diğerleri (2020) emojilerin tepki kategorisi olarak kullanılan diğer verilerinin geçeriğine ilişkin çıkarılar bulunmaktadır. Marengo ve diğerleri (2017) ve Deubler ve diğerlerinin (2020) araştırmasını ele aldığında emojilerin sözel tepki kategorilerini yerine kullanılmıştır. Her ne kadar emojilerin anketlerden kullanılarak elde edilen verilerin geçeriğine ilişkin kanıtlar olmasına da bu araçtırmlar yeterli sayıda değildir. Ayrıca sosyal tepki kategorileri ve emojiler aynı çalışmada karşılaştırmılabilir. Emojilerin kullanımı ile elde edilecek sonuçların bireylerle ilgili önemli karanlar arasında kullanılabilirliği düşünebileceğimiz bu konuda daha fazla sayıda araştırmaya ihtiyaç duyuştuğunu görmüştür. Bu nedenle yürütülen araştırmanın amacı emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Alanyaza detaylı bir所以他ז된 araştırma yöntemidir (Fraenkel, Wallen, & Hyun, 2012). Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadır. Bu araştırma ele alınan emojilerin kullanıldığı ölçü ile kullanılan diğer ölçünün geçeriğine ilişkin çıkarılar sağlanmaktadı.
Evren ve Örneklem

Araştırmanın ulaşılabilir evrenini Güneydoğu Anadolu ve Batı Karadeniz bölgesinde yer alan iki devlet üniversitesinde lisans öğrencileri oluşturmaktdır. Araştırımda doğrudan incelenen özellikle ilgili çıkarım yapılmakta teptki kategorisi olarak emoji ve sözel ifadelerin kullanımı karşılaştırılmaktadır. Bu nedenle uygun örnekleme yöntemi basvurulmuştur. Seçkisiz olmayan bir örnekleme yöntemi olan uygun örneklerede araştırmacılar çok fazla zaman ve enerji kaybını önlemek, maliyeti azaltmak amacıyla en ulaşılabilir katılımcılara ulaşır (Fraenkel ve diğerleri, 2012).

Örneklemde 341 öğrenci yer almakta olup öğrencilerin demografik özellikleri Tablo 1'de gösterilmektedir.

Tablo 1. Örneklemde Yer Alan Öğrencilerin Demografik Özellikleri

Değişken	F	%	Değişken	f	%
Kadın	252	73.9	Adıyaman Üniversitesi	165	48.4
Erkek	89	26.1	Bolu Abant İzzet Baysal Üniversitesi	176	51.6
Eğitim Fakültesi	283	83	1. Sınıf	66	19.4
Fen-Edebiyat Fakültesi	15	4.4	2. Sınıf	148	43.4
Güzel Sanatlar Fakültesi	11	3.2	3. Sınıf	63	18.5
Sosyal Bilimler Meslek Yüksekokulu	19	5.6	4. Sınıf	57	16.7
Diğer	13	3.8	Diğer	7	2.0
Toplam	341	100.0			

Tablo 1 incelendiğinde örneklemde yer alan üniversite öğrencilerinin %79.9’unun (n=252) kadın ve %26.1’inin (n=89) erkek olduğu görülmektedir. Örneklemdeki öğrencilerin yaşları 18 ile 41 aralığında değişmekte olup yaş ortalaması 21.6, ortancası 21’dir. Araştırıma katılan üniversite öğrencilerinin %83’ü (n=283) eğitim fakültesinde, %5.6’sı (n=19) sosyal bilimler meslek yüksekokulunda, %4.4’ü (n=15) fen-edebiyat fakültesinde, %3.2’si (n=11) güzel sanatlar fakültesinde, %3.9’u (n=13) diğer fakülteler (diş hekimliği, eczacılık, iktisadi ve idari bilimler, sağlık bilimleri, turizm) ve enstitüde (fen bilimleri) öğrenim görmektedir. Öğrencilerin %19.4’ü (n=66) 1. sınıfta, %43.4’ü (n=148) 2. sınıfta, %18.5’i (n=63) 3. sınıfta, %16.7’si (n=57) 4. sınıfta ve %2’si (n=6) diğer sınıflarda (hazırlık ve 5. sınıf) öğrenim görmektedir.

Veri Toplama Araçları

Demografik bilgi formu ve Psikolojik İyi Oluş Ölçeği araştırımda veri toplama araçları olarak kullanılmıştır. Demografik bilgi formu üniversite öğrencilerinin cinsiyeti, üniversite, bölüm ve sınıf bilgilerini edinmeye yöneliktir. Psikolojik İyi Oluş Ölçeği, Diener ve diğerleri (2010) tarafından geliştirilmiştir. Ölçeğin Türk kültürüne uyarlanması Telef (2013) tarafından yapılmıştır. Psikolojik İyi Oluş Ölçeğinin Türk formuna ait psikometrik özellikler incelendiğinde ölçünün tek boyutlu olduğu ve açıklanan varyansın %42 olduğunu görülmüktedir. Maddelerin faktör yüklüleri .54 ile .76 aralığında değişmektedir. Ölçek puanlarına ilişkin Cronbach a füneninLP .86 olarak bulunmuştur. Ölçüt geçerligine ilişkin kant elde etmek için farklı bir psikolojik iyi oluş ve ihtiyaç doyumu ölçeği arasındaki korelasyon incelenmiştir. Sonuçta psikolojik iyi oluş ve ihtiyaç doyumu ölçekleri ile sırasıyla .56 ve .73 korelasyon değerlerine ulaşmıştır. Psikolojik İyi Oluş Ölçeği 8 maddeden oluşmaktadır olup maddeler 1 kesinlikle katılmıyorum, 2 katılmıyorum, 3 biraz katılmıyorum, 4 kararsızım, 5 biraz katılyorum, 6 katılyorum ve 7 kesinlikle katılyorum şeklinde puanlanmaktadır.

Verilerin Elde Edilmesi

Demografik bilgi formu ve Psikolojik İyi Oluş Ölçeğinin 3’lü (katılmıyorum, kararsızım, katılyorum), 5’li (kesinlikle katılmıyorum, katılyorum, kararsızım, kesinlikle katılyorum) ve 7’li (kesinlikle katılyorum, katılyorum, biraz katılyorum, kararsızım, biraz katılyorum, katılyorum, kesinlikle katılyorum) Likert tipi teptki kategorileriyle hazırlanmış hali ve 3’lü (%, 😊, 😊, 🎉)
Verilerin Analizi

Analize başlamadan önce veri seti incelendiğinde kayıp veri bulunmadığı gözlemmiştir. Emoji ve Likert tipinde tepki kategorileri içeren ölçeklerden elde edilen verilerin birbirinden farklılık göstermedikini incelemek amacıyla ölçeklerden elde edilen verilerin analizine açılmayı faktör analizi (AFA) ve doğrulayıcı faktör analizi (DFA) sonuçları karşılaştırılmıştır. Bu nedenle ilk olarak veri setlerinin faktör analizinin varsayımlarını karşılayıp karşılamadığı incelemiştir. Bu amaçla hem Likert tipindeki hem de emoji tepki kategorilerinde elde edilen 341 kişilik veri setleri üzerinde örneklemXHR gözlenmektedir.

Tablo 2'de veri setlerindeki çok değişkenli üç değerlerin sayısıının 0 ile 15 arasında değiştiği görülmektedir. Bu üç değerler 341 kişilik veri setlerinden çıkarılmıştır. Tüm veri setlerinin tolerans değerleri .43'ten büyük, varyans genişlik faktörünün ise 10'dan küçük ve koşul indekslerinin ise 1'den küçük olduğu gözlemmiştir. Buna göre veri setlerinde çok Crushers Bandı problemi olup olmadığı belirtilmiştir. Faktör analizi için kabul edilebilir minimum KMO değeri .60 olarak belirtilmektedir (Kaiser, 1974). Buna göre veri setlerinin AFA için iyi düzeyde örneklem migliğine sahip olduğu söyleyebilir (Kaiser & Rice, 1974). Bartlett küreselli testi sonuçları ise tüm veri setlerinde anlamında çıkarılmıştır. Buna göre veri setlerinden elde edilen korelasyon matrislerinin birim matristen farklı olduğunu söyleyebilir. AFA gereçleştirmek için çok değişkenli normal dağılım varsayımları sağlayıp sağlaymadığını için bu varsayımı ihmaline karşı daha güçlü olan ağırlıklandırılmış varsayımlar (unweighted least squares-ULS) faktör çıkarma yöntemi kullanılmıştır (Brown & Moore, 2012). DFA'da ise ortalamalar ve varyansların düzeltildiği ağırlıklandırılmış en küçük kareler (mean and variance adjusted unweighted least squares-ULSMV) kestirim yöntemi kullanılmıştır. AFA ve DFA polikorik korelasyon matrisi kullanılarak değerlendirilmiştir. Açılmayı faktör analizi için Factor 10.10.03 (Lorenzo-Seva & Ferrando, 2020), DFA için ise Mplus (Muthén & Muthén, 2012) yazılımı kullanılmıştır.
Etik Kurul İzni

Yapılan bu çalışmada Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi kapsamında uygulama belirtilen tüm kurallara uymıştır. Yönergenin ikinci bölümü olan Bilimsel Araştırma ve Yayın Etiği Yorum Eylemleri başlığı altında belirtilen eylemlerden hiçbirı gerçekleştirilmemiştir.

Etik değerlendirmeyi yapan kurul adı = Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimlerde İnsan Araştırmaları Etik Kurulu

Etik değerlendirme kararının tarihi = 15.04.2020 (2020/03)

Etik değerlendirmeye belgesi sayı numarası = 2020/81

BULGULAR

Bu bölümde araştırma problemlerindeki sıraya göre bulgulara yer verilmiştir.

Emoji ve Likert Tipi Tepki Kategorilerinden Elde Edilen Verilerin AFA Sonuçlarının Karşılaştırılması

Tepki kategorileri Likert tipli ve emojiler olarak ölçulen ölçerlerin elde edilen verilerin AFA sonuçları, açıklanan varyans oranları ve maddelerin faktör yükleri karşılaştırılmıştır. Elde edilen sonuçlar Tablo 3’te sunulmuştur.

Tablo 3. Emoji ve Likert Tipi Derecelendirilen Ölçeklerden Elde Edilen Verilerin AFA Sonuçları

Madde No	Kategori sayısı	Faktör Yükü Açıklanan Varyans Oranı
1	3	.86 .93
2	5	.66 .73
3	7	.64 .66
4	3	.58 .49
5	5	.80 .75
6	7	.65 .70
7	7	.73 .67
8		.73 .63

Tablo 3’te emoji ve Likert tipinde derecelendirilen ölçeklerde bulunan maddelerin faktör yükleri sunulmuştur. Likert ve emoji tipinde derecelendirilen ölçeklerden elde edilen verilerin AFA sonuçları incelendiğinde faktör yüklerinin birbirine çok yakın olduğu ve açıklanan varyans oranlarının da çok benzer olduğu sinyallenmiştir. Tepki kategorisi sayısı arttıkça açıklanan varyans oranları da yükselemiştir. Yine de aynı kategorisi sayımasına sahip Likert tipinde ve emojiyle derecelendirilen ölçeklerden elde edilen verilerin AFA sonuçlarının çok benzer olduğu sinyallenir.

Likert tipinde ve emojiyle derecelendirilen ölçeklerden elde edilen verilerin faktör yüklerinin manidar düzeyde farklılaşmış farklılaşmadığını incelmek amacıyla Wilcoxon işaretli sıra testi (Wilcoxon signed rank test) uygulanmıştır. Bunun sonucunda hem 3 kategorili (Z = -.70, p = .944), hem 5 kategorili (Z = -.84, p = .401) hem de 7 kategorili ölçekler (Z = -1.40, p = .161) için emoji ile Likert tipinde tepki kategorileriyle elde edilen veri setlerinin faktör yükleri arasında manidar farklılık bulunmamıştır.
Emoji ve Likert Tipi Tepki Kategorilerinden Elde Edilen Verilerin DFA Sonuçlarının Karşılaştırılması

Tepki kategorileri Likert tipi ve emojiler olan veri setlerinden elde edilen DFA sonuçları maddelerin faktör yükleri açısından karşılaştırılmıştır. Buna göre elde edilen sonuçlar Tablo 4’te sunulmuştur.

Tablo 4. Emoji ve Likert Tipi Derecelendirilen Ölçeklerden Elde Edilen Verilerin DFA Faktör Yükü Sonuçları

Madde No	3 Kategori sayısı	5 Kategori sayısı	7 Kategori sayısı					
	Likert	Emoji	Likert	Emoji	Likert	Emoji	Likert	Emoji
1	.86	.93	.90	.84	.89	.90		
2	.66	.73	.81	.85	.87	.88		
3	.64	.67	.81	.79	.87	.88		
4	.58	.48	.74	.71	.78	.79		
5	.58	.60	.68	.75	.78	.84		
6	.80	.76	.86	.85	.88	.94		
7	.65	.70	.73	.67	.79	.69		
8	.73	.64	.80	.75	.83	.85		

Tablo 4 incelendiğinde hem Likert tipi hem de emoji tepki kategorilerine sahip ölçeklerdeki maddelerin DFA sonucunda elde edilen faktör yükleri görülmektedir. Aynı kategori sayısına sahip Likert tipi ve emoji tepki kategorisindeki ölçeklerden elde edilen verilere ait faktör yüklerinin çok benzer olduğu söylenebilir. Faktör yüklerinin emoji ve Likert tipinde derecelendirilen ölçeklerden elde edilen verilerde farklılaşmaya rastlanmadığı incelenmesi amacıyla Wilcoxon işaretli sıra testi uygulanmıştır. Bunun sonucunda hem 3 kategorili (Z = .00, p = 1.00), hem 5 kategorili (Z = -.84, p = .401) hem de 7 kategorili puanlanan ölçekler (Z = -.14, p = .161) için emoji ile Likert tipinde derecelendirme yapımının faktör yükleri arasında mani bir farklılık ortaya çıkarmadığı bulunmuştur. Tablo 5’te ise DFA sonucunda elde edilen uyum indeksleri yer almaktadır.

Tablo 5. Emoji ve Likert Tipinde Derecelendirilen Ölçeklerden Elde Edilen Veri Setlerinin DFA Sonucunda Elde Edilen Uyum Indeksleri

Kategori Sayısı	3 Kategori sayısı	5 Kategori sayısı	7 Kategori sayısı								
	CFI	ΔCFI	TLI	ΔTLI	RMSEA	ΔRMSEA	%90 Güv. Alanı	RMSEA p değeri	Ki kare	Ki kare/sd	Ki kare p değeri
Likert	.98	.04	.97	.06	.05	-.03	.03 - .08	.38	39.29	1.96	.01
Emoji	.94	.92	.09	.00	.13	-.00	.06 - .11	.00	69.39	3.47	.00
Likert	.97	.00	.96	.00	.13	-.00	.11 - .16	.00	137.24	6.86	.00
Emoji	.97	.96	.13	.12	.17	.00	.11 - .16	.00	140.27	7.01	.00
Likert	.98	.01	.98	.01	.13	-.00	.10 - .14	.00	6116.71	305.84	.00
Emoji	.98	.97	.17	.00	.19	.00	.15 - .19	.00	8834.76	441.74	.00

Likert ve emoji ile derecelendirilen ölçekler 3 kategorili olduğunda CFI değerleri Likert tipi için .98, emoji için .94 olarak elde edilmiştir. Bu iki CFI değeri arasındaki fark .01’den büyük olduğu durumda CFI değişiminin önemli olduğu belirlenmektedir (Cheung & Rensvold, 2002; Vandenberg & Lance, 2000). Buna göre CFI indeksi açısından incelendiğinde Likert tipindeki 3 kategorili derecelendirme, 3 kategorili emoji derecelendirmesine göre veriye daha iyi uyum sağlamıştır. Ancak 5 ve 7 kategoriler için ΔCFI değeri incelendiğinde bu değerlerin .01’den küçük olduğu gözlemlenmiştir.

RMSEA açısından incelendiğinde ΔRMSEA değeri .01’den büyük olduğunda bu farkın önemli olduğu belirlenmektedir (Chen, 2007). Buna göre RMSEA açısından Likert tipindeki 3 kategorili derecelendirmenin, 3 kategorili emoji derecelendirmesine göre verilere daha iyi uyum sağlamadığını söyleyebilir. TLI ve ki kare için benzer karşilaştırmalar bulunmamaktadır (Vandenberg & Lance, 2000).
2000). Diğer taraftan Likert ve emoji tipinde ölçümlerden elde edilen istatistikler model-ürun uyumu kararını etkileyecek düzeyde değildir. Diğer bir deyişle model ürun uyumu Likert tipinde ölçümlerden elde edilen veri setinde sağlanıyor, fakat Benzer şekilde Likert tipinde ölçümlerden elde edilen veri setinde sağlanmamaktadır. Örneğin 3 kategorili veri setlerinden elde edilen sonuçlar incelediğinde emoji tipi ölçük için CFI değeri .94 iken Likert tipi ölçük için .98’dir. CFI ve TLI’nın .90’dan büyük olmasının model ürunünün sağlansığına işaret ettiği belirtildiğinde (Hair, Black, Babin, & Anderson, 2009; Vandenberg & Lance, 2000) emoji ya da Likert tipinde ölçümlerde model-ürun uyumunun sağlanıp sağlanmadığını iletiği karar etkilememektedir.

Emoji ve Likert Tipi Tepki Kategorilerinden Elde Edilen Puanlar Arasındaki İlişkilerin İncelenmesi

Tepki kategorileri Likert tipi ve emoji olan veri setlerinden elde edilen puanlar arasındaki ilişkiler cinsiyete göre incelemiştir. Sonuçlar Tablo 6’da sunulmuştur.

Tepki Kategorileri	Kadın (n = 252)	Erkek (n = 89)
3 Kategori Likert	.75**	
5 Kategori Likert	.69**	.81**
7 Kategori Likert	.54**	.72**

$p < .01$

Tablo 6’daki emoji ve Likert tipi derecelendirilen ölçümlerden elde edilen puanlar arası korelasyonlar kadınlar için .54 ile .75; erkekler için .72 ile .80 arasında değiştiği görülmüştür. Hem kadın hem de erkekler için kategori sayısı arttıkça emoji ve Likert tipindeki ölçümlerden elde edilen puanlar arasındaki korelasyonların azaldığı belirtilebilir.

Emoji ve Likert Tipi Tepki Kategorilerinden Elde Edilen Puanların Güvenirliklerinin Karşılaştırılması

Tepki kategorileri Likert tipi ve emoji olan veri setlerinden elde edilen Cronbach alfa katsayıları Tablo 7’de sunulmuştur.

Tepki Kategorileri	Cronbach Alpha
3 Kategori Likert	.81
3 Kategori Emoji	.81
5 Kategori Likert	.90
5 Kategori Emoji	.89
7 Kategori Likert	.93
7 Kategori Emoji	.93

Tablo 7’de emoji ve Likert tipi derecelendirilen ölçümlerden elde edilen verilerin Cronbach Alfa katsayıları görülmüştür._kategori sayısı arttıkça güvenilirlik katsayısının arttığı ancak bunun zaten beklenen bir durum olduğu belirtilibilir. Emoji ve Likert tipi derecelendirilen ölçümlerden elde edilen puanların güvenilirliklerinin de birbirine çok yakın olduğu ifade edilebilir.
SONUÇLAR ve TARTIŞMA

Emoji ve Likert tipinde tepki kategorileri içeren ölçeklerden elde edilen verilerin birbirinden farklılık gösterip göstermediğini incelmek amacıyla gerçekleştirilen bu çalışmada aynı kategori sayısına sahip ölçülerin verilerinden elde edilen AFA ve DFA sonucunda Likert ve emoji tepki kategorilerinden oluşan ölçülerin yaplarının benzer olduğu gözlenmiştir. AFA sonucunda kategori sayısı arttığında açıklanlan varyans oranı artmıştır. Ancak emoji ve Likert tipindeki verilerden benzer sonuçlar elde edilmemıştır. AFA faktör yükleri açısından incelendiğinde de faktör yüklerinin istatistiksel olarak anlamli düzeyde birbirinden farklı olduğu dair yeterli kanıt bulunmadığı söylenebilir. Buna göre AFA açısından Likert ve emoji tepki kategorilerinden oluşan ölçülerin yapısı geçerliliklerinin yeterli düzeyde olduğu görülmüştür. Bu bulguya dayanarak emoji tepki kategorilerinin Likert tepki kategorileri yerine kullanılabileceği söylenebilir.

DFAs açısından incelendiğinde kategori sayısı arttığında uyum indeksleri azalmış olmasına rağmen hem emoji hem de Likert tipindeki ölçek verileri için uyum indekslerinin yeterli düzeyde olduğu söylenebilir. Uyum indeksleri kategorisi sayısına göre de değişmesine rağmen, Likert ve emoji tipindeki tepki kategorileri arasındaki farklılar önemli düzeyde değildir. DFA faktör yüklerini açısından incelendiğinde ise emoji ve Likert tipindeki verilerden elde edilen faktör yüklerinin istatistiksel olarak anlamli düzeyde farklılaşmadığı gözlenmiştir. Buna göre her iki ölçek tipinden elde edilen verilerin yapı geçerliğinin yeterli düzeyde olduğu söylenebilir.

Emoji ve Likert tipindeki ölçeklerden elde edilen puanlar arasındaki korelasyonlar incelendiğinde kategori sayısının arttığındaアウスを受け alan verilerin arttığını, en azından katılmaları farklı tepkilere neden olduğu söylenebilir. Özellikle kadınlık faktörü katılmaları 7 kategorili ölçülerin kullanıcılarda korelasyonun .54’e kadar inmesi, hem 붐 maddelerle farklı özelliklerin ölçüldüğünü düşüندürmektedir. Benzer sonuçlar Setty, Srinivasan, Radhakrishna, Melwani ve Dr (2019) tarafından gerçekleştirilen çalışmalarda da bulunmaktadır. Setty ve diğerleri (2019) 4-14 yaş aralığında çocukların diş veya çokszıѹ olan temai için 3 farklı ölçüm (emoji ögle, Venham resim belgesi ve Görsel Yüz Skalasi-Face-Image Scale), emoji ögle ile Venham resim belgesi arasındaki korelasyonun .73, Görsel Yüz Skalası ile korelasyonun ise .87 olduğunu raporlamıştır. Bu bulgularдан farklı olarak Swaney-Stueve, Jepsen ve Deubler (2018) tarafından gerçekleştirilen çalışmada 9’lu Likert ile 7’li emoji ögle arasındaki korelasyonun .99 olduğu belirtmiştir. Swaney-Stueve ve diğerlerinin (2018) araştırmasında araştırma ile dalgalanlaştırılmıştır. Ayrıca ölçük üzerinden karşılaştırma gerçekleştirilmediğinden bu farklılık oluşmuş olabilir. Ayrıca araştırılma 8-14 yaş grubundaki bireylerle gerçekleştirildiğiinde mevcut çalışma sonuçlarıyla farklılık göstermesi buradan da yayıklanıyor olabilir. Diğer tarafından Alismail ve Zhang (2018) tarafından gerçekleştirilen çalışmadaki bireylerin aynı emojileri farklı çekilere anlamlardırdıklar belirtilmiştir. Bazı bireyler nötr yüz ifadesini (😊) olduğuna dek olarak değerlendirilmştir. Bu açıdan bakıldığında kategori sayısının artmasının ölçekleri kullanılan emojileri sayısını arttırdığı, bunun dolayısı korelasyonların düşük kıktığı belirtilebilir.

Araştırma bulgularına göre emoji tipindeki tepki kategorilerinin ölçeklerde kullanılmaksızın önünde bir engel olmadığını, yapı geçerliği ve iç tutarlı anlamlıdkabın güvenirlik katsayları açısından aynı kategori sayısına sahip ölçülerin çok benzer olduğu gözlenmiştir. Buna göre emoji tipindeki tepki kategorilerinin de ölçek geliştirilme çalışmalarında kullanılabileceği söylenebilir. Ancak toplam puanlar arasındaki ilişkilerin orta düzeyde olması ölçülen yapıların birbirinden farklılaştığı ve da emoji ve Likert tipindeki tepki kategorilerinin bireylerle farklı tepkiler oluşmasına neden olduğu söylenebilir. Mevcut çalışmada 3’lü emoji tepki kategorilerinin 3’lü Likert tepki kategorileri yerine kullanılabileceği görülmüştür. Ancak 5’li ve 7’li emoji ve Likert tepki kategorileri kullanılmadığından elde edilen korelasyonlar farklılık göstermiştir. Emoji tipi tepki kategorilerinin kullanılmamı henüz yeni olduğundan, alanyaza ve uygulayıcılarına katkı getirmesi için ileri çalışmaları farklı yaş grubunda örneklemeler ve farklı ölçülerde mevcut araştırmadan elde edilen sonuçların benzerliği veya farklılığı karşılaştırılmalıdır. Bu çalışma bulgularına göre üniversite öğrencilerinden Likert tipi ve da emoji tepki kategorileryle elde edilen verilerin benzer yapı geçerliğine sahip olduğu ifade edilebilir. Ancak bu çalışmanın kullanılan ölçme aracını örneklemeler sınırlı olduğu göz önünde bulundurulmalıdır.
Mevcut araştırma bulgularına göre 3’lü, 5’li ve 7’li emoji ve Likert tepki kategorilerinden oluşan ölçeklerden elde edilen sonuçlara bakıldığında, kadın ve erkeklerin aynı emojilere farklı anlamları atfettiği görülmüştür. İleri çalışmalarda bu farkın neden kaynaklandığı üzerine araştırma yapılabilir. Ayrıca bu farklılaşmanın nedeni farklı yaş gruplarıyla ve eşiğe/ışığı yakın sayıda kadın ve erkek gruplarıyla derinlemesine incelenebilir. Cinsiyetlerin gösterilen tepki kategorilerine bağlı olarak ve erkeklerin nedenleri ve sonuçları nitelecek arastırmalarla desteklenebilir. Ancak bu arastırmının Psikolojik İyi Oluş Çeşitlerinden elde edilen verilerle sınırlı olduğu göz öne alınmalıdır.

Ölçeklerde emoji tepki kategorilerinin kullanımının yeni olduğu göz önüne alınındığında, özellikle yedi ve üzerinde Likert tepki kategorileri (sözel ve sayısal) sahip ölçeklerde yaşanan bilimsel kararsızlık durumlarının önlenip önlenemeyeceği yeni arastırmalarla ortaya çıkarmalıdır. Ayrıca, okul öncesinde ve ilkokul ilk yıllarında eğitim gören öğrencilerin okuma-yazmadaki sınırlılıkları düşünülüğünde, emoji tepki kategorileri kullanarak daha geçeri sonuç elde edilebilir. Bunun yanında okuma-yazma bilmeyen bireylerden de ilk iken veri elde edebilmek amacıyla, soruların sözel olarak ifade edilip cevapların katılımcıdan emojileri göstererek belirtilmesi de istenebilir. Bu şekilde hem bu bireylerden veri toplamak kolaylaşır hem de toplanan verilerin değerli ve güvenilirliği yükselebilir.

KAYNAKÇA

Albaum, G. (1997). The Likert scale revisited: An alternate version. *Journal of the Market Research Society*, 39(2), 331-342. doi:10.1177/002225019703900202

Alismail, S., & Zhang, H. (2018, January). *The use of emoji in electronic user experience questionnaire: An exploratory case study*. Paper presented at 51st Hawaii International Conference on System Sciences, Hawaii. doi: 10.24251/hicss.2018.427

Anderson, L. W. (1991). Attitudes and their measurement (N. Çıkrıkçı, Çev.). *Ankara University Journal of Educational Sciences*, 24(1), 241-250. doi: 10.1501/egifik_00000000734 (Original work published 1988).

Bayat, B. (2014). Uygulamalı sosyal bilim araştırmalarında ölçme, ölçekler ve “Likert” ölçek kurma tekniği. *Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, 16(3), 1-24. Erişim adresi: https://dergipark.org.tr/tr/pub/gazziuibdf/issue/28309/300829

Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), *Handbook of structural equation modeling* (pp. 361-379). New York: Guilford.

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. *Structural Equation Modeling*, 14(3), 464-504. doi: 10.1080/10705510701301834

Chen, Z., Lu, X., Shen, S., Ai, W., Liu, X., & Mei, Q. (2017). Through a gender lens: An empirical study of emoji usage over large-scale android users. Retrieved from https://arxiv.org/abs/1705.05546

Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. *Structural Equation Modeling: A Multidisciplinary Journal*, 9(2), 233-255. doi: 10.1207/S15328007SEM0902_5

Danesi, M. (2017). *The semiotics of emoji*. London: Bloomsbury Publishing.

Deubler, G., Swaney-Stueve, M., Jepsen, T., & Su-Fern, B. P. (2020). The k-state emoji scale. *Journal of Sensory Studies*, 35(1), 1-9. doi: 10.1111/joss.12545

Diener, E., Wirtz, D., Tov, W., Kim-Prieto, C., Choi, D., Oishi, S., & Biswas-Diener, R. (2010). New well-being measures: Short scales to assess flourishing and positive and negative feelings. *Social Indicators Research*, 97(2), 143-156. doi: 10.1007/s11205-009-9493-y

Dwyer, E. E. (1993). *Attitude scale construction: A review of the literature* (Report No. ED359201). Retrieved from https://eric.ed.gov/?id=ED359201

Fraenkel, J. R., Wallen, E. W., & Hyun, H. H. (2012). *How to design and evaluate research in education* (8th ed.). New York: McGraw-Hill.

Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In P. Horst (Ed.), *The prediction of personal adjustment* (pp. 321-348). New York: Social Science Research Council.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). *Multivariate data analysis* (7th ed.). Upper Saddle River: Prentice Hall.

Kaiser, H. (1974). An index of factor simplicity. *Psychometrika*, 39(1), 31-36. doi: 10.1007/BF02291575

Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. *Educational and Psychological Measurement*, 34(1), 111-117. doi: 10.1177/001316447403400115

ISSN: 1309 – 6575 *Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi Journal of Measurement and Evaluation in Education and Psychology*
Kline, R. B. (2011). *Principles and practise of structural equating modeling* (3rd ed.). New York: The Guilford Press.

Likert, R. (1932). A technique for the measurement of attitudes. *Archives of Psychology, 22*(140), 5-55. https://legacy.voteview.com/pdf/Likert_1932.pdf

Lorenzo-Seva, U., & Ferrando, P. J. (2020). *Factor* (Version 10.10.03) [Computer software]. Tarragona: Universitat Rovira i Virgili.

Marengo, D., Giannotta, F., & Settanni, M. (2017). Assessing personality using emoji: An exploratory study. *Personality and Individual Differences, 112*(1), 74-78. doi: 10.1016/j.paid.2017.02.037

Muthén, L. K., & Muthén, B. O. (2012). *Mplus statistical modeling software: Release 7.0*. Los Angeles, CA: Muthén & Muthén.

Payne, G., & Payne, J. (2004). *Key concepts in social research*. London: Sage Publications.

Prada, M., Rodrigues, D. L., Garrido, M. V., Lopes, D., Cavalheiro, B., & Gaspar, R. (2018). Motives, frequency and attitudes toward emoji and emoticon use. *Telematics and Informatics, 35*(7), 1925-1934. doi: 10.1016/j.tele.2018.06.005

Price, L. R. (2017). *Psychometric methods*. New York: The Guilford Press.

Setty, J. V., Srinivasan, I., Radhakrishna, S., Melwani, A. M., & Dr, M. K. (2019). Use of an animated emoji scale as a novel tool for anxiety assessment in children. *Journal of Dental Anesthesia and Pain Medicine, 19*(4), 227-233. doi: 10.17245/jdapm.2019.19.4.227

Swaney-Stueve, M., Jepsen, T., & Deubler, G. (2018). The emoji scale: A facial scale for the 21st century. *Food Quality and Preference, 68*, 183-190. doi: 10.1016/j.foodqual.2018.03.002

Tabachnick, B. G., & Fidell, L. S. (2013). *Using multivariate statistics* (6th ed.). New Jersey: Pearson.

Telef, B. B. (2013). Psikolojik iyi oluş ölçüğü: Türkçeye uyarlama, geçerlik ve güvenirlik çalışması. *Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 26*(3), 374-384. Erişim adresi: https://dergipark.org.tr/tr/download/article-file/87222

Thurstone, L. L. (1927). Three pschophysical laws. *Psychological Review, 34*(6), 424-432. doi: 10.1037/h0073028

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. *Organizational Research Methods, 3*(1), 4-70. doi: 10.1177/109442810031002

ISSN: 1309 – 6575 *Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi*
Journal of Measurement and Evaluation in Education and Psychology