Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination

Y. Poitelon1,2,* , S. Bogni2,*, V. Matafora2,†, G. Della-Flora Nunes1, E. Hurley1, M. Ghidinelli1,2, B.S. Katzenellenbogen3, C. Taveggia4, N. Silvestri5, A. Bachi2,†, A. Sannino6, L. Wrabetz1,2,5 & M.L. Feltri1,2,5

Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia’ sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination.
Myelin is required for fast conduction of neural impulses, preserves axons, and is implicated in demyelinating and neurodegenerative diseases\(^1\). The core of this function lies at the polarized surface of contact between myelin-forming glia and axons. Because this surface lies beneath a series of concentric inward wraps of myelin, it is inaccessible to biochemical isolation, making the studies of this crucial nervous system apposition arduous. Indeed, only few molecules have been identified in this location. More generally, compartmentalization of signalling events is crucial for glia, neurons and other polarized cells, and cell–cell interactions are at the basis of morphogenesis and are required for the function of all tissues. Only a few tools are available to study these events in specific subcellular domains.

Insights into the spatial organization of signalling networks have been obtained using the pseudopod subcellular fractionation system, in cells responding to chemotactic (soluble) or haptotactic (extracellular matrix) stimuli\(^2,3\). In this system\(^2\), cells are placed in a chamber with a microporous membrane, and extend pseudopodia in response to stimuli in the bottom chamber. Pseudopods can be imaged and isolated from the cell body, which remains on the top chamber due to the size of the nucleus. However, this method has not yet been applied to juxtacrine signalling.

Here we sought to adapt the pseudopod system to the study of cell–cell interactions in the nervous system. Our goal is to identify signalling events, molecular networks and novel molecules specifically at the axo-glial interface. Schwann cells (SC) make myelin in peripheral nerves, in response to contact with axons and the basal lamina (reviewed in ref. 4), making them excellent instruments to test if pseudopod sub-fractionation can model juxtacrine signalling. To ask whether this system was suitable to study signals between axons and glia, we replaced soluble stimuli with neuronal cell membranes, to mimic cell–cell contact, and isolated the cytoplasmic processes (pseudopods) that Schwann cells extend to contact axon membranes. By proteomic analysis we identified proteins that partitioned in pseudopods uniquely after axonal signals, including novel proteins and proteins known to localize at the Schwann cell–axon interface \textit{in vivo}. We also identified the major signalling networks induced by Schwann cell–axon contact, and a novel protein family, Prohibitins, which we show is required for appropriate axo-glial interactions \textit{in vivo}. This validation confirms that we were able to successfully model complex morphogenetic cell–cell interactions. This novel method opens the possibility to map subcellular events that occur during the interactions between neurons and other glial cells, or between any cells.

Results

SC extend pseudopods in response to chemotactic stimuli. Several cell types such as fibroblasts (NIH3T3) \textit{in vitro} respond to gradients of certain chemoattractants (for example, lysophosphatic-lysophosphatidic acid (LPA), but not insulin) by directional cell migration\(^2\). The initial step is the extension of a polarized protrusion (‘pseudopod’) that can be isolated by placing the cells on top of a Boyden chamber with microporous filters (3-μm pores) and the chemoattractant on the bottom\(^2\) (Fig. 1a). Cell bodies and pseudopods can then be separated.

To determine if primary Schwann cells respond like other cells, we compared their response (Fig. 1f–j) to that of NIH3T3 cells (Fig. 1a–e) to LPA, or to a combination of fetal calf serum, forskolin and growth factors. By staining the top or the bottom of the membrane with phalloidin and DAPI, and imaging with confocal microscopy focused sequentially above and below the membrane, we showed that both primary Schwann cells and NIH3T3 cells extended pseudopods in response to the chemoattractants, but not to DMEM alone (Fig. 1b,g). As expected, nuclei were detected solely on the upper surface, confirming that only pseudopods protruded through the small pores. Proteins from the cell bodies or pseudopods can be solubilized independently and quantified or analysed. Polarization was confirmed biochemically by showing that nuclear histones were present mostly in the cell body fraction (Fig. 1d,i). Protein quantification after 2 h of exposure to LPA or serum and growth factors confirmed that significantly more proteins were extracted from the pseudopod fraction in the presence of the chemoattractants (Fig. 1c,h). We next asked if the kinetics of pseudopod growth were similar in the two cell types. The extension of pseudopods in both Schwann cells and NIH3T3 cells was detected as early as 30 min after exposure to chemoattractants, and pseudopod growth reached a plateau after 2 h (Fig. 1e,h), similar to previous reports. Removal of the chemoattractant reversed the polarization of the Schwann cells and induced pseudopod retraction (Supplementary Fig. 1), confirming that the formation of pseudopods is an active and reversible process\(^2\).

Previous studies showed that the molecular machinery required for the extension of pseudopods resembles that required for extension of a leading edge in polarizing cells at the beginning of migration\(^7\), including regulators of the actin cytoskeleton. We thus wished to confirm that Schwann cell pseudopods contained regulators of actin polymerization, and molecules required for formation of Schwann cell protrusions. For example, Rac1, and Fak are required \textit{in vivo} for Schwann cells to form polarized lamellipodia around axons and to begin myelination\(^5,6\) and p-Akt is associated with the onset of myelination\(^7\); in contrast p-Erk is not required for initial wrapping, but for addition of subsequent myelin layers\(^8,9\). Indeed we found that Rac1, p-Fak and p-Akt, but not p-Erk, were enriched in pseudopods (Fig. 1i).

Cells can polarize and migrate also towards haptotactic stimuli, like polymerized extracellular matrix, and this can also be mimicked in the pseudopod system\(^3\). Accordingly, Schwann cells extended pseudopods in response to laminin polymerized on the lower membrane and the Laminin receptors β-Dystroglycan redistributed to these pseudopods (Supplementary Fig. 2).

These results demonstrate that Schwann cells respond to soluble or haptotactic physiological stimuli by extending polarized pseudopods, which contain the appropriate molecular machinery.

SC extend pseudopods in response to neuronal membranes. It is established that contact between Schwann cells and axons is strictly required for induction of myelination. Neuronal membrane preparations have been used as a model for axonal contact itself\(^10,11\). Thus, we asked if Schwann cells could extend polarized pseudopods in response to juxtacrine signals from neuronal membranes, and if the Schwann cell response to neuronal membranes was specific and unique.

We prepared neuronal membranes from isolated dorsal root ganglia (DRG) neurons, and confirmed that they were biologically active by showing that they induced Akt phosphorylation in Schwann cells (Fig. 2a). The key juxtacrine signal on axons is Neuregulin 1-type III, which is required for Schwann cell myelination\(^12,13\), while soluble Neuregulin 1-type I cannot promote myelination unless it is presented at high concentration or after injury\(^14,15\). Consistent with these published data, when we placed soluble Neuregulin 1-type I on the bottom chamber, Schwann cells failed to extend pseudopods (Fig. 2b,d). Similarly, when we plated DRG neurons on the bottom chamber, at a distance (0.2 mm) from the Schwann cells that precludes contact,
the physical separation prevented formation of pseudopods (Fig. 2b,e). In contrast, when we filled the bottom chamber with a suspension of neuronal membranes, such that integral proteins in neuronal membranes could contact the Schwann cells, Schwann cells responded by making polarized protrusions (Fig. 2b,f). These data suggest that the formation of Schwann cell protrusions requires neuronal contact, like myelination itself, and they are consistent with the notion that soluble signals from neurons are not sufficient to induce myelination. Three-dimensional (3D) reconstruction and volume rendering showed that most cells responded by extending pseudopods, and that pseudopods were polarized (that is, extended only through the pores towards the neuronal membranes; Supplementary Fig. 3, Supplementary Movie 1). Importantly, membrane suspensions prepared from non-neuronal cells did not induce the extension of Schwann cell protrusions (Supplementary Fig. 4). Thus, only the direct contact between Schwann cells and neuronal membranes promotes the extension of Schwann cell pseudopods, supporting that they may represent a model of the first polarization events leading to myelination.

As before, we confirmed that molecules required for extension of membrane protrusions, migration and myelination such as Rac1, p-Fak and p-Akt partitioned in the pseudopods induced by neuronal membranes, while nuclear histones partitioned preferentially in the cell bodies (Fig. 2g). We next asked whether Schwann cell pseudopods contained molecules located at the glial surface that faces axons. Remarkably, only few molecules at this important site are known. Among them, N-cadherin is polarized immediately to sites of axo-glial contact, where it recruits Par3; Nect2 localizes at the axo-glial surface in mature fibers, and the receptor ErbB2/3 should localize near axons to interact with axonal Neuregulin. Notably, only N-cadherin, that mediates the first axonal contact, was clearly enriched in pseudopods, whereas ErbB receptors and Nects were present in both fractions, whereas ErbB receptors and Necls were present in both fractions, whereas ErbB receptors and Necls were present in both fractions, whereas ErbB receptors and Necls were present in both fractions.
ErB3 phosphorylation occurs mainly in pseudopods. Finally, pseudopods did not contain the axonal specific molecules Caspr and Contactin-1 (Supplementary Fig. 5), indicating that neuronal membranes did not contaminate the pseudopod proteome. These results demonstrate that Schwann cells respond to juxtacrine signals in neuronal membranes by producing polarized pseudopodia that mimic the early cellular protrusions of intact neuro-glial systems. Thus the pseudopod system can model specific cell–cell interactions.

Pseudopods induced by neurons contain a specific proteome. Having shown that Schwann cells respond specifically to juxtacrine neuronal signalling by producing appropriate polarized protrusions, we next determined the proteome of the pseudopods and compared it to that of cell bodies. We analysed equal amounts of pseudopod and cell body lysates (Fig. 3a, Supplementary Fig. 5a) and quantified the relative abundance of a given protein in the lysates in the induced (neuronal membranes) versus non-induced (DMEM) condition, by stable isotope labelling (SILAC), coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). We reliably identified 714 proteins, 605 of which were present in neurally induced pseudopods (Supplementary Data 1). Of these, 176 proteins were enriched in pseudopods (as compared to cell bodies: Ps/CB ratio >1.25, Fig. 3c). Among these, 95 proteins were also relatively increased in pseudopods after induction with neuronal membranes (as compared to DMEM: Ps induced by neurons/Ps non induced >1, Fig. 3b,d and Supplementary Data 2).

Formation of polarized protrusions in any cells requires the cytoskeleton. Accordingly, the largest group of proteins enriched in pseudopods and increased during neuronal contact was associated with the cytoskeleton (19%; Supplementary Data 2). However, we wished to ask whether neuronal membranes also induced a specific response in Schwann cells, given the unique molecular and geometrical relationships between the two cells. To distinguish between molecules induced by any chemotactic, promigratory stimulus and molecules induced specifically by neuronal membranes, we compared the proteome of Schwann cell pseudopods generated by neuronal membranes (Supplementary Data 1) with that generated in response to fetal calf serum plus growth factors (Supplementary Data 3). Notably, we identified only 23 proteins that were enriched by both stimuli, representing 24% of the proteins enriched in pseudopods by neuronal membranes (Fig. 3b, indicated in grey). The remaining 76% of the proteins were enriched exclusively by neuronal membranes (Fig. 3b, indicated in black, Supplementary Data 4). This suggests that signalling by neuronal membranes elicits the redistribution not only of proteins required for the formation of cellular protrusions, it also induces a larger and unique set of specific proteins.

We next asked whether the proteome that varied in response to neuronal membranes included novel proteins, and proteins already known to function in myelination, both were present. Among the 95 proteins that increased in response to interaction with neuronal membranes, we found Integrin β1, N-cad and cAMP-dependent protein kinase type I/– regulatory subunit—that are required for Schwann cell–axon interactions in vivo20–22, whereas N-CAM mediates homotypic axon-Schwann cell interactions in vitro25. Other proteins are implicated in oligodendrocyte myelination and integrity in vivo, such as Galectin 324 and Niemann–Pick C1 (NP–C)25.

Overall, these results reveal that contact with neuronal membranes induces significant Schwann cell polarization. Remarkably, 76% of the proteins identified were uniquely redistributed after induction with neuronal membranes, but not after exposure to serum and growth factors, indicating that juxtacrine signals from neurons induce a specific set of proteins to redistribute in Schwann cells. Finally, the presence of molecules known to be important in axo-glial interactions indicates that our method is successful in the identification of proteins relevant to axo-glial contact and myelination.

Novel proteins and signalling networks in pseudopods. We next characterized the interaction network of polarized protrusions...
in Schwann cells and searched for novel proteins. We used Ingenuity Pathways Analysis to find canonical pathways that were involved, and to represent the protein-protein interactome (based on the Ingenuity Knowledge Base). Strikingly, many of the proteins that were polarized by axonal contact were interconnected in networks (Fig. 3b) suggesting that they are functionally related. The pathways most enriched in the pseudopods included both novel signalling networks and proteins already shown to be important. For example, Rho GTPases and Rho GDI, Tec Kinase and G Beta Gamma signalling (Fig. 3e) are pathways that were most induced by neuronal membranes (Ps induced by neurons/Ps non induced >1). The signalling network consists of 95 proteins that are described in Supplementary Data 2. Proteins are named by their official gene symbol according to Entrez Gene (www.ncbi.nlm.nih.gov). The relative protein enrichment in pseudopods versus cell bodies (Ps/CB ratio) is colour coded according to the colour scale at the top of the figure. Proteins that were also enriched in pseudopods by serum and growth factors (Supplementary Data 3) have been given in grey. The references supporting the protein-protein interactions are listed in Supplementary Data 6. (c) Distribution of the number of Schwann cell proteins that were enriched in pseudopods based on the Ps/CB ratio. (d) Distribution of the number of proteins enriched by neuronal membranes specifically, based on the Ps induced by neurons/Ps non-induced ratio (second enrichment criteria). (e) Protein ontology analysis of the pathways most enriched in Schwann cells pseudopods (10 out of 162 shown, for complete listing, see Supplementary Data 5).

We also noted that three out of the seven pseudopod proteins that were most induced by neuronal membranes as compared to DMEM (above 5 fold, Fig. 3d) were secreted (that is, Secreted frizzled-related protein 1, a Wnt inhibitor; Htra1 and Tissue plasminogen activator (tPA) encoded by Plat). Interestingly, among these secreted molecules Wnt signalling is important during Schwann cell development30, and tPA is important during axonal regeneration31. We also identified three proteins with a Prohibitin homology domain: Prohibitin-1, Prohibitin-2 and Erlin-1. This domain is found in a small subset of proteins in higher eukaryotes: Prohibitins, Erlins, Stomatins, Flotillins and Podocin (http://smart.embl.de/). Originally described and characterized as mitochondrial inner-membrane proteins32, Prohibitins have pleiotropic effects. They localize to the plasma membrane, where they interact with various receptors and activate the Ras–Raf signalling pathway33; in the cytoplasm, where they interact with mTOR34; or in the nucleus, where they are Akt substrates35 and repress transcription of Yy136. As all of these latter molecules are involved in myelination, we asked if Prohibitins engaged in axo-glial interactions.
Subcellular localization of prohibitins. Among the 95 proteins that were polarized and enriched in protrusions by neuronal membranes, 4 were predicted to be secreted, 16 transmembrane or membrane associated, 53 cytoplasmic, 19 in organelles (mitochondrial, ER, peroxisome and lysosomes) and 3 nuclear (Supplementary Data 2). Because 12% of these proteins were identified as mitochondrial, including Prohibitins, we asked whether mitochondria were present and enriched in pseudopods. We stimulated Schwann cells with neuronal membranes and stained them with phalloidin and mitotracker. We detected some mitochondria in the pseudopods, although the majority of mitochondria were found in cell bodies (Fig. 4a).

Figure 4 | Localization of Prohibitins in Schwann cells. (a) Schwann cell pseudopods contain some mitochondria. Mitotracker staining (red) in Schwann cells on the top (cell bodies) or bottom (pseudopods) of the chamber, after induction with neuronal membranes. Cells were co-stained with FITC-phalloidin and DAPI. The white box is enlarged in the right panel. Arrowheads indicate mitochondria in pseudopods. (b) Western blots of protein lysates from Schwann cell pseudopods and cell bodies, after induction by neuronal membranes. Equal amount of proteins were separated by SDS/PAGE, probed for Prohibitin-1 and Prohibitin-2 and stained with amido black. Prohibitin-2 was enriched in the pseudopod fraction. Error bars indicate s.d. n = 3 independent experiments. Statistical analyses were performed using t-test. *P < 0.05. (c) Immunolocalization of Prohibitin-2 in cultured Schwann cells. Cells were stained for Prohibitin-2 (green) and Mitotracker (red). Prohibitin-2 is detected mostly in mitochondria. (d) Immunolocalization of Prohibitin-2 in Schwann cell’s pseudopods, on the bottom of the Boyden chamber, after induction with neuronal membranes. Cells were stained for Prohibitin-2 (green), Mitotracker (red) and b1-Integrin (cyan). Prohibitin-2 is found in pseudopods, where it partially co-localizes with mitotracker and in some areas co-localizes with b1-Integrin. Arrows show areas where Prohibitin-2 co-localizes with b1-Integrin, but not mitotracker. The white box is enlarged in the bottom panels, and shows a Schwann cell lamellipodia-like protrusion stained for b1 integrin and Prohibitin-2, but not mitotracker (arrowheads). (e) Streptavidin-pull-down of biotinylated cell-surface proteins in Schwann cells. Equal amount of proteins were pulled-down by Streptavidin–Sepharose, separated by SDS/PAGE and probed for Prohibitin-2 and Pdha1 (mitochondrial marker) or Prohibitin-2 and b1-Integrin (plasma membrane marker). Prohibitin-2 and b1-Integrin, but not Pdha1, are present in the biotin fraction. Probing for b1-Integrin and Pdha1 were performed on two different blots. (f) Immunoprecipitation of Prohibitin-2 in Schwann cells after biotinylation of cell-surface proteins. Equal amount of proteins were precipitated by Prohibitin-2 antibody, separated by SDS/PAGE and stained for Streptavidin–HRP then Prohibitin-2. A biotinylated protein at the size of Prohibitin-2 is present (35 kDa, arrow). Other biotinylated proteins co-immunoprecipitate with Prohibitin-2. The band in the unbound fraction (asterisk) corresponds to the Streptavidin–HRP detection performed first. (IP: immunoprecipitation, Ub: unbound fraction). Scale bars, 40 μm (a,c); 10 μm (d).
To characterize the localization of Prohibitins in Schwann cells, we first confirmed that Prohibitin-1 and -2, were present in pseudopods by infrared-based western blot analysis. Both proteins were present in pseudopods, and we could confirm that Prohibitin-2, was more abundant in pseudopods (2.8 Ps/CB ratio by SILAC mass spectrometry; Fig. 4b). While we could not detect a significant enrichment of Prohibitin-1, this is probably due to the poor quantitative sensitivity of western blot in the range of Phb1 enrichment (1.3 Ps/CB ratio by SILAC mass spectrometry).

We next asked whether we could detect Prohibitins in Schwann cell mitochondria and pseudopods, and we focused on the more polarized Prohibitin-2. By immunohistochemistry, the majority of Prohibitin-2 in Schwann cells cultured on poly-l-lysine co-localized with mitochondria (Fig. 4c). When we exposed Schwann cells to neuronal membranes in the Boyden chamber, Prohibitin-2 was readily detected in pseudopods, where it still colocalized with mitochondria, but also with the membrane protein β1 integrin in small lamellipodia (Fig. 4d).

Because Prohibitins are exposed to the external membrane of activated T cells, we asked whether Prohibitins were also present at the external surface of Schwann cells. We biotinylated Schwann cells, and followed by either streptavidin pull-down and blotting with anti-Prohibitin-2 antibodies (Fig. 4e) or by Prohibitin-2 immunoprecipitation and blotting with Streptavidin-HRP (Fig. 4f). In both cases, Prohibitin-2 was found together with biotinylated proteins of Schwann cell plasma membrane. β1 integrin, a membrane protein, behaved like Prohibitin-2 (Fig. 4e), whereas the exclusively mitochondrial protein Pdha-1 could not be pulled-down by biotin–streptavidin (Fig. 4e). These data indicate that a fraction of Prohibitin-2 is either present on the Schwann cell surface, or interacts with proteins present on Schwann cell surface. However, this fraction must be small, because by immunocytochemistry the majority of Prohibitin-2 was detected in mitochondria in cultured Schwann cells (Fig. 4a). Thus, Prohibitins localize to pseudopods in Schwann cells, where they are present both in mitochondria and at the cell membrane.

Prohibitins are necessary for myelination in vitro. To determine the function of Prohibitins in Schwann cells, we first asked if silencing Prohibitins would affect the extension of Schwann cell pseudopods and their interaction with neurons. Schwann cells were infected with viruses expressing different shRNAs for either Phb1 or Phb2. All shRNAs reduced expression of Phb1 or Phb2, as shown by western blot (Fig. 5a,b). Schwann cells silenced for Prohibitins still extended pseudopods in response to neuronal membranes (Fig. 5c). However, when silenced Schwann cells were seeded on dorsal root ganglia neurons, fewer of them attached to neurons (Fig. 5d–f) and those that were attached frequently had an aberrant morphology on axons (Fig. 5g). This may suggest that silencing of Prohibitins in Schwann cells impairs early interactions with axons.
Because Prohibitin silencing reduced the number of Schwann cells that attached to axons, we asked whether this was due to changes in apoptosis or proliferation. Prohibitins were originally described as inhibitors of cell proliferation, hence their name38, and regulators of apoptosis (reviewed in ref. 39). Silencing of Prohibitins did not affect Schwann cell proliferation, but slightly increased apoptosis early after plating on axons (1 day, Supplementary Fig. 6c,d), and more significantly when Schwann cells were cultured alone (Supplementary Fig. 6a,b). After 3 days of co-culturing with axons, Schwann cell apoptosis returned to normal levels, even if the number of Schwann cells remained decreased by about 15% (Supplementary Fig. 6 e–l). This suggests that axons provide survival signals that compensate for Prohibitin silencing.

When switched to a myelinating condition by adding ascorbic acid to the cultures, myelination of axons was severely impaired after silencing of either Prohibitin-1 or -2 (Fig. 6a–c). To ask whether this was due to the reduced number of Schwann cells (15% less in this condition, Supplementary Fig. 6b) we seeded three times the amount of silenced Schwann cells on DRG neurons. As shown in Fig. 6d and e, this rescued the difference in Schwann cell number, but not myelination, indicating that the reduced number of myelin segments is not due simply to a reduction in the number of Schwann cells. Taken together, these data show that Prohibitins may be required for Schwann cell–axon interactions and that they are required for myelination in vitro.

Prohibitin-2 is required for radial sorting and myelination in vivo. Prohibitin-2 was highly expressed in sciatic nerves during active myelination (P1–P15, Fig. 7a), and its expression was shown to be modulated after nerve injury40. By immunohistochemistry of sciatic nerves, Prohibitin-2 appeared to localize in Schwann cells and axons, and not to be restricted to mitochondria (Fig. 7). At Postnatal day (P)1, the beginning of myelination, Prohibitin-2 staining was in Schwann cells near axons (Fig. 7b). We generated mice in which Prohibitin-2 was deleted specifically in Schwann cells. Constitutive ablation of Phb2 is lethal in utero before embryonic day 9.5 (E9.5)41. Mice with the Phb2 gene flanked by LoxP sites42 were crossed with P0-Cre mice43 that drive Cre expression in Schwann cells starting at E13.521. In wild-type (WT) nerves Prohibitin-2 was present in Schwann cells and axons, but in mutant nerves it was only in axons at P1 and P20 (Fig. 7c,d), confirming early and Schwann cell-specific Cre-mediated recombination. Strikingly, ablation of Prohibitin-2 caused a severe motor deficit and muscular atrophy in mice at P40 (Supplementary Movie 2), due to a hypomyelinating neuropathy with a severe decrease in nerve conduction velocity (Fig. 8a). At P20 and P40, cross sections of sciatic nerves from WT littermates showed numerous myelinated axons. In contrast Prohibitin-2 deficient nerves had few myelinated axons (Fig. 8c–e), with thin myelin sheaths, as documented by an increase in their g-ratio (Fig. 8f,g). A reduction in axonal caliber (Fig. 8h,i) and in compound motor action potentials (Fig. 8b) was also observed. There was no increase in apoptosis (Fig. 8j–l). Notably, large caliber axons that were not myelinated were grouped in immature bundles (Fig. 8c), the hallmark of a defect in axonal sorting44, and a sign of impaired Schwann cell–axonal interactions. These results indicate that Prohibitin-2 is required both for the proper sorting of axons by Schwann cells and for their myelination in vivo.

Discussion

Here we show that neuronal cell membranes induce the formation of polarized protrusions in glial cells in vitro, mimicking juxtacrine signalling. Using neuronal membranes in...
the pseudopod fractionation system, we could separate and profile these polarized glial protrusions that interacted with neuronal membranes. Nearly 10% of proteins that we have identified are implicated in glia–axonal interactions and myelination in vivo, validating the system. In addition, neuronal membranes induced the redistribution of a unique and novel set of proteins in Schwann cells. Thus, neuronal membranes can be used as stimuli to study juxtacrine interactions with other neuronal or glial cells. For example, it has been hypothesized that the proteins that we chose to characterize, Prohibitins, function also in neuron–neuron interactions at synapses, and may be dysfunctional in schizophrenia.

The analysis of the proteome in pseudopods begins to illuminate some of the unique events that are triggered in Schwann cells by neuronal signals. Overall, the interaction with neuronal membranes caused a change of twofold in 16% of the pseudopod proteome. It is possible that this change could have been even more extensive in the presence of a second polarizing cue form Laminins in the basal lamina, which is necessary for proper Schwann cell–axon interactions. The pathway and interactome analysis suggest that, in addition to anticipated roles for signalling related to cytoskeleton and G-protein coupled receptors, local protein translation, sumoylation and metabolic control are crucial at the beginning of myelination.

In the figure, we show the expression of Prohibitin-2 in peripheral nerves. (a) Developmental expression of Prohibitin-2 in rat sciatic nerve. Protein lysates of rat sciatic nerves from P1 to P90 were blotted and probed for Prohibitin-2 and Calnexin. (b-d) Immunolocalization of Prohibitin-2 in longitudinal (b,c) and cross (d) sections of sciatic nerves. Sciatic nerves from mice aged P1 (b), and P20 (c,d) are shown. Sections were stained for Prohibitin-2 (green), Neurofilament (red) and DAPI (blue). Prohibitin-2 is detected in wild-type sciatic nerve Schwann cells (arrows) and axons (arrow heads), but it is not detectable in mutant Schwann cells. Note that Prohibitin-2 is also enriched in bundles of neurofilaments-positive axons in mutant sciatic nerves (double arrow head). Scale bars, 25 μm (b–d; left panels) and 10 μm (c,d; enlarged panel).
expression of molecules that regulate protein translation and degradation. Also, seven ribosomal proteins, two tRNA ligases, one elongation factor and three proteins associated with mRNA splicing were enriched in pseudopods (together accounting for 14% of the proteins enriched in pseudopods), suggesting either that local RNA regulation and translation is important for the extension of Schwann cells pseudopods or that these proteins serve extraribosomal functions.

In addition, interactome analysis revealed that post-translational modifications, in particular by SUMO, might be important in axo-glial interactions. SUMO-2 was not only redistributed in pseudopods after axonal contact, but is also known to bind or regulate > 10 of the other enriched proteins (Fig. 3b), suggesting that sumoylation is an important event in myelination.

Another set of functionally related proteins that was enriched in polarized pseudopods contained enzymes involved in amino-acid metabolism including GOT1, GOT2 and malate dehydrogenase 1 (MDH1), which control levels of aspartate and glutamate, suggesting further mechanisms in neuroprotection.

We identified the novel family of Prohibitins in pseudopods, and show that they are required for early axo-glial interactions. Indeed, both Prohibitin-1 and -2 are required for myelination in vitro, and deletion of Prohibitin-2 in Schwann cells impairs radial sorting, the process in which Schwann cells segregate large caliber axons that are destined for myelination.
plasma membrane and mitochondria. The identification of Prohibitin interactors at the plasma membrane will reveal if Prohibitin-2 regulates signalling molecules required for myelination such as GPCR proteins, mTOR, integrins or RhoGTPases.

In T-cells, Prohibitins translocate to the plasma membrane on activation and binds to Siglec-9 on other immune cells. We showed that Prohibitin-2 interacts with Schwann cells membrane proteins, and increased in pseudopods after induction with neuronal membranes, suggesting that axons may induce a redistribution of Prohibitin to pseudopods to promote Schwann cell-axon interactions. Siglecs are membrane proteins, and increased in pseudopods after they were treated with FUDR (10⁻⁶M). Neurons were collected by scraping the network with forceps and then pelleted and resuspended in serum-free medium. Cells (1.5 × 10⁶) were dissected and plated on 9.5-cm² dishes in C media: MEM (Gibco), 10% FBS, 1% Penicillin-Streptomycin (P/S), 1% L-glutamine, 100 ng ml⁻¹ of Laminin-111 (Sigma P5899) on the bottom.

Prohibitins were present in oligodendrocytes suggesting that they might be important also for central nervous system myelination.

In conclusion, we describe an innovative, modified method to study polarized cellular domains, and we used it for modeling and molecular profiling of the advancing glial sheath and to identify novel molecules involved in the interaction between glial cells and axons. The validation in vivo of one of these novel proteins, Prohibitin-2, demonstrates the validity of the technique for the study of cell-cell interactions.

Methods

Protein extraction, western blot and antibodies. To extract proteins after the pseudopods assay, Schwann cells plated on filters with pseudopods on the pseudopod area were washed twice in PBS, fixed with ice-cold methanol for 30 min on ice and washed again in PBS. For each filter, either the cell bodies on the upper surface or the pseudopods on the undersurface were fixed with a cotton swab. Western blot was performed as described. Immunofluorescence and immunohistochemistry. As a control for equal loading of pseudopod and cell body fractions, blots were stained with Avidin Black (Sigma). Blotted membranes were probing overnight with Abcam anti-Histone 2B 1/1,000 (ab1790), anti-erbB2 1/250 (ab248), anti-erbB3 1/250 (ab34641); Cell Signalling anti-Akt 1/1,000 (#9272), anti-p-Akt 1/1,000 (#9271), anti-Fak 1/500 (#2838), anti-p-Fak 1/500 (#7285), anti-Erk 1/1,000 (#9102), anti-p-Erk 1/1,000 (#9101); Millipore anti-Rac 1/200 (05-389), anti-Act 1/250 (#176), anti-Prohibitin-2 1/250 (ab10189), anti-Par 1/500 (07-330); Proteintech anti-Contact-1 1/200 (13843-1-AP), Sigma anti-Calsequestrin 1/2000 (C4173), anti-Tubulin 1/2000 (T0286); Novacastra anti-β-Dystroglycan 1/40 (NcB-β-DG) and Biodec anti-N-Cadherin 1/500 (619020), anti-β1 Integrin 1/100 (#610463); Millipore anti-NFH 1/700 (AB1989) and Covance anti-MBP 1/1000 (SMI-991) and Jackson DyLight 488 1/1,000 or 549-conjugated 1/1,000 secondary antibodies, stained with DAPI, and mounted with Vectashield (Vector Laboratories). Images were acquired with a confocal microscope Leica SP5II. Maximum intensity projection was created with Fiji (fiji.sc).

Preparation of neuronal membranes. Neuronal membranes were prepared from DRG of rat embryos at 15 gestational days as described in ref. 36. Briefly, 20 DRGs were dissected and plated on 9.5-cm² dishes in C media: MEM (Gibco), 10% foetal bovine serum, 4 g l⁻¹ of D-Glucose, 2 mM l- Glutamine, 50 mg ml⁻¹ of Nerve Growth Factor (Harlan), After 12 h cells were switched for 2 weeks in NB medium (Gibco), 1 × B27 supplement (Gibco), 4 g l⁻¹ of D-Glucose, 2 mM l- Glutamine, 50 mg ml⁻¹ of Nerve Growth Factor (Harlan). To obtain neuron-only cultures, the cells were treated with FUDR (10 μM) for 2 days at 37°C. To initiate pseudopods retraction, the attractant in the bottom chamber was removed and replaced by serum-free DMEM. For Laminin-111 haptotactic stimulation, the Inserts were first coated with Poly-L-Lysine on the top, then they were turned upside down and coated with 10 μg ml⁻¹ of Laminin-111 (Sigma P5899) on the bottom.

Immunofluorescence and immunohistochemistry. For staining and imaging of filter membranes after the induction of pseudopods, Schwann cells on the top chamber and pseudopods on the bottom chamber were sandwiched between two drops of PBS and paraffin, washed twice in PBS and then stained. For phalloidin staining, Schwann cells were fixed with 4% ice-cold paraformaldehyde for 30 min, washed twice with PBS and incubated in quenching solution (75 mM NH₄Cl; 20 mM Glycine) for 10 min at room temperature. Cells were then permeabilized with 0.1% saponin in 1% BSA for 15 min at 37°C and incubated for 1 h at 37°C with phallolidin-TRITC 1/200 (Sigma, P1951). For immunostaining, Schwann cells were fixed in DOTMAC 0.25%, PFA 4%, washed in PBS, blocked for 1 h in 10% NGS, 3% BSA, 0.1% Triton X-100, 0.05% Tween-20 in 1X PBS and incubated overnight with the following antibodies: BD Pharmingen anti-β1 Integrin 1/100 (553387), BD Bioscience anti-Ly-6C 1/250 (630951), anti-β1 Integrin 1/100 (#610463); Thermofluor anti-Prohibitin-2 1/100 (12295-1-AP). Filters were then incubated for 1 h with Jackson DyLight 488 1/1,000 or 649-conjugated 1/1,000 secondary antibodies. Filters were then excised from the insert with microscissors and mounted on a slide with Vectashield (Vector Laboratories). Images were acquired with a confocal microscope Leica SP5II. Progressive Z-sections were acquired starting from the upper chamber (above the cell bodies), through the filter membrane, and in the bottom chamber (pseudopod area), and then analysed separately, or stacked in Z-projection that included only one of the compartments (that is, cell body, filter membrane or pseudopod). Three-dimensional reconstructions were performed with Fiji (fiji.sc). Semi-quantitative immunostaining of Schwann cell-neuron co-cultures was performed with the following antibodies: Millipore anti-NF 1/700 (AB1989) and Covance anti-MBP 1/1000 (SMI-991) and Jackson DyLight 488 1/1,000 or 549-conjugated 1/1,000 secondary antibodies. Images were acquired with a fluorescent microscope Leica DM6000B. Myelination in vitro was evaluated from four different experiments, performed with two to four coverslips in each case, which is a standard sample size for these experiments. Myelin segments number and length were quantified using Image J software (http://imagej.nih.gov/ij) from two random fields of each culture at the 10 × objective. Data were analysed using Graph pad Prism 6.01. For immunocytochemistry, Schwann cells were fixed in DOTMAC 0.5%, PFA 1%. Covergels or slides were washed in PBS, blocked for 1 h in 10% NGS, 3% BSA, 0.1% Triton X-100, 0.05% Tween-20 in 1X PBS, then incubated overnight with the following antibodies: Proteintech anti-Phb 1/100 (12295-1-AP), Covance anti-NF 1/700 (PKC-9395). For immunohistochemistry, sciatric nerve sections were permeabilized with acetone. Sections were rinsed in PBS, incubated 1 h with Jackson DyLight 488 1/1,000 or 549-conjugated 1/1,000 secondary antibodies, stained with DAPI, and mounted with Vectashield (Vector Laboratories). Images were acquired with a confocal microscope Leica SP5II. Maximum intensity projection was created with Fiji (fiji.sc).

References

1. Nave, K. A. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 11, 275–283 (2010).
2. Cho, S. Y. & Klemke, R. L. Purification of pseudopodia from polarized cells. Traffic 156, 725–736 (2002).
3. Mili, S., Moissgou, K. & Macara, I. G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119 (2008).
4. Nave, K. A. The role of the cytoskeleton in myelination. J. Cell. Physiol. 199, 1358–1366 (2004).
5. Grove, M. et al. FAK is required for axonal sorting by Schwann cells. J. Cell. Biol. 176, 277–282 (2007).
6. Hodari, A. et al. Beta1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. J. Cell Biol. 177, 1065–1075 (2007).

7. Goebel, S. et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30, 8953–8964 (2010).

8. Newbern, J. M. et al. Specific functions for ERK/MAPK signaling during PNS development. Neuron 69, 91–105 (2011).

9. Ishii, A., Furusho, M. & Bansal, R. Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrogliocyte progenitor expansion. J. Neurosci. 33, 175–186 (2013).

10. Bunge, R. et al. Growth control by cell to cell contact. J. Supramol. Struct. 11, 175–187 (1979).

11. DeVries, G. H., Salzer, J. L. & Bunge, R. P. Axolemma-enriched fractions isolated from PNS and CNS are mitogenic for cultured adult Schwann cells. Brain Res. 595, 295–299 (1992).

12. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

13. Michailov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

14. Syed, N. et al. Soluble neuregulin-1 has functional, concentration-dependent effects on Schwann cell myelination. J. Neurosci. 30, 6122–6131 (2010).

15. Stassart, R. M. et al. A role for Schwann cell-derived neuregulin-1 in remyelination. Nat. Neurosci. 16, 48–54 (2013).

16. Lewallen, K. A. et al. Assessing the role of the cadherin/catenin complex at the Schwann cell-axon interface and in the initiation of myelination. J. Neurosci. 31, 3032–3043 (2011).

17. Wanner, I. B. & Wood, P. M. N-cadherin mediates axon-aligned process growth and cell-cell interaction in rat Schwann cells. J. Neurosci. 22, 4066–4079 (2002).

18. Spiegel, I. et al. A central role for Ncl4 (SynCAM4) in Schwann cell axon interaction and myelination. Nat. Neurosci. 10, 861–869 (2007).

19. Mured, P. & Pimpukul, E. Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J. Cell Biol. 178, 861–874 (2007).

20. Golan, N. et al. Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J. Neurosci. 33, 10950–10961 (2013).

21. Feldh, M. L. et al. Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. J. Cell Biol. 156, 199–202 (2002).

22. Guo, L., Lee, A. A., Rizvi, T. A., Ratner, N. & Kirschner, L. S. The protein kinase A regulatory subunit R1A (Prkar1a) plays critical roles in peripheral nerve growth and cell-cell interaction in rat Schwann cells. J. Cell Biol. 205, 341–351 (1988).
How to cite this article: Poitolon, Y. et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat. Commun. 6:8303 doi: 10.1038/ncomms9303 (2015).