Immunogenetic phenotypes in inflammatory bowel disease

Marla C Dubinsky, Kent Taylor, Stephan R Targan, Jerome I Rotter

Marla C Dubinsky, Kent Taylor, Stephan R Targan, Jerome I Rotter, Departments of Pediatrics, Medicine and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles CA, United States
Correspondence to: Marla Dubinsky, Director Pediatric IBD Center, Cedars Sinai Medical Center, 8700 Beverly Boulevard, suite 1165W Los Angeles CA 90048, United States. marla.dubinsky@cshs.org
Telephone: +1-310-4237100 Fax: +1-310-4231402
Received: 2006-03-27 Accepted: 2006-04-16

Abstract
The currently accepted etiopathogenic hypothesis suggests that the chronic intestinal inflammation and related systemic manifestations characteristic of inflammatory bowel disease (IBD) are due to an overly aggressive or pathologic immune response to resident luminal bacterial constituents. Predisposing factors are genetic dysregulation of mucosal immune responses and/or barrier function, with onset triggered by environmental stimuli. These factors and their interactions may also be important determinants of disease phenotype and disease progression. The interaction between genetic susceptibility and luminal bacteria deserves particular attention. The results from animal studies indicate that not all commensal bacterial species are identical in their abilities to induce disease in the face of a common genetic defect. For instance, HLA B27/β2 microglobulin transgenic rats raised under sterile conditions do not develop colitis. However, when colonized with normal specific pathogen-free commensal cecal bacteria, they develop aggressive disease involving the colon and gastro-duodenal area within one month. On the one hand, when colonized with a single bacterial strain, Bacteroides vulgatus, these same genetically susceptible rats develop moderate colitis but no gastro-duodenal disease. When selectively colonized with Escherichia coli, they exhibit neither disease nor T cell activation. This data suggests that not all commensal bacterial strains trigger an abnormal immune response for a given genetic susceptibility. The same non-pathogenic bacteria, however, may induce inflammation in a different genetically susceptible host. More specifically, further research from the same group demonstrated that Escherichia coli induced only mild cecal inflammation after 3 wk of monoassociation in interleukin 10-/- mice. In contrast, Enterococcus faecalis-monoassociated interleukin 10-/- mice developed distal colitis at 10-12 wk that was progressively more severe and associated with duodenal inflammation and obstruction by 30 wk. Their results suggest that different commensal bacterial species selectively initiate immune-mediated intestinal inflammation with distinctly different kinetics and anatomic distribution in the same host. These findings highlight the fact that both genetic susceptibility and luminal antigenic drive are important determinants of disease susceptibility and modification. Immune reactivity as measured by the serological expression of immune responses to specific bacteria may indeed be representative of this host gene luminal bacterial interaction. If indeed these immune responses represent the sum of a genetic and environmental predisposition to IBD, quantitative and qualitative expression of these immune responses may serve as an immunologic risk marker for IBD phenotypes.

© 2006 The WJG Press. All rights reserved.

Key words: Inflammatory bowel disease; Immune reactivity; Disease phenotype

http://www.wjgnet.com/1007-9327/12/3645.asp

INTRODUCTION
The currently accepted etiopathogenic hypothesis suggests that the chronic intestinal inflammation and related systemic manifestations characteristic of inflammatory bowel disease (IBD) are due to an overly aggressive or pathologic immune response to resident luminal bacterial constituents. Predisposing factors are genetic dysregulation of mucosal immune responses and/or barrier function, with onset triggered by environmental stimuli. These factors and their interactions may also be important determinants of disease phenotype and disease progression. The interaction between genetic susceptibility and luminal bacteria deserves particular attention. The results from animal studies indicate that not all commensal bacterial species are identical in their abilities to induce disease in the face of a common genetic defect. For instance, HLA B27/β2 microglobulin transgenic rats raised under sterile conditions do not develop colitis. However, when colonized with normal specific pathogen-free commensal cecal bacteria, they develop aggressive disease involving the colon and gastro-duodenal area within one month. On the one hand, when colonized with a single bacterial strain, Bacteroides vulgatus, these same genetically susceptible rats develop moderate colitis but no gastro-duodenal disease. When selectively colonized with Escherichia coli, they exhibit neither disease nor T cell activation. This data suggests that not all commensal bacterial strains trigger an abnormal immune response for a given genetic susceptibility. The same non-pathogenic bacteria, however, may induce inflammation in a different genetically susceptible host. More specifically, further research from the same group demonstrated that Escherichia coli induced only mild cecal inflammation after 3 wk of monoassociation in interleukin 10-/- mice. In contrast, Enterococcus faecalis-monoassociated interleukin 10-/- mice developed distal colitis at 10-12 wk that was progressively more severe and associated with duodenal inflammation and obstruction by 30 wk. Their results suggest that different commensal bacterial species selectively initiate immune-mediated intestinal inflammation with distinctly different kinetics and anatomic distribution in the same host. These findings highlight the fact that both genetic susceptibility and luminal antigenic drive are important determinants of disease susceptibility and modification. Immune reactivity as measured by the serological expression of immune responses to specific bacteria may indeed be representative of this host gene luminal bacterial interaction. If indeed these immune responses represent the sum of a genetic and environmental predisposition to IBD, quantitative and qualitative expression of these immune responses may serve as an immunologic risk marker for IBD phenotypes.
Immune responses to resident intestinal flora in humans have been reported. Duchmann et al demonstrated that CD patients boast reactivity to hundreds of bacterial antigens created from sonification of multiple bacterial species including enterobacteria, bacteroides and bifidobacterium. Immune reactivity to more specific microbial antigens has been reported in the sera of patients with IBD (Table 1).

Antibodies to *Saccharomyces cerevisiae* (ASCA) was the first CD specific immune response thought to be targeted towards microbial antigens. IgA and IgG antibodies are directed against a specific oligomannosidic epitope present on the cell wall of the yeast *Saccharomyces* [9]. To date it remains unknown as to what the specific microbial antigen ASCA is cross reacting with and giving rise to seropositivity specifically in the sera of patients with CD. ASCA is present in approximately 60% of CD patients, yet less than 5% in UC and non-IBD patients [6,7]. The specificity of ASCA renders a positive test result accurate in differentiating CD from UC and IBD from non-IBD in cases of diagnostic uncertainty. ASCA also remains an important marker of disease severity as defined by the development of complicating disease. More recent research has resulted in the identification of 3 additional markers representative of microbial driven immune responses, antibodies to the E.coli outer-membrane porin C (OmpC), the Pseudomonas fluorescentes CD related protein (anti-CD related bacterial sequence {I2}) and the CBir1 flagellin.

Antibodies to OmpC, whose antigen is purified from commensal *E.coli* [9,10], are present in 37%-55% of patients with CD and 2%-11% of patients with UC, while no more than 5% of non-IBD individuals express anti-OmpC [11-13]. I2 was isolated from affected colonic mucosa yet not in the unaffected segments and thus thought to be specific to CD [5]. Immune responses to this antigen are present in up to 55% of CD patients; however the specificity of this antibody has been questioned as it has been detected in the serum of UC patients (10%) and more impressively in up to 55% of CD patients; however the specificity of this antibody has been questioned as it has been detected in the serum of UC patients (10%) and more impressively in up to 20% of non-IBD patients (9, data on file Prometheus Labs). Given its limitation as a diagnostic marker, it is unclear as to whether this immune response will provide additional prognostic information and further studies are needed. Serologic expression cloning was used to identify an immunodominant antigen, CBir1 flagellin, to which strong immune responses (B cell and CD4T cell) occurred in colitic mice [14]. These findings were translated from the bench to the bedside and approximately 50% of CD patients had serum reactivity to CBir1 whereas UC, inflammatory and healthy controls exhibited little to no reactivity to this flagellin [15].

All of the prior immune responses are specific to CD. In contrast perinuclear anti-neutrophil antibody (pANCA) is noted for its association with UC or a UC like phenotype. This IBD-specific ANCA displays a unique perinuclear highlighting (pANCA) on immunoflourence staining and is DNAse sensitive [10]. Although it remains undefined, it has been suggested that the antigen to which pANCA is directed is a nuclear histone (H1) [17]. This antigen is clearly distinct from the proteasine 3 or the myeloperoxidase reactivity observed in those patients with vasculitic disorders. pANCA is likely an autoantibody that is representative of a cross-reactivity with a luminal bacterial antigen [10,18,19]. Despite epidemiological and methodological differences, pANCA has been shown repeatedly to be prevalent in the sera of approximately 60% and 20% of UC and CD patients, respectively [8,20-22].

Typically, < 5% of non-IBD patients are pANCA positive.

As seen with the genetic and clinical heterogeneity of CD, studies have shown immune response (immune phenotype) heterogeneity exists among CD patients. Landers et al analyzed immune response heterogeneity in 330 patients and found that ASCA was detected in 56% of patients; 55% were seroreactive to OmpC. 50% were seroreactive to I2, and 23% were pANCA [9]. Eighty-five percent responded to at least 1 antigen; only 4% responded to all 4. Among microbial antigens (ASCA, OmpC, I2), 78% responded to at least 1, and 57% were double positive, but only 26% responded to all 3. The level of response was stable over time and with change in disease activity. Among patients with the same qualitative antigen-response profiles, quantitative response differed. Moreover this study demonstrated that CD patients could be clustered into 4 distinct groups depending on their immune response patterns to microbial or autoantigens. One cluster was ASCA, a second was antibodies to OmpC and I2, the third pANCA and the fourth was low or no immune response to any tested antigens.

Subsequent analyses incorporating CBir1 demonstrated that antibodies to CBir1 are present in approximately 40% of CD patients negative for antibodies to specific microbial antigens (ASCA, OmpC and I2) which suggests a unique immune phenotype [14]. Immune reactivity to CBir1 may further define CD phenotypes in that anti-CBir1 expression is present in 40%-44% of pANCA positive CD patients only 4% in pANCA positive UC patients. This difference may denote a unique etiopathogenic mechanism of disease that helps to further stratify patients based on immunogenetic phenotypes.

CLINICAL AND IMMUNE PHENOTYPES

Disease phenotype is not always a static phenomenon. Retrospective studies have examined the stability of disease phenotypes over the course of disease from time of diagnosis until point of last follow-up. It appears that disease location essentially remains stable over time, yet disease behavior evolves, such that after 20-yr of follow up, at least 80% of patients with originally non-complicating disease progress to complication, either
The frequency of disease behavior. The test for trend demonstrated a positive linear trend in the frequency of patients with IP and/or S disease as the number of positive immune responses toward I2, OmpC, ASCA and CBir1 increased ($P = 0.002$). The odds ratios (OR) reflect the odds of having internal penetrating and/or stricture disease when positive for any 1, combination of 2, 3 or all 4 immune responses, as compared to those patients negative for all immune responses (baseline group).

penetrating or stricture in nature. These findings suggest that non-complicating (non-penetrating, non-stricture) disease behavior may not be a stable phenotype but just a temporary state that evolves into one of the two complicating disease states over time.

Immune responses were first investigated as tools to differentiate UC from CD given the specificity of ASCA for CD and pANCA for UC. Advances in the sensitivity of the test characteristics lead to studies evaluating antibodies as diagnostic tools to differentiate IBD from non-IBD. Although conflicting, studies do support the use of these markers, particularly in children, to guide clinicians in cases of diagnostic uncertainty. As new markers are identified and the test characteristics improve, the notion of immune responses optimizing diagnostic accuracy may become more clearer and clinically valid. It has become clear, however, that immune responses may also have perhaps a more important mechanistic implication in the pathogenesis of IBD. As alluded to above, these immune reactivities, as measured by the serological expression of immune responses to specific bacteria, may be representative of the host gene luminal bacterial interaction characteristic of IBD. Moreover if these immune responses represent the sum of a genetic and environmental predisposition to IBD, quantitative and qualitative expression of these immune responses may serve as an immunologic risk marker for IBD phenotypes. The initial immune clinical phenotype studies demonstrated that although pANCA has been established as a UC-specific marker, approximately 25% of all CD patients also express pANCA. These CD patients are described as "UC-like" and tend to have an uncomplicated disease course. In contrast, higher ASCA levels were also shown to be associated with earlier age of disease onset, both strictureting and internal penetrating disease behaviors and need for small bowel surgery. Further reports have found that patients with Crohn's disease who are positive for ASCA IgA, IgG, or both, may define a subset of patients with Crohn's disease at increased risk for early surgery. ASCA has also been shown to be associated with a more aggressive disease course among a cohort of pediatric CD patients. Anti-CBir1 has also been shown to be independently associated with complicated disease behaviors in adult CD patients. Of interest is that these associations were not found in a pediatric CD cohort suggesting potential differences in the mechanistic influence of CBir1 in the pediatric age group.

These studies also demonstrated that both the number of immune responses to the different microbial antigens expressed by a given individual as well as the magnitude (titer level) of these immune responses correlated most significantly with the presence of complicated CD phenotypes. Of interest is that these associations were not found in a pediatric CD cohort suggesting potential differences in the mechanistic influence of CBir1 in the pediatric age group.

IMMUNOGENETIC PHENOTYPES AND NATURAL HISTORY OF DISEASE

The prospective acquisition and determination of immune reactivity prior to the development of a disease complication is important to be able to truly evaluate the potential predictive value of immune responses in defining the natural history of IBD. It is generally agreed upon
that the presence and level of immune responses do not change in a given CD patient. We recently published the first prospective evaluation of the prognostic value of immune responses in patients presenting with non complicated CD. This study included only those patients not presenting with internal penetrating and or strictureting disease at diagnosis and continued to be uncomplicated at the time sera was collected for immune response measurement so that it could be ascertained that the complication occurred after the antibodies were measured. Among those who developed a complication during the follow-up, the median time from diagnosis to the onset of the complication was 48 months. As of the last follow up of this cohort, 8% of the group seropositive to at least one serological marker had developed a complication at only 3% in the seronegative group. Survival analysis (Figure 3) demonstrated that among those patients positive for at least one serology, more progressed to internal penetrating and or strictrueing disease than those negative for all serologies. Saying it differently, those patients positive for at least one serology progressed faster that those negative for all serologies. Determining the factors that can predict the progression from uncomplicated to complicated disease states may stratify patients into at risk populations and impact the ultimate therapeutic management of patients with the goal of halting or more importantly preventing progression to complicated behaviors.

FAMILIAL EXPRESSION OF IMMUNE PHENOTYPES

There has been interest in evaluating whether immune responses are familial traits due to genetic factors. ANCA expression was the first marker to be studied. Several studies have observed an increased frequency of pANCA in unaffected relatives of UC patients but not environmental controls. This relationship however has not been observed in all studies. Sutton et al demonstrated that the quantitative and qualitative expression of ASCA was familial. Another study confirmed that ASCA occur particularly frequently in CD patients, especially with the presence of a positive family history. However, they are also significantly increased in UC patients with a family history and in a considerable number of unaffected relatives of inflammatory bowel disease families, irrespective of the characteristics of their families (UC, CD, mixed, ASCA positive, and ASCA negative). The presence of ASCA in unaffected relatives might point towards a genetic predisposition to either CD or UC. Studies in a twin population demonstrated an agreement in ASCA titers within concordant monzygotic twin pairs with Crohn’s disease and suggested that the level of increase in ASCA reactivity(magnitude) is genetically determined. None of these studies evaluated the influence of ASCA on the natural history of the affected offspring. A very recent study has shown that antibodies to OmpC have a strong familial aggregation pattern. In this study, expression of anti-OmpC in unaffected family members of multiplex IBD families were compared with controls. As shown in figure 4, unaffected family members in CD only families had a similar frequency of anti-OmpC to those in mixed families. However, when comparing these two groups with healthy controls, both of them showed a much higher frequency of anti-OmpC expression. In addition, unaffected family members in these two groups displayed a greater prevalence of anti-OmpC than those unaffected from UC only families. This study also addressed whether ASCA and OmpC were co-segregating in patients and unaffected relatives. The results however suggest that anti-OmpC and ASCA may represent related but distinct immune responses in CD patients. More importantly the distinct immune phenotypes may translate into distinct clinical phenotypes.

SUMMARY

In summary, the emergence of immunogenetic phenotypes lends support to the proposed hypothesis that susceptibility genes regulate distinct immune processes, driven by luminal antigens, expressed as specific immune phenotypes which in turn influence clinical phenotypes in IBD patients. Immune responses to various microbial antigens among patients with CD may be related to different pathophysiological mechanisms of disease and a genetically susceptible host may yield distinct disease characteristics as a result of the immune responsiveness expressed by the at risk individual. Further research is necessary to validate the associations of immune responses to disease behavior and prognosis and for novel
immune responses to be identified so to provide more information on the underlying etiopathogenic mechanisms of characteristic of IBD. Advances in this field will afford clinicians the opportunity to create and implement appropriate and timely therapeutic management regimes based on the aggressiveness of the IBD subtype in order to alter and thus improve the long-term prognosis.

REFERENCES

1. Rath HC, Ikeda JS, Linde HJ, Schölmerich J, Wilson KH, Sar-
tor RB. Varyingecal bacterial loads influence colitis and gastritis in HLA-B27 transgenic rats. Gastroenterology 1999; 116: 310-319

2. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 1999; 67: 2869-2974

3. Kim SC, Tonkonogy SL, Albright CA, Tsang J, Balish EJ, Braun J, Huycke MM, Sartor RB. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 2005; 128: 891-906

4. Duchmann R, May E, Heike M, Knolle P, Neurath M, Meyer zum Büschenfelde KH. T-cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999; 44: 812-818

5. Sendid B, Colombel JF, Jacquinot PM, Faille C, Fruit J, Cortot A, Lucidarme D, Camus D, Poullain D. Specific antibody response to oligomannosidic epitopes in Crohn’s disease. Clin Diag Lab Immunol 1996; 3: 219-226

6. Ruemmele FM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology 1998; 115: 822-829

7. Quinton JF, Sendid B, Reumaux D, Duthilleul P, Cortot A, Grandbastien B, Charrier G, Targan SR, Colombel JF, Pou- lain D. Anti-Saccharomyces cerevisiae mannan antibodies combined with anti-neutrophil-cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 1998; 42: 788-791

8. Hofenberg EJ, Fidanza S, Suaia A. Serologic testing for inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1999; 29: 447-452

9. Landers CJ, Cohavy O, Misra R, Yang H, Braun JA, Targan SR. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123: 689-699

10. Cohavy O, Bruckner G, Gordon LK, Misra R, Wei B, Eggema ME, Targan SR, Braun J. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 2000; 68: 1542-1548

11. Beaven SW, Abreu MT. Biomarkers in inflammatory bowel disease. Curr Opin Gastroenterol 2004; 20: 318-327

12. Mow VS, Vasiliauskas EA, Lin YC, Flesher PR, Papadakis KA, Taylor KD, Landers CJ, Abreu-Martin MT, Rotter JJ, Yang H, Targan SR. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology 2004; 126: 414-421

13. Arnott ID, Landers CJ, Nimmor EJ, Drummond HE, Smith BK, Targan SR, Satsangi J. Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol 2004; 99: 2376-2384

14. Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA, Vasiliauskas E, Elson CO, Hershberg RM. Antibodies to C1r/C1s flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 2005; 128: 2020-2028

15. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, M. Hershberg RM. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004; 113: 1296-1306

16. Vidrich A, Lee J, James E, Cobb L, Targan S. Segregation of pANCA antigenic recognition by DNase treatment of neutrophilic colitis: ulcerative colitis (UHC) is an antigenic target of pANCA monoclonal antibody and serum immunoglobulin A from patients with Crohn’s disease. Infect Immun 1999; 67: 6510-6517

17. Eggena M, Cohavy O, Parsegian MH, Hamkleo BA, Clemens D, Targan SR, Gordon LK, Braun J. Identification of histone H1 as a cognate antigen of the ulcerative colitis-associated marker antibody pANCA. J Autoimmun 2000; 14: 83-97

18. Cohavy O, Harth G, Horwitz M, Eggema M, Landers C, Sutton C, Targan SR, Braun J. Identification of a novel mycobacterial histone H1 homologue (HupB) as an antigenic target of pANCA and serum immunoglobulin A from patients with Crohn’s disease. Infect Immuno 1999; 67: 6510-6517

19. Seibold F, Brandwein S, Simpson T, Terhorst C, Elson CO. pANCA represents a cross-reactivity to enteric bacterial anti- gens. J Clin Immunol 1998; 18: 153-160

20. Duer RH, Targan SR, Landers CJ, Sutherland LR, Shanahan F. Anti-neutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal illnesses. Gastroenterology 1991; 100: 1590-1596

21. Proujansky R, Fawcett PT, Gibney KM, Treem WR, Hyams JS. Examination of anti-neutrophil cytoplasmic antibodies in childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1993; 17: 193-197

22. Winter HS, Landers CJ, Winkelstein A, Vidrich A, Targan SR. Anti-neutrophil cytoplasmic antibodies in children with ulcerative colitis. J Pediatr 1994; 125: 707-711

23. Oberstadt K, Schaedel W, Weber M, Claessen M, Deusch K. P-ANCA as a differential diagnostic marker in inflammatory bowel disease. Adv Exp Med Biol 1995; 371B: 1313-1316

24. Louis E, Collard A, Oger AF, Degroote E, Aboul Naser El Yafi FA, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut 2001; 49: 777-782

25. Cosnes J, Cattan S, Blair F, Beaugerie L, Carbonnel F, Parc R, Gendre JP. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis 2002; 8: 244-250

26. Smith BR, Arnott ID, Drummond HE, Nimmor EM, Satsangi J. Disease location, anti-Saccharomyces cerevisiae antibody, and NOD2/CARD15 genotype influence the progression of disease behavior in Crohn’s disease. Inflamm Bowel Dis 2004; 10: 521-528

27. Dubinsky MC, Oftman JI, Urman M, Targan SR, Seidman EG. Clinical utility of serodiagnostic testing in suspected pediatric inflammatory bowel disease. Am J Gastroenterol 2001; 96: 758-765

28. Peeters M, Joossens S, Vermeire S, Vlierinck R, Bossuyt X, Rutgers P. Diagnostic value of anti-Saccharomyces cerevisiae and anti-neutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol 2001; 96: 730-734

29. Vasiliauskas EA, Plevy SE, Landers CJ, Binder SW, Ferguson DM, Yang H, Rotter JJ, Vidrich A, Targan SR. Perinuclear anti-neutrophil cytoplasmic antibodies in patients with Crohn’s disease define a clinical subgroup. Gastroenterology 1996; 110: 1810-1819

30. Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 2000; 47: 487-496

31. Kiehl FH, Bataille F, Berthea CR, Herlath H, Hofstadter F, Schölmerich J, Rogler G. Association of perinuclear antineutrophil cytoplasmic antibodies and anti-Saccharomyces cerevi- siae antibodies with Vienna classification subtypes of Crohn’s disease. Inflamm Bowel Dis 2003; 9: 302-307

32. Forcione DG, Rosen MJ, Kiselj EB, Sands BE. Anti-Saccha- romyces cerevisiae antibody (ASCA) positivity is associated with increased risk for early surgery in Crohn’s disease. Gut 2004; 53: 1117-1122

33. Desir B, Amre DK, Lu SE, Ohman-Strickland P, Dubinsky M, Fisher R, Seidman EG. Utility of serum antibodies in determining clinical course in pediatric Crohn’s disease. Clin Gastroen-
Dubinsky MC, Lin YC, Dutridge D, Picornell Y, Landers CJ, Farrior S, Wrobel I, Quiros A, Vasilikausas EA, Grill B, Israel D, Bahar P, Thomas D, Kets D, Hershberg RM, Elson CO, Targan SR, Taylor KD, Rotter JJ, Yang H. Serum immune responses predict rapid disease progression among children with Crohn's disease: immune responses predict disease progression. *Am J Gastroenterol* 2006;101:360-367

Lesage S, Zouali H, Cézard JP, Colombel JF, Belaiche J, Almer S, Tysk C, O'Morain C, Gassull M, Binder V, Finkel Y, Modigliani R, Gowr-Rousseau C, Macry J, Merlin F, Chamaillard M, Jannot AS, Thomas G, Hugot JP. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. *Am J Hum Genet* 2002;70:845-857

Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, Crawshaw J, Large O, de Silva A, Cook JT, Barnardo M, Cullen S, Welsh KI, Jewell DP. The molecular classification of the clinical manifestations of Crohn's disease. *Gastroenterology* 2002;122:854-866

Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J, Landers CJ, Vasilikausas EA, Kam LY, Rojany M, Papadakis KA, Rotter JJ, Targan SR, Yang H. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. *Gastroenterology* 2002;123:679-688

Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, Rudolph C, Broeckel U. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn's disease. *Clin Gastroenterol Hepatol* 2004;2:139-146

Shanahan F, Duerr RH, Rotter JJ, Yang H, Sutherland LR, McElree C, Landers CJ, Targan SR. Neutrophil autoantibodies in ulcerative colitis: familial aggregation and genetic heterogeneity. *Gastroenterology* 1992;103:456-461

Seibold F, Slametschka D, Gregor M, Weber P. Neutrophil autoantibodies: a genetic marker in primary sclerosing cholangitis and ulcerative colitis. *Gastroenterology* 1994;107:532-536

Lee JC, Lennard-Jones JE, Cambridge G. Antineutrophil antibodies in familial inflammatory bowel disease. *Gastroenterology* 1995;108:428-433

Achkar JP, Barnada MM, Duerr RH. Perinuclear neutrophil antibodies are not markers for genetic susceptibility or indicators of genetic heterogeneity in familial ulcerative colitis. *Am J Gastroenterol* 2002;97:2343-2349

Sutton CL, Yang H, Li Z, Rotter JJ, Targan SR, Braun J. Familial expression of anti-Saccharomyces cerevisiae mannan antibodies in affected and unaffected relatives of patients with Crohn's disease. *Gut* 2000;46:58-63

Annese V, Andreoli A, Andriulli A, Dinca R, Gionchetti P, Latiano A, Lombardi G, Piepoli A, Poulain D, Sendid B, Colombel JF. Familial expression of anti-Saccharomyces cerevisiae mannan antibodies in Crohn's disease and ulcerative colitis: a GISC study. *Am J Gastroenterol* 2001;96:2407-2412

Halfvarson J, Standea-Vitsa A, Järnerot G, Sendid B, Jouault T, Bodin L, Duhamel A, Colombel JF, Tysk C, Poulain D. Anti-Saccharomyces cerevisiae antibodies in twins with inflammatory bowel disease. *Gut* 2005;54:1237-1243

Mei L, Targan SR, Landers CJ, Dutridge D, Ippoliti A, Vasia-ikausas EA, Papadakis KA, Fleschner PR, Rotter JJ, Yang H. Familial expression of anti-Escherichia coli outer membrane porin C in relatives of patients with Crohn's disease. *Gastroen-terology* 2006;130:1078-1085