Discovery of the orally effective thyrotropin-releasing hormone (TRH) mimetic: 1-{N-[(4S,5S)-(5-methyl-2-oxooxazolidine-4-yl)carbonyl]-3-(thiazol-4-yl)-L-alanyl}-(2R)-2-methylpyrrolidine trihydrate (Rovatirelin Hydrate)

Naotake Kobayashi,*† Norihito Sato,‡ Yuko Fujimura,‡ Tsuyoshi Kihara,§ Katsuji Sugita,‡ Kouji Takahashi,‖ Katsumi Koike,┴ Tamio Sugawara,‡ Yukio Tada,‡ Hiroshi Nakai,† Takayoshi Yoshikawa#

†Medicinal chemistry research laboratory, ‡Research Laboratory for Development, §Business Search & Evaluation, ‖DMPK Services, ‡Drug Discovery & Disease Research Laboratory, #Pharmacovigilance Japan

†‡┴.‡−, ‡, ┴ Shionogi & Co., Ltd. 3-1-1, Futaba, Toyonaka-shi, Osaka 561-0825, Japan
‖Shionogi Techno Advance Research Co., Ltd. 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
§Shionogi & Co., Ltd. 3-1-8, Doshomachi, Chuo-ku, Osaka-shi, Osaka 541-0045, Japan
#Allergan Japan K.K., 4-20-3-35, Ebisu Shibuya-ku, Tokyo 150-6035, Japan

Supporting Information

Table of contents

1. Compound synthesis and characterization.
2. X-ray Crystallographic data of Rovatirelin Hydrate.
Compound synthesis and characterization.

(1) *N*-Terminus fragments

(*4S*)-2-Oxooxazolidine-4-carboxylic acid (3a).
To a solution of *N*-benzyloxy carbonyl-L-serine (18.9 g, 79.0 mmol) in methanol (160 mL), 1 M aqueous sodium hydroxide solution (160 mL, 160 mmol) was added and the mixture was stirred for 4 h at room temperature. The mixture was concentrated under reduced pressure. To the residue, ethyl acetate (300 mL) was added and washing was conducted twice. The aqueous layer was acidified with 1 M aqueous hydrochloric acid solution (160 mL), and concentrated *in vacuo*. Ethanol (300 mL) was added to the residue, and the precipitate was filtered off. The filtrate was concentrated *in vacuo*. A small amount of diethyl ether was added to the residue, the precipitate was filtered and washed with ethanol and diethyl ether to give the title compound 3a (5.09 g, 49%) as a colorless solid. An analytical sample was prepared by recrystallization from acetone-diethyl ether.

mp 114-116 °C.

IR (KBr) 3368, 2725, 2629, 2521, 1742, 1407, 1200 cm⁻¹

¹H NMR (200 MHz, DMSO-*d₆*) δ 8.14 (br s, 1 H), 4.49 (m, 1 H), 4.32 (m, 2 H).

[α]₂⁰⁰ D -19.5° (c 1.0, H₂O).

Anal. Calcd for C₆H₅NO₄·0.1H₂O: C, 36.15; H, 3.94; N, 10.54. Found: C, 36.17; H, 3.91; N, 10.53.

lit.²⁸ mp 114-117 °C., [α]₂⁰° -18.2° (c 2.23, H₂O).

(*4S,5R*)-5-Methyl-2-oxooxazolidine-4-carboxylic acid (3b).
To a solution of *N*-benzyloxy carbonyl-L-threonine (20.0 g, 79 mmol) in methanol (160 mL), 1 M aqueous sodium hydroxide solution (160 mL, 160 mmol) was added and the mixture was stirred for 2 h at room temperature. The mixture was concentrated under reduced pressure. To the residue, ethyl acetate (300 mL) was added and washing was conducted twice. The aqueous layer was acidified with 1 M aqueous hydrochloric acid solution (160 mL) and concentrated *in vacuo*. Ethanol (300 mL) was added to the residue, and the precipitate was filtered off. The filtrate was concentrated *in vacuo*. A small amount of diethyl ether was added to the residue, the precipitate was filtered and washed with ethanol and diethyl ether to give the title compound 3b (6.27 g, 55%) as a colorless solid.

mp 137-138 °C.

IR (KBr) 3303, 3245, 2714, 2600, 2507, 1744, 1727, 1673, 1227, 1207 cm⁻¹

¹H NMR (200 MHz, DMSO-*d₆*) δ 8.07 (br s, 1 H), 4.58 (m, 1 H), 3.95 (d, J = 5.2 Hz, 1 H), 1.38 (d, J = 6.2 Hz, 3 H).

[α]₂⁰° +40.9° (c 1.0, H₂O).

Anal. Calcd for C₅H₇NO₄·0.1H₂O: C, 40.88; H, 4.94; N, 9.53. Found: C, 40.84; H, 4.90; N, 9.68.

lit.³² mp 139.8-140.2 °C., [α]₂⁰° +41.8° (c 2.7, H₂O).

(*4S,5S*)-5-Methyl-2-oxooxazolidine-4-carboxylic acid (3c).
To a solution of *N*-benzyloxy carbonyl-1-threonine (4.73 g, 18.0 mmol) in methanol
(36.0 mL), 1 M aqueous sodium hydroxide solution (36.0 mL, 36.0 mmol) was added and the mixture was stirred for 4.5 h at room temperature. The mixture was concentrated under reduced pressure. To the residue, ethyl acetate (200 mL) was added and washed twice. The aqueous layer was acidified with 1 M aqueous hydrochloric acid solution (36.0 mL), and concentrated in vacuo. Ethanol (250 mL) was added to the residue and precipitate was filtered off. The filtrate was concentrated in vacuo. A small amount of diethyl ether was added to the residue, the precipitate was filtered and washed with ethanol and diethyl ether to give the title compound \(3c\) (1.92 g, 73%) as colorless crystals.

\[
\text{IR (KBr)} \ 3363, 2632, 2550, 1746, 1685, 1412, 1224, 1156, 1060 \text{ cm}^{-1}
\]

\[
\text{H NMR (200 MHz, DMSO-}d_6\) } \delta 7.89 (br s, 1 H), 4.85 (m, 1 H), 4.27 (d, \ J = 8.4 \text{ Hz}, 1 H), 1.24 (d, \ J = 6.4 \text{ Hz}, 3 H).
\]

\[
[a]_25^D -20.7^\circ \ (c 1.0, \text{ H}_2\text{O}).
\]

Anal. Calcd for C\(_5\)H\(_7\)NO\(_4\): C, 41.38; H, 4.86; N, 9.65. Found: C, 41.23; H, 4.75; N, 9.63.

lit.\(^2\) mp 165-168 °C.

\((4S,5R)-5\)-Methyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3d).

To an ice cooled solution of (4S,5R)-5-methyl-2-oxooxazolidine-4-carboxylic acid (3b) (2.02 g, 13.9 mmol), benzyl alcohol (2.26 mL, 21.8 mmol) and DMAP (0.068 g, 0.555 mmol) in THF (150 mL), DCC (3.44 g, 16.7 mmol) was added and stirred for 30 min at same temperature. After the ice bath was removed, the reaction mixture was stirred for 5 h. The precipitate was filtered off and the filtrate was concentrated in vacuo. To the mixture, water (30.0 mL) was added and extracted with ethyl acetate (100 mL). The organic layer was washed with 5% aqueous sodium hydrogen carbonate solution (30.0 mL) and water (30.0 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: toluene-acetone) to afford the title compound \(3d\) (2.98 g, 91%) as a colorless viscous oil.

\[
\text{H NMR (300 MHz, CDCl}_3\) } \delta 7.50-7.10 (m, 5 H), 5.71 (br s, 1 H), 5.26 (d, \ J = 12.6 \text{ Hz}, 1 H), 5.19 (d, \ J = 12.6 \text{ Hz}, 1 H), 4.74 (m, 1 H), 4.01 (d, \ J = 5.1 \text{ Hz}, 1 H), 1.56 (d, \ J = 6.4 \text{ Hz}, 3 H).
\]

Anal. Calcd for C\(_{12}\)H\(_{13}\)NO\(_4\): C, 61.27; H, 5.57; N, 5.96. Found: C, 61.24; H, 5.66; N, 5.97.

\((4S,5R)-3,5\)-Dimethyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3e).

To an ice cooled solution of (4S,5R)-5-methyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3d) (0.488 g, 2.08 mmol) and iodomethane (0.17 mL, 2.73 mmol) in DMF (6.00 mL), sodium hydride (0.083 g, 2.08 mmol) was added portionwise and stirred for 3 h at same temperature. To the mixture, water (10.0 mL) was added slowly and extracted with ethyl acetate (20.0 mL). The organic layer was washed with water (10.0 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: toluene-acetone) to afford the title compound \(3e\) (0.444 g, 86%) as a colorless oil.

\[
\text{H NMR (300 MHz, CDCl}_3\) } \delta 7.50-7.10 (m, 5 H), 5.27 (d, \ J = 12.3 \text{ Hz}, 1 H), 5.20 (d, \ J = 12.3 \text{ Hz}, 1 H), 4.51 (m, 1 H), 3.86 (d, \ J = 5.4 \text{ Hz}, 1 H), 2.92 (s, 3\ H), 1.50 (d, \ J = 6.3 \text{ Hz}, 3 H).
\]
(4S,5R)-3-Benzyl-5-methyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3f).

To an ice cooled solution of (4S,5R)-5-methyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3d) (0.706 g, 3.00 mmol) and benzyl bromide (0.39 mL, 3.28 mmol) in DMF (8.00 mL), sodium hydride (0.120 g, 3.00 mmol) was added portionwise and stirred for 3 h at same temperature. To the mixture, water (20.0 mL) was added slowly and extracted with ethyl acetate (40.0 mL). The organic layer was washed with water (20.0 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: toluene-acetone) to afford the title compound 3f (0.859 g, 88%) as a colorless oil.

1H NMR (200 MHz, CDCl₃) δ 7.50-7.10 (m, 5 H), 5.17 (s, 2 H), 4.92 (d, J = 14.6 Hz, 1 H), 4.56 (m, 1 H), 4.14 (d, J = 14.6 Hz, 1 H), 3.63 (d, J = 5.2 Hz, 1 H), 1.39 (d, J = 6.4 Hz, 3 H).

(4S,5R)-3,5-Dimethyl-2-oxooxazolidine-4-carboxylic acid (3g).

To a solution of (4S,5R)-3,5-dimethyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3e) (0.551 g, 2.21 mmol) in methanol (10.0 mL) and water (1.00 mL), 5% Pd-C (0.150 g) was added and hydrogenated for 1 h at room temperature. The catalyst was filtered through Celite and the filtrate was concentrated in vacuo to give the title compound 3g (0.345 g, 98%) as colorless crystals.

mp 125-127 °C.
IR (KBr) 3433, 2585, 1743, 1697, 1483, 1443, 1408, 1227, 1034 cm⁻¹
1H NMR (200 MHz, DMSO-d₆) δ 4.51 (m, 1 H), 3.99 (d, J = 5.4 Hz, 1 H), 2.79 (s, 3 H), 1.38 (d, J = 6.2 Hz, 3 H).
[α]D²⁴ -11.1° (c 1.0, MeOH).
Anal. Calcd for C₆H₉NO₄: C, 45.28; H, 5.70; N, 8.80. Found: C, 45.40; H, 5.63; N, 8.74.

(4S,5R)-3-Benzyl-5-methyl-2-oxooxazolidine-4-carboxylic acid (3h).

To a solution of (4S,5R)-3-benzyl-5-methyl-2-oxooxazolidine-4-carboxylic acid benzyl ester (3f) (0.850 g, 2.61 mmol) in THF (18.0 mL) and DME (2.70 mL), lithium hydroxide (0.548 g, 13.1 mmol) in water (10.0 mL) was added and stirred for 30 min. To the mixture, water (20.0 mL) was added and extracted with diethyl ether (40.0 mL x 3). To the aqueous layer, 5 M aqueous hydrochloric acid solution (3.00 mL) was added and extracted with ethyl acetate (40.0 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was recrystallized from hexane-acetone to give the title compound 3h (0.493 g, 80%) as colorless crystals.

mp 127-128 °C.
IR (KBr) 2716, 2601, 1740, 1692, 1497, 1443, 1412, 1369, 1248, 1201, 1186, 1078 cm⁻¹
1H NMR (200 MHz, DMSO-d₆) δ 7.50-7.20 (m, 5 H), 4.69 (d, J = 15.4 Hz, 1 H), 4.62 (m, 1 H), 4.15 (d, J = 15.4 Hz, 1 H), 3.71 (d, J = 4.4 Hz, 1 H), 1.32 (d, J = 6.2 Hz, 3 H).
[α]D²⁴ -7.8° (c 1.0, CHCl₃).
Anal. Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.96. Found: C, 61.30; H, 5.61; N, 5.91.
(4S,5S)-5-Methyl-2-oxooxazolidine-4-carboxylic acid methyl ester (3i).

To an ice cooled solution of (4S,5S)-5-methyl-2-oxooxazolidine-4-carboxylic acid (3c) (1.02 g, 7.00 mmol) in methanol (10.0 mL), thionyl chloride (0.510 mL, 7.00 mmol) was added dropwise and stirred for 10 min under nitrogen atmosphere. The ice bath was removed and stirred continuously for 4 h. The reaction mixture was concentrated in vacuo to afford the title compound 3i (1.11 g, quant) as a colorless solid, which was used without further purification.

1H NMR (200 MHz, CD3OD) δ 4.96 (dq, J = 8.6, 6.4 Hz, 1 H), 4.46 (d, J = 8.6 Hz, 1 H), 3.79 (s, 3 H), 1.31 (d, J = 6.4 Hz, 3 H).

(4R,5S)-5-Methyl-2-oxooxazolidine-4-methanol (3j).

To an ice cooled solution of (4S,5S)-5-methyl-2-oxooxazolidine-4-carboxylic acid methyl ester (3i) (1.11 g, 7.00 mmol) in ethanol (20.0 mL), sodium borohydride (0.265 g, 7.00 mmol) was added portionwise and stirred for 20 min under nitrogen atmosphere. The ice bath was removed and stirred continuously for 1 h. To the mixture, 5 M aqueous hydrochloric acid solution (1.40 mL, 7.00 mmol) was added and stirred for 30 min at room temperature. The mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: CHCl3/MeOH) to afford the title compound 3j (0.702 g, 76%) as colorless crystals. An analytical sample was prepared by recrystallization from acetone/diethyl ether.

mp 85-86 °C.

IR (KBr) 3275, 1697, 1447, 1416, 1392, 1259, 1234, 1128, 1099, 1062 cm⁻¹.

1H NMR (300 MHz, CD3OD) δ 4.83 (m, 1 H), 3.80 (dd, J = 7.8, 5.4 Hz, 1 H), 3.65 (dd, J = 11.1, 5.4 Hz, 1 H), 3.58 (dd, J = 11.1, 5.4 Hz, 1 H), 1.40 (d, J = 6.6 Hz, 3 H).

[α]D25 +30.5° (c 0.51, MeOH).

Anal. Calcd for C₅H₉NO₃: C, 45.79; H, 6.92; N, 10.68. Found: C, 45.93; H, 6.89; N, 10.86.

(4R,5S)-5-Methyl-2-oxooxazolidine-4-ylmethyl trifluoromethanesulfonate (3k).

To a suspension of (4R,5S)-5-methyl-2-oxooxazolidine-4-methanol (3j) (0.262 g, 2.00 mmol) in dichloromethane (13.0 mL) and pyridine (0.33 mL, 4.08 mmol) at -35 °C under nitrogen atmosphere, trifluoromethanesulfonic anhydride (0.40 mL, 2.40 mmol) was added dropwise and stirred for 1.5 h at the same temperature. To the mixture, ethyl acetate (20.0 mL) and water (10.0 mL) were added and extracted. The organic layer was washed with water (10.0 mL). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo to give the title compound 3k (0.235 g, 45%) as purple crystals, which was used without further purification.

mp 69-71 °C.

1H NMR (200 MHz, CDCl3) δ 6.03 (br s, 1 H), 4.92 (m, 1 H), 4.60 (dd, J = 10.6, 5.4 Hz, 1 H), 4.48 (dd, J = 10.6, 6.8 Hz, 1 H), 4.15 (m, 1 H), 1.47 (d, J = 6.6 Hz, 3 H).

(2) Middle-part fragments

4-Chloromethylthiazole (7).

To an ice cooled suspension of Lawesson’s reagent (400 g, 0.989 mol) in THF (500 mL),
formamide (178 g, 3.95 mol) in THF (100 mL) solution was added dropwise for 30 min and the mixture was stirred for 10 min at 0 °C. The ice bath was removed and stirred continuously for 3 h. The mixture was cooled to 0 °C again, 1,3-dichloroacetone (251 g, 1.98 mol) in THF (150 mL) solution was added dropwise for 15 min at the same temperature and the mixture was stirred overnight. The precipitate was filtered and washed with acetone (500 mL x 3) to afford crude 4-chloromethylthiazole hydrochloride. Crude 4-chloromethylthiazole hydrochloride was dissolved in water (500 mL). To this solution, water (300 mL), 5% aqueous sodium hydrogen carbonate solution (500 mL) and toluene (800 mL) were added and extracted. The aqueous layer was extracted with toluene (600 mL x 2). The organic layers were combined and washed with water (1.00 L x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo to afford the title compound 7 (167 g, 63%) as a brown oil.

1H NMR (300 MHz, CDCl₃) δ 8.80 (d, J = 2.1 Hz, 1 H), 7.37 (d, J = 2.1 Hz, 1 H), 4.76 (s, 2 H).

Ethyl α-acetamide-α-carboethoxy-β-(thiazol-4-yl)-propionate (8). Sodium (27.0 g, 1.17 mol) was added portionwise to ethanol (800 mL) and stirred for 1 h at 75 °C. To the mixture, diethyl acetamidemalonate (255 g, 1.18 mol) was added and refluxed for 2 h. To the mixture, potassium iodide (2.70 g, 16.3 mmol) in DMF (2.70 mL) and 4-chloromethylthiazole (7) (157 g, 1.18 mol) in ethanol (100 mL) were added and the mixture was stirred for 3 h at 60 °C. The mixture was cooled to room temperature and concentrated under reduced pressure. To the residue, water (1.00 L) was added and extracted with ethyl acetate (1.00 L x 2). The organic layers were combined and dried over anhydrous magnesium sulfate and concentrated in vacuo to give the title compound 8 (329 g, 89%) as a pale yellow solid.

mp 103-104 °C.

IR (CHCl₃) 2980, 1741, 1683, 1493, 1371, 1290 cm⁻¹

1H NMR (300 MHz, CDCl₃) δ 8.68 (d, J = 2.1 Hz, 1 H), 7.02 (d, J = 2.1 Hz, 1 H), 6.69 (br s, 1 H), 4.29 (q, J = 7.2 Hz, 4 H), 3.89 (s, 2 H), 1.97 (s, 3 H), 1.29 (t, J = 7.2 Hz, 6 H).
Anal. Calcd for C₁₃H₁₈N₂O₅S: C, 49.67; H, 5.77; N, 8.91; S, 10.20. Found: C, 49.58; H, 5.75; N, 8.93; S, 10.33.

lit. mp 104-105 °C.

3-(Thiazol-4-yl)-DL-alanine dihydrochloride (9). Ethyl α-acetamide-α-carboethoxy-β-(thiazol-4-yl)-propionate (8) (329 g, 1.05 mol) in 6 M aqueous hydrogen chloride solution (1.75 L, 10.5 mol) was refluxed for 6 h. The mixture was cooled to room temperature and concentrated under reduced pressure until 718 g. The precipitate was filtered and washed with ice cooled ethanol (100 mL x 2) to give the title compound 9 (189 g, 74%) as a colorless solid.

mp 208-210 °C.

IR (KBr) 3459, 3122, 3054, 2805, 1976, 1848, 1735, 1583, 1512, 1492, 1421, 1408, 1364, 1316, 1264, 1234, 1198, 1187, 1160, 1094, 1071 cm⁻¹

1H NMR (300 MHz, D₂O) δ 9.40 (d, J = 2.1 Hz, 1 H), 7.75 (d, J = 2.1 Hz, 1 H), 4.48 (t, J = 6.9 Hz, 1 H), 3.59 (m, 2 H).
Anal. Calcd for C₆H₁₀Cl₂N₂O₂S·0.1H₂O: C, 29.19; H, 4.16; Cl, 28.72; N, 11.34; S, 12.99. Found: C, 29.10; H, 4.07; Cl, 11.35; N, 11.35; S, 12.93.

N-tert-Butoxycarbonyl-3-(thiazol-4-yl)-l-alanine (4a).

To an ice cooled solution of 3-(thiazol-4-yl)-l-alanine dihydrochloride (9) (150 g, 0.612 mol) in 3 M aqueous sodium hydroxide solution (600 mL, 2.00 mol), acetic anhydride (63.6 mL, 0.673 mol) was added dropwise and the mixture was stirred for 1 h at the same temperature. The ice bath was removed and the mixture was stirred continuously for 2 h. This solution was adjusted to pH 7.2 with 3 M aqueous sodium hydroxide solution (50.0 mL, 150 mmol) and acetic anhydride (2.00 mL, 21.2 mmol). To the solution, aminoacylase (17.0 g) was added and stirred for 2 d at 37 °C. The mixture was filtered through Celite, the filtrate was concentrated under reduced pressure. To the residue, triethylamine (42.7 mL, 0.306 mol) and di-tert-butyl dicarbonate (73.5 g, 0.337 mol) were added and the mixture was stirred overnight at room temperature. Ethyl acetate (1.00 L) was added to the mixture and separated. The aqueous layer was adjusted pH 3 with 20% aqueous citric acid solution at 0 °C. This solution was extracted with ethyl acetate (1.00 L x 3). The organic layers were combined and washed with brine (300 mL) and dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was crystallized from hexane-ethyl acetate to give the title compound 4a (47.4 g, 29%) as colorless crystals.

mp 119-121 °C.

IR (KBr) 3426, 1704, 1497, 1367, 1163, 1062 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 8.93 (d, J = 2.1 Hz, 1 H), 7.15 (d, J = 2.1 Hz, 1 H), 5.52 (d, J = 5.4 Hz, 1 H), 4.58 (m, 1 H), 3.55 (dd, J = 14.5, 5.4 Hz, 1 H), 3.40 (dd, J = 14.5, 5.4 Hz, 1 H), 1.47 (s, 9 H).

[α]₂⁰D 4.7° (c 1.0, MeOH).

Anal. Calcd for C₁₁H₁₆N₂O₄S: C, 48.52; H, 5.92; N, 10.29; S, 11.77. Found: C, 48.52; H, 5.89; N, 10.28; S, 11.63.

lit. mp 111-113 °C., [α]₂⁰D -4.5° (c 1.0, MeOH).

2-Trimethylsilylthiazole (12).

1.6 M n-butyllithium solution in hexane (252 mL, 403 mmol) was added dropwise to diethyl ether (600 mL) at -78 °C under nitrogen atmosphere. To the solution, 2-bromothiazole (60.0 g, 366 mmol) was added dropwise for 15 min and the mixture was stirred for 1 h at the same temperature. Then trimethylsilyl chloride (46.5 mL, 366 mmol) was added dropwise for 1 h and the mixture was stirred for additional 1 h. Saturated aqueous sodium hydrogen carbonate solution (250 mL) was added slowly at 0 °C. The solution was separated and the aqueous layer was extracted with diethyl ether (200 mL). The organic layers were combined and dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was distilled under reduced pressure to afford the title compound 12 (51.0 g, 89%) as a colorless oil.

bp 67-72 °C (28 mmHg).

¹H NMR (200 MHz, CDCl₃) δ 8.12 (d, J = 3.0 Hz, 1 H), 7.53 (d, J = 3.0 Hz, 1 H), 0.42 (s, 9 H).
5-Formylthiazole (13).
1.6 M n-butyllithium solution in hexane (11.4 mL, 19.1 mmol) was added dropwise to diethyl ether (40.0 mL) at -78 °C under nitrogen atmosphere. To the solution, 2-trimethylsilylthiazole (12) (3.00 g, 19.1 mmol) in diethyl ether (10.0 mL) solution was added dropwise for 20 min and the mixture was stirred for 1 h at the same temperature. Then N-formylmorpholine (2.10 mL, 2.10 mmol) in diethyl ether (10.0 mL) solution was added dropwise for 15 min and the mixture was stirred for additional 2 h. Saturated aqueous sodium hydrogen carbonate solution (10.0 mL) was added slowly at 0 °C. The solution was separated and the aqueous layer was extracted with diethyl ether (100 mL x 2). The organic layers were combined and dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was dissolved in THF (30.0 mL), 1 M aqueous hydrochloric acid solution (1.70 mL, 1.70 mmol) was added and stirred for 1 h at room temperature. The mixture was concentrated under reduced pressure. To the mixture, water (30.0 mL) was added and extracted with diethyl ether (100 mL x 2) and ethyl acetate (100 mL x 2). The organic layers were combined and dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate) to afford the title compound 13 (1.08 g, 50%) as a pale yellow oil.

1H NMR (300 MHz, CDCl3) δ 10.13 (s, 1 H), 9.13 (s, 1 H), 8.55 (s, 1 H).

5-Hydroxymethylthiazole (14).
To a suspension of sodium borohydride (0.860 g, 22.8 mmol) in THF (35.0 mL), 5-formylthiazole (13) (2.34 g, 20.7 mmol) in THF (10.0 mL) was added slowly and the mixture was stirred for 2 h at room temperature. The reaction was quenched with aqueous hydrochloric acid solution. To the mixture, saturated aqueous sodium hydrogen carbonate solution (10.0 mL) was added and stirred for 1 h at room temperature. The mixture was concentrated under reduced pressure. To the mixture, water (30.0 mL) was added and extracted with diethyl ether (100 mL x 2) and ethyl acetate (100 mL x 2). The organic layers were combined and dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: hexane/ethyl acetate) to afford the title compound 14 (1.45 g, 61%) as a pale yellow oil. An analytical sample was prepared as HCl salt.

mp 75-77 °C.

1H NMR (200 MHz, DMSO-d6) δ 9.34 (d, J = 1.0 Hz, 1 H), 7.93 (d, J = 1.0 Hz, 1 H), 4.72 (d, J = 1.2 Hz, 2 H).

Anal. Calcd for C4H6ClNOS·0.2H2O: C, 30.95; H, 4.16; Cl, 22.84; N, 9.02; S, 20.66.

Found: C, 30.99; H, 4.14; Cl, 23.08; N, 9.13; S, 20.71.

lit. mp 73-76.5 °C.

5-Chloromethylthiazole (15).
To an ice cooled solution of 5-hydroxymethylthiazole (14) (1.52 g, 13.2 mmol), thionyl chloride (2.90 mL, 39.6 mmol) was added dropwise over 5 min and the mixture was stirred for 1 h. The mixture was concentrated and co-evaporated with toluene (10.0 mL x 3). To the residue, saturated aqueous sodium hydrogen carbonate solution (100 mL) was added and extracted with ethyl acetate (100 mL x 2). The organic layers were combined and dried
over anhydrous magnesium sulfate and concentrated in vacuo to give the title compound 15 (1.75 g, quant) as a colorless oil.

\[^1 \text{H NMR (200 MHz, DMSO-}d_6 \text{)} \delta 9.18 \text{ (s, 1 H), 7.99 (s, 1 H), 5.14 (s, 2 H).} \]

Ethyl α-acetamide-α-carboethoxy-β-(thiazol-5-yl)-propionate (16).

Sodium ethoxide solution was prepared using sodium (0.760 g, 33.0 mmol) and ethanol (65.0 mL) under nitrogen atmosphere. To the solution, diethyl acetamidemalonate (7.17 g, 33.0 mmol) was added and the mixture was refluxed for 1 h. After cooling to 50 °C, 5-chloromethylthiazole (15) (4.00 g, 30.0 mmol) in ethanol (15.0 mL) was added and the mixture was stirred for 6 h. The precipitate was filtered on Celite and the filtrate was concentrated in vacuo. The residue was crystallized from water (50.0 mL) to give the title compound 16 (2.93 g, 71%) as colorless needles.

mp 116-118 °C.

IR (CHCl$_3$) 3410, 2987, 1740, 1682, 1493, 1371, 1291 cm$^{-1}$

\[^1 \text{H NMR (200 MHz, CDCl}_3 \text{)} \delta 8.70 \text{ (s, 1 H), 7.56 (s, 1 H), 6.74 (br s, 1 H), 4.26 (q, } J = 7.2 \text{ Hz, 4 H), 3.96 (s, 2 H), 2.09 (s, 3 H), 1.29 (t, } J = 7.2 \text{ Hz, 6 H).} \]

Anal. Calcd for C$_{13}$H$_{18}$N$_2$O$_5$S: C, 49.67; H, 5.77; N, 8.91; S, 10.20. Found: C, 49.58; H, 5.75; N, 8.93; S, 10.33.

N-Acetyl-3-((thiazol-5-yl)-dL-alanine ethyl ester (17).

To a solution of ethyl α-acetamide-α-carboethoxy-β-(thiazol-5-yl)-propionate (16) (25.0 g, 79.5 mmol) in ethanol (300 mL), 1 M aqueous sodium hydroxide solution (87.5 mL, 87.5 mmol) was added and the mixture was stirred for 2 h at room temperature. 1 M aqueous hydrochloric acid solution (87.5 mL, 87.5 mmol) was added and refluxed for 2 h. After cooling to room temperature, the mixture was concentrated and extracted with ethyl acetate (200 mL x 4). The organic layers were combined and dried over anhydrous magnesium sulfate and concentrated in vacuo to afford the title compound 17 (9.95 g, 52%) as a yellow oil.

IR (CHCl$_3$) 3426, 3014, 1737, 1677, 1504, 1377, 1344 cm$^{-1}$

\[^1 \text{H NMR (200 MHz, CDCl}_3 \text{)} \delta 8.69 \text{ (s, 1 H), 7.58 (s, 1 H), 6.39 (d, } J = 7.0 \text{ Hz, 1 H), 4.87 (m, 1 H), 4.22 (q, } J = 7.0 \text{ Hz, 2 H), 3.50 and 3.40 (dd each, } J = 15.2, 5.0 \text{ Hz, 1 H each), 2.05 (s, 3 H), 1.30 (t, } J = 7.0 \text{ Hz, 3 H).} \]

Anal. Calcd for C$_{10}$H$_{14}$N$_2$O$_3$: C, 49.57; H, 5.82; N, 11.56; S, 13.23. Found: C, 49.40; H, 5.74; N, 11.52; S, 13.04.

N-tert-Butoxycarbonyl-3-((thiazol-5-yl)-L-alanine (4b).

N-Acetyl-3-((thiazol-5-yl)-dL-alanine ethyl ester (17) (7.30 g, 30.1 mmol) was dissolved in 1 M aqueous sodium hydroxide solution (90.4 mL, 90.4 mmol) and the mixture was stirred for 1 h at room temperature. This solution was adjusted to pH 7.3 with 5 M aqueous hydrochloric acid solution and aminoacylase (0.730 g) was added to this solution. After stirring for 1 d at 37 °C, the mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was dissolved in 1,4-dioxane (75.0 mL) and water (60.0 mL). To the solution, triethylamine (2.10 mL, 15.1 mmol) and di-tert butyl dicarbonate (3.62 g, 16.6 mmol) were added at 0 °C and the mixture was stirred for 16 h at
room temperature. Ethyl acetate (500 mL) was added to the mixture and separated. The aqueous layer was adjusted to pH 3 with 10% aqueous citric acid solution. This solution was extracted with ethyl acetate (500 mL x 3). The organic layers were combined and washed with water (100 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was crystallized from hexane-ethyl acetate to give the title compound 4b (3.57 g, 44%) as colorless crystals.

mp 121-123 °C.
IR (CHCl₃) 3426, 2981, 2480, 1707, 1496, 1368 cm⁻¹
¹H NMR (200 MHz, CDCl₃) δ 8.77 (s, 1 H), 7.63 (s, 1 H), 5.39 (d, J = 6.4 Hz, 1 H), 4.60 (m, 1 H), 3.48 (m, 2 H), 1.47 (s, 9 H).
[α]₂⁴D +43.0° (c 1.0, CHCl₃).
Anal. Calcd for C₁₁H₁₆N₂O₄S: C, 48.52; H, 5.92; N, 10.29; S, 11.77. Found: C, 48.45; H, 5.84; N, 10.25; S, 11.71.

The enantiomeric excess was determined to be > 99% by HPLC analysis after methyl esterified with diazomethane.
column: CHIRALCEL OC (Daicel) 0.46 x 25 cm; eluent: hexane/2-propanol (7/3); flow rate: 1.0 mL/min; UV detection: wavelengths of 240 nm.
Retention times (tᵣ) of N-tert-butoxycarbonyl-3-(thiazol-5-yl)-L-alanine methyl ester and N-tert-butoxycarbonyl-3-(thiazol-5-yl)-D-alanine methyl ester were 15.7 and 12.7 min, respectively.

(3) C-Terminus fragments

N-Benzoyloxycarbonyl-L-prolinamide (21).
To a solution of N-benzyloxycarbonyl-L-proline (70.0 g, 281 mmol) in THF (470 mL) at -40 °C, triethylamine (43.1 mL, 309 mmol) was added once and ethyl chloroformate (29.5 mL, 309 mmol) was added dropwise for 15 min. The mixture was stirred for 2 h at the same temperature. 28% aqueous ammonia solution (34.1 mL, 562 mmol) was added dropwise for 5 min and the mixture was stirred for additional 2 h. Ethyl acetate (700 mL) and water (100 mL) were added to the mixture and extracted. The organic layer was washed with aqueous sodium hydrogen carbonate solution (100 mL) and brine (100 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo to give the title compound 21 (60.6 g, 87%) as colorless crystals.
mp 90-92 °C.
¹H NMR (200 MHz, DMSO-d₆) δ 7.50-7.20 (m, 6 H), 6.97 (d, J = 10.0 Hz, 1 H), 5.05 (m, 2 H), 4.12 (m, 1 H), 3.39 (m, 2 H), 2.30-1.90 (m, 1 H), 1.90-1.70 (m, 3 H).
[α]₂⁵D -33.8° (c 2.0, EtOH).
Anal. Calcd for C₁₃H₁₆N₂O₃: C, 62.89; H, 6.50; N,lit 11.28. Found: C, 62.94; H, 6.52; N, 11.28.
lit. mp 90-91 °C., [α]₂⁵D -35.0° (c 2.0, EtOH).

L-Prolinamide (22).
To a solution of N-benzyloxycarbonyl-L-prolinamide (21) (25.0 g, 101 mmol) in methanol (235 mL), 5% Pd-C (2.50 g) was added and hydrogenated for 2 h at room temperature. The
catalyst was filtered through Celite and the filtrate was concentrated *in vacuo* to give the title compound 22 (12.1 g, quant) as a colorless solid. mp 100-102 °C.

IR (KBr) 3384, 3286, 3149, 2742, 1702, 1683, 1654, 1599, 1532 cm⁻¹

¹H NMR (300 MHz, DMSO-_,d_) δ 9.10 (br s, 1 H), 8.06 (s, 1 H), 7.62 (s, 1 H), 4.11 (t, J = 7.2 Hz, 1 H), 3.19 (m, 2 H), 2.31 (m, 1 H), 1.96-1.75 (m, 3 H).

[α]ᵪ₂⁴ ≈ -89.4° (c 1.0, MeOH).

lit.⁴² mp 101-102 °C., [α]ᵪ²⁷ ≈ -86.5° (c 1.0, MeOH).

N-Benzylxycarbonyl-L-prolylmorpholine (23).

To a solution of N-benzyloxycarbonyl-L-proline (5.00 g, 20.1 mmol), morpholine (1.92 mL, 20.1 mmol) and HOSu (2.31 g, 20.1 mmol) in DMF (100 mL), DCC (4.14 g, 20.1 mmol) was added and stirred for 4 h at room temperature. The precipitate was filtered off and the filtrate was concentrated *in vacuo*. To the residue, ethyl acetate (100 mL) and 10% aqueous hydrochloric acid (50.0 mL) were added and extracted. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (50.0 mL) and water (100 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated *in vacuo*. The residue was crystallized from hexane-ethyl acetate to give the title compound 23 (4.44 g, 70%) as a colorless solid. mp 142-143 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.35 (m, 5 H), 5.12 (m, 2 H), 4.70 and 4.59 (dd, J = 8.4, 3.6 Hz, total 1 H), 3.90-3.20 (m, 10 H), 2.30-1.80 (m, 4 H).

[α]ᵪ²ⁿ ≈ -18.0° (c 1.0, CHCl₃).

L-Prolylmorpholine p-toluenesulfonate (24).

To a solution of N-benzyloxycarbonyl-L-prolylmorpholine (23) (3.60 g, 11.3 mmol) in methanol (50.0 mL) and water (10.0 mL), 5% Pd-C (1.60 g) and p-toluenesulfonic acid (2.15 g, 11.3 mmol) were added and hydrogenated for 3 h at room temperature. The catalyst was filtered through Celite and the filtrate was concentrated *in vacuo* to give the title compound 24 (4.31 g, quant) as a colorless solid. mp 130-131 °C.

¹H NMR (300 MHz, CD₂OD) δ 7.70 (m, 2 H), 7.24 (m, 2 H), 4.65 (dd, J = 8.4, 6.2 Hz, 1 H), 3.80-3.20 (m, 10 H), 2.60-1.80 (m, 4 H), 2.37 (s, 3 H).

Anal. Calcd for C₁₆H₂₄N₂O₅S: C, 53.92; H, 6.79; N, 7.86; S, 9.00. Found: C, 53.91; H, 6.73; N, 7.97; S, 8.99.

Methyl (4R)-4-thiazolidinecarboxylate hydrochloride (25).

To an ice cooled solution of (4R)-4-thiazolidinecarboxylic acid (10.0 g, 75.0 mmol) in methanol (100 mL), thionyl chloride (20.0 mL, 274 mmol) was added dropwise for 10 min and the mixture was stirred for 1 h. The mixture was concentrated under reduced pressure. Toluene (10.0 mL) was added to the residue and the precipitate was filtered to give the title compound 25 (13.7 g, 99%) as a colorless solid. mp 160-162 °C.
H NMR (300 MHz, CD$_3$OD) δ 4.85 (t, $J = 6.6$ Hz, 1 H), 4.49 (d, $J = 9.9$ Hz, 1 H), 4.42 (d, $J = 9.9$ Hz, 1 H), 3.90 (s, 3 H), 3.55 (dd, $J = 12.0$, 7.2 Hz, 1 H), 3.43 (dd, $J = 12.0$, 7.2 Hz, 1 H).

lit.21b mp 164-166.5 °C.

(4\textit{R})-4-Thiazolidinecarboxamide (26).

Methyl (4\textit{R})-4-thiazolidinecarboxylate hydrochloride (25) (72.0 g, 73.7 mmol) in liquid ammonia (41.0 mL) was reacted in sealed tube for 24 h. The mixture was concentrated under reduced pressure. Methanol (30.0 mL) and 2-propanol (30.0 mL) were added to the residue, the precipitate was filtered off and the filtrate was concentrated \textit{in vacuo}. The residue was purified by silica gel column chromatography (eluent: CHCl$_3$/MeOH/H$_2$O) to afford the title compound 26 (7.70 g, 78%) as a colorless solid.

mp 97-98 °C.

IR (KBr) 3420, 3294, 1625, 1440, 1256, 1219 cm$^{-1}$

H NMR (300 MHz, CD$_3$OD) δ 4.14 (s, 2 H), 3.93 (t, $J = 6.6$ Hz, 1 H), 3.08 and 3.07 (d each, $J = 6.6$ Hz, total 2 H).

[α]$_D^{21}$ -129.0° (c 1.0, MeOH).

Anal. Calcd for C$_4$H$_8$N$_2$O: C, 36.35; H, 6.10; N, 21.19; S, 24.26. Found: C, 36.26; H, 6.02; N, 20.97; S, 23.97.
lit.21b mp 96-98.5 °C.

\textit{N-tert-Butoxycarbonyl-L-prolinamide} (27).

To a solution of \textit{N}-Boc-L-proline (13.0 g, 60.0 mmol) and triethylamine (9.20 mL, 66.0 mmol) in THF (200 mL) at -25 °C, ethyl chloroformate (6.31 mL, 66.0 mmol) was added dropwise for 10 min and the mixture was stirred for continuously for 1.5 h. To the mixture, 28% aqueous ammonia (7.30 mL, 120 mmol) was added and the mixture was stirred for 4 h at -20 °C. Ethyl acetate (300 mL) and water (100 mL) were added to the mixture and extracted. The organic layer was washed with water (100 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated \textit{in vacuo} to give the title compound 27 (11.0 g, 86%) as colorless crystals.

mp 102-104 °C.

H NMR (300 MHz, CDCl$_3$) δ 7.30 and 7.27 (s each, total 1 H), 6.90 and 6.86 (s each, total 1 H), 3.98 (m, 1 H), 3.27 (m, 2 H), 2.20-1.90 (m, 1 H), 1.90-1.60 (m, 3 H), 1.39 and 1.34 (s each, total 9 H).

[α]$_D^{26}$ -44.8° (c 0.50, MeOH).

\textit{N-tert-Butoxycarbonyl-(2S)-2-cyanopyrrolidine} (28).

To an ice cooled soution of \textit{tert}-butoxycarbonyl-L-prolinamide (27) (7.94 g, 37.1 mmol) and imidazole (5.04 g, 74.1 mmol) in pyridine (88.0 mL), phosphorous oxychloride (12.8 mL, 148 mmol) was added dropwise for 5 min and the mixture was stirred for 10 min. The ice bath was removed and the mixture was stirred for continuously for 1 h. The mixture was carefully poured into cold saturated aqueous sodium hydrogen carbonate solution (200 mL) and stirred for 30 min. Ethyl acetate (300 mL) was added to the mixture and extracted. The
organic layer was washed with 10% aqueous hydrochloric acid solution (200 mL), saturated aqueous sodium hydrogen carbonate solution (200 mL) and water (200 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. A small amount of methanol was added to the residue and filtered to give the title compound 28 (9.56 g, 90%) as a colorless solid. mp 33-35 °C.

IR (Film) 2978, 2934, 2835, 2239, 1698, 1478, 1457 cm⁻¹
¹H NMR (200 MHz, CDCl₃) δ 4.56 and 4.46 (m each, total 1 H), 3.51 (m, 1 H), 3.37 (m, 1 H), 2.40-1.90 (m, 4 H), 1.51 (s, 9 H).
[α]D²⁶ -106.1° (c 1.0, CHCl₃).
Anal. Calcd for C₁₀H₁₆N₂O₂: C, 61.20; H, 8.21; N, 14.27. Found: C, 61.19; H, 8.16; N, 14.23.

(2S)-2-Cyanopyrrolidine p-toluenesulfonate (29).
To an ice cooled solution of N-tert-butoxycarbonyl-(2S)-2-cyanopyrrolidine (28) (2.00 g, 10.2 mmol) in anisole (13.0 mL), trifluoroacetic acid (13.0 mL) was added and the mixture was stirred for 2 h. Ethyl acetate (100 mL) and water (100 mL) were added to the mixture and extracted. p-Toluenesulfonic acid monohydrate (1.94 g, 10.2 mmol) was added to the aqueous layer and the aqueous layer was concentrated in vacuo. The residue was washed with a small amount of diethyl ether to give the title compound 29 (2.84 g, quant) as a white amorphous powder.
¹H NMR (300 MHz, CD₃OD) δ 7.71 (d, J = 8.1 Hz, 2 H), 7.24 (d, J = 8.1 Hz, 2 H), 4.70 (t, J = 6.9 Hz, 1 H), 3.50-3.30 (m, 2 H), 2.60-2.00 (m, 4 H), 2.37 (s, 3 H).
[α]D²⁵ -18.0° (c 1.0, MeOH).
Anal. Calcd for C₁₂H₁₆N₂O₃S: C, 53.71; H, 6.01; N, 10.44; S, 11.95. Found: C, 53.41; H, 6.25; N, 9.76; S, 11.91.

N-tert-Butoxycarbonyl-(2S)-2-pyrrolidinemethanol (30).
To an ice cooled solution of N-tert-butoxycarbonyl-L-proline (172 g, 800 mmol) in THF (1.00 L), 1 M borane-THF complex in THF (1.60 L, 1.60 mol) was added dropwise for 2 h at 4-9 °C and the mixture was stirred continuously for 1 h. The mixture was poured into ice cooled 3 M aqueous hydrochloric acid solution (400 mL). Ethyl acetate (1.50 L) was added and extracted. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (400 mL) and water (400 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo to give the title compound 30 (158 g, 98%) as a colorless solid. mp 55-56 °C.
IR (CHCl₃) 3626, 3360, 1666, 1477, 1455, 1409, 1367, 1344, 1241, 1167 cm⁻¹
¹H NMR (300 MHz, CDCl₃) δ 4.73 (br s, 1 H), 3.95 (m, 1 H), 3.60 (m, 2 H), 3.44 and 3.23 (m each, 1 H each), 2.50-1.70 (m, 4 H), 1.47 (s, 9 H).
[α]D²⁵ -49.2° (c 0.50, CHCl₃).
Anal. Calcd for C₁₀H₁₉NO₃: C, 59.67; H, 9.52; N, 6.96. Found: C, 59.42; H, 9.44; N, 7.26.
N-tert-Butoxycarbonyl-(2S)-2-[(methylsulfonyl)oxymethyl]pyrrolidine (31).

To an ice cooled solution of **N-tert-butoxycarbonyl-(2S)-2-pyrrolidinemethanol (30)** (43.4 g, 198 mmol) and triethylamine (31.1 mL, 223 mmol) in THF, methanesulfon chloride (16.1 mL, 223 mmol) was added dropwise slowly. The mixture was stirred for 0.5 h at 0 °C and 5 h at room temperature. Ethyl acetate (1.50 L) and water (1.00 L) were added to the mixture and extracted. The organic layer was washed with water (1.00 L x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo to afford the title compound **31** (52.5 g, 95%) as a yellow viscous oil.

IR (CHCl₃) 1748, 1684, 1477, 1456, 1398, 1365, 1175 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 4.50-3.90 (m, 3 H), 3.35 (br s, 2 H), 3.01 (s, 3 H), 2.10-1.80 (m, 4 H), 1.47 (s, 9 H).

[α]₂²D -55.9° (c 1.0, CHCl₃).

Anal. Calcd for C₁₁H₂₁NO₅S: C, 47.29; H, 7.58; N, 5.01; S, 11.48. Found: C, 47.05; H, 7.63; N, 5.16; S, 11.68.

N-tert-Butoxycarbonyl-(2R)-2-methylpyrrolidine (32).

Sodium borohydride (34.2 g, 904 mmol) was added to a solution of **N-tert-butoxycarbonyl-(2S)-2-[(methylsulfonyl)oxymethyl]pyrrolidine (31)** (127 g, 452 mmol) in dimethylsulfoxide (1.00 L). The mixture was stirred for 7 h at 80 ˚C. The mixture was poured into ice cooled water (1.00 L) and quenched carefully with 10% aqueous hydrochloric acid solution. The mixture was diluted with toluene (2.50 L) and the layers were separated. The organic layer was washed with water (1.00 L x 2) and dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was distilled under reduced pressure to afford the title compound **32** (37.5 g, 46%) as a colorless oil.

bp 56-58 °C (3 mmHg).

IR (CHCl₃) 1681, 1477, 1454, 1403, 1366, 1170 cm⁻¹

¹H NMR (300 MHz, CDCl₃) δ 4.37-3.90 (m, 3 H), 3.50 (br s, 2 H), 2.10-1.70 (m, 3 H), 1.60-1.40 (m, 1 H), 1.47 (s, 9 H), 1.16 (d, J = 6.0 Hz, 3 H).

[α]₂²D -35.1° (c 1.0, CHCl₃).

Anal. Calcd for C₁₀H₁₉NO₂: C, 64.83; H, 10.34; N, 7.56. Found: C, 64.61; H, 10.34; N, 7.47.

(2R)-2-Methylpyrrolidine hydrochloride (33).

To an ice cooled solution of **N-tert-butoxycarbonyl-(2R)-2-methylpyrrolidine (32)** (1.00 g, 5.40 mmol) in ethyl acetate (10.0 mL), 4 M hydrogen chloride in ethyl acetate solution (10.0 mL, 40.0 mmol) was added and the mixture was stirred for 5 h at the same temperature. The mixture was concentrated in vacuo to give 0.84 g of the title compound **33** as a hygroscopic colorless solid.

IR (KBr) 3436, 2976, 2780, 2506, 1587, 1455, 1450, 1388 cm⁻¹

¹H NMR (300 MHz, CD₂OD) δ 3.64 (m, 1 H), 3.30 (m, 2 H), 2.30-1.95 (m, 3 H), 1.64 (m, 1 H), 1.40 (d, J = 6.3 Hz, 3 H).

[α]₂²D -0.7° (c 1.0, MeOH), [α]₂³D -1.0° (c 1.0, H₂O).

Anal. Calcd for C₅H₁₂ClN·0.3H₂O: C, 47.28; H, 10.00; Cl, 27.91; N, 11.03. Found: C,
47.42; H, 9.89; Cl, 27.74; N, 11.01.

(4) N-Boc or N-Cbz dipeptide mimetics

The yields of N-Boc or N-Cbz dipeptide mimetics 34-44 are shown in Table S1.

Table S1. Yields of N-Boc or N-Cbz dipeptide mimetics 34-44.

Compound	Z	Y	X and R	Yield
34	Boc	![Structure](image1)	![Structure](image2)	91%
35	Boc	![Structure](image3)	![Structure](image4)	82%
36	Cbz	![Structure](image5)	![Structure](image6)	48%
37	Boc	![Structure](image7)	![Structure](image8)	67%
38	Boc	![Structure](image9)	![Structure](image10)	89%
39	Boc	![Structure](image11)	![Structure](image12)	32%
40	Boc	![Structure](image13)	![Structure](image14)	quant
41	Boc	![Structure](image15)	![Structure](image16)	97%
General Procedure for the Synthesis of N-Protected Dipeptide Mimetics.

\[N\text{-}tert\text{-}Butoxycarbonyl\text{-}3\text{-}(thiazol\text{-}4\text{-}yl)\text{-}L\text{-}alanyl}\text{-}L\text{-}prolinamide (34).

To an ice cooled solution of \(N\text{-}tert\text{-}butoxycarbonyl\text{-}3\text{-}(thiazol\text{-}4\text{-}yl)\text{-}L\text{-}alanine (4a)\) (8.17 g, 30.0 mmol), \(L\text{-}prolinamide (16)\) (3.42 g, 30.0 mmol) and HOBt (0.405 g, 3.00 mmol) in DMF (100 mL), DCC (6.81 g, 33.0 mmol) was added and the mixture was stirred for 0.5 h. The ice bath was removed and the mixture was stirred continuously for 8 h. The mixture was concentrated under reduced pressure. Ethyl acetate (200 mL) and water (100 mL x 2) were added to the residue and extracted. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution (100 mL) and water (100 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: CHCl\(_3\)/MeOH) to afford the title compound 34 (10.0 g, 91%) as a white amorphous powder.

\[\alpha\]\text{D}^\circ = -57.1° (c 1.0, CHCl_3).

Anal. Calcd for C\(_{11}\)H\(_{16}\)N\(_2\)O\(_4\)S: C, 48.52; H, 5.92; N, 10.29; S, 11.77. Found: C, 48.45; H, 5.84; N, 10.25; S, 11.71.

In a similar manner, other \(N\)-Boc dipeptide mimetics (35, 37-41, 43 and 44) were prepared.

\[N\text{-}tert\text{-}Butoxycarbonyl\text{-}3\text{-}(thiazol\text{-}5\text{-}yl)\text{-}L\text{-}alanyl}\text{-}L\text{-}prolinamide (35).

The condensation of \(N\text{-}tert\text{-}butoxycarbonyl\text{-}3\text{-}(thiazol\text{-}5\text{-}yl)\text{-}L\text{-}alanine (4b)\) (2.00 g, 7.34 mmol) and \(L\text{-}prolinamide (22)\) (0.840 g, 7.34 mmol) yielded the title compound 35 (2.20 g, 82%) as colorless crystals.

mp 216-218 °C.

IR (KBr) 3408, 3225, 3018, 2978, 1712, 1692, 1547, 1430, 1283, 1168 cm\(^{-1}\)

\(1^H\) NMR (200 MHz, CDCl\(_3\)) \(\delta\) 8.88 (s, 1 H), 7.73 and 7.70 (s each, total 1 H), 4.80-4.50 (m, 1 H), 4.43 (dd, \(J = \) 8.2, 4.0 Hz, 1 H), 3.84-3.77 (m, 2 H), 3.40 (dd, \(J = \) 13.0, 4.0 Hz, 1 H), 2.30-1.80 (m, 4 H), 1.30 (s, 9 H).
To an ice cooled solution of N^α-benzoxycarbonyl-L-histidine hydrazide (3.51 g, 11.6 mmol) in 1 M aqueous hydrochloric acid solution (34.8 mL, 34.8 mmol) and ethyl acetate (46.0 mL), sodium nitrite (0.810 g, 11.7 mmol) in water (2.90 mL) was added and the mixture was stirred for 2 min. 50% aqueous potassium carbonate (13.9 mL) was added and the mixture was stirred for 5 min at 0 °C. The organic layer was separated and dried over anhydrous magnesium sulfate. The magnesium sulfate was filtered off. To the filtrate, L-prolinamide (22) (1.20 g, 10.5 mol) was added and the mixture was stirred for 7 h at 0 °C. The mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: CHCl$_3$/MeOH/H$_2$O) to afford crude product, which was recrystallized from water to give the title compound 36 (1.93 g, 48%) as colorless crystals. mp 106-108 °C.

IR (KBr) 3288, 1678, 1639, 1525, 1498, 1447 cm$^{-1}$

1H NMR (300 MHz, CD$_3$OD) δ 7.58 (s, 1 H), 7.31 (s, 1 H), 6.92 (s, 1 H), 5.04 (s, 2 H), 4.61 (t, $J =$ 7.2 Hz, 1 H), 4.43 (dd, $J =$ 8.4, 3.9 Hz, 1 H), 3.75 (m, 1 H), 3.39 (m, 1 H), 3.06 (dd, $J =$ 14.4, 7.2 Hz, 1 H), 2.93 (dd, $J =$ 14.4, 7.2 Hz, 1 H), 2.30-1.70 (m, 4 H).

$[\alpha]^22.5_D$ -53.9° (c 1.0, MeOH).

Anal. Calcd for C$_{16}$H$_{24}$N$_4$O$_4$: C, 52.16; H, 6.57; N, 15.21; S, 8.72. Found: C, 52.01; H, 6.56; N, 15.07; S, 8.79.

$[N^\alpha$-Benzoxycarbonyl-L-histidyl-L-prolinamide (36).

The condensation of N^α-benzoxycarbonyl-L-histidine hydrazide (3.51 g, 11.6 mmol) in 1 M aqueous hydrochloric acid solution (34.8 mL, 34.8 mmol) and ethyl acetate (46.0 mL), sodium nitrite (0.810 g, 11.7 mmol) in water (2.90 mL) was added and the mixture was stirred for 2 min. 50% aqueous potassium carbonate (13.9 mL) was added and the mixture was stirred for 5 min at 0 °C. The organic layer was separated and dried over anhydrous magnesium sulfate. The magnesium sulfate was filtered off. To the filtrate, L-prolinamide (22) (1.20 g, 10.5 mol) was added and the mixture was stirred for 7 h at 0 °C. The mixture was concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: CHCl$_3$/MeOH/H$_2$O) to afford crude product, which was recrystallized from water to give the title compound 36 (1.93 g, 48%) as colorless crystals. mp 106-108 °C.

IR (KBr) 3288, 1678, 1639, 1525, 1498, 1447 cm$^{-1}$

1H NMR (300 MHz, CD$_3$OD) δ 7.58 (s, 1 H), 7.31 (s, 1 H), 6.92 (s, 1 H), 5.04 (s, 2 H), 4.61 (t, $J =$ 7.2 Hz, 1 H), 4.43 (dd, $J =$ 8.4, 3.9 Hz, 1 H), 3.75 (m, 1 H), 3.39 (m, 1 H), 3.06 (dd, $J =$ 14.4, 7.2 Hz, 1 H), 2.93 (dd, $J =$ 14.4, 7.2 Hz, 1 H), 2.30-1.70 (m, 4 H).

$[\alpha]^22.5_D$ -53.9° (c 1.0, MeOH).

Anal. Calcd for C$_{16}$H$_{24}$N$_4$O$_4$: C, 52.16; H, 6.57; N, 15.21; S, 8.72. Found: C, 52.01; H, 6.56; N, 15.07; S, 8.79.

$[N^\alpha$-Butoxycarbonyl-L-thiazolyl-L-alanine (37).

The condensation of N^α-butoxycarbonyl-L-alanine (4a) (2.03 g, 7.57 mmol) and L-prolylmorpholine p-toluenesulfonate (24) (2.70 g, 7.57 mmol) yielded the title compound 37 (2.23 g, 67%) as a white amorphous powder.

IR (CHCl$_3$) 3433, 1707, 1644, 1501, 1441, 1232, 1167, 1115 cm$^{-1}$

1H NMR (300 MHz, CDCl$_3$) δ 8.76 (d, $J =$ 2.1 Hz, 1 H), 7.21 (d, $J =$ 2.1 Hz, 1 H), 5.46 (d, $J =$ 9.0 Hz, 1 H), 4.83 (m, 2 H), 4.00-3.40 (m, 10 H), 3.35 (dd, $J =$ 14.6, 5.1 Hz, 1 H), 3.08 (dd, $J =$ 14.7, 7.8 Hz, 1 H), 2.30-1.70 (m, 4 H), 1.37 (s, 9 H).

$[\alpha]^25.0_D$ -40.9° (c 1.0, MeOH).

Anal. Calcd for C$_{19}$H$_{23}$N$_5$O$_4$·0.4H$_2$O: C, 58.12; H, 6.11; N, 17.84. Found: C, 58.09; H, 6.17; N, 17.82.

lit. mp 102-104 °C., $[\alpha]^24.7_D$ -40.7° (c 1.1, MeOH).
1H NMR (300 MHz, CDCl₃) δ 8.71 (d, J = 2.1 Hz, 1 H), 8.32 (br s, 1 H), 7.20 (d, J = 2.1 Hz, 1 H), 5.70-5.40 (m, 2 H), 5.21 (dd, J = 7.2, 2.4 Hz, 1 H), 4.90-4.70 (m, 1 H), 4.75 (d, J = 8.7 Hz, 1 H), 4.18 (d, J = 8.7 Hz, 1 H), 3.53 (dd, J = 11.4, 2.1 Hz, 1 H), 3.42 (dd, J = 14.4, 7.8 Hz, 1 H), 3.27 (dd, J = 14.4, 3.3 Hz, 1 H), 3.13 (dd, J = 11.4, 7.2 Hz, 1 H), 1.45 (s, 9 H).

[α]D²³ -81.8° (c 0.50, MeOH).

1-N-[N-tert-Butoxycarbonyl-3-(thiazol-4-yl)-l-alanyl]-(2S)-2-cyanopyrrolidine (39).
The condensation of N-tert-butoxycarbonyl-3-(thiazol-4-yl)-l-alanine (4a) (0.44 g, 1.62 mmol) and (2S)-2-cyanopyrrolidine p-toluenesulfonate (29) (0.44 g, 1.64 mmol) yielded the title compound 39 (0.18 g, 32%) as a white amorphous powder.

IR (Nujol) 3369, 3112, 3075, 2925, 2854, 2246, 1697, 1645, 1520, 1508, 1443, 1368, 1246, 1162 cm⁻¹

1H NMR (200 MHz, CDCl₃) δ 8.79 (d, J = 2.0 Hz, 1 H), 7.15 (d, J = 2.0 Hz, 1 H), 5.41 (d, J = 8.2 Hz, 1 H), 4.79 (dt, J = 8.2, 7.0 Hz, 1 H), 4.72 (dd, J = 7.0, 3.6 Hz, 1 H), 3.62 (m, 1 H), 3.35 (m, 1 H), 3.22 (d, J = 7.0 Hz, 2 H), 2.30-1.90 (m, 4 H), 1.40 (s, 9 H).

[α]D²⁶ +37.2° (c 0.50, CHCl₃).

Anal. Calcd for C₁₆H₂₂N₄O₃S: C, 54.84; H, 6.33; N, 15.99; S, 9.15. Found: C, 54.66; H, 6.30; N, 15.80; S, 8.95.

1-N-[N-tert-Butoxycarbonyl-3-(thiazol-4-yl)-l-alanyl]-(2R)-2-methylpyrrolidine (40).
The condensation of N-tert-butoxycarbonyl-3-(thiazol-4-yl)-l-alanine (4a) (13.6 g, 50.0 mmol) and (2R)-2-methylpyrrolidine hydrochloride (33) (6.08 g, 50.0 mmol) yielded the title compound 40 (16.5 g, quant) as a yellow viscous oil.

IR (CHCl₃) 3431, 1706, 1635, 1498, 1440, 1368 cm⁻¹

1H NMR (300 MHz, CDCl₃) δ 8.75 (d, J = 2.1 Hz, 1 H), 7.08 (d, J = 2.1 Hz, 1 H), 5.43 (m, 1 H), 4.88 and 4.79 (m each, total 1 H), 4.17 and 3.81 (m each, total 1 H), 3.65-3.05 (m, 4 H), 2.00-1.40 (m, 4 H), 1.40 (s, 9 H), 1.21 and 1.06 (d each, J = 6.3 Hz, total 3 H).

[α]D²² 5.2° (c 1.0, CHCl₃).

Anal. Calcd for C₁₆H₂₅N₃O₃·0.3H₂O: C, 55.73; H, 7.48; N, 12.18; S, 9.30. Found: C, 55.89; H, 7.51; N, 11.91; S, 9.20.

1-N-[N-tert-Butoxycarbonyl-3-(thiazol-5-yl)-l-alanyl]-(2R)-2-methylpyrrolidine (41).
The condensation of N-tert-butoxycarbonyl-3-(thiazol-5-yl)-l-alanine (4b) (0.50 g, 1.84 mmol) and (2R)-2-methylpyrrolidine hydrochloride (33) (0.50 g, 1.84 mmol) yielded the title compound 41 (0.60 g, 97%) as a yellow oil.

IR (KBr) 3429, 2979, 2878, 1705, 1637, 1497, 1441, 1368, 1238, 1165 cm⁻¹

1H NMR (300 MHz, CDCl₃) δ 8.69 (s, 1 H), 7.65 (s, 1 H), 5.46 (m, 1 H), 4.69 and 4.61 (m each, total 1 H), 4.30-3.10 (m, 5 H), 2.10-1.50 (m, 4 H), 1.43 (s, 9 H), 1.17 and 1.13 (d each, J = 6.3 Hz, total 3 H).

[α]D²⁷ 0° (c 1.0, CHCl₃), [α]D⁶⁰ -10.5° (c 1.0, CHCl₃).

Anal. Calcd for C₁₆H₂₅N₃O₃·0.4H₂O: C, 55.49; H, 7.50; N, 12.12; S, 9.25. Found: C, 55.70; H, 7.41; N, 11.79; S, 9.08.
1-N-(N\alpha-Benzyloxy carbonyl-L-histidyl)-(2R)-2-methylpyrrolidine (42).

To a solution of N\alpha-benzyloxy carbonyl-L-histidine hydrazide (3.00 g, 9.89 mmol) in DMF (25.0 mL) at -78 °C, 4 M hydrogen chloride in 1,4-dioxane solution (7.40 mL, 29.6 mmol) was added dropwise for 20 min. Isoamyl nitrite (1.46 mL, 10.9 mmol) was added and the mixture was stirred for 30 min at the same temperature. Triethylamine (5.50 mL, 39.6 mmol) and (2R)-2-methylpyrrolidine hydrochloride (33) (1.20 g, 9.89 mmol) were added and the mixture was stirred for 5 min. The mixture was warmed to 0 °C and stirred for 2 h. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. Ethyl acetate (100 mL) and saturated aqueous sodium hydrogen carbonate solution (100 mL) were added to the residue and extracted. The organic layer was washed with water (100 mL x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography (eluent: CHCl\textsubscript{3}/MeOH) to afford the title compound 42 (0.83 g, 24%) as a white amorphous powder.

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3 \delta 7.50 (s, 1 H), 7.32 (m, 5 H), 6.80 (s, 1 H), 6.01 \text{ and } 5.92 (d \text{ each, } J = 8.1 \text{ Hz, total } 1 \text{ H}), 5.20 - 5.00 (m, 2 H), 4.80 \text{ and } 4.70 (dd \text{ each, } J = 14.4, 6.9 \text{ Hz, total } 1 \text{ H}), 4.15 \text{ and } 3.85 (m \text{ each, total } 1 \text{ H}), 3.70 - 3.40 (m, 1 H), 3.36 (m, 1 H), 3.10 - 2.80 (m, 2 H), 2.00 - 1.40 (m, 4 H), 1.22 \text{ and } 1.09 (d \text { each, } J = 6.6 \text{ Hz, total } 3 \text{ H}). \]

\[[\alpha]_D^{24} = -6.2^\circ \text{(c } 1.0, \text{ MeOH).} \]

[\text{Anal. Calcd for } C_{16}H_{25}N_3O_4S \cdot 0.2H_2O: C, 53.52; H, 7.13; N, 11.70; S, 8.93. Found: C, 53.60; H, 7.34; N, 11.72; S, 8.73.}\]

[N-\text{tert}-Butoxycarbonyl-3-(thiazol-4-yl)-L-alanyl]-L-prolinol (43).

The condensation of N-tert-butoxycarbonyl-3-(thiazol-4-yl)-L-alanine (4a) (1.00 g, 3.67 mmol) and L-prolinol (0.409 g, 4.04 mmol) yielded the title compound 43 (0.920 g, 71%) as a white amorphous powder.

\[\text{IR (KBr) } 3353, 1706, 1636, 1498, 1440, 1368, 1268 \text{ cm}^{-1}. \]

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3 \delta 8.72 (d, J = 1.8 \text{ Hz, 1 H}), 7.09 (d, J = 1.8 \text{ Hz, 1 H}), 5.58 (d, J = 7.2 \text{ Hz, 1 H}), 5.20 (br s, 1 H), 4.75 (dd, J = 11.5, 4.8 \text{ Hz, 1 H}), 4.20 - 4.00 (m, 2 H), 3.73 (m, 1 H), 3.44 (m, 1 H), 3.40 - 3.25 (m, 1 H), 3.31 (d, J = 4.8 \text{ Hz, 2 H}), 2.10 - 1.95 (m, 2 H), 1.90 - 1.70 (m, 2 H), 1.45 (s, 9 H). \]

\[[\alpha]_D^{24} = -6.2^\circ \text{ (c } 1.0, \text{ MeOH).} \]

[\text{Anal. Calcd for } C_{16}H_{25}N_3O_4S \cdot 0.2H_2O: C, 53.52; H, 7.13; N, 11.70; S, 8.93. Found: C, 53.60; H, 7.34; N, 11.72; S, 8.73.}\]

[N-\text{tert}-Butoxycarbonyl-3-(thiazol-4-yl)-L-alanyl]-L-proline benzyl ester (44).

The condensation of N-tert-butoxycarbonyl-3-(thiazol-4-yl)-L-alanine (4a) (2.72 g, 10.0 mmol) and L-proline benzyl ester hydrochloride (2.42 g, 10.0 mmol) yielded the title compound 44 (4.16 g, 90%) as a colorless solid. The analytical sample was prepared by recrystallization from diethyl ether-MeOH.

\[\text{mp } 142 - 143^\circ \text{C.} \]

\[\text{IR (KBr) } 3352, 1728, 1712, 1653, 1433, 1281, 1269, 1159 \text{ cm}^{-1}. \]

\[^1\text{H} \text{NMR (300 MHz, CDCl}_3 \delta 8.75 \text{ and } 8.72 (d \text{ each, } J = 1.8 \text{ Hz, total } 1 \text{ H}), 7.35 (m, 5 H), 7.10 \text{ and } 7.08 (d \text{ each, } J = 1.8 \text{ Hz, total } 1 \text{ H}), 5.39 (d, J = 9.0 \text{ Hz, 1 H}), 5.19 (d, J = 12.3 \text{ Hz, 1 H}), 5.27 (d, J = 12.3 \text{ Hz, 1 H}), 4.81 (m, 1 H), 4.58 (dd, J = 8.4, 3.9 \text{ Hz, 1 H}), 3.73 \text{ and } 3.51 (m \text{ each, total } 2 \text{ H}), 3.26 (dd, J = 14.1, 5.7 \text{ Hz, 1 H}), 3.02 (dd, J = 14.1, 7.5 \text{ Hz, 1 H}). \]
2.19 (m, 1 H), 1.97 (m, 3 H), 1.37 (s, 9 H).
$[\alpha]_D^{23} -55.6^\circ$ (c 1.0, MeOH).
Anal. Calcd for C$_{23}$H$_{29}$N$_3$O$_5$S: C, 60.11; H, 6.36; N, 9.14; S, 6.98. Found: C, 60.06; H, 6.31; N, 9.05; S, 7.05.

(5) Dipeptide mimetics
The yields of dipeptide mimetics 45-55 are shown in Table S2.

Table S2. Yields of dipeptide mimetics 45-55.

Compound	Y	X and R	Yield
45			a HCl saltb
46			a HCl saltb
47			a HBr saltb
48			94% HCl saltb
49			a HCl saltb
50			a TFA saltb
51			a HCl saltb
	![Molecule](image1.png)	![Molecule](image2.png)	![Molecule](image3.png)
----	--------------------------	--------------------------	--------------------------
52	![Molecule](image4.png)	![Molecule](image5.png)	![Molecule](image6.png)
53	![Molecule](image7.png)	![Molecule](image8.png)	![Molecule](image9.png)
54	![Molecule](image10.png)	![Molecule](image11.png)	![Molecule](image12.png)
55	![Molecule](image13.png)	![Molecule](image14.png)	![Molecule](image15.png)

\(^a\)not isolated.

\(^b\)Compounds were obtained as HCl salt, HBr salt, TFA salt or free base and were not purified.

General Procedure for the Synthesis of Dipeptide Mimetics.

[3-(Thiazol-4-yl)-L-alanyl]-L-prolinamide dihydrochloride (45).

To an ice cooled solution of \(N\)-tert-butoxycarbonyl-3-(thiazol-4-yl)-L-alanyl-L-prolinamide (34) (5.53 g, 15.0 mmol) in ethyl acetate (30.0 mL), 4 M hydrogen chloride in ethyl acetate solution (75.0 mL, 300 mmol) was added slowly and the mixture was stirred for 2.5 h. Diethyl ether (400 mL) was added to the mixture and the precipitate was filtered off and washed with a small amount of diethyl ether to give 6.67 g of the title compound 45 as a colorless solid, which was used without further purification.

\(^1\)H NMR (300 MHz, D\(_2\)O) \(\delta\) 9.53 (d, \(J = 2.1\) Hz, 1 H), 7.89 (d, \(J = 2.1\) Hz, 1 H), 4.66 (t, \(J = 5.7\) Hz, 1 H), 4.53 (dd, \(J = 8.4, 5.4\) Hz, 1 H), 3.70-3.50 (m, 4 H), 2.50-1.80 (m, 4 H).

In a similar manner, other dipeptide mimetics (46, 48, 49, 51, 52, 54 and 55) were prepared.

[3-(Thiazol-5-yl)-L-alanyl]-L-prolinamide dihydrochloride (46).

The deprotection of \(N\)-tert-butoxycarbonyl-3-(thiazol-5-yl)-L-alanyl-L-prolinamide (35) (1.66 g, 4.51 mmol) yielded 2.52 g of the title compound 46 as a colorless solid, which was used without further purification.

\(^1\)H NMR (300 MHz, CD\(_3\)OD) \(\delta\) 9.98 (s, 1 H), 8.40 and 8.23 (s each, total 1 H), 4.72 (t, \(J = 5.4\) Hz, 1 H), 4.51 (dd, \(J = 8.7, 5.4\) Hz, 1 H), 4.20-3.40 (m, 4 H), 2.40-1.80 (m, 4 H).

L-Histidyl-L-prolinamide dihydrobromide (47).

25% hydrogen bromide in acetic acid (63.0 mL) was added to the \(N^a\)-benzyloxycarbonyl-L-histidyl-L-prolinamide (36) (6.30 g, 16.3 mmol), the mixture was stirred for 2 h at room temperature. Diethyl ether (300 mL) was added to the mixture,
and the precipitate was filtered and washed with a small amount of diethyl ether to give 7.53 g of the title compound 47 as a colorless solid, which was used without further purification.

\[^1H \text{NMR (300 MHz, D}_2\text{O)} \delta 8.74 (d, J = 1.5 \text{ Hz, 1 H}), 7.51 (d, J = 1.5 \text{ Hz, 1 H}), 4.90-4.70 \text{ (m, 1 H), 4.56 (dd, J = 8.7, 6.6 Hz, 1 H), 3.82 (m, 1 H), 3.60-3.30 (m, 3 H), 2.39 (m, 1 H), 2.15-1.90 (m, 3 H).} \]

[3-(Thiazol-4-yl)-L-alanyl]-L-prolylmoropholine dihydrochloride (48).

The deprotection of \([N\text{-tert-butoxycarbonyl}-3-(thiazol-4-yl)-L-alanyl]-L-prolylmoropholine (37) (1.50 g, 3.42 mmol) yielded the title compound 48 (1.33 g, 94%) as a colorless solid, which was used without further purification.

\[^1H \text{NMR (300 MHz, CD}_3\text{OD)} \delta 9.86 (d, J = 2.1 \text{ Hz, 1 H}), 8.06 (d, J = 2.1 \text{ Hz, 1 H}), 4.98 \text{ (dd, J = 8.4, 6.0 Hz, 1 H), 4.76 (t, J = 5.4 Hz, 1 H), 4.00-3.40 (m, 12 H), 2.40-1.80 (m, 4 H).} \]

3-N-[3-(Thiazol-4-yl)-L-alanyl]-(4R)-4-thiazolidinecarboxamide dihydrochloride (49).

The deprotection of 3-N-[3-N-tert-Butoxycarbonyl-3-(thiazol-4-yl)-L-alanyl]-(4R)-4-thiazolidinecarboxamide (38) (10.3 g, 26.6 mmol) yielded 10.9 g of the title compound 49 as a colorless solid, which was used without further purification.

\[^1H \text{NMR (300 MHz, CD}_3\text{OD)} \delta 9.50 \text{ and 9.26 (d each, J = 2.1 Hz, total 1 H), 7.88 and 7.63 (d each, J = 2.1 Hz, total 1 H), 4.94 (dd, J = 7.5, 6.0 Hz, 1 H), 4.94 (d, J = 9.0 Hz, 1 H), 4.83 (t, J = 6.0 Hz, 1 H), 4.47 (d, J = 9.0 Hz, 1 H), 3.58 (t, J = 5.4 Hz, 2 H), 3.50 (t, J = 6.9 Hz, 1 H), 3.48 (t, J = 6.9 Hz, 1 H), 3.43 (dd, J = 12.0, 7.2 Hz, 1 H), 3.22 (dd, J = 12.0, 6.0 Hz, 1 H).} \]

1-N-[3-(Thiazol-4-yl)-L-alanyl]-(2S)-2-cyanopyrrolidine di-trifluoroacetate (50).

Trifluoroacetic acid (5.00 mL) was added to the 1-N-[N-tert-butoxycarbonyl-3-(thiazol-4-yl)-L-alanyl]-(2S)-2-cyanopyrrolidine (39) (0.500 g, 1.43 mmol) under ice cooling and the mixture was stirred for 2 h. The mixture was co-evaporated with toluene to give 0.97 g of the title compound 50 as a white amorphous powder, which was used without further purification.

\[^1H \text{NMR (200 MHz, CDCl}_3\text{)} \delta 8.85 (d, J = 2.0 Hz, 1 H), 7.31 (d, J = 2.0 Hz, 1 H), 4.78 (dd, J = 6.6, 4.8 Hz, 1 H), 4.62 (t, J = 6.6 Hz, 1 H), 3.70-3.10 (m, 4 H), 2.30-1.80 (m, 4 H).} \]

1-N-[3-(Thiazol-4-yl)-L-alanyl]-(2R)-2-methylpyrrolidine dihydrochloride (51).

The deprotection of 1-N-[N-tert-butoxycarbonyl-3-(thiazol-4-yl)-L-alanyl]-(2R)-2-methylpyrrolidine (40) (1.50 g, 4.42 mmol) yielded 1.41 g of the title compound 51 as a colorless solid, which was used without further purification.

\[^1H \text{NMR (200 MHz, CD}_3\text{OD)} \delta 9.15 \text{ and 9.13 (d each, J = 2.2 Hz, total 1 H), 7.89 and 7.53 (d each, J = 2.2 Hz, total 1 H), 4.51 (t, J = 6.8 Hz, 1 H), 4.15 and 3.80 (m each, total 1 H), 3.65-3.20 (m, 4 H), 2.20-1.50 (m, 4 H), 1.22 and 1.08 (d each, J = 6.3 Hz, total 3 H).} \]
1-N-[3-(Thiazol-5-yl)-l-alanyl]-l-alanyl]-(2R)-2-methylpyrrolidine dihydrochloride (52).
The deprotection of 1-N-[N-tert-butoxycarbonyl-3-(thiazol-5-yl)-l-alanyl]-l-alanyl]-l-alanyl]-(2R)-2-methylpyrrolidine (41) (0.40 g, 1.18 mmol) yielded 0.30 g of the title compound 52 as a colorless solid, which was used without further purification.

\^H NMR (300 MHz, CD\textsubscript{3}OD) δ 9.95 and 9.92 (s each, total 1 H), 8.32 and 8.31 (s each, total 1 H), 4.61 (t, \(J = 6.3\) Hz, 1 H), 4.19 and 3.98 (m each, total 1 H), 3.65-3.50 (m, 4 H), 2.20-1.60 (m, 4 H), 1.26 and 1.21 (d each, \(J = 6.3\) Hz, total 3 H).

1-N-(l-Histidyl)-(2R)-2-methylpyrrolidine (53).
To a solution of 1-N-(\(N^a\)-benzyloxycarbonyl-l-histidyl)-(2R)-2-methylpyrrolidine (42) (1.50 g, 4.21 mmol) in methanol (10.0 mL), 10% Pd-C (0.15 g) was added and hydrogenated for 8 h at room temperature. The catalyst was filtered through Celite and the filtrate was concentrated in vacuo to afford 1.00 g of the title compound 53 as a colorless oil, which was used without further purification.

\^H NMR (300 MHz, CD\textsubscript{3}OD) δ 7.68 (s, 1 H), 6.94 and 6.92 (s each, total 1 H), 4.14 and 3.72 (m each, total 1 H), 3.60-3.40 (m, 1 H), 3.40-3.20 (m, 1 H), 3.10-2.90 (m, 2 H), 2.10-1.50 (m, 4 H), 1.17 and 1.09 (d each, \(J = 6.6\) Hz, total 3 H).

[3-(Thiazol-4-yl)-l-alanyl]-(D-prolinol) dihydrochloride (54).
The deprotection of \[N-tert-butoxycarbonyl-3-(thiazol-4-yl)-l-alanyl]-l-prolinol (43) (0.410 g, 1.15 mmol) yielded 0.460 g of the title compound 54 as a colorless solid, which was used without further purification.

\^H NMR (300 MHz, CD\textsubscript{3}OD) δ 9.05 (d, \(J = 2.1\) Hz, 1 H), 7.50 (d, \(J = 2.1\) Hz, 1 H), 4.40 (dd, \(J = 8.1, 4.8\) Hz, 1 H), 3.84 (dd, \(J = 11.5, 3.6\) Hz, 1 H), 3.70 (m, 1 H), 3.62 (dd, \(J = 11.4, 7.2\) Hz, 1 H), 3.52 (dd, \(J = 15.6, 4.8\) Hz, 1 H), 3.41 (dd, \(J = 15.6, 8.1\) Hz, 1 H), 3.29 (t, \(J = 6.9\) Hz, 2 H), 2.20-1.90 (m, 3 H), 1.90-1.70 (m, 1 H).

[3-(Thiazol-4-yl)-l-alanyl]-l-proline benzyl ester dihydrochloride (55).
The deprotection of \[N-tert-butoxycarbonyl-3-(thiazol-4-yl)-l-alanyl]-l-proline benzyl ester (44) (3.00 g, 6.53 mmol) yielded the title compound 55 (2.77 g, 98%) as a colorless solid, which was used without further purification.

\^H NMR (300 MHz, CD\textsubscript{3}OD) δ 9.41 and 9.24 (d each, \(J = 1.8\) Hz, total 1 H), 7.68 (m, 5 H), 7.88 and 7.63 (d each, \(J = 1.8\) Hz, total 1 H), 5.17 (s, 2 H), 4.60 (m, 2 H), 3.75 (m, 1 H), 3.45 (m, 2 H), 2.30 (m, 2 H), 2.00 (m, 2 H).

(6) TRH mimetics
The yields of TRH mimetics 1, 56-74 are shown in Table S3.

Table S3. Yields of TRH mimetics shown in Scheme 6 and 7.
Compound	Z	Y	X and R	Yield	
1	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	49%	
56	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	35%	
57	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	39%	
58	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	53%	
59	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	57%	
60	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	49%	
61	![Z](Z.png)	![Y](Y.png)	![X and R](X.png)	64%	
	Structure 1	Structure 2	Structure 3	Yield	
---	-------------	-------------	-------------	-------	
62	![Structure 1](image1.png)	![Structure 2](image2.png)	![Structure 3](image3.png)	45%	
63	![Structure 1](image4.png)	![Structure 2](image5.png)	![Structure 3](image6.png)	42%	
64	![Structure 1](image7.png)	![Structure 2](image8.png)	![Structure 3](image9.png)	50%	
65	![Structure 1](image10.png)	![Structure 2](image11.png)	![Structure 3](image12.png)	45%	
66	![Structure 1](image13.png)	![Structure 2](image14.png)	![Structure 3](image15.png)	5.5%	
67	![Structure 1](image16.png)	![Structure 2](image17.png)	![Structure 3](image18.png)	58%	
68	![Structure 1](image19.png)	![Structure 2](image20.png)	![Structure 3](image21.png)	47%	
69	![Structure 1](image22.png)	![Structure 2](image23.png)	![Structure 3](image24.png)	61%	
	![Chemical Structure 70](image)	![Chemical Structure 71](image)	![Chemical Structure 72](image)	![Chemical Structure 73](image)	![Chemical Structure 74](image)
----	-------------------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------
70	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
71	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
72	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
73	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
74	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)	![Structure](image)
X-ray Crystallographic data of Rovatirelin Hydrate.

The measurements for single crystal of Rovatirelin Hydrate (C16H28N4O7S) were performed on a Rigaku XtaLAB P200 diffractometer using multi-layer mirror monochromated Cu-Kα (λ = 1.54187 Å) radiation. A total of 10329 reflections were measured, where 3575 were unique (Rint = 0.0191); equivalent reflections were merged. Data were collected and processed using CrystalClear. Crystals belong to monoclinic space group P2_1 with cell parameters of a = 6.7950(4) Å, b = 10.3798(7) Å, c = 14.2270(9) Å, and β = 92.828(6)°. The structure was solved by direct methods implemented in SHELXS and refined by a full-matrix least-squares procedure based on F^2 using SHELXL. The final R1 was 0.0225 (I > 2σ(I)) and the weighted R value wR2 was 0.0569 (all data). All non-hydrogen atoms were refined anisotropically. Some hydrogen atoms were refined isotropically, some were refined using the riding model, and the rest were included in fixed positions. The final Flack parameter was 0.012(5). Summary of data collection and structure refinement parameters are provided in the Table S4-S9.

REFERENCES

(63) CrystalClear: Data Collection and Processing Software, Rigaku Corporation (1998-2015). Tokyo 196-8666, Japan.

(64) SHELXS Version 2013/1: Sheldrick, G. M. A short history of SHELX. *Acta Cryst. Section A* 2008, 64, 112-122.

(65) SHELXL Version 2014/7: Sheldrick, G. M. A short history of SHELX. *Acta Cryst. Section A* 2008, 64, 112-122.

(66) Flack, H. D.; Bernardinelli, G. Reporting and evaluating absolute-structure and absolute-configuration determinations. *J. Appl. Cryst.* 2000, 33, 1143-1148.
Figure S1. X-ray crystal structure of Rovatirelin Hydrate with the atom labeling scheme.

Non-hydrogen atoms were shown as thermal ellipsoids at the 50% probability. Three water molecules of Rovatirelin Hydrate were labeled O6, O7 and O8.
Table S4. Crystal data of Rovatirelin Hydrate.

Property	Value
Empirical Formula	$\text{C}_{16}\text{H}_{28}\text{N}_{4}\text{O}_{7}\text{S}$
Formula Weight	420.48
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.150 X 0.090 X 0.030 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{align*}
a &= 6.7950(4) \text{ Å} \\	
b &= 10.3798(7) \text{ Å} \\	
c &= 14.2270(9) \text{ Å} \\	
\beta &= 92.828(6) ^\circ \\	
V &= 1002.22(11) \text{ Å}^3 \end{align*}$	
Space Group	P2_1(#4)
Z value	2
D_{calc}	1.393 g/cm3
F_{000}	448.00
$\mu(\text{CuK}\alpha)$	18.468 cm$^{-1}$
Table S5. Intensity Measurements of Rovatirelin Hydrate.

Description	Specification
Diffractometer	XtaLAB P200
Radiation	CuKα (λ = 1.54187 Å)
	multi-layer mirror monochromated
Voltage, Current	40kV, 30mA
Temperature	-173.0 °C
Detector Aperture	83.8 x 70.0 mm
Data Images	1800 exposure
ω oscillation Range (χ = 55.0, φ = 0.0)	-195.0 - 15.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-105.00°
ω oscillation Range (χ = 55.0, φ = 70.0)	-195.0 - 15.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-105.00°
ω oscillation Range (χ = 55.0, φ = 140.0)	-195.0 - 15.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-105.00°
ω oscillation Range (χ = 55.0, φ = 210.0)	-195.0 - 15.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-105.00°
ω oscillation Range (χ = 55.0, φ = 280.0)	-195.0 - 15.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-105.00°
ω oscillation Range (χ = 55.0, φ = 0.0)	-120.0 - 60.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-30.00°
ω oscillation Range (χ = 55.0, φ = 70.0)	-120.0 - 60.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-30.00°
ω oscillation Range (χ = 55.0, φ = 140.0)	-120.0 - 60.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-30.00°
ω oscillation Range (χ = 55.0, φ = 210.0)	-120.0 - 60.0°
Exposure Rate	5.0 sec./°
Detector Swing Angle	-30.00°
ω oscillation Range (χ = 55.0, φ = 280.0)	-120.0 - 60.0°
Exposure Rate 5.0 sec./°
Detector Swing Angle -30.00°
Detector Position 35.00 mm
Pixel Size 0.172 mm
2θ max 149.6°
No. of Reflections Measured Total: 10329
 Unique: 3575 (Rint = 0.0191)
Parsons quotients (Flack x parameter):
 Lorentz-polarization
 Absorption
 (trans. factors: 0.835 - 0.946)
Corrections
Table S6. Structure Solution and Refinement for Rovatirelin Hydrate.

Structure Solution	Direct Methods (SHELXS Version 2013/1)
Refinement	Full-matrix least-squares on F^2
Function Minimized	$\Sigma w (Fo^2 - Fc^2)^2$
Least Squares Weights	$w = 1/ [\sigma^2(Fo^2) + (0.0396 \cdot P)^2$
	$+ 0.0000 \cdot P]$
20\text{max} cutoff	149.6°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	3575
No. Variables	279
Reflection/Parameter Ratio	12.81
Residuals: R1 ($I>2.00\sigma(I)$)	0.0225
Residuals: R (All reflections)	0.0234
Residuals: wR2 (All reflections)	0.0569
Goodness of Fit Indicator	1.005
Flack parameter (Parsons' quotients = 1332)	0.012(5)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.28 e$^-$/Å3
Minimum peak in Final Diff. Map	-0.16 e$^-$/Å3
Table S7. Atomic coordinates and B_{iso}/B_{eq}

atom	x	y	z	B_{eq}
S1	-0.23484(6)	0.43238(5)	0.49133(3)	1.259(9)
O2	-0.0127(2)	0.46550(15)	-0.09216(9)	1.86(3)
O3	-0.2868(3)	0.58393(17)	-0.10101(12)	2.64(3)
O4	0.1133(2)	0.59591(13)	0.10803(9)	1.44(2)
O5	0.56699(19)	0.45942(13)	0.19678(9)	1.31(2)
O6	0.5416(2)	0.15381(16)	0.41532(11)	2.05(3)
O7	0.6047(2)	0.19460(15)	0.21659(11)	2.09(3)
O8	0.0214(3)	0.17225(15)	0.25036(10)	1.89(3)
N9	-0.2075(2)	0.45342(18)	0.02681(11)	1.40(3)
N10	0.1593(2)	0.43132(18)	0.20959(10)	1.04(2)
N11	0.0885(2)	0.55691(16)	0.48956(11)	1.28(3)
N12	0.5616(2)	0.64696(16)	0.27486(11)	1.07(3)
C13	-0.1814(3)	0.5079(2)	-0.05723(14)	1.73(3)
C14	-0.0299(3)	0.39212(19)	0.06320(13)	1.20(3)
C15	0.0735(3)	0.3680(2)	-0.02928(14)	1.58(3)
C16	0.2954(3)	0.3801(3)	-0.02562(17)	2.40(4)
C17	0.0874(3)	0.48315(18)	0.12928(13)	1.08(3)
C18	0.2702(3)	0.51084(19)	0.27674(12)	0.94(3)
C19	0.4780(3)	0.53858(19)	0.24446(13)	1.00(3)
C20	0.2867(2)	0.4443(2)	0.37353(12)	1.11(3)
C21	-0.0814(3)	0.5549(2)	0.52816(14)	1.40(3)
C22	0.1019(3)	0.45632(18)	0.42652(12)	0.96(3)
C23	-0.0593(3)	0.37925(19)	0.41870(13)	1.15(3)
C24	0.4716(3)	0.75223(19)	0.32820(13)	1.13(3)
C25	0.6513(3)	0.8100(2)	0.38139(14)	1.45(3)
C26	0.8171(3)	0.7972(2)	0.31279(15)	1.75(4)
C27	0.7727(3)	0.6708(2)	0.26158(14)	1.39(3)
C28	0.3652(3)	0.8464(2)	0.26182(15)	1.54(3)

$B_{eq} = \frac{8}{3} \Pi^2(U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos \gamma + 2U_{13}(aa^*cc^*)\cos \beta + 2U_{23}(bb^*cc^*)\cos \alpha)$
Table S8. Atomic coordinates and B\textsubscript{iso} involving hydrogen atoms

atom	x	y	z	B\textsubscript{iso}
H6A	0.564(4)	0.153(3)	0.3597(11)	3.0754
H6B	0.649(3)	0.137(3)	0.4395(16)	3.0754
H7A	0.528(4)	0.160(2)	0.1786(17)	3.1370
H7B	0.568(4)	0.2682(16)	0.214(2)	3.1370
H8A	-0.092(4)	0.168(3)	0.234(2)	2.8338
H8B	0.074(4)	0.129(3)	0.210(2)	2.8338
H9	-0.290(4)	0.475(2)	0.0583(18)	1.6834
H10	0.128(3)	0.360(3)	0.2231(17)	1.2467
H14	-0.05949	0.30920	0.09537	1.438
H15	0.03573	0.28073	-0.05389	1.900
H16A	0.35282	0.32031	0.02146	3.599
H16B	0.33294	0.46854	-0.00847	3.599
H16C	0.34443	0.35941	-0.08747	3.599
H18	0.19926	0.59453	0.28331	1.132
H20A	0.31656	0.35191	0.36463	1.327
H20B	0.39768	0.48289	0.41147	1.327
H21	-0.11744	0.61690	0.57336	1.675
H23	-0.07254	0.30624	0.37862	1.376
H24	0.37821	0.71606	0.37353	1.356
H25A	0.68320	0.76172	0.44020	1.742
H25B	0.62819	0.90146	0.39713	1.742
H26A	0.81548	0.87029	0.26809	2.099
H26B	0.94742	0.79384	0.34707	2.099
H27A	0.79806	0.67860	0.19389	1.673
H27B	0.85451	0.60009	0.28908	1.673
H28A	0.30214	0.91334	0.29845	2.317
H28B	0.26465	0.80036	0.22314	2.317
H28C	0.46003	0.88619	0.22100	2.317
Table S9. Anisotropic displacement parameters

atom	\(U_{11}\)	\(U_{22}\)	\(U_{33}\)	\(U_{12}\)	\(U_{13}\)	\(U_{23}\)
S1	0.0113(2)	0.0207(2)	0.0160(2)	-0.00134(19)	0.00237(15)	
	0.0001(2)					
O2	0.0251(7)	0.0325(9)	0.0132(7)	-0.0085(6)	0.0020(5)	
	0.0008(6)					
O3	0.0381(9)	0.0289(9)	0.0314(8)	-0.0021(8)	-0.0185(7)	
	0.067(7)					
O4	0.0225(7)	0.0153(7)	0.0164(7)	-0.0017(6)	-0.0022(5)	
	0.0022(6)					
O5	0.0157(6)	0.0163(7)	0.0180(6)	0.0006(5)	0.0045(5)	
	-0.0033(5)					
O6	0.0223(8)	0.0307(9)	0.0249(8)	0.0077(7)	0.0017(6)	
	0.0034(7)					
O7	0.0304(9)	0.0182(8)	0.0297(8)	-0.0026(7)	-0.0095(7)	
	-0.0005(7)					
O8	0.0337(9)	0.0198(8)	0.0184(7)	-0.0004(7)	0.0035(7)	
	-0.0029(6)					
N9	0.0118(7)	0.0270(11)	0.0145(8)	-0.0004(7)	0.0002(6)	
	-0.0009(7)					
N10	0.0133(7)	0.0122(7)	0.0138(7)	-0.0025(7)	-0.0010(5)	
	0.0004(7)					
N11	0.0150(8)	0.0181(9)	0.0157(8)	-0.0023(7)	0.0015(6)	
	-0.0030(7)					
N12	0.0110(7)	0.0151(8)	0.0150(7)	-0.0004(6)	0.0037(6)	
	-0.0016(7)					
C13	0.0254(10)	0.0203(11)	0.0190(10)	-0.0086(9)	-0.0103(8)	
	-0.0000(8)					
C14	0.0144(9)	0.0182(10)	0.0128(9)	-0.0033(8)	0.0003(7)	
	0.0003(7)					
C15	0.0196(10)	0.0247(12)	0.0158(10)	-0.0039(8)	0.0008(8)	
	-0.0056(8)					
C16	0.0207(11)	0.0428(14)	0.0281(12)	-0.0019(10)	0.0056(9)	
	-0.0111(10)					
C17	0.0107(8)	0.0180(10)	0.0124(9)	-0.0002(7)	0.0021(7)	
	-0.0015(7)					
C18	0.0110(8)	0.0140(9)	0.0108(8)	0.0010(7)	-0.0004(7)	
	-0.0013(7)					
C19	0.0116(8)	0.0154(10)	0.0109(8)	0.0008(7)	-0.0002(7)	
	0.0014(7)					
C20	0.0096(8)	0.0185(10)	0.0138(8)	0.0006(8)	-0.0001(6)	
	0.0018(8)					
	0.0167(9)	0.0188(10)	0.0177(9)	0.0003(8)	0.0025(7)	
----	-----------	------------	-----------	-----------	-----------	
C21	-0.0041(8)					
	0.0125(8)	0.0146(10)	0.0095(8)	0.0012(7)	-0.0005(6)	
C22	0.0137(9)	0.0161(9)	0.0139(9)	0.0007(7)	0.0021(7)	
	-0.0011(8)					
C23	0.0155(9)	0.0135(9)	0.0142(9)	0.0003(8)	0.0035(7)	
	-0.0030(7)					
C24	0.0187(10)	0.0171(10)	0.0191(10)	-0.0026(8)	-0.0011(8)	
	-0.0029(8)					
C25	0.0158(10)	0.0224(11)	0.0285(11)	-0.0035(8)	0.0028(8)	
	-0.0025(9)					
C26	0.0113(9)	0.0196(11)	0.0225(10)	-0.0024(8)	0.0047(8)	
	-0.0003(8)					
C27	0.0196(10)	0.0198(10)	0.0194(10)	0.0035(8)	0.0016(8)	
	-0.0001(8)					

The general temperature factor expression: \(\exp(-2\pi^2(a^2U_{11}h^2 + b^2U_{22}k^2 + c^2U_{33}l^2 + 2abU_{12}hk + 2acU_{13}hl + 2bcU_{23}kl)) \)