Research Article

Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack

Naveen Vadukapuram,1 Clifford Hall III,1 Mehmet Tulbek,2 and Mary Niehaus1

1 Department of Plant Science, North Dakota State University, Dept. 7670, P.O. Box 6050, Fargo, ND 58108-6050, USA
2 Alliance Grain Traders Inc., P.O. Box 30029, Regina, SK, Canada S4N 7K9

Correspondence should be addressed to Clifford Hall III; clifford.hall@ndsu.edu

Received 19 June 2014; Accepted 12 September 2014; Published 30 September 2014

Academic Editor: Elad Tako

Copyright © 2014 Naveen Vadukapuram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Milled flaxseed was incorporated (0–20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly \((P \leq 0.05) \) different from the control. In general, no significant difference \((P > 0.05) \) in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5–10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions.

1. Introduction

The three most physiologically important omega-3 fatty acids are alpha-linolenic acid (ALA, 18:3), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6). ALA is the precursor fatty acid of EPA and DHA. ALA is an essential fatty acid that cannot be synthesized by the body [1–4]. Recently the number of foods containing omega-3 fatty acids has increased. Omega-3 fortified foods such as bread, biscuits, cakes, pasta, fruit drinks, ice cream, milk shakes, and low fat spreads have already occupied market shelves [5]. Flaxseed fortified omega-3 foods are gradually gaining importance [6]. The other reason for the rapid increase in the number of omega-3 enhanced foods is the FDA approval of a qualified health claim on conventional foods containing DHA and EPA. Furthermore, whole and milled flax were given GRAS (generally regarded as safe) status by FDA in January of 2009 [6]. The introduction of healthful ingredients into snack foods would be one way to increase the omega-3 intake by people due to the large volume of snacks consumed annually.

Plant sources for omega-3 fatty acids are flaxseed, walnut, hempseed, soybeans, canola, and rapeseed. Flaxseed (Linum usitatissimum L.) is a rich source of omega-3 fatty acids especially ALA. The US Institute of Medicine’s Food and Nutrition Board recommends ALA intakes of 1.1 g/day and 1.6 g/day for women and men, respectively [7]. Flaxseed contains approximately 40% lipid of which 47–57% is ALA [3, 4]. Flaxseed also contains other healthful components such as dietary fiber (28%) and secoisolariciresinol diglucoside (SDG), a lignan [8]. In addition to the health benefits, flaxseed can be used to improve the nutritive value of bakery products and sensory qualities [9].

Although flaxseed has many health-promoting components, the concern over antinutrients such as cadmium and cyanogenic glycosides in flaxseed exists. North American flaxseed contains approximately 0.14 to 1.37 μg/g cadmium [10] while values as high as 2.775 μg/g [11] have been observed in the world flaxseed collection. The joint Food and Agriculture Organization/World Health Organization (FAO/WHO)
established a provisional tolerable monthly intake (PTMI) of 25 \(\mu g\)/kg body weight, or approximately 0.8 \(\mu g\)/kg daily, for cadmium [12]. To put this in perspective, a 68 kg (150 lbs) would have a tolerable daily intake of approximately 54.4 \(\mu g\). Typical flaxseed consumption ranges from 15 to 30 g per day and thus a daily intake from cadmium would be 21 to 42 \(\mu g\), assuming that North American flaxseed containing the upper most cadmium level (1.4 \(\mu g/g\)) was consumed. Another assumption is that 100% of the cadmium would be absorbed. Vanderpool and Reeves [13] reported that only 11% of the cadmium from sunflower kernels was absorbed. Therefore, similar absorption rates might be expected for flaxseed and thus the actual intake of cadmium may be lower than the estimated 21 to 42 \(\mu g\).

2. Materials and Methods

2.1. Flour Blends. Navy and pinto bean flours were obtained from Heartland Ingredients (Crookston, MN). Corn flour was obtained from Cargill Horizon Milling (Wayzata, MN). Cold-milled yellow flaxseed was obtained from Puretec International Inc. (Valley City, ND) two weeks prior to extrusion. Blends of navy and corn flours (50:50 wt/wt) and pinto and corn flours (50:50 wt/wt) were mixed in a twin shell-type mixer (45.3 kg capacity) for 10 min. To each of these bean-corn flours, different levels (0, 5, 10, 15, and 20%) of cold milled flaxseed (595 \(\mu m\) particle size) were added and mixed using a twin shell-type blender for 20 minutes. Five combinations of flaxseed-bean-corn mixes were made for each of the bean flours, resulting in a total of 10 treatments. The blending was completed 3 separate times (i.e., replication) for each of the flaxseed levels.

2.2. Extrusion and Sample Preparation. Combinations (navy-corn-flax and pinto-corn-flax) were extruded using a twin screw extruder (Wenger TX 52, Atkinson, KS). Standard puffed corn curl method (high temperature and short time) was employed according to standard processing and screw design provided by Wenger. A die with 1.5 mm diameter was used during extrusion. A water feed rate was adjusted to 0.128 kg/min and screw rpm was set at 310 rpm. Material feed rate was adjusted at 10 rpm (approximately 110 lb/hr). The zone (1 to 7) temperatures were 36, 37, 41, 53, 85, 106, and 110°C, respectively. Extrudates were cooled to room temperature, subdivided into 150 g batches, and packed into 15 cm \(\times\) 25 cm metalized barrier pouches (2.5 mil; Associated Bags Company, Milwaukee, WI) sealed under nitrogen. Packaged samples for shelf life evaluations were stored at 22 \(\pm\) 2°C. Time zero samples were stored in sealed bags in a freezer until analytical testing could be conducted on the extrudates. The analytical test completed on the frozen sample included all physical test methods (Section 2.3), lipid and oxidation measurements (Section 2.4), and sensory evaluation (Section 2.5). The analytical tests completed during the shelf life evaluation included oxidation measurements (Section 2.4) and sensory evaluation (Section 2.5).

2.3. Physical Parameters. Modified methods [23, 26] were used to analyze physical parameters (i.e., texture, color, expansion ration, bulk density, and water activity). Texture was analyzed using a texture analyzer (Brookfield LFRA, Middleboro, MA). A cutting wire of length 40 mm and 0.33 mm thickness (Model TA26) and test speed of 1 mm/sec were used to complete texture analysis. Color values of ground samples were analyzed using a Hunter Minolta colorimeter (Chroma Meter CR-310, Ramsey, NJ, USA). Water activity values were measured using water activity meter (Aqua Lab Series 3TE, Decagon Devices, Pullman, WA). Scanning electron microscopy (SEM) analysis of the finished product was determined at \(\times\)10 (8 Kvi) and \(\times\)550 (8 Kvi).

2.4. Lipid and Oxidation Measures. Extrudates (75 g) were ground using a Retsch ZM 200 ultracentrifugal mill (Haan, Germany) with a 1 mm ring sieve. Lipid content of ground samples was determined using a 16 hr soxhlet extraction method [20]. However, oil for peroxide value (PV) was extracted at room temperature using chloroform : methanol (2:1 v/v) for three hours [20]. The solvent to ground extrudate ratio was 10:1. The lower temperature room extraction was done to prevent potential breakdown of the hydroperoxides. Peroxide values (PV) on the extracted oil were analyzed using the method of Crowe and White [27].

Headspace solid phase microextraction (HS-SPME) was used to identify propanal, which is formed during the oxidation of ALA [20]. Propanal was analyzed using gas
of extrudates and is in agreement with results reported by Wu et al. [23]. However, color darkening (i.e., decreasing L values) of the extrudates containing 10 to 20% flaxseed was not significant ($P > 0.05$). Furthermore, with a few exceptions, no significant difference ($P > 0.05$) was observed in redness (a) and yellowness values (b) in both pinto and navy extrudates containing increased flaxseed levels (Table 1 and Figure 1).

3.1.2. Water Activity, Bulk Density, Expansion Ratio, and SEM Values

Water activity values (Table 2) increased with increasing flaxseed percentage in navy-corn extrudates. The increase was significant ($P \leq 0.05$) for the extrudates made with navy-corn and all levels of flaxseed. In contrast, water activity was not affected by flaxseed fortification in bean extrudates containing pinto bean flours. The range (0.4–0.6) in water activity values indicates the potential for a stable shelf life of the products. Lipids are most stable to oxidation when water activity is within the range of 0.3 to 0.6 [29]. Only extrudates containing 15% and 20% flaxseed and navy bean flour had water activities outside the 0.3 to 0.6 range. All water activities under 0.75 values are considered acceptable in preventing microbial growth [29].

In general, bulk density values of extrudates containing pinto flours and navy flours were not significantly different ($P > 0.05$) for extrudates with 5% and 10% levels of flaxseed (Table 2). However, the bulk density values were significantly different ($P \leq 0.05$) for extrudates containing 15% and 20% flaxseed compared to the control and lower flaxseed-containing extrudates (Table 2). Ahmed [30] also reported increased bulk density of flaxseed containing corn

Table 1: Mean color values of navy-corn and pinto-corn extrudates.

Treatment	Navy-corn					Pinto-corn			
	L	a	b	L	a	b			
Control	78.1bc	3.16a	28.75a	71.16d	1.29d	22.82a			
5% flax	79.3c	3.96b	29.43bc	70.24bc	1.12d	23.07a			
10% flax	77.48bc	3.81b	30.19bc	69.69bc	0.96bc	22.96a			
15% flax	77.42bc	3.95b	29.43bc	68.95bc	0.64b	22.84a			
20% flax	76.35a	3.55ab	28.72a	69.78ab	0.12a	22.93a			

L: lightness; a: (+) red, (−) green; b: (+) yellow, (−) blue. Means in column with the same letter are not significantly ($P > 0.05$) different.

Figure 1: Extrudates obtained from combinations of navy (a) or pinto (b) bean and corn flours containing flaxseed (5–20%).

3. Results and Discussion

3.1. Physical Parameters

3.1.1. Color

The color of the pinto flours contributed to enhanced darkness (Table 1 and Figure 1). Increased flaxseed concentration in both flours reduced the L values of the extrudates, suggesting that flaxseed contributed to the darkening...
Table 2: Mean water activity, bulk density, and expansion ratio values of navy-corn and pinto-corn extrudates.

Treatment	Navy-corn	Pinto-corn				
	Water activity	Bulk density (g/cm³)	Expansion ratio	Water activity	Bulk density (g/cm³)	Expansion ratio
Control	0.48^a	69.1^a	7.8^b	0.52^a	71.4^a	8.0^b
5% flax	0.54^b	72.1^a	7.9^b	0.54^a	77.9^a	8.0^b
10% flax	0.60^{bc}	87.1^a	8.5^b	0.54^a	78.2^a	8.1^b
15% flax	0.64^{bc}	126.4^b	7.7^{ab}	0.57^a	98.5^b	7.5^b
20% flax	0.69^d	177.4^c	6.9^a	0.57^a	132.6^c	6.2^a

Means in column with the same letter are not significantly (P > 0.05) different.

Degree of expansion affects density, fragility, and overall texture of extruded products [25]. Expansion values were not significantly (P > 0.05) different between 5% and 10% flaxseed-containing navy-corn extrudates and 5%, 10%, and 15% flaxseed containing pinto-corn extrudates (Table 2). Starch is the primary cause for expansion [25]. Expansion values of pinto-corn extrudates were found to be slightly higher than those of the navy extrudates, which was likely due to higher starch content in pinto beans. The addition of protein tends to decrease expansion of extruded snacks [25]. Furthermore, the high fiber of flaxseed [8] likely contributed to the reduction in expansion because the high flaxseed (20%) extrudates had the lowest expansion values. Fiber has a tendency to rupture cell walls and promotes breakage of air cells during extrusion, which prevents matrices from expanding [32].

Scanning electron micrographs (Figure 2) further indicated that the structure was more compact with increasing levels of flaxseed. However, scanning electron micrographs of extrudates containing 5 and 10% flaxseed were not different from those of the control samples; thus only the 10% is shown. The 20% flaxseed fortification clearly affected the structure of the extrudates. Flaxseed addition at higher levels (20%) affected the structure of the navy-corn extrudates to a larger extent compared to that of the pinto-corn system (Figure 2).
The increased lipid and ALA levels likely contributed to the increased oxidation might be related to the surface lipids. Some of the lipid may have been expelled from the protective coating of a starch-protein matrix that forms during extrusion processing. As a result, the lipid may have been more accessible to oxygen and thus oxidation. The data at four months suggests that the flaxseed addition did affect propanal formation. Propanal values were not significantly different between the control and 5% flaxseed containing extrudates in both pinto and navy extrudates, although the values increased with increasing flaxseed levels. However, the reduced propanal level (Table 6) observed in the 20% flaxseed extrudate, compared to the 15% flaxseed sample, may be due to the more compact structure of the 20% flaxseed extrudates (Figure 2). High correlations (0.99 and 0.91; \(P \leq 0.01 \)) between propanal content and sensory scores of the 4-month stored navy and pinto extrudates, respectively, were observed. Correlations observed suggest that oxidation markers (i.e., PV and propanal) increased, so did the painty characteristic of the extrudates.

The extrudate containing 20% flaxseed did have the highest rancidity score (Table 5) indicating oxidation. In 10% flaxseed extrudates, but not significantly higher than the 10% flaxseed containing extrudates at the four-month storage time. The higher PV in the 20% extrudates is probably due to the increased availability of lipid on the surface of the extrudate, which can more readily oxidize.

Although the PV was relatively low, the PV and sensory scores were well correlated (0.99 and 0.92, resp.; \(P \leq 0.01 \)) in pinto extrudates at time zero (\(T = 0 \)) and four months (\(T = 4 \)). Similar correlations for the navy extrudates (0.99 and 0.98 at \(T = 0 \) and \(T = 4 \), resp.; \(P \leq 0.01 \)) were observed. However, the 5% and 15% flaxseed extrudates were not included in the correlation analysis since these extrudates were not included in the sensory evaluation. The 5% flaxseed extrudates had similar PV compared to the control (Table 5) while the 15% flaxseed extrudates were similar to the 20% flaxseed extrudates. Therefore, 5% and 15% flaxseed extrudates were dropped from the sensory evaluation because of the similarity in rancidity indicators and the need to reduce panelists fatigue due to the large number (10 per session) of samples being evaluated.

No propanal, the major aldehyde produced during degradation of ALA, was found in zero time (Table 6) or the two-month-old extrudates (data not reported). A small increase in propanal was observed in four-month-old samples (Table 6).

The possible reason for the increased oxidation might be related to the surface lipids and the need to reduce panelists fatigue due to the large number (10 per session) of samples being evaluated.

3.2. Chemical Parameters

3.2.1. Lipid and ALA Contents

Lipid was extracted from the ground flaxseed, the dry mix before extrusion, and the ground extrudates after extrusion. Lipid content of the flaxseed was approximately 44% and contributed to a significant (\(P \leq 0.05 \)) increase in oil content with increasing flaxseed levels in both navy and pinto extrudates (Table 3).

The combination of protein and fiber, along with a reduction in starch content, likely led to the more compact structure of the 20% flaxseed extrudates.
Table 4: α-Linolenic acid (ALA) in the bean-corn extrudates.

Treatment	Navy-corn		Pinto-corn	
------------	-----------		-----------	
	mg ALA/100 g		mg ALA/serving	
Control	386a		108a	
5% flax	479b		134a	
10% flax	1359c		381b	
15% flax	2136d		598c	
20% flax	3071e		860d	
Serving is based on 1 oz or 28 g. Means in column with the same lowercase letter are not significantly ($P > 0.05$) different.				

Table 5: Peroxide values and rancidity scores of navy-corn and pinto-corn extrudates at different time periods.

Treatment	Navy-corn		Sensory scores					
------------	-----------		T = 0	T = 4				
	Peroxide values		Sensory scores					
	T = 0	T = 4	T = 0	T = 4				
Control	2.9aA	3.4bA	2.5aA	3.5bB	3.0aA	3.2bA	2.4aA	2.5aA
5% flax	3.1aA	3.6bB	ND	ND	3.0aA	3.5abB	ND	ND
10% flax	3.3abA	3.7abA	2.6aA	4.5abB	3.1aA	3.6abcA	2.4aA	4.4abA
15% flax	3.6bA	4.0abA	ND	ND	3.2abA	3.8bcB	ND	ND
20% flax	3.8bA	4.2bA	2.8aA	5.6bB	3.5bA	4.2bB	3.4aA	5.0bB

T indicates time in months. Means in column with the same lowercase letter are not significantly ($P > 0.05$) different. Means in row with the same uppercase letter are not significantly ($P > 0.05$) different. ND indicates not determined.

Table 6: Propanal values of navy-corn and pinto-corn extrudates at different time periods.

Treatment	Navy-corn		Pinto-corn	
------------	-----------		Propanal (ppb)	
	T = 0	T = 4	T = 0	T = 4
Control	ND	45.3a	ND	59a
5% flax	ND	58.7ab	ND	64.3ab
10% flax	ND	79.3bc	ND	85.7bc
15% flax	ND	112.3d	ND	108d
20% flax	ND	101cd	ND	106cd

T indicates time in months. Values in column having the same letter are not significantly ($P > 0.05$) different. ND indicates no propanal detected (i.e., 0).

general, increasing flaxseed concentrations increased the rancidity scores in samples stored for four months. However, no differences in rancidity scores were observed in the time zero samples. This indicated that the extrusion process did not promote the oxidation of flaxseed during extrusion. The higher rancidity scores observed by the sensory panel were likely due to the increased oxidation that occurred in the high lipid samples during storage, even though the samples were stored in a nitrogen flushed package. Furthermore, small increases in rancidity of the 20% flaxseed extrudates may be related to ALA content, which was the highest in the 20% flaxseed extrudates. A limitation of the study might be that oxidation was not measured more frequently during the storage study. The samples were stored under a nitrogen flush metalized package typical of the snack foods; thus, the low level of oxidation was anticipated. Although not reported in the data in this paper, we did observe that the 20% flaxseed extrudates left open to air and under fluorescent light reached PV of approximately 20 meq/kg in as little as 5 days after extrusion. Therefore, the need for packaging under inert environments and light impermeable packaging was evident.

4. Conclusion

Milled flaxseed addition significantly increased water activity and omega-3 fatty acid content of extrudates. The 5 and 10% milled flaxseed addition did not significantly affect lipid oxidation and sensory attributes. Interactions between starch, protein, and lipids may have contributed to the stability of extrudates. Extrudates from bean and corn flour combinations with 5 and 10% flaxseed had good quality and stable shelf life. In addition, consuming 1 oz (28 g) of the 10% fortified extrudate provides a significant amount (i.e., approximately 33%) of the recommended daily ALA intake. These levels of flaxseed are recommended for the creation of a gluten-free extruded healthy snack.

Conflict of Interests

No author has a conflict of interests regarding information presented in this paper.

Acknowledgments

The authors would like to thank Northarvest Bean Growers Association for funding the Project, Thomas Freeman, USDA, for conducting scanning electron microscopy, and Rilie Morgan from the Northern Crops Institute, Fargo, ND, USA, for technical help in processing of the extruded snack.
References

[1] S. H. Goodnight, "The effects of n-3 fatty acids on atherosclerosis and the vascular response to injury," Archives of Pathology and Laboratory Medicine, vol. 117, no. 1, pp. 102–106, 1993.

[2] D. M. Bibus, P. Stitt, and R. Holman, "Ratio of linoleic acid to α-linolenic acids in the human diet: Implications in the health of humans and companion animals," in Proceedings of the 57th Flax Institute of the USA, pp. 49–58, North Dakota State University, Fargo, ND, USA, March 1998.

[3] D. G. Dorrell, "Distribution of fatty acids within the seed of flax," Canadian Journal of Plant Science, vol. 50, no. 1, pp. 71–75, 1970.

[4] J. K. Daun and R. Przybylski, "Environmental effects on the composition of four Canadian flax cultivars," in Proceedings of the 58th Flax Institute of the U.S., pp. 80–91, North Dakota State University, Fargo, ND, USA, 2000.

[5] R. Borneo, D. Kocer, G. Ghai, B. J. Tepper, and M. V. Karwe, "Stability and consumer acceptance of long-chain omega-3 fatty acids (eicosapentaenoic acid, 20:5, n-3 and docosahexaenoic acid, 22:6, n-3) in cream-filled sandwich cookies," Journal of food science, vol. 72, no. 1, pp. S49–S54, 2007.

[6] Flax Council of Canada, http://www.flaxcouncil.ca/files/web/FF_Apr09_R2.pdf.

[7] P. M. Kris-Etherton, D. S. Taylor, S. Yu-Poth et al., "Polyunsaturated fatty acids in the food chain in the United States," The American Journal of Clinical Nutrition, vol. 71, no. 1, pp. 179S–188S, 2000.

[8] J. F. Carter, "Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition," Cereal Foods World, vol. 38, no. 10, pp. 753–759, 1993.

[9] T. A. Poljahnheimo, M. A. Hakala, R. L. Tahvonen, S. J. Salminen, and H. P. Kallio, "Flaxseed in breadmaking: effects on sensory quality, aging, and composition of bakery products," Journal of Food Science, vol. 71, no. 4, pp. S343–S348, 2006.

[10] Y. M. Li, R. L. Chaney, A. A. Schneider, J. F. Miller, E. M. Elias, and J. J. Hammond, "Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax," Euphytica, vol. 94, no. 1, pp. 23–30, 1997.

[11] B. Lei, E. C. Y. Li-Chan, B. Dave Oomah, and G. Mazza, "Distribution of cadmium-binding components in flax (Linum usitatissimum L.) Seed," Journal of Agricultural and Food Chemistry, vol. 51, no. 3, pp. 814–821, 2003.

[12] FAO/WHO, Summary and Conclusions of the Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Food and Agriculture Organization of the United Nations, World Health Organization, 2010, http://www.who.int/foodsafety/publications/chm/summary73.pdf.

[13] R. A. Vanderpool and P. G. Reeves, "Cadmium absorption in women fed processed edible sunflower kernels labeled with a stable isotope of cadmium, 113Cd," Environmental Research Section A, vol. 87, no. 2, pp. 69–80, 2001.

[14] B. D. Oomah and G. Mazza, "Compositional changes during commercial processing of flaxseed," Industrial Crops and Products, vol. 9, no. 1, pp. 29–37, 1998.

[15] H. Yang, Z. Mao, and H. Tan, "Determination and removal methods for cyanogenic glucoside in flaxseed," in Proceedings of the AASAE/CSAE Annual International Meeting, Ottawa, Canada, August 2004.

[16] M. Wu, D. Li, L.-J. Wang et al., "Extrusion detoxification technique on flaxseed by uniform design optimization," Separation and Purification Technology, vol. 61, no. 1, pp. 51–59, 2008.

[17] M. Imran, F. M. Anjum, M. S. Butt, M. Siddiq, and M. A. Sheikh, "Reduction of cyanogenic compounds in flaxseed (Linum usitatissimum L.) meal using thermal treatment," International Journal of Food Properties, vol. 16, no. 8, pp. 1809–1818, 2013.

[18] D. Ni Eidhlin, J. n Burke, and D. O’Beirne, "Oxidative stability of ω3-rich camellina oil and camellina oil-based spread compared with plant and fish oils and sunflower spread," Journal of Food Science, vol. 68, no. 1, pp. 345–352, 2003.

[19] D. Perlman, "Oxidative stabilization of omega-3 fatty acids in low linoleic acid-containing peanut butter," United States Patents Application No. 20050244564, 2003.

[20] C. A. Hall III, F. A. Manthey, R. E. Lee, and M. Niehaus, "Stability of α-linolenic acid and secoisolariciresinol diglucoside in flaxseed-fortified macaroni," Journal of Food Science, vol. 70, no. 8, pp. C483–C489, 2005.

[21] A. J. B. Trevisan and J. A. G. Aras, "Development of corn and flaxseed snacks with high-fibre content using response surface methodology (RSM)," International Journal of Food Sciences and Nutrition, vol. 63, no. 3, pp. 362–367, 2012.

[22] X. Meng, D. Threinen, M. Hansen, and D. Driedger, "Effects of extrusion conditions on system parameters and physical properties of a chickpea flour-based snack," Food Research International, vol. 43, no. 2, pp. 650–658, 2010.

[23] W. Wu, H. E. Huff, and F. Hsieh, "Processing and properties of extruded flaxseed-corn puff," Journal of Food Processing and Preservation, vol. 31, no. 2, pp. 211–226, 2007.

[24] E. Gujska and K. Khan, "Effect of temperature on properties of extrudates from high starch fractions of navy and pinto beans and corn meal blended with legume high protein fractions," Journal of Food Science, vol. 55, no. 2, pp. 466–469, 1990.

[25] E. Gujska and K. Khan, "Functional properties of extrudates from high starch fractions of navy and pinto beans and corn meal blended with legume high protein fractions," Journal of Food Science, vol. 56, no. 2, pp. 431–435, 1991.

[26] M. Murphy, D. Skonberg, M. Camire, M. Dougherty, R. Bayer, and J. Briggs, "Extruded snacks containing crab-processing by-product," Journal of the Science of Food and Agriculture, vol. 83, no. 11, pp. 1163–1167, 2003.

[27] T. D. Crowe and P. J. White, "Adaptation of the AOCS official method for measuring hydroperoxides from small-scale oil samples," JAOCs, Journal of the American Oil Chemists’ Society, vol. 78, no. 12, pp. 1267–1269, 2001.

[28] R. E. Lee, F. A. Manthey, and C. A. Hall III, "Content and stability of hexane extractable lipid at various steps of producing macaroni containing ground flaxseed," Journal of Food Processing and Preservation, vol. 28, no. 2, pp. 133–144, 2004.

[29] P. N. Jensen and J. Risbo, "Oxidative stability of snack and cereal products in relation to moisture sorption," Food Chemistry, vol. 103, no. 3, pp. 717–724, 2007.

[30] Z. S. Ahmed, "Physico-chemical, structural and sensory quality of corn-based flax-snack," Nahrung—Food, vol. 43, no. 4, pp. 253–258, 1999.

[31] C. I. Onwulata, R. P. Konstance, P. W. Smith, and V. H. Holsinger, "Co-extrusion of dietary fiber and milk proteins in expanded corn products," LWT—Food Science and Technology, vol. 34, no. 7, pp. 424–429, 2001.

[32] S. Lue, F. Hsieh, and H. E. Huff, "Extrusion cooking of corn meal and sugar beet fiber: effects on expansion properties, starch gelatinization, and dietary fiber content," Cereal Chemistry, vol. 68, no. 3, pp. 227–234, 1991.
[33] T. F. Schweizer, S. Reimann, J. Solms, A. C. Eliasson, and N. G. Asp, “Influence of drum-drying and twin-screw extrusion cooking on wheat carbohydrates, II, effect of lipids on physical properties, degradation and complex formation of starch in wheat flour,” *Journal of Cereal Science*, vol. 4, no. 3, pp. 249–260, 1986.

[34] S. Bhatnagar and M. Hanna, “Amylose-lipid complex formation during single-screw extrusion of various corn starches,” *Cereal Chemistry*, vol. 71, no. 6, pp. 582–587, 1994.

[35] C. Pérez-Navarrete, R. González, L. Chel-Guerrero, and D. Betancur-Ancona, “Effect of extrusion on nutritional quality of maize and Lima bean flour blends,” *Journal of the Science of Food and Agriculture*, vol. 86, no. 14, pp. 2477–2484, 2006.

[36] M. Imran and F. M. Anjum, “Influence of twin-screw hot extrusion on linolenic acid retention in flaxseed meal,” *Pakistan Journal of Agricultural Sciences*, vol. 51, no. 1, pp. 161–166, 2014.