Inquiry Training Learning Model Assisted by Google Classroom to Improve Creative Thinking Skills of Senior High School Students

M. Helmi Hariadi¹, Jumadi², Insih Wilujeng³, Heru Kuswanto⁴, Wulandari⁵, Sri Sundari⁶

¹,²,³,⁴,⁵Masters in Physics Education, Postgraduate-Universitas Negeri Yogyakarta, Indonesia
⁶SMA Negeri 1 Banguntapan, Bantul, DI Yogyakarta, Indonesia
e-mail: mhhariadi@yahoo.co.id

Abstract

This study aimed at determining the effect of the inquiry training learning model assisted by Google Classroom in improving students' creative thinking skills. This research was quasi-experimental. Total samples were 32 students of SMAN 1 Banguntapan. The instrument test was essay test to measure the creative thinking skills. The first step of study was the given the pretest, then face-to-face learning and online learning at the time agreed upon with students. The final stage was carried out posttest to see the achievement of score after treatment. The results showed that the gain scores of creative thinking skill in students are categorized into three, namely: 62% of students with low category gain scores, 31% of students with moderate category gain scores, and 7% of students with high category gain scores. The average score of gain of creative thinking ability was 0.3 which was in the medium category. Based on these results, further research is needed with an emphasis on optimizing the use of Google Classroom and confirming knowledge construction in face-to-face learning.

Keywords: Creative Thinking, Google Classroom, Inquiry Training

1. Introduction

The domain of Physics which is based on experiments, research, hypotheses, and thinking using a new perspective can function as a very good foundation and can lead to situations that allow to develop creativity (Klieger & Sherman, 2015). Creative thinking skills are one of the skills needed in the 21st century (Nurcahyanto & Supahar, 2015). Creative thinking has become an important element in everyday life, therefore educators play a major role in encouraging the creative thinking skills, so educators are also required to be creative, open to creative ideas and must support the creative process (Bakir & Öztekin, 2014).

Creative thinking is a set of multi-dimensional components that lead individuals or groups to the generation of new ideas that have value (Corazza, 2016). Creative thinking skills include aspects of fluency, flexibility, elaboration, and originality (Malik, Setiawan, Suhandi, & Permanasari, 2017). Indicators of creative thinking according to Hanni, Muslim, Hasanah, & Samsudin (2018) is showed in Table 1.

Indicators of Creative Thinking	Description
Fluency	Give lots of questions
Flexibility	Produce various ideas, answers, or questions
Originality	Produce new and unique phrases
Elaboration	Able to enrich and build ideas

Learning activities in schools have not fully facilitated students to develop creative thinking skills (Nurcahyanto & Supahar, 2015). This is supported by the results of interviews with Physics teachers who stated that practicum is rarely done in Physics learning. In fact, the real experience of students in learning can be an effort to improve the creative thinking skills, so that learning must be done using a student-centered learning model (Yusnaeni, Corebima, SUsilo, & Zubaidah, 2017). On the other hand, the practicum method is constructive learning that can help the students to be active and happy to learn (Suparno, 2013: 69). Thus, by
incorporating creative thinking processes in all fields of content, teachers can provide 21st century life skills in students’ creative thinking and production (Thompson, 2017).

The inquiry training model is a good learning experience for students. Physics conceptual knowledge of students using the inquiry training learning model is better than the conceptual knowledge of Physics students who use conventional learning (Harahap, Motlan, & Siregar, 2017). Inquiry-based science learning tools are effective for enhancing creative thinking skills and work creatively with other junior high school students (Wibowo & Laksono, 2015). This statement is also supported by research that stated that inquiry learning with handouts affects the learning outcomes of Physics (Erlinda, 2016).

Inquiry learning emphasizes the process of looking and finding. Study material is not given directly. In this case, the students have the role to look and find themselves, while teachers as facilitators and mentors of students in learning (Hosnan, 2016). The inquiry training model is effective in terms of arousing curiosity in students, better retention of concepts, generating interest in students and arousing their desire to ask questions and interact in class (Chaudhari, 2015).

The teaching and learning process through inquiry always involves the students in exchanging opinions through discussions, seminars, and so on. Some of the advantages of learning by using the inquiry are as follows (Hosnan, 2016): build understanding of good concepts and ideas, help in using memory and transfer in new learning process situations, encourage students to think and work on their own initiative, help the students to think of initiatives and formulate their own hypotheses, give satisfaction that is intrinsic, and encourage a more challenging learning process. The syntax of the Inquiry Training learning model is shown in Table 2 (Turnip, Wahyuni, & Tanjung, 2016).

Phase	Syntax
1	Reveal the problem
2	Formulate a hypothesis
3	Review data and conduct experiments
4	Organize, formulate and explain
5	Analyze research and communication processes

The inquiry training learning model using visual media is better at improving students’ science process skills than conventional learning (Derlina & Nst, 2016). This is also accompanied by a statement Iftakhar (2016) which explains that teachers should be very welcoming of any new technology to ensure the best learning in virtual classrooms besides physical classes.

The role of teachers and students has changed with the changing frame of mind in education that affects the concept of learning. Older systems have been discarded and student autonomy is important. Information is constantly updated, shifting and increasing. Learning Module System (LMS) is a good choice for teachers in controlling and providing learning materials (Cavus & Alhih, 2014).

This activity will increase the interest of the students in the study of science. The teacher can give students something they usually cannot show in class because of lack of time. LMS also facilitates interaction with the students in real time as a learning community. LMS allows students to share their knowledge and difficulties, so that they can help each other through forums and chat. The teacher can see in which parts the concepts are difficult to understand (Cavus & Alhih, 2014).

Students in the blended learning group experience greater learning outcomes compared to students in traditional approaches (Bazelais & Doleck, 2018). Blended learning has the following advantages (Lalima & Lata Dangwal, 2017): as part of learning that is done through online or offline modes so that teachers and students get more time in class for creative and cooperative training; students benefit from online learning and Computer Assist Learning (CAL) without losing elements of social interaction and human touch in traditional teaching; provide more room for communication. The communication cycle is resolved in
blended learning which is not possible if it only follows a traditional approach; students become smarter in the field of technology and they are more fluent in digital language; students have stronger professionalism when developing qualities such as self motivation, self responsibility, and discipline; can update learning content and provide new life for established learning.

Google Classroom is a free application designed to help teachers and students communicate and collaborate, process paperless tasks (Bell, 2015). Google Classroom is perceived as useful and easy to use (Wijaya, 2016) and can be considered as a classroom resource program for teachers and students (Dicicco, 2016). Google Classroom is a free application designed to help teachers and students communicate and collaborate, process paperless tasks (Bell, 2015). Through the page of Google Classroom (2018) it is explained that Google Classroom is a free application designed to help teachers to save time, keep the class organized, and improve communication with students. Some of the main features in the Google Classroom are as follows: creating and organizing classes, adding teaching materials, adding students, adding announcements, assignments, discussion topics, and comments, reusing old posts, communication, attaching files, Youtube videos, links website, and Google Drive.

Physics learning can be realized in blended learning mode, which is learning that combines face-to-face activities with online learning. Through blended learning, teachers can use the Google Classroom to help present material and facilitate understanding of learning material for students. The ease of use of Google Classroom makes it the right medium for the implementation of blended learning. Teachers are expected to be able to carry out their duties well, including more opportunities in examining and improving learning, conducting dialogue with students. The stages of inquiry training activities assisted by Google Classroom are presented in Table 3.

Phase	Mode	Creative Thinking Skills	Description
Reveal the problems and formulate a hypothesis	Face to face and online	Fluency	Give lots of questions
Review data and conduct experiments	Face to face	Flexibility	Produce various ideas, answers, or questions
Organize, formulate and explain	Face to face	Originality	Produce new and unique phrases
Analyze research and communication processes	Face to face and online	Elaboration	Able to enrich and build ideas

These stages will make students actively involved in learning activities and can practice doing the investigation process through experiments/ lab work. The online learning activities are conducted to discuss related material learned. In addition to discussions, students are also given the task to work on quizzes and practice questions interactively.

2. Method
This research was a quasi-experimental research conducted in SMA Negeri 1 Banguntapan, Bantul District, Yogyakarta Special Province. The sample selection technique used simple random sampling. The subjects of the study were 33 students of class XI MIPA-1 2017/2018 Academic Year.

The independent variable of the research was the inquiry training learning model assisted by Google Classroom, while the dependent variable is the creative thinking skills measured using the essay test instrument. Before using the essay test instrument, these creative thinking skills have been validated by material experts.

The learning was done in two modes, which were: face to face mode and online mode. The initial stage before face-to-face mode learning was the pretest. After face-to-face mode learning, the next stage was online mode learning through Google Classroom based on the agreed time with the students. The final stage was the posttest activity to measure scores on
improving students’ creative thinking skills. The following is the distribution of inquiry training learning mode activities assisted by Google Classroom presented in Table 4.

Phase	Syntax	Mode	
1	Reveal the problem	√	√
2	Formulate a hypothesis	√	-
3	Review data and conduct experiments	√	-
4	Organize, formulate and explain	√	-
5	Analyze research and communication processes	√	√

Face-to-face mode learning activities were conducted with the inquiry training model. Learning activities were designed to follow five phases which became the syntax of the inquiry training learning model. In the process, the students were directed to prove the nature of magnifying glass by being associated with everyday life. Guided by the compiled LKPD, it was expected that the students could formulate an enlargement of shadow by magnifying glass by accommodating eyes and not accommodating eyes, categorizing the magnification of shadows, planning and carrying out experiments to probe the magnification of shadows in the magnifying glass.

The achievement of increasing creative thinking skills could be measured using pretest scores and posttest scores. The pretest score and posttest score were calculated with the gain equation stated in the following equation (McKagan, Sayre, & Madsen, 2017):

\[g = \frac{S_{post} - S_{pre}}{S_{max} - S_{pre}} \] (1)

Note:
- \(g \) : Gain score
- \(S_{max} \) : Maximum score
- \(S_{pre} \) : Pretest score
- \(S_{post} \) : Posttest score

Category	Score
High	\(g > 0.7 \)
Moderate	\(0.3 \leq g \leq 0.7 \)
Low	\(g < 0.3 \)

Source: (McKagan et al., 2017)

3. Result and Discussion

Inquiry in Physics learning model assisted by Google Classroom is presented in Table 6 below:

Phase	Mode	Activity
1	Face to face and online	The teacher displays the usage of magnifying glass video that has been uploaded to Google Classroom; Ask students to retell the contents of the video displayed and provide an opportunity to ask questions about what has not been understood regarding the video.
2	Face to face	The teacher gives questions related to the learning objectives. Students respond to the teacher’s questions. After group division, LKPD, and practicum tools, the teacher asks the students to conduct experiments in accordance with the procedures stated in the LKPD.
3	Face to face	The students discuss experimental data. Representatives of the students convey conclusions, then corrected together by the teacher and the students.
The teacher asks the students to analyze the experimental process that has been carried out and asks the students to convey the results of their analysis and input related to the experimental process. The teacher conveyed about online mode learning with Google Classroom and agreed the study time together with the students.

Note:
Phase 1: Reveal the problem
Phase 2: Formulate a hypothesis
Phase 3: Review data and conduct experiments
Phase 4: Organize, formulate and explain
Phase 5: Analyze the research and communication processes

Table 6 provides details of the implementation of the Inquiry Training model assisted by Google Classroom. The learning was carried out using the syntax of Inquiry Training model assisted by Google Classroom, which were: reveal the problems; formulate a hypothesis; review data and conduct experiments; organize, formulate and explain; and analyze the research and communication processes. The entire syntax phases of the learning had been carried out in two modes, which were face-to-face mode and online mode using Google Classroom assistance. The Google Classroom was accessed by the students using smartphones through the Google Classroom page.

A. Participation of The Students in Learning
Participation of the students in the Physics Inquiry Training learning model assisted by Google Classroom was obtained by counting the number of students who actively participate in learning activities, both face-to-face mode learning and online mode learning assisted by Google Classroom. Data on student participation in face-to-face Physics learning was calculated based on student attendance data in learning. While data on student participation in online mode learning were calculated based on data on participation in learning, starting from creating a Google Classroom account, to the stage of participating in learning activities. Recapitulation of data on student participation in the Physics Inquiry Training learning model assisted by Google Classroom is presented in Table 7.

No.	Learning Activity Mode	Number of Student	Percentage (%)
1	Face to Face	32	100
2	Online	31	90.6

Participation of students in Physics Inquiry Training learning model assisted by Google Classroom of face-to-face mode was considered very high, because the learning was followed by 100% of the students in the sample class. While online mode learning was followed by 90.6% of the students, following learning or 93.5% of the total number of students who had registered with Google Classroom. Thus, the participation of students in Inquiry Training learning is assisted by Google Classroom was high. The high level of student participation was caused by interest in new media and the role of the teacher who emphasizes on students to actively participate. For this reason, the use of Google Classroom media can increase student participation in the implementation of blended learning.

B. Test Results of Students' Creative Thinking Skills
The creative thinking skills of the students were measured by giving questions about the pretest and posttest. The results of the pretest and posttest creative thinking skills of the students of class XI MIPA-1 SMAN 1 Banguntapan are presented in Table 8 below:
Based on Table 8, information is obtained that there is an increase in the score of students’ creative thinking skills in Physics Inquiry Training learning model assisted by Google Classroom. The score is a score obtained by individual students. That is, in the sample class there are students who are able to obtain the maximum and minimum score for each test. Increasing of the score of the students’ creative thinking skills can be seen from the increase in maximum scores, minimum scores, mean, and median score of the creative thinking skills.

Physics Inquiry Training learning model assisted by Google Classroom is able to increase the score of students’ creative thinking skills, even though the improvement score is distributed in the high, medium, and low categories. The increase in scores is supported by the high enthusiasm of students in participating in learning both face-to-face mode and online mode through Google Classroom. The histogram graph of the maximum score achievement and the minimum score of students’ creative thinking skills can be seen in Figure 1.

Figure 1. Achievement of The Pretest and Posttest Scores of The Creative Thinking Skills

Figure 1 provides information that the Physics Inquiry Training learning model assisted by Google Classroom can improve students’ creative thinking skills. Pretest data shows that the maximum score of creative thinking skills is 48, while the maximum posttest score of creative thinking skills is 88. Likewise with the minimum score of creative thinking skills, the pretest score is 4, while the posttest score is 16. This means that there is an increase in achievement of maximum and minimum scores of students’ creative thinking skills. This information is also supported by Figure 2 as shown below.

Figure 2. Histogram of Mean and Median Pretest and Posttest Score

| Table 8. Scores of students’ creative thinking skills test |
|---------------------------------|-----|-----|
| Result | Pretest | Posttest |
| Maximum | 48 | 88 |
| Minimum | 4 | 16 |
| Mean | 17.1 | 43.03 |
| Median | 16 | 40 |
Figure 2 shows the increase in mean scores and median scores of students’ creative thinking skills. The mean score of creative thinking skills increased from 17.1 to 43.03. The mean score of creative thinking skills increases from 16 to 40. Based on these three indicators, it is clear that the implementation of Inquiry Training learning model assisted by Google Classroom can improve students’ creative thinking skills. To find out the category of increasing scores of students’ creative thinking skills, calculation is needed using the gain equation. After going through calculations, the score of the students’ creative thinking skills is obtained, which can be seen in Figure 3 below.

![Figure 3](image_url)

Figure 3. Pie Chart of The Gain Score Category

Pie chart in Figure 3 shows the categorization of gain scores of students’ creative thinking skills obtained after taking Physics Inquiry Training learning model assisted by Google Classroom. Students who take inquiry learning training through Google Classroom are 29 people. The results obtained that 62% of students have a low gain score, which means that the gain score of the creative thinking skills is below 0.3. Students who are in the medium gain category are 31%, meaning that the achievement score of the creative thinking skills is between 0.3 - 0.7. While students who are in the high gain score category in the creative thinking skills test are 7%, meaning that the gain score of their creative thinking skills is more than 0.7.

Creative Thinking Skills	Average of Gain Score	Category
Fluency	0.28	Low
Flexibility	0.64	Medium
Originality	0.16	Low
Elaboration	0.26	Low
Overall	0.3	Medium

Based on Table 9, information can be obtained that the students experienced an increase in their creative thinking skills after following the Inquiry Training learning model assisted by Google Classroom. The average of gain score for each aspect was as follows: the average gain score for fluency aspect was 0.28 with a low category; the average gain score for flexibility aspect was 0.64 with moderate category; the average gain score for originality aspect was 0.16 with a low category; the average gain score for elaboration aspect was 0.26 with a low category. This showed that the Physics Inquiry Training learning model assisted by Google Classroom could increase the score of creative thinking skills for each aspect of
creative thinking. Although in each aspect the majority was in the low category, but in the aspect of flexibility it had a score in the moderate category. This data shows that students could experience a significant increase in the aspect of flexibility. The increase of the score of creative thinking skills of fluency and elaboration aspects was still not significant, as seen from the score which was still in the low category score, close to the lower limit of the moderate category. As for originality aspect, the increase in the gain score was not significant.

The overall gain score of creative thinking skills as a whole was 0.3 which was in the moderate category. The score was at the lower limit of the gain score of moderate category. Even so, it showed that Physics Inquiry Training learning model assisted by Google Classroom could help improve the students’ creative thinking skills. The high percentage of the students with low gain categories and the average gain scores of creative thinking skills in the medium category were also influenced by several factors as follows:

1) In face-to-face mode learning, the available time was only used with practicum activities, the practicum activities took place slowly, so the students had not been directed to the meaning and application of experimental results.

2) Online mode learning had not been used properly, it had not been implemented in a timely manner classically.

3) The feedback process on online mode learning could not be done optimally, so the students did not yet know for sure whether the exercises they were working on were correct or needed improvement.

Physics Inquiry Training learning model assisted by Google Classroom could help improve students’ creative thinking scores. This is in line with the results of the study by Wibowo & Laksono (2015) which stated that inquiry-based science learning tools are effective for enhancing creative thinking skills and improving creative thinking skills and scientific attitudes (Sandika & Fitrihidajati, 2018). Therefore, this model can be used as an alternative in blended learning to improve students’ creative thinking skills. The problem is, the achievement of the gain score is in the medium category. Although the achievement of the gain score was in the moderate category on average, the flexibility aspect could increase the score of creative thinking skills which were close to the high category. Personally, moderate and high gain scores had been achieved by 38% of students, meaning that the learning model applied was quite significant in improving the students’ creative thinking skills. To achieve better results, it is necessary to optimize the implementation of learning in a classical manner. Especially, increasing the participation of group members internally in helping group members to increase knowledge.

Although the learning outcomes obtained had not been able to increase the score of creative thinking skills with a high category on average, but learning using Google Classroom had been responded positively by the students and Physics teacher. The high level of participation of the students in face-to-face and online mode learning can be evidence of the high interest in learning of the students. Apart from that, Physics teacher was very interested in using Google Classroom media. This means that Google Classroom can be recommended as a blended learning media that is appropriate for use.

4. Conclusion and Suggestion

The inquiry training learning model assisted by Google Classroom can improve students’ creative thinking scores. Gain achievement of students’ creative thinking skills are categorized into three, which are: 62% of the students with low gain score category, 31% of the students with moderate gain score category, and 7% of the students with high gain score category. While on average, the gain score of students’ creative thinking skills is 0.3 which is in the medium category.

Further research can be carried out by considering the need to optimize the use of online mode learning with Google Classroom and activities to confirm knowledge construction in face-to-face mode learning.
References

Bakir, S., & Öztekin, E. (2014). Creative thinking levels of preservice science teachers in terms of different variables. *Journal of Baltic Science Education, 13*(2), 231–242.

Bazelaïs, P., & Doleck, T. (2018). Blended learning and traditional learning: A comparative study of college mechanics courses. *Education and Information Technologies, 23*(6), 2889–2900. https://doi.org/10.1007/s10639-018-9748-9

Bell, B. K. (2015). Teacher ’ s Guide to Google’s Classroom. *Shake Up Learning, LLC*, 1–45.

Cavus, N., & Ahih, M. S. (2014). Learning Management Systems Use in Science Education. *Procedia - Social and Behavioral Sciences, 143*, 517–520. https://doi.org/10.1016/j.sbspro.2014.07.429.

Chaudhri, P. (2015). A Study of Effectiveness of Inquiry Training Model for Teaching Science to Standard VIII Student of Vadodara City. *Horizons of Holistic Education, 2*(September), 222–232.

Classroom, G. (2018). Classroom Help: About Google Classroom. Retrieved from https://support.google.com/edu/classroom/answer/6020279?h1=en&ref_topic=717544

Corazza, G. E. (2016). *Multidisciplinary Contributions to the Science of Creative Thinking*. (S. Agnoli, Ed.). Singapore: Springer.

Derlina, & Nst, L. A. (2016). Efek Penggunaan Model Pembelajaran Inquiry Training Berbantuan Media Visual Dan Kreativitas Creative-Assisted Inquiry Training Learning Model on Students ’ Science Process Skills. *Jurnal Cakrawala Pendidikan, 15*(2), 153–163. https://doi.org/10.21831/cp.v15i2.8080

Dicicco, K. M. (2016). Rowan Digital Works The effects of Google Classroom on teaching social studies for students with learning disabilities. Retrieved from http://rdw.rowan.edu/etd

Erlinda, N. (2016). Penerapan Metode Pembelajaran Inkuiri Disertai Handout: Dampak Terhadap Hasil Belajar Fisika Siswa SMAN 1 Batang Anai Padang Pariaman. *Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 5*(2), 223–231. https://doi.org/10.24042/jpifalbiruni.v5i2.122

Hanni, I. U., Muslim, Hasanah, L., & Samsudin, A. (2018). K-11 students’ creative thinking ability on static fluid: A case study. *Journal of Physics: Conference Series, 1013*(1), 0–7. https://doi.org/10.1088/1742-6596/1013/1/012034

Harahap, R., Motlan, & Siregar, N. (2017). Pengaruh Model Pembelajaran Inquiry Training Berbantuan Mind Map Terhadap Pengetahuan Konseptual dan Keterampilan Proses Sains (KPS) Siswa. *Jurnal Pendidikan Fisika, 6*(2), 76–81. Retrieved from http://journal.unimed.ac.id/2012/index.php/jpf

Hosn, M. (2016). *Pendekatan Saintifik dan Kontekstual dalam Pembelajaran Abad 21: Kunci Sukses Implementasi Kurikulum 2013*. Bogor: Ghalia Indonesia.

Iftakhar, S. (2016). Google classroom: what works and how? *Journal of Education and Social Sciences, 3*, 12–18. https://doi.org/10.1002/eji.201344328

Klieger, A., & Sherman, G. (2015). Physics textbooks: Do they promote or inhibit students’ creative thinking. *Physics Education, 50*(3), 305–309. https://doi.org/10.1088/0031-9120/50/3/305

Lalima, & Lata Dangwal, K. (2017). Blended Learning: An Innovative Approach. *Universal Journal of Educational Research, 5*(1), 129–136. https://doi.org/10.13189/ujer.2017.050116

Malik, A., Setiawan, A., Suhandi, A., & Permanasari, A. (2017). Enhancing pre-service physics teachers’ creative thinking skills through HOT lab design. *AIP Conference Proceedings, 1868*(August). https://doi.org/10.1063/1.4995177

McKagan, S., Sayre, E., & Madsen, A. (2017). Normalized gain: What is it and when and how should I use it? Retrieved February 3, 2019, from https://www.physport.org/recommendations/Entry.cfm?ID=93334

Nurcahyanto, E., & Supahar. (2015). Development of STEM-Based Performance Assessment in Physics Learning for Student’s Creative Thinking Skill. *Proceeding of International Seminar on Science Education, Yogyakarta State University.*
Sandika, B., & Fitrihidajati, H. (2018). Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education. *JPBI (Jurnal Pendidikan Biologi Indonesia),* 4(1), 23–28. https://doi.org/10.22219/jpbi.v4i1.5326

Suparno, P. (2013). *Metodologi Pembelajaran Fisika Konstruktivistik dan Menyenangkan: Edisi Revisi* (Kedua). Yogyakarta: Universitas Sanata Dharma Yogyakarta.

Thompson, T. (2017). Teaching Creativity Through Inquiry Science. *Gifted Child Today, 40*(1), 29–42. https://doi.org/10.1177/1076217516675863

Turnip, B., Wahyuni, I., & Tanjung, Y. I. (2016). The Effect of Inquiry Training Learning Model Based on Just in Time Teaching for Problem Solving Skill. *Journal of Education and Practice, 7*(15), 177–181. Retrieved from https://iiste.org/Journals/index.php/JEP/article/view/30888

Wibowo, A., & Laksono, E. W. (2015). Pengembangan dan Implementasi Perangkat Pembelajaran IPA Berbasis Inquiry. *Jurnal Inovasi Pendidikan IPA, 1*(2), 102–114. https://doi.org/10.21831/jipi.v1i2.7492

Wijaya, A. (2016). Analysis of factors affecting the use of google classroom to support lectures. *The 5th International Conference on Information Technology and Engineering Application,* (February), 61–68. Retrieved from http://eprints.binadarma.ac.id/2777/

Yusnaeni, Y., Corebima, A. D., SUsilo, H., & Zubaidah, S. (2017). Creative Thinking of Low Academic Student Undergoing Search Solve Create and Share Learning Integrated with Metacognitive Strategy. *International Journal of Instruction, 10* No. 2, 245–262. https://doi.org/https://doi.org/10.12973/iji.2017.10216a